
Tcl/Tk	Applications

Tcl	Commands

Tk	Commands

Tcl	Library

Tk	Library

Keywords

Tcl8.5.8/Tk8.5.8	Documentation

The	interpreters	which
implement	Tcl	and	Tk.
The	commands	which	the
tclsh	interpreter
implements.
The	additional	commands
which	the	wish	interpreter
implements.
The	C	functions	which	a
Tcl	extended	C	program
may	use.
The	additional	C	functions
which	a	Tk	extended	C
program	may	use.
The	keywords	from	the
Tcl/Tk	man	pages.

Copyright	©	1989-1994	The	Regents	of	the	University	of	California
Copyright	©	1992-1999	Karl	Lehenbauer	&	Mark	Diekhans
Copyright	©	1992-1999	Karl	Lehenbauer	and	Mark	Diekhans
Copyright	©	1993-1997	Bell	Labs	Innovations	for	Lucent	Technologies
Copyright	©	1994	The	Australian	National	University
Copyright	©	1994-2000	Sun	Microsystems,	Inc
Copyright	©	1995-1997	Roger	E.	Critchlow	Jr
Copyright	©	1997-2000	Ajuba	Solutions
Copyright	©	1997-2000	Scriptics	Corporation
Copyright	©	1998	Mark	Harrison
Copyright	©	2000	Jeffrey	Hobbs
Copyright	©	2001	ActiveState	Tool	Corp
Copyright	©	2001	Vincent	Darley
Copyright	©	2001-2004	ActiveState	Corporation
Copyright	©	2001-2005	Kevin	B.	Kenny	<kennykb(at)acm.org>
Copyright	©	2001-2008	Donal	K.	Fellows
Copyright	©	2002-2008	Andreas	Kupries	<andreas_kupries(at)users.sourceforge.net>
Copyright	©	2003	George	Petasis	<petasis(at)iit.demokritos.gr>
Copyright	©	2003	Simon	Geard
Copyright	©	2003-2006	Joe	English
Copyright	©	2006	Miguel	Sofer

Copyright	©	2006-2007	Daniel	A.	Steffen	<das(at)users.sourceforge.net>
Copyright	©	2006-2008	ActiveState	Software	Inc
Copyright	©	2008	Pat	Thoyts

Tcl8.5.8/Tk8.5.8	Documentation	>	Tcl/Tk	Applications

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

tclsh wish

Copyright	©	1991-1994	The	Regents	of	the	University	of	California
Copyright	©	1994-1996	Sun	Microsystems,	Inc
Copyright	©	1995-1997	Roger	E.	Critchlow	Jr

Tcl8.5.8/Tk8.5.8	Documentation	>	Tcl	Commands

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

after error lappend platform tcl_findLibrary
append eval lassign platform::shell tcl_startOfNextWord
apply exec lindex proc tcl_startOfPreviousWord
array exit linsert puts tcl_wordBreakAfter
auto_execok expr list pwd tcl_wordBreakBefore
auto_import fblocked llength re_syntax tcltest
auto_load fconfigure load read tclvars
auto_mkindex fcopy lrange refchan tell
auto_mkindex_old file lrepeat regexp time
auto_qualify fileevent lreplace registry tm
auto_reset filename lreverse regsub trace
bgerror flush lsearch rename unknown
binary for lset return unload
break foreach lsort Safe	Base unset
catch format mathfunc scan update
cd gets mathop seek uplevel
chan glob memory set upvar
clock global msgcat socket variable
close history namespace source vwait
concat http open split while
continue if package string
dde incr parray subst
dict info pid switch
encoding interp pkg::create Tcl
eof join pkg_mkIndex tcl_endOfWord

Copyright	©	1990-1994	The	Regents	of	the	University	of	California
Copyright	©	1992-1999	Karl	Lehenbauer	&	Mark	Diekhans

Copyright	©	1992-1999	Karl	Lehenbauer	and	Mark	Diekhans
Copyright	©	1993-1997	Bell	Labs	Innovations	for	Lucent	Technologies
Copyright	©	1994-2000	Sun	Microsystems,	Inc
Copyright	©	1995-1997	Roger	E.	Critchlow	Jr
Copyright	©	1998	Mark	Harrison
Copyright	©	1998-2000	Ajuba	Solutions
Copyright	©	1998-2000	Scriptics	Corporation
Copyright	©	2001-2004	ActiveState	Corporation
Copyright	©	2001-2005	Kevin	B.	Kenny	<kennykb(at)acm.org>
Copyright	©	2001-2006	Donal	K.	Fellows
Copyright	©	2003	George	Petasis	<petasis(at)iit.demokritos.gr>
Copyright	©	2003	Simon	Geard
Copyright	©	2004-2008	Andreas	Kupries	<andreas_kupries(at)users.sourceforge.net>
Copyright	©	2006	Miguel	Sofer
Copyright	©	2006-2008	ActiveState	Software	Inc

Tcl8.5.8/Tk8.5.8	Documentation	>	Tk	Commands

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

bell font options tk_chooseColor tk_textPaste
bind frame pack tk_chooseDirectory tkerror
bindtags grab panedwindow tk_dialog tkvars
bitmap grid photo tk_focusFollowsMouse tkwait
button image place tk_focusNext toplevel
canvas keysyms radiobutton tk_focusPrev ttk::button
checkbutton label raise tk_getOpenFile ttk::checkbutton
clipboard labelframe scale tk_getSaveFile ttk::combobox
colors listbox scrollbar tk_menuSetFocus ttk::entry
console loadTk selection tk_messageBox ttk::frame
cursors lower send tk_optionMenu ttk::intro
destroy menu spinbox tk_popup ttk::label
entry menubutton text tk_setPalette ttk::labelframe
event message tk tk_textCopy ttk::menubutton
focus option tk_bisque tk_textCut ttk::notebook

Copyright	©	1990-1994	The	Regents	of	the	University	of	California
Copyright	©	1994	The	Australian	National	University
Copyright	©	1994-1997	Sun	Microsystems,	Inc
Copyright	©	1995-1997	Roger	E.	Critchlow	Jr
Copyright	©	1997-2000	Scriptics	Corporation
Copyright	©	1998-2000	Ajuba	Solutions
Copyright	©	2000	Jeffrey	Hobbs
Copyright	©	2001-2008	Donal	K.	Fellows
Copyright	©	2003	ActiveState	Corporation
Copyright	©	2004-2006	Joe	English
Copyright	©	2006-2007	Daniel	A.	Steffen	<das(at)users.sourceforge.net>
Copyright	©	2008	Pat	Thoyts

Tcl8.5.8/Tk8.5.8	Documentation	>	Tcl	Library

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

attemptckalloc Tcl_FSEvalFile
attemptckrealloc Tcl_FSEvalFileEx
ckalloc Tcl_FSFileAttrsGet
ckfree Tcl_FSFileAttrsSet
ckrealloc Tcl_FSFileAttrStrings
Tcl_Access Tcl_FSFileSystemInfo
Tcl_AddErrorInfo Tcl_FSGetCwd
Tcl_AddObjErrorInfo Tcl_FSGetFileSystemForPath
Tcl_AlertNotifier Tcl_FSGetInternalRep
Tcl_Alloc Tcl_FSGetNativePath
Tcl_AllocStatBuf Tcl_FSGetNormalizedPath
Tcl_AllowExceptions Tcl_FSGetPathType
Tcl_AppendAllObjTypes Tcl_FSGetTranslatedPath
Tcl_AppendElement Tcl_FSGetTranslatedStringPath
Tcl_AppendExportList Tcl_FSJoinPath
Tcl_AppendFormatToObj Tcl_FSJoinToPath
Tcl_AppendLimitedToObj Tcl_FSLink
Tcl_AppendObjToErrorInfo Tcl_FSListVolumes
Tcl_AppendObjToObj Tcl_FSLoadFile
Tcl_AppendPrintfToObj Tcl_FSLstat
Tcl_AppendResult Tcl_FSMatchInDirectory
Tcl_AppendResultVA Tcl_FSMountsChanged
Tcl_AppendStringsToObj Tcl_FSNewNativePath
Tcl_AppendStringsToObjVA Tcl_FSOpenFileChannel
Tcl_AppendToObj Tcl_FSPathSeparator
Tcl_AppendUnicodeToObj Tcl_FSRegister
Tcl_AppInit Tcl_FSRemoveDirectory
Tcl_AsyncCreate Tcl_FSRenameFile

Tcl_AsyncDelete Tcl_FSSplitPath
Tcl_AsyncInvoke Tcl_FSStat
Tcl_AsyncMark Tcl_FSUnregister
Tcl_AsyncReady Tcl_FSUtime
Tcl_AttemptAlloc Tcl_GetAlias
Tcl_AttemptRealloc Tcl_GetAliasObj
Tcl_AttemptSetObjLength Tcl_GetAssocData
Tcl_BackgroundError Tcl_GetBignumFromObj
Tcl_Backslash Tcl_GetBoolean
Tcl_BadChannelOption Tcl_GetBooleanFromObj
Tcl_CallWhenDeleted Tcl_GetByteArrayFromObj
Tcl_CancelIdleCall Tcl_GetChannel
Tcl_ChannelBlockModeProc Tcl_GetChannelBufferSize
Tcl_ChannelBuffered Tcl_GetChannelError
Tcl_ChannelClose2Proc Tcl_GetChannelErrorInterp
Tcl_ChannelCloseProc Tcl_GetChannelHandle
Tcl_ChannelFlushProc Tcl_GetChannelInstanceData
Tcl_ChannelGetHandleProc Tcl_GetChannelMode
Tcl_ChannelGetOptionProc Tcl_GetChannelName
Tcl_ChannelHandlerProc Tcl_GetChannelNames
Tcl_ChannelInputProc Tcl_GetChannelNamesEx
Tcl_ChannelName Tcl_GetChannelOption
Tcl_ChannelOutputProc Tcl_GetChannelThread
Tcl_ChannelSeekProc Tcl_GetChannelType
Tcl_ChannelSetOptionProc Tcl_GetCharLength
Tcl_ChannelThreadActionProc Tcl_GetCommandFromObj
Tcl_ChannelTruncateProc Tcl_GetCommandFullName
Tcl_ChannelVersion Tcl_GetCommandInfo
Tcl_ChannelWatchProc Tcl_GetCommandInfoFromToken
Tcl_ChannelWideSeekProc Tcl_GetCommandName
Tcl_Chdir Tcl_GetCurrentNamespace
Tcl_ClearChannelHandlers Tcl_GetCurrentThread
Tcl_Close Tcl_GetCwd

Tcl_CommandComplete Tcl_GetDefaultEncodingDir
Tcl_CommandTraceInfo Tcl_GetDouble
Tcl_Concat Tcl_GetDoubleFromObj
Tcl_ConcatObj Tcl_GetEncoding
Tcl_ConditionFinalize Tcl_GetEncodingFromObj
Tcl_ConditionNotify Tcl_GetEncodingName
Tcl_ConditionWait Tcl_GetEncodingNameFromEnvironment
Tcl_ConvertCountedElement Tcl_GetEncodingNames
Tcl_ConvertElement Tcl_GetEncodingSearchPath
Tcl_ConvertToType Tcl_GetEnsembleFlags
Tcl_CreateAlias Tcl_GetEnsembleMappingDict
Tcl_CreateAliasObj Tcl_GetEnsembleNamespace
Tcl_CreateChannel Tcl_GetEnsembleSubcommandList
Tcl_CreateChannelHandler Tcl_GetEnsembleUnknownHandler
Tcl_CreateCloseHandler Tcl_GetErrno
Tcl_CreateCommand Tcl_GetGlobalNamespace
Tcl_CreateEncoding Tcl_GetHashKey
Tcl_CreateEnsemble Tcl_GetHashValue
Tcl_CreateEventSource Tcl_GetHostName
Tcl_CreateExitHandler Tcl_GetIndexFromObj
Tcl_CreateFileHandler Tcl_GetIndexFromObjStruct
Tcl_CreateHashEntry Tcl_GetInt
Tcl_CreateInterp Tcl_GetInterpPath
Tcl_CreateMathFunc Tcl_GetIntFromObj
Tcl_CreateNamespace Tcl_GetLongFromObj
Tcl_CreateObjCommand Tcl_GetMaster
Tcl_CreateObjTrace Tcl_GetMathFuncInfo
Tcl_CreateSlave Tcl_GetNameOfExecutable
Tcl_CreateThread Tcl_GetNamespaceUnknownHandler
Tcl_CreateThreadExitHandler Tcl_GetObjResult
Tcl_CreateTimerHandler Tcl_GetObjType
Tcl_CreateTrace Tcl_GetOpenFile
Tcl_CutChannel Tcl_GetPathType

Tcl_DecrRefCount Tcl_GetRange
Tcl_DeleteAssocData Tcl_GetRegExpFromObj
Tcl_DeleteChannelHandler Tcl_GetReturnOptions
Tcl_DeleteCloseHandler Tcl_Gets
Tcl_DeleteCommand Tcl_GetServiceMode
Tcl_DeleteCommandFromToken Tcl_GetSlave
Tcl_DeleteEvents Tcl_GetsObj
Tcl_DeleteEventSource Tcl_GetStackedChannel
Tcl_DeleteExitHandler Tcl_GetStdChannel
Tcl_DeleteFileHandler Tcl_GetString
Tcl_DeleteHashEntry Tcl_GetStringFromObj
Tcl_DeleteHashTable Tcl_GetStringResult
Tcl_DeleteInterp Tcl_GetThreadData
Tcl_DeleteNamespace Tcl_GetTime
Tcl_DeleteThreadExitHandler Tcl_GetTopChannel
Tcl_DeleteTimerHandler Tcl_GetUniChar
Tcl_DeleteTrace Tcl_GetUnicode
Tcl_DetachChannel Tcl_GetUnicodeFromObj
Tcl_DetachPids Tcl_GetVar
Tcl_DictObjDone Tcl_GetVar2
Tcl_DictObjFirst Tcl_GetVar2Ex
Tcl_DictObjGet Tcl_GetVersion
Tcl_DictObjNext Tcl_GetWideIntFromObj
Tcl_DictObjPut Tcl_GlobalEval
Tcl_DictObjPutKeyList Tcl_GlobalEvalObj
Tcl_DictObjRemove Tcl_HashStats
Tcl_DictObjRemoveKeyList Tcl_HideCommand
Tcl_DictObjSize Tcl_Import
Tcl_DiscardInterpState Tcl_IncrRefCount
Tcl_DiscardResult Tcl_Init
Tcl_DontCallWhenDeleted Tcl_InitCustomHashTable
Tcl_DoOneEvent Tcl_InitHashTable
Tcl_DoWhenIdle Tcl_InitMemory

Tcl_DStringAppend Tcl_InitNotifier
Tcl_DStringAppendElement Tcl_InitObjHashTable
Tcl_DStringEndSublist Tcl_InitStubs
Tcl_DStringFree Tcl_InputBlocked
Tcl_DStringGetResult Tcl_InputBuffered
Tcl_DStringInit Tcl_Interp
Tcl_DStringLength Tcl_InterpDeleted
Tcl_DStringResult Tcl_InvalidateStringRep
Tcl_DStringSetLength Tcl_IsChannelExisting
Tcl_DStringStartSublist Tcl_IsChannelRegistered
Tcl_DStringTrunc Tcl_IsChannelShared
Tcl_DStringValue Tcl_IsEnsemble
Tcl_DumpActiveMemory Tcl_IsSafe
Tcl_DuplicateObj Tcl_IsShared
Tcl_Eof Tcl_IsStandardChannel
Tcl_ErrnoId Tcl_JoinPath
Tcl_ErrnoMsg Tcl_JoinThread
Tcl_Eval Tcl_LimitAddHandler
Tcl_EvalEx Tcl_LimitCheck
Tcl_EvalFile Tcl_LimitExceeded
Tcl_EvalObjEx Tcl_LimitGetCommands
Tcl_EvalObjv Tcl_LimitGetGranularity
Tcl_EvalTokens Tcl_LimitGetTime
Tcl_EvalTokensStandard Tcl_LimitReady
Tcl_EventuallyFree Tcl_LimitRemoveHandler
Tcl_Exit Tcl_LimitSetCommands
Tcl_ExitThread Tcl_LimitSetGranularity
Tcl_Export Tcl_LimitSetTime
Tcl_ExposeCommand Tcl_LimitTypeEnabled
Tcl_ExprBoolean Tcl_LimitTypeExceeded
Tcl_ExprBooleanObj Tcl_LimitTypeReset
Tcl_ExprDouble Tcl_LimitTypeSet
Tcl_ExprDoubleObj Tcl_LinkVar

Tcl_ExprLong Tcl_ListMathFuncs
Tcl_ExprLongObj Tcl_ListObjAppendElement
Tcl_ExprObj Tcl_ListObjAppendList
Tcl_ExprString Tcl_ListObjGetElements
Tcl_ExternalToUtf Tcl_ListObjIndex
Tcl_ExternalToUtfDString Tcl_ListObjLength
Tcl_Finalize Tcl_ListObjReplace
Tcl_FinalizeNotifier Tcl_LogCommandInfo
Tcl_FinalizeThread Tcl_Main
Tcl_FindCommand Tcl_MakeFileChannel
Tcl_FindEnsemble Tcl_MakeSafe
Tcl_FindExecutable Tcl_MakeTcpClientChannel
Tcl_FindHashEntry TCL_MEM_DEBUG
Tcl_FindNamespace Tcl_Merge
Tcl_FirstHashEntry Tcl_MutexFinalize
Tcl_Flush Tcl_MutexLock
Tcl_ForgetImport Tcl_MutexUnlock
Tcl_Format Tcl_NewBignumObj
Tcl_Free Tcl_NewBooleanObj
Tcl_FreeEncoding Tcl_NewByteArrayObj
Tcl_FreeParse Tcl_NewDictObj
Tcl_FreeResult Tcl_NewDoubleObj
Tcl_FSAccess Tcl_NewIntObj
Tcl_FSChdir Tcl_NewListObj
Tcl_FSConvertToPathType Tcl_NewLongObj
Tcl_FSCopyDirectory Tcl_NewObj
Tcl_FSCopyFile Tcl_NewStringObj
Tcl_FSCreateDirectory Tcl_NewUnicodeObj
Tcl_FSData Tcl_NewWideIntObj
Tcl_FSDeleteFile Tcl_NextHashEntry
Tcl_FSEqualPaths Tcl_NotifyChannel

Copyright	©	1989-1994	The	Regents	of	the	University	of	California

Copyright	©	1992-1999	Karl	Lehenbauer	and	Mark	Diekhans
Copyright	©	1994-1998	Sun	Microsystems,	Inc
Copyright	©	1995-1997	Roger	E.	Critchlow	Jr
Copyright	©	1997-2000	Ajuba	Solutions
Copyright	©	1998-2000	Scriptics	Corporation
Copyright	©	2001	ActiveState	Corporation
Copyright	©	2001	ActiveState	Tool	Corp
Copyright	©	2001	Vincent	Darley
Copyright	©	2001-2002	Kevin	B.	Kenny	<kennykb(at)acm.org>
Copyright	©	2001-2005	Donal	K.	Fellows
Copyright	©	2002-2005	Andreas	Kupries	<andreas_kupries(at)users.sourceforge.net>

Tcl8.5.8/Tk8.5.8	Documentation	>	Tk	Library

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

Tk_3DBorderColor Tk_DisplayName Tk_GetReliefFromObj
Tk_3DBorderGC Tk_DistanceToTextLayout Tk_GetRootCoords
Tk_3DHorizontalBevel Tk_Draw3DPolygon Tk_GetScreenMM
Tk_3DVerticalBevel Tk_Draw3DRectangle Tk_GetScrollInfo
Tk_AddOption Tk_DrawChars Tk_GetScrollInfoObj
Tk_Alloc3DBorderFromObj Tk_DrawFocusHighlight Tk_GetSelection
Tk_AllocBitmapFromObj Tk_DrawTextLayout Tk_GetUid
Tk_AllocColorFromObj Tk_Fill3DPolygon Tk_GetUserInactiveTime
Tk_AllocCursorFromObj Tk_Fill3DRectangle Tk_GetVisual
Tk_AllocFontFromObj Tk_FindPhoto Tk_GetVRootGeometry
Tk_AttachHWND Tk_FontId Tk_Grab
Tk_Attributes Tk_Free3DBorder Tk_HandleEvent
Tk_BindEvent Tk_Free3DBorderFromObj Tk_Height
Tk_CanvasDrawableCoords Tk_FreeBitmap Tk_HWNDToWindow
Tk_CanvasEventuallyRedraw Tk_FreeBitmapFromObj Tk_IdToWindow
Tk_CanvasGetCoord Tk_FreeColor Tk_ImageChanged
Tk_CanvasPsBitmap Tk_FreeColorFromObj Tk_Init
Tk_CanvasPsColor Tk_FreeColormap Tk_InitConsoleChannels
Tk_CanvasPsFont Tk_FreeConfigOptions Tk_InitImageArgs
Tk_CanvasPsPath Tk_FreeCursor Tk_InitOptions
Tk_CanvasPsStipple Tk_FreeCursorFromObj Tk_InitStubs
Tk_CanvasPsY Tk_FreeFont Tk_InternalBorderBottom
Tk_CanvasSetStippleOrigin Tk_FreeFontFromObj Tk_InternalBorderLeft
Tk_CanvasTagsOption Tk_FreeGC Tk_InternalBorderRight
Tk_CanvasTextInfo Tk_FreeImage Tk_InternalBorderTop
Tk_CanvasTkwin Tk_FreeOptions Tk_InternAtom
Tk_CanvasWindowCoords Tk_FreePixmap Tk_Interp
Tk_Changes Tk_FreeSavedOptions Tk_IntersectTextLayout

Tk_ChangeWindowAttributes Tk_FreeTextLayout Tk_IsContainer
Tk_CharBbox Tk_FreeXId Tk_IsEmbedded
Tk_Class Tk_GeometryRequest Tk_IsMapped
Tk_ClearSelection Tk_Get3DBorder Tk_IsTopLevel
Tk_ClipboardAppend Tk_Get3DBorderFromObj Tk_Main
Tk_ClipboardClear Tk_GetAllBindings Tk_MainLoop
Tk_CollapseMotionEvents Tk_GetAnchor Tk_MaintainGeometry
Tk_Colormap Tk_GetAnchorFromObj Tk_MainWindow
Tk_ComputeTextLayout Tk_GetAtomName Tk_MakeWindowExist
Tk_ConfigureInfo Tk_GetBinding Tk_ManageGeometry
Tk_ConfigureValue Tk_GetBitmap Tk_MapWindow
Tk_ConfigureWidget Tk_GetBitmapFromObj Tk_MeasureChars
Tk_ConfigureWindow Tk_GetCapStyle Tk_MinReqHeight
Tk_CoordsToWindow Tk_GetColor Tk_MinReqWidth
Tk_CreateBinding Tk_GetColorByValue Tk_MoveResizeWindow
Tk_CreateBindingTable Tk_GetColorFromObj Tk_MoveToplevelWindow
Tk_CreateClientMessageHandler Tk_GetColormap Tk_MoveWindow
Tk_CreateErrorHandler Tk_GetCursor Tk_Name
Tk_CreateEventHandler Tk_GetCursorFromData Tk_NameOf3DBorder
Tk_CreateGenericHandler Tk_GetCursorFromObj Tk_NameOfAnchor
Tk_CreateImageType Tk_GetDash Tk_NameOfBitmap
Tk_CreateItemType Tk_GetFont Tk_NameOfCapStyle
Tk_CreateOptionTable Tk_GetFontFromObj Tk_NameOfColor
Tk_CreatePhotoImageFormat Tk_GetFontMetrics Tk_NameOfCursor
Tk_CreateSelHandler Tk_GetGC Tk_NameOfFont
Tk_CreateWindow Tk_GetHINSTANCE Tk_NameOfImage
Tk_CreateWindowFromPath Tk_GetHWND Tk_NameOfJoinStyle
Tk_DefineBitmap Tk_GetImage Tk_NameOfJustify
Tk_DefineCursor Tk_GetImageMasterData Tk_NameOfRelief
Tk_DeleteAllBindings Tk_GetItemTypes Tk_NameToWindow
Tk_DeleteBinding Tk_GetJoinStyle Tk_Offset
Tk_DeleteBindingTable Tk_GetJustify Tk_OwnSelection
Tk_DeleteClientMessageHandler Tk_GetJustifyFromObj Tk_Parent

Tk_DeleteErrorHandler Tk_GetMMFromObj Tk_ParseArgv
Tk_DeleteEventHandler Tk_GetNumMainWindows Tk_PathName
Tk_DeleteGenericHandler Tk_GetOption Tk_PhotoBlank
Tk_DeleteImage Tk_GetOptionInfo Tk_PhotoExpand
Tk_DeleteOptionTable Tk_GetOptionValue Tk_PhotoGetImage
Tk_DeleteSelHandler Tk_GetPixels Tk_PhotoGetSize
Tk_Depth Tk_GetPixelsFromObj Tk_PhotoPutBlock
Tk_DestroyWindow Tk_GetPixmap Tk_PhotoPutZoomedBlock
Tk_Display Tk_GetRelief Tk_PhotoSetSize

Copyright	©	1989-1994	The	Regents	of	the	University	of	California
Copyright	©	1994	The	Australian	National	University
Copyright	©	1994-1998	Sun	Microsystems,	Inc
Copyright	©	1995-1997	Roger	E.	Critchlow	Jr
Copyright	©	1998-2000	Scriptics	Corporation
Copyright	©	2000	Ajuba	Solutions
Copyright	©	2002	ActiveState	Corporation
Copyright	©	2003-2004	Joe	English
Copyright	©	2007	ActiveState	Software	Inc

Tcl8.5.8/Tk8.5.8	Documentation	>	Tcl/Tk	Keywords

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

A	|	B	|	C	|	D	|	E	|	F	|	G	|	H	|	I	|	J	|	K	|	L	|	M	|	N	|	O	|	P	|	Q	|	R	|	S	|	T	|	U	|	V	|
W	|	X	|	Y	|	Z

Copyright	©	1989-1994	The	Regents	of	the	University	of	California
Copyright	©	1992-1999	Karl	Lehenbauer	&	Mark	Diekhans
Copyright	©	1992-1999	Karl	Lehenbauer	and	Mark	Diekhans
Copyright	©	1993-1997	Bell	Labs	Innovations	for	Lucent	Technologies
Copyright	©	1994	The	Australian	National	University
Copyright	©	1994-2000	Sun	Microsystems,	Inc
Copyright	©	1995-1997	Roger	E.	Critchlow	Jr
Copyright	©	1997-2000	Ajuba	Solutions
Copyright	©	1997-2000	Scriptics	Corporation
Copyright	©	1998	Mark	Harrison
Copyright	©	2000	Jeffrey	Hobbs
Copyright	©	2001	ActiveState	Tool	Corp
Copyright	©	2001	Vincent	Darley
Copyright	©	2001-2004	ActiveState	Corporation
Copyright	©	2001-2005	Kevin	B.	Kenny	<kennykb(at)acm.org>
Copyright	©	2001-2008	Donal	K.	Fellows
Copyright	©	2002-2008	Andreas	Kupries	<andreas_kupries(at)users.sourceforge.net>
Copyright	©	2003	George	Petasis	<petasis(at)iit.demokritos.gr>
Copyright	©	2003	Simon	Geard
Copyright	©	2003-2006	Joe	English
Copyright	©	2006	Miguel	Sofer
Copyright	©	2006-2007	Daniel	A.	Steffen	<das(at)users.sourceforge.net>
Copyright	©	2006-2008	ActiveState	Software	Inc
Copyright	©	2008	Pat	Thoyts

Tcl/Tk	Applications

Tcl	Commands

Tk	Commands

Tcl	Library

Tk	Library

Keywords

Tcl8.5.8/Tk8.5.8	Documentation

The	interpreters	which
implement	Tcl	and	Tk.
The	commands	which	the
tclsh	interpreter
implements.
The	additional	commands
which	the	wish	interpreter
implements.
The	C	functions	which	a
Tcl	extended	C	program
may	use.
The	additional	C	functions
which	a	Tk	extended	C
program	may	use.
The	keywords	from	the
Tcl/Tk	man	pages.

Copyright	©	1989-1994	The	Regents	of	the	University	of	California
Copyright	©	1992-1999	Karl	Lehenbauer	&	Mark	Diekhans
Copyright	©	1992-1999	Karl	Lehenbauer	and	Mark	Diekhans
Copyright	©	1993-1997	Bell	Labs	Innovations	for	Lucent	Technologies
Copyright	©	1994	The	Australian	National	University
Copyright	©	1994-2000	Sun	Microsystems,	Inc
Copyright	©	1995-1997	Roger	E.	Critchlow	Jr
Copyright	©	1997-2000	Ajuba	Solutions
Copyright	©	1997-2000	Scriptics	Corporation
Copyright	©	1998	Mark	Harrison
Copyright	©	2000	Jeffrey	Hobbs
Copyright	©	2001	ActiveState	Tool	Corp
Copyright	©	2001	Vincent	Darley
Copyright	©	2001-2004	ActiveState	Corporation
Copyright	©	2001-2005	Kevin	B.	Kenny	<kennykb(at)acm.org>
Copyright	©	2001-2008	Donal	K.	Fellows
Copyright	©	2002-2008	Andreas	Kupries	<andreas_kupries(at)users.sourceforge.net>
Copyright	©	2003	George	Petasis	<petasis(at)iit.demokritos.gr>
Copyright	©	2003	Simon	Geard
Copyright	©	2003-2006	Joe	English
Copyright	©	2006	Miguel	Sofer

Copyright	©	2006-2007	Daniel	A.	Steffen	<das(at)users.sourceforge.net>
Copyright	©	2006-2008	ActiveState	Software	Inc
Copyright	©	2008	Pat	Thoyts

Tcl8.5.8/Tk8.5.8	Documentation	>	UserCmd	>	tclsh

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
tclsh	-	Simple	shell	containing	Tcl	interpreter

SYNOPSIS
DESCRIPTION
SCRIPT	FILES
VARIABLES

argc
argv
argv0
tcl_interactive

PROMPTS
STANDARD	CHANNELS
SEE	ALSO
KEYWORDS

NAME

tclsh	-	Simple	shell	containing	Tcl	interpreter

SYNOPSIS

tclsh	?-encoding	name?	?fileName	arg	arg	...?

DESCRIPTION

Tclsh	is	a	shell-like	application	that	reads	Tcl	commands	from	its
standard	input	or	from	a	file	and	evaluates	them.	If	invoked	with	no
arguments	then	it	runs	interactively,	reading	Tcl	commands	from
standard	input	and	printing	command	results	and	error	messages	to
standard	output.	It	runs	until	the	exit	command	is	invoked	or	until	it
reaches	end-of-file	on	its	standard	input.	If	there	exists	a	file	.tclshrc	(or
tclshrc.tcl	on	the	Windows	platforms)	in	the	home	directory	of	the	user,

interactive	tclsh	evaluates	the	file	as	a	Tcl	script	just	before	reading	the
first	command	from	standard	input.

SCRIPT	FILES

If	tclsh	is	invoked	with	arguments	then	the	first	few	arguments	specify
the	name	of	a	script	file,	and,	optionally,	the	encoding	of	the	text	data
stored	in	that	script	file.	Any	additional	arguments	are	made	available	to
the	script	as	variables	(see	below).	Instead	of	reading	commands	from
standard	input	tclsh	will	read	Tcl	commands	from	the	named	file;	tclsh
will	exit	when	it	reaches	the	end	of	the	file.	The	end	of	the	file	may	be
marked	either	by	the	physical	end	of	the	medium,	or	by	the	character,
“\032”	(“\u001a”,	control-Z).	If	this	character	is	present	in	the	file,	the
tclsh	application	will	read	text	up	to	but	not	including	the	character.	An
application	that	requires	this	character	in	the	file	may	safely	encode	it
as	“\032”,	“\x1a”,	or	“\u001a”;	or	may	generate	it	by	use	of	commands
such	as	format	or	binary.	There	is	no	automatic	evaluation	of	.tclshrc
when	the	name	of	a	script	file	is	presented	on	the	tclsh	command	line,
but	the	script	file	can	always	source	it	if	desired.

If	you	create	a	Tcl	script	in	a	file	whose	first	line	is

#!/usr/local/bin/tclsh

then	you	can	invoke	the	script	file	directly	from	your	shell	if	you	mark
the	file	as	executable.	This	assumes	that	tclsh	has	been	installed	in	the
default	location	in	/usr/local/bin;	if	it	is	installed	somewhere	else	then
you	will	have	to	modify	the	above	line	to	match.	Many	UNIX	systems	do
not	allow	the	#!	line	to	exceed	about	30	characters	in	length,	so	be	sure
that	the	tclsh	executable	can	be	accessed	with	a	short	file	name.

An	even	better	approach	is	to	start	your	script	files	with	the	following
three	lines:

#!/bin/sh

#	the	next	line	restarts	using	tclsh	\

exec	tclsh	"$0"	"$@"

This	approach	has	three	advantages	over	the	approach	in	the	previous
paragraph.	First,	the	location	of	the	tclsh	binary	does	not	have	to	be
hard-wired	into	the	script:	it	can	be	anywhere	in	your	shell	search	path.
Second,	it	gets	around	the	30-character	file	name	limit	in	the	previous
approach.	Third,	this	approach	will	work	even	if	tclsh	is	itself	a	shell
script	(this	is	done	on	some	systems	in	order	to	handle	multiple
architectures	or	operating	systems:	the	tclsh	script	selects	one	of
several	binaries	to	run).	The	three	lines	cause	both	sh	and	tclsh	to
process	the	script,	but	the	exec	is	only	executed	by	sh.	sh	processes
the	script	first;	it	treats	the	second	line	as	a	comment	and	executes	the
third	line.	The	exec	statement	cause	the	shell	to	stop	processing	and
instead	to	start	up	tclsh	to	reprocess	the	entire	script.	When	tclsh
starts	up,	it	treats	all	three	lines	as	comments,	since	the	backslash	at
the	end	of	the	second	line	causes	the	third	line	to	be	treated	as	part	of
the	comment	on	the	second	line.

You	should	note	that	it	is	also	common	practice	to	install	tclsh	with	its
version	number	as	part	of	the	name.	This	has	the	advantage	of	allowing
multiple	versions	of	Tcl	to	exist	on	the	same	system	at	once,	but	also
the	disadvantage	of	making	it	harder	to	write	scripts	that	start	up
uniformly	across	different	versions	of	Tcl.

VARIABLES

Tclsh	sets	the	following	Tcl	variables:

argc
Contains	a	count	of	the	number	of	arg	arguments	(0	if	none),	not
including	the	name	of	the	script	file.

argv
Contains	a	Tcl	list	whose	elements	are	the	arg	arguments,	in	order,
or	an	empty	string	if	there	are	no	arg	arguments.

argv0
Contains	fileName	if	it	was	specified.	Otherwise,	contains	the	name
by	which	tclsh	was	invoked.

tcl_interactive
Contains	1	if	tclsh	is	running	interactively	(no	fileName	was
specified	and	standard	input	is	a	terminal-like	device),	0	otherwise.

PROMPTS

When	tclsh	is	invoked	interactively	it	normally	prompts	for	each
command	with	“%	”.	You	can	change	the	prompt	by	setting	the	variables
tcl_prompt1	and	tcl_prompt2.	If	variable	tcl_prompt1	exists	then	it
must	consist	of	a	Tcl	script	to	output	a	prompt;	instead	of	outputting	a
prompt	tclsh	will	evaluate	the	script	in	tcl_prompt1.	The	variable
tcl_prompt2	is	used	in	a	similar	way	when	a	newline	is	typed	but	the
current	command	is	not	yet	complete;	if	tcl_prompt2	is	not	set	then	no
prompt	is	output	for	incomplete	commands.

STANDARD	CHANNELS

See	Tcl_StandardChannels	for	more	explanations.

SEE	ALSO

encoding,	fconfigure,	tclvars

KEYWORDS

argument,	interpreter,	prompt,	script	file,	shell

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	UserCmd	>	wish

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
wish	-	Simple	windowing	shell

SYNOPSIS
OPTIONS

-encoding	name
-colormap	new
-display	display
-geometry	geometry
-name	name
-sync
-use	id
-visual	visual
--

DESCRIPTION
OPTION	PROCESSING
APPLICATION	NAME	AND	CLASS
VARIABLES

argc
argv
argv0
geometry
tcl_interactive

SCRIPT	FILES
PROMPTS
KEYWORDS

NAME

wish	-	Simple	windowing	shell

SYNOPSIS

wish	?-encoding	name?	?fileName	arg	arg	...?

OPTIONS

-encoding	name
Specifies	the	encoding	of	the	text	stored	in	fileName.	This	option	is
only	recognized	prior	to	the	fileName	argument.

-colormap	new
Specifies	that	the	window	should	have	a	new	private	colormap
instead	of	using	the	default	colormap	for	the	screen.

-display	display
Display	(and	screen)	on	which	to	display	window.

-geometry	geometry
Initial	geometry	to	use	for	window.	If	this	option	is	specified,	its
value	is	stored	in	the	geometry	global	variable	of	the	application's
Tcl	interpreter.

-name	name
Use	name	as	the	title	to	be	displayed	in	the	window,	and	as	the
name	of	the	interpreter	for	send	commands.

-sync
Execute	all	X	server	commands	synchronously,	so	that	errors	are
reported	immediately.	This	will	result	in	much	slower	execution,	but
it	is	useful	for	debugging.

-use	id
Specifies	that	the	main	window	for	the	application	is	to	be
embedded	in	the	window	whose	identifier	is	id,	instead	of	being
created	as	an	independent	toplevel	window.	Id	must	be	specified	in
the	same	way	as	the	value	for	the	-use	option	for	toplevel	widgets
(i.e.	it	has	a	form	like	that	returned	by	the	winfo	id	command).

Note	that	on	some	platforms	this	will	only	work	correctly	if	id
refers	to	a	Tk	frame	or	toplevel	that	has	its	-container	option
enabled.

-visual	visual
Specifies	the	visual	to	use	for	the	window.	Visual	may	have	any	of
the	forms	supported	by	the	Tk_GetVisual	procedure.

--
Pass	all	remaining	arguments	through	to	the	script's	argv	variable
without	interpreting	them.	This	provides	a	mechanism	for	passing
arguments	such	as	-name	to	a	script	instead	of	having	wish
interpret	them.

DESCRIPTION

Wish	is	a	simple	program	consisting	of	the	Tcl	command	language,	the
Tk	toolkit,	and	a	main	program	that	reads	commands	from	standard
input	or	from	a	file.	It	creates	a	main	window	and	then	processes	Tcl
commands.	If	wish	is	invoked	with	arguments,	then	the	first	few
arguments,	?-encoding	name?	?fileName?	specify	the	name	of	a	script
file,	and,	optionally,	the	encoding	of	the	text	data	stored	in	that	script
file.	A	value	for	fileName	is	recognized	if	the	appropriate	argument	does
not	start	with	“-”.

If	there	are	no	arguments,	or	the	arguments	do	not	specify	a	fileName,
then	wish	reads	Tcl	commands	interactively	from	standard	input.	It	will
continue	processing	commands	until	all	windows	have	been	deleted	or
until	end-of-file	is	reached	on	standard	input.	If	there	exists	a	file
“.wishrc”	in	the	home	directory	of	the	user,	wish	evaluates	the	file	as	a
Tcl	script	just	before	reading	the	first	command	from	standard	input.

If	arguments	to	wish	do	specify	a	fileName,	then	fileName	is	treated	as
the	name	of	a	script	file.	Wish	will	evaluate	the	script	in	fileName	(which
presumably	creates	a	user	interface),	then	it	will	respond	to	events	until
all	windows	have	been	deleted.	Commands	will	not	be	read	from
standard	input.	There	is	no	automatic	evaluation	of	“.wishrc”	when	the
name	of	a	script	file	is	presented	on	the	wish	command	line,	but	the
script	file	can	always	source	it	if	desired.

Note	that	on	Windows,	the	wishversion.exe	program	varies	from	the
tclshversion.exe	program	in	an	additional	important	way:	it	does	not

connect	to	a	standard	Windows	console	and	is	instead	a	windowed
program.	Because	of	this,	it	additionally	provides	access	to	its	own
console	command.

OPTION	PROCESSING

Wish	automatically	processes	all	of	the	command-line	options
described	in	the	OPTIONS	summary	above.	Any	other	command-line
arguments	besides	these	are	passed	through	to	the	application	using
the	argc	and	argv	variables	described	later.

APPLICATION	NAME	AND	CLASS

The	name	of	the	application,	which	is	used	for	purposes	such	as	send
commands,	is	taken	from	the	-name	option,	if	it	is	specified;	otherwise	it
is	taken	from	fileName,	if	it	is	specified,	or	from	the	command	name	by
which	wish	was	invoked.	In	the	last	two	cases,	if	the	name	contains	a
“/”	character,	then	only	the	characters	after	the	last	slash	are	used	as
the	application	name.

The	class	of	the	application,	which	is	used	for	purposes	such	as
specifying	options	with	a	RESOURCE_MANAGER	property	or
.Xdefaults	file,	is	the	same	as	its	name	except	that	the	first	letter	is
capitalized.

VARIABLES

Wish	sets	the	following	Tcl	variables:

argc
Contains	a	count	of	the	number	of	arg	arguments	(0	if	none),	not
including	the	options	described	above.

argv
Contains	a	Tcl	list	whose	elements	are	the	arg	arguments	that
follow	a	--	option	or	do	not	match	any	of	the	options	described	in
OPTIONS	above,	in	order,	or	an	empty	string	if	there	are	no	such
arguments.

argv0
Contains	fileName	if	it	was	specified.	Otherwise,	contains	the	name
by	which	wish	was	invoked.

geometry
If	the	-geometry	option	is	specified,	wish	copies	its	value	into	this
variable.	If	the	variable	still	exists	after	fileName	has	been
evaluated,	wish	uses	the	value	of	the	variable	in	a	wm	geometry
command	to	set	the	main	window's	geometry.

tcl_interactive
Contains	1	if	wish	is	reading	commands	interactively	(fileName
was	not	specified	and	standard	input	is	a	terminal-like	device),	0
otherwise.

SCRIPT	FILES

If	you	create	a	Tcl	script	in	a	file	whose	first	line	is

#!/usr/local/bin/wish

then	you	can	invoke	the	script	file	directly	from	your	shell	if	you	mark	it
as	executable.	This	assumes	that	wish	has	been	installed	in	the	default
location	in	/usr/local/bin;	if	it	is	installed	somewhere	else	then	you	will
have	to	modify	the	above	line	to	match.	Many	UNIX	systems	do	not
allow	the	#!	line	to	exceed	about	30	characters	in	length,	so	be	sure
that	the	wish	executable	can	be	accessed	with	a	short	file	name.

An	even	better	approach	is	to	start	your	script	files	with	the	following
three	lines:

#!/bin/sh

#	the	next	line	restarts	using	wish	\

exec	wish	"$0"	"$@"

This	approach	has	three	advantages	over	the	approach	in	the	previous
paragraph.	First,	the	location	of	the	wish	binary	does	not	have	to	be
hard-wired	into	the	script:	it	can	be	anywhere	in	your	shell	search	path.
Second,	it	gets	around	the	30-character	file	name	limit	in	the	previous
approach.	Third,	this	approach	will	work	even	if	wish	is	itself	a	shell
script	(this	is	done	on	some	systems	in	order	to	handle	multiple
architectures	or	operating	systems:	the	wish	script	selects	one	of
several	binaries	to	run).	The	three	lines	cause	both	sh	and	wish	to
process	the	script,	but	the	exec	is	only	executed	by	sh.	sh	processes
the	script	first;	it	treats	the	second	line	as	a	comment	and	executes	the
third	line.	The	exec	statement	cause	the	shell	to	stop	processing	and
instead	to	start	up	wish	to	reprocess	the	entire	script.	When	wish	starts
up,	it	treats	all	three	lines	as	comments,	since	the	backslash	at	the	end
of	the	second	line	causes	the	third	line	to	be	treated	as	part	of	the
comment	on	the	second	line.

The	end	of	a	script	file	may	be	marked	either	by	the	physical	end	of	the
medium,	or	by	the	character,	“\032”	(“\u001a”,	control-Z).	If	this
character	is	present	in	the	file,	the	wish	application	will	read	text	up	to
but	not	including	the	character.	An	application	that	requires	this
character	in	the	file	may	encode	it	as	“\032”,	“\x1a”,	or	“\u001a”;	or	may
generate	it	by	use	of	commands	such	as	format	or	binary.

PROMPTS

When	wish	is	invoked	interactively	it	normally	prompts	for	each
command	with	“%	”.	You	can	change	the	prompt	by	setting	the	variables
tcl_prompt1	and	tcl_prompt2.	If	variable	tcl_prompt1	exists	then	it
must	consist	of	a	Tcl	script	to	output	a	prompt;	instead	of	outputting	a
prompt	wish	will	evaluate	the	script	in	tcl_prompt1.	The	variable
tcl_prompt2	is	used	in	a	similar	way	when	a	newline	is	typed	but	the
current	command	is	not	yet	complete;	if	tcl_prompt2	is	not	set	then	no
prompt	is	output	for	incomplete	commands.

KEYWORDS

shell,	toolkit

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1991-1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	after

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
after	-	Execute	a	command	after	a	time	delay

SYNOPSIS
DESCRIPTION

after	ms
after	ms	?script	script	script	...?
after	cancel	id
after	cancel	script	script	...
after	idle	script	?script	script	...?
after	info	?id?

EXAMPLES
SEE	ALSO
KEYWORDS

NAME

after	-	Execute	a	command	after	a	time	delay

SYNOPSIS

after	ms
after	ms	?script	script	script	...?
after	cancel	id
after	cancel	script	script	script	...
after	idle	?script	script	script	...?
after	info	?id?

DESCRIPTION

This	command	is	used	to	delay	execution	of	the	program	or	to	execute
a	command	in	background	sometime	in	the	future.	It	has	several	forms,
depending	on	the	first	argument	to	the	command:

after	ms
Ms	must	be	an	integer	giving	a	time	in	milliseconds.	The	command
sleeps	for	ms	milliseconds	and	then	returns.	While	the	command	is
sleeping	the	application	does	not	respond	to	events.

after	ms	?script	script	script	...?
In	this	form	the	command	returns	immediately,	but	it	arranges	for	a
Tcl	command	to	be	executed	ms	milliseconds	later	as	an	event
handler.	The	command	will	be	executed	exactly	once,	at	the	given
time.	The	delayed	command	is	formed	by	concatenating	all	the
script	arguments	in	the	same	fashion	as	the	concat	command.	The
command	will	be	executed	at	global	level	(outside	the	context	of
any	Tcl	procedure).	If	an	error	occurs	while	executing	the	delayed
command	then	the	background	error	will	be	reported	by	the
command	registered	with	interp	bgerror.	The	after	command
returns	an	identifier	that	can	be	used	to	cancel	the	delayed
command	using	after	cancel.

after	cancel	id
Cancels	the	execution	of	a	delayed	command	that	was	previously
scheduled.	Id	indicates	which	command	should	be	canceled;	it
must	have	been	the	return	value	from	a	previous	after	command.	If
the	command	given	by	id	has	already	been	executed	then	the	after
cancel	command	has	no	effect.

after	cancel	script	script	...
This	command	also	cancels	the	execution	of	a	delayed	command.
The	script	arguments	are	concatenated	together	with	space
separators	(just	as	in	the	concat	command).	If	there	is	a	pending
command	that	matches	the	string,	it	is	cancelled	and	will	never	be
executed;	if	no	such	command	is	currently	pending	then	the	after
cancel	command	has	no	effect.

after	idle	script	?script	script	...?
Concatenates	the	script	arguments	together	with	space	separators
(just	as	in	the	concat	command),	and	arranges	for	the	resulting
script	to	be	evaluated	later	as	an	idle	callback.	The	script	will	be
run	exactly	once,	the	next	time	the	event	loop	is	entered	and	there

are	no	events	to	process.	The	command	returns	an	identifier	that
can	be	used	to	cancel	the	delayed	command	using	after	cancel.	If
an	error	occurs	while	executing	the	script	then	the	background
error	will	be	reported	by	the	command	registered	with	interp
bgerror.

after	info	?id?
This	command	returns	information	about	existing	event	handlers.	If
no	id	argument	is	supplied,	the	command	returns	a	list	of	the
identifiers	for	all	existing	event	handlers	created	by	the	after
command	for	this	interpreter.	If	id	is	supplied,	it	specifies	an
existing	handler;	id	must	have	been	the	return	value	from	some
previous	call	to	after	and	it	must	not	have	triggered	yet	or	been
cancelled.	In	this	case	the	command	returns	a	list	with	two
elements.	The	first	element	of	the	list	is	the	script	associated	with
id,	and	the	second	element	is	either	idle	or	timer	to	indicate	what
kind	of	event	handler	it	is.

The	after	ms	and	after	idle	forms	of	the	command	assume	that	the
application	is	event	driven:	the	delayed	commands	will	not	be	executed
unless	the	application	enters	the	event	loop.	In	applications	that	are	not
normally	event-driven,	such	as	tclsh,	the	event	loop	can	be	entered
with	the	vwait	and	update	commands.

EXAMPLES

This	defines	a	command	to	make	Tcl	do	nothing	at	all	for	N	seconds:

proc	sleep	{N}	{

			after	[expr	{int($N	*	1000)}]

}

This	arranges	for	the	command	wake_up	to	be	run	in	eight	hours
(providing	the	event	loop	is	active	at	that	time):

after	[expr	{1000	*	60	*	60	*	8}]	wake_up

The	following	command	can	be	used	to	do	long-running	calculations	(as
represented	here	by	::my_calc::one_step,	which	is	assumed	to	return	a
boolean	indicating	whether	another	step	should	be	performed)	in	a
step-by-step	fashion,	though	the	calculation	itself	needs	to	be	arranged
so	it	can	work	step-wise.	This	technique	is	extra	careful	to	ensure	that
the	event	loop	is	not	starved	by	the	rescheduling	of	processing	steps
(arranging	for	the	next	step	to	be	done	using	an	already-triggered	timer
event	only	when	the	event	queue	has	been	drained)	and	is	useful	when
you	want	to	ensure	that	a	Tk	GUI	remains	responsive	during	a	slow
task.

proc	doOneStep	{}	{

			if	{[::my_calc::one_step]}	{

						after	idle	[list	after	0	doOneStep]

			}

}

doOneStep

SEE	ALSO

concat,	interp,	update,	vwait

KEYWORDS

cancel,	delay,	idle	callback,	sleep,	time

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990-1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	error

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

error	-	Generate	an	error

SYNOPSIS

error	message	?info?	?code?

DESCRIPTION

Returns	a	TCL_ERROR	code,	which	causes	command	interpretation	to
be	unwound.	Message	is	a	string	that	is	returned	to	the	application	to
indicate	what	went	wrong.

The	-errorinfo	return	option	of	an	interpreter	is	used	to	accumulate	a
stack	trace	of	what	was	in	progress	when	an	error	occurred;	as	nested
commands	unwind,	the	Tcl	interpreter	adds	information	to	the	-errorinfo
return	option.	If	the	info	argument	is	present,	it	is	used	to	initialize	the	-
errorinfo	return	options	and	the	first	increment	of	unwind	information
will	not	be	added	by	the	Tcl	interpreter.	In	other	words,	the	command
containing	the	error	command	will	not	appear	in	the	stack	trace;	in	its
place	will	be	info.	Historically,	this	feature	had	been	most	useful	in
conjunction	with	the	catch	command:	if	a	caught	error	cannot	be
handled	successfully,	info	can	be	used	to	return	a	stack	trace	reflecting
the	original	point	of	occurrence	of	the	error:

catch	{...}	errMsg

set	savedInfo	$::errorInfo

	...

error	$errMsg	$savedInfo

When	working	with	Tcl	8.5	or	later,	the	following	code	should	be	used
instead:

catch	{...}	errMsg	options

	...

return	-options	$options	$errMsg

If	the	code	argument	is	present,	then	its	value	is	stored	in	the	-
errorcode	return	option.	The	-errorcode	return	option	is	intended	to
hold	a	machine-readable	description	of	the	error	in	cases	where	such
information	is	available;	see	the	return	manual	page	for	information	on
the	proper	format	for	this	option's	value.

EXAMPLE

Generate	an	error	if	a	basic	mathematical	operation	fails:

if	{1+2	!=	3}	{

				error	"something	is	very	wrong	with	addition"

}

SEE	ALSO

catch,	return

KEYWORDS

error

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	lappend

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

lappend	-	Append	list	elements	onto	a	variable

SYNOPSIS

lappend	varName	?value	value	value	...?

DESCRIPTION

This	command	treats	the	variable	given	by	varName	as	a	list	and
appends	each	of	the	value	arguments	to	that	list	as	a	separate	element,
with	spaces	between	elements.	If	varName	does	not	exist,	it	is	created
as	a	list	with	elements	given	by	the	value	arguments.	Lappend	is
similar	to	append	except	that	the	values	are	appended	as	list	elements
rather	than	raw	text.	This	command	provides	a	relatively	efficient	way	to
build	up	large	lists.	For	example,	“lappend	a	$b”	is	much	more	efficient
than	“set	a	[concat	$a	[list	$b]]”	when	$a	is	long.

EXAMPLE

Using	lappend	to	build	up	a	list	of	numbers.

%	set	var	1

1

%	lappend	var	2

1	2

%	lappend	var	3	4	5

1	2	3	4	5

SEE	ALSO

list,	lindex,	linsert,	llength,	lset,	lsort,	lrange

KEYWORDS

append,	element,	list,	variable

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.
Copyright	©	2001	Kevin	B.	Kenny	<kennykb(at)acm.org>.	All	rights	reserved.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	platform

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

platform	-	System	identification	support	code	and	utilities

SYNOPSIS

package	require	platform	?1.0.4?
platform::generic
platform::identify
platform::patterns	identifier

DESCRIPTION

The	platform	package	provides	several	utility	commands	useful	for	the
identification	of	the	architecture	of	a	machine	running	Tcl.

Whilst	Tcl	provides	the	tcl_platform	array	for	identifying	the	current
architecture	(in	particular,	the	platform	and	machine	elements)	this	is
not	always	sufficient.	This	is	because	(on	Unix	machines)	tcl_platform
reflects	the	values	returned	by	the	uname	command	and	these	are	not
standardized	across	platforms	and	architectures.	In	addition,	on	at	least
one	platform	(AIX)	the	tcl_platform(machine)	contains	the	CPU	serial
number.

Consequently,	individual	applications	need	to	manipulate	the	values	in
tcl_platform	(along	with	the	output	of	system	specific	utilities)	-	which
is	both	inconvenient	for	developers,	and	introduces	the	potential	for
inconsistencies	in	identifying	architectures	and	in	naming	conventions.

The	platform	package	prevents	such	fragmentation	-	i.e.,	it	establishes
a	standard	naming	convention	for	architectures	running	Tcl	and	makes
it	more	convenient	for	developers	to	identify	the	current	architecture	a

Tcl	program	is	running	on.

COMMANDS

platform::identify
This	command	returns	an	identifier	describing	the	platform	the	Tcl
core	is	running	on.	The	returned	identifier	has	the	general	format
OS-CPU.	The	OS	part	of	the	identifier	may	contain	details	like
kernel	version,	libc	version,	etc.,	and	this	information	may	contain
dashes	as	well.	The	CPU	part	will	not	contain	dashes,	making	the
preceding	dash	the	last	dash	in	the	result.

platform::generic
This	command	returns	a	simplified	identifier	describing	the	platform
the	Tcl	core	is	running	on.	In	contrast	to	platform::identify	it
leaves	out	details	like	kernel	version,	libc	version,	etc.	The	returned
identifier	has	the	general	format	OS-CPU.

platform::patterns	identifier
This	command	takes	an	identifier	as	returned	by	platform::identify
and	returns	a	list	of	identifiers	describing	compatible	architectures.

KEYWORDS

operating	system,	cpu	architecture,	platform,	architecture

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	2006	ActiveState	Software	Inc

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	library

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
auto_execok,	auto_import,	auto_load,	auto_mkindex,
auto_mkindex_old,	auto_qualify,	auto_reset,	tcl_findLibrary,
parray,	tcl_endOfWord,	tcl_startOfNextWord,
tcl_startOfPreviousWord,	tcl_wordBreakAfter,
tcl_wordBreakBefore	-	standard	library	of	Tcl	procedures

SYNOPSIS
INTRODUCTION
COMMAND	PROCEDURES

auto_execok	cmd
auto_import	pattern
auto_load	cmd
auto_mkindex	dir	pattern	pattern	...
auto_reset
auto_qualify	command	namespace
tcl_findLibrary	basename	version	patch	initScript	enVarName
varName
parray	arrayName
tcl_endOfWord	str	start
tcl_startOfNextWord	str	start
tcl_startOfPreviousWord	str	start
tcl_wordBreakAfter	str	start
tcl_wordBreakBefore	str	start

VARIABLES
auto_execs
auto_index
auto_noexec
auto_noload
auto_path
env(TCL_LIBRARY)
env(TCLLIBPATH)

tcl_nonwordchars
tcl_wordchars

SEE	ALSO
KEYWORDS

NAME

auto_execok,	auto_import,	auto_load,	auto_mkindex,
auto_mkindex_old,	auto_qualify,	auto_reset,	tcl_findLibrary,	parray,
tcl_endOfWord,	tcl_startOfNextWord,	tcl_startOfPreviousWord,
tcl_wordBreakAfter,	tcl_wordBreakBefore	-	standard	library	of	Tcl
procedures

SYNOPSIS

auto_execok	cmd
auto_import	pattern
auto_load	cmd
auto_mkindex	dir	pattern	pattern	...
auto_mkindex_old	dir	pattern	pattern	...
auto_qualify	command	namespace
auto_reset
tcl_findLibrary	basename	version	patch	initScript	enVarName
varName
parray	arrayName
tcl_endOfWord	str	start
tcl_startOfNextWord	str	start
tcl_startOfPreviousWord	str	start
tcl_wordBreakAfter	str	start
tcl_wordBreakBefore	str	start

INTRODUCTION

Tcl	includes	a	library	of	Tcl	procedures	for	commonly-needed	functions.
The	procedures	defined	in	the	Tcl	library	are	generic	ones	suitable	for
use	by	many	different	applications.	The	location	of	the	Tcl	library	is
returned	by	the	info	library	command.	In	addition	to	the	Tcl	library,
each	application	will	normally	have	its	own	library	of	support	procedures

as	well;	the	location	of	this	library	is	normally	given	by	the	value	of	the
$app_library	global	variable,	where	app	is	the	name	of	the	application.
For	example,	the	location	of	the	Tk	library	is	kept	in	the	variable
$tk_library.

To	access	the	procedures	in	the	Tcl	library,	an	application	should	source
the	file	init.tcl	in	the	library,	for	example	with	the	Tcl	command

source	[file	join	[info	library]	init.tcl]

If	the	library	procedure	Tcl_Init	is	invoked	from	an	application's
Tcl_AppInit	procedure,	this	happens	automatically.	The	code	in	init.tcl
will	define	the	unknown	procedure	and	arrange	for	the	other
procedures	to	be	loaded	on-demand	using	the	auto-load	mechanism
defined	below.

COMMAND	PROCEDURES

The	following	procedures	are	provided	in	the	Tcl	library:

auto_execok	cmd
Determines	whether	there	is	an	executable	file	or	shell	builtin	by
the	name	cmd.	If	so,	it	returns	a	list	of	arguments	to	be	passed	to
exec	to	execute	the	executable	file	or	shell	builtin	named	by	cmd.	If
not,	it	returns	an	empty	string.	This	command	examines	the
directories	in	the	current	search	path	(given	by	the	PATH
environment	variable)	in	its	search	for	an	executable	file	named
cmd.	On	Windows	platforms,	the	search	is	expanded	with	the	same
directories	and	file	extensions	as	used	by	exec.	Auto_execok
remembers	information	about	previous	searches	in	an	array	named
auto_execs;	this	avoids	the	path	search	in	future	calls	for	the
same	cmd.	The	command	auto_reset	may	be	used	to	force
auto_execok	to	forget	its	cached	information.

auto_import	pattern
Auto_import	is	invoked	during	namespace	import	to	see	if	the

imported	commands	specified	by	pattern	reside	in	an	autoloaded
library.	If	so,	the	commands	are	loaded	so	that	they	will	be
available	to	the	interpreter	for	creating	the	import	links.	If	the
commands	do	not	reside	in	an	autoloaded	library,	auto_import
does	nothing.	The	pattern	matching	is	performed	according	to	the
matching	rules	of	namespace	import.

auto_load	cmd
This	command	attempts	to	load	the	definition	for	a	Tcl	command
named	cmd.	To	do	this,	it	searches	an	auto-load	path,	which	is	a
list	of	one	or	more	directories.	The	auto-load	path	is	given	by	the
global	variable	$auto_path	if	it	exists.	If	there	is	no	$auto_path
variable,	then	the	TCLLIBPATH	environment	variable	is	used,	if	it
exists.	Otherwise	the	auto-load	path	consists	of	just	the	Tcl	library
directory.	Within	each	directory	in	the	auto-load	path	there	must	be
a	file	tclIndex	that	describes	one	or	more	commands	defined	in
that	directory	and	a	script	to	evaluate	to	load	each	of	the
commands.	The	tclIndex	file	should	be	generated	with	the
auto_mkindex	command.	If	cmd	is	found	in	an	index	file,	then	the
appropriate	script	is	evaluated	to	create	the	command.	The
auto_load	command	returns	1	if	cmd	was	successfully	created.
The	command	returns	0	if	there	was	no	index	entry	for	cmd	or	if	the
script	did	not	actually	define	cmd	(e.g.	because	index	information	is
out	of	date).	If	an	error	occurs	while	processing	the	script,	then	that
error	is	returned.	Auto_load	only	reads	the	index	information	once
and	saves	it	in	the	array	auto_index;	future	calls	to	auto_load
check	for	cmd	in	the	array	rather	than	re-reading	the	index	files.
The	cached	index	information	may	be	deleted	with	the	command
auto_reset.	This	will	force	the	next	auto_load	command	to	reload
the	index	database	from	disk.

auto_mkindex	dir	pattern	pattern	...
Generates	an	index	suitable	for	use	by	auto_load.	The	command
searches	dir	for	all	files	whose	names	match	any	of	the	pattern
arguments	(matching	is	done	with	the	glob	command),	generates
an	index	of	all	the	Tcl	command	procedures	defined	in	all	the
matching	files,	and	stores	the	index	information	in	a	file	named

tclIndex	in	dir.	If	no	pattern	is	given	a	pattern	of	*.tcl	will	be
assumed.	For	example,	the	command

auto_mkindex	foo	*.tcl

will	read	all	the	.tcl	files	in	subdirectory	foo	and	generate	a	new
index	file	foo/tclIndex.

Auto_mkindex	parses	the	Tcl	scripts	by	sourcing	them	into	a	slave
interpreter	and	monitoring	the	proc	and	namespace	commands	that
are	executed.	Extensions	can	use	the	(undocumented)
auto_mkindex_parser	package	to	register	other	commands	that
can	contribute	to	the	auto_load	index.	You	will	have	to	read	through
auto.tcl	to	see	how	this	works.

Auto_mkindex_old	parses	the	Tcl	scripts	in	a	relatively
unsophisticated	way:	if	any	line	contains	the	word	proc	as	its	first
characters	then	it	is	assumed	to	be	a	procedure	definition	and	the
next	word	of	the	line	is	taken	as	the	procedure's	name.	Procedure
definitions	that	do	not	appear	in	this	way	(e.g.	they	have	spaces
before	the	proc)	will	not	be	indexed.	If	your	script	contains
“dangerous”	code,	such	as	global	initialization	code	or	procedure
names	with	special	characters	like	$,	*,	[or],	you	are	safer	using
auto_mkindex_old.

auto_reset
Destroys	all	the	information	cached	by	auto_execok	and
auto_load.	This	information	will	be	re-read	from	disk	the	next	time
it	is	needed.	Auto_reset	also	deletes	any	procedures	listed	in	the
auto-load	index,	so	that	fresh	copies	of	them	will	be	loaded	the	next
time	that	they	are	used.

auto_qualify	command	namespace
Computes	a	list	of	fully	qualified	names	for	command.	This	list
mirrors	the	path	a	standard	Tcl	interpreter	follows	for	command
lookups:	first	it	looks	for	the	command	in	the	current	namespace,

and	then	in	the	global	namespace.	Accordingly,	if	command	is
relative	and	namespace	is	not	::,	the	list	returned	has	two
elements:	command	scoped	by	namespace,	as	if	it	were	a
command	in	the	namespace	namespace;	and	command	as	if	it
were	a	command	in	the	global	namespace.	Otherwise,	if	either
command	is	absolute	(it	begins	with	::),	or	namespace	is	::,	the	list
contains	only	command	as	if	it	were	a	command	in	the	global
namespace.

Auto_qualify	is	used	by	the	auto-loading	facilities	in	Tcl,	both	for
producing	auto-loading	indexes	such	as	pkgIndex.tcl,	and	for
performing	the	actual	auto-loading	of	functions	at	runtime.

tcl_findLibrary	basename	version	patch	initScript	enVarName
varName

This	is	a	standard	search	procedure	for	use	by	extensions	during
their	initialization.	They	call	this	procedure	to	look	for	their	script
library	in	several	standard	directories.	The	last	component	of	the
name	of	the	library	directory	is	normally	basenameversion	(e.g.,
tk8.0),	but	it	might	be	“library”	when	in	the	build	hierarchies.	The
initScript	file	will	be	sourced	into	the	interpreter	once	it	is	found.
The	directory	in	which	this	file	is	found	is	stored	into	the	global
variable	varName.	If	this	variable	is	already	defined	(e.g.,	by	C
code	during	application	initialization)	then	no	searching	is	done.
Otherwise	the	search	looks	in	these	directories:	the	directory
named	by	the	environment	variable	enVarName;	relative	to	the	Tcl
library	directory;	relative	to	the	executable	file	in	the	standard
installation	bin	or	bin/arch	directory;	relative	to	the	executable	file	in
the	current	build	tree;	relative	to	the	executable	file	in	a	parallel
build	tree.

parray	arrayName
Prints	on	standard	output	the	names	and	values	of	all	the	elements
in	the	array	arrayName.	ArrayName	must	be	an	array	accessible
to	the	caller	of	parray.	It	may	be	either	local	or	global.

tcl_endOfWord	str	start
Returns	the	index	of	the	first	end-of-word	location	that	occurs	after

a	starting	index	start	in	the	string	str.	An	end-of-word	location	is
defined	to	be	the	first	non-word	character	following	the	first	word
character	after	the	starting	point.	Returns	-1	if	there	are	no	more
end-of-word	locations	after	the	starting	point.	See	the	description	of
tcl_wordchars	and	tcl_nonwordchars	below	for	more	details	on
how	Tcl	determines	which	characters	are	word	characters.

tcl_startOfNextWord	str	start
Returns	the	index	of	the	first	start-of-word	location	that	occurs	after
a	starting	index	start	in	the	string	str.	A	start-of-word	location	is
defined	to	be	the	first	word	character	following	a	non-word
character.	Returns	-1	if	there	are	no	more	start-of-word	locations
after	the	starting	point.

tcl_startOfPreviousWord	str	start
Returns	the	index	of	the	first	start-of-word	location	that	occurs
before	a	starting	index	start	in	the	string	str.	Returns	-1	if	there	are
no	more	start-of-word	locations	before	the	starting	point.

tcl_wordBreakAfter	str	start
Returns	the	index	of	the	first	word	boundary	after	the	starting	index
start	in	the	string	str.	Returns	-1	if	there	are	no	more	boundaries
after	the	starting	point	in	the	given	string.	The	index	returned	refers
to	the	second	character	of	the	pair	that	comprises	a	boundary.

tcl_wordBreakBefore	str	start
Returns	the	index	of	the	first	word	boundary	before	the	starting
index	start	in	the	string	str.	Returns	-1	if	there	are	no	more
boundaries	before	the	starting	point	in	the	given	string.	The	index
returned	refers	to	the	second	character	of	the	pair	that	comprises	a
boundary.

VARIABLES

The	following	global	variables	are	defined	or	used	by	the	procedures	in
the	Tcl	library:

auto_execs

Used	by	auto_execok	to	record	information	about	whether
particular	commands	exist	as	executable	files.

auto_index
Used	by	auto_load	to	save	the	index	information	read	from	disk.

auto_noexec
If	set	to	any	value,	then	unknown	will	not	attempt	to	auto-exec	any
commands.

auto_noload
If	set	to	any	value,	then	unknown	will	not	attempt	to	auto-load	any
commands.

auto_path
If	set,	then	it	must	contain	a	valid	Tcl	list	giving	directories	to	search
during	auto-load	operations.	This	variable	is	initialized	during
startup	to	contain,	in	order:	the	directories	listed	in	the
TCLLIBPATH	environment	variable,	the	directory	named	by	the
$tcl_library	variable,	the	parent	directory	of	$tcl_library,	the
directories	listed	in	the	$tcl_pkgPath	variable.

env(TCL_LIBRARY)
If	set,	then	it	specifies	the	location	of	the	directory	containing	library
scripts	(the	value	of	this	variable	will	be	assigned	to	the	tcl_library
variable	and	therefore	returned	by	the	command	info	library).	If
this	variable	is	not	set	then	a	default	value	is	used.

env(TCLLIBPATH)
If	set,	then	it	must	contain	a	valid	Tcl	list	giving	directories	to	search
during	auto-load	operations.	Directories	must	be	specified	in	Tcl
format,	using	“/”	as	the	path	separator,	regardless	of	platform.	This
variable	is	only	used	when	initializing	the	auto_path	variable.

tcl_nonwordchars
This	variable	contains	a	regular	expression	that	is	used	by	routines
like	tcl_endOfWord	to	identify	whether	a	character	is	part	of	a
word	or	not.	If	the	pattern	matches	a	character,	the	character	is

considered	to	be	a	non-word	character.	On	Windows	platforms,
spaces,	tabs,	and	newlines	are	considered	non-word	characters.
Under	Unix,	everything	but	numbers,	letters	and	underscores	are
considered	non-word	characters.

tcl_wordchars
This	variable	contains	a	regular	expression	that	is	used	by	routines
like	tcl_endOfWord	to	identify	whether	a	character	is	part	of	a
word	or	not.	If	the	pattern	matches	a	character,	the	character	is
considered	to	be	a	word	character.	On	Windows	platforms,	words
are	comprised	of	any	character	that	is	not	a	space,	tab,	or	newline.
Under	Unix,	words	are	comprised	of	numbers,	letters	or
underscores.

SEE	ALSO

info,	re_syntax

KEYWORDS

auto-exec,	auto-load,	library,	unknown,	word,	whitespace

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1991-1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	append

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

append	-	Append	to	variable

SYNOPSIS

append	varName	?value	value	value	...?

DESCRIPTION

Append	all	of	the	value	arguments	to	the	current	value	of	variable
varName.	If	varName	does	not	exist,	it	is	given	a	value	equal	to	the
concatenation	of	all	the	value	arguments.	The	result	of	this	command	is
the	new	value	stored	in	variable	varName.	This	command	provides	an
efficient	way	to	build	up	long	variables	incrementally.	For	example,
“append	a	$b”	is	much	more	efficient	than	“set	a	ab”	if	$a	is	long.

EXAMPLE

Building	a	string	of	comma-separated	numbers	piecemeal	using	a	loop.

set	var	0

for	{set	i	1}	{$i<=10}	{incr	i}	{

			append	var	","	$i

}

puts	$var

#	Prints	0,1,2,3,4,5,6,7,8,9,10

SEE	ALSO

concat,	lappend

KEYWORDS

append,	variable

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	eval

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

eval	-	Evaluate	a	Tcl	script

SYNOPSIS

eval	arg	?arg	...?

DESCRIPTION

Eval	takes	one	or	more	arguments,	which	together	comprise	a	Tcl	script
containing	one	or	more	commands.	Eval	concatenates	all	its	arguments
in	the	same	fashion	as	the	concat	command,	passes	the	concatenated
string	to	the	Tcl	interpreter	recursively,	and	returns	the	result	of	that
evaluation	(or	any	error	generated	by	it).	Note	that	the	list	command
quotes	sequences	of	words	in	such	a	way	that	they	are	not	further
expanded	by	the	eval	command.

EXAMPLES

Often,	it	is	useful	to	store	a	fragment	of	a	script	in	a	variable	and
execute	it	later	on	with	extra	values	appended.	This	technique	is	used
in	a	number	of	places	throughout	the	Tcl	core	(e.g.	in	fcopy,	lsort	and
trace	command	callbacks).	This	example	shows	how	to	do	this	using
core	Tcl	commands:

set	script	{

				puts	"logging	now"

				lappend	$myCurrentLogVar

}

set	myCurrentLogVar	log1

#	Set	up	a	switch	of	logging	variable	part	way	through!

after	20000	set	myCurrentLogVar	log2

for	{set	i	0}	{$i<10}	{incr	i}	{

				#	Introduce	a	random	delay

				after	[expr	{int(5000	*	rand())}]

				update				;#	Check	for	the	asynch	log	switch

				eval	$script	$i	[clock	clicks]

}

Note	that	in	the	most	common	case	(where	the	script	fragment	is
actually	just	a	list	of	words	forming	a	command	prefix),	it	is	better	to	use
{*}$script	when	doing	this	sort	of	invocation	pattern.	It	is	less	general
than	the	eval	command,	and	hence	easier	to	make	robust	in	practice.
The	following	procedure	acts	in	a	way	that	is	analogous	to	the	lappend
command,	except	it	inserts	the	argument	values	at	the	start	of	the	list	in
the	variable:

proc	lprepend	{varName	args}	{

			upvar	1	$varName	var

			#	Ensure	that	the	variable	exists	and	contains	a	list

			lappend	var

			#	Now	we	insert	all	the	arguments	in	one	go

			set	var	[eval	[list	linsert	$var	0]	$args]

}

However,	the	last	line	would	now	normally	be	written	without	eval,	like
this:

set	var	[linsert	$var	0	{*}$args]

SEE	ALSO

catch,	concat,	error,	interp,	list,	namespace,	subst,	tclvars,	uplevel

KEYWORDS

concatenate,	evaluate,	script

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	lassign

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

lassign	-	Assign	list	elements	to	variables

SYNOPSIS

lassign	list	varName	?varName	...?

DESCRIPTION

This	command	treats	the	value	list	as	a	list	and	assigns	successive
elements	from	that	list	to	the	variables	given	by	the	varName	arguments
in	order.	If	there	are	more	variable	names	than	list	elements,	the
remaining	variables	are	set	to	the	empty	string.	If	there	are	more	list
elements	than	variables,	a	list	of	unassigned	elements	is	returned.

EXAMPLES

An	illustration	of	how	multiple	assignment	works,	and	what	happens
when	there	are	either	too	few	or	too	many	elements.

lassign	{a	b	c}	x	y	z							;#	Empty	return

puts	$x																					;#	Prints	"a"

puts	$y																					;#	Prints	"b"

puts	$z																					;#	Prints	"c"

lassign	{d	e}	x	y	z									;#	Empty	return

puts	$x																					;#	Prints	"d"

puts	$y																					;#	Prints	"e"

puts	$z																					;#	Prints	""

lassign	{f	g	h	i}	x	y							;#	Returns	"h	i"

puts	$x																					;#	Prints	"f"

puts	$y																					;#	Prints	"g"

The	lassign	command	has	other	uses.	It	can	be	used	to	create	the
analogue	of	the	“shift”	command	in	many	shell	languages	like	this:

set	::argv	[lassign	$::argv	argumentToReadOff]

SEE	ALSO

lindex,	list,	lset,	set

KEYWORDS

assign,	element,	list,	multiple,	set,	variable

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1992-1999	Karl	Lehenbauer	&	Mark	Diekhans
Copyright	©	2004	Donal	K.	Fellows

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	platform_shell

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

platform::shell	-	System	identification	support	code	and	utilities

SYNOPSIS

package	require	platform::shell	?1.1.4?
platform::shell::generic	shell
platform::shell::identify	shell
platform::shell::platform	shell

DESCRIPTION

The	platform::shell	package	provides	several	utility	commands	useful
for	the	identification	of	the	architecture	of	a	specific	Tcl	shell.

This	package	allows	the	identification	of	the	architecture	of	a	specific
Tcl	shell	different	from	the	shell	running	the	package.	The	only
requirement	is	that	the	other	shell	(identified	by	its	path),	is	actually
executable	on	the	current	machine.

While	for	most	platform	this	means	that	the	architecture	of	the
interrogated	shell	is	identical	to	the	architecture	of	the	running	shell	this
is	not	generally	true.	A	counter	example	are	all	platforms	which	have	32
and	64	bit	variants	and	where	a	64bit	system	is	able	to	run	32bit	code.
For	these	running	and	interrogated	shell	may	have	different	32/64	bit
settings	and	thus	different	identifiers.

For	applications	like	a	code	repository	it	is	important	to	identify	the
architecture	of	the	shell	which	will	actually	run	the	installed	packages,
versus	the	architecture	of	the	shell	running	the	repository	software.

COMMANDS

platform::shell::identify	shell
This	command	does	the	same	identification	as	platform::identify,
for	the	specified	Tcl	shell,	in	contrast	to	the	running	shell.

platform::shell::generic	shell
This	command	does	the	same	identification	as	platform::generic,
for	the	specified	Tcl	shell,	in	contrast	to	the	running	shell.

platform::shell::platform	shell
This	command	returns	the	contents	of	tcl_platform(platform)	for
the	specified	Tcl	shell.

KEYWORDS

operating	system,	cpu	architecture,	platform,	architecture

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	2006-2008	ActiveState	Software	Inc

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	apply

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

apply	-	Apply	an	anonymous	function

SYNOPSIS

apply	func	?arg1	arg2	...?

DESCRIPTION

The	command	apply	applies	the	function	func	to	the	arguments	arg1
arg2	...	and	returns	the	result.

The	function	func	is	a	two	element	list	{args	body}	or	a	three	element
list	{args	body	namespace}	(as	if	the	list	command	had	been	used).
The	first	element	args	specifies	the	formal	arguments	to	func.	The
specification	of	the	formal	arguments	args	is	shared	with	the	proc
command,	and	is	described	in	detail	in	the	corresponding	manual	page.

The	contents	of	body	are	executed	by	the	Tcl	interpreter	after	the	local
variables	corresponding	to	the	formal	arguments	are	given	the	values	of
the	actual	parameters	arg1	arg2	When	body	is	being	executed,
variable	names	normally	refer	to	local	variables,	which	are	created
automatically	when	referenced	and	deleted	when	apply	returns.	One
local	variable	is	automatically	created	for	each	of	the	function's
arguments.	Global	variables	can	only	be	accessed	by	invoking	the
global	command	or	the	upvar	command.	Namespace	variables	can
only	be	accessed	by	invoking	the	variable	command	or	the	upvar
command.

The	invocation	of	apply	adds	a	call	frame	to	Tcl's	evaluation	stack	(the
stack	of	frames	accessed	via	uplevel).	The	execution	of	body	proceeds

in	this	call	frame,	in	the	namespace	given	by	namespace	or	in	the
global	namespace	if	none	was	specified.	If	given,	namespace	is
interpreted	relative	to	the	global	namespace	even	if	its	name	does	not
start	with	“::”.

The	semantics	of	apply	can	also	be	described	by:

proc	apply	{fun	args}	{

			set	len	[llength	$fun]

			if	{($len	<	2)	||	($len	>	3)}	{

						error	"can't	interpret	\"$fun\"	as	anonymous	function"

			}

			lassign	$fun	argList	body	ns

			set	name	::$ns::[getGloballyUniqueName]

			set	body0	{

						rename	[lindex	[info	level	0]	0]	{}

			}

			proc	$name	$argList	${body0}$body

			set	code	[catch	{uplevel	1	$name	$args}	res	opt]

			return	-options	$opt	$res

}

EXAMPLES

This	shows	how	to	make	a	simple	general	command	that	applies	a
transformation	to	each	element	of	a	list.

proc	map	{lambda	list}	{

			set	result	{}

			foreach	item	$list	{

						lappend	result	[apply	$lambda	$item]

			}

			return	$result

}

map	{x	{return	[string	length	$x]:$x}}	{a	bb	ccc	dddd}

						→	1:a	2:bb	3:ccc	4:dddd
map	{x	{expr	{$x**2	+	3*$x	-	2}}}	{-4	-3	-2	-1	0	1	2	3	4}

						→	2	-2	-4	-4	-2	2	8	16	26

The	apply	command	is	also	useful	for	defining	callbacks	for	use	in	the
trace	command:

set	vbl	"123abc"

trace	add	variable	vbl	write	{apply	{{v1	v2	op}	{

			upvar	1	$v1	v

			puts	"updated	variable	to	\"$v\""

}}}

set	vbl	123

set	vbl	abc

SEE	ALSO

proc,	uplevel

KEYWORDS

argument,	procedure,	anonymous	function

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	2006	Miguel	Sofer
Copyright	©	2006	Donal	K.	Fellows

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	exec

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
exec	-	Invoke	subprocesses

SYNOPSIS
DESCRIPTION

-ignorestderr
-keepnewline
--
|
|&
<	fileName
<@	fileId
<<	value
>	fileName
2>	fileName
>&	fileName
>>	fileName
2>>	fileName
>>&	fileName
>@	fileId
2>@	fileId
2>@1
>&@	fileId

PORTABILITY	ISSUES
Windows	(all	versions)
Windows	NT
Windows	9x
Unix

UNIX	EXAMPLES
WINDOWS	EXAMPLES
SEE	ALSO
KEYWORDS

NAME

exec	-	Invoke	subprocesses

SYNOPSIS

exec	?switches?	arg	?arg	...?

DESCRIPTION

This	command	treats	its	arguments	as	the	specification	of	one	or	more
subprocesses	to	execute.	The	arguments	take	the	form	of	a	standard
shell	pipeline	where	each	arg	becomes	one	word	of	a	command,	and
each	distinct	command	becomes	a	subprocess.

If	the	initial	arguments	to	exec	start	with	-	then	they	are	treated	as
command-line	switches	and	are	not	part	of	the	pipeline	specification.
The	following	switches	are	currently	supported:

-ignorestderr
Stops	the	exec	command	from	treating	the	output	of	messages	to
the	pipeline's	standard	error	channel	as	an	error	case.

-keepnewline
Retains	a	trailing	newline	in	the	pipeline's	output.	Normally	a
trailing	newline	will	be	deleted.

--
Marks	the	end	of	switches.	The	argument	following	this	one	will	be
treated	as	the	first	arg	even	if	it	starts	with	a	-.

If	an	arg	(or	pair	of	args)	has	one	of	the	forms	described	below	then	it	is
used	by	exec	to	control	the	flow	of	input	and	output	among	the
subprocess(es).	Such	arguments	will	not	be	passed	to	the
subprocess(es).	In	forms	such	as	“<	fileName”,	fileName	may	either	be
in	a	separate	argument	from	“<”	or	in	the	same	argument	with	no
intervening	space	(i.e.	“<fileName”).

|

Separates	distinct	commands	in	the	pipeline.	The	standard	output
of	the	preceding	command	will	be	piped	into	the	standard	input	of
the	next	command.

|&
Separates	distinct	commands	in	the	pipeline.	Both	standard	output
and	standard	error	of	the	preceding	command	will	be	piped	into	the
standard	input	of	the	next	command.	This	form	of	redirection
overrides	forms	such	as	2>	and	>&.

<	fileName
The	file	named	by	fileName	is	opened	and	used	as	the	standard
input	for	the	first	command	in	the	pipeline.

<@	fileId
FileId	must	be	the	identifier	for	an	open	file,	such	as	the	return
value	from	a	previous	call	to	open.	It	is	used	as	the	standard	input
for	the	first	command	in	the	pipeline.	FileId	must	have	been	opened
for	reading.

<<	value
Value	is	passed	to	the	first	command	as	its	standard	input.

>	fileName
Standard	output	from	the	last	command	is	redirected	to	the	file
named	fileName,	overwriting	its	previous	contents.

2>	fileName
Standard	error	from	all	commands	in	the	pipeline	is	redirected	to
the	file	named	fileName,	overwriting	its	previous	contents.

>&	fileName
Both	standard	output	from	the	last	command	and	standard	error
from	all	commands	are	redirected	to	the	file	named	fileName,
overwriting	its	previous	contents.

>>	fileName
Standard	output	from	the	last	command	is	redirected	to	the	file

named	fileName,	appending	to	it	rather	than	overwriting	it.

2>>	fileName
Standard	error	from	all	commands	in	the	pipeline	is	redirected	to
the	file	named	fileName,	appending	to	it	rather	than	overwriting	it.

>>&	fileName
Both	standard	output	from	the	last	command	and	standard	error
from	all	commands	are	redirected	to	the	file	named	fileName,
appending	to	it	rather	than	overwriting	it.

>@	fileId
FileId	must	be	the	identifier	for	an	open	file,	such	as	the	return
value	from	a	previous	call	to	open.	Standard	output	from	the	last
command	is	redirected	to	fileId's	file,	which	must	have	been
opened	for	writing.

2>@	fileId
FileId	must	be	the	identifier	for	an	open	file,	such	as	the	return
value	from	a	previous	call	to	open.	Standard	error	from	all
commands	in	the	pipeline	is	redirected	to	fileId's	file.	The	file	must
have	been	opened	for	writing.

2>@1
Standard	error	from	all	commands	in	the	pipeline	is	redirected	to
the	command	result.	This	operator	is	only	valid	at	the	end	of	the
command	pipeline.

>&@	fileId
FileId	must	be	the	identifier	for	an	open	file,	such	as	the	return
value	from	a	previous	call	to	open.	Both	standard	output	from	the
last	command	and	standard	error	from	all	commands	are	redirected
to	fileId's	file.	The	file	must	have	been	opened	for	writing.

If	standard	output	has	not	been	redirected	then	the	exec	command
returns	the	standard	output	from	the	last	command	in	the	pipeline,
unless	“2>@1”	was	specified,	in	which	case	standard	error	is	included
as	well.	If	any	of	the	commands	in	the	pipeline	exit	abnormally	or	are

killed	or	suspended,	then	exec	will	return	an	error	and	the	error
message	will	include	the	pipeline's	output	followed	by	error	messages
describing	the	abnormal	terminations;	the	-errorcode	return	option	will
contain	additional	information	about	the	last	abnormal	termination
encountered.	If	any	of	the	commands	writes	to	its	standard	error	file	and
that	standard	error	is	not	redirected	and	-ignorestderr	is	not	specified,
then	exec	will	return	an	error;	the	error	message	will	include	the
pipeline's	standard	output,	followed	by	messages	about	abnormal
terminations	(if	any),	followed	by	the	standard	error	output.

If	the	last	character	of	the	result	or	error	message	is	a	newline	then	that
character	is	normally	deleted	from	the	result	or	error	message.	This	is
consistent	with	other	Tcl	return	values,	which	do	not	normally	end	with
newlines.	However,	if	-keepnewline	is	specified	then	the	trailing
newline	is	retained.

If	standard	input	is	not	redirected	with	“<”,	“<<”	or	“<@”	then	the
standard	input	for	the	first	command	in	the	pipeline	is	taken	from	the
application's	current	standard	input.

If	the	last	arg	is	“&”	then	the	pipeline	will	be	executed	in	background.	In
this	case	the	exec	command	will	return	a	list	whose	elements	are	the
process	identifiers	for	all	of	the	subprocesses	in	the	pipeline.	The
standard	output	from	the	last	command	in	the	pipeline	will	go	to	the
application's	standard	output	if	it	has	not	been	redirected,	and	error
output	from	all	of	the	commands	in	the	pipeline	will	go	to	the
application's	standard	error	file	unless	redirected.

The	first	word	in	each	command	is	taken	as	the	command	name;	tilde-
substitution	is	performed	on	it,	and	if	the	result	contains	no	slashes	then
the	directories	in	the	PATH	environment	variable	are	searched	for	an
executable	by	the	given	name.	If	the	name	contains	a	slash	then	it	must
refer	to	an	executable	reachable	from	the	current	directory.	No	“glob”
expansion	or	other	shell-like	substitutions	are	performed	on	the
arguments	to	commands.

PORTABILITY	ISSUES

Windows	(all	versions)
Reading	from	or	writing	to	a	socket,	using	the	“@	fileId”	notation,
does	not	work.	When	reading	from	a	socket,	a	16-bit	DOS
application	will	hang	and	a	32-bit	application	will	return	immediately
with	end-of-file.	When	either	type	of	application	writes	to	a	socket,
the	information	is	instead	sent	to	the	console,	if	one	is	present,	or	is
discarded.

The	Tk	console	text	widget	does	not	provide	real	standard	IO
capabilities.	Under	Tk,	when	redirecting	from	standard	input,	all
applications	will	see	an	immediate	end-of-file;	information
redirected	to	standard	output	or	standard	error	will	be	discarded.

Either	forward	or	backward	slashes	are	accepted	as	path
separators	for	arguments	to	Tcl	commands.	When	executing	an
application,	the	path	name	specified	for	the	application	may	also
contain	forward	or	backward	slashes	as	path	separators.	Bear	in
mind,	however,	that	most	Windows	applications	accept	arguments
with	forward	slashes	only	as	option	delimiters	and	backslashes
only	in	paths.	Any	arguments	to	an	application	that	specify	a	path
name	with	forward	slashes	will	not	automatically	be	converted	to
use	the	backslash	character.	If	an	argument	contains	forward
slashes	as	the	path	separator,	it	may	or	may	not	be	recognized	as
a	path	name,	depending	on	the	program.

Additionally,	when	calling	a	16-bit	DOS	or	Windows	3.X	application,
all	path	names	must	use	the	short,	cryptic,	path	format	(e.g.,	using
“applba~1.def”	instead	of	“applbakery.default”),	which	can	be
obtained	with	the	“file	attributes	fileName	-shortname”	command.

Two	or	more	forward	or	backward	slashes	in	a	row	in	a	path	refer	to
a	network	path.	For	example,	a	simple	concatenation	of	the	root
directory	c:/	with	a	subdirectory	/windows/system	will	yield
c://windows/system	(two	slashes	together),	which	refers	to	the
mount	point	called	system	on	the	machine	called	windows	(and
the	c:/	is	ignored),	and	is	not	equivalent	to	c:/windows/system,
which	describes	a	directory	on	the	current	computer.	The	file	join
command	should	be	used	to	concatenate	path	components.

Note	that	there	are	two	general	types	of	Win32	console
applications:

[1]
CLI	—	CommandLine	Interface,	simple	stdio	exchange.
netstat.exe	for	example.

[2]
TUI	—	Textmode	User	Interface,	any	application	that	accesses
the	console	API	for	doing	such	things	as	cursor	movement,
setting	text	color,	detecting	key	presses	and	mouse	movement,
etc.	An	example	would	be	telnet.exe	from	Windows	2000.
These	types	of	applications	are	not	common	in	a	windows
environment,	but	do	exist.

exec	will	not	work	well	with	TUI	applications	when	a	console	is	not
present,	as	is	done	when	launching	applications	under	wish.	It	is
desirable	to	have	console	applications	hidden	and	detached.	This
is	a	designed-in	limitation	as	exec	wants	to	communicate	over
pipes.	The	Expect	extension	addresses	this	issue	when
communicating	with	a	TUI	application.

Windows	NT
When	attempting	to	execute	an	application,	exec	first	searches	for
the	name	as	it	was	specified.	Then,	in	order,	.com,	.exe,	and	.bat
are	appended	to	the	end	of	the	specified	name	and	it	searches	for
the	longer	name.	If	a	directory	name	was	not	specified	as	part	of
the	application	name,	the	following	directories	are	automatically
searched	in	order	when	attempting	to	locate	the	application:

•		The	directory	from	which	the	Tcl	executable	was	loaded.

•		The	current	directory.

•		The	Windows	NT	32-bit	system	directory.

•		The	Windows	NT	16-bit	system	directory.

•		The	Windows	NT	home	directory.

•		The	directories	listed	in	the	path.

In	order	to	execute	shell	built-in	commands	like	dir	and	copy,	the
caller	must	prepend	the	desired	command	with	“cmd.exe	/c	”
because	built-in	commands	are	not	implemented	using
executables.

Windows	9x
When	attempting	to	execute	an	application,	exec	first	searches	for
the	name	as	it	was	specified.	Then,	in	order,	.com,	.exe,	and	.bat
are	appended	to	the	end	of	the	specified	name	and	it	searches	for
the	longer	name.	If	a	directory	name	was	not	specified	as	part	of
the	application	name,	the	following	directories	are	automatically
searched	in	order	when	attempting	to	locate	the	application:

•		The	directory	from	which	the	Tcl	executable	was	loaded.

•		The	current	directory.

•		The	Windows	9x	system	directory.

•		The	Windows	9x	home	directory.

•		The	directories	listed	in	the	path.

In	order	to	execute	shell	built-in	commands	like	dir	and	copy,	the
caller	must	prepend	the	desired	command	with	“command.com	/c
”	because	built-in	commands	are	not	implemented	using
executables.

Once	a	16-bit	DOS	application	has	read	standard	input	from	a
console	and	then	quit,	all	subsequently	run	16-bit	DOS	applications
will	see	the	standard	input	as	already	closed.	32-bit	applications	do
not	have	this	problem	and	will	run	correctly,	even	after	a	16-bit
DOS	application	thinks	that	standard	input	is	closed.	There	is	no
known	workaround	for	this	bug	at	this	time.

Redirection	between	the	NUL:	device	and	a	16-bit	application	does

not	always	work.	When	redirecting	from	NUL:,	some	applications
may	hang,	others	will	get	an	infinite	stream	of	“0x01”	bytes,	and
some	will	actually	correctly	get	an	immediate	end-of-file;	the
behavior	seems	to	depend	upon	something	compiled	into	the
application	itself.	When	redirecting	greater	than	4K	or	so	to	NUL:,
some	applications	will	hang.	The	above	problems	do	not	happen
with	32-bit	applications.

All	DOS	16-bit	applications	are	run	synchronously.	All	standard
input	from	a	pipe	to	a	16-bit	DOS	application	is	collected	into	a
temporary	file;	the	other	end	of	the	pipe	must	be	closed	before	the
16-bit	DOS	application	begins	executing.	All	standard	output	or
error	from	a	16-bit	DOS	application	to	a	pipe	is	collected	into
temporary	files;	the	application	must	terminate	before	the
temporary	files	are	redirected	to	the	next	stage	of	the	pipeline.	This
is	due	to	a	workaround	for	a	Windows	95	bug	in	the	implementation
of	pipes,	and	is	how	the	standard	Windows	95	DOS	shell	handles
pipes	itself.

Certain	applications,	such	as	command.com,	should	not	be
executed	interactively.	Applications	which	directly	access	the
console	window,	rather	than	reading	from	their	standard	input	and
writing	to	their	standard	output	may	fail,	hang	Tcl,	or	even	hang	the
system	if	their	own	private	console	window	is	not	available	to	them.

Unix
The	exec	command	is	fully	functional	and	works	as	described.

UNIX	EXAMPLES

Here	are	some	examples	of	the	use	of	the	exec	command	on	Unix.

To	execute	a	simple	program	and	get	its	result:

exec	uname	-a

To	execute	a	program	that	can	return	a	non-zero	result,	you	should

wrap	the	call	to	exec	in	catch	and	check	the	contents	of	the	-errorcode
return	option	if	you	have	an	error:

set	status	0

if	{[catch	{exec	grep	foo	bar.txt}	results	options]}	{

			set	details	[dict	get	$options	-errorcode]

			if	{[lindex	$details	0]	eq	"CHILDSTATUS"}	{

						set	status	[lindex	$details	2]

			}	else	{

						#	Some	kind	of	unexpected	failure

			}

}

When	translating	a	command	from	a	Unix	shell	invocation,	care	should
be	taken	over	the	fact	that	single	quote	characters	have	no	special
significance	to	Tcl.	Thus:

awk	'{sum	+=	$1}	END	{print	sum}'	numbers.list

would	be	translated	into	something	like:

exec	awk	{{sum	+=	$1}	END	{print	sum}}	numbers.list

If	you	are	converting	invocations	involving	shell	globbing,	you	should
remember	that	Tcl	does	not	handle	globbing	or	expand	things	into
multiple	arguments	by	default.	Instead	you	should	write	things	like	this:

exec	ls	-l	{*}[glob	*.tcl]

WINDOWS	EXAMPLES

Here	are	some	examples	of	the	use	of	the	exec	command	on	Windows.

To	start	an	instance	of	notepad	editing	a	file	without	waiting	for	the	user
to	finish	editing	the	file:

exec	notepad	myfile.txt	&

To	print	a	text	file	using	notepad:

exec	notepad	/p	myfile.txt

If	a	program	calls	other	programs,	such	as	is	common	with	compilers,
then	you	may	need	to	resort	to	batch	files	to	hide	the	console	windows
that	sometimes	pop	up:

exec	cmp.bat	somefile.c	-o	somefile

With	the	file	cmp.bat	looking	something	like:

@gcc	%1	%2	%3	%4	%5	%6	%7	%8	%9

Sometimes	you	need	to	be	careful,	as	different	programs	may	have	the
same	name	and	be	in	the	path.	It	can	then	happen	that	typing	a
command	at	the	DOS	prompt	finds	a	different	program	than	the	same
command	run	via	exec.	This	is	because	of	the	(documented)
differences	in	behaviour	between	exec	and	DOS	batch	files.

When	in	doubt,	use	the	command	auto_execok:	it	will	return	the
complete	path	to	the	program	as	seen	by	the	exec	command.	This
applies	especially	when	you	want	to	run	“internal”	commands	like	dir
from	a	Tcl	script	(if	you	just	want	to	list	filenames,	use	the	glob
command.)	To	do	that,	use	this:

exec	{*}[auto_execok	dir]	*.tcl

SEE	ALSO

error,	open

KEYWORDS

execute,	pipeline,	redirection,	subprocess

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.
Copyright	©	2006	Donal	K.	Fellows.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	lindex

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

lindex	-	Retrieve	an	element	from	a	list

SYNOPSIS

lindex	list	?index...?

DESCRIPTION

The	lindex	command	accepts	a	parameter,	list,	which	it	treats	as	a	Tcl
list.	It	also	accepts	zero	or	more	indices	into	the	list.	The	indices	may	be
presented	either	consecutively	on	the	command	line,	or	grouped	in	a	Tcl
list	and	presented	as	a	single	argument.

If	no	indices	are	presented,	the	command	takes	the	form:

lindex	list

or

lindex	list	{}

In	this	case,	the	return	value	of	lindex	is	simply	the	value	of	the	list
parameter.

When	presented	with	a	single	index,	the	lindex	command	treats	list	as
a	Tcl	list	and	returns	the	index'th	element	from	it	(0	refers	to	the	first
element	of	the	list).	In	extracting	the	element,	lindex	observes	the	same

rules	concerning	braces	and	quotes	and	backslashes	as	the	Tcl
command	interpreter;	however,	variable	substitution	and	command
substitution	do	not	occur.	If	index	is	negative	or	greater	than	or	equal	to
the	number	of	elements	in	value,	then	an	empty	string	is	returned.	The
interpretation	of	each	simple	index	value	is	the	same	as	for	the
command	string	index,	supporting	simple	index	arithmetic	and	indices
relative	to	the	end	of	the	list.

If	additional	index	arguments	are	supplied,	then	each	argument	is	used
in	turn	to	select	an	element	from	the	previous	indexing	operation,
allowing	the	script	to	select	elements	from	sublists.	The	command,

lindex	$a	1	2	3

or

lindex	$a	{1	2	3}

is	synonymous	with

lindex	[lindex	[lindex	$a	1]	2]	3

EXAMPLES

lindex	{a	b	c}

						→	a	b	c
lindex	{a	b	c}	{}

						→	a	b	c
lindex	{a	b	c}	0

						→	a
lindex	{a	b	c}	2

						→	c
lindex	{a	b	c}	end

						→	c
lindex	{a	b	c}	end-1

						→	b
lindex	{{a	b	c}	{d	e	f}	{g	h	i}}	2	1

						→	h
lindex	{{a	b	c}	{d	e	f}	{g	h	i}}	{2	1}

						→	h
lindex	{{{a	b}	{c	d}}	{{e	f}	{g	h}}}	1	1	0

						→	g
lindex	{{{a	b}	{c	d}}	{{e	f}	{g	h}}}	{1	1	0}

						→	g

SEE	ALSO

list,	lappend,	linsert,	llength,	lsearch,	lset,	lsort,	lrange,	lreplace,
string

KEYWORDS

element,	index,	list

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.
Copyright	©	2001	by	Kevin	B.	Kenny	<kennykb(at)acm.org>.	All	rights	reserved.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	proc

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

proc	-	Create	a	Tcl	procedure

SYNOPSIS

proc	name	args	body

DESCRIPTION

The	proc	command	creates	a	new	Tcl	procedure	named	name,
replacing	any	existing	command	or	procedure	there	may	have	been	by
that	name.	Whenever	the	new	command	is	invoked,	the	contents	of
body	will	be	executed	by	the	Tcl	interpreter.	Normally,	name	is
unqualified	(does	not	include	the	names	of	any	containing
namespaces),	and	the	new	procedure	is	created	in	the	current
namespace.	If	name	includes	any	namespace	qualifiers,	the	procedure
is	created	in	the	specified	namespace.	Args	specifies	the	formal
arguments	to	the	procedure.	It	consists	of	a	list,	possibly	empty,	each	of
whose	elements	specifies	one	argument.	Each	argument	specifier	is
also	a	list	with	either	one	or	two	fields.	If	there	is	only	a	single	field	in
the	specifier	then	it	is	the	name	of	the	argument;	if	there	are	two	fields,
then	the	first	is	the	argument	name	and	the	second	is	its	default	value.
Arguments	with	default	values	that	are	followed	by	non-defaulted
arguments	become	required	arguments.	In	8.6	this	will	be	considered
an	error.

When	name	is	invoked	a	local	variable	will	be	created	for	each	of	the
formal	arguments	to	the	procedure;	its	value	will	be	the	value	of
corresponding	argument	in	the	invoking	command	or	the	argument's
default	value.	Actual	arguments	are	assigned	to	formal	arguments
strictly	in	order.	Arguments	with	default	values	need	not	be	specified	in

a	procedure	invocation.	However,	there	must	be	enough	actual
arguments	for	all	the	formal	arguments	that	do	not	have	defaults,	and
there	must	not	be	any	extra	actual	arguments.	Arguments	with	default
values	that	are	followed	by	non-defaulted	arguments	become	required
arguments	(in	8.6	it	will	be	considered	an	error).	There	is	one	special
case	to	permit	procedures	with	variable	numbers	of	arguments.	If	the
last	formal	argument	has	the	name	args,	then	a	call	to	the	procedure
may	contain	more	actual	arguments	than	the	procedure	has	formals.	In
this	case,	all	of	the	actual	arguments	starting	at	the	one	that	would	be
assigned	to	args	are	combined	into	a	list	(as	if	the	list	command	had
been	used);	this	combined	value	is	assigned	to	the	local	variable	args.

When	body	is	being	executed,	variable	names	normally	refer	to	local
variables,	which	are	created	automatically	when	referenced	and	deleted
when	the	procedure	returns.	One	local	variable	is	automatically	created
for	each	of	the	procedure's	arguments.	Other	variables	can	only	be
accessed	by	invoking	one	of	the	global,	variable,	upvar	or
namespace	upvar	commands.

The	proc	command	returns	an	empty	string.	When	a	procedure	is
invoked,	the	procedure's	return	value	is	the	value	specified	in	a	return
command.	If	the	procedure	does	not	execute	an	explicit	return,	then	its
return	value	is	the	value	of	the	last	command	executed	in	the
procedure's	body.	If	an	error	occurs	while	executing	the	procedure
body,	then	the	procedure-as-a-whole	will	return	that	same	error.

EXAMPLES

This	is	a	procedure	that	accepts	arbitrarily	many	arguments	and	prints
them	out,	one	by	one.

proc	printArguments	args	{

			foreach	arg	$args	{

						puts	$arg

			}

}

This	procedure	is	a	bit	like	the	incr	command,	except	it	multiplies	the
contents	of	the	named	variable	by	the	value,	which	defaults	to	2:

proc	mult	{varName	{multiplier	2}}	{

			upvar	1	$varName	var

			set	var	[expr	{$var	*	$multiplier}]

}

SEE	ALSO

info,	unknown

KEYWORDS

argument,	procedure

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	array

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
array	-	Manipulate	array	variables

SYNOPSIS
DESCRIPTION

array	anymore	arrayName	searchId
array	donesearch	arrayName	searchId
array	exists	arrayName
array	get	arrayName	?pattern?
array	names	arrayName	?mode?	?pattern?
array	nextelement	arrayName	searchId
array	set	arrayName	list
array	size	arrayName
array	startsearch	arrayName
array	statistics	arrayName
array	unset	arrayName	?pattern?

EXAMPLES
SEE	ALSO
KEYWORDS

NAME

array	-	Manipulate	array	variables

SYNOPSIS

array	option	arrayName	?arg	arg	...?

DESCRIPTION

This	command	performs	one	of	several	operations	on	the	variable	given
by	arrayName.	Unless	otherwise	specified	for	individual	commands
below,	arrayName	must	be	the	name	of	an	existing	array	variable.	The

option	argument	determines	what	action	is	carried	out	by	the	command.
The	legal	options	(which	may	be	abbreviated)	are:

array	anymore	arrayName	searchId
Returns	1	if	there	are	any	more	elements	left	to	be	processed	in	an
array	search,	0	if	all	elements	have	already	been	returned.
SearchId	indicates	which	search	on	arrayName	to	check,	and	must
have	been	the	return	value	from	a	previous	invocation	of	array
startsearch.	This	option	is	particularly	useful	if	an	array	has	an
element	with	an	empty	name,	since	the	return	value	from	array
nextelement	will	not	indicate	whether	the	search	has	been
completed.

array	donesearch	arrayName	searchId
This	command	terminates	an	array	search	and	destroys	all	the
state	associated	with	that	search.	SearchId	indicates	which	search
on	arrayName	to	destroy,	and	must	have	been	the	return	value
from	a	previous	invocation	of	array	startsearch.	Returns	an	empty
string.

array	exists	arrayName
Returns	1	if	arrayName	is	an	array	variable,	0	if	there	is	no	variable
by	that	name	or	if	it	is	a	scalar	variable.

array	get	arrayName	?pattern?
Returns	a	list	containing	pairs	of	elements.	The	first	element	in
each	pair	is	the	name	of	an	element	in	arrayName	and	the	second
element	of	each	pair	is	the	value	of	the	array	element.	The	order	of
the	pairs	is	undefined.	If	pattern	is	not	specified,	then	all	of	the
elements	of	the	array	are	included	in	the	result.	If	pattern	is
specified,	then	only	those	elements	whose	names	match	pattern
(using	the	matching	rules	of	string	match)	are	included.	If
arrayName	is	not	the	name	of	an	array	variable,	or	if	the	array
contains	no	elements,	then	an	empty	list	is	returned.	If	traces	on
the	array	modify	the	list	of	elements,	the	elements	returned	are
those	that	exist	both	before	and	after	the	call	to	array	get.

array	names	arrayName	?mode?	?pattern?

Returns	a	list	containing	the	names	of	all	of	the	elements	in	the
array	that	match	pattern.	Mode	may	be	one	of	-exact,	-glob,	or	-
regexp.	If	specified,	mode	designates	which	matching	rules	to	use
to	match	pattern	against	the	names	of	the	elements	in	the	array.	If
not	specified,	mode	defaults	to	-glob.	See	the	documentation	for
string	match	for	information	on	glob	style	matching,	and	the
documentation	for	regexp	for	information	on	regexp	matching.	If
pattern	is	omitted	then	the	command	returns	all	of	the	element
names	in	the	array.	If	there	are	no	(matching)	elements	in	the	array,
or	if	arrayName	is	not	the	name	of	an	array	variable,	then	an	empty
string	is	returned.

array	nextelement	arrayName	searchId
Returns	the	name	of	the	next	element	in	arrayName,	or	an	empty
string	if	all	elements	of	arrayName	have	already	been	returned	in
this	search.	The	searchId	argument	identifies	the	search,	and	must
have	been	the	return	value	of	an	array	startsearch	command.
Warning:	if	elements	are	added	to	or	deleted	from	the	array,	then
all	searches	are	automatically	terminated	just	as	if	array
donesearch	had	been	invoked;	this	will	cause	array	nextelement
operations	to	fail	for	those	searches.

array	set	arrayName	list
Sets	the	values	of	one	or	more	elements	in	arrayName.	list	must
have	a	form	like	that	returned	by	array	get,	consisting	of	an	even
number	of	elements.	Each	odd-numbered	element	in	list	is	treated
as	an	element	name	within	arrayName,	and	the	following	element
in	list	is	used	as	a	new	value	for	that	array	element.	If	the	variable
arrayName	does	not	already	exist	and	list	is	empty,	arrayName	is
created	with	an	empty	array	value.

array	size	arrayName
Returns	a	decimal	string	giving	the	number	of	elements	in	the
array.	If	arrayName	is	not	the	name	of	an	array	then	0	is	returned.

array	startsearch	arrayName
This	command	initializes	an	element-by-element	search	through
the	array	given	by	arrayName,	such	that	invocations	of	the	array

nextelement	command	will	return	the	names	of	the	individual
elements	in	the	array.	When	the	search	has	been	completed,	the
array	donesearch	command	should	be	invoked.	The	return	value
is	a	search	identifier	that	must	be	used	in	array	nextelement	and
array	donesearch	commands;	it	allows	multiple	searches	to	be
underway	simultaneously	for	the	same	array.	It	is	currently	more
efficient	and	easier	to	use	either	the	array	get	or	array	names,
together	with	foreach,	to	iterate	over	all	but	very	large	arrays.	See
the	examples	below	for	how	to	do	this.

array	statistics	arrayName
Returns	statistics	about	the	distribution	of	data	within	the	hashtable
that	represents	the	array.	This	information	includes	the	number	of
entries	in	the	table,	the	number	of	buckets,	and	the	utilization	of	the
buckets.

array	unset	arrayName	?pattern?
Unsets	all	of	the	elements	in	the	array	that	match	pattern	(using	the
matching	rules	of	string	match).	If	arrayName	is	not	the	name	of
an	array	variable	or	there	are	no	matching	elements	in	the	array,	no
error	will	be	raised.	If	pattern	is	omitted	and	arrayName	is	an	array
variable,	then	the	command	unsets	the	entire	array.	The	command
always	returns	an	empty	string.

EXAMPLES

array	set	colorcount	{

			red			1

			green	5

			blue		4

			white	9

}

foreach	{color	count}	[array	get	colorcount]	{

			puts	"Color:	$color	Count:	$count"

}

		→	Color:	blue	Count:	4
				Color:	white	Count:	9

				Color:	green	Count:	5

				Color:	red	Count:	1

foreach	color	[array	names	colorcount]	{

			puts	"Color:	$color	Count:	$colorcount($color)"

}

		→	Color:	blue	Count:	4
				Color:	white	Count:	9

				Color:	green	Count:	5

				Color:	red	Count:	1

foreach	color	[lsort	[array	names	colorcount]]	{

			puts	"Color:	$color	Count:	$colorcount($color)"

}

		→	Color:	blue	Count:	4
				Color:	green	Count:	5

				Color:	red	Count:	1

				Color:	white	Count:	9

array	statistics	colorcount

		→	4	entries	in	table,	4	buckets
				number	of	buckets	with	0	entries:	1

				number	of	buckets	with	1	entries:	2

				number	of	buckets	with	2	entries:	1

				number	of	buckets	with	3	entries:	0

				number	of	buckets	with	4	entries:	0

				number	of	buckets	with	5	entries:	0

				number	of	buckets	with	6	entries:	0

				number	of	buckets	with	7	entries:	0

				number	of	buckets	with	8	entries:	0

				number	of	buckets	with	9	entries:	0

				number	of	buckets	with	10	or	more	entries:	0

				average	search	distance	for	entry:	1.2

SEE	ALSO

list,	string,	variable,	trace,	foreach

KEYWORDS

array,	element	names,	search

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993-1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	exit

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

exit	-	End	the	application

SYNOPSIS

exit	?returnCode?

DESCRIPTION

Terminate	the	process,	returning	returnCode	to	the	system	as	the	exit
status.	If	returnCode	is	not	specified	then	it	defaults	to	0.

EXAMPLE

Since	non-zero	exit	codes	are	usually	interpreted	as	error	cases	by	the
calling	process,	the	exit	command	is	an	important	part	of	signaling	that
something	fatal	has	gone	wrong.	This	code	fragment	is	useful	in	scripts
to	act	as	a	general	problem	trap:

proc	main	{}	{

				#	...	put	the	real	main	code	in	here	...

}

if	{[catch	{main}	msg	options]}	{

				puts	stderr	"unexpected	script	error:	$msg"

				if	{[info	exist	env(DEBUG)]}	{

								puts	stderr	"----	BEGIN	TRACE	----"

								puts	stderr	[dict	get	$options	-errorinfo]

								puts	stderr	"----	END	TRACE	----"

				}

				#	Reserve	code	1	for	"expected"	error	exits...

				exit	2

}

SEE	ALSO

exec

KEYWORDS

exit,	process

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	linsert

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

linsert	-	Insert	elements	into	a	list

SYNOPSIS

linsert	list	index	element	?element	element	...?

DESCRIPTION

This	command	produces	a	new	list	from	list	by	inserting	all	of	the
element	arguments	just	before	the	index'th	element	of	list.	Each
element	argument	will	become	a	separate	element	of	the	new	list.	If
index	is	less	than	or	equal	to	zero,	then	the	new	elements	are	inserted
at	the	beginning	of	the	list.	The	interpretation	of	the	index	value	is	the
same	as	for	the	command	string	index,	supporting	simple	index
arithmetic	and	indices	relative	to	the	end	of	the	list.

EXAMPLE

Putting	some	values	into	a	list,	first	indexing	from	the	start	and	then
indexing	from	the	end,	and	then	chaining	them	together:

set	oldList	{the	fox	jumps	over	the	dog}

set	midList	[linsert	$oldList	1	quick]

set	newList	[linsert	$midList	end-1	lazy]

#	The	old	lists	still	exist	though...

set	newerList	[linsert	[linsert	$oldList	end-1	quick]	1	lazy]

SEE	ALSO

list,	lappend,	lindex,	llength,	lsearch,	lset,	lsort,	lrange,	lreplace,
string

KEYWORDS

element,	insert,	list

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.
Copyright	©	2001	Kevin	B.	Kenny	<kennykb(at)acm.org>.	All	rights	reserved.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	puts

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

puts	-	Write	to	a	channel

SYNOPSIS

puts	?-nonewline?	?channelId?	string

DESCRIPTION

Writes	the	characters	given	by	string	to	the	channel	given	by	channelId.

ChannelId	must	be	an	identifier	for	an	open	channel	such	as	a	Tcl
standard	channel	(stdout	or	stderr),	the	return	value	from	an
invocation	of	open	or	socket,	or	the	result	of	a	channel	creation
command	provided	by	a	Tcl	extension.	The	channel	must	have	been
opened	for	output.

If	no	channelId	is	specified	then	it	defaults	to	stdout.	Puts	normally
outputs	a	newline	character	after	string,	but	this	feature	may	be
suppressed	by	specifying	the	-nonewline	switch.

Newline	characters	in	the	output	are	translated	by	puts	to	platform-
specific	end-of-line	sequences	according	to	the	current	value	of	the	-
translation	option	for	the	channel	(for	example,	on	PCs	newlines	are
normally	replaced	with	carriage-return-linefeed	sequences.	See	the
fconfigure	manual	entry	for	a	discussion	on	ways	in	which	fconfigure
will	alter	output.

Tcl	buffers	output	internally,	so	characters	written	with	puts	may	not
appear	immediately	on	the	output	file	or	device;	Tcl	will	normally	delay
output	until	the	buffer	is	full	or	the	channel	is	closed.	You	can	force

output	to	appear	immediately	with	the	flush	command.

When	the	output	buffer	fills	up,	the	puts	command	will	normally	block
until	all	the	buffered	data	has	been	accepted	for	output	by	the	operating
system.	If	channelId	is	in	nonblocking	mode	then	the	puts	command
will	not	block	even	if	the	operating	system	cannot	accept	the	data.
Instead,	Tcl	continues	to	buffer	the	data	and	writes	it	in	the	background
as	fast	as	the	underlying	file	or	device	can	accept	it.	The	application
must	use	the	Tcl	event	loop	for	nonblocking	output	to	work;	otherwise
Tcl	never	finds	out	that	the	file	or	device	is	ready	for	more	output	data.	It
is	possible	for	an	arbitrarily	large	amount	of	data	to	be	buffered	for	a
channel	in	nonblocking	mode,	which	could	consume	a	large	amount	of
memory.	To	avoid	wasting	memory,	nonblocking	I/O	should	normally	be
used	in	an	event-driven	fashion	with	the	fileevent	command	(do	not
invoke	puts	unless	you	have	recently	been	notified	via	a	file	event	that
the	channel	is	ready	for	more	output	data).

EXAMPLES

Write	a	short	message	to	the	console	(or	wherever	stdout	is	directed):

puts	"Hello,	World!"

Print	a	message	in	several	parts:

puts	-nonewline	"Hello,	"

puts	"World!"

Print	a	message	to	the	standard	error	channel:

puts	stderr	"Hello,	World!"

Append	a	log	message	to	a	file:

set	chan	[open	my.log	a]

set	timestamp	[clock	format	[clock	seconds]]

puts	$chan	"$timestamp	-	Hello,	World!"

close	$chan

SEE	ALSO

file,	fileevent,	Tcl_StandardChannels

KEYWORDS

channel,	newline,	output,	write

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	expr

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
expr	-	Evaluate	an	expression

SYNOPSIS
DESCRIPTION
OPERANDS
OPERATORS

-	+	~	!
**
*	/	%
+	-
<<	>>
<	>	<=	>=
==	!=
eq	ne
in	ni
&
^
|
&&
||
x?y:z

MATH	FUNCTIONS
TYPES,	OVERFLOW,	AND	PRECISION
STRING	OPERATIONS
PERFORMANCE	CONSIDERATIONS
EXAMPLES
SEE	ALSO
KEYWORDS
COPYRIGHT

NAME

expr	-	Evaluate	an	expression

SYNOPSIS

expr	arg	?arg	arg	...?

DESCRIPTION

Concatenates	args	(adding	separator	spaces	between	them),	evaluates
the	result	as	a	Tcl	expression,	and	returns	the	value.	The	operators
permitted	in	Tcl	expressions	include	a	subset	of	the	operators	permitted
in	C	expressions.	For	those	operators	common	to	both	Tcl	and	C,	Tcl
applies	the	same	meaning	and	precedence	as	the	corresponding	C
operators.	Expressions	almost	always	yield	numeric	results	(integer	or
floating-point	values).	For	example,	the	expression

expr	8.2	+	6

evaluates	to	14.2.	Tcl	expressions	differ	from	C	expressions	in	the	way
that	operands	are	specified.	Also,	Tcl	expressions	support	non-numeric
operands	and	string	comparisons,	as	well	as	some	additional	operators
not	found	in	C.

OPERANDS

A	Tcl	expression	consists	of	a	combination	of	operands,	operators,	and
parentheses.	White	space	may	be	used	between	the	operands	and
operators	and	parentheses;	it	is	ignored	by	the	expression's
instructions.	Where	possible,	operands	are	interpreted	as	integer
values.	Integer	values	may	be	specified	in	decimal	(the	normal	case),	in
binary	(if	the	first	two	characters	of	the	operand	are	0b),	in	octal	(if	the
first	two	characters	of	the	operand	are	0o),	or	in	hexadecimal	(if	the	first
two	characters	of	the	operand	are	0x).	For	compatibility	with	older	Tcl
releases,	an	octal	integer	value	is	also	indicated	simply	when	the	first
character	of	the	operand	is	0,	whether	or	not	the	second	character	is
also	o.	If	an	operand	does	not	have	one	of	the	integer	formats	given

above,	then	it	is	treated	as	a	floating-point	number	if	that	is	possible.
Floating-point	numbers	may	be	specified	in	any	of	several	common
formats	making	use	of	the	decimal	digits,	the	decimal	point	.,	the
characters	e	or	E	indicating	scientific	notation,	and	the	sign	characters
+	or	-.	For	example,	all	of	the	following	are	valid	floating-point	numbers:
2.1,	3.,	6e4,	7.91e+16.	Also	recognized	as	floating	point	values	are	the
strings	Inf	and	NaN	making	use	of	any	case	for	each	character.	If	no
numeric	interpretation	is	possible	(note	that	all	literal	operands	that	are
not	numeric	or	boolean	must	be	quoted	with	either	braces	or	with
double	quotes),	then	an	operand	is	left	as	a	string	(and	only	a	limited
set	of	operators	may	be	applied	to	it).

Operands	may	be	specified	in	any	of	the	following	ways:

[1]
As	a	numeric	value,	either	integer	or	floating-point.

[2]
As	a	boolean	value,	using	any	form	understood	by	string	is
boolean.

[3]
As	a	Tcl	variable,	using	standard	$	notation.	The	variable's	value
will	be	used	as	the	operand.

[4]
As	a	string	enclosed	in	double-quotes.	The	expression	parser	will
perform	backslash,	variable,	and	command	substitutions	on	the
information	between	the	quotes,	and	use	the	resulting	value	as	the
operand

[5]
As	a	string	enclosed	in	braces.	The	characters	between	the	open
brace	and	matching	close	brace	will	be	used	as	the	operand
without	any	substitutions.

[6]
As	a	Tcl	command	enclosed	in	brackets.	The	command	will	be

executed	and	its	result	will	be	used	as	the	operand.

[7]
As	a	mathematical	function	whose	arguments	have	any	of	the
above	forms	for	operands,	such	as	sin($x).	See	MATH
FUNCTIONS	below	for	a	discussion	of	how	mathematical	functions
are	handled.

Where	the	above	substitutions	occur	(e.g.	inside	quoted	strings),	they
are	performed	by	the	expression's	instructions.	However,	the	command
parser	may	already	have	performed	one	round	of	substitution	before	the
expression	processor	was	called.	As	discussed	below,	it	is	usually	best
to	enclose	expressions	in	braces	to	prevent	the	command	parser	from
performing	substitutions	on	the	contents.

For	some	examples	of	simple	expressions,	suppose	the	variable	a	has
the	value	3	and	the	variable	b	has	the	value	6.	Then	the	command	on
the	left	side	of	each	of	the	lines	below	will	produce	the	value	on	the
right	side	of	the	line:

expr	3.1	+	$a	6.1

expr	2	+	"$a.$b"	5.6

expr	4*[llength	"6	2"]	8

expr	{{word	one}	<	"word	$a"}	0

OPERATORS

The	valid	operators	(most	of	which	are	also	available	as	commands	in
the	tcl::mathop	namespace;	see	the	mathop(n)	manual	page	for
details)	are	listed	below,	grouped	in	decreasing	order	of	precedence:

-	+	~	!
Unary	minus,	unary	plus,	bit-wise	NOT,	logical	NOT.	None	of	these
operators	may	be	applied	to	string	operands,	and	bit-wise	NOT
may	be	applied	only	to	integers.

**
Exponentiation.	Valid	for	any	numeric	operands.

*	/	%
Multiply,	divide,	remainder.	None	of	these	operators	may	be	applied
to	string	operands,	and	remainder	may	be	applied	only	to	integers.
The	remainder	will	always	have	the	same	sign	as	the	divisor	and
an	absolute	value	smaller	than	the	divisor.

+	-
Add	and	subtract.	Valid	for	any	numeric	operands.

<<	>>
Left	and	right	shift.	Valid	for	integer	operands	only.	A	right	shift
always	propagates	the	sign	bit.

<	>	<=	>=
Boolean	less,	greater,	less	than	or	equal,	and	greater	than	or
equal.	Each	operator	produces	1	if	the	condition	is	true,	0
otherwise.	These	operators	may	be	applied	to	strings	as	well	as
numeric	operands,	in	which	case	string	comparison	is	used.

==	!=
Boolean	equal	and	not	equal.	Each	operator	produces	a	zero/one
result.	Valid	for	all	operand	types.

eq	ne
Boolean	string	equal	and	string	not	equal.	Each	operator	produces
a	zero/one	result.	The	operand	types	are	interpreted	only	as
strings.

in	ni
List	containment	and	negated	list	containment.	Each	operator
produces	a	zero/one	result	and	treats	its	first	argument	as	a	string
and	its	second	argument	as	a	Tcl	list.	The	in	operator	indicates
whether	the	first	argument	is	a	member	of	the	second	argument
list;	the	ni	operator	inverts	the	sense	of	the	result.

&
Bit-wise	AND.	Valid	for	integer	operands	only.

^
Bit-wise	exclusive	OR.	Valid	for	integer	operands	only.

|
Bit-wise	OR.	Valid	for	integer	operands	only.

&&
Logical	AND.	Produces	a	1	result	if	both	operands	are	non-zero,	0
otherwise.	Valid	for	boolean	and	numeric	(integers	or	floating-point)
operands	only.

||
Logical	OR.	Produces	a	0	result	if	both	operands	are	zero,	1
otherwise.	Valid	for	boolean	and	numeric	(integers	or	floating-point)
operands	only.

x?y:z
If-then-else,	as	in	C.	If	x	evaluates	to	non-zero,	then	the	result	is
the	value	of	y.	Otherwise	the	result	is	the	value	of	z.	The	x	operand
must	have	a	boolean	or	numeric	value.

See	the	C	manual	for	more	details	on	the	results	produced	by	each
operator.	The	exponentiation	operator	promotes	types	like	the	multiply
and	divide	operators,	and	produces	a	result	that	is	the	same	as	the
output	of	the	pow	function	(after	any	type	conversions.)	All	of	the	binary
operators	group	left-to-right	within	the	same	precedence	level.	For
example,	the	command

expr	{4*2	<	7}

returns	0.

The	&&,	||,	and	?:	operators	have	“lazy	evaluation”,	just	as	in	C,	which
means	that	operands	are	not	evaluated	if	they	are	not	needed	to

determine	the	outcome.	For	example,	in	the	command

expr	{$v	?	[a]	:	[b]}

only	one	of	“[a]”	or	“[b]”	will	actually	be	evaluated,	depending	on	the
value	of	$v.	Note,	however,	that	this	is	only	true	if	the	entire	expression
is	enclosed	in	braces;	otherwise	the	Tcl	parser	will	evaluate	both	“[a]”
and	“[b]”	before	invoking	the	expr	command.

MATH	FUNCTIONS

When	the	expression	parser	encounters	a	mathematical	function	such
as	sin($x),	it	replaces	it	with	a	call	to	an	ordinary	Tcl	function	in	the
tcl::mathfunc	namespace.	The	processing	of	an	expression	such	as:

expr	{sin($x+$y)}

is	the	same	in	every	way	as	the	processing	of:

expr	{[tcl::mathfunc::sin	[expr	{$x+$y}]]}

which	in	turn	is	the	same	as	the	processing	of:

tcl::mathfunc::sin	[expr	{$x+$y}]

The	executor	will	search	for	tcl::mathfunc::sin	using	the	usual	rules	for
resolving	functions	in	namespaces.	Either	::tcl::mathfunc::sin	or
[namespace	current]::tcl::mathfunc::sin	will	satisfy	the	request,	and
others	may	as	well	(depending	on	the	current	namespace	path
setting).

See	the	mathfunc(n)	manual	page	for	the	math	functions	that	are
available	by	default.

TYPES,	OVERFLOW,	AND	PRECISION

All	internal	computations	involving	integers	are	done	calling	on	the
LibTomMath	multiple	precision	integer	library	as	required	so	that	all
integer	calculations	are	performed	exactly.	Note	that	in	Tcl	releases
prior	to	8.5,	integer	calculations	were	performed	with	one	of	the	C	types
long	int	or	Tcl_WideInt,	causing	implicit	range	truncation	in	those
calculations	where	values	overflowed	the	range	of	those	types.	Any
code	that	relied	on	these	implicit	truncations	will	need	to	explicitly	add
int()	or	wide()	function	calls	to	expressions	at	the	points	where	such
truncation	is	required	to	take	place.

All	internal	computations	involving	floating-point	are	done	with	the	C
type	double.	When	converting	a	string	to	floating-point,	exponent
overflow	is	detected	and	results	in	the	double	value	of	Inf	or	-Inf	as
appropriate.	Floating-point	overflow	and	underflow	are	detected	to	the
degree	supported	by	the	hardware,	which	is	generally	pretty	reliable.

Conversion	among	internal	representations	for	integer,	floating-point,
and	string	operands	is	done	automatically	as	needed.	For	arithmetic
computations,	integers	are	used	until	some	floating-point	number	is
introduced,	after	which	floating-point	is	used.	For	example,

expr	{5	/	4}

returns	1,	while

expr	{5	/	4.0}

expr	{5	/	([string	length	"abcd"]	+	0.0)}

both	return	1.25.	Floating-point	values	are	always	returned	with	a	“.”	or

an	“e”	so	that	they	will	not	look	like	integer	values.	For	example,

expr	{20.0/5.0}

returns	4.0,	not	4.

STRING	OPERATIONS

String	values	may	be	used	as	operands	of	the	comparison	operators,
although	the	expression	evaluator	tries	to	do	comparisons	as	integer	or
floating-point	when	it	can,	except	in	the	case	of	the	eq	and	ne
operators.	If	one	of	the	operands	of	a	comparison	is	a	string	and	the
other	has	a	numeric	value,	a	canonical	string	representation	of	the
numeric	operand	value	is	generated	to	compare	with	the	string
operand.	Canonical	string	representation	for	integer	values	is	a	decimal
string	format.	Canonical	string	representation	for	floating-point	values	is
that	produced	by	the	%g	format	specifier	of	Tcl's	format	command.	For
example,	the	commands

expr	{"0x03"	>	"2"}

expr	{"0y"	<	"0x12"}

both	return	1.	The	first	comparison	is	done	using	integer	comparison,
and	the	second	is	done	using	string	comparison	after	the	second
operand	is	converted	to	the	string	18.	Because	of	Tcl's	tendency	to	treat
values	as	numbers	whenever	possible,	it	is	not	generally	a	good	idea	to
use	operators	like	==	when	you	really	want	string	comparison	and	the
values	of	the	operands	could	be	arbitrary;	it	is	better	in	these	cases	to
use	the	eq	or	ne	operators,	or	the	string	command	instead.

PERFORMANCE	CONSIDERATIONS

Enclose	expressions	in	braces	for	the	best	speed	and	the	smallest
storage	requirements.	This	allows	the	Tcl	bytecode	compiler	to	generate

the	best	code.

As	mentioned	above,	expressions	are	substituted	twice:	once	by	the	Tcl
parser	and	once	by	the	expr	command.	For	example,	the	commands

set	a	3

set	b	{$a	+	2}

expr	$b*4

return	11,	not	a	multiple	of	4.	This	is	because	the	Tcl	parser	will	first
substitute	$a	+	2	for	the	variable	b,	then	the	expr	command	will
evaluate	the	expression	$a	+	2*4.

Most	expressions	do	not	require	a	second	round	of	substitutions.	Either
they	are	enclosed	in	braces	or,	if	not,	their	variable	and	command
substitutions	yield	numbers	or	strings	that	do	not	themselves	require
substitutions.	However,	because	a	few	unbraced	expressions	need	two
rounds	of	substitutions,	the	bytecode	compiler	must	emit	additional
instructions	to	handle	this	situation.	The	most	expensive	code	is
required	for	unbraced	expressions	that	contain	command	substitutions.
These	expressions	must	be	implemented	by	generating	new	code	each
time	the	expression	is	executed.	When	the	expression	is	unbraced	to
allow	the	substitution	of	a	function	or	operator,	consider	using	the
commands	documented	in	the	mathfunc(n)	or	mathop(n)	manual
pages	directly	instead.

EXAMPLES

Define	a	procedure	that	computes	an	“interesting”	mathematical
function:

proc	tcl::mathfunc::calc	{x	y}	{

				expr	{	($x**2	-	$y**2)	/	exp($x**2	+	$y**2)	}

}

Convert	polar	coordinates	into	cartesian	coordinates:

#	convert	from	($radius,$angle)

set	x	[expr	{	$radius	*	cos($angle)	}]

set	y	[expr	{	$radius	*	sin($angle)	}]

Convert	cartesian	coordinates	into	polar	coordinates:

#	convert	from	($x,$y)

set	radius	[expr	{	hypot($y,	$x)	}]

set	angle		[expr	{	atan2($y,	$x)	}]

Print	a	message	describing	the	relationship	of	two	string	values	to	each
other:

puts	"a	and	b	are	[expr	{$a	eq	$b	?	{equal}	:	{different}}]"

Set	a	variable	to	whether	an	environment	variable	is	both	defined	at	all
and	also	set	to	a	true	boolean	value:

set	isTrue	[expr	{

				[info	exists	::env(SOME_ENV_VAR)]	&&

				[string	is	true	-strict	$::env(SOME_ENV_VAR)]

}]

Generate	a	random	integer	in	the	range	0..99	inclusive:

set	randNum	[expr	{	int(100	*	rand())	}]

SEE	ALSO

array,	for,	if,	mathfunc,	mathop,	namespace,	proc,	string,	Tcl,	while

KEYWORDS

arithmetic,	boolean,	compare,	expression,	fuzzy	comparison

COPYRIGHT

Copyright	(c)	1993	The	Regents	of	the	University	of	California.
Copyright	(c)	1994-2000	Sun	Microsystems	Incorporated.
Copyright	(c)	2005	by	Kevin	B.	Kenny	<kennykb@acm.org>.	All	rights
reserved.

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-2000	Sun	Microsystems,	Inc.
Copyright	©	2005	by	Kevin	B.	Kenny	<kennykb(at)acm.org>.	All	rights	reserved

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	list

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

list	-	Create	a	list

SYNOPSIS

list	?arg	arg	...?

DESCRIPTION

This	command	returns	a	list	comprised	of	all	the	args,	or	an	empty
string	if	no	args	are	specified.	Braces	and	backslashes	get	added	as
necessary,	so	that	the	lindex	command	may	be	used	on	the	result	to
re-extract	the	original	arguments,	and	also	so	that	eval	may	be	used	to
execute	the	resulting	list,	with	arg1	comprising	the	command's	name
and	the	other	args	comprising	its	arguments.	List	produces	slightly
different	results	than	concat:	concat	removes	one	level	of	grouping
before	forming	the	list,	while	list	works	directly	from	the	original
arguments.

EXAMPLE

The	command

list	a	b	"c	d	e		"	"		f	{g	h}"

will	return

a	b	{c	d	e		}	{		f	{g	h}}

while	concat	with	the	same	arguments	will	return

a	b	c	d	e	f	{g	h}

SEE	ALSO

lappend,	lindex,	linsert,	llength,	lrange,	lrepeat,	lreplace,	lsearch,
lset,	lsort

KEYWORDS

element,	list

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.
Copyright	©	2001	Kevin	B.	Kenny	<kennykb(at)acm.org>.	All	rights	reserved.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	pwd

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

pwd	-	Return	the	absolute	path	of	the	current	working	directory

SYNOPSIS

pwd

DESCRIPTION

Returns	the	absolute	path	name	of	the	current	working	directory.

EXAMPLE

Sometimes	it	is	useful	to	change	to	a	known	directory	when	running
some	external	command	using	exec,	but	it	is	important	to	keep	the
application	usually	running	in	the	directory	that	it	was	started	in	(unless
the	user	specifies	otherwise)	since	that	minimizes	user	confusion.	The
way	to	do	this	is	to	save	the	current	directory	while	the	external
command	is	being	run:

set	tarFile	[file	normalize	somefile.tar]

set	savedDir	[pwd]

cd	/tmp

exec	tar	-xf	$tarFile

cd	$savedDir

SEE	ALSO

file,	cd,	glob,	filename

KEYWORDS

working	directory

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	fblocked

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

fblocked	-	Test	whether	the	last	input	operation	exhausted	all	available
input

SYNOPSIS

fblocked	channelId

DESCRIPTION

The	fblocked	command	returns	1	if	the	most	recent	input	operation	on
channelId	returned	less	information	than	requested	because	all
available	input	was	exhausted.	For	example,	if	gets	is	invoked	when
there	are	only	three	characters	available	for	input	and	no	end-of-line
sequence,	gets	returns	an	empty	string	and	a	subsequent	call	to
fblocked	will	return	1.

ChannelId	must	be	an	identifier	for	an	open	channel	such	as	a	Tcl
standard	channel	(stdin,	stdout,	or	stderr),	the	return	value	from	an
invocation	of	open	or	socket,	or	the	result	of	a	channel	creation
command	provided	by	a	Tcl	extension.

EXAMPLE

The	fblocked	command	is	particularly	useful	when	writing	network
servers,	as	it	allows	you	to	write	your	code	in	a	line-by-line	style	without
preventing	the	servicing	of	other	connections.	This	can	be	seen	in	this
simple	echo-service:

#	This	is	called	whenever	a	new	client	connects	to	the	server

proc	connect	{chan	host	port}	{

				set	clientName	[format	<%s:%d>	$host	$port]

				puts	"connection	from	$clientName"

				fconfigure	$chan	-blocking	0	-buffering	line

				fileevent	$chan	readable	[list	echoLine	$chan	$clientName]

}

#	This	is	called	whenever	either	at	least	one	byte	of	input

#	data	is	available,	or	the	channel	was	closed	by	the	client.

proc	echoLine	{chan	clientName}	{

				gets	$chan	line

				if	{[eof	$chan]}	{

								puts	"finishing	connection	from	$clientName"

								close	$chan

				}	elseif	{![fblocked	$chan]}	{

								#	Didn't	block	waiting	for	end-of-line

								puts	"$clientName	-	$line"

								puts	$chan	$line

				}

}

#	Create	the	server	socket	and	enter	the	event-loop	to	wait

#	for	incoming	connections...

socket	-server	connect	12345

vwait	forever

SEE	ALSO

gets,	open,	read,	socket,	Tcl_StandardChannels

KEYWORDS

blocking,	nonblocking

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	llength

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

llength	-	Count	the	number	of	elements	in	a	list

SYNOPSIS

llength	list

DESCRIPTION

Treats	list	as	a	list	and	returns	a	decimal	string	giving	the	number	of
elements	in	it.

EXAMPLES

The	result	is	the	number	of	elements:

%	llength	{a	b	c	d	e}

5

%	llength	{a	b	c}

3

%	llength	{}

0

Elements	are	not	guaranteed	to	be	exactly	words	in	a	dictionary	sense
of	course,	especially	when	quoting	is	used:

%	llength	{a	b	{c	d}	e}

4

%	llength	{a	b	{	}	c	d	e}

6

An	empty	list	is	not	necessarily	an	empty	string:

%	set	var	{	};	puts	"[string	length	$var],[llength	$var]"

1,0

SEE	ALSO

list,	lappend,	lindex,	linsert,	lsearch,	lset,	lsort,	lrange,	lreplace

KEYWORDS

element,	list,	length

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.
Copyright	©	2001	Kevin	B.	Kenny	<kennykb(at)acm.org>.	All	rights	reserved.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	re_syntax

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
re_syntax	-	Syntax	of	Tcl	regular	expressions

DESCRIPTION
DIFFERENT	FLAVORS	OF	REs
REGULAR	EXPRESSION	SYNTAX
QUANTIFIERS

*
+
?
{m}
{m,}
{m,n}
*?	+?	??	{m}?	{m,}?	{m,n}?

ATOMS
(re)
(?:re)
()
(?:)
[chars]
.
\k
\c
{
x

CONSTRAINTS
^
$
(?=re)
(?!re)

BRACKET	EXPRESSIONS
CHARACTER	CLASSES

alpha
upper
lower
digit
xdigit
alnum
print
blank
space
punct
graph
cntrl

BRACKETED	CONSTRAINTS
COLLATING	ELEMENTS
EQUIVALENCE	CLASSES
ESCAPES
CHARACTER-ENTRY	ESCAPES

\a
\b
\B
\cX
\e
\f
\n
\r
\t
\uwxyz
\Ustuvwxyz
\v
\xhhh
\0
\xy
\xyz

CLASS-SHORTHAND	ESCAPES
\d
\s
\w

\D
\S
\W

CONSTRAINT	ESCAPES
\A
\m
\M
\y
\Y
\Z
\m
\mnn

BACK	REFERENCES
METASYNTAX

b
c
e
i
m
n
p
q
s
t
w
x

MATCHING
LIMITS	AND	COMPATIBILITY
BASIC	REGULAR	EXPRESSIONS
SEE	ALSO
KEYWORDS

NAME

re_syntax	-	Syntax	of	Tcl	regular	expressions

DESCRIPTION

A	regular	expression	describes	strings	of	characters.	It's	a	pattern	that
matches	certain	strings	and	does	not	match	others.

DIFFERENT	FLAVORS	OF	REs

Regular	expressions	(“RE”s),	as	defined	by	POSIX,	come	in	two	flavors:
extended	REs	(“ERE”s)	and	basic	REs	(“BRE”s).	EREs	are	roughly
those	of	the	traditional	egrep,	while	BREs	are	roughly	those	of	the
traditional	ed.	This	implementation	adds	a	third	flavor,	advanced	REs
(“ARE”s),	basically	EREs	with	some	significant	extensions.

This	manual	page	primarily	describes	AREs.	BREs	mostly	exist	for
backward	compatibility	in	some	old	programs;	they	will	be	discussed	at
the	end.	POSIX	EREs	are	almost	an	exact	subset	of	AREs.	Features	of
AREs	that	are	not	present	in	EREs	will	be	indicated.

REGULAR	EXPRESSION	SYNTAX

Tcl	regular	expressions	are	implemented	using	the	package	written	by
Henry	Spencer,	based	on	the	1003.2	spec	and	some	(not	quite	all)	of
the	Perl5	extensions	(thanks,	Henry!).	Much	of	the	description	of	regular
expressions	below	is	copied	verbatim	from	his	manual	entry.

An	ARE	is	one	or	more	branches,	separated	by	“|”,	matching	anything
that	matches	any	of	the	branches.

A	branch	is	zero	or	more	constraints	or	quantified	atoms,	concatenated.
It	matches	a	match	for	the	first,	followed	by	a	match	for	the	second,	etc;
an	empty	branch	matches	the	empty	string.

QUANTIFIERS

A	quantified	atom	is	an	atom	possibly	followed	by	a	single	quantifier.
Without	a	quantifier,	it	matches	a	single	match	for	the	atom.	The
quantifiers,	and	what	a	so-quantified	atom	matches,	are:

*
a	sequence	of	0	or	more	matches	of	the	atom

+
a	sequence	of	1	or	more	matches	of	the	atom

?
a	sequence	of	0	or	1	matches	of	the	atom

{m}
a	sequence	of	exactly	m	matches	of	the	atom

{m,}
a	sequence	of	m	or	more	matches	of	the	atom

{m,n}
a	sequence	of	m	through	n	(inclusive)	matches	of	the	atom;	m	may
not	exceed	n

*?	+?	??	{m}?	{m,}?	{m,n}?
non-greedy	quantifiers,	which	match	the	same	possibilities,	but
prefer	the	smallest	number	rather	than	the	largest	number	of
matches	(see	MATCHING)

The	forms	using	{	and	}	are	known	as	bounds.	The	numbers	m	and	n
are	unsigned	decimal	integers	with	permissible	values	from	0	to	255
inclusive.

ATOMS

An	atom	is	one	of:

(re)
matches	a	match	for	re	(re	is	any	regular	expression)	with	the
match	noted	for	possible	reporting

(?:re)
as	previous,	but	does	no	reporting	(a	“non-capturing”	set	of
parentheses)

()

matches	an	empty	string,	noted	for	possible	reporting

(?:)
matches	an	empty	string,	without	reporting

[chars]
a	bracket	expression,	matching	any	one	of	the	chars	(see
BRACKET	EXPRESSIONS	for	more	detail)

.
matches	any	single	character

\k
matches	the	non-alphanumeric	character	k	taken	as	an	ordinary
character,	e.g.	\\	matches	a	backslash	character

\c
where	c	is	alphanumeric	(possibly	followed	by	other	characters),	an
escape	(AREs	only),	see	ESCAPES	below

{
when	followed	by	a	character	other	than	a	digit,	matches	the	left-
brace	character	“{”;	when	followed	by	a	digit,	it	is	the	beginning	of	a
bound	(see	above)

x
where	x	is	a	single	character	with	no	other	significance,	matches
that	character.

CONSTRAINTS

A	constraint	matches	an	empty	string	when	specific	conditions	are	met.
A	constraint	may	not	be	followed	by	a	quantifier.	The	simple	constraints
are	as	follows;	some	more	constraints	are	described	later,	under
ESCAPES.

^
matches	at	the	beginning	of	a	line

$
matches	at	the	end	of	a	line

(?=re)
positive	lookahead	(AREs	only),	matches	at	any	point	where	a
substring	matching	re	begins

(?!re)
negative	lookahead	(AREs	only),	matches	at	any	point	where	no
substring	matching	re	begins

The	lookahead	constraints	may	not	contain	back	references	(see	later),
and	all	parentheses	within	them	are	considered	non-capturing.

An	RE	may	not	end	with	“\”.

BRACKET	EXPRESSIONS

A	bracket	expression	is	a	list	of	characters	enclosed	in	“[]”.	It	normally
matches	any	single	character	from	the	list	(but	see	below).	If	the	list
begins	with	“^”,	it	matches	any	single	character	(but	see	below)	not
from	the	rest	of	the	list.

If	two	characters	in	the	list	are	separated	by	“-”,	this	is	shorthand	for	the
full	range	of	characters	between	those	two	(inclusive)	in	the	collating
sequence,	e.g.	“[0-9]”	in	Unicode	matches	any	conventional	decimal
digit.	Two	ranges	may	not	share	an	endpoint,	so	e.g.	“a-c-e”	is	illegal.
Ranges	in	Tcl	always	use	the	Unicode	collating	sequence,	but	other
programs	may	use	other	collating	sequences	and	this	can	be	a	source
of	incompatability	between	programs.

To	include	a	literal]	or	-	in	the	list,	the	simplest	method	is	to	enclose	it	in
[.	and	.]	to	make	it	a	collating	element	(see	below).	Alternatively,	make	it
the	first	character	(following	a	possible	“^”),	or	(AREs	only)	precede	it
with	“\”.	Alternatively,	for	“-”,	make	it	the	last	character,	or	the	second
endpoint	of	a	range.	To	use	a	literal	-	as	the	first	endpoint	of	a	range,
make	it	a	collating	element	or	(AREs	only)	precede	it	with	“\”.	With	the
exception	of	these,	some	combinations	using	[(see	next	paragraphs),

and	escapes,	all	other	special	characters	lose	their	special	significance
within	a	bracket	expression.

CHARACTER	CLASSES

Within	a	bracket	expression,	the	name	of	a	character	class	enclosed	in
[:	and	:]	stands	for	the	list	of	all	characters	(not	all	collating	elements!)
belonging	to	that	class.	Standard	character	classes	are:

alpha
A	letter.

upper
An	upper-case	letter.

lower
A	lower-case	letter.

digit
A	decimal	digit.

xdigit
A	hexadecimal	digit.

alnum
An	alphanumeric	(letter	or	digit).

print
A	"printable"	(same	as	graph,	except	also	including	space).

blank
A	space	or	tab	character.

space
A	character	producing	white	space	in	displayed	text.

punct
A	punctuation	character.

graph
A	character	with	a	visible	representation	(includes	both	alnum	and
punct).

cntrl
A	control	character.

A	locale	may	provide	others.	A	character	class	may	not	be	used	as	an
endpoint	of	a	range.

(Note:	the	current	Tcl	implementation	has	only	one	locale,	the
Unicode	locale,	which	supports	exactly	the	above	classes.)

BRACKETED	CONSTRAINTS

There	are	two	special	cases	of	bracket	expressions:	the	bracket
expressions	“[[:<:]]”	and	“[[:>:]]”	are	constraints,	matching	empty
strings	at	the	beginning	and	end	of	a	word	respectively.	A	word	is
defined	as	a	sequence	of	word	characters	that	is	neither	preceded	nor
followed	by	word	characters.	A	word	character	is	an	alnum	character	or
an	underscore	(“_”).	These	special	bracket	expressions	are	deprecated;
users	of	AREs	should	use	constraint	escapes	instead	(see	below).

COLLATING	ELEMENTS

Within	a	bracket	expression,	a	collating	element	(a	character,	a	multi-
character	sequence	that	collates	as	if	it	were	a	single	character,	or	a
collating-sequence	name	for	either)	enclosed	in	[.	and	.]	stands	for	the
sequence	of	characters	of	that	collating	element.	The	sequence	is	a
single	element	of	the	bracket	expression's	list.	A	bracket	expression	in	a
locale	that	has	multi-character	collating	elements	can	thus	match	more
than	one	character.	So	(insidiously),	a	bracket	expression	that	starts
with	^	can	match	multi-character	collating	elements	even	if	none	of
them	appear	in	the	bracket	expression!

(Note:	Tcl	has	no	multi-character	collating	elements.	This
information	is	only	for	illustration.)

For	example,	assume	the	collating	sequence	includes	a	ch	multi-
character	collating	element.	Then	the	RE	“[[.ch.]]*c”	(zero	or	more
“chs”	followed	by	“c”)	matches	the	first	five	characters	of	“chchcc”.
Also,	the	RE	“[^c]b”	matches	all	of	“chb”	(because	“[^c]”	matches	the
multi-character	“ch”).

EQUIVALENCE	CLASSES

Within	a	bracket	expression,	a	collating	element	enclosed	in	[=	and	=]	is
an	equivalence	class,	standing	for	the	sequences	of	characters	of	all
collating	elements	equivalent	to	that	one,	including	itself.	(If	there	are	no
other	equivalent	collating	elements,	the	treatment	is	as	if	the	enclosing
delimiters	were	“[.”	and	“.]”.)	For	example,	if	o	and	ô	are	the	members
of	an	equivalence	class,	then	“[[=o=]]”,	“[[=ô=]]”,	and	“[oô]”	are	all
synonymous.	An	equivalence	class	may	not	be	an	endpoint	of	a	range.

(Note:	Tcl	implements	only	the	Unicode	locale.	It	does	not	define
any	equivalence	classes.	The	examples	above	are	just
illustrations.)

ESCAPES

Escapes	(AREs	only),	which	begin	with	a	\	followed	by	an	alphanumeric
character,	come	in	several	varieties:	character	entry,	class	shorthands,
constraint	escapes,	and	back	references.	A	\	followed	by	an
alphanumeric	character	but	not	constituting	a	valid	escape	is	illegal	in
AREs.	In	EREs,	there	are	no	escapes:	outside	a	bracket	expression,	a	\
followed	by	an	alphanumeric	character	merely	stands	for	that	character
as	an	ordinary	character,	and	inside	a	bracket	expression,	\	is	an
ordinary	character.	(The	latter	is	the	one	actual	incompatibility	between
EREs	and	AREs.)

CHARACTER-ENTRY	ESCAPES

Character-entry	escapes	(AREs	only)	exist	to	make	it	easier	to	specify
non-printing	and	otherwise	inconvenient	characters	in	REs:

\a

alert	(bell)	character,	as	in	C

\b
backspace,	as	in	C

\B
synonym	for	\	to	help	reduce	backslash	doubling	in	some
applications	where	there	are	multiple	levels	of	backslash
processing

\cX
(where	X	is	any	character)	the	character	whose	low-order	5	bits	are
the	same	as	those	of	X,	and	whose	other	bits	are	all	zero

\e
the	character	whose	collating-sequence	name	is	“ESC”,	or	failing
that,	the	character	with	octal	value	033

\f
formfeed,	as	in	C

\n
newline,	as	in	C

\r
carriage	return,	as	in	C

\t
horizontal	tab,	as	in	C

\uwxyz
(where	wxyz	is	exactly	four	hexadecimal	digits)	the	Unicode
character	U+wxyz	in	the	local	byte	ordering

\Ustuvwxyz
(where	stuvwxyz	is	exactly	eight	hexadecimal	digits)	reserved	for	a
somewhat-hypothetical	Unicode	extension	to	32	bits

\v

vertical	tab,	as	in	C	are	all	available.

\xhhh
(where	hhh	is	any	sequence	of	hexadecimal	digits)	the	character
whose	hexadecimal	value	is	0xhhh	(a	single	character	no	matter
how	many	hexadecimal	digits	are	used).

\0
the	character	whose	value	is	0

\xy
(where	xy	is	exactly	two	octal	digits,	and	is	not	a	back	reference
(see	below))	the	character	whose	octal	value	is	0xy

\xyz
(where	xyz	is	exactly	three	octal	digits,	and	is	not	a	back	reference
(see	below))	the	character	whose	octal	value	is	0xyz

Hexadecimal	digits	are	“0-9”,	“a-f”,	and	“A-F”.	Octal	digits	are	“0-7”.

The	character-entry	escapes	are	always	taken	as	ordinary	characters.
For	example,	\135	is]	in	Unicode,	but	\135	does	not	terminate	a	bracket
expression.	Beware,	however,	that	some	applications	(e.g.,	C	compilers
and	the	Tcl	interpreter	if	the	regular	expression	is	not	quoted	with
braces)	interpret	such	sequences	themselves	before	the	regular-
expression	package	gets	to	see	them,	which	may	require	doubling
(quadrupling,	etc.)	the	“\”.

CLASS-SHORTHAND	ESCAPES

Class-shorthand	escapes	(AREs	only)	provide	shorthands	for	certain
commonly-used	character	classes:

\d
[[:digit:]]

\s
[[:space:]]

\w
[[:alnum:]_]	(note	underscore)

\D
[^[:digit:]]

\S
[^[:space:]]

\W
[^[:alnum:]_]	(note	underscore)

Within	bracket	expressions,	“\d”,	“\s”,	and	“\w”	lose	their	outer	brackets,
and	“\D”,	“\S”,	and	“\W”	are	illegal.	(So,	for	example,	“[a-c\d]”	is
equivalent	to	“[a-c[:digit:]]”.	Also,	“[a-c\D]”,	which	is	equivalent	to	“[a-
c^[:digit:]]”,	is	illegal.)

CONSTRAINT	ESCAPES

A	constraint	escape	(AREs	only)	is	a	constraint,	matching	the	empty
string	if	specific	conditions	are	met,	written	as	an	escape:

\A
matches	only	at	the	beginning	of	the	string	(see	MATCHING,
below,	for	how	this	differs	from	“^”)

\m
matches	only	at	the	beginning	of	a	word

\M
matches	only	at	the	end	of	a	word

\y
matches	only	at	the	beginning	or	end	of	a	word

\Y
matches	only	at	a	point	that	is	not	the	beginning	or	end	of	a	word

\Z

matches	only	at	the	end	of	the	string	(see	MATCHING,	below,	for
how	this	differs	from	“$”)

\m
(where	m	is	a	nonzero	digit)	a	back	reference,	see	below

\mnn
(where	m	is	a	nonzero	digit,	and	nn	is	some	more	digits,	and	the
decimal	value	mnn	is	not	greater	than	the	number	of	closing
capturing	parentheses	seen	so	far)	a	back	reference,	see	below

A	word	is	defined	as	in	the	specification	of	“[[:<:]]”	and	“[[:>:]]”	above.
Constraint	escapes	are	illegal	within	bracket	expressions.

BACK	REFERENCES

A	back	reference	(AREs	only)	matches	the	same	string	matched	by	the
parenthesized	subexpression	specified	by	the	number,	so	that	(e.g.)
“([bc])\1”	matches	“bb”	or	“cc”	but	not	“bc”.	The	subexpression	must
entirely	precede	the	back	reference	in	the	RE.	Subexpressions	are
numbered	in	the	order	of	their	leading	parentheses.	Non-capturing
parentheses	do	not	define	subexpressions.

There	is	an	inherent	historical	ambiguity	between	octal	character-entry
escapes	and	back	references,	which	is	resolved	by	heuristics,	as	hinted
at	above.	A	leading	zero	always	indicates	an	octal	escape.	A	single	non-
zero	digit,	not	followed	by	another	digit,	is	always	taken	as	a	back
reference.	A	multi-digit	sequence	not	starting	with	a	zero	is	taken	as	a
back	reference	if	it	comes	after	a	suitable	subexpression	(i.e.	the
number	is	in	the	legal	range	for	a	back	reference),	and	otherwise	is
taken	as	octal.

METASYNTAX

In	addition	to	the	main	syntax	described	above,	there	are	some	special
forms	and	miscellaneous	syntactic	facilities	available.

Normally	the	flavor	of	RE	being	used	is	specified	by	application-

dependent	means.	However,	this	can	be	overridden	by	a	director.	If	an
RE	of	any	flavor	begins	with	“***:”,	the	rest	of	the	RE	is	an	ARE.	If	an
RE	of	any	flavor	begins	with	“***=”,	the	rest	of	the	RE	is	taken	to	be	a
literal	string,	with	all	characters	considered	ordinary	characters.

An	ARE	may	begin	with	embedded	options:	a	sequence	(?xyz)	(where
xyz	is	one	or	more	alphabetic	characters)	specifies	options	affecting	the
rest	of	the	RE.	These	supplement,	and	can	override,	any	options
specified	by	the	application.	The	available	option	letters	are:

b
rest	of	RE	is	a	BRE

c
case-sensitive	matching	(usual	default)

e
rest	of	RE	is	an	ERE

i
case-insensitive	matching	(see	MATCHING,	below)

m
historical	synonym	for	n

n
newline-sensitive	matching	(see	MATCHING,	below)

p
partial	newline-sensitive	matching	(see	MATCHING,	below)

q
rest	of	RE	is	a	literal	(“quoted”)	string,	all	ordinary	characters

s
non-newline-sensitive	matching	(usual	default)

t
tight	syntax	(usual	default;	see	below)

w
inverse	partial	newline-sensitive	(“weird”)	matching	(see
MATCHING,	below)

x
expanded	syntax	(see	below)

Embedded	options	take	effect	at	the)	terminating	the	sequence.	They
are	available	only	at	the	start	of	an	ARE,	and	may	not	be	used	later
within	it.

In	addition	to	the	usual	(tight)	RE	syntax,	in	which	all	characters	are
significant,	there	is	an	expanded	syntax,	available	in	all	flavors	of	RE
with	the	-expanded	switch,	or	in	AREs	with	the	embedded	x	option.	In
the	expanded	syntax,	white-space	characters	are	ignored	and	all
characters	between	a	#	and	the	following	newline	(or	the	end	of	the	RE)
are	ignored,	permitting	paragraphing	and	commenting	a	complex	RE.
There	are	three	exceptions	to	that	basic	rule:

•		a	white-space	character	or	“#”	preceded	by	“\”	is	retained

•		white	space	or	“#”	within	a	bracket	expression	is	retained

•		white	space	and	comments	are	illegal	within	multi-character
symbols	like	the	ARE	“(?:”	or	the	BRE	“\(”

Expanded-syntax	white-space	characters	are	blank,	tab,	newline,	and
any	character	that	belongs	to	the	space	character	class.

Finally,	in	an	ARE,	outside	bracket	expressions,	the	sequence	“(?#ttt)”
(where	ttt	is	any	text	not	containing	a	“)”)	is	a	comment,	completely
ignored.	Again,	this	is	not	allowed	between	the	characters	of	multi-
character	symbols	like	“(?:”.	Such	comments	are	more	a	historical
artifact	than	a	useful	facility,	and	their	use	is	deprecated;	use	the
expanded	syntax	instead.

None	of	these	metasyntax	extensions	is	available	if	the	application	(or
an	initial	“***=”	director)	has	specified	that	the	user's	input	be	treated	as
a	literal	string	rather	than	as	an	RE.

MATCHING

In	the	event	that	an	RE	could	match	more	than	one	substring	of	a	given
string,	the	RE	matches	the	one	starting	earliest	in	the	string.	If	the	RE
could	match	more	than	one	substring	starting	at	that	point,	its	choice	is
determined	by	its	preference:	either	the	longest	substring,	or	the
shortest.

Most	atoms,	and	all	constraints,	have	no	preference.	A	parenthesized
RE	has	the	same	preference	(possibly	none)	as	the	RE.	A	quantified
atom	with	quantifier	{m}	or	{m}?	has	the	same	preference	(possibly
none)	as	the	atom	itself.	A	quantified	atom	with	other	normal	quantifiers
(including	{m,n}	with	m	equal	to	n)	prefers	longest	match.	A	quantified
atom	with	other	non-greedy	quantifiers	(including	{m,n}?	with	m	equal
to	n)	prefers	shortest	match.	A	branch	has	the	same	preference	as	the
first	quantified	atom	in	it	which	has	a	preference.	An	RE	consisting	of
two	or	more	branches	connected	by	the	|	operator	prefers	longest
match.

Subject	to	the	constraints	imposed	by	the	rules	for	matching	the	whole
RE,	subexpressions	also	match	the	longest	or	shortest	possible
substrings,	based	on	their	preferences,	with	subexpressions	starting
earlier	in	the	RE	taking	priority	over	ones	starting	later.	Note	that	outer
subexpressions	thus	take	priority	over	their	component	subexpressions.

Note	that	the	quantifiers	{1,1}	and	{1,1}?	can	be	used	to	force	longest
and	shortest	preference,	respectively,	on	a	subexpression	or	a	whole
RE.

Match	lengths	are	measured	in	characters,	not	collating	elements.	An
empty	string	is	considered	longer	than	no	match	at	all.	For	example,
“bb*”	matches	the	three	middle	characters	of	“abbbc”,	“(week|wee)
(night|knights)”	matches	all	ten	characters	of	“weeknights”,	when
“(.*).*”	is	matched	against	“abc”	the	parenthesized	subexpression
matches	all	three	characters,	and	when	“(a*)*”	is	matched	against	“bc”
both	the	whole	RE	and	the	parenthesized	subexpression	match	an
empty	string.

If	case-independent	matching	is	specified,	the	effect	is	much	as	if	all
case	distinctions	had	vanished	from	the	alphabet.	When	an	alphabetic
that	exists	in	multiple	cases	appears	as	an	ordinary	character	outside	a
bracket	expression,	it	is	effectively	transformed	into	a	bracket
expression	containing	both	cases,	so	that	x	becomes	“[xX]”.	When	it
appears	inside	a	bracket	expression,	all	case	counterparts	of	it	are
added	to	the	bracket	expression,	so	that	“[x]”	becomes	“[xX]”	and	“[^x]”
becomes	“[^xX]”.

If	newline-sensitive	matching	is	specified,	.	and	bracket	expressions
using	^	will	never	match	the	newline	character	(so	that	matches	will
never	cross	newlines	unless	the	RE	explicitly	arranges	it)	and	^	and	$
will	match	the	empty	string	after	and	before	a	newline	respectively,	in
addition	to	matching	at	beginning	and	end	of	string	respectively.	ARE	\A
and	\Z	continue	to	match	beginning	or	end	of	string	only.

If	partial	newline-sensitive	matching	is	specified,	this	affects	.	and
bracket	expressions	as	with	newline-sensitive	matching,	but	not	^	and
$.

If	inverse	partial	newline-sensitive	matching	is	specified,	this	affects	^
and	$	as	with	newline-sensitive	matching,	but	not	.	and	bracket
expressions.	This	is	not	very	useful	but	is	provided	for	symmetry.

LIMITS	AND	COMPATIBILITY

No	particular	limit	is	imposed	on	the	length	of	REs.	Programs	intended
to	be	highly	portable	should	not	employ	REs	longer	than	256	bytes,	as
a	POSIX-compliant	implementation	can	refuse	to	accept	such	REs.

The	only	feature	of	AREs	that	is	actually	incompatible	with	POSIX	EREs
is	that	\	does	not	lose	its	special	significance	inside	bracket
expressions.	All	other	ARE	features	use	syntax	which	is	illegal	or	has
undefined	or	unspecified	effects	in	POSIX	EREs;	the	***	syntax	of
directors	likewise	is	outside	the	POSIX	syntax	for	both	BREs	and	EREs.

Many	of	the	ARE	extensions	are	borrowed	from	Perl,	but	some	have
been	changed	to	clean	them	up,	and	a	few	Perl	extensions	are	not

present.	Incompatibilities	of	note	include	“\b”,	“\B”,	the	lack	of	special
treatment	for	a	trailing	newline,	the	addition	of	complemented	bracket
expressions	to	the	things	affected	by	newline-sensitive	matching,	the
restrictions	on	parentheses	and	back	references	in	lookahead
constraints,	and	the	longest/shortest-match	(rather	than	first-match)
matching	semantics.

The	matching	rules	for	REs	containing	both	normal	and	non-greedy
quantifiers	have	changed	since	early	beta-test	versions	of	this	package.
(The	new	rules	are	much	simpler	and	cleaner,	but	do	not	work	as	hard
at	guessing	the	user's	real	intentions.)

Henry	Spencer's	original	1986	regexp	package,	still	in	widespread	use
(e.g.,	in	pre-8.1	releases	of	Tcl),	implemented	an	early	version	of
today's	EREs.	There	are	four	incompatibilities	between	regexp's	near-
EREs	(“RREs”	for	short)	and	AREs.	In	roughly	increasing	order	of
significance:

•		In	AREs,	\	followed	by	an	alphanumeric	character	is	either	an
escape	or	an	error,	while	in	RREs,	it	was	just	another	way	of	writing
the	alphanumeric.	This	should	not	be	a	problem	because	there	was
no	reason	to	write	such	a	sequence	in	RREs.

•		{	followed	by	a	digit	in	an	ARE	is	the	beginning	of	a	bound,	while
in	RREs,	{	was	always	an	ordinary	character.	Such	sequences
should	be	rare,	and	will	often	result	in	an	error	because	following
characters	will	not	look	like	a	valid	bound.

•		In	AREs,	\	remains	a	special	character	within	“[]”,	so	a	literal	\
within	[]	must	be	written	“\\”.	\\	also	gives	a	literal	\	within	[]	in
RREs,	but	only	truly	paranoid	programmers	routinely	doubled	the
backslash.

•		AREs	report	the	longest/shortest	match	for	the	RE,	rather	than
the	first	found	in	a	specified	search	order.	This	may	affect	some
RREs	which	were	written	in	the	expectation	that	the	first	match
would	be	reported.	(The	careful	crafting	of	RREs	to	optimize	the
search	order	for	fast	matching	is	obsolete	(AREs	examine	all

possible	matches	in	parallel,	and	their	performance	is	largely
insensitive	to	their	complexity)	but	cases	where	the	search	order
was	exploited	to	deliberately	find	a	match	which	was	not	the
longest/shortest	will	need	rewriting.)

BASIC	REGULAR	EXPRESSIONS

BREs	differ	from	EREs	in	several	respects.	“|”,	“+”,	and	?	are	ordinary
characters	and	there	is	no	equivalent	for	their	functionality.	The
delimiters	for	bounds	are	\{	and	“\}”,	with	{	and	}	by	themselves	ordinary
characters.	The	parentheses	for	nested	subexpressions	are	\(and	“\)”,
with	(and)	by	themselves	ordinary	characters.	^	is	an	ordinary
character	except	at	the	beginning	of	the	RE	or	the	beginning	of	a
parenthesized	subexpression,	$	is	an	ordinary	character	except	at	the
end	of	the	RE	or	the	end	of	a	parenthesized	subexpression,	and	*	is	an
ordinary	character	if	it	appears	at	the	beginning	of	the	RE	or	the
beginning	of	a	parenthesized	subexpression	(after	a	possible	leading
“^”).	Finally,	single-digit	back	references	are	available,	and	\<	and	\>	are
synonyms	for	“[[:<:]]”	and	“[[:>:]]”	respectively;	no	other	escapes	are
available.

SEE	ALSO

RegExp,	regexp,	regsub,	lsearch,	switch,	text

KEYWORDS

match,	regular	expression,	string

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1998	Sun	Microsystems,	Inc.
Copyright	©	1999	Scriptics	Corporation

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	tcltest

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
tcltest	-	Test	harness	support	code	and	utilities

SYNOPSIS
DESCRIPTION
COMMANDS

test	name	description	?option	value	...?
test	name	description	?constraints?	body	result
loadTestedCommands
makeFile	contents	name	?directory?
removeFile	name	?directory?
makeDirectory	name	?directory?
removeDirectory	name	?directory?
viewFile	file	?directory?
cleanupTests
runAllTests

CONFIGURATION	COMMANDS
configure
configure	option
configure	option	value	?option	value	...?
customMatch	mode	script
testConstraint	constraint	?boolean?
interpreter	?executableName?
outputChannel	?channelID?
errorChannel	?channelID?

SHORTCUT	COMMANDS
debug	?level?
errorFile	?filename?
limitConstraints	?boolean?
loadFile	?filename?
loadScript	?script?
match	?patternList?

matchDirectories	?patternList?
matchFiles	?patternList?
outputFile	?filename?
preserveCore	?level?
singleProcess	?boolean?
skip	?patternList?
skipDirectories	?patternList?
skipFiles	?patternList?
temporaryDirectory	?directory?
testsDirectory	?directory?
verbose	?level?

OTHER	COMMANDS
test	name	description	optionList
workingDirectory	?directoryName?
normalizeMsg	msg
normalizePath	pathVar
bytestring	string

TESTS
-constraints	keywordList|expression
-setup	script
-body	script
-cleanup	script
-match	mode
-result	expectedValue
-output	expectedValue
-errorOutput	expectedValue
-returnCodes	expectedCodeList

TEST	CONSTRAINTS
singleTestInterp
unix
win
nt
95
98
mac
unixOrWin
macOrWin

macOrUnix
tempNotWin
tempNotMac
unixCrash
winCrash
macCrash
emptyTest
knownBug
nonPortable
userInteraction
interactive
nonBlockFiles
asyncPipeClose
unixExecs
hasIsoLocale
root
notRoot
eformat
stdio

RUNNING	ALL	TESTS
CONFIGURABLE	OPTIONS

-singleproc	boolean
-debug	level

0
1
2
3

-verbose	level
body	(b)
pass	(p)
skip	(s)
start	(t)
error	(e)
line	(l)

-preservecore	level
0
1

2
-limitconstraints	boolean
-constraints	list
-tmpdir	directory
-testdir	directory
-file	patternList
-notfile	patternList
-relateddir	patternList
-asidefromdir	patternList
-match	patternList
-skip	patternList
-load	script
-loadfile	filename
-outfile	filename
-errfile	filename

CREATING	TEST	SUITES	WITH	TCLTEST
COMPATIBILITY
KNOWN	ISSUES
KEYWORDS

NAME

tcltest	-	Test	harness	support	code	and	utilities

SYNOPSIS

package	require	tcltest	?2.3?
tcltest::test	name	description	?option	value	...?
tcltest::test	name	description	?constraints?	body	result
tcltest::loadTestedCommands
tcltest::makeDirectory	name	?directory?
tcltest::removeDirectory	name	?directory?
tcltest::makeFile	contents	name	?directory?
tcltest::removeFile	name	?directory?
tcltest::viewFile	name	?directory?
tcltest::cleanupTests	?runningMultipleTests?
tcltest::runAllTests
tcltest::configure

tcltest::configure	option
tcltest::configure	option	value	?option	value	...?
tcltest::customMatch	mode	command
tcltest::testConstraint	constraint	?value?
tcltest::outputChannel	?channelID?
tcltest::errorChannel	?channelID?
tcltest::interpreter	?interp?
tcltest::debug	?level?
tcltest::errorFile	?filename?
tcltest::limitConstraints	?boolean?
tcltest::loadFile	?filename?
tcltest::loadScript	?script?
tcltest::match	?patternList?
tcltest::matchDirectories	?patternList?
tcltest::matchFiles	?patternList?
tcltest::outputFile	?filename?
tcltest::preserveCore	?level?
tcltest::singleProcess	?boolean?
tcltest::skip	?patternList?
tcltest::skipDirectories	?patternList?
tcltest::skipFiles	?patternList?
tcltest::temporaryDirectory	?directory?
tcltest::testsDirectory	?directory?
tcltest::verbose	?level?
tcltest::test	name	description	optionList
tcltest::bytestring	string
tcltest::normalizeMsg	msg
tcltest::normalizePath	pathVar
tcltest::workingDirectory	?dir?

DESCRIPTION

The	tcltest	package	provides	several	utility	commands	useful	in	the
construction	of	test	suites	for	code	instrumented	to	be	run	by	evaluation
of	Tcl	commands.	Notably	the	built-in	commands	of	the	Tcl	library	itself
are	tested	by	a	test	suite	using	the	tcltest	package.

All	the	commands	provided	by	the	tcltest	package	are	defined	in	and
exported	from	the	::tcltest	namespace,	as	indicated	in	the	SYNOPSIS
above.	In	the	following	sections,	all	commands	will	be	described	by
their	simple	names,	in	the	interest	of	brevity.

The	central	command	of	tcltest	is	test	that	defines	and	runs	a	test.
Testing	with	test	involves	evaluation	of	a	Tcl	script	and	comparing	the
result	to	an	expected	result,	as	configured	and	controlled	by	a	number
of	options.	Several	other	commands	provided	by	tcltest	govern	the
configuration	of	test	and	the	collection	of	many	test	commands	into	test
suites.

See	CREATING	TEST	SUITES	WITH	TCLTEST	below	for	an	extended
example	of	how	to	use	the	commands	of	tcltest	to	produce	test	suites
for	your	Tcl-enabled	code.

COMMANDS

test	name	description	?option	value	...?
Defines	and	possibly	runs	a	test	with	the	name	name	and
description	description.	The	name	and	description	of	a	test	are
used	in	messages	reported	by	test	during	the	test,	as	configured
by	the	options	of	tcltest.	The	remaining	option	value	arguments	to
test	define	the	test,	including	the	scripts	to	run,	the	conditions
under	which	to	run	them,	the	expected	result,	and	the	means	by
which	the	expected	and	actual	results	should	be	compared.	See
TESTS	below	for	a	complete	description	of	the	valid	options	and
how	they	define	a	test.	The	test	command	returns	an	empty	string.

test	name	description	?constraints?	body	result
This	form	of	test	is	provided	to	support	test	suites	written	for
version	1	of	the	tcltest	package,	and	also	a	simpler	interface	for	a
common	usage.	It	is	the	same	as	“test	name	description	-
constraints	constraints	-body	body	-result	result”.	All	other
options	to	test	take	their	default	values.	When	constraints	is
omitted,	this	form	of	test	can	be	distinguished	from	the	first
because	all	options	begin	with	“-”.

loadTestedCommands
Evaluates	in	the	caller's	context	the	script	specified	by	configure	-
load	or	configure	-loadfile.	Returns	the	result	of	that	script
evaluation,	including	any	error	raised	by	the	script.	Use	this
command	and	the	related	configuration	options	to	provide	the
commands	to	be	tested	to	the	interpreter	running	the	test	suite.

makeFile	contents	name	?directory?
Creates	a	file	named	name	relative	to	directory	directory	and	write
contents	to	that	file	using	the	encoding	encoding	system.	If
contents	does	not	end	with	a	newline,	a	newline	will	be	appended
so	that	the	file	named	name	does	end	with	a	newline.	Because	the
system	encoding	is	used,	this	command	is	only	suitable	for	making
text	files.	The	file	will	be	removed	by	the	next	evaluation	of
cleanupTests,	unless	it	is	removed	by	removeFile	first.	The
default	value	of	directory	is	the	directory	configure	-tmpdir.
Returns	the	full	path	of	the	file	created.	Use	this	command	to
create	any	text	file	required	by	a	test	with	contents	as	needed.

removeFile	name	?directory?
Forces	the	file	referenced	by	name	to	be	removed.	This	file	name
should	be	relative	to	directory.	The	default	value	of	directory	is	the
directory	configure	-tmpdir.	Returns	an	empty	string.	Use	this
command	to	delete	files	created	by	makeFile.

makeDirectory	name	?directory?
Creates	a	directory	named	name	relative	to	directory	directory.	The
directory	will	be	removed	by	the	next	evaluation	of	cleanupTests,
unless	it	is	removed	by	removeDirectory	first.	The	default	value	of
directory	is	the	directory	configure	-tmpdir.	Returns	the	full	path	of
the	directory	created.	Use	this	command	to	create	any	directories
that	are	required	to	exist	by	a	test.

removeDirectory	name	?directory?
Forces	the	directory	referenced	by	name	to	be	removed.	This
directory	should	be	relative	to	directory.	The	default	value	of
directory	is	the	directory	configure	-tmpdir.	Returns	an	empty
string.	Use	this	command	to	delete	any	directories	created	by

makeDirectory.

viewFile	file	?directory?
Returns	the	contents	of	file,	except	for	any	final	newline,	just	as
read	-nonewline	would	return.	This	file	name	should	be	relative	to
directory.	The	default	value	of	directory	is	the	directory	configure	-
tmpdir.	Use	this	command	as	a	convenient	way	to	turn	the
contents	of	a	file	generated	by	a	test	into	the	result	of	that	test	for
matching	against	an	expected	result.	The	contents	of	the	file	are
read	using	the	system	encoding,	so	its	usefulness	is	limited	to	text
files.

cleanupTests
Intended	to	clean	up	and	summarize	after	several	tests	have	been
run.	Typically	called	once	per	test	file,	at	the	end	of	the	file	after	all
tests	have	been	completed.	For	best	effectiveness,	be	sure	that	the
cleanupTests	is	evaluated	even	if	an	error	occurs	earlier	in	the	test
file	evaluation.

Prints	statistics	about	the	tests	run	and	removes	files	that	were
created	by	makeDirectory	and	makeFile	since	the	last
cleanupTests.	Names	of	files	and	directories	in	the	directory
configure	-tmpdir	created	since	the	last	cleanupTests,	but	not
created	by	makeFile	or	makeDirectory	are	printed	to
outputChannel.	This	command	also	restores	the	original	shell
environment,	as	described	by	the	::env	array.	Returns	an	empty
string.

runAllTests
This	is	a	master	command	meant	to	run	an	entire	suite	of	tests,
spanning	multiple	files	and/or	directories,	as	governed	by	the
configurable	options	of	tcltest.	See	RUNNING	ALL	TESTS	below
for	a	complete	description	of	the	many	variations	possible	with
runAllTests.

CONFIGURATION	COMMANDS

configure

Returns	the	list	of	configurable	options	supported	by	tcltest.	See
CONFIGURABLE	OPTIONS	below	for	the	full	list	of	options,	their
valid	values,	and	their	effect	on	tcltest	operations.

configure	option
Returns	the	current	value	of	the	supported	configurable	option
option.	Raises	an	error	if	option	is	not	a	supported	configurable
option.

configure	option	value	?option	value	...?
Sets	the	value	of	each	configurable	option	option	to	the
corresponding	value	value,	in	order.	Raises	an	error	if	an	option	is
not	a	supported	configurable	option,	or	if	value	is	not	a	valid	value
for	the	corresponding	option,	or	if	a	value	is	not	provided.	When	an
error	is	raised,	the	operation	of	configure	is	halted,	and
subsequent	option	value	arguments	are	not	processed.

If	the	environment	variable	::env(TCLTEST_OPTIONS)	exists
when	the	tcltest	package	is	loaded	(by	package	require	tcltest)
then	its	value	is	taken	as	a	list	of	arguments	to	pass	to	configure.
This	allows	the	default	values	of	the	configuration	options	to	be	set
by	the	environment.

customMatch	mode	script
Registers	mode	as	a	new	legal	value	of	the	-match	option	to	test.
When	the	-match	mode	option	is	passed	to	test,	the	script	script
will	be	evaluated	to	compare	the	actual	result	of	evaluating	the
body	of	the	test	to	the	expected	result.	To	perform	the	match,	the
script	is	completed	with	two	additional	words,	the	expected	result,
and	the	actual	result,	and	the	completed	script	is	evaluated	in	the
global	namespace.	The	completed	script	is	expected	to	return	a
boolean	value	indicating	whether	or	not	the	results	match.	The
built-in	matching	modes	of	test	are	exact,	glob,	and	regexp.

testConstraint	constraint	?boolean?
Sets	or	returns	the	boolean	value	associated	with	the	named
constraint.	See	TEST	CONSTRAINTS	below	for	more	information.

interpreter	?executableName?
Sets	or	returns	the	name	of	the	executable	to	be	execed	by
runAllTests	to	run	each	test	file	when	configure	-singleproc	is
false.	The	default	value	for	interpreter	is	the	name	of	the	currently
running	program	as	returned	by	info	nameofexecutable.

outputChannel	?channelID?
Sets	or	returns	the	output	channel	ID.	This	defaults	to	stdout.	Any
test	that	prints	test	related	output	should	send	that	output	to
outputChannel	rather	than	letting	that	output	default	to	stdout.

errorChannel	?channelID?
Sets	or	returns	the	error	channel	ID.	This	defaults	to	stderr.	Any
test	that	prints	error	messages	should	send	that	output	to
errorChannel	rather	than	printing	directly	to	stderr.

SHORTCUT	COMMANDS

debug	?level?
Same	as	configure	-debug	?level?.

errorFile	?filename?
Same	as	configure	-errfile	?filename?.

limitConstraints	?boolean?
Same	as	configure	-limitconstraints	?boolean?.

loadFile	?filename?
Same	as	configure	-loadfile	?filename?.

loadScript	?script?
Same	as	configure	-load	?script?.

match	?patternList?
Same	as	configure	-match	?patternList?.

matchDirectories	?patternList?
Same	as	configure	-relateddir	?patternList?.

matchFiles	?patternList?
Same	as	configure	-file	?patternList?.

outputFile	?filename?
Same	as	configure	-outfile	?filename?.

preserveCore	?level?
Same	as	configure	-preservecore	?level?.

singleProcess	?boolean?
Same	as	configure	-singleproc	?boolean?.

skip	?patternList?
Same	as	configure	-skip	?patternList?.

skipDirectories	?patternList?
Same	as	configure	-asidefromdir	?patternList?.

skipFiles	?patternList?
Same	as	configure	-notfile	?patternList?.

temporaryDirectory	?directory?
Same	as	configure	-tmpdir	?directory?.

testsDirectory	?directory?
Same	as	configure	-testdir	?directory?.

verbose	?level?
Same	as	configure	-verbose	?level?.

OTHER	COMMANDS

The	remaining	commands	provided	by	tcltest	have	better	alternatives
provided	by	tcltest	or	Tcl	itself.	They	are	retained	to	support	existing
test	suites,	but	should	be	avoided	in	new	code.

test	name	description	optionList
This	form	of	test	was	provided	to	enable	passing	many	options
spanning	several	lines	to	test	as	a	single	argument	quoted	by

braces,	rather	than	needing	to	backslash	quote	the	newlines
between	arguments	to	test.	The	optionList	argument	is	expected	to
be	a	list	with	an	even	number	of	elements	representing	option	and
value	arguments	to	pass	to	test.	However,	these	values	are	not
passed	directly,	as	in	the	alternate	forms	of	switch.	Instead,	this
form	makes	an	unfortunate	attempt	to	overthrow	Tcl's	substitution
rules	by	performing	substitutions	on	some	of	the	list	elements	as	an
attempt	to	implement	a	“do	what	I	mean”	interpretation	of	a	brace-
enclosed	“block”.	The	result	is	nearly	impossible	to	document
clearly,	and	for	that	reason	this	form	is	not	recommended.	See	the
examples	in	CREATING	TEST	SUITES	WITH	TCLTEST	below	to
see	that	this	form	is	really	not	necessary	to	avoid	backslash-quoted
newlines.	If	you	insist	on	using	this	form,	examine	the	source	code
of	tcltest	if	you	want	to	know	the	substitution	details,	or	just
enclose	the	third	through	last	argument	to	test	in	braces	and	hope
for	the	best.

workingDirectory	?directoryName?
Sets	or	returns	the	current	working	directory	when	the	test	suite	is
running.	The	default	value	for	workingDirectory	is	the	directory	in
which	the	test	suite	was	launched.	The	Tcl	commands	cd	and	pwd
are	sufficient	replacements.

normalizeMsg	msg
Returns	the	result	of	removing	the	“extra”	newlines	from	msg,
where	“extra”	is	rather	imprecise.	Tcl	offers	plenty	of	string
processing	commands	to	modify	strings	as	you	wish,	and
customMatch	allows	flexible	matching	of	actual	and	expected
results.

normalizePath	pathVar
Resolves	symlinks	in	a	path,	thus	creating	a	path	without	internal
redirection.	It	is	assumed	that	pathVar	is	absolute.	pathVar	is
modified	in	place.	The	Tcl	command	file	normalize	is	a	sufficient
replacement.

bytestring	string
Construct	a	string	that	consists	of	the	requested	sequence	of	bytes,

as	opposed	to	a	string	of	properly	formed	UTF-8	characters	using
the	value	supplied	in	string.	This	allows	the	tester	to	create
denormalized	or	improperly	formed	strings	to	pass	to	C	procedures
that	are	supposed	to	accept	strings	with	embedded	NULL	types
and	confirm	that	a	string	result	has	a	certain	pattern	of	bytes.	This
is	exactly	equivalent	to	the	Tcl	command	encoding	convertfrom
identity.

TESTS

The	test	command	is	the	heart	of	the	tcltest	package.	Its	essential
function	is	to	evaluate	a	Tcl	script	and	compare	the	result	with	an
expected	result.	The	options	of	test	define	the	test	script,	the
environment	in	which	to	evaluate	it,	the	expected	result,	and	how	the
compare	the	actual	result	to	the	expected	result.	Some	configuration
options	of	tcltest	also	influence	how	test	operates.

The	valid	options	for	test	are	summarized:

test	name	description

								?-constraints	keywordList|expression?

								?-setup	setupScript?

								?-body	testScript?

								?-cleanup	cleanupScript?

								?-result	expectedAnswer?

								?-output	expectedOutput?

								?-errorOutput	expectedError?

								?-returnCodes	codeList?

								?-match	mode?

The	name	may	be	any	string.	It	is	conventional	to	choose	a	name
according	to	the	pattern:

target-majorNum.minorNum

For	white-box	(regression)	tests,	the	target	should	be	the	name	of	the	C
function	or	Tcl	procedure	being	tested.	For	black-box	tests,	the	target
should	be	the	name	of	the	feature	being	tested.	Some	conventions	call
for	the	names	of	black-box	tests	to	have	the	suffix	_bb.	Related	tests
should	share	a	major	number.	As	a	test	suite	evolves,	it	is	best	to	have
the	same	test	name	continue	to	correspond	to	the	same	test,	so	that	it
remains	meaningful	to	say	things	like	“Test	foo-1.3	passed	in	all
releases	up	to	3.4,	but	began	failing	in	release	3.5.”

During	evaluation	of	test,	the	name	will	be	compared	to	the	lists	of
string	matching	patterns	returned	by	configure	-match,	and	configure
-skip.	The	test	will	be	run	only	if	name	matches	any	of	the	patterns	from
configure	-match	and	matches	none	of	the	patterns	from	configure	-
skip.

The	description	should	be	a	short	textual	description	of	the	test.	The
description	is	included	in	output	produced	by	the	test,	typically	test
failure	messages.	Good	description	values	should	briefly	explain	the
purpose	of	the	test	to	users	of	a	test	suite.	The	name	of	a	Tcl	or	C
function	being	tested	should	be	included	in	the	description	for
regression	tests.	If	the	test	case	exists	to	reproduce	a	bug,	include	the
bug	ID	in	the	description.

Valid	attributes	and	associated	values	are:

-constraints	keywordList|expression
The	optional	-constraints	attribute	can	be	list	of	one	or	more
keywords	or	an	expression.	If	the	-constraints	value	is	a	list	of
keywords,	each	of	these	keywords	should	be	the	name	of	a
constraint	defined	by	a	call	to	testConstraint.	If	any	of	the	listed
constraints	is	false	or	does	not	exist,	the	test	is	skipped.	If	the	-
constraints	value	is	an	expression,	that	expression	is	evaluated.	If
the	expression	evaluates	to	true,	then	the	test	is	run.	Note	that	the
expression	form	of	-constraints	may	interfere	with	the	operation	of
configure	-constraints	and	configure	-limitconstraints,	and	is
not	recommended.	Appropriate	constraints	should	be	added	to	any
tests	that	should	not	always	be	run.	That	is,	conditional	evaluation
of	a	test	should	be	accomplished	by	the	-constraints	option,	not	by

conditional	evaluation	of	test.	In	that	way,	the	same	number	of
tests	are	always	reported	by	the	test	suite,	though	the	number
skipped	may	change	based	on	the	testing	environment.	The	default
value	is	an	empty	list.	See	TEST	CONSTRAINTS	below	for	a	list	of
built-in	constraints	and	information	on	how	to	add	your	own
constraints.

-setup	script
The	optional	-setup	attribute	indicates	a	script	that	will	be	run
before	the	script	indicated	by	the	-body	attribute.	If	evaluation	of
script	raises	an	error,	the	test	will	fail.	The	default	value	is	an	empty
script.

-body	script
The	-body	attribute	indicates	the	script	to	run	to	carry	out	the	test.
It	must	return	a	result	that	can	be	checked	for	correctness.	If
evaluation	of	script	raises	an	error,	the	test	will	fail.	The	default
value	is	an	empty	script.

-cleanup	script
The	optional	-cleanup	attribute	indicates	a	script	that	will	be	run
after	the	script	indicated	by	the	-body	attribute.	If	evaluation	of
script	raises	an	error,	the	test	will	fail.	The	default	value	is	an	empty
script.

-match	mode
The	-match	attribute	determines	how	expected	answers	supplied
by	-result,	-output,	and	-errorOutput	are	compared.	Valid	values
for	mode	are	regexp,	glob,	exact,	and	any	value	registered	by	a
prior	call	to	customMatch.	The	default	value	is	exact.

-result	expectedValue
The	-result	attribute	supplies	the	expectedValue	against	which	the
return	value	from	script	will	be	compared.	The	default	value	is	an
empty	string.

-output	expectedValue
The	-output	attribute	supplies	the	expectedValue	against	which

any	output	sent	to	stdout	or	outputChannel	during	evaluation	of
the	script(s)	will	be	compared.	Note	that	only	output	printed	using
::puts	is	used	for	comparison.	If	-output	is	not	specified,	output
sent	to	stdout	and	outputChannel	is	not	processed	for
comparison.

-errorOutput	expectedValue
The	-errorOutput	attribute	supplies	the	expectedValue	against
which	any	output	sent	to	stderr	or	errorChannel	during	evaluation
of	the	script(s)	will	be	compared.	Note	that	only	output	printed
using	::puts	is	used	for	comparison.	If	-errorOutput	is	not
specified,	output	sent	to	stderr	and	errorChannel	is	not	processed
for	comparison.

-returnCodes	expectedCodeList
The	optional	-returnCodes	attribute	supplies	expectedCodeList,	a
list	of	return	codes	that	may	be	accepted	from	evaluation	of	the	-
body	script.	If	evaluation	of	the	-body	script	returns	a	code	not	in
the	expectedCodeList,	the	test	fails.	All	return	codes	known	to
return,	in	both	numeric	and	symbolic	form,	including	extended
return	codes,	are	acceptable	elements	in	the	expectedCodeList.
Default	value	is	“ok”return.

To	pass,	a	test	must	successfully	evaluate	its	-setup,	-body,	and	-
cleanup	scripts.	The	return	code	of	the	-body	script	and	its	result	must
match	expected	values,	and	if	specified,	output	and	error	data	from	the
test	must	match	expected	-output	and	-errorOutput	values.	If	any	of
these	conditions	are	not	met,	then	the	test	fails.	Note	that	all	scripts	are
evaluated	in	the	context	of	the	caller	of	test.

As	long	as	test	is	called	with	valid	syntax	and	legal	values	for	all
attributes,	it	will	not	raise	an	error.	Test	failures	are	instead	reported	as
output	written	to	outputChannel.	In	default	operation,	a	successful	test
produces	no	output.	The	output	messages	produced	by	test	are
controlled	by	the	configure	-verbose	option	as	described	in
CONFIGURABLE	OPTIONS	below.	Any	output	produced	by	the	test
scripts	themselves	should	be	produced	using	::puts	to	outputChannel
or	errorChannel,	so	that	users	of	the	test	suite	may	easily	capture

output	with	the	configure	-outfile	and	configure	-errfile	options,	and
so	that	the	-output	and	-errorOutput	attributes	work	properly.

TEST	CONSTRAINTS

Constraints	are	used	to	determine	whether	or	not	a	test	should	be
skipped.	Each	constraint	has	a	name,	which	may	be	any	string,	and	a
boolean	value.	Each	test	has	a	-constraints	value	which	is	a	list	of
constraint	names.	There	are	two	modes	of	constraint	control.	Most
frequently,	the	default	mode	is	used,	indicated	by	a	setting	of	configure
-limitconstraints	to	false.	The	test	will	run	only	if	all	constraints	in	the
list	are	true-valued.	Thus,	the	-constraints	option	of	test	is	a
convenient,	symbolic	way	to	define	any	conditions	required	for	the	test
to	be	possible	or	meaningful.	For	example,	a	test	with	-constraints
unix	will	only	be	run	if	the	constraint	unix	is	true,	which	indicates	the
test	suite	is	being	run	on	a	Unix	platform.

Each	test	should	include	whatever	-constraints	are	required	to
constrain	it	to	run	only	where	appropriate.	Several	constraints	are	pre-
defined	in	the	tcltest	package,	listed	below.	The	registration	of	user-
defined	constraints	is	performed	by	the	testConstraint	command.
User-defined	constraints	may	appear	within	a	test	file,	or	within	the
script	specified	by	the	configure	-load	or	configure	-loadfile	options.

The	following	is	a	list	of	constraints	pre-defined	by	the	tcltest	package
itself:

singleTestInterp
test	can	only	be	run	if	all	test	files	are	sourced	into	a	single
interpreter

unix
test	can	only	be	run	on	any	Unix	platform

win
test	can	only	be	run	on	any	Windows	platform

nt

test	can	only	be	run	on	any	Windows	NT	platform

95
test	can	only	be	run	on	any	Windows	95	platform

98
test	can	only	be	run	on	any	Windows	98	platform

mac
test	can	only	be	run	on	any	Mac	platform

unixOrWin
test	can	only	be	run	on	a	Unix	or	Windows	platform

macOrWin
test	can	only	be	run	on	a	Mac	or	Windows	platform

macOrUnix
test	can	only	be	run	on	a	Mac	or	Unix	platform

tempNotWin
test	can	not	be	run	on	Windows.	This	flag	is	used	to	temporarily
disable	a	test.

tempNotMac
test	can	not	be	run	on	a	Mac.	This	flag	is	used	to	temporarily
disable	a	test.

unixCrash
test	crashes	if	it	is	run	on	Unix.	This	flag	is	used	to	temporarily
disable	a	test.

winCrash
test	crashes	if	it	is	run	on	Windows.	This	flag	is	used	to	temporarily
disable	a	test.

macCrash
test	crashes	if	it	is	run	on	a	Mac.	This	flag	is	used	to	temporarily
disable	a	test.

emptyTest
test	is	empty,	and	so	not	worth	running,	but	it	remains	as	a	place-
holder	for	a	test	to	be	written	in	the	future.	This	constraint	has	value
false	to	cause	tests	to	be	skipped	unless	the	user	specifies
otherwise.

knownBug
test	is	known	to	fail	and	the	bug	is	not	yet	fixed.	This	constraint	has
value	false	to	cause	tests	to	be	skipped	unless	the	user	specifies
otherwise.

nonPortable
test	can	only	be	run	in	some	known	development	environment.
Some	tests	are	inherently	non-portable	because	they	depend	on
things	like	word	length,	file	system	configuration,	window	manager,
etc.	This	constraint	has	value	false	to	cause	tests	to	be	skipped
unless	the	user	specifies	otherwise.

userInteraction
test	requires	interaction	from	the	user.	This	constraint	has	value
false	to	causes	tests	to	be	skipped	unless	the	user	specifies
otherwise.

interactive
test	can	only	be	run	in	if	the	interpreter	is	in	interactive	mode	(when
the	global	tcl_interactive	variable	is	set	to	1).

nonBlockFiles
test	can	only	be	run	if	platform	supports	setting	files	into
nonblocking	mode

asyncPipeClose
test	can	only	be	run	if	platform	supports	async	flush	and	async
close	on	a	pipe

unixExecs
test	can	only	be	run	if	this	machine	has	Unix-style	commands	cat,
echo,	sh,	wc,	rm,	sleep,	fgrep,	ps,	chmod,	and	mkdir	available

hasIsoLocale
test	can	only	be	run	if	can	switch	to	an	ISO	locale

root
test	can	only	run	if	Unix	user	is	root

notRoot
test	can	only	run	if	Unix	user	is	not	root

eformat
test	can	only	run	if	app	has	a	working	version	of	sprintf	with	respect
to	the	“e”	format	of	floating-point	numbers.

stdio
test	can	only	be	run	if	interpreter	can	be	opened	as	a	pipe.

The	alternative	mode	of	constraint	control	is	enabled	by	setting
configure	-limitconstraints	to	true.	With	that	configuration	setting,	all
existing	constraints	other	than	those	in	the	constraint	list	returned	by
configure	-constraints	are	set	to	false.	When	the	value	of	configure	-
constraints	is	set,	all	those	constraints	are	set	to	true.	The	effect	is	that
when	both	options	configure	-constraints	and	configure	-
limitconstraints	are	in	use,	only	those	tests	including	only	constraints
from	the	configure	-constraints	list	are	run;	all	others	are	skipped.	For
example,	one	might	set	up	a	configuration	with

configure	-constraints	knownBug	\

										-limitconstraints	true	\

										-verbose	pass

to	run	exactly	those	tests	that	exercise	known	bugs,	and	discover
whether	any	of	them	pass,	indicating	the	bug	had	been	fixed.

RUNNING	ALL	TESTS

The	single	command	runAllTests	is	evaluated	to	run	an	entire	test
suite,	spanning	many	files	and	directories.	The	configuration	options	of

tcltest	control	the	precise	operations.	The	runAllTests	command
begins	by	printing	a	summary	of	its	configuration	to	outputChannel.

Test	files	to	be	evaluated	are	sought	in	the	directory	configure	-testdir.
The	list	of	files	in	that	directory	that	match	any	of	the	patterns	in
configure	-file	and	match	none	of	the	patterns	in	configure	-notfile	is
generated	and	sorted.	Then	each	file	will	be	evaluated	in	turn.	If
configure	-singleproc	is	true,	then	each	file	will	be	sourced	in	the
caller's	context.	If	it	is	false,	then	a	copy	of	interpreter	will	be	exec'd	to
evaluate	each	file.	The	multi-process	operation	is	useful	when	testing
can	cause	errors	so	severe	that	a	process	terminates.	Although	such	an
error	may	terminate	a	child	process	evaluating	one	file,	the	master
process	can	continue	with	the	rest	of	the	test	suite.	In	multi-process
operation,	the	configuration	of	tcltest	in	the	master	process	is	passed
to	the	child	processes	as	command	line	arguments,	with	the	exception
of	configure	-outfile.	The	runAllTests	command	in	the	master	process
collects	all	output	from	the	child	processes	and	collates	their	results	into
one	master	report.	Any	reports	of	individual	test	failures,	or	messages
requested	by	a	configure	-verbose	setting	are	passed	directly	on	to
outputChannel	by	the	master	process.

After	evaluating	all	selected	test	files,	a	summary	of	the	results	is
printed	to	outputChannel.	The	summary	includes	the	total	number	of
tests	evaluated,	broken	down	into	those	skipped,	those	passed,	and
those	failed.	The	summary	also	notes	the	number	of	files	evaluated,
and	the	names	of	any	files	with	failing	tests	or	errors.	A	list	of	the
constraints	that	caused	tests	to	be	skipped,	and	the	number	of	tests
skipped	for	each	is	also	printed.	Also,	messages	are	printed	if	it
appears	that	evaluation	of	a	test	file	has	caused	any	temporary	files	to
be	left	behind	in	configure	-tmpdir.

Having	completed	and	summarized	all	selected	test	files,	runAllTests
then	recursively	acts	on	subdirectories	of	configure	-testdir.	All
subdirectories	that	match	any	of	the	patterns	in	configure	-relateddir
and	do	not	match	any	of	the	patterns	in	configure	-asidefromdir	are
examined.	If	a	file	named	all.tcl	is	found	in	such	a	directory,	it	will	be
sourced	in	the	caller's	context.	Whether	or	not	an	examined	directory
contains	an	all.tcl	file,	its	subdirectories	are	also	scanned	against	the

configure	-relateddir	and	configure	-asidefromdir	patterns.	In	this
way,	many	directories	in	a	directory	tree	can	have	all	their	test	files
evaluated	by	a	single	runAllTests	command.

CONFIGURABLE	OPTIONS

The	configure	command	is	used	to	set	and	query	the	configurable
options	of	tcltest.	The	valid	options	are:

-singleproc	boolean
Controls	whether	or	not	runAllTests	spawns	a	child	process	for
each	test	file.	No	spawning	when	boolean	is	true.	Default	value	is
false.

-debug	level
Sets	the	debug	level	to	level,	an	integer	value	indicating	how	much
debugging	information	should	be	printed	to	stdout.	Note	that	debug
messages	always	go	to	stdout,	independent	of	the	value	of
configure	-outfile.	Default	value	is	0.	Levels	are	defined	as:

0
Do	not	display	any	debug	information.

1
Display	information	regarding	whether	a	test	is	skipped
because	it	does	not	match	any	of	the	tests	that	were	specified
using	by	configure	-match	(userSpecifiedNonMatch)	or
matches	any	of	the	tests	specified	by	configure	-skip
(userSpecifiedSkip).	Also	print	warnings	about	possible	lack	of
cleanup	or	balance	in	test	files.	Also	print	warnings	about	any
re-use	of	test	names.

2
Display	the	flag	array	parsed	by	the	command	line	processor,
the	contents	of	the	::env	array,	and	all	user-defined	variables
that	exist	in	the	current	namespace	as	they	are	used.

3

Display	information	regarding	what	individual	procs	in	the	test
harness	are	doing.

-verbose	level
Sets	the	type	of	output	verbosity	desired	to	level,	a	list	of	zero	or
more	of	the	elements	body,	pass,	skip,	start,	error	and	line.
Default	value	is	{body	error}.	Levels	are	defined	as:

body	(b)
Display	the	body	of	failed	tests

pass	(p)
Print	output	when	a	test	passes

skip	(s)
Print	output	when	a	test	is	skipped

start	(t)
Print	output	whenever	a	test	starts

error	(e)
Print	errorInfo	and	errorCode,	if	they	exist,	when	a	test	return
code	does	not	match	its	expected	return	code

line	(l)
Print	source	file	line	information	of	failed	tests

The	single	letter	abbreviations	noted	above	are	also	recognized	so
that	“configure	-verbose	pt”	is	the	same	as	“configure	-verbose
{pass	start}”.

-preservecore	level
Sets	the	core	preservation	level	to	level.	This	level	determines	how
stringent	checks	for	core	files	are.	Default	value	is	0.	Levels	are
defined	as:

0
No	checking	—	do	not	check	for	core	files	at	the	end	of	each
test	command,	but	do	check	for	them	in	runAllTests	after	all

test	files	have	been	evaluated.

1
Also	check	for	core	files	at	the	end	of	each	test	command.

2
Check	for	core	files	at	all	times	described	above,	and	save	a
copy	of	each	core	file	produced	in	configure	-tmpdir.

-limitconstraints	boolean
Sets	the	mode	by	which	test	honors	constraints	as	described	in
TESTS	above.	Default	value	is	false.

-constraints	list
Sets	all	the	constraints	in	list	to	true.	Also	used	in	combination	with
configure	-limitconstraints	true	to	control	an	alternative
constraint	mode	as	described	in	TESTS	above.	Default	value	is	an
empty	list.

-tmpdir	directory
Sets	the	temporary	directory	to	be	used	by	makeFile,
makeDirectory,	viewFile,	removeFile,	and	removeDirectory	as
the	default	directory	where	temporary	files	and	directories	created
by	test	files	should	be	created.	Default	value	is	workingDirectory.

-testdir	directory
Sets	the	directory	searched	by	runAllTests	for	test	files	and
subdirectories.	Default	value	is	workingDirectory.

-file	patternList
Sets	the	list	of	patterns	used	by	runAllTests	to	determine	what	test
files	to	evaluate.	Default	value	is	“*.test”.

-notfile	patternList
Sets	the	list	of	patterns	used	by	runAllTests	to	determine	what	test
files	to	skip.	Default	value	is	“l.*.test”,	so	that	any	SCCS	lock	files
are	skipped.

-relateddir	patternList

Sets	the	list	of	patterns	used	by	runAllTests	to	determine	what
subdirectories	to	search	for	an	all.tcl	file.	Default	value	is	“*”.

-asidefromdir	patternList
Sets	the	list	of	patterns	used	by	runAllTests	to	determine	what
subdirectories	to	skip	when	searching	for	an	all.tcl	file.	Default
value	is	an	empty	list.

-match	patternList
Set	the	list	of	patterns	used	by	test	to	determine	whether	a	test
should	be	run.	Default	value	is	“*”.

-skip	patternList
Set	the	list	of	patterns	used	by	test	to	determine	whether	a	test
should	be	skipped.	Default	value	is	an	empty	list.

-load	script
Sets	a	script	to	be	evaluated	by	loadTestedCommands.	Default
value	is	an	empty	script.

-loadfile	filename
Sets	the	filename	from	which	to	read	a	script	to	be	evaluated	by
loadTestedCommands.	This	is	an	alternative	to	-load.	They
cannot	be	used	together.

-outfile	filename
Sets	the	file	to	which	all	output	produced	by	tcltest	should	be
written.	A	file	named	filename	will	be	opened	for	writing,	and	the
resulting	channel	will	be	set	as	the	value	of	outputChannel.

-errfile	filename
Sets	the	file	to	which	all	error	output	produced	by	tcltest	should	be
written.	A	file	named	filename	will	be	opened	for	writing,	and	the
resulting	channel	will	be	set	as	the	value	of	errorChannel.

CREATING	TEST	SUITES	WITH	TCLTEST

The	fundamental	element	of	a	test	suite	is	the	individual	test	command.

We	begin	with	several	examples.

[1]
Test	of	a	script	that	returns	normally.

test	example-1.0	{normal	return}	{

				format	%s	value

}	value

[2]
Test	of	a	script	that	requires	context	setup	and	cleanup.	Note	the
bracing	and	indenting	style	that	avoids	any	need	for	line
continuation.

test	example-1.1	{test	file	existence}	-setup	{

				set	file	[makeFile	{}	test]

}	-body	{

				file	exists	$file

}	-cleanup	{

				removeFile	test

}	-result	1

[3]
Test	of	a	script	that	raises	an	error.

test	example-1.2	{error	return}	-body	{

				error	message

}	-returnCodes	error	-result	message

[4]
Test	with	a	constraint.

test	example-1.3	{user	owns	created	files}	-constraints	{

				unix

}	-setup	{

				set	file	[makeFile	{}	test]

}	-body	{

				file	attributes	$file	-owner

}	-cleanup	{

				removeFile	test

}	-result	$::tcl_platform(user)

At	the	next	higher	layer	of	organization,	several	test	commands	are
gathered	together	into	a	single	test	file.	Test	files	should	have	names
with	the	.test	extension,	because	that	is	the	default	pattern	used	by
runAllTests	to	find	test	files.	It	is	a	good	rule	of	thumb	to	have	one	test
file	for	each	source	code	file	of	your	project.	It	is	good	practice	to	edit
the	test	file	and	the	source	code	file	together,	keeping	tests
synchronized	with	code	changes.

Most	of	the	code	in	the	test	file	should	be	the	test	commands.	Use
constraints	to	skip	tests,	rather	than	conditional	evaluation	of	test.

[5]
Recommended	system	for	writing	conditional	tests,	using
constraints	to	guard:

testConstraint	X	[expr	$myRequirement]

test	goodConditionalTest	{}	X	{

				#	body

}	result

[6]
Discouraged	system	for	writing	conditional	tests,	using	if	to	guard:

if	$myRequirement	{

				test	badConditionalTest	{}	{

								#body

				}	result

}

Use	the	-setup	and	-cleanup	options	to	establish	and	release	all
context	requirements	of	the	test	body.	Do	not	make	tests	depend	on
prior	tests	in	the	file.	Those	prior	tests	might	be	skipped.	If	several
consecutive	tests	require	the	same	context,	the	appropriate	setup	and
cleanup	scripts	may	be	stored	in	variable	for	passing	to	each	tests	-
setup	and	-cleanup	options.	This	is	a	better	solution	than	performing
setup	outside	of	test	commands,	because	the	setup	will	only	be	done	if
necessary,	and	any	errors	during	setup	will	be	reported,	and	not	cause
the	test	file	to	abort.

A	test	file	should	be	able	to	be	combined	with	other	test	files	and	not
interfere	with	them,	even	when	configure	-singleproc	1	causes	all	files
to	be	evaluated	in	a	common	interpreter.	A	simple	way	to	achieve	this	is
to	have	your	tests	define	all	their	commands	and	variables	in	a
namespace	that	is	deleted	when	the	test	file	evaluation	is	complete.	A
good	namespace	to	use	is	a	child	namespace	test	of	the	namespace	of
the	module	you	are	testing.

A	test	file	should	also	be	able	to	be	evaluated	directly	as	a	script,	not
depending	on	being	called	by	a	master	runAllTests.	This	means	that
each	test	file	should	process	command	line	arguments	to	give	the	tester
all	the	configuration	control	that	tcltest	provides.

After	all	tests	in	a	test	file,	the	command	cleanupTests	should	be
called.

[7]
Here	is	a	sketch	of	a	sample	test	file	illustrating	those	points:

package	require	tcltest	2.2

eval	::tcltest::configure	$argv

package	require	example

namespace	eval	::example::test	{

				namespace	import	::tcltest::*

				testConstraint	X	[expr	{...}]

				variable	SETUP	{#common	setup	code}

				variable	CLEANUP	{#common	cleanup	code}

				test	example-1	{}	-setup	$SETUP	-body	{

								#	First	test

				}	-cleanup	$CLEANUP	-result	{...}

				test	example-2	{}	-constraints	X	-setup	$SETUP	-body	{

								#	Second	test;	constrained

				}	-cleanup	$CLEANUP	-result	{...}

				test	example-3	{}	{

								#	Third	test;	no	context	required

				}	{...}

				cleanupTests

}

namespace	delete	::example::test

The	next	level	of	organization	is	a	full	test	suite,	made	up	of	several	test
files.	One	script	is	used	to	control	the	entire	suite.	The	basic	function	of
this	script	is	to	call	runAllTests	after	doing	any	necessary	setup.	This
script	is	usually	named	all.tcl	because	that	is	the	default	name	used	by
runAllTests	when	combining	multiple	test	suites	into	one	testing	run.

[8]
Here	is	a	sketch	of	a	sample	test	suite	master	script:

package	require	Tcl	8.4

package	require	tcltest	2.2

package	require	example

::tcltest::configure	-testdir	\

								[file	dirname	[file	normalize	[info	script]]]

eval	::tcltest::configure	$argv

::tcltest::runAllTests

COMPATIBILITY

A	number	of	commands	and	variables	in	the	::tcltest	namespace
provided	by	earlier	releases	of	tcltest	have	not	been	documented	here.
They	are	no	longer	part	of	the	supported	public	interface	of	tcltest	and
should	not	be	used	in	new	test	suites.	However,	to	continue	to	support
existing	test	suites	written	to	the	older	interface	specifications,	many	of
those	deprecated	commands	and	variables	still	work	as	before.	For
example,	in	many	circumstances,	configure	will	be	automatically	called
shortly	after	package	require	tcltest	2.1	succeeds	with	arguments
from	the	variable	::argv.	This	is	to	support	test	suites	that	depend	on
the	old	behavior	that	tcltest	was	automatically	configured	from
command	line	arguments.	New	test	files	should	not	depend	on	this,	but
should	explicitly	include

eval	::tcltest::configure	$::argv

to	establish	a	configuration	from	command	line	arguments.

KNOWN	ISSUES

There	are	two	known	issues	related	to	nested	evaluations	of	test.	The
first	issue	relates	to	the	stack	level	in	which	test	scripts	are	executed.
Tests	nested	within	other	tests	may	be	executed	at	the	same	stack	level
as	the	outermost	test.	For	example,	in	the	following	code:

test	level-1.1	{level	1}	{

				-body	{

								test	level-2.1	{level	2}	{

								}

				}

}

any	script	executed	in	level-2.1	may	be	executed	at	the	same	stack
level	as	the	script	defined	for	level-1.1.

In	addition,	while	two	tests	have	been	run,	results	will	only	be	reported
by	cleanupTests	for	tests	at	the	same	level	as	test	level-1.1.	However,
test	results	for	all	tests	run	prior	to	level-1.1	will	be	available	when	test
level-2.1	runs.	What	this	means	is	that	if	you	try	to	access	the	test
results	for	test	level-2.1,	it	will	may	say	that	“m”	tests	have	run,	“n”	tests
have	been	skipped,	“o”	tests	have	passed	and	“p”	tests	have	failed,
where	“m”,	“n”,	“o”,	and	“p”	refer	to	tests	that	were	run	at	the	same	test
level	as	test	level-1.1.

Implementation	of	output	and	error	comparison	in	the	test	command
depends	on	usage	of	::puts	in	your	application	code.	Output	is
intercepted	by	redefining	the	::puts	command	while	the	defined	test
script	is	being	run.	Errors	thrown	by	C	procedures	or	printed	directly
from	C	applications	will	not	be	caught	by	the	test	command.	Therefore,
usage	of	the	-output	and	-errorOutput	options	to	test	is	useful	only	for
pure	Tcl	applications	that	use	::puts	to	produce	output.

KEYWORDS

test,	test	harness,	test	suite

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990-1994	The	Regents	of	the	University	of	California
Copyright	©	1994-1997	Sun	Microsystems,	Inc.
Copyright	©	1998-1999	Scriptics	Corporation
Copyright	©	2000	Ajuba	Solutions

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	fconfigure

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
fconfigure	-	Set	and	get	options	on	a	channel

SYNOPSIS
DESCRIPTION

-blocking	boolean
-buffering	newValue
-buffersize	newSize
-encoding	name
-eofchar	char
-eofchar	{inChar	outChar}
-translation	mode
-translation	{inMode	outMode}

auto
binary
cr
crlf
lf

STANDARD	CHANNELS
EXAMPLES
SEE	ALSO
KEYWORDS

NAME

fconfigure	-	Set	and	get	options	on	a	channel

SYNOPSIS

fconfigure	channelId
fconfigure	channelId	name
fconfigure	channelId	name	value	?name	value	...?

DESCRIPTION

The	fconfigure	command	sets	and	retrieves	options	for	channels.

ChannelId	identifies	the	channel	for	which	to	set	or	query	an	option	and
must	refer	to	an	open	channel	such	as	a	Tcl	standard	channel	(stdin,
stdout,	or	stderr),	the	return	value	from	an	invocation	of	open	or
socket,	or	the	result	of	a	channel	creation	command	provided	by	a	Tcl
extension.

If	no	name	or	value	arguments	are	supplied,	the	command	returns	a	list
containing	alternating	option	names	and	values	for	the	channel.	If	name
is	supplied	but	no	value	then	the	command	returns	the	current	value	of
the	given	option.	If	one	or	more	pairs	of	name	and	value	are	supplied,
the	command	sets	each	of	the	named	options	to	the	corresponding
value;	in	this	case	the	return	value	is	an	empty	string.

The	options	described	below	are	supported	for	all	channels.	In	addition,
each	channel	type	may	add	options	that	only	it	supports.	See	the
manual	entry	for	the	command	that	creates	each	type	of	channels	for
the	options	that	that	specific	type	of	channel	supports.	For	example,
see	the	manual	entry	for	the	socket	command	for	its	additional	options.

-blocking	boolean
The	-blocking	option	determines	whether	I/O	operations	on	the
channel	can	cause	the	process	to	block	indefinitely.	The	value	of
the	option	must	be	a	proper	boolean	value.	Channels	are	normally
in	blocking	mode;	if	a	channel	is	placed	into	nonblocking	mode	it
will	affect	the	operation	of	the	gets,	read,	puts,	flush,	and	close
commands	by	allowing	them	to	operate	asynchronously;	see	the
documentation	for	those	commands	for	details.	For	nonblocking
mode	to	work	correctly,	the	application	must	be	using	the	Tcl	event
loop	(e.g.	by	calling	Tcl_DoOneEvent	or	invoking	the	vwait
command).

-buffering	newValue
If	newValue	is	full	then	the	I/O	system	will	buffer	output	until	its
internal	buffer	is	full	or	until	the	flush	command	is	invoked.	If

newValue	is	line,	then	the	I/O	system	will	automatically	flush	output
for	the	channel	whenever	a	newline	character	is	output.	If
newValue	is	none,	the	I/O	system	will	flush	automatically	after
every	output	operation.	The	default	is	for	-buffering	to	be	set	to
full	except	for	channels	that	connect	to	terminal-like	devices;	for
these	channels	the	initial	setting	is	line.	Additionally,	stdin	and
stdout	are	initially	set	to	line,	and	stderr	is	set	to	none.

-buffersize	newSize
Newvalue	must	be	an	integer;	its	value	is	used	to	set	the	size	of
buffers,	in	bytes,	subsequently	allocated	for	this	channel	to	store
input	or	output.	Newvalue	must	be	between	ten	and	one	million,
allowing	buffers	of	ten	to	one	million	bytes	in	size.

-encoding	name
This	option	is	used	to	specify	the	encoding	of	the	channel,	so	that
the	data	can	be	converted	to	and	from	Unicode	for	use	in	Tcl.	For
instance,	in	order	for	Tcl	to	read	characters	from	a	Japanese	file	in
shiftjis	and	properly	process	and	display	the	contents,	the
encoding	would	be	set	to	shiftjis.	Thereafter,	when	reading	from
the	channel,	the	bytes	in	the	Japanese	file	would	be	converted	to
Unicode	as	they	are	read.	Writing	is	also	supported	-	as	Tcl	strings
are	written	to	the	channel	they	will	automatically	be	converted	to
the	specified	encoding	on	output.

If	a	file	contains	pure	binary	data	(for	instance,	a	JPEG	image),	the
encoding	for	the	channel	should	be	configured	to	be	binary.	Tcl	will
then	assign	no	interpretation	to	the	data	in	the	file	and	simply	read
or	write	raw	bytes.	The	Tcl	binary	command	can	be	used	to
manipulate	this	byte-oriented	data.	It	is	usually	better	to	set	the	-
translation	option	to	binary	when	you	want	to	transfer	binary	data,
as	this	turns	off	the	other	automatic	interpretations	of	the	bytes	in
the	stream	as	well.

The	default	encoding	for	newly	opened	channels	is	the	same
platform-	and	locale-dependent	system	encoding	used	for
interfacing	with	the	operating	system,	as	returned	by	encoding
system.

-eofchar	char

-eofchar	{inChar	outChar}
This	option	supports	DOS	file	systems	that	use	Control-z	(\x1a)	as
an	end	of	file	marker.	If	char	is	not	an	empty	string,	then	this
character	signals	end-of-file	when	it	is	encountered	during	input.
For	output,	the	end-of-file	character	is	output	when	the	channel	is
closed.	If	char	is	the	empty	string,	then	there	is	no	special	end	of
file	character	marker.	For	read-write	channels,	a	two-element	list
specifies	the	end	of	file	marker	for	input	and	output,	respectively.
As	a	convenience,	when	setting	the	end-of-file	character	for	a	read-
write	channel	you	can	specify	a	single	value	that	will	apply	to	both
reading	and	writing.	When	querying	the	end-of-file	character	of	a
read-write	channel,	a	two-element	list	will	always	be	returned.	The
default	value	for	-eofchar	is	the	empty	string	in	all	cases	except	for
files	under	Windows.	In	that	case	the	-eofchar	is	Control-z	(\x1a)
for	reading	and	the	empty	string	for	writing.	The	acceptable	range
for	-eofchar	values	is	\x01	-	\x7f;	attempting	to	set	-eofchar	to	a
value	outside	of	this	range	will	generate	an	error.

-translation	mode

-translation	{inMode	outMode}
In	Tcl	scripts	the	end	of	a	line	is	always	represented	using	a	single
newline	character	(\n).	However,	in	actual	files	and	devices	the	end
of	a	line	may	be	represented	differently	on	different	platforms,	or
even	for	different	devices	on	the	same	platform.	For	example,
under	UNIX	newlines	are	used	in	files,	whereas	carriage-return-
linefeed	sequences	are	normally	used	in	network	connections.	On
input	(i.e.,	with	gets	and	read)	the	Tcl	I/O	system	automatically
translates	the	external	end-of-line	representation	into	newline
characters.	Upon	output	(i.e.,	with	puts),	the	I/O	system	translates
newlines	to	the	external	end-of-line	representation.	The	default
translation	mode,	auto,	handles	all	the	common	cases
automatically,	but	the	-translation	option	provides	explicit	control
over	the	end	of	line	translations.

The	value	associated	with	-translation	is	a	single	item	for	read-

only	and	write-only	channels.	The	value	is	a	two-element	list	for
read-write	channels;	the	read	translation	mode	is	the	first	element
of	the	list,	and	the	write	translation	mode	is	the	second	element.	As
a	convenience,	when	setting	the	translation	mode	for	a	read-write
channel	you	can	specify	a	single	value	that	will	apply	to	both
reading	and	writing.	When	querying	the	translation	mode	of	a	read-
write	channel,	a	two-element	list	will	always	be	returned.	The
following	values	are	currently	supported:

auto
As	the	input	translation	mode,	auto	treats	any	of	newline	(lf),
carriage	return	(cr),	or	carriage	return	followed	by	a	newline
(crlf)	as	the	end	of	line	representation.	The	end	of	line
representation	can	even	change	from	line-to-line,	and	all	cases
are	translated	to	a	newline.	As	the	output	translation	mode,
auto	chooses	a	platform	specific	representation;	for	sockets	on
all	platforms	Tcl	chooses	crlf,	for	all	Unix	flavors,	it	chooses	lf,
and	for	the	various	flavors	of	Windows	it	chooses	crlf.	The
default	setting	for	-translation	is	auto	for	both	input	and
output.

binary
No	end-of-line	translations	are	performed.	This	is	nearly
identical	to	lf	mode,	except	that	in	addition	binary	mode	also
sets	the	end-of-file	character	to	the	empty	string	(which
disables	it)	and	sets	the	encoding	to	binary	(which	disables
encoding	filtering).	See	the	description	of	-eofchar	and	-
encoding	for	more	information.

Internally,	i.e.	when	it	comes	to	the	actual	behaviour	of	the
translator	this	value	is	identical	to	lf	and	is	therefore	reported
as	such	when	queried.	Even	if	binary	was	used	to	set	the
translation.

cr
The	end	of	a	line	in	the	underlying	file	or	device	is	represented
by	a	single	carriage	return	character.	As	the	input	translation
mode,	cr	mode	converts	carriage	returns	to	newline

characters.	As	the	output	translation	mode,	cr	mode	translates
newline	characters	to	carriage	returns.

crlf
The	end	of	a	line	in	the	underlying	file	or	device	is	represented
by	a	carriage	return	character	followed	by	a	linefeed	character.
As	the	input	translation	mode,	crlf	mode	converts	carriage-
return-linefeed	sequences	to	newline	characters.	As	the	output
translation	mode,	crlf	mode	translates	newline	characters	to
carriage-return-linefeed	sequences.	This	mode	is	typically
used	on	Windows	platforms	and	for	network	connections.

lf
The	end	of	a	line	in	the	underlying	file	or	device	is	represented
by	a	single	newline	(linefeed)	character.	In	this	mode	no
translations	occur	during	either	input	or	output.	This	mode	is
typically	used	on	UNIX	platforms.

STANDARD	CHANNELS

The	Tcl	standard	channels	(stdin,	stdout,	and	stderr)	can	be
configured	through	this	command	like	every	other	channel	opened	by
the	Tcl	library.	Beyond	the	standard	options	described	above	they	will
also	support	any	special	option	according	to	their	current	type.	If,	for
example,	a	Tcl	application	is	started	by	the	inet	super-server	common
on	Unix	system	its	Tcl	standard	channels	will	be	sockets	and	thus
support	the	socket	options.

EXAMPLES

Instruct	Tcl	to	always	send	output	to	stdout	immediately,	whether	or	not
it	is	to	a	terminal:

fconfigure	stdout	-buffering	none

Open	a	socket	and	read	lines	from	it	without	ever	blocking	the

processing	of	other	events:

set	s	[socket	some.where.com	12345]

fconfigure	$s	-blocking	0

fileevent	$s	readable	"readMe	$s"

proc	readMe	chan	{

			if	{[gets	$chan	line]	<	0}	{

						if	{[eof	$chan]}	{

									close	$chan

									return

						}

						#	Could	not	read	a	complete	line	this	time;	Tcl's

						#	internal	buffering	will	hold	the	partial	line	for	us

						#	until	some	more	data	is	available	over	the	socket.

			}	else	{

						puts	stdout	$line

			}

}

Read	a	PPM-format	image	from	a	file:

#	Open	the	file	and	put	it	into	Unix	ASCII	mode

set	f	[open	teapot.ppm]

fconfigure	$f	-encoding	ascii	-translation	lf

#	Get	the	header

if	{[gets	$f]	ne	"P6"}	{

			error	"not	a	raw-bits	PPM"

}

#	Read	lines	until	we	have	got	non-comment	lines

#	that	supply	us	with	three	decimal	values.

set	words	{}

while	{[llength	$words]	<	3}	{

			gets	$f	line

			if	{[string	match	"#*"	$line]}	continue

			lappend	words	{*}[join	[scan	$line	%d%d%d]]

}

#	Those	words	supply	the	size	of	the	image	and	its

#	overall	depth	per	channel.	Assign	to	variables.

lassign	$words	xSize	ySize	depth

#	Now	switch	to	binary	mode	to	pull	in	the	data,

#	one	byte	per	channel	(red,green,blue)	per	pixel.

fconfigure	$f	-translation	binary

set	numDataBytes	[expr	{3	*	$xSize	*	$ySize}]

set	data	[read	$f	$numDataBytes]

close	$f

SEE	ALSO

close,	flush,	gets,	open,	puts,	read,	socket,	Tcl_StandardChannels

KEYWORDS

blocking,	buffering,	carriage	return,	end	of	line,	flushing,	linemode,
newline,	nonblocking,	platform,	translation,	encoding,	filter,	byte	array,
binary

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1995-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	load

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

load	-	Load	machine	code	and	initialize	new	commands

SYNOPSIS

load	fileName
load	fileName	packageName
load	fileName	packageName	interp

DESCRIPTION

This	command	loads	binary	code	from	a	file	into	the	application's
address	space	and	calls	an	initialization	procedure	in	the	package	to
incorporate	it	into	an	interpreter.	fileName	is	the	name	of	the	file
containing	the	code;	its	exact	form	varies	from	system	to	system	but	on
most	systems	it	is	a	shared	library,	such	as	a	.so	file	under	Solaris	or	a
DLL	under	Windows.	packageName	is	the	name	of	the	package,	and	is
used	to	compute	the	name	of	an	initialization	procedure.	interp	is	the
path	name	of	the	interpreter	into	which	to	load	the	package	(see	the
interp	manual	entry	for	details);	if	interp	is	omitted,	it	defaults	to	the
interpreter	in	which	the	load	command	was	invoked.

Once	the	file	has	been	loaded	into	the	application's	address	space,	one
of	two	initialization	procedures	will	be	invoked	in	the	new	code.
Typically	the	initialization	procedure	will	add	new	commands	to	a	Tcl
interpreter.	The	name	of	the	initialization	procedure	is	determined	by
packageName	and	whether	or	not	the	target	interpreter	is	a	safe	one.
For	normal	interpreters	the	name	of	the	initialization	procedure	will	have
the	form	pkg_Init,	where	pkg	is	the	same	as	packageName	except	that
the	first	letter	is	converted	to	upper	case	and	all	other	letters	are
converted	to	lower	case.	For	example,	if	packageName	is	foo	or	FOo,

the	initialization	procedure's	name	will	be	Foo_Init.

If	the	target	interpreter	is	a	safe	interpreter,	then	the	name	of	the
initialization	procedure	will	be	pkg_SafeInit	instead	of	pkg_Init.	The
pkg_SafeInit	function	should	be	written	carefully,	so	that	it	initializes	the
safe	interpreter	only	with	partial	functionality	provided	by	the	package
that	is	safe	for	use	by	untrusted	code.	For	more	information	on	Safe-Tcl,
see	the	safe	manual	entry.

The	initialization	procedure	must	match	the	following	prototype:

typedef	int	Tcl_PackageInitProc(Tcl_Interp	*interp);

The	interp	argument	identifies	the	interpreter	in	which	the	package	is	to
be	loaded.	The	initialization	procedure	must	return	TCL_OK	or
TCL_ERROR	to	indicate	whether	or	not	it	completed	successfully;	in
the	event	of	an	error	it	should	set	the	interpreter's	result	to	point	to	an
error	message.	The	result	of	the	load	command	will	be	the	result
returned	by	the	initialization	procedure.

The	actual	loading	of	a	file	will	only	be	done	once	for	each	fileName	in
an	application.	If	a	given	fileName	is	loaded	into	multiple	interpreters,
then	the	first	load	will	load	the	code	and	call	the	initialization	procedure;
subsequent	loads	will	call	the	initialization	procedure	without	loading
the	code	again.	For	Tcl	versions	lower	than	8.5,	it	is	not	possible	to
unload	or	reload	a	package.	From	version	8.5	however,	the	unload
command	allows	the	unloading	of	libraries	loaded	with	load,	for	libraries
that	are	aware	of	the	Tcl's	unloading	mechanism.

The	load	command	also	supports	packages	that	are	statically	linked
with	the	application,	if	those	packages	have	been	registered	by	calling
the	Tcl_StaticPackage	procedure.	If	fileName	is	an	empty	string,	then
packageName	must	be	specified.

If	packageName	is	omitted	or	specified	as	an	empty	string,	Tcl	tries	to
guess	the	name	of	the	package.	This	may	be	done	differently	on

different	platforms.	The	default	guess,	which	is	used	on	most	UNIX
platforms,	is	to	take	the	last	element	of	fileName,	strip	off	the	first	three
characters	if	they	are	lib,	and	use	any	following	alphabetic	and
underline	characters	as	the	module	name.	For	example,	the	command
load	libxyz4.2.so	uses	the	module	name	xyz	and	the	command	load
bin/last.so	{}	uses	the	module	name	last.

If	fileName	is	an	empty	string,	then	packageName	must	be	specified.
The	load	command	first	searches	for	a	statically	loaded	package	(one
that	has	been	registered	by	calling	the	Tcl_StaticPackage	procedure)
by	that	name;	if	one	is	found,	it	is	used.	Otherwise,	the	load	command
searches	for	a	dynamically	loaded	package	by	that	name,	and	uses	it	if
it	is	found.	If	several	different	files	have	been	loaded	with	different
versions	of	the	package,	Tcl	picks	the	file	that	was	loaded	first.

PORTABILITY	ISSUES

Windows
When	a	load	fails	with	“library	not	found”	error,	it	is	also	possible
that	a	dependent	library	was	not	found.	To	see	the	dependent
libraries,	type	“dumpbin	-imports	<dllname>”	in	a	DOS	console	to
see	what	the	library	must	import.	When	loading	a	DLL	in	the	current
directory,	Windows	will	ignore	“./”	as	a	path	specifier	and	use	a
search	heuristic	to	find	the	DLL	instead.	To	avoid	this,	load	the	DLL
with:

load	[file	join	[pwd]	mylib.DLL]

BUGS

If	the	same	file	is	loaded	by	different	fileNames,	it	will	be	loaded	into
the	process's	address	space	multiple	times.	The	behavior	of	this	varies
from	system	to	system	(some	systems	may	detect	the	redundant	loads,
others	may	not).

EXAMPLE

The	following	is	a	minimal	extension:

#include	<tcl.h>

#include	<stdio.h>

static	int	fooCmd(ClientData	clientData,

								Tcl_Interp	*interp,	int	objc,	Tcl_Obj	*const	objv[])	{

				printf("called	with	%d	arguments\n",	objc);

				return	TCL_OK;

}

int	Foo_Init(Tcl_Interp	*interp)	{

				if	(Tcl_InitStubs(interp,	"8.1",	0)	==	NULL)	{

	return	TCL_ERROR;

				}

				printf("creating	foo	command");

				Tcl_CreateObjCommand(interp,	"foo",	fooCmd,	NULL,	NULL);

				return	TCL_OK;

}

When	built	into	a	shared/dynamic	library	with	a	suitable	name	(e.g.
foo.dll	on	Windows,	libfoo.so	on	Solaris	and	Linux)	it	can	then	be
loaded	into	Tcl	with	the	following:

#	Load	the	extension

switch	$tcl_platform(platform)	{

			windows	{

						load	[file	join	[pwd]	foo.dll]

			}

			unix	{

						load	[file	join	[pwd]	libfoo[info	sharedlibextension]]

			}

}

#	Now	execute	the	command	defined	by	the	extension

foo

SEE	ALSO

info	sharedlibextension,	Tcl_StaticPackage,	safe

KEYWORDS

binary	code,	loading,	safe	interpreter,	shared	library

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1995-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	read

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

read	-	Read	from	a	channel

SYNOPSIS

read	?-nonewline?	channelId
read	channelId	numChars

DESCRIPTION

In	the	first	form,	the	read	command	reads	all	of	the	data	from	channelId
up	to	the	end	of	the	file.	If	the	-nonewline	switch	is	specified	then	the
last	character	of	the	file	is	discarded	if	it	is	a	newline.	In	the	second
form,	the	extra	argument	specifies	how	many	characters	to	read.
Exactly	that	many	characters	will	be	read	and	returned,	unless	there	are
fewer	than	numChars	left	in	the	file;	in	this	case	all	the	remaining
characters	are	returned.	If	the	channel	is	configured	to	use	a	multi-byte
encoding,	then	the	number	of	characters	read	may	not	be	the	same	as
the	number	of	bytes	read.

ChannelId	must	be	an	identifier	for	an	open	channel	such	as	the	Tcl
standard	input	channel	(stdin),	the	return	value	from	an	invocation	of
open	or	socket,	or	the	result	of	a	channel	creation	command	provided
by	a	Tcl	extension.	The	channel	must	have	been	opened	for	input.

If	channelId	is	in	nonblocking	mode,	the	command	may	not	read	as
many	characters	as	requested:	once	all	available	input	has	been	read,
the	command	will	return	the	data	that	is	available	rather	than	blocking
for	more	input.	If	the	channel	is	configured	to	use	a	multi-byte	encoding,
then	there	may	actually	be	some	bytes	remaining	in	the	internal	buffers
that	do	not	form	a	complete	character.	These	bytes	will	not	be	returned

until	a	complete	character	is	available	or	end-of-file	is	reached.	The	-
nonewline	switch	is	ignored	if	the	command	returns	before	reaching
the	end	of	the	file.

Read	translates	end-of-line	sequences	in	the	input	into	newline
characters	according	to	the	-translation	option	for	the	channel.	See	the
fconfigure	manual	entry	for	a	discussion	on	ways	in	which	fconfigure
will	alter	input.

USE	WITH	SERIAL	PORTS

For	most	applications	a	channel	connected	to	a	serial	port	should	be
configured	to	be	nonblocking:	fconfigure	channelId	-blocking	0.	Then
read	behaves	much	like	described	above.	Care	must	be	taken	when
using	read	on	blocking	serial	ports:

read	channelId	numChars
In	this	form	read	blocks	until	numChars	have	been	received	from
the	serial	port.

read	channelId
In	this	form	read	blocks	until	the	reception	of	the	end-of-file
character,	see	fconfigure	-eofchar.	If	there	no	end-of-file
character	has	been	configured	for	the	channel,	then	read	will	block
forever.

EXAMPLE

This	example	code	reads	a	file	all	at	once,	and	splits	it	into	a	list,	with
each	line	in	the	file	corresponding	to	an	element	in	the	list:

set	fl	[open	/proc/meminfo]

set	data	[read	$fl]

close	$fl

set	lines	[split	$data	\n]

SEE	ALSO

file,	eof,	fblocked,	fconfigure,	Tcl_StandardChannels

KEYWORDS

blocking,	channel,	end	of	line,	end	of	file,	nonblocking,	read,	translation,
encoding

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	tclvars

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
tclvars	-	Variables	used	by	Tcl

DESCRIPTION
env
errorCode

ARITH	code	msg
CHILDKILLED	pid	sigName	msg
CHILDSTATUS	pid	code
CHILDSUSP	pid	sigName	msg
NONE
POSIX	errName	msg

errorInfo
tcl_library
tcl_patchLevel
tcl_pkgPath
tcl_platform

byteOrder
debug
machine
os
osVersion
platform
threaded
user
wordSize
pointerSize

tcl_precision
tcl_rcFileName
tcl_traceCompile
tcl_traceExec
tcl_wordchars

tcl_nonwordchars
tcl_version

OTHER	GLOBAL	VARIABLES
argc
argv
argv0
tcl_interactive
geometry

SEE	ALSO
KEYWORDS

NAME

tclvars	-	Variables	used	by	Tcl

DESCRIPTION

The	following	global	variables	are	created	and	managed	automatically
by	the	Tcl	library.	Except	where	noted	below,	these	variables	should
normally	be	treated	as	read-only	by	application-specific	code	and	by
users.

env
This	variable	is	maintained	by	Tcl	as	an	array	whose	elements	are
the	environment	variables	for	the	process.	Reading	an	element	will
return	the	value	of	the	corresponding	environment	variable.	Setting
an	element	of	the	array	will	modify	the	corresponding	environment
variable	or	create	a	new	one	if	it	does	not	already	exist.	Unsetting
an	element	of	env	will	remove	the	corresponding	environment
variable.	Changes	to	the	env	array	will	affect	the	environment
passed	to	children	by	commands	like	exec.	If	the	entire	env	array
is	unset	then	Tcl	will	stop	monitoring	env	accesses	and	will	not
update	environment	variables.

Under	Windows,	the	environment	variables	PATH	and	COMSPEC
in	any	capitalization	are	converted	automatically	to	upper	case.	For
instance,	the	PATH	variable	could	be	exported	by	the	operating
system	as	“path”,	“Path”,	“PaTh”,	etc.,	causing	otherwise	simple	Tcl

code	to	have	to	support	many	special	cases.	All	other	environment
variables	inherited	by	Tcl	are	left	unmodified.	Setting	an	env	array
variable	to	blank	is	the	same	as	unsetting	it	as	this	is	the	behavior
of	the	underlying	Windows	OS.	It	should	be	noted	that	relying	on
an	existing	and	empty	environment	variable	will	not	work	on
Windows	and	is	discouraged	for	cross-platform	usage.

errorCode
This	variable	holds	the	value	of	the	-errorcode	return	option	set	by
the	most	recent	error	that	occurred	in	this	interpreter.	This	list	value
represents	additional	information	about	the	error	in	a	form	that	is
easy	to	process	with	programs.	The	first	element	of	the	list
identifies	a	general	class	of	errors,	and	determines	the	format	of
the	rest	of	the	list.	The	following	formats	for	-errorcode	return
options	are	used	by	the	Tcl	core;	individual	applications	may	define
additional	formats.

ARITH	code	msg
This	format	is	used	when	an	arithmetic	error	occurs	(e.g.	an
attempt	to	divide	zero	by	zero	in	the	expr	command).	Code
identifies	the	precise	error	and	msg	provides	a	human-
readable	description	of	the	error.	Code	will	be	either	DIVZERO
(for	an	attempt	to	divide	by	zero),	DOMAIN	(if	an	argument	is
outside	the	domain	of	a	function,	such	as	acos(-3)),
IOVERFLOW	(for	integer	overflow),	OVERFLOW	(for	a
floating-point	overflow),	or	UNKNOWN	(if	the	cause	of	the
error	cannot	be	determined).

Detection	of	these	errors	depends	in	part	on	the	underlying
hardware	and	system	libraries.

CHILDKILLED	pid	sigName	msg
This	format	is	used	when	a	child	process	has	been	killed
because	of	a	signal.	The	pid	element	will	be	the	process's
identifier	(in	decimal).	The	sigName	element	will	be	the
symbolic	name	of	the	signal	that	caused	the	process	to
terminate;	it	will	be	one	of	the	names	from	the	include	file
signal.h,	such	as	SIGPIPE.	The	msg	element	will	be	a	short

human-readable	message	describing	the	signal,	such	as	“write
on	pipe	with	no	readers”	for	SIGPIPE.

CHILDSTATUS	pid	code
This	format	is	used	when	a	child	process	has	exited	with	a
non-zero	exit	status.	The	pid	element	will	be	the	process's
identifier	(in	decimal)	and	the	code	element	will	be	the	exit
code	returned	by	the	process	(also	in	decimal).

CHILDSUSP	pid	sigName	msg
This	format	is	used	when	a	child	process	has	been	suspended
because	of	a	signal.	The	pid	element	will	be	the	process's
identifier,	in	decimal.	The	sigName	element	will	be	the
symbolic	name	of	the	signal	that	caused	the	process	to
suspend;	this	will	be	one	of	the	names	from	the	include	file
signal.h,	such	as	SIGTTIN.	The	msg	element	will	be	a	short
human-readable	message	describing	the	signal,	such	as
“background	tty	read”	for	SIGTTIN.

NONE
This	format	is	used	for	errors	where	no	additional	information
is	available	for	an	error	besides	the	message	returned	with	the
error.	In	these	cases	the	-errorcode	return	option	will	consist
of	a	list	containing	a	single	element	whose	contents	are
NONE.

POSIX	errName	msg
If	the	first	element	is	POSIX,	then	the	error	occurred	during	a
POSIX	kernel	call.	The	errName	element	will	contain	the
symbolic	name	of	the	error	that	occurred,	such	as	ENOENT;
this	will	be	one	of	the	values	defined	in	the	include	file	errno.h.
The	msg	element	will	be	a	human-readable	message
corresponding	to	errName,	such	as	“no	such	file	or	directory”
for	the	ENOENT	case.

To	set	the	-errorcode	return	option,	applications	should	use	library
procedures	such	as	Tcl_SetObjErrorCode,
Tcl_SetReturnOptions,	and	Tcl_PosixError,	or	they	may	invoke

the	-errorcode	option	of	the	return	command.	If	none	of	these
methods	for	setting	the	error	code	has	been	used,	the	Tcl
interpreter	will	reset	the	variable	to	NONE	after	the	next	error.

errorInfo
This	variable	holds	the	value	of	the	-errorinfo	return	option	set	by
the	most	recent	error	that	occurred	in	this	interpreter.	This	string
value	will	contain	one	or	more	lines	identifying	the	Tcl	commands
and	procedures	that	were	being	executed	when	the	most	recent
error	occurred.	Its	contents	take	the	form	of	a	stack	trace	showing
the	various	nested	Tcl	commands	that	had	been	invoked	at	the	time
of	the	error.

tcl_library
This	variable	holds	the	name	of	a	directory	containing	the	system
library	of	Tcl	scripts,	such	as	those	used	for	auto-loading.	The	value
of	this	variable	is	returned	by	the	info	library	command.	See	the
library	manual	entry	for	details	of	the	facilities	provided	by	the	Tcl
script	library.	Normally	each	application	or	package	will	have	its
own	application-specific	script	library	in	addition	to	the	Tcl	script
library;	each	application	should	set	a	global	variable	with	a	name
like	$app_library	(where	app	is	the	application's	name)	to	hold	the
network	file	name	for	that	application's	library	directory.	The	initial
value	of	tcl_library	is	set	when	an	interpreter	is	created	by
searching	several	different	directories	until	one	is	found	that
contains	an	appropriate	Tcl	startup	script.	If	the	TCL_LIBRARY
environment	variable	exists,	then	the	directory	it	names	is	checked
first.	If	TCL_LIBRARY	is	not	set	or	doesn't	refer	to	an	appropriate
directory,	then	Tcl	checks	several	other	directories	based	on	a
compiled-in	default	location,	the	location	of	the	binary	containing
the	application,	and	the	current	working	directory.

tcl_patchLevel
When	an	interpreter	is	created	Tcl	initializes	this	variable	to	hold	a
string	giving	the	current	patch	level	for	Tcl,	such	as	8.4.16	for	Tcl
8.4	with	the	first	sixteen	official	patches,	or	8.5b3	for	the	third	beta
release	of	Tcl	8.5.	The	value	of	this	variable	is	returned	by	the	info
patchlevel	command.

tcl_pkgPath
This	variable	holds	a	list	of	directories	indicating	where	packages
are	normally	installed.	It	is	not	used	on	Windows.	It	typically
contains	either	one	or	two	entries;	if	it	contains	two	entries,	the	first
is	normally	a	directory	for	platform-dependent	packages	(e.g.,
shared	library	binaries)	and	the	second	is	normally	a	directory	for
platform-independent	packages	(e.g.,	script	files).	Typically	a
package	is	installed	as	a	subdirectory	of	one	of	the	entries	in
$tcl_pkgPath.	The	directories	in	$tcl_pkgPath	are	included	by
default	in	the	auto_path	variable,	so	they	and	their	immediate
subdirectories	are	automatically	searched	for	packages	during
package	require	commands.	Note:	tcl_pkgPath	is	not	intended	to
be	modified	by	the	application.	Its	value	is	added	to	auto_path	at
startup;	changes	to	tcl_pkgPath	are	not	reflected	in	auto_path.	If
you	want	Tcl	to	search	additional	directories	for	packages	you
should	add	the	names	of	those	directories	to	auto_path,	not
tcl_pkgPath.

tcl_platform
This	is	an	associative	array	whose	elements	contain	information
about	the	platform	on	which	the	application	is	running,	such	as	the
name	of	the	operating	system,	its	current	release	number,	and	the
machine's	instruction	set.	The	elements	listed	below	will	always	be
defined,	but	they	may	have	empty	strings	as	values	if	Tcl	could	not
retrieve	any	relevant	information.	In	addition,	extensions	and
applications	may	add	additional	values	to	the	array.	The	predefined
elements	are:

byteOrder
The	native	byte	order	of	this	machine:	either	littleEndian	or
bigEndian.

debug
If	this	variable	exists,	then	the	interpreter	was	compiled	with
and	linked	to	a	debug-enabled	C	run-time.	This	variable	will
only	exist	on	Windows,	so	extension	writers	can	specify	which
package	to	load	depending	on	the	C	run-time	library	that	is	in

use.	This	is	not	an	indication	that	this	core	contains	symbols.

machine
The	instruction	set	executed	by	this	machine,	such	as	intel,
PPC,	68k,	or	sun4m.	On	UNIX	machines,	this	is	the	value
returned	by	uname	-m.

os
The	name	of	the	operating	system	running	on	this	machine,
such	as	Windows	95,	Windows	NT,	or	SunOS.	On	UNIX
machines,	this	is	the	value	returned	by	uname	-s.	On	Windows
95	and	Windows	98,	the	value	returned	will	be	Windows	95	to
provide	better	backwards	compatibility	to	Windows	95;	to
distinguish	between	the	two,	check	the	osVersion.

osVersion
The	version	number	for	the	operating	system	running	on	this
machine.	On	UNIX	machines,	this	is	the	value	returned	by
uname	-r.	On	Windows	95,	the	version	will	be	4.0;	on
Windows	98,	the	version	will	be	4.10.

platform
Either	windows,	or	unix.	This	identifies	the	general	operating
environment	of	the	machine.

threaded
If	this	variable	exists,	then	the	interpreter	was	compiled	with
threads	enabled.

user
This	identifies	the	current	user	based	on	the	login	information
available	on	the	platform.	This	comes	from	the	USER	or
LOGNAME	environment	variable	on	Unix,	and	the	value	from
GetUserName	on	Windows.

wordSize
This	gives	the	size	of	the	native-machine	word	in	bytes	(strictly,
it	is	same	as	the	result	of	evaluating	sizeof(long)	in	C.)

pointerSize
This	gives	the	size	of	the	native-machine	pointer	in	bytes
(strictly,	it	is	same	as	the	result	of	evaluating	sizeof(void*)	in
C.)

tcl_precision
This	variable	controls	the	number	of	digits	to	generate	when
converting	floating-point	values	to	strings.	It	defaults	to	0.
Applications	should	not	change	this	value;	it	is	provided	for
compatibility	with	legacy	code.

The	default	value	of	0	is	special,	meaning	that	Tcl	should	convert
numbers	using	as	few	digits	as	possible	while	still	distinguishing
any	floating	point	number	from	its	nearest	neighbours.	It	differs
from	using	an	arbitrarily	high	value	for	tcl_precision	in	that	an
inexact	number	like	1.4	will	convert	as	1.4	rather	than
1.3999999999999999	even	though	the	latter	is	nearer	to	the	exact
value	of	the	binary	number.

17	digits	is	“perfect”	for	IEEE	floating-point	in	that	it	allows	double-
precision	values	to	be	converted	to	strings	and	back	to	binary	with
no	loss	of	information.	However,	using	17	digits	prevents	any
rounding,	which	produces	longer,	less	intuitive	results.	For
example,	expr	{1.4}	returns	1.3999999999999999	with
tcl_precision	set	to	17,	vs.	1.4	if	tcl_precision	is	12.

All	interpreters	in	a	thread	share	a	single	tcl_precision	value:
changing	it	in	one	interpreter	will	affect	all	other	interpreters	as	well.
However,	safe	interpreters	are	not	allowed	to	modify	the	variable.

tcl_rcFileName
This	variable	is	used	during	initialization	to	indicate	the	name	of	a
user-specific	startup	file.	If	it	is	set	by	application-specific
initialization,	then	the	Tcl	startup	code	will	check	for	the	existence
of	this	file	and	source	it	if	it	exists.	For	example,	for	wish	the
variable	is	set	to	~/.wishrc	for	Unix	and	~/wishrc.tcl	for	Windows.

tcl_traceCompile

The	value	of	this	variable	can	be	set	to	control	how	much	tracing
information	is	displayed	during	bytecode	compilation.	By	default,
tcl_traceCompile	is	zero	and	no	information	is	displayed.	Setting
tcl_traceCompile	to	1	generates	a	one-line	summary	in	stdout
whenever	a	procedure	or	top-level	command	is	compiled.	Setting	it
to	2	generates	a	detailed	listing	in	stdout	of	the	bytecode
instructions	emitted	during	every	compilation.	This	variable	is
useful	in	tracking	down	suspected	problems	with	the	Tcl	compiler.

This	variable	and	functionality	only	exist	if	TCL_COMPILE_DEBUG
was	defined	during	Tcl's	compilation.

tcl_traceExec
The	value	of	this	variable	can	be	set	to	control	how	much	tracing
information	is	displayed	during	bytecode	execution.	By	default,
tcl_traceExec	is	zero	and	no	information	is	displayed.	Setting
tcl_traceExec	to	1	generates	a	one-line	trace	in	stdout	on	each	call
to	a	Tcl	procedure.	Setting	it	to	2	generates	a	line	of	output
whenever	any	Tcl	command	is	invoked	that	contains	the	name	of
the	command	and	its	arguments.	Setting	it	to	3	produces	a	detailed
trace	showing	the	result	of	executing	each	bytecode	instruction.
Note	that	when	tcl_traceExec	is	2	or	3,	commands	such	as	set	and
incr	that	have	been	entirely	replaced	by	a	sequence	of	bytecode
instructions	are	not	shown.	Setting	this	variable	is	useful	in	tracking
down	suspected	problems	with	the	bytecode	compiler	and
interpreter.

This	variable	and	functionality	only	exist	if	TCL_COMPILE_DEBUG
was	defined	during	Tcl's	compilation.

tcl_wordchars
The	value	of	this	variable	is	a	regular	expression	that	can	be	set	to
control	what	are	considered	“word”	characters,	for	instances	like
selecting	a	word	by	double-clicking	in	text	in	Tk.	It	is	platform
dependent.	On	Windows,	it	defaults	to	\S,	meaning	anything	but	a
Unicode	space	character.	Otherwise	it	defaults	to	\w,	which	is	any
Unicode	word	character	(number,	letter,	or	underscore).

tcl_nonwordchars
The	value	of	this	variable	is	a	regular	expression	that	can	be	set	to
control	what	are	considered	“non-word”	characters,	for	instances
like	selecting	a	word	by	double-clicking	in	text	in	Tk.	It	is	platform
dependent.	On	Windows,	it	defaults	to	\s,	meaning	any	Unicode
space	character.	Otherwise	it	defaults	to	\W,	which	is	anything	but
a	Unicode	word	character	(number,	letter,	or	underscore).

tcl_version
When	an	interpreter	is	created	Tcl	initializes	this	variable	to	hold	the
version	number	for	this	version	of	Tcl	in	the	form	x.y.	Changes	to	x
represent	major	changes	with	probable	incompatibilities	and
changes	to	y	represent	small	enhancements	and	bug	fixes	that
retain	backward	compatibility.	The	value	of	this	variable	is	returned
by	the	info	tclversion	command.

OTHER	GLOBAL	VARIABLES

The	following	variables	are	only	guaranteed	to	exist	in	tclsh	and	wish
executables;	the	Tcl	library	does	not	define	them	itself	but	many	Tcl
environments	do.

argc
The	number	of	arguments	to	tclsh	or	wish.

argv
Tcl	list	of	arguments	to	tclsh	or	wish.

argv0
The	script	that	tclsh	or	wish	started	executing	(if	it	was	specified)
or	otherwise	the	name	by	which	tclsh	or	wish	was	invoked.

tcl_interactive
Contains	1	if	tclsh	or	wish	is	running	interactively	(no	script	was
specified	and	standard	input	is	a	terminal-like	device),	0	otherwise.

The	wish	executable	additionally	specifies	the	following	global	variable:

geometry
If	set,	contains	the	user-supplied	geometry	specification	to	use	for
the	main	Tk	window.

SEE	ALSO

eval,	tclsh,	wish

KEYWORDS

arithmetic,	bytecode,	compiler,	error,	environment,	POSIX,	precision,
subprocess,	variables

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1997	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	fcopy

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

fcopy	-	Copy	data	from	one	channel	to	another

SYNOPSIS

fcopy	inchan	outchan	?-size	size?	?-command	callback?

DESCRIPTION

The	fcopy	command	copies	data	from	one	I/O	channel,	inchan	to
another	I/O	channel,	outchan.	The	fcopy	command	leverages	the
buffering	in	the	Tcl	I/O	system	to	avoid	extra	copies	and	to	avoid
buffering	too	much	data	in	main	memory	when	copying	large	files	to
slow	destinations	like	network	sockets.

The	fcopy	command	transfers	data	from	inchan	until	end	of	file	or	size
bytes	have	been	transferred.	If	no	-size	argument	is	given,	then	the
copy	goes	until	end	of	file.	All	the	data	read	from	inchan	is	copied	to
outchan.	Without	the	-command	option,	fcopy	blocks	until	the	copy	is
complete	and	returns	the	number	of	bytes	written	to	outchan.

The	-command	argument	makes	fcopy	work	in	the	background.	In	this
case	it	returns	immediately	and	the	callback	is	invoked	later	when	the
copy	completes.	The	callback	is	called	with	one	or	two	additional
arguments	that	indicates	how	many	bytes	were	written	to	outchan.	If	an
error	occurred	during	the	background	copy,	the	second	argument	is	the
error	string	associated	with	the	error.	With	a	background	copy,	it	is	not
necessary	to	put	inchan	or	outchan	into	non-blocking	mode;	the	fcopy
command	takes	care	of	that	automatically.	However,	it	is	necessary	to
enter	the	event	loop	by	using	the	vwait	command	or	by	using	Tk.

You	are	not	allowed	to	do	other	I/O	operations	with	inchan	or	outchan
during	a	background	fcopy.	If	either	inchan	or	outchan	get	closed	while
the	copy	is	in	progress,	the	current	copy	is	stopped	and	the	command
callback	is	not	made.	If	inchan	is	closed,	then	all	data	already	queued
for	outchan	is	written	out.

Note	that	inchan	can	become	readable	during	a	background	copy.	You
should	turn	off	any	fileevent	handlers	during	a	background	copy	so
those	handlers	do	not	interfere	with	the	copy.	Any	I/O	attempted	by	a
fileevent	handler	will	get	a	“channel	busy”	error.

Fcopy	translates	end-of-line	sequences	in	inchan	and	outchan
according	to	the	-translation	option	for	these	channels.	See	the	manual
entry	for	fconfigure	for	details	on	the	-translation	option.	The
translations	mean	that	the	number	of	bytes	read	from	inchan	can	be
different	than	the	number	of	bytes	written	to	outchan.	Only	the	number
of	bytes	written	to	outchan	is	reported,	either	as	the	return	value	of	a
synchronous	fcopy	or	as	the	argument	to	the	callback	for	an
asynchronous	fcopy.

Fcopy	obeys	the	encodings	and	character	translations	configured	for
the	channels.	This	means	that	the	incoming	characters	are	converted
internally	first	UTF-8	and	then	into	the	encoding	of	the	channel	fcopy
writes	to.	See	the	manual	entry	for	fconfigure	for	details	on	the	-
encoding	and	-translation	options.	No	conversion	is	done	if	both
channels	are	set	to	encoding	“binary”	and	have	matching	translations.	If
only	the	output	channel	is	set	to	encoding	“binary”	the	system	will	write
the	internal	UTF-8	representation	of	the	incoming	characters.	If	only	the
input	channel	is	set	to	encoding	“binary”	the	system	will	assume	that
the	incoming	bytes	are	valid	UTF-8	characters	and	convert	them
according	to	the	output	encoding.	The	behaviour	of	the	system	for	bytes
which	are	not	valid	UTF-8	characters	is	undefined	in	this	case.

EXAMPLES

The	first	example	transfers	the	contents	of	one	channel	exactly	to
another.	Note	that	when	copying	one	file	to	another,	it	is	better	to	use
file	copy	which	also	copies	file	metadata	(e.g.	the	file	access

permissions)	where	possible.

fconfigure	$in	-translation	binary

fconfigure	$out	-translation	binary

fcopy	$in	$out

This	second	example	shows	how	the	callback	gets	passed	the	number
of	bytes	transferred.	It	also	uses	vwait	to	put	the	application	into	the
event	loop.	Of	course,	this	simplified	example	could	be	done	without	the
command	callback.

proc	Cleanup	{in	out	bytes	{error	{}}}	{

				global	total

				set	total	$bytes

				close	$in

				close	$out

				if	{[string	length	$error]	!=	0}	{

	#	error	occurred	during	the	copy

				}

}

set	in	[open	$file1]

set	out	[socket	$server	$port]

fcopy	$in	$out	-command	[list	Cleanup	$in	$out]

vwait	total

The	third	example	copies	in	chunks	and	tests	for	end	of	file	in	the
command	callback

proc	CopyMore	{in	out	chunk	bytes	{error	{}}}	{

				global	total	done

				incr	total	$bytes

				if	{([string	length	$error]	!=	0)	||	[eof	$in]}	{

	set	done	$total

	close	$in

	close	$out

				}	else	{

	 fcopy	$in	$out	-size	$chunk	\

																-command	[list	CopyMore	$in	$out	$chunk]

				}

}

set	in	[open	$file1]

set	out	[socket	$server	$port]

set	chunk	1024

set	total	0

fcopy	$in	$out	-size	$chunk	\

								-command	[list	CopyMore	$in	$out	$chunk]

vwait	done

SEE	ALSO

eof,	fblocked,	fconfigure,	file

KEYWORDS

blocking,	channel,	end	of	line,	end	of	file,	nonblocking,	read,	translation

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1997	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	lrange

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

lrange	-	Return	one	or	more	adjacent	elements	from	a	list

SYNOPSIS

lrange	list	first	last

DESCRIPTION

List	must	be	a	valid	Tcl	list.	This	command	will	return	a	new	list
consisting	of	elements	first	through	last,	inclusive.	The	index	values	first
and	last	are	interpreted	the	same	as	index	values	for	the	command
string	index,	supporting	simple	index	arithmetic	and	indices	relative	to
the	end	of	the	list.	If	first	is	less	than	zero,	it	is	treated	as	if	it	were	zero.
If	last	is	greater	than	or	equal	to	the	number	of	elements	in	the	list,	then
it	is	treated	as	if	it	were	end.	If	first	is	greater	than	last	then	an	empty
string	is	returned.	Note:	“lrange	list	first	first”	does	not	always	produce
the	same	result	as	“lindex	list	first”	(although	it	often	does	for	simple
fields	that	are	not	enclosed	in	braces);	it	does,	however,	produce
exactly	the	same	results	as	“list	[lindex	list	first]”

EXAMPLES

Selecting	the	first	two	elements:

%	lrange	{a	b	c	d	e}	0	1

a	b

Selecting	the	last	three	elements:

%	lrange	{a	b	c	d	e}	end-2	end

c	d	e

Selecting	everything	except	the	first	and	last	element:

%	lrange	{a	b	c	d	e}	1	end-1

b	c	d

Selecting	a	single	element	with	lrange	is	not	the	same	as	doing	so	with
lindex:

%	set	var	{some	{elements	to}	select}

some	{elements	to}	select

%	lindex	$var	1

elements	to

%	lrange	$var	1	1

{elements	to}

SEE	ALSO

list,	lappend,	lindex,	linsert,	llength,	lsearch,	lset,	lreplace,	lsort,
string

KEYWORDS

element,	list,	range,	sublist

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.
Copyright	©	2001	Kevin	B.	Kenny	<kennykb(at)acm.org>.	All	rights	reserved.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	refchan

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
refchan	-	Command	handler	API	of	reflected	channels,	version
1

SYNOPSIS
DESCRIPTION
MANDATORY	SUBCOMMANDS

cmdPrefix	initialize	channelId	mode
cmdPrefix	finalize	channelId
cmdPrefix	watch	channelId	eventspec

OPTIONAL	SUBCOMMANDS
cmdPrefix	read	channelId	count
cmdPrefix	write	channelId	data
cmdPrefix	seek	channelId	offset	base

start
current
end

cmdPrefix	configure	channelId	option	value
cmdPrefix	cget	channelId	option
cmdPrefix	cgetall	channelId
cmdPrefix	blocking	channelId	mode

NOTES
SEE	ALSO
KEYWORDS

NAME

refchan	-	Command	handler	API	of	reflected	channels,	version	1

SYNOPSIS

cmdPrefix	option	?arg	arg	...?

DESCRIPTION

The	Tcl-level	handler	for	a	reflected	channel	has	to	be	a	command	with
subcommands	(termed	an	ensemble,	as	it	is	a	command	such	as	that
created	by	namespace	ensemble	create,	though	the	implementation
of	handlers	for	reflected	channel	is	not	tied	to	namespace	ensembles
in	any	way).	Note	that	cmdPrefix	is	whatever	was	specified	in	the	call	to
chan	create,	and	may	consist	of	multiple	arguments;	this	will	be
expanded	to	multiple	words	in	place	of	the	prefix.

Of	all	the	possible	subcommands,	the	handler	must	support	initialize,
finalize,	and	watch.	Support	for	the	other	subcommands	is	optional.

MANDATORY	SUBCOMMANDS

cmdPrefix	initialize	channelId	mode
An	invocation	of	this	subcommand	will	be	the	first	call	the
cmdPrefix	will	receive	for	the	specified	new	channelId.	It	is	the
responsibility	of	this	subcommand	to	set	up	any	internal	data
structures	required	to	keep	track	of	the	channel	and	its	state.

The	return	value	of	the	method	has	to	be	a	list	containing	the
names	of	all	subcommands	supported	by	the	cmdPrefix.	This	also
tells	the	Tcl	core	which	version	of	the	API	for	reflected	channels	is
used	by	this	command	handler.

Any	error	thrown	by	the	method	will	abort	the	creation	of	the
channel	and	no	channel	will	be	created.	The	thrown	error	will
appear	as	error	thrown	by	chan	create.	Any	exception	other	than
an	error	(e.g.	break,	etc.)	is	treated	as	(and	converted	to)	an	error.

Note:	If	the	creation	of	the	channel	was	aborted	due	to	failures
here,	then	the	finalize	subcommand	will	not	be	called.

The	mode	argument	tells	the	handler	whether	the	channel	was
opened	for	reading,	writing,	or	both.	It	is	a	list	containing	any	of	the
strings	read	or	write.	The	list	will	always	contain	at	least	one
element.

The	subcommand	must	throw	an	error	if	the	chosen	mode	is	not
supported	by	the	cmdPrefix.

cmdPrefix	finalize	channelId
An	invocation	of	this	subcommand	will	be	the	last	call	the
cmdPrefix	will	receive	for	the	specified	channelId.	It	will	be
generated	just	before	the	destruction	of	the	data	structures	of	the
channel	held	by	the	Tcl	core.	The	command	handler	must	not
access	the	channelId	anymore	in	no	way.	Upon	this	subcommand
being	called,	any	internal	resources	allocated	to	this	channel	must
be	cleaned	up.

The	return	value	of	this	subcommand	is	ignored.

If	the	subcommand	throws	an	error	the	command	which	caused	its
invocation	(usually	close)	will	appear	to	have	thrown	this	error.	Any
exception	beyond	error	(e.g.	break,	etc.)	is	treated	as	(and
converted	to)	an	error.

This	subcommand	is	not	invoked	if	the	creation	of	the	channel	was
aborted	during	initialize	(See	above).

cmdPrefix	watch	channelId	eventspec
This	subcommand	notifies	the	cmdPrefix	that	the	specified
channelId	is	interested	in	the	events	listed	in	the	eventspec.	This
argument	is	a	list	containing	any	of	read	and	write.	The	list	may	be
empty,	which	signals	that	the	channel	does	not	wish	to	be	notified
of	any	events.	In	that	situation,	the	handler	should	disable	event
generation	completely.

Warning:	Any	return	value	of	the	subcommand	is	ignored.	This
includes	all	errors	thrown	by	the	subcommand,	break,	continue,
and	custom	return	codes.

This	subcommand	interacts	with	chan	postevent.	Trying	to	post	an
event	which	was	not	listed	in	the	last	call	to	watch	will	cause	chan
postevent	to	throw	an	error.

OPTIONAL	SUBCOMMANDS

cmdPrefix	read	channelId	count
This	optional	subcommand	is	called	when	the	user	requests	data
from	the	channel	channelId.	count	specifies	how	many	bytes	have
been	requested.	If	the	subcommand	is	not	supported	then	it	is	not
possible	to	read	from	the	channel	handled	by	the	command.

The	return	value	of	this	subcommand	is	taken	as	the	requested
data	bytes.	If	the	returned	data	contains	more	bytes	than
requested,	an	error	will	be	signaled	and	later	thrown	by	the
command	which	performed	the	read	(usually	gets	or	read).
However,	returning	fewer	bytes	than	requested	is	acceptable.

Note	that	returning	nothing	(0	bytes)	is	a	signal	to	the	higher	layers
that	EOF	has	been	reached	on	the	channel.	To	signal	that	the
channel	is	out	of	data	right	now,	but	has	not	yet	reached	EOF,	it	is
necessary	to	throw	the	error	"EAGAIN",	i.e.	to	either

return	-code	error	EAGAIN

or

error	EAGAIN

For	extensibility	any	error	whose	value	is	a	negative	integer
number	will	cause	the	higher	layers	to	set	the	C-level	variable
"errno"	to	the	absolute	value	of	this	number,	signaling	a	system
error.	This	means	that	both

return	-code	error	-11

and

error	-11

are	equivalent	to	the	examples	above,	using	the	more	readable
string	"EAGAIN".	No	other	error	value	has	such	a	mapping	to	a
symbolic	string.

If	the	subcommand	throws	any	other	error,	the	command	which
caused	its	invocation	(usually	gets,	or	read)	will	appear	to	have
thrown	this	error.	Any	exception	beyond	error,	(e.g.	break,	etc.)	is
treated	as	and	converted	to	an	error.

cmdPrefix	write	channelId	data
This	optional	subcommand	is	called	when	the	user	writes	data	to
the	channel	channelId.	The	data	argument	contains	bytes,	not
characters.	Any	type	of	transformation	(EOL,	encoding)	configured
for	the	channel	has	already	been	applied	at	this	point.	If	this
subcommand	is	not	supported	then	it	is	not	possible	to	write	to	the
channel	handled	by	the	command.

The	return	value	of	the	subcommand	is	taken	as	the	number	of
bytes	written	by	the	channel.	Anything	non-numeric	will	cause	an
error	to	be	signaled	and	later	thrown	by	the	command	which
performed	the	write.	A	negative	value	implies	that	the	write	failed.
Returning	a	value	greater	than	the	number	of	bytes	given	to	the
handler,	or	zero,	is	forbidden	and	will	cause	the	Tcl	core	to	throw	an
error.

If	the	subcommand	throws	an	error	the	command	which	caused	its
invocation	(usually	puts)	will	appear	to	have	thrown	this	error.	Any
exception	beyond	error	(e.g.	break,	etc.)	is	treated	as	and
converted	to	an	error.

cmdPrefix	seek	channelId	offset	base
This	optional	subcommand	is	responsible	for	the	handling	of	seek
and	tell	requests	on	the	channel	channelId.	If	it	is	not	supported
then	seeking	will	not	be	possible	for	the	channel.

The	base	argument	is	one	of

start
Seeking	is	relative	to	the	beginning	of	the	channel.

current
Seeking	is	relative	to	the	current	seek	position.

end
Seeking	is	relative	to	the	end	of	the	channel.

The	base	argument	of	the	builtin	chan	seek	command	takes	the
same	names.

The	offset	is	an	integer	number	specifying	the	amount	of	bytes	to
seek	forward	or	backward.	A	positive	number	should	seek	forward,
and	a	negative	number	should	seek	backward.

A	channel	may	provide	only	limited	seeking.	For	example	sockets
can	seek	forward,	but	not	backward.

The	return	value	of	the	subcommand	is	taken	as	the	(new)	location
of	the	channel,	counted	from	the	start.	This	has	to	be	an	integer
number	greater	than	or	equal	to	zero.

If	the	subcommand	throws	an	error	the	command	which	caused	its
invocation	(usually	seek,	or	tell)	will	appear	to	have	thrown	this
error.	Any	exception	beyond	error	(e.g.	break,	etc.)	is	treated	as
and	converted	to	an	error.

The	offset/base	combination	of	0/current	signals	a	tell	request,	i.e.
seek	nothing	relative	to	the	current	location,	making	the	new
location	identical	to	the	current	one,	which	is	then	returned.

cmdPrefix	configure	channelId	option	value
This	optional	subcommand	is	for	setting	the	type-specific	options	of
channel	channelId.	The	option	argument	indicates	the	option	to	be
written,	and	the	value	argument	indicates	the	value	to	set	the
option	to.

This	subcommand	will	never	try	to	update	more	than	one	option	at
a	time;	that	is	behavior	implemented	in	the	Tcl	channel	core.

The	return	value	of	the	subcommand	is	ignored.

If	the	subcommand	throws	an	error	the	command	which	performed
the	(re)configuration	or	query	(usually	fconfigure	or	chan
configure)	will	appear	to	have	thrown	this	error.	Any	exception
beyond	error	(e.g.	break,	etc.)	is	treated	as	and	converted	to	an
error.

cmdPrefix	cget	channelId	option
This	optional	subcommand	is	used	when	reading	a	single	type-
specific	option	of	channel	channelId.	If	this	subcommand	is
supported	then	the	subcommand	cgetall	must	be	supported	as
well.

The	subcommand	should	return	the	value	of	the	specified	option.

If	the	subcommand	throws	an	error,	the	command	which	performed
the	(re)configuration	or	query	(usually	fconfigure)	will	appear	to
have	thrown	this	error.	Any	exception	beyond	error	(e.g.	break,
etc.)	is	treated	as	and	converted	to	an	error.

cmdPrefix	cgetall	channelId
This	optional	subcommand	is	used	for	reading	all	type-specific
options	of	channel	channelId.	If	this	subcommand	is	supported	then
the	subcommand	cget	has	to	be	supported	as	well.

The	subcommand	should	return	a	list	of	all	options	and	their
values.	This	list	must	have	an	even	number	of	elements.

If	the	subcommand	throws	an	error	the	command	which	performed
the	(re)configuration	or	query	(usually	fconfigure)	will	appear	to
have	thrown	this	error.	Any	exception	beyond	error	(e.g.	break,
etc.)	is	treated	as	and	converted	to	an	error.

cmdPrefix	blocking	channelId	mode
This	optional	subcommand	handles	changes	to	the	blocking	mode

of	the	channel	channelId.	The	mode	is	a	boolean	flag.	A	true	value
means	that	the	channel	has	to	be	set	to	blocking,	and	a	false	value
means	that	the	channel	should	be	non-blocking.

The	return	value	of	the	subcommand	is	ignored.

If	the	subcommand	throws	an	error	the	command	which	caused	its
invocation	(usually	fconfigure)	will	appear	to	have	thrown	this
error.	Any	exception	beyond	error	(e.g.	break,	etc.)	is	treated	as
and	converted	to	an	error.

NOTES

Some	of	the	functions	supported	in	channels	defined	in	Tcl's	C	interface
are	not	available	to	channels	reflected	to	the	Tcl	level.

The	function	Tcl_DriverGetHandleProc	is	not	supported;	i.e.	reflected
channels	do	not	have	OS	specific	handles.

The	function	Tcl_DriverHandlerProc	is	not	supported.	This	driver
function	is	relevant	only	for	stacked	channels,	i.e.	transformations.
Reflected	channels	are	always	base	channels,	not	transformations.

The	function	Tcl_DriverFlushProc	is	not	supported.	This	is	because
the	current	generic	I/O	layer	of	Tcl	does	not	use	this	function	anywhere
at	all.	Therefore	support	at	the	Tcl	level	makes	no	sense	either.	This
may	be	altered	in	the	future	(through	extending	the	API	defined	here
and	changing	its	version	number)	should	the	function	be	used	at	some
time	in	the	future.

SEE	ALSO

chan

KEYWORDS

channel,	reflection

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.

Copyright	©	2006	Andreas	Kupries	<andreas_kupries(at)users.sourceforge.net>

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	tell

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

tell	-	Return	current	access	position	for	an	open	channel

SYNOPSIS

tell	channelId

DESCRIPTION

Returns	an	integer	string	giving	the	current	access	position	in
channelId.	This	value	returned	is	a	byte	offset	that	can	be	passed	to
seek	in	order	to	set	the	channel	to	a	particular	position.	Note	that	this
value	is	in	terms	of	bytes,	not	characters	like	read.	The	value	returned
is	-1	for	channels	that	do	not	support	seeking.

ChannelId	must	be	an	identifier	for	an	open	channel	such	as	a	Tcl
standard	channel	(stdin,	stdout,	or	stderr),	the	return	value	from	an
invocation	of	open	or	socket,	or	the	result	of	a	channel	creation
command	provided	by	a	Tcl	extension.

EXAMPLE

Read	a	line	from	a	file	channel	only	if	it	starts	with	foobar:

#	Save	the	offset	in	case	we	need	to	undo	the	read...

set	offset	[tell	$chan]

if	{[read	$chan	6]	eq	"foobar"}	{

				gets	$chan	line

}	else	{

				set	line	{}

				#	Undo	the	read...

				seek	$chan	$offset

}

SEE	ALSO

file,	open,	close,	gets,	seek,	Tcl_StandardChannels

KEYWORDS

access	position,	channel,	seeking

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	file

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
file	-	Manipulate	file	names	and	attributes

SYNOPSIS
DESCRIPTION

file	atime	name	?time?
file	attributes	name
file	attributes	name	?option?
file	attributes	name	?option	value	option	value...?
file	channels	?pattern?
file	copy	?-force?	?--?	source	target
file	copy	?-force?	?--?	source	?source	...?	targetDir
file	delete	?-force?	?--?	pathname	?pathname	...	?
file	dirname	name
file	executable	name
file	exists	name
file	extension	name
file	isdirectory	name
file	isfile	name
file	join	name	?name	...?
file	link	?-linktype?	linkName	?target?
file	lstat	name	varName
file	mkdir	dir	?dir	...?
file	mtime	name	?time?
file	nativename	name
file	normalize	name
file	owned	name
file	pathtype	name
file	readable	name
file	readlink	name
file	rename	?-force?	?--?	source	target
file	rename	?-force?	?--?	source	?source	...?	targetDir

file	rootname	name
file	separator	?name?
file	size	name
file	split	name
file	stat	name	varName
file	system	name
file	tail	name
file	type	name
file	volumes
file	writable	name

PORTABILITY	ISSUES
Unix

EXAMPLES
SEE	ALSO
KEYWORDS

NAME

file	-	Manipulate	file	names	and	attributes

SYNOPSIS

file	option	name	?arg	arg	...?

DESCRIPTION

This	command	provides	several	operations	on	a	file's	name	or
attributes.	Name	is	the	name	of	a	file;	if	it	starts	with	a	tilde,	then	tilde
substitution	is	done	before	executing	the	command	(see	the	manual
entry	for	filename	for	details).	Option	indicates	what	to	do	with	the	file
name.	Any	unique	abbreviation	for	option	is	acceptable.	The	valid
options	are:

file	atime	name	?time?
Returns	a	decimal	string	giving	the	time	at	which	file	name	was	last
accessed.	If	time	is	specified,	it	is	an	access	time	to	set	for	the	file.
The	time	is	measured	in	the	standard	POSIX	fashion	as	seconds
from	a	fixed	starting	time	(often	January	1,	1970).	If	the	file	does

not	exist	or	its	access	time	cannot	be	queried	or	set	then	an	error	is
generated.	On	Windows,	FAT	file	systems	do	not	support	access
time.

file	attributes	name

file	attributes	name	?option?

file	attributes	name	?option	value	option	value...?
This	subcommand	returns	or	sets	platform	specific	values
associated	with	a	file.	The	first	form	returns	a	list	of	the	platform
specific	flags	and	their	values.	The	second	form	returns	the	value
for	the	specific	option.	The	third	form	sets	one	or	more	of	the
values.	The	values	are	as	follows:

On	Unix,	-group	gets	or	sets	the	group	name	for	the	file.	A	group	id
can	be	given	to	the	command,	but	it	returns	a	group	name.	-owner
gets	or	sets	the	user	name	of	the	owner	of	the	file.	The	command
returns	the	owner	name,	but	the	numerical	id	can	be	passed	when
setting	the	owner.	-permissions	sets	or	retrieves	the	octal	code
that	chmod(1)	uses.	This	command	does	also	has	limited	support
for	setting	using	the	symbolic	attributes	for	chmod(1),	of	the	form
[ugo]?[[+-=][rwxst],[...]],	where	multiple	symbolic	attributes	can	be
separated	by	commas	(example:	u+s,go-rw	add	sticky	bit	for	user,
remove	read	and	write	permissions	for	group	and	other).	A
simplified	ls	style	string,	of	the	form	rwxrwxrwx	(must	be	9
characters),	is	also	supported	(example:	rwxr-xr-t	is	equivalent	to
01755).	On	versions	of	Unix	supporting	file	flags,	-readonly	gives
the	value	or	sets	or	clears	the	readonly	attribute	of	the	file,	i.e.	the
user	immutable	flag	uchg	to	chflags(1).

On	Windows,	-archive	gives	the	value	or	sets	or	clears	the	archive
attribute	of	the	file.	-hidden	gives	the	value	or	sets	or	clears	the
hidden	attribute	of	the	file.	-longname	will	expand	each	path
element	to	its	long	version.	This	attribute	cannot	be	set.	-readonly
gives	the	value	or	sets	or	clears	the	readonly	attribute	of	the	file.	-
shortname	gives	a	string	where	every	path	element	is	replaced
with	its	short	(8.3)	version	of	the	name.	This	attribute	cannot	be	set.

-system	gives	or	sets	or	clears	the	value	of	the	system	attribute	of
the	file.

On	Mac	OS	X	and	Darwin,	-creator	gives	or	sets	the	Finder	creator
type	of	the	file.	-hidden	gives	or	sets	or	clears	the	hidden	attribute
of	the	file.	-readonly	gives	or	sets	or	clears	the	readonly	attribute
of	the	file.	-rsrclength	gives	the	length	of	the	resource	fork	of	the
file,	this	attribute	can	only	be	set	to	the	value	0,	which	results	in	the
resource	fork	being	stripped	off	the	file.

file	channels	?pattern?
If	pattern	is	not	specified,	returns	a	list	of	names	of	all	registered
open	channels	in	this	interpreter.	If	pattern	is	specified,	only	those
names	matching	pattern	are	returned.	Matching	is	determined
using	the	same	rules	as	for	string	match.

file	copy	?-force?	?--?	source	target

file	copy	?-force?	?--?	source	?source	...?	targetDir
The	first	form	makes	a	copy	of	the	file	or	directory	source	under	the
pathname	target.	If	target	is	an	existing	directory,	then	the	second
form	is	used.	The	second	form	makes	a	copy	inside	targetDir	of
each	source	file	listed.	If	a	directory	is	specified	as	a	source,	then
the	contents	of	the	directory	will	be	recursively	copied	into
targetDir.	Existing	files	will	not	be	overwritten	unless	the	-force
option	is	specified	(when	Tcl	will	also	attempt	to	adjust	permissions
on	the	destination	file	or	directory	if	that	is	necessary	to	allow	the
copy	to	proceed).	When	copying	within	a	single	filesystem,	file	copy
will	copy	soft	links	(i.e.	the	links	themselves	are	copied,	not	the
things	they	point	to).	Trying	to	overwrite	a	non-empty	directory,
overwrite	a	directory	with	a	file,	or	overwrite	a	file	with	a	directory
will	all	result	in	errors	even	if	-force	was	specified.	Arguments	are
processed	in	the	order	specified,	halting	at	the	first	error,	if	any.	A	--
marks	the	end	of	switches;	the	argument	following	the	--	will	be
treated	as	a	source	even	if	it	starts	with	a	-.

file	delete	?-force?	?--?	pathname	?pathname	...	?
Removes	the	file	or	directory	specified	by	each	pathname

argument.	Non-empty	directories	will	be	removed	only	if	the	-force
option	is	specified.	When	operating	on	symbolic	links,	the	links
themselves	will	be	deleted,	not	the	objects	they	point	to.	Trying	to
delete	a	non-existent	file	is	not	considered	an	error.	Trying	to	delete
a	read-only	file	will	cause	the	file	to	be	deleted,	even	if	the	-force
flags	is	not	specified.	If	the	-force	option	is	specified	on	a	directory,
Tcl	will	attempt	both	to	change	permissions	and	move	the	current
directory	“pwd”	out	of	the	given	path	if	that	is	necessary	to	allow	the
deletion	to	proceed.	Arguments	are	processed	in	the	order
specified,	halting	at	the	first	error,	if	any.	A	--	marks	the	end	of
switches;	the	argument	following	the	--	will	be	treated	as	a
pathname	even	if	it	starts	with	a	-.

file	dirname	name
Returns	a	name	comprised	of	all	of	the	path	components	in	name
excluding	the	last	element.	If	name	is	a	relative	file	name	and	only
contains	one	path	element,	then	returns	“.”.	If	name	refers	to	a	root
directory,	then	the	root	directory	is	returned.	For	example,

file	dirname	c:/

returns	c:/.

Note	that	tilde	substitution	will	only	be	performed	if	it	is	necessary
to	complete	the	command.	For	example,

file	dirname	~/src/foo.c

returns	~/src,	whereas

file	dirname	~

returns	/home	(or	something	similar).

file	executable	name
Returns	1	if	file	name	is	executable	by	the	current	user,	0
otherwise.

file	exists	name
Returns	1	if	file	name	exists	and	the	current	user	has	search
privileges	for	the	directories	leading	to	it,	0	otherwise.

file	extension	name
Returns	all	of	the	characters	in	name	after	and	including	the	last
dot	in	the	last	element	of	name.	If	there	is	no	dot	in	the	last	element
of	name	then	returns	the	empty	string.

file	isdirectory	name
Returns	1	if	file	name	is	a	directory,	0	otherwise.

file	isfile	name
Returns	1	if	file	name	is	a	regular	file,	0	otherwise.

file	join	name	?name	...?
Takes	one	or	more	file	names	and	combines	them,	using	the
correct	path	separator	for	the	current	platform.	If	a	particular	name
is	relative,	then	it	will	be	joined	to	the	previous	file	name	argument.
Otherwise,	any	earlier	arguments	will	be	discarded,	and	joining	will
proceed	from	the	current	argument.	For	example,

file	join	a	b	/foo	bar

returns	/foo/bar.

Note	that	any	of	the	names	can	contain	separators,	and	that	the
result	is	always	canonical	for	the	current	platform:	/	for	Unix	and
Windows.

file	link	?-linktype?	linkName	?target?
If	only	one	argument	is	given,	that	argument	is	assumed	to	be
linkName,	and	this	command	returns	the	value	of	the	link	given	by

linkName	(i.e.	the	name	of	the	file	it	points	to).	If	linkName	is	not	a
link	or	its	value	cannot	be	read	(as,	for	example,	seems	to	be	the
case	with	hard	links,	which	look	just	like	ordinary	files),	then	an
error	is	returned.

If	2	arguments	are	given,	then	these	are	assumed	to	be	linkName
and	target.	If	linkName	already	exists,	or	if	target	does	not	exist,	an
error	will	be	returned.	Otherwise,	Tcl	creates	a	new	link	called
linkName	which	points	to	the	existing	filesystem	object	at	target
(which	is	also	the	returned	value),	where	the	type	of	the	link	is
platform-specific	(on	Unix	a	symbolic	link	will	be	the	default).	This	is
useful	for	the	case	where	the	user	wishes	to	create	a	link	in	a
cross-platform	way,	and	does	not	care	what	type	of	link	is	created.

If	the	user	wishes	to	make	a	link	of	a	specific	type	only,	(and	signal
an	error	if	for	some	reason	that	is	not	possible),	then	the	optional	-
linktype	argument	should	be	given.	Accepted	values	for	-linktype
are	“-symbolic”	and	“-hard”.

On	Unix,	symbolic	links	can	be	made	to	relative	paths,	and	those
paths	must	be	relative	to	the	actual	linkName's	location	(not	to	the
cwd),	but	on	all	other	platforms	where	relative	links	are	not
supported,	target	paths	will	always	be	converted	to	absolute,
normalized	form	before	the	link	is	created	(and	therefore	relative
paths	are	interpreted	as	relative	to	the	cwd).	Furthermore,	“~user”
paths	are	always	expanded	to	absolute	form.	When	creating	links
on	filesystems	that	either	do	not	support	any	links,	or	do	not
support	the	specific	type	requested,	an	error	message	will	be
returned.	In	particular	Windows	95,	98	and	ME	do	not	support	any
links	at	present,	but	most	Unix	platforms	support	both	symbolic	and
hard	links	(the	latter	for	files	only)	and	Windows	NT/2000/XP	(on
NTFS	drives)	support	symbolic	directory	links	and	hard	file	links.

file	lstat	name	varName
Same	as	stat	option	(see	below)	except	uses	the	lstat	kernel	call
instead	of	stat.	This	means	that	if	name	refers	to	a	symbolic	link	the
information	returned	in	varName	is	for	the	link	rather	than	the	file	it
refers	to.	On	systems	that	do	not	support	symbolic	links	this	option

behaves	exactly	the	same	as	the	stat	option.

file	mkdir	dir	?dir	...?
Creates	each	directory	specified.	For	each	pathname	dir	specified,
this	command	will	create	all	non-existing	parent	directories	as	well
as	dir	itself.	If	an	existing	directory	is	specified,	then	no	action	is
taken	and	no	error	is	returned.	Trying	to	overwrite	an	existing	file
with	a	directory	will	result	in	an	error.	Arguments	are	processed	in
the	order	specified,	halting	at	the	first	error,	if	any.

file	mtime	name	?time?
Returns	a	decimal	string	giving	the	time	at	which	file	name	was	last
modified.	If	time	is	specified,	it	is	a	modification	time	to	set	for	the
file	(equivalent	to	Unix	touch).	The	time	is	measured	in	the
standard	POSIX	fashion	as	seconds	from	a	fixed	starting	time
(often	January	1,	1970).	If	the	file	does	not	exist	or	its	modified	time
cannot	be	queried	or	set	then	an	error	is	generated.

file	nativename	name
Returns	the	platform-specific	name	of	the	file.	This	is	useful	if	the
filename	is	needed	to	pass	to	a	platform-specific	call,	such	as	to	a
subprocess	via	exec	under	Windows	(see	EXAMPLES	below).

file	normalize	name
Returns	a	unique	normalized	path	representation	for	the	file-system
object	(file,	directory,	link,	etc),	whose	string	value	can	be	used	as
a	unique	identifier	for	it.	A	normalized	path	is	an	absolute	path
which	has	all	“../”	and	“./”	removed.	Also	it	is	one	which	is	in	the
“standard”	format	for	the	native	platform.	On	Unix,	this	means	the
segments	leading	up	to	the	path	must	be	free	of	symbolic
links/aliases	(but	the	very	last	path	component	may	be	a	symbolic
link),	and	on	Windows	it	also	means	we	want	the	long	form	with
that	form's	case-dependence	(which	gives	us	a	unique,	case-
dependent	path).	The	one	exception	concerning	the	last	link	in	the
path	is	necessary,	because	Tcl	or	the	user	may	wish	to	operate	on
the	actual	symbolic	link	itself	(for	example	file	delete,	file	rename,
file	copy	are	defined	to	operate	on	symbolic	links,	not	on	the
things	that	they	point	to).

file	owned	name
Returns	1	if	file	name	is	owned	by	the	current	user,	0	otherwise.

file	pathtype	name
Returns	one	of	absolute,	relative,	volumerelative.	If	name	refers
to	a	specific	file	on	a	specific	volume,	the	path	type	will	be
absolute.	If	name	refers	to	a	file	relative	to	the	current	working
directory,	then	the	path	type	will	be	relative.	If	name	refers	to	a	file
relative	to	the	current	working	directory	on	a	specified	volume,	or	to
a	specific	file	on	the	current	working	volume,	then	the	path	type	is
volumerelative.

file	readable	name
Returns	1	if	file	name	is	readable	by	the	current	user,	0	otherwise.

file	readlink	name
Returns	the	value	of	the	symbolic	link	given	by	name	(i.e.	the	name
of	the	file	it	points	to).	If	name	is	npt	a	symbolic	link	or	its	value
cannot	be	read,	then	an	error	is	returned.	On	systems	that	do	not
support	symbolic	links	this	option	is	undefined.

file	rename	?-force?	?--?	source	target

file	rename	?-force?	?--?	source	?source	...?	targetDir
The	first	form	takes	the	file	or	directory	specified	by	pathname
source	and	renames	it	to	target,	moving	the	file	if	the	pathname
target	specifies	a	name	in	a	different	directory.	If	target	is	an
existing	directory,	then	the	second	form	is	used.	The	second	form
moves	each	source	file	or	directory	into	the	directory	targetDir.
Existing	files	will	not	be	overwritten	unless	the	-force	option	is
specified.	When	operating	inside	a	single	filesystem,	Tcl	will
rename	symbolic	links	rather	than	the	things	that	they	point	to.
Trying	to	overwrite	a	non-empty	directory,	overwrite	a	directory	with
a	file,	or	a	file	with	a	directory	will	all	result	in	errors.	Arguments	are
processed	in	the	order	specified,	halting	at	the	first	error,	if	any.	A	--
marks	the	end	of	switches;	the	argument	following	the	--	will	be
treated	as	a	source	even	if	it	starts	with	a	-.

file	rootname	name
Returns	all	of	the	characters	in	name	up	to	but	not	including	the
last	“.”	character	in	the	last	component	of	name.	If	the	last
component	of	name	does	not	contain	a	dot,	then	returns	name.

file	separator	?name?
If	no	argument	is	given,	returns	the	character	which	is	used	to
separate	path	segments	for	native	files	on	this	platform.	If	a	path	is
given,	the	filesystem	responsible	for	that	path	is	asked	to	return	its
separator	character.	If	no	file	system	accepts	name,	an	error	is
generated.

file	size	name
Returns	a	decimal	string	giving	the	size	of	file	name	in	bytes.	If	the
file	does	not	exist	or	its	size	cannot	be	queried	then	an	error	is
generated.

file	split	name
Returns	a	list	whose	elements	are	the	path	components	in	name.
The	first	element	of	the	list	will	have	the	same	path	type	as	name.
All	other	elements	will	be	relative.	Path	separators	will	be	discarded
unless	they	are	needed	ensure	that	an	element	is	unambiguously
relative.	For	example,	under	Unix

file	split	/foo/~bar/baz

returns	/	foo	./~bar	baz	to	ensure	that	later	commands	that	use	the
third	component	do	not	attempt	to	perform	tilde	substitution.

file	stat	name	varName
Invokes	the	stat	kernel	call	on	name,	and	uses	the	variable	given
by	varName	to	hold	information	returned	from	the	kernel	call.
VarName	is	treated	as	an	array	variable,	and	the	following
elements	of	that	variable	are	set:	atime,	ctime,	dev,	gid,	ino,
mode,	mtime,	nlink,	size,	type,	uid.	Each	element	except	type	is
a	decimal	string	with	the	value	of	the	corresponding	field	from	the

stat	return	structure;	see	the	manual	entry	for	stat	for	details	on
the	meanings	of	the	values.	The	type	element	gives	the	type	of	the
file	in	the	same	form	returned	by	the	command	file	type.	This
command	returns	an	empty	string.

file	system	name
Returns	a	list	of	one	or	two	elements,	the	first	of	which	is	the	name
of	the	filesystem	to	use	for	the	file,	and	the	second,	if	given,	an
arbitrary	string	representing	the	filesystem-specific	nature	or	type	of
the	location	within	that	filesystem.	If	a	filesystem	only	supports	one
type	of	file,	the	second	element	may	not	be	supplied.	For	example
the	native	files	have	a	first	element	“native”,	and	a	second	element
which	when	given	is	a	platform-specific	type	name	for	the	file's
system	(e.g.	“NTFS”,	“FAT”,	on	Windows).	A	generic	virtual	file
system	might	return	the	list	“vfs	ftp”	to	represent	a	file	on	a	remote
ftp	site	mounted	as	a	virtual	filesystem	through	an	extension	called
“vfs”.	If	the	file	does	not	belong	to	any	filesystem,	an	error	is
generated.

file	tail	name
Returns	all	of	the	characters	in	the	last	filesystem	component	of
name.	Any	trailing	directory	separator	in	name	is	ignored.	If	name
contains	no	separators	then	returns	name.	So,	file	tail	a/b,	file	tail
a/b/	and	file	tail	b	all	return	b.

file	type	name
Returns	a	string	giving	the	type	of	file	name,	which	will	be	one	of
file,	directory,	characterSpecial,	blockSpecial,	fifo,	link,	or
socket.

file	volumes
Returns	the	absolute	paths	to	the	volumes	mounted	on	the	system,
as	a	proper	Tcl	list.	Without	any	virtual	filesystems	mounted	as	root
volumes,	on	UNIX,	the	command	will	always	return	“/”,	since	all
filesystems	are	locally	mounted.	On	Windows,	it	will	return	a	list	of
the	available	local	drives	(e.g.	“a:/	c:/”).	If	any	virtual	filesystem	has
mounted	additional	volumes,	they	will	be	in	the	returned	list.

file	writable	name
Returns	1	if	file	name	is	writable	by	the	current	user,	0	otherwise.

PORTABILITY	ISSUES

Unix
These	commands	always	operate	using	the	real	user	and	group
identifiers,	not	the	effective	ones.

EXAMPLES

This	procedure	shows	how	to	search	for	C	files	in	a	given	directory	that
have	a	correspondingly-named	object	file	in	the	current	directory:

proc	findMatchingCFiles	{dir}	{

			set	files	{}

			switch	$::tcl_platform(platform)	{

						windows	{

									set	ext	.obj

						}

						unix	{

									set	ext	.o

						}

			}

			foreach	file	[glob	-nocomplain	-directory	$dir	*.c]	{

						set	objectFile	[file	tail	[file	rootname	$file]]$ext

						if	{[file	exists	$objectFile]}	{

									lappend	files	$file

						}

			}

			return	$files

}

Rename	a	file	and	leave	a	symbolic	link	pointing	from	the	old	location	to
the	new	place:

set	oldName	foobar.txt

set	newName	foo/bar.txt

#	Make	sure	that	where	we're	going	to	move	to	exists...

if	{![file	isdirectory	[file	dirname	$newName]]}	{

			file	mkdir	[file	dirname	$newName]

}

file	rename	$oldName	$newName

file	link	-symbolic	$oldName	$newName

On	Windows,	a	file	can	be	“started”	easily	enough	(equivalent	to
double-clicking	on	it	in	the	Explorer	interface)	but	the	name	passed	to
the	operating	system	must	be	in	native	format:

exec	{*}[auto_execok	start]	{}	[file	nativename	~/example.txt]

SEE	ALSO

filename,	open,	close,	eof,	gets,	tell,	seek,	fblocked,	flush

KEYWORDS

attributes,	copy	files,	delete	files,	directory,	file,	move	files,	name,
rename	files,	stat

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	lrepeat

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

lrepeat	-	Build	a	list	by	repeating	elements

SYNOPSIS

lrepeat	number	element1	?element2	element3	...?

DESCRIPTION

The	lrepeat	command	creates	a	list	of	size	number	*	number	of
elements	by	repeating	number	times	the	sequence	of	elements
element1	element2	number	must	be	a	positive	integer,	elementn	can
be	any	Tcl	value.	Note	that	lrepeat	1	arg	...	is	identical	to	list	arg	...,
though	the	arg	is	required	with	lrepeat.

EXAMPLES

lrepeat	3	a

						→	a	a	a
lrepeat	3	[lrepeat	3	0]

						→	{0	0	0}	{0	0	0}	{0	0	0}
lrepeat	3	a	b	c

						→	a	b	c	a	b	c	a	b	c
lrepeat	3	[lrepeat	2	a]	b	c

						→	{a	a}	b	c	{a	a}	b	c	{a	a}	b	c

SEE	ALSO

list,	lappend,	linsert,	llength,	lset

KEYWORDS

element,	index,	list

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	2003	by	Simon	Geard.	All	rights	reserved.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	regexp

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
regexp	-	Match	a	regular	expression	against	a	string

SYNOPSIS
DESCRIPTION

-about
-expanded
-indices
-line
-linestop
-lineanchor
-nocase
-all
-inline
-start	index
--

EXAMPLES
SEE	ALSO
KEYWORDS

NAME

regexp	-	Match	a	regular	expression	against	a	string

SYNOPSIS

regexp	?switches?	exp	string	?matchVar?	?subMatchVar	subMatchVar
...?

DESCRIPTION

Determines	whether	the	regular	expression	exp	matches	part	or	all	of
string	and	returns	1	if	it	does,	0	if	it	does	not,	unless	-inline	is	specified

(see	below).	(Regular	expression	matching	is	described	in	the
re_syntax	reference	page.)

If	additional	arguments	are	specified	after	string	then	they	are	treated
as	the	names	of	variables	in	which	to	return	information	about	which
part(s)	of	string	matched	exp.	MatchVar	will	be	set	to	the	range	of	string
that	matched	all	of	exp.	The	first	subMatchVar	will	contain	the
characters	in	string	that	matched	the	leftmost	parenthesized
subexpression	within	exp,	the	next	subMatchVar	will	contain	the
characters	that	matched	the	next	parenthesized	subexpression	to	the
right	in	exp,	and	so	on.

If	the	initial	arguments	to	regexp	start	with	-	then	they	are	treated	as
switches.	The	following	switches	are	currently	supported:

-about
Instead	of	attempting	to	match	the	regular	expression,	returns	a	list
containing	information	about	the	regular	expression.	The	first
element	of	the	list	is	a	subexpression	count.	The	second	element	is
a	list	of	property	names	that	describe	various	attributes	of	the
regular	expression.	This	switch	is	primarily	intended	for	debugging
purposes.

-expanded
Enables	use	of	the	expanded	regular	expression	syntax	where
whitespace	and	comments	are	ignored.	This	is	the	same	as
specifying	the	(?x)	embedded	option	(see	the	re_syntax	manual
page).

-indices
Changes	what	is	stored	in	the	subMatchVars.	Instead	of	storing	the
matching	characters	from	string,	each	variable	will	contain	a	list	of
two	decimal	strings	giving	the	indices	in	string	of	the	first	and	last
characters	in	the	matching	range	of	characters.

-line
Enables	newline-sensitive	matching.	By	default,	newline	is	a
completely	ordinary	character	with	no	special	meaning.	With	this

flag,	“[^”	bracket	expressions	and	“.”	never	match	newline,	“^”
matches	an	empty	string	after	any	newline	in	addition	to	its	normal
function,	and	“$”	matches	an	empty	string	before	any	newline	in
addition	to	its	normal	function.	This	flag	is	equivalent	to	specifying
both	-linestop	and	-lineanchor,	or	the	(?n)	embedded	option	(see
the	re_syntax	manual	page).

-linestop
Changes	the	behavior	of	“[^”	bracket	expressions	and	“.”	so	that
they	stop	at	newlines.	This	is	the	same	as	specifying	the	(?p)
embedded	option	(see	the	re_syntax	manual	page).

-lineanchor
Changes	the	behavior	of	“^”	and	“$”	(the	“anchors”)	so	they	match
the	beginning	and	end	of	a	line	respectively.	This	is	the	same	as
specifying	the	(?w)	embedded	option	(see	the	re_syntax	manual
page).

-nocase
Causes	upper-case	characters	in	string	to	be	treated	as	lower	case
during	the	matching	process.

-all
Causes	the	regular	expression	to	be	matched	as	many	times	as
possible	in	the	string,	returning	the	total	number	of	matches	found.
If	this	is	specified	with	match	variables,	they	will	contain	information
for	the	last	match	only.

-inline
Causes	the	command	to	return,	as	a	list,	the	data	that	would
otherwise	be	placed	in	match	variables.	When	using	-inline,	match
variables	may	not	be	specified.	If	used	with	-all,	the	list	will	be
concatenated	at	each	iteration,	such	that	a	flat	list	is	always
returned.	For	each	match	iteration,	the	command	will	append	the
overall	match	data,	plus	one	element	for	each	subexpression	in	the
regular	expression.	Examples	are:

regexp	-inline	--	{\w(\w)}	"	inlined	"

						→	in	n
regexp	-all	-inline	--	{\w(\w)}	"	inlined	"

						→	in	n	li	i	ne	e

-start	index
Specifies	a	character	index	offset	into	the	string	to	start	matching
the	regular	expression	at.	The	index	value	is	interpreted	in	the
same	manner	as	the	index	argument	to	string	index.	When	using
this	switch,	“^”	will	not	match	the	beginning	of	the	line,	and	\A	will
still	match	the	start	of	the	string	at	index.	If	-indices	is	specified,
the	indices	will	be	indexed	starting	from	the	absolute	beginning	of
the	input	string.	index	will	be	constrained	to	the	bounds	of	the	input
string.

--
Marks	the	end	of	switches.	The	argument	following	this	one	will	be
treated	as	exp	even	if	it	starts	with	a	-.

If	there	are	more	subMatchVars	than	parenthesized	subexpressions
within	exp,	or	if	a	particular	subexpression	in	exp	does	not	match	the
string	(e.g.	because	it	was	in	a	portion	of	the	expression	that	was	not
matched),	then	the	corresponding	subMatchVar	will	be	set	to	“-1	-1”	if	-
indices	has	been	specified	or	to	an	empty	string	otherwise.

EXAMPLES

Find	the	first	occurrence	of	a	word	starting	with	foo	in	a	string	that	is	not
actually	an	instance	of	foobar,	and	get	the	letters	following	it	up	to	the
end	of	the	word	into	a	variable:

regexp	{\mfoo(?!bar\M)(\w*)}	$string	->	restOfWord

Note	that	the	whole	matched	substring	has	been	placed	in	the	variable

“->”,	which	is	a	name	chosen	to	look	nice	given	that	we	are	not	actually
interested	in	its	contents.

Find	the	index	of	the	word	badger	(in	any	case)	within	a	string	and
store	that	in	the	variable	location:

regexp	-indices	{(?i)\mbadger\M}	$string	location

This	could	also	be	written	as	a	basic	regular	expression	(as	opposed	to
using	the	default	syntax	of	advanced	regular	expressions)	match	by
prefixing	the	expression	with	a	suitable	flag:

regexp	-indices	{(?ib)\<badger\>}	$string	location

This	counts	the	number	of	octal	digits	in	a	string:

regexp	-all	{[0-7]}	$string

This	lists	all	words	(consisting	of	all	sequences	of	non-whitespace
characters)	in	a	string,	and	is	useful	as	a	more	powerful	version	of	the
split	command:

regexp	-all	-inline	{\S+}	$string

SEE	ALSO

re_syntax,	regsub,	string

KEYWORDS

match,	parsing,	pattern,	regular	expression,	splitting,	string

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1998	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	time

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

time	-	Time	the	execution	of	a	script

SYNOPSIS

time	script	?count?

DESCRIPTION

This	command	will	call	the	Tcl	interpreter	count	times	to	evaluate	script
(or	once	if	count	is	not	specified).	It	will	then	return	a	string	of	the	form

503	microseconds	per	iteration

which	indicates	the	average	amount	of	time	required	per	iteration,	in
microseconds.	Time	is	measured	in	elapsed	time,	not	CPU	time.

EXAMPLE

Estimate	how	long	it	takes	for	a	simple	Tcl	for	loop	to	count	to	a
thousand:

time	{

				for	{set	i	0}	{$i<1000}	{incr	i}	{

								#	empty	body

				}

}

SEE	ALSO

clock

KEYWORDS

script,	time

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	fileevent

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

fileevent	-	Execute	a	script	when	a	channel	becomes	readable	or
writable

SYNOPSIS

fileevent	channelId	readable	?script?
fileevent	channelId	writable	?script?

DESCRIPTION

This	command	is	used	to	create	file	event	handlers.	A	file	event	handler
is	a	binding	between	a	channel	and	a	script,	such	that	the	script	is
evaluated	whenever	the	channel	becomes	readable	or	writable.	File
event	handlers	are	most	commonly	used	to	allow	data	to	be	received
from	another	process	on	an	event-driven	basis,	so	that	the	receiver	can
continue	to	interact	with	the	user	while	waiting	for	the	data	to	arrive.	If
an	application	invokes	gets	or	read	on	a	blocking	channel	when	there
is	no	input	data	available,	the	process	will	block;	until	the	input	data
arrives,	it	will	not	be	able	to	service	other	events,	so	it	will	appear	to	the
user	to	“freeze	up”.	With	fileevent,	the	process	can	tell	when	data	is
present	and	only	invoke	gets	or	read	when	they	will	not	block.

The	channelId	argument	to	fileevent	refers	to	an	open	channel	such	as
a	Tcl	standard	channel	(stdin,	stdout,	or	stderr),	the	return	value	from
an	invocation	of	open	or	socket,	or	the	result	of	a	channel	creation
command	provided	by	a	Tcl	extension.

If	the	script	argument	is	specified,	then	fileevent	creates	a	new	event
handler:	script	will	be	evaluated	whenever	the	channel	becomes
readable	or	writable	(depending	on	the	second	argument	to	fileevent).

In	this	case	fileevent	returns	an	empty	string.	The	readable	and
writable	event	handlers	for	a	file	are	independent,	and	may	be	created
and	deleted	separately.	However,	there	may	be	at	most	one	readable
and	one	writable	handler	for	a	file	at	a	given	time	in	a	given	interpreter.
If	fileevent	is	called	when	the	specified	handler	already	exists	in	the
invoking	interpreter,	the	new	script	replaces	the	old	one.

If	the	script	argument	is	not	specified,	fileevent	returns	the	current
script	for	channelId,	or	an	empty	string	if	there	is	none.	If	the	script
argument	is	specified	as	an	empty	string	then	the	event	handler	is
deleted,	so	that	no	script	will	be	invoked.	A	file	event	handler	is	also
deleted	automatically	whenever	its	channel	is	closed	or	its	interpreter	is
deleted.

A	channel	is	considered	to	be	readable	if	there	is	unread	data	available
on	the	underlying	device.	A	channel	is	also	considered	to	be	readable	if
there	is	unread	data	in	an	input	buffer,	except	in	the	special	case	where
the	most	recent	attempt	to	read	from	the	channel	was	a	gets	call	that
could	not	find	a	complete	line	in	the	input	buffer.	This	feature	allows	a
file	to	be	read	a	line	at	a	time	in	nonblocking	mode	using	events.	A
channel	is	also	considered	to	be	readable	if	an	end	of	file	or	error
condition	is	present	on	the	underlying	file	or	device.	It	is	important	for
script	to	check	for	these	conditions	and	handle	them	appropriately;	for
example,	if	there	is	no	special	check	for	end	of	file,	an	infinite	loop	may
occur	where	script	reads	no	data,	returns,	and	is	immediately	invoked
again.

A	channel	is	considered	to	be	writable	if	at	least	one	byte	of	data	can	be
written	to	the	underlying	file	or	device	without	blocking,	or	if	an	error
condition	is	present	on	the	underlying	file	or	device.

Event-driven	I/O	works	best	for	channels	that	have	been	placed	into
nonblocking	mode	with	the	fconfigure	command.	In	blocking	mode,	a
puts	command	may	block	if	you	give	it	more	data	than	the	underlying
file	or	device	can	accept,	and	a	gets	or	read	command	will	block	if	you
attempt	to	read	more	data	than	is	ready;	no	events	will	be	processed
while	the	commands	block.	In	nonblocking	mode	puts,	read,	and	gets
never	block.	See	the	documentation	for	the	individual	commands	for

information	on	how	they	handle	blocking	and	nonblocking	channels.

The	script	for	a	file	event	is	executed	at	global	level	(outside	the	context
of	any	Tcl	procedure)	in	the	interpreter	in	which	the	fileevent	command
was	invoked.	If	an	error	occurs	while	executing	the	script	then	the
command	registered	with	interp	bgerror	is	used	to	report	the	error.	In
addition,	the	file	event	handler	is	deleted	if	it	ever	returns	an	error;	this
is	done	in	order	to	prevent	infinite	loops	due	to	buggy	handlers.

EXAMPLE

In	this	setup	GetData	will	be	called	with	the	channel	as	an	argument
whenever	$chan	becomes	readable.

proc	GetData	{chan}	{

				if	{![eof	$chan]}	{

								puts	[gets	$chan]

				}

}

fileevent	$chan	readable	[list	GetData	$chan]

CREDITS

fileevent	is	based	on	the	addinput	command	created	by	Mark
Diekhans.

SEE	ALSO

fconfigure,	gets,	interp,	puts,	read,	Tcl_StandardChannels

KEYWORDS

asynchronous	I/O,	blocking,	channel,	event	handler,	nonblocking,
readable,	script,	writable.

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.

Copyright	©	1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	lreplace

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

lreplace	-	Replace	elements	in	a	list	with	new	elements

SYNOPSIS

lreplace	list	first	last	?element	element	...?

DESCRIPTION

lreplace	returns	a	new	list	formed	by	replacing	one	or	more	elements	of
list	with	the	element	arguments.	first	and	last	are	index	values
specifying	the	first	and	last	elements	of	the	range	to	replace.	The	index
values	first	and	last	are	interpreted	the	same	as	index	values	for	the
command	string	index,	supporting	simple	index	arithmetic	and	indices
relative	to	the	end	of	the	list.	0	refers	to	the	first	element	of	the	list,	and
end	refers	to	the	last	element	of	the	list.	If	list	is	empty,	then	first	and
last	are	ignored.

If	first	is	less	than	zero,	it	is	considered	to	refer	to	before	the	first
element	of	the	list.	For	non-empty	lists,	the	element	indicated	by	first
must	exist	or	first	must	indicate	before	the	start	of	the	list.

If	last	is	less	than	first,	then	any	specified	elements	will	be	inserted	into
the	list	at	the	point	specified	by	first	with	no	elements	being	deleted.

The	element	arguments	specify	zero	or	more	new	arguments	to	be
added	to	the	list	in	place	of	those	that	were	deleted.	Each	element
argument	will	become	a	separate	element	of	the	list.	If	no	element
arguments	are	specified,	then	the	elements	between	first	and	last	are
simply	deleted.	If	list	is	empty,	any	element	arguments	are	added	to	the
end	of	the	list.

EXAMPLES

Replacing	an	element	of	a	list	with	another:

%	lreplace	{a	b	c	d	e}	1	1	foo

a	foo	c	d	e

Replacing	two	elements	of	a	list	with	three:

%	lreplace	{a	b	c	d	e}	1	2	three	more	elements

a	three	more	elements	d	e

Deleting	the	last	element	from	a	list	in	a	variable:

%	set	var	{a	b	c	d	e}

a	b	c	d	e

%	set	var	[lreplace	$var	end	end]

a	b	c	d

A	procedure	to	delete	a	given	element	from	a	list:

proc	lremove	{listVariable	value}	{

				upvar	1	$listVariable	var

				set	idx	[lsearch	-exact	$var	$value]

				set	var	[lreplace	$var	$idx	$idx]

}

SEE	ALSO

list,	lappend,	lindex,	linsert,	llength,	lsearch,	lset,	lrange,	lsort,
string

KEYWORDS

element,	list,	replace

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.
Copyright	©	2001	Kevin	B.	Kenny	<kennykb(at)acm.org>.	All	rights	reserved.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	registry

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
registry	-	Manipulate	the	Windows	registry

SYNOPSIS
DESCRIPTION

registry	broadcast	keyName	?-timeout	milliseconds?
registry	delete	keyName	?valueName?
registry	get	keyName	valueName
registry	keys	keyName	?pattern?
registry	set	keyName	?valueName	data	?type??
registry	type	keyName	valueName
registry	values	keyName	?pattern?

SUPPORTED	TYPES
binary
none
sz
expand_sz
dword
dword_big_endian
link
multi_sz
resource_list

PORTABILITY	ISSUES
EXAMPLE
KEYWORDS

NAME

registry	-	Manipulate	the	Windows	registry

SYNOPSIS

package	require	registry	1.1

registry	option	keyName	?arg	arg	...?

DESCRIPTION

The	registry	package	provides	a	general	set	of	operations	for
manipulating	the	Windows	registry.	The	package	implements	the
registry	Tcl	command.	This	command	is	only	supported	on	the
Windows	platform.	Warning:	this	command	should	be	used	with	caution
as	a	corrupted	registry	can	leave	your	system	in	an	unusable	state.

KeyName	is	the	name	of	a	registry	key.	Registry	keys	must	be	one	of
the	following	forms:

\\hostname\rootname\keypath

rootname\keypath

rootname

Hostname	specifies	the	name	of	any	valid	Windows	host	that	exports	its
registry.	The	rootname	component	must	be	one	of
HKEY_LOCAL_MACHINE,	HKEY_USERS,	HKEY_CLASSES_ROOT,
HKEY_CURRENT_USER,	HKEY_CURRENT_CONFIG,
HKEY_PERFORMANCE_DATA,	or	HKEY_DYN_DATA.	The	keypath
can	be	one	or	more	registry	key	names	separated	by	backslash	(\)
characters.

Option	indicates	what	to	do	with	the	registry	key	name.	Any	unique
abbreviation	for	option	is	acceptable.	The	valid	options	are:

registry	broadcast	keyName	?-timeout	milliseconds?
Sends	a	broadcast	message	to	the	system	and	running	programs
to	notify	them	of	certain	updates.	This	is	necessary	to	propagate
changes	to	key	registry	keys	like	Environment.	The	timeout
specifies	the	amount	of	time,	in	milliseconds,	to	wait	for
applications	to	respond	to	the	broadcast	message.	It	defaults	to
3000.	The	following	example	demonstrates	how	to	add	a	path	to
the	global	Environment	and	notify	applications	of	the	change

without	requiring	a	logoff/logon	step	(assumes	admin	privileges):

set	regPath	[join	{

				HKEY_LOCAL_MACHINE

				SYSTEM

				CurrentControlSet

				Control

				{Session	Manager}

				Environment

}	"\\"]

set	curPath	[registry	get	$regPath	"Path"]

registry	set	$regPath	"Path"	"$curPath;$addPath"

registry	broadcast	"Environment"

registry	delete	keyName	?valueName?
If	the	optional	valueName	argument	is	present,	the	specified	value
under	keyName	will	be	deleted	from	the	registry.	If	the	optional
valueName	is	omitted,	the	specified	key	and	any	subkeys	or	values
beneath	it	in	the	registry	hierarchy	will	be	deleted.	If	the	key	could
not	be	deleted	then	an	error	is	generated.	If	the	key	did	not	exist,
the	command	has	no	effect.

registry	get	keyName	valueName
Returns	the	data	associated	with	the	value	valueName	under	the
key	keyName.	If	either	the	key	or	the	value	does	not	exist,	then	an
error	is	generated.	For	more	details	on	the	format	of	the	returned
data,	see	SUPPORTED	TYPES,	below.

registry	keys	keyName	?pattern?
If	pattern	is	not	specified,	returns	a	list	of	names	of	all	the	subkeys
of	keyName.	If	pattern	is	specified,	only	those	names	matching
pattern	are	returned.	Matching	is	determined	using	the	same	rules
as	for	string	match.	If	the	specified	keyName	does	not	exist,	then
an	error	is	generated.

registry	set	keyName	?valueName	data	?type??
If	valueName	is	not	specified,	creates	the	key	keyName	if	it	does
not	already	exist.	If	valueName	is	specified,	creates	the	key
keyName	and	value	valueName	if	necessary.	The	contents	of
valueName	are	set	to	data	with	the	type	indicated	by	type.	If	type	is
not	specified,	the	type	sz	is	assumed.	For	more	details	on	the	data
and	type	arguments,	see	SUPPORTED	TYPES	below.

registry	type	keyName	valueName
Returns	the	type	of	the	value	valueName	in	the	key	keyName.	For
more	information	on	the	possible	types,	see	SUPPORTED	TYPES,
below.

registry	values	keyName	?pattern?
If	pattern	is	not	specified,	returns	a	list	of	names	of	all	the	values	of
keyName.	If	pattern	is	specified,	only	those	names	matching
pattern	are	returned.	Matching	is	determined	using	the	same	rules
as	for	string	match.

SUPPORTED	TYPES

Each	value	under	a	key	in	the	registry	contains	some	data	of	a
particular	type	in	a	type-specific	representation.	The	registry	command
converts	between	this	internal	representation	and	one	that	can	be
manipulated	by	Tcl	scripts.	In	most	cases,	the	data	is	simply	returned	as
a	Tcl	string.	The	type	indicates	the	intended	use	for	the	data,	but	does
not	actually	change	the	representation.	For	some	types,	the	registry
command	returns	the	data	in	a	different	form	to	make	it	easier	to
manipulate.	The	following	types	are	recognized	by	the	registry
command:

binary
The	registry	value	contains	arbitrary	binary	data.	The	data	is
represented	exactly	in	Tcl,	including	any	embedded	nulls.

none
The	registry	value	contains	arbitrary	binary	data	with	no	defined
type.	The	data	is	represented	exactly	in	Tcl,	including	any

embedded	nulls.

sz
The	registry	value	contains	a	null-terminated	string.	The	data	is
represented	in	Tcl	as	a	string.

expand_sz
The	registry	value	contains	a	null-terminated	string	that	contains
unexpanded	references	to	environment	variables	in	the	normal
Windows	style	(for	example,	“%PATH%”).	The	data	is	represented
in	Tcl	as	a	string.

dword
The	registry	value	contains	a	little-endian	32-bit	number.	The	data
is	represented	in	Tcl	as	a	decimal	string.

dword_big_endian
The	registry	value	contains	a	big-endian	32-bit	number.	The	data	is
represented	in	Tcl	as	a	decimal	string.

link
The	registry	value	contains	a	symbolic	link.	The	data	is	represented
exactly	in	Tcl,	including	any	embedded	nulls.

multi_sz
The	registry	value	contains	an	array	of	null-terminated	strings.	The
data	is	represented	in	Tcl	as	a	list	of	strings.

resource_list
The	registry	value	contains	a	device-driver	resource	list.	The	data
is	represented	exactly	in	Tcl,	including	any	embedded	nulls.

In	addition	to	the	symbolically	named	types	listed	above,	unknown
types	are	identified	using	a	32-bit	integer	that	corresponds	to	the	type
code	returned	by	the	system	interfaces.	In	this	case,	the	data	is
represented	exactly	in	Tcl,	including	any	embedded	nulls.

PORTABILITY	ISSUES

The	registry	command	is	only	available	on	Windows.

EXAMPLE

Print	out	how	double-clicking	on	a	Tcl	script	file	will	invoke	a	Tcl
interpreter:

package	require	registry

set	ext	.tcl

#	Read	the	type	name

set	type	[registry	get	HKEY_CLASSES_ROOT\\$ext	{}]

#	Work	out	where	to	look	for	the	command

set	path	HKEY_CLASSES_ROOT\\$type\\Shell\\Open\\command

#	Read	the	command!

set	command	[registry	get	$path	{}]

puts	"$ext	opens	with	$command"

KEYWORDS

registry

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1997	Sun	Microsystems,	Inc.
Copyright	©	2002	ActiveState	Corporation.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	tm

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
tm	-	Facilities	for	locating	and	loading	of	Tcl	Modules

SYNOPSIS
DESCRIPTION

::tcl::tm::path	add	path...
::tcl::tm::path	remove	path...
::tcl::tm::path	list
::tcl::tm::roots	path...

MODULE	DEFINITION
FINDING	MODULES
DEFAULT	PATHS
SYSTEM	SPECIFIC	PATHS

file	normalize	[info	library]/../tclX/X.y
file	normalize	EXEC/tclX/X.y

SITE	SPECIFIC	PATHS
file	normalize	[info	library]/../tclX/site-tcl

USER	SPECIFIC	PATHS
$::env(TCLX_y_TM_PATH)
$::env(TCLX.y_TM_PATH)

SEE	ALSO
KEYWORDS

NAME

tm	-	Facilities	for	locating	and	loading	of	Tcl	Modules

SYNOPSIS

::tcl::tm::path	add	path...
::tcl::tm::path	remove	path...
::tcl::tm::path	list
::tcl::tm::roots	path...

DESCRIPTION

This	document	describes	the	facilities	for	locating	and	loading	Tcl
Modules.	The	following	commands	are	supported:

::tcl::tm::path	add	path...
The	paths	are	added	at	the	head	to	the	list	of	module	paths,	in
order	of	appearance.	This	means	that	the	last	argument	ends	up	as
the	new	head	of	the	list.

The	command	enforces	the	restriction	that	no	path	may	be	an
ancestor	directory	of	any	other	path	on	the	list.	If	any	of	the	new
paths	violates	this	restriction	an	error	will	be	raised,	before	any	of
the	paths	have	been	added.	In	other	words,	if	only	one	path
argument	violates	the	restriction	then	none	will	be	added.

If	a	path	is	already	present	as	is,	no	error	will	be	raised	and	no
action	will	be	taken.

Paths	are	searched	later	in	the	order	of	their	appearance	in	the	list.
As	they	are	added	to	the	front	of	the	list	they	are	searched	in
reverse	order	of	addition.	In	other	words,	the	paths	added	last	are
looked	at	first.

::tcl::tm::path	remove	path...
Removes	the	paths	from	the	list	of	module	paths.	The	command
silently	ignores	all	paths	which	are	not	on	the	list.

::tcl::tm::path	list
Returns	a	list	containing	all	registered	module	paths,	in	the	order
that	they	are	searched	for	modules.

::tcl::tm::roots	path...
Similar	to	path	add,	and	layered	on	top	of	it.	This	command	takes
a	list	of	paths,	extends	each	with	“tclX/site-tcl”,	and	“tclX/X.y”,	for
major	version	X	of	the	Tcl	interpreter	and	minor	version	y	less	than
or	equal	to	the	minor	version	of	the	interpreter,	and	adds	the
resulting	set	of	paths	to	the	list	of	paths	to	search.

This	command	is	used	internally	by	the	system	to	set	up	the
system-specific	default	paths.

The	command	has	been	exposed	to	allow	a	build	system	to	define
additional	root	paths	beyond	those	described	by	this	document.

MODULE	DEFINITION

A	Tcl	Module	is	a	Tcl	Package	contained	in	a	single	file,	and	no	other
files	required	by	it.	This	file	has	to	be	sourceable.	In	other	words,	a	Tcl
Module	is	always	imported	via:

source	module_file

The	load	command	is	not	directly	used.	This	restriction	is	not	an	actual
limitation,	as	some	may	believe.	Ever	since	8.4	the	Tcl	source
command	reads	only	until	the	first	^Z	character.	This	allows	us	to
combine	an	arbitrary	Tcl	script	with	arbitrary	binary	data	into	one	file,
where	the	script	processes	the	attached	data	in	any	it	chooses	to	fully
import	and	activate	the	package.

The	name	of	a	module	file	has	to	match	the	regular	expression:

([[:alpha:]][:[:alnum:]]*)-([[:digit:]].*)\.tm

The	first	capturing	parentheses	provides	the	name	of	the	package,	the
second	clause	its	version.	In	addition	to	matching	the	pattern,	the
extracted	version	number	must	not	raise	an	error	when	used	in	the
command:

package	vcompare	$version	0

FINDING	MODULES

The	directory	tree	for	storing	Tcl	modules	is	separate	from	other	parts	of
the	filesystem	and	independent	of	auto_path.

Tcl	Modules	are	searched	for	in	all	directories	listed	in	the	result	of	the
command	::tcl::tm::path	list.	This	is	called	the	Module	path.	Neither
the	auto_path	nor	the	tcl_pkgPath	variables	are	used.	All	directories
on	the	module	path	have	to	obey	one	restriction:

For	any	two	directories,	neither	is	an	ancestor	directory	of	the
other.

This	is	required	to	avoid	ambiguities	in	package	naming.	If	for	example
the	two	directories	“foo/”	and	“foo/cool”	were	on	the	path	a	package
named	cool::ice	could	be	found	via	the	names	cool::ice	or	ice,	the
latter	potentially	obscuring	a	package	named	ice,	unqualified.

Before	the	search	is	started,	the	name	of	the	requested	package	is
translated	into	a	partial	path,	using	the	following	algorithm:

All	occurrences	of	“::”	in	the	package	name	are	replaced	by	the
appropriate	directory	separator	character	for	the	platform	we	are
on.	On	Unix,	for	example,	this	is	“/”.

Example:

The	requested	package	is	encoding::base64.	The	generated
partial	path	is	“encoding/base64”.

After	this	translation	the	package	is	looked	for	in	all	module	paths,	by
combining	them	one-by-one,	first	to	last	with	the	partial	path	to	form	a
complete	search	pattern.	Note	that	the	search	algorithm	rejects	all	files
where	the	filename	does	not	match	the	regular	expression	given	in	the
section	MODULE	DEFINITION.	For	the	remaining	files	provide	scripts
are	generated	and	added	to	the	package	ifneeded	database.

The	algorithm	falls	back	to	the	previous	unknown	handler	when	none	of
the	found	module	files	satisfy	the	request.	If	the	request	was	satisfied
the	fall-back	is	ignored.

Note	that	packages	in	module	form	have	no	control	over	the	index	and
provide	scripts	entered	into	the	package	database	for	them.	For	a
module	file	MF	the	index	script	is	always:

package	ifneeded	PNAME	PVERSION	[list	source	MF]

and	the	provide	script	embedded	in	the	above	is:

source	MF

Both	package	name	PNAME	and	package	version	PVERSION	are
extracted	from	the	filename	MF	according	to	the	definition	below:

MF	=	/module_path/PNAME′-PVERSION.tm

Where	PNAME′	is	the	partial	path	of	the	module	as	defined	in	section
FINDING	MODULES,	and	translated	into	PNAME	by	changing	all
directory	separators	to	“::”,	and	module_path	is	the	path	(from	the	list
of	paths	to	search)	that	we	found	the	module	file	under.

Note	also	that	we	are	here	creating	a	connection	between	package
names	and	paths.	Tcl	is	case-sensitive	when	it	comes	to	comparing
package	names,	but	there	are	filesystems	which	are	not,	like	NTFS.
Luckily	these	filesystems	do	store	the	case	of	the	name,	despite	not
using	the	information	when	comparing.

Given	the	above	we	allow	the	names	for	packages	in	Tcl	modules	to
have	mixed-case,	but	also	require	that	there	are	no	collisions	when
comparing	names	in	a	case-insensitive	manner.	In	other	words,	if	a
package	Foo	is	deployed	in	the	form	of	a	Tcl	Module,	packages	like
foo,	fOo,	etc.	are	not	allowed	anymore.

DEFAULT	PATHS

The	default	list	of	paths	on	the	module	path	is	computed	by	a	tclsh	as
follows,	where	X	is	the	major	version	of	the	Tcl	interpreter	and	y	is	less
than	or	equal	to	the	minor	version	of	the	Tcl	interpreter.

All	the	default	paths	are	added	to	the	module	path,	even	those	paths
which	do	not	exist.	Non-existent	paths	are	filtered	out	during	actual
searches.	This	enables	a	user	to	create	one	of	the	paths	searched
when	needed	and	all	running	applications	will	automatically	pick	up	any
modules	placed	in	them.

The	paths	are	added	in	the	order	as	they	are	listed	below,	and	for	lists
of	paths	defined	by	an	environment	variable	in	the	order	they	are	found
in	the	variable.

SYSTEM	SPECIFIC	PATHS

file	normalize	[info	library]/../tclX/X.y
In	other	words,	the	interpreter	will	look	into	a	directory	specified	by
its	major	version	and	whose	minor	versions	are	less	than	or	equal
to	the	minor	version	of	the	interpreter.

For	example	for	Tcl	8.4	the	paths	searched	are:

[info	library]/../tcl8/8.4

[info	library]/../tcl8/8.3

[info	library]/../tcl8/8.2

[info	library]/../tcl8/8.1

[info	library]/../tcl8/8.0

This	definition	assumes	that	a	package	defined	for	Tcl	X.y	can	also
be	used	by	all	interpreters	which	have	the	same	major	number	X
and	a	minor	number	greater	than	y.

file	normalize	EXEC/tclX/X.y
Where	EXEC	is	file	normalize	[info	nameofexecutable]/../lib	or
file	normalize	[::tcl::pkgconfig	get	libdir,runtime]

This	sets	of	paths	is	handled	equivalently	to	the	set	coming	before,
except	that	it	is	anchored	in	EXEC_PREFIX.	For	a	build	with
PREFIX	=	EXEC_PREFIX	the	two	sets	are	identical.

SITE	SPECIFIC	PATHS

file	normalize	[info	library]/../tclX/site-tcl
Note	that	this	is	always	a	single	entry	because	X	is	always	a
specific	value	(the	current	major	version	of	Tcl).

USER	SPECIFIC	PATHS

$::env(TCLX_y_TM_PATH)
A	list	of	paths,	separated	by	either	:	(Unix)	or	;	(Windows).	This	is
user	and	site	specific	as	this	environment	variable	can	be	set	not
only	by	the	user's	profile,	but	by	system	configuration	scripts	as
well.

$::env(TCLX.y_TM_PATH)
Same	meaning	and	content	as	the	previous	variable.	However	the
use	of	dot	'.'	to	separate	major	and	minor	version	number	makes
this	name	less	to	non-portable	and	its	use	is	discouraged.	Support
of	this	variable	has	been	kept	only	for	backward	compatibility	with
the	original	specification,	i.e.	TIP	189.

These	paths	are	seen	and	therefore	shared	by	all	Tcl	shells	in	the
$::env(PATH)	of	the	user.

Note	that	X	and	y	follow	the	general	rules	set	out	above.	In	other	words,
Tcl	8.4,	for	example,	will	look	at	these	5	environment	variables:

$::env(TCL8.4_TM_PATH)		$::env(TCL8_4_TM_PATH)

$::env(TCL8.3_TM_PATH)		$::env(TCL8_3_TM_PATH)

$::env(TCL8.2_TM_PATH)		$::env(TCL8_2_TM_PATH)

$::env(TCL8.1_TM_PATH)		$::env(TCL8_1_TM_PATH)

$::env(TCL8.0_TM_PATH)		$::env(TCL8_0_TM_PATH)

SEE	ALSO

package,	Tcl	Improvement	Proposal	#189	“Tcl	Modules”	(online	at
http://tip.tcl.tk/189.html),	Tcl	Improvement	Proposal	#190
“Implementation	Choices	for	Tcl	Modules”	(online	at
http://tip.tcl.tk/190.html)

KEYWORDS

modules,	package

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	2004-2008	Andreas	Kupries	<andreas_kupries(at)users.sourceforge.net>

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	filename

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
filename	-	File	name	conventions	supported	by	Tcl	commands

INTRODUCTION
PATH	TYPES
PATH	SYNTAX

Unix
/
/etc/passwd
.
foo
foo/bar
../foo

Windows
\\Host\share/file
c:foo
c:/foo
foo\bar
\foo
\\foo

TILDE	SUBSTITUTION
PORTABILITY	ISSUES
SEE	ALSO
KEYWORDS

NAME

filename	-	File	name	conventions	supported	by	Tcl	commands

INTRODUCTION

All	Tcl	commands	and	C	procedures	that	take	file	names	as	arguments
expect	the	file	names	to	be	in	one	of	three	forms,	depending	on	the

current	platform.	On	each	platform,	Tcl	supports	file	names	in	the
standard	forms(s)	for	that	platform.	In	addition,	on	all	platforms,	Tcl
supports	a	Unix-like	syntax	intended	to	provide	a	convenient	way	of
constructing	simple	file	names.	However,	scripts	that	are	intended	to	be
portable	should	not	assume	a	particular	form	for	file	names.	Instead,
portable	scripts	must	use	the	file	split	and	file	join	commands	to
manipulate	file	names	(see	the	file	manual	entry	for	more	details).

PATH	TYPES

File	names	are	grouped	into	three	general	types	based	on	the	starting
point	for	the	path	used	to	specify	the	file:	absolute,	relative,	and
volume-relative.	Absolute	names	are	completely	qualified,	giving	a	path
to	the	file	relative	to	a	particular	volume	and	the	root	directory	on	that
volume.	Relative	names	are	unqualified,	giving	a	path	to	the	file	relative
to	the	current	working	directory.	Volume-relative	names	are	partially
qualified,	either	giving	the	path	relative	to	the	root	directory	on	the
current	volume,	or	relative	to	the	current	directory	of	the	specified
volume.	The	file	pathtype	command	can	be	used	to	determine	the	type
of	a	given	path.

PATH	SYNTAX

The	rules	for	native	names	depend	on	the	value	reported	in	the	Tcl
array	element	tcl_platform(platform):

Unix
On	Unix	and	Apple	MacOS	X	platforms,	Tcl	uses	path	names	where
the	components	are	separated	by	slashes.	Path	names	may	be
relative	or	absolute,	and	file	names	may	contain	any	character
other	than	slash.	The	file	names	.	and	..	are	special	and	refer	to	the
current	directory	and	the	parent	of	the	current	directory
respectively.	Multiple	adjacent	slash	characters	are	interpreted	as	a
single	separator.	Any	number	of	trailing	slash	characters	at	the	end
of	a	path	are	simply	ignored,	so	the	paths	foo,	foo/	and	foo//	are
all	identical,	and	in	particular	foo/	does	not	necessarily	mean	a
directory	is	being	referred.

The	following	examples	illustrate	various	forms	of	path	names:

/
Absolute	path	to	the	root	directory.

/etc/passwd
Absolute	path	to	the	file	named	passwd	in	the	directory	etc	in
the	root	directory.

.
Relative	path	to	the	current	directory.

foo
Relative	path	to	the	file	foo	in	the	current	directory.

foo/bar
Relative	path	to	the	file	bar	in	the	directory	foo	in	the	current
directory.

../foo
Relative	path	to	the	file	foo	in	the	directory	above	the	current
directory.

Windows
On	Microsoft	Windows	platforms,	Tcl	supports	both	drive-relative
and	UNC	style	names.	Both	/	and	\	may	be	used	as	directory
separators	in	either	type	of	name.	Drive-relative	names	consist	of
an	optional	drive	specifier	followed	by	an	absolute	or	relative	path.
UNC	paths	follow	the	general	form
\\servername\sharename\path\file,	but	must	at	the	very	least
contain	the	server	and	share	components,	i.e.
\\servername\sharename.	In	both	forms,	the	file	names	.	and	..
are	special	and	refer	to	the	current	directory	and	the	parent	of	the
current	directory	respectively.	The	following	examples	illustrate
various	forms	of	path	names:

\\Host\share/file
Absolute	UNC	path	to	a	file	called	file	in	the	root	directory	of

the	export	point	share	on	the	host	Host.	Note	that	repeated
use	of	file	dirname	on	this	path	will	give	//Host/share,	and	will
never	give	just	//Host.

c:foo
Volume-relative	path	to	a	file	foo	in	the	current	directory	on
drive	c.

c:/foo
Absolute	path	to	a	file	foo	in	the	root	directory	of	drive	c.

foo\bar
Relative	path	to	a	file	bar	in	the	foo	directory	in	the	current
directory	on	the	current	volume.

\foo
Volume-relative	path	to	a	file	foo	in	the	root	directory	of	the
current	volume.

\\foo
Volume-relative	path	to	a	file	foo	in	the	root	directory	of	the
current	volume.	This	is	not	a	valid	UNC	path,	so	the
assumption	is	that	the	extra	backslashes	are	superfluous.

TILDE	SUBSTITUTION

In	addition	to	the	file	name	rules	described	above,	Tcl	also	supports
csh-style	tilde	substitution.	If	a	file	name	starts	with	a	tilde,	then	the	file
name	will	be	interpreted	as	if	the	first	element	is	replaced	with	the
location	of	the	home	directory	for	the	given	user.	If	the	tilde	is	followed
immediately	by	a	separator,	then	the	$HOME	environment	variable	is
substituted.	Otherwise	the	characters	between	the	tilde	and	the	next
separator	are	taken	as	a	user	name,	which	is	used	to	retrieve	the	user's
home	directory	for	substitution.	This	works	on	Unix,	MacOS	X	and
Windows	(except	very	old	releases).

Old	Windows	platforms	do	not	support	tilde	substitution	when	a	user
name	follows	the	tilde.	On	these	platforms,	attempts	to	use	a	tilde

followed	by	a	user	name	will	generate	an	error	that	the	user	does	not
exist	when	Tcl	attempts	to	interpret	that	part	of	the	path	or	otherwise
access	the	file.	The	behaviour	of	these	paths	when	not	trying	to
interpret	them	is	the	same	as	on	Unix.	File	names	that	have	a	tilde
without	a	user	name	will	be	correctly	substituted	using	the	$HOME
environment	variable,	just	like	for	Unix.

PORTABILITY	ISSUES

Not	all	file	systems	are	case	sensitive,	so	scripts	should	avoid	code	that
depends	on	the	case	of	characters	in	a	file	name.	In	addition,	the
character	sets	allowed	on	different	devices	may	differ,	so	scripts	should
choose	file	names	that	do	not	contain	special	characters	like:	<>:?"/\|.
The	safest	approach	is	to	use	names	consisting	of	alphanumeric
characters	only.	Care	should	be	taken	with	filenames	which	contain
spaces	(common	on	Windows	systems)	and	filenames	where	the
backslash	is	the	directory	separator	(Windows	native	path	names).	Also
Windows	3.1	only	supports	file	names	with	a	root	of	no	more	than	8
characters	and	an	extension	of	no	more	than	3	characters.

On	Windows	platforms	there	are	file	and	path	length	restrictions.
Complete	paths	or	filenames	longer	than	about	260	characters	will	lead
to	errors	in	most	file	operations.

Another	Windows	peculiarity	is	that	any	number	of	trailing	dots	“.”	in
filenames	are	totally	ignored,	so,	for	example,	attempts	to	create	a	file
or	directory	with	a	name	“foo.”	will	result	in	the	creation	of	a
file/directory	with	name	“foo”.	This	fact	is	reflected	in	the	results	of	file
normalize.	Furthermore,	a	file	name	consisting	only	of	dots	“.........”	or
dots	with	trailing	characters	“.....abc”	is	illegal.

SEE	ALSO

file,	glob

KEYWORDS

current	directory,	absolute	file	name,	relative	file	name,	volume-relative

file	name,	portability

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1995-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	lreverse

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

lreverse	-	Reverse	the	order	of	a	list

SYNOPSIS

lreverse	list

DESCRIPTION

The	lreverse	command	returns	a	list	that	has	the	same	elements	as	its
input	list,	list,	except	with	the	elements	in	the	reverse	order.

EXAMPLES

lreverse	{a	a	b	c}

						→	c	b	a	a
lreverse	{a	b	{c	d}	e	f}

						→	f	e	{c	d}	b	a

SEE	ALSO

list,	lsearch,	lsort

KEYWORDS

element,	list,	reverse

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	2006	by	Donal	K.	Fellows.	All	rights	reserved.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	regsub

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
regsub	-	Perform	substitutions	based	on	regular	expression
pattern	matching

SYNOPSIS
DESCRIPTION

-all
-expanded
-line
-linestop
-lineanchor
-nocase
-start	index
--

EXAMPLES
SEE	ALSO
KEYWORDS

NAME

regsub	-	Perform	substitutions	based	on	regular	expression	pattern
matching

SYNOPSIS

regsub	?switches?	exp	string	subSpec	?varName?

DESCRIPTION

This	command	matches	the	regular	expression	exp	against	string,	and
either	copies	string	to	the	variable	whose	name	is	given	by	varName	or
returns	string	if	varName	is	not	present.	(Regular	expression	matching
is	described	in	the	re_syntax	reference	page.)	If	there	is	a	match,	then

while	copying	string	to	varName	(or	to	the	result	of	this	command	if
varName	is	not	present)	the	portion	of	string	that	matched	exp	is
replaced	with	subSpec.	If	subSpec	contains	a	“&”	or	“\0”,	then	it	is
replaced	in	the	substitution	with	the	portion	of	string	that	matched	exp.
If	subSpec	contains	a	“\n”,	where	n	is	a	digit	between	1	and	9,	then	it	is
replaced	in	the	substitution	with	the	portion	of	string	that	matched	the
n'th	parenthesized	subexpression	of	exp.	Additional	backslashes	may
be	used	in	subSpec	to	prevent	special	interpretation	of	“&”,	“\0”,	“\n”	and
backslashes.	The	use	of	backslashes	in	subSpec	tends	to	interact	badly
with	the	Tcl	parser's	use	of	backslashes,	so	it	is	generally	safest	to
enclose	subSpec	in	braces	if	it	includes	backslashes.

If	the	initial	arguments	to	regsub	start	with	-	then	they	are	treated	as
switches.	The	following	switches	are	currently	supported:

-all
All	ranges	in	string	that	match	exp	are	found	and	substitution	is
performed	for	each	of	these	ranges.	Without	this	switch	only	the
first	matching	range	is	found	and	substituted.	If	-all	is	specified,
then	“&”	and	“\n”	sequences	are	handled	for	each	substitution	using
the	information	from	the	corresponding	match.

-expanded
Enables	use	of	the	expanded	regular	expression	syntax	where
whitespace	and	comments	are	ignored.	This	is	the	same	as
specifying	the	(?x)	embedded	option	(see	the	re_syntax	manual
page).

-line
Enables	newline-sensitive	matching.	By	default,	newline	is	a
completely	ordinary	character	with	no	special	meaning.	With	this
flag,	“[^”	bracket	expressions	and	“.”	never	match	newline,	“^”
matches	an	empty	string	after	any	newline	in	addition	to	its	normal
function,	and	“$”	matches	an	empty	string	before	any	newline	in
addition	to	its	normal	function.	This	flag	is	equivalent	to	specifying
both	-linestop	and	-lineanchor,	or	the	(?n)	embedded	option	(see
the	re_syntax	manual	page).

-linestop
Changes	the	behavior	of	“[^”	bracket	expressions	and	“.”	so	that
they	stop	at	newlines.	This	is	the	same	as	specifying	the	(?p)
embedded	option	(see	the	re_syntax	manual	page).

-lineanchor
Changes	the	behavior	of	“^”	and	“$”	(the	“anchors”)	so	they	match
the	beginning	and	end	of	a	line	respectively.	This	is	the	same	as
specifying	the	(?w)	embedded	option	(see	the	re_syntax	manual
page).

-nocase
Upper-case	characters	in	string	will	be	converted	to	lower-case
before	matching	against	exp;	however,	substitutions	specified	by
subSpec	use	the	original	unconverted	form	of	string.

-start	index
Specifies	a	character	index	offset	into	the	string	to	start	matching
the	regular	expression	at.	The	index	value	is	interpreted	in	the
same	manner	as	the	index	argument	to	string	index.	When	using
this	switch,	“^”	will	not	match	the	beginning	of	the	line,	and	\A	will
still	match	the	start	of	the	string	at	index.	index	will	be	constrained
to	the	bounds	of	the	input	string.

--
Marks	the	end	of	switches.	The	argument	following	this	one	will	be
treated	as	exp	even	if	it	starts	with	a	-.

If	varName	is	supplied,	the	command	returns	a	count	of	the	number	of
matching	ranges	that	were	found	and	replaced,	otherwise	the	string
after	replacement	is	returned.	See	the	manual	entry	for	regexp	for
details	on	the	interpretation	of	regular	expressions.

EXAMPLES

Replace	(in	the	string	in	variable	string)	every	instance	of	foo	which	is	a
word	by	itself	with	bar:

regsub	-all	{\mfoo\M}	$string	bar	string

or	(using	the	“basic	regular	expression”	syntax):

regsub	-all	{(?b)\<foo\>}	$string	bar	string

Insert	double-quotes	around	the	first	instance	of	the	word	interesting,
however	it	is	capitalized.

regsub	-nocase	{\yinteresting\y}	$string	{"&"}	string

Convert	all	non-ASCII	and	Tcl-significant	characters	into	\u	escape
sequences	by	using	regsub	and	subst	in	combination:

#	This	RE	is	just	a	character	class	for	everything	"bad"

set	RE	{[][{};#\\\$\s\u0080-\uffff]}

#	We	will	substitute	with	a	fragment	of	Tcl	script	in	brackets

set	substitution	{[format	\\\\u%04x	[scan	"\\&"	%c]]}

#	Now	we	apply	the	substitution	to	get	a	subst-string	that

#	will	perform	the	computational	parts	of	the	conversion.

set	quoted	[subst	[regsub	-all	$RE	$string	$substitution]]

SEE	ALSO

regexp,	re_syntax,	subst,	string

KEYWORDS

match,	pattern,	quoting,	regular	expression,	substitute

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.
Copyright	©	2000	Scriptics	Corporation.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	trace

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
trace	-	Monitor	variable	accesses,	command	usages	and
command	executions

SYNOPSIS
DESCRIPTION

trace	add	type	name	ops	?args?
trace	add	command	name	ops	commandPrefix

rename
delete

trace	add	execution	name	ops	commandPrefix
enter
leave
enterstep
leavestep

trace	add	variable	name	ops	commandPrefix
array
read
write
unset

trace	remove	type	name	opList	commandPrefix
trace	remove	command	name	opList	commandPrefix
trace	remove	execution	name	opList	commandPrefix
trace	remove	variable	name	opList	commandPrefix

trace	info	type	name
trace	info	command	name
trace	info	execution	name
trace	info	variable	name

trace	variable	name	ops	command
trace	vdelete	name	ops	command
trace	vinfo	name

EXAMPLES

SEE	ALSO
KEYWORDS

NAME

trace	-	Monitor	variable	accesses,	command	usages	and	command
executions

SYNOPSIS

trace	option	?arg	arg	...?

DESCRIPTION

This	command	causes	Tcl	commands	to	be	executed	whenever	certain
operations	are	invoked.	The	legal	options	(which	may	be	abbreviated)
are:

trace	add	type	name	ops	?args?
Where	type	is	command,	execution,	or	variable.

trace	add	command	name	ops	commandPrefix
Arrange	for	commandPrefix	to	be	executed	(with	additional
arguments)	whenever	command	name	is	modified	in	one	of	the
ways	given	by	the	list	ops.	Name	will	be	resolved	using	the
usual	namespace	resolution	rules	used	by	commands.	If	the
command	does	not	exist,	an	error	will	be	thrown.

Ops	indicates	which	operations	are	of	interest,	and	is	a	list	of
one	or	more	of	the	following	items:

rename
Invoke	commandPrefix	whenever	the	traced	command	is
renamed.	Note	that	renaming	to	the	empty	string	is
considered	deletion,	and	will	not	be	traced	with	“rename”.

delete
Invoke	commandPrefix	when	the	traced	command	is
deleted.	Commands	can	be	deleted	explicitly	by	using	the

rename	command	to	rename	the	command	to	an	empty
string.	Commands	are	also	deleted	when	the	interpreter	is
deleted,	but	traces	will	not	be	invoked	because	there	is	no
interpreter	in	which	to	execute	them.

When	the	trace	triggers,	depending	on	the	operations	being
traced,	a	number	of	arguments	are	appended	to
commandPrefix	so	that	the	actual	command	is	as	follows:

commandPrefix	oldName	newName	op

OldName	and	newName	give	the	traced	command's	current
(old)	name,	and	the	name	to	which	it	is	being	renamed	(the
empty	string	if	this	is	a	“delete”	operation).	Op	indicates	what
operation	is	being	performed	on	the	command,	and	is	one	of
rename	or	delete	as	defined	above.	The	trace	operation
cannot	be	used	to	stop	a	command	from	being	deleted.	Tcl	will
always	remove	the	command	once	the	trace	is	complete.
Recursive	renaming	or	deleting	will	not	cause	further	traces	of
the	same	type	to	be	evaluated,	so	a	delete	trace	which	itself
deletes	the	command,	or	a	rename	trace	which	itself	renames
the	command	will	not	cause	further	trace	evaluations	to	occur.
Both	oldName	and	newName	are	fully	qualified	with	any
namespace(s)	in	which	they	appear.

trace	add	execution	name	ops	commandPrefix
Arrange	for	commandPrefix	to	be	executed	(with	additional
arguments)	whenever	command	name	is	executed,	with	traces
occurring	at	the	points	indicated	by	the	list	ops.	Name	will	be
resolved	using	the	usual	namespace	resolution	rules	used	by
commands.	If	the	command	does	not	exist,	an	error	will	be
thrown.

Ops	indicates	which	operations	are	of	interest,	and	is	a	list	of
one	or	more	of	the	following	items:

enter
Invoke	commandPrefix	whenever	the	command	name	is
executed,	just	before	the	actual	execution	takes	place.

leave
Invoke	commandPrefix	whenever	the	command	name	is
executed,	just	after	the	actual	execution	takes	place.

enterstep
Invoke	commandPrefix	for	every	Tcl	command	which	is
executed	from	the	start	of	the	execution	of	the	procedure
name	until	that	procedure	finishes.	CommandPrefix	is
invoked	just	before	the	actual	execution	of	the	Tcl
command	being	reported	takes	place.	For	example	if	we
have	“proc	foo	{}	{	puts	"hello"	}”,	then	an	enterstep	trace
would	be	invoked	just	before	“puts	"hello"”	is	executed.
Setting	an	enterstep	trace	on	a	command	name	that	does
not	refer	to	a	procedure	will	not	result	in	an	error	and	is
simply	ignored.

leavestep
Invoke	commandPrefix	for	every	Tcl	command	which	is
executed	from	the	start	of	the	execution	of	the	procedure
name	until	that	procedure	finishes.	CommandPrefix	is
invoked	just	after	the	actual	execution	of	the	Tcl	command
being	reported	takes	place.	Setting	a	leavestep	trace	on	a
command	name	that	does	not	refer	to	a	procedure	will	not
result	in	an	error	and	is	simply	ignored.

When	the	trace	triggers,	depending	on	the	operations	being
traced,	a	number	of	arguments	are	appended	to
commandPrefix	so	that	the	actual	command	is	as	follows:

For	enter	and	enterstep	operations:

commandPrefix	command-string	op

Command-string	gives	the	complete	current	command	being
executed	(the	traced	command	for	a	enter	operation,	an
arbitrary	command	for	a	enterstep	operation),	including	all
arguments	in	their	fully	expanded	form.	Op	indicates	what
operation	is	being	performed	on	the	command	execution,	and
is	one	of	enter	or	enterstep	as	defined	above.	The	trace
operation	can	be	used	to	stop	the	command	from	executing,	by
deleting	the	command	in	question.	Of	course	when	the
command	is	subsequently	executed,	an	“invalid	command”
error	will	occur.

For	leave	and	leavestep	operations:

command	command-string	code	result	op

Command-string	gives	the	complete	current	command	being
executed	(the	traced	command	for	a	enter	operation,	an
arbitrary	command	for	a	enterstep	operation),	including	all
arguments	in	their	fully	expanded	form.	Code	gives	the	result
code	of	that	execution,	and	result	the	result	string.	Op
indicates	what	operation	is	being	performed	on	the	command
execution,	and	is	one	of	leave	or	leavestep	as	defined	above.
Note	that	the	creation	of	many	enterstep	or	leavestep	traces
can	lead	to	unintuitive	results,	since	the	invoked	commands
from	one	trace	can	themselves	lead	to	further	command
invocations	for	other	traces.

CommandPrefix	executes	in	the	same	context	as	the	code	that
invoked	the	traced	operation:	thus	the	commandPrefix,	if
invoked	from	a	procedure,	will	have	access	to	the	same	local
variables	as	code	in	the	procedure.	This	context	may	be
different	than	the	context	in	which	the	trace	was	created.	If
commandPrefix	invokes	a	procedure	(which	it	normally	does)
then	the	procedure	will	have	to	use	upvar	or	uplevel
commands	if	it	wishes	to	access	the	local	variables	of	the	code
which	invoked	the	trace	operation.

While	commandPrefix	is	executing	during	an	execution	trace,
traces	on	name	are	temporarily	disabled.	This	allows	the
commandPrefix	to	execute	name	in	its	body	without	invoking
any	other	traces	again.	If	an	error	occurs	while	executing	the
commandPrefix,	then	the	command	name	as	a	whole	will
return	that	same	error.

When	multiple	traces	are	set	on	name,	then	for	enter	and
enterstep	operations,	the	traced	commands	are	invoked	in	the
reverse	order	of	how	the	traces	were	originally	created;	and	for
leave	and	leavestep	operations,	the	traced	commands	are
invoked	in	the	original	order	of	creation.

The	behavior	of	execution	traces	is	currently	undefined	for	a
command	name	imported	into	another	namespace.

trace	add	variable	name	ops	commandPrefix
Arrange	for	commandPrefix	to	be	executed	whenever	variable
name	is	accessed	in	one	of	the	ways	given	by	the	list	ops.
Name	may	refer	to	a	normal	variable,	an	element	of	an	array,
or	to	an	array	as	a	whole	(i.e.	name	may	be	just	the	name	of
an	array,	with	no	parenthesized	index).	If	name	refers	to	a
whole	array,	then	commandPrefix	is	invoked	whenever	any
element	of	the	array	is	manipulated.	If	the	variable	does	not
exist,	it	will	be	created	but	will	not	be	given	a	value,	so	it	will	be
visible	to	namespace	which	queries,	but	not	to	info	exists
queries.

Ops	indicates	which	operations	are	of	interest,	and	is	a	list	of
one	or	more	of	the	following	items:

array
Invoke	commandPrefix	whenever	the	variable	is	accessed
or	modified	via	the	array	command,	provided	that	name	is
not	a	scalar	variable	at	the	time	that	the	array	command	is
invoked.	If	name	is	a	scalar	variable,	the	access	via	the
array	command	will	not	trigger	the	trace.

read
Invoke	commandPrefix	whenever	the	variable	is	read.

write
Invoke	commandPrefix	whenever	the	variable	is	written.

unset
Invoke	commandPrefix	whenever	the	variable	is	unset.
Variables	can	be	unset	explicitly	with	the	unset	command,
or	implicitly	when	procedures	return	(all	of	their	local
variables	are	unset).	Variables	are	also	unset	when
interpreters	are	deleted,	but	traces	will	not	be	invoked
because	there	is	no	interpreter	in	which	to	execute	them.

When	the	trace	triggers,	three	arguments	are	appended	to
commandPrefix	so	that	the	actual	command	is	as	follows:

commandPrefix	name1	name2	op

Name1	and	name2	give	the	name(s)	for	the	variable	being
accessed:	if	the	variable	is	a	scalar	then	name1	gives	the
variable's	name	and	name2	is	an	empty	string;	if	the	variable	is
an	array	element	then	name1	gives	the	name	of	the	array	and
name2	gives	the	index	into	the	array;	if	an	entire	array	is	being
deleted	and	the	trace	was	registered	on	the	overall	array,
rather	than	a	single	element,	then	name1	gives	the	array	name
and	name2	is	an	empty	string.	Name1	and	name2	are	not
necessarily	the	same	as	the	name	used	in	the	trace	variable
command:	the	upvar	command	allows	a	procedure	to
reference	a	variable	under	a	different	name.	Op	indicates	what
operation	is	being	performed	on	the	variable,	and	is	one	of
read,	write,	or	unset	as	defined	above.

CommandPrefix	executes	in	the	same	context	as	the	code	that
invoked	the	traced	operation:	if	the	variable	was	accessed	as
part	of	a	Tcl	procedure,	then	commandPrefix	will	have	access

to	the	same	local	variables	as	code	in	the	procedure.	This
context	may	be	different	than	the	context	in	which	the	trace
was	created.	If	commandPrefix	invokes	a	procedure	(which	it
normally	does)	then	the	procedure	will	have	to	use	upvar	or
uplevel	if	it	wishes	to	access	the	traced	variable.	Note	also
that	name1	may	not	necessarily	be	the	same	as	the	name
used	to	set	the	trace	on	the	variable;	differences	can	occur	if
the	access	is	made	through	a	variable	defined	with	the	upvar
command.

For	read	and	write	traces,	commandPrefix	can	modify	the
variable	to	affect	the	result	of	the	traced	operation.	If
commandPrefix	modifies	the	value	of	a	variable	during	a	read
or	write	trace,	then	the	new	value	will	be	returned	as	the	result
of	the	traced	operation.	The	return	value	from	commandPrefix
is	ignored	except	that	if	it	returns	an	error	of	any	sort	then	the
traced	operation	also	returns	an	error	with	the	same	error
message	returned	by	the	trace	command	(this	mechanism	can
be	used	to	implement	read-only	variables,	for	example).	For
write	traces,	commandPrefix	is	invoked	after	the	variable's
value	has	been	changed;	it	can	write	a	new	value	into	the
variable	to	override	the	original	value	specified	in	the	write
operation.	To	implement	read-only	variables,	commandPrefix
will	have	to	restore	the	old	value	of	the	variable.

While	commandPrefix	is	executing	during	a	read	or	write	trace,
traces	on	the	variable	are	temporarily	disabled.	This	means
that	reads	and	writes	invoked	by	commandPrefix	will	occur
directly,	without	invoking	commandPrefix	(or	any	other	traces)
again.	However,	if	commandPrefix	unsets	the	variable	then
unset	traces	will	be	invoked.

When	an	unset	trace	is	invoked,	the	variable	has	already	been
deleted:	it	will	appear	to	be	undefined	with	no	traces.	If	an
unset	occurs	because	of	a	procedure	return,	then	the	trace	will
be	invoked	in	the	variable	context	of	the	procedure	being
returned	to:	the	stack	frame	of	the	returning	procedure	will	no
longer	exist.	Traces	are	not	disabled	during	unset	traces,	so	if

an	unset	trace	command	creates	a	new	trace	and	accesses
the	variable,	the	trace	will	be	invoked.	Any	errors	in	unset
traces	are	ignored.

If	there	are	multiple	traces	on	a	variable	they	are	invoked	in
order	of	creation,	most-recent	first.	If	one	trace	returns	an
error,	then	no	further	traces	are	invoked	for	the	variable.	If	an
array	element	has	a	trace	set,	and	there	is	also	a	trace	set	on
the	array	as	a	whole,	the	trace	on	the	overall	array	is	invoked
before	the	one	on	the	element.

Once	created,	the	trace	remains	in	effect	either	until	the	trace
is	removed	with	the	trace	remove	variable	command
described	below,	until	the	variable	is	unset,	or	until	the
interpreter	is	deleted.	Unsetting	an	element	of	array	will
remove	any	traces	on	that	element,	but	will	not	remove	traces
on	the	overall	array.

This	command	returns	an	empty	string.

trace	remove	type	name	opList	commandPrefix
Where	type	is	either	command,	execution	or	variable.

trace	remove	command	name	opList	commandPrefix
If	there	is	a	trace	set	on	command	name	with	the	operations
and	command	given	by	opList	and	commandPrefix,	then	the
trace	is	removed,	so	that	commandPrefix	will	never	again	be
invoked.	Returns	an	empty	string.	If	name	does	not	exist,	the
command	will	throw	an	error.

trace	remove	execution	name	opList	commandPrefix
If	there	is	a	trace	set	on	command	name	with	the	operations
and	command	given	by	opList	and	commandPrefix,	then	the
trace	is	removed,	so	that	commandPrefix	will	never	again	be
invoked.	Returns	an	empty	string.	If	name	does	not	exist,	the
command	will	throw	an	error.

trace	remove	variable	name	opList	commandPrefix

If	there	is	a	trace	set	on	variable	name	with	the	operations	and
command	given	by	opList	and	commandPrefix,	then	the	trace
is	removed,	so	that	commandPrefix	will	never	again	be
invoked.	Returns	an	empty	string.

trace	info	type	name
Where	type	is	either	command,	execution	or	variable.

trace	info	command	name
Returns	a	list	containing	one	element	for	each	trace	currently
set	on	command	name.	Each	element	of	the	list	is	itself	a	list
containing	two	elements,	which	are	the	opList	and
commandPrefix	associated	with	the	trace.	If	name	does	not
have	any	traces	set,	then	the	result	of	the	command	will	be	an
empty	string.	If	name	does	not	exist,	the	command	will	throw
an	error.

trace	info	execution	name
Returns	a	list	containing	one	element	for	each	trace	currently
set	on	command	name.	Each	element	of	the	list	is	itself	a	list
containing	two	elements,	which	are	the	opList	and
commandPrefix	associated	with	the	trace.	If	name	does	not
have	any	traces	set,	then	the	result	of	the	command	will	be	an
empty	string.	If	name	does	not	exist,	the	command	will	throw
an	error.

trace	info	variable	name
Returns	a	list	containing	one	element	for	each	trace	currently
set	on	variable	name.	Each	element	of	the	list	is	itself	a	list
containing	two	elements,	which	are	the	opList	and
commandPrefix	associated	with	the	trace.	If	name	does	not
exist	or	does	not	have	any	traces	set,	then	the	result	of	the
command	will	be	an	empty	string.

For	backwards	compatibility,	three	other	subcommands	are	available:

trace	variable	name	ops	command
This	is	equivalent	to	trace	add	variable	name	ops	command.

trace	vdelete	name	ops	command
This	is	equivalent	to	trace	remove	variable	name	ops	command

trace	vinfo	name
This	is	equivalent	to	trace	info	variable	name

These	subcommands	are	deprecated	and	will	likely	be	removed	in	a
future	version	of	Tcl.	They	use	an	older	syntax	in	which	array,	read,
write,	unset	are	replaced	by	a,	r,	w	and	u	respectively,	and	the	ops
argument	is	not	a	list,	but	simply	a	string	concatenation	of	the
operations,	such	as	rwua.

EXAMPLES

Print	a	message	whenever	either	of	the	global	variables	foo	and	bar
are	updated,	even	if	they	have	a	different	local	name	at	the	time	(which
can	be	done	with	the	upvar	command):

proc	tracer	{varname	args}	{

				upvar	#0	$varname	var

				puts	"$varname	was	updated	to	be	\"$var\""

}

trace	add	variable	foo	write	"tracer	foo"

trace	add	variable	bar	write	"tracer	bar"

Ensure	that	the	global	variable	foobar	always	contains	the	product	of
the	global	variables	foo	and	bar:

proc	doMult	args	{

				global	foo	bar	foobar

				set	foobar	[expr	{$foo	*	$bar}]

}

trace	add	variable	foo	write	doMult

trace	add	variable	bar	write	doMult

Print	a	trace	of	what	commands	are	executed	during	the	processing	of
a	Tcl	procedure:

proc	x	{}	{	y	}

proc	y	{}	{	z	}

proc	z	{}	{	puts	hello	}

proc	report	args	{puts	[info	level	0]}

trace	add	execution	x	enterstep	report

x

		→	report	y	enterstep
				report	z	enterstep

				report	{puts	hello}	enterstep

				hello

SEE	ALSO

set,	unset

KEYWORDS

read,	command,	rename,	variable,	write,	trace,	unset

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.
Copyright	©	2000	Ajuba	Solutions.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	bgerror

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

bgerror	-	Command	invoked	to	process	background	errors

SYNOPSIS

bgerror	message

DESCRIPTION

Release	8.5	of	Tcl	supports	the	interp	bgerror	command,	which	allows
applications	to	register	in	an	interpreter	the	command	that	will	handle
background	errors	in	that	interpreter.	In	older	releases	of	Tcl,	this	level
of	control	was	not	available,	and	applications	could	control	the	handling
of	background	errors	only	by	creating	a	command	with	the	particular
command	name	bgerror	in	the	global	namespace	of	an	interpreter.	The
following	documentation	describes	the	interface	requirements	of	the
bgerror	command	an	application	might	define	to	retain	compatibility
with	pre-8.5	releases	of	Tcl.	Applications	intending	to	support	only	Tcl
releases	8.5	and	later	should	simply	make	use	of	interp	bgerror.

The	bgerror	command	does	not	exist	as	built-in	part	of	Tcl.	Instead,
individual	applications	or	users	can	define	a	bgerror	command	(e.g.	as
a	Tcl	procedure)	if	they	wish	to	handle	background	errors.

A	background	error	is	one	that	occurs	in	an	event	handler	or	some	other
command	that	did	not	originate	with	the	application.	For	example,	if	an
error	occurs	while	executing	a	command	specified	with	the	after
command,	then	it	is	a	background	error.	For	a	non-background	error,
the	error	can	simply	be	returned	up	through	nested	Tcl	command
evaluations	until	it	reaches	the	top-level	code	in	the	application;	then
the	application	can	report	the	error	in	whatever	way	it	wishes.	When	a

background	error	occurs,	the	unwinding	ends	in	the	Tcl	library	and	there
is	no	obvious	way	for	Tcl	to	report	the	error.

When	Tcl	detects	a	background	error,	it	saves	information	about	the
error	and	invokes	a	handler	command	registered	by	interp	bgerror
later	as	an	idle	event	handler.	The	default	handler	command	in	turn
calls	the	bgerror	command	.	Before	invoking	bgerror,	Tcl	restores	the
errorInfo	and	errorCode	variables	to	their	values	at	the	time	the	error
occurred,	then	it	invokes	bgerror	with	the	error	message	as	its	only
argument.	Tcl	assumes	that	the	application	has	implemented	the
bgerror	command,	and	that	the	command	will	report	the	error	in	a	way
that	makes	sense	for	the	application.	Tcl	will	ignore	any	result	returned
by	the	bgerror	command	as	long	as	no	error	is	generated.

If	another	Tcl	error	occurs	within	the	bgerror	command	(for	example,
because	no	bgerror	command	has	been	defined)	then	Tcl	reports	the
error	itself	by	writing	a	message	to	stderr.

If	several	background	errors	accumulate	before	bgerror	is	invoked	to
process	them,	bgerror	will	be	invoked	once	for	each	error,	in	the	order
they	occurred.	However,	if	bgerror	returns	with	a	break	exception,	then
any	remaining	errors	are	skipped	without	calling	bgerror.

If	you	are	writing	code	that	will	be	used	by	others	as	part	of	a	package
or	other	kind	of	library,	consider	avoiding	bgerror.	The	reason	for	this	is
that	the	application	programmer	may	also	want	to	define	a	bgerror,	or
use	other	code	that	does	and	thus	will	have	trouble	integrating	your
code.

EXAMPLE

This	bgerror	procedure	appends	errors	to	a	file,	with	a	timestamp.

proc	bgerror	{message}	{

				set	timestamp	[clock	format	[clock	seconds]]

				set	fl	[open	mylog.txt	{WRONLY	CREAT	APPEND}]

				puts	$fl	"$timestamp:	bgerror	in	$::argv	'$message'"

				close	$fl

}

SEE	ALSO

after,	interp,	tclvars

KEYWORDS

background	error,	reporting

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990-1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	flush

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

flush	-	Flush	buffered	output	for	a	channel

SYNOPSIS

flush	channelId

DESCRIPTION

Flushes	any	output	that	has	been	buffered	for	channelId.

ChannelId	must	be	an	identifier	for	an	open	channel	such	as	a	Tcl
standard	channel	(stdout	or	stderr),	the	return	value	from	an
invocation	of	open	or	socket,	or	the	result	of	a	channel	creation
command	provided	by	a	Tcl	extension.	The	channel	must	have	been
opened	for	writing.

If	the	channel	is	in	blocking	mode	the	command	does	not	return	until	all
the	buffered	output	has	been	flushed	to	the	channel.	If	the	channel	is	in
nonblocking	mode,	the	command	may	return	before	all	buffered	output
has	been	flushed;	the	remainder	will	be	flushed	in	the	background	as
fast	as	the	underlying	file	or	device	is	able	to	absorb	it.

EXAMPLE

Prompt	for	the	user	to	type	some	information	in	on	the	console:

puts	-nonewline	"Please	type	your	name:	"

flush	stdout

gets	stdin	name

puts	"Hello	there,	$name!"

SEE	ALSO

file,	open,	socket,	Tcl_StandardChannels

KEYWORDS

blocking,	buffer,	channel,	flush,	nonblocking,	output

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	lsearch

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
lsearch	-	See	if	a	list	contains	a	particular	element

SYNOPSIS
DESCRIPTION
MATCHING	STYLE	OPTIONS

-exact
-glob
-regexp
-sorted

GENERAL	MODIFIER	OPTIONS
-all
-inline
-not
-start	index

CONTENTS	DESCRIPTION	OPTIONS
-ascii
-dictionary
-integer
-nocase
-real

SORTED	LIST	OPTIONS
-decreasing
-increasing

NESTED	LIST	OPTIONS
-index	indexList
-subindices

EXAMPLES
SEE	ALSO
KEYWORDS

NAME

lsearch	-	See	if	a	list	contains	a	particular	element

SYNOPSIS

lsearch	?options?	list	pattern

DESCRIPTION

This	command	searches	the	elements	of	list	to	see	if	one	of	them
matches	pattern.	If	so,	the	command	returns	the	index	of	the	first
matching	element	(unless	the	options	-all	or	-inline	are	specified.)	If
not,	the	command	returns	-1.	The	option	arguments	indicates	how	the
elements	of	the	list	are	to	be	matched	against	pattern	and	must	have
one	of	the	values	below:

MATCHING	STYLE	OPTIONS

If	all	matching	style	options	are	omitted,	the	default	matching	style	is	-
glob.	If	more	than	one	matching	style	is	specified,	the	last	matching
style	given	takes	precedence.

-exact
Pattern	is	a	literal	string	that	is	compared	for	exact	equality	against
each	list	element.

-glob
Pattern	is	a	glob-style	pattern	which	is	matched	against	each	list
element	using	the	same	rules	as	the	string	match	command.

-regexp
Pattern	is	treated	as	a	regular	expression	and	matched	against
each	list	element	using	the	rules	described	in	the	re_syntax
reference	page.

-sorted
The	list	elements	are	in	sorted	order.	If	this	option	is	specified,
lsearch	will	use	a	more	efficient	searching	algorithm	to	search	list.
If	no	other	options	are	specified,	list	is	assumed	to	be	sorted	in

increasing	order,	and	to	contain	ASCII	strings.	This	option	is
mutually	exclusive	with	-glob	and	-regexp,	and	is	treated	exactly
like	-exact	when	either	-all	or	-not	are	specified.

GENERAL	MODIFIER	OPTIONS

These	options	may	be	given	with	all	matching	styles.

-all
Changes	the	result	to	be	the	list	of	all	matching	indices	(or	all
matching	values	if	-inline	is	specified	as	well.)	If	indices	are
returned,	the	indices	will	be	in	numeric	order.	If	values	are	returned,
the	order	of	the	values	will	be	the	order	of	those	values	within	the
input	list.

-inline
The	matching	value	is	returned	instead	of	its	index	(or	an	empty
string	if	no	value	matches.)	If	-all	is	also	specified,	then	the	result	of
the	command	is	the	list	of	all	values	that	matched.

-not
This	negates	the	sense	of	the	match,	returning	the	index	of	the	first
non-matching	value	in	the	list.

-start	index
The	list	is	searched	starting	at	position	index.	The	interpretation	of
the	index	value	is	the	same	as	for	the	command	string	index,
supporting	simple	index	arithmetic	and	indices	relative	to	the	end	of
the	list.

CONTENTS	DESCRIPTION	OPTIONS

These	options	describe	how	to	interpret	the	items	in	the	list	being
searched.	They	are	only	meaningful	when	used	with	the	-exact	and	-
sorted	options.	If	more	than	one	is	specified,	the	last	one	takes
precedence.	The	default	is	-ascii.

-ascii

The	list	elements	are	to	be	examined	as	Unicode	strings	(the	name
is	for	backward-compatibility	reasons.)

-dictionary
The	list	elements	are	to	be	compared	using	dictionary-style
comparisons	(see	lsort	for	a	fuller	description).	Note	that	this	only
makes	a	meaningful	difference	from	the	-ascii	option	when	the	-
sorted	option	is	given,	because	values	are	only	dictionary-equal
when	exactly	equal.

-integer
The	list	elements	are	to	be	compared	as	integers.

-nocase
Causes	comparisons	to	be	handled	in	a	case-insensitive	manner.
Has	no	effect	if	combined	with	the	-dictionary,	-integer,	or	-real
options.

-real
The	list	elements	are	to	be	compared	as	floating-point	values.

SORTED	LIST	OPTIONS

These	options	(only	meaningful	with	the	-sorted	option)	specify	how	the
list	is	sorted.	If	more	than	one	is	given,	the	last	one	takes	precedence.
The	default	option	is	-increasing.

-decreasing
The	list	elements	are	sorted	in	decreasing	order.	This	option	is	only
meaningful	when	used	with	-sorted.

-increasing
The	list	elements	are	sorted	in	increasing	order.	This	option	is	only
meaningful	when	used	with	-sorted.

NESTED	LIST	OPTIONS

These	options	are	used	to	search	lists	of	lists.	They	may	be	used	with

any	other	options.

-index	indexList
This	option	is	designed	for	use	when	searching	within	nested	lists.
The	indexList	argument	gives	a	path	of	indices	(much	as	might	be
used	with	the	lindex	or	lset	commands)	within	each	element	to
allow	the	location	of	the	term	being	matched	against.

-subindices
If	this	option	is	given,	the	index	result	from	this	command	(or	every
index	result	when	-all	is	also	specified)	will	be	a	complete	path
(suitable	for	use	with	lindex	or	lset)	within	the	overall	list	to	the
term	found.	This	option	has	no	effect	unless	the	-index	is	also
specified,	and	is	just	a	convenience	short-cut.

EXAMPLES

Basic	searching:

lsearch	{a	b	c	d	e}	c

						→	2
lsearch	-all	{a	b	c	a	b	c}	c

						→	2	5

Using	lsearch	to	filter	lists:

lsearch	-inline	{a20	b35	c47}	b*

						→	b35
lsearch	-inline	-not	{a20	b35	c47}	b*

						→	a20
lsearch	-all	-inline	-not	{a20	b35	c47}	b*

						→	a20	c47
lsearch	-all	-not	{a20	b35	c47}	b*

						→	0	2

This	can	even	do	a	“set-like”	removal	operation:

lsearch	-all	-inline	-not	-exact	{a	b	c	a	d	e	a	f	g	a}	a

						→	b	c	d	e	f	g

Searching	may	start	part-way	through	the	list:

lsearch	-start	3	{a	b	c	a	b	c}	c

						→	5

It	is	also	possible	to	search	inside	elements:

lsearch	-index	1	-all	-inline	{{a	abc}	{b	bcd}	{c	cde}}	*bc*

						→	{a	abc}	{b	bcd}

SEE	ALSO

foreach,	list,	lappend,	lindex,	linsert,	llength,	lset,	lsort,	lrange,
lreplace,	string

KEYWORDS

list,	match,	pattern,	regular	expression,	search,	string

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.
Copyright	©	2001	Kevin	B.	Kenny	<kennykb(at)acm.org>.	All	rights	reserved.
Copyright	©	2003-2004	Donal	K.	Fellows.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	rename

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

rename	-	Rename	or	delete	a	command

SYNOPSIS

rename	oldName	newName

DESCRIPTION

Rename	the	command	that	used	to	be	called	oldName	so	that	it	is	now
called	newName.	If	newName	is	an	empty	string	then	oldName	is
deleted.	oldName	and	newName	may	include	namespace	qualifiers
(names	of	containing	namespaces).	If	a	command	is	renamed	into	a
different	namespace,	future	invocations	of	it	will	execute	in	the	new
namespace.	The	rename	command	returns	an	empty	string	as	result.

EXAMPLE

The	rename	command	can	be	used	to	wrap	the	standard	Tcl
commands	with	your	own	monitoring	machinery.	For	example,	you
might	wish	to	count	how	often	the	source	command	is	called:

rename	::source	::theRealSource

set	sourceCount	0

proc	::source	args	{

				global	sourceCount

				puts	"called	source	for	the	[incr	sourceCount]'th	time"

				uplevel	1	::theRealSource	$args

}

SEE	ALSO

namespace,	proc

KEYWORDS

command,	delete,	namespace,	rename

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1997	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	unknown

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

unknown	-	Handle	attempts	to	use	non-existent	commands

SYNOPSIS

unknown	cmdName	?arg	arg	...?

DESCRIPTION

This	command	is	invoked	by	the	Tcl	interpreter	whenever	a	script	tries
to	invoke	a	command	that	does	not	exist.	The	default	implementation	of
unknown	is	a	library	procedure	defined	when	Tcl	initializes	an
interpreter.	You	can	override	the	default	unknown	to	change	its
functionality,	or	you	can	register	a	new	handler	for	individual
namespaces	using	the	namespace	unknown	command.	Note	that
there	is	no	default	implementation	of	unknown	in	a	safe	interpreter.

If	the	Tcl	interpreter	encounters	a	command	name	for	which	there	is	not
a	defined	command	(in	either	the	current	namespace,	or	the	global
namespace),	then	Tcl	checks	for	the	existence	of	an	unknown	handler
for	the	current	namespace.	By	default,	this	handler	is	a	command
named	::unknown.	If	there	is	no	such	command,	then	the	interpreter
returns	an	error.	If	the	unknown	command	exists	(or	a	new	handler	has
been	registered	for	the	current	namespace),	then	it	is	invoked	with
arguments	consisting	of	the	fully-substituted	name	and	arguments	for
the	original	non-existent	command.	The	unknown	command	typically
does	things	like	searching	through	library	directories	for	a	command
procedure	with	the	name	cmdName,	or	expanding	abbreviated
command	names	to	full-length,	or	automatically	executing	unknown
commands	as	sub-processes.	In	some	cases	(such	as	expanding
abbreviations)	unknown	will	change	the	original	command	slightly	and

then	(re-)execute	it.	The	result	of	the	unknown	command	is	used	as
the	result	for	the	original	non-existent	command.

The	default	implementation	of	unknown	behaves	as	follows.	It	first	calls
the	auto_load	library	procedure	to	load	the	command.	If	this	succeeds,
then	it	executes	the	original	command	with	its	original	arguments.	If	the
auto-load	fails	then	unknown	calls	auto_execok	to	see	if	there	is	an
executable	file	by	the	name	cmd.	If	so,	it	invokes	the	Tcl	exec	command
with	cmd	and	all	the	args	as	arguments.	If	cmd	cannot	be	auto-
executed,	unknown	checks	to	see	if	the	command	was	invoked	at	top-
level	and	outside	of	any	script.	If	so,	then	unknown	takes	two	additional
steps.	First,	it	sees	if	cmd	has	one	of	the	following	three	forms:	!!,
!event,	or	^old^new?^?.	If	so,	then	unknown	carries	out	history
substitution	in	the	same	way	that	csh	would	for	these	constructs.
Finally,	unknown	checks	to	see	if	cmd	is	a	unique	abbreviation	for	an
existing	Tcl	command.	If	so,	it	expands	the	command	name	and
executes	the	command	with	the	original	arguments.	If	none	of	the
above	efforts	has	been	able	to	execute	the	command,	unknown
generates	an	error	return.	If	the	global	variable	auto_noload	is	defined,
then	the	auto-load	step	is	skipped.	If	the	global	variable	auto_noexec	is
defined	then	the	auto-exec	step	is	skipped.	Under	normal
circumstances	the	return	value	from	unknown	is	the	return	value	from
the	command	that	was	eventually	executed.

EXAMPLE

Arrange	for	the	unknown	command	to	have	its	standard	behavior
except	for	first	logging	the	fact	that	a	command	was	not	found:

#	Save	the	original	one	so	we	can	chain	to	it

rename	unknown	_original_unknown

#	Provide	our	own	implementation

proc	unknown	args	{

				puts	stderr	"WARNING:	unknown	command:	$args"

				uplevel	1	[list	_original_unknown	{*}$args]

}

SEE	ALSO

info,	proc,	interp,	library,	namespace

KEYWORDS

error,	non-existent	command

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	binary

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
binary	-	Insert	and	extract	fields	from	binary	strings

SYNOPSIS
DESCRIPTION
BINARY	FORMAT

a
A
b
B
H
h
c
s
S
t
i
I
n
w
W
m
f
r
R
d
q
Q
x
X
@

BINARY	SCAN

a
A
b
B
H
h
c
s
S
t
i
I
n
w
W
m
f
r
R
d
q
Q
x
X
@

PORTABILITY	ISSUES
EXAMPLES
SEE	ALSO
KEYWORDS

NAME

binary	-	Insert	and	extract	fields	from	binary	strings

SYNOPSIS

binary	format	formatString	?arg	arg	...?
binary	scan	string	formatString	?varName	varName	...?

DESCRIPTION

This	command	provides	facilities	for	manipulating	binary	data.	The	first
form,	binary	format,	creates	a	binary	string	from	normal	Tcl	values.	For
example,	given	the	values	16	and	22,	on	a	32-bit	architecture,	it	might
produce	an	8-byte	binary	string	consisting	of	two	4-byte	integers,	one
for	each	of	the	numbers.	The	second	form	of	the	command,	binary
scan,	does	the	opposite:	it	extracts	data	from	a	binary	string	and
returns	it	as	ordinary	Tcl	string	values.

BINARY	FORMAT

The	binary	format	command	generates	a	binary	string	whose	layout	is
specified	by	the	formatString	and	whose	contents	come	from	the
additional	arguments.	The	resulting	binary	value	is	returned.

The	formatString	consists	of	a	sequence	of	zero	or	more	field	specifiers
separated	by	zero	or	more	spaces.	Each	field	specifier	is	a	single	type
character	followed	by	an	optional	flag	character	followed	by	an	optional
numeric	count.	Most	field	specifiers	consume	one	argument	to	obtain
the	value	to	be	formatted.	The	type	character	specifies	how	the	value	is
to	be	formatted.	The	count	typically	indicates	how	many	items	of	the
specified	type	are	taken	from	the	value.	If	present,	the	count	is	a	non-
negative	decimal	integer	or	*,	which	normally	indicates	that	all	of	the
items	in	the	value	are	to	be	used.	If	the	number	of	arguments	does	not
match	the	number	of	fields	in	the	format	string	that	consume
arguments,	then	an	error	is	generated.	The	flag	character	is	ignored	for
for	binary	format.

Here	is	a	small	example	to	clarify	the	relation	between	the	field
specifiers	and	the	arguments:

binary	format	d3d	{1.0	2.0	3.0	4.0}	0.1

The	first	argument	is	a	list	of	four	numbers,	but	because	of	the	count	of

3	for	the	associated	field	specifier,	only	the	first	three	will	be	used.	The
second	argument	is	associated	with	the	second	field	specifier.	The
resulting	binary	string	contains	the	four	numbers	1.0,	2.0,	3.0	and	0.1.

Each	type-count	pair	moves	an	imaginary	cursor	through	the	binary
data,	storing	bytes	at	the	current	position	and	advancing	the	cursor	to
just	after	the	last	byte	stored.	The	cursor	is	initially	at	position	0	at	the
beginning	of	the	data.	The	type	may	be	any	one	of	the	following
characters:

a
Stores	a	byte	string	of	length	count	in	the	output	string.	Every
character	is	taken	as	modulo	256	(i.e.	the	low	byte	of	every
character	is	used,	and	the	high	byte	discarded)	so	when	storing
character	strings	not	wholly	expressible	using	the	characters
\u0000-\u00ff,	the	encoding	convertto	command	should	be	used
first	to	change	the	string	into	an	external	representation	if	this
truncation	is	not	desired	(i.e.	if	the	characters	are	not	part	of	the
ISO	8859-1	character	set.)	If	arg	has	fewer	than	count	bytes,	then
additional	zero	bytes	are	used	to	pad	out	the	field.	If	arg	is	longer
than	the	specified	length,	the	extra	characters	will	be	ignored.	If
count	is	*,	then	all	of	the	bytes	in	arg	will	be	formatted.	If	count	is
omitted,	then	one	character	will	be	formatted.	For	example,

binary	format	a7a*a	alpha	bravo	charlie

will	return	a	string	equivalent	to	alpha\000\000bravoc,

binary	format	a*	[encoding	convertto	utf-8	\u20ac]

will	return	a	string	equivalent	to	\342\202\254	(which	is	the	UTF-8
byte	sequence	for	a	Euro-currency	character)	and

binary	format	a*	[encoding	convertto	iso8859-15	\u20ac]

will	return	a	string	equivalent	to	\244	(which	is	the	ISO	8859-15
byte	sequence	for	a	Euro-currency	character).	Contrast	these	last
two	with:

binary	format	a*	\u20ac

which	returns	a	string	equivalent	to	\254	(i.e.	\xac)	by	truncating	the
high-bits	of	the	character,	and	which	is	probably	not	what	is
desired.

A
This	form	is	the	same	as	a	except	that	spaces	are	used	for	padding
instead	of	nulls.	For	example,

binary	format	A6A*A	alpha	bravo	charlie

will	return	alpha	bravoc.

b
Stores	a	string	of	count	binary	digits	in	low-to-high	order	within
each	byte	in	the	output	string.	Arg	must	contain	a	sequence	of	1
and	0	characters.	The	resulting	bytes	are	emitted	in	first	to	last
order	with	the	bits	being	formatted	in	low-to-high	order	within	each
byte.	If	arg	has	fewer	than	count	digits,	then	zeros	will	be	used	for
the	remaining	bits.	If	arg	has	more	than	the	specified	number	of
digits,	the	extra	digits	will	be	ignored.	If	count	is	*,	then	all	of	the
digits	in	arg	will	be	formatted.	If	count	is	omitted,	then	one	digit	will
be	formatted.	If	the	number	of	bits	formatted	does	not	end	at	a	byte
boundary,	the	remaining	bits	of	the	last	byte	will	be	zeros.	For
example,

binary	format	b5b*	11100	111000011010

will	return	a	string	equivalent	to	\x07\x87\x05.

B
This	form	is	the	same	as	b	except	that	the	bits	are	stored	in	high-
to-low	order	within	each	byte.	For	example,

binary	format	B5B*	11100	111000011010

will	return	a	string	equivalent	to	\xe0\xe1\xa0.

H
Stores	a	string	of	count	hexadecimal	digits	in	high-to-low	within
each	byte	in	the	output	string.	Arg	must	contain	a	sequence	of
characters	in	the	set	“0123456789abcdefABCDEF”.	The	resulting
bytes	are	emitted	in	first	to	last	order	with	the	hex	digits	being
formatted	in	high-to-low	order	within	each	byte.	If	arg	has	fewer
than	count	digits,	then	zeros	will	be	used	for	the	remaining	digits.	If
arg	has	more	than	the	specified	number	of	digits,	the	extra	digits
will	be	ignored.	If	count	is	*,	then	all	of	the	digits	in	arg	will	be
formatted.	If	count	is	omitted,	then	one	digit	will	be	formatted.	If	the
number	of	digits	formatted	does	not	end	at	a	byte	boundary,	the
remaining	bits	of	the	last	byte	will	be	zeros.	For	example,

binary	format	H3H*H2	ab	DEF	987

will	return	a	string	equivalent	to	\xab\x00\xde\xf0\x98.

h
This	form	is	the	same	as	H	except	that	the	digits	are	stored	in	low-
to-high	order	within	each	byte.	This	is	seldom	required.	For
example,

binary	format	h3h*h2	AB	def	987

will	return	a	string	equivalent	to	\xba\x00\xed\x0f\x89.

c
Stores	one	or	more	8-bit	integer	values	in	the	output	string.	If	no
count	is	specified,	then	arg	must	consist	of	an	integer	value.	If
count	is	specified,	arg	must	consist	of	a	list	containing	at	least	that
many	integers.	The	low-order	8	bits	of	each	integer	are	stored	as	a
one-byte	value	at	the	cursor	position.	If	count	is	*,	then	all	of	the
integers	in	the	list	are	formatted.	If	the	number	of	elements	in	the
list	is	greater	than	count,	then	the	extra	elements	are	ignored.	For
example,

binary	format	c3cc*	{3	-3	128	1}	260	{2	5}

will	return	a	string	equivalent	to	\x03\xfd\x80\x04\x02\x05,
whereas

binary	format	c	{2	5}

will	generate	an	error.

s
This	form	is	the	same	as	c	except	that	it	stores	one	or	more	16-bit
integers	in	little-endian	byte	order	in	the	output	string.	The	low-
order	16-bits	of	each	integer	are	stored	as	a	two-byte	value	at	the
cursor	position	with	the	least	significant	byte	stored	first.	For
example,

binary	format	s3	{3	-3	258	1}

will	return	a	string	equivalent	to	\x03\x00\xfd\xff\x02\x01.

S
This	form	is	the	same	as	s	except	that	it	stores	one	or	more	16-bit
integers	in	big-endian	byte	order	in	the	output	string.	For	example,

binary	format	S3	{3	-3	258	1}

will	return	a	string	equivalent	to	\x00\x03\xff\xfd\x01\x02.

t
This	form	(mnemonically	tiny)	is	the	same	as	s	and	S	except	that	it
stores	the	16-bit	integers	in	the	output	string	in	the	native	byte
order	of	the	machine	where	the	Tcl	script	is	running.	To	determine
what	the	native	byte	order	of	the	machine	is,	refer	to	the	byteOrder
element	of	the	tcl_platform	array.

i
This	form	is	the	same	as	c	except	that	it	stores	one	or	more	32-bit
integers	in	little-endian	byte	order	in	the	output	string.	The	low-
order	32-bits	of	each	integer	are	stored	as	a	four-byte	value	at	the
cursor	position	with	the	least	significant	byte	stored	first.	For
example,

binary	format	i3	{3	-3	65536	1}

will	return	a	string	equivalent	to
\x03\x00\x00\x00\xfd\xff\xff\xff\x00\x00\x01\x00

I
This	form	is	the	same	as	i	except	that	it	stores	one	or	more	one	or
more	32-bit	integers	in	big-endian	byte	order	in	the	output	string.
For	example,

binary	format	I3	{3	-3	65536	1}

will	return	a	string	equivalent	to
\x00\x00\x00\x03\xff\xff\xff\xfd\x00\x01\x00\x00

n
This	form	(mnemonically	number	or	normal)	is	the	same	as	i	and	I
except	that	it	stores	the	32-bit	integers	in	the	output	string	in	the
native	byte	order	of	the	machine	where	the	Tcl	script	is	running.	To
determine	what	the	native	byte	order	of	the	machine	is,	refer	to	the
byteOrder	element	of	the	tcl_platform	array.

w
This	form	is	the	same	as	c	except	that	it	stores	one	or	more	64-bit
integers	in	little-endian	byte	order	in	the	output	string.	The	low-
order	64-bits	of	each	integer	are	stored	as	an	eight-byte	value	at
the	cursor	position	with	the	least	significant	byte	stored	first.	For
example,

binary	format	w	7810179016327718216

will	return	the	string	HelloTcl

W
This	form	is	the	same	as	w	except	that	it	stores	one	or	more	one	or
more	64-bit	integers	in	big-endian	byte	order	in	the	output	string.
For	example,

binary	format	Wc	4785469626960341345	110

will	return	the	string	BigEndian

m

This	form	(mnemonically	the	mirror	of	w)	is	the	same	as	w	and	W
except	that	it	stores	the	64-bit	integers	in	the	output	string	in	the
native	byte	order	of	the	machine	where	the	Tcl	script	is	running.	To
determine	what	the	native	byte	order	of	the	machine	is,	refer	to	the
byteOrder	element	of	the	tcl_platform	array.

f
This	form	is	the	same	as	c	except	that	it	stores	one	or	more	one	or
more	single-precision	floating	point	numbers	in	the	machine's
native	representation	in	the	output	string.	This	representation	is	not
portable	across	architectures,	so	it	should	not	be	used	to
communicate	floating	point	numbers	across	the	network.	The	size
of	a	floating	point	number	may	vary	across	architectures,	so	the
number	of	bytes	that	are	generated	may	vary.	If	the	value	overflows
the	machine's	native	representation,	then	the	value	of	FLT_MAX	as
defined	by	the	system	will	be	used	instead.	Because	Tcl	uses
double-precision	floating	point	numbers	internally,	there	may	be
some	loss	of	precision	in	the	conversion	to	single-precision.	For
example,	on	a	Windows	system	running	on	an	Intel	Pentium
processor,

binary	format	f2	{1.6	3.4}

will	return	a	string	equivalent	to	\xcd\xcc\xcc\x3f\x9a\x99\x59\x40.

r
This	form	(mnemonically	real)	is	the	same	as	f	except	that	it	stores
the	single-precision	floating	point	numbers	in	little-endian	order.
This	conversion	only	produces	meaningful	output	when	used	on
machines	which	use	the	IEEE	floating	point	representation	(very
common,	but	not	universal.)

R
This	form	is	the	same	as	r	except	that	it	stores	the	single-precision
floating	point	numbers	in	big-endian	order.

d
This	form	is	the	same	as	f	except	that	it	stores	one	or	more	one	or
more	double-precision	floating	point	numbers	in	the	machine's
native	representation	in	the	output	string.	For	example,	on	a
Windows	system	running	on	an	Intel	Pentium	processor,

binary	format	d1	{1.6}

will	return	a	string	equivalent	to	\x9a\x99\x99\x99\x99\x99\xf9\x3f.

q
This	form	(mnemonically	the	mirror	of	d)	is	the	same	as	d	except
that	it	stores	the	double-precision	floating	point	numbers	in	little-
endian	order.	This	conversion	only	produces	meaningful	output
when	used	on	machines	which	use	the	IEEE	floating	point
representation	(very	common,	but	not	universal.)

Q
This	form	is	the	same	as	q	except	that	it	stores	the	double-
precision	floating	point	numbers	in	big-endian	order.

x
Stores	count	null	bytes	in	the	output	string.	If	count	is	not	specified,
stores	one	null	byte.	If	count	is	*,	generates	an	error.	This	type
does	not	consume	an	argument.	For	example,

binary	format	a3xa3x2a3	abc	def	ghi

will	return	a	string	equivalent	to	abc\000def\000\000ghi.

X
Moves	the	cursor	back	count	bytes	in	the	output	string.	If	count	is	*
or	is	larger	than	the	current	cursor	position,	then	the	cursor	is
positioned	at	location	0	so	that	the	next	byte	stored	will	be	the	first
byte	in	the	result	string.	If	count	is	omitted	then	the	cursor	is	moved

back	one	byte.	This	type	does	not	consume	an	argument.	For
example,

binary	format	a3X*a3X2a3	abc	def	ghi

will	return	dghi.

@
Moves	the	cursor	to	the	absolute	location	in	the	output	string
specified	by	count.	Position	0	refers	to	the	first	byte	in	the	output
string.	If	count	refers	to	a	position	beyond	the	last	byte	stored	so
far,	then	null	bytes	will	be	placed	in	the	uninitialized	locations	and
the	cursor	will	be	placed	at	the	specified	location.	If	count	is	*,	then
the	cursor	is	moved	to	the	current	end	of	the	output	string.	If	count
is	omitted,	then	an	error	will	be	generated.	This	type	does	not
consume	an	argument.	For	example,

binary	format	a5@2a1@*a3@10a1	abcde	f	ghi	j

will	return	abfdeghi\000\000j.

BINARY	SCAN

The	binary	scan	command	parses	fields	from	a	binary	string,	returning
the	number	of	conversions	performed.	String	gives	the	input	bytes	to	be
parsed	(one	byte	per	character,	and	characters	not	representable	as	a
byte	have	their	high	bits	chopped)	and	formatString	indicates	how	to
parse	it.	Each	varName	gives	the	name	of	a	variable;	when	a	field	is
scanned	from	string	the	result	is	assigned	to	the	corresponding
variable.

As	with	binary	format,	the	formatString	consists	of	a	sequence	of	zero
or	more	field	specifiers	separated	by	zero	or	more	spaces.	Each	field
specifier	is	a	single	type	character	followed	by	an	optional	flag
character	followed	by	an	optional	numeric	count.	Most	field	specifiers

consume	one	argument	to	obtain	the	variable	into	which	the	scanned
values	should	be	placed.	The	type	character	specifies	how	the	binary
data	is	to	be	interpreted.	The	count	typically	indicates	how	many	items
of	the	specified	type	are	taken	from	the	data.	If	present,	the	count	is	a
non-negative	decimal	integer	or	*,	which	normally	indicates	that	all	of
the	remaining	items	in	the	data	are	to	be	used.	If	there	are	not	enough
bytes	left	after	the	current	cursor	position	to	satisfy	the	current	field
specifier,	then	the	corresponding	variable	is	left	untouched	and	binary
scan	returns	immediately	with	the	number	of	variables	that	were	set.	If
there	are	not	enough	arguments	for	all	of	the	fields	in	the	format	string
that	consume	arguments,	then	an	error	is	generated.	The	flag	character
“u”	may	be	given	to	cause	some	types	to	be	read	as	unsigned	values.
The	flag	is	accepted	for	all	field	types	but	is	ignored	for	non-integer
fields.

A	similar	example	as	with	binary	format	should	explain	the	relation
between	field	specifiers	and	arguments	in	case	of	the	binary	scan
subcommand:

binary	scan	$bytes	s3s	first	second

This	command	(provided	the	binary	string	in	the	variable	bytes	is	long
enough)	assigns	a	list	of	three	integers	to	the	variable	first	and	assigns
a	single	value	to	the	variable	second.	If	bytes	contains	fewer	than	8
bytes	(i.e.	four	2-byte	integers),	no	assignment	to	second	will	be	made,
and	if	bytes	contains	fewer	than	6	bytes	(i.e.	three	2-byte	integers),	no
assignment	to	first	will	be	made.	Hence:

puts	[binary	scan	abcdefg	s3s	first	second]

puts	$first

puts	$second

will	print	(assuming	neither	variable	is	set	previously):

1

25185	25699	26213

can't	read	"second":	no	such	variable

It	is	important	to	note	that	the	c,	s,	and	S	(and	i	and	I	on	64bit	systems)
will	be	scanned	into	long	data	size	values.	In	doing	this,	values	that
have	their	high	bit	set	(0x80	for	chars,	0x8000	for	shorts,	0x80000000
for	ints),	will	be	sign	extended.	Thus	the	following	will	occur:

set	signShort	[binary	format	s1	0x8000]

binary	scan	$signShort	s1	val;	#	val	==	0xFFFF8000

If	you	require	unsigned	values	you	can	include	the	“u”	flag	character
following	the	field	type.	For	example,	to	read	an	unsigned	short	value:

set	signShort	[binary	format	s1	0x8000]

binary	scan	$signShort	su1	val;	#	val	==	0x00008000

Each	type-count	pair	moves	an	imaginary	cursor	through	the	binary
data,	reading	bytes	from	the	current	position.	The	cursor	is	initially	at
position	0	at	the	beginning	of	the	data.	The	type	may	be	any	one	of	the
following	characters:

a
The	data	is	a	byte	string	of	length	count.	If	count	is	*,	then	all	of	the
remaining	bytes	in	string	will	be	scanned	into	the	variable.	If	count
is	omitted,	then	one	byte	will	be	scanned.	All	bytes	scanned	will	be
interpreted	as	being	characters	in	the	range	\u0000-\u00ff	so	the
encoding	convertfrom	command	will	be	needed	if	the	string	is	not
a	binary	string	or	a	string	encoded	in	ISO	8859-1.	For	example,

binary	scan	abcde\000fghi	a6a10	var1	var2

will	return	1	with	the	string	equivalent	to	abcde\000	stored	in	var1
and	var2	left	unmodified,	and

binary	scan	\342\202\254	a*	var1

set	var2	[encoding	convertfrom	utf-8	$var1]

will	store	a	Euro-currency	character	in	var2.

A
This	form	is	the	same	as	a,	except	trailing	blanks	and	nulls	are
stripped	from	the	scanned	value	before	it	is	stored	in	the	variable.
For	example,

binary	scan	"abc	efghi		\000"	A*	var1

will	return	1	with	abc	efghi	stored	in	var1.

b
The	data	is	turned	into	a	string	of	count	binary	digits	in	low-to-high
order	represented	as	a	sequence	of	“1”	and	“0”	characters.	The
data	bytes	are	scanned	in	first	to	last	order	with	the	bits	being
taken	in	low-to-high	order	within	each	byte.	Any	extra	bits	in	the
last	byte	are	ignored.	If	count	is	*,	then	all	of	the	remaining	bits	in
string	will	be	scanned.	If	count	is	omitted,	then	one	bit	will	be
scanned.	For	example,

binary	scan	\x07\x87\x05	b5b*	var1	var2

will	return	2	with	11100	stored	in	var1	and	1110000110100000
stored	in	var2.

B
This	form	is	the	same	as	b,	except	the	bits	are	taken	in	high-to-low
order	within	each	byte.	For	example,

binary	scan	\x70\x87\x05	B5B*	var1	var2

will	return	2	with	01110	stored	in	var1	and	1000011100000101
stored	in	var2.

H
The	data	is	turned	into	a	string	of	count	hexadecimal	digits	in	high-
to-low	order	represented	as	a	sequence	of	characters	in	the	set
“0123456789abcdef”.	The	data	bytes	are	scanned	in	first	to	last
order	with	the	hex	digits	being	taken	in	high-to-low	order	within
each	byte.	Any	extra	bits	in	the	last	byte	are	ignored.	If	count	is	*,
then	all	of	the	remaining	hex	digits	in	string	will	be	scanned.	If
count	is	omitted,	then	one	hex	digit	will	be	scanned.	For	example,

binary	scan	\x07\xC6\x05\x1f\x34	H3H*	var1	var2

will	return	2	with	07c	stored	in	var1	and	051f34	stored	in	var2.

h
This	form	is	the	same	as	H,	except	the	digits	are	taken	in	reverse
(low-to-high)	order	within	each	byte.	For	example,

binary	scan	\x07\x86\x05\x12\x34	h3h*	var1	var2

will	return	2	with	706	stored	in	var1	and	502143	stored	in	var2.
Note	that	most	code	that	wishes	to	parse	the	hexadecimal	digits
from	multiple	bytes	in	order	should	use	the	H	format.

c
The	data	is	turned	into	count	8-bit	signed	integers	and	stored	in	the
corresponding	variable	as	a	list.	If	count	is	*,	then	all	of	the
remaining	bytes	in	string	will	be	scanned.	If	count	is	omitted,	then
one	8-bit	integer	will	be	scanned.	For	example,

binary	scan	\x07\x86\x05	c2c*	var1	var2

will	return	2	with	7	-122	stored	in	var1	and	5	stored	in	var2.	Note
that	the	integers	returned	are	signed,	but	they	can	be	converted	to
unsigned	8-bit	quantities	using	an	expression	like:

set	num	[expr	{	$num	&	0xff	}]

s
The	data	is	interpreted	as	count	16-bit	signed	integers	represented
in	little-endian	byte	order.	The	integers	are	stored	in	the
corresponding	variable	as	a	list.	If	count	is	*,	then	all	of	the
remaining	bytes	in	string	will	be	scanned.	If	count	is	omitted,	then
one	16-bit	integer	will	be	scanned.	For	example,

binary	scan	\x05\x00\x07\x00\xf0\xff	s2s*	var1	var2

will	return	2	with	5	7	stored	in	var1	and	-16	stored	in	var2.	Note	that
the	integers	returned	are	signed,	but	they	can	be	converted	to
unsigned	16-bit	quantities	using	an	expression	like:

set	num	[expr	{	$num	&	0xffff	}]

S
This	form	is	the	same	as	s	except	that	the	data	is	interpreted	as

count	16-bit	signed	integers	represented	in	big-endian	byte	order.
For	example,

binary	scan	\x00\x05\x00\x07\xff\xf0	S2S*	var1	var2

will	return	2	with	5	7	stored	in	var1	and	-16	stored	in	var2.

t
The	data	is	interpreted	as	count	16-bit	signed	integers	represented
in	the	native	byte	order	of	the	machine	running	the	Tcl	script.	It	is
otherwise	identical	to	s	and	S.	To	determine	what	the	native	byte
order	of	the	machine	is,	refer	to	the	byteOrder	element	of	the
tcl_platform	array.

i
The	data	is	interpreted	as	count	32-bit	signed	integers	represented
in	little-endian	byte	order.	The	integers	are	stored	in	the
corresponding	variable	as	a	list.	If	count	is	*,	then	all	of	the
remaining	bytes	in	string	will	be	scanned.	If	count	is	omitted,	then
one	32-bit	integer	will	be	scanned.	For	example,

set	str	\x05\x00\x00\x00\x07\x00\x00\x00\xf0\xff\xff\xff

binary	scan	$str	i2i*	var1	var2

will	return	2	with	5	7	stored	in	var1	and	-16	stored	in	var2.	Note	that
the	integers	returned	are	signed,	but	they	can	be	converted	to
unsigned	32-bit	quantities	using	an	expression	like:

set	num	[expr	{	$num	&	0xffffffff	}]

I
This	form	is	the	same	as	I	except	that	the	data	is	interpreted	as

count	32-bit	signed	integers	represented	in	big-endian	byte	order.
For	example,

set	str	\x00\x00\x00\x05\x00\x00\x00\x07\xff\xff\xff\xf0

binary	scan	$str	I2I*	var1	var2

will	return	2	with	5	7	stored	in	var1	and	-16	stored	in	var2.

n
The	data	is	interpreted	as	count	32-bit	signed	integers	represented
in	the	native	byte	order	of	the	machine	running	the	Tcl	script.	It	is
otherwise	identical	to	i	and	I.	To	determine	what	the	native	byte
order	of	the	machine	is,	refer	to	the	byteOrder	element	of	the
tcl_platform	array.

w
The	data	is	interpreted	as	count	64-bit	signed	integers	represented
in	little-endian	byte	order.	The	integers	are	stored	in	the
corresponding	variable	as	a	list.	If	count	is	*,	then	all	of	the
remaining	bytes	in	string	will	be	scanned.	If	count	is	omitted,	then
one	64-bit	integer	will	be	scanned.	For	example,

set	str	\x05\x00\x00\x00\x07\x00\x00\x00\xf0\xff\xff\xff

binary	scan	$str	wi*	var1	var2

will	return	2	with	30064771077	stored	in	var1	and	-16	stored	in
var2.	Note	that	the	integers	returned	are	signed	and	cannot	be
represented	by	Tcl	as	unsigned	values.

W
This	form	is	the	same	as	w	except	that	the	data	is	interpreted	as
count	64-bit	signed	integers	represented	in	big-endian	byte	order.
For	example,

set	str	\x00\x00\x00\x05\x00\x00\x00\x07\xff\xff\xff\xf0

binary	scan	$str	WI*	var1	var2

will	return	2	with	21474836487	stored	in	var1	and	-16	stored	in
var2.

m
The	data	is	interpreted	as	count	64-bit	signed	integers	represented
in	the	native	byte	order	of	the	machine	running	the	Tcl	script.	It	is
otherwise	identical	to	w	and	W.	To	determine	what	the	native	byte
order	of	the	machine	is,	refer	to	the	byteOrder	element	of	the
tcl_platform	array.

f
The	data	is	interpreted	as	count	single-precision	floating	point
numbers	in	the	machine's	native	representation.	The	floating	point
numbers	are	stored	in	the	corresponding	variable	as	a	list.	If	count
is	*,	then	all	of	the	remaining	bytes	in	string	will	be	scanned.	If
count	is	omitted,	then	one	single-precision	floating	point	number
will	be	scanned.	The	size	of	a	floating	point	number	may	vary
across	architectures,	so	the	number	of	bytes	that	are	scanned	may
vary.	If	the	data	does	not	represent	a	valid	floating	point	number,
the	resulting	value	is	undefined	and	compiler	dependent.	For
example,	on	a	Windows	system	running	on	an	Intel	Pentium
processor,

binary	scan	\x3f\xcc\xcc\xcd	f	var1

will	return	1	with	1.6000000238418579	stored	in	var1.

r
This	form	is	the	same	as	f	except	that	the	data	is	interpreted	as
count	single-precision	floating	point	number	in	little-endian	order.
This	conversion	is	not	portable	to	the	minority	of	systems	not	using

IEEE	floating	point	representations.

R
This	form	is	the	same	as	f	except	that	the	data	is	interpreted	as
count	single-precision	floating	point	number	in	big-endian	order.
This	conversion	is	not	portable	to	the	minority	of	systems	not	using
IEEE	floating	point	representations.

d
This	form	is	the	same	as	f	except	that	the	data	is	interpreted	as
count	double-precision	floating	point	numbers	in	the	machine's
native	representation.	For	example,	on	a	Windows	system	running
on	an	Intel	Pentium	processor,

binary	scan	\x9a\x99\x99\x99\x99\x99\xf9\x3f	d	var1

will	return	1	with	1.6000000000000001	stored	in	var1.

q
This	form	is	the	same	as	d	except	that	the	data	is	interpreted	as
count	double-precision	floating	point	number	in	little-endian	order.
This	conversion	is	not	portable	to	the	minority	of	systems	not	using
IEEE	floating	point	representations.

Q
This	form	is	the	same	as	d	except	that	the	data	is	interpreted	as
count	double-precision	floating	point	number	in	big-endian	order.
This	conversion	is	not	portable	to	the	minority	of	systems	not	using
IEEE	floating	point	representations.

x
Moves	the	cursor	forward	count	bytes	in	string.	If	count	is	*	or	is
larger	than	the	number	of	bytes	after	the	current	cursor	position,
then	the	cursor	is	positioned	after	the	last	byte	in	string.	If	count	is
omitted,	then	the	cursor	is	moved	forward	one	byte.	Note	that	this
type	does	not	consume	an	argument.	For	example,

binary	scan	\x01\x02\x03\x04	x2H*	var1

will	return	1	with	0304	stored	in	var1.

X
Moves	the	cursor	back	count	bytes	in	string.	If	count	is	*	or	is	larger
than	the	current	cursor	position,	then	the	cursor	is	positioned	at
location	0	so	that	the	next	byte	scanned	will	be	the	first	byte	in
string.	If	count	is	omitted	then	the	cursor	is	moved	back	one	byte.
Note	that	this	type	does	not	consume	an	argument.	For	example,

binary	scan	\x01\x02\x03\x04	c2XH*	var1	var2

will	return	2	with	1	2	stored	in	var1	and	020304	stored	in	var2.

@
Moves	the	cursor	to	the	absolute	location	in	the	data	string
specified	by	count.	Note	that	position	0	refers	to	the	first	byte	in
string.	If	count	refers	to	a	position	beyond	the	end	of	string,	then
the	cursor	is	positioned	after	the	last	byte.	If	count	is	omitted,	then
an	error	will	be	generated.	For	example,

binary	scan	\x01\x02\x03\x04	c2@1H*	var1	var2

will	return	2	with	1	2	stored	in	var1	and	020304	stored	in	var2.

PORTABILITY	ISSUES

The	r,	R,	q	and	Q	conversions	will	only	work	reliably	for	transferring
data	between	computers	which	are	all	using	IEEE	floating	point
representations.	This	is	very	common,	but	not	universal.	To	transfer
floating-point	numbers	portably	between	all	architectures,	use	their
textual	representation	(as	produced	by	format)	instead.

EXAMPLES

This	is	a	procedure	to	write	a	Tcl	string	to	a	binary-encoded	channel	as
UTF-8	data	preceded	by	a	length	word:

proc	writeString	{channel	string}	{

				set	data	[encoding	convertto	utf-8	$string]

				puts	-nonewline	[binary	format	Ia*	\

												[string	length	$data]	$data]

}

This	procedure	reads	a	string	from	a	channel	that	was	written	by	the
previously	presented	writeString	procedure:

proc	readString	{channel}	{

				if	{![binary	scan	[read	$channel	4]	I	length]}	{

								error	"missing	length"

				}

				set	data	[read	$channel	$length]

				return	[encoding	convertfrom	utf-8	$data]

}

SEE	ALSO

format,	scan,	tclvars

KEYWORDS

binary,	format,	scan

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1997	by	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	for

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

for	-	'For'	loop

SYNOPSIS

for	start	test	next	body

DESCRIPTION

For	is	a	looping	command,	similar	in	structure	to	the	C	for	statement.
The	start,	next,	and	body	arguments	must	be	Tcl	command	strings,	and
test	is	an	expression	string.	The	for	command	first	invokes	the	Tcl
interpreter	to	execute	start.	Then	it	repeatedly	evaluates	test	as	an
expression;	if	the	result	is	non-zero	it	invokes	the	Tcl	interpreter	on
body,	then	invokes	the	Tcl	interpreter	on	next,	then	repeats	the	loop.
The	command	terminates	when	test	evaluates	to	0.	If	a	continue
command	is	invoked	within	body	then	any	remaining	commands	in	the
current	execution	of	body	are	skipped;	processing	continues	by
invoking	the	Tcl	interpreter	on	next,	then	evaluating	test,	and	so	on.	If	a
break	command	is	invoked	within	body	or	next,	then	the	for	command
will	return	immediately.	The	operation	of	break	and	continue	are	similar
to	the	corresponding	statements	in	C.	For	returns	an	empty	string.

Note:	test	should	almost	always	be	enclosed	in	braces.	If	not,	variable
substitutions	will	be	made	before	the	for	command	starts	executing,
which	means	that	variable	changes	made	by	the	loop	body	will	not	be
considered	in	the	expression.	This	is	likely	to	result	in	an	infinite	loop.	If
test	is	enclosed	in	braces,	variable	substitutions	are	delayed	until	the
expression	is	evaluated	(before	each	loop	iteration),	so	changes	in	the
variables	will	be	visible.	See	below	for	an	example:

EXAMPLES

Print	a	line	for	each	of	the	integers	from	0	to	10:

for	{set	x	0}	{$x<10}	{incr	x}	{

			puts	"x	is	$x"

}

Either	loop	infinitely	or	not	at	all	because	the	expression	being
evaluated	is	actually	the	constant,	or	even	generate	an	error!	The
actual	behaviour	will	depend	on	whether	the	variable	x	exists	before	the
for	command	is	run	and	whether	its	value	is	a	value	that	is	less	than	or
greater	than/equal	to	ten,	and	this	is	because	the	expression	will	be
substituted	before	the	for	command	is	executed.

for	{set	x	0}	$x<10	{incr	x}	{

			puts	"x	is	$x"

}

Print	out	the	powers	of	two	from	1	to	1024:

for	{set	x	1}	{$x<=1024}	{set	x	[expr	{$x	*	2}]}	{

			puts	"x	is	$x"

}

SEE	ALSO

break,	continue,	foreach,	while

KEYWORDS

for,	iteration,	looping

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1997	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	lset

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

lset	-	Change	an	element	in	a	list

SYNOPSIS

lset	varName	?index...?	newValue

DESCRIPTION

The	lset	command	accepts	a	parameter,	varName,	which	it	interprets
as	the	name	of	a	variable	containing	a	Tcl	list.	It	also	accepts	zero	or
more	indices	into	the	list.	The	indices	may	be	presented	either
consecutively	on	the	command	line,	or	grouped	in	a	Tcl	list	and
presented	as	a	single	argument.	Finally,	it	accepts	a	new	value	for	an
element	of	varName.

If	no	indices	are	presented,	the	command	takes	the	form:

lset	varName	newValue

or

lset	varName	{}	newValue

In	this	case,	newValue	replaces	the	old	value	of	the	variable	varName.

When	presented	with	a	single	index,	the	lset	command	treats	the
content	of	the	varName	variable	as	a	Tcl	list.	It	addresses	the	index'th

element	in	it	(0	refers	to	the	first	element	of	the	list).	When	interpreting
the	list,	lset	observes	the	same	rules	concerning	braces	and	quotes
and	backslashes	as	the	Tcl	command	interpreter;	however,	variable
substitution	and	command	substitution	do	not	occur.	The	command
constructs	a	new	list	in	which	the	designated	element	is	replaced	with
newValue.	This	new	list	is	stored	in	the	variable	varName,	and	is	also
the	return	value	from	the	lset	command.

If	index	is	negative	or	greater	than	or	equal	to	the	number	of	elements
in	$varName,	then	an	error	occurs.

The	interpretation	of	each	simple	index	value	is	the	same	as	for	the
command	string	index,	supporting	simple	index	arithmetic	and	indices
relative	to	the	end	of	the	list.

If	additional	index	arguments	are	supplied,	then	each	argument	is	used
in	turn	to	address	an	element	within	a	sublist	designated	by	the
previous	indexing	operation,	allowing	the	script	to	alter	elements	in
sublists.	The	command,

lset	a	1	2	newValue

or

lset	a	{1	2}	newValue

replaces	element	2	of	sublist	1	with	newValue.

The	integer	appearing	in	each	index	argument	must	be	greater	than	or
equal	to	zero.	The	integer	appearing	in	each	index	argument	must	be
strictly	less	than	the	length	of	the	corresponding	list.	In	other	words,	the
lset	command	cannot	change	the	size	of	a	list.	If	an	index	is	outside	the
permitted	range,	an	error	is	reported.

EXAMPLES

In	each	of	these	examples,	the	initial	value	of	x	is:

set	x	[list	[list	a	b	c]	[list	d	e	f]	[list	g	h	i]]

						→	{a	b	c}	{d	e	f}	{g	h	i}

The	indicated	return	value	also	becomes	the	new	value	of	x	(except	in
the	last	case,	which	is	an	error	which	leaves	the	value	of	x	unchanged.)

lset	x	{j	k	l}

						→	j	k	l
lset	x	{}	{j	k	l}

						→	j	k	l
lset	x	0	j

						→	j	{d	e	f}	{g	h	i}
lset	x	2	j

						→	{a	b	c}	{d	e	f}	j
lset	x	end	j

						→	{a	b	c}	{d	e	f}	j
lset	x	end-1	j

						→	{a	b	c}	j	{g	h	i}
lset	x	2	1	j

						→	{a	b	c}	{d	e	f}	{g	j	i}
lset	x	{2	1}	j

						→	{a	b	c}	{d	e	f}	{g	j	i}
lset	x	{2	3}	j

						→	list	index	out	of	range

In	the	following	examples,	the	initial	value	of	x	is:

set	x	[list	[list	[list	a	b]	[list	c	d]]	\

												[list	[list	e	f]	[list	g	h]]]

						→	{{a	b}	{c	d}}	{{e	f}	{g	h}}

The	indicated	return	value	also	becomes	the	new	value	of	x.

lset	x	1	1	0	j

						→	{{a	b}	{c	d}}	{{e	f}	{j	h}}
lset	x	{1	1	0}	j

						→	{{a	b}	{c	d}}	{{e	f}	{j	h}}

SEE	ALSO

list,	lappend,	lindex,	linsert,	llength,	lsearch,	lsort,	lrange,	lreplace,
string

KEYWORDS

element,	index,	list,	replace,	set

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	2001	by	Kevin	B.	Kenny	<kennykb(at)acm.org>.	All	rights	reserved.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	return

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
return	-	Return	from	a	procedure,	or	set	return	code	of	a	script

SYNOPSIS
DESCRIPTION
EXCEPTIONAL	RETURN	CODES

ok	(or	0)
error	(1)
return	(2)
break	(3)
continue	(4)
value

RETURN	OPTIONS
-errorcode	list
-errorinfo	info
-level	level
-options	options

RETURN	CODE	HANDLING	MECHANISMS
EXAMPLES
SEE	ALSO
KEYWORDS

NAME

return	-	Return	from	a	procedure,	or	set	return	code	of	a	script

SYNOPSIS

return	?result?
return	?-code	code?	?result?
return	?option	value	...?	?result?

DESCRIPTION

In	its	simplest	usage,	the	return	command	is	used	without	options	in
the	body	of	a	procedure	to	immediately	return	control	to	the	caller	of	the
procedure.	If	a	result	argument	is	provided,	its	value	becomes	the	result
of	the	procedure	passed	back	to	the	caller.	If	result	is	not	specified	then
an	empty	string	will	be	returned	to	the	caller	as	the	result	of	the
procedure.

The	return	command	serves	a	similar	function	within	script	files	that	are
evaluated	by	the	source	command.	When	source	evaluates	the
contents	of	a	file	as	a	script,	an	invocation	of	the	return	command	will
cause	script	evaluation	to	immediately	cease,	and	the	value	result	(or
an	empty	string)	will	be	returned	as	the	result	of	the	source	command.

EXCEPTIONAL	RETURN	CODES

In	addition	to	the	result	of	a	procedure,	the	return	code	of	a	procedure
may	also	be	set	by	return	through	use	of	the	-code	option.	In	the	usual
case	where	the	-code	option	is	not	specified	the	procedure	will	return
normally.	However,	the	-code	option	may	be	used	to	generate	an
exceptional	return	from	the	procedure.	Code	may	have	any	of	the
following	values:

ok	(or	0)
Normal	return:	same	as	if	the	option	is	omitted.	The	return	code	of
the	procedure	is	0	(TCL_OK).

error	(1)
Error	return:	the	return	code	of	the	procedure	is	1	(TCL_ERROR).
The	procedure	command	behaves	in	its	calling	context	as	if	it	were
the	command	error	result.	See	below	for	additional	options.

return	(2)
The	return	code	of	the	procedure	is	2	(TCL_RETURN).	The
procedure	command	behaves	in	its	calling	context	as	if	it	were	the
command	return	(with	no	arguments).

break	(3)
The	return	code	of	the	procedure	is	3	(TCL_BREAK).	The

procedure	command	behaves	in	its	calling	context	as	if	it	were	the
command	break.

continue	(4)
The	return	code	of	the	procedure	is	4	(TCL_CONTINUE).	The
procedure	command	behaves	in	its	calling	context	as	if	it	were	the
command	continue.

value
Value	must	be	an	integer;	it	will	be	returned	as	the	return	code	for
the	current	procedure.

When	a	procedure	wants	to	signal	that	it	has	received	invalid
arguments	from	its	caller,	it	may	use	return	-code	error	with	result	set
to	a	suitable	error	message.	Otherwise	usage	of	the	return	-code
option	is	mostly	limited	to	procedures	that	implement	a	new	control
structure.

The	return	-code	command	acts	similarly	within	script	files	that	are
evaluated	by	the	source	command.	During	the	evaluation	of	the
contents	of	a	file	as	a	script	by	source,	an	invocation	of	the	return	-
code	code	command	will	cause	the	return	code	of	source	to	be	code.

RETURN	OPTIONS

In	addition	to	a	result	and	a	return	code,	evaluation	of	a	command	in	Tcl
also	produces	a	dictionary	of	return	options.	In	general	usage,	all	option
value	pairs	given	as	arguments	to	return	become	entries	in	the	return
options	dictionary,	and	any	values	at	all	are	acceptable	except	as	noted
below.	The	catch	command	may	be	used	to	capture	all	of	this
information	—	the	return	code,	the	result,	and	the	return	options
dictionary	—	that	arise	from	evaluation	of	a	script.

As	documented	above,	the	-code	entry	in	the	return	options	dictionary
receives	special	treatment	by	Tcl.	There	are	other	return	options	also
recognized	and	treated	specially	by	Tcl.	They	are:

-errorcode	list

The	-errorcode	option	receives	special	treatment	only	when	the
value	of	the	-code	option	is	TCL_ERROR.	Then	the	list	value	is
meant	to	be	additional	information	about	the	error,	presented	as	a
Tcl	list	for	further	processing	by	programs.	If	no	-errorcode	option
is	provided	to	return	when	the	-code	error	option	is	provided,	Tcl
will	set	the	value	of	the	-errorcode	entry	in	the	return	options
dictionary	to	the	default	value	of	NONE.	The	-errorcode	return
option	will	also	be	stored	in	the	global	variable	errorCode.

-errorinfo	info
The	-errorinfo	option	receives	special	treatment	only	when	the
value	of	the	-code	option	is	TCL_ERROR.	Then	info	is	the	initial
stack	trace,	meant	to	provide	to	a	human	reader	additional
information	about	the	context	in	which	the	error	occurred.	The
stack	trace	will	also	be	stored	in	the	global	variable	errorInfo.	If	no
-errorinfo	option	is	provided	to	return	when	the	-code	error	option
is	provided,	Tcl	will	provide	its	own	initial	stack	trace	value	in	the
entry	for	-errorinfo.	Tcl's	initial	stack	trace	will	include	only	the	call
to	the	procedure,	and	stack	unwinding	will	append	information
about	higher	stack	levels,	but	there	will	be	no	information	about	the
context	of	the	error	within	the	procedure.	Typically	the	info	value	is
supplied	from	the	value	of	-errorinfo	in	a	return	options	dictionary
captured	by	the	catch	command	(or	from	the	copy	of	that
information	stored	in	the	global	variable	errorInfo).

-level	level
The	-level	and	-code	options	work	together	to	set	the	return	code
to	be	returned	by	one	of	the	commands	currently	being	evaluated.
The	level	value	must	be	a	non-negative	integer	representing	a
number	of	levels	on	the	call	stack.	It	defines	the	number	of	levels
up	the	stack	at	which	the	return	code	of	a	command	currently	being
evaluated	should	be	code.	If	no	-level	option	is	provided,	the
default	value	of	level	is	1,	so	that	return	sets	the	return	code	that
the	current	procedure	returns	to	its	caller,	1	level	up	the	call	stack.
The	mechanism	by	which	these	options	work	is	described	in	more
detail	below.

-options	options

The	value	options	must	be	a	valid	dictionary.	The	entries	of	that
dictionary	are	treated	as	additional	option	value	pairs	for	the	return
command.

RETURN	CODE	HANDLING	MECHANISMS

Return	codes	are	used	in	Tcl	to	control	program	flow.	A	Tcl	script	is	a
sequence	of	Tcl	commands.	So	long	as	each	command	evaluation
returns	a	return	code	of	TCL_OK,	evaluation	will	continue	to	the	next
command	in	the	script.	Any	exceptional	return	code	(non-TCL_OK)
returned	by	a	command	evaluation	causes	the	flow	on	to	the	next
command	to	be	interrupted.	Script	evaluation	ceases,	and	the
exceptional	return	code	from	the	command	becomes	the	return	code	of
the	full	script	evaluation.	This	is	the	mechanism	by	which	errors	during
script	evaluation	cause	an	interruption	and	unwinding	of	the	call	stack.
It	is	also	the	mechanism	by	which	commands	like	break,	continue,	and
return	cause	script	evaluation	to	terminate	without	evaluating	all
commands	in	sequence.

Some	of	Tcl's	built-in	commands	evaluate	scripts	as	part	of	their
functioning.	These	commands	can	make	use	of	exceptional	return
codes	to	enable	special	features.	For	example,	the	built-in	Tcl
commands	that	provide	loops	—	such	as	while,	for,	and	foreach	—
evaluate	a	script	that	is	the	body	of	the	loop.	If	evaluation	of	the	loop
body	returns	the	return	code	of	TCL_BREAK	or	TCL_CONTINUE,	the
loop	command	can	react	in	such	a	way	as	to	give	the	break	and
continue	commands	their	documented	interpretation	in	loops.

Procedure	invocation	also	involves	evaluation	of	a	script,	the	body	of
the	procedure.	Procedure	invocation	provides	special	treatment	when
evaluation	of	the	procedure	body	returns	the	return	code
TCL_RETURN.	In	that	circumstance,	the	-level	entry	in	the	return
options	dictionary	is	decremented.	If	after	decrementing,	the	value	of
the	-level	entry	is	0,	then	the	value	of	the	-code	entry	becomes	the
return	code	of	the	procedure.	If	after	decrementing,	the	value	of	the	-
level	entry	is	greater	than	zero,	then	the	return	code	of	the	procedure	is
TCL_RETURN.	If	the	procedure	invocation	occurred	during	the
evaluation	of	the	body	of	another	procedure,	the	process	will	repeat

itself	up	the	call	stack,	decrementing	the	value	of	the	-level	entry	at
each	level,	so	that	the	code	will	be	the	return	code	of	the	current
command	level	levels	up	the	call	stack.	The	source	command	performs
the	same	handling	of	the	TCL_RETURN	return	code,	which	explains
the	similarity	of	return	invocation	during	a	source	to	return	invocation
within	a	procedure.

The	return	code	of	the	return	command	itself	triggers	this	special
handling	by	procedure	invocation.	If	return	is	provided	the	option	-level
0,	then	the	return	code	of	the	return	command	itself	will	be	the	value
code	of	the	-code	option	(or	TCL_OK	by	default).	Any	other	value	for
the	-level	option	(including	the	default	value	of	1)	will	cause	the	return
code	of	the	return	command	itself	to	be	TCL_RETURN,	triggering	a
return	from	the	enclosing	procedure.

EXAMPLES

First,	a	simple	example	of	using	return	to	return	from	a	procedure,
interrupting	the	procedure	body.

proc	printOneLine	{}	{

			puts	"line	1"				;#	This	line	will	be	printed.

			return		

			puts	"line	2"				;#	This	line	will	not	be	printed.

}

Next,	an	example	of	using	return	to	set	the	value	returned	by	the
procedure.

proc	returnX	{}	{return	X}

puts	[returnX]				;#	prints	"X"

Next,	a	more	complete	example,	using	return	-code	error	to	report
invalid	arguments.

proc	factorial	{n}	{

			if	{![string	is	integer	$n]	||	($n	<	0)}	{

						return	-code	error	\

												"expected	non-negative	integer,\

													but	got	\"$n\""

			}

			if	{$n	<	2}	{

						return	1

			}

			set	m	[expr	{$n	-	1}]

			set	code	[catch	{factorial	$m}	factor]

			if	{$code	!=	0}	{

						return	-code	$code	$factor

			}

			set	product	[expr	{$n	*	$factor}]

			if	{$product	<	0}	{

						return	-code	error	\

												"overflow	computing	factorial	of	$n"

			}

			return	$product

}

Next,	a	procedure	replacement	for	break.

proc	myBreak	{}	{

			return	-code	break

}

With	the	-level	0	option,	return	itself	can	serve	as	a	replacement	for
break.

interp	alias	{}	Break	{}	return	-level	0	-code	break

An	example	of	using	catch	and	return	-options	to	re-raise	a	caught
error:

proc	doSomething	{}	{

			set	resource	[allocate]

			catch	{

						#	Long	script	of	operations

						#	that	might	raise	an	error

			}	result	options

			deallocate	$resource

			return	-options	$options	$result

}

Finally	an	example	of	advanced	use	of	the	return	options	to	create	a
procedure	replacement	for	return	itself:

proc	myReturn	{args}	{

			set	result	""

			if	{[llength	$args]	%	2}	{

						set	result	[lindex	$args	end]

						set	args	[lrange	$args	0	end-1]

			}

			set	options	[dict	merge	{-level	1}	$args]

			dict	incr	options	-level

			return	-options	$options	$result

}

SEE	ALSO

break,	catch,	continue,	dict,	error,	proc,	source,	tclvars

KEYWORDS

break,	catch,	continue,	error,	procedure,	return

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	unload

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
unload	-	Unload	machine	code

SYNOPSIS
DESCRIPTION

-nocomplain
-keeplibrary
--

UNLOAD	OPERATION
UNLOAD	HOOK	PROTOTYPE
NOTES
PORTABILITY	ISSUES

Unix
BUGS
EXAMPLE
SEE	ALSO
KEYWORDS

NAME

unload	-	Unload	machine	code

SYNOPSIS

unload	?switches?	fileName
unload	?switches?	fileName	packageName
unload	?switches?	fileName	packageName	interp

DESCRIPTION

This	command	tries	to	unload	shared	libraries	previously	loaded	with
load	from	the	application's	address	space.	fileName	is	the	name	of	the
file	containing	the	library	file	to	be	unload;	it	must	be	the	same	as	the

filename	provided	to	load	for	loading	the	library.	The	packageName
argument	is	the	name	of	the	package	(as	determined	by	or	passed	to
load),	and	is	used	to	compute	the	name	of	the	unload	procedure;	if	not
supplied,	it	is	computed	from	fileName	in	the	same	manner	as	load.
The	interp	argument	is	the	path	name	of	the	interpreter	from	which	to
unload	the	package	(see	the	interp	manual	entry	for	details);	if	interp	is
omitted,	it	defaults	to	the	interpreter	in	which	the	unload	command	was
invoked.

If	the	initial	arguments	to	unload	start	with	-	then	they	are	treated	as
switches.	The	following	switches	are	currently	supported:

-nocomplain
Suppresses	all	error	messages.	If	this	switch	is	given,	unload	will
never	report	an	error.

-keeplibrary
This	switch	will	prevent	unload	from	issuing	the	operating	system
call	that	will	unload	the	library	from	the	process.

--
Marks	the	end	of	switches.	The	argument	following	this	one	will	be
treated	as	a	fileName	even	if	it	starts	with	a	-.

UNLOAD	OPERATION

When	a	file	containing	a	shared	library	is	loaded	through	the	load
command,	Tcl	associates	two	reference	counts	to	the	library	file.	The
first	counter	shows	how	many	times	the	library	has	been	loaded	into
normal	(trusted)	interpreters	while	the	second	describes	how	many
times	the	library	has	been	loaded	into	safe	interpreters.	As	a	file
containing	a	shared	library	can	be	loaded	only	once	by	Tcl	(with	the	first
load	call	on	the	file),	these	counters	track	how	many	interpreters	use
the	library.	Each	subsequent	call	to	load	after	the	first	simply
increments	the	proper	reference	count.

unload	works	in	the	opposite	direction.	As	a	first	step,	unload	will
check	whether	the	library	is	unloadable:	an	unloadable	library	exports	a

special	unload	procedure.	The	name	of	the	unload	procedure	is
determined	by	packageName	and	whether	or	not	the	target	interpreter
is	a	safe	one.	For	normal	interpreters	the	name	of	the	initialization
procedure	will	have	the	form	pkg_Unload,	where	pkg	is	the	same	as
packageName	except	that	the	first	letter	is	converted	to	upper	case	and
all	other	letters	are	converted	to	lower	case.	For	example,	if
packageName	is	foo	or	FOo,	the	initialization	procedure's	name	will	be
Foo_Unload.	If	the	target	interpreter	is	a	safe	interpreter,	then	the
name	of	the	initialization	procedure	will	be	pkg_SafeUnload	instead	of
pkg_Unload.

If	unload	determines	that	a	library	is	not	unloadable	(or	unload
functionality	has	been	disabled	during	compilation),	an	error	will	be
returned.	If	the	library	is	unloadable,	then	unload	will	call	the	unload
procedure.	If	the	unload	procedure	returns	TCL_OK,	unload	will
proceed	and	decrease	the	proper	reference	count	(depending	on	the
target	interpreter	type).	When	both	reference	counts	have	reached	0,
the	library	will	be	detached	from	the	process.

UNLOAD	HOOK	PROTOTYPE

The	unload	procedure	must	match	the	following	prototype:

typedef	int	Tcl_PackageUnloadProc(Tcl_Interp	*interp

The	interp	argument	identifies	the	interpreter	from	which	the	library	is	to
be	unloaded.	The	unload	procedure	must	return	TCL_OK	or
TCL_ERROR	to	indicate	whether	or	not	it	completed	successfully;	in
the	event	of	an	error	it	should	set	the	interpreter's	result	to	point	to	an
error	message.	In	this	case,	the	result	of	the	unload	command	will	be
the	result	returned	by	the	unload	procedure.

The	flags	argument	can	be	either
TCL_UNLOAD_DETACH_FROM_INTERPRETER	or
TCL_UNLOAD_DETACH_FROM_PROCESS.	In	case	the	library	will

remain	attached	to	the	process	after	the	unload	procedure	returns	(i.e.
because	the	library	is	used	by	other	interpreters),
TCL_UNLOAD_DETACH_FROM_INTERPRETER	will	be	defined.
However,	if	the	library	is	used	only	by	the	target	interpreter	and	the
library	will	be	detached	from	the	application	as	soon	as	the	unload
procedure	returns,	the	flags	argument	will	be	set	to
TCL_UNLOAD_DETACH_FROM_PROCESS.

NOTES

The	unload	command	cannot	unload	libraries	that	are	statically	linked
with	the	application.	If	fileName	is	an	empty	string,	then	the
packageName	argument	must	be	specified.

If	packageName	is	omitted	or	specified	as	an	empty	string,	Tcl	tries	to
guess	the	name	of	the	package.	This	may	be	done	differently	on
different	platforms.	The	default	guess,	which	is	used	on	most	UNIX
platforms,	is	to	take	the	last	element	of	fileName,	strip	off	the	first	three
characters	if	they	are	lib,	and	use	any	following	alphabetic	and
underline	characters	as	the	module	name.	For	example,	the	command
unload	libxyz4.2.so	uses	the	module	name	xyz	and	the	command
unload	bin/last.so	{}	uses	the	module	name	last.

PORTABILITY	ISSUES

Unix
Not	all	unix	operating	systems	support	library	unloading.	Under
such	an	operating	system	unload	returns	an	error	(unless	-
nocomplain	has	been	specified).

BUGS

If	the	same	file	is	loaded	by	different	fileNames,	it	will	be	loaded	into
the	process's	address	space	multiple	times.	The	behavior	of	this	varies
from	system	to	system	(some	systems	may	detect	the	redundant	loads,
others	may	not).	In	case	a	library	has	been	silently	detached	by	the
operating	system	(and	as	a	result	Tcl	thinks	the	library	is	still	loaded),	it
may	be	dangerous	to	use	unload	on	such	a	library	(as	the	library	will	be

completely	detached	from	the	application	while	some	interpreters	will
continue	to	use	it).

EXAMPLE

If	an	unloadable	module	in	the	file	foobar.dll	had	been	loaded	using	the
load	command	like	this	(on	Windows):

load	c:/some/dir/foobar.dll

then	it	would	be	unloaded	like	this:

unload	c:/some/dir/foobar.dll

This	allows	a	C	code	module	to	be	installed	temporarily	into	a	long-
running	Tcl	program	and	then	removed	again	(either	because	it	is	no
longer	needed	or	because	it	is	being	updated	with	a	new	version)
without	having	to	shut	down	the	overall	Tcl	process.

SEE	ALSO

info	sharedlibextension,	load,	safe

KEYWORDS

binary	code,	unloading,	safe	interpreter,	shared	library

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	2003	George	Petasis	<petasis(at)iit.demokritos.gr>.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	break

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

break	-	Abort	looping	command

SYNOPSIS

break

DESCRIPTION

This	command	is	typically	invoked	inside	the	body	of	a	looping
command	such	as	for	or	foreach	or	while.	It	returns	a	TCL_BREAK
code,	which	causes	a	break	exception	to	occur.	The	exception	causes
the	current	script	to	be	aborted	out	to	the	innermost	containing	loop
command,	which	then	aborts	its	execution	and	returns	normally.	Break
exceptions	are	also	handled	in	a	few	other	situations,	such	as	the	catch
command,	Tk	event	bindings,	and	the	outermost	scripts	of	procedure
bodies.

EXAMPLE

Print	a	line	for	each	of	the	integers	from	0	to	5:

for	{set	x	0}	{$x<10}	{incr	x}	{

			if	{$x	>	5}	{

						break

			}

			puts	"x	is	$x"

}

SEE	ALSO

catch,	continue,	for,	foreach,	return,	while

KEYWORDS

abort,	break,	loop

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993-1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	foreach

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

foreach	-	Iterate	over	all	elements	in	one	or	more	lists

SYNOPSIS

foreach	varname	list	body
foreach	varlist1	list1	?varlist2	list2	...?	body

DESCRIPTION

The	foreach	command	implements	a	loop	where	the	loop	variable(s)
take	on	values	from	one	or	more	lists.	In	the	simplest	case	there	is	one
loop	variable,	varname,	and	one	list,	list,	that	is	a	list	of	values	to	assign
to	varname.	The	body	argument	is	a	Tcl	script.	For	each	element	of	list
(in	order	from	first	to	last),	foreach	assigns	the	contents	of	the	element
to	varname	as	if	the	lindex	command	had	been	used	to	extract	the
element,	then	calls	the	Tcl	interpreter	to	execute	body.

In	the	general	case	there	can	be	more	than	one	value	list	(e.g.,	list1	and
list2),	and	each	value	list	can	be	associated	with	a	list	of	loop	variables
(e.g.,	varlist1	and	varlist2).	During	each	iteration	of	the	loop	the
variables	of	each	varlist	are	assigned	consecutive	values	from	the
corresponding	list.	Values	in	each	list	are	used	in	order	from	first	to	last,
and	each	value	is	used	exactly	once.	The	total	number	of	loop	iterations
is	large	enough	to	use	up	all	the	values	from	all	the	value	lists.	If	a
value	list	does	not	contain	enough	elements	for	each	of	its	loop
variables	in	each	iteration,	empty	values	are	used	for	the	missing
elements.

The	break	and	continue	statements	may	be	invoked	inside	body,	with
the	same	effect	as	in	the	for	command.	Foreach	returns	an	empty

string.

EXAMPLES

This	loop	prints	every	value	in	a	list	together	with	the	square	and	cube
of	the	value:

set	values	{1	3	5	7	2	4	6	8}	;#	Odd	numbers	first,	for	fun!

puts	"Value\tSquare\tCube"	;#	Neat-looking	header

foreach	x	$values	{	;#	Now	loop	and	print...

				puts	"	$x\t	[expr	{$x**2}]\t	[expr	{$x**3}]"

}

The	following	loop	uses	i	and	j	as	loop	variables	to	iterate	over	pairs	of
elements	of	a	single	list.

set	x	{}

foreach	{i	j}	{a	b	c	d	e	f}	{

				lappend	x	$j	$i

}

#	The	value	of	x	is	"b	a	d	c	f	e"

#	There	are	3	iterations	of	the	loop.

The	next	loop	uses	i	and	j	to	iterate	over	two	lists	in	parallel.

set	x	{}

foreach	i	{a	b	c}	j	{d	e	f	g}	{

				lappend	x	$i	$j

}

#	The	value	of	x	is	"a	d	b	e	c	f	{}	g"

#	There	are	4	iterations	of	the	loop.

The	two	forms	are	combined	in	the	following	example.

set	x	{}

foreach	i	{a	b	c}	{j	k}	{d	e	f	g}	{

				lappend	x	$i	$j	$k

}

#	The	value	of	x	is	"a	d	e	b	f	g	c	{}	{}"

#	There	are	3	iterations	of	the	loop.

SEE	ALSO

for,	while,	break,	continue

KEYWORDS

foreach,	iteration,	list,	looping

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	lsort

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
lsort	-	Sort	the	elements	of	a	list

SYNOPSIS
DESCRIPTION

-ascii
-dictionary
-integer
-real
-command	command
-increasing
-decreasing
-indices
-index	indexList
-nocase
-unique

NOTES
EXAMPLES
SEE	ALSO
KEYWORDS

NAME

lsort	-	Sort	the	elements	of	a	list

SYNOPSIS

lsort	?options?	list

DESCRIPTION

This	command	sorts	the	elements	of	list,	returning	a	new	list	in	sorted
order.	The	implementation	of	the	lsort	command	uses	the	merge-sort

algorithm	which	is	a	stable	sort	that	has	O(n	log	n)	performance
characteristics.

By	default	ASCII	sorting	is	used	with	the	result	returned	in	increasing
order.	However,	any	of	the	following	options	may	be	specified	before	list
to	control	the	sorting	process	(unique	abbreviations	are	accepted):

-ascii
Use	string	comparison	with	Unicode	code-point	collation	order	(the
name	is	for	backward-compatibility	reasons.)	This	is	the	default.

-dictionary
Use	dictionary-style	comparison.	This	is	the	same	as	-ascii	except
(a)	case	is	ignored	except	as	a	tie-breaker	and	(b)	if	two	strings
contain	embedded	numbers,	the	numbers	compare	as	integers,	not
characters.	For	example,	in	-dictionary	mode,	bigBoy	sorts
between	bigbang	and	bigboy,	and	x10y	sorts	between	x9y	and
x11y.

-integer
Convert	list	elements	to	integers	and	use	integer	comparison.

-real
Convert	list	elements	to	floating-point	values	and	use	floating
comparison.

-command	command
Use	command	as	a	comparison	command.	To	compare	two
elements,	evaluate	a	Tcl	script	consisting	of	command	with	the	two
elements	appended	as	additional	arguments.	The	script	should
return	an	integer	less	than,	equal	to,	or	greater	than	zero	if	the	first
element	is	to	be	considered	less	than,	equal	to,	or	greater	than	the
second,	respectively.

-increasing
Sort	the	list	in	increasing	order	(“smallest”items	first).	This	is	the
default.

-decreasing
Sort	the	list	in	decreasing	order	(“largest”items	first).

-indices
Return	a	list	of	indices	into	list	in	sorted	order	instead	of	the	values
themselves.

-index	indexList
If	this	option	is	specified,	each	of	the	elements	of	list	must	itself	be
a	proper	Tcl	sublist.	Instead	of	sorting	based	on	whole	sublists,
lsort	will	extract	the	indexList'th	element	from	each	sublist	(as	if	the
overall	element	and	the	indexList	were	passed	to	lindex)	and	sort
based	on	the	given	element.	For	example,

lsort	-integer	-index	1	\

						{{First	24}	{Second	18}	{Third	30}}

returns	{Second	18}	{First	24}	{Third	30},	and

lsort	-index	end-1	\

						{{a	1	e	i}	{b	2	3	f	g}	{c	4	5	6	d	h}}

returns	{c	4	5	6	d	h}	{a	1	e	i}	{b	2	3	f	g},	and

lsort	-index	{0	1}	{

			{{b	i	g}	12345}

			{{d	e	m	o}	34512}

			{{c	o	d	e}	54321}

}

returns	{{d	e	m	o}	34512}	{{b	i	g}	12345}	{{c	o	d	e}	54321}
(because	e	sorts	before	i	which	sorts	before	o.)	This	option	is	much
more	efficient	than	using	-command	to	achieve	the	same	effect.

-nocase
Causes	comparisons	to	be	handled	in	a	case-insensitive	manner.
Has	no	effect	if	combined	with	the	-dictionary,	-integer,	or	-real
options.

-unique
If	this	option	is	specified,	then	only	the	last	set	of	duplicate
elements	found	in	the	list	will	be	retained.	Note	that	duplicates	are
determined	relative	to	the	comparison	used	in	the	sort.	Thus	if	-
index	0	is	used,	{1	a}	and	{1	b}	would	be	considered	duplicates
and	only	the	second	element,	{1	b},	would	be	retained.

NOTES

The	options	to	lsort	only	control	what	sort	of	comparison	is	used,	and
do	not	necessarily	constrain	what	the	values	themselves	actually	are.
This	distinction	is	only	noticeable	when	the	list	to	be	sorted	has	fewer
than	two	elements.

The	lsort	command	is	reentrant,	meaning	it	is	safe	to	use	as	part	of	the
implementation	of	a	command	used	in	the	-command	option.

EXAMPLES

Sorting	a	list	using	ASCII	sorting:

%	lsort	{a10	B2	b1	a1	a2}

B2	a1	a10	a2	b1

Sorting	a	list	using	Dictionary	sorting:

%	lsort	-dictionary	{a10	B2	b1	a1	a2}

a1	a2	a10	b1	B2

Sorting	lists	of	integers:

%	lsort	-integer	{5	3	1	2	11	4}

1	2	3	4	5	11

%	lsort	-integer	{1	2	0x5	7	0	4	-1}

-1	0	1	2	4	0x5	7

Sorting	lists	of	floating-point	numbers:

%	lsort	-real	{5	3	1	2	11	4}

1	2	3	4	5	11

%	lsort	-real	{.5	0.07e1	0.4	6e-1}

0.4	.5	6e-1	0.07e1

Sorting	using	indices:

%	#	Note	the	space	character	before	the	c

%	lsort	{{a	5}	{	c	3}	{b	4}	{e	1}	{d	2}}

{	c	3}	{a	5}	{b	4}	{d	2}	{e	1}

%	lsort	-index	0	{{a	5}	{	c	3}	{b	4}	{e	1}	{d	2}}

{a	5}	{b	4}	{	c	3}	{d	2}	{e	1}

%	lsort	-index	1	{{a	5}	{	c	3}	{b	4}	{e	1}	{d	2}}

{e	1}	{d	2}	{	c	3}	{b	4}	{a	5}

Stripping	duplicate	values	using	sorting:

%	lsort	-unique	{a	b	c	a	b	c	a	b	c}

a	b	c

More	complex	sorting	using	a	comparison	function:

%	proc	compare	{a	b}	{

				set	a0	[lindex	$a	0]

				set	b0	[lindex	$b	0]

				if	{$a0	<	$b0}	{

								return	-1

				}	elseif	{$a0	>	$b0}	{

								return	1

				}

				return	[string	compare	[lindex	$a	1]	[lindex	$b	1]]

}

%	lsort	-command	compare	\

								{{3	apple}	{0x2	carrot}	{1	dingo}	{2	banana}}

{1	dingo}	{2	banana}	{0x2	carrot}	{3	apple}

SEE	ALSO

list,	lappend,	lindex,	linsert,	llength,	lsearch,	lset,	lrange,	lreplace

KEYWORDS

element,	list,	order,	sort

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.
Copyright	©	1999	Scriptics	Corporation
Copyright	©	2001	Kevin	B.	Kenny	<kennykb(at)acm.org>.	All	rights	reserved.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	safe

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Safe	Base	-	A	mechanism	for	creating	and	manipulating	safe
interpreters

SYNOPSIS
OPTIONS
DESCRIPTION
COMMANDS

::safe::interpCreate	?slave?	?options...?
::safe::interpInit	slave	?options...?
::safe::interpConfigure	slave	?options...?
::safe::interpDelete	slave
::safe::interpFindInAccessPath	slave	directory
::safe::interpAddToAccessPath	slave	directory
::safe::setLogCmd	?cmd	arg...?

OPTIONS
-accessPath	directoryList
-statics	boolean
-noStatics
-nested	boolean
-nestedLoadOk
-deleteHook	script

ALIASES
source	fileName
load	fileName
file	?subCmd	args...?
encoding	?subCmd	args...?
exit

SECURITY
SEE	ALSO
KEYWORDS

NAME

Safe	Base	-	A	mechanism	for	creating	and	manipulating	safe
interpreters

SYNOPSIS

::safe::interpCreate	?slave?	?options...?
::safe::interpInit	slave	?options...?
::safe::interpConfigure	slave	?options...?
::safe::interpDelete	slave
::safe::interpAddToAccessPath	slave	directory
::safe::interpFindInAccessPath	slave	directory
::safe::setLogCmd	?cmd	arg...?

OPTIONS

?-accessPath	pathList?	?-statics	boolean?	?-noStatics?	?-nested
boolean?	?-nestedLoadOk?	?-deleteHook	script?

DESCRIPTION

Safe	Tcl	is	a	mechanism	for	executing	untrusted	Tcl	scripts	safely	and
for	providing	mediated	access	by	such	scripts	to	potentially	dangerous
functionality.

The	Safe	Base	ensures	that	untrusted	Tcl	scripts	cannot	harm	the
hosting	application.	The	Safe	Base	prevents	integrity	and	privacy
attacks.	Untrusted	Tcl	scripts	are	prevented	from	corrupting	the	state	of
the	hosting	application	or	computer.	Untrusted	scripts	are	also
prevented	from	disclosing	information	stored	on	the	hosting	computer	or
in	the	hosting	application	to	any	party.

The	Safe	Base	allows	a	master	interpreter	to	create	safe,	restricted
interpreters	that	contain	a	set	of	predefined	aliases	for	the	source,
load,	file,	encoding,	and	exit	commands	and	are	able	to	use	the	auto-
loading	and	package	mechanisms.

No	knowledge	of	the	file	system	structure	is	leaked	to	the	safe
interpreter,	because	it	has	access	only	to	a	virtualized	path	containing
tokens.	When	the	safe	interpreter	requests	to	source	a	file,	it	uses	the
token	in	the	virtual	path	as	part	of	the	file	name	to	source;	the	master
interpreter	transparently	translates	the	token	into	a	real	directory	name
and	executes	the	requested	operation	(see	the	section	SECURITY
below	for	details).	Different	levels	of	security	can	be	selected	by	using
the	optional	flags	of	the	commands	described	below.

All	commands	provided	in	the	master	interpreter	by	the	Safe	Base
reside	in	the	safe	namespace.

COMMANDS

The	following	commands	are	provided	in	the	master	interpreter:

::safe::interpCreate	?slave?	?options...?
Creates	a	safe	interpreter,	installs	the	aliases	described	in	the
section	ALIASES	and	initializes	the	auto-loading	and	package
mechanism	as	specified	by	the	supplied	options.	See	the
OPTIONS	section	below	for	a	description	of	the	optional
arguments.	If	the	slave	argument	is	omitted,	a	name	will	be
generated.	::safe::interpCreate	always	returns	the	interpreter
name.

::safe::interpInit	slave	?options...?
This	command	is	similar	to	interpCreate	except	it	that	does	not
create	the	safe	interpreter.	slave	must	have	been	created	by	some
other	means,	like	interp	create	-safe.

::safe::interpConfigure	slave	?options...?
If	no	options	are	given,	returns	the	settings	for	all	options	for	the
named	safe	interpreter	as	a	list	of	options	and	their	current	values
for	that	slave.	If	a	single	additional	argument	is	provided,	it	will
return	a	list	of	2	elements	name	and	value	where	name	is	the	full
name	of	that	option	and	value	the	current	value	for	that	option	and
the	slave.	If	more	than	two	additional	arguments	are	provided,	it	will
reconfigure	the	safe	interpreter	and	change	each	and	only	the

provided	options.	See	the	section	on	OPTIONS	below	for	options
description.	Example	of	use:

#	Create	new	interp	with	the	same	configuration	as	"$i0":

set	i1	[safe::interpCreate	{*}[safe::interpConfigure	$i0]]

#	Get	the	current	deleteHook

set	dh	[safe::interpConfigure	$i0		-del]

#	Change	(only)	the	statics	loading	ok	attribute	of	an

#	interp	and	its	deleteHook	(leaving	the	rest	unchanged):

safe::interpConfigure	$i0		-delete	{foo	bar}	-statics	0

::safe::interpDelete	slave
Deletes	the	safe	interpreter	and	cleans	up	the	corresponding
master	interpreter	data	structures.	If	a	deleteHook	script	was
specified	for	this	interpreter	it	is	evaluated	before	the	interpreter	is
deleted,	with	the	name	of	the	interpreter	as	an	additional	argument.

::safe::interpFindInAccessPath	slave	directory
This	command	finds	and	returns	the	token	for	the	real	directory
directory	in	the	safe	interpreter's	current	virtual	access	path.	It
generates	an	error	if	the	directory	is	not	found.	Example	of	use:

$slave	eval	[list	set	tk_library	\

						[::safe::interpFindInAccessPath	$name	$tk_library]]

::safe::interpAddToAccessPath	slave	directory
This	command	adds	directory	to	the	virtual	path	maintained	for	the
safe	interpreter	in	the	master,	and	returns	the	token	that	can	be
used	in	the	safe	interpreter	to	obtain	access	to	files	in	that
directory.	If	the	directory	is	already	in	the	virtual	path,	it	only	returns
the	token	without	adding	the	directory	to	the	virtual	path	again.

Example	of	use:

$slave	eval	[list	set	tk_library	\

						[::safe::interpAddToAccessPath	$name	$tk_library]]

::safe::setLogCmd	?cmd	arg...?
This	command	installs	a	script	that	will	be	called	when	interesting
life	cycle	events	occur	for	a	safe	interpreter.	When	called	with	no
arguments,	it	returns	the	currently	installed	script.	When	called	with
one	argument,	an	empty	string,	the	currently	installed	script	is
removed	and	logging	is	turned	off.	The	script	will	be	invoked	with
one	additional	argument,	a	string	describing	the	event	of	interest.
The	main	purpose	is	to	help	in	debugging	safe	interpreters.	Using
this	facility	you	can	get	complete	error	messages	while	the	safe
interpreter	gets	only	generic	error	messages.	This	prevents	a	safe
interpreter	from	seeing	messages	about	failures	and	other	events
that	might	contain	sensitive	information	such	as	real	directory
names.

Example	of	use:

::safe::setLogCmd	puts	stderr

Below	is	the	output	of	a	sample	session	in	which	a	safe	interpreter
attempted	to	source	a	file	not	found	in	its	virtual	access	path.	Note
that	the	safe	interpreter	only	received	an	error	message	saying	that
the	file	was	not	found:

NOTICE	for	slave	interp10	:	Created

NOTICE	for	slave	interp10	:	Setting	accessPath=(/foo/bar)	staticsok=1	nestedok=0	deletehook=()

NOTICE	for	slave	interp10	:	auto_path	in	interp10	has	been	set	to	{$p(:0:)}

ERROR	for	slave	interp10	:	/foo/bar/init.tcl:	no	such	file	or	directory

OPTIONS

The	following	options	are	common	to	::safe::interpCreate,
::safe::interpInit,	and	::safe::interpConfigure.	Any	option	name	can
be	abbreviated	to	its	minimal	non-ambiguous	name.	Option	names	are
not	case	sensitive.

-accessPath	directoryList
This	option	sets	the	list	of	directories	from	which	the	safe
interpreter	can	source	and	load	files.	If	this	option	is	not	specified,
or	if	it	is	given	as	the	empty	list,	the	safe	interpreter	will	use	the
same	directories	as	its	master	for	auto-loading.	See	the	section
SECURITY	below	for	more	detail	about	virtual	paths,	tokens	and
access	control.

-statics	boolean
This	option	specifies	if	the	safe	interpreter	will	be	allowed	to	load
statically	linked	packages	(like	load	{}	Tk).	The	default	value	is
true	:	safe	interpreters	are	allowed	to	load	statically	linked
packages.

-noStatics
This	option	is	a	convenience	shortcut	for	-statics	false	and	thus
specifies	that	the	safe	interpreter	will	not	be	allowed	to	load
statically	linked	packages.

-nested	boolean
This	option	specifies	if	the	safe	interpreter	will	be	allowed	to	load
packages	into	its	own	sub-interpreters.	The	default	value	is	false	:
safe	interpreters	are	not	allowed	to	load	packages	into	their	own
sub-interpreters.

-nestedLoadOk
This	option	is	a	convenience	shortcut	for	-nested	true	and	thus
specifies	the	safe	interpreter	will	be	allowed	to	load	packages	into
its	own	sub-interpreters.

-deleteHook	script
When	this	option	is	given	a	non-empty	script,	it	will	be	evaluated	in
the	master	with	the	name	of	the	safe	interpreter	as	an	additional
argument	just	before	actually	deleting	the	safe	interpreter.	Giving
an	empty	value	removes	any	currently	installed	deletion	hook	script
for	that	safe	interpreter.	The	default	value	({})	is	not	to	have	any
deletion	call	back.

ALIASES

The	following	aliases	are	provided	in	a	safe	interpreter:

source	fileName
The	requested	file,	a	Tcl	source	file,	is	sourced	into	the	safe
interpreter	if	it	is	found.	The	source	alias	can	only	source	files	from
directories	in	the	virtual	path	for	the	safe	interpreter.	The	source
alias	requires	the	safe	interpreter	to	use	one	of	the	token	names	in
its	virtual	path	to	denote	the	directory	in	which	the	file	to	be	sourced
can	be	found.	See	the	section	on	SECURITY	for	more	discussion
of	restrictions	on	valid	filenames.

load	fileName
The	requested	file,	a	shared	object	file,	is	dynamically	loaded	into
the	safe	interpreter	if	it	is	found.	The	filename	must	contain	a	token
name	mentioned	in	the	virtual	path	for	the	safe	interpreter	for	it	to
be	found	successfully.	Additionally,	the	shared	object	file	must
contain	a	safe	entry	point;	see	the	manual	page	for	the	load
command	for	more	details.

file	?subCmd	args...?
The	file	alias	provides	access	to	a	safe	subset	of	the
subcommands	of	the	file	command;	it	allows	only	dirname,	join,
extension,	root,	tail,	pathname	and	split	subcommands.	For
more	details	on	what	these	subcommands	do	see	the	manual	page
for	the	file	command.

encoding	?subCmd	args...?
The	encoding	alias	provides	access	to	a	safe	subset	of	the

subcommands	of	the	encoding	command;	it	disallows	setting	of
the	system	encoding,	but	allows	all	other	subcommands	including
system	to	check	the	current	encoding.

exit
The	calling	interpreter	is	deleted	and	its	computation	is	stopped,
but	the	Tcl	process	in	which	this	interpreter	exists	is	not	terminated.

SECURITY

The	Safe	Base	does	not	attempt	to	completely	prevent	annoyance	and
denial	of	service	attacks.	These	forms	of	attack	prevent	the	application
or	user	from	temporarily	using	the	computer	to	perform	useful	work,	for
example	by	consuming	all	available	CPU	time	or	all	available	screen
real	estate.	These	attacks,	while	aggravating,	are	deemed	to	be	of
lesser	importance	in	general	than	integrity	and	privacy	attacks	that	the
Safe	Base	is	to	prevent.

The	commands	available	in	a	safe	interpreter,	in	addition	to	the	safe	set
as	defined	in	interp	manual	page,	are	mediated	aliases	for	source,
load,	exit,	and	safe	subsets	of	file	and	encoding.	The	safe	interpreter
can	also	auto-load	code	and	it	can	request	that	packages	be	loaded.

Because	some	of	these	commands	access	the	local	file	system,	there	is
a	potential	for	information	leakage	about	its	directory	structure.	To
prevent	this,	commands	that	take	file	names	as	arguments	in	a	safe
interpreter	use	tokens	instead	of	the	real	directory	names.	These	tokens
are	translated	to	the	real	directory	name	while	a	request	to,	e.g.,	source
a	file	is	mediated	by	the	master	interpreter.	This	virtual	path	system	is
maintained	in	the	master	interpreter	for	each	safe	interpreter	created	by
::safe::interpCreate	or	initialized	by	::safe::interpInit	and	the	path
maps	tokens	accessible	in	the	safe	interpreter	into	real	path	names	on
the	local	file	system	thus	preventing	safe	interpreters	from	gaining
knowledge	about	the	structure	of	the	file	system	of	the	host	on	which
the	interpreter	is	executing.	The	only	valid	file	names	arguments	for	the
source	and	load	aliases	provided	to	the	slave	are	path	in	the	form	of
[file	join	token	filename]	(i.e.	when	using	the	native	file	path	formats:
token/filename	on	Unix	and	token\filename	on	Windows),	where	token

is	representing	one	of	the	directories	of	the	accessPath	list	and
filename	is	one	file	in	that	directory	(no	sub	directories	access	are
allowed).

When	a	token	is	used	in	a	safe	interpreter	in	a	request	to	source	or	load
a	file,	the	token	is	checked	and	translated	to	a	real	path	name	and	the
file	to	be	sourced	or	loaded	is	located	on	the	file	system.	The	safe
interpreter	never	gains	knowledge	of	the	actual	path	name	under	which
the	file	is	stored	on	the	file	system.

To	further	prevent	potential	information	leakage	from	sensitive	files	that
are	accidentally	included	in	the	set	of	files	that	can	be	sourced	by	a
safe	interpreter,	the	source	alias	restricts	access	to	files	meeting	the
following	constraints:	the	file	name	must	fourteen	characters	or	shorter,
must	not	contain	more	than	one	dot	(“.”),	must	end	up	with	the
extension	(“.tcl”)	or	be	called	(“tclIndex”.)

Each	element	of	the	initial	access	path	list	will	be	assigned	a	token	that
will	be	set	in	the	slave	auto_path	and	the	first	element	of	that	list	will	be
set	as	the	tcl_library	for	that	slave.

If	the	access	path	argument	is	not	given	or	is	the	empty	list,	the	default
behavior	is	to	let	the	slave	access	the	same	packages	as	the	master
has	access	to	(Or	to	be	more	precise:	only	packages	written	in	Tcl
(which	by	definition	cannot	be	dangerous	as	they	run	in	the	slave
interpreter)	and	C	extensions	that	provides	a	_SafeInit	entry	point).	For
that	purpose,	the	master's	auto_path	will	be	used	to	construct	the	slave
access	path.	In	order	that	the	slave	successfully	loads	the	Tcl	library
files	(which	includes	the	auto-loading	mechanism	itself)	the	tcl_library
will	be	added	or	moved	to	the	first	position	if	necessary,	in	the	slave
access	path,	so	the	slave	tcl_library	will	be	the	same	as	the	master's
(its	real	path	will	still	be	invisible	to	the	slave	though).	In	order	that	auto-
loading	works	the	same	for	the	slave	and	the	master	in	this	by	default
case,	the	first-level	sub	directories	of	each	directory	in	the	master
auto_path	will	also	be	added	(if	not	already	included)	to	the	slave
access	path.	You	can	always	specify	a	more	restrictive	path	for	which
sub	directories	will	never	be	searched	by	explicitly	specifying	your
directory	list	with	the	-accessPath	flag	instead	of	relying	on	this	default

mechanism.

When	the	accessPath	is	changed	after	the	first	creation	or	initialization
(i.e.	through	interpConfigure	-accessPath	list),	an	auto_reset	is
automatically	evaluated	in	the	safe	interpreter	to	synchronize	its
auto_index	with	the	new	token	list.

SEE	ALSO

interp,	library,	load,	package,	source,	unknown

KEYWORDS

alias,	auto-loading,	auto_mkindex,	load,	master	interpreter,	safe
interpreter,	slave	interpreter,	source

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1995-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	unset

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

unset	-	Delete	variables

SYNOPSIS

unset	?-nocomplain?	?--?	?name	name	name	...?

DESCRIPTION

This	command	removes	one	or	more	variables.	Each	name	is	a	variable
name,	specified	in	any	of	the	ways	acceptable	to	the	set	command.	If	a
name	refers	to	an	element	of	an	array	then	that	element	is	removed
without	affecting	the	rest	of	the	array.	If	a	name	consists	of	an	array
name	with	no	parenthesized	index,	then	the	entire	array	is	deleted.	The
unset	command	returns	an	empty	string	as	result.	If	-nocomplain	is
specified	as	the	first	argument,	any	possible	errors	are	suppressed.	The
option	may	not	be	abbreviated,	in	order	to	disambiguate	it	from	possible
variable	names.	The	option	--	indicates	the	end	of	the	options,	and
should	be	used	if	you	wish	to	remove	a	variable	with	the	same	name	as
any	of	the	options.	If	an	error	occurs,	any	variables	after	the	named	one
causing	the	error	not	deleted.	An	error	can	occur	when	the	named
variable	does	not	exist,	or	the	name	refers	to	an	array	element	but	the
variable	is	a	scalar,	or	the	name	refers	to	a	variable	in	a	non-existent
namespace.

EXAMPLE

Create	an	array	containing	a	mapping	from	some	numbers	to	their
squares	and	remove	the	array	elements	for	non-prime	numbers:

array	set	squares	{

				1	1				6	36

				2	4				7	49

				3	9				8	64

				4	16			9	81

				5	25		10	100

}

puts	"The	squares	are:"

parray	squares

unset	squares(1)	squares(4)	squares(6)

unset	squares(8)	squares(9)	squares(10)

puts	"The	prime	squares	are:"

parray	squares

SEE	ALSO

set,	trace,	upvar

KEYWORDS

remove,	variable

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.
Copyright	©	2000	Ajuba	Solutions.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	catch

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

catch	-	Evaluate	script	and	trap	exceptional	returns

SYNOPSIS

catch	script	?resultVarName?	?optionsVarName?

DESCRIPTION

The	catch	command	may	be	used	to	prevent	errors	from	aborting
command	interpretation.	The	catch	command	calls	the	Tcl	interpreter
recursively	to	execute	script,	and	always	returns	without	raising	an
error,	regardless	of	any	errors	that	might	occur	while	executing	script.

If	script	raises	an	error,	catch	will	return	a	non-zero	integer	value
corresponding	to	the	exceptional	return	code	returned	by	evaluation	of
script.	Tcl	defines	the	normal	return	code	from	script	evaluation	to	be
zero	(0),	or	TCL_OK.	Tcl	also	defines	four	exceptional	return	codes:	1
(TCL_ERROR),	2	(TCL_RETURN),	3	(TCL_BREAK),	and	4
(TCL_CONTINUE).	Errors	during	evaluation	of	a	script	are	indicated	by
a	return	code	of	TCL_ERROR.	The	other	exceptional	return	codes	are
returned	by	the	return,	break,	and	continue	commands	and	in	other
special	situations	as	documented.	Tcl	packages	can	define	new
commands	that	return	other	integer	values	as	return	codes	as	well,	and
scripts	that	make	use	of	the	return	-code	command	can	also	have
return	codes	other	than	the	five	defined	by	Tcl.

If	the	resultVarName	argument	is	given,	then	the	variable	it	names	is
set	to	the	result	of	the	script	evaluation.	When	the	return	code	from	the
script	is	1	(TCL_ERROR),	the	value	stored	in	resultVarName	is	an	error
message.	When	the	return	code	from	the	script	is	0	(TCL_OK),	the

value	stored	in	resultVarName	is	the	value	returned	from	script.

If	the	optionsVarName	argument	is	given,	then	the	variable	it	names	is
set	to	a	dictionary	of	return	options	returned	by	evaluation	of	script.	Tcl
specifies	two	entries	that	are	always	defined	in	the	dictionary:	-code
and	-level.	When	the	return	code	from	evaluation	of	script	is	not
TCL_RETURN,	the	value	of	the	-level	entry	will	be	0,	and	the	value	of
the	-code	entry	will	be	the	same	as	the	return	code.	Only	when	the
return	code	is	TCL_RETURN	will	the	values	of	the	-level	and	-code
entries	be	something	else,	as	further	described	in	the	documentation	for
the	return	command.

When	the	return	code	from	evaluation	of	script	is	TCL_ERROR,	three
additional	entries	are	defined	in	the	dictionary	of	return	options	stored	in
optionsVarName:	-errorinfo,	-errorcode,	and	-errorline.	The	value	of
the	-errorinfo	entry	is	a	formatted	stack	trace	containing	more
information	about	the	context	in	which	the	error	happened.	The
formatted	stack	trace	is	meant	to	be	read	by	a	person.	The	value	of	the
-errorcode	entry	is	additional	information	about	the	error	stored	as	a
list.	The	-errorcode	value	is	meant	to	be	further	processed	by
programs,	and	may	not	be	particularly	readable	by	people.	The	value	of
the	-errorline	entry	is	an	integer	indicating	which	line	of	script	was
being	evaluated	when	the	error	occurred.	The	values	of	the	-errorinfo
and	-errorcode	entries	of	the	most	recent	error	are	also	available	as
values	of	the	global	variables	::errorInfo	and	::errorCode	respectively.

Tcl	packages	may	provide	commands	that	set	other	entries	in	the
dictionary	of	return	options,	and	the	return	command	may	be	used	by
scripts	to	set	return	options	in	addition	to	those	defined	above.

EXAMPLES

The	catch	command	may	be	used	in	an	if	to	branch	based	on	the
success	of	a	script.

if	{	[catch	{open	$someFile	w}	fid]	}	{

				puts	stderr	"Could	not	open	$someFile	for	writing\n$fid"

				exit	1

}

There	are	more	complex	examples	of	catch	usage	in	the
documentation	for	the	return	command.

SEE	ALSO

break,	continue,	dict,	error,	return,	tclvars

KEYWORDS

catch,	error

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993-1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	format

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
format	-	Format	a	string	in	the	style	of	sprintf

SYNOPSIS
INTRODUCTION
DETAILS	ON	FORMATTING

-
+
space
0
#
d
u
i
o
x	or	X
c
s
f
e	or	E
g	or	G
%

DIFFERENCES	FROM	ANSI	SPRINTF
EXAMPLES
SEE	ALSO
KEYWORDS

NAME

format	-	Format	a	string	in	the	style	of	sprintf

SYNOPSIS

format	formatString	?arg	arg	...?

INTRODUCTION

This	command	generates	a	formatted	string	in	a	fashion	similar	to	the
ANSI	C	sprintf	procedure.	FormatString	indicates	how	to	format	the
result,	using	%	conversion	specifiers	as	in	sprintf,	and	the	additional
arguments,	if	any,	provide	values	to	be	substituted	into	the	result.	The
return	value	from	format	is	the	formatted	string.

DETAILS	ON	FORMATTING

The	command	operates	by	scanning	formatString	from	left	to	right.
Each	character	from	the	format	string	is	appended	to	the	result	string
unless	it	is	a	percent	sign.	If	the	character	is	a	%	then	it	is	not	copied	to
the	result	string.	Instead,	the	characters	following	the	%	character	are
treated	as	a	conversion	specifier.	The	conversion	specifier	controls	the
conversion	of	the	next	successive	arg	to	a	particular	format	and	the
result	is	appended	to	the	result	string	in	place	of	the	conversion
specifier.	If	there	are	multiple	conversion	specifiers	in	the	format	string,
then	each	one	controls	the	conversion	of	one	additional	arg.	The
format	command	must	be	given	enough	args	to	meet	the	needs	of	all
of	the	conversion	specifiers	in	formatString.

Each	conversion	specifier	may	contain	up	to	six	different	parts:	an
XPG3	position	specifier,	a	set	of	flags,	a	minimum	field	width,	a
precision,	a	size	modifier,	and	a	conversion	character.	Any	of	these
fields	may	be	omitted	except	for	the	conversion	character.	The	fields
that	are	present	must	appear	in	the	order	given	above.	The	paragraphs
below	discuss	each	of	these	fields	in	turn.

If	the	%	is	followed	by	a	decimal	number	and	a	$,	as	in	“%2$d”,	then
the	value	to	convert	is	not	taken	from	the	next	sequential	argument.
Instead,	it	is	taken	from	the	argument	indicated	by	the	number,	where	1
corresponds	to	the	first	arg.	If	the	conversion	specifier	requires	multiple
arguments	because	of	*	characters	in	the	specifier	then	successive
arguments	are	used,	starting	with	the	argument	given	by	the	number.
This	follows	the	XPG3	conventions	for	positional	specifiers.	If	there	are

any	positional	specifiers	in	formatString	then	all	of	the	specifiers	must
be	positional.

The	second	portion	of	a	conversion	specifier	may	contain	any	of	the
following	flag	characters,	in	any	order:

-
Specifies	that	the	converted	argument	should	be	left-justified	in	its
field	(numbers	are	normally	right-justified	with	leading	spaces	if
needed).

+
Specifies	that	a	number	should	always	be	printed	with	a	sign,	even
if	positive.

space
Specifies	that	a	space	should	be	added	to	the	beginning	of	the
number	if	the	first	character	is	not	a	sign.

0
Specifies	that	the	number	should	be	padded	on	the	left	with	zeroes
instead	of	spaces.

#
Requests	an	alternate	output	form.	For	o	and	O	conversions	it
guarantees	that	the	first	digit	is	always	0.	For	x	or	X	conversions,
0x	or	0X	(respectively)	will	be	added	to	the	beginning	of	the	result
unless	it	is	zero.	For	all	floating-point	conversions	(e,	E,	f,	g,	and
G)	it	guarantees	that	the	result	always	has	a	decimal	point.	For	g
and	G	conversions	it	specifies	that	trailing	zeroes	should	not	be
removed.

The	third	portion	of	a	conversion	specifier	is	a	decimal	number	giving	a
minimum	field	width	for	this	conversion.	It	is	typically	used	to	make
columns	line	up	in	tabular	printouts.	If	the	converted	argument	contains
fewer	characters	than	the	minimum	field	width	then	it	will	be	padded	so
that	it	is	as	wide	as	the	minimum	field	width.	Padding	normally	occurs
by	adding	extra	spaces	on	the	left	of	the	converted	argument,	but	the	0

and	-	flags	may	be	used	to	specify	padding	with	zeroes	on	the	left	or
with	spaces	on	the	right,	respectively.	If	the	minimum	field	width	is
specified	as	*	rather	than	a	number,	then	the	next	argument	to	the
format	command	determines	the	minimum	field	width;	it	must	be	an
integer	value.

The	fourth	portion	of	a	conversion	specifier	is	a	precision,	which
consists	of	a	period	followed	by	a	number.	The	number	is	used	in
different	ways	for	different	conversions.	For	e,	E,	and	f	conversions	it
specifies	the	number	of	digits	to	appear	to	the	right	of	the	decimal	point.
For	g	and	G	conversions	it	specifies	the	total	number	of	digits	to
appear,	including	those	on	both	sides	of	the	decimal	point	(however,
trailing	zeroes	after	the	decimal	point	will	still	be	omitted	unless	the	#
flag	has	been	specified).	For	integer	conversions,	it	specifies	a
minimum	number	of	digits	to	print	(leading	zeroes	will	be	added	if
necessary).	For	s	conversions	it	specifies	the	maximum	number	of
characters	to	be	printed;	if	the	string	is	longer	than	this	then	the	trailing
characters	will	be	dropped.	If	the	precision	is	specified	with	*	rather	than
a	number	then	the	next	argument	to	the	format	command	determines
the	precision;	it	must	be	a	numeric	string.

The	fifth	part	of	a	conversion	specifier	is	a	size	modifier,	which	must	be
ll,	h,	or	l.	If	it	is	ll	it	specifies	that	an	integer	value	is	taken	without
truncation	for	conversion	to	a	formatted	substring.	If	it	is	h	it	specifies
that	an	integer	value	is	truncated	to	a	16-bit	range	before	converting.
This	option	is	rarely	useful.	If	it	is	l	it	specifies	that	the	integer	value	is
truncated	to	the	same	range	as	that	produced	by	the	wide()	function	of
the	expr	command	(at	least	a	64-bit	range).	If	neither	h	nor	l	are
present,	the	integer	value	is	truncated	to	the	same	range	as	that
produced	by	the	int()	function	of	the	expr	command	(at	least	a	32-bit
range,	but	determined	by	the	value	of	tcl_platform(wordSize)).

The	last	thing	in	a	conversion	specifier	is	an	alphabetic	character	that
determines	what	kind	of	conversion	to	perform.	The	following
conversion	characters	are	currently	supported:

d
Convert	integer	to	signed	decimal	string.

u
Convert	integer	to	unsigned	decimal	string.

i
Convert	integer	to	signed	decimal	string	(equivalent	to	d).

o
Convert	integer	to	unsigned	octal	string.

x	or	X
Convert	integer	to	unsigned	hexadecimal	string,	using	digits
“0123456789abcdef”	for	x	and	“0123456789ABCDEF”	for	X).

c
Convert	integer	to	the	Unicode	character	it	represents.

s
No	conversion;	just	insert	string.

f
Convert	number	to	signed	decimal	string	of	the	form	xx.yyy,	where
the	number	of	y's	is	determined	by	the	precision	(default:	6).	If	the
precision	is	0	then	no	decimal	point	is	output.

e	or	E
Convert	number	to	scientific	notation	in	the	form	x.yyye±zz,	where
the	number	of	y's	is	determined	by	the	precision	(default:	6).	If	the
precision	is	0	then	no	decimal	point	is	output.	If	the	E	form	is	used
then	E	is	printed	instead	of	e.

g	or	G
If	the	exponent	is	less	than	-4	or	greater	than	or	equal	to	the
precision,	then	convert	number	as	for	%e	or	%E.	Otherwise	convert
as	for	%f.	Trailing	zeroes	and	a	trailing	decimal	point	are	omitted.

%
No	conversion:	just	insert	%.

DIFFERENCES	FROM	ANSI	SPRINTF

The	behavior	of	the	format	command	is	the	same	as	the	ANSI	C	sprintf
procedure	except	for	the	following	differences:

[1]
%p	and	%n	specifiers	are	not	supported.

[2]
For	%c	conversions	the	argument	must	be	an	integer	value,	which
will	then	be	converted	to	the	corresponding	character	value.

[3]
The	size	modifiers	are	ignored	when	formatting	floating-point
values.	The	ll	modifier	has	no	sprintf	counterpart.

EXAMPLES

Convert	the	numeric	value	of	a	UNICODE	character	to	the	character
itself:

set	value	120

set	char	[format	%c	$value]

Convert	the	output	of	time	into	seconds	to	an	accuracy	of	hundredths	of
a	second:

set	us	[lindex	[time	$someTclCode]	0]

puts	[format	"%.2f	seconds	to	execute"	[expr	{$us	/	1e6}]]

Create	a	packed	X11	literal	color	specification:

#	Each	color-component	should	be	in	range	(0..255)

set	color	[format	"#%02x%02x%02x"	$r	$g	$b]

Use	XPG3	format	codes	to	allow	reordering	of	fields	(a	technique	that	is
often	used	in	localized	message	catalogs;	see	msgcat)	without
reordering	the	data	values	passed	to	format:

set	fmt1	"Today,	%d	shares	in	%s	were	bought	at	$%.2f	each"

puts	[format	$fmt1	123	"Global	BigCorp"	19.37]

set	fmt2	"Bought	%2\$s	equity	($%3$.2f	x	%1\$d)	today"

puts	[format	$fmt2	123	"Global	BigCorp"	19.37]

Print	a	small	table	of	powers	of	three:

#	Set	up	the	column	widths

set	w1	5

set	w2	10

#	Make	a	nice	header	(with	separator)	for	the	table	first

set	sep	+-[string	repeat	-	$w1]-+-[string	repeat	-	$w2]-+

puts	$sep

puts	[format	"|	%-*s	|	%-*s	|"	$w1	"Index"	$w2	"Power"]

puts	$sep

#	Print	the	contents	of	the	table

set	p	1

for	{set	i	0}	{$i<=20}	{incr	i}	{

			puts	[format	"|	%*d	|	%*ld	|"	$w1	$i	$w2	$p]

			set	p	[expr	{wide($p)	*	3}]

}

#	Finish	off	by	printing	the	separator	again

puts	$sep

SEE	ALSO

scan,	sprintf,	string

KEYWORDS

conversion	specifier,	format,	sprintf,	string,	substitution

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	mathfunc

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
mathfunc	-	Mathematical	functions	for	Tcl	expressions

SYNOPSIS
DESCRIPTION
DETAILED	DEFINITIONS

abs	arg
acos	arg
asin	arg
atan	arg
atan2	y	x
bool	arg
ceil	arg
cos	arg
cosh	arg
double	arg
entier	arg
exp	arg
floor	arg
fmod	x	y
hypot	x	y
int	arg
isqrt	arg
log	arg
log10	arg
max	arg	...
min	arg	...
pow	x	y
rand
round	arg
sin	arg
sinh	arg

sqrt	arg
srand	arg
tan	arg
tanh	arg
wide	arg

SEE	ALSO
COPYRIGHT

NAME

mathfunc	-	Mathematical	functions	for	Tcl	expressions

SYNOPSIS

package	require	Tcl	8.5
::tcl::mathfunc::abs	arg
::tcl::mathfunc::acos	arg
::tcl::mathfunc::asin	arg
::tcl::mathfunc::atan	arg
::tcl::mathfunc::atan2	y	x
::tcl::mathfunc::bool	arg
::tcl::mathfunc::ceil	arg
::tcl::mathfunc::cos	arg
::tcl::mathfunc::cosh	arg
::tcl::mathfunc::double	arg
::tcl::mathfunc::entier	arg
::tcl::mathfunc::exp	arg
::tcl::mathfunc::floor	arg
::tcl::mathfunc::fmod	x	y
::tcl::mathfunc::hypot	x	y
::tcl::mathfunc::int	arg
::tcl::mathfunc::isqrt	arg
::tcl::mathfunc::log	arg
::tcl::mathfunc::log10	arg
::tcl::mathfunc::max	arg	?arg	...?
::tcl::mathfunc::min	arg	?arg	...?
::tcl::mathfunc::pow	x	y
::tcl::mathfunc::rand

::tcl::mathfunc::round	arg
::tcl::mathfunc::sin	arg
::tcl::mathfunc::sinh	arg
::tcl::mathfunc::sqrt	arg
::tcl::mathfunc::srand	arg
::tcl::mathfunc::tan	arg
::tcl::mathfunc::tanh	arg
::tcl::mathfunc::wide	arg

DESCRIPTION

The	expr	command	handles	mathematical	functions	of	the	form	sin($x)
or	atan2($y,$x)	by	converting	them	to	calls	of	the	form
[tcl::mathfunc::sin	[expr	{$x}]]	or	[tcl::mathfunc::atan2	[expr	{$y}]
[expr	{$x}]].	A	number	of	math	functions	are	available	by	default	within
the	namespace	::tcl::mathfunc;	these	functions	are	also	available	for
code	apart	from	expr,	by	invoking	the	given	commands	directly.

Tcl	supports	the	following	mathematical	functions	in	expressions,	all	of
which	work	solely	with	floating-point	numbers	unless	otherwise	noted:

abs acos asin atan

atan2 bool ceil cos

cosh double entier exp

floor fmod hypot int

isqrt log log10 max

min pow rand round

sin sinh sqrt srand

tan tanh wide

In	addition	to	these	predefined	functions,	applications	may	define
additional	functions	by	using	proc	(or	any	other	method,	such	as	interp
alias	or	Tcl_CreateObjCommand)	to	define	new	commands	in	the
tcl::mathfunc	namespace.	In	addition,	an	obsolete	interface	named
Tcl_CreateMathFunc()	is	available	to	extensions	that	are	written	in	C.
The	latter	interface	is	not	recommended	for	new	implementations.

DETAILED	DEFINITIONS

abs	arg
Returns	the	absolute	value	of	arg.	Arg	may	be	either	integer	or
floating-point,	and	the	result	is	returned	in	the	same	form.

acos	arg
Returns	the	arc	cosine	of	arg,	in	the	range	[0,pi]	radians.	Arg
should	be	in	the	range	[-1,1].

asin	arg
Returns	the	arc	sine	of	arg,	in	the	range	[-pi/2,pi/2]	radians.	Arg
should	be	in	the	range	[-1,1].

atan	arg
Returns	the	arc	tangent	of	arg,	in	the	range	[-pi/2,pi/2]	radians.

atan2	y	x
Returns	the	arc	tangent	of	y/x,	in	the	range	[-pi,pi]	radians.	x	and	y
cannot	both	be	0.	If	x	is	greater	than	0,	this	is	equivalent	to	“atan
[expr	{y/x}]”.

bool	arg
Accepts	any	numeric	value,	or	any	string	acceptable	to	string	is

boolean,	and	returns	the	corresponding	boolean	value	0	or	1.	Non-
zero	numbers	are	true.	Other	numbers	are	false.	Non-numeric
strings	produce	boolean	value	in	agreement	with	string	is	true	and
string	is	false.

ceil	arg
Returns	the	smallest	integral	floating-point	value	(i.e.	with	a	zero
fractional	part)	not	less	than	arg.	The	argument	may	be	any
numeric	value.

cos	arg
Returns	the	cosine	of	arg,	measured	in	radians.

cosh	arg
Returns	the	hyperbolic	cosine	of	arg.	If	the	result	would	cause	an
overflow,	an	error	is	returned.

double	arg
The	argument	may	be	any	numeric	value,	If	arg	is	a	floating-point
value,	returns	arg,	otherwise	converts	arg	to	floating-point	and
returns	the	converted	value.	May	return	Inf	or	-Inf	when	the
argument	is	a	numeric	value	that	exceeds	the	floating-point	range.

entier	arg
The	argument	may	be	any	numeric	value.	The	integer	part	of	arg	is
determined	and	returned.	The	integer	range	returned	by	this
function	is	unlimited,	unlike	int	and	wide	which	truncate	their	range
to	fit	in	particular	storage	widths.

exp	arg
Returns	the	exponential	of	arg,	defined	as	e**arg.	If	the	result
would	cause	an	overflow,	an	error	is	returned.

floor	arg
Returns	the	largest	integral	floating-point	value	(i.e.	with	a	zero
fractional	part)	not	greater	than	arg.	The	argument	may	be	any
numeric	value.

fmod	x	y
Returns	the	floating-point	remainder	of	the	division	of	x	by	y.	If	y	is
0,	an	error	is	returned.

hypot	x	y
Computes	the	length	of	the	hypotenuse	of	a	right-angled	triangle
“sqrt	[expr	{x*x+y*y}]”.

int	arg
The	argument	may	be	any	numeric	value.	The	integer	part	of	arg	is
determined,	and	then	the	low	order	bits	of	that	integer	value	up	to
the	machine	word	size	are	returned	as	an	integer	value.	For
reference,	the	number	of	bytes	in	the	machine	word	are	stored	in
tcl_platform(wordSize).

isqrt	arg
Computes	the	integer	part	of	the	square	root	of	arg.	Arg	must	be	a
positive	value,	either	an	integer	or	a	floating	point	number.	Unlike
sqrt,	which	is	limited	to	the	precision	of	a	floating	point	number,
isqrt	will	return	a	result	of	arbitrary	precision.

log	arg
Returns	the	natural	logarithm	of	arg.	Arg	must	be	a	positive	value.

log10	arg
Returns	the	base	10	logarithm	of	arg.	Arg	must	be	a	positive	value.

max	arg	...
Accepts	one	or	more	numeric	arguments.	Returns	the	one
argument	with	the	greatest	value.

min	arg	...
Accepts	one	or	more	numeric	arguments.	Returns	the	one
argument	with	the	least	value.

pow	x	y
Computes	the	value	of	x	raised	to	the	power	y.	If	x	is	negative,	y
must	be	an	integer	value.

rand
Returns	a	pseudo-random	floating-point	value	in	the	range	(0,1).
The	generator	algorithm	is	a	simple	linear	congruential	generator
that	is	not	cryptographically	secure.	Each	result	from	rand
completely	determines	all	future	results	from	subsequent	calls	to
rand,	so	rand	should	not	be	used	to	generate	a	sequence	of
secrets,	such	as	one-time	passwords.	The	seed	of	the	generator	is
initialized	from	the	internal	clock	of	the	machine	or	may	be	set	with
the	srand	function.

round	arg
If	arg	is	an	integer	value,	returns	arg,	otherwise	converts	arg	to
integer	by	rounding	and	returns	the	converted	value.

sin	arg
Returns	the	sine	of	arg,	measured	in	radians.

sinh	arg
Returns	the	hyperbolic	sine	of	arg.	If	the	result	would	cause	an
overflow,	an	error	is	returned.

sqrt	arg
The	argument	may	be	any	non-negative	numeric	value.	Returns	a
floating-point	value	that	is	the	square	root	of	arg.	May	return	Inf
when	the	argument	is	a	numeric	value	that	exceeds	the	square	of
the	maximum	value	of	the	floating-point	range.

srand	arg
The	arg,	which	must	be	an	integer,	is	used	to	reset	the	seed	for	the
random	number	generator	of	rand.	Returns	the	first	random
number	(see	rand)	from	that	seed.	Each	interpreter	has	its	own
seed.

tan	arg
Returns	the	tangent	of	arg,	measured	in	radians.

tanh	arg
Returns	the	hyperbolic	tangent	of	arg.

wide	arg
The	argument	may	be	any	numeric	value.	The	integer	part	of	arg	is
determined,	and	then	the	low	order	64	bits	of	that	integer	value	are
returned	as	an	integer	value.

SEE	ALSO

expr,	mathop,	namespace

COPYRIGHT

Copyright	(c)	1993	The	Regents	of	the	University	of	California.
Copyright	(c)	1994-2000	Sun	Microsystems	Incorporated.
Copyright	(c)	2005,	2006	by	Kevin	B.	Kenny	<kennykb@acm.org>.

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-2000	Sun	Microsystems,	Inc.
Copyright	©	2005	by	Kevin	B.	Kenny	<kennykb(at)acm.org>.	All	rights	reserved

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	scan

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
scan	-	Parse	string	using	conversion	specifiers	in	the	style	of
sscanf

SYNOPSIS
INTRODUCTION
DETAILS	ON	SCANNING

d
o
x
u
i
c
s
e	or	f	or	g
[chars]
[^chars]
n

DIFFERENCES	FROM	ANSI	SSCANF
EXAMPLES
SEE	ALSO
KEYWORDS

NAME

scan	-	Parse	string	using	conversion	specifiers	in	the	style	of	sscanf

SYNOPSIS

scan	string	format	?varName	varName	...?

INTRODUCTION

This	command	parses	substrings	from	an	input	string	in	a	fashion
similar	to	the	ANSI	C	sscanf	procedure	and	returns	a	count	of	the
number	of	conversions	performed,	or	-1	if	the	end	of	the	input	string	is
reached	before	any	conversions	have	been	performed.	String	gives	the
input	to	be	parsed	and	format	indicates	how	to	parse	it,	using	%
conversion	specifiers	as	in	sscanf.	Each	varName	gives	the	name	of	a
variable;	when	a	substring	is	scanned	from	string	that	matches	a
conversion	specifier,	the	substring	is	assigned	to	the	corresponding
variable.	If	no	varName	variables	are	specified,	then	scan	works	in	an
inline	manner,	returning	the	data	that	would	otherwise	be	stored	in	the
variables	as	a	list.	In	the	inline	case,	an	empty	string	is	returned	when
the	end	of	the	input	string	is	reached	before	any	conversions	have	been
performed.

DETAILS	ON	SCANNING

Scan	operates	by	scanning	string	and	format	together.	If	the	next
character	in	format	is	a	blank	or	tab	then	it	matches	any	number	of
white	space	characters	in	string	(including	zero).	Otherwise,	if	it	is	not	a
%	character	then	it	must	match	the	next	character	of	string.	When	a	%
is	encountered	in	format,	it	indicates	the	start	of	a	conversion	specifier.
A	conversion	specifier	contains	up	to	four	fields	after	the	%:	a	XPG3
position	specifier	(or	a	*	to	indicate	the	converted	value	is	to	be
discarded	instead	of	assigned	to	any	variable);	a	number	indicating	a
maximum	substring	width;	a	size	modifier;	and	a	conversion	character.
All	of	these	fields	are	optional	except	for	the	conversion	character.	The
fields	that	are	present	must	appear	in	the	order	given	above.

When	scan	finds	a	conversion	specifier	in	format,	it	first	skips	any
white-space	characters	in	string	(unless	the	conversion	character	is	[or
c).	Then	it	converts	the	next	input	characters	according	to	the
conversion	specifier	and	stores	the	result	in	the	variable	given	by	the
next	argument	to	scan.

If	the	%	is	followed	by	a	decimal	number	and	a	$,	as	in	“%2$d”,	then
the	variable	to	use	is	not	taken	from	the	next	sequential	argument.
Instead,	it	is	taken	from	the	argument	indicated	by	the	number,	where	1
corresponds	to	the	first	varName.	If	there	are	any	positional	specifiers

in	format	then	all	of	the	specifiers	must	be	positional.	Every	varName	on
the	argument	list	must	correspond	to	exactly	one	conversion	specifier	or
an	error	is	generated,	or	in	the	inline	case,	any	position	can	be
specified	at	most	once	and	the	empty	positions	will	be	filled	in	with
empty	strings.

The	size	modifier	field	is	used	only	when	scanning	a	substring	into	one
of	Tcl's	integer	values.	The	size	modifier	field	dictates	the	integer	range
acceptable	to	be	stored	in	a	variable,	or,	for	the	inline	case,	in	a	position
in	the	result	list.	The	syntactically	valid	values	for	the	size	modifier	are
h,	L,	l,	and	ll.	The	h	size	modifier	value	is	equivalent	to	the	absence	of
a	size	modifier	in	the	the	conversion	specifier.	Either	one	indicates	the
integer	range	to	be	stored	is	limited	to	the	same	range	produced	by	the
int()	function	of	the	expr	command.	The	L	size	modifier	is	equivalent	to
the	l	size	modifier.	Either	one	indicates	the	integer	range	to	be	stored	is
limited	to	the	same	range	produced	by	the	wide()	function	of	the	expr
command.	The	ll	size	modifier	indicates	that	the	integer	range	to	be
stored	is	unlimited.

The	following	conversion	characters	are	supported:

d
The	input	substring	must	be	a	decimal	integer.	It	is	read	in	and	the
integer	value	is	stored	in	the	variable,	truncated	as	required	by	the
size	modifier	value.

o
The	input	substring	must	be	an	octal	integer.	It	is	read	in	and	the
integer	value	is	stored	in	the	variable,	truncated	as	required	by	the
size	modifier	value.

x
The	input	substring	must	be	a	hexadecimal	integer.	It	is	read	in	and
the	integer	value	is	stored	in	the	variable,	truncated	as	required	by
the	size	modifier	value.

u
The	input	substring	must	be	a	decimal	integer.	The	integer	value	is

truncated	as	required	by	the	size	modifier	value,	and	the
corresponding	unsigned	value	for	that	truncated	range	is	computed
and	stored	in	the	variable	as	a	decimal	string.	The	conversion
makes	no	sense	without	reference	to	a	truncation	range,	so	the
size	modifier	ll	is	not	permitted	in	combination	with	conversion
character	u.

i
The	input	substring	must	be	an	integer.	The	base	(i.e.	decimal,
binary,	octal,	or	hexadecimal)	is	determined	in	the	same	fashion	as
described	in	expr.	The	integer	value	is	stored	in	the	variable,
truncated	as	required	by	the	size	modifier	value.

c
A	single	character	is	read	in	and	its	Unicode	value	is	stored	in	the
variable	as	an	integer	value.	Initial	white	space	is	not	skipped	in
this	case,	so	the	input	substring	may	be	a	white-space	character.

s
The	input	substring	consists	of	all	the	characters	up	to	the	next
white-space	character;	the	characters	are	copied	to	the	variable.

e	or	f	or	g
The	input	substring	must	be	a	floating-point	number	consisting	of
an	optional	sign,	a	string	of	decimal	digits	possibly	containing	a
decimal	point,	and	an	optional	exponent	consisting	of	an	e	or	E
followed	by	an	optional	sign	and	a	string	of	decimal	digits.	It	is	read
in	and	stored	in	the	variable	as	a	floating-point	value.

[chars]
The	input	substring	consists	of	one	or	more	characters	in	chars.
The	matching	string	is	stored	in	the	variable.	If	the	first	character
between	the	brackets	is	a]	then	it	is	treated	as	part	of	chars	rather
than	the	closing	bracket	for	the	set.	If	chars	contains	a	sequence	of
the	form	a-b	then	any	character	between	a	and	b	(inclusive)	will
match.	If	the	first	or	last	character	between	the	brackets	is	a	-,	then
it	is	treated	as	part	of	chars	rather	than	indicating	a	range.

[^chars]
The	input	substring	consists	of	one	or	more	characters	not	in	chars.
The	matching	string	is	stored	in	the	variable.	If	the	character
immediately	following	the	^	is	a]	then	it	is	treated	as	part	of	the	set
rather	than	the	closing	bracket	for	the	set.	If	chars	contains	a
sequence	of	the	form	a-b	then	any	character	between	a	and	b
(inclusive)	will	be	excluded	from	the	set.	If	the	first	or	last	character
between	the	brackets	is	a	-,	then	it	is	treated	as	part	of	chars	rather
than	indicating	a	range	value.

n
No	input	is	consumed	from	the	input	string.	Instead,	the	total
number	of	characters	scanned	from	the	input	string	so	far	is	stored
in	the	variable.

The	number	of	characters	read	from	the	input	for	a	conversion	is	the
largest	number	that	makes	sense	for	that	particular	conversion	(e.g.	as
many	decimal	digits	as	possible	for	%d,	as	many	octal	digits	as
possible	for	%o,	and	so	on).	The	input	substring	for	a	given	conversion
terminates	either	when	a	white-space	character	is	encountered	or	when
the	maximum	substring	width	has	been	reached,	whichever	comes	first.
If	a	*	is	present	in	the	conversion	specifier	then	no	variable	is	assigned
and	the	next	scan	argument	is	not	consumed.

DIFFERENCES	FROM	ANSI	SSCANF

The	behavior	of	the	scan	command	is	the	same	as	the	behavior	of	the
ANSI	C	sscanf	procedure	except	for	the	following	differences:

[1]
%p	conversion	specifier	is	not	supported.

[2]
For	%c	conversions	a	single	character	value	is	converted	to	a
decimal	string,	which	is	then	assigned	to	the	corresponding
varName;	no	substring	width	may	be	specified	for	this	conversion.

[3]

The	h	modifier	is	always	ignored	and	the	l	and	L	modifiers	are
ignored	when	converting	real	values	(i.e.	type	double	is	used	for
the	internal	representation).	The	ll	modifier	has	no	sscanf
counterpart.

[4]
If	the	end	of	the	input	string	is	reached	before	any	conversions
have	been	performed	and	no	variables	are	given,	an	empty	string	is
returned.

EXAMPLES

Convert	a	UNICODE	character	to	its	numeric	value:

set	char	"x"

set	value	[scan	$char	%c]

Parse	a	simple	color	specification	of	the	form	#RRGGBB	using
hexadecimal	conversions	with	substring	sizes:

set	string	"#08D03F"

scan	$string	"#%2x%2x%2x"	r	g	b

Parse	a	HH:MM	time	string,	noting	that	this	avoids	problems	with	octal
numbers	by	forcing	interpretation	as	decimals	(if	we	did	not	care,	we
would	use	the	%i	conversion	instead):

set	string	"08:08"			;#	*Not*	octal!

if	{[scan	$string	"%d:%d"	hours	minutes]	!=	2}	{

			error	"not	a	valid	time	string"

}

#	We	have	to	understand	numeric	ranges	ourselves...

if	{$minutes	<	0	||	$minutes	>	59}	{

			error	"invalid	number	of	minutes"

}

Break	a	string	up	into	sequences	of	non-whitespace	characters	(note
the	use	of	the	%n	conversion	so	that	we	get	skipping	over	leading
whitespace	correct):

set	string	"	a	string	{with	braced	words}	+	leading	space	"

set	words	{}

while	{[scan	$string	%s%n	word	length]	==	2}	{

			lappend	words	$word

			set	string	[string	range	$string	$length	end]

}

Parse	a	simple	coordinate	string,	checking	that	it	is	complete	by	looking
for	the	terminating	character	explicitly:

set	string	"(5.2,-4e-2)"

#	Note	that	the	spaces	before	the	literal	parts	of

#	the	scan	pattern	are	significant,	and	that	")"	is

#	the	Unicode	character	\u0029

if	{

			[scan	$string	"	(%f	,%f	%c"	x	y	last]	!=	3

			||	$last	!=	0x0029

}	then	{

			error	"invalid	coordinate	string"

}

puts	"X=$x,	Y=$y"

An	interactive	session	demonstrating	the	truncation	of	integer	values
determined	by	size	modifiers:

%	set	tcl_platform(wordSize)

4

%	scan	20000000000000000000	%d

2147483647

%	scan	20000000000000000000	%ld

9223372036854775807

%	scan	20000000000000000000	%lld

20000000000000000000

SEE	ALSO

format,	sscanf

KEYWORDS

conversion	specifier,	parse,	scan

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.
Copyright	©	2000	Scriptics	Corporation.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	update

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

update	-	Process	pending	events	and	idle	callbacks

SYNOPSIS

update	?idletasks?

DESCRIPTION

This	command	is	used	to	bring	the	application	“up	to	date”	by	entering
the	event	loop	repeatedly	until	all	pending	events	(including	idle
callbacks)	have	been	processed.

If	the	idletasks	keyword	is	specified	as	an	argument	to	the	command,
then	no	new	events	or	errors	are	processed;	only	idle	callbacks	are
invoked.	This	causes	operations	that	are	normally	deferred,	such	as
display	updates	and	window	layout	calculations,	to	be	performed
immediately.

The	update	idletasks	command	is	useful	in	scripts	where	changes
have	been	made	to	the	application's	state	and	you	want	those	changes
to	appear	on	the	display	immediately,	rather	than	waiting	for	the	script
to	complete.	Most	display	updates	are	performed	as	idle	callbacks,	so
update	idletasks	will	cause	them	to	run.	However,	there	are	some
kinds	of	updates	that	only	happen	in	response	to	events,	such	as	those
triggered	by	window	size	changes;	these	updates	will	not	occur	in
update	idletasks.

The	update	command	with	no	options	is	useful	in	scripts	where	you	are
performing	a	long-running	computation	but	you	still	want	the	application
to	respond	to	events	such	as	user	interactions;	if	you	occasionally	call

update	then	user	input	will	be	processed	during	the	next	call	to	update.

EXAMPLE

Run	computations	for	about	a	second	and	then	finish:

set	x	1000

set	done	0

after	1000	set	done	1

while	{!$done}	{

				#	A	very	silly	example!

				set	x	[expr	{log($x)	**	2.8}]

				#	Test	to	see	if	our	time-limit	has	been	hit.		This	would

				#	also	give	a	chance	for	serving	network	sockets	and,	if

				#	the	Tk	package	is	loaded,	updating	a	user	interface.

				update

}

SEE	ALSO

after,	interp

KEYWORDS

event,	flush,	handler,	idle,	update

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990-1992	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	cd

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

cd	-	Change	working	directory

SYNOPSIS

cd	?dirName?

DESCRIPTION

Change	the	current	working	directory	to	dirName,	or	to	the	home
directory	(as	specified	in	the	HOME	environment	variable)	if	dirName	is
not	given.	Returns	an	empty	string.	Note	that	the	current	working
directory	is	a	per-process	resource;	the	cd	command	changes	the
working	directory	for	all	interpreters	and	(in	a	threaded	environment)	all
threads.

EXAMPLES

Change	to	the	home	directory	of	the	user	fred:

cd	~fred

Change	to	the	directory	lib	that	is	a	sibling	directory	of	the	current	one:

cd	../lib

SEE	ALSO

filename,	glob,	pwd

KEYWORDS

working	directory

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	gets

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

gets	-	Read	a	line	from	a	channel

SYNOPSIS

gets	channelId	?varName?

DESCRIPTION

This	command	reads	the	next	line	from	channelId,	returns	everything	in
the	line	up	to	(but	not	including)	the	end-of-line	character(s),	and
discards	the	end-of-line	character(s).

ChannelId	must	be	an	identifier	for	an	open	channel	such	as	the	Tcl
standard	input	channel	(stdin),	the	return	value	from	an	invocation	of
open	or	socket,	or	the	result	of	a	channel	creation	command	provided
by	a	Tcl	extension.	The	channel	must	have	been	opened	for	input.

If	varName	is	omitted	the	line	is	returned	as	the	result	of	the	command.
If	varName	is	specified	then	the	line	is	placed	in	the	variable	by	that
name	and	the	return	value	is	a	count	of	the	number	of	characters
returned.

If	end	of	file	occurs	while	scanning	for	an	end	of	line,	the	command
returns	whatever	input	is	available	up	to	the	end	of	file.	If	channelId	is	in
nonblocking	mode	and	there	is	not	a	full	line	of	input	available,	the
command	returns	an	empty	string	and	does	not	consume	any	input.	If
varName	is	specified	and	an	empty	string	is	returned	in	varName
because	of	end-of-file	or	because	of	insufficient	data	in	nonblocking
mode,	then	the	return	count	is	-1.	Note	that	if	varName	is	not	specified
then	the	end-of-file	and	no-full-line-available	cases	can	produce	the

same	results	as	if	there	were	an	input	line	consisting	only	of	the	end-of-
line	character(s).	The	eof	and	fblocked	commands	can	be	used	to
distinguish	these	three	cases.

EXAMPLE

This	example	reads	a	file	one	line	at	a	time	and	prints	it	out	with	the
current	line	number	attached	to	the	start	of	each	line.

set	chan	[open	"some.file.txt"]

set	lineNumber	0

while	{[gets	$chan	line]	>=	0}	{

				puts	"[incr	lineNumber]:	$line"

}

close	$chan

SEE	ALSO

file,	eof,	fblocked,	Tcl_StandardChannels

KEYWORDS

blocking,	channel,	end	of	file,	end	of	line,	line,	nonblocking,	read

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	mathop

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
mathop	-	Mathematical	operators	as	Tcl	commands

SYNOPSIS
DESCRIPTION
MATHEMATICAL	OPERATORS

!	boolean
+	?number	...?
-	number	?number	...?
*	?number	...?
/	number	?number	...?
%	number	number
**	?number	...?

COMPARISON	OPERATORS
==	?arg	...?
eq	?arg	...?
!=	arg	arg
ne	arg	arg
<	?arg	...?
<=	?arg	...?
>	?arg	...?
>=	?arg	...?

BIT-WISE	OPERATORS
~	number
&	?number	...?
|	?number	...?
<<	number	number
>>	number	number

LIST	OPERATORS
in	arg	list
ni	arg	list

EXAMPLES

SEE	ALSO
KEYWORDS

NAME

mathop	-	Mathematical	operators	as	Tcl	commands

SYNOPSIS

package	require	Tcl	8.5
::tcl::mathop::!	number
::tcl::mathop::~	number
::tcl::mathop::+	?number	...?
::tcl::mathop::-	number	?number	...?
::tcl::mathop::*	?number	...?
::tcl::mathop::/	number	?number	...?
::tcl::mathop::%	number	number
::tcl::mathop::**	?number	...?
::tcl::mathop::&	?number	...?
::tcl::mathop::|	?number	...?
::tcl::mathop::^	?number	...?
::tcl::mathop::<<	number	number
::tcl::mathop::>>	number	number
::tcl::mathop::==	?arg	...?
::tcl::mathop::!=	arg	arg
::tcl::mathop::<	?arg	...?
::tcl::mathop::<=	?arg	...?
::tcl::mathop::>=	?arg	...?
::tcl::mathop::>	?arg	...?
::tcl::mathop::eq	?arg	...?
::tcl::mathop::ne	arg	arg
::tcl::mathop::in	arg	list
::tcl::mathop::ni	arg	list

DESCRIPTION

The	commands	in	the	::tcl::mathop	namespace	implement	the	same
set	of	operations	as	supported	by	the	expr	command.	All	are	exported

from	the	namespace,	but	are	not	imported	into	any	other	namespace	by
default.	Note	that	renaming,	reimplementing	or	deleting	any	of	the
commands	in	the	namespace	does	not	alter	the	way	that	the	expr
command	behaves,	and	nor	does	defining	any	new	commands	in	the
::tcl::mathop	namespace.

The	following	operator	commands	are	supported:

~ ! + - *

/ % ** & |

^ >> << == eq

!= ne < <= >

>= in ni

MATHEMATICAL	OPERATORS

The	behaviors	of	the	mathematical	operator	commands	are	as	follows:

!	boolean
Returns	the	boolean	negation	of	boolean,	where	boolean	may	be
any	numeric	value	or	any	other	form	of	boolean	value	(i.e.	it	returns
truth	if	the	argument	is	falsity	or	zero,	and	falsity	if	the	argument	is
truth	or	non-zero).

+	?number	...?
Returns	the	sum	of	arbitrarily	many	arguments.	Each	number
argument	may	be	any	numeric	value.	If	no	arguments	are	given,
the	result	will	be	zero	(the	summation	identity).

-	number	?number	...?
If	only	a	single	number	argument	is	given,	returns	the	negation	of
that	numeric	value.	Otherwise	returns	the	number	that	results	when
all	subsequent	numeric	values	are	subtracted	from	the	first	one.	All
number	arguments	must	be	numeric	values.	At	least	one	argument
must	be	given.

*	?number	...?
Returns	the	product	of	arbitrarily	many	arguments.	Each	number
may	be	any	numeric	value.	If	no	arguments	are	given,	the	result
will	be	one	(the	multiplicative	identity).

/	number	?number	...?
If	only	a	single	number	argument	is	given,	returns	the	reciprocal	of
that	numeric	value	(i.e.	the	value	obtained	by	dividing	1.0	by	that
value).	Otherwise	returns	the	number	that	results	when	the	first
numeric	argument	is	divided	by	all	subsequent	numeric	arguments.
All	number	arguments	must	be	numeric	values.	At	least	one
argument	must	be	given.

Note	that	when	the	leading	values	in	the	list	of	arguments	are
integers,	integer	division	will	be	used	for	those	initial	steps	(i.e.	the
intermediate	results	will	be	as	if	the	functions	floor	and	int	are
applied	to	them,	in	that	order).	If	all	values	in	the	operation	are
integers,	the	result	will	be	an	integer.

%	number	number
Returns	the	integral	modulus	of	the	first	argument	with	respect	to
the	second.	Each	number	must	have	an	integral	value.	Note	that
Tcl	defines	this	operation	exactly	even	for	negative	numbers,	so
that	the	following	equality	holds	true:

(x	/	y)	*	y	==	x	-	(x	%	y)

**	?number	...?
Returns	the	result	of	raising	each	value	to	the	power	of	the	result	of

recursively	operating	on	the	result	of	processing	the	following
arguments,	so	“**	2	3	4”	is	the	same	as	“**	2	[**	3	4]”.	Each	number
may	be	any	numeric	value,	though	the	second	number	must	not	be
fractional	if	the	first	is	negative.	If	no	arguments	are	given,	the
result	will	be	one,	and	if	only	one	argument	is	given,	the	result	will
be	that	argument.	The	result	will	have	an	integral	value	only	when
all	arguments	are	integral	values.

COMPARISON	OPERATORS

The	behaviors	of	the	comparison	operator	commands	(most	of	which
operate	preferentially	on	numeric	arguments)	are	as	follows:

==	?arg	...?
Returns	whether	each	argument	is	equal	to	the	arguments	on	each
side	of	it	in	the	sense	of	the	expr	==	operator	(i.e.,	numeric
comparison	if	possible,	exact	string	comparison	otherwise).	If	fewer
than	two	arguments	are	given,	this	operation	always	returns	a	true
value.

eq	?arg	...?
Returns	whether	each	argument	is	equal	to	the	arguments	on	each
side	of	it	using	exact	string	comparison.	If	fewer	than	two
arguments	are	given,	this	operation	always	returns	a	true	value.

!=	arg	arg
Returns	whether	the	two	arguments	are	not	equal	to	each	other,	in
the	sense	of	the	expr	!=	operator	(i.e.,	numeric	comparison	if
possible,	exact	string	comparison	otherwise).

ne	arg	arg
Returns	whether	the	two	arguments	are	not	equal	to	each	other
using	exact	string	comparison.

<	?arg	...?
Returns	whether	the	arbitrarily-many	arguments	are	ordered,	with
each	argument	after	the	first	having	to	be	strictly	more	than	the	one
preceding	it.	Comparisons	are	performed	preferentially	on	the

numeric	values,	and	are	otherwise	performed	using	UNICODE
string	comparison.	If	fewer	than	two	arguments	are	present,	this
operation	always	returns	a	true	value.	When	the	arguments	are
numeric	but	should	be	compared	as	strings,	the	string	compare
command	should	be	used	instead.

<=	?arg	...?
Returns	whether	the	arbitrarily-many	arguments	are	ordered,	with
each	argument	after	the	first	having	to	be	equal	to	or	more	than	the
one	preceding	it.	Comparisons	are	performed	preferentially	on	the
numeric	values,	and	are	otherwise	performed	using	UNICODE
string	comparison.	If	fewer	than	two	arguments	are	present,	this
operation	always	returns	a	true	value.	When	the	arguments	are
numeric	but	should	be	compared	as	strings,	the	string	compare
command	should	be	used	instead.

>	?arg	...?
Returns	whether	the	arbitrarily-many	arguments	are	ordered,	with
each	argument	after	the	first	having	to	be	strictly	less	than	the	one
preceding	it.	Comparisons	are	performed	preferentially	on	the
numeric	values,	and	are	otherwise	performed	using	UNICODE
string	comparison.	If	fewer	than	two	arguments	are	present,	this
operation	always	returns	a	true	value.	When	the	arguments	are
numeric	but	should	be	compared	as	strings,	the	string	compare
command	should	be	used	instead.

>=	?arg	...?
Returns	whether	the	arbitrarily-many	arguments	are	ordered,	with
each	argument	after	the	first	having	to	be	equal	to	or	less	than	the
one	preceding	it.	Comparisons	are	performed	preferentially	on	the
numeric	values,	and	are	otherwise	performed	using	UNICODE
string	comparison.	If	fewer	than	two	arguments	are	present,	this
operation	always	returns	a	true	value.	When	the	arguments	are
numeric	but	should	be	compared	as	strings,	the	string	compare
command	should	be	used	instead.

BIT-WISE	OPERATORS

The	behaviors	of	the	bit-wise	operator	commands	(all	of	which	only
operate	on	integral	arguments)	are	as	follows:

~	number
Returns	the	bit-wise	negation	of	number.	Number	may	be	an
integer	of	any	size.	Note	that	the	result	of	this	operation	will	always
have	the	opposite	sign	to	the	input	number.

&	?number	...?
Returns	the	bit-wise	AND	of	each	of	the	arbitrarily	many	arguments.
Each	number	must	have	an	integral	value.	If	no	arguments	are
given,	the	result	will	be	minus	one.

|	?number	...?
Returns	the	bit-wise	OR	of	each	of	the	arbitrarily	many	arguments.
Each	number	must	have	an	integral	value.	If	no	arguments	are
given,	the	result	will	be	zero..TP	^	?number	...?	Returns	the	bit-
wise	XOR	of	each	of	the	arbitrarily	many	arguments.	Each	number
must	have	an	integral	value.	If	no	arguments	are	given,	the	result
will	be	zero.

<<	number	number
Returns	the	result	of	bit-wise	shifting	the	first	argument	left	by	the
number	of	bits	specified	in	the	second	argument.	Each	number
must	have	an	integral	value.

>>	number	number
Returns	the	result	of	bit-wise	shifting	the	first	argument	right	by	the
number	of	bits	specified	in	the	second	argument.	Each	number
must	have	an	integral	value.

LIST	OPERATORS

The	behaviors	of	the	list-oriented	operator	commands	are	as	follows:

in	arg	list
Returns	whether	the	value	arg	is	present	in	the	list	list	(according	to
exact	string	comparison	of	elements).

ni	arg	list
Returns	whether	the	value	arg	is	not	present	in	the	list	list
(according	to	exact	string	comparison	of	elements).

EXAMPLES

The	simplest	way	to	use	the	operators	is	often	by	using	namespace
path	to	make	the	commands	available.	This	has	the	advantage	of	not
affecting	the	set	of	commands	defined	by	the	current	namespace.

namespace	path	{::tcl::mathop	::tcl::mathfunc}

#	Compute	the	sum	of	some	numbers

set	sum	[+	1	2	3]

#	Compute	the	average	of	a	list

set	list	{1	2	3	4	5	6}

set	mean	[/	[+	{*}$list]	[double	[llength	$list]]]

#	Test	for	list	membership

set	gotIt	[in	3	$list]

#	Test	to	see	if	a	value	is	within	some	defined	range

set	inRange	[<=	1	$x	5]

#	Test	to	see	if	a	list	is	sorted

set	sorted	[<=	{*}$list]

SEE	ALSO

expr,	mathfunc,	namespace

KEYWORDS

command,	expression,	operator

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	seek

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

seek	-	Change	the	access	position	for	an	open	channel

SYNOPSIS

seek	channelId	offset	?origin?

DESCRIPTION

Changes	the	current	access	position	for	channelId.

ChannelId	must	be	an	identifier	for	an	open	channel	such	as	a	Tcl
standard	channel	(stdin,	stdout,	or	stderr),	the	return	value	from	an
invocation	of	open	or	socket,	or	the	result	of	a	channel	creation
command	provided	by	a	Tcl	extension.

The	offset	and	origin	arguments	specify	the	position	at	which	the	next
read	or	write	will	occur	for	channelId.	Offset	must	be	an	integer	(which
may	be	negative)	and	origin	must	be	one	of	the	following:

start
The	new	access	position	will	be	offset	bytes	from	the	start	of	the
underlying	file	or	device.

current
The	new	access	position	will	be	offset	bytes	from	the	current
access	position;	a	negative	offset	moves	the	access	position
backwards	in	the	underlying	file	or	device.

end
The	new	access	position	will	be	offset	bytes	from	the	end	of	the	file
or	device.	A	negative	offset	places	the	access	position	before	the

end	of	file,	and	a	positive	offset	places	the	access	position	after	the
end	of	file.

The	origin	argument	defaults	to	start.

The	command	flushes	all	buffered	output	for	the	channel	before	the
command	returns,	even	if	the	channel	is	in	nonblocking	mode.	It	also
discards	any	buffered	and	unread	input.	This	command	returns	an
empty	string.	An	error	occurs	if	this	command	is	applied	to	channels
whose	underlying	file	or	device	does	not	support	seeking.

Note	that	offset	values	are	byte	offsets,	not	character	offsets.	Both	seek
and	tell	operate	in	terms	of	bytes,	not	characters,	unlike	read.

EXAMPLES

Read	a	file	twice:

set	f	[open	file.txt]

set	data1	[read	$f]

seek	$f	0

set	data2	[read	$f]

close	$f

#	$data1	==	$data2	if	the	file	wasn't	updated

Read	the	last	10	bytes	from	a	file:

set	f	[open	file.data]

#	This	is	guaranteed	to	work	with	binary	data	but

#	may	fail	with	other	encodings...

fconfigure	$f	-translation	binary

seek	$f	-10	end

set	data	[read	$f	10]

close	$f

SEE	ALSO

file,	open,	close,	gets,	tell,	Tcl_StandardChannels

KEYWORDS

access	position,	file,	seek

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	uplevel

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

uplevel	-	Execute	a	script	in	a	different	stack	frame

SYNOPSIS

uplevel	?level?	arg	?arg	...?

DESCRIPTION

All	of	the	arg	arguments	are	concatenated	as	if	they	had	been	passed
to	concat;	the	result	is	then	evaluated	in	the	variable	context	indicated
by	level.	Uplevel	returns	the	result	of	that	evaluation.

If	level	is	an	integer	then	it	gives	a	distance	(up	the	procedure	calling
stack)	to	move	before	executing	the	command.	If	level	consists	of	#
followed	by	a	number	then	the	number	gives	an	absolute	level	number.
If	level	is	omitted	then	it	defaults	to	1.	Level	cannot	be	defaulted	if	the
first	command	argument	starts	with	a	digit	or	#.

For	example,	suppose	that	procedure	a	was	invoked	from	top-level,	and
that	it	called	b,	and	that	b	called	c.	Suppose	that	c	invokes	the	uplevel
command.	If	level	is	1	or	#2	or	omitted,	then	the	command	will	be
executed	in	the	variable	context	of	b.	If	level	is	2	or	#1	then	the
command	will	be	executed	in	the	variable	context	of	a.	If	level	is	3	or	#0
then	the	command	will	be	executed	at	top-level	(only	global	variables
will	be	visible).

The	uplevel	command	causes	the	invoking	procedure	to	disappear
from	the	procedure	calling	stack	while	the	command	is	being	executed.
In	the	above	example,	suppose	c	invokes	the	command

uplevel	1	{set	x	43;	d}

where	d	is	another	Tcl	procedure.	The	set	command	will	modify	the
variable	x	in	b's	context,	and	d	will	execute	at	level	3,	as	if	called	from
b.	If	it	in	turn	executes	the	command

uplevel	{set	x	42}

then	the	set	command	will	modify	the	same	variable	x	in	b's	context:
the	procedure	c	does	not	appear	to	be	on	the	call	stack	when	d	is
executing.	The	info	level	command	may	be	used	to	obtain	the	level	of
the	current	procedure.

Uplevel	makes	it	possible	to	implement	new	control	constructs	as	Tcl
procedures	(for	example,	uplevel	could	be	used	to	implement	the	while
construct	as	a	Tcl	procedure).

The	namespace	eval	and	apply	commands	offer	other	ways	(besides
procedure	calls)	that	the	Tcl	naming	context	can	change.	They	add	a
call	frame	to	the	stack	to	represent	the	namespace	context.	This	means
each	namespace	eval	command	counts	as	another	call	level	for
uplevel	and	upvar	commands.	For	example,	info	level	1	will	return	a
list	describing	a	command	that	is	either	the	outermost	procedure	call	or
the	outermost	namespace	eval	command.	Also,	uplevel	#0	evaluates
a	script	at	top-level	in	the	outermost	namespace	(the	global
namespace).

EXAMPLE

As	stated	above,	the	uplevel	command	is	useful	for	creating	new
control	constructs.	This	example	shows	how	(without	error	handling)	it
can	be	used	to	create	a	do	command	that	is	the	counterpart	of	while
except	for	always	performing	the	test	after	running	the	loop	body:

proc	do	{body	while	condition}	{

				if	{$while	ne	"while"}	{

								error	"required	word	missing"

				}

				set	conditionCmd	[list	expr	$condition]

				while	{1}	{

								uplevel	1	$body

								if	{![uplevel	1	$conditionCmd]}	{

												break

								}

				}

}

SEE	ALSO

apply,	namespace,	upvar

KEYWORDS

context,	level,	namespace,	stack	frame,	variables

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1997	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	chan

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
chan	-	Read,	write	and	manipulate	channels

SYNOPSIS
DESCRIPTION

chan	blocked	channelId
chan	close	channelId
chan	configure	channelId	?optionName?	?value?	?
optionName	value?...

-blocking	boolean
-buffering	newValue
-buffersize	newSize
-encoding	name
-eofchar	char
-eofchar	{inChar	outChar}
-translation	mode
-translation	{inMode	outMode}

auto
binary
cr
crlf
lf

chan	copy	inputChan	outputChan	?-size	size?	?-command
callback?
chan	create	mode	cmdPrefix
chan	eof	channelId
chan	event	channelId	event	?script?
chan	flush	channelId
chan	gets	channelId	?varName?
chan	names	?pattern?
chan	pending	mode	channelId
chan	postevent	channelId	eventSpec

chan	puts	?-nonewline?	?channelId?	string
chan	read	channelId	?numChars?
chan	read	?-nonewline?	channelId

chan	read	channelId	numChars
chan	read	channelId

chan	seek	channelId	offset	?origin?
start
current
end

chan	tell	channelId
chan	truncate	channelId	?length?

EXAMPLE
SEE	ALSO
KEYWORDS

NAME

chan	-	Read,	write	and	manipulate	channels

SYNOPSIS

chan	option	?arg	arg	...?

DESCRIPTION

This	command	provides	several	operations	for	reading	from,	writing	to
and	otherwise	manipulating	open	channels	(such	as	have	been	created
with	the	open	and	socket	commands,	or	the	default	named	channels
stdin,	stdout	or	stderr	which	correspond	to	the	process's	standard
input,	output	and	error	streams	respectively).	Option	indicates	what	to
do	with	the	channel;	any	unique	abbreviation	for	option	is	acceptable.
Valid	options	are:

chan	blocked	channelId
This	tests	whether	the	last	input	operation	on	the	channel	called
channelId	failed	because	it	would	have	otherwise	caused	the
process	to	block,	and	returns	1	if	that	was	the	case.	It	returns	0
otherwise.	Note	that	this	only	ever	returns	1	when	the	channel	has

been	configured	to	be	non-blocking;	all	Tcl	channels	have	blocking
turned	on	by	default.

chan	close	channelId
Close	and	destroy	the	channel	called	channelId.	Note	that	this
deletes	all	existing	file-events	registered	on	the	channel.

As	part	of	closing	the	channel,	all	buffered	output	is	flushed	to	the
channel's	output	device,	any	buffered	input	is	discarded,	the
underlying	operating	system	resource	is	closed	and	channelId
becomes	unavailable	for	future	use.

If	the	channel	is	blocking,	the	command	does	not	return	until	all
output	is	flushed.	If	the	channel	is	nonblocking	and	there	is
unflushed	output,	the	channel	remains	open	and	the	command
returns	immediately;	output	will	be	flushed	in	the	background	and
the	channel	will	be	closed	when	all	the	flushing	is	complete.

If	channelId	is	a	blocking	channel	for	a	command	pipeline	then
chan	close	waits	for	the	child	processes	to	complete.

If	the	channel	is	shared	between	interpreters,	then	chan	close
makes	channelId	unavailable	in	the	invoking	interpreter	but	has	no
other	effect	until	all	of	the	sharing	interpreters	have	closed	the
channel.	When	the	last	interpreter	in	which	the	channel	is
registered	invokes	chan	close	(or	close),	the	cleanup	actions
described	above	occur.	See	the	interp	command	for	a	description
of	channel	sharing.

Channels	are	automatically	closed	when	an	interpreter	is	destroyed
and	when	the	process	exits.	Channels	are	switched	to	blocking
mode,	to	ensure	that	all	output	is	correctly	flushed	before	the
process	exits.

The	command	returns	an	empty	string,	and	may	generate	an	error
if	an	error	occurs	while	flushing	output.	If	a	command	in	a
command	pipeline	created	with	open	returns	an	error,	chan	close
generates	an	error	(similar	to	the	exec	command.)

chan	configure	channelId	?optionName?	?value?	?optionName
value?...

Query	or	set	the	configuration	options	of	the	channel	named
channelId.

If	no	optionName	or	value	arguments	are	supplied,	the	command
returns	a	list	containing	alternating	option	names	and	values	for	the
channel.	If	optionName	is	supplied	but	no	value	then	the	command
returns	the	current	value	of	the	given	option.	If	one	or	more	pairs	of
optionName	and	value	are	supplied,	the	command	sets	each	of	the
named	options	to	the	corresponding	value;	in	this	case	the	return
value	is	an	empty	string.

The	options	described	below	are	supported	for	all	channels.	In
addition,	each	channel	type	may	add	options	that	only	it	supports.
See	the	manual	entry	for	the	command	that	creates	each	type	of
channels	for	the	options	that	that	specific	type	of	channel	supports.
For	example,	see	the	manual	entry	for	the	socket	command	for	its
additional	options.

-blocking	boolean
The	-blocking	option	determines	whether	I/O	operations	on
the	channel	can	cause	the	process	to	block	indefinitely.	The
value	of	the	option	must	be	a	proper	boolean	value.	Channels
are	normally	in	blocking	mode;	if	a	channel	is	placed	into
nonblocking	mode	it	will	affect	the	operation	of	the	chan	gets,
chan	read,	chan	puts,	chan	flush,	and	chan	close
commands;	see	the	documentation	for	those	commands	for
details.	For	nonblocking	mode	to	work	correctly,	the	application
must	be	using	the	Tcl	event	loop	(e.g.	by	calling
Tcl_DoOneEvent	or	invoking	the	vwait	command).

-buffering	newValue
If	newValue	is	full	then	the	I/O	system	will	buffer	output	until	its
internal	buffer	is	full	or	until	the	chan	flush	command	is
invoked.	If	newValue	is	line,	then	the	I/O	system	will
automatically	flush	output	for	the	channel	whenever	a	newline
character	is	output.	If	newValue	is	none,	the	I/O	system	will

flush	automatically	after	every	output	operation.	The	default	is
for	-buffering	to	be	set	to	full	except	for	channels	that	connect
to	terminal-like	devices;	for	these	channels	the	initial	setting	is
line.	Additionally,	stdin	and	stdout	are	initially	set	to	line,	and
stderr	is	set	to	none.

-buffersize	newSize
Newvalue	must	be	an	integer;	its	value	is	used	to	set	the	size
of	buffers,	in	bytes,	subsequently	allocated	for	this	channel	to
store	input	or	output.	Newvalue	must	be	a	number	of	no	more
than	one	million,	allowing	buffers	of	up	to	one	million	bytes	in
size.

-encoding	name
This	option	is	used	to	specify	the	encoding	of	the	channel	as
one	of	the	named	encodings	returned	by	encoding	names	or
the	special	value	binary,	so	that	the	data	can	be	converted	to
and	from	Unicode	for	use	in	Tcl.	For	instance,	in	order	for	Tcl	to
read	characters	from	a	Japanese	file	in	shiftjis	and	properly
process	and	display	the	contents,	the	encoding	would	be	set	to
shiftjis.	Thereafter,	when	reading	from	the	channel,	the	bytes
in	the	Japanese	file	would	be	converted	to	Unicode	as	they	are
read.	Writing	is	also	supported	-	as	Tcl	strings	are	written	to	the
channel	they	will	automatically	be	converted	to	the	specified
encoding	on	output.

If	a	file	contains	pure	binary	data	(for	instance,	a	JPEG	image),
the	encoding	for	the	channel	should	be	configured	to	be
binary.	Tcl	will	then	assign	no	interpretation	to	the	data	in	the
file	and	simply	read	or	write	raw	bytes.	The	Tcl	binary
command	can	be	used	to	manipulate	this	byte-oriented	data.	It
is	usually	better	to	set	the	-translation	option	to	binary	when
you	want	to	transfer	binary	data,	as	this	turns	off	the	other
automatic	interpretations	of	the	bytes	in	the	stream	as	well.

The	default	encoding	for	newly	opened	channels	is	the	same
platform-	and	locale-dependent	system	encoding	used	for
interfacing	with	the	operating	system,	as	returned	by	encoding

system.

-eofchar	char

-eofchar	{inChar	outChar}
This	option	supports	DOS	file	systems	that	use	Control-z
(\x1a)	as	an	end	of	file	marker.	If	char	is	not	an	empty	string,
then	this	character	signals	end-of-file	when	it	is	encountered
during	input.	For	output,	the	end-of-file	character	is	output
when	the	channel	is	closed.	If	char	is	the	empty	string,	then
there	is	no	special	end	of	file	character	marker.	For	read-write
channels,	a	two-element	list	specifies	the	end	of	file	marker	for
input	and	output,	respectively.	As	a	convenience,	when	setting
the	end-of-file	character	for	a	read-write	channel	you	can
specify	a	single	value	that	will	apply	to	both	reading	and
writing.	When	querying	the	end-of-file	character	of	a	read-write
channel,	a	two-element	list	will	always	be	returned.	The	default
value	for	-eofchar	is	the	empty	string	in	all	cases	except	for
files	under	Windows.	In	that	case	the	-eofchar	is	Control-z
(\x1a)	for	reading	and	the	empty	string	for	writing.	The
acceptable	range	for	-eofchar	values	is	\x01	-	\x7f;	attempting
to	set	-eofchar	to	a	value	outside	of	this	range	will	generate	an
error.

-translation	mode

-translation	{inMode	outMode}
In	Tcl	scripts	the	end	of	a	line	is	always	represented	using	a
single	newline	character	(\n).	However,	in	actual	files	and
devices	the	end	of	a	line	may	be	represented	differently	on
different	platforms,	or	even	for	different	devices	on	the	same
platform.	For	example,	under	UNIX	newlines	are	used	in	files,
whereas	carriage-return-linefeed	sequences	are	normally	used
in	network	connections.	On	input	(i.e.,	with	chan	gets	and
chan	read)	the	Tcl	I/O	system	automatically	translates	the
external	end-of-line	representation	into	newline	characters.
Upon	output	(i.e.,	with	chan	puts),	the	I/O	system	translates
newlines	to	the	external	end-of-line	representation.	The	default

translation	mode,	auto,	handles	all	the	common	cases
automatically,	but	the	-translation	option	provides	explicit
control	over	the	end	of	line	translations.

The	value	associated	with	-translation	is	a	single	item	for
read-only	and	write-only	channels.	The	value	is	a	two-element
list	for	read-write	channels;	the	read	translation	mode	is	the
first	element	of	the	list,	and	the	write	translation	mode	is	the
second	element.	As	a	convenience,	when	setting	the
translation	mode	for	a	read-write	channel	you	can	specify	a
single	value	that	will	apply	to	both	reading	and	writing.	When
querying	the	translation	mode	of	a	read-write	channel,	a	two-
element	list	will	always	be	returned.	The	following	values	are
currently	supported:

auto
As	the	input	translation	mode,	auto	treats	any	of	newline
(lf),	carriage	return	(cr),	or	carriage	return	followed	by	a
newline	(crlf)	as	the	end	of	line	representation.	The	end	of
line	representation	can	even	change	from	line-to-line,	and
all	cases	are	translated	to	a	newline.	As	the	output
translation	mode,	auto	chooses	a	platform	specific
representation;	for	sockets	on	all	platforms	Tcl	chooses
crlf,	for	all	Unix	flavors,	it	chooses	lf,	and	for	the	various
flavors	of	Windows	it	chooses	crlf.	The	default	setting	for	-
translation	is	auto	for	both	input	and	output.

binary
No	end-of-line	translations	are	performed.	This	is	nearly
identical	to	lf	mode,	except	that	in	addition	binary	mode
also	sets	the	end-of-file	character	to	the	empty	string
(which	disables	it)	and	sets	the	encoding	to	binary	(which
disables	encoding	filtering).	See	the	description	of	-
eofchar	and	-encoding	for	more	information.

cr
The	end	of	a	line	in	the	underlying	file	or	device	is
represented	by	a	single	carriage	return	character.	As	the

input	translation	mode,	cr	mode	converts	carriage	returns
to	newline	characters.	As	the	output	translation	mode,	cr
mode	translates	newline	characters	to	carriage	returns.

crlf
The	end	of	a	line	in	the	underlying	file	or	device	is
represented	by	a	carriage	return	character	followed	by	a
linefeed	character.	As	the	input	translation	mode,	crlf
mode	converts	carriage-return-linefeed	sequences	to
newline	characters.	As	the	output	translation	mode,	crlf
mode	translates	newline	characters	to	carriage-return-
linefeed	sequences.	This	mode	is	typically	used	on
Windows	platforms	and	for	network	connections.

lf
The	end	of	a	line	in	the	underlying	file	or	device	is
represented	by	a	single	newline	(linefeed)	character.	In
this	mode	no	translations	occur	during	either	input	or
output.	This	mode	is	typically	used	on	UNIX	platforms.

chan	copy	inputChan	outputChan	?-size	size?	?-command	callback?
Copy	data	from	the	channel	inputChan,	which	must	have	been
opened	for	reading,	to	the	channel	outputChan,	which	must	have
been	opened	for	writing.	The	chan	copy	command	leverages	the
buffering	in	the	Tcl	I/O	system	to	avoid	extra	copies	and	to	avoid
buffering	too	much	data	in	main	memory	when	copying	large	files
to	slow	destinations	like	network	sockets.

The	chan	copy	command	transfers	data	from	inputChan	until	end
of	file	or	size	bytes	have	been	transferred.	If	no	-size	argument	is
given,	then	the	copy	goes	until	end	of	file.	All	the	data	read	from
inputChan	is	copied	to	outputChan.	Without	the	-command	option,
chan	copy	blocks	until	the	copy	is	complete	and	returns	the
number	of	bytes	written	to	outputChan.

The	-command	argument	makes	chan	copy	work	in	the
background.	In	this	case	it	returns	immediately	and	the	callback	is
invoked	later	when	the	copy	completes.	The	callback	is	called	with

one	or	two	additional	arguments	that	indicates	how	many	bytes
were	written	to	outputChan.	If	an	error	occurred	during	the
background	copy,	the	second	argument	is	the	error	string
associated	with	the	error.	With	a	background	copy,	it	is	not
necessary	to	put	inputChan	or	outputChan	into	non-blocking	mode;
the	chan	copy	command	takes	care	of	that	automatically.
However,	it	is	necessary	to	enter	the	event	loop	by	using	the	vwait
command	or	by	using	Tk.

You	are	not	allowed	to	do	other	I/O	operations	with	inputChan	or
outputChan	during	a	background	chan	copy.	If	either	inputChan	or
outputChan	get	closed	while	the	copy	is	in	progress,	the	current
copy	is	stopped	and	the	command	callback	is	not	made.	If
inputChan	is	closed,	then	all	data	already	queued	for	outputChan	is
written	out.

Note	that	inputChan	can	become	readable	during	a	background
copy.	You	should	turn	off	any	chan	event	or	fileevent	handlers
during	a	background	copy	so	those	handlers	do	not	interfere	with
the	copy.	Any	I/O	attempted	by	a	chan	event	or	fileevent	handler
will	get	a	“channel	busy”	error.

Chan	copy	translates	end-of-line	sequences	in	inputChan	and
outputChan	according	to	the	-translation	option	for	these	channels
(see	chan	configure	above).	The	translations	mean	that	the
number	of	bytes	read	from	inputChan	can	be	different	than	the
number	of	bytes	written	to	outputChan.	Only	the	number	of	bytes
written	to	outputChan	is	reported,	either	as	the	return	value	of	a
synchronous	chan	copy	or	as	the	argument	to	the	callback	for	an
asynchronous	chan	copy.

Chan	copy	obeys	the	encodings	and	character	translations
configured	for	the	channels.	This	means	that	the	incoming
characters	are	converted	internally	first	UTF-8	and	then	into	the
encoding	of	the	channel	chan	copy	writes	to	(see	chan	configure
above	for	details	on	the	-encoding	and	-translation	options).	No
conversion	is	done	if	both	channels	are	set	to	encoding	binary	and
have	matching	translations.	If	only	the	output	channel	is	set	to

encoding	binary	the	system	will	write	the	internal	UTF-8
representation	of	the	incoming	characters.	If	only	the	input	channel
is	set	to	encoding	binary	the	system	will	assume	that	the	incoming
bytes	are	valid	UTF-8	characters	and	convert	them	according	to	the
output	encoding.	The	behaviour	of	the	system	for	bytes	which	are
not	valid	UTF-8	characters	is	undefined	in	this	case.

chan	create	mode	cmdPrefix
This	subcommand	creates	a	new	script	level	channel	using	the
command	prefix	cmdPrefix	as	its	handler.	Any	such	channel	is
called	a	reflected	channel.	The	specified	command	prefix,
cmdPrefix,	must	be	a	non-empty	list,	and	should	provide	the	API
described	in	the	reflectedchan	manual	page.	The	handle	of	the
new	channel	is	returned	as	the	result	of	the	chan	create	command,
and	the	channel	is	open.	Use	either	close	or	chan	close	to	remove
the	channel.

The	argument	mode	specifies	if	the	new	channel	is	opened	for
reading,	writing,	or	both.	It	has	to	be	a	list	containing	any	of	the
strings	“read”	or	“write”.	The	list	must	have	at	least	one	element,
as	a	channel	you	can	neither	write	to	nor	read	from	makes	no
sense.	The	handler	command	for	the	new	channel	must	support
the	chosen	mode,	or	an	error	is	thrown.

The	command	prefix	is	executed	in	the	global	namespace,	at	the
top	of	call	stack,	following	the	appending	of	arguments	as
described	in	the	reflectedchan	manual	page.	Command	resolution
happens	at	the	time	of	the	call.	Renaming	the	command,	or
destroying	it	means	that	the	next	call	of	a	handler	method	may	fail,
causing	the	channel	command	invoking	the	handler	to	fail	as	well.
Depending	on	the	subcommand	being	invoked,	the	error	message
may	not	be	able	to	explain	the	reason	for	that	failure.

Every	channel	created	with	this	subcommand	knows	which
interpreter	it	was	created	in,	and	only	ever	executes	its	handler
command	in	that	interpreter,	even	if	the	channel	was	shared	with
and/or	was	moved	into	a	different	interpreter.	Each	reflected
channel	also	knows	the	thread	it	was	created	in,	and	executes	its

handler	command	only	in	that	thread,	even	if	the	channel	was
moved	into	a	different	thread.	To	this	end	all	invocations	of	the
handler	are	forwarded	to	the	original	thread	by	posting	special
events	to	it.	This	means	that	the	original	thread	(i.e.	the	thread	that
executed	the	chan	create	command)	must	have	an	active	event
loop,	i.e.	it	must	be	able	to	process	such	events.	Otherwise	the
thread	sending	them	will	block	indefinitely.	Deadlock	may	occur.

Note	that	this	permits	the	creation	of	a	channel	whose	two
endpoints	live	in	two	different	threads,	providing	a	stream-oriented
bridge	between	these	threads.	In	other	words,	we	can	provide	a
way	for	regular	stream	communication	between	threads	instead	of
having	to	send	commands.

When	a	thread	or	interpreter	is	deleted,	all	channels	created	with
this	subcommand	and	using	this	thread/interpreter	as	their
computing	base	are	deleted	as	well,	in	all	interpreters	they	have
been	shared	with	or	moved	into,	and	in	whatever	thread	they	have
been	transfered	to.	While	this	pulls	the	rug	out	under	the	other
thread(s)	and/or	interpreter(s),	this	cannot	be	avoided.	Trying	to
use	such	a	channel	will	cause	the	generation	of	a	regular	error
about	unknown	channel	handles.

This	subcommand	is	safe	and	made	accessible	to	safe
interpreters.	While	it	arranges	for	the	execution	of	arbitrary	Tcl	code
the	system	also	makes	sure	that	the	code	is	always	executed
within	the	safe	interpreter.

chan	eof	channelId
Test	whether	the	last	input	operation	on	the	channel	called
channelId	failed	because	the	end	of	the	data	stream	was	reached,
returning	1	if	end-of-file	was	reached,	and	0	otherwise.

chan	event	channelId	event	?script?
Arrange	for	the	Tcl	script	script	to	be	installed	as	a	file	event
handler	to	be	called	whenever	the	channel	called	channelId	enters
the	state	described	by	event	(which	must	be	either	readable	or
writable);	only	one	such	handler	may	be	installed	per	event	per

channel	at	a	time.	If	script	is	the	empty	string,	the	current	handler	is
deleted	(this	also	happens	if	the	channel	is	closed	or	the	interpreter
deleted).	If	script	is	omitted,	the	currently	installed	script	is	returned
(or	an	empty	string	if	no	such	handler	is	installed).	The	callback	is
only	performed	if	the	event	loop	is	being	serviced	(e.g.	via	vwait	or
update).

A	file	event	handler	is	a	binding	between	a	channel	and	a	script,
such	that	the	script	is	evaluated	whenever	the	channel	becomes
readable	or	writable.	File	event	handlers	are	most	commonly	used
to	allow	data	to	be	received	from	another	process	on	an	event-
driven	basis,	so	that	the	receiver	can	continue	to	interact	with	the
user	or	with	other	channels	while	waiting	for	the	data	to	arrive.	If	an
application	invokes	chan	gets	or	chan	read	on	a	blocking	channel
when	there	is	no	input	data	available,	the	process	will	block;	until
the	input	data	arrives,	it	will	not	be	able	to	service	other	events,	so
it	will	appear	to	the	user	to	“freeze	up”.	With	chan	event,	the
process	can	tell	when	data	is	present	and	only	invoke	chan	gets	or
chan	read	when	they	will	not	block.

A	channel	is	considered	to	be	readable	if	there	is	unread	data
available	on	the	underlying	device.	A	channel	is	also	considered	to
be	readable	if	there	is	unread	data	in	an	input	buffer,	except	in	the
special	case	where	the	most	recent	attempt	to	read	from	the
channel	was	a	chan	gets	call	that	could	not	find	a	complete	line	in
the	input	buffer.	This	feature	allows	a	file	to	be	read	a	line	at	a	time
in	nonblocking	mode	using	events.	A	channel	is	also	considered	to
be	readable	if	an	end	of	file	or	error	condition	is	present	on	the
underlying	file	or	device.	It	is	important	for	script	to	check	for	these
conditions	and	handle	them	appropriately;	for	example,	if	there	is
no	special	check	for	end	of	file,	an	infinite	loop	may	occur	where
script	reads	no	data,	returns,	and	is	immediately	invoked	again.

A	channel	is	considered	to	be	writable	if	at	least	one	byte	of	data
can	be	written	to	the	underlying	file	or	device	without	blocking,	or	if
an	error	condition	is	present	on	the	underlying	file	or	device.	Note
that	client	sockets	opened	in	asynchronous	mode	become	writable
when	they	become	connected	or	if	the	connection	fails.

Event-driven	I/O	works	best	for	channels	that	have	been	placed
into	nonblocking	mode	with	the	chan	configure	command.	In
blocking	mode,	a	chan	puts	command	may	block	if	you	give	it
more	data	than	the	underlying	file	or	device	can	accept,	and	a
chan	gets	or	chan	read	command	will	block	if	you	attempt	to	read
more	data	than	is	ready;	no	events	will	be	processed	while	the
commands	block.	In	nonblocking	mode	chan	puts,	chan	read,	and
chan	gets	never	block.

The	script	for	a	file	event	is	executed	at	global	level	(outside	the
context	of	any	Tcl	procedure)	in	the	interpreter	in	which	the	chan
event	command	was	invoked.	If	an	error	occurs	while	executing
the	script	then	the	command	registered	with	interp	bgerror	is	used
to	report	the	error.	In	addition,	the	file	event	handler	is	deleted	if	it
ever	returns	an	error;	this	is	done	in	order	to	prevent	infinite	loops
due	to	buggy	handlers.

chan	flush	channelId
Ensures	that	all	pending	output	for	the	channel	called	channelId	is
written.

If	the	channel	is	in	blocking	mode	the	command	does	not	return
until	all	the	buffered	output	has	been	flushed	to	the	channel.	If	the
channel	is	in	nonblocking	mode,	the	command	may	return	before
all	buffered	output	has	been	flushed;	the	remainder	will	be	flushed
in	the	background	as	fast	as	the	underlying	file	or	device	is	able	to
absorb	it.

chan	gets	channelId	?varName?
Reads	the	next	line	from	the	channel	called	channelId.	If	varName
is	not	specified,	the	result	of	the	command	will	be	the	line	that	has
been	read	(without	a	trailing	newline	character)	or	an	empty	string
upon	end-of-file	or,	in	non-blocking	mode,	if	the	data	available	is
exhausted.	If	varName	is	specified,	the	line	that	has	been	read	will
be	written	to	the	variable	called	varName	and	result	will	be	the
number	of	characters	that	have	been	read	or	-1	if	end-of-file	was
reached	or,	in	non-blocking	mode,	if	the	data	available	is

exhausted.

If	an	end-of-file	occurs	while	part	way	through	reading	a	line,	the
partial	line	will	be	returned	(or	written	into	varName).	When
varName	is	not	specified,	the	end-of-file	case	can	be	distinguished
from	an	empty	line	using	the	chan	eof	command,	and	the	partial-
line-but-nonblocking	case	can	be	distinguished	with	the	chan
blocked	command.

chan	names	?pattern?
Produces	a	list	of	all	channel	names.	If	pattern	is	specified,	only
those	channel	names	that	match	it	(according	to	the	rules	of	string
match)	will	be	returned.

chan	pending	mode	channelId
Depending	on	whether	mode	is	input	or	output,	returns	the
number	of	bytes	of	input	or	output	(respectively)	currently	buffered
internally	for	channelId	(especially	useful	in	a	readable	event
callback	to	impose	application-specific	limits	on	input	line	lengths	to
avoid	a	potential	denial-of-service	attack	where	a	hostile	user	crafts
an	extremely	long	line	that	exceeds	the	available	memory	to	buffer
it).	Returns	-1	if	the	channel	was	not	opened	for	the	mode	in
question.

chan	postevent	channelId	eventSpec
This	subcommand	is	used	by	command	handlers	specified	with
chan	create.	It	notifies	the	channel	represented	by	the	handle
channelId	that	the	event(s)	listed	in	the	eventSpec	have	occurred.
The	argument	has	to	be	a	list	containing	any	of	the	strings	read
and	write.	The	list	must	contain	at	least	one	element	as	it	does	not
make	sense	to	invoke	the	command	if	there	are	no	events	to	post.

Note	that	this	subcommand	can	only	be	used	with	channel	handles
that	were	created/opened	by	chan	create.	All	other	channels	will
cause	this	subcommand	to	report	an	error.

As	only	the	Tcl	level	of	a	channel,	i.e.	its	command	handler,	should
post	events	to	it	we	also	restrict	the	usage	of	this	command	to	the

interpreter	that	created	the	channel.	In	other	words,	posting	events
to	a	reflected	channel	from	an	interpreter	that	does	not	contain	it's
implementation	is	not	allowed.	Attempting	to	post	an	event	from
any	other	interpreter	will	cause	this	subcommand	to	report	an	error.

Another	restriction	is	that	it	is	not	possible	to	post	events	that	the
I/O	core	has	not	registered	an	interest	in.	Trying	to	do	so	will	cause
the	method	to	throw	an	error.	See	the	command	handler	method
watch	described	in	reflectedchan,	the	document	specifying	the
API	of	command	handlers	for	reflected	channels.

This	command	is	safe	and	made	accessible	to	safe	interpreters.	It
can	trigger	the	execution	of	chan	event	handlers,	whether	in	the
current	interpreter	or	in	other	interpreters	or	other	threads,	even
where	the	event	is	posted	from	a	safe	interpreter	and	listened	for
by	a	trusted	interpreter.	Chan	event	handlers	are	always	executed
in	the	interpreter	that	set	them	up.

chan	puts	?-nonewline?	?channelId?	string
Writes	string	to	the	channel	named	channelId	followed	by	a	newline
character.	A	trailing	newline	character	is	written	unless	the	optional
flag	-nonewline	is	given.	If	channelId	is	omitted,	the	string	is
written	to	the	standard	output	channel,	stdout.

Newline	characters	in	the	output	are	translated	by	chan	puts	to
platform-specific	end-of-line	sequences	according	to	the	currently
configured	value	of	the	-translation	option	for	the	channel	(for
example,	on	PCs	newlines	are	normally	replaced	with	carriage-
return-linefeed	sequences;	see	chan	configure	above	for	details).

Tcl	buffers	output	internally,	so	characters	written	with	chan	puts
may	not	appear	immediately	on	the	output	file	or	device;	Tcl	will
normally	delay	output	until	the	buffer	is	full	or	the	channel	is	closed.
You	can	force	output	to	appear	immediately	with	the	chan	flush
command.

When	the	output	buffer	fills	up,	the	chan	puts	command	will
normally	block	until	all	the	buffered	data	has	been	accepted	for

output	by	the	operating	system.	If	channelId	is	in	nonblocking	mode
then	the	chan	puts	command	will	not	block	even	if	the	operating
system	cannot	accept	the	data.	Instead,	Tcl	continues	to	buffer	the
data	and	writes	it	in	the	background	as	fast	as	the	underlying	file	or
device	can	accept	it.	The	application	must	use	the	Tcl	event	loop
for	nonblocking	output	to	work;	otherwise	Tcl	never	finds	out	that
the	file	or	device	is	ready	for	more	output	data.	It	is	possible	for	an
arbitrarily	large	amount	of	data	to	be	buffered	for	a	channel	in
nonblocking	mode,	which	could	consume	a	large	amount	of
memory.	To	avoid	wasting	memory,	nonblocking	I/O	should
normally	be	used	in	an	event-driven	fashion	with	the	chan	event
command	(do	not	invoke	chan	puts	unless	you	have	recently	been
notified	via	a	file	event	that	the	channel	is	ready	for	more	output
data).

chan	read	channelId	?numChars?

chan	read	?-nonewline?	channelId
In	the	first	form,	the	result	will	be	the	next	numChars	characters
read	from	the	channel	named	channelId;	if	numChars	is	omitted,	all
characters	up	to	the	point	when	the	channel	would	signal	a	failure
(whether	an	end-of-file,	blocked	or	other	error	condition)	are	read.
In	the	second	form	(i.e.	when	numChars	has	been	omitted)	the	flag
-nonewline	may	be	given	to	indicate	that	any	trailing	newline	in	the
string	that	has	been	read	should	be	trimmed.

If	channelId	is	in	nonblocking	mode,	chan	read	may	not	read	as
many	characters	as	requested:	once	all	available	input	has	been
read,	the	command	will	return	the	data	that	is	available	rather	than
blocking	for	more	input.	If	the	channel	is	configured	to	use	a	multi-
byte	encoding,	then	there	may	actually	be	some	bytes	remaining	in
the	internal	buffers	that	do	not	form	a	complete	character.	These
bytes	will	not	be	returned	until	a	complete	character	is	available	or
end-of-file	is	reached.	The	-nonewline	switch	is	ignored	if	the
command	returns	before	reaching	the	end	of	the	file.

Chan	read	translates	end-of-line	sequences	in	the	input	into
newline	characters	according	to	the	-translation	option	for	the

channel	(see	chan	configure	above	for	a	discussion	on	the	ways
in	which	chan	configure	will	alter	input).

When	reading	from	a	serial	port,	most	applications	should
configure	the	serial	port	channel	to	be	nonblocking,	like	this:

chan	configure	channelId	-blocking	0.

Then	chan	read	behaves	much	like	described	above.	Note	that
most	serial	ports	are	comparatively	slow;	it	is	entirely	possible	to
get	a	readable	event	for	each	character	read	from	them.	Care	must
be	taken	when	using	chan	read	on	blocking	serial	ports:

chan	read	channelId	numChars
In	this	form	chan	read	blocks	until	numChars	have	been
received	from	the	serial	port.

chan	read	channelId
In	this	form	chan	read	blocks	until	the	reception	of	the	end-of-
file	character,	see	chan	configure	-eofchar.	If	there	no	end-
of-file	character	has	been	configured	for	the	channel,	then
chan	read	will	block	forever.

chan	seek	channelId	offset	?origin?
Sets	the	current	access	position	within	the	underlying	data	stream
for	the	channel	named	channelId	to	be	offset	bytes	relative	to
origin.	Offset	must	be	an	integer	(which	may	be	negative)	and
origin	must	be	one	of	the	following:

start
The	new	access	position	will	be	offset	bytes	from	the	start	of
the	underlying	file	or	device.

current
The	new	access	position	will	be	offset	bytes	from	the	current
access	position;	a	negative	offset	moves	the	access	position
backwards	in	the	underlying	file	or	device.

end
The	new	access	position	will	be	offset	bytes	from	the	end	of
the	file	or	device.	A	negative	offset	places	the	access	position
before	the	end	of	file,	and	a	positive	offset	places	the	access
position	after	the	end	of	file.

The	origin	argument	defaults	to	start.

Chan	seek	flushes	all	buffered	output	for	the	channel	before
the	command	returns,	even	if	the	channel	is	in	nonblocking
mode.	It	also	discards	any	buffered	and	unread	input.	This
command	returns	an	empty	string.	An	error	occurs	if	this
command	is	applied	to	channels	whose	underlying	file	or
device	does	not	support	seeking.

Note	that	offset	values	are	byte	offsets,	not	character	offsets.
Both	chan	seek	and	chan	tell	operate	in	terms	of	bytes,	not
characters,	unlike	chan	read.

chan	tell	channelId
Returns	a	number	giving	the	current	access	position	within	the
underlying	data	stream	for	the	channel	named	channelId.	This
value	returned	is	a	byte	offset	that	can	be	passed	to	chan	seek	in
order	to	set	the	channel	to	a	particular	position.	Note	that	this	value
is	in	terms	of	bytes,	not	characters	like	chan	read.	The	value
returned	is	-1	for	channels	that	do	not	support	seeking.

chan	truncate	channelId	?length?
Sets	the	byte	length	of	the	underlying	data	stream	for	the	channel
named	channelId	to	be	length	(or	to	the	current	byte	offset	within
the	underlying	data	stream	if	length	is	omitted).	The	channel	is
flushed	before	truncation.

EXAMPLE

This	opens	a	file	using	a	known	encoding	(CP1252,	a	very	common
encoding	on	Windows),	searches	for	a	string,	rewrites	that	part,	and
truncates	the	file	after	a	further	two	lines.

set	f	[open	somefile.txt	r+]

chan	configure	$f	-encoding	cp1252

set	offset	0

#	Search	for	string	"FOOBAR"	in	the	file

while	{[chan	gets	$f	line]	>=	0}	{

			set	idx	[string	first	FOOBAR	$line]

			if	{$idx	>	-1}	{

						#	Found	it;	rewrite	line

						chan	seek	$f	[expr	{$offset	+	$idx}]

						chan	puts	-nonewline	$f	BARFOO

						#	Skip	to	end	of	following	line,	and	truncate

						chan	gets	$f

						chan	gets	$f

						chan	truncate	$f

						#	Stop	searching	the	file	now

						break

			}

			#	Save	offset	of	start	of	next	line	for	later

			set	offset	[chan	tell	$f]

}

chan	close	$f

SEE	ALSO

close,	eof,	fblocked,	fconfigure,	fcopy,	file,	fileevent,	flush,	gets,
open,	puts,	read,	seek,	socket,	tell,	refchan

KEYWORDS

channel,	input,	output,	events,	offset

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	2005-2006	Donal	K.	Fellows

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	glob

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
glob	-	Return	names	of	files	that	match	patterns

SYNOPSIS
DESCRIPTION

-directory	directory
-join
-nocomplain
-path	pathPrefix
-tails
-types	typeList
--
?
*
[chars]
\x
{a,b,...}

PORTABILITY	ISSUES
EXAMPLES
SEE	ALSO
KEYWORDS

NAME

glob	-	Return	names	of	files	that	match	patterns

SYNOPSIS

glob	?switches?	pattern	?pattern	...?

DESCRIPTION

This	command	performs	file	name	“globbing”	in	a	fashion	similar	to	the

csh	shell.	It	returns	a	list	of	the	files	whose	names	match	any	of	the
pattern	arguments.	No	particular	order	is	guaranteed	in	the	list,	so	if	a
sorted	list	is	required	the	caller	should	use	lsort.

If	the	initial	arguments	to	glob	start	with	-	then	they	are	treated	as
switches.	The	following	switches	are	currently	supported:

-directory	directory
Search	for	files	which	match	the	given	patterns	starting	in	the	given
directory.	This	allows	searching	of	directories	whose	name
contains	glob-sensitive	characters	without	the	need	to	quote	such
characters	explicitly.	This	option	may	not	be	used	in	conjunction
with	-path,	which	is	used	to	allow	searching	for	complete	file	paths
whose	names	may	contain	glob-sensitive	characters.

-join
The	remaining	pattern	arguments	are	treated	as	a	single	pattern
obtained	by	joining	the	arguments	with	directory	separators.

-nocomplain
Allows	an	empty	list	to	be	returned	without	error;	without	this	switch
an	error	is	returned	if	the	result	list	would	be	empty.

-path	pathPrefix
Search	for	files	with	the	given	pathPrefix	where	the	rest	of	the
name	matches	the	given	patterns.	This	allows	searching	for	files
with	names	similar	to	a	given	file	(as	opposed	to	a	directory)	even
when	the	names	contain	glob-sensitive	characters.	This	option	may
not	be	used	in	conjunction	with	-directory.	For	example,	to	find	all
files	with	the	same	root	name	as	$path,	but	differing	extensions,
you	should	use	glob	-path	[file	rootname	$path]	.*	which	will	work
even	if	$path	contains	numerous	glob-sensitive	characters.

-tails
Only	return	the	part	of	each	file	found	which	follows	the	last
directory	named	in	any	-directory	or	-path	path	specification.	Thus
glob	-tails	-directory	$dir	*	is	equivalent	to	set	pwd	[pwd]	;	cd
$dir	;	glob	*;	cd	$pwd.	For	-path	specifications,	the	returned

names	will	include	the	last	path	segment,	so	glob	-tails	-path	[file
rootname	~/foo.tex]	.*	will	return	paths	like	foo.aux	foo.bib
foo.tex	etc.

-types	typeList
Only	list	files	or	directories	which	match	typeList,	where	the	items
in	the	list	have	two	forms.	The	first	form	is	like	the	-type	option	of
the	Unix	find	command:	b	(block	special	file),	c	(character	special
file),	d	(directory),	f	(plain	file),	l	(symbolic	link),	p	(named	pipe),	or	s
(socket),	where	multiple	types	may	be	specified	in	the	list.	Glob	will
return	all	files	which	match	at	least	one	of	the	types	given.	Note
that	symbolic	links	will	be	returned	both	if	-types	l	is	given,	or	if	the
target	of	a	link	matches	the	requested	type.	So,	a	link	to	a	directory
will	be	returned	if	-types	d	was	specified.

The	second	form	specifies	types	where	all	the	types	given	must
match.	These	are	r,	w,	x	as	file	permissions,	and	readonly,	hidden
as	special	permission	cases.	On	the	Macintosh,	MacOS	types	and
creators	are	also	supported,	where	any	item	which	is	four
characters	long	is	assumed	to	be	a	MacOS	type	(e.g.	TEXT).	Items
which	are	of	the	form	{macintosh	type	XXXX}	or	{macintosh	creator
XXXX}	will	match	types	or	creators	respectively.	Unrecognized
types,	or	specifications	of	multiple	MacOS	types/creators	will	signal
an	error.

The	two	forms	may	be	mixed,	so	-types	{d	f	r	w}	will	find	all
regular	files	OR	directories	that	have	both	read	AND	write
permissions.	The	following	are	equivalent:

glob	-type	d	*

glob	*/

except	that	the	first	case	doesn't	return	the	trailing	“/”	and	is	more
platform	independent.

--

Marks	the	end	of	switches.	The	argument	following	this	one	will	be
treated	as	a	pattern	even	if	it	starts	with	a	-.

The	pattern	arguments	may	contain	any	of	the	following	special
characters:

?
Matches	any	single	character.

*
Matches	any	sequence	of	zero	or	more	characters.

[chars]
Matches	any	single	character	in	chars.	If	chars	contains	a
sequence	of	the	form	a-b	then	any	character	between	a	and	b
(inclusive)	will	match.

\x
Matches	the	character	x.

{a,b,...}
Matches	any	of	the	strings	a,	b,	etc.

On	Unix,	as	with	csh,	a	“.”	at	the	beginning	of	a	file's	name	or	just	after
a	“/”	must	be	matched	explicitly	or	with	a	{}	construct,	unless	the	-types
hidden	flag	is	given	(since	“.”	at	the	beginning	of	a	file's	name	indicates
that	it	is	hidden).	On	other	platforms,	files	beginning	with	a	“.”	are
handled	no	differently	to	any	others,	except	the	special	directories	“.”
and	“..”	which	must	be	matched	explicitly	(this	is	to	avoid	a	recursive
pattern	like	“glob	-join	*	*	*	*”	from	recursing	up	the	directory	hierarchy
as	well	as	down).	In	addition,	all	“/”	characters	must	be	matched
explicitly.

If	the	first	character	in	a	pattern	is	“~”	then	it	refers	to	the	home
directory	for	the	user	whose	name	follows	the	“~”.	If	the	“~”	is	followed
immediately	by	“/”	then	the	value	of	the	HOME	environment	variable	is
used.

The	glob	command	differs	from	csh	globbing	in	two	ways.	First,	it	does

not	sort	its	result	list	(use	the	lsort	command	if	you	want	the	list	sorted).
Second,	glob	only	returns	the	names	of	files	that	actually	exist;	in	csh
no	check	for	existence	is	made	unless	a	pattern	contains	a	?,	*,	or	[]
construct.

When	the	glob	command	returns	relative	paths	whose	filenames	start
with	a	tilde	“~”	(for	example	through	glob	*	or	glob	-tails,	the	returned
list	will	not	quote	the	tilde	with	“./”.	This	means	care	must	be	taken	if
those	names	are	later	to	be	used	with	file	join,	to	avoid	them	being
interpreted	as	absolute	paths	pointing	to	a	given	user's	home	directory.

PORTABILITY	ISSUES

Windows	For	Windows	UNC	names,	the	servername	and	sharename
components	of	the	path	may	not	contain	?,	*,	or	[]	constructs.	On
Windows	NT,	if	pattern	is	of	the	form	“~username@domain”,	it	refers	to
the	home	directory	of	the	user	whose	account	information	resides	on
the	specified	NT	domain	server.	Otherwise,	user	account	information	is
obtained	from	the	local	computer.	On	Windows	95	and	98,	glob	accepts
patterns	like	“.../”	and	“..../”	for	successively	higher	up	parent	directories.

Since	the	backslash	character	has	a	special	meaning	to	the	glob
command,	glob	patterns	containing	Windows	style	path	separators
need	special	care.	The	pattern	C:\\foo*	is	interpreted	as	C:\foo*	where
\f	will	match	the	single	character	f	and	*	will	match	the	single	character
*	and	will	not	be	interpreted	as	a	wildcard	character.	One	solution	to	this
problem	is	to	use	the	Unix	style	forward	slash	as	a	path	separator.
Windows	style	paths	can	be	converted	to	Unix	style	paths	with	the
command	file	join	$path	(or	file	normalize	$path	in	Tcl	8.4).

EXAMPLES

Find	all	the	Tcl	files	in	the	current	directory:

glob	*.tcl

Find	all	the	Tcl	files	in	the	user's	home	directory,	irrespective	of	what	the
current	directory	is:

glob	-directory	~	*.tcl

Find	all	subdirectories	of	the	current	directory:

glob	-type	d	*

Find	all	files	whose	name	contains	an	“a”,	a	“b”	or	the	sequence	“cde”:

glob	-type	f	*{a,b,cde}*

SEE	ALSO

file

KEYWORDS

exist,	file,	glob,	pattern

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	memory

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
memory	-	Control	Tcl	memory	debugging	capabilities

SYNOPSIS
DESCRIPTION

memory	active	file
memory	break_on_malloc	count
memory	info
memory	init	[on|off]
memory	objs	file
memory	onexit	file
memory	tag	string
memory	trace	[on|off]
memory	trace_on_at_malloc	count
memory	validate	[on|off]

SEE	ALSO
KEYWORDS

NAME

memory	-	Control	Tcl	memory	debugging	capabilities

SYNOPSIS

memory	option	?arg	arg	...?

DESCRIPTION

The	memory	command	gives	the	Tcl	developer	control	of	Tcl's	memory
debugging	capabilities.	The	memory	command	has	several	suboptions,
which	are	described	below.	It	is	only	available	when	Tcl	has	been
compiled	with	memory	debugging	enabled	(when	TCL_MEM_DEBUG
is	defined	at	compile	time),	and	after	Tcl_InitMemory	has	been	called.

memory	active	file
Write	a	list	of	all	currently	allocated	memory	to	the	specified	file.

memory	break_on_malloc	count
After	the	count	allocations	have	been	performed,	ckalloc	outputs	a
message	to	this	effect	and	that	it	is	now	attempting	to	enter	the	C
debugger.	Tcl	will	then	issue	a	SIGINT	signal	against	itself.	If	you
are	running	Tcl	under	a	C	debugger,	it	should	then	enter	the
debugger	command	mode.

memory	info
Returns	a	report	containing	the	total	allocations	and	frees	since	Tcl
began,	the	current	packets	allocated	(the	current	number	of	calls	to
ckalloc	not	met	by	a	corresponding	call	to	ckfree),	the	current
bytes	allocated,	and	the	maximum	number	of	packets	and	bytes
allocated.

memory	init	[on|off]
Turn	on	or	off	the	pre-initialization	of	all	allocated	memory	with
bogus	bytes.	Useful	for	detecting	the	use	of	uninitialized	values.

memory	objs	file
Causes	a	list	of	all	allocated	Tcl_Obj	values	to	be	written	to	the
specified	file	immediately,	together	with	where	they	were	allocated.
Useful	for	checking	for	leaks	of	values.

memory	onexit	file
Causes	a	list	of	all	allocated	memory	to	be	written	to	the	specified
file	during	the	finalization	of	Tcl's	memory	subsystem.	Useful	for
checking	that	memory	is	properly	cleaned	up	during	process	exit.

memory	tag	string
Each	packet	of	memory	allocated	by	ckalloc	can	have	associated
with	it	a	string-valued	tag.	In	the	lists	of	allocated	memory
generated	by	memory	active	and	memory	onexit,	the	tag	for
each	packet	is	printed	along	with	other	information	about	the
packet.	The	memory	tag	command	sets	the	tag	value	for
subsequent	calls	to	ckalloc	to	be	string.

memory	trace	[on|off]
Turns	memory	tracing	on	or	off.	When	memory	tracing	is	on,	every
call	to	ckalloc	causes	a	line	of	trace	information	to	be	written	to
stderr,	consisting	of	the	word	ckalloc,	followed	by	the	address
returned,	the	amount	of	memory	allocated,	and	the	C	filename	and
line	number	of	the	code	performing	the	allocation.	For	example:

ckalloc	40e478	98	tclProc.c	1406

Calls	to	ckfree	are	traced	in	the	same	manner.

memory	trace_on_at_malloc	count
Enable	memory	tracing	after	count	ckallocs	have	been	performed.
For	example,	if	you	enter	memory	trace_on_at_malloc	100,	after
the	100th	call	to	ckalloc,	memory	trace	information	will	begin	being
displayed	for	all	allocations	and	frees.	Since	there	can	be	a	lot	of
memory	activity	before	a	problem	occurs,	judicious	use	of	this
option	can	reduce	the	slowdown	caused	by	tracing	(and	the
amount	of	trace	information	produced),	if	you	can	identify	a	number
of	allocations	that	occur	before	the	problem	sets	in.	The	current
number	of	memory	allocations	that	have	occurred	since	Tcl	started
is	printed	on	a	guard	zone	failure.

memory	validate	[on|off]
Turns	memory	validation	on	or	off.	When	memory	validation	is
enabled,	on	every	call	to	ckalloc	or	ckfree,	the	guard	zones	are
checked	for	every	piece	of	memory	currently	in	existence	that	was
allocated	by	ckalloc.	This	has	a	large	performance	impact	and
should	only	be	used	when	overwrite	problems	are	strongly
suspected.	The	advantage	of	enabling	memory	validation	is	that	a
guard	zone	overwrite	can	be	detected	on	the	first	call	to	ckalloc	or
ckfree	after	the	overwrite	occurred,	rather	than	when	the	specific
memory	with	the	overwritten	guard	zone(s)	is	freed,	which	may
occur	long	after	the	overwrite	occurred.

SEE	ALSO

ckalloc,	ckfree,	Tcl_ValidateAllMemory,	Tcl_DumpActiveMemory,
TCL_MEM_DEBUG

KEYWORDS

memory,	debug

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1992-1999	by	Karl	Lehenbauer	and	Mark	Diekhans
Copyright	©	2000	by	Scriptics	Corporation.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	set

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

set	-	Read	and	write	variables

SYNOPSIS

set	varName	?value?

DESCRIPTION

Returns	the	value	of	variable	varName.	If	value	is	specified,	then	set	the
value	of	varName	to	value,	creating	a	new	variable	if	one	does	not
already	exist,	and	return	its	value.	If	varName	contains	an	open
parenthesis	and	ends	with	a	close	parenthesis,	then	it	refers	to	an	array
element:	the	characters	before	the	first	open	parenthesis	are	the	name
of	the	array,	and	the	characters	between	the	parentheses	are	the	index
within	the	array.	Otherwise	varName	refers	to	a	scalar	variable.

If	varName	includes	namespace	qualifiers	(in	the	array	name	if	it	refers
to	an	array	element),	or	if	varName	is	unqualified	(does	not	include	the
names	of	any	containing	namespaces)	but	no	procedure	is	active,
varName	refers	to	a	namespace	variable	resolved	according	to	the
rules	described	under	NAME	RESOLUTION	in	the	namespace	manual
page.

If	a	procedure	is	active	and	varName	is	unqualified,	then	varName
refers	to	a	parameter	or	local	variable	of	the	procedure,	unless
varName	was	declared	to	resolve	differently	through	one	of	the	global,
variable	or	upvar	commands.

EXAMPLES

Store	a	random	number	in	the	variable	r:

set	r	[expr	{rand()}]

Store	a	short	message	in	an	array	element:

set	anAry(msg)	"Hello,	World!"

Store	a	short	message	in	an	array	element	specified	by	a	variable:

set	elemName	"msg"

set	anAry($elemName)	"Hello,	World!"

Copy	a	value	into	the	variable	out	from	a	variable	whose	name	is	stored
in	the	vbl	(note	that	it	is	often	easier	to	use	arrays	in	practice	instead	of
doing	double-dereferencing):

set	in0	"small	random"

set	in1	"large	random"

set	vbl	in[expr	{rand()	>=	0.5}]

set	out	[set	$vbl]

SEE	ALSO

expr,	global,	namespace,	proc,	trace,	unset,	upvar,	variable

KEYWORDS

read,	write,	variable

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.

Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	upvar

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

upvar	-	Create	link	to	variable	in	a	different	stack	frame

SYNOPSIS

upvar	?level?	otherVar	myVar	?otherVar	myVar	...?

DESCRIPTION

This	command	arranges	for	one	or	more	local	variables	in	the	current
procedure	to	refer	to	variables	in	an	enclosing	procedure	call	or	to
global	variables.	Level	may	have	any	of	the	forms	permitted	for	the
uplevel	command,	and	may	be	omitted	if	the	first	letter	of	the	first
otherVar	is	not	#	or	a	digit	(it	defaults	to	1).	For	each	otherVar
argument,	upvar	makes	the	variable	by	that	name	in	the	procedure
frame	given	by	level	(or	at	global	level,	if	level	is	#0)	accessible	in	the
current	procedure	by	the	name	given	in	the	corresponding	myVar
argument.	The	variable	named	by	otherVar	need	not	exist	at	the	time	of
the	call;	it	will	be	created	the	first	time	myVar	is	referenced,	just	like	an
ordinary	variable.	There	must	not	exist	a	variable	by	the	name	myVar	at
the	time	upvar	is	invoked.	MyVar	is	always	treated	as	the	name	of	a
variable,	not	an	array	element.	An	error	is	returned	if	the	name	looks
like	an	array	element,	such	as	a(b).	OtherVar	may	refer	to	a	scalar
variable,	an	array,	or	an	array	element.	Upvar	returns	an	empty	string.

The	upvar	command	simplifies	the	implementation	of	call-by-name
procedure	calling	and	also	makes	it	easier	to	build	new	control
constructs	as	Tcl	procedures.	For	example,	consider	the	following
procedure:

proc	add2	name	{

			upvar	$name	x

			set	x	[expr	{$x	+	2}]

}

If	add2	is	invoked	with	an	argument	giving	the	name	of	a	variable,	it
adds	two	to	the	value	of	that	variable.	Although	add2	could	have	been
implemented	using	uplevel	instead	of	upvar,	upvar	makes	it	simpler
for	add2	to	access	the	variable	in	the	caller's	procedure	frame.

namespace	eval	is	another	way	(besides	procedure	calls)	that	the	Tcl
naming	context	can	change.	It	adds	a	call	frame	to	the	stack	to
represent	the	namespace	context.	This	means	each	namespace	eval
command	counts	as	another	call	level	for	uplevel	and	upvar
commands.	For	example,	info	level	1	will	return	a	list	describing	a
command	that	is	either	the	outermost	procedure	call	or	the	outermost
namespace	eval	command.	Also,	uplevel	#0	evaluates	a	script	at	top-
level	in	the	outermost	namespace	(the	global	namespace).

If	an	upvar	variable	is	unset	(e.g.	x	in	add2	above),	the	unset	operation
affects	the	variable	it	is	linked	to,	not	the	upvar	variable.	There	is	no
way	to	unset	an	upvar	variable	except	by	exiting	the	procedure	in	which
it	is	defined.	However,	it	is	possible	to	retarget	an	upvar	variable	by
executing	another	upvar	command.

TRACES	AND	UPVAR

Upvar	interacts	with	traces	in	a	straightforward	but	possibly	unexpected
manner.	If	a	variable	trace	is	defined	on	otherVar,	that	trace	will	be
triggered	by	actions	involving	myVar.	However,	the	trace	procedure	will
be	passed	the	name	of	myVar,	rather	than	the	name	of	otherVar.	Thus,
the	output	of	the	following	code	will	be	“localVar”	rather	than
“originalVar”:

proc	traceproc	{	name	index	op	}	{

			puts	$name

}

proc	setByUpvar	{	name	value	}	{

			upvar	$name	localVar

			set	localVar	$value

}

set	originalVar	1

trace	variable	originalVar	w	traceproc

setByUpvar	originalVar	2

If	otherVar	refers	to	an	element	of	an	array,	then	variable	traces	set	for
the	entire	array	will	not	be	invoked	when	myVar	is	accessed	(but	traces
on	the	particular	element	will	still	be	invoked).	In	particular,	if	the	array
is	env,	then	changes	made	to	myVar	will	not	be	passed	to
subprocesses	correctly.

EXAMPLE

A	decr	command	that	works	like	incr	except	it	subtracts	the	value	from
the	variable	instead	of	adding	it:

proc	decr	{varName	{decrement	1}}	{

				upvar	1	$varName	var

				incr	var	[expr	{-$decrement}]

}

SEE	ALSO

global,	namespace,	uplevel,	variable

KEYWORDS

context,	frame,	global,	level,	namespace,	procedure,	variable

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.

Copyright	©	1994-1997	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	clock

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
clock	-	Obtain	and	manipulate	dates	and	times

SYNOPSIS
DESCRIPTION

clock	add	timeVal	?count	unit...?	?-option	value?
clock	clicks	?-option?
clock	format	timeVal	?-option	value...?
clock	microseconds
clock	milliseconds
clock	scan	inputString	?-option	value...?
clock	seconds

PARAMETERS
count
timeVal
unit

OPTIONS
-base	time
-format	format
-gmt	boolean
-locale	localeName
-timezone	zoneName

CLOCK	ARITHMETIC
HIGH	RESOLUTION	TIMERS
FORMATTING	TIMES
SCANNING	TIMES
FORMAT	GROUPS

%a
%A
%b
%B
%c

%C
%d
%D
%e
%Ec
%EC
%EE
%Ex
%EX
%Ey
%EY
%g
%G
%h
%H
%I
%j
%J
%k
%l
%m
%M
%N
%Od,	%Oe,	%OH,	%OI,	%Ok,	%Ol,	%Om,	%OM,	%OS,	%Ou,
%Ow,	%Oy
%p
%P
%Q
%r
%R
%s
%S
%t
%T
%u
%U
%V

%w
%W
%x
%X
%y
%Y
%z
%Z
%%
%+

TIME	ZONES
LOCALIZATION
FREE	FORM	SCAN

time
date
ISO	8601	point-in-time
relative	time

SEE	ALSO
KEYWORDS
COPYRIGHT

NAME

clock	-	Obtain	and	manipulate	dates	and	times

SYNOPSIS

package	require	Tcl	8.5
clock	add	timeVal	?count	unit...?	?-option	value?
clock	clicks	?-option?
clock	format	timeVal	?-option	value...?
clock	microseconds	
clock	milliseconds	
clock	scan	inputString	?-option	value...?
clock	seconds	

DESCRIPTION

The	clock	command	performs	several	operations	that	obtain	and
manipulate	values	that	represent	times.	The	command	supports	several
subcommands	that	determine	what	action	is	carried	out	by	the
command.

clock	add	timeVal	?count	unit...?	?-option	value?
Adds	a	(possibly	negative)	offset	to	a	time	that	is	expressed	as	an
integer	number	of	seconds.	See	CLOCK	ARITHMETIC	for	a	full
description.

clock	clicks	?-option?
If	no	-option	argument	is	supplied,	returns	a	high-resolution	time
value	as	a	system-dependent	integer	value.	The	unit	of	the	value	is
system-dependent	but	should	be	the	highest	resolution	clock
available	on	the	system	such	as	a	CPU	cycle	counter.	See	HIGH
RESOLUTION	TIMERS	for	a	full	description.

If	the	-option	argument	is	-milliseconds,	then	the	command	is
synonymous	with	clock	milliseconds	(see	below).	This	usage	is
obsolete,	and	clock	milliseconds	is	to	be	considered	the	preferred
way	of	obtaining	a	count	of	milliseconds.

If	the	-option	argument	is	-microseconds,	then	the	command	is
synonymous	with	clock	microseconds	(see	below).	This	usage	is
obsolete,	and	clock	microseconds	is	to	be	considered	the
preferred	way	of	obtaining	a	count	of	microseconds.

clock	format	timeVal	?-option	value...?
Formats	a	time	that	is	expressed	as	an	integer	number	of	seconds
into	a	format	intended	for	consumption	by	users	or	external
programs.	See	FORMATTING	TIMES	for	a	full	description.

clock	microseconds
Returns	the	current	time	as	an	integer	number	of	microseconds.
See	HIGH	RESOLUTION	TIMERS	for	a	full	description.

clock	milliseconds
Returns	the	current	time	as	an	integer	number	of	milliseconds.	See

HIGH	RESOLUTION	TIMERS	for	a	full	description.

clock	scan	inputString	?-option	value...?
Scans	a	time	that	is	expressed	as	a	character	string	and	produces
an	integer	number	of	seconds.	See	SCANNING	TIMES	for	a	full
description.

clock	seconds
Returns	the	current	time	as	an	integer	number	of	seconds.

PARAMETERS

count
An	integer	representing	a	count	of	some	unit	of	time.	See	CLOCK
ARITHMETIC	for	the	details.

timeVal
An	integer	value	passed	to	the	clock	command	that	represents	an
absolute	time	as	a	number	of	seconds	from	the	epoch	time	of	1
January	1970,	00:00	UTC.	Note	that	the	count	of	seconds	does	not
include	any	leap	seconds;	seconds	are	counted	as	if	each	UTC	day
has	exactly	86400	seconds.	Tcl	responds	to	leap	seconds	by
speeding	or	slowing	its	clock	by	a	tiny	fraction	for	some	minutes
until	it	is	back	in	sync	with	UTC;	its	data	model	does	not	represent
minutes	that	have	59	or	61	seconds.

unit
One	of	the	words,	seconds,	minutes,	hours,	days,	weeks,
months,	or	years,	or	any	unique	prefix	of	such	a	word.	Used	in
conjunction	with	count	to	identify	an	interval	of	time,	for	example,	3
seconds	or	1	year.

OPTIONS

-base	time
Specifies	that	any	relative	times	present	in	a	clock	scan	command
are	to	be	given	relative	to	time.	time	must	be	expressed	as	a	count
of	nominal	seconds	from	the	epoch	time	of	1	January	1970,	00:00

UTC.

-format	format
Specifies	the	desired	output	format	for	clock	format	or	the
expected	input	format	for	clock	scan.	The	format	string	consists	of
any	number	of	characters	other	than	the	per-cent	sign	(“%”)
interspersed	with	any	number	of	format	groups,	which	are	two-
character	sequences	beginning	with	the	per-cent	sign.	The
permissible	format	groups,	and	their	interpretation,	are	described
under	FORMAT	GROUPS.

On	clock	format,	the	default	format	is

%a	%b	%d	%H:%M:%S	%z	%Y

On	clock	scan,	the	lack	of	a	-format	option	indicates	that	a	“free
format	scan”	is	requested;	see	FREE	FORM	SCAN	for	a
description	of	what	happens.

-gmt	boolean
If	boolean	is	true,	specifies	that	a	time	specified	to	clock	add,
clock	format	or	clock	scan	should	be	processed	in	UTC.	If
boolean	is	false,	the	processing	defaults	to	the	local	time	zone.
This	usage	is	obsolete;	the	correct	current	usage	is	to	specify	the
UTC	time	zone	with	“-timezone	:UTC”	or	any	of	the	equivalent
ways	to	specify	it.

-locale	localeName
Specifies	that	locale-dependent	scanning	and	formatting	(and	date
arithmetic	for	dates	preceding	the	adoption	of	the	Gregorian
calendar)	is	to	be	done	in	the	locale	identified	by	localeName.	The
locale	name	may	be	any	of	the	locales	acceptable	to	the	msgcat
package,	or	it	may	be	the	special	name	system,	which	represents
the	current	locale	of	the	process,	or	the	null	string,	which
represents	Tcl's	default	locale.

The	effect	of	locale	on	scanning	and	formatting	is	discussed	in	the
descriptions	of	the	individual	format	groups	under	FORMAT
GROUPS.	The	effect	of	locale	on	clock	arithmetic	is	discussed
under	CLOCK	ARITHMETIC.

-timezone	zoneName
Specifies	that	clock	arithmetic,	formatting,	and	scanning	are	to	be
done	according	to	the	rules	for	the	time	zone	specified	by
zoneName.	The	permissible	values,	and	their	interpretation,	are
discussed	under	TIME	ZONES.	On	subcommands	that	expect	a	-
timezone	argument,	the	default	is	to	use	the	current	time	zone.
The	current	time	zone	is	determined,	in	order	of	preference,	by:

[1]
the	environment	variable	TCL_TZ.

[2]
the	environment	variable	TZ.

[3]
on	Windows	systems,	the	time	zone	settings	from	the	Control
Panel.

If	none	of	these	is	present,	the	C	localtime	and	mktime	functions
are	used	to	attempt	to	convert	times	between	local	and	Greenwich.
On	32-bit	systems,	this	approach	is	likely	to	have	bugs,	particularly
for	times	that	lie	outside	the	window	(approximately	the	years	1902
to	2037)	that	can	be	represented	in	a	32-bit	integer.

CLOCK	ARITHMETIC

The	clock	add	command	performs	clock	arithmetic	on	a	value
(expressed	as	nominal	seconds	from	the	epoch	time	of	1	January	1970,
00:00	UTC)	given	as	its	first	argument.	The	remaining	arguments	(other
than	the	possible	-timezone,	-locale	and	-gmt	options)	are	integers
and	keywords	in	alternation,	where	the	keywords	are	chosen	from
seconds,	minutes,	hours,	days,	weeks,	months,	or	years,	or	any
unique	prefix	of	such	a	word.

Addition	of	seconds,	minutes	and	hours	is	fairly	straightforward;	the
given	time	increment	(times	sixty	for	minutes,	or	3600	for	hours)	is
simply	added	to	the	timeVal	given	to	the	clock	add	command.	The
result	is	interpreted	as	a	nominal	number	of	seconds	from	the	Epoch.

Surprising	results	may	be	obtained	when	crossing	a	point	at	which	a
leap	second	is	inserted	or	removed;	the	clock	add	command	simply
ignores	leap	seconds	and	therefore	assumes	that	times	come	in
sequence,	23:59:58,	23:59:59,	00:00:00.	(This	assumption	is	handled
by	the	fact	that	Tcl's	model	of	time	reacts	to	leap	seconds	by	speeding
or	slowing	the	clock	by	a	minuscule	amount	until	Tcl's	time	is	back	in
step	with	the	world.

The	fact	that	adding	and	subtracting	hours	is	defined	in	terms	of
absolute	time	means	that	it	will	add	fixed	amounts	of	time	in	time	zones
that	observe	summer	time	(Daylight	Saving	Time).	For	example,	the
following	code	sets	the	value	of	x	to	04:00:00	because	the	clock	has
changed	in	the	interval	in	question.

set	s	[clock	scan	{2004-10-30	05:00:00}	\

											-format	{%Y-%m-%d	%H:%M:%S}	\

											-timezone	:America/New_York]

set	a	[clock	add	$s	24	hours	-timezone	:America/New_York]

set	x	[clock	format	$a	\

											-format	{%H:%M:%S}	-timezone	:America/New_York]

Adding	and	subtracting	days	and	weeks	is	accomplished	by	converting
the	given	time	to	a	calendar	day	and	time	of	day	in	the	appropriate	time
zone	and	locale.	The	requisite	number	of	days	(weeks	are	converted	to
days	by	multiplying	by	seven)	is	added	to	the	calendar	day,	and	the
date	and	time	are	then	converted	back	to	a	count	of	seconds	from	the
epoch	time.

Adding	and	subtracting	a	given	number	of	days	across	the	point	that	the
time	changes	at	the	start	or	end	of	summer	time	(Daylight	Saving	Time)

results	in	the	same	local	time	on	the	day	in	question.	For	instance,	the
following	code	sets	the	value	of	x	to	05:00:00.

set	s	[clock	scan	{2004-10-30	05:00:00}	\

											-format	{%Y-%m-%d	%H:%M:%S}	\

											-timezone	:America/New_York]

set	a	[clock	add	$s	1	day	-timezone	:America/New_York]

set	x	[clock	format	$a	\

											-format	{%H:%M:%S}	-timezone	:America/New_York]

In	cases	of	ambiguity,	where	the	same	local	time	happens	twice	on	the
same	day,	the	earlier	time	is	used.	In	cases	where	the	conversion	yields
an	impossible	time	(for	instance,	02:30	during	the	Spring	Daylight
Saving	Time	change	using	US	rules),	the	time	is	converted	as	if	the
clock	had	not	changed.	Thus,	the	following	code	will	set	the	value	of	x
to	03:30:00.

set	s	[clock	scan	{2004-04-03	02:30:00}	\

											-format	{%Y-%m-%d	%H:%M:%S}	\

											-timezone	:America/New_York]

set	a	[clock	add	$s	1	day	-timezone	:America/New_York]

set	x	[clock	format	$a	\

											-format	{%H:%M:%S}	-timezone	:America/New_York]

Adding	a	given	number	of	days	or	weeks	works	correctly	across	the
conversion	between	the	Julian	and	Gregorian	calendars;	the	omitted
days	are	skipped.	The	following	code	sets	z	to	1752-09-14.

set	x	[clock	scan	1752-09-02	-format	%Y-%m-%d	-locale	en_US]

set	y	[clock	add	$x	1	day	-locale	en_US]

set	z	[clock	format	$y	-format	%Y-%m-%d	-locale	en_US]

In	the	bizarre	case	that	adding	the	given	number	of	days	yields	a	date
that	does	not	exist	because	it	falls	within	the	dropped	days	of	the
Julian-to-Gregorian	conversion,	the	date	is	converted	as	if	it	was	on	the
Julian	calendar.

Adding	a	number	of	months,	or	a	number	of	years,	is	similar;	it	converts
the	given	time	to	a	calendar	date	and	time	of	day.	It	then	adds	the
requisite	number	of	months	or	years,	and	reconverts	the	resulting	date
and	time	of	day	to	an	absolute	time.

If	the	resulting	date	is	impossible	because	the	month	has	too	few	days
(for	example,	when	adding	1	month	to	31	January),	the	last	day	of	the
month	is	substituted.	Thus,	adding	1	month	to	31	January	will	result	in
28	February	in	a	common	year	or	29	February	in	a	leap	year.

The	rules	for	handling	anomalies	relating	to	summer	time	and	to	the
Gregorian	calendar	are	the	same	when	adding/subtracting	months	and
years	as	they	are	when	adding/subtracting	days	and	weeks.

If	multiple	count	unit	pairs	are	present	on	the	command,	they	are
evaluated	consecutively,	from	left	to	right.

HIGH	RESOLUTION	TIMERS

Most	of	the	subcommands	supported	by	the	clock	command	deal	with
times	represented	as	a	count	of	seconds	from	the	epoch	time,	and	this
is	the	representation	that	clock	seconds	returns.	There	are	three
exceptions,	which	are	all	intended	for	use	where	higher-resolution	times
are	required.	clock	milliseconds	returns	the	count	of	milliseconds	from
the	epoch	time,	and	clock	microseconds	returns	the	count	of
microseconds	from	the	epoch	time.	In	addition,	there	is	a	clock	clicks
command	that	returns	a	platform-dependent	high-resolution	timer.
Unlike	clock	seconds	and	clock	milliseconds,	the	value	of	clock
clicks	is	not	guaranteed	to	be	tied	to	any	fixed	epoch;	it	is	simply
intended	to	be	the	most	precise	interval	timer	available,	and	is	intended
only	for	relative	timing	studies	such	as	benchmarks.

FORMATTING	TIMES

The	clock	format	command	produces	times	for	display	to	a	user	or
writing	to	an	external	medium.	The	command	accepts	times	that	are
expressed	in	seconds	from	the	epoch	time	of	1	January	1970,	00:00
UTC,	as	returned	by	clock	seconds,	clock	scan,	clock	add,	file
atime	or	file	mtime.

If	a	-format	option	is	present,	the	following	argument	is	a	string	that
specifies	how	the	date	and	time	are	to	be	formatted.	The	string	consists
of	any	number	of	characters	other	than	the	per-cent	sign	(“%”)
interspersed	with	any	number	of	format	groups,	which	are	two-character
sequences	beginning	with	the	per-cent	sign.	The	permissible	format
groups,	and	their	interpretation,	are	described	under	FORMAT
GROUPS.

If	a	-timezone	option	is	present,	the	following	argument	is	a	string	that
specifies	the	time	zone	in	which	the	date	and	time	are	to	be	formatted.
As	an	alternative	to	“-timezone	:UTC”,	the	obsolete	usage	“-gmt	true”
may	be	used.	See	TIME	ZONES	for	the	permissible	variants	for	the
time	zone.

If	a	-locale	option	is	present,	the	following	argument	is	a	string	that
specifies	the	locale	in	which	the	time	is	to	be	formatted,	in	the	same
format	that	is	used	for	the	msgcat	package.	Note	that	the	default,	if	-
locale	is	not	specified,	is	the	root	locale	{}	rather	than	the	current
locale.	The	current	locale	may	be	obtained	by	using	-locale	current.	In
addition,	some	platforms	support	a	system	locale	that	reflects	the
user's	current	choices.	For	instance,	on	Windows,	the	format	that	the
user	has	selected	from	dates	and	times	in	the	Control	Panel	can	be
obtained	by	using	the	system	locale.	On	platforms	that	do	not	define	a
user	selection	of	date	and	time	formats	separate	from	LC_TIME,	-
locale	system	is	synonymous	with	-locale	current.

SCANNING	TIMES

The	clock	scan	command	accepts	times	that	are	formatted	as	strings
and	converts	them	to	counts	of	seconds	from	the	epoch	time	of	1
January	1970,	00:00	UTC.	It	normally	takes	a	-format	option	that	is
followed	by	a	string	describing	the	expected	format	of	the	input.	(See

FREE	FORM	SCAN	for	the	effect	of	clock	scan	without	such	an
argument.)	The	string	consists	of	any	number	of	characters	other	than
the	per-cent	sign	(“%”),	interspersed	with	any	number	of	format	groups,
which	are	two-character	sequences	beginning	with	the	per-cent	sign.
The	permissible	format	groups,	and	their	interpretation,	are	described
under	FORMAT	GROUPS.

If	a	-timezone	option	is	present,	the	following	argument	is	a	string	that
specifies	the	time	zone	in	which	the	date	and	time	are	to	be	interpreted.
As	an	alternative	to	-timezone	:UTC,	the	obsolete	usage	-gmt	true	may
be	used.	See	TIME	ZONES	for	the	permissible	variants	for	the	time
zone.

If	a	-locale	option	is	present,	the	following	argument	is	a	string	that
specifies	the	locale	in	which	the	time	is	to	be	interpreted,	in	the	same
format	that	is	used	for	the	msgcat	package.	Note	that	the	default,	if	-
locale	is	not	specified,	is	the	root	locale	{}	rather	than	the	current
locale.	The	current	locale	may	be	obtained	by	using	-locale	current.	In
addition,	some	platforms	support	a	system	locale	that	reflects	the
user's	current	choices.	For	instance,	on	Windows,	the	format	that	the
user	has	selected	from	dates	and	times	in	the	Control	Panel	can	be
obtained	by	using	the	system	locale.	On	platforms	that	do	not	define	a
user	selection	of	date	and	time	formats	separate	from	LC_TIME,	-
locale	system	is	synonymous	with	-locale	current.

If	a	-base	option	is	present,	the	following	argument	is	a	time	(expressed
in	seconds	from	the	epoch	time)	that	is	used	as	a	base	time	for
interpreting	relative	times.	If	no	-base	option	is	present,	the	base	time	is
the	current	time.

Scanning	of	times	in	fixed	format	works	by	determining	three	things:	the
date,	the	time	of	day,	and	the	time	zone.	These	three	are	then
combined	into	a	point	in	time,	which	is	returned	as	the	number	of
seconds	from	the	epoch.

Before	scanning	begins,	the	format	string	is	preprocessed	to	replace
%c,	%Ec,	%x,	%Ex,	%X.	%Ex,	%r,	%R,	%T,	%D,	%EY	and	%+	format
groups	with	counterparts	that	are	appropriate	to	the	current	locale	and

contain	none	of	the	above	groups.	For	instance,	%D	will	(in	the	en_US
locale)	be	replaced	with	%m/%d/%Y.

The	date	is	determined	according	to	the	fields	that	are	present	in	the
preprocessed	format	string.	In	order	of	preference:

[1]
If	the	string	contains	a	%s	format	group,	representing	seconds	from
the	epoch,	that	group	is	used	to	determine	the	date.

[2]
If	the	string	contains	a	%J	format	group,	representing	the	Julian
Day	Number,	that	group	is	used	to	determine	the	date.

[3]
If	the	string	contains	a	complete	set	of	format	groups	specifying
century,	year,	month,	and	day	of	month;	century,	year,	and	day	of
year;	or	ISO8601	fiscal	year,	week	of	year,	and	day	of	week;	those
groups	are	combined	and	used	to	determine	the	date.	If	more	than
one	complete	set	is	present,	the	one	at	the	rightmost	position	in	the
string	is	used.

[4]
If	the	string	lacks	a	century	but	contains	a	set	of	format	groups
specifying	year	of	century,	month	and	day	of	month;	year	of	century
and	day	of	year;	or	two-digit	ISO8601	fiscal	year,	week	of	year,	and
day	of	week;	those	groups	are	combined	and	used	to	determine	the
date.	If	more	than	one	complete	set	is	present,	the	one	at	the
rightmost	position	in	the	string	is	used.	The	year	is	presumed	to	lie
in	the	range	1938	to	2037	inclusive.

[5]
If	the	string	entirely	lacks	any	specification	for	the	year	(or	contains
the	year	only	on	the	locale's	alternative	calendar)	and	contains	a
set	of	format	groups	specifying	month	and	day	of	month,	day	of
year,	or	week	of	year	and	day	of	week,	those	groups	are	combined
and	used	to	determine	the	date.	If	more	than	one	complete	set	is
present,	the	one	at	the	rightmost	position	in	the	string	is	used.	The

year	is	determined	by	interpreting	the	base	time	in	the	given	time
zone.

[6]
If	the	string	contains	none	of	the	above	sets,	but	has	a	day	of	the
month	or	day	of	the	week,	the	day	of	the	month	or	day	of	the	week
are	used	to	determine	the	date	by	interpreting	the	base	time	in	the
given	time	zone	and	returning	the	given	day	of	the	current	week	or
month.	(The	week	runs	from	Monday	to	Sunday,	ISO8601-fashion.)
If	both	day	of	month	and	day	of	week	are	present,	the	day	of	the
month	takes	priority.

[7]
If	none	of	the	above	rules	results	in	a	usable	date,	the	date	of	the
base	time	in	the	given	time	zone	is	used.

The	time	is	also	determined	according	to	the	fields	that	are	present	in
the	preprocessed	format	string.	In	order	of	preference:

[1]
If	the	string	contains	a	%s	format	group,	representing	seconds	from
the	epoch,	that	group	determines	the	time	of	day.

[2]
If	the	string	contains	either	an	hour	on	the	24-hour	clock	or	an	hour
on	the	12-hour	clock	plus	an	AM/PM	indicator,	that	hour	determines
the	hour	of	the	day.	If	the	string	further	contains	a	group	specifying
the	minute	of	the	hour,	that	group	combines	with	the	hour.	If	the
string	further	contains	a	group	specifying	the	second	of	the	minute,
that	group	combines	with	the	hour	and	minute.

[3]
If	the	string	contains	neither	a	%s	format	group	nor	a	group
specifying	the	hour	of	the	day,	then	midnight	(00:00,	the	start	of	the
given	date)	is	used.	The	time	zone	is	determined	by	either	the	-
timezone	or	-gmt	options,	or	by	using	the	current	time	zone.

If	a	format	string	lacks	a	%z	or	%Z	format	group,	it	is	possible	for	the

time	to	be	ambiguous	because	it	appears	twice	in	the	same	day,	once
without	and	once	with	Daylight	Saving	Time.	If	this	situation	occurs,	the
first	occurrence	of	the	time	is	chosen.	(For	this	reason,	it	is	wise	to	have
the	input	string	contain	the	time	zone	when	converting	local	times.	This
caveat	does	not	apply	to	UTC	times.)

FORMAT	GROUPS

The	following	format	groups	are	recognized	by	the	clock	scan	and
clock	format	commands.

%a
On	output,	receives	an	abbreviation	(e.g.,	Mon)	for	the	day	of	the
week	in	the	given	locale.	On	input,	matches	the	name	of	the	day	of
the	week	in	the	given	locale	(in	either	abbreviated	or	full	form,	or
any	unique	prefix	of	either	form).

%A
On	output,	receives	the	full	name	(e.g.,	Monday)	of	the	day	of	the
week	in	the	given	locale.	On	input,	matches	the	name	of	the	day	of
the	week	in	the	given	locale	(in	either	abbreviated	or	full	form,	or
any	unique	prefix	of	either	form).

%b
On	output,	receives	an	abbreviation	(e.g.,	Jan)	for	the	name	of	the
month	in	the	given	locale.	On	input,	matches	the	name	of	the
month	in	the	given	locale	(in	either	abbreviated	or	full	form,	or	any
unique	prefix	of	either	form).

%B
On	output,	receives	the	full	name	(e.g.,	January)	of	the	month	in
the	given	locale.	On	input,	matches	the	name	of	the	month	in	the
given	locale	(in	either	abbreviated	or	full	form,	or	any	unique	prefix
of	either	form).

%c
On	output,	receives	a	localized	representation	of	date	and	time	of
day;	the	localized	representation	is	expected	to	use	the	Gregorian

calendar.	On	input,	matches	whatever	%c	produces.

%C
On	output,	receives	the	number	of	the	century	in	Indo-Arabic
numerals.	On	input,	matches	one	or	two	digits,	possibly	with
leading	whitespace,	that	are	expected	to	be	the	number	of	the
century.

%d
On	output,	produces	the	number	of	the	day	of	the	month,	as	two
decimal	digits.	On	input,	matches	one	or	two	digits,	possibly	with
leading	whitespace,	that	are	expected	to	be	the	number	of	the	day
of	the	month.

%D
This	format	group	is	synonymous	with	%m/%d/%Y.	It	should	be
used	only	in	exchanging	data	within	the	en_US	locale,	since	other
locales	typically	do	not	use	this	order	for	the	fields	of	the	date.

%e
On	output,	produces	the	number	of	the	day	of	the	month,	as	one	or
two	decimal	digits	(with	a	leading	blank	for	one-digit	dates).	On
input,	matches	one	or	two	digits,	possibly	with	leading	whitespace,
that	are	expected	to	be	the	number	of	the	day	of	the	month.

%Ec
On	output,	produces	a	locale-dependent	representation	of	the	date
and	time	of	day	in	the	locale's	alternative	calendar.	On	input,
matches	whatever	%Ec	produces.	The	locale's	alternative	calendar
need	not	be	the	Gregorian	calendar.

%EC
On	output,	produces	a	locale-dependent	name	of	an	era	in	the
locale's	alternative	calendar.	On	input,	matches	the	name	of	the	era
or	any	unique	prefix.

%EE
On	output,	produces	the	string	B.C.E.	or	C.E.,	or	a	string	of	the

same	meaning	in	the	locale,	to	indicate	whether	%Y	refers	to	years
before	or	after	Year	1	of	the	Common	Era.	On	input,	accepts	the
string	B.C.E.,	B.C.,	C.E.,	A.D.,	or	the	abbreviation	appropriate	to
the	current	locale,	and	uses	it	to	fix	whether	%Y	refers	to	years
before	or	after	Year	1	of	the	Common	Era.

%Ex
On	output,	produces	a	locale-dependent	representation	of	the	date
in	the	locale's	alternative	calendar.	On	input,	matches	whatever
%Ex	produces.	The	locale's	alternative	calendar	need	not	be	the
Gregorian	calendar.

%EX
On	output,	produces	a	locale-dependent	representation	of	the	time
of	day	in	the	locale's	alternative	numerals.	On	input,	matches
whatever	%EX	produces.

%Ey
On	output,	produces	a	locale-dependent	number	of	the	year	of	the
era	in	the	locale's	alternative	calendar	and	numerals.	On	input,
matches	such	a	number.

%EY
On	output,	produces	a	representation	of	the	year	in	the	locale's
alternative	calendar	and	numerals.	On	input,	matches	what	%EY
produces.	Often	synonymous	with	%EC%Ey.

%g
On	output,	produces	a	two-digit	year	number	suitable	for	use	with
the	week-based	ISO8601	calendar;	that	is,	the	year	number
corresponds	to	the	week	number	produced	by	%V.	On	input,
accepts	such	a	two-digit	year	number,	possibly	with	leading
whitespace.

%G
On	output,	produces	a	four-digit	year	number	suitable	for	use	with
the	week-based	ISO8601	calendar;	that	is,	the	year	number
corresponds	to	the	week	number	produced	by	%V.	On	input,

accepts	such	a	four-digit	year	number,	possibly	with	leading
whitespace.

%h
This	format	group	is	synonymous	with	%b.

%H
On	output,	produces	a	two-digit	number	giving	the	hour	of	the	day
(00-23)	on	a	24-hour	clock.	On	input,	accepts	such	a	number.

%I
On	output,	produces	a	two-digit	number	giving	the	hour	of	the	day
(12-11)	on	a	12-hour	clock.	On	input,	accepts	such	a	number.

%j
On	output,	produces	a	three-digit	number	giving	the	day	of	the	year
(001-366).	On	input,	accepts	such	a	number.

%J
On	output,	produces	a	string	of	digits	giving	the	Julian	Day
Number.	On	input,	accepts	a	string	of	digits	and	interprets	it	as	a
Julian	Day	Number.	The	Julian	Day	Number	is	a	count	of	the
number	of	calendar	days	that	have	elapsed	since	1	January,	4713
BCE	of	the	proleptic	Julian	calendar.	The	epoch	time	of	1	January
1970	corresponds	to	Julian	Day	Number	2440588.

%k
On	output,	produces	a	one-	or	two-digit	number	giving	the	hour	of
the	day	(0-23)	on	a	24-hour	clock.	On	input,	accepts	such	a
number.

%l
On	output,	produces	a	one-	or	two-digit	number	giving	the	hour	of
the	day	(12-11)	on	a	12-hour	clock.	On	input,	accepts	such	a
number.

%m
On	output,	produces	the	number	of	the	month	(01-12)	with	exactly

two	digits.	On	input,	accepts	two	digits	and	interprets	them	as	the
number	of	the	month.

%M
On	output,	produces	the	number	of	the	minute	of	the	hour	(00-59)
with	exactly	two	digits.	On	input,	accepts	two	digits	and	interprets
them	as	the	number	of	the	minute	of	the	hour.

%N
On	output,	produces	the	number	of	the	month	(1-12)	with	one	or
two	digits,	and	a	leading	blank	for	one-digit	dates.	On	input,
accepts	one	or	two	digits,	possibly	with	leading	whitespace,	and
interprets	them	as	the	number	of	the	month.

%Od,	%Oe,	%OH,	%OI,	%Ok,	%Ol,	%Om,	%OM,	%OS,	%Ou,	%Ow,
%Oy

All	of	these	format	groups	are	synonymous	with	their	counterparts
without	the	“O”,	except	that	the	string	is	produced	and	parsed	in	the
locale-dependent	alternative	numerals.

%p
On	output,	produces	an	indicator	for	the	part	of	the	day,	AM	or	PM,
appropriate	to	the	given	locale.	If	the	script	of	the	given	locale
supports	multiple	letterforms,	lowercase	is	preferred.	On	input,
matches	the	representation	AM	or	PM	in	the	given	locale,	in	either
case.

%P
On	output,	produces	an	indicator	for	the	part	of	the	day,	am	or	pm,
appropriate	to	the	given	locale.	If	the	script	of	the	given	locale
supports	multiple	letterforms,	uppercase	is	preferred.	On	input,
matches	the	representation	AM	or	PM	in	the	given	locale,	in	either
case.

%Q
This	format	group	is	reserved	for	internal	use	within	the	Tcl	library.

%r

On	output,	produces	a	locale-dependent	time	of	day	representation
on	a	12-hour	clock.	On	input,	accepts	whatever	%r	produces.

%R
On	output,	produces	a	locale-dependent	time	of	day	representation
on	a	24-hour	clock.	On	input,	accepts	whatever	%R	produces.

%s
On	output,	simply	formats	the	timeVal	argument	as	a	decimal
integer	and	inserts	it	into	the	output	string.	On	input,	accepts	a
decimal	integer	and	uses	is	as	the	time	value	without	any	further
processing.	Since	%s	uniquely	determines	a	point	in	time,	it
overrides	all	other	input	formats.

%S
On	output,	produces	a	two-digit	number	of	the	second	of	the	minute
(00-59).	On	input,	accepts	two	digits	and	uses	them	as	the	second
of	the	minute.

%t
On	output,	produces	a	TAB	character.	On	input,	matches	a	TAB
character.

%T
Synonymous	with	%H:%M:%S.

%u
On	output,	produces	the	number	of	the	day	of	the	week
(1→Monday,	7→Sunday).	On	input,	accepts	a	single	digit	and
interprets	it	as	the	day	of	the	week.	Sunday	may	be	either	0	or	7.

%U
On	output,	produces	the	ordinal	number	of	the	week	of	the	year
(00-53).	The	first	Sunday	of	the	year	is	the	first	day	of	week	01.	On
input	accepts	two	digits	which	are	otherwise	ignored.	This	format
group	is	never	used	in	determining	an	input	date.	This
interpretation	of	the	week	of	the	year	was	once	common	in	US
banking	but	is	now	largely	obsolete.	See	%V	for	the	ISO8601	week

number.

%V
On	output,	produces	the	number	of	the	ISO8601	week	as	a	two
digit	number	(01-53).	Week	01	is	the	week	containing	January	4;	or
the	first	week	of	the	year	containing	at	least	4	days;	or	the	week
containing	the	first	Thursday	of	the	year	(the	three	statements	are
equivalent).	Each	week	begins	on	a	Monday.	On	input,	accepts	the
ISO8601	week	number.

%w
On	output,	produces	the	ordinal	number	of	the	day	of	the	week
(Sunday==0;	Saturday==6).	On	input,	accepts	a	single	digit	and
interprets	it	as	the	day	of	the	week;	Sunday	may	be	represented	as
either	0	or	7.	Note	that	%w	is	not	the	ISO8601	weekday	number,
which	is	produced	and	accepted	by	%u.

%W
On	output,	produces	a	week	number	(00-53)	within	the	year;	week
01	begins	on	the	first	Monday	of	the	year.	On	input,	accepts	two
digits,	which	are	otherwise	ignored.	This	format	group	is	never
used	in	determining	an	input	date.	It	is	not	the	ISO8601	week
number;	that	week	is	produced	and	accepted	by	%V.

%x
On	output,	produces	the	date	in	a	locale-dependent	representation.
On	input,	accepts	whatever	%x	produces	and	is	used	to	determine
calendar	date.

%X
On	output,	produces	the	time	of	day	in	a	locale-dependent
representation.	On	input,	accepts	whatever	%X	produces	and	is
used	to	determine	time	of	day.

%y
On	output,	produces	the	two-digit	year	of	the	century.	On	input,
accepts	two	digits,	and	is	used	to	determine	calendar	date.	The
date	is	presumed	to	lie	between	1938	and	2037	inclusive.	Note	that

%y	does	not	yield	a	year	appropriate	for	use	with	the	ISO8601
week	number	%V;	programs	should	use	%g	for	that	purpose.

%Y
On	output,	produces	the	four-digit	calendar	year.	On	input,	accepts
four	digits	and	may	be	used	to	determine	calendar	date.	Note	that
%Y	does	not	yield	a	year	appropriate	for	use	with	the	ISO8601
week	number	%V;	programs	should	use	%G	for	that	purpose.

%z
On	output,	produces	the	current	time	zone,	expressed	in	hours	and
minutes	east	(+hhmm)	or	west	(-hhmm)	of	Greenwich.	On	input,
accepts	a	time	zone	specifier	(see	TIME	ZONES	below)	that	will	be
used	to	determine	the	time	zone.

%Z
On	output,	produces	the	current	time	zone's	name,	possibly
translated	to	the	given	locale.	On	input,	accepts	a	time	zone
specifier	(see	TIME	ZONES	below)	that	will	be	used	to	determine
the	time	zone.	This	option	should,	in	general,	be	used	on	input	only
when	parsing	RFC822	dates.	Other	uses	are	fraught	with
ambiguity;	for	instance,	the	string	BST	may	represent	British
Summer	Time	or	Brazilian	Standard	Time.	It	is	recommended	that
date/time	strings	for	use	by	computers	use	numeric	time	zones
instead.

%%
On	output,	produces	a	literal	“%”	character.	On	input,	matches	a
literal	“%”	character.

%+
Synonymous	with	“%a	%b	%e	%H:%M:%S	%Z	%Y”.

TIME	ZONES

When	the	clock	command	is	processing	a	local	time,	it	has	several
possible	sources	for	the	time	zone	to	use.	In	order	of	preference,	they
are:

[1]
A	time	zone	specified	inside	a	string	being	parsed	and	matched	by
a	%z	or	%Z	format	group.

[2]
A	time	zone	specified	with	the	-timezone	option	to	the	clock
command	(or,	equivalently,	by	-gmt	1).

[3]
A	time	zone	specified	in	an	environment	variable	TCL_TZ.

[4]
A	time	zone	specified	in	an	environment	variable	TZ.

[5]
The	local	time	zone	from	the	Control	Panel	on	Windows	systems.

[6]
The	C	library's	idea	of	the	local	time	zone,	as	defined	by	the
mktime	and	localtime	functions.

In	case	[1]	only,	the	string	is	tested	to	see	if	it	is	one	of	the	strings:

gmt					ut						utc					bst					wet					wat					at

	nft					nst					ndt					ast					adt					est					edt

	cst					cdt					mst					mdt					pst					pdt					yst

	ydt					hst					hdt					cat					ahst				nt						idlw

	cet					cest				met					mewt				mest				swt					sst

	eet					eest				bt						it						zp4					zp5					ist

	zp6					wast				wadt				jt						cct					jst					cast

	cadt				east				eadt				gst					nzt					nzst				nzdt

	idle

If	it	is	a	string	in	the	above	list,	it	designates	a	known	time	zone,	and	is
interpreted	as	such.

For	time	zones	in	case	[1]	that	do	not	match	any	of	the	above	strings,
and	always	for	cases	[2]-[6],	the	following	rules	apply.

If	the	time	zone	begins	with	a	colon,	it	is	one	of	a	standardized	list	of
names	like	:America/New_York	that	give	the	rules	for	various	locales.
A	complete	list	of	the	location	names	is	too	lengthy	to	be	listed	here.	On
most	Tcl	installations,	the	definitions	of	the	locations	are	to	be	found	in
named	files	in	the	directory	“/no_backup/tools/lib/tcl8.5/clock/tzdata”.
On	some	Unix	systems,	these	files	are	omitted,	and	the	definitions	are
instead	obtained	from	system	files	in	“/usr/share/zoneinfo”,
“/usr/share/lib/zoneinfo”	or	“/usr/local/etc/zoneinfo”.	As	a	special	case,
the	name	:localtime	refers	to	the	local	time	zone	as	defined	by	the	C
library.

A	time	zone	string	consisting	of	a	plus	or	minus	sign	followed	by	four	or
six	decimal	digits	is	interpreted	as	an	offset	in	hours,	minutes,	and
seconds	(if	six	digits	are	present)	from	UTC.	The	plus	sign	denotes	a
sign	east	of	Greenwich;	the	minus	sign	one	west	of	Greenwich.

A	time	zone	string	conforming	to	the	Posix	specification	of	the	TZ
environment	variable	will	be	recognized.	The	specification	may	be
found	at
http://www.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap08.html

Any	other	time	zone	string	is	processed	by	prefixing	a	colon	and
attempting	to	use	it	as	a	location	name,	as	above.

LOCALIZATION

Developers	wishing	to	localize	the	date	and	time	formatting	and	parsing
are	referred	to	http://tip.tcl.tk/173	for	a	specification.

FREE	FORM	SCAN

If	the	clock	scan	command	is	invoked	without	a	-format	option,	then	it
requests	a	free-form	scan.	This	form	of	scan	is	deprecated.	The	reason
for	the	deprecation	is	that	there	are	too	many	ambiguities.	(Does	the
string	“2000”	represent	a	year,	a	time	of	day,	or	a	quantity?)	No	set	of

rules	for	interpreting	free-form	dates	and	times	has	been	found	to	give
unsurprising	results	in	all	cases.

If	free-form	scan	is	used,	only	the	-base	and	-gmt	options	are
accepted.	The	-timezone	and	-locale	options	will	result	in	an	error	if	-
format	is	not	supplied.

For	the	benefit	of	users	who	need	to	understand	legacy	code	that	uses
free-form	scan,	the	documentation	for	how	free-form	scan	interprets	a
string	is	included	here:

If	only	a	time	is	specified,	the	current	date	is	assumed.	If	the	inputString
does	not	contain	a	time	zone	mnemonic,	the	local	time	zone	is
assumed,	unless	the	-gmt	argument	is	true,	in	which	case	the	clock
value	is	calculated	assuming	that	the	specified	time	is	relative	to
Greenwich	Mean	Time.	-gmt,	if	specified,	affects	only	the	computed
time	value;	it	does	not	impact	the	interpretation	of	-base.

If	the	-base	flag	is	specified,	the	next	argument	should	contain	an
integer	clock	value.	Only	the	date	in	this	value	is	used,	not	the	time.
This	is	useful	for	determining	the	time	on	a	specific	day	or	doing	other
date-relative	conversions.

The	inputString	argument	consists	of	zero	or	more	specifications	of	the
following	form:

time
A	time	of	day,	which	is	of	the	form:	hh?:mm?:ss??	?meridian?	?
zone?	or	hhmm	?meridian?	?zone?	If	no	meridian	is	specified,
hh	is	interpreted	on	a	24-hour	clock.

date
A	specific	month	and	day	with	optional	year.	The	acceptable
formats	are	“mm/dd?/yy?”,	“monthname	dd?,	yy?”,	“day,	dd
monthname	?yy?”,	“dd	monthname	yy”,	“?CC?yymmdd”,	and
“dd-monthname-?CC?yy”.	The	default	year	is	the	current	year.	If
the	year	is	less	than	100,	we	treat	the	years	00-68	as	2000-2068
and	the	years	69-99	as	1969-1999.	Not	all	platforms	can	represent

the	years	38-70,	so	an	error	may	result	if	these	years	are	used.

ISO	8601	point-in-time
An	ISO	8601	point-in-time	specification,	such	as
“CCyymmddThhmmss,”	where	T	is	the	literal	“T”,	“CCyymmdd
hhmmss”,	or	“CCyymmddThh:mm:ss”.	Note	that	only	these	three
formats	are	accepted.	The	command	does	not	accept	the	full	range
of	point-in-time	specifications	specified	in	ISO8601.	Other	formats
can	be	recognized	by	giving	an	explicit	-format	option	to	the	clock
scan	command.

relative	time
A	specification	relative	to	the	current	time.	The	format	is	number
unit.	Acceptable	units	are	year,	fortnight,	month,	week,	day,
hour,	minute	(or	min),	and	second	(or	sec).	The	unit	can	be
specified	as	a	singular	or	plural,	as	in	3	weeks.	These	modifiers
may	also	be	specified:	tomorrow,	yesterday,	today,	now,	last,
this,	next,	ago.

The	actual	date	is	calculated	according	to	the	following	steps.

First,	any	absolute	date	and/or	time	is	processed	and	converted.	Using
that	time	as	the	base,	day-of-week	specifications	are	added.	Next,
relative	specifications	are	used.	If	a	date	or	day	is	specified,	and	no
absolute	or	relative	time	is	given,	midnight	is	used.	Finally,	a	correction
is	applied	so	that	the	correct	hour	of	the	day	is	produced	after	allowing
for	daylight	savings	time	differences	and	the	correct	date	is	given	when
going	from	the	end	of	a	long	month	to	a	short	month.

SEE	ALSO

msgcat

KEYWORDS

clock,	date,	time

COPYRIGHT

Copyright	(c)	2004	Kevin	B.	Kenny	<kennykb@acm.org>.	All	rights
reserved.

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	2004	Kevin	B.	Kenny	<kennykb(at)acm.org>.	All	rights	reserved.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	global

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

global	-	Access	global	variables

SYNOPSIS

global	varname	?varname	...?

DESCRIPTION

This	command	has	no	effect	unless	executed	in	the	context	of	a	proc
body.	If	the	global	command	is	executed	in	the	context	of	a	proc	body,
it	creates	local	variables	linked	to	the	corresponding	global	variables
(though	these	linked	variables,	like	those	created	by	upvar,	are	not
included	in	the	list	returned	by	info	locals).

If	varname	contains	namespace	qualifiers,	the	local	variable's	name	is
the	unqualified	name	of	the	global	variable,	as	determined	by	the
namespace	tail	command.

varname	is	always	treated	as	the	name	of	a	variable,	not	an	array
element.	An	error	is	returned	if	the	name	looks	like	an	array	element,
such	as	a(b).

EXAMPLES

This	procedure	sets	the	namespace	variable	::a::x

proc	reset	{}	{

				global	a::x

				set	x	0

}

This	procedure	accumulates	the	strings	passed	to	it	in	a	global	buffer,
separated	by	newlines.	It	is	useful	for	situations	when	you	want	to	build
a	message	piece-by-piece	(as	if	with	puts)	but	send	that	full	message
in	a	single	piece	(e.g.	over	a	connection	opened	with	socket	or	as	part
of	a	counted	HTTP	response).

proc	accum	{string}	{

				global	accumulator

				append	accumulator	$string	\n

}

SEE	ALSO

namespace,	upvar,	variable

KEYWORDS

global,	namespace,	procedure,	variable

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1997	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	msgcat

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
msgcat	-	Tcl	message	catalog

SYNOPSIS
DESCRIPTION
COMMANDS

::msgcat::mc	src-string	?arg	arg	...?
::msgcat::mcmax	?src-string	src-string	...?
::msgcat::mclocale	?newLocale?
::msgcat::mcpreferences
::msgcat::mcload	dirname
::msgcat::mcset	locale	src-string	?translate-string?
::msgcat::mcmset	locale	src-trans-list
::msgcat::mcunknown	locale	src-string

LOCALE	SPECIFICATION
NAMESPACES	AND	MESSAGE	CATALOGS
LOCATION	AND	FORMAT	OF	MESSAGE	FILES
RECOMMENDED	MESSAGE	SETUP	FOR	PACKAGES
POSITIONAL	CODES	FOR	FORMAT	AND	SCAN	COMMANDS
CREDITS
SEE	ALSO
KEYWORDS

NAME

msgcat	-	Tcl	message	catalog

SYNOPSIS

package	require	Tcl	8.5
package	require	msgcat	1.4.2
::msgcat::mc	src-string	?arg	arg	...?
::msgcat::mcmax	?src-string	src-string	...?

::msgcat::mclocale	?newLocale?
::msgcat::mcpreferences
::msgcat::mcload	dirname
::msgcat::mcset	locale	src-string	?translate-string?
::msgcat::mcmset	locale	src-trans-list
::msgcat::mcunknown	locale	src-string

DESCRIPTION

The	msgcat	package	provides	a	set	of	functions	that	can	be	used	to
manage	multi-lingual	user	interfaces.	Text	strings	are	defined	in	a
“message	catalog”	which	is	independent	from	the	application,	and
which	can	be	edited	or	localized	without	modifying	the	application
source	code.	New	languages	or	locales	are	provided	by	adding	a	new
file	to	the	message	catalog.

Use	of	the	message	catalog	is	optional	by	any	application	or	package,
but	is	encouraged	if	the	application	or	package	wishes	to	be	enabled	for
multi-lingual	applications.

COMMANDS

::msgcat::mc	src-string	?arg	arg	...?
Returns	a	translation	of	src-string	according	to	the	user's	current
locale.	If	additional	arguments	past	src-string	are	given,	the	format
command	is	used	to	substitute	the	additional	arguments	in	the
translation	of	src-string.

::msgcat::mc	will	search	the	messages	defined	in	the	current
namespace	for	a	translation	of	src-string;	if	none	is	found,	it	will
search	in	the	parent	of	the	current	namespace,	and	so	on	until	it
reaches	the	global	namespace.	If	no	translation	string	exists,
::msgcat::mcunknown	is	called	and	the	string	returned	from
::msgcat::mcunknown	is	returned.

::msgcat::mc	is	the	main	function	used	to	localize	an	application.
Instead	of	using	an	English	string	directly,	an	application	can	pass
the	English	string	through	::msgcat::mc	and	use	the	result.	If	an

application	is	written	for	a	single	language	in	this	fashion,	then	it	is
easy	to	add	support	for	additional	languages	later	simply	by
defining	new	message	catalog	entries.

::msgcat::mcmax	?src-string	src-string	...?
Given	several	source	strings,	::msgcat::mcmax	returns	the	length
of	the	longest	translated	string.	This	is	useful	when	designing
localized	GUIs,	which	may	require	that	all	buttons,	for	example,	be
a	fixed	width	(which	will	be	the	width	of	the	widest	button).

::msgcat::mclocale	?newLocale?
This	function	sets	the	locale	to	newLocale.	If	newLocale	is	omitted,
the	current	locale	is	returned,	otherwise	the	current	locale	is	set	to
newLocale.	msgcat	stores	and	compares	the	locale	in	a	case-
insensitive	manner,	and	returns	locales	in	lowercase.	The	initial
locale	is	determined	by	the	locale	specified	in	the	user's
environment.	See	LOCALE	SPECIFICATION	below	for	a
description	of	the	locale	string	format.

::msgcat::mcpreferences
Returns	an	ordered	list	of	the	locales	preferred	by	the	user,	based
on	the	user's	language	specification.	The	list	is	ordered	from	most
specific	to	least	preference.	The	list	is	derived	from	the	current
locale	set	in	msgcat	by	::msgcat::mclocale,	and	cannot	be	set
independently.	For	example,	if	the	current	locale	is	en_US_funky,
then	::msgcat::mcpreferences	returns	{en_US_funky	en_US	en
{}}.

::msgcat::mcload	dirname
Searches	the	specified	directory	for	files	that	match	the	language
specifications	returned	by	::msgcat::mcpreferences	(note	that
these	are	all	lowercase),	extended	by	the	file	extension	“.msg”.
Each	matching	file	is	read	in	order,	assuming	a	UTF-8	encoding.
The	file	contents	are	then	evaluated	as	a	Tcl	script.	This	means
that	Unicode	characters	may	be	present	in	the	message	file	either
directly	in	their	UTF-8	encoded	form,	or	by	use	of	the	backslash-u
quoting	recognized	by	Tcl	evaluation.	The	number	of	message	files
which	matched	the	specification	and	were	loaded	is	returned.

::msgcat::mcset	locale	src-string	?translate-string?
Sets	the	translation	for	src-string	to	translate-string	in	the	specified
locale	and	the	current	namespace.	If	translate-string	is	not
specified,	src-string	is	used	for	both.	The	function	returns	translate-
string.

::msgcat::mcmset	locale	src-trans-list
Sets	the	translation	for	multiple	source	strings	in	src-trans-list	in	the
specified	locale	and	the	current	namespace.	src-trans-list	must
have	an	even	number	of	elements	and	is	in	the	form	{src-string
translate-string	?src-string	translate-string	...?}	::msgcat::mcmset
can	be	significantly	faster	than	multiple	invocations	of
::msgcat::mcset.	The	function	returns	the	number	of	translations
set.

::msgcat::mcunknown	locale	src-string
This	routine	is	called	by	::msgcat::mc	in	the	case	when	a
translation	for	src-string	is	not	defined	in	the	current	locale.	The
default	action	is	to	return	src-string.	This	procedure	can	be
redefined	by	the	application,	for	example	to	log	error	messages	for
each	unknown	string.	The	::msgcat::mcunknown	procedure	is
invoked	at	the	same	stack	context	as	the	call	to	::msgcat::mc.	The
return	value	of	::msgcat::mcunknown	is	used	as	the	return	value
for	the	call	to	::msgcat::mc.

LOCALE	SPECIFICATION

The	locale	is	specified	to	msgcat	by	a	locale	string	passed	to
::msgcat::mclocale.	The	locale	string	consists	of	a	language	code,	an
optional	country	code,	and	an	optional	system-specific	code,	each
separated	by	“_”.	The	country	and	language	codes	are	specified	in
standards	ISO-639	and	ISO-3166.	For	example,	the	locale	“en”
specifies	English	and	“en_US”	specifies	U.S.	English.

When	the	msgcat	package	is	first	loaded,	the	locale	is	initialized
according	to	the	user's	environment.	The	variables	env(LC_ALL),
env(LC_MESSAGES),	and	env(LANG)	are	examined	in	order.	The	first
of	them	to	have	a	non-empty	value	is	used	to	determine	the	initial

locale.	The	value	is	parsed	according	to	the	XPG4	pattern

language[_country][.codeset][@modifier]

to	extract	its	parts.	The	initial	locale	is	then	set	by	calling
::msgcat::mclocale	with	the	argument

language[_country][_modifier]

On	Windows,	if	none	of	those	environment	variables	is	set,	msgcat	will
attempt	to	extract	locale	information	from	the	registry.	If	all	these
attempts	to	discover	an	initial	locale	from	the	user's	environment	fail,
msgcat	defaults	to	an	initial	locale	of	“C”.

When	a	locale	is	specified	by	the	user,	a	“best	match”	search	is
performed	during	string	translation.	For	example,	if	a	user	specifies
en_GB_Funky,	the	locales	“en_GB_Funky”,	“en_GB”,	“en”	and	“”	(the
empty	string)	are	searched	in	order	until	a	matching	translation	string	is
found.	If	no	translation	string	is	available,	then	::msgcat::mcunknown
is	called.

NAMESPACES	AND	MESSAGE	CATALOGS

Strings	stored	in	the	message	catalog	are	stored	relative	to	the
namespace	from	which	they	were	added.	This	allows	multiple	packages
to	use	the	same	strings	without	fear	of	collisions	with	other	packages.	It
also	allows	the	source	string	to	be	shorter	and	less	prone	to
typographical	error.

For	example,	executing	the	code

::msgcat::mcset	en	hello	"hello	from	::"

namespace	eval	foo	{

			::msgcat::mcset	en	hello	"hello	from	::foo"

}

puts	[::msgcat::mc	hello]

namespace	eval	foo	{puts	[::msgcat::mc	hello]}

will	print

hello	from	::

hello	from	::foo

When	searching	for	a	translation	of	a	message,	the	message	catalog
will	search	first	the	current	namespace,	then	the	parent	of	the	current
namespace,	and	so	on	until	the	global	namespace	is	reached.	This
allows	child	namespaces	to	“inherit”	messages	from	their	parent
namespace.

For	example,	executing	(in	the	“en”	locale)	the	code

::msgcat::mcset	en	m1	"::	message1"

::msgcat::mcset	en	m2	"::	message2"

::msgcat::mcset	en	m3	"::	message3"

namespace	eval	::foo	{

			::msgcat::mcset	en	m2	"::foo	message2"

			::msgcat::mcset	en	m3	"::foo	message3"

}

namespace	eval	::foo::bar	{

			::msgcat::mcset	en	m3	"::foo::bar	message3"

}

namespace	import	::msgcat::mc

puts	"[mc	m1];	[mc	m2];	[mc	m3]"

namespace	eval	::foo	{puts	"[mc	m1];	[mc	m2];	[mc	m3]"}

namespace	eval	::foo::bar	{puts	"[mc	m1];	[mc	m2];	[

will	print

::	message1;	::	message2;	::	message3

::	message1;	::foo	message2;	::foo	message3

::	message1;	::foo	message2;	::foo::bar	message3

LOCATION	AND	FORMAT	OF	MESSAGE	FILES

Message	files	can	be	located	in	any	directory,	subject	to	the	following
conditions:

[1]
All	message	files	for	a	package	are	in	the	same	directory.

[2]
The	message	file	name	is	a	msgcat	locale	specifier	(all	lowercase)
followed	by	“.msg”.	For	example:

es.msg				—	spanish

en_gb.msg	—	United	Kingdom	English

Exception:	The	message	file	for	the	root	locale	“”	is	called
“ROOT.msg”.	This	exception	is	made	so	as	not	to	cause	peculiar
behavior,	such	as	marking	the	message	file	as	“hidden”	on	Unix	file
systems.

[3]
The	file	contains	a	series	of	calls	to	mcset	and	mcmset,	setting
the	necessary	translation	strings	for	the	language,	likely	enclosed
in	a	namespace	eval	so	that	all	source	strings	are	tied	to	the
namespace	of	the	package.	For	example,	a	short	es.msg	might
contain:

namespace	eval	::mypackage	{

			::msgcat::mcset	es	"Free	Beer!"	"Cerveza	Gracias!"

}

RECOMMENDED	MESSAGE	SETUP	FOR	PACKAGES

If	a	package	is	installed	into	a	subdirectory	of	the	tcl_pkgPath	and
loaded	via	package	require,	the	following	procedure	is	recommended.

[1]
During	package	installation,	create	a	subdirectory	msgs	under	your
package	directory.

[2]
Copy	your	*.msg	files	into	that	directory.

[3]
Add	the	following	command	to	your	package	initialization	script:

#	load	language	files,	stored	in	msgs	subdirectory

::msgcat::mcload	[file	join	[file	dirname	[info	script]]	msgs]

POSITIONAL	CODES	FOR	FORMAT	AND	SCAN	COMMANDS

It	is	possible	that	a	message	string	used	as	an	argument	to	format
might	have	positionally	dependent	parameters	that	might	need	to	be
repositioned.	For	example,	it	might	be	syntactically	desirable	to
rearrange	the	sentence	structure	while	translating.

format	"We	produced	%d	units	in	location	%s"	$num	$city

format	"In	location	%s	we	produced	%d	units"	$city	$num

This	can	be	handled	by	using	the	positional	parameters:

format	"We	produced	%1\$d	units	in	location	%2\$s"	$num	$city

format	"In	location	%2\$s	we	produced	%1\$d	units"	$num	$city

Similarly,	positional	parameters	can	be	used	with	scan	to	extract	values
from	internationalized	strings.

CREDITS

The	message	catalog	code	was	developed	by	Mark	Harrison.

SEE	ALSO

format,	scan,	namespace,	package

KEYWORDS

internationalization,	i18n,	localization,	l10n,	message,	text,	translation

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1998	Mark	Harrison.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	socket

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
socket	-	Open	a	TCP	network	connection

SYNOPSIS
DESCRIPTION
CLIENT	SOCKETS

-myaddr	addr
-myport	port
-async

SERVER	SOCKETS
-myaddr	addr

CONFIGURATION	OPTIONS
-error
-sockname
-peername

EXAMPLES
SEE	ALSO
KEYWORDS

NAME

socket	-	Open	a	TCP	network	connection

SYNOPSIS

socket	?options?	host	port
socket	-server	command	?options?	port

DESCRIPTION

This	command	opens	a	network	socket	and	returns	a	channel	identifier
that	may	be	used	in	future	invocations	of	commands	like	read,	puts
and	flush.	At	present	only	the	TCP	network	protocol	is	supported;

future	releases	may	include	support	for	additional	protocols.	The
socket	command	may	be	used	to	open	either	the	client	or	server	side
of	a	connection,	depending	on	whether	the	-server	switch	is	specified.

Note	that	the	default	encoding	for	all	sockets	is	the	system	encoding,	as
returned	by	encoding	system.	Most	of	the	time,	you	will	need	to	use
fconfigure	to	alter	this	to	something	else,	such	as	utf-8	(ideal	for
communicating	with	other	Tcl	processes)	or	iso8859-1	(useful	for	many
network	protocols,	especially	the	older	ones).

CLIENT	SOCKETS

If	the	-server	option	is	not	specified,	then	the	client	side	of	a	connection
is	opened	and	the	command	returns	a	channel	identifier	that	can	be
used	for	both	reading	and	writing.	Port	and	host	specify	a	port	to
connect	to;	there	must	be	a	server	accepting	connections	on	this	port.
Port	is	an	integer	port	number	(or	service	name,	where	supported	and
understood	by	the	host	operating	system)	and	host	is	either	a	domain-
style	name	such	as	www.tcl.tk	or	a	numerical	IP	address	such	as
127.0.0.1.	Use	localhost	to	refer	to	the	host	on	which	the	command	is
invoked.

The	following	options	may	also	be	present	before	host	to	specify
additional	information	about	the	connection:

-myaddr	addr
Addr	gives	the	domain-style	name	or	numerical	IP	address	of	the
client-side	network	interface	to	use	for	the	connection.	This	option
may	be	useful	if	the	client	machine	has	multiple	network	interfaces.
If	the	option	is	omitted	then	the	client-side	interface	will	be	chosen
by	the	system	software.

-myport	port
Port	specifies	an	integer	port	number	(or	service	name,	where
supported	and	understood	by	the	host	operating	system)	to	use	for
the	client's	side	of	the	connection.	If	this	option	is	omitted,	the
client's	port	number	will	be	chosen	at	random	by	the	system
software.

-async
The	-async	option	will	cause	the	client	socket	to	be	connected
asynchronously.	This	means	that	the	socket	will	be	created
immediately	but	may	not	yet	be	connected	to	the	server,	when	the
call	to	socket	returns.	When	a	gets	or	flush	is	done	on	the	socket
before	the	connection	attempt	succeeds	or	fails,	if	the	socket	is	in
blocking	mode,	the	operation	will	wait	until	the	connection	is
completed	or	fails.	If	the	socket	is	in	nonblocking	mode	and	a	gets
or	flush	is	done	on	the	socket	before	the	connection	attempt
succeeds	or	fails,	the	operation	returns	immediately	and	fblocked
on	the	socket	returns	1.	Synchronous	client	sockets	may	be
switched	(after	they	have	connected)	to	operating	in	asynchronous
mode	using:

fconfigure	chan	-blocking	0

See	the	fconfigure	command	for	more	details.

SERVER	SOCKETS

If	the	-server	option	is	specified	then	the	new	socket	will	be	a	server	for
the	port	given	by	port	(either	an	integer	or	a	service	name,	where
supported	and	understood	by	the	host	operating	system;	if	port	is	zero,
the	operating	system	will	allocate	a	free	port	to	the	server	socket	which
may	be	discovered	by	using	fconfigure	to	read	the	-sockname	option).
Tcl	will	automatically	accept	connections	to	the	given	port.	For	each
connection	Tcl	will	create	a	new	channel	that	may	be	used	to
communicate	with	the	client.	Tcl	then	invokes	command	with	three
additional	arguments:	the	name	of	the	new	channel,	the	address,	in
network	address	notation,	of	the	client's	host,	and	the	client's	port
number.

The	following	additional	option	may	also	be	specified	before	host:

-myaddr	addr
Addr	gives	the	domain-style	name	or	numerical	IP	address	of	the

server-side	network	interface	to	use	for	the	connection.	This	option
may	be	useful	if	the	server	machine	has	multiple	network
interfaces.	If	the	option	is	omitted	then	the	server	socket	is	bound
to	the	special	address	INADDR_ANY	so	that	it	can	accept
connections	from	any	interface.

Server	channels	cannot	be	used	for	input	or	output;	their	sole	use	is	to
accept	new	client	connections.	The	channels	created	for	each	incoming
client	connection	are	opened	for	input	and	output.	Closing	the	server
channel	shuts	down	the	server	so	that	no	new	connections	will	be
accepted;	however,	existing	connections	will	be	unaffected.

Server	sockets	depend	on	the	Tcl	event	mechanism	to	find	out	when
new	connections	are	opened.	If	the	application	does	not	enter	the	event
loop,	for	example	by	invoking	the	vwait	command	or	calling	the	C
procedure	Tcl_DoOneEvent,	then	no	connections	will	be	accepted.

If	port	is	specified	as	zero,	the	operating	system	will	allocate	an	unused
port	for	use	as	a	server	socket.	The	port	number	actually	allocated	may
be	retrieved	from	the	created	server	socket	using	the	fconfigure
command	to	retrieve	the	-sockname	option	as	described	below.

CONFIGURATION	OPTIONS

The	fconfigure	command	can	be	used	to	query	several	readonly
configuration	options	for	socket	channels:

-error
This	option	gets	the	current	error	status	of	the	given	socket.	This	is
useful	when	you	need	to	determine	if	an	asynchronous	connect
operation	succeeded.	If	there	was	an	error,	the	error	message	is
returned.	If	there	was	no	error,	an	empty	string	is	returned.

-sockname
This	option	returns	a	list	of	three	elements,	the	address,	the	host
name	and	the	port	number	for	the	socket.	If	the	host	name	cannot
be	computed,	the	second	element	is	identical	to	the	address,	the
first	element	of	the	list.

-peername
This	option	is	not	supported	by	server	sockets.	For	client	and
accepted	sockets,	this	option	returns	a	list	of	three	elements;	these
are	the	address,	the	host	name	and	the	port	to	which	the	peer
socket	is	connected	or	bound.	If	the	host	name	cannot	be
computed,	the	second	element	of	the	list	is	identical	to	the	address,
its	first	element.

EXAMPLES

Here	is	a	very	simple	time	server:

proc	Server	{channel	clientaddr	clientport}	{

			puts	"Connection	from	$clientaddr	registered"

			puts	$channel	[clock	format	[clock	seconds]]

			close	$channel

}

socket	-server	Server	9900

vwait	forever

And	here	is	the	corresponding	client	to	talk	to	the	server:

set	server	localhost

set	sockChan	[socket	$server	9900]

gets	$sockChan	line

close	$sockChan

puts	"The	time	on	$server	is	$line"

SEE	ALSO

fconfigure,	flush,	open,	read

KEYWORDS

bind,	channel,	connection,	domain	name,	host,	network	address,
socket,	tcp

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1996	Sun	Microsystems,	Inc.
Copyright	©	1998-1999	by	Scriptics	Corporation.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	variable

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

variable	-	create	and	initialize	a	namespace	variable

SYNOPSIS

variable	?name	value...?	name	?value?

DESCRIPTION

This	command	is	normally	used	within	a	namespace	eval	command	to
create	one	or	more	variables	within	a	namespace.	Each	variable	name
is	initialized	with	value.	The	value	for	the	last	variable	is	optional.

If	a	variable	name	does	not	exist,	it	is	created.	In	this	case,	if	value	is
specified,	it	is	assigned	to	the	newly	created	variable.	If	no	value	is
specified,	the	new	variable	is	left	undefined.	If	the	variable	already
exists,	it	is	set	to	value	if	value	is	specified	or	left	unchanged	if	no	value
is	given.	Normally,	name	is	unqualified	(does	not	include	the	names	of
any	containing	namespaces),	and	the	variable	is	created	in	the	current
namespace.	If	name	includes	any	namespace	qualifiers,	the	variable	is
created	in	the	specified	namespace.	If	the	variable	is	not	defined,	it	will
be	visible	to	the	namespace	which	command,	but	not	to	the	info
exists	command.

If	the	variable	command	is	executed	inside	a	Tcl	procedure,	it	creates
local	variables	linked	to	the	corresponding	namespace	variables	(and
therefore	these	variables	are	listed	by	info	vars.)	In	this	way	the
variable	command	resembles	the	global	command,	although	the
global	command	only	links	to	variables	in	the	global	namespace.	If	any
values	are	given,	they	are	used	to	modify	the	values	of	the	associated
namespace	variables.	If	a	namespace	variable	does	not	exist,	it	is

created	and	optionally	initialized.

A	name	argument	cannot	reference	an	element	within	an	array.	Instead,
name	should	reference	the	entire	array,	and	the	initialization	value
should	be	left	off.	After	the	variable	has	been	declared,	elements	within
the	array	can	be	set	using	ordinary	set	or	array	commands.

EXAMPLES

Create	a	variable	in	a	namespace:

namespace	eval	foo	{

				variable	bar	12345

}

Create	an	array	in	a	namespace:

namespace	eval	someNS	{

				variable	someAry

				array	set	someAry	{

								someName		someValue

								otherName	otherValue

				}

}

Access	variables	in	namespaces	from	a	procedure:

namespace	eval	foo	{

				proc	spong	{}	{

								#	Variable	in	this	namespace

								variable	bar

								puts	"bar	is	$bar"

								#	Variable	in	another	namespace

								variable	::someNS::someAry

								parray	someAry

				}

}

SEE	ALSO

global,	namespace,	upvar

KEYWORDS

global,	namespace,	procedure,	variable

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993-1997	Bell	Labs	Innovations	for	Lucent	Technologies
Copyright	©	1997	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	close

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

close	-	Close	an	open	channel

SYNOPSIS

close	channelId

DESCRIPTION

Closes	the	channel	given	by	channelId.

ChannelId	must	be	an	identifier	for	an	open	channel	such	as	a	Tcl
standard	channel	(stdin,	stdout,	or	stderr),	the	return	value	from	an
invocation	of	open	or	socket,	or	the	result	of	a	channel	creation
command	provided	by	a	Tcl	extension.

All	buffered	output	is	flushed	to	the	channel's	output	device,	any
buffered	input	is	discarded,	the	underlying	file	or	device	is	closed,	and
channelId	becomes	unavailable	for	use.

If	the	channel	is	blocking,	the	command	does	not	return	until	all	output
is	flushed.	If	the	channel	is	nonblocking	and	there	is	unflushed	output,
the	channel	remains	open	and	the	command	returns	immediately;
output	will	be	flushed	in	the	background	and	the	channel	will	be	closed
when	all	the	flushing	is	complete.

If	channelId	is	a	blocking	channel	for	a	command	pipeline	then	close
waits	for	the	child	processes	to	complete.

If	the	channel	is	shared	between	interpreters,	then	close	makes
channelId	unavailable	in	the	invoking	interpreter	but	has	no	other	effect
until	all	of	the	sharing	interpreters	have	closed	the	channel.	When	the

last	interpreter	in	which	the	channel	is	registered	invokes	close,	the
cleanup	actions	described	above	occur.	See	the	interp	command	for	a
description	of	channel	sharing.

Channels	are	automatically	closed	when	an	interpreter	is	destroyed	and
when	the	process	exits.	Channels	are	switched	to	blocking	mode,	to
ensure	that	all	output	is	correctly	flushed	before	the	process	exits.

The	command	returns	an	empty	string,	and	may	generate	an	error	if	an
error	occurs	while	flushing	output.	If	a	command	in	a	command	pipeline
created	with	open	returns	an	error,	close	generates	an	error	(similar	to
the	exec	command.)

EXAMPLE

This	illustrates	how	you	can	use	Tcl	to	ensure	that	files	get	closed	even
when	errors	happen	by	combining	catch,	close	and	return:

proc	withOpenFile	{filename	channelVar	script}	{

				upvar	1	$channelVar	chan

				set	chan	[open	$filename]

				catch	{

								uplevel	1	$script

				}	result	options

				close	$chan

				return	-options	$options	$result

}

SEE	ALSO

file,	open,	socket,	eof,	Tcl_StandardChannels

KEYWORDS

blocking,	channel,	close,	nonblocking

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	history

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
history	-	Manipulate	the	history	list

SYNOPSIS
DESCRIPTION

history
history	add	command	?exec?
history	change	newValue	?event?
history	clear
history	event	?event?
history	info	?count?
history	keep	?count?
history	nextid
history	redo	?event?

HISTORY	REVISION
KEYWORDS

NAME

history	-	Manipulate	the	history	list

SYNOPSIS

history	?option?	?arg	arg	...?

DESCRIPTION

The	history	command	performs	one	of	several	operations	related	to
recently-executed	commands	recorded	in	a	history	list.	Each	of	these
recorded	commands	is	referred	to	as	an	“event”.	When	specifying	an
event	to	the	history	command,	the	following	forms	may	be	used:

[1]

A	number:	if	positive,	it	refers	to	the	event	with	that	number	(all
events	are	numbered	starting	at	1).	If	the	number	is	negative,	it
selects	an	event	relative	to	the	current	event	(-1	refers	to	the
previous	event,	-2	to	the	one	before	that,	and	so	on).	Event	0	refers
to	the	current	event.

[2]
A	string:	selects	the	most	recent	event	that	matches	the	string.	An
event	is	considered	to	match	the	string	either	if	the	string	is	the
same	as	the	first	characters	of	the	event,	or	if	the	string	matches
the	event	in	the	sense	of	the	string	match	command.

The	history	command	can	take	any	of	the	following	forms:

history
Same	as	history	info,	described	below.

history	add	command	?exec?
Adds	the	command	argument	to	the	history	list	as	a	new	event.	If
exec	is	specified	(or	abbreviated)	then	the	command	is	also
executed	and	its	result	is	returned.	If	exec	is	not	specified	then	an
empty	string	is	returned	as	result.

history	change	newValue	?event?
Replaces	the	value	recorded	for	an	event	with	newValue.	Event
specifies	the	event	to	replace,	and	defaults	to	the	current	event	(not
event	-1).	This	command	is	intended	for	use	in	commands	that
implement	new	forms	of	history	substitution	and	wish	to	replace	the
current	event	(which	invokes	the	substitution)	with	the	command
created	through	substitution.	The	return	value	is	an	empty	string.

history	clear
Erase	the	history	list.	The	current	keep	limit	is	retained.	The	history
event	numbers	are	reset.

history	event	?event?
Returns	the	value	of	the	event	given	by	event.	Event	defaults	to	-1.

history	info	?count?
Returns	a	formatted	string	(intended	for	humans	to	read)	giving	the
event	number	and	contents	for	each	of	the	events	in	the	history	list
except	the	current	event.	If	count	is	specified	then	only	the	most
recent	count	events	are	returned.

history	keep	?count?
This	command	may	be	used	to	change	the	size	of	the	history	list	to
count	events.	Initially,	20	events	are	retained	in	the	history	list.	If
count	is	not	specified,	the	current	keep	limit	is	returned.

history	nextid
Returns	the	number	of	the	next	event	to	be	recorded	in	the	history
list.	It	is	useful	for	things	like	printing	the	event	number	in
command-line	prompts.

history	redo	?event?
Re-executes	the	command	indicated	by	event	and	returns	its	result.
Event	defaults	to	-1.	This	command	results	in	history	revision:	see
below	for	details.

HISTORY	REVISION

Pre-8.0	Tcl	had	a	complex	history	revision	mechanism.	The	current
mechanism	is	more	limited,	and	the	old	history	operations	substitute
and	words	have	been	removed.	(As	a	consolation,	the	clear	operation
was	added.)

The	history	option	redo	results	in	much	simpler	“history	revision”.	When
this	option	is	invoked	then	the	most	recent	event	is	modified	to
eliminate	the	history	command	and	replace	it	with	the	result	of	the
history	command.	If	you	want	to	redo	an	event	without	modifying
history,	then	use	the	event	operation	to	retrieve	some	event,	and	the
add	operation	to	add	it	to	history	and	execute	it.

KEYWORDS

event,	history,	record

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1997	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	namespace

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
namespace	-	create	and	manipulate	contexts	for	commands
and	variables

SYNOPSIS
DESCRIPTION

namespace	children	?namespace?	?pattern?
namespace	code	script
namespace	current
namespace	delete	?namespace	namespace	...?
namespace	ensemble	subcommand	?arg	...?
namespace	eval	namespace	arg	?arg	...?
namespace	exists	namespace
namespace	export	?-clear?	?pattern	pattern	...?
namespace	forget	?pattern	pattern	...?
namespace	import	?-force?	?pattern	pattern	...?
namespace	inscope	namespace	script	?arg	...?
namespace	origin	command
namespace	parent	?namespace?
namespace	path	?namespaceList?
namespace	qualifiers	string
namespace	tail	string
namespace	upvar	namespace	otherVar	myVar	?otherVar
myVar	...
namespace	unknown	?script?
namespace	which	?-command?	?-variable?	name

WHAT	IS	A	NAMESPACE?
QUALIFIED	NAMES
NAME	RESOLUTION
IMPORTING	COMMANDS
EXPORTING	COMMANDS
SCOPED	SCRIPTS

ENSEMBLES
namespace	ensemble	create	?option	value	...?
namespace	ensemble	configure	command	?option?	?value
...?
namespace	ensemble	exists	command

ENSEMBLE	OPTIONS
-map
-prefixes
-subcommands
-unknown
-command
-namespace

UNKNOWN	HANDLER	BEHAVIOUR
EXAMPLES
SEE	ALSO
KEYWORDS

NAME

namespace	-	create	and	manipulate	contexts	for	commands	and
variables

SYNOPSIS

namespace	?subcommand?	?arg	...?

DESCRIPTION

The	namespace	command	lets	you	create,	access,	and	destroy
separate	contexts	for	commands	and	variables.	See	the	section	WHAT
IS	A	NAMESPACE?	below	for	a	brief	overview	of	namespaces.	The
legal	values	of	subcommand	are	listed	below.	Note	that	you	can
abbreviate	the	subcommands.

namespace	children	?namespace?	?pattern?
Returns	a	list	of	all	child	namespaces	that	belong	to	the
namespace	namespace.	If	namespace	is	not	specified,	then	the
children	are	returned	for	the	current	namespace.	This	command

returns	fully-qualified	names,	which	start	with	a	double	colon	(::).	If
the	optional	pattern	is	given,	then	this	command	returns	only	the
names	that	match	the	glob-style	pattern.	The	actual	pattern	used	is
determined	as	follows:	a	pattern	that	starts	with	double	colon	(::)	is
used	directly,	otherwise	the	namespace	namespace	(or	the	fully-
qualified	name	of	the	current	namespace)	is	prepended	onto	the
pattern.

namespace	code	script
Captures	the	current	namespace	context	for	later	execution	of	the
script	script.	It	returns	a	new	script	in	which	script	has	been
wrapped	in	a	namespace	inscope	command.	The	new	script	has
two	important	properties.	First,	it	can	be	evaluated	in	any
namespace	and	will	cause	script	to	be	evaluated	in	the	current
namespace	(the	one	where	the	namespace	code	command	was
invoked).	Second,	additional	arguments	can	be	appended	to	the
resulting	script	and	they	will	be	passed	to	script	as	additional
arguments.	For	example,	suppose	the	command	set	script
[namespace	code	{foo	bar}]	is	invoked	in	namespace	::a::b.
Then	eval	$script	[list	x	y]	can	be	executed	in	any	namespace
(assuming	the	value	of	script	has	been	passed	in	properly)	and	will
have	the	same	effect	as	the	command	::namespace	eval	::a::b
{foo	bar	x	y}.	This	command	is	needed	because	extensions	like	Tk
normally	execute	callback	scripts	in	the	global	namespace.	A
scoped	command	captures	a	command	together	with	its
namespace	context	in	a	way	that	allows	it	to	be	executed	properly
later.	See	the	section	SCOPED	SCRIPTS	for	some	examples	of
how	this	is	used	to	create	callback	scripts.

namespace	current
Returns	the	fully-qualified	name	for	the	current	namespace.	The
actual	name	of	the	global	namespace	is	“”	(i.e.,	an	empty	string),
but	this	command	returns	::	for	the	global	namespace	as	a
convenience	to	programmers.

namespace	delete	?namespace	namespace	...?
Each	namespace	namespace	is	deleted	and	all	variables,
procedures,	and	child	namespaces	contained	in	the	namespace

are	deleted.	If	a	procedure	is	currently	executing	inside	the
namespace,	the	namespace	will	be	kept	alive	until	the	procedure
returns;	however,	the	namespace	is	marked	to	prevent	other	code
from	looking	it	up	by	name.	If	a	namespace	does	not	exist,	this
command	returns	an	error.	If	no	namespace	names	are	given,	this
command	does	nothing.

namespace	ensemble	subcommand	?arg	...?
Creates	and	manipulates	a	command	that	is	formed	out	of	an
ensemble	of	subcommands.	See	the	section	ENSEMBLES	below
for	further	details.

namespace	eval	namespace	arg	?arg	...?
Activates	a	namespace	called	namespace	and	evaluates	some
code	in	that	context.	If	the	namespace	does	not	already	exist,	it	is
created.	If	more	than	one	arg	argument	is	specified,	the	arguments
are	concatenated	together	with	a	space	between	each	one	in	the
same	fashion	as	the	eval	command,	and	the	result	is	evaluated.

If	namespace	has	leading	namespace	qualifiers	and	any	leading
namespaces	do	not	exist,	they	are	automatically	created.

namespace	exists	namespace
Returns	1	if	namespace	is	a	valid	namespace	in	the	current
context,	returns	0	otherwise.

namespace	export	?-clear?	?pattern	pattern	...?
Specifies	which	commands	are	exported	from	a	namespace.	The
exported	commands	are	those	that	can	be	later	imported	into
another	namespace	using	a	namespace	import	command.	Both
commands	defined	in	a	namespace	and	commands	the
namespace	has	previously	imported	can	be	exported	by	a
namespace.	The	commands	do	not	have	to	be	defined	at	the	time
the	namespace	export	command	is	executed.	Each	pattern	may
contain	glob-style	special	characters,	but	it	may	not	include	any
namespace	qualifiers.	That	is,	the	pattern	can	only	specify
commands	in	the	current	(exporting)	namespace.	Each	pattern	is
appended	onto	the	namespace's	list	of	export	patterns.	If	the	-clear

flag	is	given,	the	namespace's	export	pattern	list	is	reset	to	empty
before	any	pattern	arguments	are	appended.	If	no	patterns	are
given	and	the	-clear	flag	is	not	given,	this	command	returns	the
namespace's	current	export	list.

namespace	forget	?pattern	pattern	...?
Removes	previously	imported	commands	from	a	namespace.	Each
pattern	is	a	simple	or	qualified	name	such	as	x,	foo::x	or	a::b::p*.
Qualified	names	contain	double	colons	(::)	and	qualify	a	name	with
the	name	of	one	or	more	namespaces.	Each	“qualified	pattern”	is
qualified	with	the	name	of	an	exporting	namespace	and	may	have
glob-style	special	characters	in	the	command	name	at	the	end	of
the	qualified	name.	Glob	characters	may	not	appear	in	a
namespace	name.	For	each	“simple	pattern”	this	command	deletes
the	matching	commands	of	the	current	namespace	that	were
imported	from	a	different	namespace.	For	“qualified	patterns”,	this
command	first	finds	the	matching	exported	commands.	It	then
checks	whether	any	of	those	commands	were	previously	imported
by	the	current	namespace.	If	so,	this	command	deletes	the
corresponding	imported	commands.	In	effect,	this	un-does	the
action	of	a	namespace	import	command.

namespace	import	?-force?	?pattern	pattern	...?
Imports	commands	into	a	namespace,	or	queries	the	set	of
imported	commands	in	a	namespace.	When	no	arguments	are
present,	namespace	import	returns	the	list	of	commands	in	the
current	namespace	that	have	been	imported	from	other
namespaces.	The	commands	in	the	returned	list	are	in	the	format
of	simple	names,	with	no	namespace	qualifiers	at	all.	This	format	is
suitable	for	composition	with	namespace	forget	(see	EXAMPLES
below).	When	pattern	arguments	are	present,	each	pattern	is	a
qualified	name	like	foo::x	or	a::p*.	That	is,	it	includes	the	name	of
an	exporting	namespace	and	may	have	glob-style	special
characters	in	the	command	name	at	the	end	of	the	qualified	name.
Glob	characters	may	not	appear	in	a	namespace	name.	All	the
commands	that	match	a	pattern	string	and	which	are	currently
exported	from	their	namespace	are	added	to	the	current

namespace.	This	is	done	by	creating	a	new	command	in	the
current	namespace	that	points	to	the	exported	command	in	its
original	namespace;	when	the	new	imported	command	is	called,	it
invokes	the	exported	command.	This	command	normally	returns	an
error	if	an	imported	command	conflicts	with	an	existing	command.
However,	if	the	-force	option	is	given,	imported	commands	will
silently	replace	existing	commands.	The	namespace	import
command	has	snapshot	semantics:	that	is,	only	requested
commands	that	are	currently	defined	in	the	exporting	namespace
are	imported.	In	other	words,	you	can	import	only	the	commands
that	are	in	a	namespace	at	the	time	when	the	namespace	import
command	is	executed.	If	another	command	is	defined	and	exported
in	this	namespace	later	on,	it	will	not	be	imported.

namespace	inscope	namespace	script	?arg	...?
Executes	a	script	in	the	context	of	the	specified	namespace.	This
command	is	not	expected	to	be	used	directly	by	programmers;	calls
to	it	are	generated	implicitly	when	applications	use	namespace
code	commands	to	create	callback	scripts	that	the	applications
then	register	with,	e.g.,	Tk	widgets.	The	namespace	inscope
command	is	much	like	the	namespace	eval	command	except	that
the	namespace	must	already	exist,	and	namespace	inscope
appends	additional	args	as	proper	list	elements.

namespace	inscope	::foo	$script	$x	$y	$z

is	equivalent	to

namespace	eval	::foo	[concat	$script	[list	$x	$y	$z]]

thus	additional	arguments	will	not	undergo	a	second	round	of
substitution,	as	is	the	case	with	namespace	eval.

namespace	origin	command

Returns	the	fully-qualified	name	of	the	original	command	to	which
the	imported	command	command	refers.	When	a	command	is
imported	into	a	namespace,	a	new	command	is	created	in	that
namespace	that	points	to	the	actual	command	in	the	exporting
namespace.	If	a	command	is	imported	into	a	sequence	of
namespaces	a,	b,...,n	where	each	successive	namespace	just
imports	the	command	from	the	previous	namespace,	this	command
returns	the	fully-qualified	name	of	the	original	command	in	the	first
namespace,	a.	If	command	does	not	refer	to	an	imported
command,	the	command's	own	fully-qualified	name	is	returned.

namespace	parent	?namespace?
Returns	the	fully-qualified	name	of	the	parent	namespace	for
namespace	namespace.	If	namespace	is	not	specified,	the	fully-
qualified	name	of	the	current	namespace's	parent	is	returned.

namespace	path	?namespaceList?
Returns	the	command	resolution	path	of	the	current	namespace.	If
namespaceList	is	specified	as	a	list	of	named	namespaces,	the
current	namespace's	command	resolution	path	is	set	to	those
namespaces	and	returns	the	empty	list.	The	default	command
resolution	path	is	always	empty.	See	the	section	NAME
RESOLUTION	below	for	an	explanation	of	the	rules	regarding
name	resolution.

namespace	qualifiers	string
Returns	any	leading	namespace	qualifiers	for	string.	Qualifiers	are
namespace	names	separated	by	double	colons	(::).	For	the	string
::foo::bar::x,	this	command	returns	::foo::bar,	and	for	::	it	returns
an	empty	string.	This	command	is	the	complement	of	the
namespace	tail	command.	Note	that	it	does	not	check	whether	the
namespace	names	are,	in	fact,	the	names	of	currently	defined
namespaces.

namespace	tail	string
Returns	the	simple	name	at	the	end	of	a	qualified	string.	Qualifiers
are	namespace	names	separated	by	double	colons	(::).	For	the
string	::foo::bar::x,	this	command	returns	x,	and	for	::	it	returns	an

empty	string.	This	command	is	the	complement	of	the	namespace
qualifiers	command.	It	does	not	check	whether	the	namespace
names	are,	in	fact,	the	names	of	currently	defined	namespaces.

namespace	upvar	namespace	otherVar	myVar	?otherVar	myVar	...
This	command	arranges	for	one	or	more	local	variables	in	the
current	procedure	to	refer	to	variables	in	namespace.	The
namespace	name	is	resolved	as	described	in	section	NAME
RESOLUTION.	The	command	namespace	upvar	$ns	a	b	has	the
same	behaviour	as	upvar	0	${ns}::a	b,	with	the	sole	exception	of
the	resolution	rules	used	for	qualified	namespace	or	variable
names.	namespace	upvar	returns	an	empty	string.

namespace	unknown	?script?
Sets	or	returns	the	unknown	command	handler	for	the	current
namespace.	The	handler	is	invoked	when	a	command	called	from
within	the	namespace	cannot	be	found	(in	either	the	current
namespace	or	the	global	namespace).	The	script	argument,	if
given,	should	be	a	well	formed	list	representing	a	command	name
and	optional	arguments.	When	the	handler	is	invoked,	the	full
invocation	line	will	be	appended	to	the	script	and	the	result
evaluated	in	the	context	of	the	namespace.	The	default	handler	for
all	namespaces	is	::unknown.	If	no	argument	is	given,	it	returns
the	handler	for	the	current	namespace.

namespace	which	?-command?	?-variable?	name
Looks	up	name	as	either	a	command	or	variable	and	returns	its
fully-qualified	name.	For	example,	if	name	does	not	exist	in	the
current	namespace	but	does	exist	in	the	global	namespace,	this
command	returns	a	fully-qualified	name	in	the	global	namespace.	If
the	command	or	variable	does	not	exist,	this	command	returns	an
empty	string.	If	the	variable	has	been	created	but	not	defined,	such
as	with	the	variable	command	or	through	a	trace	on	the	variable,
this	command	will	return	the	fully-qualified	name	of	the	variable.	If
no	flag	is	given,	name	is	treated	as	a	command	name.	See	the
section	NAME	RESOLUTION	below	for	an	explanation	of	the	rules
regarding	name	resolution.

WHAT	IS	A	NAMESPACE?

A	namespace	is	a	collection	of	commands	and	variables.	It
encapsulates	the	commands	and	variables	to	ensure	that	they	will	not
interfere	with	the	commands	and	variables	of	other	namespaces.	Tcl
has	always	had	one	such	collection,	which	we	refer	to	as	the	global
namespace.	The	global	namespace	holds	all	global	variables	and
commands.	The	namespace	eval	command	lets	you	create	new
namespaces.	For	example,

namespace	eval	Counter	{

			namespace	export	bump

			variable	num	0

			proc	bump	{}	{

						variable	num

						incr	num

			}

}

creates	a	new	namespace	containing	the	variable	num	and	the
procedure	bump.	The	commands	and	variables	in	this	namespace	are
separate	from	other	commands	and	variables	in	the	same	program.	If
there	is	a	command	named	bump	in	the	global	namespace,	for
example,	it	will	be	different	from	the	command	bump	in	the	Counter
namespace.

Namespace	variables	resemble	global	variables	in	Tcl.	They	exist
outside	of	the	procedures	in	a	namespace	but	can	be	accessed	in	a
procedure	via	the	variable	command,	as	shown	in	the	example	above.

Namespaces	are	dynamic.	You	can	add	and	delete	commands	and
variables	at	any	time,	so	you	can	build	up	the	contents	of	a	namespace
over	time	using	a	series	of	namespace	eval	commands.	For	example,
the	following	series	of	commands	has	the	same	effect	as	the
namespace	definition	shown	above:

namespace	eval	Counter	{

			variable	num	0

			proc	bump	{}	{

						variable	num

						return	[incr	num]

			}

}

namespace	eval	Counter	{

			proc	test	{args}	{

						return	$args

			}

}

namespace	eval	Counter	{

				rename	test	""

}

Note	that	the	test	procedure	is	added	to	the	Counter	namespace,	and
later	removed	via	the	rename	command.

Namespaces	can	have	other	namespaces	within	them,	so	they	nest
hierarchically.	A	nested	namespace	is	encapsulated	inside	its	parent
namespace	and	can	not	interfere	with	other	namespaces.

QUALIFIED	NAMES

Each	namespace	has	a	textual	name	such	as	history	or	::safe::interp.
Since	namespaces	may	nest,	qualified	names	are	used	to	refer	to
commands,	variables,	and	child	namespaces	contained	inside
namespaces.	Qualified	names	are	similar	to	the	hierarchical	path
names	for	Unix	files	or	Tk	widgets,	except	that	::	is	used	as	the
separator	instead	of	/	or	..	The	topmost	or	global	namespace	has	the
name	“”	(i.e.,	an	empty	string),	although	::	is	a	synonym.	As	an
example,	the	name	::safe::interp::create	refers	to	the	command
create	in	the	namespace	interp	that	is	a	child	of	namespace	::safe,
which	in	turn	is	a	child	of	the	global	namespace,	::.

If	you	want	to	access	commands	and	variables	from	another
namespace,	you	must	use	some	extra	syntax.	Names	must	be	qualified
by	the	namespace	that	contains	them.	From	the	global	namespace,	we
might	access	the	Counter	procedures	like	this:

Counter::bump	5

Counter::Reset

We	could	access	the	current	count	like	this:

puts	"count	=	$Counter::num"

When	one	namespace	contains	another,	you	may	need	more	than	one
qualifier	to	reach	its	elements.	If	we	had	a	namespace	Foo	that
contained	the	namespace	Counter,	you	could	invoke	its	bump
procedure	from	the	global	namespace	like	this:

Foo::Counter::bump	3

You	can	also	use	qualified	names	when	you	create	and	rename
commands.	For	example,	you	could	add	a	procedure	to	the	Foo
namespace	like	this:

proc	Foo::Test	{args}	{return	$args}

And	you	could	move	the	same	procedure	to	another	namespace	like
this:

rename	Foo::Test	Bar::Test

There	are	a	few	remaining	points	about	qualified	names	that	we	should
cover.	Namespaces	have	nonempty	names	except	for	the	global
namespace.	::	is	disallowed	in	simple	command,	variable,	and
namespace	names	except	as	a	namespace	separator.	Extra	colons	in
any	separator	part	of	a	qualified	name	are	ignored;	i.e.	two	or	more
colons	are	treated	as	a	namespace	separator.	A	trailing	::	in	a	qualified
variable	or	command	name	refers	to	the	variable	or	command	named
{}.	However,	a	trailing	::	in	a	qualified	namespace	name	is	ignored.

NAME	RESOLUTION

In	general,	all	Tcl	commands	that	take	variable	and	command	names
support	qualified	names.	This	means	you	can	give	qualified	names	to
such	commands	as	set,	proc,	rename,	and	interp	alias.	If	you	provide
a	fully-qualified	name	that	starts	with	a	::,	there	is	no	question	about
what	command,	variable,	or	namespace	you	mean.	However,	if	the
name	does	not	start	with	a	::	(i.e.,	is	relative),	Tcl	follows	basic	rules	for
looking	it	up:	Variable	names	are	always	resolved	by	looking	first	in	the
current	namespace,	and	then	in	the	global	namespace.	Command
names	are	also	always	resolved	by	looking	in	the	current	namespace
first.	If	not	found	there,	they	are	searched	for	in	every	namespace	on
the	current	namespace's	command	path	(which	is	empty	by	default).	If
not	found	there,	command	names	are	looked	up	in	the	global
namespace	(or,	failing	that,	are	processed	by	the	unknown	command.)
Namespace	names,	on	the	other	hand,	are	always	resolved	by	looking
in	only	the	current	namespace.

In	the	following	example,

set	traceLevel	0

namespace	eval	Debug	{

			printTrace	$traceLevel

}

Tcl	looks	for	traceLevel	in	the	namespace	Debug	and	then	in	the
global	namespace.	It	looks	up	the	command	printTrace	in	the	same

way.	If	a	variable	or	command	name	is	not	found	in	either	context,	the
name	is	undefined.	To	make	this	point	absolutely	clear,	consider	the
following	example:

set	traceLevel	0

namespace	eval	Foo	{

			variable	traceLevel	3

			namespace	eval	Debug	{

						printTrace	$traceLevel

			}

}

Here	Tcl	looks	for	traceLevel	first	in	the	namespace	Foo::Debug.
Since	it	is	not	found	there,	Tcl	then	looks	for	it	in	the	global	namespace.
The	variable	Foo::traceLevel	is	completely	ignored	during	the	name
resolution	process.

You	can	use	the	namespace	which	command	to	clear	up	any	question
about	name	resolution.	For	example,	the	command:

namespace	eval	Foo::Debug	{namespace	which	-variable	traceLevel}

returns	::traceLevel.	On	the	other	hand,	the	command,

namespace	eval	Foo	{namespace	which	-variable	traceLevel}

returns	::Foo::traceLevel.

As	mentioned	above,	namespace	names	are	looked	up	differently	than
the	names	of	variables	and	commands.	Namespace	names	are	always
resolved	in	the	current	namespace.	This	means,	for	example,	that	a

namespace	eval	command	that	creates	a	new	namespace	always
creates	a	child	of	the	current	namespace	unless	the	new	namespace
name	begins	with	::.

Tcl	has	no	access	control	to	limit	what	variables,	commands,	or
namespaces	you	can	reference.	If	you	provide	a	qualified	name	that
resolves	to	an	element	by	the	name	resolution	rule	above,	you	can
access	the	element.

You	can	access	a	namespace	variable	from	a	procedure	in	the	same
namespace	by	using	the	variable	command.	Much	like	the	global
command,	this	creates	a	local	link	to	the	namespace	variable.	If
necessary,	it	also	creates	the	variable	in	the	current	namespace	and
initializes	it.	Note	that	the	global	command	only	creates	links	to
variables	in	the	global	namespace.	It	is	not	necessary	to	use	a	variable
command	if	you	always	refer	to	the	namespace	variable	using	an
appropriate	qualified	name.

IMPORTING	COMMANDS

Namespaces	are	often	used	to	represent	libraries.	Some	library
commands	are	used	so	frequently	that	it	is	a	nuisance	to	type	their
qualified	names.	For	example,	suppose	that	all	of	the	commands	in	a
package	like	BLT	are	contained	in	a	namespace	called	Blt.	Then	you
might	access	these	commands	like	this:

Blt::graph	.g	-background	red

Blt::table	.	.g	0,0

If	you	use	the	graph	and	table	commands	frequently,	you	may	want	to
access	them	without	the	Blt::	prefix.	You	can	do	this	by	importing	the
commands	into	the	current	namespace,	like	this:

namespace	import	Blt::*

This	adds	all	exported	commands	from	the	Blt	namespace	into	the
current	namespace	context,	so	you	can	write	code	like	this:

graph	.g	-background	red

table	.	.g	0,0

The	namespace	import	command	only	imports	commands	from	a
namespace	that	that	namespace	exported	with	a	namespace	export
command.

Importing	every	command	from	a	namespace	is	generally	a	bad	idea
since	you	do	not	know	what	you	will	get.	It	is	better	to	import	just	the
specific	commands	you	need.	For	example,	the	command

namespace	import	Blt::graph	Blt::table

imports	only	the	graph	and	table	commands	into	the	current	context.

If	you	try	to	import	a	command	that	already	exists,	you	will	get	an	error.
This	prevents	you	from	importing	the	same	command	from	two	different
packages.	But	from	time	to	time	(perhaps	when	debugging),	you	may
want	to	get	around	this	restriction.	You	may	want	to	reissue	the
namespace	import	command	to	pick	up	new	commands	that	have
appeared	in	a	namespace.	In	that	case,	you	can	use	the	-force	option,
and	existing	commands	will	be	silently	overwritten:

namespace	import	-force	Blt::graph	Blt::table

If	for	some	reason,	you	want	to	stop	using	the	imported	commands,	you
can	remove	them	with	a	namespace	forget	command,	like	this:

namespace	forget	Blt::*

This	searches	the	current	namespace	for	any	commands	imported	from
Blt.	If	it	finds	any,	it	removes	them.	Otherwise,	it	does	nothing.	After
this,	the	Blt	commands	must	be	accessed	with	the	Blt::	prefix.

When	you	delete	a	command	from	the	exporting	namespace	like	this:

rename	Blt::graph	""

the	command	is	automatically	removed	from	all	namespaces	that	import
it.

EXPORTING	COMMANDS

You	can	export	commands	from	a	namespace	like	this:

namespace	eval	Counter	{

			namespace	export	bump	reset

			variable	Num	0

			variable	Max	100

			proc	bump	{{by	1}}	{

						variable	Num

						incr	Num	$by

						Check

						return	$Num

			}

			proc	reset	{}	{

						variable	Num

						set	Num	0

			}

			proc	Check	{}	{

						variable	Num

						variable	Max

						if	{$Num	>	$Max}	{

									error	"too	high!"

						}

			}

}

The	procedures	bump	and	reset	are	exported,	so	they	are	included
when	you	import	from	the	Counter	namespace,	like	this:

namespace	import	Counter::*

However,	the	Check	procedure	is	not	exported,	so	it	is	ignored	by	the
import	operation.

The	namespace	import	command	only	imports	commands	that	were
declared	as	exported	by	their	namespace.	The	namespace	export
command	specifies	what	commands	may	be	imported	by	other
namespaces.	If	a	namespace	import	command	specifies	a	command
that	is	not	exported,	the	command	is	not	imported.

SCOPED	SCRIPTS

The	namespace	code	command	is	the	means	by	which	a	script	may	be
packaged	for	evaluation	in	a	namespace	other	than	the	one	in	which	it
was	created.	It	is	used	most	often	to	create	event	handlers,	Tk	bindings,
and	traces	for	evaluation	in	the	global	context.	For	instance,	the
following	code	indicates	how	to	direct	a	variable	trace	callback	into	the
current	namespace:

namespace	eval	a	{

			variable	b

			proc	theTraceCallback	{	n1	n2	op	}	{

						upvar	1	$n1	var

						puts	"the	value	of	$n1	has	changed	to	$var"

						return

			}

			trace	variable	b	w	[namespace	code	theTraceCallback]

}

set	a::b	c

When	executed,	it	prints	the	message:

the	value	of	a::b	has	changed	to	c

ENSEMBLES

The	namespace	ensemble	is	used	to	create	and	manipulate	ensemble
commands,	which	are	commands	formed	by	grouping	subcommands
together.	The	commands	typically	come	from	the	current	namespace
when	the	ensemble	was	created,	though	this	is	configurable.	Note	that
there	may	be	any	number	of	ensembles	associated	with	any
namespace	(including	none,	which	is	true	of	all	namespaces	by
default),	though	all	the	ensembles	associated	with	a	namespace	are
deleted	when	that	namespace	is	deleted.	The	link	between	an
ensemble	command	and	its	namespace	is	maintained	however	the
ensemble	is	renamed.

Three	subcommands	of	the	namespace	ensemble	command	are
defined:

namespace	ensemble	create	?option	value	...?
Creates	a	new	ensemble	command	linked	to	the	current
namespace,	returning	the	fully	qualified	name	of	the	command
created.	The	arguments	to	namespace	ensemble	create	allow	the
configuration	of	the	command	as	if	with	the	namespace	ensemble
configure	command.	If	not	overridden	with	the	-command	option,
this	command	creates	an	ensemble	with	exactly	the	same	name	as
the	linked	namespace.	See	the	section	ENSEMBLE	OPTIONS
below	for	a	full	list	of	options	supported	and	their	effects.

namespace	ensemble	configure	command	?option?	?value	...?

Retrieves	the	value	of	an	option	associated	with	the	ensemble
command	named	command,	or	updates	some	options	associated
with	that	ensemble	command.	See	the	section	ENSEMBLE
OPTIONS	below	for	a	full	list	of	options	supported	and	their	effects.

namespace	ensemble	exists	command
Returns	a	boolean	value	that	describes	whether	the	command
command	exists	and	is	an	ensemble	command.	This	command
only	ever	returns	an	error	if	the	number	of	arguments	to	the
command	is	wrong.

When	called,	an	ensemble	command	takes	its	first	argument	and	looks
it	up	(according	to	the	rules	described	below)	to	discover	a	list	of	words
to	replace	the	ensemble	command	and	subcommand	with.	The
resulting	list	of	words	is	then	evaluated	(with	no	further	substitutions)	as
if	that	was	what	was	typed	originally	(i.e.	by	passing	the	list	of	words
through	Tcl_EvalObjv)	and	returning	the	result	of	the	command.	Note
that	it	is	legal	to	make	the	target	of	an	ensemble	rewrite	be	another	(or
even	the	same)	ensemble	command.	The	ensemble	command	will	not
be	visible	through	the	use	of	the	uplevel	or	info	level	commands.

ENSEMBLE	OPTIONS

The	following	options,	supported	by	the	namespace	ensemble	create
and	namespace	ensemble	configure	commands,	control	how	an
ensemble	command	behaves:

-map
When	non-empty,	this	option	supplies	a	dictionary	that	provides	a
mapping	from	subcommand	names	to	a	list	of	prefix	words	to
substitute	in	place	of	the	ensemble	command	and	subcommand
words	(in	a	manner	similar	to	an	alias	created	with	interp	alias;	the
words	are	not	reparsed	after	substitution).	When	this	option	is
empty,	the	mapping	will	be	from	the	local	name	of	the	subcommand
to	its	fully-qualified	name.	Note	that	when	this	option	is	non-empty
and	the	-subcommands	option	is	empty,	the	ensemble
subcommand	names	will	be	exactly	those	words	that	have

mappings	in	the	dictionary.

-prefixes
This	option	(which	is	enabled	by	default)	controls	whether	the
ensemble	command	recognizes	unambiguous	prefixes	of	its
subcommands.	When	turned	off,	the	ensemble	command	requires
exact	matching	of	subcommand	names.

-subcommands
When	non-empty,	this	option	lists	exactly	what	subcommands	are
in	the	ensemble.	The	mapping	for	each	of	those	commands	will	be
either	whatever	is	defined	in	the	-map	option,	or	to	the	command
with	the	same	name	in	the	namespace	linked	to	the	ensemble.	If
this	option	is	empty,	the	subcommands	of	the	namespace	will	either
be	the	keys	of	the	dictionary	listed	in	the	-map	option	or	the
exported	commands	of	the	linked	namespace	at	the	time	of	the
invocation	of	the	ensemble	command.

-unknown
When	non-empty,	this	option	provides	a	partial	command	(to	which
all	the	words	that	are	arguments	to	the	ensemble	command,
including	the	fully-qualified	name	of	the	ensemble,	are	appended)
to	handle	the	case	where	an	ensemble	subcommand	is	not
recognized	and	would	otherwise	generate	an	error.	When	empty
(the	default)	an	error	(in	the	style	of	Tcl_GetIndexFromObj)	is
generated	whenever	the	ensemble	is	unable	to	determine	how	to
implement	a	particular	subcommand.	See	UNKNOWN	HANDLER
BEHAVIOUR	for	more	details.

The	following	extra	option	is	allowed	by	namespace	ensemble	create:

-command
This	write-only	option	allows	the	name	of	the	ensemble	created	by
namespace	ensemble	create	to	be	anything	in	any	existing
namespace.	The	default	value	for	this	option	is	the	fully-qualified
name	of	the	namespace	in	which	the	namespace	ensemble
create	command	is	invoked.

The	following	extra	option	is	allowed	by	namespace	ensemble
configure:

-namespace
This	read-only	option	allows	the	retrieval	of	the	fully-qualified	name
of	the	namespace	which	the	ensemble	was	created	within.

UNKNOWN	HANDLER	BEHAVIOUR

If	an	unknown	handler	is	specified	for	an	ensemble,	that	handler	is
called	when	the	ensemble	command	would	otherwise	return	an	error
due	to	it	being	unable	to	decide	which	subcommand	to	invoke.	The
exact	conditions	under	which	that	occurs	are	controlled	by	the	-
subcommands,	-map	and	-prefixes	options	as	described	above.

To	execute	the	unknown	handler,	the	ensemble	mechanism	takes	the
specified	-unknown	option	and	appends	each	argument	of	the
attempted	ensemble	command	invocation	(including	the	ensemble
command	itself,	expressed	as	a	fully	qualified	name).	It	invokes	the
resulting	command	in	the	scope	of	the	attempted	call.	If	the	execution	of
the	unknown	handler	terminates	normally,	the	ensemble	engine
reparses	the	subcommand	(as	described	below)	and	tries	to	dispatch	it
again,	which	is	ideal	for	when	the	ensemble's	configuration	has	been
updated	by	the	unknown	subcommand	handler.	Any	other	kind	of
termination	of	the	unknown	handler	is	treated	as	an	error.

The	result	of	the	unknown	handler	is	expected	to	be	a	list	(it	is	an	error
if	it	is	not).	If	the	list	is	an	empty	list,	the	ensemble	command	attempts
to	look	up	the	original	subcommand	again	and,	if	it	is	not	found	this
time,	an	error	will	be	generated	just	as	if	the	-unknown	handler	was	not
there	(i.e.	for	any	particular	invocation	of	an	ensemble,	its	unknown
handler	will	be	called	at	most	once.)	This	makes	it	easy	for	the	unknown
handler	to	update	the	ensemble	or	its	backing	namespace	so	as	to
provide	an	implementation	of	the	desired	subcommand	and	reparse.

When	the	result	is	a	non-empty	list,	the	words	of	that	list	are	used	to
replace	the	ensemble	command	and	subcommand,	just	as	if	they	had
been	looked	up	in	the	-map.	It	is	up	to	the	unknown	handler	to	supply

all	namespace	qualifiers	if	the	implementing	subcommand	is	not	in	the
namespace	of	the	caller	of	the	ensemble	command.	Also	note	that
when	ensemble	commands	are	chained	(e.g.	if	you	make	one	of	the
commands	that	implement	an	ensemble	subcommand	into	an
ensemble,	in	a	manner	similar	to	the	text	widget's	tag	and	mark
subcommands)	then	the	rewrite	happens	in	the	context	of	the	caller	of
the	outermost	ensemble.	That	is	to	say	that	ensembles	do	not	in
themselves	place	any	namespace	contexts	on	the	Tcl	call	stack.

Where	an	empty	-unknown	handler	is	given	(the	default),	the	ensemble
command	will	generate	an	error	message	based	on	the	list	of
commands	that	the	ensemble	has	defined	(formatted	similarly	to	the
error	message	from	Tcl_GetIndexFromObj).	This	is	the	error	that	will
be	thrown	when	the	subcommand	is	still	not	recognized	during
reparsing.	It	is	also	an	error	for	an	-unknown	handler	to	delete	its
namespace.

EXAMPLES

Create	a	namespace	containing	a	variable	and	an	exported	command:

namespace	eval	foo	{

			variable	bar	0

			proc	grill	{}	{

						variable	bar

						puts	"called	[incr	bar]	times"

			}

			namespace	export	grill

}

Call	the	command	defined	in	the	previous	example	in	various	ways.

#	Direct	call

::foo::grill

#	Use	the	command	resolution	path	to	find	the	name

namespace	eval	boo	{

			namespace	path	::foo

			grill

}

#	Import	into	current	namespace,	then	call	local	alias

namespace	import	foo::grill

grill

#	Create	two	ensembles,	one	with	the	default	name	and	one	with	a

#	specified	name.		Then	call	through	the	ensembles.

namespace	eval	foo	{

			namespace	ensemble	create

			namespace	ensemble	create	-command	::foobar

}

foo	grill

foobar	grill

Look	up	where	the	command	imported	in	the	previous	example	came
from:

puts	"grill	came	from	[namespace	origin	grill]"

Remove	all	imported	commands	from	the	current	namespace:

namespace	forget	{*}[namespace	import]

SEE	ALSO

interp,	upvar,	variable

KEYWORDS

command,	ensemble,	exported,	internal,	variable

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993-1997	Bell	Labs	Innovations	for	Lucent	Technologies
Copyright	©	1997	Sun	Microsystems,	Inc.
Copyright	©	2000	Scriptics	Corporation.
Copyright	©	2004-2005	Donal	K.	Fellows.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	source

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

source	-	Evaluate	a	file	or	resource	as	a	Tcl	script

SYNOPSIS

source	fileName
source	-encoding	encodingName	fileName

DESCRIPTION

This	command	takes	the	contents	of	the	specified	file	or	resource	and
passes	it	to	the	Tcl	interpreter	as	a	text	script.	The	return	value	from
source	is	the	return	value	of	the	last	command	executed	in	the	script.	If
an	error	occurs	in	evaluating	the	contents	of	the	script	then	the	source
command	will	return	that	error.	If	a	return	command	is	invoked	from
within	the	script	then	the	remainder	of	the	file	will	be	skipped	and	the
source	command	will	return	normally	with	the	result	from	the	return
command.

The	end-of-file	character	for	files	is	“\32”	(^Z)	for	all	platforms.	The
source	command	will	read	files	up	to	this	character.	This	restriction
does	not	exist	for	the	read	or	gets	commands,	allowing	for	files
containing	code	and	data	segments	(scripted	documents).	If	you	require
a	“^Z”	in	code	for	string	comparison,	you	can	use	“\032”	or	“\u001a”,
which	will	be	safely	substituted	by	the	Tcl	interpreter	into	“^Z”.

The	-encoding	option	is	used	to	specify	the	encoding	of	the	data	stored
in	fileName.	When	the	-encoding	option	is	omitted,	the	system
encoding	is	assumed.

EXAMPLE

Run	the	script	in	the	file	foo.tcl	and	then	the	script	in	the	file	bar.tcl:

source	foo.tcl

source	bar.tcl

Alternatively:

foreach	scriptFile	{foo.tcl	bar.tcl}	{

			source	$scriptFile

}

SEE	ALSO

file,	cd,	encoding,	info

KEYWORDS

file,	script

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.
Copyright	©	2000	Scriptics	Corporation.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	vwait

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

vwait	-	Process	events	until	a	variable	is	written

SYNOPSIS

vwait	varName

DESCRIPTION

This	command	enters	the	Tcl	event	loop	to	process	events,	blocking	the
application	if	no	events	are	ready.	It	continues	processing	events	until
some	event	handler	sets	the	value	of	variable	varName.	Once	varName
has	been	set,	the	vwait	command	will	return	as	soon	as	the	event
handler	that	modified	varName	completes.	varName	must	be	globally
scoped	(either	with	a	call	to	global	for	the	varName,	or	with	the	full
namespace	path	specification).

In	some	cases	the	vwait	command	may	not	return	immediately	after
varName	is	set.	This	can	happen	if	the	event	handler	that	sets	varName
does	not	complete	immediately.	For	example,	if	an	event	handler	sets
varName	and	then	itself	calls	vwait	to	wait	for	a	different	variable,	then
it	may	not	return	for	a	long	time.	During	this	time	the	top-level	vwait	is
blocked	waiting	for	the	event	handler	to	complete,	so	it	cannot	return
either.

EXAMPLES

Run	the	event-loop	continually	until	some	event	calls	exit.	(You	can	use
any	variable	not	mentioned	elsewhere,	but	the	name	forever	reminds
you	at	a	glance	of	the	intent.)

vwait	forever

Wait	five	seconds	for	a	connection	to	a	server	socket,	otherwise	close
the	socket	and	continue	running	the	script:

#	Initialise	the	state

after	5000	set	state	timeout

set	server	[socket	-server	accept	12345]

proc	accept	{args}	{

			global	state	connectionInfo

			set	state	accepted

			set	connectionInfo	$args

}

#	Wait	for	something	to	happen

vwait	state

#	Clean	up	events	that	could	have	happened

close	$server

after	cancel	set	state	timeout

#	Do	something	based	on	how	the	vwait	finished...

switch	$state	{

			timeout	{

						puts	"no	connection	on	port	12345"

			}

			accepted	{

						puts	"connection:	$connectionInfo"

						puts	[lindex	$connectionInfo	0]	"Hello	there!"

			}

}

SEE	ALSO

global,	update

KEYWORDS

event,	variable,	wait

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1995-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	concat

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

concat	-	Join	lists	together

SYNOPSIS

concat	?arg	arg	...?

DESCRIPTION

This	command	joins	each	of	its	arguments	together	with	spaces	after
trimming	leading	and	trailing	white-space	from	each	of	them.	If	all	the
arguments	are	lists,	this	has	the	same	effect	as	concatenating	them	into
a	single	list.	It	permits	any	number	of	arguments;	if	no	args	are
supplied,	the	result	is	an	empty	string.

EXAMPLES

Although	concat	will	concatenate	lists,	flattening	them	in	the	process
(so	giving	the	following	interactive	session):

%	concat	a	b	{c	d	e}	{f	{g	h}}

a	b	c	d	e	f	{g	h}

it	will	also	concatenate	things	that	are	not	lists,	as	can	be	seen	from	this
session:

%	concat	"	a	b	{c			"	d	"		e}	f"

a	b	{c	d	e}	f

Note	also	that	the	concatenation	does	not	remove	spaces	from	the
middle	of	values,	as	can	be	seen	here:

%	concat	"a			b			c"	{	d	e	f	}

a			b			c	d	e	f

(i.e.,	there	are	three	spaces	between	each	of	the	a,	the	b	and	the	c).

SEE	ALSO

append,	eval,	join

KEYWORDS

concatenate,	join,	lists

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	http

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
http	-	Client-side	implementation	of	the	HTTP/1.1	protocol

SYNOPSIS
DESCRIPTION
COMMANDS

::http::config	?options?
-accept	mimetypes
-proxyhost	hostname
-proxyport	number
-proxyfilter	command
-urlencoding	encoding
-useragent	string

::http::geturl	url	?options?
-binary	boolean
-blocksize	size
-channel	name
-command	callback
-handler	callback
-headers	keyvaluelist
-keepalive	boolean
-method	type
-myaddr	address
-progress	callback
-protocol	version
-query	query
-queryblocksize	size
-querychannel	channelID
-queryprogress	callback
-strict	boolean
-timeout	milliseconds
-type	mime-type

-validate	boolean
::http::formatQuery	key	value	?key	value	...?
::http::reset	token	?why?
::http::wait	token
::http::data	token
::http::error	token
::http::status	token
::http::code	token
::http::ncode	token
::http::size	token
::http::meta	token
::http::cleanup	token
::http::register	proto	port	command
::http::unregister	proto

ERRORS
ok
eof
error

STATE	ARRAY
body
charset
coding
currentsize
error
http
meta

Content-Type
Content-Length
Location

posterror
status
totalsize
type
url

EXAMPLE
SEE	ALSO
KEYWORDS

NAME

http	-	Client-side	implementation	of	the	HTTP/1.1	protocol

SYNOPSIS

package	require	http	?2.7?
::http::config	?options?
::http::geturl	url	?options?
::http::formatQuery	key	value	?key	value	...?
::http::reset	token	?why?
::http::wait	token
::http::status	token
::http::size	token
::http::code	token
::http::ncode	token
::http::meta	token
::http::data	token
::http::error	token
::http::cleanup	token
::http::register	proto	port	command
::http::unregister	proto

DESCRIPTION

The	http	package	provides	the	client	side	of	the	HTTP/1.1	protocol.	The
package	implements	the	GET,	POST,	and	HEAD	operations	of
HTTP/1.1.	It	allows	configuration	of	a	proxy	host	to	get	through
firewalls.	The	package	is	compatible	with	the	Safesock	security	policy,
so	it	can	be	used	by	untrusted	applets	to	do	URL	fetching	from	a
restricted	set	of	hosts.	This	package	can	be	extended	to	support
additional	HTTP	transport	protocols,	such	as	HTTPS,	by	providing	a
custom	socket	command,	via	::http::register.

The	::http::geturl	procedure	does	a	HTTP	transaction.	Its	options
determine	whether	a	GET,	POST,	or	HEAD	transaction	is	performed.
The	return	value	of	::http::geturl	is	a	token	for	the	transaction.	The
value	is	also	the	name	of	an	array	in	the	::http	namespace	that	contains

state	information	about	the	transaction.	The	elements	of	this	array	are
described	in	the	STATE	ARRAY	section.

If	the	-command	option	is	specified,	then	the	HTTP	operation	is	done	in
the	background.	::http::geturl	returns	immediately	after	generating	the
HTTP	request	and	the	callback	is	invoked	when	the	transaction
completes.	For	this	to	work,	the	Tcl	event	loop	must	be	active.	In	Tk
applications	this	is	always	true.	For	pure-Tcl	applications,	the	caller	can
use	::http::wait	after	calling	::http::geturl	to	start	the	event	loop.

COMMANDS

::http::config	?options?
The	::http::config	command	is	used	to	set	and	query	the	name	of
the	proxy	server	and	port,	and	the	User-Agent	name	used	in	the
HTTP	requests.	If	no	options	are	specified,	then	the	current
configuration	is	returned.	If	a	single	argument	is	specified,	then	it
should	be	one	of	the	flags	described	below.	In	this	case	the	current
value	of	that	setting	is	returned.	Otherwise,	the	options	should	be	a
set	of	flags	and	values	that	define	the	configuration:

-accept	mimetypes
The	Accept	header	of	the	request.	The	default	is	*/*,	which
means	that	all	types	of	documents	are	accepted.	Otherwise
you	can	supply	a	comma-separated	list	of	mime	type	patterns
that	you	are	willing	to	receive.	For	example,	“image/gif,
image/jpeg,	text/*”.

-proxyhost	hostname
The	name	of	the	proxy	host,	if	any.	If	this	value	is	the	empty
string,	the	URL	host	is	contacted	directly.

-proxyport	number
The	proxy	port	number.

-proxyfilter	command
The	command	is	a	callback	that	is	made	during	::http::geturl
to	determine	if	a	proxy	is	required	for	a	given	host.	One

argument,	a	host	name,	is	added	to	command	when	it	is
invoked.	If	a	proxy	is	required,	the	callback	should	return	a
two-element	list	containing	the	proxy	server	and	proxy	port.
Otherwise	the	filter	should	return	an	empty	list.	The	default
filter	returns	the	values	of	the	-proxyhost	and	-proxyport
settings	if	they	are	non-empty.

-urlencoding	encoding
The	encoding	used	for	creating	the	x-url-encoded	URLs	with
::http::formatQuery.	The	default	is	utf-8,	as	specified	by	RFC
2718.	Prior	to	http	2.5	this	was	unspecified,	and	that	behavior
can	be	returned	by	specifying	the	empty	string	({}),	although
iso8859-1	is	recommended	to	restore	similar	behavior	but
without	the	::http::formatQuery	throwing	an	error	processing
non-latin-1	characters.

-useragent	string
The	value	of	the	User-Agent	header	in	the	HTTP	request.	The
default	is	“Tcl	http	client	package	2.7”.

::http::geturl	url	?options?
The	::http::geturl	command	is	the	main	procedure	in	the	package.
The	-query	option	causes	a	POST	operation	and	the	-validate
option	causes	a	HEAD	operation;	otherwise,	a	GET	operation	is
performed.	The	::http::geturl	command	returns	a	token	value	that
can	be	used	to	get	information	about	the	transaction.	See	the
STATE	ARRAY	and	ERRORS	section	for	details.	The	::http::geturl
command	blocks	until	the	operation	completes,	unless	the	-
command	option	specifies	a	callback	that	is	invoked	when	the
HTTP	transaction	completes.	::http::geturl	takes	several	options:

-binary	boolean
Specifies	whether	to	force	interpreting	the	URL	data	as	binary.
Normally	this	is	auto-detected	(anything	not	beginning	with	a
text	content	type	or	whose	content	encoding	is	gzip	or
compress	is	considered	binary	data).

-blocksize	size

The	block	size	used	when	reading	the	URL.	At	most	size	bytes
are	read	at	once.	After	each	block,	a	call	to	the	-progress
callback	is	made	(if	that	option	is	specified).

-channel	name
Copy	the	URL	contents	to	channel	name	instead	of	saving	it	in
state(body).

-command	callback
Invoke	callback	after	the	HTTP	transaction	completes.	This
option	causes	::http::geturl	to	return	immediately.	The
callback	gets	an	additional	argument	that	is	the	token	returned
from	::http::geturl.	This	token	is	the	name	of	an	array	that	is
described	in	the	STATE	ARRAY	section.	Here	is	a	template	for
the	callback:

proc	httpCallback	{token}	{

				upvar	#0	$token	state

				#	Access	state	as	a	Tcl	array

}

-handler	callback
Invoke	callback	whenever	HTTP	data	is	available;	if	present,
nothing	else	will	be	done	with	the	HTTP	data.	This	procedure
gets	two	additional	arguments:	the	socket	for	the	HTTP	data
and	the	token	returned	from	::http::geturl.	The	token	is	the
name	of	a	global	array	that	is	described	in	the	STATE	ARRAY
section.	The	procedure	is	expected	to	return	the	number	of
bytes	read	from	the	socket.	Here	is	a	template	for	the	callback:

proc	httpHandlerCallback	{socket	token}	{

				upvar	#0	$token	state

				#	Access	socket,	and	state	as	a	Tcl	array

				#	For	example...

				...

				set	data	[read	$socket	1000]

				set	nbytes	[string	length	$data]

				...

				return	$nbytes

}

-headers	keyvaluelist
This	option	is	used	to	add	extra	headers	to	the	HTTP	request.
The	keyvaluelist	argument	must	be	a	list	with	an	even	number
of	elements	that	alternate	between	keys	and	values.	The	keys
become	header	field	names.	Newlines	are	stripped	from	the
values	so	the	header	cannot	be	corrupted.	For	example,	if
keyvaluelist	is	Pragma	no-cache	then	the	following	header	is
included	in	the	HTTP	request:

Pragma:	no-cache

-keepalive	boolean
If	true,	attempt	to	keep	the	connection	open	for	servicing
multiple	requests.	Default	is	0.

-method	type
Force	the	HTTP	request	method	to	type.	::http::geturl	will
auto-select	GET,	POST	or	HEAD	based	on	other	options,	but
this	option	enables	choices	like	PUT	and	DELETE	for	webdav
support.

-myaddr	address
Pass	an	specific	local	address	to	the	underlying	socket	call	in
case	multiple	interfaces	are	available.

-progress	callback
The	callback	is	made	after	each	transfer	of	data	from	the	URL.
The	callback	gets	three	additional	arguments:	the	token	from
::http::geturl,	the	expected	total	size	of	the	contents	from	the

Content-Length	meta-data,	and	the	current	number	of	bytes
transferred	so	far.	The	expected	total	size	may	be	unknown,	in
which	case	zero	is	passed	to	the	callback.	Here	is	a	template
for	the	progress	callback:

proc	httpProgress	{token	total	current}	{

				upvar	#0	$token	state

}

-protocol	version
Select	the	HTTP	protocol	version	to	use.	This	should	be	1.0	or
1.1	(the	default).	Should	only	be	necessary	for	servers	that	do
not	understand	or	otherwise	complain	about	HTTP/1.1.

-query	query
This	flag	causes	::http::geturl	to	do	a	POST	request	that
passes	the	query	to	the	server.	The	query	must	be	an	x-url-
encoding	formatted	query.	The	::http::formatQuery	procedure
can	be	used	to	do	the	formatting.

-queryblocksize	size
The	block	size	used	when	posting	query	data	to	the	URL.	At
most	size	bytes	are	written	at	once.	After	each	block,	a	call	to
the	-queryprogress	callback	is	made	(if	that	option	is
specified).

-querychannel	channelID
This	flag	causes	::http::geturl	to	do	a	POST	request	that
passes	the	data	contained	in	channelID	to	the	server.	The	data
contained	in	channelID	must	be	an	x-url-encoding	formatted
query	unless	the	-type	option	below	is	used.	If	a	Content-
Length	header	is	not	specified	via	the	-headers	options,
::http::geturl	attempts	to	determine	the	size	of	the	post	data	in
order	to	create	that	header.	If	it	is	unable	to	determine	the	size,
it	returns	an	error.

-queryprogress	callback
The	callback	is	made	after	each	transfer	of	data	to	the	URL
(i.e.	POST)	and	acts	exactly	like	the	-progress	option	(the
callback	format	is	the	same).

-strict	boolean
Whether	to	enforce	RFC	3986	URL	validation	on	the	request.
Default	is	1.

-timeout	milliseconds
If	milliseconds	is	non-zero,	then	::http::geturl	sets	up	a
timeout	to	occur	after	the	specified	number	of	milliseconds.	A
timeout	results	in	a	call	to	::http::reset	and	to	the	-command
callback,	if	specified.	The	return	value	of	::http::status	is
timeout	after	a	timeout	has	occurred.

-type	mime-type
Use	mime-type	as	the	Content-Type	value,	instead	of	the
default	value	(application/x-www-form-urlencoded)	during	a
POST	operation.

-validate	boolean
If	boolean	is	non-zero,	then	::http::geturl	does	an	HTTP
HEAD	request.	This	request	returns	meta	information	about
the	URL,	but	the	contents	are	not	returned.	The	meta
information	is	available	in	the	state(meta)	variable	after	the
transaction.	See	the	STATE	ARRAY	section	for	details.

::http::formatQuery	key	value	?key	value	...?
This	procedure	does	x-url-encoding	of	query	data.	It	takes	an	even
number	of	arguments	that	are	the	keys	and	values	of	the	query.	It
encodes	the	keys	and	values,	and	generates	one	string	that	has
the	proper	&	and	=	separators.	The	result	is	suitable	for	the	-query
value	passed	to	::http::geturl.

::http::reset	token	?why?
This	command	resets	the	HTTP	transaction	identified	by	token,	if
any.	This	sets	the	state(status)	value	to	why,	which	defaults	to

reset,	and	then	calls	the	registered	-command	callback.

::http::wait	token
This	is	a	convenience	procedure	that	blocks	and	waits	for	the
transaction	to	complete.	This	only	works	in	trusted	code	because	it
uses	vwait.	Also,	it	is	not	useful	for	the	case	where	::http::geturl	is
called	without	the	-command	option	because	in	this	case	the
::http::geturl	call	does	not	return	until	the	HTTP	transaction	is
complete,	and	thus	there	is	nothing	to	wait	for.

::http::data	token
This	is	a	convenience	procedure	that	returns	the	body	element
(i.e.,	the	URL	data)	of	the	state	array.

::http::error	token
This	is	a	convenience	procedure	that	returns	the	error	element	of
the	state	array.

::http::status	token
This	is	a	convenience	procedure	that	returns	the	status	element	of
the	state	array.

::http::code	token
This	is	a	convenience	procedure	that	returns	the	http	element	of
the	state	array.

::http::ncode	token
This	is	a	convenience	procedure	that	returns	just	the	numeric
return	code	(200,	404,	etc.)	from	the	http	element	of	the	state
array.

::http::size	token
This	is	a	convenience	procedure	that	returns	the	currentsize
element	of	the	state	array,	which	represents	the	number	of	bytes
received	from	the	URL	in	the	::http::geturl	call.

::http::meta	token
This	is	a	convenience	procedure	that	returns	the	meta	element	of

the	state	array	which	contains	the	HTTP	response	headers.	See
below	for	an	explanation	of	this	element.

::http::cleanup	token
This	procedure	cleans	up	the	state	associated	with	the	connection
identified	by	token.	After	this	call,	the	procedures	like	::http::data
cannot	be	used	to	get	information	about	the	operation.	It	is	strongly
recommended	that	you	call	this	function	after	you	are	done	with	a
given	HTTP	request.	Not	doing	so	will	result	in	memory	not	being
freed,	and	if	your	app	calls	::http::geturl	enough	times,	the
memory	leak	could	cause	a	performance	hit...or	worse.

::http::register	proto	port	command
This	procedure	allows	one	to	provide	custom	HTTP	transport	types
such	as	HTTPS,	by	registering	a	prefix,	the	default	port,	and	the
command	to	execute	to	create	the	Tcl	channel.	E.g.:

package	require	http

package	require	tls

::http::register	https	443	::tls::socket

set	token	[::http::geturl	https://my.secure.site/]

::http::unregister	proto
This	procedure	unregisters	a	protocol	handler	that	was	previously
registered	via	::http::register.

ERRORS

The	::http::geturl	procedure	will	raise	errors	in	the	following	cases:
invalid	command	line	options,	an	invalid	URL,	a	URL	on	a	non-existent
host,	or	a	URL	at	a	bad	port	on	an	existing	host.	These	errors	mean	that
it	cannot	even	start	the	network	transaction.	It	will	also	raise	an	error	if	it
gets	an	I/O	error	while	writing	out	the	HTTP	request	header.	For
synchronous	::http::geturl	calls	(where	-command	is	not	specified),	it

will	raise	an	error	if	it	gets	an	I/O	error	while	reading	the	HTTP	reply
headers	or	data.	Because	::http::geturl	does	not	return	a	token	in
these	cases,	it	does	all	the	required	cleanup	and	there	is	no	issue	of
your	app	having	to	call	::http::cleanup.

For	asynchronous	::http::geturl	calls,	all	of	the	above	error	situations
apply,	except	that	if	there	is	any	error	while	reading	the	HTTP	reply
headers	or	data,	no	exception	is	thrown.	This	is	because	after	writing
the	HTTP	headers,	::http::geturl	returns,	and	the	rest	of	the	HTTP
transaction	occurs	in	the	background.	The	command	callback	can
check	if	any	error	occurred	during	the	read	by	calling	::http::status	to
check	the	status	and	if	its	error,	calling	::http::error	to	get	the	error
message.

Alternatively,	if	the	main	program	flow	reaches	a	point	where	it	needs	to
know	the	result	of	the	asynchronous	HTTP	request,	it	can	call
::http::wait	and	then	check	status	and	error,	just	as	the	callback	does.

In	any	case,	you	must	still	call	::http::cleanup	to	delete	the	state	array
when	you	are	done.

There	are	other	possible	results	of	the	HTTP	transaction	determined	by
examining	the	status	from	::http::status.	These	are	described	below.

ok
If	the	HTTP	transaction	completes	entirely,	then	status	will	be	ok.
However,	you	should	still	check	the	::http::code	value	to	get	the
HTTP	status.	The	::http::ncode	procedure	provides	just	the
numeric	error	(e.g.,	200,	404	or	500)	while	the	::http::code
procedure	returns	a	value	like	“HTTP	404	File	not	found”.

eof
If	the	server	closes	the	socket	without	replying,	then	no	error	is
raised,	but	the	status	of	the	transaction	will	be	eof.

error
The	error	message	will	also	be	stored	in	the	error	status	array
element,	accessible	via	::http::error.

Another	error	possibility	is	that	::http::geturl	is	unable	to	write	all	the
post	query	data	to	the	server	before	the	server	responds	and	closes	the
socket.	The	error	message	is	saved	in	the	posterror	status	array
element	and	then	::http::geturl	attempts	to	complete	the	transaction.	If
it	can	read	the	server's	response	it	will	end	up	with	an	ok	status,
otherwise	it	will	have	an	eof	status.

STATE	ARRAY

The	::http::geturl	procedure	returns	a	token	that	can	be	used	to	get	to
the	state	of	the	HTTP	transaction	in	the	form	of	a	Tcl	array.	Use	this
construct	to	create	an	easy-to-use	array	variable:

upvar	#0	$token	state

Once	the	data	associated	with	the	URL	is	no	longer	needed,	the	state
array	should	be	unset	to	free	up	storage.	The	::http::cleanup
procedure	is	provided	for	that	purpose.	The	following	elements	of	the
array	are	supported:

body
The	contents	of	the	URL.	This	will	be	empty	if	the	-channel	option
has	been	specified.	This	value	is	returned	by	the	::http::data
command.

charset
The	value	of	the	charset	attribute	from	the	Content-Type	meta-
data	value.	If	none	was	specified,	this	defaults	to	the	RFC	standard
iso8859-1,	or	the	value	of	$::http::defaultCharset.	Incoming	text
data	will	be	automatically	converted	from	this	charset	to	utf-8.

coding
A	copy	of	the	Content-Encoding	meta-data	value.

currentsize
The	current	number	of	bytes	fetched	from	the	URL.	This	value	is
returned	by	the	::http::size	command.

error
If	defined,	this	is	the	error	string	seen	when	the	HTTP	transaction
was	aborted.

http
The	HTTP	status	reply	from	the	server.	This	value	is	returned	by
the	::http::code	command.	The	format	of	this	value	is:

HTTP/1.1	code	string

The	code	is	a	three-digit	number	defined	in	the	HTTP	standard.	A
code	of	200	is	OK.	Codes	beginning	with	4	or	5	indicate	errors.
Codes	beginning	with	3	are	redirection	errors.	In	this	case	the
Location	meta-data	specifies	a	new	URL	that	contains	the
requested	information.

meta
The	HTTP	protocol	returns	meta-data	that	describes	the	URL
contents.	The	meta	element	of	the	state	array	is	a	list	of	the	keys
and	values	of	the	meta-data.	This	is	in	a	format	useful	for	initializing
an	array	that	just	contains	the	meta-data:

array	set	meta	$state(meta)

Some	of	the	meta-data	keys	are	listed	below,	but	the	HTTP
standard	defines	more,	and	servers	are	free	to	add	their	own.

Content-Type
The	type	of	the	URL	contents.	Examples	include	text/html,
image/gif,	application/postscript	and	application/x-tcl.

Content-Length
The	advertised	size	of	the	contents.	The	actual	size	obtained
by	::http::geturl	is	available	as	state(size).

Location
An	alternate	URL	that	contains	the	requested	data.

posterror
The	error,	if	any,	that	occurred	while	writing	the	post	query	data	to
the	server.

status
Either	ok,	for	successful	completion,	reset	for	user-reset,	timeout
if	a	timeout	occurred	before	the	transaction	could	complete,	or
error	for	an	error	condition.	During	the	transaction	this	value	is	the
empty	string.

totalsize
A	copy	of	the	Content-Length	meta-data	value.

type
A	copy	of	the	Content-Type	meta-data	value.

url
The	requested	URL.

EXAMPLE

#	Copy	a	URL	to	a	file	and	print	meta-data

proc	httpcopy	{	url	file	{chunk	4096}	}	{

			set	out	[open	$file	w]

			set	token	[::http::geturl	$url	-channel	$out	\

										-progress	httpCopyProgress	-blocksize	$chunk]

			close	$out

			#	This	ends	the	line	started	by	httpCopyProgress

			puts	stderr	""

			upvar	#0	$token	state

			set	max	0

			foreach	{name	value}	$state(meta)	{

						if	{[string	length	$name]	>	$max}	{

									set	max	[string	length	$name]

						}

						if	{[regexp	-nocase	^location$	$name]}	{

									#	Handle	URL	redirects

									puts	stderr	"Location:$value"

									return	[httpcopy	[string	trim	$value]	$file	$chunk]

						}

			}

			incr	max

			foreach	{name	value}	$state(meta)	{

						puts	[format	"%-*s	%s"	$max	$name:	$value]

			}

			return	$token

}

proc	httpCopyProgress	{args}	{

			puts	-nonewline	stderr	.

			flush	stderr

}

SEE	ALSO

safe,	socket,	safesock

KEYWORDS

security	policy,	socket

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1995-1997	Sun	Microsystems,	Inc.
Copyright	©	1998-2000	by	Ajuba	Solutions.
Copyright	©	2004	ActiveState	Corporation.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	open

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
open	-	Open	a	file-based	or	command	pipeline	channel

SYNOPSIS
DESCRIPTION

r
r+
w
w+
a
a+
RDONLY
WRONLY
RDWR
APPEND
BINARY
CREAT
EXCL
NOCTTY
NONBLOCK
TRUNC

COMMAND	PIPELINES
SERIAL	COMMUNICATIONS

-mode	baud,parity,data,stop
-handshake	type
-queue
-timeout	msec
-ttycontrol	{signal	boolean	signal	boolean	...}
-ttystatus
-xchar	{xonChar	xoffChar}
-pollinterval	msec
-sysbuffer	inSize

-sysbuffer	{inSize	outSize}
-lasterror

SERIAL	PORT	SIGNALS
TXD(output)
RXD(input)
RTS(output)
CTS(input)
DTR(output)
DSR(input)
DCD(input)
RI(input)
BREAK

ERROR	CODES	(Windows	only)
RXOVER
TXFULL
OVERRUN
RXPARITY
FRAME
BREAK

PORTABILITY	ISSUES
Windows	(all	versions)
Windows	NT
Windows	95
Unix

EXAMPLE
SEE	ALSO
KEYWORDS

NAME

open	-	Open	a	file-based	or	command	pipeline	channel

SYNOPSIS

open	fileName
open	fileName	access
open	fileName	access	permissions

DESCRIPTION

This	command	opens	a	file,	serial	port,	or	command	pipeline	and
returns	a	channel	identifier	that	may	be	used	in	future	invocations	of
commands	like	read,	puts,	and	close.	If	the	first	character	of	fileName
is	not	|	then	the	command	opens	a	file:	fileName	gives	the	name	of	the
file	to	open,	and	it	must	conform	to	the	conventions	described	in	the
filename	manual	entry.

The	access	argument,	if	present,	indicates	the	way	in	which	the	file	(or
command	pipeline)	is	to	be	accessed.	In	the	first	form	access	may	have
any	of	the	following	values:

r
Open	the	file	for	reading	only;	the	file	must	already	exist.	This	is	the
default	value	if	access	is	not	specified.

r+
Open	the	file	for	both	reading	and	writing;	the	file	must	already
exist.

w
Open	the	file	for	writing	only.	Truncate	it	if	it	exists.	If	it	does	not
exist,	create	a	new	file.

w+
Open	the	file	for	reading	and	writing.	Truncate	it	if	it	exists.	If	it	does
not	exist,	create	a	new	file.

a
Open	the	file	for	writing	only.	If	the	file	does	not	exist,	create	a	new
empty	file.	Set	the	file	pointer	to	the	end	of	the	file	prior	to	each
write.

a+
Open	the	file	for	reading	and	writing.	If	the	file	does	not	exist,
create	a	new	empty	file.	Set	the	initial	access	position	to	the	end	of
the	file.

All	of	the	legal	access	values	above	may	have	the	character	b	added	as
the	second	or	third	character	in	the	value	to	indicate	that	the	opened
channel	should	be	configured	with	the	-translation	binary	option,
making	the	channel	suitable	for	reading	or	writing	of	binary	data.

In	the	second	form,	access	consists	of	a	list	of	any	of	the	following
flags,	all	of	which	have	the	standard	POSIX	meanings.	One	of	the	flags
must	be	either	RDONLY,	WRONLY	or	RDWR.

RDONLY
Open	the	file	for	reading	only.

WRONLY
Open	the	file	for	writing	only.

RDWR
Open	the	file	for	both	reading	and	writing.

APPEND
Set	the	file	pointer	to	the	end	of	the	file	prior	to	each	write.

BINARY
Configure	the	opened	channel	with	the	-translation	binary	option.

CREAT
Create	the	file	if	it	does	not	already	exist	(without	this	flag	it	is	an
error	for	the	file	not	to	exist).

EXCL
If	CREAT	is	also	specified,	an	error	is	returned	if	the	file	already
exists.

NOCTTY
If	the	file	is	a	terminal	device,	this	flag	prevents	the	file	from
becoming	the	controlling	terminal	of	the	process.

NONBLOCK
Prevents	the	process	from	blocking	while	opening	the	file,	and
possibly	in	subsequent	I/O	operations.	The	exact	behavior	of	this

flag	is	system-	and	device-dependent;	its	use	is	discouraged	(it	is
better	to	use	the	fconfigure	command	to	put	a	file	in	nonblocking
mode).	For	details	refer	to	your	system	documentation	on	the	open
system	call's	O_NONBLOCK	flag.

TRUNC
If	the	file	exists	it	is	truncated	to	zero	length.

If	a	new	file	is	created	as	part	of	opening	it,	permissions	(an	integer)	is
used	to	set	the	permissions	for	the	new	file	in	conjunction	with	the
process's	file	mode	creation	mask.	Permissions	defaults	to	0666.

COMMAND	PIPELINES

If	the	first	character	of	fileName	is	“|”	then	the	remaining	characters	of
fileName	are	treated	as	a	list	of	arguments	that	describe	a	command
pipeline	to	invoke,	in	the	same	style	as	the	arguments	for	exec.	In	this
case,	the	channel	identifier	returned	by	open	may	be	used	to	write	to
the	command's	input	pipe	or	read	from	its	output	pipe,	depending	on
the	value	of	access.	If	write-only	access	is	used	(e.g.	access	is	w),	then
standard	output	for	the	pipeline	is	directed	to	the	current	standard
output	unless	overridden	by	the	command.	If	read-only	access	is	used
(e.g.	access	is	r),	standard	input	for	the	pipeline	is	taken	from	the
current	standard	input	unless	overridden	by	the	command.	The	id	of	the
spawned	process	is	accessible	through	the	pid	command,	using	the
channel	id	returned	by	open	as	argument.

If	the	command	(or	one	of	the	commands)	executed	in	the	command
pipeline	returns	an	error	(according	to	the	definition	in	exec),	a	Tcl	error
is	generated	when	close	is	called	on	the	channel	unless	the	pipeline	is
in	non-blocking	mode	then	no	exit	status	is	returned	(a	silent	close	with
-blocking	0).

It	is	often	useful	to	use	the	fileevent	command	with	pipelines	so	other
processing	may	happen	at	the	same	time	as	running	the	command	in
the	background.

SERIAL	COMMUNICATIONS

If	fileName	refers	to	a	serial	port,	then	the	specified	serial	port	is
opened	and	initialized	in	a	platform-dependent	manner.	Acceptable
values	for	the	fileName	to	use	to	open	a	serial	port	are	described	in	the
PORTABILITY	ISSUES	section.

The	fconfigure	command	can	be	used	to	query	and	set	additional
configuration	options	specific	to	serial	ports	(where	supported):

-mode	baud,parity,data,stop
This	option	is	a	set	of	4	comma-separated	values:	the	baud	rate,
parity,	number	of	data	bits,	and	number	of	stop	bits	for	this	serial
port.	The	baud	rate	is	a	simple	integer	that	specifies	the	connection
speed.	Parity	is	one	of	the	following	letters:	n,	o,	e,	m,	s;
respectively	signifying	the	parity	options	of	“none”,	“odd”,	“even”,
“mark”,	or	“space”.	Data	is	the	number	of	data	bits	and	should	be
an	integer	from	5	to	8,	while	stop	is	the	number	of	stop	bits	and
should	be	the	integer	1	or	2.

-handshake	type
(Windows	and	Unix).	This	option	is	used	to	setup	automatic
handshake	control.	Note	that	not	all	handshake	types	maybe
supported	by	your	operating	system.	The	type	parameter	is	case-
independent.

If	type	is	none	then	any	handshake	is	switched	off.	rtscts	activates
hardware	handshake.	Hardware	handshake	signals	are	described
below.	For	software	handshake	xonxoff	the	handshake	characters
can	be	redefined	with	-xchar.	An	additional	hardware	handshake
dtrdsr	is	available	only	under	Windows.	There	is	no	default
handshake	configuration,	the	initial	value	depends	on	your
operating	system	settings.	The	-handshake	option	cannot	be
queried.

-queue
(Windows	and	Unix).	The	-queue	option	can	only	be	queried.	It
returns	a	list	of	two	integers	representing	the	current	number	of
bytes	in	the	input	and	output	queue	respectively.

-timeout	msec
(Windows	and	Unix).	This	option	is	used	to	set	the	timeout	for
blocking	read	operations.	It	specifies	the	maximum	interval
between	the	reception	of	two	bytes	in	milliseconds.	For	Unix
systems	the	granularity	is	100	milliseconds.	The	-timeout	option
does	not	affect	write	operations	or	nonblocking	reads.	This	option
cannot	be	queried.

-ttycontrol	{signal	boolean	signal	boolean	...}
(Windows	and	Unix).	This	option	is	used	to	setup	the	handshake
output	lines	(see	below)	permanently	or	to	send	a	BREAK	over	the
serial	line.	The	signal	names	are	case-independent.	{RTS	1	DTR
0}	sets	the	RTS	output	to	high	and	the	DTR	output	to	low.	The
BREAK	condition	(see	below)	is	enabled	and	disabled	with
{BREAK	1}	and	{BREAK	0}	respectively.	It	is	not	a	good	idea	to
change	the	RTS	(or	DTR)	signal	with	active	hardware	handshake
rtscts	(or	dtrdsr).	The	result	is	unpredictable.	The	-ttycontrol
option	cannot	be	queried.

-ttystatus
(Windows	and	Unix).	The	-ttystatus	option	can	only	be	queried.	It
returns	the	current	modem	status	and	handshake	input	signals	(see
below).	The	result	is	a	list	of	signal,value	pairs	with	a	fixed	order,
e.g.	{CTS	1	DSR	0	RING	1	DCD	0}.	The	signal	names	are	returned
upper	case.

-xchar	{xonChar	xoffChar}
(Windows	and	Unix).	This	option	is	used	to	query	or	change	the
software	handshake	characters.	Normally	the	operating	system
default	should	be	DC1	(0x11)	and	DC3	(0x13)	representing	the
ASCII	standard	XON	and	XOFF	characters.

-pollinterval	msec
(Windows	only).	This	option	is	used	to	set	the	maximum	time
between	polling	for	fileevents.	This	affects	the	time	interval
between	checking	for	events	throughout	the	Tcl	interpreter	(the
smallest	value	always	wins).	Use	this	option	only	if	you	want	to	poll
the	serial	port	more	or	less	often	than	10	msec	(the	default).

-sysbuffer	inSize

-sysbuffer	{inSize	outSize}
(Windows	only).	This	option	is	used	to	change	the	size	of	Windows
system	buffers	for	a	serial	channel.	Especially	at	higher
communication	rates	the	default	input	buffer	size	of	4096	bytes	can
overrun	for	latent	systems.	The	first	form	specifies	the	input	buffer
size,	in	the	second	form	both	input	and	output	buffers	are	defined.

-lasterror
(Windows	only).	This	option	is	query	only.	In	case	of	a	serial
communication	error,	read	or	puts	returns	a	general	Tcl	file	I/O
error.	fconfigure	-lasterror	can	be	called	to	get	a	list	of	error
details.	See	below	for	an	explanation	of	the	various	error	codes.

SERIAL	PORT	SIGNALS

RS-232	is	the	most	commonly	used	standard	electrical	interface	for
serial	communications.	A	negative	voltage	(-3V..-12V)	define	a	mark
(on=1)	bit	and	a	positive	voltage	(+3..+12V)	define	a	space	(off=0)	bit
(RS-232C).	The	following	signals	are	specified	for	incoming	and
outgoing	data,	status	lines	and	handshaking.	Here	we	are	using	the
terms	workstation	for	your	computer	and	modem	for	the	external
device,	because	some	signal	names	(DCD,	RI)	come	from	modems.	Of
course	your	external	device	may	use	these	signal	lines	for	other
purposes.

TXD(output)
Transmitted	Data:	Outgoing	serial	data.

RXD(input)
Received	Data:Incoming	serial	data.

RTS(output)
Request	To	Send:	This	hardware	handshake	line	informs	the
modem	that	your	workstation	is	ready	to	receive	data.	Your
workstation	may	automatically	reset	this	signal	to	indicate	that	the
input	buffer	is	full.

CTS(input)
Clear	To	Send:	The	complement	to	RTS.	Indicates	that	the	modem
is	ready	to	receive	data.

DTR(output)
Data	Terminal	Ready:	This	signal	tells	the	modem	that	the
workstation	is	ready	to	establish	a	link.	DTR	is	often	enabled
automatically	whenever	a	serial	port	is	opened.

DSR(input)
Data	Set	Ready:	The	complement	to	DTR.	Tells	the	workstation
that	the	modem	is	ready	to	establish	a	link.

DCD(input)
Data	Carrier	Detect:	This	line	becomes	active	when	a	modem
detects	a	“Carrier”	signal.

RI(input)
Ring	Indicator:	Goes	active	when	the	modem	detects	an	incoming
call.

BREAK
A	BREAK	condition	is	not	a	hardware	signal	line,	but	a	logical	zero
on	the	TXD	or	RXD	lines	for	a	long	period	of	time,	usually	250	to
500	milliseconds.	Normally	a	receive	or	transmit	data	signal	stays
at	the	mark	(on=1)	voltage	until	the	next	character	is	transferred.	A
BREAK	is	sometimes	used	to	reset	the	communications	line	or
change	the	operating	mode	of	communications	hardware.

ERROR	CODES	(Windows	only)

A	lot	of	different	errors	may	occur	during	serial	read	operations	or
during	event	polling	in	background.	The	external	device	may	have	been
switched	off,	the	data	lines	may	be	noisy,	system	buffers	may	overrun
or	your	mode	settings	may	be	wrong.	That	is	why	a	reliable	software
should	always	catch	serial	read	operations.	In	cases	of	an	error	Tcl
returns	a	general	file	I/O	error.	Then	fconfigure	-lasterror	may	help	to
locate	the	problem.	The	following	error	codes	may	be	returned.

RXOVER
Windows	input	buffer	overrun.	The	data	comes	faster	than	your
scripts	reads	it	or	your	system	is	overloaded.	Use	fconfigure	-
sysbuffer	to	avoid	a	temporary	bottleneck	and/or	make	your	script
faster.

TXFULL
Windows	output	buffer	overrun.	Complement	to	RXOVER.	This
error	should	practically	not	happen,	because	Tcl	cares	about	the
output	buffer	status.

OVERRUN
UART	buffer	overrun	(hardware)	with	data	lost.	The	data	comes
faster	than	the	system	driver	receives	it.	Check	your	advanced
serial	port	settings	to	enable	the	FIFO	(16550)	buffer	and/or	setup
a	lower(1)	interrupt	threshold	value.

RXPARITY
A	parity	error	has	been	detected	by	your	UART.	Wrong	parity
settings	with	fconfigure	-mode	or	a	noisy	data	line	(RXD)	may
cause	this	error.

FRAME
A	stop-bit	error	has	been	detected	by	your	UART.	Wrong	mode
settings	with	fconfigure	-mode	or	a	noisy	data	line	(RXD)	may
cause	this	error.

BREAK
A	BREAK	condition	has	been	detected	by	your	UART	(see	above).

PORTABILITY	ISSUES

Windows	(all	versions)
Valid	values	for	fileName	to	open	a	serial	port	are	of	the	form
comX:,	where	X	is	a	number,	generally	from	1	to	4.	This	notation
only	works	for	serial	ports	from	1	to	9,	if	the	system	happens	to
have	more	than	four.	An	attempt	to	open	a	serial	port	that	does	not
exist	or	has	a	number	greater	than	9	will	fail.	An	alternate	form	of

opening	serial	ports	is	to	use	the	filename	\\.\comX,	where	X	is	any
number	that	corresponds	to	a	serial	port;	please	note	that	this
method	is	considerably	slower	on	Windows	95	and	Windows	98.

Windows	NT
When	running	Tcl	interactively,	there	may	be	some	strange
interactions	between	the	real	console,	if	one	is	present,	and	a
command	pipeline	that	uses	standard	input	or	output.	If	a	command
pipeline	is	opened	for	reading,	some	of	the	lines	entered	at	the
console	will	be	sent	to	the	command	pipeline	and	some	will	be	sent
to	the	Tcl	evaluator.	If	a	command	pipeline	is	opened	for	writing,
keystrokes	entered	into	the	console	are	not	visible	until	the	pipe	is
closed.	This	behavior	occurs	whether	the	command	pipeline	is
executing	16-bit	or	32-bit	applications.	These	problems	only	occur
because	both	Tcl	and	the	child	application	are	competing	for	the
console	at	the	same	time.	If	the	command	pipeline	is	started	from	a
script,	so	that	Tcl	is	not	accessing	the	console,	or	if	the	command
pipeline	does	not	use	standard	input	or	output,	but	is	redirected
from	or	to	a	file,	then	the	above	problems	do	not	occur.

Windows	95
A	command	pipeline	that	executes	a	16-bit	DOS	application	cannot
be	opened	for	both	reading	and	writing,	since	16-bit	DOS
applications	that	receive	standard	input	from	a	pipe	and	send
standard	output	to	a	pipe	run	synchronously.	Command	pipelines
that	do	not	execute	16-bit	DOS	applications	run	asynchronously
and	can	be	opened	for	both	reading	and	writing.

When	running	Tcl	interactively,	there	may	be	some	strange
interactions	between	the	real	console,	if	one	is	present,	and	a
command	pipeline	that	uses	standard	input	or	output.	If	a	command
pipeline	is	opened	for	reading	from	a	32-bit	application,	some	of	the
keystrokes	entered	at	the	console	will	be	sent	to	the	command
pipeline	and	some	will	be	sent	to	the	Tcl	evaluator.	If	a	command
pipeline	is	opened	for	writing	to	a	32-bit	application,	no	output	is
visible	on	the	console	until	the	pipe	is	closed.	These	problems	only
occur	because	both	Tcl	and	the	child	application	are	competing	for
the	console	at	the	same	time.	If	the	command	pipeline	is	started

from	a	script,	so	that	Tcl	is	not	accessing	the	console,	or	if	the
command	pipeline	does	not	use	standard	input	or	output,	but	is
redirected	from	or	to	a	file,	then	the	above	problems	do	not	occur.

Whether	or	not	Tcl	is	running	interactively,	if	a	command	pipeline	is
opened	for	reading	from	a	16-bit	DOS	application,	the	call	to	open
will	not	return	until	end-of-file	has	been	received	from	the	command
pipeline's	standard	output.	If	a	command	pipeline	is	opened	for
writing	to	a	16-bit	DOS	application,	no	data	will	be	sent	to	the
command	pipeline's	standard	output	until	the	pipe	is	actually
closed.	This	problem	occurs	because	16-bit	DOS	applications	are
run	synchronously,	as	described	above.

Unix
Valid	values	for	fileName	to	open	a	serial	port	are	generally	of	the
form	/dev/ttyX,	where	X	is	a	or	b,	but	the	name	of	any	pseudo-file
that	maps	to	a	serial	port	may	be	used.	Advanced	configuration
options	are	only	supported	for	serial	ports	when	Tcl	is	built	to	use
the	POSIX	serial	interface.

When	running	Tcl	interactively,	there	may	be	some	strange
interactions	between	the	console,	if	one	is	present,	and	a	command
pipeline	that	uses	standard	input.	If	a	command	pipeline	is	opened
for	reading,	some	of	the	lines	entered	at	the	console	will	be	sent	to
the	command	pipeline	and	some	will	be	sent	to	the	Tcl	evaluator.
This	problem	only	occurs	because	both	Tcl	and	the	child	application
are	competing	for	the	console	at	the	same	time.	If	the	command
pipeline	is	started	from	a	script,	so	that	Tcl	is	not	accessing	the
console,	or	if	the	command	pipeline	does	not	use	standard	input,
but	is	redirected	from	a	file,	then	the	above	problem	does	not
occur.

See	the	PORTABILITY	ISSUES	section	of	the	exec	command	for
additional	information	not	specific	to	command	pipelines	about
executing	applications	on	the	various	platforms

EXAMPLE

Open	a	command	pipeline	and	catch	any	errors:

set	fl	[open	"|	ls	this_file_does_not_exist"]

set	data	[read	$fl]

if	{[catch	{close	$fl}	err]}	{

				puts	"ls	command	failed:	$err"

}

SEE	ALSO

file,	close,	filename,	fconfigure,	gets,	read,	puts,	exec,	pid,	fopen

KEYWORDS

access	mode,	append,	create,	file,	non-blocking,	open,	permissions,
pipeline,	process,	serial

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	split

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

split	-	Split	a	string	into	a	proper	Tcl	list

SYNOPSIS

split	string	?splitChars?

DESCRIPTION

Returns	a	list	created	by	splitting	string	at	each	character	that	is	in	the
splitChars	argument.	Each	element	of	the	result	list	will	consist	of	the
characters	from	string	that	lie	between	instances	of	the	characters	in
splitChars.	Empty	list	elements	will	be	generated	if	string	contains
adjacent	characters	in	splitChars,	or	if	the	first	or	last	character	of	string
is	in	splitChars.	If	splitChars	is	an	empty	string	then	each	character	of
string	becomes	a	separate	element	of	the	result	list.	SplitChars	defaults
to	the	standard	white-space	characters.

EXAMPLES

Divide	up	a	USENET	group	name	into	its	hierarchical	components:

split	"comp.lang.tcl.announce"	.

						→	comp	lang	tcl	announce

See	how	the	split	command	splits	on	every	character	in	splitChars,
which	can	result	in	information	loss	if	you	are	not	careful:

split	"alpha	beta	gamma"	"temp"

						→	al	{ha	b}	{}	{a	ga}	{}	a

Extract	the	list	words	from	a	string	that	is	not	a	well-formed	list:

split	"Example	with	{unbalanced	brace	character"

						→	Example	with	\{unbalanced	brace	character

Split	a	string	into	its	constituent	characters

split	"Hello	world"	{}

						→	H	e	l	l	o	{	}	w	o	r	l	d

PARSING	RECORD-ORIENTED	FILES

Parse	a	Unix	/etc/passwd	file,	which	consists	of	one	entry	per	line,	with
each	line	consisting	of	a	colon-separated	list	of	fields:

##	Read	the	file

set	fid	[open	/etc/passwd]

set	content	[read	$fid]

close	$fid

##	Split	into	records	on	newlines

set	records	[split	$content	"\n"]

##	Iterate	over	the	records

foreach	rec	$records	{

			##	Split	into	fields	on	colons

			set	fields	[split	$rec	":"]

			##	Assign	fields	to	variables	and	print	some	out...

			lassign	$fields	\

									userName	password	uid	grp	longName	homeDir	shell

			puts	"$longName	uses	[file	tail	$shell]	for	a	login	shell"

}

SEE	ALSO

join,	list,	string

KEYWORDS

list,	split,	string

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	while

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

while	-	Execute	script	repeatedly	as	long	as	a	condition	is	met

SYNOPSIS

while	test	body

DESCRIPTION

The	while	command	evaluates	test	as	an	expression	(in	the	same	way
that	expr	evaluates	its	argument).	The	value	of	the	expression	must	a
proper	boolean	value;	if	it	is	a	true	value	then	body	is	executed	by
passing	it	to	the	Tcl	interpreter.	Once	body	has	been	executed	then	test
is	evaluated	again,	and	the	process	repeats	until	eventually	test
evaluates	to	a	false	boolean	value.	Continue	commands	may	be
executed	inside	body	to	terminate	the	current	iteration	of	the	loop,	and
break	commands	may	be	executed	inside	body	to	cause	immediate
termination	of	the	while	command.	The	while	command	always	returns
an	empty	string.

Note:	test	should	almost	always	be	enclosed	in	braces.	If	not,	variable
substitutions	will	be	made	before	the	while	command	starts	executing,
which	means	that	variable	changes	made	by	the	loop	body	will	not	be
considered	in	the	expression.	This	is	likely	to	result	in	an	infinite	loop.	If
test	is	enclosed	in	braces,	variable	substitutions	are	delayed	until	the
expression	is	evaluated	(before	each	loop	iteration),	so	changes	in	the
variables	will	be	visible.	For	an	example,	try	the	following	script	with	and
without	the	braces	around	$x<10:

set	x	0

while	{$x<10}	{

				puts	"x	is	$x"

				incr	x

}

EXAMPLE

Read	lines	from	a	channel	until	we	get	to	the	end	of	the	stream,	and
print	them	out	with	a	line-number	prepended:

set	lineCount	0

while	{[gets	$chan	line]	>=	0}	{

				puts	"[incr	lineCount]:	$line"

}

SEE	ALSO

break,	continue,	for,	foreach

KEYWORDS

boolean	value,	loop,	test,	while

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1997	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	continue

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

continue	-	Skip	to	the	next	iteration	of	a	loop

SYNOPSIS

continue

DESCRIPTION

This	command	is	typically	invoked	inside	the	body	of	a	looping
command	such	as	for	or	foreach	or	while.	It	returns	a
TCL_CONTINUE	code,	which	causes	a	continue	exception	to	occur.
The	exception	causes	the	current	script	to	be	aborted	out	to	the
innermost	containing	loop	command,	which	then	continues	with	the	next
iteration	of	the	loop.	Catch	exceptions	are	also	handled	in	a	few	other
situations,	such	as	the	catch	command	and	the	outermost	scripts	of
procedure	bodies.

EXAMPLE

Print	a	line	for	each	of	the	integers	from	0	to	10	except	5:

for	{set	x	0}	{$x<10}	{incr	x}	{

			if	{$x	==	5}	{

						continue

			}

			puts	"x	is	$x"

}

SEE	ALSO

break,	for,	foreach,	return,	while

KEYWORDS

continue,	iteration,	loop

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993-1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	if

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

if	-	Execute	scripts	conditionally

SYNOPSIS

if	expr1	?then?	body1	elseif	expr2	?then?	body2	elseif	...	?else?	?
bodyN?

DESCRIPTION

The	if	command	evaluates	expr1	as	an	expression	(in	the	same	way
that	expr	evaluates	its	argument).	The	value	of	the	expression	must	be
a	boolean	(a	numeric	value,	where	0	is	false	and	anything	is	true,	or	a
string	value	such	as	true	or	yes	for	true	and	false	or	no	for	false);	if	it	is
true	then	body1	is	executed	by	passing	it	to	the	Tcl	interpreter.
Otherwise	expr2	is	evaluated	as	an	expression	and	if	it	is	true	then
body2	is	executed,	and	so	on.	If	none	of	the	expressions	evaluates	to
true	then	bodyN	is	executed.	The	then	and	else	arguments	are	optional
“noise	words”	to	make	the	command	easier	to	read.	There	may	be	any
number	of	elseif	clauses,	including	zero.	BodyN	may	also	be	omitted	as
long	as	else	is	omitted	too.	The	return	value	from	the	command	is	the
result	of	the	body	script	that	was	executed,	or	an	empty	string	if	none	of
the	expressions	was	non-zero	and	there	was	no	bodyN.

EXAMPLES

A	simple	conditional:

if	{$vbl	==	1}	{	puts	"vbl	is	one"	}

With	an	else-clause:

if	{$vbl	==	1}	{

			puts	"vbl	is	one"

}	else	{

			puts	"vbl	is	not	one"

}

With	an	elseif-clause	too:

if	{$vbl	==	1}	{

			puts	"vbl	is	one"

}	elseif	{$vbl	==	2}	{

			puts	"vbl	is	two"

}	else	{

			puts	"vbl	is	not	one	or	two"

}

Remember,	expressions	can	be	multi-line,	but	in	that	case	it	can	be	a
good	idea	to	use	the	optional	then	keyword	for	clarity:

if	{

			$vbl	==	1	||	$vbl	==	2	||	$vbl	==	3

}	then	{

			puts	"vbl	is	one,	two	or	three"

}

SEE	ALSO

expr,	for,	foreach

KEYWORDS

boolean,	conditional,	else,	false,	if,	true

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	package

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
package	-	Facilities	for	package	loading	and	version	control

SYNOPSIS
DESCRIPTION

package	forget	?package	package	...?
package	ifneeded	package	version	?script?
package	names
package	present
package	provide	package	?version?
package	require	package	?requirement...?
package	require	-exact	package	version
package	unknown	?command?
package	vcompare	version1	version2
package	versions	package
package	vsatisfies	version	requirement...

min
min-
min-max
[a]
[b]

package	prefer	?latest|stable?
VERSION	NUMBERS
PACKAGE	INDICES
EXAMPLES
SEE	ALSO
KEYWORDS

NAME

package	-	Facilities	for	package	loading	and	version	control

SYNOPSIS

package	forget	?package	package	...?
package	ifneeded	package	version	?script?
package	names
package	present	package	?requirement...?
package	present	-exact	package	version
package	provide	package	?version?
package	require	package	?requirement...?
package	require	-exact	package	version
package	unknown	?command?
package	vcompare	version1	version2
package	versions	package
package	vsatisfies	version	requirement...
package	prefer	?latest|stable?

DESCRIPTION

This	command	keeps	a	simple	database	of	the	packages	available	for
use	by	the	current	interpreter	and	how	to	load	them	into	the	interpreter.
It	supports	multiple	versions	of	each	package	and	arranges	for	the
correct	version	of	a	package	to	be	loaded	based	on	what	is	needed	by
the	application.	This	command	also	detects	and	reports	version
clashes.	Typically,	only	the	package	require	and	package	provide
commands	are	invoked	in	normal	Tcl	scripts;	the	other	commands	are
used	primarily	by	system	scripts	that	maintain	the	package	database.

The	behavior	of	the	package	command	is	determined	by	its	first
argument.	The	following	forms	are	permitted:

package	forget	?package	package	...?
Removes	all	information	about	each	specified	package	from	this
interpreter,	including	information	provided	by	both	package
ifneeded	and	package	provide.

package	ifneeded	package	version	?script?
This	command	typically	appears	only	in	system	configuration
scripts	to	set	up	the	package	database.	It	indicates	that	a	particular

version	of	a	particular	package	is	available	if	needed,	and	that	the
package	can	be	added	to	the	interpreter	by	executing	script.	The
script	is	saved	in	a	database	for	use	by	subsequent	package
require	commands;	typically,	script	sets	up	auto-loading	for	the
commands	in	the	package	(or	calls	load	and/or	source	directly),
then	invokes	package	provide	to	indicate	that	the	package	is
present.	There	may	be	information	in	the	database	for	several
different	versions	of	a	single	package.	If	the	database	already
contains	information	for	package	and	version,	the	new	script
replaces	the	existing	one.	If	the	script	argument	is	omitted,	the
current	script	for	version	version	of	package	package	is	returned,
or	an	empty	string	if	no	package	ifneeded	command	has	been
invoked	for	this	package	and	version.

package	names
Returns	a	list	of	the	names	of	all	packages	in	the	interpreter	for
which	a	version	has	been	provided	(via	package	provide)	or	for
which	a	package	ifneeded	script	is	available.	The	order	of
elements	in	the	list	is	arbitrary.

package	present
This	command	is	equivalent	to	package	require	except	that	it	does
not	try	and	load	the	package	if	it	is	not	already	loaded.

package	provide	package	?version?
This	command	is	invoked	to	indicate	that	version	version	of
package	package	is	now	present	in	the	interpreter.	It	is	typically
invoked	once	as	part	of	an	ifneeded	script,	and	again	by	the
package	itself	when	it	is	finally	loaded.	An	error	occurs	if	a	different
version	of	package	has	been	provided	by	a	previous	package
provide	command.	If	the	version	argument	is	omitted,	then	the
command	returns	the	version	number	that	is	currently	provided,	or
an	empty	string	if	no	package	provide	command	has	been	invoked
for	package	in	this	interpreter.

package	require	package	?requirement...?
This	command	is	typically	invoked	by	Tcl	code	that	wishes	to	use	a
particular	version	of	a	particular	package.	The	arguments	indicate

which	package	is	wanted,	and	the	command	ensures	that	a
suitable	version	of	the	package	is	loaded	into	the	interpreter.	If	the
command	succeeds,	it	returns	the	version	number	that	is	loaded;
otherwise	it	generates	an	error.

A	suitable	version	of	the	package	is	any	version	which	satisfies	at
least	one	of	the	requirements,	per	the	rules	of	package	vsatisfies.
If	multiple	versions	are	suitable	the	implementation	with	the	highest
version	is	chosen.	This	last	part	is	additionally	influenced	by	the
selection	mode	set	with	package	prefer.

In	the	“stable”	selection	mode	the	command	will	select	the	highest
stable	version	satisfying	the	requirements,	if	any.	If	no	stable
version	satisfies	the	requirements,	the	highest	unstable	version
satisfying	the	requirements	will	be	selected.	In	the	“latest”	selection
mode	the	command	will	accept	the	highest	version	satisfying	all	the
requirements,	regardless	of	its	stableness.

If	a	version	of	package	has	already	been	provided	(by	invoking	the
package	provide	command),	then	its	version	number	must	satisfy
the	requirements	and	the	command	returns	immediately.
Otherwise,	the	command	searches	the	database	of	information
provided	by	previous	package	ifneeded	commands	to	see	if	an
acceptable	version	of	the	package	is	available.	If	so,	the	script	for
the	highest	acceptable	version	number	is	evaluated	in	the	global
namespace;	it	must	do	whatever	is	necessary	to	load	the	package,
including	calling	package	provide	for	the	package.	If	the	package
ifneeded	database	does	not	contain	an	acceptable	version	of	the
package	and	a	package	unknown	command	has	been	specified
for	the	interpreter	then	that	command	is	evaluated	in	the	global
namespace;	when	it	completes,	Tcl	checks	again	to	see	if	the
package	is	now	provided	or	if	there	is	a	package	ifneeded	script
for	it.	If	all	of	these	steps	fail	to	provide	an	acceptable	version	of
the	package,	then	the	command	returns	an	error.

package	require	-exact	package	version
This	form	of	the	command	is	used	when	only	the	given	version	of
package	is	acceptable	to	the	caller.	This	command	is	equivalent	to

package	require	package	version-version.

package	unknown	?command?
This	command	supplies	a	“last	resort”	command	to	invoke	during
package	require	if	no	suitable	version	of	a	package	can	be	found
in	the	package	ifneeded	database.	If	the	command	argument	is
supplied,	it	contains	the	first	part	of	a	command;	when	the
command	is	invoked	during	a	package	require	command,	Tcl
appends	one	or	more	additional	arguments	giving	the	desired
package	name	and	requirements.	For	example,	if	command	is	foo
bar	and	later	the	command	package	require	test	2.4	is	invoked,
then	Tcl	will	execute	the	command	foo	bar	test	2.4	to	load	the
package.	If	no	requirements	are	supplied	to	the	package	require
command,	then	only	the	name	will	be	added	to	invoked	command.
If	the	package	unknown	command	is	invoked	without	a	command
argument,	then	the	current	package	unknown	script	is	returned,	or
an	empty	string	if	there	is	none.	If	command	is	specified	as	an
empty	string,	then	the	current	package	unknown	script	is
removed,	if	there	is	one.

package	vcompare	version1	version2
Compares	the	two	version	numbers	given	by	version1	and
version2.	Returns	-1	if	version1	is	an	earlier	version	than	version2,
0	if	they	are	equal,	and	1	if	version1	is	later	than	version2.

package	versions	package
Returns	a	list	of	all	the	version	numbers	of	package	for	which
information	has	been	provided	by	package	ifneeded	commands.

package	vsatisfies	version	requirement...
Returns	1	if	the	version	satisfies	at	least	one	of	the	given
requirements,	and	0	otherwise.	Each	requirement	is	allowed	to
have	any	of	the	forms:

min
This	form	is	called	“min-bounded”.

min-

This	form	is	called	“min-unbound”.

min-max
This	form	is	called	“bounded”.

where	“min”	and	“max”	are	valid	version	numbers.	The	legacy
syntax	is	a	special	case	of	the	extended	syntax,	keeping	backward
compatibility.	Regarding	satisfaction	the	rules	are:

[1]
The	version	has	to	pass	at	least	one	of	the	listed	requirements
to	be	satisfactory.

[2]
A	version	satisfies	a	“bounded”	requirement	when

[a]
For	min	equal	to	the	max	if,	and	only	if	the	version	is	equal
to	the	min.

[b]
Otherwise	if,	and	only	if	the	version	is	greater	than	or
equal	to	the	min,	and	less	than	the	max,	where	both	min
and	max	have	been	padded	internally	with	“a0”.	Note	that
while	the	comparison	to	min	is	inclusive,	the	comparison
to	max	is	exclusive.

[3]
A	“min-bounded”	requirement	is	a	“bounded”	requirement	in
disguise,	with	the	max	part	implicitly	specified	as	the	next
higher	major	version	number	of	the	min	part.	A	version	satisfies
it	per	the	rules	above.

[4]
A	version	satisfies	a	“min-unbound”	requirement	if,	and	only	if	it
is	greater	than	or	equal	to	the	min,	where	the	min	has	been
padded	internally	with	“a0”.	There	is	no	constraint	to	a
maximum.

package	prefer	?latest|stable?
With	no	arguments,	the	commands	returns	either	“latest”	or
“stable”,	whichever	describes	the	current	mode	of	selection	logic
used	by	package	require.

When	passed	the	argument	“latest”,	it	sets	the	selection	logic	mode
to	“latest”.

When	passed	the	argument	“stable”,	if	the	mode	is	already	“stable”,
that	value	is	kept.	If	the	mode	is	already	“latest”,	then	the	attempt	to
set	it	back	to	“stable”	is	ineffective	and	the	mode	value	remains
“latest”.

When	passed	any	other	value	as	an	argument,	raise	an	invalid
argument	error.

When	an	interpreter	is	created,	its	initial	selection	mode	value	is	set
to	“stable”	unless	the	environment	variable
TCL_PKG_PREFER_LATEST	is	set.	If	that	environment	variable	is
defined	(with	any	value)	then	the	initial	(and	permanent)	selection
mode	value	is	set	to	“latest”.

VERSION	NUMBERS

Version	numbers	consist	of	one	or	more	decimal	numbers	separated	by
dots,	such	as	2	or	1.162	or	3.1.13.1.	The	first	number	is	called	the
major	version	number.	Larger	numbers	correspond	to	later	versions	of	a
package,	with	leftmost	numbers	having	greater	significance.	For
example,	version	2.1	is	later	than	1.3	and	version	3.4.6	is	later	than
3.3.5.	Missing	fields	are	equivalent	to	zeroes:	version	1.3	is	the	same
as	version	1.3.0	and	1.3.0.0,	so	it	is	earlier	than	1.3.1	or	1.3.0.2.	In
addition,	the	letters	“a”	(alpha)	and/or	“b”	(beta)	may	appear	exactly
once	to	replace	a	dot	for	separation.	These	letters	semantically	add	a
negative	specifier	into	the	version,	where	“a”	is	-2,	and	“b”	is	-1.	Each
may	be	specified	only	once,	and	“a”	or	“b”	are	mutually	exclusive	in	a
specifier.	Thus	1.3a1	becomes	(semantically)	1.3.-2.1,	1.3b1	is	1.3.-1.1.
Negative	numbers	are	not	directly	allowed	in	version	specifiers.	A
version	number	not	containing	the	letters	“a”	or	“b”	as	specified	above	is

called	a	stable	version,	whereas	presence	of	the	letters	causes	the
version	to	be	called	is	unstable.	A	later	version	number	is	assumed	to
be	upwards	compatible	with	an	earlier	version	number	as	long	as	both
versions	have	the	same	major	version	number.	For	example,	Tcl	scripts
written	for	version	2.3	of	a	package	should	work	unchanged	under
versions	2.3.2,	2.4,	and	2.5.1.	Changes	in	the	major	version	number
signify	incompatible	changes:	if	code	is	written	to	use	version	2.1	of	a
package,	it	is	not	guaranteed	to	work	unmodified	with	either	version
1.7.3	or	version	3.1.

PACKAGE	INDICES

The	recommended	way	to	use	packages	in	Tcl	is	to	invoke	package
require	and	package	provide	commands	in	scripts,	and	use	the
procedure	pkg_mkIndex	to	create	package	index	files.	Once	you	have
done	this,	packages	will	be	loaded	automatically	in	response	to
package	require	commands.	See	the	documentation	for	pkg_mkIndex
for	details.

EXAMPLES

To	state	that	a	Tcl	script	requires	the	Tk	and	http	packages,	put	this	at
the	top	of	the	script:

package	require	Tk

package	require	http

To	test	to	see	if	the	Snack	package	is	available	and	load	if	it	is	(often
useful	for	optional	enhancements	to	programs	where	the	loss	of	the
functionality	is	not	critical)	do	this:

if	{[catch	{package	require	Snack}]}	{

			#	Error	thrown	-	package	not	found.

			#	Set	up	a	dummy	interface	to	work	around	the	absence

}	else	{

			#	We	have	the	package,	configure	the	app	to	use	it

}

SEE	ALSO

msgcat,	packagens,	pkgMkIndex

KEYWORDS

package,	version

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	string

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
string	-	Manipulate	strings

SYNOPSIS
DESCRIPTION

string	bytelength	string
string	compare	?-nocase?	?-length	int?	string1	string2
string	equal	?-nocase?	?-length	int?	string1	string2
string	first	needleString	haystackString	?startIndex?
string	index	string	charIndex

integer
end
end-N
end+N
M+N
M-N

string	is	class	?-strict?	?-failindex	varname?	string
alnum
alpha
ascii
boolean
control
digit
double
false
graph
integer
list
lower
print
punct
space

true
upper
wideinteger
wordchar
xdigit

string	last	needleString	haystackString	?lastIndex?
string	length	string
string	map	?-nocase?	mapping	string
string	match	?-nocase?	pattern	string

*
?
[chars]
\x

string	range	string	first	last
string	repeat	string	count
string	replace	string	first	last	?newstring?
string	reverse	string
string	tolower	string	?first?	?last?
string	totitle	string	?first?	?last?
string	toupper	string	?first?	?last?
string	trim	string	?chars?
string	trimleft	string	?chars?
string	trimright	string	?chars?
string	wordend	string	charIndex
string	wordstart	string	charIndex

EXAMPLE
SEE	ALSO
KEYWORDS

NAME

string	-	Manipulate	strings

SYNOPSIS

string	option	arg	?arg	...?

DESCRIPTION

Performs	one	of	several	string	operations,	depending	on	option.	The
legal	options	(which	may	be	abbreviated)	are:

string	bytelength	string
Returns	a	decimal	string	giving	the	number	of	bytes	used	to
represent	string	in	memory.	Because	UTF-8	uses	one	to	three
bytes	to	represent	Unicode	characters,	the	byte	length	will	not	be
the	same	as	the	character	length	in	general.	The	cases	where	a
script	cares	about	the	byte	length	are	rare.	In	almost	all	cases,	you
should	use	the	string	length	operation	(including	determining	the
length	of	a	Tcl	ByteArray	object).	Refer	to	the	Tcl_NumUtfChars
manual	entry	for	more	details	on	the	UTF-8	representation.

string	compare	?-nocase?	?-length	int?	string1	string2
Perform	a	character-by-character	comparison	of	strings	string1	and
string2.	Returns	-1,	0,	or	1,	depending	on	whether	string1	is
lexicographically	less	than,	equal	to,	or	greater	than	string2.	If	-
length	is	specified,	then	only	the	first	length	characters	are	used	in
the	comparison.	If	-length	is	negative,	it	is	ignored.	If	-nocase	is
specified,	then	the	strings	are	compared	in	a	case-insensitive
manner.

string	equal	?-nocase?	?-length	int?	string1	string2
Perform	a	character-by-character	comparison	of	strings	string1	and
string2.	Returns	1	if	string1	and	string2	are	identical,	or	0	when	not.
If	-length	is	specified,	then	only	the	first	length	characters	are	used
in	the	comparison.	If	-length	is	negative,	it	is	ignored.	If	-nocase	is
specified,	then	the	strings	are	compared	in	a	case-insensitive
manner.

string	first	needleString	haystackString	?startIndex?
Search	haystackString	for	a	sequence	of	characters	that	exactly
match	the	characters	in	needleString.	If	found,	return	the	index	of
the	first	character	in	the	first	such	match	within	haystackString.	If
not	found,	return	-1.	If	startIndex	is	specified	(in	any	of	the	forms
accepted	by	the	index	method),	then	the	search	is	constrained	to
start	with	the	character	in	haystackString	specified	by	the	index.
For	example,

string	first	a	0a23456789abcdef	5

will	return	10,	but

string	first	a	0123456789abcdef	11

will	return	-1.

string	index	string	charIndex
Returns	the	charIndex'th	character	of	the	string	argument.	A
charIndex	of	0	corresponds	to	the	first	character	of	the	string.
charIndex	may	be	specified	as	follows:

integer
For	any	index	value	that	passes	string	is	integer	-strict,	the
char	specified	at	this	integral	index	(e.g.	2	would	refer	to	the	“c”
in	“abcd”).

end
The	last	char	of	the	string	(e.g.	end	would	refer	to	the	“d”	in
“abcd”).

end-N
The	last	char	of	the	string	minus	the	specified	integer	offset	N
(e.g.	end-1	would	refer	to	the	“c”	in	“abcd”).

end+N
The	last	char	of	the	string	plus	the	specified	integer	offset	N
(e.g.	end+-1	would	refer	to	the	“c”	in	“abcd”).

M+N
The	char	specified	at	the	integral	index	that	is	the	sum	of
integer	values	M	and	N	(e.g.	1+1	would	refer	to	the	“c”	in
“abcd”).

M-N
The	char	specified	at	the	integral	index	that	is	the	difference	of
integer	values	M	and	N	(e.g.	2-1	would	refer	to	the	“b”	in
“abcd”).

In	the	specifications	above,	the	integer	value	M	contains	no
trailing	whitespace	and	the	integer	value	N	contains	no	leading
whitespace.

If	charIndex	is	less	than	0	or	greater	than	or	equal	to	the	length
of	the	string	then	this	command	returns	an	empty	string.

string	is	class	?-strict?	?-failindex	varname?	string
Returns	1	if	string	is	a	valid	member	of	the	specified	character
class,	otherwise	returns	0.	If	-strict	is	specified,	then	an	empty
string	returns	0,	otherwise	an	empty	string	will	return	1	on	any
class.	If	-failindex	is	specified,	then	if	the	function	returns	0,	the
index	in	the	string	where	the	class	was	no	longer	valid	will	be
stored	in	the	variable	named	varname.	The	varname	will	not	be	set
if	the	function	returns	1.	The	following	character	classes	are
recognized	(the	class	name	can	be	abbreviated):

alnum
Any	Unicode	alphabet	or	digit	character.

alpha
Any	Unicode	alphabet	character.

ascii
Any	character	with	a	value	less	than	\u0080	(those	that	are	in
the	7-bit	ascii	range).

boolean
Any	of	the	forms	allowed	to	Tcl_GetBoolean.

control
Any	Unicode	control	character.

digit

Any	Unicode	digit	character.	Note	that	this	includes	characters
outside	of	the	[0-9]	range.

double
Any	of	the	valid	forms	for	a	double	in	Tcl,	with	optional
surrounding	whitespace.	In	case	of	under/overflow	in	the
value,	0	is	returned	and	the	varname	will	contain	-1.

false
Any	of	the	forms	allowed	to	Tcl_GetBoolean	where	the	value
is	false.

graph
Any	Unicode	printing	character,	except	space.

integer
Any	of	the	valid	string	formats	for	a	32-bit	integer	value	in	Tcl,
with	optional	surrounding	whitespace.	In	case	of
under/overflow	in	the	value,	0	is	returned	and	the	varname	will
contain	-1.

list
Any	proper	list	structure,	with	optional	surrounding	whitespace.
In	case	of	improper	list	structure,	0	is	returned	and	the
varname	will	contain	the	index	of	the	“element”	where	the	list
parsing	fails,	or	-1	if	this	cannot	be	determined.

lower
Any	Unicode	lower	case	alphabet	character.

print
Any	Unicode	printing	character,	including	space.

punct
Any	Unicode	punctuation	character.

space
Any	Unicode	space	character.

true
Any	of	the	forms	allowed	to	Tcl_GetBoolean	where	the	value
is	true.

upper
Any	upper	case	alphabet	character	in	the	Unicode	character
set.

wideinteger
Any	of	the	valid	forms	for	a	wide	integer	in	Tcl,	with	optional
surrounding	whitespace.	In	case	of	under/overflow	in	the
value,	0	is	returned	and	the	varname	will	contain	-1.

wordchar
Any	Unicode	word	character.	That	is	any	alphanumeric
character,	and	any	Unicode	connector	punctuation	characters
(e.g.	underscore).

xdigit
Any	hexadecimal	digit	character	([0-9A-Fa-f]).

In	the	case	of	boolean,	true	and	false,	if	the	function	will	return	0,
then	the	varname	will	always	be	set	to	0,	due	to	the	varied	nature
of	a	valid	boolean	value.

string	last	needleString	haystackString	?lastIndex?
Search	haystackString	for	a	sequence	of	characters	that	exactly
match	the	characters	in	needleString.	If	found,	return	the	index	of
the	first	character	in	the	last	such	match	within	haystackString.	If
there	is	no	match,	then	return	-1.	If	lastIndex	is	specified	(in	any	of
the	forms	accepted	by	the	index	method),	then	only	the	characters
in	haystackString	at	or	before	the	specified	lastIndex	will	be
considered	by	the	search.	For	example,

string	last	a	0a23456789abcdef	15

will	return	10,	but

string	last	a	0a23456789abcdef	9

will	return	1.

string	length	string
Returns	a	decimal	string	giving	the	number	of	characters	in	string.
Note	that	this	is	not	necessarily	the	same	as	the	number	of	bytes
used	to	store	the	string.	If	the	object	is	a	ByteArray	object	(such	as
those	returned	from	reading	a	binary	encoded	channel),	then	this
will	return	the	actual	byte	length	of	the	object.

string	map	?-nocase?	mapping	string
Replaces	substrings	in	string	based	on	the	key-value	pairs	in
mapping.	mapping	is	a	list	of	key	value	key	value	...	as	in	the	form
returned	by	array	get.	Each	instance	of	a	key	in	the	string	will	be
replaced	with	its	corresponding	value.	If	-nocase	is	specified,	then
matching	is	done	without	regard	to	case	differences.	Both	key	and
value	may	be	multiple	characters.	Replacement	is	done	in	an
ordered	manner,	so	the	key	appearing	first	in	the	list	will	be
checked	first,	and	so	on.	string	is	only	iterated	over	once,	so	earlier
key	replacements	will	have	no	affect	for	later	key	matches.	For
example,

string	map	{abc	1	ab	2	a	3	1	0}	1abcaababcabababc

will	return	the	string	01321221.

Note	that	if	an	earlier	key	is	a	prefix	of	a	later	one,	it	will	completely
mask	the	later	one.	So	if	the	previous	example	is	reordered	like
this,

string	map	{1	0	ab	2	a	3	abc	1}	1abcaababcabababc

it	will	return	the	string	02c322c222c.

string	match	?-nocase?	pattern	string
See	if	pattern	matches	string;	return	1	if	it	does,	0	if	it	does	not.	If	-
nocase	is	specified,	then	the	pattern	attempts	to	match	against	the
string	in	a	case	insensitive	manner.	For	the	two	strings	to	match,
their	contents	must	be	identical	except	that	the	following	special
sequences	may	appear	in	pattern:

*
Matches	any	sequence	of	characters	in	string,	including	a	null
string.

?
Matches	any	single	character	in	string.

[chars]
Matches	any	character	in	the	set	given	by	chars.	If	a	sequence
of	the	form	x-y	appears	in	chars,	then	any	character	between	x
and	y,	inclusive,	will	match.	When	used	with	-nocase,	the	end
points	of	the	range	are	converted	to	lower	case	first.	Whereas
{[A-z]}	matches	“_”	when	matching	case-sensitively	(since	“_”
falls	between	the	“Z”	and	“a”),	with	-nocase	this	is	considered
like	{[A-Za-z]}	(and	probably	what	was	meant	in	the	first	place).

\x
Matches	the	single	character	x.	This	provides	a	way	of
avoiding	the	special	interpretation	of	the	characters	*?[]\	in
pattern.

string	range	string	first	last
Returns	a	range	of	consecutive	characters	from	string,	starting	with
the	character	whose	index	is	first	and	ending	with	the	character
whose	index	is	last.	An	index	of	0	refers	to	the	first	character	of	the
string.	first	and	last	may	be	specified	as	for	the	index	method.	If
first	is	less	than	zero	then	it	is	treated	as	if	it	were	zero,	and	if	last
is	greater	than	or	equal	to	the	length	of	the	string	then	it	is	treated
as	if	it	were	end.	If	first	is	greater	than	last	then	an	empty	string	is

returned.

string	repeat	string	count
Returns	string	repeated	count	number	of	times.

string	replace	string	first	last	?newstring?
Removes	a	range	of	consecutive	characters	from	string,	starting
with	the	character	whose	index	is	first	and	ending	with	the
character	whose	index	is	last.	An	index	of	0	refers	to	the	first
character	of	the	string.	First	and	last	may	be	specified	as	for	the
index	method.	If	newstring	is	specified,	then	it	is	placed	in	the
removed	character	range.	If	first	is	less	than	zero	then	it	is	treated
as	if	it	were	zero,	and	if	last	is	greater	than	or	equal	to	the	length	of
the	string	then	it	is	treated	as	if	it	were	end.	If	first	is	greater	than
last	or	the	length	of	the	initial	string,	or	last	is	less	than	0,	then	the
initial	string	is	returned	untouched.

string	reverse	string
Returns	a	string	that	is	the	same	length	as	string	but	with	its
characters	in	the	reverse	order.

string	tolower	string	?first?	?last?
Returns	a	value	equal	to	string	except	that	all	upper	(or	title)	case
letters	have	been	converted	to	lower	case.	If	first	is	specified,	it
refers	to	the	first	char	index	in	the	string	to	start	modifying.	If	last	is
specified,	it	refers	to	the	char	index	in	the	string	to	stop	at
(inclusive).	first	and	last	may	be	specified	as	for	the	index	method.

string	totitle	string	?first?	?last?
Returns	a	value	equal	to	string	except	that	the	first	character	in
string	is	converted	to	its	Unicode	title	case	variant	(or	upper	case	if
there	is	no	title	case	variant)	and	the	rest	of	the	string	is	converted
to	lower	case.	If	first	is	specified,	it	refers	to	the	first	char	index	in
the	string	to	start	modifying.	If	last	is	specified,	it	refers	to	the	char
index	in	the	string	to	stop	at	(inclusive).	first	and	last	may	be
specified	as	for	the	index	method.

string	toupper	string	?first?	?last?

Returns	a	value	equal	to	string	except	that	all	lower	(or	title)	case
letters	have	been	converted	to	upper	case.	If	first	is	specified,	it
refers	to	the	first	char	index	in	the	string	to	start	modifying.	If	last	is
specified,	it	refers	to	the	char	index	in	the	string	to	stop	at
(inclusive).	first	and	last	may	be	specified	as	for	the	index	method.

string	trim	string	?chars?
Returns	a	value	equal	to	string	except	that	any	leading	or	trailing
characters	present	in	the	string	given	by	chars	are	removed.	If
chars	is	not	specified	then	white	space	is	removed	(spaces,	tabs,
newlines,	and	carriage	returns).

string	trimleft	string	?chars?
Returns	a	value	equal	to	string	except	that	any	leading	characters
present	in	the	string	given	by	chars	are	removed.	If	chars	is	not
specified	then	white	space	is	removed	(spaces,	tabs,	newlines,	and
carriage	returns).

string	trimright	string	?chars?
Returns	a	value	equal	to	string	except	that	any	trailing	characters
present	in	the	string	given	by	chars	are	removed.	If	chars	is	not
specified	then	white	space	is	removed	(spaces,	tabs,	newlines,	and
carriage	returns).

string	wordend	string	charIndex
Returns	the	index	of	the	character	just	after	the	last	one	in	the	word
containing	character	charIndex	of	string.	charIndex	may	be
specified	as	for	the	index	method.	A	word	is	considered	to	be	any
contiguous	range	of	alphanumeric	(Unicode	letters	or	decimal
digits)	or	underscore	(Unicode	connector	punctuation)	characters,
or	any	single	character	other	than	these.

string	wordstart	string	charIndex
Returns	the	index	of	the	first	character	in	the	word	containing
character	charIndex	of	string.	charIndex	may	be	specified	as	for	the
index	method.	A	word	is	considered	to	be	any	contiguous	range	of
alphanumeric	(Unicode	letters	or	decimal	digits)	or	underscore
(Unicode	connector	punctuation)	characters,	or	any	single

character	other	than	these.

EXAMPLE

Test	if	the	string	in	the	variable	string	is	a	proper	non-empty	prefix	of	the
string	foobar.

set	length	[string	length	$string]

if	{$length	==	0}	{

			set	isPrefix	0

}	else	{

			set	isPrefix	[string	equal	-length	$length	$string	"foobar"]

}

SEE	ALSO

expr,	list

KEYWORDS

case	conversion,	compare,	index,	match,	pattern,	string,	word,	equal,
ctype,	character,	reverse

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	dde

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
dde	-	Execute	a	Dynamic	Data	Exchange	command

SYNOPSIS
DESCRIPTION
DDE	COMMANDS

dde	servername	?-force?	?-handler	proc?	?--?	?topic?
dde	execute	?-async?	service	topic	data
dde	poke	service	topic	item	data
dde	request	?-binary?	service	topic	item
dde	services	service	topic
dde	eval	?-async?	topic	cmd	?arg	arg	...?

DDE	AND	TCL
EXAMPLE
SEE	ALSO
KEYWORDS

NAME

dde	-	Execute	a	Dynamic	Data	Exchange	command

SYNOPSIS

package	require	dde	1.3
dde	servername	?-force?	?-handler	proc?	?--?	?topic?
dde	execute	?-async?	service	topic	data
dde	poke	service	topic	item	data
dde	request	?-binary?	service	topic	item
dde	services	service	topic
dde	eval	?-async?	topic	cmd	?arg	arg	...?

DESCRIPTION

This	command	allows	an	application	to	send	Dynamic	Data	Exchange
(DDE)	command	when	running	under	Microsoft	Windows.	Dynamic
Data	Exchange	is	a	mechanism	where	applications	can	exchange	raw
data.	Each	DDE	transaction	needs	a	service	name	and	a	topic.	Both	the
service	name	and	topic	are	application	defined;	Tcl	uses	the	service
name	TclEval,	while	the	topic	name	is	the	name	of	the	interpreter	given
by	dde	servername.	Other	applications	have	their	own	service	names
and	topics.	For	instance,	Microsoft	Excel	has	the	service	name	Excel.

DDE	COMMANDS

The	following	commands	are	a	subset	of	the	full	Dynamic	Data
Exchange	set	of	commands.

dde	servername	?-force?	?-handler	proc?	?--?	?topic?
dde	servername	registers	the	interpreter	as	a	DDE	server	with	the
service	name	TclEval	and	the	topic	name	specified	by	topic.	If	no
topic	is	given,	dde	servername	returns	the	name	of	the	current
topic	or	the	empty	string	if	it	is	not	registered	as	a	service.	If	the
given	topic	name	is	already	in	use,	then	a	suffix	of	the	form	“	#2”	or
“	#3”	is	appended	to	the	name	to	make	it	unique.	The	command's
result	will	be	the	name	actually	used.	The	-force	option	is	used	to
force	registration	of	precisely	the	given	topic	name.

The	-handler	option	specifies	a	Tcl	procedure	that	will	be	called	to
process	calls	to	the	dde	server.	If	the	package	has	been	loaded
into	a	safe	interpreter	then	a	-handler	procedure	must	be	defined.
The	procedure	is	called	with	all	the	arguments	provided	by	the
remote	call.

dde	execute	?-async?	service	topic	data
dde	execute	takes	the	data	and	sends	it	to	the	server	indicated	by
service	with	the	topic	indicated	by	topic.	Typically,	service	is	the
name	of	an	application,	and	topic	is	a	file	to	work	on.	The	data	field
is	given	to	the	remote	application.	Typically,	the	application	treats
the	data	field	as	a	script,	and	the	script	is	run	in	the	application.
The	-async	option	requests	asynchronous	invocation.	The
command	returns	an	error	message	if	the	script	did	not	run,	unless

the	-async	flag	was	used,	in	which	case	the	command	returns
immediately	with	no	error.

dde	poke	service	topic	item	data
dde	poke	passes	the	data	to	the	server	indicated	by	service	using
the	topic	and	item	specified.	Typically,	service	is	the	name	of	an
application.	topic	is	application	specific	but	can	be	a	command	to
the	server	or	the	name	of	a	file	to	work	on.	The	item	is	also
application	specific	and	is	often	not	used,	but	it	must	always	be
non-null.	The	data	field	is	given	to	the	remote	application.

dde	request	?-binary?	service	topic	item
dde	request	is	typically	used	to	get	the	value	of	something;	the
value	of	a	cell	in	Microsoft	Excel	or	the	text	of	a	selection	in
Microsoft	Word.	service	is	typically	the	name	of	an	application,
topic	is	typically	the	name	of	the	file,	and	item	is	application-
specific.	The	command	returns	the	value	of	item	as	defined	in	the
application.	Normally	this	is	interpreted	to	be	a	string	with
terminating	null.	If	-binary	is	specified,	the	result	is	returned	as	a
byte	array.

dde	services	service	topic
dde	services	returns	a	list	of	service-topic	pairs	that	currently	exist
on	the	machine.	If	service	and	topic	are	both	empty	strings	({}),
then	all	service-topic	pairs	currently	available	on	the	system	are
returned.	If	service	is	empty	and	topic	is	not,	then	all	services	with
the	specified	topic	are	returned.	If	service	is	non-empty	and	topic
is,	all	topics	for	a	given	service	are	returned.	If	both	are	non-empty,
if	that	service-topic	pair	currently	exists,	it	is	returned;	otherwise,	an
empty	string	is	returned.

dde	eval	?-async?	topic	cmd	?arg	arg	...?
dde	eval	evaluates	a	command	and	its	arguments	using	the
interpreter	specified	by	topic.	The	DDE	service	must	be	the	TclEval
service.	The	-async	option	requests	asynchronous	invocation.	The
command	returns	an	error	message	if	the	script	did	not	run,	unless
the	-async	flag	was	used,	in	which	case	the	command	returns
immediately	with	no	error.	This	command	can	be	used	to	replace

send	on	Windows.

DDE	AND	TCL

A	Tcl	interpreter	always	has	a	service	name	of	TclEval.	Each	different
interpreter	of	all	running	Tcl	applications	must	be	given	a	unique	name
specified	by	dde	servername.	Each	interp	is	available	as	a	DDE	topic
only	if	the	dde	servername	command	was	used	to	set	the	name	of	the
topic	for	each	interp.	So	a	dde	services	TclEval	{}	command	will	return
a	list	of	service-topic	pairs,	where	each	of	the	currently	running	interps
will	be	a	topic.

When	Tcl	processes	a	dde	execute	command,	the	data	for	the	execute
is	run	as	a	script	in	the	interp	named	by	the	topic	of	the	dde	execute
command.

When	Tcl	processes	a	dde	request	command,	it	returns	the	value	of
the	variable	given	in	the	dde	command	in	the	context	of	the	interp
named	by	the	dde	topic.	Tcl	reserves	the	variable
$TCLEVAL$EXECUTE$RESULT	for	internal	use,	and	dde	request
commands	for	that	variable	will	give	unpredictable	results.

An	external	application	which	wishes	to	run	a	script	in	Tcl	should	have
that	script	store	its	result	in	a	variable,	run	the	dde	execute	command,
and	the	run	dde	request	to	get	the	value	of	the	variable.

When	using	DDE,	be	careful	to	ensure	that	the	event	queue	is	flushed
using	either	update	or	vwait.	This	happens	by	default	when	using	wish
unless	a	blocking	command	is	called	(such	as	exec	without	adding	the
&	to	place	the	process	in	the	background).	If	for	any	reason	the	event
queue	is	not	flushed,	DDE	commands	may	hang	until	the	event	queue
is	flushed.	This	can	create	a	deadlock	situation.

EXAMPLE

This	asks	Internet	Explorer	(which	must	already	be	running)	to	go	to	a
particularly	important	website:

package	require	dde

dde	execute	iexplore	WWW_OpenURL	http://www.tcl.tk/

SEE	ALSO

tk,	winfo,	send

KEYWORDS

application,	dde,	name,	remote	execution

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1997	Sun	Microsystems,	Inc.
Copyright	©	2001	ActiveState	Corporation.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	incr

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

incr	-	Increment	the	value	of	a	variable

SYNOPSIS

incr	varName	?increment?

DESCRIPTION

Increments	the	value	stored	in	the	variable	whose	name	is	varName.
The	value	of	the	variable	must	be	an	integer.	If	increment	is	supplied
then	its	value	(which	must	be	an	integer)	is	added	to	the	value	of
variable	varName;	otherwise	1	is	added	to	varName.	The	new	value	is
stored	as	a	decimal	string	in	variable	varName	and	also	returned	as
result.

Starting	with	the	Tcl	8.5	release,	the	variable	varName	passed	to	incr
may	be	unset,	and	in	that	case,	it	will	be	set	to	the	value	increment	or	to
the	default	increment	value	of	1.

EXAMPLES

Add	one	to	the	contents	of	the	variable	x:

incr	x

Add	42	to	the	contents	of	the	variable	x:

incr	x	42

Add	the	contents	of	the	variable	y	to	the	contents	of	the	variable	x:

incr	x	$y

Add	nothing	at	all	to	the	variable	x	(often	useful	for	checking	whether	an
argument	to	a	procedure	is	actually	integral	and	generating	an	error	if	it
is	not):

incr	x	0

SEE	ALSO

expr

KEYWORDS

add,	increment,	variable,	value

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	subst

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

subst	-	Perform	backslash,	command,	and	variable	substitutions

SYNOPSIS

subst	?-nobackslashes?	?-nocommands?	?-novariables?	string

DESCRIPTION

This	command	performs	variable	substitutions,	command	substitutions,
and	backslash	substitutions	on	its	string	argument	and	returns	the	fully-
substituted	result.	The	substitutions	are	performed	in	exactly	the	same
way	as	for	Tcl	commands.	As	a	result,	the	string	argument	is	actually
substituted	twice,	once	by	the	Tcl	parser	in	the	usual	fashion	for	Tcl
commands,	and	again	by	the	subst	command.

If	any	of	the	-nobackslashes,	-nocommands,	or	-novariables	are
specified,	then	the	corresponding	substitutions	are	not	performed.	For
example,	if	-nocommands	is	specified,	command	substitution	is	not
performed:	open	and	close	brackets	are	treated	as	ordinary	characters
with	no	special	interpretation.

Note	that	the	substitution	of	one	kind	can	include	substitution	of	other
kinds.	For	example,	even	when	the	-novariables	option	is	specified,
command	substitution	is	performed	without	restriction.	This	means	that
any	variable	substitution	necessary	to	complete	the	command
substitution	will	still	take	place.	Likewise,	any	command	substitution
necessary	to	complete	a	variable	substitution	will	take	place,	even	when
-nocommands	is	specified.	See	the	EXAMPLES	below.

If	an	error	occurs	during	substitution,	then	subst	will	return	that	error.	If

a	break	exception	occurs	during	command	or	variable	substitution,	the
result	of	the	whole	substitution	will	be	the	string	(as	substituted)	up	to
the	start	of	the	substitution	that	raised	the	exception.	If	a	continue
exception	occurs	during	the	evaluation	of	a	command	or	variable
substitution,	an	empty	string	will	be	substituted	for	that	entire	command
or	variable	substitution	(as	long	as	it	is	well-formed	Tcl.)	If	a	return
exception	occurs,	or	any	other	return	code	is	returned	during	command
or	variable	substitution,	then	the	returned	value	is	substituted	for	that
substitution.	See	the	EXAMPLES	below.	In	this	way,	all	exceptional
return	codes	are	“caught”	by	subst.	The	subst	command	itself	will
either	return	an	error,	or	will	complete	successfully.

EXAMPLES

When	it	performs	its	substitutions,	subst	does	not	give	any	special
treatment	to	double	quotes	or	curly	braces	(except	within	command
substitutions)	so	the	script

set	a	44

subst	{xyz	{$a}}

returns	“xyz	{44}”,	not	“xyz	{$a}”	and	the	script

set	a	"p\}	q	\{r"

subst	{xyz	{$a}}

returns	“xyz	{p}	q	{r}”,	not	“xyz	{p\}	q	\{r}”.

When	command	substitution	is	performed,	it	includes	any	variable
substitution	necessary	to	evaluate	the	script.

set	a	44

subst	-novariables	{$a	[format	$a]}

returns	“$a	44”,	not	“$a	$a”.	Similarly,	when	variable	substitution	is
performed,	it	includes	any	command	substitution	necessary	to	retrieve
the	value	of	the	variable.

proc	b	{}	{return	c}

array	set	a	{c	c	[b]	tricky}

subst	-nocommands	{[b]	$a([b])}

returns	“[b]	c”,	not	“[b]	tricky”.

The	continue	and	break	exceptions	allow	command	substitutions	to
prevent	substitution	of	the	rest	of	the	command	substitution	and	the	rest
of	string	respectively,	giving	script	authors	more	options	when
processing	text	using	subst.	For	example,	the	script

subst	{abc,[break],def}

returns	“abc,”,	not	“abc,,def”	and	the	script

subst	{abc,[continue;expr	{1+2}],def}

returns	“abc,,def”,	not	“abc,3,def”.

Other	exceptional	return	codes	substitute	the	returned	value

subst	{abc,[return	foo;expr	{1+2}],def}

returns	“abc,foo,def”,	not	“abc,3,def”	and

subst	{abc,[return	-code	10	foo;expr	{1+2}],def}

also	returns	“abc,foo,def”,	not	“abc,3,def”.

SEE	ALSO

Tcl,	eval,	break,	continue

KEYWORDS

backslash	substitution,	command	substitution,	variable	substitution

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.
Copyright	©	2001	Donal	K.	Fellows

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	dict

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
dict	-	Manipulate	dictionaries

SYNOPSIS
DESCRIPTION

dict	append	dictionaryVariable	key	?string	...?
dict	create	?key	value	...?
dict	exists	dictionaryValue	key	?key	...?
dict	filter	dictionaryValue	filterType	arg	?arg	...?

dict	filter	dictionaryValue	key	globPattern
dict	filter	dictionaryValue	script	{keyVar	valueVar}	script
dict	filter	dictionaryValue	value	globPattern

dict	for	{keyVar	valueVar}	dictionaryValue	body
dict	get	dictionaryValue	?key	...?
dict	incr	dictionaryVariable	key	?increment?
dict	info	dictionaryValue
dict	keys	dictionaryValue	?globPattern?
dict	lappend	dictionaryVariable	key	?value	...?
dict	merge	?dictionaryValue	...?
dict	remove	dictionaryValue	?key	...?
dict	replace	dictionaryValue	?key	value	...?
dict	set	dictionaryVariable	key	?key	...?	value
dict	size	dictionaryValue
dict	unset	dictionaryVariable	key	?key	...?
dict	update	dictionaryVariable	key	varName	?key	varName
...?	body
dict	values	dictionaryValue	?globPattern?
dict	with	dictionaryVariable	?key	...?	body

DICTIONARY	VALUES
EXAMPLES
SEE	ALSO
KEYWORDS

NAME

dict	-	Manipulate	dictionaries

SYNOPSIS

dict	option	arg	?arg	...?

DESCRIPTION

Performs	one	of	several	operations	on	dictionary	values	or	variables
containing	dictionary	values	(see	the	DICTIONARY	VALUES	section
below	for	a	description),	depending	on	option.	The	legal	options	(which
may	be	abbreviated)	are:

dict	append	dictionaryVariable	key	?string	...?
This	appends	the	given	string	(or	strings)	to	the	value	that	the	given
key	maps	to	in	the	dictionary	value	contained	in	the	given	variable,
writing	the	resulting	dictionary	value	back	to	that	variable.	Non-
existent	keys	are	treated	as	if	they	map	to	an	empty	string.

dict	create	?key	value	...?
Create	a	new	dictionary	that	contains	each	of	the	key/value
mappings	listed	as	arguments	(keys	and	values	alternating,	with
each	key	being	followed	by	its	associated	value.)

dict	exists	dictionaryValue	key	?key	...?
This	returns	a	boolean	value	indicating	whether	the	given	key	(or
path	of	keys	through	a	set	of	nested	dictionaries)	exists	in	the	given
dictionary	value.	This	returns	a	true	value	exactly	when	dict	get	on
that	path	will	succeed.

dict	filter	dictionaryValue	filterType	arg	?arg	...?
This	takes	a	dictionary	value	and	returns	a	new	dictionary	that
contains	just	those	key/value	pairs	that	match	the	specified	filter
type	(which	may	be	abbreviated.)	Supported	filter	types	are:

dict	filter	dictionaryValue	key	globPattern

The	key	rule	only	matches	those	key/value	pairs	whose	keys
match	the	given	pattern	(in	the	style	of	string	match.)

dict	filter	dictionaryValue	script	{keyVar	valueVar}	script
The	script	rule	tests	for	matching	by	assigning	the	key	to	the
keyVar	and	the	value	to	the	valueVar,	and	then	evaluating	the
given	script	which	should	return	a	boolean	value	(with	the
key/value	pair	only	being	included	in	the	result	of	the	dict	filter
when	a	true	value	is	returned.)	Note	that	the	first	argument
after	the	rule	selection	word	is	a	two-element	list.	If	the	script
returns	with	a	condition	of	TCL_BREAK,	no	further	key/value
pairs	are	considered	for	inclusion	in	the	resulting	dictionary,
and	a	condition	of	TCL_CONTINUE	is	equivalent	to	a	false
result.	The	key/value	pairs	are	tested	in	the	order	in	which	the
keys	were	inserted	into	the	dictionary.

dict	filter	dictionaryValue	value	globPattern
The	value	rule	only	matches	those	key/value	pairs	whose
values	match	the	given	pattern	(in	the	style	of	string	match.)

dict	for	{keyVar	valueVar}	dictionaryValue	body
This	command	takes	three	arguments,	the	first	a	two-element	list	of
variable	names	(for	the	key	and	value	respectively	of	each	mapping
in	the	dictionary),	the	second	the	dictionary	value	to	iterate	across,
and	the	third	a	script	to	be	evaluated	for	each	mapping	with	the	key
and	value	variables	set	appropriately	(in	the	manner	of	foreach.)
The	result	of	the	command	is	an	empty	string.	If	any	evaluation	of
the	body	generates	a	TCL_BREAK	result,	no	further	pairs	from	the
dictionary	will	be	iterated	over	and	the	dict	for	command	will
terminate	successfully	immediately.	If	any	evaluation	of	the	body
generates	a	TCL_CONTINUE	result,	this	shall	be	treated	exactly
like	a	normal	TCL_OK	result.	The	order	of	iteration	is	the	order	in
which	the	keys	were	inserted	into	the	dictionary.

dict	get	dictionaryValue	?key	...?
Given	a	dictionary	value	(first	argument)	and	a	key	(second
argument),	this	will	retrieve	the	value	for	that	key.	Where	several
keys	are	supplied,	the	behaviour	of	the	command	shall	be	as	if	the

result	of	dict	get	$dictVal	$key	was	passed	as	the	first	argument
to	dict	get	with	the	remaining	arguments	as	second	(and	possibly
subsequent)	arguments.	This	facilitates	lookups	in	nested
dictionaries.	For	example,	the	following	two	commands	are
equivalent:

dict	get	$dict	foo	bar	spong

dict	get	[dict	get	[dict	get	$dict	foo]	bar]	spong

If	no	keys	are	provided,	dict	would	return	a	list	containing	pairs	of
elements	in	a	manner	similar	to	array	get.	That	is,	the	first	element
of	each	pair	would	be	the	key	and	the	second	element	would	be	the
value	for	that	key.	It	is	an	error	to	attempt	to	retrieve	a	value	for	a
key	that	is	not	present	in	the	dictionary.

dict	incr	dictionaryVariable	key	?increment?
This	adds	the	given	increment	value	(an	integer	that	defaults	to	1	if
not	specified)	to	the	value	that	the	given	key	maps	to	in	the
dictionary	value	contained	in	the	given	variable,	writing	the
resulting	dictionary	value	back	to	that	variable.	Non-existent	keys
are	treated	as	if	they	map	to	0.	It	is	an	error	to	increment	a	value
for	an	existing	key	if	that	value	is	not	an	integer.

dict	info	dictionaryValue
This	returns	information	(intended	for	display	to	people)	about	the
given	dictionary	though	the	format	of	this	data	is	dependent	on	the
implementation	of	the	dictionary.	For	dictionaries	that	are
implemented	by	hash	tables,	it	is	expected	that	this	will	return	the
string	produced	by	Tcl_HashStats,	similar	to	array	info.

dict	keys	dictionaryValue	?globPattern?
Return	a	list	of	all	keys	in	the	given	dictionary	value.	If	a	pattern	is
supplied,	only	those	keys	that	match	it	(according	to	the	rules	of
string	match)	will	be	returned.	The	returned	keys	will	be	in	the
order	that	they	were	inserted	into	the	dictionary.

dict	lappend	dictionaryVariable	key	?value	...?
This	appends	the	given	items	to	the	list	value	that	the	given	key
maps	to	in	the	dictionary	value	contained	in	the	given	variable,
writing	the	resulting	dictionary	value	back	to	that	variable.	Non-
existent	keys	are	treated	as	if	they	map	to	an	empty	list,	and	it	is
legal	for	there	to	be	no	items	to	append	to	the	list.	It	is	an	error	for
the	value	that	the	key	maps	to	to	not	be	representable	as	a	list.

dict	merge	?dictionaryValue	...?
Return	a	dictionary	that	contains	the	contents	of	each	of	the
dictionaryValue	arguments.	Where	two	(or	more)	dictionaries
contain	a	mapping	for	the	same	key,	the	resulting	dictionary	maps
that	key	to	the	value	according	to	the	last	dictionary	on	the
command	line	containing	a	mapping	for	that	key.

dict	remove	dictionaryValue	?key	...?
Return	a	new	dictionary	that	is	a	copy	of	an	old	one	passed	in	as
first	argument	except	without	mappings	for	each	of	the	keys	listed.
It	is	legal	for	there	to	be	no	keys	to	remove,	and	it	also	legal	for	any
of	the	keys	to	be	removed	to	not	be	present	in	the	input	dictionary
in	the	first	place.

dict	replace	dictionaryValue	?key	value	...?
Return	a	new	dictionary	that	is	a	copy	of	an	old	one	passed	in	as
first	argument	except	with	some	values	different	or	some	extra
key/value	pairs	added.	It	is	legal	for	this	command	to	be	called	with
no	key/value	pairs,	but	illegal	for	this	command	to	be	called	with	a
key	but	no	value.

dict	set	dictionaryVariable	key	?key	...?	value
This	operation	takes	the	name	of	a	variable	containing	a	dictionary
value	and	places	an	updated	dictionary	value	in	that	variable
containing	a	mapping	from	the	given	key	to	the	given	value.	When
multiple	keys	are	present,	this	operation	creates	or	updates	a	chain
of	nested	dictionaries.

dict	size	dictionaryValue
Return	the	number	of	key/value	mappings	in	the	given	dictionary

value.

dict	unset	dictionaryVariable	key	?key	...?
This	operation	(the	companion	to	dict	set)	takes	the	name	of	a
variable	containing	a	dictionary	value	and	places	an	updated
dictionary	value	in	that	variable	that	does	not	contain	a	mapping	for
the	given	key.	Where	multiple	keys	are	present,	this	describes	a
path	through	nested	dictionaries	to	the	mapping	to	remove.	At	least
one	key	must	be	specified,	but	the	last	key	on	the	key-path	need
not	exist.	All	other	components	on	the	path	must	exist.

dict	update	dictionaryVariable	key	varName	?key	varName	...?	body
Execute	the	Tcl	script	in	body	with	the	value	for	each	key	(as	found
by	reading	the	dictionary	value	in	dictionaryVariable)	mapped	to	the
variable	varName.	There	may	be	multiple	key/varName	pairs.	If	a
key	does	not	have	a	mapping,	that	corresponds	to	an	unset
varName.	When	body	terminates,	any	changes	made	to	the
varNames	is	reflected	back	to	the	dictionary	within
dictionaryVariable	(unless	dictionaryVariable	itself	becomes
unreadable,	when	all	updates	are	silently	discarded),	even	if	the
result	of	body	is	an	error	or	some	other	kind	of	exceptional	exit.	The
result	of	dict	update	is	(unless	some	kind	of	error	occurs)	the
result	of	the	evaluation	of	body.	Note	that	the	mapping	of	values	to
variables	does	not	use	traces;	changes	to	the	dictionaryVariable's
contents	only	happen	when	body	terminates.

dict	values	dictionaryValue	?globPattern?
Return	a	list	of	all	values	in	the	given	dictionary	value.	If	a	pattern
is	supplied,	only	those	values	that	match	it	(according	to	the	rules
of	string	match)	will	be	returned.	The	returned	values	will	be	in	the
order	of	that	the	keys	associated	with	those	values	were	inserted
into	the	dictionary.

dict	with	dictionaryVariable	?key	...?	body
Execute	the	Tcl	script	in	body	with	the	value	for	each	key	in
dictionaryVariable	mapped	(in	a	manner	similarly	to	dict	update)	to
a	variable	with	the	same	name.	Where	one	or	more	keys	are
available,	these	indicate	a	chain	of	nested	dictionaries,	with	the

innermost	dictionary	being	the	one	opened	out	for	the	execution	of
body.	As	with	dict	update,	making	dictionaryVariable	unreadable
will	make	the	updates	to	the	dictionary	be	discarded,	and	this	also
happens	if	the	contents	of	dictionaryVariable	are	adjusted	so	that
the	chain	of	dictionaries	no	longer	exists.	The	result	of	dict	with	is
(unless	some	kind	of	error	occurs)	the	result	of	the	evaluation	of
body.	Note	that	the	mapping	of	values	to	variables	does	not	use
traces;	changes	to	the	dictionaryVariable's	contents	only	happen
when	body	terminates.

DICTIONARY	VALUES

Dictionaries	are	values	that	contain	an	efficient,	order-preserving
mapping	from	arbitrary	keys	to	arbitrary	values.	Each	key	in	the
dictionary	maps	to	a	single	value.	They	have	a	textual	format	that	is
exactly	that	of	any	list	with	an	even	number	of	elements,	with	each
mapping	in	the	dictionary	being	represented	as	two	items	in	the	list.
When	a	command	takes	a	dictionary	and	produces	a	new	dictionary
based	on	it	(either	returning	it	or	writing	it	back	into	the	variable	that	the
starting	dictionary	was	read	from)	the	new	dictionary	will	have	the	same
order	of	keys,	modulo	any	deleted	keys	and	with	new	keys	added	on	to
the	end.	When	a	string	is	interpreted	as	a	dictionary	and	it	would
otherwise	have	duplicate	keys,	only	the	last	value	for	a	particular	key	is
used;	the	others	are	ignored,	meaning	that,	“apple	banana”	and	“apple
carrot	apple	banana”	are	equivalent	dictionaries	(with	different	string
representations).

EXAMPLES

Constructing	and	using	nested	dictionaries:

#	Data	for	one	employee

dict	set	employeeInfo	12345-A	forenames	"Joe"

dict	set	employeeInfo	12345-A	surname			"Schmoe"

dict	set	employeeInfo	12345-A	street	"147	Short	Street"

dict	set	employeeInfo	12345-A	city			"Springfield"

dict	set	employeeInfo	12345-A	phone		"555-1234"

#	Data	for	another	employee

dict	set	employeeInfo	98372-J	forenames	"Anne"

dict	set	employeeInfo	98372-J	surname			"Other"

dict	set	employeeInfo	98372-J	street	"32995	Oakdale	Way"

dict	set	employeeInfo	98372-J	city			"Springfield"

dict	set	employeeInfo	98372-J	phone		"555-8765"

#	The	above	data	probably	ought	to	come	from	a	database...

#	Print	out	some	employee	info

set	i	0

puts	"There	are	[dict	size	$employeeInfo]	employees"

dict	for	{id	info}	$employeeInfo	{

			puts	"Employee	#[incr	i]:	$id"

			dict	with	info	{

						puts	"			Name:	$forenames	$surname"

						puts	"			Address:	$street,	$city"

						puts	"			Telephone:	$phone"

			}

}

#	Another	way	to	iterate	and	pick	out	names...

foreach	id	[dict	keys	$employeeInfo]	{

			puts	"Hello,	[dict	get	$employeeInfo	$id	forenames]!"

}

A	localizable	version	of	string	toupper:

#	Set	up	the	basic	C	locale

set	capital	[dict	create	C	[dict	create]]

foreach	c	[split	{abcdefghijklmnopqrstuvwxyz}	""]	{

			dict	set	capital	C	$c	[string	toupper	$c]

}

#	English	locales	can	luckily	share	the	"C"	locale

dict	set	capital	en	[dict	get	$capital	C]

dict	set	capital	en_US	[dict	get	$capital	C]

dict	set	capital	en_GB	[dict	get	$capital	C]

#	...	and	so	on	for	other	supported	languages	...

#	Now	get	the	mapping	for	the	current	locale	and	use	it.

set	upperCaseMap	[dict	get	$capital	$env(LANG)]

set	upperCase	[string	map	$upperCaseMap	$string]

SEE	ALSO

append,	array,	foreach,	incr,	list,	lappend,	set

KEYWORDS

dictionary,	create,	update,	lookup,	iterate,	filter

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	2003	Donal	K.	Fellows

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	info

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
info	-	Return	information	about	the	state	of	the	Tcl	interpreter

SYNOPSIS
DESCRIPTION

info	args	procname
info	body	procname
info	cmdcount
info	commands	?pattern?
info	complete	command
info	default	procname	arg	varname
info	exists	varName
info	frame	?number?

type
source
proc
eval
precompiled

line
file
cmd
proc
lambda
level

info	functions	?pattern?
info	globals	?pattern?
info	hostname
info	level	?number?
info	library
info	loaded	?interp?
info	locals	?pattern?
info	nameofexecutable

info	patchlevel
info	procs	?pattern?
info	script	?filename?
info	sharedlibextension
info	tclversion
info	vars	?pattern?

EXAMPLE
SEE	ALSO
KEYWORDS

NAME

info	-	Return	information	about	the	state	of	the	Tcl	interpreter

SYNOPSIS

info	option	?arg	arg	...?

DESCRIPTION

This	command	provides	information	about	various	internals	of	the	Tcl
interpreter.	The	legal	options	(which	may	be	abbreviated)	are:

info	args	procname
Returns	a	list	containing	the	names	of	the	arguments	to	procedure
procname,	in	order.	Procname	must	be	the	name	of	a	Tcl	command
procedure.

info	body	procname
Returns	the	body	of	procedure	procname.	Procname	must	be	the
name	of	a	Tcl	command	procedure.

info	cmdcount
Returns	a	count	of	the	total	number	of	commands	that	have	been
invoked	in	this	interpreter.

info	commands	?pattern?
If	pattern	is	not	specified,	returns	a	list	of	names	of	all	the	Tcl

commands	visible	(i.e.	executable	without	using	a	qualified	name)
to	the	current	namespace,	including	both	the	built-in	commands
written	in	C	and	the	command	procedures	defined	using	the	proc
command.	If	pattern	is	specified,	only	those	names	matching
pattern	are	returned.	Matching	is	determined	using	the	same	rules
as	for	string	match.	pattern	can	be	a	qualified	name	like
Foo::print*.	That	is,	it	may	specify	a	particular	namespace	using	a
sequence	of	namespace	names	separated	by	double	colons	(::),
and	may	have	pattern	matching	special	characters	at	the	end	to
specify	a	set	of	commands	in	that	namespace.	If	pattern	is	a
qualified	name,	the	resulting	list	of	command	names	has	each	one
qualified	with	the	name	of	the	specified	namespace,	and	only	the
commands	defined	in	the	named	namespace	are	returned.

info	complete	command
Returns	1	if	command	is	a	complete	Tcl	command	in	the	sense	of
having	no	unclosed	quotes,	braces,	brackets	or	array	element
names.	If	the	command	does	not	appear	to	be	complete	then	0	is
returned.	This	command	is	typically	used	in	line-oriented	input
environments	to	allow	users	to	type	in	commands	that	span
multiple	lines;	if	the	command	is	not	complete,	the	script	can	delay
evaluating	it	until	additional	lines	have	been	typed	to	complete	the
command.

info	default	procname	arg	varname
Procname	must	be	the	name	of	a	Tcl	command	procedure	and	arg
must	be	the	name	of	an	argument	to	that	procedure.	If	arg	does	not
have	a	default	value	then	the	command	returns	0.	Otherwise	it
returns	1	and	places	the	default	value	of	arg	into	variable	varname.

info	exists	varName
Returns	1	if	the	variable	named	varName	exists	in	the	current
context	(either	as	a	global	or	local	variable)	and	has	been	defined
by	being	given	a	value,	returns	0	otherwise.

info	frame	?number?
This	command	provides	access	to	all	frames	on	the	stack,	even
those	hidden	from	info	level.	If	number	is	not	specified,	this

command	returns	a	number	giving	the	frame	level	of	the	command.
This	is	1	if	the	command	is	invoked	at	top-level.	If	number	is
specified,	then	the	result	is	a	dictionary	containing	the	location
information	for	the	command	at	the	numbered	level	on	the	stack.

If	number	is	positive	(>	0)	then	it	selects	a	particular	stack	level	(1
refers	to	the	top-most	active	command,	i.e.,	info	frame	itself,	2	to
the	command	it	was	called	from,	and	so	on);	otherwise	it	gives	a
level	relative	to	the	current	command	(0	refers	to	the	current
command,	i.e.,	info	frame	itself,	-1	to	its	caller,	and	so	on).

This	is	similar	to	how	info	level	works,	except	that	this
subcommand	reports	all	frames,	like	sourced	scripts,	evals,
uplevels,	etc.

Note	that	for	nested	commands,	like	“foo	[bar	[x]]”,	only	“x”	will	be
seen	by	an	info	frame	invoked	within	“x”.	This	is	the	same	as	for
info	level	and	error	stack	traces.

The	result	dictionary	may	contain	the	keys	listed	below,	with	the
specified	meanings	for	their	values:

type
This	entry	is	always	present	and	describes	the	nature	of	the
location	for	the	command.	The	recognized	values	are	source,
proc,	eval,	and	precompiled.

source
means	that	the	command	is	found	in	a	script	loaded	by	the
source	command.

proc
means	that	the	command	is	found	in	dynamically	created
procedure	body.

eval
means	that	the	command	is	executed	by	eval	or	uplevel.

precompiled

means	that	the	command	is	found	in	a	precompiled	script
(loadable	by	the	package	tbcload),	and	no	further
information	will	be	available.

line
This	entry	provides	the	number	of	the	line	the	command	is	at
inside	of	the	script	it	is	a	part	of.	This	information	is	not	present
for	type	precompiled.	For	type	source	this	information	is
counted	relative	to	the	beginning	of	the	file,	whereas	for	the
last	two	types	the	line	is	counted	relative	to	the	start	of	the
script.

file
This	entry	is	present	only	for	type	source.	It	provides	the
normalized	path	of	the	file	the	command	is	in.

cmd
This	entry	provides	the	string	representation	of	the	command.
This	is	usually	the	unsubstituted	form,	however	for	commands
which	are	a	pure	list	executed	by	eval	it	is	the	substituted	form
as	they	have	no	other	string	representation.	Care	is	taken	that
the	pure-List	property	of	the	latter	is	not	spoiled.

proc
This	entry	is	present	only	if	the	command	is	found	in	the	body
of	a	regular	Tcl	procedure.	It	then	provides	the	name	of	that
procedure.

lambda
This	entry	is	present	only	if	the	command	is	found	in	the	body
of	an	anonymous	Tcl	procedure,	i.e.	a	lambda.	It	then	provides
the	entire	definition	of	the	lambda	in	question.

level
This	entry	is	present	only	if	the	queried	frame	has	a
corresponding	frame	returned	by	info	level.	It	provides	the
index	of	this	frame,	relative	to	the	current	level	(0	and	negative
numbers).

A	thing	of	note	is	that	for	procedures	statically	defined	in	files	the
locations	of	commands	in	their	bodies	will	be	reported	with	type
source	and	absolute	line	numbers,	and	not	as	type	proc.	The
same	is	true	for	procedures	nested	in	statically	defined	procedures,
and	literal	eval	scripts	in	files	or	statically	defined	procedures.

In	contrast,	a	procedure	definition	or	eval	within	a	dynamically
evaluated	environment	count	linenumbers	relative	to	the	start	of
their	script,	even	if	they	would	be	able	to	count	relative	to	the	start
of	the	outer	dynamic	script.	That	type	of	number	usually	makes
more	sense.

A	different	way	of	describing	this	behaviour	is	that	file	based
locations	are	tracked	as	deeply	as	possible,	and	where	this	is	not
possible	the	lines	are	counted	based	on	the	smallest	possible	eval
or	procedure	body,	as	that	scope	is	usually	easier	to	find	than	any
dynamic	outer	scope.

The	syntactic	form	{*}	is	handled	like	eval.	I.e.	if	it	is	given	a	literal
list	argument	the	system	tracks	the	linenumber	within	the	list	words
as	well,	and	otherwise	all	linenumbers	are	counted	relative	to	the
start	of	each	word	(smallest	scope)

info	functions	?pattern?
If	pattern	is	not	specified,	returns	a	list	of	all	the	math	functions
currently	defined.	If	pattern	is	specified,	only	those	functions	whose
name	matches	pattern	are	returned.	Matching	is	determined	using
the	same	rules	as	for	string	match.

info	globals	?pattern?
If	pattern	is	not	specified,	returns	a	list	of	all	the	names	of	currently-
defined	global	variables.	Global	variables	are	variables	in	the
global	namespace.	If	pattern	is	specified,	only	those	names
matching	pattern	are	returned.	Matching	is	determined	using	the
same	rules	as	for	string	match.

info	hostname
Returns	the	name	of	the	computer	on	which	this	invocation	is	being

executed.	Note	that	this	name	is	not	guaranteed	to	be	the	fully
qualified	domain	name	of	the	host.	Where	machines	have	several
different	names	(as	is	common	on	systems	with	both	TCP/IP	(DNS)
and	NetBIOS-based	networking	installed,)	it	is	the	name	that	is
suitable	for	TCP/IP	networking	that	is	returned.

info	level	?number?
If	number	is	not	specified,	this	command	returns	a	number	giving
the	stack	level	of	the	invoking	procedure,	or	0	if	the	command	is
invoked	at	top-level.	If	number	is	specified,	then	the	result	is	a	list
consisting	of	the	name	and	arguments	for	the	procedure	call	at
level	number	on	the	stack.	If	number	is	positive	then	it	selects	a
particular	stack	level	(1	refers	to	the	top-most	active	procedure,	2
to	the	procedure	it	called,	and	so	on);	otherwise	it	gives	a	level
relative	to	the	current	level	(0	refers	to	the	current	procedure,	-1	to
its	caller,	and	so	on).	See	the	uplevel	command	for	more
information	on	what	stack	levels	mean.

info	library
Returns	the	name	of	the	library	directory	in	which	standard	Tcl
scripts	are	stored.	This	is	actually	the	value	of	the	tcl_library
variable	and	may	be	changed	by	setting	tcl_library.	See	the
tclvars	manual	entry	for	more	information.

info	loaded	?interp?
Returns	a	list	describing	all	of	the	packages	that	have	been	loaded
into	interp	with	the	load	command.	Each	list	element	is	a	sub-list
with	two	elements	consisting	of	the	name	of	the	file	from	which	the
package	was	loaded	and	the	name	of	the	package.	For	statically-
loaded	packages	the	file	name	will	be	an	empty	string.	If	interp	is
omitted	then	information	is	returned	for	all	packages	loaded	in	any
interpreter	in	the	process.	To	get	a	list	of	just	the	packages	in	the
current	interpreter,	specify	an	empty	string	for	the	interp	argument.

info	locals	?pattern?
If	pattern	is	not	specified,	returns	a	list	of	all	the	names	of	currently-
defined	local	variables,	including	arguments	to	the	current
procedure,	if	any.	Variables	defined	with	the	global,	upvar	and

variable	commands	will	not	be	returned.	If	pattern	is	specified,	only
those	names	matching	pattern	are	returned.	Matching	is
determined	using	the	same	rules	as	for	string	match.

info	nameofexecutable
Returns	the	full	path	name	of	the	binary	file	from	which	the
application	was	invoked.	If	Tcl	was	unable	to	identify	the	file,	then
an	empty	string	is	returned.

info	patchlevel
Returns	the	value	of	the	global	variable	tcl_patchLevel;	see	the
tclvars	manual	entry	for	more	information.

info	procs	?pattern?
If	pattern	is	not	specified,	returns	a	list	of	all	the	names	of	Tcl
command	procedures	in	the	current	namespace.	If	pattern	is
specified,	only	those	procedure	names	in	the	current	namespace
matching	pattern	are	returned.	Matching	is	determined	using	the
same	rules	as	for	string	match.	If	pattern	contains	any	namespace
separators,	they	are	used	to	select	a	namespace	relative	to	the
current	namespace	(or	relative	to	the	global	namespace	if	pattern
starts	with	::)	to	match	within;	the	matching	pattern	is	taken	to	be
the	part	after	the	last	namespace	separator.

info	script	?filename?
If	a	Tcl	script	file	is	currently	being	evaluated	(i.e.	there	is	a	call	to
Tcl_EvalFile	active	or	there	is	an	active	invocation	of	the	source
command),	then	this	command	returns	the	name	of	the	innermost
file	being	processed.	If	filename	is	specified,	then	the	return	value
of	this	command	will	be	modified	for	the	duration	of	the	active
invocation	to	return	that	name.	This	is	useful	in	virtual	file	system
applications.	Otherwise	the	command	returns	an	empty	string.

info	sharedlibextension
Returns	the	extension	used	on	this	platform	for	the	names	of	files
containing	shared	libraries	(for	example,	.so	under	Solaris).	If
shared	libraries	are	not	supported	on	this	platform	then	an	empty
string	is	returned.

info	tclversion
Returns	the	value	of	the	global	variable	tcl_version;	see	the
tclvars	manual	entry	for	more	information.

info	vars	?pattern?
If	pattern	is	not	specified,	returns	a	list	of	all	the	names	of	currently-
visible	variables.	This	includes	locals	and	currently-visible	globals.
If	pattern	is	specified,	only	those	names	matching	pattern	are
returned.	Matching	is	determined	using	the	same	rules	as	for
string	match.	pattern	can	be	a	qualified	name	like	Foo::option*.
That	is,	it	may	specify	a	particular	namespace	using	a	sequence	of
namespace	names	separated	by	double	colons	(::),	and	may	have
pattern	matching	special	characters	at	the	end	to	specify	a	set	of
variables	in	that	namespace.	If	pattern	is	a	qualified	name,	the
resulting	list	of	variable	names	has	each	matching	namespace
variable	qualified	with	the	name	of	its	namespace.	Note	that	a
currently-visible	variable	may	not	yet	“exist”	if	it	has	not	been	set
(e.g.	a	variable	declared	but	not	set	by	variable).

EXAMPLE

This	command	prints	out	a	procedure	suitable	for	saving	in	a	Tcl	script:

proc	printProc	{procName}	{

				set	result	[list	proc	$procName]

				set	formals	{}

				foreach	var	[info	args	$procName]	{

								if	{[info	default	$procName	$var	def]}	{

												lappend	formals	[list	$var	$def]

								}	else	{

												#	Still	need	the	list-quoting	because	variable

												#	names	may	properly	contain	spaces.

												lappend	formals	[list	$var]

								}

				}

				puts	[lappend	result	$formals	[info	body	$procName]]

}

SEE	ALSO

global,	proc

KEYWORDS

command,	information,	interpreter,	level,	namespace,	procedure,
variable

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1997	Sun	Microsystems,	Inc.
Copyright	©	1993-1997	Bell	Labs	Innovations	for	Lucent	Technologies
Copyright	©	1998-2000	Ajuba	Solutions

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	pid

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

pid	-	Retrieve	process	identifiers

SYNOPSIS

pid	?fileId?

DESCRIPTION

If	the	fileId	argument	is	given	then	it	should	normally	refer	to	a	process
pipeline	created	with	the	open	command.	In	this	case	the	pid	command
will	return	a	list	whose	elements	are	the	process	identifiers	of	all	the
processes	in	the	pipeline,	in	order.	The	list	will	be	empty	if	fileId	refers
to	an	open	file	that	is	not	a	process	pipeline.	If	no	fileId	argument	is
given	then	pid	returns	the	process	identifier	of	the	current	process.	All
process	identifiers	are	returned	as	decimal	strings.

EXAMPLE

Print	process	information	about	the	processes	in	a	pipeline	using	the
SysV	ps	program	before	reading	the	output	of	that	pipeline:

set	pipeline	[open	"|	zcat	somefile.gz	|	grep	foobar	|	sort	-u"]

#	Print	process	information

exec	ps	-fp	[pid	$pipeline]	>@stdout

#	Print	a	separator	and	then	the	output	of	the	pipeline

puts	[string	repeat	-	70]

puts	[read	$pipeline]

close	$pipeline

SEE	ALSO

exec,	open

KEYWORDS

file,	pipeline,	process	identifier

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	switch

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
switch	-	Evaluate	one	of	several	scripts,	depending	on	a	given
value

SYNOPSIS
DESCRIPTION

-exact
-glob
-regexp
-nocase
-matchvar	varName
-indexvar	varName
--

EXAMPLES
SEE	ALSO
KEYWORDS

NAME

switch	-	Evaluate	one	of	several	scripts,	depending	on	a	given	value

SYNOPSIS

switch	?options?	string	pattern	body	?pattern	body	...?
switch	?options?	string	{pattern	body	?pattern	body	...?}

DESCRIPTION

The	switch	command	matches	its	string	argument	against	each	of	the
pattern	arguments	in	order.	As	soon	as	it	finds	a	pattern	that	matches
string	it	evaluates	the	following	body	argument	by	passing	it	recursively
to	the	Tcl	interpreter	and	returns	the	result	of	that	evaluation.	If	the	last
pattern	argument	is	default	then	it	matches	anything.	If	no	pattern

argument	matches	string	and	no	default	is	given,	then	the	switch
command	returns	an	empty	string.

If	the	initial	arguments	to	switch	start	with	-	then	they	are	treated	as
options	unless	there	are	exactly	two	arguments	to	switch	(in	which
case	the	first	must	the	string	and	the	second	must	be	the	pattern/body
list).	The	following	options	are	currently	supported:

-exact
Use	exact	matching	when	comparing	string	to	a	pattern.	This	is	the
default.

-glob
When	matching	string	to	the	patterns,	use	glob-style	matching	(i.e.
the	same	as	implemented	by	the	string	match	command).

-regexp
When	matching	string	to	the	patterns,	use	regular	expression
matching	(as	described	in	the	re_syntax	reference	page).

-nocase
Causes	comparisons	to	be	handled	in	a	case-insensitive	manner.

-matchvar	varName
This	option	(only	legal	when	-regexp	is	also	specified)	specifies	the
name	of	a	variable	into	which	the	list	of	matches	found	by	the
regular	expression	engine	will	be	written.	The	first	element	of	the
list	written	will	be	the	overall	substring	of	the	input	string	(i.e.	the
string	argument	to	switch)	matched,	the	second	element	of	the	list
will	be	the	substring	matched	by	the	first	capturing	parenthesis	in
the	regular	expression	that	matched,	and	so	on.	When	a	default
branch	is	taken,	the	variable	will	have	the	empty	list	written	to	it.
This	option	may	be	specified	at	the	same	time	as	the	-indexvar
option.

-indexvar	varName
This	option	(only	legal	when	-regexp	is	also	specified)	specifies	the
name	of	a	variable	into	which	the	list	of	indices	referring	to

matching	substrings	found	by	the	regular	expression	engine	will	be
written.	The	first	element	of	the	list	written	will	be	a	two-element	list
specifying	the	index	of	the	start	and	index	of	the	first	character	after
the	end	of	the	overall	substring	of	the	input	string	(i.e.	the	string
argument	to	switch)	matched,	in	a	similar	way	to	the	-indices
option	to	the	regexp	can	obtain.	Similarly,	the	second	element	of
the	list	refers	to	the	first	capturing	parenthesis	in	the	regular
expression	that	matched,	and	so	on.	When	a	default	branch	is
taken,	the	variable	will	have	the	empty	list	written	to	it.	This	option
may	be	specified	at	the	same	time	as	the	-matchvar	option.

--
Marks	the	end	of	options.	The	argument	following	this	one	will	be
treated	as	string	even	if	it	starts	with	a	-.	This	is	not	required	when
the	matching	patterns	and	bodies	are	grouped	together	in	a	single
argument.

Two	syntaxes	are	provided	for	the	pattern	and	body	arguments.	The
first	uses	a	separate	argument	for	each	of	the	patterns	and	commands;
this	form	is	convenient	if	substitutions	are	desired	on	some	of	the
patterns	or	commands.	The	second	form	places	all	of	the	patterns	and
commands	together	into	a	single	argument;	the	argument	must	have
proper	list	structure,	with	the	elements	of	the	list	being	the	patterns	and
commands.	The	second	form	makes	it	easy	to	construct	multi-line
switch	commands,	since	the	braces	around	the	whole	list	make	it
unnecessary	to	include	a	backslash	at	the	end	of	each	line.	Since	the
pattern	arguments	are	in	braces	in	the	second	form,	no	command	or
variable	substitutions	are	performed	on	them;	this	makes	the	behavior
of	the	second	form	different	than	the	first	form	in	some	cases.

If	a	body	is	specified	as	“-”	it	means	that	the	body	for	the	next	pattern
should	also	be	used	as	the	body	for	this	pattern	(if	the	next	pattern	also
has	a	body	of	“-”	then	the	body	after	that	is	used,	and	so	on).	This
feature	makes	it	possible	to	share	a	single	body	among	several
patterns.

Beware	of	how	you	place	comments	in	switch	commands.	Comments
should	only	be	placed	inside	the	execution	body	of	one	of	the	patterns,

and	not	intermingled	with	the	patterns.

EXAMPLES

The	switch	command	can	match	against	variables	and	not	just	literals,
as	shown	here	(the	result	is	2):

set	foo	"abc"

switch	abc	a	-	b	{expr	{1}}	$foo	{expr	{2}}	default	{expr	{3}}

Using	glob	matching	and	the	fall-through	body	is	an	alternative	to
writing	regular	expressions	with	alternations,	as	can	be	seen	here	(this
returns	1):

switch	-glob	aaab	{

			a*b					-

			b							{expr	{1}}

			a*						{expr	{2}}

			default	{expr	{3}}

}

Whenever	nothing	matches,	the	default	clause	(which	must	be	last)	is
taken.	This	example	has	a	result	of	3:

switch	xyz	{

			a	-

			b	{

						#	Correct	Comment	Placement

						expr	{1}

			}

			c	{

						expr	{2}

			}

			default	{

						expr	{3}

			}

}

When	matching	against	regular	expressions,	information	about	what
exactly	matched	is	easily	obtained	using	the	-matchvar	option:

switch	-regexp	-matchvar	foo	--	$bar	{

			a(b*)c	{

						puts	"Found	[string	length	[lindex	$foo	1]]	'b's"

			}

			d(e*)f(g*)h	{

						puts	"Found	[string	length	[lindex	$foo	1]]	'e's	and\

												[string	length	[lindex	$foo	2]]	'g's"

			}

}

SEE	ALSO

for,	if,	regexp

KEYWORDS

switch,	match,	regular	expression

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1997	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	encoding

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
encoding	-	Manipulate	encodings

SYNOPSIS
INTRODUCTION
DESCRIPTION

encoding	convertfrom	?encoding?	data
encoding	convertto	?encoding?	string
encoding	dirs	?directoryList?
encoding	names
encoding	system	?encoding?

EXAMPLE
SEE	ALSO
KEYWORDS

NAME

encoding	-	Manipulate	encodings

SYNOPSIS

encoding	option	?arg	arg	...?

INTRODUCTION

Strings	in	Tcl	are	encoded	using	16-bit	Unicode	characters.	Different
operating	system	interfaces	or	applications	may	generate	strings	in
other	encodings	such	as	Shift-JIS.	The	encoding	command	helps	to
bridge	the	gap	between	Unicode	and	these	other	formats.

DESCRIPTION

Performs	one	of	several	encoding	related	operations,	depending	on

option.	The	legal	options	are:

encoding	convertfrom	?encoding?	data
Convert	data	to	Unicode	from	the	specified	encoding.	The
characters	in	data	are	treated	as	binary	data	where	the	lower	8-bits
of	each	character	is	taken	as	a	single	byte.	The	resulting	sequence
of	bytes	is	treated	as	a	string	in	the	specified	encoding.	If	encoding
is	not	specified,	the	current	system	encoding	is	used.

encoding	convertto	?encoding?	string
Convert	string	from	Unicode	to	the	specified	encoding.	The	result	is
a	sequence	of	bytes	that	represents	the	converted	string.	Each
byte	is	stored	in	the	lower	8-bits	of	a	Unicode	character.	If	encoding
is	not	specified,	the	current	system	encoding	is	used.

encoding	dirs	?directoryList?
Tcl	can	load	encoding	data	files	from	the	file	system	that	describe
additional	encodings	for	it	to	work	with.	This	command	sets	the
search	path	for	*.enc	encoding	data	files	to	the	list	of	directories
directoryList.	If	directoryList	is	omitted	then	the	command	returns
the	current	list	of	directories	that	make	up	the	search	path.	It	is	an
error	for	directoryList	to	not	be	a	valid	list.	If,	when	a	search	for	an
encoding	data	file	is	happening,	an	element	in	directoryList	does
not	refer	to	a	readable,	searchable	directory,	that	element	is
ignored.

encoding	names
Returns	a	list	containing	the	names	of	all	of	the	encodings	that	are
currently	available.

encoding	system	?encoding?
Set	the	system	encoding	to	encoding.	If	encoding	is	omitted	then
the	command	returns	the	current	system	encoding.	The	system
encoding	is	used	whenever	Tcl	passes	strings	to	system	calls.

EXAMPLE

It	is	common	practice	to	write	script	files	using	a	text	editor	that

produces	output	in	the	euc-jp	encoding,	which	represents	the	ASCII
characters	as	singe	bytes	and	Japanese	characters	as	two	bytes.	This
makes	it	easy	to	embed	literal	strings	that	correspond	to	non-ASCII
characters	by	simply	typing	the	strings	in	place	in	the	script.	However,
because	the	source	command	always	reads	files	using	the	current
system	encoding,	Tcl	will	only	source	such	files	correctly	when	the
encoding	used	to	write	the	file	is	the	same.	This	tends	not	to	be	true	in
an	internationalized	setting.	For	example,	if	such	a	file	was	sourced	in
North	America	(where	the	ISO8859-1	is	normally	used),	each	byte	in
the	file	would	be	treated	as	a	separate	character	that	maps	to	the	00
page	in	Unicode.	The	resulting	Tcl	strings	will	not	contain	the	expected
Japanese	characters.	Instead,	they	will	contain	a	sequence	of	Latin-1
characters	that	correspond	to	the	bytes	of	the	original	string.	The
encoding	command	can	be	used	to	convert	this	string	to	the	expected
Japanese	Unicode	characters.	For	example,

set	s	[encoding	convertfrom	euc-jp	"\xA4\xCF"]

would	return	the	Unicode	string	“\u306F”,	which	is	the	Hiragana	letter
HA.

SEE	ALSO

Tcl_GetEncoding

KEYWORDS

encoding

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1998	by	Scriptics	Corporation.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	interp

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
interp	-	Create	and	manipulate	Tcl	interpreters

SYNOPSIS
DESCRIPTION
THE	INTERP	COMMAND

interp	alias	srcPath	srcToken
interp	alias	srcPath	srcToken	{}
interp	alias	srcPath	srcCmd	targetPath	targetCmd	?arg	arg
...?
interp	aliases	?path?
interp	bgerror	path	?cmdPrefix?
interp	create	?-safe?	?--?	?path?
interp	delete	?path	...?
interp	eval	path	arg	?arg	...?
interp	exists	path
interp	expose	path	hiddenName	?exposedCmdName?
interp	hide	path	exposedCmdName	?hiddenCmdName?
interp	hidden	path
interp	invokehidden	path	?-option	...?	hiddenCmdName	?arg
...?
interp	limit	path	limitType	?-option?	?value	...?
interp	issafe	?path?
interp	marktrusted	path
interp	recursionlimit	path	?newlimit?
interp	share	srcPath	channelId	destPath
interp	slaves	?path?
interp	target	path	alias
interp	transfer	srcPath	channelId	destPath

SLAVE	COMMAND
slave	aliases
slave	alias	srcToken

slave	alias	srcToken	{}
slave	alias	srcCmd	targetCmd	?arg	..?
slave	bgerror	?cmdPrefix?
slave	eval	arg	?arg	..?
slave	expose	hiddenName	?exposedCmdName?
slave	hide	exposedCmdName	?hiddenCmdName?
slave	hidden
slave	invokehidden	?-option	...?	hiddenName	?arg	..?
slave	issafe
slave	limit	limitType	?-option?	?value	...?
slave	marktrusted
slave	recursionlimit	?newlimit?

SAFE	INTERPRETERS
ALIAS	INVOCATION
HIDDEN	COMMANDS
RESOURCE	LIMITS
LIMIT	OPTIONS

-command
-granularity
-milliseconds
-seconds
-value

BACKGROUND	ERROR	HANDLING
CREDITS
EXAMPLES
SEE	ALSO
KEYWORDS

NAME

interp	-	Create	and	manipulate	Tcl	interpreters

SYNOPSIS

interp	subcommand	?arg	arg	...?

DESCRIPTION

This	command	makes	it	possible	to	create	one	or	more	new	Tcl
interpreters	that	co-exist	with	the	creating	interpreter	in	the	same
application.	The	creating	interpreter	is	called	the	master	and	the	new
interpreter	is	called	a	slave.	A	master	can	create	any	number	of	slaves,
and	each	slave	can	itself	create	additional	slaves	for	which	it	is	master,
resulting	in	a	hierarchy	of	interpreters.

Each	interpreter	is	independent	from	the	others:	it	has	its	own	name
space	for	commands,	procedures,	and	global	variables.	A	master
interpreter	may	create	connections	between	its	slaves	and	itself	using	a
mechanism	called	an	alias.	An	alias	is	a	command	in	a	slave	interpreter
which,	when	invoked,	causes	a	command	to	be	invoked	in	its	master
interpreter	or	in	another	slave	interpreter.	The	only	other	connections
between	interpreters	are	through	environment	variables	(the	env
variable),	which	are	normally	shared	among	all	interpreters	in	the
application,	and	by	resource	limit	exceeded	callbacks.	Note	that	the
name	space	for	files	(such	as	the	names	returned	by	the	open
command)	is	no	longer	shared	between	interpreters.	Explicit	commands
are	provided	to	share	files	and	to	transfer	references	to	open	files	from
one	interpreter	to	another.

The	interp	command	also	provides	support	for	safe	interpreters.	A	safe
interpreter	is	a	slave	whose	functions	have	been	greatly	restricted,	so
that	it	is	safe	to	execute	untrusted	scripts	without	fear	of	them
damaging	other	interpreters	or	the	application's	environment.	For
example,	all	IO	channel	creation	commands	and	subprocess	creation
commands	are	made	inaccessible	to	safe	interpreters.	See	SAFE
INTERPRETERS	below	for	more	information	on	what	features	are
present	in	a	safe	interpreter.	The	dangerous	functionality	is	not	removed
from	the	safe	interpreter;	instead,	it	is	hidden,	so	that	only	trusted
interpreters	can	obtain	access	to	it.	For	a	detailed	explanation	of	hidden
commands,	see	HIDDEN	COMMANDS,	below.	The	alias	mechanism
can	be	used	for	protected	communication	(analogous	to	a	kernel	call)
between	a	slave	interpreter	and	its	master.	See	ALIAS	INVOCATION,
below,	for	more	details	on	how	the	alias	mechanism	works.

A	qualified	interpreter	name	is	a	proper	Tcl	lists	containing	a	subset	of
its	ancestors	in	the	interpreter	hierarchy,	terminated	by	the	string

naming	the	interpreter	in	its	immediate	master.	Interpreter	names	are
relative	to	the	interpreter	in	which	they	are	used.	For	example,	if	a	is	a
slave	of	the	current	interpreter	and	it	has	a	slave	a1,	which	in	turn	has	a
slave	a11,	the	qualified	name	of	a11	in	a	is	the	list	a1	a11.

The	interp	command,	described	below,	accepts	qualified	interpreter
names	as	arguments;	the	interpreter	in	which	the	command	is	being
evaluated	can	always	be	referred	to	as	{}	(the	empty	list	or	string).	Note
that	it	is	impossible	to	refer	to	a	master	(ancestor)	interpreter	by	name
in	a	slave	interpreter	except	through	aliases.	Also,	there	is	no	global
name	by	which	one	can	refer	to	the	first	interpreter	created	in	an
application.	Both	restrictions	are	motivated	by	safety	concerns.

THE	INTERP	COMMAND

The	interp	command	is	used	to	create,	delete,	and	manipulate	slave
interpreters,	and	to	share	or	transfer	channels	between	interpreters.	It
can	have	any	of	several	forms,	depending	on	the	subcommand
argument:

interp	alias	srcPath	srcToken
Returns	a	Tcl	list	whose	elements	are	the	targetCmd	and	args
associated	with	the	alias	represented	by	srcToken	(this	is	the	value
returned	when	the	alias	was	created;	it	is	possible	that	the	name	of
the	source	command	in	the	slave	is	different	from	srcToken).

interp	alias	srcPath	srcToken	{}
Deletes	the	alias	for	srcToken	in	the	slave	interpreter	identified	by
srcPath.	srcToken	refers	to	the	value	returned	when	the	alias	was
created;	if	the	source	command	has	been	renamed,	the	renamed
command	will	be	deleted.

interp	alias	srcPath	srcCmd	targetPath	targetCmd	?arg	arg	...?
This	command	creates	an	alias	between	one	slave	and	another
(see	the	alias	slave	command	below	for	creating	aliases	between	a
slave	and	its	master).	In	this	command,	either	of	the	slave
interpreters	may	be	anywhere	in	the	hierarchy	of	interpreters	under
the	interpreter	invoking	the	command.	SrcPath	and	srcCmd	identify

the	source	of	the	alias.	SrcPath	is	a	Tcl	list	whose	elements	select
a	particular	interpreter.	For	example,	“a	b”	identifies	an	interpreter
b,	which	is	a	slave	of	interpreter	a,	which	is	a	slave	of	the	invoking
interpreter.	An	empty	list	specifies	the	interpreter	invoking	the
command.	srcCmd	gives	the	name	of	a	new	command,	which	will
be	created	in	the	source	interpreter.	TargetPath	and	targetCmd
specify	a	target	interpreter	and	command,	and	the	arg	arguments,	if
any,	specify	additional	arguments	to	targetCmd	which	are
prepended	to	any	arguments	specified	in	the	invocation	of	srcCmd.
TargetCmd	may	be	undefined	at	the	time	of	this	call,	or	it	may
already	exist;	it	is	not	created	by	this	command.	The	alias	arranges
for	the	given	target	command	to	be	invoked	in	the	target	interpreter
whenever	the	given	source	command	is	invoked	in	the	source
interpreter.	See	ALIAS	INVOCATION	below	for	more	details.	The
command	returns	a	token	that	uniquely	identifies	the	command
created	srcCmd,	even	if	the	command	is	renamed	afterwards.	The
token	may	but	does	not	have	to	be	equal	to	srcCmd.

interp	aliases	?path?
This	command	returns	a	Tcl	list	of	the	tokens	of	all	the	source
commands	for	aliases	defined	in	the	interpreter	identified	by	path.
The	tokens	correspond	to	the	values	returned	when	the	aliases
were	created	(which	may	not	be	the	same	as	the	current	names	of
the	commands).

interp	bgerror	path	?cmdPrefix?
This	command	either	gets	or	sets	the	current	background	error
handler	for	the	interpreter	identified	by	path.	If	cmdPrefix	is	absent,
the	current	background	error	handler	is	returned,	and	if	it	is
present,	it	is	a	list	of	words	(of	minimum	length	one)	that	describes
what	to	set	the	interpreter's	background	error	to.	See	the
BACKGROUND	ERROR	HANDLING	section	for	more	details.

interp	create	?-safe?	?--?	?path?
Creates	a	slave	interpreter	identified	by	path	and	a	new	command,
called	a	slave	command.	The	name	of	the	slave	command	is	the
last	component	of	path.	The	new	slave	interpreter	and	the	slave
command	are	created	in	the	interpreter	identified	by	the	path

obtained	by	removing	the	last	component	from	path.	For	example,
if	path	is	a	b	c	then	a	new	slave	interpreter	and	slave	command
named	c	are	created	in	the	interpreter	identified	by	the	path	a	b.
The	slave	command	may	be	used	to	manipulate	the	new	interpreter
as	described	below.	If	path	is	omitted,	Tcl	creates	a	unique	name	of
the	form	interpx,	where	x	is	an	integer,	and	uses	it	for	the
interpreter	and	the	slave	command.	If	the	-safe	switch	is	specified
(or	if	the	master	interpreter	is	a	safe	interpreter),	the	new	slave
interpreter	will	be	created	as	a	safe	interpreter	with	limited
functionality;	otherwise	the	slave	will	include	the	full	set	of	Tcl	built-
in	commands	and	variables.	The	--	switch	can	be	used	to	mark	the
end	of	switches;	it	may	be	needed	if	path	is	an	unusual	value	such
as	-safe.	The	result	of	the	command	is	the	name	of	the	new
interpreter.	The	name	of	a	slave	interpreter	must	be	unique	among
all	the	slaves	for	its	master;	an	error	occurs	if	a	slave	interpreter	by
the	given	name	already	exists	in	this	master.	The	initial	recursion
limit	of	the	slave	interpreter	is	set	to	the	current	recursion	limit	of	its
parent	interpreter.

interp	delete	?path	...?
Deletes	zero	or	more	interpreters	given	by	the	optional	path
arguments,	and	for	each	interpreter,	it	also	deletes	its	slaves.	The
command	also	deletes	the	slave	command	for	each	interpreter
deleted.	For	each	path	argument,	if	no	interpreter	by	that	name
exists,	the	command	raises	an	error.

interp	eval	path	arg	?arg	...?
This	command	concatenates	all	of	the	arg	arguments	in	the	same
fashion	as	the	concat	command,	then	evaluates	the	resulting	string
as	a	Tcl	script	in	the	slave	interpreter	identified	by	path.	The	result
of	this	evaluation	(including	all	return	options,	such	as	-errorinfo
and	-errorcode	information,	if	an	error	occurs)	is	returned	to	the
invoking	interpreter.	Note	that	the	script	will	be	executed	in	the
current	context	stack	frame	of	the	path	interpreter;	this	is	so	that
the	implementations	(in	a	master	interpreter)	of	aliases	in	a	slave
interpreter	can	execute	scripts	in	the	slave	that	find	out	information
about	the	slave's	current	state	and	stack	frame.

interp	exists	path
Returns	1	if	a	slave	interpreter	by	the	specified	path	exists	in	this
master,	0	otherwise.	If	path	is	omitted,	the	invoking	interpreter	is
used.

interp	expose	path	hiddenName	?exposedCmdName?
Makes	the	hidden	command	hiddenName	exposed,	eventually
bringing	it	back	under	a	new	exposedCmdName	name	(this	name
is	currently	accepted	only	if	it	is	a	valid	global	name	space	name
without	any	::),	in	the	interpreter	denoted	by	path.	If	an	exposed
command	with	the	targeted	name	already	exists,	this	command
fails.	Hidden	commands	are	explained	in	more	detail	in	HIDDEN
COMMANDS,	below.

interp	hide	path	exposedCmdName	?hiddenCmdName?
Makes	the	exposed	command	exposedCmdName	hidden,
renaming	it	to	the	hidden	command	hiddenCmdName,	or	keeping
the	same	name	if	hiddenCmdName	is	not	given,	in	the	interpreter
denoted	by	path.	If	a	hidden	command	with	the	targeted	name
already	exists,	this	command	fails.	Currently	both
exposedCmdName	and	hiddenCmdName	can	not	contain
namespace	qualifiers,	or	an	error	is	raised.	Commands	to	be
hidden	by	interp	hide	are	looked	up	in	the	global	namespace	even
if	the	current	namespace	is	not	the	global	one.	This	prevents	slaves
from	fooling	a	master	interpreter	into	hiding	the	wrong	command,
by	making	the	current	namespace	be	different	from	the	global	one.
Hidden	commands	are	explained	in	more	detail	in	HIDDEN
COMMANDS,	below.

interp	hidden	path
Returns	a	list	of	the	names	of	all	hidden	commands	in	the
interpreter	identified	by	path.

interp	invokehidden	path	?-option	...?	hiddenCmdName	?arg	...?
Invokes	the	hidden	command	hiddenCmdName	with	the	arguments
supplied	in	the	interpreter	denoted	by	path.	No	substitutions	or
evaluation	are	applied	to	the	arguments.	Three	-options	are
supported,	all	of	which	start	with	-:	-namespace	(which	takes	a

single	argument	afterwards,	nsName),	-global,	and	--.	If	the	-
namespace	flag	is	present,	the	hidden	command	is	invoked	in	the
namespace	called	nsName	in	the	target	interpreter.	If	the	-global
flag	is	present,	the	hidden	command	is	invoked	at	the	global	level
in	the	target	interpreter;	otherwise	it	is	invoked	at	the	current	call
frame	and	can	access	local	variables	in	that	and	outer	call	frames.
The	--	flag	allows	the	hiddenCmdName	argument	to	start	with	a	“-”
character,	and	is	otherwise	unnecessary.	If	both	the	-namespace
and	-global	flags	are	present,	the	-namespace	flag	is	ignored.
Note	that	the	hidden	command	will	be	executed	(by	default)	in	the
current	context	stack	frame	of	the	path	interpreter.	Hidden
commands	are	explained	in	more	detail	in	HIDDEN	COMMANDS,
below.

interp	limit	path	limitType	?-option?	?value	...?
Sets	up,	manipulates	and	queries	the	configuration	of	the	resource
limit	limitType	for	the	interpreter	denoted	by	path.	If	no	-option	is
specified,	return	the	current	configuration	of	the	limit.	If	-option	is
the	sole	argument,	return	the	value	of	that	option.	Otherwise,	a	list
of	-option/value	argument	pairs	must	supplied.	See	RESOURCE
LIMITS	below	for	a	more	detailed	explanation	of	what	limits	and
options	are	supported.

interp	issafe	?path?
Returns	1	if	the	interpreter	identified	by	the	specified	path	is	safe,	0
otherwise.

interp	marktrusted	path
Marks	the	interpreter	identified	by	path	as	trusted.	Does	not	expose
the	hidden	commands.	This	command	can	only	be	invoked	from	a
trusted	interpreter.	The	command	has	no	effect	if	the	interpreter
identified	by	path	is	already	trusted.

interp	recursionlimit	path	?newlimit?
Returns	the	maximum	allowable	nesting	depth	for	the	interpreter
specified	by	path.	If	newlimit	is	specified,	the	interpreter	recursion
limit	will	be	set	so	that	nesting	of	more	than	newlimit	calls	to
Tcl_Eval()	and	related	procedures	in	that	interpreter	will	return	an

error.	The	newlimit	value	is	also	returned.	The	newlimit	value	must
be	a	positive	integer	between	1	and	the	maximum	value	of	a	non-
long	integer	on	the	platform.

The	command	sets	the	maximum	size	of	the	Tcl	call	stack	only.	It
cannot	by	itself	prevent	stack	overflows	on	the	C	stack	being	used
by	the	application.	If	your	machine	has	a	limit	on	the	size	of	the	C
stack,	you	may	get	stack	overflows	before	reaching	the	limit	set	by
the	command.	If	this	happens,	see	if	there	is	a	mechanism	in	your
system	for	increasing	the	maximum	size	of	the	C	stack.

interp	share	srcPath	channelId	destPath
Causes	the	IO	channel	identified	by	channelId	to	become	shared
between	the	interpreter	identified	by	srcPath	and	the	interpreter
identified	by	destPath.	Both	interpreters	have	the	same
permissions	on	the	IO	channel.	Both	interpreters	must	close	it	to
close	the	underlying	IO	channel;	IO	channels	accessible	in	an
interpreter	are	automatically	closed	when	an	interpreter	is
destroyed.

interp	slaves	?path?
Returns	a	Tcl	list	of	the	names	of	all	the	slave	interpreters
associated	with	the	interpreter	identified	by	path.	If	path	is	omitted,
the	invoking	interpreter	is	used.

interp	target	path	alias
Returns	a	Tcl	list	describing	the	target	interpreter	for	an	alias.	The
alias	is	specified	with	an	interpreter	path	and	source	command
name,	just	as	in	interp	alias	above.	The	name	of	the	target
interpreter	is	returned	as	an	interpreter	path,	relative	to	the	invoking
interpreter.	If	the	target	interpreter	for	the	alias	is	the	invoking
interpreter	then	an	empty	list	is	returned.	If	the	target	interpreter	for
the	alias	is	not	the	invoking	interpreter	or	one	of	its	descendants
then	an	error	is	generated.	The	target	command	does	not	have	to
be	defined	at	the	time	of	this	invocation.

interp	transfer	srcPath	channelId	destPath
Causes	the	IO	channel	identified	by	channelId	to	become	available

in	the	interpreter	identified	by	destPath	and	unavailable	in	the
interpreter	identified	by	srcPath.

SLAVE	COMMAND

For	each	slave	interpreter	created	with	the	interp	command,	a	new	Tcl
command	is	created	in	the	master	interpreter	with	the	same	name	as
the	new	interpreter.	This	command	may	be	used	to	invoke	various
operations	on	the	interpreter.	It	has	the	following	general	form:

slave	command	?arg	arg	...?

Slave	is	the	name	of	the	interpreter,	and	command	and	the	args
determine	the	exact	behavior	of	the	command.	The	valid	forms	of	this
command	are:

slave	aliases
Returns	a	Tcl	list	whose	elements	are	the	tokens	of	all	the	aliases
in	slave.	The	tokens	correspond	to	the	values	returned	when	the
aliases	were	created	(which	may	not	be	the	same	as	the	current
names	of	the	commands).

slave	alias	srcToken
Returns	a	Tcl	list	whose	elements	are	the	targetCmd	and	args
associated	with	the	alias	represented	by	srcToken	(this	is	the	value
returned	when	the	alias	was	created;	it	is	possible	that	the	actual
source	command	in	the	slave	is	different	from	srcToken).

slave	alias	srcToken	{}
Deletes	the	alias	for	srcToken	in	the	slave	interpreter.	srcToken
refers	to	the	value	returned	when	the	alias	was	created;	if	the
source	command	has	been	renamed,	the	renamed	command	will
be	deleted.

slave	alias	srcCmd	targetCmd	?arg	..?
Creates	an	alias	such	that	whenever	srcCmd	is	invoked	in	slave,
targetCmd	is	invoked	in	the	master.	The	arg	arguments	will	be

passed	to	targetCmd	as	additional	arguments,	prepended	before
any	arguments	passed	in	the	invocation	of	srcCmd.	See	ALIAS
INVOCATION	below	for	details.	The	command	returns	a	token	that
uniquely	identifies	the	command	created	srcCmd,	even	if	the
command	is	renamed	afterwards.	The	token	may	but	does	not	have
to	be	equal	to	srcCmd.

slave	bgerror	?cmdPrefix?
This	command	either	gets	or	sets	the	current	background	error
handler	for	the	slave	interpreter.	If	cmdPrefix	is	absent,	the	current
background	error	handler	is	returned,	and	if	it	is	present,	it	is	a	list
of	words	(of	minimum	length	one)	that	describes	what	to	set	the
interpreter's	background	error	to.	See	the	BACKGROUND	ERROR
HANDLING	section	for	more	details.

slave	eval	arg	?arg	..?
This	command	concatenates	all	of	the	arg	arguments	in	the	same
fashion	as	the	concat	command,	then	evaluates	the	resulting	string
as	a	Tcl	script	in	slave.	The	result	of	this	evaluation	(including	all
return	options,	such	as	-errorinfo	and	-errorcode	information,	if
an	error	occurs)	is	returned	to	the	invoking	interpreter.	Note	that	the
script	will	be	executed	in	the	current	context	stack	frame	of	slave;
this	is	so	that	the	implementations	(in	a	master	interpreter)	of
aliases	in	a	slave	interpreter	can	execute	scripts	in	the	slave	that
find	out	information	about	the	slave's	current	state	and	stack	frame.

slave	expose	hiddenName	?exposedCmdName?
This	command	exposes	the	hidden	command	hiddenName,
eventually	bringing	it	back	under	a	new	exposedCmdName	name
(this	name	is	currently	accepted	only	if	it	is	a	valid	global	name
space	name	without	any	::),	in	slave.	If	an	exposed	command	with
the	targeted	name	already	exists,	this	command	fails.	For	more
details	on	hidden	commands,	see	HIDDEN	COMMANDS,	below.

slave	hide	exposedCmdName	?hiddenCmdName?
This	command	hides	the	exposed	command	exposedCmdName,
renaming	it	to	the	hidden	command	hiddenCmdName,	or	keeping
the	same	name	if	the	argument	is	not	given,	in	the	slave	interpreter.

If	a	hidden	command	with	the	targeted	name	already	exists,	this
command	fails.	Currently	both	exposedCmdName	and
hiddenCmdName	can	not	contain	namespace	qualifiers,	or	an	error
is	raised.	Commands	to	be	hidden	are	looked	up	in	the	global
namespace	even	if	the	current	namespace	is	not	the	global	one.
This	prevents	slaves	from	fooling	a	master	interpreter	into	hiding
the	wrong	command,	by	making	the	current	namespace	be
different	from	the	global	one.	For	more	details	on	hidden
commands,	see	HIDDEN	COMMANDS,	below.

slave	hidden
Returns	a	list	of	the	names	of	all	hidden	commands	in	slave.

slave	invokehidden	?-option	...?	hiddenName	?arg	..?
This	command	invokes	the	hidden	command	hiddenName	with	the
supplied	arguments,	in	slave.	No	substitutions	or	evaluations	are
applied	to	the	arguments.	Three	-options	are	supported,	all	of
which	start	with	-:	-namespace	(which	takes	a	single	argument
afterwards,	nsName),	-global,	and	--.	If	the	-namespace	flag	is
given,	the	hidden	command	is	invoked	in	the	specified	namespace
in	the	slave.	If	the	-global	flag	is	given,	the	command	is	invoked	at
the	global	level	in	the	slave;	otherwise	it	is	invoked	at	the	current
call	frame	and	can	access	local	variables	in	that	or	outer	call
frames.	The	--	flag	allows	the	hiddenCmdName	argument	to	start
with	a	“-”	character,	and	is	otherwise	unnecessary.	If	both	the	-
namespace	and	-global	flags	are	given,	the	-namespace	flag	is
ignored.	Note	that	the	hidden	command	will	be	executed	(by
default)	in	the	current	context	stack	frame	of	slave.	For	more
details	on	hidden	commands,	see	HIDDEN	COMMANDS,	below.

slave	issafe
Returns	1	if	the	slave	interpreter	is	safe,	0	otherwise.

slave	limit	limitType	?-option?	?value	...?
Sets	up,	manipulates	and	queries	the	configuration	of	the	resource
limit	limitType	for	the	slave	interpreter.	If	no	-option	is	specified,
return	the	current	configuration	of	the	limit.	If	-option	is	the	sole
argument,	return	the	value	of	that	option.	Otherwise,	a	list	of	-

option/value	argument	pairs	must	supplied.	See	RESOURCE
LIMITS	below	for	a	more	detailed	explanation	of	what	limits	and
options	are	supported.

slave	marktrusted
Marks	the	slave	interpreter	as	trusted.	Can	only	be	invoked	by	a
trusted	interpreter.	This	command	does	not	expose	any	hidden
commands	in	the	slave	interpreter.	The	command	has	no	effect	if
the	slave	is	already	trusted.

slave	recursionlimit	?newlimit?
Returns	the	maximum	allowable	nesting	depth	for	the	slave
interpreter.	If	newlimit	is	specified,	the	recursion	limit	in	slave	will	be
set	so	that	nesting	of	more	than	newlimit	calls	to	Tcl_Eval()	and
related	procedures	in	slave	will	return	an	error.	The	newlimit	value
is	also	returned.	The	newlimit	value	must	be	a	positive	integer
between	1	and	the	maximum	value	of	a	non-long	integer	on	the
platform.

The	command	sets	the	maximum	size	of	the	Tcl	call	stack	only.	It
cannot	by	itself	prevent	stack	overflows	on	the	C	stack	being	used
by	the	application.	If	your	machine	has	a	limit	on	the	size	of	the	C
stack,	you	may	get	stack	overflows	before	reaching	the	limit	set	by
the	command.	If	this	happens,	see	if	there	is	a	mechanism	in	your
system	for	increasing	the	maximum	size	of	the	C	stack.

SAFE	INTERPRETERS

A	safe	interpreter	is	one	with	restricted	functionality,	so	that	is	safe	to
execute	an	arbitrary	script	from	your	worst	enemy	without	fear	of	that
script	damaging	the	enclosing	application	or	the	rest	of	your	computing
environment.	In	order	to	make	an	interpreter	safe,	certain	commands
and	variables	are	removed	from	the	interpreter.	For	example,
commands	to	create	files	on	disk	are	removed,	and	the	exec	command
is	removed,	since	it	could	be	used	to	cause	damage	through
subprocesses.	Limited	access	to	these	facilities	can	be	provided,	by
creating	aliases	to	the	master	interpreter	which	check	their	arguments
carefully	and	provide	restricted	access	to	a	safe	subset	of	facilities.	For

example,	file	creation	might	be	allowed	in	a	particular	subdirectory	and
subprocess	invocation	might	be	allowed	for	a	carefully	selected	and
fixed	set	of	programs.

A	safe	interpreter	is	created	by	specifying	the	-safe	switch	to	the	interp
create	command.	Furthermore,	any	slave	created	by	a	safe	interpreter
will	also	be	safe.

A	safe	interpreter	is	created	with	exactly	the	following	set	of	built-in
commands:

after append apply array

binary break catch chan

clock close concat continue

dict eof error eval

expr fblocked fcopy fileevent

flush for foreach format

gets global if incr

info interp join lappend

lassign lindex linsert list

llength lrange lrepeat lreplace

lsearch lset lsort namespace

package pid proc puts

read regexp regsub rename

return scan seek set

split string subst switch

tell time trace unset

update uplevel upvar variable

vwait while

The	following	commands	are	hidden	by	interp	create	when	it	creates	a
safe	interpreter:

cd encoding exec exit

fconfigure file glob load

open pwd socket source

unload

These	commands	can	be	recreated	later	as	Tcl	procedures	or	aliases,
or	re-exposed	by	interp	expose.

The	following	commands	from	Tcl's	library	of	support	procedures	are
not	present	in	a	safe	interpreter:

auto_exec_ok auto_import auto_load

auto_load_index auto_qualify unknown

Note	in	particular	that	safe	interpreters	have	no	default	unknown
command,	so	Tcl's	default	autoloading	facilities	are	not	available.
Autoload	access	to	Tcl's	commands	that	are	normally	autoloaded:

auto_mkindex auto_mkindex_old

auto_reset history

parray pkg_mkIndex

::pkg::create ::safe::interpAddToAccessPath

::safe::interpCreate ::safe::interpConfigure

::safe::interpDelete ::safe::interpFindInAccessPath

::safe::interpInit ::safe::setLogCmd

tcl_endOfWord tcl_findLibrary

tcl_startOfNextWord tcl_startOfPreviousWord

tcl_wordBreakAfter tcl_wordBreakBefore

can	only	be	provided	by	explicit	definition	of	an	unknown	command	in
the	safe	interpreter.	This	will	involve	exposing	the	source	command.
This	is	most	easily	accomplished	by	creating	the	safe	interpreter	with
Tcl's	Safe-Tcl	mechanism.	Safe-Tcl	provides	safe	versions	of	source,
load,	and	other	Tcl	commands	needed	to	support	autoloading	of
commands	and	the	loading	of	packages.

In	addition,	the	env	variable	is	not	present	in	a	safe	interpreter,	so	it
cannot	share	environment	variables	with	other	interpreters.	The	env
variable	poses	a	security	risk,	because	users	can	store	sensitive
information	in	an	environment	variable.	For	example,	the	PGP	manual
recommends	storing	the	PGP	private	key	protection	password	in	the
environment	variable	PGPPASS.	Making	this	variable	available	to
untrusted	code	executing	in	a	safe	interpreter	would	incur	a	security
risk.

If	extensions	are	loaded	into	a	safe	interpreter,	they	may	also	restrict
their	own	functionality	to	eliminate	unsafe	commands.	For	a	discussion
of	management	of	extensions	for	safety	see	the	manual	entries	for
Safe-Tcl	and	the	load	Tcl	command.

A	safe	interpreter	may	not	alter	the	recursion	limit	of	any	interpreter,
including	itself.

ALIAS	INVOCATION

The	alias	mechanism	has	been	carefully	designed	so	that	it	can	be
used	safely	when	an	untrusted	script	is	executing	in	a	safe	slave	and
the	target	of	the	alias	is	a	trusted	master.	The	most	important	thing	in
guaranteeing	safety	is	to	ensure	that	information	passed	from	the	slave
to	the	master	is	never	evaluated	or	substituted	in	the	master;	if	this
were	to	occur,	it	would	enable	an	evil	script	in	the	slave	to	invoke
arbitrary	functions	in	the	master,	which	would	compromise	security.

When	the	source	for	an	alias	is	invoked	in	the	slave	interpreter,	the
usual	Tcl	substitutions	are	performed	when	parsing	that	command.
These	substitutions	are	carried	out	in	the	source	interpreter	just	as	they
would	be	for	any	other	command	invoked	in	that	interpreter.	The
command	procedure	for	the	source	command	takes	its	arguments	and
merges	them	with	the	targetCmd	and	args	for	the	alias	to	create	a	new
array	of	arguments.	If	the	words	of	srcCmd	were	“srcCmd	arg1	arg2	...
argN”,	the	new	set	of	words	will	be	“targetCmd	arg	arg	...	arg	arg1	arg2
...	argN”,	where	targetCmd	and	args	are	the	values	supplied	when	the
alias	was	created.	TargetCmd	is	then	used	to	locate	a	command
procedure	in	the	target	interpreter,	and	that	command	procedure	is
invoked	with	the	new	set	of	arguments.	An	error	occurs	if	there	is	no
command	named	targetCmd	in	the	target	interpreter.	No	additional
substitutions	are	performed	on	the	words:	the	target	command
procedure	is	invoked	directly,	without	going	through	the	normal	Tcl
evaluation	mechanism.	Substitutions	are	thus	performed	on	each	word
exactly	once:	targetCmd	and	args	were	substituted	when	parsing	the
command	that	created	the	alias,	and	arg1	-	argN	are	substituted	when
the	alias's	source	command	is	parsed	in	the	source	interpreter.

When	writing	the	targetCmds	for	aliases	in	safe	interpreters,	it	is	very
important	that	the	arguments	to	that	command	never	be	evaluated	or
substituted,	since	this	would	provide	an	escape	mechanism	whereby
the	slave	interpreter	could	execute	arbitrary	code	in	the	master.	This	in
turn	would	compromise	the	security	of	the	system.

HIDDEN	COMMANDS

Safe	interpreters	greatly	restrict	the	functionality	available	to	Tcl
programs	executing	within	them.	Allowing	the	untrusted	Tcl	program	to

have	direct	access	to	this	functionality	is	unsafe,	because	it	can	be
used	for	a	variety	of	attacks	on	the	environment.	However,	there	are
times	when	there	is	a	legitimate	need	to	use	the	dangerous	functionality
in	the	context	of	the	safe	interpreter.	For	example,	sometimes	a
program	must	be	sourced	into	the	interpreter.	Another	example	is	Tk,
where	windows	are	bound	to	the	hierarchy	of	windows	for	a	specific
interpreter;	some	potentially	dangerous	functions,	e.g.	window
management,	must	be	performed	on	these	windows	within	the
interpreter	context.

The	interp	command	provides	a	solution	to	this	problem	in	the	form	of
hidden	commands.	Instead	of	removing	the	dangerous	commands
entirely	from	a	safe	interpreter,	these	commands	are	hidden	so	they
become	unavailable	to	Tcl	scripts	executing	in	the	interpreter.	However,
such	hidden	commands	can	be	invoked	by	any	trusted	ancestor	of	the
safe	interpreter,	in	the	context	of	the	safe	interpreter,	using	interp
invoke.	Hidden	commands	and	exposed	commands	reside	in	separate
name	spaces.	It	is	possible	to	define	a	hidden	command	and	an
exposed	command	by	the	same	name	within	one	interpreter.

Hidden	commands	in	a	slave	interpreter	can	be	invoked	in	the	body	of
procedures	called	in	the	master	during	alias	invocation.	For	example,
an	alias	for	source	could	be	created	in	a	slave	interpreter.	When	it	is
invoked	in	the	slave	interpreter,	a	procedure	is	called	in	the	master
interpreter	to	check	that	the	operation	is	allowable	(e.g.	it	asks	to
source	a	file	that	the	slave	interpreter	is	allowed	to	access).	The
procedure	then	it	invokes	the	hidden	source	command	in	the	slave
interpreter	to	actually	source	in	the	contents	of	the	file.	Note	that	two
commands	named	source	exist	in	the	slave	interpreter:	the	alias,	and
the	hidden	command.

Because	a	master	interpreter	may	invoke	a	hidden	command	as	part	of
handling	an	alias	invocation,	great	care	must	be	taken	to	avoid
evaluating	any	arguments	passed	in	through	the	alias	invocation.
Otherwise,	malicious	slave	interpreters	could	cause	a	trusted	master
interpreter	to	execute	dangerous	commands	on	their	behalf.	See	the
section	on	ALIAS	INVOCATION	for	a	more	complete	discussion	of	this
topic.	To	help	avoid	this	problem,	no	substitutions	or	evaluations	are

applied	to	arguments	of	interp	invokehidden.

Safe	interpreters	are	not	allowed	to	invoke	hidden	commands	in
themselves	or	in	their	descendants.	This	prevents	safe	slaves	from
gaining	access	to	hidden	functionality	in	themselves	or	their
descendants.

The	set	of	hidden	commands	in	an	interpreter	can	be	manipulated	by	a
trusted	interpreter	using	interp	expose	and	interp	hide.	The	interp
expose	command	moves	a	hidden	command	to	the	set	of	exposed
commands	in	the	interpreter	identified	by	path,	potentially	renaming	the
command	in	the	process.	If	an	exposed	command	by	the	targeted	name
already	exists,	the	operation	fails.	Similarly,	interp	hide	moves	an
exposed	command	to	the	set	of	hidden	commands	in	that	interpreter.
Safe	interpreters	are	not	allowed	to	move	commands	between	the	set
of	hidden	and	exposed	commands,	in	either	themselves	or	their
descendants.

Currently,	the	names	of	hidden	commands	cannot	contain	namespace
qualifiers,	and	you	must	first	rename	a	command	in	a	namespace	to	the
global	namespace	before	you	can	hide	it.	Commands	to	be	hidden	by
interp	hide	are	looked	up	in	the	global	namespace	even	if	the	current
namespace	is	not	the	global	one.	This	prevents	slaves	from	fooling	a
master	interpreter	into	hiding	the	wrong	command,	by	making	the
current	namespace	be	different	from	the	global	one.

RESOURCE	LIMITS

Every	interpreter	has	two	kinds	of	resource	limits	that	may	be	imposed
by	any	master	interpreter	upon	its	slaves.	Command	limits	(of	type
command)	restrict	the	total	number	of	Tcl	commands	that	may	be
executed	by	an	interpreter	(as	can	be	inspected	via	the	info	cmdcount
command),	and	time	limits	(of	type	time)	place	a	limit	by	which
execution	within	the	interpreter	must	complete.	Note	that	time	limits	are
expressed	as	absolute	times	(as	in	clock	seconds)	and	not	relative
times	(as	in	after)	because	they	may	be	modified	after	creation.

When	a	limit	is	exceeded	for	an	interpreter,	first	any	handler	callbacks

defined	by	master	interpreters	are	called.	If	those	callbacks	increase	or
remove	the	limit,	execution	within	the	(previously)	limited	interpreter
continues.	If	the	limit	is	still	in	force,	an	error	is	generated	at	that	point
and	normal	processing	of	errors	within	the	interpreter	(by	the	catch
command)	is	disabled,	so	the	error	propagates	outwards	(building	a
stack-trace	as	it	goes)	to	the	point	where	the	limited	interpreter	was
invoked	(e.g.	by	interp	eval)	where	it	becomes	the	responsibility	of	the
calling	code	to	catch	and	handle.

LIMIT	OPTIONS

Every	limit	has	a	number	of	options	associated	with	it,	some	of	which
are	common	across	all	kinds	of	limits,	and	others	of	which	are	particular
to	the	kind	of	limit.

-command
This	option	(common	for	all	limit	types)	specifies	(if	non-empty)	a
Tcl	script	to	be	executed	in	the	global	namespace	of	the	interpreter
reading	and	writing	the	option	when	the	particular	limit	in	the	limited
interpreter	is	exceeded.	The	callback	may	modify	the	limit	on	the
interpreter	if	it	wishes	the	limited	interpreter	to	continue	executing.
If	the	callback	generates	an	error,	it	is	reported	through	the
background	error	mechanism	(see	BACKGROUND	ERROR
HANDLING).	Note	that	the	callbacks	defined	by	one	interpreter	are
completely	isolated	from	the	callbacks	defined	by	another,	and	that
the	order	in	which	those	callbacks	are	called	is	undefined.

-granularity
This	option	(common	for	all	limit	types)	specifies	how	frequently
(out	of	the	points	when	the	Tcl	interpreter	is	in	a	consistent	state
where	limit	checking	is	possible)	that	the	limit	is	actually	checked.
This	allows	the	tuning	of	how	frequently	a	limit	is	checked,	and
hence	how	often	the	limit-checking	overhead	(which	may	be
substantial	in	the	case	of	time	limits)	is	incurred.

-milliseconds
This	option	specifies	the	number	of	milliseconds	after	the	moment

defined	in	the	-seconds	option	that	the	time	limit	will	fire.	It	should
only	ever	be	specified	in	conjunction	with	the	-seconds	option
(whether	it	was	set	previously	or	is	being	set	this	invocation.)

-seconds
This	option	specifies	the	number	of	seconds	after	the	epoch	(see
clock	seconds)	that	the	time	limit	for	the	interpreter	will	be
triggered.	The	limit	will	be	triggered	at	the	start	of	the	second
unless	specified	at	a	sub-second	level	using	the	-milliseconds
option.	This	option	may	be	the	empty	string,	which	indicates	that	a
time	limit	is	not	set	for	the	interpreter.

-value
This	option	specifies	the	number	of	commands	that	the	interpreter
may	execute	before	triggering	the	command	limit.	This	option	may
be	the	empty	string,	which	indicates	that	a	command	limit	is	not	set
for	the	interpreter.

Where	an	interpreter	with	a	resource	limit	set	on	it	creates	a	slave
interpreter,	that	slave	interpreter	will	have	resource	limits	imposed	on	it
that	are	at	least	as	restrictive	as	the	limits	on	the	creating	master
interpreter.	If	the	master	interpreter	of	the	limited	master	wishes	to	relax
these	conditions,	it	should	hide	the	interp	command	in	the	child	and
then	use	aliases	and	the	interp	invokehidden	subcommand	to	provide
such	access	as	it	chooses	to	the	interp	command	to	the	limited	master
as	necessary.

BACKGROUND	ERROR	HANDLING

When	an	error	happens	in	a	situation	where	it	cannot	be	reported
directly	up	the	stack	(e.g.	when	processing	events	in	an	update	or
vwait	call)	the	error	is	instead	reported	through	the	background	error
handling	mechanism.	Every	interpreter	has	a	background	error	handler
registered;	the	default	error	handler	arranges	for	the	bgerror	command
in	the	interpreter's	global	namespace	to	be	called,	but	other	error
handlers	may	be	installed	and	process	background	errors	in
substantially	different	ways.

A	background	error	handler	consists	of	a	non-empty	list	of	words	to
which	will	be	appended	two	further	words	at	invocation	time.	The	first
word	will	be	the	error	message	string,	and	the	second	will	a	dictionary
of	return	options	(this	is	also	the	sort	of	information	that	can	be	obtained
by	trapping	a	normal	error	using	catch	of	course.)	The	resulting	list	will
then	be	executed	in	the	interpreter's	global	namespace	without	further
substitutions	being	performed.

CREDITS

The	safe	interpreter	mechanism	is	based	on	the	Safe-Tcl	prototype
implemented	by	Nathaniel	Borenstein	and	Marshall	Rose.

EXAMPLES

Creating	and	using	an	alias	for	a	command	in	the	current	interpreter:

interp	alias	{}	getIndex	{}	lsearch	{alpha	beta	gamma	delta}

set	idx	[getIndex	delta]

Executing	an	arbitrary	command	in	a	safe	interpreter	where	every
invocation	of	lappend	is	logged:

set	i	[interp	create	-safe]

interp	hide	$i	lappend

interp	alias	$i	lappend	{}	loggedLappend	$i

proc	loggedLappend	{i	args}	{

			puts	"logged	invocation	of	lappend	$args"

			interp	invokehidden	$i	lappend	{*}$args

}

interp	eval	$i	$someUntrustedScript

Setting	a	resource	limit	on	an	interpreter	so	that	an	infinite	loop
terminates.

set	i	[interp	create]

interp	limit	$i	command	-value	1000

interp	eval	$i	{

			set	x	0

			while	{1}	{

						puts	"Counting	up...	[incr	x]"

			}

}

SEE	ALSO

bgerror,	load,	safe,	Tcl_CreateSlave

KEYWORDS

alias,	master	interpreter,	safe	interpreter,	slave	interpreter

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1995-1996	Sun	Microsystems,	Inc.
Copyright	©	2004	Donal	K.	Fellows

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	packagens

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
pkg::create	-	Construct	an	appropriate	'package	ifneeded'
command	for	a	given	package	specification

SYNOPSIS
DESCRIPTION
OPTIONS

-name	packageName
-version	packageVersion
-load	filespec
-source	filespec

SEE	ALSO
KEYWORDS

NAME

pkg::create	-	Construct	an	appropriate	'package	ifneeded'	command	for
a	given	package	specification

SYNOPSIS

::pkg::create	-name	packageName	-version	packageVersion	?-load
filespec?	...	?-source	filespec?	...

DESCRIPTION

::pkg::create	is	a	utility	procedure	that	is	part	of	the	standard	Tcl	library.
It	is	used	to	create	an	appropriate	package	ifneeded	command	for	a
given	package	specification.	It	can	be	used	to	construct	a	pkgIndex.tcl
file	for	use	with	the	package	mechanism.

OPTIONS

The	parameters	supported	are:

-name	packageName
This	parameter	specifies	the	name	of	the	package.	It	is	required.

-version	packageVersion
This	parameter	specifies	the	version	of	the	package.	It	is	required.

-load	filespec
This	parameter	specifies	a	binary	library	that	must	be	loaded	with
the	load	command.	filespec	is	a	list	with	two	elements.	The	first
element	is	the	name	of	the	file	to	load.	The	second,	optional
element	is	a	list	of	commands	supplied	by	loading	that	file.	If	the	list
of	procedures	is	empty	or	omitted,	::pkg::create	will	set	up	the
library	for	direct	loading	(see	pkg_mkIndex).	Any	number	of	-load
parameters	may	be	specified.

-source	filespec
This	parameter	is	similar	to	the	-load	parameter,	except	that	it
specifies	a	Tcl	library	that	must	be	loaded	with	the	source
command.	Any	number	of	-source	parameters	may	be	specified.

At	least	one	-load	or	-source	parameter	must	be	given.

SEE	ALSO

package

KEYWORDS

auto-load,	index,	package,	version

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1998-2000	by	Scriptics	Corporation.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	Tcl

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl	-	Tool	Command	Language

SYNOPSIS
DESCRIPTION

[1]	Commands.
[2]	Evaluation.
[3]	Words.
[4]	Double	quotes.
[5]	Argument	expansion.
[6]	Braces.
[7]	Command	substitution.
[8]	Variable	substitution.

$name
$name(index)
${name}

[9]	Backslash	substitution.
\a
\b
\f
\n
\r
\t
\v
\<newline>whiteSpace
\\
\ooo
\xhh
\uhhhh

[10]	Comments.
[11]	Order	of	substitution.
[12]	Substitution	and	word	boundaries.

NAME

Tcl	-	Tool	Command	Language

SYNOPSIS

Summary	of	Tcl	language	syntax.

DESCRIPTION

The	following	rules	define	the	syntax	and	semantics	of	the	Tcl	language:

[1]	Commands.
A	Tcl	script	is	a	string	containing	one	or	more	commands.	Semi-
colons	and	newlines	are	command	separators	unless	quoted	as
described	below.	Close	brackets	are	command	terminators	during
command	substitution	(see	below)	unless	quoted.

[2]	Evaluation.
A	command	is	evaluated	in	two	steps.	First,	the	Tcl	interpreter
breaks	the	command	into	words	and	performs	substitutions	as
described	below.	These	substitutions	are	performed	in	the	same
way	for	all	commands.	The	first	word	is	used	to	locate	a	command
procedure	to	carry	out	the	command,	then	all	of	the	words	of	the
command	are	passed	to	the	command	procedure.	The	command
procedure	is	free	to	interpret	each	of	its	words	in	any	way	it	likes,
such	as	an	integer,	variable	name,	list,	or	Tcl	script.	Different
commands	interpret	their	words	differently.

[3]	Words.
Words	of	a	command	are	separated	by	white	space	(except	for
newlines,	which	are	command	separators).

[4]	Double	quotes.
If	the	first	character	of	a	word	is	double-quote	(“"”)	then	the	word	is
terminated	by	the	next	double-quote	character.	If	semi-colons,
close	brackets,	or	white	space	characters	(including	newlines)
appear	between	the	quotes	then	they	are	treated	as	ordinary

characters	and	included	in	the	word.	Command	substitution,
variable	substitution,	and	backslash	substitution	are	performed	on
the	characters	between	the	quotes	as	described	below.	The
double-quotes	are	not	retained	as	part	of	the	word.

[5]	Argument	expansion.
If	a	word	starts	with	the	string	“{*}”	followed	by	a	non-whitespace
character,	then	the	leading	“{*}”	is	removed	and	the	rest	of	the	word
is	parsed	and	substituted	as	any	other	word.	After	substitution,	the
word	is	parsed	again	without	substitutions,	and	its	words	are	added
to	the	command	being	substituted.	For	instance,	“cmd	a	{*}{b	c}	d
{*}{e	f}”	is	equivalent	to	“cmd	a	b	c	d	e	f”.

[6]	Braces.
If	the	first	character	of	a	word	is	an	open	brace	(“{”)	and	rule	[5]
does	not	apply,	then	the	word	is	terminated	by	the	matching	close
brace	(“}”).	Braces	nest	within	the	word:	for	each	additional	open
brace	there	must	be	an	additional	close	brace	(however,	if	an	open
brace	or	close	brace	within	the	word	is	quoted	with	a	backslash
then	it	is	not	counted	in	locating	the	matching	close	brace).	No
substitutions	are	performed	on	the	characters	between	the	braces
except	for	backslash-newline	substitutions	described	below,	nor	do
semi-colons,	newlines,	close	brackets,	or	white	space	receive	any
special	interpretation.	The	word	will	consist	of	exactly	the
characters	between	the	outer	braces,	not	including	the	braces
themselves.

[7]	Command	substitution.
If	a	word	contains	an	open	bracket	(“[”)	then	Tcl	performs	command
substitution.	To	do	this	it	invokes	the	Tcl	interpreter	recursively	to
process	the	characters	following	the	open	bracket	as	a	Tcl	script.
The	script	may	contain	any	number	of	commands	and	must	be
terminated	by	a	close	bracket	(“]”).	The	result	of	the	script	(i.e.	the
result	of	its	last	command)	is	substituted	into	the	word	in	place	of
the	brackets	and	all	of	the	characters	between	them.	There	may	be
any	number	of	command	substitutions	in	a	single	word.	Command
substitution	is	not	performed	on	words	enclosed	in	braces.

[8]	Variable	substitution.
If	a	word	contains	a	dollar-sign	(“$”)	followed	by	one	of	the	forms
described	below,	then	Tcl	performs	variable	substitution:	the	dollar-
sign	and	the	following	characters	are	replaced	in	the	word	by	the
value	of	a	variable.	Variable	substitution	may	take	any	of	the
following	forms:

$name
Name	is	the	name	of	a	scalar	variable;	the	name	is	a	sequence
of	one	or	more	characters	that	are	a	letter,	digit,	underscore,	or
namespace	separators	(two	or	more	colons).

$name(index)
Name	gives	the	name	of	an	array	variable	and	index	gives	the
name	of	an	element	within	that	array.	Name	must	contain	only
letters,	digits,	underscores,	and	namespace	separators,	and
may	be	an	empty	string.	Command	substitutions,	variable
substitutions,	and	backslash	substitutions	are	performed	on
the	characters	of	index.

${name}
Name	is	the	name	of	a	scalar	variable.	It	may	contain	any
characters	whatsoever	except	for	close	braces.

There	may	be	any	number	of	variable	substitutions	in	a	single
word.	Variable	substitution	is	not	performed	on	words	enclosed	in
braces.

[9]	Backslash	substitution.
If	a	backslash	(“\”)	appears	within	a	word	then	backslash
substitution	occurs.	In	all	cases	but	those	described	below	the
backslash	is	dropped	and	the	following	character	is	treated	as	an
ordinary	character	and	included	in	the	word.	This	allows	characters
such	as	double	quotes,	close	brackets,	and	dollar	signs	to	be
included	in	words	without	triggering	special	processing.	The
following	table	lists	the	backslash	sequences	that	are	handled
specially,	along	with	the	value	that	replaces	each	sequence.

\a
Audible	alert	(bell)	(0x7).

\b
Backspace	(0x8).

\f
Form	feed	(0xc).

\n
Newline	(0xa).

\r
Carriage-return	(0xd).

\t
Tab	(0x9).

\v
Vertical	tab	(0xb).

\<newline>whiteSpace
A	single	space	character	replaces	the	backslash,	newline,	and
all	spaces	and	tabs	after	the	newline.	This	backslash
sequence	is	unique	in	that	it	is	replaced	in	a	separate	pre-pass
before	the	command	is	actually	parsed.	This	means	that	it	will
be	replaced	even	when	it	occurs	between	braces,	and	the
resulting	space	will	be	treated	as	a	word	separator	if	it	is	not	in
braces	or	quotes.

\\
Backslash	(“\”).

\ooo
The	digits	ooo	(one,	two,	or	three	of	them)	give	an	eight-bit
octal	value	for	the	Unicode	character	that	will	be	inserted.	The
upper	bits	of	the	Unicode	character	will	be	0.

\xhh

The	hexadecimal	digits	hh	give	an	eight-bit	hexadecimal	value
for	the	Unicode	character	that	will	be	inserted.	Any	number	of
hexadecimal	digits	may	be	present;	however,	all	but	the	last
two	are	ignored	(the	result	is	always	a	one-byte	quantity).	The
upper	bits	of	the	Unicode	character	will	be	0.

\uhhhh
The	hexadecimal	digits	hhhh	(one,	two,	three,	or	four	of	them)
give	a	sixteen-bit	hexadecimal	value	for	the	Unicode	character
that	will	be	inserted.

Backslash	substitution	is	not	performed	on	words	enclosed	in
braces,	except	for	backslash-newline	as	described	above.

[10]	Comments.
If	a	hash	character	(“#”)	appears	at	a	point	where	Tcl	is	expecting
the	first	character	of	the	first	word	of	a	command,	then	the	hash
character	and	the	characters	that	follow	it,	up	through	the	next
newline,	are	treated	as	a	comment	and	ignored.	The	comment
character	only	has	significance	when	it	appears	at	the	beginning	of
a	command.

[11]	Order	of	substitution.
Each	character	is	processed	exactly	once	by	the	Tcl	interpreter	as
part	of	creating	the	words	of	a	command.	For	example,	if	variable
substitution	occurs	then	no	further	substitutions	are	performed	on
the	value	of	the	variable;	the	value	is	inserted	into	the	word
verbatim.	If	command	substitution	occurs	then	the	nested
command	is	processed	entirely	by	the	recursive	call	to	the	Tcl
interpreter;	no	substitutions	are	performed	before	making	the
recursive	call	and	no	additional	substitutions	are	performed	on	the
result	of	the	nested	script.

Substitutions	take	place	from	left	to	right,	and	each	substitution	is
evaluated	completely	before	attempting	to	evaluate	the	next.	Thus,
a	sequence	like

set	y	[set	x	0][incr	x][incr	x]

will	always	set	the	variable	y	to	the	value,	012.

[12]	Substitution	and	word	boundaries.
Substitutions	do	not	affect	the	word	boundaries	of	a	command,
except	for	argument	expansion	as	specified	in	rule	[5].	For
example,	during	variable	substitution	the	entire	value	of	the
variable	becomes	part	of	a	single	word,	even	if	the	variable's	value
contains	spaces.

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	eof

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

eof	-	Check	for	end	of	file	condition	on	channel

SYNOPSIS

eof	channelId

DESCRIPTION

Returns	1	if	an	end	of	file	condition	occurred	during	the	most	recent
input	operation	on	channelId	(such	as	gets),	0	otherwise.

ChannelId	must	be	an	identifier	for	an	open	channel	such	as	a	Tcl
standard	channel	(stdin,	stdout,	or	stderr),	the	return	value	from	an
invocation	of	open	or	socket,	or	the	result	of	a	channel	creation
command	provided	by	a	Tcl	extension.

EXAMPLES

Read	and	print	out	the	contents	of	a	file	line-by-line:

set	f	[open	somefile.txt]

while	{1}	{

				set	line	[gets	$f]

				if	{[eof	$f]}	{

								close	$f

								break

				}

				puts	"Read	line:	$line"

}

Read	and	print	out	the	contents	of	a	file	by	fixed-size	records:

set	f	[open	somefile.dat]

fconfigure	$f	-translation	binary

set	recordSize	40

while	{1}	{

				set	record	[read	$f	$recordSize]

				if	{[eof	$f]}	{

								close	$f

								break

				}

				puts	"Read	record:	$record"

}

SEE	ALSO

file,	open,	close,	fblocked,	Tcl_StandardChannels

KEYWORDS

channel,	end	of	file

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	join

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

join	-	Create	a	string	by	joining	together	list	elements

SYNOPSIS

join	list	?joinString?

DESCRIPTION

The	list	argument	must	be	a	valid	Tcl	list.	This	command	returns	the
string	formed	by	joining	all	of	the	elements	of	list	together	with	joinString
separating	each	adjacent	pair	of	elements.	The	joinString	argument
defaults	to	a	space	character.

EXAMPLES

Making	a	comma-separated	list:

set	data	{1	2	3	4	5}

join	$data	",	"

					→	1,	2,	3,	4,	5

Using	join	to	flatten	a	list	by	a	single	level:

set	data	{1	{2	3}	4	{5	{6	7}	8}}

join	$data

					→	1	2	3	4	5	{6	7}	8

SEE	ALSO

list,	lappend,	split

KEYWORDS

element,	join,	list,	separator

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclCmd	>	pkgMkIndex

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
pkg_mkIndex	-	Build	an	index	for	automatic	loading	of
packages

SYNOPSIS
DESCRIPTION
OPTIONS

-direct
-lazy
-load	pkgPat
-verbose
--

PACKAGES	AND	THE	AUTO-LOADER
HOW	IT	WORKS
DIRECT	LOADING
COMPLEX	CASES
SEE	ALSO
KEYWORDS

NAME

pkg_mkIndex	-	Build	an	index	for	automatic	loading	of	packages

SYNOPSIS

pkg_mkIndex	?-direct?	?-lazy?	?-load	pkgPat?	?-verbose?	dir	?pattern
pattern	...?

DESCRIPTION

Pkg_mkIndex	is	a	utility	procedure	that	is	part	of	the	standard	Tcl
library.	It	is	used	to	create	index	files	that	allow	packages	to	be	loaded
automatically	when	package	require	commands	are	executed.	To	use

pkg_mkIndex,	follow	these	steps:

[1]
Create	the	package(s).	Each	package	may	consist	of	one	or	more
Tcl	script	files	or	binary	files.	Binary	files	must	be	suitable	for
loading	with	the	load	command	with	a	single	argument;	for
example,	if	the	file	is	test.so	it	must	be	possible	to	load	this	file	with
the	command	load	test.so.	Each	script	file	must	contain	a
package	provide	command	to	declare	the	package	and	version
number,	and	each	binary	file	must	contain	a	call	to
Tcl_PkgProvide.

[2]
Create	the	index	by	invoking	pkg_mkIndex.	The	dir	argument
gives	the	name	of	a	directory	and	each	pattern	argument	is	a	glob-
style	pattern	that	selects	script	or	binary	files	in	dir.	The	default
pattern	is	*.tcl	and	*.[info	sharedlibextension].

Pkg_mkIndex	will	create	a	file	pkgIndex.tcl	in	dir	with	package
information	about	all	the	files	given	by	the	pattern	arguments.	It
does	this	by	loading	each	file	into	a	slave	interpreter	and	seeing
what	packages	and	new	commands	appear	(this	is	why	it	is
essential	to	have	package	provide	commands	or	Tcl_PkgProvide
calls	in	the	files,	as	described	above).	If	you	have	a	package	split
among	scripts	and	binary	files,	or	if	you	have	dependencies	among
files,	you	may	have	to	use	the	-load	option	or	adjust	the	order	in
which	pkg_mkIndex	processes	the	files.	See	COMPLEX	CASES
below.

[3]
Install	the	package	as	a	subdirectory	of	one	of	the	directories	given
by	the	tcl_pkgPath	variable.	If	$tcl_pkgPath	contains	more	than
one	directory,	machine-dependent	packages	(e.g.,	those	that
contain	binary	shared	libraries)	should	normally	be	installed	under
the	first	directory	and	machine-independent	packages	(e.g.,	those
that	contain	only	Tcl	scripts)	should	be	installed	under	the	second
directory.	The	subdirectory	should	include	the	package's	script
and/or	binary	files	as	well	as	the	pkgIndex.tcl	file.	As	long	as	the

package	is	installed	as	a	subdirectory	of	a	directory	in
$tcl_pkgPath	it	will	automatically	be	found	during	package
require	commands.

If	you	install	the	package	anywhere	else,	then	you	must	ensure	that
the	directory	containing	the	package	is	in	the	auto_path	global
variable	or	an	immediate	subdirectory	of	one	of	the	directories	in
auto_path.	Auto_path	contains	a	list	of	directories	that	are
searched	by	both	the	auto-loader	and	the	package	loader;	by
default	it	includes	$tcl_pkgPath.	The	package	loader	also	checks
all	of	the	subdirectories	of	the	directories	in	auto_path.	You	can
add	a	directory	to	auto_path	explicitly	in	your	application,	or	you
can	add	the	directory	to	your	TCLLIBPATH	environment	variable:	if
this	environment	variable	is	present,	Tcl	initializes	auto_path	from
it	during	application	startup.

[4]
Once	the	above	steps	have	been	taken,	all	you	need	to	do	to	use	a
package	is	to	invoke	package	require.	For	example,	if	versions
2.1,	2.3,	and	3.1	of	package	Test	have	been	indexed	by
pkg_mkIndex,	the	command	package	require	Test	will	make
version	3.1	available	and	the	command	package	require	-exact
Test	2.1	will	make	version	2.1	available.	There	may	be	many
versions	of	a	package	in	the	various	index	files	in	auto_path,	but
only	one	will	actually	be	loaded	in	a	given	interpreter,	based	on	the
first	call	to	package	require.	Different	versions	of	a	package	may
be	loaded	in	different	interpreters.

OPTIONS

The	optional	switches	are:

-direct
The	generated	index	will	implement	direct	loading	of	the	package
upon	package	require.	This	is	the	default.

-lazy
The	generated	index	will	manage	to	delay	loading	the	package	until

the	use	of	one	of	the	commands	provided	by	the	package,	instead
of	loading	it	immediately	upon	package	require.	This	is	not
compatible	with	the	use	of	auto_reset,	and	therefore	its	use	is
discouraged.

-load	pkgPat
The	index	process	will	pre-load	any	packages	that	exist	in	the
current	interpreter	and	match	pkgPat	into	the	slave	interpreter	used
to	generate	the	index.	The	pattern	match	uses	string	match	rules,
but	without	making	case	distinctions.	See	COMPLEX	CASES
below.

-verbose
Generate	output	during	the	indexing	process.	Output	is	via	the
tclLog	procedure,	which	by	default	prints	to	stderr.

--
End	of	the	flags,	in	case	dir	begins	with	a	dash.

PACKAGES	AND	THE	AUTO-LOADER

The	package	management	facilities	overlap	somewhat	with	the	auto-
loader,	in	that	both	arrange	for	files	to	be	loaded	on-demand.	However,
package	management	is	a	higher-level	mechanism	that	uses	the	auto-
loader	for	the	last	step	in	the	loading	process.	It	is	generally	better	to
index	a	package	with	pkg_mkIndex	rather	than	auto_mkindex
because	the	package	mechanism	provides	version	control:	several
versions	of	a	package	can	be	made	available	in	the	index	files,	with
different	applications	using	different	versions	based	on	package
require	commands.	In	contrast,	auto_mkindex	does	not	understand
versions	so	it	can	only	handle	a	single	version	of	each	package.	It	is
probably	not	a	good	idea	to	index	a	given	package	with	both
pkg_mkIndex	and	auto_mkindex.	If	you	use	pkg_mkIndex	to	index	a
package,	its	commands	cannot	be	invoked	until	package	require	has
been	used	to	select	a	version;	in	contrast,	packages	indexed	with
auto_mkindex	can	be	used	immediately	since	there	is	no	version
control.

HOW	IT	WORKS

Pkg_mkIndex	depends	on	the	package	unknown	command,	the
package	ifneeded	command,	and	the	auto-loader.	The	first	time	a
package	require	command	is	invoked,	the	package	unknown	script	is
invoked.	This	is	set	by	Tcl	initialization	to	a	script	that	evaluates	all	of
the	pkgIndex.tcl	files	in	the	auto_path.	The	pkgIndex.tcl	files	contain
package	ifneeded	commands	for	each	version	of	each	available
package;	these	commands	invoke	package	provide	commands	to
announce	the	availability	of	the	package,	and	they	setup	auto-loader
information	to	load	the	files	of	the	package.	If	the	-lazy	flag	was
provided	when	the	pkgIndex.tcl	was	generated,	a	given	file	of	a	given
version	of	a	given	package	is	not	actually	loaded	until	the	first	time	one
of	its	commands	is	invoked.	Thus,	after	invoking	package	require	you
may	not	see	the	package's	commands	in	the	interpreter,	but	you	will	be
able	to	invoke	the	commands	and	they	will	be	auto-loaded.

DIRECT	LOADING

Some	packages,	for	instance	packages	which	use	namespaces	and
export	commands	or	those	which	require	special	initialization,	might
select	that	their	package	files	be	loaded	immediately	upon	package
require	instead	of	delaying	the	actual	loading	to	the	first	use	of	one	of
the	package's	command.	This	is	the	default	mode	when	generating	the
package	index.	It	can	be	overridden	by	specifying	the	-lazy	argument.

COMPLEX	CASES

Most	complex	cases	of	dependencies	among	scripts	and	binary	files,
and	packages	being	split	among	scripts	and	binary	files	are	handled
OK.	However,	you	may	have	to	adjust	the	order	in	which	files	are
processed	by	pkg_mkIndex.	These	issues	are	described	in	detail
below.

If	each	script	or	file	contains	one	package,	and	packages	are	only
contained	in	one	file,	then	things	are	easy.	You	simply	specify	all	files	to
be	indexed	in	any	order	with	some	glob	patterns.

In	general,	it	is	OK	for	scripts	to	have	dependencies	on	other	packages.
If	scripts	contain	package	require	commands,	these	are	stubbed	out	in
the	interpreter	used	to	process	the	scripts,	so	these	do	not	cause
problems.	If	scripts	call	into	other	packages	in	global	code,	these	calls
are	handled	by	a	stub	unknown	command.	However,	if	scripts	make
variable	references	to	other	package's	variables	in	global	code,	these
will	cause	errors.	That	is	also	bad	coding	style.

If	binary	files	have	dependencies	on	other	packages,	things	can
become	tricky	because	it	is	not	possible	to	stub	out	C-level	APIs	such
as	Tcl_PkgRequire	API	when	loading	a	binary	file.	For	example,
suppose	the	BLT	package	requires	Tk,	and	expresses	this	with	a	call	to
Tcl_PkgRequire	in	its	Blt_Init	routine.	To	support	this,	you	must	run
pkg_mkIndex	in	an	interpreter	that	has	Tk	loaded.	You	can	achieve	this
with	the	-load	pkgPat	option.	If	you	specify	this	option,	pkg_mkIndex
will	load	any	packages	listed	by	info	loaded	and	that	match	pkgPat	into
the	interpreter	used	to	process	files.	In	most	cases	this	will	satisfy	the
Tcl_PkgRequire	calls	made	by	binary	files.

If	you	are	indexing	two	binary	files	and	one	depends	on	the	other,	you
should	specify	the	one	that	has	dependencies	last.	This	way	the	one
without	dependencies	will	get	loaded	and	indexed,	and	then	the
package	it	provides	will	be	available	when	the	second	file	is	processed.
You	may	also	need	to	load	the	first	package	into	the	temporary
interpreter	used	to	create	the	index	by	using	the	-load	flag;	it	will	not
hurt	to	specify	package	patterns	that	are	not	yet	loaded.

If	you	have	a	package	that	is	split	across	scripts	and	a	binary	file,	then
you	should	avoid	the	-load	flag.	The	problem	is	that	if	you	load	a
package	before	computing	the	index	it	masks	any	other	files	that
provide	part	of	the	same	package.	If	you	must	use	-load,	then	you	must
specify	the	scripts	first;	otherwise	the	package	loaded	from	the	binary
file	may	mask	the	package	defined	by	the	scripts.

SEE	ALSO

package

KEYWORDS

auto-load,	index,	package,	version

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	bell

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

bell	-	Ring	a	display's	bell

SYNOPSIS

bell	?-displayof	window?	?-nice?

DESCRIPTION

This	command	rings	the	bell	on	the	display	for	window	and	returns	an
empty	string.	If	the	-displayof	option	is	omitted,	the	display	of	the
application's	main	window	is	used	by	default.	The	command	uses	the
current	bell-related	settings	for	the	display,	which	may	be	modified	with
programs	such	as	xset.

If	-nice	is	not	specified,	this	command	also	resets	the	screen	saver	for
the	screen.	Some	screen	savers	will	ignore	this,	but	others	will	reset	so
that	the	screen	becomes	visible	again.

KEYWORDS

beep,	bell,	ring

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.
Copyright	©	2000	Ajuba	Solutions.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	font

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
font	-	Create	and	inspect	fonts.

SYNOPSIS
DESCRIPTION

font	actual	font	?-displayof	window?	?option?	?--?	?char?
font	configure	fontname	?option?	?value	option	value	...?
font	create	?fontname?	?option	value	...?
font	delete	fontname	?fontname	...?
font	families	?-displayof	window?
font	measure	font	?-displayof	window?	text
font	metrics	font	?-displayof	window?	?option?
font	names

FONT	DESCRIPTION
[1]	fontname
[2]	systemfont
[3]	family	?size?	?style?	?style	...?
[4]	X-font	names	(XLFD)
[5]	option	value	?option	value	...?

FONT	METRICS
-ascent
-descent
-linespace
-fixed

FONT	OPTIONS
-family	name
-size	size
-weight	weight
-slant	slant
-underline	boolean
-overstrike	boolean

STANDARD	FONTS

TkDefaultFont
TkTextFont
TkFixedFont
TkMenuFont
TkHeadingFont
TkCaptionFont
TkSmallCaptionFont
TkIconFont
TkTooltipFont

PLATFORM-SPECIFIC	FONTS
X	Windows
MS	Windows
Mac	OS	X

EXAMPLE
SEE	ALSO
KEYWORDS

NAME

font	-	Create	and	inspect	fonts.

SYNOPSIS

font	option	?arg	arg	...?

DESCRIPTION

The	font	command	provides	several	facilities	for	dealing	with	fonts,
such	as	defining	named	fonts	and	inspecting	the	actual	attributes	of	a
font.	The	command	has	several	different	forms,	determined	by	the	first
argument.	The	following	forms	are	currently	supported:

font	actual	font	?-displayof	window?	?option?	?--?	?char?
Returns	information	about	the	actual	attributes	that	are	obtained
when	font	is	used	on	window's	display;	the	actual	attributes
obtained	may	differ	from	the	attributes	requested	due	to	platform-
dependent	limitations,	such	as	the	availability	of	font	families	and
pointsizes.	font	is	a	font	description;	see	FONT	DESCRIPTIONS

below.	If	the	window	argument	is	omitted,	it	defaults	to	the	main
window.	If	option	is	specified,	returns	the	value	of	that	attribute;	if	it
is	omitted,	the	return	value	is	a	list	of	all	the	attributes	and	their
values.	See	FONT	OPTIONS	below	for	a	list	of	the	possible
attributes.	If	the	char	argument	is	supplied,	it	must	be	a	single
character.	The	font	attributes	returned	will	be	those	of	the	specific
font	used	to	render	that	character,	which	will	be	different	from	the
base	font	if	the	base	font	does	not	contain	the	given	character.	If
char	may	be	a	hyphen,	it	should	be	preceded	by	--	to	distinguish	it
from	a	misspelled	option.

font	configure	fontname	?option?	?value	option	value	...?
Query	or	modify	the	desired	attributes	for	the	named	font	called
fontname.	If	no	option	is	specified,	returns	a	list	describing	all	the
options	and	their	values	for	fontname.	If	a	single	option	is	specified
with	no	value,	then	returns	the	current	value	of	that	attribute.	If	one
or	more	option-value	pairs	are	specified,	then	the	command
modifies	the	given	named	font	to	have	the	given	values;	in	this
case,	all	widgets	using	that	font	will	redisplay	themselves	using	the
new	attributes	for	the	font.	See	FONT	OPTIONS	below	for	a	list	of
the	possible	attributes.

font	create	?fontname?	?option	value	...?
Creates	a	new	named	font	and	returns	its	name.	fontname
specifies	the	name	for	the	font;	if	it	is	omitted,	then	Tk	generates	a
new	name	of	the	form	fontx,	where	x	is	an	integer.	There	may	be
any	number	of	option-value	pairs,	which	provide	the	desired
attributes	for	the	new	named	font.	See	FONT	OPTIONS	below	for	a
list	of	the	possible	attributes.

font	delete	fontname	?fontname	...?
Delete	the	specified	named	fonts.	If	there	are	widgets	using	the
named	font,	the	named	font	will	not	actually	be	deleted	until	all	the
instances	are	released.	Those	widgets	will	continue	to	display
using	the	last	known	values	for	the	named	font.	If	a	deleted	named
font	is	subsequently	recreated	with	another	call	to	font	create,	the
widgets	will	use	the	new	named	font	and	redisplay	themselves
using	the	new	attributes	of	that	font.

font	families	?-displayof	window?
The	return	value	is	a	list	of	the	case-insensitive	names	of	all	font
families	that	exist	on	window's	display.	If	the	window	argument	is
omitted,	it	defaults	to	the	main	window.

font	measure	font	?-displayof	window?	text
Measures	the	amount	of	space	the	string	text	would	use	in	the
given	font	when	displayed	in	window.	font	is	a	font	description;	see
FONT	DESCRIPTIONS	below.	If	the	window	argument	is	omitted,	it
defaults	to	the	main	window.	The	return	value	is	the	total	width	in
pixels	of	text,	not	including	the	extra	pixels	used	by	highly
exaggerated	characters	such	as	cursive	“f”.	If	the	string	contains
newlines	or	tabs,	those	characters	are	not	expanded	or	treated
specially	when	measuring	the	string.

font	metrics	font	?-displayof	window?	?option?
Returns	information	about	the	metrics	(the	font-specific	data),	for
font	when	it	is	used	on	window's	display.	font	is	a	font	description;
see	FONT	DESCRIPTIONS	below.	If	the	window	argument	is
omitted,	it	defaults	to	the	main	window.	If	option	is	specified,
returns	the	value	of	that	metric;	if	it	is	omitted,	the	return	value	is	a
list	of	all	the	metrics	and	their	values.	See	FONT	METRICS	below
for	a	list	of	the	possible	metrics.

font	names
The	return	value	is	a	list	of	all	the	named	fonts	that	are	currently
defined.

FONT	DESCRIPTION

The	following	formats	are	accepted	as	a	font	description	anywhere	font
is	specified	as	an	argument	above;	these	same	forms	are	also
permitted	when	specifying	the	-font	option	for	widgets.

[1]	fontname
The	name	of	a	named	font,	created	using	the	font	create
command.	When	a	widget	uses	a	named	font,	it	is	guaranteed	that

this	will	never	cause	an	error,	as	long	as	the	named	font	exists,	no
matter	what	potentially	invalid	or	meaningless	set	of	attributes	the
named	font	has.	If	the	named	font	cannot	be	displayed	with	exactly
the	specified	attributes,	some	other	close	font	will	be	substituted
automatically.

[2]	systemfont
The	platform-specific	name	of	a	font,	interpreted	by	the	graphics
server.	This	also	includes,	under	X,	an	XLFD	(see	[4])	for	which	a
single	“*”	character	was	used	to	elide	more	than	one	field	in	the
middle	of	the	name.	See	PLATFORM-SPECIFIC	issues	for	a	list	of
the	system	fonts.

[3]	family	?size?	?style?	?style	...?
A	properly	formed	list	whose	first	element	is	the	desired	font	family
and	whose	optional	second	element	is	the	desired	size.	The
interpretation	of	the	size	attribute	follows	the	same	rules	described
for	-size	in	FONT	OPTIONS	below.	Any	additional	optional
arguments	following	the	size	are	font	styles.	Possible	values	for	the
style	arguments	are	as	follows:

normal bold roman italic

underline overstrike

[4]	X-font	names	(XLFD)
A	Unix-centric	font	name	of	the	form	-foundry-family-weight-slant-
setwidth-addstyle-pixel-point-resx-resy-spacing-width-charset-
encoding.	The	“*”	character	may	be	used	to	skip	individual	fields
that	the	user	does	not	care	about.	There	must	be	exactly	one	“*”	for
each	field	skipped,	except	that	a	“*”	at	the	end	of	the	XLFD	skips
any	remaining	fields;	the	shortest	valid	XLFD	is	simply	“*”,
signifying	all	fields	as	defaults.	Any	fields	that	were	skipped	are
given	default	values.	For	compatibility,	an	XLFD	always	chooses	a
font	of	the	specified	pixel	size	(not	point	size);	although	this
interpretation	is	not	strictly	correct,	all	existing	applications	using

XLFDs	assumed	that	one	“point”	was	in	fact	one	pixel	and	would
display	incorrectly	(generally	larger)	if	the	correct	size	font	were
actually	used.

[5]	option	value	?option	value	...?
A	properly	formed	list	of	option-value	pairs	that	specify	the	desired
attributes	of	the	font,	in	the	same	format	used	when	defining	a
named	font;	see	FONT	OPTIONS	below.

When	font	description	font	is	used,	the	system	attempts	to	parse	the
description	according	to	each	of	the	above	five	rules,	in	the	order
specified.	Cases	[1]	and	[2]	must	match	the	name	of	an	existing	named
font	or	of	a	system	font.	Cases	[3],	[4],	and	[5]	are	accepted	on	all
platforms	and	the	closest	available	font	will	be	used.	In	some	situations
it	may	not	be	possible	to	find	any	close	font	(e.g.,	the	font	family	was	a
garbage	value);	in	that	case,	some	system-dependent	default	font	is
chosen.	If	the	font	description	does	not	match	any	of	the	above
patterns,	an	error	is	generated.

FONT	METRICS

The	following	options	are	used	by	the	font	metrics	command	to	query
font-specific	data	determined	when	the	font	was	created.	These
properties	are	for	the	whole	font	itself	and	not	for	individual	characters
drawn	in	that	font.	In	the	following	definitions,	the	“baseline”	of	a	font	is
the	horizontal	line	where	the	bottom	of	most	letters	line	up;	certain
letters,	such	as	lower-case	“g”	stick	below	the	baseline.

-ascent
The	amount	in	pixels	that	the	tallest	letter	sticks	up	above	the
baseline	of	the	font,	plus	any	extra	blank	space	added	by	the
designer	of	the	font.

-descent
The	largest	amount	in	pixels	that	any	letter	sticks	down	below	the
baseline	of	the	font,	plus	any	extra	blank	space	added	by	the
designer	of	the	font.

-linespace
Returns	how	far	apart	vertically	in	pixels	two	lines	of	text	using	the
same	font	should	be	placed	so	that	none	of	the	characters	in	one
line	overlap	any	of	the	characters	in	the	other	line.	This	is	generally
the	sum	of	the	ascent	above	the	baseline	line	plus	the	descent
below	the	baseline.

-fixed
Returns	a	boolean	flag	that	is	“1”	if	this	is	a	fixed-width	font,	where
each	normal	character	is	the	same	width	as	all	the	other
characters,	or	is	“0”	if	this	is	a	proportionally-spaced	font,	where
individual	characters	have	different	widths.	The	widths	of	control
characters,	tab	characters,	and	other	non-printing	characters	are
not	included	when	calculating	this	value.

FONT	OPTIONS

The	following	options	are	supported	on	all	platforms,	and	are	used
when	constructing	a	named	font	or	when	specifying	a	font	using	style
[5]	as	above:

-family	name
The	case-insensitive	font	family	name.	Tk	guarantees	to	support
the	font	families	named	Courier	(a	monospaced	“typewriter”	font),
Times	(a	serifed	“newspaper”	font),	and	Helvetica	(a	sans-serif
“European”	font).	The	most	closely	matching	native	font	family	will
automatically	be	substituted	when	one	of	the	above	font	families	is
used.	The	name	may	also	be	the	name	of	a	native,	platform-
specific	font	family;	in	that	case	it	will	work	as	desired	on	one
platform	but	may	not	display	correctly	on	other	platforms.	If	the
family	is	unspecified	or	unrecognized,	a	platform-specific	default
font	will	be	chosen.

-size	size
The	desired	size	of	the	font.	If	the	size	argument	is	a	positive
number,	it	is	interpreted	as	a	size	in	points.	If	size	is	a	negative
number,	its	absolute	value	is	interpreted	as	a	size	in	pixels.	If	a	font
cannot	be	displayed	at	the	specified	size,	a	nearby	size	will	be

chosen.	If	size	is	unspecified	or	zero,	a	platform-dependent	default
size	will	be	chosen.

Sizes	should	normally	be	specified	in	points	so	the	application	will
remain	the	same	ruler	size	on	the	screen,	even	when	changing
screen	resolutions	or	moving	scripts	across	platforms.	However,
specifying	pixels	is	useful	in	certain	circumstances	such	as	when	a
piece	of	text	must	line	up	with	respect	to	a	fixed-size	bitmap.	The
mapping	between	points	and	pixels	is	set	when	the	application
starts,	based	on	properties	of	the	installed	monitor,	but	it	can	be
overridden	by	calling	the	tk	scaling	command.

-weight	weight
The	nominal	thickness	of	the	characters	in	the	font.	The	value
normal	specifies	a	normal	weight	font,	while	bold	specifies	a	bold
font.	The	closest	available	weight	to	the	one	specified	will	be
chosen.	The	default	weight	is	normal.

-slant	slant
The	amount	the	characters	in	the	font	are	slanted	away	from	the
vertical.	Valid	values	for	slant	are	roman	and	italic.	A	roman	font	is
the	normal,	upright	appearance	of	a	font,	while	an	italic	font	is	one
that	is	tilted	some	number	of	degrees	from	upright.	The	closest
available	slant	to	the	one	specified	will	be	chosen.	The	default	slant
is	roman.

-underline	boolean
The	value	is	a	boolean	flag	that	specifies	whether	characters	in	this
font	should	be	underlined.	The	default	value	for	underline	is	false.

-overstrike	boolean
The	value	is	a	boolean	flag	that	specifies	whether	a	horizontal	line
should	be	drawn	through	the	middle	of	characters	in	this	font.	The
default	value	for	overstrike	is	false.

STANDARD	FONTS

The	following	named	fonts	are	supported	on	all	systems,	and	default	to

values	that	match	appropriate	system	defaults.

TkDefaultFont
This	font	is	the	default	for	all	GUI	items	not	otherwise	specified.

TkTextFont
This	font	should	be	used	for	user	text	in	entry	widgets,	listboxes
etc.

TkFixedFont
This	font	is	the	standard	fixed-width	font.

TkMenuFont
This	font	is	used	for	menu	items.

TkHeadingFont
This	font	should	be	used	for	column	headings	in	lists	and	tables.

TkCaptionFont
This	font	should	be	used	for	window	and	dialog	caption	bars.

TkSmallCaptionFont
This	font	should	be	used	for	captions	on	contained	windows	or	tool
dialogs.

TkIconFont
This	font	should	be	used	for	icon	captions.

TkTooltipFont
This	font	should	be	used	for	tooltip	windows	(transient	information
windows).

It	is	not	advised	to	change	these	fonts,	as	they	may	be	modified	by	Tk
itself	in	response	to	system	changes.	Instead,	make	a	copy	of	the	font
and	modify	that.

PLATFORM-SPECIFIC	FONTS

The	following	system	fonts	are	supported:

X	Windows
All	valid	X	font	names,	including	those	listed	by	xlsfonts(1),	are
available.

MS	Windows
The	following	fonts	are	supported,	and	are	mapped	to	the	user's
style	defaults.

system ansi device

systemfixed ansifixed oemfixed

Mac	OS	X
The	following	fonts	are	supported,	and	are	mapped	to	the	user's
style	defaults.

system application menu

Additionally,	the	following	named	fonts	provide	access	to	the	Aqua
theme	fonts:

systemSystemFont systemEmphasizedSystemFont

systemSmallSystemFont systemSmallEmphasizedSystemFont

systemApplicationFont systemLabelFont

systemViewsFont systemMenuTitleFont

systemMenuItemFont systemMenuItemMarkFont

systemMenuItemCmdKeyFont systemWindowTitleFont

systemPushButtonFont systemUtilityWindowTitleFont

systemAlertHeaderFont systemToolbarFont

systemMiniSystemFont systemDetailSystemFont

systemDetailEmphasizedSystemFont

EXAMPLE

Fill	a	text	widget	with	lots	of	font	demonstrators,	one	for	every	font
family	installed	on	your	system:

pack	[text	.t	-wrap	none]	-fill	both	-expand	1

set	count	0

set	tabwidth	0

foreach	family	[lsort	-dictionary	[font	families]]	{

				.t	tag	configure	f[incr	count]	-font	[list	$family	10]

				.t	insert	end	${family}:\t	{}	\

												"This	is	a	simple	sampler\n"	f$count

				set	w	[font	measure	[.t	cget	-font]	${family}:]

				if	{$w+5	>	$tabwidth}	{

								set	tabwidth	[expr	{$w+5}]

								.t	configure	-tabs	$tabwidth

				}

}

SEE	ALSO

options

KEYWORDS

font

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1996	Sun	Microsystems,	Inc.
Copyright	©	2006-2007	Daniel	A.	Steffen	<das(at)users.sourceforge.net>

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	options

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
options	-	Standard	options	supported	by	widgets

DESCRIPTION
-activebackground,	activeBackground,	Foreground
-activeborderwidth,	activeBorderWidth,	BorderWidth
-activeforeground,	activeForeground,	Background
-anchor,	anchor,	Anchor
-background	or	-bg,	background,	Background
-bitmap,	bitmap,	Bitmap
-borderwidth	or	-bd,	borderWidth,	BorderWidth
-cursor,	cursor,	Cursor
-compound,	compound,	Compound
-disabledforeground,	disabledForeground,	DisabledForeground
-exportselection,	exportSelection,	ExportSelection
-font,	font,	Font
-foreground	or	-fg,	foreground,	Foreground
-highlightbackground,	highlightBackground,
HighlightBackground
-highlightcolor,	highlightColor,	HighlightColor
-highlightthickness,	highlightThickness,	HighlightThickness
-image,	image,	Image
-insertbackground,	insertBackground,	Foreground
-insertborderwidth,	insertBorderWidth,	BorderWidth
-insertofftime,	insertOffTime,	OffTime
-insertontime,	insertOnTime,	OnTime
-insertwidth,	insertWidth,	InsertWidth
-jump,	jump,	Jump
-justify,	justify,	Justify
-orient,	orient,	Orient
-padx,	padX,	Pad
-pady,	padY,	Pad

-relief,	relief,	Relief
-repeatdelay,	repeatDelay,	RepeatDelay
-repeatinterval,	repeatInterval,	RepeatInterval
-selectbackground,	selectBackground,	Foreground
-selectborderwidth,	selectBorderWidth,	BorderWidth
-selectforeground,	selectForeground,	Background
-setgrid,	setGrid,	SetGrid
-takefocus,	takeFocus,	TakeFocus
-text,	text,	Text
-textvariable,	textVariable,	Variable
-troughcolor,	troughColor,	Background
-underline,	underline,	Underline
-wraplength,	wrapLength,	WrapLength
-xscrollcommand,	xScrollCommand,	ScrollCommand
-yscrollcommand,	yScrollCommand,	ScrollCommand

SEE	ALSO
KEYWORDS

NAME

options	-	Standard	options	supported	by	widgets

DESCRIPTION

This	manual	entry	describes	the	common	configuration	options
supported	by	widgets	in	the	Tk	toolkit.	Every	widget	does	not
necessarily	support	every	option	(see	the	manual	entries	for	individual
widgets	for	a	list	of	the	standard	options	supported	by	that	widget),	but
if	a	widget	does	support	an	option	with	one	of	the	names	listed	below,
then	the	option	has	exactly	the	effect	described	below.

In	the	descriptions	below,	“Command-Line	Name”	refers	to	the	switch
used	in	class	commands	and	configure	widget	commands	to	set	this
value.	For	example,	if	an	option's	command-line	switch	is	-foreground
and	there	exists	a	widget	.a.b.c,	then	the	command

.a.b.c		configure		-foreground	black

may	be	used	to	specify	the	value	black	for	the	option	in	the	widget
.a.b.c.	Command-line	switches	may	be	abbreviated,	as	long	as	the
abbreviation	is	unambiguous.	“Database	Name”	refers	to	the	option's
name	in	the	option	database	(e.g.	in	.Xdefaults	files).	“Database	Class”
refers	to	the	option's	class	value	in	the	option	database.

Command-Line	Name:	-activebackground
Database	Name:	activeBackground
Database	Class:	Foreground

Specifies	background	color	to	use	when	drawing	active	elements.
An	element	(a	widget	or	portion	of	a	widget)	is	active	if	the	mouse
cursor	is	positioned	over	the	element	and	pressing	a	mouse	button
will	cause	some	action	to	occur.	If	strict	Motif	compliance	has	been
requested	by	setting	the	tk_strictMotif	variable,	this	option	will
normally	be	ignored;	the	normal	background	color	will	be	used
instead.	For	some	elements	on	Windows	and	Macintosh	systems,
the	active	color	will	only	be	used	while	mouse	button	1	is	pressed
over	the	element.

Command-Line	Name:	-activeborderwidth
Database	Name:	activeBorderWidth
Database	Class:	BorderWidth

Specifies	a	non-negative	value	indicating	the	width	of	the	3-D
border	drawn	around	active	elements.	See	above	for	definition	of
active	elements.	The	value	may	have	any	of	the	forms	acceptable
to	Tk_GetPixels.	This	option	is	typically	only	available	in	widgets
displaying	more	than	one	element	at	a	time	(e.g.	menus	but	not
buttons).

Command-Line	Name:	-activeforeground
Database	Name:	activeForeground
Database	Class:	Background

Specifies	foreground	color	to	use	when	drawing	active	elements.
See	above	for	definition	of	active	elements.

Command-Line	Name:	-anchor

Database	Name:	anchor
Database	Class:	Anchor

Specifies	how	the	information	in	a	widget	(e.g.	text	or	a	bitmap)	is
to	be	displayed	in	the	widget.	Must	be	one	of	the	values	n,	ne,	e,
se,	s,	sw,	w,	nw,	or	center.	For	example,	nw	means	display	the
information	such	that	its	top-left	corner	is	at	the	top-left	corner	of
the	widget.

Command-Line	Name:	-background	or	-bg
Database	Name:	background
Database	Class:	Background

Specifies	the	normal	background	color	to	use	when	displaying	the
widget.

Command-Line	Name:	-bitmap
Database	Name:	bitmap
Database	Class:	Bitmap

Specifies	a	bitmap	to	display	in	the	widget,	in	any	of	the	forms
acceptable	to	Tk_GetBitmap.	The	exact	way	in	which	the	bitmap	is
displayed	may	be	affected	by	other	options	such	as	anchor	or
justify.	Typically,	if	this	option	is	specified	then	it	overrides	other
options	that	specify	a	textual	value	to	display	in	the	widget	but	this
is	controlled	by	the	compound	option;	the	bitmap	option	may	be
reset	to	an	empty	string	to	re-enable	a	text	display.	In	widgets	that
support	both	bitmap	and	image	options,	image	will	usually
override	bitmap.

Command-Line	Name:	-borderwidth	or	-bd
Database	Name:	borderWidth
Database	Class:	BorderWidth

Specifies	a	non-negative	value	indicating	the	width	of	the	3-D
border	to	draw	around	the	outside	of	the	widget	(if	such	a	border	is
being	drawn;	the	relief	option	typically	determines	this).	The	value
may	also	be	used	when	drawing	3-D	effects	in	the	interior	of	the
widget.	The	value	may	have	any	of	the	forms	acceptable	to
Tk_GetPixels.

Command-Line	Name:	-cursor

Database	Name:	cursor
Database	Class:	Cursor

Specifies	the	mouse	cursor	to	be	used	for	the	widget.	The	value
may	have	any	of	the	forms	acceptable	to	Tk_GetCursor.	In
addition,	if	an	empty	string	is	specified,	it	indicates	that	the	widget
should	defer	to	its	parent	for	cursor	specification.

Command-Line	Name:	-compound
Database	Name:	compound
Database	Class:	Compound

Specifies	if	the	widget	should	display	text	and	bitmaps/images	at
the	same	time,	and	if	so,	where	the	bitmap/image	should	be	placed
relative	to	the	text.	Must	be	one	of	the	values	none,	bottom,	top,
left,	right,	or	center.	For	example,	the	(default)	value	none
specifies	that	the	bitmap	or	image	should	(if	defined)	be	displayed
instead	of	the	text,	the	value	left	specifies	that	the	bitmap	or	image
should	be	displayed	to	the	left	of	the	text,	and	the	value	center
specifies	that	the	bitmap	or	image	should	be	displayed	on	top	of
the	text.

Command-Line	Name:	-disabledforeground
Database	Name:	disabledForeground
Database	Class:	DisabledForeground

Specifies	foreground	color	to	use	when	drawing	a	disabled
element.	If	the	option	is	specified	as	an	empty	string	(which	is
typically	the	case	on	monochrome	displays),	disabled	elements	are
drawn	with	the	normal	foreground	color	but	they	are	dimmed	by
drawing	them	with	a	stippled	fill	pattern.

Command-Line	Name:	-exportselection
Database	Name:	exportSelection
Database	Class:	ExportSelection

Specifies	whether	or	not	a	selection	in	the	widget	should	also	be
the	X	selection.	The	value	may	have	any	of	the	forms	accepted	by
Tcl_GetBoolean,	such	as	true,	false,	0,	1,	yes,	or	no.	If	the
selection	is	exported,	then	selecting	in	the	widget	deselects	the
current	X	selection,	selecting	outside	the	widget	deselects	any
widget	selection,	and	the	widget	will	respond	to	selection	retrieval

requests	when	it	has	a	selection.	The	default	is	usually	for	widgets
to	export	selections.

Command-Line	Name:	-font
Database	Name:	font
Database	Class:	Font

Specifies	the	font	to	use	when	drawing	text	inside	the	widget.	The
value	may	have	any	of	the	forms	described	in	the	font	manual
page	under	FONT	DESCRIPTION.

Command-Line	Name:	-foreground	or	-fg
Database	Name:	foreground
Database	Class:	Foreground

Specifies	the	normal	foreground	color	to	use	when	displaying	the
widget.

Command-Line	Name:	-highlightbackground
Database	Name:	highlightBackground
Database	Class:	HighlightBackground

Specifies	the	color	to	display	in	the	traversal	highlight	region	when
the	widget	does	not	have	the	input	focus.

Command-Line	Name:	-highlightcolor
Database	Name:	highlightColor
Database	Class:	HighlightColor

Specifies	the	color	to	use	for	the	traversal	highlight	rectangle	that	is
drawn	around	the	widget	when	it	has	the	input	focus.

Command-Line	Name:	-highlightthickness
Database	Name:	highlightThickness
Database	Class:	HighlightThickness

Specifies	a	non-negative	value	indicating	the	width	of	the	highlight
rectangle	to	draw	around	the	outside	of	the	widget	when	it	has	the
input	focus.	The	value	may	have	any	of	the	forms	acceptable	to
Tk_GetPixels.	If	the	value	is	zero,	no	focus	highlight	is	drawn
around	the	widget.

Command-Line	Name:	-image

Database	Name:	image
Database	Class:	Image

Specifies	an	image	to	display	in	the	widget,	which	must	have	been
created	with	the	image	create	command.	Typically,	if	the	image
option	is	specified	then	it	overrides	other	options	that	specify	a
bitmap	or	textual	value	to	display	in	the	widget,	though	this	is
controlled	by	the	compound	option;	the	image	option	may	be	reset
to	an	empty	string	to	re-enable	a	bitmap	or	text	display.

Command-Line	Name:	-insertbackground
Database	Name:	insertBackground
Database	Class:	Foreground

Specifies	the	color	to	use	as	background	in	the	area	covered	by	the
insertion	cursor.	This	color	will	normally	override	either	the	normal
background	for	the	widget	(or	the	selection	background	if	the
insertion	cursor	happens	to	fall	in	the	selection).

Command-Line	Name:	-insertborderwidth
Database	Name:	insertBorderWidth
Database	Class:	BorderWidth

Specifies	a	non-negative	value	indicating	the	width	of	the	3-D
border	to	draw	around	the	insertion	cursor.	The	value	may	have
any	of	the	forms	acceptable	to	Tk_GetPixels.

Command-Line	Name:	-insertofftime
Database	Name:	insertOffTime
Database	Class:	OffTime

Specifies	a	non-negative	integer	value	indicating	the	number	of
milliseconds	the	insertion	cursor	should	remain	“off”	in	each	blink
cycle.	If	this	option	is	zero	then	the	cursor	does	not	blink:	it	is	on	all
the	time.

Command-Line	Name:	-insertontime
Database	Name:	insertOnTime
Database	Class:	OnTime

Specifies	a	non-negative	integer	value	indicating	the	number	of
milliseconds	the	insertion	cursor	should	remain	“on”	in	each	blink
cycle.

Command-Line	Name:	-insertwidth
Database	Name:	insertWidth
Database	Class:	InsertWidth

Specifies	a	value	indicating	the	total	width	of	the	insertion	cursor.
The	value	may	have	any	of	the	forms	acceptable	to	Tk_GetPixels.
If	a	border	has	been	specified	for	the	insertion	cursor	(using	the
insertBorderWidth	option),	the	border	will	be	drawn	inside	the
width	specified	by	the	insertWidth	option.

Command-Line	Name:	-jump
Database	Name:	jump
Database	Class:	Jump

For	widgets	with	a	slider	that	can	be	dragged	to	adjust	a	value,
such	as	scrollbars,	this	option	determines	when	notifications	are
made	about	changes	in	the	value.	The	option's	value	must	be	a
boolean	of	the	form	accepted	by	Tcl_GetBoolean.	If	the	value	is
false,	updates	are	made	continuously	as	the	slider	is	dragged.	If
the	value	is	true,	updates	are	delayed	until	the	mouse	button	is
released	to	end	the	drag;	at	that	point	a	single	notification	is	made
(the	value	“jumps”	rather	than	changing	smoothly).

Command-Line	Name:	-justify
Database	Name:	justify
Database	Class:	Justify

When	there	are	multiple	lines	of	text	displayed	in	a	widget,	this
option	determines	how	the	lines	line	up	with	each	other.	Must	be
one	of	left,	center,	or	right.	Left	means	that	the	lines'	left	edges	all
line	up,	center	means	that	the	lines'	centers	are	aligned,	and	right
means	that	the	lines'	right	edges	line	up.

Command-Line	Name:	-orient
Database	Name:	orient
Database	Class:	Orient

For	widgets	that	can	lay	themselves	out	with	either	a	horizontal	or
vertical	orientation,	such	as	scrollbars,	this	option	specifies	which
orientation	should	be	used.	Must	be	either	horizontal	or	vertical	or
an	abbreviation	of	one	of	these.

Command-Line	Name:	-padx
Database	Name:	padX
Database	Class:	Pad

Specifies	a	non-negative	value	indicating	how	much	extra	space	to
request	for	the	widget	in	the	X-direction.	The	value	may	have	any
of	the	forms	acceptable	to	Tk_GetPixels.	When	computing	how
large	a	window	it	needs,	the	widget	will	add	this	amount	to	the
width	it	would	normally	need	(as	determined	by	the	width	of	the
things	displayed	in	the	widget);	if	the	geometry	manager	can	satisfy
this	request,	the	widget	will	end	up	with	extra	internal	space	to	the
left	and/or	right	of	what	it	displays	inside.	Most	widgets	only	use
this	option	for	padding	text:	if	they	are	displaying	a	bitmap	or
image,	then	they	usually	ignore	padding	options.

Command-Line	Name:	-pady
Database	Name:	padY
Database	Class:	Pad

Specifies	a	non-negative	value	indicating	how	much	extra	space	to
request	for	the	widget	in	the	Y-direction.	The	value	may	have	any	of
the	forms	acceptable	to	Tk_GetPixels.	When	computing	how	large
a	window	it	needs,	the	widget	will	add	this	amount	to	the	height	it
would	normally	need	(as	determined	by	the	height	of	the	things
displayed	in	the	widget);	if	the	geometry	manager	can	satisfy	this
request,	the	widget	will	end	up	with	extra	internal	space	above
and/or	below	what	it	displays	inside.	Most	widgets	only	use	this
option	for	padding	text:	if	they	are	displaying	a	bitmap	or	image,
then	they	usually	ignore	padding	options.

Command-Line	Name:	-relief
Database	Name:	relief
Database	Class:	Relief

Specifies	the	3-D	effect	desired	for	the	widget.	Acceptable	values
are	raised,	sunken,	flat,	ridge,	solid,	and	groove.	The	value
indicates	how	the	interior	of	the	widget	should	appear	relative	to	its
exterior;	for	example,	raised	means	the	interior	of	the	widget
should	appear	to	protrude	from	the	screen,	relative	to	the	exterior
of	the	widget.

Command-Line	Name:	-repeatdelay
Database	Name:	repeatDelay
Database	Class:	RepeatDelay

Specifies	the	number	of	milliseconds	a	button	or	key	must	be	held
down	before	it	begins	to	auto-repeat.	Used,	for	example,	on	the	up-
and	down-arrows	in	scrollbars.

Command-Line	Name:	-repeatinterval
Database	Name:	repeatInterval
Database	Class:	RepeatInterval

Used	in	conjunction	with	repeatDelay:	once	auto-repeat	begins,
this	option	determines	the	number	of	milliseconds	between	auto-
repeats.

Command-Line	Name:	-selectbackground
Database	Name:	selectBackground
Database	Class:	Foreground

Specifies	the	background	color	to	use	when	displaying	selected
items.

Command-Line	Name:	-selectborderwidth
Database	Name:	selectBorderWidth
Database	Class:	BorderWidth

Specifies	a	non-negative	value	indicating	the	width	of	the	3-D
border	to	draw	around	selected	items.	The	value	may	have	any	of
the	forms	acceptable	to	Tk_GetPixels.

Command-Line	Name:	-selectforeground
Database	Name:	selectForeground
Database	Class:	Background

Specifies	the	foreground	color	to	use	when	displaying	selected
items.

Command-Line	Name:	-setgrid
Database	Name:	setGrid
Database	Class:	SetGrid

Specifies	a	boolean	value	that	determines	whether	this	widget
controls	the	resizing	grid	for	its	top-level	window.	This	option	is

typically	used	in	text	widgets,	where	the	information	in	the	widget
has	a	natural	size	(the	size	of	a	character)	and	it	makes	sense	for
the	window's	dimensions	to	be	integral	numbers	of	these	units.
These	natural	window	sizes	form	a	grid.	If	the	setGrid	option	is	set
to	true	then	the	widget	will	communicate	with	the	window	manager
so	that	when	the	user	interactively	resizes	the	top-level	window	that
contains	the	widget,	the	dimensions	of	the	window	will	be	displayed
to	the	user	in	grid	units	and	the	window	size	will	be	constrained	to
integral	numbers	of	grid	units.	See	the	section	GRIDDED
GEOMETRY	MANAGEMENT	in	the	wm	manual	entry	for	more
details.

Command-Line	Name:	-takefocus
Database	Name:	takeFocus
Database	Class:	TakeFocus

Determines	whether	the	window	accepts	the	focus	during	keyboard
traversal	(e.g.,	Tab	and	Shift-Tab).	Before	setting	the	focus	to	a
window,	the	traversal	scripts	consult	the	value	of	the	takeFocus
option.	A	value	of	0	means	that	the	window	should	be	skipped
entirely	during	keyboard	traversal.	1	means	that	the	window	should
receive	the	input	focus	as	long	as	it	is	viewable	(it	and	all	of	its
ancestors	are	mapped).	An	empty	value	for	the	option	means	that
the	traversal	scripts	make	the	decision	about	whether	or	not	to
focus	on	the	window:	the	current	algorithm	is	to	skip	the	window	if	it
is	disabled,	if	it	has	no	key	bindings,	or	if	it	is	not	viewable.	If	the
value	has	any	other	form,	then	the	traversal	scripts	take	the	value,
append	the	name	of	the	window	to	it	(with	a	separator	space),	and
evaluate	the	resulting	string	as	a	Tcl	script.	The	script	must	return
0,	1,	or	an	empty	string:	a	0	or	1	value	specifies	whether	the
window	will	receive	the	input	focus,	and	an	empty	string	results	in
the	default	decision	described	above.	Note:	this	interpretation	of
the	option	is	defined	entirely	by	the	Tcl	scripts	that	implement
traversal:	the	widget	implementations	ignore	the	option	entirely,	so
you	can	change	its	meaning	if	you	redefine	the	keyboard	traversal
scripts.

Command-Line	Name:	-text

Database	Name:	text
Database	Class:	Text

Specifies	a	string	to	be	displayed	inside	the	widget.	The	way	in
which	the	string	is	displayed	depends	on	the	particular	widget	and
may	be	determined	by	other	options,	such	as	anchor	or	justify.

Command-Line	Name:	-textvariable
Database	Name:	textVariable
Database	Class:	Variable

Specifies	the	name	of	a	variable.	The	value	of	the	variable	is	a	text
string	to	be	displayed	inside	the	widget;	if	the	variable	value
changes	then	the	widget	will	automatically	update	itself	to	reflect
the	new	value.	The	way	in	which	the	string	is	displayed	in	the
widget	depends	on	the	particular	widget	and	may	be	determined	by
other	options,	such	as	anchor	or	justify.

Command-Line	Name:	-troughcolor
Database	Name:	troughColor
Database	Class:	Background

Specifies	the	color	to	use	for	the	rectangular	trough	areas	in
widgets	such	as	scrollbars	and	scales.	This	option	is	ignored	for
scrollbars	on	Windows	(native	widget	does	not	recognize	this
option).

Command-Line	Name:	-underline
Database	Name:	underline
Database	Class:	Underline

Specifies	the	integer	index	of	a	character	to	underline	in	the	widget.
This	option	is	used	by	the	default	bindings	to	implement	keyboard
traversal	for	menu	buttons	and	menu	entries.	0	corresponds	to	the
first	character	of	the	text	displayed	in	the	widget,	1	to	the	next
character,	and	so	on.

Command-Line	Name:	-wraplength
Database	Name:	wrapLength
Database	Class:	WrapLength

For	widgets	that	can	perform	word-wrapping,	this	option	specifies
the	maximum	line	length.	Lines	that	would	exceed	this	length	are

wrapped	onto	the	next	line,	so	that	no	line	is	longer	than	the
specified	length.	The	value	may	be	specified	in	any	of	the	standard
forms	for	screen	distances.	If	this	value	is	less	than	or	equal	to	0
then	no	wrapping	is	done:	lines	will	break	only	at	newline
characters	in	the	text.

Command-Line	Name:	-xscrollcommand
Database	Name:	xScrollCommand
Database	Class:	ScrollCommand

Specifies	the	prefix	for	a	command	used	to	communicate	with
horizontal	scrollbars.	When	the	view	in	the	widget's	window
changes	(or	whenever	anything	else	occurs	that	could	change	the
display	in	a	scrollbar,	such	as	a	change	in	the	total	size	of	the
widget's	contents),	the	widget	will	generate	a	Tcl	command	by
concatenating	the	scroll	command	and	two	numbers.	Each	of	the
numbers	is	a	fraction	between	0	and	1,	which	indicates	a	position
in	the	document.	0	indicates	the	beginning	of	the	document,	1
indicates	the	end,	.333	indicates	a	position	one	third	the	way
through	the	document,	and	so	on.	The	first	fraction	indicates	the
first	information	in	the	document	that	is	visible	in	the	window,	and
the	second	fraction	indicates	the	information	just	after	the	last
portion	that	is	visible.	The	command	is	then	passed	to	the	Tcl
interpreter	for	execution.	Typically	the	xScrollCommand	option
consists	of	the	path	name	of	a	scrollbar	widget	followed	by	“set”,
e.g.	“.x.scrollbar	set”:	this	will	cause	the	scrollbar	to	be	updated
whenever	the	view	in	the	window	changes.	If	this	option	is	not
specified,	then	no	command	will	be	executed.

Command-Line	Name:	-yscrollcommand
Database	Name:	yScrollCommand
Database	Class:	ScrollCommand

Specifies	the	prefix	for	a	command	used	to	communicate	with
vertical	scrollbars.	This	option	is	treated	in	the	same	way	as	the
xScrollCommand	option,	except	that	it	is	used	for	vertical
scrollbars	and	is	provided	by	widgets	that	support	vertical	scrolling.
See	the	description	of	xScrollCommand	for	details	on	how	this
option	is	used.

SEE	ALSO

colors,	cursors,	font

KEYWORDS

class,	name,	standard	option,	switch

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990-1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	chooseColor

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

tk_chooseColor	-	pops	up	a	dialog	box	for	the	user	to	select	a	color.

SYNOPSIS

tk_chooseColor	?option	value	...?

DESCRIPTION

The	procedure	tk_chooseColor	pops	up	a	dialog	box	for	the	user	to
select	a	color.	The	following	option-value	pairs	are	possible	as
command	line	arguments:

-initialcolor	color
Specifies	the	color	to	display	in	the	color	dialog	when	it	pops	up.
color	must	be	in	a	form	acceptable	to	the	Tk_GetColor	function.

-parent	window
Makes	window	the	logical	parent	of	the	color	dialog.	The	color
dialog	is	displayed	on	top	of	its	parent	window.

-title	titleString
Specifies	a	string	to	display	as	the	title	of	the	dialog	box.	If	this
option	is	not	specified,	then	a	default	title	will	be	displayed.

If	the	user	selects	a	color,	tk_chooseColor	will	return	the	name	of	the
color	in	a	form	acceptable	to	Tk_GetColor.	If	the	user	cancels	the
operation,	both	commands	will	return	the	empty	string.

EXAMPLE

button	.b	-bg	[tk_chooseColor	-initialcolor	gray	-title	"Choose	color"]

KEYWORDS

color	selection	dialog

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	text

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
text,	tk_textCopy,	tk_textCut,	tk_textPaste	-	Create	and
manipulate	text	widgets

SYNOPSIS
STANDARD	OPTIONS

-background	or	-bg,	background,	Background
-borderwidth	or	-bd,	borderWidth,	BorderWidth
-cursor,	cursor,	Cursor
-exportselection,	exportSelection,	ExportSelection
-font,	font,	Font
-foreground	or	-fg,	foreground,	Foreground
-highlightbackground,	highlightBackground,
HighlightBackground
-highlightcolor,	highlightColor,	HighlightColor
-highlightthickness,	highlightThickness,	HighlightThickness
-insertbackground,	insertBackground,	Foreground
-insertborderwidth,	insertBorderWidth,	BorderWidth
-insertofftime,	insertOffTime,	OffTime
-insertontime,	insertOnTime,	OnTime
-insertwidth,	insertWidth,	InsertWidth
-padx,	padX,	Pad
-pady,	padY,	Pad
-relief,	relief,	Relief
-selectbackground,	selectBackground,	Foreground
-selectborderwidth,	selectBorderWidth,	BorderWidth
-selectforeground,	selectForeground,	Background
-setgrid,	setGrid,	SetGrid
-takefocus,	takeFocus,	TakeFocus
-xscrollcommand,	xScrollCommand,	ScrollCommand
-yscrollcommand,	yScrollCommand,	ScrollCommand

WIDGET-SPECIFIC	OPTIONS

-autoseparators,	autoSeparators,	AutoSeparators
-blockcursor,	blockCursor,	BlockCursor
-endline,	endLine,	EndLine
-height,	height,	Height
-inactiveselectbackground,	inactiveSelectBackground,
Foreground
-maxundo,	maxUndo,	MaxUndo
-spacing1,	spacing1,	Spacing1
-spacing2,	spacing2,	Spacing2
-spacing3,	spacing3,	Spacing3
-startline,	startLine,	StartLine
-state,	state,	State
-tabs,	tabs,	Tabs
-tabstyle,	tabStyle,	TabStyle
-undo,	undo,	Undo
-width,	width,	Width
-wrap,	wrap,	Wrap

DESCRIPTION
INDICES

line.char
@x,y
end
mark
tag.first
tag.last
pathName
imageName
+	count	?submodifier?	chars
-	count	?submodifier?	chars
+	count	?submodifier?	indices
-	count	?submodifier?	indices
+	count	?submodifier?	lines
-	count	?submodifier?	lines
?submodifier?	linestart
?submodifier?	lineend
?submodifier?	wordstart
?submodifier?	wordend

TAGS
-background	color
-bgstipple	bitmap
-borderwidth	pixels
-elide	boolean
-fgstipple	bitmap
-font	fontName
-foreground	color
-justify	justify
-lmargin1	pixels
-lmargin2	pixels
-offset	pixels
-overstrike	boolean
-relief	relief
-rmargin	pixels
-spacing1	pixels
-spacing2	pixels
-spacing3	pixels
-tabs	tabList
-tabstyle	style
-underline	boolean
-wrap	mode

MARKS
EMBEDDED	WINDOWS

-align	where
-create	script
-padx	pixels
-pady	pixels
-stretch	boolean
-window	pathName

EMBEDDED	IMAGES
-align	where
-image	image
-name	ImageName
-padx	pixels
-pady	pixels

THE	SELECTION

THE	INSERTION	CURSOR
THE	MODIFIED	FLAG
THE	UNDO	MECHANISM
PEER	WIDGETS
WIDGET	COMMAND

pathName	bbox	index
pathName	cget	option
pathName	compare	index1	op	index2
pathName	configure	?option?	?value	option	value	...?
pathName	count	?options?	index1	index2

-chars
-displaychars
-displayindices
-displaylines
-indices
-lines
-xpixels
-ypixels

pathName	debug	?boolean?
pathName	delete	index1	?index2	...?
pathName	dlineinfo	index
pathName	dump	?switches?	index1	?index2?
-all
-command	command
-image
-mark
-tag
-text
-window
pathName	edit	option	?arg	arg	...?

pathName	edit	modified	?boolean?
pathName	edit	redo
pathName	edit	reset
pathName	edit	separator
pathName	edit	undo

pathName	get	?-displaychars?	--	index1	?index2	...?
pathName	image	option	?arg	arg	...?

pathName	image	cget	index	option
pathName	image	configure	index	?option	value	...?
pathName	image	create	index	?option	value	...?
pathName	image	names

pathName	index	index
pathName	insert	index	chars	?tagList	chars	tagList	...?
pathName	mark	option	?arg	arg	...?

pathName	mark	gravity	markName	?direction?
pathName	mark	names
pathName	mark	next	index
pathName	mark	previous	index
pathName	mark	set	markName	index
pathName	mark	unset	markName	?markName
markName	...?

pathName	peer	option	args
pathName	peer	create	newPathName	?options?
pathName	peer	names

pathName	replace	index1	index2	chars	?tagList	chars	tagList
...?
pathName	scan	option	args

pathName	scan	mark	x	y
pathName	scan	dragto	x	y

pathName	search	?switches?	pattern	index	?stopIndex?
-forwards
-backwards
-exact
-regexp
-nolinestop
-nocase
-count	varName
-all
-overlap
-strictlimits
-elide
--

pathName	see	index
pathName	tag	option	?arg	arg	...?

pathName	tag	add	tagName	index1	?index2	index1
index2	...?
pathName	tag	bind	tagName	?sequence?	?script?
pathName	tag	cget	tagName	option
pathName	tag	configure	tagName	?option?	?value?	?
option	value	...?
pathName	tag	delete	tagName	?tagName	...?
pathName	tag	lower	tagName	?belowThis?
pathName	tag	names	?index?
pathName	tag	nextrange	tagName	index1	?index2?
pathName	tag	prevrange	tagName	index1	?index2?
pathName	tag	raise	tagName	?aboveThis?
pathName	tag	ranges	tagName
pathName	tag	remove	tagName	index1	?index2	index1
index2	...?

pathName	window	option	?arg	arg	...?
pathName	window	cget	index	option
pathName	window	configure	index	?option	value	...?
pathName	window	create	index	?option	value	...?
pathName	window	names

pathName	xview	option	args
pathName	xview
pathName	xview	moveto	fraction
pathName	xview	scroll	number	what

pathName	yview	?args?
pathName	yview
pathName	yview	moveto	fraction
pathName	yview	scroll	number	what
pathName	yview	?-pickplace?	index
pathName	yview	number

BINDINGS
KNOWN	ISSUES
ISSUES	CONCERNING	CHARS	AND	INDICES
PERFORMANCE	ISSUES
KNOWN	BUGS
SEE	ALSO
KEYWORDS

NAME

text,	tk_textCopy,	tk_textCut,	tk_textPaste	-	Create	and	manipulate	text
widgets

SYNOPSIS

text	pathName	?options?
tk_textCopy	pathName
tk_textCut	pathName
tk_textPaste	pathName

STANDARD	OPTIONS

-background	or	-bg,	background,	Background
-borderwidth	or	-bd,	borderWidth,	BorderWidth
-cursor,	cursor,	Cursor
-exportselection,	exportSelection,	ExportSelection
-font,	font,	Font
-foreground	or	-fg,	foreground,	Foreground
-highlightbackground,	highlightBackground,	HighlightBackground
-highlightcolor,	highlightColor,	HighlightColor
-highlightthickness,	highlightThickness,	HighlightThickness
-insertbackground,	insertBackground,	Foreground
-insertborderwidth,	insertBorderWidth,	BorderWidth
-insertofftime,	insertOffTime,	OffTime
-insertontime,	insertOnTime,	OnTime
-insertwidth,	insertWidth,	InsertWidth
-padx,	padX,	Pad
-pady,	padY,	Pad
-relief,	relief,	Relief
-selectbackground,	selectBackground,	Foreground
-selectborderwidth,	selectBorderWidth,	BorderWidth
-selectforeground,	selectForeground,	Background
-setgrid,	setGrid,	SetGrid
-takefocus,	takeFocus,	TakeFocus
-xscrollcommand,	xScrollCommand,	ScrollCommand
-yscrollcommand,	yScrollCommand,	ScrollCommand

WIDGET-SPECIFIC	OPTIONS

Command-Line	Name:	-autoseparators
Database	Name:	autoSeparators
Database	Class:	AutoSeparators

Specifies	a	boolean	that	says	whether	separators	are	automatically
inserted	in	the	undo	stack.	Only	meaningful	when	the	-undo	option
is	true.

Command-Line	Name:	-blockcursor
Database	Name:	blockCursor
Database	Class:	BlockCursor

Specifies	a	boolean	that	says	whether	the	blinking	insertion	cursor
should	be	drawn	as	a	character-sized	rectangular	block.	If	false
(the	default)	a	thin	vertical	line	is	used	for	the	insertion	cursor.

Command-Line	Name:	-endline
Database	Name:	endLine
Database	Class:	EndLine

Specifies	an	integer	line	index	representing	the	last	line	of	the
underlying	textual	data	store	that	should	be	contained	in	the
widget.	This	allows	a	text	widget	to	reflect	only	a	portion	of	a	larger
piece	of	text.	Instead	of	an	integer,	the	empty	string	can	be
provided	to	this	configuration	option,	which	will	configure	the	widget
to	end	at	the	very	last	line	in	the	textual	data	store.

Command-Line	Name:	-height
Database	Name:	height
Database	Class:	Height

Specifies	the	desired	height	for	the	window,	in	units	of	characters	in
the	font	given	by	the	-font	option.	Must	be	at	least	one.

Command-Line	Name:	-inactiveselectbackground
Database	Name:	inactiveSelectBackground
Database	Class:	Foreground

Specifies	the	colour	to	use	for	the	selection	(the	sel	tag)	when	the
window	does	not	have	the	input	focus.	If	empty,	{},	then	no
selection	is	shown	when	the	window	does	not	have	the	focus.

Command-Line	Name:	-maxundo
Database	Name:	maxUndo
Database	Class:	MaxUndo

Specifies	the	maximum	number	of	compound	undo	actions	on	the
undo	stack.	A	zero	or	a	negative	value	imply	an	unlimited	undo
stack.

Command-Line	Name:	-spacing1
Database	Name:	spacing1
Database	Class:	Spacing1

Requests	additional	space	above	each	text	line	in	the	widget,	using
any	of	the	standard	forms	for	screen	distances.	If	a	line	wraps,	this
option	only	applies	to	the	first	line	on	the	display.	This	option	may
be	overridden	with	-spacing1	options	in	tags.

Command-Line	Name:	-spacing2
Database	Name:	spacing2
Database	Class:	Spacing2

For	lines	that	wrap	(so	that	they	cover	more	than	one	line	on	the
display)	this	option	specifies	additional	space	to	provide	between
the	display	lines	that	represent	a	single	line	of	text.	The	value	may
have	any	of	the	standard	forms	for	screen	distances.	This	option
may	be	overridden	with	-spacing2	options	in	tags.

Command-Line	Name:	-spacing3
Database	Name:	spacing3
Database	Class:	Spacing3

Requests	additional	space	below	each	text	line	in	the	widget,	using
any	of	the	standard	forms	for	screen	distances.	If	a	line	wraps,	this
option	only	applies	to	the	last	line	on	the	display.	This	option	may
be	overridden	with	-spacing3	options	in	tags.

Command-Line	Name:	-startline
Database	Name:	startLine
Database	Class:	StartLine

Specifies	an	integer	line	index	representing	the	first	line	of	the
underlying	textual	data	store	that	should	be	contained	in	the
widget.	This	allows	a	text	widget	to	reflect	only	a	portion	of	a	larger

piece	of	text.	Instead	of	an	integer,	the	empty	string	can	be
provided	to	this	configuration	option,	which	will	configure	the	widget
to	start	at	the	very	first	line	in	the	textual	data	store.

Command-Line	Name:	-state
Database	Name:	state
Database	Class:	State

Specifies	one	of	two	states	for	the	text:	normal	or	disabled.	If	the
text	is	disabled	then	characters	may	not	be	inserted	or	deleted	and
no	insertion	cursor	will	be	displayed,	even	if	the	input	focus	is	in	the
widget.

Command-Line	Name:	-tabs
Database	Name:	tabs
Database	Class:	Tabs

Specifies	a	set	of	tab	stops	for	the	window.	The	option's	value
consists	of	a	list	of	screen	distances	giving	the	positions	of	the	tab
stops,	each	of	which	is	a	distance	relative	to	the	left	edge	of	the
widget	(excluding	borders,	padding,	etc).	Each	position	may
optionally	be	followed	in	the	next	list	element	by	one	of	the
keywords	left,	right,	center,	or	numeric,	which	specifies	how	to
justify	text	relative	to	the	tab	stop.	Left	is	the	default;	it	causes	the
text	following	the	tab	character	to	be	positioned	with	its	left	edge	at
the	tab	position.	Right	means	that	the	right	edge	of	the	text
following	the	tab	character	is	positioned	at	the	tab	position,	and
center	means	that	the	text	is	centered	at	the	tab	position.	Numeric
means	that	the	decimal	point	in	the	text	is	positioned	at	the	tab
position;	if	there	is	no	decimal	point	then	the	least	significant	digit
of	the	number	is	positioned	just	to	the	left	of	the	tab	position;	if
there	is	no	number	in	the	text	then	the	text	is	right-justified	at	the
tab	position.	For	example,	“-tabs	{2c	left	4c	6c	center}”	creates
three	tab	stops	at	two-centimeter	intervals;	the	first	two	use	left
justification	and	the	third	uses	center	justification.

If	the	list	of	tab	stops	does	not	have	enough	elements	to	cover	all
of	the	tabs	in	a	text	line,	then	Tk	extrapolates	new	tab	stops	using
the	spacing	and	alignment	from	the	last	tab	stop	in	the	list.	Tab
distances	must	be	strictly	positive,	and	must	always	increase	from

one	tab	stop	to	the	next	(if	not,	an	error	is	thrown).	The	value	of	the
tabs	option	may	be	overridden	by	-tabs	options	in	tags.

If	no	-tabs	option	is	specified,	or	if	it	is	specified	as	an	empty	list,
then	Tk	uses	default	tabs	spaced	every	eight	(average	size)
characters.	To	achieve	a	different	standard	spacing,	for	example
every	4	characters,	simply	configure	the	widget	with	“-tabs	"[expr
{4	*	[font	measure	$font	0]}]	left"	-tabstyle	wordprocessor”.

Command-Line	Name:	-tabstyle
Database	Name:	tabStyle
Database	Class:	TabStyle

Specifies	how	to	interpret	the	relationship	between	tab	stops	on	a
line	and	tabs	in	the	text	of	that	line.	The	value	must	be	tabular	(the
default)	or	wordprocessor.	Note	that	tabs	are	interpreted	as	they
are	encountered	in	the	text.	If	the	tab	style	is	tabular	then	the	n'th
tab	character	in	the	line's	text	will	be	associated	with	the	n'th	tab
stop	defined	for	that	line.	If	the	tab	character's	x	coordinate	falls	to
the	right	of	the	n'th	tab	stop,	then	a	gap	of	a	single	space	will	be
inserted	as	a	fallback.	If	the	tab	style	is	wordprocessor	then	any
tab	character	being	laid	out	will	use	(and	be	defined	by)	the	first	tab
stop	to	the	right	of	the	preceding	characters	already	laid	out	on	that
line.	The	value	of	the	tabstyle	option	may	be	overridden	by	-
tabstyle	options	in	tags.

Command-Line	Name:	-undo
Database	Name:	undo
Database	Class:	Undo

Specifies	a	boolean	that	says	whether	the	undo	mechanism	is
active	or	not.

Command-Line	Name:	-width
Database	Name:	width
Database	Class:	Width

Specifies	the	desired	width	for	the	window	in	units	of	characters	in
the	font	given	by	the	-font	option.	If	the	font	does	not	have	a
uniform	width	then	the	width	of	the	character	“0”	is	used	in
translating	from	character	units	to	screen	units.

Command-Line	Name:	-wrap
Database	Name:	wrap
Database	Class:	Wrap

Specifies	how	to	handle	lines	in	the	text	that	are	too	long	to	be
displayed	in	a	single	line	of	the	text's	window.	The	value	must	be
none	or	char	or	word.	A	wrap	mode	of	none	means	that	each	line
of	text	appears	as	exactly	one	line	on	the	screen;	extra	characters
that	do	not	fit	on	the	screen	are	not	displayed.	In	the	other	modes
each	line	of	text	will	be	broken	up	into	several	screen	lines	if
necessary	to	keep	all	the	characters	visible.	In	char	mode	a	screen
line	break	may	occur	after	any	character;	in	word	mode	a	line
break	will	only	be	made	at	word	boundaries.

DESCRIPTION

The	text	command	creates	a	new	window	(given	by	the	pathName
argument)	and	makes	it	into	a	text	widget.	Additional	options,	described
above,	may	be	specified	on	the	command	line	or	in	the	option	database
to	configure	aspects	of	the	text	such	as	its	default	background	color	and
relief.	The	text	command	returns	the	path	name	of	the	new	window.

A	text	widget	displays	one	or	more	lines	of	text	and	allows	that	text	to
be	edited.	Text	widgets	support	four	different	kinds	of	annotations	on
the	text,	called	tags,	marks,	embedded	windows	or	embedded	images.
Tags	allow	different	portions	of	the	text	to	be	displayed	with	different
fonts	and	colors.	In	addition,	Tcl	commands	can	be	associated	with	tags
so	that	scripts	are	invoked	when	particular	actions	such	as	keystrokes
and	mouse	button	presses	occur	in	particular	ranges	of	the	text.	See
TAGS	below	for	more	details.

The	second	form	of	annotation	consists	of	floating	markers	in	the	text
called	“marks”.	Marks	are	used	to	keep	track	of	various	interesting
positions	in	the	text	as	it	is	edited.	See	MARKS	below	for	more	details.

The	third	form	of	annotation	allows	arbitrary	windows	to	be	embedded
in	a	text	widget.	See	EMBEDDED	WINDOWS	below	for	more	details.

The	fourth	form	of	annotation	allows	Tk	images	to	be	embedded	in	a

text	widget.	See	EMBEDDED	IMAGES	below	for	more	details.

The	text	widget	also	has	a	built-in	undo/redo	mechanism.	See	THE
UNDO	MECHANISM	below	for	more	details.

The	text	widget	allows	for	the	creation	of	peer	widgets.	These	are	other
text	widgets	which	share	the	same	underlying	data	(text,	marks,	tags,
images,	etc).	See	PEER	WIDGETS	below	for	more	details.

INDICES

Many	of	the	widget	commands	for	texts	take	one	or	more	indices	as
arguments.	An	index	is	a	string	used	to	indicate	a	particular	place	within
a	text,	such	as	a	place	to	insert	characters	or	one	endpoint	of	a	range
of	characters	to	delete.	Indices	have	the	syntax

base	modifier	modifier	modifier	...

Where	base	gives	a	starting	point	and	the	modifiers	adjust	the	index
from	the	starting	point	(e.g.	move	forward	or	backward	one	character).
Every	index	must	contain	a	base,	but	the	modifiers	are	optional.	Most
modifiers	(as	documented	below)	allow	an	optional	submodifier.	Valid
submodifiers	are	any	and	display.	If	the	submodifier	is	abbreviated,
then	it	must	be	followed	by	whitespace,	but	otherwise	there	need	be	no
space	between	the	submodifier	and	the	following	modifier.	Typically	the
display	submodifier	adjusts	the	meaning	of	the	following	modifier	to
make	it	refer	to	visual	or	non-elided	units	rather	than	logical	units,	but
this	is	explained	for	each	relevant	case	below.	Lastly,	where	count	is
used	as	part	of	a	modifier,	it	can	be	positive	or	negative,	so	“base	-	-3
lines”	is	perfectly	valid	(and	equivalent	to	“base	+3lines”).

The	base	for	an	index	must	have	one	of	the	following	forms:

line.char
Indicates	char'th	character	on	line	line.	Lines	are	numbered	from	1
for	consistency	with	other	UNIX	programs	that	use	this	numbering
scheme.	Within	a	line,	characters	are	numbered	from	0.	If	char	is

end	then	it	refers	to	the	newline	character	that	ends	the	line.

@x,y
Indicates	the	character	that	covers	the	pixel	whose	x	and	y
coordinates	within	the	text's	window	are	x	and	y.

end
Indicates	the	end	of	the	text	(the	character	just	after	the	last
newline).

mark
Indicates	the	character	just	after	the	mark	whose	name	is	mark.

tag.first
Indicates	the	first	character	in	the	text	that	has	been	tagged	with
tag.	This	form	generates	an	error	if	no	characters	are	currently
tagged	with	tag.

tag.last
Indicates	the	character	just	after	the	last	one	in	the	text	that	has
been	tagged	with	tag.	This	form	generates	an	error	if	no	characters
are	currently	tagged	with	tag.

pathName
Indicates	the	position	of	the	embedded	window	whose	name	is
pathName.	This	form	generates	an	error	if	there	is	no	embedded
window	by	the	given	name.

imageName
Indicates	the	position	of	the	embedded	image	whose	name	is
imageName.	This	form	generates	an	error	if	there	is	no	embedded
image	by	the	given	name.

If	the	base	could	match	more	than	one	of	the	above	forms,	such	as	a
mark	and	imageName	both	having	the	same	value,	then	the	form	earlier
in	the	above	list	takes	precedence.	If	modifiers	follow	the	base	index,
each	one	of	them	must	have	one	of	the	forms	listed	below.	Keywords
such	as	chars	and	wordend	may	be	abbreviated	as	long	as	the

abbreviation	is	unambiguous.

+	count	?submodifier?	chars
Adjust	the	index	forward	by	count	characters,	moving	to	later	lines
in	the	text	if	necessary.	If	there	are	fewer	than	count	characters	in
the	text	after	the	current	index,	then	set	the	index	to	the	last	index
in	the	text.	Spaces	on	either	side	of	count	are	optional.	If	the
display	submodifier	is	given,	elided	characters	are	skipped	over
without	being	counted.	If	any	is	given,	then	all	characters	are
counted.	For	historical	reasons,	if	neither	modifier	is	given	then	the
count	actually	takes	place	in	units	of	index	positions	(see	indices
for	details).	This	behaviour	may	be	changed	in	a	future	major
release,	so	if	you	need	an	index	count,	you	are	encouraged	to	use
indices	instead	wherever	possible.

-	count	?submodifier?	chars
Adjust	the	index	backward	by	count	characters,	moving	to	earlier
lines	in	the	text	if	necessary.	If	there	are	fewer	than	count
characters	in	the	text	before	the	current	index,	then	set	the	index	to
the	first	index	in	the	text	(1.0).	Spaces	on	either	side	of	count	are
optional.	If	the	display	submodifier	is	given,	elided	characters	are
skipped	over	without	being	counted.	If	any	is	given,	then	all
characters	are	counted.	For	historical	reasons,	if	neither	modifier	is
given	then	the	count	actually	takes	place	in	units	of	index	positions
(see	indices	for	details).	This	behaviour	may	be	changed	in	a
future	major	release,	so	if	you	need	an	index	count,	you	are
encouraged	to	use	indices	instead	wherever	possible.

+	count	?submodifier?	indices
Adjust	the	index	forward	by	count	index	positions,	moving	to	later
lines	in	the	text	if	necessary.	If	there	are	fewer	than	count	index
positions	in	the	text	after	the	current	index,	then	set	the	index	to	the
last	index	position	in	the	text.	Spaces	on	either	side	of	count	are
optional.	Note	that	an	index	position	is	either	a	single	character	or	a
single	embedded	image	or	embedded	window.	If	the	display
submodifier	is	given,	elided	indices	are	skipped	over	without	being
counted.	If	any	is	given,	then	all	indices	are	counted;	this	is	also
the	default	behaviour	if	no	modifier	is	given.

-	count	?submodifier?	indices
Adjust	the	index	backward	by	count	index	positions,	moving	to
earlier	lines	in	the	text	if	necessary.	If	there	are	fewer	than	count
index	positions	in	the	text	before	the	current	index,	then	set	the
index	to	the	first	index	position	(1.0)	in	the	text.	Spaces	on	either
side	of	count	are	optional.	If	the	display	submodifier	is	given,
elided	indices	are	skipped	over	without	being	counted.	If	any	is
given,	then	all	indices	are	counted;	this	is	also	the	default
behaviour	if	no	modifier	is	given.

+	count	?submodifier?	lines
Adjust	the	index	forward	by	count	lines,	retaining	the	same
character	position	within	the	line.	If	there	are	fewer	than	count	lines
after	the	line	containing	the	current	index,	then	set	the	index	to
refer	to	the	same	character	position	on	the	last	line	of	the	text.
Then,	if	the	line	is	not	long	enough	to	contain	a	character	at	the
indicated	character	position,	adjust	the	character	position	to	refer	to
the	last	character	of	the	line	(the	newline).	Spaces	on	either	side	of
count	are	optional.	If	the	display	submodifier	is	given,	then	each
visual	display	line	is	counted	separately.	Otherwise,	if	any	(or	no
modifier)	is	given,	then	each	logical	line	(no	matter	how	many	times
it	is	visually	wrapped)	counts	just	once.	If	the	relevant	lines	are	not
wrapped,	then	these	two	methods	of	counting	are	equivalent.

-	count	?submodifier?	lines
Adjust	the	index	backward	by	count	logical	lines,	retaining	the
same	character	position	within	the	line.	If	there	are	fewer	than
count	lines	before	the	line	containing	the	current	index,	then	set	the
index	to	refer	to	the	same	character	position	on	the	first	line	of	the
text.	Then,	if	the	line	is	not	long	enough	to	contain	a	character	at
the	indicated	character	position,	adjust	the	character	position	to
refer	to	the	last	character	of	the	line	(the	newline).	Spaces	on	either
side	of	count	are	optional.	If	the	display	submodifier	is	given,	then
each	visual	display	line	is	counted	separately.	Otherwise,	if	any	(or
no	modifier)	is	given,	then	each	logical	line	(no	matter	how	many
times	it	is	visually	wrapped)	counts	just	once.	If	the	relevant	lines
are	not	wrapped,	then	these	two	methods	of	counting	are

equivalent.

?submodifier?	linestart
Adjust	the	index	to	refer	to	the	first	index	on	the	line.	If	the	display
submodifier	is	given,	this	is	the	first	index	on	the	display	line,
otherwise	on	the	logical	line.

?submodifier?	lineend
Adjust	the	index	to	refer	to	the	last	index	on	the	line	(the	newline).	If
the	display	submodifier	is	given,	this	is	the	last	index	on	the
display	line,	otherwise	on	the	logical	line.

?submodifier?	wordstart
Adjust	the	index	to	refer	to	the	first	character	of	the	word	containing
the	current	index.	A	word	consists	of	any	number	of	adjacent
characters	that	are	letters,	digits,	or	underscores,	or	a	single
character	that	is	not	one	of	these.	If	the	display	submodifier	is
given,	this	only	examines	non-elided	characters,	otherwise	all
characters	(elided	or	not)	are	examined.

?submodifier?	wordend
Adjust	the	index	to	refer	to	the	character	just	after	the	last	one	of
the	word	containing	the	current	index.	If	the	current	index	refers	to
the	last	character	of	the	text	then	it	is	not	modified.	If	the	display
submodifier	is	given,	this	only	examines	non-elided	characters,
otherwise	all	characters	(elided	or	not)	are	examined.

If	more	than	one	modifier	is	present	then	they	are	applied	in	left-to-right
order.	For	example,	the	index	“end	-	1	chars”	refers	to	the	next-to-last
character	in	the	text	and	“insert	wordstart	-	1	c”	refers	to	the	character
just	before	the	first	one	in	the	word	containing	the	insertion	cursor.
Modifiers	are	applied	one	by	one	in	this	left	to	right	order,	and	after
each	step	the	resulting	index	is	constrained	to	be	a	valid	index	in	the
text	widget.	So,	for	example,	the	index	“1.0	-1c	+1c”	refers	to	the	index
“2.0”.

Where	modifiers	result	in	index	changes	by	display	lines,	display	chars
or	display	indices,	and	the	base	refers	to	an	index	inside	an	elided	tag,

that	base	index	is	considered	to	be	equivalent	to	the	first	following	non-
elided	index.

TAGS

The	first	form	of	annotation	in	text	widgets	is	a	tag.	A	tag	is	a	textual
string	that	is	associated	with	some	of	the	characters	in	a	text.	Tags	may
contain	arbitrary	characters,	but	it	is	probably	best	to	avoid	using	the
characters	“	”	(space),	+,	or	-:	these	characters	have	special	meaning	in
indices,	so	tags	containing	them	cannot	be	used	as	indices.	There	may
be	any	number	of	tags	associated	with	characters	in	a	text.	Each	tag
may	refer	to	a	single	character,	a	range	of	characters,	or	several	ranges
of	characters.	An	individual	character	may	have	any	number	of	tags
associated	with	it.

A	priority	order	is	defined	among	tags,	and	this	order	is	used	in
implementing	some	of	the	tag-related	functions	described	below.	When
a	tag	is	defined	(by	associating	it	with	characters	or	setting	its	display
options	or	binding	commands	to	it),	it	is	given	a	priority	higher	than	any
existing	tag.	The	priority	order	of	tags	may	be	redefined	using	the
“pathName	tag	raise”	and	“pathName	tag	lower”	widget	commands.

Tags	serve	three	purposes	in	text	widgets.	First,	they	control	the	way
information	is	displayed	on	the	screen.	By	default,	characters	are
displayed	as	determined	by	the	-background,	-font,	and	-foreground
options	for	the	text	widget.	However,	display	options	may	be	associated
with	individual	tags	using	the	“pathName	tag	configure”	widget
command.	If	a	character	has	been	tagged,	then	the	display	options
associated	with	the	tag	override	the	default	display	style.	The	following
options	are	currently	supported	for	tags:

-background	color
Color	specifies	the	background	color	to	use	for	characters
associated	with	the	tag.	It	may	have	any	of	the	forms	accepted	by
Tk_GetColor.

-bgstipple	bitmap
Bitmap	specifies	a	bitmap	that	is	used	as	a	stipple	pattern	for	the

background.	It	may	have	any	of	the	forms	accepted	by
Tk_GetBitmap.	If	bitmap	has	not	been	specified,	or	if	it	is	specified
as	an	empty	string,	then	a	solid	fill	will	be	used	for	the	background.

-borderwidth	pixels
Pixels	specifies	the	width	of	a	3-D	border	to	draw	around	the
background.	It	may	have	any	of	the	forms	accepted	by
Tk_GetPixels.	This	option	is	used	in	conjunction	with	the	-relief
option	to	give	a	3-D	appearance	to	the	background	for	characters;
it	is	ignored	unless	the	-background	option	has	been	set	for	the
tag.

-elide	boolean
Elide	specifies	whether	the	data	should	be	elided.	Elided	data
(characters,	images,	embedded	windows,	etc)	is	not	displayed	and
takes	no	space	on	screen,	but	further	on	behaves	just	as	normal
data.

-fgstipple	bitmap
Bitmap	specifies	a	bitmap	that	is	used	as	a	stipple	pattern	when
drawing	text	and	other	foreground	information	such	as	underlines.
It	may	have	any	of	the	forms	accepted	by	Tk_GetBitmap.	If	bitmap
has	not	been	specified,	or	if	it	is	specified	as	an	empty	string,	then
a	solid	fill	will	be	used.

-font	fontName
FontName	is	the	name	of	a	font	to	use	for	drawing	characters.	It
may	have	any	of	the	forms	accepted	by	Tk_GetFont.

-foreground	color
Color	specifies	the	color	to	use	when	drawing	text	and	other
foreground	information	such	as	underlines.	It	may	have	any	of	the
forms	accepted	by	Tk_GetColor.

-justify	justify
If	the	first	non-elided	character	of	a	display	line	has	a	tag	for	which
this	option	has	been	specified,	then	justify	determines	how	to	justify
the	line.	It	must	be	one	of	left,	right,	or	center.	If	a	line	wraps,	then

the	justification	for	each	line	on	the	display	is	determined	by	the
first	non-elided	character	of	that	display	line.

-lmargin1	pixels
If	the	first	non-elided	character	of	a	text	line	has	a	tag	for	which	this
option	has	been	specified,	then	pixels	specifies	how	much	the	line
should	be	indented	from	the	left	edge	of	the	window.	Pixels	may
have	any	of	the	standard	forms	for	screen	distances.	If	a	line	of	text
wraps,	this	option	only	applies	to	the	first	line	on	the	display;	the	-
lmargin2	option	controls	the	indentation	for	subsequent	lines.

-lmargin2	pixels
If	the	first	non-elided	character	of	a	display	line	has	a	tag	for	which
this	option	has	been	specified,	and	if	the	display	line	is	not	the	first
for	its	text	line	(i.e.,	the	text	line	has	wrapped),	then	pixels	specifies
how	much	the	line	should	be	indented	from	the	left	edge	of	the
window.	Pixels	may	have	any	of	the	standard	forms	for	screen
distances.	This	option	is	only	used	when	wrapping	is	enabled,	and
it	only	applies	to	the	second	and	later	display	lines	for	a	text	line.

-offset	pixels
Pixels	specifies	an	amount	by	which	the	text's	baseline	should	be
offset	vertically	from	the	baseline	of	the	overall	line,	in	pixels.	For
example,	a	positive	offset	can	be	used	for	superscripts	and	a
negative	offset	can	be	used	for	subscripts.	Pixels	may	have	any	of
the	standard	forms	for	screen	distances.

-overstrike	boolean
Specifies	whether	or	not	to	draw	a	horizontal	rule	through	the
middle	of	characters.	Boolean	may	have	any	of	the	forms	accepted
by	Tcl_GetBoolean.

-relief	relief
Relief	specifies	the	3-D	relief	to	use	for	drawing	backgrounds,	in
any	of	the	forms	accepted	by	Tk_GetRelief.	This	option	is	used	in
conjunction	with	the	-borderwidth	option	to	give	a	3-D	appearance
to	the	background	for	characters;	it	is	ignored	unless	the	-
background	option	has	been	set	for	the	tag.

-rmargin	pixels
If	the	first	non-elided	character	of	a	display	line	has	a	tag	for	which
this	option	has	been	specified,	then	pixels	specifies	how	wide	a
margin	to	leave	between	the	end	of	the	line	and	the	right	edge	of
the	window.	Pixels	may	have	any	of	the	standard	forms	for	screen
distances.	This	option	is	only	used	when	wrapping	is	enabled.	If	a
text	line	wraps,	the	right	margin	for	each	line	on	the	display	is
determined	by	the	first	non-elided	character	of	that	display	line.

-spacing1	pixels
Pixels	specifies	how	much	additional	space	should	be	left	above
each	text	line,	using	any	of	the	standard	forms	for	screen
distances.	If	a	line	wraps,	this	option	only	applies	to	the	first	line	on
the	display.

-spacing2	pixels
For	lines	that	wrap,	this	option	specifies	how	much	additional	space
to	leave	between	the	display	lines	for	a	single	text	line.	Pixels	may
have	any	of	the	standard	forms	for	screen	distances.

-spacing3	pixels
Pixels	specifies	how	much	additional	space	should	be	left	below
each	text	line,	using	any	of	the	standard	forms	for	screen
distances.	If	a	line	wraps,	this	option	only	applies	to	the	last	line	on
the	display.

-tabs	tabList
TabList	specifies	a	set	of	tab	stops	in	the	same	form	as	for	the	-
tabs	option	for	the	text	widget.	This	option	only	applies	to	a	display
line	if	it	applies	to	the	first	non-elided	character	on	that	display	line.
If	this	option	is	specified	as	an	empty	string,	it	cancels	the	option,
leaving	it	unspecified	for	the	tag	(the	default).	If	the	option	is
specified	as	a	non-empty	string	that	is	an	empty	list,	such	as	-tags
{	},	then	it	requests	default	8-character	tabs	as	described	for	the	-
tags	widget	option.

-tabstyle	style
Style	specifies	either	the	tabular	or	wordprocessor	style	of	tabbing

to	use	for	the	text	widget.	This	option	only	applies	to	a	display	line	if
it	applies	to	the	first	non-elided	character	on	that	display	line.	If	this
option	is	specified	as	an	empty	string,	it	cancels	the	option,	leaving
it	unspecified	for	the	tag	(the	default).

-underline	boolean
Boolean	specifies	whether	or	not	to	draw	an	underline	underneath
characters.	It	may	have	any	of	the	forms	accepted	by
Tcl_GetBoolean.

-wrap	mode
Mode	specifies	how	to	handle	lines	that	are	wider	than	the	text's
window.	It	has	the	same	legal	values	as	the	-wrap	option	for	the
text	widget:	none,	char,	or	word.	If	this	tag	option	is	specified,	it
overrides	the	-wrap	option	for	the	text	widget.

If	a	character	has	several	tags	associated	with	it,	and	if	their	display
options	conflict,	then	the	options	of	the	highest	priority	tag	are	used.	If	a
particular	display	option	has	not	been	specified	for	a	particular	tag,	or	if
it	is	specified	as	an	empty	string,	then	that	option	will	never	be	used;
the	next-highest-priority	tag's	option	will	used	instead.	If	no	tag	specifies
a	particular	display	option,	then	the	default	style	for	the	widget	will	be
used.

The	second	purpose	for	tags	is	event	bindings.	You	can	associate
bindings	with	a	tag	in	much	the	same	way	you	can	associate	bindings
with	a	widget	class:	whenever	particular	X	events	occur	on	characters
with	the	given	tag,	a	given	Tcl	command	will	be	executed.	Tag	bindings
can	be	used	to	give	behaviors	to	ranges	of	characters;	among	other
things,	this	allows	hypertext-like	features	to	be	implemented.	For
details,	see	the	description	of	the	“pathName	tag	bind”	widget
command	below.	Tag	bindings	are	shared	between	all	peer	widgets
(including	any	bindings	for	the	special	sel	tag).

The	third	use	for	tags	is	in	managing	the	selection.	See	THE
SELECTION	below.	With	the	exception	of	the	special	sel	tag,	all	tags
are	shared	between	peer	text	widgets,	and	may	be	manipulated	on	an
equal	basis	from	any	such	widget.	The	sel	tag	exists	separately	and

independently	in	each	peer	text	widget	(but	any	tag	bindings	to	sel	are
shared).

MARKS

The	second	form	of	annotation	in	text	widgets	is	a	mark.	Marks	are
used	for	remembering	particular	places	in	a	text.	They	are	something
like	tags,	in	that	they	have	names	and	they	refer	to	places	in	the	file,	but
a	mark	is	not	associated	with	particular	characters.	Instead,	a	mark	is
associated	with	the	gap	between	two	characters.	Only	a	single	position
may	be	associated	with	a	mark	at	any	given	time.	If	the	characters
around	a	mark	are	deleted	the	mark	will	still	remain;	it	will	just	have	new
neighbor	characters.	In	contrast,	if	the	characters	containing	a	tag	are
deleted	then	the	tag	will	no	longer	have	an	association	with	characters
in	the	file.	Marks	may	be	manipulated	with	the	“pathName	mark”	widget
command,	and	their	current	locations	may	be	determined	by	using	the
mark	name	as	an	index	in	widget	commands.

Each	mark	also	has	a	“gravity”,	which	is	either	left	or	right.	The	gravity
for	a	mark	specifies	what	happens	to	the	mark	when	text	is	inserted	at
the	point	of	the	mark.	If	a	mark	has	left	gravity,	then	the	mark	is	treated
as	if	it	were	attached	to	the	character	on	its	left,	so	the	mark	will	remain
to	the	left	of	any	text	inserted	at	the	mark	position.	If	the	mark	has	right
gravity,	new	text	inserted	at	the	mark	position	will	appear	to	the	left	of
the	mark	(so	that	the	mark	remains	rightmost).	The	gravity	for	a	mark
defaults	to	right.

The	name	space	for	marks	is	different	from	that	for	tags:	the	same
name	may	be	used	for	both	a	mark	and	a	tag,	but	they	will	refer	to
different	things.

Two	marks	have	special	significance.	First,	the	mark	insert	is
associated	with	the	insertion	cursor,	as	described	under	THE
INSERTION	CURSOR	below.	Second,	the	mark	current	is	associated
with	the	character	closest	to	the	mouse	and	is	adjusted	automatically	to
track	the	mouse	position	and	any	changes	to	the	text	in	the	widget	(one
exception:	current	is	not	updated	in	response	to	mouse	motions	if	a
mouse	button	is	down;	the	update	will	be	deferred	until	all	mouse

buttons	have	been	released).	Neither	of	these	special	marks	may	be
deleted.	With	the	exception	of	these	two	special	marks,	all	marks	are
shared	between	peer	text	widgets,	and	may	be	manipulated	on	an
equal	basis	from	any	peer.

EMBEDDED	WINDOWS

The	third	form	of	annotation	in	text	widgets	is	an	embedded	window.
Each	embedded	window	annotation	causes	a	window	to	be	displayed	at
a	particular	point	in	the	text.	There	may	be	any	number	of	embedded
windows	in	a	text	widget,	and	any	widget	may	be	used	as	an	embedded
window	(subject	to	the	usual	rules	for	geometry	management,	which
require	the	text	window	to	be	the	parent	of	the	embedded	window	or	a
descendant	of	its	parent).	The	embedded	window's	position	on	the
screen	will	be	updated	as	the	text	is	modified	or	scrolled,	and	it	will	be
mapped	and	unmapped	as	it	moves	into	and	out	of	the	visible	area	of
the	text	widget.	Each	embedded	window	occupies	one	unit's	worth	of
index	space	in	the	text	widget,	and	it	may	be	referred	to	either	by	the
name	of	its	embedded	window	or	by	its	position	in	the	widget's	index
space.	If	the	range	of	text	containing	the	embedded	window	is	deleted
then	the	window	is	destroyed.	Similarly	if	the	text	widget	as	a	whole	is
deleted,	then	the	window	is	destroyed.

When	an	embedded	window	is	added	to	a	text	widget	with	the
pathName	window	create	widget	command,	several	configuration
options	may	be	associated	with	it.	These	options	may	be	modified	later
with	the	pathName	window	configure	widget	command.	The	following
options	are	currently	supported:

-align	where
If	the	window	is	not	as	tall	as	the	line	in	which	it	is	displayed,	this
option	determines	where	the	window	is	displayed	in	the	line.	Where
must	have	one	of	the	values	top	(align	the	top	of	the	window	with
the	top	of	the	line),	center	(center	the	window	within	the	range	of
the	line),	bottom	(align	the	bottom	of	the	window	with	the	bottom	of
the	line's	area),	or	baseline	(align	the	bottom	of	the	window	with
the	baseline	of	the	line).

-create	script
Specifies	a	Tcl	script	that	may	be	evaluated	to	create	the	window
for	the	annotation.	If	no	-window	option	has	been	specified	for	the
annotation	this	script	will	be	evaluated	when	the	annotation	is
about	to	be	displayed	on	the	screen.	Script	must	create	a	window
for	the	annotation	and	return	the	name	of	that	window	as	its	result.
Two	substitutions	will	be	performed	in	script	before	evaluation.	%W
will	be	substituted	by	the	name	of	the	parent	text	widget,	and	%%
will	be	substituted	by	a	single	%.	If	the	annotation's	window	should
ever	be	deleted,	script	will	be	evaluated	again	the	next	time	the
annotation	is	displayed.

-padx	pixels
Pixels	specifies	the	amount	of	extra	space	to	leave	on	each	side	of
the	embedded	window.	It	may	have	any	of	the	usual	forms	defined
for	a	screen	distance.

-pady	pixels
Pixels	specifies	the	amount	of	extra	space	to	leave	on	the	top	and
on	the	bottom	of	the	embedded	window.	It	may	have	any	of	the
usual	forms	defined	for	a	screen	distance.

-stretch	boolean
If	the	requested	height	of	the	embedded	window	is	less	than	the
height	of	the	line	in	which	it	is	displayed,	this	option	can	be	used	to
specify	whether	the	window	should	be	stretched	vertically	to	fill	its
line.	If	the	-pady	option	has	been	specified	as	well,	then	the
requested	padding	will	be	retained	even	if	the	window	is	stretched.

-window	pathName
Specifies	the	name	of	a	window	to	display	in	the	annotation.	Note
that	if	a	pathName	has	been	set,	then	later	configuring	a	window	to
the	empty	string	will	not	delete	the	widget	corresponding	to	the	old
pathName.	Rather	it	will	remove	the	association	between	the	old
pathName	and	the	text	widget.	If	multiple	peer	widgets	are	in	use,	it
is	usually	simpler	to	use	the	-create	option	if	embedded	windows
are	desired	in	each	peer.

EMBEDDED	IMAGES

The	final	form	of	annotation	in	text	widgets	is	an	embedded	image.
Each	embedded	image	annotation	causes	an	image	to	be	displayed	at
a	particular	point	in	the	text.	There	may	be	any	number	of	embedded
images	in	a	text	widget,	and	a	particular	image	may	be	embedded	in
multiple	places	in	the	same	text	widget.	The	embedded	image's	position
on	the	screen	will	be	updated	as	the	text	is	modified	or	scrolled.	Each
embedded	image	occupies	one	unit's	worth	of	index	space	in	the	text
widget,	and	it	may	be	referred	to	either	by	its	position	in	the	widget's
index	space,	or	the	name	it	is	assigned	when	the	image	is	inserted	into
the	text	widget	with	pathName	image	create.	If	the	range	of	text
containing	the	embedded	image	is	deleted	then	that	copy	of	the	image
is	removed	from	the	screen.

When	an	embedded	image	is	added	to	a	text	widget	with	the	pathName
image	create	widget	command,	a	name	unique	to	this	instance	of	the
image	is	returned.	This	name	may	then	be	used	to	refer	to	this	image
instance.	The	name	is	taken	to	be	the	value	of	the	-name	option
(described	below).	If	the	-name	option	is	not	provided,	the	-image
name	is	used	instead.	If	the	imageName	is	already	in	use	in	the	text
widget,	then	#nn	is	added	to	the	end	of	the	imageName,	where	nn	is	an
arbitrary	integer.	This	insures	the	imageName	is	unique.	Once	this
name	is	assigned	to	this	instance	of	the	image,	it	does	not	change,
even	though	the	-image	or	-name	values	can	be	changed	with
pathName	image	configure.

When	an	embedded	image	is	added	to	a	text	widget	with	the	pathName
image	create	widget	command,	several	configuration	options	may	be
associated	with	it.	These	options	may	be	modified	later	with	the
pathName	image	configure	widget	command.	The	following	options
are	currently	supported:

-align	where
If	the	image	is	not	as	tall	as	the	line	in	which	it	is	displayed,	this
option	determines	where	the	image	is	displayed	in	the	line.	Where
must	have	one	of	the	values	top	(align	the	top	of	the	image	with	the
top	of	the	line),	center	(center	the	image	within	the	range	of	the

line),	bottom	(align	the	bottom	of	the	image	with	the	bottom	of	the
line's	area),	or	baseline	(align	the	bottom	of	the	image	with	the
baseline	of	the	line).

-image	image
Specifies	the	name	of	the	Tk	image	to	display	in	the	annotation.	If
image	is	not	a	valid	Tk	image,	then	an	error	is	returned.

-name	ImageName
Specifies	the	name	by	which	this	image	instance	may	be
referenced	in	the	text	widget.	If	ImageName	is	not	supplied,	then
the	name	of	the	Tk	image	is	used	instead.	If	the	imageName	is
already	in	use,	#nn	is	appended	to	the	end	of	the	name	as
described	above.

-padx	pixels
Pixels	specifies	the	amount	of	extra	space	to	leave	on	each	side	of
the	embedded	image.	It	may	have	any	of	the	usual	forms	defined
for	a	screen	distance.

-pady	pixels
Pixels	specifies	the	amount	of	extra	space	to	leave	on	the	top	and
on	the	bottom	of	the	embedded	image.	It	may	have	any	of	the
usual	forms	defined	for	a	screen	distance.

THE	SELECTION

Selection	support	is	implemented	via	tags.	If	the	exportSelection
option	for	the	text	widget	is	true	then	the	sel	tag	will	be	associated	with
the	selection:

[1]
Whenever	characters	are	tagged	with	sel	the	text	widget	will	claim
ownership	of	the	selection.

[2]
Attempts	to	retrieve	the	selection	will	be	serviced	by	the	text
widget,	returning	all	the	characters	with	the	sel	tag.

[3]
If	the	selection	is	claimed	away	by	another	application	or	by
another	window	within	this	application,	then	the	sel	tag	will	be
removed	from	all	characters	in	the	text.

[4]
Whenever	the	sel	tag	range	changes	a	virtual	event
<<Selection>>	is	generated.

The	sel	tag	is	automatically	defined	when	a	text	widget	is	created,	and
it	may	not	be	deleted	with	the	“pathName	tag	delete”	widget	command.
Furthermore,	the	selectBackground,	selectBorderWidth,	and
selectForeground	options	for	the	text	widget	are	tied	to	the	-
background,	-borderwidth,	and	-foreground	options	for	the	sel	tag:
changes	in	either	will	automatically	be	reflected	in	the	other.	Also	the	-
inactiveselectbackground	option	for	the	text	widget	is	used	instead	of
-selectbackground	when	the	text	widget	does	not	have	the	focus.	This
allows	programmatic	control	over	the	visualization	of	the	sel	tag	for
foreground	and	background	windows,	or	to	have	sel	not	shown	at	all
(when	-inactiveselectbackground	is	empty)	for	background	windows.
Each	peer	text	widget	has	its	own	sel	tag	which	can	be	separately
configured	and	set.

THE	INSERTION	CURSOR

The	mark	named	insert	has	special	significance	in	text	widgets.	It	is
defined	automatically	when	a	text	widget	is	created	and	it	may	not	be
unset	with	the	“pathName	mark	unset”	widget	command.	The	insert
mark	represents	the	position	of	the	insertion	cursor,	and	the	insertion
cursor	will	automatically	be	drawn	at	this	point	whenever	the	text	widget
has	the	input	focus.

THE	MODIFIED	FLAG

The	text	widget	can	keep	track	of	changes	to	the	content	of	the	widget
by	means	of	the	modified	flag.	Inserting	or	deleting	text	will	set	this	flag.
The	flag	can	be	queried,	set	and	cleared	programmatically	as	well.
Whenever	the	flag	changes	state	a	<<Modified>>	virtual	event	is

generated.	See	the	pathName	edit	modified	widget	command	for	more
details.

THE	UNDO	MECHANISM

The	text	widget	has	an	unlimited	undo	and	redo	mechanism	(when	the	-
undo	widget	option	is	true)	which	records	every	insert	and	delete	action
on	a	stack.

Boundaries	(called	“separators”)	are	inserted	between	edit	actions.	The
purpose	of	these	separators	is	to	group	inserts,	deletes	and	replaces
into	one	compound	edit	action.	When	undoing	a	change	everything
between	two	separators	will	be	undone.	The	undone	changes	are	then
moved	to	the	redo	stack,	so	that	an	undone	edit	can	be	redone	again.
The	redo	stack	is	cleared	whenever	new	edit	actions	are	recorded	on
the	undo	stack.	The	undo	and	redo	stacks	can	be	cleared	to	keep	their
depth	under	control.

Separators	are	inserted	automatically	when	the	-autoseparators
widget	option	is	true.	You	can	insert	separators	programmatically	as
well.	If	a	separator	is	already	present	at	the	top	of	the	undo	stack	no
other	will	be	inserted.	That	means	that	two	separators	on	the	undo
stack	are	always	separated	by	at	least	one	insert	or	delete	action.

The	undo	mechanism	is	also	linked	to	the	modified	flag.	This	means
that	undoing	or	redoing	changes	can	take	a	modified	text	widget	back	to
the	unmodified	state	or	vice	versa.	The	modified	flag	will	be	set
automatically	to	the	appropriate	state.	This	automatic	coupling	does	not
work	when	the	modified	flag	has	been	set	by	the	user,	until	the	flag	has
been	reset	again.

See	below	for	the	pathName	edit	widget	command	that	controls	the
undo	mechanism.

PEER	WIDGETS

The	text	widget	has	a	separate	store	of	all	its	data	concerning	each
line's	textual	contents,	marks,	tags,	images	and	windows,	and	the	undo

stack.

While	this	data	store	cannot	be	accessed	directly	(i.e.	without	a	text
widget	as	an	intermediary),	multiple	text	widgets	can	be	created,	each
of	which	present	different	views	on	the	same	underlying	data.	Such	text
widgets	are	known	as	peer	text	widgets.

As	text	is	added,	deleted,	edited	and	coloured	in	any	one	widget,	and
as	images,	marks,	tags	are	adjusted,	all	such	changes	will	be	reflected
in	all	peers.

All	data	and	markup	is	shared,	except	for	a	few	small	details.	First,	the
sel	tag	may	be	set	and	configured	(in	its	display	style)	differently	for
each	peer.	Second,	each	peer	has	its	own	insert	and	current	mark
positions	(but	all	other	marks	are	shared).	Third,	embedded	windows,
which	are	arbitrary	other	widgets,	cannot	be	shared	between	peers.
This	means	the	-window	option	of	embedded	windows	is	independently
set	for	each	peer	(it	is	advisable	to	use	the	-create	script	capabilities	to
allow	each	peer	to	create	its	own	embedded	windows	as	needed).
Fourth,	all	of	the	configuration	options	of	each	peer	(e.g.	-font,	etc)	can
be	set	independently,	with	the	exception	of	-undo,	-maxUndo,	-
autoSeparators	(i.e.	all	undo,	redo	and	modified	state	issues	are
shared).

Finally	any	single	peer	need	not	contain	all	lines	from	the	underlying
data	store.	When	creating	a	peer,	a	contiguous	range	of	lines	(e.g.	only
lines	52	through	125)	may	be	specified.	This	allows	a	peer	to	contain
just	a	small	portion	of	the	overall	text.	The	range	of	lines	will	expand
and	contract	as	text	is	inserted	or	deleted.	The	peer	will	only	ever
display	complete	lines	of	text	(one	cannot	share	just	part	of	a	line).	If
the	peer's	contents	contracts	to	nothing	(i.e.	all	complete	lines	in	the
peer	widget	have	been	deleted	from	another	widget),	then	it	is
impossible	for	new	lines	to	be	inserted.	The	peer	will	simply	become	an
empty	shell	on	which	the	background	can	be	configured,	but	which	will
never	show	any	content	(without	manual	reconfiguration	of	the	start	and
end	lines).	Note	that	a	peer	which	does	not	contain	all	of	the	underlying
data	store	still	has	indices	numbered	from	“1.0”	to	“end”.	It	is	simply	that
those	indices	reflect	a	subset	of	the	total	data,	and	data	outside	the

contained	range	is	not	accessible	to	the	peer.	This	means	that	the
command	peerName	index	end	may	return	quite	different	values	in
different	peers.	Similarly,	commands	like	peerName	tag	ranges	will	not
return	index	ranges	outside	that	which	is	meaningful	to	the	peer.	The
configuration	options	-startline	and	-endline	may	be	used	to	control
how	much	of	the	underlying	data	is	contained	in	any	given	text	widget.

Note	that	peers	are	really	peers.	Deleting	the	“original”	text	widget	will
not	cause	any	other	peers	to	be	deleted,	or	otherwise	affected.

See	below	for	the	pathName	peer	widget	command	that	controls	the
creation	of	peer	widgets.

WIDGET	COMMAND

The	text	command	creates	a	new	Tcl	command	whose	name	is	the
same	as	the	path	name	of	the	text's	window.	This	command	may	be
used	to	invoke	various	operations	on	the	widget.	It	has	the	following
general	form:

pathName	option	?arg	arg	...?

PathName	is	the	name	of	the	command,	which	is	the	same	as	the	text
widget's	path	name.	Option	and	the	args	determine	the	exact	behavior
of	the	command.	The	following	commands	are	possible	for	text	widgets:

pathName	bbox	index
Returns	a	list	of	four	elements	describing	the	screen	area	of	the
character	given	by	index.	The	first	two	elements	of	the	list	give	the
x	and	y	coordinates	of	the	upper-left	corner	of	the	area	occupied	by
the	character,	and	the	last	two	elements	give	the	width	and	height
of	the	area.	If	the	character	is	only	partially	visible	on	the	screen,
then	the	return	value	reflects	just	the	visible	part.	If	the	character	is
not	visible	on	the	screen	then	the	return	value	is	an	empty	list.

pathName	cget	option
Returns	the	current	value	of	the	configuration	option	given	by

option.	Option	may	have	any	of	the	values	accepted	by	the	text
command.

pathName	compare	index1	op	index2
Compares	the	indices	given	by	index1	and	index2	according	to	the
relational	operator	given	by	op,	and	returns	1	if	the	relationship	is
satisfied	and	0	if	it	is	not.	Op	must	be	one	of	the	operators	<,	<=,
==,	>=,	>,	or	!=.	If	op	is	==	then	1	is	returned	if	the	two	indices	refer
to	the	same	character,	if	op	is	<	then	1	is	returned	if	index1	refers
to	an	earlier	character	in	the	text	than	index2,	and	so	on.

pathName	configure	?option?	?value	option	value	...?
Query	or	modify	the	configuration	options	of	the	widget.	If	no	option
is	specified,	returns	a	list	describing	all	of	the	available	options	for
pathName	(see	Tk_ConfigureInfo	for	information	on	the	format	of
this	list).	If	option	is	specified	with	no	value,	then	the	command
returns	a	list	describing	the	one	named	option	(this	list	will	be
identical	to	the	corresponding	sublist	of	the	value	returned	if	no
option	is	specified).	If	one	or	more	option-value	pairs	are	specified,
then	the	command	modifies	the	given	widget	option(s)	to	have	the
given	value(s);	in	this	case	the	command	returns	an	empty	string.
Option	may	have	any	of	the	values	accepted	by	the	text	command.

pathName	count	?options?	index1	index2
Counts	the	number	of	relevant	things	between	the	two	indices.	If
index1	is	after	index2,	the	result	will	be	a	negative	number	(and	this
holds	for	each	of	the	possible	options).	The	actual	items	which	are
counted	depend	on	the	options	given.	The	result	is	a	list	of
integers,	one	for	the	result	of	each	counting	option	given.	Valid
counting	options	are	-chars,	-displaychars,	-displayindices,	-
displaylines,	-indices,	-lines,	-xpixels	and	-ypixels.	The	default
value,	if	no	option	is	specified,	is	-indices.	There	is	an	additional
possible	option	-update	which	is	a	modifier.	If	given,	then	all
subsequent	options	ensure	that	any	possible	out	of	date
information	is	recalculated.	This	currently	only	has	any	effect	for
the	-ypixels	count	(which,	if	-update	is	not	given,	will	use	the	text
widget's	current	cached	value	for	each	line).	The	count	options	are
interpreted	as	follows:

-chars
count	all	characters,	whether	elided	or	not.	Do	not	count
embedded	windows	or	images.

-displaychars
count	all	non-elided	characters.

-displayindices
count	all	non-elided	characters,	windows	and	images.

-displaylines
count	all	display	lines	(i.e.	counting	one	for	each	time	a	line
wraps)	from	the	line	of	the	first	index	up	to,	but	not	including
the	display	line	of	the	second	index.	Therefore	if	they	are	both
on	the	same	display	line,	zero	will	be	returned.	By	definition
displaylines	are	visible	and	therefore	this	only	counts	portions
of	actual	visible	lines.

-indices
count	all	characters	and	embedded	windows	or	images	(i.e.
everything	which	counts	in	text-widget	index	space),	whether
they	are	elided	or	not.

-lines
count	all	logical	lines	(irrespective	of	wrapping)	from	the	line	of
the	first	index	up	to,	but	not	including	the	line	of	the	second
index.	Therefore	if	they	are	both	on	the	same	line,	zero	will	be
returned.	Logical	lines	are	counted	whether	they	are	currently
visible	(non-elided)	or	not.

-xpixels
count	the	number	of	horizontal	pixels	from	the	first	pixel	of	the
first	index	to	(but	not	including)	the	first	pixel	of	the	second
index.	To	count	the	total	desired	width	of	the	text	widget
(assuming	wrapping	is	not	enabled),	first	find	the	longest	line
and	then	use	“.text	count	-xpixels	"${line}.0"	"${line}.0
lineend"”.

-ypixels
count	the	number	of	vertical	pixels	from	the	first	pixel	of	the
first	index	to	(but	not	including)	the	first	pixel	of	the	second
index.	If	both	indices	are	on	the	same	display	line,	zero	will	be
returned.	To	count	the	total	number	of	vertical	pixels	in	the	text
widget,	use	“.text	count	-ypixels	1.0	end”,	and	to	ensure	this	is
up	to	date,	use	“.text	count	-update	-ypixels	1.0	end”.

The	command	returns	a	positive	or	negative	integer	corresponding
to	the	number	of	items	counted	between	the	two	indices.	One	such
integer	is	returned	for	each	counting	option	given,	so	a	list	is
returned	if	more	than	one	option	was	supplied.	For	example	“.text
count	-xpixels	-ypixels	1.3	4.5”	is	perfectly	valid	and	will	return	a	list
of	two	elements.

pathName	debug	?boolean?
If	boolean	is	specified,	then	it	must	have	one	of	the	true	or	false
values	accepted	by	Tcl_GetBoolean.	If	the	value	is	a	true	one	then
internal	consistency	checks	will	be	turned	on	in	the	B-tree	code
associated	with	text	widgets.	If	boolean	has	a	false	value	then	the
debugging	checks	will	be	turned	off.	In	either	case	the	command
returns	an	empty	string.	If	boolean	is	not	specified	then	the
command	returns	on	or	off	to	indicate	whether	or	not	debugging	is
turned	on.	There	is	a	single	debugging	switch	shared	by	all	text
widgets:	turning	debugging	on	or	off	in	any	widget	turns	it	on	or	off
for	all	widgets.	For	widgets	with	large	amounts	of	text,	the
consistency	checks	may	cause	a	noticeable	slow-down.

When	debugging	is	turned	on,	the	drawing	routines	of	the	text
widget	set	the	global	variables	tk_textRedraw	and
tk_textRelayout	to	the	lists	of	indices	that	are	redrawn.	The	values
of	these	variables	are	tested	by	Tk's	test	suite.

pathName	delete	index1	?index2	...?
Delete	a	range	of	characters	from	the	text.	If	both	index1	and
index2	are	specified,	then	delete	all	the	characters	starting	with	the
one	given	by	index1	and	stopping	just	before	index2	(i.e.	the
character	at	index2	is	not	deleted).	If	index2	does	not	specify	a

position	later	in	the	text	than	index1	then	no	characters	are	deleted.
If	index2	is	not	specified	then	the	single	character	at	index1	is
deleted.	It	is	not	allowable	to	delete	characters	in	a	way	that	would
leave	the	text	without	a	newline	as	the	last	character.	The
command	returns	an	empty	string.	If	more	indices	are	given,
multiple	ranges	of	text	will	be	deleted.	All	indices	are	first	checked
for	validity	before	any	deletions	are	made.	They	are	sorted	and	the
text	is	removed	from	the	last	range	to	the	first	range	to	deleted	text
does	not	cause	an	undesired	index	shifting	side-effects.	If	multiple
ranges	with	the	same	start	index	are	given,	then	the	longest	range
is	used.	If	overlapping	ranges	are	given,	then	they	will	be	merged
into	spans	that	do	not	cause	deletion	of	text	outside	the	given
ranges	due	to	text	shifted	during	deletion.

pathName	dlineinfo	index
Returns	a	list	with	five	elements	describing	the	area	occupied	by
the	display	line	containing	index.	The	first	two	elements	of	the	list
give	the	x	and	y	coordinates	of	the	upper-left	corner	of	the	area
occupied	by	the	line,	the	third	and	fourth	elements	give	the	width
and	height	of	the	area,	and	the	fifth	element	gives	the	position	of
the	baseline	for	the	line,	measured	down	from	the	top	of	the	area.
All	of	this	information	is	measured	in	pixels.	If	the	current	wrap
mode	is	none	and	the	line	extends	beyond	the	boundaries	of	the
window,	the	area	returned	reflects	the	entire	area	of	the	line,
including	the	portions	that	are	out	of	the	window.	If	the	line	is
shorter	than	the	full	width	of	the	window	then	the	area	returned
reflects	just	the	portion	of	the	line	that	is	occupied	by	characters
and	embedded	windows.	If	the	display	line	containing	index	is	not
visible	on	the	screen	then	the	return	value	is	an	empty	list.

pathName	dump	?switches?	index1	?index2?
Return	the	contents	of	the	text	widget	from	index1	up	to,	but	not
including	index2,	including	the	text	and	information	about	marks,
tags,	and	embedded	windows.	If	index2	is	not	specified,	then	it
defaults	to	one	character	past	index1.	The	information	is	returned
in	the	following	format:

key1	value1	index1	key2	value2	index2	...

The	possible	key	values	are	text,	mark,	tagon,	tagoff,	image,	and
window.	The	corresponding	value	is	the	text,	mark	name,	tag
name,	image	name,	or	window	name.	The	index	information	is	the
index	of	the	start	of	the	text,	mark,	tag	transition,	image	or	window.
One	or	more	of	the	following	switches	(or	abbreviations	thereof)
may	be	specified	to	control	the	dump:

-all
Return	information	about	all	elements:	text,	marks,	tags,
images	and	windows.	This	is	the	default.

-command	command
Instead	of	returning	the	information	as	the	result	of	the	dump
operation,	invoke	the	command	on	each	element	of	the	text
widget	within	the	range.	The	command	has	three	arguments
appended	to	it	before	it	is	evaluated:	the	key,	value,	and	index.

-image
Include	information	about	images	in	the	dump	results.

-mark
Include	information	about	marks	in	the	dump	results.

-tag
Include	information	about	tag	transitions	in	the	dump	results.
Tag	information	is	returned	as	tagon	and	tagoff	elements	that
indicate	the	begin	and	end	of	each	range	of	each	tag,
respectively.

-text
Include	information	about	text	in	the	dump	results.	The	value	is
the	text	up	to	the	next	element	or	the	end	of	range	indicated	by
index2.	A	text	element	does	not	span	newlines.	A	multi-line
block	of	text	that	contains	no	marks	or	tag	transitions	will	still
be	dumped	as	a	set	of	text	segments	that	each	end	with	a
newline.	The	newline	is	part	of	the	value.

-window
Include	information	about	embedded	windows	in	the	dump
results.	The	value	of	a	window	is	its	Tk	pathname,	unless	the
window	has	not	been	created	yet.	(It	must	have	a	create
script.)	In	this	case	an	empty	string	is	returned,	and	you	must
query	the	window	by	its	index	position	to	get	more	information.

pathName	edit	option	?arg	arg	...?
This	command	controls	the	undo	mechanism	and	the	modified	flag.
The	exact	behavior	of	the	command	depends	on	the	option
argument	that	follows	the	edit	argument.	The	following	forms	of	the
command	are	currently	supported:

pathName	edit	modified	?boolean?
If	boolean	is	not	specified,	returns	the	modified	flag	of	the
widget.	The	insert,	delete,	edit	undo	and	edit	redo	commands
or	the	user	can	set	or	clear	the	modified	flag.	If	boolean	is
specified,	sets	the	modified	flag	of	the	widget	to	boolean.

pathName	edit	redo
When	the	-undo	option	is	true,	reapplies	the	last	undone	edits
provided	no	other	edits	were	done	since	then.	Generates	an
error	when	the	redo	stack	is	empty.	Does	nothing	when	the	-
undo	option	is	false.

pathName	edit	reset
Clears	the	undo	and	redo	stacks.

pathName	edit	separator
Inserts	a	separator	(boundary)	on	the	undo	stack.	Does
nothing	when	the	-undo	option	is	false.

pathName	edit	undo
Undoes	the	last	edit	action	when	the	-undo	option	is	true.	An
edit	action	is	defined	as	all	the	insert	and	delete	commands
that	are	recorded	on	the	undo	stack	in	between	two
separators.	Generates	an	error	when	the	undo	stack	is	empty.
Does	nothing	when	the	-undo	option	is	false.

pathName	get	?-displaychars?	--	index1	?index2	...?
Return	a	range	of	characters	from	the	text.	The	return	value	will	be
all	the	characters	in	the	text	starting	with	the	one	whose	index	is
index1	and	ending	just	before	the	one	whose	index	is	index2	(the
character	at	index2	will	not	be	returned).	If	index2	is	omitted	then
the	single	character	at	index1	is	returned.	If	there	are	no	characters
in	the	specified	range	(e.g.	index1	is	past	the	end	of	the	file	or
index2	is	less	than	or	equal	to	index1)	then	an	empty	string	is
returned.	If	the	specified	range	contains	embedded	windows,	no
information	about	them	is	included	in	the	returned	string.	If	multiple
index	pairs	are	given,	multiple	ranges	of	text	will	be	returned	in	a
list.	Invalid	ranges	will	not	be	represented	with	empty	strings	in	the
list.	The	ranges	are	returned	in	the	order	passed	to	pathName	get.
If	the	-displaychars	option	is	given,	then,	within	each	range,	only
those	characters	which	are	not	elided	will	be	returned.	This	may
have	the	effect	that	some	of	the	returned	ranges	are	empty	strings.

pathName	image	option	?arg	arg	...?
This	command	is	used	to	manipulate	embedded	images.	The
behavior	of	the	command	depends	on	the	option	argument	that
follows	the	tag	argument.	The	following	forms	of	the	command	are
currently	supported:

pathName	image	cget	index	option
Returns	the	value	of	a	configuration	option	for	an	embedded
image.	Index	identifies	the	embedded	image,	and	option
specifies	a	particular	configuration	option,	which	must	be	one
of	the	ones	listed	in	the	section	EMBEDDED	IMAGES.

pathName	image	configure	index	?option	value	...?
Query	or	modify	the	configuration	options	for	an	embedded
image.	If	no	option	is	specified,	returns	a	list	describing	all	of
the	available	options	for	the	embedded	image	at	index	(see
Tk_ConfigureInfo	for	information	on	the	format	of	this	list).	If
option	is	specified	with	no	value,	then	the	command	returns	a
list	describing	the	one	named	option	(this	list	will	be	identical	to
the	corresponding	sublist	of	the	value	returned	if	no	option	is
specified).	If	one	or	more	option-value	pairs	are	specified,	then

the	command	modifies	the	given	option(s)	to	have	the	given
value(s);	in	this	case	the	command	returns	an	empty	string.
See	EMBEDDED	IMAGES	for	information	on	the	options	that
are	supported.

pathName	image	create	index	?option	value	...?
This	command	creates	a	new	image	annotation,	which	will
appear	in	the	text	at	the	position	given	by	index.	Any	number	of
option-value	pairs	may	be	specified	to	configure	the
annotation.	Returns	a	unique	identifier	that	may	be	used	as	an
index	to	refer	to	this	image.	See	EMBEDDED	IMAGES	for
information	on	the	options	that	are	supported,	and	a
description	of	the	identifier	returned.

pathName	image	names
Returns	a	list	whose	elements	are	the	names	of	all	image
instances	currently	embedded	in	window.

pathName	index	index
Returns	the	position	corresponding	to	index	in	the	form	line.char
where	line	is	the	line	number	and	char	is	the	character	number.
Index	may	have	any	of	the	forms	described	under	INDICES	above.

pathName	insert	index	chars	?tagList	chars	tagList	...?
Inserts	all	of	the	chars	arguments	just	before	the	character	at
index.	If	index	refers	to	the	end	of	the	text	(the	character	after	the
last	newline)	then	the	new	text	is	inserted	just	before	the	last
newline	instead.	If	there	is	a	single	chars	argument	and	no	tagList,
then	the	new	text	will	receive	any	tags	that	are	present	on	both	the
character	before	and	the	character	after	the	insertion	point;	if	a	tag
is	present	on	only	one	of	these	characters	then	it	will	not	be	applied
to	the	new	text.	If	tagList	is	specified	then	it	consists	of	a	list	of	tag
names;	the	new	characters	will	receive	all	of	the	tags	in	this	list	and
no	others,	regardless	of	the	tags	present	around	the	insertion	point.
If	multiple	chars-tagList	argument	pairs	are	present,	they	produce
the	same	effect	as	if	a	separate	pathName	insert	widget	command
had	been	issued	for	each	pair,	in	order.	The	last	tagList	argument
may	be	omitted.

pathName	mark	option	?arg	arg	...?
This	command	is	used	to	manipulate	marks.	The	exact	behavior	of
the	command	depends	on	the	option	argument	that	follows	the
mark	argument.	The	following	forms	of	the	command	are	currently
supported:

pathName	mark	gravity	markName	?direction?
If	direction	is	not	specified,	returns	left	or	right	to	indicate
which	of	its	adjacent	characters	markName	is	attached	to.	If
direction	is	specified,	it	must	be	left	or	right;	the	gravity	of
markName	is	set	to	the	given	value.

pathName	mark	names
Returns	a	list	whose	elements	are	the	names	of	all	the	marks
that	are	currently	set.

pathName	mark	next	index
Returns	the	name	of	the	next	mark	at	or	after	index.	If	index	is
specified	in	numerical	form,	then	the	search	for	the	next	mark
begins	at	that	index.	If	index	is	the	name	of	a	mark,	then	the
search	for	the	next	mark	begins	immediately	after	that	mark.
This	can	still	return	a	mark	at	the	same	position	if	there	are
multiple	marks	at	the	same	index.	These	semantics	mean	that
the	mark	next	operation	can	be	used	to	step	through	all	the
marks	in	a	text	widget	in	the	same	order	as	the	mark
information	returned	by	the	pathName	dump	operation.	If	a
mark	has	been	set	to	the	special	end	index,	then	it	appears	to
be	after	end	with	respect	to	the	pathName	mark	next
operation.	An	empty	string	is	returned	if	there	are	no	marks
after	index.

pathName	mark	previous	index
Returns	the	name	of	the	mark	at	or	before	index.	If	index	is
specified	in	numerical	form,	then	the	search	for	the	previous
mark	begins	with	the	character	just	before	that	index.	If	index
is	the	name	of	a	mark,	then	the	search	for	the	next	mark
begins	immediately	before	that	mark.	This	can	still	return	a
mark	at	the	same	position	if	there	are	multiple	marks	at	the

same	index.	These	semantics	mean	that	the	pathName	mark
previous	operation	can	be	used	to	step	through	all	the	marks
in	a	text	widget	in	the	reverse	order	as	the	mark	information
returned	by	the	pathName	dump	operation.	An	empty	string	is
returned	if	there	are	no	marks	before	index.

pathName	mark	set	markName	index
Sets	the	mark	named	markName	to	a	position	just	before	the
character	at	index.	If	markName	already	exists,	it	is	moved
from	its	old	position;	if	it	does	not	exist,	a	new	mark	is	created.
This	command	returns	an	empty	string.

pathName	mark	unset	markName	?markName	markName	...?
Remove	the	mark	corresponding	to	each	of	the	markName
arguments.	The	removed	marks	will	not	be	usable	in	indices
and	will	not	be	returned	by	future	calls	to	“pathName	mark
names”.	This	command	returns	an	empty	string.

pathName	peer	option	args
This	command	is	used	to	create	and	query	widget	peers.	It	has	two
forms,	depending	on	option:

pathName	peer	create	newPathName	?options?
Creates	a	peer	text	widget	with	the	given	newPathName,	and
any	optional	standard	configuration	options	(as	for	the	text
command).	By	default	the	peer	will	have	the	same	start	and
end	line	as	the	parent	widget,	but	these	can	be	overridden	with
the	standard	configuration	options.

pathName	peer	names
Returns	a	list	of	peers	of	this	widget	(this	does	not	include	the
widget	itself).	The	order	within	this	list	is	undefined.

pathName	replace	index1	index2	chars	?tagList	chars	tagList	...?
Replaces	the	range	of	characters	between	index1	and	index2	with
the	given	characters	and	tags.	See	the	section	on	pathName	insert
for	an	explanation	of	the	handling	of	the	tagList...	arguments,	and
the	section	on	pathName	delete	for	an	explanation	of	the	handling

of	the	indices.	If	index2	corresponds	to	an	index	earlier	in	the	text
than	index1,	an	error	will	be	generated.

The	deletion	and	insertion	are	arranged	so	that	no	unnecessary
scrolling	of	the	window	or	movement	of	insertion	cursor	occurs.	In
addition	the	undo/redo	stack	are	correctly	modified,	if	undo
operations	are	active	in	the	text	widget.	The	command	returns	an
empty	string.

pathName	scan	option	args
This	command	is	used	to	implement	scanning	on	texts.	It	has	two
forms,	depending	on	option:

pathName	scan	mark	x	y
Records	x	and	y	and	the	current	view	in	the	text	window,	for
use	in	conjunction	with	later	pathName	scan	dragto
commands.	Typically	this	command	is	associated	with	a
mouse	button	press	in	the	widget.	It	returns	an	empty	string.

pathName	scan	dragto	x	y
This	command	computes	the	difference	between	its	x	and	y
arguments	and	the	x	and	y	arguments	to	the	last	pathName
scan	mark	command	for	the	widget.	It	then	adjusts	the	view	by
10	times	the	difference	in	coordinates.	This	command	is
typically	associated	with	mouse	motion	events	in	the	widget,	to
produce	the	effect	of	dragging	the	text	at	high	speed	through
the	window.	The	return	value	is	an	empty	string.

pathName	search	?switches?	pattern	index	?stopIndex?
Searches	the	text	in	pathName	starting	at	index	for	a	range	of
characters	that	matches	pattern.	If	a	match	is	found,	the	index	of
the	first	character	in	the	match	is	returned	as	result;	otherwise	an
empty	string	is	returned.	One	or	more	of	the	following	switches	(or
abbreviations	thereof)	may	be	specified	to	control	the	search:

-forwards
The	search	will	proceed	forward	through	the	text,	finding	the
first	matching	range	starting	at	or	after	the	position	given	by

index.	This	is	the	default.

-backwards
The	search	will	proceed	backward	through	the	text,	finding	the
matching	range	closest	to	index	whose	first	character	is	before
index	(it	is	not	allowed	to	be	at	index).	Note	that,	for	a	variety
of	reasons,	backwards	searches	can	be	substantially	slower
than	forwards	searches	(particularly	when	using	-regexp),	so	it
is	recommended	that	performance-critical	code	use	forward
searches.

-exact
Use	exact	matching:	the	characters	in	the	matching	range
must	be	identical	to	those	in	pattern.	This	is	the	default.

-regexp
Treat	pattern	as	a	regular	expression	and	match	it	against	the
text	using	the	rules	for	regular	expressions	(see	the	regexp
command	for	details).	The	default	matching	automatically
passes	both	the	-lineanchor	and	-linestop	options	to	the
regexp	engine	(unless	-nolinestop	is	used),	so	that	^$	match
beginning	and	end	of	line,	and	.,	[^	sequences	will	never	match
the	newline	character	\n.

-nolinestop
This	allows	.	and	[^	sequences	to	match	the	newline	character
\n,	which	they	will	otherwise	not	do	(see	the	regexp	command
for	details).	This	option	is	only	meaningful	if	-regexp	is	also
given,	and	an	error	will	be	thrown	otherwise.	For	example,	to
match	the	entire	text,	use	“pathName	search	-nolinestop	-
regexp	".*"	1.0”.

-nocase
Ignore	case	differences	between	the	pattern	and	the	text.

-count	varName
The	argument	following	-count	gives	the	name	of	a	variable;	if
a	match	is	found,	the	number	of	index	positions	between

beginning	and	end	of	the	matching	range	will	be	stored	in	the
variable.	If	there	are	no	embedded	images	or	windows	in	the
matching	range	(and	there	are	no	elided	characters	if	-elide	is
not	given),	this	is	equivalent	to	the	number	of	characters
matched.	In	either	case,	the	range	matchIdx	to	matchIdx	+
$count	chars	will	return	the	entire	matched	text.

-all
Find	all	matches	in	the	given	range	and	return	a	list	of	the
indices	of	the	first	character	of	each	match.	If	a	-count
varName	switch	is	given,	then	varName	is	also	set	to	a	list
containing	one	element	for	each	successful	match.	Note	that,
even	for	exact	searches,	the	elements	of	this	list	may	be
different,	if	there	are	embedded	images,	windows	or	hidden
text.	Searches	with	-all	behave	very	similarly	to	the	Tcl
command	regexp	-all,	in	that	overlapping	matches	are	not
normally	returned.	For	example,	applying	an	-all	search	of	the
pattern	“\w+”	against	“hello	there”	will	just	match	twice,	once
for	each	word,	and	matching	“Z[a-z]+Z”	against	“ZooZooZoo”
will	just	match	once.

-overlap
When	performing	-all	searches,	the	normal	behaviour	is	that
matches	which	overlap	an	already-found	match	will	not	be
returned.	This	switch	changes	that	behaviour	so	that	all
matches	which	are	not	totally	enclosed	within	another	match
are	returned.	For	example,	applying	an	-overlap	search	of	the
pattern	“\w+”	against	“hello	there”	will	just	match	twice	(i.e.	no
different	to	just	-all),	but	matching	“Z[a-z]+Z”	against
“ZooZooZoo”	will	now	match	twice.	An	error	will	be	thrown	if
this	switch	is	used	without	-all.

-strictlimits
When	performing	any	search,	the	normal	behaviour	is	that	the
start	and	stop	limits	are	checked	with	respect	to	the	start	of	the
matching	text.	With	the	-strictlimits	flag,	the	entire	matching
range	must	lie	inside	the	start	and	stop	limits	specified	for	the
match	to	be	valid.

-elide
Find	elided	(hidden)	text	as	well.	By	default	only	displayed	text
is	searched.

--
This	switch	has	no	effect	except	to	terminate	the	list	of
switches:	the	next	argument	will	be	treated	as	pattern	even	if	it
starts	with	-.

The	matching	range	may	be	within	a	single	line	of	text,	or	run
across	multiple	lines	(if	parts	of	the	pattern	can	match	a	new-line).
For	regular	expression	matching	one	can	use	the	various	newline-
matching	features	such	as	$	to	match	the	end	of	a	line,	^	to	match
the	beginning	of	a	line,	and	to	control	whether	.	is	allowed	to	match
a	new-line.	If	stopIndex	is	specified,	the	search	stops	at	that	index:
for	forward	searches,	no	match	at	or	after	stopIndex	will	be
considered;	for	backward	searches,	no	match	earlier	in	the	text
than	stopIndex	will	be	considered.	If	stopIndex	is	omitted,	the	entire
text	will	be	searched:	when	the	beginning	or	end	of	the	text	is
reached,	the	search	continues	at	the	other	end	until	the	starting
location	is	reached	again;	if	stopIndex	is	specified,	no	wrap-around
will	occur.	This	means	that,	for	example,	if	the	search	is	-forwards
but	stopIndex	is	earlier	in	the	text	than	startIndex,	nothing	will	ever
be	found.	See	KNOWN	BUGS	below	for	a	number	of	minor
limitations	of	the	pathName	search	command.

pathName	see	index
Adjusts	the	view	in	the	window	so	that	the	character	given	by	index
is	completely	visible.	If	index	is	already	visible	then	the	command
does	nothing.	If	index	is	a	short	distance	out	of	view,	the	command
adjusts	the	view	just	enough	to	make	index	visible	at	the	edge	of
the	window.	If	index	is	far	out	of	view,	then	the	command	centers
index	in	the	window.

pathName	tag	option	?arg	arg	...?
This	command	is	used	to	manipulate	tags.	The	exact	behavior	of
the	command	depends	on	the	option	argument	that	follows	the	tag

argument.	The	following	forms	of	the	command	are	currently
supported:

pathName	tag	add	tagName	index1	?index2	index1	index2	...?
Associate	the	tag	tagName	with	all	of	the	characters	starting
with	index1	and	ending	just	before	index2	(the	character	at
index2	is	not	tagged).	A	single	command	may	contain	any
number	of	index1-index2	pairs.	If	the	last	index2	is	omitted
then	the	single	character	at	index1	is	tagged.	If	there	are	no
characters	in	the	specified	range	(e.g.	index1	is	past	the	end	of
the	file	or	index2	is	less	than	or	equal	to	index1)	then	the
command	has	no	effect.

pathName	tag	bind	tagName	?sequence?	?script?
This	command	associates	script	with	the	tag	given	by
tagName.	Whenever	the	event	sequence	given	by	sequence
occurs	for	a	character	that	has	been	tagged	with	tagName,	the
script	will	be	invoked.	This	widget	command	is	similar	to	the
bind	command	except	that	it	operates	on	characters	in	a	text
rather	than	entire	widgets.	See	the	bind	manual	entry	for
complete	details	on	the	syntax	of	sequence	and	the
substitutions	performed	on	script	before	invoking	it.	If	all
arguments	are	specified	then	a	new	binding	is	created,
replacing	any	existing	binding	for	the	same	sequence	and
tagName	(if	the	first	character	of	script	is	“+”	then	script
augments	an	existing	binding	rather	than	replacing	it).	In	this
case	the	return	value	is	an	empty	string.	If	script	is	omitted
then	the	command	returns	the	script	associated	with	tagName
and	sequence	(an	error	occurs	if	there	is	no	such	binding).	If
both	script	and	sequence	are	omitted	then	the	command
returns	a	list	of	all	the	sequences	for	which	bindings	have	been
defined	for	tagName.

The	only	events	for	which	bindings	may	be	specified	are	those
related	to	the	mouse	and	keyboard	(such	as	Enter,	Leave,
ButtonPress,	Motion,	and	KeyPress)	or	virtual	events.	Event
bindings	for	a	text	widget	use	the	current	mark	described
under	MARKS	above.	An	Enter	event	triggers	for	a	tag	when

the	tag	first	becomes	present	on	the	current	character,	and	a
Leave	event	triggers	for	a	tag	when	it	ceases	to	be	present	on
the	current	character.	Enter	and	Leave	events	can	happen
either	because	the	current	mark	moved	or	because	the
character	at	that	position	changed.	Note	that	these	events	are
different	than	Enter	and	Leave	events	for	windows.	Mouse
and	keyboard	events	are	directed	to	the	current	character.	If	a
virtual	event	is	used	in	a	binding,	that	binding	can	trigger	only	if
the	virtual	event	is	defined	by	an	underlying	mouse-related	or
keyboard-related	event.

It	is	possible	for	the	current	character	to	have	multiple	tags,
and	for	each	of	them	to	have	a	binding	for	a	particular	event
sequence.	When	this	occurs,	one	binding	is	invoked	for	each
tag,	in	order	from	lowest-priority	to	highest	priority.	If	there	are
multiple	matching	bindings	for	a	single	tag,	then	the	most
specific	binding	is	chosen	(see	the	manual	entry	for	the	bind
command	for	details).	continue	and	break	commands	within
binding	scripts	are	processed	in	the	same	way	as	for	bindings
created	with	the	bind	command.

If	bindings	are	created	for	the	widget	as	a	whole	using	the
bind	command,	then	those	bindings	will	supplement	the	tag
bindings.	The	tag	bindings	will	be	invoked	first,	followed	by
bindings	for	the	window	as	a	whole.

pathName	tag	cget	tagName	option
This	command	returns	the	current	value	of	the	option	named
option	associated	with	the	tag	given	by	tagName.	Option	may
have	any	of	the	values	accepted	by	the	pathName	tag
configure	widget	command.

pathName	tag	configure	tagName	?option?	?value?	?option	value
...?

This	command	is	similar	to	the	pathName	configure	widget
command	except	that	it	modifies	options	associated	with	the
tag	given	by	tagName	instead	of	modifying	options	for	the
overall	text	widget.	If	no	option	is	specified,	the	command

returns	a	list	describing	all	of	the	available	options	for	tagName
(see	Tk_ConfigureInfo	for	information	on	the	format	of	this
list).	If	option	is	specified	with	no	value,	then	the	command
returns	a	list	describing	the	one	named	option	(this	list	will	be
identical	to	the	corresponding	sublist	of	the	value	returned	if	no
option	is	specified).	If	one	or	more	option-value	pairs	are
specified,	then	the	command	modifies	the	given	option(s)	to
have	the	given	value(s)	in	tagName;	in	this	case	the	command
returns	an	empty	string.	See	TAGS	above	for	details	on	the
options	available	for	tags.

pathName	tag	delete	tagName	?tagName	...?
Deletes	all	tag	information	for	each	of	the	tagName	arguments.
The	command	removes	the	tags	from	all	characters	in	the	file
and	also	deletes	any	other	information	associated	with	the
tags,	such	as	bindings	and	display	information.	The	command
returns	an	empty	string.

pathName	tag	lower	tagName	?belowThis?
Changes	the	priority	of	tag	tagName	so	that	it	is	just	lower	in
priority	than	the	tag	whose	name	is	belowThis.	If	belowThis	is
omitted,	then	tagName's	priority	is	changed	to	make	it	lowest
priority	of	all	tags.

pathName	tag	names	?index?
Returns	a	list	whose	elements	are	the	names	of	all	the	tags
that	are	active	at	the	character	position	given	by	index.	If	index
is	omitted,	then	the	return	value	will	describe	all	of	the	tags
that	exist	for	the	text	(this	includes	all	tags	that	have	been
named	in	a	“pathName	tag”	widget	command	but	have	not
been	deleted	by	a	“pathName	tag	delete”	widget	command,
even	if	no	characters	are	currently	marked	with	the	tag).	The
list	will	be	sorted	in	order	from	lowest	priority	to	highest	priority.

pathName	tag	nextrange	tagName	index1	?index2?
This	command	searches	the	text	for	a	range	of	characters
tagged	with	tagName	where	the	first	character	of	the	range	is
no	earlier	than	the	character	at	index1	and	no	later	than	the

character	just	before	index2	(a	range	starting	at	index2	will	not
be	considered).	If	several	matching	ranges	exist,	the	first	one
is	chosen.	The	command's	return	value	is	a	list	containing	two
elements,	which	are	the	index	of	the	first	character	of	the
range	and	the	index	of	the	character	just	after	the	last	one	in
the	range.	If	no	matching	range	is	found	then	the	return	value
is	an	empty	string.	If	index2	is	not	given	then	it	defaults	to	the
end	of	the	text.

pathName	tag	prevrange	tagName	index1	?index2?
This	command	searches	the	text	for	a	range	of	characters
tagged	with	tagName	where	the	first	character	of	the	range	is
before	the	character	at	index1	and	no	earlier	than	the
character	at	index2	(a	range	starting	at	index2	will	be
considered).	If	several	matching	ranges	exist,	the	one	closest
to	index1	is	chosen.	The	command's	return	value	is	a	list
containing	two	elements,	which	are	the	index	of	the	first
character	of	the	range	and	the	index	of	the	character	just	after
the	last	one	in	the	range.	If	no	matching	range	is	found	then
the	return	value	is	an	empty	string.	If	index2	is	not	given	then	it
defaults	to	the	beginning	of	the	text.

pathName	tag	raise	tagName	?aboveThis?
Changes	the	priority	of	tag	tagName	so	that	it	is	just	higher	in
priority	than	the	tag	whose	name	is	aboveThis.	If	aboveThis	is
omitted,	then	tagName's	priority	is	changed	to	make	it	highest
priority	of	all	tags.

pathName	tag	ranges	tagName
Returns	a	list	describing	all	of	the	ranges	of	text	that	have
been	tagged	with	tagName.	The	first	two	elements	of	the	list
describe	the	first	tagged	range	in	the	text,	the	next	two
elements	describe	the	second	range,	and	so	on.	The	first
element	of	each	pair	contains	the	index	of	the	first	character	of
the	range,	and	the	second	element	of	the	pair	contains	the
index	of	the	character	just	after	the	last	one	in	the	range.	If
there	are	no	characters	tagged	with	tag	then	an	empty	string	is
returned.

pathName	tag	remove	tagName	index1	?index2	index1	index2	...?
Remove	the	tag	tagName	from	all	of	the	characters	starting	at
index1	and	ending	just	before	index2	(the	character	at	index2
is	not	affected).	A	single	command	may	contain	any	number	of
index1-index2	pairs.	If	the	last	index2	is	omitted	then	the	tag	is
removed	from	the	single	character	at	index1.	If	there	are	no
characters	in	the	specified	range	(e.g.	index1	is	past	the	end	of
the	file	or	index2	is	less	than	or	equal	to	index1)	then	the
command	has	no	effect.	This	command	returns	an	empty
string.

pathName	window	option	?arg	arg	...?
This	command	is	used	to	manipulate	embedded	windows.	The
behavior	of	the	command	depends	on	the	option	argument	that
follows	the	tag	argument.	The	following	forms	of	the	command	are
currently	supported:

pathName	window	cget	index	option
Returns	the	value	of	a	configuration	option	for	an	embedded
window.	Index	identifies	the	embedded	window,	and	option
specifies	a	particular	configuration	option,	which	must	be	one
of	the	ones	listed	in	the	section	EMBEDDED	WINDOWS.

pathName	window	configure	index	?option	value	...?
Query	or	modify	the	configuration	options	for	an	embedded
window.	If	no	option	is	specified,	returns	a	list	describing	all	of
the	available	options	for	the	embedded	window	at	index	(see
Tk_ConfigureInfo	for	information	on	the	format	of	this	list).	If
option	is	specified	with	no	value,	then	the	command	returns	a
list	describing	the	one	named	option	(this	list	will	be	identical	to
the	corresponding	sublist	of	the	value	returned	if	no	option	is
specified).	If	one	or	more	option-value	pairs	are	specified,	then
the	command	modifies	the	given	option(s)	to	have	the	given
value(s);	in	this	case	the	command	returns	an	empty	string.
See	EMBEDDED	WINDOWS	for	information	on	the	options
that	are	supported.

pathName	window	create	index	?option	value	...?
This	command	creates	a	new	window	annotation,	which	will
appear	in	the	text	at	the	position	given	by	index.	Any	number	of
option-value	pairs	may	be	specified	to	configure	the
annotation.	See	EMBEDDED	WINDOWS	for	information	on
the	options	that	are	supported.	Returns	an	empty	string.

pathName	window	names
Returns	a	list	whose	elements	are	the	names	of	all	windows
currently	embedded	in	window.

pathName	xview	option	args
This	command	is	used	to	query	and	change	the	horizontal	position
of	the	text	in	the	widget's	window.	It	can	take	any	of	the	following
forms:

pathName	xview
Returns	a	list	containing	two	elements.	Each	element	is	a	real
fraction	between	0	and	1;	together	they	describe	the	portion	of
the	document's	horizontal	span	that	is	visible	in	the	window.
For	example,	if	the	first	element	is	.2	and	the	second	element
is	.6,	20%	of	the	text	is	off-screen	to	the	left,	the	middle	40%	is
visible	in	the	window,	and	40%	of	the	text	is	off-screen	to	the
right.	The	fractions	refer	only	to	the	lines	that	are	actually
visible	in	the	window:	if	the	lines	in	the	window	are	all	very
short,	so	that	they	are	entirely	visible,	the	returned	fractions
will	be	0	and	1,	even	if	there	are	other	lines	in	the	text	that	are
much	wider	than	the	window.	These	are	the	same	values
passed	to	scrollbars	via	the	-xscrollcommand	option.

pathName	xview	moveto	fraction
Adjusts	the	view	in	the	window	so	that	fraction	of	the	horizontal
span	of	the	text	is	off-screen	to	the	left.	Fraction	is	a	fraction
between	0	and	1.

pathName	xview	scroll	number	what
This	command	shifts	the	view	in	the	window	left	or	right
according	to	number	and	what.	What	must	be	units,	pages	or

pixels.	If	what	is	units	or	pages	then	number	must	be	an
integer,	otherwise	number	may	be	specified	in	any	of	the	forms
acceptable	to	Tk_GetPixels,	such	as	“2.0c”	or	“1i”	(the	result
is	rounded	to	the	nearest	integer	value.	If	no	units	are	given,
pixels	are	assumed).	If	what	is	units,	the	view	adjusts	left	or
right	by	number	average-width	characters	on	the	display;	if	it	is
pages	then	the	view	adjusts	by	number	screenfuls;	if	it	is
pixels	then	the	view	adjusts	by	number	pixels.	If	number	is
negative	then	characters	farther	to	the	left	become	visible;	if	it
is	positive	then	characters	farther	to	the	right	become	visible.

pathName	yview	?args?
This	command	is	used	to	query	and	change	the	vertical	position	of
the	text	in	the	widget's	window.	It	can	take	any	of	the	following
forms:

pathName	yview
Returns	a	list	containing	two	elements,	both	of	which	are	real
fractions	between	0	and	1.	The	first	element	gives	the	position
of	the	first	visible	pixel	of	the	first	character	(or	image,	etc)	in
the	top	line	in	the	window,	relative	to	the	text	as	a	whole	(0.5
means	it	is	halfway	through	the	text,	for	example).	The	second
element	gives	the	position	of	the	first	pixel	just	after	the	last
visible	one	in	the	bottom	line	of	the	window,	relative	to	the	text
as	a	whole.	These	are	the	same	values	passed	to	scrollbars
via	the	-yscrollcommand	option.

pathName	yview	moveto	fraction
Adjusts	the	view	in	the	window	so	that	the	pixel	given	by
fraction	appears	at	the	top	of	the	top	line	of	the	window.
Fraction	is	a	fraction	between	0	and	1;	0	indicates	the	first	pixel
of	the	first	character	in	the	text,	0.33	indicates	the	pixel	that	is
one-third	the	way	through	the	text;	and	so	on.	Values	close	to
1	will	indicate	values	close	to	the	last	pixel	in	the	text	(1
actually	refers	to	one	pixel	beyond	the	last	pixel),	but	in	such
cases	the	widget	will	never	scroll	beyond	the	last	pixel,	and	so
a	value	of	1	will	effectively	be	rounded	back	to	whatever
fraction	ensures	the	last	pixel	is	at	the	bottom	of	the	window,

and	some	other	pixel	is	at	the	top.

pathName	yview	scroll	number	what
This	command	adjust	the	view	in	the	window	up	or	down
according	to	number	and	what.	What	must	be	units,	pages	or
pixels.	If	what	is	units	or	pages	then	number	must	be	an
integer,	otherwise	number	may	be	specified	in	any	of	the	forms
acceptable	to	Tk_GetPixels,	such	as	“2.0c”	or	“1i”	(the	result
is	rounded	to	the	nearest	integer	value.	If	no	units	are	given,
pixels	are	assumed).	If	what	is	units,	the	view	adjusts	up	or
down	by	number	lines	on	the	display;	if	it	is	pages	then	the
view	adjusts	by	number	screenfuls;	if	it	is	pixels	then	the	view
adjusts	by	number	pixels.	If	number	is	negative	then	earlier
positions	in	the	text	become	visible;	if	it	is	positive	then	later
positions	in	the	text	become	visible.

pathName	yview	?-pickplace?	index
Changes	the	view	in	the	widget's	window	to	make	index
visible.	If	the	-pickplace	option	is	not	specified	then	index	will
appear	at	the	top	of	the	window.	If	-pickplace	is	specified	then
the	widget	chooses	where	index	appears	in	the	window:

[1]
If	index	is	already	visible	somewhere	in	the	window	then
the	command	does	nothing.

[2]
If	index	is	only	a	few	lines	off-screen	above	the	window
then	it	will	be	positioned	at	the	top	of	the	window.

[3]
If	index	is	only	a	few	lines	off-screen	below	the	window
then	it	will	be	positioned	at	the	bottom	of	the	window.

[4]
Otherwise,	index	will	be	centered	in	the	window.

The	-pickplace	option	has	been	obsoleted	by	the	pathName

see	widget	command	(pathName	see	handles	both	x-	and	y-
motion	to	make	a	location	visible,	whereas	the	-pickplace
mode	only	handles	motion	in	y).

pathName	yview	number
This	command	makes	the	first	character	on	the	line	after	the
one	given	by	number	visible	at	the	top	of	the	window.	Number
must	be	an	integer.	This	command	used	to	be	used	for
scrolling,	but	now	it	is	obsolete.

BINDINGS

Tk	automatically	creates	class	bindings	for	texts	that	give	them	the
following	default	behavior.	In	the	descriptions	below,	“word”	is
dependent	on	the	value	of	the	tcl_wordchars	variable.	See	tclvars(n).

[1]
Clicking	mouse	button	1	positions	the	insertion	cursor	just	before
the	character	underneath	the	mouse	cursor,	sets	the	input	focus	to
this	widget,	and	clears	any	selection	in	the	widget.	Dragging	with
mouse	button	1	strokes	out	a	selection	between	the	insertion
cursor	and	the	character	under	the	mouse.

[2]
Double-clicking	with	mouse	button	1	selects	the	word	under	the
mouse	and	positions	the	insertion	cursor	at	the	start	of	the	word.
Dragging	after	a	double	click	will	stroke	out	a	selection	consisting
of	whole	words.

[3]
Triple-clicking	with	mouse	button	1	selects	the	line	under	the
mouse	and	positions	the	insertion	cursor	at	the	start	of	the	line.
Dragging	after	a	triple	click	will	stroke	out	a	selection	consisting	of
whole	lines.

[4]
The	ends	of	the	selection	can	be	adjusted	by	dragging	with	mouse
button	1	while	the	Shift	key	is	down;	this	will	adjust	the	end	of	the

selection	that	was	nearest	to	the	mouse	cursor	when	button	1	was
pressed.	If	the	button	is	double-clicked	before	dragging	then	the
selection	will	be	adjusted	in	units	of	whole	words;	if	it	is	triple-
clicked	then	the	selection	will	be	adjusted	in	units	of	whole	lines.

[5]
Clicking	mouse	button	1	with	the	Control	key	down	will	reposition
the	insertion	cursor	without	affecting	the	selection.

[6]
If	any	normal	printing	characters	are	typed,	they	are	inserted	at	the
point	of	the	insertion	cursor.

[7]
The	view	in	the	widget	can	be	adjusted	by	dragging	with	mouse
button	2.	If	mouse	button	2	is	clicked	without	moving	the	mouse,
the	selection	is	copied	into	the	text	at	the	position	of	the	mouse
cursor.	The	Insert	key	also	inserts	the	selection,	but	at	the	position
of	the	insertion	cursor.

[8]
If	the	mouse	is	dragged	out	of	the	widget	while	button	1	is	pressed,
the	entry	will	automatically	scroll	to	make	more	text	visible	(if	there
is	more	text	off-screen	on	the	side	where	the	mouse	left	the
window).

[9]
The	Left	and	Right	keys	move	the	insertion	cursor	one	character	to
the	left	or	right;	they	also	clear	any	selection	in	the	text.	If	Left	or
Right	is	typed	with	the	Shift	key	down,	then	the	insertion	cursor
moves	and	the	selection	is	extended	to	include	the	new	character.
Control-Left	and	Control-Right	move	the	insertion	cursor	by	words,
and	Control-Shift-Left	and	Control-Shift-Right	move	the	insertion
cursor	by	words	and	also	extend	the	selection.	Control-b	and
Control-f	behave	the	same	as	Left	and	Right,	respectively.	Meta-b
and	Meta-f	behave	the	same	as	Control-Left	and	Control-Right,
respectively.

[10]
The	Up	and	Down	keys	move	the	insertion	cursor	one	line	up	or
down	and	clear	any	selection	in	the	text.	If	Up	or	Right	is	typed	with
the	Shift	key	down,	then	the	insertion	cursor	moves	and	the
selection	is	extended	to	include	the	new	character.	Control-Up	and
Control-Down	move	the	insertion	cursor	by	paragraphs	(groups	of
lines	separated	by	blank	lines),	and	Control-Shift-Up	and	Control-
Shift-Down	move	the	insertion	cursor	by	paragraphs	and	also
extend	the	selection.	Control-p	and	Control-n	behave	the	same	as
Up	and	Down,	respectively.

[11]
The	Next	and	Prior	keys	move	the	insertion	cursor	forward	or
backwards	by	one	screenful	and	clear	any	selection	in	the	text.	If
the	Shift	key	is	held	down	while	Next	or	Prior	is	typed,	then	the
selection	is	extended	to	include	the	new	character.

[12]
Control-Next	and	Control-Prior	scroll	the	view	right	or	left	by	one
page	without	moving	the	insertion	cursor	or	affecting	the	selection.

[13]
Home	and	Control-a	move	the	insertion	cursor	to	the	beginning	of
its	display	line	and	clear	any	selection	in	the	widget.	Shift-Home
moves	the	insertion	cursor	to	the	beginning	of	the	display	line	and
also	extends	the	selection	to	that	point.

[14]
End	and	Control-e	move	the	insertion	cursor	to	the	end	of	the
display	line	and	clear	any	selection	in	the	widget.	Shift-End	moves
the	cursor	to	the	end	of	the	display	line	and	extends	the	selection
to	that	point.

[15]
Control-Home	and	Meta-<	move	the	insertion	cursor	to	the
beginning	of	the	text	and	clear	any	selection	in	the	widget.	Control-
Shift-Home	moves	the	insertion	cursor	to	the	beginning	of	the	text
and	also	extends	the	selection	to	that	point.

[16]
Control-End	and	Meta->	move	the	insertion	cursor	to	the	end	of	the
text	and	clear	any	selection	in	the	widget.	Control-Shift-End	moves
the	cursor	to	the	end	of	the	text	and	extends	the	selection	to	that
point.

[17]
The	Select	key	and	Control-Space	set	the	selection	anchor	to	the
position	of	the	insertion	cursor.	They	do	not	affect	the	current
selection.	Shift-Select	and	Control-Shift-Space	adjust	the	selection
to	the	current	position	of	the	insertion	cursor,	selecting	from	the
anchor	to	the	insertion	cursor	if	there	was	not	any	selection
previously.

[18]
Control-/	selects	the	entire	contents	of	the	widget.

[19]
Control-\	clears	any	selection	in	the	widget.

[20]
The	F16	key	(labelled	Copy	on	many	Sun	workstations)	or	Meta-w
copies	the	selection	in	the	widget	to	the	clipboard,	if	there	is	a
selection.	This	action	is	carried	out	by	the	command	tk_textCopy.

[21]
The	F20	key	(labelled	Cut	on	many	Sun	workstations)	or	Control-w
copies	the	selection	in	the	widget	to	the	clipboard	and	deletes	the
selection.	This	action	is	carried	out	by	the	command	tk_textCut.	If
there	is	no	selection	in	the	widget	then	these	keys	have	no	effect.

[22]
The	F18	key	(labelled	Paste	on	many	Sun	workstations)	or	Control-
y	inserts	the	contents	of	the	clipboard	at	the	position	of	the
insertion	cursor.	This	action	is	carried	out	by	the	command
tk_textPaste.

[23]

The	Delete	key	deletes	the	selection,	if	there	is	one	in	the	widget.	If
there	is	no	selection,	it	deletes	the	character	to	the	right	of	the
insertion	cursor.

[24]
Backspace	and	Control-h	delete	the	selection,	if	there	is	one	in	the
widget.	If	there	is	no	selection,	they	delete	the	character	to	the	left
of	the	insertion	cursor.

[25]
Control-d	deletes	the	character	to	the	right	of	the	insertion	cursor.

[26]
Meta-d	deletes	the	word	to	the	right	of	the	insertion	cursor.

[27]
Control-k	deletes	from	the	insertion	cursor	to	the	end	of	its	line;	if
the	insertion	cursor	is	already	at	the	end	of	a	line,	then	Control-k
deletes	the	newline	character.

[28]
Control-o	opens	a	new	line	by	inserting	a	newline	character	in	front
of	the	insertion	cursor	without	moving	the	insertion	cursor.

[29]
Meta-backspace	and	Meta-Delete	delete	the	word	to	the	left	of	the
insertion	cursor.

[30]
Control-x	deletes	whatever	is	selected	in	the	text	widget	after
copying	it	to	the	clipboard.

[31]
Control-t	reverses	the	order	of	the	two	characters	to	the	right	of	the
insertion	cursor.

[32]
Control-z	(and	Control-underscore	on	UNIX	when	tk_strictMotif	is
true)	undoes	the	last	edit	action	if	the	-undo	option	is	true.	Does

nothing	otherwise.

[33]
Control-Z	(or	Control-y	on	Windows)	reapplies	the	last	undone	edit
action	if	the	-undo	option	is	true.	Does	nothing	otherwise.

If	the	widget	is	disabled	using	the	-state	option,	then	its	view	can	still	be
adjusted	and	text	can	still	be	selected,	but	no	insertion	cursor	will	be
displayed	and	no	text	modifications	will	take	place.

The	behavior	of	texts	can	be	changed	by	defining	new	bindings	for
individual	widgets	or	by	redefining	the	class	bindings.

KNOWN	ISSUES

ISSUES	CONCERNING	CHARS	AND	INDICES

Before	Tk	8.5,	the	widget	used	the	string	“chars”	to	refer	to	index
positions	(which	included	characters,	embedded	windows	and
embedded	images).	As	of	Tk	8.5	the	text	widget	deals	separately	and
correctly	with	“chars”	and	“indices”.	For	backwards	compatibility,
however,	the	index	modifiers	“+N	chars”	and	“-N	chars”	continue	to	refer
to	indices.	One	must	use	any	of	the	full	forms	“+N	any	chars”	or	“-N	any
chars”	etc.	to	refer	to	actual	character	indices.	This	confusion	may	be
fixed	in	a	future	release	by	making	the	widget	correctly	interpret	“+N
chars”	as	a	synonym	for	“+N	any	chars”.

PERFORMANCE	ISSUES

Text	widgets	should	run	efficiently	under	a	variety	of	conditions.	The
text	widget	uses	about	2-3	bytes	of	main	memory	for	each	byte	of	text,
so	texts	containing	a	megabyte	or	more	should	be	practical	on	most
workstations.	Text	is	represented	internally	with	a	modified	B-tree
structure	that	makes	operations	relatively	efficient	even	with	large	texts.
Tags	are	included	in	the	B-tree	structure	in	a	way	that	allows	tags	to
span	large	ranges	or	have	many	disjoint	smaller	ranges	without	loss	of
efficiency.	Marks	are	also	implemented	in	a	way	that	allows	large
numbers	of	marks.	In	most	cases	it	is	fine	to	have	large	numbers	of

unique	tags,	or	a	tag	that	has	many	distinct	ranges.

One	performance	problem	can	arise	if	you	have	hundreds	or	thousands
of	different	tags	that	all	have	the	following	characteristics:	the	first	and
last	ranges	of	each	tag	are	near	the	beginning	and	end	of	the	text,
respectively,	or	a	single	tag	range	covers	most	of	the	text	widget.	The
cost	of	adding	and	deleting	tags	like	this	is	proportional	to	the	number
of	other	tags	with	the	same	properties.	In	contrast,	there	is	no	problem
with	having	thousands	of	distinct	tags	if	their	overall	ranges	are
localized	and	spread	uniformly	throughout	the	text.

Very	long	text	lines	can	be	expensive,	especially	if	they	have	many
marks	and	tags	within	them.

The	display	line	with	the	insert	cursor	is	redrawn	each	time	the	cursor
blinks,	which	causes	a	steady	stream	of	graphics	traffic.	Set	the
insertOffTime	attribute	to	0	avoid	this.

KNOWN	BUGS

The	pathName	search	-regexp	sub-command	attempts	to	perform
sophisticated	regexp	matching	across	multiple	lines	in	an	efficient
fashion	(since	Tk	8.5),	examining	each	line	individually,	and	then	in
small	groups	of	lines,	whether	searching	forwards	or	backwards.	Under
certain	conditions	the	search	result	might	differ	from	that	obtained	by
applying	the	same	regexp	to	the	entire	text	from	the	widget	in	one	go.
For	example,	when	searching	with	a	greedy	regexp,	the	widget	will
continue	to	attempt	to	add	extra	lines	to	the	match	as	long	as	one	of
two	conditions	are	true:	either	Tcl's	regexp	library	returns	a	code	to
indicate	a	longer	match	is	possible	(but	there	are	known	bugs	in	Tcl
which	mean	this	code	is	not	always	correctly	returned);	or	if	each	extra
line	added	results	in	at	least	a	partial	match	with	the	pattern.	This
means	in	the	case	where	the	first	extra	line	added	results	in	no	match
and	Tcl's	regexp	system	returns	the	incorrect	code	and	adding	a	second
extra	line	would	actually	match,	the	text	widget	will	return	the	wrong
result.	In	practice	this	is	a	rare	problem,	but	it	can	occur,	for	example:

pack	[text	.t]

.t	insert	1.0	"aaaa\nbbbb\ncccc\nbbbb\naaaa\n"

.t	search	-regexp	--	{(a+|b+\nc+\nb+)+\na+}	1.0

will	not	find	a	match	when	one	exists	of	19	characters	starting	from	the
first	“b”.

Whenever	one	possible	match	is	fully	enclosed	in	another,	the	search
command	will	attempt	to	ensure	only	the	larger	match	is	returned.
When	performing	backwards	regexp	searches	it	is	possible	that	Tcl	will
not	always	achieve	this,	in	the	case	where	a	match	is	preceded	by	one
or	more	short,	non-overlapping	matches,	all	of	which	are	preceded	by	a
large	match	which	actually	encompasses	all	of	them.	The	search
algorithm	used	by	the	widget	does	not	look	back	arbitrarily	far	for	a
possible	match	which	might	cover	large	portions	of	the	widget.	For
example:

pack	[text	.t]

.t	insert	1.0	"aaaa\nbbbb\nbbbb\nbbbb\nbbbb\n"

.t	search	-regexp	-backward	--	{b+\n|a+\n(b+\n)+}	end

matches	at	“5.0”	when	a	true	greedy	match	would	match	at	“1.0”.
Similarly	if	we	add	-all	to	this	case,	it	matches	at	all	of	“5.0”,	“4.0”,	“3.0”
and	“1.0”,	when	really	it	should	only	match	at	“1.0”	since	that	match
encloses	all	the	others.

SEE	ALSO

entry,	scrollbar

KEYWORDS

text,	widget,	tkvars

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1992	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	ttk_panedwindow

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
ttk::panedwindow	-	Multi-pane	container	window

SYNOPSIS
DESCRIPTION
STANDARD	OPTIONS

-class
-cursor,	cursor,	Cursor
-style
-takefocus,	takeFocus,	TakeFocus

WIDGET-SPECIFIC	OPTIONS
-orient,	orient,	Orient
-width,	width,	Width
-height,	height,	Height

PANE	OPTIONS
-weight,	weight,	Weight

WIDGET	COMMAND
pathname	add	subwindow	options...
pathname	forget	pane
pathname	identify	x	y
pathname	insert	pos	subwindow	options...
pathname	pane	pane	-option	?value	?-option	value...
pathname	sashpos	index	?newpos?

SEE	ALSO

NAME

ttk::panedwindow	-	Multi-pane	container	window

SYNOPSIS

ttk::panedwindow	pathName	?options?
pathName	add	window	?options...?

pathName	insert	index	window	?options...?

DESCRIPTION

A	ttk::panedwindow	widget	displays	a	number	of	subwindows,	stacked
either	vertically	or	horizontally.	The	user	may	adjust	the	relative	sizes	of
the	subwindows	by	dragging	the	sash	between	panes.

STANDARD	OPTIONS

-class
-cursor,	cursor,	Cursor
-style
-takefocus,	takeFocus,	TakeFocus

WIDGET-SPECIFIC	OPTIONS

Command-Line	Name:	-orient
Database	Name:	orient
Database	Class:	Orient

Specifies	the	orientation	of	the	window.	If	vertical,	subpanes	are
stacked	top-to-bottom;	if	horizontal,	subpanes	are	stacked	left-to-
right.

Command-Line	Name:	-width
Database	Name:	width
Database	Class:	Width

If	present	and	greater	than	zero,	specifies	the	desired	width	of	the
widget	in	pixels.	Otherwise,	the	requested	width	is	determined	by
the	width	of	the	managed	windows.

Command-Line	Name:	-height
Database	Name:	height
Database	Class:	Height

If	present	and	greater	than	zero,	specifies	the	desired	height	of	the
widget	in	pixels.	Otherwise,	the	requested	height	is	determined	by
the	height	of	the	managed	windows.

PANE	OPTIONS

The	following	options	may	be	specified	for	each	pane:

Command-Line	Name:	-weight
Database	Name:	weight
Database	Class:	Weight

An	integer	specifying	the	relative	stretchability	of	the	pane.	When
the	paned	window	is	resized,	the	extra	space	is	added	or
subtracted	to	each	pane	proportionally	to	its	-weight.

WIDGET	COMMAND

Supports	the	standard	configure,	cget,	state,	and	instate	commands;
see	ttk::widget(n)	for	details.	Additional	commands:

pathname	add	subwindow	options...
Adds	a	new	pane	to	the	window.	subwindow	must	be	a	direct	child
of	the	paned	window	pathname.	See	PANE	OPTIONS	for	the	list	of
available	options.

pathname	forget	pane
Removes	the	specified	subpane	from	the	widget.	pane	is	either	an
integer	index	or	the	name	of	a	managed	subwindow.

pathname	identify	x	y
Returns	the	index	of	the	sash	at	point	x,y,	or	the	empty	string	if	x,y
is	not	over	a	sash.

pathname	insert	pos	subwindow	options...
Inserts	a	pane	at	the	specified	position.	pos	is	either	the	string	end,
an	integer	index,	or	the	name	of	a	managed	subwindow.	If
subwindow	is	already	managed	by	the	paned	window,	moves	it	to
the	specified	position.	See	PANE	OPTIONS	for	the	list	of	available
options.

pathname	pane	pane	-option	?value	?-option	value...
Query	or	modify	the	options	of	the	specified	pane,	where	pane	is

either	an	integer	index	or	the	name	of	a	managed	subwindow.	If	no
-option	is	specified,	returns	a	dictionary	of	the	pane	option	values.
If	one	-option	is	specified,	returns	the	value	of	that	option.
Otherwise,	sets	the	-options	to	the	corresponding	values.

pathname	sashpos	index	?newpos?
If	newpos	is	specified,	sets	the	position	of	sash	number	index.	May
adjust	the	positions	of	adjacent	sashes	to	ensure	that	positions	are
monotonically	increasing.	Sash	positions	are	further	constrained	to
be	between	0	and	the	total	size	of	the	widget.	Returns	the	new
position	of	sash	number	index.

SEE	ALSO

ttk::widget,	ttk::notebook,	panedwindow

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	2005	Joe	English

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	bind

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
bind	-	Arrange	for	X	events	to	invoke	Tcl	scripts

SYNOPSIS
INTRODUCTION
EVENT	PATTERNS
MODIFIERS
EVENT	TYPES

Activate,	Deactivate
MouseWheel
KeyPress,	KeyRelease
ButtonPress,	ButtonRelease,	Motion
Configure
Map,	Unmap
Visibility
Expose
Destroy
FocusIn,	FocusOut
Enter,	Leave
Property
Colormap
MapRequest,	CirculateRequest,	ResizeRequest,
ConfigureRequest,	Create
Gravity,	Reparent,	Circulate

EVENT	DETAILS
BINDING	SCRIPTS	AND	SUBSTITUTIONS

%%
%#
%a
%b
%c
%d

%f
%h
%i
%k
%m
%o
%p
%s
%t
%w
%x,	%y
%A
%B
%D
%E
%K
%N
%P
%R
%S
%T
%W
%X,	%Y

MULTIPLE	MATCHES
(a)
(b)
(c)
(d)
(e)

MULTI-EVENT	SEQUENCES	AND	IGNORED	EVENTS
ERRORS
EXAMPLES
SEE	ALSO
KEYWORDS

NAME

bind	-	Arrange	for	X	events	to	invoke	Tcl	scripts

SYNOPSIS

bind	tag	?sequence?	?+??script?

INTRODUCTION

The	bind	command	associates	Tcl	scripts	with	X	events.	If	all	three
arguments	are	specified,	bind	will	arrange	for	script	(a	Tcl	script)	to	be
evaluated	whenever	the	event(s)	given	by	sequence	occur	in	the
window(s)	identified	by	tag.	If	script	is	prefixed	with	a	“+”,	then	it	is
appended	to	any	existing	binding	for	sequence;	otherwise	script
replaces	any	existing	binding.	If	script	is	an	empty	string	then	the
current	binding	for	sequence	is	destroyed,	leaving	sequence	unbound.
In	all	of	the	cases	where	a	script	argument	is	provided,	bind	returns	an
empty	string.

If	sequence	is	specified	without	a	script,	then	the	script	currently	bound
to	sequence	is	returned,	or	an	empty	string	is	returned	if	there	is	no
binding	for	sequence.	If	neither	sequence	nor	script	is	specified,	then
the	return	value	is	a	list	whose	elements	are	all	the	sequences	for
which	there	exist	bindings	for	tag.

The	tag	argument	determines	which	window(s)	the	binding	applies	to.	If
tag	begins	with	a	dot,	as	in	.a.b.c,	then	it	must	be	the	path	name	for	a
window;	otherwise	it	may	be	an	arbitrary	string.	Each	window	has	an
associated	list	of	tags,	and	a	binding	applies	to	a	particular	window	if	its
tag	is	among	those	specified	for	the	window.	Although	the	bindtags
command	may	be	used	to	assign	an	arbitrary	set	of	binding	tags	to	a
window,	the	default	binding	tags	provide	the	following	behavior:

•		If	a	tag	is	the	name	of	an	internal	window	the	binding	applies	to
that	window.

•		If	the	tag	is	the	name	of	a	toplevel	window	the	binding	applies	to
the	toplevel	window	and	all	its	internal	windows.

•		If	the	tag	is	the	name	of	a	class	of	widgets,	such	as	Button,	the
binding	applies	to	all	widgets	in	that	class;

•		If	tag	has	the	value	all,	the	binding	applies	to	all	windows	in	the
application.

EVENT	PATTERNS

The	sequence	argument	specifies	a	sequence	of	one	or	more	event
patterns,	with	optional	white	space	between	the	patterns.	Each	event
pattern	may	take	one	of	three	forms.	In	the	simplest	case	it	is	a	single
printing	ASCII	character,	such	as	a	or	[.	The	character	may	not	be	a
space	character	or	the	character	<.	This	form	of	pattern	matches	a
KeyPress	event	for	the	particular	character.	The	second	form	of	pattern
is	longer	but	more	general.	It	has	the	following	syntax:

<modifier-modifier-type-detail>

The	entire	event	pattern	is	surrounded	by	angle	brackets.	Inside	the
angle	brackets	are	zero	or	more	modifiers,	an	event	type,	and	an	extra
piece	of	information	(detail)	identifying	a	particular	button	or	keysym.
Any	of	the	fields	may	be	omitted,	as	long	as	at	least	one	of	type	and
detail	is	present.	The	fields	must	be	separated	by	white	space	or
dashes.

The	third	form	of	pattern	is	used	to	specify	a	user-defined,	named
virtual	event.	It	has	the	following	syntax:

<<name>>

The	entire	virtual	event	pattern	is	surrounded	by	double	angle	brackets.
Inside	the	angle	brackets	is	the	user-defined	name	of	the	virtual	event.
Modifiers,	such	as	Shift	or	Control,	may	not	be	combined	with	a	virtual
event	to	modify	it.	Bindings	on	a	virtual	event	may	be	created	before	the
virtual	event	is	defined,	and	if	the	definition	of	a	virtual	event	changes

dynamically,	all	windows	bound	to	that	virtual	event	will	respond
immediately	to	the	new	definition.

Some	widgets	(e.g.	menu	and	text)	issue	virtual	events	when	their
internal	state	is	updated	in	some	ways.	Please	see	the	manual	page	for
each	widget	for	details.

MODIFIERS

Modifiers	consist	of	any	of	the	following	values:

Control Mod1,	M1,	Command

Alt Mod2,	M2,	Option

Shift Mod3,	M3

Lock Mod4,	M4

Extended Mod5,	M5

Button1,	B1 Meta,	M

Button2,	B2 Double

Button3,	B3 Triple

Button4,	B4 Quadruple

Button5,	B5

Where	more	than	one	value	is	listed,	separated	by	commas,	the	values
are	equivalent.	Most	of	the	modifiers	have	the	obvious	X	meanings.	For
example,	Button1	requires	that	button	1	be	depressed	when	the	event
occurs.	For	a	binding	to	match	a	given	event,	the	modifiers	in	the	event
must	include	all	of	those	specified	in	the	event	pattern.	An	event	may
also	contain	additional	modifiers	not	specified	in	the	binding.	For
example,	if	button	1	is	pressed	while	the	shift	and	control	keys	are
down,	the	pattern	<Control-Button-1>	will	match	the	event,	but
<Mod1-Button-1>	will	not.	If	no	modifiers	are	specified,	then	any
combination	of	modifiers	may	be	present	in	the	event.

Meta	and	M	refer	to	whichever	of	the	M1	through	M5	modifiers	is
associated	with	the	Meta	key(s)	on	the	keyboard	(keysyms	Meta_R	and
Meta_L).	If	there	are	no	Meta	keys,	or	if	they	are	not	associated	with
any	modifiers,	then	Meta	and	M	will	not	match	any	events.	Similarly,	the
Alt	modifier	refers	to	whichever	modifier	is	associated	with	the	alt
key(s)	on	the	keyboard	(keysyms	Alt_L	and	Alt_R).

The	Double,	Triple	and	Quadruple	modifiers	are	a	convenience	for
specifying	double	mouse	clicks	and	other	repeated	events.	They	cause
a	particular	event	pattern	to	be	repeated	2,	3	or	4	times,	and	also	place
a	time	and	space	requirement	on	the	sequence:	for	a	sequence	of
events	to	match	a	Double,	Triple	or	Quadruple	pattern,	all	of	the
events	must	occur	close	together	in	time	and	without	substantial	mouse
motion	in	between.	For	example,	<Double-Button-1>	is	equivalent	to
<Button-1><Button-1>	with	the	extra	time	and	space	requirement.

The	Command	and	Option	modifiers	are	equivalents	of	Mod1	resp.
Mod2,	they	correspond	to	Macintosh-specific	modifier	keys.

The	Extended	modifier	is,	at	present,	specific	to	Windows.	It	appears
on	events	that	are	associated	with	the	keys	on	the	“extended
keyboard”.	On	a	US	keyboard,	the	extended	keys	include	the	Alt	and
Control	keys	at	the	right	of	the	keyboard,	the	cursor	keys	in	the	cluster
to	the	left	of	the	numeric	pad,	the	NumLock	key,	the	Break	key,	the

PrintScreen	key,	and	the	/	and	Enter	keys	in	the	numeric	keypad.

EVENT	TYPES

The	type	field	may	be	any	of	the	standard	X	event	types,	with	a	few
extra	abbreviations.	The	type	field	will	also	accept	a	couple	non-
standard	X	event	types	that	were	added	to	better	support	the	Macintosh
and	Windows	platforms.	Below	is	a	list	of	all	the	valid	types;	where	two
names	appear	together,	they	are	synonyms.

Activate Destroy Map

ButtonPress,	Button Enter MapRequest

ButtonRelease Expose Motion

Circulate FocusIn MouseWheel

CirculateRequest FocusOut Property

Colormap Gravity Reparent

Configure KeyPress,	Key ResizeRequest

ConfigureRequest KeyRelease Unmap

Create Leave Visibility

Deactivate

Most	of	the	above	events	have	the	same	fields	and	behaviors	as	events
in	the	X	Windowing	system.	You	can	find	more	detailed	descriptions	of
these	events	in	any	X	window	programming	book.	A	couple	of	the
events	are	extensions	to	the	X	event	system	to	support	features	unique
to	the	Macintosh	and	Windows	platforms.	We	provide	a	little	more	detail
on	these	events	here.	These	include:

Activate,	Deactivate
These	two	events	are	sent	to	every	sub-window	of	a	toplevel	when
they	change	state.	In	addition	to	the	focus	Window,	the	Macintosh
platform	and	Windows	platforms	have	a	notion	of	an	active	window
(which	often	has	but	is	not	required	to	have	the	focus).	On	the
Macintosh,	widgets	in	the	active	window	have	a	different
appearance	than	widgets	in	deactive	windows.	The	Activate	event
is	sent	to	all	the	sub-windows	in	a	toplevel	when	it	changes	from
being	deactive	to	active.	Likewise,	the	Deactive	event	is	sent	when
the	window's	state	changes	from	active	to	deactive.	There	are	no
useful	percent	substitutions	you	would	make	when	binding	to	these
events.

MouseWheel
Many	contemporary	mice	support	a	mouse	wheel,	which	is	used	for
scrolling	documents	without	using	the	scrollbars.	By	rolling	the
wheel,	the	system	will	generate	MouseWheel	events	that	the
application	can	use	to	scroll.	Like	Key	events	the	event	is	always
routed	to	the	window	that	currently	has	focus.	When	the	event	is
received	you	can	use	the	%D	substitution	to	get	the	delta	field	for
the	event,	which	is	a	integer	value	describing	how	the	mouse	wheel
has	moved.	The	smallest	value	for	which	the	system	will	report	is
defined	by	the	OS.	On	Windows	95	&	98	machines	this	value	is	at
least	120	before	it	is	reported.	However,	higher	resolution	devices
may	be	available	in	the	future.	The	sign	of	the	value	determines
which	direction	your	widget	should	scroll.	Positive	values	should
scroll	up	and	negative	values	should	scroll	down.

KeyPress,	KeyRelease

The	KeyPress	and	KeyRelease	events	are	generated	whenever	a
key	is	pressed	or	released.	KeyPress	and	KeyRelease	events	are
sent	to	the	window	which	currently	has	the	keyboard	focus.

ButtonPress,	ButtonRelease,	Motion
The	ButtonPress	and	ButtonRelease	events	are	generated	when
the	user	presses	or	releases	a	mouse	button.	Motion	events	are
generated	whenever	the	pointer	is	moved.	ButtonPress,
ButtonRelease,	and	Motion	events	are	normally	sent	to	the
window	containing	the	pointer.

When	a	mouse	button	is	pressed,	the	window	containing	the
pointer	automatically	obtains	a	temporary	pointer	grab.	Subsequent
ButtonPress,	ButtonRelease,	and	Motion	events	will	be	sent	to
that	window,	regardless	of	which	window	contains	the	pointer,	until
all	buttons	have	been	released.

Configure
A	Configure	event	is	sent	to	a	window	whenever	its	size,	position,
or	border	width	changes,	and	sometimes	when	it	has	changed
position	in	the	stacking	order.

Map,	Unmap
The	Map	and	Unmap	events	are	generated	whenever	the	mapping
state	of	a	window	changes.

Windows	are	created	in	the	unmapped	state.	Top-level	windows
become	mapped	when	they	transition	to	the	normal	state,	and	are
unmapped	in	the	withdrawn	and	iconic	states.	Other	windows
become	mapped	when	they	are	placed	under	control	of	a	geometry
manager	(for	example	pack	or	grid).

A	window	is	viewable	only	if	it	and	all	of	its	ancestors	are	mapped.
Note	that	geometry	managers	typically	do	not	map	their	children
until	they	have	been	mapped	themselves,	and	unmap	all	children
when	they	become	unmapped;	hence	in	Tk	Map	and	Unmap
events	indicate	whether	or	not	a	window	is	viewable.

Visibility
A	window	is	said	to	be	obscured	when	another	window	above	it	in
the	stacking	order	fully	or	partially	overlaps	it.	Visibility	events	are
generated	whenever	a	window's	obscurity	state	changes;	the	state
field	(%s)	specifies	the	new	state.

Expose
An	Expose	event	is	generated	whenever	all	or	part	of	a	window
should	be	redrawn	(for	example,	when	a	window	is	first	mapped	or
if	it	becomes	unobscured).	It	is	normally	not	necessary	for	client
applications	to	handle	Expose	events,	since	Tk	handles	them
internally.

Destroy
A	Destroy	event	is	delivered	to	a	window	when	it	is	destroyed.

When	the	Destroy	event	is	delivered	to	a	widget,	it	is	in	a	“half-
dead”	state:	the	widget	still	exists,	but	most	operations	on	it	will	fail.

FocusIn,	FocusOut
The	FocusIn	and	FocusOut	events	are	generated	whenever	the
keyboard	focus	changes.	A	FocusOut	event	is	sent	to	the	old	focus
window,	and	a	FocusIn	event	is	sent	to	the	new	one.

In	addition,	if	the	old	and	new	focus	windows	do	not	share	a
common	parent,	“virtual	crossing”	focus	events	are	sent	to	the
intermediate	windows	in	the	hierarchy.	Thus	a	FocusIn	event
indicates	that	the	target	window	or	one	of	its	descendants	has
acquired	the	focus,	and	a	FocusOut	event	indicates	that	the	focus
has	been	changed	to	a	window	outside	the	target	window's
hierarchy.

The	keyboard	focus	may	be	changed	explicitly	by	a	call	to	focus,
or	implicitly	by	the	window	manager.

Enter,	Leave
An	Enter	event	is	sent	to	a	window	when	the	pointer	enters	that
window,	and	a	Leave	event	is	sent	when	the	pointer	leaves	it.

If	there	is	a	pointer	grab	in	effect,	Enter	and	Leave	events	are	only
delivered	to	the	window	owning	the	grab.

In	addition,	when	the	pointer	moves	between	two	windows,	Enter
and	Leave	“virtual	crossing”	events	are	sent	to	intermediate
windows	in	the	hierarchy	in	the	same	manner	as	for	FocusIn	and
FocusOut	events.

Property
A	Property	event	is	sent	to	a	window	whenever	an	X	property
belonging	to	that	window	is	changed	or	deleted.	Property	events
are	not	normally	delivered	to	Tk	applications	as	they	are	handled
by	the	Tk	core.

Colormap
A	Colormap	event	is	generated	whenever	the	colormap	associated
with	a	window	has	been	changed,	installed,	or	uninstalled.

Widgets	may	be	assigned	a	private	colormap	by	specifying	a	-
colormap	option;	the	window	manager	is	responsible	for	installing
and	uninstalling	colormaps	as	necessary.

Note	that	Tk	provides	no	useful	details	for	this	event	type.

MapRequest,	CirculateRequest,	ResizeRequest,	ConfigureRequest,
Create

These	events	are	not	normally	delivered	to	Tk	applications.	They
are	included	for	completeness,	to	make	it	possible	to	write	X11
window	managers	in	Tk.	(These	events	are	only	delivered	when	a
client	has	selected	SubstructureRedirectMask	on	a	window;	the
Tk	core	does	not	use	this	mask.)

Gravity,	Reparent,	Circulate
The	events	Gravity	and	Reparent	are	not	normally	delivered	to	Tk
applications.	They	are	included	for	completeness.

A	Circulate	event	indicates	that	the	window	has	moved	to	the	top
or	to	the	bottom	of	the	stacking	order	as	a	result	of	an

XCirculateSubwindows	protocol	request.	Note	that	the	stacking
order	may	be	changed	for	other	reasons	which	do	not	generate	a
Circulate	event,	and	that	Tk	does	not	use
XCirculateSubwindows()	internally.	This	event	type	is	included
only	for	completeness;	there	is	no	reliable	way	to	track	changes	to
a	window's	position	in	the	stacking	order.

EVENT	DETAILS

The	last	part	of	a	long	event	specification	is	detail.	In	the	case	of	a
ButtonPress	or	ButtonRelease	event,	it	is	the	number	of	a	button	(1-
5).	If	a	button	number	is	given,	then	only	an	event	on	that	particular
button	will	match;	if	no	button	number	is	given,	then	an	event	on	any
button	will	match.	Note:	giving	a	specific	button	number	is	different	than
specifying	a	button	modifier;	in	the	first	case,	it	refers	to	a	button	being
pressed	or	released,	while	in	the	second	it	refers	to	some	other	button
that	is	already	depressed	when	the	matching	event	occurs.	If	a	button
number	is	given	then	type	may	be	omitted:	if	will	default	to
ButtonPress.	For	example,	the	specifier	<1>	is	equivalent	to
<ButtonPress-1>.

If	the	event	type	is	KeyPress	or	KeyRelease,	then	detail	may	be
specified	in	the	form	of	an	X	keysym.	Keysyms	are	textual
specifications	for	particular	keys	on	the	keyboard;	they	include	all	the
alphanumeric	ASCII	characters	(e.g.	“a”	is	the	keysym	for	the	ASCII
character	“a”),	plus	descriptions	for	non-alphanumeric	characters
(“comma”is	the	keysym	for	the	comma	character),	plus	descriptions	for
all	the	non-ASCII	keys	on	the	keyboard	(e.g.	“Shift_L”	is	the	keysym	for
the	left	shift	key,	and	“F1”	is	the	keysym	for	the	F1	function	key,	if	it
exists).	The	complete	list	of	keysyms	is	not	presented	here;	it	is
available	in	other	X	documentation	and	may	vary	from	system	to
system.	If	necessary,	you	can	use	the	%K	notation	described	below	to
print	out	the	keysym	name	for	a	particular	key.	If	a	keysym	detail	is
given,	then	the	type	field	may	be	omitted;	it	will	default	to	KeyPress.
For	example,	<Control-comma>	is	equivalent	to	<Control-KeyPress-
comma>.

BINDING	SCRIPTS	AND	SUBSTITUTIONS

The	script	argument	to	bind	is	a	Tcl	script,	which	will	be	executed
whenever	the	given	event	sequence	occurs.	Command	will	be	executed
in	the	same	interpreter	that	the	bind	command	was	executed	in,	and	it
will	run	at	global	level	(only	global	variables	will	be	accessible).	If	script
contains	any	%	characters,	then	the	script	will	not	be	executed	directly.
Instead,	a	new	script	will	be	generated	by	replacing	each	%,	and	the
character	following	it,	with	information	from	the	current	event.	The
replacement	depends	on	the	character	following	the	%,	as	defined	in
the	list	below.	Unless	otherwise	indicated,	the	replacement	string	is	the
decimal	value	of	the	given	field	from	the	current	event.	Some	of	the
substitutions	are	only	valid	for	certain	types	of	events;	if	they	are	used
for	other	types	of	events	the	value	substituted	is	undefined.

%%
Replaced	with	a	single	percent.

%#
The	number	of	the	last	client	request	processed	by	the	server	(the
serial	field	from	the	event).	Valid	for	all	event	types.

%a
The	above	field	from	the	event,	formatted	as	a	hexadecimal
number.	Valid	only	for	Configure	events.	Indicates	the	sibling
window	immediately	below	the	receiving	window	in	the	stacking
order,	or	0	if	the	receiving	window	is	at	the	bottom.

%b
The	number	of	the	button	that	was	pressed	or	released.	Valid	only
for	ButtonPress	and	ButtonRelease	events.

%c
The	count	field	from	the	event.	Valid	only	for	Expose	events.
Indicates	that	there	are	count	pending	Expose	events	which	have
not	yet	been	delivered	to	the	window.

%d

The	detail	or	user_data	field	from	the	event.	The	%d	is	replaced	by
a	string	identifying	the	detail.	For	Enter,	Leave,	FocusIn,	and
FocusOut	events,	the	string	will	be	one	of	the	following:

NotifyAncestor NotifyNonlinearVirtual

NotifyDetailNone NotifyPointer

NotifyInferior NotifyPointerRoot

NotifyNonlinear NotifyVirtual

For	ConfigureRequest	events,	the	string	will	be	one	of:

Above Opposite

Below None

BottomIf TopIf

For	virtual	events,	the	string	will	be	whatever	value	is	stored	in	the
user_data	field	when	the	event	was	created	(typically	with	event
generate),	or	the	empty	string	if	the	field	is	NULL.	Virtual	events
corresponding	to	key	sequence	presses	(see	event	add	for	details)
set	the	user_data	to	NULL.	For	events	other	than	these,	the
substituted	string	is	undefined.

%f
The	focus	field	from	the	event	(0	or	1).	Valid	only	for	Enter	and
Leave	events.	1	if	the	receiving	window	is	the	focus	window	or	a
descendant	of	the	focus	window,	0	otherwise.

%h

The	height	field	from	the	event.	Valid	for	the	Configure,
ConfigureRequest,	Create,	ResizeRequest,	and	Expose	events.
Indicates	the	new	or	requested	height	of	the	window.

%i
The	window	field	from	the	event,	represented	as	a	hexadecimal
integer.	Valid	for	all	event	types.

%k
The	keycode	field	from	the	event.	Valid	only	for	KeyPress	and
KeyRelease	events.

%m
The	mode	field	from	the	event.	The	substituted	string	is	one	of
NotifyNormal,	NotifyGrab,	NotifyUngrab,	or
NotifyWhileGrabbed.	Valid	only	for	Enter,	FocusIn,	FocusOut,
and	Leave	events.

%o
The	override_redirect	field	from	the	event.	Valid	only	for	Map,
Reparent,	and	Configure	events.

%p
The	place	field	from	the	event,	substituted	as	one	of	the	strings
PlaceOnTop	or	PlaceOnBottom.	Valid	only	for	Circulate	and
CirculateRequest	events.

%s
The	state	field	from	the	event.	For	ButtonPress,	ButtonRelease,
Enter,	KeyPress,	KeyRelease,	Leave,	and	Motion	events,	a
decimal	string	is	substituted.	For	Visibility,	one	of	the	strings
VisibilityUnobscured,	VisibilityPartiallyObscured,	and
VisibilityFullyObscured	is	substituted.	For	Property	events,
substituted	with	either	the	string	NewValue	(indicating	that	the
property	has	been	created	or	modified)	or	Delete	(indicating	that
the	property	has	been	removed).

%t

The	time	field	from	the	event.	This	is	the	X	server	timestamp
(typically	the	time	since	the	last	server	reset)	in	milliseconds,	when
the	event	occurred.	Valid	for	most	events.

%w
The	width	field	from	the	event.	Indicates	the	new	or	requested
width	of	the	window.	Valid	only	for	Configure,	ConfigureRequest,
Create,	ResizeRequest,	and	Expose	events.

%x,	%y
The	x	and	y	fields	from	the	event.	For	ButtonPress,
ButtonRelease,	Motion,	KeyPress,	KeyRelease,	and
MouseWheel	events,	%x	and	%y	indicate	the	position	of	the
mouse	pointer	relative	to	the	receiving	window.	For	Enter	and
Leave	events,	the	position	where	the	mouse	pointer	crossed	the
window,	relative	to	the	receiving	window.	For	Configure	and
Create	requests,	the	x	and	y	coordinates	of	the	window	relative	to
its	parent	window.

%A
Substitutes	the	UNICODE	character	corresponding	to	the	event,	or
the	empty	string	if	the	event	does	not	correspond	to	a	UNICODE
character	(e.g.	the	shift	key	was	pressed).	XmbLookupString	(or
XLookupString	when	input	method	support	is	turned	off)	does	all
the	work	of	translating	from	the	event	to	a	UNICODE	character.
Valid	only	for	KeyPress	and	KeyRelease	events.

%B
The	border_width	field	from	the	event.	Valid	only	for	Configure,
ConfigureRequest,	and	Create	events.

%D
This	reports	the	delta	value	of	a	MouseWheel	event.	The	delta
value	represents	the	rotation	units	the	mouse	wheel	has	been
moved.	On	Windows	95	&	98	systems	the	smallest	value	for	the
delta	is	120.	Future	systems	may	support	higher	resolution	values
for	the	delta.	The	sign	of	the	value	represents	the	direction	the
mouse	wheel	was	scrolled.

%E
The	send_event	field	from	the	event.	Valid	for	all	event	types.	0
indicates	that	this	is	a	“normal”	event,	1	indicates	that	it	is	a
“synthetic”	event	generated	by	SendEvent.

%K
The	keysym	corresponding	to	the	event,	substituted	as	a	textual
string.	Valid	only	for	KeyPress	and	KeyRelease	events.

%N
The	keysym	corresponding	to	the	event,	substituted	as	a	decimal
number.	Valid	only	for	KeyPress	and	KeyRelease	events.

%P
The	name	of	the	property	being	updated	or	deleted	(which	may	be
converted	to	an	XAtom	using	winfo	atom.)	Valid	only	for	Property
events.

%R
The	root	window	identifier	from	the	event.	Valid	only	for	events
containing	a	root	field.

%S
The	subwindow	window	identifier	from	the	event,	formatted	as	a
hexadecimal	number.	Valid	only	for	events	containing	a	subwindow
field.

%T
The	type	field	from	the	event.	Valid	for	all	event	types.

%W
The	path	name	of	the	window	to	which	the	event	was	reported	(the
window	field	from	the	event).	Valid	for	all	event	types.

%X,	%Y
The	x_root	and	y_root	fields	from	the	event.	If	a	virtual-root	window
manager	is	being	used	then	the	substituted	values	are	the
corresponding	x-coordinate	and	y-coordinate	in	the	virtual	root.

Valid	only	for	ButtonPress,	ButtonRelease,	KeyPress,
KeyRelease,	and	Motion	events.	Same	meaning	as	%x	and	%y,
except	relative	to	the	(virtual)	root	window.

The	replacement	string	for	a	%-replacement	is	formatted	as	a	proper	Tcl
list	element.	This	means	that	spaces	or	special	characters	such	as	$
and	{	may	be	preceded	by	backslashes.	This	guarantees	that	the	string
will	be	passed	through	the	Tcl	parser	when	the	binding	script	is
evaluated.	Most	replacements	are	numbers	or	well-defined	strings	such
as	Above;	for	these	replacements	no	special	formatting	is	ever
necessary.	The	most	common	case	where	reformatting	occurs	is	for	the
%A	substitution.	For	example,	if	script	is

insert	%A

and	the	character	typed	is	an	open	square	bracket,	then	the	script
actually	executed	will	be

insert	\[

This	will	cause	the	insert	to	receive	the	original	replacement	string
(open	square	bracket)	as	its	first	argument.	If	the	extra	backslash	had
not	been	added,	Tcl	would	not	have	been	able	to	parse	the	script
correctly.

MULTIPLE	MATCHES

It	is	possible	for	several	bindings	to	match	a	given	X	event.	If	the
bindings	are	associated	with	different	tag's,	then	each	of	the	bindings
will	be	executed,	in	order.	By	default,	a	binding	for	the	widget	will	be
executed	first,	followed	by	a	class	binding,	a	binding	for	its	toplevel,	and
an	all	binding.	The	bindtags	command	may	be	used	to	change	this
order	for	a	particular	window	or	to	associate	additional	binding	tags	with
the	window.

The	continue	and	break	commands	may	be	used	inside	a	binding
script	to	control	the	processing	of	matching	scripts.	If	continue	is
invoked,	then	the	current	binding	script	is	terminated	but	Tk	will
continue	processing	binding	scripts	associated	with	other	tag's.	If	the
break	command	is	invoked	within	a	binding	script,	then	that	script
terminates	and	no	other	scripts	will	be	invoked	for	the	event.

If	more	than	one	binding	matches	a	particular	event	and	they	have	the
same	tag,	then	the	most	specific	binding	is	chosen	and	its	script	is
evaluated.	The	following	tests	are	applied,	in	order,	to	determine	which
of	several	matching	sequences	is	more	specific:

(a)
an	event	pattern	that	specifies	a	specific	button	or	key	is	more
specific	than	one	that	does	not;

(b)
a	longer	sequence	(in	terms	of	number	of	events	matched)	is	more
specific	than	a	shorter	sequence;

(c)
if	the	modifiers	specified	in	one	pattern	are	a	subset	of	the
modifiers	in	another	pattern,	then	the	pattern	with	more	modifiers	is
more	specific.

(d)
a	virtual	event	whose	physical	pattern	matches	the	sequence	is
less	specific	than	the	same	physical	pattern	that	is	not	associated
with	a	virtual	event.

(e)
given	a	sequence	that	matches	two	or	more	virtual	events,	one	of
the	virtual	events	will	be	chosen,	but	the	order	is	undefined.

If	the	matching	sequences	contain	more	than	one	event,	then	tests	(c)-
(e)	are	applied	in	order	from	the	most	recent	event	to	the	least	recent
event	in	the	sequences.	If	these	tests	fail	to	determine	a	winner,	then
the	most	recently	registered	sequence	is	the	winner.

If	there	are	two	(or	more)	virtual	events	that	are	both	triggered	by	the
same	sequence,	and	both	of	those	virtual	events	are	bound	to	the	same
window	tag,	then	only	one	of	the	virtual	events	will	be	triggered,	and	it
will	be	picked	at	random:

event	add	<<Paste>>	<Control-y>

event	add	<<Paste>>	<Button-2>

event	add	<<Scroll>>	<Button-2>

bind	Entry	<<Paste>>	{puts	Paste}

bind	Entry	<<Scroll>>	{puts	Scroll}

If	the	user	types	Control-y,	the	<<Paste>>	binding	will	be	invoked,	but	if
the	user	presses	button	2	then	one	of	either	the	<<Paste>>	or	the
<<Scroll>>	bindings	will	be	invoked,	but	exactly	which	one	gets
invoked	is	undefined.

If	an	X	event	does	not	match	any	of	the	existing	bindings,	then	the
event	is	ignored.	An	unbound	event	is	not	considered	to	be	an	error.

MULTI-EVENT	SEQUENCES	AND	IGNORED	EVENTS

When	a	sequence	specified	in	a	bind	command	contains	more	than
one	event	pattern,	then	its	script	is	executed	whenever	the	recent
events	(leading	up	to	and	including	the	current	event)	match	the	given
sequence.	This	means,	for	example,	that	if	button	1	is	clicked
repeatedly	the	sequence	<Double-ButtonPress-1>	will	match	each
button	press	but	the	first.	If	extraneous	events	that	would	prevent	a
match	occur	in	the	middle	of	an	event	sequence	then	the	extraneous
events	are	ignored	unless	they	are	KeyPress	or	ButtonPress	events.
For	example,	<Double-ButtonPress-1>	will	match	a	sequence	of
presses	of	button	1,	even	though	there	will	be	ButtonRelease	events
(and	possibly	Motion	events)	between	the	ButtonPress	events.
Furthermore,	a	KeyPress	event	may	be	preceded	by	any	number	of
other	KeyPress	events	for	modifier	keys	without	the	modifier	keys
preventing	a	match.	For	example,	the	event	sequence	aB	will	match	a
press	of	the	a	key,	a	release	of	the	a	key,	a	press	of	the	Shift	key,	and	a

press	of	the	b	key:	the	press	of	Shift	is	ignored	because	it	is	a	modifier
key.	Finally,	if	several	Motion	events	occur	in	a	row,	only	the	last	one	is
used	for	purposes	of	matching	binding	sequences.

ERRORS

If	an	error	occurs	in	executing	the	script	for	a	binding	then	the	bgerror
mechanism	is	used	to	report	the	error.	The	bgerror	command	will	be
executed	at	global	level	(outside	the	context	of	any	Tcl	procedure).

EXAMPLES

Arrange	for	a	string	describing	the	motion	of	the	mouse	to	be	printed
out	when	the	mouse	is	double-clicked:

bind	.	<Double-1>	{

				puts	"hi	from	(%x,%y)"

}

A	little	GUI	that	displays	what	the	keysym	name	of	the	last	key	pressed
is:

set	keysym	"Press	any	key"

pack	[label	.l	-textvariable	keysym	-padx	2m	-pady	1m]

bind	.	<Key>	{

				set	keysym	"You	pressed	%K"

}

SEE	ALSO

bgerror,	bindtags,	event,	focus,	grab,	keysyms

KEYWORDS

binding,	event

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.
Copyright	©	1998	by	Scriptics	Corporation.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	frame

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
frame	-	Create	and	manipulate	frame	widgets

SYNOPSIS
STANDARD	OPTIONS

-borderwidth	or	-bd,	borderWidth,	BorderWidth
-cursor,	cursor,	Cursor
-highlightbackground,	highlightBackground,
HighlightBackground
-highlightcolor,	highlightColor,	HighlightColor
-highlightthickness,	highlightThickness,	HighlightThickness
-padx,	padX,	Pad
-pady,	padY,	Pad
-relief,	relief,	Relief
-takefocus,	takeFocus,	TakeFocus

WIDGET-SPECIFIC	OPTIONS
-background,	background,	Background
-class,	class,	Class
-colormap,	colormap,	Colormap
-container,	container,	Container
-height,	height,	Height
-visual,	visual,	Visual
-width,	width,	Width

DESCRIPTION
WIDGET	COMMAND

pathName	cget	option
pathName	configure	?option?	?value	option	value	...?

BINDINGS
SEE	ALSO
KEYWORDS

NAME

frame	-	Create	and	manipulate	frame	widgets

SYNOPSIS

frame	pathName	?options?

STANDARD	OPTIONS

-borderwidth	or	-bd,	borderWidth,	BorderWidth
-cursor,	cursor,	Cursor
-highlightbackground,	highlightBackground,	HighlightBackground
-highlightcolor,	highlightColor,	HighlightColor
-highlightthickness,	highlightThickness,	HighlightThickness
-padx,	padX,	Pad
-pady,	padY,	Pad
-relief,	relief,	Relief
-takefocus,	takeFocus,	TakeFocus

WIDGET-SPECIFIC	OPTIONS

Command-Line	Name:	-background
Database	Name:	background
Database	Class:	Background

This	option	is	the	same	as	the	standard	background	option	except
that	its	value	may	also	be	specified	as	an	empty	string.	In	this	case,
the	widget	will	display	no	background	or	border,	and	no	colors	will
be	consumed	from	its	colormap	for	its	background	and	border.

Command-Line	Name:	-class
Database	Name:	class
Database	Class:	Class

Specifies	a	class	for	the	window.	This	class	will	be	used	when
querying	the	option	database	for	the	window's	other	options,	and	it
will	also	be	used	later	for	other	purposes	such	as	bindings.	The
class	option	may	not	be	changed	with	the	configure	widget
command.

Command-Line	Name:	-colormap

Database	Name:	colormap
Database	Class:	Colormap

Specifies	a	colormap	to	use	for	the	window.	The	value	may	be
either	new,	in	which	case	a	new	colormap	is	created	for	the
window	and	its	children,	or	the	name	of	another	window	(which
must	be	on	the	same	screen	and	have	the	same	visual	as
pathName),	in	which	case	the	new	window	will	use	the	colormap
from	the	specified	window.	If	the	colormap	option	is	not	specified,
the	new	window	uses	the	same	colormap	as	its	parent.	This	option
may	not	be	changed	with	the	configure	widget	command.

Command-Line	Name:	-container
Database	Name:	container
Database	Class:	Container

The	value	must	be	a	boolean.	If	true,	it	means	that	this	window	will
be	used	as	a	container	in	which	some	other	application	will	be
embedded	(for	example,	a	Tk	toplevel	can	be	embedded	using	the
-use	option).	The	window	will	support	the	appropriate	window
manager	protocols	for	things	like	geometry	requests.	The	window
should	not	have	any	children	of	its	own	in	this	application.	This
option	may	not	be	changed	with	the	configure	widget	command.

Command-Line	Name:	-height
Database	Name:	height
Database	Class:	Height

Specifies	the	desired	height	for	the	window	in	any	of	the	forms
acceptable	to	Tk_GetPixels.	If	this	option	is	less	than	or	equal	to
zero	then	the	window	will	not	request	any	size	at	all.	Note	that	this
sets	the	total	height	of	the	frame,	any	-borderwidth	or	similar	is	not
added.	Normally	-height	should	not	be	used	if	a	propagating
geometry	manager,	such	as	grid	or	pack,	is	used	within	the	frame
since	the	geometry	manager	will	override	the	height	of	the	frame.

Command-Line	Name:	-visual
Database	Name:	visual
Database	Class:	Visual

Specifies	visual	information	for	the	new	window	in	any	of	the	forms
accepted	by	Tk_GetVisual.	If	this	option	is	not	specified,	the	new

window	will	use	the	same	visual	as	its	parent.	The	visual	option
may	not	be	modified	with	the	configure	widget	command.

Command-Line	Name:	-width
Database	Name:	width
Database	Class:	Width

Specifies	the	desired	width	for	the	window	in	any	of	the	forms
acceptable	to	Tk_GetPixels.	If	this	option	is	less	than	or	equal	to
zero	then	the	window	will	not	request	any	size	at	all.	Note	that	this
sets	the	total	width	of	the	frame,	any	-borderwidth	or	similar	is	not
added.	Normally	-width	should	not	be	used	if	a	propagating
geometry	manager,	such	as	grid	or	pack,	is	used	within	the	frame
since	the	geometry	manager	will	override	the	width	of	the	frame.

DESCRIPTION

The	frame	command	creates	a	new	window	(given	by	the	pathName
argument)	and	makes	it	into	a	frame	widget.	Additional	options,
described	above,	may	be	specified	on	the	command	line	or	in	the	option
database	to	configure	aspects	of	the	frame	such	as	its	background
color	and	relief.	The	frame	command	returns	the	path	name	of	the	new
window.

A	frame	is	a	simple	widget.	Its	primary	purpose	is	to	act	as	a	spacer	or
container	for	complex	window	layouts.	The	only	features	of	a	frame	are
its	background	color	and	an	optional	3-D	border	to	make	the	frame
appear	raised	or	sunken.

WIDGET	COMMAND

The	frame	command	creates	a	new	Tcl	command	whose	name	is	the
same	as	the	path	name	of	the	frame's	window.	This	command	may	be
used	to	invoke	various	operations	on	the	widget.	It	has	the	following
general	form:

pathName	option	?arg	arg	...?

PathName	is	the	name	of	the	command,	which	is	the	same	as	the
frame	widget's	path	name.	Option	and	the	args	determine	the	exact
behavior	of	the	command.	The	following	commands	are	possible	for
frame	widgets:

pathName	cget	option
Returns	the	current	value	of	the	configuration	option	given	by
option.	Option	may	have	any	of	the	values	accepted	by	the	frame
command.

pathName	configure	?option?	?value	option	value	...?
Query	or	modify	the	configuration	options	of	the	widget.	If	no	option
is	specified,	returns	a	list	describing	all	of	the	available	options	for
pathName	(see	Tk_ConfigureInfo	for	information	on	the	format	of
this	list).	If	option	is	specified	with	no	value,	then	the	command
returns	a	list	describing	the	one	named	option	(this	list	will	be
identical	to	the	corresponding	sublist	of	the	value	returned	if	no
option	is	specified).	If	one	or	more	option-value	pairs	are	specified,
then	the	command	modifies	the	given	widget	option(s)	to	have	the
given	value(s);	in	this	case	the	command	returns	an	empty	string.
Option	may	have	any	of	the	values	accepted	by	the	frame
command.

BINDINGS

When	a	new	frame	is	created,	it	has	no	default	event	bindings:	frames
are	not	intended	to	be	interactive.

SEE	ALSO

labelframe,	toplevel,	ttk::frame

KEYWORDS

frame,	widget

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990-1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	pack

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
pack	-	Geometry	manager	that	packs	around	edges	of	cavity

SYNOPSIS
DESCRIPTION

pack	slave	?slave	...?	?options?
pack	configure	slave	?slave	...?	?options?

-after	other
-anchor	anchor
-before	other
-expand	boolean
-fill	style

none
x
y
both

-in	other
-ipadx	amount
-ipady	amount
-padx	amount
-pady	amount
-side	side

pack	forget	slave	?slave	...?
pack	info	slave
pack	propagate	master	?boolean?
pack	slaves	master

THE	PACKER	ALGORITHM
EXPANSION
GEOMETRY	PROPAGATION
RESTRICTIONS	ON	MASTER	WINDOWS
PACKING	ORDER
EXAMPLE

SEE	ALSO
KEYWORDS

NAME

pack	-	Geometry	manager	that	packs	around	edges	of	cavity

SYNOPSIS

pack	option	arg	?arg	...?

DESCRIPTION

The	pack	command	is	used	to	communicate	with	the	packer,	a
geometry	manager	that	arranges	the	children	of	a	parent	by	packing
them	in	order	around	the	edges	of	the	parent.	The	pack	command	can
have	any	of	several	forms,	depending	on	the	option	argument:

pack	slave	?slave	...?	?options?
If	the	first	argument	to	pack	is	a	window	name	(any	value	starting
with	“.”),	then	the	command	is	processed	in	the	same	way	as	pack
configure.

pack	configure	slave	?slave	...?	?options?
The	arguments	consist	of	the	names	of	one	or	more	slave	windows
followed	by	pairs	of	arguments	that	specify	how	to	manage	the
slaves.	See	THE	PACKER	ALGORITHM	below	for	details	on	how
the	options	are	used	by	the	packer.	The	following	options	are
supported:

-after	other
Other	must	the	name	of	another	window.	Use	its	master	as	the
master	for	the	slaves,	and	insert	the	slaves	just	after	other	in
the	packing	order.

-anchor	anchor
Anchor	must	be	a	valid	anchor	position	such	as	n	or	sw;	it
specifies	where	to	position	each	slave	in	its	parcel.	Defaults	to

center.

-before	other
Other	must	the	name	of	another	window.	Use	its	master	as	the
master	for	the	slaves,	and	insert	the	slaves	just	before	other	in
the	packing	order.

-expand	boolean
Specifies	whether	the	slaves	should	be	expanded	to	consume
extra	space	in	their	master.	Boolean	may	have	any	proper
boolean	value,	such	as	1	or	no.	Defaults	to	0.

-fill	style
If	a	slave's	parcel	is	larger	than	its	requested	dimensions,	this
option	may	be	used	to	stretch	the	slave.	Style	must	have	one
of	the	following	values:

none
Give	the	slave	its	requested	dimensions	plus	any	internal
padding	requested	with	-ipadx	or	-ipady.	This	is	the
default.

x
Stretch	the	slave	horizontally	to	fill	the	entire	width	of	its
parcel	(except	leave	external	padding	as	specified	by	-
padx).

y
Stretch	the	slave	vertically	to	fill	the	entire	height	of	its
parcel	(except	leave	external	padding	as	specified	by	-
pady).

both
Stretch	the	slave	both	horizontally	and	vertically.

-in	other
Insert	the	slave(s)	at	the	end	of	the	packing	order	for	the
master	window	given	by	other.

-ipadx	amount
Amount	specifies	how	much	horizontal	internal	padding	to
leave	on	each	side	of	the	slave(s).	Amount	must	be	a	valid
screen	distance,	such	as	2	or	.5c.	It	defaults	to	0.

-ipady	amount
Amount	specifies	how	much	vertical	internal	padding	to	leave
on	each	side	of	the	slave(s).	Amount	defaults	to	0.

-padx	amount
Amount	specifies	how	much	horizontal	external	padding	to
leave	on	each	side	of	the	slave(s).	Amount	may	be	a	list	of	two
values	to	specify	padding	for	left	and	right	separately.	Amount
defaults	to	0.

-pady	amount
Amount	specifies	how	much	vertical	external	padding	to	leave
on	each	side	of	the	slave(s).	Amount	may	be	a	list	of	two
values	to	specify	padding	for	top	and	bottom	separately.
Amount	defaults	to	0.

-side	side
Specifies	which	side	of	the	master	the	slave(s)	will	be	packed
against.	Must	be	left,	right,	top,	or	bottom.	Defaults	to	top.

If	no	-in,	-after	or	-before	option	is	specified	then	each	of	the
slaves	will	be	inserted	at	the	end	of	the	packing	list	for	its	parent
unless	it	is	already	managed	by	the	packer	(in	which	case	it	will	be
left	where	it	is).	If	one	of	these	options	is	specified	then	all	the
slaves	will	be	inserted	at	the	specified	point.	If	any	of	the	slaves	are
already	managed	by	the	geometry	manager	then	any	unspecified
options	for	them	retain	their	previous	values	rather	than	receiving
default	values.

pack	forget	slave	?slave	...?
Removes	each	of	the	slaves	from	the	packing	order	for	its	master
and	unmaps	their	windows.	The	slaves	will	no	longer	be	managed
by	the	packer.

pack	info	slave
Returns	a	list	whose	elements	are	the	current	configuration	state	of
the	slave	given	by	slave	in	the	same	option-value	form	that	might
be	specified	to	pack	configure.	The	first	two	elements	of	the	list
are	“-in	master”	where	master	is	the	slave's	master.

pack	propagate	master	?boolean?
If	boolean	has	a	true	boolean	value	such	as	1	or	on	then
propagation	is	enabled	for	master,	which	must	be	a	window	name
(see	GEOMETRY	PROPAGATION	below).	If	boolean	has	a	false
boolean	value	then	propagation	is	disabled	for	master.	In	either	of
these	cases	an	empty	string	is	returned.	If	boolean	is	omitted	then
the	command	returns	0	or	1	to	indicate	whether	propagation	is
currently	enabled	for	master.	Propagation	is	enabled	by	default.

pack	slaves	master
Returns	a	list	of	all	of	the	slaves	in	the	packing	order	for	master.
The	order	of	the	slaves	in	the	list	is	the	same	as	their	order	in	the
packing	order.	If	master	has	no	slaves	then	an	empty	string	is
returned.

THE	PACKER	ALGORITHM

For	each	master	the	packer	maintains	an	ordered	list	of	slaves	called
the	packing	list.	The	-in,	-after,	and	-before	configuration	options	are
used	to	specify	the	master	for	each	slave	and	the	slave's	position	in	the
packing	list.	If	none	of	these	options	is	given	for	a	slave	then	the	slave
is	added	to	the	end	of	the	packing	list	for	its	parent.

The	packer	arranges	the	slaves	for	a	master	by	scanning	the	packing
list	in	order.	At	the	time	it	processes	each	slave,	a	rectangular	area
within	the	master	is	still	unallocated.	This	area	is	called	the	cavity;	for
the	first	slave	it	is	the	entire	area	of	the	master.

For	each	slave	the	packer	carries	out	the	following	steps:

[1]
The	packer	allocates	a	rectangular	parcel	for	the	slave	along	the

side	of	the	cavity	given	by	the	slave's	-side	option.	If	the	side	is	top
or	bottom	then	the	width	of	the	parcel	is	the	width	of	the	cavity	and
its	height	is	the	requested	height	of	the	slave	plus	the	-ipady	and	-
pady	options.	For	the	left	or	right	side	the	height	of	the	parcel	is	the
height	of	the	cavity	and	the	width	is	the	requested	width	of	the
slave	plus	the	-ipadx	and	-padx	options.	The	parcel	may	be
enlarged	further	because	of	the	-expand	option	(see	EXPANSION
below)

[2]
The	packer	chooses	the	dimensions	of	the	slave.	The	width	will
normally	be	the	slave's	requested	width	plus	twice	its	-ipadx	option
and	the	height	will	normally	be	the	slave's	requested	height	plus
twice	its	-ipady	option.	However,	if	the	-fill	option	is	x	or	both	then
the	width	of	the	slave	is	expanded	to	fill	the	width	of	the	parcel,
minus	twice	the	-padx	option.	If	the	-fill	option	is	y	or	both	then	the
height	of	the	slave	is	expanded	to	fill	the	width	of	the	parcel,	minus
twice	the	-pady	option.

[3]
The	packer	positions	the	slave	over	its	parcel.	If	the	slave	is
smaller	than	the	parcel	then	the	-anchor	option	determines	where
in	the	parcel	the	slave	will	be	placed.	If	-padx	or	-pady	is	non-zero,
then	the	given	amount	of	external	padding	will	always	be	left
between	the	slave	and	the	edges	of	the	parcel.

Once	a	given	slave	has	been	packed,	the	area	of	its	parcel	is
subtracted	from	the	cavity,	leaving	a	smaller	rectangular	cavity	for	the
next	slave.	If	a	slave	does	not	use	all	of	its	parcel,	the	unused	space	in
the	parcel	will	not	be	used	by	subsequent	slaves.	If	the	cavity	should
become	too	small	to	meet	the	needs	of	a	slave	then	the	slave	will	be
given	whatever	space	is	left	in	the	cavity.	If	the	cavity	shrinks	to	zero
size,	then	all	remaining	slaves	on	the	packing	list	will	be	unmapped
from	the	screen	until	the	master	window	becomes	large	enough	to	hold
them	again.

EXPANSION

If	a	master	window	is	so	large	that	there	will	be	extra	space	left	over
after	all	of	its	slaves	have	been	packed,	then	the	extra	space	is
distributed	uniformly	among	all	of	the	slaves	for	which	the	-expand
option	is	set.	Extra	horizontal	space	is	distributed	among	the
expandable	slaves	whose	-side	is	left	or	right,	and	extra	vertical	space
is	distributed	among	the	expandable	slaves	whose	-side	is	top	or
bottom.

GEOMETRY	PROPAGATION

The	packer	normally	computes	how	large	a	master	must	be	to	just
exactly	meet	the	needs	of	its	slaves,	and	it	sets	the	requested	width
and	height	of	the	master	to	these	dimensions.	This	causes	geometry
information	to	propagate	up	through	a	window	hierarchy	to	a	top-level
window	so	that	the	entire	sub-tree	sizes	itself	to	fit	the	needs	of	the	leaf
windows.	However,	the	pack	propagate	command	may	be	used	to	turn
off	propagation	for	one	or	more	masters.	If	propagation	is	disabled	then
the	packer	will	not	set	the	requested	width	and	height	of	the	packer.
This	may	be	useful	if,	for	example,	you	wish	for	a	master	window	to
have	a	fixed	size	that	you	specify.

RESTRICTIONS	ON	MASTER	WINDOWS

The	master	for	each	slave	must	either	be	the	slave's	parent	(the
default)	or	a	descendant	of	the	slave's	parent.	This	restriction	is
necessary	to	guarantee	that	the	slave	can	be	placed	over	any	part	of	its
master	that	is	visible	without	danger	of	the	slave	being	clipped	by	its
parent.

PACKING	ORDER

If	the	master	for	a	slave	is	not	its	parent	then	you	must	make	sure	that
the	slave	is	higher	in	the	stacking	order	than	the	master.	Otherwise	the
master	will	obscure	the	slave	and	it	will	appear	as	if	the	slave	has	not
been	packed	correctly.	The	easiest	way	to	make	sure	the	slave	is
higher	than	the	master	is	to	create	the	master	window	first:	the	most
recently	created	window	will	be	highest	in	the	stacking	order.	Or,	you

can	use	the	raise	and	lower	commands	to	change	the	stacking	order	of
either	the	master	or	the	slave.

EXAMPLE

#	Make	the	widgets

label	.t	-text	"This	widget	is	at	the	top"				-bg	red

label	.b	-text	"This	widget	is	at	the	bottom"	-bg	green

label	.l	-text	"Left\nHand\nSide"

label	.r	-text	"Right\nHand\nSide"

text	.mid

.mid	insert	end	"This	layout	is	like	Java's	BorderLayout"

#	Lay	them	out

pack	.t			-side	top				-fill	x

pack	.b			-side	bottom	-fill	x

pack	.l			-side	left			-fill	y

pack	.r			-side	right		-fill	y

pack	.mid	-expand	1				-fill	both

SEE	ALSO

grid,	place

KEYWORDS

geometry	manager,	location,	packer,	parcel,	propagation,	size

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990-1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	chooseDirectory

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
tk_chooseDirectory	-	pops	up	a	dialog	box	for	the	user	to
select	a	directory.

SYNOPSIS
DESCRIPTION

-initialdir	dirname
-mustexist	boolean
-parent	window
-title	titleString

EXAMPLE
SEE	ALSO
KEYWORDS

NAME

tk_chooseDirectory	-	pops	up	a	dialog	box	for	the	user	to	select	a
directory.

SYNOPSIS

tk_chooseDirectory	?option	value	...?

DESCRIPTION

The	procedure	tk_chooseDirectory	pops	up	a	dialog	box	for	the	user
to	select	a	directory.	The	following	option-value	pairs	are	possible	as
command	line	arguments:

-initialdir	dirname
Specifies	that	the	directories	in	directory	should	be	displayed	when
the	dialog	pops	up.	If	this	parameter	is	not	specified,	then	the
directories	in	the	current	working	directory	are	displayed.	If	the

parameter	specifies	a	relative	path,	the	return	value	will	convert	the
relative	path	to	an	absolute	path.

-mustexist	boolean
Specifies	whether	the	user	may	specify	non-existent	directories.	If
this	parameter	is	true,	then	the	user	may	only	select	directories	that
already	exist.	The	default	value	is	false.

-parent	window
Makes	window	the	logical	parent	of	the	dialog.	The	dialog	is
displayed	on	top	of	its	parent	window.	On	Mac	OS	X,	this	turns	the
file	dialog	into	a	sheet	attached	to	the	parent	window.

-title	titleString
Specifies	a	string	to	display	as	the	title	of	the	dialog	box.	If	this
option	is	not	specified,	then	a	default	title	will	be	displayed.

EXAMPLE

set	dir	[tk_chooseDirectory	\

								-initialdir	~	-title	"Choose	a	directory"]

if	{$dir	eq	""}	{

			label	.l	-text	"No	directory	selected"

}	else	{

			label	.l	-text	"Selected	$dir"

}

SEE	ALSO

tk_getOpenFile,	tk_getSaveFile

KEYWORDS

directory,	selection,	dialog,	platform-specific

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1998-2000	by	Scriptics	Corporation.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	tkerror

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

tkerror	-	Command	invoked	to	process	background	errors

SYNOPSIS

tkerror	message

DESCRIPTION

Note:	as	of	Tk	4.1	the	tkerror	command	has	been	renamed	to	bgerror
because	the	event	loop	(which	is	what	usually	invokes	it)	is	now	part	of
Tcl.	For	backward	compatibility	the	bgerror	provided	by	the	current	Tk
version	still	tries	to	call	tkerror	if	there	is	one	(or	an	auto	loadable	one),
so	old	script	defining	that	error	handler	should	still	work,	but	you	should
anyhow	modify	your	scripts	to	use	bgerror	instead	of	tkerror	because
that	support	for	the	old	name	might	vanish	in	the	near	future.	If	that	call
fails,	bgerror	posts	a	dialog	showing	the	error	and	offering	to	see	the
stack	trace	to	the	user.	If	you	want	your	own	error	management	you
should	directly	override	bgerror	instead	of	tkerror.	Documentation	for
bgerror	is	available	as	part	of	Tcl's	documentation.

KEYWORDS

background	error,	reporting

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990-1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	ttk_progressbar

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
ttk::progressbar	-	Provide	progress	feedback

SYNOPSIS
DESCRIPTION
STANDARD	OPTIONS

-class
-cursor,	cursor,	Cursor
-style
-takefocus,	takeFocus,	TakeFocus

WIDGET-SPECIFIC	OPTIONS
-orient,	orient,	Orient
-length,	length,	Length
-mode,	mode,	Mode
-maximum,	maximum,	Maximum
-value,	value,	Value
-variable,	variable,	Variable
-phase,	phase,	Phase

WIDGET	COMMAND
pathName	cget	option
pathName	configure	?option?	?value	option	value	...?
pathName	identify	x	y
pathName	instate	statespec	?script?
pathName	start	?interval?
pathName	state	?stateSpec?
pathName	step	?amount?
pathName	stop

SEE	ALSO

NAME

ttk::progressbar	-	Provide	progress	feedback

SYNOPSIS

ttk::progressbar	pathName	?options?

DESCRIPTION

A	ttk::progressbar	widget	shows	the	status	of	a	long-running
operation.	They	can	operate	in	two	modes:	determinate	mode	shows
the	amount	completed	relative	to	the	total	amount	of	work	to	be	done,
and	indeterminate	mode	provides	an	animated	display	to	let	the	user
know	that	something	is	happening.

STANDARD	OPTIONS

-class
-cursor,	cursor,	Cursor
-style
-takefocus,	takeFocus,	TakeFocus

WIDGET-SPECIFIC	OPTIONS

Command-Line	Name:	-orient
Database	Name:	orient
Database	Class:	Orient

One	of	horizontal	or	vertical.	Specifies	the	orientation	of	the
progress	bar.

Command-Line	Name:	-length
Database	Name:	length
Database	Class:	Length

Specifies	the	length	of	the	long	axis	of	the	progress	bar	(width	if
horizontal,	height	if	vertical).

Command-Line	Name:	-mode
Database	Name:	mode
Database	Class:	Mode

One	of	determinate	or	indeterminate.

Command-Line	Name:	-maximum
Database	Name:	maximum
Database	Class:	Maximum

A	floating	point	number	specifying	the	maximum	-value.	Defaults	to
100.

Command-Line	Name:	-value
Database	Name:	value
Database	Class:	Value

The	current	value	of	the	progress	bar.	In	determinate	mode,	this
represents	the	amount	of	work	completed.	In	indeterminate	mode,
it	is	interpreted	modulo	-maximum;	that	is,	the	progress	bar
completes	one	“cycle”	when	the	-value	increases	by	-maximum.

Command-Line	Name:	-variable
Database	Name:	variable
Database	Class:	Variable

The	name	of	a	Tcl	variable	which	is	linked	to	the	-value.	If
specified,	the	-value	of	the	progress	bar	is	automatically	set	to	the
value	of	the	variable	whenever	the	latter	is	modified.

Command-Line	Name:	-phase
Database	Name:	phase
Database	Class:	Phase

Read-only	option.	The	widget	periodically	increments	the	value	of
this	option	whenever	the	-value	is	greater	than	0	and,	in
determinate	mode,	less	than	-maximum.	This	option	may	be	used
by	the	current	theme	to	provide	additional	animation	effects.

WIDGET	COMMAND

pathName	cget	option
Returns	the	current	value	of	the	specified	option;	see	ttk::widget(n).

pathName	configure	?option?	?value	option	value	...?
Modify	or	query	widget	options;	see	ttk::widget(n).

pathName	identify	x	y

Returns	the	name	of	the	element	at	position	x,	y.	See	ttk::widget(n).

pathName	instate	statespec	?script?
Test	the	widget	state;	see	ttk::widget(n).

pathName	start	?interval?
Begin	autoincrement	mode:	schedules	a	recurring	timer	event	that
calls	step	every	interval	milliseconds.	If	omitted,	interval	defaults	to
50	milliseconds	(20	steps/second).

pathName	state	?stateSpec?
Modify	or	query	the	widget	state;	see	ttk::widget(n).

pathName	step	?amount?
Increments	the	-value	by	amount.	amount	defaults	to	1.0	if	omitted.

pathName	stop
Stop	autoincrement	mode:	cancels	any	recurring	timer	event
initiated	by	pathName	start.

SEE	ALSO

ttk::widget

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	2005	Joe	English

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	bindtags

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

bindtags	-	Determine	which	bindings	apply	to	a	window,	and	order	of
evaluation

SYNOPSIS

bindtags	window	?tagList?

DESCRIPTION

When	a	binding	is	created	with	the	bind	command,	it	is	associated
either	with	a	particular	window	such	as	.a.b.c,	a	class	name	such	as
Button,	the	keyword	all,	or	any	other	string.	All	of	these	forms	are
called	binding	tags.	Each	window	contains	a	list	of	binding	tags	that
determine	how	events	are	processed	for	the	window.	When	an	event
occurs	in	a	window,	it	is	applied	to	each	of	the	window's	tags	in	order:
for	each	tag,	the	most	specific	binding	that	matches	the	given	tag	and
event	is	executed.	See	the	bind	command	for	more	information	on	the
matching	process.

By	default,	each	window	has	four	binding	tags	consisting	of	the	name	of
the	window,	the	window's	class	name,	the	name	of	the	window's
nearest	toplevel	ancestor,	and	all,	in	that	order.	Toplevel	windows	have
only	three	tags	by	default,	since	the	toplevel	name	is	the	same	as	that
of	the	window.	The	bindtags	command	allows	the	binding	tags	for	a
window	to	be	read	and	modified.

If	bindtags	is	invoked	with	only	one	argument,	then	the	current	set	of
binding	tags	for	window	is	returned	as	a	list.	If	the	tagList	argument	is
specified	to	bindtags,	then	it	must	be	a	proper	list;	the	tags	for	window
are	changed	to	the	elements	of	the	list.	The	elements	of	tagList	may	be

arbitrary	strings;	however,	any	tag	starting	with	a	dot	is	treated	as	the
name	of	a	window;	if	no	window	by	that	name	exists	at	the	time	an
event	is	processed,	then	the	tag	is	ignored	for	that	event.	The	order	of
the	elements	in	tagList	determines	the	order	in	which	binding	scripts	are
executed	in	response	to	events.	For	example,	the	command

bindtags	.b	{all	.	Button	.b}

reverses	the	order	in	which	binding	scripts	will	be	evaluated	for	a	button
named	.b	so	that	all	bindings	are	invoked	first,	following	by	bindings	for
.b's	toplevel	(“.”),	followed	by	class	bindings,	followed	by	bindings	for	.b.
If	tagList	is	an	empty	list	then	the	binding	tags	for	window	are	returned
to	the	default	state	described	above.

The	bindtags	command	may	be	used	to	introduce	arbitrary	additional
binding	tags	for	a	window,	or	to	remove	standard	tags.	For	example,	the
command

bindtags	.b	{.b	TrickyButton	.	all}

replaces	the	Button	tag	for	.b	with	TrickyButton.	This	means	that	the
default	widget	bindings	for	buttons,	which	are	associated	with	the
Button	tag,	will	no	longer	apply	to	.b,	but	any	bindings	associated	with
TrickyButton	(perhaps	some	new	button	behavior)	will	apply.

EXAMPLE

If	you	have	a	set	of	nested	frame	widgets	and	you	want	events	sent	to
a	button	widget	to	also	be	delivered	to	all	the	widgets	up	to	the	current
toplevel	(in	contrast	to	Tk's	default	behavior,	where	events	are	not
delivered	to	those	intermediate	windows)	to	make	it	easier	to	have
accelerators	that	are	only	active	for	part	of	a	window,	you	could	use	a
helper	procedure	like	this	to	help	set	things	up:

proc	setupBindtagsForTreeDelivery	{widget}	{

				set	tags	[list	$widget	[winfo	class	$widget]]

				set	w	$widget

				set	t	[winfo	toplevel	$w]

				while	{$w	ne	$t}	{

								set	w	[winfo	parent	$w]

								lappend	tags	$w

				}

				lappend	tags	all

				bindtags	$widget	$tags

}

SEE	ALSO

bind

KEYWORDS

binding,	event,	tag

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	grab

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
grab	-	Confine	pointer	and	keyboard	events	to	a	window	sub-
tree

SYNOPSIS
DESCRIPTION

grab	?-global?	window
grab	current	?window?
grab	release	window
grab	set	?-global?	window
grab	status	window

WARNING
BUGS
EXAMPLE
KEYWORDS

NAME

grab	-	Confine	pointer	and	keyboard	events	to	a	window	sub-tree

SYNOPSIS

grab	?-global?	window
grab	option	?arg	arg	...?

DESCRIPTION

This	command	implements	simple	pointer	and	keyboard	grabs	for	Tk.
Tk's	grabs	are	different	than	the	grabs	described	in	the	Xlib
documentation.	When	a	grab	is	set	for	a	particular	window,	Tk	restricts
all	pointer	events	to	the	grab	window	and	its	descendants	in	Tk's
window	hierarchy.	Whenever	the	pointer	is	within	the	grab	window's
subtree,	the	pointer	will	behave	exactly	the	same	as	if	there	had	been

no	grab	at	all	and	all	events	will	be	reported	in	the	normal	fashion.
When	the	pointer	is	outside	window's	tree,	button	presses	and	releases
and	mouse	motion	events	are	reported	to	window,	and	window	entry
and	window	exit	events	are	ignored.	The	grab	subtree	“owns”	the
pointer:	windows	outside	the	grab	subtree	will	be	visible	on	the	screen
but	they	will	be	insensitive	until	the	grab	is	released.	The	tree	of
windows	underneath	the	grab	window	can	include	top-level	windows,	in
which	case	all	of	those	top-level	windows	and	their	descendants	will
continue	to	receive	mouse	events	during	the	grab.

Two	forms	of	grabs	are	possible:	local	and	global.	A	local	grab	affects
only	the	grabbing	application:	events	will	be	reported	to	other
applications	as	if	the	grab	had	never	occurred.	Grabs	are	local	by
default.	A	global	grab	locks	out	all	applications	on	the	screen,	so	that
only	the	given	subtree	of	the	grabbing	application	will	be	sensitive	to
pointer	events	(mouse	button	presses,	mouse	button	releases,	pointer
motions,	window	entries,	and	window	exits).	During	global	grabs	the
window	manager	will	not	receive	pointer	events	either.

During	local	grabs,	keyboard	events	(key	presses	and	key	releases)	are
delivered	as	usual:	the	window	manager	controls	which	application
receives	keyboard	events,	and	if	they	are	sent	to	any	window	in	the
grabbing	application	then	they	are	redirected	to	the	focus	window.
During	a	global	grab	Tk	grabs	the	keyboard	so	that	all	keyboard	events
are	always	sent	to	the	grabbing	application.	The	focus	command	is	still
used	to	determine	which	window	in	the	application	receives	the
keyboard	events.	The	keyboard	grab	is	released	when	the	grab	is
released.

Grabs	apply	to	particular	displays.	If	an	application	has	windows	on
multiple	displays	then	it	can	establish	a	separate	grab	on	each	display.
The	grab	on	a	particular	display	affects	only	the	windows	on	that
display.	It	is	possible	for	different	applications	on	a	single	display	to
have	simultaneous	local	grabs,	but	only	one	application	can	have	a
global	grab	on	a	given	display	at	once.

The	grab	command	can	take	any	of	the	following	forms:

grab	?-global?	window
Same	as	grab	set,	described	below.

grab	current	?window?
If	window	is	specified,	returns	the	name	of	the	current	grab	window
in	this	application	for	window's	display,	or	an	empty	string	if	there	is
no	such	window.	If	window	is	omitted,	the	command	returns	a	list
whose	elements	are	all	of	the	windows	grabbed	by	this	application
for	all	displays,	or	an	empty	string	if	the	application	has	no	grabs.

grab	release	window
Releases	the	grab	on	window	if	there	is	one,	otherwise	does
nothing.	Returns	an	empty	string.

grab	set	?-global?	window
Sets	a	grab	on	window.	If	-global	is	specified	then	the	grab	is
global,	otherwise	it	is	local.	If	a	grab	was	already	in	effect	for	this
application	on	window's	display	then	it	is	automatically	released.	If
there	is	already	a	grab	on	window	and	it	has	the	same	global/local
form	as	the	requested	grab,	then	the	command	does	nothing.
Returns	an	empty	string.

grab	status	window
Returns	none	if	no	grab	is	currently	set	on	window,	local	if	a	local
grab	is	set	on	window,	and	global	if	a	global	grab	is	set.

WARNING

It	is	very	easy	to	use	global	grabs	to	render	a	display	completely
unusable	(e.g.	by	setting	a	grab	on	a	widget	which	does	not	respond	to
events	and	not	providing	any	mechanism	for	releasing	the	grab).	Take
extreme	care	when	using	them!

BUGS

It	took	an	incredibly	complex	and	gross	implementation	to	produce	the
simple	grab	effect	described	above.	Given	the	current	implementation,	it
is	not	safe	for	applications	to	use	the	Xlib	grab	facilities	at	all	except

through	the	Tk	grab	procedures.	If	applications	try	to	manipulate	X's
grab	mechanisms	directly,	things	will	probably	break.

If	a	single	process	is	managing	several	different	Tk	applications,	only
one	of	those	applications	can	have	a	local	grab	for	a	given	display	at
any	given	time.	If	the	applications	are	in	different	processes,	this
restriction	does	not	exist.

EXAMPLE

Set	a	grab	so	that	only	one	button	may	be	clicked	out	of	a	group.	The
other	buttons	are	unresponsive	to	the	mouse	until	the	middle	button	is
clicked.

pack	[button	.b1	-text	"Click	me!	#1"	-command	{destroy	.b1}]

pack	[button	.b2	-text	"Click	me!	#2"	-command	{destroy	.b2}]

pack	[button	.b3	-text	"Click	me!	#3"	-command	{destroy	.b3}]

grab	.b2

KEYWORDS

grab,	keyboard	events,	pointer	events,	window

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1992	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	panedwindow

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
panedwindow	-	Create	and	manipulate	panedwindow	widgets

SYNOPSIS
STANDARD	OPTIONS

-background	or	-bg,	background,	Background
-borderwidth	or	-bd,	borderWidth,	BorderWidth
-cursor,	cursor,	Cursor
-orient,	orient,	Orient
-relief,	relief,	Relief

WIDGET-SPECIFIC	OPTIONS
-handlepad,	handlePad,	HandlePad
-handlesize,	handleSize,	HandleSize
-height,	height,	Height
-opaqueresize,	opaqueResize,	OpaqueResize
-sashcursor,	sashCursor,	SashCursor
-sashpad,	sashPad,	SashPad
-sashrelief,	sashRelief,	SashRelief
-sashwidth,	sashWidth,	SashWidth
-showhandle,	showHandle,	ShowHandle
-width,	width,	Width

DESCRIPTION
WIDGET	COMMAND

pathName	add	window	?window	...?	?option	value	...?
pathName	cget	option
pathName	configure	?option?	?value	option	value	...?
pathName	forget	window	?window	...?
pathName	identify	x	y
pathName	proxy	?args?

pathName	proxy	coord
pathName	proxy	forget
pathName	proxy	place	x	y

pathName	sash	?args?
pathName	sash	coord	index
pathName	sash	dragto	index	x	y
pathName	sash	mark	index	x	y
pathName	sash	place	index	x	y

pathName	panecget	window	option
pathName	paneconfigure	window	?option?	?value	option
value	...?

-after	window
-before	window
-height	size
-hide	boolean
-minsize	n
-padx	n
-pady	n
-sticky	style
-stretch	when

always
first
last
middle
never

-width	size
pathName	panes

RESIZING	PANES
SEE	ALSO
KEYWORDS

NAME

panedwindow	-	Create	and	manipulate	panedwindow	widgets

SYNOPSIS

panedwindow	pathName	?options?

STANDARD	OPTIONS

-background	or	-bg,	background,	Background
-borderwidth	or	-bd,	borderWidth,	BorderWidth
-cursor,	cursor,	Cursor
-orient,	orient,	Orient
-relief,	relief,	Relief

WIDGET-SPECIFIC	OPTIONS

Command-Line	Name:	-handlepad
Database	Name:	handlePad
Database	Class:	HandlePad

When	sash	handles	are	drawn,	specifies	the	distance	from	the	top
or	left	end	of	the	sash	(depending	on	the	orientation	of	the	widget)
at	which	to	draw	the	handle.	May	be	any	value	accepted	by
Tk_GetPixels.

Command-Line	Name:	-handlesize
Database	Name:	handleSize
Database	Class:	HandleSize

Specifies	the	side	length	of	a	sash	handle.	Handles	are	always
drawn	as	squares.	May	be	any	value	accepted	by	Tk_GetPixels.

Command-Line	Name:	-height
Database	Name:	height
Database	Class:	Height

Specifies	a	desired	height	for	the	overall	panedwindow	widget.	May
be	any	value	accepted	by	Tk_GetPixels.	If	an	empty	string,	the
widget	will	be	made	high	enough	to	allow	all	contained	widgets	to
have	their	natural	height.

Command-Line	Name:	-opaqueresize
Database	Name:	opaqueResize
Database	Class:	OpaqueResize

Specifies	whether	panes	should	be	resized	as	a	sash	is	moved
(true),	or	if	resizing	should	be	deferred	until	the	sash	is	placed
(false).

Command-Line	Name:	-sashcursor

Database	Name:	sashCursor
Database	Class:	SashCursor

Mouse	cursor	to	use	when	over	a	sash.	If	null,
sb_h_double_arrow	will	be	used	for	horizontal	panedwindows,
and	sb_v_double_arrow	will	be	used	for	vertical	panedwindows.

Command-Line	Name:	-sashpad
Database	Name:	sashPad
Database	Class:	SashPad

Specifies	the	amount	of	padding	to	leave	of	each	side	of	a	sash.
May	be	any	value	accepted	by	Tk_GetPixels.

Command-Line	Name:	-sashrelief
Database	Name:	sashRelief
Database	Class:	SashRelief

Relief	to	use	when	drawing	a	sash.	May	be	any	of	the	standard	Tk
relief	values.

Command-Line	Name:	-sashwidth
Database	Name:	sashWidth
Database	Class:	SashWidth

Specifies	the	width	of	each	sash.	May	be	any	value	accepted	by
Tk_GetPixels.

Command-Line	Name:	-showhandle
Database	Name:	showHandle
Database	Class:	ShowHandle

Specifies	whether	sash	handles	should	be	shown.	May	be	any	valid
Tcl	boolean	value.

Command-Line	Name:	-width
Database	Name:	width
Database	Class:	Width

Specifies	a	desired	width	for	the	overall	panedwindow	widget.	May
be	any	value	accepted	by	Tk_GetPixels.	If	an	empty	string,	the
widget	will	be	made	wide	enough	to	allow	all	contained	widgets	to
have	their	natural	width.

DESCRIPTION

The	panedwindow	command	creates	a	new	window	(given	by	the
pathName	argument)	and	makes	it	into	a	panedwindow	widget.
Additional	options,	described	above,	may	be	specified	on	the	command
line	or	in	the	option	database	to	configure	aspects	of	the	panedwindow
such	as	its	default	background	color	and	relief.	The	panedwindow
command	returns	the	path	name	of	the	new	window.

A	panedwindow	widget	contains	any	number	of	panes,	arranged
horizontally	or	vertically,	according	to	the	value	of	the	-orient	option.
Each	pane	contains	one	widget,	and	each	pair	of	panes	is	separated	by
a	moveable	(via	mouse	movements)	sash.	Moving	a	sash	causes	the
widgets	on	either	side	of	the	sash	to	be	resized.

WIDGET	COMMAND

The	panedwindow	command	creates	a	new	Tcl	command	whose	name
is	the	same	as	the	path	name	of	the	panedwindow's	window.	This
command	may	be	used	to	invoke	various	operations	on	the	widget.	It
has	the	following	general	form:

pathName	option	?arg	arg	...?

PathName	is	the	name	of	the	command,	which	is	the	same	as	the
panedwindow	widget's	path	name.	Option	and	the	args	determine	the
exact	behavior	of	the	command.	The	following	commands	are	possible
for	panedwindow	widgets:

pathName	add	window	?window	...?	?option	value	...?
Add	one	or	more	windows	to	the	panedwindow,	each	in	a	separate
pane.	The	arguments	consist	of	the	names	of	one	or	more	windows
followed	by	pairs	of	arguments	that	specify	how	to	manage	the
windows.	Option	may	have	any	of	the	values	accepted	by	the
configure	subcommand.

pathName	cget	option
Returns	the	current	value	of	the	configuration	option	given	by
option.	Option	may	have	any	of	the	values	accepted	by	the
panedwindow	command.

pathName	configure	?option?	?value	option	value	...?
Query	or	modify	the	configuration	options	of	the	widget.	If	no	option
is	specified,	returns	a	list	describing	all	of	the	available	options	for
pathName	(see	Tk_ConfigureInfo	for	information	on	the	format	of
this	list).	If	option	is	specified	with	no	value,	then	the	command
returns	a	list	describing	the	one	named	option	(this	list	will	be
identical	to	the	corresponding	sublist	of	the	value	returned	if	no
option	is	specified).	If	one	or	more	option-value	pairs	are	specified,
then	the	command	modifies	the	given	widget	option(s)	to	have	the
given	value(s);	in	this	case	the	command	returns	an	empty	string.
Option	may	have	any	of	the	values	accepted	by	the	panedwindow
command.

pathName	forget	window	?window	...?
Remove	the	pane	containing	window	from	the	panedwindow.	All
geometry	management	options	for	window	will	be	forgotten.

pathName	identify	x	y
Identify	the	panedwindow	component	underneath	the	point	given
by	x	and	y,	in	window	coordinates.	If	the	point	is	over	a	sash	or	a
sash	handle,	the	result	is	a	two	element	list	containing	the	index	of
the	sash	or	handle,	and	a	word	indicating	whether	it	is	over	a	sash
or	a	handle,	such	as	{0	sash}	or	{2	handle}.	If	the	point	is	over	any
other	part	of	the	panedwindow,	the	result	is	an	empty	list.

pathName	proxy	?args?
This	command	is	used	to	query	and	change	the	position	of	the
sash	proxy,	used	for	rubberband-style	pane	resizing.	It	can	take
any	of	the	following	forms:

pathName	proxy	coord
Return	a	list	containing	the	x	and	y	coordinates	of	the	most
recent	proxy	location.

pathName	proxy	forget
Remove	the	proxy	from	the	display.

pathName	proxy	place	x	y
Place	the	proxy	at	the	given	x	and	y	coordinates.

pathName	sash	?args?
This	command	is	used	to	query	and	change	the	position	of	sashes
in	the	panedwindow.	It	can	take	any	of	the	following	forms:

pathName	sash	coord	index
Return	the	current	x	and	y	coordinate	pair	for	the	sash	given
by	index.	Index	must	be	an	integer	between	0	and	1	less	than
the	number	of	panes	in	the	panedwindow.	The	coordinates
given	are	those	of	the	top	left	corner	of	the	region	containing
the	sash.

pathName	sash	dragto	index	x	y
This	command	computes	the	difference	between	the	given
coordinates	and	the	coordinates	given	to	the	last	sash	mark
command	for	the	given	sash.	It	then	moves	that	sash	the
computed	difference.	The	return	value	is	the	empty	string.

pathName	sash	mark	index	x	y
Records	x	and	y	for	the	sash	given	by	index;	used	in
conjunction	with	later	sash	dragto	commands	to	move	the
sash.

pathName	sash	place	index	x	y
Place	the	sash	given	by	index	at	the	given	coordinates.

pathName	panecget	window	option
Query	a	management	option	for	window.	Option	may	be	any	value
allowed	by	the	paneconfigure	subcommand.

pathName	paneconfigure	window	?option?	?value	option	value	...?
Query	or	modify	the	management	options	for	window.	If	no	option
is	specified,	returns	a	list	describing	all	of	the	available	options	for

pathName	(see	Tk_ConfigureInfo	for	information	on	the	format	of
this	list).	If	option	is	specified	with	no	value,	then	the	command
returns	a	list	describing	the	one	named	option	(this	list	will	be
identical	to	the	corresponding	sublist	of	the	value	returned	if	no
option	is	specified).	If	one	or	more	option-value	pairs	are	specified,
then	the	command	modifies	the	given	widget	option(s)	to	have	the
given	value(s);	in	this	case	the	command	returns	an	empty	string.
The	following	options	are	supported:

-after	window
Insert	the	window	after	the	window	specified.	window	should
be	the	name	of	a	window	already	managed	by	pathName.

-before	window
Insert	the	window	before	the	window	specified.	window	should
be	the	name	of	a	window	already	managed	by	pathName.

-height	size
Specify	a	height	for	the	window.	The	height	will	be	the	outer
dimension	of	the	window	including	its	border,	if	any.	If	size	is
an	empty	string,	or	if	-height	is	not	specified,	then	the	height
requested	internally	by	the	window	will	be	used	initially;	the
height	may	later	be	adjusted	by	the	movement	of	sashes	in	the
panedwindow.	Size	may	be	any	value	accepted	by
Tk_GetPixels.

-hide	boolean
Controls	the	visibility	of	a	pane.	When	the	boolean	is	true
(according	to	Tcl_GetBoolean)	the	pane	will	not	be	visible,	but
it	will	still	be	maintained	in	the	list	of	panes.

-minsize	n
Specifies	that	the	size	of	the	window	cannot	be	made	less	than
n.	This	constraint	only	affects	the	size	of	the	widget	in	the
paned	dimension	—	the	x	dimension	for	horizontal
panedwindows,	the	y	dimension	for	vertical	panedwindows.
May	be	any	value	accepted	by	Tk_GetPixels.

-padx	n
Specifies	a	non-negative	value	indicating	how	much	extra
space	to	leave	on	each	side	of	the	window	in	the	X-direction.
The	value	may	have	any	of	the	forms	accepted	by
Tk_GetPixels.

-pady	n
Specifies	a	non-negative	value	indicating	how	much	extra
space	to	leave	on	each	side	of	the	window	in	the	Y-direction.
The	value	may	have	any	of	the	forms	accepted	by
Tk_GetPixels.

-sticky	style
If	a	window's	pane	is	larger	than	the	requested	dimensions	of
the	window,	this	option	may	be	used	to	position	(or	stretch)	the
window	within	its	pane.	Style	is	a	string	that	contains	zero	or
more	of	the	characters	n,	s,	e	or	w.	The	string	can	optionally
contains	spaces	or	commas,	but	they	are	ignored.	Each	letter
refers	to	a	side	(north,	south,	east,	or	west)	that	the	window
will	“stick”	to.	If	both	n	and	s	(or	e	and	w)	are	specified,	the
window	will	be	stretched	to	fill	the	entire	height	(or	width)	of	its
cavity.

-stretch	when
Controls	how	extra	space	is	allocated	to	each	of	the	panes.
When	is	one	of	always,	first,	last,	middle,	and	never.	The
panedwindow	will	calculate	the	required	size	of	all	its	panes.
Any	remaining	(or	deficit)	space	will	be	distributed	to	those
panes	marked	for	stretching.	The	space	will	be	distributed
based	on	each	panes	current	ratio	of	the	whole.	The	when
values	have	the	following	definition:

always
This	pane	will	always	stretch.

first
Only	if	this	pane	is	the	first	pane	(left-most	or	top-most)
will	it	stretch.

last
Only	if	this	pane	is	the	last	pane	(right-most	or	bottom-
most)	will	it	stretch.	This	is	the	default	value.

middle
Only	if	this	pane	is	not	the	first	or	last	pane	will	it	stretch.

never
This	pane	will	never	stretch.

-width	size
Specify	a	width	for	the	window.	The	width	will	be	the	outer
dimension	of	the	window	including	its	border,	if	any.	If	size	is
an	empty	string,	or	if	-width	is	not	specified,	then	the	width
requested	internally	by	the	window	will	be	used	initially;	the
width	may	later	be	adjusted	by	the	movement	of	sashes	in	the
panedwindow.	Size	may	be	any	value	accepted	by
Tk_GetPixels.

pathName	panes
Returns	an	ordered	list	of	the	widgets	managed	by	pathName.

RESIZING	PANES

A	pane	is	resized	by	grabbing	the	sash	(or	sash	handle	if	present)	and
dragging	with	the	mouse.	This	is	accomplished	via	mouse	motion
bindings	on	the	widget.	When	a	sash	is	moved,	the	sizes	of	the	panes
on	each	side	of	the	sash,	and	thus	the	widgets	in	those	panes,	are
adjusted.

When	a	pane	is	resized	from	outside	(e.g.	it	is	packed	to	expand	and
fill,	and	the	containing	toplevel	is	resized),	space	is	added	to	the	final
(rightmost	or	bottommost)	pane	in	the	window.

SEE	ALSO

ttk::panedwindow

KEYWORDS

panedwindow,	widget,	geometry	management

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1992	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	dialog

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
tk_dialog	-	Create	modal	dialog	and	wait	for	response

SYNOPSIS
DESCRIPTION

window
title
text
bitmap
default
string

EXAMPLE
SEE	ALSO
KEYWORDS

NAME

tk_dialog	-	Create	modal	dialog	and	wait	for	response

SYNOPSIS

tk_dialog	window	title	text	bitmap	default	string	string	...

DESCRIPTION

This	procedure	is	part	of	the	Tk	script	library.	Its	arguments	describe	a
dialog	box:

window
Name	of	top-level	window	to	use	for	dialog.	Any	existing	window	by
this	name	is	destroyed.

title

Text	to	appear	in	the	window	manager's	title	bar	for	the	dialog.

text
Message	to	appear	in	the	top	portion	of	the	dialog	box.

bitmap
If	non-empty,	specifies	a	bitmap	to	display	in	the	top	portion	of	the
dialog,	to	the	left	of	the	text.	If	this	is	an	empty	string	then	no
bitmap	is	displayed	in	the	dialog.

default
If	this	is	an	integer	greater	than	or	equal	to	zero,	then	it	gives	the
index	of	the	button	that	is	to	be	the	default	button	for	the	dialog	(0
for	the	leftmost	button,	and	so	on).	If	less	than	zero	or	an	empty
string	then	there	will	not	be	any	default	button.

string
There	will	be	one	button	for	each	of	these	arguments.	Each	string
specifies	text	to	display	in	a	button,	in	order	from	left	to	right.

After	creating	a	dialog	box,	tk_dialog	waits	for	the	user	to	select	one	of
the	buttons	either	by	clicking	on	the	button	with	the	mouse	or	by	typing
return	to	invoke	the	default	button	(if	any).	Then	it	returns	the	index	of
the	selected	button:	0	for	the	leftmost	button,	1	for	the	button	next	to	it,
and	so	on.	If	the	dialog's	window	is	destroyed	before	the	user	selects
one	of	the	buttons,	then	-1	is	returned.

While	waiting	for	the	user	to	respond,	tk_dialog	sets	a	local	grab.	This
prevents	the	user	from	interacting	with	the	application	in	any	way
except	to	invoke	the	dialog	box.

EXAMPLE

set	reply	[tk_dialog	.foo	"The	Title"	"Do	you	want	to	say	yes?"	\

								questhead	0	Yes	No	"I'm	not	sure"]

SEE	ALSO

tk_messageBox

KEYWORDS

bitmap,	dialog,	modal

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1992	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	tkvars

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

tkvars	-	Variables	used	or	set	by	Tk

DESCRIPTION

The	following	Tcl	variables	are	either	set	or	used	by	Tk	at	various	times
in	its	execution:

tk_library
This	variable	holds	the	file	name	for	a	directory	containing	a	library
of	Tcl	scripts	related	to	Tk.	These	scripts	include	an	initialization	file
that	is	normally	processed	whenever	a	Tk	application	starts	up,
plus	other	files	containing	procedures	that	implement	default
behaviors	for	widgets.	The	initial	value	of	tcl_library	is	set	when	Tk
is	added	to	an	interpreter;	this	is	done	by	searching	several
different	directories	until	one	is	found	that	contains	an	appropriate
Tk	startup	script.	If	the	TK_LIBRARY	environment	variable	exists,
then	the	directory	it	names	is	checked	first.	If	TK_LIBRARY	is	not
set	or	does	not	refer	to	an	appropriate	directory,	then	Tk	checks
several	other	directories	based	on	a	compiled-in	default	location,
the	location	of	the	Tcl	library	directory,	the	location	of	the	binary
containing	the	application,	and	the	current	working	directory.	The
variable	can	be	modified	by	an	application	to	switch	to	a	different
library.

tk_patchLevel
Contains	a	decimal	integer	giving	the	current	patch	level	for	Tk.
The	patch	level	is	incremented	for	each	new	release	or	patch,	and
it	uniquely	identifies	an	official	version	of	Tk.

tk::Priv

This	variable	is	an	array	containing	several	pieces	of	information
that	are	private	to	Tk.	The	elements	of	tk::Priv	are	used	by	Tk
library	procedures	and	default	bindings.	They	should	not	be
accessed	by	any	code	outside	Tk.

tk_strictMotif
This	variable	is	set	to	zero	by	default.	If	an	application	sets	it	to
one,	then	Tk	attempts	to	adhere	as	closely	as	possible	to	Motif
look-and-feel	standards.	For	example,	active	elements	such	as
buttons	and	scrollbar	sliders	will	not	change	color	when	the	pointer
passes	over	them.

tk_textRedraw

tk_textRelayout
These	variables	are	set	by	text	widgets	when	they	have	debugging
turned	on.	The	values	written	to	these	variables	can	be	used	to	test
or	debug	text	widget	operations.	These	variables	are	mostly	used
by	Tk's	test	suite.

tk_version
Tk	sets	this	variable	in	the	interpreter	for	each	application.	The
variable	holds	the	current	version	number	of	the	Tk	library	in	the
form	major.minor.	Major	and	minor	are	integers.	The	major	version
number	increases	in	any	Tk	release	that	includes	changes	that	are
not	backward	compatible	(i.e.	whenever	existing	Tk	applications
and	scripts	may	have	to	change	to	work	with	the	new	release).	The
minor	version	number	increases	with	each	new	release	of	Tk,
except	that	it	resets	to	zero	whenever	the	major	version	number
changes.

KEYWORDS

variables,	version,	text

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990-1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	ttk_radiobutton

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
ttk::radiobutton	-	Mutually	exclusive	option	widget

SYNOPSIS
DESCRIPTION
STANDARD	OPTIONS

-class
-compound,	compound,	Compound
-cursor,	cursor,	Cursor
-image,	image,	Image
-state
-style
-takefocus,	takeFocus,	TakeFocus
-text,	text,	Text
-textvariable,	textVariable,	Variable
-underline,	underline,	Underline
-width

WIDGET-SPECIFIC	OPTIONS
-command,	command,	Command
-value,	Value,	Value
-variable,	variable,	Variable

WIDGET	COMMAND
pathname	invoke

WIDGET	STATES
SEE	ALSO
KEYWORDS

NAME

ttk::radiobutton	-	Mutually	exclusive	option	widget

SYNOPSIS

ttk::radiobutton	pathName	?options?

DESCRIPTION

ttk::radiobutton	widgets	are	used	in	groups	to	show	or	change	a	set	of
mutually-exclusive	options.	Radiobuttons	are	linked	to	a	Tcl	variable,
and	have	an	associated	value;	when	a	radiobutton	is	clicked,	it	sets	the
variable	to	its	associated	value.

STANDARD	OPTIONS

-class
-compound,	compound,	Compound
-cursor,	cursor,	Cursor
-image,	image,	Image
-state
-style
-takefocus,	takeFocus,	TakeFocus
-text,	text,	Text
-textvariable,	textVariable,	Variable
-underline,	underline,	Underline
-width

WIDGET-SPECIFIC	OPTIONS

Command-Line	Name:	-command
Database	Name:	command
Database	Class:	Command

A	Tcl	script	to	evaluate	whenever	the	widget	is	invoked.

Command-Line	Name:	-value
Database	Name:	Value
Database	Class:	Value

The	value	to	store	in	the	associated	-variable	when	the	widget	is
selected.

Command-Line	Name:	-variable
Database	Name:	variable

Database	Class:	Variable
The	name	of	a	global	variable	whose	value	is	linked	to	the	widget.
Default	value	is	::selectedButton.

WIDGET	COMMAND

In	addition	to	the	standard	cget,	configure,	identify,	instate,	and	state
commands,	radiobuttons	support	the	following	additional	widget
commands:

pathname	invoke
Sets	the	-variable	to	the	-value,	selects	the	widget,	and	evaluates
the	associated	-command.	Returns	the	result	of	the	-command,	or
the	empty	string	if	no	-command	is	specified.

WIDGET	STATES

The	widget	does	not	respond	to	user	input	if	the	disabled	state	is	set.
The	widget	sets	the	selected	state	whenever	the	linked	-variable	is	set
to	the	widget's	-value,	and	clears	it	otherwise.	The	widget	sets	the
alternate	state	whenever	the	linked	-variable	is	unset.	(The	alternate
state	may	be	used	to	indicate	a	“tri-state”	or	“indeterminate”	selection.)

SEE	ALSO

ttk::widget,	ttk::checkbutton,	radiobutton

KEYWORDS

widget,	button,	option

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	2004	Joe	English

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	bitmap

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
bitmap	-	Images	that	display	two	colors

SYNOPSIS
DESCRIPTION
CREATING	BITMAPS

-background	color
-data	string
-file	name
-foreground	color
-maskdata	string
-maskfile	name

IMAGE	COMMAND
imageName	cget	option
imageName	configure	?option?	?value	option	value	...?

KEYWORDS

NAME

bitmap	-	Images	that	display	two	colors

SYNOPSIS

image	create	bitmap	?name?	?options?

DESCRIPTION

A	bitmap	is	an	image	whose	pixels	can	display	either	of	two	colors	or	be
transparent.	A	bitmap	image	is	defined	by	four	things:	a	background
color,	a	foreground	color,	and	two	bitmaps,	called	the	source	and	the
mask.	Each	of	the	bitmaps	specifies	0/1	values	for	a	rectangular	array
of	pixels,	and	the	two	bitmaps	must	have	the	same	dimensions.	For
pixels	where	the	mask	is	zero,	the	image	displays	nothing,	producing	a

transparent	effect.	For	other	pixels,	the	image	displays	the	foreground
color	if	the	source	data	is	one	and	the	background	color	if	the	source
data	is	zero.

CREATING	BITMAPS

Like	all	images,	bitmaps	are	created	using	the	image	create	command.
Bitmaps	support	the	following	options:

-background	color
Specifies	a	background	color	for	the	image	in	any	of	the	standard
ways	accepted	by	Tk.	If	this	option	is	set	to	an	empty	string	then
the	background	pixels	will	be	transparent.	This	effect	is	achieved
by	using	the	source	bitmap	as	the	mask	bitmap,	ignoring	any	-
maskdata	or	-maskfile	options.

-data	string
Specifies	the	contents	of	the	source	bitmap	as	a	string.	The	string
must	adhere	to	X11	bitmap	format	(e.g.,	as	generated	by	the
bitmap	program).	If	both	the	-data	and	-file	options	are	specified,
the	-data	option	takes	precedence.

-file	name
name	gives	the	name	of	a	file	whose	contents	define	the	source
bitmap.	The	file	must	adhere	to	X11	bitmap	format	(e.g.,	as
generated	by	the	bitmap	program).

-foreground	color
Specifies	a	foreground	color	for	the	image	in	any	of	the	standard
ways	accepted	by	Tk.

-maskdata	string
Specifies	the	contents	of	the	mask	as	a	string.	The	string	must
adhere	to	X11	bitmap	format	(e.g.,	as	generated	by	the	bitmap
program).	If	both	the	-maskdata	and	-maskfile	options	are
specified,	the	-maskdata	option	takes	precedence.

-maskfile	name

name	gives	the	name	of	a	file	whose	contents	define	the	mask.	The
file	must	adhere	to	X11	bitmap	format	(e.g.,	as	generated	by	the
bitmap	program).

IMAGE	COMMAND

When	a	bitmap	image	is	created,	Tk	also	creates	a	new	command
whose	name	is	the	same	as	the	image.	This	command	may	be	used	to
invoke	various	operations	on	the	image.	It	has	the	following	general
form:

imageName	option	?arg	arg	...?

Option	and	the	args	determine	the	exact	behavior	of	the	command.	The
following	commands	are	possible	for	bitmap	images:

imageName	cget	option
Returns	the	current	value	of	the	configuration	option	given	by
option.	Option	may	have	any	of	the	values	accepted	by	the	image
create	bitmap	command.

imageName	configure	?option?	?value	option	value	...?
Query	or	modify	the	configuration	options	for	the	image.	If	no
option	is	specified,	returns	a	list	describing	all	of	the	available
options	for	imageName	(see	Tk_ConfigureInfo	for	information	on
the	format	of	this	list).	If	option	is	specified	with	no	value,	then	the
command	returns	a	list	describing	the	one	named	option	(this	list
will	be	identical	to	the	corresponding	sublist	of	the	value	returned	if
no	option	is	specified).	If	one	or	more	option-value	pairs	are
specified,	then	the	command	modifies	the	given	option(s)	to	have
the	given	value(s);	in	this	case	the	command	returns	an	empty
string.	Option	may	have	any	of	the	values	accepted	by	the	image
create	bitmap	command.

KEYWORDS

bitmap,	image

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	grid

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
grid	-	Geometry	manager	that	arranges	widgets	in	a	grid

SYNOPSIS
DESCRIPTION

grid	slave	?slave	...?	?options?
grid	anchor	master	?anchor?
grid	bbox	master	?column	row?	?column2	row2?
grid	columnconfigure	master	index	?-option	value...?
grid	configure	slave	?slave	...?	?options?

-column	n
-columnspan	n
-in	other
-ipadx	amount
-ipady	amount
-padx	amount
-pady	amount
-row	n
-rowspan	n
-sticky	style

grid	forget	slave	?slave	...?
grid	info	slave
grid	location	master	x	y
grid	propagate	master	?boolean?
grid	rowconfigure	master	index	?-option	value...?
grid	remove	slave	?slave	...?
grid	size	master
grid	slaves	master	?-option	value?

RELATIVE	PLACEMENT
-
x
^

THE	GRID	ALGORITHM
GEOMETRY	PROPAGATION
RESTRICTIONS	ON	MASTER	WINDOWS
STACKING	ORDER
CREDITS
EXAMPLES
SEE	ALSO
KEYWORDS

NAME

grid	-	Geometry	manager	that	arranges	widgets	in	a	grid

SYNOPSIS

grid	option	arg	?arg	...?

DESCRIPTION

The	grid	command	is	used	to	communicate	with	the	grid	geometry
manager	that	arranges	widgets	in	rows	and	columns	inside	of	another
window,	called	the	geometry	master	(or	master	window).	The	grid
command	can	have	any	of	several	forms,	depending	on	the	option
argument:

grid	slave	?slave	...?	?options?
If	the	first	argument	to	grid	is	suitable	as	the	first	slave	argument	to
grid	configure,	either	a	window	name	(any	value	starting	with	.)	or
one	of	the	characters	x	or	^	(see	the	RELATIVE	PLACEMENT
section	below),	then	the	command	is	processed	in	the	same	way
as	grid	configure.

grid	anchor	master	?anchor?
The	anchor	value	controls	how	to	place	the	grid	within	the	master
when	no	row/column	has	any	weight.	See	THE	GRID	ALGORITHM
below	for	further	details.	The	default	anchor	is	nw.

grid	bbox	master	?column	row?	?column2	row2?

With	no	arguments,	the	bounding	box	(in	pixels)	of	the	grid	is
returned.	The	return	value	consists	of	4	integers.	The	first	two	are
the	pixel	offset	from	the	master	window	(x	then	y)	of	the	top-left
corner	of	the	grid,	and	the	second	two	integers	are	the	width	and
height	of	the	grid,	also	in	pixels.	If	a	single	column	and	row	is
specified	on	the	command	line,	then	the	bounding	box	for	that	cell
is	returned,	where	the	top	left	cell	is	numbered	from	zero.	If	both
column	and	row	arguments	are	specified,	then	the	bounding	box
spanning	the	rows	and	columns	indicated	is	returned.

grid	columnconfigure	master	index	?-option	value...?
Query	or	set	the	column	properties	of	the	index	column	of	the
geometry	master,	master.	The	valid	options	are	-minsize,	-weight,
-uniform	and	-pad.	If	one	or	more	options	are	provided,	then	index
may	be	given	as	a	list	of	column	indices	to	which	the	configuration
options	will	operate	on.	Indices	may	be	integers,	window	names	or
the	keyword	all.	For	all	the	options	apply	to	all	columns	currently
occupied	be	slave	windows.	For	a	window	name,	that	window	must
be	a	slave	of	this	master	and	the	options	apply	to	all	columns
currently	occupied	be	the	slave.	The	-minsize	option	sets	the
minimum	size,	in	screen	units,	that	will	be	permitted	for	this
column.	The	-weight	option	(an	integer	value)	sets	the	relative
weight	for	apportioning	any	extra	spaces	among	columns.	A	weight
of	zero	(0)	indicates	the	column	will	not	deviate	from	its	requested
size.	A	column	whose	weight	is	two	will	grow	at	twice	the	rate	as	a
column	of	weight	one	when	extra	space	is	allocated	to	the	layout.
The	-uniform	option,	when	a	non-empty	value	is	supplied,	places
the	column	in	a	uniform	group	with	other	columns	that	have	the
same	value	for	-uniform.	The	space	for	columns	belonging	to	a
uniform	group	is	allocated	so	that	their	sizes	are	always	in	strict
proportion	to	their	-weight	values.	See	THE	GRID	ALGORITHM
below	for	further	details.	The	-pad	option	specifies	the	number	of
screen	units	that	will	be	added	to	the	largest	window	contained
completely	in	that	column	when	the	grid	geometry	manager
requests	a	size	from	the	containing	window.	If	only	an	option	is
specified,	with	no	value,	the	current	value	of	that	option	is	returned.
If	only	the	master	window	and	index	is	specified,	all	the	current

settings	are	returned	in	a	list	of	“-option	value”	pairs.

grid	configure	slave	?slave	...?	?options?
The	arguments	consist	of	the	names	of	one	or	more	slave	windows
followed	by	pairs	of	arguments	that	specify	how	to	manage	the
slaves.	The	characters	-,	x	and	^,	can	be	specified	instead	of	a
window	name	to	alter	the	default	location	of	a	slave,	as	described
in	the	RELATIVE	PLACEMENT	section,	below.	The	following
options	are	supported:

-column	n
Insert	the	slave	so	that	it	occupies	the	nth	column	in	the	grid.
Column	numbers	start	with	0.	If	this	option	is	not	supplied,	then
the	slave	is	arranged	just	to	the	right	of	previous	slave
specified	on	this	call	to	grid,	or	column	“0”	if	it	is	the	first	slave.
For	each	x	that	immediately	precedes	the	slave,	the	column
position	is	incremented	by	one.	Thus	the	x	represents	a	blank
column	for	this	row	in	the	grid.

-columnspan	n
Insert	the	slave	so	that	it	occupies	n	columns	in	the	grid.	The
default	is	one	column,	unless	the	window	name	is	followed	by
a	-,	in	which	case	the	columnspan	is	incremented	once	for
each	immediately	following	-.

-in	other
Insert	the	slave(s)	in	the	master	window	given	by	other.	The
default	is	the	first	slave's	parent	window.

-ipadx	amount
The	amount	specifies	how	much	horizontal	internal	padding	to
leave	on	each	side	of	the	slave(s).	This	is	space	is	added
inside	the	slave(s)	border.	The	amount	must	be	a	valid	screen
distance,	such	as	2	or	.5c.	It	defaults	to	0.

-ipady	amount
The	amount	specifies	how	much	vertical	internal	padding	to
leave	on	the	top	and	bottom	of	the	slave(s).	This	space	is

added	inside	the	slave(s)	border.	The	amount	defaults	to	0.

-padx	amount
The	amount	specifies	how	much	horizontal	external	padding	to
leave	on	each	side	of	the	slave(s),	in	screen	units.	Amount
may	be	a	list	of	two	values	to	specify	padding	for	left	and	right
separately.	The	amount	defaults	to	0.	This	space	is	added
outside	the	slave(s)	border.

-pady	amount
The	amount	specifies	how	much	vertical	external	padding	to
leave	on	the	top	and	bottom	of	the	slave(s),	in	screen	units.
Amount	may	be	a	list	of	two	values	to	specify	padding	for	top
and	bottom	separately.	The	amount	defaults	to	0.	This	space	is
added	outside	the	slave(s)	border.

-row	n
Insert	the	slave	so	that	it	occupies	the	nth	row	in	the	grid.	Row
numbers	start	with	0.	If	this	option	is	not	supplied,	then	the
slave	is	arranged	on	the	same	row	as	the	previous	slave
specified	on	this	call	to	grid,	or	the	first	unoccupied	row	if	this
is	the	first	slave.

-rowspan	n
Insert	the	slave	so	that	it	occupies	n	rows	in	the	grid.	The
default	is	one	row.	If	the	next	grid	command	contains	^
characters	instead	of	slaves	that	line	up	with	the	columns	of
this	slave,	then	the	rowspan	of	this	slave	is	extended	by	one.

-sticky	style
If	a	slave's	cell	is	larger	than	its	requested	dimensions,	this
option	may	be	used	to	position	(or	stretch)	the	slave	within	its
cell.	Style	is	a	string	that	contains	zero	or	more	of	the
characters	n,	s,	e	or	w.	The	string	can	optionally	contains
spaces	or	commas,	but	they	are	ignored.	Each	letter	refers	to
a	side	(north,	south,	east,	or	west)	that	the	slave	will	“stick”	to.
If	both	n	and	s	(or	e	and	w)	are	specified,	the	slave	will	be
stretched	to	fill	the	entire	height	(or	width)	of	its	cavity.	The

sticky	option	subsumes	the	combination	of	-anchor	and	-fill
that	is	used	by	pack.	The	default	is	“”,	which	causes	the	slave
to	be	centered	in	its	cavity,	at	its	requested	size.

If	any	of	the	slaves	are	already	managed	by	the	geometry	manager
then	any	unspecified	options	for	them	retain	their	previous	values
rather	than	receiving	default	values.

grid	forget	slave	?slave	...?
Removes	each	of	the	slaves	from	grid	for	its	master	and	unmaps
their	windows.	The	slaves	will	no	longer	be	managed	by	the	grid
geometry	manager.	The	configuration	options	for	that	window	are
forgotten,	so	that	if	the	slave	is	managed	once	more	by	the	grid
geometry	manager,	the	initial	default	settings	are	used.

grid	info	slave
Returns	a	list	whose	elements	are	the	current	configuration	state	of
the	slave	given	by	slave	in	the	same	option-value	form	that	might
be	specified	to	grid	configure.	The	first	two	elements	of	the	list	are
“-in	master”	where	master	is	the	slave's	master.

grid	location	master	x	y
Given	x	and	y	values	in	screen	units	relative	to	the	master	window,
the	column	and	row	number	at	that	x	and	y	location	is	returned.	For
locations	that	are	above	or	to	the	left	of	the	grid,	-1	is	returned.

grid	propagate	master	?boolean?
If	boolean	has	a	true	boolean	value	such	as	1	or	on	then
propagation	is	enabled	for	master,	which	must	be	a	window	name
(see	GEOMETRY	PROPAGATION	below).	If	boolean	has	a	false
boolean	value	then	propagation	is	disabled	for	master.	In	either	of
these	cases	an	empty	string	is	returned.	If	boolean	is	omitted	then
the	command	returns	0	or	1	to	indicate	whether	propagation	is
currently	enabled	for	master.	Propagation	is	enabled	by	default.

grid	rowconfigure	master	index	?-option	value...?
Query	or	set	the	row	properties	of	the	index	row	of	the	geometry
master,	master.	The	valid	options	are	-minsize,	-weight,	-uniform

and	-pad.	If	one	or	more	options	are	provided,	then	index	may	be
given	as	a	list	of	row	indices	to	which	the	configuration	options	will
operate	on.	Indices	may	be	integers,	window	names	or	the	keyword
all.	For	all	the	options	apply	to	all	rows	currently	occupied	be	slave
windows.	For	a	window	name,	that	window	must	be	a	slave	of	this
master	and	the	options	apply	to	all	rows	currently	occupied	be	the
slave.	The	-minsize	option	sets	the	minimum	size,	in	screen	units,
that	will	be	permitted	for	this	row.	The	-weight	option	(an	integer
value)	sets	the	relative	weight	for	apportioning	any	extra	spaces
among	rows.	A	weight	of	zero	(0)	indicates	the	row	will	not	deviate
from	its	requested	size.	A	row	whose	weight	is	two	will	grow	at
twice	the	rate	as	a	row	of	weight	one	when	extra	space	is	allocated
to	the	layout.	The	-uniform	option,	when	a	non-empty	value	is
supplied,	places	the	row	in	a	uniform	group	with	other	rows	that
have	the	same	value	for	-uniform.	The	space	for	rows	belonging	to
a	uniform	group	is	allocated	so	that	their	sizes	are	always	in	strict
proportion	to	their	-weight	values.	See	THE	GRID	ALGORITHM
below	for	further	details.	The	-pad	option	specifies	the	number	of
screen	units	that	will	be	added	to	the	largest	window	contained
completely	in	that	row	when	the	grid	geometry	manager	requests	a
size	from	the	containing	window.	If	only	an	option	is	specified,	with
no	value,	the	current	value	of	that	option	is	returned.	If	only	the
master	window	and	index	is	specified,	all	the	current	settings	are
returned	in	a	list	of	“-option	value”	pairs.

grid	remove	slave	?slave	...?
Removes	each	of	the	slaves	from	grid	for	its	master	and	unmaps
their	windows.	The	slaves	will	no	longer	be	managed	by	the	grid
geometry	manager.	However,	the	configuration	options	for	that
window	are	remembered,	so	that	if	the	slave	is	managed	once
more	by	the	grid	geometry	manager,	the	previous	values	are
retained.

grid	size	master
Returns	the	size	of	the	grid	(in	columns	then	rows)	for	master.	The
size	is	determined	either	by	the	slave	occupying	the	largest	row	or
column,	or	the	largest	column	or	row	with	a	minsize,	weight,	or

pad	that	is	non-zero.

grid	slaves	master	?-option	value?
If	no	options	are	supplied,	a	list	of	all	of	the	slaves	in	master	are
returned,	most	recently	manages	first.	Option	can	be	either	-row	or
-column	which	causes	only	the	slaves	in	the	row	(or	column)
specified	by	value	to	be	returned.

RELATIVE	PLACEMENT

The	grid	command	contains	a	limited	set	of	capabilities	that	permit
layouts	to	be	created	without	specifying	the	row	and	column	information
for	each	slave.	This	permits	slaves	to	be	rearranged,	added,	or
removed	without	the	need	to	explicitly	specify	row	and	column
information.	When	no	column	or	row	information	is	specified	for	a	slave,
default	values	are	chosen	for	column,	row,	columnspan	and	rowspan
at	the	time	the	slave	is	managed.	The	values	are	chosen	based	upon
the	current	layout	of	the	grid,	the	position	of	the	slave	relative	to	other
slaves	in	the	same	grid	command,	and	the	presence	of	the	characters	-,
x,	and	^	in	grid	command	where	slave	names	are	normally	expected.

-
This	increases	the	columnspan	of	the	slave	to	the	left.	Several	-'s	in
a	row	will	successively	increase	the	columnspan.	A	-	may	not	follow
a	^	or	a	x,	nor	may	it	be	the	first	slave	argument	to	grid	configure.

x
This	leaves	an	empty	column	between	the	slave	on	the	left	and	the
slave	on	the	right.

^
This	extends	the	rowspan	of	the	slave	above	the	^'s	in	the	grid.
The	number	of	^'s	in	a	row	must	match	the	number	of	columns
spanned	by	the	slave	above	it.

THE	GRID	ALGORITHM

The	grid	geometry	manager	lays	out	its	slaves	in	three	steps.	In	the	first

step,	the	minimum	size	needed	to	fit	all	of	the	slaves	is	computed,	then
(if	propagation	is	turned	on),	a	request	is	made	of	the	master	window	to
become	that	size.	In	the	second	step,	the	requested	size	is	compared
against	the	actual	size	of	the	master.	If	the	sizes	are	different,	then
spaces	is	added	to	or	taken	away	from	the	layout	as	needed.	For	the
final	step,	each	slave	is	positioned	in	its	row(s)	and	column(s)	based	on
the	setting	of	its	sticky	flag.

To	compute	the	minimum	size	of	a	layout,	the	grid	geometry	manager
first	looks	at	all	slaves	whose	columnspan	and	rowspan	values	are	one,
and	computes	the	nominal	size	of	each	row	or	column	to	be	either	the
minsize	for	that	row	or	column,	or	the	sum	of	the	padding	plus	the	size
of	the	largest	slave,	whichever	is	greater.	After	that	the	rows	or	columns
in	each	uniform	group	adapt	to	each	other.	Then	the	slaves	whose
rowspans	or	columnspans	are	greater	than	one	are	examined.	If	a
group	of	rows	or	columns	need	to	be	increased	in	size	in	order	to
accommodate	these	slaves,	then	extra	space	is	added	to	each	row	or
column	in	the	group	according	to	its	weight.	For	each	group	whose
weights	are	all	zero,	the	additional	space	is	apportioned	equally.

When	multiple	rows	or	columns	belong	to	a	uniform	group,	the	space
allocated	to	them	is	always	in	proportion	to	their	weights.	(A	weight	of
zero	is	considered	to	be	1.)	In	other	words,	a	row	or	column	configured
with	-weight	1	-uniform	a	will	have	exactly	the	same	size	as	any	other
row	or	column	configured	with	-weight	1	-uniform	a.	A	row	or	column
configured	with	-weight	2	-uniform	b	will	be	exactly	twice	as	large	as
one	that	is	configured	with	-weight	1	-uniform	b.

More	technically,	each	row	or	column	in	the	group	will	have	a	size	equal
to	k*weight	for	some	constant	k.	The	constant	k	is	chosen	so	that	no
row	or	column	becomes	smaller	than	its	minimum	size.	For	example,	if
all	rows	or	columns	in	a	group	have	the	same	weight,	then	each	row	or
column	will	have	the	same	size	as	the	largest	row	or	column	in	the
group.

For	masters	whose	size	is	larger	than	the	requested	layout,	the
additional	space	is	apportioned	according	to	the	row	and	column
weights.	If	all	of	the	weights	are	zero,	the	layout	is	placed	within	its

master	according	to	the	anchor	value.	For	masters	whose	size	is
smaller	than	the	requested	layout,	space	is	taken	away	from	columns
and	rows	according	to	their	weights.	However,	once	a	column	or	row
shrinks	to	its	minsize,	its	weight	is	taken	to	be	zero.	If	more	space
needs	to	be	removed	from	a	layout	than	would	be	permitted,	as	when
all	the	rows	or	columns	are	at	their	minimum	sizes,	the	layout	is	placed
and	clipped	according	to	the	anchor	value.

GEOMETRY	PROPAGATION

The	grid	geometry	manager	normally	computes	how	large	a	master
must	be	to	just	exactly	meet	the	needs	of	its	slaves,	and	it	sets	the
requested	width	and	height	of	the	master	to	these	dimensions.	This
causes	geometry	information	to	propagate	up	through	a	window
hierarchy	to	a	top-level	window	so	that	the	entire	sub-tree	sizes	itself	to
fit	the	needs	of	the	leaf	windows.	However,	the	grid	propagate
command	may	be	used	to	turn	off	propagation	for	one	or	more	masters.
If	propagation	is	disabled	then	grid	will	not	set	the	requested	width	and
height	of	the	master	window.	This	may	be	useful	if,	for	example,	you
wish	for	a	master	window	to	have	a	fixed	size	that	you	specify.

RESTRICTIONS	ON	MASTER	WINDOWS

The	master	for	each	slave	must	either	be	the	slave's	parent	(the
default)	or	a	descendant	of	the	slave's	parent.	This	restriction	is
necessary	to	guarantee	that	the	slave	can	be	placed	over	any	part	of	its
master	that	is	visible	without	danger	of	the	slave	being	clipped	by	its
parent.	In	addition,	all	slaves	in	one	call	to	grid	must	have	the	same
master.

STACKING	ORDER

If	the	master	for	a	slave	is	not	its	parent	then	you	must	make	sure	that
the	slave	is	higher	in	the	stacking	order	than	the	master.	Otherwise	the
master	will	obscure	the	slave	and	it	will	appear	as	if	the	slave	has	not
been	managed	correctly.	The	easiest	way	to	make	sure	the	slave	is
higher	than	the	master	is	to	create	the	master	window	first:	the	most
recently	created	window	will	be	highest	in	the	stacking	order.

CREDITS

The	grid	command	is	based	on	ideas	taken	from	the	GridBag	geometry
manager	written	by	Doug.	Stein,	and	the	blt_table	geometry	manager,
written	by	George	Howlett.

EXAMPLES

A	toplevel	window	containing	a	text	widget	and	two	scrollbars:

#	Make	the	widgets

toplevel	.t

text	.t.txt	-wrap	none	-xscroll	{.t.h	set}	-yscroll	{.t.v	set}

scrollbar	.t.v	-orient	vertical			-command	{.t.txt	yview}

scrollbar	.t.h	-orient	horizontal	-command	{.t.txt	xview}

#	Lay	them	out

grid	.t.txt	.t.v	-sticky	nsew

grid	.t.h								-sticky	nsew

#	Tell	the	text	widget	to	take	all	the	extra	room

grid	rowconfigure				.t	.t.txt	-weight	1

grid	columnconfigure	.t	.t.txt	-weight	1

Three	widgets	of	equal	width,	despite	their	different	“natural”	widths:

button	.b	-text	"Foo"

entry	.e	-variable	foo

label	.l	-text	"This	is	a	fairly	long	piece	of	text"

grid	.b	.e	.l	-sticky	ew

grid	columnconfigure	.	"all"	-uniform	allTheSame

SEE	ALSO

pack,	place

KEYWORDS

geometry	manager,	location,	grid,	cell,	propagation,	size,	pack

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	photo

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
photo	-	Full-color	images

SYNOPSIS
DESCRIPTION
CREATING	PHOTOS

-data	string
-format	format-name
-file	name
-gamma	value
-height	number
-palette	palette-spec
-width	number

IMAGE	COMMAND
imageName	blank
imageName	cget	option
imageName	configure	?option?	?value	option	value	...?
imageName	copy	sourceImage	?option	value(s)	...?

-from	x1	y1	x2	y2
-to	x1	y1	x2	y2
-shrink
-zoom	x	y
-subsample	x	y
-compositingrule	rule

imageName	data	?option	value(s)	...?
-background	color
-format	format-name
-from	x1	y1	x2	y2
-grayscale

imageName	get	x	y
imageName	put	data	?option	value(s)	...?

-format	format-name

-to	x1	y1	?x2	y2?
imageName	read	filename	?option	value(s)	...?

-format	format-name
-from	x1	y1	x2	y2
-shrink
-to	x	y

imageName	redither
imageName	transparency	subcommand	?arg	arg	...?

imageName	transparency	get	x	y
imageName	transparency	set	x	y	boolean

imageName	write	filename	?option	value(s)	...?
-background	color
-format	format-name
-from	x1	y1	x2	y2
-grayscale

IMAGE	FORMATS
COLOR	ALLOCATION
CREDITS
EXAMPLE
SEE	ALSO
KEYWORDS

NAME

photo	-	Full-color	images

SYNOPSIS

image	create	photo	?name?	?options?

DESCRIPTION

A	photo	is	an	image	whose	pixels	can	display	any	color	or	be
transparent.	A	photo	image	is	stored	internally	in	full	color	(32	bits	per
pixel),	and	is	displayed	using	dithering	if	necessary.	Image	data	for	a
photo	image	can	be	obtained	from	a	file	or	a	string,	or	it	can	be	supplied
from	C	code	through	a	procedural	interface.	At	present,	only	GIF	and
PPM/PGM	formats	are	supported,	but	an	interface	exists	to	allow

additional	image	file	formats	to	be	added	easily.	A	photo	image	is
transparent	in	regions	where	no	image	data	has	been	supplied	or	where
it	has	been	set	transparent	by	the	transparency	set	subcommand.

CREATING	PHOTOS

Like	all	images,	photos	are	created	using	the	image	create	command.
Photos	support	the	following	options:

-data	string
Specifies	the	contents	of	the	image	as	a	string.	The	string	should
contain	binary	data	or,	for	some	formats,	base64-encoded	data
(this	is	currently	guaranteed	to	be	supported	for	GIF	images).	The
format	of	the	string	must	be	one	of	those	for	which	there	is	an
image	file	format	handler	that	will	accept	string	data.	If	both	the	-
data	and	-file	options	are	specified,	the	-file	option	takes
precedence.

-format	format-name
Specifies	the	name	of	the	file	format	for	the	data	specified	with	the	-
data	or	-file	option.

-file	name
name	gives	the	name	of	a	file	that	is	to	be	read	to	supply	data	for
the	photo	image.	The	file	format	must	be	one	of	those	for	which
there	is	an	image	file	format	handler	that	can	read	data.

-gamma	value
Specifies	that	the	colors	allocated	for	displaying	this	image	in	a
window	should	be	corrected	for	a	non-linear	display	with	the
specified	gamma	exponent	value.	(The	intensity	produced	by	most
CRT	displays	is	a	power	function	of	the	input	value,	to	a	good
approximation;	gamma	is	the	exponent	and	is	typically	around	2).
The	value	specified	must	be	greater	than	zero.	The	default	value	is
one	(no	correction).	In	general,	values	greater	than	one	will	make
the	image	lighter,	and	values	less	than	one	will	make	it	darker.

-height	number

Specifies	the	height	of	the	image,	in	pixels.	This	option	is	useful
primarily	in	situations	where	the	user	wishes	to	build	up	the
contents	of	the	image	piece	by	piece.	A	value	of	zero	(the	default)
allows	the	image	to	expand	or	shrink	vertically	to	fit	the	data	stored
in	it.

-palette	palette-spec
Specifies	the	resolution	of	the	color	cube	to	be	allocated	for
displaying	this	image,	and	thus	the	number	of	colors	used	from	the
colormaps	of	the	windows	where	it	is	displayed.	The	palette-spec
string	may	be	either	a	single	decimal	number,	specifying	the
number	of	shades	of	gray	to	use,	or	three	decimal	numbers
separated	by	slashes	(/),	specifying	the	number	of	shades	of	red,
green	and	blue	to	use,	respectively.	If	the	first	form	(a	single
number)	is	used,	the	image	will	be	displayed	in	monochrome	(i.e.,
grayscale).

-width	number
Specifies	the	width	of	the	image,	in	pixels.	This	option	is	useful
primarily	in	situations	where	the	user	wishes	to	build	up	the
contents	of	the	image	piece	by	piece.	A	value	of	zero	(the	default)
allows	the	image	to	expand	or	shrink	horizontally	to	fit	the	data
stored	in	it.

IMAGE	COMMAND

When	a	photo	image	is	created,	Tk	also	creates	a	new	command
whose	name	is	the	same	as	the	image.	This	command	may	be	used	to
invoke	various	operations	on	the	image.	It	has	the	following	general
form:

imageName	option	?arg	arg	...?

Option	and	the	args	determine	the	exact	behavior	of	the	command.

Those	options	that	write	data	to	the	image	generally	expand	the	size	of

the	image,	if	necessary,	to	accommodate	the	data	written	to	the	image,
unless	the	user	has	specified	non-zero	values	for	the	-width	and/or	-
height	configuration	options,	in	which	case	the	width	and/or	height,
respectively,	of	the	image	will	not	be	changed.

The	following	commands	are	possible	for	photo	images:

imageName	blank
Blank	the	image;	that	is,	set	the	entire	image	to	have	no	data,	so	it
will	be	displayed	as	transparent,	and	the	background	of	whatever
window	it	is	displayed	in	will	show	through.

imageName	cget	option
Returns	the	current	value	of	the	configuration	option	given	by
option.	Option	may	have	any	of	the	values	accepted	by	the	image
create	photo	command.

imageName	configure	?option?	?value	option	value	...?
Query	or	modify	the	configuration	options	for	the	image.	If	no
option	is	specified,	returns	a	list	describing	all	of	the	available
options	for	imageName	(see	Tk_ConfigureInfo	for	information	on
the	format	of	this	list).	If	option	is	specified	with	no	value,	then	the
command	returns	a	list	describing	the	one	named	option	(this	list
will	be	identical	to	the	corresponding	sublist	of	the	value	returned	if
no	option	is	specified).	If	one	or	more	option-value	pairs	are
specified,	then	the	command	modifies	the	given	option(s)	to	have
the	given	value(s);	in	this	case	the	command	returns	an	empty
string.	Option	may	have	any	of	the	values	accepted	by	the	image
create	photo	command.

imageName	copy	sourceImage	?option	value(s)	...?
Copies	a	region	from	the	image	called	sourceImage	(which	must	be
a	photo	image)	to	the	image	called	imageName,	possibly	with	pixel
zooming	and/or	subsampling.	If	no	options	are	specified,	this
command	copies	the	whole	of	sourceImage	into	imageName,
starting	at	coordinates	(0,0)	in	imageName.	The	following	options
may	be	specified:

-from	x1	y1	x2	y2
Specifies	a	rectangular	sub-region	of	the	source	image	to	be
copied.	(x1,y1)	and	(x2,y2)	specify	diagonally	opposite	corners
of	the	rectangle.	If	x2	and	y2	are	not	specified,	the	default
value	is	the	bottom-right	corner	of	the	source	image.	The
pixels	copied	will	include	the	left	and	top	edges	of	the	specified
rectangle	but	not	the	bottom	or	right	edges.	If	the	-from	option
is	not	given,	the	default	is	the	whole	source	image.

-to	x1	y1	x2	y2
Specifies	a	rectangular	sub-region	of	the	destination	image	to
be	affected.	(x1,y1)	and	(x2,y2)	specify	diagonally	opposite
corners	of	the	rectangle.	If	x2	and	y2	are	not	specified,	the
default	value	is	(x1,y1)	plus	the	size	of	the	source	region	(after
subsampling	and	zooming,	if	specified).	If	x2	and	y2	are
specified,	the	source	region	will	be	replicated	if	necessary	to	fill
the	destination	region	in	a	tiled	fashion.

-shrink
Specifies	that	the	size	of	the	destination	image	should	be
reduced,	if	necessary,	so	that	the	region	being	copied	into	is	at
the	bottom-right	corner	of	the	image.	This	option	will	not	affect
the	width	or	height	of	the	image	if	the	user	has	specified	a	non-
zero	value	for	the	-width	or	-height	configuration	option,
respectively.

-zoom	x	y
Specifies	that	the	source	region	should	be	magnified	by	a
factor	of	x	in	the	X	direction	and	y	in	the	Y	direction.	If	y	is	not
given,	the	default	value	is	the	same	as	x.	With	this	option,	each
pixel	in	the	source	image	will	be	expanded	into	a	block	of	x	x	y
pixels	in	the	destination	image,	all	the	same	color.	x	and	y
must	be	greater	than	0.

-subsample	x	y
Specifies	that	the	source	image	should	be	reduced	in	size	by
using	only	every	xth	pixel	in	the	X	direction	and	yth	pixel	in	the
Y	direction.	Negative	values	will	cause	the	image	to	be	flipped

about	the	Y	or	X	axes,	respectively.	If	y	is	not	given,	the	default
value	is	the	same	as	x.

-compositingrule	rule
Specifies	how	transparent	pixels	in	the	source	image	are
combined	with	the	destination	image.	When	a	compositing	rule
of	overlay	is	set,	the	old	contents	of	the	destination	image	are
visible,	as	if	the	source	image	were	printed	on	a	piece	of
transparent	film	and	placed	over	the	top	of	the	destination.
When	a	compositing	rule	of	set	is	set,	the	old	contents	of	the
destination	image	are	discarded	and	the	source	image	is	used
as-is.	The	default	compositing	rule	is	overlay.

imageName	data	?option	value(s)	...?
Returns	image	data	in	the	form	of	a	string.	The	following	options
may	be	specified:

-background	color
If	the	color	is	specified,	the	data	will	not	contain	any
transparency	information.	In	all	transparent	pixels	the	color	will
be	replaced	by	the	specified	color.

-format	format-name
Specifies	the	name	of	the	image	file	format	handler	to	be	used.
Specifically,	this	subcommand	searches	for	the	first	handler
whose	name	matches	an	initial	substring	of	format-name	and
which	has	the	capability	to	read	this	image	data.	If	this	option
is	not	given,	this	subcommand	uses	the	first	handler	that	has
the	capability	to	read	the	image	data.

-from	x1	y1	x2	y2
Specifies	a	rectangular	region	of	imageName	to	be	returned.	If
only	x1	and	y1	are	specified,	the	region	extends	from	(x1,y1)	to
the	bottom-right	corner	of	imageName.	If	all	four	coordinates
are	given,	they	specify	diagonally	opposite	corners	of	the
rectangular	region,	including	x1,y1	and	excluding	x2,y2.	The
default,	if	this	option	is	not	given,	is	the	whole	image.

-grayscale
If	this	options	is	specified,	the	data	will	not	contain	color
information.	All	pixel	data	will	be	transformed	into	grayscale.

imageName	get	x	y
Returns	the	color	of	the	pixel	at	coordinates	(x,y)	in	the	image	as	a
list	of	three	integers	between	0	and	255,	representing	the	red,
green	and	blue	components	respectively.

imageName	put	data	?option	value(s)	...?
Sets	pixels	in	imageName	to	the	data	specified	in	data.	This
command	first	searches	the	list	of	image	file	format	handlers	for	a
handler	that	can	interpret	the	data	in	data,	and	then	reads	the
image	encoded	within	into	imageName	(the	destination	image).	If
data	does	not	match	any	known	format,	an	attempt	to	interpret	it	as
a	(top-to-bottom)	list	of	scan-lines	is	made,	with	each	scan-line
being	a	(left-to-right)	list	of	pixel	colors	(see	Tk_GetColor	for	a
description	of	valid	colors.)	Every	scan-line	must	be	of	the	same
length.	Note	that	when	data	is	a	single	color	name,	you	are
instructing	Tk	to	fill	a	rectangular	region	with	that	color.	The
following	options	may	be	specified:

-format	format-name
Specifies	the	format	of	the	image	data	in	data.	Specifically,
only	image	file	format	handlers	whose	names	begin	with
format-name	will	be	used	while	searching	for	an	image	data
format	handler	to	read	the	data.

-to	x1	y1	?x2	y2?
Specifies	the	coordinates	of	the	top-left	corner	(x1,y1)	of	the
region	of	imageName	into	which	data	from	filename	are	to	be
read.	The	default	is	(0,0).	If	x2,y2	is	given	and	data	is	not	large
enough	to	cover	the	rectangle	specified	by	this	option,	the
image	data	extracted	will	be	tiled	so	it	covers	the	entire
destination	rectangle.	Note	that	if	data	specifies	a	single	color
value,	then	a	region	extending	to	the	bottom-right	corner
represented	by	(x2,y2)	will	be	filled	with	that	color.

imageName	read	filename	?option	value(s)	...?
Reads	image	data	from	the	file	named	filename	into	the	image.
This	command	first	searches	the	list	of	image	file	format	handlers
for	a	handler	that	can	interpret	the	data	in	filename,	and	then	reads
the	image	in	filename	into	imageName	(the	destination	image).	The
following	options	may	be	specified:

-format	format-name
Specifies	the	format	of	the	image	data	in	filename.	Specifically,
only	image	file	format	handlers	whose	names	begin	with
format-name	will	be	used	while	searching	for	an	image	data
format	handler	to	read	the	data.

-from	x1	y1	x2	y2
Specifies	a	rectangular	sub-region	of	the	image	file	data	to	be
copied	to	the	destination	image.	If	only	x1	and	y1	are	specified,
the	region	extends	from	(x1,y1)	to	the	bottom-right	corner	of
the	image	in	the	image	file.	If	all	four	coordinates	are	specified,
they	specify	diagonally	opposite	corners	or	the	region.	The
default,	if	this	option	is	not	specified,	is	the	whole	of	the	image
in	the	image	file.

-shrink
If	this	option,	the	size	of	imageName	will	be	reduced,	if
necessary,	so	that	the	region	into	which	the	image	file	data	are
read	is	at	the	bottom-right	corner	of	the	imageName.	This
option	will	not	affect	the	width	or	height	of	the	image	if	the	user
has	specified	a	non-zero	value	for	the	-width	or	-height
configuration	option,	respectively.

-to	x	y
Specifies	the	coordinates	of	the	top-left	corner	of	the	region	of
imageName	into	which	data	from	filename	are	to	be	read.	The
default	is	(0,0).

imageName	redither
The	dithering	algorithm	used	in	displaying	photo	images
propagates	quantization	errors	from	one	pixel	to	its	neighbors.	If

the	image	data	for	imageName	is	supplied	in	pieces,	the	dithered
image	may	not	be	exactly	correct.	Normally	the	difference	is	not
noticeable,	but	if	it	is	a	problem,	this	command	can	be	used	to
recalculate	the	dithered	image	in	each	window	where	the	image	is
displayed.

imageName	transparency	subcommand	?arg	arg	...?
Allows	examination	and	manipulation	of	the	transparency
information	in	the	photo	image.	Several	subcommands	are
available:

imageName	transparency	get	x	y
Returns	a	boolean	indicating	if	the	pixel	at	(x,y)	is	transparent.

imageName	transparency	set	x	y	boolean
Makes	the	pixel	at	(x,y)	transparent	if	boolean	is	true,	and
makes	that	pixel	opaque	otherwise.

imageName	write	filename	?option	value(s)	...?
Writes	image	data	from	imageName	to	a	file	named	filename.	The
following	options	may	be	specified:

-background	color
If	the	color	is	specified,	the	data	will	not	contain	any
transparency	information.	In	all	transparent	pixels	the	color	will
be	replaced	by	the	specified	color.

-format	format-name
Specifies	the	name	of	the	image	file	format	handler	to	be	used
to	write	the	data	to	the	file.	Specifically,	this	subcommand
searches	for	the	first	handler	whose	name	matches	an	initial
substring	of	format-name	and	which	has	the	capability	to	write
an	image	file.	If	this	option	is	not	given,	this	subcommand	uses
the	first	handler	that	has	the	capability	to	write	an	image	file.

-from	x1	y1	x2	y2
Specifies	a	rectangular	region	of	imageName	to	be	written	to
the	image	file.	If	only	x1	and	y1	are	specified,	the	region

extends	from	(x1,y1)	to	the	bottom-right	corner	of	imageName.
If	all	four	coordinates	are	given,	they	specify	diagonally
opposite	corners	of	the	rectangular	region.	The	default,	if	this
option	is	not	given,	is	the	whole	image.

-grayscale
If	this	options	is	specified,	the	data	will	not	contain	color
information.	All	pixel	data	will	be	transformed	into	grayscale.

IMAGE	FORMATS

The	photo	image	code	is	structured	to	allow	handlers	for	additional
image	file	formats	to	be	added	easily.	The	photo	image	code	maintains
a	list	of	these	handlers.	Handlers	are	added	to	the	list	by	registering
them	with	a	call	to	Tk_CreatePhotoImageFormat.	The	standard	Tk
distribution	comes	with	handlers	for	PPM/PGM	and	GIF	formats,	which
are	automatically	registered	on	initialization.

When	reading	an	image	file	or	processing	string	data	specified	with	the
-data	configuration	option,	the	photo	image	code	invokes	each	handler
in	turn	until	one	is	found	that	claims	to	be	able	to	read	the	data	in	the
file	or	string.	Usually	this	will	find	the	correct	handler,	but	if	it	does	not,
the	user	may	give	a	format	name	with	the	-format	option	to	specify
which	handler	to	use.	In	fact	the	photo	image	code	will	try	those
handlers	whose	names	begin	with	the	string	specified	for	the	-format
option	(the	comparison	is	case-insensitive).	For	example,	if	the	user
specifies	-format	gif,	then	a	handler	named	GIF87	or	GIF89	may	be
invoked,	but	a	handler	named	JPEG	may	not	(assuming	that	such
handlers	had	been	registered).

When	writing	image	data	to	a	file,	the	processing	of	the	-format	option
is	slightly	different:	the	string	value	given	for	the	-format	option	must
begin	with	the	complete	name	of	the	requested	handler,	and	may
contain	additional	information	following	that,	which	the	handler	can	use,
for	example,	to	specify	which	variant	to	use	of	the	formats	supported	by
the	handler.	Note	that	not	all	image	handlers	may	support	writing
transparency	data	to	a	file,	even	where	the	target	image	format	does.

COLOR	ALLOCATION

When	a	photo	image	is	displayed	in	a	window,	the	photo	image	code
allocates	colors	to	use	to	display	the	image	and	dithers	the	image,	if
necessary,	to	display	a	reasonable	approximation	to	the	image	using
the	colors	that	are	available.	The	colors	are	allocated	as	a	color	cube,
that	is,	the	number	of	colors	allocated	is	the	product	of	the	number	of
shades	of	red,	green	and	blue.

Normally,	the	number	of	colors	allocated	is	chosen	based	on	the	depth
of	the	window.	For	example,	in	an	8-bit	PseudoColor	window,	the	photo
image	code	will	attempt	to	allocate	seven	shades	of	red,	seven	shades
of	green	and	four	shades	of	blue,	for	a	total	of	198	colors.	In	a	1-bit
StaticGray	(monochrome)	window,	it	will	allocate	two	colors,	black	and
white.	In	a	24-bit	DirectColor	or	TrueColor	window,	it	will	allocate	256
shades	each	of	red,	green	and	blue.	Fortunately,	because	of	the	way
that	pixel	values	can	be	combined	in	DirectColor	and	TrueColor
windows,	this	only	requires	256	colors	to	be	allocated.	If	not	all	of	the
colors	can	be	allocated,	the	photo	image	code	reduces	the	number	of
shades	of	each	primary	color	and	tries	again.

The	user	can	exercise	some	control	over	the	number	of	colors	that	a
photo	image	uses	with	the	-palette	configuration	option.	If	this	option	is
used,	it	specifies	the	maximum	number	of	shades	of	each	primary	color
to	try	to	allocate.	It	can	also	be	used	to	force	the	image	to	be	displayed
in	shades	of	gray,	even	on	a	color	display,	by	giving	a	single	number
rather	than	three	numbers	separated	by	slashes.

CREDITS

The	photo	image	type	was	designed	and	implemented	by	Paul
Mackerras,	based	on	his	earlier	photo	widget	and	some	suggestions
from	John	Ousterhout.

EXAMPLE

Load	an	image	from	a	file	and	tile	it	to	the	size	of	a	window,	which	is
useful	for	producing	a	tiled	background:

#	These	lines	should	be	called	once

image	create	photo	untiled	-file	"theFile.ppm"

image	create	photo	tiled

#	These	lines	should	be	called	whenever	.someWidget	changes

#	size;	a	<Configure>	binding	is	useful	here

set	width		[winfo	width	.someWidget]

set	height	[winfo	height	.someWidget]

tiled	copy	untiled	-to	0	0	$width	$height	-shrink

SEE	ALSO

image

KEYWORDS

photo,	image,	color

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1994	The	Australian	National	University
Copyright	©	1994-1997	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	focusNext

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

tk_focusNext,	tk_focusPrev,	tk_focusFollowsMouse	-	Utility	procedures
for	managing	the	input	focus.

SYNOPSIS

tk_focusNext	window
tk_focusPrev	window
tk_focusFollowsMouse

DESCRIPTION

tk_focusNext	is	a	utility	procedure	used	for	keyboard	traversal.	It
returns	the	“next”	window	after	window	in	focus	order.	The	focus	order
is	determined	by	the	stacking	order	of	windows	and	the	structure	of	the
window	hierarchy.	Among	siblings,	the	focus	order	is	the	same	as	the
stacking	order,	with	the	lowest	window	being	first.	If	a	window	has
children,	the	window	is	visited	first,	followed	by	its	children	(recursively),
followed	by	its	next	sibling.	Top-level	windows	other	than	window	are
skipped,	so	that	tk_focusNext	never	returns	a	window	in	a	different
top-level	from	window.

After	computing	the	next	window,	tk_focusNext	examines	the	window's
-takefocus	option	to	see	whether	it	should	be	skipped.	If	so,
tk_focusNext	continues	on	to	the	next	window	in	the	focus	order,	until
it	eventually	finds	a	window	that	will	accept	the	focus	or	returns	back	to
window.

tk_focusPrev	is	similar	to	tk_focusNext	except	that	it	returns	the
window	just	before	window	in	the	focus	order.

tk_focusFollowsMouse	changes	the	focus	model	for	the	application	to
an	implicit	one	where	the	window	under	the	mouse	gets	the	focus.	After
this	procedure	is	called,	whenever	the	mouse	enters	a	window	Tk	will
automatically	give	it	the	input	focus.	The	focus	command	may	be	used
to	move	the	focus	to	a	window	other	than	the	one	under	the	mouse,	but
as	soon	as	the	mouse	moves	into	a	new	window	the	focus	will	jump	to
that	window.	Note:	at	present	there	is	no	built-in	support	for	returning
the	application	to	an	explicit	focus	model;	to	do	this	you	will	have	to
write	a	script	that	deletes	the	bindings	created	by
tk_focusFollowsMouse.

KEYWORDS

focus,	keyboard	traversal,	top-level

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	tkwait

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

tkwait	-	Wait	for	variable	to	change	or	window	to	be	destroyed

SYNOPSIS

tkwait	variable	name
tkwait	visibility	name
tkwait	window	name

DESCRIPTION

The	tkwait	command	waits	for	one	of	several	things	to	happen,	then	it
returns	without	taking	any	other	actions.	The	return	value	is	always	an
empty	string.	If	the	first	argument	is	variable	(or	any	abbreviation	of	it)
then	the	second	argument	is	the	name	of	a	global	variable	and	the
command	waits	for	that	variable	to	be	modified.	If	the	first	argument	is
visibility	(or	any	abbreviation	of	it)	then	the	second	argument	is	the
name	of	a	window	and	the	tkwait	command	waits	for	a	change	in	its
visibility	state	(as	indicated	by	the	arrival	of	a	VisibilityNotify	event).	This
form	is	typically	used	to	wait	for	a	newly-created	window	to	appear	on
the	screen	before	taking	some	action.	If	the	first	argument	is	window
(or	any	abbreviation	of	it)	then	the	second	argument	is	the	name	of	a
window	and	the	tkwait	command	waits	for	that	window	to	be	destroyed.
This	form	is	typically	used	to	wait	for	a	user	to	finish	interacting	with	a
dialog	box	before	using	the	result	of	that	interaction.

While	the	tkwait	command	is	waiting	it	processes	events	in	the	normal
fashion,	so	the	application	will	continue	to	respond	to	user	interactions.
If	an	event	handler	invokes	tkwait	again,	the	nested	call	to	tkwait	must
complete	before	the	outer	call	can	complete.

KEYWORDS

variable,	visibility,	wait,	window

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1992	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	ttk_scale

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
ttk::scale	-	Create	and	manipulate	a	scale	widget

SYNOPSIS
DESCRIPTION
STANDARD	OPTIONS

-class
-cursor,	cursor,	Cursor
-style
-takefocus,	takeFocus,	TakeFocus

WIDGET-SPECIFIC	OPTIONS
-command,	command,	Command
-from,	from,	From
-length,	length,	Length
-orient,	orient,	Orient
-to,	to,	To
-value,	value,	Value
-variable,	variable,	Variable

WIDGET	COMMAND
pathName	cget	option
pathName	configure	?option?	?value	option	value	...?
pathName	get	?x	y?
pathName	identify	x	y
pathName	instate	statespec	?script?
pathName	set	value
pathName	state	?stateSpec?

INTERNAL	COMMANDS
pathName	coords	?value?

SEE	ALSO
KEYWORDS

NAME

ttk::scale	-	Create	and	manipulate	a	scale	widget

SYNOPSIS

ttk::scale	pathName	?options...?

DESCRIPTION

A	ttk::scale	widget	is	typically	used	to	control	the	numeric	value	of	a
linked	variable	that	varies	uniformly	over	some	range.	A	scale	displays
a	slider	that	can	be	moved	along	over	a	trough,	with	the	relative	position
of	the	slider	over	the	trough	indicating	the	value	of	the	variable.

STANDARD	OPTIONS

-class
-cursor,	cursor,	Cursor
-style
-takefocus,	takeFocus,	TakeFocus

WIDGET-SPECIFIC	OPTIONS

Command-Line	Name:	-command
Database	Name:	command
Database	Class:	Command

Specifies	the	prefix	of	a	Tcl	command	to	invoke	whenever	the
scale's	value	is	changed	via	a	widget	command.	The	actual
command	consists	of	this	option	followed	by	a	space	and	a	real
number	indicating	the	new	value	of	the	scale.

Command-Line	Name:	-from
Database	Name:	from
Database	Class:	From

A	real	value	corresponding	to	the	left	or	top	end	of	the	scale.

Command-Line	Name:	-length
Database	Name:	length
Database	Class:	Length

Specifies	the	desired	long	dimension	of	the	scale	in	screen	units
(i.e.	any	of	the	forms	acceptable	to	Tk_GetPixels).	For	vertical
scales	this	is	the	scale's	height;	for	horizontal	scales	it	is	the
scale's	width.

Command-Line	Name:	-orient
Database	Name:	orient
Database	Class:	Orient

Specifies	which	orientation	whether	the	widget	should	be	laid	out
horizontally	or	vertically.	Must	be	either	horizontal	or	vertical	or	an
abbreviation	of	one	of	these.

Command-Line	Name:	-to
Database	Name:	to
Database	Class:	To

Specifies	a	real	value	corresponding	to	the	right	or	bottom	end	of
the	scale.	This	value	may	be	either	less	than	or	greater	than	the
from	option.

Command-Line	Name:	-value
Database	Name:	value
Database	Class:	Value

Specifies	the	current	floating-point	value	of	the	variable.

Command-Line	Name:	-variable
Database	Name:	variable
Database	Class:	Variable

Specifies	the	name	of	a	global	variable	to	link	to	the	scale.
Whenever	the	value	of	the	variable	changes,	the	scale	will	update
to	reflect	this	value.	Whenever	the	scale	is	manipulated
interactively,	the	variable	will	be	modified	to	reflect	the	scale's	new
value.

WIDGET	COMMAND

pathName	cget	option
Returns	the	current	value	of	the	specified	option;	see	ttk::widget(n).

pathName	configure	?option?	?value	option	value	...?
Modify	or	query	widget	options;	see	ttk::widget(n).

pathName	get	?x	y?
Get	the	current	value	of	the	-value	option,	or	the	value
corresponding	to	the	coordinates	x,y	if	they	are	specified.	X	and	y
are	pixel	coordinates	relative	to	the	scale	widget	origin.

pathName	identify	x	y
Returns	the	name	of	the	element	at	position	x,	y.	See	ttk::widget(n).

pathName	instate	statespec	?script?
Test	the	widget	state;	see	ttk::widget(n).

pathName	set	value
Set	the	value	of	the	widget	(i.e.	the	-value	option)	to	value.	The
value	will	be	clipped	to	the	range	given	by	the	-from	and	-to
options.	Note	that	setting	the	linked	variable	(i.e.	the	variable
named	in	the	-variable	option)	does	not	cause	such	clipping.

pathName	state	?stateSpec?
Modify	or	query	the	widget	state;	see	ttk::widget(n).

INTERNAL	COMMANDS

pathName	coords	?value?
Get	the	coordinates	corresponding	to	value,	or	the	coordinates
corresponding	to	the	current	value	of	the	-value	option	if	value	is
omitted.

SEE	ALSO

ttk::widget,	scale

KEYWORDS

scale,	slider,	trough,	widget

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	button

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
button	-	Create	and	manipulate	button	widgets

SYNOPSIS
STANDARD	OPTIONS

-activebackground,	activeBackground,	Foreground
-activeforeground,	activeForeground,	Background
-anchor,	anchor,	Anchor
-background	or	-bg,	background,	Background
-bitmap,	bitmap,	Bitmap
-borderwidth	or	-bd,	borderWidth,	BorderWidth
-compound,	compound,	Compound
-cursor,	cursor,	Cursor
-disabledforeground,	disabledForeground,	DisabledForeground
-font,	font,	Font
-foreground	or	-fg,	foreground,	Foreground
-highlightbackground,	highlightBackground,
HighlightBackground
-highlightcolor,	highlightColor,	HighlightColor
-highlightthickness,	highlightThickness,	HighlightThickness
-image,	image,	Image
-justify,	justify,	Justify
-padx,	padX,	Pad
-pady,	padY,	Pad
-relief,	relief,	Relief
-repeatdelay,	repeatDelay,	RepeatDelay
-repeatinterval,	repeatInterval,	RepeatInterval
-takefocus,	takeFocus,	TakeFocus
-text,	text,	Text
-textvariable,	textVariable,	Variable
-underline,	underline,	Underline
-wraplength,	wrapLength,	WrapLength

WIDGET-SPECIFIC	OPTIONS
-command,	command,	Command
-default,	default,	Default
-height,	height,	Height
-overrelief,	overRelief,	OverRelief
-state,	state,	State
-width,	width,	Width

DESCRIPTION
WIDGET	COMMAND

pathName	cget	option
pathName	configure	?option?	?value	option	value	...?
pathName	flash
pathName	invoke

DEFAULT	BINDINGS
EXAMPLES
SEE	ALSO
KEYWORDS

NAME

button	-	Create	and	manipulate	button	widgets

SYNOPSIS

button	pathName	?options?

STANDARD	OPTIONS

-activebackground,	activeBackground,	Foreground
-activeforeground,	activeForeground,	Background
-anchor,	anchor,	Anchor
-background	or	-bg,	background,	Background
-bitmap,	bitmap,	Bitmap
-borderwidth	or	-bd,	borderWidth,	BorderWidth
-compound,	compound,	Compound
-cursor,	cursor,	Cursor
-disabledforeground,	disabledForeground,	DisabledForeground
-font,	font,	Font

-foreground	or	-fg,	foreground,	Foreground
-highlightbackground,	highlightBackground,	HighlightBackground
-highlightcolor,	highlightColor,	HighlightColor
-highlightthickness,	highlightThickness,	HighlightThickness
-image,	image,	Image
-justify,	justify,	Justify
-padx,	padX,	Pad
-pady,	padY,	Pad
-relief,	relief,	Relief
-repeatdelay,	repeatDelay,	RepeatDelay
-repeatinterval,	repeatInterval,	RepeatInterval
-takefocus,	takeFocus,	TakeFocus
-text,	text,	Text
-textvariable,	textVariable,	Variable
-underline,	underline,	Underline
-wraplength,	wrapLength,	WrapLength

WIDGET-SPECIFIC	OPTIONS

Command-Line	Name:	-command
Database	Name:	command
Database	Class:	Command

Specifies	a	Tcl	command	to	associate	with	the	button.	This
command	is	typically	invoked	when	mouse	button	1	is	released
over	the	button	window.

Command-Line	Name:	-default
Database	Name:	default
Database	Class:	Default

Specifies	one	of	three	states	for	the	default	ring:	normal,	active,	or
disabled.	In	active	state,	the	button	is	drawn	with	the	platform
specific	appearance	for	a	default	button.	In	normal	state,	the	button
is	drawn	with	the	platform	specific	appearance	for	a	non-default
button,	leaving	enough	space	to	draw	the	default	button
appearance.	The	normal	and	active	states	will	result	in	buttons	of
the	same	size.	In	disabled	state,	the	button	is	drawn	with	the	non-
default	button	appearance	without	leaving	space	for	the	default

appearance.	The	disabled	state	may	result	in	a	smaller	button	than
the	active	state.

Command-Line	Name:	-height
Database	Name:	height
Database	Class:	Height

Specifies	a	desired	height	for	the	button.	If	an	image	or	bitmap	is
being	displayed	in	the	button	then	the	value	is	in	screen	units	(i.e.
any	of	the	forms	acceptable	to	Tk_GetPixels);	for	text	it	is	in	lines
of	text.	If	this	option	is	not	specified,	the	button's	desired	height	is
computed	from	the	size	of	the	image	or	bitmap	or	text	being
displayed	in	it.

Command-Line	Name:	-overrelief
Database	Name:	overRelief
Database	Class:	OverRelief

Specifies	an	alternative	relief	for	the	button,	to	be	used	when	the
mouse	cursor	is	over	the	widget.	This	option	can	be	used	to	make
toolbar	buttons,	by	configuring	-relief	flat	-overrelief	raised.	If	the
value	of	this	option	is	the	empty	string,	then	no	alternative	relief	is
used	when	the	mouse	cursor	is	over	the	button.	The	empty	string	is
the	default	value.

Command-Line	Name:	-state
Database	Name:	state
Database	Class:	State

Specifies	one	of	three	states	for	the	button:	normal,	active,	or
disabled.	In	normal	state	the	button	is	displayed	using	the
foreground	and	background	options.	The	active	state	is	typically
used	when	the	pointer	is	over	the	button.	In	active	state	the	button
is	displayed	using	the	activeForeground	and	activeBackground
options.	Disabled	state	means	that	the	button	should	be
insensitive:	the	default	bindings	will	refuse	to	activate	the	widget
and	will	ignore	mouse	button	presses.	In	this	state	the
disabledForeground	and	background	options	determine	how	the
button	is	displayed.

Command-Line	Name:	-width

Database	Name:	width
Database	Class:	Width

Specifies	a	desired	width	for	the	button.	If	an	image	or	bitmap	is
being	displayed	in	the	button	then	the	value	is	in	screen	units	(i.e.
any	of	the	forms	acceptable	to	Tk_GetPixels).	For	a	text	button	(no
image	or	with	-compound	none)	then	the	width	specifies	how
much	space	in	characters	to	allocate	for	the	text	label.	If	the	width
is	negative	then	this	specifies	a	minimum	width.	If	this	option	is	not
specified,	the	button's	desired	width	is	computed	from	the	size	of
the	image	or	bitmap	or	text	being	displayed	in	it.

DESCRIPTION

The	button	command	creates	a	new	window	(given	by	the	pathName
argument)	and	makes	it	into	a	button	widget.	Additional	options,
described	above,	may	be	specified	on	the	command	line	or	in	the	option
database	to	configure	aspects	of	the	button	such	as	its	colors,	font,	text,
and	initial	relief.	The	button	command	returns	its	pathName	argument.
At	the	time	this	command	is	invoked,	there	must	not	exist	a	window
named	pathName,	but	pathName's	parent	must	exist.

A	button	is	a	widget	that	displays	a	textual	string,	bitmap	or	image.	If
text	is	displayed,	it	must	all	be	in	a	single	font,	but	it	can	occupy	multiple
lines	on	the	screen	(if	it	contains	newlines	or	if	wrapping	occurs
because	of	the	wrapLength	option)	and	one	of	the	characters	may
optionally	be	underlined	using	the	underline	option.	It	can	display	itself
in	either	of	three	different	ways,	according	to	the	state	option;	it	can	be
made	to	appear	raised,	sunken,	or	flat;	and	it	can	be	made	to	flash.
When	a	user	invokes	the	button	(by	pressing	mouse	button	1	with	the
cursor	over	the	button),	then	the	Tcl	command	specified	in	the	-
command	option	is	invoked.

WIDGET	COMMAND

The	button	command	creates	a	new	Tcl	command	whose	name	is
pathName.	This	command	may	be	used	to	invoke	various	operations	on
the	widget.	It	has	the	following	general	form:

pathName	option	?arg	arg	...?

Option	and	the	args	determine	the	exact	behavior	of	the	command.	The
following	commands	are	possible	for	button	widgets:

pathName	cget	option
Returns	the	current	value	of	the	configuration	option	given	by
option.	Option	may	have	any	of	the	values	accepted	by	the	button
command.

pathName	configure	?option?	?value	option	value	...?
Query	or	modify	the	configuration	options	of	the	widget.	If	no	option
is	specified,	returns	a	list	describing	all	of	the	available	options	for
pathName	(see	Tk_ConfigureInfo	for	information	on	the	format	of
this	list).	If	option	is	specified	with	no	value,	then	the	command
returns	a	list	describing	the	one	named	option	(this	list	will	be
identical	to	the	corresponding	sublist	of	the	value	returned	if	no
option	is	specified).	If	one	or	more	option-value	pairs	are	specified,
then	the	command	modifies	the	given	widget	option(s)	to	have	the
given	value(s);	in	this	case	the	command	returns	an	empty	string.
Option	may	have	any	of	the	values	accepted	by	the	button
command.

pathName	flash
Flash	the	button.	This	is	accomplished	by	redisplaying	the	button
several	times,	alternating	between	active	and	normal	colors.	At	the
end	of	the	flash	the	button	is	left	in	the	same	normal/active	state	as
when	the	command	was	invoked.	This	command	is	ignored	if	the
button's	state	is	disabled.

pathName	invoke
Invoke	the	Tcl	command	associated	with	the	button,	if	there	is	one.
The	return	value	is	the	return	value	from	the	Tcl	command,	or	an
empty	string	if	there	is	no	command	associated	with	the	button.
This	command	is	ignored	if	the	button's	state	is	disabled.

DEFAULT	BINDINGS

Tk	automatically	creates	class	bindings	for	buttons	that	give	them
default	behavior:

[1]
A	button	activates	whenever	the	mouse	passes	over	it	and
deactivates	whenever	the	mouse	leaves	the	button.	Under
Windows,	this	binding	is	only	active	when	mouse	button	1	has	been
pressed	over	the	button.

[2]
A	button's	relief	is	changed	to	sunken	whenever	mouse	button	1	is
pressed	over	the	button,	and	the	relief	is	restored	to	its	original
value	when	button	1	is	later	released.

[3]
If	mouse	button	1	is	pressed	over	a	button	and	later	released	over
the	button,	the	button	is	invoked.	However,	if	the	mouse	is	not	over
the	button	when	button	1	is	released,	then	no	invocation	occurs.

[4]
When	a	button	has	the	input	focus,	the	space	key	causes	the
button	to	be	invoked.

If	the	button's	state	is	disabled	then	none	of	the	above	actions	occur:
the	button	is	completely	non-responsive.

The	behavior	of	buttons	can	be	changed	by	defining	new	bindings	for
individual	widgets	or	by	redefining	the	class	bindings.

EXAMPLES

This	is	the	classic	Tk	“Hello,	World!”	demonstration:

button	.b	-text	"Hello,	World!"	-command	exit

				pack	.b

This	example	demonstrates	how	to	handle	button	accelerators:

button	.b1	-text	Hello	-underline	0

				button	.b2	-text	World	-underline	0

				bind	.	<Key-h>	{.b1	flash;	.b1	invoke}

				bind	.	<Key-w>	{.b2	flash;	.b2	invoke}

				pack	.b1	.b2

SEE	ALSO

ttk::button

KEYWORDS

button,	widget

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990-1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	image

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
image	-	Create	and	manipulate	images

SYNOPSIS
DESCRIPTION

image	create	type	?name?	?option	value	...?
image	delete	?name	name	...?
image	height	name
image	inuse	name
image	names
image	type	name
image	types
image	width	name

BUILT-IN	IMAGE	TYPES
bitmap
photo

SEE	ALSO
KEYWORDS

NAME

image	-	Create	and	manipulate	images

SYNOPSIS

image	option	?arg	arg	...?

DESCRIPTION

The	image	command	is	used	to	create,	delete,	and	query	images.	It
can	take	several	different	forms,	depending	on	the	option	argument.
The	legal	forms	are:

image	create	type	?name?	?option	value	...?
Creates	a	new	image	and	a	command	with	the	same	name	and
returns	its	name.	type	specifies	the	type	of	the	image,	which	must
be	one	of	the	types	currently	defined	(e.g.,	bitmap).	name	specifies
the	name	for	the	image;	if	it	is	omitted	then	Tk	picks	a	name	of	the
form	imagex,	where	x	is	an	integer.	There	may	be	any	number	of
option-value	pairs,	which	provide	configuration	options	for	the	new
image.	The	legal	set	of	options	is	defined	separately	for	each
image	type;	see	below	for	details	on	the	options	for	built-in	image
types.	If	an	image	already	exists	by	the	given	name	then	it	is
replaced	with	the	new	image	and	any	instances	of	that	image	will
redisplay	with	the	new	contents.	It	is	important	to	note	that	the
image	command	will	silently	overwrite	any	procedure	that	may
currently	be	defined	by	the	given	name,	so	choose	the	name
wisely.	It	is	recommended	to	use	a	separate	namespace	for	image
names	(e.g.,	::img::logo,	::img::large).

image	delete	?name	name	...?
Deletes	each	of	the	named	images	and	returns	an	empty	string.	If
there	are	instances	of	the	images	displayed	in	widgets,	the	images
will	not	actually	be	deleted	until	all	of	the	instances	are	released.
However,	the	association	between	the	instances	and	the	image
manager	will	be	dropped.	Existing	instances	will	retain	their	sizes
but	redisplay	as	empty	areas.	If	a	deleted	image	is	recreated	with
another	call	to	image	create,	the	existing	instances	will	use	the
new	image.

image	height	name
Returns	a	decimal	string	giving	the	height	of	image	name	in	pixels.

image	inuse	name
Returns	a	boolean	value	indicating	whether	or	not	the	image	given
by	name	is	in	use	by	any	widgets.

image	names
Returns	a	list	containing	the	names	of	all	existing	images.

image	type	name

Returns	the	type	of	image	name	(the	value	of	the	type	argument	to
image	create	when	the	image	was	created).

image	types
Returns	a	list	whose	elements	are	all	of	the	valid	image	types	(i.e.,
all	of	the	values	that	may	be	supplied	for	the	type	argument	to
image	create).

image	width	name
Returns	a	decimal	string	giving	the	width	of	image	name	in	pixels.

Additional	operations	(e.g.	writing	the	image	to	a	file)	may	be	available
as	subcommands	of	the	image	instance	command.	See	the	manual
page	for	the	particular	image	type	for	details.

BUILT-IN	IMAGE	TYPES

The	following	image	types	are	defined	by	Tk	so	they	will	be	available	in
any	Tk	application.	Individual	applications	or	extensions	may	define
additional	types.

bitmap
Each	pixel	in	the	image	displays	a	foreground	color,	a	background
color,	or	nothing.	See	the	bitmap	manual	entry	for	more
information.

photo
Displays	a	variety	of	full-color	images,	using	dithering	to
approximate	colors	on	displays	with	limited	color	capabilities.	See
the	photo	manual	entry	for	more	information.

SEE	ALSO

bitmap,	options,	photo

KEYWORDS

height,	image,	types	of	images,	width

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	place

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
place	-	Geometry	manager	for	fixed	or	rubber-sheet	placement

SYNOPSIS
DESCRIPTION

place	window	option	value	?option	value	...?
place	configure	window	?option?	?value	option	value	...?

-anchor	where
-bordermode	mode
-height	size
-in	master
-relheight	size
-relwidth	size
-relx	location
-rely	location
-width	size
-x	location
-y	location

place	forget	window
place	info	window
place	slaves	window

FINE	POINTS
EXAMPLE
SEE	ALSO
KEYWORDS

NAME

place	-	Geometry	manager	for	fixed	or	rubber-sheet	placement

SYNOPSIS

place	option	arg	?arg	...?

DESCRIPTION

The	placer	is	a	geometry	manager	for	Tk.	It	provides	simple	fixed
placement	of	windows,	where	you	specify	the	exact	size	and	location	of
one	window,	called	the	slave,	within	another	window,	called	the	master.
The	placer	also	provides	rubber-sheet	placement,	where	you	specify
the	size	and	location	of	the	slave	in	terms	of	the	dimensions	of	the
master,	so	that	the	slave	changes	size	and	location	in	response	to
changes	in	the	size	of	the	master.	Lastly,	the	placer	allows	you	to	mix
these	styles	of	placement	so	that,	for	example,	the	slave	has	a	fixed
width	and	height	but	is	centered	inside	the	master.

place	window	option	value	?option	value	...?
Arrange	for	the	placer	to	manage	the	geometry	of	a	slave	whose
pathName	is	window.	The	remaining	arguments	consist	of	one	or
more	option-value	pairs	that	specify	the	way	in	which	window's
geometry	is	managed.	Option	may	have	any	of	the	values	accepted
by	the	place	configure	command.

place	configure	window	?option?	?value	option	value	...?
Query	or	modify	the	geometry	options	of	the	slave	given	by
window.	If	no	option	is	specified,	this	command	returns	a	list
describing	the	available	options	(see	Tk_ConfigureInfo	for
information	on	the	format	of	this	list).	If	option	is	specified	with	no
value,	then	the	command	returns	a	list	describing	the	one	named
option	(this	list	will	be	identical	to	the	corresponding	sublist	of	the
value	returned	if	no	option	is	specified).	If	one	or	more	option-value
pairs	are	specified,	then	the	command	modifies	the	given	option(s)
to	have	the	given	value(s);	in	this	case	the	command	returns	an
empty	string.	The	following	option-value	pairs	are	supported:

-anchor	where
Where	specifies	which	point	of	window	is	to	be	positioned	at
the	(x,y)	location	selected	by	the	-x,	-y,	-relx,	and	-rely
options.	The	anchor	point	is	in	terms	of	the	outer	area	of
window	including	its	border,	if	any.	Thus	if	where	is	se	then	the
lower-right	corner	of	window's	border	will	appear	at	the	given
(x,y)	location	in	the	master.	The	anchor	position	defaults	to	nw.

-bordermode	mode
Mode	determines	the	degree	to	which	borders	within	the
master	are	used	in	determining	the	placement	of	the	slave.
The	default	and	most	common	value	is	inside.	In	this	case	the
placer	considers	the	area	of	the	master	to	be	the	innermost
area	of	the	master,	inside	any	border:	an	option	of	-x	0
corresponds	to	an	x-coordinate	just	inside	the	border	and	an
option	of	-relwidth	1.0	means	window	will	fill	the	area	inside
the	master's	border.	If	mode	is	outside	then	the	placer
considers	the	area	of	the	master	to	include	its	border;	this
mode	is	typically	used	when	placing	window	outside	its	master,
as	with	the	options	-x	0	-y	0	-anchor	ne.	Lastly,	mode	may	be
specified	as	ignore,	in	which	case	borders	are	ignored:	the
area	of	the	master	is	considered	to	be	its	official	X	area,	which
includes	any	internal	border	but	no	external	border.	A
bordermode	of	ignore	is	probably	not	very	useful.

-height	size
Size	specifies	the	height	for	window	in	screen	units	(i.e.	any	of
the	forms	accepted	by	Tk_GetPixels).	The	height	will	be	the
outer	dimension	of	window	including	its	border,	if	any.	If	size	is
an	empty	string,	or	if	no	-height	or	-relheight	option	is
specified,	then	the	height	requested	internally	by	the	window
will	be	used.

-in	master
Master	specifies	the	path	name	of	the	window	relative	to	which
window	is	to	be	placed.	Master	must	either	be	window's	parent
or	a	descendant	of	window's	parent.	In	addition,	master	and
window	must	both	be	descendants	of	the	same	top-level
window.	These	restrictions	are	necessary	to	guarantee	that
window	is	visible	whenever	master	is	visible.	If	this	option	is
not	specified	then	the	master	defaults	to	window's	parent.

-relheight	size
Size	specifies	the	height	for	window.	In	this	case	the	height	is
specified	as	a	floating-point	number	relative	to	the	height	of	the
master:	0.5	means	window	will	be	half	as	high	as	the	master,

1.0	means	window	will	have	the	same	height	as	the	master,
and	so	on.	If	both	-height	and	-relheight	are	specified	for	a
slave,	their	values	are	summed.	For	example,	-relheight	1.0	-
height	-2	makes	the	slave	2	pixels	shorter	than	the	master.

-relwidth	size
Size	specifies	the	width	for	window.	In	this	case	the	width	is
specified	as	a	floating-point	number	relative	to	the	width	of	the
master:	0.5	means	window	will	be	half	as	wide	as	the	master,
1.0	means	window	will	have	the	same	width	as	the	master,	and
so	on.	If	both	-width	and	-relwidth	are	specified	for	a	slave,
their	values	are	summed.	For	example,	-relwidth	1.0	-width	5
makes	the	slave	5	pixels	wider	than	the	master.

-relx	location
Location	specifies	the	x-coordinate	within	the	master	window
of	the	anchor	point	for	window.	In	this	case	the	location	is
specified	in	a	relative	fashion	as	a	floating-point	number:	0.0
corresponds	to	the	left	edge	of	the	master	and	1.0	corresponds
to	the	right	edge	of	the	master.	Location	need	not	be	in	the
range	0.0-1.0.	If	both	-x	and	-relx	are	specified	for	a	slave	then
their	values	are	summed.	For	example,	-relx	0.5	-x	-2
positions	the	left	edge	of	the	slave	2	pixels	to	the	left	of	the
center	of	its	master.

-rely	location
Location	specifies	the	y-coordinate	within	the	master	window
of	the	anchor	point	for	window.	In	this	case	the	value	is
specified	in	a	relative	fashion	as	a	floating-point	number:	0.0
corresponds	to	the	top	edge	of	the	master	and	1.0
corresponds	to	the	bottom	edge	of	the	master.	Location	need
not	be	in	the	range	0.0-1.0.	If	both	-y	and	-rely	are	specified
for	a	slave	then	their	values	are	summed.	For	example,	-rely
0.5	-x	3	positions	the	top	edge	of	the	slave	3	pixels	below	the
center	of	its	master.

-width	size
Size	specifies	the	width	for	window	in	screen	units	(i.e.	any	of

the	forms	accepted	by	Tk_GetPixels).	The	width	will	be	the
outer	width	of	window	including	its	border,	if	any.	If	size	is	an
empty	string,	or	if	no	-width	or	-relwidth	option	is	specified,
then	the	width	requested	internally	by	the	window	will	be	used.

-x	location
Location	specifies	the	x-coordinate	within	the	master	window
of	the	anchor	point	for	window.	The	location	is	specified	in
screen	units	(i.e.	any	of	the	forms	accepted	by	Tk_GetPixels)
and	need	not	lie	within	the	bounds	of	the	master	window.

-y	location
Location	specifies	the	y-coordinate	within	the	master	window
of	the	anchor	point	for	window.	The	location	is	specified	in
screen	units	(i.e.	any	of	the	forms	accepted	by	Tk_GetPixels)
and	need	not	lie	within	the	bounds	of	the	master	window.

If	the	same	value	is	specified	separately	with	two	different	options,
such	as	-x	and	-relx,	then	the	most	recent	option	is	used	and	the
older	one	is	ignored.

place	forget	window
Causes	the	placer	to	stop	managing	the	geometry	of	window.	As	a
side	effect	of	this	command	window	will	be	unmapped	so	that	it
does	not	appear	on	the	screen.	If	window	is	not	currently	managed
by	the	placer	then	the	command	has	no	effect.	This	command
returns	an	empty	string.

place	info	window
Returns	a	list	giving	the	current	configuration	of	window.	The	list
consists	of	option-value	pairs	in	exactly	the	same	form	as	might	be
specified	to	the	place	configure	command.

place	slaves	window
Returns	a	list	of	all	the	slave	windows	for	which	window	is	the
master.	If	there	are	no	slaves	for	window	then	an	empty	string	is
returned.

If	the	configuration	of	a	window	has	been	retrieved	with	place	info,	that
configuration	can	be	restored	later	by	first	using	place	forget	to	erase
any	existing	information	for	the	window	and	then	invoking	place
configure	with	the	saved	information.

FINE	POINTS

It	is	not	necessary	for	the	master	window	to	be	the	parent	of	the	slave
window.	This	feature	is	useful	in	at	least	two	situations.	First,	for
complex	window	layouts	it	means	you	can	create	a	hierarchy	of
subwindows	whose	only	purpose	is	to	assist	in	the	layout	of	the	parent.
The	“real	children”	of	the	parent	(i.e.	the	windows	that	are	significant	for
the	application's	user	interface)	can	be	children	of	the	parent	yet	be
placed	inside	the	windows	of	the	geometry-management	hierarchy.	This
means	that	the	path	names	of	the	“real	children”	do	not	reflect	the
geometry-management	hierarchy	and	users	can	specify	options	for	the
real	children	without	being	aware	of	the	structure	of	the	geometry-
management	hierarchy.

A	second	reason	for	having	a	master	different	than	the	slave's	parent	is
to	tie	two	siblings	together.	For	example,	the	placer	can	be	used	to
force	a	window	always	to	be	positioned	centered	just	below	one	of	its
siblings	by	specifying	the	configuration

-in	sibling	-relx	0.5	-rely	1.0	-anchor	n	-bordermode	outside

Whenever	the	sibling	is	repositioned	in	the	future,	the	slave	will	be
repositioned	as	well.

Unlike	many	other	geometry	managers	(such	as	the	packer)	the	placer
does	not	make	any	attempt	to	manipulate	the	geometry	of	the	master
windows	or	the	parents	of	slave	windows	(i.e.	it	does	not	set	their
requested	sizes).	To	control	the	sizes	of	these	windows,	make	them
windows	like	frames	and	canvases	that	provide	configuration	options	for
this	purpose.

EXAMPLE

Make	the	label	occupy	the	middle	bit	of	the	toplevel,	no	matter	how	it	is
resized:

label	.l	-text	"In	the\nMiddle!"	-bg	black	-fg	white

place	.l	-relwidth	.3	-relx	.35	-relheight	.3	-rely	.35

SEE	ALSO

grid,	pack

KEYWORDS

geometry	manager,	height,	location,	master,	place,	rubber	sheet,	slave,
width

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1992	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	toplevel

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
toplevel	-	Create	and	manipulate	toplevel	widgets

SYNOPSIS
STANDARD	OPTIONS

-borderwidth	or	-bd,	borderWidth,	BorderWidth
-cursor,	cursor,	Cursor
-highlightbackground,	highlightBackground,
HighlightBackground
-highlightcolor,	highlightColor,	HighlightColor
-highlightthickness,	highlightThickness,	HighlightThickness
-padx,	padX,	Pad
-pady,	padY,	Pad
-relief,	relief,	Relief
-takefocus,	takeFocus,	TakeFocus

WIDGET-SPECIFIC	OPTIONS
-background,	background,	Background
-class,	class,	Class
-colormap,	colormap,	Colormap
-container,	container,	Container
-height,	height,	Height
-menu,	menu,	Menu
-screen,	,
-use,	use,	Use
-visual,	visual,	Visual
-width,	width,	Width

DESCRIPTION
WIDGET	COMMAND

pathName	cget	option
pathName	configure	?option?	?value	option	value	...?

BINDINGS
SEE	ALSO

KEYWORDS

NAME

toplevel	-	Create	and	manipulate	toplevel	widgets

SYNOPSIS

toplevel	pathName	?options?

STANDARD	OPTIONS

-borderwidth	or	-bd,	borderWidth,	BorderWidth
-cursor,	cursor,	Cursor
-highlightbackground,	highlightBackground,	HighlightBackground
-highlightcolor,	highlightColor,	HighlightColor
-highlightthickness,	highlightThickness,	HighlightThickness
-padx,	padX,	Pad
-pady,	padY,	Pad
-relief,	relief,	Relief
-takefocus,	takeFocus,	TakeFocus

WIDGET-SPECIFIC	OPTIONS

Command-Line	Name:	-background
Database	Name:	background
Database	Class:	Background

This	option	is	the	same	as	the	standard	background	option	except
that	its	value	may	also	be	specified	as	an	empty	string.	In	this	case,
the	widget	will	display	no	background	or	border,	and	no	colors	will
be	consumed	from	its	colormap	for	its	background	and	border.

Command-Line	Name:	-class
Database	Name:	class
Database	Class:	Class

Specifies	a	class	for	the	window.	This	class	will	be	used	when
querying	the	option	database	for	the	window's	other	options,	and	it
will	also	be	used	later	for	other	purposes	such	as	bindings.	The

class	option	may	not	be	changed	with	the	configure	widget
command.

Command-Line	Name:	-colormap
Database	Name:	colormap
Database	Class:	Colormap

Specifies	a	colormap	to	use	for	the	window.	The	value	may	be
either	new,	in	which	case	a	new	colormap	is	created	for	the
window	and	its	children,	or	the	name	of	another	window	(which
must	be	on	the	same	screen	and	have	the	same	visual	as
pathName),	in	which	case	the	new	window	will	use	the	colormap
from	the	specified	window.	If	the	colormap	option	is	not	specified,
the	new	window	uses	the	default	colormap	of	its	screen.	This
option	may	not	be	changed	with	the	configure	widget	command.

Command-Line	Name:	-container
Database	Name:	container
Database	Class:	Container

The	value	must	be	a	boolean.	If	true,	it	means	that	this	window	will
be	used	as	a	container	in	which	some	other	application	will	be
embedded	(for	example,	a	Tk	toplevel	can	be	embedded	using	the
-use	option).	The	window	will	support	the	appropriate	window
manager	protocols	for	things	like	geometry	requests.	The	window
should	not	have	any	children	of	its	own	in	this	application.	This
option	may	not	be	changed	with	the	configure	widget	command.

Command-Line	Name:	-height
Database	Name:	height
Database	Class:	Height

Specifies	the	desired	height	for	the	window	in	any	of	the	forms
acceptable	to	Tk_GetPixels.	If	this	option	is	less	than	or	equal	to
zero	then	the	window	will	not	request	any	size	at	all.

Command-Line	Name:	-menu
Database	Name:	menu
Database	Class:	Menu

Specifies	a	menu	widget	to	be	used	as	a	menubar.	On	the
Macintosh,	the	menubar	will	be	displayed	across	the	top	of	the

main	monitor.	On	Microsoft	Windows	and	all	UNIX	platforms,	the
menu	will	appear	across	the	toplevel	window	as	part	of	the	window
dressing	maintained	by	the	window	manager.

Command-Line	Name:	-screen
Database	Name:
Database	Class:

Specifies	the	screen	on	which	to	place	the	new	window.	Any	valid
screen	name	may	be	used,	even	one	associated	with	a	different
display.	Defaults	to	the	same	screen	as	its	parent.	This	option	is
special	in	that	it	may	not	be	specified	via	the	option	database,	and
it	may	not	be	modified	with	the	configure	widget	command.

Command-Line	Name:	-use
Database	Name:	use
Database	Class:	Use

This	option	is	used	for	embedding.	If	the	value	is	not	an	empty
string,	it	must	be	the	window	identifier	of	a	container	window,
specified	as	a	hexadecimal	string	like	the	ones	returned	by	the
winfo	id	command.	The	toplevel	widget	will	be	created	as	a	child	of
the	given	container	instead	of	the	root	window	for	the	screen.	If	the
container	window	is	in	a	Tk	application,	it	must	be	a	frame	or
toplevel	widget	for	which	the	-container	option	was	specified.	This
option	may	not	be	changed	with	the	configure	widget	command.

Command-Line	Name:	-visual
Database	Name:	visual
Database	Class:	Visual

Specifies	visual	information	for	the	new	window	in	any	of	the	forms
accepted	by	Tk_GetVisual.	If	this	option	is	not	specified,	the	new
window	will	use	the	default	visual	for	its	screen.	The	visual	option
may	not	be	modified	with	the	configure	widget	command.

Command-Line	Name:	-width
Database	Name:	width
Database	Class:	Width

Specifies	the	desired	width	for	the	window	in	any	of	the	forms
acceptable	to	Tk_GetPixels.	If	this	option	is	less	than	or	equal	to

zero	then	the	window	will	not	request	any	size	at	all.

DESCRIPTION

The	toplevel	command	creates	a	new	toplevel	widget	(given	by	the
pathName	argument).	Additional	options,	described	above,	may	be
specified	on	the	command	line	or	in	the	option	database	to	configure
aspects	of	the	toplevel	such	as	its	background	color	and	relief.	The
toplevel	command	returns	the	path	name	of	the	new	window.

A	toplevel	is	similar	to	a	frame	except	that	it	is	created	as	a	top-level
window:	its	X	parent	is	the	root	window	of	a	screen	rather	than	the
logical	parent	from	its	path	name.	The	primary	purpose	of	a	toplevel	is
to	serve	as	a	container	for	dialog	boxes	and	other	collections	of
widgets.	The	only	visible	features	of	a	toplevel	are	its	background	color
and	an	optional	3-D	border	to	make	the	toplevel	appear	raised	or
sunken.

WIDGET	COMMAND

The	toplevel	command	creates	a	new	Tcl	command	whose	name	is	the
same	as	the	path	name	of	the	toplevel's	window.	This	command	may	be
used	to	invoke	various	operations	on	the	widget.	It	has	the	following
general	form:

pathName	option	?arg	arg	...?

PathName	is	the	name	of	the	command,	which	is	the	same	as	the
toplevel	widget's	path	name.	Option	and	the	args	determine	the	exact
behavior	of	the	command.	The	following	commands	are	possible	for
toplevel	widgets:

pathName	cget	option
Returns	the	current	value	of	the	configuration	option	given	by
option.	Option	may	have	any	of	the	values	accepted	by	the
toplevel	command.

pathName	configure	?option?	?value	option	value	...?
Query	or	modify	the	configuration	options	of	the	widget.	If	no	option
is	specified,	returns	a	list	describing	all	of	the	available	options	for
pathName	(see	Tk_ConfigureInfo	for	information	on	the	format	of
this	list).	If	option	is	specified	with	no	value,	then	the	command
returns	a	list	describing	the	one	named	option	(this	list	will	be
identical	to	the	corresponding	sublist	of	the	value	returned	if	no
option	is	specified).	If	one	or	more	option-value	pairs	are	specified,
then	the	command	modifies	the	given	widget	option(s)	to	have	the
given	value(s);	in	this	case	the	command	returns	an	empty	string.
Option	may	have	any	of	the	values	accepted	by	the	toplevel
command.

BINDINGS

When	a	new	toplevel	is	created,	it	has	no	default	event	bindings:
toplevels	are	not	intended	to	be	interactive.

SEE	ALSO

frame

KEYWORDS

toplevel,	widget

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990-1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	ttk_scrollbar

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
ttk::scrollbar	-	Control	the	viewport	of	a	scrollable	widget

SYNOPSIS
DESCRIPTION
STANDARD	OPTIONS

-class
-cursor,	cursor,	Cursor
-style
-takefocus,	takeFocus,	TakeFocus

WIDGET-SPECIFIC	OPTIONS
-command,	command,	Command
-orient,	orient,	Orient

WIDGET	COMMAND
pathName	cget	option
pathName	configure	?option?	?value	option	value	...?
pathName	get
pathName	identify	x	y
pathName	instate	statespec	?script?
pathName	set	first	last
pathName	state	?stateSpec?

INTERNAL	COMMANDS
pathName	delta	deltaX	deltaY
pathName	fraction	x	y

SCROLLING	COMMANDS
prefix	moveto	fraction
prefix	scroll	number	units
prefix	scroll	number	pages

WIDGET	STATES
EXAMPLE
SEE	ALSO
KEYWORDS

NAME

ttk::scrollbar	-	Control	the	viewport	of	a	scrollable	widget

SYNOPSIS

ttk::scrollbar	pathName	?options...?

DESCRIPTION

ttk::scrollbar	widgets	are	typically	linked	to	an	associated	window	that
displays	a	document	of	some	sort,	such	as	a	file	being	edited	or	a
drawing.	A	scrollbar	displays	a	thumb	in	the	middle	portion	of	the
scrollbar,	whose	position	and	size	provides	information	about	the
portion	of	the	document	visible	in	the	associated	window.	The	thumb
may	be	dragged	by	the	user	to	control	the	visible	region.	Depending	on
the	theme,	two	or	more	arrow	buttons	may	also	be	present;	these	are
used	to	scroll	the	visible	region	in	discrete	units.

STANDARD	OPTIONS

-class
-cursor,	cursor,	Cursor
-style
-takefocus,	takeFocus,	TakeFocus

WIDGET-SPECIFIC	OPTIONS

Command-Line	Name:	-command
Database	Name:	command
Database	Class:	Command

A	Tcl	script	prefix	to	evaluate	to	change	the	view	in	the	widget
associated	with	the	scrollbar.	Additional	arguments	are	appended
to	the	value	of	this	option,	as	described	in	SCROLLING
COMMANDS	below,	whenever	the	user	requests	a	view	change	by
manipulating	the	scrollbar.

This	option	typically	consists	of	a	two-element	list,	containing	the

name	of	a	scrollable	widget	followed	by	either	xview	(for	horizontal
scrollbars)	or	yview	(for	vertical	scrollbars).

Command-Line	Name:	-orient
Database	Name:	orient
Database	Class:	Orient

One	of	horizontal	or	vertical.	Specifies	the	orientation	of	the
scrollbar.

WIDGET	COMMAND

pathName	cget	option
Returns	the	current	value	of	the	specified	option;	see	ttk::widget(n).

pathName	configure	?option?	?value	option	value	...?
Modify	or	query	widget	options;	see	ttk::widget(n).

pathName	get
Returns	the	scrollbar	settings	in	the	form	of	a	list	whose	elements
are	the	arguments	to	the	most	recent	set	widget	command.

pathName	identify	x	y
Returns	the	name	of	the	element	at	position	x,	y.	See	ttk::widget(n).

pathName	instate	statespec	?script?
Test	the	widget	state;	see	ttk::widget(n).

pathName	set	first	last
This	command	is	normally	invoked	by	the	scrollbar's	associated
widget	from	an	-xscrollcommand	or	-yscrollcommand	callback.
Specifies	the	visible	range	to	be	displayed.	first	and	last	are	real
fractions	between	0	and	1.

pathName	state	?stateSpec?
Modify	or	query	the	widget	state;	see	ttk::widget(n).

INTERNAL	COMMANDS

The	following	widget	commands	are	used	internally	by	the	TScrollbar

widget	class	bindings.

pathName	delta	deltaX	deltaY
Returns	a	real	number	indicating	the	fractional	change	in	the
scrollbar	setting	that	corresponds	to	a	given	change	in	thumb
position.	For	example,	if	the	scrollbar	is	horizontal,	the	result
indicates	how	much	the	scrollbar	setting	must	change	to	move	the
thumb	deltaX	pixels	to	the	right	(deltaY	is	ignored	in	this	case).	If
the	scrollbar	is	vertical,	the	result	indicates	how	much	the	scrollbar
setting	must	change	to	move	the	thumb	deltaY	pixels	down.	The
arguments	and	the	result	may	be	zero	or	negative.

pathName	fraction	x	y
Returns	a	real	number	between	0	and	1	indicating	where	the	point
given	by	x	and	y	lies	in	the	trough	area	of	the	scrollbar,	where	0.0
corresponds	to	the	top	or	left	of	the	trough	and	1.0	corresponds	to
the	bottom	or	right.	X	and	y	are	pixel	coordinates	relative	to	the
scrollbar	widget.	If	x	and	y	refer	to	a	point	outside	the	trough,	the
closest	point	in	the	trough	is	used.

SCROLLING	COMMANDS

When	the	user	interacts	with	the	scrollbar,	for	example	by	dragging	the
thumb,	the	scrollbar	notifies	the	associated	widget	that	it	must	change
its	view.	The	scrollbar	makes	the	notification	by	evaluating	a	Tcl
command	generated	from	the	scrollbar's	-command	option.	The
command	may	take	any	of	the	following	forms.	In	each	case,	prefix	is
the	contents	of	the	-command	option,	which	usually	has	a	form	like	.t
yview

prefix	moveto	fraction
Fraction	is	a	real	number	between	0	and	1.	The	widget	should
adjust	its	view	so	that	the	point	given	by	fraction	appears	at	the
beginning	of	the	widget.	If	fraction	is	0	it	refers	to	the	beginning	of
the	document.	1.0	refers	to	the	end	of	the	document,	0.333	refers
to	a	point	one-third	of	the	way	through	the	document,	and	so	on.

prefix	scroll	number	units

The	widget	should	adjust	its	view	by	number	units.	The	units	are
defined	in	whatever	way	makes	sense	for	the	widget,	such	as
characters	or	lines	in	a	text	widget.	Number	is	either	1,	which
means	one	unit	should	scroll	off	the	top	or	left	of	the	window,	or	-1,
which	means	that	one	unit	should	scroll	off	the	bottom	or	right	of
the	window.

prefix	scroll	number	pages
The	widget	should	adjust	its	view	by	number	pages.	It	is	up	to	the
widget	to	define	the	meaning	of	a	page;	typically	it	is	slightly	less
than	what	fits	in	the	window,	so	that	there	is	a	slight	overlap
between	the	old	and	new	views.	Number	is	either	1,	which	means
the	next	page	should	become	visible,	or	-1,	which	means	that	the
previous	page	should	become	visible.

WIDGET	STATES

The	scrollbar	automatically	sets	the	disabled	state	bit.	when	the	entire
range	is	visible	(range	is	0.0	to	1.0),	and	clears	it	otherwise.	It	also	sets
the	active	and	pressed	state	flags	of	individual	elements,	based	on	the
position	and	state	of	the	mouse	pointer.

EXAMPLE

set	f	[frame	.f]

ttk::scrollbar	$f.hsb	-orient	horizontal	-command	[list	$f.t	xview]

ttk::scrollbar	$f.vsb	-orient	vertical	-command	[list	$f.t	yview]

text	$f.t	-xscrollcommand	[list	$f.hsb	set]	-yscrollcommand	[list	$f.vsb	set]	

grid	$f.t	-row	0	-column	0	-sticky	nsew

grid	$f.vsb	-row	0	-column	1	-sticky	nsew

grid	$f.hsb	-row	1	-column	0	-sticky	nsew

grid	columnconfigure	$f	0	-weight	1

grid	rowconfigure	$f	0	-weight	1

SEE	ALSO

ttk::widget,	scrollbar

KEYWORDS

scrollbar,	widget

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.
Copyright	©	2004	Joe	English

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	canvas

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
canvas	-	Create	and	manipulate	canvas	widgets

SYNOPSIS
STANDARD	OPTIONS

-background	or	-bg,	background,	Background
-borderwidth	or	-bd,	borderWidth,	BorderWidth
-cursor,	cursor,	Cursor
-highlightbackground,	highlightBackground,
HighlightBackground
-highlightcolor,	highlightColor,	HighlightColor
-highlightthickness,	highlightThickness,	HighlightThickness
-insertbackground,	insertBackground,	Foreground
-insertborderwidth,	insertBorderWidth,	BorderWidth
-insertofftime,	insertOffTime,	OffTime
-insertontime,	insertOnTime,	OnTime
-insertwidth,	insertWidth,	InsertWidth
-relief,	relief,	Relief
-selectbackground,	selectBackground,	Foreground
-selectborderwidth,	selectBorderWidth,	BorderWidth
-selectforeground,	selectForeground,	Background
-takefocus,	takeFocus,	TakeFocus
-xscrollcommand,	xScrollCommand,	ScrollCommand
-yscrollcommand,	yScrollCommand,	ScrollCommand

WIDGET-SPECIFIC	OPTIONS
-closeenough,	closeEnough,	CloseEnough
-confine,	confine,	Confine
-height,	height,	Height
-scrollregion,	scrollRegion,	ScrollRegion
-state,	state,	State
-width,	width,	width
-xscrollincrement,	xScrollIncrement,	ScrollIncrement

-yscrollincrement,	yScrollIncrement,	ScrollIncrement
INTRODUCTION
DISPLAY	LIST
ITEM	IDS	AND	TAGS
COORDINATES
TRANSFORMATIONS
INDICES

number
end
insert
sel.first
sel.last
@x,y

DASH	PATTERNS
WIDGET	COMMAND

pathName	addtag	tag	searchSpec	?arg	arg	...?
above	tagOrId
all
below	tagOrId
closest	x	y	?halo?	?start?
enclosed	x1	y1	x2	y2
overlapping	x1	y1	x2	y2
withtag	tagOrId

pathName	bbox	tagOrId	?tagOrId	tagOrId	...?
pathName	bind	tagOrId	?sequence?	?command?
pathName	canvasx	screenx	?gridspacing?
pathName	canvasy	screeny	?gridspacing?
pathName	cget	option
pathName	configure	?option?	?value?	?option	value	...?
pathName	coords	tagOrId	?x0	y0	...?
pathName	coords	tagOrId	?coordList?
pathName	create	type	x	y	?x	y	...?	?option	value	...?
pathName	create	type	coordList	?option	value	...?
pathName	dchars	tagOrId	first	?last?
pathName	delete	?tagOrId	tagOrId	...?
pathName	dtag	tagOrId	?tagToDelete?
pathName	find	searchCommand	?arg	arg	...?

pathName	focus	?tagOrId?
pathName	gettags	tagOrId
pathName	icursor	tagOrId	index
pathName	index	tagOrId	index
pathName	insert	tagOrId	beforeThis	string
pathName	itemcget	tagOrId	option
pathName	itemconfigure	tagOrId	?option?	?value?	?option
value	...?
pathName	lower	tagOrId	?belowThis?
pathName	move	tagOrId	xAmount	yAmount
pathName	postscript	?option	value	option	value	...?

-colormap	varName
-colormode	mode
-file	fileName
-fontmap	varName
-height	size
-pageanchor	anchor
-pageheight	size
-pagewidth	size
-pagex	position
-pagey	position
-rotate	boolean
-width	size
-x	position
-y	position

pathName	raise	tagOrId	?aboveThis?
pathName	scale	tagOrId	xOrigin	yOrigin	xScale	yScale
pathName	scan	option	args

pathName	scan	mark	x	y
pathName	scan	dragto	x	y	?gain?.

pathName	select	option	?tagOrId	arg?
pathName	select	adjust	tagOrId	index
pathName	select	clear
pathName	select	from	tagOrId	index
pathName	select	item
pathName	select	to	tagOrId	index

pathName	type	tagOrId

pathName	xview	?args?
pathName	xview
pathName	xview	moveto	fraction
pathName	xview	scroll	number	what

pathName	yview	?args?
pathName	yview
pathName	yview	moveto	fraction
pathName	yview	scroll	number	what

OVERVIEW	OF	ITEM	TYPES
COMMON	ITEM	OPTIONS

-dash	pattern
-activedash	pattern
-disableddash	pattern
-dashoffset	offset
-fill	color
-activefill	color
-disabledfill	color
-outline	color
-activeoutline	color
-disabledoutline	color
-offset	offset
-outlinestipple	bitmap
-activeoutlinestipple	bitmap
-disabledoutlinestipple	bitmap
-outlineoffset	offset
-stipple	bitmap
-activestipple	bitmap
-disabledstipple	bitmap
-state	state
-tags	tagList
-width	outlineWidth
-activewidth	outlineWidth
-disabledwidth	outlineWidth

ARC	ITEMS
-extent	degrees
-start	degrees
-style	type

BITMAP	ITEMS
-anchor	anchorPos
-background	color
-activebackground	bitmap
-disabledbackground	bitmap
-bitmap	bitmap
-activebitmap	bitmap
-disabledbitmap	bitmap
-foreground	color
-activeforeground	bitmap
-disabledforeground	bitmap

IMAGE	ITEMS
-anchor	anchorPos
-image	name
-activeimage	name
-disabledimage	name

LINE	ITEMS
-arrow	where
-arrowshape	shape
-capstyle	style
-joinstyle	style
-smooth	smoothMethod
-splinesteps	number

OVAL	ITEMS
POLYGON	ITEMS

-joinstyle	style
-smooth	boolean
-splinesteps	number

RECTANGLE	ITEMS
TEXT	ITEMS

-anchor	anchorPos
-font	fontName
-justify	how
-text	string
-underline
-width	lineLength

WINDOW	ITEMS

-anchor	anchorPos
-height	pixels
-width	pixels
-window	pathName

APPLICATION-DEFINED	ITEM	TYPES
BINDINGS
CREDITS
SEE	ALSO
KEYWORDS

NAME

canvas	-	Create	and	manipulate	canvas	widgets

SYNOPSIS

canvas	pathName	?options?

STANDARD	OPTIONS

-background	or	-bg,	background,	Background
-borderwidth	or	-bd,	borderWidth,	BorderWidth
-cursor,	cursor,	Cursor
-highlightbackground,	highlightBackground,	HighlightBackground
-highlightcolor,	highlightColor,	HighlightColor
-highlightthickness,	highlightThickness,	HighlightThickness
-insertbackground,	insertBackground,	Foreground
-insertborderwidth,	insertBorderWidth,	BorderWidth
-insertofftime,	insertOffTime,	OffTime
-insertontime,	insertOnTime,	OnTime
-insertwidth,	insertWidth,	InsertWidth
-relief,	relief,	Relief
-selectbackground,	selectBackground,	Foreground
-selectborderwidth,	selectBorderWidth,	BorderWidth
-selectforeground,	selectForeground,	Background
-takefocus,	takeFocus,	TakeFocus
-xscrollcommand,	xScrollCommand,	ScrollCommand
-yscrollcommand,	yScrollCommand,	ScrollCommand

WIDGET-SPECIFIC	OPTIONS

Command-Line	Name:	-closeenough
Database	Name:	closeEnough
Database	Class:	CloseEnough

Specifies	a	floating-point	value	indicating	how	close	the	mouse
cursor	must	be	to	an	item	before	it	is	considered	to	be	“inside”	the
item.	Defaults	to	1.0.

Command-Line	Name:	-confine
Database	Name:	confine
Database	Class:	Confine

Specifies	a	boolean	value	that	indicates	whether	or	not	it	should	be
allowable	to	set	the	canvas's	view	outside	the	region	defined	by	the
scrollRegion	argument.	Defaults	to	true,	which	means	that	the
view	will	be	constrained	within	the	scroll	region.

Command-Line	Name:	-height
Database	Name:	height
Database	Class:	Height

Specifies	a	desired	window	height	that	the	canvas	widget	should
request	from	its	geometry	manager.	The	value	may	be	specified	in
any	of	the	forms	described	in	the	COORDINATES	section	below.

Command-Line	Name:	-scrollregion
Database	Name:	scrollRegion
Database	Class:	ScrollRegion

Specifies	a	list	with	four	coordinates	describing	the	left,	top,	right,
and	bottom	coordinates	of	a	rectangular	region.	This	region	is	used
for	scrolling	purposes	and	is	considered	to	be	the	boundary	of	the
information	in	the	canvas.	Each	of	the	coordinates	may	be
specified	in	any	of	the	forms	given	in	the	COORDINATES	section
below.

Command-Line	Name:	-state
Database	Name:	state
Database	Class:	State

Modifies	the	default	state	of	the	canvas	where	state	may	be	set	to

one	of:	normal,	disabled,	or	hidden.	Individual	canvas	objects	all
have	their	own	state	option	which	may	override	the	default	state.
Many	options	can	take	separate	specifications	such	that	the
appearance	of	the	item	can	be	different	in	different	situations.	The
options	that	start	with	active	control	the	appearance	when	the
mouse	pointer	is	over	it,	while	the	option	starting	with	disabled
controls	the	appearance	when	the	state	is	disabled.	Canvas	items
which	are	disabled	will	not	react	to	canvas	bindings.

Command-Line	Name:	-width
Database	Name:	width
Database	Class:	width

Specifies	a	desired	window	width	that	the	canvas	widget	should
request	from	its	geometry	manager.	The	value	may	be	specified	in
any	of	the	forms	described	in	the	COORDINATES	section	below.

Command-Line	Name:	-xscrollincrement
Database	Name:	xScrollIncrement
Database	Class:	ScrollIncrement

Specifies	an	increment	for	horizontal	scrolling,	in	any	of	the	usual
forms	permitted	for	screen	distances.	If	the	value	of	this	option	is
greater	than	zero,	the	horizontal	view	in	the	window	will	be
constrained	so	that	the	canvas	x	coordinate	at	the	left	edge	of	the
window	is	always	an	even	multiple	of	xScrollIncrement;
furthermore,	the	units	for	scrolling	(e.g.,	the	change	in	view	when
the	left	and	right	arrows	of	a	scrollbar	are	selected)	will	also	be
xScrollIncrement.	If	the	value	of	this	option	is	less	than	or	equal	to
zero,	then	horizontal	scrolling	is	unconstrained.

Command-Line	Name:	-yscrollincrement
Database	Name:	yScrollIncrement
Database	Class:	ScrollIncrement

Specifies	an	increment	for	vertical	scrolling,	in	any	of	the	usual
forms	permitted	for	screen	distances.	If	the	value	of	this	option	is
greater	than	zero,	the	vertical	view	in	the	window	will	be
constrained	so	that	the	canvas	y	coordinate	at	the	top	edge	of	the
window	is	always	an	even	multiple	of	yScrollIncrement;
furthermore,	the	units	for	scrolling	(e.g.,	the	change	in	view	when

the	top	and	bottom	arrows	of	a	scrollbar	are	selected)	will	also	be
yScrollIncrement.	If	the	value	of	this	option	is	less	than	or	equal	to
zero,	then	vertical	scrolling	is	unconstrained.

INTRODUCTION

The	canvas	command	creates	a	new	window	(given	by	the	pathName
argument)	and	makes	it	into	a	canvas	widget.	Additional	options,
described	above,	may	be	specified	on	the	command	line	or	in	the	option
database	to	configure	aspects	of	the	canvas	such	as	its	colors	and	3-D
relief.	The	canvas	command	returns	its	pathName	argument.	At	the
time	this	command	is	invoked,	there	must	not	exist	a	window	named
pathName,	but	pathName's	parent	must	exist.

Canvas	widgets	implement	structured	graphics.	A	canvas	displays	any
number	of	items,	which	may	be	things	like	rectangles,	circles,	lines,	and
text.	Items	may	be	manipulated	(e.g.	moved	or	re-colored)	and
commands	may	be	associated	with	items	in	much	the	same	way	that
the	bind	command	allows	commands	to	be	bound	to	widgets.	For
example,	a	particular	command	may	be	associated	with	the	<Button-1>
event	so	that	the	command	is	invoked	whenever	button	1	is	pressed
with	the	mouse	cursor	over	an	item.	This	means	that	items	in	a	canvas
can	have	behaviors	defined	by	the	Tcl	scripts	bound	to	them.

DISPLAY	LIST

The	items	in	a	canvas	are	ordered	for	purposes	of	display,	with	the	first
item	in	the	display	list	being	displayed	first,	followed	by	the	next	item	in
the	list,	and	so	on.	Items	later	in	the	display	list	obscure	those	that	are
earlier	in	the	display	list	and	are	sometimes	referred	to	as	being	“on
top”	of	earlier	items.	When	a	new	item	is	created	it	is	placed	at	the	end
of	the	display	list,	on	top	of	everything	else.	Widget	commands	may	be
used	to	re-arrange	the	order	of	the	display	list.

Window	items	are	an	exception	to	the	above	rules.	The	underlying
window	systems	require	them	always	to	be	drawn	on	top	of	other	items.
In	addition,	the	stacking	order	of	window	items	is	not	affected	by	any	of
the	canvas	widget	commands;	you	must	use	the	raise	and	lower	Tk

commands	instead.

ITEM	IDS	AND	TAGS

Items	in	a	canvas	widget	may	be	named	in	either	of	two	ways:	by	id	or
by	tag.	Each	item	has	a	unique	identifying	number,	which	is	assigned	to
that	item	when	it	is	created.	The	id	of	an	item	never	changes	and	id
numbers	are	never	re-used	within	the	lifetime	of	a	canvas	widget.

Each	item	may	also	have	any	number	of	tags	associated	with	it.	A	tag	is
just	a	string	of	characters,	and	it	may	take	any	form	except	that	of	an
integer.	For	example,	“x123”	is	OK	but	“123”	is	not.	The	same	tag	may
be	associated	with	many	different	items.	This	is	commonly	done	to
group	items	in	various	interesting	ways;	for	example,	all	selected	items
might	be	given	the	tag	“selected”.

The	tag	all	is	implicitly	associated	with	every	item	in	the	canvas;	it	may
be	used	to	invoke	operations	on	all	the	items	in	the	canvas.

The	tag	current	is	managed	automatically	by	Tk;	it	applies	to	the
current	item,	which	is	the	topmost	item	whose	drawn	area	covers	the
position	of	the	mouse	cursor	(different	item	types	interpret	this	in
varying	ways;	see	the	individual	item	type	documentation	for	details).	If
the	mouse	is	not	in	the	canvas	widget	or	is	not	over	an	item,	then	no
item	has	the	current	tag.

When	specifying	items	in	canvas	widget	commands,	if	the	specifier	is
an	integer	then	it	is	assumed	to	refer	to	the	single	item	with	that	id.	If
the	specifier	is	not	an	integer,	then	it	is	assumed	to	refer	to	all	of	the
items	in	the	canvas	that	have	a	tag	matching	the	specifier.	The	symbol
tagOrId	is	used	below	to	indicate	that	an	argument	specifies	either	an	id
that	selects	a	single	item	or	a	tag	that	selects	zero	or	more	items.

tagOrId	may	contain	a	logical	expressions	of	tags	by	using	operators:
“&&”,	“||”,	“^”,	“!”,	and	parenthesized	subexpressions.	For	example:

.c	find	withtag	{(a&&!b)||(!a&&b)}

or	equivalently:

.c	find	withtag	{a^b}

will	find	only	those	items	with	either	“a”	or	“b”	tags,	but	not	both.

Some	widget	commands	only	operate	on	a	single	item	at	a	time;	if
tagOrId	is	specified	in	a	way	that	names	multiple	items,	then	the	normal
behavior	is	for	the	command	to	use	the	first	(lowest)	of	these	items	in
the	display	list	that	is	suitable	for	the	command.	Exceptions	are	noted	in
the	widget	command	descriptions	below.

COORDINATES

All	coordinates	related	to	canvases	are	stored	as	floating-point
numbers.	Coordinates	and	distances	are	specified	in	screen	units,
which	are	floating-point	numbers	optionally	followed	by	one	of	several
letters.	If	no	letter	is	supplied	then	the	distance	is	in	pixels.	If	the	letter
is	m	then	the	distance	is	in	millimeters	on	the	screen;	if	it	is	c	then	the
distance	is	in	centimeters;	i	means	inches,	and	p	means	printers	points
(1/72	inch).	Larger	y-coordinates	refer	to	points	lower	on	the	screen;
larger	x-coordinates	refer	to	points	farther	to	the	right.	Coordinates	can
be	specified	either	as	an	even	number	of	parameters,	or	as	a	single	list
parameter	containing	an	even	number	of	x	and	y	coordinate	values.

TRANSFORMATIONS

Normally	the	origin	of	the	canvas	coordinate	system	is	at	the	upper-left
corner	of	the	window	containing	the	canvas.	It	is	possible	to	adjust	the
origin	of	the	canvas	coordinate	system	relative	to	the	origin	of	the
window	using	the	xview	and	yview	widget	commands;	this	is	typically
used	for	scrolling.	Canvases	do	not	support	scaling	or	rotation	of	the
canvas	coordinate	system	relative	to	the	window	coordinate	system.

Individual	items	may	be	moved	or	scaled	using	widget	commands

described	below,	but	they	may	not	be	rotated.

Note	that	the	default	origin	of	the	canvas's	visible	area	is	coincident	with
the	origin	for	the	whole	window	as	that	makes	bindings	using	the	mouse
position	easier	to	work	with;	you	only	need	to	use	the	canvasx	and
canvasy	widget	commands	if	you	adjust	the	origin	of	the	visible	area.
However,	this	also	means	that	any	focus	ring	(as	controlled	by	the	-
highlightthickness	option)	and	window	border	(as	controlled	by	the	-
borderwidth	option)	must	be	taken	into	account	before	you	get	to	the
visible	area	of	the	canvas.

INDICES

Text	items	support	the	notion	of	an	index	for	identifying	particular
positions	within	the	item.	In	a	similar	fashion,	line	and	polygon	items
support	index	for	identifying,	inserting	and	deleting	subsets	of	their
coordinates.	Indices	are	used	for	commands	such	as	inserting	or
deleting	a	range	of	characters	or	coordinates,	and	setting	the	insertion
cursor	position.	An	index	may	be	specified	in	any	of	a	number	of	ways,
and	different	types	of	items	may	support	different	forms	for	specifying
indices.	Text	items	support	the	following	forms	for	an	index;	if	you	define
new	types	of	text-like	items,	it	would	be	advisable	to	support	as	many	of
these	forms	as	practical.	Note	that	it	is	possible	to	refer	to	the	character
just	after	the	last	one	in	the	text	item;	this	is	necessary	for	such	tasks	as
inserting	new	text	at	the	end	of	the	item.	Lines	and	Polygons	do	not
support	the	insertion	cursor	and	the	selection.	Their	indices	are
supposed	to	be	even	always,	because	coordinates	always	appear	in
pairs.

number
A	decimal	number	giving	the	position	of	the	desired	character
within	the	text	item.	0	refers	to	the	first	character,	1	to	the	next
character,	and	so	on.	If	indexes	are	odd	for	lines	and	polygons,
they	will	be	automatically	decremented	by	one.	A	number	less	than
0	is	treated	as	if	it	were	zero,	and	a	number	greater	than	the	length
of	the	text	item	is	treated	as	if	it	were	equal	to	the	length	of	the	text
item.	For	polygons,	numbers	less	than	0	or	greater	then	the	length
of	the	coordinate	list	will	be	adjusted	by	adding	or	subtracting	the

length	until	the	result	is	between	zero	and	the	length,	inclusive.

end
Refers	to	the	character	or	coordinate	just	after	the	last	one	in	the
item	(same	as	the	number	of	characters	or	coordinates	in	the	item).

insert
Refers	to	the	character	just	before	which	the	insertion	cursor	is
drawn	in	this	item.	Not	valid	for	lines	and	polygons.

sel.first
Refers	to	the	first	selected	character	in	the	item.	If	the	selection	is
not	in	this	item	then	this	form	is	illegal.

sel.last
Refers	to	the	last	selected	character	in	the	item.	If	the	selection	is
not	in	this	item	then	this	form	is	illegal.

@x,y
Refers	to	the	character	or	coordinate	at	the	point	given	by	x	and	y,
where	x	and	y	are	specified	in	the	coordinate	system	of	the	canvas.
If	x	and	y	lie	outside	the	coordinates	covered	by	the	text	item,	then
they	refer	to	the	first	or	last	character	in	the	line	that	is	closest	to
the	given	point.

DASH	PATTERNS

Many	items	support	the	notion	of	a	dash	pattern	for	outlines.

The	first	possible	syntax	is	a	list	of	integers.	Each	element	represents
the	number	of	pixels	of	a	line	segment.	Only	the	odd	segments	are
drawn	using	the	“outline”	color.	The	other	segments	are	drawn
transparent.

The	second	possible	syntax	is	a	character	list	containing	only	5
possible	characters	“.,-_	”.	The	space	can	be	used	to	enlarge	the	space
between	other	line	elements,	and	cannot	occur	as	the	first	position	in
the	string.	Some	examples:

-dash	.					→	-dash	{2	4}

-dash	-					→	-dash	{6	4}

-dash	-.				→	-dash	{6	4	2	4}

-dash	-..			→	-dash	{6	4	2	4	2	4}

-dash	{.	}		→	-dash	{2	8}

-dash	,					→	-dash	{4	4}

The	main	difference	of	this	syntax	with	the	previous	is	that	it	is	shape-
conserving.	This	means	that	all	values	in	the	dash	list	will	be	multiplied
by	the	line	width	before	display.	This	assures	that	“.”	will	always	be
displayed	as	a	dot	and	“-”	always	as	a	dash	regardless	of	the	line	width.

On	systems	which	support	only	a	limited	set	of	dash	patterns,	the	dash
pattern	will	be	displayed	as	the	closest	dash	pattern	that	is	available.
For	example,	on	Windows	only	the	first	4	of	the	above	examples	are
available.	The	last	2	examples	will	be	displayed	identically	to	the	first
one.

WIDGET	COMMAND

The	canvas	command	creates	a	new	Tcl	command	whose	name	is
pathName.	This	command	may	be	used	to	invoke	various	operations	on
the	widget.	It	has	the	following	general	form:

pathName	option	?arg	arg	...?

Option	and	the	args	determine	the	exact	behavior	of	the	command.	The
following	widget	commands	are	possible	for	canvas	widgets:

pathName	addtag	tag	searchSpec	?arg	arg	...?
For	each	item	that	meets	the	constraints	specified	by	searchSpec
and	the	args,	add	tag	to	the	list	of	tags	associated	with	the	item	if	it

is	not	already	present	on	that	list.	It	is	possible	that	no	items	will
satisfy	the	constraints	given	by	searchSpec	and	args,	in	which	case
the	command	has	no	effect.	This	command	returns	an	empty	string
as	result.	SearchSpec	and	arg's	may	take	any	of	the	following
forms:

above	tagOrId
Selects	the	item	just	after	(above)	the	one	given	by	tagOrId	in
the	display	list.	If	tagOrId	denotes	more	than	one	item,	then	the
last	(topmost)	of	these	items	in	the	display	list	is	used.

all
Selects	all	the	items	in	the	canvas.

below	tagOrId
Selects	the	item	just	before	(below)	the	one	given	by	tagOrId	in
the	display	list.	If	tagOrId	denotes	more	than	one	item,	then	the
first	(lowest)	of	these	items	in	the	display	list	is	used.

closest	x	y	?halo?	?start?
Selects	the	item	closest	to	the	point	given	by	x	and	y.	If	more
than	one	item	is	at	the	same	closest	distance	(e.g.	two	items
overlap	the	point),	then	the	top-most	of	these	items	(the	last
one	in	the	display	list)	is	used.	If	halo	is	specified,	then	it	must
be	a	non-negative	value.	Any	item	closer	than	halo	to	the	point
is	considered	to	overlap	it.	The	start	argument	may	be	used	to
step	circularly	through	all	the	closest	items.	If	start	is	specified,
it	names	an	item	using	a	tag	or	id	(if	by	tag,	it	selects	the	first
item	in	the	display	list	with	the	given	tag).	Instead	of	selecting
the	topmost	closest	item,	this	form	will	select	the	topmost
closest	item	that	is	below	start	in	the	display	list;	if	no	such
item	exists,	then	the	selection	behaves	as	if	the	start	argument
had	not	been	specified.

enclosed	x1	y1	x2	y2
Selects	all	the	items	completely	enclosed	within	the
rectangular	region	given	by	x1,	y1,	x2,	and	y2.	X1	must	be	no
greater	then	x2	and	y1	must	be	no	greater	than	y2.

overlapping	x1	y1	x2	y2
Selects	all	the	items	that	overlap	or	are	enclosed	within	the
rectangular	region	given	by	x1,	y1,	x2,	and	y2.	X1	must	be	no
greater	then	x2	and	y1	must	be	no	greater	than	y2.

withtag	tagOrId
Selects	all	the	items	given	by	tagOrId.

pathName	bbox	tagOrId	?tagOrId	tagOrId	...?
Returns	a	list	with	four	elements	giving	an	approximate	bounding
box	for	all	the	items	named	by	the	tagOrId	arguments.	The	list	has
the	form	“x1	y1	x2	y2”	such	that	the	drawn	areas	of	all	the	named
elements	are	within	the	region	bounded	by	x1	on	the	left,	x2	on	the
right,	y1	on	the	top,	and	y2	on	the	bottom.	The	return	value	may
overestimate	the	actual	bounding	box	by	a	few	pixels.	If	no	items
match	any	of	the	tagOrId	arguments	or	if	the	matching	items	have
empty	bounding	boxes	(i.e.	they	have	nothing	to	display)	then	an
empty	string	is	returned.

pathName	bind	tagOrId	?sequence?	?command?
This	command	associates	command	with	all	the	items	given	by
tagOrId	such	that	whenever	the	event	sequence	given	by	sequence
occurs	for	one	of	the	items	the	command	will	be	invoked.	This
widget	command	is	similar	to	the	bind	command	except	that	it
operates	on	items	in	a	canvas	rather	than	entire	widgets.	See	the
bind	manual	entry	for	complete	details	on	the	syntax	of	sequence
and	the	substitutions	performed	on	command	before	invoking	it.	If
all	arguments	are	specified	then	a	new	binding	is	created,	replacing
any	existing	binding	for	the	same	sequence	and	tagOrId	(if	the	first
character	of	command	is	“+”	then	command	augments	an	existing
binding	rather	than	replacing	it).	In	this	case	the	return	value	is	an
empty	string.	If	command	is	omitted	then	the	command	returns	the
command	associated	with	tagOrId	and	sequence	(an	error	occurs	if
there	is	no	such	binding).	If	both	command	and	sequence	are
omitted	then	the	command	returns	a	list	of	all	the	sequences	for
which	bindings	have	been	defined	for	tagOrId.

The	only	events	for	which	bindings	may	be	specified	are	those

related	to	the	mouse	and	keyboard	(such	as	Enter,	Leave,
ButtonPress,	Motion,	and	KeyPress)	or	virtual	events.	The
handling	of	events	in	canvases	uses	the	current	item	defined	in
ITEM	IDS	AND	TAGS	above.	Enter	and	Leave	events	trigger	for
an	item	when	it	becomes	the	current	item	or	ceases	to	be	the
current	item;	note	that	these	events	are	different	than	Enter	and
Leave	events	for	windows.	Mouse-related	events	are	directed	to
the	current	item,	if	any.	Keyboard-related	events	are	directed	to	the
focus	item,	if	any	(see	the	focus	widget	command	below	for	more
on	this).	If	a	virtual	event	is	used	in	a	binding,	that	binding	can
trigger	only	if	the	virtual	event	is	defined	by	an	underlying	mouse-
related	or	keyboard-related	event.

It	is	possible	for	multiple	bindings	to	match	a	particular	event.	This
could	occur,	for	example,	if	one	binding	is	associated	with	the
item's	id	and	another	is	associated	with	one	of	the	item's	tags.
When	this	occurs,	all	of	the	matching	bindings	are	invoked.	A
binding	associated	with	the	all	tag	is	invoked	first,	followed	by	one
binding	for	each	of	the	item's	tags	(in	order),	followed	by	a	binding
associated	with	the	item's	id.	If	there	are	multiple	matching	bindings
for	a	single	tag,	then	only	the	most	specific	binding	is	invoked.	A
continue	command	in	a	binding	script	terminates	that	script,	and	a
break	command	terminates	that	script	and	skips	any	remaining
scripts	for	the	event,	just	as	for	the	bind	command.

If	bindings	have	been	created	for	a	canvas	window	using	the	bind
command,	then	they	are	invoked	in	addition	to	bindings	created	for
the	canvas's	items	using	the	bind	widget	command.	The	bindings
for	items	will	be	invoked	before	any	of	the	bindings	for	the	window
as	a	whole.

pathName	canvasx	screenx	?gridspacing?
Given	a	window	x-coordinate	in	the	canvas	screenx,	this	command
returns	the	canvas	x-coordinate	that	is	displayed	at	that	location.	If
gridspacing	is	specified,	then	the	canvas	coordinate	is	rounded	to
the	nearest	multiple	of	gridspacing	units.

pathName	canvasy	screeny	?gridspacing?

Given	a	window	y-coordinate	in	the	canvas	screeny	this	command
returns	the	canvas	y-coordinate	that	is	displayed	at	that	location.	If
gridspacing	is	specified,	then	the	canvas	coordinate	is	rounded	to
the	nearest	multiple	of	gridspacing	units.

pathName	cget	option
Returns	the	current	value	of	the	configuration	option	given	by
option.	Option	may	have	any	of	the	values	accepted	by	the	canvas
command.

pathName	configure	?option?	?value?	?option	value	...?
Query	or	modify	the	configuration	options	of	the	widget.	If	no	option
is	specified,	returns	a	list	describing	all	of	the	available	options	for
pathName	(see	Tk_ConfigureInfo	for	information	on	the	format	of
this	list).	If	option	is	specified	with	no	value,	then	the	command
returns	a	list	describing	the	one	named	option	(this	list	will	be
identical	to	the	corresponding	sublist	of	the	value	returned	if	no
option	is	specified).	If	one	or	more	option-value	pairs	are	specified,
then	the	command	modifies	the	given	widget	option(s)	to	have	the
given	value(s);	in	this	case	the	command	returns	an	empty	string.
Option	may	have	any	of	the	values	accepted	by	the	canvas
command.

pathName	coords	tagOrId	?x0	y0	...?

pathName	coords	tagOrId	?coordList?
Query	or	modify	the	coordinates	that	define	an	item.	If	no
coordinates	are	specified,	this	command	returns	a	list	whose
elements	are	the	coordinates	of	the	item	named	by	tagOrId.	If
coordinates	are	specified,	then	they	replace	the	current	coordinates
for	the	named	item.	If	tagOrId	refers	to	multiple	items,	then	the	first
one	in	the	display	list	is	used.

pathName	create	type	x	y	?x	y	...?	?option	value	...?

pathName	create	type	coordList	?option	value	...?
Create	a	new	item	in	pathName	of	type	type.	The	exact	format	of
the	arguments	after	type	depends	on	type,	but	usually	they	consist

of	the	coordinates	for	one	or	more	points,	followed	by	specifications
for	zero	or	more	item	options.	See	the	subsections	on	individual
item	types	below	for	more	on	the	syntax	of	this	command.	This
command	returns	the	id	for	the	new	item.

pathName	dchars	tagOrId	first	?last?
For	each	item	given	by	tagOrId,	delete	the	characters,	or
coordinates,	in	the	range	given	by	first	and	last,	inclusive.	If	some
of	the	items	given	by	tagOrId	do	not	support	indexing	operations
then	they	ignore	dchars.	Text	items	interpret	first	and	last	as	indices
to	a	character,	line	and	polygon	items	interpret	them	indices	to	a
coordinate	(an	x,y	pair).	Indices	are	described	in	INDICES	above.	If
last	is	omitted,	it	defaults	to	first.	This	command	returns	an	empty
string.

pathName	delete	?tagOrId	tagOrId	...?
Delete	each	of	the	items	given	by	each	tagOrId,	and	return	an
empty	string.

pathName	dtag	tagOrId	?tagToDelete?
For	each	of	the	items	given	by	tagOrId,	delete	the	tag	given	by
tagToDelete	from	the	list	of	those	associated	with	the	item.	If	an
item	does	not	have	the	tag	tagToDelete	then	the	item	is	unaffected
by	the	command.	If	tagToDelete	is	omitted	then	it	defaults	to
tagOrId.	This	command	returns	an	empty	string.

pathName	find	searchCommand	?arg	arg	...?
This	command	returns	a	list	consisting	of	all	the	items	that	meet	the
constraints	specified	by	searchCommand	and	arg's.
SearchCommand	and	args	have	any	of	the	forms	accepted	by	the
addtag	command.	The	items	are	returned	in	stacking	order,	with
the	lowest	item	first.

pathName	focus	?tagOrId?
Set	the	keyboard	focus	for	the	canvas	widget	to	the	item	given	by
tagOrId.	If	tagOrId	refers	to	several	items,	then	the	focus	is	set	to
the	first	such	item	in	the	display	list	that	supports	the	insertion
cursor.	If	tagOrId	does	not	refer	to	any	items,	or	if	none	of	them

support	the	insertion	cursor,	then	the	focus	is	not	changed.	If
tagOrId	is	an	empty	string,	then	the	focus	item	is	reset	so	that	no
item	has	the	focus.	If	tagOrId	is	not	specified	then	the	command
returns	the	id	for	the	item	that	currently	has	the	focus,	or	an	empty
string	if	no	item	has	the	focus.

Once	the	focus	has	been	set	to	an	item,	the	item	will	display	the
insertion	cursor	and	all	keyboard	events	will	be	directed	to	that
item.	The	focus	item	within	a	canvas	and	the	focus	window	on	the
screen	(set	with	the	focus	command)	are	totally	independent:	a
given	item	does	not	actually	have	the	input	focus	unless	(a)	its
canvas	is	the	focus	window	and	(b)	the	item	is	the	focus	item	within
the	canvas.	In	most	cases	it	is	advisable	to	follow	the	focus	widget
command	with	the	focus	command	to	set	the	focus	window	to	the
canvas	(if	it	was	not	there	already).

pathName	gettags	tagOrId
Return	a	list	whose	elements	are	the	tags	associated	with	the	item
given	by	tagOrId.	If	tagOrId	refers	to	more	than	one	item,	then	the
tags	are	returned	from	the	first	such	item	in	the	display	list.	If
tagOrId	does	not	refer	to	any	items,	or	if	the	item	contains	no	tags,
then	an	empty	string	is	returned.

pathName	icursor	tagOrId	index
Set	the	position	of	the	insertion	cursor	for	the	item(s)	given	by
tagOrId	to	just	before	the	character	whose	position	is	given	by
index.	If	some	or	all	of	the	items	given	by	tagOrId	do	not	support	an
insertion	cursor	then	this	command	has	no	effect	on	them.	See
INDICES	above	for	a	description	of	the	legal	forms	for	index.	Note:
the	insertion	cursor	is	only	displayed	in	an	item	if	that	item	currently
has	the	keyboard	focus	(see	the	widget	command	focus,	below),
but	the	cursor	position	may	be	set	even	when	the	item	does	not
have	the	focus.	This	command	returns	an	empty	string.

pathName	index	tagOrId	index
This	command	returns	a	decimal	string	giving	the	numerical	index
within	tagOrId	corresponding	to	index.	Index	gives	a	textual
description	of	the	desired	position	as	described	in	INDICES	above.

Text	items	interpret	index	as	an	index	to	a	character,	line	and
polygon	items	interpret	it	as	an	index	to	a	coordinate	(an	x,y	pair).
The	return	value	is	guaranteed	to	lie	between	0	and	the	number	of
characters,	or	coordinates,	within	the	item,	inclusive.	If	tagOrId
refers	to	multiple	items,	then	the	index	is	processed	in	the	first	of
these	items	that	supports	indexing	operations	(in	display	list	order).

pathName	insert	tagOrId	beforeThis	string
For	each	of	the	items	given	by	tagOrId,	if	the	item	supports	text	or
coordinate,	insertion	then	string	is	inserted	into	the	item's	text	just
before	the	character,	or	coordinate,	whose	index	is	beforeThis.	Text
items	interpret	beforeThis	as	an	index	to	a	character,	line	and
polygon	items	interpret	it	as	an	index	to	a	coordinate	(an	x,y	pair).
For	lines	and	polygons	the	string	must	be	a	valid	coordinate
sequence.	See	INDICES	above	for	information	about	the	forms
allowed	for	beforeThis.	This	command	returns	an	empty	string.

pathName	itemcget	tagOrId	option
Returns	the	current	value	of	the	configuration	option	for	the	item
given	by	tagOrId	whose	name	is	option.	This	command	is	similar	to
the	cget	widget	command	except	that	it	applies	to	a	particular	item
rather	than	the	widget	as	a	whole.	Option	may	have	any	of	the
values	accepted	by	the	create	widget	command	when	the	item	was
created.	If	tagOrId	is	a	tag	that	refers	to	more	than	one	item,	the
first	(lowest)	such	item	is	used.

pathName	itemconfigure	tagOrId	?option?	?value?	?option	value	...?
This	command	is	similar	to	the	configure	widget	command	except
that	it	modifies	item-specific	options	for	the	items	given	by	tagOrId
instead	of	modifying	options	for	the	overall	canvas	widget.	If	no
option	is	specified,	returns	a	list	describing	all	of	the	available
options	for	the	first	item	given	by	tagOrId	(see	Tk_ConfigureInfo
for	information	on	the	format	of	this	list).	If	option	is	specified	with
no	value,	then	the	command	returns	a	list	describing	the	one
named	option	(this	list	will	be	identical	to	the	corresponding	sublist
of	the	value	returned	if	no	option	is	specified).	If	one	or	more
option-value	pairs	are	specified,	then	the	command	modifies	the
given	widget	option(s)	to	have	the	given	value(s)	in	each	of	the

items	given	by	tagOrId;	in	this	case	the	command	returns	an	empty
string.	The	options	and	values	are	the	same	as	those	permissible	in
the	create	widget	command	when	the	item(s)	were	created;	see
the	sections	describing	individual	item	types	below	for	details	on
the	legal	options.

pathName	lower	tagOrId	?belowThis?
Move	all	of	the	items	given	by	tagOrId	to	a	new	position	in	the
display	list	just	before	the	item	given	by	belowThis.	If	tagOrId	refers
to	more	than	one	item	then	all	are	moved	but	the	relative	order	of
the	moved	items	will	not	be	changed.	BelowThis	is	a	tag	or	id;	if	it
refers	to	more	than	one	item	then	the	first	(lowest)	of	these	items	in
the	display	list	is	used	as	the	destination	location	for	the	moved
items.	Note:	this	command	has	no	effect	on	window	items.	Window
items	always	obscure	other	item	types,	and	the	stacking	order	of
window	items	is	determined	by	the	raise	and	lower	commands,	not
the	raise	and	lower	widget	commands	for	canvases.	This
command	returns	an	empty	string.

pathName	move	tagOrId	xAmount	yAmount
Move	each	of	the	items	given	by	tagOrId	in	the	canvas	coordinate
space	by	adding	xAmount	to	the	x-coordinate	of	each	point
associated	with	the	item	and	yAmount	to	the	y-coordinate	of	each
point	associated	with	the	item.	This	command	returns	an	empty
string.

pathName	postscript	?option	value	option	value	...?
Generate	a	Postscript	representation	for	part	or	all	of	the	canvas.	If
the	-file	option	is	specified	then	the	Postscript	is	written	to	a	file
and	an	empty	string	is	returned;	otherwise	the	Postscript	is
returned	as	the	result	of	the	command.	If	the	interpreter	that	owns
the	canvas	is	marked	as	safe,	the	operation	will	fail	because	safe
interpreters	are	not	allowed	to	write	files.	If	the	-channel	option	is
specified,	the	argument	denotes	the	name	of	a	channel	already
opened	for	writing.	The	Postscript	is	written	to	that	channel,	and	the
channel	is	left	open	for	further	writing	at	the	end	of	the	operation.
The	Postscript	is	created	in	Encapsulated	Postscript	form	using
version	3.0	of	the	Document	Structuring	Conventions.	Note:	by

default	Postscript	is	only	generated	for	information	that	appears	in
the	canvas's	window	on	the	screen.	If	the	canvas	is	freshly	created
it	may	still	have	its	initial	size	of	1x1	pixel	so	nothing	will	appear	in
the	Postscript.	To	get	around	this	problem	either	invoke	the	update
command	to	wait	for	the	canvas	window	to	reach	its	final	size,	or
else	use	the	-width	and	-height	options	to	specify	the	area	of	the
canvas	to	print.	The	option-value	argument	pairs	provide	additional
information	to	control	the	generation	of	Postscript.	The	following
options	are	supported:

-colormap	varName
VarName	must	be	the	name	of	an	array	variable	that	specifies
a	color	mapping	to	use	in	the	Postscript.	Each	element	of
varName	must	consist	of	Postscript	code	to	set	a	particular
color	value	(e.g.	“1.0	1.0	0.0	setrgbcolor”).	When	outputting
color	information	in	the	Postscript,	Tk	checks	to	see	if	there	is
an	element	of	varName	with	the	same	name	as	the	color.	If	so,
Tk	uses	the	value	of	the	element	as	the	Postscript	command	to
set	the	color.	If	this	option	has	not	been	specified,	or	if	there	is
no	entry	in	varName	for	a	given	color,	then	Tk	uses	the	red,
green,	and	blue	intensities	from	the	X	color.

-colormode	mode
Specifies	how	to	output	color	information.	Mode	must	be	either
color	(for	full	color	output),	gray	(convert	all	colors	to	their
gray-scale	equivalents)	or	mono	(convert	all	colors	to	black	or
white).

-file	fileName
Specifies	the	name	of	the	file	in	which	to	write	the	Postscript.	If
this	option	is	not	specified	then	the	Postscript	is	returned	as
the	result	of	the	command	instead	of	being	written	to	a	file.

-fontmap	varName
VarName	must	be	the	name	of	an	array	variable	that	specifies
a	font	mapping	to	use	in	the	Postscript.	Each	element	of
varName	must	consist	of	a	Tcl	list	with	two	elements,	which	are
the	name	and	point	size	of	a	Postscript	font.	When	outputting

Postscript	commands	for	a	particular	font,	Tk	checks	to	see	if
varName	contains	an	element	with	the	same	name	as	the	font.
If	there	is	such	an	element,	then	the	font	information	contained
in	that	element	is	used	in	the	Postscript.	Otherwise	Tk
attempts	to	guess	what	Postscript	font	to	use.	Tk's	guesses
generally	only	work	for	well-known	fonts	such	as	Times	and
Helvetica	and	Courier,	and	only	if	the	X	font	name	does	not
omit	any	dashes	up	through	the	point	size.	For	example,	-*-
Courier-Bold-R-Normal--*-120-*	will	work	but	*Courier-Bold-
R-Normal*120*	will	not;	Tk	needs	the	dashes	to	parse	the	font
name).

-height	size
Specifies	the	height	of	the	area	of	the	canvas	to	print.	Defaults
to	the	height	of	the	canvas	window.

-pageanchor	anchor
Specifies	which	point	of	the	printed	area	of	the	canvas	should
appear	over	the	positioning	point	on	the	page	(which	is	given
by	the	-pagex	and	-pagey	options).	For	example,	-
pageanchor	n	means	that	the	top	center	of	the	area	of	the
canvas	being	printed	(as	it	appears	in	the	canvas	window)
should	be	over	the	positioning	point.	Defaults	to	center.

-pageheight	size
Specifies	that	the	Postscript	should	be	scaled	in	both	x	and	y
so	that	the	printed	area	is	size	high	on	the	Postscript	page.
Size	consists	of	a	floating-point	number	followed	by	c	for
centimeters,	i	for	inches,	m	for	millimeters,	or	p	or	nothing	for
printer's	points	(1/72	inch).	Defaults	to	the	height	of	the	printed
area	on	the	screen.	If	both	-pageheight	and	-pagewidth	are
specified	then	the	scale	factor	from	-pagewidth	is	used	(non-
uniform	scaling	is	not	implemented).

-pagewidth	size
Specifies	that	the	Postscript	should	be	scaled	in	both	x	and	y
so	that	the	printed	area	is	size	wide	on	the	Postscript	page.
Size	has	the	same	form	as	for	-pageheight.	Defaults	to	the

width	of	the	printed	area	on	the	screen.	If	both	-pageheight
and	-pagewidth	are	specified	then	the	scale	factor	from	-
pagewidth	is	used	(non-uniform	scaling	is	not	implemented).

-pagex	position
Position	gives	the	x-coordinate	of	the	positioning	point	on	the
Postscript	page,	using	any	of	the	forms	allowed	for	-
pageheight.	Used	in	conjunction	with	the	-pagey	and	-
pageanchor	options	to	determine	where	the	printed	area
appears	on	the	Postscript	page.	Defaults	to	the	center	of	the
page.

-pagey	position
Position	gives	the	y-coordinate	of	the	positioning	point	on	the
Postscript	page,	using	any	of	the	forms	allowed	for	-
pageheight.	Used	in	conjunction	with	the	-pagex	and	-
pageanchor	options	to	determine	where	the	printed	area
appears	on	the	Postscript	page.	Defaults	to	the	center	of	the
page.

-rotate	boolean
Boolean	specifies	whether	the	printed	area	is	to	be	rotated	90
degrees.	In	non-rotated	output	the	x-axis	of	the	printed	area
runs	along	the	short	dimension	of	the	page
(“portrait”orientation);	in	rotated	output	the	x-axis	runs	along
the	long	dimension	of	the	page	(“landscape”orientation).
Defaults	to	non-rotated.

-width	size
Specifies	the	width	of	the	area	of	the	canvas	to	print.	Defaults
to	the	width	of	the	canvas	window.

-x	position
Specifies	the	x-coordinate	of	the	left	edge	of	the	area	of	the
canvas	that	is	to	be	printed,	in	canvas	coordinates,	not	window
coordinates.	Defaults	to	the	coordinate	of	the	left	edge	of	the
window.

-y	position
Specifies	the	y-coordinate	of	the	top	edge	of	the	area	of	the
canvas	that	is	to	be	printed,	in	canvas	coordinates,	not	window
coordinates.	Defaults	to	the	coordinate	of	the	top	edge	of	the
window.

pathName	raise	tagOrId	?aboveThis?
Move	all	of	the	items	given	by	tagOrId	to	a	new	position	in	the
display	list	just	after	the	item	given	by	aboveThis.	If	tagOrId	refers
to	more	than	one	item	then	all	are	moved	but	the	relative	order	of
the	moved	items	will	not	be	changed.	AboveThis	is	a	tag	or	id;	if	it
refers	to	more	than	one	item	then	the	last	(topmost)	of	these	items
in	the	display	list	is	used	as	the	destination	location	for	the	moved
items.	Note:	this	command	has	no	effect	on	window	items.	Window
items	always	obscure	other	item	types,	and	the	stacking	order	of
window	items	is	determined	by	the	raise	and	lower	commands,	not
the	raise	and	lower	widget	commands	for	canvases.	This
command	returns	an	empty	string.

pathName	scale	tagOrId	xOrigin	yOrigin	xScale	yScale
Rescale	all	of	the	items	given	by	tagOrId	in	canvas	coordinate
space.	XOrigin	and	yOrigin	identify	the	origin	for	the	scaling
operation	and	xScale	and	yScale	identify	the	scale	factors	for	x-
and	y-coordinates,	respectively	(a	scale	factor	of	1.0	implies	no
change	to	that	coordinate).	For	each	of	the	points	defining	each
item,	the	x-coordinate	is	adjusted	to	change	the	distance	from
xOrigin	by	a	factor	of	xScale.	Similarly,	each	y-coordinate	is
adjusted	to	change	the	distance	from	yOrigin	by	a	factor	of	yScale.
This	command	returns	an	empty	string.

pathName	scan	option	args
This	command	is	used	to	implement	scanning	on	canvases.	It	has
two	forms,	depending	on	option:

pathName	scan	mark	x	y
Records	x	and	y	and	the	canvas's	current	view;	used	in
conjunction	with	later	scan	dragto	commands.	Typically	this
command	is	associated	with	a	mouse	button	press	in	the

widget	and	x	and	y	are	the	coordinates	of	the	mouse.	It	returns
an	empty	string.

pathName	scan	dragto	x	y	?gain?.
This	command	computes	the	difference	between	its	x	and	y
arguments	(which	are	typically	mouse	coordinates)	and	the	x
and	y	arguments	to	the	last	scan	mark	command	for	the
widget.	It	then	adjusts	the	view	by	gain	times	the	difference	in
coordinates,	where	gain	defaults	to	10.	This	command	is
typically	associated	with	mouse	motion	events	in	the	widget,	to
produce	the	effect	of	dragging	the	canvas	at	high	speed
through	its	window.	The	return	value	is	an	empty	string.

pathName	select	option	?tagOrId	arg?
Manipulates	the	selection	in	one	of	several	ways,	depending	on
option.	The	command	may	take	any	of	the	forms	described	below.
In	all	of	the	descriptions	below,	tagOrId	must	refer	to	an	item	that
supports	indexing	and	selection;	if	it	refers	to	multiple	items	then
the	first	of	these	that	supports	indexing	and	the	selection	is	used.
Index	gives	a	textual	description	of	a	position	within	tagOrId,	as
described	in	INDICES	above.

pathName	select	adjust	tagOrId	index
Locate	the	end	of	the	selection	in	tagOrId	nearest	to	the
character	given	by	index,	and	adjust	that	end	of	the	selection
to	be	at	index	(i.e.	including	but	not	going	beyond	index).	The
other	end	of	the	selection	is	made	the	anchor	point	for	future
select	to	commands.	If	the	selection	is	not	currently	in	tagOrId
then	this	command	behaves	the	same	as	the	select	to	widget
command.	Returns	an	empty	string.

pathName	select	clear
Clear	the	selection	if	it	is	in	this	widget.	If	the	selection	is	not	in
this	widget	then	the	command	has	no	effect.	Returns	an	empty
string.

pathName	select	from	tagOrId	index
Set	the	selection	anchor	point	for	the	widget	to	be	just	before

the	character	given	by	index	in	the	item	given	by	tagOrId.	This
command	does	not	change	the	selection;	it	just	sets	the	fixed
end	of	the	selection	for	future	select	to	commands.	Returns	an
empty	string.

pathName	select	item
Returns	the	id	of	the	selected	item,	if	the	selection	is	in	an	item
in	this	canvas.	If	the	selection	is	not	in	this	canvas	then	an
empty	string	is	returned.

pathName	select	to	tagOrId	index
Set	the	selection	to	consist	of	those	characters	of	tagOrId
between	the	selection	anchor	point	and	index.	The	new
selection	will	include	the	character	given	by	index;	it	will
include	the	character	given	by	the	anchor	point	only	if	index	is
greater	than	or	equal	to	the	anchor	point.	The	anchor	point	is
determined	by	the	most	recent	select	adjust	or	select	from
command	for	this	widget.	If	the	selection	anchor	point	for	the
widget	is	not	currently	in	tagOrId,	then	it	is	set	to	the	same
character	given	by	index.	Returns	an	empty	string.

pathName	type	tagOrId
Returns	the	type	of	the	item	given	by	tagOrId,	such	as	rectangle	or
text.	If	tagOrId	refers	to	more	than	one	item,	then	the	type	of	the
first	item	in	the	display	list	is	returned.	If	tagOrId	does	not	refer	to
any	items	at	all	then	an	empty	string	is	returned.

pathName	xview	?args?
This	command	is	used	to	query	and	change	the	horizontal	position
of	the	information	displayed	in	the	canvas's	window.	It	can	take	any
of	the	following	forms:

pathName	xview
Returns	a	list	containing	two	elements.	Each	element	is	a	real
fraction	between	0	and	1;	together	they	describe	the	horizontal
span	that	is	visible	in	the	window.	For	example,	if	the	first
element	is	.2	and	the	second	element	is	.6,	20%	of	the
canvas's	area	(as	defined	by	the	-scrollregion	option)	is	off-

screen	to	the	left,	the	middle	40%	is	visible	in	the	window,	and
40%	of	the	canvas	is	off-screen	to	the	right.	These	are	the
same	values	passed	to	scrollbars	via	the	-xscrollcommand
option.

pathName	xview	moveto	fraction
Adjusts	the	view	in	the	window	so	that	fraction	of	the	total
width	of	the	canvas	is	off-screen	to	the	left.	Fraction	must	be	a
fraction	between	0	and	1.

pathName	xview	scroll	number	what
This	command	shifts	the	view	in	the	window	left	or	right
according	to	number	and	what.	Number	must	be	an	integer.
What	must	be	either	units	or	pages	or	an	abbreviation	of	one
of	these.	If	what	is	units,	the	view	adjusts	left	or	right	in	units
of	the	xScrollIncrement	option,	if	it	is	greater	than	zero,	or	in
units	of	one-tenth	the	window's	width	otherwise.	If	what	is
pages	then	the	view	adjusts	in	units	of	nine-tenths	the
window's	width.	If	number	is	negative	then	information	farther
to	the	left	becomes	visible;	if	it	is	positive	then	information
farther	to	the	right	becomes	visible.

pathName	yview	?args?
This	command	is	used	to	query	and	change	the	vertical	position	of
the	information	displayed	in	the	canvas's	window.	It	can	take	any	of
the	following	forms:

pathName	yview
Returns	a	list	containing	two	elements.	Each	element	is	a	real
fraction	between	0	and	1;	together	they	describe	the	vertical
span	that	is	visible	in	the	window.	For	example,	if	the	first
element	is	.6	and	the	second	element	is	1.0,	the	lowest	40%	of
the	canvas's	area	(as	defined	by	the	-scrollregion	option)	is
visible	in	the	window.	These	are	the	same	values	passed	to
scrollbars	via	the	-yscrollcommand	option.

pathName	yview	moveto	fraction
Adjusts	the	view	in	the	window	so	that	fraction	of	the	canvas's

area	is	off-screen	to	the	top.	Fraction	is	a	fraction	between	0
and	1.

pathName	yview	scroll	number	what
This	command	adjusts	the	view	in	the	window	up	or	down
according	to	number	and	what.	Number	must	be	an	integer.
What	must	be	either	units	or	pages.	If	what	is	units,	the	view
adjusts	up	or	down	in	units	of	the	yScrollIncrement	option,	if	it
is	greater	than	zero,	or	in	units	of	one-tenth	the	window's
height	otherwise.	If	what	is	pages	then	the	view	adjusts	in
units	of	nine-tenths	the	window's	height.	If	number	is	negative
then	higher	information	becomes	visible;	if	it	is	positive	then
lower	information	becomes	visible.

OVERVIEW	OF	ITEM	TYPES

The	sections	below	describe	the	various	types	of	items	supported	by
canvas	widgets.	Each	item	type	is	characterized	by	two	things:	first,	the
form	of	the	create	command	used	to	create	instances	of	the	type;	and
second,	a	set	of	configuration	options	for	items	of	that	type,	which	may
be	used	in	the	create	and	itemconfigure	widget	commands.	Most
items	do	not	support	indexing	or	selection	or	the	commands	related	to
them,	such	as	index	and	insert.	Where	items	do	support	these
facilities,	it	is	noted	explicitly	in	the	descriptions	below.	At	present,	text,
line	and	polygon	items	provide	this	support.	For	lines	and	polygons	the
indexing	facility	is	used	to	manipulate	the	coordinates	of	the	item.

COMMON	ITEM	OPTIONS

Many	items	share	a	common	set	of	options.	These	options	are
explained	here,	and	then	referred	to	be	each	widget	type	for	brevity.

-dash	pattern

-activedash	pattern

-disableddash	pattern
This	option	specifies	dash	patterns	for	the	normal,	active	state,	and

disabled	state	of	an	item.	pattern	may	have	any	of	the	forms
accepted	by	Tk_GetDash.	If	the	dash	options	are	omitted	then	the
default	is	a	solid	outline.	See	DASH	PATTERNS	for	more
information.

-dashoffset	offset
The	starting	offset	in	pixels	into	the	pattern	provided	by	the	-dash
option.	-dashoffset	is	ignored	if	there	is	no	-dash	pattern.	The
offset	may	have	any	of	the	forms	described	in	the	COORDINATES
section	above.

-fill	color

-activefill	color

-disabledfill	color
Specifies	the	color	to	be	used	to	fill	item's	area.	in	its	normal,
active,	and	disabled	states,	Color	may	have	any	of	the	forms
accepted	by	Tk_GetColor.	If	color	is	an	empty	string	(the	default),
then	the	item	will	not	be	filled.	For	the	line	item,	it	specifies	the
color	of	the	line	drawn.	For	the	text	item,	it	specifies	the	foreground
color	of	the	text.

-outline	color

-activeoutline	color

-disabledoutline	color
This	option	specifies	the	color	that	should	be	used	to	draw	the
outline	of	the	item	in	its	normal,	active	and	disabled	states.	Color
may	have	any	of	the	forms	accepted	by	Tk_GetColor.	This	option
defaults	to	black.	If	color	is	specified	as	an	empty	string	then	no
outline	is	drawn	for	the	item.

-offset	offset
Specifies	the	offset	of	stipples.	The	offset	value	can	be	of	the	form
x,y	or	side,	where	side	can	be	n,	ne,	e,	se,	s,	sw,	w,	nw,	or
center.	In	the	first	case	the	origin	is	the	origin	of	the	toplevel	of	the

current	window.	For	the	canvas	itself	and	canvas	objects	the	origin
is	the	canvas	origin,	but	putting	#	in	front	of	the	coordinate	pair
indicates	using	the	toplevel	origin	instead.	For	canvas	objects,	the	-
offset	option	is	used	for	stippling	as	well.	For	the	line	and	polygon
canvas	items	you	can	also	specify	an	index	as	argument,	which
connects	the	stipple	origin	to	one	of	the	coordinate	points	of	the
line/polygon.

-outlinestipple	bitmap

-activeoutlinestipple	bitmap

-disabledoutlinestipple	bitmap
This	option	specifies	stipple	patterns	that	should	be	used	to	draw
the	outline	of	the	item	in	its	normal,	active	and	disabled	states.
Indicates	that	the	outline	for	the	item	should	be	drawn	with	a	stipple
pattern;	bitmap	specifies	the	stipple	pattern	to	use,	in	any	of	the
forms	accepted	by	Tk_GetBitmap.	If	the	-outline	option	has	not
been	specified	then	this	option	has	no	effect.	If	bitmap	is	an	empty
string	(the	default),	then	the	outline	is	drawn	in	a	solid	fashion.	Note
that	stipples	are	not	well	supported	on	platforms	that	do	not	use
X11	as	their	drawing	API.

-outlineoffset	offset
Specifies	the	offset	of	the	stipple	pattern	used	for	outlines.	The
offset	value	can	be	of	the	form	“x,y”	or	the	description	of	a	side
(one	of	n,	ne,	e,	se,	s,	sw,	w,	nw,	or	center).	This	option	only	has
an	effect	when	the	outline	is	drawn	as	a	stipple	pattern,	and	is	only
supported	under	X11.

-stipple	bitmap

-activestipple	bitmap

-disabledstipple	bitmap
This	option	specifies	stipple	patterns	that	should	be	used	to	fill	the
item	in	its	normal,	active	and	disabled	states.	bitmap	specifies	the
stipple	pattern	to	use,	in	any	of	the	forms	accepted	by

Tk_GetBitmap.	If	the	-fill	option	has	not	been	specified	then	this
option	has	no	effect.	If	bitmap	is	an	empty	string	(the	default),	then
filling	is	done	in	a	solid	fashion.	For	the	text	item,	it	affects	the
actual	text.	Note	that	stipples	are	not	well	supported	on	platforms
that	do	not	use	X11	as	their	drawing	API.

-state	state
This	allows	an	item	to	override	the	canvas	widget's	global	state
option.	It	takes	the	same	values:	normal,	disabled	or	hidden.

-tags	tagList
Specifies	a	set	of	tags	to	apply	to	the	item.	TagList	consists	of	a	list
of	tag	names,	which	replace	any	existing	tags	for	the	item.	TagList
may	be	an	empty	list.

-width	outlineWidth

-activewidth	outlineWidth

-disabledwidth	outlineWidth
Specifies	the	width	of	the	outline	to	be	drawn	around	the	item's
region,	in	its	normal,	active	and	disabled	states.	outlineWidth	may
be	in	any	of	the	forms	described	in	the	COORDINATES	section
above.	If	the	-outline	option	has	been	specified	as	an	empty	string
then	this	option	has	no	effect.	This	option	defaults	to	1.0.	For	arcs,
wide	outlines	will	be	drawn	centered	on	the	edges	of	the	arc's
region.

ARC	ITEMS

Items	of	type	arc	appear	on	the	display	as	arc-shaped	regions.	An	arc
is	a	section	of	an	oval	delimited	by	two	angles	(specified	by	the	-start
and	-extent	options)	and	displayed	in	one	of	several	ways	(specified	by
the	-style	option).	Arcs	are	created	with	widget	commands	of	the
following	form:

pathName	create	arc	x1	y1	x2	y2	?option	value	option	value	...

pathName	create	arc	coordList	?option	value	option	value	...

The	arguments	x1,	y1,	x2,	and	y2	or	coordList	give	the	coordinates	of
two	diagonally	opposite	corners	of	a	rectangular	region	enclosing	the
oval	that	defines	the	arc.	After	the	coordinates	there	may	be	any
number	of	option-value	pairs,	each	of	which	sets	one	of	the
configuration	options	for	the	item.	These	same	option-value	pairs	may
be	used	in	itemconfigure	widget	commands	to	change	the	item's
configuration.	An	arc	item	becomes	the	current	item	when	the	mouse
pointer	is	over	any	part	that	is	painted	or	(when	fully	transparent)	that
would	be	painted	if	both	the	-fill	and	-outline	options	were	non-empty.

The	following	standard	options	are	supported	by	arcs:

-dash

-activedash

-disableddash

-dashoffset

-fill

-activefill

-disabledfill

-offset

-outline

-activeoutline

-disabledoutline

-outlineoffset

-outlinestipple

-activeoutlinestipple

-disabledoutlinestipple

-stipple

-activestipple

-disabledstipple

-state

-tags

-width

-activewidth

-disabledwidth

The	following	extra	options	are	supported	for	arcs:

-extent	degrees
Specifies	the	size	of	the	angular	range	occupied	by	the	arc.	The
arc's	range	extends	for	degrees	degrees	counter-clockwise	from
the	starting	angle	given	by	the	-start	option.	Degrees	may	be
negative.	If	it	is	greater	than	360	or	less	than	-360,	then	degrees
modulo	360	is	used	as	the	extent.

-start	degrees
Specifies	the	beginning	of	the	angular	range	occupied	by	the	arc.
Degrees	is	given	in	units	of	degrees	measured	counter-clockwise
from	the	3-o'clock	position;	it	may	be	either	positive	or	negative.

-style	type
Specifies	how	to	draw	the	arc.	If	type	is	pieslice	(the	default)	then
the	arc's	region	is	defined	by	a	section	of	the	oval's	perimeter	plus
two	line	segments,	one	between	the	center	of	the	oval	and	each
end	of	the	perimeter	section.	If	type	is	chord	then	the	arc's	region
is	defined	by	a	section	of	the	oval's	perimeter	plus	a	single	line
segment	connecting	the	two	end	points	of	the	perimeter	section.	If
type	is	arc	then	the	arc's	region	consists	of	a	section	of	the
perimeter	alone.	In	this	last	case	the	-fill	option	is	ignored.

BITMAP	ITEMS

Items	of	type	bitmap	appear	on	the	display	as	images	with	two	colors,
foreground	and	background.	Bitmaps	are	created	with	widget
commands	of	the	following	form:

pathName	create	bitmap	x	y	?option	value	option	value	...

pathName	create	bitmap	coordList	?option	value	option	value	...

The	arguments	x	and	y	or	coordList	(which	must	have	two	elements)
specify	the	coordinates	of	a	point	used	to	position	the	bitmap	on	the
display	(see	the	-anchor	option	below	for	more	information	on	how
bitmaps	are	displayed).	After	the	coordinates	there	may	be	any	number
of	option-value	pairs,	each	of	which	sets	one	of	the	configuration
options	for	the	item.	These	same	option-value	pairs	may	be	used	in
itemconfigure	widget	commands	to	change	the	item's	configuration.	A
bitmap	item	becomes	the	current	item	when	the	mouse	pointer	is	over
any	part	of	its	bounding	box.

The	following	standard	options	are	supported	by	bitmaps:

-state

-tags

The	following	extra	options	are	supported	for	bitmaps:

-anchor	anchorPos
AnchorPos	tells	how	to	position	the	bitmap	relative	to	the
positioning	point	for	the	item;	it	may	have	any	of	the	forms
accepted	by	Tk_GetAnchor.	For	example,	if	anchorPos	is	center
then	the	bitmap	is	centered	on	the	point;	if	anchorPos	is	n	then	the
bitmap	will	be	drawn	so	that	its	top	center	point	is	at	the	positioning
point.	This	option	defaults	to	center.

-background	color

-activebackground	bitmap

-disabledbackground	bitmap
Specifies	the	color	to	use	for	each	of	the	bitmap's	“0”	valued	pixels
in	its	normal,	active	and	disabled	states.	Color	may	have	any	of	the
forms	accepted	by	Tk_GetColor.	If	this	option	is	not	specified,	or	if
it	is	specified	as	an	empty	string,	then	nothing	is	displayed	where
the	bitmap	pixels	are	0;	this	produces	a	transparent	effect.

-bitmap	bitmap

-activebitmap	bitmap

-disabledbitmap	bitmap
Specifies	the	bitmaps	to	display	in	the	item	in	its	normal,	active	and
disabled	states.	Bitmap	may	have	any	of	the	forms	accepted	by
Tk_GetBitmap.

-foreground	color

-activeforeground	bitmap

-disabledforeground	bitmap
Specifies	the	color	to	use	for	each	of	the	bitmap's	“1”	valued	pixels
in	its	normal,	active	and	disabled	states.	Color	may	have	any	of	the
forms	accepted	by	Tk_GetColor	and	defaults	to	black.

IMAGE	ITEMS

Items	of	type	image	are	used	to	display	images	on	a	canvas.	Images
are	created	with	widget	commands	of	the	following	form:

pathName	create	image	x	y	?option	value	option	value	...

pathName	create	image	coordList	?option	value	option	value	...

The	arguments	x	and	y	or	coordList	specify	the	coordinates	of	a	point
used	to	position	the	image	on	the	display	(see	the	-anchor	option	below
for	more	information).	After	the	coordinates	there	may	be	any	number	of
option-value	pairs,	each	of	which	sets	one	of	the	configuration	options
for	the	item.	These	same	option-value	pairs	may	be	used	in
itemconfigure	widget	commands	to	change	the	item's	configuration.	An
image	item	becomes	the	current	item	when	the	mouse	pointer	is	over
any	part	of	its	bounding	box.

The	following	standard	options	are	supported	by	images:

-state

-tags

The	following	extra	options	are	supported	for	images:

-anchor	anchorPos
AnchorPos	tells	how	to	position	the	image	relative	to	the
positioning	point	for	the	item;	it	may	have	any	of	the	forms
accepted	by	Tk_GetAnchor.	For	example,	if	anchorPos	is	center
then	the	image	is	centered	on	the	point;	if	anchorPos	is	n	then	the
image	will	be	drawn	so	that	its	top	center	point	is	at	the	positioning
point.	This	option	defaults	to	center.

-image	name

-activeimage	name

-disabledimage	name
Specifies	the	name	of	the	images	to	display	in	the	item	in	is	normal,
active	and	disabled	states.	This	image	must	have	been	created
previously	with	the	image	create	command.

LINE	ITEMS

Items	of	type	line	appear	on	the	display	as	one	or	more	connected	line
segments	or	curves.	Line	items	support	coordinate	indexing	operations
using	the	canvas	widget	commands:	dchars,	index,	insert.	Lines	are
created	with	widget	commands	of	the	following	form:

pathName	create	line	x1	y1...	xn	yn	?option	value	option	value	...

pathName	create	line	coordList	?option	value	option	value	...

The	arguments	x1	through	yn	or	coordList	give	the	coordinates	for	a
series	of	two	or	more	points	that	describe	a	series	of	connected	line

segments.	After	the	coordinates	there	may	be	any	number	of	option-
value	pairs,	each	of	which	sets	one	of	the	configuration	options	for	the
item.	These	same	option-value	pairs	may	be	used	in	itemconfigure
widget	commands	to	change	the	item's	configuration.	A	line	item	is	the
current	item	whenever	the	mouse	pointer	is	over	any	segment	of	the
line,	whether	drawn	or	not	and	whether	or	not	the	line	is	smoothed.

The	following	standard	options	are	supported	by	lines:

-dash

-activedash

-disableddash

-dashoffset

-fill

-activefill

-disabledfill

-stipple

-activestipple

-disabledstipple

-state

-tags

-width

-activewidth

-disabledwidth

The	following	extra	options	are	supported	for	lines:

-arrow	where
Indicates	whether	or	not	arrowheads	are	to	be	drawn	at	one	or	both
ends	of	the	line.	Where	must	have	one	of	the	values	none	(for	no
arrowheads),	first	(for	an	arrowhead	at	the	first	point	of	the	line),
last	(for	an	arrowhead	at	the	last	point	of	the	line),	or	both	(for
arrowheads	at	both	ends).	This	option	defaults	to	none.

-arrowshape	shape
This	option	indicates	how	to	draw	arrowheads.	The	shape

argument	must	be	a	list	with	three	elements,	each	specifying	a
distance	in	any	of	the	forms	described	in	the	COORDINATES
section	above.	The	first	element	of	the	list	gives	the	distance	along
the	line	from	the	neck	of	the	arrowhead	to	its	tip.	The	second
element	gives	the	distance	along	the	line	from	the	trailing	points	of
the	arrowhead	to	the	tip,	and	the	third	element	gives	the	distance
from	the	outside	edge	of	the	line	to	the	trailing	points.	If	this	option
is	not	specified	then	Tk	picks	a	“reasonable”	shape.

-capstyle	style
Specifies	the	ways	in	which	caps	are	to	be	drawn	at	the	endpoints
of	the	line.	Style	may	have	any	of	the	forms	accepted	by
Tk_GetCapStyle	(butt,	projecting,	or	round).	If	this	option	is	not
specified	then	it	defaults	to	butt.	Where	arrowheads	are	drawn	the
cap	style	is	ignored.

-joinstyle	style
Specifies	the	ways	in	which	joints	are	to	be	drawn	at	the	vertices	of
the	line.	Style	may	have	any	of	the	forms	accepted	by
Tk_GetCapStyle	(bevel,	miter,	or	round).	If	this	option	is	not
specified	then	it	defaults	to	round.	If	the	line	only	contains	two
points	then	this	option	is	irrelevant.

-smooth	smoothMethod
smoothMethod	must	have	one	of	the	forms	accepted	by
Tcl_GetBoolean	or	a	line	smoothing	method.	Only	true	and	raw
are	supported	in	the	core	(with	bezier	being	an	alias	for	true),	but
more	can	be	added	at	runtime.	If	a	boolean	false	value	or	empty
string	is	given,	no	smoothing	is	applied.	A	boolean	truth	value
assumes	true	smoothing.	If	the	smoothing	method	is	true,	this
indicates	that	the	line	should	be	drawn	as	a	curve,	rendered	as	a
set	of	quadratic	splines:	one	spline	is	drawn	for	the	first	and	second
line	segments,	one	for	the	second	and	third,	and	so	on.	Straight-
line	segments	can	be	generated	within	a	curve	by	duplicating	the
end-points	of	the	desired	line	segment.	If	the	smoothing	method	is
raw,	this	indicates	that	the	line	should	also	be	drawn	as	a	curve	but
where	the	list	of	coordinates	is	such	that	the	first	coordinate	pair
(and	every	third	coordinate	pair	thereafter)	is	a	knot	point	on	a

cubic	Bezier	curve,	and	the	other	coordinates	are	control	points	on
the	cubic	Bezier	curve.	Straight	line	segments	can	be	generated
within	a	curve	by	making	control	points	equal	to	their	neighbouring
knot	points.	If	the	last	point	is	a	control	point	and	not	a	knot	point,
the	point	is	repeated	(one	or	two	times)	so	that	it	also	becomes	a
knot	point.

-splinesteps	number
Specifies	the	degree	of	smoothness	desired	for	curves:	each	spline
will	be	approximated	with	number	line	segments.	This	option	is
ignored	unless	the	-smooth	option	is	true	or	raw.

OVAL	ITEMS

Items	of	type	oval	appear	as	circular	or	oval	regions	on	the	display.
Each	oval	may	have	an	outline,	a	fill,	or	both.	Ovals	are	created	with
widget	commands	of	the	following	form:

pathName	create	oval	x1	y1	x2	y2	?option	value	option	value	...

pathName	create	oval	coordList	?option	value	option	value	...

The	arguments	x1,	y1,	x2,	and	y2	or	coordList	give	the	coordinates	of
two	diagonally	opposite	corners	of	a	rectangular	region	enclosing	the
oval.	The	oval	will	include	the	top	and	left	edges	of	the	rectangle	not	the
lower	or	right	edges.	If	the	region	is	square	then	the	resulting	oval	is
circular;	otherwise	it	is	elongated	in	shape.	After	the	coordinates	there
may	be	any	number	of	option-value	pairs,	each	of	which	sets	one	of	the
configuration	options	for	the	item.	These	same	option-value	pairs	may
be	used	in	itemconfigure	widget	commands	to	change	the	item's
configuration.	An	oval	item	becomes	the	current	item	when	the	mouse
pointer	is	over	any	part	that	is	painted	or	(when	fully	transparent)	that
would	be	painted	if	both	the	-fill	and	-outline	options	were	non-empty.

The	following	standard	options	are	supported	by	ovals:

-dash

-activedash

-disableddash

-dashoffset

-fill

-activefill

-disabledfill

-offset

-outline

-activeoutline

-disabledoutline

-outlineoffset

-outlinestipple

-activeoutlinestipple

-disabledoutlinestipple

-stipple

-activestipple

-disabledstipple

-state

-tags

-width

-activewidth

-disabledwidth

POLYGON	ITEMS

Items	of	type	polygon	appear	as	polygonal	or	curved	filled	regions	on
the	display.	Polygon	items	support	coordinate	indexing	operations	using
the	canvas	widget	commands:	dchars,	index,	insert.	Polygons	are
created	with	widget	commands	of	the	following	form:

pathName	create	polygon	x1	y1	...	xn	yn	?option	value	option	value	...

pathName	create	polygon	coordList	?option	value	option	value	...

The	arguments	x1	through	yn	or	coordList	specify	the	coordinates	for
three	or	more	points	that	define	a	polygon.	The	first	point	should	not	be
repeated	as	the	last	to	close	the	shape;	Tk	will	automatically	close	the
periphery	between	the	first	and	last	points.	After	the	coordinates	there
may	be	any	number	of	option-value	pairs,	each	of	which	sets	one	of	the
configuration	options	for	the	item.	These	same	option-value	pairs	may
be	used	in	itemconfigure	widget	commands	to	change	the	item's
configuration.	A	polygon	item	is	the	current	item	whenever	the	mouse
pointer	is	over	any	part	of	the	polygon,	whether	drawn	or	not	and
whether	or	not	the	outline	is	smoothed.

The	following	standard	options	are	supported	by	polygons:

-dash

-activedash

-disableddash

-dashoffset

-fill

-activefill

-disabledfill

-offset

-outline

-activeoutline

-disabledoutline

-outlinestipple

-activeoutlinestipple

-disabledoutlinestipple

-stipple

-activestipple

-disabledstipple

-state

-tags

-width

-activewidth

-disabledwidth

The	following	extra	options	are	supported	for	polygons:

-joinstyle	style
Specifies	the	ways	in	which	joints	are	to	be	drawn	at	the	vertices	of
the	outline.	Style	may	have	any	of	the	forms	accepted	by
Tk_GetCapStyle	(bevel,	miter,	or	round).	If	this	option	is	not
specified	then	it	defaults	to	round.

-smooth	boolean
Boolean	must	have	one	of	the	forms	accepted	by	Tcl_GetBoolean
or	a	line	smoothing	method.	Only	true	and	raw	are	supported	in
the	core	(with	bezier	being	an	alias	for	true),	but	more	can	be
added	at	runtime.	If	a	boolean	false	value	or	empty	string	is	given,
no	smoothing	is	applied.	A	boolean	truth	value	assumes	true
smoothing.	If	the	smoothing	method	is	true,	this	indicates	that	the
polygon	should	be	drawn	as	a	curve,	rendered	as	a	set	of	quadratic
splines:	one	spline	is	drawn	for	the	first	and	second	line	segments,
one	for	the	second	and	third,	and	so	on.	Straight-line	segments	can
be	generated	within	a	curve	by	duplicating	the	end-points	of	the
desired	line	segment.	If	the	smoothing	method	is	raw,	this	indicates
that	the	polygon	should	also	be	drawn	as	a	curve	but	where	the	list
of	coordinates	is	such	that	the	first	coordinate	pair	(and	every	third
coordinate	pair	thereafter)	is	a	knot	point	on	a	cubic	Bezier	curve,
and	the	other	coordinates	are	control	points	on	the	cubic	Bezier
curve.	Straight	line	segments	can	be	venerated	within	a	curve	by
making	control	points	equal	to	their	neighbouring	knot	points.	If	the
last	point	is	not	the	second	point	of	a	pair	of	control	points,	the
point	is	repeated	(one	or	two	times)	so	that	it	also	becomes	the
second	point	of	a	pair	of	control	points	(the	associated	knot	point
will	be	the	first	control	point).

-splinesteps	number
Specifies	the	degree	of	smoothness	desired	for	curves:	each	spline
will	be	approximated	with	number	line	segments.	This	option	is
ignored	unless	the	-smooth	option	is	true	or	raw.

Polygon	items	are	different	from	other	items	such	as	rectangles,	ovals
and	arcs	in	that	interior	points	are	considered	to	be	“inside”	a	polygon

(e.g.	for	purposes	of	the	find	closest	and	find	overlapping	widget
commands)	even	if	it	is	not	filled.	For	most	other	item	types,	an	interior
point	is	considered	to	be	inside	the	item	only	if	the	item	is	filled	or	if	it
has	neither	a	fill	nor	an	outline.	If	you	would	like	an	unfilled	polygon
whose	interior	points	are	not	considered	to	be	inside	the	polygon,	use	a
line	item	instead.

RECTANGLE	ITEMS

Items	of	type	rectangle	appear	as	rectangular	regions	on	the	display.
Each	rectangle	may	have	an	outline,	a	fill,	or	both.	Rectangles	are
created	with	widget	commands	of	the	following	form:

pathName	create	rectangle	x1	y1	x2	y2	?option	value	option	value	...

pathName	create	rectangle	coordList	?option	value	option	value	...

The	arguments	x1,	y1,	x2,	and	y2	or	coordList	(which	must	have	four
elements)	give	the	coordinates	of	two	diagonally	opposite	corners	of	the
rectangle	(the	rectangle	will	include	its	upper	and	left	edges	but	not	its
lower	or	right	edges).	After	the	coordinates	there	may	be	any	number	of
option-value	pairs,	each	of	which	sets	one	of	the	configuration	options
for	the	item.	These	same	option-value	pairs	may	be	used	in
itemconfigure	widget	commands	to	change	the	item's	configuration.	A
rectangle	item	becomes	the	current	item	when	the	mouse	pointer	is
over	any	part	that	is	painted	or	(when	fully	transparent)	that	would	be
painted	if	both	the	-fill	and	-outline	options	were	non-empty.

The	following	standard	options	are	supported	by	rectangles:

-dash

-activedash

-disableddash

-dashoffset

-fill

-activefill

-disabledfill

-offset

-outline

-activeoutline

-disabledoutline

-outlineoffset

-outlinestipple

-activeoutlinestipple

-disabledoutlinestipple

-stipple

-activestipple

-disabledstipple

-state

-tags

-width

-activewidth

-disabledwidth

TEXT	ITEMS

A	text	item	displays	a	string	of	characters	on	the	screen	in	one	or	more
lines.	Text	items	support	indexing	and	selection,	along	with	the	following
text-related	canvas	widget	commands:	dchars,	focus,	icursor,	index,
insert,	select.	Text	items	are	created	with	widget	commands	of	the
following	form:

pathName	create	text	x	y	?option	value	option	value	...

pathName	create	text	coordList	?option	value	option	value	...

The	arguments	x	and	y	or	coordList	(which	must	have	two	elements)
specify	the	coordinates	of	a	point	used	to	position	the	text	on	the
display	(see	the	options	below	for	more	information	on	how	text	is
displayed).	After	the	coordinates	there	may	be	any	number	of	option-
value	pairs,	each	of	which	sets	one	of	the	configuration	options	for	the

item.	These	same	option-value	pairs	may	be	used	in	itemconfigure
widget	commands	to	change	the	item's	configuration.	A	text	item
becomes	the	current	item	when	the	mouse	pointer	is	over	any	part	of	its
bounding	box.

The	following	standard	options	are	supported	by	text	items:

-fill

-activefill

-disabledfill

-stipple

-activestipple

-disabledstipple

-state

-tags

The	following	extra	options	are	supported	for	text	items:

-anchor	anchorPos
AnchorPos	tells	how	to	position	the	text	relative	to	the	positioning
point	for	the	text;	it	may	have	any	of	the	forms	accepted	by
Tk_GetAnchor.	For	example,	if	anchorPos	is	center	then	the	text
is	centered	on	the	point;	if	anchorPos	is	n	then	the	text	will	be
drawn	such	that	the	top	center	point	of	the	rectangular	region
occupied	by	the	text	will	be	at	the	positioning	point.	This	option
defaults	to	center.

-font	fontName
Specifies	the	font	to	use	for	the	text	item.	FontName	may	be	any
string	acceptable	to	Tk_GetFont.	If	this	option	is	not	specified,	it
defaults	to	a	system-dependent	font.

-justify	how
Specifies	how	to	justify	the	text	within	its	bounding	region.	How
must	be	one	of	the	values	left,	right,	or	center.	This	option	will
only	matter	if	the	text	is	displayed	as	multiple	lines.	If	the	option	is

omitted,	it	defaults	to	left.

-text	string
String	specifies	the	characters	to	be	displayed	in	the	text	item.
Newline	characters	cause	line	breaks.	The	characters	in	the	item
may	also	be	changed	with	the	insert	and	delete	widget
commands.	This	option	defaults	to	an	empty	string.

-underline
Specifies	the	integer	index	of	a	character	within	the	text	to	be
underlined.	0	corresponds	to	the	first	character	of	the	text
displayed,	1	to	the	next	character,	and	so	on.	-1	means	that	no
underline	should	be	drawn	(if	the	whole	text	item	is	to	be
underlined,	the	appropriate	font	should	be	used	instead).

-width	lineLength
Specifies	a	maximum	line	length	for	the	text,	in	any	of	the	forms
described	in	the	COORDINATES	section	above.	If	this	option	is
zero	(the	default)	the	text	is	broken	into	lines	only	at	newline
characters.	However,	if	this	option	is	non-zero	then	any	line	that
would	be	longer	than	lineLength	is	broken	just	before	a	space
character	to	make	the	line	shorter	than	lineLength;	the	space
character	is	treated	as	if	it	were	a	newline	character.

WINDOW	ITEMS

Items	of	type	window	cause	a	particular	window	to	be	displayed	at	a
given	position	on	the	canvas.	Window	items	are	created	with	widget
commands	of	the	following	form:

pathName	create	window	x	y	?option	value	option	value	...

pathName	create	window	coordList	?option	value	option	value	...

The	arguments	x	and	y	or	coordList	(which	must	have	two	elements)
specify	the	coordinates	of	a	point	used	to	position	the	window	on	the
display	(see	the	-anchor	option	below	for	more	information	on	how

bitmaps	are	displayed).	After	the	coordinates	there	may	be	any	number
of	option-value	pairs,	each	of	which	sets	one	of	the	configuration
options	for	the	item.	These	same	option-value	pairs	may	be	used	in
itemconfigure	widget	commands	to	change	the	item's	configuration.
Theoretically,	a	window	item	becomes	the	current	item	when	the	mouse
pointer	is	over	any	part	of	its	bounding	box,	but	in	practice	this	typically
does	not	happen	because	the	mouse	pointer	ceases	to	be	over	the
canvas	at	that	point.

The	following	standard	options	are	supported	by	window	items:

-state

-tags

The	following	extra	options	are	supported	for	window	items:

-anchor	anchorPos
AnchorPos	tells	how	to	position	the	window	relative	to	the
positioning	point	for	the	item;	it	may	have	any	of	the	forms
accepted	by	Tk_GetAnchor.	For	example,	if	anchorPos	is	center
then	the	window	is	centered	on	the	point;	if	anchorPos	is	n	then	the
window	will	be	drawn	so	that	its	top	center	point	is	at	the
positioning	point.	This	option	defaults	to	center.

-height	pixels
Specifies	the	height	to	assign	to	the	item's	window.	Pixels	may
have	any	of	the	forms	described	in	the	COORDINATES	section
above.	If	this	option	is	not	specified,	or	if	it	is	specified	as	zero,
then	the	window	is	given	whatever	height	it	requests	internally.

-width	pixels
Specifies	the	width	to	assign	to	the	item's	window.	Pixels	may	have
any	of	the	forms	described	in	the	COORDINATES	section	above.	If
this	option	is	not	specified,	or	if	it	is	specified	as	zero,	then	the
window	is	given	whatever	width	it	requests	internally.

-window	pathName
Specifies	the	window	to	associate	with	this	item.	The	window
specified	by	pathName	must	either	be	a	child	of	the	canvas	widget
or	a	child	of	some	ancestor	of	the	canvas	widget.	PathName	may
not	refer	to	a	top-level	window.

Note:	due	to	restrictions	in	the	ways	that	windows	are	managed,	it	is	not
possible	to	draw	other	graphical	items	(such	as	lines	and	images)	on
top	of	window	items.	A	window	item	always	obscures	any	graphics	that
overlap	it,	regardless	of	their	order	in	the	display	list.	Also	note	that
window	items,	unlike	other	canvas	items,	are	not	clipped	for	display	by
their	containing	canvas's	border,	and	are	instead	clipped	by	the	parent
widget	of	the	window	specified	by	the	-window	option;	when	the	parent
widget	is	the	canvas,	this	means	that	the	window	item	can	overlap	the
canvas's	border.

APPLICATION-DEFINED	ITEM	TYPES

It	is	possible	for	individual	applications	to	define	new	item	types	for
canvas	widgets	using	C	code.	See	the	documentation	for
Tk_CreateItemType.

BINDINGS

In	the	current	implementation,	new	canvases	are	not	given	any	default
behavior:	you	will	have	to	execute	explicit	Tcl	commands	to	give	the
canvas	its	behavior.

CREDITS

Tk's	canvas	widget	is	a	blatant	ripoff	of	ideas	from	Joel	Bartlett's	ezd
program.	Ezd	provides	structured	graphics	in	a	Scheme	environment
and	preceded	canvases	by	a	year	or	two.	Its	simple	mechanisms	for
placing	and	animating	graphical	objects	inspired	the	functions	of
canvases.

SEE	ALSO

bind,	font,	image,	scrollbar

KEYWORDS

canvas,	widget

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1992-1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.
Copyright	©	1997-1999	Scriptics	Corporation.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	keysyms

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

keysyms	-	keysyms	recognized	by	Tk

DESCRIPTION

Tk	recognizes	many	keysyms	when	specifying	key	bindings	(e.g.	bind	.
<Key-keysym>).	The	following	list	enumerates	the	keysyms	that	will	be
recognized	by	Tk.	Note	that	not	all	keysyms	will	be	valid	on	all
platforms.	For	example,	on	Unix	systems,	the	presence	of	a	particular
keysym	is	dependant	on	the	configuration	of	the	keyboard	modifier
map.	This	list	shows	keysyms	along	with	their	decimal	and	hexadecimal
values.

space																															32					0x0020

exclam																														33					0x0021

quotedbl																												34					0x0022

numbersign																										35					0x0023

dollar																														36					0x0024

percent																													37					0x0025

ampersand																											38					0x0026

quoteright																										39					0x0027

parenleft																											40					0x0028

parenright																										41					0x0029

asterisk																												42					0x002a

plus																																43					0x002b

comma																															44					0x002c

minus																															45					0x002d

period																														46					0x002e

slash																															47					0x002f

0																																			48					0x0030

1																																			49					0x0031

2																																			50					0x0032

3																																			51					0x0033

4																																			52					0x0034

5																																			53					0x0035

6																																			54					0x0036

7																																			55					0x0037

8																																			56					0x0038

9																																			57					0x0039

colon																															58					0x003a

semicolon																											59					0x003b

less																																60					0x003c

equal																															61					0x003d

greater																													62					0x003e

question																												63					0x003f

at																																		64					0x0040

A																																			65					0x0041

B																																			66					0x0042

C																																			67					0x0043

D																																			68					0x0044

E																																			69					0x0045

F																																			70					0x0046

G																																			71					0x0047

H																																			72					0x0048

I																																			73					0x0049

J																																			74					0x004a

K																																			75					0x004b

L																																			76					0x004c

M																																			77					0x004d

N																																			78					0x004e

O																																			79					0x004f

P																																			80					0x0050

Q																																			81					0x0051

R																																			82					0x0052

S																																			83					0x0053

T																																			84					0x0054

U																																			85					0x0055

V																																			86					0x0056

W																																			87					0x0057

X																																			88					0x0058

Y																																			89					0x0059

Z																																			90					0x005a

bracketleft																									91					0x005b

backslash																											92					0x005c

bracketright																								93					0x005d

asciicircum																									94					0x005e

underscore																										95					0x005f

quoteleft																											96					0x0060

a																																			97					0x0061

b																																			98					0x0062

c																																			99					0x0063

d																																		100					0x0064

e																																		101					0x0065

f																																		102					0x0066

g																																		103					0x0067

h																																		104					0x0068

i																																		105					0x0069

j																																		106					0x006a

k																																		107					0x006b

l																																		108					0x006c

m																																		109					0x006d

n																																		110					0x006e

o																																		111					0x006f

p																																		112					0x0070

q																																		113					0x0071

r																																		114					0x0072

s																																		115					0x0073

t																																		116					0x0074

u																																		117					0x0075

v																																		118					0x0076

w																																		119					0x0077

x																																		120					0x0078

y																																		121					0x0079

z																																		122					0x007a

braceleft																										123					0x007b

bar																																124					0x007c

braceright																									125					0x007d

asciitilde																									126					0x007e

nobreakspace																							160					0x00a0

exclamdown																									161					0x00a1

cent																															162					0x00a2

sterling																											163					0x00a3

currency																											164					0x00a4

yen																																165					0x00a5

brokenbar																										166					0x00a6

section																												167					0x00a7

diaeresis																										168					0x00a8

copyright																										169					0x00a9

ordfeminine																								170					0x00aa

guillemotleft																						171					0x00ab

notsign																												172					0x00ac

hyphen																													173					0x00ad

registered																									174					0x00ae

macron																													175					0x00af

degree																													176					0x00b0

plusminus																										177					0x00b1

twosuperior																								178					0x00b2

threesuperior																						179					0x00b3

acute																														180					0x00b4

mu																																	181					0x00b5

paragraph																										182					0x00b6

periodcentered																					183					0x00b7

cedilla																												184					0x00b8

onesuperior																								185					0x00b9

masculine																										186					0x00ba

guillemotright																					187					0x00bb

onequarter																									188					0x00bc

onehalf																												189					0x00bd

threequarters																						190					0x00be

questiondown																							191					0x00bf

Agrave																													192					0x00c0

Aacute																													193					0x00c1

Acircumflex																								194					0x00c2

Atilde																													195					0x00c3

Adiaeresis																									196					0x00c4

Aring																														197					0x00c5

AE																																	198					0x00c6

Ccedilla																											199					0x00c7

Egrave																													200					0x00c8

Eacute																													201					0x00c9

Ecircumflex																								202					0x00ca

Ediaeresis																									203					0x00cb

Igrave																													204					0x00cc

Iacute																													205					0x00cd

Icircumflex																								206					0x00ce

Idiaeresis																									207					0x00cf

Eth																																208					0x00d0

Ntilde																													209					0x00d1

Ograve																													210					0x00d2

Oacute																													211					0x00d3

Ocircumflex																								212					0x00d4

Otilde																													213					0x00d5

Odiaeresis																									214					0x00d6

multiply																											215					0x00d7

Ooblique																											216					0x00d8

Ugrave																													217					0x00d9

Uacute																													218					0x00da

Ucircumflex																								219					0x00db

Udiaeresis																									220					0x00dc

Yacute																													221					0x00dd

Thorn																														222					0x00de

ssharp																													223					0x00df

agrave																													224					0x00e0

aacute																													225					0x00e1

acircumflex																								226					0x00e2

atilde																													227					0x00e3

adiaeresis																									228					0x00e4

aring																														229					0x00e5

ae																																	230					0x00e6

ccedilla																											231					0x00e7

egrave																													232					0x00e8

eacute																													233					0x00e9

ecircumflex																								234					0x00ea

ediaeresis																									235					0x00eb

igrave																													236					0x00ec

iacute																													237					0x00ed

icircumflex																								238					0x00ee

idiaeresis																									239					0x00ef

eth																																240					0x00f0

ntilde																													241					0x00f1

ograve																													242					0x00f2

oacute																													243					0x00f3

ocircumflex																								244					0x00f4

otilde																													245					0x00f5

odiaeresis																									246					0x00f6

division																											247					0x00f7

oslash																													248					0x00f8

ugrave																													249					0x00f9

uacute																													250					0x00fa

ucircumflex																								251					0x00fb

udiaeresis																									252					0x00fc

yacute																													253					0x00fd

thorn																														254					0x00fe

ydiaeresis																									255					0x00ff

Aogonek																												417					0x01a1

breve																														418					0x01a2

Lstroke																												419					0x01a3

Lcaron																													421					0x01a5

Sacute																													422					0x01a6

Scaron																													425					0x01a9

Scedilla																											426					0x01aa

Tcaron																													427					0x01ab

Zacute																													428					0x01ac

Zcaron																													430					0x01ae

Zabovedot																										431					0x01af

aogonek																												433					0x01b1

ogonek																													434					0x01b2

lstroke																												435					0x01b3

lcaron																													437					0x01b5

sacute																													438					0x01b6

caron																														439					0x01b7

scaron																													441					0x01b9

scedilla																											442					0x01ba

tcaron																													443					0x01bb

zacute																													444					0x01bc

doubleacute																								445					0x01bd

zcaron																													446					0x01be

zabovedot																										447					0x01bf

Racute																													448					0x01c0

Abreve																													451					0x01c3

Cacute																													454					0x01c6

Ccaron																													456					0x01c8

Eogonek																												458					0x01ca

Ecaron																													460					0x01cc

Dcaron																													463					0x01cf

Nacute																													465					0x01d1

Ncaron																													466					0x01d2

Odoubleacute																							469					0x01d5

Rcaron																													472					0x01d8

Uring																														473					0x01d9

Udoubleacute																							475					0x01db

Tcedilla																											478					0x01de

racute																													480					0x01e0

abreve																													483					0x01e3

cacute																													486					0x01e6

ccaron																													488					0x01e8

eogonek																												490					0x01ea

ecaron																													492					0x01ec

dcaron																													495					0x01ef

nacute																													497					0x01f1

ncaron																													498					0x01f2

odoubleacute																							501					0x01f5

rcaron																													504					0x01f8

uring																														505					0x01f9

udoubleacute																							507					0x01fb

tcedilla																											510					0x01fe

abovedot																											511					0x01ff

Hstroke																												673					0x02a1

Hcircumflex																								678					0x02a6

Iabovedot																										681					0x02a9

Gbreve																													683					0x02ab

Jcircumflex																								684					0x02ac

hstroke																												689					0x02b1

hcircumflex																								694					0x02b6

idotless																											697					0x02b9

gbreve																													699					0x02bb

jcircumflex																								700					0x02bc

Cabovedot																										709					0x02c5

Ccircumflex																								710					0x02c6

Gabovedot																										725					0x02d5

Gcircumflex																								728					0x02d8

Ubreve																													733					0x02dd

Scircumflex																								734					0x02de

cabovedot																										741					0x02e5

ccircumflex																								742					0x02e6

gabovedot																										757					0x02f5

gcircumflex																								760					0x02f8

ubreve																													765					0x02fd

scircumflex																								766					0x02fe

kappa																														930					0x03a2

Rcedilla																											931					0x03a3

Itilde																													933					0x03a5

Lcedilla																											934					0x03a6

Emacron																												938					0x03aa

Gcedilla																											939					0x03ab

Tslash																													940					0x03ac

rcedilla																											947					0x03b3

itilde																													949					0x03b5

lcedilla																											950					0x03b6

emacron																												954					0x03ba

gacute																													955					0x03bb

tslash																													956					0x03bc

ENG																																957					0x03bd

eng																																959					0x03bf

Amacron																												960					0x03c0

Iogonek																												967					0x03c7

Eabovedot																										972					0x03cc

Imacron																												975					0x03cf

Ncedilla																											977					0x03d1

Omacron																												978					0x03d2

Kcedilla																											979					0x03d3

Uogonek																												985					0x03d9

Utilde																													989					0x03dd

Umacron																												990					0x03de

amacron																												992					0x03e0

iogonek																												999					0x03e7

eabovedot																									1004					0x03ec

imacron																											1007					0x03ef

ncedilla																										1009					0x03f1

omacron																											1010					0x03f2

kcedilla																										1011					0x03f3

uogonek																											1017					0x03f9

utilde																												1021					0x03fd

umacron																											1022					0x03fe

overline																										1150					0x047e

kana_fullstop																					1185					0x04a1

kana_openingbracket															1186					0x04a2

kana_closingbracket															1187					0x04a3

kana_comma																								1188					0x04a4

kana_middledot																				1189					0x04a5

kana_WO																											1190					0x04a6

kana_a																												1191					0x04a7

kana_i																												1192					0x04a8

kana_u																												1193					0x04a9

kana_e																												1194					0x04aa

kana_o																												1195					0x04ab

kana_ya																											1196					0x04ac

kana_yu																											1197					0x04ad

kana_yo																											1198					0x04ae

kana_tu																											1199					0x04af

prolongedsound																				1200					0x04b0

kana_A																												1201					0x04b1

kana_I																												1202					0x04b2

kana_U																												1203					0x04b3

kana_E																												1204					0x04b4

kana_O																												1205					0x04b5

kana_KA																											1206					0x04b6

kana_KI																											1207					0x04b7

kana_KU																											1208					0x04b8

kana_KE																											1209					0x04b9

kana_KO																											1210					0x04ba

kana_SA																											1211					0x04bb

kana_SHI																										1212					0x04bc

kana_SU																											1213					0x04bd

kana_SE																											1214					0x04be

kana_SO																											1215					0x04bf

kana_TA																											1216					0x04c0

kana_TI																											1217					0x04c1

kana_TU																											1218					0x04c2

kana_TE																											1219					0x04c3

kana_TO																											1220					0x04c4

kana_NA																											1221					0x04c5

kana_NI																											1222					0x04c6

kana_NU																											1223					0x04c7

kana_NE																											1224					0x04c8

kana_NO																											1225					0x04c9

kana_HA																											1226					0x04ca

kana_HI																											1227					0x04cb

kana_HU																											1228					0x04cc

kana_HE																											1229					0x04cd

kana_HO																											1230					0x04ce

kana_MA																											1231					0x04cf

kana_MI																											1232					0x04d0

kana_MU																											1233					0x04d1

kana_ME																											1234					0x04d2

kana_MO																											1235					0x04d3

kana_YA																											1236					0x04d4

kana_YU																											1237					0x04d5

kana_YO																											1238					0x04d6

kana_RA																											1239					0x04d7

kana_RI																											1240					0x04d8

kana_RU																											1241					0x04d9

kana_RE																											1242					0x04da

kana_RO																											1243					0x04db

kana_WA																											1244					0x04dc

kana_N																												1245					0x04dd

voicedsound																							1246					0x04de

semivoicedsound																			1247					0x04df

Arabic_comma																						1452					0x05ac

Arabic_semicolon																		1467					0x05bb

Arabic_question_mark														1471					0x05bf

Arabic_hamza																						1473					0x05c1

Arabic_maddaonalef																1474					0x05c2

Arabic_hamzaonalef																1475					0x05c3

Arabic_hamzaonwaw																	1476					0x05c4

Arabic_hamzaunderalef													1477					0x05c5

Arabic_hamzaonyeh																	1478					0x05c6

Arabic_alef																							1479					0x05c7

Arabic_beh																								1480					0x05c8

Arabic_tehmarbuta																	1481					0x05c9

Arabic_teh																								1482					0x05ca

Arabic_theh																							1483					0x05cb

Arabic_jeem																							1484					0x05cc

Arabic_hah																								1485					0x05cd

Arabic_khah																							1486					0x05ce

Arabic_dal																								1487					0x05cf

Arabic_thal																							1488					0x05d0

Arabic_ra																									1489					0x05d1

Arabic_zain																							1490					0x05d2

Arabic_seen																							1491					0x05d3

Arabic_sheen																						1492					0x05d4

Arabic_sad																								1493					0x05d5

Arabic_dad																								1494					0x05d6

Arabic_tah																								1495					0x05d7

Arabic_zah																								1496					0x05d8

Arabic_ain																								1497					0x05d9

Arabic_ghain																						1498					0x05da

Arabic_tatweel																				1504					0x05e0

Arabic_feh																								1505					0x05e1

Arabic_qaf																								1506					0x05e2

Arabic_kaf																								1507					0x05e3

Arabic_lam																								1508					0x05e4

Arabic_meem																							1509					0x05e5

Arabic_noon																							1510					0x05e6

Arabic_heh																								1511					0x05e7

Arabic_waw																								1512					0x05e8

Arabic_alefmaksura																1513					0x05e9

Arabic_yeh																								1514					0x05ea

Arabic_fathatan																			1515					0x05eb

Arabic_dammatan																			1516					0x05ec

Arabic_kasratan																			1517					0x05ed

Arabic_fatha																						1518					0x05ee

Arabic_damma																						1519					0x05ef

Arabic_kasra																						1520					0x05f0

Arabic_shadda																					1521					0x05f1

Arabic_sukun																						1522					0x05f2

Serbian_dje																							1697					0x06a1

Macedonia_gje																					1698					0x06a2

Cyrillic_io																							1699					0x06a3

Ukranian_je																							1700					0x06a4

Macedonia_dse																					1701					0x06a5

Ukranian_i																								1702					0x06a6

Ukranian_yi																							1703					0x06a7

Serbian_je																								1704					0x06a8

Serbian_lje																							1705					0x06a9

Serbian_nje																							1706					0x06aa

Serbian_tshe																						1707					0x06ab

Macedonia_kje																					1708					0x06ac

Byelorussian_shortu															1710					0x06ae

Serbian_dze																							1711					0x06af

numerosign																								1712					0x06b0

Serbian_DJE																							1713					0x06b1

Macedonia_GJE																					1714					0x06b2

Cyrillic_IO																							1715					0x06b3

Ukranian_JE																							1716					0x06b4

Macedonia_DSE																					1717					0x06b5

Ukranian_I																								1718					0x06b6

Ukranian_YI																							1719					0x06b7

Serbian_JE																								1720					0x06b8

Serbian_LJE																							1721					0x06b9

Serbian_NJE																							1722					0x06ba

Serbian_TSHE																						1723					0x06bb

Macedonia_KJE																					1724					0x06bc

Byelorussian_SHORTU															1726					0x06be

Serbian_DZE																							1727					0x06bf

Cyrillic_yu																							1728					0x06c0

Cyrillic_a																								1729					0x06c1

Cyrillic_be																							1730					0x06c2

Cyrillic_tse																						1731					0x06c3

Cyrillic_de																							1732					0x06c4

Cyrillic_ie																							1733					0x06c5

Cyrillic_ef																							1734					0x06c6

Cyrillic_ghe																						1735					0x06c7

Cyrillic_ha																							1736					0x06c8

Cyrillic_i																								1737					0x06c9

Cyrillic_shorti																			1738					0x06ca

Cyrillic_ka																							1739					0x06cb

Cyrillic_el																							1740					0x06cc

Cyrillic_em																							1741					0x06cd

Cyrillic_en																							1742					0x06ce

Cyrillic_o																								1743					0x06cf

Cyrillic_pe																							1744					0x06d0

Cyrillic_ya																							1745					0x06d1

Cyrillic_er																							1746					0x06d2

Cyrillic_es																							1747					0x06d3

Cyrillic_te																							1748					0x06d4

Cyrillic_u																								1749					0x06d5

Cyrillic_zhe																						1750					0x06d6

Cyrillic_ve																							1751					0x06d7

Cyrillic_softsign																	1752					0x06d8

Cyrillic_yeru																					1753					0x06d9

Cyrillic_ze																							1754					0x06da

Cyrillic_sha																						1755					0x06db

Cyrillic_e																								1756					0x06dc

Cyrillic_shcha																				1757					0x06dd

Cyrillic_che																						1758					0x06de

Cyrillic_hardsign																	1759					0x06df

Cyrillic_YU																							1760					0x06e0

Cyrillic_A																								1761					0x06e1

Cyrillic_BE																							1762					0x06e2

Cyrillic_TSE																						1763					0x06e3

Cyrillic_DE																							1764					0x06e4

Cyrillic_IE																							1765					0x06e5

Cyrillic_EF																							1766					0x06e6

Cyrillic_GHE																						1767					0x06e7

Cyrillic_HA																							1768					0x06e8

Cyrillic_I																								1769					0x06e9

Cyrillic_SHORTI																			1770					0x06ea

Cyrillic_KA																							1771					0x06eb

Cyrillic_EL																							1772					0x06ec

Cyrillic_EM																							1773					0x06ed

Cyrillic_EN																							1774					0x06ee

Cyrillic_O																								1775					0x06ef

Cyrillic_PE																							1776					0x06f0

Cyrillic_YA																							1777					0x06f1

Cyrillic_ER																							1778					0x06f2

Cyrillic_ES																							1779					0x06f3

Cyrillic_TE																							1780					0x06f4

Cyrillic_U																								1781					0x06f5

Cyrillic_ZHE																						1782					0x06f6

Cyrillic_VE																							1783					0x06f7

Cyrillic_SOFTSIGN																	1784					0x06f8

Cyrillic_YERU																					1785					0x06f9

Cyrillic_ZE																							1786					0x06fa

Cyrillic_SHA																						1787					0x06fb

Cyrillic_E																								1788					0x06fc

Cyrillic_SHCHA																				1789					0x06fd

Cyrillic_CHE																						1790					0x06fe

Cyrillic_HARDSIGN																	1791					0x06ff

Greek_ALPHAaccent																	1953					0x07a1

Greek_EPSILONaccent															1954					0x07a2

Greek_ETAaccent																			1955					0x07a3

Greek_IOTAaccent																		1956					0x07a4

Greek_IOTAdiaeresis															1957					0x07a5

Greek_IOTAaccentdiaeresis									1958					0x07a6

Greek_OMICRONaccent															1959					0x07a7

Greek_UPSILONaccent															1960					0x07a8

Greek_UPSILONdieresis													1961					0x07a9

Greek_UPSILONaccentdieresis							1962					0x07aa

Greek_OMEGAaccent																	1963					0x07ab

Greek_alphaaccent																	1969					0x07b1

Greek_epsilonaccent															1970					0x07b2

Greek_etaaccent																			1971					0x07b3

Greek_iotaaccent																		1972					0x07b4

Greek_iotadieresis																1973					0x07b5

Greek_iotaaccentdieresis										1974					0x07b6

Greek_omicronaccent															1975					0x07b7

Greek_upsilonaccent															1976					0x07b8

Greek_upsilondieresis													1977					0x07b9

Greek_upsilonaccentdieresis							1978					0x07ba

Greek_omegaaccent																	1979					0x07bb

Greek_ALPHA																							1985					0x07c1

Greek_BETA																								1986					0x07c2

Greek_GAMMA																							1987					0x07c3

Greek_DELTA																							1988					0x07c4

Greek_EPSILON																					1989					0x07c5

Greek_ZETA																								1990					0x07c6

Greek_ETA																									1991					0x07c7

Greek_THETA																							1992					0x07c8

Greek_IOTA																								1993					0x07c9

Greek_KAPPA																							1994					0x07ca

Greek_LAMBDA																						1995					0x07cb

Greek_MU																										1996					0x07cc

Greek_NU																										1997					0x07cd

Greek_XI																										1998					0x07ce

Greek_OMICRON																					1999					0x07cf

Greek_PI																										2000					0x07d0

Greek_RHO																									2001					0x07d1

Greek_SIGMA																							2002					0x07d2

Greek_TAU																									2004					0x07d4

Greek_UPSILON																					2005					0x07d5

Greek_PHI																									2006					0x07d6

Greek_CHI																									2007					0x07d7

Greek_PSI																									2008					0x07d8

Greek_OMEGA																							2009					0x07d9

Greek_alpha																							2017					0x07e1

Greek_beta																								2018					0x07e2

Greek_gamma																							2019					0x07e3

Greek_delta																							2020					0x07e4

Greek_epsilon																					2021					0x07e5

Greek_zeta																								2022					0x07e6

Greek_eta																									2023					0x07e7

Greek_theta																							2024					0x07e8

Greek_iota																								2025					0x07e9

Greek_kappa																							2026					0x07ea

Greek_lambda																						2027					0x07eb

Greek_mu																										2028					0x07ec

Greek_nu																										2029					0x07ed

Greek_xi																										2030					0x07ee

Greek_omicron																					2031					0x07ef

Greek_pi																										2032					0x07f0

Greek_rho																									2033					0x07f1

Greek_sigma																							2034					0x07f2

Greek_finalsmallsigma													2035					0x07f3

Greek_tau																									2036					0x07f4

Greek_upsilon																					2037					0x07f5

Greek_phi																									2038					0x07f6

Greek_chi																									2039					0x07f7

Greek_psi																									2040					0x07f8

Greek_omega																							2041					0x07f9

leftradical																							2209					0x08a1

topleftradical																				2210					0x08a2

horizconnector																				2211					0x08a3

topintegral																							2212					0x08a4

botintegral																							2213					0x08a5

vertconnector																					2214					0x08a6

topleftsqbracket																		2215					0x08a7

botleftsqbracket																		2216					0x08a8

toprightsqbracket																	2217					0x08a9

botrightsqbracket																	2218					0x08aa

topleftparens																					2219					0x08ab

botleftparens																					2220					0x08ac

toprightparens																				2221					0x08ad

botrightparens																				2222					0x08ae

leftmiddlecurlybrace														2223					0x08af

rightmiddlecurlybrace													2224					0x08b0

topleftsummation																		2225					0x08b1

botleftsummation																		2226					0x08b2

topvertsummationconnector									2227					0x08b3

botvertsummationconnector									2228					0x08b4

toprightsummation																	2229					0x08b5

botrightsummation																	2230					0x08b6

rightmiddlesummation														2231					0x08b7

lessthanequal																					2236					0x08bc

notequal																										2237					0x08bd

greaterthanequal																		2238					0x08be

integral																										2239					0x08bf

therefore																									2240					0x08c0

variation																									2241					0x08c1

infinity																										2242					0x08c2

nabla																													2245					0x08c5

approximate																							2248					0x08c8

similarequal																						2249					0x08c9

ifonlyif																										2253					0x08cd

implies																											2254					0x08ce

identical																									2255					0x08cf

radical																											2262					0x08d6

includedin																								2266					0x08da

includes																										2267					0x08db

intersection																						2268					0x08dc

union																													2269					0x08dd

logicaland																								2270					0x08de

logicalor																									2271					0x08df

partialderivative																	2287					0x08ef

function																										2294					0x08f6

leftarrow																									2299					0x08fb

uparrow																											2300					0x08fc

rightarrow																								2301					0x08fd

downarrow																									2302					0x08fe

blank																													2527					0x09df

soliddiamond																						2528					0x09e0

checkerboard																						2529					0x09e1

ht																																2530					0x09e2

ff																																2531					0x09e3

cr																																2532					0x09e4

lf																																2533					0x09e5

nl																																2536					0x09e8

vt																																2537					0x09e9

lowrightcorner																				2538					0x09ea

uprightcorner																					2539					0x09eb

upleftcorner																						2540					0x09ec

lowleftcorner																					2541					0x09ed

crossinglines																					2542					0x09ee

horizlinescan1																				2543					0x09ef

horizlinescan3																				2544					0x09f0

horizlinescan5																				2545					0x09f1

horizlinescan7																				2546					0x09f2

horizlinescan9																				2547					0x09f3

leftt																													2548					0x09f4

rightt																												2549					0x09f5

bott																														2550					0x09f6

topt																														2551					0x09f7

vertbar																											2552					0x09f8

emspace																											2721					0x0aa1

enspace																											2722					0x0aa2

em3space																										2723					0x0aa3

em4space																										2724					0x0aa4

digitspace																								2725					0x0aa5

punctspace																								2726					0x0aa6

thinspace																									2727					0x0aa7

hairspace																									2728					0x0aa8

emdash																												2729					0x0aa9

endash																												2730					0x0aaa

signifblank																							2732					0x0aac

ellipsis																										2734					0x0aae

doubbaselinedot																			2735					0x0aaf

onethird																										2736					0x0ab0

twothirds																									2737					0x0ab1

onefifth																										2738					0x0ab2

twofifths																									2739					0x0ab3

threefifths																							2740					0x0ab4

fourfifths																								2741					0x0ab5

onesixth																										2742					0x0ab6

fivesixths																								2743					0x0ab7

careof																												2744					0x0ab8

figdash																											2747					0x0abb

leftanglebracket																		2748					0x0abc

decimalpoint																						2749					0x0abd

rightanglebracket																	2750					0x0abe

marker																												2751					0x0abf

oneeighth																									2755					0x0ac3

threeeighths																						2756					0x0ac4

fiveeighths																							2757					0x0ac5

seveneighths																						2758					0x0ac6

trademark																									2761					0x0ac9

signaturemark																					2762					0x0aca

trademarkincircle																	2763					0x0acb

leftopentriangle																		2764					0x0acc

rightopentriangle																	2765					0x0acd

emopencircle																						2766					0x0ace

emopenrectangle																			2767					0x0acf

leftsinglequotemark															2768					0x0ad0

rightsinglequotemark														2769					0x0ad1

leftdoublequotemark															2770					0x0ad2

rightdoublequotemark														2771					0x0ad3

prescription																						2772					0x0ad4

minutes																											2774					0x0ad6

seconds																											2775					0x0ad7

latincross																								2777					0x0ad9

hexagram																										2778					0x0ada

filledrectbullet																		2779					0x0adb

filledlefttribullet															2780					0x0adc

filledrighttribullet														2781					0x0add

emfilledcircle																				2782					0x0ade

emfilledrect																						2783					0x0adf

enopencircbullet																		2784					0x0ae0

enopensquarebullet																2785					0x0ae1

openrectbullet																				2786					0x0ae2

opentribulletup																			2787					0x0ae3

opentribulletdown																	2788					0x0ae4

openstar																										2789					0x0ae5

enfilledcircbullet																2790					0x0ae6

enfilledsqbullet																		2791					0x0ae7

filledtribulletup																	2792					0x0ae8

filledtribulletdown															2793					0x0ae9

leftpointer																							2794					0x0aea

rightpointer																						2795					0x0aeb

club																														2796					0x0aec

diamond																											2797					0x0aed

heart																													2798					0x0aee

maltesecross																						2800					0x0af0

dagger																												2801					0x0af1

doubledagger																						2802					0x0af2

checkmark																									2803					0x0af3

ballotcross																							2804					0x0af4

musicalsharp																						2805					0x0af5

musicalflat																							2806					0x0af6

malesymbol																								2807					0x0af7

femalesymbol																						2808					0x0af8

telephone																									2809					0x0af9

telephonerecorder																	2810					0x0afa

phonographcopyright															2811					0x0afb

caret																													2812					0x0afc

singlelowquotemark																2813					0x0afd

doublelowquotemark																2814					0x0afe

cursor																												2815					0x0aff

leftcaret																									2979					0x0ba3

rightcaret																								2982					0x0ba6

downcaret																									2984					0x0ba8

upcaret																											2985					0x0ba9

overbar																											3008					0x0bc0

downtack																										3010					0x0bc2

upshoe																												3011					0x0bc3

downstile																									3012					0x0bc4

underbar																										3014					0x0bc6

jot																															3018					0x0bca

quad																														3020					0x0bcc

uptack																												3022					0x0bce

circle																												3023					0x0bcf

upstile																											3027					0x0bd3

downshoe																										3030					0x0bd6

rightshoe																									3032					0x0bd8

leftshoe																										3034					0x0bda

lefttack																										3036					0x0bdc

righttack																									3068					0x0bfc

hebrew_aleph																						3296					0x0ce0

hebrew_beth																							3297					0x0ce1

hebrew_gimmel																					3298					0x0ce2

hebrew_daleth																					3299					0x0ce3

hebrew_he																									3300					0x0ce4

hebrew_waw																								3301					0x0ce5

hebrew_zayin																						3302					0x0ce6

hebrew_het																								3303					0x0ce7

hebrew_teth																							3304					0x0ce8

hebrew_yod																								3305					0x0ce9

hebrew_finalkaph																		3306					0x0cea

hebrew_kaph																							3307					0x0ceb

hebrew_lamed																						3308					0x0cec

hebrew_finalmem																			3309					0x0ced

hebrew_mem																								3310					0x0cee

hebrew_finalnun																			3311					0x0cef

hebrew_nun																								3312					0x0cf0

hebrew_samekh																					3313					0x0cf1

hebrew_ayin																							3314					0x0cf2

hebrew_finalpe																				3315					0x0cf3

hebrew_pe																									3316					0x0cf4

hebrew_finalzadi																		3317					0x0cf5

hebrew_zadi																							3318					0x0cf6

hebrew_kuf																								3319					0x0cf7

hebrew_resh																							3320					0x0cf8

hebrew_shin																							3321					0x0cf9

hebrew_taf																								3322					0x0cfa

BackSpace																								65288					0xff08

Tab																														65289					0xff09

Linefeed																									65290					0xff0a

Clear																												65291					0xff0b

Return																											65293					0xff0d

Pause																												65299					0xff13

Scroll_Lock																						65300					0xff14

Sys_Req																										65301					0xff15

Escape																											65307					0xff1b

Multi_key																								65312					0xff20

Kanji																												65313					0xff21

Home																													65360					0xff50

Left																													65361					0xff51

Up																															65362					0xff52

Right																												65363					0xff53

Down																													65364					0xff54

Prior																												65365					0xff55

Next																													65366					0xff56

End																														65367					0xff57

Begin																												65368					0xff58

Win_L																												65371					0xff5b

Win_R																												65372					0xff5c

App																														65373					0xff5d

Select																											65376					0xff60

Print																												65377					0xff61

Execute																										65378					0xff62

Insert																											65379					0xff63

Undo																													65381					0xff65

Redo																													65382					0xff66

Menu																													65383					0xff67

Find																													65384					0xff68

Cancel																											65385					0xff69

Help																													65386					0xff6a

Break																												65387					0xff6b

Hebrew_switch																				65406					0xff7e

Num_Lock																									65407					0xff7f

KP_Space																									65408					0xff80

KP_Tab																											65417					0xff89

KP_Enter																									65421					0xff8d

KP_F1																												65425					0xff91

KP_F2																												65426					0xff92

KP_F3																												65427					0xff93

KP_F4																												65428					0xff94

KP_Multiply																						65450					0xffaa

KP_Add																											65451					0xffab

KP_Separator																					65452					0xffac

KP_Subtract																						65453					0xffad

KP_Decimal																							65454					0xffae

KP_Divide																								65455					0xffaf

KP_0																													65456					0xffb0

KP_1																													65457					0xffb1

KP_2																													65458					0xffb2

KP_3																													65459					0xffb3

KP_4																													65460					0xffb4

KP_5																													65461					0xffb5

KP_6																													65462					0xffb6

KP_7																													65463					0xffb7

KP_8																													65464					0xffb8

KP_9																													65465					0xffb9

KP_Equal																									65469					0xffbd

F1																															65470					0xffbe

F2																															65471					0xffbf

F3																															65472					0xffc0

F4																															65473					0xffc1

F5																															65474					0xffc2

F6																															65475					0xffc3

F7																															65476					0xffc4

F8																															65477					0xffc5

F9																															65478					0xffc6

F10																														65479					0xffc7

L1																															65480					0xffc8

L2																															65481					0xffc9

L3																															65482					0xffca

L4																															65483					0xffcb

L5																															65484					0xffcc

L6																															65485					0xffcd

L7																															65486					0xffce

L8																															65487					0xffcf

L9																															65488					0xffd0

L10																														65489					0xffd1

R1																															65490					0xffd2

R2																															65491					0xffd3

R3																															65492					0xffd4

R4																															65493					0xffd5

R5																															65494					0xffd6

R6																															65495					0xffd7

R7																															65496					0xffd8

R8																															65497					0xffd9

R9																															65498					0xffda

R10																														65499					0xffdb

R11																														65500					0xffdc

R12																														65501					0xffdd

F33																														65502					0xffde

R14																														65503					0xffdf

R15																														65504					0xffe0

Shift_L																										65505					0xffe1

Shift_R																										65506					0xffe2

Control_L																								65507					0xffe3

Control_R																								65508					0xffe4

Caps_Lock																								65509					0xffe5

Shift_Lock																							65510					0xffe6

Meta_L																											65511					0xffe7

Meta_R																											65512					0xffe8

Alt_L																												65513					0xffe9

Alt_R																												65514					0xffea

Super_L																										65515					0xffeb

Super_R																										65516					0xffec

Hyper_L																										65517					0xffed

Hyper_R																										65518					0xffee

Delete																											65535					0xffff

SEE	ALSO

bind

KEYWORDS

keysym,	bind,	binding

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1998-2000	by	Scriptics	Corporation.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	radiobutton

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
radiobutton	-	Create	and	manipulate	radiobutton	widgets

SYNOPSIS
STANDARD	OPTIONS

-activebackground,	activeBackground,	Foreground
-activeforeground,	activeForeground,	Background
-anchor,	anchor,	Anchor
-background	or	-bg,	background,	Background
-bitmap,	bitmap,	Bitmap
-borderwidth	or	-bd,	borderWidth,	BorderWidth
-compound,	compound,	Compound
-cursor,	cursor,	Cursor
-disabledforeground,	disabledForeground,	DisabledForeground
-font,	font,	Font
-foreground	or	-fg,	foreground,	Foreground
-highlightbackground,	highlightBackground,
HighlightBackground
-highlightcolor,	highlightColor,	HighlightColor
-highlightthickness,	highlightThickness,	HighlightThickness
-image,	image,	Image
-justify,	justify,	Justify
-padx,	padX,	Pad
-pady,	padY,	Pad
-relief,	relief,	Relief
-takefocus,	takeFocus,	TakeFocus
-text,	text,	Text
-textvariable,	textVariable,	Variable
-underline,	underline,	Underline
-wraplength,	wrapLength,	WrapLength

WIDGET-SPECIFIC	OPTIONS
-command,	command,	Command

-height,	height,	Height
-indicatoron,	indicatorOn,	IndicatorOn
-selectcolor,	selectColor,	Background
-offrelief,	offRelief,	OffRelief
-overrelief,	overRelief,	OverRelief
-selectimage,	selectImage,	SelectImage
-state,	state,	State
-tristateimage,	tristateImage,	TristateImage
-tristatevalue,	tristateValue,	Value
-value,	value,	Value
-variable,	variable,	Variable
-width,	width,	Width

DESCRIPTION
WIDGET	COMMAND

pathName	cget	option
pathName	configure	?option?	?value	option	value	...?
pathName	deselect
pathName	flash
pathName	invoke
pathName	select

BINDINGS
SEE	ALSO
KEYWORDS

NAME

radiobutton	-	Create	and	manipulate	radiobutton	widgets

SYNOPSIS

radiobutton	pathName	?options?

STANDARD	OPTIONS

-activebackground,	activeBackground,	Foreground
-activeforeground,	activeForeground,	Background
-anchor,	anchor,	Anchor
-background	or	-bg,	background,	Background

-bitmap,	bitmap,	Bitmap
-borderwidth	or	-bd,	borderWidth,	BorderWidth
-compound,	compound,	Compound
-cursor,	cursor,	Cursor
-disabledforeground,	disabledForeground,	DisabledForeground
-font,	font,	Font
-foreground	or	-fg,	foreground,	Foreground
-highlightbackground,	highlightBackground,	HighlightBackground
-highlightcolor,	highlightColor,	HighlightColor
-highlightthickness,	highlightThickness,	HighlightThickness
-image,	image,	Image
-justify,	justify,	Justify
-padx,	padX,	Pad
-pady,	padY,	Pad
-relief,	relief,	Relief
-takefocus,	takeFocus,	TakeFocus
-text,	text,	Text
-textvariable,	textVariable,	Variable
-underline,	underline,	Underline
-wraplength,	wrapLength,	WrapLength

WIDGET-SPECIFIC	OPTIONS

Command-Line	Name:	-command
Database	Name:	command
Database	Class:	Command

Specifies	a	Tcl	command	to	associate	with	the	button.	This
command	is	typically	invoked	when	mouse	button	1	is	released
over	the	button	window.	The	button's	global	variable	(-variable
option)	will	be	updated	before	the	command	is	invoked.

Command-Line	Name:	-height
Database	Name:	height
Database	Class:	Height

Specifies	a	desired	height	for	the	button.	If	an	image	or	bitmap	is
being	displayed	in	the	button	then	the	value	is	in	screen	units	(i.e.
any	of	the	forms	acceptable	to	Tk_GetPixels);	for	text	it	is	in	lines

of	text.	If	this	option	is	not	specified,	the	button's	desired	height	is
computed	from	the	size	of	the	image	or	bitmap	or	text	being
displayed	in	it.

Command-Line	Name:	-indicatoron
Database	Name:	indicatorOn
Database	Class:	IndicatorOn

Specifies	whether	or	not	the	indicator	should	be	drawn.	Must	be	a
proper	boolean	value.	If	false,	the	relief	option	is	ignored	and	the
widget's	relief	is	always	sunken	if	the	widget	is	selected	and	raised
otherwise.

Command-Line	Name:	-selectcolor
Database	Name:	selectColor
Database	Class:	Background

Specifies	a	background	color	to	use	when	the	button	is	selected.	If
indicatorOn	is	true	then	the	color	applies	to	the	indicator.	Under
Windows,	this	color	is	used	as	the	background	for	the	indicator
regardless	of	the	select	state.	If	indicatorOn	is	false,	this	color	is
used	as	the	background	for	the	entire	widget,	in	place	of
background	or	activeBackground,	whenever	the	widget	is
selected.	If	specified	as	an	empty	string	then	no	special	color	is
used	for	displaying	when	the	widget	is	selected.

Command-Line	Name:	-offrelief
Database	Name:	offRelief
Database	Class:	OffRelief

Specifies	the	relief	for	the	checkbutton	when	the	indicator	is	not
drawn	and	the	checkbutton	is	off.	The	default	value	is	“raised”.	By
setting	this	option	to	“flat”	and	setting	-indicatoron	to	false	and	-
overrelief	to	“raised”,	the	effect	is	achieved	of	having	a	flat	button
that	raises	on	mouse-over	and	which	is	depressed	when	activated.
This	is	the	behavior	typically	exhibited	by	the	Align-Left,	Align-
Right,	and	Center	radiobuttons	on	the	toolbar	of	a	word-processor,
for	example.

Command-Line	Name:	-overrelief
Database	Name:	overRelief

Database	Class:	OverRelief
Specifies	an	alternative	relief	for	the	radiobutton,	to	be	used	when
the	mouse	cursor	is	over	the	widget.	This	option	can	be	used	to
make	toolbar	buttons,	by	configuring	-relief	flat	-overrelief	raised.
If	the	value	of	this	option	is	the	empty	string,	then	no	alternative
relief	is	used	when	the	mouse	cursor	is	over	the	radiobutton.	The
empty	string	is	the	default	value.

Command-Line	Name:	-selectimage
Database	Name:	selectImage
Database	Class:	SelectImage

Specifies	an	image	to	display	(in	place	of	the	image	option)	when
the	radiobutton	is	selected.	This	option	is	ignored	unless	the	image
option	has	been	specified.

Command-Line	Name:	-state
Database	Name:	state
Database	Class:	State

Specifies	one	of	three	states	for	the	radiobutton:	normal,	active,	or
disabled.	In	normal	state	the	radiobutton	is	displayed	using	the
foreground	and	background	options.	The	active	state	is	typically
used	when	the	pointer	is	over	the	radiobutton.	In	active	state	the
radiobutton	is	displayed	using	the	activeForeground	and
activeBackground	options.	Disabled	state	means	that	the
radiobutton	should	be	insensitive:	the	default	bindings	will	refuse	to
activate	the	widget	and	will	ignore	mouse	button	presses.	In	this
state	the	disabledForeground	and	background	options	determine
how	the	radiobutton	is	displayed.

Command-Line	Name:	-tristateimage
Database	Name:	tristateImage
Database	Class:	TristateImage

Specifies	an	image	to	display	(in	place	of	the	image	option)	when
the	radiobutton	is	selected.	This	option	is	ignored	unless	the	image
option	has	been	specified.

Command-Line	Name:	-tristatevalue
Database	Name:	tristateValue

Database	Class:	Value
Specifies	the	value	that	causes	the	radiobutton	to	display	the	multi-
value	selection,	also	known	as	the	tri-state	mode.	Defaults	to	“”.

Command-Line	Name:	-value
Database	Name:	value
Database	Class:	Value

Specifies	value	to	store	in	the	button's	associated	variable
whenever	this	button	is	selected.

Command-Line	Name:	-variable
Database	Name:	variable
Database	Class:	Variable

Specifies	name	of	global	variable	to	set	whenever	this	button	is
selected.	Changes	in	this	variable	also	cause	the	button	to	select
or	deselect	itself.	Defaults	to	the	value	selectedButton.

Command-Line	Name:	-width
Database	Name:	width
Database	Class:	Width

Specifies	a	desired	width	for	the	button.	If	an	image	or	bitmap	is
being	displayed	in	the	button,	the	value	is	in	screen	units	(i.e.	any
of	the	forms	acceptable	to	Tk_GetPixels);	for	text	it	is	in
characters.	If	this	option	is	not	specified,	the	button's	desired	width
is	computed	from	the	size	of	the	image	or	bitmap	or	text	being
displayed	in	it.

DESCRIPTION

The	radiobutton	command	creates	a	new	window	(given	by	the
pathName	argument)	and	makes	it	into	a	radiobutton	widget.	Additional
options,	described	above,	may	be	specified	on	the	command	line	or	in
the	option	database	to	configure	aspects	of	the	radiobutton	such	as	its
colors,	font,	text,	and	initial	relief.	The	radiobutton	command	returns	its
pathName	argument.	At	the	time	this	command	is	invoked,	there	must
not	exist	a	window	named	pathName,	but	pathName's	parent	must
exist.

A	radiobutton	is	a	widget	that	displays	a	textual	string,	bitmap	or	image
and	a	diamond	or	circle	called	an	indicator.	If	text	is	displayed,	it	must
all	be	in	a	single	font,	but	it	can	occupy	multiple	lines	on	the	screen	(if	it
contains	newlines	or	if	wrapping	occurs	because	of	the	wrapLength
option)	and	one	of	the	characters	may	optionally	be	underlined	using
the	underline	option.	A	radiobutton	has	all	of	the	behavior	of	a	simple
button:	it	can	display	itself	in	either	of	three	different	ways,	according	to
the	state	option;	it	can	be	made	to	appear	raised,	sunken,	or	flat;	it	can
be	made	to	flash;	and	it	invokes	a	Tcl	command	whenever	mouse
button	1	is	clicked	over	the	check	button.

In	addition,	radiobuttons	can	be	selected.	If	a	radiobutton	is	selected,
the	indicator	is	normally	drawn	with	a	selected	appearance,	and	a	Tcl
variable	associated	with	the	radiobutton	is	set	to	a	particular	value
(normally	1).	Under	Unix,	the	indicator	is	drawn	with	a	sunken	relief	and
a	special	color.	Under	Windows,	the	indicator	is	drawn	with	a	round
mark	inside.	If	the	radiobutton	is	not	selected,	then	the	indicator	is
drawn	with	a	deselected	appearance,	and	the	associated	variable	is	set
to	a	different	value	(typically	0).	The	indicator	is	drawn	without	a	round
mark	inside.	Typically,	several	radiobuttons	share	a	single	variable	and
the	value	of	the	variable	indicates	which	radiobutton	is	to	be	selected.
When	a	radiobutton	is	selected	it	sets	the	value	of	the	variable	to
indicate	that	fact;	each	radiobutton	also	monitors	the	value	of	the
variable	and	automatically	selects	and	deselects	itself	when	the
variable's	value	changes.	If	the	variable's	value	matches	the
tristateValue,	then	the	radiobutton	is	drawn	using	the	tri-state	mode.
This	mode	is	used	to	indicate	mixed	or	multiple	values.	(This	is	used
when	the	radiobutton	represents	the	state	of	multiple	items.)	By	default
the	variable	selectedButton	is	used;	its	contents	give	the	name	of	the
button	that	is	selected,	or	the	empty	string	if	no	button	associated	with
that	variable	is	selected.	The	name	of	the	variable	for	a	radiobutton,
plus	the	variable	to	be	stored	into	it,	may	be	modified	with	options	on
the	command	line	or	in	the	option	database.	Configuration	options	may
also	be	used	to	modify	the	way	the	indicator	is	displayed	(or	whether	it
is	displayed	at	all).	By	default	a	radiobutton	is	configured	to	select	itself
on	button	clicks.

WIDGET	COMMAND

The	radiobutton	command	creates	a	new	Tcl	command	whose	name	is
pathName.	This	command	may	be	used	to	invoke	various	operations	on
the	widget.	It	has	the	following	general	form:

pathName	option	?arg	arg	...?

Option	and	the	args	determine	the	exact	behavior	of	the	command.	The
following	commands	are	possible	for	radiobutton	widgets:

pathName	cget	option
Returns	the	current	value	of	the	configuration	option	given	by
option.	Option	may	have	any	of	the	values	accepted	by	the
radiobutton	command.

pathName	configure	?option?	?value	option	value	...?
Query	or	modify	the	configuration	options	of	the	widget.	If	no	option
is	specified,	returns	a	list	describing	all	of	the	available	options	for
pathName	(see	Tk_ConfigureInfo	for	information	on	the	format	of
this	list).	If	option	is	specified	with	no	value,	the	command	returns	a
list	describing	the	one	named	option	(this	list	will	be	identical	to	the
corresponding	sublist	of	the	value	returned	if	no	option	is
specified).	If	one	or	more	option-value	pairs	are	specified,	the
command	modifies	the	given	widget	option(s)	to	have	the	given
value(s);	in	this	case	the	command	returns	an	empty	string.	Option
may	have	any	of	the	values	accepted	by	the	radiobutton
command.

pathName	deselect
Deselects	the	radiobutton	and	sets	the	associated	variable	to	an
empty	string.	If	this	radiobutton	was	not	currently	selected,	the
command	has	no	effect.

pathName	flash
Flashes	the	radiobutton.	This	is	accomplished	by	redisplaying	the

radiobutton	several	times,	alternating	between	active	and	normal
colors.	At	the	end	of	the	flash	the	radiobutton	is	left	in	the	same
normal/active	state	as	when	the	command	was	invoked.	This
command	is	ignored	if	the	radiobutton's	state	is	disabled.

pathName	invoke
Does	just	what	would	have	happened	if	the	user	invoked	the
radiobutton	with	the	mouse:	selects	the	button	and	invokes	its
associated	Tcl	command,	if	there	is	one.	The	return	value	is	the
return	value	from	the	Tcl	command,	or	an	empty	string	if	there	is	no
command	associated	with	the	radiobutton.	This	command	is
ignored	if	the	radiobutton's	state	is	disabled.

pathName	select
Selects	the	radiobutton	and	sets	the	associated	variable	to	the
value	corresponding	to	this	widget.

BINDINGS

Tk	automatically	creates	class	bindings	for	radiobuttons	that	give	them
the	following	default	behavior:

[1]
On	Unix	systems,	a	radiobutton	activates	whenever	the	mouse
passes	over	it	and	deactivates	whenever	the	mouse	leaves	the
radiobutton.	On	Mac	and	Windows	systems,	when	mouse	button	1
is	pressed	over	a	radiobutton,	the	button	activates	whenever	the
mouse	pointer	is	inside	the	button,	and	deactivates	whenever	the
mouse	pointer	leaves	the	button.

[2]
When	mouse	button	1	is	pressed	over	a	radiobutton	it	is	invoked	(it
becomes	selected	and	the	command	associated	with	the	button	is
invoked,	if	there	is	one).

[3]
When	a	radiobutton	has	the	input	focus,	the	space	key	causes	the
radiobutton	to	be	invoked.

If	the	radiobutton's	state	is	disabled	then	none	of	the	above	actions
occur:	the	radiobutton	is	completely	non-responsive.

The	behavior	of	radiobuttons	can	be	changed	by	defining	new	bindings
for	individual	widgets	or	by	redefining	the	class	bindings.

SEE	ALSO

checkbutton,	labelframe,	listbox,	options,	scale,	ttk::radiobutton

KEYWORDS

radiobutton,	widget

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990-1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	ttk_button

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
ttk::button	-	Widget	that	issues	a	command	when	pressed

SYNOPSIS
DESCRIPTION
STANDARD	OPTIONS

-class
-compound,	compound,	Compound
-cursor,	cursor,	Cursor
-image,	image,	Image
-state
-style
-takefocus,	takeFocus,	TakeFocus
-text,	text,	Text
-textvariable,	textVariable,	Variable
-underline,	underline,	Underline
-width

WIDGET-SPECIFIC	OPTIONS
-command,	command,	Command
-default,	default,	Default
-width,	width,	Width

WIDGET	COMMAND
pathName	invoke

COMPATIBILITY	OPTIONS
-state,	state,	State

SEE	ALSO
KEYWORDS

NAME

ttk::button	-	Widget	that	issues	a	command	when	pressed

SYNOPSIS

ttk::button	pathName	?options?

DESCRIPTION

A	ttk::button	widget	displays	a	textual	label	and/or	image,	and
evaluates	a	command	when	pressed.

STANDARD	OPTIONS

-class
-compound,	compound,	Compound
-cursor,	cursor,	Cursor
-image,	image,	Image
-state
-style
-takefocus,	takeFocus,	TakeFocus
-text,	text,	Text
-textvariable,	textVariable,	Variable
-underline,	underline,	Underline
-width

WIDGET-SPECIFIC	OPTIONS

Command-Line	Name:	-command
Database	Name:	command
Database	Class:	Command

A	script	to	evaluate	when	the	widget	is	invoked.

Command-Line	Name:	-default
Database	Name:	default
Database	Class:	Default

May	be	set	to	one	of	normal,	active,	or	disabled.	In	a	dialog	box,
one	button	may	be	designated	the	“default”	button	(meaning,
roughly,	“the	one	that	gets	invoked	when	the	user	presses
<Enter>”).	active	indicates	that	this	is	currently	the	default	button;
normal	means	that	it	may	become	the	default	button,	and	disabled

means	that	it	is	not	defaultable.	The	default	is	normal.

Depending	on	the	theme,	the	default	button	may	be	displayed	with
an	extra	highlight	ring,	or	with	a	different	border	color.

Command-Line	Name:	-width
Database	Name:	width
Database	Class:	Width

If	greater	than	zero,	specifies	how	much	space,	in	character	widths,
to	allocate	for	the	text	label.	If	less	than	zero,	specifies	a	minimum
width.	If	zero	or	unspecified,	the	natural	width	of	the	text	label	is
used.	Note	that	some	themes	may	specify	a	non-zero	-width	in	the
style.

WIDGET	COMMAND

In	addition	to	the	standard	cget,	configure,	identify,	instate,	and	state
commands,	buttons	support	the	following	additional	widget	commands:

pathName	invoke
Invokes	the	command	associated	with	the	button.

COMPATIBILITY	OPTIONS

Command-Line	Name:	-state
Database	Name:	state
Database	Class:	State

May	be	set	to	normal	or	disabled	to	control	the	disabled	state	bit.
This	is	a	“write-only”	option:	setting	it	changes	the	widget	state,	but
the	state	widget	command	does	not	affect	the	state	option.

SEE	ALSO

ttk::widget,	button

KEYWORDS

widget,	button,	default,	command

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	2004	Joe	English

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	ttk_separator

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
ttk::separator	-	Separator	bar

SYNOPSIS
DESCRIPTION
STANDARD	OPTIONS

-class
-cursor,	cursor,	Cursor
-state
-style
-takefocus,	takeFocus,	TakeFocus

WIDGET-SPECIFIC	OPTIONS
-orient,	orient,	Orient

WIDGET	COMMAND
SEE	ALSO
KEYWORDS

NAME

ttk::separator	-	Separator	bar

SYNOPSIS

ttk::separator	pathName	?options?

DESCRIPTION

A	ttk::separator	widget	displays	a	horizontal	or	vertical	separator	bar.

STANDARD	OPTIONS

-class
-cursor,	cursor,	Cursor

-state
-style
-takefocus,	takeFocus,	TakeFocus

WIDGET-SPECIFIC	OPTIONS

Command-Line	Name:	-orient
Database	Name:	orient
Database	Class:	Orient

One	of	horizontal	or	vertical.	Specifies	the	orientation	of	the
separator.

WIDGET	COMMAND

Separator	widgets	support	the	standard	cget,	configure,	identify,
instate,	and	state	methods.	No	other	widget	methods	are	used.

SEE	ALSO

ttk::widget

KEYWORDS

widget,	separator

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	2004	Joe	English

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	checkbutton

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
checkbutton	-	Create	and	manipulate	checkbutton	widgets

SYNOPSIS
STANDARD	OPTIONS

-activebackground,	activeBackground,	Foreground
-activeforeground,	activeForeground,	Background
-anchor,	anchor,	Anchor
-background	or	-bg,	background,	Background
-bitmap,	bitmap,	Bitmap
-borderwidth	or	-bd,	borderWidth,	BorderWidth
-compound,	compound,	Compound
-cursor,	cursor,	Cursor
-disabledforeground,	disabledForeground,	DisabledForeground
-font,	font,	Font
-foreground	or	-fg,	foreground,	Foreground
-highlightbackground,	highlightBackground,
HighlightBackground
-highlightcolor,	highlightColor,	HighlightColor
-highlightthickness,	highlightThickness,	HighlightThickness
-image,	image,	Image
-justify,	justify,	Justify
-padx,	padX,	Pad
-pady,	padY,	Pad
-relief,	relief,	Relief
-takefocus,	takeFocus,	TakeFocus
-text,	text,	Text
-textvariable,	textVariable,	Variable
-underline,	underline,	Underline
-wraplength,	wrapLength,	WrapLength

WIDGET-SPECIFIC	OPTIONS
-command,	command,	Command

-height,	height,	Height
-indicatoron,	indicatorOn,	IndicatorOn
-offrelief,	offRelief,	OffRelief
-offvalue,	offValue,	Value
-onvalue,	onValue,	Value
-overrelief,	overRelief,	OverRelief
-selectcolor,	selectColor,	Background
-selectimage,	selectImage,	SelectImage
-state,	state,	State
-tristateimage,	tristateImage,	TristateImage
-tristatevalue,	tristateValue,	Value
-variable,	variable,	Variable
-width,	width,	Width

DESCRIPTION
WIDGET	COMMAND

pathName	cget	option
pathName	configure	?option?	?value	option	value	...?
pathName	deselect
pathName	flash
pathName	invoke
pathName	select
pathName	toggle

BINDINGS
EXAMPLE
SEE	ALSO
KEYWORDS

NAME

checkbutton	-	Create	and	manipulate	checkbutton	widgets

SYNOPSIS

checkbutton	pathName	?options?

STANDARD	OPTIONS

-activebackground,	activeBackground,	Foreground

-activeforeground,	activeForeground,	Background
-anchor,	anchor,	Anchor
-background	or	-bg,	background,	Background
-bitmap,	bitmap,	Bitmap
-borderwidth	or	-bd,	borderWidth,	BorderWidth
-compound,	compound,	Compound
-cursor,	cursor,	Cursor
-disabledforeground,	disabledForeground,	DisabledForeground
-font,	font,	Font
-foreground	or	-fg,	foreground,	Foreground
-highlightbackground,	highlightBackground,	HighlightBackground
-highlightcolor,	highlightColor,	HighlightColor
-highlightthickness,	highlightThickness,	HighlightThickness
-image,	image,	Image
-justify,	justify,	Justify
-padx,	padX,	Pad
-pady,	padY,	Pad
-relief,	relief,	Relief
-takefocus,	takeFocus,	TakeFocus
-text,	text,	Text
-textvariable,	textVariable,	Variable
-underline,	underline,	Underline
-wraplength,	wrapLength,	WrapLength

WIDGET-SPECIFIC	OPTIONS

Command-Line	Name:	-command
Database	Name:	command
Database	Class:	Command

Specifies	a	Tcl	command	to	associate	with	the	button.	This
command	is	typically	invoked	when	mouse	button	1	is	released
over	the	button	window.	The	button's	global	variable	(-variable
option)	will	be	updated	before	the	command	is	invoked.

Command-Line	Name:	-height
Database	Name:	height
Database	Class:	Height

Specifies	a	desired	height	for	the	button.	If	an	image	or	bitmap	is
being	displayed	in	the	button	then	the	value	is	in	screen	units	(i.e.
any	of	the	forms	acceptable	to	Tk_GetPixels);	for	text	it	is	in	lines
of	text.	If	this	option	is	not	specified,	the	button's	desired	height	is
computed	from	the	size	of	the	image	or	bitmap	or	text	being
displayed	in	it.

Command-Line	Name:	-indicatoron
Database	Name:	indicatorOn
Database	Class:	IndicatorOn

Specifies	whether	or	not	the	indicator	should	be	drawn.	Must	be	a
proper	boolean	value.	If	false,	the	relief	option	is	ignored	and	the
widget's	relief	is	always	sunken	if	the	widget	is	selected	and	raised
otherwise.

Command-Line	Name:	-offrelief
Database	Name:	offRelief
Database	Class:	OffRelief

Specifies	the	relief	for	the	checkbutton	when	the	indicator	is	not
drawn	and	the	checkbutton	is	off.	The	default	value	is	“raised”.	By
setting	this	option	to	“flat”	and	setting	-indicatoron	to	false	and	-
overrelief	to	“raised”,	the	effect	is	achieved	of	having	a	flat	button
that	raises	on	mouse-over	and	which	is	depressed	when	activated.
This	is	the	behavior	typically	exhibited	by	the	Bold,	Italic,	and
Underline	checkbuttons	on	the	toolbar	of	a	word-processor,	for
example.

Command-Line	Name:	-offvalue
Database	Name:	offValue
Database	Class:	Value

Specifies	value	to	store	in	the	button's	associated	variable
whenever	this	button	is	deselected.	Defaults	to	“0”.

Command-Line	Name:	-onvalue
Database	Name:	onValue
Database	Class:	Value

Specifies	value	to	store	in	the	button's	associated	variable
whenever	this	button	is	selected.	Defaults	to	“1”.

Command-Line	Name:	-overrelief
Database	Name:	overRelief
Database	Class:	OverRelief

Specifies	an	alternative	relief	for	the	checkbutton,	to	be	used	when
the	mouse	cursor	is	over	the	widget.	This	option	can	be	used	to
make	toolbar	buttons,	by	configuring	-relief	flat	-overrelief	raised.
If	the	value	of	this	option	is	the	empty	string,	then	no	alternative
relief	is	used	when	the	mouse	cursor	is	over	the	checkbutton.	The
empty	string	is	the	default	value.

Command-Line	Name:	-selectcolor
Database	Name:	selectColor
Database	Class:	Background

Specifies	a	background	color	to	use	when	the	button	is	selected.	If
indicatorOn	is	true	then	the	color	is	used	as	the	background	for
the	indicator	regardless	of	the	select	state.	If	indicatorOn	is	false,
this	color	is	used	as	the	background	for	the	entire	widget,	in	place
of	background	or	activeBackground,	whenever	the	widget	is
selected.	If	specified	as	an	empty	string	then	no	special	color	is
used	for	displaying	when	the	widget	is	selected.

Command-Line	Name:	-selectimage
Database	Name:	selectImage
Database	Class:	SelectImage

Specifies	an	image	to	display	(in	place	of	the	image	option)	when
the	checkbutton	is	selected.	This	option	is	ignored	unless	the
image	option	has	been	specified.

Command-Line	Name:	-state
Database	Name:	state
Database	Class:	State

Specifies	one	of	three	states	for	the	checkbutton:	normal,	active,
or	disabled.	In	normal	state	the	checkbutton	is	displayed	using	the
foreground	and	background	options.	The	active	state	is	typically
used	when	the	pointer	is	over	the	checkbutton.	In	active	state	the
checkbutton	is	displayed	using	the	activeForeground	and
activeBackground	options.	Disabled	state	means	that	the
checkbutton	should	be	insensitive:	the	default	bindings	will	refuse

to	activate	the	widget	and	will	ignore	mouse	button	presses.	In	this
state	the	disabledForeground	and	background	options	determine
how	the	checkbutton	is	displayed.

Command-Line	Name:	-tristateimage
Database	Name:	tristateImage
Database	Class:	TristateImage

Specifies	an	image	to	display	(in	place	of	the	image	option)	when
the	checkbutton	is	in	tri-state	mode.	This	option	is	ignored	unless
the	image	option	has	been	specified.

Command-Line	Name:	-tristatevalue
Database	Name:	tristateValue
Database	Class:	Value

Specifies	the	value	that	causes	the	checkbutton	to	display	the
multi-value	selection,	also	known	as	the	tri-state	mode.	Defaults	to
“”.

Command-Line	Name:	-variable
Database	Name:	variable
Database	Class:	Variable

Specifies	name	of	global	variable	to	set	to	indicate	whether	or	not
this	button	is	selected.	Defaults	to	the	name	of	the	button	within	its
parent	(i.e.	the	last	element	of	the	button	window's	path	name).

Command-Line	Name:	-width
Database	Name:	width
Database	Class:	Width

Specifies	a	desired	width	for	the	button.	If	an	image	or	bitmap	is
being	displayed	in	the	button	then	the	value	is	in	screen	units	(i.e.
any	of	the	forms	acceptable	to	Tk_GetPixels);	for	text	it	is	in
characters.	If	this	option	is	not	specified,	the	button's	desired	width
is	computed	from	the	size	of	the	image	or	bitmap	or	text	being
displayed	in	it.

DESCRIPTION

The	checkbutton	command	creates	a	new	window	(given	by	the

pathName	argument)	and	makes	it	into	a	checkbutton	widget.	Additional
options,	described	above,	may	be	specified	on	the	command	line	or	in
the	option	database	to	configure	aspects	of	the	checkbutton	such	as	its
colors,	font,	text,	and	initial	relief.	The	checkbutton	command	returns
its	pathName	argument.	At	the	time	this	command	is	invoked,	there
must	not	exist	a	window	named	pathName,	but	pathName's	parent
must	exist.

A	checkbutton	is	a	widget	that	displays	a	textual	string,	bitmap	or	image
and	a	square	called	an	indicator.	If	text	is	displayed,	it	must	all	be	in	a
single	font,	but	it	can	occupy	multiple	lines	on	the	screen	(if	it	contains
newlines	or	if	wrapping	occurs	because	of	the	wrapLength	option)	and
one	of	the	characters	may	optionally	be	underlined	using	the	underline
option.	A	checkbutton	has	all	of	the	behavior	of	a	simple	button,
including	the	following:	it	can	display	itself	in	either	of	three	different
ways,	according	to	the	state	option;	it	can	be	made	to	appear	raised,
sunken,	or	flat;	it	can	be	made	to	flash;	and	it	invokes	a	Tcl	command
whenever	mouse	button	1	is	clicked	over	the	checkbutton.

In	addition,	checkbuttons	can	be	selected.	If	a	checkbutton	is	selected
then	the	indicator	is	normally	drawn	with	a	selected	appearance,	and	a
Tcl	variable	associated	with	the	checkbutton	is	set	to	a	particular	value
(normally	1).	The	indicator	is	drawn	with	a	check	mark	inside.	If	the
checkbutton	is	not	selected,	then	the	indicator	is	drawn	with	a
deselected	appearance,	and	the	associated	variable	is	set	to	a	different
value	(typically	0).	The	indicator	is	drawn	without	a	check	mark	inside.
In	the	special	case	where	the	variable	(if	specified)	has	a	value	that
matches	the	tristatevalue,	the	indicator	is	drawn	with	a	tri-state
appearance	and	is	in	the	tri-state	mode	indicating	mixed	or	multiple
values.	(This	is	used	when	the	check	box	represents	the	state	of
multiple	items.)	The	indicator	is	drawn	in	a	platform	dependent	manner.
Under	Unix	and	Windows,	the	background	interior	of	the	box	is
“grayed”.	Under	Mac,	the	indicator	is	drawn	with	a	dash	mark	inside.	By
default,	the	name	of	the	variable	associated	with	a	checkbutton	is	the
same	as	the	name	used	to	create	the	checkbutton.	The	variable	name,
and	the	“on”,	“off”	and	“tristate”	values	stored	in	it,	may	be	modified	with
options	on	the	command	line	or	in	the	option	database.	Configuration

options	may	also	be	used	to	modify	the	way	the	indicator	is	displayed
(or	whether	it	is	displayed	at	all).	By	default	a	checkbutton	is	configured
to	select	and	deselect	itself	on	alternate	button	clicks.	In	addition,	each
checkbutton	monitors	its	associated	variable	and	automatically	selects
and	deselects	itself	when	the	variables	value	changes	to	and	from	the
button's	“on”,	“off”	and	“tristate”	values.

WIDGET	COMMAND

The	checkbutton	command	creates	a	new	Tcl	command	whose	name
is	pathName.	This	command	may	be	used	to	invoke	various	operations
on	the	widget.	It	has	the	following	general	form:

pathName	option	?arg	arg	...?

Option	and	the	args	determine	the	exact	behavior	of	the	command.	The
following	commands	are	possible	for	checkbutton	widgets:

pathName	cget	option
Returns	the	current	value	of	the	configuration	option	given	by
option.	Option	may	have	any	of	the	values	accepted	by	the
checkbutton	command.

pathName	configure	?option?	?value	option	value	...?
Query	or	modify	the	configuration	options	of	the	widget.	If	no	option
is	specified,	returns	a	list	describing	all	of	the	available	options	for
pathName	(see	Tk_ConfigureInfo	for	information	on	the	format	of
this	list).	If	option	is	specified	with	no	value,	then	the	command
returns	a	list	describing	the	one	named	option	(this	list	will	be
identical	to	the	corresponding	sublist	of	the	value	returned	if	no
option	is	specified).	If	one	or	more	option-value	pairs	are	specified,
then	the	command	modifies	the	given	widget	option(s)	to	have	the
given	value(s);	in	this	case	the	command	returns	an	empty	string.
Option	may	have	any	of	the	values	accepted	by	the	checkbutton
command.

pathName	deselect
Deselects	the	checkbutton	and	sets	the	associated	variable	to	its
“off”	value.

pathName	flash
Flashes	the	checkbutton.	This	is	accomplished	by	redisplaying	the
checkbutton	several	times,	alternating	between	active	and	normal
colors.	At	the	end	of	the	flash	the	checkbutton	is	left	in	the	same
normal/active	state	as	when	the	command	was	invoked.	This
command	is	ignored	if	the	checkbutton's	state	is	disabled.

pathName	invoke
Does	just	what	would	have	happened	if	the	user	invoked	the
checkbutton	with	the	mouse:	toggle	the	selection	state	of	the	button
and	invoke	the	Tcl	command	associated	with	the	checkbutton,	if
there	is	one.	The	return	value	is	the	return	value	from	the	Tcl
command,	or	an	empty	string	if	there	is	no	command	associated
with	the	checkbutton.	This	command	is	ignored	if	the	checkbutton's
state	is	disabled.

pathName	select
Selects	the	checkbutton	and	sets	the	associated	variable	to	its	“on”
value.

pathName	toggle
Toggles	the	selection	state	of	the	button,	redisplaying	it	and
modifying	its	associated	variable	to	reflect	the	new	state.

BINDINGS

Tk	automatically	creates	class	bindings	for	checkbuttons	that	give	them
the	following	default	behavior:

[1]
On	Unix	systems,	a	checkbutton	activates	whenever	the	mouse
passes	over	it	and	deactivates	whenever	the	mouse	leaves	the
checkbutton.	On	Mac	and	Windows	systems,	when	mouse	button	1
is	pressed	over	a	checkbutton,	the	button	activates	whenever	the

mouse	pointer	is	inside	the	button,	and	deactivates	whenever	the
mouse	pointer	leaves	the	button.

[2]
When	mouse	button	1	is	pressed	over	a	checkbutton,	it	is	invoked
(its	selection	state	toggles	and	the	command	associated	with	the
button	is	invoked,	if	there	is	one).

[3]
When	a	checkbutton	has	the	input	focus,	the	space	key	causes	the
checkbutton	to	be	invoked.	Under	Windows,	there	are	additional
key	bindings;	plus	(+)	and	equal	(=)	select	the	button,	and	minus	(-)
deselects	the	button.

If	the	checkbutton's	state	is	disabled	then	none	of	the	above	actions
occur:	the	checkbutton	is	completely	non-responsive.

The	behavior	of	checkbuttons	can	be	changed	by	defining	new	bindings
for	individual	widgets	or	by	redefining	the	class	bindings.

EXAMPLE

This	example	shows	a	group	of	uncoupled	checkbuttons.

labelframe	.lbl	-text	"Steps:"

				checkbutton	.c1	-text	Lights		-variable	lights

				checkbutton	.c2	-text	Cameras	-variable	cameras

				checkbutton	.c3	-text	Action!	-variable	action

				pack	.c1	.c2	.c3	-in	.lbl

				pack	.lbl

SEE	ALSO

button,	options,	radiobutton,	ttk::checkbutton

KEYWORDS

checkbutton,	widget

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990-1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	label

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
label	-	Create	and	manipulate	label	widgets

SYNOPSIS
STANDARD	OPTIONS

-activebackground,	activeBackground,	Foreground
-activeforeground,	activeForeground,	Background
-anchor,	anchor,	Anchor
-background	or	-bg,	background,	Background
-bitmap,	bitmap,	Bitmap
-borderwidth	or	-bd,	borderWidth,	BorderWidth
-compound,	compound,	Compound
-cursor,	cursor,	Cursor
-disabledforeground,	disabledForeground,	DisabledForeground
-font,	font,	Font
-foreground	or	-fg,	foreground,	Foreground
-highlightbackground,	highlightBackground,
HighlightBackground
-highlightcolor,	highlightColor,	HighlightColor
-highlightthickness,	highlightThickness,	HighlightThickness
-image,	image,	Image
-justify,	justify,	Justify
-padx,	padX,	Pad
-pady,	padY,	Pad
-relief,	relief,	Relief
-takefocus,	takeFocus,	TakeFocus
-text,	text,	Text
-textvariable,	textVariable,	Variable
-underline,	underline,	Underline
-wraplength,	wrapLength,	WrapLength

WIDGET-SPECIFIC	OPTIONS
-height,	height,	Height

-state,	state,	State
-width,	width,	Width

DESCRIPTION
WIDGET	COMMAND

pathName	cget	option
pathName	configure	?option?	?value	option	value	...?

BINDINGS
EXAMPLE
SEE	ALSO
KEYWORDS

NAME

label	-	Create	and	manipulate	label	widgets

SYNOPSIS

label	pathName	?options?

STANDARD	OPTIONS

-activebackground,	activeBackground,	Foreground
-activeforeground,	activeForeground,	Background
-anchor,	anchor,	Anchor
-background	or	-bg,	background,	Background
-bitmap,	bitmap,	Bitmap
-borderwidth	or	-bd,	borderWidth,	BorderWidth
-compound,	compound,	Compound
-cursor,	cursor,	Cursor
-disabledforeground,	disabledForeground,	DisabledForeground
-font,	font,	Font
-foreground	or	-fg,	foreground,	Foreground
-highlightbackground,	highlightBackground,	HighlightBackground
-highlightcolor,	highlightColor,	HighlightColor
-highlightthickness,	highlightThickness,	HighlightThickness
-image,	image,	Image
-justify,	justify,	Justify
-padx,	padX,	Pad

-pady,	padY,	Pad
-relief,	relief,	Relief
-takefocus,	takeFocus,	TakeFocus
-text,	text,	Text
-textvariable,	textVariable,	Variable
-underline,	underline,	Underline
-wraplength,	wrapLength,	WrapLength

WIDGET-SPECIFIC	OPTIONS

Command-Line	Name:	-height
Database	Name:	height
Database	Class:	Height

Specifies	a	desired	height	for	the	label.	If	an	image	or	bitmap	is
being	displayed	in	the	label	then	the	value	is	in	screen	units	(i.e.
any	of	the	forms	acceptable	to	Tk_GetPixels);	for	text	it	is	in	lines
of	text.	If	this	option	is	not	specified,	the	label's	desired	height	is
computed	from	the	size	of	the	image	or	bitmap	or	text	being
displayed	in	it.

Command-Line	Name:	-state
Database	Name:	state
Database	Class:	State

Specifies	one	of	three	states	for	the	label:	normal,	active,	or
disabled.	In	normal	state	the	button	is	displayed	using	the
foreground	and	background	options.	In	active	state	the	label	is
displayed	using	the	activeForeground	and	activeBackground
options.	In	the	disabled	state	the	disabledForeground	and
background	options	determine	how	the	button	is	displayed.

Command-Line	Name:	-width
Database	Name:	width
Database	Class:	Width

Specifies	a	desired	width	for	the	label.	If	an	image	or	bitmap	is
being	displayed	in	the	label	then	the	value	is	in	screen	units	(i.e.
any	of	the	forms	acceptable	to	Tk_GetPixels);	for	text	it	is	in
characters.	If	this	option	is	not	specified,	the	label's	desired	width	is
computed	from	the	size	of	the	image	or	bitmap	or	text	being

displayed	in	it.

DESCRIPTION

The	label	command	creates	a	new	window	(given	by	the	pathName
argument)	and	makes	it	into	a	label	widget.	Additional	options,
described	above,	may	be	specified	on	the	command	line	or	in	the	option
database	to	configure	aspects	of	the	label	such	as	its	colors,	font,	text,
and	initial	relief.	The	label	command	returns	its	pathName	argument.	At
the	time	this	command	is	invoked,	there	must	not	exist	a	window	named
pathName,	but	pathName's	parent	must	exist.

A	label	is	a	widget	that	displays	a	textual	string,	bitmap	or	image.	If	text
is	displayed,	it	must	all	be	in	a	single	font,	but	it	can	occupy	multiple
lines	on	the	screen	(if	it	contains	newlines	or	if	wrapping	occurs
because	of	the	wrapLength	option)	and	one	of	the	characters	may
optionally	be	underlined	using	the	underline	option.	The	label	can	be
manipulated	in	a	few	simple	ways,	such	as	changing	its	relief	or	text,
using	the	commands	described	below.

WIDGET	COMMAND

The	label	command	creates	a	new	Tcl	command	whose	name	is
pathName.	This	command	may	be	used	to	invoke	various	operations	on
the	widget.	It	has	the	following	general	form:

pathName	option	?arg	arg	...?

Option	and	the	args	determine	the	exact	behavior	of	the	command.	The
following	commands	are	possible	for	label	widgets:

pathName	cget	option
Returns	the	current	value	of	the	configuration	option	given	by
option.	Option	may	have	any	of	the	values	accepted	by	the	label
command.

pathName	configure	?option?	?value	option	value	...?

Query	or	modify	the	configuration	options	of	the	widget.	If	no	option
is	specified,	returns	a	list	describing	all	of	the	available	options	for
pathName	(see	Tk_ConfigureInfo	for	information	on	the	format	of
this	list).	If	option	is	specified	with	no	value,	then	the	command
returns	a	list	describing	the	one	named	option	(this	list	will	be
identical	to	the	corresponding	sublist	of	the	value	returned	if	no
option	is	specified).	If	one	or	more	option-value	pairs	are	specified,
then	the	command	modifies	the	given	widget	option(s)	to	have	the
given	value(s);	in	this	case	the	command	returns	an	empty	string.
Option	may	have	any	of	the	values	accepted	by	the	label
command.

BINDINGS

When	a	new	label	is	created,	it	has	no	default	event	bindings:	labels	are
not	intended	to	be	interactive.

EXAMPLE

#	Make	the	widgets

label	.t	-text	"This	widget	is	at	the	top"				-bg	red

label	.b	-text	"This	widget	is	at	the	bottom"	-bg	green

label	.l	-text	"Left\nHand\nSide"

label	.r	-text	"Right\nHand\nSide"

text	.mid

.mid	insert	end	"This	layout	is	like	Java's	BorderLayout"

#	Lay	them	out

pack	.t			-side	top				-fill	x

pack	.b			-side	bottom	-fill	x

pack	.l			-side	left			-fill	y

pack	.r			-side	right		-fill	y

pack	.mid	-expand	1				-fill	both

SEE	ALSO

labelframe,	button,	ttk::label

KEYWORDS

label,	widget

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990-1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	raise

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

raise	-	Change	a	window's	position	in	the	stacking	order

SYNOPSIS

raise	window	?aboveThis?

DESCRIPTION

If	the	aboveThis	argument	is	omitted	then	the	command	raises	window
so	that	it	is	above	all	of	its	siblings	in	the	stacking	order	(it	will	not	be
obscured	by	any	siblings	and	will	obscure	any	siblings	that	overlap	it).	If
aboveThis	is	specified	then	it	must	be	the	path	name	of	a	window	that	is
either	a	sibling	of	window	or	the	descendant	of	a	sibling	of	window.	In
this	case	the	raise	command	will	insert	window	into	the	stacking	order
just	above	aboveThis	(or	the	ancestor	of	aboveThis	that	is	a	sibling	of
window);	this	could	end	up	either	raising	or	lowering	window.

EXAMPLE

Make	a	button	appear	to	be	in	a	sibling	frame	that	was	created	after	it.
This	is	is	often	necessary	when	building	GUIs	in	the	style	where	you
create	your	activity	widgets	first	before	laying	them	out	on	the	display:

button	.b	-text	"Hi	there!"

pack	[frame	.f	-background	blue]

pack	[label	.f.l1	-text	"This	is	above"]

pack	.b	-in	.f

pack	[label	.f.l2	-text	"This	is	below"]

raise	.b

SEE	ALSO

lower

KEYWORDS

obscure,	raise,	stacking	order

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	getOpenFile

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
tk_getOpenFile,	tk_getSaveFile	-	pop	up	a	dialog	box	for	the
user	to	select	a	file	to	open	or	save.

SYNOPSIS
DESCRIPTION

-defaultextension	extension
-filetypes	filePatternList
-initialdir	directory
-initialfile	filename
-message	string
-multiple	boolean
-parent	window
-title	titleString
-typevariable	variableName

SPECIFYING	FILE	PATTERNS
SPECIFYING	EXTENSIONS

(1)
(2)
(3)

EXAMPLE
SEE	ALSO
KEYWORDS

NAME

tk_getOpenFile,	tk_getSaveFile	-	pop	up	a	dialog	box	for	the	user	to
select	a	file	to	open	or	save.

SYNOPSIS

tk_getOpenFile	?option	value	...?
tk_getSaveFile	?option	value	...?

DESCRIPTION

The	procedures	tk_getOpenFile	and	tk_getSaveFile	pop	up	a	dialog
box	for	the	user	to	select	a	file	to	open	or	save.	The	tk_getOpenFile
command	is	usually	associated	with	the	Open	command	in	the	File
menu.	Its	purpose	is	for	the	user	to	select	an	existing	file	only.	If	the
user	enters	a	non-existent	file,	the	dialog	box	gives	the	user	an	error
prompt	and	requires	the	user	to	give	an	alternative	selection.	If	an
application	allows	the	user	to	create	new	files,	it	should	do	so	by
providing	a	separate	New	menu	command.

The	tk_getSaveFile	command	is	usually	associated	with	the	Save	as
command	in	the	File	menu.	If	the	user	enters	a	file	that	already	exists,
the	dialog	box	prompts	the	user	for	confirmation	whether	the	existing
file	should	be	overwritten	or	not.

The	following	option-value	pairs	are	possible	as	command	line
arguments	to	these	two	commands:

-defaultextension	extension
Specifies	a	string	that	will	be	appended	to	the	filename	if	the	user
enters	a	filename	without	an	extension.	The	default	value	is	the
empty	string,	which	means	no	extension	will	be	appended	to	the
filename	in	any	case.	This	option	is	ignored	on	Mac	OS	X,	which
does	not	require	extensions	to	filenames,	and	the	UNIX
implementation	guesses	reasonable	values	for	this	from	the	-
filetypes	option	when	this	is	not	supplied.

-filetypes	filePatternList
If	a	File	types	listbox	exists	in	the	file	dialog	on	the	particular
platform,	this	option	gives	the	filetypes	in	this	listbox.	When	the
user	choose	a	filetype	in	the	listbox,	only	the	files	of	that	type	are
listed.	If	this	option	is	unspecified,	or	if	it	is	set	to	the	empty	list,	or	if
the	File	types	listbox	is	not	supported	by	the	particular	platform
then	all	files	are	listed	regardless	of	their	types.	See	the	section
SPECIFYING	FILE	PATTERNS	below	for	a	discussion	on	the
contents	of	filePatternList.

-initialdir	directory
Specifies	that	the	files	in	directory	should	be	displayed	when	the
dialog	pops	up.	If	this	parameter	is	not	specified,	then	the	files	in
the	current	working	directory	are	displayed.	If	the	parameter
specifies	a	relative	path,	the	return	value	will	convert	the	relative
path	to	an	absolute	path.

-initialfile	filename
Specifies	a	filename	to	be	displayed	in	the	dialog	when	it	pops	up.

-message	string
Specifies	a	message	to	include	in	the	client	area	of	the	dialog.	This
is	only	available	on	Mac	OS	X.

-multiple	boolean
Allows	the	user	to	choose	multiple	files	from	the	Open	dialog.

-parent	window
Makes	window	the	logical	parent	of	the	file	dialog.	The	file	dialog	is
displayed	on	top	of	its	parent	window.	On	Mac	OS	X,	this	turns	the
file	dialog	into	a	sheet	attached	to	the	parent	window.

-title	titleString
Specifies	a	string	to	display	as	the	title	of	the	dialog	box.	If	this
option	is	not	specified,	then	a	default	title	is	displayed.

-typevariable	variableName
The	global	variable	variableName	is	used	to	preselect	which	filter	is
used	from	filterList	when	the	dialog	box	is	opened	and	is	updated
when	the	dialog	box	is	closed,	to	the	last	selected	filter.	The
variable	is	read	once	at	the	beginning	to	select	the	appropriate
filter.	If	the	variable	does	not	exist,	or	its	value	does	not	match	any
filter	typename,	or	is	empty	({}),	the	dialog	box	will	revert	to	the
default	behavior	of	selecting	the	first	filter	in	the	list.	If	the	dialog	is
canceled,	the	variable	is	not	modified.

If	the	user	selects	a	file,	both	tk_getOpenFile	and	tk_getSaveFile
return	the	full	pathname	of	this	file.	If	the	user	cancels	the	operation,

both	commands	return	the	empty	string.

SPECIFYING	FILE	PATTERNS

The	filePatternList	value	given	by	the	-filetypes	option	is	a	list	of	file
patterns.	Each	file	pattern	is	a	list	of	the	form

typeName	{extension	?extension	...?}	?{macType	?macType	...

typeName	is	the	name	of	the	file	type	described	by	this	file	pattern	and
is	the	text	string	that	appears	in	the	File	types	listbox.	extension	is	a	file
extension	for	this	file	pattern.	macType	is	a	four-character	Macintosh	file
type.	The	list	of	macTypes	is	optional	and	may	be	omitted	for
applications	that	do	not	need	to	execute	on	the	Macintosh	platform.

Several	file	patterns	may	have	the	same	typeName,	in	which	case	they
refer	to	the	same	file	type	and	share	the	same	entry	in	the	listbox.
When	the	user	selects	an	entry	in	the	listbox,	all	the	files	that	match	at
least	one	of	the	file	patterns	corresponding	to	that	entry	are	listed.
Usually,	each	file	pattern	corresponds	to	a	distinct	type	of	file.	The	use
of	more	than	one	file	pattern	for	one	type	of	file	is	only	necessary	on	the
Macintosh	platform.

On	the	Macintosh	platform,	a	file	matches	a	file	pattern	if	its	name
matches	at	least	one	of	the	extension(s)	AND	it	belongs	to	at	least	one
of	the	macType(s)	of	the	file	pattern.	For	example,	the	C	Source	Files
file	pattern	in	the	sample	code	matches	with	files	that	have	a	.c
extension	AND	belong	to	the	macType	TEXT.	To	use	the	OR	rule
instead,	you	can	use	two	file	patterns,	one	with	the	extensions	only	and
the	other	with	the	macType	only.	The	GIF	Files	file	type	in	the	sample
code	matches	files	that	either	have	a	.gif	extension	OR	belong	to	the
macType	GIFF.

On	the	Unix	and	Windows	platforms,	a	file	matches	a	file	pattern	if	its
name	matches	at	least	one	of	the	extension(s)	of	the	file	pattern.	The
macTypes	are	ignored.

SPECIFYING	EXTENSIONS

On	the	Unix	and	Macintosh	platforms,	extensions	are	matched	using
glob-style	pattern	matching.	On	the	Windows	platform,	extensions	are
matched	by	the	underlying	operating	system.	The	types	of	possible
extensions	are:

(1)
the	special	extension	“*”	matches	any	file;

(2)
the	special	extension	“”	matches	any	files	that	do	not	have	an
extension	(i.e.,	the	filename	contains	no	full	stop	character);

(3)
any	character	string	that	does	not	contain	any	wild	card	characters
(*	and	?).

Due	to	the	different	pattern	matching	rules	on	the	various	platforms,	to
ensure	portability,	wild	card	characters	are	not	allowed	in	the
extensions,	except	as	in	the	special	extension	“*”.	Extensions	without	a
full	stop	character	(e.g.	“~”)	are	allowed	but	may	not	work	on	all
platforms.

EXAMPLE

set	types	{

				{{Text	Files}							{.txt}								}

				{{TCL	Scripts}						{.tcl}								}

				{{C	Source	Files}			{.c}						TEXT}

				{{GIF	Files}								{.gif}								}

				{{GIF	Files}								{}								GIFF}

				{{All	Files}								*													}

}

set	filename	[tk_getOpenFile	-filetypes	$types]

if	{$filename	!=	""}	{

				#	Open	the	file	...

}

SEE	ALSO

tk_chooseDirectory

KEYWORDS

file	selection	dialog

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	ttk_checkbutton

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
ttk::checkbutton	-	On/off	widget

SYNOPSIS
DESCRIPTION
STANDARD	OPTIONS

-class
-compound,	compound,	Compound
-cursor,	cursor,	Cursor
-image,	image,	Image
-state
-style
-takefocus,	takeFocus,	TakeFocus
-text,	text,	Text
-textvariable,	textVariable,	Variable
-underline,	underline,	Underline
-width

WIDGET-SPECIFIC	OPTIONS
-command,	command,	Command
-offvalue,	offValue,	OffValue
-onvalue,	onValue,	OnValue
-variable,	variable,	Variable

WIDGET	COMMAND
pathname	invoke

WIDGET	STATES
SEE	ALSO
KEYWORDS

NAME

ttk::checkbutton	-	On/off	widget

SYNOPSIS

ttk::checkbutton	pathName	?options?

DESCRIPTION

A	ttk::checkbutton	widget	is	used	to	show	or	change	a	setting.	It	has
two	states,	selected	and	deselected.	The	state	of	the	checkbutton	may
be	linked	to	a	Tcl	variable.

STANDARD	OPTIONS

-class
-compound,	compound,	Compound
-cursor,	cursor,	Cursor
-image,	image,	Image
-state
-style
-takefocus,	takeFocus,	TakeFocus
-text,	text,	Text
-textvariable,	textVariable,	Variable
-underline,	underline,	Underline
-width

WIDGET-SPECIFIC	OPTIONS

Command-Line	Name:	-command
Database	Name:	command
Database	Class:	Command

A	Tcl	script	to	execute	whenever	the	widget	is	invoked.

Command-Line	Name:	-offvalue
Database	Name:	offValue
Database	Class:	OffValue

The	value	to	store	in	the	associated	-variable	when	the	widget	is
deselected.	Defaults	to	0.

Command-Line	Name:	-onvalue

Database	Name:	onValue
Database	Class:	OnValue

The	value	to	store	in	the	associated	-variable	when	the	widget	is
selected.	Defaults	to	1.

Command-Line	Name:	-variable
Database	Name:	variable
Database	Class:	Variable

The	name	of	a	global	variable	whose	value	is	linked	to	the	widget.
Defaults	to	the	widget	pathname	if	not	specified.

WIDGET	COMMAND

In	addition	to	the	standard	cget,	configure,	identify,	instate,	and	state
commands,	checkbuttons	support	the	following	additional	widget
commands:

pathname	invoke
Toggles	between	the	selected	and	deselected	states	and	evaluates
the	associated	-command.	If	the	widget	is	currently	selected,	sets
the	-variable	to	the	-offvalue	and	deselects	the	widget;	otherwise,
sets	the	-variable	to	the	-onvalue	Returns	the	result	of	the	-
command.

WIDGET	STATES

The	widget	does	not	respond	to	user	input	if	the	disabled	state	is	set.
The	widget	sets	the	selected	state	whenever	the	linked	-variable	is	set
to	the	widget's	-onvalue,	and	clears	it	otherwise.	The	widget	sets	the
alternate	state	whenever	the	linked	-variable	is	unset.	(The	alternate
state	may	be	used	to	indicate	a	“tri-state”	or	“indeterminate”	selection.)

SEE	ALSO

ttk::widget,	ttk::radiobutton,	checkbutton

KEYWORDS

widget,	button,	toggle,	check,	option

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	2004	Joe	English

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	ttk_sizegrip

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
ttk::sizegrip	-	Bottom-right	corner	resize	widget

SYNOPSIS
DESCRIPTION
STANDARD	OPTIONS

-class
-cursor,	cursor,	Cursor
-state
-style
-takefocus,	takeFocus,	TakeFocus

WIDGET	COMMAND
PLATFORM-SPECIFIC	NOTES
EXAMPLES
BUGS
SEE	ALSO
KEYWORDS

NAME

ttk::sizegrip	-	Bottom-right	corner	resize	widget

SYNOPSIS

ttk::sizegrip	pathName	?options?

DESCRIPTION

A	ttk::sizegrip	widget	(also	known	as	a	grow	box)	allows	the	user	to
resize	the	containing	toplevel	window	by	pressing	and	dragging	the
grip.

STANDARD	OPTIONS

-class
-cursor,	cursor,	Cursor
-state
-style
-takefocus,	takeFocus,	TakeFocus

WIDGET	COMMAND

Sizegrip	widgets	support	the	standard	cget,	configure,	identify,
instate,	and	state	methods.	No	other	widget	methods	are	used.

PLATFORM-SPECIFIC	NOTES

On	Mac	OSX,	toplevel	windows	automatically	include	a	built-in	size	grip
by	default.	Adding	a	ttk::sizegrip	there	is	harmless,	since	the	built-in
grip	will	just	mask	the	widget.

EXAMPLES

Using	pack:

pack	[ttk::frame	$top.statusbar]	-side	bottom	-fill	x

pack	[ttk::sizegrip	$top.statusbar.grip]	-side	right	-anchor	se

Using	grid:

grid	[ttk::sizegrip	$top.statusbar.grip]	\

				-row	$lastRow	-column	$lastColumn	-sticky	se

#	...	optional:	add	vertical	scrollbar	in	$lastColumn,

#	...	optional:	add	horizontal	scrollbar	in	$lastRow

BUGS

If	the	containing	toplevel's	position	was	specified	relative	to	the	right	or

bottom	of	the	screen	(e.g.,	“wm	geometry	...	wxh-x-y”	instead	of	“wm
geometry	...	wxh+x+y”),	the	sizegrip	widget	will	not	resize	the	window.

ttk::sizegrip	widgets	only	support	“southeast”	resizing.

SEE	ALSO

ttk::widget

KEYWORDS

widget,	sizegrip,	grow	box

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	2006	Joe	English

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	clipboard

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

clipboard	-	Manipulate	Tk	clipboard

SYNOPSIS

clipboard	option	?arg	arg	...?

DESCRIPTION

This	command	provides	a	Tcl	interface	to	the	Tk	clipboard,	which	stores
data	for	later	retrieval	using	the	selection	mechanism	(via	the	-
selection	CLIPBOARD	option).	In	order	to	copy	data	into	the	clipboard,
clipboard	clear	must	be	called,	followed	by	a	sequence	of	one	or	more
calls	to	clipboard	append.	To	ensure	that	the	clipboard	is	updated
atomically,	all	appends	should	be	completed	before	returning	to	the
event	loop.

The	first	argument	to	clipboard	determines	the	format	of	the	rest	of	the
arguments	and	the	behavior	of	the	command.	The	following	forms	are
currently	supported:

clipboard	clear	?-displayof	window?
Claims	ownership	of	the	clipboard	on	window's	display	and
removes	any	previous	contents.	Window	defaults	to	“.”.	Returns	an
empty	string.

clipboard	append	?-displayof	window?	?-format	format?	?-type
type?	?--?	data

Appends	data	to	the	clipboard	on	window's	display	in	the	form
given	by	type	with	the	representation	given	by	format	and	claims
ownership	of	the	clipboard	on	window's	display.

Type	specifies	the	form	in	which	the	selection	is	to	be	returned	(the
desired	“target”	for	conversion,	in	ICCCM	terminology),	and	should
be	an	atom	name	such	as	STRING	or	FILE_NAME;	see	the	Inter-
Client	Communication	Conventions	Manual	for	complete	details.
Type	defaults	to	STRING.

The	format	argument	specifies	the	representation	that	should	be
used	to	transmit	the	selection	to	the	requester	(the	second	column
of	Table	2	of	the	ICCCM),	and	defaults	to	STRING.	If	format	is
STRING,	the	selection	is	transmitted	as	8-bit	ASCII	characters.	If
format	is	ATOM,	then	the	data	is	divided	into	fields	separated	by
white	space;	each	field	is	converted	to	its	atom	value,	and	the	32-
bit	atom	value	is	transmitted	instead	of	the	atom	name.	For	any
other	format,	data	is	divided	into	fields	separated	by	white	space
and	each	field	is	converted	to	a	32-bit	integer;	an	array	of	integers
is	transmitted	to	the	selection	requester.	Note	that	strings	passed	to
clipboard	append	are	concatenated	before	conversion,	so	the
caller	must	take	care	to	ensure	appropriate	spacing	across	string
boundaries.	All	items	appended	to	the	clipboard	with	the	same	type
must	have	the	same	format.

The	format	argument	is	needed	only	for	compatibility	with	clipboard
requesters	that	do	not	use	Tk.	If	the	Tk	toolkit	is	being	used	to
retrieve	the	CLIPBOARD	selection	then	the	value	is	converted	back
to	a	string	at	the	requesting	end,	so	format	is	irrelevant.

A	--	argument	may	be	specified	to	mark	the	end	of	options:	the	next
argument	will	always	be	used	as	data.	This	feature	may	be
convenient	if,	for	example,	data	starts	with	a	-.

clipboard	get	?-displayof	window?	?-type	type?
Retrieve	data	from	the	clipboard	on	window's	display.	Window
defaults	to	“.”.	Type	specifies	the	form	in	which	the	data	is	to	be
returned	and	should	be	an	atom	name	such	as	STRING	or
FILE_NAME.	Type	defaults	to	STRING.	This	command	is
equivalent	to	“selection	get	-selection	CLIPBOARD”.

EXAMPLES

Get	the	current	contents	of	the	clipboard.

if	{[catch	{clipboard	get}	contents]}	{

				#	There	were	no	clipboard	contents	at	all

}

Set	the	clipboard	to	contain	a	fixed	string.

clipboard	clear

clipboard	append	"some	fixed	string"

You	can	put	custom	data	into	the	clipboard	by	using	a	custom	-type
option.	This	is	not	necessarily	portable,	but	can	be	very	useful.	The
method	of	passing	Tcl	scripts	this	way	is	effective,	but	should	be	mixed
with	safe	interpreters	in	production	code.

#	This	is	a	very	simple	canvas	serializer;

#	it	produces	a	script	that	recreates	the	item(s)	when	executed

proc	getItemConfig	{canvas	tag}	{

			set	script	{}

			foreach	item	[$canvas	find	withtag	$tag]	{

						append	script	{$canvas	create	}	[$canvas	type	$item]

						append	script	{	}	[$canvas	coords	$item]	{	}

						foreach	config	[$canvas	itemconf	$item]	{

									lassign	$config	name	-	-	-	value

									append	script	[list	$name	$value]	{	}

						}

						append	script	\n

			}

			return	[string	trim	$script]

}

#	Set	up	a	binding	on	a	canvas	to	cut	and	paste	an	item

set	c	[canvas	.c]

pack	$c

$c	create	text	150	30	-text	"cut	and	paste	me"

bind	$c	<<Cut>>	{

			clipboard	clear

			clipboard	append	-type	TkCanvasItem	\

									[getItemConfig	%W	current]

			#	Delete	because	this	is	cut,	not	copy.

			%W	delete	current

}

bind	$c	<<Paste>>	{

			catch	{

						set	canvas	%W

						eval	[clipboard	get	-type	TkCanvasItem]

			}

}

SEE	ALSO

interp,	selection

KEYWORDS

clear,	format,	clipboard,	append,	selection,	type

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	labelframe

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
labelframe	-	Create	and	manipulate	labelframe	widgets

SYNOPSIS
STANDARD	OPTIONS

-borderwidth	or	-bd,	borderWidth,	BorderWidth
-cursor,	cursor,	Cursor
-font,	font,	Font
-foreground	or	-fg,	foreground,	Foreground
-highlightbackground,	highlightBackground,
HighlightBackground
-highlightcolor,	highlightColor,	HighlightColor
-highlightthickness,	highlightThickness,	HighlightThickness
-padx,	padX,	Pad
-pady,	padY,	Pad
-relief,	relief,	Relief
-takefocus,	takeFocus,	TakeFocus
-text,	text,	Text

WIDGET-SPECIFIC	OPTIONS
-background,	background,	Background
-class,	class,	Class
-colormap,	colormap,	Colormap
-container,	container,	Container
-height,	height,	Height
-labelanchor,	labelAnchor,	LabelAnchor
-labelwidget,	labelWidget,	LabelWidget
-visual,	visual,	Visual
-width,	width,	Width

DESCRIPTION
WIDGET	COMMAND

pathName	cget	option
pathName	configure	?option?	?value	option	value	...?

BINDINGS
EXAMPLE
SEE	ALSO
KEYWORDS

NAME

labelframe	-	Create	and	manipulate	labelframe	widgets

SYNOPSIS

labelframe	pathName	?options?

STANDARD	OPTIONS

-borderwidth	or	-bd,	borderWidth,	BorderWidth
-cursor,	cursor,	Cursor
-font,	font,	Font
-foreground	or	-fg,	foreground,	Foreground
-highlightbackground,	highlightBackground,	HighlightBackground
-highlightcolor,	highlightColor,	HighlightColor
-highlightthickness,	highlightThickness,	HighlightThickness
-padx,	padX,	Pad
-pady,	padY,	Pad
-relief,	relief,	Relief
-takefocus,	takeFocus,	TakeFocus
-text,	text,	Text

WIDGET-SPECIFIC	OPTIONS

Command-Line	Name:	-background
Database	Name:	background
Database	Class:	Background

This	option	is	the	same	as	the	standard	background	option	except
that	its	value	may	also	be	specified	as	an	empty	string.	In	this	case,
the	widget	will	display	no	background	or	border,	and	no	colors	will
be	consumed	from	its	colormap	for	its	background	and	border.

Command-Line	Name:	-class
Database	Name:	class
Database	Class:	Class

Specifies	a	class	for	the	window.	This	class	will	be	used	when
querying	the	option	database	for	the	window's	other	options,	and	it
will	also	be	used	later	for	other	purposes	such	as	bindings.	The
class	option	may	not	be	changed	with	the	configure	widget
command.

Command-Line	Name:	-colormap
Database	Name:	colormap
Database	Class:	Colormap

Specifies	a	colormap	to	use	for	the	window.	The	value	may	be
either	new,	in	which	case	a	new	colormap	is	created	for	the
window	and	its	children,	or	the	name	of	another	window	(which
must	be	on	the	same	screen	and	have	the	same	visual	as
pathName),	in	which	case	the	new	window	will	use	the	colormap
from	the	specified	window.	If	the	colormap	option	is	not	specified,
the	new	window	uses	the	same	colormap	as	its	parent.	This	option
may	not	be	changed	with	the	configure	widget	command.

Command-Line	Name:	-container
Database	Name:	container
Database	Class:	Container

The	value	must	be	a	boolean.	If	true,	it	means	that	this	window	will
be	used	as	a	container	in	which	some	other	application	will	be
embedded	(for	example,	a	Tk	toplevel	can	be	embedded	using	the
-use	option).	The	window	will	support	the	appropriate	window
manager	protocols	for	things	like	geometry	requests.	The	window
should	not	have	any	children	of	its	own	in	this	application.	This
option	may	not	be	changed	with	the	configure	widget	command.

Command-Line	Name:	-height
Database	Name:	height
Database	Class:	Height

Specifies	the	desired	height	for	the	window	in	any	of	the	forms
acceptable	to	Tk_GetPixels.	If	this	option	is	less	than	or	equal	to
zero	then	the	window	will	not	request	any	size	at	all.

Command-Line	Name:	-labelanchor
Database	Name:	labelAnchor
Database	Class:	LabelAnchor

Specifies	where	to	place	the	label.	A	label	is	only	displayed	if	the	-
text	option	is	not	the	empty	string.	Valid	values	for	this	option	are
(listing	them	clockwise)	nw,	n,	ne,	en,	e,	es,	se,	s,sw,	ws,	w	and
wn.	The	default	value	is	nw.

Command-Line	Name:	-labelwidget
Database	Name:	labelWidget
Database	Class:	LabelWidget

Specifies	a	widget	to	use	as	label.	This	overrides	any	-text	option.
The	widget	must	exist	before	being	used	as	-labelwidget	and	if	it	is
not	a	descendant	of	this	window,	it	will	be	raised	above	it	in	the
stacking	order.

Command-Line	Name:	-visual
Database	Name:	visual
Database	Class:	Visual

Specifies	visual	information	for	the	new	window	in	any	of	the	forms
accepted	by	Tk_GetVisual.	If	this	option	is	not	specified,	the	new
window	will	use	the	same	visual	as	its	parent.	The	visual	option
may	not	be	modified	with	the	configure	widget	command.

Command-Line	Name:	-width
Database	Name:	width
Database	Class:	Width

Specifies	the	desired	width	for	the	window	in	any	of	the	forms
acceptable	to	Tk_GetPixels.	If	this	option	is	less	than	or	equal	to
zero	then	the	window	will	not	request	any	size	at	all.

DESCRIPTION

The	labelframe	command	creates	a	new	window	(given	by	the
pathName	argument)	and	makes	it	into	a	labelframe	widget.	Additional
options,	described	above,	may	be	specified	on	the	command	line	or	in
the	option	database	to	configure	aspects	of	the	labelframe	such	as	its

background	color	and	relief.	The	labelframe	command	returns	the	path
name	of	the	new	window.

A	labelframe	is	a	simple	widget.	Its	primary	purpose	is	to	act	as	a
spacer	or	container	for	complex	window	layouts.	It	has	the	features	of	a
frame	plus	the	ability	to	display	a	label.

WIDGET	COMMAND

The	labelframe	command	creates	a	new	Tcl	command	whose	name	is
the	same	as	the	path	name	of	the	labelframe's	window.	This	command
may	be	used	to	invoke	various	operations	on	the	widget.	It	has	the
following	general	form:

pathName	option	?arg	arg	...?

PathName	is	the	name	of	the	command,	which	is	the	same	as	the
labelframe	widget's	path	name.	Option	and	the	args	determine	the
exact	behavior	of	the	command.	The	following	commands	are	possible
for	frame	widgets:

pathName	cget	option
Returns	the	current	value	of	the	configuration	option	given	by
option.	Option	may	have	any	of	the	values	accepted	by	the
labelframe	command.

pathName	configure	?option?	?value	option	value	...?
Query	or	modify	the	configuration	options	of	the	widget.	If	no	option
is	specified,	returns	a	list	describing	all	of	the	available	options	for
pathName	(see	Tk_ConfigureInfo	for	information	on	the	format	of
this	list).	If	option	is	specified	with	no	value,	then	the	command
returns	a	list	describing	the	one	named	option	(this	list	will	be
identical	to	the	corresponding	sublist	of	the	value	returned	if	no
option	is	specified).	If	one	or	more	option-value	pairs	are	specified,
then	the	command	modifies	the	given	widget	option(s)	to	have	the
given	value(s);	in	this	case	the	command	returns	an	empty	string.

Option	may	have	any	of	the	values	accepted	by	the	labelframe
command.

BINDINGS

When	a	new	labelframe	is	created,	it	has	no	default	event	bindings:
labelframes	are	not	intended	to	be	interactive.

EXAMPLE

This	shows	how	to	build	part	of	a	GUI	for	a	hamburger	vendor.	The
labelframe	widgets	are	used	to	organize	the	available	choices	by	the
kinds	of	things	that	the	choices	are	being	made	over.

grid	[labelframe	.burger	-text	"Burger"]	\

					[labelframe	.bun				-text	"Bun"]	-sticky	news

grid	[labelframe	.cheese	-text	"Cheese	Option"]	\

					[labelframe	.pickle	-text	"Pickle	Option"]	-sticky	news

foreach	{type	name	val}	{

				burger	Beef				beef

				burger	Lamb				lamb

				burger	Vegetarian	beans

				bun				Plain			white

				bun				Sesame		seeds

				bun				Wholemeal	brown

				cheese	None				none

				cheese	Cheddar	cheddar

				cheese	Edam				edam

				cheese	Brie				brie

				cheese	Gruy\u00e8re	gruyere

				cheese	"Monterey	Jack"	jack

				pickle	None				none

				pickle	Gherkins	gherkins

				pickle	Onions		onion

				pickle	Chili			chili

}	{

				set	w	[radiobutton	.$type.$val	-text	$name	-anchor	w	\

												-variable	$type	-value	$val]

				pack	$w	-side	top	-fill	x

}

set	burger	beef

set	bun				white

set	cheese	none

set	pickle	none

SEE	ALSO

frame,	label,	ttk::labelframe

KEYWORDS

labelframe,	widget

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990-1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	scale

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
scale	-	Create	and	manipulate	scale	widgets

SYNOPSIS
STANDARD	OPTIONS

-activebackground,	activeBackground,	Foreground
-background	or	-bg,	background,	Background
-borderwidth	or	-bd,	borderWidth,	BorderWidth
-cursor,	cursor,	Cursor
-font,	font,	Font
-foreground	or	-fg,	foreground,	Foreground
-highlightbackground,	highlightBackground,
HighlightBackground
-highlightcolor,	highlightColor,	HighlightColor
-highlightthickness,	highlightThickness,	HighlightThickness
-orient,	orient,	Orient
-relief,	relief,	Relief
-repeatdelay,	repeatDelay,	RepeatDelay
-repeatinterval,	repeatInterval,	RepeatInterval
-takefocus,	takeFocus,	TakeFocus
-troughcolor,	troughColor,	Background

WIDGET-SPECIFIC	OPTIONS
-bigincrement,	bigIncrement,	BigIncrement
-command,	command,	Command
-digits,	digits,	Digits
-from,	from,	From
-label,	label,	Label
-length,	length,	Length
-resolution,	resolution,	Resolution
-showvalue,	showValue,	ShowValue
-sliderlength,	sliderLength,	SliderLength
-sliderrelief,	sliderRelief,	SliderRelief

-state,	state,	State
-tickinterval,	tickInterval,	TickInterval
-to,	to,	To
-variable,	variable,	Variable
-width,	width,	Width

DESCRIPTION
WIDGET	COMMAND

pathName	cget	option
pathName	configure	?option?	?value	option	value	...?
pathName	coords	?value?
pathName	get	?x	y?
pathName	identify	x	y
pathName	set	value

BINDINGS
KEYWORDS

NAME

scale	-	Create	and	manipulate	scale	widgets

SYNOPSIS

scale	pathName	?options?

STANDARD	OPTIONS

-activebackground,	activeBackground,	Foreground
-background	or	-bg,	background,	Background
-borderwidth	or	-bd,	borderWidth,	BorderWidth
-cursor,	cursor,	Cursor
-font,	font,	Font
-foreground	or	-fg,	foreground,	Foreground
-highlightbackground,	highlightBackground,	HighlightBackground
-highlightcolor,	highlightColor,	HighlightColor
-highlightthickness,	highlightThickness,	HighlightThickness
-orient,	orient,	Orient
-relief,	relief,	Relief
-repeatdelay,	repeatDelay,	RepeatDelay

-repeatinterval,	repeatInterval,	RepeatInterval
-takefocus,	takeFocus,	TakeFocus
-troughcolor,	troughColor,	Background

WIDGET-SPECIFIC	OPTIONS

Command-Line	Name:	-bigincrement
Database	Name:	bigIncrement
Database	Class:	BigIncrement

Some	interactions	with	the	scale	cause	its	value	to	change	by
“large”	increments;	this	option	specifies	the	size	of	the	large
increments.	If	specified	as	0,	the	large	increments	default	to	1/10
the	range	of	the	scale.

Command-Line	Name:	-command
Database	Name:	command
Database	Class:	Command

Specifies	the	prefix	of	a	Tcl	command	to	invoke	whenever	the
scale's	value	is	changed	via	a	widget	command.	The	actual
command	consists	of	this	option	followed	by	a	space	and	a	real
number	indicating	the	new	value	of	the	scale.

Command-Line	Name:	-digits
Database	Name:	digits
Database	Class:	Digits

An	integer	specifying	how	many	significant	digits	should	be
retained	when	converting	the	value	of	the	scale	to	a	string.	If	the
number	is	less	than	or	equal	to	zero,	then	the	scale	picks	the
smallest	value	that	guarantees	that	every	possible	slider	position
prints	as	a	different	string.

Command-Line	Name:	-from
Database	Name:	from
Database	Class:	From

A	real	value	corresponding	to	the	left	or	top	end	of	the	scale.

Command-Line	Name:	-label
Database	Name:	label

Database	Class:	Label
A	string	to	display	as	a	label	for	the	scale.	For	vertical	scales	the
label	is	displayed	just	to	the	right	of	the	top	end	of	the	scale.	For
horizontal	scales	the	label	is	displayed	just	above	the	left	end	of	the
scale.	If	the	option	is	specified	as	an	empty	string,	no	label	is
displayed.

Command-Line	Name:	-length
Database	Name:	length
Database	Class:	Length

Specifies	the	desired	long	dimension	of	the	scale	in	screen	units
(i.e.	any	of	the	forms	acceptable	to	Tk_GetPixels).	For	vertical
scales	this	is	the	scale's	height;	for	horizontal	scales	it	is	the
scale's	width.

Command-Line	Name:	-resolution
Database	Name:	resolution
Database	Class:	Resolution

A	real	value	specifying	the	resolution	for	the	scale.	If	this	value	is
greater	than	zero	then	the	scale's	value	will	always	be	rounded	to
an	even	multiple	of	this	value,	as	will	tick	marks	and	the	endpoints
of	the	scale.	If	the	value	is	less	than	zero	then	no	rounding	occurs.
Defaults	to	1	(i.e.,	the	value	will	be	integral).

Command-Line	Name:	-showvalue
Database	Name:	showValue
Database	Class:	ShowValue

Specifies	a	boolean	value	indicating	whether	or	not	the	current
value	of	the	scale	is	to	be	displayed.

Command-Line	Name:	-sliderlength
Database	Name:	sliderLength
Database	Class:	SliderLength

Specifies	the	size	of	the	slider,	measured	in	screen	units	along	the
slider's	long	dimension.	The	value	may	be	specified	in	any	of	the
forms	acceptable	to	Tk_GetPixels.

Command-Line	Name:	-sliderrelief

Database	Name:	sliderRelief
Database	Class:	SliderRelief

Specifies	the	relief	to	use	when	drawing	the	slider,	such	as	raised
or	sunken.

Command-Line	Name:	-state
Database	Name:	state
Database	Class:	State

Specifies	one	of	three	states	for	the	scale:	normal,	active,	or
disabled.	If	the	scale	is	disabled	then	the	value	may	not	be
changed	and	the	scale	will	not	activate.	If	the	scale	is	active,	the
slider	is	displayed	using	the	color	specified	by	the
activeBackground	option.

Command-Line	Name:	-tickinterval
Database	Name:	tickInterval
Database	Class:	TickInterval

Must	be	a	real	value.	Determines	the	spacing	between	numerical
tick	marks	displayed	below	or	to	the	left	of	the	slider.	If	0,	no	tick
marks	will	be	displayed.

Command-Line	Name:	-to
Database	Name:	to
Database	Class:	To

Specifies	a	real	value	corresponding	to	the	right	or	bottom	end	of
the	scale.	This	value	may	be	either	less	than	or	greater	than	the
from	option.

Command-Line	Name:	-variable
Database	Name:	variable
Database	Class:	Variable

Specifies	the	name	of	a	global	variable	to	link	to	the	scale.
Whenever	the	value	of	the	variable	changes,	the	scale	will	update
to	reflect	this	value.	Whenever	the	scale	is	manipulated
interactively,	the	variable	will	be	modified	to	reflect	the	scale's	new
value.

Command-Line	Name:	-width

Database	Name:	width
Database	Class:	Width

Specifies	the	desired	narrow	dimension	of	the	trough	in	screen
units	(i.e.	any	of	the	forms	acceptable	to	Tk_GetPixels).	For
vertical	scales	this	is	the	trough's	width;	for	horizontal	scales	this	is
the	trough's	height.

DESCRIPTION

The	scale	command	creates	a	new	window	(given	by	the	pathName
argument)	and	makes	it	into	a	scale	widget.	Additional	options,
described	above,	may	be	specified	on	the	command	line	or	in	the	option
database	to	configure	aspects	of	the	scale	such	as	its	colors,
orientation,	and	relief.	The	scale	command	returns	its	pathName
argument.	At	the	time	this	command	is	invoked,	there	must	not	exist	a
window	named	pathName,	but	pathName's	parent	must	exist.

A	scale	is	a	widget	that	displays	a	rectangular	trough	and	a	small	slider.
The	trough	corresponds	to	a	range	of	real	values	(determined	by	the
from,	to,	and	resolution	options),	and	the	position	of	the	slider	selects
a	particular	real	value.	The	slider's	position	(and	hence	the	scale's
value)	may	be	adjusted	with	the	mouse	or	keyboard	as	described	in	the
BINDINGS	section	below.	Whenever	the	scale's	value	is	changed,	a	Tcl
command	is	invoked	(using	the	command	option)	to	notify	other
interested	widgets	of	the	change.	In	addition,	the	value	of	the	scale	can
be	linked	to	a	Tcl	variable	(using	the	variable	option),	so	that	changes
in	either	are	reflected	in	the	other.

Three	annotations	may	be	displayed	in	a	scale	widget:	a	label
appearing	at	the	top	right	of	the	widget	(top	left	for	horizontal	scales),	a
number	displayed	just	to	the	left	of	the	slider	(just	above	the	slider	for
horizontal	scales),	and	a	collection	of	numerical	tick	marks	just	to	the
left	of	the	current	value	(just	below	the	trough	for	horizontal	scales).
Each	of	these	three	annotations	may	be	enabled	or	disabled	using	the
configuration	options.

WIDGET	COMMAND

The	scale	command	creates	a	new	Tcl	command	whose	name	is
pathName.	This	command	may	be	used	to	invoke	various	operations	on
the	widget.	It	has	the	following	general	form:

pathName	option	?arg	arg	...?

Option	and	the	args	determine	the	exact	behavior	of	the	command.	The
following	commands	are	possible	for	scale	widgets:

pathName	cget	option
Returns	the	current	value	of	the	configuration	option	given	by
option.	Option	may	have	any	of	the	values	accepted	by	the	scale
command.

pathName	configure	?option?	?value	option	value	...?
Query	or	modify	the	configuration	options	of	the	widget.	If	no	option
is	specified,	returns	a	list	describing	all	of	the	available	options	for
pathName	(see	Tk_ConfigureInfo	for	information	on	the	format	of
this	list).	If	option	is	specified	with	no	value,	then	the	command
returns	a	list	describing	the	one	named	option	(this	list	will	be
identical	to	the	corresponding	sublist	of	the	value	returned	if	no
option	is	specified).	If	one	or	more	option-value	pairs	are	specified,
then	the	command	modifies	the	given	widget	option(s)	to	have	the
given	value(s);	in	this	case	the	command	returns	an	empty	string.
Option	may	have	any	of	the	values	accepted	by	the	scale
command.

pathName	coords	?value?
Returns	a	list	whose	elements	are	the	x	and	y	coordinates	of	the
point	along	the	centerline	of	the	trough	that	corresponds	to	value.	If
value	is	omitted	then	the	scale's	current	value	is	used.

pathName	get	?x	y?
If	x	and	y	are	omitted,	returns	the	current	value	of	the	scale.	If	x
and	y	are	specified,	they	give	pixel	coordinates	within	the	widget;
the	command	returns	the	scale	value	corresponding	to	the	given

pixel.	Only	one	of	x	or	y	is	used:	for	horizontal	scales	y	is	ignored,
and	for	vertical	scales	x	is	ignored.

pathName	identify	x	y
Returns	a	string	indicating	what	part	of	the	scale	lies	under	the
coordinates	given	by	x	and	y.	A	return	value	of	slider	means	that
the	point	is	over	the	slider;	trough1	means	that	the	point	is	over
the	portion	of	the	slider	above	or	to	the	left	of	the	slider;	and
trough2	means	that	the	point	is	over	the	portion	of	the	slider	below
or	to	the	right	of	the	slider.	If	the	point	is	not	over	one	of	these
elements,	an	empty	string	is	returned.

pathName	set	value
This	command	is	invoked	to	change	the	current	value	of	the	scale,
and	hence	the	position	at	which	the	slider	is	displayed.	Value	gives
the	new	value	for	the	scale.	The	command	has	no	effect	if	the	scale
is	disabled.

BINDINGS

Tk	automatically	creates	class	bindings	for	scales	that	give	them	the
following	default	behavior.	Where	the	behavior	is	different	for	vertical
and	horizontal	scales,	the	horizontal	behavior	is	described	in
parentheses.

[1]
If	button	1	is	pressed	in	the	trough,	the	scale's	value	will	be
incremented	or	decremented	by	the	value	of	the	resolution	option
so	that	the	slider	moves	in	the	direction	of	the	cursor.	If	the	button
is	held	down,	the	action	auto-repeats.

[2]
If	button	1	is	pressed	over	the	slider,	the	slider	can	be	dragged	with
the	mouse.

[3]
If	button	1	is	pressed	in	the	trough	with	the	Control	key	down,	the
slider	moves	all	the	way	to	the	end	of	its	range,	in	the	direction

towards	the	mouse	cursor.

[4]
If	button	2	is	pressed,	the	scale's	value	is	set	to	the	mouse
position.	If	the	mouse	is	dragged	with	button	2	down,	the	scale's
value	changes	with	the	drag.

[5]
The	Up	and	Left	keys	move	the	slider	up	(left)	by	the	value	of	the
resolution	option.

[6]
The	Down	and	Right	keys	move	the	slider	down	(right)	by	the	value
of	the	resolution	option.

[7]
Control-Up	and	Control-Left	move	the	slider	up	(left)	by	the	value	of
the	bigIncrement	option.

[8]
Control-Down	and	Control-Right	move	the	slider	down	(right)	by	the
value	of	the	bigIncrement	option.

[9]
Home	moves	the	slider	to	the	top	(left)	end	of	its	range.

[10]
End	moves	the	slider	to	the	bottom	(right)	end	of	its	range.

If	the	scale	is	disabled	using	the	state	option	then	none	of	the	above
bindings	have	any	effect.

The	behavior	of	scales	can	be	changed	by	defining	new	bindings	for
individual	widgets	or	by	redefining	the	class	bindings.

KEYWORDS

scale,	slider,	trough,	widget

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990-1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	ttk_combobox

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
ttk::combobox	-	text	field	with	popdown	selection	list

SYNOPSIS
DESCRIPTION
STANDARD	OPTIONS

-class
-cursor,	cursor,	Cursor
-style
-takefocus,	takeFocus,	TakeFocus

WIDGET-SPECIFIC	OPTIONS
-exportselection,	exportSelection,	ExportSelection
-justify,	justify,	Justify
-height,	height,	Height
-postcommand,	postCommand,	PostCommand
-state,	state,	State
-textvariable,	textVariable,	TextVariable
-values,	values,	Values
-width,	width,	Width

WIDGET	COMMAND
pathName	cget	option
pathName	configure	?option?	?value	option	value	...?
pathName	current	?newIndex?
pathName	get
pathName	identify	x	y
pathName	instate	stateSpec	?script?
pathName	set	value
pathName	state	?stateSpec?

VIRTUAL	EVENTS
SEE	ALSO
KEYWORDS

NAME

ttk::combobox	-	text	field	with	popdown	selection	list

SYNOPSIS

ttk::combobox	pathName	?options?

DESCRIPTION

A	ttk::combobox	combines	a	text	field	with	a	pop-down	list	of	values;
the	user	may	select	the	value	of	the	text	field	from	among	the	values	in
the	list.

STANDARD	OPTIONS

-class
-cursor,	cursor,	Cursor
-style
-takefocus,	takeFocus,	TakeFocus

WIDGET-SPECIFIC	OPTIONS

Command-Line	Name:	-exportselection
Database	Name:	exportSelection
Database	Class:	ExportSelection

Boolean	value.	If	set,	the	widget	selection	is	linked	to	the	X
selection.

Command-Line	Name:	-justify
Database	Name:	justify
Database	Class:	Justify

Specifies	how	the	text	is	aligned	within	the	widget.	One	of	left,
center,	or	right.

Command-Line	Name:	-height
Database	Name:	height
Database	Class:	Height

Specifies	the	height	of	the	pop-down	listbox,	in	rows.

Command-Line	Name:	-postcommand
Database	Name:	postCommand
Database	Class:	PostCommand

A	Tcl	script	to	evaluate	immediately	before	displaying	the	listbox.
The	-postcommand	script	may	specify	the	-values	to	display.

Command-Line	Name:	-state
Database	Name:	state
Database	Class:	State

One	of	normal,	readonly,	or	disabled.	In	the	readonly	state,	the
value	may	not	be	edited	directly,	and	the	user	can	only	select	one
of	the	-values	from	the	dropdown	list.	In	the	normal	state,	the	text
field	is	directly	editable.	In	the	disabled	state,	no	interaction	is
possible.

Command-Line	Name:	-textvariable
Database	Name:	textVariable
Database	Class:	TextVariable

Specifies	the	name	of	a	variable	whose	value	is	linked	to	the
widget	value.	Whenever	the	variable	changes	value	the	widget
value	is	updated,	and	vice	versa.

Command-Line	Name:	-values
Database	Name:	values
Database	Class:	Values

Specifies	the	list	of	values	to	display	in	the	drop-down	listbox.

Command-Line	Name:	-width
Database	Name:	width
Database	Class:	Width

Specifies	an	integer	value	indicating	the	desired	width	of	the	entry
window,	in	average-size	characters	of	the	widget's	font.

WIDGET	COMMAND

pathName	cget	option

Returns	the	current	value	of	the	specified	option.	See	ttk::widget(n).

pathName	configure	?option?	?value	option	value	...?
Modify	or	query	widget	options.	See	ttk::widget(n).

pathName	current	?newIndex?
If	newIndex	is	supplied,	sets	the	combobox	value	to	the	element	at
position	newIndex	in	the	list	of	-values.	Otherwise,	returns	the
index	of	the	current	value	in	the	list	of	-values	or	-1	if	the	current
value	does	not	appear	in	the	list.

pathName	get
Returns	the	current	value	of	the	combobox.

pathName	identify	x	y
Returns	the	name	of	the	element	at	position	x,	y.	See	ttk::widget(n).

pathName	instate	stateSpec	?script?
Test	the	widget	state.	See	ttk::widget(n).

pathName	set	value
Sets	the	value	of	the	combobox	to	value.

pathName	state	?stateSpec?
Modify	or	query	the	widget	state.	See	ttk::widget(n).

The	combobox	widget	also	supports	the	following	ttk::entry	widget
commands	(see	ttk::entry(n)	for	details):

bbox delete icursor

index insert selection

xview

VIRTUAL	EVENTS

The	combobox	widget	generates	a	<<ComboboxSelected>>	virtual
event	when	the	user	selects	an	element	from	the	list	of	values.	If	the
selection	action	unposts	the	listbox,	this	event	is	delivered	after	the
listbox	is	unposted.

SEE	ALSO

ttk::widget,	ttk::entry

KEYWORDS

choice,	entry,	list	box,	text	box,	widget

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	2004	Joe	English

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	ttk_style

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
ttk::style	-	Manipulate	style	database

SYNOPSIS
NOTES
DEFINITIONS
DESCRIPTION

ttk::style	configure	style	?-option	?value	option	value...?	?
ttk::style	map	style	?-option	{	statespec	value...	}?
ttk::style	lookup	style	-option	?state	?default??
ttk::style	layout	style	?layoutSpec?
ttk::style	element	create	elementName	type	?args...?
ttk::style	element	names
ttk::style	element	options	element
ttk::style	theme	create	themeName	?-parent	basedon?	?-
settings	script...	?
ttk::style	theme	settings	themeName	script
ttk::style	theme	names
ttk::style	theme	use	themeName

LAYOUTS
-side	side
-sticky	[nswe]
-children	{	sublayout...	}

SEE	ALSO
KEYWORDS

NAME

ttk::style	-	Manipulate	style	database

SYNOPSIS

ttk::style	option	?args?

NOTES

See	also	the	Tcl'2004	conference	presentation,	available	at
http://tktable.sourceforge.net/tile/tile-tcl2004.pdf

DEFINITIONS

Each	widget	is	assigned	a	style,	which	specifies	the	set	of	elements
making	up	the	widget	and	how	they	are	arranged,	along	with	dynamic
and	default	settings	for	element	options.	By	default,	the	style	name	is
the	same	as	the	widget's	class;	this	may	be	overridden	by	the	-style
option.

A	theme	is	a	collection	of	elements	and	styles	which	controls	the	overall
look	and	feel	of	an	application.

DESCRIPTION

The	ttk::style	command	takes	the	following	arguments:

ttk::style	configure	style	?-option	?value	option	value...?	?
Sets	the	default	value	of	the	specified	option(s)	in	style.

ttk::style	map	style	?-option	{	statespec	value...	}?
Sets	dynamic	values	of	the	specified	option(s)	in	style.	Each
statespec	/	value	pair	is	examined	in	order;	the	value
corresponding	to	the	first	matching	statespec	is	used.

ttk::style	lookup	style	-option	?state	?default??
Returns	the	value	specified	for	-option	in	style	style	in	state	state,
using	the	standard	lookup	rules	for	element	options.	state	is	a	list	of
state	names;	if	omitted,	it	defaults	to	all	bits	off	(the	“normal”	state).
If	the	default	argument	is	present,	it	is	used	as	a	fallback	value	in
case	no	specification	for	-option	is	found.

ttk::style	layout	style	?layoutSpec?
Define	the	widget	layout	for	style	style.	See	LAYOUTS	below	for
the	format	of	layoutSpec.	If	layoutSpec	is	omitted,	return	the	layout

specification	for	style	style.

ttk::style	element	create	elementName	type	?args...?
Creates	a	new	element	in	the	current	theme	of	type	type.	The	only
cross-platform	built-in	element	type	is	image	(see	ttk_image(n))
but	themes	may	define	other	element	types	(see
Ttk_RegisterElementFactory).	On	suitable	versions	of	Windows
an	element	factory	is	registered	to	create	Windows	theme	elements
(see	ttk_vsapi(n)).

ttk::style	element	names
Returns	the	list	of	elements	defined	in	the	current	theme.

ttk::style	element	options	element
Returns	the	list	of	element's	options.

ttk::style	theme	create	themeName	?-parent	basedon?	?-settings
script...	?

Creates	a	new	theme.	It	is	an	error	if	themeName	already	exists.	If
-parent	is	specified,	the	new	theme	will	inherit	styles,	elements,
and	layouts	from	the	parent	theme	basedon.	If	-settings	is	present,
script	is	evaluated	in	the	context	of	the	new	theme	as	per	ttk::style
theme	settings.

ttk::style	theme	settings	themeName	script
Temporarily	sets	the	current	theme	to	themeName,	evaluate	script,
then	restore	the	previous	theme.	Typically	script	simply	defines
styles	and	elements,	though	arbitrary	Tcl	code	may	appear.

ttk::style	theme	names
Returns	a	list	of	all	known	themes.

ttk::style	theme	use	themeName
Sets	the	current	theme	to	themeName,	and	refreshes	all	widgets.

LAYOUTS

A	layout	specifies	a	list	of	elements,	each	followed	by	one	or	more

options	specifying	how	to	arrange	the	element.	The	layout	mechanism
uses	a	simplified	version	of	the	pack	geometry	manager:	given	an	initial
cavity,	each	element	is	allocated	a	parcel.	Valid	options	are:

-side	side
Specifies	which	side	of	the	cavity	to	place	the	element;	one	of	left,
right,	top,	or	bottom.	If	omitted,	the	element	occupies	the	entire
cavity.

-sticky	[nswe]
Specifies	where	the	element	is	placed	inside	its	allocated	parcel.

-children	{	sublayout...	}
Specifies	a	list	of	elements	to	place	inside	the	element.

For	example:

ttk::style	layout	Horizontal.TScrollbar	{

				Scrollbar.trough	-children	{

								Scrollbar.leftarrow	-side	left

								Scrollbar.rightarrow	-side	right

								Horizontal.Scrollbar.thumb	-side	left	-sticky	ew

				}

}

SEE	ALSO

ttk::intro,	ttk::widget,	photo,	ttk_image

KEYWORDS

style,	theme,	appearance

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	2004	Joe	English

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	colors

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

colors	-	symbolic	color	names	recognized	by	Tk

DESCRIPTION

Tk	recognizes	many	symbolic	color	names	(e.g.,	red)	when	specifying
colors.	The	symbolic	names	recognized	by	Tk	and	their	8-bit-per-
channel	RGB	values	are:

Name Red Green Blue

alice	blue 240 248 255

AliceBlue 240 248 255

antique	white 250 235 215

AntiqueWhite 250 235 215

AntiqueWhite1 255 239 219

AntiqueWhite2 238 223 204

AntiqueWhite3 205 192 176

AntiqueWhite4 139 131 120

aquamarine 127 255 212

aquamarine1 127 255 212

aquamarine2 118 238 198

aquamarine3 102 205 170

aquamarine4 69 139 116

azure 240 255 255

azure1 240 255 255

azure2 224 238 238

azure3 193 205 205

azure4 131 139 139

beige 245 245 220

bisque 255 228 196

bisque1 255 228 196

bisque2 238 213 183

bisque3 205 183 158

bisque4 139 125 107

black 0 0 0

blanched	almond 255 235 205

BlanchedAlmond 255 235 205

blue 0 0 255

blue	violet 138 43 226

blue1 0 0 255

blue2 0 0 238

blue3 0 0 205

blue4 0 0 139

BlueViolet 138 43 226

brown 165 42 42

brown1 255 64 64

brown2 238 59 59

brown3 205 51 51

brown4 139 35 35

burlywood 222 184 135

burlywood1 255 211 155

burlywood2 238 197 145

burlywood3 205 170 125

burlywood4 139 115 85

cadet	blue 95 158 160

CadetBlue 95 158 160

CadetBlue1 152 245 255

CadetBlue2 142 229 238

CadetBlue3 122 197 205

CadetBlue4 83 134 139

chartreuse 127 255 0

chartreuse1 127 255 0

chartreuse2 118 238 0

chartreuse3 102 205 0

chartreuse4 69 139 0

chocolate 210 105 30

chocolate1 255 127 36

chocolate2 238 118 33

chocolate3 205 102 29

chocolate4 139 69 19

coral 255 127 80

coral1 255 114 86

coral2 238 106 80

coral3 205 91 69

coral4 139 62 47

cornflower	blue 100 149 237

CornflowerBlue 100 149 237

cornsilk 255 248 220

cornsilk1 255 248 220

cornsilk2 238 232 205

cornsilk3 205 200 177

cornsilk4 139 136 120

cyan 0 255 255

cyan1 0 255 255

cyan2 0 238 238

cyan3 0 205 205

cyan4 0 139 139

dark	blue 0 0 139

dark	cyan 0 139 139

dark	goldenrod 184 134 11

dark	gray 169 169 169

dark	green 0 100 0

dark	grey 169 169 169

dark	khaki 189 183 107

dark	magenta 139 0 139

dark	olive	green 85 107 47

dark	orange 255 140 0

dark	orchid 153 50 204

dark	red 139 0 0

dark	salmon 233 150 122

dark	sea	green 143 188 143

dark	slate	blue 72 61 139

dark	slate	gray 47 79 79

dark	slate	grey 47 79 79

dark	turquoise 0 206 209

dark	violet 148 0 211

DarkBlue 0 0 139

DarkCyan 0 139 139

DarkGoldenrod 184 134 11

DarkGoldenrod1 255 185 15

DarkGoldenrod2 238 173 14

DarkGoldenrod3 205 149 12

DarkGoldenrod4 139 101 8

DarkGray 169 169 169

DarkGreen 0 100 0

DarkGrey 169 169 169

DarkKhaki 189 183 107

DarkMagenta 139 0 139

DarkOliveGreen 85 107 47

DarkOliveGreen1 202 255 112

DarkOliveGreen2 188 238 104

DarkOliveGreen3 162 205 90

DarkOliveGreen4 110 139 61

DarkOrange 255 140 0

DarkOrange1 255 127 0

DarkOrange2 238 118 0

DarkOrange3 205 102 0

DarkOrange4 139 69 0

DarkOrchid 153 50 204

DarkOrchid1 191 62 255

DarkOrchid2 178 58 238

DarkOrchid3 154 50 205

DarkOrchid4 104 34 139

DarkRed 139 0 0

DarkSalmon 233 150 122

DarkSeaGreen 143 188 143

DarkSeaGreen1 193 255 193

DarkSeaGreen2 180 238 180

DarkSeaGreen3 155 205 155

DarkSeaGreen4 105 139 105

DarkSlateBlue 72 61 139

DarkSlateGray 47 79 79

DarkSlateGray1 151 255 255

DarkSlateGray2 141 238 238

DarkSlateGray3 121 205 205

DarkSlateGray4 82 139 139

DarkSlateGrey 47 79 79

DarkTurquoise 0 206 209

DarkViolet 148 0 211

deep	pink 255 20 147

deep	sky	blue 0 191 255

DeepPink 255 20 147

DeepPink1 255 20 147

DeepPink2 238 18 137

DeepPink3 205 16 118

DeepPink4 139 10 80

DeepSkyBlue 0 191 255

DeepSkyBlue1 0 191 255

DeepSkyBlue2 0 178 238

DeepSkyBlue3 0 154 205

DeepSkyBlue4 0 104 139

dim	gray 105 105 105

dim	grey 105 105 105

DimGray 105 105 105

DimGrey 105 105 105

dodger	blue 30 144 255

DodgerBlue 30 144 255

DodgerBlue1 30 144 255

DodgerBlue2 28 134 238

DodgerBlue3 24 116 205

DodgerBlue4 16 78 139

firebrick 178 34 34

firebrick1 255 48 48

firebrick2 238 44 44

firebrick3 205 38 38

firebrick4 139 26 26

floral	white 255 250 240

FloralWhite 255 250 240

forest	green 34 139 34

ForestGreen 34 139 34

gainsboro 220 220 220

ghost	white 248 248 255

GhostWhite 248 248 255

gold 255 215 0

gold1 255 215 0

gold2 238 201 0

gold3 205 173 0

gold4 139 117 0

goldenrod 218 165 32

goldenrod1 255 193 37

goldenrod2 238 180 34

goldenrod3 205 155 29

goldenrod4 139 105 20

gray 190 190 190

gray0 0 0 0

gray1 3 3 3

gray2 5 5 5

gray3 8 8 8

gray4 10 10 10

gray5 13 13 13

gray6 15 15 15

gray7 18 18 18

gray8 20 20 20

gray9 23 23 23

gray10 26 26 26

gray11 28 28 28

gray12 31 31 31

gray13 33 33 33

gray14 36 36 36

gray15 38 38 38

gray16 41 41 41

gray17 43 43 43

gray18 46 46 46

gray19 48 48 48

gray20 51 51 51

gray21 54 54 54

gray22 56 56 56

gray23 59 59 59

gray24 61 61 61

gray25 64 64 64

gray26 66 66 66

gray27 69 69 69

gray28 71 71 71

gray29 74 74 74

gray30 77 77 77

gray31 79 79 79

gray32 82 82 82

gray33 84 84 84

gray34 87 87 87

gray35 89 89 89

gray36 92 92 92

gray37 94 94 94

gray38 97 97 97

gray39 99 99 99

gray40 102 102 102

gray41 105 105 105

gray42 107 107 107

gray43 110 110 110

gray44 112 112 112

gray45 115 115 115

gray46 117 117 117

gray47 120 120 120

gray48 122 122 122

gray49 125 125 125

gray50 127 127 127

gray51 130 130 130

gray52 133 133 133

gray53 135 135 135

gray54 138 138 138

gray55 140 140 140

gray56 143 143 143

gray57 145 145 145

gray58 148 148 148

gray59 150 150 150

gray60 153 153 153

gray61 156 156 156

gray62 158 158 158

gray63 161 161 161

gray64 163 163 163

gray65 166 166 166

gray66 168 168 168

gray67 171 171 171

gray68 173 173 173

gray69 176 176 176

gray70 179 179 179

gray71 181 181 181

gray72 184 184 184

gray73 186 186 186

gray74 189 189 189

gray75 191 191 191

gray76 194 194 194

gray77 196 196 196

gray78 199 199 199

gray79 201 201 201

gray80 204 204 204

gray81 207 207 207

gray82 209 209 209

gray83 212 212 212

gray84 214 214 214

gray85 217 217 217

gray86 219 219 219

gray87 222 222 222

gray88 224 224 224

gray89 227 227 227

gray90 229 229 229

gray91 232 232 232

gray92 235 235 235

gray93 237 237 237

gray94 240 240 240

gray95 242 242 242

gray96 245 245 245

gray97 247 247 247

gray98 250 250 250

gray99 252 252 252

gray100 255 255 255

green 0 255 0

green	yellow 173 255 47

green1 0 255 0

green2 0 238 0

green3 0 205 0

green4 0 139 0

GreenYellow 173 255 47

grey 190 190 190

grey0 0 0 0

grey1 3 3 3

grey2 5 5 5

grey3 8 8 8

grey4 10 10 10

grey5 13 13 13

grey6 15 15 15

grey7 18 18 18

grey8 20 20 20

grey9 23 23 23

grey10 26 26 26

grey11 28 28 28

grey12 31 31 31

grey13 33 33 33

grey14 36 36 36

grey15 38 38 38

grey16 41 41 41

grey17 43 43 43

grey18 46 46 46

grey19 48 48 48

grey20 51 51 51

grey21 54 54 54

grey22 56 56 56

grey23 59 59 59

grey24 61 61 61

grey25 64 64 64

grey26 66 66 66

grey27 69 69 69

grey28 71 71 71

grey29 74 74 74

grey30 77 77 77

grey31 79 79 79

grey32 82 82 82

grey33 84 84 84

grey34 87 87 87

grey35 89 89 89

grey36 92 92 92

grey37 94 94 94

grey38 97 97 97

grey39 99 99 99

grey40 102 102 102

grey41 105 105 105

grey42 107 107 107

grey43 110 110 110

grey44 112 112 112

grey45 115 115 115

grey46 117 117 117

grey47 120 120 120

grey48 122 122 122

grey49 125 125 125

grey50 127 127 127

grey51 130 130 130

grey52 133 133 133

grey53 135 135 135

grey54 138 138 138

grey55 140 140 140

grey56 143 143 143

grey57 145 145 145

grey58 148 148 148

grey59 150 150 150

grey60 153 153 153

grey61 156 156 156

grey62 158 158 158

grey63 161 161 161

grey64 163 163 163

grey65 166 166 166

grey66 168 168 168

grey67 171 171 171

grey68 173 173 173

grey69 176 176 176

grey70 179 179 179

grey71 181 181 181

grey72 184 184 184

grey73 186 186 186

grey74 189 189 189

grey75 191 191 191

grey76 194 194 194

grey77 196 196 196

grey78 199 199 199

grey79 201 201 201

grey80 204 204 204

grey81 207 207 207

grey82 209 209 209

grey83 212 212 212

grey84 214 214 214

grey85 217 217 217

grey86 219 219 219

grey87 222 222 222

grey88 224 224 224

grey89 227 227 227

grey90 229 229 229

grey91 232 232 232

grey92 235 235 235

grey93 237 237 237

grey94 240 240 240

grey95 242 242 242

grey96 245 245 245

grey97 247 247 247

grey98 250 250 250

grey99 252 252 252

grey100 255 255 255

honeydew 240 255 240

honeydew1 240 255 240

honeydew2 224 238 224

honeydew3 193 205 193

honeydew4 131 139 131

hot	pink 255 105 180

HotPink 255 105 180

HotPink1 255 110 180

HotPink2 238 106 167

HotPink3 205 96 144

HotPink4 139 58 98

indian	red 205 92 92

IndianRed 205 92 92

IndianRed1 255 106 106

IndianRed2 238 99 99

IndianRed3 205 85 85

IndianRed4 139 58 58

ivory 255 255 240

ivory1 255 255 240

ivory2 238 238 224

ivory3 205 205 193

ivory4 139 139 131

khaki 240 230 140

khaki1 255 246 143

khaki2 238 230 133

khaki3 205 198 115

khaki4 139 134 78

lavender 230 230 250

lavender	blush 255 240 245

LavenderBlush 255 240 245

LavenderBlush1 255 240 245

LavenderBlush2 238 224 229

LavenderBlush3 205 193 197

LavenderBlush4 139 131 134

lawn	green 124 252 0

LawnGreen 124 252 0

lemon	chiffon 255 250 205

LemonChiffon 255 250 205

LemonChiffon1 255 250 205

LemonChiffon2 238 233 191

LemonChiffon3 205 201 165

LemonChiffon4 139 137 112

light	blue 173 216 230

light	coral 240 128 128

light	cyan 224 255 255

light	goldenrod 238 221 130

light	goldenrod	yellow 250 250 210

light	gray 211 211 211

light	green 144 238 144

light	grey 211 211 211

light	pink 255 182 193

light	salmon 255 160 122

light	sea	green 32 178 170

light	sky	blue 135 206 250

light	slate	blue 132 112 255

light	slate	gray 119 136 153

light	slate	grey 119 136 153

light	steel	blue 176 196 222

light	yellow 255 255 224

LightBlue 173 216 230

LightBlue1 191 239 255

LightBlue2 178 223 238

LightBlue3 154 192 205

LightBlue4 104 131 139

LightCoral 240 128 128

LightCyan 224 255 255

LightCyan1 224 255 255

LightCyan2 209 238 238

LightCyan3 180 205 205

LightCyan4 122 139 139

LightGoldenrod 238 221 130

LightGoldenrod1 255 236 139

LightGoldenrod2 238 220 130

LightGoldenrod3 205 190 112

LightGoldenrod4 139 129 76

LightGoldenrodYellow 250 250 210

LightGray 211 211 211

LightGreen 144 238 144

LightGrey 211 211 211

LightPink 255 182 193

LightPink1 255 174 185

LightPink2 238 162 173

LightPink3 205 140 149

LightPink4 139 95 101

LightSalmon 255 160 122

LightSalmon1 255 160 122

LightSalmon2 238 149 114

LightSalmon3 205 129 98

LightSalmon4 139 87 66

LightSeaGreen 32 178 170

LightSkyBlue 135 206 250

LightSkyBlue1 176 226 255

LightSkyBlue2 164 211 238

LightSkyBlue3 141 182 205

LightSkyBlue4 96 123 139

LightSlateBlue 132 112 255

LightSlateGray 119 136 153

LightSlateGrey 119 136 153

LightSteelBlue 176 196 222

LightSteelBlue1 202 225 255

LightSteelBlue2 188 210 238

LightSteelBlue3 162 181 205

LightSteelBlue4 110 123 139

LightYellow 255 255 224

LightYellow1 255 255 224

LightYellow2 238 238 209

LightYellow3 205 205 180

LightYellow4 139 139 122

lime	green 50 205 50

LimeGreen 50 205 50

linen 250 240 230

magenta 255 0 255

magenta1 255 0 255

magenta2 238 0 238

magenta3 205 0 205

magenta4 139 0 139

maroon 176 48 96

maroon1 255 52 179

maroon2 238 48 167

maroon3 205 41 144

maroon4 139 28 98

medium	aquamarine 102 205 170

medium	blue 0 0 205

medium	orchid 186 85 211

medium	purple 147 112 219

medium	sea	green 60 179 113

medium	slate	blue 123 104 238

medium	spring	green 0 250 154

medium	turquoise 72 209 204

medium	violet	red 199 21 133

MediumAquamarine 102 205 170

MediumBlue 0 0 205

MediumOrchid 186 85 211

MediumOrchid1 224 102 255

MediumOrchid2 209 95 238

MediumOrchid3 180 82 205

MediumOrchid4 122 55 139

MediumPurple 147 112 219

MediumPurple1 171 130 255

MediumPurple2 159 121 238

MediumPurple3 137 104 205

MediumPurple4 93 71 139

MediumSeaGreen 60 179 113

MediumSlateBlue 123 104 238

MediumSpringGreen 0 250 154

MediumTurquoise 72 209 204

MediumVioletRed 199 21 133

midnight	blue 25 25 112

MidnightBlue 25 25 112

mint	cream 245 255 250

MintCream 245 255 250

misty	rose 255 228 225

MistyRose 255 228 225

MistyRose1 255 228 225

MistyRose2 238 213 210

MistyRose3 205 183 181

MistyRose4 139 125 123

moccasin 255 228 181

navajo	white 255 222 173

NavajoWhite 255 222 173

NavajoWhite1 255 222 173

NavajoWhite2 238 207 161

NavajoWhite3 205 179 139

NavajoWhite4 139 121 94

navy 0 0 128

navy	blue 0 0 128

NavyBlue 0 0 128

old	lace 253 245 230

OldLace 253 245 230

olive	drab 107 142 35

OliveDrab 107 142 35

OliveDrab1 192 255 62

OliveDrab2 179 238 58

OliveDrab3 154 205 50

OliveDrab4 105 139 34

orange 255 165 0

orange	red 255 69 0

orange1 255 165 0

orange2 238 154 0

orange3 205 133 0

orange4 139 90 0

OrangeRed 255 69 0

OrangeRed1 255 69 0

OrangeRed2 238 64 0

OrangeRed3 205 55 0

OrangeRed4 139 37 0

orchid 218 112 214

orchid1 255 131 250

orchid2 238 122 233

orchid3 205 105 201

orchid4 139 71 137

pale	goldenrod 238 232 170

pale	green 152 251 152

pale	turquoise 175 238 238

pale	violet	red 219 112 147

PaleGoldenrod 238 232 170

PaleGreen 152 251 152

PaleGreen1 154 255 154

PaleGreen2 144 238 144

PaleGreen3 124 205 124

PaleGreen4 84 139 84

PaleTurquoise 175 238 238

PaleTurquoise1 187 255 255

PaleTurquoise2 174 238 238

PaleTurquoise3 150 205 205

PaleTurquoise4 102 139 139

PaleVioletRed 219 112 147

PaleVioletRed1 255 130 171

PaleVioletRed2 238 121 159

PaleVioletRed3 205 104 127

PaleVioletRed4 139 71 93

papaya	whip 255 239 213

PapayaWhip 255 239 213

peach	puff 255 218 185

PeachPuff 255 218 185

PeachPuff1 255 218 185

PeachPuff2 238 203 173

PeachPuff3 205 175 149

PeachPuff4 139 119 101

peru 205 133 63

pink 255 192 203

pink1 255 181 197

pink2 238 169 184

pink3 205 145 158

pink4 139 99 108

plum 221 160 221

plum1 255 187 255

plum2 238 174 238

plum3 205 150 205

plum4 139 102 139

powder	blue 176 224 230

PowderBlue 176 224 230

purple 160 32 240

purple1 155 48 255

purple2 145 44 238

purple3 125 38 205

purple4 85 26 139

red 255 0 0

red1 255 0 0

red2 238 0 0

red3 205 0 0

red4 139 0 0

rosy	brown 188 143 143

RosyBrown 188 143 143

RosyBrown1 255 193 193

RosyBrown2 238 180 180

RosyBrown3 205 155 155

RosyBrown4 139 105 105

royal	blue 65 105 225

RoyalBlue 65 105 225

RoyalBlue1 72 118 255

RoyalBlue2 67 110 238

RoyalBlue3 58 95 205

RoyalBlue4 39 64 139

saddle	brown 139 69 19

SaddleBrown 139 69 19

salmon 250 128 114

salmon1 255 140 105

salmon2 238 130 98

salmon3 205 112 84

salmon4 139 76 57

sandy	brown 244 164 96

SandyBrown 244 164 96

sea	green 46 139 87

SeaGreen 46 139 87

SeaGreen1 84 255 159

SeaGreen2 78 238 148

SeaGreen3 67 205 128

SeaGreen4 46 139 87

seashell 255 245 238

seashell1 255 245 238

seashell2 238 229 222

seashell3 205 197 191

seashell4 139 134 130

sienna 160 82 45

sienna1 255 130 71

sienna2 238 121 66

sienna3 205 104 57

sienna4 139 71 38

sky	blue 135 206 235

SkyBlue 135 206 235

SkyBlue1 135 206 255

SkyBlue2 126 192 238

SkyBlue3 108 166 205

SkyBlue4 74 112 139

slate	blue 106 90 205

slate	gray 112 128 144

slate	grey 112 128 144

SlateBlue 106 90 205

SlateBlue1 131 111 255

SlateBlue2 122 103 238

SlateBlue3 105 89 205

SlateBlue4 71 60 139

SlateGray 112 128 144

SlateGray1 198 226 255

SlateGray2 185 211 238

SlateGray3 159 182 205

SlateGray4 108 123 139

SlateGrey 112 128 144

snow 255 250 250

snow1 255 250 250

snow2 238 233 233

snow3 205 201 201

snow4 139 137 137

spring	green 0 255 127

SpringGreen 0 255 127

SpringGreen1 0 255 127

SpringGreen2 0 238 118

SpringGreen3 0 205 102

SpringGreen4 0 139 69

steel	blue 70 130 180

SteelBlue 70 130 180

SteelBlue1 99 184 255

SteelBlue2 92 172 238

SteelBlue3 79 148 205

SteelBlue4 54 100 139

tan 210 180 140

tan1 255 165 79

tan2 238 154 73

tan3 205 133 63

tan4 139 90 43

thistle 216 191 216

thistle1 255 225 255

thistle2 238 210 238

thistle3 205 181 205

thistle4 139 123 139

tomato 255 99 71

tomato1 255 99 71

tomato2 238 92 66

tomato3 205 79 57

tomato4 139 54 38

turquoise 64 224 208

turquoise1 0 245 255

turquoise2 0 229 238

turquoise3 0 197 205

turquoise4 0 134 139

violet 238 130 238

violet	red 208 32 144

VioletRed 208 32 144

VioletRed1 255 62 150

VioletRed2 238 58 140

VioletRed3 205 50 120

VioletRed4 139 34 82

wheat 245 222 179

wheat1 255 231 186

wheat2 238 216 174

wheat3 205 186 150

wheat4 139 126 102

white 255 255 255

white	smoke 245 245 245

WhiteSmoke 245 245 245

yellow 255 255 0

yellow	green 154 205 50

yellow1 255 255 0

yellow2 238 238 0

yellow3 205 205 0

yellow4 139 139 0

YellowGreen 154 205 50

PORTABILITY	ISSUES

Mac	OS	X
On	Mac	OS	X,	the	following	additional	system	colors	are	available
(note	that	the	actual	color	values	depend	on	the	currently	active	OS
theme,	and	typically	many	of	these	will	in	fact	be	patterns	rather
than	pure	colors):

systemActiveAreaFill

systemAlertActiveText

systemAlertBackgroundActive

systemAlertBackgroundInactive

systemAlertInactiveText

systemAlternatePrimaryHighlightColor

systemAppleGuideCoachmark

systemBevelActiveDark

systemBevelActiveLight

systemBevelButtonActiveText

systemBevelButtonInactiveText

systemBevelButtonPressedText

systemBevelButtonStickyActiveText

systemBevelButtonStickyInactiveText

systemBevelInactiveDark

systemBevelInactiveLight

systemBlack

systemBlackText

systemButtonActiveDarkHighlight

systemButtonActiveDarkShadow

systemButtonActiveLightHighlight

systemButtonActiveLightShadow

systemButtonFace

systemButtonFaceActive

systemButtonFaceInactive

systemButtonFacePressed

systemButtonFrame

systemButtonFrameActive

systemButtonFrameInactive

systemButtonInactiveDarkHighlight

systemButtonInactiveDarkShadow

systemButtonInactiveLightHighlight

systemButtonInactiveLightShadow

systemButtonPressedDarkHighlight

systemButtonPressedDarkShadow

systemButtonPressedLightHighlight

systemButtonPressedLightShadow

systemButtonText

systemChasingArrows

systemDialogActiveText

systemDialogBackgroundActive

systemDialogBackgroundInactive

systemDialogInactiveText

systemDocumentWindowBackground

systemDocumentWindowTitleActiveText

systemDocumentWindowTitleInactiveText

systemDragHilite

systemDrawerBackground

systemFinderWindowBackground

systemFocusHighlight

systemHighlight

systemHighlightAlternate

systemHighlightSecondary

systemHighlightText

systemIconLabelBackground

systemIconLabelBackgroundSelected

systemIconLabelSelectedText

systemIconLabelText

systemListViewBackground

systemListViewColumnDivider

systemListViewEvenRowBackground

systemListViewOddRowBackground

systemListViewSeparator

systemListViewSortColumnBackground

systemListViewText

systemListViewWindowHeaderBackground

systemMenu

systemMenuActive

systemMenuActiveText

systemMenuBackground

systemMenuBackgroundSelected

systemMenuDisabled

systemMenuItemActiveText

systemMenuItemDisabledText

systemMenuItemSelectedText

systemMenuText

systemMetalBackground

systemModelessDialogActiveText

systemModelessDialogBackgroundActive

systemModelessDialogBackgroundInactive

systemModelessDialogInactiveText

systemMovableModalBackground

systemMovableModalWindowTitleActiveText

systemMovableModalWindowTitleInactiveText

systemNotificationText

systemNotificationWindowBackground

systemPlacardActiveText

systemPlacardBackground

systemPlacardInactiveText

systemPlacardPressedText

systemPopupArrowActive

systemPopupArrowInactive

systemPopupArrowPressed

systemPopupButtonActiveText

systemPopupButtonInactiveText

systemPopupButtonPressedText

systemPopupLabelActiveText

systemPopupLabelInactiveText

systemPopupWindowTitleActiveText

systemPopupWindowTitleInactiveText

systemPrimaryHighlightColor

systemPushButtonActiveText

systemPushButtonInactiveText

systemPushButtonPressedText

systemRootMenuActiveText

systemRootMenuDisabledText

systemRootMenuSelectedText

systemScrollBarDelimiterActive

systemScrollBarDelimiterInactive

systemSecondaryGroupBoxBackground

systemSecondaryHighlightColor

systemSheetBackground

systemSheetBackgroundOpaque

systemSheetBackgroundTransparent

systemStaticAreaFill

systemSystemDetailText

systemTabFrontActiveText

systemTabFrontInactiveText

systemTabNonFrontActiveText

systemTabNonFrontInactiveText

systemTabNonFrontPressedText

systemTabPaneBackground

systemToolbarBackground

systemTransparent

systemUtilityWindowBackgroundActive

systemUtilityWindowBackgroundInactive

systemUtilityWindowTitleActiveText

systemUtilityWindowTitleInactiveText

systemWhite

systemWhiteText

systemWindowBody

systemWindowHeaderActiveText

systemWindowHeaderBackground

systemWindowHeaderInactiveText

Windows
On	Windows,	the	following	additional	system	colors	are	available
(note	that	the	actual	color	values	depend	on	the	currently	active	OS
theme):

3dDarkShadow Highlight

3dLight HighlightText

ActiveBorder InactiveBorder

ActiveCaption InactiveCaption

AppWorkspace InactiveCaptionText

Background InfoBackground

ButtonFace InfoText

ButtonHighlight Menu

ButtonShadow MenuText

ButtonText Scrollbar

CaptionText Window

DisabledText WindowFrame

GrayText WindowText

SEE	ALSO

options,	Tk_GetColor

KEYWORDS

color,	option

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1998-2000	by	Scriptics	Corporation.
Copyright	©	2003	ActiveState	Corporation.
Copyright	©	2006-2007	Daniel	A.	Steffen	<das(at)users.sourceforge.net>
Copyright	©	2008	Donal	K.	Fellows

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	listbox

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
listbox	-	Create	and	manipulate	listbox	widgets

SYNOPSIS
STANDARD	OPTIONS

-background	or	-bg,	background,	Background
-borderwidth	or	-bd,	borderWidth,	BorderWidth
-cursor,	cursor,	Cursor
-disabledforeground,	disabledForeground,	DisabledForeground
-exportselection,	exportSelection,	ExportSelection
-font,	font,	Font
-foreground	or	-fg,	foreground,	Foreground
-highlightbackground,	highlightBackground,
HighlightBackground
-highlightcolor,	highlightColor,	HighlightColor
-highlightthickness,	highlightThickness,	HighlightThickness
-relief,	relief,	Relief
-selectbackground,	selectBackground,	Foreground
-selectborderwidth,	selectBorderWidth,	BorderWidth
-selectforeground,	selectForeground,	Background
-setgrid,	setGrid,	SetGrid
-takefocus,	takeFocus,	TakeFocus
-xscrollcommand,	xScrollCommand,	ScrollCommand
-yscrollcommand,	yScrollCommand,	ScrollCommand

WIDGET-SPECIFIC	OPTIONS
-activestyle,	activeStyle,	ActiveStyle
-height,	height,	Height
-listvariable,	listVariable,	Variable
-selectmode,	selectMode,	SelectMode
-state,	state,	State
-width,	width,	Width

DESCRIPTION

INDICES
number
active
anchor
end
@x,y

WIDGET	COMMAND
pathName	activate	index
pathName	bbox	index
pathName	cget	option
pathName	configure	?option?	?value	option	value	...?
pathName	curselection
pathName	delete	first	?last?
pathName	get	first	?last?
pathName	index	index
pathName	insert	index	?element	element	...?
pathName	itemcget	index	option
pathName	itemconfigure	index	?option?	?value?	?option
value	...?

-background	color
-foreground	color
-selectbackground	color
-selectforeground	color

pathName	nearest	y
pathName	scan	option	args

pathName	scan	mark	x	y
pathName	scan	dragto	x	y.

pathName	see	index
pathName	selection	option	arg

pathName	selection	anchor	index
pathName	selection	clear	first	?last?
pathName	selection	includes	index
pathName	selection	set	first	?last?

pathName	size
pathName	xview	args

pathName	xview
pathName	xview	index

pathName	xview	moveto	fraction
pathName	xview	scroll	number	what

pathName	yview	?args?
pathName	yview
pathName	yview	index
pathName	yview	moveto	fraction
pathName	yview	scroll	number	what

DEFAULT	BINDINGS
SEE	ALSO
KEYWORDS

NAME

listbox	-	Create	and	manipulate	listbox	widgets

SYNOPSIS

listbox	pathName	?options?

STANDARD	OPTIONS

-background	or	-bg,	background,	Background
-borderwidth	or	-bd,	borderWidth,	BorderWidth
-cursor,	cursor,	Cursor
-disabledforeground,	disabledForeground,	DisabledForeground
-exportselection,	exportSelection,	ExportSelection
-font,	font,	Font
-foreground	or	-fg,	foreground,	Foreground
-highlightbackground,	highlightBackground,	HighlightBackground
-highlightcolor,	highlightColor,	HighlightColor
-highlightthickness,	highlightThickness,	HighlightThickness
-relief,	relief,	Relief
-selectbackground,	selectBackground,	Foreground
-selectborderwidth,	selectBorderWidth,	BorderWidth
-selectforeground,	selectForeground,	Background
-setgrid,	setGrid,	SetGrid
-takefocus,	takeFocus,	TakeFocus
-xscrollcommand,	xScrollCommand,	ScrollCommand

-yscrollcommand,	yScrollCommand,	ScrollCommand

WIDGET-SPECIFIC	OPTIONS

Command-Line	Name:	-activestyle
Database	Name:	activeStyle
Database	Class:	ActiveStyle

Specifies	the	style	in	which	to	draw	the	active	element.	This	must
be	one	of	dotbox	(show	a	focus	ring	around	the	active	element),
none	(no	special	indication	of	active	element)	or	underline
(underline	the	active	element).	The	default	is	underline	on
Windows,	and	dotbox	elsewhere.

Command-Line	Name:	-height
Database	Name:	height
Database	Class:	Height

Specifies	the	desired	height	for	the	window,	in	lines.	If	zero	or	less,
then	the	desired	height	for	the	window	is	made	just	large	enough	to
hold	all	the	elements	in	the	listbox.

Command-Line	Name:	-listvariable
Database	Name:	listVariable
Database	Class:	Variable

Specifies	the	name	of	a	variable.	The	value	of	the	variable	is	a	list
to	be	displayed	inside	the	widget;	if	the	variable	value	changes
then	the	widget	will	automatically	update	itself	to	reflect	the	new
value.	Attempts	to	assign	a	variable	with	an	invalid	list	value	to	-
listvariable	will	cause	an	error.	Attempts	to	unset	a	variable	in	use
as	a	-listvariable	will	fail	but	will	not	generate	an	error.

Command-Line	Name:	-selectmode
Database	Name:	selectMode
Database	Class:	SelectMode

Specifies	one	of	several	styles	for	manipulating	the	selection.	The
value	of	the	option	may	be	arbitrary,	but	the	default	bindings	expect
it	to	be	either	single,	browse,	multiple,	or	extended;	the	default
value	is	browse.

Command-Line	Name:	-state
Database	Name:	state
Database	Class:	State

Specifies	one	of	two	states	for	the	listbox:	normal	or	disabled.	If
the	listbox	is	disabled	then	items	may	not	be	inserted	or	deleted,
items	are	drawn	in	the	-disabledforeground	color,	and	selection
cannot	be	modified	and	is	not	shown	(though	selection	information
is	retained).

Command-Line	Name:	-width
Database	Name:	width
Database	Class:	Width

Specifies	the	desired	width	for	the	window	in	characters.	If	the	font
does	not	have	a	uniform	width	then	the	width	of	the	character	“0”	is
used	in	translating	from	character	units	to	screen	units.	If	zero	or
less,	then	the	desired	width	for	the	window	is	made	just	large
enough	to	hold	all	the	elements	in	the	listbox.

DESCRIPTION

The	listbox	command	creates	a	new	window	(given	by	the	pathName
argument)	and	makes	it	into	a	listbox	widget.	Additional	options,
described	above,	may	be	specified	on	the	command	line	or	in	the	option
database	to	configure	aspects	of	the	listbox	such	as	its	colors,	font,
text,	and	relief.	The	listbox	command	returns	its	pathName	argument.
At	the	time	this	command	is	invoked,	there	must	not	exist	a	window
named	pathName,	but	pathName's	parent	must	exist.

A	listbox	is	a	widget	that	displays	a	list	of	strings,	one	per	line.	When
first	created,	a	new	listbox	has	no	elements.	Elements	may	be	added	or
deleted	using	widget	commands	described	below.	In	addition,	one	or
more	elements	may	be	selected	as	described	below.	If	a	listbox	is
exporting	its	selection	(see	exportSelection	option),	then	it	will	observe
the	standard	X11	protocols	for	handling	the	selection.	Listbox	selections
are	available	as	type	STRING;	the	value	of	the	selection	will	be	the	text
of	the	selected	elements,	with	newlines	separating	the	elements.

It	is	not	necessary	for	all	the	elements	to	be	displayed	in	the	listbox

window	at	once;	commands	described	below	may	be	used	to	change
the	view	in	the	window.	Listboxes	allow	scrolling	in	both	directions	using
the	standard	xScrollCommand	and	yScrollCommand	options.	They
also	support	scanning,	as	described	below.

INDICES

Many	of	the	widget	commands	for	listboxes	take	one	or	more	indices	as
arguments.	An	index	specifies	a	particular	element	of	the	listbox,	in	any
of	the	following	ways:

number
Specifies	the	element	as	a	numerical	index,	where	0	corresponds
to	the	first	element	in	the	listbox.

active
Indicates	the	element	that	has	the	location	cursor.	This	element	will
be	displayed	as	specified	by	-activestyle	when	the	listbox	has	the
keyboard	focus,	and	it	is	specified	with	the	activate	widget
command.

anchor
Indicates	the	anchor	point	for	the	selection,	which	is	set	with	the
selection	anchor	widget	command.

end
Indicates	the	end	of	the	listbox.	For	most	commands	this	refers	to
the	last	element	in	the	listbox,	but	for	a	few	commands	such	as
index	and	insert	it	refers	to	the	element	just	after	the	last	one.

@x,y
Indicates	the	element	that	covers	the	point	in	the	listbox	window
specified	by	x	and	y	(in	pixel	coordinates).	If	no	element	covers	that
point,	then	the	closest	element	to	that	point	is	used.

In	the	widget	command	descriptions	below,	arguments	named	index,
first,	and	last	always	contain	text	indices	in	one	of	the	above	forms.

WIDGET	COMMAND

The	listbox	command	creates	a	new	Tcl	command	whose	name	is
pathName.	This	command	may	be	used	to	invoke	various	operations	on
the	widget.	It	has	the	following	general	form:

pathName	option	?arg	arg	...?

Option	and	the	args	determine	the	exact	behavior	of	the	command.	The
following	commands	are	possible	for	listbox	widgets:

pathName	activate	index
Sets	the	active	element	to	the	one	indicated	by	index.	If	index	is
outside	the	range	of	elements	in	the	listbox	then	the	closest
element	is	activated.	The	active	element	is	drawn	as	specified	by	-
activestyle	when	the	widget	has	the	input	focus,	and	its	index	may
be	retrieved	with	the	index	active.

pathName	bbox	index
Returns	a	list	of	four	numbers	describing	the	bounding	box	of	the
text	in	the	element	given	by	index.	The	first	two	elements	of	the	list
give	the	x	and	y	coordinates	of	the	upper-left	corner	of	the	screen
area	covered	by	the	text	(specified	in	pixels	relative	to	the	widget)
and	the	last	two	elements	give	the	width	and	height	of	the	area,	in
pixels.	If	no	part	of	the	element	given	by	index	is	visible	on	the
screen,	or	if	index	refers	to	a	non-existent	element,	then	the	result
is	an	empty	string;	if	the	element	is	partially	visible,	the	result	gives
the	full	area	of	the	element,	including	any	parts	that	are	not	visible.

pathName	cget	option
Returns	the	current	value	of	the	configuration	option	given	by
option.	Option	may	have	any	of	the	values	accepted	by	the	listbox
command.

pathName	configure	?option?	?value	option	value	...?
Query	or	modify	the	configuration	options	of	the	widget.	If	no	option

is	specified,	returns	a	list	describing	all	of	the	available	options	for
pathName	(see	Tk_ConfigureInfo	for	information	on	the	format	of
this	list).	If	option	is	specified	with	no	value,	then	the	command
returns	a	list	describing	the	one	named	option	(this	list	will	be
identical	to	the	corresponding	sublist	of	the	value	returned	if	no
option	is	specified).	If	one	or	more	option-value	pairs	are	specified,
then	the	command	modifies	the	given	widget	option(s)	to	have	the
given	value(s);	in	this	case	the	command	returns	an	empty	string.
Option	may	have	any	of	the	values	accepted	by	the	listbox
command.

pathName	curselection
Returns	a	list	containing	the	numerical	indices	of	all	of	the	elements
in	the	listbox	that	are	currently	selected.	If	there	are	no	elements
selected	in	the	listbox	then	an	empty	string	is	returned.

pathName	delete	first	?last?
Deletes	one	or	more	elements	of	the	listbox.	First	and	last	are
indices	specifying	the	first	and	last	elements	in	the	range	to	delete.
If	last	is	not	specified	it	defaults	to	first,	i.e.	a	single	element	is
deleted.

pathName	get	first	?last?
If	last	is	omitted,	returns	the	contents	of	the	listbox	element
indicated	by	first,	or	an	empty	string	if	first	refers	to	a	non-existent
element.	If	last	is	specified,	the	command	returns	a	list	whose
elements	are	all	of	the	listbox	elements	between	first	and	last,
inclusive.	Both	first	and	last	may	have	any	of	the	standard	forms	for
indices.

pathName	index	index
Returns	the	integer	index	value	that	corresponds	to	index.	If	index
is	end	the	return	value	is	a	count	of	the	number	of	elements	in	the
listbox	(not	the	index	of	the	last	element).

pathName	insert	index	?element	element	...?
Inserts	zero	or	more	new	elements	in	the	list	just	before	the
element	given	by	index.	If	index	is	specified	as	end	then	the	new

elements	are	added	to	the	end	of	the	list.	Returns	an	empty	string.

pathName	itemcget	index	option
Returns	the	current	value	of	the	item	configuration	option	given	by
option.	Option	may	have	any	of	the	values	accepted	by	the	listbox
itemconfigure	command.

pathName	itemconfigure	index	?option?	?value?	?option	value	...?
Query	or	modify	the	configuration	options	of	an	item	in	the	listbox.
If	no	option	is	specified,	returns	a	list	describing	all	of	the	available
options	for	the	item	(see	Tk_ConfigureInfo	for	information	on	the
format	of	this	list).	If	option	is	specified	with	no	value,	then	the
command	returns	a	list	describing	the	one	named	option	(this	list
will	be	identical	to	the	corresponding	sublist	of	the	value	returned	if
no	option	is	specified).	If	one	or	more	option-value	pairs	are
specified,	then	the	command	modifies	the	given	widget	option(s)	to
have	the	given	value(s);	in	this	case	the	command	returns	an
empty	string.	The	following	options	are	currently	supported	for
items:

-background	color
Color	specifies	the	background	color	to	use	when	displaying
the	item.	It	may	have	any	of	the	forms	accepted	by
Tk_GetColor.

-foreground	color
Color	specifies	the	foreground	color	to	use	when	displaying	the
item.	It	may	have	any	of	the	forms	accepted	by	Tk_GetColor.

-selectbackground	color
color	specifies	the	background	color	to	use	when	displaying
the	item	while	it	is	selected.	It	may	have	any	of	the	forms
accepted	by	Tk_GetColor.

-selectforeground	color
color	specifies	the	foreground	color	to	use	when	displaying	the
item	while	it	is	selected.	It	may	have	any	of	the	forms	accepted
by	Tk_GetColor.

pathName	nearest	y
Given	a	y-coordinate	within	the	listbox	window,	this	command
returns	the	index	of	the	(visible)	listbox	element	nearest	to	that	y-
coordinate.

pathName	scan	option	args
This	command	is	used	to	implement	scanning	on	listboxes.	It	has
two	forms,	depending	on	option:

pathName	scan	mark	x	y
Records	x	and	y	and	the	current	view	in	the	listbox	window;
used	in	conjunction	with	later	scan	dragto	commands.
Typically	this	command	is	associated	with	a	mouse	button
press	in	the	widget.	It	returns	an	empty	string.

pathName	scan	dragto	x	y.
This	command	computes	the	difference	between	its	x	and	y
arguments	and	the	x	and	y	arguments	to	the	last	scan	mark
command	for	the	widget.	It	then	adjusts	the	view	by	10	times
the	difference	in	coordinates.	This	command	is	typically
associated	with	mouse	motion	events	in	the	widget,	to	produce
the	effect	of	dragging	the	list	at	high	speed	through	the
window.	The	return	value	is	an	empty	string.

pathName	see	index
Adjust	the	view	in	the	listbox	so	that	the	element	given	by	index	is
visible.	If	the	element	is	already	visible	then	the	command	has	no
effect;	if	the	element	is	near	one	edge	of	the	window	then	the
listbox	scrolls	to	bring	the	element	into	view	at	the	edge;	otherwise
the	listbox	scrolls	to	center	the	element.

pathName	selection	option	arg
This	command	is	used	to	adjust	the	selection	within	a	listbox.	It	has
several	forms,	depending	on	option:

pathName	selection	anchor	index
Sets	the	selection	anchor	to	the	element	given	by	index.	If
index	refers	to	a	non-existent	element,	then	the	closest

element	is	used.	The	selection	anchor	is	the	end	of	the
selection	that	is	fixed	while	dragging	out	a	selection	with	the
mouse.	The	index	anchor	may	be	used	to	refer	to	the	anchor
element.

pathName	selection	clear	first	?last?
If	any	of	the	elements	between	first	and	last	(inclusive)	are
selected,	they	are	deselected.	The	selection	state	is	not
changed	for	elements	outside	this	range.

pathName	selection	includes	index
Returns	1	if	the	element	indicated	by	index	is	currently
selected,	0	if	it	is	not.

pathName	selection	set	first	?last?
Selects	all	of	the	elements	in	the	range	between	first	and	last,
inclusive,	without	affecting	the	selection	state	of	elements
outside	that	range.

pathName	size
Returns	a	decimal	string	indicating	the	total	number	of	elements	in
the	listbox.

pathName	xview	args
This	command	is	used	to	query	and	change	the	horizontal	position
of	the	information	in	the	widget's	window.	It	can	take	any	of	the
following	forms:

pathName	xview
Returns	a	list	containing	two	elements.	Each	element	is	a	real
fraction	between	0	and	1;	together	they	describe	the	horizontal
span	that	is	visible	in	the	window.	For	example,	if	the	first
element	is	.2	and	the	second	element	is	.6,	20%	of	the	listbox's
text	is	off-screen	to	the	left,	the	middle	40%	is	visible	in	the
window,	and	40%	of	the	text	is	off-screen	to	the	right.	These
are	the	same	values	passed	to	scrollbars	via	the	-
xscrollcommand	option.

pathName	xview	index
Adjusts	the	view	in	the	window	so	that	the	character	position
given	by	index	is	displayed	at	the	left	edge	of	the	window.
Character	positions	are	defined	by	the	width	of	the	character	0.

pathName	xview	moveto	fraction
Adjusts	the	view	in	the	window	so	that	fraction	of	the	total
width	of	the	listbox	text	is	off-screen	to	the	left.	fraction	must	be
a	fraction	between	0	and	1.

pathName	xview	scroll	number	what
This	command	shifts	the	view	in	the	window	left	or	right
according	to	number	and	what.	Number	must	be	an	integer.
What	must	be	either	units	or	pages	or	an	abbreviation	of	one
of	these.	If	what	is	units,	the	view	adjusts	left	or	right	by
number	character	units	(the	width	of	the	0	character)	on	the
display;	if	it	is	pages	then	the	view	adjusts	by	number
screenfuls.	If	number	is	negative	then	characters	farther	to	the
left	become	visible;	if	it	is	positive	then	characters	farther	to	the
right	become	visible.

pathName	yview	?args?
This	command	is	used	to	query	and	change	the	vertical	position	of
the	text	in	the	widget's	window.	It	can	take	any	of	the	following
forms:

pathName	yview
Returns	a	list	containing	two	elements,	both	of	which	are	real
fractions	between	0	and	1.	The	first	element	gives	the	position
of	the	listbox	element	at	the	top	of	the	window,	relative	to	the
listbox	as	a	whole	(0.5	means	it	is	halfway	through	the	listbox,
for	example).	The	second	element	gives	the	position	of	the
listbox	element	just	after	the	last	one	in	the	window,	relative	to
the	listbox	as	a	whole.	These	are	the	same	values	passed	to
scrollbars	via	the	-yscrollcommand	option.

pathName	yview	index
Adjusts	the	view	in	the	window	so	that	the	element	given	by

index	is	displayed	at	the	top	of	the	window.

pathName	yview	moveto	fraction
Adjusts	the	view	in	the	window	so	that	the	element	given	by
fraction	appears	at	the	top	of	the	window.	Fraction	is	a	fraction
between	0	and	1;	0	indicates	the	first	element	in	the	listbox,
0.33	indicates	the	element	one-third	the	way	through	the
listbox,	and	so	on.

pathName	yview	scroll	number	what
This	command	adjusts	the	view	in	the	window	up	or	down
according	to	number	and	what.	Number	must	be	an	integer.
What	must	be	either	units	or	pages.	If	what	is	units,	the	view
adjusts	up	or	down	by	number	lines;	if	it	is	pages	then	the	view
adjusts	by	number	screenfuls.	If	number	is	negative	then
earlier	elements	become	visible;	if	it	is	positive	then	later
elements	become	visible.

DEFAULT	BINDINGS

Tk	automatically	creates	class	bindings	for	listboxes	that	give	them
Motif-like	behavior.	Much	of	the	behavior	of	a	listbox	is	determined	by
its	selectMode	option,	which	selects	one	of	four	ways	of	dealing	with
the	selection.

If	the	selection	mode	is	single	or	browse,	at	most	one	element	can	be
selected	in	the	listbox	at	once.	In	both	modes,	clicking	button	1	on	an
element	selects	it	and	deselects	any	other	selected	item.	In	browse
mode	it	is	also	possible	to	drag	the	selection	with	button	1.	On	button	1,
the	listbox	will	also	take	focus	if	it	has	a	normal	state	and	-takefocus	is
true.

If	the	selection	mode	is	multiple	or	extended,	any	number	of	elements
may	be	selected	at	once,	including	discontiguous	ranges.	In	multiple
mode,	clicking	button	1	on	an	element	toggles	its	selection	state	without
affecting	any	other	elements.	In	extended	mode,	pressing	button	1	on
an	element	selects	it,	deselects	everything	else,	and	sets	the	anchor	to
the	element	under	the	mouse;	dragging	the	mouse	with	button	1	down

extends	the	selection	to	include	all	the	elements	between	the	anchor
and	the	element	under	the	mouse,	inclusive.

Most	people	will	probably	want	to	use	browse	mode	for	single
selections	and	extended	mode	for	multiple	selections;	the	other	modes
appear	to	be	useful	only	in	special	situations.

Any	time	the	selection	changes	in	the	listbox,	the	virtual	event
<<ListboxSelect>>	will	be	generated.	It	is	easiest	to	bind	to	this	event
to	be	made	aware	of	any	changes	to	listbox	selection.

In	addition	to	the	above	behavior,	the	following	additional	behavior	is
defined	by	the	default	bindings:

[1]
In	extended	mode,	the	selected	range	can	be	adjusted	by	pressing
button	1	with	the	Shift	key	down:	this	modifies	the	selection	to
consist	of	the	elements	between	the	anchor	and	the	element	under
the	mouse,	inclusive.	The	un-anchored	end	of	this	new	selection
can	also	be	dragged	with	the	button	down.

[2]
In	extended	mode,	pressing	button	1	with	the	Control	key	down
starts	a	toggle	operation:	the	anchor	is	set	to	the	element	under	the
mouse,	and	its	selection	state	is	reversed.	The	selection	state	of
other	elements	is	not	changed.	If	the	mouse	is	dragged	with	button
1	down,	then	the	selection	state	of	all	elements	between	the	anchor
and	the	element	under	the	mouse	is	set	to	match	that	of	the	anchor
element;	the	selection	state	of	all	other	elements	remains	what	it
was	before	the	toggle	operation	began.

[3]
If	the	mouse	leaves	the	listbox	window	with	button	1	down,	the
window	scrolls	away	from	the	mouse,	making	information	visible
that	used	to	be	off-screen	on	the	side	of	the	mouse.	The	scrolling
continues	until	the	mouse	re-enters	the	window,	the	button	is
released,	or	the	end	of	the	listbox	is	reached.

[4]
Mouse	button	2	may	be	used	for	scanning.	If	it	is	pressed	and
dragged	over	the	listbox,	the	contents	of	the	listbox	drag	at	high
speed	in	the	direction	the	mouse	moves.

[5]
If	the	Up	or	Down	key	is	pressed,	the	location	cursor	(active
element)	moves	up	or	down	one	element.	If	the	selection	mode	is
browse	or	extended	then	the	new	active	element	is	also	selected
and	all	other	elements	are	deselected.	In	extended	mode	the	new
active	element	becomes	the	selection	anchor.

[6]
In	extended	mode,	Shift-Up	and	Shift-Down	move	the	location
cursor	(active	element)	up	or	down	one	element	and	also	extend
the	selection	to	that	element	in	a	fashion	similar	to	dragging	with
mouse	button	1.

[7]
The	Left	and	Right	keys	scroll	the	listbox	view	left	and	right	by	the
width	of	the	character	0.	Control-Left	and	Control-Right	scroll	the
listbox	view	left	and	right	by	the	width	of	the	window.	Control-Prior
and	Control-Next	also	scroll	left	and	right	by	the	width	of	the
window.

[8]
The	Prior	and	Next	keys	scroll	the	listbox	view	up	and	down	by	one
page	(the	height	of	the	window).

[9]
The	Home	and	End	keys	scroll	the	listbox	horizontally	to	the	left
and	right	edges,	respectively.

[10]
Control-Home	sets	the	location	cursor	to	the	first	element	in	the
listbox,	selects	that	element,	and	deselects	everything	else	in	the
listbox.

[11]
Control-End	sets	the	location	cursor	to	the	last	element	in	the
listbox,	selects	that	element,	and	deselects	everything	else	in	the
listbox.

[12]
In	extended	mode,	Control-Shift-Home	extends	the	selection	to	the
first	element	in	the	listbox	and	Control-Shift-End	extends	the
selection	to	the	last	element.

[13]
In	multiple	mode,	Control-Shift-Home	moves	the	location	cursor	to
the	first	element	in	the	listbox	and	Control-Shift-End	moves	the
location	cursor	to	the	last	element.

[14]
The	space	and	Select	keys	make	a	selection	at	the	location	cursor
(active	element)	just	as	if	mouse	button	1	had	been	pressed	over
this	element.

[15]
In	extended	mode,	Control-Shift-space	and	Shift-Select	extend	the
selection	to	the	active	element	just	as	if	button	1	had	been	pressed
with	the	Shift	key	down.

[16]
In	extended	mode,	the	Escape	key	cancels	the	most	recent
selection	and	restores	all	the	elements	in	the	selected	range	to
their	previous	selection	state.

[17]
Control-slash	selects	everything	in	the	widget,	except	in	single	and
browse	modes,	in	which	case	it	selects	the	active	element	and
deselects	everything	else.

[18]
Control-backslash	deselects	everything	in	the	widget,	except	in
browse	mode	where	it	has	no	effect.

[19]
The	F16	key	(labelled	Copy	on	many	Sun	workstations)	or	Meta-w
copies	the	selection	in	the	widget	to	the	clipboard,	if	there	is	a
selection.

The	behavior	of	listboxes	can	be	changed	by	defining	new	bindings	for
individual	widgets	or	by	redefining	the	class	bindings.

SEE	ALSO

ttk_listbox

KEYWORDS

listbox,	widget

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990	The	Regents	of	the	University	of	California.
Copyright	©	1994-1997	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	scrollbar

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
scrollbar	-	Create	and	manipulate	scrollbar	widgets

SYNOPSIS
STANDARD	OPTIONS

-activebackground,	activeBackground,	Foreground
-background	or	-bg,	background,	Background
-borderwidth	or	-bd,	borderWidth,	BorderWidth
-cursor,	cursor,	Cursor
-highlightbackground,	highlightBackground,
HighlightBackground
-highlightcolor,	highlightColor,	HighlightColor
-highlightthickness,	highlightThickness,	HighlightThickness
-jump,	jump,	Jump
-orient,	orient,	Orient
-relief,	relief,	Relief
-repeatdelay,	repeatDelay,	RepeatDelay
-repeatinterval,	repeatInterval,	RepeatInterval
-takefocus,	takeFocus,	TakeFocus
-troughcolor,	troughColor,	Background

WIDGET-SPECIFIC	OPTIONS
-activerelief,	activeRelief,	ActiveRelief
-command,	command,	Command
-elementborderwidth,	elementBorderWidth,	BorderWidth
-width,	width,	Width

DESCRIPTION
ELEMENTS

arrow1
trough1
slider
trough2
arrow2

WIDGET	COMMAND
pathName	activate	?element?
pathName	cget	option
pathName	configure	?option?	?value	option	value	...?
pathName	delta	deltaX	deltaY
pathName	fraction	x	y
pathName	get
pathName	identify	x	y
pathName	set	first	last

SCROLLING	COMMANDS
prefix	moveto	fraction
prefix	scroll	number	units
prefix	scroll	number	pages

OLD	COMMAND	SYNTAX
pathName	set	totalUnits	windowUnits	firstUnit	lastUnit
prefix	unit

BINDINGS
EXAMPLE
SEE	ALSO
KEYWORDS

NAME

scrollbar	-	Create	and	manipulate	scrollbar	widgets

SYNOPSIS

scrollbar	pathName	?options?

STANDARD	OPTIONS

-activebackground,	activeBackground,	Foreground
-background	or	-bg,	background,	Background
-borderwidth	or	-bd,	borderWidth,	BorderWidth
-cursor,	cursor,	Cursor
-highlightbackground,	highlightBackground,	HighlightBackground
-highlightcolor,	highlightColor,	HighlightColor
-highlightthickness,	highlightThickness,	HighlightThickness

-jump,	jump,	Jump
-orient,	orient,	Orient
-relief,	relief,	Relief
-repeatdelay,	repeatDelay,	RepeatDelay
-repeatinterval,	repeatInterval,	RepeatInterval
-takefocus,	takeFocus,	TakeFocus
-troughcolor,	troughColor,	Background

WIDGET-SPECIFIC	OPTIONS

Command-Line	Name:	-activerelief
Database	Name:	activeRelief
Database	Class:	ActiveRelief

Specifies	the	relief	to	use	when	displaying	the	element	that	is
active,	if	any.	Elements	other	than	the	active	element	are	always
displayed	with	a	raised	relief.

Command-Line	Name:	-command
Database	Name:	command
Database	Class:	Command

Specifies	the	prefix	of	a	Tcl	command	to	invoke	to	change	the	view
in	the	widget	associated	with	the	scrollbar.	When	a	user	requests	a
view	change	by	manipulating	the	scrollbar,	a	Tcl	command	is
invoked.	The	actual	command	consists	of	this	option	followed	by
additional	information	as	described	later.	This	option	almost	always
has	a	value	such	as	.t	xview	or	.t	yview,	consisting	of	the	name	of
a	widget	and	either	xview	(if	the	scrollbar	is	for	horizontal	scrolling)
or	yview	(for	vertical	scrolling).	All	scrollable	widgets	have	xview
and	yview	commands	that	take	exactly	the	additional	arguments
appended	by	the	scrollbar	as	described	in	SCROLLING
COMMANDS	below.

Command-Line	Name:	-elementborderwidth
Database	Name:	elementBorderWidth
Database	Class:	BorderWidth

Specifies	the	width	of	borders	drawn	around	the	internal	elements
of	the	scrollbar	(the	two	arrows	and	the	slider).	The	value	may	have
any	of	the	forms	acceptable	to	Tk_GetPixels.	If	this	value	is	less

than	zero,	the	value	of	the	borderWidth	option	is	used	in	its	place.

Command-Line	Name:	-width
Database	Name:	width
Database	Class:	Width

Specifies	the	desired	narrow	dimension	of	the	scrollbar	window,	not
including	3-D	border,	if	any.	For	vertical	scrollbars	this	will	be	the
width	and	for	horizontal	scrollbars	this	will	be	the	height.	The	value
may	have	any	of	the	forms	acceptable	to	Tk_GetPixels.

DESCRIPTION

The	scrollbar	command	creates	a	new	window	(given	by	the	pathName
argument)	and	makes	it	into	a	scrollbar	widget.	Additional	options,
described	above,	may	be	specified	on	the	command	line	or	in	the	option
database	to	configure	aspects	of	the	scrollbar	such	as	its	colors,
orientation,	and	relief.	The	scrollbar	command	returns	its	pathName
argument.	At	the	time	this	command	is	invoked,	there	must	not	exist	a
window	named	pathName,	but	pathName's	parent	must	exist.

A	scrollbar	is	a	widget	that	displays	two	arrows,	one	at	each	end	of	the
scrollbar,	and	a	slider	in	the	middle	portion	of	the	scrollbar.	It	provides
information	about	what	is	visible	in	an	associated	window	that	displays
a	document	of	some	sort	(such	as	a	file	being	edited	or	a	drawing).	The
position	and	size	of	the	slider	indicate	which	portion	of	the	document	is
visible	in	the	associated	window.	For	example,	if	the	slider	in	a	vertical
scrollbar	covers	the	top	third	of	the	area	between	the	two	arrows,	it
means	that	the	associated	window	displays	the	top	third	of	its
document.

Scrollbars	can	be	used	to	adjust	the	view	in	the	associated	window	by
clicking	or	dragging	with	the	mouse.	See	the	BINDINGS	section	below
for	details.

ELEMENTS

A	scrollbar	displays	five	elements,	which	are	referred	to	in	the	widget
commands	for	the	scrollbar:

arrow1
The	top	or	left	arrow	in	the	scrollbar.

trough1
The	region	between	the	slider	and	arrow1.

slider
The	rectangle	that	indicates	what	is	visible	in	the	associated
widget.

trough2
The	region	between	the	slider	and	arrow2.

arrow2
The	bottom	or	right	arrow	in	the	scrollbar.

WIDGET	COMMAND

The	scrollbar	command	creates	a	new	Tcl	command	whose	name	is
pathName.	This	command	may	be	used	to	invoke	various	operations	on
the	widget.	It	has	the	following	general	form:

pathName	option	?arg	arg	...?

Option	and	the	args	determine	the	exact	behavior	of	the	command.	The
following	commands	are	possible	for	scrollbar	widgets:

pathName	activate	?element?
Marks	the	element	indicated	by	element	as	active,	which	causes	it
to	be	displayed	as	specified	by	the	activeBackground	and
activeRelief	options.	The	only	element	values	understood	by	this
command	are	arrow1,	slider,	or	arrow2.	If	any	other	value	is
specified	then	no	element	of	the	scrollbar	will	be	active.	If	element
is	not	specified,	the	command	returns	the	name	of	the	element	that
is	currently	active,	or	an	empty	string	if	no	element	is	active.

pathName	cget	option

Returns	the	current	value	of	the	configuration	option	given	by
option.	Option	may	have	any	of	the	values	accepted	by	the
scrollbar	command.

pathName	configure	?option?	?value	option	value	...?
Query	or	modify	the	configuration	options	of	the	widget.	If	no	option
is	specified,	returns	a	list	describing	all	of	the	available	options	for
pathName	(see	Tk_ConfigureInfo	for	information	on	the	format	of
this	list).	If	option	is	specified	with	no	value,	then	the	command
returns	a	list	describing	the	one	named	option	(this	list	will	be
identical	to	the	corresponding	sublist	of	the	value	returned	if	no
option	is	specified).	If	one	or	more	option-value	pairs	are	specified,
then	the	command	modifies	the	given	widget	option(s)	to	have	the
given	value(s);	in	this	case	the	command	returns	an	empty	string.
Option	may	have	any	of	the	values	accepted	by	the	scrollbar
command.

pathName	delta	deltaX	deltaY
Returns	a	real	number	indicating	the	fractional	change	in	the
scrollbar	setting	that	corresponds	to	a	given	change	in	slider
position.	For	example,	if	the	scrollbar	is	horizontal,	the	result
indicates	how	much	the	scrollbar	setting	must	change	to	move	the
slider	deltaX	pixels	to	the	right	(deltaY	is	ignored	in	this	case).	If	the
scrollbar	is	vertical,	the	result	indicates	how	much	the	scrollbar
setting	must	change	to	move	the	slider	deltaY	pixels	down.	The
arguments	and	the	result	may	be	zero	or	negative.

pathName	fraction	x	y
Returns	a	real	number	between	0	and	1	indicating	where	the	point
given	by	x	and	y	lies	in	the	trough	area	of	the	scrollbar.	The	value	0
corresponds	to	the	top	or	left	of	the	trough,	the	value	1	corresponds
to	the	bottom	or	right,	0.5	corresponds	to	the	middle,	and	so	on.	X
and	y	must	be	pixel	coordinates	relative	to	the	scrollbar	widget.	If	x
and	y	refer	to	a	point	outside	the	trough,	the	closest	point	in	the
trough	is	used.

pathName	get
Returns	the	scrollbar	settings	in	the	form	of	a	list	whose	elements

are	the	arguments	to	the	most	recent	set	widget	command.

pathName	identify	x	y
Returns	the	name	of	the	element	under	the	point	given	by	x	and	y
(such	as	arrow1),	or	an	empty	string	if	the	point	does	not	lie	in	any
element	of	the	scrollbar.	X	and	y	must	be	pixel	coordinates	relative
to	the	scrollbar	widget.

pathName	set	first	last
This	command	is	invoked	by	the	scrollbar's	associated	widget	to
tell	the	scrollbar	about	the	current	view	in	the	widget.	The
command	takes	two	arguments,	each	of	which	is	a	real	fraction
between	0	and	1.	The	fractions	describe	the	range	of	the	document
that	is	visible	in	the	associated	widget.	For	example,	if	first	is	0.2
and	last	is	0.4,	it	means	that	the	first	part	of	the	document	visible	in
the	window	is	20%	of	the	way	through	the	document,	and	the	last
visible	part	is	40%	of	the	way	through.

SCROLLING	COMMANDS

When	the	user	interacts	with	the	scrollbar,	for	example	by	dragging	the
slider,	the	scrollbar	notifies	the	associated	widget	that	it	must	change	its
view.	The	scrollbar	makes	the	notification	by	evaluating	a	Tcl	command
generated	from	the	scrollbar's	-command	option.	The	command	may
take	any	of	the	following	forms.	In	each	case,	prefix	is	the	contents	of
the	-command	option,	which	usually	has	a	form	like	.t	yview

prefix	moveto	fraction
Fraction	is	a	real	number	between	0	and	1.	The	widget	should
adjust	its	view	so	that	the	point	given	by	fraction	appears	at	the
beginning	of	the	widget.	If	fraction	is	0	it	refers	to	the	beginning	of
the	document.	1.0	refers	to	the	end	of	the	document,	0.333	refers
to	a	point	one-third	of	the	way	through	the	document,	and	so	on.

prefix	scroll	number	units
The	widget	should	adjust	its	view	by	number	units.	The	units	are
defined	in	whatever	way	makes	sense	for	the	widget,	such	as
characters	or	lines	in	a	text	widget.	Number	is	either	1,	which

means	one	unit	should	scroll	off	the	top	or	left	of	the	window,	or	-1,
which	means	that	one	unit	should	scroll	off	the	bottom	or	right	of
the	window.

prefix	scroll	number	pages
The	widget	should	adjust	its	view	by	number	pages.	It	is	up	to	the
widget	to	define	the	meaning	of	a	page;	typically	it	is	slightly	less
than	what	fits	in	the	window,	so	that	there	is	a	slight	overlap
between	the	old	and	new	views.	Number	is	either	1,	which	means
the	next	page	should	become	visible,	or	-1,	which	means	that	the
previous	page	should	become	visible.

OLD	COMMAND	SYNTAX

In	versions	of	Tk	before	4.0,	the	set	and	get	widget	commands	used	a
different	form.	This	form	is	still	supported	for	backward	compatibility,	but
it	is	deprecated.	In	the	old	command	syntax,	the	set	widget	command
has	the	following	form:

pathName	set	totalUnits	windowUnits	firstUnit	lastUnit
In	this	form	the	arguments	are	all	integers.	TotalUnits	gives	the	total
size	of	the	object	being	displayed	in	the	associated	widget.	The
meaning	of	one	unit	depends	on	the	associated	widget;	for
example,	in	a	text	editor	widget	units	might	correspond	to	lines	of
text.	WindowUnits	indicates	the	total	number	of	units	that	can	fit	in
the	associated	window	at	one	time.	FirstUnit	and	lastUnit	give	the
indices	of	the	first	and	last	units	currently	visible	in	the	associated
window	(zero	corresponds	to	the	first	unit	of	the	object).

Under	the	old	syntax	the	get	widget	command	returns	a	list	of	four
integers,	consisting	of	the	totalUnits,	windowUnits,	firstUnit,	and	lastUnit
values	from	the	last	set	widget	command.

The	commands	generated	by	scrollbars	also	have	a	different	form	when
the	old	syntax	is	being	used:

prefix	unit
Unit	is	an	integer	that	indicates	what	should	appear	at	the	top	or

left	of	the	associated	widget's	window.	It	has	the	same	meaning	as
the	firstUnit	and	lastUnit	arguments	to	the	set	widget	command.

The	most	recent	set	widget	command	determines	whether	or	not	to	use
the	old	syntax.	If	it	is	given	two	real	arguments	then	the	new	syntax	will
be	used	in	the	future,	and	if	it	is	given	four	integer	arguments	then	the
old	syntax	will	be	used.

BINDINGS

Tk	automatically	creates	class	bindings	for	scrollbars	that	give	them	the
following	default	behavior.	If	the	behavior	is	different	for	vertical	and
horizontal	scrollbars,	the	horizontal	behavior	is	described	in
parentheses.

[1]
Pressing	button	1	over	arrow1	causes	the	view	in	the	associated
widget	to	shift	up	(left)	by	one	unit	so	that	the	document	appears	to
move	down	(right)	one	unit.	If	the	button	is	held	down,	the	action
auto-repeats.

[2]
Pressing	button	1	over	trough1	causes	the	view	in	the	associated
widget	to	shift	up	(left)	by	one	screenful	so	that	the	document
appears	to	move	down	(right)	one	screenful.	If	the	button	is	held
down,	the	action	auto-repeats.

[3]
Pressing	button	1	over	the	slider	and	dragging	causes	the	view	to
drag	with	the	slider.	If	the	jump	option	is	true,	then	the	view	does
not	drag	along	with	the	slider;	it	changes	only	when	the	mouse
button	is	released.

[4]
Pressing	button	1	over	trough2	causes	the	view	in	the	associated
widget	to	shift	down	(right)	by	one	screenful	so	that	the	document
appears	to	move	up	(left)	one	screenful.	If	the	button	is	held	down,
the	action	auto-repeats.

[5]
Pressing	button	1	over	arrow2	causes	the	view	in	the	associated
widget	to	shift	down	(right)	by	one	unit	so	that	the	document
appears	to	move	up	(left)	one	unit.	If	the	button	is	held	down,	the
action	auto-repeats.

[6]
If	button	2	is	pressed	over	the	trough	or	the	slider,	it	sets	the	view
to	correspond	to	the	mouse	position;	dragging	the	mouse	with
button	2	down	causes	the	view	to	drag	with	the	mouse.	If	button	2
is	pressed	over	one	of	the	arrows,	it	causes	the	same	behavior	as
pressing	button	1.

[7]
If	button	1	is	pressed	with	the	Control	key	down,	then	if	the	mouse
is	over	arrow1	or	trough1	the	view	changes	to	the	very	top	(left)	of
the	document;	if	the	mouse	is	over	arrow2	or	trough2	the	view
changes	to	the	very	bottom	(right)	of	the	document;	if	the	mouse	is
anywhere	else	then	the	button	press	has	no	effect.

[8]
In	vertical	scrollbars	the	Up	and	Down	keys	have	the	same
behavior	as	mouse	clicks	over	arrow1	and	arrow2,	respectively.	In
horizontal	scrollbars	these	keys	have	no	effect.

[9]
In	vertical	scrollbars	Control-Up	and	Control-Down	have	the	same
behavior	as	mouse	clicks	over	trough1	and	trough2,	respectively.
In	horizontal	scrollbars	these	keys	have	no	effect.

[10]
In	horizontal	scrollbars	the	Up	and	Down	keys	have	the	same
behavior	as	mouse	clicks	over	arrow1	and	arrow2,	respectively.	In
vertical	scrollbars	these	keys	have	no	effect.

[11]
In	horizontal	scrollbars	Control-Up	and	Control-Down	have	the
same	behavior	as	mouse	clicks	over	trough1	and	trough2,

respectively.	In	vertical	scrollbars	these	keys	have	no	effect.

[12]
The	Prior	and	Next	keys	have	the	same	behavior	as	mouse	clicks
over	trough1	and	trough2,	respectively.

[13]
The	Home	key	adjusts	the	view	to	the	top	(left	edge)	of	the
document.

[14]
The	End	key	adjusts	the	view	to	the	bottom	(right	edge)	of	the
document.

EXAMPLE

Create	a	window	with	a	scrollable	text	widget:

toplevel	.tl

text	.tl.t	-yscrollcommand	{.tl.s	set}

scrollbar	.tl.s	-command	{.tl.t	yview}

grid	.tl.t	.tl.s	-sticky	nsew

grid	columnconfigure	.tl	0	-weight	1

grid	rowconfigure	.tl	0	-weight	1

SEE	ALSO

ttk:scrollbar

KEYWORDS

scrollbar,	widget

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990-1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	menu

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
menu,	tk_menuSetFocus	-	Create	and	manipulate	menu
widgets

SYNOPSIS
STANDARD	OPTIONS

-activebackground,	activeBackground,	Foreground
-activeborderwidth,	activeBorderWidth,	BorderWidth
-activeforeground,	activeForeground,	Background
-background	or	-bg,	background,	Background
-borderwidth	or	-bd,	borderWidth,	BorderWidth
-cursor,	cursor,	Cursor
-disabledforeground,	disabledForeground,	DisabledForeground
-font,	font,	Font
-foreground	or	-fg,	foreground,	Foreground
-relief,	relief,	Relief
-takefocus,	takeFocus,	TakeFocus

WIDGET-SPECIFIC	OPTIONS
-postcommand,	postCommand,	Command
-selectcolor,	selectColor,	Background
-tearoff,	tearOff,	TearOff
-tearoffcommand,	tearOffCommand,	TearOffCommand
-title,	title,	Title
-type,	type,	Type

INTRODUCTION
TYPES	OF	ENTRIES
COMMAND	ENTRIES
SEPARATOR	ENTRIES
CHECKBUTTON	ENTRIES
RADIOBUTTON	ENTRIES
CASCADE	ENTRIES
TEAR-OFF	ENTRIES

MENUBARS
SPECIAL	MENUS	IN	MENUBARS
CLONES
WIDGET	COMMAND

number
active
end
last
none
@number
pattern
pathName	activate	index
pathName	add	type	?option	value	option	value	...?

-activebackground	value
-activeforeground	value
-accelerator	value
-background	value
-bitmap	value
-columnbreak	value
-command	value
-compound	value
-font	value
-foreground	value
-hidemargin	value
-image	value
-indicatoron	value
-label	value
-menu	value
-offvalue	value
-onvalue	value
-selectcolor	value
-selectimage	value
-state	value
-underline	value
-value	value
-variable	value

pathName	cget	option

pathName	clone	newPathname	?cloneType?
pathName	configure	?option?	?value	option	value	...?
pathName	delete	index1	?index2?
pathName	entrycget	index	option
pathName	entryconfigure	index	?options?
pathName	index	index
pathName	insert	index	type	?option	value	option	value	...?
pathName	invoke	index
pathName	post	x	y
pathName	postcascade	index
pathName	type	index
pathName	unpost
pathName	xposition	index
pathName	yposition	index

MENU	CONFIGURATIONS
Pulldown	Menus	in	Menubar
Pulldown	Menus	in	Menu	Buttons
Popup	Menus
Option	Menus
Torn-off	Menus

DEFAULT	BINDINGS
BUGS
SEE	ALSO
KEYWORDS

NAME

menu,	tk_menuSetFocus	-	Create	and	manipulate	menu	widgets

SYNOPSIS

menu	pathName	?options?
tk_menuSetFocus	pathName

STANDARD	OPTIONS

-activebackground,	activeBackground,	Foreground
-activeborderwidth,	activeBorderWidth,	BorderWidth

-activeforeground,	activeForeground,	Background
-background	or	-bg,	background,	Background
-borderwidth	or	-bd,	borderWidth,	BorderWidth
-cursor,	cursor,	Cursor
-disabledforeground,	disabledForeground,	DisabledForeground
-font,	font,	Font
-foreground	or	-fg,	foreground,	Foreground
-relief,	relief,	Relief
-takefocus,	takeFocus,	TakeFocus

WIDGET-SPECIFIC	OPTIONS

Command-Line	Name:	-postcommand
Database	Name:	postCommand
Database	Class:	Command

If	this	option	is	specified	then	it	provides	a	Tcl	command	to	execute
each	time	the	menu	is	posted.	The	command	is	invoked	by	the
post	widget	command	before	posting	the	menu.	Note	that	in	Tk	8.0
on	Macintosh	and	Windows,	all	post-commands	in	a	system	of
menus	are	executed	before	any	of	those	menus	are	posted.	This	is
due	to	the	limitations	in	the	individual	platforms'	menu	managers.

Command-Line	Name:	-selectcolor
Database	Name:	selectColor
Database	Class:	Background

For	menu	entries	that	are	check	buttons	or	radio	buttons,	this
option	specifies	the	color	to	display	in	the	indicator	when	the	check
button	or	radio	button	is	selected.

Command-Line	Name:	-tearoff
Database	Name:	tearOff
Database	Class:	TearOff

This	option	must	have	a	proper	boolean	value,	which	specifies
whether	or	not	the	menu	should	include	a	tear-off	entry	at	the	top.	If
so,	it	will	exist	as	entry	0	of	the	menu	and	the	other	entries	will
number	starting	at	1.	The	default	menu	bindings	arrange	for	the
menu	to	be	torn	off	when	the	tear-off	entry	is	invoked.

Command-Line	Name:	-tearoffcommand
Database	Name:	tearOffCommand
Database	Class:	TearOffCommand

If	this	option	has	a	non-empty	value,	then	it	specifies	a	Tcl
command	to	invoke	whenever	the	menu	is	torn	off.	The	actual
command	will	consist	of	the	value	of	this	option,	followed	by	a
space,	followed	by	the	name	of	the	menu	window,	followed	by	a
space,	followed	by	the	name	of	the	name	of	the	torn	off	menu
window.	For	example,	if	the	option's	value	is	“a	b”	and	menu	.x.y	is
torn	off	to	create	a	new	menu	.x.tearoff1,	then	the	command	“a	b
.x.y	.x.tearoff1”	will	be	invoked.

Command-Line	Name:	-title
Database	Name:	title
Database	Class:	Title

The	string	will	be	used	to	title	the	window	created	when	this	menu
is	torn	off.	If	the	title	is	NULL,	then	the	window	will	have	the	title	of
the	menubutton	or	the	text	of	the	cascade	item	from	which	this
menu	was	invoked.

Command-Line	Name:	-type
Database	Name:	type
Database	Class:	Type

This	option	can	be	one	of	menubar,	tearoff,	or	normal,	and	is	set
when	the	menu	is	created.	While	the	string	returned	by	the
configuration	database	will	change	if	this	option	is	changed,	this
does	not	affect	the	menu	widget's	behavior.	This	is	used	by	the
cloning	mechanism	and	is	not	normally	set	outside	of	the	Tk	library.

INTRODUCTION

The	menu	command	creates	a	new	top-level	window	(given	by	the
pathName	argument)	and	makes	it	into	a	menu	widget.	Additional
options,	described	above,	may	be	specified	on	the	command	line	or	in
the	option	database	to	configure	aspects	of	the	menu	such	as	its	colors
and	font.	The	menu	command	returns	its	pathName	argument.	At	the
time	this	command	is	invoked,	there	must	not	exist	a	window	named
pathName,	but	pathName's	parent	must	exist.

A	menu	is	a	widget	that	displays	a	collection	of	one-line	entries
arranged	in	one	or	more	columns.	There	exist	several	different	types	of
entries,	each	with	different	properties.	Entries	of	different	types	may	be
combined	in	a	single	menu.	Menu	entries	are	not	the	same	as	entry
widgets.	In	fact,	menu	entries	are	not	even	distinct	widgets;	the	entire
menu	is	one	widget.

Menu	entries	are	displayed	with	up	to	three	separate	fields.	The	main
field	is	a	label	in	the	form	of	a	text	string,	a	bitmap,	or	an	image,
controlled	by	the	-label,	-bitmap,	and	-image	options	for	the	entry.	If
the	-accelerator	option	is	specified	for	an	entry	then	a	second	textual
field	is	displayed	to	the	right	of	the	label.	The	accelerator	typically
describes	a	keystroke	sequence	that	may	be	typed	in	the	application	to
cause	the	same	result	as	invoking	the	menu	entry.	The	third	field	is	an
indicator.	The	indicator	is	present	only	for	checkbutton	or	radiobutton
entries.	It	indicates	whether	the	entry	is	selected	or	not,	and	is
displayed	to	the	left	of	the	entry's	string.

In	normal	use,	an	entry	becomes	active	(displays	itself	differently)
whenever	the	mouse	pointer	is	over	the	entry.	If	a	mouse	button	is
released	over	the	entry	then	the	entry	is	invoked.	The	effect	of
invocation	is	different	for	each	type	of	entry;	these	effects	are	described
below	in	the	sections	on	individual	entries.

Entries	may	be	disabled,	which	causes	their	labels	and	accelerators	to
be	displayed	with	dimmer	colors.	The	default	menu	bindings	will	not
allow	a	disabled	entry	to	be	activated	or	invoked.	Disabled	entries	may
be	re-enabled,	at	which	point	it	becomes	possible	to	activate	and	invoke
them	again.

Whenever	a	menu's	active	entry	is	changed,	a	<<MenuSelect>>	virtual
event	is	send	to	the	menu.	The	active	item	can	then	be	queried	from	the
menu,	and	an	action	can	be	taken,	such	as	setting	context-sensitive
help	text	for	the	entry.

TYPES	OF	ENTRIES

COMMAND	ENTRIES

The	most	common	kind	of	menu	entry	is	a	command	entry,	which
behaves	much	like	a	button	widget.	When	a	command	entry	is	invoked,
a	Tcl	command	is	executed.	The	Tcl	command	is	specified	with	the	-
command	option.

SEPARATOR	ENTRIES

A	separator	is	an	entry	that	is	displayed	as	a	horizontal	dividing	line.	A
separator	may	not	be	activated	or	invoked,	and	it	has	no	behavior	other
than	its	display	appearance.

CHECKBUTTON	ENTRIES

A	checkbutton	menu	entry	behaves	much	like	a	checkbutton	widget.
When	it	is	invoked	it	toggles	back	and	forth	between	the	selected	and
deselected	states.	When	the	entry	is	selected,	a	particular	value	is
stored	in	a	particular	global	variable	(as	determined	by	the	-onvalue
and	-variable	options	for	the	entry);	when	the	entry	is	deselected
another	value	(determined	by	the	-offvalue	option)	is	stored	in	the
global	variable.	An	indicator	box	is	displayed	to	the	left	of	the	label	in	a
checkbutton	entry.	If	the	entry	is	selected	then	the	indicator's	center	is
displayed	in	the	color	given	by	the	-selectcolor	option	for	the	entry;
otherwise	the	indicator's	center	is	displayed	in	the	background	color	for
the	menu.	If	a	-command	option	is	specified	for	a	checkbutton	entry,
then	its	value	is	evaluated	as	a	Tcl	command	each	time	the	entry	is
invoked;	this	happens	after	toggling	the	entry's	selected	state.

RADIOBUTTON	ENTRIES

A	radiobutton	menu	entry	behaves	much	like	a	radiobutton	widget.
Radiobutton	entries	are	organized	in	groups	of	which	only	one	entry
may	be	selected	at	a	time.	Whenever	a	particular	entry	becomes
selected	it	stores	a	particular	value	into	a	particular	global	variable	(as
determined	by	the	-value	and	-variable	options	for	the	entry).	This
action	causes	any	previously-selected	entry	in	the	same	group	to
deselect	itself.	Once	an	entry	has	become	selected,	any	change	to	the
entry's	associated	variable	will	cause	the	entry	to	deselect	itself.

Grouping	of	radiobutton	entries	is	determined	by	their	associated
variables:	if	two	entries	have	the	same	associated	variable	then	they
are	in	the	same	group.	An	indicator	diamond	is	displayed	to	the	left	of
the	label	in	each	radiobutton	entry.	If	the	entry	is	selected	then	the
indicator's	center	is	displayed	in	the	color	given	by	the	-selectcolor
option	for	the	entry;	otherwise	the	indicator's	center	is	displayed	in	the
background	color	for	the	menu.	If	a	-command	option	is	specified	for	a
radiobutton	entry,	then	its	value	is	evaluated	as	a	Tcl	command	each
time	the	entry	is	invoked;	this	happens	after	selecting	the	entry.

CASCADE	ENTRIES

A	cascade	entry	is	one	with	an	associated	menu	(determined	by	the	-
menu	option).	Cascade	entries	allow	the	construction	of	cascading
menus.	The	postcascade	widget	command	can	be	used	to	post	and
unpost	the	associated	menu	just	next	to	of	the	cascade	entry.	The
associated	menu	must	be	a	child	of	the	menu	containing	the	cascade
entry	(this	is	needed	in	order	for	menu	traversal	to	work	correctly).

A	cascade	entry	posts	its	associated	menu	by	invoking	a	Tcl	command
of	the	form

menu	post	x	y

where	menu	is	the	path	name	of	the	associated	menu,	and	x	and	y	are
the	root-window	coordinates	of	the	upper-right	corner	of	the	cascade
entry.	On	Unix,	the	lower-level	menu	is	unposted	by	executing	a	Tcl
command	with	the	form

menu	unpost

where	menu	is	the	name	of	the	associated	menu.	On	other	platforms,
the	platform's	native	code	takes	care	of	unposting	the	menu.

If	a	-command	option	is	specified	for	a	cascade	entry	then	it	is
evaluated	as	a	Tcl	command	whenever	the	entry	is	invoked.	This	is	not
supported	on	Windows.

TEAR-OFF	ENTRIES

A	tear-off	entry	appears	at	the	top	of	the	menu	if	enabled	with	the
tearOff	option.	It	is	not	like	other	menu	entries	in	that	it	cannot	be
created	with	the	add	widget	command	and	cannot	be	deleted	with	the
delete	widget	command.	When	a	tear-off	entry	is	created	it	appears	as
a	dashed	line	at	the	top	of	the	menu.	Under	the	default	bindings,
invoking	the	tear-off	entry	causes	a	torn-off	copy	to	be	made	of	the
menu	and	all	of	its	submenus.

MENUBARS

Any	menu	can	be	set	as	a	menubar	for	a	toplevel	window	(see	toplevel
command	for	syntax).	On	the	Macintosh,	whenever	the	toplevel	is	in
front,	this	menu's	cascade	items	will	appear	in	the	menubar	across	the
top	of	the	main	monitor.	On	Windows	and	Unix,	this	menu's	items	will
be	displayed	in	a	menubar	across	the	top	of	the	window.	These	menus
will	behave	according	to	the	interface	guidelines	of	their	platforms.	For
every	menu	set	as	a	menubar,	a	clone	menu	is	made.	See	the
CLONES	section	for	more	information.

As	noted,	menubars	may	behave	differently	on	different	platforms.	One
example	of	this	concerns	the	handling	of	checkbuttons	and	radiobuttons
within	the	menu.	While	it	is	permitted	to	put	these	menu	elements	on
menubars,	they	may	not	be	drawn	with	indicators	on	some	platforms,
due	to	system	restrictions.

SPECIAL	MENUS	IN	MENUBARS

Certain	menus	in	a	menubar	will	be	treated	specially.	On	the	Macintosh,
access	to	the	special	Application	and	Help	menus	is	provided.	On
Windows,	access	to	the	Windows	System	menu	in	each	window	is
provided.	On	X	Windows,	a	special	right-justified	help	menu	is	provided.

In	all	cases,	these	menus	must	be	created	with	the	command	name	of
the	menubar	menu	concatenated	with	the	special	name.	So	for	a
menubar	named	.menubar,	on	the	Macintosh,	the	special	menus	would
be	.menubar.apple	and	.menubar.help;	on	Windows,	the	special	menu
would	be	.menubar.system;	on	X	Windows,	the	help	menu	would	be
.menubar.help.

When	Tk	sees	a	.menubar.apple	menu	on	the	Macintosh,	that	menu's
contents	make	up	the	first	items	of	the	Application	menu	whenever	the
window	containing	the	menubar	is	in	front.	After	all	of	the	Tk-defined
items,	the	menu	will	have	a	separator,	followed	by	all	standard
Application	menu	items.

When	Tk	sees	a	Help	menu	on	the	Macintosh,	the	menu's	contents	are
appended	to	the	standard	Help	menu	on	the	right	of	the	user's	menubar
whenever	the	window's	menubar	is	in	front.	The	first	items	in	the	menu
are	provided	by	Mac	OS	X.

When	Tk	sees	a	System	menu	on	Windows,	its	items	are	appended	to
the	system	menu	that	the	menubar	is	attached	to.	This	menu	has	an
icon	representing	a	spacebar,	and	can	be	invoked	with	the	mouse	or	by
typing	Alt+Spacebar.	Due	to	limitations	in	the	Windows	API,	any	font
changes,	colors,	images,	bitmaps,	or	tearoff	images	will	not	appear	in
the	system	menu.

When	Tk	see	a	Help	menu	on	X	Windows,	the	menu	is	moved	to	be	last
in	the	menubar	and	is	right	justified.

CLONES

When	a	menu	is	set	as	a	menubar	for	a	toplevel	window,	or	when	a
menu	is	torn	off,	a	clone	of	the	menu	is	made.	This	clone	is	a	menu
widget	in	its	own	right,	but	it	is	a	child	of	the	original.	Changes	in	the
configuration	of	the	original	are	reflected	in	the	clone.	Additionally,	any
cascades	that	are	pointed	to	are	also	cloned	so	that	menu	traversal	will
work	right.	Clones	are	destroyed	when	either	the	tearoff	or	menubar
goes	away,	or	when	the	original	menu	is	destroyed.

WIDGET	COMMAND

The	menu	command	creates	a	new	Tcl	command	whose	name	is
pathName.	This	command	may	be	used	to	invoke	various	operations	on
the	widget.	It	has	the	following	general	form:

pathName	option	?arg	arg	...?

Option	and	the	args	determine	the	exact	behavior	of	the	command.

Many	of	the	widget	commands	for	a	menu	take	as	one	argument	an
indicator	of	which	entry	of	the	menu	to	operate	on.	These	indicators	are
called	indexes	and	may	be	specified	in	any	of	the	following	forms:

number
Specifies	the	entry	numerically,	where	0	corresponds	to	the	top-
most	entry	of	the	menu,	1	to	the	entry	below	it,	and	so	on.

active
Indicates	the	entry	that	is	currently	active.	If	no	entry	is	active	then
this	form	is	equivalent	to	none.	This	form	may	not	be	abbreviated.

end
Indicates	the	bottommost	entry	in	the	menu.	If	there	are	no	entries
in	the	menu	then	this	form	is	equivalent	to	none.	This	form	may	not
be	abbreviated.

last
Same	as	end.

none
Indicates	“no	entry	at	all”;	this	is	used	most	commonly	with	the
activate	option	to	deactivate	all	the	entries	in	the	menu.	In	most
cases	the	specification	of	none	causes	nothing	to	happen	in	the
widget	command.	This	form	may	not	be	abbreviated.

@number

In	this	form,	number	is	treated	as	a	y-coordinate	in	the	menu's
window;	the	entry	closest	to	that	y-coordinate	is	used.	For	example,
“@0”	indicates	the	top-most	entry	in	the	window.

pattern
If	the	index	does	not	satisfy	one	of	the	above	forms	then	this	form
is	used.	Pattern	is	pattern-matched	against	the	label	of	each	entry
in	the	menu,	in	order	from	the	top	down,	until	a	matching	entry	is
found.	The	rules	of	Tcl_StringMatch	are	used.

The	following	widget	commands	are	possible	for	menu	widgets:

pathName	activate	index
Change	the	state	of	the	entry	indicated	by	index	to	active	and
redisplay	it	using	its	active	colors.	Any	previously-active	entry	is
deactivated.	If	index	is	specified	as	none,	or	if	the	specified	entry	is
disabled,	then	the	menu	ends	up	with	no	active	entry.	Returns	an
empty	string.

pathName	add	type	?option	value	option	value	...?
Add	a	new	entry	to	the	bottom	of	the	menu.	The	new	entry's	type	is
given	by	type	and	must	be	one	of	cascade,	checkbutton,
command,	radiobutton,	or	separator,	or	a	unique	abbreviation	of
one	of	the	above.	If	additional	arguments	are	present,	they	specify
any	of	the	following	options:

-activebackground	value
Specifies	a	background	color	to	use	for	displaying	this	entry
when	it	is	active.	If	this	option	is	specified	as	an	empty	string
(the	default),	then	the	activeBackground	option	for	the	overall
menu	is	used.	If	the	tk_strictMotif	variable	has	been	set	to
request	strict	Motif	compliance,	then	this	option	is	ignored	and
the	-background	option	is	used	in	its	place.	This	option	is	not
available	for	separator	or	tear-off	entries.

-activeforeground	value
Specifies	a	foreground	color	to	use	for	displaying	this	entry
when	it	is	active.	If	this	option	is	specified	as	an	empty	string

(the	default),	then	the	activeForeground	option	for	the	overall
menu	is	used.	This	option	is	not	available	for	separator	or	tear-
off	entries.

-accelerator	value
Specifies	a	string	to	display	at	the	right	side	of	the	menu	entry.
Normally	describes	an	accelerator	keystroke	sequence	that
may	be	typed	to	invoke	the	same	function	as	the	menu	entry.
This	option	is	not	available	for	separator	or	tear-off	entries.

-background	value
Specifies	a	background	color	to	use	for	displaying	this	entry
when	it	is	in	the	normal	state	(neither	active	nor	disabled).	If
this	option	is	specified	as	an	empty	string	(the	default),	then
the	background	option	for	the	overall	menu	is	used.	This
option	is	not	available	for	separator	or	tear-off	entries.

-bitmap	value
Specifies	a	bitmap	to	display	in	the	menu	instead	of	a	textual
label,	in	any	of	the	forms	accepted	by	Tk_GetBitmap.	This
option	overrides	the	-label	option	(as	controlled	by	the	-
compound	option)	but	may	be	reset	to	an	empty	string	to
enable	a	textual	label	to	be	displayed.	If	a	-image	option	has
been	specified,	it	overrides	-bitmap.	This	option	is	not
available	for	separator	or	tear-off	entries.

-columnbreak	value
When	this	option	is	zero,	the	entry	appears	below	the	previous
entry.	When	this	option	is	one,	the	entry	appears	at	the	top	of	a
new	column	in	the	menu.

-command	value
Specifies	a	Tcl	command	to	execute	when	the	menu	entry	is
invoked.	Not	available	for	separator	or	tear-off	entries.

-compound	value
Specifies	whether	the	menu	entry	should	display	both	an
image	and	text,	and	if	so,	where	the	image	should	be	placed

relative	to	the	text.	Valid	values	for	this	option	are	bottom,
center,	left,	none,	right	and	top.	The	default	value	is	none,
meaning	that	the	button	will	display	either	an	image	or	text,
depending	on	the	values	of	the	-image	and	-bitmap	options.

-font	value
Specifies	the	font	to	use	when	drawing	the	label	or	accelerator
string	in	this	entry.	If	this	option	is	specified	as	an	empty	string
(the	default)	then	the	font	option	for	the	overall	menu	is	used.
This	option	is	not	available	for	separator	or	tear-off	entries.

-foreground	value
Specifies	a	foreground	color	to	use	for	displaying	this	entry
when	it	is	in	the	normal	state	(neither	active	nor	disabled).	If
this	option	is	specified	as	an	empty	string	(the	default),	then
the	foreground	option	for	the	overall	menu	is	used.	This
option	is	not	available	for	separator	or	tear-off	entries.

-hidemargin	value
Specifies	whether	the	standard	margins	should	be	drawn	for
this	menu	entry.	This	is	useful	when	creating	palette	with
images	in	them,	i.e.,	color	palettes,	pattern	palettes,	etc.	1
indicates	that	the	margin	for	the	entry	is	hidden;	0	means	that
the	margin	is	used.

-image	value
Specifies	an	image	to	display	in	the	menu	instead	of	a	text
string	or	bitmap.	The	image	must	have	been	created	by	some
previous	invocation	of	image	create.	This	option	overrides	the
-label	and	-bitmap	options	(as	controlled	by	the	-compound
option)	but	may	be	reset	to	an	empty	string	to	enable	a	textual
or	bitmap	label	to	be	displayed.	This	option	is	not	available	for
separator	or	tear-off	entries.

-indicatoron	value
Available	only	for	checkbutton	and	radiobutton	entries.	Value	is
a	boolean	that	determines	whether	or	not	the	indicator	should
be	displayed.

-label	value
Specifies	a	string	to	display	as	an	identifying	label	in	the	menu
entry.	Not	available	for	separator	or	tear-off	entries.

-menu	value
Available	only	for	cascade	entries.	Specifies	the	path	name	of
the	submenu	associated	with	this	entry.	The	submenu	must	be
a	child	of	the	menu.

-offvalue	value
Available	only	for	checkbutton	entries.	Specifies	the	value	to
store	in	the	entry's	associated	variable	when	the	entry	is
deselected.

-onvalue	value
Available	only	for	checkbutton	entries.	Specifies	the	value	to
store	in	the	entry's	associated	variable	when	the	entry	is
selected.

-selectcolor	value
Available	only	for	checkbutton	and	radiobutton	entries.
Specifies	the	color	to	display	in	the	indicator	when	the	entry	is
selected.	If	the	value	is	an	empty	string	(the	default)	then	the
selectColor	option	for	the	menu	determines	the	indicator
color.

-selectimage	value
Available	only	for	checkbutton	and	radiobutton	entries.
Specifies	an	image	to	display	in	the	entry	(in	place	of	the	-
image	option)	when	it	is	selected.	Value	is	the	name	of	an
image,	which	must	have	been	created	by	some	previous
invocation	of	image	create.	This	option	is	ignored	unless	the	-
image	option	has	been	specified.

-state	value
Specifies	one	of	three	states	for	the	entry:	normal,	active,	or
disabled.	In	normal	state	the	entry	is	displayed	using	the
foreground	option	for	the	menu	and	the	background	option

from	the	entry	or	the	menu.	The	active	state	is	typically	used
when	the	pointer	is	over	the	entry.	In	active	state	the	entry	is
displayed	using	the	activeForeground	option	for	the	menu
along	with	the	activebackground	option	from	the	entry.
Disabled	state	means	that	the	entry	should	be	insensitive:	the
default	bindings	will	refuse	to	activate	or	invoke	the	entry.	In
this	state	the	entry	is	displayed	according	to	the
disabledForeground	option	for	the	menu	and	the
background	option	from	the	entry.	This	option	is	not	available
for	separator	entries.

-underline	value
Specifies	the	integer	index	of	a	character	to	underline	in	the
entry.	This	option	is	also	queried	by	the	default	bindings	and
used	to	implement	keyboard	traversal.	0	corresponds	to	the
first	character	of	the	text	displayed	in	the	entry,	1	to	the	next
character,	and	so	on.	If	a	bitmap	or	image	is	displayed	in	the
entry	then	this	option	is	ignored.	This	option	is	not	available	for
separator	or	tear-off	entries.

-value	value
Available	only	for	radiobutton	entries.	Specifies	the	value	to
store	in	the	entry's	associated	variable	when	the	entry	is
selected.	If	an	empty	string	is	specified,	then	the	-label	option
for	the	entry	as	the	value	to	store	in	the	variable.

-variable	value
Available	only	for	checkbutton	and	radiobutton	entries.
Specifies	the	name	of	a	global	value	to	set	when	the	entry	is
selected.	For	checkbutton	entries	the	variable	is	also	set	when
the	entry	is	deselected.	For	radiobutton	entries,	changing	the
variable	causes	the	currently-selected	entry	to	deselect	itself.

The	add	widget	command	returns	an	empty	string.

pathName	cget	option
Returns	the	current	value	of	the	configuration	option	given	by
option.	Option	may	have	any	of	the	values	accepted	by	the	menu

command.

pathName	clone	newPathname	?cloneType?
Makes	a	clone	of	the	current	menu	named	newPathName.	This
clone	is	a	menu	in	its	own	right,	but	any	changes	to	the	clone	are
propagated	to	the	original	menu	and	vice	versa.	cloneType	can	be
normal,	menubar,	or	tearoff.	Should	not	normally	be	called
outside	of	the	Tk	library.	See	the	CLONES	section	for	more
information.

pathName	configure	?option?	?value	option	value	...?
Query	or	modify	the	configuration	options	of	the	widget.	If	no	option
is	specified,	returns	a	list	describing	all	of	the	available	options	for
pathName	(see	Tk_ConfigureInfo	for	information	on	the	format	of
this	list).	If	option	is	specified	with	no	value,	then	the	command
returns	a	list	describing	the	one	named	option	(this	list	will	be
identical	to	the	corresponding	sublist	of	the	value	returned	if	no
option	is	specified).	If	one	or	more	option-value	pairs	are	specified,
then	the	command	modifies	the	given	widget	option(s)	to	have	the
given	value(s);	in	this	case	the	command	returns	an	empty	string.
Option	may	have	any	of	the	values	accepted	by	the	menu
command.

pathName	delete	index1	?index2?
Delete	all	of	the	menu	entries	between	index1	and	index2	inclusive.
If	index2	is	omitted	then	it	defaults	to	index1.	Attempts	to	delete	a
tear-off	menu	entry	are	ignored	(instead,	you	should	change	the
tearOff	option	to	remove	the	tear-off	entry).

pathName	entrycget	index	option
Returns	the	current	value	of	a	configuration	option	for	the	entry
given	by	index.	Option	may	have	any	of	the	values	accepted	by	the
add	widget	command.

pathName	entryconfigure	index	?options?
This	command	is	similar	to	the	configure	command,	except	that	it
applies	to	the	options	for	an	individual	entry,	whereas	configure
applies	to	the	options	for	the	menu	as	a	whole.	Options	may	have

any	of	the	values	accepted	by	the	add	widget	command.	If	options
are	specified,	options	are	modified	as	indicated	in	the	command
and	the	command	returns	an	empty	string.	If	no	options	are
specified,	returns	a	list	describing	the	current	options	for	entry
index	(see	Tk_ConfigureInfo	for	information	on	the	format	of	this
list).

pathName	index	index
Returns	the	numerical	index	corresponding	to	index,	or	none	if
index	was	specified	as	none.

pathName	insert	index	type	?option	value	option	value	...?
Same	as	the	add	widget	command	except	that	it	inserts	the	new
entry	just	before	the	entry	given	by	index,	instead	of	appending	to
the	end	of	the	menu.	The	type,	option,	and	value	arguments	have
the	same	interpretation	as	for	the	add	widget	command.	It	is	not
possible	to	insert	new	menu	entries	before	the	tear-off	entry,	if	the
menu	has	one.

pathName	invoke	index
Invoke	the	action	of	the	menu	entry.	See	the	sections	on	the
individual	entries	above	for	details	on	what	happens.	If	the	menu
entry	is	disabled	then	nothing	happens.	If	the	entry	has	a	command
associated	with	it	then	the	result	of	that	command	is	returned	as
the	result	of	the	invoke	widget	command.	Otherwise	the	result	is
an	empty	string.	Note:	invoking	a	menu	entry	does	not
automatically	unpost	the	menu;	the	default	bindings	normally	take
care	of	this	before	invoking	the	invoke	widget	command.

pathName	post	x	y
Arrange	for	the	menu	to	be	displayed	on	the	screen	at	the	root-
window	coordinates	given	by	x	and	y.	These	coordinates	are
adjusted	if	necessary	to	guarantee	that	the	entire	menu	is	visible
on	the	screen.	This	command	normally	returns	an	empty	string.	If
the	postCommand	option	has	been	specified,	then	its	value	is
executed	as	a	Tcl	script	before	posting	the	menu	and	the	result	of
that	script	is	returned	as	the	result	of	the	post	widget	command.	If
an	error	returns	while	executing	the	command,	then	the	error	is

returned	without	posting	the	menu.

pathName	postcascade	index
Posts	the	submenu	associated	with	the	cascade	entry	given	by
index,	and	unposts	any	previously	posted	submenu.	If	index	does
not	correspond	to	a	cascade	entry,	or	if	pathName	is	not	posted,
the	command	has	no	effect	except	to	unpost	any	currently	posted
submenu.

pathName	type	index
Returns	the	type	of	the	menu	entry	given	by	index.	This	is	the	type
argument	passed	to	the	add	widget	command	when	the	entry	was
created,	such	as	command	or	separator,	or	tearoff	for	a	tear-off
entry.

pathName	unpost
Unmap	the	window	so	that	it	is	no	longer	displayed.	If	a	lower-level
cascaded	menu	is	posted,	unpost	that	menu.	Returns	an	empty
string.	This	subcommand	does	not	work	on	Windows	and	the
Macintosh,	as	those	platforms	have	their	own	way	of	unposting
menus.

pathName	xposition	index
Returns	a	decimal	string	giving	the	x-coordinate	within	the	menu
window	of	the	leftmost	pixel	in	the	entry	specified	by	index.

pathName	yposition	index
Returns	a	decimal	string	giving	the	y-coordinate	within	the	menu
window	of	the	topmost	pixel	in	the	entry	specified	by	index.

MENU	CONFIGURATIONS

The	default	bindings	support	four	different	ways	of	using	menus:

Pulldown	Menus	in	Menubar
This	is	the	most	common	case.	You	create	a	menu	widget	that	will
become	the	menu	bar.	You	then	add	cascade	entries	to	this	menu,
specifying	the	pull	down	menus	you	wish	to	use	in	your	menu	bar.

You	then	create	all	of	the	pulldowns.	Once	you	have	done	this,
specify	the	menu	using	the	-menu	option	of	the	toplevel's	widget
command.	See	the	toplevel	manual	entry	for	details.

Pulldown	Menus	in	Menu	Buttons
This	is	the	compatible	way	to	do	menu	bars.	You	create	one
menubutton	widget	for	each	top-level	menu,	and	typically	you
arrange	a	series	of	menubuttons	in	a	row	in	a	menubar	window.
You	also	create	the	top-level	menus	and	any	cascaded	submenus,
and	tie	them	together	with	-menu	options	in	menubuttons	and
cascade	menu	entries.	The	top-level	menu	must	be	a	child	of	the
menubutton,	and	each	submenu	must	be	a	child	of	the	menu	that
refers	to	it.	Once	you	have	done	this,	the	default	bindings	will	allow
users	to	traverse	and	invoke	the	tree	of	menus	via	its	menubutton;
see	the	menubutton	manual	entry	for	details.

Popup	Menus
Popup	menus	typically	post	in	response	to	a	mouse	button	press	or
keystroke.	You	create	the	popup	menus	and	any	cascaded
submenus,	then	you	call	the	tk_popup	procedure	at	the
appropriate	time	to	post	the	top-level	menu.

Option	Menus
An	option	menu	consists	of	a	menubutton	with	an	associated	menu
that	allows	you	to	select	one	of	several	values.	The	current	value	is
displayed	in	the	menubutton	and	is	also	stored	in	a	global	variable.
Use	the	tk_optionMenu	procedure	to	create	option	menubuttons
and	their	menus.

Torn-off	Menus
You	create	a	torn-off	menu	by	invoking	the	tear-off	entry	at	the	top
of	an	existing	menu.	The	default	bindings	will	create	a	new	menu
that	is	a	copy	of	the	original	menu	and	leave	it	permanently	posted
as	a	top-level	window.	The	torn-off	menu	behaves	just	the	same	as
the	original	menu.

DEFAULT	BINDINGS

Tk	automatically	creates	class	bindings	for	menus	that	give	them	the
following	default	behavior:

[1]
When	the	mouse	enters	a	menu,	the	entry	underneath	the	mouse
cursor	activates;	as	the	mouse	moves	around	the	menu,	the	active
entry	changes	to	track	the	mouse.

[2]
When	the	mouse	leaves	a	menu	all	of	the	entries	in	the	menu
deactivate,	except	in	the	special	case	where	the	mouse	moves
from	a	menu	to	a	cascaded	submenu.

[3]
When	a	button	is	released	over	a	menu,	the	active	entry	(if	any)	is
invoked.	The	menu	also	unposts	unless	it	is	a	torn-off	menu.

[4]
The	Space	and	Return	keys	invoke	the	active	entry	and	unpost	the
menu.

[5]
If	any	of	the	entries	in	a	menu	have	letters	underlined	with	the	-
underline	option,	then	pressing	one	of	the	underlined	letters	(or	its
upper-case	or	lower-case	equivalent)	invokes	that	entry	and
unposts	the	menu.

[6]
The	Escape	key	aborts	a	menu	selection	in	progress	without
invoking	any	entry.	It	also	unposts	the	menu	unless	it	is	a	torn-off
menu.

[7]
The	Up	and	Down	keys	activate	the	next	higher	or	lower	entry	in
the	menu.	When	one	end	of	the	menu	is	reached,	the	active	entry
wraps	around	to	the	other	end.

[8]

The	Left	key	moves	to	the	next	menu	to	the	left.	If	the	current	menu
is	a	cascaded	submenu,	then	the	submenu	is	unposted	and	the
current	menu	entry	becomes	the	cascade	entry	in	the	parent.	If	the
current	menu	is	a	top-level	menu	posted	from	a	menubutton,	then
the	current	menubutton	is	unposted	and	the	next	menubutton	to	the
left	is	posted.	Otherwise	the	key	has	no	effect.	The	left-right	order
of	menubuttons	is	determined	by	their	stacking	order:	Tk	assumes
that	the	lowest	menubutton	(which	by	default	is	the	first	one
created)	is	on	the	left.

[9]
The	Right	key	moves	to	the	next	menu	to	the	right.	If	the	current
entry	is	a	cascade	entry,	then	the	submenu	is	posted	and	the
current	menu	entry	becomes	the	first	entry	in	the	submenu.
Otherwise,	if	the	current	menu	was	posted	from	a	menubutton,	then
the	current	menubutton	is	unposted	and	the	next	menubutton	to	the
right	is	posted.

Disabled	menu	entries	are	non-responsive:	they	do	not	activate	and
they	ignore	mouse	button	presses	and	releases.

Several	of	the	bindings	make	use	of	the	command	tk_menuSetFocus.
It	saves	the	current	focus	and	sets	the	focus	to	its	pathName	argument,
which	is	a	menu	widget.

The	behavior	of	menus	can	be	changed	by	defining	new	bindings	for
individual	widgets	or	by	redefining	the	class	bindings.

BUGS

At	present	it	is	not	possible	to	use	the	option	database	to	specify	values
for	the	options	to	individual	entries.

SEE	ALSO

bind,	menubutton,	ttk::menubutton,	toplevel

KEYWORDS

menu,	widget

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990-1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1997	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	ttk_entry

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
ttk::entry	-	Editable	text	field	widget

SYNOPSIS
DESCRIPTION
STANDARD	OPTIONS

-class
-cursor,	cursor,	Cursor
-style
-takefocus,	takeFocus,	TakeFocus
-xscrollcommand,	xScrollCommand,	ScrollCommand

WIDGET-SPECIFIC	OPTIONS
-exportselection,	exportSelection,	ExportSelection
-invalidcommand,	invalidCommand,	InvalidCommand
-justify,	justify,	Justify
-show,	show,	Show
-state,	state,	State
-textvariable,	textVariable,	Variable
-validate,	validate,	Validate
-validatecommand,	validateCommand,	ValidateCommand
-width,	width,	Width

NOTES
INDICES

number
@number
end
insert
sel.first
sel.last

WIDGET	COMMAND
pathName	bbox	index
pathName	cget	option

pathName	configure	?option?	?value	option	value	...?
pathName	delete	first	?last?
pathName	get
pathName	icursor	index
pathName	identify	x	y
pathName	index	index
pathName	insert	index	string
pathName	instate	statespec	?script?
pathName	selection	option	arg

pathName	selection	clear
pathName	selection	present
pathName	selection	range	start	end

pathName	state	?stateSpec?
pathName	validate
pathName	xview	args

pathName	xview
pathName	xview	index
pathName	xview	moveto	fraction
pathName	xview	scroll	number	what

VALIDATION
VALIDATION	MODES

none
key
focus
focusin
focusout
all

VALIDATION	SCRIPT	SUBSTITUTIONS
%d
%i
%P
%s
%S
%v
%V
%W

DIFFERENCES	FROM	TK	ENTRY	WIDGET	VALIDATION

DEFAULT	BINDINGS
WIDGET	STATES
SEE	ALSO
KEYWORDS

NAME

ttk::entry	-	Editable	text	field	widget

SYNOPSIS

ttk::entry	pathName	?options?

DESCRIPTION

An	ttk::entry	widget	displays	a	one-line	text	string	and	allows	that
string	to	be	edited	by	the	user.	The	value	of	the	string	may	be	linked	to
a	Tcl	variable	with	the	-textvariable	option.	Entry	widgets	support
horizontal	scrolling	with	the	standard	-xscrollcommand	option	and
xview	widget	command.

STANDARD	OPTIONS

-class
-cursor,	cursor,	Cursor
-style
-takefocus,	takeFocus,	TakeFocus
-xscrollcommand,	xScrollCommand,	ScrollCommand

WIDGET-SPECIFIC	OPTIONS

Command-Line	Name:	-exportselection
Database	Name:	exportSelection
Database	Class:	ExportSelection

A	boolean	value	specifying	whether	or	not	a	selection	in	the	widget
should	be	linked	to	the	X	selection.	If	the	selection	is	exported,	then
selecting	in	the	widget	deselects	the	current	X	selection,	selecting
outside	the	widget	deselects	any	widget	selection,	and	the	widget

will	respond	to	selection	retrieval	requests	when	it	has	a	selection.

Command-Line	Name:	-invalidcommand
Database	Name:	invalidCommand
Database	Class:	InvalidCommand

A	script	template	to	evaluate	whenever	the	validateCommand
returns	0.	See	VALIDATION	below	for	more	information.

Command-Line	Name:	-justify
Database	Name:	justify
Database	Class:	Justify

Specifies	how	the	text	is	aligned	within	the	entry	widget.	One	of
left,	center,	or	right.

Command-Line	Name:	-show
Database	Name:	show
Database	Class:	Show

If	this	option	is	specified,	then	the	true	contents	of	the	entry	are	not
displayed	in	the	window.	Instead,	each	character	in	the	entry's
value	will	be	displayed	as	the	first	character	in	the	value	of	this
option,	such	as	“*”	or	a	bullet.	This	is	useful,	for	example,	if	the
entry	is	to	be	used	to	enter	a	password.	If	characters	in	the	entry
are	selected	and	copied	elsewhere,	the	information	copied	will	be
what	is	displayed,	not	the	true	contents	of	the	entry.

Command-Line	Name:	-state
Database	Name:	state
Database	Class:	State

Compatibility	option;	see	ttk::widget(n)	for	details.	Specifies	one	of
three	states	for	the	entry,	normal,	disabled,	or	readonly.	See
WIDGET	STATES,	below.

Command-Line	Name:	-textvariable
Database	Name:	textVariable
Database	Class:	Variable

Specifies	the	name	of	a	variable	whose	value	is	linked	to	the	entry
widget's	contents.	Whenever	the	variable	changes	value,	the
widget's	contents	are	updated,	and	vice	versa.

Command-Line	Name:	-validate
Database	Name:	validate
Database	Class:	Validate

Specifies	the	mode	in	which	validation	should	operate:	none,
focus,	focusin,	focusout,	key,	or	all.	Default	is	none,	meaning
that	validation	is	disabled.	See	VALIDATION	below.

Command-Line	Name:	-validatecommand
Database	Name:	validateCommand
Database	Class:	ValidateCommand

A	script	template	to	evaluate	whenever	validation	is	triggered.	If	set
to	the	empty	string	(the	default),	validation	is	disabled.	The	script
must	return	a	boolean	value.	See	VALIDATION	below.

Command-Line	Name:	-width
Database	Name:	width
Database	Class:	Width

Specifies	an	integer	value	indicating	the	desired	width	of	the	entry
window,	in	average-size	characters	of	the	widget's	font.

NOTES

A	portion	of	the	entry	may	be	selected	as	described	below.	If	an	entry	is
exporting	its	selection	(see	the	exportSelection	option),	then	it	will
observe	the	standard	X11	protocols	for	handling	the	selection;	entry
selections	are	available	as	type	STRING.	Entries	also	observe	the
standard	Tk	rules	for	dealing	with	the	input	focus.	When	an	entry	has
the	input	focus	it	displays	an	insert	cursor	to	indicate	where	new
characters	will	be	inserted.

Entries	are	capable	of	displaying	strings	that	are	too	long	to	fit	entirely
within	the	widget's	window.	In	this	case,	only	a	portion	of	the	string	will
be	displayed;	commands	described	below	may	be	used	to	change	the
view	in	the	window.	Entries	use	the	standard	xScrollCommand
mechanism	for	interacting	with	scrollbars	(see	the	description	of	the
xScrollCommand	option	for	details).

INDICES

Many	of	the	entry	widget	commands	take	one	or	more	indices	as
arguments.	An	index	specifies	a	particular	character	in	the	entry's
string,	in	any	of	the	following	ways:

number
Specifies	the	character	as	a	numerical	index,	where	0	corresponds
to	the	first	character	in	the	string.

@number
In	this	form,	number	is	treated	as	an	x-coordinate	in	the	entry's
window;	the	character	spanning	that	x-coordinate	is	used.	For
example,	“@0”	indicates	the	left-most	character	in	the	window.

end
Indicates	the	character	just	after	the	last	one	in	the	entry's	string.
This	is	equivalent	to	specifying	a	numerical	index	equal	to	the
length	of	the	entry's	string.

insert
Indicates	the	character	adjacent	to	and	immediately	following	the
insert	cursor.

sel.first
Indicates	the	first	character	in	the	selection.	It	is	an	error	to	use	this
form	if	the	selection	is	not	in	the	entry	window.

sel.last
Indicates	the	character	just	after	the	last	one	in	the	selection.	It	is
an	error	to	use	this	form	if	the	selection	is	not	in	the	entry	window.

Abbreviations	may	be	used	for	any	of	the	forms	above,	e.g.	“e”	or
“sel.f”.	In	general,	out-of-range	indices	are	automatically	rounded	to	the
nearest	legal	value.

WIDGET	COMMAND

The	following	commands	are	possible	for	entry	widgets:

pathName	bbox	index

Returns	a	list	of	four	numbers	describing	the	bounding	box	of	the
character	given	by	index.	The	first	two	elements	of	the	list	give	the
x	and	y	coordinates	of	the	upper-left	corner	of	the	screen	area
covered	by	the	character	(in	pixels	relative	to	the	widget)	and	the
last	two	elements	give	the	width	and	height	of	the	character,	in
pixels.	The	bounding	box	may	refer	to	a	region	outside	the	visible
area	of	the	window.

pathName	cget	option
Returns	the	current	value	of	the	specified	option.	See	ttk::widget(n).

pathName	configure	?option?	?value	option	value	...?
Modify	or	query	widget	options.	See	ttk::widget(n).

pathName	delete	first	?last?
Delete	one	or	more	elements	of	the	entry.	First	is	the	index	of	the
first	character	to	delete,	and	last	is	the	index	of	the	character	just
after	the	last	one	to	delete.	If	last	is	not	specified	it	defaults	to
first+1,	i.e.	a	single	character	is	deleted.	This	command	returns	the
empty	string.

pathName	get
Returns	the	entry's	string.

pathName	icursor	index
Arrange	for	the	insert	cursor	to	be	displayed	just	before	the
character	given	by	index.	Returns	the	empty	string.

pathName	identify	x	y
Returns	the	name	of	the	element	at	position	x,	y,	or	the	empty
string	if	the	coordinates	are	outside	the	window.

pathName	index	index
Returns	the	numerical	index	corresponding	to	index.

pathName	insert	index	string
Insert	string	just	before	the	character	indicated	by	index.	Returns
the	empty	string.

pathName	instate	statespec	?script?
Test	the	widget	state.	See	ttk::widget(n).

pathName	selection	option	arg
This	command	is	used	to	adjust	the	selection	within	an	entry.	It	has
several	forms,	depending	on	option:

pathName	selection	clear
Clear	the	selection	if	it	is	currently	in	this	widget.	If	the
selection	is	not	in	this	widget	then	the	command	has	no	effect.
Returns	the	empty	string.

pathName	selection	present
Returns	1	if	there	is	are	characters	selected	in	the	entry,	0	if
nothing	is	selected.

pathName	selection	range	start	end
Sets	the	selection	to	include	the	characters	starting	with	the
one	indexed	by	start	and	ending	with	the	one	just	before	end.	If
end	refers	to	the	same	character	as	start	or	an	earlier	one,
then	the	entry's	selection	is	cleared.

pathName	state	?stateSpec?
Modify	or	query	the	widget	state.	See	ttk::widget(n).

pathName	validate
Force	revalidation,	independent	of	the	conditions	specified	by	the	-
validate	option.	Returns	0	if	validation	fails,	1	if	it	succeeds.	Sets	or
clears	the	invalid	state	accordingly.

pathName	xview	args
This	command	is	used	to	query	and	change	the	horizontal	position
of	the	text	in	the	widget's	window.	It	can	take	any	of	the	following
forms:

pathName	xview
Returns	a	list	containing	two	elements.	Each	element	is	a	real
fraction	between	0	and	1;	together	they	describe	the	horizontal

span	that	is	visible	in	the	window.	For	example,	if	the	first
element	is	.2	and	the	second	element	is	.6,	20%	of	the	entry's
text	is	off-screen	to	the	left,	the	middle	40%	is	visible	in	the
window,	and	40%	of	the	text	is	off-screen	to	the	right.	These
are	the	same	values	passed	to	scrollbars	via	the	-
xscrollcommand	option.

pathName	xview	index
Adjusts	the	view	in	the	window	so	that	the	character	given	by
index	is	displayed	at	the	left	edge	of	the	window.

pathName	xview	moveto	fraction
Adjusts	the	view	in	the	window	so	that	the	character	fraction	of
the	way	through	the	text	appears	at	the	left	edge	of	the
window.	Fraction	must	be	a	fraction	between	0	and	1.

pathName	xview	scroll	number	what
This	command	shifts	the	view	in	the	window	left	or	right
according	to	number	and	what.	Number	must	be	an	integer.
What	must	be	either	units	or	pages.	If	what	is	units,	the	view
adjusts	left	or	right	by	number	average-width	characters	on	the
display;	if	it	is	pages	then	the	view	adjusts	by	number
screenfuls.	If	number	is	negative	then	characters	farther	to	the
left	become	visible;	if	it	is	positive	then	characters	farther	to	the
right	become	visible.

VALIDATION

The	-validate,	-validatecommand,	and	-invalidcommand	options	are
used	to	enable	entry	widget	validation.

VALIDATION	MODES

There	are	two	main	validation	modes:	prevalidation,	in	which	the	-
validatecommand	is	evaluated	prior	to	each	edit	and	the	return	value
is	used	to	determine	whether	to	accept	or	reject	the	change;	and
revalidation,	in	which	the	-validatecommand	is	evaluated	to	determine
whether	the	current	value	is	valid.

The	-validate	option	determines	when	validation	occurs;	it	may	be	set
to	any	of	the	following	values:

none
Default.	This	means	validation	will	only	occur	when	specifically
requested	by	the	validate	widget	command.

key
The	entry	will	be	prevalidated	prior	to	each	edit	(specifically,
whenever	the	insert	or	delete	widget	commands	are	called).	If
prevalidation	fails,	the	edit	is	rejected.

focus
The	entry	is	revalidated	when	the	entry	receives	or	loses	focus.

focusin
The	entry	is	revalidated	when	the	entry	receives	focus.

focusout
The	entry	is	revalidated	when	the	entry	loses	focus.

all
Validation	is	performed	for	all	above	conditions.

The	-invalidcommand	is	evaluated	whenever	the	-validatecommand
returns	a	false	value.

The	-validatecommand	and	-invalidcommand	may	modify	the	entry
widget's	value	via	the	widget	insert	or	delete	commands,	or	by	setting
the	linked	-textvariable.	If	either	does	so	during	prevalidation,	then	the
edit	is	rejected	regardless	of	the	value	returned	by	the	-
validatecommand.

If	-validatecommand	is	empty	(the	default),	validation	always
succeeds.

VALIDATION	SCRIPT	SUBSTITUTIONS

It	is	possible	to	perform	percent	substitutions	on	the	-
validatecommand	and	invalidCommand,	just	as	in	a	bind	script.	The
following	substitutions	are	recognized:

%d
Type	of	action:	1	for	insert	prevalidation,	0	for	delete	prevalidation,
or	-1	for	revalidation.

%i
Index	of	character	string	to	be	inserted/deleted,	if	any,	otherwise	-1.

%P
In	prevalidation,	the	new	value	of	the	entry	if	the	edit	is	accepted.	In
revalidation,	the	current	value	of	the	entry.

%s
The	current	value	of	entry	prior	to	editing.

%S
The	text	string	being	inserted/deleted,	if	any,	{}	otherwise.

%v
The	current	value	of	the	-validate	option.

%V
The	validation	condition	that	triggered	the	callback	(key,	focusin,
focusout,	or	forced).

%W
The	name	of	the	entry	widget.

DIFFERENCES	FROM	TK	ENTRY	WIDGET	VALIDATION

•		The	standard	Tk	entry	widget	automatically	disables	validation
(by	setting	-validate	to	none)	if	the	-validatecommand	or	-
invalidcommand	modifies	the	entry's	value.	The	Tk	themed	entry
widget	only	disables	validation	if	one	of	the	validation	scripts	raises
an	error,	or	if	-validatecommand	does	not	return	a	valid	boolean

value.	(Thus,	it	is	not	necessary	to	reenable	validation	after
modifying	the	entry	value	in	a	validation	script).

•		The	standard	entry	widget	invokes	validation	whenever	the	linked
-textvariable	is	modified;	the	Tk	themed	entry	widget	does	not.

DEFAULT	BINDINGS

The	entry	widget's	default	bindings	enable	the	following	behavior.	In	the
descriptions	below,	“word”	refers	to	a	contiguous	group	of	letters,	digits,
or	“_”	characters,	or	any	single	character	other	than	these.

•		Clicking	mouse	button	1	positions	the	insert	cursor	just	before	the
character	underneath	the	mouse	cursor,	sets	the	input	focus	to	this
widget,	and	clears	any	selection	in	the	widget.	Dragging	with
mouse	button	1	down	strokes	out	a	selection	between	the	insert
cursor	and	the	character	under	the	mouse.

•		Double-clicking	with	mouse	button	1	selects	the	word	under	the
mouse	and	positions	the	insert	cursor	at	the	end	of	the	word.
Dragging	after	a	double	click	strokes	out	a	selection	consisting	of
whole	words.

•		Triple-clicking	with	mouse	button	1	selects	all	of	the	text	in	the
entry	and	positions	the	insert	cursor	at	the	end	of	the	line.

•		The	ends	of	the	selection	can	be	adjusted	by	dragging	with
mouse	button	1	while	the	Shift	key	is	down.	If	the	button	is	double-
clicked	before	dragging	then	the	selection	will	be	adjusted	in	units
of	whole	words.

•		Clicking	mouse	button	1	with	the	Control	key	down	will	position
the	insert	cursor	in	the	entry	without	affecting	the	selection.

•		If	any	normal	printing	characters	are	typed	in	an	entry,	they	are
inserted	at	the	point	of	the	insert	cursor.

•		The	view	in	the	entry	can	be	adjusted	by	dragging	with	mouse
button	2.	If	mouse	button	2	is	clicked	without	moving	the	mouse,

the	selection	is	copied	into	the	entry	at	the	position	of	the	mouse
cursor.

•		If	the	mouse	is	dragged	out	of	the	entry	on	the	left	or	right	sides
while	button	1	is	pressed,	the	entry	will	automatically	scroll	to	make
more	text	visible	(if	there	is	more	text	off-screen	on	the	side	where
the	mouse	left	the	window).

•		The	Left	and	Right	keys	move	the	insert	cursor	one	character	to
the	left	or	right;	they	also	clear	any	selection	in	the	entry.	If	Left	or
Right	is	typed	with	the	Shift	key	down,	then	the	insertion	cursor
moves	and	the	selection	is	extended	to	include	the	new	character.
Control-Left	and	Control-Right	move	the	insert	cursor	by	words,
and	Control-Shift-Left	and	Control-Shift-Right	move	the	insert
cursor	by	words	and	also	extend	the	selection.	Control-b	and
Control-f	behave	the	same	as	Left	and	Right,	respectively.

•		The	Home	key	and	Control-a	move	the	insert	cursor	to	the
beginning	of	the	entry	and	clear	any	selection	in	the	entry.	Shift-
Home	moves	the	insert	cursor	to	the	beginning	of	the	entry	and
extends	the	selection	to	that	point.

•		The	End	key	and	Control-e	move	the	insert	cursor	to	the	end	of
the	entry	and	clear	any	selection	in	the	entry.	Shift-End	moves	the
cursor	to	the	end	and	extends	the	selection	to	that	point.

•		Control-/	selects	all	the	text	in	the	entry.

•		Control-\	clears	any	selection	in	the	entry.

•		The	standard	Tk	<<Cut>>,	<<Copy>>,	<<Paste>>,	and
<<Clear>>	virtual	events	operate	on	the	selection	in	the	expected
manner.

•		The	Delete	key	deletes	the	selection,	if	there	is	one	in	the	entry.	If
there	is	no	selection,	it	deletes	the	character	to	the	right	of	the
insert	cursor.

•		The	BackSpace	key	and	Control-h	delete	the	selection,	if	there	is

one	in	the	entry.	If	there	is	no	selection,	it	deletes	the	character	to
the	left	of	the	insert	cursor.

•		Control-d	deletes	the	character	to	the	right	of	the	insert	cursor.

•		Control-k	deletes	all	the	characters	to	the	right	of	the	insertion
cursor.

WIDGET	STATES

In	the	disabled	state,	the	entry	cannot	be	edited	and	the	text	cannot	be
selected.	In	the	readonly	state,	no	insert	cursor	is	displayed	and	the
entry	cannot	be	edited	(specifically:	the	insert	and	delete	commands
have	no	effect).	The	disabled	state	is	the	same	as	readonly,	and	in
addition	text	cannot	be	selected.

Note	that	changes	to	the	linked	-textvariable	will	still	be	reflected	in	the
entry,	even	if	it	is	disabled	or	readonly.

Typically,	the	text	is	“grayed-out”	in	the	disabled	state,	and	a	different
background	is	used	in	the	readonly	state.

The	entry	widget	sets	the	invalid	state	if	revalidation	fails,	and	clears	it
whenever	validation	succeeds.

SEE	ALSO

ttk::widget,	entry

KEYWORDS

entry,	widget,	text	field

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.
Copyright	©	1998-2000	Scriptics	Corporation.
Copyright	©	2004	Joe	English

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	ttk_treeview

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
ttk::treeview	-	hierarchical	multicolumn	data	display	widget

SYNOPSIS
DESCRIPTION
STANDARD	OPTIONS

-class
-cursor,	cursor,	Cursor
-style
-takefocus,	takeFocus,	TakeFocus
-xscrollcommand,	xScrollCommand,	ScrollCommand
-yscrollcommand,	yScrollCommand,	ScrollCommand

WIDGET-SPECIFIC	OPTIONS
-columns,	columns,	Columns
-displaycolumns,	displayColumns,	DisplayColumns
-height,	height,	Height
-padding,	padding,	Padding
-selectmode,	selectMode,	SelectMode
-show,	show,	Show

tree
headings

WIDGET	COMMAND
pathname	bbox	item	?column?
pathname	cget	option
pathname	children	item	?newchildren?
pathname	column	column	?-option	?value	-option	value...?

-id	name
-anchor
-minwidth
-stretch
-width	w

pathname	configure	?option?	?value	option	value	...?

pathname	delete	itemList
pathname	detach	itemList
pathname	exists	item
pathname	focus	?item?
pathname	heading	column	?-option	?value	-option	value...?

-text	text
-image	imageName
-anchor	anchor
-command	script

pathname	identify	component	x	y
pathname	identify	row	x	y
pathname	identify	column	x	y

pathname	index	item
pathname	insert	parent	index	?-id	id?	options...
pathname	instate	statespec	?script?
pathname	item	item	?-option	?value	-option	value...?
pathname	move	item	parent	index
pathname	next	item
pathname	parent	item
pathname	prev	item
pathname	see	item
pathname	selection	?selop	itemList?

pathname	selection	set	itemList
pathname	selection	add	itemList
pathname	selection	remove	itemList
pathname	selection	toggle	itemList

pathname	set	item	?column?	?value?
pathname	state	?stateSpec?
pathName	tag	args...

pathName	tag	bind	tagName	?sequence?	?script?
pathName	tag	configure	tagName	?option?	?value	option
value...?

pathName	xview	args
pathName	yview	args

ITEM	OPTIONS
-text,	text,	Text
-image,	image,	Image

-values,	values,	Values
-open,	open,	Open
-tags,	tags,	Tags

TAG	OPTIONS
-foreground
-background
-font
-image

COLUMN	IDENTIFIERS
VIRTUAL	EVENTS

<<TreeviewSelect>>
<<TreeviewOpen>>
<<TreeviewClose>>

SEE	ALSO

NAME

ttk::treeview	-	hierarchical	multicolumn	data	display	widget

SYNOPSIS

ttk::treeview	pathname	?options?

DESCRIPTION

The	ttk::treeview	widget	displays	a	hierarchical	collection	of	items.
Each	item	has	a	textual	label,	an	optional	image,	and	an	optional	list	of
data	values.	The	data	values	are	displayed	in	successive	columns	after
the	tree	label.

The	order	in	which	data	values	are	displayed	may	be	controlled	by
setting	the	-displaycolumns	widget	option.	The	tree	widget	can	also
display	column	headings.	Columns	may	be	accessed	by	number	or	by
symbolic	names	listed	in	the	-columns	widget	option;	see	COLUMN
IDENTIFIERS.

Each	item	is	identified	by	a	unique	name.	The	widget	will	generate	item
IDs	if	they	are	not	supplied	by	the	caller.	There	is	a	distinguished	root

item,	named	{}.	The	root	item	itself	is	not	displayed;	its	children	appear
at	the	top	level	of	the	hierarchy.

Each	item	also	has	a	list	of	tags,	which	can	be	used	to	associate	event
bindings	with	individual	items	and	control	the	appearance	of	the	item.

Treeview	widgets	support	horizontal	and	vertical	scrolling	with	the
standard	-[xy]scrollcommand	options	and	[xy]view	widget	commands.

STANDARD	OPTIONS

-class
-cursor,	cursor,	Cursor
-style
-takefocus,	takeFocus,	TakeFocus
-xscrollcommand,	xScrollCommand,	ScrollCommand
-yscrollcommand,	yScrollCommand,	ScrollCommand

WIDGET-SPECIFIC	OPTIONS

Command-Line	Name:	-columns
Database	Name:	columns
Database	Class:	Columns

A	list	of	column	identifiers,	specifying	the	number	of	columns	and
their	names.

Command-Line	Name:	-displaycolumns
Database	Name:	displayColumns
Database	Class:	DisplayColumns

A	list	of	column	identifiers	(either	symbolic	names	or	integer
indices)	specifying	which	data	columns	are	displayed	and	the	order
in	which	they	appear,	or	the	string	#all.

If	set	to	#all	(the	default),	all	columns	are	shown	in	the	order	given.

Command-Line	Name:	-height
Database	Name:	height
Database	Class:	Height

Specifies	the	number	of	rows	which	should	be	visible.	Note:	the
requested	width	is	determined	from	the	sum	of	the	column	widths.

Command-Line	Name:	-padding
Database	Name:	padding
Database	Class:	Padding

Specifies	the	internal	padding	for	the	widget.	The	padding	is	a	list
of	up	to	four	length	specifications;	see	Ttk_GetPaddingFromObj()
for	details.

Command-Line	Name:	-selectmode
Database	Name:	selectMode
Database	Class:	SelectMode

Controls	how	the	built-in	class	bindings	manage	the	selection.	One
of	extended,	browse,	or	none.

If	set	to	extended	(the	default),	multiple	items	may	be	selected.	If
browse,	only	a	single	item	will	be	selected	at	a	time.	If	none,	the
selection	will	not	be	changed.

Note	that	application	code	and	tag	bindings	can	set	the	selection
however	they	wish,	regardless	of	the	value	of	-selectmode.

Command-Line	Name:	-show
Database	Name:	show
Database	Class:	Show

A	list	containing	zero	or	more	of	the	following	values,	specifying
which	elements	of	the	tree	to	display.

tree
Display	tree	labels	in	column	#0.

headings
Display	the	heading	row.

The	default	is	tree	headings,	i.e.,	show	all	elements.

NOTE:	Column	#0	always	refers	to	the	tree	column,	even	if	-show
tree	is	not	specified.

WIDGET	COMMAND

pathname	bbox	item	?column?
Returns	the	bounding	box	(relative	to	the	treeview	widget's	window)
of	the	specified	item	in	the	form	x	y	width	height.	If	column	is
specified,	returns	the	bounding	box	of	that	cell.	If	the	item	is	not
visible	(i.e.,	if	it	is	a	descendant	of	a	closed	item	or	is	scrolled
offscreen),	returns	the	empty	list.

pathname	cget	option
Returns	the	current	value	of	the	specified	option;	see	ttk::widget(n).

pathname	children	item	?newchildren?
If	newchildren	is	not	specified,	returns	the	list	of	children	belonging
to	item.

If	newchildren	is	specified,	replaces	item's	child	list	with
newchildren.	Items	in	the	old	child	list	not	present	in	the	new	child
list	are	detached	from	the	tree.	None	of	the	items	in	newchildren
may	be	an	ancestor	of	item.

pathname	column	column	?-option	?value	-option	value...?
Query	or	modify	the	options	for	the	specified	column.	If	no	-option
is	specified,	returns	a	dictionary	of	option/value	pairs.	If	a	single	-
option	is	specified,	returns	the	value	of	that	option.	Otherwise,	the
options	are	updated	with	the	specified	values.	The	following	options
may	be	set	on	each	column:

-id	name
The	column	name.	This	is	a	read-only	option.	For	example,
[$pathname	column	#n	-id]	returns	the	data	column
associated	with	display	column	#n.

-anchor
Specifies	how	the	text	in	this	column	should	be	aligned	with
respect	to	the	cell.	One	of	n,	ne,	e,	se,	s,	sw,	w,	nw,	or
center.

-minwidth
The	minimum	width	of	the	column	in	pixels.	The	treeview
widget	will	not	make	the	column	any	smaller	than	-minwidth
when	the	widget	is	resized	or	the	user	drags	a	column
separator.

-stretch
Specifies	whether	or	not	the	column's	width	should	be	adjusted
when	the	widget	is	resized.

-width	w
The	width	of	the	column	in	pixels.	Default	is	something
reasonable,	probably	200	or	so.

Use	pathname	column	#0	to	configure	the	tree	column.

pathname	configure	?option?	?value	option	value	...?
Modify	or	query	widget	options;	see	ttk::widget(n).

pathname	delete	itemList
Deletes	each	of	the	items	in	itemList	and	all	of	their	descendants.
The	root	item	may	not	be	deleted.	See	also:	detach.

pathname	detach	itemList
Unlinks	all	of	the	specified	items	in	itemList	from	the	tree.	The
items	and	all	of	their	descendants	are	still	present	and	may	be
reinserted	at	another	point	in	the	tree	but	will	not	be	displayed.	The
root	item	may	not	be	detached.	See	also:	delete.

pathname	exists	item
Returns	1	if	the	specified	item	is	present	in	the	tree,	0	otherwise.

pathname	focus	?item?
If	item	is	specified,	sets	the	focus	item	to	item.	Otherwise,	returns
the	current	focus	item,	or	{}	if	there	is	none.

pathname	heading	column	?-option	?value	-option	value...?
Query	or	modify	the	heading	options	for	the	specified	column.	Valid
options	are:

-text	text
The	text	to	display	in	the	column	heading.

-image	imageName
Specifies	an	image	to	display	to	the	right	of	the	column
heading.

-anchor	anchor
Specifies	how	the	heading	text	should	be	aligned.	One	of	the
standard	Tk	anchor	values.

-command	script
A	script	to	evaluate	when	the	heading	label	is	pressed.

Use	pathname	heading	#0	to	configure	the	tree	column	heading.

pathname	identify	component	x	y
Returns	a	description	of	the	specified	component	under	the	point
given	by	x	and	y,	or	the	empty	string	if	no	such	component	is
present	at	that	position.	The	following	subcommands	are
supported:

pathname	identify	row	x	y
Returns	the	item	ID	of	the	item	at	position	y.

pathname	identify	column	x	y
Returns	the	data	column	identifier	of	the	cell	at	position	x.	The
tree	column	has	ID	#0.

See	COLUMN	IDENTIFIERS	for	a	discussion	of	display	columns
and	data	columns.

pathname	index	item
Returns	the	integer	index	of	item	within	its	parent's	list	of	children.

pathname	insert	parent	index	?-id	id?	options...
Creates	a	new	item.	parent	is	the	item	ID	of	the	parent	item,	or	the
empty	string	{}	to	create	a	new	top-level	item.	index	is	an	integer,

or	the	value	end,	specifying	where	in	the	list	of	parent's	children	to
insert	the	new	item.	If	index	is	less	than	or	equal	to	zero,	the	new
node	is	inserted	at	the	beginning;	if	index	is	greater	than	or	equal	to
the	current	number	of	children,	it	is	inserted	at	the	end.	If	-id	is
specified,	it	is	used	as	the	item	identifier;	id	must	not	already	exist
in	the	tree.	Otherwise,	a	new	unique	identifier	is	generated.

pathname	insert	returns	the	item	identifier	of	the	newly	created
item.	See	ITEM	OPTIONS	for	the	list	of	available	options.

pathname	instate	statespec	?script?
Test	the	widget	state;	see	ttk::widget(n).

pathname	item	item	?-option	?value	-option	value...?
Query	or	modify	the	options	for	the	specified	item.	If	no	-option	is
specified,	returns	a	dictionary	of	option/value	pairs.	If	a	single	-
option	is	specified,	returns	the	value	of	that	option.	Otherwise,	the
item's	options	are	updated	with	the	specified	values.	See	ITEM
OPTIONS	for	the	list	of	available	options.

pathname	move	item	parent	index
Moves	item	to	position	index	in	parent's	list	of	children.	It	is	illegal
to	move	an	item	under	one	of	its	descendants.

If	index	is	less	than	or	equal	to	zero,	item	is	moved	to	the
beginning;	if	greater	than	or	equal	to	the	number	of	children,	it	is
moved	to	the	end.

pathname	next	item
Returns	the	identifier	of	item's	next	sibling,	or	{}	if	item	is	the	last
child	of	its	parent.

pathname	parent	item
Returns	the	ID	of	the	parent	of	item,	or	{}	if	item	is	at	the	top	level
of	the	hierarchy.

pathname	prev	item
Returns	the	identifier	of	item's	previous	sibling,	or	{}	if	item	is	the

first	child	of	its	parent.

pathname	see	item
Ensure	that	item	is	visible:	sets	all	of	item's	ancestors	to	-open
true,	and	scrolls	the	widget	if	necessary	so	that	item	is	within	the
visible	portion	of	the	tree.

pathname	selection	?selop	itemList?
If	selop	is	not	specified,	returns	the	list	of	selected	items.
Otherwise,	selop	is	one	of	the	following:

pathname	selection	set	itemList
itemList	becomes	the	new	selection.

pathname	selection	add	itemList
Add	itemList	to	the	selection

pathname	selection	remove	itemList
Remove	itemList	from	the	selection

pathname	selection	toggle	itemList
Toggle	the	selection	state	of	each	item	in	itemList.

pathname	set	item	?column?	?value?
With	one	argument,	returns	a	dictionary	of	column/value	pairs	for
the	specified	item.	With	two	arguments,	returns	the	current	value	of
the	specified	column.	With	three	arguments,	sets	the	value	of
column	column	in	item	item	to	the	specified	value.	See	also
COLUMN	IDENTIFIERS.

pathname	state	?stateSpec?
Modify	or	query	the	widget	state;	see	ttk::widget(n).

pathName	tag	args...

pathName	tag	bind	tagName	?sequence?	?script?
Add	a	Tk	binding	script	for	the	event	sequence	sequence	to
the	tag	tagName.	When	an	X	event	is	delivered	to	an	item,
binding	scripts	for	each	of	the	item's	-tags	are	evaluated	in

order	as	per	bindtags(n).

<KeyPress>,	<KeyRelease>,	and	virtual	events	are	sent	to
the	focus	item.	<ButtonPress>,	<ButtonRelease>,	and
<Motion>	events	are	sent	to	the	item	under	the	mouse	pointer.
No	other	event	types	are	supported.

The	binding	script	undergoes	%-substitutions	before
evaluation;	see	bind(n)	for	details.

pathName	tag	configure	tagName	?option?	?value	option
value...?

Query	or	modify	the	options	for	the	specified	tagName.	If	one
or	more	option/value	pairs	are	specified,	sets	the	value	of
those	options	for	the	specified	tag.	If	a	single	option	is
specified,	returns	the	value	of	that	option	(or	the	empty	string	if
the	option	has	not	been	specified	for	tagName).	With	no
additional	arguments,	returns	a	dictionary	of	the	option	settings
for	tagName.	See	TAG	OPTIONS	for	the	list	of	available
options.

pathName	xview	args
Standard	command	for	horizontal	scrolling;	see	widget(n).

pathName	yview	args
Standard	command	for	vertical	scrolling;	see	ttk::widget(n).

ITEM	OPTIONS

The	following	item	options	may	be	specified	for	items	in	the	insert	and
item	widget	commands.

Command-Line	Name:	-text
Database	Name:	text
Database	Class:	Text

The	textual	label	to	display	for	the	item.

Command-Line	Name:	-image

Database	Name:	image
Database	Class:	Image

A	Tk	image,	displayed	to	the	left	of	the	label.

Command-Line	Name:	-values
Database	Name:	values
Database	Class:	Values

The	list	of	values	associated	with	the	item.

Each	item	should	have	the	same	number	of	values	as	the	-
columns	widget	option.	If	there	are	fewer	values	than	columns,	the
remaining	values	are	assumed	empty.	If	there	are	more	values	than
columns,	the	extra	values	are	ignored.

Command-Line	Name:	-open
Database	Name:	open
Database	Class:	Open

A	boolean	value	indicating	whether	the	item's	children	should	be
displayed	(-open	true)	or	hidden	(-open	false).

Command-Line	Name:	-tags
Database	Name:	tags
Database	Class:	Tags

A	list	of	tags	associated	with	this	item.

TAG	OPTIONS

The	following	options	may	be	specified	on	tags:

-foreground
Specifies	the	text	foreground	color.

-background
Specifies	the	cell	or	item	background	color.

-font
Specifies	the	font	to	use	when	drawing	text.

-image

Specifies	the	item	image,	in	case	the	item's	-image	option	is	empty.

(@@@	TODO:	sort	out	order	of	precedence	for	options)

COLUMN	IDENTIFIERS

Column	identifiers	take	any	of	the	following	forms:

•		A	symbolic	name	from	the	list	of	-columns.

•		An	integer	n,	specifying	the	nth	data	column.

•		A	string	of	the	form	#n,	where	n	is	an	integer,	specifying	the	nth
display	column.

NOTE:	Item	-values	may	be	displayed	in	a	different	order	than	the
order	in	which	they	are	stored.

NOTE:	Column	#0	always	refers	to	the	tree	column,	even	if	-show	tree
is	not	specified.

A	data	column	number	is	an	index	into	an	item's	-values	list;	a	display
column	number	is	the	column	number	in	the	tree	where	the	values	are
displayed.	Tree	labels	are	displayed	in	column	#0.	If	-displaycolumns
is	not	set,	then	data	column	n	is	displayed	in	display	column	#n+1.
Again,	column	#0	always	refers	to	the	tree	column.

VIRTUAL	EVENTS

The	treeview	widget	generates	the	following	virtual	events.

<<TreeviewSelect>>
Generated	whenever	the	selection	changes.

<<TreeviewOpen>>
Generated	just	before	setting	the	focus	item	to	-open	true.

<<TreeviewClose>>
Generated	just	after	setting	the	focus	item	to	-open	false.

The	focus	and	selection	widget	commands	can	be	used	to	determine
the	affected	item	or	items.

SEE	ALSO

ttk::widget,	listbox,	image,	bind

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	2004	Joe	English

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	console

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
console	-	Control	the	console	on	systems	without	a	real
console

SYNOPSIS
DESCRIPTION

console	eval	script
console	hide
console	show
console	title	?string?

ACCESS	TO	THE	MAIN	INTERPRETER
consoleinterp	eval	script
consoleinterp	record	script

ADDITIONAL	TRAP	CALLS
DEFAULT	BINDINGS
EXAMPLE
SEE	ALSO
KEYWORDS

NAME

console	-	Control	the	console	on	systems	without	a	real	console

SYNOPSIS

console	subcommand	?arg	...?

DESCRIPTION

The	console	window	is	a	replacement	for	a	real	console	to	allow	input
and	output	on	the	standard	I/O	channels	on	platforms	that	do	not	have
a	real	console.	It	is	implemented	as	a	separate	interpreter	with	the	Tk
toolkit	loaded,	and	control	over	this	interpreter	is	given	through	the

console	command.	The	behaviour	of	the	console	window	is	defined
mainly	through	the	contents	of	the	console.tcl	file	in	the	Tk	library.
Except	for	TkAqua,	this	command	is	not	available	when	Tk	is	loaded
into	a	tclsh	interpreter	with	“package	require	Tk”,	as	a	conventional
terminal	is	expected	to	be	present	in	that	case.	In	TkAqua,	this
command	is	ony	available	when	stdin	is	/dev/null	(as	is	the	case	e.g.
when	the	application	embedding	Tk	is	started	from	the	Mac	OS	X
Finder).

console	eval	script
Evaluate	the	script	argument	as	a	Tcl	script	in	the	console
interpreter.	The	normal	interpreter	is	accessed	through	the
consoleinterp	command	in	the	console	interpreter.

console	hide
Hide	the	console	window	from	view.	Precisely	equivalent	to
withdrawing	the	.	window	in	the	console	interpreter.

console	show
Display	the	console	window.	Precisely	equivalent	to	deiconifying
the	.	window	in	the	console	interpreter.

console	title	?string?
Query	or	modify	the	title	of	the	console	window.	If	string	is	not
specified,	queries	the	title	of	the	console	window,	and	sets	the	title
of	the	console	window	to	string	otherwise.	Precisely	equivalent	to
using	the	wm	title	command	in	the	console	interpreter.

ACCESS	TO	THE	MAIN	INTERPRETER

The	consoleinterp	command	in	the	console	interpreter	allows	scripts	to
be	evaluated	in	the	main	interpreter.	It	supports	two	subcommands:
eval	and	record.

consoleinterp	eval	script
Evaluates	script	as	a	Tcl	script	at	the	global	level	in	the	main
interpreter.

consoleinterp	record	script
Records	and	evaluates	script	as	a	Tcl	script	at	the	global	level	in
the	main	interpreter	as	if	script	had	been	typed	in	at	the	console.

ADDITIONAL	TRAP	CALLS

There	are	several	additional	commands	in	the	console	interpreter	that
are	called	in	response	to	activity	in	the	main	interpreter.	These	are
documented	here	for	completeness	only;	they	form	part	of	the	internal
implementation	of	the	console	and	are	likely	to	change	or	be	modified
without	warning.

Output	to	the	console	from	the	main	interpreter	via	the	stdout	and	stderr
channels	is	handled	by	invoking	the	tk::ConsoleOutput	command	in
the	console	interpreter	with	two	arguments.	The	first	argument	is	the
name	of	the	channel	being	written	to,	and	the	second	argument	is	the
string	being	written	to	the	channel	(after	encoding	and	end-of-line
translation	processing	has	been	performed.)

When	the	.	window	of	the	main	interpreter	is	destroyed,	the
tk::ConsoleExit	command	in	the	console	interpreter	is	called
(assuming	the	console	interpreter	has	not	already	been	deleted	itself,
that	is.)

DEFAULT	BINDINGS

The	default	script	creates	a	console	window	(implemented	using	a	text
widget)	that	has	the	following	behaviour:

[1]
Pressing	the	tab	key	inserts	a	TAB	character	(as	defined	by	the	Tcl
\t	escape.)

[2]
Pressing	the	return	key	causes	the	current	line	(if	complete	by	the
rules	of	info	complete)	to	be	passed	to	the	main	interpreter	for
evaluation.

[3]
Pressing	the	delete	key	deletes	the	selected	text	(if	any	text	is
selected)	or	the	character	to	the	right	of	the	cursor	(if	not	at	the	end
of	the	line.)

[4]
Pressing	the	backspace	key	deletes	the	selected	text	(if	any	text	is
selected)	or	the	character	to	the	left	of	the	cursor	(of	not	at	the	start
of	the	line.)

[5]
Pressing	either	Control+A	or	the	home	key	causes	the	cursor	to	go
to	the	start	of	the	line	(but	after	the	prompt,	if	a	prompt	is	present
on	the	line.)

[6]
Pressing	either	Control+E	or	the	end	key	causes	the	cursor	to	go	to
the	end	of	the	line.

[7]
Pressing	either	Control+P	or	the	up	key	causes	the	previous	entry
in	the	command	history	to	be	selected.

[8]
Pressing	either	Control+N	or	the	down	key	causes	the	next	entry	in
the	command	history	to	be	selected.

[9]
Pressing	either	Control+B	or	the	left	key	causes	the	cursor	to	move
one	character	backward	as	long	as	the	cursor	is	not	at	the	prompt.

[10]
Pressing	either	Control+F	or	the	right	key	causes	the	cursor	to
move	one	character	forward.

[11]
Pressing	F9	rebuilds	the	console	window	by	destroying	all	its
children	and	reloading	the	Tcl	script	that	defined	the	console's

behaviour.

Most	other	behaviour	is	the	same	as	a	conventional	text	widget	except
for	the	way	that	the	<<Cut>>	event	is	handled	identically	to	the
<<Copy>>	event.

EXAMPLE

Not	all	platforms	have	the	console	command,	so	debugging	code	often
has	the	following	code	fragment	in	it	so	output	produced	by	puts	can	be
seen	while	during	development:

catch	{console	show}

SEE	ALSO

destroy,	fconfigure,	history,	interp,	puts,	text,	wm

KEYWORDS

console,	interpreter,	window,	interactive,	output	channels

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	2001	Donal	K.	Fellows

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	loadTk

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

loadTk	-	Load	Tk	into	a	safe	interpreter.

SYNOPSIS

::safe::loadTk	slave	?-use	windowId?	?-display	displayName?	

DESCRIPTION

Safe	Tk	is	based	on	Safe	Tcl,	which	provides	a	mechanism	that	allows
restricted	and	mediated	access	to	auto-loading	and	packages	for	safe
interpreters.	Safe	Tk	adds	the	ability	to	configure	the	interpreter	for	safe
Tk	operations	and	load	Tk	into	safe	interpreters.

The	::safe::loadTk	command	initializes	the	required	data	structures	in
the	named	safe	interpreter	and	then	loads	Tk	into	it.	The	interpreter
must	have	been	created	with	::safe::interpCreate	or	have	been
initialized	with	::safe::interpInit.	The	command	returns	the	name	of	the
safe	interpreter.	If	-use	is	specified,	the	window	identified	by	the
specified	system	dependent	identifier	windowId	is	used	to	contain	the	“.”
window	of	the	safe	interpreter;	it	can	be	any	valid	id,	eventually
referencing	a	window	belonging	to	another	application.	As	a
convenience,	if	the	window	you	plan	to	use	is	a	Tk	Window	of	the
application	you	can	use	the	window	name	(e.g.	.x.y)	instead	of	its
window	Id	([winfo	id	.x.y]).	When	-use	is	not	specified,	a	new	toplevel
window	is	created	for	the	“.”	window	of	the	safe	interpreter.	On	X11	if
you	want	the	embedded	window	to	use	another	display	than	the	default
one,	specify	it	with	-display.	See	the	SECURITY	ISSUES	section	below
for	implementation	details.

SECURITY	ISSUES

Please	read	the	safe	manual	page	for	Tcl	to	learn	about	the	basic
security	considerations	for	Safe	Tcl.

::safe::loadTk	adds	the	value	of	tk_library	taken	from	the	master
interpreter	to	the	virtual	access	path	of	the	safe	interpreter	so	that	auto-
loading	will	work	in	the	safe	interpreter.

Tk	initialization	is	now	safe	with	respect	to	not	trusting	the	slave's	state
for	startup.	::safe::loadTk	registers	the	slave's	name	so	when	the	Tk
initialization	(Tk_SafeInit)	is	called	and	in	turn	calls	the	master's
::safe::InitTk	it	will	return	the	desired	argv	equivalent	(-use	windowId,
correct	-display,	etc.)

When	-use	is	not	used,	the	new	toplevel	created	is	specially	decorated
so	the	user	is	always	aware	that	the	user	interface	presented	comes
from	a	potentially	unsafe	code	and	can	easily	delete	the	corresponding
interpreter.

On	X11,	conflicting	-use	and	-display	are	likely	to	generate	a	fatal	X
error.

SEE	ALSO

safe,	interp,	library,	load,	package,	source,	unknown

KEYWORDS

alias,	auto-loading,	auto_mkindex,	load,	master	interpreter,	safe
interpreter,	slave	interpreter,	source

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1995-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	selection

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
selection	-	Manipulate	the	X	selection

SYNOPSIS
DESCRIPTION

selection	clear	?-displayof	window?	?-selection	selection?
selection	get	?-displayof	window?	?-selection	selection?	?-
type	type?
selection	handle	?-selection	s?	?-type	t?	?-format	f?
window	command
selection	own	?-displayof	window?	?-selection	selection?
selection	own	?-command	command?	?-selection	selection?
window

EXAMPLES
SEE	ALSO
KEYWORDS

NAME

selection	-	Manipulate	the	X	selection

SYNOPSIS

selection	option	?arg	arg	...?

DESCRIPTION

This	command	provides	a	Tcl	interface	to	the	X	selection	mechanism
and	implements	the	full	selection	functionality	described	in	the	X	Inter-
Client	Communication	Conventions	Manual	(ICCCM).

Note	that	for	management	of	the	CLIPBOARD	selection	(see	below),
the	clipboard	command	may	also	be	used.

The	first	argument	to	selection	determines	the	format	of	the	rest	of	the
arguments	and	the	behavior	of	the	command.	The	following	forms	are
currently	supported:

selection	clear	?-displayof	window?	?-selection	selection?
If	selection	exists	anywhere	on	window's	display,	clear	it	so	that	no
window	owns	the	selection	anymore.	Selection	specifies	the	X
selection	that	should	be	cleared,	and	should	be	an	atom	name
such	as	PRIMARY	or	CLIPBOARD;	see	the	Inter-Client
Communication	Conventions	Manual	for	complete	details.
Selection	defaults	to	PRIMARY	and	window	defaults	to	“.”.	Returns
an	empty	string.

selection	get	?-displayof	window?	?-selection	selection?	?-type
type?

Retrieves	the	value	of	selection	from	window's	display	and	returns
it	as	a	result.	Selection	defaults	to	PRIMARY	and	window	defaults
to	“.”.	Type	specifies	the	form	in	which	the	selection	is	to	be
returned	(the	desired	“target”	for	conversion,	in	ICCCM
terminology),	and	should	be	an	atom	name	such	as	STRING	or
FILE_NAME;	see	the	Inter-Client	Communication	Conventions
Manual	for	complete	details.	Type	defaults	to	STRING.	The
selection	owner	may	choose	to	return	the	selection	in	any	of
several	different	representation	formats,	such	as	STRING,
UTF8_STRING,	ATOM,	INTEGER,	etc.	(this	format	is	different	than
the	selection	type;	see	the	ICCCM	for	all	the	confusing	details).	If
the	selection	is	returned	in	a	non-string	format,	such	as	INTEGER
or	ATOM,	the	selection	command	converts	it	to	string	format	as	a
collection	of	fields	separated	by	spaces:	atoms	are	converted	to
their	textual	names,	and	anything	else	is	converted	to	hexadecimal
integers.	Note	that	selection	get	does	not	retrieve	the	selection	in
the	UTF8_STRING	format	unless	told	to.

selection	handle	?-selection	s?	?-type	t?	?-format	f?	window
command

Creates	a	handler	for	selection	requests,	such	that	command	will
be	executed	whenever	selection	s	is	owned	by	window	and
someone	attempts	to	retrieve	it	in	the	form	given	by	type	t	(e.g.	t	is

specified	in	the	selection	get	command).	S	defaults	to	PRIMARY,	t
defaults	to	STRING,	and	f	defaults	to	STRING.	If	command	is	an
empty	string	then	any	existing	handler	for	window,	t,	and	s	is
removed.	Note	that	when	the	selection	is	handled	as	type	STRING
it	is	also	automatically	handled	as	type	UTF8_STRING	as	well.

When	selection	is	requested,	window	is	the	selection	owner,	and
type	is	the	requested	type,	command	will	be	executed	as	a	Tcl
command	with	two	additional	numbers	appended	to	it	(with	space
separators).	The	two	additional	numbers	are	offset	and	maxChars:
offset	specifies	a	starting	character	position	in	the	selection	and
maxChars	gives	the	maximum	number	of	characters	to	retrieve.
The	command	should	return	a	value	consisting	of	at	most
maxChars	of	the	selection,	starting	at	position	offset.	For	very	large
selections	(larger	than	maxChars)	the	selection	will	be	retrieved
using	several	invocations	of	command	with	increasing	offset
values.	If	command	returns	a	string	whose	length	is	less	than
maxChars,	the	return	value	is	assumed	to	include	all	of	the
remainder	of	the	selection;	if	the	length	of	command's	result	is
equal	to	maxChars	then	command	will	be	invoked	again,	until	it
eventually	returns	a	result	shorter	than	maxChars.	The	value	of
maxChars	will	always	be	relatively	large	(thousands	of	characters).

If	command	returns	an	error	then	the	selection	retrieval	is	rejected
just	as	if	the	selection	did	not	exist	at	all.

The	format	argument	specifies	the	representation	that	should	be
used	to	transmit	the	selection	to	the	requester	(the	second	column
of	Table	2	of	the	ICCCM),	and	defaults	to	STRING.	If	format	is
STRING,	the	selection	is	transmitted	as	8-bit	ASCII	characters	(i.e.
just	in	the	form	returned	by	command,	in	the	system	encoding;	the
UTF8_STRING	format	always	uses	UTF-8	as	its	encoding).	If
format	is	ATOM,	then	the	return	value	from	command	is	divided	into
fields	separated	by	white	space;	each	field	is	converted	to	its	atom
value,	and	the	32-bit	atom	value	is	transmitted	instead	of	the	atom
name.	For	any	other	format,	the	return	value	from	command	is
divided	into	fields	separated	by	white	space	and	each	field	is
converted	to	a	32-bit	integer;	an	array	of	integers	is	transmitted	to

the	selection	requester.

The	format	argument	is	needed	only	for	compatibility	with	selection
requesters	that	do	not	use	Tk.	If	Tk	is	being	used	to	retrieve	the
selection	then	the	value	is	converted	back	to	a	string	at	the
requesting	end,	so	format	is	irrelevant.

selection	own	?-displayof	window?	?-selection	selection?

selection	own	?-command	command?	?-selection	selection?	window
The	first	form	of	selection	own	returns	the	path	name	of	the
window	in	this	application	that	owns	selection	on	the	display
containing	window,	or	an	empty	string	if	no	window	in	this
application	owns	the	selection.	Selection	defaults	to	PRIMARY	and
window	defaults	to	“.”.

The	second	form	of	selection	own	causes	window	to	become	the	new
owner	of	selection	on	window's	display,	returning	an	empty	string	as
result.	The	existing	owner,	if	any,	is	notified	that	it	has	lost	the	selection.
If	command	is	specified,	it	is	a	Tcl	script	to	execute	when	some	other
window	claims	ownership	of	the	selection	away	from	window.	Selection
defaults	to	PRIMARY.

EXAMPLES

On	X11	platforms,	one	of	the	standard	selections	available	is	the
SECONDARY	selection.	Hardly	anything	uses	it,	but	here	is	how	to
read	it	using	Tk:

set	selContents	[selection	get	-selection	SECONDARY]

Many	different	types	of	data	may	be	available	for	a	selection;	the
special	type	TARGETS	allows	you	to	get	a	list	of	available	types:

foreach	type	[selection	get	-type	TARGETS]	{

			puts	"Selection	PRIMARY	supports	type	$type"

}

To	claim	the	selection,	you	must	first	set	up	a	handler	to	supply	the	data
for	the	selection.	Then	you	have	to	claim	the	selection...

#	Set	up	the	data	handler	ready	for	incoming	requests

set	foo	"This	is	a	string	with	some	data	in	it...	blah	blah"

selection	handle	-selection	SECONDARY	.	getData

proc	getData	{offset	maxChars}	{

			puts	"Retrieving	selection	starting	at	$offset"

			return	[string	range	$::foo	$offset	[expr	{$offset+$maxChars}]]

}

#	Now	we	grab	the	selection	itself

puts	"Claiming	selection"

selection	own	-command	lost	-selection	SECONDARY	.

proc	lost	{}	{

			puts	"Lost	selection"

}

SEE	ALSO

clipboard

KEYWORDS

clear,	format,	handler,	ICCCM,	own,	selection,	target,	type

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990-1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	messageBox

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
tk_messageBox	-	pops	up	a	message	window	and	waits	for
user	response.

SYNOPSIS
DESCRIPTION

-default	name
-detail	string
-icon	iconImage
-message	string
-parent	window
-title	titleString
-type	predefinedType

abortretryignore
ok
okcancel
retrycancel
yesno
yesnocancel

EXAMPLE
KEYWORDS

NAME

tk_messageBox	-	pops	up	a	message	window	and	waits	for	user
response.

SYNOPSIS

tk_messageBox	?option	value	...?

DESCRIPTION

This	procedure	creates	and	displays	a	message	window	with	an
application-specified	message,	an	icon	and	a	set	of	buttons.	Each	of	the
buttons	in	the	message	window	is	identified	by	a	unique	symbolic	name
(see	the	-type	options).	After	the	message	window	is	popped	up,
tk_messageBox	waits	for	the	user	to	select	one	of	the	buttons.	Then	it
returns	the	symbolic	name	of	the	selected	button.	The	following	option-
value	pairs	are	supported:

-default	name
Name	gives	the	symbolic	name	of	the	default	button	for	this
message	window	(“ok”,	“cancel”,	and	so	on).	See	-type	for	a	list	of
the	symbolic	names.	If	this	option	is	not	specified,	the	first	button	in
the	dialog	will	be	made	the	default.

-detail	string
Specifies	an	auxiliary	message	to	the	main	message	given	by	the	-
message	option.	Where	supported	by	the	underlying	OS,	the
message	detail	will	be	presented	in	a	less	emphasized	font	than
the	main	message.

-icon	iconImage
Specifies	an	icon	to	display.	IconImage	must	be	one	of	the
following:	error,	info,	question	or	warning.	If	this	option	is	not
specified,	then	the	info	icon	will	be	displayed.

-message	string
Specifies	the	message	to	display	in	this	message	box.

-parent	window
Makes	window	the	logical	parent	of	the	message	box.	The
message	box	is	displayed	on	top	of	its	parent	window.

-title	titleString
Specifies	a	string	to	display	as	the	title	of	the	message	box.	The
default	value	is	an	empty	string.

-type	predefinedType
Arranges	for	a	predefined	set	of	buttons	to	be	displayed.	The

following	values	are	possible	for	predefinedType:

abortretryignore
Displays	three	buttons	whose	symbolic	names	are	abort,	retry
and	ignore.

ok
Displays	one	button	whose	symbolic	name	is	ok.

okcancel
Displays	two	buttons	whose	symbolic	names	are	ok	and
cancel.

retrycancel
Displays	two	buttons	whose	symbolic	names	are	retry	and
cancel.

yesno
Displays	two	buttons	whose	symbolic	names	are	yes	and	no.

yesnocancel
Displays	three	buttons	whose	symbolic	names	are	yes,	no	and
cancel.

EXAMPLE

set	answer	[tk_messageBox	-message	"Really	quit?"	\

								-icon	question	-type	yesno	\

								-detail	"Select	\"Yes\"	to	make	the	application	exit"]

switch	--	$answer	{

				yes	exit

				no	{tk_messageBox	-message	"I	know	you	like	this	application!"	\

												-type	ok}

}

KEYWORDS

message	box

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	ttk_frame

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
ttk::frame	-	Simple	container	widget

SYNOPSIS
DESCRIPTION
STANDARD	OPTIONS

-class
-cursor,	cursor,	Cursor
-style
-takefocus,	takeFocus,	TakeFocus

WIDGET-SPECIFIC	OPTIONS
-borderwidth,	borderWidth,	BorderWidth
-relief,	relief,	Relief
-padding,	padding,	Padding
-width,	width,	Width
-height,	height,	Height

WIDGET	COMMAND
NOTES
SEE	ALSO
KEYWORDS

NAME

ttk::frame	-	Simple	container	widget

SYNOPSIS

ttk::frame	pathName	?options?

DESCRIPTION

A	ttk::frame	widget	is	a	container,	used	to	group	other	widgets
together.

STANDARD	OPTIONS

-class
-cursor,	cursor,	Cursor
-style
-takefocus,	takeFocus,	TakeFocus

WIDGET-SPECIFIC	OPTIONS

Command-Line	Name:	-borderwidth
Database	Name:	borderWidth
Database	Class:	BorderWidth

The	desired	width	of	the	widget	border.	Defaults	to	0.

Command-Line	Name:	-relief
Database	Name:	relief
Database	Class:	Relief

One	of	the	standard	Tk	border	styles:	flat,	groove,	raised,	ridge,
solid,	or	sunken.	Defaults	to	flat.

Command-Line	Name:	-padding
Database	Name:	padding
Database	Class:	Padding

Additional	padding	to	include	inside	the	border.

Command-Line	Name:	-width
Database	Name:	width
Database	Class:	Width

If	specified,	the	widget's	requested	width	in	pixels.

Command-Line	Name:	-height
Database	Name:	height
Database	Class:	Height

If	specified,	the	widget's	requested	height	in	pixels.

WIDGET	COMMAND

Supports	the	standard	widget	commands	configure,	cget,	identify,

instate,	and	state;	see	ttk::widget(n).

NOTES

Note	that	if	the	pack,	grid,	or	other	geometry	managers	are	used	to
manage	the	children	of	the	frame,	by	the	GM's	requested	size	will
normally	take	precedence	over	the	frame	widget's	-width	and	-height
options.	pack	propagate	and	grid	propagate	can	be	used	to	change
this.

SEE	ALSO

ttk::widget,	ttk::labelframe,	frame

KEYWORDS

widget,	frame,	container

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	2005	Joe	English

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	ttk_widget

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
ttk::widget	-	Standard	options	and	commands	supported	by	Tk
themed	widgets

DESCRIPTION
STANDARD	OPTIONS

-class,	undefined,	undefined
-cursor,	cursor,	Cursor
-takefocus,	takeFocus,	TakeFocus
-style,	style,	Style

SCROLLABLE	WIDGET	OPTIONS
-xscrollcommand,	xScrollCommand,	ScrollCommand
-yscrollcommand,	yScrollCommand,	ScrollCommand

LABEL	OPTIONS
-text,	text,	Text
-textvariable,	textVariable,	Variable
-underline,	underline,	Underline
-image,	image,	Image
-compound,	compound,	Compound

text
image
center
top
bottom
left
right
none

-width,	width,	Width
COMPATIBILITY	OPTIONS

-state,	state,	State
COMMANDS

pathName	cget	option

pathName	configure	?option?	?value	option	value	...?
pathName	identify	x	y
pathName	instate	statespec	?script?
pathName	state	?stateSpec?

WIDGET	STATES
active
disabled
focus
pressed
selected
background
readonly
alternate
invalid
hover

EXAMPLES
SEE	ALSO
KEYWORDS

NAME

ttk::widget	-	Standard	options	and	commands	supported	by	Tk	themed
widgets

DESCRIPTION

This	manual	describes	common	widget	options	and	commands.

STANDARD	OPTIONS

The	following	options	are	supported	by	all	Tk	themed	widgets:

Command-Line	Name:	-class
Database	Name:	undefined
Database	Class:	undefined

Specifies	the	window	class.	The	class	is	used	when	querying	the
option	database	for	the	window's	other	options,	to	determine	the
default	bindtags	for	the	window,	and	to	select	the	widget's	default

layout	and	style.	This	is	a	read-only	option:	it	may	only	be	specified
when	the	window	is	created,	and	may	not	be	changed	with	the
configure	widget	command.

Command-Line	Name:	-cursor
Database	Name:	cursor
Database	Class:	Cursor

Specifies	the	mouse	cursor	to	be	used	for	the	widget.	See
Tk_GetCursor	and	cursors(n)	in	the	Tk	reference	manual	for	the
legal	values.	If	set	to	the	empty	string	(the	default),	the	cursor	is
inherited	from	the	parent	widget.

Command-Line	Name:	-takefocus
Database	Name:	takeFocus
Database	Class:	TakeFocus

Determines	whether	the	window	accepts	the	focus	during	keyboard
traversal.	Either	0,	1,	a	command	prefix	(to	which	the	widget	path	is
appended,	and	which	should	return	0	or	1),	or	the	empty	string.
See	options(n)	in	the	Tk	reference	manual	for	the	full	description.

Command-Line	Name:	-style
Database	Name:	style
Database	Class:	Style

May	be	used	to	specify	a	custom	widget	style.

SCROLLABLE	WIDGET	OPTIONS

The	following	options	are	supported	by	widgets	that	are	controllable	by
a	scrollbar.	See	scrollbar(n)	for	more	information

Command-Line	Name:	-xscrollcommand
Database	Name:	xScrollCommand
Database	Class:	ScrollCommand

A	command	prefix,	used	to	communicate	with	horizontal	scrollbars.
When	the	view	in	the	widget's	window	changes,	the	widget	will
generate	a	Tcl	command	by	concatenating	the	scroll	command	and
two	numbers.	Each	of	the	numbers	is	a	fraction	between	0	and	1
indicating	a	position	in	the	document;	0	indicates	the	beginning,

and	1	indicates	the	end.	The	first	fraction	indicates	the	first
information	in	the	widget	that	is	visible	in	the	window,	and	the
second	fraction	indicates	the	information	just	after	the	last	portion
that	is	visible.

Typically	the	xScrollCommand	option	consists	of	the	path	name	of
a	scrollbar	widget	followed	by	“set”,	e.g.	“.x.scrollbar	set”.	This	will
cause	the	scrollbar	to	be	updated	whenever	the	view	in	the	window
changes.

If	this	option	is	set	to	the	empty	string	(the	default),	then	no
command	will	be	executed.

Command-Line	Name:	-yscrollcommand
Database	Name:	yScrollCommand
Database	Class:	ScrollCommand

A	command	prefix,	used	to	communicate	with	vertical	scrollbars.
See	the	description	of	-xscrollcommand	above	for	details.

LABEL	OPTIONS

The	following	options	are	supported	by	labels,	buttons,	and	other
button-like	widgets:

Command-Line	Name:	-text
Database	Name:	text
Database	Class:	Text

Specifies	a	text	string	to	be	displayed	inside	the	widget	(unless
overridden	by	-textvariable).

Command-Line	Name:	-textvariable
Database	Name:	textVariable
Database	Class:	Variable

Specifies	the	name	of	variable	whose	value	will	be	used	in	place	of
the	-text	resource.

Command-Line	Name:	-underline
Database	Name:	underline

Database	Class:	Underline
If	set,	specifies	the	integer	index	(0-based)	of	a	character	to
underline	in	the	text	string.	The	underlined	character	is	used	for
mnemonic	activation.

Command-Line	Name:	-image
Database	Name:	image
Database	Class:	Image

Specifies	an	image	to	display.	This	is	a	list	of	1	or	more	elements.
The	first	element	is	the	default	image	name.	The	rest	of	the	list	is	a
sequence	of	statespec	/	value	pairs	as	per	style	map,	specifying
different	images	to	use	when	the	widget	is	in	a	particular	state	or
combination	of	states.	All	images	in	the	list	should	have	the	same
size.

Command-Line	Name:	-compound
Database	Name:	compound
Database	Class:	Compound

Specifies	how	to	display	the	image	relative	to	the	text,	in	the	case
both	-text	and	-image	are	present.	Valid	values	are:

text
Display	text	only.

image
Display	image	only.

center
Display	text	centered	on	top	of	image.

top

bottom

left

right
Display	image	above,	below,	left	of,	or	right	of	the	text,
respectively.

none
The	default;	display	the	image	if	present,	otherwise	the	text.

Command-Line	Name:	-width
Database	Name:	width
Database	Class:	Width

If	greater	than	zero,	specifies	how	much	space,	in	character	widths,
to	allocate	for	the	text	label.	If	less	than	zero,	specifies	a	minimum
width.	If	zero	or	unspecified,	the	natural	width	of	the	text	label	is
used.

COMPATIBILITY	OPTIONS

Command-Line	Name:	-state
Database	Name:	state
Database	Class:	State

May	be	set	to	normal	or	disabled	to	control	the	disabled	state	bit.
This	is	a	write-only	option:	setting	it	changes	the	widget	state,	but
the	state	widget	command	does	not	affect	the	-state	option.

COMMANDS

pathName	cget	option
Returns	the	current	value	of	the	configuration	option	given	by
option.

pathName	configure	?option?	?value	option	value	...?
Query	or	modify	the	configuration	options	of	the	widget.	If	one	or
more	option-value	pairs	are	specified,	then	the	command	modifies
the	given	widget	option(s)	to	have	the	given	value(s);	in	this	case
the	command	returns	an	empty	string.	If	option	is	specified	with	no
value,	then	the	command	returns	a	list	describing	the	named
option:	the	elements	of	the	list	are	the	option	name,	database
name,	database	class,	default	value,	and	current	value.	If	no	option
is	specified,	returns	a	list	describing	all	of	the	available	options	for
pathName.

pathName	identify	x	y
Returns	the	name	of	the	element	under	the	point	given	by	x	and	y,
or	an	empty	string	if	the	point	does	not	lie	within	any	element.	x	and
y	are	pixel	coordinates	relative	to	the	widget.

pathName	instate	statespec	?script?
Test	the	widget's	state.	If	script	is	not	specified,	returns	1	if	the
widget	state	matches	statespec	and	0	otherwise.	If	script	is
specified,	equivalent	to

if	{[pathName	instate	stateSpec]}	script

pathName	state	?stateSpec?
Modify	or	inquire	widget	state.	If	stateSpec	is	present,	sets	the
widget	state:	for	each	flag	in	stateSpec,	sets	the	corresponding	flag
or	clears	it	if	prefixed	by	an	exclamation	point.

Returns	a	new	state	spec	indicating	which	flags	were	changed:

set	changes	[pathName	state	spec]

pathName	state	$changes

will	restore	pathName	to	the	original	state.	If	stateSpec	is	not
specified,	returns	a	list	of	the	currently-enabled	state	flags.

WIDGET	STATES

The	widget	state	is	a	bitmap	of	independent	state	flags.	Widget	state
flags	include:

active
The	mouse	cursor	is	over	the	widget	and	pressing	a	mouse	button
will	cause	some	action	to	occur.	(aka	“prelight”	(Gnome),	“hot”
(Windows),	“hover”).

disabled

Widget	is	disabled	under	program	control	(aka	“unavailable”,
“inactive”)

focus
Widget	has	keyboard	focus

pressed
Widget	is	being	pressed	(aka	“armed”	in	Motif).

selected
“On”,	“true”,	or	“current”	for	things	like	checkbuttons	and
radiobuttons.

background
Windows	and	the	Mac	have	a	notion	of	an	“active”	or	foreground
window.	The	background	state	is	set	for	widgets	in	a	background
window,	and	cleared	for	those	in	the	foreground	window.

readonly
Widget	should	not	allow	user	modification.

alternate
A	widget-specific	alternate	display	format.	For	example,	used	for
checkbuttons	and	radiobuttons	in	the	“tristate”	or	“mixed”	state,	and
for	buttons	with	-default	active.

invalid
The	widget's	value	is	invalid.	(Potential	uses:	scale	widget	value
out	of	bounds,	entry	widget	value	failed	validation.)

hover
The	mouse	cursor	is	within	the	widget.	This	is	similar	to	the	active
state;	it	is	used	in	some	themes	for	widgets	that	provide	distinct
visual	feedback	for	the	active	widget	in	addition	to	the	active
element	within	the	widget.

A	state	specification	or	stateSpec	is	a	list	of	state	names,	optionally
prefixed	with	an	exclamation	point	(!)	indicating	that	the	bit	is	off.

EXAMPLES

set	b	[ttk::button	.b]

#	Disable	the	widget:

$b	state	disabled

#	Invoke	the	widget	only	if	it	is	currently	pressed	and	enabled:

$b	instate	{pressed	!disabled}	{	.b	invoke	}

#	Reenable	widget:

$b	state	!disabled

SEE	ALSO

ttk::intro,	style

KEYWORDS

state,	configure,	option

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	2004	Joe	English

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	cursors

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

cursors	-	mouse	cursors	available	in	Tk

DESCRIPTION

The	-cursor	widget	option	allows	a	Tk	programmer	to	change	the
mouse	cursor	for	a	particular	widget.	The	cursor	names	recognized	by
Tk	on	all	platforms	are:

X_cursor

arrow

based_arrow_down

based_arrow_up

boat

bogosity

bottom_left_corner

bottom_right_corner

bottom_side

bottom_tee

box_spiral

center_ptr

circle

clock

coffee_mug

cross

cross_reverse

crosshair

diamond_cross

dot

dotbox

double_arrow

draft_large

draft_small

draped_box

exchange

fleur

gobbler

gumby

hand1

hand2

heart

icon

iron_cross

left_ptr

left_side

left_tee

leftbutton

ll_angle

lr_angle

man

middlebutton

mouse

none

pencil

pirate

plus

question_arrow

right_ptr

right_side

right_tee

rightbutton

rtl_logo

sailboat

sb_down_arrow

sb_h_double_arrow

sb_left_arrow

sb_right_arrow

sb_up_arrow

sb_v_double_arrow

shuttle

sizing

spider

spraycan

star

target

tcross

top_left_arrow

top_left_corner

top_right_corner

top_side

top_tee

trek

ul_angle

umbrella

ur_angle

watch

xterm

The	none	cursor	can	be	specified	to	eliminate	the	cursor.

PORTABILITY	ISSUES

Windows
On	Windows	systems,	the	following	cursors	are	mapped	to	native
cursors:

arrow

center_ptr

crosshair

fleur

ibeam

icon

none

sb_h_double_arrow

sb_v_double_arrow

watch

xterm

And	the	following	additional	cursors	are	available:

no

starting

size

size_ne_sw

size_ns

size_nw_se

size_we

uparrow

wait

Mac	OS	X
On	Mac	OS	X	systems,	the	following	cursors	are	mapped	to	native
cursors:

arrow

cross

crosshair

ibeam

none

plus

watch

xterm

And	the	following	additional	native	cursors	are	available:

copyarrow

aliasarrow

contextualmenuarrow

text

cross-hair

closedhand

openhand

pointinghand

resizeleft

resizeright

resizeleftright

resizeup

resizedown

resizeupdown

notallowed

poof

countinguphand

countingdownhand

countingupanddownhand

spinning

KEYWORDS

cursor,	option

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1998-2000	by	Scriptics	Corporation.
Copyright	©	2006-2007	Daniel	A.	Steffen	<das(at)users.sourceforge.net>

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	lower

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

lower	-	Change	a	window's	position	in	the	stacking	order

SYNOPSIS

lower	window	?belowThis?

DESCRIPTION

If	the	belowThis	argument	is	omitted	then	the	command	lowers	window
so	that	it	is	below	all	of	its	siblings	in	the	stacking	order	(it	will	be
obscured	by	any	siblings	that	overlap	it	and	will	not	obscure	any
siblings).	If	belowThis	is	specified	then	it	must	be	the	path	name	of	a
window	that	is	either	a	sibling	of	window	or	the	descendant	of	a	sibling
of	window.	In	this	case	the	lower	command	will	insert	window	into	the
stacking	order	just	below	belowThis	(or	the	ancestor	of	belowThis	that
is	a	sibling	of	window);	this	could	end	up	either	raising	or	lowering
window.

SEE	ALSO

raise

KEYWORDS

lower,	obscure,	stacking	order

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	send

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
send	-	Execute	a	command	in	a	different	application

SYNOPSIS
DESCRIPTION

-async
-displayof	pathName
--

APPLICATION	NAMES
DISABLING	SENDS
SECURITY
EXAMPLE
KEYWORDS

NAME

send	-	Execute	a	command	in	a	different	application

SYNOPSIS

send	?options?	app	cmd	?arg	arg	...?

DESCRIPTION

This	command	arranges	for	cmd	(and	args)	to	be	executed	in	the
application	named	by	app.	It	returns	the	result	or	error	from	that
command	execution.	App	may	be	the	name	of	any	application	whose
main	window	is	on	the	display	containing	the	sender's	main	window;	it
need	not	be	within	the	same	process.	If	no	arg	arguments	are	present,
then	the	command	to	be	executed	is	contained	entirely	within	the	cmd
argument.	If	one	or	more	args	are	present,	they	are	concatenated	to
form	the	command	to	be	executed,	just	as	for	the	eval	command.

If	the	initial	arguments	of	the	command	begin	with	“-”	they	are	treated
as	options.	The	following	options	are	currently	defined:

-async
Requests	asynchronous	invocation.	In	this	case	the	send
command	will	complete	immediately	without	waiting	for	cmd	to
complete	in	the	target	application;	no	result	will	be	available	and
errors	in	the	sent	command	will	be	ignored.	If	the	target	application
is	in	the	same	process	as	the	sending	application	then	the	-async
option	is	ignored.

-displayof	pathName
Specifies	that	the	target	application's	main	window	is	on	the	display
of	the	window	given	by	pathName,	instead	of	the	display	containing
the	application's	main	window.

--
Serves	no	purpose	except	to	terminate	the	list	of	options.	This
option	is	needed	only	if	app	could	contain	a	leading	“-”	character.

APPLICATION	NAMES

The	name	of	an	application	is	set	initially	from	the	name	of	the	program
or	script	that	created	the	application.	You	can	query	and	change	the
name	of	an	application	with	the	tk	appname	command.

DISABLING	SENDS

If	the	send	command	is	removed	from	an	application	(e.g.	with	the
command	rename	send	{})	then	the	application	will	not	respond	to
incoming	send	requests	anymore,	nor	will	it	be	able	to	issue	outgoing
requests.	Communication	can	be	reenabled	by	invoking	the	tk
appname	command.

SECURITY

The	send	command	is	potentially	a	serious	security	loophole.	On	Unix,
any	application	that	can	connect	to	your	X	server	can	send	scripts	to

your	applications.	These	incoming	scripts	can	use	Tcl	to	read	and	write
your	files	and	invoke	subprocesses	under	your	name.	Host-based
access	control	such	as	that	provided	by	xhost	is	particularly	insecure,
since	it	allows	anyone	with	an	account	on	particular	hosts	to	connect	to
your	server,	and	if	disabled	it	allows	anyone	anywhere	to	connect	to
your	server.	In	order	to	provide	at	least	a	small	amount	of	security,	Tk
checks	the	access	control	being	used	by	the	server	and	rejects
incoming	sends	unless	(a)	xhost-style	access	control	is	enabled	(i.e.
only	certain	hosts	can	establish	connections)	and	(b)	the	list	of	enabled
hosts	is	empty.	This	means	that	applications	cannot	connect	to	your
server	unless	they	use	some	other	form	of	authorization	such	as	that
provide	by	xauth.	Under	Windows,	send	is	currently	disabled.	Most	of
the	functionality	is	provided	by	the	dde	command	instead.

EXAMPLE

This	script	fragment	can	be	used	to	make	an	application	that	only	runs
once	on	a	particular	display.

if	{[tk	appname	FoobarApp]	ne	"FoobarApp"}	{

				send	-async	FoobarApp	RemoteStart	$argv

				exit

}

#	The	command	that	will	be	called	remotely,	which	raises

#	the	application	main	window	and	opens	the	requested	files

proc	RemoteStart	args	{

				raise	.

				foreach	filename	$args	{

								OpenFile	$filename

				}

}

KEYWORDS

application,	dde,	name,	remote	execution,	security,	send

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990-1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	optionMenu

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

tk_optionMenu	-	Create	an	option	menubutton	and	its	menu

SYNOPSIS

tk_optionMenu	pathName	varName	value	?value	value	...?

DESCRIPTION

This	procedure	creates	an	option	menubutton	whose	name	is
pathName,	plus	an	associated	menu.	Together	they	allow	the	user	to
select	one	of	the	values	given	by	the	value	arguments.	The	current
value	will	be	stored	in	the	global	variable	whose	name	is	given	by
varName	and	it	will	also	be	displayed	as	the	label	in	the	option
menubutton.	The	user	can	click	on	the	menubutton	to	display	a	menu
containing	all	of	the	values	and	thereby	select	a	new	value.	Once	a	new
value	is	selected,	it	will	be	stored	in	the	variable	and	appear	in	the
option	menubutton.	The	current	value	can	also	be	changed	by	setting
the	variable.

The	return	value	from	tk_optionMenu	is	the	name	of	the	menu
associated	with	pathName,	so	that	the	caller	can	change	its
configuration	options	or	manipulate	it	in	other	ways.

EXAMPLE

tk_optionMenu	.foo	myVar	Foo	Bar	Boo	Spong	Wibble

pack	.foo

KEYWORDS

option	menu

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990-1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	ttk_intro

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

ttk::intro	-	Introduction	to	the	Tk	theme	engine

OVERVIEW

The	Tk	themed	widget	set	is	based	on	a	revised	and	enhanced	version
of	TIP	#48	(http://tip.tcl.tk/48)	specified	style	engine.	The	main	concepts
are	described	below.	The	basic	idea	is	to	separate,	to	the	extent
possible,	the	code	implementing	a	widget's	behavior	from	the	code
implementing	its	appearance.	Widget	class	bindings	are	primarily
responsible	for	maintaining	the	widget	state	and	invoking	callbacks;	all
aspects	of	the	widgets	appearance	is

THEMES

A	theme	is	a	collection	of	elements	and	styles	that	determine	the	look
and	feel	of	the	widget	set.	Themes	can	be	used	to:

•		Isolate	platform	differences	(X11	vs.	classic	Windows	vs.	XP	vs.
Aqua	...)

•		Adapt	to	display	limitations	(low-color,	grayscale,	monochrome,
tiny	screens)

•		Accessibility	(high	contrast,	large	type)

•		Application	suite	branding

•		Blend	in	with	the	rest	of	the	desktop	(Gnome,	KDE,	Java)

•		And,	of	course:	eye	candy.

ELEMENTS

An	element	displays	an	individual	part	of	a	widget.	For	example,	a
vertical	scrollbar	widget	contains	uparrow,	downarrow,	trough	and
slider	elements.

Element	names	use	a	recursive	dotted	notation.	For	example,	uparrow
identifies	a	generic	arrow	element,	and	Scrollbar.uparrow	and
Combobox.uparrow	identify	widget-specific	elements.	When	looking
for	an	element,	the	style	engine	looks	for	the	specific	name	first,	and	if
an	element	of	that	name	is	not	found	it	looks	for	generic	elements	by
stripping	off	successive	leading	components	of	the	element	name.

Like	widgets,	elements	have	options	which	specify	what	to	display	and
how	to	display	it.	For	example,	the	text	element	(which	displays	a	text
string)	has	-text,	-font,	-foreground,	-background,	-underline,	and	-
width	options.	The	value	of	an	element	option	is	taken	from:

•		An	option	of	the	same	name	and	type	in	the	widget	containing	the
element;

•		A	dynamic	setting	specified	by	style	map	and	the	current	state;

•		The	default	setting	specified	by	style	configure;	or

•		The	element's	built-in	default	value	for	the	option.

LAYOUTS

A	layout	specifies	which	elements	make	up	a	widget	and	how	they	are
arranged.	The	layout	engine	uses	a	simplified	version	of	the	pack
algorithm:	starting	with	an	initial	cavity	equal	to	the	size	of	the	widget,
elements	are	allocated	a	parcel	within	the	cavity	along	the	side
specified	by	the	-side	option,	and	placed	within	the	parcel	according	to
the	-sticky	option.	For	example,	the	layout	for	a	horizontal	scrollbar

ttk::style	layout	Horizontal.TScrollbar	{

				Scrollbar.trough	-children	{

	Scrollbar.leftarrow	-side	left	-sticky	w

	Scrollbar.rightarrow	-side	right	-sticky	e

	Scrollbar.thumb	-side	left	-expand	true	-sticky	ew

				}

}

By	default,	the	layout	for	a	widget	is	the	same	as	its	class	name.	Some
widgets	may	override	this	(for	example,	the	ttk::scrollbar	widget
chooses	different	layouts	based	on	the	-orient	option).

STATES

In	standard	Tk,	many	widgets	have	a	-state	option	which	(in	most
cases)	is	either	normal	or	disabled.	Some	widgets	support	additional
states,	such	as	the	entry	widget	which	has	a	readonly	state	and	the
various	flavors	of	buttons	which	have	active	state.

The	themed	Tk	widgets	generalizes	this	idea:	every	widget	has	a
bitmap	of	independent	state	flags.	Widget	state	flags	include	active,
disabled,	pressed,	focus,	etc.,	(see	ttk::widget(n)	for	the	full	list	of
state	flags).

Instead	of	a	-state	option,	every	widget	now	has	a	state	widget
command	which	is	used	to	set	or	query	the	state.	A	state	specification	is
a	list	of	symbolic	state	names	indicating	which	bits	are	set,	each
optionally	prefixed	with	an	exclamation	point	indicating	that	the	bit	is
cleared	instead.

For	example,	the	class	bindings	for	the	ttk::button	widget	are:

bind	TButton	<Enter>		{	%W	state	active	}

bind	TButton	<Leave>		{	%W	state	!active	}

bind	TButton	<ButtonPress-1>	{	%W	state	pressed	}

bind	TButton	<Button1-Leave>	{	%W	state	!pressed	}

bind	TButton	<Button1-Enter>	{	%W	state	pressed	}

bind	TButton	<ButtonRelease-1>	\

				{	%W	instate	{pressed}	{	%W	state	!pressed	;	%W	invoke	}	}

This	specifies	that	the	widget	becomes	active	when	the	pointer	enters
the	widget,	and	inactive	when	it	leaves.	Similarly	it	becomes	pressed
when	the	mouse	button	is	pressed,	and	!pressed	on	the	ButtonRelease
event.	In	addition,	the	button	unpresses	if	pointer	is	dragged	outside	the
widget	while	Button-1	is	held	down,	and	represses	if	it's	dragged	back
in.	Finally,	when	the	mouse	button	is	released,	the	widget's	-command
is	invoked,	but	only	if	the	button	is	currently	in	the	pressed	state.	(The
actual	bindings	are	a	little	more	complicated	than	the	above,	but	not	by
much).

Note	to	self:	rewrite	that	paragraph.	It's	horrible.

STYLES

Each	widget	is	associated	with	a	style,	which	specifies	values	for
element	options.	Style	names	use	a	recursive	dotted	notation	like
layouts	and	elements;	by	default,	widgets	use	the	class	name	to	look	up
a	style	in	the	current	theme.	For	example:

ttk::style	configure	TButton	\

	-background	#d9d9d9	\

	-foreground	black	\

	-relief	raised	\

	;

Many	elements	are	displayed	differently	depending	on	the	widget	state.
For	example,	buttons	have	a	different	background	when	they	are	active,
a	different	foreground	when	disabled,	and	a	different	relief	when
pressed.	The	style	map	command	specifies	dynamic	option	settings	for
a	particular	style:

ttk::style	map	TButton	\

	-background	[list	disabled	#d9d9d9		active	#ececec]	\

	-foreground	[list	disabled	#a3a3a3]	\

	-relief	[list	{pressed	!disabled}	sunken]	\

	;

SEE	ALSO

ttk::widget,	ttk::style

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	2004	Joe	English

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	ttk_image

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
ttk_image	-	Define	an	element	based	on	an	image

SYNOPSIS
DESCRIPTION
OPTIONS

-border	padding
-height	height
-padding	padding
-sticky	spec
-width	width

IMAGE	STRETCHING
EXAMPLE
SEE	ALSO
KEYWORDS

NAME

ttk_image	-	Define	an	element	based	on	an	image

SYNOPSIS

ttk::style	element	create	name	image	imageSpec	?options?

DESCRIPTION

The	image	element	factory	creates	a	new	element	in	the	current	theme
whose	visual	appearance	is	determined	by	Tk	images.	imageSpec	is	a
list	of	one	or	more	elements.	The	first	element	is	the	default	image
name.	The	rest	of	the	list	is	a	sequence	of	statespec	/	value	pairs
specifying	other	images	to	use	when	the	element	is	in	a	particular	state
or	combination	of	states.

OPTIONS

Valid	options	are:

-border	padding
padding	is	a	list	of	up	to	four	integers,	specifying	the	left,	top,	right,
and	bottom	borders,	respectively.	See	IMAGE	STRETCHING,
below.

-height	height
Specifies	a	minimum	height	for	the	element.	If	less	than	zero,	the
base	image's	height	is	used	as	a	default.

-padding	padding
Specifies	the	element's	interior	padding.	Defaults	to	-border	if	not
specified.

-sticky	spec
Specifies	how	the	image	is	placed	within	the	final	parcel.	spec
contains	zero	or	more	characters	“n”,	“s”,	“w”,	or	“e”.

-width	width
Specifies	a	minimum	width	for	the	element.	If	less	than	zero,	the
base	image's	width	is	used	as	a	default.

IMAGE	STRETCHING

If	the	element's	allocated	parcel	is	larger	than	the	image,	the	image	will
be	placed	in	the	parcel	based	on	the	-sticky	option.	If	the	image	needs
to	stretch	horizontally	(i.e.,	-sticky	ew)	or	vertically	(-sticky	ns),
subregions	of	the	image	are	replicated	to	fill	the	parcel	based	on	the	-
border	option.	The	-border	divides	the	image	into	9	regions:	four	fixed
corners,	top	and	left	edges	(which	may	be	tiled	horizontally),	left	and
right	edges	(which	may	be	tiled	vertically),	and	the	central	area	(which
may	be	tiled	in	both	directions).

EXAMPLE

set	img1	[image	create	photo	-file	button.png]

set	img2	[image	create	photo	-file	button-pressed.png]

set	img3	[image	create	photo	-file	button-active.png]

style	element	create	Button.button	image	\

				[list	$img1		pressed	$img2		active	$img3]	\

				-border	{2	4}	-sticky	we

SEE	ALSO

ttk::intro,	ttk::style,	ttk_vsapi,	image,	photo

KEYWORDS

style,	theme,	appearance,	pixmap	theme,	image

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	2004	Joe	English

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	destroy

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

destroy	-	Destroy	one	or	more	windows

SYNOPSIS

destroy	?window	window	...?

DESCRIPTION

This	command	deletes	the	windows	given	by	the	window	arguments,
plus	all	of	their	descendants.	If	a	window	“.”	is	deleted	then	all	windows
will	be	destroyed	and	the	application	will	(normally)	exit.	The	windows
are	destroyed	in	order,	and	if	an	error	occurs	in	destroying	a	window	the
command	aborts	without	destroying	the	remaining	windows.	No	error	is
returned	if	window	does	not	exist.

EXAMPLE

Destroy	all	checkbuttons	that	are	direct	children	of	the	given	widget:

proc	killCheckbuttonChildren	{parent}	{

			foreach	w	[winfo	children	$parent]	{

						if	{[winfo	class	$w]	eq	"Checkbutton"}	{

									destroy	$w

						}

			}

}

KEYWORDS

application,	destroy,	window

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	spinbox

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
spinbox	-	Create	and	manipulate	spinbox	widgets

SYNOPSIS
STANDARD	OPTIONS

-activebackground,	activeBackground,	Foreground
-background	or	-bg,	background,	Background
-borderwidth	or	-bd,	borderWidth,	BorderWidth
-cursor,	cursor,	Cursor
-exportselection,	exportSelection,	ExportSelection
-font,	font,	Font
-foreground	or	-fg,	foreground,	Foreground
-highlightbackground,	highlightBackground,
HighlightBackground
-highlightcolor,	highlightColor,	HighlightColor
-highlightthickness,	highlightThickness,	HighlightThickness
-insertbackground,	insertBackground,	Foreground
-insertborderwidth,	insertBorderWidth,	BorderWidth
-insertofftime,	insertOffTime,	OffTime
-insertontime,	insertOnTime,	OnTime
-insertwidth,	insertWidth,	InsertWidth
-justify,	justify,	Justify
-relief,	relief,	Relief
-repeatdelay,	repeatDelay,	RepeatDelay
-repeatinterval,	repeatInterval,	RepeatInterval
-selectbackground,	selectBackground,	Foreground
-selectborderwidth,	selectBorderWidth,	BorderWidth
-selectforeground,	selectForeground,	Background
-takefocus,	takeFocus,	TakeFocus
-textvariable,	textVariable,	Variable
-xscrollcommand,	xScrollCommand,	ScrollCommand

WIDGET-SPECIFIC	OPTIONS

-buttonbackground,	buttonBackground,	Background
-buttoncursor,	buttonCursor,	Cursor
-buttondownrelief,	buttonDownRelief,	Relief
-buttonuprelief,	buttonUpRelief,	Relief
-command,	command,	Command
-disabledbackground,	disabledBackground,
DisabledBackground
-disabledforeground,	disabledForeground,	DisabledForeground
-format,	format,	Format
-from,	from,	From
-invalidcommand	or	-invcmd,	invalidCommand,
InvalidCommand
-increment,	increment,	Increment
-readonlybackground,	readonlyBackground,
ReadonlyBackground
-state,	state,	State
-to,	to,	To
-validate,	validate,	Validate
-validatecommand	or	-vcmd,	validateCommand,
ValidateCommand
-values,	values,	Values
-width,	width,	Width
-wrap,	wrap,	wrap

DESCRIPTION
VALIDATION

none
focus
focusin
focusout
key
all
%d
%i
%P
%s
%S
%v

%V
%W

WIDGET	COMMAND
INDICES

number
anchor
end
insert
sel.first
sel.last
@number

SUBCOMMANDS
pathName	bbox	index
pathName	cget	option
pathName	configure	?option?	?value	option	value	...?
pathName	delete	first	?last?
pathName	get
pathName	icursor	index
pathName	identify	x	y
pathName	index	index
pathName	insert	index	string
pathName	invoke	element
pathName	scan	option	args

pathName	scan	mark	x
pathName	scan	dragto	x

pathName	selection	option	arg
pathName	selection	adjust	index
pathName	selection	clear
pathName	selection	element	?element?
pathName	selection	from	index
pathName	selection	present
pathName	selection	range	start	end
pathName	selection	to	index

pathName	set	?string?
pathName	validate
pathName	xview	args

pathName	xview

pathName	xview	index
pathName	xview	moveto	fraction
pathName	xview	scroll	number	what

DEFAULT	BINDINGS
KEYWORDS

NAME

spinbox	-	Create	and	manipulate	spinbox	widgets

SYNOPSIS

spinbox	pathName	?options?

STANDARD	OPTIONS

-activebackground,	activeBackground,	Foreground
-background	or	-bg,	background,	Background
-borderwidth	or	-bd,	borderWidth,	BorderWidth
-cursor,	cursor,	Cursor
-exportselection,	exportSelection,	ExportSelection
-font,	font,	Font
-foreground	or	-fg,	foreground,	Foreground
-highlightbackground,	highlightBackground,	HighlightBackground
-highlightcolor,	highlightColor,	HighlightColor
-highlightthickness,	highlightThickness,	HighlightThickness
-insertbackground,	insertBackground,	Foreground
-insertborderwidth,	insertBorderWidth,	BorderWidth
-insertofftime,	insertOffTime,	OffTime
-insertontime,	insertOnTime,	OnTime
-insertwidth,	insertWidth,	InsertWidth
-justify,	justify,	Justify
-relief,	relief,	Relief
-repeatdelay,	repeatDelay,	RepeatDelay
-repeatinterval,	repeatInterval,	RepeatInterval
-selectbackground,	selectBackground,	Foreground
-selectborderwidth,	selectBorderWidth,	BorderWidth
-selectforeground,	selectForeground,	Background

-takefocus,	takeFocus,	TakeFocus
-textvariable,	textVariable,	Variable
-xscrollcommand,	xScrollCommand,	ScrollCommand

WIDGET-SPECIFIC	OPTIONS

Command-Line	Name:	-buttonbackground
Database	Name:	buttonBackground
Database	Class:	Background

The	background	color	to	be	used	for	the	spin	buttons.

Command-Line	Name:	-buttoncursor
Database	Name:	buttonCursor
Database	Class:	Cursor

The	cursor	to	be	used	when	over	the	spin	buttons.	If	this	is	empty
(the	default),	a	default	cursor	will	be	used.

Command-Line	Name:	-buttondownrelief
Database	Name:	buttonDownRelief
Database	Class:	Relief

The	relief	to	be	used	for	the	upper	spin	button.

Command-Line	Name:	-buttonuprelief
Database	Name:	buttonUpRelief
Database	Class:	Relief

The	relief	to	be	used	for	the	lower	spin	button.

Command-Line	Name:	-command
Database	Name:	command
Database	Class:	Command

Specifies	a	Tcl	command	to	invoke	whenever	a	spinbutton	is
invoked.	The	command	recognizes	several	percent	substitutions:
%W	for	the	widget	path,	%s	for	the	current	value	of	the	widget,	and
%d	for	the	direction	of	the	button	pressed	(up	or	down).

Command-Line	Name:	-disabledbackground
Database	Name:	disabledBackground
Database	Class:	DisabledBackground

Specifies	the	background	color	to	use	when	the	spinbox	is
disabled.	If	this	option	is	the	empty	string,	the	normal	background
color	is	used.

Command-Line	Name:	-disabledforeground
Database	Name:	disabledForeground
Database	Class:	DisabledForeground

Specifies	the	foreground	color	to	use	when	the	spinbox	is	disabled.
If	this	option	is	the	empty	string,	the	normal	foreground	color	is
used.

Command-Line	Name:	-format
Database	Name:	format
Database	Class:	Format

Specifies	an	alternate	format	to	use	when	setting	the	string	value
when	using	the	-from	and	-to	range.	This	must	be	a	format
specifier	of	the	form	%<pad>.<pad>f,	as	it	will	format	a	floating-
point	number.

Command-Line	Name:	-from
Database	Name:	from
Database	Class:	From

A	floating-point	value	corresponding	to	the	lowest	value	for	a
spinbox,	to	be	used	in	conjunction	with	-to	and	-increment.	When
all	are	specified	correctly,	the	spinbox	will	use	these	values	to
control	its	contents.	This	value	must	be	less	than	the	-to	option.	If	-
values	is	specified,	it	supercedes	this	option.

Command-Line	Name:	-invalidcommand	or	-invcmd
Database	Name:	invalidCommand
Database	Class:	InvalidCommand

Specifies	a	script	to	eval	when	validateCommand	returns	0.
Setting	it	to	an	empty	string	disables	this	feature	(the	default).	The
best	use	of	this	option	is	to	set	it	to	bell.	See	Validation	below	for
more	information.

Command-Line	Name:	-increment
Database	Name:	increment

Database	Class:	Increment
A	floating-point	value	specifying	the	increment.	When	used	with	-
from	and	-to,	the	value	in	the	widget	will	be	adjusted	by	-
increment	when	a	spin	button	is	pressed	(up	adds	the	value,	down
subtracts	the	value).

Command-Line	Name:	-readonlybackground
Database	Name:	readonlyBackground
Database	Class:	ReadonlyBackground

Specifies	the	background	color	to	use	when	the	spinbox	is
readonly.	If	this	option	is	the	empty	string,	the	normal	background
color	is	used.

Command-Line	Name:	-state
Database	Name:	state
Database	Class:	State

Specifies	one	of	three	states	for	the	spinbox:	normal,	disabled,	or
readonly.	If	the	spinbox	is	readonly,	then	the	value	may	not	be
changed	using	widget	commands	and	no	insertion	cursor	will	be
displayed,	even	if	the	input	focus	is	in	the	widget;	the	contents	of
the	widget	may	still	be	selected.	If	the	spinbox	is	disabled,	the
value	may	not	be	changed,	no	insertion	cursor	will	be	displayed,
the	contents	will	not	be	selectable,	and	the	spinbox	may	be
displayed	in	a	different	color,	depending	on	the	values	of	the	-
disabledforeground	and	-disabledbackground	options.

Command-Line	Name:	-to
Database	Name:	to
Database	Class:	To

A	floating-point	value	corresponding	to	the	highest	value	for	the
spinbox,	to	be	used	in	conjunction	with	-from	and	-increment.
When	all	are	specified	correctly,	the	spinbox	will	use	these	values
to	control	its	contents.	This	value	must	be	greater	than	the	-from
option.	If	-values	is	specified,	it	supercedes	this	option.

Command-Line	Name:	-validate
Database	Name:	validate
Database	Class:	Validate

Specifies	the	mode	in	which	validation	should	operate:	none,
focus,	focusin,	focusout,	key,	or	all.	It	defaults	to	none.	When
you	want	validation,	you	must	explicitly	state	which	mode	you	wish
to	use.	See	Validation	below	for	more.

Command-Line	Name:	-validatecommand	or	-vcmd
Database	Name:	validateCommand
Database	Class:	ValidateCommand

Specifies	a	script	to	evaluate	when	you	want	to	validate	the	input	in
the	widget.	Setting	it	to	an	empty	string	disables	this	feature	(the
default).	Validation	occurs	according	to	the	value	of	-validate.	This
command	must	return	a	valid	Tcl	boolean	value.	If	it	returns	0	(or
the	valid	Tcl	boolean	equivalent)	then	the	value	of	the	widget	will
not	change	and	the	invalidCommand	will	be	evaluated	if	it	is	set.	If
it	returns	1,	then	value	will	be	changed.	See	Validation	below	for
more	information.

Command-Line	Name:	-values
Database	Name:	values
Database	Class:	Values

Must	be	a	proper	list	value.	If	specified,	the	spinbox	will	use	these
values	as	to	control	its	contents,	starting	with	the	first	value.	This
option	has	precedence	over	the	-from	and	-to	range.

Command-Line	Name:	-width
Database	Name:	width
Database	Class:	Width

Specifies	an	integer	value	indicating	the	desired	width	of	the
spinbox	window,	in	average-size	characters	of	the	widget's	font.	If
the	value	is	less	than	or	equal	to	zero,	the	widget	picks	a	size	just
large	enough	to	hold	its	current	text.

Command-Line	Name:	-wrap
Database	Name:	wrap
Database	Class:	wrap

Must	be	a	proper	boolean	value.	If	on,	the	spinbox	will	wrap	around
the	values	of	data	in	the	widget.

DESCRIPTION

The	spinbox	command	creates	a	new	window	(given	by	the	pathName
argument)	and	makes	it	into	a	spinbox	widget.	Additional	options,
described	above,	may	be	specified	on	the	command	line	or	in	the	option
database	to	configure	aspects	of	the	spinbox	such	as	its	colors,	font,
and	relief.	The	spinbox	command	returns	its	pathName	argument.	At
the	time	this	command	is	invoked,	there	must	not	exist	a	window	named
pathName,	but	pathName's	parent	must	exist.

A	spinbox	is	an	extended	entry	widget	that	allows	he	user	to	move,	or
spin,	through	a	fixed	set	of	ascending	or	descending	values	such	as
times	or	dates	in	addition	to	editing	the	value	as	in	an	entry.	When	first
created,	a	spinbox's	string	is	empty.	A	portion	of	the	spinbox	may	be
selected	as	described	below.	If	a	spinbox	is	exporting	its	selection	(see
the	exportSelection	option),	then	it	will	observe	the	standard	protocols
for	handling	the	selection;	spinbox	selections	are	available	as	type
STRING.	Spinboxes	also	observe	the	standard	Tk	rules	for	dealing	with
the	input	focus.	When	a	spinbox	has	the	input	focus	it	displays	an
insertion	cursor	to	indicate	where	new	characters	will	be	inserted.

Spinboxes	are	capable	of	displaying	strings	that	are	too	long	to	fit
entirely	within	the	widget's	window.	In	this	case,	only	a	portion	of	the
string	will	be	displayed;	commands	described	below	may	be	used	to
change	the	view	in	the	window.	Spinboxes	use	the	standard
xScrollCommand	mechanism	for	interacting	with	scrollbars	(see	the
description	of	the	xScrollCommand	option	for	details).	They	also
support	scanning,	as	described	below.

VALIDATION

Validation	works	by	setting	the	validateCommand	option	to	a	script
which	will	be	evaluated	according	to	the	validate	option	as	follows:

none
Default.	This	means	no	validation	will	occur.

focus

validateCommand	will	be	called	when	the	spinbox	receives	or
loses	focus.

focusin
validateCommand	will	be	called	when	the	spinbox	receives	focus.

focusout
validateCommand	will	be	called	when	the	spinbox	loses	focus.

key
validateCommand	will	be	called	when	the	spinbox	is	edited.

all
validateCommand	will	be	called	for	all	above	conditions.

It	is	possible	to	perform	percent	substitutions	on	the	validateCommand
and	invalidCommand,	just	as	you	would	in	a	bind	script.	The	following
substitutions	are	recognized:

%d
Type	of	action:	1	for	insert,	0	for	delete,	or	-1	for	focus,	forced	or
textvariable	validation.

%i
Index	of	char	string	to	be	inserted/deleted,	if	any,	otherwise	-1.

%P
The	value	of	the	spinbox	should	edition	occur.	If	you	are
configuring	the	spinbox	widget	to	have	a	new	textvariable,	this	will
be	the	value	of	that	textvariable.

%s
The	current	value	of	spinbox	before	edition.

%S
The	text	string	being	inserted/deleted,	if	any.	Otherwise	it	is	an
empty	string.

%v

The	type	of	validation	currently	set.

%V
The	type	of	validation	that	triggered	the	callback	(key,	focusin,
focusout,	forced).

%W
The	name	of	the	spinbox	widget.

In	general,	the	textVariable	and	validateCommand	can	be	dangerous
to	mix.	Any	problems	have	been	overcome	so	that	using	the
validateCommand	will	not	interfere	with	the	traditional	behavior	of	the
spinbox	widget.	Using	the	textVariable	for	read-only	purposes	will
never	cause	problems.	The	danger	comes	when	you	try	set	the
textVariable	to	something	that	the	validateCommand	would	not
accept,	which	causes	validate	to	become	none	(the	invalidCommand
will	not	be	triggered).	The	same	happens	when	an	error	occurs
evaluating	the	validateCommand.

Primarily,	an	error	will	occur	when	the	validateCommand	or
invalidCommand	encounters	an	error	in	its	script	while	evaluating	or
validateCommand	does	not	return	a	valid	Tcl	boolean	value.	The
validate	option	will	also	set	itself	to	none	when	you	edit	the	spinbox
widget	from	within	either	the	validateCommand	or	the
invalidCommand.	Such	editions	will	override	the	one	that	was	being
validated.	If	you	wish	to	edit	the	value	of	the	widget	during	validation
and	still	have	the	validate	option	set,	you	should	include	the	command

%W	config	-validate	%v

in	the	validateCommand	or	invalidCommand	(whichever	one	you
were	editing	the	spinbox	widget	from).	It	is	also	recommended	to	not	set
an	associated	textVariable	during	validation,	as	that	can	cause	the
spinbox	widget	to	become	out	of	sync	with	the	textVariable.

WIDGET	COMMAND

The	spinbox	command	creates	a	new	Tcl	command	whose	name	is
pathName.	This	command	may	be	used	to	invoke	various	operations	on
the	widget.	It	has	the	following	general	form:

pathName	option	?arg	arg	...?

Option	and	the	args	determine	the	exact	behavior	of	the	command.

INDICES

Many	of	the	widget	commands	for	spinboxes	take	one	or	more	indices
as	arguments.	An	index	specifies	a	particular	character	in	the	spinbox's
string,	in	any	of	the	following	ways:

number
Specifies	the	character	as	a	numerical	index,	where	0	corresponds
to	the	first	character	in	the	string.

anchor
Indicates	the	anchor	point	for	the	selection,	which	is	set	with	the
select	from	and	select	adjust	widget	commands.

end
Indicates	the	character	just	after	the	last	one	in	the	spinbox's	string.
This	is	equivalent	to	specifying	a	numerical	index	equal	to	the
length	of	the	spinbox's	string.

insert
Indicates	the	character	adjacent	to	and	immediately	following	the
insertion	cursor.

sel.first
Indicates	the	first	character	in	the	selection.	It	is	an	error	to	use	this
form	if	the	selection	is	not	in	the	spinbox	window.

sel.last
Indicates	the	character	just	after	the	last	one	in	the	selection.	It	is

an	error	to	use	this	form	if	the	selection	is	not	in	the	spinbox
window.

@number
In	this	form,	number	is	treated	as	an	x-coordinate	in	the	spinbox's
window;	the	character	spanning	that	x-coordinate	is	used.	For
example,	“@0”	indicates	the	left-most	character	in	the	window.

Abbreviations	may	be	used	for	any	of	the	forms	above,	e.g.	“e”	or
“sel.f”.	In	general,	out-of-range	indices	are	automatically	rounded	to	the
nearest	legal	value.

SUBCOMMANDS

The	following	commands	are	possible	for	spinbox	widgets:

pathName	bbox	index
Returns	a	list	of	four	numbers	describing	the	bounding	box	of	the
character	given	by	index.	The	first	two	elements	of	the	list	give	the
x	and	y	coordinates	of	the	upper-left	corner	of	the	screen	area
covered	by	the	character	(in	pixels	relative	to	the	widget)	and	the
last	two	elements	give	the	width	and	height	of	the	character,	in
pixels.	The	bounding	box	may	refer	to	a	region	outside	the	visible
area	of	the	window.

pathName	cget	option
Returns	the	current	value	of	the	configuration	option	given	by
option.	Option	may	have	any	of	the	values	accepted	by	the
spinbox	command.

pathName	configure	?option?	?value	option	value	...?
Query	or	modify	the	configuration	options	of	the	widget.	If	no	option
is	specified,	returns	a	list	describing	all	of	the	available	options	for
pathName	(see	Tk_ConfigureInfo	for	information	on	the	format	of
this	list).	If	option	is	specified	with	no	value,	then	the	command
returns	a	list	describing	the	one	named	option	(this	list	will	be
identical	to	the	corresponding	sublist	of	the	value	returned	if	no
option	is	specified).	If	one	or	more	option-value	pairs	are	specified,

then	the	command	modifies	the	given	widget	option(s)	to	have	the
given	value(s);	in	this	case	the	command	returns	an	empty	string.
Option	may	have	any	of	the	values	accepted	by	the	spinbox
command.

pathName	delete	first	?last?
Delete	one	or	more	elements	of	the	spinbox.	First	is	the	index	of
the	first	character	to	delete,	and	last	is	the	index	of	the	character
just	after	the	last	one	to	delete.	If	last	is	not	specified	it	defaults	to
first+1,	i.e.	a	single	character	is	deleted.	This	command	returns	an
empty	string.

pathName	get
Returns	the	spinbox's	string.

pathName	icursor	index
Arrange	for	the	insertion	cursor	to	be	displayed	just	before	the
character	given	by	index.	Returns	an	empty	string.

pathName	identify	x	y
Returns	the	name	of	the	window	element	corresponding	to
coordinates	x	and	y	in	the	spinbox.	Return	value	is	one	of:	none,
buttondown,	buttonup,	entry.

pathName	index	index
Returns	the	numerical	index	corresponding	to	index.

pathName	insert	index	string
Insert	the	characters	of	string	just	before	the	character	indicated	by
index.	Returns	an	empty	string.

pathName	invoke	element
Causes	the	specified	element,	either	buttondown	or	buttonup,	to
be	invoked,	triggering	the	action	associated	with	it.

pathName	scan	option	args
This	command	is	used	to	implement	scanning	on	spinboxes.	It	has
two	forms,	depending	on	option:

pathName	scan	mark	x
Records	x	and	the	current	view	in	the	spinbox	window;	used	in
conjunction	with	later	scan	dragto	commands.	Typically	this
command	is	associated	with	a	mouse	button	press	in	the
widget.	It	returns	an	empty	string.

pathName	scan	dragto	x
This	command	computes	the	difference	between	its	x
argument	and	the	x	argument	to	the	last	scan	mark	command
for	the	widget.	It	then	adjusts	the	view	left	or	right	by	10	times
the	difference	in	x-coordinates.	This	command	is	typically
associated	with	mouse	motion	events	in	the	widget,	to	produce
the	effect	of	dragging	the	spinbox	at	high	speed	through	the
window.	The	return	value	is	an	empty	string.

pathName	selection	option	arg
This	command	is	used	to	adjust	the	selection	within	a	spinbox.	It
has	several	forms,	depending	on	option:

pathName	selection	adjust	index
Locate	the	end	of	the	selection	nearest	to	the	character	given
by	index,	and	adjust	that	end	of	the	selection	to	be	at	index
(i.e.	including	but	not	going	beyond	index).	The	other	end	of
the	selection	is	made	the	anchor	point	for	future	select	to
commands.	If	the	selection	is	not	currently	in	the	spinbox,	then
a	new	selection	is	created	to	include	the	characters	between
index	and	the	most	recent	selection	anchor	point,	inclusive.
Returns	an	empty	string.

pathName	selection	clear
Clear	the	selection	if	it	is	currently	in	this	widget.	If	the
selection	is	not	in	this	widget	then	the	command	has	no	effect.
Returns	an	empty	string.

pathName	selection	element	?element?
Sets	or	gets	the	currently	selected	element.	If	a	spinbutton
element	is	specified,	it	will	be	displayed	depressed.

pathName	selection	from	index
Set	the	selection	anchor	point	to	just	before	the	character
given	by	index.	Does	not	change	the	selection.	Returns	an
empty	string.

pathName	selection	present
Returns	1	if	there	is	are	characters	selected	in	the	spinbox,	0	if
nothing	is	selected.

pathName	selection	range	start	end
Sets	the	selection	to	include	the	characters	starting	with	the
one	indexed	by	start	and	ending	with	the	one	just	before	end.	If
end	refers	to	the	same	character	as	start	or	an	earlier	one,
then	the	spinbox's	selection	is	cleared.

pathName	selection	to	index
If	index	is	before	the	anchor	point,	set	the	selection	to	the
characters	from	index	up	to	but	not	including	the	anchor	point.
If	index	is	the	same	as	the	anchor	point,	do	nothing.	If	index	is
after	the	anchor	point,	set	the	selection	to	the	characters	from
the	anchor	point	up	to	but	not	including	index.	The	anchor
point	is	determined	by	the	most	recent	select	from	or	select
adjust	command	in	this	widget.	If	the	selection	is	not	in	this
widget	then	a	new	selection	is	created	using	the	most	recent
anchor	point	specified	for	the	widget.	Returns	an	empty	string.

pathName	set	?string?
If	string	is	specified,	the	spinbox	will	try	and	set	it	to	this	value,
otherwise	it	just	returns	the	spinbox's	string.	If	validation	is	on,	it	will
occur	when	setting	the	string.

pathName	validate
This	command	is	used	to	force	an	evaluation	of	the
validateCommand	independent	of	the	conditions	specified	by	the
validate	option.	This	is	done	by	temporarily	setting	the	validate
option	to	all.	It	returns	0	or	1.

pathName	xview	args

This	command	is	used	to	query	and	change	the	horizontal	position
of	the	text	in	the	widget's	window.	It	can	take	any	of	the	following
forms:

pathName	xview
Returns	a	list	containing	two	elements.	Each	element	is	a	real
fraction	between	0	and	1;	together	they	describe	the	horizontal
span	that	is	visible	in	the	window.	For	example,	if	the	first
element	is	.2	and	the	second	element	is	.6,	20%	of	the
spinbox's	text	is	off-screen	to	the	left,	the	middle	40%	is	visible
in	the	window,	and	40%	of	the	text	is	off-screen	to	the	right.
These	are	the	same	values	passed	to	scrollbars	via	the	-
xscrollcommand	option.

pathName	xview	index
Adjusts	the	view	in	the	window	so	that	the	character	given	by
index	is	displayed	at	the	left	edge	of	the	window.

pathName	xview	moveto	fraction
Adjusts	the	view	in	the	window	so	that	the	character	fraction	of
the	way	through	the	text	appears	at	the	left	edge	of	the
window.	Fraction	must	be	a	fraction	between	0	and	1.

pathName	xview	scroll	number	what
This	command	shifts	the	view	in	the	window	left	or	right
according	to	number	and	what.	Number	must	be	an	integer.
What	must	be	either	units	or	pages	or	an	abbreviation	of	one
of	these.	If	what	is	units,	the	view	adjusts	left	or	right	by
number	average-width	characters	on	the	display;	if	it	is	pages
then	the	view	adjusts	by	number	screenfuls.	If	number	is
negative	then	characters	farther	to	the	left	become	visible;	if	it
is	positive	then	characters	farther	to	the	right	become	visible.

DEFAULT	BINDINGS

Tk	automatically	creates	class	bindings	for	spinboxes	that	give	them	the
following	default	behavior.	In	the	descriptions	below,	“word”	refers	to	a
contiguous	group	of	letters,	digits,	or	“_”	characters,	or	any	single

character	other	than	these.

[1]
Clicking	mouse	button	1	positions	the	insertion	cursor	just	before
the	character	underneath	the	mouse	cursor,	sets	the	input	focus	to
this	widget,	and	clears	any	selection	in	the	widget.	Dragging	with
mouse	button	1	strokes	out	a	selection	between	the	insertion
cursor	and	the	character	under	the	mouse.

[2]
Double-clicking	with	mouse	button	1	selects	the	word	under	the
mouse	and	positions	the	insertion	cursor	at	the	beginning	of	the
word.	Dragging	after	a	double	click	will	stroke	out	a	selection
consisting	of	whole	words.

[3]
Triple-clicking	with	mouse	button	1	selects	all	of	the	text	in	the
spinbox	and	positions	the	insertion	cursor	before	the	first	character.

[4]
The	ends	of	the	selection	can	be	adjusted	by	dragging	with	mouse
button	1	while	the	Shift	key	is	down;	this	will	adjust	the	end	of	the
selection	that	was	nearest	to	the	mouse	cursor	when	button	1	was
pressed.	If	the	button	is	double-clicked	before	dragging	then	the
selection	will	be	adjusted	in	units	of	whole	words.

[5]
Clicking	mouse	button	1	with	the	Control	key	down	will	position	the
insertion	cursor	in	the	spinbox	without	affecting	the	selection.

[6]
If	any	normal	printing	characters	are	typed	in	a	spinbox,	they	are
inserted	at	the	point	of	the	insertion	cursor.

[7]
The	view	in	the	spinbox	can	be	adjusted	by	dragging	with	mouse
button	2.	If	mouse	button	2	is	clicked	without	moving	the	mouse,
the	selection	is	copied	into	the	spinbox	at	the	position	of	the	mouse

cursor.

[8]
If	the	mouse	is	dragged	out	of	the	spinbox	on	the	left	or	right	sides
while	button	1	is	pressed,	the	spinbox	will	automatically	scroll	to
make	more	text	visible	(if	there	is	more	text	off-screen	on	the	side
where	the	mouse	left	the	window).

[9]
The	Left	and	Right	keys	move	the	insertion	cursor	one	character	to
the	left	or	right;	they	also	clear	any	selection	in	the	spinbox	and	set
the	selection	anchor.	If	Left	or	Right	is	typed	with	the	Shift	key
down,	then	the	insertion	cursor	moves	and	the	selection	is
extended	to	include	the	new	character.	Control-Left	and	Control-
Right	move	the	insertion	cursor	by	words,	and	Control-Shift-Left
and	Control-Shift-Right	move	the	insertion	cursor	by	words	and
also	extend	the	selection.	Control-b	and	Control-f	behave	the	same
as	Left	and	Right,	respectively.	Meta-b	and	Meta-f	behave	the
same	as	Control-Left	and	Control-Right,	respectively.

[10]
The	Home	key,	or	Control-a,	will	move	the	insertion	cursor	to	the
beginning	of	the	spinbox	and	clear	any	selection	in	the	spinbox.
Shift-Home	moves	the	insertion	cursor	to	the	beginning	of	the
spinbox	and	also	extends	the	selection	to	that	point.

[11]
The	End	key,	or	Control-e,	will	move	the	insertion	cursor	to	the	end
of	the	spinbox	and	clear	any	selection	in	the	spinbox.	Shift-End
moves	the	cursor	to	the	end	and	extends	the	selection	to	that	point.

[12]
The	Select	key	and	Control-Space	set	the	selection	anchor	to	the
position	of	the	insertion	cursor.	They	do	not	affect	the	current
selection.	Shift-Select	and	Control-Shift-Space	adjust	the	selection
to	the	current	position	of	the	insertion	cursor,	selecting	from	the
anchor	to	the	insertion	cursor	if	there	was	not	any	selection
previously.

[13]
Control-/	selects	all	the	text	in	the	spinbox.

[14]
Control-\	clears	any	selection	in	the	spinbox.

[15]
The	F16	key	(labelled	Copy	on	many	Sun	workstations)	or	Meta-w
copies	the	selection	in	the	widget	to	the	clipboard,	if	there	is	a
selection.

[16]
The	F20	key	(labelled	Cut	on	many	Sun	workstations)	or	Control-w
copies	the	selection	in	the	widget	to	the	clipboard	and	deletes	the
selection.	If	there	is	no	selection	in	the	widget	then	these	keys	have
no	effect.

[17]
The	F18	key	(labelled	Paste	on	many	Sun	workstations)	or	Control-
y	inserts	the	contents	of	the	clipboard	at	the	position	of	the
insertion	cursor.

[18]
The	Delete	key	deletes	the	selection,	if	there	is	one	in	the	spinbox.
If	there	is	no	selection,	it	deletes	the	character	to	the	right	of	the
insertion	cursor.

[19]
The	BackSpace	key	and	Control-h	delete	the	selection,	if	there	is
one	in	the	spinbox.	If	there	is	no	selection,	it	deletes	the	character
to	the	left	of	the	insertion	cursor.

[20]
Control-d	deletes	the	character	to	the	right	of	the	insertion	cursor.

[21]
Meta-d	deletes	the	word	to	the	right	of	the	insertion	cursor.

[22]

Control-k	deletes	all	the	characters	to	the	right	of	the	insertion
cursor.

[23]
Control-t	reverses	the	order	of	the	two	characters	to	the	right	of	the
insertion	cursor.

If	the	spinbox	is	disabled	using	the	-state	option,	then	the	spinbox's
view	can	still	be	adjusted	and	text	in	the	spinbox	can	still	be	selected,
but	no	insertion	cursor	will	be	displayed	and	no	text	modifications	will
take	place.

The	behavior	of	spinboxes	can	be	changed	by	defining	new	bindings	for
individual	widgets	or	by	redefining	the	class	bindings.

KEYWORDS

spinbox,	entry,	widget

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	2000	Jeffrey	Hobbs.
Copyright	©	2000	Ajuba	Solutions.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	popup

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

tk_popup	-	Post	a	popup	menu

SYNOPSIS

tk_popup	menu	x	y	?entry?

DESCRIPTION

This	procedure	posts	a	menu	at	a	given	position	on	the	screen	and
configures	Tk	so	that	the	menu	and	its	cascaded	children	can	be
traversed	with	the	mouse	or	the	keyboard.	Menu	is	the	name	of	a	menu
widget	and	x	and	y	are	the	root	coordinates	at	which	to	display	the
menu.	If	entry	is	omitted	or	an	empty	string,	the	menu's	upper	left
corner	is	positioned	at	the	given	point.	Otherwise	entry	gives	the	index
of	an	entry	in	menu	and	the	menu	will	be	positioned	so	that	the	entry	is
positioned	over	the	given	point.

EXAMPLE

How	to	attach	a	simple	popup	menu	to	a	widget.

#	Create	a	menu

set	m	[menu	.popupMenu]

$m	add	command	-label	"Example	1"	-command	bell

$m	add	command	-label	"Example	2"	-command	bell

#	Create	something	to	attach	it	to

pack	[label	.l	-text	"Click	me!"]

#	Arrange	for	the	menu	to	pop	up	when	the	label	is	clicked

bind	.l	<1>	{tk_popup	.popupMenu	%X	%Y}

SEE	ALSO

bind,	menu,	tk_optionMenu

KEYWORDS

menu,	popup

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	ttk_label

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
ttk::label	-	Display	a	text	string	and/or	image

SYNOPSIS
DESCRIPTION
STANDARD	OPTIONS

-class
-compound,	compound,	Compound
-cursor,	cursor,	Cursor
-image,	image,	Image
-style
-takefocus,	takeFocus,	TakeFocus
-text,	text,	Text
-textvariable,	textVariable,	Variable
-underline,	underline,	Underline
-width

WIDGET-SPECIFIC	OPTIONS
-anchor,	anchor,	Anchor
-background,	frameColor,	FrameColor
-font,	font,	Font
-foreground,	textColor,	TextColor
-justify,	justify,	Justify
-padding,	padding,	Padding
-relief,	relief,	Relief
-text,	text,	Text
-wraplength,	wrapLength,	WrapLength

WIDGET	COMMAND
SEE	ALSO

NAME

ttk::label	-	Display	a	text	string	and/or	image

SYNOPSIS

ttk::label	pathName	?options?

DESCRIPTION

A	ttk::label	widget	displays	a	textual	label	and/or	image.	The	label	may
be	linked	to	a	Tcl	variable	to	automatically	change	the	displayed	text.

STANDARD	OPTIONS

-class
-compound,	compound,	Compound
-cursor,	cursor,	Cursor
-image,	image,	Image
-style
-takefocus,	takeFocus,	TakeFocus
-text,	text,	Text
-textvariable,	textVariable,	Variable
-underline,	underline,	Underline
-width

WIDGET-SPECIFIC	OPTIONS

Command-Line	Name:	-anchor
Database	Name:	anchor
Database	Class:	Anchor

Specifies	how	the	information	in	the	widget	is	positioned	relative	to
the	inner	margins.	Legal	values	are	n,	ne,	e,	se,	s,	sw,	w,	nw,	and
center.	See	also	-justify.

Command-Line	Name:	-background
Database	Name:	frameColor
Database	Class:	FrameColor

The	widget's	background	color.	If	unspecified,	the	theme	default	is
used.

Command-Line	Name:	-font

Database	Name:	font
Database	Class:	Font

Font	to	use	for	label	text.

Command-Line	Name:	-foreground
Database	Name:	textColor
Database	Class:	TextColor

The	widget's	foreground	color.	If	unspecified,	the	theme	default	is
used.

Command-Line	Name:	-justify
Database	Name:	justify
Database	Class:	Justify

If	there	are	multiple	lines	of	text,	specifies	how	the	lines	are	laid	out
relative	to	one	another.	One	of	left,	center,	or	right.	See	also	-
anchor.

Command-Line	Name:	-padding
Database	Name:	padding
Database	Class:	Padding

Specifies	the	amount	of	extra	space	to	allocate	for	the	widget.	The
padding	is	a	list	of	up	to	four	length	specifications	left	top	right
bottom.	If	fewer	than	four	elements	are	specified,	bottom	defaults
to	top,	right	defaults	to	left,	and	top	defaults	to	left.

Command-Line	Name:	-relief
Database	Name:	relief
Database	Class:	Relief

Specifies	the	3-D	effect	desired	for	the	widget	border.	Valid	values
are	flat,	groove,	raised,	ridge,	solid,	and	sunken.

Command-Line	Name:	-text
Database	Name:	text
Database	Class:	Text

Specifies	a	text	string	to	be	displayed	inside	the	widget	(unless
overridden	by	-textvariable).

Command-Line	Name:	-wraplength

Database	Name:	wrapLength
Database	Class:	WrapLength

Specifies	the	maximum	line	length	(in	pixels).	If	this	option	is	less
than	or	equal	to	zero,	then	automatic	wrapping	is	not	performed;
otherwise	the	text	is	split	into	lines	such	that	no	line	is	longer	than
the	specified	value.

WIDGET	COMMAND

Supports	the	standard	widget	commands	configure,	cget,	identify,
instate,	and	state;	see	ttk::widget(n).

SEE	ALSO

ttk::widget,	label

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	2004	Joe	English

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	ttk_vsapi

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
ttk_vsapi	-	Define	a	Microsoft	Visual	Styles	element

SYNOPSIS
DESCRIPTION
OPTIONS

-padding	padding
-margins	padding
-width	width
-height	height

STATE	MAP
EXAMPLE
SEE	ALSO
KEYWORDS

NAME

ttk_vsapi	-	Define	a	Microsoft	Visual	Styles	element

SYNOPSIS

ttk::style	element	create	name	vsapi	className	partId	?stateMap?	?
options?

DESCRIPTION

The	vsapi	element	factory	creates	a	new	element	in	the	current	theme
whose	visual	appearance	is	drawn	using	the	Microsoft	Visual	Styles	API
which	is	reponsible	for	the	themed	styles	on	Windows	XP	and	Vista.
This	factory	permits	any	of	the	Visual	Styles	parts	to	be	declared	as	ttk
elements	that	can	then	be	included	in	a	style	layout	to	modify	the
appearance	of	ttk	widgets.

className	and	partId	are	required	parameters	and	specify	the	Visual
Styles	class	and	part	as	given	in	the	Microsoft	documentation.	The
stateMap	may	be	provided	to	map	ttk	states	to	Visual	Styles	API	states
(see	STATE	MAP).

OPTIONS

Valid	options	are:

-padding	padding
Specify	the	element's	interior	padding.	padding	is	a	list	of	up	to	four
integers	specifying	the	left,	top,	right	and	bottom	padding	quantities
respectively.	This	option	may	not	be	mixed	with	any	other	options.

-margins	padding
Specifies	the	elements	exterior	padding.	padding	is	a	list	of	up	to
four	integers	specifying	the	left,	top,	right	and	bottom	padding
quantities	respectively.	This	option	may	not	be	mixed	with	any	other
options.

-width	width
Specifies	the	height	for	the	element.	If	this	option	is	set	then	the
Visual	Styles	API	will	not	be	queried	for	the	recommended	size	or
the	part.	If	this	option	is	set	then	-height	should	also	be	set.	The	-
width	and	-height	options	cannot	be	mixed	with	the	-padding	or	-
margins	options.

-height	height
Specifies	the	height	of	the	element.	See	the	comments	for	-width.

STATE	MAP

The	stateMap	parameter	is	a	list	of	ttk	states	and	the	corresponding
Visual	Styles	API	state	value.	This	permits	the	element	appearence	to
respond	to	changes	in	the	widget	state	such	as	becoming	active	or
being	pressed.	The	list	should	be	as	described	for	the	ttk::style	map
command	but	note	that	the	last	pair	in	the	list	should	be	the	default
state	and	is	typically	and	empty	list	and	1.	Unfortunately	all	the	Visual

Styles	parts	have	different	state	values	and	these	must	be	looked	up
either	in	the	Microsoft	documentation	or	more	likely	in	the	header	files.
The	original	header	to	use	was	tmschema.h	but	in	more	recent	versions
of	the	Windows	Development	Kit	this	is	vssym32.h.

If	no	stateMap	parameter	is	given	there	is	an	implicit	default	map	of	{{}
1}

EXAMPLE

Create	a	correctly	themed	close	button	by	changing	the	layout	of	a
ttk::button(n).	This	uses	the	WINDOW	part
WP_SMALLCLOSEBUTTON	and	as	documented	the	states
CBS_DISABLED,	CBS_HOT,	CBS_NORMAL	and	CBS_PUSHED	are
mapped	from	ttk	states.

ttk::style	element	create	smallclose	vsapi	WINDOW	19	\

				{disabled	4	pressed	3	active	2	{}	1}

ttk::style	layout	CloseButton	{CloseButton.smallclose	-sticky	news}

pack	[ttk::button	.close	-style	CloseButton]

Change	the	appearence	of	a	ttk::checkbutton(n)	to	use	the	Explorer
pin	part	EBP_HEADERPIN.

ttk::style	element	create	pin	vsapi	EXPLORERBAR	3	{

				{pressed	!selected}	3

				{active	!selected}	2

				{pressed	selected}	6

				{active	selected}	5

				{selected}	4

				{}	1

}

ttk::style	layout	Explorer.Pin	{Explorer.Pin.pin	-sticky	news}

pack	[ttk::checkbutton	.pin	-style	Explorer.Pin]

SEE	ALSO

ttk::intro,	ttk::widget,	ttk::style,	ttk_image

KEYWORDS

style,	theme,	appearance,	windows

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	2008	Pat	Thoyts

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	entry

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
entry	-	Create	and	manipulate	entry	widgets

SYNOPSIS
STANDARD	OPTIONS

-background	or	-bg,	background,	Background
-borderwidth	or	-bd,	borderWidth,	BorderWidth
-cursor,	cursor,	Cursor
-exportselection,	exportSelection,	ExportSelection
-font,	font,	Font
-foreground	or	-fg,	foreground,	Foreground
-highlightbackground,	highlightBackground,
HighlightBackground
-highlightcolor,	highlightColor,	HighlightColor
-highlightthickness,	highlightThickness,	HighlightThickness
-insertbackground,	insertBackground,	Foreground
-insertborderwidth,	insertBorderWidth,	BorderWidth
-insertofftime,	insertOffTime,	OffTime
-insertontime,	insertOnTime,	OnTime
-insertwidth,	insertWidth,	InsertWidth
-justify,	justify,	Justify
-relief,	relief,	Relief
-selectbackground,	selectBackground,	Foreground
-selectborderwidth,	selectBorderWidth,	BorderWidth
-selectforeground,	selectForeground,	Background
-takefocus,	takeFocus,	TakeFocus
-textvariable,	textVariable,	Variable
-xscrollcommand,	xScrollCommand,	ScrollCommand

WIDGET-SPECIFIC	OPTIONS
-disabledbackground,	disabledBackground,
DisabledBackground
-disabledforeground,	disabledForeground,	DisabledForeground

-invalidcommand	or	-invcmd,	invalidCommand,
InvalidCommand
-readonlybackground,	readonlyBackground,
ReadonlyBackground
-show,	show,	Show
-state,	state,	State
-validate,	validate,	Validate
-validatecommand	or	-vcmd,	validateCommand,
ValidateCommand
-width,	width,	Width

DESCRIPTION
VALIDATION

none
focus
focusin
focusout
key
all
%d
%i
%P
%s
%S
%v
%V
%W

WIDGET	COMMAND
INDICES

number
anchor
end
insert
sel.first
sel.last
@number

SUBCOMMANDS
pathName	bbox	index

pathName	cget	option
pathName	configure	?option?	?value	option	value	...?
pathName	delete	first	?last?
pathName	get
pathName	icursor	index
pathName	index	index
pathName	insert	index	string
pathName	scan	option	args

pathName	scan	mark	x
pathName	scan	dragto	x

pathName	selection	option	arg
pathName	selection	adjust	index
pathName	selection	clear
pathName	selection	from	index
pathName	selection	present
pathName	selection	range	start	end
pathName	selection	to	index

pathName	validate
pathName	xview	args

pathName	xview
pathName	xview	index
pathName	xview	moveto	fraction
pathName	xview	scroll	number	what

DEFAULT	BINDINGS
SEE	ALSO
KEYWORDS

NAME

entry	-	Create	and	manipulate	entry	widgets

SYNOPSIS

entry	pathName	?options?

STANDARD	OPTIONS

-background	or	-bg,	background,	Background

-borderwidth	or	-bd,	borderWidth,	BorderWidth
-cursor,	cursor,	Cursor
-exportselection,	exportSelection,	ExportSelection
-font,	font,	Font
-foreground	or	-fg,	foreground,	Foreground
-highlightbackground,	highlightBackground,	HighlightBackground
-highlightcolor,	highlightColor,	HighlightColor
-highlightthickness,	highlightThickness,	HighlightThickness
-insertbackground,	insertBackground,	Foreground
-insertborderwidth,	insertBorderWidth,	BorderWidth
-insertofftime,	insertOffTime,	OffTime
-insertontime,	insertOnTime,	OnTime
-insertwidth,	insertWidth,	InsertWidth
-justify,	justify,	Justify
-relief,	relief,	Relief
-selectbackground,	selectBackground,	Foreground
-selectborderwidth,	selectBorderWidth,	BorderWidth
-selectforeground,	selectForeground,	Background
-takefocus,	takeFocus,	TakeFocus
-textvariable,	textVariable,	Variable
-xscrollcommand,	xScrollCommand,	ScrollCommand

WIDGET-SPECIFIC	OPTIONS

Command-Line	Name:	-disabledbackground
Database	Name:	disabledBackground
Database	Class:	DisabledBackground

Specifies	the	background	color	to	use	when	the	entry	is	disabled.	If
this	option	is	the	empty	string,	the	normal	background	color	is
used.

Command-Line	Name:	-disabledforeground
Database	Name:	disabledForeground
Database	Class:	DisabledForeground

Specifies	the	foreground	color	to	use	when	the	entry	is	disabled.	If
this	option	is	the	empty	string,	the	normal	foreground	color	is	used.

Command-Line	Name:	-invalidcommand	or	-invcmd

Database	Name:	invalidCommand
Database	Class:	InvalidCommand

Specifies	a	script	to	eval	when	validateCommand	returns	0.
Setting	it	to	{}	disables	this	feature	(the	default).	The	best	use	of
this	option	is	to	set	it	to	bell.	See	Validation	below	for	more
information.

Command-Line	Name:	-readonlybackground
Database	Name:	readonlyBackground
Database	Class:	ReadonlyBackground

Specifies	the	background	color	to	use	when	the	entry	is	readonly.	If
this	option	is	the	empty	string,	the	normal	background	color	is
used.

Command-Line	Name:	-show
Database	Name:	show
Database	Class:	Show

If	this	option	is	specified,	then	the	true	contents	of	the	entry	are	not
displayed	in	the	window.	Instead,	each	character	in	the	entry's
value	will	be	displayed	as	the	first	character	in	the	value	of	this
option,	such	as	“*”.	This	is	useful,	for	example,	if	the	entry	is	to	be
used	to	enter	a	password.	If	characters	in	the	entry	are	selected
and	copied	elsewhere,	the	information	copied	will	be	what	is
displayed,	not	the	true	contents	of	the	entry.

Command-Line	Name:	-state
Database	Name:	state
Database	Class:	State

Specifies	one	of	three	states	for	the	entry:	normal,	disabled,	or
readonly.	If	the	entry	is	readonly,	then	the	value	may	not	be
changed	using	widget	commands	and	no	insertion	cursor	will	be
displayed,	even	if	the	input	focus	is	in	the	widget;	the	contents	of
the	widget	may	still	be	selected.	If	the	entry	is	disabled,	the	value
may	not	be	changed,	no	insertion	cursor	will	be	displayed,	the
contents	will	not	be	selectable,	and	the	entry	may	be	displayed	in	a
different	color,	depending	on	the	values	of	the	-
disabledforeground	and	-disabledbackground	options.

Command-Line	Name:	-validate
Database	Name:	validate
Database	Class:	Validate

Specifies	the	mode	in	which	validation	should	operate:	none,
focus,	focusin,	focusout,	key,	or	all.	It	defaults	to	none.	When
you	want	validation,	you	must	explicitly	state	which	mode	you	wish
to	use.	See	Validation	below	for	more.

Command-Line	Name:	-validatecommand	or	-vcmd
Database	Name:	validateCommand
Database	Class:	ValidateCommand

Specifies	a	script	to	eval	when	you	want	to	validate	the	input	into
the	entry	widget.	Setting	it	to	{}	disables	this	feature	(the	default).
This	command	must	return	a	valid	Tcl	boolean	value.	If	it	returns	0
(or	the	valid	Tcl	boolean	equivalent)	then	it	means	you	reject	the
new	edition	and	it	will	not	occur	and	the	invalidCommand	will	be
evaluated	if	it	is	set.	If	it	returns	1,	then	the	new	edition	occurs.	See
Validation	below	for	more	information.

Command-Line	Name:	-width
Database	Name:	width
Database	Class:	Width

Specifies	an	integer	value	indicating	the	desired	width	of	the	entry
window,	in	average-size	characters	of	the	widget's	font.	If	the	value
is	less	than	or	equal	to	zero,	the	widget	picks	a	size	just	large
enough	to	hold	its	current	text.

DESCRIPTION

The	entry	command	creates	a	new	window	(given	by	the	pathName
argument)	and	makes	it	into	an	entry	widget.	Additional	options,
described	above,	may	be	specified	on	the	command	line	or	in	the	option
database	to	configure	aspects	of	the	entry	such	as	its	colors,	font,	and
relief.	The	entry	command	returns	its	pathName	argument.	At	the	time
this	command	is	invoked,	there	must	not	exist	a	window	named
pathName,	but	pathName's	parent	must	exist.

An	entry	is	a	widget	that	displays	a	one-line	text	string	and	allows	that

string	to	be	edited	using	widget	commands	described	below,	which	are
typically	bound	to	keystrokes	and	mouse	actions.	When	first	created,	an
entry's	string	is	empty.	A	portion	of	the	entry	may	be	selected	as
described	below.	If	an	entry	is	exporting	its	selection	(see	the
exportSelection	option),	then	it	will	observe	the	standard	X11	protocols
for	handling	the	selection;	entry	selections	are	available	as	type
STRING.	Entries	also	observe	the	standard	Tk	rules	for	dealing	with	the
input	focus.	When	an	entry	has	the	input	focus	it	displays	an	insertion
cursor	to	indicate	where	new	characters	will	be	inserted.

Entries	are	capable	of	displaying	strings	that	are	too	long	to	fit	entirely
within	the	widget's	window.	In	this	case,	only	a	portion	of	the	string	will
be	displayed;	commands	described	below	may	be	used	to	change	the
view	in	the	window.	Entries	use	the	standard	xScrollCommand
mechanism	for	interacting	with	scrollbars	(see	the	description	of	the
xScrollCommand	option	for	details).	They	also	support	scanning,	as
described	below.

VALIDATION

Validation	works	by	setting	the	validateCommand	option	to	a	script
which	will	be	evaluated	according	to	the	validate	option	as	follows:

none
Default.	This	means	no	validation	will	occur.

focus
validateCommand	will	be	called	when	the	entry	receives	or	loses
focus.

focusin
validateCommand	will	be	called	when	the	entry	receives	focus.

focusout
validateCommand	will	be	called	when	the	entry	loses	focus.

key
validateCommand	will	be	called	when	the	entry	is	edited.

all
validateCommand	will	be	called	for	all	above	conditions.

It	is	possible	to	perform	percent	substitutions	on	the	validateCommand
and	invalidCommand,	just	as	you	would	in	a	bind	script.	The	following
substitutions	are	recognized:

%d
Type	of	action:	1	for	insert,	0	for	delete,	or	-1	for	focus,	forced	or
textvariable	validation.

%i
Index	of	char	string	to	be	inserted/deleted,	if	any,	otherwise	-1.

%P
The	value	of	the	entry	if	the	edit	is	allowed.	If	you	are	configuring
the	entry	widget	to	have	a	new	textvariable,	this	will	be	the	value	of
that	textvariable.

%s
The	current	value	of	entry	prior	to	editing.

%S
The	text	string	being	inserted/deleted,	if	any,	{}	otherwise.

%v
The	type	of	validation	currently	set.

%V
The	type	of	validation	that	triggered	the	callback	(key,	focusin,
focusout,	forced).

%W
The	name	of	the	entry	widget.

In	general,	the	textVariable	and	validateCommand	can	be	dangerous
to	mix.	Any	problems	have	been	overcome	so	that	using	the
validateCommand	will	not	interfere	with	the	traditional	behavior	of	the
entry	widget.	Using	the	textVariable	for	read-only	purposes	will	never

cause	problems.	The	danger	comes	when	you	try	set	the	textVariable
to	something	that	the	validateCommand	would	not	accept,	which
causes	validate	to	become	none	(the	invalidCommand	will	not	be
triggered).	The	same	happens	when	an	error	occurs	evaluating	the
validateCommand.

Primarily,	an	error	will	occur	when	the	validateCommand	or
invalidCommand	encounters	an	error	in	its	script	while	evaluating	or
validateCommand	does	not	return	a	valid	Tcl	boolean	value.	The
validate	option	will	also	set	itself	to	none	when	you	edit	the	entry
widget	from	within	either	the	validateCommand	or	the
invalidCommand.	Such	editions	will	override	the	one	that	was	being
validated.	If	you	wish	to	edit	the	entry	widget	(for	example	set	it	to	{})
during	validation	and	still	have	the	validate	option	set,	you	should
include	the	command

after	idle	{%W	config	-validate	%v}

in	the	validateCommand	or	invalidCommand	(whichever	one	you
were	editing	the	entry	widget	from).	It	is	also	recommended	to	not	set
an	associated	textVariable	during	validation,	as	that	can	cause	the
entry	widget	to	become	out	of	sync	with	the	textVariable.

WIDGET	COMMAND

The	entry	command	creates	a	new	Tcl	command	whose	name	is
pathName.	This	command	may	be	used	to	invoke	various	operations	on
the	widget.	It	has	the	following	general	form:

pathName	subcommand	?arg	arg	...?

Subcommand	and	the	args	determine	the	exact	behavior	of	the
command.

INDICES

Many	of	the	widget	commands	for	entries	take	one	or	more	indices	as
arguments.	An	index	specifies	a	particular	character	in	the	entry's
string,	in	any	of	the	following	ways:

number
Specifies	the	character	as	a	numerical	index,	where	0	corresponds
to	the	first	character	in	the	string.

anchor
Indicates	the	anchor	point	for	the	selection,	which	is	set	with	the
select	from	and	select	adjust	widget	commands.

end
Indicates	the	character	just	after	the	last	one	in	the	entry's	string.
This	is	equivalent	to	specifying	a	numerical	index	equal	to	the
length	of	the	entry's	string.

insert
Indicates	the	character	adjacent	to	and	immediately	following	the
insertion	cursor.

sel.first
Indicates	the	first	character	in	the	selection.	It	is	an	error	to	use	this
form	if	the	selection	is	not	in	the	entry	window.

sel.last
Indicates	the	character	just	after	the	last	one	in	the	selection.	It	is
an	error	to	use	this	form	if	the	selection	is	not	in	the	entry	window.

@number
In	this	form,	number	is	treated	as	an	x-coordinate	in	the	entry's
window;	the	character	spanning	that	x-coordinate	is	used.	For
example,	“@0”	indicates	the	left-most	character	in	the	window.

Abbreviations	may	be	used	for	any	of	the	forms	above,	e.g.	“e”	or
“sel.f”.	In	general,	out-of-range	indices	are	automatically	rounded	to	the
nearest	legal	value.

SUBCOMMANDS

The	following	commands	are	possible	for	entry	widgets:

pathName	bbox	index
Returns	a	list	of	four	numbers	describing	the	bounding	box	of	the
character	given	by	index.	The	first	two	elements	of	the	list	give	the
x	and	y	coordinates	of	the	upper-left	corner	of	the	screen	area
covered	by	the	character	(in	pixels	relative	to	the	widget)	and	the
last	two	elements	give	the	width	and	height	of	the	character,	in
pixels.	The	bounding	box	may	refer	to	a	region	outside	the	visible
area	of	the	window.

pathName	cget	option
Returns	the	current	value	of	the	configuration	option	given	by
option.	Option	may	have	any	of	the	values	accepted	by	the	entry
command.

pathName	configure	?option?	?value	option	value	...?
Query	or	modify	the	configuration	options	of	the	widget.	If	no	option
is	specified,	returns	a	list	describing	all	of	the	available	options	for
pathName	(see	Tk_ConfigureInfo	for	information	on	the	format	of
this	list).	If	option	is	specified	with	no	value,	then	the	command
returns	a	list	describing	the	one	named	option	(this	list	will	be
identical	to	the	corresponding	sublist	of	the	value	returned	if	no
option	is	specified).	If	one	or	more	option-value	pairs	are	specified,
then	the	command	modifies	the	given	widget	option(s)	to	have	the
given	value(s);	in	this	case	the	command	returns	an	empty	string.
Option	may	have	any	of	the	values	accepted	by	the	entry
command.

pathName	delete	first	?last?
Delete	one	or	more	elements	of	the	entry.	First	is	the	index	of	the
first	character	to	delete,	and	last	is	the	index	of	the	character	just
after	the	last	one	to	delete.	If	last	is	not	specified	it	defaults	to
first+1,	i.e.	a	single	character	is	deleted.	This	command	returns	an
empty	string.

pathName	get
Returns	the	entry's	string.

pathName	icursor	index
Arrange	for	the	insertion	cursor	to	be	displayed	just	before	the
character	given	by	index.	Returns	an	empty	string.

pathName	index	index
Returns	the	numerical	index	corresponding	to	index.

pathName	insert	index	string
Insert	the	characters	of	string	just	before	the	character	indicated	by
index.	Returns	an	empty	string.

pathName	scan	option	args
This	command	is	used	to	implement	scanning	on	entries.	It	has	two
forms,	depending	on	option:

pathName	scan	mark	x
Records	x	and	the	current	view	in	the	entry	window;	used	in
conjunction	with	later	scan	dragto	commands.	Typically	this
command	is	associated	with	a	mouse	button	press	in	the
widget.	It	returns	an	empty	string.

pathName	scan	dragto	x
This	command	computes	the	difference	between	its	x
argument	and	the	x	argument	to	the	last	scan	mark	command
for	the	widget.	It	then	adjusts	the	view	left	or	right	by	10	times
the	difference	in	x-coordinates.	This	command	is	typically
associated	with	mouse	motion	events	in	the	widget,	to	produce
the	effect	of	dragging	the	entry	at	high	speed	through	the
window.	The	return	value	is	an	empty	string.

pathName	selection	option	arg
This	command	is	used	to	adjust	the	selection	within	an	entry.	It	has
several	forms,	depending	on	option:

pathName	selection	adjust	index

Locate	the	end	of	the	selection	nearest	to	the	character	given
by	index,	and	adjust	that	end	of	the	selection	to	be	at	index
(i.e.	including	but	not	going	beyond	index).	The	other	end	of
the	selection	is	made	the	anchor	point	for	future	select	to
commands.	If	the	selection	is	not	currently	in	the	entry,	then	a
new	selection	is	created	to	include	the	characters	between
index	and	the	most	recent	selection	anchor	point,	inclusive.
Returns	an	empty	string.

pathName	selection	clear
Clear	the	selection	if	it	is	currently	in	this	widget.	If	the
selection	is	not	in	this	widget	then	the	command	has	no	effect.
Returns	an	empty	string.

pathName	selection	from	index
Set	the	selection	anchor	point	to	just	before	the	character
given	by	index.	Does	not	change	the	selection.	Returns	an
empty	string.

pathName	selection	present
Returns	1	if	there	is	are	characters	selected	in	the	entry,	0	if
nothing	is	selected.

pathName	selection	range	start	end
Sets	the	selection	to	include	the	characters	starting	with	the
one	indexed	by	start	and	ending	with	the	one	just	before	end.	If
end	refers	to	the	same	character	as	start	or	an	earlier	one,
then	the	entry's	selection	is	cleared.

pathName	selection	to	index
If	index	is	before	the	anchor	point,	set	the	selection	to	the
characters	from	index	up	to	but	not	including	the	anchor	point.
If	index	is	the	same	as	the	anchor	point,	do	nothing.	If	index	is
after	the	anchor	point,	set	the	selection	to	the	characters	from
the	anchor	point	up	to	but	not	including	index.	The	anchor
point	is	determined	by	the	most	recent	select	from	or	select
adjust	command	in	this	widget.	If	the	selection	is	not	in	this
widget	then	a	new	selection	is	created	using	the	most	recent

anchor	point	specified	for	the	widget.	Returns	an	empty	string.

pathName	validate
This	command	is	used	to	force	an	evaluation	of	the
validateCommand	independent	of	the	conditions	specified	by	the
validate	option.	This	is	done	by	temporarily	setting	the	validate
option	to	all.	It	returns	0	or	1.

pathName	xview	args
This	command	is	used	to	query	and	change	the	horizontal	position
of	the	text	in	the	widget's	window.	It	can	take	any	of	the	following
forms:

pathName	xview
Returns	a	list	containing	two	elements.	Each	element	is	a	real
fraction	between	0	and	1;	together	they	describe	the	horizontal
span	that	is	visible	in	the	window.	For	example,	if	the	first
element	is	.2	and	the	second	element	is	.6,	20%	of	the	entry's
text	is	off-screen	to	the	left,	the	middle	40%	is	visible	in	the
window,	and	40%	of	the	text	is	off-screen	to	the	right.	These
are	the	same	values	passed	to	scrollbars	via	the	-
xscrollcommand	option.

pathName	xview	index
Adjusts	the	view	in	the	window	so	that	the	character	given	by
index	is	displayed	at	the	left	edge	of	the	window.

pathName	xview	moveto	fraction
Adjusts	the	view	in	the	window	so	that	the	character	fraction	of
the	way	through	the	text	appears	at	the	left	edge	of	the
window.	Fraction	must	be	a	fraction	between	0	and	1.

pathName	xview	scroll	number	what
This	command	shifts	the	view	in	the	window	left	or	right
according	to	number	and	what.	Number	must	be	an	integer.
What	must	be	either	units	or	pages	or	an	abbreviation	of	one
of	these.	If	what	is	units,	the	view	adjusts	left	or	right	by
number	average-width	characters	on	the	display;	if	it	is	pages

then	the	view	adjusts	by	number	screenfuls.	If	number	is
negative	then	characters	farther	to	the	left	become	visible;	if	it
is	positive	then	characters	farther	to	the	right	become	visible.

DEFAULT	BINDINGS

Tk	automatically	creates	class	bindings	for	entries	that	give	them	the
following	default	behavior.	In	the	descriptions	below,	“word”	refers	to	a
contiguous	group	of	letters,	digits,	or	“_”	characters,	or	any	single
character	other	than	these.

[1]
Clicking	mouse	button	1	positions	the	insertion	cursor	just	before
the	character	underneath	the	mouse	cursor,	sets	the	input	focus	to
this	widget,	and	clears	any	selection	in	the	widget.	Dragging	with
mouse	button	1	strokes	out	a	selection	between	the	insertion
cursor	and	the	character	under	the	mouse.

[2]
Double-clicking	with	mouse	button	1	selects	the	word	under	the
mouse	and	positions	the	insertion	cursor	at	the	end	of	the	word.
Dragging	after	a	double	click	will	stroke	out	a	selection	consisting
of	whole	words.

[3]
Triple-clicking	with	mouse	button	1	selects	all	of	the	text	in	the
entry	and	positions	the	insertion	cursor	at	the	end	of	the	line.

[4]
The	ends	of	the	selection	can	be	adjusted	by	dragging	with	mouse
button	1	while	the	Shift	key	is	down;	this	will	adjust	the	end	of	the
selection	that	was	nearest	to	the	mouse	cursor	when	button	1	was
pressed.	If	the	button	is	double-clicked	before	dragging	then	the
selection	will	be	adjusted	in	units	of	whole	words.

[5]
Clicking	mouse	button	1	with	the	Control	key	down	will	position	the
insertion	cursor	in	the	entry	without	affecting	the	selection.

[6]
If	any	normal	printing	characters	are	typed	in	an	entry,	they	are
inserted	at	the	point	of	the	insertion	cursor.

[7]
The	view	in	the	entry	can	be	adjusted	by	dragging	with	mouse
button	2.	If	mouse	button	2	is	clicked	without	moving	the	mouse,
the	selection	is	copied	into	the	entry	at	the	position	of	the	mouse
cursor.

[8]
If	the	mouse	is	dragged	out	of	the	entry	on	the	left	or	right	sides
while	button	1	is	pressed,	the	entry	will	automatically	scroll	to	make
more	text	visible	(if	there	is	more	text	off-screen	on	the	side	where
the	mouse	left	the	window).

[9]
The	Left	and	Right	keys	move	the	insertion	cursor	one	character	to
the	left	or	right;	they	also	clear	any	selection	in	the	entry	and	set
the	selection	anchor.	If	Left	or	Right	is	typed	with	the	Shift	key
down,	then	the	insertion	cursor	moves	and	the	selection	is
extended	to	include	the	new	character.	Control-Left	and	Control-
Right	move	the	insertion	cursor	by	words,	and	Control-Shift-Left
and	Control-Shift-Right	move	the	insertion	cursor	by	words	and
also	extend	the	selection.	Control-b	and	Control-f	behave	the	same
as	Left	and	Right,	respectively.	Meta-b	and	Meta-f	behave	the
same	as	Control-Left	and	Control-Right,	respectively.

[10]
The	Home	key,	or	Control-a,	will	move	the	insertion	cursor	to	the
beginning	of	the	entry	and	clear	any	selection	in	the	entry.	Shift-
Home	moves	the	insertion	cursor	to	the	beginning	of	the	entry	and
also	extends	the	selection	to	that	point.

[11]
The	End	key,	or	Control-e,	will	move	the	insertion	cursor	to	the	end
of	the	entry	and	clear	any	selection	in	the	entry.	Shift-End	moves
the	cursor	to	the	end	and	extends	the	selection	to	that	point.

[12]
The	Select	key	and	Control-Space	set	the	selection	anchor	to	the
position	of	the	insertion	cursor.	They	do	not	affect	the	current
selection.	Shift-Select	and	Control-Shift-Space	adjust	the	selection
to	the	current	position	of	the	insertion	cursor,	selecting	from	the
anchor	to	the	insertion	cursor	if	there	was	not	any	selection
previously.

[13]
Control-/	selects	all	the	text	in	the	entry.

[14]
Control-\	clears	any	selection	in	the	entry.

[15]
The	F16	key	(labelled	Copy	on	many	Sun	workstations)	or	Meta-w
copies	the	selection	in	the	widget	to	the	clipboard,	if	there	is	a
selection.

[16]
The	F20	key	(labelled	Cut	on	many	Sun	workstations)	or	Control-w
copies	the	selection	in	the	widget	to	the	clipboard	and	deletes	the
selection.	If	there	is	no	selection	in	the	widget	then	these	keys	have
no	effect.

[17]
The	F18	key	(labelled	Paste	on	many	Sun	workstations)	or	Control-
y	inserts	the	contents	of	the	clipboard	at	the	position	of	the
insertion	cursor.

[18]
The	Delete	key	deletes	the	selection,	if	there	is	one	in	the	entry.	If
there	is	no	selection,	it	deletes	the	character	to	the	right	of	the
insertion	cursor.

[19]
The	BackSpace	key	and	Control-h	delete	the	selection,	if	there	is
one	in	the	entry.	If	there	is	no	selection,	it	deletes	the	character	to

the	left	of	the	insertion	cursor.

[20]
Control-d	deletes	the	character	to	the	right	of	the	insertion	cursor.

[21]
Meta-d	deletes	the	word	to	the	right	of	the	insertion	cursor.

[22]
Control-k	deletes	all	the	characters	to	the	right	of	the	insertion
cursor.

[23]
Control-t	reverses	the	order	of	the	two	characters	to	the	right	of	the
insertion	cursor.

If	the	entry	is	disabled	using	the	-state	option,	then	the	entry's	view	can
still	be	adjusted	and	text	in	the	entry	can	still	be	selected,	but	no
insertion	cursor	will	be	displayed	and	no	text	modifications	will	take
place	except	if	the	entry	is	linked	to	a	variable	using	the	-textvariable
option,	in	which	case	any	changes	to	the	variable	are	reflected	by	the
entry	whatever	the	value	of	its	-state	option.

The	behavior	of	entries	can	be	changed	by	defining	new	bindings	for
individual	widgets	or	by	redefining	the	class	bindings.

SEE	ALSO

ttk::entry

KEYWORDS

entry,	widget

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990-1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.
Copyright	©	1998-2000	Scriptics	Corporation.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	menubutton

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
menubutton	-	Create	and	manipulate	menubutton	widgets

SYNOPSIS
STANDARD	OPTIONS

-activebackground,	activeBackground,	Foreground
-activeforeground,	activeForeground,	Background
-anchor,	anchor,	Anchor
-background	or	-bg,	background,	Background
-bitmap,	bitmap,	Bitmap
-borderwidth	or	-bd,	borderWidth,	BorderWidth
-compound,	compound,	Compound
-cursor,	cursor,	Cursor
-disabledforeground,	disabledForeground,	DisabledForeground
-font,	font,	Font
-foreground	or	-fg,	foreground,	Foreground
-highlightbackground,	highlightBackground,
HighlightBackground
-highlightcolor,	highlightColor,	HighlightColor
-highlightthickness,	highlightThickness,	HighlightThickness
-image,	image,	Image
-justify,	justify,	Justify
-padx,	padX,	Pad
-pady,	padY,	Pad
-relief,	relief,	Relief
-takefocus,	takeFocus,	TakeFocus
-text,	text,	Text
-textvariable,	textVariable,	Variable
-underline,	underline,	Underline
-wraplength,	wrapLength,	WrapLength

WIDGET-SPECIFIC	OPTIONS
-direction,	direction,	Height

-height,	height,	Height
-indicatoron,	indicatorOn,	IndicatorOn
-menu,	menu,	MenuName
-state,	state,	State
-width,	width,	Width

INTRODUCTION
WIDGET	COMMAND

pathName	cget	option
pathName	configure	?option?	?value	option	value	...?

DEFAULT	BINDINGS
SEE	ALSO
KEYWORDS

NAME

menubutton	-	Create	and	manipulate	menubutton	widgets

SYNOPSIS

menubutton	pathName	?options?

STANDARD	OPTIONS

-activebackground,	activeBackground,	Foreground
-activeforeground,	activeForeground,	Background
-anchor,	anchor,	Anchor
-background	or	-bg,	background,	Background
-bitmap,	bitmap,	Bitmap
-borderwidth	or	-bd,	borderWidth,	BorderWidth
-compound,	compound,	Compound
-cursor,	cursor,	Cursor
-disabledforeground,	disabledForeground,	DisabledForeground
-font,	font,	Font
-foreground	or	-fg,	foreground,	Foreground
-highlightbackground,	highlightBackground,	HighlightBackground
-highlightcolor,	highlightColor,	HighlightColor
-highlightthickness,	highlightThickness,	HighlightThickness
-image,	image,	Image

-justify,	justify,	Justify
-padx,	padX,	Pad
-pady,	padY,	Pad
-relief,	relief,	Relief
-takefocus,	takeFocus,	TakeFocus
-text,	text,	Text
-textvariable,	textVariable,	Variable
-underline,	underline,	Underline
-wraplength,	wrapLength,	WrapLength

WIDGET-SPECIFIC	OPTIONS

Command-Line	Name:	-direction
Database	Name:	direction
Database	Class:	Height

Specifies	where	the	menu	is	going	to	be	popup	up.	above	tries	to
pop	the	menu	above	the	menubutton.	below	tries	to	pop	the	menu
below	the	menubutton.	left	tries	to	pop	the	menu	to	the	left	of	the
menubutton.	right	tries	to	pop	the	menu	to	the	right	of	the	menu
button.	flush	pops	the	menu	directly	over	the	menubutton.	In	the
case	of	above	or	below,	the	direction	will	be	reversed	if	the	menu
would	show	offscreen.

Command-Line	Name:	-height
Database	Name:	height
Database	Class:	Height

Specifies	a	desired	height	for	the	menubutton.	If	an	image	or
bitmap	is	being	displayed	in	the	menubutton	then	the	value	is	in
screen	units	(i.e.	any	of	the	forms	acceptable	to	Tk_GetPixels);	for
text	it	is	in	lines	of	text.	If	this	option	is	not	specified,	the
menubutton's	desired	height	is	computed	from	the	size	of	the
image	or	bitmap	or	text	being	displayed	in	it.

Command-Line	Name:	-indicatoron
Database	Name:	indicatorOn
Database	Class:	IndicatorOn

The	value	must	be	a	proper	boolean	value.	If	it	is	true	then	a	small
indicator	rectangle	will	be	displayed	on	the	right	side	of	the

menubutton	and	the	default	menu	bindings	will	treat	this	as	an
option	menubutton.	If	false	then	no	indicator	will	be	displayed.

Command-Line	Name:	-menu
Database	Name:	menu
Database	Class:	MenuName

Specifies	the	path	name	of	the	menu	associated	with	this
menubutton.	The	menu	must	be	a	child	of	the	menubutton.

Command-Line	Name:	-state
Database	Name:	state
Database	Class:	State

Specifies	one	of	three	states	for	the	menubutton:	normal,	active,
or	disabled.	In	normal	state	the	menubutton	is	displayed	using	the
foreground	and	background	options.	The	active	state	is	typically
used	when	the	pointer	is	over	the	menubutton.	In	active	state	the
menubutton	is	displayed	using	the	activeForeground	and
activeBackground	options.	Disabled	state	means	that	the
menubutton	should	be	insensitive:	the	default	bindings	will	refuse
to	activate	the	widget	and	will	ignore	mouse	button	presses.	In	this
state	the	disabledForeground	and	background	options	determine
how	the	button	is	displayed.

Command-Line	Name:	-width
Database	Name:	width
Database	Class:	Width

Specifies	a	desired	width	for	the	menubutton.	If	an	image	or	bitmap
is	being	displayed	in	the	menubutton	then	the	value	is	in	screen
units	(i.e.	any	of	the	forms	acceptable	to	Tk_GetPixels);	for	text	it
is	in	characters.	If	this	option	is	not	specified,	the	menubutton's
desired	width	is	computed	from	the	size	of	the	image	or	bitmap	or
text	being	displayed	in	it.

INTRODUCTION

The	menubutton	command	creates	a	new	window	(given	by	the
pathName	argument)	and	makes	it	into	a	menubutton	widget.	Additional
options,	described	above,	may	be	specified	on	the	command	line	or	in

the	option	database	to	configure	aspects	of	the	menubutton	such	as	its
colors,	font,	text,	and	initial	relief.	The	menubutton	command	returns
its	pathName	argument.	At	the	time	this	command	is	invoked,	there
must	not	exist	a	window	named	pathName,	but	pathName's	parent
must	exist.

A	menubutton	is	a	widget	that	displays	a	textual	string,	bitmap,	or	image
and	is	associated	with	a	menu	widget.	If	text	is	displayed,	it	must	all	be
in	a	single	font,	but	it	can	occupy	multiple	lines	on	the	screen	(if	it
contains	newlines	or	if	wrapping	occurs	because	of	the	wrapLength
option)	and	one	of	the	characters	may	optionally	be	underlined	using
the	underline	option.	In	normal	usage,	pressing	mouse	button	1	over
the	menubutton	causes	the	associated	menu	to	be	posted	just
underneath	the	menubutton.	If	the	mouse	is	moved	over	the	menu
before	releasing	the	mouse	button,	the	button	release	causes	the
underlying	menu	entry	to	be	invoked.	When	the	button	is	released,	the
menu	is	unposted.

Menubuttons	are	typically	organized	into	groups	called	menu	bars	that
allow	scanning:	if	the	mouse	button	is	pressed	over	one	menubutton
(causing	it	to	post	its	menu)	and	the	mouse	is	moved	over	another
menubutton	in	the	same	menu	bar	without	releasing	the	mouse	button,
then	the	menu	of	the	first	menubutton	is	unposted	and	the	menu	of	the
new	menubutton	is	posted	instead.

There	are	several	interactions	between	menubuttons	and	menus;	see
the	menu	manual	entry	for	information	on	various	menu	configurations,
such	as	pulldown	menus	and	option	menus.

WIDGET	COMMAND

The	menubutton	command	creates	a	new	Tcl	command	whose	name
is	pathName.	This	command	may	be	used	to	invoke	various	operations
on	the	widget.	It	has	the	following	general	form:

pathName	option	?arg	arg	...?

Option	and	the	args	determine	the	exact	behavior	of	the	command.	The
following	commands	are	possible	for	menubutton	widgets:

pathName	cget	option
Returns	the	current	value	of	the	configuration	option	given	by
option.	Option	may	have	any	of	the	values	accepted	by	the
menubutton	command.

pathName	configure	?option?	?value	option	value	...?
Query	or	modify	the	configuration	options	of	the	widget.	If	no	option
is	specified,	returns	a	list	describing	all	of	the	available	options	for
pathName	(see	Tk_ConfigureInfo	for	information	on	the	format	of
this	list).	If	option	is	specified	with	no	value,	then	the	command
returns	a	list	describing	the	one	named	option	(this	list	will	be
identical	to	the	corresponding	sublist	of	the	value	returned	if	no
option	is	specified).	If	one	or	more	option-value	pairs	are	specified,
then	the	command	modifies	the	given	widget	option(s)	to	have	the
given	value(s);	in	this	case	the	command	returns	an	empty	string.
Option	may	have	any	of	the	values	accepted	by	the	menubutton
command.

DEFAULT	BINDINGS

Tk	automatically	creates	class	bindings	for	menubuttons	that	give	them
the	following	default	behavior:

[1]
A	menubutton	activates	whenever	the	mouse	passes	over	it	and
deactivates	whenever	the	mouse	leaves	it.

[2]
Pressing	mouse	button	1	over	a	menubutton	posts	the	menubutton:
its	relief	changes	to	raised	and	its	associated	menu	is	posted	under
the	menubutton.	If	the	mouse	is	dragged	down	into	the	menu	with
the	button	still	down,	and	if	the	mouse	button	is	then	released	over
an	entry	in	the	menu,	the	menubutton	is	unposted	and	the	menu
entry	is	invoked.

[3]
If	button	1	is	pressed	over	a	menubutton	and	then	released	over
that	menubutton,	the	menubutton	stays	posted:	you	can	still	move
the	mouse	over	the	menu	and	click	button	1	on	an	entry	to	invoke
it.	Once	a	menu	entry	has	been	invoked,	the	menubutton	unposts
itself.

[4]
If	button	1	is	pressed	over	a	menubutton	and	then	dragged	over
some	other	menubutton,	the	original	menubutton	unposts	itself	and
the	new	menubutton	posts.

[5]
If	button	1	is	pressed	over	a	menubutton	and	released	outside	any
menubutton	or	menu,	the	menubutton	unposts	without	invoking	any
menu	entry.

[6]
When	a	menubutton	is	posted,	its	associated	menu	claims	the	input
focus	to	allow	keyboard	traversal	of	the	menu	and	its	submenus.
See	the	menu	manual	entry	for	details	on	these	bindings.

[7]
If	the	underline	option	has	been	specified	for	a	menubutton	then
keyboard	traversal	may	be	used	to	post	the	menubutton:	Alt+x,
where	x	is	the	underlined	character	(or	its	lower-case	or	upper-
case	equivalent),	may	be	typed	in	any	window	under	the
menubutton's	toplevel	to	post	the	menubutton.

[8]
The	F10	key	may	be	typed	in	any	window	to	post	the	first
menubutton	under	its	toplevel	window	that	is	not	disabled.

[9]
If	a	menubutton	has	the	input	focus,	the	space	and	return	keys	post
the	menubutton.

If	the	menubutton's	state	is	disabled	then	none	of	the	above	actions

occur:	the	menubutton	is	completely	non-responsive.

The	behavior	of	menubuttons	can	be	changed	by	defining	new	bindings
for	individual	widgets	or	by	redefining	the	class	bindings.

SEE	ALSO

ttk::menubutton,	menu

KEYWORDS

menubutton,	widget

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990-1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1997	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	palette

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

tk_setPalette,	tk_bisque	-	Modify	the	Tk	color	palette

SYNOPSIS

tk_setPalette	background
tk_setPalette	name	value	?name	value	...?
tk_bisque

DESCRIPTION

The	tk_setPalette	procedure	changes	the	color	scheme	for	Tk.	It	does
this	by	modifying	the	colors	of	existing	widgets	and	by	changing	the
option	database	so	that	future	widgets	will	use	the	new	color	scheme.	If
tk_setPalette	is	invoked	with	a	single	argument,	the	argument	is	the
name	of	a	color	to	use	as	the	normal	background	color;	tk_setPalette
will	compute	a	complete	color	palette	from	this	background	color.
Alternatively,	the	arguments	to	tk_setPalette	may	consist	of	any
number	of	name-value	pairs,	where	the	first	argument	of	the	pair	is	the
name	of	an	option	in	the	Tk	option	database	and	the	second	argument
is	the	new	value	to	use	for	that	option.	The	following	database	names
are	currently	supported:

activeBackground foreground selectColor

activeForeground highlightBackground selectBackground

background highlightColor selectForeground

disabledForeground insertBackground troughColor

tk_setPalette	tries	to	compute	reasonable	defaults	for	any	options	that
you	do	not	specify.	You	can	specify	options	other	than	the	above	ones
and	Tk	will	change	those	options	on	widgets	as	well.	This	feature	may
be	useful	if	you	are	using	custom	widgets	with	additional	color	options.

Once	it	has	computed	the	new	value	to	use	for	each	of	the	color
options,	tk_setPalette	scans	the	widget	hierarchy	to	modify	the	options
of	all	existing	widgets.	For	each	widget,	it	checks	to	see	if	any	of	the
above	options	is	defined	for	the	widget.	If	so,	and	if	the	option's	current
value	is	the	default,	then	the	value	is	changed;	if	the	option	has	a	value
other	than	the	default,	tk_setPalette	will	not	change	it.	The	default	for
an	option	is	the	one	provided	by	the	widget	([lindex	[$w	configure
$option]	3])	unless	tk_setPalette	has	been	run	previously,	in	which
case	it	is	the	value	specified	in	the	previous	invocation	of
tk_setPalette.

After	modifying	all	the	widgets	in	the	application,	tk_setPalette	adds
options	to	the	option	database	to	change	the	defaults	for	widgets
created	in	the	future.	The	new	options	are	added	at	priority
widgetDefault,	so	they	will	be	overridden	by	options	from	the
.Xdefaults	file	or	options	specified	on	the	command-line	that	creates	a
widget.

The	procedure	tk_bisque	is	provided	for	backward	compatibility:	it
restores	the	application's	colors	to	the	light	brown	(“bisque”)	color
scheme	used	in	Tk	3.6	and	earlier	versions.

KEYWORDS

bisque,	color,	palette

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1995-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	ttk_labelframe

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
ttk::labelframe	-	Container	widget	with	optional	label

SYNOPSIS
DESCRIPTION
STANDARD	OPTIONS

-class
-cursor,	cursor,	Cursor
-style
-takefocus,	takeFocus,	TakeFocus

WIDGET-SPECIFIC	OPTIONS
-labelanchor,	labelAnchor,	LabelAnchor
-text,	text,	Text
-underline,	underline,	Underline
-padding,	padding,	Padding
-labelwidget,	labelWidget,	LabelWidget
-width,	width,	Width
-height,	height,	Height

WIDGET	COMMAND
SEE	ALSO
KEYWORDS

NAME

ttk::labelframe	-	Container	widget	with	optional	label

SYNOPSIS

ttk::labelframe	pathName	?options?

DESCRIPTION

A	ttk::labelframe	widget	is	a	container	used	to	group	other	widgets

together.	It	has	an	optional	label,	which	may	be	a	plain	text	string	or
another	widget.

STANDARD	OPTIONS

-class
-cursor,	cursor,	Cursor
-style
-takefocus,	takeFocus,	TakeFocus

WIDGET-SPECIFIC	OPTIONS

Command-Line	Name:	-labelanchor
Database	Name:	labelAnchor
Database	Class:	LabelAnchor

Specifies	where	to	place	the	label.	Allowed	values	are	(clockwise
from	the	top	upper	left	corner):	nw,	n,	ne,	en,	e,	es,	se,	s,sw,	ws,
w	and	wn.	The	default	value	is	theme-dependent.

Command-Line	Name:	-text
Database	Name:	text
Database	Class:	Text

Specifies	the	text	of	the	label.

Command-Line	Name:	-underline
Database	Name:	underline
Database	Class:	Underline

If	set,	specifies	the	integer	index	(0-based)	of	a	character	to
underline	in	the	text	string.	The	underlined	character	is	used	for
mnemonic	activation.	Mnemonic	activation	for	a	ttk::labelframe
sets	the	keyboard	focus	to	the	first	child	of	the	ttk::labelframe
widget.

Command-Line	Name:	-padding
Database	Name:	padding
Database	Class:	Padding

Additional	padding	to	include	inside	the	border.

Command-Line	Name:	-labelwidget
Database	Name:	labelWidget
Database	Class:	LabelWidget

The	name	of	a	widget	to	use	for	the	label.	If	set,	overrides	the	-text
option.	The	-labelwidget	must	be	a	child	of	the	labelframe	widget
or	one	of	the	labelframe's	ancestors,	and	must	belong	to	the	same
top-level	widget	as	the	labelframe.

Command-Line	Name:	-width
Database	Name:	width
Database	Class:	Width

If	specified,	the	widget's	requested	width	in	pixels.

Command-Line	Name:	-height
Database	Name:	height
Database	Class:	Height

If	specified,	the	widget's	requested	height	in	pixels.	(See
ttk::frame(n)	for	further	notes	on	-width	and	-height).

WIDGET	COMMAND

Supports	the	standard	widget	commands	configure,	cget,	identify,
instate,	and	state;	see	ttk::widget(n).

SEE	ALSO

ttk::widget,	ttk::frame,	labelframe

KEYWORDS

widget,	frame,	container,	label,	groupbox

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	2005	Joe	English

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	winfo

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
winfo	-	Return	window-related	information

SYNOPSIS
DESCRIPTION

winfo	atom	?-displayof	window?	name
winfo	atomname	?-displayof	window?	id
winfo	cells	window
winfo	children	window
winfo	class	window
winfo	colormapfull	window
winfo	containing	?-displayof	window?	rootX	rootY
winfo	depth	window
winfo	exists	window
winfo	fpixels	window	number
winfo	geometry	window
winfo	height	window
winfo	id	window
winfo	interps	?-displayof	window?
winfo	ismapped	window
winfo	manager	window
winfo	name	window
winfo	parent	window
winfo	pathname	?-displayof	window?	id
winfo	pixels	window	number
winfo	pointerx	window
winfo	pointerxy	window
winfo	pointery	window
winfo	reqheight	window
winfo	reqwidth	window
winfo	rgb	window	color
winfo	rootx	window

winfo	rooty	window
winfo	screen	window
winfo	screencells	window
winfo	screendepth	window
winfo	screenheight	window
winfo	screenmmheight	window
winfo	screenmmwidth	window
winfo	screenvisual	window
winfo	screenwidth	window
winfo	server	window
winfo	toplevel	window
winfo	viewable	window
winfo	visual	window
winfo	visualid	window
winfo	visualsavailable	window	?includeids?
winfo	vrootheight	window
winfo	vrootwidth	window
winfo	vrootx	window
winfo	vrooty	window
winfo	width	window
winfo	x	window
winfo	y	window

EXAMPLE
KEYWORDS

NAME

winfo	-	Return	window-related	information

SYNOPSIS

winfo	option	?arg	arg	...?

DESCRIPTION

The	winfo	command	is	used	to	retrieve	information	about	windows
managed	by	Tk.	It	can	take	any	of	a	number	of	different	forms,
depending	on	the	option	argument.	The	legal	forms	are:

winfo	atom	?-displayof	window?	name
Returns	a	decimal	string	giving	the	integer	identifier	for	the	atom
whose	name	is	name.	If	no	atom	exists	with	the	name	name	then	a
new	one	is	created.	If	the	-displayof	option	is	given	then	the	atom
is	looked	up	on	the	display	of	window;	otherwise	it	is	looked	up	on
the	display	of	the	application's	main	window.

winfo	atomname	?-displayof	window?	id
Returns	the	textual	name	for	the	atom	whose	integer	identifier	is	id.
If	the	-displayof	option	is	given	then	the	identifier	is	looked	up	on
the	display	of	window;	otherwise	it	is	looked	up	on	the	display	of
the	application's	main	window.	This	command	is	the	inverse	of	the
winfo	atom	command.	It	generates	an	error	if	no	such	atom	exists.

winfo	cells	window
Returns	a	decimal	string	giving	the	number	of	cells	in	the	color	map
for	window.

winfo	children	window
Returns	a	list	containing	the	path	names	of	all	the	children	of
window.	Top-level	windows	are	returned	as	children	of	their	logical
parents.	The	list	is	in	stacking	order,	with	the	lowest	window	first,
except	for	Top-level	windows	which	are	not	returned	in	stacking
order.	Use	the	wm	stackorder	command	to	query	the	stacking
order	of	Top-level	windows.

winfo	class	window
Returns	the	class	name	for	window.

winfo	colormapfull	window
Returns	1	if	the	colormap	for	window	is	known	to	be	full,	0
otherwise.	The	colormap	for	a	window	is	“known”	to	be	full	if	the
last	attempt	to	allocate	a	new	color	on	that	window	failed	and	this
application	has	not	freed	any	colors	in	the	colormap	since	the	failed
allocation.

winfo	containing	?-displayof	window?	rootX	rootY
Returns	the	path	name	for	the	window	containing	the	point	given	by

rootX	and	rootY.	RootX	and	rootY	are	specified	in	screen	units	(i.e.
any	form	acceptable	to	Tk_GetPixels)	in	the	coordinate	system	of
the	root	window	(if	a	virtual-root	window	manager	is	in	use	then	the
coordinate	system	of	the	virtual	root	window	is	used).	If	the	-
displayof	option	is	given	then	the	coordinates	refer	to	the	screen
containing	window;	otherwise	they	refer	to	the	screen	of	the
application's	main	window.	If	no	window	in	this	application	contains
the	point	then	an	empty	string	is	returned.	In	selecting	the
containing	window,	children	are	given	higher	priority	than	parents
and	among	siblings	the	highest	one	in	the	stacking	order	is	chosen.

winfo	depth	window
Returns	a	decimal	string	giving	the	depth	of	window	(number	of	bits
per	pixel).

winfo	exists	window
Returns	1	if	there	exists	a	window	named	window,	0	if	no	such
window	exists.

winfo	fpixels	window	number
Returns	a	floating-point	value	giving	the	number	of	pixels	in	window
corresponding	to	the	distance	given	by	number.	Number	may	be
specified	in	any	of	the	forms	acceptable	to	Tk_GetScreenMM,
such	as	“2.0c”	or	“1i”.	The	return	value	may	be	fractional;	for	an
integer	value,	use	winfo	pixels.

winfo	geometry	window
Returns	the	geometry	for	window,	in	the	form	widthxheight+x+y.	All
dimensions	are	in	pixels.

winfo	height	window
Returns	a	decimal	string	giving	window's	height	in	pixels.	When	a
window	is	first	created	its	height	will	be	1	pixel;	the	height	will
eventually	be	changed	by	a	geometry	manager	to	fulfill	the
window's	needs.	If	you	need	the	true	height	immediately	after
creating	a	widget,	invoke	update	to	force	the	geometry	manager	to
arrange	it,	or	use	winfo	reqheight	to	get	the	window's	requested
height	instead	of	its	actual	height.

winfo	id	window
Returns	a	hexadecimal	string	giving	a	low-level	platform-specific
identifier	for	window.	On	Unix	platforms,	this	is	the	X	window
identifier.	Under	Windows,	this	is	the	Windows	HWND.	On	the
Macintosh	the	value	has	no	meaning	outside	Tk.

winfo	interps	?-displayof	window?
Returns	a	list	whose	members	are	the	names	of	all	Tcl	interpreters
(e.g.	all	Tk-based	applications)	currently	registered	for	a	particular
display.	If	the	-displayof	option	is	given	then	the	return	value	refers
to	the	display	of	window;	otherwise	it	refers	to	the	display	of	the
application's	main	window.

winfo	ismapped	window
Returns	1	if	window	is	currently	mapped,	0	otherwise.

winfo	manager	window
Returns	the	name	of	the	geometry	manager	currently	responsible
for	window,	or	an	empty	string	if	window	is	not	managed	by	any
geometry	manager.	The	name	is	usually	the	name	of	the	Tcl
command	for	the	geometry	manager,	such	as	pack	or	place.	If	the
geometry	manager	is	a	widget,	such	as	canvases	or	text,	the	name
is	the	widget's	class	command,	such	as	canvas.

winfo	name	window
Returns	window's	name	(i.e.	its	name	within	its	parent,	as	opposed
to	its	full	path	name).	The	command	winfo	name	.	will	return	the
name	of	the	application.

winfo	parent	window
Returns	the	path	name	of	window's	parent,	or	an	empty	string	if
window	is	the	main	window	of	the	application.

winfo	pathname	?-displayof	window?	id
Returns	the	path	name	of	the	window	whose	X	identifier	is	id.	Id
must	be	a	decimal,	hexadecimal,	or	octal	integer	and	must
correspond	to	a	window	in	the	invoking	application.	If	the	-
displayof	option	is	given	then	the	identifier	is	looked	up	on	the

display	of	window;	otherwise	it	is	looked	up	on	the	display	of	the
application's	main	window.

winfo	pixels	window	number
Returns	the	number	of	pixels	in	window	corresponding	to	the
distance	given	by	number.	Number	may	be	specified	in	any	of	the
forms	acceptable	to	Tk_GetPixels,	such	as	“2.0c”	or	“1i”.	The
result	is	rounded	to	the	nearest	integer	value;	for	a	fractional	result,
use	winfo	fpixels.

winfo	pointerx	window
If	the	mouse	pointer	is	on	the	same	screen	as	window,	returns	the
pointer's	x	coordinate,	measured	in	pixels	in	the	screen's	root
window.	If	a	virtual	root	window	is	in	use	on	the	screen,	the	position
is	measured	in	the	virtual	root.	If	the	mouse	pointer	is	not	on	the
same	screen	as	window	then	-1	is	returned.

winfo	pointerxy	window
If	the	mouse	pointer	is	on	the	same	screen	as	window,	returns	a	list
with	two	elements,	which	are	the	pointer's	x	and	y	coordinates
measured	in	pixels	in	the	screen's	root	window.	If	a	virtual	root
window	is	in	use	on	the	screen,	the	position	is	computed	in	the
virtual	root.	If	the	mouse	pointer	is	not	on	the	same	screen	as
window	then	both	of	the	returned	coordinates	are	-1.

winfo	pointery	window
If	the	mouse	pointer	is	on	the	same	screen	as	window,	returns	the
pointer's	y	coordinate,	measured	in	pixels	in	the	screen's	root
window.	If	a	virtual	root	window	is	in	use	on	the	screen,	the	position
is	computed	in	the	virtual	root.	If	the	mouse	pointer	is	not	on	the
same	screen	as	window	then	-1	is	returned.

winfo	reqheight	window
Returns	a	decimal	string	giving	window's	requested	height,	in
pixels.	This	is	the	value	used	by	window's	geometry	manager	to
compute	its	geometry.

winfo	reqwidth	window

Returns	a	decimal	string	giving	window's	requested	width,	in	pixels.
This	is	the	value	used	by	window's	geometry	manager	to	compute
its	geometry.

winfo	rgb	window	color
Returns	a	list	containing	three	decimal	values	in	the	range	0	to
65535,	which	are	the	red,	green,	and	blue	intensities	that
correspond	to	color	in	the	window	given	by	window.	Color	may	be
specified	in	any	of	the	forms	acceptable	for	a	color	option.

winfo	rootx	window
Returns	a	decimal	string	giving	the	x-coordinate,	in	the	root	window
of	the	screen,	of	the	upper-left	corner	of	window's	border	(or
window	if	it	has	no	border).

winfo	rooty	window
Returns	a	decimal	string	giving	the	y-coordinate,	in	the	root	window
of	the	screen,	of	the	upper-left	corner	of	window's	border	(or
window	if	it	has	no	border).

winfo	screen	window
Returns	the	name	of	the	screen	associated	with	window,	in	the
form	displayName.screenIndex.

winfo	screencells	window
Returns	a	decimal	string	giving	the	number	of	cells	in	the	default
color	map	for	window's	screen.

winfo	screendepth	window
Returns	a	decimal	string	giving	the	depth	of	the	root	window	of
window's	screen	(number	of	bits	per	pixel).

winfo	screenheight	window
Returns	a	decimal	string	giving	the	height	of	window's	screen,	in
pixels.

winfo	screenmmheight	window
Returns	a	decimal	string	giving	the	height	of	window's	screen,	in

millimeters.

winfo	screenmmwidth	window
Returns	a	decimal	string	giving	the	width	of	window's	screen,	in
millimeters.

winfo	screenvisual	window
Returns	one	of	the	following	strings	to	indicate	the	default	visual
class	for	window's	screen:	directcolor,	grayscale,	pseudocolor,
staticcolor,	staticgray,	or	truecolor.

winfo	screenwidth	window
Returns	a	decimal	string	giving	the	width	of	window's	screen,	in
pixels.

winfo	server	window
Returns	a	string	containing	information	about	the	server	for
window's	display.	The	exact	format	of	this	string	may	vary	from
platform	to	platform.	For	X	servers	the	string	has	the	form
“XmajorRminor	vendor	vendorVersion”	where	major	and	minor	are
the	version	and	revision	numbers	provided	by	the	server	(e.g.,
X11R5),	vendor	is	the	name	of	the	vendor	for	the	server,	and
vendorRelease	is	an	integer	release	number	provided	by	the
server.

winfo	toplevel	window
Returns	the	path	name	of	the	top-of-hierarchy	window	containing
window.	In	standard	Tk	this	will	always	be	a	toplevel	widget,	but
extensions	may	create	other	kinds	of	top-of-hierarchy	widgets.

winfo	viewable	window
Returns	1	if	window	and	all	of	its	ancestors	up	through	the	nearest
toplevel	window	are	mapped.	Returns	0	if	any	of	these	windows	are
not	mapped.

winfo	visual	window
Returns	one	of	the	following	strings	to	indicate	the	visual	class	for
window:	directcolor,	grayscale,	pseudocolor,	staticcolor,

staticgray,	or	truecolor.

winfo	visualid	window
Returns	the	X	identifier	for	the	visual	for	window.

winfo	visualsavailable	window	?includeids?
Returns	a	list	whose	elements	describe	the	visuals	available	for
window's	screen.	Each	element	consists	of	a	visual	class	followed
by	an	integer	depth.	The	class	has	the	same	form	as	returned	by
winfo	visual.	The	depth	gives	the	number	of	bits	per	pixel	in	the
visual.	In	addition,	if	the	includeids	argument	is	provided,	then	the
depth	is	followed	by	the	X	identifier	for	the	visual.

winfo	vrootheight	window
Returns	the	height	of	the	virtual	root	window	associated	with
window	if	there	is	one;	otherwise	returns	the	height	of	window's
screen.

winfo	vrootwidth	window
Returns	the	width	of	the	virtual	root	window	associated	with	window
if	there	is	one;	otherwise	returns	the	width	of	window's	screen.

winfo	vrootx	window
Returns	the	x-offset	of	the	virtual	root	window	associated	with
window,	relative	to	the	root	window	of	its	screen.	This	is	normally
either	zero	or	negative.	Returns	0	if	there	is	no	virtual	root	window
for	window.

winfo	vrooty	window
Returns	the	y-offset	of	the	virtual	root	window	associated	with
window,	relative	to	the	root	window	of	its	screen.	This	is	normally
either	zero	or	negative.	Returns	0	if	there	is	no	virtual	root	window
for	window.

winfo	width	window
Returns	a	decimal	string	giving	window's	width	in	pixels.	When	a
window	is	first	created	its	width	will	be	1	pixel;	the	width	will
eventually	be	changed	by	a	geometry	manager	to	fulfill	the

window's	needs.	If	you	need	the	true	width	immediately	after
creating	a	widget,	invoke	update	to	force	the	geometry	manager	to
arrange	it,	or	use	winfo	reqwidth	to	get	the	window's	requested
width	instead	of	its	actual	width.

winfo	x	window
Returns	a	decimal	string	giving	the	x-coordinate,	in	window's
parent,	of	the	upper-left	corner	of	window's	border	(or	window	if	it
has	no	border).

winfo	y	window
Returns	a	decimal	string	giving	the	y-coordinate,	in	window's
parent,	of	the	upper-left	corner	of	window's	border	(or	window	if	it
has	no	border).

EXAMPLE

Print	where	the	mouse	pointer	is	and	what	window	it	is	currently	over:

lassign	[winfo	pointerxy	.]	x	y

puts	-nonewline	"Mouse	pointer	at	($x,$y)	which	is	"

set	win	[winfo	containing	$x	$y]

if	{$win	eq	""}	{

				puts	"over	no	window"

}	else	{

				puts	"over	$win"

}

KEYWORDS

atom,	children,	class,	geometry,	height,	identifier,	information,
interpreters,	mapped,	parent,	path	name,	screen,	virtual	root,	width,
window

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990-1994	The	Regents	of	the	University	of	California.

Copyright	©	1994-1997	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	event

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
event	-	Miscellaneous	event	facilities:	define	virtual	events	and
generate	events

SYNOPSIS
DESCRIPTION

event	add	<<virtual>>	sequence	?sequence	...?
event	delete	<<virtual>>	?sequence	sequence	...?
event	generate	window	event	?option	value	option	value	...?
event	info	?<<virtual>>?

EVENT	FIELDS
-above	window
-borderwidth	size
-button	number
-count	number
-data	string
-delta	number
-detail	detail
-focus	boolean
-height	size
-keycode	number
-keysym	name
-mode	notify
-override	boolean
-place	where
-root	window
-rootx	coord
-rooty	coord
-sendevent	boolean
-serial	number
-state	state
-subwindow	window

-time	integer
-warp	boolean
-width	size
-when	when

now
tail
head
mark

-x	coord
-y	coord

PREDEFINED	VIRTUAL	EVENTS
<<AltUnderlined>>
<<ListboxSelect>>
<<MenuSelect>>
<<Modified>>
<<Selection>>
<<TraverseIn>>
<<TraverseOut>>
<<Clear>>
<<Copy>>
<<Cut>>
<<Paste>>
<<PasteSelection>>
<<PrevWindow>>
<<Redo>>
<<Undo>>

VIRTUAL	EVENT	EXAMPLES
SEE	ALSO
KEYWORDS

NAME

event	-	Miscellaneous	event	facilities:	define	virtual	events	and
generate	events

SYNOPSIS

event	option	?arg	arg	...?

DESCRIPTION

The	event	command	provides	several	facilities	for	dealing	with	window
system	events,	such	as	defining	virtual	events	and	synthesizing	events.
The	command	has	several	different	forms,	determined	by	the	first
argument.	The	following	forms	are	currently	supported:

event	add	<<virtual>>	sequence	?sequence	...?
Associates	the	virtual	event	virtual	with	the	physical	event
sequence(s)	given	by	the	sequence	arguments,	so	that	the	virtual
event	will	trigger	whenever	any	one	of	the	sequences	occurs.
Virtual	may	be	any	string	value	and	sequence	may	have	any	of	the
values	allowed	for	the	sequence	argument	to	the	bind	command.	If
virtual	is	already	defined,	the	new	physical	event	sequences	add	to
the	existing	sequences	for	the	event.

event	delete	<<virtual>>	?sequence	sequence	...?
Deletes	each	of	the	sequences	from	those	associated	with	the
virtual	event	given	by	virtual.	Virtual	may	be	any	string	value	and
sequence	may	have	any	of	the	values	allowed	for	the	sequence
argument	to	the	bind	command.	Any	sequences	not	currently
associated	with	virtual	are	ignored.	If	no	sequence	argument	is
provided,	all	physical	event	sequences	are	removed	for	virtual,	so
that	the	virtual	event	will	not	trigger	anymore.

event	generate	window	event	?option	value	option	value	...?
Generates	a	window	event	and	arranges	for	it	to	be	processed	just
as	if	it	had	come	from	the	window	system.	Window	gives	the	path
name	of	the	window	for	which	the	event	will	be	generated;	it	may
also	be	an	identifier	(such	as	returned	by	winfo	id)	as	long	as	it	is
for	a	window	in	the	current	application.	Event	provides	a	basic
description	of	the	event,	such	as	<Shift-Button-2>	or	<<Paste>>.
If	Window	is	empty	the	whole	screen	is	meant,	and	coordinates	are
relative	to	the	screen.	Event	may	have	any	of	the	forms	allowed	for
the	sequence	argument	of	the	bind	command	except	that	it	must
consist	of	a	single	event	pattern,	not	a	sequence.	Option-value
pairs	may	be	used	to	specify	additional	attributes	of	the	event,	such

as	the	x	and	y	mouse	position;	see	EVENT	FIELDS	below.	If	the	-
when	option	is	not	specified,	the	event	is	processed	immediately:
all	of	the	handlers	for	the	event	will	complete	before	the	event
generate	command	returns.	If	the	-when	option	is	specified	then	it
determines	when	the	event	is	processed.	Certain	events,	such	as
key	events,	require	that	the	window	has	focus	to	receive	the	event
properly.

event	info	?<<virtual>>?
Returns	information	about	virtual	events.	If	the	<<virtual>>
argument	is	omitted,	the	return	value	is	a	list	of	all	the	virtual	events
that	are	currently	defined.	If	<<virtual>>	is	specified	then	the	return
value	is	a	list	whose	elements	are	the	physical	event	sequences
currently	defined	for	the	given	virtual	event;	if	the	virtual	event	is
not	defined	then	an	empty	string	is	returned.

Note	that	virtual	events	that	that	are	not	bound	to	physical	event
sequences	are	not	returned	by	event	info.

EVENT	FIELDS

The	following	options	are	supported	for	the	event	generate	command.
These	correspond	to	the	“%”	expansions	allowed	in	binding	scripts	for
the	bind	command.

-above	window
Window	specifies	the	above	field	for	the	event,	either	as	a	window
path	name	or	as	an	integer	window	id.	Valid	for	Configure	events.
Corresponds	to	the	%a	substitution	for	binding	scripts.

-borderwidth	size
Size	must	be	a	screen	distance;	it	specifies	the	border_width	field
for	the	event.	Valid	for	Configure	events.	Corresponds	to	the	%B
substitution	for	binding	scripts.

-button	number
Number	must	be	an	integer;	it	specifies	the	detail	field	for	a
ButtonPress	or	ButtonRelease	event,	overriding	any	button

number	provided	in	the	base	event	argument.	Corresponds	to	the
%b	substitution	for	binding	scripts.

-count	number
Number	must	be	an	integer;	it	specifies	the	count	field	for	the
event.	Valid	for	Expose	events.	Corresponds	to	the	%c	substitution
for	binding	scripts.

-data	string
String	may	be	any	value;	it	specifies	the	user_data	field	for	the
event.	Only	valid	for	virtual	events.	Corresponds	to	the	%d
substitution	for	virtual	events	in	binding	scripts.

-delta	number
Number	must	be	an	integer;	it	specifies	the	delta	field	for	the
MouseWheel	event.	The	delta	refers	to	the	direction	and
magnitude	the	mouse	wheel	was	rotated.	Note	the	value	is	not	a
screen	distance	but	are	units	of	motion	in	the	mouse	wheel.
Typically	these	values	are	multiples	of	120.	For	example,	120
should	scroll	the	text	widget	up	4	lines	and	-240	would	scroll	the
text	widget	down	8	lines.	Of	course,	other	widgets	may	define
different	behaviors	for	mouse	wheel	motion.	This	field	corresponds
to	the	%D	substitution	for	binding	scripts.

-detail	detail
Detail	specifies	the	detail	field	for	the	event	and	must	be	one	of	the
following:

NotifyAncestor NotifyNonlinearVirtual

NotifyDetailNone NotifyPointer

NotifyInferior NotifyPointerRoot

NotifyNonlinear NotifyVirtual

Valid	for	Enter,	Leave,	FocusIn	and	FocusOut	events.
Corresponds	to	the	%d	substitution	for	binding	scripts.

-focus	boolean
Boolean	must	be	a	boolean	value;	it	specifies	the	focus	field	for	the
event.	Valid	for	Enter	and	Leave	events.	Corresponds	to	the	%f
substitution	for	binding	scripts.

-height	size
Size	must	be	a	screen	distance;	it	specifies	the	height	field	for	the
event.	Valid	for	Configure	events.	Corresponds	to	the	%h
substitution	for	binding	scripts.

-keycode	number
Number	must	be	an	integer;	it	specifies	the	keycode	field	for	the
event.	Valid	for	KeyPress	and	KeyRelease	events.	Corresponds	to
the	%k	substitution	for	binding	scripts.

-keysym	name
Name	must	be	the	name	of	a	valid	keysym,	such	as	g,	space,	or
Return;	its	corresponding	keycode	value	is	used	as	the	keycode
field	for	event,	overriding	any	detail	specified	in	the	base	event
argument.	Valid	for	KeyPress	and	KeyRelease	events.
Corresponds	to	the	%K	substitution	for	binding	scripts.

-mode	notify
Notify	specifies	the	mode	field	for	the	event	and	must	be	one	of
NotifyNormal,	NotifyGrab,	NotifyUngrab,	or
NotifyWhileGrabbed.	Valid	for	Enter,	Leave,	FocusIn,	and
FocusOut	events.	Corresponds	to	the	%m	substitution	for	binding
scripts.

-override	boolean
Boolean	must	be	a	boolean	value;	it	specifies	the	override_redirect
field	for	the	event.	Valid	for	Map,	Reparent,	and	Configure	events.
Corresponds	to	the	%o	substitution	for	binding	scripts.

-place	where

Where	specifies	the	place	field	for	the	event;	it	must	be	either
PlaceOnTop	or	PlaceOnBottom.	Valid	for	Circulate	events.
Corresponds	to	the	%p	substitution	for	binding	scripts.

-root	window
Window	must	be	either	a	window	path	name	or	an	integer	window
identifier;	it	specifies	the	root	field	for	the	event.	Valid	for
KeyPress,	KeyRelease,	ButtonPress,	ButtonRelease,	Enter,
Leave,	and	Motion	events.	Corresponds	to	the	%R	substitution	for
binding	scripts.

-rootx	coord
Coord	must	be	a	screen	distance;	it	specifies	the	x_root	field	for	the
event.	Valid	for	KeyPress,	KeyRelease,	ButtonPress,
ButtonRelease,	Enter,	Leave,	and	Motion	events.	Corresponds	to
the	%X	substitution	for	binding	scripts.

-rooty	coord
Coord	must	be	a	screen	distance;	it	specifies	the	y_root	field	for	the
event.	Valid	for	KeyPress,	KeyRelease,	ButtonPress,
ButtonRelease,	Enter,	Leave,	and	Motion	events.	Corresponds	to
the	%Y	substitution	for	binding	scripts.

-sendevent	boolean
Boolean	must	be	a	boolean	value;	it	specifies	the	send_event	field
for	the	event.	Valid	for	all	events.	Corresponds	to	the	%E
substitution	for	binding	scripts.

-serial	number
Number	must	be	an	integer;	it	specifies	the	serial	field	for	the
event.	Valid	for	all	events.	Corresponds	to	the	%#	substitution	for
binding	scripts.

-state	state
State	specifies	the	state	field	for	the	event.	For	KeyPress,
KeyRelease,	ButtonPress,	ButtonRelease,	Enter,	Leave,	and
Motion	events	it	must	be	an	integer	value.	For	Visibility	events	it
must	be	one	of	VisibilityUnobscured,

VisibilityPartiallyObscured,	or	VisibilityFullyObscured.	This
option	overrides	any	modifiers	such	as	Meta	or	Control	specified	in
the	base	event.	Corresponds	to	the	%s	substitution	for	binding
scripts.

-subwindow	window
Window	specifies	the	subwindow	field	for	the	event,	either	as	a
path	name	for	a	Tk	widget	or	as	an	integer	window	identifier.	Valid
for	KeyPress,	KeyRelease,	ButtonPress,	ButtonRelease,	Enter,
Leave,	and	Motion	events.	Similar	to	%S	substitution	for	binding
scripts.

-time	integer
Integer	must	be	an	integer	value;	it	specifies	the	time	field	for	the
event.	Valid	for	KeyPress,	KeyRelease,	ButtonPress,
ButtonRelease,	Enter,	Leave,	Motion,	and	Property	events.
Corresponds	to	the	%t	substitution	for	binding	scripts.

-warp	boolean
boolean	must	be	a	boolean	value;	it	specifies	whether	the	screen
pointer	should	be	warped	as	well.	Valid	for	KeyPress,
KeyRelease,	ButtonPress,	ButtonRelease,	and	Motion	events.
The	pointer	will	only	warp	to	a	window	if	it	is	mapped.

-width	size
Size	must	be	a	screen	distance;	it	specifies	the	width	field	for	the
event.	Valid	for	Configure	events.	Corresponds	to	the	%w
substitution	for	binding	scripts.

-when	when
When	determines	when	the	event	will	be	processed;	it	must	have
one	of	the	following	values:

now
Process	the	event	immediately,	before	the	command	returns.
This	also	happens	if	the	-when	option	is	omitted.

tail

Place	the	event	on	Tcl's	event	queue	behind	any	events
already	queued	for	this	application.

head
Place	the	event	at	the	front	of	Tcl's	event	queue,	so	that	it	will
be	handled	before	any	other	events	already	queued.

mark
Place	the	event	at	the	front	of	Tcl's	event	queue	but	behind	any
other	events	already	queued	with	-when	mark.	This	option	is
useful	when	generating	a	series	of	events	that	should	be
processed	in	order	but	at	the	front	of	the	queue.

-x	coord
Coord	must	be	a	screen	distance;	it	specifies	the	x	field	for	the
event.	Valid	for	KeyPress,	KeyRelease,	ButtonPress,
ButtonRelease,	Motion,	Enter,	Leave,	Expose,	Configure,
Gravity,	and	Reparent	events.	Corresponds	to	the	%x	substitution
for	binding	scripts.	If	Window	is	empty	the	coordinate	is	relative	to
the	screen,	and	this	option	corresponds	to	the	%X	substitution	for
binding	scripts.

-y	coord
Coord	must	be	a	screen	distance;	it	specifies	the	y	field	for	the
event.	Valid	for	KeyPress,	KeyRelease,	ButtonPress,
ButtonRelease,	Motion,	Enter,	Leave,	Expose,	Configure,
Gravity,	and	Reparent	events.	Corresponds	to	the	%y	substitution
for	binding	scripts.	If	Window	is	empty	the	coordinate	is	relative	to
the	screen,	and	this	option	corresponds	to	the	%Y	substitution	for
binding	scripts.

Any	options	that	are	not	specified	when	generating	an	event	are	filled
with	the	value	0,	except	for	serial,	which	is	filled	with	the	next	X	event
serial	number.

PREDEFINED	VIRTUAL	EVENTS

Tk	defines	the	following	virtual	events	for	the	purposes	of	notification:

<<AltUnderlined>>
This	is	sent	to	widget	to	notify	it	that	the	letter	it	has	underlined	(as
an	accelerator	indicator)	with	the	-underline	option	has	been
pressed	in	combination	with	the	Alt	key.	The	usual	response	to	this
is	to	either	focus	into	the	widget	(or	some	related	widget)	or	to
invoke	the	widget.

<<ListboxSelect>>
This	is	sent	to	a	listbox	when	the	set	of	selected	item(s)	in	the
listbox	is	updated.

<<MenuSelect>>
This	is	sent	to	a	menu	when	the	currently	selected	item	in	the	menu
changes.	It	is	intended	for	use	with	context-sensitive	help	systems.

<<Modified>>
This	is	sent	to	a	text	widget	when	the	contents	of	the	widget	are
changed.

<<Selection>>
This	is	sent	to	a	text	widget	when	the	selection	in	the	widget	is
changed.

<<TraverseIn>>
This	is	sent	to	a	widget	when	the	focus	enters	the	widget	because
of	a	user-driven	“tab	to	widget”	action.

<<TraverseOut>>
This	is	sent	to	a	widget	when	the	focus	leaves	the	widget	because
of	a	user-driven	“tab	to	widget”	action.

Tk	defines	the	following	virtual	events	for	the	purposes	of	unifying
bindings	across	multiple	platforms.	Users	expect	them	to	behave	in	the
following	way:

<<Clear>>
Delete	the	currently	selected	widget	contents.

<<Copy>>

Copy	the	currently	selected	widget	contents	to	the	clipboard.

<<Cut>>
Move	the	currently	selected	widget	contents	to	the	clipboard.

<<Paste>>
Replace	the	currently	selected	widget	contents	with	the	contents	of
the	clipboard.

<<PasteSelection>>
Insert	the	contents	of	the	selection	at	the	mouse	location.	(This
event	has	meaningful	%x	and	%y	substitutions).

<<PrevWindow>>
Traverse	to	the	previous	window.

<<Redo>>
Redo	one	undone	action.

<<Undo>>
Undo	the	last	action.

VIRTUAL	EVENT	EXAMPLES

In	order	for	a	virtual	event	binding	to	trigger,	two	things	must	happen.
First,	the	virtual	event	must	be	defined	with	the	event	add	command.
Second,	a	binding	must	be	created	for	the	virtual	event	with	the	bind
command.	Consider	the	following	virtual	event	definitions:

event	add	<<Paste>>	<Control-y>

event	add	<<Paste>>	<Button-2>

event	add	<<Save>>	<Control-X><Control-S>

event	add	<<Save>>	<Shift-F12>

In	the	bind	command,	a	virtual	event	can	be	bound	like	any	other	builtin
event	type	as	follows:

bind	Entry	<<Paste>>	{%W	insert	[selection	get]}

The	double	angle	brackets	are	used	to	specify	that	a	virtual	event	is
being	bound.	If	the	user	types	Control-y	or	presses	button	2,	or	if	a
<<Paste>>	virtual	event	is	synthesized	with	event	generate,	then	the
<<Paste>>	binding	will	be	invoked.

If	a	virtual	binding	has	the	exact	same	sequence	as	a	separate	physical
binding,	then	the	physical	binding	will	take	precedence.	Consider	the
following	example:

event	add	<<Paste>>	<Control-y>	<Meta-Control-y>

bind	Entry	<Control-y>	{puts	Control-y}

bind	Entry	<<Paste>>	{puts	Paste}

When	the	user	types	Control-y	the	<Control-y>	binding	will	be	invoked,
because	a	physical	event	is	considered	more	specific	than	a	virtual
event,	all	other	things	being	equal.	However,	when	the	user	types	Meta-
Control-y	the	<<Paste>>	binding	will	be	invoked,	because	the	Meta
modifier	in	the	physical	pattern	associated	with	the	virtual	binding	is
more	specific	than	the	<Control-y>	sequence	for	the	physical	event.

Bindings	on	a	virtual	event	may	be	created	before	the	virtual	event
exists.	Indeed,	the	virtual	event	never	actually	needs	to	be	defined,	for
instance,	on	platforms	where	the	specific	virtual	event	would
meaningless	or	ungeneratable.

When	a	definition	of	a	virtual	event	changes	at	run	time,	all	windows	will
respond	immediately	to	the	new	definition.	Starting	from	the	preceding
example,	if	the	following	code	is	executed:

bind	<Entry>	<Control-y>	{}

event	add	<<Paste>>	<Key-F6>

the	behavior	will	change	such	in	two	ways.	First,	the	shadowed
<<Paste>>	binding	will	emerge.	Typing	Control-y	will	no	longer	invoke
the	<Control-y>	binding,	but	instead	invoke	the	virtual	event
<<Paste>>.	Second,	pressing	the	F6	key	will	now	also	invoke	the
<<Paste>>	binding.

SEE	ALSO

bind

KEYWORDS

event,	binding,	define,	handle,	virtual	event

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1996	Sun	Microsystems,	Inc.
Copyright	©	1998-2000	Ajuba	Solutions.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	message

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
message	-	Create	and	manipulate	message	widgets

SYNOPSIS
STANDARD	OPTIONS

-anchor,	anchor,	Anchor
-background	or	-bg,	background,	Background
-borderwidth	or	-bd,	borderWidth,	BorderWidth
-cursor,	cursor,	Cursor
-font,	font,	Font
-foreground	or	-fg,	foreground,	Foreground
-highlightbackground,	highlightBackground,
HighlightBackground
-highlightcolor,	highlightColor,	HighlightColor
-highlightthickness,	highlightThickness,	HighlightThickness
-padx,	padX,	Pad
-pady,	padY,	Pad
-relief,	relief,	Relief
-takefocus,	takeFocus,	TakeFocus
-text,	text,	Text
-textvariable,	textVariable,	Variable

WIDGET-SPECIFIC	OPTIONS
-aspect,	aspect,	Aspect
-justify,	justify,	Justify
-width,	width,	Width

DESCRIPTION
WIDGET	COMMAND

pathName	cget	option
pathName	configure	?option?	?value	option	value	...?

DEFAULT	BINDINGS
BUGS
SEE	ALSO

KEYWORDS

NAME

message	-	Create	and	manipulate	message	widgets

SYNOPSIS

message	pathName	?options?

STANDARD	OPTIONS

-anchor,	anchor,	Anchor
-background	or	-bg,	background,	Background
-borderwidth	or	-bd,	borderWidth,	BorderWidth
-cursor,	cursor,	Cursor
-font,	font,	Font
-foreground	or	-fg,	foreground,	Foreground
-highlightbackground,	highlightBackground,	HighlightBackground
-highlightcolor,	highlightColor,	HighlightColor
-highlightthickness,	highlightThickness,	HighlightThickness
-padx,	padX,	Pad
-pady,	padY,	Pad
-relief,	relief,	Relief
-takefocus,	takeFocus,	TakeFocus
-text,	text,	Text
-textvariable,	textVariable,	Variable

WIDGET-SPECIFIC	OPTIONS

Command-Line	Name:	-aspect
Database	Name:	aspect
Database	Class:	Aspect

Specifies	a	non-negative	integer	value	indicating	desired	aspect
ratio	for	the	text.	The	aspect	ratio	is	specified	as	100*width/height.
100	means	the	text	should	be	as	wide	as	it	is	tall,	200	means	the
text	should	be	twice	as	wide	as	it	is	tall,	50	means	the	text	should
be	twice	as	tall	as	it	is	wide,	and	so	on.	Used	to	choose	line	length

for	text	if	width	option	is	not	specified.	Defaults	to	150.

Command-Line	Name:	-justify
Database	Name:	justify
Database	Class:	Justify

Specifies	how	to	justify	lines	of	text.	Must	be	one	of	left,	center,	or
right.	Defaults	to	left.	This	option	works	together	with	the	anchor,
aspect,	padX,	padY,	and	width	options	to	provide	a	variety	of
arrangements	of	the	text	within	the	window.	The	aspect	and	width
options	determine	the	amount	of	screen	space	needed	to	display
the	text.	The	anchor,	padX,	and	padY	options	determine	where
this	rectangular	area	is	displayed	within	the	widget's	window,	and
the	justify	option	determines	how	each	line	is	displayed	within	that
rectangular	region.	For	example,	suppose	anchor	is	e	and	justify
is	left,	and	that	the	message	window	is	much	larger	than	needed
for	the	text.	The	text	will	be	displayed	so	that	the	left	edges	of	all
the	lines	line	up	and	the	right	edge	of	the	longest	line	is	padX	from
the	right	side	of	the	window;	the	entire	text	block	will	be	centered	in
the	vertical	span	of	the	window.

Command-Line	Name:	-width
Database	Name:	width
Database	Class:	Width

Specifies	the	length	of	lines	in	the	window.	The	value	may	have	any
of	the	forms	acceptable	to	Tk_GetPixels.	If	this	option	has	a	value
greater	than	zero	then	the	aspect	option	is	ignored	and	the	width
option	determines	the	line	length.	If	this	option	has	a	value	less
than	or	equal	to	zero,	then	the	aspect	option	determines	the	line
length.

DESCRIPTION

The	message	command	creates	a	new	window	(given	by	the
pathName	argument)	and	makes	it	into	a	message	widget.	Additional
options,	described	above,	may	be	specified	on	the	command	line	or	in
the	option	database	to	configure	aspects	of	the	message	such	as	its
colors,	font,	text,	and	initial	relief.	The	message	command	returns	its
pathName	argument.	At	the	time	this	command	is	invoked,	there	must

not	exist	a	window	named	pathName,	but	pathName's	parent	must
exist.

A	message	is	a	widget	that	displays	a	textual	string.	A	message	widget
has	three	special	features.	First,	it	breaks	up	its	string	into	lines	in	order
to	produce	a	given	aspect	ratio	for	the	window.	The	line	breaks	are
chosen	at	word	boundaries	wherever	possible	(if	not	even	a	single	word
would	fit	on	a	line,	then	the	word	will	be	split	across	lines).	Newline
characters	in	the	string	will	force	line	breaks;	they	can	be	used,	for
example,	to	leave	blank	lines	in	the	display.

The	second	feature	of	a	message	widget	is	justification.	The	text	may
be	displayed	left-justified	(each	line	starts	at	the	left	side	of	the	window),
centered	on	a	line-by-line	basis,	or	right-justified	(each	line	ends	at	the
right	side	of	the	window).

The	third	feature	of	a	message	widget	is	that	it	handles	control
characters	and	non-printing	characters	specially.	Tab	characters	are
replaced	with	enough	blank	space	to	line	up	on	the	next	8-character
boundary.	Newlines	cause	line	breaks.	Other	control	characters	(ASCII
code	less	than	0x20)	and	characters	not	defined	in	the	font	are
displayed	as	a	four-character	sequence	\xhh	where	hh	is	the	two-digit
hexadecimal	number	corresponding	to	the	character.	In	the	unusual
case	where	the	font	does	not	contain	all	of	the	characters	in
“0123456789abcdef\x”	then	control	characters	and	undefined
characters	are	not	displayed	at	all.

WIDGET	COMMAND

The	message	command	creates	a	new	Tcl	command	whose	name	is
pathName.	This	command	may	be	used	to	invoke	various	operations	on
the	widget.	It	has	the	following	general	form:

pathName	option	?arg	arg	...?

Option	and	the	args	determine	the	exact	behavior	of	the	command.	The

following	commands	are	possible	for	message	widgets:

pathName	cget	option
Returns	the	current	value	of	the	configuration	option	given	by
option.	Option	may	have	any	of	the	values	accepted	by	the
message	command.

pathName	configure	?option?	?value	option	value	...?
Query	or	modify	the	configuration	options	of	the	widget.	If	no	option
is	specified,	returns	a	list	describing	all	of	the	available	options	for
pathName	(see	Tk_ConfigureInfo	for	information	on	the	format	of
this	list).	If	option	is	specified	with	no	value,	then	the	command
returns	a	list	describing	the	one	named	option	(this	list	will	be
identical	to	the	corresponding	sublist	of	the	value	returned	if	no
option	is	specified).	If	one	or	more	option-value	pairs	are	specified,
then	the	command	modifies	the	given	widget	option(s)	to	have	the
given	value(s);	in	this	case	the	command	returns	an	empty	string.
Option	may	have	any	of	the	values	accepted	by	the	message
command.

DEFAULT	BINDINGS

When	a	new	message	is	created,	it	has	no	default	event	bindings:
messages	are	intended	for	output	purposes	only.

BUGS

Tabs	do	not	work	very	well	with	text	that	is	centered	or	right-justified.
The	most	common	result	is	that	the	line	is	justified	wrong.

SEE	ALSO

label

KEYWORDS

message,	widget

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990-1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	tk

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
tk	-	Manipulate	Tk	internal	state

SYNOPSIS
DESCRIPTION

tk	appname	?newName?
tk	caret	window	?-x	x?	?-y	y?	?-height	height?
tk	scaling	?-displayof	window?	?number?
tk	inactive	?-displayof	window?	?reset?
tk	useinputmethods	?-displayof	window?	?boolean?
tk	windowingsystem

SEE	ALSO
KEYWORDS

NAME

tk	-	Manipulate	Tk	internal	state

SYNOPSIS

tk	option	?arg	arg	...?

DESCRIPTION

The	tk	command	provides	access	to	miscellaneous	elements	of	Tk's
internal	state.	Most	of	the	information	manipulated	by	this	command
pertains	to	the	application	as	a	whole,	or	to	a	screen	or	display,	rather
than	to	a	particular	window.	The	command	can	take	any	of	a	number	of
different	forms	depending	on	the	option	argument.	The	legal	forms	are:

tk	appname	?newName?
If	newName	is	not	specified,	this	command	returns	the	name	of	the
application	(the	name	that	may	be	used	in	send	commands	to

communicate	with	the	application).	If	newName	is	specified,	then
the	name	of	the	application	is	changed	to	newName.	If	the	given
name	is	already	in	use,	then	a	suffix	of	the	form	“	#2”	or	“	#3”	is
appended	in	order	to	make	the	name	unique.	The	command's
result	is	the	name	actually	chosen.	newName	should	not	start	with
a	capital	letter.	This	will	interfere	with	option	processing,	since
names	starting	with	capitals	are	assumed	to	be	classes;	as	a
result,	Tk	may	not	be	able	to	find	some	options	for	the	application.
If	sends	have	been	disabled	by	deleting	the	send	command,	this
command	will	reenable	them	and	recreate	the	send	command.

tk	caret	window	?-x	x?	?-y	y?	?-height	height?
Sets	and	queries	the	caret	location	for	the	display	of	the	specified
Tk	window	window.	The	caret	is	the	per-display	cursor	location
used	for	indicating	global	focus	(e.g.	to	comply	with	Microsoft
Accessibility	guidelines),	as	well	as	for	location	of	the	over-the-spot
XIM	(X	Input	Methods)	or	Windows	IME	windows.	If	no	options	are
specified,	the	last	values	used	for	setting	the	caret	are	return	in
option-value	pair	format.	-x	and	-y	represent	window-relative
coordinates,	and	-height	is	the	height	of	the	current	cursor	location,
or	the	height	of	the	specified	window	if	none	is	given.

tk	scaling	?-displayof	window?	?number?
Sets	and	queries	the	current	scaling	factor	used	by	Tk	to	convert
between	physical	units	(for	example,	points,	inches,	or	millimeters)
and	pixels.	The	number	argument	is	a	floating	point	number	that
specifies	the	number	of	pixels	per	point	on	window's	display.	If	the
window	argument	is	omitted,	it	defaults	to	the	main	window.	If	the
number	argument	is	omitted,	the	current	value	of	the	scaling	factor
is	returned.

A	“point”	is	a	unit	of	measurement	equal	to	1/72	inch.	A	scaling
factor	of	1.0	corresponds	to	1	pixel	per	point,	which	is	equivalent	to
a	standard	72	dpi	monitor.	A	scaling	factor	of	1.25	would	mean	1.25
pixels	per	point,	which	is	the	setting	for	a	90	dpi	monitor;	setting	the
scaling	factor	to	1.25	on	a	72	dpi	monitor	would	cause	everything	in
the	application	to	be	displayed	1.25	times	as	large	as	normal.	The
initial	value	for	the	scaling	factor	is	set	when	the	application	starts,

based	on	properties	of	the	installed	monitor,	but	it	can	be	changed
at	any	time.	Measurements	made	after	the	scaling	factor	is
changed	will	use	the	new	scaling	factor,	but	it	is	undefined	whether
existing	widgets	will	resize	themselves	dynamically	to
accommodate	the	new	scaling	factor.

tk	inactive	?-displayof	window?	?reset?
Returns	a	positive	integer,	the	number	of	milliseconds	since	the	last
time	the	user	interacted	with	the	system.	If	the	-displayof	option	is
given	then	the	return	value	refers	to	the	display	of	window;
otherwise	it	refers	to	the	display	of	the	application's	main	window.

tk	inactive	will	return	-1,	if	querying	the	user	inactive	time	is	not
supported	by	the	system,	and	in	safe	interpreters.

If	the	literal	string	reset	is	given	as	an	additional	argument,	the
timer	is	reset	and	an	empty	string	is	returned.	Resetting	the
inactivity	time	is	forbidden	in	safe	interpreters	and	will	throw	and
error	if	tried.

tk	useinputmethods	?-displayof	window?	?boolean?
Sets	and	queries	the	state	of	whether	Tk	should	use	XIM	(X	Input
Methods)	for	filtering	events.	The	resulting	state	is	returned.	XIM	is
used	in	some	locales	(i.e.,	Japanese,	Korean),	to	handle	special
input	devices.	This	feature	is	only	significant	on	X.	If	XIM	support	is
not	available,	this	will	always	return	0.	If	the	window	argument	is
omitted,	it	defaults	to	the	main	window.	If	the	boolean	argument	is
omitted,	the	current	state	is	returned.	This	is	turned	on	by	default
for	the	main	display.

tk	windowingsystem
Returns	the	current	Tk	windowing	system,	one	of	x11	(X11-based),
win32	(MS	Windows),	or	aqua	(Mac	OS	X	Aqua).

SEE	ALSO

send,	winfo

KEYWORDS

application	name,	send

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1992	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	ttk_menubutton

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
ttk::menubutton	-	Widget	that	pops	down	a	menu	when
pressed

SYNOPSIS
DESCRIPTION
STANDARD	OPTIONS

-class
-compound,	compound,	Compound
-cursor,	cursor,	Cursor
-image,	image,	Image
-state
-style
-takefocus,	takeFocus,	TakeFocus
-text,	text,	Text
-textvariable,	textVariable,	Variable
-underline,	underline,	Underline
-width

WIDGET-SPECIFIC	OPTIONS
-direction,	direction,	Direction
-menu,	menu,	Menu

WIDGET	COMMAND
SEE	ALSO
KEYWORDS

NAME

ttk::menubutton	-	Widget	that	pops	down	a	menu	when	pressed

SYNOPSIS

ttk::menubutton	pathName	?options?

DESCRIPTION

A	ttk::menubutton	widget	displays	a	textual	label	and/or	image,	and
displays	a	menu	when	pressed.

STANDARD	OPTIONS

-class
-compound,	compound,	Compound
-cursor,	cursor,	Cursor
-image,	image,	Image
-state
-style
-takefocus,	takeFocus,	TakeFocus
-text,	text,	Text
-textvariable,	textVariable,	Variable
-underline,	underline,	Underline
-width

WIDGET-SPECIFIC	OPTIONS

Command-Line	Name:	-direction
Database	Name:	direction
Database	Class:	Direction

Specifies	where	the	menu	is	to	be	popped	up	relative	to	the
menubutton.	One	of:	above,	below,	left,	right,	or	flush.	The
default	is	below.	flush	pops	the	menu	up	directly	over	the
menubutton.

Command-Line	Name:	-menu
Database	Name:	menu
Database	Class:	Menu

Specifies	the	path	name	of	the	menu	associated	with	the
menubutton.	To	be	on	the	safe	side,	the	menu	ought	to	be	a	direct
child	of	the	menubutton.

WIDGET	COMMAND

Menubutton	widgets	support	the	standard	cget,	configure,	identify,
instate,	and	state	methods.	No	other	widget	methods	are	used.

SEE	ALSO

ttk::widget,	menu,	menubutton

KEYWORDS

widget,	button,	menu

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	2004	Joe	English

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	wm

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
wm	-	Communicate	with	window	manager

SYNOPSIS
DESCRIPTION

wm	aspect	window	?minNumer	minDenom	maxNumer
maxDenom?
wm	attributes	window
wm	attributes	window	?option?
wm	attributes	window	?option	value	option	value...?

-fullscreen
-topmost
-alpha
-disabled
-toolwindow
-transparentcolor
-alpha
-modified
-notify
-titlepath
-transparent
-zoomed

wm	client	window	?name?
wm	colormapwindows	window	?windowList?
wm	command	window	?value?
wm	deiconify	window
wm	focusmodel	window	?active|passive?
wm	forget	window
wm	frame	window
wm	geometry	window	?newGeometry?
wm	grid	window	?baseWidth	baseHeight	widthInc	heightInc?
wm	group	window	?pathName?

wm	iconbitmap	window	?bitmap?
wm	iconbitmap	window	?-default?	?image?

wm	iconify	window
wm	iconmask	window	?bitmap?
wm	iconname	window	?newName?
wm	iconphoto	window	?-default?	image1	?image2	...?
wm	iconposition	window	?x	y?
wm	iconwindow	window	?pathName?
wm	manage	widget
wm	maxsize	window	?width	height?
wm	minsize	window	?width	height?
wm	overrideredirect	window	?boolean?
wm	positionfrom	window	?who?
wm	protocol	window	?name?	?command?
wm	resizable	window	?width	height?
wm	sizefrom	window	?who?
wm	stackorder	window	?isabove|isbelow	window?
wm	state	window	?newstate?
wm	title	window	?string?
wm	transient	window	?master?
wm	withdraw	window

GEOMETRY	MANAGEMENT
GRIDDED	GEOMETRY	MANAGEMENT
BUGS
EXAMPLES
SEE	ALSO
KEYWORDS

NAME

wm	-	Communicate	with	window	manager

SYNOPSIS

wm	option	window	?args?

DESCRIPTION

The	wm	command	is	used	to	interact	with	window	managers	in	order	to
control	such	things	as	the	title	for	a	window,	its	geometry,	or	the
increments	in	terms	of	which	it	may	be	resized.	The	wm	command	can
take	any	of	a	number	of	different	forms,	depending	on	the	option
argument.	All	of	the	forms	expect	at	least	one	additional	argument,
window,	which	must	be	the	path	name	of	a	top-level	window.

The	legal	forms	for	the	wm	command	are:

wm	aspect	window	?minNumer	minDenom	maxNumer	maxDenom?
If	minNumer,	minDenom,	maxNumer,	and	maxDenom	are	all
specified,	then	they	will	be	passed	to	the	window	manager	and	the
window	manager	should	use	them	to	enforce	a	range	of	acceptable
aspect	ratios	for	window.	The	aspect	ratio	of	window	(width/length)
will	be	constrained	to	lie	between	minNumer/minDenom	and
maxNumer/maxDenom.	If	minNumer	etc.	are	all	specified	as	empty
strings,	then	any	existing	aspect	ratio	restrictions	are	removed.	If
minNumer	etc.	are	specified,	then	the	command	returns	an	empty
string.	Otherwise,	it	returns	a	Tcl	list	containing	four	elements,
which	are	the	current	values	of	minNumer,	minDenom,	maxNumer,
and	maxDenom	(if	no	aspect	restrictions	are	in	effect,	then	an
empty	string	is	returned).

wm	attributes	window

wm	attributes	window	?option?

wm	attributes	window	?option	value	option	value...?
This	subcommand	returns	or	sets	platform	specific	attributes
associated	with	a	window.	The	first	form	returns	a	list	of	the
platform	specific	flags	and	their	values.	The	second	form	returns
the	value	for	the	specific	option.	The	third	form	sets	one	or	more	of
the	values.	The	values	are	as	follows:

All	platforms	support	the	following	attributes	(though	X11	users
should	see	the	notes	below):

-fullscreen

Places	the	window	in	a	mode	that	takes	up	the	entire	screen,
has	no	borders,	and	covers	the	general	use	area	(i.e.	Start
menu	and	taskbar	on	Windows,	dock	and	menubar	on	OSX,
general	window	decorations	on	X11).

-topmost
Specifies	whether	this	is	a	topmost	window	(displays	above	all
other	windows).

On	Windows,	the	following	attributes	may	be	set.

-alpha
Specifies	the	alpha	transparency	level	of	the	toplevel.	It
accepts	a	value	from	0.0	(fully	transparent)	to	1.0	(opaque).
Values	outside	that	range	will	be	constrained.	This	is
supported	on	Windows	2000/XP+.	Where	not	supported,	the	-
alpha	value	remains	at	1.0.

-disabled
Specifies	whether	the	window	is	in	a	disabled	state.

-toolwindow
Specifies	a	toolwindow	style	window	(as	defined	in	the	MSDN).

-transparentcolor
Specifies	the	transparent	color	index	of	the	toplevel.	It	takes
any	color	value	accepted	by	Tk_GetColor.	If	the	empty	string
is	specified	(default),	no	transparent	color	is	used.	This	is
supported	on	Windows	2000/XP+.	Where	not	supported,	the	-
transparentcolor	value	remains	at	{}.

On	Mac	OS	X,	the	following	attributes	may	be	set.

-alpha
Specifies	the	alpha	transparency	level	of	the	window.	It
accepts	a	value	from	0.0	(fully	transparent)	to	1.0	(opaque),
values	outside	that	range	will	be	constrained.

-modified

Specifies	the	modification	state	of	the	window	(determines
whether	the	window	close	widget	contains	the	modification
indicator	and	whether	the	proxy	icon	is	draggable).

-notify
Specifies	process	notification	state	(bouncing	of	the	application
dock	icon).

-titlepath
Specifies	the	path	of	the	file	referenced	as	the	window	proxy
icon	(which	can	be	dragged	and	dropped	in	lieu	of	the	file's
finder	icon).

-transparent
Makes	the	window	content	area	transparent	and	turns	off	the
window	shadow.	For	the	transparency	to	be	effecive,	the
toplevel	background	needs	to	be	set	to	a	color	with	some
alpha,	e.g.	“systemTransparent”.

On	X11,	the	following	attributes	may	be	set.	These	are	not
supported	by	all	window	managers,	and	will	have	no	effect	under
older	WMs.

-zoomed
Requests	that	the	window	should	be	maximized.	This	is	the
same	as	wm	state	zoomed	on	Windows	and	Mac	OS	X.

On	X11,	changes	to	window	attributes	are	performed
asynchronously.	Querying	the	value	of	an	attribute	returns	the
current	state,	which	will	not	be	the	same	as	the	value	most	recently
set	if	the	window	manager	has	not	yet	processed	the	request	or	if	it
does	not	support	the	attribute.

wm	client	window	?name?
If	name	is	specified,	this	command	stores	name	(which	should	be
the	name	of	the	host	on	which	the	application	is	executing)	in
window's	WM_CLIENT_MACHINE	property	for	use	by	the	window
manager	or	session	manager.	The	command	returns	an	empty

string	in	this	case.	If	name	is	not	specified,	the	command	returns
the	last	name	set	in	a	wm	client	command	for	window.	If	name	is
specified	as	an	empty	string,	the	command	deletes	the
WM_CLIENT_MACHINE	property	from	window.

wm	colormapwindows	window	?windowList?
This	command	is	used	to	manipulate	the
WM_COLORMAP_WINDOWS	property,	which	provides
information	to	the	window	managers	about	windows	that	have
private	colormaps.

If	windowList	is	not	specified,	the	command	returns	a	list	whose
elements	are	the	names	of	the	windows	in	the
WM_COLORMAP_WINDOWS	property.	If	windowList	is	specified,
it	consists	of	a	list	of	window	path	names;	the	command	overwrites
the	WM_COLORMAP_WINDOWS	property	with	the	given	windows
and	returns	an	empty	string.	The	WM_COLORMAP_WINDOWS
property	should	normally	contain	a	list	of	the	internal	windows
within	window	whose	colormaps	differ	from	their	parents.

The	order	of	the	windows	in	the	property	indicates	a	priority	order:
the	window	manager	will	attempt	to	install	as	many	colormaps	as
possible	from	the	head	of	this	list	when	window	gets	the	colormap
focus.	If	window	is	not	included	among	the	windows	in	windowList,
Tk	implicitly	adds	it	at	the	end	of	the	WM_COLORMAP_WINDOWS
property,	so	that	its	colormap	is	lowest	in	priority.	If	wm
colormapwindows	is	not	invoked,	Tk	will	automatically	set	the
property	for	each	top-level	window	to	all	the	internal	windows
whose	colormaps	differ	from	their	parents,	followed	by	the	top-level
itself;	the	order	of	the	internal	windows	is	undefined.	See	the
ICCCM	documentation	for	more	information	on	the
WM_COLORMAP_WINDOWS	property.

wm	command	window	?value?
If	value	is	specified,	this	command	stores	value	in	window's
WM_COMMAND	property	for	use	by	the	window	manager	or
session	manager	and	returns	an	empty	string.	Value	must	have
proper	list	structure;	the	elements	should	contain	the	words	of	the

command	used	to	invoke	the	application.	If	value	is	not	specified
then	the	command	returns	the	last	value	set	in	a	wm	command
command	for	window.	If	value	is	specified	as	an	empty	string,	the
command	deletes	the	WM_COMMAND	property	from	window.

wm	deiconify	window
Arrange	for	window	to	be	displayed	in	normal	(non-iconified)	form.
This	is	done	by	mapping	the	window.	If	the	window	has	never	been
mapped	then	this	command	will	not	map	the	window,	but	it	will
ensure	that	when	the	window	is	first	mapped	it	will	be	displayed	in
de-iconified	form.	On	Windows,	a	deiconified	window	will	also	be
raised	and	be	given	the	focus	(made	the	active	window).	Returns
an	empty	string.

wm	focusmodel	window	?active|passive?
If	active	or	passive	is	supplied	as	an	optional	argument	to	the
command,	then	it	specifies	the	focus	model	for	window.	In	this	case
the	command	returns	an	empty	string.	If	no	additional	argument	is
supplied,	then	the	command	returns	the	current	focus	model	for
window.

An	active	focus	model	means	that	window	will	claim	the	input	focus
for	itself	or	its	descendants,	even	at	times	when	the	focus	is
currently	in	some	other	application.	Passive	means	that	window
will	never	claim	the	focus	for	itself:	the	window	manager	should
give	the	focus	to	window	at	appropriate	times.	However,	once	the
focus	has	been	given	to	window	or	one	of	its	descendants,	the
application	may	re-assign	the	focus	among	window's	descendants.
The	focus	model	defaults	to	passive,	and	Tk's	focus	command
assumes	a	passive	model	of	focusing.

wm	forget	window
The	window	will	be	unmapped	from	the	screen	and	will	no	longer
be	managed	by	wm.	Windows	created	with	the	toplevel	command
will	be	treated	like	frame	windows	once	they	are	no	longer
managed	by	wm,	however,	the	-menu	configuration	will	be
remembered	and	the	menus	will	return	once	the	widget	is	managed
again.

wm	frame	window
If	window	has	been	reparented	by	the	window	manager	into	a
decorative	frame,	the	command	returns	the	platform	specific
window	identifier	for	the	outermost	frame	that	contains	window	(the
window	whose	parent	is	the	root	or	virtual	root).	If	window	has	not
been	reparented	by	the	window	manager	then	the	command
returns	the	platform	specific	window	identifier	for	window.

wm	geometry	window	?newGeometry?
If	newGeometry	is	specified,	then	the	geometry	of	window	is
changed	and	an	empty	string	is	returned.	Otherwise	the	current
geometry	for	window	is	returned	(this	is	the	most	recent	geometry
specified	either	by	manual	resizing	or	in	a	wm	geometry
command).	NewGeometry	has	the	form	=widthxheight±x±y,	where
any	of	=,	widthxheight,	or	±x±y	may	be	omitted.	Width	and	height
are	positive	integers	specifying	the	desired	dimensions	of	window.
If	window	is	gridded	(see	GRIDDED	GEOMETRY	MANAGEMENT
below)	then	the	dimensions	are	specified	in	grid	units;	otherwise
they	are	specified	in	pixel	units.

X	and	y	specify	the	desired	location	of	window	on	the	screen,	in
pixels.	If	x	is	preceded	by	+,	it	specifies	the	number	of	pixels
between	the	left	edge	of	the	screen	and	the	left	edge	of	window's
border;	if	preceded	by	-	then	x	specifies	the	number	of	pixels
between	the	right	edge	of	the	screen	and	the	right	edge	of
window's	border.	If	y	is	preceded	by	+	then	it	specifies	the	number
of	pixels	between	the	top	of	the	screen	and	the	top	of	window's
border;	if	y	is	preceded	by	-	then	it	specifies	the	number	of	pixels
between	the	bottom	of	window's	border	and	the	bottom	of	the
screen.

If	newGeometry	is	specified	as	an	empty	string	then	any	existing
user-specified	geometry	for	window	is	cancelled,	and	the	window
will	revert	to	the	size	requested	internally	by	its	widgets.

wm	grid	window	?baseWidth	baseHeight	widthInc	heightInc?
This	command	indicates	that	window	is	to	be	managed	as	a
gridded	window.	It	also	specifies	the	relationship	between	grid	units

and	pixel	units.	BaseWidth	and	baseHeight	specify	the	number	of
grid	units	corresponding	to	the	pixel	dimensions	requested
internally	by	window	using	Tk_GeometryRequest.	WidthInc	and
heightInc	specify	the	number	of	pixels	in	each	horizontal	and
vertical	grid	unit.	These	four	values	determine	a	range	of
acceptable	sizes	for	window,	corresponding	to	grid-based	widths
and	heights	that	are	non-negative	integers.	Tk	will	pass	this
information	to	the	window	manager;	during	manual	resizing,	the
window	manager	will	restrict	the	window's	size	to	one	of	these
acceptable	sizes.

Furthermore,	during	manual	resizing	the	window	manager	will
display	the	window's	current	size	in	terms	of	grid	units	rather	than
pixels.	If	baseWidth	etc.	are	all	specified	as	empty	strings,	then
window	will	no	longer	be	managed	as	a	gridded	window.	If
baseWidth	etc.	are	specified	then	the	return	value	is	an	empty
string.

Otherwise	the	return	value	is	a	Tcl	list	containing	four	elements
corresponding	to	the	current	baseWidth,	baseHeight,	widthInc,	and
heightInc;	if	window	is	not	currently	gridded,	then	an	empty	string	is
returned.

Note:	this	command	should	not	be	needed	very	often,	since	the
Tk_SetGrid	library	procedure	and	the	setGrid	option	provide
easier	access	to	the	same	functionality.

wm	group	window	?pathName?
If	pathName	is	specified,	it	gives	the	path	name	for	the	leader	of	a
group	of	related	windows.	The	window	manager	may	use	this
information,	for	example,	to	unmap	all	of	the	windows	in	a	group
when	the	group's	leader	is	iconified.	PathName	may	be	specified
as	an	empty	string	to	remove	window	from	any	group	association.	If
pathName	is	specified	then	the	command	returns	an	empty	string;
otherwise	it	returns	the	path	name	of	window's	current	group
leader,	or	an	empty	string	if	window	is	not	part	of	any	group.

wm	iconbitmap	window	?bitmap?

If	bitmap	is	specified,	then	it	names	a	bitmap	in	the	standard	forms
accepted	by	Tk	(see	the	Tk_GetBitmap	manual	entry	for	details).
This	bitmap	is	passed	to	the	window	manager	to	be	displayed	in
window's	icon,	and	the	command	returns	an	empty	string.	If	an
empty	string	is	specified	for	bitmap,	then	any	current	icon	bitmap	is
cancelled	for	window.	If	bitmap	is	specified	then	the	command
returns	an	empty	string.	Otherwise	it	returns	the	name	of	the
current	icon	bitmap	associated	with	window,	or	an	empty	string	if
window	has	no	icon	bitmap.	On	the	Windows	operating	system,	an
additional	flag	is	supported:

wm	iconbitmap	window	?-default?	?image?
If	the	-default	flag	is	given,	the	icon	is	applied	to	all	toplevel
windows	(existing	and	future)	to	which	no	other	specific	icon
has	yet	been	applied.	In	addition	to	bitmap	image	types,	a	full
path	specification	to	any	file	which	contains	a	valid	Windows
icon	is	also	accepted	(usually	.ico	or	.icr	files),	or	any	file	for
which	the	shell	has	assigned	an	icon.	Tcl	will	first	test	if	the	file
contains	an	icon,	then	if	it	has	an	assigned	icon,	and	finally,	if
that	fails,	test	for	a	bitmap.

wm	iconify	window
Arrange	for	window	to	be	iconified.	It	window	has	not	yet	been
mapped	for	the	first	time,	this	command	will	arrange	for	it	to	appear
in	the	iconified	state	when	it	is	eventually	mapped.

wm	iconmask	window	?bitmap?
If	bitmap	is	specified,	then	it	names	a	bitmap	in	the	standard	forms
accepted	by	Tk	(see	the	Tk_GetBitmap	manual	entry	for	details).
This	bitmap	is	passed	to	the	window	manager	to	be	used	as	a
mask	in	conjunction	with	the	iconbitmap	option:	where	the	mask
has	zeroes	no	icon	will	be	displayed;	where	it	has	ones,	the	bits
from	the	icon	bitmap	will	be	displayed.	If	an	empty	string	is
specified	for	bitmap	then	any	current	icon	mask	is	cancelled	for
window	(this	is	equivalent	to	specifying	a	bitmap	of	all	ones).	If
bitmap	is	specified	then	the	command	returns	an	empty	string.
Otherwise	it	returns	the	name	of	the	current	icon	mask	associated
with	window,	or	an	empty	string	if	no	mask	is	in	effect.

wm	iconname	window	?newName?
If	newName	is	specified,	then	it	is	passed	to	the	window	manager;
the	window	manager	should	display	newName	inside	the	icon
associated	with	window.	In	this	case	an	empty	string	is	returned	as
result.	If	newName	is	not	specified	then	the	command	returns	the
current	icon	name	for	window,	or	an	empty	string	if	no	icon	name
has	been	specified	(in	this	case	the	window	manager	will	normally
display	the	window's	title,	as	specified	with	the	wm	title	command).

wm	iconphoto	window	?-default?	image1	?image2	...?
Sets	the	titlebar	icon	for	window	based	on	the	named	photo
images.	If	-default	is	specified,	this	is	applied	to	all	future	created
toplevels	as	well.	The	data	in	the	images	is	taken	as	a	snapshot	at
the	time	of	invocation.	If	the	images	are	later	changed,	this	is	not
reflected	to	the	titlebar	icons.	Multiple	images	are	accepted	to	allow
different	images	sizes	(e.g.,	16x16	and	32x32)	to	be	provided.	The
window	manager	may	scale	provided	icons	to	an	appropriate	size.

On	Windows,	the	images	are	packed	into	a	Windows	icon
structure.	This	will	override	an	ico	specified	to	wm	iconbitmap,
and	vice	versa.

On	X,	the	images	are	arranged	into	the	_NET_WM_ICON	X
property,	which	most	modern	window	managers	support.	A	wm
iconbitmap	may	exist	simultaneously.	It	is	recommended	to	use
not	more	than	2	icons,	placing	the	larger	icon	first.

On	Macintosh,	this	currently	does	nothing.

wm	iconposition	window	?x	y?
If	x	and	y	are	specified,	they	are	passed	to	the	window	manager	as
a	hint	about	where	to	position	the	icon	for	window.	In	this	case	an
empty	string	is	returned.	If	x	and	y	are	specified	as	empty	strings
then	any	existing	icon	position	hint	is	cancelled.	If	neither	x	nor	y	is
specified,	then	the	command	returns	a	Tcl	list	containing	two
values,	which	are	the	current	icon	position	hints	(if	no	hints	are	in
effect	then	an	empty	string	is	returned).

wm	iconwindow	window	?pathName?
If	pathName	is	specified,	it	is	the	path	name	for	a	window	to	use	as
icon	for	window:	when	window	is	iconified	then	pathName	will	be
mapped	to	serve	as	icon,	and	when	window	is	de-iconified	then
pathName	will	be	unmapped	again.	If	pathName	is	specified	as	an
empty	string	then	any	existing	icon	window	association	for	window
will	be	cancelled.	If	the	pathName	argument	is	specified	then	an
empty	string	is	returned.	Otherwise	the	command	returns	the	path
name	of	the	current	icon	window	for	window,	or	an	empty	string	if
there	is	no	icon	window	currently	specified	for	window.	Button
press	events	are	disabled	for	window	as	long	as	it	is	an	icon
window;	this	is	needed	in	order	to	allow	window	managers	to	“own”
those	events.	Note:	not	all	window	managers	support	the	notion	of
an	icon	window.

wm	manage	widget
The	widget	specified	will	become	a	stand	alone	top-level	window.
The	window	will	be	decorated	with	the	window	managers	title	bar,
etc.	Only	frame,	labelframe	and	toplevel	widgets	can	be	used	with
this	command.	Attempting	to	pass	any	other	widget	type	will	raise
an	error.	Attempting	to	manage	a	toplevel	widget	is	benign	and
achieves	nothing.	See	also	GEOMETRY	MANAGEMENT.

wm	maxsize	window	?width	height?
If	width	and	height	are	specified,	they	give	the	maximum
permissible	dimensions	for	window.	For	gridded	windows	the
dimensions	are	specified	in	grid	units;	otherwise	they	are	specified
in	pixel	units.	The	window	manager	will	restrict	the	window's
dimensions	to	be	less	than	or	equal	to	width	and	height.	If	width
and	height	are	specified,	then	the	command	returns	an	empty
string.	Otherwise	it	returns	a	Tcl	list	with	two	elements,	which	are
the	maximum	width	and	height	currently	in	effect.	The	maximum
size	defaults	to	the	size	of	the	screen.	See	the	sections	on
geometry	management	below	for	more	information.

wm	minsize	window	?width	height?
If	width	and	height	are	specified,	they	give	the	minimum
permissible	dimensions	for	window.	For	gridded	windows	the

dimensions	are	specified	in	grid	units;	otherwise	they	are	specified
in	pixel	units.	The	window	manager	will	restrict	the	window's
dimensions	to	be	greater	than	or	equal	to	width	and	height.	If	width
and	height	are	specified,	then	the	command	returns	an	empty
string.	Otherwise	it	returns	a	Tcl	list	with	two	elements,	which	are
the	minimum	width	and	height	currently	in	effect.	The	minimum	size
defaults	to	one	pixel	in	each	dimension.	See	the	sections	on
geometry	management	below	for	more	information.

wm	overrideredirect	window	?boolean?
If	boolean	is	specified,	it	must	have	a	proper	boolean	form	and	the
override-redirect	flag	for	window	is	set	to	that	value.	If	boolean	is
not	specified	then	1	or	0	is	returned	to	indicate	whether	or	not	the
override-redirect	flag	is	currently	set	for	window.	Setting	the
override-redirect	flag	for	a	window	causes	it	to	be	ignored	by	the
window	manager;	among	other	things,	this	means	that	the	window
will	not	be	reparented	from	the	root	window	into	a	decorative	frame
and	the	user	will	not	be	able	to	manipulate	the	window	using	the
normal	window	manager	mechanisms.

wm	positionfrom	window	?who?
If	who	is	specified,	it	must	be	either	program	or	user,	or	an
abbreviation	of	one	of	these	two.	It	indicates	whether	window's
current	position	was	requested	by	the	program	or	by	the	user.
Many	window	managers	ignore	program-requested	initial	positions
and	ask	the	user	to	manually	position	the	window;	if	user	is
specified	then	the	window	manager	should	position	the	window	at
the	given	place	without	asking	the	user	for	assistance.	If	who	is
specified	as	an	empty	string,	then	the	current	position	source	is
cancelled.	If	who	is	specified,	then	the	command	returns	an	empty
string.	Otherwise	it	returns	user	or	program	to	indicate	the	source
of	the	window's	current	position,	or	an	empty	string	if	no	source	has
been	specified	yet.	Most	window	managers	interpret	“no	source”	as
equivalent	to	program.	Tk	will	automatically	set	the	position	source
to	user	when	a	wm	geometry	command	is	invoked,	unless	the
source	has	been	set	explicitly	to	program.

wm	protocol	window	?name?	?command?

This	command	is	used	to	manage	window	manager	protocols	such
as	WM_DELETE_WINDOW.	Name	is	the	name	of	an	atom
corresponding	to	a	window	manager	protocol,	such	as
WM_DELETE_WINDOW	or	WM_SAVE_YOURSELF	or
WM_TAKE_FOCUS.	If	both	name	and	command	are	specified,
then	command	is	associated	with	the	protocol	specified	by	name.
Name	will	be	added	to	window's	WM_PROTOCOLS	property	to	tell
the	window	manager	that	the	application	has	a	protocol	handler	for
name,	and	command	will	be	invoked	in	the	future	whenever	the
window	manager	sends	a	message	to	the	client	for	that	protocol.	In
this	case	the	command	returns	an	empty	string.	If	name	is	specified
but	command	is	not,	then	the	current	command	for	name	is
returned,	or	an	empty	string	if	there	is	no	handler	defined	for	name.
If	command	is	specified	as	an	empty	string	then	the	current	handler
for	name	is	deleted	and	it	is	removed	from	the	WM_PROTOCOLS
property	on	window;	an	empty	string	is	returned.	Lastly,	if	neither
name	nor	command	is	specified,	the	command	returns	a	list	of	all
the	protocols	for	which	handlers	are	currently	defined	for	window.

Tk	always	defines	a	protocol	handler	for	WM_DELETE_WINDOW,
even	if	you	have	not	asked	for	one	with	wm	protocol.	If	a
WM_DELETE_WINDOW	message	arrives	when	you	have	not
defined	a	handler,	then	Tk	handles	the	message	by	destroying	the
window	for	which	it	was	received.

wm	resizable	window	?width	height?
This	command	controls	whether	or	not	the	user	may	interactively
resize	a	top-level	window.	If	width	and	height	are	specified,	they
are	boolean	values	that	determine	whether	the	width	and	height	of
window	may	be	modified	by	the	user.	In	this	case	the	command
returns	an	empty	string.	If	width	and	height	are	omitted	then	the
command	returns	a	list	with	two	0/1	elements	that	indicate	whether
the	width	and	height	of	window	are	currently	resizable.	By	default,
windows	are	resizable	in	both	dimensions.	If	resizing	is	disabled,
then	the	window's	size	will	be	the	size	from	the	most	recent
interactive	resize	or	wm	geometry	command.	If	there	has	been	no
such	operation	then	the	window's	natural	size	will	be	used.

wm	sizefrom	window	?who?
If	who	is	specified,	it	must	be	either	program	or	user,	or	an
abbreviation	of	one	of	these	two.	It	indicates	whether	window's
current	size	was	requested	by	the	program	or	by	the	user.	Some
window	managers	ignore	program-requested	sizes	and	ask	the
user	to	manually	size	the	window;	if	user	is	specified	then	the
window	manager	should	give	the	window	its	specified	size	without
asking	the	user	for	assistance.	If	who	is	specified	as	an	empty
string,	then	the	current	size	source	is	cancelled.	If	who	is	specified,
then	the	command	returns	an	empty	string.	Otherwise	it	returns
user	or	window	to	indicate	the	source	of	the	window's	current	size,
or	an	empty	string	if	no	source	has	been	specified	yet.	Most
window	managers	interpret	“no	source”	as	equivalent	to	program.

wm	stackorder	window	?isabove|isbelow	window?
The	stackorder	command	returns	a	list	of	toplevel	windows	in
stacking	order,	from	lowest	to	highest.	When	a	single	toplevel
window	is	passed,	the	returned	list	recursively	includes	all	of	the
window's	children	that	are	toplevels.	Only	those	toplevels	that	are
currently	mapped	to	the	screen	are	returned.	The	stackorder
command	can	also	be	used	to	determine	if	one	toplevel	is
positioned	above	or	below	a	second	toplevel.	When	two	window
arguments	separated	by	either	isabove	or	isbelow	are	passed,	a
boolean	result	indicates	whether	or	not	the	first	window	is	currently
above	or	below	the	second	window	in	the	stacking	order.

wm	state	window	?newstate?
If	newstate	is	specified,	the	window	will	be	set	to	the	new	state,
otherwise	it	returns	the	current	state	of	window:	either	normal,
iconic,	withdrawn,	icon,	or	(Windows	and	Mac	OS	X	only)
zoomed.	The	difference	between	iconic	and	icon	is	that	iconic
refers	to	a	window	that	has	been	iconified	(e.g.,	with	the	wm
iconify	command)	while	icon	refers	to	a	window	whose	only
purpose	is	to	serve	as	the	icon	for	some	other	window	(via	the	wm
iconwindow	command).	The	icon	state	cannot	be	set.

wm	title	window	?string?
If	string	is	specified,	then	it	will	be	passed	to	the	window	manager

for	use	as	the	title	for	window	(the	window	manager	should	display
this	string	in	window's	title	bar).	In	this	case	the	command	returns
an	empty	string.	If	string	is	not	specified	then	the	command	returns
the	current	title	for	the	window.	The	title	for	a	window	defaults	to	its
name.

wm	transient	window	?master?
If	master	is	specified,	then	the	window	manager	is	informed	that
window	is	a	transient	window	(e.g.	pull-down	menu)	working	on
behalf	of	master	(where	master	is	the	path	name	for	a	top-level
window).	If	master	is	specified	as	an	empty	string	then	window	is
marked	as	not	being	a	transient	window	any	more.	Otherwise	the
command	returns	the	path	name	of	window's	current	master,	or	an
empty	string	if	window	is	not	currently	a	transient	window.	A
transient	window	will	mirror	state	changes	in	the	master	and	inherit
the	state	of	the	master	when	initially	mapped.	It	is	an	error	to
attempt	to	make	a	window	a	transient	of	itself.

wm	withdraw	window
Arranges	for	window	to	be	withdrawn	from	the	screen.	This	causes
the	window	to	be	unmapped	and	forgotten	about	by	the	window
manager.	If	the	window	has	never	been	mapped,	then	this
command	causes	the	window	to	be	mapped	in	the	withdrawn	state.
Not	all	window	managers	appear	to	know	how	to	handle	windows
that	are	mapped	in	the	withdrawn	state.	Note:	it	sometimes	seems
to	be	necessary	to	withdraw	a	window	and	then	re-map	it	(e.g.	with
wm	deiconify)	to	get	some	window	managers	to	pay	attention	to
changes	in	window	attributes	such	as	group.

GEOMETRY	MANAGEMENT

By	default	a	top-level	window	appears	on	the	screen	in	its	natural	size,
which	is	the	one	determined	internally	by	its	widgets	and	geometry
managers.	If	the	natural	size	of	a	top-level	window	changes,	then	the
window's	size	changes	to	match.	A	top-level	window	can	be	given	a
size	other	than	its	natural	size	in	two	ways.	First,	the	user	can	resize
the	window	manually	using	the	facilities	of	the	window	manager,	such
as	resize	handles.	Second,	the	application	can	request	a	particular	size

for	a	top-level	window	using	the	wm	geometry	command.	These	two
cases	are	handled	identically	by	Tk;	in	either	case,	the	requested	size
overrides	the	natural	size.	You	can	return	the	window	to	its	natural	by
invoking	wm	geometry	with	an	empty	geometry	string.

Normally	a	top-level	window	can	have	any	size	from	one	pixel	in	each
dimension	up	to	the	size	of	its	screen.	However,	you	can	use	the	wm
minsize	and	wm	maxsize	commands	to	limit	the	range	of	allowable
sizes.	The	range	set	by	wm	minsize	and	wm	maxsize	applies	to	all
forms	of	resizing,	including	the	window's	natural	size	as	well	as	manual
resizes	and	the	wm	geometry	command.	You	can	also	use	the
command	wm	resizable	to	completely	disable	interactive	resizing	in
one	or	both	dimensions.

The	wm	manage	and	wm	forget	commands	may	be	used	to	perform
undocking	and	docking	of	windows.	After	a	widget	is	managed	by	wm
manage	command,	all	other	wm	subcommands	may	be	used	with	the
widget.	Only	widgets	created	using	the	toplevel	command	may	have	an
attached	menu	via	the	-menu	configure	option.	A	toplevel	widget	may
be	used	as	a	frame	and	managed	with	any	of	the	other	geometry
managers	after	using	the	wm	forget	command.	Any	menu	associated
with	a	toplevel	widget	will	be	hidden	when	managed	by	another
geometry	managers.	The	menus	will	reappear	once	the	window	is
managed	by	wm.	All	custom	bindtags	for	widgets	in	a	subtree	that	have
their	top-level	widget	changed	via	a	wm	manage	or	wm	forget
command,	must	be	redone	to	adjust	any	top-level	widget	path	in	the
bindtags.	Bindtags	that	have	not	been	customized	do	not	have	to	be
redone.

GRIDDED	GEOMETRY	MANAGEMENT

Gridded	geometry	management	occurs	when	one	of	the	widgets	of	an
application	supports	a	range	of	useful	sizes.	This	occurs,	for	example,
in	a	text	editor	where	the	scrollbars,	menus,	and	other	adornments	are
fixed	in	size	but	the	edit	widget	can	support	any	number	of	lines	of	text
or	characters	per	line.	In	this	case,	it	is	usually	desirable	to	let	the	user
specify	the	number	of	lines	or	characters-per-line,	either	with	the	wm
geometry	command	or	by	interactively	resizing	the	window.	In	the	case

of	text,	and	in	other	interesting	cases	also,	only	discrete	sizes	of	the
window	make	sense,	such	as	integral	numbers	of	lines	and	characters-
per-line;	arbitrary	pixel	sizes	are	not	useful.

Gridded	geometry	management	provides	support	for	this	kind	of
application.	Tk	(and	the	window	manager)	assume	that	there	is	a	grid	of
some	sort	within	the	application	and	that	the	application	should	be
resized	in	terms	of	grid	units	rather	than	pixels.	Gridded	geometry
management	is	typically	invoked	by	turning	on	the	setGrid	option	for	a
widget;	it	can	also	be	invoked	with	the	wm	grid	command	or	by	calling
Tk_SetGrid.	In	each	of	these	approaches	the	particular	widget	(or
sometimes	code	in	the	application	as	a	whole)	specifies	the	relationship
between	integral	grid	sizes	for	the	window	and	pixel	sizes.	To	return	to
non-gridded	geometry	management,	invoke	wm	grid	with	empty
argument	strings.

When	gridded	geometry	management	is	enabled	then	all	the
dimensions	specified	in	wm	minsize,	wm	maxsize,	and	wm	geometry
commands	are	treated	as	grid	units	rather	than	pixel	units.	Interactive
resizing	is	also	carried	out	in	even	numbers	of	grid	units	rather	than
pixels.

BUGS

Most	existing	window	managers	appear	to	have	bugs	that	affect	the
operation	of	the	wm	command.	For	example,	some	changes	will	not
take	effect	if	the	window	is	already	active:	the	window	will	have	to	be
withdrawn	and	de-iconified	in	order	to	make	the	change	happen.

EXAMPLES

A	fixed-size	window	that	says	that	it	is	fixed-size	too:

toplevel	.fixed

wm	title					.fixed	"Fixed-size	Window"

wm	resizable	.fixed	0	0

A	simple	dialog-like	window,	centred	on	the	screen:

#	Create	and	arrange	the	dialog	contents.

toplevel	.msg

label		.msg.l		-text	"This	is	a	very	simple	dialog	demo."

button	.msg.ok	-text	OK	-default	active	-command	{destroy	.msg}

pack	.msg.ok	-side	bottom	-fill	x

pack	.msg.l		-expand	1				-fill	both

#	Now	set	the	widget	up	as	a	centred	dialog.

#	But	first,	we	need	the	geometry	managers	to	finish	setting

#	up	the	interior	of	the	dialog,	for	which	we	need	to	run	the

#	event	loop	with	the	widget	hidden	completely...

wm	withdraw	.msg

update

set	x	[expr	{([winfo	screenwidth	.]-[winfo	width	.msg])/2}]

set	y	[expr	{([winfo	screenheight	.]-[winfo	height	.msg])/2}]

wm	geometry		.msg	+$x+$y

wm	transient	.msg	.

wm	title					.msg	"Dialog	demo"

wm	deiconify	.msg

SEE	ALSO

toplevel,	winfo

KEYWORDS

aspect	ratio,	deiconify,	focus	model,	geometry,	grid,	group,	icon,	iconify,
increments,	position,	size,	title,	top-level	window,	units,	window
manager

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1991-1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	focus

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
focus	-	Manage	the	input	focus

SYNOPSIS
DESCRIPTION

focus
focus	window
focus	-displayof	window
focus	-force	window
focus	-lastfor	window

QUIRKS
EXAMPLE
KEYWORDS

NAME

focus	-	Manage	the	input	focus

SYNOPSIS

focus
focus	window
focus	option	?arg	arg	...?

DESCRIPTION

The	focus	command	is	used	to	manage	the	Tk	input	focus.	At	any
given	time,	one	window	on	each	display	is	designated	as	the	focus
window;	any	key	press	or	key	release	events	for	the	display	are	sent	to
that	window.	It	is	normally	up	to	the	window	manager	to	redirect	the
focus	among	the	top-level	windows	of	a	display.	For	example,	some
window	managers	automatically	set	the	input	focus	to	a	top-level
window	whenever	the	mouse	enters	it;	others	redirect	the	input	focus

only	when	the	user	clicks	on	a	window.	Usually	the	window	manager
will	set	the	focus	only	to	top-level	windows,	leaving	it	up	to	the
application	to	redirect	the	focus	among	the	children	of	the	top-level.

Tk	remembers	one	focus	window	for	each	top-level	(the	most	recent
descendant	of	that	top-level	to	receive	the	focus);	when	the	window
manager	gives	the	focus	to	a	top-level,	Tk	automatically	redirects	it	to
the	remembered	window.	Within	a	top-level	Tk	uses	an	explicit	focus
model	by	default.	Moving	the	mouse	within	a	top-level	does	not
normally	change	the	focus;	the	focus	changes	only	when	a	widget
decides	explicitly	to	claim	the	focus	(e.g.,	because	of	a	button	click),	or
when	the	user	types	a	key	such	as	Tab	that	moves	the	focus.

The	Tcl	procedure	tk_focusFollowsMouse	may	be	invoked	to	create
an	implicit	focus	model:	it	reconfigures	Tk	so	that	the	focus	is	set	to	a
window	whenever	the	mouse	enters	it.	The	Tcl	procedures
tk_focusNext	and	tk_focusPrev	implement	a	focus	order	among	the
windows	of	a	top-level;	they	are	used	in	the	default	bindings	for	Tab	and
Shift-Tab,	among	other	things.

The	focus	command	can	take	any	of	the	following	forms:

focus
Returns	the	path	name	of	the	focus	window	on	the	display
containing	the	application's	main	window,	or	an	empty	string	if	no
window	in	this	application	has	the	focus	on	that	display.	Note:	it	is
better	to	specify	the	display	explicitly	using	-displayof	(see	below)
so	that	the	code	will	work	in	applications	using	multiple	displays.

focus	window
If	the	application	currently	has	the	input	focus	on	window's	display,
this	command	resets	the	input	focus	for	window's	display	to	window
and	returns	an	empty	string.	If	the	application	does	not	currently
have	the	input	focus	on	window's	display,	window	will	be
remembered	as	the	focus	for	its	top-level;	the	next	time	the	focus
arrives	at	the	top-level,	Tk	will	redirect	it	to	window.	If	window	is	an
empty	string	then	the	command	does	nothing.

focus	-displayof	window
Returns	the	name	of	the	focus	window	on	the	display	containing
window.	If	the	focus	window	for	window's	display	is	not	in	this
application,	the	return	value	is	an	empty	string.

focus	-force	window
Sets	the	focus	of	window's	display	to	window,	even	if	the
application	does	not	currently	have	the	input	focus	for	the	display.
This	command	should	be	used	sparingly,	if	at	all.	In	normal	usage,
an	application	should	not	claim	the	focus	for	itself;	instead,	it	should
wait	for	the	window	manager	to	give	it	the	focus.	If	window	is	an
empty	string	then	the	command	does	nothing.

focus	-lastfor	window
Returns	the	name	of	the	most	recent	window	to	have	the	input
focus	among	all	the	windows	in	the	same	top-level	as	window.	If	no
window	in	that	top-level	has	ever	had	the	input	focus,	or	if	the	most
recent	focus	window	has	been	deleted,	then	the	name	of	the	top-
level	is	returned.	The	return	value	is	the	window	that	will	receive
the	input	focus	the	next	time	the	window	manager	gives	the	focus
to	the	top-level.

QUIRKS

When	an	internal	window	receives	the	input	focus,	Tk	does	not	actually
set	the	X	focus	to	that	window;	as	far	as	X	is	concerned,	the	focus	will
stay	on	the	top-level	window	containing	the	window	with	the	focus.
However,	Tk	generates	FocusIn	and	FocusOut	events	just	as	if	the	X
focus	were	on	the	internal	window.	This	approach	gets	around	a
number	of	problems	that	would	occur	if	the	X	focus	were	actually
moved;	the	fact	that	the	X	focus	is	on	the	top-level	is	invisible	unless
you	use	C	code	to	query	the	X	server	directly.

EXAMPLE

To	make	a	window	that	only	participates	in	the	focus	traversal	ring	when
a	variable	is	set,	add	the	following	bindings	to	the	widgets	before	and
after	it	in	that	focus	ring:

button	.before	-text	"Before"

button	.middle	-text	"Middle"

button	.after		-text	"After"

checkbutton	.flag	-variable	traverseToMiddle	-takefocus	0

pack	.flag	-side	left

pack	.before	.middle	.after

bind	.before	<Tab>	{

			if	{!$traverseToMiddle}	{

						focus	.after

						break

			}

}

bind	.after	<Shift-Tab>	{

			if	{!$traverseToMiddle}	{

						focus	.before

						break

			}

}

focus	.before

KEYWORDS

events,	focus,	keyboard,	top-level,	window	manager

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990-1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	option

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

option	-	Add/retrieve	window	options	to/from	the	option	database

SYNOPSIS

option	add	pattern	value	?priority?
option	clear
option	get	window	name	class
option	readfile	fileName	?priority?

DESCRIPTION

The	option	command	allows	you	to	add	entries	to	the	Tk	option
database	or	to	retrieve	options	from	the	database.	The	add	form	of	the
command	adds	a	new	option	to	the	database.	Pattern	contains	the
option	being	specified,	and	consists	of	names	and/or	classes	separated
by	asterisks	or	dots,	in	the	usual	X	format.	Value	contains	a	text	string
to	associate	with	pattern;	this	is	the	value	that	will	be	returned	in	calls	to
Tk_GetOption	or	by	invocations	of	the	option	get	command.	If	priority
is	specified,	it	indicates	the	priority	level	for	this	option	(see	below	for
legal	values);	it	defaults	to	interactive.	This	command	always	returns
an	empty	string.

The	option	clear	command	clears	the	option	database.	Default	options
(from	the	RESOURCE_MANAGER	property	or	the	.Xdefaults	file)	will
be	reloaded	automatically	the	next	time	an	option	is	added	to	the
database	or	removed	from	it.	This	command	always	returns	an	empty
string.

The	option	get	command	returns	the	value	of	the	option	specified	for
window	under	name	and	class.	If	several	entries	in	the	option	database

match	window,	name,	and	class,	then	the	command	returns	whichever
was	created	with	highest	priority	level.	If	there	are	several	matching
entries	at	the	same	priority	level,	then	it	returns	whichever	entry	was
most	recently	entered	into	the	option	database.	If	there	are	no	matching
entries,	then	the	empty	string	is	returned.

The	readfile	form	of	the	command	reads	fileName,	which	should	have
the	standard	format	for	an	X	resource	database	such	as	.Xdefaults,
and	adds	all	the	options	specified	in	that	file	to	the	option	database.	If
priority	is	specified,	it	indicates	the	priority	level	at	which	to	enter	the
options;	priority	defaults	to	interactive.

The	priority	arguments	to	the	option	command	are	normally	specified
symbolically	using	one	of	the	following	values:

widgetDefault
Level	20.	Used	for	default	values	hard-coded	into	widgets.

startupFile
Level	40.	Used	for	options	specified	in	application-specific	startup
files.

userDefault
Level	60.	Used	for	options	specified	in	user-specific	defaults	files,
such	as	.Xdefaults,	resource	databases	loaded	into	the	X	server,
or	user-specific	startup	files.

interactive
Level	80.	Used	for	options	specified	interactively	after	the
application	starts	running.	If	priority	is	not	specified,	it	defaults	to
this	level.

Any	of	the	above	keywords	may	be	abbreviated.	In	addition,	priorities
may	be	specified	numerically	using	integers	between	0	and	100,
inclusive.	The	numeric	form	is	probably	a	bad	idea	except	for	new
priority	levels	other	than	the	ones	given	above.

EXAMPLES

Instruct	every	button	in	the	application	to	have	red	text	on	it	unless
explicitly	overridden:

option	add	*button.foreground	red	startupFile

Allow	users	to	control	what	happens	in	an	entry	widget	when	the	Return
key	is	pressed	by	specifying	a	script	in	the	option	database	and	add	a
default	option	for	that	which	rings	the	bell:

entry	.e

bind	.e	<Return>	[option	get	.e	returnCommand	Command]

option	add	*.e.returnCommand	bell	widgetDefault

KEYWORDS

database,	option,	priority,	retrieve

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkCmd	>	ttk_notebook

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
ttk::notebook	-	Multi-paned	container	widget

SYNOPSIS
DESCRIPTION
STANDARD	OPTIONS

-class
-cursor,	cursor,	Cursor
-style
-takefocus,	takeFocus,	TakeFocus

WIDGET-SPECIFIC	OPTIONS
-height,	height,	Height
-padding,	padding,	Padding
-width,	width,	Width

TAB	OPTIONS
-state,	state,	State
-sticky,	sticky,	Sticky
-padding,	padding,	Padding
-text,	text,	Text
-image,	image,	Image
-compound,	compound,	Compound
-underline,	underline,	Underline

TAB	IDENTIFIERS
WIDGET	COMMAND

pathname	add	window	?options...?
pathname	configure	?options?
pathname	cget	option
pathname	forget	tabid
pathname	hide	tabid
pathName	identify	x	y
pathname	index	tabid
pathname	insert	pos	subwindow	options...

pathname	instate	statespec	?script...?
pathname	select	?tabid?
pathname	state	?statespec?
pathname	tab	tabid	?-option	?value	...
pathname	tabs

KEYBOARD	TRAVERSAL
VIRTUAL	EVENTS
EXAMPLE
SEE	ALSO
KEYWORDS

NAME

ttk::notebook	-	Multi-paned	container	widget

SYNOPSIS

ttk::notebook	pathName	?options...?
pathName	add	window	?options...?
pathName	insert	index	window	?options...?

DESCRIPTION

A	ttk::notebook	widget	manages	a	collection	of	windows	and	displays
a	single	one	at	a	time.	Each	slave	window	is	associated	with	a	tab,
which	the	user	may	select	to	change	the	currently-displayed	window.

STANDARD	OPTIONS

-class
-cursor,	cursor,	Cursor
-style
-takefocus,	takeFocus,	TakeFocus

WIDGET-SPECIFIC	OPTIONS

Command-Line	Name:	-height
Database	Name:	height

Database	Class:	Height
If	present	and	greater	than	zero,	specifies	the	desired	height	of	the
pane	area	(not	including	internal	padding	or	tabs).	Otherwise,	the
maximum	height	of	all	panes	is	used.

Command-Line	Name:	-padding
Database	Name:	padding
Database	Class:	Padding

Specifies	the	amount	of	extra	space	to	add	around	the	outside	of
the	notebook.	The	padding	is	a	list	of	up	to	four	length
specifications	left	top	right	bottom.	If	fewer	than	four	elements	are
specified,	bottom	defaults	to	top,	right	defaults	to	left,	and	top
defaults	to	left.

Command-Line	Name:	-width
Database	Name:	width
Database	Class:	Width

If	present	and	greater	than	zero,	specifies	the	desired	width	of	the
pane	area	(not	including	internal	padding).	Otherwise,	the
maximum	width	of	all	panes	is	used.

TAB	OPTIONS

The	following	options	may	be	specified	for	individual	notebook	panes:

Command-Line	Name:	-state
Database	Name:	state
Database	Class:	State

Either	normal,	disabled	or	hidden.	If	disabled,	then	the	tab	is	not
selectable.	If	hidden,	then	the	tab	is	not	shown.

Command-Line	Name:	-sticky
Database	Name:	sticky
Database	Class:	Sticky

Specifies	how	the	slave	window	is	positioned	within	the	pane	area.
Value	is	a	string	containing	zero	or	more	of	the	characters	n,	s,	e,
or	w.	Each	letter	refers	to	a	side	(north,	south,	east,	or	west)	that
the	slave	window	will	“stick”	to,	as	per	the	grid	geometry	manager.

Command-Line	Name:	-padding
Database	Name:	padding
Database	Class:	Padding

Specifies	the	amount	of	extra	space	to	add	between	the	notebook
and	this	pane.	Syntax	is	the	same	as	for	the	widget	-padding
option.

Command-Line	Name:	-text
Database	Name:	text
Database	Class:	Text

Specifies	a	string	to	be	displayed	in	the	tab.

Command-Line	Name:	-image
Database	Name:	image
Database	Class:	Image

Specifies	an	image	to	display	in	the	tab.	See	ttk_widget(n)	for
details.

Command-Line	Name:	-compound
Database	Name:	compound
Database	Class:	Compound

Specifies	how	to	display	the	image	relative	to	the	text,	in	the	case
both	-text	and	-image	are	present.	See	label(n)	for	legal	values.

Command-Line	Name:	-underline
Database	Name:	underline
Database	Class:	Underline

Specifies	the	integer	index	(0-based)	of	a	character	to	underline	in
the	text	string.	The	underlined	character	is	used	for	mnemonic
activation	if	ttk::notebook::enableTraversal	is	called.

TAB	IDENTIFIERS

The	tabid	argument	to	the	following	commands	may	take	any	of	the
following	forms:

•		An	integer	between	zero	and	the	number	of	tabs;

•		The	name	of	a	slave	window;

•		A	positional	specification	of	the	form	“@x,y”,	which	identifies	the
tab

•		The	literal	string	“current”,	which	identifies	the	currently-selected
tab;	or:

•		The	literal	string	“end”,	which	returns	the	number	of	tabs	(only
valid	for	“pathname	index”).

WIDGET	COMMAND

pathname	add	window	?options...?
Adds	a	new	tab	to	the	notebook.	See	TAB	OPTIONS	for	the	list	of
available	options.	If	window	is	currently	managed	by	the	notebook
but	hidden,	it	is	restored	to	its	previous	position.

pathname	configure	?options?
See	ttk::widget(n).

pathname	cget	option
See	ttk::widget(n).

pathname	forget	tabid
Removes	the	tab	specified	by	tabid,	unmaps	and	unmanages	the
associated	window.

pathname	hide	tabid
Hides	the	tab	specified	by	tabid.	The	tab	will	not	be	displayed,	but
the	associated	window	remains	managed	by	the	notebook	and	its
configuration	remembered.	Hidden	tabs	may	be	restored	with	the
add	command.

pathName	identify	x	y
Returns	the	name	of	the	element	at	position	x,	y.	See	ttk::widget(n).

pathname	index	tabid
Returns	the	numeric	index	of	the	tab	specified	by	tabid,	or	the	total

number	of	tabs	if	tabid	is	the	string	“end”.

pathname	insert	pos	subwindow	options...
Inserts	a	pane	at	the	specified	position.	pos	is	either	the	string	end,
an	integer	index,	or	the	name	of	a	managed	subwindow.	If
subwindow	is	already	managed	by	the	notebook,	moves	it	to	the
specified	position.	See	TAB	OPTIONS	for	the	list	of	available
options.

pathname	instate	statespec	?script...?
See	ttk::widget(n).

pathname	select	?tabid?
Selects	the	specified	tab.	The	associated	slave	window	will	be
displayed,	and	the	previously-selected	window	(if	different)	is
unmapped.	If	tabid	is	omitted,	returns	the	widget	name	of	the
currently	selected	pane.

pathname	state	?statespec?
See	ttk::widget(n).

pathname	tab	tabid	?-option	?value	...
Query	or	modify	the	options	of	the	specific	tab.	If	no	-option	is
specified,	returns	a	dictionary	of	the	tab	option	values.	If	one	-
option	is	specified,	returns	the	value	of	that	option.	Otherwise,	sets
the	-options	to	the	corresponding	values.	See	TAB	OPTIONS	for
the	available	options.

pathname	tabs
Returns	the	list	of	windows	managed	by	the	notebook.

KEYBOARD	TRAVERSAL

To	enable	keyboard	traversal	for	a	toplevel	window	containing	a
notebook	widget	$nb,	call:

ttk::notebook::enableTraversal	$nb

This	will	extend	the	bindings	for	the	toplevel	window	containing	the
notebook	as	follows:

•		Control-Tab	selects	the	tab	following	the	currently	selected	one.

•		Shift-Control-Tab	selects	the	tab	preceding	the	currently
selected	one.

•		Alt-K,	where	K	is	the	mnemonic	(underlined)	character	of	any
tab,	will	select	that	tab.

Multiple	notebooks	in	a	single	toplevel	may	be	enabled	for	traversal,
including	nested	notebooks.	However,	notebook	traversal	only	works
properly	if	all	panes	are	direct	children	of	the	notebook.

VIRTUAL	EVENTS

The	notebook	widget	generates	a	<<NotebookTabChanged>>	virtual
event	after	a	new	tab	is	selected.

EXAMPLE

pack	[ttk::notebook	.nb]

.nb	add	[frame	.nb.f1]	-text	"First	tab"

.nb	add	[frame	.nb.f2]	-text	"Second	tab"

.nb	select	.nb.f2

ttk::notebook::enableTraversal	.nb

SEE	ALSO

ttk::widget,	grid

KEYWORDS

pane,	tab

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.

Copyright	©	2004	Joe	English

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	Alloc

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_Alloc,	Tcl_Free,	Tcl_Realloc,	Tcl_AttemptAlloc,
Tcl_AttemptRealloc,	ckalloc,	ckfree,	ckrealloc,	attemptckalloc,
attemptckrealloc	-	allocate	or	free	heap	memory

SYNOPSIS
#include	<tcl.h>
char	*
Tcl_Alloc(size)
void
Tcl_Free(ptr)
char	*
Tcl_Realloc(ptr,	size)
char	*
Tcl_AttemptAlloc(size)
char	*
Tcl_AttemptRealloc(ptr,	size)
char	*
ckalloc(size)
void
ckfree(ptr)
char	*
ckrealloc(ptr,	size)
char	*
attemptckalloc(size)
char	*
attemptckrealloc(ptr,	size)

ARGUMENTS
DESCRIPTION
KEYWORDS

NAME

unsigned	int	size	(in)

char	*ptr	(in)

Tcl_Alloc,	Tcl_Free,	Tcl_Realloc,	Tcl_AttemptAlloc,	Tcl_AttemptRealloc,
ckalloc,	ckfree,	ckrealloc,	attemptckalloc,	attemptckrealloc	-	allocate	or
free	heap	memory

SYNOPSIS

#include	<tcl.h>
char	*
Tcl_Alloc(size)
void
Tcl_Free(ptr)
char	*
Tcl_Realloc(ptr,	size)
char	*
Tcl_AttemptAlloc(size)
char	*
Tcl_AttemptRealloc(ptr,	size)
char	*
ckalloc(size)
void
ckfree(ptr)
char	*
ckrealloc(ptr,	size)
char	*
attemptckalloc(size)
char	*
attemptckrealloc(ptr,	size)

ARGUMENTS

Size	in	bytes	of	the
memory	block	to	allocate.

Pointer	to	memory	block	to
free	or	realloc.

DESCRIPTION

These	procedures	provide	a	platform	and	compiler	independent
interface	for	memory	allocation.	Programs	that	need	to	transfer
ownership	of	memory	blocks	between	Tcl	and	other	modules	should	use
these	routines	rather	than	the	native	malloc()	and	free()	routines
provided	by	the	C	run-time	library.

Tcl_Alloc	returns	a	pointer	to	a	block	of	at	least	size	bytes	suitably
aligned	for	any	use.

Tcl_Free	makes	the	space	referred	to	by	ptr	available	for	further
allocation.

Tcl_Realloc	changes	the	size	of	the	block	pointed	to	by	ptr	to	size
bytes	and	returns	a	pointer	to	the	new	block.	The	contents	will	be
unchanged	up	to	the	lesser	of	the	new	and	old	sizes.	The	returned
location	may	be	different	from	ptr.	If	ptr	is	NULL,	this	is	equivalent	to
calling	Tcl_Alloc	with	just	the	size	argument.

Tcl_AttemptAlloc	and	Tcl_AttemptRealloc	are	identical	in	function	to
Tcl_Alloc	and	Tcl_Realloc,	except	that	Tcl_AttemptAlloc	and
Tcl_AttemptRealloc	will	not	cause	the	Tcl	interpreter	to	panic	if	the
memory	allocation	fails.	If	the	allocation	fails,	these	functions	will	return
NULL.	Note	that	on	some	platforms,	but	not	all,	attempting	to	allocate	a
zero-sized	block	of	memory	will	also	cause	these	functions	to	return
NULL.

The	procedures	ckalloc,	ckfree,	ckrealloc,	attemptckalloc,	and
attemptckrealloc	are	implemented	as	macros.	Normally,	they	are
synonyms	for	the	corresponding	procedures	documented	on	this	page.
When	Tcl	and	all	modules	calling	Tcl	are	compiled	with
TCL_MEM_DEBUG	defined,	however,	these	macros	are	redefined	to
be	special	debugging	versions	of	these	procedures.	To	support	Tcl's
memory	debugging	within	a	module,	use	the	macros	rather	than	direct
calls	to	Tcl_Alloc,	etc.

KEYWORDS

alloc,	allocation,	free,	malloc,	memory,	realloc,	TCL_MEM_DEBUG

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1995-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	FileSystem

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_FSRegister,	Tcl_FSUnregister,	Tcl_FSData,
Tcl_FSMountsChanged,	Tcl_FSGetFileSystemForPath,
Tcl_FSGetPathType,	Tcl_FSCopyFile,	Tcl_FSCopyDirectory,
Tcl_FSCreateDirectory,	Tcl_FSDeleteFile,
Tcl_FSRemoveDirectory,	Tcl_FSRenameFile,
Tcl_FSListVolumes,	Tcl_FSEvalFile,	Tcl_FSEvalFileEx,
Tcl_FSLoadFile,	Tcl_FSMatchInDirectory,	Tcl_FSLink,
Tcl_FSLstat,	Tcl_FSUtime,	Tcl_FSFileAttrsGet,
Tcl_FSFileAttrsSet,	Tcl_FSFileAttrStrings,	Tcl_FSStat,
Tcl_FSAccess,	Tcl_FSOpenFileChannel,	Tcl_FSGetCwd,
Tcl_FSChdir,	Tcl_FSPathSeparator,	Tcl_FSJoinPath,
Tcl_FSSplitPath,	Tcl_FSEqualPaths,
Tcl_FSGetNormalizedPath,	Tcl_FSJoinToPath,
Tcl_FSConvertToPathType,	Tcl_FSGetInternalRep,
Tcl_FSGetTranslatedPath,	Tcl_FSGetTranslatedStringPath,
Tcl_FSNewNativePath,	Tcl_FSGetNativePath,
Tcl_FSFileSystemInfo,	Tcl_AllocStatBuf	-	procedures	to
interact	with	any	filesystem

SYNOPSIS
#include	<tcl.h>
int
Tcl_FSRegister(clientData,	fsPtr)
int
Tcl_FSUnregister(fsPtr)
ClientData
Tcl_FSData(fsPtr)
void
Tcl_FSMountsChanged(fsPtr)
Tcl_Filesystem*
Tcl_FSGetFileSystemForPath(pathPtr)

Tcl_PathType
Tcl_FSGetPathType(pathPtr)
int
Tcl_FSCopyFile(srcPathPtr,	destPathPtr)
int
Tcl_FSCopyDirectory(srcPathPtr,	destPathPtr,	errorPtr)
int
Tcl_FSCreateDirectory(pathPtr)
int
Tcl_FSDeleteFile(pathPtr)
int
Tcl_FSRemoveDirectory(pathPtr,	int	recursive,	errorPtr)
int
Tcl_FSRenameFile(srcPathPtr,	destPathPtr)
Tcl_Obj*
Tcl_FSListVolumes(void)
int
Tcl_FSEvalFileEx(interp,	pathPtr,	encodingName)
int
Tcl_FSEvalFile(interp,	pathPtr)
int
Tcl_FSLoadFile(interp,	pathPtr,	sym1,	sym2,	proc1Ptr,
proc2Ptr,
handlePtr,	unloadProcPtr)
int
Tcl_FSMatchInDirectory(interp,	resultPtr,	pathPtr,	pattern,
types)
Tcl_Obj*
Tcl_FSLink(linkNamePtr,	toPtr,	linkAction)
int
Tcl_FSLstat(pathPtr,	statPtr)
int
Tcl_FSUtime(pathPtr,	tval)
int
Tcl_FSFileAttrsGet(interp,	int	index,	pathPtr,	objPtrRef)
int
Tcl_FSFileAttrsSet(interp,	int	index,	pathPtr,	Tcl_Obj	*objPtr)

const	char**
Tcl_FSFileAttrStrings(pathPtr,	objPtrRef)
int
Tcl_FSStat(pathPtr,	statPtr)
int
Tcl_FSAccess(pathPtr,	mode)
Tcl_Channel
Tcl_FSOpenFileChannel(interp,	pathPtr,	modeString,
permissions)
Tcl_Obj*
Tcl_FSGetCwd(interp)
int
Tcl_FSChdir(pathPtr)
Tcl_Obj*
Tcl_FSPathSeparator(pathPtr)
Tcl_Obj*
Tcl_FSJoinPath(listObj,	elements)
Tcl_Obj*
Tcl_FSSplitPath(pathPtr,	lenPtr)
int
Tcl_FSEqualPaths(firstPtr,	secondPtr)
Tcl_Obj*
Tcl_FSGetNormalizedPath(interp,	pathPtr)
Tcl_Obj*
Tcl_FSJoinToPath(basePtr,	objc,	objv)
int
Tcl_FSConvertToPathType(interp,	pathPtr)
ClientData
Tcl_FSGetInternalRep(pathPtr,	fsPtr)
Tcl_Obj	*
Tcl_FSGetTranslatedPath(interp,	pathPtr)
const	char	*
Tcl_FSGetTranslatedStringPath(interp,	pathPtr)
Tcl_Obj*
Tcl_FSNewNativePath(fsPtr,	clientData)
const	char	*
Tcl_FSGetNativePath(pathPtr)

Tcl_Obj*
Tcl_FSFileSystemInfo(pathPtr)
Tcl_StatBuf*
Tcl_AllocStatBuf()

ARGUMENTS
DESCRIPTION
FS	API	FUNCTIONS
THE	VIRTUAL	FILESYSTEM	API
THE	TCL_FILESYSTEM	STRUCTURE
EXAMPLE	FILESYSTEM	DEFINITION
FILESYSTEM	INFRASTRUCTURE
TYPENAME
STRUCTURE	LENGTH
VERSION
PATHINFILESYSTEMPROC
DUPINTERNALREPPROC
FREEINTERNALREPPROC
INTERNALTONORMALIZEDPROC
CREATEINTERNALREPPROC
NORMALIZEPATHPROC
FILESYSTEM	OPERATIONS
FILESYSTEMPATHTYPEPROC
FILESYSTEMSEPARATORPROC
STATPROC
ACCESSPROC
OPENFILECHANNELPROC
MATCHINDIRECTORYPROC
UTIMEPROC
LINKPROC
LISTVOLUMESPROC
FILEATTRSTRINGSPROC
FILEATTRSGETPROC
FILEATTRSSETPROC
CREATEDIRECTORYPROC
REMOVEDIRECTORYPROC
DELETEFILEPROC
FILESYSTEM	EFFICIENCY

LSTATPROC
COPYFILEPROC
RENAMEFILEPROC
COPYDIRECTORYPROC
LOADFILEPROC
UNLOADFILEPROC
GETCWDPROC
CHDIRPROC
SEE	ALSO
KEYWORDS

NAME

Tcl_FSRegister,	Tcl_FSUnregister,	Tcl_FSData,	Tcl_FSMountsChanged,
Tcl_FSGetFileSystemForPath,	Tcl_FSGetPathType,	Tcl_FSCopyFile,
Tcl_FSCopyDirectory,	Tcl_FSCreateDirectory,	Tcl_FSDeleteFile,
Tcl_FSRemoveDirectory,	Tcl_FSRenameFile,	Tcl_FSListVolumes,
Tcl_FSEvalFile,	Tcl_FSEvalFileEx,	Tcl_FSLoadFile,
Tcl_FSMatchInDirectory,	Tcl_FSLink,	Tcl_FSLstat,	Tcl_FSUtime,
Tcl_FSFileAttrsGet,	Tcl_FSFileAttrsSet,	Tcl_FSFileAttrStrings,
Tcl_FSStat,	Tcl_FSAccess,	Tcl_FSOpenFileChannel,	Tcl_FSGetCwd,
Tcl_FSChdir,	Tcl_FSPathSeparator,	Tcl_FSJoinPath,	Tcl_FSSplitPath,
Tcl_FSEqualPaths,	Tcl_FSGetNormalizedPath,	Tcl_FSJoinToPath,
Tcl_FSConvertToPathType,	Tcl_FSGetInternalRep,
Tcl_FSGetTranslatedPath,	Tcl_FSGetTranslatedStringPath,
Tcl_FSNewNativePath,	Tcl_FSGetNativePath,	Tcl_FSFileSystemInfo,
Tcl_AllocStatBuf	-	procedures	to	interact	with	any	filesystem

SYNOPSIS

#include	<tcl.h>
int
Tcl_FSRegister(clientData,	fsPtr)
int
Tcl_FSUnregister(fsPtr)
ClientData
Tcl_FSData(fsPtr)
void

Tcl_FSMountsChanged(fsPtr)
Tcl_Filesystem*
Tcl_FSGetFileSystemForPath(pathPtr)
Tcl_PathType
Tcl_FSGetPathType(pathPtr)
int
Tcl_FSCopyFile(srcPathPtr,	destPathPtr)
int
Tcl_FSCopyDirectory(srcPathPtr,	destPathPtr,	errorPtr)
int
Tcl_FSCreateDirectory(pathPtr)
int
Tcl_FSDeleteFile(pathPtr)
int
Tcl_FSRemoveDirectory(pathPtr,	int	recursive,	errorPtr)
int
Tcl_FSRenameFile(srcPathPtr,	destPathPtr)
Tcl_Obj*
Tcl_FSListVolumes(void)
int
Tcl_FSEvalFileEx(interp,	pathPtr,	encodingName)
int
Tcl_FSEvalFile(interp,	pathPtr)
int
Tcl_FSLoadFile(interp,	pathPtr,	sym1,	sym2,	proc1Ptr,	proc2Ptr,
handlePtr,	unloadProcPtr)
int
Tcl_FSMatchInDirectory(interp,	resultPtr,	pathPtr,	pattern,	types)
Tcl_Obj*
Tcl_FSLink(linkNamePtr,	toPtr,	linkAction)
int
Tcl_FSLstat(pathPtr,	statPtr)
int
Tcl_FSUtime(pathPtr,	tval)
int
Tcl_FSFileAttrsGet(interp,	int	index,	pathPtr,	objPtrRef)
int

Tcl_FSFileAttrsSet(interp,	int	index,	pathPtr,	Tcl_Obj	*objPtr)
const	char**
Tcl_FSFileAttrStrings(pathPtr,	objPtrRef)
int
Tcl_FSStat(pathPtr,	statPtr)
int
Tcl_FSAccess(pathPtr,	mode)
Tcl_Channel
Tcl_FSOpenFileChannel(interp,	pathPtr,	modeString,	permissions)
Tcl_Obj*
Tcl_FSGetCwd(interp)
int
Tcl_FSChdir(pathPtr)
Tcl_Obj*
Tcl_FSPathSeparator(pathPtr)
Tcl_Obj*
Tcl_FSJoinPath(listObj,	elements)
Tcl_Obj*
Tcl_FSSplitPath(pathPtr,	lenPtr)
int
Tcl_FSEqualPaths(firstPtr,	secondPtr)
Tcl_Obj*
Tcl_FSGetNormalizedPath(interp,	pathPtr)
Tcl_Obj*
Tcl_FSJoinToPath(basePtr,	objc,	objv)
int
Tcl_FSConvertToPathType(interp,	pathPtr)
ClientData
Tcl_FSGetInternalRep(pathPtr,	fsPtr)
Tcl_Obj	*
Tcl_FSGetTranslatedPath(interp,	pathPtr)
const	char	*
Tcl_FSGetTranslatedStringPath(interp,	pathPtr)
Tcl_Obj*
Tcl_FSNewNativePath(fsPtr,	clientData)
const	char	*
Tcl_FSGetNativePath(pathPtr)

Tcl_Filesystem	*fsPtr	(in)

Tcl_Obj	*pathPtr	(in)

Tcl_Obj	*srcPathPtr	(in)

Tcl_Obj	*destPathPtr	(in)

const	char	*encodingName	(in)

const	char	*pattern	(in)

Tcl_Obj*
Tcl_FSFileSystemInfo(pathPtr)
Tcl_StatBuf*
Tcl_AllocStatBuf()

ARGUMENTS

Points	to	a	structure
containing	the	addresses
of	procedures	that	can	be
called	to	perform	the
various	filesystem
operations.

The	path	represented	by
this	object	is	used	for	the
operation	in	question.	If
the	object	does	not	already
have	an	internal	path
representation,	it	will	be
converted	to	have	one.

As	for	pathPtr,	but	used	for
the	source	file	for	a	copy
or	rename	operation.

As	for	pathPtr,	but	used	for
the	destination	filename
for	a	copy	or	rename
operation.

The	encoding	of	the	data
stored	in	the	file	identified
by	pathPtr	and	to	be
evaluted.

Only	files	or	directories

Tcl_GlobTypeData	*types	(in)

Tcl_Interp	*interp	(in)

ClientData	clientData	(in)

Tcl_Obj	*firstPtr	(in)

Tcl_Obj	*secondPtr	(in)

Tcl_Obj	*listObj	(in)

int	elements	(in)

matching	this	pattern	will
be	returned.

Only	files	or	directories
matching	the	type
descriptions	contained	in
this	structure	will	be
returned.	This	parameter
may	be	NULL.

Interpreter	to	use	either	for
results,	evaluation,	or
reporting	error	messages.

The	native	description	of
the	path	object	to	create.

The	first	of	two	path
objects	to	compare.	The
object	may	be	converted	to
path	type.

The	second	of	two	path
objects	to	compare.	The
object	may	be	converted	to
path	type.

The	list	of	path	elements
to	operate	on	with	a	join
operation.

If	non-negative,	the
number	of	elements	in	the
listObj	which	should	be
joined	together.	If	negative,
then	all	elements	are
joined.

Tcl_Obj	**errorPtr	(out)

Tcl_Obj	**objPtrRef	(out)

Tcl_Obj	*resultPtr	(out)

int	mode	(in)

Tcl_StatBuf	*statPtr	(out)

const	char	*sym1	(in)

In	the	case	of	an	error,
filled	with	an	object
containing	the	name	of	the
file	which	caused	an	error
in	the	various	copy/rename
operations.

Filled	with	an	object
containing	the	result	of	the
operation.

Pre-allocated	object	in
which	to	store	(using
Tcl_ListObjAppendElement
the	list	of	files	or
directories	which	are
successfully	matched.

Mask	consisting	of	one	or
more	of	R_OK,	W_OK,
X_OK	and	F_OK.	R_OK,
W_OK	and	X_OK	request
checking	whether	the	file
exists	and	has	read,	write
and	execute	permissions,
respectively.	F_OK	just
requests	checking	for	the
existence	of	the	file.

The	structure	that	contains
the	result	of	a	stat	or	lstat
operation.

Name	of	a	procedure	to
look	up	in	the	file's	symbol
table

const	char	*sym2	(in)

Tcl_PackageInitProc	**proc1Ptr	(out)

Tcl_PackageInitProc	**proc2Ptr	(out)

ClientData	*clientDataPtr	(out)

Tcl_LoadHandle	*handlePtr	(out)

Tcl_FSUnloadFileProc	**unloadProcPtr
(out)

utimbuf	*tval	(in)

const	char	*modeString	(in)

int	permissions	(in)

Name	of	a	procedure	to
look	up	in	the	file's	symbol
table

Filled	with	the	init	function
for	this	code.

Filled	with	the	safe-init
function	for	this	code.

Filled	with	the	clientData
value	to	pass	to	this
code's	unload	function
when	it	is	called.

Filled	with	an	abstract
token	representing	the
loaded	file.

Filled	with	the	function	to
use	to	unload	this	piece	of
code.

The	access	and
modification	times	in	this
structure	are	read	and
used	to	set	those	values
for	a	given	file.

Specifies	how	the	file	is	to
be	accessed.	May	have
any	of	the	values	allowed
for	the	mode	argument	to
the	Tcl	open	command.

POSIX-style	permission
flags	such	as	0644.	If	a

int	*lenPtr	(out)

Tcl_Obj	*basePtr	(in)

int	objc	(in)

Tcl_Obj	*const	objv[]	(in)

Tcl_Obj	*linkNamePtr	(in)

Tcl_Obj	*toPtr	(in)

int	linkAction	(in)

new	file	is	created,	these
permissions	will	be	set	on
the	created	file.

If	non-NULL,	filled	with	the
number	of	elements	in	the
split	path.

The	base	path	on	to	which
to	join	the	given	elements.
May	be	NULL.

The	number	of	elements	in
objv.

The	elements	to	join	to	the
given	base	path.

The	name	of	the	link	to	be
created	or	read.

What	the	link	called
linkNamePtr	should	be
linked	to,	or	NULL	if	the
symbolic	link	specified	by
linkNamePtr	is	to	be	read.

OR-ed	combination	of
flags	indicating	what	kind
of	link	should	be	created
(will	be	ignored	if	toPtr	is
NULL).	Valid	bits	to	set	are
TCL_CREATE_SYMBOLIC_LINK
and
TCL_CREATE_HARD_LINK
When	both	flags	are	set
and	the	underlying

filesystem	can	do	either,
symbolic	links	are
preferred.

DESCRIPTION

There	are	several	reasons	for	calling	the	Tcl_FS	API	functions	(e.g.
Tcl_FSAccess	and	Tcl_FSStat)	rather	than	calling	system	level
functions	like	access	and	stat	directly.	First,	they	will	work	cross-
platform,	so	an	extension	which	calls	them	should	work	unmodified	on
Unix	and	Windows.	Second,	the	Windows	implementation	of	some	of
these	functions	fixes	some	bugs	in	the	system	level	calls.	Third,	these
function	calls	deal	with	any	“Utf	to	platform-native”	path	conversions
which	may	be	required	(and	may	cache	the	results	of	such	conversions
for	greater	efficiency	on	subsequent	calls).	Fourth,	and	perhaps	most
importantly,	all	of	these	functions	are	“virtual	filesystem	aware”.	Any
virtual	filesystem	(VFS	for	short)	which	has	been	registered	(through
Tcl_FSRegister)	may	reroute	file	access	to	alternative	media	or	access
methods.	This	means	that	all	of	these	functions	(and	therefore	the
corresponding	file,	glob,	pwd,	cd,	open,	etc.	Tcl	commands)	may	be
operate	on	“files”	which	are	not	native	files	in	the	native	filesystem.	This
also	means	that	any	Tcl	extension	which	accesses	the	filesystem	(FS
for	short)	through	this	API	is	automatically	“virtual	filesystem	aware”.	Of
course,	if	an	extension	accesses	the	native	filesystem	directly	(through
platform-specific	APIs,	for	example),	then	Tcl	cannot	intercept	such
calls.

If	appropriate	VFSes	have	been	registered,	the	“files”	may,	to	give	two
examples,	be	remote	(e.g.	situated	on	a	remote	ftp	server)	or	archived
(e.g.	lying	inside	a	.zip	archive).	Such	registered	filesystems	provide	a
lookup	table	of	functions	to	implement	all	or	some	of	the	functionality
listed	here.	Finally,	the	Tcl_FSStat	and	Tcl_FSLstat	calls	abstract	away
from	what	the	“struct	stat”	buffer	is	actually	declared	to	be,	allowing	the
same	code	to	be	used	both	on	systems	with	and	systems	without
support	for	files	larger	than	2GB	in	size.

The	Tcl_FS	API	is	objectified	and	may	cache	internal	representations

and	other	path-related	strings	(e.g.	the	current	working	directory).	One
side-effect	of	this	is	that	one	must	not	pass	in	objects	with	a	reference
count	of	zero	to	any	of	these	functions.	If	such	calls	were	handled,	they
might	result	in	memory	leaks	(under	some	circumstances,	the
filesystem	code	may	wish	to	retain	a	reference	to	the	passed	in	object,
and	so	one	must	not	assume	that	after	any	of	these	calls	return,	the
object	still	has	a	reference	count	of	zero	-	it	may	have	been
incremented)	or	in	a	direct	segmentation	fault	(or	other	memory	access
error)	due	to	the	object	being	freed	part	way	through	the	complex	object
manipulation	required	to	ensure	that	the	path	is	fully	normalized	and
absolute	for	filesystem	determination.	The	practical	lesson	to	learn	from
this	is	that

Tcl_Obj	*path	=	Tcl_NewStringObj(...);

Tcl_FSWhatever(path);

Tcl_DecrRefCount(path);

is	wrong,	and	may	cause	memory	errors.	The	path	must	have	its
reference	count	incremented	before	passing	it	in,	or	decrementing	it.
For	this	reason,	objects	with	a	reference	count	of	zero	are	considered
not	to	be	valid	filesystem	paths	and	calling	any	Tcl_FS	API	function	with
such	an	object	will	result	in	no	action	being	taken.

FS	API	FUNCTIONS

Tcl_FSCopyFile	attempts	to	copy	the	file	given	by	srcPathPtr	to	the
path	name	given	by	destPathPtr.	If	the	two	paths	given	lie	in	the	same
filesystem	(according	to	Tcl_FSGetFileSystemForPath)	then	that
filesystem's	“copy	file”	function	is	called	(if	it	is	non-NULL).	Otherwise
the	function	returns	-1	and	sets	the	errno	global	C	variable	to	the
“EXDEV”	POSIX	error	code	(which	signifies	a	“cross-domain	link”).

Tcl_FSCopyDirectory	attempts	to	copy	the	directory	given	by
srcPathPtr	to	the	path	name	given	by	destPathPtr.	If	the	two	paths
given	lie	in	the	same	filesystem	(according	to
Tcl_FSGetFileSystemForPath)	then	that	filesystem's	“copy	file”

function	is	called	(if	it	is	non-NULL).	Otherwise	the	function	returns	-1
and	sets	the	errno	global	C	variable	to	the	“EXDEV”	POSIX	error	code
(which	signifies	a	“cross-domain	link”).

Tcl_FSCreateDirectory	attempts	to	create	the	directory	given	by
pathPtr	by	calling	the	owning	filesystem's	“create	directory”	function.

Tcl_FSDeleteFile	attempts	to	delete	the	file	given	by	pathPtr	by	calling
the	owning	filesystem's	“delete	file”	function.

Tcl_FSRemoveDirectory	attempts	to	remove	the	directory	given	by
pathPtr	by	calling	the	owning	filesystem's	“remove	directory”	function.

Tcl_FSRenameFile	attempts	to	rename	the	file	or	directory	given	by
srcPathPtr	to	the	path	name	given	by	destPathPtr.	If	the	two	paths
given	lie	in	the	same	filesystem	(according	to
Tcl_FSGetFileSystemForPath)	then	that	filesystem's	“rename	file”
function	is	called	(if	it	is	non-NULL).	Otherwise	the	function	returns	-1
and	sets	the	errno	global	C	variable	to	the	“EXDEV”	POSIX	error	code
(which	signifies	a	“cross-domain	link”).

Tcl_FSListVolumes	calls	each	filesystem	which	has	a	non-NULL	“list
volumes”	function	and	asks	them	to	return	their	list	of	root	volumes.	It
accumulates	the	return	values	in	a	list	which	is	returned	to	the	caller
(with	a	reference	count	of	0).

Tcl_FSEvalFileEx	reads	the	file	given	by	pathPtr	using	the	encoding
identified	by	encodingName	and	evaluates	its	contents	as	a	Tcl	script.	It
returns	the	same	information	as	Tcl_EvalObjEx.	If	encodingName	is
NULL,	the	system	encoding	is	used	for	reading	the	file	contents.	If	the
file	could	not	be	read	then	a	Tcl	error	is	returned	to	describe	why	the	file
could	not	be	read.	The	eofchar	for	files	is	“\32”	(^Z)	for	all	platforms.	If
you	require	a	“^Z”	in	code	for	string	comparison,	you	can	use	“\032”	or
“\u001a”,	which	will	be	safely	substituted	by	the	Tcl	interpreter	into	“^Z”.
Tcl_FSEvalFile	is	a	simpler	version	of	Tcl_FSEvalFileEx	that	always
uses	the	system	encoding	when	reading	the	file.

Tcl_FSLoadFile	dynamically	loads	a	binary	code	file	into	memory	and

returns	the	addresses	of	two	procedures	within	that	file,	if	they	are
defined.	The	appropriate	function	for	the	filesystem	to	which	pathPtr
belongs	will	be	called.	If	that	filesystem	does	not	implement	this
function	(most	virtual	filesystems	will	not,	because	of	OS	limitations	in
dynamically	loading	binary	code),	Tcl	will	attempt	to	copy	the	file	to	a
temporary	directory	and	load	that	temporary	file.

Returns	a	standard	Tcl	completion	code.	If	an	error	occurs,	an	error
message	is	left	in	the	interp's	result.

Tcl_FSMatchInDirectory	is	used	by	the	globbing	code	to	search	a
directory	for	all	files	which	match	a	given	pattern.	The	appropriate
function	for	the	filesystem	to	which	pathPtr	belongs	will	be	called.

The	return	value	is	a	standard	Tcl	result	indicating	whether	an	error
occurred	in	globbing.	Error	messages	are	placed	in	interp	(unless	interp
is	NULL,	which	is	allowed),	but	good	results	are	placed	in	the	resultPtr
given.

Note	that	the	glob	code	implements	recursive	patterns	internally,	so	this
function	will	only	ever	be	passed	simple	patterns,	which	can	be
matched	using	the	logic	of	string	match.	To	handle	recursion,	Tcl	will
call	this	function	frequently	asking	only	for	directories	to	be	returned.	A
special	case	of	being	called	with	a	NULL	pattern	indicates	that	the	path
needs	to	be	checked	only	for	the	correct	type.

Tcl_FSLink	replaces	the	library	version	of	readlink,	and	extends	it	to
support	the	creation	of	links.	The	appropriate	function	for	the	filesystem
to	which	linkNamePtr	belongs	will	be	called.

If	the	toPtr	is	NULL,	a	“read	link”	action	is	performed.	The	result	is	a
Tcl_Obj	specifying	the	contents	of	the	symbolic	link	given	by
linkNamePtr,	or	NULL	if	the	link	could	not	be	read.	The	result	is	owned
by	the	caller,	which	should	call	Tcl_DecrRefCount	when	the	result	is	no
longer	needed.	If	the	toPtr	is	not	NULL,	Tcl	should	create	a	link	of	one
of	the	types	passed	in	in	the	linkAction	flag.	This	flag	is	an	ORed
combination	of	TCL_CREATE_SYMBOLIC_LINK	and
TCL_CREATE_HARD_LINK.	Where	a	choice	exists	(i.e.	more	than	one

flag	is	passed	in),	the	Tcl	convention	is	to	prefer	symbolic	links.	When	a
link	is	successfully	created,	the	return	value	should	be	toPtr	(which	is
therefore	already	owned	by	the	caller).	If	unsuccessful,	NULL	is
returned.

Tcl_FSLstat	fills	the	stat	structure	statPtr	with	information	about	the
specified	file.	You	do	not	need	any	access	rights	to	the	file	to	get	this
information	but	you	need	search	rights	to	all	directories	named	in	the
path	leading	to	the	file.	The	stat	structure	includes	info	regarding
device,	inode	(always	0	on	Windows),	privilege	mode,	nlink	(always	1
on	Windows),	user	id	(always	0	on	Windows),	group	id	(always	0	on
Windows),	rdev	(same	as	device	on	Windows),	size,	last	access	time,
last	modification	time,	and	creation	time.

If	path	exists,	Tcl_FSLstat	returns	0	and	the	stat	structure	is	filled	with
data.	Otherwise,	-1	is	returned,	and	no	stat	info	is	given.

Tcl_FSUtime	replaces	the	library	version	of	utime.

This	returns	0	on	success	and	-1	on	error	(as	per	the	utime
documentation).	If	successful,	the	function	will	update	the	“atime”	and
“mtime”	values	of	the	file	given.

Tcl_FSFileAttrsGet	implements	read	access	for	the	hookable	file
attributes	subcommand.	The	appropriate	function	for	the	filesystem	to
which	pathPtr	belongs	will	be	called.

If	the	result	is	TCL_OK,	then	an	object	was	placed	in	objPtrRef,	which
will	only	be	temporarily	valid	(unless	Tcl_IncrRefCount	is	called).

Tcl_FSFileAttrsSet	implements	write	access	for	the	hookable	file
attributes	subcommand.	The	appropriate	function	for	the	filesystem	to
which	pathPtr	belongs	will	be	called.

Tcl_FSFileAttrStrings	implements	part	of	the	hookable	file	attributes
subcommand.	The	appropriate	function	for	the	filesystem	to	which
pathPtr	belongs	will	be	called.

The	called	procedure	may	either	return	an	array	of	strings,	or	may

instead	return	NULL	and	place	a	Tcl	list	into	the	given	objPtrRef.	Tcl	will
take	that	list	and	first	increment	its	reference	count	before	using	it.	On
completion	of	that	use,	Tcl	will	decrement	its	reference	count.	Hence	if
the	list	should	be	disposed	of	by	Tcl	when	done,	it	should	have	a
reference	count	of	zero,	and	if	the	list	should	not	be	disposed	of,	the
filesystem	should	ensure	it	retains	a	reference	count	to	the	object.

Tcl_FSAccess	checks	whether	the	process	would	be	allowed	to	read,
write	or	test	for	existence	of	the	file	(or	other	filesystem	object)	whose
name	is	pathname.	If	pathname	is	a	symbolic	link	on	Unix,	then
permissions	of	the	file	referred	by	this	symbolic	link	are	tested.

On	success	(all	requested	permissions	granted),	zero	is	returned.	On
error	(at	least	one	bit	in	mode	asked	for	a	permission	that	is	denied,	or
some	other	error	occurred),	-1	is	returned.

Tcl_FSStat	fills	the	stat	structure	statPtr	with	information	about	the
specified	file.	You	do	not	need	any	access	rights	to	the	file	to	get	this
information	but	you	need	search	rights	to	all	directories	named	in	the
path	leading	to	the	file.	The	stat	structure	includes	info	regarding
device,	inode	(always	0	on	Windows),	privilege	mode,	nlink	(always	1
on	Windows),	user	id	(always	0	on	Windows),	group	id	(always	0	on
Windows),	rdev	(same	as	device	on	Windows),	size,	last	access	time,
last	modification	time,	and	creation	time.

If	path	exists,	Tcl_FSStat	returns	0	and	the	stat	structure	is	filled	with
data.	Otherwise,	-1	is	returned,	and	no	stat	info	is	given.

Tcl_FSOpenFileChannel	opens	a	file	specified	by	pathPtr	and	returns
a	channel	handle	that	can	be	used	to	perform	input	and	output	on	the
file.	This	API	is	modeled	after	the	fopen	procedure	of	the	Unix	standard
I/O	library.	The	syntax	and	meaning	of	all	arguments	is	similar	to	those
given	in	the	Tcl	open	command	when	opening	a	file.	If	an	error	occurs
while	opening	the	channel,	Tcl_FSOpenFileChannel	returns	NULL	and
records	a	POSIX	error	code	that	can	be	retrieved	with	Tcl_GetErrno.	In
addition,	if	interp	is	non-NULL,	Tcl_FSOpenFileChannel	leaves	an
error	message	in	interp's	result	after	any	error.

The	newly	created	channel	is	not	registered	in	the	supplied	interpreter;
to	register	it,	use	Tcl_RegisterChannel,	described	below.	If	one	of	the
standard	channels,	stdin,	stdout	or	stderr	was	previously	closed,	the
act	of	creating	the	new	channel	also	assigns	it	as	a	replacement	for	the
standard	channel.

Tcl_FSGetCwd	replaces	the	library	version	of	getcwd.

It	returns	the	Tcl	library's	current	working	directory.	This	may	be
different	to	the	native	platform's	working	directory,	which	happens	when
the	current	working	directory	is	not	in	the	native	filesystem.

The	result	is	a	pointer	to	a	Tcl_Obj	specifying	the	current	directory,	or
NULL	if	the	current	directory	could	not	be	determined.	If	NULL	is
returned,	an	error	message	is	left	in	the	interp's	result.

The	result	already	has	its	reference	count	incremented	for	the	caller.
When	it	is	no	longer	needed,	that	reference	count	should	be
decremented.	This	is	needed	for	thread-safety	purposes,	to	allow
multiple	threads	to	access	this	and	related	functions,	while	ensuring	the
results	are	always	valid.

Tcl_FSChdir	replaces	the	library	version	of	chdir.	The	path	is
normalized	and	then	passed	to	the	filesystem	which	claims	it.	If	that
filesystem	does	not	implement	this	function,	Tcl	will	fallback	to	a
combination	of	stat	and	access	to	check	whether	the	directory	exists
and	has	appropriate	permissions.

For	results,	see	chdir	documentation.	If	successful,	we	keep	a	record	of
the	successful	path	in	cwdPathPtr	for	subsequent	calls	to
Tcl_FSGetCwd.

Tcl_FSPathSeparator	returns	the	separator	character	to	be	used	for
most	specific	element	of	the	path	specified	by	pathPtr	(i.e.	the	last	part
of	the	path).

The	separator	is	returned	as	a	Tcl_Obj	containing	a	string	of	length	1.	If
the	path	is	invalid,	NULL	is	returned.

Tcl_FSJoinPath	takes	the	given	Tcl_Obj,	which	must	be	a	valid	list
(which	is	allowed	to	have	a	reference	count	of	zero),	and	returns	the
path	object	given	by	considering	the	first	elements	elements	as	valid
path	segments	(each	path	segment	may	be	a	complete	path,	a	partial
path	or	just	a	single	possible	directory	or	file	name).	If	any	path
segment	is	actually	an	absolute	path,	then	all	prior	path	segments	are
discarded.	If	elements	is	less	than	0,	we	use	the	entire	list.

It	is	possible	that	the	returned	object	is	actually	an	element	of	the	given
list,	so	the	caller	should	be	careful	to	increment	the	reference	count	of
the	result	before	freeing	the	list.

The	returned	object,	typically	with	a	reference	count	of	zero	(but	it	could
be	shared	under	some	conditions),	contains	the	joined	path.	The	caller
must	add	a	reference	count	to	the	object	before	using	it.	In	particular,
the	returned	object	could	be	an	element	of	the	given	list,	so	freeing	the
list	might	free	the	object	prematurely	if	no	reference	count	has	been
taken.	If	the	number	of	elements	is	zero,	then	the	returned	object	will	be
an	empty-string	Tcl_Obj.

Tcl_FSSplitPath	takes	the	given	Tcl_Obj,	which	should	be	a	valid	path,
and	returns	a	Tcl	list	object	containing	each	segment	of	that	path	as	an
element.	It	returns	a	list	object	with	a	reference	count	of	zero.	If	the
passed	in	lenPtr	is	non-NULL,	the	variable	it	points	to	will	be	updated	to
contain	the	number	of	elements	in	the	returned	list.

Tcl_FSEqualPaths	tests	whether	the	two	paths	given	represent	the
same	filesystem	object

It	returns	1	if	the	paths	are	equal,	and	0	if	they	are	different.	If	either
path	is	NULL,	0	is	always	returned.

Tcl_FSGetNormalizedPath	this	important	function	attempts	to	extract
from	the	given	Tcl_Obj	a	unique	normalized	path	representation,	whose
string	value	can	be	used	as	a	unique	identifier	for	the	file.

It	returns	the	normalized	path	object,	owned	by	Tcl,	or	NULL	if	the	path
was	invalid	or	could	otherwise	not	be	successfully	converted.	Extraction

of	absolute,	normalized	paths	is	very	efficient	(because	the	filesystem
operates	on	these	representations	internally),	although	the	result	when
the	filesystem	contains	numerous	symbolic	links	may	not	be	the	most
user-friendly	version	of	a	path.	The	return	value	is	owned	by	Tcl	and
has	a	lifetime	equivalent	to	that	of	the	pathPtr	passed	in	(unless	that	is
a	relative	path,	in	which	case	the	normalized	path	object	may	be	freed
any	time	the	cwd	changes)	-	the	caller	can	of	course	increment	the
refCount	if	it	wishes	to	maintain	a	copy	for	longer.

Tcl_FSJoinToPath	takes	the	given	object,	which	should	usually	be	a
valid	path	or	NULL,	and	joins	onto	it	the	array	of	paths	segments	given.

Returns	object,	typically	with	refCount	of	zero	(but	it	could	be	shared
under	some	conditions),	containing	the	joined	path.	The	caller	must	add
a	refCount	to	the	object	before	using	it.	If	any	of	the	objects	passed	into
this	function	(pathPtr	or	path	elements)	have	a	refCount	of	zero,	they
will	be	freed	when	this	function	returns.

Tcl_FSConvertToPathType	tries	to	convert	the	given	Tcl_Obj	to	a	valid
Tcl	path	type,	taking	account	of	the	fact	that	the	cwd	may	have	changed
even	if	this	object	is	already	supposedly	of	the	correct	type.	The
filename	may	begin	with	“~”	(to	indicate	current	user's	home	directory)
or	“~<user>”	(to	indicate	any	user's	home	directory).

If	the	conversion	succeeds	(i.e.	the	object	is	a	valid	path	in	one	of	the
current	filesystems),	then	TCL_OK	is	returned.	Otherwise	TCL_ERROR
is	returned,	and	an	error	message	may	be	left	in	the	interpreter.

Tcl_FSGetInternalRep	extracts	the	internal	representation	of	a	given
path	object,	in	the	given	filesystem.	If	the	path	object	belongs	to	a
different	filesystem,	we	return	NULL.	If	the	internal	representation	is
currently	NULL,	we	attempt	to	generate	it,	by	calling	the	filesystem's
Tcl_FSCreateInternalRepProc.

Returns	NULL	or	a	valid	internal	path	representation.	This	internal
representation	is	cached,	so	that	repeated	calls	to	this	function	will	not
require	additional	conversions.

Tcl_FSGetTranslatedPath	attempts	to	extract	the	translated	path	from
the	given	Tcl_Obj.

If	the	translation	succeeds	(i.e.	the	object	is	a	valid	path),	then	it	is
returned.	Otherwise	NULL	will	be	returned,	and	an	error	message	may
be	left	in	the	interpreter.	A	“translated”	path	is	one	which	contains	no	“~”
or	“~user”	sequences	(these	have	been	expanded	to	their	current
representation	in	the	filesystem).	The	object	returned	is	owned	by	the
caller,	which	must	store	it	or	call	Tcl_DecrRefCount	to	ensure	memory	is
freed.	This	function	is	of	little	practical	use,	and
Tcl_FSGetNormalizedPath	or	Tcl_GetNativePath	are	usually	better
functions	to	use	for	most	purposes.

Tcl_FSGetTranslatedStringPath	does	the	same	as
Tcl_FSGetTranslatedPath,	but	returns	a	character	string	or	NULL.	The
string	returned	is	dynamically	allocated	and	owned	by	the	caller,	which
must	store	it	or	call	ckfree	to	ensure	it	is	freed.	Again,
Tcl_FSGetNormalizedPath	or	Tcl_GetNativePath	are	usually	better
functions	to	use	for	most	purposes.

Tcl_FSNewNativePath	performs	something	like	the	reverse	of	the
usual	obj->path->nativerep	conversions.	If	some	code	retrieves	a	path
in	native	form	(from,	e.g.	readlink	or	a	native	dialog),	and	that	path	is	to
be	used	at	the	Tcl	level,	then	calling	this	function	is	an	efficient	way	of
creating	the	appropriate	path	object	type.

The	resulting	object	is	a	pure	“path”	object,	which	will	only	receive	a
UTF-8	string	representation	if	that	is	required	by	some	Tcl	code.

Tcl_FSGetNativePath	is	for	use	by	the	Win/Unix	native	filesystems,	so
that	they	can	easily	retrieve	the	native	(char*	or	TCHAR*)
representation	of	a	path.	This	function	is	a	convenience	wrapper	around
Tcl_FSGetInternalRep,	and	assumes	the	native	representation	is
string-based.	It	may	be	desirable	in	the	future	to	have	non-string-based
native	representations	(for	example,	on	MacOSX,	a	representation
using	a	fileSpec	of	FSRef	structure	would	probably	be	more	efficient).
On	Windows	a	full	Unicode	representation	would	allow	for	paths	of
unlimited	length.	Currently	the	representation	is	simply	a	character

string	which	may	contain	either	the	relative	path	or	a	complete,	absolute
normalized	path	in	the	native	encoding	(complex	conditions	dictate
which	of	these	will	be	provided,	so	neither	can	be	relied	upon,	unless
the	path	is	known	to	be	absolute).	If	you	need	a	native	path	which	must
be	absolute,	then	you	should	ask	for	the	native	version	of	a	normalized
path.	If	for	some	reason	a	non-absolute,	non-normalized	version	of	the
path	is	needed,	that	must	be	constructed	separately	(e.g.	using
Tcl_FSGetTranslatedPath).

The	native	representation	is	cached	so	that	repeated	calls	to	this
function	will	not	require	additional	conversions.	The	return	value	is
owned	by	Tcl	and	has	a	lifetime	equivalent	to	that	of	the	pathPtr	passed
in	(unless	that	is	a	relative	path,	in	which	case	the	native	representation
may	be	freed	any	time	the	cwd	changes).

Tcl_FSFileSystemInfo	returns	a	list	of	two	elements.	The	first	element
is	the	name	of	the	filesystem	(e.g.	“native”,	“vfs”,	“zip”,	or	“prowrap”,
perhaps),	and	the	second	is	the	particular	type	of	the	given	path	within
that	filesystem	(which	is	filesystem	dependent).	The	second	element
may	be	empty	if	the	filesystem	does	not	provide	a	further	categorization
of	files.

A	valid	list	object	is	returned,	unless	the	path	object	is	not	recognized,
when	NULL	will	be	returned.

Tcl_FSGetFileSystemForPath	returns	the	a	pointer	to	the
Tcl_Filesystem	which	accepts	this	path	as	valid.

If	no	filesystem	will	accept	the	path,	NULL	is	returned.

Tcl_FSGetPathType	determines	whether	the	given	path	is	relative	to
the	current	directory,	relative	to	the	current	volume,	or	absolute.

It	returns	one	of	TCL_PATH_ABSOLUTE,	TCL_PATH_RELATIVE,	or
TCL_PATH_VOLUME_RELATIVE

Tcl_AllocStatBuf	allocates	a	Tcl_StatBuf	on	the	system	heap	(which
may	be	deallocated	by	being	passed	to	ckfree.)	This	allows	extensions

to	invoke	Tcl_FSStat	and	Tcl_FSLStat	without	being	dependent	on	the
size	of	the	buffer.	That	in	turn	depends	on	the	flags	used	to	build	Tcl.

THE	VIRTUAL	FILESYSTEM	API

A	filesystem	provides	a	Tcl_Filesystem	structure	that	contains	pointers
to	functions	that	implement	the	various	operations	on	a	filesystem;
these	operations	are	invoked	as	needed	by	the	generic	layer,	which
generally	occurs	through	the	functions	listed	above.

The	Tcl_Filesystem	structures	are	manipulated	using	the	following
methods.

Tcl_FSRegister	takes	a	pointer	to	a	filesystem	structure	and	an
optional	piece	of	data	to	associated	with	that	filesystem.	On	calling	this
function,	Tcl	will	attach	the	filesystem	to	the	list	of	known	filesystems,
and	it	will	become	fully	functional	immediately.	Tcl	does	not	check	if	the
same	filesystem	is	registered	multiple	times	(and	in	general	that	is	not	a
good	thing	to	do).	TCL_OK	will	be	returned.

Tcl_FSUnregister	removes	the	given	filesystem	structure	from	the	list
of	known	filesystems,	if	it	is	known,	and	returns	TCL_OK.	If	the
filesystem	is	not	currently	registered,	TCL_ERROR	is	returned.

Tcl_FSData	will	return	the	ClientData	associated	with	the	given
filesystem,	if	that	filesystem	is	registered.	Otherwise	it	will	return	NULL.

Tcl_FSMountsChanged	is	used	to	inform	the	Tcl's	core	that	the	set	of
mount	points	for	the	given	(already	registered)	filesystem	have
changed,	and	that	cached	file	representations	may	therefore	no	longer
be	correct.

THE	TCL_FILESYSTEM	STRUCTURE

The	Tcl_Filesystem	structure	contains	the	following	fields:

typedef	struct	Tcl_Filesystem	{

				const	char	*typeName;

				int	structureLength;

				Tcl_FSVersion	version;

				Tcl_FSPathInFilesystemProc	*pathInFilesystemProc

				Tcl_FSDupInternalRepProc	*dupInternalRepProc;

				Tcl_FSFreeInternalRepProc	*freeInternalRepProc;

				Tcl_FSInternalToNormalizedProc	*internalToNormalizedProc

				Tcl_FSCreateInternalRepProc	*createInternalRepProc

				Tcl_FSNormalizePathProc	*normalizePathProc;

				Tcl_FSFilesystemPathTypeProc	*filesystemPathTypeProc

				Tcl_FSFilesystemSeparatorProc	*filesystemSeparatorProc

				Tcl_FSStatProc	*statProc;

				Tcl_FSAccessProc	*accessProc;

				Tcl_FSOpenFileChannelProc	*openFileChannelProc;

				Tcl_FSMatchInDirectoryProc	*matchInDirectoryProc

				Tcl_FSUtimeProc	*utimeProc;

				Tcl_FSLinkProc	*linkProc;

				Tcl_FSListVolumesProc	*listVolumesProc;

				Tcl_FSFileAttrStringsProc	*fileAttrStringsProc;

				Tcl_FSFileAttrsGetProc	*fileAttrsGetProc;

				Tcl_FSFileAttrsSetProc	*fileAttrsSetProc;

				Tcl_FSCreateDirectoryProc	*createDirectoryProc;

				Tcl_FSRemoveDirectoryProc	*removeDirectoryProc;

				Tcl_FSDeleteFileProc	*deleteFileProc;

				Tcl_FSCopyFileProc	*copyFileProc;

				Tcl_FSRenameFileProc	*renameFileProc;

				Tcl_FSCopyDirectoryProc	*copyDirectoryProc;

				Tcl_FSLstatProc	*lstatProc;

				Tcl_FSLoadFileProc	*loadFileProc;

				Tcl_FSGetCwdProc	*getCwdProc;

				Tcl_FSChdirProc	*chdirProc;

}	Tcl_Filesystem;

Except	for	the	first	three	fields	in	this	structure	which	contain	simple
data	elements,	all	entries	contain	addresses	of	functions	called	by	the
generic	filesystem	layer	to	perform	the	complete	range	of	filesystem

related	actions.

The	many	functions	in	this	structure	are	broken	down	into	three
categories:	infrastructure	functions	(almost	all	of	which	must	be
implemented),	operational	functions	(which	must	be	implemented	if	a
complete	filesystem	is	provided),	and	efficiency	functions	(which	need
only	be	implemented	if	they	can	be	done	so	efficiently,	or	if	they	have
side-effects	which	are	required	by	the	filesystem;	Tcl	has	less	efficient
emulations	it	can	fall	back	on).	It	is	important	to	note	that,	in	the	current
version	of	Tcl,	most	of	these	fallbacks	are	only	used	to	handle
commands	initiated	in	Tcl,	not	in	C.	What	this	means	is,	that	if	a	file
rename	command	is	issued	in	Tcl,	and	the	relevant	filesystem(s)	do	not
implement	their	Tcl_FSRenameFileProc,	Tcl's	core	will	instead	fallback
on	a	combination	of	other	filesystem	functions	(it	will	use
Tcl_FSCopyFileProc	followed	by	Tcl_FSDeleteFileProc,	and	if
Tcl_FSCopyFileProc	is	not	implemented	there	is	a	further	fallback).
However,	if	a	Tcl_FSRenameFileProc	command	is	issued	at	the	C	level,
no	such	fallbacks	occur.	This	is	true	except	for	the	last	four	entries	in
the	filesystem	table	(lstat,	load,	getcwd	and	chdir)	for	which	fallbacks
do	in	fact	occur	at	the	C	level.

Any	functions	which	take	path	names	in	Tcl_Obj	form	take	those	names
in	UTF-8	form.	The	filesystem	infrastructure	API	is	designed	to	support
efficient,	cached	conversion	of	these	UTF-8	paths	to	other	native
representations.

EXAMPLE	FILESYSTEM	DEFINITION

Here	is	the	filesystem	lookup	table	used	by	the	“vfs”	extension	which
allows	filesystem	actions	to	be	implemented	in	Tcl.

static	Tcl_Filesystem	vfsFilesystem	=	{

				"tclvfs",

				sizeof(Tcl_Filesystem),

				TCL_FILESYSTEM_VERSION_1,

				&VfsPathInFilesystem,

				&VfsDupInternalRep,

				&VfsFreeInternalRep,

				/*	No	internal	to	normalized,	since	we	don't	create

					*	any	pure	'internal'	Tcl_Obj	path	representations	*/

				NULL,

				/*	No	create	native	rep	function,	since	we	don't	use

					*	it	and	don't	choose	to	support	uses	of

					*	Tcl_FSNewNativePath	*/

				NULL,

				/*	Normalize	path	isn't	needed	-	we	assume	paths	only

					*	have	one	representation	*/

				NULL,

				&VfsFilesystemPathType,

				&VfsFilesystemSeparator,

				&VfsStat,

				&VfsAccess,

				&VfsOpenFileChannel,

				&VfsMatchInDirectory,

				&VfsUtime,

				/*	We	choose	not	to	support	symbolic	links	inside	our

					*	VFS's	*/

				NULL,

				&VfsListVolumes,

				&VfsFileAttrStrings,

				&VfsFileAttrsGet,

				&VfsFileAttrsSet,

				&VfsCreateDirectory,

				&VfsRemoveDirectory,

				&VfsDeleteFile,

				/*	No	copy	file;	use	the	core	fallback	mechanism	*/

				NULL,

				/*	No	rename	file;	use	the	core	fallback	mechanism	*/

				NULL,

				/*	No	copy	directory;	use	the	core	fallback	mechanism	*/

				NULL,

				/*	Core	will	use	stat	for	lstat	*/

				NULL,

				/*	No	load;	use	the	core	fallback	mechansism	*/

				NULL,

				/*	We	don't	need	a	getcwd	or	chdir;	the	core's	own

					*	internal	value	is	suitable	*/

				NULL,

				NULL

};

FILESYSTEM	INFRASTRUCTURE

These	fields	contain	basic	information	about	the	filesystem	structure
and	addresses	of	functions	which	are	used	to	associate	a	particular
filesystem	with	a	file	path,	and	deal	with	the	internal	handling	of	path
representations,	for	example	copying	and	freeing	such	representations.

TYPENAME

The	typeName	field	contains	a	null-terminated	string	that	identifies	the
type	of	the	filesystem	implemented,	e.g.	“native”,	“zip”	or	“vfs”.

STRUCTURE	LENGTH

The	structureLength	field	is	generally	implemented	as
sizeof(Tcl_Filesystem),	and	is	there	to	allow	easier	binary	backwards
compatibility	if	the	size	of	the	structure	changes	in	a	future	Tcl	release.

VERSION

The	version	field	should	be	set	to	TCL_FILESYSTEM_VERSION_1.

PATHINFILESYSTEMPROC

The	pathInFilesystemProc	field	contains	the	address	of	a	function	which
is	called	to	determine	whether	a	given	path	object	belongs	to	this
filesystem	or	not.	Tcl	will	only	call	the	rest	of	the	filesystem	functions
with	a	path	for	which	this	function	has	returned	TCL_OK.	If	the	path
does	not	belong,	-1	should	be	returned	(the	behaviour	of	Tcl	for	any

other	return	value	is	not	defined).	If	TCL_OK	is	returned,	then	the
optional	clientDataPtr	output	parameter	can	be	used	to	return	an
internal	(filesystem	specific)	representation	of	the	path,	which	will	be
cached	inside	the	path	object,	and	may	be	retrieved	efficiently	by	the
other	filesystem	functions.	Tcl	will	simultaneously	cache	the	fact	that
this	path	belongs	to	this	filesystem.	Such	caches	are	invalidated	when
filesystem	structures	are	added	or	removed	from	Tcl's	internal	list	of
known	filesystems.

typedef	int	Tcl_FSPathInFilesystemProc(

								Tcl_Obj	*pathPtr,

								ClientData	*clientDataPtr);

DUPINTERNALREPPROC

This	function	makes	a	copy	of	a	path's	internal	representation,	and	is
called	when	Tcl	needs	to	duplicate	a	path	object.	If	NULL,	Tcl	will	simply
not	copy	the	internal	representation,	which	may	then	need	to	be
regenerated	later.

typedef	ClientData	Tcl_FSDupInternalRepProc(

								ClientData	clientData);

FREEINTERNALREPPROC

Free	the	internal	representation.	This	must	be	implemented	if	internal
representations	need	freeing	(i.e.	if	some	memory	is	allocated	when	an
internal	representation	is	generated),	but	may	otherwise	be	NULL.

typedef	void	Tcl_FSFreeInternalRepProc(

								ClientData	clientData);

INTERNALTONORMALIZEDPROC

Function	to	convert	internal	representation	to	a	normalized	path.	Only
required	if	the	filesystem	creates	pure	path	objects	with	no	string/path
representation.	The	return	value	is	a	Tcl	object	whose	string
representation	is	the	normalized	path.

typedef	Tcl_Obj*	Tcl_FSInternalToNormalizedProc(

								ClientData	clientData);

CREATEINTERNALREPPROC

Function	to	take	a	path	object,	and	calculate	an	internal	representation
for	it,	and	store	that	native	representation	in	the	object.	May	be	NULL	if
paths	have	no	internal	representation,	or	if	the
Tcl_FSPathInFilesystemProc	for	this	filesystem	always	immediately
creates	an	internal	representation	for	paths	it	accepts.

typedef	ClientData	Tcl_FSCreateInternalRepProc(

								Tcl_Obj	*pathPtr);

NORMALIZEPATHPROC

Function	to	normalize	a	path.	Should	be	implemented	for	all	filesystems
which	can	have	multiple	string	representations	for	the	same	path	object.
In	Tcl,	every	“path”	must	have	a	single	unique	“normalized”	string
representation.	Depending	on	the	filesystem,	there	may	be	more	than
one	unnormalized	string	representation	which	refers	to	that	path	(e.g.	a
relative	path,	a	path	with	different	character	case	if	the	filesystem	is
case	insensitive,	a	path	contain	a	reference	to	a	home	directory	such	as
“~”,	a	path	containing	symbolic	links,	etc).	If	the	very	last	component	in
the	path	is	a	symbolic	link,	it	should	not	be	converted	into	the	object	it
points	to	(but	its	case	or	other	aspects	should	be	made	unique).	All
other	path	components	should	be	converted	from	symbolic	links.	This

one	exception	is	required	to	agree	with	Tcl's	semantics	with	file	delete,
file	rename,	file	copy	operating	on	symbolic	links.	This	function	may
be	called	with	nextCheckpoint	either	at	the	beginning	of	the	path	(i.e.
zero),	at	the	end	of	the	path,	or	at	any	intermediate	file	separator	in	the
path.	It	will	never	point	to	any	other	arbitrary	position	in	the	path.	In	the
last	of	the	three	valid	cases,	the	implementation	can	assume	that	the
path	up	to	and	including	the	file	separator	is	known	and	normalized.

typedef	int	Tcl_FSNormalizePathProc(

								Tcl_Interp	*interp,

								Tcl_Obj	*pathPtr,

								int	nextCheckpoint);

FILESYSTEM	OPERATIONS

The	fields	in	this	section	of	the	structure	contain	addresses	of	functions
which	are	called	to	carry	out	the	basic	filesystem	operations.	A
filesystem	which	expects	to	be	used	with	the	complete	standard	Tcl
command	set	must	implement	all	of	these.	If	some	of	them	are	not
implemented,	then	certain	Tcl	commands	may	fail	when	operating	on
paths	within	that	filesystem.	However,	in	some	instances	this	may	be
desirable	(for	example,	a	read-only	filesystem	should	not	implement	the
last	four	functions,	and	a	filesystem	which	does	not	support	symbolic
links	need	not	implement	the	readlink	function,	etc.	The	Tcl	core
expects	filesystems	to	behave	in	this	way).

FILESYSTEMPATHTYPEPROC

Function	to	determine	the	type	of	a	path	in	this	filesystem.	May	be
NULL,	in	which	case	no	type	information	will	be	available	to	users	of	the
filesystem.	The	“type”	is	used	only	for	informational	purposes,	and
should	be	returned	as	the	string	representation	of	the	Tcl_Obj	which	is
returned.	A	typical	return	value	might	be	“networked”,	“zip”	or	“ftp”.	The
Tcl_Obj	result	is	owned	by	the	filesystem	and	so	Tcl	will	increment	the
refCount	of	that	object	if	it	wishes	to	retain	a	reference	to	it.

typedef	Tcl_Obj*	Tcl_FSFilesystemPathTypeProc(

								Tcl_Obj	*pathPtr);

FILESYSTEMSEPARATORPROC

Function	to	return	the	separator	character(s)	for	this	filesystem.	This
need	only	be	implemented	if	the	filesystem	wishes	to	use	a	different
separator	than	the	standard	string	“/”.	Amongst	other	uses,	it	is	returned
by	the	file	separator	command.	The	return	value	should	be	an	object
with	refCount	of	zero.

typedef	Tcl_Obj*	Tcl_FSFilesystemSeparatorProc(

								Tcl_Obj	*pathPtr);

STATPROC

Function	to	process	a	Tcl_FSStat	call.	Must	be	implemented	for	any
reasonable	filesystem,	since	many	Tcl	level	commands	depend	crucially
upon	it	(e.g.	file	atime,	file	isdirectory,	file	size,	glob).

typedef	int	Tcl_FSStatProc(

								Tcl_Obj	*pathPtr,

								Tcl_StatBuf	*statPtr);

The	Tcl_FSStatProc	fills	the	stat	structure	statPtr	with	information
about	the	specified	file.	You	do	not	need	any	access	rights	to	the	file	to
get	this	information	but	you	need	search	rights	to	all	directories	named
in	the	path	leading	to	the	file.	The	stat	structure	includes	info	regarding
device,	inode	(always	0	on	Windows),	privilege	mode,	nlink	(always	1
on	Windows),	user	id	(always	0	on	Windows),	group	id	(always	0	on
Windows),	rdev	(same	as	device	on	Windows),	size,	last	access	time,
last	modification	time,	and	creation	time.

If	the	file	represented	by	pathPtr	exists,	the	Tcl_FSStatProc	returns	0
and	the	stat	structure	is	filled	with	data.	Otherwise,	-1	is	returned,	and
no	stat	info	is	given.

ACCESSPROC

Function	to	process	a	Tcl_FSAccess	call.	Must	be	implemented	for	any
reasonable	filesystem,	since	many	Tcl	level	commands	depend	crucially
upon	it	(e.g.	file	exists,	file	readable).

typedef	int	Tcl_FSAccessProc(

								Tcl_Obj	*pathPtr,

								int	mode);

The	Tcl_FSAccessProc	checks	whether	the	process	would	be	allowed
to	read,	write	or	test	for	existence	of	the	file	(or	other	filesystem	object)
whose	name	is	in	pathPtr.	If	the	pathname	refers	to	a	symbolic	link,
then	the	permissions	of	the	file	referred	by	this	symbolic	link	should	be
tested.

On	success	(all	requested	permissions	granted),	zero	is	returned.	On
error	(at	least	one	bit	in	mode	asked	for	a	permission	that	is	denied,	or
some	other	error	occurred),	-1	is	returned.

OPENFILECHANNELPROC

Function	to	process	a	Tcl_FSOpenFileChannel	call.	Must	be
implemented	for	any	reasonable	filesystem,	since	any	operations	which
require	open	or	accessing	a	file's	contents	will	use	it	(e.g.	open,
encoding,	and	many	Tk	commands).

typedef	Tcl_Channel	Tcl_FSOpenFileChannelProc(

								Tcl_Interp	*interp,

								Tcl_Obj	*pathPtr,

								int	mode,

								int	permissions);

The	Tcl_FSOpenFileChannelProc	opens	a	file	specified	by	pathPtr
and	returns	a	channel	handle	that	can	be	used	to	perform	input	and
output	on	the	file.	This	API	is	modeled	after	the	fopen	procedure	of	the
Unix	standard	I/O	library.	The	syntax	and	meaning	of	all	arguments	is
similar	to	those	given	in	the	Tcl	open	command	when	opening	a	file,
where	the	mode	argument	is	a	combination	of	the	POSIX	flags
O_RDONLY,	O_WRONLY,	etc.	If	an	error	occurs	while	opening	the
channel,	the	Tcl_FSOpenFileChannelProc	returns	NULL	and	records
a	POSIX	error	code	that	can	be	retrieved	with	Tcl_GetErrno.	In
addition,	if	interp	is	non-NULL,	the	Tcl_FSOpenFileChannelProc
leaves	an	error	message	in	interp's	result	after	any	error.

The	newly	created	channel	is	not	registered	in	the	supplied	interpreter;
to	register	it,	use	Tcl_RegisterChannel.	If	one	of	the	standard
channels,	stdin,	stdout	or	stderr	was	previously	closed,	the	act	of
creating	the	new	channel	also	assigns	it	as	a	replacement	for	the
standard	channel.

MATCHINDIRECTORYPROC

Function	to	process	a	Tcl_FSMatchInDirectory	call.	If	not
implemented,	then	glob	and	recursive	copy	functionality	will	be	lacking
in	the	filesystem	(and	this	may	impact	commands	like	encoding	names
which	use	glob	functionality	internally).

typedef	int	Tcl_FSMatchInDirectoryProc(

								Tcl_Interp*	interp,

								Tcl_Obj	*resultPtr,

								Tcl_Obj	*pathPtr,

								const	char	*pattern,

								Tcl_GlobTypeData	*types);

The	function	should	return	all	files	or	directories	(or	other	filesystem

objects)	which	match	the	given	pattern	and	accord	with	the	types
specification	given.	There	are	two	ways	in	which	this	function	may	be
called.	If	pattern	is	NULL,	then	pathPtr	is	a	full	path	specification	of	a
single	file	or	directory	which	should	be	checked	for	existence	and
correct	type.	Otherwise,	pathPtr	is	a	directory,	the	contents	of	which	the
function	should	search	for	files	or	directories	which	have	the	correct
type.	In	either	case,	pathPtr	can	be	assumed	to	be	both	non-NULL	and
non-empty.	It	is	not	currently	documented	whether	pathPtr	will	have	a
file	separator	at	its	end	of	not,	so	code	should	be	flexible	to	both
possibilities.

The	return	value	is	a	standard	Tcl	result	indicating	whether	an	error
occurred	in	the	matching	process.	Error	messages	are	placed	in	interp,
unless	interp	in	NULL	in	which	case	no	error	message	need	be
generated;	on	a	TCL_OK	result,	results	should	be	added	to	the
resultPtr	object	given	(which	can	be	assumed	to	be	a	valid	unshared	Tcl
list).	The	matches	added	to	resultPtr	should	include	any	path	prefix
given	in	pathPtr	(this	usually	means	they	will	be	absolute	path
specifications).	Note	that	if	no	matches	are	found,	that	simply	leads	to
an	empty	result;	errors	are	only	signaled	for	actual	file	or	filesystem
problems	which	may	occur	during	the	matching	process.

The	Tcl_GlobTypeData	structure	passed	in	the	types	parameter
contains	the	following	fields:

typedef	struct	Tcl_GlobTypeData	{

								/*	Corresponds	to	bcdpfls	as	in	'find	-t'	*/

								int	type;

								/*	Corresponds	to	file	permissions	*/

								int	perm;

								/*	Acceptable	mac	type	*/

								Tcl_Obj	*macType;

								/*	Acceptable	mac	creator	*/

								Tcl_Obj	*macCreator;

}	Tcl_GlobTypeData;

There	are	two	specific	cases	which	it	is	important	to	handle	correctly,
both	when	types	is	non-NULL.	The	two	cases	are	when	types->types	&
TCL_GLOB_TYPE_DIR	or	types->types	&	TCL_GLOB_TYPE_MOUNT
are	true	(and	in	particular	when	the	other	flags	are	false).	In	the	first	of
these	cases,	the	function	must	list	the	contained	directories.	Tcl	uses
this	to	implement	recursive	globbing,	so	it	is	critical	that	filesystems
implement	directory	matching	correctly.	In	the	second	of	these	cases,
with	TCL_GLOB_TYPE_MOUNT,	the	filesystem	must	list	the	mount
points	which	lie	within	the	given	pathPtr	(and	in	this	case,	pathPtr	need
not	lie	within	the	same	filesystem	-	different	to	all	other	cases	in	which
this	function	is	called).	Support	for	this	is	critical	if	Tcl	is	to	have
seamless	transitions	between	from	one	filesystem	to	another.

UTIMEPROC

Function	to	process	a	Tcl_FSUtime	call.	Required	to	allow	setting	(not
reading)	of	times	with	file	mtime,	file	atime	and	the	open-r/open-
w/fcopy	implementation	of	file	copy.

typedef	int	Tcl_FSUtimeProc(

								Tcl_Obj	*pathPtr,

								struct	utimbuf	*tval);

The	access	and	modification	times	of	the	file	specified	by	pathPtr
should	be	changed	to	the	values	given	in	the	tval	structure.

The	return	value	should	be	0	on	success	and	-1	on	an	error,	as	with	the
system	utime.

LINKPROC

Function	to	process	a	Tcl_FSLink	call.	Should	be	implemented	only	if
the	filesystem	supports	links,	and	may	otherwise	be	NULL.

typedef	Tcl_Obj*	Tcl_FSLinkProc(

								Tcl_Obj	*linkNamePtr,

								Tcl_Obj	*toPtr,

								int	linkAction);

If	toPtr	is	NULL,	the	function	is	being	asked	to	read	the	contents	of	a
link.	The	result	is	a	Tcl_Obj	specifying	the	contents	of	the	link	given	by
linkNamePtr,	or	NULL	if	the	link	could	not	be	read.	The	result	is	owned
by	the	caller	(and	should	therefore	have	its	ref	count	incremented
before	being	returned).	Any	callers	should	call	Tcl_DecrRefCount	on
this	result	when	it	is	no	longer	needed.	If	toPtr	is	not	NULL,	the	function
should	attempt	to	create	a	link.	The	result	in	this	case	should	be	toPtr	if
the	link	was	successful	and	NULL	otherwise.	In	this	case	the	result	is
not	owned	by	the	caller	(i.e.	no	ref	count	manipulation	on	either	end	is
needed).	See	the	documentation	for	Tcl_FSLink	for	the	correct
interpretation	of	the	linkAction	flags.

LISTVOLUMESPROC

Function	to	list	any	filesystem	volumes	added	by	this	filesystem.	Should
be	implemented	only	if	the	filesystem	adds	volumes	at	the	head	of	the
filesystem,	so	that	they	can	be	returned	by	file	volumes.

typedef	Tcl_Obj*	Tcl_FSListVolumesProc(void);

The	result	should	be	a	list	of	volumes	added	by	this	filesystem,	or	NULL
(or	an	empty	list)	if	no	volumes	are	provided.	The	result	object	is
considered	to	be	owned	by	the	filesystem	(not	by	Tcl's	core),	but	should
be	given	a	refCount	for	Tcl.	Tcl	will	use	the	contents	of	the	list	and	then
decrement	that	refCount.	This	allows	filesystems	to	choose	whether
they	actually	want	to	retain	a	“master	list”	of	volumes	or	not	(if	not,	they
generate	the	list	on	the	fly	and	pass	it	to	Tcl	with	a	refCount	of	1	and
then	forget	about	the	list,	if	yes,	then	they	simply	increment	the
refCount	of	their	master	list	and	pass	it	to	Tcl	which	will	copy	the
contents	and	then	decrement	the	count	back	to	where	it	was).

Therefore,	Tcl	considers	return	values	from	this	proc	to	be	read-only.

FILEATTRSTRINGSPROC

Function	to	list	all	attribute	strings	which	are	valid	for	this	filesystem.	If
not	implemented	the	filesystem	will	not	support	the	file	attributes
command.	This	allows	arbitrary	additional	information	to	be	attached	to
files	in	the	filesystem.	If	it	is	not	implemented,	there	is	no	need	to
implement	the	get	and	set	methods.

typedef	const	char**	Tcl_FSFileAttrStringsProc(

								Tcl_Obj	*pathPtr,

								Tcl_Obj**	objPtrRef);

The	called	function	may	either	return	an	array	of	strings,	or	may	instead
return	NULL	and	place	a	Tcl	list	into	the	given	objPtrRef.	Tcl	will	take
that	list	and	first	increment	its	reference	count	before	using	it.	On
completion	of	that	use,	Tcl	will	decrement	its	reference	count.	Hence	if
the	list	should	be	disposed	of	by	Tcl	when	done,	it	should	have	a
reference	count	of	zero,	and	if	the	list	should	not	be	disposed	of,	the
filesystem	should	ensure	it	returns	an	object	with	a	refererence	count	of
at	least	one.

FILEATTRSGETPROC

Function	to	process	a	Tcl_FSFileAttrsGet	call,	used	by	file	attributes.

typedef	int	Tcl_FSFileAttrsGetProc(

								Tcl_Interp	*interp,

								int	index,

								Tcl_Obj	*pathPtr,

								Tcl_Obj	**objPtrRef);

Returns	a	standard	Tcl	return	code.	The	attribute	value	retrieved,	which

corresponds	to	the	index'th	element	in	the	list	returned	by	the
Tcl_FSFileAttrStringsProc,	is	a	Tcl_Obj	placed	in	objPtrRef	(if
TCL_OK	was	returned)	and	is	likely	to	have	a	reference	count	of	zero.
Either	way	we	must	either	store	it	somewhere	(e.g.	the	Tcl	result),	or
Incr/Decr	its	reference	count	to	ensure	it	is	properly	freed.

FILEATTRSSETPROC

Function	to	process	a	Tcl_FSFileAttrsSet	call,	used	by	file	attributes.
If	the	filesystem	is	read-only,	there	is	no	need	to	implement	this.

typedef	int	Tcl_FSFileAttrsSetProc(

								Tcl_Interp	*interp,

								int	index,

								Tcl_Obj	*pathPtr,

								Tcl_Obj	*objPtr);

The	attribute	value	of	the	index'th	element	in	the	list	returned	by	the
Tcl_FSFileAttrStringsProc	should	be	set	to	the	objPtr	given.

CREATEDIRECTORYPROC

Function	to	process	a	Tcl_FSCreateDirectory	call.	Should	be
implemented	unless	the	FS	is	read-only.

typedef	int	Tcl_FSCreateDirectoryProc(

								Tcl_Obj	*pathPtr);

The	return	value	is	a	standard	Tcl	result	indicating	whether	an	error
occurred	in	the	process.	If	successful,	a	new	directory	should	have
been	added	to	the	filesystem	in	the	location	specified	by	pathPtr.

REMOVEDIRECTORYPROC

Function	to	process	a	Tcl_FSRemoveDirectory	call.	Should	be
implemented	unless	the	FS	is	read-only.

typedef	int	Tcl_FSRemoveDirectoryProc(

								Tcl_Obj	*pathPtr,

								int	recursive,

								Tcl_Obj	**errorPtr);

The	return	value	is	a	standard	Tcl	result	indicating	whether	an	error
occurred	in	the	process.	If	successful,	the	directory	specified	by	pathPtr
should	have	been	removed	from	the	filesystem.	If	the	recursive	flag	is
given,	then	a	non-empty	directory	should	be	deleted	without	error.	If	this
flag	is	not	given,	then	and	the	directory	is	non-empty	a	POSIX	“EEXIST”
error	should	be	signalled.	If	an	error	does	occur,	the	name	of	the	file	or
directory	which	caused	the	error	should	be	placed	in	errorPtr.

DELETEFILEPROC

Function	to	process	a	Tcl_FSDeleteFile	call.	Should	be	implemented
unless	the	FS	is	read-only.

typedef	int	Tcl_FSDeleteFileProc(

								Tcl_Obj	*pathPtr);

The	return	value	is	a	standard	Tcl	result	indicating	whether	an	error
occurred	in	the	process.	If	successful,	the	file	specified	by	pathPtr
should	have	been	removed	from	the	filesystem.	Note	that,	if	the
filesystem	supports	symbolic	links,	Tcl	will	always	call	this	function	and
not	Tcl_FSRemoveDirectoryProc	when	needed	to	delete	them	(even	if
they	are	symbolic	links	to	directories).

FILESYSTEM	EFFICIENCY

These	functions	need	not	be	implemented	for	a	particular	filesystem

because	the	core	has	a	fallback	implementation	available.	See	each
individual	description	for	the	consequences	of	leaving	the	field	NULL.

LSTATPROC

Function	to	process	a	Tcl_FSLstat	call.	If	not	implemented,	Tcl	will
attempt	to	use	the	statProc	defined	above	instead.	Therefore	it	need
only	be	implemented	if	a	filesystem	can	differentiate	between	stat	and
lstat	calls.

typedef	int	Tcl_FSLstatProc(

								Tcl_Obj	*pathPtr,

								Tcl_StatBuf	*statPtr);

The	behavior	of	this	function	is	very	similar	to	that	of	the
Tcl_FSStatProc	defined	above,	except	that	if	it	is	applied	to	a	symbolic
link,	it	returns	information	about	the	link,	not	about	the	target	file.

COPYFILEPROC

Function	to	process	a	Tcl_FSCopyFile	call.	If	not	implemented	Tcl	will
fall	back	on	open-r,	open-w	and	fcopy	as	a	copying	mechanism.
Therefore	it	need	only	be	implemented	if	the	filesystem	can	perform	that
action	more	efficiently.

typedef	int	Tcl_FSCopyFileProc(

								Tcl_Obj	*srcPathPtr,

								Tcl_Obj	*destPathPtr);

The	return	value	is	a	standard	Tcl	result	indicating	whether	an	error
occurred	in	the	copying	process.	Note	that,	destPathPtr	is	the	name	of
the	file	which	should	become	the	copy	of	srcPathPtr.	It	is	never	the
name	of	a	directory	into	which	srcPathPtr	could	be	copied	(i.e.	the
function	is	much	simpler	than	the	Tcl	level	file	copy	subcommand).

Note	that,	if	the	filesystem	supports	symbolic	links,	Tcl	will	always	call
this	function	and	not	copyDirectoryProc	when	needed	to	copy	them
(even	if	they	are	symbolic	links	to	directories).	Finally,	if	the	filesystem
determines	it	cannot	support	the	file	copy	action,	calling
Tcl_SetErrno(EXDEV)	and	returning	a	non-TCL_OK	result	will	tell	Tcl
to	use	its	standard	fallback	mechanisms.

RENAMEFILEPROC

Function	to	process	a	Tcl_FSRenameFile	call.	If	not	implemented,	Tcl
will	fall	back	on	a	copy	and	delete	mechanism.	Therefore	it	need	only
be	implemented	if	the	filesystem	can	perform	that	action	more
efficiently.

typedef	int	Tcl_FSRenameFileProc(

								Tcl_Obj	*srcPathPtr,

								Tcl_Obj	*destPathPtr);

The	return	value	is	a	standard	Tcl	result	indicating	whether	an	error
occurred	in	the	renaming	process.	If	the	filesystem	determines	it	cannot
support	the	file	rename	action,	calling	Tcl_SetErrno(EXDEV)	and
returning	a	non-TCL_OK	result	will	tell	Tcl	to	use	its	standard	fallback
mechanisms.

COPYDIRECTORYPROC

Function	to	process	a	Tcl_FSCopyDirectory	call.	If	not	implemented,
Tcl	will	fall	back	on	a	recursive	file	mkdir,	file	copy	mechanism.
Therefore	it	need	only	be	implemented	if	the	filesystem	can	perform	that
action	more	efficiently.

typedef	int	Tcl_FSCopyDirectoryProc(

								Tcl_Obj	*srcPathPtr,

								Tcl_Obj	*destPathPtr,

								Tcl_Obj	**errorPtr);

The	return	value	is	a	standard	Tcl	result	indicating	whether	an	error
occurred	in	the	copying	process.	If	an	error	does	occur,	the	name	of	the
file	or	directory	which	caused	the	error	should	be	placed	in	errorPtr.
Note	that,	destPathPtr	is	the	name	of	the	directory-name	which	should
become	the	mirror-image	of	srcPathPtr.	It	is	not	the	name	of	a	directory
into	which	srcPathPtr	should	be	copied	(i.e.	the	function	is	much	simpler
than	the	Tcl	level	file	copy	subcommand).	Finally,	if	the	filesystem
determines	it	cannot	support	the	directory	copy	action,	calling
Tcl_SetErrno(EXDEV)	and	returning	a	non-TCL_OK	result	will	tell	Tcl
to	use	its	standard	fallback	mechanisms.

LOADFILEPROC

Function	to	process	a	Tcl_FSLoadFile	call.	If	not	implemented,	Tcl	will
fall	back	on	a	copy	to	native-temp	followed	by	a	Tcl_FSLoadFile	on
that	temporary	copy.	Therefore	it	need	only	be	implemented	if	the
filesystem	can	load	code	directly,	or	it	can	be	implemented	simply	to
return	TCL_ERROR	to	disable	load	functionality	in	this	filesystem
entirely.

typedef	int	Tcl_FSLoadFileProc(

								Tcl_Interp	*interp,

								Tcl_Obj	*pathPtr,

								Tcl_LoadHandle	*handlePtr,

								Tcl_FSUnloadFileProc	*unloadProcPtr);

Returns	a	standard	Tcl	completion	code.	If	an	error	occurs,	an	error
message	is	left	in	the	interp's	result.	The	function	dynamically	loads	a
binary	code	file	into	memory.	On	a	successful	load,	the	handlePtr
should	be	filled	with	a	token	for	the	dynamically	loaded	file,	and	the
unloadProcPtr	should	be	filled	in	with	the	address	of	a	procedure.	The
unload	procedure	will	be	called	with	the	given	Tcl_LoadHandle	as	its
only	parameter	when	Tcl	needs	to	unload	the	file.	For	example,	for	the
native	filesystem,	the	Tcl_LoadHandle	returned	is	currently	a	token

which	can	be	used	in	the	private	TclpFindSymbol	to	access	functions
in	the	new	code.	Each	filesystem	is	free	to	define	the	Tcl_LoadHandle
as	it	requires.	Finally,	if	the	filesystem	determines	it	cannot	support	the
file	load	action,	calling	Tcl_SetErrno(EXDEV)	and	returning	a	non-
TCL_OK	result	will	tell	Tcl	to	use	its	standard	fallback	mechanisms.

UNLOADFILEPROC

Function	to	unload	a	previously	successfully	loaded	file.	If	load	was
implemented,	then	this	should	also	be	implemented,	if	there	is	any
cleanup	action	required.

typedef	void	Tcl_FSUnloadFileProc(

								Tcl_LoadHandle	loadHandle);

GETCWDPROC

Function	to	process	a	Tcl_FSGetCwd	call.	Most	filesystems	need	not
implement	this.	It	will	usually	only	be	called	once,	if	getcwd	is	called
before	chdir.	May	be	NULL.

typedef	Tcl_Obj*	Tcl_FSGetCwdProc(

								Tcl_Interp	*interp);

If	the	filesystem	supports	a	native	notion	of	a	current	working	directory
(which	might	perhaps	change	independent	of	Tcl),	this	function	should
return	that	cwd	as	the	result,	or	NULL	if	the	current	directory	could	not
be	determined	(e.g.	the	user	does	not	have	appropriate	permissions	on
the	cwd	directory).	If	NULL	is	returned,	an	error	message	is	left	in	the
interp's	result.

CHDIRPROC

Function	to	process	a	Tcl_FSChdir	call.	If	filesystems	do	not	implement

this,	it	will	be	emulated	by	a	series	of	directory	access	checks.
Otherwise,	virtual	filesystems	which	do	implement	it	need	only	respond
with	a	positive	return	result	if	the	pathPtr	is	a	valid,	accessible	directory
in	their	filesystem.	They	need	not	remember	the	result,	since	that	will	be
automatically	remembered	for	use	by	Tcl_FSGetCwd.	Real	filesystems
should	carry	out	the	correct	action	(i.e.	call	the	correct	system	chdir
API).

typedef	int	Tcl_FSChdirProc(

								Tcl_Obj	*pathPtr);

The	Tcl_FSChdirProc	changes	the	applications	current	working
directory	to	the	value	specified	in	pathPtr.	The	function	returns	-1	on
error	or	0	on	success.

SEE	ALSO

cd,	file,	load,	open,	pwd,	unload

KEYWORDS

stat,	access,	filesystem,	vfs,	virtual

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	2001	Vincent	Darley

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	Utf

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_UniChar,	Tcl_UniCharCaseMatch,	Tcl_UniCharNcasecmp,
Tcl_UniCharToUtf,	Tcl_UtfToUniChar,
Tcl_UniCharToUtfDString,	Tcl_UtfToUniCharDString,
Tcl_UniCharLen,	Tcl_UniCharNcmp,	Tcl_UtfCharComplete,
Tcl_NumUtfChars,	Tcl_UtfFindFirst,	Tcl_UtfFindLast,
Tcl_UtfNext,	Tcl_UtfPrev,	Tcl_UniCharAtIndex,	Tcl_UtfAtIndex,
Tcl_UtfBackslash	-	routines	for	manipulating	UTF-8	strings

SYNOPSIS
#include	<tcl.h>
typedef	...	Tcl_UniChar;
int
Tcl_UniCharToUtf(ch,	buf)
int
Tcl_UtfToUniChar(src,	chPtr)
char	*
Tcl_UniCharToUtfDString(uniStr,	uniLength,	dsPtr)
Tcl_UniChar	*
Tcl_UtfToUniCharDString(src,	length,	dsPtr)
int
Tcl_UniCharLen(uniStr)
int
Tcl_UniCharNcmp(ucs,	uct,	numChars)
int
Tcl_UniCharNcasecmp(ucs,	uct,	numChars)
int
Tcl_UniCharCaseMatch(uniStr,	uniPattern,	nocase)
int
Tcl_UtfNcmp(cs,	ct,	numChars)
int
Tcl_UtfNcasecmp(cs,	ct,	numChars)

int
Tcl_UtfCharComplete(src,	length)
int
Tcl_NumUtfChars(src,	length)
const	char	*
Tcl_UtfFindFirst(src,	ch)
const	char	*
Tcl_UtfFindLast(src,	ch)
const	char	*
Tcl_UtfNext(src)
const	char	*
Tcl_UtfPrev(src,	start)
Tcl_UniChar
Tcl_UniCharAtIndex(src,	index)
const	char	*
Tcl_UtfAtIndex(src,	index)
int
Tcl_UtfBackslash(src,	readPtr,	dst)

ARGUMENTS
DESCRIPTION
KEYWORDS

NAME

Tcl_UniChar,	Tcl_UniCharCaseMatch,	Tcl_UniCharNcasecmp,
Tcl_UniCharToUtf,	Tcl_UtfToUniChar,	Tcl_UniCharToUtfDString,
Tcl_UtfToUniCharDString,	Tcl_UniCharLen,	Tcl_UniCharNcmp,
Tcl_UtfCharComplete,	Tcl_NumUtfChars,	Tcl_UtfFindFirst,
Tcl_UtfFindLast,	Tcl_UtfNext,	Tcl_UtfPrev,	Tcl_UniCharAtIndex,
Tcl_UtfAtIndex,	Tcl_UtfBackslash	-	routines	for	manipulating	UTF-8
strings

SYNOPSIS

#include	<tcl.h>
typedef	...	Tcl_UniChar;
int
Tcl_UniCharToUtf(ch,	buf)

int
Tcl_UtfToUniChar(src,	chPtr)
char	*
Tcl_UniCharToUtfDString(uniStr,	uniLength,	dsPtr)
Tcl_UniChar	*
Tcl_UtfToUniCharDString(src,	length,	dsPtr)
int
Tcl_UniCharLen(uniStr)
int
Tcl_UniCharNcmp(ucs,	uct,	numChars)
int
Tcl_UniCharNcasecmp(ucs,	uct,	numChars)
int
Tcl_UniCharCaseMatch(uniStr,	uniPattern,	nocase)
int
Tcl_UtfNcmp(cs,	ct,	numChars)
int
Tcl_UtfNcasecmp(cs,	ct,	numChars)
int
Tcl_UtfCharComplete(src,	length)
int	
Tcl_NumUtfChars(src,	length)
const	char	*
Tcl_UtfFindFirst(src,	ch)
const	char	*
Tcl_UtfFindLast(src,	ch)
const	char	*
Tcl_UtfNext(src)
const	char	*
Tcl_UtfPrev(src,	start)
Tcl_UniChar
Tcl_UniCharAtIndex(src,	index)
const	char	*
Tcl_UtfAtIndex(src,	index)
int
Tcl_UtfBackslash(src,	readPtr,	dst)

char	*buf	(out)

int	ch	(in)

Tcl_UniChar	*chPtr	(out)

const	char	*src	(in)

const	char	*cs	(in)

const	char	*ct	(in)

const	Tcl_UniChar	*uniStr	(in)

const	Tcl_UniChar	*ucs	(in)

const	Tcl_UniChar	*uct	(in)

const	Tcl_UniChar	*uniPattern	(in)

int	length	(in)

ARGUMENTS

Buffer	in	which	the	UTF-8
representation	of	the
Tcl_UniChar	is	stored.	At
most	TCL_UTF_MAX
bytes	are	stored	in	the
buffer.

The	Tcl_UniChar	to	be
converted	or	examined.

Filled	with	the	Tcl_UniChar
represented	by	the	head	of
the	UTF-8	string.

Pointer	to	a	UTF-8	string.

Pointer	to	a	UTF-8	string.

Pointer	to	a	UTF-8	string.

A	null-terminated	Unicode
string.

A	null-terminated	Unicode
string.

A	null-terminated	Unicode
string.

A	null-terminated	Unicode
string.

The	length	of	the	UTF-8
string	in	bytes	(not	UTF-8
characters).	If	negative,	all

int	uniLength	(in)

Tcl_DString	*dsPtr	(in/out)

unsigned	long	numChars	(in)

const	char	*start	(in)

int	index	(in)

int	*readPtr	(out)

char	*dst	(out)

int	nocase	(in)

bytes	up	to	the	first	null
byte	are	used.

The	length	of	the	Unicode
string	in	characters.	Must
be	greater	than	or	equal	to
0.

A	pointer	to	a	previously
initialized	Tcl_DString.

The	number	of	characters
to	compare.

Pointer	to	the	beginning	of
a	UTF-8	string.

The	index	of	a	character
(not	byte)	in	the	UTF-8
string.

If	non-NULL,	filled	with	the
number	of	bytes	in	the
backslash	sequence,
including	the	backslash
character.

Buffer	in	which	the	bytes
represented	by	the
backslash	sequence	are
stored.	At	most
TCL_UTF_MAX	bytes	are
stored	in	the	buffer.

Specifies	whether	the
match	should	be	done
case-sensitive	(0)	or	case-

insensitive	(1).

DESCRIPTION

These	routines	convert	between	UTF-8	strings	and	Tcl_UniChars.	A
Tcl_UniChar	is	a	Unicode	character	represented	as	an	unsigned,	fixed-
size	quantity.	A	UTF-8	character	is	a	Unicode	character	represented	as
a	varying-length	sequence	of	up	to	TCL_UTF_MAX	bytes.	A	multibyte
UTF-8	sequence	consists	of	a	lead	byte	followed	by	some	number	of
trail	bytes.

TCL_UTF_MAX	is	the	maximum	number	of	bytes	that	it	takes	to
represent	one	Unicode	character	in	the	UTF-8	representation.

Tcl_UniCharToUtf	stores	the	Tcl_UniChar	ch	as	a	UTF-8	string	in
starting	at	buf.	The	return	value	is	the	number	of	bytes	stored	in	buf.

Tcl_UtfToUniChar	reads	one	UTF-8	character	starting	at	src	and	stores
it	as	a	Tcl_UniChar	in	*chPtr.	The	return	value	is	the	number	of	bytes
read	from	src.	The	caller	must	ensure	that	the	source	buffer	is	long
enough	such	that	this	routine	does	not	run	off	the	end	and	dereference
non-existent	or	random	memory;	if	the	source	buffer	is	known	to	be	null-
terminated,	this	will	not	happen.	If	the	input	is	not	in	proper	UTF-8
format,	Tcl_UtfToUniChar	will	store	the	first	byte	of	src	in	*chPtr	as	a
Tcl_UniChar	between	0x0000	and	0x00ff	and	return	1.

Tcl_UniCharToUtfDString	converts	the	given	Unicode	string	to	UTF-8,
storing	the	result	in	a	previously	initialized	Tcl_DString.	You	must
specify	uniLength,	the	length	of	the	given	Unicode	string.	The	return
value	is	a	pointer	to	the	UTF-8	representation	of	the	Unicode	string.
Storage	for	the	return	value	is	appended	to	the	end	of	the	Tcl_DString.

Tcl_UtfToUniCharDString	converts	the	given	UTF-8	string	to	Unicode,
storing	the	result	in	the	previously	initialized	Tcl_DString.	In	the
argument	length,	you	may	either	specify	the	length	of	the	given	UTF-8
string	in	bytes	or	“-1”,	in	which	case	Tcl_UtfToUniCharDString	uses
strlen	to	calculate	the	length.	The	return	value	is	a	pointer	to	the

Unicode	representation	of	the	UTF-8	string.	Storage	for	the	return	value
is	appended	to	the	end	of	the	Tcl_DString.	The	Unicode	string	is
terminated	with	a	Unicode	null	character.

Tcl_UniCharLen	corresponds	to	strlen	for	Unicode	characters.	It
accepts	a	null-terminated	Unicode	string	and	returns	the	number	of
Unicode	characters	(not	bytes)	in	that	string.

Tcl_UniCharNcmp	and	Tcl_UniCharNcasecmp	correspond	to
strncmp	and	strncasecmp,	respectively,	for	Unicode	characters.	They
accept	two	null-terminated	Unicode	strings	and	the	number	of
characters	to	compare.	Both	strings	are	assumed	to	be	at	least
numChars	characters	long.	Tcl_UniCharNcmp	compares	the	two
strings	character-by-character	according	to	the	Unicode	character
ordering.	It	returns	an	integer	greater	than,	equal	to,	or	less	than	0	if	the
first	string	is	greater	than,	equal	to,	or	less	than	the	second	string
respectively.	Tcl_UniCharNcasecmp	is	the	Unicode	case	insensitive
version.

Tcl_UniCharCaseMatch	is	the	Unicode	equivalent	to
Tcl_StringCaseMatch.	It	accepts	a	null-terminated	Unicode	string,	a
Unicode	pattern,	and	a	boolean	value	specifying	whether	the	match
should	be	case	sensitive	and	returns	whether	the	string	matches	the
pattern.

Tcl_UtfNcmp	corresponds	to	strncmp	for	UTF-8	strings.	It	accepts	two
null-terminated	UTF-8	strings	and	the	number	of	characters	to	compare.
(Both	strings	are	assumed	to	be	at	least	numChars	characters	long.)
Tcl_UtfNcmp	compares	the	two	strings	character-by-character
according	to	the	Unicode	character	ordering.	It	returns	an	integer
greater	than,	equal	to,	or	less	than	0	if	the	first	string	is	greater	than,
equal	to,	or	less	than	the	second	string	respectively.

Tcl_UtfNcasecmp	corresponds	to	strncasecmp	for	UTF-8	strings.	It	is
similar	to	Tcl_UtfNcmp	except	comparisons	ignore	differences	in	case
when	comparing	upper,	lower	or	title	case	characters.

Tcl_UtfCharComplete	returns	1	if	the	source	UTF-8	string	src	of	length

bytes	is	long	enough	to	be	decoded	by	Tcl_UtfToUniChar,	or	0
otherwise.	This	function	does	not	guarantee	that	the	UTF-8	string	is
properly	formed.	This	routine	is	used	by	procedures	that	are	operating
on	a	byte	at	a	time	and	need	to	know	if	a	full	Tcl_UniChar	has	been
seen.

Tcl_NumUtfChars	corresponds	to	strlen	for	UTF-8	strings.	It	returns
the	number	of	Tcl_UniChars	that	are	represented	by	the	UTF-8	string
src.	The	length	of	the	source	string	is	length	bytes.	If	the	length	is
negative,	all	bytes	up	to	the	first	null	byte	are	used.

Tcl_UtfFindFirst	corresponds	to	strchr	for	UTF-8	strings.	It	returns	a
pointer	to	the	first	occurrence	of	the	Tcl_UniChar	ch	in	the	null-
terminated	UTF-8	string	src.	The	null	terminator	is	considered	part	of
the	UTF-8	string.

Tcl_UtfFindLast	corresponds	to	strrchr	for	UTF-8	strings.	It	returns	a
pointer	to	the	last	occurrence	of	the	Tcl_UniChar	ch	in	the	null-
terminated	UTF-8	string	src.	The	null	terminator	is	considered	part	of
the	UTF-8	string.

Given	src,	a	pointer	to	some	location	in	a	UTF-8	string,	Tcl_UtfNext
returns	a	pointer	to	the	next	UTF-8	character	in	the	string.	The	caller
must	not	ask	for	the	next	character	after	the	last	character	in	the	string
if	the	string	is	not	terminated	by	a	null	character.

Given	src,	a	pointer	to	some	location	in	a	UTF-8	string	(or	to	a	null	byte
immediately	following	such	a	string),	Tcl_UtfPrev	returns	a	pointer	to
the	closest	preceding	byte	that	starts	a	UTF-8	character.	This	function
will	not	back	up	to	a	position	before	start,	the	start	of	the	UTF-8	string.	If
src	was	already	at	start,	the	return	value	will	be	start.

Tcl_UniCharAtIndex	corresponds	to	a	C	string	array	dereference	or
the	Pascal	Ord()	function.	It	returns	the	Tcl_UniChar	represented	at	the
specified	character	(not	byte)	index	in	the	UTF-8	string	src.	The	source
string	must	contain	at	least	index	characters.	Behavior	is	undefined	if	a
negative	index	is	given.

Tcl_UtfAtIndex	returns	a	pointer	to	the	specified	character	(not	byte)
index	in	the	UTF-8	string	src.	The	source	string	must	contain	at	least
index	characters.	This	is	equivalent	to	calling	Tcl_UtfNext	index	times.
If	a	negative	index	is	given,	the	return	pointer	points	to	the	first
character	in	the	source	string.

Tcl_UtfBackslash	is	a	utility	procedure	used	by	several	of	the	Tcl
commands.	It	parses	a	backslash	sequence	and	stores	the	properly
formed	UTF-8	character	represented	by	the	backslash	sequence	in	the
output	buffer	dst.	At	most	TCL_UTF_MAX	bytes	are	stored	in	the	buffer.
Tcl_UtfBackslash	modifies	*readPtr	to	contain	the	number	of	bytes	in
the	backslash	sequence,	including	the	backslash	character.	The	return
value	is	the	number	of	bytes	stored	in	the	output	buffer.

See	the	Tcl	manual	entry	for	information	on	the	valid	backslash
sequences.	All	of	the	sequences	described	in	the	Tcl	manual	entry	are
supported	by	Tcl_UtfBackslash.

KEYWORDS

utf,	unicode,	backslash

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1997	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	SetVar

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_SetVar2Ex,	Tcl_SetVar,	Tcl_SetVar2,	Tcl_ObjSetVar2,
Tcl_GetVar2Ex,	Tcl_GetVar,	Tcl_GetVar2,	Tcl_ObjGetVar2,
Tcl_UnsetVar,	Tcl_UnsetVar2	-	manipulate	Tcl	variables

SYNOPSIS
#include	<tcl.h>
Tcl_Obj	*
Tcl_SetVar2Ex(interp,	name1,	name2,	newValuePtr,	flags)
const	char	*
Tcl_SetVar(interp,	varName,	newValue,	flags)
const	char	*
Tcl_SetVar2(interp,	name1,	name2,	newValue,	flags)
Tcl_Obj	*
Tcl_ObjSetVar2(interp,	part1Ptr,	part2Ptr,	newValuePtr,	flags)
Tcl_Obj	*
Tcl_GetVar2Ex(interp,	name1,	name2,	flags)
const	char	*
Tcl_GetVar(interp,	varName,	flags)
const	char	*
Tcl_GetVar2(interp,	name1,	name2,	flags)
Tcl_Obj	*
Tcl_ObjGetVar2(interp,	part1Ptr,	part2Ptr,	flags)
int
Tcl_UnsetVar(interp,	varName,	flags)
int
Tcl_UnsetVar2(interp,	name1,	name2,	flags)

ARGUMENTS
DESCRIPTION

TCL_GLOBAL_ONLY
TCL_NAMESPACE_ONLY
TCL_LEAVE_ERR_MSG

Tcl_Interp	*interp	(in)

TCL_APPEND_VALUE
TCL_LIST_ELEMENT

SEE	ALSO
KEYWORDS

NAME

Tcl_SetVar2Ex,	Tcl_SetVar,	Tcl_SetVar2,	Tcl_ObjSetVar2,
Tcl_GetVar2Ex,	Tcl_GetVar,	Tcl_GetVar2,	Tcl_ObjGetVar2,
Tcl_UnsetVar,	Tcl_UnsetVar2	-	manipulate	Tcl	variables

SYNOPSIS

#include	<tcl.h>
Tcl_Obj	*
Tcl_SetVar2Ex(interp,	name1,	name2,	newValuePtr,	flags)
const	char	*
Tcl_SetVar(interp,	varName,	newValue,	flags)
const	char	*
Tcl_SetVar2(interp,	name1,	name2,	newValue,	flags)
Tcl_Obj	*
Tcl_ObjSetVar2(interp,	part1Ptr,	part2Ptr,	newValuePtr,	flags)
Tcl_Obj	*
Tcl_GetVar2Ex(interp,	name1,	name2,	flags)
const	char	*
Tcl_GetVar(interp,	varName,	flags)
const	char	*
Tcl_GetVar2(interp,	name1,	name2,	flags)
Tcl_Obj	*
Tcl_ObjGetVar2(interp,	part1Ptr,	part2Ptr,	flags)
int
Tcl_UnsetVar(interp,	varName,	flags)
int
Tcl_UnsetVar2(interp,	name1,	name2,	flags)

ARGUMENTS

Interpreter	containing

const	char	*name1	(in)

const	char	*name2	(in)

Tcl_Obj	*newValuePtr	(in)

int	flags	(in)

const	char	*varName	(in)

const	char	*newValue	(in)

variable.

Contains	the	name	of	an
array	variable	(if	name2	is
non-NULL)	or	(if	name2	is
NULL)	either	the	name	of	a
scalar	variable	or	a
complete	name	including
both	variable	name	and
index.	May	include	::
namespace	qualifiers	to
specify	a	variable	in	a
particular	namespace.

If	non-NULL,	gives	name
of	element	within	array;	in
this	case	name1	must	refer
to	an	array	variable.

Points	to	a	Tcl	object
containing	the	new	value
for	the	variable.

OR-ed	combination	of	bits
providing	additional
information.	See	below	for
valid	values.

Name	of	variable.	May
include	::	namespace
qualifiers	to	specify	a
variable	in	a	particular
namespace.	May	refer	to	a
scalar	variable	or	an
element	of	an	array.

New	value	for	variable,

Tcl_Obj	*part1Ptr	(in)

Tcl_Obj	*part2Ptr	(in)

specified	as	a	null-
terminated	string.	A	copy
of	this	value	is	stored	in
the	variable.

Points	to	a	Tcl	object
containing	the	variable's
name.	The	name	may
include	a	series	of	::
namespace	qualifiers	to
specify	a	variable	in	a
particular	namespace.	May
refer	to	a	scalar	variable	or
an	element	of	an	array
variable.

If	non-NULL,	points	to	an
object	containing	the	name
of	an	element	within	an
array	and	part1Ptr	must
refer	to	an	array	variable.

DESCRIPTION

These	procedures	are	used	to	create,	modify,	read,	and	delete	Tcl
variables	from	C	code.

Tcl_SetVar2Ex,	Tcl_SetVar,	Tcl_SetVar2,	and	Tcl_ObjSetVar2	will
create	a	new	variable	or	modify	an	existing	one.	These	procedures	set
the	given	variable	to	the	value	given	by	newValuePtr	or	newValue	and
return	a	pointer	to	the	variable's	new	value,	which	is	stored	in	Tcl's
variable	structure.	Tcl_SetVar2Ex	and	Tcl_ObjSetVar2	take	the	new
value	as	a	Tcl_Obj	and	return	a	pointer	to	a	Tcl_Obj.	Tcl_SetVar	and
Tcl_SetVar2	take	the	new	value	as	a	string	and	return	a	string;	they	are
usually	less	efficient	than	Tcl_ObjSetVar2.	Note	that	the	return	value
may	be	different	than	the	newValuePtr	or	newValue	argument,	due	to

modifications	made	by	write	traces.	If	an	error	occurs	in	setting	the
variable	(e.g.	an	array	variable	is	referenced	without	giving	an	index
into	the	array)	NULL	is	returned	and	an	error	message	is	left	in	interp's
result	if	the	TCL_LEAVE_ERR_MSG	flag	bit	is	set.

Tcl_GetVar2Ex,	Tcl_GetVar,	Tcl_GetVar2,	and	Tcl_ObjGetVar2	return
the	current	value	of	a	variable.	The	arguments	to	these	procedures	are
treated	in	the	same	way	as	the	arguments	to	the	procedures	described
above.	Under	normal	circumstances,	the	return	value	is	a	pointer	to	the
variable's	value.	For	Tcl_GetVar2Ex	and	Tcl_ObjGetVar2	the	value	is
returned	as	a	pointer	to	a	Tcl_Obj.	For	Tcl_GetVar	and	Tcl_GetVar2	the
value	is	returned	as	a	string;	this	is	usually	less	efficient,	so
Tcl_GetVar2Ex	or	Tcl_ObjGetVar2	are	preferred.	If	an	error	occurs
while	reading	the	variable	(e.g.	the	variable	does	not	exist	or	an	array
element	is	specified	for	a	scalar	variable),	then	NULL	is	returned	and	an
error	message	is	left	in	interp's	result	if	the	TCL_LEAVE_ERR_MSG
flag	bit	is	set.

Tcl_UnsetVar	and	Tcl_UnsetVar2	may	be	used	to	remove	a	variable,
so	that	future	attempts	to	read	the	variable	will	return	an	error.	The
arguments	to	these	procedures	are	treated	in	the	same	way	as	the
arguments	to	the	procedures	above.	If	the	variable	is	successfully
removed	then	TCL_OK	is	returned.	If	the	variable	cannot	be	removed
because	it	does	not	exist	then	TCL_ERROR	is	returned	and	an	error
message	is	left	in	interp's	result	if	the	TCL_LEAVE_ERR_MSG	flag	bit
is	set.	If	an	array	element	is	specified,	the	given	element	is	removed	but
the	array	remains.	If	an	array	name	is	specified	without	an	index,	then
the	entire	array	is	removed.

The	name	of	a	variable	may	be	specified	to	these	procedures	in	four
ways:

[1]
If	Tcl_SetVar,	Tcl_GetVar,	or	Tcl_UnsetVar	is	invoked,	the
variable	name	is	given	as	a	single	string,	varName.	If	varName
contains	an	open	parenthesis	and	ends	with	a	close	parenthesis,
then	the	value	between	the	parentheses	is	treated	as	an	index
(which	can	have	any	string	value)	and	the	characters	before	the

first	open	parenthesis	are	treated	as	the	name	of	an	array	variable.
If	varName	does	not	have	parentheses	as	described	above,	then
the	entire	string	is	treated	as	the	name	of	a	scalar	variable.

[2]
If	the	name1	and	name2	arguments	are	provided	and	name2	is
non-NULL,	then	an	array	element	is	specified	and	the	array	name
and	index	have	already	been	separated	by	the	caller:	name1
contains	the	name	and	name2	contains	the	index.	An	error	is
generated	if	name1	contains	an	open	parenthesis	and	ends	with	a
close	parenthesis	(array	element)	and	name2	is	non-NULL.

[3]
If	name2	is	NULL,	name1	is	treated	just	like	varName	in	case	[1]
above	(it	can	be	either	a	scalar	or	an	array	element	variable	name).

The	flags	argument	may	be	used	to	specify	any	of	several	options	to
the	procedures.	It	consists	of	an	OR-ed	combination	of	the	following
bits.

TCL_GLOBAL_ONLY
Under	normal	circumstances	the	procedures	look	up	variables	as
follows.	If	a	procedure	call	is	active	in	interp,	the	variable	is	looked
up	at	the	current	level	of	procedure	call.	Otherwise,	the	variable	is
looked	up	first	in	the	current	namespace,	then	in	the	global
namespace.	However,	if	this	bit	is	set	in	flags	then	the	variable	is
looked	up	only	in	the	global	namespace	even	if	there	is	a
procedure	call	active.	If	both	TCL_GLOBAL_ONLY	and
TCL_NAMESPACE_ONLY	are	given,	TCL_GLOBAL_ONLY	is
ignored.

TCL_NAMESPACE_ONLY
If	this	bit	is	set	in	flags	then	the	variable	is	looked	up	only	in	the
current	namespace;	if	a	procedure	is	active	its	variables	are
ignored,	and	the	global	namespace	is	also	ignored	unless	it	is	the
current	namespace.

TCL_LEAVE_ERR_MSG

If	an	error	is	returned	and	this	bit	is	set	in	flags,	then	an	error
message	will	be	left	in	the	interpreter's	result,	where	it	can	be
retrieved	with	Tcl_GetObjResult	or	Tcl_GetStringResult.	If	this
flag	bit	is	not	set	then	no	error	message	is	left	and	the	interpreter's
result	will	not	be	modified.

TCL_APPEND_VALUE
If	this	bit	is	set	then	newValuePtr	or	newValue	is	appended	to	the
current	value	instead	of	replacing	it.	If	the	variable	is	currently
undefined,	then	the	bit	is	ignored.	This	bit	is	only	used	by	the
Tcl_Set*	procedures.

TCL_LIST_ELEMENT
If	this	bit	is	set,	then	newValue	is	converted	to	a	valid	Tcl	list
element	before	setting	(or	appending	to)	the	variable.	A	separator
space	is	appended	before	the	new	list	element	unless	the	list
element	is	going	to	be	the	first	element	in	a	list	or	sublist	(i.e.	the
variable's	current	value	is	empty,	or	contains	the	single	character
“{”,	or	ends	in	“	}”).	When	appending,	the	original	value	of	the
variable	must	also	be	a	valid	list,	so	that	the	operation	is	the
appending	of	a	new	list	element	onto	a	list.

Tcl_GetVar	and	Tcl_GetVar2	return	the	current	value	of	a	variable.	The
arguments	to	these	procedures	are	treated	in	the	same	way	as	the
arguments	to	Tcl_SetVar	and	Tcl_SetVar2.	Under	normal
circumstances,	the	return	value	is	a	pointer	to	the	variable's	value
(which	is	stored	in	Tcl's	variable	structure	and	will	not	change	before	the
next	call	to	Tcl_SetVar	or	Tcl_SetVar2).	Tcl_GetVar	and	Tcl_GetVar2
use	the	flag	bits	TCL_GLOBAL_ONLY	and	TCL_LEAVE_ERR_MSG,
both	of	which	have	the	same	meaning	as	for	Tcl_SetVar.	If	an	error
occurs	in	reading	the	variable	(e.g.	the	variable	does	not	exist	or	an
array	element	is	specified	for	a	scalar	variable),	then	NULL	is	returned.

Tcl_UnsetVar	and	Tcl_UnsetVar2	may	be	used	to	remove	a	variable,
so	that	future	calls	to	Tcl_GetVar	or	Tcl_GetVar2	for	the	variable	will
return	an	error.	The	arguments	to	these	procedures	are	treated	in	the
same	way	as	the	arguments	to	Tcl_GetVar	and	Tcl_GetVar2.	If	the
variable	is	successfully	removed	then	TCL_OK	is	returned.	If	the

variable	cannot	be	removed	because	it	does	not	exist	then
TCL_ERROR	is	returned.	If	an	array	element	is	specified,	the	given
element	is	removed	but	the	array	remains.	If	an	array	name	is	specified
without	an	index,	then	the	entire	array	is	removed.

SEE	ALSO

Tcl_GetObjResult,	Tcl_GetStringResult,	Tcl_TraceVar

KEYWORDS

array,	get	variable,	interpreter,	object,	scalar,	set,	unset,	variable

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1989-1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1997	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	StringObj

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_NewStringObj,	Tcl_NewUnicodeObj,	Tcl_SetStringObj,
Tcl_SetUnicodeObj,	Tcl_GetStringFromObj,	Tcl_GetString,
Tcl_GetUnicodeFromObj,	Tcl_GetUnicode,	Tcl_GetUniChar,
Tcl_GetCharLength,	Tcl_GetRange,	Tcl_AppendToObj,
Tcl_AppendUnicodeToObj,	Tcl_AppendObjToObj,
Tcl_AppendStringsToObj,	Tcl_AppendStringsToObjVA,
Tcl_AppendLimitedToObj,	Tcl_Format,
Tcl_AppendFormatToObj,	Tcl_ObjPrintf,
Tcl_AppendPrintfToObj,	Tcl_SetObjLength,
Tcl_AttemptSetObjLength,	Tcl_ConcatObj	-	manipulate	Tcl
objects	as	strings

SYNOPSIS
#include	<tcl.h>
Tcl_Obj	*
Tcl_NewStringObj(bytes,	length)
Tcl_Obj	*
Tcl_NewUnicodeObj(unicode,	numChars)
void
Tcl_SetStringObj(objPtr,	bytes,	length)
void
Tcl_SetUnicodeObj(objPtr,	unicode,	numChars)
char	*
Tcl_GetStringFromObj(objPtr,	lengthPtr)
char	*
Tcl_GetString(objPtr)
Tcl_UniChar	*
Tcl_GetUnicodeFromObj(objPtr,	lengthPtr)
Tcl_UniChar	*
Tcl_GetUnicode(objPtr)
Tcl_UniChar

Tcl_GetUniChar(objPtr,	index)
int
Tcl_GetCharLength(objPtr)
Tcl_Obj	*
Tcl_GetRange(objPtr,	first,	last)
void
Tcl_AppendToObj(objPtr,	bytes,	length)
void
Tcl_AppendUnicodeToObj(objPtr,	unicode,	numChars)
void
Tcl_AppendObjToObj(objPtr,	appendObjPtr)
void
Tcl_AppendStringsToObj(objPtr,	string,	string,	...	(char	*)
NULL)
void
Tcl_AppendStringsToObjVA(objPtr,	argList)
void
Tcl_AppendLimitedToObj(objPtr,	bytes,	length,	limit,	ellipsis)
Tcl_Obj	*
Tcl_Format(interp,	format,	objc,	objv)
int
Tcl_AppendFormatToObj(interp,	objPtr,	format,	objc,	objv)
Tcl_Obj	*
Tcl_ObjPrintf(format,	...)
int
Tcl_AppendPrintfToObj(objPtr,	format,	...)
void
Tcl_SetObjLength(objPtr,	newLength)
int
Tcl_AttemptSetObjLength(objPtr,	newLength)
Tcl_Obj	*
Tcl_ConcatObj(objc,	objv)

ARGUMENTS
DESCRIPTION
SEE	ALSO
KEYWORDS

NAME

Tcl_NewStringObj,	Tcl_NewUnicodeObj,	Tcl_SetStringObj,
Tcl_SetUnicodeObj,	Tcl_GetStringFromObj,	Tcl_GetString,
Tcl_GetUnicodeFromObj,	Tcl_GetUnicode,	Tcl_GetUniChar,
Tcl_GetCharLength,	Tcl_GetRange,	Tcl_AppendToObj,
Tcl_AppendUnicodeToObj,	Tcl_AppendObjToObj,
Tcl_AppendStringsToObj,	Tcl_AppendStringsToObjVA,
Tcl_AppendLimitedToObj,	Tcl_Format,	Tcl_AppendFormatToObj,
Tcl_ObjPrintf,	Tcl_AppendPrintfToObj,	Tcl_SetObjLength,
Tcl_AttemptSetObjLength,	Tcl_ConcatObj	-	manipulate	Tcl	objects	as
strings

SYNOPSIS

#include	<tcl.h>
Tcl_Obj	*
Tcl_NewStringObj(bytes,	length)
Tcl_Obj	*
Tcl_NewUnicodeObj(unicode,	numChars)
void
Tcl_SetStringObj(objPtr,	bytes,	length)
void
Tcl_SetUnicodeObj(objPtr,	unicode,	numChars)
char	*
Tcl_GetStringFromObj(objPtr,	lengthPtr)
char	*
Tcl_GetString(objPtr)
Tcl_UniChar	*
Tcl_GetUnicodeFromObj(objPtr,	lengthPtr)
Tcl_UniChar	*
Tcl_GetUnicode(objPtr)
Tcl_UniChar
Tcl_GetUniChar(objPtr,	index)
int
Tcl_GetCharLength(objPtr)
Tcl_Obj	*

const	char	*bytes	(in)

Tcl_GetRange(objPtr,	first,	last)
void
Tcl_AppendToObj(objPtr,	bytes,	length)
void
Tcl_AppendUnicodeToObj(objPtr,	unicode,	numChars)
void
Tcl_AppendObjToObj(objPtr,	appendObjPtr)
void
Tcl_AppendStringsToObj(objPtr,	string,	string,	...	(char	*)	NULL)
void
Tcl_AppendStringsToObjVA(objPtr,	argList)
void
Tcl_AppendLimitedToObj(objPtr,	bytes,	length,	limit,	ellipsis)
Tcl_Obj	*
Tcl_Format(interp,	format,	objc,	objv)
int
Tcl_AppendFormatToObj(interp,	objPtr,	format,	objc,	objv)
Tcl_Obj	*
Tcl_ObjPrintf(format,	...)
int
Tcl_AppendPrintfToObj(objPtr,	format,	...)
void
Tcl_SetObjLength(objPtr,	newLength)
int
Tcl_AttemptSetObjLength(objPtr,	newLength)
Tcl_Obj	*
Tcl_ConcatObj(objc,	objv)

ARGUMENTS

Points	to	the	first	byte	of
an	array	of	UTF-8-
encoded	bytes	used	to	set
or	append	to	a	string
object.	This	byte	array	may
contain	embedded	null
characters	unless

int	length	(in)

const	Tcl_UniChar	*unicode	(in)

int	numChars	(in)

int	index	(in)

numChars	is	negative.
(Applications	needing	null
bytes	should	represent
them	as	the	two-byte
sequence	\700\600,	use
Tcl_ExternalToUtf	to
convert,	or
Tcl_NewByteArrayObj	if
the	string	is	a	collection	of
uninterpreted	bytes.)

The	number	of	bytes	to
copy	from	bytes	when
initializing,	setting,	or
appending	to	a	string
object.	If	negative,	all
bytes	up	to	the	first	null	are
used.

Points	to	the	first	byte	of
an	array	of	Unicode
characters	used	to	set	or
append	to	a	string	object.
This	byte	array	may
contain	embedded	null
characters	unless
numChars	is	negative.

The	number	of	Unicode
characters	to	copy	from
unicode	when	initializing,
setting,	or	appending	to	a
string	object.	If	negative,
all	characters	up	to	the	first
null	character	are	used.

The	index	of	the	Unicode

int	first	(in)

int	last	(in)

Tcl_Obj	*objPtr	(in/out)

Tcl_Obj	*appendObjPtr	(in)

int	*lengthPtr	(out)

const	char	*string	(in)

va_list	argList	(in)

int	limit	(in)

character	to	return.

The	index	of	the	first
Unicode	character	in	the
Unicode	range	to	be
returned	as	a	new	object.

The	index	of	the	last
Unicode	character	in	the
Unicode	range	to	be
returned	as	a	new	object.

Points	to	an	object	to
manipulate.

The	object	to	append	to
objPtr	in
Tcl_AppendObjToObj.

If	non-NULL,	the	location
where
Tcl_GetStringFromObj
will	store	the	length	of	an
object's	string
representation.

Null-terminated	string
value	to	append	to	objPtr.

An	argument	list	which
must	have	been	initialised
using	va_start,	and
cleared	using	va_end.

Maximum	number	of	bytes
to	be	appended.

const	char	*ellipsis	(in)

const	char	*format	(in)

int	objc	(in)

Tcl_Obj	*objv[]	(in)

int	newLength	(in)

Suffix	to	append	when	the
limit	leads	to	string
truncation.	If	NULL	is
passed	then	the	suffix	"..."
is	used.

Format	control	string
including	%	conversion
specifiers.

The	number	of	elements	to
format	or	concatenate.

The	array	of	objects	to
format	or	concatenate.

New	length	for	the	string
value	of	objPtr,	not
including	the	final	null
character.

DESCRIPTION

The	procedures	described	in	this	manual	entry	allow	Tcl	objects	to	be
manipulated	as	string	values.	They	use	the	internal	representation	of
the	object	to	store	additional	information	to	make	the	string
manipulations	more	efficient.	In	particular,	they	make	a	series	of	append
operations	efficient	by	allocating	extra	storage	space	for	the	string	so
that	it	does	not	have	to	be	copied	for	each	append.	Also,	indexing	and
length	computations	are	optimized	because	the	Unicode	string
representation	is	calculated	and	cached	as	needed.	When	using	the
Tcl_Append*	family	of	functions	where	the	interpreter's	result	is	the
object	being	appended	to,	it	is	important	to	call	Tcl_ResetResult	first	to
ensure	you	are	not	unintentionally	appending	to	existing	data	in	the
result	object.

Tcl_NewStringObj	and	Tcl_SetStringObj	create	a	new	object	or
modify	an	existing	object	to	hold	a	copy	of	the	string	given	by	bytes	and
length.	Tcl_NewUnicodeObj	and	Tcl_SetUnicodeObj	create	a	new
object	or	modify	an	existing	object	to	hold	a	copy	of	the	Unicode	string
given	by	unicode	and	numChars.	Tcl_NewStringObj	and
Tcl_NewUnicodeObj	return	a	pointer	to	a	newly	created	object	with
reference	count	zero.	All	four	procedures	set	the	object	to	hold	a	copy
of	the	specified	string.	Tcl_SetStringObj	and	Tcl_SetUnicodeObj	free
any	old	string	representation	as	well	as	any	old	internal	representation
of	the	object.

Tcl_GetStringFromObj	and	Tcl_GetString	return	an	object's	string
representation.	This	is	given	by	the	returned	byte	pointer	and	(for
Tcl_GetStringFromObj)	length,	which	is	stored	in	lengthPtr	if	it	is	non-
NULL.	If	the	object's	UTF	string	representation	is	invalid	(its	byte	pointer
is	NULL),	the	string	representation	is	regenerated	from	the	object's
internal	representation.	The	storage	referenced	by	the	returned	byte
pointer	is	owned	by	the	object	manager.	It	is	passed	back	as	a	writable
pointer	so	that	extension	author	creating	their	own	Tcl_ObjType	will	be
able	to	modify	the	string	representation	within	the
Tcl_UpdateStringProc	of	their	Tcl_ObjType.	Except	for	that	limited
purpose,	the	pointer	returned	by	Tcl_GetStringFromObj	or
Tcl_GetString	should	be	treated	as	read-only.	It	is	recommended	that
this	pointer	be	assigned	to	a	(const	char	*)	variable.	Even	in	the	limited
situations	where	writing	to	this	pointer	is	acceptable,	one	should	take
care	to	respect	the	copy-on-write	semantics	required	by	Tcl_Obj's,	with
appropriate	calls	to	Tcl_IsShared	and	Tcl_DuplicateObj	prior	to	any	in-
place	modification	of	the	string	representation.	The	procedure
Tcl_GetString	is	used	in	the	common	case	where	the	caller	does	not
need	the	length	of	the	string	representation.

Tcl_GetUnicodeFromObj	and	Tcl_GetUnicode	return	an	object's
value	as	a	Unicode	string.	This	is	given	by	the	returned	pointer	and	(for
Tcl_GetUnicodeFromObj)	length,	which	is	stored	in	lengthPtr	if	it	is
non-NULL.	The	storage	referenced	by	the	returned	byte	pointer	is
owned	by	the	object	manager	and	should	not	be	modified	by	the	caller.
The	procedure	Tcl_GetUnicode	is	used	in	the	common	case	where	the

caller	does	not	need	the	length	of	the	unicode	string	representation.

Tcl_GetUniChar	returns	the	index'th	character	in	the	object's	Unicode
representation.

Tcl_GetRange	returns	a	newly	created	object	comprised	of	the
characters	between	first	and	last	(inclusive)	in	the	object's	Unicode
representation.	If	the	object's	Unicode	representation	is	invalid,	the
Unicode	representation	is	regenerated	from	the	object's	string
representation.

Tcl_GetCharLength	returns	the	number	of	characters	(as	opposed	to
bytes)	in	the	string	object.

Tcl_AppendToObj	appends	the	data	given	by	bytes	and	length	to	the
string	representation	of	the	object	specified	by	objPtr.	If	the	object	has
an	invalid	string	representation,	then	an	attempt	is	made	to	convert
bytes	is	to	the	Unicode	format.	If	the	conversion	is	successful,	then	the
converted	form	of	bytes	is	appended	to	the	object's	Unicode
representation.	Otherwise,	the	object's	Unicode	representation	is
invalidated	and	converted	to	the	UTF	format,	and	bytes	is	appended	to
the	object's	new	string	representation.

Tcl_AppendUnicodeToObj	appends	the	Unicode	string	given	by
unicode	and	numChars	to	the	object	specified	by	objPtr.	If	the	object
has	an	invalid	Unicode	representation,	then	unicode	is	converted	to	the
UTF	format	and	appended	to	the	object's	string	representation.
Appends	are	optimized	to	handle	repeated	appends	relatively	efficiently
(it	overallocates	the	string	or	Unicode	space	to	avoid	repeated
reallocations	and	copies	of	object's	string	value).

Tcl_AppendObjToObj	is	similar	to	Tcl_AppendToObj,	but	it	appends
the	string	or	Unicode	value	(whichever	exists	and	is	best	suited	to	be
appended	to	objPtr)	of	appendObjPtr	to	objPtr.

Tcl_AppendStringsToObj	is	similar	to	Tcl_AppendToObj	except	that	it
can	be	passed	more	than	one	value	to	append	and	each	value	must	be
a	null-terminated	string	(i.e.	none	of	the	values	may	contain	internal	null

characters).	Any	number	of	string	arguments	may	be	provided,	but	the
last	argument	must	be	a	NULL	pointer	to	indicate	the	end	of	the	list.

Tcl_AppendStringsToObjVA	is	the	same	as
Tcl_AppendStringsToObj	except	that	instead	of	taking	a	variable
number	of	arguments	it	takes	an	argument	list.

Tcl_AppendLimitedToObj	is	similar	to	Tcl_AppendToObj	except	that
it	imposes	a	limit	on	how	many	bytes	are	appended.	This	can	be	handy
when	the	string	to	be	appended	might	be	very	large,	but	the	value	being
constructed	should	not	be	allowed	to	grow	without	bound.	A	common
usage	is	when	constructing	an	error	message,	where	the	end	result
should	be	kept	short	enough	to	be	read.	Bytes	from	bytes	are	appended
to	objPtr,	but	no	more	than	limit	bytes	total	are	to	be	appended.	If	the
limit	prevents	all	length	bytes	that	are	available	from	being	appended,
then	the	appending	is	done	so	that	the	last	bytes	appended	are	from
the	string	ellipsis.	This	allows	for	an	indication	of	the	truncation	to	be	left
in	the	string.	When	length	is	-1,	all	bytes	up	to	the	first	zero	byte	are
appended,	subject	to	the	limit.	When	ellipsis	is	NULL,	the	default	string
...	is	used.	When	ellipsis	is	non-NULL,	it	must	point	to	a	zero-byte-
terminated	string	in	Tcl's	internal	UTF	encoding.	The	number	of	bytes
appended	can	be	less	than	the	lesser	of	length	and	limit	when
appending	fewer	bytes	is	necessary	to	append	only	whole	multi-byte
characters.

Tcl_Format	is	the	C-level	interface	to	the	engine	of	the	format
command.	The	actual	command	procedure	for	format	is	little	more	than

Tcl_Format(interp,	Tcl_GetString(objv[1]),	objc-2,	objv+2);

The	objc	Tcl_Obj	values	in	objv	are	formatted	into	a	string	according	to
the	conversion	specification	in	format	argument,	following	the
documentation	for	the	format	command.	The	resulting	formatted	string
is	converted	to	a	new	Tcl_Obj	with	refcount	of	zero	and	returned.	If
some	error	happens	during	production	of	the	formatted	string,	NULL	is

returned,	and	an	error	message	is	recorded	in	interp,	if	interp	is	non-
NULL.

Tcl_AppendFormatToObj	is	an	appending	alternative	form	of
Tcl_Format	with	functionality	equivalent	to

Tcl_Obj	*newPtr	=	Tcl_Format(interp,	format,	objc,	objv);

if	(newPtr	==	NULL)	return	TCL_ERROR;

Tcl_AppendObjToObj(objPtr,	newPtr);

return	TCL_OK;

but	with	greater	convenience	and	efficiency	when	the	appending
functionality	is	needed.

Tcl_ObjPrintf	serves	as	a	replacement	for	the	common	sequence

char	buf[SOME_SUITABLE_LENGTH];

sprintf(buf,	format,	...);

Tcl_NewStringObj(buf,	-1);

but	with	greater	convenience	and	no	need	to	determine
SOME_SUITABLE_LENGTH.	The	formatting	is	done	with	the	same
core	formatting	engine	used	by	Tcl_Format.	This	means	the	set	of
supported	conversion	specifiers	is	that	of	the	format	command	and	not
that	of	the	sprintf	routine	where	the	two	sets	differ.	When	a	conversion
specifier	passed	to	Tcl_ObjPrintf	includes	a	precision,	the	value	is
taken	as	a	number	of	bytes,	as	sprintf	does,	and	not	as	a	number	of
characters,	as	format	does.	This	is	done	on	the	assumption	that	C
code	is	more	likely	to	know	how	many	bytes	it	is	passing	around	than
the	number	of	encoded	characters	those	bytes	happen	to	represent.
The	variable	number	of	arguments	passed	in	should	be	of	the	types	that
would	be	suitable	for	passing	to	sprintf.	Note	in	this	example	usage,	x
is	of	type	long.

long	x	=	5;

Tcl_Obj	*objPtr	=	Tcl_ObjPrintf("Value	is	%d",	x);

If	the	value	of	format	contains	internal	inconsistencies	or	invalid
specifier	formats,	the	formatted	string	result	produced	by	Tcl_ObjPrintf
will	be	an	error	message	describing	the	error.

Tcl_AppendPrintfToObj	is	an	appending	alternative	form	of
Tcl_ObjPrintf	with	functionality	equivalent	to

Tcl_AppendObjToObj(objPtr,	Tcl_ObjPrintf(format,	...));

but	with	greater	convenience	and	efficiency	when	the	appending
functionality	is	needed.

The	Tcl_SetObjLength	procedure	changes	the	length	of	the	string
value	of	its	objPtr	argument.	If	the	newLength	argument	is	greater	than
the	space	allocated	for	the	object's	string,	then	the	string	space	is
reallocated	and	the	old	value	is	copied	to	the	new	space;	the	bytes
between	the	old	length	of	the	string	and	the	new	length	may	have
arbitrary	values.	If	the	newLength	argument	is	less	than	the	current
length	of	the	object's	string,	with	objPtr->length	is	reduced	without
reallocating	the	string	space;	the	original	allocated	size	for	the	string	is
recorded	in	the	object,	so	that	the	string	length	can	be	enlarged	in	a
subsequent	call	to	Tcl_SetObjLength	without	reallocating	storage.	In
all	cases	Tcl_SetObjLength	leaves	a	null	character	at	objPtr-
>bytes[newLength].

Tcl_AttemptSetObjLength	is	identical	in	function	to
Tcl_SetObjLength	except	that	if	sufficient	memory	to	satisfy	the
request	cannot	be	allocated,	it	does	not	cause	the	Tcl	interpreter	to
panic.	Thus,	if	newLength	is	greater	than	the	space	allocated	for	the
object's	string,	and	there	is	not	enough	memory	available	to	satisfy	the
request,	Tcl_AttemptSetObjLength	will	take	no	action	and	return	0	to

indicate	failure.	If	there	is	enough	memory	to	satisfy	the	request,
Tcl_AttemptSetObjLength	behaves	just	like	Tcl_SetObjLength	and
returns	1	to	indicate	success.

The	Tcl_ConcatObj	function	returns	a	new	string	object	whose	value	is
the	space-separated	concatenation	of	the	string	representations	of	all	of
the	objects	in	the	objv	array.	Tcl_ConcatObj	eliminates	leading	and
trailing	white	space	as	it	copies	the	string	representations	of	the	objv
array	to	the	result.	If	an	element	of	the	objv	array	consists	of	nothing	but
white	space,	then	that	object	is	ignored	entirely.	This	white-space
removal	was	added	to	make	the	output	of	the	concat	command
cleaner-looking.	Tcl_ConcatObj	returns	a	pointer	to	a	newly-created
object	whose	ref	count	is	zero.

SEE	ALSO

Tcl_NewObj,	Tcl_IncrRefCount,	Tcl_DecrRefCount,	format,	sprintf

KEYWORDS

append,	internal	representation,	object,	object	type,	string	object,	string
type,	string	representation,	concat,	concatenate,	unicode

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1994-1997	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	OpenFileChnl

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_OpenFileChannel,	Tcl_OpenCommandChannel,
Tcl_MakeFileChannel,	Tcl_GetChannel,
Tcl_GetChannelNames,	Tcl_GetChannelNamesEx,
Tcl_RegisterChannel,	Tcl_UnregisterChannel,
Tcl_DetachChannel,	Tcl_IsStandardChannel,	Tcl_Close,
Tcl_ReadChars,	Tcl_Read,	Tcl_GetsObj,	Tcl_Gets,
Tcl_WriteObj,	Tcl_WriteChars,	Tcl_Write,	Tcl_Flush,	Tcl_Seek,
Tcl_Tell,	Tcl_TruncateChannel,	Tcl_GetChannelOption,
Tcl_SetChannelOption,	Tcl_Eof,	Tcl_InputBlocked,
Tcl_InputBuffered,	Tcl_OutputBuffered,	Tcl_Ungets,
Tcl_ReadRaw,	Tcl_WriteRaw	-	buffered	I/O	facilities	using
channels

SYNOPSIS
#include	<tcl.h>
Tcl_Channel
Tcl_OpenFileChannel(interp,	fileName,	mode,	permissions)
Tcl_Channel
Tcl_OpenCommandChannel(interp,	argc,	argv,	flags)
Tcl_Channel
Tcl_MakeFileChannel(handle,	readOrWrite)
Tcl_Channel
Tcl_GetChannel(interp,	channelName,	modePtr)
int
Tcl_GetChannelNames(interp)
int
Tcl_GetChannelNamesEx(interp,	pattern)
void
Tcl_RegisterChannel(interp,	channel)
int
Tcl_UnregisterChannel(interp,	channel)

int
Tcl_DetachChannel(interp,	channel)
int
Tcl_IsStandardChannel(channel)
int
Tcl_Close(interp,	channel)
int
Tcl_ReadChars(channel,	readObjPtr,	charsToRead,
appendFlag)
int
Tcl_Read(channel,	readBuf,	bytesToRead)
int
Tcl_GetsObj(channel,	lineObjPtr)
int
Tcl_Gets(channel,	lineRead)
int
Tcl_Ungets(channel,	input,	inputLen,	addAtEnd)
int
Tcl_WriteObj(channel,	writeObjPtr)
int
Tcl_WriteChars(channel,	charBuf,	bytesToWrite)
int
Tcl_Write(channel,	byteBuf,	bytesToWrite)
int
Tcl_ReadRaw(channel,	readBuf,	bytesToRead)
int
Tcl_WriteRaw(channel,	byteBuf,	bytesToWrite)
int
Tcl_Eof(channel)
int
Tcl_Flush(channel)
int
Tcl_InputBlocked(channel)
int
Tcl_InputBuffered(channel)
int
Tcl_OutputBuffered(channel)

Tcl_WideInt
Tcl_Seek(channel,	offset,	seekMode)
Tcl_WideInt
Tcl_Tell(channel)
int
Tcl_TruncateChannel(channel,	length)
int
Tcl_GetChannelOption(interp,	channel,	optionName,
optionValue)
int
Tcl_SetChannelOption(interp,	channel,	optionName,
newValue)

ARGUMENTS
DESCRIPTION
TCL_OPENFILECHANNEL
TCL_OPENCOMMANDCHANNEL
TCL_MAKEFILECHANNEL
TCL_GETCHANNEL
TCL_REGISTERCHANNEL
TCL_UNREGISTERCHANNEL
TCL_DETACHCHANNEL
TCL_ISSTANDARDCHANNEL
TCL_CLOSE
TCL_READCHARS	AND	TCL_READ
TCL_GETSOBJ	AND	TCL_GETS
TCL_UNGETS
TCL_WRITECHARS,	TCL_WRITEOBJ,	AND	TCL_WRITE
TCL_FLUSH
TCL_SEEK
TCL_TELL
TCL_TRUNCATECHANNEL
TCL_GETCHANNELOPTION
TCL_SETCHANNELOPTION
TCL_EOF
TCL_INPUTBLOCKED
TCL_INPUTBUFFERED
TCL_OUTPUTBUFFERED

PLATFORM	ISSUES
SEE	ALSO
KEYWORDS

NAME

Tcl_OpenFileChannel,	Tcl_OpenCommandChannel,
Tcl_MakeFileChannel,	Tcl_GetChannel,	Tcl_GetChannelNames,
Tcl_GetChannelNamesEx,	Tcl_RegisterChannel,
Tcl_UnregisterChannel,	Tcl_DetachChannel,	Tcl_IsStandardChannel,
Tcl_Close,	Tcl_ReadChars,	Tcl_Read,	Tcl_GetsObj,	Tcl_Gets,
Tcl_WriteObj,	Tcl_WriteChars,	Tcl_Write,	Tcl_Flush,	Tcl_Seek,	Tcl_Tell,
Tcl_TruncateChannel,	Tcl_GetChannelOption,	Tcl_SetChannelOption,
Tcl_Eof,	Tcl_InputBlocked,	Tcl_InputBuffered,	Tcl_OutputBuffered,
Tcl_Ungets,	Tcl_ReadRaw,	Tcl_WriteRaw	-	buffered	I/O	facilities	using
channels

SYNOPSIS

#include	<tcl.h>
Tcl_Channel
Tcl_OpenFileChannel(interp,	fileName,	mode,	permissions)
Tcl_Channel
Tcl_OpenCommandChannel(interp,	argc,	argv,	flags)
Tcl_Channel
Tcl_MakeFileChannel(handle,	readOrWrite)
Tcl_Channel
Tcl_GetChannel(interp,	channelName,	modePtr)
int
Tcl_GetChannelNames(interp)
int
Tcl_GetChannelNamesEx(interp,	pattern)
void
Tcl_RegisterChannel(interp,	channel)
int
Tcl_UnregisterChannel(interp,	channel)
int
Tcl_DetachChannel(interp,	channel)

int
Tcl_IsStandardChannel(channel)
int
Tcl_Close(interp,	channel)
int
Tcl_ReadChars(channel,	readObjPtr,	charsToRead,	appendFlag)
int
Tcl_Read(channel,	readBuf,	bytesToRead)
int
Tcl_GetsObj(channel,	lineObjPtr)
int
Tcl_Gets(channel,	lineRead)
int
Tcl_Ungets(channel,	input,	inputLen,	addAtEnd)
int
Tcl_WriteObj(channel,	writeObjPtr)
int
Tcl_WriteChars(channel,	charBuf,	bytesToWrite)
int
Tcl_Write(channel,	byteBuf,	bytesToWrite)
int
Tcl_ReadRaw(channel,	readBuf,	bytesToRead)
int
Tcl_WriteRaw(channel,	byteBuf,	bytesToWrite)
int
Tcl_Eof(channel)
int
Tcl_Flush(channel)
int
Tcl_InputBlocked(channel)
int
Tcl_InputBuffered(channel)
int
Tcl_OutputBuffered(channel)
Tcl_WideInt
Tcl_Seek(channel,	offset,	seekMode)
Tcl_WideInt

Tcl_Interp	*interp	(in)

const	char	*fileName	(in)

const	char	*mode	(in)

int	permissions	(in)

int	argc	(in)

const	char	**argv	(in)

Tcl_Tell(channel)
int
Tcl_TruncateChannel(channel,	length)
int
Tcl_GetChannelOption(interp,	channel,	optionName,	optionValue)
int
Tcl_SetChannelOption(interp,	channel,	optionName,	newValue)

ARGUMENTS

Used	for	error	reporting
and	to	look	up	a	channel
registered	in	it.

The	name	of	a	local	or
network	file.

Specifies	how	the	file	is	to
be	accessed.	May	have
any	of	the	values	allowed
for	the	mode	argument	to
the	Tcl	open	command.

POSIX-style	permission
flags	such	as	0644.	If	a
new	file	is	created,	these
permissions	will	be	set	on
the	created	file.

The	number	of	elements	in
argv.

Arguments	for	constructing
a	command	pipeline.
These	values	have	the
same	meaning	as	the	non-
switch	arguments	to	the	Tcl

int	flags	(in)

ClientData	handle	(in)

int	readOrWrite	(in)

exec	command.

Specifies	the	disposition	of
the	stdio	handles	in
pipeline:	OR-ed
combination	of
TCL_STDIN,
TCL_STDOUT,
TCL_STDERR,	and
TCL_ENFORCE_MODE.	If
TCL_STDIN	is	set,	stdin
for	the	first	child	in	the	pipe
is	the	pipe	channel,
otherwise	it	is	the	same	as
the	standard	input	of	the
invoking	process;	likewise
for	TCL_STDOUT	and
TCL_STDERR.	If
TCL_ENFORCE_MODE	is
not	set,	then	the	pipe	can
redirect	stdio	handles	to
override	the	stdio	handles
for	which	TCL_STDIN,
TCL_STDOUT	and
TCL_STDERR	have	been
set.	If	it	is	set,	then	such
redirections	cause	an
error.

Operating	system	specific
handle	for	I/O	to	a	file.	For
Unix	this	is	a	file
descriptor,	for	Windows	it
is	a	HANDLE.

OR-ed	combination	of
TCL_READABLE	and

const	char	*channelName	(in)

int	*modePtr	(out)

const	char	*pattern	(in)

Tcl_Channel	channel	(in)

Tcl_Obj	*readObjPtr	(in/out)

int	charsToRead	(in)

TCL_WRITABLE	to
indicate	what	operations
are	valid	on	handle.

The	name	of	the	channel.

Points	at	an	integer
variable	that	will	receive
an	OR-ed	combination	of
TCL_READABLE	and
TCL_WRITABLE	denoting
whether	the	channel	is
open	for	reading	and
writing.

The	pattern	to	match	on,
passed	to
Tcl_StringMatch,	or	NULL.

A	Tcl	channel	for	input	or
output.	Must	have	been
the	return	value	from	a
procedure	such	as
Tcl_OpenFileChannel.

A	pointer	to	a	Tcl	Object	in
which	to	store	the
characters	read	from	the
channel.

The	number	of	characters
to	read	from	the	channel.	If
the	channel's	encoding	is
binary,	this	is	equivalent
to	the	number	of	bytes	to
read	from	the	channel.

int	appendFlag	(in)

char	*readBuf	(out)

int	bytesToRead	(in)

Tcl_Obj	*lineObjPtr	(in/out)

Tcl_DString	*lineRead	(in/out)

const	char	*input	(in)

int	inputLen	(in)

If	non-zero,	data	read	from
the	channel	will	be
appended	to	the	object.
Otherwise,	the	data	will
replace	the	existing
contents	of	the	object.

A	buffer	in	which	to	store
the	bytes	read	from	the
channel.

The	number	of	bytes	to
read	from	the	channel.
The	buffer	readBuf	must
be	large	enough	to	hold
this	many	bytes.

A	pointer	to	a	Tcl	object	in
which	to	store	the	line	read
from	the	channel.	The	line
read	will	be	appended	to
the	current	value	of	the
object.

A	pointer	to	a	Tcl	dynamic
string	in	which	to	store	the
line	read	from	the	channel.
Must	have	been	initialized
by	the	caller.	The	line	read
will	be	appended	to	any
data	already	in	the
dynamic	string.

The	input	to	add	to	a
channel	buffer.

Length	of	the	input

int	addAtEnd	(in)

Tcl_Obj	*writeObjPtr	(in)

const	char	*charBuf	(in)

const	char	*byteBuf	(in)

int	bytesToWrite	(in)

Tcl_WideInt	offset	(in)

int	seekMode	(in)

Flag	indicating	whether	the
input	should	be	added	to
the	end	or	beginning	of	the
channel	buffer.

A	pointer	to	a	Tcl	Object
whose	contents	will	be
output	to	the	channel.

A	buffer	containing	the
characters	to	output	to	the
channel.

A	buffer	containing	the
bytes	to	output	to	the
channel.

The	number	of	bytes	to
consume	from	charBuf	or
byteBuf	and	output	to	the
channel.

How	far	to	move	the
access	point	in	the
channel	at	which	the	next
input	or	output	operation
will	be	applied,	measured
in	bytes	from	the	position
given	by	seekMode.	May
be	either	positive	or
negative.

Relative	to	which	point	to
seek;	used	with	offset	to
calculate	the	new	access
point	for	the	channel.
Legal	values	are

Tcl_WideInt	length	(in)

const	char	*optionName	(in)

Tcl_DString	*optionValue	(in)

const	char	*newValue	(in)

SEEK_SET,	SEEK_CUR,
and	SEEK_END.

The	(non-negative)	length
to	truncate	the	channel	the
channel	to.

The	name	of	an	option
applicable	to	this	channel,
such	as	-blocking.	May
have	any	of	the	values
accepted	by	the
fconfigure	command.

Where	to	store	the	value
of	an	option	or	a	list	of	all
options	and	their	values.
Must	have	been	initialized
by	the	caller.

New	value	for	the	option
given	by	optionName.

DESCRIPTION

The	Tcl	channel	mechanism	provides	a	device-independent	and
platform-independent	mechanism	for	performing	buffered	input	and
output	operations	on	a	variety	of	file,	socket,	and	device	types.	The
channel	mechanism	is	extensible	to	new	channel	types,	by	providing	a
low-level	channel	driver	for	the	new	type;	the	channel	driver	interface	is
described	in	the	manual	entry	for	Tcl_CreateChannel.	The	channel
mechanism	provides	a	buffering	scheme	modeled	after	Unix's	standard
I/O,	and	it	also	allows	for	nonblocking	I/O	on	channels.

The	procedures	described	in	this	manual	entry	comprise	the	C	APIs	of
the	generic	layer	of	the	channel	architecture.	For	a	description	of	the

channel	driver	architecture	and	how	to	implement	channel	drivers	for
new	types	of	channels,	see	the	manual	entry	for	Tcl_CreateChannel.

TCL_OPENFILECHANNEL

Tcl_OpenFileChannel	opens	a	file	specified	by	fileName	and	returns	a
channel	handle	that	can	be	used	to	perform	input	and	output	on	the	file.
This	API	is	modeled	after	the	fopen	procedure	of	the	Unix	standard	I/O
library.	The	syntax	and	meaning	of	all	arguments	is	similar	to	those
given	in	the	Tcl	open	command	when	opening	a	file.	If	an	error	occurs
while	opening	the	channel,	Tcl_OpenFileChannel	returns	NULL	and
records	a	POSIX	error	code	that	can	be	retrieved	with	Tcl_GetErrno.	In
addition,	if	interp	is	non-NULL,	Tcl_OpenFileChannel	leaves	an	error
message	in	interp's	result	after	any	error.	As	of	Tcl	8.4,	the	object-based
API	Tcl_FSOpenFileChannel	should	be	used	in	preference	to
Tcl_OpenFileChannel	wherever	possible.

The	newly	created	channel	is	not	registered	in	the	supplied	interpreter;
to	register	it,	use	Tcl_RegisterChannel,	described	below.	If	one	of	the
standard	channels,	stdin,	stdout	or	stderr	was	previously	closed,	the
act	of	creating	the	new	channel	also	assigns	it	as	a	replacement	for	the
standard	channel.

TCL_OPENCOMMANDCHANNEL

Tcl_OpenCommandChannel	provides	a	C-level	interface	to	the
functions	of	the	exec	and	open	commands.	It	creates	a	sequence	of
subprocesses	specified	by	the	argv	and	argc	arguments	and	returns	a
channel	that	can	be	used	to	communicate	with	these	subprocesses.
The	flags	argument	indicates	what	sort	of	communication	will	exist	with
the	command	pipeline.

If	the	TCL_STDIN	flag	is	set	then	the	standard	input	for	the	first
subprocess	will	be	tied	to	the	channel:	writing	to	the	channel	will
provide	input	to	the	subprocess.	If	TCL_STDIN	is	not	set,	then	standard
input	for	the	first	subprocess	will	be	the	same	as	this	application's
standard	input.	If	TCL_STDOUT	is	set	then	standard	output	from	the
last	subprocess	can	be	read	from	the	channel;	otherwise	it	goes	to	this

application's	standard	output.	If	TCL_STDERR	is	set,	standard	error
output	for	all	subprocesses	is	returned	to	the	channel	and	results	in	an
error	when	the	channel	is	closed;	otherwise	it	goes	to	this	application's
standard	error.	If	TCL_ENFORCE_MODE	is	not	set,	then	argc	and	argv
can	redirect	the	stdio	handles	to	override	TCL_STDIN,	TCL_STDOUT,
and	TCL_STDERR;	if	it	is	set,	then	it	is	an	error	for	argc	and	argv	to
override	stdio	channels	for	which	TCL_STDIN,	TCL_STDOUT,	and
TCL_STDERR	have	been	set.

If	an	error	occurs	while	opening	the	channel,
Tcl_OpenCommandChannel	returns	NULL	and	records	a	POSIX	error
code	that	can	be	retrieved	with	Tcl_GetErrno.	In	addition,
Tcl_OpenCommandChannel	leaves	an	error	message	in	the
interpreter's	result	if	interp	is	not	NULL.

The	newly	created	channel	is	not	registered	in	the	supplied	interpreter;
to	register	it,	use	Tcl_RegisterChannel,	described	below.	If	one	of	the
standard	channels,	stdin,	stdout	or	stderr	was	previously	closed,	the
act	of	creating	the	new	channel	also	assigns	it	as	a	replacement	for	the
standard	channel.

TCL_MAKEFILECHANNEL

Tcl_MakeFileChannel	makes	a	Tcl_Channel	from	an	existing,
platform-specific,	file	handle.	The	newly	created	channel	is	not
registered	in	the	supplied	interpreter;	to	register	it,	use
Tcl_RegisterChannel,	described	below.	If	one	of	the	standard
channels,	stdin,	stdout	or	stderr	was	previously	closed,	the	act	of
creating	the	new	channel	also	assigns	it	as	a	replacement	for	the
standard	channel.

TCL_GETCHANNEL

Tcl_GetChannel	returns	a	channel	given	the	channelName	used	to
create	it	with	Tcl_CreateChannel	and	a	pointer	to	a	Tcl	interpreter	in
interp.	If	a	channel	by	that	name	is	not	registered	in	that	interpreter,	the
procedure	returns	NULL.	If	the	modePtr	argument	is	not	NULL,	it	points
at	an	integer	variable	that	will	receive	an	OR-ed	combination	of

TCL_READABLE	and	TCL_WRITABLE	describing	whether	the
channel	is	open	for	reading	and	writing.

Tcl_GetChannelNames	and	Tcl_GetChannelNamesEx	write	the
names	of	the	registered	channels	to	the	interpreter's	result	as	a	list
object.	Tcl_GetChannelNamesEx	will	filter	these	names	according	to
the	pattern.	If	pattern	is	NULL,	then	it	will	not	do	any	filtering.	The	return
value	is	TCL_OK	if	no	errors	occurred	writing	to	the	result,	otherwise	it
is	TCL_ERROR,	and	the	error	message	is	left	in	the	interpreter's	result.

TCL_REGISTERCHANNEL

Tcl_RegisterChannel	adds	a	channel	to	the	set	of	channels	accessible
in	interp.	After	this	call,	Tcl	programs	executing	in	that	interpreter	can
refer	to	the	channel	in	input	or	output	operations	using	the	name	given
in	the	call	to	Tcl_CreateChannel.	After	this	call,	the	channel	becomes
the	property	of	the	interpreter,	and	the	caller	should	not	call	Tcl_Close
for	the	channel;	the	channel	will	be	closed	automatically	when	it	is
unregistered	from	the	interpreter.

Code	executing	outside	of	any	Tcl	interpreter	can	call
Tcl_RegisterChannel	with	interp	as	NULL,	to	indicate	that	it	wishes	to
hold	a	reference	to	this	channel.	Subsequently,	the	channel	can	be
registered	in	a	Tcl	interpreter	and	it	will	only	be	closed	when	the
matching	number	of	calls	to	Tcl_UnregisterChannel	have	been	made.
This	allows	code	executing	outside	of	any	interpreter	to	safely	hold	a
reference	to	a	channel	that	is	also	registered	in	a	Tcl	interpreter.

This	procedure	interacts	with	the	code	managing	the	standard
channels.	If	no	standard	channels	were	initialized	before	the	first	call	to
Tcl_RegisterChannel,	they	will	get	initialized	by	that	call.	See
Tcl_StandardChannels	for	a	general	treatise	about	standard	channels
and	the	behaviour	of	the	Tcl	library	with	regard	to	them.

TCL_UNREGISTERCHANNEL

Tcl_UnregisterChannel	removes	a	channel	from	the	set	of	channels
accessible	in	interp.	After	this	call,	Tcl	programs	will	no	longer	be	able	to

use	the	channel's	name	to	refer	to	the	channel	in	that	interpreter.	If	this
operation	removed	the	last	registration	of	the	channel	in	any	interpreter,
the	channel	is	also	closed	and	destroyed.

Code	not	associated	with	a	Tcl	interpreter	can	call
Tcl_UnregisterChannel	with	interp	as	NULL,	to	indicate	to	Tcl	that	it	no
longer	holds	a	reference	to	that	channel.	If	this	is	the	last	reference	to
the	channel,	it	will	now	be	closed.	Tcl_UnregisterChannel	is	very
similar	to	Tcl_DetachChannel	except	that	it	will	also	close	the	channel
if	no	further	references	to	it	exist.

TCL_DETACHCHANNEL

Tcl_DetachChannel	removes	a	channel	from	the	set	of	channels
accessible	in	interp.	After	this	call,	Tcl	programs	will	no	longer	be	able	to
use	the	channel's	name	to	refer	to	the	channel	in	that	interpreter.
Beyond	that,	this	command	has	no	further	effect.	It	cannot	be	used	on
the	standard	channels	(stdout,	stderr,	stdin),	and	will	return
TCL_ERROR	if	passed	one	of	those	channels.

Code	not	associated	with	a	Tcl	interpreter	can	call	Tcl_DetachChannel
with	interp	as	NULL,	to	indicate	to	Tcl	that	it	no	longer	holds	a	reference
to	that	channel.	If	this	is	the	last	reference	to	the	channel,	unlike
Tcl_UnregisterChannel,	it	will	not	be	closed.

TCL_ISSTANDARDCHANNEL

Tcl_IsStandardChannel	tests	whether	a	channel	is	one	of	the	three
standard	channels,	stdin,	stdout	or	stderr.	If	so,	it	returns	1,	otherwise	0.

No	attempt	is	made	to	check	whether	the	given	channel	or	the	standard
channels	are	initialized	or	otherwise	valid.

TCL_CLOSE

Tcl_Close	destroys	the	channel	channel,	which	must	denote	a	currently
open	channel.	The	channel	should	not	be	registered	in	any	interpreter
when	Tcl_Close	is	called.	Buffered	output	is	flushed	to	the	channel's

output	device	prior	to	destroying	the	channel,	and	any	buffered	input	is
discarded.	If	this	is	a	blocking	channel,	the	call	does	not	return	until	all
buffered	data	is	successfully	sent	to	the	channel's	output	device.	If	this
is	a	nonblocking	channel	and	there	is	buffered	output	that	cannot	be
written	without	blocking,	the	call	returns	immediately;	output	is	flushed
in	the	background	and	the	channel	will	be	closed	once	all	of	the
buffered	data	has	been	output.	In	this	case	errors	during	flushing	are
not	reported.

If	the	channel	was	closed	successfully,	Tcl_Close	returns	TCL_OK.	If
an	error	occurs,	Tcl_Close	returns	TCL_ERROR	and	records	a	POSIX
error	code	that	can	be	retrieved	with	Tcl_GetErrno.	If	the	channel	is
being	closed	synchronously	and	an	error	occurs	during	closing	of	the
channel	and	interp	is	not	NULL,	an	error	message	is	left	in	the
interpreter's	result.

Note:	it	is	not	safe	to	call	Tcl_Close	on	a	channel	that	has	been
registered	using	Tcl_RegisterChannel;	see	the	documentation	for
Tcl_RegisterChannel,	above,	for	details.	If	the	channel	has	ever	been
given	as	the	chan	argument	in	a	call	to	Tcl_RegisterChannel,	you
should	instead	use	Tcl_UnregisterChannel,	which	will	internally	call
Tcl_Close	when	all	calls	to	Tcl_RegisterChannel	have	been	matched
by	corresponding	calls	to	Tcl_UnregisterChannel.

TCL_READCHARS	AND	TCL_READ

Tcl_ReadChars	consumes	bytes	from	channel,	converting	the	bytes	to
UTF-8	based	on	the	channel's	encoding	and	storing	the	produced	data
in	readObjPtr's	string	representation.	The	return	value	of
Tcl_ReadChars	is	the	number	of	characters,	up	to	charsToRead,	that
were	stored	in	readObjPtr.	If	an	error	occurs	while	reading,	the	return
value	is	-1	and	Tcl_ReadChars	records	a	POSIX	error	code	that	can	be
retrieved	with	Tcl_GetErrno.

Setting	charsToRead	to	-1	will	cause	the	command	to	read	all
characters	currently	available	(non-blocking)	or	everything	until	eof
(blocking	mode).

The	return	value	may	be	smaller	than	the	value	to	read,	indicating	that
less	data	than	requested	was	available.	This	is	called	a	short	read.	In
blocking	mode,	this	can	only	happen	on	an	end-of-file.	In	nonblocking
mode,	a	short	read	can	also	occur	if	there	is	not	enough	input	currently
available:	Tcl_ReadChars	returns	a	short	count	rather	than	waiting	for
more	data.

If	the	channel	is	in	blocking	mode,	a	return	value	of	zero	indicates	an
end-of-file	condition.	If	the	channel	is	in	nonblocking	mode,	a	return
value	of	zero	indicates	either	that	no	input	is	currently	available	or	an
end-of-file	condition.	Use	Tcl_Eof	and	Tcl_InputBlocked	to	tell	which
of	these	conditions	actually	occurred.

Tcl_ReadChars	translates	the	various	end-of-line	representations	into
the	canonical	\n	internal	representation	according	to	the	current	end-of-
line	recognition	mode.	End-of-line	recognition	and	the	various	platform-
specific	modes	are	described	in	the	manual	entry	for	the	Tcl	fconfigure
command.

As	a	performance	optimization,	when	reading	from	a	channel	with	the
encoding	binary,	the	bytes	are	not	converted	to	UTF-8	as	they	are
read.	Instead,	they	are	stored	in	readObjPtr's	internal	representation	as
a	byte-array	object.	The	string	representation	of	this	object	will	only	be
constructed	if	it	is	needed	(e.g.,	because	of	a	call	to
Tcl_GetStringFromObj).	In	this	way,	byte-oriented	data	can	be	read
from	a	channel,	manipulated	by	calling	Tcl_GetByteArrayFromObj	and
related	functions,	and	then	written	to	a	channel	without	the	expense	of
ever	converting	to	or	from	UTF-8.

Tcl_Read	is	similar	to	Tcl_ReadChars,	except	that	it	does	not	do
encoding	conversions,	regardless	of	the	channel's	encoding.	It	is
deprecated	and	exists	for	backwards	compatibility	with	non-
internationalized	Tcl	extensions.	It	consumes	bytes	from	channel	and
stores	them	in	readBuf,	performing	end-of-line	translations	on	the	way.
The	return	value	of	Tcl_Read	is	the	number	of	bytes,	up	to
bytesToRead,	written	in	readBuf.	The	buffer	produced	by	Tcl_Read	is
not	null-terminated.	Its	contents	are	valid	from	the	zeroth	position	up	to
and	excluding	the	position	indicated	by	the	return	value.

Tcl_ReadRaw	is	the	same	as	Tcl_Read	but	does	not	compensate	for
stacking.	While	Tcl_Read	(and	the	other	functions	in	the	API)	always
get	their	data	from	the	topmost	channel	in	the	stack	the	supplied
channel	is	part	of,	Tcl_ReadRaw	does	not.	Thus	this	function	is	only
usable	for	transformational	channel	drivers,	i.e.	drivers	used	in	the
middle	of	a	stack	of	channels,	to	move	data	from	the	channel	below	into
the	transformation.

TCL_GETSOBJ	AND	TCL_GETS

Tcl_GetsObj	consumes	bytes	from	channel,	converting	the	bytes	to
UTF-8	based	on	the	channel's	encoding,	until	a	full	line	of	input	has
been	seen.	If	the	channel's	encoding	is	binary,	each	byte	read	from	the
channel	is	treated	as	an	individual	Unicode	character.	All	of	the
characters	of	the	line	except	for	the	terminating	end-of-line	character(s)
are	appended	to	lineObjPtr's	string	representation.	The	end-of-line
character(s)	are	read	and	discarded.

If	a	line	was	successfully	read,	the	return	value	is	greater	than	or	equal
to	zero	and	indicates	the	number	of	bytes	stored	in	lineObjPtr.	If	an
error	occurs,	Tcl_GetsObj	returns	-1	and	records	a	POSIX	error	code
that	can	be	retrieved	with	Tcl_GetErrno.	Tcl_GetsObj	also	returns	-1	if
the	end	of	the	file	is	reached;	the	Tcl_Eof	procedure	can	be	used	to
distinguish	an	error	from	an	end-of-file	condition.

If	the	channel	is	in	nonblocking	mode,	the	return	value	can	also	be	-1	if
no	data	was	available	or	the	data	that	was	available	did	not	contain	an
end-of-line	character.	When	-1	is	returned,	the	Tcl_InputBlocked
procedure	may	be	invoked	to	determine	if	the	channel	is	blocked
because	of	input	unavailability.

Tcl_Gets	is	the	same	as	Tcl_GetsObj	except	the	resulting	characters
are	appended	to	the	dynamic	string	given	by	lineRead	rather	than	a	Tcl
object.

TCL_UNGETS

Tcl_Ungets	is	used	to	add	data	to	the	input	queue	of	a	channel,	at

either	the	head	or	tail	of	the	queue.	The	pointer	input	points	to	the	data
that	is	to	be	added.	The	length	of	the	input	to	add	is	given	by	inputLen.
A	non-zero	value	of	addAtEnd	indicates	that	the	data	is	to	be	added	at
the	end	of	queue;	otherwise	it	will	be	added	at	the	head	of	the	queue.	If
channel	has	a	“sticky”	EOF	set,	no	data	will	be	added	to	the	input
queue.	Tcl_Ungets	returns	inputLen	or	-1	if	an	error	occurs.

TCL_WRITECHARS,	TCL_WRITEOBJ,	AND	TCL_WRITE

Tcl_WriteChars	accepts	bytesToWrite	bytes	of	character	data	at
charBuf.	The	UTF-8	characters	in	the	buffer	are	converted	to	the
channel's	encoding	and	queued	for	output	to	channel.	If	bytesToWrite	is
negative,	Tcl_WriteChars	expects	charBuf	to	be	null-terminated	and	it
outputs	everything	up	to	the	null.

Data	queued	for	output	may	not	appear	on	the	output	device
immediately,	due	to	internal	buffering.	If	the	data	should	appear
immediately,	call	Tcl_Flush	after	the	call	to	Tcl_WriteChars,	or	set	the
-buffering	option	on	the	channel	to	none.	If	you	wish	the	data	to
appear	as	soon	as	a	complete	line	is	accepted	for	output,	set	the	-
buffering	option	on	the	channel	to	line	mode.

The	return	value	of	Tcl_WriteChars	is	a	count	of	how	many	bytes	were
accepted	for	output	to	the	channel.	This	is	either	greater	than	zero	to
indicate	success	or	-1	to	indicate	that	an	error	occurred.	If	an	error
occurs,	Tcl_WriteChars	records	a	POSIX	error	code	that	may	be
retrieved	with	Tcl_GetErrno.

Newline	characters	in	the	output	data	are	translated	to	platform-specific
end-of-line	sequences	according	to	the	-translation	option	for	the
channel.	This	is	done	even	if	the	channel	has	no	encoding.

Tcl_WriteObj	is	similar	to	Tcl_WriteChars	except	it	accepts	a	Tcl	object
whose	contents	will	be	output	to	the	channel.	The	UTF-8	characters	in
writeObjPtr's	string	representation	are	converted	to	the	channel's
encoding	and	queued	for	output	to	channel.	As	a	performance
optimization,	when	writing	to	a	channel	with	the	encoding	binary,	UTF-
8	characters	are	not	converted	as	they	are	written.	Instead,	the	bytes	in

writeObjPtr's	internal	representation	as	a	byte-array	object	are	written	to
the	channel.	The	byte-array	representation	of	the	object	will	be
constructed	if	it	is	needed.	In	this	way,	byte-oriented	data	can	be	read
from	a	channel,	manipulated	by	calling	Tcl_GetByteArrayFromObj	and
related	functions,	and	then	written	to	a	channel	without	the	expense	of
ever	converting	to	or	from	UTF-8.

Tcl_Write	is	similar	to	Tcl_WriteChars	except	that	it	does	not	do
encoding	conversions,	regardless	of	the	channel's	encoding.	It	is
deprecated	and	exists	for	backwards	compatibility	with	non-
internationalized	Tcl	extensions.	It	accepts	bytesToWrite	bytes	of	data
at	byteBuf	and	queues	them	for	output	to	channel.	If	bytesToWrite	is
negative,	Tcl_Write	expects	byteBuf	to	be	null-terminated	and	it	outputs
everything	up	to	the	null.

Tcl_WriteRaw	is	the	same	as	Tcl_Write	but	does	not	compensate	for
stacking.	While	Tcl_Write	(and	the	other	functions	in	the	API)	always
feed	their	input	to	the	topmost	channel	in	the	stack	the	supplied	channel
is	part	of,	Tcl_WriteRaw	does	not.	Thus	this	function	is	only	usable	for
transformational	channel	drivers,	i.e.	drivers	used	in	the	middle	of	a
stack	of	channels,	to	move	data	from	the	transformation	into	the
channel	below	it.

TCL_FLUSH

Tcl_Flush	causes	all	of	the	buffered	output	data	for	channel	to	be
written	to	its	underlying	file	or	device	as	soon	as	possible.	If	the	channel
is	in	blocking	mode,	the	call	does	not	return	until	all	the	buffered	data
has	been	sent	to	the	channel	or	some	error	occurred.	The	call	returns
immediately	if	the	channel	is	nonblocking;	it	starts	a	background	flush
that	will	write	the	buffered	data	to	the	channel	eventually,	as	fast	as	the
channel	is	able	to	absorb	it.

The	return	value	is	normally	TCL_OK.	If	an	error	occurs,	Tcl_Flush
returns	TCL_ERROR	and	records	a	POSIX	error	code	that	can	be
retrieved	with	Tcl_GetErrno.

TCL_SEEK

Tcl_Seek	moves	the	access	point	in	channel	where	subsequent	data
will	be	read	or	written.	Buffered	output	is	flushed	to	the	channel	and
buffered	input	is	discarded,	prior	to	the	seek	operation.

Tcl_Seek	normally	returns	the	new	access	point.	If	an	error	occurs,
Tcl_Seek	returns	-1	and	records	a	POSIX	error	code	that	can	be
retrieved	with	Tcl_GetErrno.	After	an	error,	the	access	point	may	or
may	not	have	been	moved.

TCL_TELL

Tcl_Tell	returns	the	current	access	point	for	a	channel.	The	returned
value	is	-1	if	the	channel	does	not	support	seeking.

TCL_TRUNCATECHANNEL

Tcl_TruncateChannel	truncates	the	file	underlying	channel	to	a	given
length	of	bytes.	It	returns	TCL_OK	if	the	operation	succeeded,	and
TCL_ERROR	otherwise.

TCL_GETCHANNELOPTION

Tcl_GetChannelOption	retrieves,	in	optionValue,	the	value	of	one	of
the	options	currently	in	effect	for	a	channel,	or	a	list	of	all	options	and
their	values.	The	channel	argument	identifies	the	channel	for	which	to
query	an	option	or	retrieve	all	options	and	their	values.	If	optionName	is
not	NULL,	it	is	the	name	of	the	option	to	query;	the	option's	value	is
copied	to	the	Tcl	dynamic	string	denoted	by	optionValue.	If	optionName
is	NULL,	the	function	stores	an	alternating	list	of	option	names	and	their
values	in	optionValue,	using	a	series	of	calls	to
Tcl_DStringAppendElement.	The	various	preexisting	options	and	their
possible	values	are	described	in	the	manual	entry	for	the	Tcl	fconfigure
command.	Other	options	can	be	added	by	each	channel	type.	These
channel	type	specific	options	are	described	in	the	manual	entry	for	the
Tcl	command	that	creates	a	channel	of	that	type;	for	example,	the
additional	options	for	TCP	based	channels	are	described	in	the	manual
entry	for	the	Tcl	socket	command.	The	procedure	normally	returns
TCL_OK.	If	an	error	occurs,	it	returns	TCL_ERROR	and	calls

Tcl_SetErrno	to	store	an	appropriate	POSIX	error	code.

TCL_SETCHANNELOPTION

Tcl_SetChannelOption	sets	a	new	value	newValue	for	an	option
optionName	on	channel.	The	procedure	normally	returns	TCL_OK.	If	an
error	occurs,	it	returns	TCL_ERROR;	in	addition,	if	interp	is	non-NULL,
Tcl_SetChannelOption	leaves	an	error	message	in	the	interpreter's
result.

TCL_EOF

Tcl_Eof	returns	a	nonzero	value	if	channel	encountered	an	end	of	file
during	the	last	input	operation.

TCL_INPUTBLOCKED

Tcl_InputBlocked	returns	a	nonzero	value	if	channel	is	in	nonblocking
mode	and	the	last	input	operation	returned	less	data	than	requested
because	there	was	insufficient	data	available.	The	call	always	returns
zero	if	the	channel	is	in	blocking	mode.

TCL_INPUTBUFFERED

Tcl_InputBuffered	returns	the	number	of	bytes	of	input	currently
buffered	in	the	internal	buffers	for	a	channel.	If	the	channel	is	not	open
for	reading,	this	function	always	returns	zero.

TCL_OUTPUTBUFFERED

Tcl_OutputBuffered	returns	the	number	of	bytes	of	output	currently
buffered	in	the	internal	buffers	for	a	channel.	If	the	channel	is	not	open
for	writing,	this	function	always	returns	zero.

PLATFORM	ISSUES

The	handles	returned	from	Tcl_GetChannelHandle	depend	on	the
platform	and	the	channel	type.	On	Unix	platforms,	the	handle	is	always
a	Unix	file	descriptor	as	returned	from	the	open	system	call.	On

Windows	platforms,	the	handle	is	a	file	HANDLE	when	the	channel	was
created	with	Tcl_OpenFileChannel,	Tcl_OpenCommandChannel,	or
Tcl_MakeFileChannel.	Other	channel	types	may	return	a	different	type
of	handle	on	Windows	platforms.

SEE	ALSO

DString,	fconfigure,	filename,	fopen,	Tcl_CreateChannel

KEYWORDS

access	point,	blocking,	buffered	I/O,	channel,	channel	driver,	end	of	file,
flush,	input,	nonblocking,	output,	read,	seek,	write

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1996-1997	Sun	Microsystems,	Inc.

char	*path	(in)

int	mode	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	Access

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_Access,	Tcl_Stat	-	check	file	permissions	and	other
attributes

SYNOPSIS
#include	<tcl.h>
int
Tcl_Access(path,	mode)
int
Tcl_Stat(path,	statPtr)

ARGUMENTS
DESCRIPTION
KEYWORDS

NAME

Tcl_Access,	Tcl_Stat	-	check	file	permissions	and	other	attributes

SYNOPSIS

#include	<tcl.h>
int
Tcl_Access(path,	mode)
int
Tcl_Stat(path,	statPtr)

ARGUMENTS

Native	name	of	the	file	to
check	the	attributes	of.

Mask	consisting	of	one	or
more	of	R_OK,	W_OK,

struct	stat	*statPtr	(out)

X_OK	and	F_OK.	R_OK,
W_OK	and	X_OK	request
checking	whether	the	file
exists	and	has	read,	write
and	execute	permissions,
respectively.	F_OK	just
requests	checking	for	the
existence	of	the	file.

The	structure	that	contains
the	result.

DESCRIPTION

As	of	Tcl	8.4,	the	object-based	APIs	Tcl_FSAccess	and	Tcl_FSStat
should	be	used	in	preference	to	Tcl_Access	and	Tcl_Stat,	wherever
possible.

There	are	two	reasons	for	calling	Tcl_Access	and	Tcl_Stat	rather	than
calling	system	level	functions	access	and	stat	directly.	First,	the
Windows	implementation	of	both	functions	fixes	some	bugs	in	the
system	level	calls.	Second,	both	Tcl_Access	and	Tcl_Stat	(as	well	as
Tcl_OpenFileChannelProc)	hook	into	a	linked	list	of	functions.	This
allows	the	possibility	to	reroute	file	access	to	alternative	media	or
access	methods.

Tcl_Access	checks	whether	the	process	would	be	allowed	to	read,
write	or	test	for	existence	of	the	file	(or	other	file	system	object)	whose
name	is	pathname.	If	pathname	is	a	symbolic	link	on	Unix,	then
permissions	of	the	file	referred	by	this	symbolic	link	are	tested.

On	success	(all	requested	permissions	granted),	zero	is	returned.	On
error	(at	least	one	bit	in	mode	asked	for	a	permission	that	is	denied,	or
some	other	error	occurred),	-1	is	returned.

Tcl_Stat	fills	the	stat	structure	statPtr	with	information	about	the
specified	file.	You	do	not	need	any	access	rights	to	the	file	to	get	this

information	but	you	need	search	rights	to	all	directories	named	in	the
path	leading	to	the	file.	The	stat	structure	includes	info	regarding
device,	inode	(always	0	on	Windows),	privilege	mode,	nlink	(always	1
on	Windows),	user	id	(always	0	on	Windows),	group	id	(always	0	on
Windows),	rdev	(same	as	device	on	Windows),	size,	last	access	time,
last	modification	time,	and	creation	time.

If	path	exists,	Tcl_Stat	returns	0	and	the	stat	structure	is	filled	with	data.
Otherwise,	-1	is	returned,	and	no	stat	info	is	given.

KEYWORDS

stat,	access

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1998-1999	Scriptics	Corporation

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	AddErrInfo

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_GetReturnOptions,	Tcl_SetReturnOptions,
Tcl_AddErrorInfo,	Tcl_AppendObjToErrorInfo,
Tcl_AddObjErrorInfo,	Tcl_SetObjErrorCode,	Tcl_SetErrorCode,
Tcl_SetErrorCodeVA,	Tcl_PosixError,	Tcl_LogCommandInfo	-
retrieve	or	record	information	about	errors	and	other	return
options

SYNOPSIS
#include	<tcl.h>
Tcl_Obj	*
Tcl_GetReturnOptions(interp,	code)
int
Tcl_SetReturnOptions(interp,	options)
Tcl_AddErrorInfo(interp,	message)
Tcl_AppendObjToErrorInfo(interp,	objPtr)
Tcl_AddObjErrorInfo(interp,	message,	length)
Tcl_SetObjErrorCode(interp,	errorObjPtr)
Tcl_SetErrorCode(interp,	element,	element,	...	(char	*)	NULL)
Tcl_SetErrorCodeVA(interp,	argList)
const	char	*
Tcl_PosixError(interp)
void
Tcl_LogCommandInfo(interp,	script,	command,
commandLength)

ARGUMENTS
DESCRIPTION
SEE	ALSO
KEYWORDS

NAME

Tcl_Interp	*interp	(in)

int	code	()

Tcl_Obj	*options	()

char	*message	(in)

Tcl_GetReturnOptions,	Tcl_SetReturnOptions,	Tcl_AddErrorInfo,
Tcl_AppendObjToErrorInfo,	Tcl_AddObjErrorInfo,	Tcl_SetObjErrorCode,
Tcl_SetErrorCode,	Tcl_SetErrorCodeVA,	Tcl_PosixError,
Tcl_LogCommandInfo	-	retrieve	or	record	information	about	errors	and
other	return	options

SYNOPSIS

#include	<tcl.h>
Tcl_Obj	*
Tcl_GetReturnOptions(interp,	code)
int	
Tcl_SetReturnOptions(interp,	options)
Tcl_AddErrorInfo(interp,	message)
Tcl_AppendObjToErrorInfo(interp,	objPtr)
Tcl_AddObjErrorInfo(interp,	message,	length)
Tcl_SetObjErrorCode(interp,	errorObjPtr)
Tcl_SetErrorCode(interp,	element,	element,	...	(char	*)	NULL)
Tcl_SetErrorCodeVA(interp,	argList)
const	char	*
Tcl_PosixError(interp)
void
Tcl_LogCommandInfo(interp,	script,	command,	commandLength)

ARGUMENTS

Interpreter	in	which	to
record	information.

The	code	returned	from
script	evaluation.

A	dictionary	of	return
options.

For	Tcl_AddErrorInfo,
this	is	a	conventional	C

Tcl_Obj	*objPtr	(in)

int	length	(in)

Tcl_Obj	*errorObjPtr	(in)

char	*element	(in)

va_list	argList	(in)

string	to	append	to	the	-
errorinfo	return	option.
For	Tcl_AddObjErrorInfo,
this	points	to	the	first	byte
of	an	array	of	length	bytes
containing	a	string	to
append	to	the	-errorinfo
return	option.	This	byte
array	may	contain
embedded	null	bytes
unless	length	is	negative.

A	message	to	be
appended	to	the	-
errorinfo	return	option	in
the	form	of	a	Tcl_Obj
value.

The	number	of	bytes	to
copy	from	message	when
appending	to	the	-
errorinfo	return	option.	If
negative,	all	bytes	up	to
the	first	null	byte	are	used.

The	-errorcode	return
option	will	be	set	to	this
value.

String	to	record	as	one
element	of	the	-errorcode
return	option.	Last	element
argument	must	be	NULL.

An	argument	list	which
must	have	been	initialized
using	va_start,	and

const	char	*script	(in)

const	char	*command	(in)

int	commandLength	(in)

cleared	using	va_end.

Pointer	to	first	character	in
script	containing	command
(must	be	<=	command)

Pointer	to	first	character	in
command	that	generated
the	error

Number	of	bytes	in
command;	-1	means	use
all	bytes	up	to	first	null
byte

DESCRIPTION

The	Tcl_SetReturnOptions	and	Tcl_GetReturnOptions	routines
expose	the	same	capabilities	as	the	return	and	catch	commands,
respectively,	in	the	form	of	a	C	interface.

Tcl_GetReturnOptions	retrieves	the	dictionary	of	return	options	from
an	interpreter	following	a	script	evaluation.	Routines	such	as	Tcl_Eval
are	called	to	evaluate	a	script	in	an	interpreter.	These	routines	return	an
integer	completion	code.	These	routines	also	leave	in	the	interpreter
both	a	result	and	a	dictionary	of	return	options	generated	by	script
evaluation.	Just	as	Tcl_GetObjResult	retrieves	the	result,
Tcl_GetReturnOptions	retrieves	the	dictionary	of	return	options.	The
integer	completion	code	should	be	passed	as	the	code	argument	to
Tcl_GetReturnOptions	so	that	all	required	options	will	be	present	in
the	dictionary.	Specifically,	a	code	value	of	TCL_ERROR	will	ensure
that	entries	for	the	keys	-errorinfo,	-errorcode,	and	-errorline	will
appear	in	the	dictionary.	Also,	the	entries	for	the	keys	-code	and	-level
will	be	adjusted	if	necessary	to	agree	with	the	value	of	code.	The
(Tcl_Obj	*)	returned	by	Tcl_GetReturnOptions	points	to	an	unshared
Tcl_Obj	with	reference	count	of	zero.	The	dictionary	may	be	written	to,

either	adding,	removing,	or	overwriting	any	entries	in	it,	with	the	need	to
check	for	a	shared	object.

A	typical	usage	for	Tcl_GetReturnOptions	is	to	retrieve	the	stack	trace
when	script	evaluation	returns	TCL_ERROR,	like	so:

int	code	=	Tcl_Eval(interp,	script);

if	(code	==	TCL_ERROR)	{

				Tcl_Obj	*options	=	Tcl_GetReturnOptions(interp,	code);		

				Tcl_Obj	*key	=	Tcl_NewStringObj("-errorinfo",	-1);

				Tcl_Obj	*stackTrace;

				Tcl_IncrRefCount(key);

				Tcl_DictObjGet(NULL,	options,	key,	&stackTrace);

				Tcl_DecrRefCount(key);

				/*	Do	something	with	stackTrace	*/

}

Tcl_SetReturnOptions	sets	the	return	options	of	interp	to	be	options.	If
options	contains	any	invalid	value	for	any	key,	TCL_ERROR	will	be
returned,	and	the	interp	result	will	be	set	to	an	appropriate	error
message.	Otherwise,	a	completion	code	in	agreement	with	the	-code
and	-level	keys	in	options	will	be	returned.

As	an	example,	Tcl's	return	command	itself	could	be	implemented	in
terms	of	Tcl_SetReturnOptions	like	so:

if	((objc	%	2)	==	0)	{	/*	explicit	result	argument	*/

				objc--;

				Tcl_SetObjResult(interp,	objv[objc]);

}

return	Tcl_SetReturnOptions(interp,	Tcl_NewListObj(objc-1,	objv+1));

(It	is	not	really	implemented	that	way.	Internal	access	privileges	allow

for	a	more	efficient	alternative	that	meshes	better	with	the	bytecode
compiler.)

Note	that	a	newly	created	Tcl_Obj	may	be	passed	in	as	the	options
argument	without	the	need	to	tend	to	any	reference	counting.	This	is
analogous	to	Tcl_SetObjResult.

While	Tcl_SetReturnOptions	provides	a	general	interface	to	set	any
collection	of	return	options,	there	are	a	handful	of	return	options	that	are
very	frequently	used.	Most	notably	the	-errorinfo	and	-errorcode	return
options	should	be	set	properly	when	the	command	procedure	of	a
command	returns	TCL_ERROR.	Tcl	provides	several	simpler	interfaces
to	more	directly	set	these	return	options.

The	-errorinfo	option	holds	a	stack	trace	of	the	operations	that	were	in
progress	when	an	error	occurred,	and	is	intended	to	be	human-
readable.	The	-errorcode	option	holds	a	list	of	items	that	are	intended
to	be	machine-readable.	The	first	item	in	the	-errorcode	value	identifies
the	class	of	error	that	occurred	(e.g.	POSIX	means	an	error	occurred	in
a	POSIX	system	call)	and	additional	elements	hold	additional	pieces	of
information	that	depend	on	the	class.	See	the	tclvars	manual	entry	for
details	on	the	various	formats	for	the	-errorcode	option	used	by	Tcl's
built-in	commands.

The	-errorinfo	option	value	is	gradually	built	up	as	an	error	unwinds
through	the	nested	operations.	Each	time	an	error	code	is	returned	to
Tcl_Eval,	or	any	of	the	routines	that	performs	script	evaluation,	the
procedure	Tcl_AddErrorInfo	is	called	to	add	additional	text	to	the	-
errorinfo	value	describing	the	command	that	was	being	executed	when
the	error	occurred.	By	the	time	the	error	has	been	passed	all	the	way
back	to	the	application,	it	will	contain	a	complete	trace	of	the	activity	in
progress	when	the	error	occurred.

It	is	sometimes	useful	to	add	additional	information	to	the	-errorinfo
value	beyond	what	can	be	supplied	automatically	by	the	script
evaluation	routines.	Tcl_AddErrorInfo	may	be	used	for	this	purpose:	its
message	argument	is	an	additional	string	to	be	appended	to	the	-
errorinfo	option.	For	example,	when	an	error	arises	during	the	source

command,	the	procedure	Tcl_AddErrorInfo	is	called	to	record	the
name	of	the	file	being	processed	and	the	line	number	on	which	the	error
occurred.	Likewise,	when	an	error	arises	during	evaluation	of	a	Tcl
procedures,	the	procedure	name	and	line	number	within	the	procedure
are	recorded,	and	so	on.	The	best	time	to	call	Tcl_AddErrorInfo	is	just
after	a	script	evaluation	routine	has	returned	TCL_ERROR.	The	value
of	the	-errorline	return	option	(retrieved	via	a	call	to
Tcl_GetReturnOptions)	often	makes	up	a	useful	part	of	the	message
passed	to	Tcl_AddErrorInfo.

Tcl_AppendObjToErrorInfo	is	an	alternative	interface	to	the	same
functionality	as	Tcl_AddErrorInfo.	Tcl_AppendObjToErrorInfo	is
called	when	the	string	value	to	be	appended	to	the	-errorinfo	option	is
available	as	a	Tcl_Obj	instead	of	as	a	char	array.

Tcl_AddObjErrorInfo	is	nearly	identical	to	Tcl_AddErrorInfo,	except
that	it	has	an	additional	length	argument.	This	allows	the	message
string	to	contain	embedded	null	bytes.	This	is	essentially	never	a	good
idea.	If	the	message	needs	to	contain	the	null	character	U+0000,	Tcl's
usual	internal	encoding	rules	should	be	used	to	avoid	the	need	for	a
null	byte.	If	the	Tcl_AddObjErrorInfo	interface	is	used	at	all,	it	should
be	with	a	negative	length	value.

The	procedure	Tcl_SetObjErrorCode	is	used	to	set	the	-errorcode
return	option	to	the	list	object	errorObjPtr	built	up	by	the	caller.
Tcl_SetObjErrorCode	is	typically	invoked	just	before	returning	an	error.
If	an	error	is	returned	without	calling	Tcl_SetObjErrorCode	or
Tcl_SetErrorCode	the	Tcl	interpreter	automatically	sets	the	-errorcode
return	option	to	NONE.

The	procedure	Tcl_SetErrorCode	is	also	used	to	set	the	-errorcode
return	option.	However,	it	takes	one	or	more	strings	to	record	instead	of
an	object.	Otherwise,	it	is	similar	to	Tcl_SetObjErrorCode	in	behavior.

Tcl_SetErrorCodeVA	is	the	same	as	Tcl_SetErrorCode	except	that
instead	of	taking	a	variable	number	of	arguments	it	takes	an	argument
list.

Tcl_PosixError	sets	the	-errorcode	variable	after	an	error	in	a	POSIX
kernel	call.	It	reads	the	value	of	the	errno	C	variable	and	calls
Tcl_SetErrorCode	to	set	the	-errorcode	return	option	in	the	POSIX
format.	The	caller	must	previously	have	called	Tcl_SetErrno	to	set
errno;	this	is	necessary	on	some	platforms	(e.g.	Windows)	where	Tcl	is
linked	into	an	application	as	a	shared	library,	or	when	the	error	occurs	in
a	dynamically	loaded	extension.	See	the	manual	entry	for	Tcl_SetErrno
for	more	information.

Tcl_PosixError	returns	a	human-readable	diagnostic	message	for	the
error	(this	is	the	same	value	that	will	appear	as	the	third	element	in	the	-
errorcode	value).	It	may	be	convenient	to	include	this	string	as	part	of
the	error	message	returned	to	the	application	in	the	interpreter's	result.

Tcl_LogCommandInfo	is	invoked	after	an	error	occurs	in	an
interpreter.	It	adds	information	about	the	command	that	was	being
executed	when	the	error	occurred	to	the	-errorinfo	value,	and	the	line
number	stored	internally	in	the	interpreter	is	set.

In	older	releases	of	Tcl,	there	was	no	Tcl_GetReturnOptions	routine.	In
its	place,	the	global	Tcl	variables	errorInfo	and	errorCode	were	the
only	place	to	retrieve	the	error	information.	Much	existing	code	written
for	older	Tcl	releases	still	access	this	information	via	those	global
variables.

It	is	important	to	realize	that	while	reading	from	those	global	variables
remains	a	supported	way	to	access	these	return	option	values,	it	is
important	not	to	assume	that	writing	to	those	global	variables	will
properly	set	the	corresponding	return	options.	It	has	long	been
emphasized	in	this	manual	page	that	it	is	important	to	call	the
procedures	described	here	rather	than	setting	errorInfo	or	errorCode
directly	with	Tcl_ObjSetVar2.

If	the	procedure	Tcl_ResetResult	is	called,	it	clears	all	of	the	state	of
the	interpreter	associated	with	script	evaluation,	including	the	entire
return	options	dictionary.	In	particular,	the	-errorinfo	and	-errorcode
options	are	reset.	If	an	error	had	occurred,	the	Tcl_ResetResult	call	will
clear	the	error	state	to	make	it	appear	as	if	no	error	had	occurred	after

all.	The	global	variables	errorInfo	and	errorCode	are	not	modified	by
Tcl_ResetResult	so	they	continue	to	hold	a	record	of	information	about
the	most	recent	error	seen	in	an	interpreter.

SEE	ALSO

Tcl_DecrRefCount,	Tcl_IncrRefCount,	Tcl_Interp,	Tcl_ResetResult,
Tcl_SetErrno

KEYWORDS

error,	object,	object	result,	stack,	trace,	variable

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1989-1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1997	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	OpenTcp

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_OpenTcpClient,	Tcl_MakeTcpClientChannel,
Tcl_OpenTcpServer	-	procedures	to	open	channels	using	TCP
sockets

SYNOPSIS
#include	<tcl.h>
Tcl_Channel
Tcl_OpenTcpClient(interp,	port,	host,	myaddr,	myport,	async)
Tcl_Channel
Tcl_MakeTcpClientChannel(sock)
Tcl_Channel
Tcl_OpenTcpServer(interp,	port,	myaddr,	proc,	clientData)

ARGUMENTS
DESCRIPTION
TCL_OPENTCPCLIENT
TCL_MAKETCPCLIENTCHANNEL
TCL_OPENTCPSERVER
PLATFORM	ISSUES
SEE	ALSO
KEYWORDS

NAME

Tcl_OpenTcpClient,	Tcl_MakeTcpClientChannel,	Tcl_OpenTcpServer	-
procedures	to	open	channels	using	TCP	sockets

SYNOPSIS

#include	<tcl.h>	
Tcl_Channel
Tcl_OpenTcpClient(interp,	port,	host,	myaddr,	myport,	async)
Tcl_Channel

Tcl_Interp	*interp	(in)

int	port	(in)

const	char	*host	(in)

int	myport	(in)

const	char	*myaddr	(in)

int	async	(in)

Tcl_MakeTcpClientChannel(sock)
Tcl_Channel
Tcl_OpenTcpServer(interp,	port,	myaddr,	proc,	clientData)

ARGUMENTS

Tcl	interpreter	to	use	for
error	reporting.	If	non-
NULL	and	an	error	occurs,
an	error	message	is	left	in
the	interpreter's	result.

A	port	number	to	connect
to	as	a	client	or	to	listen	on
as	a	server.

A	string	specifying	a	host
name	or	address	for	the
remote	end	of	the
connection.

A	port	number	for	the
client's	end	of	the	socket.
If	0,	a	port	number	is
allocated	at	random.

A	string	specifying	the	host
name	or	address	for
network	interface	to	use
for	the	local	end	of	the
connection.	If	NULL,	a
default	interface	is	chosen.

If	nonzero,	the	client
socket	is	connected
asynchronously	to	the
server.

ClientData	sock	(in)

Tcl_TcpAcceptProc	*proc	(in)

ClientData	clientData	(in)

Platform-specific	handle
for	client	TCP	socket.

Pointer	to	a	procedure	to
invoke	each	time	a	new
connection	is	accepted	via
the	socket.

Arbitrary	one-word	value
to	pass	to	proc.

DESCRIPTION

These	functions	are	convenience	procedures	for	creating	channels	that
communicate	over	TCP	sockets.	The	operations	on	a	channel	are
described	in	the	manual	entry	for	Tcl_OpenFileChannel.

TCL_OPENTCPCLIENT

Tcl_OpenTcpClient	opens	a	client	TCP	socket	connected	to	a	port	on	a
specific	host,	and	returns	a	channel	that	can	be	used	to	communicate
with	the	server.	The	host	to	connect	to	can	be	specified	either	as	a
domain	name	style	name	(e.g.	www.sunlabs.com),	or	as	a	string
containing	the	alphanumeric	representation	of	its	four-byte	address
(e.g.	127.0.0.1).	Use	the	string	localhost	to	connect	to	a	TCP	socket	on
the	host	on	which	the	function	is	invoked.

The	myaddr	and	myport	arguments	allow	a	client	to	specify	an	address
for	the	local	end	of	the	connection.	If	myaddr	is	NULL,	then	an	interface
is	chosen	automatically	by	the	operating	system.	If	myport	is	0,	then	a
port	number	is	chosen	at	random	by	the	operating	system.

If	async	is	zero,	the	call	to	Tcl_OpenTcpClient	returns	only	after	the
client	socket	has	either	successfully	connected	to	the	server,	or	the
attempted	connection	has	failed.	If	async	is	nonzero	the	socket	is
connected	asynchronously	and	the	returned	channel	may	not	yet	be
connected	to	the	server	when	the	call	to	Tcl_OpenTcpClient	returns.	If

the	channel	is	in	blocking	mode	and	an	input	or	output	operation	is
done	on	the	channel	before	the	connection	is	completed	or	fails,	that
operation	will	wait	until	the	connection	either	completes	successfully	or
fails.	If	the	channel	is	in	nonblocking	mode,	the	input	or	output
operation	will	return	immediately	and	a	subsequent	call	to
Tcl_InputBlocked	on	the	channel	will	return	nonzero.

The	returned	channel	is	opened	for	reading	and	writing.	If	an	error
occurs	in	opening	the	socket,	Tcl_OpenTcpClient	returns	NULL	and
records	a	POSIX	error	code	that	can	be	retrieved	with	Tcl_GetErrno.	In
addition,	if	interp	is	non-NULL,	an	error	message	is	left	in	the
interpreter's	result.

The	newly	created	channel	is	not	registered	in	the	supplied	interpreter;
to	register	it,	use	Tcl_RegisterChannel.	If	one	of	the	standard
channels,	stdin,	stdout	or	stderr	was	previously	closed,	the	act	of
creating	the	new	channel	also	assigns	it	as	a	replacement	for	the
standard	channel.

TCL_MAKETCPCLIENTCHANNEL

Tcl_MakeTcpClientChannel	creates	a	Tcl_Channel	around	an
existing,	platform	specific,	handle	for	a	client	TCP	socket.

The	newly	created	channel	is	not	registered	in	the	supplied	interpreter;
to	register	it,	use	Tcl_RegisterChannel.	If	one	of	the	standard
channels,	stdin,	stdout	or	stderr	was	previously	closed,	the	act	of
creating	the	new	channel	also	assigns	it	as	a	replacement	for	the
standard	channel.

TCL_OPENTCPSERVER

Tcl_OpenTcpServer	opens	a	TCP	socket	on	the	local	host	on	a
specified	port	and	uses	the	Tcl	event	mechanism	to	accept	requests
from	clients	to	connect	to	it.	The	myaddr	argument	specifies	the
network	interface.	If	myaddr	is	NULL	the	special	address	INADDR_ANY
should	be	used	to	allow	connections	from	any	network	interface.	Each
time	a	client	connects	to	this	socket,	Tcl	creates	a	channel	for	the	new

connection	and	invokes	proc	with	information	about	the	channel.	Proc
must	match	the	following	prototype:

typedef	void	Tcl_TcpAcceptProc(

								ClientData	clientData,

								Tcl_Channel	channel,

								char	*hostName,

								int	port);

The	clientData	argument	will	be	the	same	as	the	clientData	argument	to
Tcl_OpenTcpServer,	channel	will	be	the	handle	for	the	new	channel,
hostName	points	to	a	string	containing	the	name	of	the	client	host
making	the	connection,	and	port	will	contain	the	client's	port	number.
The	new	channel	is	opened	for	both	input	and	output.	If	proc	raises	an
error,	the	connection	is	closed	automatically.	Proc	has	no	return	value,
but	if	it	wishes	to	reject	the	connection	it	can	close	channel.

Tcl_OpenTcpServer	normally	returns	a	pointer	to	a	channel
representing	the	server	socket.	If	an	error	occurs,	Tcl_OpenTcpServer
returns	NULL	and	records	a	POSIX	error	code	that	can	be	retrieved
with	Tcl_GetErrno.	In	addition,	if	the	interpreter	is	non-NULL,	an	error
message	is	left	in	the	interpreter's	result.

The	channel	returned	by	Tcl_OpenTcpServer	cannot	be	used	for	either
input	or	output.	It	is	simply	a	handle	for	the	socket	used	to	accept
connections.	The	caller	can	close	the	channel	to	shut	down	the	server
and	disallow	further	connections	from	new	clients.

TCP	server	channels	operate	correctly	only	in	applications	that	dispatch
events	through	Tcl_DoOneEvent	or	through	Tcl	commands	such	as
vwait;	otherwise	Tcl	will	never	notice	that	a	connection	request	from	a
remote	client	is	pending.

The	newly	created	channel	is	not	registered	in	the	supplied	interpreter;
to	register	it,	use	Tcl_RegisterChannel.	If	one	of	the	standard
channels,	stdin,	stdout	or	stderr	was	previously	closed,	the	act	of

creating	the	new	channel	also	assigns	it	as	a	replacement	for	the
standard	channel.

PLATFORM	ISSUES

On	Unix	platforms,	the	socket	handle	is	a	Unix	file	descriptor	as
returned	by	the	socket	system	call.	On	the	Windows	platform,	the
socket	handle	is	a	SOCKET	as	defined	in	the	WinSock	API.

SEE	ALSO

Tcl_OpenFileChannel,	Tcl_RegisterChannel,	vwait

KEYWORDS

client,	server,	TCP

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1996-7	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	Notifier

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_CreateEventSource,	Tcl_DeleteEventSource,
Tcl_SetMaxBlockTime,	Tcl_QueueEvent,
Tcl_ThreadQueueEvent,	Tcl_ThreadAlert,
Tcl_GetCurrentThread,	Tcl_DeleteEvents,	Tcl_InitNotifier,
Tcl_FinalizeNotifier,	Tcl_WaitForEvent,	Tcl_AlertNotifier,
Tcl_SetTimer,	Tcl_ServiceAll,	Tcl_ServiceEvent,
Tcl_GetServiceMode,	Tcl_SetServiceMode	-	the	event	queue
and	notifier	interfaces

SYNOPSIS
#include	<tcl.h>
void
Tcl_CreateEventSource(setupProc,	checkProc,	clientData)
void
Tcl_DeleteEventSource(setupProc,	checkProc,	clientData)
void
Tcl_SetMaxBlockTime(timePtr)
void
Tcl_QueueEvent(evPtr,	position)
void
Tcl_ThreadQueueEvent(threadId,	evPtr,	position)
void
Tcl_ThreadAlert(threadId)
Tcl_ThreadId
Tcl_GetCurrentThread()
void
Tcl_DeleteEvents(deleteProc,	clientData)
ClientData
Tcl_InitNotifier()
void
Tcl_FinalizeNotifier(clientData)

int
Tcl_WaitForEvent(timePtr)
void
Tcl_AlertNotifier(clientData)
void
Tcl_SetTimer(timePtr)
int
Tcl_ServiceAll()
int
Tcl_ServiceEvent(flags)
int
Tcl_GetServiceMode()
int
Tcl_SetServiceMode(mode)
void
Tcl_ServiceModeHook(mode)
void
Tcl_SetNotifier(notifierProcPtr)

ARGUMENTS
INTRODUCTION
NOTIFIER	BASICS
CREATING	A	NEW	EVENT	SOURCE

TCL_QUEUE_TAIL
TCL_QUEUE_HEAD
TCL_QUEUE_MARK

CREATING	A	NEW	NOTIFIER
REPLACING	THE	NOTIFIER
EXTERNAL	EVENT	LOOPS
SEE	ALSO
KEYWORDS

NAME

Tcl_CreateEventSource,	Tcl_DeleteEventSource,
Tcl_SetMaxBlockTime,	Tcl_QueueEvent,	Tcl_ThreadQueueEvent,
Tcl_ThreadAlert,	Tcl_GetCurrentThread,	Tcl_DeleteEvents,
Tcl_InitNotifier,	Tcl_FinalizeNotifier,	Tcl_WaitForEvent,	Tcl_AlertNotifier,

Tcl_SetTimer,	Tcl_ServiceAll,	Tcl_ServiceEvent,	Tcl_GetServiceMode,
Tcl_SetServiceMode	-	the	event	queue	and	notifier	interfaces

SYNOPSIS

#include	<tcl.h>
void
Tcl_CreateEventSource(setupProc,	checkProc,	clientData)
void
Tcl_DeleteEventSource(setupProc,	checkProc,	clientData)
void
Tcl_SetMaxBlockTime(timePtr)
void
Tcl_QueueEvent(evPtr,	position)
void
Tcl_ThreadQueueEvent(threadId,	evPtr,	position)
void
Tcl_ThreadAlert(threadId)
Tcl_ThreadId
Tcl_GetCurrentThread()
void
Tcl_DeleteEvents(deleteProc,	clientData)
ClientData
Tcl_InitNotifier()
void
Tcl_FinalizeNotifier(clientData)
int
Tcl_WaitForEvent(timePtr)
void
Tcl_AlertNotifier(clientData)
void
Tcl_SetTimer(timePtr)
int
Tcl_ServiceAll()
int
Tcl_ServiceEvent(flags)
int

Tcl_EventSetupProc	*setupProc	(in)

Tcl_EventCheckProc	*checkProc	(in)

ClientData	clientData	(in)

Tcl_Time	*timePtr	(in)

Tcl_GetServiceMode()
int
Tcl_SetServiceMode(mode)
void
Tcl_ServiceModeHook(mode)
void
Tcl_SetNotifier(notifierProcPtr)

ARGUMENTS

Procedure	to	invoke	to
prepare	for	event	wait	in
Tcl_DoOneEvent.

Procedure	for
Tcl_DoOneEvent	to
invoke	after	waiting	for
events.	Checks	to	see	if
any	events	have	occurred
and,	if	so,	queues	them.

Arbitrary	one-word	value
to	pass	to	setupProc,
checkProc,	or	deleteProc.

Indicates	the	maximum
amount	of	time	to	wait	for
an	event.	This	is	specified
as	an	interval	(how	long	to
wait),	not	an	absolute	time
(when	to	wakeup).	If	the
pointer	passed	to
Tcl_WaitForEvent	is
NULL,	it	means	there	is	no
maximum	wait	time:	wait
forever	if	necessary.

Tcl_Event	*evPtr	(in)

Tcl_QueuePosition	position	(in)

Tcl_ThreadId	threadId	(in)

Tcl_EventDeleteProc	*deleteProc	(in)

int	flags	(in)

int	mode	(in)

Tcl_NotifierProcs*	notifierProcPtr	(in)

An	event	to	add	to	the
event	queue.	The	storage
for	the	event	must	have
been	allocated	by	the
caller	using	Tcl_Alloc	or
ckalloc.

Where	to	add	the	new
event	in	the	queue:
TCL_QUEUE_TAIL,
TCL_QUEUE_HEAD,	or
TCL_QUEUE_MARK.

A	unique	identifier	for	a
thread.

Procedure	to	invoke	for
each	queued	event	in
Tcl_DeleteEvents.

What	types	of	events	to
service.	These	flags	are
the	same	as	those	passed
to	Tcl_DoOneEvent.

Indicates	whether	events
should	be	serviced	by
Tcl_ServiceAll.	Must	be
one	of
TCL_SERVICE_NONE	or
TCL_SERVICE_ALL.

Structure	of	function
pointers	describing	notifier
procedures	that	are	to
replace	the	ones	installed
in	the	executable.	See

REPLACING	THE
NOTIFIER	for	details.

INTRODUCTION

The	interfaces	described	here	are	used	to	customize	the	Tcl	event	loop.
The	two	most	common	customizations	are	to	add	new	sources	of
events	and	to	merge	Tcl's	event	loop	with	some	other	event	loop,	such
as	one	provided	by	an	application	in	which	Tcl	is	embedded.	Each	of
these	tasks	is	described	in	a	separate	section	below.

The	procedures	in	this	manual	entry	are	the	building	blocks	out	of	which
the	Tcl	event	notifier	is	constructed.	The	event	notifier	is	the	lowest
layer	in	the	Tcl	event	mechanism.	It	consists	of	three	things:

[1]
Event	sources:	these	represent	the	ways	in	which	events	can	be
generated.	For	example,	there	is	a	timer	event	source	that
implements	the	Tcl_CreateTimerHandler	procedure	and	the	after
command,	and	there	is	a	file	event	source	that	implements	the
Tcl_CreateFileHandler	procedure	on	Unix	systems.	An	event
source	must	work	with	the	notifier	to	detect	events	at	the	right
times,	record	them	on	the	event	queue,	and	eventually	notify
higher-level	software	that	they	have	occurred.	The	procedures
Tcl_CreateEventSource,	Tcl_DeleteEventSource,	and
Tcl_SetMaxBlockTime,	Tcl_QueueEvent,	and	Tcl_DeleteEvents
are	used	primarily	by	event	sources.

[2]
The	event	queue:	for	non-threaded	applications,	there	is	a	single
queue	for	the	whole	application,	containing	events	that	have	been
detected	but	not	yet	serviced.	Event	sources	place	events	onto	the
queue	so	that	they	may	be	processed	in	order	at	appropriate	times
during	the	event	loop.	The	event	queue	guarantees	a	fair	discipline
of	event	handling,	so	that	no	event	source	can	starve	the	others.	It
also	allows	events	to	be	saved	for	servicing	at	a	future	time.
Threaded	applications	work	in	a	similar	manner,	except	that	there

is	a	separate	event	queue	for	each	thread	containing	a	Tcl
interpreter.	Tcl_QueueEvent	is	used	(primarily	by	event	sources)
to	add	events	to	the	event	queue	and	Tcl_DeleteEvents	is	used	to
remove	events	from	the	queue	without	processing	them.	In	a
threaded	application,	Tcl_QueueEvent	adds	an	event	to	the
current	thread's	queue,	and	Tcl_ThreadQueueEvent	adds	an
event	to	a	queue	in	a	specific	thread.

[3]
The	event	loop:	in	order	to	detect	and	process	events,	the
application	enters	a	loop	that	waits	for	events	to	occur,	places	them
on	the	event	queue,	and	then	processes	them.	Most	applications
will	do	this	by	calling	the	procedure	Tcl_DoOneEvent,	which	is
described	in	a	separate	manual	entry.

Most	Tcl	applications	need	not	worry	about	any	of	the	internals	of	the
Tcl	notifier.	However,	the	notifier	now	has	enough	flexibility	to	be
retargeted	either	for	a	new	platform	or	to	use	an	external	event	loop
(such	as	the	Motif	event	loop,	when	Tcl	is	embedded	in	a	Motif
application).	The	procedures	Tcl_WaitForEvent	and	Tcl_SetTimer	are
normally	implemented	by	Tcl,	but	may	be	replaced	with	new	versions	to
retarget	the	notifier	(the	Tcl_InitNotifier,	Tcl_AlertNotifier,
Tcl_FinalizeNotifier,	Tcl_Sleep,	Tcl_CreateFileHandler,	and
Tcl_DeleteFileHandler	must	also	be	replaced;	see	CREATING	A	NEW
NOTIFIER	below	for	details).	The	procedures	Tcl_ServiceAll,
Tcl_ServiceEvent,	Tcl_GetServiceMode,	and	Tcl_SetServiceMode
are	provided	to	help	connect	Tcl's	event	loop	to	an	external	event	loop
such	as	Motif's.

NOTIFIER	BASICS

The	easiest	way	to	understand	how	the	notifier	works	is	to	consider
what	happens	when	Tcl_DoOneEvent	is	called.	Tcl_DoOneEvent	is
passed	a	flags	argument	that	indicates	what	sort	of	events	it	is	OK	to
process	and	also	whether	or	not	to	block	if	no	events	are	ready.
Tcl_DoOneEvent	does	the	following	things:

[1]

Check	the	event	queue	to	see	if	it	contains	any	events	that	can	be
serviced.	If	so,	service	the	first	possible	event,	remove	it	from	the
queue,	and	return.	It	does	this	by	calling	Tcl_ServiceEvent	and
passing	in	the	flags	argument.

[2]
Prepare	to	block	for	an	event.	To	do	this,	Tcl_DoOneEvent	invokes
a	setup	procedure	in	each	event	source.	The	event	source	will
perform	event-source	specific	initialization	and	possibly	call
Tcl_SetMaxBlockTime	to	limit	how	long	Tcl_WaitForEvent	will
block	if	no	new	events	occur.

[3]
Call	Tcl_WaitForEvent.	This	procedure	is	implemented	differently
on	different	platforms;	it	waits	for	an	event	to	occur,	based	on	the
information	provided	by	the	event	sources.	It	may	cause	the
application	to	block	if	timePtr	specifies	an	interval	other	than	0.
Tcl_WaitForEvent	returns	when	something	has	happened,	such	as
a	file	becoming	readable	or	the	interval	given	by	timePtr	expiring.	If
there	are	no	events	for	Tcl_WaitForEvent	to	wait	for,	so	that	it
would	block	forever,	then	it	returns	immediately	and
Tcl_DoOneEvent	returns	0.

[4]
Call	a	check	procedure	in	each	event	source.	The	check	procedure
determines	whether	any	events	of	interest	to	this	source	occurred.
If	so,	the	events	are	added	to	the	event	queue.

[5]
Check	the	event	queue	to	see	if	it	contains	any	events	that	can	be
serviced.	If	so,	service	the	first	possible	event,	remove	it	from	the
queue,	and	return.

[6]
See	if	there	are	idle	callbacks	pending.	If	so,	invoke	all	of	them	and
return.

[7]

Either	return	0	to	indicate	that	no	events	were	ready,	or	go	back	to
step	[2]	if	blocking	was	requested	by	the	caller.

CREATING	A	NEW	EVENT	SOURCE

An	event	source	consists	of	three	procedures	invoked	by	the	notifier,
plus	additional	C	procedures	that	are	invoked	by	higher-level	code	to
arrange	for	event-driven	callbacks.	The	three	procedures	called	by	the
notifier	consist	of	the	setup	and	check	procedures	described	above,
plus	an	additional	procedure	that	is	invoked	when	an	event	is	removed
from	the	event	queue	for	servicing.

The	procedure	Tcl_CreateEventSource	creates	a	new	event	source.
Its	arguments	specify	the	setup	procedure	and	check	procedure	for	the
event	source.	SetupProc	should	match	the	following	prototype:

typedef	void	Tcl_EventSetupProc(

								ClientData	clientData,

								int	flags);

The	clientData	argument	will	be	the	same	as	the	clientData	argument	to
Tcl_CreateEventSource;	it	is	typically	used	to	point	to	private
information	managed	by	the	event	source.	The	flags	argument	will	be
the	same	as	the	flags	argument	passed	to	Tcl_DoOneEvent	except
that	it	will	never	be	0	(Tcl_DoOneEvent	replaces	0	with
TCL_ALL_EVENTS).	Flags	indicates	what	kinds	of	events	should	be
considered;	if	the	bit	corresponding	to	this	event	source	is	not	set,	the
event	source	should	return	immediately	without	doing	anything.	For
example,	the	file	event	source	checks	for	the	TCL_FILE_EVENTS	bit.

SetupProc's	job	is	to	make	sure	that	the	application	wakes	up	when
events	of	the	desired	type	occur.	This	is	typically	done	in	a	platform-
dependent	fashion.	For	example,	under	Unix	an	event	source	might	call
Tcl_CreateFileHandler;	under	Windows	it	might	request	notification
with	a	Windows	event.	For	timer-driven	event	sources	such	as	timer
events	or	any	polled	event,	the	event	source	can	call

Tcl_SetMaxBlockTime	to	force	the	application	to	wake	up	after	a
specified	time	even	if	no	events	have	occurred.	If	no	event	source	calls
Tcl_SetMaxBlockTime	then	Tcl_WaitForEvent	will	wait	as	long	as
necessary	for	an	event	to	occur;	otherwise,	it	will	only	wait	as	long	as
the	shortest	interval	passed	to	Tcl_SetMaxBlockTime	by	one	of	the
event	sources.	If	an	event	source	knows	that	it	already	has	events
ready	to	report,	it	can	request	a	zero	maximum	block	time.	For
example,	the	setup	procedure	for	the	X	event	source	looks	to	see	if
there	are	events	already	queued.	If	there	are,	it	calls
Tcl_SetMaxBlockTime	with	a	0	block	time	so	that	Tcl_WaitForEvent
does	not	block	if	there	is	no	new	data	on	the	X	connection.	The	timePtr
argument	to	Tcl_WaitForEvent	points	to	a	structure	that	describes	a
time	interval	in	seconds	and	microseconds:

typedef	struct	Tcl_Time	{

								long	sec;

								long	usec;

}	Tcl_Time;

The	usec	field	should	be	less	than	1000000.

Information	provided	to	Tcl_SetMaxBlockTime	is	only	used	for	the	next
call	to	Tcl_WaitForEvent;	it	is	discarded	after	Tcl_WaitForEvent
returns.	The	next	time	an	event	wait	is	done	each	of	the	event	sources'
setup	procedures	will	be	called	again,	and	they	can	specify	new
information	for	that	event	wait.

If	the	application	uses	an	external	event	loop	rather	than
Tcl_DoOneEvent,	the	event	sources	may	need	to	call
Tcl_SetMaxBlockTime	at	other	times.	For	example,	if	a	new	event
handler	is	registered	that	needs	to	poll	for	events,	the	event	source	may
call	Tcl_SetMaxBlockTime	to	set	the	block	time	to	zero	to	force	the
external	event	loop	to	call	Tcl.	In	this	case,	Tcl_SetMaxBlockTime
invokes	Tcl_SetTimer	with	the	shortest	interval	seen	since	the	last	call
to	Tcl_DoOneEvent	or	Tcl_ServiceAll.

In	addition	to	the	generic	procedure	Tcl_SetMaxBlockTime,	other
platform-specific	procedures	may	also	be	available	for	setupProc,	if
there	is	additional	information	needed	by	Tcl_WaitForEvent	on	that
platform.	For	example,	on	Unix	systems	the	Tcl_CreateFileHandler
interface	can	be	used	to	wait	for	file	events.

The	second	procedure	provided	by	each	event	source	is	its	check
procedure,	indicated	by	the	checkProc	argument	to
Tcl_CreateEventSource.	CheckProc	must	match	the	following
prototype:

typedef	void	Tcl_EventCheckProc(

								ClientData	clientData,

								int	flags);

The	arguments	to	this	procedure	are	the	same	as	those	for	setupProc.
CheckProc	is	invoked	by	Tcl_DoOneEvent	after	it	has	waited	for
events.	Presumably	at	least	one	event	source	is	now	prepared	to	queue
an	event.	Tcl_DoOneEvent	calls	each	of	the	event	sources	in	turn,	so
they	all	have	a	chance	to	queue	any	events	that	are	ready.	The	check
procedure	does	two	things.	First,	it	must	see	if	any	events	have
triggered.	Different	event	sources	do	this	in	different	ways.

If	an	event	source's	check	procedure	detects	an	interesting	event,	it
must	add	the	event	to	Tcl's	event	queue.	To	do	this,	the	event	source
calls	Tcl_QueueEvent.	The	evPtr	argument	is	a	pointer	to	a
dynamically	allocated	structure	containing	the	event	(see	below	for
more	information	on	memory	management	issues).	Each	event	source
can	define	its	own	event	structure	with	whatever	information	is	relevant
to	that	event	source.	However,	the	first	element	of	the	structure	must	be
a	structure	of	type	Tcl_Event,	and	the	address	of	this	structure	is	used
when	communicating	between	the	event	source	and	the	rest	of	the
notifier.	A	Tcl_Event	has	the	following	definition:

typedef	struct	{

				Tcl_EventProc	*proc;

				struct	Tcl_Event	*nextPtr;

}	Tcl_Event;

The	event	source	must	fill	in	the	proc	field	of	the	event	before	calling
Tcl_QueueEvent.	The	nextPtr	is	used	to	link	together	the	events	in	the
queue	and	should	not	be	modified	by	the	event	source.

An	event	may	be	added	to	the	queue	at	any	of	three	positions,
depending	on	the	position	argument	to	Tcl_QueueEvent:

TCL_QUEUE_TAIL
Add	the	event	at	the	back	of	the	queue,	so	that	all	other	pending
events	will	be	serviced	first.	This	is	almost	always	the	right	place
for	new	events.

TCL_QUEUE_HEAD
Add	the	event	at	the	front	of	the	queue,	so	that	it	will	be	serviced
before	all	other	queued	events.

TCL_QUEUE_MARK
Add	the	event	at	the	front	of	the	queue,	unless	there	are	other
events	at	the	front	whose	position	is	TCL_QUEUE_MARK;	if	so,
add	the	new	event	just	after	all	other	TCL_QUEUE_MARK	events.
This	value	of	position	is	used	to	insert	an	ordered	sequence	of
events	at	the	front	of	the	queue,	such	as	a	series	of	Enter	and
Leave	events	synthesized	during	a	grab	or	ungrab	operation	in	Tk.

When	it	is	time	to	handle	an	event	from	the	queue	(steps	1	and	4
above)	Tcl_ServiceEvent	will	invoke	the	proc	specified	in	the	first
queued	Tcl_Event	structure.	Proc	must	match	the	following	prototype:

typedef	int	Tcl_EventProc(

								Tcl_Event	*evPtr,

								int	flags);

The	first	argument	to	proc	is	a	pointer	to	the	event,	which	will	be	the
same	as	the	first	argument	to	the	Tcl_QueueEvent	call	that	added	the
event	to	the	queue.	The	second	argument	to	proc	is	the	flags	argument
for	the	current	call	to	Tcl_ServiceEvent;	this	is	used	by	the	event
source	to	return	immediately	if	its	events	are	not	relevant.

It	is	up	to	proc	to	handle	the	event,	typically	by	invoking	one	or	more	Tcl
commands	or	C-level	callbacks.	Once	the	event	source	has	finished
handling	the	event	it	returns	1	to	indicate	that	the	event	can	be	removed
from	the	queue.	If	for	some	reason	the	event	source	decides	that	the
event	cannot	be	handled	at	this	time,	it	may	return	0	to	indicate	that	the
event	should	be	deferred	for	processing	later;	in	this	case
Tcl_ServiceEvent	will	go	on	to	the	next	event	in	the	queue	and	attempt
to	service	it.	There	are	several	reasons	why	an	event	source	might
defer	an	event.	One	possibility	is	that	events	of	this	type	are	excluded
by	the	flags	argument.	For	example,	the	file	event	source	will	always
return	0	if	the	TCL_FILE_EVENTS	bit	is	not	set	in	flags.	Another
example	of	deferring	events	happens	in	Tk	if	Tk_RestrictEvents	has
been	invoked	to	defer	certain	kinds	of	window	events.

When	proc	returns	1,	Tcl_ServiceEvent	will	remove	the	event	from	the
event	queue	and	free	its	storage.	Note	that	the	storage	for	an	event
must	be	allocated	by	the	event	source	(using	Tcl_Alloc	or	the	Tcl	macro
ckalloc)	before	calling	Tcl_QueueEvent,	but	it	will	be	freed	by
Tcl_ServiceEvent,	not	by	the	event	source.

Threaded	applications	work	in	a	similar	manner,	except	that	there	is	a
separate	event	queue	for	each	thread	containing	a	Tcl	interpreter.
Calling	Tcl_QueueEvent	in	a	multithreaded	application	adds	an	event
to	the	current	thread's	queue.	To	add	an	event	to	another	thread's
queue,	use	Tcl_ThreadQueueEvent.	Tcl_ThreadQueueEvent	accepts
as	an	argument	a	Tcl_ThreadId	argument,	which	uniquely	identifies	a
thread	in	a	Tcl	application.	To	obtain	the	Tcl_ThreadID	for	the	current
thread,	use	the	Tcl_GetCurrentThread	procedure.	(A	thread	would
then	need	to	pass	this	identifier	to	other	threads	for	those	threads	to	be
able	to	add	events	to	its	queue.)	After	adding	an	event	to	another
thread's	queue,	you	then	typically	need	to	call	Tcl_ThreadAlert	to
“wake	up”	that	thread's	notifier	to	alert	it	to	the	new	event.

Tcl_DeleteEvents	can	be	used	to	explicitly	remove	one	or	more	events
from	the	event	queue.	Tcl_DeleteEvents	calls	proc	for	each	event	in
the	queue,	deleting	those	for	with	the	procedure	returns	1.	Events	for
which	the	procedure	returns	0	are	left	in	the	queue.	Proc	should	match
the	following	prototype:

typedef	int	Tcl_EventDeleteProc(

								Tcl_Event	*evPtr,

								ClientData	clientData);

The	clientData	argument	will	be	the	same	as	the	clientData	argument	to
Tcl_DeleteEvents;	it	is	typically	used	to	point	to	private	information
managed	by	the	event	source.	The	evPtr	will	point	to	the	next	event	in
the	queue.

Tcl_DeleteEventSource	deletes	an	event	source.	The	setupProc,
checkProc,	and	clientData	arguments	must	exactly	match	those
provided	to	the	Tcl_CreateEventSource	for	the	event	source	to	be
deleted.	If	no	such	source	exists,	Tcl_DeleteEventSource	has	no
effect.

CREATING	A	NEW	NOTIFIER

The	notifier	consists	of	all	the	procedures	described	in	this	manual
entry,	plus	Tcl_DoOneEvent	and	Tcl_Sleep,	which	are	available	on	all
platforms,	and	Tcl_CreateFileHandler	and	Tcl_DeleteFileHandler,
which	are	Unix-specific.	Most	of	these	procedures	are	generic,	in	that
they	are	the	same	for	all	notifiers.	However,	none	of	the	procedures	are
notifier-dependent:	Tcl_InitNotifier,	Tcl_AlertNotifier,
Tcl_FinalizeNotifier,	Tcl_SetTimer,	Tcl_Sleep,	Tcl_WaitForEvent,
Tcl_CreateFileHandler,	Tcl_DeleteFileHandler	and
Tcl_ServiceModeHook.	To	support	a	new	platform	or	to	integrate	Tcl
with	an	application-specific	event	loop,	you	must	write	new	versions	of
these	procedures.

Tcl_InitNotifier	initializes	the	notifier	state	and	returns	a	handle	to	the
notifier	state.	Tcl	calls	this	procedure	when	initializing	a	Tcl	interpreter.
Similarly,	Tcl_FinalizeNotifier	shuts	down	the	notifier,	and	is	called	by
Tcl_Finalize	when	shutting	down	a	Tcl	interpreter.

Tcl_WaitForEvent	is	the	lowest-level	procedure	in	the	notifier;	it	is
responsible	for	waiting	for	an	“interesting”	event	to	occur	or	for	a	given
time	to	elapse.	Before	Tcl_WaitForEvent	is	invoked,	each	of	the	event
sources'	setup	procedure	will	have	been	invoked.	The	timePtr	argument
to	Tcl_WaitForEvent	gives	the	maximum	time	to	block	for	an	event,
based	on	calls	to	Tcl_SetMaxBlockTime	made	by	setup	procedures
and	on	other	information	(such	as	the	TCL_DONT_WAIT	bit	in	flags).

Ideally,	Tcl_WaitForEvent	should	only	wait	for	an	event	to	occur;	it
should	not	actually	process	the	event	in	any	way.	Later	on,	the	event
sources	will	process	the	raw	events	and	create	Tcl_Events	on	the	event
queue	in	their	checkProc	procedures.	However,	on	some	platforms
(such	as	Windows)	this	is	not	possible;	events	may	be	processed	in
Tcl_WaitForEvent,	including	queuing	Tcl_Events	and	more	(for
example,	callbacks	for	native	widgets	may	be	invoked).	The	return
value	from	Tcl_WaitForEvent	must	be	either	0,	1,	or	-1.	On	platforms
such	as	Windows	where	events	get	processed	in	Tcl_WaitForEvent,	a
return	value	of	1	means	that	there	may	be	more	events	still	pending	that
have	not	been	processed.	This	is	a	sign	to	the	caller	that	it	must	call
Tcl_WaitForEvent	again	if	it	wants	all	pending	events	to	be	processed.
A	0	return	value	means	that	calling	Tcl_WaitForEvent	again	will	not
have	any	effect:	either	this	is	a	platform	where	Tcl_WaitForEvent	only
waits	without	doing	any	event	processing,	or	Tcl_WaitForEvent	knows
for	sure	that	there	are	no	additional	events	to	process	(e.g.	it	returned
because	the	time	elapsed).	Finally,	a	return	value	of	-1	means	that	the
event	loop	is	no	longer	operational	and	the	application	should	probably
unwind	and	terminate.	Under	Windows	this	happens	when	a	WM_QUIT
message	is	received;	under	Unix	it	happens	when	Tcl_WaitForEvent
would	have	waited	forever	because	there	were	no	active	event	sources
and	the	timeout	was	infinite.

Tcl_AlertNotifier	is	used	in	multithreaded	applications	to	allow	any
thread	to	“wake	up”	the	notifier	to	alert	it	to	new	events	on	its	queue.

Tcl_AlertNotifier	requires	as	an	argument	the	notifier	handle	returned
by	Tcl_InitNotifier.

If	the	notifier	will	be	used	with	an	external	event	loop,	then	it	must	also
support	the	Tcl_SetTimer	interface.	Tcl_SetTimer	is	invoked	by
Tcl_SetMaxBlockTime	whenever	the	maximum	blocking	time	has	been
reduced.	Tcl_SetTimer	should	arrange	for	the	external	event	loop	to
invoke	Tcl_ServiceAll	after	the	specified	interval	even	if	no	events
have	occurred.	This	interface	is	needed	because	Tcl_WaitForEvent	is
not	invoked	when	there	is	an	external	event	loop.	If	the	notifier	will	only
be	used	from	Tcl_DoOneEvent,	then	Tcl_SetTimer	need	not	do
anything.

Tcl_ServiceModeHook	is	called	by	the	platform-independent	portion	of
the	notifier	when	client	code	makes	a	call	to	Tcl_SetServiceMode.	This
hook	is	provided	to	support	operating	systems	that	require	special	event
handling	when	the	application	is	in	a	modal	loop	(the	Windows	notifier,
for	instance,	uses	this	hook	to	create	a	communication	window).

On	Unix	systems,	the	file	event	source	also	needs	support	from	the
notifier.	The	file	event	source	consists	of	the	Tcl_CreateFileHandler
and	Tcl_DeleteFileHandler	procedures,	which	are	described	in	the
Tcl_CreateFileHandler	manual	page.

The	Tcl_Sleep	and	Tcl_DoOneEvent	interfaces	are	described	in	their
respective	manual	pages.

The	easiest	way	to	create	a	new	notifier	is	to	look	at	the	code	for	an
existing	notifier,	such	as	the	files	unix/tclUnixNotfy.c	or
win/tclWinNotify.c	in	the	Tcl	source	distribution.

REPLACING	THE	NOTIFIER

A	notifier	that	has	been	written	according	to	the	conventions	above	can
also	be	installed	in	a	running	process	in	place	of	the	standard	notifier.
This	mechanism	is	used	so	that	a	single	executable	can	be	used	(with
the	standard	notifier)	as	a	stand-alone	program	and	reused	(with	a
replacement	notifier	in	a	loadable	extension)	as	an	extension	to	another

program,	such	as	a	Web	browser	plugin.

To	do	this,	the	extension	makes	a	call	to	Tcl_SetNotifier	passing	a
pointer	to	a	Tcl_NotifierProcs	data	structure.	The	structure	has	the
following	layout:

typedef	struct	Tcl_NotifierProcs	{

				Tcl_SetTimerProc	*setTimerProc;

				Tcl_WaitForEventProc	*waitForEventProc;

				Tcl_CreateFileHandlerProc	*createFileHandlerProc;

				Tcl_DeleteFileHandlerProc	*deleteFileHandlerProc;

				Tcl_InitNotifierProc	*initNotifierProc;

				Tcl_FinalizeNotifierProc	*finalizeNotifierProc;

				Tcl_AlertNotifierProc	*alertNotifierProc;

				Tcl_ServiceModeHookProc	*serviceModeHookProc;

}	Tcl_NotifierProcs;

Following	the	call	to	Tcl_SetNotifier,	the	pointers	given	in	the
Tcl_NotifierProcs	structure	replace	whatever	notifier	had	been
installed	in	the	process.

It	is	extraordinarily	unwise	to	replace	a	running	notifier.	Normally,
Tcl_SetNotifier	should	be	called	at	process	initialization	time	before	the
first	call	to	Tcl_InitNotifier.

EXTERNAL	EVENT	LOOPS

The	notifier	interfaces	are	designed	so	that	Tcl	can	be	embedded	into
applications	that	have	their	own	private	event	loops.	In	this	case,	the
application	does	not	call	Tcl_DoOneEvent	except	in	the	case	of
recursive	event	loops	such	as	calls	to	the	Tcl	commands	update	or
vwait.	Most	of	the	time	is	spent	in	the	external	event	loop	of	the
application.	In	this	case	the	notifier	must	arrange	for	the	external	event
loop	to	call	back	into	Tcl	when	something	happens	on	the	various	Tcl
event	sources.	These	callbacks	should	arrange	for	appropriate	Tcl
events	to	be	placed	on	the	Tcl	event	queue.

Because	the	external	event	loop	is	not	calling	Tcl_DoOneEvent	on	a
regular	basis,	it	is	up	to	the	notifier	to	arrange	for	Tcl_ServiceEvent	to
be	called	whenever	events	are	pending	on	the	Tcl	event	queue.	The
easiest	way	to	do	this	is	to	invoke	Tcl_ServiceAll	at	the	end	of	each
callback	from	the	external	event	loop.	This	will	ensure	that	all	of	the
event	sources	are	polled,	any	queued	events	are	serviced,	and	any
pending	idle	handlers	are	processed	before	returning	control	to	the
application.	In	addition,	event	sources	that	need	to	poll	for	events	can
call	Tcl_SetMaxBlockTime	to	force	the	external	event	loop	to	call	Tcl
even	if	no	events	are	available	on	the	system	event	queue.

As	a	side	effect	of	processing	events	detected	in	the	main	external
event	loop,	Tcl	may	invoke	Tcl_DoOneEvent	to	start	a	recursive	event
loop	in	commands	like	vwait.	Tcl_DoOneEvent	will	invoke	the	external
event	loop,	which	will	result	in	callbacks	as	described	in	the	preceding
paragraph,	which	will	result	in	calls	to	Tcl_ServiceAll.	However,	in
these	cases	it	is	undesirable	to	service	events	in	Tcl_ServiceAll.
Servicing	events	there	is	unnecessary	because	control	will	immediately
return	to	the	external	event	loop	and	hence	to	Tcl_DoOneEvent,	which
can	service	the	events	itself.	Furthermore,	Tcl_DoOneEvent	is
supposed	to	service	only	a	single	event,	whereas	Tcl_ServiceAll
normally	services	all	pending	events.	To	handle	this	situation,
Tcl_DoOneEvent	sets	a	flag	for	Tcl_ServiceAll	that	causes	it	to	return
without	servicing	any	events.	This	flag	is	called	the	service	mode;
Tcl_DoOneEvent	restores	it	to	its	previous	value	before	it	returns.

In	some	cases,	however,	it	may	be	necessary	for	Tcl_ServiceAll	to
service	events	even	when	it	has	been	invoked	from	Tcl_DoOneEvent.
This	happens	when	there	is	yet	another	recursive	event	loop	invoked
via	an	event	handler	called	by	Tcl_DoOneEvent	(such	as	one	that	is
part	of	a	native	widget).	In	this	case,	Tcl_DoOneEvent	may	not	have	a
chance	to	service	events	so	Tcl_ServiceAll	must	service	them	all.	Any
recursive	event	loop	that	calls	an	external	event	loop	rather	than
Tcl_DoOneEvent	must	reset	the	service	mode	so	that	all	events	get
processed	in	Tcl_ServiceAll.	This	is	done	by	invoking	the
Tcl_SetServiceMode	procedure.	If	Tcl_SetServiceMode	is	passed
TCL_SERVICE_NONE,	then	calls	to	Tcl_ServiceAll	will	return

immediately	without	processing	any	events.	If	Tcl_SetServiceMode	is
passed	TCL_SERVICE_ALL,	then	calls	to	Tcl_ServiceAll	will	behave
normally.	Tcl_SetServiceMode	returns	the	previous	value	of	the
service	mode,	which	should	be	restored	when	the	recursive	loop	exits.
Tcl_GetServiceMode	returns	the	current	value	of	the	service	mode.

SEE	ALSO

Tcl_CreateFileHandler,	Tcl_DeleteFileHandler,	Tcl_Sleep,
Tcl_DoOneEvent,	Thread

KEYWORDS

event,	notifier,	event	queue,	event	sources,	file	events,	timer,	idle,
service	mode,	threads

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1998-1999	Scriptics	Corporation
Copyright	©	1995-1997	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	Panic

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_Panic,	Tcl_PanicVA,	Tcl_SetPanicProc	-	report	fatal	error
and	abort

SYNOPSIS
#include	<tcl.h>
void
Tcl_Panic(format,	arg,	arg,	...)
void
Tcl_PanicVA(format,	argList)
void
Tcl_SetPanicProc(panicProc)

ARGUMENTS
DESCRIPTION
SEE	ALSO
KEYWORDS

NAME

Tcl_Panic,	Tcl_PanicVA,	Tcl_SetPanicProc	-	report	fatal	error	and	abort

SYNOPSIS

#include	<tcl.h>
void
Tcl_Panic(format,	arg,	arg,	...)
void
Tcl_PanicVA(format,	argList)
void
Tcl_SetPanicProc(panicProc)

ARGUMENTS

const	char*	format	(in)

arg	(in)

va_list	argList	(in)

Tcl_PanicProc	*panicProc	(in)

A	printf-style	format	string.

Arguments	matching	the
format	string.

An	argument	list	of
arguments	matching	the
format	string.	Must	have
been	initialized	using
va_start,	and	cleared
using	va_end.

Procedure	to	report	fatal
error	message	and	abort.

DESCRIPTION

When	the	Tcl	library	detects	that	its	internal	data	structures	are	in	an
inconsistent	state,	or	that	its	C	procedures	have	been	called	in	a
manner	inconsistent	with	their	documentation,	it	calls	Tcl_Panic	to
display	a	message	describing	the	error	and	abort	the	process.	The
format	argument	is	a	format	string	describing	how	to	format	the
remaining	arguments	arg	into	an	error	message,	according	to	the	same
formatting	rules	used	by	the	printf	family	of	functions.	The	same
formatting	rules	are	also	used	by	the	built-in	Tcl	command	format.

In	a	freshly	loaded	Tcl	library,	Tcl_Panic	prints	the	formatted	error
message	to	the	standard	error	file	of	the	process,	and	then	calls	abort
to	terminate	the	process.	Tcl_Panic	does	not	return.

Tcl_SetPanicProc	may	be	used	to	modify	the	behavior	of	Tcl_Panic.
The	panicProc	argument	should	match	the	type	Tcl_PanicProc:

typedef	void	Tcl_PanicProc(

								const	char	*format,

								arg,	arg,...);

After	Tcl_SetPanicProc	returns,	any	future	calls	to	Tcl_Panic	will	call
panicProc,	passing	along	the	format	and	arg	arguments.	To	maintain
consistency	with	the	callers	of	Tcl_Panic,	panicProc	must	not	return;	it
must	call	abort.	panicProc	should	avoid	making	calls	into	the	Tcl	library,
or	into	other	libraries	that	may	call	the	Tcl	library,	since	the	original	call
to	Tcl_Panic	indicates	the	Tcl	library	is	not	in	a	state	of	reliable
operation.

The	typical	use	of	Tcl_SetPanicProc	arranges	for	the	error	message	to
be	displayed	or	reported	in	a	manner	more	suitable	for	the	application
or	the	platform.	As	an	example,	the	Windows	implementation	of	wish
calls	Tcl_SetPanicProc	to	force	all	panic	messages	to	be	displayed	in
a	system	dialog	box,	rather	than	to	be	printed	to	the	standard	error	file
(usually	not	visible	under	Windows).

Although	the	primary	callers	of	Tcl_Panic	are	the	procedures	of	the	Tcl
library,	Tcl_Panic	is	a	public	function	and	may	be	called	by	any
extension	or	application	that	wishes	to	abort	the	process	and	have	a
panic	message	displayed	the	same	way	that	panic	messages	from	Tcl
will	be	displayed.

Tcl_PanicVA	is	the	same	as	Tcl_Panic	except	that	instead	of	taking	a
variable	number	of	arguments	it	takes	an	argument	list.

SEE	ALSO

abort,	printf,	exec,	format

KEYWORDS

abort,	fatal,	error

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.

Tcl_Interp	*interp	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	AllowExc

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tcl_AllowExceptions	-	allow	all	exceptions	in	next	script	evaluation

SYNOPSIS

#include	<tcl.h>
Tcl_AllowExceptions(interp)

ARGUMENTS

Interpreter	in	which	script
will	be	evaluated.

DESCRIPTION

If	a	script	is	evaluated	at	top-level	(i.e.	no	other	scripts	are	pending
evaluation	when	the	script	is	invoked),	and	if	the	script	terminates	with	a
completion	code	other	than	TCL_OK,	TCL_ERROR	or	TCL_RETURN,
then	Tcl	normally	converts	this	into	a	TCL_ERROR	return	with	an
appropriate	message.	The	particular	script	evaluation	procedures	of	Tcl
that	act	in	the	manner	are	Tcl_EvalObjEx,	Tcl_EvalObjv,	Tcl_Eval,
Tcl_EvalEx,	Tcl_GlobalEval,	Tcl_GlobalEvalObj,	Tcl_VarEval	and
Tcl_VarEvalVA.

However,	if	Tcl_AllowExceptions	is	invoked	immediately	before	calling
one	of	those	a	procedures,	then	arbitrary	completion	codes	are
permitted	from	the	script,	and	they	are	returned	without	modification.
This	is	useful	in	cases	where	the	caller	can	deal	with	exceptions	such
as	TCL_BREAK	or	TCL_CONTINUE	in	a	meaningful	way.

KEYWORDS

continue,	break,	exception,	interpreter

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1989-1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	ParseCmd

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_ParseCommand,	Tcl_ParseExpr,	Tcl_ParseBraces,
Tcl_ParseQuotedString,	Tcl_ParseVarName,	Tcl_ParseVar,
Tcl_FreeParse,	Tcl_EvalTokens,	Tcl_EvalTokensStandard	-
parse	Tcl	scripts	and	expressions

SYNOPSIS
#include	<tcl.h>
int
Tcl_ParseCommand(interp,	start,	numBytes,	nested,
parsePtr)
int
Tcl_ParseExpr(interp,	start,	numBytes,	parsePtr)
int
Tcl_ParseBraces(interp,	start,	numBytes,	parsePtr,	append,
termPtr)
int
Tcl_ParseQuotedString(interp,	start,	numBytes,	parsePtr,
append,	termPtr)
int
Tcl_ParseVarName(interp,	start,	numBytes,	parsePtr,	append)
const	char	*
Tcl_ParseVar(interp,	start,	termPtr)
Tcl_FreeParse(usedParsePtr)
Tcl_Obj	*
Tcl_EvalTokens(interp,	tokenPtr,	numTokens)
int
Tcl_EvalTokensStandard(interp,	tokenPtr,	numTokens)

ARGUMENTS
DESCRIPTION
TCL_PARSE	STRUCTURE

TCL_TOKEN_WORD

TCL_TOKEN_SIMPLE_WORD
TCL_TOKEN_EXPAND_WORD
TCL_TOKEN_TEXT
TCL_TOKEN_BS
TCL_TOKEN_COMMAND
TCL_TOKEN_VARIABLE
TCL_TOKEN_SUB_EXPR
TCL_TOKEN_OPERATOR

KEYWORDS

NAME

Tcl_ParseCommand,	Tcl_ParseExpr,	Tcl_ParseBraces,
Tcl_ParseQuotedString,	Tcl_ParseVarName,	Tcl_ParseVar,
Tcl_FreeParse,	Tcl_EvalTokens,	Tcl_EvalTokensStandard	-	parse	Tcl
scripts	and	expressions

SYNOPSIS

#include	<tcl.h>
int
Tcl_ParseCommand(interp,	start,	numBytes,	nested,	parsePtr)
int
Tcl_ParseExpr(interp,	start,	numBytes,	parsePtr)
int
Tcl_ParseBraces(interp,	start,	numBytes,	parsePtr,	append,	termPtr)
int
Tcl_ParseQuotedString(interp,	start,	numBytes,	parsePtr,	append,
termPtr)
int
Tcl_ParseVarName(interp,	start,	numBytes,	parsePtr,	append)
const	char	*
Tcl_ParseVar(interp,	start,	termPtr)
Tcl_FreeParse(usedParsePtr)
Tcl_Obj	*
Tcl_EvalTokens(interp,	tokenPtr,	numTokens)
int
Tcl_EvalTokensStandard(interp,	tokenPtr,	numTokens)

Tcl_Interp	*interp	(out)

const	char	*start	(in)

int	numBytes	(in)

int	nested	(in)

ARGUMENTS

For	procedures	other	than
Tcl_FreeParse,
Tcl_EvalTokens	and
Tcl_EvalTokensStandard,
used	only	for	error
reporting;	if	NULL,	then	no
error	messages	are	left
after	errors.	For
Tcl_EvalTokens	and
Tcl_EvalTokensStandard,
determines	the	context	for
evaluating	the	script	and
also	is	used	for	error
reporting;	must	not	be
NULL.

Pointer	to	first	character	in
string	to	parse.

Number	of	bytes	in	string
to	parse,	not	including	any
terminating	null	character.
If	less	than	0	then	the
script	consists	of	all
characters	following	start
up	to	the	first	null
character.

Non-zero	means	that	the
script	is	part	of	a
command	substitution	so
an	unquoted	close	bracket
should	be	treated	as	a
command	terminator.	If

int	append	(in)

Tcl_Parse	*parsePtr	(out)

const	char	**termPtr	(out)

zero,	close	brackets	have
no	special	meaning.

Non-zero	means	that
*parsePtr	already	contains
valid	tokens;	the	new
tokens	should	be
appended	to	those	already
present.	Zero	means	that
*parsePtr	is	uninitialized;
any	information	in	it	is
ignored.	This	argument	is
normally	0.

Points	to	structure	to	fill	in
with	information	about	the
parsed	command,
expression,	variable	name,
etc.	Any	previous
information	in	this	structure
is	ignored,	unless	append
is	non-zero	in	a	call	to
Tcl_ParseBraces,
Tcl_ParseQuotedString,
or	Tcl_ParseVarName.

If	not	NULL,	points	to	a
location	where
Tcl_ParseBraces,
Tcl_ParseQuotedString,
and	Tcl_ParseVar	will
store	a	pointer	to	the
character	just	after	the
terminating	character	(the
close-brace,	the	last
character	of	the	variable
name,	or	the	close-quote

Tcl_Parse	*usedParsePtr	(in)

(respectively))	if	the	parse
was	successful.

Points	to	structure	that
was	filled	in	by	a	previous
call	to
Tcl_ParseCommand,
Tcl_ParseExpr,
Tcl_ParseVarName,	etc.

DESCRIPTION

These	procedures	parse	Tcl	commands	or	portions	of	Tcl	commands
such	as	expressions	or	references	to	variables.	Each	procedure	takes	a
pointer	to	a	script	(or	portion	thereof)	and	fills	in	the	structure	pointed	to
by	parsePtr	with	a	collection	of	tokens	describing	the	information	that
was	parsed.	The	procedures	normally	return	TCL_OK.	However,	if	an
error	occurs	then	they	return	TCL_ERROR,	leave	an	error	message	in
interp's	result	(if	interp	is	not	NULL),	and	leave	nothing	in	parsePtr.

Tcl_ParseCommand	is	a	procedure	that	parses	Tcl	scripts.	Given	a
pointer	to	a	script,	it	parses	the	first	command	from	the	script.	If	the
command	was	parsed	successfully,	Tcl_ParseCommand	returns
TCL_OK	and	fills	in	the	structure	pointed	to	by	parsePtr	with
information	about	the	structure	of	the	command	(see	below	for	details).
If	an	error	occurred	in	parsing	the	command	then	TCL_ERROR	is
returned,	an	error	message	is	left	in	interp's	result,	and	no	information	is
left	at	*parsePtr.

Tcl_ParseExpr	parses	Tcl	expressions.	Given	a	pointer	to	a	script
containing	an	expression,	Tcl_ParseExpr	parses	the	expression.	If	the
expression	was	parsed	successfully,	Tcl_ParseExpr	returns	TCL_OK
and	fills	in	the	structure	pointed	to	by	parsePtr	with	information	about
the	structure	of	the	expression	(see	below	for	details).	If	an	error
occurred	in	parsing	the	command	then	TCL_ERROR	is	returned,	an
error	message	is	left	in	interp's	result,	and	no	information	is	left	at
*parsePtr.

Tcl_ParseBraces	parses	a	string	or	command	argument	enclosed	in
braces	such	as	{hello}	or	{string	\t	with	\t	tabs}	from	the	beginning	of
its	argument	start.	The	first	character	of	start	must	be	{.	If	the	braced
string	was	parsed	successfully,	Tcl_ParseBraces	returns	TCL_OK,	fills
in	the	structure	pointed	to	by	parsePtr	with	information	about	the
structure	of	the	string	(see	below	for	details),	and	stores	a	pointer	to	the
character	just	after	the	terminating	}	in	the	location	given	by	*termPtr.	If
an	error	occurs	while	parsing	the	string	then	TCL_ERROR	is	returned,
an	error	message	is	left	in	interp's	result,	and	no	information	is	left	at
*parsePtr	or	*termPtr.

Tcl_ParseQuotedString	parses	a	double-quoted	string	such	as	"sum
is	[expr	{$a+$b}]"	from	the	beginning	of	the	argument	start.	The	first
character	of	start	must	be	".	If	the	double-quoted	string	was	parsed
successfully,	Tcl_ParseQuotedString	returns	TCL_OK,	fills	in	the
structure	pointed	to	by	parsePtr	with	information	about	the	structure	of
the	string	(see	below	for	details),	and	stores	a	pointer	to	the	character
just	after	the	terminating	"	in	the	location	given	by	*termPtr.	If	an	error
occurs	while	parsing	the	string	then	TCL_ERROR	is	returned,	an	error
message	is	left	in	interp's	result,	and	no	information	is	left	at	*parsePtr
or	*termPtr.

Tcl_ParseVarName	parses	a	Tcl	variable	reference	such	as	$abc	or
$x([expr	{$index	+	1}])	from	the	beginning	of	its	start	argument.	The
first	character	of	start	must	be	$.	If	a	variable	name	was	parsed
successfully,	Tcl_ParseVarName	returns	TCL_OK	and	fills	in	the
structure	pointed	to	by	parsePtr	with	information	about	the	structure	of
the	variable	name	(see	below	for	details).	If	an	error	occurs	while
parsing	the	command	then	TCL_ERROR	is	returned,	an	error	message
is	left	in	interp's	result	(if	interp	is	not	NULL),	and	no	information	is	left
at	*parsePtr.

Tcl_ParseVar	parse	a	Tcl	variable	reference	such	as	$abc	or	$x([expr
{$index	+	1}])	from	the	beginning	of	its	start	argument.	The	first
character	of	start	must	be	$.	If	the	variable	name	is	parsed	successfully,
Tcl_ParseVar	returns	a	pointer	to	the	string	value	of	the	variable.	If	an
error	occurs	while	parsing,	then	NULL	is	returned	and	an	error	message
is	left	in	interp's	result.

The	information	left	at	*parsePtr	by	Tcl_ParseCommand,
Tcl_ParseExpr,	Tcl_ParseBraces,	Tcl_ParseQuotedString,	and
Tcl_ParseVarName	may	include	dynamically	allocated	memory.	If
these	five	parsing	procedures	return	TCL_OK	then	the	caller	must
invoke	Tcl_FreeParse	to	release	the	storage	at	*parsePtr.	These
procedures	ignore	any	existing	information	in	*parsePtr	(unless	append
is	non-zero),	so	if	repeated	calls	are	being	made	to	any	of	them	then
Tcl_FreeParse	must	be	invoked	once	after	each	call.

Tcl_EvalTokensStandard	evaluates	a	sequence	of	parse	tokens	from
a	Tcl_Parse	structure.	The	tokens	typically	consist	of	all	the	tokens	in	a
word	or	all	the	tokens	that	make	up	the	index	for	a	reference	to	an	array
variable.	Tcl_EvalTokensStandard	performs	the	substitutions
requested	by	the	tokens	and	concatenates	the	resulting	values.	The
return	value	from	Tcl_EvalTokensStandard	is	a	Tcl	completion	code
with	one	of	the	values	TCL_OK,	TCL_ERROR,	TCL_RETURN,
TCL_BREAK,	or	TCL_CONTINUE,	or	possibly	some	other	integer
value	originating	in	an	extension.	In	addition,	a	result	value	or	error
message	is	left	in	interp's	result;	it	can	be	retrieved	using
Tcl_GetObjResult.

Tcl_EvalTokens	differs	from	Tcl_EvalTokensStandard	only	in	the
return	convention	used:	it	returns	the	result	in	a	new	Tcl_Obj.	The
reference	count	of	the	object	returned	as	result	has	been	incremented,
so	the	caller	must	invoke	Tcl_DecrRefCount	when	it	is	finished	with	the
object.	If	an	error	or	other	exception	occurs	while	evaluating	the	tokens
(such	as	a	reference	to	a	non-existent	variable)	then	the	return	value	is
NULL	and	an	error	message	is	left	in	interp's	result.	The	use	of
Tcl_EvalTokens	is	deprecated.

TCL_PARSE	STRUCTURE

Tcl_ParseCommand,	Tcl_ParseExpr,	Tcl_ParseBraces,
Tcl_ParseQuotedString,	and	Tcl_ParseVarName	return	parse
information	in	two	data	structures,	Tcl_Parse	and	Tcl_Token:

typedef	struct	Tcl_Parse	{

								const	char	*commentStart;

								int	commentSize;

								const	char	*commandStart;

								int	commandSize;

								int	numWords;

								Tcl_Token	*tokenPtr;

								int	numTokens;

								...

}	Tcl_Parse;

typedef	struct	Tcl_Token	{

								int	type;

								const	char	*start;

								int	size;

								int	numComponents;

}	Tcl_Token;

The	first	five	fields	of	a	Tcl_Parse	structure	are	filled	in	only	by
Tcl_ParseCommand.	These	fields	are	not	used	by	the	other	parsing
procedures.

Tcl_ParseCommand	fills	in	a	Tcl_Parse	structure	with	information	that
describes	one	Tcl	command	and	any	comments	that	precede	the
command.	If	there	are	comments,	the	commentStart	field	points	to	the	#
character	that	begins	the	first	comment	and	commentSize	indicates	the
number	of	bytes	in	all	of	the	comments	preceding	the	command,
including	the	newline	character	that	terminates	the	last	comment.	If	the
command	is	not	preceded	by	any	comments,	commentSize	is	0.
Tcl_ParseCommand	also	sets	the	commandStart	field	to	point	to	the
first	character	of	the	first	word	in	the	command	(skipping	any	comments
and	leading	space)	and	commandSize	gives	the	total	number	of	bytes
in	the	command,	including	the	character	pointed	to	by	commandStart
up	to	and	including	the	newline,	close	bracket,	or	semicolon	character
that	terminates	the	command.	The	numWords	field	gives	the	total
number	of	words	in	the	command.

All	parsing	procedures	set	the	remaining	fields,	tokenPtr	and
numTokens.	The	tokenPtr	field	points	to	the	first	in	an	array	of
Tcl_Token	structures	that	describe	the	components	of	the	entity	being
parsed.	The	numTokens	field	gives	the	total	number	of	tokens	present
in	the	array.	Each	token	contains	four	fields.	The	type	field	selects	one
of	several	token	types	that	are	described	below.	The	start	field	points	to
the	first	character	in	the	token	and	the	size	field	gives	the	total	number
of	characters	in	the	token.	Some	token	types,	such	as
TCL_TOKEN_WORD	and	TCL_TOKEN_VARIABLE,	consist	of	several
component	tokens,	which	immediately	follow	the	parent	token;	the
numComponents	field	describes	how	many	of	these	there	are.	The	type
field	has	one	of	the	following	values:

TCL_TOKEN_WORD
This	token	ordinarily	describes	one	word	of	a	command	but	it	may
also	describe	a	quoted	or	braced	string	in	an	expression.	The	token
describes	a	component	of	the	script	that	is	the	result	of
concatenating	together	a	sequence	of	subcomponents,	each
described	by	a	separate	subtoken.	The	token	starts	with	the	first
non-blank	character	of	the	component	(which	may	be	a	double-
quote	or	open	brace)	and	includes	all	characters	in	the	component
up	to	but	not	including	the	space,	semicolon,	close	bracket,	close
quote,	or	close	brace	that	terminates	the	component.	The
numComponents	field	counts	the	total	number	of	sub-tokens	that
make	up	the	word,	including	sub-tokens	of
TCL_TOKEN_VARIABLE	and	TCL_TOKEN_BS	tokens.

TCL_TOKEN_SIMPLE_WORD
This	token	has	the	same	meaning	as	TCL_TOKEN_WORD,	except
that	the	word	is	guaranteed	to	consist	of	a	single
TCL_TOKEN_TEXT	sub-token.	The	numComponents	field	is
always	1.

TCL_TOKEN_EXPAND_WORD
This	token	has	the	same	meaning	as	TCL_TOKEN_WORD,	except
that	the	command	parser	notes	this	word	began	with	the	expansion
prefix	{*},	indicating	that	after	substitution,	the	list	value	of	this	word
should	be	expanded	to	form	multiple	arguments	in	command

evaluation.	This	token	type	can	only	be	created	by
Tcl_ParseCommand.

TCL_TOKEN_TEXT
The	token	describes	a	range	of	literal	text	that	is	part	of	a	word.
The	numComponents	field	is	always	0.

TCL_TOKEN_BS
The	token	describes	a	backslash	sequence	such	as	\n	or	\0xa3.
The	numComponents	field	is	always	0.

TCL_TOKEN_COMMAND
The	token	describes	a	command	whose	result	must	be	substituted
into	the	word.	The	token	includes	the	square	brackets	that
surround	the	command.	The	numComponents	field	is	always	0	(the
nested	command	is	not	parsed;	call	Tcl_ParseCommand
recursively	if	you	want	to	see	its	tokens).

TCL_TOKEN_VARIABLE
The	token	describes	a	variable	substitution,	including	the	$,
variable	name,	and	array	index	(if	there	is	one)	up	through	the
close	parenthesis	that	terminates	the	index.	This	token	is	followed
by	one	or	more	additional	tokens	that	describe	the	variable	name
and	array	index.	If	numComponents	is	1	then	the	variable	is	a
scalar	and	the	next	token	is	a	TCL_TOKEN_TEXT	token	that	gives
the	variable	name.	If	numComponents	is	greater	than	1	then	the
variable	is	an	array:	the	first	sub-token	is	a	TCL_TOKEN_TEXT
token	giving	the	array	name	and	the	remaining	sub-tokens	are
TCL_TOKEN_TEXT,	TCL_TOKEN_BS,
TCL_TOKEN_COMMAND,	and	TCL_TOKEN_VARIABLE	tokens
that	must	be	concatenated	to	produce	the	array	index.	The
numComponents	field	includes	nested	sub-tokens	that	are	part	of
TCL_TOKEN_VARIABLE	tokens	in	the	array	index.

TCL_TOKEN_SUB_EXPR
The	token	describes	one	subexpression	of	an	expression	(or	an
entire	expression).	A	subexpression	may	consist	of	a	value	such	as
an	integer	literal,	variable	substitution,	or	parenthesized

subexpression;	it	may	also	consist	of	an	operator	and	its	operands.
The	token	starts	with	the	first	non-blank	character	of	the
subexpression	up	to	but	not	including	the	space,	brace,	close-
paren,	or	bracket	that	terminates	the	subexpression.	This	token	is
followed	by	one	or	more	additional	tokens	that	describe	the
subexpression.	If	the	first	sub-token	after	the
TCL_TOKEN_SUB_EXPR	token	is	a	TCL_TOKEN_OPERATOR
token,	the	subexpression	consists	of	an	operator	and	its	token
operands.	If	the	operator	has	no	operands,	the	subexpression
consists	of	just	the	TCL_TOKEN_OPERATOR	token.	Each
operand	is	described	by	a	TCL_TOKEN_SUB_EXPR	token.
Otherwise,	the	subexpression	is	a	value	described	by	one	of	the
token	types	TCL_TOKEN_WORD,	TCL_TOKEN_TEXT,
TCL_TOKEN_BS,	TCL_TOKEN_COMMAND,
TCL_TOKEN_VARIABLE,	and	TCL_TOKEN_SUB_EXPR.	The
numComponents	field	counts	the	total	number	of	sub-tokens	that
make	up	the	subexpression;	this	includes	the	sub-tokens	for	any
nested	TCL_TOKEN_SUB_EXPR	tokens.

TCL_TOKEN_OPERATOR
The	token	describes	one	operator	of	an	expression	such	as	&&	or
hypot.	A	TCL_TOKEN_OPERATOR	token	is	always	preceded	by	a
TCL_TOKEN_SUB_EXPR	token	that	describes	the	operator	and
its	operands;	the	TCL_TOKEN_SUB_EXPR	token's
numComponents	field	can	be	used	to	determine	the	number	of
operands.	A	binary	operator	such	as	*	is	followed	by	two
TCL_TOKEN_SUB_EXPR	tokens	that	describe	its	operands.	A
unary	operator	like	-	is	followed	by	a	single
TCL_TOKEN_SUB_EXPR	token	for	its	operand.	If	the	operator	is	a
math	function	such	as	log10,	the	TCL_TOKEN_OPERATOR	token
will	give	its	name	and	the	following	TCL_TOKEN_SUB_EXPR
tokens	will	describe	its	operands;	if	there	are	no	operands	(as	with
rand),	no	TCL_TOKEN_SUB_EXPR	tokens	follow.	There	is	one
trinary	operator,	?,	that	appears	in	if-then-else	subexpressions
such	as	x?y:z;	in	this	case,	the	?	TCL_TOKEN_OPERATOR	token
is	followed	by	three	TCL_TOKEN_SUB_EXPR	tokens	for	the
operands	x,	y,	and	z.	The	numComponents	field	for	a

TCL_TOKEN_OPERATOR	token	is	always	0.

After	Tcl_ParseCommand	returns,	the	first	token	pointed	to	by	the
tokenPtr	field	of	the	Tcl_Parse	structure	always	has	type
TCL_TOKEN_WORD	or	TCL_TOKEN_SIMPLE_WORD	or
TCL_TOKEN_EXPAND_WORD.	It	is	followed	by	the	sub-tokens	that
must	be	concatenated	to	produce	the	value	of	that	word.	The	next	token
is	the	TCL_TOKEN_WORD	or	TCL_TOKEN_SIMPLE_WORD	of
TCL_TOKEN_EXPAND_WORD	token	for	the	second	word,	followed	by
sub-tokens	for	that	word,	and	so	on	until	all	numWords	have	been
accounted	for.

After	Tcl_ParseExpr	returns,	the	first	token	pointed	to	by	the	tokenPtr
field	of	the	Tcl_Parse	structure	always	has	type
TCL_TOKEN_SUB_EXPR.	It	is	followed	by	the	sub-tokens	that	must
be	evaluated	to	produce	the	value	of	the	expression.	Only	the	token
information	in	the	Tcl_Parse	structure	is	modified:	the	commentStart,
commentSize,	commandStart,	and	commandSize	fields	are	not
modified	by	Tcl_ParseExpr.

After	Tcl_ParseBraces	returns,	the	array	of	tokens	pointed	to	by	the
tokenPtr	field	of	the	Tcl_Parse	structure	will	contain	a	single
TCL_TOKEN_TEXT	token	if	the	braced	string	does	not	contain	any
backslash-newlines.	If	the	string	does	contain	backslash-newlines,	the
array	of	tokens	will	contain	one	or	more	TCL_TOKEN_TEXT	or
TCL_TOKEN_BS	sub-tokens	that	must	be	concatenated	to	produce	the
value	of	the	string.	If	the	braced	string	was	just	{}	(that	is,	the	string	was
empty),	the	single	TCL_TOKEN_TEXT	token	will	have	a	size	field
containing	zero;	this	ensures	that	at	least	one	token	appears	to
describe	the	braced	string.	Only	the	token	information	in	the	Tcl_Parse
structure	is	modified:	the	commentStart,	commentSize,	commandStart,
and	commandSize	fields	are	not	modified	by	Tcl_ParseBraces.

After	Tcl_ParseQuotedString	returns,	the	array	of	tokens	pointed	to	by
the	tokenPtr	field	of	the	Tcl_Parse	structure	depends	on	the	contents	of
the	quoted	string.	It	will	consist	of	one	or	more	TCL_TOKEN_TEXT,
TCL_TOKEN_BS,	TCL_TOKEN_COMMAND,	and
TCL_TOKEN_VARIABLE	sub-tokens.	The	array	always	contains	at

least	one	token;	for	example,	if	the	argument	start	is	empty,	the	array
returned	consists	of	a	single	TCL_TOKEN_TEXT	token	with	a	zero	size
field.	Only	the	token	information	in	the	Tcl_Parse	structure	is	modified:
the	commentStart,	commentSize,	commandStart,	and	commandSize
fields	are	not	modified.

After	Tcl_ParseVarName	returns,	the	first	token	pointed	to	by	the
tokenPtr	field	of	the	Tcl_Parse	structure	always	has	type
TCL_TOKEN_VARIABLE.	It	is	followed	by	the	sub-tokens	that	make	up
the	variable	name	as	described	above.	The	total	length	of	the	variable
name	is	contained	in	the	size	field	of	the	first	token.	As	in
Tcl_ParseExpr,	only	the	token	information	in	the	Tcl_Parse	structure	is
modified	by	Tcl_ParseVarName:	the	commentStart,	commentSize,
commandStart,	and	commandSize	fields	are	not	modified.

All	of	the	character	pointers	in	the	Tcl_Parse	and	Tcl_Token	structures
refer	to	characters	in	the	start	argument	passed	to
Tcl_ParseCommand,	Tcl_ParseExpr,	Tcl_ParseBraces,
Tcl_ParseQuotedString,	and	Tcl_ParseVarName.

There	are	additional	fields	in	the	Tcl_Parse	structure	after	the
numTokens	field,	but	these	are	for	the	private	use	of
Tcl_ParseCommand,	Tcl_ParseExpr,	Tcl_ParseBraces,
Tcl_ParseQuotedString,	and	Tcl_ParseVarName;	they	should	not	be
referenced	by	code	outside	of	these	procedures.

KEYWORDS

backslash	substitution,	braces,	command,	expression,	parse,	token,
variable	substitution

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1997	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	ObjectType

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_RegisterObjType,	Tcl_GetObjType,
Tcl_AppendAllObjTypes,	Tcl_ConvertToType	-	manipulate	Tcl
object	types

SYNOPSIS
#include	<tcl.h>
Tcl_RegisterObjType(typePtr)
Tcl_ObjType	*
Tcl_GetObjType(typeName)
int
Tcl_AppendAllObjTypes(interp,	objPtr)
int
Tcl_ConvertToType(interp,	objPtr,	typePtr)

ARGUMENTS
DESCRIPTION
THE	TCL_OBJTYPE	STRUCTURE
THE	NAME	FIELD
THE	SETFROMANYPROC	FIELD
THE	UPDATESTRINGPROC	FIELD
THE	DUPINTREPPROC	FIELD
THE	FREEINTREPPROC	FIELD
SEE	ALSO
KEYWORDS

NAME

Tcl_RegisterObjType,	Tcl_GetObjType,	Tcl_AppendAllObjTypes,
Tcl_ConvertToType	-	manipulate	Tcl	object	types

SYNOPSIS

#include	<tcl.h>

Tcl_ObjType	*typePtr	(in)

const	char	*typeName	(in)

Tcl_Interp	*interp	(in)

Tcl_Obj	*objPtr	(in)

Tcl_RegisterObjType(typePtr)
Tcl_ObjType	*
Tcl_GetObjType(typeName)
int
Tcl_AppendAllObjTypes(interp,	objPtr)
int
Tcl_ConvertToType(interp,	objPtr,	typePtr)

ARGUMENTS

Points	to	the	structure
containing	information
about	the	Tcl	object	type.
This	storage	must	live
forever,	typically	by	being
statically	allocated.

The	name	of	a	Tcl	object
type	that	Tcl_GetObjType
should	look	up.

Interpreter	to	use	for	error
reporting.

For
Tcl_AppendAllObjTypes,
this	points	to	the	object
onto	which	it	appends	the
name	of	each	object	type
as	a	list	element.	For
Tcl_ConvertToType,	this
points	to	an	object	that
must	have	been	the	result
of	a	previous	call	to
Tcl_NewObj.

DESCRIPTION

The	procedures	in	this	man	page	manage	Tcl	object	types.	They	are
used	to	register	new	object	types,	look	up	types,	and	force	conversions
from	one	type	to	another.

Tcl_RegisterObjType	registers	a	new	Tcl	object	type	in	the	table	of	all
object	types	that	Tcl_GetObjType	can	look	up	by	name.	There	are
other	object	types	supported	by	Tcl	as	well,	which	Tcl	chooses	not	to
register.	Extensions	can	likewise	choose	to	register	the	object	types
they	create	or	not.	The	argument	typePtr	points	to	a	Tcl_ObjType
structure	that	describes	the	new	type	by	giving	its	name	and	by
supplying	pointers	to	four	procedures	that	implement	the	type.	If	the
type	table	already	contains	a	type	with	the	same	name	as	in	typePtr,	it
is	replaced	with	the	new	type.	The	Tcl_ObjType	structure	is	described	in
the	section	THE	TCL_OBJTYPE	STRUCTURE	below.

Tcl_GetObjType	returns	a	pointer	to	the	registered	Tcl_ObjType	with
name	typeName.	It	returns	NULL	if	no	type	with	that	name	is	registered.

Tcl_AppendAllObjTypes	appends	the	name	of	each	registered	object
type	as	a	list	element	onto	the	Tcl	object	referenced	by	objPtr.	The
return	value	is	TCL_OK	unless	there	was	an	error	converting	objPtr	to	a
list	object;	in	that	case	TCL_ERROR	is	returned.

Tcl_ConvertToType	converts	an	object	from	one	type	to	another	if
possible.	It	creates	a	new	internal	representation	for	objPtr	appropriate
for	the	target	type	typePtr	and	sets	its	typePtr	member	as	determined
by	calling	the	typePtr->setFromAnyProc	routine.	Any	internal
representation	for	objPtr's	old	type	is	freed.	If	an	error	occurs	during
conversion,	it	returns	TCL_ERROR	and	leaves	an	error	message	in	the
result	object	for	interp	unless	interp	is	NULL.	Otherwise,	it	returns
TCL_OK.	Passing	a	NULL	interp	allows	this	procedure	to	be	used	as	a
test	whether	the	conversion	can	be	done	(and	in	fact	was	done).

In	many	cases,	the	typePtr->setFromAnyProc	routine	will	set	objPtr-
>typePtr	to	the	argument	value	typePtr,	but	that	is	no	longer
guaranteed.	The	setFromAnyProc	is	free	to	set	the	internal

representation	for	objPtr	to	make	use	of	another	related	Tcl_ObjType,	if
it	sees	fit.

THE	TCL_OBJTYPE	STRUCTURE

Extension	writers	can	define	new	object	types	by	defining	four
procedures	and	initializing	a	Tcl_ObjType	structure	to	describe	the	type.
Extension	writers	may	also	pass	a	pointer	to	their	Tcl_ObjType	structire
to	Tcl_RegisterObjType	if	they	wish	to	permit	other	extensions	to	look
up	their	Tcl_ObjType	by	name	with	the	Tcl_GetObjType	routine.	The
Tcl_ObjType	structure	is	defined	as	follows:

typedef	struct	Tcl_ObjType	{

				char	*name;

				Tcl_FreeInternalRepProc	*freeIntRepProc;

				Tcl_DupInternalRepProc	*dupIntRepProc;

				Tcl_UpdateStringProc	*updateStringProc;

				Tcl_SetFromAnyProc	*setFromAnyProc;

}	Tcl_ObjType;

THE	NAME	FIELD

The	name	member	describes	the	name	of	the	type,	e.g.	int.	When	a
type	is	registered,	this	is	the	name	used	by	callers	of	Tcl_GetObjType
to	lookup	the	type.	For	unregistered	types,	the	name	field	is	primarily	of
value	for	debugging.	The	remaining	four	members	are	pointers	to
procedures	called	by	the	generic	Tcl	object	code:

THE	SETFROMANYPROC	FIELD

The	setFromAnyProc	member	contains	the	address	of	a	function	called
to	create	a	valid	internal	representation	from	an	object's	string
representation.

typedef	int	(Tcl_SetFromAnyProc)	(Tcl_Interp	*interp

								Tcl_Obj	*objPtr);

If	an	internal	representation	cannot	be	created	from	the	string,	it	returns
TCL_ERROR	and	puts	a	message	describing	the	error	in	the	result
object	for	interp	unless	interp	is	NULL.	If	setFromAnyProc	is	successful,
it	stores	the	new	internal	representation,	sets	objPtr's	typePtr	member
to	point	to	the	Tcl_ObjType	struct	corresponding	to	the	new	internal
representation,	and	returns	TCL_OK.	Before	setting	the	new	internal
representation,	the	setFromAnyProc	must	free	any	internal
representation	of	objPtr's	old	type;	it	does	this	by	calling	the	old	type's
freeIntRepProc	if	it	is	not	NULL.

As	an	example,	the	setFromAnyProc	for	the	built-in	Tcl	list	type	gets	an
up-to-date	string	representation	for	objPtr	by	calling
Tcl_GetStringFromObj.	It	parses	the	string	to	verify	it	is	in	a	valid	list
format	and	to	obtain	each	element	value	in	the	list,	and,	if	this
succeeds,	stores	the	list	elements	in	objPtr's	internal	representation	and
sets	objPtr's	typePtr	member	to	point	to	the	list	type's	Tcl_ObjType
structure.

Do	not	release	objPtr's	old	internal	representation	unless	you	replace	it
with	a	new	one	or	reset	the	typePtr	member	to	NULL.

The	setFromAnyProc	member	may	be	set	to	NULL,	if	the	routines
making	use	of	the	internal	representation	have	no	need	to	derive	that
internal	representation	from	an	arbitrary	string	value.	However,	in	this
case,	passing	a	pointer	to	the	type	to	Tcl_ConvertToType()	will	lead	to	a
panic,	so	to	avoid	this	possibility,	the	type	should	not	be	registered.

THE	UPDATESTRINGPROC	FIELD

The	updateStringProc	member	contains	the	address	of	a	function	called
to	create	a	valid	string	representation	from	an	object's	internal
representation.

typedef	void	(Tcl_UpdateStringProc)	(Tcl_Obj	*objPtr

objPtr's	bytes	member	is	always	NULL	when	it	is	called.	It	must	always
set	bytes	non-NULL	before	returning.	We	require	the	string
representation's	byte	array	to	have	a	null	after	the	last	byte,	at	offset
length,	and	to	have	no	null	bytes	before	that;	this	allows	string
representations	to	be	treated	as	conventional	null	character-terminated
C	strings.	These	restrictions	are	easily	met	by	using	Tcl's	internal	UTF
encoding	for	the	string	representation,	same	as	one	would	do	for	other
Tcl	routines	accepting	string	values	as	arguments.	Storage	for	the	byte
array	must	be	allocated	in	the	heap	by	Tcl_Alloc	or	ckalloc.	Note	that
updateStringProcs	must	allocate	enough	storage	for	the	string's	bytes
and	the	terminating	null	byte.

The	updateStringProc	for	Tcl's	built-in	double	type,	for	example,	calls
Tcl_PrintDouble	to	write	to	a	buffer	of	size	TCL_DOUBLE_SPACE,	then
allocates	and	copies	the	string	representation	to	just	enough	space	to
hold	it.	A	pointer	to	the	allocated	space	is	stored	in	the	bytes	member.

The	updateStringProc	member	may	be	set	to	NULL,	if	the	routines
making	use	of	the	internal	representation	are	written	so	that	the	string
representation	is	never	invalidated.	Failure	to	meet	this	obligation	will
lead	to	panics	or	crashes	when	Tcl_GetStringFromObj	or	other	similar
routines	ask	for	the	string	representation.

THE	DUPINTREPPROC	FIELD

The	dupIntRepProc	member	contains	the	address	of	a	function	called	to
copy	an	internal	representation	from	one	object	to	another.

typedef	void	(Tcl_DupInternalRepProc)	(Tcl_Obj	*srcPtr

								Tcl_Obj	*dupPtr);

dupPtr's	internal	representation	is	made	a	copy	of	srcPtr's	internal
representation.	Before	the	call,	srcPtr's	internal	representation	is	valid
and	dupPtr's	is	not.	srcPtr's	object	type	determines	what	copying	its
internal	representation	means.

For	example,	the	dupIntRepProc	for	the	Tcl	integer	type	simply	copies
an	integer.	The	built-in	list	type's	dupIntRepProc	uses	a	far	more
sophisticated	scheme	to	continue	sharing	storage	as	much	as	it
reasonably	can.

THE	FREEINTREPPROC	FIELD

The	freeIntRepProc	member	contains	the	address	of	a	function	that	is
called	when	an	object	is	freed.

typedef	void	(Tcl_FreeInternalRepProc)	(Tcl_Obj	*objPtr

The	freeIntRepProc	function	can	deallocate	the	storage	for	the	object's
internal	representation	and	do	other	type-specific	processing	necessary
when	an	object	is	freed.

For	example,	the	list	type's	freeIntRepProc	respects	the	storage	sharing
scheme	established	by	the	dupIntRepProc	so	that	it	only	frees	storage
when	the	last	object	sharing	it	is	being	freed.

The	freeIntRepProc	member	can	be	set	to	NULL	to	indicate	that	the
internal	representation	does	not	require	freeing.	The	freeIntRepProc
implementation	must	not	access	the	bytes	member	of	the	object,	since
Tcl	makes	its	own	internal	uses	of	that	field	during	object	deletion.	The
defined	tasks	for	the	freeIntRepProc	have	no	need	to	consult	the	bytes
member.

SEE	ALSO

Tcl_NewObj,	Tcl_DecrRefCount,	Tcl_IncrRefCount

KEYWORDS

internal	representation,	object,	object	type,	string	representation,	type
conversion

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1996-1997	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	SetResult

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_SetObjResult,	Tcl_GetObjResult,	Tcl_SetResult,
Tcl_GetStringResult,	Tcl_AppendResult,	Tcl_AppendResultVA,
Tcl_AppendElement,	Tcl_ResetResult,	Tcl_FreeResult	-
manipulate	Tcl	result

SYNOPSIS
#include	<tcl.h>
Tcl_SetObjResult(interp,	objPtr)
Tcl_Obj	*
Tcl_GetObjResult(interp)
Tcl_SetResult(interp,	result,	freeProc)
const	char	*
Tcl_GetStringResult(interp)
Tcl_AppendResult(interp,	result,	result,	...	,	(char	*)	NULL)
Tcl_AppendResultVA(interp,	argList)
Tcl_AppendElement(interp,	element)
Tcl_ResetResult(interp)
Tcl_FreeResult(interp)

ARGUMENTS
DESCRIPTION
OLD	STRING	PROCEDURES
DIRECT	ACCESS	TO	INTERP->RESULT	IS	DEPRECATED
THE	TCL_FREEPROC	ARGUMENT	TO	TCL_SETRESULT
SEE	ALSO
KEYWORDS

NAME

Tcl_SetObjResult,	Tcl_GetObjResult,	Tcl_SetResult,
Tcl_GetStringResult,	Tcl_AppendResult,	Tcl_AppendResultVA,
Tcl_AppendElement,	Tcl_ResetResult,	Tcl_FreeResult	-	manipulate	Tcl

Tcl_Interp	*interp	(out)

Tcl_Obj	*objPtr	(in)

char	*result	(in)

char	*element	(in)

Tcl_FreeProc	*freeProc	(in)

result

SYNOPSIS

#include	<tcl.h>
Tcl_SetObjResult(interp,	objPtr)
Tcl_Obj	*
Tcl_GetObjResult(interp)
Tcl_SetResult(interp,	result,	freeProc)
const	char	*
Tcl_GetStringResult(interp)
Tcl_AppendResult(interp,	result,	result,	...	,	(char	*)	NULL)
Tcl_AppendResultVA(interp,	argList)
Tcl_AppendElement(interp,	element)
Tcl_ResetResult(interp)
Tcl_FreeResult(interp)

ARGUMENTS

Interpreter	whose	result	is
to	be	modified	or	read.

Object	value	to	become
result	for	interp.

String	value	to	become
result	for	interp	or	to	be
appended	to	the	existing
result.

String	value	to	append	as
a	list	element	to	the
existing	result	of	interp.

Address	of	procedure	to
call	to	release	storage	at
result,	or	TCL_STATIC,

va_list	argList	(in)

TCL_DYNAMIC,	or
TCL_VOLATILE.

An	argument	list	which
must	have	been	initialized
using	va_start,	and
cleared	using	va_end.

DESCRIPTION

The	procedures	described	here	are	utilities	for	manipulating	the	result
value	in	a	Tcl	interpreter.	The	interpreter	result	may	be	either	a	Tcl
object	or	a	string.	For	example,	Tcl_SetObjResult	and	Tcl_SetResult
set	the	interpreter	result	to,	respectively,	an	object	and	a	string.
Similarly,	Tcl_GetObjResult	and	Tcl_GetStringResult	return	the
interpreter	result	as	an	object	and	as	a	string.	The	procedures	always
keep	the	string	and	object	forms	of	the	interpreter	result	consistent.	For
example,	if	Tcl_SetObjResult	is	called	to	set	the	result	to	an	object,
then	Tcl_GetStringResult	is	called,	it	will	return	the	object's	string
value.

Tcl_SetObjResult	arranges	for	objPtr	to	be	the	result	for	interp,
replacing	any	existing	result.	The	result	is	left	pointing	to	the	object
referenced	by	objPtr.	objPtr's	reference	count	is	incremented	since
there	is	now	a	new	reference	to	it	from	interp.	The	reference	count	for
any	old	result	object	is	decremented	and	the	old	result	object	is	freed	if
no	references	to	it	remain.

Tcl_GetObjResult	returns	the	result	for	interp	as	an	object.	The
object's	reference	count	is	not	incremented;	if	the	caller	needs	to	retain
a	long-term	pointer	to	the	object	they	should	use	Tcl_IncrRefCount	to
increment	its	reference	count	in	order	to	keep	it	from	being	freed	too
early	or	accidentally	changed.

Tcl_SetResult	arranges	for	result	to	be	the	result	for	the	current	Tcl
command	in	interp,	replacing	any	existing	result.	The	freeProc
argument	specifies	how	to	manage	the	storage	for	the	result	argument;

it	is	discussed	in	the	section	THE	TCL_FREEPROC	ARGUMENT	TO
TCL_SETRESULT	below.	If	result	is	NULL,	then	freeProc	is	ignored
and	Tcl_SetResult	re-initializes	interp's	result	to	point	to	an	empty
string.

Tcl_GetStringResult	returns	the	result	for	interp	as	a	string.	If	the
result	was	set	to	an	object	by	a	Tcl_SetObjResult	call,	the	object	form
will	be	converted	to	a	string	and	returned.	If	the	object's	string
representation	contains	null	bytes,	this	conversion	will	lose	information.
For	this	reason,	programmers	are	encouraged	to	write	their	code	to	use
the	new	object	API	procedures	and	to	call	Tcl_GetObjResult	instead.

Tcl_ResetResult	clears	the	result	for	interp	and	leaves	the	result	in	its
normal	empty	initialized	state.	If	the	result	is	an	object,	its	reference
count	is	decremented	and	the	result	is	left	pointing	to	an	unshared
object	representing	an	empty	string.	If	the	result	is	a	dynamically
allocated	string,	its	memory	is	free*d	and	the	result	is	left	as	a	empty
string.	Tcl_ResetResult	also	clears	the	error	state	managed	by
Tcl_AddErrorInfo,	Tcl_AddObjErrorInfo,	and	Tcl_SetErrorCode.

Tcl_AppendResult	makes	it	easy	to	build	up	Tcl	results	in	pieces.	It
takes	each	of	its	result	arguments	and	appends	them	in	order	to	the
current	result	associated	with	interp.	If	the	result	is	in	its	initialized
empty	state	(e.g.	a	command	procedure	was	just	invoked	or
Tcl_ResetResult	was	just	called),	then	Tcl_AppendResult	sets	the
result	to	the	concatenation	of	its	result	arguments.	Tcl_AppendResult
may	be	called	repeatedly	as	additional	pieces	of	the	result	are
produced.	Tcl_AppendResult	takes	care	of	all	the	storage
management	issues	associated	with	managing	interp's	result,	such	as
allocating	a	larger	result	area	if	necessary.	It	also	manages	conversion
to	and	from	the	result	field	of	the	interp	so	as	to	handle	backward-
compatability	with	old-style	extensions.	Any	number	of	result	arguments
may	be	passed	in	a	single	call;	the	last	argument	in	the	list	must	be	a
NULL	pointer.

Tcl_AppendResultVA	is	the	same	as	Tcl_AppendResult	except	that
instead	of	taking	a	variable	number	of	arguments	it	takes	an	argument
list.

OLD	STRING	PROCEDURES

Use	of	the	following	procedures	(is	deprecated	since	they	manipulate
the	Tcl	result	as	a	string.	Procedures	such	as	Tcl_SetObjResult	that
manipulate	the	result	as	an	object	can	be	significantly	more	efficient.

Tcl_AppendElement	is	similar	to	Tcl_AppendResult	in	that	it	allows
results	to	be	built	up	in	pieces.	However,	Tcl_AppendElement	takes
only	a	single	element	argument	and	it	appends	that	argument	to	the
current	result	as	a	proper	Tcl	list	element.	Tcl_AppendElement	adds
backslashes	or	braces	if	necessary	to	ensure	that	interp's	result	can	be
parsed	as	a	list	and	that	element	will	be	extracted	as	a	single	element.
Under	normal	conditions,	Tcl_AppendElement	will	add	a	space
character	to	interp's	result	just	before	adding	the	new	list	element,	so
that	the	list	elements	in	the	result	are	properly	separated.	However	if
the	new	list	element	is	the	first	in	a	list	or	sub-list	(i.e.	interp's	current
result	is	empty,	or	consists	of	the	single	character	“{”,	or	ends	in	the
characters	“	{”)	then	no	space	is	added.

Tcl_FreeResult	performs	part	of	the	work	of	Tcl_ResetResult.	It	frees
up	the	memory	associated	with	interp's	result.	It	also	sets	interp-
>freeProc	to	zero,	but	does	not	change	interp->result	or	clear	error
state.	Tcl_FreeResult	is	most	commonly	used	when	a	procedure	is
about	to	replace	one	result	value	with	another.

DIRECT	ACCESS	TO	INTERP->RESULT	IS	DEPRECATED

It	used	to	be	legal	for	programs	to	directly	read	and	write	interp->result
to	manipulate	the	interpreter	result.	Direct	access	to	interp->result	is
now	strongly	deprecated	because	it	can	make	the	result's	string	and
object	forms	inconsistent.	Programs	should	always	read	the	result	using
the	procedures	Tcl_GetObjResult	or	Tcl_GetStringResult,	and	write
the	result	using	Tcl_SetObjResult	or	Tcl_SetResult.

THE	TCL_FREEPROC	ARGUMENT	TO	TCL_SETRESULT

Tcl_SetResult's	freeProc	argument	specifies	how	the	Tcl	system	is	to
manage	the	storage	for	the	result	argument.	If	Tcl_SetResult	or

Tcl_SetObjResult	are	called	at	a	time	when	interp	holds	a	string	result,
they	do	whatever	is	necessary	to	dispose	of	the	old	string	result	(see
the	Tcl_Interp	manual	entry	for	details	on	this).

If	freeProc	is	TCL_STATIC	it	means	that	result	refers	to	an	area	of
static	storage	that	is	guaranteed	not	to	be	modified	until	at	least	the
next	call	to	Tcl_Eval.	If	freeProc	is	TCL_DYNAMIC	it	means	that	result
was	allocated	with	a	call	to	Tcl_Alloc	and	is	now	the	property	of	the	Tcl
system.	Tcl_SetResult	will	arrange	for	the	string's	storage	to	be
released	by	calling	Tcl_Free	when	it	is	no	longer	needed.	If	freeProc	is
TCL_VOLATILE	it	means	that	result	points	to	an	area	of	memory	that	is
likely	to	be	overwritten	when	Tcl_SetResult	returns	(e.g.	it	points	to
something	in	a	stack	frame).	In	this	case	Tcl_SetResult	will	make	a
copy	of	the	string	in	dynamically	allocated	storage	and	arrange	for	the
copy	to	be	the	result	for	the	current	Tcl	command.

If	freeProc	is	not	one	of	the	values	TCL_STATIC,	TCL_DYNAMIC,	and
TCL_VOLATILE,	then	it	is	the	address	of	a	procedure	that	Tcl	should
call	to	free	the	string.	This	allows	applications	to	use	non-standard
storage	allocators.	When	Tcl	no	longer	needs	the	storage	for	the	string,
it	will	call	freeProc.	FreeProc	should	have	arguments	and	result	that
match	the	type	Tcl_FreeProc:

typedef	void	Tcl_FreeProc(char	*blockPtr);

When	freeProc	is	called,	its	blockPtr	will	be	set	to	the	value	of	result
passed	to	Tcl_SetResult.

SEE	ALSO

Tcl_AddErrorInfo,	Tcl_CreateObjCommand,	Tcl_SetErrorCode,
Tcl_Interp

KEYWORDS

append,	command,	element,	list,	object,	result,	return	value,	interpreter

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1989-1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1997	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	Namespace

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_AppendExportList,	Tcl_CreateNamespace,
Tcl_DeleteNamespace,	Tcl_Export,	Tcl_FindCommand,
Tcl_FindNamespace,	Tcl_ForgetImport,
Tcl_GetCurrentNamespace,	Tcl_GetGlobalNamespace,
Tcl_GetNamespaceUnknownHandler,	Tcl_Import,
Tcl_SetNamespaceUnknownHandler	-	manipulate	namespaces

SYNOPSIS
#include	<tcl.h>
Tcl_Namespace	*
Tcl_CreateNamespace(interp,	name,	clientData,	deleteProc)
Tcl_DeleteNamespace(nsPtr)
int
Tcl_AppendExportList(interp,	nsPtr,	objPtr)
int
Tcl_Export(interp,	nsPtr,	pattern,	resetListFirst)
int
Tcl_Import(interp,	nsPtr,	pattern,	allowOverwrite)
int
Tcl_ForgetImport(interp,	nsPtr,	pattern)
Tcl_Namespace	*
Tcl_GetCurrentNamespace(interp)
Tcl_Namespace	*
Tcl_GetGlobalNamespace(interp)
Tcl_Namespace	*
Tcl_FindNamespace(interp,	name,	contextNsPtr,	flags)
Tcl_Command
Tcl_FindCommand(interp,	name,	contextNsPtr,	flags)
Tcl_Obj	*
Tcl_GetNamespaceUnknownHandler(interp,	nsPtr)
int

Tcl_SetNamespaceUnknownHandler(interp,	nsPtr,
handlerPtr)

ARGUMENTS
DESCRIPTION
SEE	ALSO
KEYWORDS

NAME

Tcl_AppendExportList,	Tcl_CreateNamespace,	Tcl_DeleteNamespace,
Tcl_Export,	Tcl_FindCommand,	Tcl_FindNamespace,	Tcl_ForgetImport,
Tcl_GetCurrentNamespace,	Tcl_GetGlobalNamespace,
Tcl_GetNamespaceUnknownHandler,	Tcl_Import,
Tcl_SetNamespaceUnknownHandler	-	manipulate	namespaces

SYNOPSIS

#include	<tcl.h>
Tcl_Namespace	*
Tcl_CreateNamespace(interp,	name,	clientData,	deleteProc)
Tcl_DeleteNamespace(nsPtr)
int
Tcl_AppendExportList(interp,	nsPtr,	objPtr)
int
Tcl_Export(interp,	nsPtr,	pattern,	resetListFirst)
int
Tcl_Import(interp,	nsPtr,	pattern,	allowOverwrite)
int
Tcl_ForgetImport(interp,	nsPtr,	pattern)
Tcl_Namespace	*
Tcl_GetCurrentNamespace(interp)
Tcl_Namespace	*
Tcl_GetGlobalNamespace(interp)
Tcl_Namespace	*
Tcl_FindNamespace(interp,	name,	contextNsPtr,	flags)
Tcl_Command
Tcl_FindCommand(interp,	name,	contextNsPtr,	flags)
Tcl_Obj	*

Tcl_Interp	*interp	(in/out)

const	char	*name	(in)

ClientData	clientData	(in)

Tcl_NamespaceDeleteProc	*deleteProc	(in)

Tcl_Namespace	*nsPtr	(in)

Tcl_Obj	*objPtr	(out)

Tcl_GetNamespaceUnknownHandler(interp,	nsPtr)
int
Tcl_SetNamespaceUnknownHandler(interp,	nsPtr,	handlerPtr)

ARGUMENTS

The	interpreter	in	which
the	namespace	exists	and
where	name	lookups	are
performed.	Also	where
error	result	messages	are
written.

The	name	of	the
namespace	or	command
to	be	created	or	accessed.

A	context	pointer	by	the
creator	of	the	namespace.
Not	interpreted	by	Tcl	at
all.

A	pointer	to	function	to	call
when	the	namespace	is
deleted,	or	NULL	if	no
such	callback	is	to	be
performed.

The	namespace	to	be
manipulated,	or	NULL	(for
other	than
Tcl_DeleteNamespace)	to
manipulate	the	current
namespace.

A	reference	to	an
unshared	object	to	which

const	char	*pattern	(in)

int	resetListFirst	(in)

int	allowOverwrite	(in)

Tcl_Namespace	*contextNsPtr	(in)

int	flags	(in)

the	function	output	will	be
written.

The	glob-style	pattern	(see
Tcl_StringMatch)	that
describes	the	commands
to	be	imported	or	exported.

Whether	the	list	of	export
patterns	should	be	reset
before	adding	the	current
pattern	to	it.

Whether	new	commands
created	by	this	import
action	can	overwrite
existing	commands.

The	location	in	the
namespace	hierarchy
where	the	search	for	a
namespace	or	command
should	be	conducted
relative	to	when	the	search
term	is	not	rooted	at	the
global	namespace.	NULL
indicates	the	current
namespace.

OR-ed	combination	of	bits
controlling	how	the	search
is	to	be	performed.	The
following	flags	are
supported:
TCL_GLOBAL_ONLY
(indicates	that	the	search
is	always	to	be	conducted

Tcl_Obj	*handlerPtr	(in)

relative	to	the	global
namespace),
TCL_NAMESPACE_ONLY
(just	for
Tcl_FindCommand;
indicates	that	the	search	is
always	to	be	conducted
relative	to	the	context
namespace),	and
TCL_LEAVE_ERR_MSG
(indicates	that	an	error
message	should	be	left	in
the	interpreter	if	the	search
fails.)

A	script	fragment	to	be
installed	as	the	unknown
command	handler	for	the
namespace,	or	NULL	to
reset	the	handler	to	its
default.

DESCRIPTION

Namespaces	are	hierarchic	naming	contexts	that	can	contain
commands	and	variables.	They	also	maintain	a	list	of	patterns	that
describes	what	commands	are	exported,	and	can	import	commands
that	have	been	exported	by	other	namespaces.	Namespaces	can	also
be	manipulated	through	the	Tcl	command	namespace.

The	Tcl_Namespace	structure	encapsulates	a	namespace,	and	is
guaranteed	to	have	the	following	fields	in	it:	name	(the	local	name	of	the
namespace,	with	no	namespace	separator	characters	in	it,	with	empty
denoting	the	global	namespace),	fullName	(the	fully	specified	name	of
the	namespace),	clientData,	deleteProc	(the	values	specified	in	the	call
to	Tcl_CreateNamespace),	and	parentPtr	(a	pointer	to	the	containing

namespace,	or	NULL	for	the	global	namespace.)

Tcl_CreateNamespace	creates	a	new	namespace.	The	deleteProc	will
have	the	following	type	signature:

typedef	void	(Tcl_NamespaceDeleteProc)	(ClientData	clientData);

Tcl_DeleteNamespace	deletes	a	namespace.

Tcl_AppendExportList	retrieves	the	export	patterns	for	a	namespace
given	namespace	and	appends	them	(as	list	items)	to	objPtr.

Tcl_Export	sets	and	appends	to	the	export	patterns	for	a	namespace.
Patterns	are	appended	unless	the	resetListFirst	flag	is	true.

Tcl_Import	imports	commands	matching	a	pattern	into	a	namespace.
Note	that	the	pattern	must	include	the	name	of	the	namespace	to	import
from.	This	function	returns	an	error	if	an	attempt	to	import	a	command
over	an	existing	command	is	made,	unless	the	allowOverwrite	flag	has
been	set.

Tcl_ForgetImport	removes	imports	matching	a	pattern.

Tcl_GetCurrentNamespace	returns	the	current	namespace	for	an
interpreter.

Tcl_GetGlobalNamespace	returns	the	global	namespace	for	an
interpreter.

Tcl_FindNamespace	searches	for	a	namespace	named	name	within
the	context	of	the	namespace	contextNsPtr.	If	the	namespace	cannot
be	found,	NULL	is	returned.

Tcl_FindCommand	searches	for	a	command	named	name	within	the
context	of	the	namespace	contextNsPtr.	If	the	command	cannot	be
found,	NULL	is	returned.

Tcl_GetNamespaceUnknownHandler	returns	the	unknown	command
handler	for	the	namespace,	or	NULL	if	none	is	set.

Tcl_SetNamespaceUnknownHandler	sets	the	unknown	command
handler	for	the	namespace.	If	handlerPtr	is	NULL,	then	the	handler	is
reset	to	its	default.

SEE	ALSO

Tcl_CreateCommand,	Tcl_ListObjAppendElements,	Tcl_SetVar

KEYWORDS

namespace,	command

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	2003	Donal	K.	Fellows

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	PkgRequire

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_PkgRequire,	Tcl_PkgRequireEx,	Tcl_PkgRequireProc,
Tcl_PkgPresent,	Tcl_PkgPresentEx,	Tcl_PkgProvide,
Tcl_PkgProvideEx	-	package	version	control

SYNOPSIS
#include	<tcl.h>
const	char	*
Tcl_PkgRequire(interp,	name,	version,	exact)
const	char	*
Tcl_PkgRequireEx(interp,	name,	version,	exact,	clientDataPtr)
int
Tcl_PkgRequireProc(interp,	name,	objc,	objv,	clientDataPtr)
const	char	*
Tcl_PkgPresent(interp,	name,	version,	exact)
const	char	*
Tcl_PkgPresentEx(interp,	name,	version,	exact,	clientDataPtr)
int
Tcl_PkgProvide(interp,	name,	version)
int
Tcl_PkgProvideEx(interp,	name,	version,	clientData)

ARGUMENTS
DESCRIPTION
KEYWORDS

NAME

Tcl_PkgRequire,	Tcl_PkgRequireEx,	Tcl_PkgRequireProc,
Tcl_PkgPresent,	Tcl_PkgPresentEx,	Tcl_PkgProvide,	Tcl_PkgProvideEx
-	package	version	control

SYNOPSIS

Tcl_Interp	*interp	(in)

const	char	*name	(in)

const	char	*version	(in)

int	exact	(in)

#include	<tcl.h>
const	char	*
Tcl_PkgRequire(interp,	name,	version,	exact)
const	char	*
Tcl_PkgRequireEx(interp,	name,	version,	exact,	clientDataPtr)
int
Tcl_PkgRequireProc(interp,	name,	objc,	objv,	clientDataPtr)
const	char	*
Tcl_PkgPresent(interp,	name,	version,	exact)
const	char	*
Tcl_PkgPresentEx(interp,	name,	version,	exact,	clientDataPtr)
int
Tcl_PkgProvide(interp,	name,	version)
int
Tcl_PkgProvideEx(interp,	name,	version,	clientData)

ARGUMENTS

Interpreter	where	package
is	needed	or	available.

Name	of	package.

A	version	string	consisting
of	one	or	more	decimal
numbers	separated	by
dots.

Non-zero	means	that	only
the	particular	version
specified	by	version	is
acceptable.	Zero	means
that	newer	versions	than
version	are	also
acceptable	as	long	as	they
have	the	same	major
version	number	as	version.

ClientData	clientData	(in)

ClientData	*clientDataPtr	(out)

int	objc	(in)

Tcl_Obj*	objv[]	(in)

Arbitrary	value	to	be
associated	with	the
package.

Pointer	to	place	to	store
the	value	associated	with
the	matching	package.	It	is
only	changed	if	the	pointer
is	not	NULL	and	the
function	completed
successfully.

Number	of	requirements.

Array	of	requirements.

DESCRIPTION

These	procedures	provide	C-level	interfaces	to	Tcl's	package	and
version	management	facilities.

Tcl_PkgRequire	is	equivalent	to	the	package	require	command,
Tcl_PkgPresent	is	equivalent	to	the	package	present	command,	and
Tcl_PkgProvide	is	equivalent	to	the	package	provide	command.

See	the	documentation	for	the	Tcl	commands	for	details	on	what	these
procedures	do.

If	Tcl_PkgPresent	or	Tcl_PkgRequire	complete	successfully	they
return	a	pointer	to	the	version	string	for	the	version	of	the	package	that
is	provided	in	the	interpreter	(which	may	be	different	than	version);	if	an
error	occurs	they	return	NULL	and	leave	an	error	message	in	the
interpreter's	result.

Tcl_PkgProvide	returns	TCL_OK	if	it	completes	successfully;	if	an
error	occurs	it	returns	TCL_ERROR	and	leaves	an	error	message	in	the
interpreter's	result.

Tcl_PkgProvideEx,	Tcl_PkgPresentEx	and	Tcl_PkgRequireEx	allow
the	setting	and	retrieving	of	the	client	data	associated	with	the	package.
In	all	other	respects	they	are	equivalent	to	the	matching	functions.

Tcl_PkgRequireProc	is	the	form	of	package	require	handling	multiple
requirements.	The	other	forms	are	present	for	backward	compatibility
and	translate	their	invokations	to	this	form.

KEYWORDS

package,	present,	provide,	require,	version

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1996	Sun	Microsystems,	Inc.

ClientData	clientData	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	Preserve

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_Preserve,	Tcl_Release,	Tcl_EventuallyFree	-	avoid	freeing
storage	while	it	is	being	used

SYNOPSIS
#include	<tcl.h>
Tcl_Preserve(clientData)
Tcl_Release(clientData)
Tcl_EventuallyFree(clientData,	freeProc)

ARGUMENTS
DESCRIPTION
SEE	ALSO
KEYWORDS

NAME

Tcl_Preserve,	Tcl_Release,	Tcl_EventuallyFree	-	avoid	freeing	storage
while	it	is	being	used

SYNOPSIS

#include	<tcl.h>
Tcl_Preserve(clientData)
Tcl_Release(clientData)
Tcl_EventuallyFree(clientData,	freeProc)

ARGUMENTS

Token	describing	structure
to	be	freed	or	reallocated.
Usually	a	pointer	to
memory	for	structure.

Tcl_FreeProc	*freeProc	(in) Procedure	to	invoke	to
free	clientData.

DESCRIPTION

These	three	procedures	help	implement	a	simple	reference	count
mechanism	for	managing	storage.	They	are	designed	to	solve	a
problem	having	to	do	with	widget	deletion,	but	are	also	useful	in	many
other	situations.	When	a	widget	is	deleted,	its	widget	record	(the
structure	holding	information	specific	to	the	widget)	must	be	returned	to
the	storage	allocator.	However,	it	is	possible	that	the	widget	record	is	in
active	use	by	one	of	the	procedures	on	the	stack	at	the	time	of	the
deletion.	This	can	happen,	for	example,	if	the	command	associated	with
a	button	widget	causes	the	button	to	be	destroyed:	an	X	event	causes
an	event-handling	C	procedure	in	the	button	to	be	invoked,	which	in
turn	causes	the	button's	associated	Tcl	command	to	be	executed,	which
in	turn	causes	the	button	to	be	deleted,	which	in	turn	causes	the
button's	widget	record	to	be	de-allocated.	Unfortunately,	when	the	Tcl
command	returns,	the	button's	event-handling	procedure	will	need	to
reference	the	button's	widget	record.	Because	of	this,	the	widget	record
must	not	be	freed	as	part	of	the	deletion,	but	must	be	retained	until	the
event-handling	procedure	has	finished	with	it.	In	other	situations	where
the	widget	is	deleted,	it	may	be	possible	to	free	the	widget	record
immediately.

Tcl_Preserve	and	Tcl_Release	implement	short-term	reference	counts
for	their	clientData	argument.	The	clientData	argument	identifies	an
object	and	usually	consists	of	the	address	of	a	structure.	The	reference
counts	guarantee	that	an	object	will	not	be	freed	until	each	call	to
Tcl_Preserve	for	the	object	has	been	matched	by	calls	to	Tcl_Release.
There	may	be	any	number	of	unmatched	Tcl_Preserve	calls	in	effect	at
once.

Tcl_EventuallyFree	is	invoked	to	free	up	its	clientData	argument.	It
checks	to	see	if	there	are	unmatched	Tcl_Preserve	calls	for	the	object.
If	not,	then	Tcl_EventuallyFree	calls	freeProc	immediately.	Otherwise
Tcl_EventuallyFree	records	the	fact	that	clientData	needs	eventually	to

be	freed.	When	all	calls	to	Tcl_Preserve	have	been	matched	with	calls
to	Tcl_Release	then	freeProc	will	be	called	by	Tcl_Release	to	do	the
cleanup.

All	the	work	of	freeing	the	object	is	carried	out	by	freeProc.	FreeProc
must	have	arguments	and	result	that	match	the	type	Tcl_FreeProc:

typedef	void	Tcl_FreeProc(char	*blockPtr);

The	blockPtr	argument	to	freeProc	will	be	the	same	as	the	clientData
argument	to	Tcl_EventuallyFree.	The	type	of	blockPtr	(char	*)	is
different	than	the	type	of	the	clientData	argument	to
Tcl_EventuallyFree	for	historical	reasons,	but	the	value	is	the	same.

When	the	clientData	argument	to	Tcl_EventuallyFree	refers	to	storage
allocated	and	returned	by	a	prior	call	to	Tcl_Alloc,	ckalloc,	or	another
function	of	the	Tcl	library,	then	the	freeProc	argument	should	be	given
the	special	value	of	TCL_DYNAMIC.

This	mechanism	can	be	used	to	solve	the	problem	described	above	by
placing	Tcl_Preserve	and	Tcl_Release	calls	around	actions	that	may
cause	undesired	storage	re-allocation.	The	mechanism	is	intended	only
for	short-term	use	(i.e.	while	procedures	are	pending	on	the	stack);	it
will	not	work	efficiently	as	a	mechanism	for	long-term	reference	counts.
The	implementation	does	not	depend	in	any	way	on	the	internal
structure	of	the	objects	being	freed;	it	keeps	the	reference	counts	in	a
separate	structure.

SEE	ALSO

Tcl_Interp,	Tcl_Alloc

KEYWORDS

free,	reference	count,	storage

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.

Copyright	©	1990	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl_Interp	*interp	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	AppInit

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_AppInit	-	perform	application-specific	initialization

SYNOPSIS
#include	<tcl.h>
int
Tcl_AppInit(interp)

ARGUMENTS
DESCRIPTION
KEYWORDS

NAME

Tcl_AppInit	-	perform	application-specific	initialization

SYNOPSIS

#include	<tcl.h>
int
Tcl_AppInit(interp)

ARGUMENTS

Interpreter	for	the
application.

DESCRIPTION

Tcl_AppInit	is	a	“hook”	procedure	that	is	invoked	by	the	main	programs
for	Tcl	applications	such	as	tclsh	and	wish.	Its	purpose	is	to	allow	new
Tcl	applications	to	be	created	without	modifying	the	main	programs
provided	as	part	of	Tcl	and	Tk.	To	create	a	new	application	you	write	a

new	version	of	Tcl_AppInit	to	replace	the	default	version	provided	by
Tcl,	then	link	your	new	Tcl_AppInit	with	the	Tcl	library.

Tcl_AppInit	is	invoked	by	Tcl_Main	and	Tk_Main	after	their	own
initialization	and	before	entering	the	main	loop	to	process	commands.
Here	are	some	examples	of	things	that	Tcl_AppInit	might	do:

[1]
Call	initialization	procedures	for	various	packages	used	by	the
application.	Each	initialization	procedure	adds	new	commands	to
interp	for	its	package	and	performs	other	package-specific
initialization.

[2]
Process	command-line	arguments,	which	can	be	accessed	from
the	Tcl	variables	argv	and	argv0	in	interp.

[3]
Invoke	a	startup	script	to	initialize	the	application.

Tcl_AppInit	returns	TCL_OK	or	TCL_ERROR.	If	it	returns
TCL_ERROR	then	it	must	leave	an	error	message	in	for	the
interpreter's	result;	otherwise	the	result	is	ignored.

In	addition	to	Tcl_AppInit,	your	application	should	also	contain	a
procedure	main	that	calls	Tcl_Main	as	follows:

Tcl_Main(argc,	argv,	Tcl_AppInit);

The	third	argument	to	Tcl_Main	gives	the	address	of	the	application-
specific	initialization	procedure	to	invoke.	This	means	that	you	do	not
have	to	use	the	name	Tcl_AppInit	for	the	procedure,	but	in	practice	the
name	is	nearly	always	Tcl_AppInit	(in	versions	before	Tcl	7.4	the	name
Tcl_AppInit	was	implicit;	there	was	no	way	to	specify	the	procedure
explicitly).	The	best	way	to	get	started	is	to	make	a	copy	of	the	file
tclAppInit.c	from	the	Tcl	library	or	source	directory.	It	already	contains
a	main	procedure	and	a	template	for	Tcl_AppInit	that	you	can	modify

for	your	application.

KEYWORDS

application,	argument,	command,	initialization,	interpreter

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl_Interp	*interp	(in)

double	value	(in)

char	*dst	(out)

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	PrintDbl

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tcl_PrintDouble	-	Convert	floating	value	to	string

SYNOPSIS

#include	<tcl.h>
Tcl_PrintDouble(interp,	value,	dst)

ARGUMENTS

Before	Tcl	8.0,	the
tcl_precision	variable	in
this	interpreter	controlled
the	conversion.	As	of	Tcl
8.0,	this	argument	is
ignored	and	the	conversion
is	controlled	by	the
tcl_precision	variable	that
is	now	shared	by	all
interpreters.

Floating-point	value	to	be
converted.

Where	to	store	the	string
representing	value.	Must
have	at	least
TCL_DOUBLE_SPACE
characters	of	storage.

DESCRIPTION

Tcl_PrintDouble	generates	a	string	that	represents	the	value	of	value
and	stores	it	in	memory	at	the	location	given	by	dst.	It	uses	%g	format
to	generate	the	string,	with	one	special	twist:	the	string	is	guaranteed	to
contain	either	a	“.”	or	an	“e”	so	that	it	does	not	look	like	an	integer.
Where	%g	would	generate	an	integer	with	no	decimal	point,
Tcl_PrintDouble	adds	“.0”.

If	the	tcl_precision	value	is	non-zero,	the	result	will	have	precisely	that
many	digits	of	significance.	If	the	value	is	zero	(the	default),	the	result
will	have	the	fewest	digits	needed	to	represent	the	number	in	such	a
way	that	Tcl_NewDoubleObj	will	generate	the	same	number	when
presented	with	the	given	string.	IEEE	semantics	of	rounding	to	even
apply	to	the	conversion.

KEYWORDS

conversion,	double-precision,	floating-point,	string

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1989-1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1997	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	Async

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_AsyncCreate,	Tcl_AsyncMark,	Tcl_AsyncInvoke,
Tcl_AsyncDelete,	Tcl_AsyncReady	-	handle	asynchronous
events

SYNOPSIS
#include	<tcl.h>
Tcl_AsyncHandler
Tcl_AsyncCreate(proc,	clientData)
Tcl_AsyncMark(async)
int
Tcl_AsyncInvoke(interp,	code)
Tcl_AsyncDelete(async)
int
Tcl_AsyncReady()

ARGUMENTS
DESCRIPTION
WARNING
KEYWORDS

NAME

Tcl_AsyncCreate,	Tcl_AsyncMark,	Tcl_AsyncInvoke,	Tcl_AsyncDelete,
Tcl_AsyncReady	-	handle	asynchronous	events

SYNOPSIS

#include	<tcl.h>
Tcl_AsyncHandler
Tcl_AsyncCreate(proc,	clientData)
Tcl_AsyncMark(async)
int
Tcl_AsyncInvoke(interp,	code)

Tcl_AsyncProc	*proc	(in)

ClientData	clientData	(in)

Tcl_AsyncHandler	async	(in)

Tcl_Interp	*interp	(in)

int	code	(in)

Tcl_AsyncDelete(async)
int
Tcl_AsyncReady()

ARGUMENTS

Procedure	to	invoke	to
handle	an	asynchronous
event.

One-word	value	to	pass	to
proc.

Token	for	asynchronous
event	handler.

Tcl	interpreter	in	which
command	was	being
evaluated	when	handler
was	invoked,	or	NULL	if
handler	was	invoked	when
there	was	no	interpreter
active.

Completion	code	from
command	that	just
completed	in	interp,	or	0	if
interp	is	NULL.

DESCRIPTION

These	procedures	provide	a	safe	mechanism	for	dealing	with
asynchronous	events	such	as	signals.	If	an	event	such	as	a	signal
occurs	while	a	Tcl	script	is	being	evaluated	then	it	is	not	safe	to	take
any	substantive	action	to	process	the	event.	For	example,	it	is	not	safe
to	evaluate	a	Tcl	script	since	the	interpreter	may	already	be	in	the

middle	of	evaluating	a	script;	it	may	not	even	be	safe	to	allocate
memory,	since	a	memory	allocation	could	have	been	in	progress	when
the	event	occurred.	The	only	safe	approach	is	to	set	a	flag	indicating
that	the	event	occurred,	then	handle	the	event	later	when	the	world	has
returned	to	a	clean	state,	such	as	after	the	current	Tcl	command
completes.

Tcl_AsyncCreate,	Tcl_AsyncDelete,	and	Tcl_AsyncReady	are	thread
sensitive.	They	access	and/or	set	a	thread-specific	data	structure	in	the
event	of	a	core	built	with	--enable-threads.	The	token	created	by
Tcl_AsyncCreate	contains	the	needed	thread	information	it	was	called
from	so	that	calling	Tcl_AsyncMark(token)	will	only	yield	the	origin
thread	into	the	asynchronous	handler.

Tcl_AsyncCreate	creates	an	asynchronous	handler	and	returns	a
token	for	it.	The	asynchronous	handler	must	be	created	before	any
occurrences	of	the	asynchronous	event	that	it	is	intended	to	handle	(it	is
not	safe	to	create	a	handler	at	the	time	of	an	event).	When	an
asynchronous	event	occurs	the	code	that	detects	the	event	(such	as	a
signal	handler)	should	call	Tcl_AsyncMark	with	the	token	for	the
handler.	Tcl_AsyncMark	will	mark	the	handler	as	ready	to	execute,	but
it	will	not	invoke	the	handler	immediately.	Tcl	will	call	the	proc
associated	with	the	handler	later,	when	the	world	is	in	a	safe	state,	and
proc	can	then	carry	out	the	actions	associated	with	the	asynchronous
event.	Proc	should	have	arguments	and	result	that	match	the	type
Tcl_AsyncProc:

typedef	int	Tcl_AsyncProc(

								ClientData	clientData,

								Tcl_Interp	*interp,

								int	code);

The	clientData	will	be	the	same	as	the	clientData	argument	passed	to
Tcl_AsyncCreate	when	the	handler	was	created.	If	proc	is	invoked	just
after	a	command	has	completed	execution	in	an	interpreter,	then	interp
will	identify	the	interpreter	in	which	the	command	was	evaluated	and

code	will	be	the	completion	code	returned	by	that	command.	The
command's	result	will	be	present	in	the	interpreter's	result.	When	proc
returns,	whatever	it	leaves	in	the	interpreter's	result	will	be	returned	as
the	result	of	the	command	and	the	integer	value	returned	by	proc	will	be
used	as	the	new	completion	code	for	the	command.

It	is	also	possible	for	proc	to	be	invoked	when	no	interpreter	is	active.
This	can	happen,	for	example,	if	an	asynchronous	event	occurs	while
the	application	is	waiting	for	interactive	input	or	an	X	event.	In	this	case
interp	will	be	NULL	and	code	will	be	0,	and	the	return	value	from	proc
will	be	ignored.

The	procedure	Tcl_AsyncInvoke	is	called	to	invoke	all	of	the	handlers
that	are	ready.	The	procedure	Tcl_AsyncReady	will	return	non-zero
whenever	any	asynchronous	handlers	are	ready;	it	can	be	checked	to
avoid	calls	to	Tcl_AsyncInvoke	when	there	are	no	ready	handlers.	Tcl
calls	Tcl_AsyncReady	after	each	command	is	evaluated	and	calls
Tcl_AsyncInvoke	if	needed.	Applications	may	also	call
Tcl_AsyncInvoke	at	interesting	times	for	that	application.	For	example,
Tcl's	event	handler	calls	Tcl_AsyncReady	after	each	event	and	calls
Tcl_AsyncInvoke	if	needed.	The	interp	and	code	arguments	to
Tcl_AsyncInvoke	have	the	same	meaning	as	for	proc:	they	identify	the
active	interpreter,	if	any,	and	the	completion	code	from	the	command
that	just	completed.

Tcl_AsyncDelete	removes	an	asynchronous	handler	so	that	its	proc
will	never	be	invoked	again.	A	handler	can	be	deleted	even	when	ready,
and	it	will	still	not	be	invoked.

If	multiple	handlers	become	active	at	the	same	time,	the	handlers	are
invoked	in	the	order	they	were	created	(oldest	handler	first).	The	code
and	the	interpreter's	result	for	later	handlers	reflect	the	values	returned
by	earlier	handlers,	so	that	the	most	recently	created	handler	has	last
say	about	the	interpreter's	result	and	completion	code.	If	new	handlers
become	ready	while	handlers	are	executing,	Tcl_AsyncInvoke	will
invoke	them	all;	at	each	point	it	invokes	the	highest-priority	(oldest)
ready	handler,	repeating	this	over	and	over	until	there	are	no	longer	any
ready	handlers.

WARNING

It	is	almost	always	a	bad	idea	for	an	asynchronous	event	handler	to
modify	the	interpreter's	result	or	return	a	code	different	from	its	code
argument.	This	sort	of	behavior	can	disrupt	the	execution	of	scripts	in
subtle	ways	and	result	in	bugs	that	are	extremely	difficult	to	track	down.
If	an	asynchronous	event	handler	needs	to	evaluate	Tcl	scripts	then	it
should	first	save	the	interpreter's	state	by	calling	Tcl_SaveInterpState,
passing	in	the	code	argument.	When	the	asynchronous	handler	is
finished	it	should	restore	the	interpreter's	state	by	calling
Tcl_RestoreInterpState,	and	then	returning	the	code	argument.

KEYWORDS

asynchronous	event,	handler,	signal,	Tcl_SaveInterpState,	thread

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1989-1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

const	char	*assignnment	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	Environment

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tcl_PutEnv	-	procedures	to	manipulate	the	environment

SYNOPSIS

#include	<tcl.h>
int
Tcl_PutEnv(assignment)

ARGUMENTS

Info	about	environment
variable	in	the	format
NAME=value.	The
assignment	argument	is	in
the	system	encoding.

DESCRIPTION

Tcl_PutEnv	sets	an	environment	variable.	The	information	is	passed	in
a	single	string	of	the	form	NAME=value.	This	procedure	is	intended	to
be	a	stand-in	for	the	UNIX	putenv	system	call.	All	Tcl-based
applications	using	putenv	should	redefine	it	to	Tcl_PutEnv	so	that	they
will	interface	properly	to	the	Tcl	runtime.

KEYWORDS

environment,	variable

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.

Copyright	©	1997-1998	Sun	Microsystems,	Inc.

Tcl_Time	*	timePtr	(out)

Tcl_GetTimeProc	*	getProc	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	GetTime

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_GetTime,	Tcl_SetTimeProc,	Tcl_QueryTimeProc	-	get	date
and	time

SYNOPSIS
#include	<tcl.h>
Tcl_GetTime(timePtr)
Tcl_SetTimeProc(getProc,	scaleProc,	clientData)
Tcl_QueryTimeProc(getProcPtr,	scaleProcPtr,	clientDataPtr)

ARGUMENTS
DESCRIPTION
SEE	ALSO
KEYWORDS

NAME

Tcl_GetTime,	Tcl_SetTimeProc,	Tcl_QueryTimeProc	-	get	date	and	time

SYNOPSIS

#include	<tcl.h>
Tcl_GetTime(timePtr)
Tcl_SetTimeProc(getProc,	scaleProc,	clientData)
Tcl_QueryTimeProc(getProcPtr,	scaleProcPtr,	clientDataPtr)

ARGUMENTS

Points	to	memory	in	which
to	store	the	date	and	time
information.

Pointer	to	handler	function
replacing	Tcl_GetTime's

Tcl_ScaleTimeProc	*	scaleProc	(in)

ClientData	*	clientData	(in)

Tcl_GetTimeProc	**	getProcPtr	(inout)

Tcl_ScaleTimeProc	**	scaleProcPtr	(inout)

ClientData	**	clientDataPtr	(inout)

access	to	the	OS.

Pointer	to	handler	function
for	the	conversion	of	time
delays	in	the	virtual
domain	to	real-time.

Value	passed	through	to
the	two	handler	functions.

Pointer	to	place	the
currently	registered	get
handler	function	into.

Pointer	to	place	the
currently	registered	scale
handler	function	into.

Pointer	to	place	the
currently	registered	pass-
through	value	into.

DESCRIPTION

The	Tcl_GetTime	function	retrieves	the	current	time	as	a	Tcl_Time
structure	in	memory	the	caller	provides.	This	structure	has	the	following
definition:

typedef	struct	Tcl_Time	{

				long	sec;

				long	usec;

}	Tcl_Time;

On	return,	the	sec	member	of	the	structure	is	filled	in	with	the	number	of
seconds	that	have	elapsed	since	the	epoch:	the	epoch	is	the	point	in

time	of	00:00	UTC,	1	January	1970.	This	number	does	not	count	leap
seconds	-	an	interval	of	one	day	advances	it	by	86400	seconds
regardless	of	whether	a	leap	second	has	been	inserted.

The	usec	member	of	the	structure	is	filled	in	with	the	number	of
microseconds	that	have	elapsed	since	the	start	of	the	second
designated	by	sec.	The	Tcl	library	makes	every	effort	to	keep	this
number	as	precise	as	possible,	subject	to	the	limitations	of	the
computer	system.	On	multiprocessor	variants	of	Windows,	this	number
may	be	limited	to	the	10-	or	20-ms	granularity	of	the	system	clock.	(On
single-processor	Windows	systems,	the	usec	field	is	derived	from	a
performance	counter	and	is	highly	precise.)

The	Tcl_SetTime	function	registers	two	related	handler	functions	with
the	core.	The	first	handler	function	is	a	replacement	for	Tcl_GetTime,	or
rather	the	OS	access	made	by	Tcl_GetTime.	The	other	handler
function	is	used	by	the	Tcl	notifier	to	convert	wait/block	times	from	the
virtual	domain	into	real	time.

The	Tcl_QueryTime	function	returns	the	currently	registered	handler
functions.	If	no	external	handlers	were	set	then	this	will	return	the
standard	handlers	accessing	and	processing	the	native	time	of	the	OS.
The	arguments	to	the	function	are	allowed	to	be	NULL;	and	any
argument	which	is	NULL	is	ignored	and	not	set.

Any	handler	pair	specified	has	to	return	data	which	is	consistent
between	them.	In	other	words,	setting	one	handler	of	the	pair	to
something	assuming	a	10-times	slowdown,	and	the	other	handler	of	the
pair	to	something	assuming	a	two-times	slowdown	is	wrong	and	not
allowed.

The	set	handler	functions	are	allowed	to	run	the	delivered	time
backwards,	however	this	should	be	avoided.	We	have	to	allow	it	as	the
native	time	can	run	backwards	as	the	user	can	fiddle	with	the	system
time	one	way	or	other.	Note	that	the	insertion	of	the	hooks	will	not
change	the	behaviour	of	the	Tcl	core	with	regard	to	this	situation,	i.e.
the	existing	behaviour	is	retained.

SEE	ALSO

clock

KEYWORDS

date,	time

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	2001	by	Kevin	B.	Kenny	<kennykb(at)acm.org>.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	CrtSlave

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_IsSafe,	Tcl_MakeSafe,	Tcl_CreateSlave,	Tcl_GetSlave,
Tcl_GetMaster,	Tcl_GetInterpPath,	Tcl_CreateAlias,
Tcl_CreateAliasObj,	Tcl_GetAlias,	Tcl_GetAliasObj,
Tcl_ExposeCommand,	Tcl_HideCommand	-	manage	multiple
Tcl	interpreters,	aliases	and	hidden	commands

SYNOPSIS
#include	<tcl.h>
int
Tcl_IsSafe(interp)
int
Tcl_MakeSafe(interp)
Tcl_Interp	*
Tcl_CreateSlave(interp,	slaveName,	isSafe)
Tcl_Interp	*
Tcl_GetSlave(interp,	slaveName)
Tcl_Interp	*
Tcl_GetMaster(interp)
int
Tcl_GetInterpPath(askingInterp,	slaveInterp)
int
Tcl_CreateAlias(slaveInterp,	slaveCmd,	targetInterp,
targetCmd,
argc,	argv)
int
Tcl_CreateAliasObj(slaveInterp,	slaveCmd,	targetInterp,
targetCmd,
objc,	objv)
int
Tcl_GetAlias(interp,	slaveCmd,	targetInterpPtr,	targetCmdPtr,
argcPtr,	argvPtr)

int
Tcl_GetAliasObj(interp,	slaveCmd,	targetInterpPtr,
targetCmdPtr,
objcPtr,	objvPtr)
int
Tcl_ExposeCommand(interp,	hiddenCmdName,	cmdName)
int
Tcl_HideCommand(interp,	cmdName,	hiddenCmdName)

ARGUMENTS
DESCRIPTION
SEE	ALSO
KEYWORDS

NAME

Tcl_IsSafe,	Tcl_MakeSafe,	Tcl_CreateSlave,	Tcl_GetSlave,
Tcl_GetMaster,	Tcl_GetInterpPath,	Tcl_CreateAlias,	Tcl_CreateAliasObj,
Tcl_GetAlias,	Tcl_GetAliasObj,	Tcl_ExposeCommand,
Tcl_HideCommand	-	manage	multiple	Tcl	interpreters,	aliases	and
hidden	commands

SYNOPSIS

#include	<tcl.h>
int
Tcl_IsSafe(interp)
int
Tcl_MakeSafe(interp)
Tcl_Interp	*
Tcl_CreateSlave(interp,	slaveName,	isSafe)
Tcl_Interp	*
Tcl_GetSlave(interp,	slaveName)
Tcl_Interp	*
Tcl_GetMaster(interp)
int
Tcl_GetInterpPath(askingInterp,	slaveInterp)
int
Tcl_CreateAlias(slaveInterp,	slaveCmd,	targetInterp,	targetCmd,

Tcl_Interp	*interp	(in)

const	char	*slaveName	(in)

int	isSafe	(in)

Tcl_Interp	*slaveInterp	(in)

const	char	*slaveCmd	(in)

argc,	argv)
int
Tcl_CreateAliasObj(slaveInterp,	slaveCmd,	targetInterp,	targetCmd,
objc,	objv)
int
Tcl_GetAlias(interp,	slaveCmd,	targetInterpPtr,	targetCmdPtr,
argcPtr,	argvPtr)
int
Tcl_GetAliasObj(interp,	slaveCmd,	targetInterpPtr,	targetCmdPtr,
objcPtr,	objvPtr)
int
Tcl_ExposeCommand(interp,	hiddenCmdName,	cmdName)
int
Tcl_HideCommand(interp,	cmdName,	hiddenCmdName)

ARGUMENTS

Interpreter	in	which	to
execute	the	specified
command.

Name	of	slave	interpreter
to	create	or	manipulate.

If	non-zero,	a	“safe”	slave
that	is	suitable	for	running
untrusted	code	is	created,
otherwise	a	trusted	slave
is	created.

Interpreter	to	use	for
creating	the	source
command	for	an	alias	(see
below).

Name	of	source	command
for	alias.

Tcl_Interp	*targetInterp	(in)

const	char	*targetCmd	(in)

int	argc	(in)

const	char	*const	*argv	(in)

int	objc	(in)

Tcl_Obj	**objv	(in)

Tcl_Interp	**targetInterpPtr	(in)

const	char	**targetCmdPtr	(out)

Interpreter	that	contains
the	target	command	for	an
alias.

Name	of	target	command
for	alias	in	targetInterp.

Count	of	additional
arguments	to	pass	to	the
alias	command.

Vector	of	strings,	the
additional	arguments	to
pass	to	the	alias
command.	This	storage	is
owned	by	the	caller.

Count	of	additional	object
arguments	to	pass	to	the
alias	object	command.

Vector	of	Tcl_Obj
structures,	the	additional
object	arguments	to	pass
to	the	alias	object
command.	This	storage	is
owned	by	the	caller.

Pointer	to	location	to	store
the	address	of	the
interpreter	where	a	target
command	is	defined	for	an
alias.

Pointer	to	location	to	store
the	address	of	the	name	of
the	target	command	for	an

int	*argcPtr	(out)

const	char	***argvPtr	(out)

int	*objcPtr	(out)

Tcl_Obj	***objvPtr	(out)

const	char	*cmdName	(in)

alias.

Pointer	to	location	to	store
count	of	additional
arguments	to	be	passed	to
the	alias.	The	location	is	in
storage	owned	by	the
caller.

Pointer	to	location	to	store
a	vector	of	strings,	the
additional	arguments	to
pass	to	an	alias.	The
location	is	in	storage
owned	by	the	caller,	the
vector	of	strings	is	owned
by	the	called	function.

Pointer	to	location	to	store
count	of	additional	object
arguments	to	be	passed	to
the	alias.	The	location	is	in
storage	owned	by	the
caller.

Pointer	to	location	to	store
a	vector	of	Tcl_Obj
structures,	the	additional
arguments	to	pass	to	an
object	alias	command.	The
location	is	in	storage
owned	by	the	caller,	the
vector	of	Tcl_Obj
structures	is	owned	by	the
called	function.

Name	of	an	exposed

const	char	*hiddenCmdName	(in)

command	to	hide	or
create.

Name	under	which	a
hidden	command	is	stored
and	with	which	it	can	be
exposed	or	invoked.

DESCRIPTION

These	procedures	are	intended	for	access	to	the	multiple	interpreter
facility	from	inside	C	programs.	They	enable	managing	multiple
interpreters	in	a	hierarchical	relationship,	and	the	management	of
aliases,	commands	that	when	invoked	in	one	interpreter	execute	a
command	in	another	interpreter.	The	return	value	for	those	procedures
that	return	an	int	is	either	TCL_OK	or	TCL_ERROR.	If	TCL_ERROR	is
returned	then	the	result	field	of	the	interpreter	contains	an	error
message.

Tcl_CreateSlave	creates	a	new	interpreter	as	a	slave	of	interp.	It	also
creates	a	slave	command	named	slaveName	in	interp	which	allows
interp	to	manipulate	the	new	slave.	If	isSafe	is	zero,	the	command
creates	a	trusted	slave	in	which	Tcl	code	has	access	to	all	the	Tcl
commands.	If	it	is	1,	the	command	creates	a	“safe”	slave	in	which	Tcl
code	has	access	only	to	set	of	Tcl	commands	defined	as	“Safe	Tcl”;	see
the	manual	entry	for	the	Tcl	interp	command	for	details.	If	the	creation
of	the	new	slave	interpreter	failed,	NULL	is	returned.

Tcl_IsSafe	returns	1	if	interp	is	“safe”	(was	created	with	the
TCL_SAFE_INTERPRETER	flag	specified),	0	otherwise.

Tcl_MakeSafe	marks	interp	as	“safe”,	so	that	future	calls	to	Tcl_IsSafe
will	return	1.	It	also	removes	all	known	potentially-unsafe	core
functionality	(both	commands	and	variables)	from	interp.	However,	it
cannot	know	what	parts	of	an	extension	or	application	are	safe	and
does	not	make	any	attempt	to	remove	those	parts,	so	safety	is	not
guaranteed	after	calling	Tcl_MakeSafe.	Callers	will	want	to	take	care

with	their	use	of	Tcl_MakeSafe	to	avoid	false	claims	of	safety.	For	many
situations,	Tcl_CreateSlave	may	be	a	better	choice,	since	it	creates
interpreters	in	a	known-safe	state.

Tcl_GetSlave	returns	a	pointer	to	a	slave	interpreter	of	interp.	The
slave	interpreter	is	identified	by	slaveName.	If	no	such	slave	interpreter
exists,	NULL	is	returned.

Tcl_GetMaster	returns	a	pointer	to	the	master	interpreter	of	interp.	If
interp	has	no	master	(it	is	a	top-level	interpreter)	then	NULL	is	returned.

Tcl_GetInterpPath	sets	the	result	field	in	askingInterp	to	the	relative
path	between	askingInterp	and	slaveInterp;	slaveInterp	must	be	a	slave
of	askingInterp.	If	the	computation	of	the	relative	path	succeeds,
TCL_OK	is	returned,	else	TCL_ERROR	is	returned	and	the	result	field
in	askingInterp	contains	the	error	message.

Tcl_CreateAlias	creates	an	object	command	named	slaveCmd	in
slaveInterp	that	when	invoked,	will	cause	the	command	targetCmd	to
be	invoked	in	targetInterp.	The	arguments	specified	by	the	strings
contained	in	argv	are	always	prepended	to	any	arguments	supplied	in
the	invocation	of	slaveCmd	and	passed	to	targetCmd.	This	operation
returns	TCL_OK	if	it	succeeds,	or	TCL_ERROR	if	it	fails;	in	that	case,
an	error	message	is	left	in	the	object	result	of	slaveInterp.	Note	that
there	are	no	restrictions	on	the	ancestry	relationship	(as	created	by
Tcl_CreateSlave)	between	slaveInterp	and	targetInterp.	Any	two
interpreters	can	be	used,	without	any	restrictions	on	how	they	are
related.

Tcl_CreateAliasObj	is	similar	to	Tcl_CreateAlias	except	that	it	takes	a
vector	of	objects	to	pass	as	additional	arguments	instead	of	a	vector	of
strings.

Tcl_GetAlias	returns	information	about	an	alias	aliasName	in	interp.
Any	of	the	result	fields	can	be	NULL,	in	which	case	the	corresponding
datum	is	not	returned.	If	a	result	field	is	non-NULL,	the	address
indicated	is	set	to	the	corresponding	datum.	For	example,	if
targetNamePtr	is	non-NULL	it	is	set	to	a	pointer	to	the	string	containing

the	name	of	the	target	command.

Tcl_GetAliasObj	is	similar	to	Tcl_GetAlias	except	that	it	returns	a
pointer	to	a	vector	of	Tcl_Obj	structures	instead	of	a	vector	of	strings.

Tcl_ExposeCommand	moves	the	command	named	hiddenCmdName
from	the	set	of	hidden	commands	to	the	set	of	exposed	commands,
putting	it	under	the	name	cmdName.	HiddenCmdName	must	be	the
name	of	an	existing	hidden	command,	or	the	operation	will	return
TCL_ERROR	and	leave	an	error	message	in	the	result	field	in	interp.	If
an	exposed	command	named	cmdName	already	exists,	the	operation
returns	TCL_ERROR	and	leaves	an	error	message	in	the	object	result
of	interp.	If	the	operation	succeeds,	it	returns	TCL_OK.	After	executing
this	command,	attempts	to	use	cmdName	in	a	call	to	Tcl_Eval	or	with
the	Tcl	eval	command	will	again	succeed.

Tcl_HideCommand	moves	the	command	named	cmdName	from	the
set	of	exposed	commands	to	the	set	of	hidden	commands,	under	the
name	hiddenCmdName.	CmdName	must	be	the	name	of	an	existing
exposed	command,	or	the	operation	will	return	TCL_ERROR	and	leave
an	error	message	in	the	object	result	of	interp.	Currently	both	cmdName
and	hiddenCmdName	must	not	contain	namespace	qualifiers,	or	the
operation	will	return	TCL_ERROR	and	leave	an	error	message	in	the
object	result	of	interp.	The	CmdName	will	be	looked	up	in	the	global
namespace,	and	not	relative	to	the	current	namespace,	even	if	the
current	namespace	is	not	the	global	one.	If	a	hidden	command	whose
name	is	hiddenCmdName	already	exists,	the	operation	also	returns
TCL_ERROR	and	the	result	field	in	interp	contains	an	error	message.	If
the	operation	succeeds,	it	returns	TCL_OK.	After	executing	this
command,	attempts	to	use	cmdName	in	a	call	to	Tcl_Eval	or	with	the
Tcl	eval	command	will	fail.

For	a	description	of	the	Tcl	interface	to	multiple	interpreters,	see
interp(n).

SEE	ALSO

interp

KEYWORDS

alias,	command,	exposed	commands,	hidden	commands,	interpreter,
invoke,	master,	slave

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1995-1996	Sun	Microsystems,	Inc.

Tcl_Interp	*interp	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	AssocData

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_GetAssocData,	Tcl_SetAssocData,	Tcl_DeleteAssocData	-
manage	associations	of	string	keys	and	user	specified	data
with	Tcl	interpreters

SYNOPSIS
#include	<tcl.h>
ClientData
Tcl_GetAssocData(interp,	key,	delProcPtr)
Tcl_SetAssocData(interp,	key,	delProc,	clientData)
Tcl_DeleteAssocData(interp,	key)

ARGUMENTS
DESCRIPTION
KEYWORDS

NAME

Tcl_GetAssocData,	Tcl_SetAssocData,	Tcl_DeleteAssocData	-	manage
associations	of	string	keys	and	user	specified	data	with	Tcl	interpreters

SYNOPSIS

#include	<tcl.h>
ClientData
Tcl_GetAssocData(interp,	key,	delProcPtr)
Tcl_SetAssocData(interp,	key,	delProc,	clientData)
Tcl_DeleteAssocData(interp,	key)

ARGUMENTS

Interpreter	in	which	to
execute	the	specified
command.

const	char	*key	(in)

Tcl_InterpDeleteProc	*delProc	(in)

Tcl_InterpDeleteProc	**delProcPtr	(in)

ClientData	clientData	(in)

Key	for	association	with
which	to	store	data	or	from
which	to	delete	or	retrieve
data.	Typically	the	module
prefix	for	a	package.

Procedure	to	call	when
interp	is	deleted.

Pointer	to	location	in	which
to	store	address	of	current
deletion	procedure	for
association.	Ignored	if
NULL.

Arbitrary	one-word	value
associated	with	the	given
key	in	this	interpreter.	This
data	is	owned	by	the
caller.

DESCRIPTION

These	procedures	allow	extensions	to	associate	their	own	data	with	a
Tcl	interpreter.	An	association	consists	of	a	string	key,	typically	the
name	of	the	extension,	and	a	one-word	value,	which	is	typically	a
pointer	to	a	data	structure	holding	data	specific	to	the	extension.	Tcl
makes	no	interpretation	of	either	the	key	or	the	value	for	an	association.

Storage	management	is	facilitated	by	storing	with	each	association	a
procedure	to	call	when	the	interpreter	is	deleted.	This	procedure	can
dispose	of	the	storage	occupied	by	the	client's	data	in	any	way	it	sees
fit.

Tcl_SetAssocData	creates	an	association	between	a	string	key	and	a
user	specified	datum	in	the	given	interpreter.	If	there	is	already	an

association	with	the	given	key,	Tcl_SetAssocData	overwrites	it	with	the
new	information.	It	is	up	to	callers	to	organize	their	use	of	names	to
avoid	conflicts,	for	example,	by	using	package	names	as	the	keys.	If	the
deleteProc	argument	is	non-NULL	it	specifies	the	address	of	a
procedure	to	invoke	if	the	interpreter	is	deleted	before	the	association	is
deleted.	DeleteProc	should	have	arguments	and	result	that	match	the
type	Tcl_InterpDeleteProc:

typedef	void	Tcl_InterpDeleteProc(

								ClientData	clientData,

								Tcl_Interp	*interp);

When	deleteProc	is	invoked	the	clientData	and	interp	arguments	will	be
the	same	as	the	corresponding	arguments	passed	to
Tcl_SetAssocData.	The	deletion	procedure	will	not	be	invoked	if	the
association	is	deleted	before	the	interpreter	is	deleted.

Tcl_GetAssocData	returns	the	datum	stored	in	the	association	with	the
specified	key	in	the	given	interpreter,	and	if	the	delProcPtr	field	is	non-
NULL,	the	address	indicated	by	it	gets	the	address	of	the	delete
procedure	stored	with	this	association.	If	no	association	with	the
specified	key	exists	in	the	given	interpreter	Tcl_GetAssocData	returns
NULL.

Tcl_DeleteAssocData	deletes	an	association	with	a	specified	key	in
the	given	interpreter.	Then	it	calls	the	deletion	procedure.

KEYWORDS

association,	data,	deletion	procedure,	interpreter,	key

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1995-1996	Sun	Microsystems,	Inc.

int	numPids	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	DetachPids

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_DetachPids,	Tcl_ReapDetachedProcs,	Tcl_WaitPid	-
manage	child	processes	in	background

SYNOPSIS
#include	<tcl.h>
Tcl_DetachPids(numPids,	pidPtr)
Tcl_ReapDetachedProcs()
Tcl_Pid
Tcl_WaitPid(pid,	statusPtr,	options)

ARGUMENTS
DESCRIPTION
KEYWORDS

NAME

Tcl_DetachPids,	Tcl_ReapDetachedProcs,	Tcl_WaitPid	-	manage	child
processes	in	background

SYNOPSIS

#include	<tcl.h>
Tcl_DetachPids(numPids,	pidPtr)
Tcl_ReapDetachedProcs()
Tcl_Pid
Tcl_WaitPid(pid,	statusPtr,	options)

ARGUMENTS

Number	of	process	ids
contained	in	the	array
pointed	to	by	pidPtr.

int	*pidPtr	(in)

Tcl_Pid	pid	(in)

int	*statusPtr	(out)

int	options	(in)

Address	of	array
containing	numPids
process	ids.

The	id	of	the	process
(pipe)	to	wait	for.

The	result	of	waiting	on	a
process	(pipe).	Either	0	or
ECHILD.

The	options	controlling	the
wait.	WNOHANG	specifies
not	to	wait	when	checking
the	process.

DESCRIPTION

Tcl_DetachPids	and	Tcl_ReapDetachedProcs	provide	a	mechanism
for	managing	subprocesses	that	are	running	in	background.	These
procedures	are	needed	because	the	parent	of	a	process	must
eventually	invoke	the	waitpid	kernel	call	(or	one	of	a	few	other	similar
kernel	calls)	to	wait	for	the	child	to	exit.	Until	the	parent	waits	for	the
child,	the	child's	state	cannot	be	completely	reclaimed	by	the	system.	If
a	parent	continually	creates	children	and	doesn't	wait	on	them,	the
system's	process	table	will	eventually	overflow,	even	if	all	the	children
have	exited.

Tcl_DetachPids	may	be	called	to	ask	Tcl	to	take	responsibility	for	one
or	more	processes	whose	process	ids	are	contained	in	the	pidPtr	array
passed	as	argument.	The	caller	presumably	has	started	these
processes	running	in	background	and	does	not	want	to	have	to	deal
with	them	again.

Tcl_ReapDetachedProcs	invokes	the	waitpid	kernel	call	on	each	of
the	background	processes	so	that	its	state	can	be	cleaned	up	if	it	has

exited.	If	the	process	has	not	exited	yet,	Tcl_ReapDetachedProcs
does	not	wait	for	it	to	exit;	it	will	check	again	the	next	time	it	is	invoked.
Tcl	automatically	calls	Tcl_ReapDetachedProcs	each	time	the	exec
command	is	executed,	so	in	most	cases	it	is	not	necessary	for	any	code
outside	of	Tcl	to	invoke	Tcl_ReapDetachedProcs.	However,	if	you	call
Tcl_DetachPids	in	situations	where	the	exec	command	may	never	get
executed,	you	may	wish	to	call	Tcl_ReapDetachedProcs	from	time	to
time	so	that	background	processes	can	be	cleaned	up.

Tcl_WaitPid	is	a	thin	wrapper	around	the	facilities	provided	by	the
operating	system	to	wait	on	the	end	of	a	spawned	process	and	to	check
a	whether	spawned	process	is	still	running.	It	is	used	by
Tcl_ReapDetachedProcs	and	the	channel	system	to	portably	access
the	operating	system.

KEYWORDS

background,	child,	detach,	process,	wait

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1989-1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl_Interp	*interp	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	BackgdErr

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tcl_BackgroundError	-	report	Tcl	error	that	occurred	in	background
processing

SYNOPSIS

#include	<tcl.h>
Tcl_BackgroundError(interp)

ARGUMENTS

Interpreter	in	which	the
error	occurred.

DESCRIPTION

This	procedure	is	typically	invoked	when	a	Tcl	error	occurs	during
“background	processing”	such	as	executing	an	event	handler.	When
such	an	error	occurs,	the	error	condition	is	reported	to	Tcl	or	to	a	widget
or	some	other	C	code,	and	there	is	not	usually	any	obvious	way	for	that
code	to	report	the	error	to	the	user.	In	these	cases	the	code	calls
Tcl_BackgroundError	with	an	interp	argument	identifying	the
interpreter	in	which	the	error	occurred.	At	the	time
Tcl_BackgroundError	is	invoked,	the	interpreter's	result	is	expected	to
contain	an	error	message.	Tcl_BackgroundError	will	invoke	the
command	registered	in	that	interpreter	to	handle	background	errors	by
the	interp	bgerror	command.	The	registered	handler	command	is
meant	to	report	the	error	in	an	application-specific	fashion.	The	handler
command	receives	two	arguments,	the	result	of	the	interp,	and	the
return	options	of	the	interp	at	the	time	the	error	occurred.	If	the

application	registers	no	handler	command,	the	default	handler
command	will	attempt	to	call	bgerror	to	report	the	error.	If	an	error
condition	arises	while	invoking	the	handler	command,	then
Tcl_BackgroundError	reports	the	error	itself	by	printing	a	message	on
the	standard	error	file.

Tcl_BackgroundError	does	not	invoke	the	handler	command
immediately	because	this	could	potentially	interfere	with	scripts	that	are
in	process	at	the	time	the	error	occurred.	Instead,	it	invokes	the	handler
command	later	as	an	idle	callback.

It	is	possible	for	many	background	errors	to	accumulate	before	the
handler	command	is	invoked.	When	this	happens,	each	of	the	errors	is
processed	in	order.	However,	if	the	handle	command	returns	a	break
exception,	then	all	remaining	error	reports	for	the	interpreter	are
skipped.

KEYWORDS

background,	bgerror,	error,	interp

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1992-1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	IntObj

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_NewIntObj,	Tcl_NewLongObj,	Tcl_NewWideIntObj,
Tcl_SetIntObj,	Tcl_SetLongObj,	Tcl_SetWideIntObj,
Tcl_GetIntFromObj,	Tcl_GetLongFromObj,
Tcl_GetWideIntFromObj,	Tcl_NewBignumObj,
Tcl_SetBignumObj,	Tcl_GetBignumFromObj,
Tcl_TakeBignumFromObj	-	manipulate	Tcl	objects	as	integer
values

SYNOPSIS
#include	<tcl.h>
Tcl_Obj	*
Tcl_NewIntObj(intValue)
Tcl_Obj	*
Tcl_NewLongObj(longValue)
Tcl_Obj	*
Tcl_NewWideIntObj(wideValue)
Tcl_SetIntObj(objPtr,	intValue)
Tcl_SetLongObj(objPtr,	longValue)
Tcl_SetWideIntObj(objPtr,	wideValue)
int
Tcl_GetIntFromObj(interp,	objPtr,	intPtr)
int
Tcl_GetLongFromObj(interp,	objPtr,	longPtr)
int
Tcl_GetWideIntFromObj(interp,	objPtr,	widePtr)
#include	<tclTomMath.h>
Tcl_Obj	*
Tcl_NewBignumObj(bigValue)
Tcl_SetBignumObj(objPtr,	bigValue)
int
Tcl_GetBignumFromObj(interp,	objPtr,	bigValue)

int
Tcl_TakeBignumFromObj(interp,	objPtr,	bigValue)
int
Tcl_InitBignumFromDouble(interp,	doubleValue,	bigValue)

ARGUMENTS
DESCRIPTION
SEE	ALSO
KEYWORDS

NAME

Tcl_NewIntObj,	Tcl_NewLongObj,	Tcl_NewWideIntObj,	Tcl_SetIntObj,
Tcl_SetLongObj,	Tcl_SetWideIntObj,	Tcl_GetIntFromObj,
Tcl_GetLongFromObj,	Tcl_GetWideIntFromObj,	Tcl_NewBignumObj,
Tcl_SetBignumObj,	Tcl_GetBignumFromObj,	Tcl_TakeBignumFromObj	-
manipulate	Tcl	objects	as	integer	values

SYNOPSIS

#include	<tcl.h>
Tcl_Obj	*
Tcl_NewIntObj(intValue)
Tcl_Obj	*
Tcl_NewLongObj(longValue)
Tcl_Obj	*
Tcl_NewWideIntObj(wideValue)
Tcl_SetIntObj(objPtr,	intValue)
Tcl_SetLongObj(objPtr,	longValue)
Tcl_SetWideIntObj(objPtr,	wideValue)
int
Tcl_GetIntFromObj(interp,	objPtr,	intPtr)
int
Tcl_GetLongFromObj(interp,	objPtr,	longPtr)
int
Tcl_GetWideIntFromObj(interp,	objPtr,	widePtr)
#include	<tclTomMath.h>
Tcl_Obj	*
Tcl_NewBignumObj(bigValue)

int	intValue	(in)

long	longValue	(in)

Tcl_WideInt	wideValue	(in)

Tcl_Obj	*objPtr	(in/out)

Tcl_Interp	*interp	(in/out)

Tcl_SetBignumObj(objPtr,	bigValue)
int
Tcl_GetBignumFromObj(interp,	objPtr,	bigValue)
int
Tcl_TakeBignumFromObj(interp,	objPtr,	bigValue)
int
Tcl_InitBignumFromDouble(interp,	doubleValue,	bigValue)

ARGUMENTS

Integer	value	used	to
initialize	or	set	a	Tcl	object.

Long	integer	value	used	to
initialize	or	set	a	Tcl	object.

Wide	integer	value	used	to
initialize	or	set	a	Tcl	object.

For	Tcl_SetIntObj,
Tcl_SetLongObj,
Tcl_SetWideIntObj,	and
Tcl_SetBignumObj,	this
points	to	the	object	in
which	to	store	an	integral
value.	For
Tcl_GetIntFromObj,
Tcl_GetLongFromObj,
Tcl_GetWideIntFromObj,
Tcl_GetBignumFromObj,
and
Tcl_TakeBignumFromObj,
this	refers	to	the	object
from	which	to	retrieve	an
integral	value.

When	non-NULL,	an	error

int	*intPtr	(out)

long	*longPtr	(out)

Tcl_WideInt	*widePtr	(out)

mp_int	*bigValue	(in/out)

double	doubleValue	(in)

message	is	left	here	when
integral	value	retrieval
fails.

Points	to	place	to	store	the
integer	value	retrieved
from	objPtr.

Points	to	place	to	store	the
long	integer	value
retrieved	from	objPtr.

Points	to	place	to	store	the
wide	integer	value
retrieved	from	objPtr.

Points	to	a	multi-precision
integer	structure	declared
by	the	LibTomMath	library.

Double	value	from	which
the	integer	part	is
determined	and	used	to
initialize	a	multi-precision
integer	value.

DESCRIPTION

These	procedures	are	used	to	create,	modify,	and	read	Tcl	objects	that
hold	integral	values.

The	different	routines	exist	to	accomodate	different	integral	types	in	C
with	which	values	might	be	exchanged.	The	C	integral	types	for	which
Tcl	provides	value	exchange	routines	are	int,	long	int,	Tcl_WideInt,
and	mp_int.	The	int	and	long	int	types	are	provided	by	the	C	language
standard.	The	Tcl_WideInt	type	is	a	typedef	defined	to	be	whatever

signed	integral	type	covers	at	least	the	64-bit	integer	range
(-9223372036854775808	to	9223372036854775807).	Depending	on
the	platform	and	the	C	compiler,	the	actual	type	might	be	long	int,	long
long	int,	int64,	or	something	else.	The	mp_int	type	is	a	multiple-
precision	integer	type	defined	by	the	LibTomMath	multiple-precision
integer	library.

The	Tcl_NewIntObj,	Tcl_NewLongObj,	Tcl_NewWideIntObj,	and
Tcl_NewBignumObj	routines	each	create	and	return	a	new	Tcl	object
initialized	to	the	integral	value	of	the	argument.	The	returned	Tcl	object
is	unshared.

The	Tcl_SetIntObj,	Tcl_SetLongObj,	Tcl_SetWideIntObj,	and
Tcl_SetBignumObj	routines	each	set	the	value	of	an	existing	Tcl	object
pointed	to	by	objPtr	to	the	integral	value	provided	by	the	other
argument.	The	objPtr	argument	must	point	to	an	unshared	Tcl	object.
Any	attempt	to	set	the	value	of	a	shared	Tcl	object	violates	Tcl's	copy-
on-write	policy.	Any	existing	string	representation	or	internal
representation	in	the	unshared	Tcl	object	will	be	freed	as	a
consequence	of	setting	the	new	value.

The	Tcl_GetIntFromObj,	Tcl_GetLongFromObj,
Tcl_GetWideIntFromObj,	Tcl_GetBignumFromObj,	and
Tcl_TakeBignumFromObj	routines	attempt	to	retrieve	an	integral	value
of	the	appropriate	type	from	the	Tcl	object	objPtr.	If	the	attempt
succeeds,	then	TCL_OK	is	returned,	and	the	value	is	written	to	the
storage	provided	by	the	caller.	The	attempt	might	fail	if	objPtr	does	not
hold	an	integral	value,	or	if	the	value	exceeds	the	range	of	the	target
type.	If	the	attempt	fails,	then	TCL_ERROR	is	returned,	and	if	interp	is
non-NULL,	an	error	message	is	left	in	interp.	The	Tcl_ObjType	of	objPtr
may	be	changed	to	make	subsequent	calls	to	the	same	routine	more
efficient.	Unlike	the	other	functions,	Tcl_TakeBignumFromObj	may	set
the	content	of	the	Tcl	object	objPtr	to	an	empty	string	in	the	process	of
retrieving	the	multiple-precision	integer	value.

The	choice	between	Tcl_GetBignumFromObj	and
Tcl_TakeBignumFromObj	is	governed	by	how	the	caller	will	continue
to	use	objPtr.	If	after	the	mp_int	value	is	retrieved	from	objPtr,	the

caller	will	make	no	more	use	of	objPtr,	then	using
Tcl_TakeBignumFromObj	permits	Tcl	to	detect	when	an	unshared
objPtr	permits	the	value	to	be	moved	instead	of	copied,	which	should	be
more	efficient.	If	anything	later	in	the	caller	requires	objPtr	to	continue
to	hold	the	same	value,	then	Tcl_GetBignumFromObj	must	be
chosen.

The	Tcl_InitBignumFromDouble	routine	is	a	utility	procedure	that
extracts	the	integer	part	of	doubleValue	and	stores	that	integer	value	in
the	mp_int	value	bigValue.

SEE	ALSO

Tcl_NewObj,	Tcl_DecrRefCount,	Tcl_IncrRefCount,
Tcl_GetObjResult

KEYWORDS

integer,	integer	object,	integer	type,	internal	representation,	object,
object	type,	string	representation

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1996-1997	Sun	Microsystems,	Inc.

Tcl_Interp	*interp	(in)

const	char	*cmd	(in)

int	flags	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	RecordEval

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tcl_RecordAndEval	-	save	command	on	history	list	before	evaluating

SYNOPSIS

#include	<tcl.h>
int
Tcl_RecordAndEval(interp,	cmd,	flags)

ARGUMENTS

Tcl	interpreter	in	which	to
evaluate	command.

Command	(or	sequence	of
commands)	to	execute.

An	OR'ed	combination	of
flag	bits.	TCL_NO_EVAL
means	record	the
command	but	do	not
evaluate	it.
TCL_EVAL_GLOBAL
means	evaluate	the
command	at	global	level
instead	of	the	current	stack
level.

DESCRIPTION

Tcl_RecordAndEval	is	invoked	to	record	a	command	as	an	event	on
the	history	list	and	then	execute	it	using	Tcl_Eval	(or	Tcl_GlobalEval	if
the	TCL_EVAL_GLOBAL	bit	is	set	in	flags).	It	returns	a	completion
code	such	as	TCL_OK	just	like	Tcl_Eval	and	it	leaves	information	in	the
interpreter's	result.	If	you	do	not	want	the	command	recorded	on	the
history	list	then	you	should	invoke	Tcl_Eval	instead	of
Tcl_RecordAndEval.	Normally	Tcl_RecordAndEval	is	only	called	with
top-level	commands	typed	by	the	user,	since	the	purpose	of	history	is	to
allow	the	user	to	re-issue	recently-invoked	commands.	If	the	flags
argument	contains	the	TCL_NO_EVAL	bit	then	the	command	is
recorded	without	being	evaluated.

Note	that	Tcl_RecordAndEval	has	been	largely	replaced	by	the	object-
based	procedure	Tcl_RecordAndEvalObj.	That	object-based
procedure	records	and	optionally	executes	a	command	held	in	a	Tcl
object	instead	of	a	string.

SEE	ALSO

Tcl_RecordAndEvalObj

KEYWORDS

command,	event,	execute,	history,	interpreter,	record

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1989-1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1997	Sun	Microsystems,	Inc.

char	*src	(in)

int	*countPtr	(out)

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	Backslash

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tcl_Backslash	-	parse	a	backslash	sequence

SYNOPSIS

#include	<tcl.h>
char
Tcl_Backslash(src,	countPtr)

ARGUMENTS

Pointer	to	a	string	starting
with	a	backslash.

If	countPtr	is	not	NULL,
*countPtr	gets	filled	in	with
number	of	characters	in
the	backslash	sequence,
including	the	backslash
character.

DESCRIPTION

The	use	of	Tcl_Backslash	is	deprecated	in	favor	of	Tcl_UtfBackslash.

This	is	a	utility	procedure	provided	for	backwards	compatibility	with	non-
internationalized	Tcl	extensions.	It	parses	a	backslash	sequence	and
returns	the	low	byte	of	the	Unicode	character	corresponding	to	the
sequence.	Tcl_Backslash	modifies	*countPtr	to	contain	the	number	of
characters	in	the	backslash	sequence.

See	the	Tcl	manual	entry	for	information	on	the	valid	backslash
sequences.	All	of	the	sequences	described	in	the	Tcl	manual	entry	are
supported	by	Tcl_Backslash.

SEE	ALSO

Tcl,	Tcl_UtfBackslash

KEYWORDS

backslash,	parse

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1989-1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	GetInt

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_GetInt,	Tcl_GetDouble,	Tcl_GetBoolean	-	convert	from
string	to	integer,	double,	or	boolean

SYNOPSIS
#include	<tcl.h>
int
Tcl_GetInt(interp,	src,	intPtr)
int
Tcl_GetDouble(interp,	src,	doublePtr)
int
Tcl_GetBoolean(interp,	src,	boolPtr)

ARGUMENTS
DESCRIPTION
KEYWORDS

NAME

Tcl_GetInt,	Tcl_GetDouble,	Tcl_GetBoolean	-	convert	from	string	to
integer,	double,	or	boolean

SYNOPSIS

#include	<tcl.h>
int
Tcl_GetInt(interp,	src,	intPtr)
int
Tcl_GetDouble(interp,	src,	doublePtr)
int
Tcl_GetBoolean(interp,	src,	boolPtr)

ARGUMENTS

Tcl_Interp	*interp	(in)

const	char	*src	(in)

int	*intPtr	(out)

double	*doublePtr	(out)

int	*boolPtr	(out)

Interpreter	to	use	for	error
reporting.

Textual	value	to	be
converted.

Points	to	place	to	store
integer	value	converted
from	src.

Points	to	place	to	store
double-precision	floating-
point	value	converted	from
src.

Points	to	place	to	store
boolean	value	(0	or	1)
converted	from	src.

DESCRIPTION

These	procedures	convert	from	strings	to	integers	or	double-precision
floating-point	values	or	booleans	(represented	as	0-	or	1-valued
integers).	Each	of	the	procedures	takes	a	src	argument,	converts	it	to
an	internal	form	of	a	particular	type,	and	stores	the	converted	value	at
the	location	indicated	by	the	procedure's	third	argument.	If	all	goes	well,
each	of	the	procedures	returns	TCL_OK.	If	src	does	not	have	the
proper	syntax	for	the	desired	type	then	TCL_ERROR	is	returned,	an
error	message	is	left	in	the	interpreter's	result,	and	nothing	is	stored	at
*intPtr	or	*doublePtr	or	*boolPtr.

Tcl_GetInt	expects	src	to	consist	of	a	collection	of	integer	digits,
optionally	signed	and	optionally	preceded	by	white	space.	If	the	first	two
characters	of	src	after	the	optional	white	space	and	sign	are	“0x”	then
src	is	expected	to	be	in	hexadecimal	form;	otherwise,	if	the	first	such
character	is	“0”	then	src	is	expected	to	be	in	octal	form;	otherwise,	src	is

expected	to	be	in	decimal	form.

Tcl_GetDouble	expects	src	to	consist	of	a	floating-point	number,	which
is:	white	space;	a	sign;	a	sequence	of	digits;	a	decimal	point;	a
sequence	of	digits;	the	letter	“e”;	a	signed	decimal	exponent;	and	more
white	space.	Any	of	the	fields	may	be	omitted,	except	that	the	digits
either	before	or	after	the	decimal	point	must	be	present	and	if	the	“e”	is
present	then	it	must	be	followed	by	the	exponent	number.

Tcl_GetBoolean	expects	src	to	specify	a	boolean	value.	If	src	is	any	of
0,	false,	no,	or	off,	then	Tcl_GetBoolean	stores	a	zero	value	at
*boolPtr.	If	src	is	any	of	1,	true,	yes,	or	on,	then	1	is	stored	at	*boolPtr.
Any	of	these	values	may	be	abbreviated,	and	upper-case	spellings	are
also	acceptable.

KEYWORDS

boolean,	conversion,	double,	floating-point,	integer

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1989-1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl_Interp	*interp	(in)

Tcl_Obj	*cmdPtr	(in)

int	flags	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	RecEvalObj

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tcl_RecordAndEvalObj	-	save	command	on	history	list	before
evaluating

SYNOPSIS

#include	<tcl.h>
int
Tcl_RecordAndEvalObj(interp,	cmdPtr,	flags)

ARGUMENTS

Tcl	interpreter	in	which	to
evaluate	command.

Points	to	a	Tcl	object
containing	a	command	(or
sequence	of	commands)	to
execute.

An	OR'ed	combination	of
flag	bits.	TCL_NO_EVAL
means	record	the
command	but	do	not
evaluate	it.
TCL_EVAL_GLOBAL
means	evaluate	the
command	at	global	level
instead	of	the	current	stack
level.

DESCRIPTION

Tcl_RecordAndEvalObj	is	invoked	to	record	a	command	as	an	event
on	the	history	list	and	then	execute	it	using	Tcl_EvalObjEx	(or
Tcl_GlobalEvalObj	if	the	TCL_EVAL_GLOBAL	bit	is	set	in	flags).	It
returns	a	completion	code	such	as	TCL_OK	just	like	Tcl_EvalObjEx,	as
well	as	a	result	object	containing	additional	information	(a	result	value
or	error	message)	that	can	be	retrieved	using	Tcl_GetObjResult.	If	you
do	not	want	the	command	recorded	on	the	history	list	then	you	should
invoke	Tcl_EvalObjEx	instead	of	Tcl_RecordAndEvalObj.	Normally
Tcl_RecordAndEvalObj	is	only	called	with	top-level	commands	typed
by	the	user,	since	the	purpose	of	history	is	to	allow	the	user	to	re-issue
recently	invoked	commands.	If	the	flags	argument	contains	the
TCL_NO_EVAL	bit	then	the	command	is	recorded	without	being
evaluated.

SEE	ALSO

Tcl_EvalObjEx,	Tcl_GetObjResult

KEYWORDS

command,	event,	execute,	history,	interpreter,	object,	record

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1997	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	CrtChannel

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_CreateChannel,	Tcl_GetChannelInstanceData,
Tcl_GetChannelType,	Tcl_GetChannelName,
Tcl_GetChannelHandle,	Tcl_GetChannelMode,
Tcl_GetChannelBufferSize,	Tcl_SetChannelBufferSize,
Tcl_NotifyChannel,	Tcl_BadChannelOption,	Tcl_ChannelName,
Tcl_ChannelVersion,	Tcl_ChannelBlockModeProc,
Tcl_ChannelCloseProc,	Tcl_ChannelClose2Proc,
Tcl_ChannelInputProc,	Tcl_ChannelOutputProc,
Tcl_ChannelSeekProc,	Tcl_ChannelWideSeekProc,
Tcl_ChannelTruncateProc,	Tcl_ChannelSetOptionProc,
Tcl_ChannelGetOptionProc,	Tcl_ChannelWatchProc,
Tcl_ChannelGetHandleProc,	Tcl_ChannelFlushProc,
Tcl_ChannelHandlerProc,	Tcl_ChannelThreadActionProc,
Tcl_IsChannelShared,	Tcl_IsChannelRegistered,
Tcl_CutChannel,	Tcl_SpliceChannel,	Tcl_IsChannelExisting,
Tcl_ClearChannelHandlers,	Tcl_GetChannelThread,
Tcl_ChannelBuffered	-	procedures	for	creating	and
manipulating	channels

SYNOPSIS
#include	<tcl.h>
Tcl_Channel
Tcl_CreateChannel(typePtr,	channelName,	instanceData,
mask)
ClientData
Tcl_GetChannelInstanceData(channel)
Tcl_ChannelType	*
Tcl_GetChannelType(channel)
const	char	*
Tcl_GetChannelName(channel)
int

Tcl_GetChannelHandle(channel,	direction,	handlePtr)
Tcl_ThreadId
Tcl_GetChannelThread(channel)
int
Tcl_GetChannelMode(channel)
int
Tcl_GetChannelBufferSize(channel)
Tcl_SetChannelBufferSize(channel,	size)
Tcl_NotifyChannel(channel,	mask)
int
Tcl_BadChannelOption(interp,	optionName,	optionList)
int
Tcl_IsChannelShared(channel)
int
Tcl_IsChannelRegistered(interp,	channel)
int
Tcl_IsChannelExisting(channelName)
void
Tcl_CutChannel(channel)
void
Tcl_SpliceChannel(channel)
void
Tcl_ClearChannelHandlers(channel)
int
Tcl_ChannelBuffered(channel)
const	char	*
Tcl_ChannelName(typePtr)
Tcl_ChannelTypeVersion
Tcl_ChannelVersion(typePtr)
Tcl_DriverBlockModeProc	*
Tcl_ChannelBlockModeProc(typePtr)
Tcl_DriverCloseProc	*
Tcl_ChannelCloseProc(typePtr)
Tcl_DriverClose2Proc	*
Tcl_ChannelClose2Proc(typePtr)
Tcl_DriverInputProc	*
Tcl_ChannelInputProc(typePtr)

Tcl_DriverOutputProc	*
Tcl_ChannelOutputProc(typePtr)
Tcl_DriverSeekProc	*
Tcl_ChannelSeekProc(typePtr)
Tcl_DriverWideSeekProc	*
Tcl_ChannelWideSeekProc(typePtr)
Tcl_DriverThreadActionProc	*
Tcl_ChannelThreadActionProc(typePtr)
Tcl_DriverTruncateProc	*
Tcl_ChannelTruncateProc(typePtr)
Tcl_DriverSetOptionProc	*
Tcl_ChannelSetOptionProc(typePtr)
Tcl_DriverGetOptionProc	*
Tcl_ChannelGetOptionProc(typePtr)
Tcl_DriverWatchProc	*
Tcl_ChannelWatchProc(typePtr)
Tcl_DriverGetHandleProc	*
Tcl_ChannelGetHandleProc(typePtr)
Tcl_DriverFlushProc	*
Tcl_ChannelFlushProc(typePtr)
Tcl_DriverHandlerProc	*
Tcl_ChannelHandlerProc(typePtr)

ARGUMENTS
DESCRIPTION
TCL_CHANNELTYPE
TYPENAME
VERSION
BLOCKMODEPROC
CLOSEPROC	AND	CLOSE2PROC
INPUTPROC
OUTPUTPROC
SEEKPROC	AND	WIDESEEKPROC
SETOPTIONPROC
GETOPTIONPROC
WATCHPROC
GETHANDLEPROC
FLUSHPROC

HANDLERPROC
THREADACTIONPROC
TRUNCATEPROC
TCL_BADCHANNELOPTION
OLD	CHANNEL	TYPES
SEE	ALSO
KEYWORDS

NAME

Tcl_CreateChannel,	Tcl_GetChannelInstanceData,
Tcl_GetChannelType,	Tcl_GetChannelName,	Tcl_GetChannelHandle,
Tcl_GetChannelMode,	Tcl_GetChannelBufferSize,
Tcl_SetChannelBufferSize,	Tcl_NotifyChannel,	Tcl_BadChannelOption,
Tcl_ChannelName,	Tcl_ChannelVersion,	Tcl_ChannelBlockModeProc,
Tcl_ChannelCloseProc,	Tcl_ChannelClose2Proc,
Tcl_ChannelInputProc,	Tcl_ChannelOutputProc,	Tcl_ChannelSeekProc,
Tcl_ChannelWideSeekProc,	Tcl_ChannelTruncateProc,
Tcl_ChannelSetOptionProc,	Tcl_ChannelGetOptionProc,
Tcl_ChannelWatchProc,	Tcl_ChannelGetHandleProc,
Tcl_ChannelFlushProc,	Tcl_ChannelHandlerProc,
Tcl_ChannelThreadActionProc,	Tcl_IsChannelShared,
Tcl_IsChannelRegistered,	Tcl_CutChannel,	Tcl_SpliceChannel,
Tcl_IsChannelExisting,	Tcl_ClearChannelHandlers,
Tcl_GetChannelThread,	Tcl_ChannelBuffered	-	procedures	for	creating
and	manipulating	channels

SYNOPSIS

#include	<tcl.h>
Tcl_Channel
Tcl_CreateChannel(typePtr,	channelName,	instanceData,	mask)
ClientData
Tcl_GetChannelInstanceData(channel)
Tcl_ChannelType	*
Tcl_GetChannelType(channel)
const	char	*
Tcl_GetChannelName(channel)

int
Tcl_GetChannelHandle(channel,	direction,	handlePtr)
Tcl_ThreadId
Tcl_GetChannelThread(channel)
int
Tcl_GetChannelMode(channel)
int
Tcl_GetChannelBufferSize(channel)
Tcl_SetChannelBufferSize(channel,	size)
Tcl_NotifyChannel(channel,	mask)
int
Tcl_BadChannelOption(interp,	optionName,	optionList)
int
Tcl_IsChannelShared(channel)
int
Tcl_IsChannelRegistered(interp,	channel)
int
Tcl_IsChannelExisting(channelName)
void
Tcl_CutChannel(channel)
void
Tcl_SpliceChannel(channel)
void
Tcl_ClearChannelHandlers(channel)
int
Tcl_ChannelBuffered(channel)
const	char	*
Tcl_ChannelName(typePtr)
Tcl_ChannelTypeVersion
Tcl_ChannelVersion(typePtr)
Tcl_DriverBlockModeProc	*
Tcl_ChannelBlockModeProc(typePtr)
Tcl_DriverCloseProc	*
Tcl_ChannelCloseProc(typePtr)
Tcl_DriverClose2Proc	*
Tcl_ChannelClose2Proc(typePtr)
Tcl_DriverInputProc	*

const	Tcl_ChannelType	*typePtr	(in)

const	char	*channelName	(in)

Tcl_ChannelInputProc(typePtr)
Tcl_DriverOutputProc	*
Tcl_ChannelOutputProc(typePtr)
Tcl_DriverSeekProc	*
Tcl_ChannelSeekProc(typePtr)
Tcl_DriverWideSeekProc	*
Tcl_ChannelWideSeekProc(typePtr)
Tcl_DriverThreadActionProc	*
Tcl_ChannelThreadActionProc(typePtr)
Tcl_DriverTruncateProc	*
Tcl_ChannelTruncateProc(typePtr)
Tcl_DriverSetOptionProc	*
Tcl_ChannelSetOptionProc(typePtr)
Tcl_DriverGetOptionProc	*
Tcl_ChannelGetOptionProc(typePtr)
Tcl_DriverWatchProc	*
Tcl_ChannelWatchProc(typePtr)
Tcl_DriverGetHandleProc	*
Tcl_ChannelGetHandleProc(typePtr)
Tcl_DriverFlushProc	*
Tcl_ChannelFlushProc(typePtr)
Tcl_DriverHandlerProc	*
Tcl_ChannelHandlerProc(typePtr)

ARGUMENTS

Points	to	a	structure
containing	the	addresses
of	procedures	that	can	be
called	to	perform	I/O	and
other	functions	on	the
channel.

The	name	of	this	channel,
such	as	file3;	must	not	be
in	use	by	any	other
channel.	Can	be	NULL,	in

ClientData	instanceData	(in)

int	mask	(in)

Tcl_Channel	channel	(in)

int	direction	(in)

ClientData	*handlePtr	(out)

int	size	(in)

int	mask	(in)

which	case	the	channel	is
created	without	a	name.

Arbitrary	one-word	value
to	be	associated	with	this
channel.	This	value	is
passed	to	procedures	in
typePtr	when	they	are
invoked.

OR-ed	combination	of
TCL_READABLE	and
TCL_WRITABLE	to
indicate	whether	a	channel
is	readable	and	writable.

The	channel	to	operate	on.

TCL_READABLE	means
the	input	handle	is	wanted;
TCL_WRITABLE	means
the	output	handle	is
wanted.

Points	to	the	location
where	the	desired	OS-
specific	handle	should	be
stored.

The	size,	in	bytes,	of
buffers	to	allocate	in	this
channel.

An	OR-ed	combination	of
TCL_READABLE,
TCL_WRITABLE	and
TCL_EXCEPTION	that

Tcl_Interp	*interp	(in)

const	char	*optionName	(in)

const	char	*optionList	(in)

indicates	events	that	have
occurred	on	this	channel.

Current	interpreter.	(can
be	NULL)

Name	of	the	invalid	option.

Specific	options	list	(space
separated	words,	without
“-”)	to	append	to	the
standard	generic	options
list.	Can	be	NULL	for
generic	options	error
message	only.

DESCRIPTION

Tcl	uses	a	two-layered	channel	architecture.	It	provides	a	generic	upper
layer	to	enable	C	and	Tcl	programs	to	perform	input	and	output	using
the	same	APIs	for	a	variety	of	files,	devices,	sockets	etc.	The	generic	C
APIs	are	described	in	the	manual	entry	for	Tcl_OpenFileChannel.

The	lower	layer	provides	type-specific	channel	drivers	for	each	type	of
device	supported	on	each	platform.	This	manual	entry	describes	the	C
APIs	used	to	communicate	between	the	generic	layer	and	the	type-
specific	channel	drivers.	It	also	explains	how	new	types	of	channels	can
be	added	by	providing	new	channel	drivers.

Channel	drivers	consist	of	a	number	of	components:	First,	each	channel
driver	provides	a	Tcl_ChannelType	structure	containing	pointers	to
functions	implementing	the	various	operations	used	by	the	generic	layer
to	communicate	with	the	channel	driver.	The	Tcl_ChannelType
structure	and	the	functions	referenced	by	it	are	described	in	the	section
TCL_CHANNELTYPE,	below.

Second,	channel	drivers	usually	provide	a	Tcl	command	to	create

instances	of	that	type	of	channel.	For	example,	the	Tcl	open	command
creates	channels	that	use	the	file	and	command	channel	drivers,	and
the	Tcl	socket	command	creates	channels	that	use	TCP	sockets	for
network	communication.

Third,	a	channel	driver	optionally	provides	a	C	function	to	open	channel
instances	of	that	type.	For	example,	Tcl_OpenFileChannel	opens	a
channel	that	uses	the	file	channel	driver,	and	Tcl_OpenTcpClient
opens	a	channel	that	uses	the	TCP	network	protocol.	These	creation
functions	typically	use	Tcl_CreateChannel	internally	to	open	the
channel.

To	add	a	new	type	of	channel	you	must	implement	a	C	API	or	a	Tcl
command	that	opens	a	channel	by	invoking	Tcl_CreateChannel.	When
your	driver	calls	Tcl_CreateChannel	it	passes	in	a	Tcl_ChannelType
structure	describing	the	driver's	I/O	procedures.	The	generic	layer	will
then	invoke	the	functions	referenced	in	that	structure	to	perform
operations	on	the	channel.

Tcl_CreateChannel	opens	a	new	channel	and	associates	the	supplied
typePtr	and	instanceData	with	it.	The	channel	is	opened	in	the	mode
indicated	by	mask.	For	a	discussion	of	channel	drivers,	their	operations
and	the	Tcl_ChannelType	structure,	see	the	section
TCL_CHANNELTYPE,	below.

Tcl_CreateChannel	interacts	with	the	code	managing	the	standard
channels.	Once	a	standard	channel	was	initialized	either	through	a	call
to	Tcl_GetStdChannel	or	a	call	to	Tcl_SetStdChannel	closing	this
standard	channel	will	cause	the	next	call	to	Tcl_CreateChannel	to
make	the	new	channel	the	new	standard	channel	too.	See
Tcl_StandardChannels	for	a	general	treatise	about	standard	channels
and	the	behaviour	of	the	Tcl	library	with	regard	to	them.

Tcl_GetChannelInstanceData	returns	the	instance	data	associated
with	the	channel	in	channel.	This	is	the	same	as	the	instanceData
argument	in	the	call	to	Tcl_CreateChannel	that	created	this	channel.

Tcl_GetChannelType	returns	a	pointer	to	the	Tcl_ChannelType

structure	used	by	the	channel	in	the	channel	argument.	This	is	the
same	as	the	typePtr	argument	in	the	call	to	Tcl_CreateChannel	that
created	this	channel.

Tcl_GetChannelName	returns	a	string	containing	the	name	associated
with	the	channel,	or	NULL	if	the	channelName	argument	to
Tcl_CreateChannel	was	NULL.

Tcl_GetChannelHandle	places	the	OS-specific	device	handle
associated	with	channel	for	the	given	direction	in	the	location	specified
by	handlePtr	and	returns	TCL_OK.	If	the	channel	does	not	have	a
device	handle	for	the	specified	direction,	then	TCL_ERROR	is	returned
instead.	Different	channel	drivers	will	return	different	types	of	handle.
Refer	to	the	manual	entries	for	each	driver	to	determine	what	type	of
handle	is	returned.

Tcl_GetChannelThread	returns	the	id	of	the	thread	currently	managing
the	specified	channel.	This	allows	channel	drivers	to	send	their	file
events	to	the	correct	event	queue	even	for	a	multi-threaded	core.

Tcl_GetChannelMode	returns	an	OR-ed	combination	of
TCL_READABLE	and	TCL_WRITABLE,	indicating	whether	the
channel	is	open	for	input	and	output.

Tcl_GetChannelBufferSize	returns	the	size,	in	bytes,	of	buffers
allocated	to	store	input	or	output	in	channel.	If	the	value	was	not	set	by
a	previous	call	to	Tcl_SetChannelBufferSize,	described	below,	then
the	default	value	of	4096	is	returned.

Tcl_SetChannelBufferSize	sets	the	size,	in	bytes,	of	buffers	that	will
be	allocated	in	subsequent	operations	on	the	channel	to	store	input	or
output.	The	size	argument	should	be	between	ten	and	one	million,
allowing	buffers	of	ten	bytes	to	one	million	bytes.	If	size	is	outside	this
range,	Tcl_SetChannelBufferSize	sets	the	buffer	size	to	4096.

Tcl_NotifyChannel	is	called	by	a	channel	driver	to	indicate	to	the
generic	layer	that	the	events	specified	by	mask	have	occurred	on	the
channel.	Channel	drivers	are	responsible	for	invoking	this	function

whenever	the	channel	handlers	need	to	be	called	for	the	channel.	See
WATCHPROC	below	for	more	details.

Tcl_BadChannelOption	is	called	from	driver	specific	setOptionProc	or
getOptionProc	to	generate	a	complete	error	message.

Tcl_ChannelBuffered	returns	the	number	of	bytes	of	input	currently
buffered	in	the	internal	buffer	(push	back	area)	of	the	channel	itself.	It
does	not	report	about	the	data	in	the	overall	buffers	for	the	stack	of
channels	the	supplied	channel	is	part	of.

Tcl_IsChannelShared	checks	the	refcount	of	the	specified	channel	and
returns	whether	the	channel	was	shared	among	multiple	interpreters
(result	==	1)	or	not	(result	==	0).

Tcl_IsChannelRegistered	checks	whether	the	specified	channel	is
registered	in	the	given	interpreter	(result	==	1)	or	not	(result	==	0).

Tcl_IsChannelExisting	checks	whether	a	channel	with	the	specified
name	is	registered	in	the	(thread)-global	list	of	all	channels	(result	==	1)
or	not	(result	==	0).

Tcl_CutChannel	removes	the	specified	channel	from	the	(thread)global
list	of	all	channels	(of	the	current	thread).	Application	to	a	channel	still
registered	in	some	interpreter	is	not	allowed.	Also	notifies	the	driver	if
the	Tcl_ChannelType	version	is	TCL_CHANNEL_VERSION_4	(or
higher),	and	Tcl_DriverThreadActionProc	is	defined	for	it.

Tcl_SpliceChannel	adds	the	specified	channel	to	the	(thread)global	list
of	all	channels	(of	the	current	thread).	Application	to	a	channel
registered	in	some	interpreter	is	not	allowed.	Also	notifies	the	driver	if
the	Tcl_ChannelType	version	is	TCL_CHANNEL_VERSION_4	(or
higher),	and	Tcl_DriverThreadActionProc	is	defined	for	it.

Tcl_ClearChannelHandlers	removes	all	channelhandlers	and	event
scripts	associated	with	the	specified	channel,	thus	shutting	down	all
event	processing	for	this	channel.

TCL_CHANNELTYPE

A	channel	driver	provides	a	Tcl_ChannelType	structure	that	contains
pointers	to	functions	that	implement	the	various	operations	on	a
channel;	these	operations	are	invoked	as	needed	by	the	generic	layer.
The	structure	was	versioned	starting	in	Tcl	8.3.2/8.4	to	correct	a
problem	with	stacked	channel	drivers.	See	the	OLD	CHANNEL	TYPES
section	below	for	details	about	the	old	structure.

The	Tcl_ChannelType	structure	contains	the	following	fields:

typedef	struct	Tcl_ChannelType	{

								char	*typeName;

								Tcl_ChannelTypeVersion	version;

								Tcl_DriverCloseProc	*closeProc;

								Tcl_DriverInputProc	*inputProc;

								Tcl_DriverOutputProc	*outputProc;

								Tcl_DriverSeekProc	*seekProc;

								Tcl_DriverSetOptionProc	*setOptionProc;

								Tcl_DriverGetOptionProc	*getOptionProc;

								Tcl_DriverWatchProc	*watchProc;

								Tcl_DriverGetHandleProc	*getHandleProc;

								Tcl_DriverClose2Proc	*close2Proc;

								Tcl_DriverBlockModeProc	*blockModeProc;

								Tcl_DriverFlushProc	*flushProc;

								Tcl_DriverHandlerProc	*handlerProc;

								Tcl_DriverWideSeekProc	*wideSeekProc;

								Tcl_DriverThreadActionProc	*threadActionProc

								Tcl_DriverTruncateProc	*truncateProc;

}	Tcl_ChannelType;

It	is	not	necessary	to	provide	implementations	for	all	channel
operations.	Those	which	are	not	necessary	may	be	set	to	NULL	in	the
struct:	blockModeProc,	seekProc,	setOptionProc,	getOptionProc,	and
close2Proc,	in	addition	to	flushProc,	handlerProc,	threadActionProc,

and	truncateProc.	Other	functions	that	cannot	be	implemented	in	a
meaningful	way	should	return	EINVAL	when	called,	to	indicate	that	the
operations	they	represent	are	not	available.	Also	note	that
wideSeekProc	can	be	NULL	if	seekProc	is.

The	user	should	only	use	the	above	structure	for	Tcl_ChannelType
instantiation.	When	referencing	fields	in	a	Tcl_ChannelType	structure,
the	following	functions	should	be	used	to	obtain	the	values:
Tcl_ChannelName,	Tcl_ChannelVersion,
Tcl_ChannelBlockModeProc,	Tcl_ChannelCloseProc,
Tcl_ChannelClose2Proc,	Tcl_ChannelInputProc,
Tcl_ChannelOutputProc,	Tcl_ChannelSeekProc,
Tcl_ChannelWideSeekProc,	Tcl_ChannelThreadActionProc,
Tcl_ChannelTruncateProc,	Tcl_ChannelSetOptionProc,
Tcl_ChannelGetOptionProc,	Tcl_ChannelWatchProc,
Tcl_ChannelGetHandleProc,	Tcl_ChannelFlushProc,	or
Tcl_ChannelHandlerProc.

The	change	to	the	structures	was	made	in	such	a	way	that	standard
channel	types	are	binary	compatible.	However,	channel	types	that	use
stacked	channels	(i.e.	TLS,	Trf)	have	new	versions	to	correspond	to	the
above	change	since	the	previous	code	for	stacked	channels	had
problems.

TYPENAME

The	typeName	field	contains	a	null-terminated	string	that	identifies	the
type	of	the	device	implemented	by	this	driver,	e.g.	file	or	socket.

This	value	can	be	retrieved	with	Tcl_ChannelName,	which	returns	a
pointer	to	the	string.

VERSION

The	version	field	should	be	set	to	the	version	of	the	structure	that	you
require.	TCL_CHANNEL_VERSION_2	is	the	minimum	recommended.
TCL_CHANNEL_VERSION_3	must	be	set	to	specifiy	the

wideSeekProc	member.	TCL_CHANNEL_VERSION_4	must	be	set	to
specifiy	the	threadActionProc	member	(includes	wideSeekProc).
TCL_CHANNEL_VERSION_5	must	be	set	to	specifiy	the	truncateProc
members	(includes	wideSeekProc	and	threadActionProc).	If	it	is	not	set
to	any	of	these,	then	this	Tcl_ChannelType	is	assumed	to	have	the
original	structure.	See	OLD	CHANNEL	TYPES	for	more	details.	While
Tcl	will	recognize	and	function	with	either	structures,	stacked	channels
must	be	of	at	least	TCL_CHANNEL_VERSION_2	to	function	correctly.

This	value	can	be	retrieved	with	Tcl_ChannelVersion,	which	returns
one	of	TCL_CHANNEL_VERSION_5,	TCL_CHANNEL_VERSION_4,
TCL_CHANNEL_VERSION_3,	TCL_CHANNEL_VERSION_2	or
TCL_CHANNEL_VERSION_1.

BLOCKMODEPROC

The	blockModeProc	field	contains	the	address	of	a	function	called	by
the	generic	layer	to	set	blocking	and	nonblocking	mode	on	the	device.
BlockModeProc	should	match	the	following	prototype:

typedef	int	Tcl_DriverBlockModeProc(

								ClientData	instanceData,

								int	mode);

The	instanceData	is	the	same	as	the	value	passed	to
Tcl_CreateChannel	when	this	channel	was	created.	The	mode
argument	is	either	TCL_MODE_BLOCKING	or
TCL_MODE_NONBLOCKING	to	set	the	device	into	blocking	or
nonblocking	mode.	The	function	should	return	zero	if	the	operation	was
successful,	or	a	nonzero	POSIX	error	code	if	the	operation	failed.

If	the	operation	is	successful,	the	function	can	modify	the	supplied
instanceData	to	record	that	the	channel	entered	blocking	or	nonblocking
mode	and	to	implement	the	blocking	or	nonblocking	behavior.	For	some
device	types,	the	blocking	and	nonblocking	behavior	can	be
implemented	by	the	underlying	operating	system;	for	other	device

types,	the	behavior	must	be	emulated	in	the	channel	driver.

This	value	can	be	retrieved	with	Tcl_ChannelBlockModeProc,	which
returns	a	pointer	to	the	function.

A	channel	driver	not	supplying	a	blockModeProc	has	to	be	very,	very
careful.	It	has	to	tell	the	generic	layer	exactly	which	blocking	mode	is
acceptable	to	it,	and	should	this	also	document	for	the	user	so	that	the
blocking	mode	of	the	channel	is	not	changed	to	an	inacceptable	value.
Any	confusion	here	may	lead	the	interpreter	into	a	(spurious	and	difficult
to	find)	deadlock.

CLOSEPROC	AND	CLOSE2PROC

The	closeProc	field	contains	the	address	of	a	function	called	by	the
generic	layer	to	clean	up	driver-related	information	when	the	channel	is
closed.	CloseProc	must	match	the	following	prototype:

typedef	int	Tcl_DriverCloseProc(

								ClientData	instanceData,

								Tcl_Interp	*interp);

The	instanceData	argument	is	the	same	as	the	value	provided	to
Tcl_CreateChannel	when	the	channel	was	created.	The	function
should	release	any	storage	maintained	by	the	channel	driver	for	this
channel,	and	close	the	input	and	output	devices	encapsulated	by	this
channel.	All	queued	output	will	have	been	flushed	to	the	device	before
this	function	is	called,	and	no	further	driver	operations	will	be	invoked
on	this	instance	after	calling	the	closeProc.	If	the	close	operation	is
successful,	the	procedure	should	return	zero;	otherwise	it	should	return
a	nonzero	POSIX	error	code.	In	addition,	if	an	error	occurs	and	interp	is
not	NULL,	the	procedure	should	store	an	error	message	in	the
interpreter's	result.

Alternatively,	channels	that	support	closing	the	read	and	write	sides
independently	may	set	closeProc	to	TCL_CLOSE2PROC	and	set

close2Proc	to	the	address	of	a	function	that	matches	the	following
prototype:

typedef	int	Tcl_DriverClose2Proc(

								ClientData	instanceData,

								Tcl_Interp	*interp,

								int	flags);

The	close2Proc	will	be	called	with	flags	set	to	an	OR'ed	combination	of
TCL_CLOSE_READ	or	TCL_CLOSE_WRITE	to	indicate	that	the	driver
should	close	the	read	and/or	write	side	of	the	channel.	The	channel
driver	may	be	invoked	to	perform	additional	operations	on	the	channel
after	close2Proc	is	called	to	close	one	or	both	sides	of	the	channel.	If
flags	is	0	(zero),	the	driver	should	close	the	channel	in	the	manner
described	above	for	closeProc.	No	further	operations	will	be	invoked	on
this	instance	after	close2Proc	is	called	with	all	flags	cleared.	In	all
cases,	the	close2Proc	function	should	return	zero	if	the	close	operation
was	successful;	otherwise	it	should	return	a	nonzero	POSIX	error	code.
In	addition,	if	an	error	occurs	and	interp	is	not	NULL,	the	procedure
should	store	an	error	message	in	the	interpreter's	result.

The	closeProc	and	close2Proc	values	can	be	retrieved	with
Tcl_ChannelCloseProc	or	Tcl_ChannelClose2Proc,	which	return	a
pointer	to	the	respective	function.

INPUTPROC

The	inputProc	field	contains	the	address	of	a	function	called	by	the
generic	layer	to	read	data	from	the	file	or	device	and	store	it	in	an
internal	buffer.	InputProc	must	match	the	following	prototype:

typedef	int	Tcl_DriverInputProc(

								ClientData	instanceData,

								char	*buf,

								int	bufSize,

								int	*errorCodePtr);

InstanceData	is	the	same	as	the	value	passed	to	Tcl_CreateChannel
when	the	channel	was	created.	The	buf	argument	points	to	an	array	of
bytes	in	which	to	store	input	from	the	device,	and	the	bufSize	argument
indicates	how	many	bytes	are	available	at	buf.

The	errorCodePtr	argument	points	to	an	integer	variable	provided	by
the	generic	layer.	If	an	error	occurs,	the	function	should	set	the	variable
to	a	POSIX	error	code	that	identifies	the	error	that	occurred.

The	function	should	read	data	from	the	input	device	encapsulated	by
the	channel	and	store	it	at	buf.	On	success,	the	function	should	return	a
nonnegative	integer	indicating	how	many	bytes	were	read	from	the
input	device	and	stored	at	buf.	On	error,	the	function	should	return	-1.	If
an	error	occurs	after	some	data	has	been	read	from	the	device,	that
data	is	lost.

If	inputProc	can	determine	that	the	input	device	has	some	data
available	but	less	than	requested	by	the	bufSize	argument,	the	function
should	only	attempt	to	read	as	much	data	as	is	available	and	return
without	blocking.	If	the	input	device	has	no	data	available	whatsoever
and	the	channel	is	in	nonblocking	mode,	the	function	should	return	an
EAGAIN	error.	If	the	input	device	has	no	data	available	whatsoever	and
the	channel	is	in	blocking	mode,	the	function	should	block	for	the
shortest	possible	time	until	at	least	one	byte	of	data	can	be	read	from
the	device;	then,	it	should	return	as	much	data	as	it	can	read	without
blocking.

This	value	can	be	retrieved	with	Tcl_ChannelInputProc,	which	returns
a	pointer	to	the	function.

OUTPUTPROC

The	outputProc	field	contains	the	address	of	a	function	called	by	the
generic	layer	to	transfer	data	from	an	internal	buffer	to	the	output
device.	OutputProc	must	match	the	following	prototype:

typedef	int	Tcl_DriverOutputProc(

								ClientData	instanceData,

								const	char	*buf,

								int	toWrite,

								int	*errorCodePtr);

InstanceData	is	the	same	as	the	value	passed	to	Tcl_CreateChannel
when	the	channel	was	created.	The	buf	argument	contains	an	array	of
bytes	to	be	written	to	the	device,	and	the	toWrite	argument	indicates
how	many	bytes	are	to	be	written	from	the	buf	argument.

The	errorCodePtr	argument	points	to	an	integer	variable	provided	by
the	generic	layer.	If	an	error	occurs,	the	function	should	set	this	variable
to	a	POSIX	error	code	that	identifies	the	error.

The	function	should	write	the	data	at	buf	to	the	output	device
encapsulated	by	the	channel.	On	success,	the	function	should	return	a
nonnegative	integer	indicating	how	many	bytes	were	written	to	the
output	device.	The	return	value	is	normally	the	same	as	toWrite,	but
may	be	less	in	some	cases	such	as	if	the	output	operation	is	interrupted
by	a	signal.	If	an	error	occurs	the	function	should	return	-1.	In	case	of
error,	some	data	may	have	been	written	to	the	device.

If	the	channel	is	nonblocking	and	the	output	device	is	unable	to	absorb
any	data	whatsoever,	the	function	should	return	-1	with	an	EAGAIN
error	without	writing	any	data.

This	value	can	be	retrieved	with	Tcl_ChannelOutputProc,	which
returns	a	pointer	to	the	function.

SEEKPROC	AND	WIDESEEKPROC

The	seekProc	field	contains	the	address	of	a	function	called	by	the
generic	layer	to	move	the	access	point	at	which	subsequent	input	or
output	operations	will	be	applied.	SeekProc	must	match	the	following
prototype:

typedef	int	Tcl_DriverSeekProc(

								ClientData	instanceData,

								long	offset,

								int	seekMode,

								int	*errorCodePtr);

The	instanceData	argument	is	the	same	as	the	value	given	to
Tcl_CreateChannel	when	this	channel	was	created.	Offset	and
seekMode	have	the	same	meaning	as	for	the	Tcl_Seek	procedure
(described	in	the	manual	entry	for	Tcl_OpenFileChannel).

The	errorCodePtr	argument	points	to	an	integer	variable	provided	by
the	generic	layer	for	returning	errno	values	from	the	function.	The
function	should	set	this	variable	to	a	POSIX	error	code	if	an	error
occurs.	The	function	should	store	an	EINVAL	error	code	if	the	channel
type	does	not	implement	seeking.

The	return	value	is	the	new	access	point	or	-1	in	case	of	error.	If	an
error	occurred,	the	function	should	not	move	the	access	point.

If	there	is	a	non-NULL	seekProc	field,	the	wideSeekProc	field	may
contain	the	address	of	an	alternative	function	to	use	which	handles	wide
(i.e.	larger	than	32-bit)	offsets,	so	allowing	seeks	within	files	larger	than
2GB.	The	wideSeekProc	will	be	called	in	preference	to	the	seekProc,
but	both	must	be	defined	if	the	wideSeekProc	is	defined.	WideSeekProc
must	match	the	following	prototype:

typedef	Tcl_WideInt	Tcl_DriverWideSeekProc(

								ClientData	instanceData,

								Tcl_WideInt	offset,

								int	seekMode,

								int	*errorCodePtr);

The	arguments	and	return	values	mean	the	same	thing	as	with
seekProc	above,	except	that	the	type	of	offsets	and	the	return	type	are

different.

The	seekProc	value	can	be	retrieved	with	Tcl_ChannelSeekProc,
which	returns	a	pointer	to	the	function,	and	similarly	the	wideSeekProc
can	be	retrieved	with	Tcl_ChannelWideSeekProc.

SETOPTIONPROC

The	setOptionProc	field	contains	the	address	of	a	function	called	by	the
generic	layer	to	set	a	channel	type	specific	option	on	a	channel.
setOptionProc	must	match	the	following	prototype:

typedef	int	Tcl_DriverSetOptionProc(

								ClientData	instanceData,

								Tcl_Interp	*interp,

								const	char	*optionName,

								const	char	*newValue);

optionName	is	the	name	of	an	option	to	set,	and	newValue	is	the	new
value	for	that	option,	as	a	string.	The	instanceData	is	the	same	as	the
value	given	to	Tcl_CreateChannel	when	this	channel	was	created.	The
function	should	do	whatever	channel	type	specific	action	is	required	to
implement	the	new	value	of	the	option.

Some	options	are	handled	by	the	generic	code	and	this	function	is
never	called	to	set	them,	e.g.	-blockmode.	Other	options	are	specific	to
each	channel	type	and	the	setOptionProc	procedure	of	the	channel
driver	will	get	called	to	implement	them.	The	setOptionProc	field	can	be
NULL,	which	indicates	that	this	channel	type	supports	no	type	specific
options.

If	the	option	value	is	successfully	modified	to	the	new	value,	the
function	returns	TCL_OK.	It	should	call	Tcl_BadChannelOption	which
itself	returns	TCL_ERROR	if	the	optionName	is	unrecognized.	If
newValue	specifies	a	value	for	the	option	that	is	not	supported	or	if	a
system	call	error	occurs,	the	function	should	leave	an	error	message	in

the	result	field	of	interp	if	interp	is	not	NULL.	The	function	should	also
call	Tcl_SetErrno	to	store	an	appropriate	POSIX	error	code.

This	value	can	be	retrieved	with	Tcl_ChannelSetOptionProc,	which
returns	a	pointer	to	the	function.

GETOPTIONPROC

The	getOptionProc	field	contains	the	address	of	a	function	called	by	the
generic	layer	to	get	the	value	of	a	channel	type	specific	option	on	a
channel.	getOptionProc	must	match	the	following	prototype:

typedef	int	Tcl_DriverGetOptionProc(

								ClientData	instanceData,

								Tcl_Interp	*interp,

								const	char	*optionName,

								Tcl_DString	*optionValue);

OptionName	is	the	name	of	an	option	supported	by	this	type	of	channel.
If	the	option	name	is	not	NULL,	the	function	stores	its	current	value,	as
a	string,	in	the	Tcl	dynamic	string	optionValue.	If	optionName	is	NULL,
the	function	stores	in	optionValue	an	alternating	list	of	all	supported
options	and	their	current	values.	On	success,	the	function	returns
TCL_OK.	It	should	call	Tcl_BadChannelOption	which	itself	returns
TCL_ERROR	if	the	optionName	is	unrecognized.	If	a	system	call	error
occurs,	the	function	should	leave	an	error	message	in	the	result	of
interp	if	interp	is	not	NULL.	The	function	should	also	call	Tcl_SetErrno
to	store	an	appropriate	POSIX	error	code.

Some	options	are	handled	by	the	generic	code	and	this	function	is
never	called	to	retrieve	their	value,	e.g.	-blockmode.	Other	options	are
specific	to	each	channel	type	and	the	getOptionProc	procedure	of	the
channel	driver	will	get	called	to	implement	them.	The	getOptionProc
field	can	be	NULL,	which	indicates	that	this	channel	type	supports	no
type	specific	options.

This	value	can	be	retrieved	with	Tcl_ChannelGetOptionProc,	which
returns	a	pointer	to	the	function.

WATCHPROC

The	watchProc	field	contains	the	address	of	a	function	called	by	the
generic	layer	to	initialize	the	event	notification	mechanism	to	notice
events	of	interest	on	this	channel.	WatchProc	should	match	the
following	prototype:

typedef	void	Tcl_DriverWatchProc(

								ClientData	instanceData,

								int	mask);

The	instanceData	is	the	same	as	the	value	passed	to
Tcl_CreateChannel	when	this	channel	was	created.	The	mask
argument	is	an	OR-ed	combination	of	TCL_READABLE,
TCL_WRITABLE	and	TCL_EXCEPTION;	it	indicates	events	the	caller
is	interested	in	noticing	on	this	channel.

The	function	should	initialize	device	type	specific	mechanisms	to	notice
when	an	event	of	interest	is	present	on	the	channel.	When	one	or	more
of	the	designated	events	occurs	on	the	channel,	the	channel	driver	is
responsible	for	calling	Tcl_NotifyChannel	to	inform	the	generic	channel
module.	The	driver	should	take	care	not	to	starve	other	channel	drivers
or	sources	of	callbacks	by	invoking	Tcl_NotifyChannel	too	frequently.
Fairness	can	be	insured	by	using	the	Tcl	event	queue	to	allow	the
channel	event	to	be	scheduled	in	sequence	with	other	events.	See	the
description	of	Tcl_QueueEvent	for	details	on	how	to	queue	an	event.

This	value	can	be	retrieved	with	Tcl_ChannelWatchProc,	which
returns	a	pointer	to	the	function.

GETHANDLEPROC

The	getHandleProc	field	contains	the	address	of	a	function	called	by	the

generic	layer	to	retrieve	a	device-specific	handle	from	the	channel.
GetHandleProc	should	match	the	following	prototype:

typedef	int	Tcl_DriverGetHandleProc(

								ClientData	instanceData,

								int	direction,

								ClientData	*handlePtr);

InstanceData	is	the	same	as	the	value	passed	to	Tcl_CreateChannel
when	this	channel	was	created.	The	direction	argument	is	either
TCL_READABLE	to	retrieve	the	handle	used	for	input,	or
TCL_WRITABLE	to	retrieve	the	handle	used	for	output.

If	the	channel	implementation	has	device-specific	handles,	the	function
should	retrieve	the	appropriate	handle	associated	with	the	channel,
according	the	direction	argument.	The	handle	should	be	stored	in	the
location	referred	to	by	handlePtr,	and	TCL_OK	should	be	returned.	If
the	channel	is	not	open	for	the	specified	direction,	or	if	the	channel
implementation	does	not	use	device	handles,	the	function	should	return
TCL_ERROR.

This	value	can	be	retrieved	with	Tcl_ChannelGetHandleProc,	which
returns	a	pointer	to	the	function.

FLUSHPROC

The	flushProc	field	is	currently	reserved	for	future	use.	It	should	be	set
to	NULL.	FlushProc	should	match	the	following	prototype:

typedef	int	Tcl_DriverFlushProc(

								ClientData	instanceData);

This	value	can	be	retrieved	with	Tcl_ChannelFlushProc,	which	returns
a	pointer	to	the	function.

HANDLERPROC

The	handlerProc	field	contains	the	address	of	a	function	called	by	the
generic	layer	to	notify	the	channel	that	an	event	occurred.	It	should	be
defined	for	stacked	channel	drivers	that	wish	to	be	notified	of	events
that	occur	on	the	underlying	(stacked)	channel.	HandlerProc	should
match	the	following	prototype:

typedef	int	Tcl_DriverHandlerProc(

								ClientData	instanceData,

								int	interestMask);

InstanceData	is	the	same	as	the	value	passed	to	Tcl_CreateChannel
when	this	channel	was	created.	The	interestMask	is	an	OR-ed
combination	of	TCL_READABLE	or	TCL_WRITABLE;	it	indicates	what
type	of	event	occurred	on	this	channel.

This	value	can	be	retrieved	with	Tcl_ChannelHandlerProc,	which
returns	a	pointer	to	the	function.

THREADACTIONPROC

The	threadActionProc	field	contains	the	address	of	the	function	called
by	the	generic	layer	when	a	channel	is	created,	closed,	or	going	to
move	to	a	different	thread,	i.e.	whenever	thread-specific	driver	state
might	have	to	initialized	or	updated.	It	can	be	NULL.	The	action
TCL_CHANNEL_THREAD_REMOVE	is	used	to	notify	the	driver	that	it
should	update	or	remove	any	thread-specific	data	it	might	be
maintaining	for	the	channel.

The	action	TCL_CHANNEL_THREAD_INSERT	is	used	to	notify	the
driver	that	it	should	update	or	initialize	any	thread-specific	data	it	might
be	maintaining	using	the	calling	thread	as	the	associate.	See
Tcl_CutChannel	and	Tcl_SpliceChannel	for	more	detail.

typedef	void	Tcl_DriverThreadActionProc(

								ClientData	instanceData,

								int								action);

InstanceData	is	the	same	as	the	value	passed	to	Tcl_CreateChannel
when	this	channel	was	created.

These	values	can	be	retrieved	with	Tcl_ChannelThreadActionProc,
which	returns	a	pointer	to	the	function.

TRUNCATEPROC

The	truncateProc	field	contains	the	address	of	the	function	called	by	the
generic	layer	when	a	channel	is	truncated	to	some	length.	It	can	be
NULL.

typedef	int	Tcl_DriverTruncateProc(

								ClientData	instanceData,

								Tcl_WideInt	length);

InstanceData	is	the	same	as	the	value	passed	to	Tcl_CreateChannel
when	this	channel	was	created,	and	length	is	the	new	length	of	the
underlying	file,	which	should	not	be	negative.	The	result	should	be	0	on
success	or	an	errno	code	(suitable	for	use	with	Tcl_SetErrno)	on
failure.

These	values	can	be	retrieved	with	Tcl_ChannelTruncateProc,	which
returns	a	pointer	to	the	function.

TCL_BADCHANNELOPTION

This	procedure	generates	a	“bad	option”	error	message	in	an	(optional)
interpreter.	It	is	used	by	channel	drivers	when	an	invalid	Set/Get	option
is	requested.	Its	purpose	is	to	concatenate	the	generic	options	list	to	the
specific	ones	and	factorize	the	generic	options	error	message	string.

It	always	returns	TCL_ERROR

An	error	message	is	generated	in	interp's	result	object	to	indicate	that	a
command	was	invoked	with	a	bad	option.	The	message	has	the	form

bad	option	"blah":	should	be	one	of	

				<...generic	options...>+<...specific	options...>

so	you	get	for	instance:

bad	option	"-blah":	should	be	one	of	-blocking,

				-buffering,	-buffersize,	-eofchar,	-translation,

				-peername,	or	-sockname

when	called	with	optionList	equal	to	“peername	sockname”

“blah”	is	the	optionName	argument	and	“<specific	options>”	is	a	space
separated	list	of	specific	option	words.	The	function	takes	good	care	of
inserting	minus	signs	before	each	option,	commas	after,	and	an	“or”
before	the	last	option.

OLD	CHANNEL	TYPES

The	original	(8.3.1	and	below)	Tcl_ChannelType	structure	contains	the
following	fields:

typedef	struct	Tcl_ChannelType	{

								char	*typeName;

								Tcl_DriverBlockModeProc	*blockModeProc;

								Tcl_DriverCloseProc	*closeProc;

								Tcl_DriverInputProc	*inputProc;

								Tcl_DriverOutputProc	*outputProc;

								Tcl_DriverSeekProc	*seekProc;

								Tcl_DriverSetOptionProc	*setOptionProc;

								Tcl_DriverGetOptionProc	*getOptionProc;

								Tcl_DriverWatchProc	*watchProc;

								Tcl_DriverGetHandleProc	*getHandleProc;

								Tcl_DriverClose2Proc	*close2Proc;

}	Tcl_ChannelType;

It	is	still	possible	to	create	channel	with	the	above	structure.	The
internal	channel	code	will	determine	the	version.	It	is	imperative	to	use
the	new	Tcl_ChannelType	structure	if	you	are	creating	a	stacked
channel	driver,	due	to	problems	with	the	earlier	stacked	channel
implementation	(in	8.2.0	to	8.3.1).

Prior	to	8.4.0	(i.e.	during	the	later	releases	of	8.3	and	early	part	of	the
8.4	development	cycle)	the	Tcl_ChannelType	structure	contained	the
following	fields:

typedef	struct	Tcl_ChannelType	{

								char	*typeName;

								Tcl_ChannelTypeVersion	version;

								Tcl_DriverCloseProc	*closeProc;

								Tcl_DriverInputProc	*inputProc;

								Tcl_DriverOutputProc	*outputProc;

								Tcl_DriverSeekProc	*seekProc;

								Tcl_DriverSetOptionProc	*setOptionProc;

								Tcl_DriverGetOptionProc	*getOptionProc;

								Tcl_DriverWatchProc	*watchProc;

								Tcl_DriverGetHandleProc	*getHandleProc;

								Tcl_DriverClose2Proc	*close2Proc;

								Tcl_DriverBlockModeProc	*blockModeProc;

								Tcl_DriverFlushProc	*flushProc;

								Tcl_DriverHandlerProc	*handlerProc;

								Tcl_DriverTruncateProc	*truncateProc;

}	Tcl_ChannelType;

When	the	above	structure	is	registered	as	a	channel	type,	the	version
field	should	always	be	TCL_CHANNEL_VERSION_2.

SEE	ALSO

Tcl_Close,	Tcl_OpenFileChannel,	Tcl_SetErrno,	Tcl_QueueEvent,
Tcl_StackChannel,	Tcl_GetStdChannel

KEYWORDS

blocking,	channel	driver,	channel	registration,	channel	type,
nonblocking

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1996-1997	Sun	Microsystems,	Inc.
Copyright	©	1997-2000	Ajuba	Solutions.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	BoolObj

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_NewBooleanObj,	Tcl_SetBooleanObj,
Tcl_GetBooleanFromObj	-	store/retrieve	boolean	value	in	a
Tcl_Obj

SYNOPSIS
#include	<tcl.h>
Tcl_Obj	*
Tcl_NewBooleanObj(boolValue)
Tcl_SetBooleanObj(objPtr,	boolValue)
int
Tcl_GetBooleanFromObj(interp,	objPtr,	boolPtr)

ARGUMENTS
DESCRIPTION
SEE	ALSO
KEYWORDS

NAME

Tcl_NewBooleanObj,	Tcl_SetBooleanObj,	Tcl_GetBooleanFromObj	-
store/retrieve	boolean	value	in	a	Tcl_Obj

SYNOPSIS

#include	<tcl.h>
Tcl_Obj	*
Tcl_NewBooleanObj(boolValue)
Tcl_SetBooleanObj(objPtr,	boolValue)
int
Tcl_GetBooleanFromObj(interp,	objPtr,	boolPtr)

ARGUMENTS

int	boolValue	(in)

Tcl_Obj	*objPtr	(in/out)

Tcl_Interp	*interp	(in/out)

int	*boolPtr	(out)

Integer	value	to	be	stored
as	a	boolean	value	in	a
Tcl_Obj.

Points	to	the	Tcl_Obj	in
which	to	store,	or	from
which	to	retrieve	a	boolean
value.

If	a	boolean	value	cannot
be	retrieved,	an	error
message	is	left	in	the
interpreter's	result	object
unless	interp	is	NULL.

Points	to	place	where
Tcl_GetBooleanFromObj
stores	the	boolean	value
(0	or	1)	obtained	from
objPtr.

DESCRIPTION

These	procedures	are	used	to	pass	boolean	values	to	and	from	Tcl	as
Tcl_Obj's.	When	storing	a	boolean	value	into	a	Tcl_Obj,	any	non-zero
integer	value	in	boolValue	is	taken	to	be	the	boolean	value	1,	and	the
integer	value	0	is	taken	to	be	the	boolean	value	0.

Tcl_NewBooleanObj	creates	a	new	Tcl_Obj,	stores	the	boolean	value
boolValue	in	it,	and	returns	a	pointer	to	the	new	Tcl_Obj.	The	new
Tcl_Obj	has	reference	count	of	zero.

Tcl_SetBooleanObj	accepts	objPtr,	a	pointer	to	an	existing	Tcl_Obj,
and	stores	in	the	Tcl_Obj	*objPtr	the	boolean	value	boolValue.	This	is	a
write	operation	on	*objPtr,	so	objPtr	must	be	unshared.	Attempts	to
write	to	a	shared	Tcl_Obj	will	panic.	A	successful	write	of	boolValue	into

*objPtr	implies	the	freeing	of	any	former	value	stored	in	*objPtr.

Tcl_GetBooleanFromObj	attempts	to	retrive	a	boolean	value	from	the
value	stored	in	*objPtr.	If	objPtr	holds	a	string	value	recognized	by
Tcl_GetBoolean,	then	the	recognized	boolean	value	is	written	at	the
address	given	by	boolPtr.	If	objPtr	holds	any	value	recognized	as	a
number	by	Tcl,	then	if	that	value	is	zero	a	0	is	written	at	the	address
given	by	boolPtr	and	if	that	value	is	non-zero	a	1	is	written	at	the
address	given	by	boolPtr.	In	all	cases	where	a	value	is	written	at	the
address	given	by	boolPtr,	Tcl_GetBooleanFromObj	returns	TCL_OK.
If	the	value	of	objPtr	does	not	meet	any	of	the	conditions	above,	then
TCL_ERROR	is	returned	and	an	error	message	is	left	in	the
interpreter's	result	unless	interp	is	NULL.	Tcl_GetBooleanFromObj
may	also	make	changes	to	the	internal	fields	of	*objPtr	so	that	future
calls	to	Tcl_GetBooleanFromObj	on	the	same	objPtr	can	be	performed
more	efficiently.

Note	that	the	routines	Tcl_GetBooleanFromObj	and	Tcl_GetBoolean
are	not	functional	equivalents.	The	set	of	values	for	which
Tcl_GetBooleanFromObj	will	return	TCL_OK	is	strictly	larger	than	the
set	of	values	for	which	Tcl_GetBoolean	will	do	the	same.	For	example,
the	value	“5”	passed	to	Tcl_GetBooleanFromObj	will	lead	to	a
TCL_OK	return	(and	the	boolean	value	1),	while	the	same	value	passed
to	Tcl_GetBoolean	will	lead	to	a	TCL_ERROR	return.

SEE	ALSO

Tcl_NewObj,	Tcl_IsShared,	Tcl_GetBoolean

KEYWORDS

boolean,	object

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1996-1997	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	RegExp

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_RegExpMatch,	Tcl_RegExpCompile,	Tcl_RegExpExec,
Tcl_RegExpRange,	Tcl_GetRegExpFromObj,
Tcl_RegExpMatchObj,	Tcl_RegExpExecObj,
Tcl_RegExpGetInfo	-	Pattern	matching	with	regular
expressions

SYNOPSIS
#include	<tcl.h>
int
Tcl_RegExpMatchObj(interp,	textObj,	patObj)
int
Tcl_RegExpMatch(interp,	text,	pattern)
Tcl_RegExp
Tcl_RegExpCompile(interp,	pattern)
int
Tcl_RegExpExec(interp,	regexp,	text,	start)
void
Tcl_RegExpRange(regexp,	index,	startPtr,	endPtr)
Tcl_RegExp
Tcl_GetRegExpFromObj(interp,	patObj,	cflags)
int
Tcl_RegExpExecObj(interp,	regexp,	textObj,	offset,
nmatches,	eflags)
void
Tcl_RegExpGetInfo(regexp,	infoPtr)

ARGUMENTS
DESCRIPTION

TCL_REG_ADVANCED
TCL_REG_EXTENDED
TCL_REG_BASIC
TCL_REG_EXPANDED

TCL_REG_QUOTE
TCL_REG_NOCASE
TCL_REG_NEWLINE
TCL_REG_NLSTOP
TCL_REG_NLANCH
TCL_REG_NOSUB
TCL_REG_CANMATCH
TCL_REG_NOTBOL
TCL_REG_NOTEOL

SEE	ALSO
KEYWORDS

NAME

Tcl_RegExpMatch,	Tcl_RegExpCompile,	Tcl_RegExpExec,
Tcl_RegExpRange,	Tcl_GetRegExpFromObj,	Tcl_RegExpMatchObj,
Tcl_RegExpExecObj,	Tcl_RegExpGetInfo	-	Pattern	matching	with
regular	expressions

SYNOPSIS

#include	<tcl.h>
int
Tcl_RegExpMatchObj(interp,	textObj,	patObj)
int
Tcl_RegExpMatch(interp,	text,	pattern)
Tcl_RegExp
Tcl_RegExpCompile(interp,	pattern)
int
Tcl_RegExpExec(interp,	regexp,	text,	start)
void
Tcl_RegExpRange(regexp,	index,	startPtr,	endPtr)
Tcl_RegExp
Tcl_GetRegExpFromObj(interp,	patObj,	cflags)
int
Tcl_RegExpExecObj(interp,	regexp,	textObj,	offset,	nmatches,	eflags)
void
Tcl_RegExpGetInfo(regexp,	infoPtr)

Tcl_Interp	*interp	(in)

Tcl_Obj	*textObj	(in/out)

Tcl_Obj	*patObj	(in/out)

char	*text	(in)

const	char	*pattern	(in)

Tcl_RegExp	regexp	(in)

char	*start	(in)

ARGUMENTS

Tcl	interpreter	to	use	for
error	reporting.	The
interpreter	may	be	NULL	if
no	error	reporting	is
desired.

Refers	to	the	object	from
which	to	get	the	text	to
search.	The	internal
representation	of	the
object	may	be	converted	to
a	form	that	can	be
efficiently	searched.

Refers	to	the	object	from
which	to	get	a	regular
expression.	The	compiled
regular	expression	is
cached	in	the	object.

Text	to	search	for	a	match
with	a	regular	expression.

String	in	the	form	of	a
regular	expression	pattern.

Compiled	regular
expression.	Must	have
been	returned	previously
by
Tcl_GetRegExpFromObj
or	Tcl_RegExpCompile.

If	text	is	just	a	portion	of

int	index	(in)

const	char	**startPtr	(out)

const	char	**endPtr	(out)

int	cflags	(in)

some	other	string,	this
argument	identifies	the
beginning	of	the	larger
string.	If	it	is	not	the	same
as	text,	then	no	“^”
matches	will	be	allowed.

Specifies	which	range	is
desired:	0	means	the
range	of	the	entire	match,
1	or	greater	means	the
range	that	matched	a
parenthesized	sub-
expression.

The	address	of	the	first
character	in	the	range	is
stored	here,	or	NULL	if
there	is	no	such	range.

The	address	of	the
character	just	after	the	last
one	in	the	range	is	stored
here,	or	NULL	if	there	is	no
such	range.

OR-ed	combination	of	the
compilation	flags
TCL_REG_ADVANCED,
TCL_REG_EXTENDED,
TCL_REG_BASIC,
TCL_REG_EXPANDED,
TCL_REG_QUOTE,
TCL_REG_NOCASE,
TCL_REG_NEWLINE,
TCL_REG_NLSTOP,
TCL_REG_NLANCH,

int	offset	(in)

int	nmatches	(in)

int	eflags	(in)

Tcl_RegExpInfo	*infoPtr	(out)

TCL_REG_NOSUB,	and
TCL_REG_CANMATCH.
See	below	for	more
information.

The	character	offset	into
the	text	where	matching
should	begin.	The	value	of
the	offset	has	no	impact	on
^	matches.	This	behavior
is	controlled	by	eflags.

The	number	of	matching
subexpressions	that
should	be	remembered	for
later	use.	If	this	value	is	0,
then	no	subexpression
match	information	will	be
computed.	If	the	value	is
-1,	then	all	of	the	matching
subexpressions	will	be
remembered.	Any	other
value	will	be	taken	as	the
maximum	number	of
subexpressions	to
remember.

OR-ed	combination	of	the
execution	flags
TCL_REG_NOTBOL	and
TCL_REG_NOTEOL.	See
below	for	more
information.

The	address	of	the
location	where	information
about	a	previous	match

should	be	stored	by
Tcl_RegExpGetInfo.

DESCRIPTION

Tcl_RegExpMatch	determines	whether	its	pattern	argument	matches
regexp,	where	regexp	is	interpreted	as	a	regular	expression	using	the
rules	in	the	re_syntax	reference	page.	If	there	is	a	match	then
Tcl_RegExpMatch	returns	1.	If	there	is	no	match	then
Tcl_RegExpMatch	returns	0.	If	an	error	occurs	in	the	matching	process
(e.g.	pattern	is	not	a	valid	regular	expression)	then	Tcl_RegExpMatch
returns	-1	and	leaves	an	error	message	in	the	interpreter	result.
Tcl_RegExpMatchObj	is	similar	to	Tcl_RegExpMatch	except	it
operates	on	the	Tcl	objects	textObj	and	patObj	instead	of	UTF	strings.
Tcl_RegExpMatchObj	is	generally	more	efficient	than
Tcl_RegExpMatch,	so	it	is	the	preferred	interface.

Tcl_RegExpCompile,	Tcl_RegExpExec,	and	Tcl_RegExpRange
provide	lower-level	access	to	the	regular	expression	pattern	matcher.
Tcl_RegExpCompile	compiles	a	regular	expression	string	into	the
internal	form	used	for	efficient	pattern	matching.	The	return	value	is	a
token	for	this	compiled	form,	which	can	be	used	in	subsequent	calls	to
Tcl_RegExpExec	or	Tcl_RegExpRange.	If	an	error	occurs	while
compiling	the	regular	expression	then	Tcl_RegExpCompile	returns
NULL	and	leaves	an	error	message	in	the	interpreter	result.	Note:	the
return	value	from	Tcl_RegExpCompile	is	only	valid	up	to	the	next	call
to	Tcl_RegExpCompile;	it	is	not	safe	to	retain	these	values	for	long
periods	of	time.

Tcl_RegExpExec	executes	the	regular	expression	pattern	matcher.	It
returns	1	if	text	contains	a	range	of	characters	that	match	regexp,	0	if
no	match	is	found,	and	-1	if	an	error	occurs.	In	the	case	of	an	error,
Tcl_RegExpExec	leaves	an	error	message	in	the	interpreter	result.
When	searching	a	string	for	multiple	matches	of	a	pattern,	it	is
important	to	distinguish	between	the	start	of	the	original	string	and	the
start	of	the	current	search.	For	example,	when	searching	for	the	second
occurrence	of	a	match,	the	text	argument	might	point	to	the	character

just	after	the	first	match;	however,	it	is	important	for	the	pattern	matcher
to	know	that	this	is	not	the	start	of	the	entire	string,	so	that	it	does	not
allow	“^”	atoms	in	the	pattern	to	match.	The	start	argument	provides
this	information	by	pointing	to	the	start	of	the	overall	string	containing
text.	Start	will	be	less	than	or	equal	to	text;	if	it	is	less	than	text	then	no
^	matches	will	be	allowed.

Tcl_RegExpRange	may	be	invoked	after	Tcl_RegExpExec	returns;	it
provides	detailed	information	about	what	ranges	of	the	string	matched
what	parts	of	the	pattern.	Tcl_RegExpRange	returns	a	pair	of	pointers
in	*startPtr	and	*endPtr	that	identify	a	range	of	characters	in	the	source
string	for	the	most	recent	call	to	Tcl_RegExpExec.	Index	indicates
which	of	several	ranges	is	desired:	if	index	is	0,	information	is	returned
about	the	overall	range	of	characters	that	matched	the	entire	pattern;
otherwise,	information	is	returned	about	the	range	of	characters	that
matched	the	index'th	parenthesized	subexpression	within	the	pattern.	If
there	is	no	range	corresponding	to	index	then	NULL	is	stored	in
*startPtr	and	*endPtr.

Tcl_GetRegExpFromObj,	Tcl_RegExpExecObj,	and
Tcl_RegExpGetInfo	are	object	interfaces	that	provide	the	most	direct
control	of	Henry	Spencer's	regular	expression	library.	For	users	that
need	to	modify	compilation	and	execution	options	directly,	it	is
recommended	that	you	use	these	interfaces	instead	of	calling	the
internal	regexp	functions.	These	interfaces	handle	the	details	of	UTF	to
Unicode	translations	as	well	as	providing	improved	performance
through	caching	in	the	pattern	and	string	objects.

Tcl_GetRegExpFromObj	attempts	to	return	a	compiled	regular
expression	from	the	patObj.	If	the	object	does	not	already	contain	a
compiled	regular	expression	it	will	attempt	to	create	one	from	the	string
in	the	object	and	assign	it	to	the	internal	representation	of	the	patObj.
The	return	value	of	this	function	is	of	type	Tcl_RegExp.	The	return
value	is	a	token	for	this	compiled	form,	which	can	be	used	in
subsequent	calls	to	Tcl_RegExpExecObj	or	Tcl_RegExpGetInfo.	If	an
error	occurs	while	compiling	the	regular	expression	then
Tcl_GetRegExpFromObj	returns	NULL	and	leaves	an	error	message
in	the	interpreter	result.	The	regular	expression	token	can	be	used	as

long	as	the	internal	representation	of	patObj	refers	to	the	compiled
form.	The	cflags	argument	is	a	bit-wise	OR	of	zero	or	more	of	the
following	flags	that	control	the	compilation	of	patObj:

TCL_REG_ADVANCED
Compile	advanced	regular	expressions	(“ARE”s).	This	mode
corresponds	to	the	normal	regular	expression	syntax	accepted	by
the	Tcl	regexp	and	regsub	commands.

TCL_REG_EXTENDED
Compile	extended	regular	expressions	(“ERE”s).	This	mode
corresponds	to	the	regular	expression	syntax	recognized	by	Tcl	8.0
and	earlier	versions.

TCL_REG_BASIC
Compile	basic	regular	expressions	(“BRE”s).	This	mode
corresponds	to	the	regular	expression	syntax	recognized	by
common	Unix	utilities	like	sed	and	grep.	This	is	the	default	if	no
flags	are	specified.

TCL_REG_EXPANDED
Compile	the	regular	expression	(basic,	extended,	or	advanced)
using	an	expanded	syntax	that	allows	comments	and	whitespace.
This	mode	causes	non-backslashed	non-bracket-expression	white
space	and	#-to-end-of-line	comments	to	be	ignored.

TCL_REG_QUOTE
Compile	a	literal	string,	with	all	characters	treated	as	ordinary
characters.

TCL_REG_NOCASE
Compile	for	matching	that	ignores	upper/lower	case	distinctions.

TCL_REG_NEWLINE
Compile	for	newline-sensitive	matching.	By	default,	newline	is	a
completely	ordinary	character	with	no	special	meaning	in	either
regular	expressions	or	strings.	With	this	flag,	“[^”	bracket
expressions	and	“.”	never	match	newline,	“^”	matches	an	empty

string	after	any	newline	in	addition	to	its	normal	function,	and	“$”
matches	an	empty	string	before	any	newline	in	addition	to	its
normal	function.	REG_NEWLINE	is	the	bit-wise	OR	of
REG_NLSTOP	and	REG_NLANCH.

TCL_REG_NLSTOP
Compile	for	partial	newline-sensitive	matching,	with	the	behavior	of
“[^”	bracket	expressions	and	“.”	affected,	but	not	the	behavior	of	“^”
and	“$”.	In	this	mode,	“[^”	bracket	expressions	and	“.”	never	match
newline.

TCL_REG_NLANCH
Compile	for	inverse	partial	newline-sensitive	matching,	with	the
behavior	of	“^”	and	“$”	(the	“anchors”)	affected,	but	not	the	behavior
of	“[^”	bracket	expressions	and	“.”.	In	this	mode	“^”	matches	an
empty	string	after	any	newline	in	addition	to	its	normal	function,	and
“$”	matches	an	empty	string	before	any	newline	in	addition	to	its
normal	function.

TCL_REG_NOSUB
Compile	for	matching	that	reports	only	success	or	failure,	not	what
was	matched.	This	reduces	compile	overhead	and	may	improve
performance.	Subsequent	calls	to	Tcl_RegExpGetInfo	or
Tcl_RegExpRange	will	not	report	any	match	information.

TCL_REG_CANMATCH
Compile	for	matching	that	reports	the	potential	to	complete	a	partial
match	given	more	text	(see	below).

Only	one	of	TCL_REG_EXTENDED,	TCL_REG_ADVANCED,
TCL_REG_BASIC,	and	TCL_REG_QUOTE	may	be	specified.

Tcl_RegExpExecObj	executes	the	regular	expression	pattern	matcher.
It	returns	1	if	objPtr	contains	a	range	of	characters	that	match	regexp,	0
if	no	match	is	found,	and	-1	if	an	error	occurs.	In	the	case	of	an	error,
Tcl_RegExpExecObj	leaves	an	error	message	in	the	interpreter	result.
The	nmatches	value	indicates	to	the	matcher	how	many
subexpressions	are	of	interest.	If	nmatches	is	0,	then	no	subexpression

match	information	is	recorded,	which	may	allow	the	matcher	to	make
various	optimizations.	If	the	value	is	-1,	then	all	of	the	subexpressions	in
the	pattern	are	remembered.	If	the	value	is	a	positive	integer,	then	only
that	number	of	subexpressions	will	be	remembered.	Matching	begins	at
the	specified	Unicode	character	index	given	by	offset.	Unlike
Tcl_RegExpExec,	the	behavior	of	anchors	is	not	affected	by	the	offset
value.	Instead	the	behavior	of	the	anchors	is	explicitly	controlled	by	the
eflags	argument,	which	is	a	bit-wise	OR	of	zero	or	more	of	the	following
flags:

TCL_REG_NOTBOL
The	starting	character	will	not	be	treated	as	the	beginning	of	a	line
or	the	beginning	of	the	string,	so	“^”	will	not	match	there.	Note	that
this	flag	has	no	effect	on	how	“\A”	matches.

TCL_REG_NOTEOL
The	last	character	in	the	string	will	not	be	treated	as	the	end	of	a
line	or	the	end	of	the	string,	so	“$”	will	not	match	there.	Note	that
this	flag	has	no	effect	on	how	“\Z”	matches.

Tcl_RegExpGetInfo	retrieves	information	about	the	last	match
performed	with	a	given	regular	expression	regexp.	The	infoPtr
argument	contains	a	pointer	to	a	structure	that	is	defined	as	follows:

typedef	struct	Tcl_RegExpInfo	{

								int	nsubs;

								Tcl_RegExpIndices	*matches;

								long	extendStart;

}	Tcl_RegExpInfo;

The	nsubs	field	contains	a	count	of	the	number	of	parenthesized
subexpressions	within	the	regular	expression.	If	the	TCL_REG_NOSUB
was	used,	then	this	value	will	be	zero.	The	matches	field	points	to	an
array	of	nsubs	values	that	indicate	the	bounds	of	each	subexpression
matched.	The	first	element	in	the	array	refers	to	the	range	matched	by
the	entire	regular	expression,	and	subsequent	elements	refer	to	the

parenthesized	subexpressions	in	the	order	that	they	appear	in	the
pattern.	Each	element	is	a	structure	that	is	defined	as	follows:

typedef	struct	Tcl_RegExpIndices	{

								long	start;

								long	end;

}	Tcl_RegExpIndices;

The	start	and	end	values	are	Unicode	character	indices	relative	to	the
offset	location	within	objPtr	where	matching	began.	The	start	index
identifies	the	first	character	of	the	matched	subexpression.	The	end
index	identifies	the	first	character	after	the	matched	subexpression.	If
the	subexpression	matched	the	empty	string,	then	start	and	end	will	be
equal.	If	the	subexpression	did	not	participate	in	the	match,	then	start
and	end	will	be	set	to	-1.

The	extendStart	field	in	Tcl_RegExpInfo	is	only	set	if	the
TCL_REG_CANMATCH	flag	was	used.	It	indicates	the	first	character	in
the	string	where	a	match	could	occur.	If	a	match	was	found,	this	will	be
the	same	as	the	beginning	of	the	current	match.	If	no	match	was	found,
then	it	indicates	the	earliest	point	at	which	a	match	might	occur	if
additional	text	is	appended	to	the	string.	If	it	is	no	match	is	possible
even	with	further	text,	this	field	will	be	set	to	-1.

SEE	ALSO

re_syntax

KEYWORDS

match,	pattern,	regular	expression,	string,	subexpression,
Tcl_RegExpIndices,	Tcl_RegExpInfo

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.
Copyright	©	1998-1999	Scriptics	Corporation

Tcl_Interp	*interp	(in)

Tcl_InterpDeleteProc	*proc	(in)

ClientData	clientData	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	CallDel

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tcl_CallWhenDeleted,	Tcl_DontCallWhenDeleted	-	Arrange	for	callback
when	interpreter	is	deleted

SYNOPSIS

#include	<tcl.h>
Tcl_CallWhenDeleted(interp,	proc,	clientData)
Tcl_DontCallWhenDeleted(interp,	proc,	clientData)

ARGUMENTS

Interpreter	with	which	to
associated	callback.

Procedure	to	call	when
interp	is	deleted.

Arbitrary	one-word	value
to	pass	to	proc.

DESCRIPTION

Tcl_CallWhenDeleted	arranges	for	proc	to	be	called	by
Tcl_DeleteInterp	if/when	interp	is	deleted	at	some	future	time.	Proc	will
be	invoked	just	before	the	interpreter	is	deleted,	but	the	interpreter	will
still	be	valid	at	the	time	of	the	call.	Proc	should	have	arguments	and
result	that	match	the	type	Tcl_InterpDeleteProc:

typedef	void	Tcl_InterpDeleteProc(

								ClientData	clientData,

								Tcl_Interp	*interp);

The	clientData	and	interp	parameters	are	copies	of	the	clientData	and
interp	arguments	given	to	Tcl_CallWhenDeleted.	Typically,	clientData
points	to	an	application-specific	data	structure	that	proc	uses	to	perform
cleanup	when	an	interpreter	is	about	to	go	away.	Proc	does	not	return	a
value.

Tcl_DontCallWhenDeleted	cancels	a	previous	call	to
Tcl_CallWhenDeleted	with	the	same	arguments,	so	that	proc	will	not
be	called	after	all	when	interp	is	deleted.	If	there	is	no	deletion	callback
that	matches	interp,	proc,	and	clientData	then	the	call	to
Tcl_DontCallWhenDeleted	has	no	effect.

KEYWORDS

callback,	delete,	interpreter

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	ByteArrObj

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_NewByteArrayObj,	Tcl_SetByteArrayObj,
Tcl_GetByteArrayFromObj,	Tcl_SetByteArrayLength	-
manipulate	Tcl	objects	as	a	arrays	of	bytes

SYNOPSIS
#include	<tcl.h>
Tcl_Obj	*
Tcl_NewByteArrayObj(bytes,	length)
void
Tcl_SetByteArrayObj(objPtr,	bytes,	length)
unsigned	char	*
Tcl_GetByteArrayFromObj(objPtr,	lengthPtr)
unsigned	char	*
Tcl_SetByteArrayLength(objPtr,	length)

ARGUMENTS
DESCRIPTION
SEE	ALSO
KEYWORDS

NAME

Tcl_NewByteArrayObj,	Tcl_SetByteArrayObj,
Tcl_GetByteArrayFromObj,	Tcl_SetByteArrayLength	-	manipulate	Tcl
objects	as	a	arrays	of	bytes

SYNOPSIS

#include	<tcl.h>
Tcl_Obj	*
Tcl_NewByteArrayObj(bytes,	length)
void	
Tcl_SetByteArrayObj(objPtr,	bytes,	length)

const	unsigned	char	*bytes	(in)

int	length	(in)

Tcl_Obj	*objPtr	(in/out)

int	*lengthPtr	(out)

unsigned	char	*
Tcl_GetByteArrayFromObj(objPtr,	lengthPtr)
unsigned	char	*
Tcl_SetByteArrayLength(objPtr,	length)

ARGUMENTS

The	array	of	bytes	used	to
initialize	or	set	a	byte-
array	object.

The	length	of	the	array	of
bytes.	It	must	be	>=	0.

For	Tcl_SetByteArrayObj,
this	points	to	the	object	to
be	converted	to	byte-array
type.	For
Tcl_GetByteArrayFromObj
and
Tcl_SetByteArrayLength,
this	points	to	the	object
from	which	to	get	the	byte-
array	value;	if	objPtr	does
not	already	point	to	a	byte-
array	object,	it	will	be
converted	to	one.

If	non-NULL,	filled	with	the
length	of	the	array	of	bytes
in	the	object.

DESCRIPTION

These	procedures	are	used	to	create,	modify,	and	read	Tcl	byte-array
objects	from	C	code.	Byte-array	objects	are	typically	used	to	hold	the

results	of	binary	IO	operations	or	data	structures	created	with	the
binary	command.	In	Tcl,	an	array	of	bytes	is	not	equivalent	to	a	string.
Conceptually,	a	string	is	an	array	of	Unicode	characters,	while	a	byte-
array	is	an	array	of	8-bit	quantities	with	no	implicit	meaning.	Accessor
functions	are	provided	to	get	the	string	representation	of	a	byte-array	or
to	convert	an	arbitrary	object	to	a	byte-array.	Obtaining	the	string
representation	of	a	byte-array	object	(by	calling
Tcl_GetStringFromObj)	produces	a	properly	formed	UTF-8	sequence
with	a	one-to-one	mapping	between	the	bytes	in	the	internal
representation	and	the	UTF-8	characters	in	the	string	representation.

Tcl_NewByteArrayObj	and	Tcl_SetByteArrayObj	will	create	a	new
object	of	byte-array	type	or	modify	an	existing	object	to	have	a	byte-
array	type.	Both	of	these	procedures	set	the	object's	type	to	be	byte-
array	and	set	the	object's	internal	representation	to	a	copy	of	the	array
of	bytes	given	by	bytes.	Tcl_NewByteArrayObj	returns	a	pointer	to	a
newly	allocated	object	with	a	reference	count	of	zero.
Tcl_SetByteArrayObj	invalidates	any	old	string	representation	and,	if
the	object	is	not	already	a	byte-array	object,	frees	any	old	internal
representation.

Tcl_GetByteArrayFromObj	converts	a	Tcl	object	to	byte-array	type	and
returns	a	pointer	to	the	object's	new	internal	representation	as	an	array
of	bytes.	The	length	of	this	array	is	stored	in	lengthPtr	if	lengthPtr	is
non-NULL.	The	storage	for	the	array	of	bytes	is	owned	by	the	object
and	should	not	be	freed.	The	contents	of	the	array	may	be	modified	by
the	caller	only	if	the	object	is	not	shared	and	the	caller	invalidates	the
string	representation.

Tcl_SetByteArrayLength	converts	the	Tcl	object	to	byte-array	type	and
changes	the	length	of	the	object's	internal	representation	as	an	array	of
bytes.	If	length	is	greater	than	the	space	currently	allocated	for	the
array,	the	array	is	reallocated	to	the	new	length;	the	newly	allocated
bytes	at	the	end	of	the	array	have	arbitrary	values.	If	length	is	less	than
the	space	currently	allocated	for	the	array,	the	length	of	array	is	reduced
to	the	new	length.	The	return	value	is	a	pointer	to	the	object's	new	array
of	bytes.

SEE	ALSO

Tcl_GetStringFromObj,	Tcl_NewObj,	Tcl_IncrRefCount,
Tcl_DecrRefCount

KEYWORDS

object,	byte	array,	utf,	unicode,	internationalization

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1997	Sun	Microsystems,	Inc.

Tcl_IdleProc	*proc	(in)

ClientData	clientData	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	DoWhenIdle

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tcl_DoWhenIdle,	Tcl_CancelIdleCall	-	invoke	a	procedure	when	there
are	no	pending	events

SYNOPSIS

#include	<tcl.h>
Tcl_DoWhenIdle(proc,	clientData)
Tcl_CancelIdleCall(proc,	clientData)

ARGUMENTS

Procedure	to	invoke.

Arbitrary	one-word	value
to	pass	to	proc.

DESCRIPTION

Tcl_DoWhenIdle	arranges	for	proc	to	be	invoked	when	the	application
becomes	idle.	The	application	is	considered	to	be	idle	when
Tcl_DoOneEvent	has	been	called,	could	not	find	any	events	to	handle,
and	is	about	to	go	to	sleep	waiting	for	an	event	to	occur.	At	this	point	all
pending	Tcl_DoWhenIdle	handlers	are	invoked.	For	each	call	to
Tcl_DoWhenIdle	there	will	be	a	single	call	to	proc;	after	proc	is	invoked
the	handler	is	automatically	removed.	Tcl_DoWhenIdle	is	only	usable
in	programs	that	use	Tcl_DoOneEvent	to	dispatch	events.

Proc	should	have	arguments	and	result	that	match	the	type
Tcl_IdleProc:

typedef	void	Tcl_IdleProc(ClientData	clientData);

The	clientData	parameter	to	proc	is	a	copy	of	the	clientData	argument
given	to	Tcl_DoWhenIdle.	Typically,	clientData	points	to	a	data
structure	containing	application-specific	information	about	what	proc
should	do.

Tcl_CancelIdleCall	may	be	used	to	cancel	one	or	more	previous	calls
to	Tcl_DoWhenIdle:	if	there	is	a	Tcl_DoWhenIdle	handler	registered
for	proc	and	clientData,	then	it	is	removed	without	invoking	it.	If	there	is
more	than	one	handler	on	the	idle	list	that	refers	to	proc	and	clientData,
all	of	the	handlers	are	removed.	If	no	existing	handlers	match	proc	and
clientData	then	nothing	happens.

Tcl_DoWhenIdle	is	most	useful	in	situations	where	(a)	a	piece	of	work
will	have	to	be	done	but	(b)	it	is	possible	that	something	will	happen	in
the	near	future	that	will	change	what	has	to	be	done	or	require
something	different	to	be	done.	Tcl_DoWhenIdle	allows	the	actual	work
to	be	deferred	until	all	pending	events	have	been	processed.	At	this
point	the	exact	work	to	be	done	will	presumably	be	known	and	it	can	be
done	exactly	once.

For	example,	Tcl_DoWhenIdle	might	be	used	by	an	editor	to	defer
display	updates	until	all	pending	commands	have	been	processed.
Without	this	feature,	redundant	redisplays	might	occur	in	some
situations,	such	as	the	processing	of	a	command	file.

BUGS

At	present	it	is	not	safe	for	an	idle	callback	to	reschedule	itself
continuously.	This	will	interact	badly	with	certain	features	of	Tk	that
attempt	to	wait	for	all	idle	callbacks	to	complete.	If	you	would	like	for	an
idle	callback	to	reschedule	itself	continuously,	it	is	better	to	use	a	timer
handler	with	a	zero	timeout	period.

KEYWORDS

callback,	defer,	idle	callback

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	SetChanErr

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_SetChannelError,	Tcl_SetChannelErrorInterp,
Tcl_GetChannelError,	Tcl_GetChannelErrorInterp	-	functions	to
create/intercept	Tcl	errors	by	channel	drivers.

SYNOPSIS
#include	<tcl.h>
void
Tcl_SetChannelError(chan,	msg)
void
Tcl_SetChannelErrorInterp(interp,	msg)
void
Tcl_GetChannelError(chan,	msgPtr)
void
Tcl_GetChannelErrorInterp(interp,	msgPtr)

ARGUMENTS
DESCRIPTION

Tcl_DriverCloseProc
Tcl_DriverInputProc
Tcl_DriverOutputProc
Tcl_DriverSeekProc
Tcl_DriverWideSeekProc
Tcl_DriverSetOptionProc
Tcl_DriverGetOptionProc
Tcl_DriverWatchProc
Tcl_DriverBlockModeProc
Tcl_DriverGetHandleProc
Tcl_DriverHandlerProc
Tcl_StackChannel
Tcl_Seek
Tcl_Tell
Tcl_ReadRaw

Tcl_Channel	chan	(in)

Tcl_Read
Tcl_ReadChars
Tcl_Gets
Tcl_GetsObj
Tcl_Flush
Tcl_WriteRaw
Tcl_WriteObj
Tcl_Write
Tcl_WriteChars
Tcl_Close
Tcl_UnregisterChannel
Tcl_UnstackChannel

SEE	ALSO
KEYWORDS

NAME

Tcl_SetChannelError,	Tcl_SetChannelErrorInterp,	Tcl_GetChannelError,
Tcl_GetChannelErrorInterp	-	functions	to	create/intercept	Tcl	errors	by
channel	drivers.

SYNOPSIS

#include	<tcl.h>
void
Tcl_SetChannelError(chan,	msg)
void
Tcl_SetChannelErrorInterp(interp,	msg)
void
Tcl_GetChannelError(chan,	msgPtr)
void
Tcl_GetChannelErrorInterp(interp,	msgPtr)

ARGUMENTS

Refers	to	the	Tcl	channel
whose	bypass	area	is
accessed.

Tcl_Interp*	interp	(in)

Tcl_Obj*	msg	(in)

Tcl_Obj**	msgPtr	(out)

Refers	to	the	Tcl
interpreter	whose	bypass
area	is	accessed.

Error	message	put	into	a
bypass	area.	A	list	of
return	options	and	values,
followed	by	a	string
message.	Both	message
and	the	option/value
information	are	optional.

Reference	to	a	place
where	the	message	stored
in	the	accessed	bypass
area	can	be	stored	in.

DESCRIPTION

The	current	definition	of	a	Tcl	channel	driver	does	not	permit	the	direct
return	of	arbitrary	error	messages,	except	for	the	setting	and	retrieval	of
channel	options.	All	other	functions	are	restricted	to	POSIX	error	codes.

The	functions	described	here	overcome	this	limitation.	Channel	drivers
are	allowed	to	use	Tcl_SetChannelError	and
Tcl_SetChannelErrorInterp	to	place	arbitrary	error	messages	in
bypass	areas	defined	for	channels	and	interpreters.	And	the	generic
I/O	layer	uses	Tcl_GetChannelError	and	Tcl_GetChannelErrorInterp
to	look	for	messages	in	the	bypass	areas	and	arrange	for	their	return	as
errors.	The	posix	error	codes	set	by	a	driver	are	used	now	if	and	only	if
no	messages	are	present.

Tcl_SetChannelError	stores	error	information	in	the	bypass	area	of	the
specified	channel.	The	number	of	references	to	the	msg	object	goes	up
by	one.	Previously	stored	information	will	be	discarded,	by	releasing	the
reference	held	by	the	channel.	The	channel	reference	must	not	be

NULL.

Tcl_SetChannelErrorInterp	stores	error	information	in	the	bypass	area
of	the	specified	interpreter.	The	number	of	references	to	the	msg	object
goes	up	by	one.	Previously	stored	information	will	be	discarded,	by
releasing	the	reference	held	by	the	interpreter.	The	interpreter	reference
must	not	be	NULL.

Tcl_GetChannelError	places	either	the	error	message	held	in	the
bypass	area	of	the	specified	channel	into	msgPtr,	or	NULL;	and	resets
the	bypass.	I.e.	after	an	invokation	all	following	invokations	will	return
NULL,	until	an	intervening	invokation	of	Tcl_SetChannelError	with	a
non-NULL	message.	The	msgPtr	must	not	be	NULL.	The	reference
count	of	the	message	is	not	touched.	The	reference	previously	held	by
the	channel	is	now	held	by	the	caller	of	the	function	and	it	is	its
responsibility	to	release	that	reference	when	it	is	done	with	the	object.

Tcl_GetChannelErrorInterp	places	either	the	error	message	held	in
the	bypass	area	of	the	specified	interpreter	into	msgPtr,	or	NULL;	and
resets	the	bypass.	I.e.	after	an	invokation	all	following	invokations	will
return	NULL,	until	an	intervening	invokation	of
Tcl_SetChannelErrorInterp	with	a	non-NULL	message.	The	msgPtr
must	not	be	NULL.	The	reference	count	of	the	message	is	not	touched.
The	reference	previously	held	by	the	interpreter	is	now	held	by	the
caller	of	the	function	and	it	is	its	responsibility	to	release	that	reference
when	it	is	done	with	the	object.

Which	functions	of	a	channel	driver	are	allowed	to	use	which	bypass
function	is	listed	below,	as	is	which	functions	of	the	public	channel	API
may	leave	a	messages	in	the	bypass	areas.

Tcl_DriverCloseProc
May	use	Tcl_SetChannelErrorInterp,	and	only	this	function.

Tcl_DriverInputProc
May	use	Tcl_SetChannelError,	and	only	this	function.

Tcl_DriverOutputProc

May	use	Tcl_SetChannelError,	and	only	this	function.

Tcl_DriverSeekProc
May	use	Tcl_SetChannelError,	and	only	this	function.

Tcl_DriverWideSeekProc
May	use	Tcl_SetChannelError,	and	only	this	function.

Tcl_DriverSetOptionProc
Has	already	the	ability	to	pass	arbitrary	error	messages.	Must	not
use	any	of	the	new	functions.

Tcl_DriverGetOptionProc
Has	already	the	ability	to	pass	arbitrary	error	messages.	Must	not
use	any	of	the	new	functions.

Tcl_DriverWatchProc
Must	not	use	any	of	the	new	functions.	Is	internally	called	and	has
no	ability	to	return	any	type	of	error	whatsoever.

Tcl_DriverBlockModeProc
May	use	Tcl_SetChannelError,	and	only	this	function.

Tcl_DriverGetHandleProc
Must	not	use	any	of	the	new	functions.	It	is	only	a	low-level
function,	and	not	used	by	Tcl	commands.

Tcl_DriverHandlerProc
Must	not	use	any	of	the	new	functions.	Is	internally	called	and	has
no	ability	to	return	any	type	of	error	whatsoever.

Given	the	information	above	the	following	public	functions	of	the	Tcl	C
API	are	affected	by	these	changes.	I.e.	when	these	functions	are	called
the	channel	may	now	contain	a	stored	arbitrary	error	message	requiring
processing	by	the	caller.

Tcl_StackChannel

Tcl_Seek

Tcl_Tell

Tcl_ReadRaw

Tcl_Read

Tcl_ReadChars

Tcl_Gets

Tcl_GetsObj

Tcl_Flush

Tcl_WriteRaw

Tcl_WriteObj

Tcl_Write

Tcl_WriteChars

All	other	API	functions	are	unchanged.	Especially	the	functions	below
leave	all	their	error	information	in	the	interpreter	result.

Tcl_Close

Tcl_UnregisterChannel

Tcl_UnstackChannel

SEE	ALSO

Tcl_Close,	Tcl_OpenFileChannel,	Tcl_SetErrno

KEYWORDS

channel	driver,	error	messages,	channel	type

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.

Copyright	©	2005	Andreas	Kupries	<andreas_kupries(at)users.sourceforge.net>

Tcl_Interp	*interp	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	RegConfig

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_RegisterConfig	-	procedures	to	register	embedded
configuration	information

SYNOPSIS
#include	<tcl.h>
void
Tcl_RegisterConfig(interp,	pkgName,	configuration,
valEncoding)

ARGUMENTS
DESCRIPTION

(1)
(2)
::pkgName::pkgconfig	list
::pkgName::pkgconfig	get	key

TCL_CONFIG
KEYWORDS

NAME

Tcl_RegisterConfig	-	procedures	to	register	embedded	configuration
information

SYNOPSIS

#include	<tcl.h>
void
Tcl_RegisterConfig(interp,	pkgName,	configuration,	valEncoding)

ARGUMENTS

Refers	to	the	interpreter
the	embedded

const	char	*pkgName	(in)

Tcl_Config	*configuration	(in)

const	char	*valEncoding	(in)

configuration	information	is
registered	for.	Must	not	be
NULL.

Contains	the	name	of	the
package	registering	the
embedded	configuration	as
ASCII	string.	This	means
that	this	information	is	in
UTF-8	too.	Must	not	be
NULL.

Refers	to	an	array	of
Tcl_Config	entries
containing	the	information
embedded	in	the	binary
library.	Must	not	be	NULL.
The	end	of	the	array	is
signaled	by	either	a	key
identical	to	NULL,	or	a	key
referring	to	the	empty
string.

Contains	the	name	of	the
encoding	used	to	store	the
configuration	values	as
ASCII	string.	This	means
that	this	information	is	in
UTF-8	too.	Must	not	be
NULL.

DESCRIPTION

The	function	described	here	has	its	base	in	TIP	59	and	provides
extensions	with	support	for	the	embedding	of	configuration	information
into	their	binary	library	and	the	generation	of	a	Tcl-level	interface	for

querying	this	information.

To	embed	configuration	information	into	their	binary	library	an	extension
has	to	define	a	non-volatile	array	of	Tcl_Config	entries	in	one	if	its
source	files	and	then	call	Tcl_RegisterConfig	to	register	that
information.

Tcl_RegisterConfig	takes	four	arguments;	first,	a	reference	to	the
interpreter	we	are	registering	the	information	with,	second,	the	name	of
the	package	registering	its	configuration	information,	third,	a	pointer	to
an	array	of	structures,	and	fourth	a	string	declaring	the	encoding	used
by	the	configuration	values.

The	string	valEncoding	contains	the	name	of	an	encoding	known	to	Tcl.
All	these	names	are	use	only	characters	in	the	ASCII	subset	of	UTF-8
and	are	thus	implicitly	in	the	UTF-8	encoding.	It	is	expected	that	keys
are	legible	English	text	and	therefore	using	the	ASCII	subset	of	UTF-8.
In	other	words,	they	are	expected	to	be	in	UTF-8	too.	The	values
associated	with	the	keys	can	be	any	string	however.	For	these	the
contents	of	valEncoding	define	which	encoding	was	used	to	represent
the	characters	of	the	strings.

Each	element	of	the	configuration	array	refers	to	two	strings	containing
the	key	and	the	value	associated	with	that	key.	The	end	of	the	array	is
signaled	by	either	an	empty	key	or	a	key	identical	to	NULL.	The	function
makes	no	copy	of	the	configuration	array.	This	means	that	the	caller
has	to	make	sure	that	the	memory	holding	this	array	is	never	released.
This	is	the	meaning	behind	the	word	non-volatile	used	earlier.	The
easiest	way	to	accomplish	this	is	to	define	a	global	static	array	of
Tcl_Config	entries.	See	the	file	“generic/tclPkgConfig.c”	in	the	sources
of	the	Tcl	core	for	an	example.

When	called	Tcl_RegisterConfig	will

(1)
create	a	namespace	having	the	provided	pkgName,	if	not	yet
existing.

(2)
create	the	command	pkgconfig	in	that	namespace	and	link	it	to	the
provided	information	so	that	the	keys	from	_configuration_	and
their	associated	values	can	be	retrieved	through	calls	to
pkgconfig.

The	command	pkgconfig	will	provide	two	subcommands,	list	and	get:

::pkgName::pkgconfig	list
Returns	a	list	containing	the	names	of	all	defined	keys.

::pkgName::pkgconfig	get	key
Returns	the	configuration	value	associated	with	the	specified	key.

TCL_CONFIG

The	Tcl_Config	structure	contains	the	following	fields:

typedef	struct	Tcl_Config	{

				const	char*	key;

				const	char*	value;

}	Tcl_Config;

KEYWORDS

embedding,	configuration,	binary	library

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	2002	Andreas	Kupries	<andreas_kupries(at)users.sourceforge.net>

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	SaveResult

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_SaveInterpState,	Tcl_RestoreInterpState,
Tcl_DiscardInterpState,	Tcl_SaveResult,	Tcl_RestoreResult,
Tcl_DiscardResult	-	save	and	restore	an	interpreter's	state

SYNOPSIS
#include	<tcl.h>
Tcl_InterpState
Tcl_SaveInterpState(interp,	status)
int
Tcl_RestoreInterpState(interp,	state)
Tcl_DiscardInterpState(state)
Tcl_SaveResult(interp,	savedPtr)
Tcl_RestoreResult(interp,	savedPtr)
Tcl_DiscardResult(savedPtr)

ARGUMENTS
DESCRIPTION
KEYWORDS

NAME

Tcl_SaveInterpState,	Tcl_RestoreInterpState,	Tcl_DiscardInterpState,
Tcl_SaveResult,	Tcl_RestoreResult,	Tcl_DiscardResult	-	save	and
restore	an	interpreter's	state

SYNOPSIS

#include	<tcl.h>
Tcl_InterpState
Tcl_SaveInterpState(interp,	status)
int
Tcl_RestoreInterpState(interp,	state)
Tcl_DiscardInterpState(state)

Tcl_Interp	*interp	(in)

int	status	(in)

Tcl_InterpState	state	(in)

Tcl_SavedResult	*savedPtr	(in)

Tcl_SaveResult(interp,	savedPtr)
Tcl_RestoreResult(interp,	savedPtr)
Tcl_DiscardResult(savedPtr)

ARGUMENTS

Interpreter	for	which	state
should	be	saved.

Return	code	value	to	save
as	part	of	interpreter	state.

Saved	state	token	to	be
restored	or	discarded.

Pointer	to	location	where
interpreter	result	should	be
saved	or	restored.

DESCRIPTION

These	routines	allows	a	C	procedure	to	take	a	snapshot	of	the	current
state	of	an	interpreter	so	that	it	can	be	restored	after	a	call	to	Tcl_Eval
or	some	other	routine	that	modifies	the	interpreter	state.	There	are	two
triplets	of	routines	meant	to	work	together.

The	first	triplet	stores	the	snapshot	of	interpreter	state	in	an	opaque
token	returned	by	Tcl_SaveInterpState.	That	token	value	may	then	be
passed	back	to	one	of	Tcl_RestoreInterpState	or
Tcl_DiscardInterpState,	depending	on	whether	the	interp	state	is	to	be
restored.	So	long	as	one	of	the	latter	two	routines	is	called,	Tcl	will	take
care	of	memory	management.

The	second	triplet	stores	the	snapshot	of	only	the	interpreter	result	(not
its	complete	state)	in	memory	allocated	by	the	caller.	These	routines	are
passed	a	pointer	to	a	Tcl_SavedResult	structure	that	is	used	to	store
enough	information	to	restore	the	interpreter	result.	This	structure	can

be	allocated	on	the	stack	of	the	calling	procedure.	These	routines	do
not	save	the	state	of	any	error	information	in	the	interpreter	(e.g.	the	-
errorcode	or	-errorinfo	return	options,	when	an	error	is	in	progress).

Because	the	routines	Tcl_SaveInterpState,	Tcl_RestoreInterpState,
and	Tcl_DiscardInterpState	perform	a	superset	of	the	functions
provided	by	the	other	routines,	any	new	code	should	only	make	use	of
the	more	powerful	routines.	The	older,	weaker	routines
Tcl_SaveResult,	Tcl_RestoreResult,	and	Tcl_DiscardResult	continue
to	exist	only	for	the	sake	of	existing	programs	that	may	already	be	using
them.

Tcl_SaveInterpState	takes	a	snapshot	of	those	portions	of	interpreter
state	that	make	up	the	full	result	of	script	evaluation.	This	include	the
interpreter	result,	the	return	code	(passed	in	as	the	status	argument,
and	any	return	options,	including	-errorinfo	and	-errorcode	when	an
error	is	in	progress.	This	snapshot	is	returned	as	an	opaque	token	of
type	Tcl_InterpState.	The	call	to	Tcl_SaveInterpState	does	not	itself
change	the	state	of	the	interpreter.	Unlike	Tcl_SaveResult,	it	does	not
reset	the	interpreter.

Tcl_RestoreInterpState	accepts	a	Tcl_InterpState	token	previously
returned	by	Tcl_SaveInterpState	and	restores	the	state	of	the	interp	to
the	state	held	in	that	snapshot.	The	return	value	of
Tcl_RestoreInterpState	is	the	status	value	originally	passed	to
Tcl_SaveInterpState	when	the	snapshot	token	was	created.

Tcl_DiscardInterpState	is	called	to	release	a	Tcl_InterpState	token
previously	returned	by	Tcl_SaveInterpState	when	that	snapshot	is	not
to	be	restored	to	an	interp.

The	Tcl_InterpState	token	returned	by	Tcl_SaveInterpState	must
eventually	be	passed	to	either	Tcl_RestoreInterpState	or
Tcl_DiscardInterpState	to	avoid	a	memory	leak.	Once	the
Tcl_InterpState	token	is	passed	to	one	of	them,	the	token	is	no	longer
valid	and	should	not	be	used	anymore.

Tcl_SaveResult	moves	the	string	and	object	results	of	interp	into	the

location	specified	by	statePtr.	Tcl_SaveResult	clears	the	result	for
interp	and	leaves	the	result	in	its	normal	empty	initialized	state.

Tcl_RestoreResult	moves	the	string	and	object	results	from	statePtr
back	into	interp.	Any	result	or	error	that	was	already	in	the	interpreter
will	be	cleared.	The	statePtr	is	left	in	an	uninitialized	state	and	cannot
be	used	until	another	call	to	Tcl_SaveResult.

Tcl_DiscardResult	releases	the	saved	interpreter	state	stored	at
statePtr.	The	state	structure	is	left	in	an	uninitialized	state	and	cannot
be	used	until	another	call	to	Tcl_SaveResult.

Once	Tcl_SaveResult	is	called	to	save	the	interpreter	result,	either
Tcl_RestoreResult	or	Tcl_DiscardResult	must	be	called	to	properly
clean	up	the	memory	associated	with	the	saved	state.

KEYWORDS

result,	state,	interp

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1997	by	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	CrtObjCmd

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_CreateObjCommand,	Tcl_DeleteCommand,
Tcl_DeleteCommandFromToken,	Tcl_GetCommandInfo,
Tcl_GetCommandInfoFromToken,	Tcl_SetCommandInfo,
Tcl_SetCommandInfoFromToken,	Tcl_GetCommandName,
Tcl_GetCommandFullName,	Tcl_GetCommandFromObj	-
implement	new	commands	in	C

SYNOPSIS
#include	<tcl.h>
Tcl_Command
Tcl_CreateObjCommand(interp,	cmdName,	proc,	clientData,
deleteProc)
int
Tcl_DeleteCommand(interp,	cmdName)
int
Tcl_DeleteCommandFromToken(interp,	token)
int
Tcl_GetCommandInfo(interp,	cmdName,	infoPtr)
int
Tcl_SetCommandInfo(interp,	cmdName,	infoPtr)
int
Tcl_GetCommandInfoFromToken(token,	infoPtr)
int
Tcl_SetCommandInfoFromToken(token,	infoPtr)
const	char	*
Tcl_GetCommandName(interp,	token)
void
Tcl_GetCommandFullName(interp,	token,	objPtr)
Tcl_Command
Tcl_GetCommandFromObj(interp,	objPtr)

ARGUMENTS

DESCRIPTION
SEE	ALSO
KEYWORDS

NAME

Tcl_CreateObjCommand,	Tcl_DeleteCommand,
Tcl_DeleteCommandFromToken,	Tcl_GetCommandInfo,
Tcl_GetCommandInfoFromToken,	Tcl_SetCommandInfo,
Tcl_SetCommandInfoFromToken,	Tcl_GetCommandName,
Tcl_GetCommandFullName,	Tcl_GetCommandFromObj	-	implement
new	commands	in	C

SYNOPSIS

#include	<tcl.h>
Tcl_Command
Tcl_CreateObjCommand(interp,	cmdName,	proc,	clientData,
deleteProc)
int
Tcl_DeleteCommand(interp,	cmdName)
int
Tcl_DeleteCommandFromToken(interp,	token)
int
Tcl_GetCommandInfo(interp,	cmdName,	infoPtr)
int
Tcl_SetCommandInfo(interp,	cmdName,	infoPtr)
int
Tcl_GetCommandInfoFromToken(token,	infoPtr)
int
Tcl_SetCommandInfoFromToken(token,	infoPtr)
const	char	*
Tcl_GetCommandName(interp,	token)
void
Tcl_GetCommandFullName(interp,	token,	objPtr)
Tcl_Command
Tcl_GetCommandFromObj(interp,	objPtr)

Tcl_Interp	*interp	(in)

char	*cmdName	(in)

Tcl_ObjCmdProc	*proc	(in)

ClientData	clientData	(in)

Tcl_CmdDeleteProc	*deleteProc	(in)

Tcl_Command	token	(in)

Tcl_CmdInfo	*infoPtr	(in/out)

ARGUMENTS

Interpreter	in	which	to
create	a	new	command	or
that	contains	a	command.

Name	of	command.

Implementation	of	the	new
command:	proc	will	be
called	whenever	cmdName
is	invoked	as	a	command.

Arbitrary	one-word	value
to	pass	to	proc	and
deleteProc.

Procedure	to	call	before
cmdName	is	deleted	from
the	interpreter;	allows	for
command-specific
cleanup.	If	NULL,	then	no
procedure	is	called	before
the	command	is	deleted.

Token	for	command,
returned	by	previous	call
to
Tcl_CreateObjCommand.
The	command	must	not
have	been	deleted.

Pointer	to	structure
containing	various
information	about	a	Tcl
command.

Tcl_Obj	*objPtr	(in) Object	containing	the
name	of	a	Tcl	command.

DESCRIPTION

Tcl_CreateObjCommand	defines	a	new	command	in	interp	and
associates	it	with	procedure	proc	such	that	whenever	name	is	invoked
as	a	Tcl	command	(e.g.,	via	a	call	to	Tcl_EvalObjEx)	the	Tcl	interpreter
will	call	proc	to	process	the	command.

Tcl_CreateObjCommand	deletes	any	existing	command	name	already
associated	with	the	interpreter	(however	see	below	for	an	exception
where	the	existing	command	is	not	deleted).	It	returns	a	token	that	may
be	used	to	refer	to	the	command	in	subsequent	calls	to
Tcl_GetCommandName.	If	name	contains	any	::	namespace	qualifiers,
then	the	command	is	added	to	the	specified	namespace;	otherwise	the
command	is	added	to	the	global	namespace.	If
Tcl_CreateObjCommand	is	called	for	an	interpreter	that	is	in	the
process	of	being	deleted,	then	it	does	not	create	a	new	command	and	it
returns	NULL.	proc	should	have	arguments	and	result	that	match	the
type	Tcl_ObjCmdProc:

typedef	int	Tcl_ObjCmdProc(

								ClientData	clientData,

								Tcl_Interp	*interp,

								int	objc,

								Tcl_Obj	*const	objv[]);

When	proc	is	invoked,	the	clientData	and	interp	parameters	will	be
copies	of	the	clientData	and	interp	arguments	given	to
Tcl_CreateObjCommand.	Typically,	clientData	points	to	an	application-
specific	data	structure	that	describes	what	to	do	when	the	command
procedure	is	invoked.	Objc	and	objv	describe	the	arguments	to	the
command,	objc	giving	the	number	of	argument	objects	(including	the
command	name)	and	objv	giving	the	values	of	the	arguments.	The	objv

array	will	contain	objc	values,	pointing	to	the	argument	objects.	Unlike
argv[argv]	used	in	a	string-based	command	procedure,	objv[objc]	will
not	contain	NULL.

Additionally,	when	proc	is	invoked,	it	must	not	modify	the	contents	of	the
objv	array	by	assigning	new	pointer	values	to	any	element	of	the	array
(for	example,	objv[2]	=	NULL)	because	this	will	cause	memory	to	be
lost	and	the	runtime	stack	to	be	corrupted.	The	const	in	the	declaration
of	objv	will	cause	ANSI-compliant	compilers	to	report	any	such
attempted	assignment	as	an	error.	However,	it	is	acceptable	to	modify
the	internal	representation	of	any	individual	object	argument.	For
instance,	the	user	may	call	Tcl_GetIntFromObj	on	objv[2]	to	obtain	the
integer	representation	of	that	object;	that	call	may	change	the	type	of
the	object	that	objv[2]	points	at,	but	will	not	change	where	objv[2]
points.

proc	must	return	an	integer	code	that	is	either	TCL_OK,	TCL_ERROR,
TCL_RETURN,	TCL_BREAK,	or	TCL_CONTINUE.	See	the	Tcl
overview	man	page	for	details	on	what	these	codes	mean.	Most	normal
commands	will	only	return	TCL_OK	or	TCL_ERROR.	In	addition,	if	proc
needs	to	return	a	non-empty	result,	it	can	call	Tcl_SetObjResult	to	set
the	interpreter's	result.	In	the	case	of	a	TCL_OK	return	code	this	gives
the	result	of	the	command,	and	in	the	case	of	TCL_ERROR	this	gives
an	error	message.	Before	invoking	a	command	procedure,
Tcl_EvalObjEx	sets	interpreter's	result	to	point	to	an	object
representing	an	empty	string,	so	simple	commands	can	return	an	empty
result	by	doing	nothing	at	all.

The	contents	of	the	objv	array	belong	to	Tcl	and	are	not	guaranteed	to
persist	once	proc	returns:	proc	should	not	modify	them.	Call
Tcl_SetObjResult	if	you	want	to	return	something	from	the	objv	array.

Ordinarily,	Tcl_CreateObjCommand	deletes	any	existing	command
name	already	associated	with	the	interpreter.	However,	if	the	existing
command	was	created	by	a	previous	call	to	Tcl_CreateCommand,
Tcl_CreateObjCommand	does	not	delete	the	command	but	instead
arranges	for	the	Tcl	interpreter	to	call	the	Tcl_ObjCmdProc	proc	in	the
future.	The	old	string-based	Tcl_CmdProc	associated	with	the

command	is	retained	and	its	address	can	be	obtained	by	subsequent
Tcl_GetCommandInfo	calls.	This	is	done	for	backwards	compatibility.

DeleteProc	will	be	invoked	when	(if)	name	is	deleted.	This	can	occur
through	a	call	to	Tcl_DeleteCommand,
Tcl_DeleteCommandFromToken,	or	Tcl_DeleteInterp,	or	by	replacing
name	in	another	call	to	Tcl_CreateObjCommand.	DeleteProc	is
invoked	before	the	command	is	deleted,	and	gives	the	application	an
opportunity	to	release	any	structures	associated	with	the	command.
DeleteProc	should	have	arguments	and	result	that	match	the	type
Tcl_CmdDeleteProc:

typedef	void	Tcl_CmdDeleteProc(

								ClientData	clientData);

The	clientData	argument	will	be	the	same	as	the	clientData	argument
passed	to	Tcl_CreateObjCommand.

Tcl_DeleteCommand	deletes	a	command	from	a	command	interpreter.
Once	the	call	completes,	attempts	to	invoke	cmdName	in	interp	will
result	in	errors.	If	cmdName	is	not	bound	as	a	command	in	interp	then
Tcl_DeleteCommand	does	nothing	and	returns	-1;	otherwise	it	returns
0.	There	are	no	restrictions	on	cmdName:	it	may	refer	to	a	built-in
command,	an	application-specific	command,	or	a	Tcl	procedure.	If
name	contains	any	::	namespace	qualifiers,	the	command	is	deleted
from	the	specified	namespace.

Given	a	token	returned	by	Tcl_CreateObjCommand,
Tcl_DeleteCommandFromToken	deletes	the	command	from	a
command	interpreter.	It	will	delete	a	command	even	if	that	command
has	been	renamed.	Once	the	call	completes,	attempts	to	invoke	the
command	in	interp	will	result	in	errors.	If	the	command	corresponding	to
token	has	already	been	deleted	from	interp	then	Tcl_DeleteCommand
does	nothing	and	returns	-1;	otherwise	it	returns	0.

Tcl_GetCommandInfo	checks	to	see	whether	its	cmdName	argument

exists	as	a	command	in	interp.	cmdName	may	include	::	namespace
qualifiers	to	identify	a	command	in	a	particular	namespace.	If	the
command	is	not	found,	then	it	returns	0.	Otherwise	it	places	information
about	the	command	in	the	Tcl_CmdInfo	structure	pointed	to	by	infoPtr
and	returns	1.	A	Tcl_CmdInfo	structure	has	the	following	fields:

typedef	struct	Tcl_CmdInfo	{

				int	isNativeObjectProc;

				Tcl_ObjCmdProc	*objProc;

				ClientData	objClientData;

				Tcl_CmdProc	*proc;

				ClientData	clientData;

				Tcl_CmdDeleteProc	*deleteProc;

				ClientData	deleteData;

				Tcl_Namespace	*namespacePtr;

}	Tcl_CmdInfo;

The	isNativeObjectProc	field	has	the	value	1	if
Tcl_CreateObjCommand	was	called	to	register	the	command;	it	is	0	if
only	Tcl_CreateCommand	was	called.	It	allows	a	program	to	determine
whether	it	is	faster	to	call	objProc	or	proc:	objProc	is	normally	faster	if
isNativeObjectProc	has	the	value	1.	The	fields	objProc	and
objClientData	have	the	same	meaning	as	the	proc	and	clientData
arguments	to	Tcl_CreateObjCommand;	they	hold	information	about
the	object-based	command	procedure	that	the	Tcl	interpreter	calls	to
implement	the	command.	The	fields	proc	and	clientData	hold
information	about	the	string-based	command	procedure	that
implements	the	command.	If	Tcl_CreateCommand	was	called	for	this
command,	this	is	the	procedure	passed	to	it;	otherwise,	this	is	a
compatibility	procedure	registered	by	Tcl_CreateObjCommand	that
simply	calls	the	command's	object-based	procedure	after	converting	its
string	arguments	to	Tcl	objects.	The	field	deleteData	is	the	ClientData
value	to	pass	to	deleteProc;	it	is	normally	the	same	as	clientData	but
may	be	set	independently	using	the	Tcl_SetCommandInfo	procedure.
The	field	namespacePtr	holds	a	pointer	to	the	Tcl_Namespace	that
contains	the	command.

Tcl_GetCommandInfoFromToken	is	identical	to
Tcl_GetCommandInfo	except	that	it	uses	a	command	token	returned
from	Tcl_CreateObjCommand	in	place	of	the	command	name.	If	the
token	parameter	is	NULL,	it	returns	0;	otherwise,	it	returns	1	and	fills	in
the	structure	designated	by	infoPtr.

Tcl_SetCommandInfo	is	used	to	modify	the	procedures	and	ClientData
values	associated	with	a	command.	Its	cmdName	argument	is	the	name
of	a	command	in	interp.	cmdName	may	include	::	namespace	qualifiers
to	identify	a	command	in	a	particular	namespace.	If	this	command	does
not	exist	then	Tcl_SetCommandInfo	returns	0.	Otherwise,	it	copies	the
information	from	*infoPtr	to	Tcl's	internal	structure	for	the	command	and
returns	1.

Tcl_SetCommandInfoFromToken	is	identical	to
Tcl_SetCommandInfo	except	that	it	takes	a	command	token	as
returned	by	Tcl_CreateObjCommand	instead	of	the	command	name.	If
the	token	parameter	is	NULL,	it	returns	0.	Otherwise,	it	copies	the
information	from	*infoPtr	to	Tcl's	internal	structure	for	the	command	and
returns	1.

Note	that	Tcl_SetCommandInfo	and
Tcl_SetCommandInfoFromToken	both	allow	the	ClientData	for	a
command's	deletion	procedure	to	be	given	a	different	value	than	the
ClientData	for	its	command	procedure.

Note	that	neither	Tcl_SetCommandInfo	nor
Tcl_SetCommandInfoFromToken	will	change	a	command's
namespace.	Use	Tcl_Eval	to	call	the	rename	command	to	do	that.

Tcl_GetCommandName	provides	a	mechanism	for	tracking	commands
that	have	been	renamed.	Given	a	token	returned	by
Tcl_CreateObjCommand	when	the	command	was	created,
Tcl_GetCommandName	returns	the	string	name	of	the	command.	If
the	command	has	been	renamed	since	it	was	created,	then
Tcl_GetCommandName	returns	the	current	name.	This	name	does	not
include	any	::	namespace	qualifiers.	The	command	corresponding	to
token	must	not	have	been	deleted.	The	string	returned	by

Tcl_GetCommandName	is	in	dynamic	memory	owned	by	Tcl	and	is
only	guaranteed	to	retain	its	value	as	long	as	the	command	is	not
deleted	or	renamed;	callers	should	copy	the	string	if	they	need	to	keep
it	for	a	long	time.

Tcl_GetCommandFullName	produces	the	fully	qualified	name	of	a
command	from	a	command	token.	The	name,	including	all	namespace
prefixes,	is	appended	to	the	object	specified	by	objPtr.

Tcl_GetCommandFromObj	returns	a	token	for	the	command	specified
by	the	name	in	a	Tcl_Obj.	The	command	name	is	resolved	relative	to
the	current	namespace.	Returns	NULL	if	the	command	is	not	found.

SEE	ALSO

Tcl_CreateCommand,	Tcl_ResetResult,	Tcl_SetObjResult

KEYWORDS

bind,	command,	create,	delete,	namespace,	object

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1996-1997	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	SplitList

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_SplitList,	Tcl_Merge,	Tcl_ScanElement,
Tcl_ConvertElement,	Tcl_ScanCountedElement,
Tcl_ConvertCountedElement	-	manipulate	Tcl	lists

SYNOPSIS
#include	<tcl.h>
int
Tcl_SplitList(interp,	list,	argcPtr,	argvPtr)
char	*
Tcl_Merge(argc,	argv)
int
Tcl_ScanElement(src,	flagsPtr)
int
Tcl_ScanCountedElement(src,	length,	flagsPtr)
int
Tcl_ConvertElement(src,	dst,	flags)
int
Tcl_ConvertCountedElement(src,	length,	dst,	flags)

ARGUMENTS
DESCRIPTION
KEYWORDS

NAME

Tcl_SplitList,	Tcl_Merge,	Tcl_ScanElement,	Tcl_ConvertElement,
Tcl_ScanCountedElement,	Tcl_ConvertCountedElement	-	manipulate
Tcl	lists

SYNOPSIS

#include	<tcl.h>
int

Tcl_Interp	*interp	(out)

char	*list	(in)

int	*argcPtr	(out)

const	char	***argvPtr	(out)

int	argc	(in)

const	char	*const	*argv	(in)

Tcl_SplitList(interp,	list,	argcPtr,	argvPtr)
char	*
Tcl_Merge(argc,	argv)
int
Tcl_ScanElement(src,	flagsPtr)
int
Tcl_ScanCountedElement(src,	length,	flagsPtr)
int
Tcl_ConvertElement(src,	dst,	flags)
int
Tcl_ConvertCountedElement(src,	length,	dst,	flags)

ARGUMENTS

Interpreter	to	use	for	error
reporting.	If	NULL,	then	no
error	message	is	left.

Pointer	to	a	string	with
proper	list	structure.

Filled	in	with	number	of
elements	in	list.

*argvPtr	will	be	filled	in
with	the	address	of	an
array	of	pointers	to	the
strings	that	are	the
extracted	elements	of	list.
There	will	be	*argcPtr	valid
entries	in	the	array,
followed	by	a	NULL	entry.

Number	of	elements	in
argv.

Array	of	strings	to	merge

const	char	*src	(in)

int	*flagsPtr	(in)

int	length	(in)

char	*dst	(in)

int	flags	(in)

together	into	a	single	list.
Each	string	will	become	a
separate	element	of	the
list.

String	that	is	to	become	an
element	of	a	list.

Pointer	to	word	to	fill	in
with	information	about	src.
The	value	of	*flagsPtr	must
be	passed	to
Tcl_ConvertElement.

Number	of	bytes	in	string
src.

Place	to	copy	converted
list	element.	Must	contain
enough	characters	to	hold
converted	string.

Information	about	src.
Must	be	value	returned	by
previous	call	to
Tcl_ScanElement,
possibly	OR-ed	with
TCL_DONT_USE_BRACES

DESCRIPTION

These	procedures	may	be	used	to	disassemble	and	reassemble	Tcl
lists.	Tcl_SplitList	breaks	a	list	up	into	its	constituent	elements,
returning	an	array	of	pointers	to	the	elements	using	argcPtr	and	argvPtr.
While	extracting	the	arguments,	Tcl_SplitList	obeys	the	usual	rules	for
backslash	substitutions	and	braces.	The	area	of	memory	pointed	to	by

*argvPtr	is	dynamically	allocated;	in	addition	to	the	array	of	pointers,	it
also	holds	copies	of	all	the	list	elements.	It	is	the	caller's	responsibility
to	free	up	all	of	this	storage.	For	example,	suppose	that	you	have	called
Tcl_SplitList	with	the	following	code:

int	argc,	code;

char	*string;

char	**argv;

	...

code	=	Tcl_SplitList(interp,	string,	&argc,	&argv);

Then	you	should	eventually	free	the	storage	with	a	call	like	the
following:

Tcl_Free((char	*)	argv);

Tcl_SplitList	normally	returns	TCL_OK,	which	means	the	list	was
successfully	parsed.	If	there	was	a	syntax	error	in	list,	then
TCL_ERROR	is	returned	and	the	interpreter's	result	will	point	to	an
error	message	describing	the	problem	(if	interp	was	not	NULL).	If
TCL_ERROR	is	returned	then	no	memory	is	allocated	and	*argvPtr	is
not	modified.

Tcl_Merge	is	the	inverse	of	Tcl_SplitList:	it	takes	a	collection	of	strings
given	by	argc	and	argv	and	generates	a	result	string	that	has	proper	list
structure.	This	means	that	commands	like	index	may	be	used	to	extract
the	original	elements	again.	In	addition,	if	the	result	of	Tcl_Merge	is
passed	to	Tcl_Eval,	it	will	be	parsed	into	argc	words	whose	values	will
be	the	same	as	the	argv	strings	passed	to	Tcl_Merge.	Tcl_Merge	will
modify	the	list	elements	with	braces	and/or	backslashes	in	order	to
produce	proper	Tcl	list	structure.	The	result	string	is	dynamically
allocated	using	Tcl_Alloc;	the	caller	must	eventually	release	the	space
using	Tcl_Free.

If	the	result	of	Tcl_Merge	is	passed	to	Tcl_SplitList,	the	elements
returned	by	Tcl_SplitList	will	be	identical	to	those	passed	into
Tcl_Merge.	However,	the	converse	is	not	true:	if	Tcl_SplitList	is
passed	a	given	string,	and	the	resulting	argc	and	argv	are	passed	to
Tcl_Merge,	the	resulting	string	may	not	be	the	same	as	the	original
string	passed	to	Tcl_SplitList.	This	is	because	Tcl_Merge	may	use
backslashes	and	braces	differently	than	the	original	string.

Tcl_ScanElement	and	Tcl_ConvertElement	are	the	procedures	that
do	all	of	the	real	work	of	Tcl_Merge.	Tcl_ScanElement	scans	its	src
argument	and	determines	how	to	use	backslashes	and	braces	when
converting	it	to	a	list	element.	It	returns	an	overestimate	of	the	number
of	characters	required	to	represent	src	as	a	list	element,	and	it	stores
information	in	*flagsPtr	that	is	needed	by	Tcl_ConvertElement.

Tcl_ConvertElement	is	a	companion	procedure	to	Tcl_ScanElement.
It	does	the	actual	work	of	converting	a	string	to	a	list	element.	Its	flags
argument	must	be	the	same	as	the	value	returned	by
Tcl_ScanElement.	Tcl_ConvertElement	writes	a	proper	list	element	to
memory	starting	at	*dst	and	returns	a	count	of	the	total	number	of
characters	written,	which	will	be	no	more	than	the	result	returned	by
Tcl_ScanElement.	Tcl_ConvertElement	writes	out	only	the	actual	list
element	without	any	leading	or	trailing	spaces:	it	is	up	to	the	caller	to
include	spaces	between	adjacent	list	elements.

Tcl_ConvertElement	uses	one	of	two	different	approaches	to	handle
the	special	characters	in	src.	Wherever	possible,	it	handles	special
characters	by	surrounding	the	string	with	braces.	This	produces	clean-
looking	output,	but	cannot	be	used	in	some	situations,	such	as	when	src
contains	unmatched	braces.	In	these	situations,	Tcl_ConvertElement
handles	special	characters	by	generating	backslash	sequences	for
them.	The	caller	may	insist	on	the	second	approach	by	OR-ing	the	flag
value	returned	by	Tcl_ScanElement	with	TCL_DONT_USE_BRACES.
Although	this	will	produce	an	uglier	result,	it	is	useful	in	some	special
situations,	such	as	when	Tcl_ConvertElement	is	being	used	to
generate	a	portion	of	an	argument	for	a	Tcl	command.	In	this	case,
surrounding	src	with	curly	braces	would	cause	the	command	not	to	be
parsed	correctly.

By	default,	Tcl_ConvertElement	will	use	quoting	in	its	output	to	be	sure
the	first	character	of	an	element	is	not	the	hash	character	(“#”.)	This	is
to	be	sure	the	first	element	of	any	list	passed	to	eval	is	not	mis-parsed
as	the	beginning	of	a	comment.	When	a	list	element	is	not	the	first
element	of	a	list,	this	quoting	is	not	necessary.	When	the	caller	can	be
sure	that	the	element	is	not	the	first	element	of	a	list,	it	can	disable
quoting	of	the	leading	hash	character	by	OR-ing	the	flag	value	returned
by	Tcl_ScanElement	with	TCL_DONT_QUOTE_HASH.

Tcl_ScanCountedElement	and	Tcl_ConvertCountedElement	are	the
same	as	Tcl_ScanElement	and	Tcl_ConvertElement,	except	the
length	of	string	src	is	specified	by	the	length	argument,	and	the	string
may	contain	embedded	nulls.

KEYWORDS

backslash,	convert,	element,	list,	merge,	split,	strings

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1989-1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl_Interp	*interp	(in)

Tcl_DString	*bufferPtr	(in/out)

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	GetCwd

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_GetCwd,	Tcl_Chdir	-	manipulate	the	current	working
directory

SYNOPSIS
#include	<tcl.h>
char	*
Tcl_GetCwd(interp,	bufferPtr)
int
Tcl_Chdir(path)

ARGUMENTS
DESCRIPTION
KEYWORDS

NAME

Tcl_GetCwd,	Tcl_Chdir	-	manipulate	the	current	working	directory

SYNOPSIS

#include	<tcl.h>
char	*
Tcl_GetCwd(interp,	bufferPtr)
int
Tcl_Chdir(path)

ARGUMENTS

Interpreter	in	which	to
report	an	error,	if	any.

This	dynamic	string	is
used	to	store	the	current

char	*path	(in)

working	directory.	At	the
time	of	the	call	it	should	be
uninitialized	or	free.	The
caller	must	eventually	call
Tcl_DStringFree	to	free
up	anything	stored	here.

File	path	in	UTF-8	format.

DESCRIPTION

These	procedures	may	be	used	to	manipulate	the	current	working
directory	for	the	application.	They	provide	C-level	access	to	the	same
functionality	as	the	Tcl	pwd	command.

Tcl_GetCwd	returns	a	pointer	to	a	string	specifying	the	current
directory,	or	NULL	if	the	current	directory	could	not	be	determined.	If
NULL	is	returned,	an	error	message	is	left	in	the	interp's	result.	Storage
for	the	result	string	is	allocated	in	bufferPtr;	the	caller	must	call
Tcl_DStringFree()	when	the	result	is	no	longer	needed.	The	format	of
the	path	is	UTF-8.

Tcl_Chdir	changes	the	applications	current	working	directory	to	the
value	specified	in	path.	The	format	of	the	passed	in	string	must	be	UTF-
8.	The	function	returns	-1	on	error	or	0	on	success.

KEYWORDS

pwd

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1998-1999	Scriptics	Corporation

const	char	*cmd	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	CmdCmplt

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tcl_CommandComplete	-	Check	for	unmatched	braces	in	a	Tcl
command

SYNOPSIS

#include	<tcl.h>
int
Tcl_CommandComplete(cmd)

ARGUMENTS

Command	string	to	test	for
completeness.

DESCRIPTION

Tcl_CommandComplete	takes	a	Tcl	command	string	as	argument	and
determines	whether	it	contains	one	or	more	complete	commands	(i.e.
there	are	no	unclosed	quotes,	braces,	brackets,	or	variable	references).
If	the	command	string	is	complete	then	it	returns	1;	otherwise	it	returns
0.

KEYWORDS

complete	command,	partial	command

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1989-1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	Encoding

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_GetEncoding,	Tcl_FreeEncoding,
Tcl_GetEncodingFromObj,	Tcl_ExternalToUtfDString,
Tcl_ExternalToUtf,	Tcl_UtfToExternalDString,
Tcl_UtfToExternal,	Tcl_WinTCharToUtf,	Tcl_WinUtfToTChar,
Tcl_GetEncodingName,	Tcl_SetSystemEncoding,
Tcl_GetEncodingNameFromEnvironment,
Tcl_GetEncodingNames,	Tcl_CreateEncoding,
Tcl_GetEncodingSearchPath,	Tcl_SetEncodingSearchPath,
Tcl_GetDefaultEncodingDir,	Tcl_SetDefaultEncodingDir	-
procedures	for	creating	and	using	encodings

SYNOPSIS
#include	<tcl.h>
Tcl_Encoding
Tcl_GetEncoding(interp,	name)
void
Tcl_FreeEncoding(encoding)
int
Tcl_GetEncodingFromObj(interp,	objPtr,	encodingPtr)
char	*
Tcl_ExternalToUtfDString(encoding,	src,	srcLen,	dstPtr)
char	*
Tcl_UtfToExternalDString(encoding,	src,	srcLen,	dstPtr)
int
Tcl_ExternalToUtf(interp,	encoding,	src,	srcLen,	flags,
statePtr,
dst,	dstLen,	srcReadPtr,	dstWrotePtr,	dstCharsPtr)
int
Tcl_UtfToExternal(interp,	encoding,	src,	srcLen,	flags,
statePtr,
dst,	dstLen,	srcReadPtr,	dstWrotePtr,	dstCharsPtr)

char	*
Tcl_WinTCharToUtf(tsrc,	srcLen,	dstPtr)
TCHAR	*
Tcl_WinUtfToTChar(src,	srcLen,	dstPtr)
const	char	*
Tcl_GetEncodingName(encoding)
int
Tcl_SetSystemEncoding(interp,	name)
const	char	*
Tcl_GetEncodingNameFromEnvironment(bufPtr)
void
Tcl_GetEncodingNames(interp)
Tcl_Encoding
Tcl_CreateEncoding(typePtr)
Tcl_Obj	*
Tcl_GetEncodingSearchPath()
int
Tcl_SetEncodingSearchPath(searchPath)
const	char	*
Tcl_GetDefaultEncodingDir(void)
void
Tcl_SetDefaultEncodingDir(path)

ARGUMENTS
INTRODUCTION
DESCRIPTION

TCL_OK
TCL_CONVERT_NOSPACE
TCL_CONVERT_MULTIBYTE
TCL_CONVERT_SYNTAX
TCL_CONVERT_UNKNOWN

ENCODING	FILES
[1]	S
[2]	D
[3]	M
[4]	E

KEYWORDS

NAME

Tcl_GetEncoding,	Tcl_FreeEncoding,	Tcl_GetEncodingFromObj,
Tcl_ExternalToUtfDString,	Tcl_ExternalToUtf,	Tcl_UtfToExternalDString,
Tcl_UtfToExternal,	Tcl_WinTCharToUtf,	Tcl_WinUtfToTChar,
Tcl_GetEncodingName,	Tcl_SetSystemEncoding,
Tcl_GetEncodingNameFromEnvironment,	Tcl_GetEncodingNames,
Tcl_CreateEncoding,	Tcl_GetEncodingSearchPath,
Tcl_SetEncodingSearchPath,	Tcl_GetDefaultEncodingDir,
Tcl_SetDefaultEncodingDir	-	procedures	for	creating	and	using
encodings

SYNOPSIS

#include	<tcl.h>
Tcl_Encoding
Tcl_GetEncoding(interp,	name)
void
Tcl_FreeEncoding(encoding)
int
Tcl_GetEncodingFromObj(interp,	objPtr,	encodingPtr)
char	*
Tcl_ExternalToUtfDString(encoding,	src,	srcLen,	dstPtr)
char	*
Tcl_UtfToExternalDString(encoding,	src,	srcLen,	dstPtr)
int
Tcl_ExternalToUtf(interp,	encoding,	src,	srcLen,	flags,	statePtr,
dst,	dstLen,	srcReadPtr,	dstWrotePtr,	dstCharsPtr)
int
Tcl_UtfToExternal(interp,	encoding,	src,	srcLen,	flags,	statePtr,
dst,	dstLen,	srcReadPtr,	dstWrotePtr,	dstCharsPtr)
char	*
Tcl_WinTCharToUtf(tsrc,	srcLen,	dstPtr)
TCHAR	*
Tcl_WinUtfToTChar(src,	srcLen,	dstPtr)
const	char	*
Tcl_GetEncodingName(encoding)

Tcl_Interp	*interp	(in)

const	char	*name	(in)

Tcl_Encoding	encoding	(in)

Tcl_Obj	*objPtr	(in)

Tcl_Encoding	*encodingPtr	(out)

int
Tcl_SetSystemEncoding(interp,	name)
const	char	*
Tcl_GetEncodingNameFromEnvironment(bufPtr)
void
Tcl_GetEncodingNames(interp)
Tcl_Encoding
Tcl_CreateEncoding(typePtr)
Tcl_Obj	*
Tcl_GetEncodingSearchPath()
int
Tcl_SetEncodingSearchPath(searchPath)
const	char	*
Tcl_GetDefaultEncodingDir(void)
void
Tcl_SetDefaultEncodingDir(path)

ARGUMENTS

Interpreter	to	use	for	error
reporting,	or	NULL	if	no
error	reporting	is	desired.

Name	of	encoding	to	load.

The	encoding	to	query,
free,	or	use	for	converting
text.	If	encoding	is	NULL,
the	current	system
encoding	is	used.

Name	of	encoding	to	get
token	for.

Points	to	storage	where
encoding	token	is	to	be
written.

const	char	*src	(in)

const	TCHAR	*tsrc	(in)

int	srcLen	(in)

Tcl_DString	*dstPtr	(out)

int	flags	(in)

For	the	Tcl_ExternalToUtf
functions,	an	array	of
bytes	in	the	specified
encoding	that	are	to	be
converted	to	UTF-8.	For
the	Tcl_UtfToExternal	and
Tcl_WinUtfToTChar
functions,	an	array	of	UTF-
8	characters	to	be
converted	to	the	specified
encoding.

An	array	of	Windows
TCHAR	characters	to
convert	to	UTF-8.

Length	of	src	or	tsrc	in
bytes.	If	the	length	is
negative,	the	encoding-
specific	length	of	the	string
is	used.

Pointer	to	an	uninitialized
or	free	Tcl_DString	in
which	the	converted	result
will	be	stored.

Various	flag	bits	OR-ed
together.
TCL_ENCODING_START
signifies	that	the	source
buffer	is	the	first	block	in	a
(potentially	multi-block)
input	stream,	telling	the
conversion	routine	to	reset
to	an	initial	state	and
perform	any	initialization

Tcl_EncodingState	*statePtr	(in/out)

that	needs	to	occur	before
the	first	byte	is	converted.
TCL_ENCODING_END
signifies	that	the	source
buffer	is	the	last	block	in	a
(potentially	multi-block)
input	stream,	telling	the
conversion	routine	to
perform	any	finalization
that	needs	to	occur	after
the	last	byte	is	converted
and	then	to	reset	to	an
initial	state.
TCL_ENCODING_STOPONERROR
signifies	that	the
conversion	routine	should
return	immediately	upon
reading	a	source	character
that	does	not	exist	in	the
target	encoding;	otherwise
a	default	fallback	character
will	automatically	be
substituted.

Used	when	converting	a
(generally	long	or
indefinite	length)	byte
stream	in	a	piece-by-piece
fashion.	The	conversion
routine	stores	its	current
state	in	*statePtr	after	src
(the	buffer	containing	the
current	piece)	has	been
converted;	that	state
information	must	be
passed	back	when
converting	the	next	piece

char	*dst	(out)

int	dstLen	(in)

int	*srcReadPtr	(out)

int	*dstWrotePtr	(out)

of	the	stream	so	the
conversion	routine	knows
what	state	it	was	in	when	it
left	off	at	the	end	of	the
last	piece.	May	be	NULL,
in	which	case	the	value
specified	for	flags	is
ignored	and	the	source
buffer	is	assumed	to
contain	the	complete	string
to	convert.

Buffer	in	which	the
converted	result	will	be
stored.	No	more	than
dstLen	bytes	will	be	stored
in	dst.

The	maximum	length	of
the	output	buffer	dst	in
bytes.

Filled	with	the	number	of
bytes	from	src	that	were
actually	converted.	This
may	be	less	than	the
original	source	length	if
there	was	a	problem
converting	some	source
characters.	May	be	NULL.

Filled	with	the	number	of
bytes	that	were	actually
stored	in	the	output	buffer
as	a	result	of	the
conversion.	May	be	NULL.

int	*dstCharsPtr	(out)

Tcl_DString	*bufPtr	(out)

const	Tcl_EncodingType	*typePtr	(in)

Tcl_Obj	*searchPath	(in)

const	char	*path	(in)

Filled	with	the	number	of
characters	that	correspond
to	the	number	of	bytes
stored	in	the	output	buffer.
May	be	NULL.

Storage	for	the	prescribed
system	encoding	name.

Structure	that	defines	a
new	type	of	encoding.

List	of	filesystem
directories	in	which	to
search	for	encoding	data
files.

A	path	to	the	location	of
the	encoding	file.

INTRODUCTION

These	routines	convert	between	Tcl's	internal	character	representation,
UTF-8,	and	character	representations	used	by	various	operating
systems	or	file	systems,	such	as	Unicode,	ASCII,	or	Shift-JIS.	When
operating	on	strings,	such	as	such	as	obtaining	the	names	of	files	or
displaying	characters	using	international	fonts,	the	strings	must	be
translated	into	one	or	possibly	multiple	formats	that	the	various	system
calls	can	use.	For	instance,	on	a	Japanese	Unix	workstation,	a	user
might	obtain	a	filename	represented	in	the	EUC-JP	file	encoding	and
then	translate	the	characters	to	the	jisx0208	font	encoding	in	order	to
display	the	filename	in	a	Tk	widget.	The	purpose	of	the	encoding
package	is	to	help	bridge	the	translation	gap.	UTF-8	provides	an
intermediate	staging	ground	for	all	the	various	encodings.	In	the
example	above,	text	would	be	translated	into	UTF-8	from	whatever	file
encoding	the	operating	system	is	using.	Then	it	would	be	translated

from	UTF-8	into	whatever	font	encoding	the	display	routines	require.

Some	basic	encodings	are	compiled	into	Tcl.	Others	can	be	defined	by
the	user	or	dynamically	loaded	from	encoding	files	in	a	platform-
independent	manner.

DESCRIPTION

Tcl_GetEncoding	finds	an	encoding	given	its	name.	The	name	may
refer	to	a	built-in	Tcl	encoding,	a	user-defined	encoding	registered	by
calling	Tcl_CreateEncoding,	or	a	dynamically-loadable	encoding	file.
The	return	value	is	a	token	that	represents	the	encoding	and	can	be
used	in	subsequent	calls	to	procedures	such	as
Tcl_GetEncodingName,	Tcl_FreeEncoding,	and	Tcl_UtfToExternal.
If	the	name	did	not	refer	to	any	known	or	loadable	encoding,	NULL	is
returned	and	an	error	message	is	returned	in	interp.

The	encoding	package	maintains	a	database	of	all	encodings	currently
in	use.	The	first	time	name	is	seen,	Tcl_GetEncoding	returns	an
encoding	with	a	reference	count	of	1.	If	the	same	name	is	requested
further	times,	then	the	reference	count	for	that	encoding	is	incremented
without	the	overhead	of	allocating	a	new	encoding	and	all	its	associated
data	structures.

When	an	encoding	is	no	longer	needed,	Tcl_FreeEncoding	should	be
called	to	release	it.	When	an	encoding	is	no	longer	in	use	anywhere
(i.e.,	it	has	been	freed	as	many	times	as	it	has	been	gotten)
Tcl_FreeEncoding	will	release	all	storage	the	encoding	was	using	and
delete	it	from	the	database.

Tcl_GetEncodingFromObj	treats	the	string	representation	of	objPtr	as
an	encoding	name,	and	finds	an	encoding	with	that	name,	just	as
Tcl_GetEncoding	does.	When	an	encoding	is	found,	it	is	cached	within
the	objPtr	value	for	future	reference,	the	Tcl_Encoding	token	is	written
to	the	storage	pointed	to	by	encodingPtr,	and	the	value	TCL_OK	is
returned.	If	no	such	encoding	is	found,	the	value	TCL_ERROR	is
returned,	and	no	writing	to	*encodingPtr	takes	place.	Just	as	with
Tcl_GetEncoding,	the	caller	should	call	Tcl_FreeEncoding	on	the

resulting	encoding	token	when	that	token	will	no	longer	be	used.

Tcl_ExternalToUtfDString	converts	a	source	buffer	src	from	the
specified	encoding	into	UTF-8.	The	converted	bytes	are	stored	in
dstPtr,	which	is	then	null-terminated.	The	caller	should	eventually	call
Tcl_DStringFree	to	free	any	information	stored	in	dstPtr.	When
converting,	if	any	of	the	characters	in	the	source	buffer	cannot	be
represented	in	the	target	encoding,	a	default	fallback	character	will	be
used.	The	return	value	is	a	pointer	to	the	value	stored	in	the	DString.

Tcl_ExternalToUtf	converts	a	source	buffer	src	from	the	specified
encoding	into	UTF-8.	Up	to	srcLen	bytes	are	converted	from	the	source
buffer	and	up	to	dstLen	converted	bytes	are	stored	in	dst.	In	all	cases,
*srcReadPtr	is	filled	with	the	number	of	bytes	that	were	successfully
converted	from	src	and	*dstWrotePtr	is	filled	with	the	corresponding
number	of	bytes	that	were	stored	in	dst.	The	return	value	is	one	of	the
following:

TCL_OK
All	bytes	of	src	were	converted.

TCL_CONVERT_NOSPACE
The	destination	buffer	was	not	large	enough	for	all	of	the	converted
data;	as	many	characters	as	could	fit	were	converted	though.

TCL_CONVERT_MULTIBYTE
The	last	few	bytes	in	the	source	buffer	were	the	beginning	of	a
multibyte	sequence,	but	more	bytes	were	needed	to	complete	this
sequence.	A	subsequent	call	to	the	conversion	routine	should	pass
a	buffer	containing	the	unconverted	bytes	that	remained	in	src	plus
some	further	bytes	from	the	source	stream	to	properly	convert	the
formerly	split-up	multibyte	sequence.

TCL_CONVERT_SYNTAX
The	source	buffer	contained	an	invalid	character	sequence.	This
may	occur	if	the	input	stream	has	been	damaged	or	if	the	input
encoding	method	was	misidentified.

TCL_CONVERT_UNKNOWN
The	source	buffer	contained	a	character	that	could	not	be
represented	in	the	target	encoding	and
TCL_ENCODING_STOPONERROR	was	specified.

Tcl_UtfToExternalDString	converts	a	source	buffer	src	from	UTF-8	into
the	specified	encoding.	The	converted	bytes	are	stored	in	dstPtr,	which
is	then	terminated	with	the	appropriate	encoding-specific	null.	The	caller
should	eventually	call	Tcl_DStringFree	to	free	any	information	stored	in
dstPtr.	When	converting,	if	any	of	the	characters	in	the	source	buffer
cannot	be	represented	in	the	target	encoding,	a	default	fallback
character	will	be	used.	The	return	value	is	a	pointer	to	the	value	stored
in	the	DString.

Tcl_UtfToExternal	converts	a	source	buffer	src	from	UTF-8	into	the
specified	encoding.	Up	to	srcLen	bytes	are	converted	from	the	source
buffer	and	up	to	dstLen	converted	bytes	are	stored	in	dst.	In	all	cases,
*srcReadPtr	is	filled	with	the	number	of	bytes	that	were	successfully
converted	from	src	and	*dstWrotePtr	is	filled	with	the	corresponding
number	of	bytes	that	were	stored	in	dst.	The	return	values	are	the	same
as	the	return	values	for	Tcl_ExternalToUtf.

Tcl_WinUtfToTChar	and	Tcl_WinTCharToUtf	are	Windows-only
convenience	functions	for	converting	between	UTF-8	and	Windows
strings.	On	Windows	95	(as	with	the	Unix	operating	system),	all	strings
exchanged	between	Tcl	and	the	operating	system	are	“char”	based.	On
Windows	NT,	some	strings	exchanged	between	Tcl	and	the	operating
system	are	“char”	oriented	while	others	are	in	Unicode.	By	convention,
in	Windows	a	TCHAR	is	a	character	in	the	ANSI	code	page	on	Windows
95	and	a	Unicode	character	on	Windows	NT.

If	you	planned	to	use	the	same	“char”	based	interfaces	on	both
Windows	95	and	Windows	NT,	you	could	use	Tcl_UtfToExternal	and
Tcl_ExternalToUtf	(or	their	Tcl_DString	equivalents)	with	an	encoding
of	NULL	(the	current	system	encoding).	On	the	other	hand,	if	you
planned	to	use	the	Unicode	interface	when	running	on	Windows	NT	and
the	“char”	interfaces	when	running	on	Windows	95,	you	would	have	to
perform	the	following	type	of	test	over	and	over	in	your	program	(as

represented	in	pseudo-code):

if	(running	NT)	{

				encoding	<-	Tcl_GetEncoding("unicode");

				nativeBuffer	<-	Tcl_UtfToExternal(encoding,	utfBuffer);

				Tcl_FreeEncoding(encoding);

}	else	{

				nativeBuffer	<-	Tcl_UtfToExternal(NULL,	utfBuffer);

}

Tcl_WinUtfToTChar	and	Tcl_WinTCharToUtf	automatically	handle	this
test	and	use	the	proper	encoding	based	on	the	current	operating
system.	Tcl_WinUtfToTChar	returns	a	pointer	to	a	TCHAR	string,	and
Tcl_WinTCharToUtf	expects	a	TCHAR	string	pointer	as	the	src	string.
Otherwise,	these	functions	behave	identically	to
Tcl_UtfToExternalDString	and	Tcl_ExternalToUtfDString.

Tcl_GetEncodingName	is	roughly	the	inverse	of	Tcl_GetEncoding.
Given	an	encoding,	the	return	value	is	the	name	argument	that	was
used	to	create	the	encoding.	The	string	returned	by
Tcl_GetEncodingName	is	only	guaranteed	to	persist	until	the	encoding
is	deleted.	The	caller	must	not	modify	this	string.

Tcl_SetSystemEncoding	sets	the	default	encoding	that	should	be
used	whenever	the	user	passes	a	NULL	value	for	the	encoding
argument	to	any	of	the	other	encoding	functions.	If	name	is	NULL,	the
system	encoding	is	reset	to	the	default	system	encoding,	binary.	If	the
name	did	not	refer	to	any	known	or	loadable	encoding,	TCL_ERROR	is
returned	and	an	error	message	is	left	in	interp.	Otherwise,	this
procedure	increments	the	reference	count	of	the	new	system	encoding,
decrements	the	reference	count	of	the	old	system	encoding,	and
returns	TCL_OK.

Tcl_GetEncodingNameFromEnvironment	provides	a	means	for	the
Tcl	library	to	report	the	encoding	name	it	believes	to	be	the	correct	one

to	use	as	the	system	encoding,	based	on	system	calls	and	examination
of	the	environment	suitable	for	the	platform.	It	accepts	bufPtr,	a	pointer
to	an	uninitialized	or	freed	Tcl_DString	and	writes	the	encoding	name
to	it.	The	Tcl_DStringValue	is	returned.

Tcl_GetEncodingNames	sets	the	interp	result	to	a	list	consisting	of	the
names	of	all	the	encodings	that	are	currently	defined	or	can	be
dynamically	loaded,	searching	the	encoding	path	specified	by
Tcl_SetDefaultEncodingDir.	This	procedure	does	not	ensure	that	the
dynamically-loadable	encoding	files	contain	valid	data,	but	merely	that
they	exist.

Tcl_CreateEncoding	defines	a	new	encoding	and	registers	the	C
procedures	that	are	called	back	to	convert	between	the	encoding	and
UTF-8.	Encodings	created	by	Tcl_CreateEncoding	are	thereafter
visible	in	the	database	used	by	Tcl_GetEncoding.	Just	as	with	the
Tcl_GetEncoding	procedure,	the	return	value	is	a	token	that
represents	the	encoding	and	can	be	used	in	subsequent	calls	to	other
encoding	functions.	Tcl_CreateEncoding	returns	an	encoding	with	a
reference	count	of	1.	If	an	encoding	with	the	specified	name	already
exists,	then	its	entry	in	the	database	is	replaced	with	the	new	encoding;
the	token	for	the	old	encoding	will	remain	valid	and	continue	to	behave
as	before,	but	users	of	the	new	token	will	now	call	the	new	encoding
procedures.

The	typePtr	argument	to	Tcl_CreateEncoding	contains	information
about	the	name	of	the	encoding	and	the	procedures	that	will	be	called
to	convert	between	this	encoding	and	UTF-8.	It	is	defined	as	follows:

typedef	struct	Tcl_EncodingType	{

								const	char	*encodingName;

								Tcl_EncodingConvertProc	*toUtfProc;

								Tcl_EncodingConvertProc	*fromUtfProc;

								Tcl_EncodingFreeProc	*freeProc;

								ClientData	clientData;

								int	nullSize;

}	Tcl_EncodingType;

The	encodingName	provides	a	string	name	for	the	encoding,	by	which	it
can	be	referred	in	other	procedures	such	as	Tcl_GetEncoding.	The
toUtfProc	refers	to	a	callback	procedure	to	invoke	to	convert	text	from
this	encoding	into	UTF-8.	The	fromUtfProc	refers	to	a	callback
procedure	to	invoke	to	convert	text	from	UTF-8	into	this	encoding.	The
freeProc	refers	to	a	callback	procedure	to	invoke	when	this	encoding	is
deleted.	The	freeProc	field	may	be	NULL.	The	clientData	contains	an
arbitrary	one-word	value	passed	to	toUtfProc,	fromUtfProc,	and
freeProc	whenever	they	are	called.	Typically,	this	is	a	pointer	to	a	data
structure	containing	encoding-specific	information	that	can	be	used	by
the	callback	procedures.	For	instance,	two	very	similar	encodings	such
as	ascii	and	macRoman	may	use	the	same	callback	procedure,	but
use	different	values	of	clientData	to	control	its	behavior.	The	nullSize
specifies	the	number	of	zero	bytes	that	signify	end-of-string	in	this
encoding.	It	must	be	1	(for	single-byte	or	multi-byte	encodings	like
ASCII	or	Shift-JIS)	or	2	(for	double-byte	encodings	like	Unicode).
Constant-sized	encodings	with	3	or	more	bytes	per	character	(such	as
CNS11643)	are	not	accepted.

The	callback	procedures	toUtfProc	and	fromUtfProc	should	match	the
type	Tcl_EncodingConvertProc:

typedef	int	Tcl_EncodingConvertProc(

								ClientData	clientData,

								const	char	*src,	

								int	srcLen,	

								int	flags,	

								Tcl_EncodingState	*statePtr,

								char	*dst,	

								int	dstLen,	

								int	*srcReadPtr,

								int	*dstWrotePtr,

								int	*dstCharsPtr);

The	toUtfProc	and	fromUtfProc	procedures	are	called	by	the
Tcl_ExternalToUtf	or	Tcl_UtfToExternal	family	of	functions	to	perform
the	actual	conversion.	The	clientData	parameter	to	these	procedures	is
the	same	as	the	clientData	field	specified	to	Tcl_CreateEncoding	when
the	encoding	was	created.	The	remaining	arguments	to	the	callback
procedures	are	the	same	as	the	arguments,	documented	at	the	top,	to
Tcl_ExternalToUtf	or	Tcl_UtfToExternal,	with	the	following	exceptions.
If	the	srcLen	argument	to	one	of	those	high-level	functions	is	negative,
the	value	passed	to	the	callback	procedure	will	be	the	appropriate
encoding-specific	string	length	of	src.	If	any	of	the	srcReadPtr,
dstWrotePtr,	or	dstCharsPtr	arguments	to	one	of	the	high-level
functions	is	NULL,	the	corresponding	value	passed	to	the	callback
procedure	will	be	a	non-NULL	location.

The	callback	procedure	freeProc,	if	non-NULL,	should	match	the	type
Tcl_EncodingFreeProc:

typedef	void	Tcl_EncodingFreeProc(

								ClientData	clientData);

This	freeProc	function	is	called	when	the	encoding	is	deleted.	The
clientData	parameter	is	the	same	as	the	clientData	field	specified	to
Tcl_CreateEncoding	when	the	encoding	was	created.

Tcl_GetEncodingSearchPath	and	Tcl_SetEncodingSearchPath	are
called	to	access	and	set	the	list	of	filesystem	directories	searched	for
encoding	data	files.

The	value	returned	by	Tcl_GetEncodingSearchPath	is	the	value
stored	by	the	last	successful	call	to	Tcl_SetEncodingSearchPath.	If	no
calls	to	Tcl_SetEncodingSearchPath	have	occurred,	Tcl	will	compute
an	initial	value	based	on	the	environment.	There	is	one	encoding
search	path	for	the	entire	process,	shared	by	all	threads	in	the	process.

Tcl_SetEncodingSearchPath	stores	searchPath	and	returns	TCL_OK,
unless	searchPath	is	not	a	valid	Tcl	list,	which	causes	TCL_ERROR	to

be	returned.	The	elements	of	searchPath	are	not	verified	as	existing
readable	filesystem	directories.	When	searching	for	encoding	data	files
takes	place,	and	non-existent	or	non-readable	filesystem	directories	on
the	searchPath	are	silently	ignored.

Tcl_GetDefaultEncodingDir	and	Tcl_SetDefaultEncodingDir	are
obsolete	interfaces	best	replaced	with	calls	to
Tcl_GetEncodingSearchPath	and	Tcl_SetEncodingSearchPath.
They	are	called	to	access	and	set	the	first	element	of	the	searchPath
list.	Since	Tcl	searches	searchPath	for	encoding	data	files	in	list	order,
these	routines	establish	the	“default”	directory	in	which	to	find	encoding
data	files.

ENCODING	FILES

Space	would	prohibit	precompiling	into	Tcl	every	possible	encoding
algorithm,	so	many	encodings	are	stored	on	disk	as	dynamically-
loadable	encoding	files.	This	behavior	also	allows	the	user	to	create
additional	encoding	files	that	can	be	loaded	using	the	same
mechanism.	These	encoding	files	contain	information	about	the	tables
and/or	escape	sequences	used	to	map	between	an	external	encoding
and	Unicode.	The	external	encoding	may	consist	of	single-byte,	multi-
byte,	or	double-byte	characters.

Each	dynamically-loadable	encoding	is	represented	as	a	text	file.	The
initial	line	of	the	file,	beginning	with	a	“#”	symbol,	is	a	comment	that
provides	a	human-readable	description	of	the	file.	The	next	line
identifies	the	type	of	encoding	file.	It	can	be	one	of	the	following	letters:

[1]	S
A	single-byte	encoding,	where	one	character	is	always	one	byte
long	in	the	encoding.	An	example	is	iso8859-1,	used	by	many
European	languages.

[2]	D
A	double-byte	encoding,	where	one	character	is	always	two	bytes
long	in	the	encoding.	An	example	is	big5,	used	for	Chinese	text.

[3]	M
A	multi-byte	encoding,	where	one	character	may	be	either	one	or
two	bytes	long.	Certain	bytes	are	lead	bytes,	indicating	that	another
byte	must	follow	and	that	together	the	two	bytes	represent	one
character.	Other	bytes	are	not	lead	bytes	and	represent
themselves.	An	example	is	shiftjis,	used	by	many	Japanese
computers.

[4]	E
An	escape-sequence	encoding,	specifying	that	certain	sequences
of	bytes	do	not	represent	characters,	but	commands	that	describe
how	following	bytes	should	be	interpreted.

The	rest	of	the	lines	in	the	file	depend	on	the	type.

Cases	[1],	[2],	and	[3]	are	collectively	referred	to	as	table-based
encoding	files.	The	lines	in	a	table-based	encoding	file	are	in	the	same
format	as	this	example	taken	from	the	shiftjis	encoding	(this	is	not	the
complete	file):

#	Encoding	file:	shiftjis,	multi-byte

M

003F	0	40

00

0000000100020003000400050006000700080009000A000B000C000D000E000F

0010001100120013001400150016001700180019001A001B001C001D001E001F

0020002100220023002400250026002700280029002A002B002C002D002E002F

0030003100320033003400350036003700380039003A003B003C003D003E003F

0040004100420043004400450046004700480049004A004B004C004D004E004F

0050005100520053005400550056005700580059005A005B005C005D005E005F

0060006100620063006400650066006700680069006A006B006C006D006E006F

0070007100720073007400750076007700780079007A007B007C007D203E007F

008000

00

0000FF61FF62FF63FF64FF65FF66FF67FF68FF69FF6AFF6BFF6CFF6DFF6EFF6F

FF70FF71FF72FF73FF74FF75FF76FF77FF78FF79FF7AFF7BFF7CFF7DFF7EFF7F

FF80FF81FF82FF83FF84FF85FF86FF87FF88FF89FF8AFF8BFF8CFF8DFF8EFF8F

FF90FF91FF92FF93FF94FF95FF96FF97FF98FF99FF9AFF9BFF9CFF9DFF9EFF9F

00

00

81

00

00

00

00

300030013002FF0CFF0E30FBFF1AFF1BFF1FFF01309B309C00B4FF4000A8FF3E

FFE3FF3F30FD30FE309D309E30034EDD30053006300730FC20152010FF0F005C

301C2016FF5C2026202520182019201C201DFF08FF0930143015FF3BFF3DFF5B

FF5D30083009300A300B300C300D300E300F30103011FF0B221200B100D70000

00F7FF1D2260FF1CFF1E22662267221E22342642264000B0203220332103FFE5

FF0400A200A3FF05FF03FF06FF0AFF2000A72606260525CB25CF25CE25C725C6

25A125A025B325B225BD25BC203B301221922190219121933013000000000000

000000000000000000000000000000002208220B2286228722822283222A2229

000000000000000000000000000000002227222800AC21D221D4220022030000

00222022A52312220222072261

2252226A226B221A223D221D2235222B222C0000000000000000000000000000

212B2030266F266D266A2020202100B6000000000000000025EF000000000000

The	third	line	of	the	file	is	three	numbers.	The	first	number	is	the
fallback	character	(in	base	16)	to	use	when	converting	from	UTF-8	to
this	encoding.	The	second	number	is	a	1	if	this	file	represents	the
encoding	for	a	symbol	font,	or	0	otherwise.	The	last	number	(in	base
10)	is	how	many	pages	of	data	follow.

Subsequent	lines	in	the	example	above	are	pages	that	describe	how	to
map	from	the	encoding	into	2-byte	Unicode.	The	first	line	in	a	page
identifies	the	page	number.	Following	it	are	256	double-byte	numbers,
arranged	as	16	rows	of	16	numbers.	Given	a	character	in	the	encoding,
the	high	byte	of	that	character	is	used	to	select	which	page,	and	the	low
byte	of	that	character	is	used	as	an	index	to	select	one	of	the	double-
byte	numbers	in	that	page	-	the	value	obtained	being	the	corresponding
Unicode	character.	By	examination	of	the	example	above,	one	can	see
that	the	characters	0x7E	and	0x8163	in	shiftjis	map	to	203E	and	2026

in	Unicode,	respectively.

Following	the	first	page	will	be	all	the	other	pages,	each	in	the	same
format	as	the	first:	one	number	identifying	the	page	followed	by	256
double-byte	Unicode	characters.	If	a	character	in	the	encoding	maps	to
the	Unicode	character	0000,	it	means	that	the	character	does	not
actually	exist.	If	all	characters	on	a	page	would	map	to	0000,	that	page
can	be	omitted.

Case	[4]	is	the	escape-sequence	encoding	file.	The	lines	in	an	this	type
of	file	are	in	the	same	format	as	this	example	taken	from	the	iso2022-jp
encoding:

#	Encoding	file:	iso2022-jp,	escape-driven

E

init		{}

final		{}

iso8859-1	\x1b(B

jis0201		\x1b(J

jis0208		\x1b$@

jis0208		\x1b$B

jis0212		\x1b$(D

gb2312		\x1b$A

ksc5601		\x1b$(C

In	the	file,	the	first	column	represents	an	option	and	the	second	column
is	the	associated	value.	init	is	a	string	to	emit	or	expect	before	the	first
character	is	converted,	while	final	is	a	string	to	emit	or	expect	after	the
last	character.	All	other	options	are	names	of	table-based	encodings;
the	associated	value	is	the	escape-sequence	that	marks	that	encoding.
Tcl	syntax	is	used	for	the	values;	in	the	above	example,	for	instance,
“{}”	represents	the	empty	string	and	“\x1b”	represents	character	27.

When	Tcl_GetEncoding	encounters	an	encoding	name	that	has	not
been	loaded,	it	attempts	to	load	an	encoding	file	called	name.enc	from
the	encoding	subdirectory	of	each	directory	that	Tcl	searches	for	its

script	library.	If	the	encoding	file	exists,	but	is	malformed,	an	error
message	will	be	left	in	interp.

KEYWORDS

utf,	encoding,	convert

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1997-1998	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	TraceCmd

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_CommandTraceInfo,	Tcl_TraceCommand,
Tcl_UntraceCommand	-	monitor	renames	and	deletes	of	a
command

SYNOPSIS
#include	<tcl.h>
ClientData
Tcl_CommandTraceInfo(interp,	cmdName,	flags,	proc,
prevClientData)
int
Tcl_TraceCommand(interp,	cmdName,	flags,	proc,	clientData)
void
Tcl_UntraceCommand(interp,	cmdName,	flags,	proc,
clientData)

ARGUMENTS
DESCRIPTION

TCL_TRACE_RENAME
TCL_TRACE_DELETE

CALLING	COMMANDS	DURING	TRACES
MULTIPLE	TRACES
TCL_TRACE_DESTROYED	FLAG
TCL_INTERP_DESTROYED
BUGS
KEYWORDS

NAME

Tcl_CommandTraceInfo,	Tcl_TraceCommand,	Tcl_UntraceCommand	-
monitor	renames	and	deletes	of	a	command

SYNOPSIS

Tcl_Interp	*interp	(in)

const	char	*cmdName	(in)

int	flags	(in)

Tcl_CommandTraceProc	*proc	(in)

ClientData	clientData	(in)

ClientData	prevClientData	(in)

#include	<tcl.h>
ClientData
Tcl_CommandTraceInfo(interp,	cmdName,	flags,	proc,	prevClientData)
int
Tcl_TraceCommand(interp,	cmdName,	flags,	proc,	clientData)
void
Tcl_UntraceCommand(interp,	cmdName,	flags,	proc,	clientData)

ARGUMENTS

Interpreter	containing	the
command.

Name	of	command.

OR'ed	collection	of	the
values
TCL_TRACE_RENAME
and
TCL_TRACE_DELETE.

Procedure	to	call	when
specified	operations	occur
to	cmdName.

Arbitrary	argument	to	pass
to	proc.

If	non-NULL,	gives	last
value	returned	by
Tcl_CommandTraceInfo,
so	this	call	will	return
information	about	next
trace.	If	NULL,	this	call	will
return	information	about
first	trace.

DESCRIPTION

Tcl_TraceCommand	allows	a	C	procedure	to	monitor	operations
performed	on	a	Tcl	command,	so	that	the	C	procedure	is	invoked
whenever	the	command	is	renamed	or	deleted.	If	the	trace	is	created
successfully	then	Tcl_TraceCommand	returns	TCL_OK.	If	an	error
occurred	(e.g.	cmdName	specifies	a	non-existent	command)	then
TCL_ERROR	is	returned	and	an	error	message	is	left	in	the
interpreter's	result.

The	flags	argument	to	Tcl_TraceCommand	indicates	when	the	trace
procedure	is	to	be	invoked.	It	consists	of	an	OR'ed	combination	of	any
of	the	following	values:

TCL_TRACE_RENAME
Invoke	proc	whenever	the	command	is	renamed.

TCL_TRACE_DELETE
Invoke	proc	when	the	command	is	deleted.

Whenever	one	of	the	specified	operations	occurs	to	the	command,	proc
will	be	invoked.	It	should	have	arguments	and	result	that	match	the	type
Tcl_CommandTraceProc:

typedef	void	Tcl_CommandTraceProc(

								ClientData	clientData,

								Tcl_Interp	*interp,

								const	char	*oldName,

								const	char	*newName,

								int	flags);

The	clientData	and	interp	parameters	will	have	the	same	values	as
those	passed	to	Tcl_TraceCommand	when	the	trace	was	created.
ClientData	typically	points	to	an	application-specific	data	structure	that
describes	what	to	do	when	proc	is	invoked.	OldName	gives	the	name	of
the	command	being	renamed,	and	newName	gives	the	name	that	the

command	is	being	renamed	to	(or	an	empty	string	or	NULL	when	the
command	is	being	deleted.)	Flags	is	an	OR'ed	combination	of	bits
potentially	providing	several	pieces	of	information.	One	of	the	bits
TCL_TRACE_RENAME	and	TCL_TRACE_DELETE	will	be	set	in	flags
to	indicate	which	operation	is	being	performed	on	the	command.	The	bit
TCL_TRACE_DESTROYED	will	be	set	in	flags	if	the	trace	is	about	to
be	destroyed;	this	information	may	be	useful	to	proc	so	that	it	can	clean
up	its	own	internal	data	structures	(see	the	section
TCL_TRACE_DESTROYED	below	for	more	details).	Lastly,	the	bit
TCL_INTERP_DESTROYED	will	be	set	if	the	entire	interpreter	is	being
destroyed.	When	this	bit	is	set,	proc	must	be	especially	careful	in	the
things	it	does	(see	the	section	TCL_INTERP_DESTROYED	below).

Tcl_UntraceCommand	may	be	used	to	remove	a	trace.	If	the
command	specified	by	interp,	cmdName,	and	flags	has	a	trace	set	with
flags,	proc,	and	clientData,	then	the	corresponding	trace	is	removed.	If
no	such	trace	exists,	then	the	call	to	Tcl_UntraceCommand	has	no
effect.	The	same	bits	are	valid	for	flags	as	for	calls	to
Tcl_TraceCommand.

Tcl_CommandTraceInfo	may	be	used	to	retrieve	information	about
traces	set	on	a	given	command.	The	return	value	from
Tcl_CommandTraceInfo	is	the	clientData	associated	with	a	particular
trace.	The	trace	must	be	on	the	command	specified	by	the	interp,
cmdName,	and	flags	arguments	(note	that	currently	the	flags	are
ignored;	flags	should	be	set	to	0	for	future	compatibility)	and	its	trace
procedure	must	the	same	as	the	proc	argument.	If	the	prevClientData
argument	is	NULL	then	the	return	value	corresponds	to	the	first	(most
recently	created)	matching	trace,	or	NULL	if	there	are	no	matching
traces.	If	the	prevClientData	argument	is	not	NULL,	then	it	should	be
the	return	value	from	a	previous	call	to	Tcl_CommandTraceInfo.	In	this
case,	the	new	return	value	will	correspond	to	the	next	matching	trace
after	the	one	whose	clientData	matches	prevClientData,	or	NULL	if	no
trace	matches	prevClientData	or	if	there	are	no	more	matching	traces
after	it.	This	mechanism	makes	it	possible	to	step	through	all	of	the
traces	for	a	given	command	that	have	the	same	proc.

CALLING	COMMANDS	DURING	TRACES

During	rename	traces,	the	command	being	renamed	is	visible	with	both
names	simultaneously,	and	the	command	still	exists	during	delete
traces	(if	TCL_INTERP_DESTROYED	is	not	set).	However,	there	is	no
mechanism	for	signaling	that	an	error	occurred	in	a	trace	procedure,	so
great	care	should	be	taken	that	errors	do	not	get	silently	lost.

MULTIPLE	TRACES

It	is	possible	for	multiple	traces	to	exist	on	the	same	command.	When
this	happens,	all	of	the	trace	procedures	will	be	invoked	on	each
access,	in	order	from	most-recently-created	to	least-recently-created.
Attempts	to	delete	the	command	during	a	delete	trace	will	fail	silently,
since	the	command	is	already	scheduled	for	deletion	anyway.	If	the
command	being	renamed	is	renamed	by	one	of	its	rename	traces,	that
renaming	takes	precedence	over	the	one	that	triggered	the	trace	and
the	collection	of	traces	will	not	be	reexecuted;	if	several	traces	rename
the	command,	the	last	renaming	takes	precedence.

TCL_TRACE_DESTROYED	FLAG

In	a	delete	callback	to	proc,	the	TCL_TRACE_DESTROYED	bit	is	set	in
flags.

TCL_INTERP_DESTROYED

When	an	interpreter	is	destroyed,	unset	traces	are	called	for	all	of	its
commands.	The	TCL_INTERP_DESTROYED	bit	will	be	set	in	the	flags
argument	passed	to	the	trace	procedures.	Trace	procedures	must	be
extremely	careful	in	what	they	do	if	the	TCL_INTERP_DESTROYED	bit
is	set.	It	is	not	safe	for	the	procedures	to	invoke	any	Tcl	procedures	on
the	interpreter,	since	its	state	is	partially	deleted.	All	that	trace
procedures	should	do	under	these	circumstances	is	to	clean	up	and
free	their	own	internal	data	structures.

BUGS

Tcl	does	not	do	any	error	checking	to	prevent	trace	procedures	from
misusing	the	interpreter	during	traces	with	TCL_INTERP_DESTROYED
set.

KEYWORDS

clientData,	trace,	command

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	2002	Donal	K.	Fellows

int	argc	(in)

const	char	*const	argv[]	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	Concat

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tcl_Concat	-	concatenate	a	collection	of	strings

SYNOPSIS

#include	<tcl.h>
const	char	*
Tcl_Concat(argc,	argv)

ARGUMENTS

Number	of	strings.

Array	of	strings	to
concatenate.	Must	have
argc	entries.

DESCRIPTION

Tcl_Concat	is	a	utility	procedure	used	by	several	of	the	Tcl	commands.
Given	a	collection	of	strings,	it	concatenates	them	together	into	a	single
string,	with	the	original	strings	separated	by	spaces.	This	procedure
behaves	differently	than	Tcl_Merge,	in	that	the	arguments	are	simply
concatenated:	no	effort	is	made	to	ensure	proper	list	structure.
However,	in	most	common	usage	the	arguments	will	all	be	proper	lists
themselves;	if	this	is	true,	then	the	result	will	also	have	proper	list
structure.

Tcl_Concat	eliminates	leading	and	trailing	white	space	as	it	copies
strings	from	argv	to	the	result.	If	an	element	of	argv	consists	of	nothing

but	white	space,	then	that	string	is	ignored	entirely.	This	white-space
removal	was	added	to	make	the	output	of	the	concat	command
cleaner-looking.

The	result	string	is	dynamically	allocated	using	Tcl_Alloc;	the	caller
must	eventually	release	the	space	by	calling	Tcl_Free.

SEE	ALSO

Tcl_ConcatObj

KEYWORDS

concatenate,	strings

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1989-1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	DoubleObj

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_NewDoubleObj,	Tcl_SetDoubleObj,
Tcl_GetDoubleFromObj	-	manipulate	Tcl	objects	as	floating-
point	values

SYNOPSIS
#include	<tcl.h>
Tcl_Obj	*
Tcl_NewDoubleObj(doubleValue)
Tcl_SetDoubleObj(objPtr,	doubleValue)
int
Tcl_GetDoubleFromObj(interp,	objPtr,	doublePtr)

ARGUMENTS
DESCRIPTION
SEE	ALSO
KEYWORDS

NAME

Tcl_NewDoubleObj,	Tcl_SetDoubleObj,	Tcl_GetDoubleFromObj	-
manipulate	Tcl	objects	as	floating-point	values

SYNOPSIS

#include	<tcl.h>
Tcl_Obj	*
Tcl_NewDoubleObj(doubleValue)
Tcl_SetDoubleObj(objPtr,	doubleValue)
int
Tcl_GetDoubleFromObj(interp,	objPtr,	doublePtr)

ARGUMENTS

double	doubleValue	(in)

Tcl_Obj	*objPtr	(in/out)

Tcl_Interp	*interp	(in/out)

double	*doublePtr	(out)

A	double-precision
floating-point	value	used
to	initialize	or	set	a	Tcl
object.

For	Tcl_SetDoubleObj,
this	points	to	the	object	in
which	to	store	a	double
value.	For
Tcl_GetDoubleFromObj,
this	refers	to	the	object
from	which	to	retrieve	a
double	value.

When	non-NULL,	an	error
message	is	left	here	when
double	value	retrieval	fails.

Points	to	place	to	store	the
double	value	obtained
from	objPtr.

DESCRIPTION

These	procedures	are	used	to	create,	modify,	and	read	Tcl	objects	that
hold	double-precision	floating-point	values.

Tcl_NewDoubleObj	creates	and	returns	a	new	Tcl	object	initialized	to
the	double	value	doubleValue.	The	returned	Tcl	object	is	unshared.

Tcl_SetDoubleObj	sets	the	value	of	an	existing	Tcl	object	pointed	to	by
objPtr	to	the	double	value	doubleValue.	The	objPtr	argument	must	point
to	an	unshared	Tcl	object.	Any	attempt	to	set	the	value	of	a	shared	Tcl
object	violates	Tcl's	copy-on-write	policy.	Any	existing	string
representation	or	internal	representation	in	the	unshared	Tcl	object	will
be	freed	as	a	consequence	of	setting	the	new	value.

Tcl_GetDoubleFromObj	attempts	to	retreive	a	double	value	from	the
Tcl	object	objPtr.	If	the	attempt	succeeds,	then	TCL_OK	is	returned,
and	the	double	value	is	written	to	the	storage	pointed	to	by	doublePtr.	If
the	attempt	fails,	then	TCL_ERROR	is	returned,	and	if	interp	is	non-
NULL,	an	error	message	is	left	in	interp.	The	Tcl_ObjType	of	objPtr
may	be	changed	to	make	subsequent	calls	to	Tcl_GetDoubleFromObj
more	efficient.

SEE	ALSO

Tcl_NewObj,	Tcl_DecrRefCount,	Tcl_IncrRefCount,
Tcl_GetObjResult

KEYWORDS

double,	double	object,	double	type,	internal	representation,	object,
object	type,	string	representation

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1996-1997	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	Thread

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_ConditionNotify,	Tcl_ConditionWait,	Tcl_ConditionFinalize,
Tcl_GetThreadData,	Tcl_MutexLock,	Tcl_MutexUnlock,
Tcl_MutexFinalize,	Tcl_CreateThread,	Tcl_JoinThread	-	Tcl
thread	support

SYNOPSIS
#include	<tcl.h>
void
Tcl_ConditionNotify(condPtr)
void
Tcl_ConditionWait(condPtr,	mutexPtr,	timePtr)
void
Tcl_ConditionFinalize(condPtr)
Void	*
Tcl_GetThreadData(keyPtr,	size)
void
Tcl_MutexLock(mutexPtr)
void
Tcl_MutexUnlock(mutexPtr)
void
Tcl_MutexFinalize(mutexPtr)
int
Tcl_CreateThread(idPtr,	threadProc,	clientData,	stackSize,
flags)
int
Tcl_JoinThread(id,	result)

ARGUMENTS
INTRODUCTION
DESCRIPTION
SYNCHRONIZATION	AND	COMMUNICATION
INITIALIZATION

Tcl_Condition	*condPtr	(in)

SCRIPT-LEVEL	ACCESS	TO	THREADS
SEE	ALSO
KEYWORDS

NAME

Tcl_ConditionNotify,	Tcl_ConditionWait,	Tcl_ConditionFinalize,
Tcl_GetThreadData,	Tcl_MutexLock,	Tcl_MutexUnlock,
Tcl_MutexFinalize,	Tcl_CreateThread,	Tcl_JoinThread	-	Tcl	thread
support

SYNOPSIS

#include	<tcl.h>
void
Tcl_ConditionNotify(condPtr)
void
Tcl_ConditionWait(condPtr,	mutexPtr,	timePtr)
void
Tcl_ConditionFinalize(condPtr)
Void	*
Tcl_GetThreadData(keyPtr,	size)
void
Tcl_MutexLock(mutexPtr)
void
Tcl_MutexUnlock(mutexPtr)
void
Tcl_MutexFinalize(mutexPtr)
int
Tcl_CreateThread(idPtr,	threadProc,	clientData,	stackSize,	flags)
int
Tcl_JoinThread(id,	result)

ARGUMENTS

A	condition	variable,	which
must	be	associated	with	a
mutex	lock.

Tcl_Mutex	*mutexPtr	(in)

Tcl_Time	*timePtr	(in)

Tcl_ThreadDataKey	*keyPtr	(in)

int	*size	(in)

Tcl_ThreadId	*idPtr	(out)

Tcl_ThreadId	id	(in)

Tcl_ThreadCreateProc	threadProc	(in)

A	mutex	lock.

A	time	limit	on	the
condition	wait.	NULL	to
wait	forever.	Note	that	a
polling	value	of	0	seconds
does	not	make	much
sense.

This	identifies	a	block	of
thread	local	storage.	The
key	should	be	static	and
process-wide,	yet	each
thread	will	end	up
associating	a	different
block	of	storage	with	this
key.

The	size	of	the	thread
local	storage	block.	This
amount	of	data	is	allocated
and	initialized	to	zero	the
first	time	each	thread	calls
Tcl_GetThreadData.

The	referred	storage	will
contain	the	id	of	the	newly
created	thread	as	returned
by	the	operating	system.

Id	of	the	thread	waited
upon.

This	procedure	will	act	as
the	main()	of	the	newly
created	thread.	The
specified	clientData	will	be

ClientData	clientData	(in)

int	stackSize	(in)

int	flags	(in)

int	*result	(out)

its	sole	argument.

Arbitrary	information.
Passed	as	sole	argument
to	the	threadProc.

The	size	of	the	stack	given
to	the	new	thread.

Bitmask	containing	flags
allowing	the	caller	to
modify	behaviour	of	the
new	thread.

The	referred	storage	is
used	to	place	the	exit	code
of	the	thread	waited	upon
into	it.

INTRODUCTION

Beginning	with	the	8.1	release,	the	Tcl	core	is	thread	safe,	which	allows
you	to	incorporate	Tcl	into	multithreaded	applications	without
customizing	the	Tcl	core.	To	enable	Tcl	multithreading	support,	you	must
include	the	--enable-threads	option	to	configure	when	you	configure
and	compile	your	Tcl	core.

An	important	constraint	of	the	Tcl	threads	implementation	is	that	only
the	thread	that	created	a	Tcl	interpreter	can	use	that	interpreter.	In	other
words,	multiple	threads	can	not	access	the	same	Tcl	interpreter.
(However,	a	single	thread	can	safely	create	and	use	multiple
interpreters.)

DESCRIPTION

Tcl	provides	Tcl_CreateThread	for	creating	threads.	The	caller	can
determine	the	size	of	the	stack	given	to	the	new	thread	and	modify	the

behaviour	through	the	supplied	flags.	The	value
TCL_THREAD_STACK_DEFAULT	for	the	stackSize	indicates	that	the
default	size	as	specified	by	the	operating	system	is	to	be	used	for	the
new	thread.	As	for	the	flags,	currently	only	the	values
TCL_THREAD_NOFLAGS	and	TCL_THREAD_JOINABLE	are
defined.	The	first	of	them	invokes	the	default	behaviour	with	no
specialties.	Using	the	second	value	marks	the	new	thread	as	joinable.
This	means	that	another	thread	can	wait	for	the	such	marked	thread	to
exit	and	join	it.

Restrictions:	On	some	UNIX	systems	the	pthread-library	does	not
contain	the	functionality	to	specify	the	stack	size	of	a	thread.	The
specified	value	for	the	stack	size	is	ignored	on	these	systems.	Windows
currently	does	not	support	joinable	threads.	This	flag	value	is	therefore
ignored	on	this	platform.

Tcl	provides	the	Tcl_ExitThread	and	Tcl_FinalizeThread	functions	for
terminating	threads	and	invoking	optional	per-thread	exit	handlers.	See
the	Tcl_Exit	page	for	more	information	on	these	procedures.

The	Tcl_JoinThread	function	is	provided	to	allow	threads	to	wait	upon
the	exit	of	another	thread,	which	must	have	been	marked	as	joinable
through	usage	of	the	TCL_THREAD_JOINABLE-flag	during	its	creation
via	Tcl_CreateThread.

Trying	to	wait	for	the	exit	of	a	non-joinable	thread	or	a	thread	which	is
already	waited	upon	will	result	in	an	error.	Waiting	for	a	joinable	thread
which	already	exited	is	possible,	the	system	will	retain	the	necessary
information	until	after	the	call	to	Tcl_JoinThread.	This	means	that	not
calling	Tcl_JoinThread	for	a	joinable	thread	will	cause	a	memory	leak.

The	Tcl_GetThreadData	call	returns	a	pointer	to	a	block	of	thread-
private	data.	Its	argument	is	a	key	that	is	shared	by	all	threads	and	a
size	for	the	block	of	storage.	The	storage	is	automatically	allocated	and
initialized	to	all	zeros	the	first	time	each	thread	asks	for	it.	The	storage
is	automatically	deallocated	by	Tcl_FinalizeThread.

SYNCHRONIZATION	AND	COMMUNICATION

Tcl	provides	Tcl_ThreadQueueEvent	and	Tcl_ThreadAlert	for	handling
event	queuing	in	multithreaded	applications.	See	the	Notifier	manual
page	for	more	information	on	these	procedures.

A	mutex	is	a	lock	that	is	used	to	serialize	all	threads	through	a	piece	of
code	by	calling	Tcl_MutexLock	and	Tcl_MutexUnlock.	If	one	thread
holds	a	mutex,	any	other	thread	calling	Tcl_MutexLock	will	block	until
Tcl_MutexUnlock	is	called.	A	mutex	can	be	destroyed	after	its	use	by
calling	Tcl_MutexFinalize.	The	result	of	locking	a	mutex	twice	from	the
same	thread	is	undefined.	On	some	platforms	it	will	result	in	a	deadlock.
The	Tcl_MutexLock,	Tcl_MutexUnlock	and	Tcl_MutexFinalize
procedures	are	defined	as	empty	macros	if	not	compiling	with	threads
enabled.	For	declaration	of	mutexes	the	TCL_DECLARE_MUTEX
macro	should	be	used.	This	macro	assures	correct	mutex	handling
even	when	the	core	is	compiled	without	threads	enabled.

A	condition	variable	is	used	as	a	signaling	mechanism:	a	thread	can
lock	a	mutex	and	then	wait	on	a	condition	variable	with
Tcl_ConditionWait.	This	atomically	releases	the	mutex	lock	and	blocks
the	waiting	thread	until	another	thread	calls	Tcl_ConditionNotify.	The
caller	of	Tcl_ConditionNotify	should	have	the	associated	mutex	held
by	previously	calling	Tcl_MutexLock,	but	this	is	not	enforced.	Notifying
the	condition	variable	unblocks	all	threads	waiting	on	the	condition
variable,	but	they	do	not	proceed	until	the	mutex	is	released	with
Tcl_MutexUnlock.	The	implementation	of	Tcl_ConditionWait
automatically	locks	the	mutex	before	returning.

The	caller	of	Tcl_ConditionWait	should	be	prepared	for	spurious
notifications	by	calling	Tcl_ConditionWait	within	a	while	loop	that	tests
some	invariant.

A	condition	variable	can	be	destroyed	after	its	use	by	calling
Tcl_ConditionFinalize.

The	Tcl_ConditionNotify,	Tcl_ConditionWait	and
Tcl_ConditionFinalize	procedures	are	defined	as	empty	macros	if	not
compiling	with	threads	enabled.

INITIALIZATION

All	of	these	synchronization	objects	are	self-initializing.	They	are
implemented	as	opaque	pointers	that	should	be	NULL	upon	first	use.
The	mutexes	and	condition	variables	are	either	cleaned	up	by	process
exit	handlers	(if	living	that	long)	or	explicitly	by	calls	to
Tcl_MutexFinalize	or	Tcl_ConditionFinalize.	Thread	local	storage	is
reclaimed	during	Tcl_FinalizeThread.

SCRIPT-LEVEL	ACCESS	TO	THREADS

Tcl	provides	no	built-in	commands	for	scripts	to	use	to	create,	manage,
or	join	threads,	nor	any	script-level	access	to	mutex	or	condition
variables.	It	provides	such	facilities	only	via	C	interfaces,	and	leaves	it
up	to	packages	to	expose	these	matters	to	the	script	level.	One	such
package	is	the	Thread	package.

SEE	ALSO

Tcl_GetCurrentThread,	Tcl_ThreadQueueEvent,	Tcl_ThreadAlert,
Tcl_ExitThread,	Tcl_FinalizeThread,	Tcl_CreateThreadExitHandler,
Tcl_DeleteThreadExitHandler,	Thread

KEYWORDS

thread,	mutex,	condition	variable,	thread	local	storage

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1999	Scriptics	Corporation
Copyright	©	1998	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	Ensemble

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_CreateEnsemble,	Tcl_FindEnsemble,
Tcl_GetEnsembleFlags,	Tcl_GetEnsembleMappingDict,
Tcl_GetEnsembleNamespace,
Tcl_GetEnsembleUnknownHandler,
Tcl_GetEnsembleSubcommandList,	Tcl_IsEnsemble,
Tcl_SetEnsembleFlags,	Tcl_SetEnsembleMappingDict,
Tcl_SetEnsembleSubcommandList,
Tcl_SetEnsembleUnknownHandler	-	manipulate	ensemble
commands

SYNOPSIS
#include	<tcl.h>
Tcl_Command
Tcl_CreateEnsemble(interp,	name,	namespacePtr,	ensFlags)
Tcl_Command
Tcl_FindEnsemble(interp,	cmdNameObj,	flags)
int
Tcl_IsEnsemble(token)
int
Tcl_GetEnsembleFlags(interp,	token,	ensFlagsPtr)
int
Tcl_SetEnsembleFlags(interp,	token,	ensFlags)
int
Tcl_GetEnsembleMappingDict(interp,	token,	dictObjPtr)
int
Tcl_SetEnsembleMappingDict(interp,	token,	dictObj)
int
Tcl_GetEnsembleSubcommandList(interp,	token,	listObjPtr)
int
Tcl_SetEnsembleSubcommandList(interp,	token,	listObj)
int

Tcl_GetEnsembleUnknownHandler(interp,	token,	listObjPtr)
int
Tcl_SetEnsembleUnknownHandler(interp,	token,	listObj)
int
Tcl_GetEnsembleNamespace(interp,	token,
namespacePtrPtr)

ARGUMENTS
DESCRIPTION
ENSEMBLE	PROPERTIES

flags	(read-write)
mapping	dictionary	(read-write)
subcommand	list	(read-write)
unknown	subcommand	handler	command	prefix	(read-
write)
bound	namespace	(read-only)

SEE	ALSO

NAME

Tcl_CreateEnsemble,	Tcl_FindEnsemble,	Tcl_GetEnsembleFlags,
Tcl_GetEnsembleMappingDict,	Tcl_GetEnsembleNamespace,
Tcl_GetEnsembleUnknownHandler,	Tcl_GetEnsembleSubcommandList,
Tcl_IsEnsemble,	Tcl_SetEnsembleFlags,	Tcl_SetEnsembleMappingDict,
Tcl_SetEnsembleSubcommandList,	Tcl_SetEnsembleUnknownHandler
-	manipulate	ensemble	commands

SYNOPSIS

#include	<tcl.h>
Tcl_Command
Tcl_CreateEnsemble(interp,	name,	namespacePtr,	ensFlags)
Tcl_Command
Tcl_FindEnsemble(interp,	cmdNameObj,	flags)
int
Tcl_IsEnsemble(token)
int
Tcl_GetEnsembleFlags(interp,	token,	ensFlagsPtr)
int

Tcl_Interp	*interp	(in/out)

const	char	*name	(in)

Tcl_Namespace	*namespacePtr	(in)

Tcl_SetEnsembleFlags(interp,	token,	ensFlags)
int
Tcl_GetEnsembleMappingDict(interp,	token,	dictObjPtr)
int
Tcl_SetEnsembleMappingDict(interp,	token,	dictObj)
int
Tcl_GetEnsembleSubcommandList(interp,	token,	listObjPtr)
int
Tcl_SetEnsembleSubcommandList(interp,	token,	listObj)
int
Tcl_GetEnsembleUnknownHandler(interp,	token,	listObjPtr)
int
Tcl_SetEnsembleUnknownHandler(interp,	token,	listObj)
int
Tcl_GetEnsembleNamespace(interp,	token,	namespacePtrPtr)

ARGUMENTS

The	interpreter	in	which
the	ensemble	is	to	be
created	or	found.	Also
where	error	result
messages	are	written.	The
functions	whose	names
start	with
Tcl_GetEnsemble	may
have	a	NULL	for	the	interp,
but	all	other	functions	must
not.

The	name	of	the	ensemble
command	to	be	created.

The	namespace	to	which
the	ensemble	command	is
to	be	bound,	or	NULL	for
the	current	namespace.

int	ensFlags	(in)

Tcl_Obj	*cmdNameObj	(in)

int	flags	(in)

Tcl_Command	token	(in)

int	*ensFlagsPtr	(out)

An	ORed	set	of	flag	bits
describing	the	basic
configuration	of	the
ensemble.	Currently	only
one	bit	has	meaning,
TCL_ENSEMBLE_PREFIX,
which	is	present	when	the
ensemble	command
should	also	match
unambiguous	prefixes	of
subcommands.

A	value	holding	the	name
of	the	ensemble	command
to	look	up.

An	ORed	set	of	flag	bits
controlling	the	behavior	of
Tcl_FindEnsemble.
Currently	only
TCL_LEAVE_ERR_MSG	is
supported.

A	normal	command	token
that	refers	to	an	ensemble
command,	or	which	you
wish	to	use	for	testing	as
an	ensemble	command	in
Tcl_IsEnsemble.

Pointer	to	a	variable	into
which	to	write	the	current
ensemble	flag	bits;
currently	only	the	bit
TCL_ENSEMBLE_PREFIX
is	defined.

Tcl_Obj	*dictObj	(in)

Tcl_Obj	**dictObjPtr	(out)

Tcl_Obj	*listObj	(in)

Tcl_Obj	**listObjPtr	(out)

Tcl_Namespace	**namespacePtrPtr	(out)

A	dictionary	value	to	use
for	the	subcommand	to
implementation	command
prefix	mapping	dictionary
in	the	ensemble.	May	be
NULL	if	the	mapping
dictionary	is	to	be
removed.

Pointer	to	a	variable	into
which	to	write	the	current
ensemble	mapping
dictionary.

A	list	value	to	use	for	the
defined	list	of
subcommands	in	the
dictionary	or	the	unknown
subcommmand	handler
command	prefix.	May	be
NULL	if	the	subcommand
list	or	unknown	handler	are
to	be	removed.

Pointer	to	a	variable	into
which	to	write	the	current
defiend	list	of
subcommands	or	the
current	unknown	handler
prefix.

Pointer	to	a	variable	into
which	to	write	the	handle
of	the	namespace	to	which
the	ensemble	is	bound.

DESCRIPTION

An	ensemble	is	a	command,	bound	to	some	namespace,	which
consists	of	a	collection	of	subcommands	implemented	by	other	Tcl
commands.	The	first	argument	to	the	ensemble	command	is	always
interpreted	as	a	selector	that	states	what	subcommand	to	execute.

Ensembles	are	created	using	Tcl_CreateEnsemble,	which	takes	four
arguments:	the	interpreter	to	work	within,	the	name	of	the	ensemble	to
create,	the	namespace	within	the	interpreter	to	bind	the	ensemble	to,
and	the	default	set	of	ensemble	flags.	The	result	of	the	function	is	the
command	token	for	the	ensemble,	which	may	be	used	to	further
configure	the	ensemble	using	the	API	descibed	below	in	ENSEMBLE
PROPERTIES.

Given	the	name	of	an	ensemble	command,	the	token	for	that	command
may	be	retrieved	using	Tcl_FindEnsemble.	If	the	given	command
name	(in	cmdNameObj)	does	not	refer	to	an	ensemble	command,	the
result	of	the	function	is	NULL	and	(if	the	TCL_LEAVE_ERR_MSG	bit	is
set	in	flags)	an	error	message	is	left	in	the	interpreter	result.

A	command	token	may	be	checked	to	see	if	it	refers	to	an	ensemble
using	Tcl_IsEnsemble.	This	returns	1	if	the	token	refers	to	an
ensemble,	or	0	otherwise.

ENSEMBLE	PROPERTIES

Every	ensemble	has	four	read-write	properties	and	a	read-only
property.	The	properties	are:

flags	(read-write)
The	set	of	flags	for	the	ensemble,	expressed	as	a	bit-field.
Currently,	the	only	public	flag	is	TCL_ENSEMBLE_PREFIX	which
is	set	when	unambiguous	prefixes	of	subcommands	are	permitted
to	be	resolved	to	implementations	as	well	as	exact	matches.	The
flags	may	be	read	and	written	using	Tcl_GetEnsembleFlags	and
Tcl_SetEnsembleFlags	respectively.	The	result	of	both	of	those
functions	is	a	Tcl	result	code	(TCL_OK,	or	TCL_ERROR	if	the	token

does	not	refer	to	an	ensemble).

mapping	dictionary	(read-write)
A	dictionary	containing	a	mapping	from	subcommand	names	to	lists
of	words	to	use	as	a	command	prefix	(replacing	the	first	two	words
of	the	command	which	are	the	ensemble	command	itself	and	the
subcommand	name),	or	NULL	if	every	subcommand	is	to	be
mapped	to	the	command	with	the	same	unqualified	name	in	the
ensemble's	bound	namespace.	Defaults	to	NULL.	May	be	read	and
written	using	Tcl_GetEnsembleMappingDict	and
Tcl_SetEnsembleMappingDict	respectively.	The	result	of	both	of
those	functions	is	a	Tcl	result	code	(TCL_OK,	or	TCL_ERROR	if	the
token	does	not	refer	to	an	ensemble)	and	the	dictionary	obtained
from	Tcl_GetEnsembleMappingDict	should	always	be	treated	as
immutable	even	if	it	is	unshared.

subcommand	list	(read-write)
A	list	of	all	the	subcommand	names	for	the	ensemble,	or	NULL	if
this	is	to	be	derived	from	either	the	keys	of	the	mapping	dictionary
(see	above)	or	(if	that	is	also	NULL)	from	the	set	of	commands
exported	by	the	bound	namespace.	May	be	read	and	written	using
Tcl_GetEnsembleSubcommandList	and
Tcl_SetEnsembleSubcommandList	respectively.	The	result	of
both	of	those	functions	is	a	Tcl	result	code	(TCL_OK,	or
TCL_ERROR	if	the	token	does	not	refer	to	an	ensemble)	and	the
list	obtained	from	Tcl_GetEnsembleSubcommandList	should
alays	be	treated	as	immutable	even	if	it	is	unshared.

unknown	subcommand	handler	command	prefix	(read-write)
A	list	of	words	to	prepend	on	the	front	of	any	subcommand	when
the	subcommand	is	unknown	to	the	ensemble	(according	to	the
current	prefix	handling	rule);	see	the	namespace	ensemble
command	for	more	details.	If	NULL,	the	default	behavior	-	generate
a	suitable	error	message	-	will	be	used	when	an	unknown
subcommand	is	encountered.	May	be	read	and	written	using
Tcl_GetEnsembleUnknownHandler	and
Tcl_SetEnsembleUnknownHandler	respectively.	The	result	of
both	functions	is	a	Tcl	result	code	(TCL_OK,	or	TCL_ERROR	if	the

token	does	not	refer	to	an	ensemble)	and	the	list	obtained	from
Tcl_GetEnsembleUnknownHandler	should	always	be	treated	as
immutable	even	if	it	is	unshared.

bound	namespace	(read-only)
The	namespace	to	which	the	ensemble	is	bound;	when	the
namespace	is	deleted,	so	too	will	the	ensemble,	and	this
namespace	is	also	the	namespace	whose	list	of	exported
commands	is	used	if	both	the	mapping	dictionary	and	the
subcommand	list	properties	are	NULL.	May	be	read	using
Tcl_GetEnsembleNamespace	which	returns	a	Tcl	result	code
(TCL_OK,	or	TCL_ERROR	if	the	token	does	not	refer	to	an
ensemble).

SEE	ALSO

namespace,	Tcl_DeleteCommandFromToken

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	2005	Donal	K.	Fellows

Tcl_Channel	channel	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	CrtChnlHdlr

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_CreateChannelHandler,	Tcl_DeleteChannelHandler	-	call	a
procedure	when	a	channel	becomes	readable	or	writable

SYNOPSIS
#include	<tcl.h>
void
Tcl_CreateChannelHandler(channel,	mask,	proc,	clientData)
void
Tcl_DeleteChannelHandler(channel,	proc,	clientData)

ARGUMENTS
DESCRIPTION
SEE	ALSO
KEYWORDS

NAME

Tcl_CreateChannelHandler,	Tcl_DeleteChannelHandler	-	call	a
procedure	when	a	channel	becomes	readable	or	writable

SYNOPSIS

#include	<tcl.h>
void
Tcl_CreateChannelHandler(channel,	mask,	proc,	clientData)
void
Tcl_DeleteChannelHandler(channel,	proc,	clientData)

ARGUMENTS

Tcl	channel	such	as
returned	by
Tcl_CreateChannel.

int	mask	(in)

Tcl_FileProc	*proc	(in)

ClientData	clientData	(in)

Conditions	under	which
proc	should	be	called:	OR-
ed	combination	of
TCL_READABLE,
TCL_WRITABLE	and
TCL_EXCEPTION.
Specify	a	zero	value	to
temporarily	disable	an
existing	handler.

Procedure	to	invoke
whenever	the	channel
indicated	by	channel
meets	the	conditions
specified	by	mask.

Arbitrary	one-word	value
to	pass	to	proc.

DESCRIPTION

Tcl_CreateChannelHandler	arranges	for	proc	to	be	called	in	the	future
whenever	input	or	output	becomes	possible	on	the	channel	identified	by
channel,	or	whenever	an	exceptional	condition	exists	for	channel.	The
conditions	of	interest	under	which	proc	will	be	invoked	are	specified	by
the	mask	argument.	See	the	manual	entry	for	fileevent	for	a	precise
description	of	what	it	means	for	a	channel	to	be	readable	or	writable.
Proc	must	conform	to	the	following	prototype:

typedef	void	Tcl_ChannelProc(

								ClientData	clientData,

								int	mask);

The	clientData	argument	is	the	same	as	the	value	passed	to
Tcl_CreateChannelHandler	when	the	handler	was	created.	Typically,

clientData	points	to	a	data	structure	containing	application-specific
information	about	the	channel.	Mask	is	an	integer	mask	indicating	which
of	the	requested	conditions	actually	exists	for	the	channel;	it	will	contain
a	subset	of	the	bits	from	the	mask	argument	to
Tcl_CreateChannelHandler	when	the	handler	was	created.

Each	channel	handler	is	identified	by	a	unique	combination	of	channel,
proc	and	clientData.	There	may	be	many	handlers	for	a	given	channel
as	long	as	they	do	not	have	the	same	channel,	proc,	and	clientData.	If
Tcl_CreateChannelHandler	is	invoked	when	there	is	already	a	handler
for	channel,	proc,	and	clientData,	then	no	new	handler	is	created;
instead,	the	mask	is	changed	for	the	existing	handler.

Tcl_DeleteChannelHandler	deletes	a	channel	handler	identified	by
channel,	proc	and	clientData;	if	no	such	handler	exists,	the	call	has	no
effect.

Channel	handlers	are	invoked	via	the	Tcl	event	mechanism,	so	they	are
only	useful	in	applications	that	are	event-driven.	Note	also	that	the
conditions	specified	in	the	mask	argument	to	proc	may	no	longer	exist
when	proc	is	invoked:	for	example,	if	there	are	two	handlers	for
TCL_READABLE	on	the	same	channel,	the	first	handler	could
consume	all	of	the	available	input	so	that	the	channel	is	no	longer
readable	when	the	second	handler	is	invoked.	For	this	reason	it	may	be
useful	to	use	nonblocking	I/O	on	channels	for	which	there	are	event
handlers.

SEE	ALSO

Notifier,	Tcl_CreateChannel,	Tcl_OpenFileChannel,	vwait(n).

KEYWORDS

blocking,	callback,	channel,	events,	handler,	nonblocking.

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1996	Sun	Microsystems,	Inc.

Tcl_Channel	channel	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	CrtCloseHdlr

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_CreateCloseHandler,	Tcl_DeleteCloseHandler	-	arrange	for
callbacks	when	channels	are	closed

SYNOPSIS
#include	<tcl.h>
void
Tcl_CreateCloseHandler(channel,	proc,	clientData)
void
Tcl_DeleteCloseHandler(channel,	proc,	clientData)

ARGUMENTS
DESCRIPTION
SEE	ALSO
KEYWORDS

NAME

Tcl_CreateCloseHandler,	Tcl_DeleteCloseHandler	-	arrange	for
callbacks	when	channels	are	closed

SYNOPSIS

#include	<tcl.h>
void
Tcl_CreateCloseHandler(channel,	proc,	clientData)
void
Tcl_DeleteCloseHandler(channel,	proc,	clientData)

ARGUMENTS

The	channel	for	which	to
create	or	delete	a	close
callback.

Tcl_CloseProc	*proc	(in)

ClientData	clientData	(in)

The	procedure	to	call	as
the	callback.

Arbitrary	one-word	value
to	pass	to	proc.

DESCRIPTION

Tcl_CreateCloseHandler	arranges	for	proc	to	be	called	when	channel
is	closed	with	Tcl_Close	or	Tcl_UnregisterChannel,	or	using	the	Tcl
close	command.	Proc	should	match	the	following	prototype:

typedef	void	Tcl_CloseProc(

								ClientData	clientData);

The	clientData	is	the	same	as	the	value	provided	in	the	call	to
Tcl_CreateCloseHandler.

Tcl_DeleteCloseHandler	removes	a	close	callback	for	channel.	The
proc	and	clientData	identify	which	close	callback	to	remove;
Tcl_DeleteCloseHandler	does	nothing	if	its	proc	and	clientData
arguments	do	not	match	the	proc	and	clientData	for	a	close	handler	for
channel.

SEE	ALSO

close,	Tcl_Close,	Tcl_UnregisterChannel

KEYWORDS

callback,	channel	closing

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	SetErrno

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_SetErrno,	Tcl_GetErrno,	Tcl_ErrnoId,	Tcl_ErrnoMsg	-
manipulate	errno	to	store	and	retrieve	error	codes

SYNOPSIS
#include	<tcl.h>
void
Tcl_SetErrno(errorCode)
int
Tcl_GetErrno()
const	char	*
Tcl_ErrnoId()
const	char	*
Tcl_ErrnoMsg(errorCode)

ARGUMENTS
DESCRIPTION
KEYWORDS

NAME

Tcl_SetErrno,	Tcl_GetErrno,	Tcl_ErrnoId,	Tcl_ErrnoMsg	-	manipulate
errno	to	store	and	retrieve	error	codes

SYNOPSIS

#include	<tcl.h>
void
Tcl_SetErrno(errorCode)
int
Tcl_GetErrno()
const	char	*
Tcl_ErrnoId()
const	char	*

int	errorCode	(in)

Tcl_ErrnoMsg(errorCode)

ARGUMENTS

A	POSIX	error	code	such
as	ENOENT.

DESCRIPTION

Tcl_SetErrno	and	Tcl_GetErrno	provide	portable	access	to	the	errno
variable,	which	is	used	to	record	a	POSIX	error	code	after	system	calls
and	other	operations	such	as	Tcl_Gets.	These	procedures	are
necessary	because	global	variable	accesses	cannot	be	made	across
module	boundaries	on	some	platforms.

Tcl_SetErrno	sets	the	errno	variable	to	the	value	of	the	errorCode
argument	C	procedures	that	wish	to	return	error	information	to	their
callers	via	errno	should	call	Tcl_SetErrno	rather	than	setting	errno
directly.

Tcl_GetErrno	returns	the	current	value	of	errno.	Procedures	wishing	to
access	errno	should	call	this	procedure	instead	of	accessing	errno
directly.

Tcl_ErrnoId	and	Tcl_ErrnoMsg	return	string	representations	of	errno
values.	Tcl_ErrnoId	returns	a	machine-readable	textual	identifier	such
as	“EACCES”	that	corresponds	to	the	current	value	of	errno.
Tcl_ErrnoMsg	returns	a	human-readable	string	such	as	“permission
denied”	that	corresponds	to	the	value	of	its	errorCode	argument.	The
errorCode	argument	is	typically	the	value	returned	by	Tcl_GetErrno.
The	strings	returned	by	these	functions	are	statically	allocated	and	the
caller	must	not	free	or	modify	them.

KEYWORDS

errno,	error	code,	global	variables

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1996	Sun	Microsystems,	Inc.

Tcl_Interp	*interp	(in)

const	char	*cmdName	(in)

Tcl_CmdProc	*proc	(in)

ClientData	clientData	(in)

Tcl_CmdDeleteProc	*deleteProc	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	CrtCommand

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tcl_CreateCommand	-	implement	new	commands	in	C

SYNOPSIS

#include	<tcl.h>
Tcl_Command
Tcl_CreateCommand(interp,	cmdName,	proc,	clientData,	deleteProc)

ARGUMENTS

Interpreter	in	which	to
create	new	command.

Name	of	command.

Implementation	of	new
command:	proc	will	be
called	whenever	cmdName
is	invoked	as	a	command.

Arbitrary	one-word	value
to	pass	to	proc	and
deleteProc.

Procedure	to	call	before
cmdName	is	deleted	from
the	interpreter;	allows	for
command-specific
cleanup.	If	NULL,	then	no

procedure	is	called	before
the	command	is	deleted.

DESCRIPTION

Tcl_CreateCommand	defines	a	new	command	in	interp	and	associates
it	with	procedure	proc	such	that	whenever	cmdName	is	invoked	as	a	Tcl
command	(via	a	call	to	Tcl_Eval)	the	Tcl	interpreter	will	call	proc	to
process	the	command.	It	differs	from	Tcl_CreateObjCommand	in	that
a	new	string-based	command	is	defined;	that	is,	a	command	procedure
is	defined	that	takes	an	array	of	argument	strings	instead	of	objects.
The	object-based	command	procedures	registered	by
Tcl_CreateObjCommand	can	execute	significantly	faster	than	the
string-based	command	procedures	defined	by	Tcl_CreateCommand.
This	is	because	they	take	Tcl	objects	as	arguments	and	those	objects
can	retain	an	internal	representation	that	can	be	manipulated	more
efficiently.	Also,	Tcl's	interpreter	now	uses	objects	internally.	In	order	to
invoke	a	string-based	command	procedure	registered	by
Tcl_CreateCommand,	it	must	generate	and	fetch	a	string
representation	from	each	argument	object	before	the	call	and	create	a
new	Tcl	object	to	hold	the	string	result	returned	by	the	string-based
command	procedure.	New	commands	should	be	defined	using
Tcl_CreateObjCommand.	We	support	Tcl_CreateCommand	for
backwards	compatibility.

The	procedures	Tcl_DeleteCommand,	Tcl_GetCommandInfo,	and
Tcl_SetCommandInfo	are	used	in	conjunction	with
Tcl_CreateCommand.

Tcl_CreateCommand	will	delete	an	existing	command	cmdName,	if
one	is	already	associated	with	the	interpreter.	It	returns	a	token	that
may	be	used	to	refer	to	the	command	in	subsequent	calls	to
Tcl_GetCommandName.	If	cmdName	contains	any	::	namespace
qualifiers,	then	the	command	is	added	to	the	specified	namespace;
otherwise	the	command	is	added	to	the	global	namespace.	If
Tcl_CreateCommand	is	called	for	an	interpreter	that	is	in	the	process
of	being	deleted,	then	it	does	not	create	a	new	command	and	it	returns

NULL.	Proc	should	have	arguments	and	result	that	match	the	type
Tcl_CmdProc:

typedef	int	Tcl_CmdProc(

								ClientData	clientData,

								Tcl_Interp	*interp,

								int	argc,

								const	char	*argv[]);

When	proc	is	invoked	the	clientData	and	interp	parameters	will	be
copies	of	the	clientData	and	interp	arguments	given	to
Tcl_CreateCommand.	Typically,	clientData	points	to	an	application-
specific	data	structure	that	describes	what	to	do	when	the	command
procedure	is	invoked.	Argc	and	argv	describe	the	arguments	to	the
command,	argc	giving	the	number	of	arguments	(including	the
command	name)	and	argv	giving	the	values	of	the	arguments	as
strings.	The	argv	array	will	contain	argc+1	values;	the	first	argc	values
point	to	the	argument	strings,	and	the	last	value	is	NULL.	Note	that	the
argument	strings	should	not	be	modified	as	they	may	point	to	constant
strings	or	may	be	shared	with	other	parts	of	the	interpreter.

Note	that	the	argument	strings	are	encoded	in	normalized	UTF-8	since
version	8.1	of	Tcl.

Proc	must	return	an	integer	code	that	is	expected	to	be	one	of
TCL_OK,	TCL_ERROR,	TCL_RETURN,	TCL_BREAK,	or
TCL_CONTINUE.	See	the	Tcl	overview	man	page	for	details	on	what
these	codes	mean.	Most	normal	commands	will	only	return	TCL_OK	or
TCL_ERROR.	In	addition,	proc	must	set	the	interpreter	result	to	point	to
a	string	value;	in	the	case	of	a	TCL_OK	return	code	this	gives	the	result
of	the	command,	and	in	the	case	of	TCL_ERROR	it	gives	an	error
message.	The	Tcl_SetResult	procedure	provides	an	easy	interface	for
setting	the	return	value;	for	complete	details	on	how	the	interpreter
result	field	is	managed,	see	the	Tcl_Interp	man	page.	Before	invoking	a
command	procedure,	Tcl_Eval	sets	the	interpreter	result	to	point	to	an
empty	string,	so	simple	commands	can	return	an	empty	result	by	doing

nothing	at	all.

The	contents	of	the	argv	array	belong	to	Tcl	and	are	not	guaranteed	to
persist	once	proc	returns:	proc	should	not	modify	them,	nor	should	it	set
the	interpreter	result	to	point	anywhere	within	the	argv	values.	Call
Tcl_SetResult	with	status	TCL_VOLATILE	if	you	want	to	return
something	from	the	argv	array.

DeleteProc	will	be	invoked	when	(if)	cmdName	is	deleted.	This	can
occur	through	a	call	to	Tcl_DeleteCommand	or	Tcl_DeleteInterp,	or	by
replacing	cmdName	in	another	call	to	Tcl_CreateCommand.
DeleteProc	is	invoked	before	the	command	is	deleted,	and	gives	the
application	an	opportunity	to	release	any	structures	associated	with	the
command.	DeleteProc	should	have	arguments	and	result	that	match	the
type	Tcl_CmdDeleteProc:

typedef	void	Tcl_CmdDeleteProc(

								ClientData	clientData);

The	clientData	argument	will	be	the	same	as	the	clientData	argument
passed	to	Tcl_CreateCommand.

SEE	ALSO

Tcl_CreateObjCommand,	Tcl_DeleteCommand,
Tcl_GetCommandInfo,	Tcl_SetCommandInfo,
Tcl_GetCommandName,	Tcl_SetObjResult

KEYWORDS

bind,	command,	create,	delete,	interpreter,	namespace

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1989-1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1997	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	Hash

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_InitHashTable,	Tcl_InitCustomHashTable,
Tcl_InitObjHashTable,	Tcl_DeleteHashTable,
Tcl_CreateHashEntry,	Tcl_DeleteHashEntry,
Tcl_FindHashEntry,	Tcl_GetHashValue,	Tcl_SetHashValue,
Tcl_GetHashKey,	Tcl_FirstHashEntry,	Tcl_NextHashEntry,
Tcl_HashStats	-	procedures	to	manage	hash	tables

SYNOPSIS
#include	<tcl.h>
Tcl_InitHashTable(tablePtr,	keyType)
Tcl_InitCustomHashTable(tablePtr,	keyType,	typePtr)
Tcl_InitObjHashTable(tablePtr)
Tcl_DeleteHashTable(tablePtr)
Tcl_HashEntry	*
Tcl_CreateHashEntry(tablePtr,	key,	newPtr)
Tcl_DeleteHashEntry(entryPtr)
Tcl_HashEntry	*
Tcl_FindHashEntry(tablePtr,	key)
ClientData
Tcl_GetHashValue(entryPtr)
Tcl_SetHashValue(entryPtr,	value)
char	*
Tcl_GetHashKey(tablePtr,	entryPtr)
Tcl_HashEntry	*
Tcl_FirstHashEntry(tablePtr,	searchPtr)
Tcl_HashEntry	*
Tcl_NextHashEntry(searchPtr)
char	*
Tcl_HashStats(tablePtr)

ARGUMENTS
DESCRIPTION

TCL_STRING_KEYS
TCL_ONE_WORD_KEYS
TCL_CUSTOM_TYPE_KEYS
TCL_CUSTOM_PTR_KEYS
other

THE	TCL_HASHKEYTYPE	STRUCTURE
TCL_HASH_KEY_RANDOMIZE_HASH
TCL_HASH_KEY_SYSTEM_HASH

KEYWORDS

NAME

Tcl_InitHashTable,	Tcl_InitCustomHashTable,	Tcl_InitObjHashTable,
Tcl_DeleteHashTable,	Tcl_CreateHashEntry,	Tcl_DeleteHashEntry,
Tcl_FindHashEntry,	Tcl_GetHashValue,	Tcl_SetHashValue,
Tcl_GetHashKey,	Tcl_FirstHashEntry,	Tcl_NextHashEntry,
Tcl_HashStats	-	procedures	to	manage	hash	tables

SYNOPSIS

#include	<tcl.h>
Tcl_InitHashTable(tablePtr,	keyType)
Tcl_InitCustomHashTable(tablePtr,	keyType,	typePtr)
Tcl_InitObjHashTable(tablePtr)
Tcl_DeleteHashTable(tablePtr)
Tcl_HashEntry	*
Tcl_CreateHashEntry(tablePtr,	key,	newPtr)
Tcl_DeleteHashEntry(entryPtr)
Tcl_HashEntry	*
Tcl_FindHashEntry(tablePtr,	key)
ClientData
Tcl_GetHashValue(entryPtr)
Tcl_SetHashValue(entryPtr,	value)
char	*
Tcl_GetHashKey(tablePtr,	entryPtr)
Tcl_HashEntry	*
Tcl_FirstHashEntry(tablePtr,	searchPtr)
Tcl_HashEntry	*

Tcl_HashTable	*tablePtr	(in)

int	keyType	(in)

Tcl_HashKeyType	*typePtr	(in)

const	char	*key	(in)

int	*newPtr	(out)

Tcl_NextHashEntry(searchPtr)
char	*
Tcl_HashStats(tablePtr)

ARGUMENTS

Address	of	hash	table
structure	(for	all
procedures	but
Tcl_InitHashTable,	this
must	have	been	initialized
by	previous	call	to
Tcl_InitHashTable).

Kind	of	keys	to	use	for
new	hash	table.	Must	be
either
TCL_STRING_KEYS,
TCL_ONE_WORD_KEYS,
TCL_CUSTOM_TYPE_KEYS
TCL_CUSTOM_PTR_KEYS
or	an	integer	value	greater
than	1.

Address	of	structure	which
defines	the	behaviour	of
the	hash	table.

Key	to	use	for	probe	into
table.	Exact	form	depends
on	keyType	used	to	create
table.

The	word	at	*newPtr	is	set
to	1	if	a	new	entry	was
created	and	0	if	there	was
already	an	entry	for	key.

Tcl_HashEntry	*entryPtr	(in)

ClientData	value	(in)

Tcl_HashSearch	*searchPtr	(in)

Pointer	to	hash	table	entry.

New	value	to	assign	to
hash	table	entry.	Need	not
have	type	ClientData,	but
must	fit	in	same	space	as
ClientData.

Pointer	to	record	to	use	to
keep	track	of	progress	in
enumerating	all	the	entries
in	a	hash	table.

DESCRIPTION

A	hash	table	consists	of	zero	or	more	entries,	each	consisting	of	a	key
and	a	value.	Given	the	key	for	an	entry,	the	hashing	routines	can	very
quickly	locate	the	entry,	and	hence	its	value.	There	may	be	at	most	one
entry	in	a	hash	table	with	a	particular	key,	but	many	entries	may	have
the	same	value.	Keys	can	take	one	of	four	forms:	strings,	one-word
values,	integer	arrays,	or	custom	keys	defined	by	a	Tcl_HashKeyType
structure	(See	section	THE	TCL_HASHKEYTYPE	STRUCTURE
below).	All	of	the	keys	in	a	given	table	have	the	same	form,	which	is
specified	when	the	table	is	initialized.

The	value	of	a	hash	table	entry	can	be	anything	that	fits	in	the	same
space	as	a	“char	*”	pointer.	Values	for	hash	table	entries	are	managed
entirely	by	clients,	not	by	the	hash	module	itself.	Typically	each	entry's
value	is	a	pointer	to	a	data	structure	managed	by	client	code.

Hash	tables	grow	gracefully	as	the	number	of	entries	increases,	so	that
there	are	always	less	than	three	entries	per	hash	bucket,	on	average.
This	allows	for	fast	lookups	regardless	of	the	number	of	entries	in	a
table.

The	core	provides	three	functions	for	the	initialization	of	hash	tables,
Tcl_InitHashTable,	Tcl_InitObjHashTable	and	Tcl_InitCustomHashTable.

Tcl_InitHashTable	initializes	a	structure	that	describes	a	new	hash
table.	The	space	for	the	structure	is	provided	by	the	caller,	not	by	the
hash	module.	The	value	of	keyType	indicates	what	kinds	of	keys	will	be
used	for	all	entries	in	the	table.	All	of	the	key	types	described	later	are
allowed,	with	the	exception	of	TCL_CUSTOM_TYPE_KEYS	and
TCL_CUSTOM_PTR_KEYS.

Tcl_InitObjHashTable	is	a	wrapper	around	Tcl_InitCustomHashTable
and	initializes	a	hash	table	whose	keys	are	Tcl_Obj	*.

Tcl_InitCustomHashTable	initializes	a	structure	that	describes	a	new
hash	table.	The	space	for	the	structure	is	provided	by	the	caller,	not	by
the	hash	module.	The	value	of	keyType	indicates	what	kinds	of	keys	will
be	used	for	all	entries	in	the	table.	KeyType	must	have	one	of	the
following	values:

TCL_STRING_KEYS
Keys	are	null-terminated	strings.	They	are	passed	to	hashing
routines	using	the	address	of	the	first	character	of	the	string.

TCL_ONE_WORD_KEYS
Keys	are	single-word	values;	they	are	passed	to	hashing	routines
and	stored	in	hash	table	entries	as	“char	*”	values.	The	pointer
value	is	the	key;	it	need	not	(and	usually	does	not)	actually	point	to
a	string.

TCL_CUSTOM_TYPE_KEYS
Keys	are	of	arbitrary	type,	and	are	stored	in	the	entry.	Hashing	and
comparison	is	determined	by	typePtr.	The	Tcl_HashKeyType
structure	is	described	in	the	section	THE	TCL_HASHKEYTYPE
STRUCTURE	below.

TCL_CUSTOM_PTR_KEYS
Keys	are	pointers	to	an	arbitrary	type,	and	are	stored	in	the	entry.
Hashing	and	comparison	is	determined	by	typePtr.	The
Tcl_HashKeyType	structure	is	described	in	the	section	THE
TCL_HASHKEYTYPE	STRUCTURE	below.

other
If	keyType	is	not	one	of	the	above,	then	it	must	be	an	integer	value
greater	than	1.	In	this	case	the	keys	will	be	arrays	of	“int”	values,
where	keyType	gives	the	number	of	ints	in	each	key.	This	allows
structures	to	be	used	as	keys.	All	keys	must	have	the	same	size.
Array	keys	are	passed	into	hashing	functions	using	the	address	of
the	first	int	in	the	array.

Tcl_DeleteHashTable	deletes	all	of	the	entries	in	a	hash	table	and
frees	up	the	memory	associated	with	the	table's	bucket	array	and
entries.	It	does	not	free	the	actual	table	structure	(pointed	to	by
tablePtr),	since	that	memory	is	assumed	to	be	managed	by	the	client.
Tcl_DeleteHashTable	also	does	not	free	or	otherwise	manipulate	the
values	of	the	hash	table	entries.	If	the	entry	values	point	to	dynamically-
allocated	memory,	then	it	is	the	client's	responsibility	to	free	these
structures	before	deleting	the	table.

Tcl_CreateHashEntry	locates	the	entry	corresponding	to	a	particular
key,	creating	a	new	entry	in	the	table	if	there	was	not	already	one	with
the	given	key.	If	an	entry	already	existed	with	the	given	key	then
*newPtr	is	set	to	zero.	If	a	new	entry	was	created,	then	*newPtr	is	set	to
a	non-zero	value	and	the	value	of	the	new	entry	will	be	set	to	zero.	The
return	value	from	Tcl_CreateHashEntry	is	a	pointer	to	the	entry,	which
may	be	used	to	retrieve	and	modify	the	entry's	value	or	to	delete	the
entry	from	the	table.

Tcl_DeleteHashEntry	will	remove	an	existing	entry	from	a	table.	The
memory	associated	with	the	entry	itself	will	be	freed,	but	the	client	is
responsible	for	any	cleanup	associated	with	the	entry's	value,	such	as
freeing	a	structure	that	it	points	to.

Tcl_FindHashEntry	is	similar	to	Tcl_CreateHashEntry	except	that	it
does	not	create	a	new	entry	if	the	key	doesn't	exist;	instead,	it	returns
NULL	as	result.

Tcl_GetHashValue	and	Tcl_SetHashValue	are	used	to	read	and	write
an	entry's	value,	respectively.	Values	are	stored	and	retrieved	as	type
“ClientData”,	which	is	large	enough	to	hold	a	pointer	value.	On	almost

all	machines	this	is	large	enough	to	hold	an	integer	value	too.

Tcl_GetHashKey	returns	the	key	for	a	given	hash	table	entry,	either	as
a	pointer	to	a	string,	a	one-word	(“char	*”)	key,	or	as	a	pointer	to	the	first
word	of	an	array	of	integers,	depending	on	the	keyType	used	to	create
a	hash	table.	In	all	cases	Tcl_GetHashKey	returns	a	result	with	type
“char	*”.	When	the	key	is	a	string	or	array,	the	result	of
Tcl_GetHashKey	points	to	information	in	the	table	entry;	this
information	will	remain	valid	until	the	entry	is	deleted	or	its	table	is
deleted.

Tcl_FirstHashEntry	and	Tcl_NextHashEntry	may	be	used	to	scan	all
of	the	entries	in	a	hash	table.	A	structure	of	type	“Tcl_HashSearch”,
provided	by	the	client,	is	used	to	keep	track	of	progress	through	the
table.	Tcl_FirstHashEntry	initializes	the	search	record	and	returns	the
first	entry	in	the	table	(or	NULL	if	the	table	is	empty).	Each	subsequent
call	to	Tcl_NextHashEntry	returns	the	next	entry	in	the	table	or	NULL	if
the	end	of	the	table	has	been	reached.	A	call	to	Tcl_FirstHashEntry
followed	by	calls	to	Tcl_NextHashEntry	will	return	each	of	the	entries
in	the	table	exactly	once,	in	an	arbitrary	order.	It	is	unadvisable	to
modify	the	structure	of	the	table,	e.g.	by	creating	or	deleting	entries,
while	the	search	is	in	progress,	with	the	exception	of	deleting	the	entry
returned	by	Tcl_FirstHashEntry	or	Tcl_NextHashEntry.

Tcl_HashStats	returns	a	dynamically-allocated	string	with	overall
information	about	a	hash	table,	such	as	the	number	of	entries	it
contains,	the	number	of	buckets	in	its	hash	array,	and	the	utilization	of
the	buckets.	It	is	the	caller's	responsibility	to	free	the	result	string	by
passing	it	to	ckfree.

The	header	file	tcl.h	defines	the	actual	data	structures	used	to
implement	hash	tables.	This	is	necessary	so	that	clients	can	allocate
Tcl_HashTable	structures	and	so	that	macros	can	be	used	to	read	and
write	the	values	of	entries.	However,	users	of	the	hashing	routines
should	never	refer	directly	to	any	of	the	fields	of	any	of	the	hash-related
data	structures;	use	the	procedures	and	macros	defined	here.

THE	TCL_HASHKEYTYPE	STRUCTURE

Extension	writers	can	define	new	hash	key	types	by	defining	four
procedures,	initializing	a	Tcl_HashKeyType	structure	to	describe	the
type,	and	calling	Tcl_InitCustomHashTable.	The	Tcl_HashKeyType
structure	is	defined	as	follows:

typedef	struct	Tcl_HashKeyType	{

				int	version;

				int	flags;

				Tcl_HashKeyProc	*hashKeyProc;

				Tcl_CompareHashKeysProc	*compareKeysProc;

				Tcl_AllocHashEntryProc	*allocEntryProc;

				Tcl_FreeHashEntryProc	*freeEntryProc;

}	Tcl_HashKeyType;

The	version	member	is	the	version	of	the	table.	If	this	structure	is
extended	in	future	then	the	version	can	be	used	to	distinguish	between
different	structures.	It	should	be	set	to
TCL_HASH_KEY_TYPE_VERSION.

The	flags	member	is	0	or	one	or	more	of	the	following	values	OR'ed
together:

TCL_HASH_KEY_RANDOMIZE_HASH
There	are	some	things,	pointers	for	example	which	do	not	hash
well	because	they	do	not	use	the	lower	bits.	If	this	flag	is	set	then
the	hash	table	will	attempt	to	rectify	this	by	randomizing	the	bits
and	then	using	the	upper	N	bits	as	the	index	into	the	table.

TCL_HASH_KEY_SYSTEM_HASH
This	flag	forces	Tcl	to	use	the	memory	allocation	procedures
provided	by	the	operating	system	when	allocating	and	freeing
memory	used	to	store	the	hash	table	data	structures,	and	not	any
of	Tcl's	own	customized	memory	allocation	routines.	This	is
important	if	the	hash	table	is	to	be	used	in	the	implementation	of	a
custom	set	of	allocation	routines,	or	something	that	a	custom	set	of
allocation	routines	might	depend	on,	in	order	to	avoid	any	circular

dependency.

The	hashKeyProc	member	contains	the	address	of	a	function	called	to
calculate	a	hash	value	for	the	key.

typedef	unsigned	int	(Tcl_HashKeyProc)	(

								Tcl_HashTable	*tablePtr,

								void	*keyPtr);

If	this	is	NULL	then	keyPtr	is	used	and
TCL_HASH_KEY_RANDOMIZE_HASH	is	assumed.

The	compareKeysProc	member	contains	the	address	of	a	function
called	to	compare	two	keys.

typedef	int	(Tcl_CompareHashKeysProc)	(

								void	*keyPtr,

								Tcl_HashEntry	*hPtr);

If	this	is	NULL	then	the	keyPtr	pointers	are	compared.	If	the	keys	do	not
match	then	the	function	returns	0,	otherwise	it	returns	1.

The	allocEntryProc	member	contains	the	address	of	a	function	called	to
allocate	space	for	an	entry	and	initialize	the	key	and	clientData.

typedef	Tcl_HashEntry	*(Tcl_AllocHashEntryProc)	(

								Tcl_HashTable	*tablePtr,

								void	*keyPtr);

If	this	is	NULL	then	Tcl_Alloc	is	used	to	allocate	enough	space	for	a
Tcl_HashEntry,	the	key	pointer	is	assigned	to	key.oneWordValue	and
the	clientData	is	set	to	NULL.	String	keys	and	array	keys	use	this
function	to	allocate	enough	space	for	the	entry	and	the	key	in	one

block,	rather	than	doing	it	in	two	blocks.	This	saves	space	for	a	pointer
to	the	key	from	the	entry	and	another	memory	allocation.	Tcl_Obj*	keys
use	this	function	to	allocate	enough	space	for	an	entry	and	increment
the	reference	count	on	the	object.

The	freeEntryProc	member	contains	the	address	of	a	function	called	to
free	space	for	an	entry.

typedef	void	(Tcl_FreeHashEntryProc)	(Tcl_HashEntry	*

If	this	is	NULL	then	Tcl_Free	is	used	to	free	the	space	for	the	entry.
Tcl_Obj*	keys	use	this	function	to	decrement	the	reference	count	on	the
object.

KEYWORDS

hash	table,	key,	lookup,	search,	value

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1989-1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	GetHostName

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tcl_GetHostName	-	get	the	name	of	the	local	host

SYNOPSIS

#include	<tcl.h>
const	char	*
Tcl_GetHostName()

DESCRIPTION

Tcl_GetHostName	is	a	utility	procedure	used	by	some	of	the	Tcl
commands.	It	returns	a	pointer	to	a	string	containing	the	name	for	the
current	machine,	or	an	empty	string	if	the	name	cannot	be	determined.
The	string	is	statically	allocated,	and	the	caller	must	not	modify	of	free
it.

KEYWORDS

hostname

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1998-2000	by	Scriptics	Corporation.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	Exit

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_Exit,	Tcl_Finalize,	Tcl_CreateExitHandler,
Tcl_DeleteExitHandler,	Tcl_ExitThread,	Tcl_FinalizeThread,
Tcl_CreateThreadExitHandler,	Tcl_DeleteThreadExitHandler,
Tcl_SetExitProc	-	end	the	application	or	thread	(and	invoke	exit
handlers)

SYNOPSIS
#include	<tcl.h>
Tcl_Exit(status)
Tcl_Finalize()
Tcl_CreateExitHandler(proc,	clientData)
Tcl_DeleteExitHandler(proc,	clientData)
Tcl_ExitThread(status)
Tcl_FinalizeThread()
Tcl_CreateThreadExitHandler(proc,	clientData)
Tcl_DeleteThreadExitHandler(proc,	clientData)
Tcl_ExitProc	*
Tcl_SetExitProc(proc)

ARGUMENTS
DESCRIPTION
KEYWORDS

NAME

Tcl_Exit,	Tcl_Finalize,	Tcl_CreateExitHandler,	Tcl_DeleteExitHandler,
Tcl_ExitThread,	Tcl_FinalizeThread,	Tcl_CreateThreadExitHandler,
Tcl_DeleteThreadExitHandler,	Tcl_SetExitProc	-	end	the	application	or
thread	(and	invoke	exit	handlers)

SYNOPSIS

#include	<tcl.h>

int	status	(in)

Tcl_ExitProc	*proc	(in)

ClientData	clientData	(in)

Tcl_Exit(status)
Tcl_Finalize()
Tcl_CreateExitHandler(proc,	clientData)
Tcl_DeleteExitHandler(proc,	clientData)
Tcl_ExitThread(status)
Tcl_FinalizeThread()
Tcl_CreateThreadExitHandler(proc,	clientData)
Tcl_DeleteThreadExitHandler(proc,	clientData)
Tcl_ExitProc	*
Tcl_SetExitProc(proc)

ARGUMENTS

Provides	information	about
why	the	application	or
thread	exited.	Exact
meaning	may	be	platform-
specific.	0	usually	means	a
normal	exit,	any	nonzero
value	usually	means	that
an	error	occurred.

Procedure	to	invoke
before	exiting	application,
or	(for	Tcl_SetExitProc)
NULL	to	uninstall	the
current	application	exit
procedure.

Arbitrary	one-word	value
to	pass	to	proc.

DESCRIPTION

The	procedures	described	here	provide	a	graceful	mechanism	to	end
the	execution	of	a	Tcl	application.	Exit	handlers	are	invoked	to	cleanup

the	application's	state	before	ending	the	execution	of	Tcl	code.

Invoke	Tcl_Exit	to	end	a	Tcl	application	and	to	exit	from	this	process.
This	procedure	is	invoked	by	the	exit	command,	and	can	be	invoked
anyplace	else	to	terminate	the	application.	No-one	should	ever	invoke
the	exit	system	procedure	directly;	always	invoke	Tcl_Exit	instead,	so
that	it	can	invoke	exit	handlers.	Note	that	if	other	code	invokes	exit
system	procedure	directly,	or	otherwise	causes	the	application	to
terminate	without	calling	Tcl_Exit,	the	exit	handlers	will	not	be	run.
Tcl_Exit	internally	invokes	the	exit	system	call,	thus	it	never	returns
control	to	its	caller.	If	an	application	exit	handler	has	been	installed	(see
Tcl_SetExitProc),	that	handler	is	invoked	with	an	argument	consisting
of	the	exit	status	(cast	to	ClientData);	the	application	exit	handler	should
not	return	control	to	Tcl.

Tcl_Finalize	is	similar	to	Tcl_Exit	except	that	it	does	not	exit	from	the
current	process.	It	is	useful	for	cleaning	up	when	a	process	is	finished
using	Tcl	but	wishes	to	continue	executing,	and	when	Tcl	is	used	in	a
dynamically	loaded	extension	that	is	about	to	be	unloaded.	On	some
systems	Tcl	is	automatically	notified	when	it	is	being	unloaded,	and	it
calls	Tcl_Finalize	internally;	on	these	systems	it	not	necessary	for	the
caller	to	explicitly	call	Tcl_Finalize.	However,	to	ensure	portability,	your
code	should	always	invoke	Tcl_Finalize	when	Tcl	is	being	unloaded,	to
ensure	that	the	code	will	work	on	all	platforms.	Tcl_Finalize	can	be
safely	called	more	than	once.

Tcl_ExitThread	is	used	to	terminate	the	current	thread	and	invoke	per-
thread	exit	handlers.	This	finalization	is	done	by	Tcl_FinalizeThread,
which	you	can	call	if	you	just	want	to	clean	up	per-thread	state	and
invoke	the	thread	exit	handlers.	Tcl_Finalize	calls	Tcl_FinalizeThread
for	the	current	thread	automatically.

Tcl_CreateExitHandler	arranges	for	proc	to	be	invoked	by
Tcl_Finalize	and	Tcl_Exit.	Tcl_CreateThreadExitHandler	arranges	for
proc	to	be	invoked	by	Tcl_FinalizeThread	and	Tcl_ExitThread.	This
provides	a	hook	for	cleanup	operations	such	as	flushing	buffers	and
freeing	global	memory.	Proc	should	match	the	type	Tcl_ExitProc:

typedef	void	Tcl_ExitProc(ClientData	clientData);

The	clientData	parameter	to	proc	is	a	copy	of	the	clientData	argument
given	to	Tcl_CreateExitHandler	or	Tcl_CreateThreadExitHandler
when	the	callback	was	created.	Typically,	clientData	points	to	a	data
structure	containing	application-specific	information	about	what	to	do	in
proc.

Tcl_DeleteExitHandler	and	Tcl_DeleteThreadExitHandler	may	be
called	to	delete	a	previously-created	exit	handler.	It	removes	the
handler	indicated	by	proc	and	clientData	so	that	no	call	to	proc	will	be
made.	If	no	such	handler	exists	then	Tcl_DeleteExitHandler	or
Tcl_DeleteThreadExitHandler	does	nothing.

Tcl_Finalize	and	Tcl_Exit	execute	all	registered	exit	handlers,	in
reverse	order	from	the	order	in	which	they	were	registered.	This
matches	the	natural	order	in	which	extensions	are	loaded	and
unloaded;	if	extension	A	loads	extension	B,	it	usually	unloads	B	before
it	itself	is	unloaded.	If	extension	A	registers	its	exit	handlers	before
loading	extension	B,	this	ensures	that	any	exit	handlers	for	B	will	be
executed	before	the	exit	handlers	for	A.

Tcl_Finalize	and	Tcl_Exit	call	Tcl_FinalizeThread	and	the	thread	exit
handlers	after	the	process-wide	exit	handlers.	This	is	because	thread
finalization	shuts	down	the	I/O	channel	system,	so	any	attempt	at	I/O	by
the	global	exit	handlers	will	vanish	into	the	bitbucket.

Tcl_SetExitProc	installs	an	application	exit	handler,	returning	the
previously-installed	application	exit	handler	or	NULL	if	no	application
handler	was	installed.	If	an	application	exit	handler	is	installed,	that	exit
handler	takes	over	complete	responsibility	for	finalization	of	Tcl's
subsystems	via	Tcl_Finalize	at	an	appropriate	time.	The	argument
passed	to	proc	when	it	is	invoked	will	be	the	exit	status	code	(as	passed
to	Tcl_Exit)	cast	to	a	ClientData	value.

KEYWORDS

callback,	cleanup,	dynamic	loading,	end	application,	exit,	unloading,
thread

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1995-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	GetIndex

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_GetIndexFromObj,	Tcl_GetIndexFromObjStruct	-	lookup
string	in	table	of	keywords

SYNOPSIS
#include	<tcl.h>
int
Tcl_GetIndexFromObj(interp,	objPtr,	tablePtr,	msg,	flags,
indexPtr)
int
Tcl_GetIndexFromObjStruct(interp,	objPtr,	structTablePtr,
offset,
msg,	flags,	indexPtr)

ARGUMENTS
DESCRIPTION
SEE	ALSO
KEYWORDS

NAME

Tcl_GetIndexFromObj,	Tcl_GetIndexFromObjStruct	-	lookup	string	in
table	of	keywords

SYNOPSIS

#include	<tcl.h>
int
Tcl_GetIndexFromObj(interp,	objPtr,	tablePtr,	msg,	flags,
indexPtr)
int
Tcl_GetIndexFromObjStruct(interp,	objPtr,	structTablePtr,	offset,
msg,	flags,	indexPtr)

Tcl_Interp	*interp	(in)

Tcl_Obj	*objPtr	(in/out)

const	char	**tablePtr	(in)

const	void	*structTablePtr	(in)

int	offset	(in)

const	char	*msg	(in)

ARGUMENTS

Interpreter	to	use	for	error
reporting;	if	NULL,	then	no
message	is	provided	on
errors.

The	string	value	of	this
object	is	used	to	search
through	tablePtr.	The
internal	representation	is
modified	to	hold	the	index
of	the	matching	table	entry.

An	array	of	null-terminated
strings.	The	end	of	the
array	is	marked	by	a	NULL
string	pointer.

An	array	of	arbitrary	type,
typically	some	struct	type.
The	first	member	of	the
structure	must	be	a	null-
terminated	string.	The	size
of	the	structure	is	given	by
offset.

The	offset	to	add	to
structTablePtr	to	get	to	the
next	entry.	The	end	of	the
array	is	marked	by	a	NULL
string	pointer.

Null-terminated	string
describing	what	is	being
looked	up,	such	as	option.
This	string	is	included	in

int	flags	(in)

int	*indexPtr	(out)

error	messages.

OR-ed	combination	of	bits
providing	additional
information	for	operation.
The	only	bit	that	is
currently	defined	is
TCL_EXACT.

The	index	of	the	string	in
tablePtr	that	matches	the
value	of	objPtr	is	returned
here.

DESCRIPTION

This	procedure	provides	an	efficient	way	for	looking	up	keywords,
switch	names,	option	names,	and	similar	things	where	the	value	of	an
object	must	be	one	of	a	predefined	set	of	values.	ObjPtr	is	compared
against	each	of	the	strings	in	tablePtr	to	find	a	match.	A	match	occurs	if
objPtr's	string	value	is	identical	to	one	of	the	strings	in	tablePtr,	or	if	it	is
a	non-empty	unique	abbreviation	for	exactly	one	of	the	strings	in
tablePtr	and	the	TCL_EXACT	flag	was	not	specified;	in	either	case	the
index	of	the	matching	entry	is	stored	at	*indexPtr	and	TCL_OK	is
returned.

If	there	is	no	matching	entry,	TCL_ERROR	is	returned	and	an	error
message	is	left	in	interp's	result	if	interp	is	not	NULL.	Msg	is	included	in
the	error	message	to	indicate	what	was	being	looked	up.	For	example,
if	msg	is	option	the	error	message	will	have	a	form	like	“bad	option
"firt":	must	be	first,	second,	or	third”.

If	Tcl_GetIndexFromObj	completes	successfully	it	modifies	the	internal
representation	of	objPtr	to	hold	the	address	of	the	table	and	the	index	of
the	matching	entry.	If	Tcl_GetIndexFromObj	is	invoked	again	with	the
same	objPtr	and	tablePtr	arguments	(e.g.	during	a	reinvocation	of	a	Tcl
command),	it	returns	the	matching	index	immediately	without	having	to

redo	the	lookup	operation.	Note:	Tcl_GetIndexFromObj	assumes	that
the	entries	in	tablePtr	are	static:	they	must	not	change	between
invocations.	If	the	value	of	objPtr	is	the	empty	string,
Tcl_GetIndexFromObj	will	treat	it	as	a	non-matching	value	and	return
TCL_ERROR.

Tcl_GetIndexFromObjStruct	works	just	like	Tcl_GetIndexFromObj,
except	that	instead	of	treating	tablePtr	as	an	array	of	string	pointers,	it
treats	it	as	a	pointer	to	the	first	string	in	a	series	of	strings	that	have
offset	bytes	between	them	(i.e.	that	there	is	a	pointer	to	the	first	array	of
characters	at	tablePtr,	a	pointer	to	the	second	array	of	characters	at
tablePtr+offset	bytes,	etc.)	This	is	particularly	useful	when	processing
things	like	Tk_ConfigurationSpec,	whose	string	keys	are	in	the	same
place	in	each	of	several	array	elements.

SEE	ALSO

Tcl_WrongNumArgs

KEYWORDS

index,	object,	table	lookup

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1997	Sun	Microsystems,	Inc.

int	fd	(in)

int	mask	(in)

Tcl_FileProc	*proc	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	CrtFileHdlr

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tcl_CreateFileHandler,	Tcl_DeleteFileHandler	-	associate	procedure
callbacks	with	files	or	devices	(Unix	only)

SYNOPSIS

#include	<tcl.h>
Tcl_CreateFileHandler(fd,	mask,	proc,	clientData)
Tcl_DeleteFileHandler(fd)

ARGUMENTS

Unix	file	descriptor	for	an
open	file	or	device.

Conditions	under	which
proc	should	be	called:	OR-
ed	combination	of
TCL_READABLE,
TCL_WRITABLE,	and
TCL_EXCEPTION.	May	be
set	to	0	to	temporarily
disable	a	handler.

Procedure	to	invoke
whenever	the	file	or	device
indicated	by	file	meets	the
conditions	specified	by
mask.

ClientData	clientData	(in) Arbitrary	one-word	value
to	pass	to	proc.

DESCRIPTION

Tcl_CreateFileHandler	arranges	for	proc	to	be	invoked	in	the	future
whenever	I/O	becomes	possible	on	a	file	or	an	exceptional	condition
exists	for	the	file.	The	file	is	indicated	by	fd,	and	the	conditions	of
interest	are	indicated	by	mask.	For	example,	if	mask	is
TCL_READABLE,	proc	will	be	called	when	the	file	is	readable.	The
callback	to	proc	is	made	by	Tcl_DoOneEvent,	so
Tcl_CreateFileHandler	is	only	useful	in	programs	that	dispatch	events
through	Tcl_DoOneEvent	or	through	Tcl	commands	such	as	vwait.

Proc	should	have	arguments	and	result	that	match	the	type
Tcl_FileProc:

typedef	void	Tcl_FileProc(

								ClientData	clientData,

								int	mask);

The	clientData	parameter	to	proc	is	a	copy	of	the	clientData	argument
given	to	Tcl_CreateFileHandler	when	the	callback	was	created.
Typically,	clientData	points	to	a	data	structure	containing	application-
specific	information	about	the	file.	Mask	is	an	integer	mask	indicating
which	of	the	requested	conditions	actually	exists	for	the	file;	it	will
contain	a	subset	of	the	bits	in	the	mask	argument	to
Tcl_CreateFileHandler.

There	may	exist	only	one	handler	for	a	given	file	at	a	given	time.	If
Tcl_CreateFileHandler	is	called	when	a	handler	already	exists	for	fd,
then	the	new	callback	replaces	the	information	that	was	previously
recorded.

Tcl_DeleteFileHandler	may	be	called	to	delete	the	file	handler	for	fd;	if

no	handler	exists	for	the	file	given	by	fd	then	the	procedure	has	no
effect.

The	purpose	of	file	handlers	is	to	enable	an	application	to	respond	to
events	while	waiting	for	files	to	become	ready	for	I/O.	For	this	to	work
correctly,	the	application	may	need	to	use	non-blocking	I/O	operations
on	the	files	for	which	handlers	are	declared.	Otherwise	the	application
may	block	if	it	reads	or	writes	too	much	data;	while	waiting	for	the	I/O	to
complete	the	application	will	not	be	able	to	service	other	events.	Use
Tcl_SetChannelOption	with	-blocking	to	set	the	channel	into	blocking
or	nonblocking	mode	as	required.

Note	that	these	interfaces	are	only	supported	by	the	Unix
implementation	of	the	Tcl	notifier.

KEYWORDS

callback,	file,	handler

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990-1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1997	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	ListObj

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_ListObjAppendList,	Tcl_ListObjAppendElement,
Tcl_NewListObj,	Tcl_SetListObj,	Tcl_ListObjGetElements,
Tcl_ListObjLength,	Tcl_ListObjIndex,	Tcl_ListObjReplace	-
manipulate	Tcl	objects	as	lists

SYNOPSIS
#include	<tcl.h>
int
Tcl_ListObjAppendList(interp,	listPtr,	elemListPtr)
int
Tcl_ListObjAppendElement(interp,	listPtr,	objPtr)
Tcl_Obj	*
Tcl_NewListObj(objc,	objv)
Tcl_SetListObj(objPtr,	objc,	objv)
int
Tcl_ListObjGetElements(interp,	listPtr,	objcPtr,	objvPtr)
int
Tcl_ListObjLength(interp,	listPtr,	intPtr)
int
Tcl_ListObjIndex(interp,	listPtr,	index,	objPtrPtr)
int
Tcl_ListObjReplace(interp,	listPtr,	first,	count,	objc,	objv)

ARGUMENTS
DESCRIPTION
SEE	ALSO
KEYWORDS

NAME

Tcl_ListObjAppendList,	Tcl_ListObjAppendElement,	Tcl_NewListObj,
Tcl_SetListObj,	Tcl_ListObjGetElements,	Tcl_ListObjLength,

Tcl_Interp	*interp	(in)

Tcl_Obj	*listPtr	(in/out)

Tcl_ListObjIndex,	Tcl_ListObjReplace	-	manipulate	Tcl	objects	as	lists

SYNOPSIS

#include	<tcl.h>
int
Tcl_ListObjAppendList(interp,	listPtr,	elemListPtr)
int
Tcl_ListObjAppendElement(interp,	listPtr,	objPtr)
Tcl_Obj	*
Tcl_NewListObj(objc,	objv)
Tcl_SetListObj(objPtr,	objc,	objv)
int
Tcl_ListObjGetElements(interp,	listPtr,	objcPtr,	objvPtr)
int
Tcl_ListObjLength(interp,	listPtr,	intPtr)
int
Tcl_ListObjIndex(interp,	listPtr,	index,	objPtrPtr)
int
Tcl_ListObjReplace(interp,	listPtr,	first,	count,	objc,	objv)

ARGUMENTS

If	an	error	occurs	while
converting	an	object	to	be
a	list	object,	an	error
message	is	left	in	the
interpreter's	result	object
unless	interp	is	NULL.

Points	to	the	list	object	to
be	manipulated.	If	listPtr
does	not	already	point	to	a
list	object,	an	attempt	will
be	made	to	convert	it	to
one.

Tcl_Obj	*elemListPtr	(in/out)

Tcl_Obj	*objPtr	(in)

int	*objcPtr	(in)

Tcl_Obj	***objvPtr	(out)

int	objc	(in)

For
Tcl_ListObjAppendList,
this	points	to	a	list	object
containing	elements	to	be
appended	onto	listPtr.
Each	element	of
*elemListPtr	will	become	a
new	element	of	listPtr.	If
*elemListPtr	is	not	NULL
and	does	not	already	point
to	a	list	object,	an	attempt
will	be	made	to	convert	it
to	one.

For
Tcl_ListObjAppendElement
points	to	the	Tcl	object	that
will	be	appended	to	listPtr.
For	Tcl_SetListObj,	this
points	to	the	Tcl	object	that
will	be	converted	to	a	list
object	containing	the	objc
elements	of	the	array
referenced	by	objv.

Points	to	location	where
Tcl_ListObjGetElements
stores	the	number	of
element	objects	in	listPtr.

A	location	where
Tcl_ListObjGetElements
stores	a	pointer	to	an	array
of	pointers	to	the	element
objects	of	listPtr.

The	number	of	Tcl	objects

Tcl_Obj	*const	objv[]	(in)

int	*intPtr	(out)

int	index	(in)

Tcl_Obj	**objPtrPtr	(out)

int	first	(in)

that	Tcl_NewListObj	will
insert	into	a	new	list	object,
and	Tcl_ListObjReplace
will	insert	into	listPtr.	For
Tcl_SetListObj,	the
number	of	Tcl	objects	to
insert	into	objPtr.

An	array	of	pointers	to
objects.	Tcl_NewListObj
will	insert	these	objects
into	a	new	list	object	and
Tcl_ListObjReplace	will
insert	them	into	an	existing
listPtr.	Each	object	will
become	a	separate	list
element.

Points	to	location	where
Tcl_ListObjLength	stores
the	length	of	the	list.

Index	of	the	list	element
that	Tcl_ListObjIndex	is
to	return.	The	first	element
has	index	0.

Points	to	place	where
Tcl_ListObjIndex	is	to
store	a	pointer	to	the
resulting	list	element
object.

Index	of	the	starting	list
element	that
Tcl_ListObjReplace	is	to
replace.	The	list's	first

int	count	(in)

element	has	index	0.

The	number	of	elements
that	Tcl_ListObjReplace
is	to	replace.

DESCRIPTION

Tcl	list	objects	have	an	internal	representation	that	supports	the	efficient
indexing	and	appending.	The	procedures	described	in	this	man	page
are	used	to	create,	modify,	index,	and	append	to	Tcl	list	objects	from	C
code.

Tcl_ListObjAppendList	and	Tcl_ListObjAppendElement	both	add
one	or	more	objects	to	the	end	of	the	list	object	referenced	by	listPtr.
Tcl_ListObjAppendList	appends	each	element	of	the	list	object
referenced	by	elemListPtr	while	Tcl_ListObjAppendElement	appends
the	single	object	referenced	by	objPtr.	Both	procedures	will	convert	the
object	referenced	by	listPtr	to	a	list	object	if	necessary.	If	an	error
occurs	during	conversion,	both	procedures	return	TCL_ERROR	and
leave	an	error	message	in	the	interpreter's	result	object	if	interp	is	not
NULL.	Similarly,	if	elemListPtr	does	not	already	refer	to	a	list	object,
Tcl_ListObjAppendList	will	attempt	to	convert	it	to	one	and	if	an	error
occurs	during	conversion,	will	return	TCL_ERROR	and	leave	an	error
message	in	the	interpreter's	result	object	if	interp	is	not	NULL.	Both
procedures	invalidate	any	old	string	representation	of	listPtr	and,	if	it
was	converted	to	a	list	object,	free	any	old	internal	representation.
Similarly,	Tcl_ListObjAppendList	frees	any	old	internal	representation
of	elemListPtr	if	it	converts	it	to	a	list	object.	After	appending	each
element	in	elemListPtr,	Tcl_ListObjAppendList	increments	the
element's	reference	count	since	listPtr	now	also	refers	to	it.	For	the
same	reason,	Tcl_ListObjAppendElement	increments	objPtr's
reference	count.	If	no	error	occurs,	the	two	procedures	return	TCL_OK
after	appending	the	objects.

Tcl_NewListObj	and	Tcl_SetListObj	create	a	new	object	or	modify	an
existing	object	to	hold	the	objc	elements	of	the	array	referenced	by	objv

where	each	element	is	a	pointer	to	a	Tcl	object.	If	objc	is	less	than	or
equal	to	zero,	they	return	an	empty	object.	The	new	object's	string
representation	is	left	invalid.	The	two	procedures	increment	the
reference	counts	of	the	elements	in	objc	since	the	list	object	now	refers
to	them.	The	new	list	object	returned	by	Tcl_NewListObj	has	reference
count	zero.

Tcl_ListObjGetElements	returns	a	count	and	a	pointer	to	an	array	of
the	elements	in	a	list	object.	It	returns	the	count	by	storing	it	in	the
address	objcPtr.	Similarly,	it	returns	the	array	pointer	by	storing	it	in	the
address	objvPtr.	The	memory	pointed	to	is	managed	by	Tcl	and	should
not	be	freed	or	written	to	by	the	caller.	If	the	list	is	empty,	0	is	stored	at
objcPtr	and	NULL	at	objvPtr.	If	listPtr	is	not	already	a	list	object,
Tcl_ListObjGetElements	will	attempt	to	convert	it	to	one;	if	the
conversion	fails,	it	returns	TCL_ERROR	and	leaves	an	error	message
in	the	interpreter's	result	object	if	interp	is	not	NULL.	Otherwise	it
returns	TCL_OK	after	storing	the	count	and	array	pointer.

Tcl_ListObjLength	returns	the	number	of	elements	in	the	list	object
referenced	by	listPtr.	It	returns	this	count	by	storing	an	integer	in	the
address	intPtr.	If	the	object	is	not	already	a	list	object,
Tcl_ListObjLength	will	attempt	to	convert	it	to	one;	if	the	conversion
fails,	it	returns	TCL_ERROR	and	leaves	an	error	message	in	the
interpreter's	result	object	if	interp	is	not	NULL.	Otherwise	it	returns
TCL_OK	after	storing	the	list's	length.

The	procedure	Tcl_ListObjIndex	returns	a	pointer	to	the	object	at
element	index	in	the	list	referenced	by	listPtr.	It	returns	this	object	by
storing	a	pointer	to	it	in	the	address	objPtrPtr.	If	listPtr	does	not	already
refer	to	a	list	object,	Tcl_ListObjIndex	will	attempt	to	convert	it	to	one;
if	the	conversion	fails,	it	returns	TCL_ERROR	and	leaves	an	error
message	in	the	interpreter's	result	object	if	interp	is	not	NULL.	If	the
index	is	out	of	range,	that	is,	index	is	negative	or	greater	than	or	equal
to	the	number	of	elements	in	the	list,	Tcl_ListObjIndex	stores	a	NULL
in	objPtrPtr	and	returns	TCL_OK.	Otherwise	it	returns	TCL_OK	after
storing	the	element's	object	pointer.	The	reference	count	for	the	list
element	is	not	incremented;	the	caller	must	do	that	if	it	needs	to	retain	a
pointer	to	the	element.

Tcl_ListObjReplace	replaces	zero	or	more	elements	of	the	list
referenced	by	listPtr	with	the	objc	objects	in	the	array	referenced	by
objv.	If	listPtr	does	not	point	to	a	list	object,	Tcl_ListObjReplace	will
attempt	to	convert	it	to	one;	if	the	conversion	fails,	it	returns
TCL_ERROR	and	leaves	an	error	message	in	the	interpreter's	result
object	if	interp	is	not	NULL.	Otherwise,	it	returns	TCL_OK	after
replacing	the	objects.	If	objv	is	NULL,	no	new	elements	are	added.	If
the	argument	first	is	zero	or	negative,	it	refers	to	the	first	element.	If	first
is	greater	than	or	equal	to	the	number	of	elements	in	the	list,	then	no
elements	are	deleted;	the	new	elements	are	appended	to	the	list.	count
gives	the	number	of	elements	to	replace.	If	count	is	zero	or	negative
then	no	elements	are	deleted;	the	new	elements	are	simply	inserted
before	the	one	designated	by	first.	Tcl_ListObjReplace	invalidates
listPtr's	old	string	representation.	The	reference	counts	of	any	elements
inserted	from	objv	are	incremented	since	the	resulting	list	now	refers	to
them.	Similarly,	the	reference	counts	for	any	replaced	objects	are
decremented.

Because	Tcl_ListObjReplace	combines	both	element	insertion	and
deletion,	it	can	be	used	to	implement	a	number	of	list	operations.	For
example,	the	following	code	inserts	the	objc	objects	referenced	by	the
array	of	object	pointers	objv	just	before	the	element	index	of	the	list
referenced	by	listPtr:

result	=	Tcl_ListObjReplace(interp,	listPtr,	index,	0,

								objc,	objv);

Similarly,	the	following	code	appends	the	objc	objects	referenced	by	the
array	objv	to	the	end	of	the	list	listPtr:

result	=	Tcl_ListObjLength(interp,	listPtr,	&length);

if	(result	==	TCL_OK)	{

				result	=	Tcl_ListObjReplace(interp,	listPtr,	length,	0,

												objc,	objv);

}

The	count	list	elements	starting	at	first	can	be	deleted	by	simply	calling
Tcl_ListObjReplace	with	a	NULL	objvPtr:

result	=	Tcl_ListObjReplace(interp,	listPtr,	first,	count,

								0,	NULL);

SEE	ALSO

Tcl_NewObj,	Tcl_DecrRefCount,	Tcl_IncrRefCount,
Tcl_GetObjResult

KEYWORDS

append,	index,	insert,	internal	representation,	length,	list,	list	object,	list
type,	object,	object	type,	replace,	string	representation

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1996-1997	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	CrtInterp

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_CreateInterp,	Tcl_DeleteInterp,	Tcl_InterpDeleted	-	create
and	delete	Tcl	command	interpreters

SYNOPSIS
#include	<tcl.h>
Tcl_Interp	*
Tcl_CreateInterp()
Tcl_DeleteInterp(interp)
int
Tcl_InterpDeleted(interp)

ARGUMENTS
DESCRIPTION
INTERPRETERS	AND	MEMORY	MANAGEMENT

Interpreters	Passed	As	Arguments
Interpreter	Creation	And	Deletion
Retrieving	An	Interpreter	From	A	Data	Structure

SEE	ALSO
KEYWORDS

NAME

Tcl_CreateInterp,	Tcl_DeleteInterp,	Tcl_InterpDeleted	-	create	and
delete	Tcl	command	interpreters

SYNOPSIS

#include	<tcl.h>
Tcl_Interp	*
Tcl_CreateInterp()
Tcl_DeleteInterp(interp)
int
Tcl_InterpDeleted(interp)

Tcl_Interp	*interp	(in)

ARGUMENTS

Token	for	interpreter	to	be
destroyed.

DESCRIPTION

Tcl_CreateInterp	creates	a	new	interpreter	structure	and	returns	a
token	for	it.	The	token	is	required	in	calls	to	most	other	Tcl	procedures,
such	as	Tcl_CreateCommand,	Tcl_Eval,	and	Tcl_DeleteInterp.
Clients	are	only	allowed	to	access	a	few	of	the	fields	of	Tcl_Interp
structures;	see	the	Tcl_Interp	and	Tcl_CreateCommand	man	pages
for	details.	The	new	interpreter	is	initialized	with	the	built-in	Tcl
commands	and	with	the	variables	documented	in	tclvars(n).	To	bind	in
additional	commands,	call	Tcl_CreateCommand.

Tcl_DeleteInterp	marks	an	interpreter	as	deleted;	the	interpreter	will
eventually	be	deleted	when	all	calls	to	Tcl_Preserve	for	it	have	been
matched	by	calls	to	Tcl_Release.	At	that	time,	all	of	the	resources
associated	with	it,	including	variables,	procedures,	and	application-
specific	command	bindings,	will	be	deleted.	After	Tcl_DeleteInterp
returns	any	attempt	to	use	Tcl_Eval	on	the	interpreter	will	fail	and	return
TCL_ERROR.	After	the	call	to	Tcl_DeleteInterp	it	is	safe	to	examine
the	interpreter's	result,	query	or	set	the	values	of	variables,	define,
undefine	or	retrieve	procedures,	and	examine	the	runtime	evaluation
stack.	See	below,	in	the	section	INTERPRETERS	AND	MEMORY
MANAGEMENT	for	details.

Tcl_InterpDeleted	returns	nonzero	if	Tcl_DeleteInterp	was	called	with
interp	as	its	argument;	this	indicates	that	the	interpreter	will	eventually
be	deleted,	when	the	last	call	to	Tcl_Preserve	for	it	is	matched	by	a	call
to	Tcl_Release.	If	nonzero	is	returned,	further	calls	to	Tcl_Eval	in	this
interpreter	will	return	TCL_ERROR.

Tcl_InterpDeleted	is	useful	in	deletion	callbacks	to	distinguish	between
when	only	the	memory	the	callback	is	responsible	for	is	being	deleted
and	when	the	whole	interpreter	is	being	deleted.	In	the	former	case	the

callback	may	recreate	the	data	being	deleted,	but	this	would	lead	to	an
infinite	loop	if	the	interpreter	were	being	deleted.

INTERPRETERS	AND	MEMORY	MANAGEMENT

Tcl_DeleteInterp	can	be	called	at	any	time	on	an	interpreter	that	may
be	used	by	nested	evaluations	and	C	code	in	various	extensions.	Tcl
implements	a	simple	mechanism	that	allows	callers	to	use	interpreters
without	worrying	about	the	interpreter	being	deleted	in	a	nested	call,
and	without	requiring	special	code	to	protect	the	interpreter,	in	most
cases.	This	mechanism	ensures	that	nested	uses	of	an	interpreter	can
safely	continue	using	it	even	after	Tcl_DeleteInterp	is	called.

The	mechanism	relies	on	matching	up	calls	to	Tcl_Preserve	with	calls
to	Tcl_Release.	If	Tcl_DeleteInterp	has	been	called,	only	when	the	last
call	to	Tcl_Preserve	is	matched	by	a	call	to	Tcl_Release,	will	the
interpreter	be	freed.	See	the	manual	entry	for	Tcl_Preserve	for	a
description	of	these	functions.

The	rules	for	when	the	user	of	an	interpreter	must	call	Tcl_Preserve
and	Tcl_Release	are	simple:

Interpreters	Passed	As	Arguments
Functions	that	are	passed	an	interpreter	as	an	argument	can	safely
use	the	interpreter	without	any	special	protection.	Thus,	when	you
write	an	extension	consisting	of	new	Tcl	commands,	no	special
code	is	needed	to	protect	interpreters	received	as	arguments.	This
covers	the	majority	of	all	uses.

Interpreter	Creation	And	Deletion
When	a	new	interpreter	is	created	and	used	in	a	call	to	Tcl_Eval,
Tcl_VarEval,	Tcl_GlobalEval,	Tcl_SetVar,	or	Tcl_GetVar,	a	pair	of
calls	to	Tcl_Preserve	and	Tcl_Release	should	be	wrapped	around
all	uses	of	the	interpreter.	Remember	that	it	is	unsafe	to	use	the
interpreter	once	Tcl_Release	has	been	called.	To	ensure	that	the
interpreter	is	properly	deleted	when	it	is	no	longer	needed,	call
Tcl_InterpDeleted	to	test	if	some	other	code	already	called
Tcl_DeleteInterp;	if	not,	call	Tcl_DeleteInterp	before	calling

Tcl_Release	in	your	own	code.

Retrieving	An	Interpreter	From	A	Data	Structure
When	an	interpreter	is	retrieved	from	a	data	structure	(e.g.	the
client	data	of	a	callback)	for	use	in	Tcl_Eval,	Tcl_VarEval,
Tcl_GlobalEval,	Tcl_SetVar,	or	Tcl_GetVar,	a	pair	of	calls	to
Tcl_Preserve	and	Tcl_Release	should	be	wrapped	around	all	uses
of	the	interpreter;	it	is	unsafe	to	reuse	the	interpreter	once
Tcl_Release	has	been	called.	If	an	interpreter	is	stored	inside	a
callback	data	structure,	an	appropriate	deletion	cleanup
mechanism	should	be	set	up	by	the	code	that	creates	the	data
structure	so	that	the	interpreter	is	removed	from	the	data	structure
(e.g.	by	setting	the	field	to	NULL)	when	the	interpreter	is	deleted.
Otherwise,	you	may	be	using	an	interpreter	that	has	been	freed
and	whose	memory	may	already	have	been	reused.

All	uses	of	interpreters	in	Tcl	and	Tk	have	already	been	protected.
Extension	writers	should	ensure	that	their	code	also	properly	protects
any	additional	interpreters	used,	as	described	above.

SEE	ALSO

Tcl_Preserve,	Tcl_Release

KEYWORDS

command,	create,	delete,	interpreter

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1989-1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	CrtMathFnc

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_CreateMathFunc,	Tcl_GetMathFuncInfo,
Tcl_ListMathFuncs	-	Define,	query	and	enumerate	math
functions	for	expressions

SYNOPSIS
#include	<tcl.h>
void
Tcl_CreateMathFunc(interp,	name,	numArgs,	argTypes,	proc,
clientData)
int
Tcl_GetMathFuncInfo(interp,	name,	numArgsPtr,	argTypesPtr,
procPtr,
clientDataPtr)
Tcl_Obj	*
Tcl_ListMathFuncs(interp,	pattern)

ARGUMENTS
DESCRIPTION
SEE	ALSO
KEYWORDS

NAME

Tcl_CreateMathFunc,	Tcl_GetMathFuncInfo,	Tcl_ListMathFuncs	-
Define,	query	and	enumerate	math	functions	for	expressions

SYNOPSIS

#include	<tcl.h>
void
Tcl_CreateMathFunc(interp,	name,	numArgs,	argTypes,	proc,
clientData)
int

Tcl_Interp	*interp	(in)

const	char	*name	(in)

int	numArgs	(in)

Tcl_ValueType	*argTypes	(in)

Tcl_MathProc	*proc	(in)

ClientData	clientData	(in)

int	*numArgsPtr	(out)

Tcl_ValueType	**argTypesPtr	(out)

Tcl_GetMathFuncInfo(interp,	name,	numArgsPtr,	argTypesPtr,	procPtr,
clientDataPtr)
Tcl_Obj	*
Tcl_ListMathFuncs(interp,	pattern)

ARGUMENTS

Interpreter	in	which	new
function	will	be	defined.

Name	for	new	function.

Number	of	arguments	to
new	function;	also	gives
size	of	argTypes	array.

Points	to	an	array	giving
the	permissible	types	for
each	argument	to	function.

Procedure	that	implements
the	function.

Arbitrary	one-word	value
to	pass	to	proc	when	it	is
invoked.

Points	to	a	variable	that
will	be	set	to	contain	the
number	of	arguments	to
the	function.

Points	to	a	variable	that
will	be	set	to	contain	a
pointer	to	an	array	giving
the	permissible	types	for
each	argument	to	the

Tcl_MathProc	**procPtr	(out)

ClientData	*clientDataPtr	(out)

const	char	*pattern	(in)

function	which	will	need	to
be	freed	up	using
Tcl_Free.

Points	to	a	variable	that
will	be	set	to	contain	a
pointer	to	the
implementation	code	for
the	function	(or	NULL	if	the
function	is	implemented
directly	in	bytecode).

Points	to	a	variable	that
will	be	set	to	contain	the
clientData	argument
passed	to
Tcl_CreateMathFunc	when
the	function	was	created	if
the	function	is	not
implemented	directly	in
bytecode.

Pattern	to	match	against
function	names	so	as	to
filter	them	(by	passing	to
Tcl_StringMatch),	or	NULL
to	not	apply	any	filter.

DESCRIPTION

Tcl	allows	a	number	of	mathematical	functions	to	be	used	in
expressions,	such	as	sin,	cos,	and	hypot.	These	functions	are
represented	by	commands	in	the	namespace,	tcl::mathfunc.	The
Tcl_CreateMathFunc	function	is	an	obsolete	way	for	applications	to
add	additional	functions	to	those	already	provided	by	Tcl	or	to	replace
existing	functions.	It	should	not	be	used	by	new	applications,	which

should	create	math	functions	using	Tcl_CreateObjCommand	to	create
a	command	in	the	tcl::mathfunc	namespace.

In	the	Tcl_CreateMathFunc	interface,	Name	is	the	name	of	the	function
as	it	will	appear	in	expressions.	If	name	does	not	already	exist	in	the
::tcl::mathfunc	namespace,	then	a	new	command	is	created	in	that
namespace.	If	name	does	exist,	then	the	existing	function	is	replaced.
NumArgs	and	argTypes	describe	the	arguments	to	the	function.	Each
entry	in	the	argTypes	array	must	be	one	of	TCL_INT,	TCL_DOUBLE,
TCL_WIDE_INT,	or	TCL_EITHER	to	indicate	whether	the
corresponding	argument	must	be	an	integer,	a	double-precision	floating
value,	a	wide	(64-bit)	integer,	or	any,	respectively.

Whenever	the	function	is	invoked	in	an	expression	Tcl	will	invoke	proc.
Proc	should	have	arguments	and	result	that	match	the	type
Tcl_MathProc:

typedef	int	Tcl_MathProc(

								ClientData	clientData,

								Tcl_Interp	*interp,

								Tcl_Value	*args,

								Tcl_Value	*resultPtr);

When	proc	is	invoked	the	clientData	and	interp	arguments	will	be	the
same	as	those	passed	to	Tcl_CreateMathFunc.	Args	will	point	to	an
array	of	numArgs	Tcl_Value	structures,	which	describe	the	actual
arguments	to	the	function:

typedef	struct	Tcl_Value	{

								Tcl_ValueType	type;

								long	intValue;

								double	doubleValue;

								Tcl_WideInt	wideValue;

}	Tcl_Value;

The	type	field	indicates	the	type	of	the	argument	and	is	one	of
TCL_INT,	TCL_DOUBLE	or	TCL_WIDE_INT.	It	will	match	the	argTypes
value	specified	for	the	function	unless	the	argTypes	value	was
TCL_EITHER.	Tcl	converts	the	argument	supplied	in	the	expression	to
the	type	requested	in	argTypes,	if	that	is	necessary.	Depending	on	the
value	of	the	type	field,	the	intValue,	doubleValue	or	wideValue	field	will
contain	the	actual	value	of	the	argument.

Proc	should	compute	its	result	and	store	it	either	as	an	integer	in
resultPtr->intValue	or	as	a	floating	value	in	resultPtr->doubleValue.	It
should	set	also	resultPtr->type	to	one	of	TCL_INT,	TCL_DOUBLE	or
TCL_WIDE_INT	to	indicate	which	value	was	set.	Under	normal
circumstances	proc	should	return	TCL_OK.	If	an	error	occurs	while
executing	the	function,	proc	should	return	TCL_ERROR	and	leave	an
error	message	in	the	interpreter's	result.

Tcl_GetMathFuncInfo	retrieves	the	values	associated	with	function
name	that	were	passed	to	a	preceding	Tcl_CreateMathFunc	call.
Normally,	the	return	code	is	TCL_OK	but	if	the	named	function	does	not
exist,	TCL_ERROR	is	returned	and	an	error	message	is	placed	in	the
interpreter's	result.

If	an	error	did	not	occur,	the	array	reference	placed	in	the	variable
pointed	to	by	argTypesPtr	is	newly	allocated,	and	should	be	released	by
passing	it	to	Tcl_Free.	Some	functions	(the	standard	set	implemented
in	the	core,	and	those	defined	by	placing	commands	in	the
tcl::mathfunc	namespace)	do	not	have	argument	type	information;
attempting	to	retrieve	values	for	them	causes	a	NULL	to	be	stored	in
the	variable	pointed	to	by	procPtr	and	the	variable	pointed	to	by
clientDataPtr	will	not	be	modified.	The	variable	pointed	to	by
numArgsPointer	will	contain	-1,	and	no	argument	types	will	be	stored	in
the	variable	pointed	to	by	argTypesPointer.

Tcl_ListMathFuncs	returns	a	Tcl	object	containing	a	list	of	all	the	math
functions	defined	in	the	interpreter	whose	name	matches	pattern.	The
returned	object	has	a	reference	count	of	zero.

SEE	ALSO

expr,	info,	Tcl_CreateObjCommand,	Tcl_Free,	Tcl_NewListObj

KEYWORDS

expression,	mathematical	function

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1989-1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

int	argc	(in)

char	*argv[]	(in)

Tcl_AppInitProc	*appInitProc	(in)

Tcl_MainLoopProc	*mainLoopProc	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	Tcl_Main

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tcl_Main,	Tcl_SetMainLoop	-	main	program	and	event	loop	definition	for
Tcl-based	applications

SYNOPSIS

#include	<tcl.h>
Tcl_Main(argc,	argv,	appInitProc)
Tcl_SetMainLoop(mainLoopProc)

ARGUMENTS

Number	of	elements	in
argv.

Array	of	strings	containing
command-line	arguments.

Address	of	an	application-
specific	initialization
procedure.	The	value	for
this	argument	is	usually
Tcl_AppInit.

Address	of	an	application-
specific	event	loop
procedure.

DESCRIPTION

Tcl_Main	can	serve	as	the	main	program	for	Tcl-based	shell
applications.	A	“shell	application”	is	a	program	like	tclsh	or	wish	that
supports	both	interactive	interpretation	of	Tcl	and	evaluation	of	a	script
contained	in	a	file	given	as	a	command	line	argument.	Tcl_Main	is
offered	as	a	convenience	to	developers	of	shell	applications,	so	they	do
not	have	to	reproduce	all	of	the	code	for	proper	initialization	of	the	Tcl
library	and	interactive	shell	operation.	Other	styles	of	embedding	Tcl	in
an	application	are	not	supported	by	Tcl_Main.	Those	must	be	achieved
by	calling	lower	level	functions	in	the	Tcl	library	directly.	The	Tcl_Main
function	has	been	offered	by	the	Tcl	library	since	release	Tcl	7.4.	In
older	releases	of	Tcl,	the	Tcl	library	itself	defined	a	function	main,	but
that	lacks	flexibility	of	embedding	style	and	having	a	function	main	in	a
library	(particularly	a	shared	library)	causes	problems	on	many	systems.
Having	main	in	the	Tcl	library	would	also	make	it	hard	to	use	Tcl	in	C++
programs,	since	C++	programs	must	have	special	C++	main	functions.

Normally	each	shell	application	contains	a	small	main	function	that
does	nothing	but	invoke	Tcl_Main.	Tcl_Main	then	does	all	the	work	of
creating	and	running	a	tclsh-like	application.

Tcl_Main	is	not	provided	by	the	public	interface	of	Tcl's	stub	library.
Programs	that	call	Tcl_Main	must	be	linked	against	the	standard	Tcl
library.	Extensions	(stub-enabled	or	not)	are	not	intended	to	call
Tcl_Main.

Tcl_Main	is	not	thread-safe.	It	should	only	be	called	by	a	single	master
thread	of	a	multi-threaded	application.	This	restriction	is	not	a	problem
with	normal	use	described	above.

Tcl_Main	and	therefore	all	applications	based	upon	it,	like	tclsh,	use
Tcl_GetStdChannel	to	initialize	the	standard	channels	to	their	default
values.	See	Tcl_StandardChannels	for	more	information.

Tcl_Main	supports	two	modes	of	operation,	depending	on	the	values	of
argc	and	argv.	If	the	first	few	arguments	in	argv	match	?-encoding
name?	fileName,	where	fileName	does	not	begin	with	the	character	-,
then	fileName	is	taken	to	be	the	name	of	a	file	containing	a	startup
script,	and	name	is	taken	to	be	the	name	of	the	encoding	of	the

contents	of	that	file,	which	Tcl_Main	will	attempt	to	evaluate.	Otherwise,
Tcl_Main	will	enter	an	interactive	mode.

In	either	mode,	Tcl_Main	will	define	in	its	master	interpreter	the	Tcl
variables	argc,	argv,	argv0,	and	tcl_interactive,	as	described	in	the
documentation	for	tclsh.

When	it	has	finished	its	own	initialization,	but	before	it	processes
commands,	Tcl_Main	calls	the	procedure	given	by	the	appInitProc
argument.	This	procedure	provides	a	“hook”	for	the	application	to
perform	its	own	initialization	of	the	interpreter	created	by	Tcl_Main,
such	as	defining	application-specific	commands.	The	procedure	must
have	an	interface	that	matches	the	type	Tcl_AppInitProc:

typedef	int	Tcl_AppInitProc(Tcl_Interp	*interp);

AppInitProc	is	almost	always	a	pointer	to	Tcl_AppInit;	for	more	details
on	this	procedure,	see	the	documentation	for	Tcl_AppInit.

When	the	appInitProc	is	finished,	Tcl_Main	enters	one	of	its	two	modes.
If	a	startup	script	has	been	provided,	Tcl_Main	attempts	to	evaluate	it.
Otherwise,	interactive	mode	begins	with	examination	of	the	variable
tcl_rcFileName	in	the	master	interpreter.	If	that	variable	exists	and	holds
the	name	of	a	readable	file,	the	contents	of	that	file	are	evaluated	in	the
master	interpreter.	Then	interactive	operations	begin,	with	prompts	and
command	evaluation	results	written	to	the	standard	output	channel,	and
commands	read	from	the	standard	input	channel	and	then	evaluated.
The	prompts	written	to	the	standard	output	channel	may	be	customized
by	defining	the	Tcl	variables	tcl_prompt1	and	tcl_prompt2	as	described
in	the	documentation	for	tclsh.	The	prompts	and	command	evaluation
results	are	written	to	the	standard	output	channel	only	if	the	Tcl	variable
tcl_interactive	in	the	master	interpreter	holds	a	non-zero	integer	value.

Tcl_SetMainLoop	allows	setting	an	event	loop	procedure	to	be	run.
This	allows,	for	example,	Tk	to	be	dynamically	loaded	and	set	its	event
loop.	The	event	loop	will	run	following	the	startup	script.	If	you	are	in

interactive	mode,	setting	the	main	loop	procedure	will	cause	the	prompt
to	become	fileevent	based	and	then	the	loop	procedure	is	called.	When
the	loop	procedure	returns	in	interactive	mode,	interactive	operation	will
continue.	The	main	loop	procedure	must	have	an	interface	that	matches
the	type	Tcl_MainLoopProc:

typedef	void	Tcl_MainLoopProc(void);

Tcl_Main	does	not	return.	Normally	a	program	based	on	Tcl_Main	will
terminate	when	the	exit	command	is	evaluated.	In	interactive	mode,	if
an	EOF	or	channel	error	is	encountered	on	the	standard	input	channel,
then	Tcl_Main	itself	will	evaluate	the	exit	command	after	the	main	loop
procedure	(if	any)	returns.	In	non-interactive	mode,	after	Tcl_Main
evaluates	the	startup	script,	and	the	main	loop	procedure	(if	any)
returns,	Tcl_Main	will	also	evaluate	the	exit	command.

SEE	ALSO

tclsh,	Tcl_GetStdChannel,	Tcl_StandardChannels,	Tcl_AppInit,	exit

KEYWORDS

application-specific	initialization,	command-line	arguments,	main
program

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.
Copyright	©	2000	Ajuba	Solutions.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	CrtTrace

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_CreateTrace,	Tcl_CreateObjTrace,	Tcl_DeleteTrace	-
arrange	for	command	execution	to	be	traced

SYNOPSIS
#include	<tcl.h>
Tcl_Trace
Tcl_CreateTrace(interp,	level,	proc,	clientData)
Tcl_Trace
Tcl_CreateObjTrace(interp,	level,	flags,	objProc,	clientData,
deleteProc)
Tcl_DeleteTrace(interp,	trace)

ARGUMENTS
DESCRIPTION
KEYWORDS

NAME

Tcl_CreateTrace,	Tcl_CreateObjTrace,	Tcl_DeleteTrace	-	arrange	for
command	execution	to	be	traced

SYNOPSIS

#include	<tcl.h>
Tcl_Trace
Tcl_CreateTrace(interp,	level,	proc,	clientData)
Tcl_Trace
Tcl_CreateObjTrace(interp,	level,	flags,	objProc,	clientData,
deleteProc)
Tcl_DeleteTrace(interp,	trace)

ARGUMENTS

Tcl_Interp	*interp	(in)

int	level	(in)

int	flags	(in)

Tcl_CmdObjTraceProc	*objProc	(in)

Tcl_CmdTraceProc	*proc	(in)

ClientData	clientData	(in)

Interpreter	containing
command	to	be	traced	or
untraced.

Only	commands	at	or
below	this	nesting	level
will	be	traced	unless	0	is
specified.	1	means	top-
level	commands	only,	2
means	top-level
commands	or	those	that
are	invoked	as	immediate
consequences	of
executing	top-level
commands	(procedure
bodies,	bracketed
commands,	etc.)	and	so
on.	A	value	of	0	means
that	commands	at	any
level	are	traced.

Flags	governing	the	trace
execution.	See	below	for
details.

Procedure	to	call	for	each
command	that	is	executed.
See	below	for	details	of
the	calling	sequence.

Procedure	to	call	for	each
command	that	is	executed.
See	below	for	details	on
the	calling	sequence.

Arbitrary	one-word	value
to	pass	to	objProc	or	proc.

Tcl_CmdObjTraceDeleteProc	*deleteProc
(in)

Tcl_Trace	trace	(in)

Procedure	to	call	when	the
trace	is	deleted.	See
below	for	details	of	the
calling	sequence.	A	NULL
pointer	is	permissible	and
results	in	no	callback	when
the	trace	is	deleted.

Token	for	trace	to	be
removed	(return	value
from	previous	call	to
Tcl_CreateTrace).

DESCRIPTION

Tcl_CreateObjTrace	arranges	for	command	tracing.	After	it	is	called,
objProc	will	be	invoked	before	the	Tcl	interpreter	calls	any	command
procedure	when	evaluating	commands	in	interp.	The	return	value	from
Tcl_CreateObjTrace	is	a	token	for	the	trace,	which	may	be	passed	to
Tcl_DeleteTrace	to	remove	the	trace.	There	may	be	many	traces	in
effect	simultaneously	for	the	same	interpreter.

objProc	should	have	arguments	and	result	that	match	the	type,
Tcl_CmdObjTraceProc:

typedef	int	Tcl_CmdObjTraceProc(

								ClientData	clientData,

								Tcl_Interp*	interp,

								int	level,

								const	char	*command,

								Tcl_Command	commandToken,

								int	objc,

								Tcl_Obj	*const	objv[]);

The	clientData	and	interp	parameters	are	copies	of	the	corresponding

arguments	given	to	Tcl_CreateTrace.	ClientData	typically	points	to	an
application-specific	data	structure	that	describes	what	to	do	when
objProc	is	invoked.	The	level	parameter	gives	the	nesting	level	of	the
command	(1	for	top-level	commands	passed	to	Tcl_Eval	by	the
application,	2	for	the	next-level	commands	passed	to	Tcl_Eval	as	part
of	parsing	or	interpreting	level-1	commands,	and	so	on).	The	command
parameter	points	to	a	string	containing	the	text	of	the	command,	before
any	argument	substitution.	The	commandToken	parameter	is	a	Tcl
command	token	that	identifies	the	command	to	be	invoked.	The	token
may	be	passed	to	Tcl_GetCommandName,
Tcl_GetCommandInfoFromToken,	or
Tcl_SetCommandInfoFromToken	to	manipulate	the	definition	of	the
command.	The	objc	and	objv	parameters	designate	the	final	parameter
count	and	parameter	vector	that	will	be	passed	to	the	command,	and
have	had	all	substitutions	performed.

The	objProc	callback	is	expected	to	return	a	standard	Tcl	status	return
code.	If	this	code	is	TCL_OK	(the	normal	case),	then	the	Tcl	interpreter
will	invoke	the	command.	Any	other	return	code	is	treated	as	if	the
command	returned	that	status,	and	the	command	is	not	invoked.

The	objProc	callback	must	not	modify	objv	in	any	way.	It	is,	however,
permissible	to	change	the	command	by	calling
Tcl_SetCommandTokenInfo	prior	to	returning.	Any	such	change	takes
effect	immediately,	and	the	command	is	invoked	with	the	new
information.

Tracing	will	only	occur	for	commands	at	nesting	level	less	than	or	equal
to	the	level	parameter	(i.e.	the	level	parameter	to	objProc	will	always	be
less	than	or	equal	to	the	level	parameter	to	Tcl_CreateTrace).

Tracing	has	a	significant	effect	on	runtime	performance	because	it
causes	the	bytecode	compiler	to	refrain	from	generating	in-line	code	for
Tcl	commands	such	as	if	and	while	in	order	that	they	may	be	traced.	If
traces	for	the	built-in	commands	are	not	required,	the	flags	parameter
may	be	set	to	the	constant	value
TCL_ALLOW_INLINE_COMPILATION.	In	this	case,	traces	on	built-in
commands	may	or	may	not	result	in	trace	callbacks,	depending	on	the

state	of	the	interpreter,	but	run-time	performance	will	be	improved
significantly.	(This	functionality	is	desirable,	for	example,	when	using
Tcl_CreateObjTrace	to	implement	an	execution	time	profiler.)

Calls	to	objProc	will	be	made	by	the	Tcl	parser	immediately	before	it
calls	the	command	procedure	for	the	command	(cmdProc).	This	occurs
after	argument	parsing	and	substitution,	so	tracing	for	substituted
commands	occurs	before	tracing	of	the	commands	containing	the
substitutions.	If	there	is	a	syntax	error	in	a	command,	or	if	there	is	no
command	procedure	associated	with	a	command	name,	then	no	tracing
will	occur	for	that	command.	If	a	string	passed	to	Tcl_Eval	contains
multiple	commands	(bracketed,	or	on	different	lines)	then	multiple	calls
to	objProc	will	occur,	one	for	each	command.

Tcl_DeleteTrace	removes	a	trace,	so	that	no	future	calls	will	be	made
to	the	procedure	associated	with	the	trace.	After	Tcl_DeleteTrace
returns,	the	caller	should	never	again	use	the	trace	token.

When	Tcl_DeleteTrace	is	called,	the	interpreter	invokes	the	deleteProc
that	was	passed	as	a	parameter	to	Tcl_CreateObjTrace.	The
deleteProc	must	match	the	type,	Tcl_CmdObjTraceDeleteProc:

typedef	void	Tcl_CmdObjTraceDeleteProc(

								ClientData	clientData);

The	clientData	parameter	will	be	the	same	as	the	clientData	parameter
that	was	originally	passed	to	Tcl_CreateObjTrace.

Tcl_CreateTrace	is	an	alternative	interface	for	command	tracing,	not
recommended	for	new	applications.	It	is	provided	for	backward
compatibility	with	code	that	was	developed	for	older	versions	of	the	Tcl
interpreter.	It	is	similar	to	Tcl_CreateObjTrace,	except	that	its	proc
parameter	should	have	arguments	and	result	that	match	the	type
Tcl_CmdTraceProc:

typedef	void	Tcl_CmdTraceProc(

								ClientData	clientData,

								Tcl_Interp	*interp,

								int	level,

								char	*command,

								Tcl_CmdProc	*cmdProc,

								ClientData	cmdClientData,

								int	argc,

								const	char	*argv[]);

The	parameters	to	the	proc	callback	are	similar	to	those	of	the	objProc
callback	above.	The	commandToken	is	replaced	with	cmdProc,	a
pointer	to	the	(string-based)	command	procedure	that	will	be	invoked;
and	cmdClientData,	the	client	data	that	will	be	passed	to	the	procedure.
The	objc	parameter	is	replaced	with	an	argv	parameter,	that	gives	the
arguments	to	the	command	as	character	strings.	Proc	must	not	modify
the	command	or	argv	strings.

If	a	trace	created	with	Tcl_CreateTrace	is	in	effect,	inline	compilation	of
Tcl	commands	such	as	if	and	while	is	always	disabled.	There	is	no
notification	when	a	trace	created	with	Tcl_CreateTrace	is	deleted.
There	is	no	way	to	be	notified	when	the	trace	created	by
Tcl_CreateTrace	is	deleted.	There	is	no	way	for	the	proc	associated
with	a	call	to	Tcl_CreateTrace	to	abort	execution	of	command.

KEYWORDS

command,	create,	delete,	interpreter,	trace

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1989-1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.
Copyright	©	2002	by	Kevin	B.	Kenny	<kennykb(at)acm.org>.	All	rights	reserved.

char	*argv0	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	FindExec

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_FindExecutable,	Tcl_GetNameOfExecutable	-	identify	or
return	the	name	of	the	binary	file	containing	the	application

SYNOPSIS
#include	<tcl.h>
void
Tcl_FindExecutable(argv0)
const	char	*
Tcl_GetNameOfExecutable()

ARGUMENTS
DESCRIPTION
KEYWORDS

NAME

Tcl_FindExecutable,	Tcl_GetNameOfExecutable	-	identify	or	return	the
name	of	the	binary	file	containing	the	application

SYNOPSIS

#include	<tcl.h>
void
Tcl_FindExecutable(argv0)
const	char	*
Tcl_GetNameOfExecutable()

ARGUMENTS

The	first	command-line
argument	to	the	program,
which	gives	the
application's	name.

DESCRIPTION

The	Tcl_FindExecutable	procedure	computes	the	full	path	name	of	the
executable	file	from	which	the	application	was	invoked	and	saves	it	for
Tcl's	internal	use.	The	executable's	path	name	is	needed	for	several
purposes	in	Tcl.	For	example,	it	is	needed	on	some	platforms	in	the
implementation	of	the	load	command.	It	is	also	returned	by	the	info
nameofexecutable	command.

On	UNIX	platforms	this	procedure	is	typically	invoked	as	the	very	first
thing	in	the	application's	main	program;	it	must	be	passed	argv[0]	as	its
argument.	It	is	important	not	to	change	the	working	directory	before	the
invocation.	Tcl_FindExecutable	uses	argv0	along	with	the	PATH
environment	variable	to	find	the	application's	executable,	if	possible.	If	it
fails	to	find	the	binary,	then	future	calls	to	info	nameofexecutable	will
return	an	empty	string.

Tcl_GetNameOfExecutable	simply	returns	a	pointer	to	the	internal	full
path	name	of	the	executable	file	as	computed	by	Tcl_FindExecutable.
This	procedure	call	is	the	C	API	equivalent	to	the	info
nameofexecutable	command.	NULL	is	returned	if	the	internal	full	path
name	has	not	been	computed	or	unknown.

KEYWORDS

binary,	executable	file

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1995-1996	Sun	Microsystems,	Inc.

int	milliseconds	(in)

Tcl_TimerProc	*proc	(in)

ClientData	clientData	(in)

Tcl_TimerToken	token	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	CrtTimerHdlr

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tcl_CreateTimerHandler,	Tcl_DeleteTimerHandler	-	call	a	procedure	at
a	given	time

SYNOPSIS

#include	<tcl.h>
Tcl_TimerToken
Tcl_CreateTimerHandler(milliseconds,	proc,	clientData)
Tcl_DeleteTimerHandler(token)

ARGUMENTS

How	many	milliseconds	to
wait	before	invoking	proc.

Procedure	to	invoke	after
milliseconds	have	elapsed.

Arbitrary	one-word	value
to	pass	to	proc.

Token	for	previously
created	timer	handler	(the
return	value	from	some
previous	call	to
Tcl_CreateTimerHandler).

DESCRIPTION

Tcl_CreateTimerHandler	arranges	for	proc	to	be	invoked	at	a	time
milliseconds	milliseconds	in	the	future.	The	callback	to	proc	will	be
made	by	Tcl_DoOneEvent,	so	Tcl_CreateTimerHandler	is	only	useful
in	programs	that	dispatch	events	through	Tcl_DoOneEvent	or	through
Tcl	commands	such	as	vwait.	The	call	to	proc	may	not	be	made	at	the
exact	time	given	by	milliseconds:	it	will	be	made	at	the	next	opportunity
after	that	time.	For	example,	if	Tcl_DoOneEvent	is	not	called	until	long
after	the	time	has	elapsed,	or	if	there	are	other	pending	events	to
process	before	the	call	to	proc,	then	the	call	to	proc	will	be	delayed.

Proc	should	have	arguments	and	return	value	that	match	the	type
Tcl_TimerProc:

typedef	void	Tcl_TimerProc(ClientData	clientData);

The	clientData	parameter	to	proc	is	a	copy	of	the	clientData	argument
given	to	Tcl_CreateTimerHandler	when	the	callback	was	created.
Typically,	clientData	points	to	a	data	structure	containing	application-
specific	information	about	what	to	do	in	proc.

Tcl_DeleteTimerHandler	may	be	called	to	delete	a	previously	created
timer	handler.	It	deletes	the	handler	indicated	by	token	so	that	no	call	to
proc	will	be	made;	if	that	handler	no	longer	exists	(e.g.	because	the	time
period	has	already	elapsed	and	proc	has	been	invoked	then
Tcl_DeleteTimerHandler	does	nothing.	The	tokens	returned	by
Tcl_CreateTimerHandler	never	have	a	value	of	NULL,	so	if	NULL	is
passed	to	Tcl_DeleteTimerHandler	then	the	procedure	does	nothing.

KEYWORDS

callback,	clock,	handler,	timer

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl_Interp	*interp	(in)

int	depth	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	SetRecLmt

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tcl_SetRecursionLimit	-	set	maximum	allowable	nesting	depth	in
interpreter

SYNOPSIS

#include	<tcl.h>
int
Tcl_SetRecursionLimit(interp,	depth)

ARGUMENTS

Interpreter	whose
recursion	limit	is	to	be	set.
Must	be	greater	than	zero.

New	limit	for	nested	calls
to	Tcl_Eval	for	interp.

DESCRIPTION

At	any	given	time	Tcl	enforces	a	limit	on	the	number	of	recursive	calls
that	may	be	active	for	Tcl_Eval	and	related	procedures	such	as
Tcl_GlobalEval.	Any	call	to	Tcl_Eval	that	exceeds	this	depth	is	aborted
with	an	error.	By	default	the	recursion	limit	is	1000.

Tcl_SetRecursionLimit	may	be	used	to	change	the	maximum
allowable	nesting	depth	for	an	interpreter.	The	depth	argument	specifies
a	new	limit	for	interp,	and	Tcl_SetRecursionLimit	returns	the	old	limit.
To	read	out	the	old	limit	without	modifying	it,	invoke

Tcl_SetRecursionLimit	with	depth	equal	to	0.

The	Tcl_SetRecursionLimit	only	sets	the	size	of	the	Tcl	call	stack:	it
cannot	by	itself	prevent	stack	overflows	on	the	C	stack	being	used	by
the	application.	If	your	machine	has	a	limit	on	the	size	of	the	C	stack,
you	may	get	stack	overflows	before	reaching	the	limit	set	by
Tcl_SetRecursionLimit.	If	this	happens,	see	if	there	is	a	mechanism	in
your	system	for	increasing	the	maximum	size	of	the	C	stack.

KEYWORDS

nesting	depth,	recursion

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1989-1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl_Interp	*interp	(in)

const	char	*chanID	(in)

int	write	(in)

int	checkUsage	(in)

ClientData	*filePtr	(out)

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	GetOpnFl

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tcl_GetOpenFile	-	Return	a	FILE*	for	a	channel	registered	in	the	given
interpreter	(Unix	only)

SYNOPSIS

#include	<tcl.h>
int
Tcl_GetOpenFile(interp,	chanID,	write,	checkUsage,	filePtr)

ARGUMENTS

Tcl	interpreter	from	which
file	handle	is	to	be
obtained.

String	identifying	channel,
such	as	stdin	or	file4.

Non-zero	means	the	file
will	be	used	for	writing,
zero	means	it	will	be	used
for	reading.

If	non-zero,	then	an	error
will	be	generated	if	the	file
was	not	opened	for	the
access	indicated	by	write.

Points	to	word	in	which	to

store	pointer	to	FILE
structure	for	the	file	given
by	chanID.

DESCRIPTION

Tcl_GetOpenFile	takes	as	argument	a	file	identifier	of	the	form
returned	by	the	open	command	and	returns	at	*filePtr	a	pointer	to	the
FILE	structure	for	the	file.	The	write	argument	indicates	whether	the
FILE	pointer	will	be	used	for	reading	or	writing.	In	some	cases,	such	as
a	channel	that	connects	to	a	pipeline	of	subprocesses,	different	FILE
pointers	will	be	returned	for	reading	and	writing.	Tcl_GetOpenFile
normally	returns	TCL_OK.	If	an	error	occurs	in	Tcl_GetOpenFile	(e.g.
chanID	did	not	make	any	sense	or	checkUsage	was	set	and	the	file	was
not	opened	for	the	access	specified	by	write)	then	TCL_ERROR	is
returned	and	the	interpreter's	result	will	contain	an	error	message.	In
the	current	implementation	checkUsage	is	ignored	and	consistency
checks	are	always	performed.

Note	that	this	interface	is	only	supported	on	the	Unix	platform.

KEYWORDS

channel,	file	handle,	permissions,	pipeline,	read,	write

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1996-1997	Sun	Microsystems,	Inc.

const	char	*path	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	SplitPath

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_SplitPath,	Tcl_JoinPath,	Tcl_GetPathType	-	manipulate
platform-dependent	file	paths

SYNOPSIS
#include	<tcl.h>
Tcl_SplitPath(path,	argcPtr,	argvPtr)
char	*
Tcl_JoinPath(argc,	argv,	resultPtr)
Tcl_PathType
Tcl_GetPathType(path)

ARGUMENTS
DESCRIPTION
KEYWORDS

NAME

Tcl_SplitPath,	Tcl_JoinPath,	Tcl_GetPathType	-	manipulate	platform-
dependent	file	paths

SYNOPSIS

#include	<tcl.h>
Tcl_SplitPath(path,	argcPtr,	argvPtr)
char	*
Tcl_JoinPath(argc,	argv,	resultPtr)
Tcl_PathType
Tcl_GetPathType(path)

ARGUMENTS

File	path	in	a	form
appropriate	for	the	current

int	*argcPtr	(out)

const	char	***argvPtr	(out)

int	argc	(in)

const	char	*const	*argv	(in)

Tcl_DString	*resultPtr	(in/out)

platform	(see	the	filename
manual	entry	for
acceptable	forms	for	path
names).

Filled	in	with	number	of
path	elements	in	path.

*argvPtr	will	be	filled	in
with	the	address	of	an
array	of	pointers	to	the
strings	that	are	the
extracted	elements	of
path.	There	will	be	*argcPtr
valid	entries	in	the	array,
followed	by	a	NULL	entry.

Number	of	elements	in
argv.

Array	of	path	elements	to
merge	together	into	a
single	path.

A	pointer	to	an	initialized
Tcl_DString	to	which	the
result	of	Tcl_JoinPath	will
be	appended.

DESCRIPTION

These	procedures	have	been	superceded	by	the	objectified	procedures
in	the	FileSystem	man	page,	which	are	more	efficient.

These	procedures	may	be	used	to	disassemble	and	reassemble	file
paths	in	a	platform	independent	manner:	they	provide	C-level	access	to

the	same	functionality	as	the	file	split,	file	join,	and	file	pathtype
commands.

Tcl_SplitPath	breaks	a	path	into	its	constituent	elements,	returning	an
array	of	pointers	to	the	elements	using	argcPtr	and	argvPtr.	The	area	of
memory	pointed	to	by	*argvPtr	is	dynamically	allocated;	in	addition	to
the	array	of	pointers,	it	also	holds	copies	of	all	the	path	elements.	It	is
the	caller's	responsibility	to	free	all	of	this	storage.	For	example,
suppose	that	you	have	called	Tcl_SplitPath	with	the	following	code:

int	argc;

char	*path;

char	**argv;

	...

Tcl_SplitPath(string,	&argc,	&argv);

Then	you	should	eventually	free	the	storage	with	a	call	like	the
following:

Tcl_Free((char	*)	argv);

Tcl_JoinPath	is	the	inverse	of	Tcl_SplitPath:	it	takes	a	collection	of
path	elements	given	by	argc	and	argv	and	generates	a	result	string	that
is	a	properly	constructed	path.	The	result	string	is	appended	to
resultPtr.	ResultPtr	must	refer	to	an	initialized	Tcl_DString.

If	the	result	of	Tcl_SplitPath	is	passed	to	Tcl_JoinPath,	the	result	will
refer	to	the	same	location,	but	may	not	be	in	the	same	form.	This	is
because	Tcl_SplitPath	and	Tcl_JoinPath	eliminate	duplicate	path
separators	and	return	a	normalized	form	for	each	platform.

Tcl_GetPathType	returns	the	type	of	the	specified	path,	where
Tcl_PathType	is	one	of	TCL_PATH_ABSOLUTE,
TCL_PATH_RELATIVE,	or	TCL_PATH_VOLUME_RELATIVE.	See	the
filename	manual	entry	for	a	description	of	the	path	types	for	each

platform.

KEYWORDS

file,	filename,	join,	path,	split,	type

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	Object

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_NewObj,	Tcl_DuplicateObj,	Tcl_IncrRefCount,
Tcl_DecrRefCount,	Tcl_IsShared,	Tcl_InvalidateStringRep	-
manipulate	Tcl	objects

SYNOPSIS
#include	<tcl.h>
Tcl_Obj	*
Tcl_NewObj()
Tcl_Obj	*
Tcl_DuplicateObj(objPtr)
Tcl_IncrRefCount(objPtr)
Tcl_DecrRefCount(objPtr)
int
Tcl_IsShared(objPtr)
Tcl_InvalidateStringRep(objPtr)

ARGUMENTS
INTRODUCTION
THE	TCL_OBJ	STRUCTURE
EXAMPLE	OF	THE	LIFETIME	OF	AN	OBJECT
STORAGE	MANAGEMENT	OF	OBJECTS
SEE	ALSO
KEYWORDS

NAME

Tcl_NewObj,	Tcl_DuplicateObj,	Tcl_IncrRefCount,	Tcl_DecrRefCount,
Tcl_IsShared,	Tcl_InvalidateStringRep	-	manipulate	Tcl	objects

SYNOPSIS

#include	<tcl.h>
Tcl_Obj	*

Tcl_Obj	*objPtr	(in)

Tcl_NewObj()
Tcl_Obj	*
Tcl_DuplicateObj(objPtr)
Tcl_IncrRefCount(objPtr)
Tcl_DecrRefCount(objPtr)
int
Tcl_IsShared(objPtr)
Tcl_InvalidateStringRep(objPtr)

ARGUMENTS

Points	to	an	object;	must
have	been	the	result	of	a
previous	call	to
Tcl_NewObj.

INTRODUCTION

This	man	page	presents	an	overview	of	Tcl	objects	and	how	they	are
used.	It	also	describes	generic	procedures	for	managing	Tcl	objects.
These	procedures	are	used	to	create	and	copy	objects,	and	increment
and	decrement	the	count	of	references	(pointers)	to	objects.	The
procedures	are	used	in	conjunction	with	ones	that	operate	on	specific
types	of	objects	such	as	Tcl_GetIntFromObj	and
Tcl_ListObjAppendElement.	The	individual	procedures	are	described
along	with	the	data	structures	they	manipulate.

Tcl's	dual-ported	objects	provide	a	general-purpose	mechanism	for
storing	and	exchanging	Tcl	values.	They	largely	replace	the	use	of
strings	in	Tcl.	For	example,	they	are	used	to	store	variable	values,
command	arguments,	command	results,	and	scripts.	Tcl	objects	behave
like	strings	but	also	hold	an	internal	representation	that	can	be
manipulated	more	efficiently.	For	example,	a	Tcl	list	is	now	represented
as	an	object	that	holds	the	list's	string	representation	as	well	as	an
array	of	pointers	to	the	objects	for	each	list	element.	Dual-ported
objects	avoid	most	runtime	type	conversions.	They	also	improve	the
speed	of	many	operations	since	an	appropriate	representation	is

immediately	available.	The	compiler	itself	uses	Tcl	objects	to	cache	the
instruction	bytecodes	resulting	from	compiling	scripts.

The	two	representations	are	a	cache	of	each	other	and	are	computed
lazily.	That	is,	each	representation	is	only	computed	when	necessary,	it
is	computed	from	the	other	representation,	and,	once	computed,	it	is
saved.	In	addition,	a	change	in	one	representation	invalidates	the	other
one.	As	an	example,	a	Tcl	program	doing	integer	calculations	can
operate	directly	on	a	variable's	internal	machine	integer	representation
without	having	to	constantly	convert	between	integers	and	strings.	Only
when	it	needs	a	string	representing	the	variable's	value,	say	to	print	it,
will	the	program	regenerate	the	string	representation	from	the	integer.
Although	objects	contain	an	internal	representation,	their	semantics	are
defined	in	terms	of	strings:	an	up-to-date	string	can	always	be	obtained,
and	any	change	to	the	object	will	be	reflected	in	that	string	when	the
object's	string	representation	is	fetched.	Because	of	this	representation
invalidation	and	regeneration,	it	is	dangerous	for	extension	writers	to
access	Tcl_Obj	fields	directly.	It	is	better	to	access	Tcl_Obj	information
using	procedures	like	Tcl_GetStringFromObj	and	Tcl_GetString.

Objects	are	allocated	on	the	heap	and	are	referenced	using	a	pointer	to
their	Tcl_Obj	structure.	Objects	are	shared	as	much	as	possible.	This
significantly	reduces	storage	requirements	because	some	objects	such
as	long	lists	are	very	large.	Also,	most	Tcl	values	are	only	read	and
never	modified.	This	is	especially	true	for	procedure	arguments,	which
can	be	shared	between	the	caller	and	the	called	procedure.	Assignment
and	argument	binding	is	done	by	simply	assigning	a	pointer	to	the
value.	Reference	counting	is	used	to	determine	when	it	is	safe	to
reclaim	an	object's	storage.

Tcl	objects	are	typed.	An	object's	internal	representation	is	controlled	by
its	type.	Several	types	are	predefined	in	the	Tcl	core	including	integer,
double,	list,	and	bytecode.	Extension	writers	can	extend	the	set	of	types
by	defining	their	own	Tcl_ObjType	structs.

THE	TCL_OBJ	STRUCTURE

Each	Tcl	object	is	represented	by	a	Tcl_Obj	structure	which	is	defined

as	follows.

typedef	struct	Tcl_Obj	{

								int	refCount;

								char	*bytes;

								int	length;

								Tcl_ObjType	*typePtr;

								union	{

																long	longValue;

																double	doubleValue;

																void	*otherValuePtr;

																Tcl_WideInt	wideValue;

																struct	{

																								void	*ptr1;

																								void	*ptr2;

																}	twoPtrValue;

																struct	{

																								void	*ptr;

																								unsigned	long	value;

																}	ptrAndLongRep;

								}	internalRep;

}	Tcl_Obj;

The	bytes	and	the	length	members	together	hold	an	object's	UTF-8
string	representation,	which	is	a	counted	string	not	containing	null	bytes
(UTF-8	null	characters	should	be	encoded	as	a	two	byte	sequence:
192,	128.)	bytes	points	to	the	first	byte	of	the	string	representation.	The
length	member	gives	the	number	of	bytes.	The	byte	array	must	always
have	a	null	byte	after	the	last	data	byte,	at	offset	length;	this	allows
string	representations	to	be	treated	as	conventional	null-terminated	C
strings.	C	programs	use	Tcl_GetStringFromObj	and	Tcl_GetString	to
get	an	object's	string	representation.	If	bytes	is	NULL,	the	string
representation	is	invalid.

An	object's	type	manages	its	internal	representation.	The	member
typePtr	points	to	the	Tcl_ObjType	structure	that	describes	the	type.	If

typePtr	is	NULL,	the	internal	representation	is	invalid.

The	internalRep	union	member	holds	an	object's	internal
representation.	This	is	either	a	(long)	integer,	a	double-precision
floating-point	number,	a	pointer	to	a	value	containing	additional
information	needed	by	the	object's	type	to	represent	the	object,	a
Tcl_WideInt	integer,	two	arbitrary	pointers,	or	a	pair	made	up	of	an
unsigned	long	integer	and	a	pointer.

The	refCount	member	is	used	to	tell	when	it	is	safe	to	free	an	object's
storage.	It	holds	the	count	of	active	references	to	the	object.
Maintaining	the	correct	reference	count	is	a	key	responsibility	of
extension	writers.	Reference	counting	is	discussed	below	in	the	section
STORAGE	MANAGEMENT	OF	OBJECTS.

Although	extension	writers	can	directly	access	the	members	of	a
Tcl_Obj	structure,	it	is	much	better	to	use	the	appropriate	procedures
and	macros.	For	example,	extension	writers	should	never	read	or
update	refCount	directly;	they	should	use	macros	such	as
Tcl_IncrRefCount	and	Tcl_IsShared	instead.

A	key	property	of	Tcl	objects	is	that	they	hold	two	representations.	An
object	typically	starts	out	containing	only	a	string	representation:	it	is
untyped	and	has	a	NULL	typePtr.	An	object	containing	an	empty	string
or	a	copy	of	a	specified	string	is	created	using	Tcl_NewObj	or
Tcl_NewStringObj	respectively.	An	object's	string	value	is	gotten	with
Tcl_GetStringFromObj	or	Tcl_GetString	and	changed	with
Tcl_SetStringObj.	If	the	object	is	later	passed	to	a	procedure	like
Tcl_GetIntFromObj	that	requires	a	specific	internal	representation,	the
procedure	will	create	one	and	set	the	object's	typePtr.	The	internal
representation	is	computed	from	the	string	representation.	An	object's
two	representations	are	duals	of	each	other:	changes	made	to	one	are
reflected	in	the	other.	For	example,	Tcl_ListObjReplace	will	modify	an
object's	internal	representation	and	the	next	call	to
Tcl_GetStringFromObj	or	Tcl_GetString	will	reflect	that	change.

Representations	are	recomputed	lazily	for	efficiency.	A	change	to	one
representation	made	by	a	procedure	such	as	Tcl_ListObjReplace	is

not	reflected	immediately	in	the	other	representation.	Instead,	the	other
representation	is	marked	invalid	so	that	it	is	only	regenerated	if	it	is
needed	later.	Most	C	programmers	never	have	to	be	concerned	with
how	this	is	done	and	simply	use	procedures	such	as
Tcl_GetBooleanFromObj	or	Tcl_ListObjIndex.	Programmers	that
implement	their	own	object	types	must	check	for	invalid	representations
and	mark	representations	invalid	when	necessary.	The	procedure
Tcl_InvalidateStringRep	is	used	to	mark	an	object's	string
representation	invalid	and	to	free	any	storage	associated	with	the	old
string	representation.

Objects	usually	remain	one	type	over	their	life,	but	occasionally	an
object	must	be	converted	from	one	type	to	another.	For	example,	a	C
program	might	build	up	a	string	in	an	object	with	repeated	calls	to
Tcl_AppendToObj,	and	then	call	Tcl_ListObjIndex	to	extract	a	list
element	from	the	object.	The	same	object	holding	the	same	string	value
can	have	several	different	internal	representations	at	different	times.
Extension	writers	can	also	force	an	object	to	be	converted	from	one
type	to	another	using	the	Tcl_ConvertToType	procedure.	Only
programmers	that	create	new	object	types	need	to	be	concerned	about
how	this	is	done.	A	procedure	defined	as	part	of	the	object	type's
implementation	creates	a	new	internal	representation	for	an	object	and
changes	its	typePtr.	See	the	man	page	for	Tcl_RegisterObjType	to	see
how	to	create	a	new	object	type.

EXAMPLE	OF	THE	LIFETIME	OF	AN	OBJECT

As	an	example	of	the	lifetime	of	an	object,	consider	the	following
sequence	of	commands:

set	x	123

This	assigns	to	x	an	untyped	object	whose	bytes	member	points	to	123
and	length	member	contains	3.	The	object's	typePtr	member	is	NULL.

puts	"x	is	$x"

x's	string	representation	is	valid	(since	bytes	is	non-NULL)	and	is
fetched	for	the	command.

incr	x

The	incr	command	first	gets	an	integer	from	x's	object	by	calling
Tcl_GetIntFromObj.	This	procedure	checks	whether	the	object	is
already	an	integer	object.	Since	it	is	not,	it	converts	the	object	by	setting
the	object's	internalRep.longValue	member	to	the	integer	123	and
setting	the	object's	typePtr	to	point	to	the	integer	Tcl_ObjType	structure.
Both	representations	are	now	valid.	incr	increments	the	object's	integer
internal	representation	then	invalidates	its	string	representation	(by
calling	Tcl_InvalidateStringRep)	since	the	string	representation	no
longer	corresponds	to	the	internal	representation.

puts	"x	is	now	$x"

The	string	representation	of	x's	object	is	needed	and	is	recomputed.
The	string	representation	is	now	124	and	both	representations	are
again	valid.

STORAGE	MANAGEMENT	OF	OBJECTS

Tcl	objects	are	allocated	on	the	heap	and	are	shared	as	much	as
possible	to	reduce	storage	requirements.	Reference	counting	is	used	to
determine	when	an	object	is	no	longer	needed	and	can	safely	be	freed.
An	object	just	created	by	Tcl_NewObj	or	Tcl_NewStringObj	has
refCount	0.	The	macro	Tcl_IncrRefCount	increments	the	reference
count	when	a	new	reference	to	the	object	is	created.	The	macro
Tcl_DecrRefCount	decrements	the	count	when	a	reference	is	no
longer	needed	and,	if	the	object's	reference	count	drops	to	zero,	frees

its	storage.	An	object	shared	by	different	code	or	data	structures	has
refCount	greater	than	1.	Incrementing	an	object's	reference	count
ensures	that	it	will	not	be	freed	too	early	or	have	its	value	change
accidentally.

As	an	example,	the	bytecode	interpreter	shares	argument	objects
between	calling	and	called	Tcl	procedures	to	avoid	having	to	copy
objects.	It	assigns	the	call's	argument	objects	to	the	procedure's	formal
parameter	variables.	In	doing	so,	it	calls	Tcl_IncrRefCount	to
increment	the	reference	count	of	each	argument	since	there	is	now	a
new	reference	to	it	from	the	formal	parameter.	When	the	called
procedure	returns,	the	interpreter	calls	Tcl_DecrRefCount	to
decrement	each	argument's	reference	count.	When	an	object's
reference	count	drops	less	than	or	equal	to	zero,	Tcl_DecrRefCount
reclaims	its	storage.	Most	command	procedures	do	not	have	to	be
concerned	about	reference	counting	since	they	use	an	object's	value
immediately	and	do	not	retain	a	pointer	to	the	object	after	they	return.
However,	if	they	do	retain	a	pointer	to	an	object	in	a	data	structure,	they
must	be	careful	to	increment	its	reference	count	since	the	retained
pointer	is	a	new	reference.

Command	procedures	that	directly	modify	objects	such	as	those	for
lappend	and	linsert	must	be	careful	to	copy	a	shared	object	before
changing	it.	They	must	first	check	whether	the	object	is	shared	by
calling	Tcl_IsShared.	If	the	object	is	shared	they	must	copy	the	object
by	using	Tcl_DuplicateObj;	this	returns	a	new	duplicate	of	the	original
object	that	has	refCount	0.	If	the	object	is	not	shared,	the	command
procedure	“owns”	the	object	and	can	safely	modify	it	directly.	For
example,	the	following	code	appears	in	the	command	procedure	that
implements	linsert.	This	procedure	modifies	the	list	object	passed	to	it
in	objv[1]	by	inserting	objc-3	new	elements	before	index.

listPtr	=	objv[1];

if	(Tcl_IsShared(listPtr))	{

				listPtr	=	Tcl_DuplicateObj(listPtr);

}

result	=	Tcl_ListObjReplace(interp,	listPtr,	index,	0,

								(objc-3),	&(objv[3]));

As	another	example,	incr's	command	procedure	must	check	whether
the	variable's	object	is	shared	before	incrementing	the	integer	in	its
internal	representation.	If	it	is	shared,	it	needs	to	duplicate	the	object	in
order	to	avoid	accidentally	changing	values	in	other	data	structures.

SEE	ALSO

Tcl_ConvertToType,	Tcl_GetIntFromObj,
Tcl_ListObjAppendElement,	Tcl_ListObjIndex,	Tcl_ListObjReplace,
Tcl_RegisterObjType

KEYWORDS

internal	representation,	object,	object	creation,	object	type,	reference
counting,	string	representation,	type	conversion

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1996-1997	Sun	Microsystems,	Inc.

int	type	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	GetStdChan

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_GetStdChannel,	Tcl_SetStdChannel	-	procedures	for
retrieving	and	replacing	the	standard	channels

SYNOPSIS
#include	<tcl.h>
Tcl_Channel
Tcl_GetStdChannel(type)
Tcl_SetStdChannel(channel,	type)

ARGUMENTS
DESCRIPTION
SEE	ALSO
KEYWORDS

NAME

Tcl_GetStdChannel,	Tcl_SetStdChannel	-	procedures	for	retrieving	and
replacing	the	standard	channels

SYNOPSIS

#include	<tcl.h>
Tcl_Channel
Tcl_GetStdChannel(type)
Tcl_SetStdChannel(channel,	type)

ARGUMENTS

The	identifier	for	the
standard	channel	to
retrieve	or	modify.	Must	be
one	of	TCL_STDIN,
TCL_STDOUT,	or

Tcl_Channel	channel	(in)

TCL_STDERR.

The	channel	to	use	as	the
new	value	for	the	specified
standard	channel.

DESCRIPTION

Tcl	defines	three	special	channels	that	are	used	by	various	I/O	related
commands	if	no	other	channels	are	specified.	The	standard	input
channel	has	a	channel	name	of	stdin	and	is	used	by	read	and	gets.
The	standard	output	channel	is	named	stdout	and	is	used	by	puts.	The
standard	error	channel	is	named	stderr	and	is	used	for	reporting	errors.
In	addition,	the	standard	channels	are	inherited	by	any	child	processes
created	using	exec	or	open	in	the	absence	of	any	other	redirections.

The	standard	channels	are	actually	aliases	for	other	normal	channels.
The	current	channel	associated	with	a	standard	channel	can	be
retrieved	by	calling	Tcl_GetStdChannel	with	one	of	TCL_STDIN,
TCL_STDOUT,	or	TCL_STDERR	as	the	type.	The	return	value	will	be	a
valid	channel,	or	NULL.

A	new	channel	can	be	set	for	the	standard	channel	specified	by	type	by
calling	Tcl_SetStdChannel	with	a	new	channel	or	NULL	in	the	channel
argument.	If	the	specified	channel	is	closed	by	a	later	call	to	Tcl_Close,
then	the	corresponding	standard	channel	will	automatically	be	set	to
NULL.

If	a	non-NULL	value	for	channel	is	passed	to	Tcl_SetStdChannel,	then
that	same	value	should	be	passed	to	Tcl_RegisterChannel,	like	so:

Tcl_RegisterChannel(NULL,	channel);

This	is	a	workaround	for	a	misfeature	in	Tcl_SetStdChannel	that	it	fails
to	do	some	reference	counting	housekeeping.	This	misfeature	cannot

be	corrected	without	contradicting	the	assumptions	of	some	existing
code	that	calls	Tcl_SetStdChannel.

If	Tcl_GetStdChannel	is	called	before	Tcl_SetStdChannel,	Tcl	will
construct	a	new	channel	to	wrap	the	appropriate	platform-specific
standard	file	handle.	If	Tcl_SetStdChannel	is	called	before
Tcl_GetStdChannel,	then	the	default	channel	will	not	be	created.

If	one	of	the	standard	channels	is	set	to	NULL,	either	by	calling
Tcl_SetStdChannel	with	a	NULL	channel	argument,	or	by	calling
Tcl_Close	on	the	channel,	then	the	next	call	to	Tcl_CreateChannel	will
automatically	set	the	standard	channel	with	the	newly	created	channel.
If	more	than	one	standard	channel	is	NULL,	then	the	standard	channels
will	be	assigned	starting	with	standard	input,	followed	by	standard
output,	with	standard	error	being	last.

See	Tcl_StandardChannels	for	a	general	treatise	about	standard
channels	and	the	behaviour	of	the	Tcl	library	with	regard	to	them.

SEE	ALSO

Tcl_Close,	Tcl_CreateChannel,	Tcl_Main,	tclsh

KEYWORDS

standard	channel,	standard	input,	standard	output,	standard	error

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1996	by	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	ChnlStack

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_StackChannel,	Tcl_UnstackChannel,
Tcl_GetStackedChannel,	Tcl_GetTopChannel	-	manipulate
stacked	I/O	channels

SYNOPSIS
#include	<tcl.h>
Tcl_Channel
Tcl_StackChannel(interp,	typePtr,	clientData,	mask,	channel)
int
Tcl_UnstackChannel(interp,	channel)
Tcl_Channel
Tcl_GetStackedChannel(channel)
Tcl_Channel
Tcl_GetTopChannel(channel)

ARGUMENTS
DESCRIPTION
SEE	ALSO
KEYWORDS

NAME

Tcl_StackChannel,	Tcl_UnstackChannel,	Tcl_GetStackedChannel,
Tcl_GetTopChannel	-	manipulate	stacked	I/O	channels

SYNOPSIS

#include	<tcl.h>
Tcl_Channel
Tcl_StackChannel(interp,	typePtr,	clientData,	mask,	channel)
int
Tcl_UnstackChannel(interp,	channel)
Tcl_Channel

Tcl_Interp	*interp	(in)

Tcl_ChannelType	*typePtr	(in)

ClientData	clientData	(in)

int	mask	(in)

Tcl_Channel	channel	(in)

Tcl_GetStackedChannel(channel)
Tcl_Channel
Tcl_GetTopChannel(channel)

ARGUMENTS

Interpreter	for	error
reporting.

The	new	channel	I/O
procedures	to	use	for
channel.

Arbitrary	one-word	value
to	pass	to	channel	I/O
procedures.

Conditions	under	which
channel	will	be	used:	OR-
ed	combination	of
TCL_READABLE,
TCL_WRITABLE	and
TCL_EXCEPTION.	This
can	be	a	subset	of	the
operations	currently
allowed	on	channel.

An	existing	Tcl	channel
such	as	returned	by
Tcl_CreateChannel.

DESCRIPTION

These	functions	are	for	use	by	extensions	that	add	processing	layers	to
Tcl	I/O	channels.	Examples	include	compression	and	encryption
modules.	These	functions	transparently	stack	and	unstack	a	new

channel	on	top	of	an	existing	one.	Any	number	of	channels	can	be
stacked	together.

The	implementation	of	the	Tcl	channel	code	was	rewritten	in	8.3.2	to
correct	some	problems	with	the	previous	implementation	with	regard	to
stacked	channels.	Anyone	using	stacked	channels	or	creating	stacked
channel	drivers	should	update	to	the	new
TCL_CHANNEL_VERSION_2	Tcl_ChannelType	structure.	See
Tcl_CreateChannel	for	details.

Tcl_StackChannel	stacks	a	new	channel	on	an	existing	channel	with
the	same	name	that	was	registered	for	channel	by
Tcl_RegisterChannel.

Tcl_StackChannel	works	by	creating	a	new	channel	structure	and
placing	itself	on	top	of	the	channel	stack.	EOL	translation,	encoding	and
buffering	options	are	shared	between	all	channels	in	the	stack.	The
hidden	channel	does	no	buffering,	newline	translations,	or	character	set
encoding.	Instead,	the	buffering,	newline	translations,	and	encoding
functions	all	remain	at	the	top	of	the	channel	stack.	A	pointer	to	the	new
top	channel	structure	is	returned.	If	an	error	occurs	when	stacking	the
channel,	NULL	is	returned	instead.

The	mask	parameter	specifies	the	operations	that	are	allowed	on	the
new	channel.	These	can	be	a	subset	of	the	operations	allowed	on	the
original	channel.	For	example,	a	read-write	channel	may	become	read-
only	after	the	Tcl_StackChannel	call.

Closing	a	channel	closes	the	channels	stacked	below	it.	The	close	of
stacked	channels	is	executed	in	a	way	that	allows	buffered	data	to	be
properly	flushed.

Tcl_UnstackChannel	reverses	the	process.	The	old	channel	is
associated	with	the	channel	name,	and	the	processing	module	added
by	Tcl_StackChannel	is	destroyed.	If	there	is	no	old	channel,	then
Tcl_UnstackChannel	is	equivalent	to	Tcl_Close.	If	an	error	occurs
unstacking	the	channel,	TCL_ERROR	is	returned,	otherwise	TCL_OK
is	returned.

Tcl_GetTopChannel	returns	the	top	channel	in	the	stack	of	channels
the	supplied	channel	is	part	of.

Tcl_GetStackedChannel	returns	the	channel	in	the	stack	of	channels
which	is	just	below	the	supplied	channel.

SEE	ALSO

Notifier,	Tcl_CreateChannel,	Tcl_OpenFileChannel,	vwait(n).

KEYWORDS

channel,	compression

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1999-2000	Ajuba	Solutions.

int	sig	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	Signal

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tcl_SignalId,	Tcl_SignalMsg	-	Convert	signal	codes

SYNOPSIS

#include	<tcl.h>
const	char	*
Tcl_SignalId(sig)
const	char	*
Tcl_SignalMsg(sig)

ARGUMENTS

A	POSIX	signal	number
such	as	SIGPIPE.

DESCRIPTION

Tcl_SignalId	and	Tcl_SignalMsg	return	a	string	representation	of	the
provided	signal	number	(sig).	Tcl_SignalId	returns	a	machine-readable
textual	identifier	such	as	“SIGPIPE”.	Tcl_SignalMsg	returns	a	human-
readable	string	such	as	“bus	error”.	The	strings	returned	by	these
functions	are	statically	allocated	and	the	caller	must	not	free	or	modify
them.

KEYWORDS

signals,	signal	numbers

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.

Copyright	©	2001	ActiveState	Tool	Corp.

int	ms	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	Sleep

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tcl_Sleep	-	delay	execution	for	a	given	number	of	milliseconds

SYNOPSIS

#include	<tcl.h>
Tcl_Sleep(ms)

ARGUMENTS

Number	of	milliseconds	to
sleep.

DESCRIPTION

This	procedure	delays	the	calling	process	by	the	number	of
milliseconds	given	by	the	ms	parameter	and	returns	after	that	time	has
elapsed.	It	is	typically	used	for	things	like	flashing	a	button,	where	the
delay	is	short	and	the	application	need	not	do	anything	while	it	waits.
For	longer	delays	where	the	application	needs	to	respond	to	other
events	during	the	delay,	the	procedure	Tcl_CreateTimerHandler
should	be	used	instead	of	Tcl_Sleep.

KEYWORDS

sleep,	time,	wait

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl_Interp	*interp	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	SourceRCFile

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tcl_SourceRCFile	-	source	the	Tcl	rc	file

SYNOPSIS

#include	<tcl.h>
void
Tcl_SourceRCFile(interp)

ARGUMENTS

Tcl	interpreter	to	source	rc
file	into.

DESCRIPTION

Tcl_SourceRCFile	is	used	to	source	the	Tcl	rc	file	at	startup.	It	is
typically	invoked	by	Tcl_Main	or	Tk_Main.	The	name	of	the	file	sourced
is	obtained	from	the	global	variable	tcl_rcFileName	in	the	interpreter
given	by	interp.	If	this	variable	is	not	defined,	or	if	the	file	it	indicates
cannot	be	found,	no	action	is	taken.

KEYWORDS

application-specific	initialization,	main	program,	rc	file

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1998-2000	by	Scriptics	Corporation.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	DictObj

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_NewDictObj,	Tcl_DictObjPut,	Tcl_DictObjGet,
Tcl_DictObjRemove,	Tcl_DictObjSize,	Tcl_DictObjFirst,
Tcl_DictObjNext,	Tcl_DictObjDone,	Tcl_DictObjPutKeyList,
Tcl_DictObjRemoveKeyList	-	manipulate	Tcl	objects	as
dictionaries

SYNOPSIS
#include	<tcl.h>
Tcl_Obj	*
Tcl_NewDictObj()
int
Tcl_DictObjGet(interp,	dictPtr,	keyPtr,	valuePtrPtr)
int
Tcl_DictObjPut(interp,	dictPtr,	keyPtr,	valuePtr)
int
Tcl_DictObjRemove(interp,	dictPtr,	keyPtr)
int
Tcl_DictObjSize(interp,	dictPtr,	sizePtr)
int
Tcl_DictObjFirst(interp,	dictPtr,	searchPtr,
keyPtrPtr,	valuePtrPtr,	donePtr)
void
Tcl_DictObjNext(searchPtr,	keyPtrPtr,	valuePtrPtr,	donePtr)
void
Tcl_DictObjDone(searchPtr)
int
Tcl_DictObjPutKeyList(interp,	dictPtr,	keyc,	keyv,	valuePtr)
int
Tcl_DictObjRemoveKeyList(interp,	dictPtr,	keyc,	keyv)

ARGUMENTS
DESCRIPTION

EXAMPLE
SEE	ALSO
KEYWORDS

NAME

Tcl_NewDictObj,	Tcl_DictObjPut,	Tcl_DictObjGet,	Tcl_DictObjRemove,
Tcl_DictObjSize,	Tcl_DictObjFirst,	Tcl_DictObjNext,	Tcl_DictObjDone,
Tcl_DictObjPutKeyList,	Tcl_DictObjRemoveKeyList	-	manipulate	Tcl
objects	as	dictionaries

SYNOPSIS

#include	<tcl.h>
Tcl_Obj	*
Tcl_NewDictObj()
int
Tcl_DictObjGet(interp,	dictPtr,	keyPtr,	valuePtrPtr)
int
Tcl_DictObjPut(interp,	dictPtr,	keyPtr,	valuePtr)
int
Tcl_DictObjRemove(interp,	dictPtr,	keyPtr)
int
Tcl_DictObjSize(interp,	dictPtr,	sizePtr)
int
Tcl_DictObjFirst(interp,	dictPtr,	searchPtr,
keyPtrPtr,	valuePtrPtr,	donePtr)
void
Tcl_DictObjNext(searchPtr,	keyPtrPtr,	valuePtrPtr,	donePtr)
void
Tcl_DictObjDone(searchPtr)
int
Tcl_DictObjPutKeyList(interp,	dictPtr,	keyc,	keyv,	valuePtr)
int
Tcl_DictObjRemoveKeyList(interp,	dictPtr,	keyc,	keyv)

ARGUMENTS

Tcl_Interp	*interp	(in)

Tcl_Obj	*dictPtr	(in/out)

Tcl_Obj	*keyPtr	(in)

Tcl_Obj	**keyPtrPtr	(out)

Tcl_Obj	*valuePtr	(in)

Tcl_Obj	**valuePtrPtr	(out)

If	an	error	occurs	while
converting	an	object	to	be
a	dictionary	object,	an
error	message	is	left	in	the
interpreter's	result	object
unless	interp	is	NULL.

Points	to	the	dictionary
object	to	be	manipulated.
If	dictPtr	does	not	already
point	to	a	dictionary	object,
an	attempt	will	be	made	to
convert	it	to	one.

Points	to	the	key	for	the
key/value	pair	being
manipulated	within	the
dictionary	object.

Points	to	a	variable	that
will	have	the	key	from	a
key/value	pair	placed
within	it.	May	be	NULL	to
indicate	that	the	caller	is
not	interested	in	the	key.

Points	to	the	value	for	the
key/value	pair	being
manipulate	within	the
dictionary	object	(or	sub-
object,	in	the	case	of
Tcl_DictObjPutKeyList.)

Points	to	a	variable	that
will	have	the	value	from	a
key/value	pair	placed
within	it.	For

int	*sizePtr	(out)

Tcl_DictSearch	*searchPtr	(in/out)

int	*donePtr	(out)

Tcl_DictObjFirst	and
Tcl_DictObjNext,	this	may
be	NULL	to	indicate	that
the	caller	is	not	interested
in	the	value.

Points	to	a	variable	that
will	have	the	number	of
key/value	pairs	contained
within	the	dictionary	placed
within	it.

Pointer	to	record	to	use	to
keep	track	of	progress	in
enumerating	all	key/value
pairs	in	a	dictionary.	The
contents	of	the	record	will
be	initialized	by	the	call	to
Tcl_DictObjFirst.	If	the
enumerating	is	to	be
terminated	before	all
values	in	the	dictionary
have	been	returned,	the
search	record	must	be
passed	to
Tcl_DictObjDone	to
enable	the	internal	locks	to
be	released.

Points	to	a	variable	that
will	have	a	non-zero	value
written	into	it	when	the
enumeration	of	the
key/value	pairs	in	a
dictionary	has	completed,
and	a	zero	otherwise.

int	keyc	(in)

Tcl_Obj	*const	*keyv	(in)

Indicates	the	number	of
keys	that	will	be	supplied
in	the	keyv	array.

Array	of	keyc	pointers	to
objects	that
Tcl_DictObjPutKeyList
and
Tcl_DictObjRemoveKeyList
will	use	to	locate	the
key/value	pair	to
manipulate	within	the	sub-
dictionaries	of	the	main
dictionary	object	passed	to
them.

DESCRIPTION

Tcl	dictionary	objects	have	an	internal	representation	that	supports
efficient	mapping	from	keys	to	values	and	which	guarantees	that	the
particular	ordering	of	keys	within	the	dictionary	remains	the	same
modulo	any	keys	being	deleted	(which	removes	them	from	the	order)	or
added	(which	adds	them	to	the	end	of	the	order).	If	reinterpreted	as	a
list,	the	values	at	the	even-valued	indices	in	the	list	will	be	the	keys	of
the	dictionary,	and	each	will	be	followed	(in	the	odd-valued	index)	bu
the	value	associated	with	that	key.

The	procedures	described	in	this	man	page	are	used	to	create,	modify,
index,	and	iterate	over	dictionary	objects	from	C	code.

Tcl_NewDictObj	creates	a	new,	empty	dictionary	object.	The	string
representation	of	the	object	will	be	invalid,	and	the	reference	count	of
the	object	will	be	zero.

Tcl_DictObjGet	looks	up	the	given	key	within	the	given	dictionary	and
writes	a	pointer	to	the	value	associated	with	that	key	into	the	variable
pointed	to	by	valuePtrPtr,	or	a	NULL	if	the	key	has	no	mapping	within

the	dictionary.	The	result	of	this	procedure	is	TCL_OK,	or	TCL_ERROR
if	the	dictPtr	cannot	be	converted	to	a	dictionary.

Tcl_DictObjPut	updates	the	given	dictionary	so	that	the	given	key
maps	to	the	given	value;	any	key	may	exist	at	most	once	in	any
particular	dictionary.	The	dictionary	must	not	be	shared,	but	the	key	and
value	may	be.	This	procedure	may	increase	the	reference	count	of	both
key	and	value	if	it	proves	necessary	to	store	them.	Neither	key	nor
value	should	be	NULL.	The	result	of	this	procedure	is	TCL_OK,	or
TCL_ERROR	if	the	dictPtr	cannot	be	converted	to	a	dictionary.

Tcl_DictObjRemove	updates	the	given	dictionary	so	that	the	given	key
has	no	mapping	to	any	value.	The	dictionary	must	not	be	shared,	but
the	key	may	be.	The	key	actually	stored	in	the	dictionary	will	have	its
reference	count	decremented	if	it	was	present.	It	is	not	an	error	if	the
key	did	not	previously	exist.	The	result	of	this	procedure	is	TCL_OK,	or
TCL_ERROR	if	the	dictPtr	cannot	be	converted	to	a	dictionary.

Tcl_DictObjSize	updates	the	given	variable	with	the	number	of
key/value	pairs	currently	in	the	given	dictionary.	The	result	of	this
procedure	is	TCL_OK,	or	TCL_ERROR	if	the	dictPtr	cannot	be
converted	to	a	dictionary.

Tcl_DictObjFirst	commences	an	iteration	across	all	the	key/value	pairs
in	the	given	dictionary,	placing	the	key	and	value	in	the	variables
pointed	to	by	the	keyPtrPtr	and	valuePtrPtr	arguments	(which	may	be
NULL	to	indicate	that	the	caller	is	uninterested	in	they	key	or	variable
respectively.)	The	next	key/value	pair	in	the	dictionary	may	be	retrieved
with	Tcl_DictObjNext.	Concurrent	updates	of	the	dictionary's	internal
representation	will	not	modify	the	iteration	processing	unless	the
dictionary	is	unshared,	when	this	will	trigger	premature	termination	of
the	iteration	instead	(which	Tcl	scripts	cannot	trigger	via	the	dict
command.)	The	searchPtr	argument	points	to	a	piece	of	context	that	is
used	to	identify	which	particular	iteration	is	being	performed,	and	is
initialized	by	the	call	to	Tcl_DictObjFirst.	The	donePtr	argument	points
to	a	variable	that	is	updated	to	be	zero	of	there	are	further	key/value
pairs	to	be	iterated	over,	or	non-zero	if	the	iteration	is	complete.	The
order	of	iteration	is	implementation-defined.	If	the	dictPtr	argument

cannot	be	converted	to	a	dictionary,	Tcl_DictObjFirst	returns
TCL_ERROR	and	the	iteration	is	not	commenced,	and	otherwise	it
returns	TCL_OK.

When	Tcl_DictObjFirst	is	called	upon	a	dictionary,	a	lock	is	placed	on
the	dictionary	to	enable	that	dictionary	to	be	iterated	over	safely	without
regard	for	whether	the	dictionary	is	modified	during	the	iteration.
Because	of	this,	once	the	iteration	over	a	dictionary's	keys	has	finished
(whether	because	all	values	have	been	iterated	over	as	indicated	by	the
variable	indicated	by	the	donePtr	argument	being	set	to	one,	or
because	no	further	values	are	required)	the	Tcl_DictObjDone	function
must	be	called	with	the	same	searchPtr	as	was	passed	to
Tcl_DictObjFirst	so	that	the	internal	locks	can	be	released.	Once	a
particular	searchPtr	is	passed	to	Tcl_DictObjDone,	passing	it	to
Tcl_DictObjNext	(without	first	initializing	it	with	Tcl_DictObjFirst)	will
result	in	no	values	being	produced	and	the	variable	pointed	to	by
donePtr	being	set	to	one.	It	is	safe	to	call	Tcl_DictObjDone	multiple
times	on	the	same	searchPtr	for	each	call	to	Tcl_DictObjFirst.

The	procedures	Tcl_DictObjPutKeyList	and
Tcl_DictObjRemoveKeyList	are	the	close	analogues	of
Tcl_DictObjPut	and	Tcl_DictObjRemove	respectively,	except	that
instead	of	working	with	a	single	dictionary,	they	are	designed	to	operate
on	a	nested	tree	of	dictionaries,	with	inner	dictionaries	stored	as	values
inside	outer	dictionaries.	The	keyc	and	keyv	arguments	specify	a	list	of
keys	(with	outermost	keys	first)	that	acts	as	a	path	to	the	key/value	pair
to	be	affected.	Note	that	there	is	no	corresponding	operation	for	reading
a	value	for	a	path	as	this	is	easy	to	construct	from	repeated	use	of
Tcl_DictObjGet.	With	Tcl_DictObjPutKeyList,	nested	dictionaries	are
created	for	non-terminal	keys	where	they	do	not	already	exist.	With
Tcl_DictObjRemoveKeyList,	all	non-terminal	keys	must	exist	and	have
dictionaries	as	their	values.

EXAMPLE

Using	the	dictionary	iteration	interface	to	search	determine	if	there	is	a
key	that	maps	to	itself:

Tcl_DictSearch	search;

Tcl_Obj	*key,	*value;

int	done;

/*

	*	Assume	interp	and	objPtr	are	parameters.		This	is	the

	*	idiomatic	way	to	start	an	iteration	over	the	dictionary;	it

	*	sets	a	lock	on	the	internal	representation	that	ensures	that

	*	there	are	no	concurrent	modification	issues	when	normal

	*	reference	count	management	is	also	used.		The	lock	is

	*	released	automatically	when	the	loop	is	finished,	but	must

	*	be	released	manually	when	an	exceptional	exit	from	the	loop

	*	is	performed.	However	it	is	safe	to	try	to	release	the	lock

	*	even	if	we've	finished	iterating	over	the	loop.

	*/

if	(Tcl_DictObjFirst(interp,	objPtr,	&search,

								&key,	&value,	&done)	!=	TCL_OK)	{

				return	TCL_ERROR;

}

for	(;	!done	;	Tcl_DictObjNext(&search,	&key,	&value,	&done))	{

				/*

					*	Note	that	strcmp()	is	not	a	good	way	of	comparing

					*	objects	and	is	just	used	here	for	demonstration

					*	purposes.

					*/

				if	(!strcmp(Tcl_GetString(key),	Tcl_GetString(value)))	{

								break;

				}

}

Tcl_DictObjDone(&search);

Tcl_SetObjResult(interp,	Tcl_NewBooleanObj(!done));

return	TCL_OK;

SEE	ALSO

Tcl_NewObj,	Tcl_DecrRefCount,	Tcl_IncrRefCount,
Tcl_InitObjHashTable

KEYWORDS

dict,	dict	object,	dictionary,	dictionary	object,	hash	table,	iteration,	object

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	2003	Donal	K.	Fellows

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	StdChannels

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_StandardChannels	-	How	the	Tcl	library	deals	with	the
standard	channels

DESCRIPTION
APPLICATION	PROGRAMMING	INTERFACES
INITIALIZATION	OF	TCL	STANDARD	CHANNELS

1)
2)

(a)
(b)

3)
RE-INITIALIZATION	OF	TCL	STANDARD	CHANNELS
SHELL-SPECIFIC	DETAILS
tclsh
wish
SEE	ALSO
KEYWORDS

NAME

Tcl_StandardChannels	-	How	the	Tcl	library	deals	with	the	standard
channels

DESCRIPTION

This	page	explains	the	initialization	and	use	of	standard	channels	in	the
Tcl	library.

The	term	standard	channels	comes	out	of	the	Unix	world	and	refers	to
the	three	channels	automatically	opened	by	the	OS	for	each	new
application.	They	are	stdin,	stdout	and	stderr.	The	first	is	the	standard
input	an	application	can	read	from,	the	other	two	refer	to	writable

channels,	one	for	regular	output	and	the	other	for	error	messages.

Tcl	generalizes	this	concept	in	a	cross-platform	way	and	exposes
standard	channels	to	the	script	level.

APPLICATION	PROGRAMMING	INTERFACES

The	public	API	procedures	dealing	directly	with	standard	channels	are
Tcl_GetStdChannel	and	Tcl_SetStdChannel.	Additional	public	APIs	to
consider	are	Tcl_RegisterChannel,	Tcl_CreateChannel	and
Tcl_GetChannel.

INITIALIZATION	OF	TCL	STANDARD	CHANNELS

Standard	channels	are	initialized	by	the	Tcl	library	in	three	cases:	when
explicitly	requested,	when	implicitly	required	before	returning	channel
information,	or	when	implicitly	required	during	registration	of	a	new
channel.

These	cases	differ	in	how	they	handle	unavailable	platform-	specific
standard	channels.	(A	channel	is	not	“available”	if	it	could	not	be
successfully	opened;	for	example,	in	a	Tcl	application	run	as	a	Windows
NT	service.)

1)
A	single	standard	channel	is	initialized	when	it	is	explicitly	specified
in	a	call	to	Tcl_SetStdChannel.	The	states	of	the	other	standard
channels	are	unaffected.

Missing	platform-specific	standard	channels	do	not	matter	here.
This	approach	is	not	available	at	the	script	level.

2)
All	uninitialized	standard	channels	are	initialized	to	platform-specific
default	values:

(a)
when	open	channels	are	listed	with	Tcl_GetChannelNames

(or	the	file	channels	script	command),	or

(b)
when	information	about	any	standard	channel	is	requested
with	a	call	to	Tcl_GetStdChannel,	or	with	a	call	to
Tcl_GetChannel	which	specifies	one	of	the	standard	names
(stdin,	stdout	and	stderr).

In	case	of	missing	platform-specific	standard	channels,	the	Tcl
standard	channels	are	considered	as	initialized	and	then
immediately	closed.	This	means	that	the	first	three	Tcl	channels
then	opened	by	the	application	are	designated	as	the	Tcl	standard
channels.

3)
All	uninitialized	standard	channels	are	initialized	to	platform-specific
default	values	when	a	user-requested	channel	is	registered	with
Tcl_RegisterChannel.

In	case	of	unavailable	platform-specific	standard	channels	the	channel
whose	creation	caused	the	initialization	of	the	Tcl	standard	channels	is
made	a	normal	channel.	The	next	three	Tcl	channels	opened	by	the
application	are	designated	as	the	Tcl	standard	channels.	In	other	words,
of	the	first	four	Tcl	channels	opened	by	the	application	the	second	to
fourth	are	designated	as	the	Tcl	standard	channels.

RE-INITIALIZATION	OF	TCL	STANDARD	CHANNELS

Once	a	Tcl	standard	channel	is	initialized	through	one	of	the	methods
above,	closing	this	Tcl	standard	channel	will	cause	the	next	call	to
Tcl_CreateChannel	to	make	the	new	channel	the	new	standard
channel,	too.	If	more	than	one	Tcl	standard	channel	was	closed
Tcl_CreateChannel	will	fill	the	empty	slots	in	the	order	stdin,	stdout
and	stderr.

Tcl_CreateChannel	will	not	try	to	reinitialize	an	empty	slot	if	that	slot
was	not	initialized	before.	It	is	this	behavior	which	enables	an
application	to	employ	method	1	of	initialization,	i.e.	to	create	and

designate	their	own	Tcl	standard	channels.

SHELL-SPECIFIC	DETAILS

tclsh

The	Tcl	shell	(or	rather	the	function	Tcl_Main,	which	forms	the	core	of
the	shell's	implementation)	uses	method	2	to	initialize	the	standard
channels.

wish

The	windowing	shell	(or	rather	the	function	Tk_MainEx,	which	forms
the	core	of	the	shell's	implementation)	uses	method	1	to	initialize	the
standard	channels	(See	Tk_InitConsoleChannels)	on	non-Unix
platforms.	On	Unix	platforms,	Tk_MainEx	implicitly	uses	method	2	to
initialize	the	standard	channels.

SEE	ALSO

Tcl_CreateChannel,	Tcl_RegisterChannel,	Tcl_GetChannel,
Tcl_GetStdChannel,	Tcl_SetStdChannel,	Tk_InitConsoleChannels,
tclsh,	wish,	Tcl_Main,	Tk_MainEx

KEYWORDS

standard	channels

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	2001	by	ActiveState	Corporation

int	*major	(out)

int	*minor	(out)

int	*patchLevel	(out)

Tcl_ReleaseType	*type	(out)

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	GetVersion

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tcl_GetVersion	-	get	the	version	of	the	library	at	runtime

SYNOPSIS

#include	<tcl.h>
Tcl_GetVersion(major,	minor,	patchLevel,	type)

ARGUMENTS

Major	version	number	of
the	Tcl	library.

Minor	version	number	of
the	Tcl	library.

The	patch	level	of	the	Tcl
library	(or	alpha	or	beta
number).

The	type	of	release,	also
indicates	the	type	of	patch
level.	Can	be	one	of
TCL_ALPHA_RELEASE,
TCL_BETA_RELEASE,	or
TCL_FINAL_RELEASE.

DESCRIPTION

Tcl_GetVersion	should	be	used	to	query	the	version	number	of	the	Tcl

library	at	runtime.	This	is	useful	when	using	a	dynamically	loaded	Tcl
library	or	when	writing	a	stubs-aware	extension.	For	instance,	if	you
write	an	extension	that	is	linked	against	the	Tcl	stubs	library,	it	could	be
loaded	into	a	program	linked	to	an	older	version	of	Tcl	than	you
expected.	Use	Tcl_GetVersion	to	verify	that	fact,	and	possibly	to
change	the	behavior	of	your	extension.

Tcl_GetVersion	accepts	NULL	for	any	of	the	arguments.	For	instance	if
you	do	not	care	about	the	patchLevel	of	the	library,	pass	a	NULL	for	the
patchLevel	argument.

KEYWORDS

version,	patchlevel,	major,	minor,	alpha,	beta,	release

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1999	Scriptics	Corporation

Tcl_Interp	*interp	(in)

const	char	*pkgName	(in)

Tcl_PackageInitProc	*initProc	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	StaticPkg

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tcl_StaticPackage	-	make	a	statically	linked	package	available	via	the
'load'	command

SYNOPSIS

#include	<tcl.h>
Tcl_StaticPackage(interp,	pkgName,	initProc,	safeInitProc)

ARGUMENTS

If	not	NULL,	points	to	an
interpreter	into	which	the
package	has	already	been
loaded	(i.e.,	the	caller	has
already	invoked	the
appropriate	initialization
procedure).	NULL	means
the	package	has	not	yet
been	incorporated	into	any
interpreter.

Name	of	the	package;
should	be	properly
capitalized	(first	letter
upper-case,	all	others
lower-case).

Procedure	to	invoke	to
incorporate	this	package

Tcl_PackageInitProc	*safeInitProc	(in)

into	a	trusted	interpreter.

Procedure	to	call	to
incorporate	this	package
into	a	safe	interpreter	(one
that	will	execute	untrusted
scripts).	NULL	means	the
package	cannot	be	used	in
safe	interpreters.

DESCRIPTION

This	procedure	may	be	invoked	to	announce	that	a	package	has	been
linked	statically	with	a	Tcl	application	and,	optionally,	that	it	has	already
been	loaded	into	an	interpreter.	Once	Tcl_StaticPackage	has	been
invoked	for	a	package,	it	may	be	loaded	into	interpreters	using	the	load
command.	Tcl_StaticPackage	is	normally	invoked	only	by	the
Tcl_AppInit	procedure	for	the	application,	not	by	packages	for
themselves	(Tcl_StaticPackage	should	only	be	invoked	for	statically
loaded	packages,	and	code	in	the	package	itself	should	not	need	to
know	whether	the	package	is	dynamically	or	statically	loaded).

When	the	load	command	is	used	later	to	load	the	package	into	an
interpreter,	one	of	initProc	and	safeInitProc	will	be	invoked,	depending
on	whether	the	target	interpreter	is	safe	or	not.	initProc	and	safeInitProc
must	both	match	the	following	prototype:

typedef	int	Tcl_PackageInitProc(Tcl_Interp	*interp);

The	interp	argument	identifies	the	interpreter	in	which	the	package	is	to
be	loaded.	The	initialization	procedure	must	return	TCL_OK	or
TCL_ERROR	to	indicate	whether	or	not	it	completed	successfully;	in
the	event	of	an	error	it	should	set	the	interpreter's	result	to	point	to	an
error	message.	The	result	or	error	from	the	initialization	procedure	will

be	returned	as	the	result	of	the	load	command	that	caused	the
initialization	procedure	to	be	invoked.

KEYWORDS

initialization	procedure,	package,	static	linking

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1995-1996	Sun	Microsystems,	Inc.

const	char	*str	(in)

const	char	*pattern	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	StrMatch

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_StringMatch,	Tcl_StringCaseMatch	-	test	whether	a	string
matches	a	pattern

SYNOPSIS
#include	<tcl.h>
int
Tcl_StringMatch(str,	pattern)
int
Tcl_StringCaseMatch(str,	pattern,	flags)

ARGUMENTS
DESCRIPTION
KEYWORDS

NAME

Tcl_StringMatch,	Tcl_StringCaseMatch	-	test	whether	a	string	matches
a	pattern

SYNOPSIS

#include	<tcl.h>
int
Tcl_StringMatch(str,	pattern)
int
Tcl_StringCaseMatch(str,	pattern,	flags)

ARGUMENTS

String	to	test.

Pattern	to	match	against
string.	May	contain	special

int	flags	(in)

characters	from	the	set	*?\
[].

OR-ed	combination	of
match	flags,	currently	only
TCL_MATCH_NOCASE.	0
specifies	a	case-sensitive
search.

DESCRIPTION

This	utility	procedure	determines	whether	a	string	matches	a	given
pattern.	If	it	does,	then	Tcl_StringMatch	returns	1.	Otherwise
Tcl_StringMatch	returns	0.	The	algorithm	used	for	matching	is	the
same	algorithm	used	in	the	string	match	Tcl	command	and	is	similar	to
the	algorithm	used	by	the	C-shell	for	file	name	matching;	see	the	Tcl
manual	entry	for	details.

In	Tcl_StringCaseMatch,	the	algorithm	is	the	same,	but	you	have	the
option	to	make	the	matching	case-insensitive.	If	you	choose	this	(by
passing	TCL_MATCH_NOCASE),	then	the	string	and	pattern	are
essentially	matched	in	the	lower	case.

KEYWORDS

match,	pattern,	string

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1989-1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	Eval

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_EvalObjEx,	Tcl_EvalFile,	Tcl_EvalObjv,	Tcl_Eval,
Tcl_EvalEx,	Tcl_GlobalEval,	Tcl_GlobalEvalObj,	Tcl_VarEval,
Tcl_VarEvalVA	-	execute	Tcl	scripts

SYNOPSIS
#include	<tcl.h>
int
Tcl_EvalObjEx(interp,	objPtr,	flags)
int
Tcl_EvalFile(interp,	fileName)
int
Tcl_EvalObjv(interp,	objc,	objv,	flags)
int
Tcl_Eval(interp,	script)
int
Tcl_EvalEx(interp,	script,	numBytes,	flags)
int
Tcl_GlobalEval(interp,	script)
int
Tcl_GlobalEvalObj(interp,	objPtr)
int
Tcl_VarEval(interp,	part,	part,	...	(char	*)	NULL)
int
Tcl_VarEvalVA(interp,	argList)

ARGUMENTS
DESCRIPTION
FLAG	BITS

TCL_EVAL_DIRECT
TCL_EVAL_GLOBAL

MISCELLANEOUS	DETAILS
KEYWORDS

Tcl_Interp	*interp	(in)

NAME

Tcl_EvalObjEx,	Tcl_EvalFile,	Tcl_EvalObjv,	Tcl_Eval,	Tcl_EvalEx,
Tcl_GlobalEval,	Tcl_GlobalEvalObj,	Tcl_VarEval,	Tcl_VarEvalVA	-
execute	Tcl	scripts

SYNOPSIS

#include	<tcl.h>
int
Tcl_EvalObjEx(interp,	objPtr,	flags)
int
Tcl_EvalFile(interp,	fileName)
int
Tcl_EvalObjv(interp,	objc,	objv,	flags)
int
Tcl_Eval(interp,	script)
int
Tcl_EvalEx(interp,	script,	numBytes,	flags)
int
Tcl_GlobalEval(interp,	script)
int
Tcl_GlobalEvalObj(interp,	objPtr)
int
Tcl_VarEval(interp,	part,	part,	...	(char	*)	NULL)
int
Tcl_VarEvalVA(interp,	argList)

ARGUMENTS

Interpreter	in	which	to
execute	the	script.	The
interpreter's	result	is
modified	to	hold	the	result
or	error	message	from	the
script.

Tcl_Obj	*objPtr	(in)

int	flags	(in)

const	char	*fileName	(in)

int	objc	(in)

Tcl_Obj	**objv	(in)

int	numBytes	(in)

const	char	*script	(in)

char	*part	(in)

A	Tcl	object	containing	the
script	to	execute.

ORed	combination	of	flag
bits	that	specify	additional
options.
TCL_EVAL_GLOBAL	and
TCL_EVAL_DIRECT	are
currently	supported.

Name	of	a	file	containing	a
Tcl	script.

The	number	of	objects	in
the	array	pointed	to	by
objPtr;	this	is	also	the
number	of	words	in	the
command.

Points	to	an	array	of
pointers	to	objects;	each
object	holds	the	value	of	a
single	word	in	the
command	to	execute.

The	number	of	bytes	in
script,	not	including	any
null	terminating	character.
If	-1,	then	all	characters	up
to	the	first	null	byte	are
used.

Points	to	first	byte	of	script
to	execute	(null-terminated
and	UTF-8).

String	forming	part	of	a	Tcl

va_list	argList	(in)

script.

An	argument	list	which
must	have	been	initialized
using	va_start,	and
cleared	using	va_end.

DESCRIPTION

The	procedures	described	here	are	invoked	to	execute	Tcl	scripts	in
various	forms.	Tcl_EvalObjEx	is	the	core	procedure	and	is	used	by
many	of	the	others.	It	executes	the	commands	in	the	script	stored	in
objPtr	until	either	an	error	occurs	or	the	end	of	the	script	is	reached.	If
this	is	the	first	time	objPtr	has	been	executed,	its	commands	are
compiled	into	bytecode	instructions	which	are	then	executed.	The
bytecodes	are	saved	in	objPtr	so	that	the	compilation	step	can	be
skipped	if	the	object	is	evaluated	again	in	the	future.

The	return	value	from	Tcl_EvalObjEx	(and	all	the	other	procedures
described	here)	is	a	Tcl	completion	code	with	one	of	the	values
TCL_OK,	TCL_ERROR,	TCL_RETURN,	TCL_BREAK,	or
TCL_CONTINUE,	or	possibly	some	other	integer	value	originating	in	an
extension.	In	addition,	a	result	value	or	error	message	is	left	in	interp's
result;	it	can	be	retrieved	using	Tcl_GetObjResult.

Tcl_EvalFile	reads	the	file	given	by	fileName	and	evaluates	its	contents
as	a	Tcl	script.	It	returns	the	same	information	as	Tcl_EvalObjEx.	If	the
file	could	not	be	read	then	a	Tcl	error	is	returned	to	describe	why	the	file
could	not	be	read.	The	eofchar	for	files	is	“\32”	(^Z)	for	all	platforms.	If
you	require	a	“^Z”	in	code	for	string	comparison,	you	can	use	“\032”	or
“\u001a”,	which	will	be	safely	substituted	by	the	Tcl	interpreter	into	“^Z”.

Tcl_EvalObjv	executes	a	single	pre-parsed	command	instead	of	a
script.	The	objc	and	objv	arguments	contain	the	values	of	the	words	for
the	Tcl	command,	one	word	in	each	object	in	objv.	Tcl_EvalObjv
evaluates	the	command	and	returns	a	completion	code	and	result	just
like	Tcl_EvalObjEx.	The	caller	of	Tcl_EvalObjv	has	to	manage	the

reference	count	of	the	elements	of	objv,	insuring	that	the	objects	are
valid	until	Tcl_EvalObjv	returns.

Tcl_Eval	is	similar	to	Tcl_EvalObjEx	except	that	the	script	to	be
executed	is	supplied	as	a	string	instead	of	an	object	and	no	compilation
occurs.	The	string	should	be	a	proper	UTF-8	string	as	converted	by
Tcl_ExternalToUtfDString	or	Tcl_ExternalToUtf	when	it	is	known	to
possibly	contain	upper	ASCII	characters	whose	possible	combinations
might	be	a	UTF-8	special	code.	The	string	is	parsed	and	executed
directly	(using	Tcl_EvalObjv)	instead	of	compiling	it	and	executing	the
bytecodes.	In	situations	where	it	is	known	that	the	script	will	never	be
executed	again,	Tcl_Eval	may	be	faster	than	Tcl_EvalObjEx.	Tcl_Eval
returns	a	completion	code	and	result	just	like	Tcl_EvalObjEx.	Note:	for
backward	compatibility	with	versions	before	Tcl	8.0,	Tcl_Eval	copies	the
object	result	in	interp	to	interp->result	(use	is	deprecated)	where	it	can
be	accessed	directly.	This	makes	Tcl_Eval	somewhat	slower	than
Tcl_EvalEx,	which	does	not	do	the	copy.

Tcl_EvalEx	is	an	extended	version	of	Tcl_Eval	that	takes	additional
arguments	numBytes	and	flags.	For	the	efficiency	reason	given	above,
Tcl_EvalEx	is	generally	preferred	over	Tcl_Eval.

Tcl_GlobalEval	and	Tcl_GlobalEvalObj	are	older	procedures	that	are
now	deprecated.	They	are	similar	to	Tcl_EvalEx	and	Tcl_EvalObjEx
except	that	the	script	is	evaluated	in	the	global	namespace	and	its
variable	context	consists	of	global	variables	only	(it	ignores	any	Tcl
procedures	that	are	active).	These	functions	are	equivalent	to	using	the
TCL_EVAL_GLOBAL	flag	(see	below).

Tcl_VarEval	takes	any	number	of	string	arguments	of	any	length,
concatenates	them	into	a	single	string,	then	calls	Tcl_Eval	to	execute
that	string	as	a	Tcl	command.	It	returns	the	result	of	the	command	and
also	modifies	interp->result	in	the	same	way	as	Tcl_Eval.	The	last
argument	to	Tcl_VarEval	must	be	NULL	to	indicate	the	end	of
arguments.	Tcl_VarEval	is	now	deprecated.

Tcl_VarEvalVA	is	the	same	as	Tcl_VarEval	except	that	instead	of
taking	a	variable	number	of	arguments	it	takes	an	argument	list.	Like

Tcl_VarEval,	Tcl_VarEvalVA	is	deprecated.

FLAG	BITS

Any	ORed	combination	of	the	following	values	may	be	used	for	the
flags	argument	to	procedures	such	as	Tcl_EvalObjEx:

TCL_EVAL_DIRECT
This	flag	is	only	used	by	Tcl_EvalObjEx;	it	is	ignored	by	other
procedures.	If	this	flag	bit	is	set,	the	script	is	not	compiled	to
bytecodes;	instead	it	is	executed	directly	as	is	done	by	Tcl_EvalEx.
The	TCL_EVAL_DIRECT	flag	is	useful	in	situations	where	the
contents	of	an	object	are	going	to	change	immediately,	so	the
bytecodes	will	not	be	reused	in	a	future	execution.	In	this	case,	it	is
faster	to	execute	the	script	directly.

TCL_EVAL_GLOBAL
If	this	flag	is	set,	the	script	is	processed	at	global	level.	This	means
that	it	is	evaluated	in	the	global	namespace	and	its	variable	context
consists	of	global	variables	only	(it	ignores	any	Tcl	procedures	at
are	active).

MISCELLANEOUS	DETAILS

During	the	processing	of	a	Tcl	command	it	is	legal	to	make	nested	calls
to	evaluate	other	commands	(this	is	how	procedures	and	some	control
structures	are	implemented).	If	a	code	other	than	TCL_OK	is	returned
from	a	nested	Tcl_EvalObjEx	invocation,	then	the	caller	should
normally	return	immediately,	passing	that	same	return	code	back	to	its
caller,	and	so	on	until	the	top-level	application	is	reached.	A	few
commands,	like	for,	will	check	for	certain	return	codes,	like
TCL_BREAK	and	TCL_CONTINUE,	and	process	them	specially
without	returning.

Tcl_EvalObjEx	keeps	track	of	how	many	nested	Tcl_EvalObjEx
invocations	are	in	progress	for	interp.	If	a	code	of	TCL_RETURN,
TCL_BREAK,	or	TCL_CONTINUE	is	about	to	be	returned	from	the
topmost	Tcl_EvalObjEx	invocation	for	interp,	it	converts	the	return	code

to	TCL_ERROR	and	sets	interp's	result	to	an	error	message	indicating
that	the	return,	break,	or	continue	command	was	invoked	in	an
inappropriate	place.	This	means	that	top-level	applications	should	never
see	a	return	code	from	Tcl_EvalObjEx	other	then	TCL_OK	or
TCL_ERROR.

KEYWORDS

execute,	file,	global,	object,	result,	script

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1989-1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1997	Sun	Microsystems,	Inc.
Copyright	©	2000	Scriptics	Corporation.

Tcl_Interp	*interp	(in)

Tcl_Obj	*objPtr	(in)

int	flags	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	SubstObj

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tcl_SubstObj	-	perform	substitutions	on	Tcl	objects

SYNOPSIS

#include	<tcl.h>
Tcl_Obj	*
Tcl_SubstObj(interp,	objPtr,	flags)

ARGUMENTS

Interpreter	in	which	to
execute	Tcl	scripts	and
lookup	variables.	If	an
error	occurs,	the
interpreter's	result	is
modified	to	hold	an	error
message.

A	Tcl	object	containing	the
string	to	perform
substitutions	on.

ORed	combination	of	flag
bits	that	specify	which
substitutions	to	perform.
The	flags
TCL_SUBST_COMMANDS
TCL_SUBST_VARIABLES
and

TCL_SUBST_BACKSLASHES
are	currently	supported,
and	TCL_SUBST_ALL	is
provided	as	a	convenience
for	the	common	case
where	all	substitutions	are
desired.

DESCRIPTION

The	Tcl_SubstObj	function	is	used	to	perform	substitutions	on	strings
in	the	fashion	of	the	subst	command.	It	gets	the	value	of	the	string
contained	in	objPtr	and	scans	it,	copying	characters	and	performing	the
chosen	substitutions	as	it	goes	to	an	output	object	which	is	returned	as
the	result	of	the	function.	In	the	event	of	an	error	occurring	during	the
execution	of	a	command	or	variable	substitution,	the	function	returns
NULL	and	an	error	message	is	left	in	interp's	result.

Three	kinds	of	substitutions	are	supported.	When	the
TCL_SUBST_BACKSLASHES	bit	is	set	in	flags,	sequences	that	look
like	backslash	substitutions	for	Tcl	commands	are	replaced	by	their
corresponding	character.

When	the	TCL_SUBST_VARIABLES	bit	is	set	in	flags,	sequences	that
look	like	variable	substitutions	for	Tcl	commands	are	replaced	by	the
contents	of	the	named	variable.

When	the	TCL_SUBST_COMMANDS	bit	is	set	in	flags,	sequences	that
look	like	command	substitutions	for	Tcl	commands	are	replaced	by	the
result	of	evaluating	that	script.	Where	an	uncaught	“continue	exception”
occurs	during	the	evaluation	of	a	command	substitution,	an	empty	string
is	substituted	for	the	command.	Where	an	uncaught	“break	exception”
occurs	during	the	evaluation	of	a	command	substitution,	the	result	of
the	whole	substitution	on	objPtr	will	be	truncated	at	the	point
immediately	before	the	start	of	the	command	substitution,	and	no
characters	will	be	added	to	the	result	or	substitutions	performed	after
that	point.

SEE	ALSO

subst

KEYWORDS

backslash	substitution,	command	substitution,	variable	substitution

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	2001	Donal	K.	Fellows

Tcl_Interp	*interp	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	Init

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tcl_Init	-	find	and	source	initialization	script

SYNOPSIS

#include	<tcl.h>
int
Tcl_Init(interp)

ARGUMENTS

Interpreter	to	initialize.

DESCRIPTION

Tcl_Init	is	a	helper	procedure	that	finds	and	sources	the	init.tcl	script,
which	should	exist	somewhere	on	the	Tcl	library	path.

Tcl_Init	is	typically	called	from	Tcl_AppInit	procedures.

SEE	ALSO

Tcl_AppInit,	Tcl_Main

KEYWORDS

application,	initialization,	interpreter

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1998-2000	by	Scriptics	Corporation.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	TraceVar

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_TraceVar,	Tcl_TraceVar2,	Tcl_UntraceVar,
Tcl_UntraceVar2,	Tcl_VarTraceInfo,	Tcl_VarTraceInfo2	-
monitor	accesses	to	a	variable

SYNOPSIS
#include	<tcl.h>
int
Tcl_TraceVar(interp,	varName,	flags,	proc,	clientData)
int
Tcl_TraceVar2(interp,	name1,	name2,	flags,	proc,	clientData)
Tcl_UntraceVar(interp,	varName,	flags,	proc,	clientData)
Tcl_UntraceVar2(interp,	name1,	name2,	flags,	proc,
clientData)
ClientData
Tcl_VarTraceInfo(interp,	varName,	flags,	proc,
prevClientData)
ClientData
Tcl_VarTraceInfo2(interp,	name1,	name2,	flags,	proc,
prevClientData)

ARGUMENTS
DESCRIPTION

TCL_GLOBAL_ONLY
TCL_NAMESPACE_ONLY
TCL_TRACE_READS
TCL_TRACE_WRITES
TCL_TRACE_UNSETS
TCL_TRACE_ARRAY
TCL_TRACE_RESULT_DYNAMIC
TCL_TRACE_RESULT_OBJECT

TWO-PART	NAMES
ACCESSING	VARIABLES	DURING	TRACES

Tcl_Interp	*interp	(in)

const	char	*varName	(in)

CALLBACK	TIMING
WHOLE-ARRAY	TRACES
MULTIPLE	TRACES
ERROR	RETURNS
RESTRICTIONS
UNDEFINED	VARIABLES
TCL_TRACE_DESTROYED	FLAG
TCL_INTERP_DESTROYED
BUGS
KEYWORDS

NAME

Tcl_TraceVar,	Tcl_TraceVar2,	Tcl_UntraceVar,	Tcl_UntraceVar2,
Tcl_VarTraceInfo,	Tcl_VarTraceInfo2	-	monitor	accesses	to	a	variable

SYNOPSIS

#include	<tcl.h>
int
Tcl_TraceVar(interp,	varName,	flags,	proc,	clientData)
int
Tcl_TraceVar2(interp,	name1,	name2,	flags,	proc,	clientData)
Tcl_UntraceVar(interp,	varName,	flags,	proc,	clientData)
Tcl_UntraceVar2(interp,	name1,	name2,	flags,	proc,	clientData)
ClientData
Tcl_VarTraceInfo(interp,	varName,	flags,	proc,	prevClientData)
ClientData
Tcl_VarTraceInfo2(interp,	name1,	name2,	flags,	proc,	prevClientData)

ARGUMENTS

Interpreter	containing
variable.

Name	of	variable.	May
refer	to	a	scalar	variable,
to	an	array	variable	with	no

int	flags	(in)

Tcl_VarTraceProc	*proc	(in)

ClientData	clientData	(in)

const	char	*name1	(in)

const	char	*name2	(in)

ClientData	prevClientData	(in)

index,	or	to	an	array
variable	with	a
parenthesized	index.

OR-ed	combination	of	the
values
TCL_TRACE_READS,
TCL_TRACE_WRITES,
TCL_TRACE_UNSETS,
TCL_TRACE_ARRAY,
TCL_GLOBAL_ONLY,
TCL_NAMESPACE_ONLY,
TCL_TRACE_RESULT_DYNAMIC
and
TCL_TRACE_RESULT_OBJECT
Not	all	flags	are	used	by	all
procedures.	See	below	for
more	information.

Procedure	to	invoke
whenever	one	of	the
traced	operations	occurs.

Arbitrary	one-word	value
to	pass	to	proc.

Name	of	scalar	or	array
variable	(without	array
index).

For	a	trace	on	an	element
of	an	array,	gives	the	index
of	the	element.	For	traces
on	scalar	variables	or	on
whole	arrays,	is	NULL.

If	non-NULL,	gives	last

value	returned	by
Tcl_VarTraceInfo	or
Tcl_VarTraceInfo2,	so	this
call	will	return	information
about	next	trace.	If	NULL,
this	call	will	return
information	about	first
trace.

DESCRIPTION

Tcl_TraceVar	allows	a	C	procedure	to	monitor	and	control	access	to	a
Tcl	variable,	so	that	the	C	procedure	is	invoked	whenever	the	variable	is
read	or	written	or	unset.	If	the	trace	is	created	successfully	then
Tcl_TraceVar	returns	TCL_OK.	If	an	error	occurred	(e.g.	varName
specifies	an	element	of	an	array,	but	the	actual	variable	is	not	an	array)
then	TCL_ERROR	is	returned	and	an	error	message	is	left	in	the
interpreter's	result.

The	flags	argument	to	Tcl_TraceVar	indicates	when	the	trace
procedure	is	to	be	invoked	and	provides	information	for	setting	up	the
trace.	It	consists	of	an	OR-ed	combination	of	any	of	the	following
values:

TCL_GLOBAL_ONLY
Normally,	the	variable	will	be	looked	up	at	the	current	level	of
procedure	call;	if	this	bit	is	set	then	the	variable	will	be	looked	up	at
global	level,	ignoring	any	active	procedures.

TCL_NAMESPACE_ONLY
Normally,	the	variable	will	be	looked	up	at	the	current	level	of
procedure	call;	if	this	bit	is	set	then	the	variable	will	be	looked	up	in
the	current	namespace,	ignoring	any	active	procedures.

TCL_TRACE_READS
Invoke	proc	whenever	an	attempt	is	made	to	read	the	variable.

TCL_TRACE_WRITES
Invoke	proc	whenever	an	attempt	is	made	to	modify	the	variable.

TCL_TRACE_UNSETS
Invoke	proc	whenever	the	variable	is	unset.	A	variable	may	be
unset	either	explicitly	by	an	unset	command,	or	implicitly	when	a
procedure	returns	(its	local	variables	are	automatically	unset)	or
when	the	interpreter	is	deleted	(all	variables	are	automatically
unset).

TCL_TRACE_ARRAY
Invoke	proc	whenever	the	array	command	is	invoked.	This	gives
the	trace	procedure	a	chance	to	update	the	array	before	array
names	or	array	get	is	called.	Note	that	this	is	called	before	an	array
set,	but	that	will	trigger	write	traces.

TCL_TRACE_RESULT_DYNAMIC
The	result	of	invoking	the	proc	is	a	dynamically	allocated	string	that
will	be	released	by	the	Tcl	library	via	a	call	to	ckfree.	Must	not	be
specified	at	the	same	time	as	TCL_TRACE_RESULT_OBJECT.

TCL_TRACE_RESULT_OBJECT
The	result	of	invoking	the	proc	is	a	Tcl_Obj*	(cast	to	a	char*)	with	a
reference	count	of	at	least	one.	The	ownership	of	that	reference	will
be	transferred	to	the	Tcl	core	for	release	(when	the	core	has
finished	with	it)	via	a	call	to	Tcl_DecrRefCount.	Must	not	be
specified	at	the	same	time	as	TCL_TRACE_RESULT_DYNAMIC.

Whenever	one	of	the	specified	operations	occurs	on	the	variable,	proc
will	be	invoked.	It	should	have	arguments	and	result	that	match	the	type
Tcl_VarTraceProc:

typedef	char	*Tcl_VarTraceProc(

								ClientData	clientData,

								Tcl_Interp	*interp,

								char	*name1,

								char	*name2,

								int	flags);

The	clientData	and	interp	parameters	will	have	the	same	values	as
those	passed	to	Tcl_TraceVar	when	the	trace	was	created.	ClientData
typically	points	to	an	application-specific	data	structure	that	describes
what	to	do	when	proc	is	invoked.	Name1	and	name2	give	the	name	of
the	traced	variable	in	the	normal	two-part	form	(see	the	description	of
Tcl_TraceVar2	below	for	details).	Flags	is	an	OR-ed	combination	of	bits
providing	several	pieces	of	information.	One	of	the	bits
TCL_TRACE_READS,	TCL_TRACE_WRITES,	TCL_TRACE_ARRAY,
or	TCL_TRACE_UNSETS	will	be	set	in	flags	to	indicate	which
operation	is	being	performed	on	the	variable.	The	bit
TCL_GLOBAL_ONLY	will	be	set	whenever	the	variable	being	accessed
is	a	global	one	not	accessible	from	the	current	level	of	procedure	call:
the	trace	procedure	will	need	to	pass	this	flag	back	to	variable-related
procedures	like	Tcl_GetVar	if	it	attempts	to	access	the	variable.	The	bit
TCL_NAMESPACE_ONLY	will	be	set	whenever	the	variable	being
accessed	is	a	namespace	one	not	accessible	from	the	current	level	of
procedure	call:	the	trace	procedure	will	need	to	pass	this	flag	back	to
variable-related	procedures	like	Tcl_GetVar	if	it	attempts	to	access	the
variable.	The	bit	TCL_TRACE_DESTROYED	will	be	set	in	flags	if	the
trace	is	about	to	be	destroyed;	this	information	may	be	useful	to	proc	so
that	it	can	clean	up	its	own	internal	data	structures	(see	the	section
TCL_TRACE_DESTROYED	below	for	more	details).	Lastly,	the	bit
TCL_INTERP_DESTROYED	will	be	set	if	the	entire	interpreter	is	being
destroyed.	When	this	bit	is	set,	proc	must	be	especially	careful	in	the
things	it	does	(see	the	section	TCL_INTERP_DESTROYED	below).	The
trace	procedure's	return	value	should	normally	be	NULL;	see	ERROR
RETURNS	below	for	information	on	other	possibilities.

Tcl_UntraceVar	may	be	used	to	remove	a	trace.	If	the	variable
specified	by	interp,	varName,	and	flags	has	a	trace	set	with	flags,	proc,
and	clientData,	then	the	corresponding	trace	is	removed.	If	no	such
trace	exists,	then	the	call	to	Tcl_UntraceVar	has	no	effect.	The	same
bits	are	valid	for	flags	as	for	calls	to	Tcl_TraceVar.

Tcl_VarTraceInfo	may	be	used	to	retrieve	information	about	traces	set

on	a	given	variable.	The	return	value	from	Tcl_VarTraceInfo	is	the
clientData	associated	with	a	particular	trace.	The	trace	must	be	on	the
variable	specified	by	the	interp,	varName,	and	flags	arguments	(only	the
TCL_GLOBAL_ONLY	and	TCL_NAMESPACE_ONLY	bits	from	flags	is
used;	other	bits	are	ignored)	and	its	trace	procedure	must	the	same	as
the	proc	argument.	If	the	prevClientData	argument	is	NULL	then	the
return	value	corresponds	to	the	first	(most	recently	created)	matching
trace,	or	NULL	if	there	are	no	matching	traces.	If	the	prevClientData
argument	is	not	NULL,	then	it	should	be	the	return	value	from	a
previous	call	to	Tcl_VarTraceInfo.	In	this	case,	the	new	return	value	will
correspond	to	the	next	matching	trace	after	the	one	whose	clientData
matches	prevClientData,	or	NULL	if	no	trace	matches	prevClientData	or
if	there	are	no	more	matching	traces	after	it.	This	mechanism	makes	it
possible	to	step	through	all	of	the	traces	for	a	given	variable	that	have
the	same	proc.

TWO-PART	NAMES

The	procedures	Tcl_TraceVar2,	Tcl_UntraceVar2,	and
Tcl_VarTraceInfo2	are	identical	to	Tcl_TraceVar,	Tcl_UntraceVar,	and
Tcl_VarTraceInfo,	respectively,	except	that	the	name	of	the	variable
consists	of	two	parts.	Name1	gives	the	name	of	a	scalar	variable	or
array,	and	name2	gives	the	name	of	an	element	within	an	array.	When
name2	is	NULL,	name1	may	contain	both	an	array	and	an	element
name:	if	the	name	contains	an	open	parenthesis	and	ends	with	a	close
parenthesis,	then	the	value	between	the	parentheses	is	treated	as	an
element	name	(which	can	have	any	string	value)	and	the	characters
before	the	first	open	parenthesis	are	treated	as	the	name	of	an	array
variable.	If	name2	is	NULL	and	name1	does	not	refer	to	an	array
element	it	means	that	either	the	variable	is	a	scalar	or	the	trace	is	to	be
set	on	the	entire	array	rather	than	an	individual	element	(see	WHOLE-
ARRAY	TRACES	below	for	more	information).

ACCESSING	VARIABLES	DURING	TRACES

During	read,	write,	and	array	traces,	the	trace	procedure	can	read,
write,	or	unset	the	traced	variable	using	Tcl_GetVar2,	Tcl_SetVar2,	and
other	procedures.	While	proc	is	executing,	traces	are	temporarily

disabled	for	the	variable,	so	that	calls	to	Tcl_GetVar2	and	Tcl_SetVar2
will	not	cause	proc	or	other	trace	procedures	to	be	invoked	again.
Disabling	only	occurs	for	the	variable	whose	trace	procedure	is	active;
accesses	to	other	variables	will	still	be	traced.	However,	if	a	variable	is
unset	during	a	read	or	write	trace	then	unset	traces	will	be	invoked.

During	unset	traces	the	variable	has	already	been	completely
expunged.	It	is	possible	for	the	trace	procedure	to	read	or	write	the
variable,	but	this	will	be	a	new	version	of	the	variable.	Traces	are	not
disabled	during	unset	traces	as	they	are	for	read	and	write	traces,	but
existing	traces	have	been	removed	from	the	variable	before	any	trace
procedures	are	invoked.	If	new	traces	are	set	by	unset	trace
procedures,	these	traces	will	be	invoked	on	accesses	to	the	variable	by
the	trace	procedures.

CALLBACK	TIMING

When	read	tracing	has	been	specified	for	a	variable,	the	trace
procedure	will	be	invoked	whenever	the	variable's	value	is	read.	This
includes	set	Tcl	commands,	$-notation	in	Tcl	commands,	and
invocations	of	the	Tcl_GetVar	and	Tcl_GetVar2	procedures.	Proc	is
invoked	just	before	the	variable's	value	is	returned.	It	may	modify	the
value	of	the	variable	to	affect	what	is	returned	by	the	traced	access.	If	it
unsets	the	variable	then	the	access	will	return	an	error	just	as	if	the
variable	never	existed.

When	write	tracing	has	been	specified	for	a	variable,	the	trace
procedure	will	be	invoked	whenever	the	variable's	value	is	modified.
This	includes	set	commands,	commands	that	modify	variables	as	side
effects	(such	as	catch	and	scan),	and	calls	to	the	Tcl_SetVar	and
Tcl_SetVar2	procedures).	Proc	will	be	invoked	after	the	variable's	value
has	been	modified,	but	before	the	new	value	of	the	variable	has	been
returned.	It	may	modify	the	value	of	the	variable	to	override	the	change
and	to	determine	the	value	actually	returned	by	the	traced	access.	If	it
deletes	the	variable	then	the	traced	access	will	return	an	empty	string.

When	array	tracing	has	been	specified,	the	trace	procedure	will	be
invoked	at	the	beginning	of	the	array	command	implementation,	before

any	of	the	operations	like	get,	set,	or	names	have	been	invoked.	The
trace	procedure	can	modify	the	array	elements	with	Tcl_SetVar	and
Tcl_SetVar2.

When	unset	tracing	has	been	specified,	the	trace	procedure	will	be
invoked	whenever	the	variable	is	destroyed.	The	traces	will	be	called
after	the	variable	has	been	completely	unset.

WHOLE-ARRAY	TRACES

If	a	call	to	Tcl_TraceVar	or	Tcl_TraceVar2	specifies	the	name	of	an
array	variable	without	an	index	into	the	array,	then	the	trace	will	be	set
on	the	array	as	a	whole.	This	means	that	proc	will	be	invoked	whenever
any	element	of	the	array	is	accessed	in	the	ways	specified	by	flags.
When	an	array	is	unset,	a	whole-array	trace	will	be	invoked	just	once,
with	name1	equal	to	the	name	of	the	array	and	name2	NULL;	it	will	not
be	invoked	once	for	each	element.

MULTIPLE	TRACES

It	is	possible	for	multiple	traces	to	exist	on	the	same	variable.	When	this
happens,	all	of	the	trace	procedures	will	be	invoked	on	each	access,	in
order	from	most-recently-created	to	least-recently-created.	When	there
exist	whole-array	traces	for	an	array	as	well	as	traces	on	individual
elements,	the	whole-array	traces	are	invoked	before	the	individual-
element	traces.	If	a	read	or	write	trace	unsets	the	variable	then	all	of	the
unset	traces	will	be	invoked	but	the	remainder	of	the	read	and	write
traces	will	be	skipped.

ERROR	RETURNS

Under	normal	conditions	trace	procedures	should	return	NULL,
indicating	successful	completion.	If	proc	returns	a	non-NULL	value	it
signifies	that	an	error	occurred.	The	return	value	must	be	a	pointer	to	a
static	character	string	containing	an	error	message,	unless	(exactly	one
of)	the	TCL_TRACE_RESULT_DYNAMIC	and
TCL_TRACE_RESULT_OBJECT	flags	is	set,	which	specify	that	the
result	is	either	a	dynamic	string	(to	be	released	with	ckfree)	or	a

Tcl_Obj*	(cast	to	char*	and	to	be	released	with	Tcl_DecrRefCount)
containing	the	error	message.	If	a	trace	procedure	returns	an	error,	no
further	traces	are	invoked	for	the	access	and	the	traced	access	aborts
with	the	given	message.	Trace	procedures	can	use	this	facility	to	make
variables	read-only,	for	example	(but	note	that	the	value	of	the	variable
will	already	have	been	modified	before	the	trace	procedure	is	called,	so
the	trace	procedure	will	have	to	restore	the	correct	value).

The	return	value	from	proc	is	only	used	during	read	and	write	tracing.
During	unset	traces,	the	return	value	is	ignored	and	all	relevant	trace
procedures	will	always	be	invoked.

RESTRICTIONS

A	trace	procedure	can	be	called	at	any	time,	even	when	there	is	a
partially	formed	result	in	the	interpreter's	result	area.	If	the	trace
procedure	does	anything	that	could	damage	this	result	(such	as	calling
Tcl_Eval)	then	it	must	save	the	original	values	of	the	interpreter's	result
and	freeProc	fields	and	restore	them	before	it	returns.

UNDEFINED	VARIABLES

It	is	legal	to	set	a	trace	on	an	undefined	variable.	The	variable	will	still
appear	to	be	undefined	until	the	first	time	its	value	is	set.	If	an
undefined	variable	is	traced	and	then	unset,	the	unset	will	fail	with	an
error	(“no	such	variable”),	but	the	trace	procedure	will	still	be	invoked.

TCL_TRACE_DESTROYED	FLAG

In	an	unset	callback	to	proc,	the	TCL_TRACE_DESTROYED	bit	is	set
in	flags	if	the	trace	is	being	removed	as	part	of	the	deletion.	Traces	on	a
variable	are	always	removed	whenever	the	variable	is	deleted;	the	only
time	TCL_TRACE_DESTROYED	is	not	set	is	for	a	whole-array	trace
invoked	when	only	a	single	element	of	an	array	is	unset.

TCL_INTERP_DESTROYED

When	an	interpreter	is	destroyed,	unset	traces	are	called	for	all	of	its

variables.	The	TCL_INTERP_DESTROYED	bit	will	be	set	in	the	flags
argument	passed	to	the	trace	procedures.	Trace	procedures	must	be
extremely	careful	in	what	they	do	if	the	TCL_INTERP_DESTROYED	bit
is	set.	It	is	not	safe	for	the	procedures	to	invoke	any	Tcl	procedures	on
the	interpreter,	since	its	state	is	partially	deleted.	All	that	trace
procedures	should	do	under	these	circumstances	is	to	clean	up	and
free	their	own	internal	data	structures.

BUGS

Tcl	does	not	do	any	error	checking	to	prevent	trace	procedures	from
misusing	the	interpreter	during	traces	with	TCL_INTERP_DESTROYED
set.

Array	traces	are	not	yet	integrated	with	the	Tcl	info	exists	command,
nor	is	there	Tcl-level	access	to	array	traces.

KEYWORDS

clientData,	trace,	variable

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1989-1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

int	flags	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	DoOneEvent

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_DoOneEvent	-	wait	for	events	and	invoke	event	handlers

SYNOPSIS
#include	<tcl.h>
int
Tcl_DoOneEvent(flags)

ARGUMENTS
DESCRIPTION

TCL_WINDOW_EVENTS	-
TCL_FILE_EVENTS	-
TCL_TIMER_EVENTS	-
TCL_IDLE_EVENTS	-
TCL_ALL_EVENTS	-
TCL_DONT_WAIT	-

KEYWORDS

NAME

Tcl_DoOneEvent	-	wait	for	events	and	invoke	event	handlers

SYNOPSIS

#include	<tcl.h>
int
Tcl_DoOneEvent(flags)

ARGUMENTS

This	parameter	is	normally
zero.	It	may	be	an	OR-ed
combination	of	any	of	the
following	flag	bits:

TCL_WINDOW_EVENTS,
TCL_FILE_EVENTS,
TCL_TIMER_EVENTS,
TCL_IDLE_EVENTS,
TCL_ALL_EVENTS,	or
TCL_DONT_WAIT.

DESCRIPTION

This	procedure	is	the	entry	point	to	Tcl's	event	loop;	it	is	responsible	for
waiting	for	events	and	dispatching	event	handlers	created	with
procedures	such	as	Tk_CreateEventHandler,	Tcl_CreateFileHandler,
Tcl_CreateTimerHandler,	and	Tcl_DoWhenIdle.	Tcl_DoOneEvent
checks	to	see	if	events	are	already	present	on	the	Tcl	event	queue;	if
so,	it	calls	the	handler(s)	for	the	first	(oldest)	event,	removes	it	from	the
queue,	and	returns.	If	there	are	no	events	ready	to	be	handled,	then
Tcl_DoOneEvent	checks	for	new	events	from	all	possible	sources.	If
any	are	found,	it	puts	all	of	them	on	Tcl's	event	queue,	calls	handlers	for
the	first	event	on	the	queue,	and	returns.	If	no	events	are	found,
Tcl_DoOneEvent	checks	for	Tcl_DoWhenIdle	callbacks;	if	any	are
found,	it	invokes	all	of	them	and	returns.	Finally,	if	no	events	or	idle
callbacks	have	been	found,	then	Tcl_DoOneEvent	sleeps	until	an
event	occurs;	then	it	adds	any	new	events	to	the	Tcl	event	queue,	calls
handlers	for	the	first	event,	and	returns.	The	normal	return	value	is	1	to
signify	that	some	event	was	processed	(see	below	for	other
alternatives).

If	the	flags	argument	to	Tcl_DoOneEvent	is	non-zero,	it	restricts	the
kinds	of	events	that	will	be	processed	by	Tcl_DoOneEvent.	Flags	may
be	an	OR-ed	combination	of	any	of	the	following	bits:

TCL_WINDOW_EVENTS	-
Process	window	system	events.

TCL_FILE_EVENTS	-
Process	file	events.

TCL_TIMER_EVENTS	-
Process	timer	events.

TCL_IDLE_EVENTS	-
Process	idle	callbacks.

TCL_ALL_EVENTS	-
Process	all	kinds	of	events:	equivalent	to	OR-ing	together	all	of	the
above	flags	or	specifying	none	of	them.

TCL_DONT_WAIT	-
Do	not	sleep:	process	only	events	that	are	ready	at	the	time	of	the
call.

If	any	of	the	flags	TCL_WINDOW_EVENTS,	TCL_FILE_EVENTS,
TCL_TIMER_EVENTS,	or	TCL_IDLE_EVENTS	is	set,	then	the	only
events	that	will	be	considered	are	those	for	which	flags	are	set.	Setting
none	of	these	flags	is	equivalent	to	the	value	TCL_ALL_EVENTS,
which	causes	all	event	types	to	be	processed.	If	an	application	has
defined	additional	event	sources	with	Tcl_CreateEventSource,	then
additional	flag	values	may	also	be	valid,	depending	on	those	event
sources.

The	TCL_DONT_WAIT	flag	causes	Tcl_DoOneEvent	not	to	put	the
process	to	sleep:	it	will	check	for	events	but	if	none	are	found	then	it
returns	immediately	with	a	return	value	of	0	to	indicate	that	no	work	was
done.	Tcl_DoOneEvent	will	also	return	0	without	doing	anything	if	the
only	alternative	is	to	block	forever	(this	can	happen,	for	example,	if	flags
is	TCL_IDLE_EVENTS	and	there	are	no	Tcl_DoWhenIdle	callbacks
pending,	or	if	no	event	handlers	or	timer	handlers	exist).

Tcl_DoOneEvent	may	be	invoked	recursively.	For	example,	it	is
possible	to	invoke	Tcl_DoOneEvent	recursively	from	a	handler	called
by	Tcl_DoOneEvent.	This	sort	of	operation	is	useful	in	some	modal
situations,	such	as	when	a	notification	dialog	has	been	popped	up	and
an	application	wishes	to	wait	for	the	user	to	click	a	button	in	the	dialog
before	doing	anything	else.

KEYWORDS

callback,	event,	handler,	idle,	timer

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990-1992	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>
DumpActiveMemory

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_DumpActiveMemory,	Tcl_InitMemory,
Tcl_ValidateAllMemory	-	Validated	memory	allocation	interface

SYNOPSIS
#include	<tcl.h>
int
Tcl_DumpActiveMemory(fileName)
void
Tcl_InitMemory(interp)
void
Tcl_ValidateAllMemory(fileName,	line)

ARGUMENTS
DESCRIPTION
SEE	ALSO
KEYWORDS

NAME

Tcl_DumpActiveMemory,	Tcl_InitMemory,	Tcl_ValidateAllMemory	-
Validated	memory	allocation	interface

SYNOPSIS

#include	<tcl.h>
int
Tcl_DumpActiveMemory(fileName)
void
Tcl_InitMemory(interp)
void
Tcl_ValidateAllMemory(fileName,	line)

Tcl_Interp	*interp	(in)

const	char	*fileName	(in)

int	line	(in)

ARGUMENTS

Tcl	interpreter	in	which	to
add	commands.

For
Tcl_DumpActiveMemory,
name	of	the	file	to	which
memory	information	will	be
written.	For
Tcl_ValidateAllMemory,
name	of	the	file	from	which
the	call	is	being	made
(normally	__FILE__).

Line	number	at	which	the
call	to
Tcl_ValidateAllMemory	is
made	(normally
__LINE__).

DESCRIPTION

These	functions	provide	access	to	Tcl	memory	debugging	information.
They	are	only	functional	when	Tcl	has	been	compiled	with
TCL_MEM_DEBUG	defined	at	compile-time.	When
TCL_MEM_DEBUG	is	not	defined,	these	functions	are	all	no-ops.

Tcl_DumpActiveMemory	will	output	a	list	of	all	currently	allocated
memory	to	the	specified	file.	The	information	output	for	each	allocated
block	of	memory	is:	starting	and	ending	addresses	(excluding	guard
zone),	size,	source	file	where	ckalloc	was	called	to	allocate	the	block
and	line	number	in	that	file.	It	is	especially	useful	to	call
Tcl_DumpActiveMemory	after	the	Tcl	interpreter	has	been	deleted.

Tcl_InitMemory	adds	the	Tcl	memory	command	to	the	interpreter
given	by	interp.	Tcl_InitMemory	is	called	by	Tcl_Main.

Tcl_ValidateAllMemory	forces	a	validation	of	the	guard	zones	of	all
currently	allocated	blocks	of	memory.	Normally	validation	of	a	block
occurs	when	its	freed,	unless	full	validation	is	enabled,	in	which	case
validation	of	all	blocks	occurs	when	ckalloc	and	ckfree	are	called.	This
function	forces	the	validation	to	occur	at	any	point.

SEE	ALSO

TCL_MEM_DEBUG,	memory

KEYWORDS

memory,	debug

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1992-1999	Karl	Lehenbauer	and	Mark	Diekhans.
Copyright	©	2000	by	Scriptics	Corporation.

Tcl_Interp	*interp	(in)

const	char	*name	(in)

Tcl_DString	*bufferPtr	(in/out)

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	Translate

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tcl_TranslateFileName	-	convert	file	name	to	native	form	and	replace
tilde	with	home	directory

SYNOPSIS

#include	<tcl.h>
char	*
Tcl_TranslateFileName(interp,	name,	bufferPtr)

ARGUMENTS

Interpreter	in	which	to
report	an	error,	if	any.

File	name,	which	may	start
with	a	“~”.

If	needed,	this	dynamic
string	is	used	to	store	the
new	file	name.	At	the	time
of	the	call	it	should	be
uninitialized	or	free.	The
caller	must	eventually	call
Tcl_DStringFree	to	free
up	anything	stored	here.

DESCRIPTION

This	utility	procedure	translates	a	file	name	to	a	platform-specific	form

which,	after	being	converted	to	the	appropriate	encoding,	is	suitable	for
passing	to	the	local	operating	system.	In	particular,	it	converts	network
names	into	native	form	and	does	tilde	substitution.

However,	with	the	advent	of	the	newer	Tcl_FSGetNormalizedPath	and
Tcl_GetNativePath,	there	is	no	longer	any	need	to	use	this	procedure.
In	particular,	Tcl_GetNativePath	performs	all	the	necessary	translation
and	encoding	conversion,	is	virtual-filesystem	aware,	and	caches	the
native	result	for	faster	repeated	calls.	Finally	Tcl_GetNativePath	does
not	require	you	to	free	anything	afterwards.

If	Tcl_TranslateFileName	has	to	do	tilde	substitution	or	translate	the
name	then	it	uses	the	dynamic	string	at	*bufferPtr	to	hold	the	new	string
it	generates.	After	Tcl_TranslateFileName	returns	a	non-NULL	result,
the	caller	must	eventually	invoke	Tcl_DStringFree	to	free	any
information	placed	in	*bufferPtr.	The	caller	need	not	know	whether	or
not	Tcl_TranslateFileName	actually	used	the	string;
Tcl_TranslateFileName	initializes	*bufferPtr	even	if	it	does	not	use	it,
so	the	call	to	Tcl_DStringFree	will	be	safe	in	either	case.

If	an	error	occurs	(e.g.	because	there	was	no	user	by	the	given	name)
then	NULL	is	returned	and	an	error	message	will	be	left	in	the
interpreter's	result.	When	an	error	occurs,	Tcl_TranslateFileName
frees	the	dynamic	string	itself	so	that	the	caller	need	not	call
Tcl_DStringFree.

The	caller	is	responsible	for	making	sure	that	the	interpreter's	result	has
its	default	empty	value	when	Tcl_TranslateFileName	is	invoked.

SEE	ALSO

filename

KEYWORDS

file	name,	home	directory,	tilde,	translate,	user

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.

Copyright	©	1989-1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1998	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	DString

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_DStringInit,	Tcl_DStringAppend,
Tcl_DStringAppendElement,	Tcl_DStringStartSublist,
Tcl_DStringEndSublist,	Tcl_DStringLength,	Tcl_DStringValue,
Tcl_DStringSetLength,	Tcl_DStringTrunc,	Tcl_DStringFree,
Tcl_DStringResult,	Tcl_DStringGetResult	-	manipulate	dynamic
strings

SYNOPSIS
#include	<tcl.h>
Tcl_DStringInit(dsPtr)
char	*
Tcl_DStringAppend(dsPtr,	bytes,	length)
char	*
Tcl_DStringAppendElement(dsPtr,	element)
Tcl_DStringStartSublist(dsPtr)
Tcl_DStringEndSublist(dsPtr)
int
Tcl_DStringLength(dsPtr)
char	*
Tcl_DStringValue(dsPtr)
Tcl_DStringSetLength(dsPtr,	newLength)
Tcl_DStringTrunc(dsPtr,	newLength)
Tcl_DStringFree(dsPtr)
Tcl_DStringResult(interp,	dsPtr)
Tcl_DStringGetResult(interp,	dsPtr)

ARGUMENTS
DESCRIPTION
KEYWORDS

NAME

Tcl_DString	*dsPtr	(in/out)

const	char	*bytes	(in)

const	char	*element	(in)

Tcl_DStringInit,	Tcl_DStringAppend,	Tcl_DStringAppendElement,
Tcl_DStringStartSublist,	Tcl_DStringEndSublist,	Tcl_DStringLength,
Tcl_DStringValue,	Tcl_DStringSetLength,	Tcl_DStringTrunc,
Tcl_DStringFree,	Tcl_DStringResult,	Tcl_DStringGetResult	-	manipulate
dynamic	strings

SYNOPSIS

#include	<tcl.h>
Tcl_DStringInit(dsPtr)
char	*
Tcl_DStringAppend(dsPtr,	bytes,	length)
char	*
Tcl_DStringAppendElement(dsPtr,	element)
Tcl_DStringStartSublist(dsPtr)
Tcl_DStringEndSublist(dsPtr)
int
Tcl_DStringLength(dsPtr)
char	*
Tcl_DStringValue(dsPtr)
Tcl_DStringSetLength(dsPtr,	newLength)
Tcl_DStringTrunc(dsPtr,	newLength)
Tcl_DStringFree(dsPtr)
Tcl_DStringResult(interp,	dsPtr)
Tcl_DStringGetResult(interp,	dsPtr)

ARGUMENTS

Pointer	to	structure	that	is
used	to	manage	a
dynamic	string.

Pointer	to	characters	to
append	to	dynamic	string.

Pointer	to	characters	to
append	as	list	element	to

int	length	(in)

int	newLength	(in)

Tcl_Interp	*interp	(in/out)

dynamic	string.

Number	of	bytes	from
bytes	to	add	to	dynamic
string.	If	-1,	add	all
characters	up	to	null
terminating	character.

New	length	for	dynamic
string,	not	including	null
terminating	character.

Interpreter	whose	result	is
to	be	set	from	or	moved	to
the	dynamic	string.

DESCRIPTION

Dynamic	strings	provide	a	mechanism	for	building	up	arbitrarily	long
strings	by	gradually	appending	information.	If	the	dynamic	string	is	short
then	there	will	be	no	memory	allocation	overhead;	as	the	string	gets
larger,	additional	space	will	be	allocated	as	needed.

Tcl_DStringInit	initializes	a	dynamic	string	to	zero	length.	The
Tcl_DString	structure	must	have	been	allocated	by	the	caller.	No
assumptions	are	made	about	the	current	state	of	the	structure;	anything
already	in	it	is	discarded.	If	the	structure	has	been	used	previously,
Tcl_DStringFree	should	be	called	first	to	free	up	any	memory	allocated
for	the	old	string.

Tcl_DStringAppend	adds	new	information	to	a	dynamic	string,
allocating	more	memory	for	the	string	if	needed.	If	length	is	less	than
zero	then	everything	in	bytes	is	appended	to	the	dynamic	string;
otherwise	length	specifies	the	number	of	bytes	to	append.
Tcl_DStringAppend	returns	a	pointer	to	the	characters	of	the	new
string.	The	string	can	also	be	retrieved	from	the	string	field	of	the
Tcl_DString	structure.

Tcl_DStringAppendElement	is	similar	to	Tcl_DStringAppend	except
that	it	does	not	take	a	length	argument	(it	appends	all	of	element)	and	it
converts	the	string	to	a	proper	list	element	before	appending.
Tcl_DStringAppendElement	adds	a	separator	space	before	the	new
list	element	unless	the	new	list	element	is	the	first	in	a	list	or	sub-list
(i.e.	either	the	current	string	is	empty,	or	it	contains	the	single	character
“{”,	or	the	last	two	characters	of	the	current	string	are	“	{”).
Tcl_DStringAppendElement	returns	a	pointer	to	the	characters	of	the
new	string.

Tcl_DStringStartSublist	and	Tcl_DStringEndSublist	can	be	used	to
create	nested	lists.	To	append	a	list	element	that	is	itself	a	sublist,	first
call	Tcl_DStringStartSublist,	then	call	Tcl_DStringAppendElement
for	each	of	the	elements	in	the	sublist,	then	call
Tcl_DStringEndSublist	to	end	the	sublist.	Tcl_DStringStartSublist
appends	a	space	character	if	needed,	followed	by	an	open	brace;
Tcl_DStringEndSublist	appends	a	close	brace.	Lists	can	be	nested	to
any	depth.

Tcl_DStringLength	is	a	macro	that	returns	the	current	length	of	a
dynamic	string	(not	including	the	terminating	null	character).
Tcl_DStringValue	is	a	macro	that	returns	a	pointer	to	the	current
contents	of	a	dynamic	string.

Tcl_DStringSetLength	changes	the	length	of	a	dynamic	string.	If
newLength	is	less	than	the	string's	current	length,	then	the	string	is
truncated.	If	newLength	is	greater	than	the	string's	current	length,	then
the	string	will	become	longer	and	new	space	will	be	allocated	for	the
string	if	needed.	However,	Tcl_DStringSetLength	will	not	initialize	the
new	space	except	to	provide	a	terminating	null	character;	it	is	up	to	the
caller	to	fill	in	the	new	space.	Tcl_DStringSetLength	does	not	free	up
the	string's	storage	space	even	if	the	string	is	truncated	to	zero	length,
so	Tcl_DStringFree	will	still	need	to	be	called.

Tcl_DStringTrunc	changes	the	length	of	a	dynamic	string.	This
procedure	is	now	deprecated.	Tcl_DStringSetLength	should	be	used
instead.

Tcl_DStringFree	should	be	called	when	you	are	finished	using	the
string.	It	frees	up	any	memory	that	was	allocated	for	the	string	and
reinitializes	the	string's	value	to	an	empty	string.

Tcl_DStringResult	sets	the	result	of	interp	to	the	value	of	the	dynamic
string	given	by	dsPtr.	It	does	this	by	moving	a	pointer	from	dsPtr	to	the
interpreter's	result.	This	saves	the	cost	of	allocating	new	memory	and
copying	the	string.	Tcl_DStringResult	also	reinitializes	the	dynamic
string	to	an	empty	string.

Tcl_DStringGetResult	does	the	opposite	of	Tcl_DStringResult.	It	sets
the	value	of	dsPtr	to	the	result	of	interp	and	it	clears	interp's	result.	If
possible	it	does	this	by	moving	a	pointer	rather	than	by	copying	the
string.

KEYWORDS

append,	dynamic	string,	free,	result

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl_Interp	*interp	(in)

const	char	*version	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	InitStubs

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_InitStubs	-	initialize	the	Tcl	stubs	mechanism

SYNOPSIS
#include	<tcl.h>
const	char	*
Tcl_InitStubs(interp,	version,	exact)

ARGUMENTS
INTRODUCTION

1)
2)
1)
2)
3)

DESCRIPTION
SEE	ALSO
KEYWORDS

NAME

Tcl_InitStubs	-	initialize	the	Tcl	stubs	mechanism

SYNOPSIS

#include	<tcl.h>
const	char	*
Tcl_InitStubs(interp,	version,	exact)

ARGUMENTS

Tcl	interpreter	handle.

A	version	string	consisting

int	exact	(in)

of	one	or	more	decimal
numbers	separated	by
dots.

Non-zero	means	that	only
the	particular	version
specified	by	version	is
acceptable.	Zero	means
that	versions	newer	than
version	are	also
acceptable	as	long	as	they
have	the	same	major
version	number	as	version.

INTRODUCTION

The	Tcl	stubs	mechanism	defines	a	way	to	dynamically	bind	extensions
to	a	particular	Tcl	implementation	at	run	time.	This	provides	two
significant	benefits	to	Tcl	users:

1)
Extensions	that	use	the	stubs	mechanism	can	be	loaded	into
multiple	versions	of	Tcl	without	being	recompiled	or	relinked.

2)
Extensions	that	use	the	stubs	mechanism	can	be	dynamically
loaded	into	statically-linked	Tcl	applications.

The	stubs	mechanism	accomplishes	this	by	exporting	function	tables
that	define	an	interface	to	the	Tcl	API.	The	extension	then	accesses	the
Tcl	API	through	offsets	into	the	function	table,	so	there	are	no	direct
references	to	any	of	the	Tcl	library's	symbols.	This	redirection	is
transparent	to	the	extension,	so	an	extension	writer	can	continue	to	use
all	public	Tcl	functions	as	documented.

The	stubs	mechanism	requires	no	changes	to	applications	incorporating
Tcl	interpreters.	Only	developers	creating	C-based	Tcl	extensions	need

to	take	steps	to	use	the	stubs	mechanism	with	their	extensions.

Enabling	the	stubs	mechanism	for	an	extension	requires	the	following
steps:

1)
Call	Tcl_InitStubs	in	the	extension	before	calling	any	other	Tcl
functions.

2)
Define	the	USE_TCL_STUBS	symbol.	Typically,	you	would	include
the	-DUSE_TCL_STUBS	flag	when	compiling	the	extension.

3)
Link	the	extension	with	the	Tcl	stubs	library	instead	of	the	standard
Tcl	library.	On	Unix	platforms,	the	library	name	is	libtclstub8.1.a;	on
Windows	platforms,	the	library	name	is	tclstub81.lib.

If	the	extension	also	requires	the	Tk	API,	it	must	also	call	Tk_InitStubs
to	initialize	the	Tk	stubs	interface	and	link	with	the	Tk	stubs	libraries.
See	the	Tk_InitStubs	page	for	more	information.

DESCRIPTION

Tcl_InitStubs	attempts	to	initialize	the	stub	table	pointers	and	ensure
that	the	correct	version	of	Tcl	is	loaded.	In	addition	to	an	interpreter
handle,	it	accepts	as	arguments	a	version	number	and	a	Boolean	flag
indicating	whether	the	extension	requires	an	exact	version	match	or	not.
If	exact	is	0,	then	the	extension	is	indicating	that	newer	versions	of	Tcl
are	acceptable	as	long	as	they	have	the	same	major	version	number	as
version;	non-zero	means	that	only	the	specified	version	is	acceptable.
Tcl_InitStubs	returns	a	string	containing	the	actual	version	of	Tcl
satisfying	the	request,	or	NULL	if	the	Tcl	version	is	not	acceptable,	does
not	support	stubs,	or	any	other	error	condition	occurred.

SEE	ALSO

Tk_InitStubs

KEYWORDS

stubs

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1998-1999	Scriptics	Corporation

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	Interp

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_Interp	-	client-visible	fields	of	interpreter	structures

SYNOPSIS
#include	<tcl.h>
typedef	struct	{
char	*result;
Tcl_FreeProc	*freeProc;
int	errorLine;
}	Tcl_Interp;
typedef	void	Tcl_FreeProc(char	*blockPtr);

DESCRIPTION
KEYWORDS

NAME

Tcl_Interp	-	client-visible	fields	of	interpreter	structures

SYNOPSIS

#include	<tcl.h>
typedef	struct	{
char	*result;
Tcl_FreeProc	*freeProc;
int	errorLine;
}	Tcl_Interp;

typedef	void	Tcl_FreeProc(char	*blockPtr);

DESCRIPTION

The	Tcl_CreateInterp	procedure	returns	a	pointer	to	a	Tcl_Interp
structure.	This	pointer	is	then	passed	into	other	Tcl	procedures	to

process	commands	in	the	interpreter	and	perform	other	operations	on
the	interpreter.	Interpreter	structures	contain	many	fields	that	are	used
by	Tcl,	but	only	three	that	may	be	accessed	by	clients:	result,	freeProc,
and	errorLine.

Note	that	access	to	all	three	fields,	result,	freeProc	and	errorLine	is
deprecated.	Use	Tcl_SetResult,	Tcl_GetResult,	and
Tcl_GetReturnOptions	instead.

The	result	and	freeProc	fields	are	used	to	return	results	or	error
messages	from	commands.	This	information	is	returned	by	command
procedures	back	to	Tcl_Eval,	and	by	Tcl_Eval	back	to	its	callers.	The
result	field	points	to	the	string	that	represents	the	result	or	error
message,	and	the	freeProc	field	tells	how	to	dispose	of	the	storage	for
the	string	when	it	is	not	needed	anymore.	The	easiest	way	for
command	procedures	to	manipulate	these	fields	is	to	call	procedures
like	Tcl_SetResult	or	Tcl_AppendResult;	they	will	hide	all	the	details
of	managing	the	fields.	The	description	below	is	for	those	procedures
that	manipulate	the	fields	directly.

Whenever	a	command	procedure	returns,	it	must	ensure	that	the	result
field	of	its	interpreter	points	to	the	string	being	returned	by	the
command.	The	result	field	must	always	point	to	a	valid	string.	If	a
command	wishes	to	return	no	result	then	interp->result	should	point	to
an	empty	string.	Normally,	results	are	assumed	to	be	statically
allocated,	which	means	that	the	contents	will	not	change	before	the
next	time	Tcl_Eval	is	called	or	some	other	command	procedure	is
invoked.	In	this	case,	the	freeProc	field	must	be	zero.	Alternatively,	a
command	procedure	may	dynamically	allocate	its	return	value	(e.g.
using	Tcl_Alloc)	and	store	a	pointer	to	it	in	interp->result.	In	this	case,
the	command	procedure	must	also	set	interp->freeProc	to	the	address
of	a	procedure	that	can	free	the	value,	or	TCL_DYNAMIC	if	the	storage
was	allocated	directly	by	Tcl	or	by	a	call	to	Tcl_Alloc.	If	interp->freeProc
is	non-zero,	then	Tcl	will	call	freeProc	to	free	the	space	pointed	to	by
interp->result	before	it	invokes	the	next	command.	If	a	client	procedure
overwrites	interp->result	when	interp->freeProc	is	non-zero,	then	it	is
responsible	for	calling	freeProc	to	free	the	old	interp->result	(the
Tcl_FreeResult	macro	should	be	used	for	this	purpose).

FreeProc	should	have	arguments	and	result	that	match	the
Tcl_FreeProc	declaration	above:	it	receives	a	single	argument	which	is
a	pointer	to	the	result	value	to	free.	In	most	applications
TCL_DYNAMIC	is	the	only	non-zero	value	ever	used	for	freeProc.
However,	an	application	may	store	a	different	procedure	address	in
freeProc	in	order	to	use	an	alternate	memory	allocator	or	in	order	to	do
other	cleanup	when	the	result	memory	is	freed.

As	part	of	processing	each	command,	Tcl_Eval	initializes	interp->result
and	interp->freeProc	just	before	calling	the	command	procedure	for	the
command.	The	freeProc	field	will	be	initialized	to	zero,	and	interp-
>result	will	point	to	an	empty	string.	Commands	that	do	not	return	any
value	can	simply	leave	the	fields	alone.	Furthermore,	the	empty	string
pointed	to	by	result	is	actually	part	of	an	array	of	TCL_RESULT_SIZE
characters	(approximately	200).	If	a	command	wishes	to	return	a	short
string,	it	can	simply	copy	it	to	the	area	pointed	to	by	interp->result.	Or,	it
can	use	the	sprintf	procedure	to	generate	a	short	result	string	at	the
location	pointed	to	by	interp->result.

It	is	a	general	convention	in	Tcl-based	applications	that	the	result	of	an
interpreter	is	normally	in	the	initialized	state	described	in	the	previous
paragraph.	Procedures	that	manipulate	an	interpreter's	result	(e.g.	by
returning	an	error)	will	generally	assume	that	the	result	has	been
initialized	when	the	procedure	is	called.	If	such	a	procedure	is	to	be
called	after	the	result	has	been	changed,	then	Tcl_ResetResult	should
be	called	first	to	reset	the	result	to	its	initialized	state.	The	direct	use	of
interp->result	is	strongly	deprecated	(see	Tcl_SetResult).

The	errorLine	field	is	valid	only	after	Tcl_Eval	returns	a	TCL_ERROR
return	code.	In	this	situation	the	errorLine	field	identifies	the	line	number
of	the	command	being	executed	when	the	error	occurred.	The	line
numbers	are	relative	to	the	command	being	executed:	1	means	the	first
line	of	the	command	passed	to	Tcl_Eval,	2	means	the	second	line,	and
so	on.	The	errorLine	field	is	typically	used	in	conjunction	with
Tcl_AddErrorInfo	to	report	information	about	where	an	error	occurred.
ErrorLine	should	not	normally	be	modified	except	by	Tcl_Eval.

KEYWORDS

free,	initialized,	interpreter,	malloc,	result

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1989-1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	UniCharIsAlpha

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_UniCharIsAlnum,	Tcl_UniCharIsAlpha,
Tcl_UniCharIsControl,	Tcl_UniCharIsDigit,
Tcl_UniCharIsGraph,	Tcl_UniCharIsLower,	Tcl_UniCharIsPrint,
Tcl_UniCharIsPunct,	Tcl_UniCharIsSpace,
Tcl_UniCharIsUpper,	Tcl_UniCharIsWordChar	-	routines	for
classification	of	Tcl_UniChar	characters

SYNOPSIS
#include	<tcl.h>
int
Tcl_UniCharIsAlnum(ch)
int
Tcl_UniCharIsAlpha(ch)
int
Tcl_UniCharIsControl(ch)
int
Tcl_UniCharIsDigit(ch)
int
Tcl_UniCharIsGraph(ch)
int
Tcl_UniCharIsLower(ch)
int
Tcl_UniCharIsPrint(ch)
int
Tcl_UniCharIsPunct(ch)
int
Tcl_UniCharIsSpace(ch)
int
Tcl_UniCharIsUpper(ch)
int
Tcl_UniCharIsWordChar(ch)

ARGUMENTS
DESCRIPTION
CHARACTER	CLASSES
KEYWORDS

NAME

Tcl_UniCharIsAlnum,	Tcl_UniCharIsAlpha,	Tcl_UniCharIsControl,
Tcl_UniCharIsDigit,	Tcl_UniCharIsGraph,	Tcl_UniCharIsLower,
Tcl_UniCharIsPrint,	Tcl_UniCharIsPunct,	Tcl_UniCharIsSpace,
Tcl_UniCharIsUpper,	Tcl_UniCharIsWordChar	-	routines	for
classification	of	Tcl_UniChar	characters

SYNOPSIS

#include	<tcl.h>
int
Tcl_UniCharIsAlnum(ch)
int
Tcl_UniCharIsAlpha(ch)
int
Tcl_UniCharIsControl(ch)
int
Tcl_UniCharIsDigit(ch)
int
Tcl_UniCharIsGraph(ch)
int
Tcl_UniCharIsLower(ch)
int
Tcl_UniCharIsPrint(ch)
int
Tcl_UniCharIsPunct(ch)
int
Tcl_UniCharIsSpace(ch)
int
Tcl_UniCharIsUpper(ch)
int
Tcl_UniCharIsWordChar(ch)

int	ch	(in)

ARGUMENTS

The	Tcl_UniChar	to	be
examined.

DESCRIPTION

All	of	the	routines	described	examine	Tcl_UniChars	and	return	a
boolean	value.	A	non-zero	return	value	means	that	the	character	does
belong	to	the	character	class	associated	with	the	called	routine.	The
rest	of	this	document	just	describes	the	character	classes	associated
with	the	various	routines.

Note:	A	Tcl_UniChar	is	a	Unicode	character	represented	as	an
unsigned,	fixed-size	quantity.

CHARACTER	CLASSES

Tcl_UniCharIsAlnum	tests	if	the	character	is	an	alphanumeric	Unicode
character.

Tcl_UniCharIsAlpha	tests	if	the	character	is	an	alphabetic	Unicode
character.

Tcl_UniCharIsControl	tests	if	the	character	is	a	Unicode	control
character.

Tcl_UniCharIsDigit	tests	if	the	character	is	a	numeric	Unicode
character.

Tcl_UniCharIsGraph	tests	if	the	character	is	any	Unicode	print
character	except	space.

Tcl_UniCharIsLower	tests	if	the	character	is	a	lowercase	Unicode
character.

Tcl_UniCharIsPrint	tests	if	the	character	is	a	Unicode	print	character.

Tcl_UniCharIsPunct	tests	if	the	character	is	a	Unicode	punctuation
character.

Tcl_UniCharIsSpace	tests	if	the	character	is	a	whitespace	Unicode
character.

Tcl_UniCharIsUpper	tests	if	the	character	is	an	uppercase	Unicode
character.

Tcl_UniCharIsWordChar	tests	if	the	character	is	alphanumeric	or	a
connector	punctuation	mark.

KEYWORDS

unicode,	classification

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1997	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	Limit

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_LimitAddHandler,	Tcl_LimitCheck,	Tcl_LimitExceeded,
Tcl_LimitGetCommands,	Tcl_LimitGetGranularity,
Tcl_LimitGetTime,	Tcl_LimitReady,	Tcl_LimitRemoveHandler,
Tcl_LimitSetCommands,	Tcl_LimitSetGranularity,
Tcl_LimitSetTime,	Tcl_LimitTypeEnabled,
Tcl_LimitTypeExceeded,	Tcl_LimitTypeReset,	Tcl_LimitTypeSet
-	manage	and	check	resource	limits	on	interpreters

SYNOPSIS
#include	<tcl.h>
int
Tcl_LimitCheck(interp)
int
Tcl_LimitReady(interp)
int
Tcl_LimitExceeded(interp)
int
Tcl_LimitTypeExceeded(interp,	type)
int
Tcl_LimitTypeEnabled(interp,	type)
void
Tcl_LimitTypeSet(interp,	type)
void
Tcl_LimitTypeReset(interp,	type)
int
Tcl_LimitGetCommands(interp)
void
Tcl_LimitSetCommands(interp,	commandLimit)
void
Tcl_LimitGetTime(interp,	timeLimitPtr)
void

Tcl_LimitSetTime(interp,	timeLimitPtr)
int
Tcl_LimitGetGranularity(interp,	type)
void
Tcl_LimitSetGranularity(interp,	type,	granularity)
void
Tcl_LimitAddHandler(interp,	type,	handlerProc,	clientData,
deleteProc)
void
Tcl_LimitRemoveHandler(interp,	type,	handlerProc,
clientData)

ARGUMENTS
DESCRIPTION
LIMIT	CHECKING	API
LIMIT	CONFIGURATION
LIMIT	CALLBACKS
KEYWORDS

NAME

Tcl_LimitAddHandler,	Tcl_LimitCheck,	Tcl_LimitExceeded,
Tcl_LimitGetCommands,	Tcl_LimitGetGranularity,	Tcl_LimitGetTime,
Tcl_LimitReady,	Tcl_LimitRemoveHandler,	Tcl_LimitSetCommands,
Tcl_LimitSetGranularity,	Tcl_LimitSetTime,	Tcl_LimitTypeEnabled,
Tcl_LimitTypeExceeded,	Tcl_LimitTypeReset,	Tcl_LimitTypeSet	-
manage	and	check	resource	limits	on	interpreters

SYNOPSIS

#include	<tcl.h>
int
Tcl_LimitCheck(interp)
int
Tcl_LimitReady(interp)
int
Tcl_LimitExceeded(interp)
int
Tcl_LimitTypeExceeded(interp,	type)

Tcl_Interp	*interp	(in)

int	type	(in)

int
Tcl_LimitTypeEnabled(interp,	type)
void
Tcl_LimitTypeSet(interp,	type)
void
Tcl_LimitTypeReset(interp,	type)
int
Tcl_LimitGetCommands(interp)
void
Tcl_LimitSetCommands(interp,	commandLimit)
void
Tcl_LimitGetTime(interp,	timeLimitPtr)
void
Tcl_LimitSetTime(interp,	timeLimitPtr)
int
Tcl_LimitGetGranularity(interp,	type)
void
Tcl_LimitSetGranularity(interp,	type,	granularity)
void
Tcl_LimitAddHandler(interp,	type,	handlerProc,	clientData,
deleteProc)
void
Tcl_LimitRemoveHandler(interp,	type,	handlerProc,	clientData)

ARGUMENTS

Interpreter	that	the	limit
being	managed	applies	to
or	that	will	have	its	limits
checked.

The	type	of	limit	that	the
operation	refers	to.	This
must	be	either
TCL_LIMIT_COMMANDS
or	TCL_LIMIT_TIME.

int	commandLimit	(in)

Tcl_Time	*timeLimitPtr	(in/out)

int	granularity	(in)

Tcl_LimitHandlerProc	*handlerProc	(in)

ClientData	clientData	(in)

The	maximum	number	of
commands	(as	reported	by
info	cmdcount)	that	may
be	executed	in	the
interpreter.

A	pointer	to	a	structure
that	will	either	have	the
new	time	limit	read	from
(Tcl_LimitSetTime)	or	the
current	time	limit	written	to
(Tcl_LimitGetTime).

Divisor	that	indicates	how
often	a	particular	limit
should	really	be	checked.
Must	be	at	least	1.

Function	to	call	when	a
particular	limit	is
exceeded.	If	the
handlerProc	removes	or
raises	the	limit	during	its
processing,	the	limited
interpreter	will	be
permitted	to	continue	to
process	after	the	handler
returns.	Many	handlers
may	be	attached	to	the
same	interpreter	limit;	their
order	of	execution	is	not
defined,	and	they	must	be
identified	by	handlerProc
and	clientData	when	they
are	deleted.

Arbitrary	pointer-sized

Tcl_LimitHandlerDeleteProc	*deleteProc
(in)

word	used	to	pass	some
context	to	the	handlerProc
function.

Function	to	call	whenever
a	handler	is	deleted.	May
be	NULL	if	the	clientData
requires	no	deletion.

DESCRIPTION

Tcl's	interpreter	resource	limit	subsystem	allows	for	close	control	over
how	much	computation	time	a	script	may	use,	and	is	useful	for	cases
where	a	program	is	divided	into	multiple	pieces	where	some	parts	are
more	trusted	than	others	(e.g.	web	application	servers).

Every	interpreter	may	have	a	limit	on	the	wall-time	for	execution,	and	a
limit	on	the	number	of	commands	that	the	interpreter	may	execute.
Since	checking	of	these	limits	is	potentially	expensive	(especially	the
time	limit),	each	limit	also	has	a	checking	granularity,	which	is	a	divisor
for	an	internal	count	of	the	number	of	points	in	the	core	where	a	check
may	be	performed	(which	is	immediately	before	executing	a	command
and	at	an	unspecified	frequency	between	running	commands,	which
can	happen	in	empty-bodied	while	loops).

The	final	component	of	the	limit	engine	is	a	callback	scheme	which
allows	for	notifications	of	when	a	limit	has	been	exceeded.	These
callbacks	can	just	provide	logging,	or	may	allocate	more	resources	to
the	interpreter	to	permit	it	to	continue	processing	longer.

When	a	limit	is	exceeded	(and	the	callbacks	have	run;	the	order	of
execution	of	the	callbacks	is	unspecified)	execution	in	the	limited
interpreter	is	stopped	by	raising	an	error	and	setting	a	flag	that	prevents
the	catch	command	in	that	interpreter	from	trapping	that	error.	It	is	up
to	the	context	that	started	execution	in	that	interpreter	(typically	a
master	interpreter)	to	handle	the	error.

LIMIT	CHECKING	API

To	check	the	resource	limits	for	an	interpreter,	call	Tcl_LimitCheck,
which	returns	TCL_OK	if	the	limit	was	not	exceeded	(after	processing
callbacks)	and	TCL_ERROR	if	the	limit	was	exceeded	(in	which	case
an	error	message	is	also	placed	in	the	interpreter	result).	That	function
should	only	be	called	when	Tcl_LimitReady	returns	non-zero	so	that
granularity	policy	is	enforced.	This	API	is	designed	to	be	similar	in
usage	to	Tcl_AsyncReady	and	Tcl_AsyncInvoke.

When	writing	code	that	may	behave	like	catch	in	respect	of	errors,	you
should	only	trap	an	error	if	Tcl_LimitExceeded	returns	zero.	If	it	returns
non-zero,	the	interpreter	is	in	a	limit-exceeded	state	and	errors	should
be	allowed	to	propagate	to	the	calling	context.	You	can	also	check
whether	a	particular	type	of	limit	has	been	exceeded	using
Tcl_LimitTypeExceeded.

LIMIT	CONFIGURATION

To	check	whether	a	limit	has	been	set	(but	not	whether	it	has	actually
been	exceeded)	on	an	interpreter,	call	Tcl_LimitTypeEnabled	with	the
type	of	limit	you	want	to	check.	To	enable	a	particular	limit	call
Tcl_LimitTypeSet,	and	to	disable	a	limit	call	Tcl_LimitTypeReset.

The	level	of	a	command	limit	may	be	set	using
Tcl_LimitSetCommands,	and	retrieved	using
Tcl_LimitGetCommands.	Similarly	for	a	time	limit	with
Tcl_LimitSetTime	and	Tcl_LimitGetTime	respectively,	but	with	that
API	the	time	limit	is	copied	from	and	to	the	Tcl_Time	structure	that	the
timeLimitPtr	argument	points	to.

The	checking	granularity	for	a	particular	limit	may	be	set	using
Tcl_LimitSetGranularity	and	retrieved	using	Tcl_LimitGetGranularity.
Note	that	granularities	must	always	be	positive.

LIMIT	CALLBACKS

To	add	a	handler	callback	to	be	invoked	when	a	limit	is	exceeded,	call

Tcl_LimitAddHandler.	The	handlerProc	argument	describes	the
function	that	will	actually	be	called;	it	should	have	the	following
prototype:

typedef	void	Tcl_LimitHandlerProc(

								ClientData	clientData,

								Tcl_Interp	*interp);

The	clientData	argument	to	the	handler	will	be	whatever	is	passed	to
the	clientData	argment	to	Tcl_LimitAddHandler,	and	the	interp	is	the
interpreter	that	had	its	limit	exceeded.

The	deleteProc	argument	to	Tcl_LimitAddHandler	is	a	function	to	call
to	delete	the	clientData	value.	It	may	be	TCL_STATIC	or	NULL	if	no
deletion	action	is	necessary,	or	TCL_DYNAMIC	if	all	that	is	necessary
is	to	free	the	structure	with	Tcl_Free.	Otherwise,	it	should	refer	to	a
function	with	the	following	prototype:

typedef	void	Tcl_LimitHandlerDeleteProc(

								ClientData	clientData);

A	limit	handler	may	be	deleted	using	Tcl_LimitRemoveHandler;	the
handler	removed	will	be	the	first	one	found	(out	of	the	handlers	added
with	Tcl_LimitAddHandler)	with	exactly	matching	type,	handlerProc
and	clientData	arguments.	This	function	always	invokes	the	deleteProc
on	the	clientData	(unless	the	deleteProc	was	NULL	or	TCL_STATIC).

KEYWORDS

interpreter,	resource,	limit,	commands,	time,	callback

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	2004	Donal	K.	Fellows

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	ToUpper

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_UniCharToUpper,	Tcl_UniCharToLower,
Tcl_UniCharToTitle,	Tcl_UtfToUpper,	Tcl_UtfToLower,
Tcl_UtfToTitle	-	routines	for	manipulating	the	case	of	Unicode
characters	and	UTF-8	strings

SYNOPSIS
#include	<tcl.h>
Tcl_UniChar
Tcl_UniCharToUpper(ch)
Tcl_UniChar
Tcl_UniCharToLower(ch)
Tcl_UniChar
Tcl_UniCharToTitle(ch)
int
Tcl_UtfToUpper(str)
int
Tcl_UtfToLower(str)
int
Tcl_UtfToTitle(str)

ARGUMENTS
DESCRIPTION
BUGS
KEYWORDS

NAME

Tcl_UniCharToUpper,	Tcl_UniCharToLower,	Tcl_UniCharToTitle,
Tcl_UtfToUpper,	Tcl_UtfToLower,	Tcl_UtfToTitle	-	routines	for
manipulating	the	case	of	Unicode	characters	and	UTF-8	strings

SYNOPSIS

int	ch	(in)

char	*str	(in/out)

#include	<tcl.h>
Tcl_UniChar
Tcl_UniCharToUpper(ch)
Tcl_UniChar
Tcl_UniCharToLower(ch)
Tcl_UniChar
Tcl_UniCharToTitle(ch)
int
Tcl_UtfToUpper(str)
int
Tcl_UtfToLower(str)
int
Tcl_UtfToTitle(str)

ARGUMENTS

The	Tcl_UniChar	to	be
converted.

Pointer	to	UTF-8	string	to
be	converted	in	place.

DESCRIPTION

The	first	three	routines	convert	the	case	of	individual	Unicode
characters:

If	ch	represents	a	lower-case	character,	Tcl_UniCharToUpper	returns
the	corresponding	upper-case	character.	If	no	upper-case	character	is
defined,	it	returns	the	character	unchanged.

If	ch	represents	an	upper-case	character,	Tcl_UniCharToLower	returns
the	corresponding	lower-case	character.	If	no	lower-case	character	is
defined,	it	returns	the	character	unchanged.

If	ch	represents	a	lower-case	character,	Tcl_UniCharToTitle	returns	the
corresponding	title-case	character.	If	no	title-case	character	is	defined,

it	returns	the	corresponding	upper-case	character.	If	no	upper-case
character	is	defined,	it	returns	the	character	unchanged.	Title-case	is
defined	for	a	small	number	of	characters	that	have	a	different
appearance	when	they	are	at	the	beginning	of	a	capitalized	word.

The	next	three	routines	convert	the	case	of	UTF-8	strings	in	place	in
memory:

Tcl_UtfToUpper	changes	every	UTF-8	character	in	str	to	upper-case.
Because	changing	the	case	of	a	character	may	change	its	size,	the	byte
offset	of	each	character	in	the	resulting	string	may	differ	from	its	original
location.	Tcl_UtfToUpper	writes	a	null	byte	at	the	end	of	the	converted
string.	Tcl_UtfToUpper	returns	the	new	length	of	the	string	in	bytes.
This	new	length	is	guaranteed	to	be	no	longer	than	the	original	string
length.

Tcl_UtfToLower	is	the	same	as	Tcl_UtfToUpper	except	it	turns	each
character	in	the	string	into	its	lower-case	equivalent.

Tcl_UtfToTitle	is	the	same	as	Tcl_UtfToUpper	except	it	turns	the	first
character	in	the	string	into	its	title-case	equivalent	and	all	following
characters	into	their	lower-case	equivalents.

BUGS

At	this	time,	the	case	conversions	are	only	defined	for	the	ISO8859-1
characters.	Unicode	characters	above	0x00ff	are	not	modified	by	these
routines.

KEYWORDS

utf,	unicode,	toupper,	tolower,	totitle,	case

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1997	by	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	LinkVar

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_LinkVar,	Tcl_UnlinkVar,	Tcl_UpdateLinkedVar	-	link	Tcl
variable	to	C	variable

SYNOPSIS
#include	<tcl.h>
int
Tcl_LinkVar(interp,	varName,	addr,	type)
Tcl_UnlinkVar(interp,	varName)
Tcl_UpdateLinkedVar(interp,	varName)

ARGUMENTS
DESCRIPTION

TCL_LINK_INT
TCL_LINK_UINT
TCL_LINK_CHAR
TCL_LINK_UCHAR
TCL_LINK_SHORT
TCL_LINK_USHORT
TCL_LINK_LONG
TCL_LINK_ULONG
TCL_LINK_DOUBLE
TCL_LINK_FLOAT
TCL_LINK_WIDE_INT
TCL_LINK_WIDE_UINT
TCL_LINK_BOOLEAN
TCL_LINK_STRING

KEYWORDS

NAME

Tcl_LinkVar,	Tcl_UnlinkVar,	Tcl_UpdateLinkedVar	-	link	Tcl	variable	to	C
variable

Tcl_Interp	*interp	(in)

const	char	*varName	(in)

char	*addr	(in)

int	type	(in)

SYNOPSIS

#include	<tcl.h>
int
Tcl_LinkVar(interp,	varName,	addr,	type)
Tcl_UnlinkVar(interp,	varName)
Tcl_UpdateLinkedVar(interp,	varName)

ARGUMENTS

Interpreter	that	contains
varName.	Also	used	by
Tcl_LinkVar	to	return	error
messages.

Name	of	global	variable.

Address	of	C	variable	that
is	to	be	linked	to	varName.

Type	of	C	variable.	Must
be	one	of	TCL_LINK_INT,
TCL_LINK_UINT,
TCL_LINK_CHAR,
TCL_LINK_UCHAR,
TCL_LINK_SHORT,
TCL_LINK_USHORT,
TCL_LINK_LONG,
TCL_LINK_ULONG,
TCL_LINK_WIDE_INT,
TCL_LINK_WIDE_UINT,
TCL_LINK_FLOAT,
TCL_LINK_DOUBLE,
TCL_LINK_BOOLEAN,	or
TCL_LINK_STRING,
optionally	OR'ed	with
TCL_LINK_READ_ONLY

to	make	Tcl	variable	read-
only.

DESCRIPTION

Tcl_LinkVar	uses	variable	traces	to	keep	the	Tcl	variable	named	by
varName	in	sync	with	the	C	variable	at	the	address	given	by	addr.
Whenever	the	Tcl	variable	is	read	the	value	of	the	C	variable	will	be
returned,	and	whenever	the	Tcl	variable	is	written	the	C	variable	will	be
updated	to	have	the	same	value.	Tcl_LinkVar	normally	returns
TCL_OK;	if	an	error	occurs	while	setting	up	the	link	(e.g.	because
varName	is	the	name	of	array)	then	TCL_ERROR	is	returned	and	the
interpreter's	result	contains	an	error	message.

The	type	argument	specifies	the	type	of	the	C	variable,	and	must	have
one	of	the	following	values,	optionally	OR'ed	with
TCL_LINK_READ_ONLY:

TCL_LINK_INT
The	C	variable	is	of	type	int.	Any	value	written	into	the	Tcl	variable
must	have	a	proper	integer	form	acceptable	to
Tcl_GetIntFromObj;	attempts	to	write	non-integer	values	into
varName	will	be	rejected	with	Tcl	errors.

TCL_LINK_UINT
The	C	variable	is	of	type	unsigned	int.	Any	value	written	into	the
Tcl	variable	must	have	a	proper	unsigned	integer	form	acceptable
to	Tcl_GetWideIntFromObj	and	in	the	platform's	defined	range	for
the	unsigned	int	type;	attempts	to	write	non-integer	values	(or
values	outside	the	range)	into	varName	will	be	rejected	with	Tcl
errors.

TCL_LINK_CHAR
The	C	variable	is	of	type	char.	Any	value	written	into	the	Tcl
variable	must	have	a	proper	integer	form	acceptable	to
Tcl_GetIntFromObj	and	be	in	the	range	of	the	char	datatype;
attempts	to	write	non-integer	or	out-of-range	values	into	varName

will	be	rejected	with	Tcl	errors.

TCL_LINK_UCHAR
The	C	variable	is	of	type	unsigned	char.	Any	value	written	into	the
Tcl	variable	must	have	a	proper	unsigned	integer	form	acceptable
to	Tcl_GetIntFromObj	and	in	the	platform's	defined	range	for	the
unsigned	char	type;	attempts	to	write	non-integer	values	(or
values	outside	the	range)	into	varName	will	be	rejected	with	Tcl
errors.

TCL_LINK_SHORT
The	C	variable	is	of	type	short.	Any	value	written	into	the	Tcl
variable	must	have	a	proper	integer	form	acceptable	to
Tcl_GetIntFromObj	and	be	in	the	range	of	the	short	datatype;
attempts	to	write	non-integer	or	out-of-range	values	into	varName
will	be	rejected	with	Tcl	errors.

TCL_LINK_USHORT
The	C	variable	is	of	type	unsigned	short.	Any	value	written	into
the	Tcl	variable	must	have	a	proper	unsigned	integer	form
acceptable	to	Tcl_GetIntFromObj	and	in	the	platform's	defined
range	for	the	unsigned	short	type;	attempts	to	write	non-integer
values	(or	values	outside	the	range)	into	varName	will	be	rejected
with	Tcl	errors.

TCL_LINK_LONG
The	C	variable	is	of	type	long.	Any	value	written	into	the	Tcl
variable	must	have	a	proper	integer	form	acceptable	to
Tcl_GetLongFromObj;	attempts	to	write	non-integer	or	out-of-
range	values	into	varName	will	be	rejected	with	Tcl	errors.

TCL_LINK_ULONG
The	C	variable	is	of	type	unsigned	long.	Any	value	written	into	the
Tcl	variable	must	have	a	proper	unsigned	integer	form	acceptable
to	Tcl_GetWideIntFromObj	and	in	the	platform's	defined	range	for
the	unsigned	long	type;	attempts	to	write	non-integer	values	(or
values	outside	the	range)	into	varName	will	be	rejected	with	Tcl
errors.

TCL_LINK_DOUBLE
The	C	variable	is	of	type	double.	Any	value	written	into	the	Tcl
variable	must	have	a	proper	real	form	acceptable	to
Tcl_GetDoubleFromObj;	attempts	to	write	non-real	values	into
varName	will	be	rejected	with	Tcl	errors.

TCL_LINK_FLOAT
The	C	variable	is	of	type	float.	Any	value	written	into	the	Tcl
variable	must	have	a	proper	real	form	acceptable	to
Tcl_GetDoubleFromObj	and	must	be	within	the	range	acceptable
for	a	float;	attempts	to	write	non-real	values	(or	values	outside	the
range)	into	varName	will	be	rejected	with	Tcl	errors.

TCL_LINK_WIDE_INT
The	C	variable	is	of	type	Tcl_WideInt	(which	is	an	integer	type	at
least	64-bits	wide	on	all	platforms	that	can	support	it.)	Any	value
written	into	the	Tcl	variable	must	have	a	proper	integer	form
acceptable	to	Tcl_GetWideIntFromObj;	attempts	to	write	non-
integer	values	into	varName	will	be	rejected	with	Tcl	errors.

TCL_LINK_WIDE_UINT
The	C	variable	is	of	type	Tcl_WideUInt	(which	is	an	unsigned
integer	type	at	least	64-bits	wide	on	all	platforms	that	can	support
it.)	Any	value	written	into	the	Tcl	variable	must	have	a	proper
unsigned	integer	form	acceptable	to	Tcl_GetWideIntFromObj	(it
will	be	cast	to	unsigned);	attempts	to	write	non-integer	values	into
varName	will	be	rejected	with	Tcl	errors.

TCL_LINK_BOOLEAN
The	C	variable	is	of	type	int.	If	its	value	is	zero	then	it	will	read	from
Tcl	as	“0”;	otherwise	it	will	read	from	Tcl	as	“1”.	Whenever	varName
is	modified,	the	C	variable	will	be	set	to	a	0	or	1	value.	Any	value
written	into	the	Tcl	variable	must	have	a	proper	boolean	form
acceptable	to	Tcl_GetBooleanFromObj;	attempts	to	write	non-
boolean	values	into	varName	will	be	rejected	with	Tcl	errors.

TCL_LINK_STRING
The	C	variable	is	of	type	char	*.	If	its	value	is	not	NULL	then	it	must

be	a	pointer	to	a	string	allocated	with	Tcl_Alloc	or	ckalloc.
Whenever	the	Tcl	variable	is	modified	the	current	C	string	will	be
freed	and	new	memory	will	be	allocated	to	hold	a	copy	of	the
variable's	new	value.	If	the	C	variable	contains	a	NULL	pointer	then
the	Tcl	variable	will	read	as	“NULL”.

If	the	TCL_LINK_READ_ONLY	flag	is	present	in	type	then	the	variable
will	be	read-only	from	Tcl,	so	that	its	value	can	only	be	changed	by
modifying	the	C	variable.	Attempts	to	write	the	variable	from	Tcl	will	be
rejected	with	errors.

Tcl_UnlinkVar	removes	the	link	previously	set	up	for	the	variable	given
by	varName.	If	there	does	not	exist	a	link	for	varName	then	the
procedure	has	no	effect.

Tcl_UpdateLinkedVar	may	be	invoked	after	the	C	variable	has
changed	to	force	the	Tcl	variable	to	be	updated	immediately.	In	many
cases	this	procedure	is	not	needed,	since	any	attempt	to	read	the	Tcl
variable	will	return	the	latest	value	of	the	C	variable.	However,	if	a	trace
has	been	set	on	the	Tcl	variable	(such	as	a	Tk	widget	that	wishes	to
display	the	value	of	the	variable),	the	trace	will	not	trigger	when	the	C
variable	has	changed.	Tcl_UpdateLinkedVar	ensures	that	any	traces
on	the	Tcl	variable	are	invoked.

KEYWORDS

boolean,	integer,	link,	read-only,	real,	string,	traces,	variable

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	ExprLong

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_ExprLong,	Tcl_ExprDouble,	Tcl_ExprBoolean,
Tcl_ExprString	-	evaluate	an	expression

SYNOPSIS
#include	<tcl.h>
int
Tcl_ExprLong(interp,	expr,	longPtr)
int
Tcl_ExprDouble(interp,	expr,	doublePtr)
int
Tcl_ExprBoolean(interp,	expr,	booleanPtr)
int
Tcl_ExprString(interp,	expr)

ARGUMENTS
DESCRIPTION
SEE	ALSO
KEYWORDS

NAME

Tcl_ExprLong,	Tcl_ExprDouble,	Tcl_ExprBoolean,	Tcl_ExprString	-
evaluate	an	expression

SYNOPSIS

#include	<tcl.h>
int
Tcl_ExprLong(interp,	expr,	longPtr)
int
Tcl_ExprDouble(interp,	expr,	doublePtr)
int
Tcl_ExprBoolean(interp,	expr,	booleanPtr)

Tcl_Interp	*interp	(in)

const	char	*expr	(in)

long	*longPtr	(out)

int	*doublePtr	(out)

int	*booleanPtr	(out)

int
Tcl_ExprString(interp,	expr)

ARGUMENTS

Interpreter	in	whose
context	to	evaluate	expr.

Expression	to	be
evaluated.

Pointer	to	location	in	which
to	store	the	integer	value
of	the	expression.

Pointer	to	location	in	which
to	store	the	floating-point
value	of	the	expression.

Pointer	to	location	in	which
to	store	the	0/1	boolean
value	of	the	expression.

DESCRIPTION

These	four	procedures	all	evaluate	the	expression	given	by	the	expr
argument	and	return	the	result	in	one	of	four	different	forms.	The
expression	can	have	any	of	the	forms	accepted	by	the	expr	command.
Note	that	these	procedures	have	been	largely	replaced	by	the	object-
based	procedures	Tcl_ExprLongObj,	Tcl_ExprDoubleObj,
Tcl_ExprBooleanObj,	and	Tcl_ExprObj.	Those	object-based
procedures	evaluate	an	expression	held	in	a	Tcl	object	instead	of	a
string.	The	object	argument	can	retain	an	internal	representation	that	is
more	efficient	to	execute.

The	interp	argument	refers	to	an	interpreter	used	to	evaluate	the

expression	(e.g.	for	variables	and	nested	Tcl	commands)	and	to	return
error	information.

For	all	of	these	procedures	the	return	value	is	a	standard	Tcl	result:
TCL_OK	means	the	expression	was	successfully	evaluated,	and
TCL_ERROR	means	that	an	error	occurred	while	evaluating	the
expression.	If	TCL_ERROR	is	returned	then	the	interpreter's	result	will
hold	a	message	describing	the	error.	If	an	error	occurs	while	executing
a	Tcl	command	embedded	in	the	expression	then	that	error	will	be
returned.

If	the	expression	is	successfully	evaluated,	then	its	value	is	returned	in
one	of	four	forms,	depending	on	which	procedure	is	invoked.
Tcl_ExprLong	stores	an	integer	value	at	*longPtr.	If	the	expression's
actual	value	is	a	floating-point	number,	then	it	is	truncated	to	an	integer.
If	the	expression's	actual	value	is	a	non-numeric	string	then	an	error	is
returned.

Tcl_ExprDouble	stores	a	floating-point	value	at	*doublePtr.	If	the
expression's	actual	value	is	an	integer,	it	is	converted	to	floating-point.	If
the	expression's	actual	value	is	a	non-numeric	string	then	an	error	is
returned.

Tcl_ExprBoolean	stores	a	0/1	integer	value	at	*booleanPtr.	If	the
expression's	actual	value	is	an	integer	or	floating-point	number,	then
they	store	0	at	*booleanPtr	if	the	value	was	zero	and	1	otherwise.	If	the
expression's	actual	value	is	a	non-numeric	string	then	it	must	be	one	of
the	values	accepted	by	Tcl_GetBoolean	such	as	“yes”	or	“no”,	or	else
an	error	occurs.

Tcl_ExprString	returns	the	value	of	the	expression	as	a	string	stored	in
the	interpreter's	result.

SEE	ALSO

Tcl_ExprLongObj,	Tcl_ExprDoubleObj,	Tcl_ExprBooleanObj,
Tcl_ExprObj

KEYWORDS

boolean,	double,	evaluate,	expression,	integer,	object,	string

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1989-1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1997	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	ExprLongObj

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_ExprLongObj,	Tcl_ExprDoubleObj,	Tcl_ExprBooleanObj,
Tcl_ExprObj	-	evaluate	an	expression

SYNOPSIS
#include	<tcl.h>
int
Tcl_ExprLongObj(interp,	objPtr,	longPtr)
int
Tcl_ExprDoubleObj(interp,	objPtr,	doublePtr)
int
Tcl_ExprBooleanObj(interp,	objPtr,	booleanPtr)
int
Tcl_ExprObj(interp,	objPtr,	resultPtrPtr)

ARGUMENTS
DESCRIPTION
SEE	ALSO
KEYWORDS

NAME

Tcl_ExprLongObj,	Tcl_ExprDoubleObj,	Tcl_ExprBooleanObj,
Tcl_ExprObj	-	evaluate	an	expression

SYNOPSIS

#include	<tcl.h>
int
Tcl_ExprLongObj(interp,	objPtr,	longPtr)
int
Tcl_ExprDoubleObj(interp,	objPtr,	doublePtr)
int
Tcl_ExprBooleanObj(interp,	objPtr,	booleanPtr)

Tcl_Interp	*interp	(in)

Tcl_Obj	*objPtr	(in)

long	*longPtr	(out)

int	*doublePtr	(out)

int	*booleanPtr	(out)

Tcl_Obj	**resultPtrPtr	(out)

int
Tcl_ExprObj(interp,	objPtr,	resultPtrPtr)

ARGUMENTS

Interpreter	in	whose
context	to	evaluate	objPtr.

Pointer	to	an	object
containing	the	expression
to	evaluate.

Pointer	to	location	in	which
to	store	the	integer	value
of	the	expression.

Pointer	to	location	in	which
to	store	the	floating-point
value	of	the	expression.

Pointer	to	location	in	which
to	store	the	0/1	boolean
value	of	the	expression.

Pointer	to	location	in	which
to	store	a	pointer	to	the
object	that	is	the	result	of
the	expression.

DESCRIPTION

These	four	procedures	all	evaluate	an	expression,	returning	the	result
in	one	of	four	different	forms.	The	expression	is	given	by	the	objPtr
argument,	and	it	can	have	any	of	the	forms	accepted	by	the	expr
command.

The	interp	argument	refers	to	an	interpreter	used	to	evaluate	the
expression	(e.g.	for	variables	and	nested	Tcl	commands)	and	to	return
error	information.

For	all	of	these	procedures	the	return	value	is	a	standard	Tcl	result:
TCL_OK	means	the	expression	was	successfully	evaluated,	and
TCL_ERROR	means	that	an	error	occurred	while	evaluating	the
expression.	If	TCL_ERROR	is	returned,	then	a	message	describing	the
error	can	be	retrieved	using	Tcl_GetObjResult.	If	an	error	occurs	while
executing	a	Tcl	command	embedded	in	the	expression	then	that	error
will	be	returned.

If	the	expression	is	successfully	evaluated,	then	its	value	is	returned	in
one	of	four	forms,	depending	on	which	procedure	is	invoked.
Tcl_ExprLongObj	stores	an	integer	value	at	*longPtr.	If	the
expression's	actual	value	is	a	floating-point	number,	then	it	is	truncated
to	an	integer.	If	the	expression's	actual	value	is	a	non-numeric	string
then	an	error	is	returned.

Tcl_ExprDoubleObj	stores	a	floating-point	value	at	*doublePtr.	If	the
expression's	actual	value	is	an	integer,	it	is	converted	to	floating-point.	If
the	expression's	actual	value	is	a	non-numeric	string	then	an	error	is
returned.

Tcl_ExprBooleanObj	stores	a	0/1	integer	value	at	*booleanPtr.	If	the
expression's	actual	value	is	an	integer	or	floating-point	number,	then
they	store	0	at	*booleanPtr	if	the	value	was	zero	and	1	otherwise.	If	the
expression's	actual	value	is	a	non-numeric	string	then	it	must	be	one	of
the	values	accepted	by	Tcl_GetBoolean	such	as	“yes”	or	“no”,	or	else
an	error	occurs.

If	Tcl_ExprObj	successfully	evaluates	the	expression,	it	stores	a
pointer	to	the	Tcl	object	containing	the	expression's	value	at
*resultPtrPtr.	In	this	case,	the	caller	is	responsible	for	calling
Tcl_DecrRefCount	to	decrement	the	object's	reference	count	when	it	is
finished	with	the	object.

SEE	ALSO

Tcl_ExprLong,	Tcl_ExprDouble,	Tcl_ExprBoolean,	Tcl_ExprString,
Tcl_GetObjResult

KEYWORDS

boolean,	double,	evaluate,	expression,	integer,	object,	string

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1996-1997	Sun	Microsystems,	Inc.

Tcl_Interp	*interp	(in)

const	char	*frameName	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	UpVar

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tcl_UpVar,	Tcl_UpVar2	-	link	one	variable	to	another

SYNOPSIS
#include	<tcl.h>
int
Tcl_UpVar(interp,	frameName,	sourceName,	destName,	flags)
int
Tcl_UpVar2(interp,	frameName,	name1,	name2,	destName,
flags)

ARGUMENTS
DESCRIPTION
KEYWORDS

NAME

Tcl_UpVar,	Tcl_UpVar2	-	link	one	variable	to	another

SYNOPSIS

#include	<tcl.h>
int
Tcl_UpVar(interp,	frameName,	sourceName,	destName,	flags)
int
Tcl_UpVar2(interp,	frameName,	name1,	name2,	destName,	flags)

ARGUMENTS

Interpreter	containing
variables;	also	used	for
error	reporting.

Identifies	the	stack	frame

const	char	*sourceName	(in)

const	char	*destName	(in)

int	flags	(in)

const	char	*name1	(in)

containing	source	variable.
May	have	any	of	the	forms
accepted	by	the	upvar
command,	such	as	#0	or	1.

Name	of	source	variable,
in	the	frame	given	by
frameName.	May	refer	to	a
scalar	variable	or	to	an
array	variable	with	a
parenthesized	index.

Name	of	destination
variable,	which	is	to	be
linked	to	source	variable
so	that	references	to
destName	refer	to	the
other	variable.	Must	not
currently	exist	except	as
an	upvar-ed	variable.

One	of
TCL_GLOBAL_ONLY,
TCL_NAMESPACE_ONLY
or	0;	if	non-zero,	then
destName	is	a	global	or
namespace	variable;
otherwise	it	is	local	to	the
current	procedure	(or
current	namespace	if	no
procedure	is	active).

First	part	of	source
variable's	name	(scalar
name,	or	name	of	array
without	array	index).

const	char	*name2	(in) If	source	variable	is	an
element	of	an	array,	gives
the	index	of	the	element.
For	scalar	source
variables,	is	NULL.

DESCRIPTION

Tcl_UpVar	and	Tcl_UpVar2	provide	the	same	functionality	as	the
upvar	command:	they	make	a	link	from	a	source	variable	to	a
destination	variable,	so	that	references	to	the	destination	are	passed
transparently	through	to	the	source.	The	name	of	the	source	variable
may	be	specified	either	as	a	single	string	such	as	xyx	or	a(24)	(by
calling	Tcl_UpVar)	or	in	two	parts	where	the	array	name	has	been
separated	from	the	element	name	(by	calling	Tcl_UpVar2).	The
destination	variable	name	is	specified	in	a	single	string;	it	may	not	be	an
array	element.

Both	procedures	return	either	TCL_OK	or	TCL_ERROR,	and	they	leave
an	error	message	in	the	interpreter's	result	if	an	error	occurs.

As	with	the	upvar	command,	the	source	variable	need	not	exist;	if	it
does	exist,	unsetting	it	later	does	not	destroy	the	link.	The	destination
variable	may	exist	at	the	time	of	the	call,	but	if	so	it	must	exist	as	a
linked	variable.

KEYWORDS

linked	variable,	upvar,	variable

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>
TCL_MEM_DEBUG

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

TCL_MEM_DEBUG	-	Compile-time	flag	to	enable	Tcl	memory
debugging

DESCRIPTION

When	Tcl	is	compiled	with	TCL_MEM_DEBUG	defined,	a	powerful	set
of	memory	debugging	aids	is	included	in	the	compiled	binary.	This
includes	C	and	Tcl	functions	which	can	aid	with	debugging	memory
leaks,	memory	allocation	overruns,	and	other	memory	related	errors.

ENABLING	MEMORY	DEBUGGING

To	enable	memory	debugging,	Tcl	should	be	recompiled	from	scratch
with	TCL_MEM_DEBUG	defined	(e.g.	by	passing	the	--enable-
symbols=mem	flag	to	the	configure	script	when	building).	This	will	also
compile	in	a	non-stub	version	of	Tcl_InitMemory	to	add	the	memory
command	to	Tcl.

TCL_MEM_DEBUG	must	be	either	left	defined	for	all	modules	or
undefined	for	all	modules	that	are	going	to	be	linked	together.	If	they
are	not,	link	errors	will	occur,	with	either	Tcl_DbCkfree	and
Tcl_DbCkalloc	or	Tcl_Ckalloc	and	Tcl_Ckfree	being	undefined.

Once	memory	debugging	support	has	been	compiled	into	Tcl,	the	C
functions	Tcl_ValidateAllMemory,	and	Tcl_DumpActiveMemory,	and
the	Tcl	memory	command	can	be	used	to	validate	and	examine
memory	usage.

GUARD	ZONES

When	memory	debugging	is	enabled,	whenever	a	call	to	ckalloc	is
made,	slightly	more	memory	than	requested	is	allocated	so	the	memory
debugging	code	can	keep	track	of	the	allocated	memory,	and	eight-byte
“guard	zones”	are	placed	in	front	of	and	behind	the	space	that	will	be
returned	to	the	caller.	(The	sizes	of	the	guard	zones	are	defined	by	the
C	#define	LOW_GUARD_SIZE	and	#define	HIGH_GUARD_SIZE	in	the
file	generic/tclCkalloc.c	—	it	can	be	extended	if	you	suspect	large
overwrite	problems,	at	some	cost	in	performance.)	A	known	pattern	is
written	into	the	guard	zones	and,	on	a	call	to	ckfree,	the	guard	zones	of
the	space	being	freed	are	checked	to	see	if	either	zone	has	been
modified	in	any	way.	If	one	has	been,	the	guard	bytes	and	their	new
contents	are	identified,	and	a	“low	guard	failed”	or	“high	guard	failed”
message	is	issued.	The	“guard	failed”	message	includes	the	address	of
the	memory	packet	and	the	file	name	and	line	number	of	the	code	that
called	ckfree.	This	allows	you	to	detect	the	common	sorts	of	one-off
problems,	where	not	enough	space	was	allocated	to	contain	the	data
written,	for	example.

DEBUGGING	DIFFICULT	MEMORY	CORRUPTION	PROBLEMS

Normally,	Tcl	compiled	with	memory	debugging	enabled	will	make	it
easy	to	isolate	a	corruption	problem.	Turning	on	memory	validation	with
the	memory	command	can	help	isolate	difficult	problems.	If	you	suspect
(or	know)	that	corruption	is	occurring	before	the	Tcl	interpreter	comes
up	far	enough	for	you	to	issue	commands,	you	can	set
MEM_VALIDATE	define,	recompile	tclCkalloc.c	and	rebuild	Tcl.	This	will
enable	memory	validation	from	the	first	call	to	ckalloc,	again,	at	a	large
performance	impact.

If	you	are	desperate	and	validating	memory	on	every	call	to	ckalloc	and
ckfree	is	not	enough,	you	can	explicitly	call	Tcl_ValidateAllMemory
directly	at	any	point.	It	takes	a	char	*	and	an	int	which	are	normally	the
filename	and	line	number	of	the	caller,	but	they	can	actually	be	anything
you	want.	Remember	to	remove	the	calls	after	you	find	the	problem.

SEE	ALSO

ckalloc,	memory,	Tcl_ValidateAllMemory,	Tcl_DumpActiveMemory

KEYWORDS

memory,	debug

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1992-1999	Karl	Lehenbauer	and	Mark	Diekhans.
Copyright	©	2000	by	Scriptics	Corporation.

Tcl_Interp	interp	(in)

int	objc	(in)

Tcl_Obj	*const	objv[]	(in)

const	char	*message	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TclLib	>	WrongNumArgs

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tcl_WrongNumArgs	-	generate	standard	error	message	for	wrong
number	of	arguments

SYNOPSIS

#include	<tcl.h>
Tcl_WrongNumArgs(interp,	objc,	objv,	message)

ARGUMENTS

Interpreter	in	which	error
will	be	reported:	error
message	gets	stored	in	its
result	object.

Number	of	leading
arguments	from	objv	to
include	in	error	message.

Arguments	to	command
that	had	the	wrong	number
of	arguments.

Additional	error
information	to	print	after
leading	arguments	from
objv.	This	typically	gives
the	acceptable	syntax	of
the	command.	This

argument	may	be	NULL.

DESCRIPTION

Tcl_WrongNumArgs	is	a	utility	procedure	that	is	invoked	by	command
procedures	when	they	discover	that	they	have	received	the	wrong
number	of	arguments.	Tcl_WrongNumArgs	generates	a	standard	error
message	and	stores	it	in	the	result	object	of	interp.	The	message
includes	the	objc	initial	elements	of	objv	plus	message.	For	example,	if
objv	consists	of	the	values	foo	and	bar,	objc	is	1,	and	message	is
“fileName	count”	then	interp's	result	object	will	be	set	to	the	following
string:

wrong	#	args:	should	be	"foo	fileName	count"

If	objc	is	2,	the	result	will	be	set	to	the	following	string:

wrong	#	args:	should	be	"foo	bar	fileName	count"

Objc	is	usually	1,	but	may	be	2	or	more	for	commands	like	string	and
the	Tk	widget	commands,	which	use	the	first	argument	as	a
subcommand.

Some	of	the	objects	in	the	objv	array	may	be	abbreviations	for	a
subcommand.	The	command	Tcl_GetIndexFromObj	will	convert	the
abbreviated	string	object	into	an	indexObject.	If	an	error	occurs	in	the
parsing	of	the	subcommand	we	would	like	to	use	the	full	subcommand
name	rather	than	the	abbreviation.	If	the	Tcl_WrongNumArgs
command	finds	any	indexObjects	in	the	objv	array	it	will	use	the	full
subcommand	name	in	the	error	message	instead	of	the	abbreviated
name	that	was	originally	passed	in.	Using	the	above	example,	let	us
assume	that	bar	is	actually	an	abbreviation	for	barfly	and	the	object	is
now	an	indexObject	because	it	was	passed	to	Tcl_GetIndexFromObj.
In	this	case	the	error	message	would	be:

wrong	#	args:	should	be	"foo	barfly	fileName	count"

SEE	ALSO

Tcl_GetIndexFromObj

KEYWORDS

command,	error	message,	wrong	number	of	arguments

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1994-1997	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	3DBorder

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tk_Alloc3DBorderFromObj,	Tk_Get3DBorder,
Tk_Get3DBorderFromObj,	Tk_Draw3DRectangle,
Tk_Fill3DRectangle,	Tk_Draw3DPolygon,	Tk_Fill3DPolygon,
Tk_3DVerticalBevel,	Tk_3DHorizontalBevel,
Tk_SetBackgroundFromBorder,	Tk_NameOf3DBorder,
Tk_3DBorderColor,	Tk_3DBorderGC,
Tk_Free3DBorderFromObj,	Tk_Free3DBorder	-	draw	borders
with	three-dimensional	appearance

SYNOPSIS
#include	<tk.h>
Tk_3DBorder
Tk_Alloc3DBorderFromObj(interp,	tkwin,	objPtr)
Tk_3DBorder
Tk_Get3DBorder(interp,	tkwin,	colorName)
Tk_3DBorder
Tk_Get3DBorderFromObj(tkwin,	objPtr)
void
Tk_Draw3DRectangle(tkwin,	drawable,	border,	x,	y,	width,
height,	borderWidth,	relief)
void
Tk_Fill3DRectangle(tkwin,	drawable,	border,	x,	y,	width,
height,	borderWidth,	relief)
void
Tk_Draw3DPolygon(tkwin,	drawable,	border,	pointPtr,
numPoints,	polyBorderWidth,	leftRelief)
void
Tk_Fill3DPolygon(tkwin,	drawable,	border,	pointPtr,
numPoints,	polyBorderWidth,	leftRelief)
void
Tk_3DVerticalBevel(tkwin,	drawable,	border,	x,	y,	width,

height,	leftBevel,	relief)
void
Tk_3DHorizontalBevel(tkwin,	drawable,	border,	x,	y,	width,
height,	leftIn,	rightIn,	topBevel,	relief)
void
Tk_SetBackgroundFromBorder(tkwin,	border)
const	char	*
Tk_NameOf3DBorder(border)
XColor	*
Tk_3DBorderColor(border)
GC	*
Tk_3DBorderGC(tkwin,	border,	which)
Tk_Free3DBorderFromObj(tkwin,	objPtr)
Tk_Free3DBorder(border)

ARGUMENTS
DESCRIPTION
KEYWORDS

NAME

Tk_Alloc3DBorderFromObj,	Tk_Get3DBorder,
Tk_Get3DBorderFromObj,	Tk_Draw3DRectangle,	Tk_Fill3DRectangle,
Tk_Draw3DPolygon,	Tk_Fill3DPolygon,	Tk_3DVerticalBevel,
Tk_3DHorizontalBevel,	Tk_SetBackgroundFromBorder,
Tk_NameOf3DBorder,	Tk_3DBorderColor,	Tk_3DBorderGC,
Tk_Free3DBorderFromObj,	Tk_Free3DBorder	-	draw	borders	with
three-dimensional	appearance

SYNOPSIS

#include	<tk.h>
Tk_3DBorder
Tk_Alloc3DBorderFromObj(interp,	tkwin,	objPtr)
Tk_3DBorder
Tk_Get3DBorder(interp,	tkwin,	colorName)
Tk_3DBorder
Tk_Get3DBorderFromObj(tkwin,	objPtr)
void

Tcl_Interp	*interp	(in)

Tk_Window	tkwin	(in)

Tk_Draw3DRectangle(tkwin,	drawable,	border,	x,	y,	width,	height,
borderWidth,	relief)
void
Tk_Fill3DRectangle(tkwin,	drawable,	border,	x,	y,	width,	height,
borderWidth,	relief)
void
Tk_Draw3DPolygon(tkwin,	drawable,	border,	pointPtr,	numPoints,
polyBorderWidth,	leftRelief)
void
Tk_Fill3DPolygon(tkwin,	drawable,	border,	pointPtr,	numPoints,
polyBorderWidth,	leftRelief)
void
Tk_3DVerticalBevel(tkwin,	drawable,	border,	x,	y,	width,	height,
leftBevel,	relief)
void
Tk_3DHorizontalBevel(tkwin,	drawable,	border,	x,	y,	width,	height,
leftIn,	rightIn,	topBevel,	relief)
void
Tk_SetBackgroundFromBorder(tkwin,	border)
const	char	*
Tk_NameOf3DBorder(border)
XColor	*
Tk_3DBorderColor(border)
GC	*
Tk_3DBorderGC(tkwin,	border,	which)
Tk_Free3DBorderFromObj(tkwin,	objPtr)
Tk_Free3DBorder(border)

ARGUMENTS

Interpreter	to	use	for	error
reporting.

Token	for	window	(for	all
procedures	except
Tk_Get3DBorder,	must	be
the	window	for	which	the

Tcl_Obj	*objPtr	(in)

char	*colorName	(in)

Drawable	drawable	(in)

Tk_3DBorder	border	(in)

int	x	(in)

int	y	(in)

border	was	allocated).

Pointer	to	object	whose
value	describes	color
corresponding	to
background	(flat	areas).
Illuminated	edges	will	be
brighter	than	this	and
shadowed	edges	will	be
darker	than	this.

Same	as	objPtr	except
value	is	supplied	as	a
string	rather	than	an
object.

X	token	for	window	or
pixmap;	indicates	where
graphics	are	to	be	drawn.
Must	either	be	the	X
window	for	tkwin	or	a
pixmap	with	the	same
screen	and	depth	as	tkwin.

Token	for	border
previously	allocated	in	call
to	Tk_Get3DBorder.

X-coordinate	of	upper-left
corner	of	rectangle
describing	border	or	bevel,
in	pixels.

Y-coordinate	of	upper-left
corner	of	rectangle
describing	border	or	bevel,
in	pixels.

int	width	(in)

int	height	(in)

int	borderWidth	(in)

int	relief	(in)

XPoint	*pointPtr	(in)

int	numPoints	(in)

int	polyBorderWidth	(in)

Width	of	rectangle
describing	border	or	bevel,
in	pixels.

Height	of	rectangle
describing	border	or	bevel,
in	pixels.

Width	of	border	in	pixels.
Positive	means	border	is
inside	rectangle	given	by
x,	y,	width,	height,
negative	means	border	is
outside	rectangle.

Indicates	3-D	position	of
interior	of	object	relative	to
exterior;	should	be
TK_RELIEF_RAISED,
TK_RELIEF_SUNKEN,
TK_RELIEF_GROOVE,
TK_RELIEF_SOLID,	or
TK_RELIEF_RIDGE	(may
also	be	TK_RELIEF_FLAT
for	Tk_Fill3DRectangle).

Pointer	to	array	of	points
describing	the	set	of
vertices	in	a	polygon.	The
polygon	need	not	be
closed	(it	will	be	closed
automatically	if	it	is	not).

Number	of	points	at
*pointPtr.

Width	of	border	in	pixels.	If

int	leftRelief	(in)

int	leftBevel	(in)

int	leftIn	(in)

positive,	border	is	drawn	to
left	of	trajectory	given	by
pointPtr;	if	negative,	border
is	drawn	to	right	of
trajectory.	If	leftRelief	is
TK_RELIEF_GROOVE	or
TK_RELIEF_RIDGE	then
the	border	is	centered	on
the	trajectory.

Height	of	left	side	of
polygon's	path	relative	to
right.
TK_RELIEF_RAISED
means	left	side	should
appear	higher	and
TK_RELIEF_SUNKEN
means	right	side	should
appear	higher;
TK_RELIEF_GROOVE
and	TK_RELIEF_RIDGE
mean	the	obvious	things.
For	Tk_Fill3DPolygon,
TK_RELIEF_FLAT	may
also	be	specified	to
indicate	no	difference	in
height.

Non-zero	means	this	bevel
forms	the	left	side	of	the
object;	zero	means	it	forms
the	right	side.

Non-zero	means	that	the
left	edge	of	the	horizontal
bevel	angles	in,	so	that	the
bottom	of	the	edge	is

int	rightIn	(in)

int	topBevel	(in)

int	which	(in)

farther	to	the	right	than	the
top.	Zero	means	the	edge
angles	out,	so	that	the
bottom	is	farther	to	the	left
than	the	top.

Non-zero	means	that	the
right	edge	of	the	horizontal
bevel	angles	in,	so	that	the
bottom	of	the	edge	is
farther	to	the	left	than	the
top.	Zero	means	the	edge
angles	out,	so	that	the
bottom	is	farther	to	the
right	than	the	top.

Non-zero	means	this	bevel
forms	the	top	side	of	the
object;	zero	means	it	forms
the	bottom	side.

Specifies	which	of	the
border's	graphics	contexts
is	desired.	Must	be
TK_3D_FLAT_GC,
TK_3D_LIGHT_GC,	or
TK_3D_DARK_GC.

DESCRIPTION

These	procedures	provide	facilities	for	drawing	window	borders	in	a
way	that	produces	a	three-dimensional	appearance.
Tk_Alloc3DBorderFromObj	allocates	colors	and	Pixmaps	needed	to
draw	a	border	in	the	window	given	by	the	tkwin	argument.	The	value	of
objPtr	is	a	standard	Tk	color	name	that	determines	the	border	colors.
The	color	indicated	by	objPtr	will	not	actually	be	used	in	the	border;	it

indicates	the	background	color	for	the	window	(i.e.	a	color	for	flat
surfaces).	The	illuminated	portions	of	the	border	will	appear	brighter
than	indicated	by	objPtr,	and	the	shadowed	portions	of	the	border	will
appear	darker	than	objPtr.

Tk_Alloc3DBorderFromObj	returns	a	token	that	may	be	used	in	later
calls	to	Tk_Draw3DRectangle.	If	an	error	occurs	in	allocating
information	for	the	border	(e.g.	a	bogus	color	name	was	given)	then
NULL	is	returned	and	an	error	message	is	left	in	interp->result.	If	it
returns	successfully,	Tk_Alloc3DBorderFromObj	caches	information
about	the	return	value	in	objPtr,	which	speeds	up	future	calls	to
Tk_Alloc3DBorderFromObj	with	the	same	objPtr	and	tkwin.

Tk_Get3DBorder	is	identical	to	Tk_Alloc3DBorderFromObj	except
that	the	color	is	specified	with	a	string	instead	of	an	object.	This
prevents	Tk_Get3DBorder	from	caching	the	return	value,	so
Tk_Get3DBorder	is	less	efficient	than	Tk_Alloc3DBorderFromObj.

Tk_Get3DBorderFromObj	returns	the	token	for	an	existing	border,
given	the	window	and	color	name	used	to	create	the	border.
Tk_Get3DBorderFromObj	does	not	actually	create	the	border;	it	must
already	have	been	created	with	a	previous	call	to
Tk_Alloc3DBorderFromObj	or	Tk_Get3DBorder.	The	return	value	is
cached	in	objPtr,	which	speeds	up	future	calls	to
Tk_Get3DBorderFromObj	with	the	same	objPtr	and	tkwin.

Once	a	border	structure	has	been	created,	Tk_Draw3DRectangle	may
be	invoked	to	draw	the	border.	The	tkwin	argument	specifies	the
window	for	which	the	border	was	allocated,	and	drawable	specifies	a
window	or	pixmap	in	which	the	border	is	to	be	drawn.	Drawable	need
not	refer	to	the	same	window	as	tkwin,	but	it	must	refer	to	a	compatible
pixmap	or	window:	one	associated	with	the	same	screen	and	with	the
same	depth	as	tkwin.	The	x,	y,	width,	and	height	arguments	define	the
bounding	box	of	the	border	region	within	drawable	(usually	x	and	y	are
zero	and	width	and	height	are	the	dimensions	of	the	window),	and
borderWidth	specifies	the	number	of	pixels	actually	occupied	by	the
border.	The	relief	argument	indicates	which	of	several	three-
dimensional	effects	is	desired:	TK_RELIEF_RAISED	means	that	the

interior	of	the	rectangle	should	appear	raised	relative	to	the	exterior	of
the	rectangle,	and	TK_RELIEF_SUNKEN	means	that	the	interior
should	appear	depressed.	TK_RELIEF_GROOVE	and
TK_RELIEF_RIDGE	mean	that	there	should	appear	to	be	a	groove	or
ridge	around	the	exterior	of	the	rectangle.

Tk_Fill3DRectangle	is	somewhat	like	Tk_Draw3DRectangle	except
that	it	first	fills	the	rectangular	area	with	the	background	color	(one
corresponding	to	the	color	used	to	create	border).	Then	it	calls
Tk_Draw3DRectangle	to	draw	a	border	just	inside	the	outer	edge	of
the	rectangular	area.	The	argument	relief	indicates	the	desired	effect
(TK_RELIEF_FLAT	means	no	border	should	be	drawn;	all	that	happens
is	to	fill	the	rectangle	with	the	background	color).

The	procedure	Tk_Draw3DPolygon	may	be	used	to	draw	more
complex	shapes	with	a	three-dimensional	appearance.	The	pointPtr	and
numPoints	arguments	define	a	trajectory,	polyBorderWidth	indicates
how	wide	the	border	should	be	(and	on	which	side	of	the	trajectory	to
draw	it),	and	leftRelief	indicates	which	side	of	the	trajectory	should
appear	raised.	Tk_Draw3DPolygon	draws	a	border	around	the	given
trajectory	using	the	colors	from	border	to	produce	a	three-dimensional
appearance.	If	the	trajectory	is	non-self-intersecting,	the	appearance
will	be	a	raised	or	sunken	polygon	shape.	The	trajectory	may	be	self-
intersecting,	although	it's	not	clear	how	useful	this	is.

Tk_Fill3DPolygon	is	to	Tk_Draw3DPolygon	what
Tk_Fill3DRectangle	is	to	Tk_Draw3DRectangle:	it	fills	the	polygonal
area	with	the	background	color	from	border,	then	calls
Tk_Draw3DPolygon	to	draw	a	border	around	the	area	(unless
leftRelief	is	TK_RELIEF_FLAT;	in	this	case	no	border	is	drawn).

The	procedures	Tk_3DVerticalBevel	and	Tk_3DHorizontalBevel
provide	lower-level	drawing	primitives	that	are	used	by	procedures	such
as	Tk_Draw3DRectangle.	These	procedures	are	also	useful	in	their
own	right	for	drawing	rectilinear	border	shapes.	Tk_3DVerticalBevel
draws	a	vertical	beveled	edge,	such	as	the	left	or	right	side	of	a
rectangle,	and	Tk_3DHorizontalBevel	draws	a	horizontal	beveled
edge,	such	as	the	top	or	bottom	of	a	rectangle.	Each	procedure	takes	x,

y,	width,	and	height	arguments	that	describe	the	rectangular	area	of	the
beveled	edge	(e.g.,	width	is	the	border	width	for	Tk_3DVerticalBevel).
The	leftBorder	and	topBorder	arguments	indicate	the	position	of	the
border	relative	to	the	“inside”	of	the	object,	and	relief	indicates	the	relief
of	the	inside	of	the	object	relative	to	the	outside.	Tk_3DVerticalBevel
just	draws	a	rectangular	region.	Tk_3DHorizontalBevel	draws	a
trapezoidal	region	to	generate	mitered	corners;	it	should	be	called	after
Tk_3DVerticalBevel	(otherwise	Tk_3DVerticalBevel	will	overwrite	the
mitering	in	the	corner).	The	leftIn	and	rightIn	arguments	to
Tk_3DHorizontalBevel	describe	the	mitering	at	the	corners;	a	value	of
1	means	that	the	bottom	edge	of	the	trapezoid	will	be	shorter	than	the
top,	0	means	it	will	be	longer.	For	example,	to	draw	a	rectangular	border
the	top	bevel	should	be	drawn	with	1	for	both	leftIn	and	rightIn,	and	the
bottom	bevel	should	be	drawn	with	0	for	both	arguments.

The	procedure	Tk_SetBackgroundFromBorder	will	modify	the
background	pixel	and/or	pixmap	of	tkwin	to	produce	a	result	compatible
with	border.	For	color	displays,	the	resulting	background	will	just	be	the
color	specified	when	border	was	created;	for	monochrome	displays,	the
resulting	background	will	be	a	light	stipple	pattern,	in	order	to
distinguish	the	background	from	the	illuminated	portion	of	the	border.

Given	a	token	for	a	border,	the	procedure	Tk_NameOf3DBorder	will
return	the	color	name	that	was	used	to	create	the	border.

The	procedure	Tk_3DBorderColor	returns	the	XColor	structure	that	will
be	used	for	flat	surfaces	drawn	for	its	border	argument	by	procedures
like	Tk_Fill3DRectangle.	The	return	value	corresponds	to	the	color
name	that	was	used	to	create	the	border.	The	XColor,	and	its
associated	pixel	value,	will	remain	allocated	as	long	as	border	exists.

The	procedure	Tk_3DBorderGC	returns	one	of	the	X	graphics	contexts
that	are	used	to	draw	the	border.	The	argument	which	selects	which
one	of	the	three	possible	GC's:	TK_3D_FLAT_GC	returns	the	context
used	for	flat	surfaces,	TK_3D_LIGHT_GC	returns	the	context	for	light
shadows,	and	TK_3D_DARK_GC	returns	the	context	for	dark	shadows.

When	a	border	is	no	longer	needed,	Tk_Free3DBorderFromObj	or

Tk_Free3DBorder	should	be	called	to	release	the	resources
associated	with	it.	For	Tk_Free3DBorderFromObj	the	border	to
release	is	specified	with	the	window	and	color	name	used	to	create	the
border;	for	Tk_Free3DBorder	the	border	to	release	is	specified	with	the
Tk_3DBorder	token	for	the	border.	There	should	be	exactly	one	call	to
Tk_Free3DBorderFromObj	or	Tk_Free3DBorder	for	each	call	to
Tk_Alloc3DBorderFromObj	or	Tk_Get3DBorder.

KEYWORDS

3D,	background,	border,	color,	depressed,	illumination,	object,	polygon,
raised,	shadow,	three-dimensional	effect

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990-1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1998	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	WindowId

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tk_WindowId,	Tk_Parent,	Tk_Display,	Tk_DisplayName,
Tk_ScreenNumber,	Tk_Screen,	Tk_X,	Tk_Y,	Tk_Width,
Tk_Height,	Tk_Changes,	Tk_Attributes,	Tk_IsContainer,
Tk_IsEmbedded,	Tk_IsMapped,	Tk_IsTopLevel,	Tk_ReqWidth,
Tk_ReqHeight,	Tk_MinReqWidth,	Tk_MinReqHeight,
Tk_InternalBorderLeft,	Tk_InternalBorderRight,
Tk_InternalBorderTop,	Tk_InternalBorderBottom,	Tk_Visual,
Tk_Depth,	Tk_Colormap,	Tk_Interp	-	retrieve	information	from
Tk's	local	data	structure

SYNOPSIS
#include	<tk.h>
Window
Tk_WindowId(tkwin)
Tk_Window
Tk_Parent(tkwin)
Display	*
Tk_Display(tkwin)
const	char	*
Tk_DisplayName(tkwin)
int
Tk_ScreenNumber(tkwin)
Screen	*
Tk_Screen(tkwin)
int
Tk_X(tkwin)
int
Tk_Y(tkwin)
int
Tk_Width(tkwin)
int

Tk_Height(tkwin)
XWindowChanges	*
Tk_Changes(tkwin)
XSetWindowAttributes	*
Tk_Attributes(tkwin)
int
Tk_IsContainer(tkwin)
int
Tk_IsEmbedded(tkwin)
int
Tk_IsMapped(tkwin)
int
Tk_IsTopLevel(tkwin)
int
Tk_ReqWidth(tkwin)
int
Tk_ReqHeight(tkwin)
int
Tk_MinReqWidth(tkwin)
int
Tk_MinReqHeight(tkwin)
int
Tk_InternalBorderLeft(tkwin)
int
Tk_InternalBorderRight(tkwin)
int
Tk_InternalBorderTop(tkwin)
int
Tk_InternalBorderBottom(tkwin)
Visual	*
Tk_Visual(tkwin)
int
Tk_Depth(tkwin)
Colormap
Tk_Colormap(tkwin)
Tcl_Interp	*
Tk_Interp(tkwin)

ARGUMENTS
DESCRIPTION
KEYWORDS

NAME

Tk_WindowId,	Tk_Parent,	Tk_Display,	Tk_DisplayName,
Tk_ScreenNumber,	Tk_Screen,	Tk_X,	Tk_Y,	Tk_Width,	Tk_Height,
Tk_Changes,	Tk_Attributes,	Tk_IsContainer,	Tk_IsEmbedded,
Tk_IsMapped,	Tk_IsTopLevel,	Tk_ReqWidth,	Tk_ReqHeight,
Tk_MinReqWidth,	Tk_MinReqHeight,	Tk_InternalBorderLeft,
Tk_InternalBorderRight,	Tk_InternalBorderTop,
Tk_InternalBorderBottom,	Tk_Visual,	Tk_Depth,	Tk_Colormap,
Tk_Interp	-	retrieve	information	from	Tk's	local	data	structure

SYNOPSIS

#include	<tk.h>
Window
Tk_WindowId(tkwin)
Tk_Window
Tk_Parent(tkwin)
Display	*
Tk_Display(tkwin)
const	char	*
Tk_DisplayName(tkwin)
int
Tk_ScreenNumber(tkwin)
Screen	*
Tk_Screen(tkwin)
int
Tk_X(tkwin)
int
Tk_Y(tkwin)
int
Tk_Width(tkwin)
int
Tk_Height(tkwin)

XWindowChanges	*
Tk_Changes(tkwin)
XSetWindowAttributes	*
Tk_Attributes(tkwin)
int
Tk_IsContainer(tkwin)
int
Tk_IsEmbedded(tkwin)
int
Tk_IsMapped(tkwin)
int
Tk_IsTopLevel(tkwin)
int
Tk_ReqWidth(tkwin)
int
Tk_ReqHeight(tkwin)
int
Tk_MinReqWidth(tkwin)
int
Tk_MinReqHeight(tkwin)
int
Tk_InternalBorderLeft(tkwin)
int
Tk_InternalBorderRight(tkwin)
int
Tk_InternalBorderTop(tkwin)
int
Tk_InternalBorderBottom(tkwin)
Visual	*
Tk_Visual(tkwin)
int
Tk_Depth(tkwin)
Colormap
Tk_Colormap(tkwin)
Tcl_Interp	*
Tk_Interp(tkwin)

Tk_Window	tkwin	(in)

ARGUMENTS

Token	for	window.

DESCRIPTION

Tk_WindowId	and	the	other	names	listed	above	are	all	macros	that
return	fields	from	Tk's	local	data	structure	for	tkwin.	None	of	these
macros	requires	any	interaction	with	the	server;	it	is	safe	to	assume	that
all	are	fast.

Tk_WindowId	returns	the	X	identifier	for	tkwin,	or	NULL	if	no	X	window
has	been	created	for	tkwin	yet.

Tk_Parent	returns	Tk's	token	for	the	logical	parent	of	tkwin.	The	parent
is	the	token	that	was	specified	when	tkwin	was	created,	or	NULL	for
main	windows.

Tk_Interp	returns	the	Tcl	interpreter	associated	with	a	tkwin	or	NULL	if
there	is	an	error.

Tk_Display	returns	a	pointer	to	the	Xlib	display	structure	corresponding
to	tkwin.	Tk_DisplayName	returns	an	ASCII	string	identifying	tkwin's
display.	Tk_ScreenNumber	returns	the	index	of	tkwin's	screen	among
all	the	screens	of	tkwin's	display.	Tk_Screen	returns	a	pointer	to	the
Xlib	structure	corresponding	to	tkwin's	screen.

Tk_X,	Tk_Y,	Tk_Width,	and	Tk_Height	return	information	about	tkwin's
location	within	its	parent	and	its	size.	The	location	information	refers	to
the	upper-left	pixel	in	the	window,	or	its	border	if	there	is	one.	The	width
and	height	information	refers	to	the	interior	size	of	the	window,	not
including	any	border.	Tk_Changes	returns	a	pointer	to	a	structure
containing	all	of	the	above	information	plus	a	few	other	fields.
Tk_Attributes	returns	a	pointer	to	an	XSetWindowAttributes	structure
describing	all	of	the	attributes	of	the	tkwin's	window,	such	as
background	pixmap,	event	mask,	and	so	on	(Tk	keeps	track	of	all	this
information	as	it	is	changed	by	the	application).	Note:	it	is	essential	that

applications	use	Tk	procedures	like	Tk_ResizeWindow	instead	of	X
procedures	like	XResizeWindow,	so	that	Tk	can	keep	its	data
structures	up-to-date.

Tk_IsContainer	returns	a	non-zero	value	if	tkwin	is	a	container,	and
that	some	other	application	may	be	embedding	itself	inside	tkwin.

Tk_IsEmbedded	returns	a	non-zero	value	if	tkwin	is	not	a	free-standing
window,	but	rather	is	embedded	in	some	other	application.

Tk_IsMapped	returns	a	non-zero	value	if	tkwin	is	mapped	and	zero	if
tkwin	is	not	mapped.

Tk_IsTopLevel	returns	a	non-zero	value	if	tkwin	is	a	top-level	window
(its	X	parent	is	the	root	window	of	the	screen)	and	zero	if	tkwin	is	not	a
top-level	window.

Tk_ReqWidth	and	Tk_ReqHeight	return	information	about	the
window's	requested	size.	These	values	correspond	to	the	last	call	to
Tk_GeometryRequest	for	tkwin.

Tk_MinReqWidth	and	Tk_MinReqHeight	return	information	about	the
window's	minimum	requested	size.	These	values	correspond	to	the	last
call	to	Tk_SetMinimumRequestSize	for	tkwin.

Tk_InternalBorderLeft,	Tk_InternalBorderRight,
Tk_InternalBorderTop	and	Tk_InternalBorderBottom	return	the	width
of	one	side	of	the	internal	border	that	has	been	requested	for	tkwin,	or	0
if	no	internal	border	was	requested.	The	return	value	is	simply	the	last
value	passed	to	Tk_SetInternalBorder	or	Tk_SetInternalBorderEx	for
tkwin.

Tk_Visual,	Tk_Depth,	and	Tk_Colormap	return	information	about	the
visual	characteristics	of	a	window.	Tk_Visual	returns	the	visual	type	for
the	window,	Tk_Depth	returns	the	number	of	bits	per	pixel,	and
Tk_Colormap	returns	the	current	colormap	for	the	window.	The	visual
characteristics	are	normally	set	from	the	defaults	for	the	window's
screen,	but	they	may	be	overridden	by	calling	Tk_SetWindowVisual.

KEYWORDS

attributes,	colormap,	depth,	display,	height,	geometry	manager,
identifier,	mapped,	requested	size,	screen,	top-level,	visual,	width,
window,	x,	y

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990-1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1997	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	GetRelief

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tk_GetReliefFromObj,	Tk_GetRelief,	Tk_NameOfRelief	-
translate	between	strings	and	relief	values

SYNOPSIS
#include	<tk.h>
int
Tk_GetReliefFromObj(interp,	objPtr,	reliefPtr)
int
Tk_GetRelief(interp,	name,	reliefPtr)
const	char	*
Tk_NameOfRelief(relief)

ARGUMENTS
DESCRIPTION
KEYWORDS

NAME

Tk_GetReliefFromObj,	Tk_GetRelief,	Tk_NameOfRelief	-	translate
between	strings	and	relief	values

SYNOPSIS

#include	<tk.h>
int
Tk_GetReliefFromObj(interp,	objPtr,	reliefPtr)
int
Tk_GetRelief(interp,	name,	reliefPtr)
const	char	*
Tk_NameOfRelief(relief)

ARGUMENTS

Tcl_Interp	*interp	(in)

Tcl_Obj	*objPtr	(in/out)

char	*string	(in)

int	*reliefPtr	(out)

const	char	*name	()

int	relief	(in)

Interpreter	to	use	for	error
reporting.

String	value	contains
name	of	relief,	one	of
“flat”,	“groove”,	“raised”,
“ridge”,	“solid”,	or
“sunken”;	the	internal	rep
will	be	modified	to	cache
corresponding	relief	value.

Same	as	objPtr	except
description	of	relief	is
passed	as	a	string.

Pointer	to	location	in	which
to	store	relief	value
corresponding	to	objPtr	or
name.

Name	of	the	relief.

Relief	value	(one	of
TK_RELIEF_FLAT,
TK_RELIEF_RAISED,
TK_RELIEF_SUNKEN,
TK_RELIEF_GROOVE,
TK_RELIEF_SOLID,	or
TK_RELIEF_RIDGE).

DESCRIPTION

Tk_GetReliefFromObj	places	in	*reliefPtr	the	relief	value
corresponding	to	the	value	of	objPtr.	This	value	will	be	one	of
TK_RELIEF_FLAT,	TK_RELIEF_RAISED,	TK_RELIEF_SUNKEN,
TK_RELIEF_GROOVE,	TK_RELIEF_SOLID,	or	TK_RELIEF_RIDGE.

Under	normal	circumstances	the	return	value	is	TCL_OK	and	interp	is
unused.	If	objPtr	does	not	contain	one	of	the	valid	relief	names	or	an
abbreviation	of	one	of	them,	then	TCL_ERROR	is	returned,	*reliefPtr	is
unmodified,	and	an	error	message	is	stored	in	interp's	result	if	interp	is
not	NULL.	Tk_GetReliefFromObj	caches	information	about	the	return
value	in	objPtr,	which	speeds	up	future	calls	to	Tk_GetReliefFromObj
with	the	same	objPtr.

Tk_GetRelief	is	identical	to	Tk_GetReliefFromObj	except	that	the
description	of	the	relief	is	specified	with	a	string	instead	of	an	object.
This	prevents	Tk_GetRelief	from	caching	the	return	value,	so
Tk_GetRelief	is	less	efficient	than	Tk_GetReliefFromObj.

Tk_NameOfRelief	is	the	logical	inverse	of	Tk_GetRelief.	Given	a	relief
value	it	returns	the	corresponding	string	(flat,	raised,	sunken,	groove,
solid,	or	ridge).	If	relief	is	not	a	legal	relief	value,	then	“unknown	relief”
is	returned.

KEYWORDS

name,	relief,	string

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990	The	Regents	of	the	University	of	California.
Copyright	©	1994-1998	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	TextLayout

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tk_ComputeTextLayout,	Tk_FreeTextLayout,
Tk_DrawTextLayout,	Tk_UnderlineTextLayout,
Tk_PointToChar,	Tk_CharBbox,	Tk_DistanceToTextLayout,
Tk_IntersectTextLayout,	Tk_TextLayoutToPostscript	-	routines
to	measure	and	display	single-font,	multi-line,	justified	text.

SYNOPSIS
#include	<tk.h>
Tk_TextLayout
Tk_ComputeTextLayout(tkfont,	string,	numChars,
wrapLength,	justify,	flags,	widthPtr,	heightPtr)
void
Tk_FreeTextLayout(layout)
void
Tk_DrawTextLayout(display,	drawable,	gc,	layout,	x,	y,
firstChar,	lastChar)
void
Tk_UnderlineTextLayout(display,	drawable,	gc,	layout,	x,	y,
underline)
int
Tk_PointToChar(layout,	x,	y)
int
Tk_CharBbox(layout,	index,	xPtr,	yPtr,	widthPtr,	heightPtr)
int
Tk_DistanceToTextLayout(layout,	x,	y)
int
Tk_IntersectTextLayout(layout,	x,	y,	width,	height)
void
Tk_TextLayoutToPostscript(interp,	layout)

ARGUMENTS
DESCRIPTION

DISPLAY	MODEL
KEYWORDS

NAME

Tk_ComputeTextLayout,	Tk_FreeTextLayout,	Tk_DrawTextLayout,
Tk_UnderlineTextLayout,	Tk_PointToChar,	Tk_CharBbox,
Tk_DistanceToTextLayout,	Tk_IntersectTextLayout,
Tk_TextLayoutToPostscript	-	routines	to	measure	and	display	single-
font,	multi-line,	justified	text.

SYNOPSIS

#include	<tk.h>
Tk_TextLayout
Tk_ComputeTextLayout(tkfont,	string,	numChars,	wrapLength,	justify,
flags,	widthPtr,	heightPtr)
void
Tk_FreeTextLayout(layout)
void
Tk_DrawTextLayout(display,	drawable,	gc,	layout,	x,	y,	firstChar,
lastChar)
void
Tk_UnderlineTextLayout(display,	drawable,	gc,	layout,	x,	y,	underline)
int
Tk_PointToChar(layout,	x,	y)
int
Tk_CharBbox(layout,	index,	xPtr,	yPtr,	widthPtr,	heightPtr)
int
Tk_DistanceToTextLayout(layout,	x,	y)
int
Tk_IntersectTextLayout(layout,	x,	y,	width,	height)
void
Tk_TextLayoutToPostscript(interp,	layout)

ARGUMENTS

Tk_Font	tkfont	(in)

const	char	*string	(in)

int	numChars	(in)

int	wrapLength	(in)

Font	to	use	when
constructing	and
displaying	a	text	layout.
The	tkfont	must	remain
valid	for	the	lifetime	of	the
text	layout.	Must	have
been	returned	by	a
previous	call	to
Tk_GetFont.

Potentially	multi-line	string
whose	dimensions	are	to
be	computed	and	stored	in
the	text	layout.	The	string
must	remain	valid	for	the
lifetime	of	the	text	layout.

The	number	of	characters
to	consider	from	string.	If
numChars	is	less	than	0,
then	assumes	string	is	null
terminated	and	uses
Tcl_NumUtfChars	to
determine	the	length	of
string.

Longest	permissible	line
length,	in	pixels.	Lines	in
string	will	automatically	be
broken	at	word	boundaries
and	wrapped	when	they
reach	this	length.	If
wrapLength	is	too	small	for
even	a	single	character	to
fit	on	a	line,	it	will	be
expanded	to	allow	one
character	to	fit	on	each

Tk_Justify	justify	(in)

int	flags	(in)

line.	If	wrapLength	is	<=	0,
there	is	no	automatic
wrapping;	lines	will	get	as
long	as	they	need	to	be
and	only	wrap	if	a
newline/return	character	is
encountered.

How	to	justify	the	lines	in	a
multi-line	text	layout.
Possible	values	are
TK_JUSTIFY_LEFT,
TK_JUSTIFY_CENTER,	or
TK_JUSTIFY_RIGHT.	If
the	text	layout	only
occupies	a	single	line,	then
justify	is	irrelevant.

Various	flag	bits	OR-ed
together.
TK_IGNORE_TABS
means	that	tab	characters
should	not	be	expanded	to
the	next	tab	stop.
TK_IGNORE_NEWLINES
means	that	newline/return
characters	should	not
cause	a	line	break.	If	either
tabs	or	newlines/returns
are	ignored,	then	they	will
be	treated	as	regular
characters,	being
measured	and	displayed	in
a	platform-dependent
manner	as	described	in
Tk_MeasureChars,	and
will	not	have	any	special

int	*widthPtr	(out)

int	*heightPtr	(out)

Tk_TextLayout	layout	(in)

Display	*display	(in)

Drawable	drawable	(in)

GC	gc	(in)

behaviors.

If	non-NULL,	filled	with
either	the	width,	in	pixels,
of	the	widest	line	in	the
text	layout,	or	the	width,	in
pixels,	of	the	bounding	box
for	the	character	specified
by	index.

If	non-NULL,	filled	with
either	the	total	height,	in
pixels,	of	all	the	lines	in	the
text	layout,	or	the	height,	in
pixels,	of	the	bounding	box
for	the	character	specified
by	index.

A	token	that	represents	the
cached	layout	information
about	the	single-font,
multi-line,	justified	piece	of
text.	This	token	is	returned
by
Tk_ComputeTextLayout.

Display	on	which	to	draw.

Window	or	pixmap	in
which	to	draw.

Graphics	context	to	use	for
drawing	text	layout.	The
font	selected	in	this	GC
must	correspond	to	the
tkfont	used	when
constructing	the	text

int	x,	y	(in)

int	firstChar	(in)

int	lastChar	(in)

int	underline	(in)

int	index	(in)

layout.

Point,	in	pixels,	at	which	to
place	the	upper-left	hand
corner	of	the	text	layout
when	it	is	being	drawn,	or
the	coordinates	of	a	point
(with	respect	to	the	upper-
left	hand	corner	of	the	text
layout)	to	check	against
the	text	layout.

The	index	of	the	first
character	to	draw	from	the
given	text	layout.	The
number	0	means	to	draw
from	the	beginning.

The	index	of	the	last
character	up	to	which	to
draw.	The	character
specified	by	lastChar	itself
will	not	be	drawn.	A
number	less	than	0	means
to	draw	all	characters	in
the	text	layout.

Index	of	the	single
character	to	underline	in
the	text	layout,	or	a
number	less	than	0	for	no
underline.

The	index	of	the	character
whose	bounding	box	is
desired.	The	bounding	box
is	computed	with	respect

int	*xPtr,	*yPtr	(out)

int	width,	height	(in)

Tcl_Interp	*interp	(out)

to	the	upper-left	hand
corner	of	the	text	layout.

Filled	with	the	upper-left
hand	corner,	in	pixels,	of
the	bounding	box	for	the
character	specified	by
index.	Either	or	both	xPtr
and	yPtr	may	be	NULL,	in
which	case	the
corresponding	value	is	not
calculated.

Specifies	the	width	and
height,	in	pixels,	of	the
rectangular	area	to
compare	for	intersection
against	the	text	layout.

Postscript	code	that	will
print	the	text	layout	is
appended	to	interp->result.

DESCRIPTION

These	routines	are	for	measuring	and	displaying	single-font,	multi-line,
justified	text.	To	measure	and	display	simple	single-font,	single-line
strings,	refer	to	the	documentation	for	Tk_MeasureChars.	There	is	no
programming	interface	in	the	core	of	Tk	that	supports	multi-font,	multi-
line	text;	support	for	that	behavior	must	be	built	on	top	of	simpler	layers.
Note	that	unlike	the	lower	level	text	display	routines,	the	functions
described	here	all	operate	on	character-oriented	lengths	and	indices
rather	than	byte-oriented	values.	See	the	description	of	Tcl_UtfAtIndex
for	more	details	on	converting	between	character	and	byte	offsets.

The	routines	described	here	are	built	on	top	of	the	programming

interface	described	in	the	Tk_MeasureChars	documentation.	Tab
characters	and	newline/return	characters	may	be	treated	specially	by
these	procedures,	but	all	other	characters	are	passed	through	to	the
lower	level.

Tk_ComputeTextLayout	computes	the	layout	information	needed	to
display	a	single-font,	multi-line,	justified	string	of	text	and	returns	a
Tk_TextLayout	token	that	holds	this	information.	This	token	is	used	in
subsequent	calls	to	procedures	such	as	Tk_DrawTextLayout,
Tk_DistanceToTextLayout,	and	Tk_FreeTextLayout.	The	string	and
tkfont	used	when	computing	the	layout	must	remain	valid	for	the	lifetime
of	this	token.

Tk_FreeTextLayout	is	called	to	release	the	storage	associated	with
layout	when	it	is	no	longer	needed.	A	layout	should	not	be	used	in	any
other	text	layout	procedures	once	it	has	been	released.

Tk_DrawTextLayout	uses	the	information	in	layout	to	display	a	single-
font,	multi-line,	justified	string	of	text	at	the	specified	location.

Tk_UnderlineTextLayout	uses	the	information	in	layout	to	display	an
underline	below	an	individual	character.	This	procedure	does	not	draw
the	text,	just	the	underline.	To	produce	natively	underlined	text,	an
underlined	font	should	be	constructed	and	used.	All	characters,
including	tabs,	newline/return	characters,	and	spaces	at	the	ends	of
lines,	can	be	underlined	using	this	method.	However,	the	underline	will
never	be	drawn	outside	of	the	computed	width	of	layout;	the	underline
will	stop	at	the	edge	for	any	character	that	would	extend	partially
outside	of	layout,	and	the	underline	will	not	be	visible	at	all	for	any
character	that	would	be	located	completely	outside	of	the	layout.

Tk_PointToChar	uses	the	information	in	layout	to	determine	the
character	closest	to	the	given	point.	The	point	is	specified	with	respect
to	the	upper-left	hand	corner	of	the	layout,	which	is	considered	to	be
located	at	(0,	0).	Any	point	whose	y-value	is	less	that	0	will	be
considered	closest	to	the	first	character	in	the	text	layout;	any	point
whose	y-value	is	greater	than	the	height	of	the	text	layout	will	be
considered	closest	to	the	last	character	in	the	text	layout.	Any	point

whose	x-value	is	less	than	0	will	be	considered	closest	to	the	first
character	on	that	line;	any	point	whose	x-value	is	greater	than	the	width
of	the	text	layout	will	be	considered	closest	to	the	last	character	on	that
line.	The	return	value	is	the	index	of	the	character	that	was	closest	to
the	point.	Given	a	layout	with	no	characters,	the	value	0	will	always	be
returned,	referring	to	a	hypothetical	zero-width	placeholder	character.

Tk_CharBbox	uses	the	information	in	layout	to	return	the	bounding	box
for	the	character	specified	by	index.	The	width	of	the	bounding	box	is
the	advance	width	of	the	character,	and	does	not	include	any	left	or
right	bearing.	Any	character	that	extends	partially	outside	of	layout	is
considered	to	be	truncated	at	the	edge.	Any	character	that	would	be
located	completely	outside	of	layout	is	considered	to	be	zero-width	and
pegged	against	the	edge.	The	height	of	the	bounding	box	is	the	line
height	for	this	font,	extending	from	the	top	of	the	ascent	to	the	bottom	of
the	descent;	information	about	the	actual	height	of	individual	letters	is
not	available.	For	measurement	purposes,	a	layout	that	contains	no
characters	is	considered	to	contain	a	single	zero-width	placeholder
character	at	index	0.	If	index	was	not	a	valid	character	index,	the	return
value	is	0	and	*xPtr,	*yPtr,	*widthPtr,	and	*heightPtr	are	unmodified.
Otherwise,	if	index	did	specify	a	valid,	the	return	value	is	non-zero,	and
*xPtr,	*yPtr,	*widthPtr,	and	*heightPtr	are	filled	with	the	bounding	box
information	for	the	character.	If	any	of	xPtr,	yPtr,	widthPtr,	or	heightPtr
are	NULL,	the	corresponding	value	is	not	calculated	or	stored.

Tk_DistanceToTextLayout	computes	the	shortest	distance	in	pixels
from	the	given	point	(x,	y)	to	the	characters	in	layout.	Newline/return
characters	and	non-displaying	space	characters	that	occur	at	the	end	of
individual	lines	in	the	text	layout	are	ignored	for	hit	detection	purposes,
but	tab	characters	are	not.	The	return	value	is	0	if	the	point	actually	hits
the	layout.	If	the	point	did	not	hit	the	layout	then	the	return	value	is	the
distance	in	pixels	from	the	point	to	the	layout.

Tk_IntersectTextLayout	determines	whether	a	layout	lies	entirely
inside,	entirely	outside,	or	overlaps	a	given	rectangle.	Newline/return
characters	and	non-displaying	space	characters	that	occur	at	the	end	of
individual	lines	in	the	layout	are	ignored	for	intersection	calculations.
The	return	value	is	-1	if	the	layout	is	entirely	outside	of	the	rectangle,	0

if	it	overlaps,	and	1	if	it	is	entirely	inside	of	the	rectangle.

Tk_TextLayoutToPostscript	outputs	code	consisting	of	a	Postscript
array	of	strings	that	represent	the	individual	lines	in	layout.	It	is	the
responsibility	of	the	caller	to	take	the	Postscript	array	of	strings	and	add
some	Postscript	function	operate	on	the	array	to	render	each	of	the
lines.	The	code	that	represents	the	Postscript	array	of	strings	is
appended	to	interp->result.

DISPLAY	MODEL

When	measuring	a	text	layout,	space	characters	that	occur	at	the	end
of	a	line	are	ignored.	The	space	characters	still	exist	and	the	insertion
point	can	be	positioned	amongst	them,	but	their	additional	width	is
ignored	when	justifying	lines	or	returning	the	total	width	of	a	text	layout.
All	end-of-line	space	characters	are	considered	to	be	attached	to	the
right	edge	of	the	line;	this	behavior	is	logical	for	left-justified	text	and
reasonable	for	center-justified	text,	but	not	very	useful	when	editing
right-justified	text.	Spaces	are	considered	variable	width	characters;	the
first	space	that	extends	past	the	edge	of	the	text	layout	is	clipped	to	the
edge,	and	any	subsequent	spaces	on	the	line	are	considered	zero	width
and	pegged	against	the	edge.	Space	characters	that	occur	in	the
middle	of	a	line	of	text	are	not	suppressed	and	occupy	their	normal
space	width.

Tab	characters	are	not	ignored	for	measurement	calculations.	If
wrapping	is	turned	on	and	there	are	enough	tabs	on	a	line,	the	next	tab
will	wrap	to	the	beginning	of	the	next	line.	There	are	some	possible
strange	interactions	between	tabs	and	justification;	tab	positions	are
calculated	and	the	line	length	computed	in	a	left-justified	world,	and
then	the	whole	resulting	line	is	shifted	so	it	is	centered	or	right-justified,
causing	the	tab	columns	not	to	align	any	more.

When	wrapping	is	turned	on,	lines	may	wrap	at	word	breaks	(space	or
tab	characters)	or	newline/returns.	A	dash	or	hyphen	character	in	the
middle	of	a	word	is	not	considered	a	word	break.
Tk_ComputeTextLayout	always	attempts	to	place	at	least	one	word	on
each	line.	If	it	cannot	because	the	wrapLength	is	too	small,	the	word	will

be	broken	and	as	much	as	fits	placed	on	the	line	and	the	rest	on
subsequent	line(s).	If	wrapLength	is	so	small	that	not	even	one
character	can	fit	on	a	given	line,	the	wrapLength	is	ignored	for	that	line
and	one	character	will	be	placed	on	the	line	anyhow.	When	wrapping	is
turned	off,	only	newline/return	characters	may	cause	a	line	break.

When	a	text	layout	has	been	created	using	an	underlined	tkfont,	then
any	space	characters	that	occur	at	the	end	of	individual	lines,
newlines/returns,	and	tabs	will	not	be	displayed	underlined	when
Tk_DrawTextLayout	is	called,	because	those	characters	are	never
actually	drawn	-	they	are	merely	placeholders	maintained	in	the	layout.

KEYWORDS

font

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1996	Sun	Microsystems,	Inc.

Tk_Window	tkwin	(in)

int	*xPtr	(out)

int	*yPtr	(out)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	GetRootCrd

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tk_GetRootCoords	-	Compute	root-window	coordinates	of	window

SYNOPSIS

#include	<tk.h>
Tk_GetRootCoords(tkwin,	xPtr,	yPtr)

ARGUMENTS

Token	for	window.

Pointer	to	location	in	which
to	store	root-window	x-
coordinate	corresponding
to	left	edge	of	tkwin's
border.

Pointer	to	location	in	which
to	store	root-window	y-
coordinate	corresponding
to	top	edge	of	tkwin's
border.

DESCRIPTION

This	procedure	scans	through	the	structural	information	maintained	by
Tk	to	compute	the	root-window	coordinates	corresponding	to	the	upper-
left	corner	of	tkwin's	border.	If	tkwin	has	no	border,	then
Tk_GetRootCoords	returns	the	root-window	coordinates

corresponding	to	location	(0,0)	in	tkwin.	Tk_GetRootCoords	is
relatively	efficient,	since	it	does	not	have	to	communicate	with	the	X
server.

KEYWORDS

coordinates,	root	window

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	FontId

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tk_FontId,	Tk_GetFontMetrics,	Tk_PostscriptFontName	-
accessor	functions	for	fonts

SYNOPSIS
#include	<tk.h>
Font
Tk_FontId(tkfont)
Tk_GetFontMetrics(tkfont,	fmPtr)
int
Tk_PostscriptFontName(tkfont,	dsPtr)

ARGUMENTS
DESCRIPTION
DATA	STRUCTURES
SEE	ALSO
KEYWORDS

NAME

Tk_FontId,	Tk_GetFontMetrics,	Tk_PostscriptFontName	-	accessor
functions	for	fonts

SYNOPSIS

#include	<tk.h>
Font
Tk_FontId(tkfont)
Tk_GetFontMetrics(tkfont,	fmPtr)
int
Tk_PostscriptFontName(tkfont,	dsPtr)

ARGUMENTS

Tk_Font	tkfont	(in)

Tk_FontMetrics	*fmPtr	(out)

Tcl_DString	*dsPtr	(out)

Opaque	font	token	being
queried.	Must	have	been
returned	by	a	previous	call
to	Tk_GetFont.

Pointer	to	structure	in
which	the	font	metrics	for
tkfont	will	be	stored.	See
DATA	STRUCTURES
below	for	details.

Pointer	to	an	initialized
Tcl_DString	to	which	the
name	of	the	Postscript	font
that	corresponds	to	tkfont
will	be	appended.

DESCRIPTION

Given	a	tkfont,	Tk_FontId	returns	the	token	that	should	be	selected	into
an	XGCValues	structure	in	order	to	construct	a	graphics	context	that
can	be	used	to	draw	text	in	the	specified	font.

Tk_GetFontMetrics	computes	the	ascent,	descent,	and	linespace	of
the	tkfont	in	pixels	and	stores	those	values	in	the	structure	pointer	to	by
fmPtr.	These	values	can	be	used	in	computations	such	as	to	space
multiple	lines	of	text,	to	align	the	baselines	of	text	in	different	fonts,	and
to	vertically	align	text	in	a	given	region.	See	the	documentation	for	the
font	command	for	definitions	of	the	terms	ascent,	descent,	and
linespace,	used	in	font	metrics.

Tk_PostscriptFontName	maps	a	tkfont	to	the	corresponding	Postscript
font	name	that	should	be	used	when	printing.	The	return	value	is	the
size	in	points	of	the	tkfont	and	the	Postscript	font	name	is	appended	to
dsPtr.	DsPtr	must	refer	to	an	initialized	Tcl_DString.	Given	a
“reasonable”	Postscript	printer,	the	following	screen	font	families	should

print	correctly:

Avant	Garde,	Arial,	Bookman,	Courier,	Courier	New,	Geneva,
Helvetica,	Monaco,	New	Century	Schoolbook,	New	York,
Palatino,	Symbol,	Times,	Times	New	Roman,	Zapf	Chancery,
and	Zapf	Dingbats.

Any	other	font	families	may	not	print	correctly	because	the	computed
Postscript	font	name	may	be	incorrect	or	not	exist	on	the	printer.

DATA	STRUCTURES

The	Tk_FontMetrics	data	structure	is	used	by	Tk_GetFontMetrics	to
return	information	about	a	font	and	is	defined	as	follows:

typedef	struct	Tk_FontMetrics	{

				int	ascent;

				int	descent;

				int	linespace;

}	Tk_FontMetrics;

The	ascent	field	is	the	amount	in	pixels	that	the	tallest	letter	sticks	up
above	the	baseline,	plus	any	extra	blank	space	added	by	the	designer
of	the	font.

The	descent	is	the	largest	amount	in	pixels	that	any	letter	sticks	below
the	baseline,	plus	any	extra	blank	space	added	by	the	designer	of	the
font.

The	linespace	is	the	sum	of	the	ascent	and	descent.	How	far	apart	two
lines	of	text	in	the	same	font	should	be	placed	so	that	none	of	the
characters	in	one	line	overlap	any	of	the	characters	in	the	other	line.

SEE	ALSO

font,	MeasureChar

KEYWORDS

font,	measurement,	Postscript

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	GetPixels

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tk_GetPixelsFromObj,	Tk_GetPixels,	Tk_GetMMFromObj,
Tk_GetScreenMM	-	translate	between	strings	and	screen	units

SYNOPSIS
#include	<tk.h>
int
Tk_GetPixelsFromObj(interp,	tkwin,	objPtr,	intPtr)
int
Tk_GetPixels(interp,	tkwin,	string,	intPtr)
int
Tk_GetMMFromObj(interp,	tkwin,	objPtr,	doublePtr)
int
Tk_GetScreenMM(interp,	tkwin,	string,	doublePtr)

ARGUMENTS
DESCRIPTION

<none>
c
i
m
p

KEYWORDS

NAME

Tk_GetPixelsFromObj,	Tk_GetPixels,	Tk_GetMMFromObj,
Tk_GetScreenMM	-	translate	between	strings	and	screen	units

SYNOPSIS

#include	<tk.h>
int
Tk_GetPixelsFromObj(interp,	tkwin,	objPtr,	intPtr)

Tcl_Interp	*interp	(in)

Tk_Window	tkwin	(in)

Tcl_Obj	*objPtr	(in/out)

const	char	*string	(in)

int	*intPtr	(out)

double	*doublePtr	(out)

int
Tk_GetPixels(interp,	tkwin,	string,	intPtr)
int
Tk_GetMMFromObj(interp,	tkwin,	objPtr,	doublePtr)
int
Tk_GetScreenMM(interp,	tkwin,	string,	doublePtr)

ARGUMENTS

Interpreter	to	use	for	error
reporting.

Window	whose	screen
geometry	determines	the
conversion	between
absolute	units	and	pixels.

String	value	specifies	a
distance	on	the	screen;
internal	rep	will	be
modified	to	cache
converted	distance.

Same	as	objPtr	except
specification	of	distance	is
passed	as	a	string.

Pointer	to	location	in	which
to	store	converted
distance	in	pixels.

Pointer	to	location	in	which
to	store	converted
distance	in	millimeters.

DESCRIPTION

These	procedures	take	as	argument	a	specification	of	distance	on	the
screen	(objPtr	or	string)	and	compute	the	corresponding	distance	either
in	integer	pixels	or	floating-point	millimeters.	In	either	case,	objPtr	or
string	specifies	a	screen	distance	as	a	floating-point	number	followed	by
one	of	the	following	characters	that	indicates	units:

<none>
The	number	specifies	a	distance	in	pixels.

c
The	number	specifies	a	distance	in	centimeters	on	the	screen.

i
The	number	specifies	a	distance	in	inches	on	the	screen.

m
The	number	specifies	a	distance	in	millimeters	on	the	screen.

p
The	number	specifies	a	distance	in	printer's	points	(1/72	inch)	on
the	screen.

Tk_GetPixelsFromObj	converts	the	value	of	objPtr	to	the	nearest	even
number	of	pixels	and	stores	that	value	at	*intPtr.	It	returns	TCL_OK
under	normal	circumstances.	If	an	error	occurs	(e.g.	objPtr	contains	a
number	followed	by	a	character	that	is	not	one	of	the	ones	above)	then
TCL_ERROR	is	returned	and	an	error	message	is	left	in	interp's	result	if
interp	is	not	NULL.	Tk_GetPixelsFromObj	caches	information	about
the	return	value	in	objPtr,	which	speeds	up	future	calls	to
Tk_GetPixelsFromObj	with	the	same	objPtr.

Tk_GetPixels	is	identical	to	Tk_GetPixelsFromObj	except	that	the
screen	distance	is	specified	with	a	string	instead	of	an	object.	This
prevents	Tk_GetPixels	from	caching	the	return	value,	so
Tk_GetAnchor	is	less	efficient	than	Tk_GetPixelsFromObj.

Tk_GetMMFromObj	and	Tk_GetScreenMM	are	similar	to
Tk_GetPixelsFromObj	and	Tk_GetPixels	(respectively)	except	that

they	convert	the	screen	distance	to	millimeters	and	store	a	double-
precision	floating-point	result	at	*doublePtr.

KEYWORDS

centimeters,	convert,	inches,	millimeters,	pixels,	points,	screen	units

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990	The	Regents	of	the	University	of	California.
Copyright	©	1994-1998	Sun	Microsystems,	Inc.

Tcl_Interp	*interp	(in)

Tk_Window	tkwin	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	GetClrmap

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tk_GetColormap,	Tk_PreserveColormap,	Tk_FreeColormap	-
allocate	and	free	colormaps

SYNOPSIS
#include	<tk.h>
Colormap
Tk_GetColormap(interp,	tkwin,	string)
Tk_PreserveColormap(display,	colormap)
Tk_FreeColormap(display,	colormap)

ARGUMENTS
DESCRIPTION
KEYWORDS

NAME

Tk_GetColormap,	Tk_PreserveColormap,	Tk_FreeColormap	-	allocate
and	free	colormaps

SYNOPSIS

#include	<tk.h>
Colormap
Tk_GetColormap(interp,	tkwin,	string)
Tk_PreserveColormap(display,	colormap)
Tk_FreeColormap(display,	colormap)

ARGUMENTS

Interpreter	to	use	for	error
reporting.

Token	for	window	in	which

const	char	*string	(in)

Display	*display	(in)

Colormap	colormap	(in)

colormap	will	be	used.

Selects	a	colormap:	either
new	or	the	name	of	a
window	with	the	same
screen	and	visual	as	tkwin.

Display	for	which	colormap
was	allocated.

Colormap	to	free	or
preserve;	must	have	been
returned	by	a	previous	call
to	Tk_GetColormap	or
Tk_GetVisual.

DESCRIPTION

These	procedures	are	used	to	manage	colormaps.	Tk_GetColormap
returns	a	colormap	suitable	for	use	in	tkwin.	If	its	string	argument	is
new	then	a	new	colormap	is	created;	otherwise	string	must	be	the
name	of	another	window	with	the	same	screen	and	visual	as	tkwin,	and
the	colormap	from	that	window	is	returned.	If	string	does	not	make
sense,	or	if	it	refers	to	a	window	on	a	different	screen	from	tkwin	or	with
a	different	visual	than	tkwin,	then	Tk_GetColormap	returns	None	and
leaves	an	error	message	in	interp's	result.

Tk_PreserveColormap	increases	the	internal	reference	count	for	a
colormap	previously	returned	by	Tk_GetColormap,	which	allows	the
colormap	to	be	stored	in	several	locations	without	knowing	which	order
they	will	be	released.

Tk_FreeColormap	should	be	called	when	a	colormap	returned	by
Tk_GetColormap	is	no	longer	needed.	Tk	maintains	a	reference	count
for	each	colormap	returned	by	Tk_GetColormap,	so	there	should
eventually	be	one	call	to	Tk_FreeColormap	for	each	call	to
Tk_GetColormap	and	each	call	to	Tk_PreserveColormap.	When	a

colormap's	reference	count	becomes	zero,	Tk	releases	the	X	colormap.

Tk_GetVisual	and	Tk_GetColormap	work	together,	in	that	a	new
colormap	created	by	Tk_GetVisual	may	later	be	returned	by
Tk_GetColormap.	The	reference	counting	mechanism	for	colormaps
includes	both	procedures,	so	callers	of	Tk_GetVisual	must	also	call
Tk_FreeColormap	to	release	the	colormap.	If	Tk_GetColormap	is
called	with	a	string	value	of	new	then	the	resulting	colormap	will	never
be	returned	by	Tk_GetVisual;	however,	it	can	be	used	in	other	windows
by	calling	Tk_GetColormap	with	the	original	window's	name	as	string.

KEYWORDS

colormap,	visual

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl_Interp	*interp	(in)

int	argc	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	GetScroll

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tk_GetScrollInfo,	Tk_GetScrollInfoObj	-	parse	arguments	for
scrolling	commands

SYNOPSIS
#include	<tk.h>
int
Tk_GetScrollInfo(interp,	argc,	argv,	dblPtr,	intPtr)
int
Tk_GetScrollInfoObj(interp,	objc,	objv,	dblPtr,	intPtr)

ARGUMENTS
DESCRIPTION
KEYWORDS

NAME

Tk_GetScrollInfo,	Tk_GetScrollInfoObj	-	parse	arguments	for	scrolling
commands

SYNOPSIS

#include	<tk.h>
int
Tk_GetScrollInfo(interp,	argc,	argv,	dblPtr,	intPtr)
int
Tk_GetScrollInfoObj(interp,	objc,	objv,	dblPtr,	intPtr)

ARGUMENTS

Interpreter	to	use	for	error
reporting.

Number	of	strings	in	argv

const	char	*argv[]	(in)

int	objc	(in)

Tcl_Obj	*const	objv[]	(in)

double	*dblPtr	(out)

int	*intPtr	(out)

array.

Argument	strings.	These
represent	the	entire	widget
command,	of	which	the
first	word	is	typically	the
widget	name	and	the
second	word	is	typically
xview	or	yview.

Number	of	Tcl_Obj's	in
objv	array.

Argument	objects.	These
represent	the	entire	widget
command,	of	which	the
first	word	is	typically	the
widget	name	and	the
second	word	is	typically
xview	or	yview.

Filled	in	with	fraction	from
moveto	option,	if	any.

Filled	in	with	line	or	page
count	from	scroll	option,	if
any.	The	value	may	be
negative.

DESCRIPTION

Tk_GetScrollInfo	parses	the	arguments	expected	by	widget	scrolling
commands	such	as	xview	and	yview.	It	receives	the	entire	list	of	words
that	make	up	a	widget	command	and	parses	the	words	starting	with
argv[2].	The	words	starting	with	argv[2]	must	have	one	of	the	following
forms:

moveto	fraction

scroll	number	units

scroll	number	pages

Any	of	the	moveto,	scroll,	units,	and	pages	keywords	may	be
abbreviated.	If	argv	has	the	moveto	form,	TK_SCROLL_MOVETO	is
returned	as	result	and	*dblPtr	is	filled	in	with	the	fraction	argument	to
the	command,	which	must	be	a	proper	real	value.	If	argv	has	the	scroll
form,	TK_SCROLL_UNITS	or	TK_SCROLL_PAGES	is	returned	and
*intPtr	is	filled	in	with	the	number	value,	which	must	be	a	proper	integer.
If	an	error	occurs	in	parsing	the	arguments,	TK_SCROLL_ERROR	is
returned	and	an	error	message	is	left	in	interp->result.

Tk_GetScrollInfoObj	is	identical	in	function	to	Tk_GetScrollInfo.
However,	Tk_GetScrollInfoObj	accepts	Tcl_Obj	style	arguments,
making	it	more	appropriate	for	use	with	new	development.

KEYWORDS

parse,	scrollbar,	scrolling	command,	xview,	yview

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Display	*display	(in)

int	collapse	(in)

XEvent	*eventPtr	(in)

Tcl_QueuePosition	position	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	QWinEvent

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tk_CollapseMotionEvents,	Tk_QueueWindowEvent	-	Add	a	window
event	to	the	Tcl	event	queue

SYNOPSIS

#include	<tk.h>
int
Tk_CollapseMotionEvents(display,	collapse)
Tk_QueueWindowEvent(eventPtr,	position)

ARGUMENTS

Display	for	which	to	control
motion	event	collapsing.

Indicates	whether	motion
events	should	be
collapsed	or	not.

An	event	to	add	to	the
event	queue.

Where	to	add	the	new
event	in	the	queue:
TCL_QUEUE_TAIL,
TCL_QUEUE_HEAD,	or
TCL_QUEUE_MARK.

DESCRIPTION

Tk_QueueWindowEvent	places	a	window	event	on	Tcl's	internal	event
queue	for	eventual	servicing.	It	creates	a	Tcl_Event	structure,	copies
the	event	into	that	structure,	and	calls	Tcl_QueueEvent	to	add	the
event	to	the	queue.	When	the	event	is	eventually	removed	from	the
queue	it	is	processed	just	like	all	window	events.

When	multiple	motion	events	are	received	for	the	same	window	in	rapid
succession,	they	are	collapsed	by	default.	This	behavior	can	be
controlled	with	Tk_CollapseMotionEvents.
Tk_CollapseMotionEvents	always	returns	the	previous	value	for
collapse	behavior	on	the	display.

The	position	argument	to	Tk_QueueWindowEvent	has	the	same
significance	as	for	Tcl_QueueEvent;	see	the	documentation	for
Tcl_QueueEvent	for	details.

KEYWORDS

callback,	clock,	handler,	modal	timeout,	events

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1995-1996	Sun	Microsystems,	Inc.

Tk_Window	tkwin	(in)

const	char	*name	(in)

const	char	*value	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	AddOption

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tk_AddOption	-	Add	an	option	to	the	option	database

SYNOPSIS
#include	<tk.h>
void
Tk_AddOption(tkwin,	name,	value,	priority)

ARGUMENTS
DESCRIPTION

20
40
60
80

KEYWORDS

NAME

Tk_AddOption	-	Add	an	option	to	the	option	database

SYNOPSIS

#include	<tk.h>
void
Tk_AddOption(tkwin,	name,	value,	priority)

ARGUMENTS

Token	for	window.

Multi-element	name	of
option.

Value	of	option.

int	priority	(in) Overall	priority	level	to	use
for	option.

DESCRIPTION

This	procedure	is	invoked	to	add	an	option	to	the	database	associated
with	tkwin's	main	window.	Name	contains	the	option	being	specified	and
consists	of	names	and/or	classes	separated	by	asterisks	or	dots,	in	the
usual	X	format.	Value	contains	the	text	string	to	associate	with	name;
this	value	will	be	returned	in	calls	to	Tk_GetOption.	Priority	specifies
the	priority	of	the	value;	when	options	are	queried	using	Tk_GetOption,
the	value	with	the	highest	priority	is	returned.	Priority	must	be	between
0	and	TK_MAX_PRIO.	Some	common	priority	values	are:

20
Used	for	default	values	hard-coded	into	widgets.

40
Used	for	options	specified	in	application-specific	startup	files.

60
Used	for	options	specified	in	user-specific	defaults	files,	such	as
.Xdefaults,	resource	databases	loaded	into	the	X	server,	or	user-
specific	startup	files.

80
Used	for	options	specified	interactively	after	the	application	starts
running.

KEYWORDS

class,	name,	option,	add

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1998-2000	by	Scriptics	Corporation.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	MeasureChar

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tk_MeasureChars,	Tk_TextWidth,	Tk_DrawChars,
Tk_UnderlineChars	-	routines	to	measure	and	display	simple
single-line	strings.

SYNOPSIS
#include	<tk.h>
int
Tk_MeasureChars(tkfont,	string,	numBytes,	maxPixels,	flags,
lengthPtr)
int
Tk_TextWidth(tkfont,	string,	numBytes)
Tk_DrawChars(display,	drawable,	gc,	tkfont,	string,	numBytes,
x,	y)
Tk_UnderlineChars(display,	drawable,	gc,	tkfont,	string,	x,	y,
firstByte,	lastByte)

ARGUMENTS
DESCRIPTION
SEE	ALSO
KEYWORDS

NAME

Tk_MeasureChars,	Tk_TextWidth,	Tk_DrawChars,	Tk_UnderlineChars	-
routines	to	measure	and	display	simple	single-line	strings.

SYNOPSIS

#include	<tk.h>
int
Tk_MeasureChars(tkfont,	string,	numBytes,	maxPixels,	flags,
lengthPtr)
int

Tk_Font	tkfont	(in)

const	char	*string	(in)

int	numBytes	(in)

int	maxPixels	(in)

Tk_TextWidth(tkfont,	string,	numBytes)
Tk_DrawChars(display,	drawable,	gc,	tkfont,	string,	numBytes,	x,	y)
Tk_UnderlineChars(display,	drawable,	gc,	tkfont,	string,	x,	y,	firstByte,
lastByte)

ARGUMENTS

Token	for	font	in	which	text
is	to	be	drawn	or
measured.	Must	have
been	returned	by	a
previous	call	to
Tk_GetFont.

Text	to	be	measured	or
displayed.	Need	not	be
null	terminated.	Any	non-
printing	meta-characters	in
the	string	(such	as	tabs,
newlines,	and	other	control
characters)	will	be
measured	or	displayed	in	a
platform-dependent
manner.

The	maximum	number	of
bytes	to	consider	when
measuring	or	drawing
string.	Must	be	greater
than	or	equal	to	0.

If	maxPixels	is	>=	0,	it
specifies	the	longest
permissible	line	length	in
pixels.	Characters	from
string	are	processed	only
until	this	many	pixels	have

int	flags	(in)

int	*lengthPtr	(out)

been	covered.	If	maxPixels
is	<	0,	then	the	line	length
is	unbounded	and	the	flags
argument	is	ignored.

Various	flag	bits	OR-ed
together:
TK_PARTIAL_OK	means
include	a	character	as	long
as	any	part	of	it	fits	in	the
length	given	by	maxPixels;
otherwise,	a	character
must	fit	completely	to	be
considered.
TK_WHOLE_WORDS
means	stop	on	a	word
boundary,	if	possible.	If
TK_AT_LEAST_ONE	is
set,	it	means	return	at
least	one	character	even	if
no	characters	could	fit	in
the	length	given	by
maxPixels.	If
TK_AT_LEAST_ONE	is
set	and
TK_WHOLE_WORDS	is
also	set,	it	means	that	if
not	even	one	word	fits	on
the	line,	return	the	first	few
letters	of	the	word	that	did
fit;	if	not	even	one	letter	of
the	word	fit,	then	the	first
letter	will	still	be	returned.

Filled	with	the	number	of
pixels	occupied	by	the
number	of	characters

Display	*display	(in)

Drawable	drawable	(in)

GC	gc	(in)

int	x,	y	(in)

int	firstByte	(in)

int	lastByte	(in)

returned	as	the	result	of
Tk_MeasureChars.

Display	on	which	to	draw.

Window	or	pixmap	in
which	to	draw.

Graphics	context	for
drawing	characters.	The
font	selected	into	this	GC
must	be	the	same	as	the
tkfont.

Coordinates	at	which	to
place	the	left	edge	of	the
baseline	when	displaying
string.

The	index	of	the	first	byte
of	the	first	character	to
underline	in	the	string.
Underlining	begins	at	the
left	edge	of	this	character.

The	index	of	the	first	byte
of	the	last	character	up	to
which	the	underline	will	be
drawn.	The	character
specified	by	lastByte	will
not	itself	be	underlined.

DESCRIPTION

These	routines	are	for	measuring	and	displaying	simple	single-font,
single-line	strings.	To	measure	and	display	single-font,	multi-line,

justified	text,	refer	to	the	documentation	for	Tk_ComputeTextLayout.
There	is	no	programming	interface	in	the	core	of	Tk	that	supports	multi-
font,	multi-line	text;	support	for	that	behavior	must	be	built	on	top	of
simpler	layers.	Note	that	the	interfaces	described	here	are	byte-oriented
not	character-oriented,	so	index	values	coming	from	Tcl	scripts	need	to
be	converted	to	byte	offsets	using	the	Tcl_UtfAtIndex	and	related
routines.

A	glyph	is	the	displayable	picture	of	a	letter,	number,	or	some	other
symbol.	Not	all	character	codes	in	a	given	font	have	a	glyph.	Characters
such	as	tabs,	newlines/returns,	and	control	characters	that	have	no
glyph	are	measured	and	displayed	by	these	procedures	in	a	platform-
dependent	manner;	under	X,	they	are	replaced	with	backslashed
escape	sequences,	while	under	Windows	and	Macintosh	hollow	or	solid
boxes	may	be	substituted.	Refer	to	the	documentation	for
Tk_ComputeTextLayout	for	a	programming	interface	that	supports	the
platform-independent	expansion	of	tab	characters	into	columns	and
newlines/returns	into	multi-line	text.

Tk_MeasureChars	is	used	both	to	compute	the	length	of	a	given	string
and	to	compute	how	many	characters	from	a	string	fit	in	a	given	amount
of	space.	The	return	value	is	the	number	of	bytes	from	string	that	fit	in
the	space	specified	by	maxPixels	subject	to	the	conditions	described	by
flags.	If	all	characters	fit,	the	return	value	will	be	numBytes.	*lengthPtr	is
filled	with	the	computed	width,	in	pixels,	of	the	portion	of	the	string	that
was	measured.	For	example,	if	the	return	value	is	5,	then	*lengthPtr	is
filled	with	the	distance	between	the	left	edge	of	string[0]	and	the	right
edge	of	string[4].

Tk_TextWidth	is	a	wrapper	function	that	provides	a	simpler	interface	to
the	Tk_MeasureChars	function.	The	return	value	is	how	much	space	in
pixels	the	given	string	needs.

Tk_DrawChars	draws	the	string	at	the	given	location	in	the	given
drawable.

Tk_UnderlineChars	underlines	the	given	range	of	characters	in	the
given	string.	It	does	not	draw	the	characters	(which	are	assumed	to

have	been	displayed	previously	by	Tk_DrawChars);	it	just	draws	the
underline.	This	procedure	is	used	to	underline	a	few	characters	without
having	to	construct	an	underlined	font.	To	produce	natively	underlined
text,	the	appropriate	underlined	font	should	be	constructed	and	used.

SEE	ALSO

font,	FontId

KEYWORDS

font,	measurement

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	GetImage

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tk_GetImage,	Tk_RedrawImage,	Tk_SizeOfImage,
Tk_FreeImage	-	use	an	image	in	a	widget

SYNOPSIS
#include	<tk.h>
Tk_Image
Tk_GetImage(interp,	tkwin,	name,	changeProc,	clientData)
Tk_RedrawImage(image,	imageX,	imageY,	width,	height,
drawable,	drawableX,	drawableY)
Tk_SizeOfImage(image,	widthPtr,	heightPtr)
Tk_FreeImage(image)

ARGUMENTS
DESCRIPTION
SEE	ALSO
KEYWORDS

NAME

Tk_GetImage,	Tk_RedrawImage,	Tk_SizeOfImage,	Tk_FreeImage	-
use	an	image	in	a	widget

SYNOPSIS

#include	<tk.h>
Tk_Image
Tk_GetImage(interp,	tkwin,	name,	changeProc,	clientData)
Tk_RedrawImage(image,	imageX,	imageY,	width,	height,	drawable,
drawableX,	drawableY)
Tk_SizeOfImage(image,	widthPtr,	heightPtr)
Tk_FreeImage(image)

ARGUMENTS

Tcl_Interp	*interp	(in)

Tk_Window	tkwin	(in)

const	char	*name	(in)

Tk_ImageChangedProc	*changeProc	(in)

ClientData	clientData	(in)

Tk_Image	image	(in)

int	imageX	(in)

int	imageY	(in)

int	width	((in))

int	height	((in))

Place	to	leave	error
message.

Window	in	which	image
will	be	used.

Name	of	image.

Procedure	for	Tk	to	invoke
whenever	image	content
or	size	changes.

One-word	value	for	Tk	to
pass	to	changeProc.

Token	for	image	instance;
must	have	been	returned
by	a	previous	call	to
Tk_GetImage.

X-coordinate	of	upper-left
corner	of	region	of	image
to	redisplay	(measured	in
pixels	from	the	image's
upper-left	corner).

Y-coordinate	of	upper-left
corner	of	region	of	image
to	redisplay	(measured	in
pixels	from	the	image's
upper-left	corner).

Width	of	region	of	image	to
redisplay.

Height	of	region	of	image
to	redisplay.

Drawable	drawable	(in)

int	drawableX	(in)

int	drawableY	(in)

int	widthPtr	(out)

int	heightPtr	(out)

Where	to	display	image.
Must	either	be	window
specified	to	Tk_GetImage
or	a	pixmap	compatible
with	that	window.

Where	to	display	image	in
drawable:	this	is	the	x-
coordinate	in	drawable
where	x-coordinate
imageX	of	the	image
should	be	displayed.

Where	to	display	image	in
drawable:	this	is	the	y-
coordinate	in	drawable
where	y-coordinate
imageY	of	the	image
should	be	displayed.

Store	width	of	image	(in
pixels)	here.

Store	height	of	image	(in
pixels)	here.

DESCRIPTION

These	procedures	are	invoked	by	widgets	that	wish	to	display	images.
Tk_GetImage	is	invoked	by	a	widget	when	it	first	decides	to	display	an
image.	name	gives	the	name	of	the	desired	image	and	tkwin	identifies
the	window	where	the	image	will	be	displayed.	Tk_GetImage	looks	up
the	image	in	the	table	of	existing	images	and	returns	a	token	for	a	new
instance	of	the	image.	If	the	image	does	not	exist	then	Tk_GetImage
returns	NULL	and	leaves	an	error	message	in	interp->result.

When	a	widget	wishes	to	actually	display	an	image	it	must	call
Tk_RedrawImage,	identifying	the	image	(image),	a	region	within	the
image	to	redisplay	(imageX,	imageY,	width,	and	height),	and	a	place	to
display	the	image	(drawable,	drawableX,	and	drawableY).	Tk	will	then
invoke	the	appropriate	image	manager,	which	will	display	the	requested
portion	of	the	image	before	returning.

A	widget	can	find	out	the	dimensions	of	an	image	by	calling
Tk_SizeOfImage:	the	width	and	height	will	be	stored	in	the	locations
given	by	widthPtr	and	heightPtr,	respectively.

When	a	widget	is	finished	with	an	image	(e.g.,	the	widget	is	being
deleted	or	it	is	going	to	use	a	different	image	instead	of	the	current
one),	it	must	call	Tk_FreeImage	to	release	the	image	instance.	The
widget	should	never	again	use	the	image	token	after	passing	it	to
Tk_FreeImage.	There	must	be	exactly	one	call	to	Tk_FreeImage	for
each	call	to	Tk_GetImage.

If	the	contents	or	size	of	an	image	changes,	then	any	widgets	using	the
image	will	need	to	find	out	about	the	changes	so	that	they	can	redisplay
themselves.	The	changeProc	and	clientData	arguments	to
Tk_GetImage	are	used	for	this	purpose.	changeProc	will	be	called	by
Tk	whenever	a	change	occurs	in	the	image;	it	must	match	the	following
prototype:

typedef	void	Tk_ImageChangedProc(

				ClientData	clientData,

				int	x,

				int	y,

				int	width,

				int	height,

				int	imageWidth,

				int	imageHeight);

The	clientData	argument	to	changeProc	is	the	same	as	the	clientData
argument	to	Tk_GetImage.	It	is	usually	a	pointer	to	the	widget	record

for	the	widget	or	some	other	data	structure	managed	by	the	widget.	The
arguments	x,	y,	width,	and	height	identify	a	region	within	the	image	that
must	be	redisplayed;	they	are	specified	in	pixels	measured	from	the
upper-left	corner	of	the	image.	The	arguments	imageWidth	and
imageHeight	give	the	image's	(new)	size.

SEE	ALSO

Tk_CreateImageType

KEYWORDS

images,	redisplay

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tk_Window	tkwin	(in)

GC	gc	(in)

int	width	(in)

Drawable	drawable	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	DrawFocHlt

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tk_DrawFocusHighlight	-	draw	the	traversal	highlight	ring	for	a	widget

SYNOPSIS

#include	<tk.h>
Tk_DrawFocusHighlight(tkwin,	gc,	width,	drawable)

ARGUMENTS

Window	for	which	the
highlight	is	being	drawn.
Used	to	retrieve	the
window's	dimensions,
among	other	things.

Graphics	context	to	use	for
drawing	the	highlight.

Width	of	the	highlight	ring,
in	pixels.

Drawable	in	which	to	draw
the	highlight;	usually	an
offscreen	pixmap	for
double	buffering.

DESCRIPTION

Tk_DrawFocusHighlight	is	a	utility	procedure	that	draws	the	traversal

highlight	ring	for	a	widget.	It	is	typically	invoked	by	widgets	during
redisplay.

KEYWORDS

focus,	traversal	highlight

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1995-1996	Sun	Microsystems,	Inc.

Tcl_Interp	*interp	(in)

Tk_Window	tkwin	(in)

Atom	selection	(in)

Atom	target	(in)

Tk_GetSelProc	*proc	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	GetSelect

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tk_GetSelection	-	retrieve	the	contents	of	a	selection

SYNOPSIS

#include	<tk.h>
int
Tk_GetSelection(interp,	tkwin,	selection,	target,	proc,	clientData)

ARGUMENTS

Interpreter	to	use	for
reporting	errors.

Window	on	whose	behalf
to	retrieve	the	selection
(determines	display	from
which	to	retrieve).

The	name	of	the	selection
to	be	retrieved.

Form	in	which	to	retrieve
selection.

Procedure	to	invoke	to
process	pieces	of	the
selection	as	they	are
retrieved.

ClientData	clientData	(in) Arbitrary	one-word	value
to	pass	to	proc.

DESCRIPTION

Tk_GetSelection	retrieves	the	selection	specified	by	the	atom	selection
in	the	format	specified	by	target.	The	selection	may	actually	be
retrieved	in	several	pieces;	as	each	piece	is	retrieved,	proc	is	called	to
process	the	piece.	Proc	should	have	arguments	and	result	that	match
the	type	Tk_GetSelProc:

typedef	int	Tk_GetSelProc(

				ClientData	clientData,

				Tcl_Interp	*interp,

				char	*portion);

The	clientData	and	interp	parameters	to	proc	will	be	copies	of	the
corresponding	arguments	to	Tk_GetSelection.	Portion	will	be	a	pointer
to	a	string	containing	part	or	all	of	the	selection.	For	large	selections,
proc	will	be	called	several	times	with	successive	portions	of	the
selection.	The	X	Inter-Client	Communication	Conventions	Manual
allows	a	selection	to	be	returned	in	formats	other	than	strings,	e.g.	as
an	array	of	atoms	or	integers.	If	this	happens,	Tk	converts	the	selection
back	into	a	string	before	calling	proc.	If	a	selection	is	returned	as	an
array	of	atoms,	Tk	converts	it	to	a	string	containing	the	atom	names
separated	by	white	space.	For	any	other	format	besides	string,	Tk
converts	a	selection	to	a	string	containing	hexadecimal	values
separated	by	white	space.

Tk_GetSelection	returns	to	its	caller	when	the	selection	has	been
completely	retrieved	and	processed	by	proc,	or	when	a	fatal	error	has
occurred	(e.g.	the	selection	owner	did	not	respond	promptly).
Tk_GetSelection	normally	returns	TCL_OK;	if	an	error	occurs,	it
returns	TCL_ERROR	and	leaves	an	error	message	in	interp->result.
Proc	should	also	return	either	TCL_OK	or	TCL_ERROR.	If	proc

encounters	an	error	in	dealing	with	the	selection,	it	should	leave	an
error	message	in	interp->result	and	return	TCL_ERROR;	this	will	abort
the	selection	retrieval.

KEYWORDS

format,	get,	selection	retrieval

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990-1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	GetBitmap

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tk_AllocBitmapFromObj,	Tk_GetBitmap,
Tk_GetBitmapFromObj,	Tk_DefineBitmap,	Tk_NameOfBitmap,
Tk_SizeOfBitmap,	Tk_FreeBitmapFromObj,	Tk_FreeBitmap	-
maintain	database	of	single-plane	pixmaps

SYNOPSIS
#include	<tk.h>
Pixmap
Tk_AllocBitmapFromObj(interp,	tkwin,	objPtr)
Pixmap
Tk_GetBitmap(interp,	tkwin,	info)
Pixmap
Tk_GetBitmapFromObj(tkwin,	objPtr)
int
Tk_DefineBitmap(interp,	name,	source,	width,	height)
const	char	*
Tk_NameOfBitmap(display,	bitmap)
Tk_SizeOfBitmap(display,	bitmap,	widthPtr,	heightPtr)
Tk_FreeBitmapFromObj(tkwin,	objPtr)
Tk_FreeBitmap(display,	bitmap)

ARGUMENTS
DESCRIPTION

@fileName
name

error
gray75
gray50
gray25
gray12
hourglass
info

questhead
question
warning
document
stationery
edition
application
accessory
folder
pfolder
trash
floppy
ramdisk
cdrom
preferences
querydoc
stop
note
caution

BUGS
KEYWORDS

NAME

Tk_AllocBitmapFromObj,	Tk_GetBitmap,	Tk_GetBitmapFromObj,
Tk_DefineBitmap,	Tk_NameOfBitmap,	Tk_SizeOfBitmap,
Tk_FreeBitmapFromObj,	Tk_FreeBitmap	-	maintain	database	of	single-
plane	pixmaps

SYNOPSIS

#include	<tk.h>
Pixmap
Tk_AllocBitmapFromObj(interp,	tkwin,	objPtr)
Pixmap
Tk_GetBitmap(interp,	tkwin,	info)
Pixmap
Tk_GetBitmapFromObj(tkwin,	objPtr)

Tcl_Interp	*interp	(in)

Tk_Window	tkwin	(in)

Tcl_Obj	*objPtr	(in/out)

const	char	*info	(in)

const	char	*name	(in)

const	char	*source	(in)

int
Tk_DefineBitmap(interp,	name,	source,	width,	height)
const	char	*
Tk_NameOfBitmap(display,	bitmap)
Tk_SizeOfBitmap(display,	bitmap,	widthPtr,	heightPtr)
Tk_FreeBitmapFromObj(tkwin,	objPtr)
Tk_FreeBitmap(display,	bitmap)

ARGUMENTS

Interpreter	to	use	for	error
reporting;	if	NULL	then	no
error	message	is	left	after
errors.

Token	for	window	in	which
the	bitmap	will	be	used.

String	value	describes
desired	bitmap;	internal
rep	will	be	modified	to
cache	pointer	to
corresponding	Pixmap.

Same	as	objPtr	except
description	of	bitmap	is
passed	as	a	string	and
resulting	Pixmap	is	not
cached.

Name	for	new	bitmap	to
be	defined.

Data	for	bitmap,	in
standard	bitmap	format.
Must	be	stored	in	static
memory	whose	value	will

int	width	(in)

int	height	(in)

int	*widthPtr	(out)

int	*heightPtr	(out)

Display	*display	(in)

Pixmap	bitmap	(in)

never	change.

Width	of	bitmap.

Height	of	bitmap.

Pointer	to	word	to	fill	in
with	bitmap's	width.

Pointer	to	word	to	fill	in
with	bitmap's	height.

Display	for	which	bitmap
was	allocated.

Identifier	for	a	bitmap
allocated	by
Tk_AllocBitmapFromObj
or	Tk_GetBitmap.

DESCRIPTION

These	procedures	manage	a	collection	of	bitmaps	(one-plane	pixmaps)
being	used	by	an	application.	The	procedures	allow	bitmaps	to	be	re-
used	efficiently,	thereby	avoiding	server	overhead,	and	also	allow
bitmaps	to	be	named	with	character	strings.

Tk_AllocBitmapFromObj	returns	a	Pixmap	identifier	for	a	bitmap	that
matches	the	description	in	objPtr	and	is	suitable	for	use	in	tkwin.	It	re-
uses	an	existing	bitmap,	if	possible,	and	creates	a	new	one	otherwise.
ObjPtr's	value	must	have	one	of	the	following	forms:

@fileName
FileName	must	be	the	name	of	a	file	containing	a	bitmap
description	in	the	standard	X11	or	X10	format.

name

Name	must	be	the	name	of	a	bitmap	defined	previously	with	a	call
to	Tk_DefineBitmap.	The	following	names	are	pre-defined	by	Tk:

error
The	international	“don't”	symbol:	a	circle	with	a	diagonal	line
across	it.

gray75
75%	gray:	a	checkerboard	pattern	where	three	out	of	four	bits
are	on.

gray50
50%	gray:	a	checkerboard	pattern	where	every	other	bit	is	on.

gray25
25%	gray:	a	checkerboard	pattern	where	one	out	of	every	four
bits	is	on.

gray12
12.5%	gray:	a	pattern	where	one-eighth	of	the	bits	are	on,
consisting	of	every	fourth	pixel	in	every	other	row.

hourglass
An	hourglass	symbol.

info
A	large	letter	“i”.

questhead
The	silhouette	of	a	human	head,	with	a	question	mark	in	it.

question
A	large	question-mark.

warning
A	large	exclamation	point.

In	addition,	the	following	pre-defined	names	are	available	only
on	the	Macintosh	platform:

document
A	generic	document.

stationery
Document	stationery.

edition
The	edition	symbol.

application
Generic	application	icon.

accessory
A	desk	accessory.

folder
Generic	folder	icon.

pfolder
A	locked	folder.

trash
A	trash	can.

floppy
A	floppy	disk.

ramdisk
A	floppy	disk	with	chip.

cdrom
A	cd	disk	icon.

preferences
A	folder	with	prefs	symbol.

querydoc
A	database	document	icon.

stop
A	stop	sign.

note
A	face	with	balloon	words.

caution
A	triangle	with	an	exclamation	point.

Under	normal	conditions,	Tk_AllocBitmapFromObj	returns	an
identifier	for	the	requested	bitmap.	If	an	error	occurs	in	creating	the
bitmap,	such	as	when	objPtr	refers	to	a	non-existent	file,	then	None	is
returned	and	an	error	message	is	left	in	interp's	result	if	interp	is	not
NULL.	Tk_AllocBitmapFromObj	caches	information	about	the	return
value	in	objPtr,	which	speeds	up	future	calls	to	procedures	such	as
Tk_AllocBitmapFromObj	and	Tk_GetBitmapFromObj.

Tk_GetBitmap	is	identical	to	Tk_AllocBitmapFromObj	except	that	the
description	of	the	bitmap	is	specified	with	a	string	instead	of	an	object.
This	prevents	Tk_GetBitmap	from	caching	the	return	value,	so
Tk_GetBitmap	is	less	efficient	than	Tk_AllocBitmapFromObj.

Tk_GetBitmapFromObj	returns	the	token	for	an	existing	bitmap,	given
the	window	and	description	used	to	create	the	bitmap.
Tk_GetBitmapFromObj	does	not	actually	create	the	bitmap;	the
bitmap	must	already	have	been	created	with	a	previous	call	to
Tk_AllocBitmapFromObj	or	Tk_GetBitmap.	The	return	value	is
cached	in	objPtr,	which	speeds	up	future	calls	to
Tk_GetBitmapFromObj	with	the	same	objPtr	and	tkwin.

Tk_DefineBitmap	associates	a	name	with	in-memory	bitmap	data	so
that	the	name	can	be	used	in	later	calls	to	Tk_AllocBitmapFromObj	or
Tk_GetBitmap.	The	nameId	argument	gives	a	name	for	the	bitmap;	it
must	not	previously	have	been	used	in	a	call	to	Tk_DefineBitmap.	The
arguments	source,	width,	and	height	describe	the	bitmap.
Tk_DefineBitmap	normally	returns	TCL_OK;	if	an	error	occurs	(e.g.	a
bitmap	named	nameId	has	already	been	defined)	then	TCL_ERROR	is
returned	and	an	error	message	is	left	in	interp->result.	Note:

Tk_DefineBitmap	expects	the	memory	pointed	to	by	source	to	be
static:	Tk_DefineBitmap	does	not	make	a	private	copy	of	this	memory,
but	uses	the	bytes	pointed	to	by	source	later	in	calls	to
Tk_AllocBitmapFromObj	or	Tk_GetBitmap.

Typically	Tk_DefineBitmap	is	used	by	#include-ing	a	bitmap	file
directly	into	a	C	program	and	then	referencing	the	variables	defined	by
the	file.	For	example,	suppose	there	exists	a	file	stip.bitmap,	which
was	created	by	the	bitmap	program	and	contains	a	stipple	pattern.	The
following	code	uses	Tk_DefineBitmap	to	define	a	new	bitmap	named
foo:

Pixmap	bitmap;

#include	"stip.bitmap"

Tk_DefineBitmap(interp,	"foo",	stip_bits,

				stip_width,	stip_height);

	...

bitmap	=	Tk_GetBitmap(interp,	tkwin,	"foo");

This	code	causes	the	bitmap	file	to	be	read	at	compile-time	and
incorporates	the	bitmap	information	into	the	program's	executable
image.	The	same	bitmap	file	could	be	read	at	run-time	using
Tk_GetBitmap:

Pixmap	bitmap;

bitmap	=	Tk_GetBitmap(interp,	tkwin,	"@stip.bitmap");

The	second	form	is	a	bit	more	flexible	(the	file	could	be	modified	after
the	program	has	been	compiled,	or	a	different	string	could	be	provided
to	read	a	different	file),	but	it	is	a	little	slower	and	requires	the	bitmap
file	to	exist	separately	from	the	program.

Tk	maintains	a	database	of	all	the	bitmaps	that	are	currently	in	use.
Whenever	possible,	it	will	return	an	existing	bitmap	rather	than	creating

a	new	one.	When	a	bitmap	is	no	longer	used,	Tk	will	release	it
automatically.	This	approach	can	substantially	reduce	server	overhead,
so	Tk_AllocBitmapFromObj	and	Tk_GetBitmap	should	generally	be
used	in	preference	to	Xlib	procedures	like	XReadBitmapFile.

The	bitmaps	returned	by	Tk_AllocBitmapFromObj	and	Tk_GetBitmap
are	shared,	so	callers	should	never	modify	them.	If	a	bitmap	must	be
modified	dynamically,	then	it	should	be	created	by	calling	Xlib
procedures	such	as	XReadBitmapFile	or	XCreatePixmap	directly.

The	procedure	Tk_NameOfBitmap	is	roughly	the	inverse	of
Tk_GetBitmap.	Given	an	X	Pixmap	argument,	it	returns	the	textual
description	that	was	passed	to	Tk_GetBitmap	when	the	bitmap	was
created.	Bitmap	must	have	been	the	return	value	from	a	previous	call	to
Tk_AllocBitmapFromObj	or	Tk_GetBitmap.

Tk_SizeOfBitmap	returns	the	dimensions	of	its	bitmap	argument	in	the
words	pointed	to	by	the	widthPtr	and	heightPtr	arguments.	As	with
Tk_NameOfBitmap,	bitmap	must	have	been	created	by
Tk_AllocBitmapFromObj	or	Tk_GetBitmap.

When	a	bitmap	is	no	longer	needed,	Tk_FreeBitmapFromObj	or
Tk_FreeBitmap	should	be	called	to	release	it.	For
Tk_FreeBitmapFromObj	the	bitmap	to	release	is	specified	with	the
same	information	used	to	create	it;	for	Tk_FreeBitmap	the	bitmap	to
release	is	specified	with	its	Pixmap	token.	There	should	be	exactly	one
call	to	Tk_FreeBitmapFromObj	or	Tk_FreeBitmap	for	each	call	to
Tk_AllocBitmapFromObj	or	Tk_GetBitmap.

BUGS

In	determining	whether	an	existing	bitmap	can	be	used	to	satisfy	a	new
request,	Tk_AllocBitmapFromObj	and	Tk_GetBitmap	consider	only
the	immediate	value	of	the	string	description.	For	example,	when	a	file
name	is	passed	to	Tk_GetBitmap,	Tk_GetBitmap	will	assume	it	is	safe
to	re-use	an	existing	bitmap	created	from	the	same	file	name:	it	will	not
check	to	see	whether	the	file	itself	has	changed,	or	whether	the	current
directory	has	changed,	thereby	causing	the	name	to	refer	to	a	different

file.

KEYWORDS

bitmap,	pixmap

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990	The	Regents	of	the	University	of	California.
Copyright	©	1994-1998	Sun	Microsystems,	Inc.

char	*string	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	GetUid

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tk_GetUid,	Tk_Uid	-	convert	from	string	to	unique	identifier

SYNOPSIS

#include	<tk.h>
Tk_Uid
Tk_GetUid(string)

ARGUMENTS

String	for	which	the
corresponding	unique
identifier	is	desired.

DESCRIPTION

Tk_GetUid	returns	the	unique	identifier	corresponding	to	string.	Unique
identifiers	are	similar	to	atoms	in	Lisp,	and	are	used	in	Tk	to	speed	up
comparisons	and	searches.	A	unique	identifier	(type	Tk_Uid)	is	a	string
pointer	and	may	be	used	anywhere	that	a	variable	of	type	“char	*”	could
be	used.	However,	there	is	guaranteed	to	be	exactly	one	unique
identifier	for	any	given	string	value.	If	Tk_GetUid	is	called	twice,	once
with	string	a	and	once	with	string	b,	and	if	a	and	b	have	the	same	string
value	(strcmp(a,	b)	==	0),	then	Tk_GetUid	will	return	exactly	the	same
Tk_Uid	value	for	each	call	(Tk_GetUid(a)	==	Tk_GetUid(b)).	This	means
that	variables	of	type	Tk_Uid	may	be	compared	directly	(x	==	y)	without
having	to	call	strcmp.	In	addition,	the	return	value	from	Tk_GetUid	will
have	the	same	string	value	as	its	argument	(strcmp(Tk_GetUid(a),	a)
==	0).

KEYWORDS

atom,	unique	identifier

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	GetColor

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tk_AllocColorFromObj,	Tk_GetColor,	Tk_GetColorFromObj,
Tk_GetColorByValue,	Tk_NameOfColor,
Tk_FreeColorFromObj,	Tk_FreeColor	-	maintain	database	of
colors

SYNOPSIS
#include	<tk.h>
XColor	*
Tk_AllocColorFromObj(interp,	tkwin,	objPtr)
XColor	*
Tk_GetColor(interp,	tkwin,	name)
XColor	*
Tk_GetColorFromObj(tkwin,	objPtr)
XColor	*
Tk_GetColorByValue(tkwin,	prefPtr)
const	char	*
Tk_NameOfColor(colorPtr)
GC
Tk_GCForColor(colorPtr,	drawable)
Tk_FreeColorFromObj(tkwin,	objPtr)
Tk_FreeColor(colorPtr)

ARGUMENTS
DESCRIPTION

colorname
#RGB
#RRGGBB
#RRRGGGBBB
#RRRRGGGGBBBB

KEYWORDS

NAME

Tcl_Interp	*interp	(in)

Tk_Window	tkwin	(in)

Tcl_Obj	*objPtr	(in/out)

char	*name	(in)

Tk_AllocColorFromObj,	Tk_GetColor,	Tk_GetColorFromObj,
Tk_GetColorByValue,	Tk_NameOfColor,	Tk_FreeColorFromObj,
Tk_FreeColor	-	maintain	database	of	colors

SYNOPSIS

#include	<tk.h>
XColor	*
Tk_AllocColorFromObj(interp,	tkwin,	objPtr)
XColor	*
Tk_GetColor(interp,	tkwin,	name)
XColor	*
Tk_GetColorFromObj(tkwin,	objPtr)
XColor	*
Tk_GetColorByValue(tkwin,	prefPtr)
const	char	*
Tk_NameOfColor(colorPtr)
GC
Tk_GCForColor(colorPtr,	drawable)
Tk_FreeColorFromObj(tkwin,	objPtr)
Tk_FreeColor(colorPtr)

ARGUMENTS

Interpreter	to	use	for	error
reporting.

Token	for	window	in	which
color	will	be	used.

String	value	describes
desired	color;	internal	rep
will	be	modified	to	cache
pointer	to	corresponding
(XColor	*).

Same	as	objPtr	except

XColor	*prefPtr	(in)

XColor	*colorPtr	(in)

Drawable	drawable	(in)

description	of	color	is
passed	as	a	string	and
resulting	(XColor	*)	is	not
cached.

Indicates	red,	green,	and
blue	intensities	of	desired
color.

Pointer	to	X	color
information.	Must	have
been	allocated	by	previous
call	to
Tk_AllocColorFromObj,
Tk_GetColor	or
Tk_GetColorByValue,
except	when	passed	to
Tk_NameOfColor.

Drawable	in	which	the
result	graphics	context	will
be	used.	Must	have	same
screen	and	depth	as	the
window	for	which	the	color
was	allocated.

DESCRIPTION

These	procedures	manage	the	colors	being	used	by	a	Tk	application.
They	allow	colors	to	be	shared	whenever	possible,	so	that	colormap
space	is	preserved,	and	they	pick	closest	available	colors	when
colormap	space	is	exhausted.

Given	a	textual	description	of	a	color,	Tk_AllocColorFromObj	locates
a	pixel	value	that	may	be	used	to	render	the	color	in	a	particular
window.	The	desired	color	is	specified	with	an	object	whose	string	value

must	have	one	of	the	following	forms:

colorname
Any	of	the	valid	textual	names	for	a	color	defined	in	the	server's
color	database	file,	such	as	red	or	PeachPuff.

#RGB

#RRGGBB

#RRRGGGBBB

#RRRRGGGGBBBB
A	numeric	specification	of	the	red,	green,	and	blue	intensities	to
use	to	display	the	color.	Each	R,	G,	or	B	represents	a	single
hexadecimal	digit.	The	four	forms	permit	colors	to	be	specified	with
4-bit,	8-bit,	12-bit	or	16-bit	values.	When	fewer	than	16	bits	are
provided	for	each	color,	they	represent	the	most	significant	bits	of
the	color.	For	example,	#3a7	is	the	same	as	#3000a0007000.

Tk_AllocColorFromObj	returns	a	pointer	to	an	XColor	structure;	the
structure	indicates	the	exact	intensities	of	the	allocated	color	(which
may	differ	slightly	from	those	requested,	depending	on	the	limitations	of
the	screen)	and	a	pixel	value	that	may	be	used	to	draw	with	the	color	in
tkwin.	If	an	error	occurs	in	Tk_AllocColorFromObj	(such	as	an
unknown	color	name)	then	NULL	is	returned	and	an	error	message	is
stored	in	interp's	result	if	interp	is	not	NULL.	If	the	colormap	for	tkwin	is
full,	Tk_AllocColorFromObj	will	use	the	closest	existing	color	in	the
colormap.	Tk_AllocColorFromObj	caches	information	about	the	return
value	in	objPtr,	which	speeds	up	future	calls	to	procedures	such	as
Tk_AllocColorFromObj	and	Tk_GetColorFromObj.

Tk_GetColor	is	identical	to	Tk_AllocColorFromObj	except	that	the
description	of	the	color	is	specified	with	a	string	instead	of	an	object.
This	prevents	Tk_GetColor	from	caching	the	return	value,	so
Tk_GetColor	is	less	efficient	than	Tk_AllocColorFromObj.

Tk_GetColorFromObj	returns	the	token	for	an	existing	color,	given	the

window	and	description	used	to	create	the	color.	Tk_GetColorFromObj
does	not	actually	create	the	color;	the	color	must	already	have	been
created	with	a	previous	call	to	Tk_AllocColorFromObj	or
Tk_GetColor.	The	return	value	is	cached	in	objPtr,	which	speeds	up
future	calls	to	Tk_GetColorFromObj	with	the	same	objPtr	and	tkwin.

Tk_GetColorByValue	is	similar	to	Tk_GetColor	except	that	the	desired
color	is	indicated	with	the	red,	green,	and	blue	fields	of	the	structure
pointed	to	by	colorPtr.

This	package	maintains	a	database	of	all	the	colors	currently	in	use.	If
the	same	color	is	requested	multiple	times	from	Tk_GetColor	or
Tk_AllocColorFromObj	(e.g.	by	different	windows),	or	if	the	same
intensities	are	requested	multiple	times	from	Tk_GetColorByValue,
then	existing	pixel	values	will	be	re-used.	Re-using	an	existing	pixel
avoids	any	interaction	with	the	window	server,	which	makes	the
allocation	much	more	efficient.	These	procedures	also	provide	a
portable	interface	that	works	across	all	platforms.	For	this	reason,	you
should	generally	use	Tk_AllocColorFromObj,	Tk_GetColor,	or
Tk_GetColorByValue	instead	of	lower	level	procedures	like
XAllocColor.

Since	different	calls	to	this	package	may	return	the	same	shared	pixel
value,	callers	should	never	change	the	color	of	a	pixel	returned	by	the
procedures.	If	you	need	to	change	a	color	value	dynamically,	you
should	use	XAllocColorCells	to	allocate	the	pixel	value	for	the	color.

The	procedure	Tk_NameOfColor	is	roughly	the	inverse	of
Tk_GetColor.	If	its	colorPtr	argument	was	created	by
Tk_AllocColorFromObj	or	Tk_GetColor	then	the	return	value	is	the
string	that	was	used	to	create	the	color.	If	colorPtr	was	created	by	a	call
to	Tk_GetColorByValue,	or	by	any	other	mechanism,	then	the	return
value	is	a	string	that	could	be	passed	to	Tk_GetColor	to	return	the
same	color.	Note:	the	string	returned	by	Tk_NameOfColor	is	only
guaranteed	to	persist	until	the	next	call	to	Tk_NameOfColor.

Tk_GCForColor	returns	a	graphics	context	whose	foreground	field	is
the	pixel	allocated	for	colorPtr	and	whose	other	fields	all	have	default

values.	This	provides	an	easy	way	to	do	basic	drawing	with	a	color.	The
graphics	context	is	cached	with	the	color	and	will	exist	only	as	long	as
colorPtr	exists;	it	is	freed	when	the	last	reference	to	colorPtr	is	freed	by
calling	Tk_FreeColor.

When	a	color	is	no	longer	needed	Tk_FreeColorFromObj	or
Tk_FreeColor	should	be	called	to	release	it.	For
Tk_FreeColorFromObj	the	color	to	release	is	specified	with	the	same
information	used	to	create	it;	for	Tk_FreeColor	the	color	to	release	is
specified	with	a	pointer	to	its	XColor	structure.	There	should	be	exactly
one	call	to	Tk_FreeColorFromObj	or	Tk_FreeColor	for	each	call	to
Tk_AllocColorFromObj,	Tk_GetColor,	or	Tk_GetColorByValue.

KEYWORDS

color,	intensity,	object,	pixel	value

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990-1991	The	Regents	of	the	University	of	California.
Copyright	©	1994-1998	Sun	Microsystems,	Inc.

Display	*display	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	Inactive

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tk_GetUserInactiveTime,	Tk_ResetUserInactiveTime	-	discover	user
inactivity	time

SYNOPSIS

#include	<tk.h>
long
Tk_GetUserInactiveTime(display)
Tk_GetUserInactiveTime(display)

ARGUMENTS

The	display	on	which	the
user	inactivity	timer	is	to
be	queried	or	reset.

DESCRIPTION

Tk_GetUserInactiveTime	returns	the	number	of	milliseconds	that	have
passed	since	the	last	user	interaction	(usually	via	keyboard	or	mouse)
with	the	respective	display.	On	systems	and	displays	that	do	not
support	querying	the	user	inactiviy	time,	-1	is	returned.
Tk_GetUserInactiveTime	resets	the	user	inactivity	timer	of	the	given
display	to	zero.	On	windowing	systems	that	do	not	support	multiple
displays	display	can	be	passed	as	NULL.

KEYWORDS

idle,	inactive

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1998-2000	by	Scriptics	Corporation.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	GetCursor

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tk_AllocCursorFromObj,	Tk_GetCursor,
Tk_GetCursorFromObj,	Tk_GetCursorFromData,
Tk_NameOfCursor,	Tk_FreeCursorFromObj,	Tk_FreeCursor	-
maintain	database	of	cursors

SYNOPSIS
#include	<tk.h>
Tk_Cursor
Tk_AllocCursorFromObj(interp,	tkwin,	objPtr)
Tk_Cursor
Tk_GetCursor(interp,	tkwin,	name)
Tk_Cursor
Tk_GetCursorFromObj(tkwin,	objPtr)
Tk_Cursor
Tk_GetCursorFromData(interp,	tkwin,	source,	mask,	width,
height,	xHot,	yHot,	fg,	bg)
const	char	*
Tk_NameOfCursor(display,	cursor)
Tk_FreeCursorFromObj(tkwin,	objPtr)
Tk_FreeCursor(display,	cursor)

ARGUMENTS
DESCRIPTION

name	[fgColor	[bgColor]]
@sourceName	maskName	fgColor	bgColor
@sourceName	fgColor
@sourceName

BUGS
KEYWORDS

NAME

Tcl_Interp	*interp	(in)

Tk_Window	tkwin	(in)

Tcl_Obj	*objPtr	(in/out)

char	*name	(in)

Tk_AllocCursorFromObj,	Tk_GetCursor,	Tk_GetCursorFromObj,
Tk_GetCursorFromData,	Tk_NameOfCursor,	Tk_FreeCursorFromObj,
Tk_FreeCursor	-	maintain	database	of	cursors

SYNOPSIS

#include	<tk.h>
Tk_Cursor
Tk_AllocCursorFromObj(interp,	tkwin,	objPtr)
Tk_Cursor
Tk_GetCursor(interp,	tkwin,	name)
Tk_Cursor
Tk_GetCursorFromObj(tkwin,	objPtr)
Tk_Cursor
Tk_GetCursorFromData(interp,	tkwin,	source,	mask,	width,	height,
xHot,	yHot,	fg,	bg)
const	char	*
Tk_NameOfCursor(display,	cursor)
Tk_FreeCursorFromObj(tkwin,	objPtr)
Tk_FreeCursor(display,	cursor)

ARGUMENTS

Interpreter	to	use	for	error
reporting.

Token	for	window	in	which
the	cursor	will	be	used.

Description	of	cursor;	see
below	for	possible	values.
Internal	rep	will	be
modified	to	cache	pointer
to	corresponding
Tk_Cursor.

Same	as	objPtr	except

const	char	*source	(in)

const	char	*mask	(in)

int	width	(in)

int	height	(in)

int	xHot	(in)

int	yHot	(in)

Tk_Uid	fg	(in)

Tk_Uid	bg	(in)

Display	*display	(in)

Tk_Cursor	cursor	(in)

description	of	cursor	is
passed	as	a	string	and
resulting	Tk_Cursor	is	not
cached.

Data	for	cursor	cursor,	in
standard	cursor	format.

Data	for	mask	cursor,	in
standard	cursor	format.

Width	of	source	and	mask.

Height	of	source	and
mask.

X-location	of	cursor	hot-
spot.

Y-location	of	cursor	hot-
spot.

Textual	description	of
foreground	color	for
cursor.

Textual	description	of
background	color	for
cursor.

Display	for	which	cursor
was	allocated.

Opaque	Tk	identifier	for
cursor.	If	passed	to
Tk_FreeCursor,	must
have	been	returned	by

some	previous	call	to
Tk_GetCursor	or
Tk_GetCursorFromData.

DESCRIPTION

These	procedures	manage	a	collection	of	cursors	being	used	by	an
application.	The	procedures	allow	cursors	to	be	re-used	efficiently,
thereby	avoiding	server	overhead,	and	also	allow	cursors	to	be	named
with	character	strings.

Tk_AllocCursorFromObj	takes	as	argument	an	object	describing	a
cursor,	and	returns	an	opaque	Tk	identifier	for	a	cursor	corresponding	to
the	description.	It	re-uses	an	existing	cursor	if	possible	and	creates	a
new	one	otherwise.	Tk_AllocCursorFromObj	caches	information
about	the	return	value	in	objPtr,	which	speeds	up	future	calls	to
procedures	such	as	Tk_AllocCursorFromObj	and
Tk_GetCursorFromObj.	If	an	error	occurs	in	creating	the	cursor,	such
as	when	objPtr	refers	to	a	non-existent	file,	then	None	is	returned	and
an	error	message	will	be	stored	in	interp's	result	if	interp	is	not	NULL.
ObjPtr	must	contain	a	standard	Tcl	list	with	one	of	the	following	forms:

name	[fgColor	[bgColor]]
Name	is	the	name	of	a	cursor	in	the	standard	X	cursor	cursor,	i.e.,
any	of	the	names	defined	in	cursorcursor.h,	without	the	XC_.
Some	example	values	are	X_cursor,	hand2,	or	left_ptr.	Appendix
B	of	“The	X	Window	System”	by	Scheifler	&	Gettys	has	illustrations
showing	what	each	of	these	cursors	looks	like.	If	fgColor	and
bgColor	are	both	specified,	they	give	the	foreground	and
background	colors	to	use	for	the	cursor	(any	of	the	forms
acceptable	to	Tk_GetColor	may	be	used).	If	only	fgColor	is
specified,	then	there	will	be	no	background	color:	the	background
will	be	transparent.	If	no	colors	are	specified,	then	the	cursor	will
use	black	for	its	foreground	color	and	white	for	its	background
color.

The	Macintosh	version	of	Tk	supports	all	of	the	X	cursors	and	will

also	accept	any	of	the	standard	Mac	cursors	including	ibeam,
crosshair,	watch,	plus,	and	arrow.	In	addition,	Tk	will	load
Macintosh	cursor	resources	of	the	types	crsr	(color)	and	CURS
(black	and	white)	by	the	name	of	the	resource.	The	application	and
all	its	open	dynamic	library's	resource	files	will	be	searched	for	the
named	cursor.	If	there	are	conflicts	color	cursors	will	always	be
loaded	in	preference	to	black	and	white	cursors.

@sourceName	maskName	fgColor	bgColor
In	this	form,	sourceName	and	maskName	are	the	names	of	files
describing	cursors	for	the	cursor's	source	bits	and	mask.	Each	file
must	be	in	standard	X11	or	X10	cursor	format.	FgColor	and
bgColor	indicate	the	colors	to	use	for	the	cursor,	in	any	of	the	forms
acceptable	to	Tk_GetColor.	This	form	of	the	command	will	not
work	on	Macintosh	or	Windows	computers.

@sourceName	fgColor
This	form	is	similar	to	the	one	above,	except	that	the	source	is
used	as	mask	also.	This	means	that	the	cursor's	background	is
transparent.	This	form	of	the	command	will	not	work	on	Macintosh
or	Windows	computers.

@sourceName
This	form	only	works	on	Windows,	and	will	load	a	Windows	system
cursor	(.ani	or	.cur)	from	the	file	specified	in	sourceName.

Tk_GetCursor	is	identical	to	Tk_AllocCursorFromObj	except	that	the
description	of	the	cursor	is	specified	with	a	string	instead	of	an	object.
This	prevents	Tk_GetCursor	from	caching	the	return	value,	so
Tk_GetCursor	is	less	efficient	than	Tk_AllocCursorFromObj.

Tk_GetCursorFromObj	returns	the	token	for	an	existing	cursor,	given
the	window	and	description	used	to	create	the	cursor.
Tk_GetCursorFromObj	does	not	actually	create	the	cursor;	the	cursor
must	already	have	been	created	with	a	previous	call	to
Tk_AllocCursorFromObj	or	Tk_GetCursor.	The	return	value	is
cached	in	objPtr,	which	speeds	up	future	calls	to
Tk_GetCursorFromObj	with	the	same	objPtr	and	tkwin.

Tk_GetCursorFromData	allows	cursors	to	be	created	from	in-memory
descriptions	of	their	source	and	mask	cursors.	Source	points	to
standard	cursor	data	for	the	cursor's	source	bits,	and	mask	points	to
standard	cursor	data	describing	which	pixels	of	source	are	to	be	drawn
and	which	are	to	be	considered	transparent.	Width	and	height	give	the
dimensions	of	the	cursor,	xHot	and	yHot	indicate	the	location	of	the
cursor's	hot-spot	(the	point	that	is	reported	when	an	event	occurs),	and
fg	and	bg	describe	the	cursor's	foreground	and	background	colors
textually	(any	of	the	forms	suitable	for	Tk_GetColor	may	be	used).
Typically,	the	arguments	to	Tk_GetCursorFromData	are	created	by
including	a	cursor	file	directly	into	the	source	code	for	a	program,	as	in
the	following	example:

Tk_Cursor	cursor;

#include	"source.cursor"

#include	"mask.cursor"

cursor	=	Tk_GetCursorFromData(interp,	tkwin,	source_bits,

				mask_bits,	source_width,	source_height,	source_x_hot,

				source_y_hot,	Tk_GetUid("red"),	Tk_GetUid("blue"));

Under	normal	conditions	Tk_GetCursorFromData	will	return	an
identifier	for	the	requested	cursor.	If	an	error	occurs	in	creating	the
cursor	then	None	is	returned	and	an	error	message	will	be	stored	in
interp's	result.

Tk_AllocCursorFromObj,	Tk_GetCursor,	and
Tk_GetCursorFromData	maintain	a	database	of	all	the	cursors	they
have	created.	Whenever	possible,	a	call	to	Tk_AllocCursorFromObj,
Tk_GetCursor,	or	Tk_GetCursorFromData	will	return	an	existing
cursor	rather	than	creating	a	new	one.	This	approach	can	substantially
reduce	server	overhead,	so	the	Tk	procedures	should	generally	be
used	in	preference	to	Xlib	procedures	like	XCreateFontCursor	or
XCreatePixmapCursor,	which	create	a	new	cursor	on	each	call.	The
Tk	procedures	are	also	more	portable	than	the	lower-level	X
procedures.

The	procedure	Tk_NameOfCursor	is	roughly	the	inverse	of
Tk_GetCursor.	If	its	cursor	argument	was	created	by	Tk_GetCursor,
then	the	return	value	is	the	name	argument	that	was	passed	to
Tk_GetCursor	to	create	the	cursor.	If	cursor	was	created	by	a	call	to
Tk_GetCursorFromData,	or	by	any	other	mechanism,	then	the	return
value	is	a	hexadecimal	string	giving	the	X	identifier	for	the	cursor.	Note:
the	string	returned	by	Tk_NameOfCursor	is	only	guaranteed	to	persist
until	the	next	call	to	Tk_NameOfCursor.	Also,	this	call	is	not	portable
except	for	cursors	returned	by	Tk_GetCursor.

When	a	cursor	returned	by	Tk_AllocCursorFromObj,	Tk_GetCursor,
or	Tk_GetCursorFromData	is	no	longer	needed,
Tk_FreeCursorFromObj	or	Tk_FreeCursor	should	be	called	to
release	it.	For	Tk_FreeCursorFromObj	the	cursor	to	release	is
specified	with	the	same	information	used	to	create	it;	for
Tk_FreeCursor	the	cursor	to	release	is	specified	with	its	Tk_Cursor
token.	There	should	be	exactly	one	call	to	Tk_FreeCursor	for	each	call
to	Tk_AllocCursorFromObj,	Tk_GetCursor,	or
Tk_GetCursorFromData.

BUGS

In	determining	whether	an	existing	cursor	can	be	used	to	satisfy	a	new
request,	Tk_AllocCursorFromObj,	Tk_GetCursor,	and
Tk_GetCursorFromData	consider	only	the	immediate	values	of	their
arguments.	For	example,	when	a	file	name	is	passed	to	Tk_GetCursor,
Tk_GetCursor	will	assume	it	is	safe	to	re-use	an	existing	cursor
created	from	the	same	file	name:	it	will	not	check	to	see	whether	the	file
itself	has	changed,	or	whether	the	current	directory	has	changed,
thereby	causing	the	name	to	refer	to	a	different	file.	Similarly,
Tk_GetCursorFromData	assumes	that	if	the	same	source	pointer	is
used	in	two	different	calls,	then	the	pointers	refer	to	the	same	data;	it
does	not	check	to	see	if	the	actual	data	values	have	changed.

KEYWORDS

cursor

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990	The	Regents	of	the	University	of	California.
Copyright	©	1994-1998	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	GetVisual

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tk_GetVisual	-	translate	from	string	to	visual

SYNOPSIS
#include	<tk.h>
Visual	*
Tk_GetVisual(interp,	tkwin,	string,	depthPtr,	colormapPtr)

ARGUMENTS
DESCRIPTION

class	depth
default
pathName
number
best	?depth?

(a)
(b)
(c)
(d)

CREDITS
KEYWORDS

NAME

Tk_GetVisual	-	translate	from	string	to	visual

SYNOPSIS

#include	<tk.h>
Visual	*
Tk_GetVisual(interp,	tkwin,	string,	depthPtr,	colormapPtr)

ARGUMENTS

Tcl_Interp	*interp	(in)

Tk_Window	tkwin	(in)

const	char	*string	(in)

int	*depthPtr	(out)

Colormap	*colormapPtr	(out)

Interpreter	to	use	for	error
reporting.

Token	for	window	in	which
the	visual	will	be	used.

String	that	identifies	the
desired	visual.	See	below
for	valid	formats.

Depth	of	returned	visual
gets	stored	here.

If	non-NULL	then	a
suitable	colormap	for
visual	is	found	and	its
identifier	is	stored	here.

DESCRIPTION

Tk_GetVisual	takes	a	string	description	of	a	visual	and	finds	a	suitable
X	Visual	for	use	in	tkwin,	if	there	is	one.	It	returns	a	pointer	to	the	X
Visual	structure	for	the	visual	and	stores	the	number	of	bits	per	pixel	for
it	at	*depthPtr.	If	string	is	unrecognizable	or	if	no	suitable	visual	could
be	found,	then	NULL	is	returned	and	Tk_GetVisual	leaves	an	error
message	in	interp->result.	If	colormap	is	non-NULL	then	Tk_GetVisual
also	locates	an	appropriate	colormap	for	use	with	the	result	visual	and
stores	its	X	identifier	at	*colormapPtr.

The	string	argument	specifies	the	desired	visual	in	one	of	the	following
ways:

class	depth
The	string	consists	of	a	class	name	followed	by	an	integer	depth,
with	any	amount	of	white	space	(including	none)	in	between.	class
selects	what	sort	of	visual	is	desired	and	must	be	one	of

directcolor,	grayscale,	greyscale,	pseudocolor,	staticcolor,
staticgray,	staticgrey,	or	truecolor,	or	a	unique	abbreviation.
depth	specifies	how	many	bits	per	pixel	are	needed	for	the	visual.	If
possible,	Tk_GetVisual	will	return	a	visual	with	this	depth;	if	there
is	no	visual	of	the	desired	depth	then	Tk_GetVisual	looks	first	for	a
visual	with	greater	depth,	then	one	with	less	depth.

default
Use	the	default	visual	for	tkwin's	screen.

pathName
Use	the	visual	for	the	window	given	by	pathName.	pathName	must
be	the	name	of	a	window	on	the	same	screen	as	tkwin.

number
Use	the	visual	whose	X	identifier	is	number.

best	?depth?
Choose	the	“best	possible”	visual,	using	the	following	rules,	in
decreasing	order	of	priority:

(a)
a	visual	that	has	exactly	the	desired	depth	is	best,	followed	by
a	visual	with	greater	depth	than	requested	(but	as	little	extra	as
possible),	followed	by	a	visual	with	less	depth	than	requested
(but	as	great	a	depth	as	possible);

(b)
if	no	depth	is	specified,	then	the	deepest	available	visual	is
chosen;

(c)
pseudocolor	is	better	than	truecolor	or	directcolor,	which
are	better	than	staticcolor,	which	is	better	than	staticgray	or
grayscale;

(d)
the	default	visual	for	the	screen	is	better	than	any	other	visual.

CREDITS

The	idea	for	Tk_GetVisual,	and	the	first	implementation,	came	from
Paul	Mackerras.

KEYWORDS

colormap,	screen,	visual

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	ConfigWind

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tk_ConfigureWindow,	Tk_MoveWindow,	Tk_ResizeWindow,
Tk_MoveResizeWindow,	Tk_SetWindowBorderWidth,
Tk_ChangeWindowAttributes,	Tk_SetWindowBackground,
Tk_SetWindowBackgroundPixmap,	Tk_SetWindowBorder,
Tk_SetWindowBorderPixmap,	Tk_SetWindowColormap,
Tk_DefineCursor,	Tk_UndefineCursor	-	change	window
configuration	or	attributes

SYNOPSIS
#include	<tk.h>
Tk_ConfigureWindow(tkwin,	valueMask,	valuePtr)
Tk_MoveWindow(tkwin,	x,	y)
Tk_ResizeWindow(tkwin,	width,	height)
Tk_MoveResizeWindow(tkwin,	x,	y,	width,	height)
Tk_SetWindowBorderWidth(tkwin,	borderWidth)
Tk_ChangeWindowAttributes(tkwin,	valueMask,	attsPtr)
Tk_SetWindowBackground(tkwin,	pixel)
Tk_SetWindowBackgroundPixmap(tkwin,	pixmap)
Tk_SetWindowBorder(tkwin,	pixel)
Tk_SetWindowBorderPixmap(tkwin,	pixmap)
Tk_SetWindowColormap(tkwin,	colormap)
Tk_DefineCursor(tkwin,	cursor)
Tk_UndefineCursor(tkwin)

ARGUMENTS
DESCRIPTION
BUGS
SEE	ALSO
KEYWORDS

NAME

Tk_Window	tkwin	(in)

unsigned	int	valueMask	(in)

XWindowChanges	*valuePtr	(in)

Tk_ConfigureWindow,	Tk_MoveWindow,	Tk_ResizeWindow,
Tk_MoveResizeWindow,	Tk_SetWindowBorderWidth,
Tk_ChangeWindowAttributes,	Tk_SetWindowBackground,
Tk_SetWindowBackgroundPixmap,	Tk_SetWindowBorder,
Tk_SetWindowBorderPixmap,	Tk_SetWindowColormap,
Tk_DefineCursor,	Tk_UndefineCursor	-	change	window	configuration	or
attributes

SYNOPSIS

#include	<tk.h>
Tk_ConfigureWindow(tkwin,	valueMask,	valuePtr)
Tk_MoveWindow(tkwin,	x,	y)
Tk_ResizeWindow(tkwin,	width,	height)
Tk_MoveResizeWindow(tkwin,	x,	y,	width,	height)
Tk_SetWindowBorderWidth(tkwin,	borderWidth)
Tk_ChangeWindowAttributes(tkwin,	valueMask,	attsPtr)
Tk_SetWindowBackground(tkwin,	pixel)
Tk_SetWindowBackgroundPixmap(tkwin,	pixmap)
Tk_SetWindowBorder(tkwin,	pixel)
Tk_SetWindowBorderPixmap(tkwin,	pixmap)
Tk_SetWindowColormap(tkwin,	colormap)
Tk_DefineCursor(tkwin,	cursor)
Tk_UndefineCursor(tkwin)

ARGUMENTS

Token	for	window.

OR-ed	mask	of	values	like
CWX	or	CWBorderPixel,
indicating	which	fields	of
*valuePtr	or	*attsPtr	to
use.

Points	to	a	structure
containing	new	values	for

int	x	(in)

int	y	(in)

int	width	(in)

int	height	(in)

int	borderWidth	(in)

XSetWindowAttributes	*attsPtr	(in)

unsigned	long	pixel	(in)

the	configuration
parameters	selected	by
valueMask.	Fields	not
selected	by	valueMask	are
ignored.

New	x-coordinate	for
tkwin's	top	left	pixel
(including	border,	if	any)
within	tkwin's	parent.

New	y-coordinate	for
tkwin's	top	left	pixel
(including	border,	if	any)
within	tkwin's	parent.

New	width	for	tkwin
(interior,	not	including
border).

New	height	for	tkwin
(interior,	not	including
border).

New	width	for	tkwin's
border.

Points	to	a	structure
containing	new	values	for
the	attributes	given	by	the
valueMask	argument.
Attributes	not	selected	by
valueMask	are	ignored.

New	background	or	border
color	for	window.

Pixmap	pixmap	(in)

Colormap	colormap	(in)

Tk_Cursor	cursor	(in)

New	pixmap	to	use	for
background	or	border	of
tkwin.	WARNING:	cannot
necessarily	be	deleted
immediately,	as	for	Xlib
calls.	See	note	below.

New	colormap	to	use	for
tkwin.

New	cursor	to	use	for
tkwin.	If	None	is	specified,
then	tkwin	will	not	have	its
own	cursor;	it	will	use	the
cursor	of	its	parent.

DESCRIPTION

These	procedures	are	analogous	to	the	X	library	procedures	with
similar	names,	such	as	XConfigureWindow.	Each	one	of	the	above
procedures	calls	the	corresponding	X	procedure	and	also	saves	the
configuration	information	in	Tk's	local	structure	for	the	window.	This
allows	the	information	to	be	retrieved	quickly	by	the	application	(using
macros	such	as	Tk_X	and	Tk_Height)	without	having	to	contact	the	X
server.	In	addition,	if	no	X	window	has	actually	been	created	for	tkwin
yet,	these	procedures	do	not	issue	X	operations	or	cause	event
handlers	to	be	invoked;	they	save	the	information	in	Tk's	local	structure
for	the	window;	when	the	window	is	created	later,	the	saved	information
will	be	used	to	configure	the	window.

See	the	X	library	documentation	for	details	on	what	these	procedures
do	and	how	they	use	their	arguments.

In	the	procedures	Tk_ConfigureWindow,	Tk_MoveWindow,
Tk_ResizeWindow,	Tk_MoveResizeWindow,	and
Tk_SetWindowBorderWidth,	if	tkwin	is	an	internal	window	then	event

handlers	interested	in	configure	events	are	invoked	immediately,	before
the	procedure	returns.	If	tkwin	is	a	top-level	window	then	the	event
handlers	will	be	invoked	later,	after	X	has	seen	the	request	and
returned	an	event	for	it.

Applications	using	Tk	should	never	call	procedures	like
XConfigureWindow	directly;	they	should	always	use	the	corresponding
Tk	procedures.

The	size	and	location	of	a	window	should	only	be	modified	by	the
appropriate	geometry	manager	for	that	window	and	never	by	a	window
itself	(but	see	Tk_MoveToplevelWindow	for	moving	a	top-level
window).

You	may	not	use	Tk_ConfigureWindow	to	change	the	stacking	order
of	a	window	(valueMask	may	not	contain	the	CWSibling	or
CWStackMode	bits).	To	change	the	stacking	order,	use	the	procedure
Tk_RestackWindow.

The	procedure	Tk_SetWindowColormap	will	automatically	add	tkwin
to	the	TK_COLORMAP_WINDOWS	property	of	its	nearest	top-level
ancestor	if	the	new	colormap	is	different	from	that	of	tkwin's	parent	and
tkwin	is	not	already	in	the	TK_COLORMAP_WINDOWS	property.

BUGS

Tk_SetWindowBackgroundPixmap	and
Tk_SetWindowBorderPixmap	differ	slightly	from	their	Xlib
counterparts	in	that	the	pixmap	argument	may	not	necessarily	be
deleted	immediately	after	calling	one	of	these	procedures.	This	is
because	tkwin's	window	may	not	exist	yet	at	the	time	of	the	call,	in
which	case	pixmap	is	merely	saved	and	used	later	when	tkwin's	window
is	actually	created.	If	you	wish	to	delete	pixmap,	then	call
Tk_MakeWindowExist	first	to	be	sure	that	tkwin's	window	exists	and
pixmap	has	been	passed	to	the	X	server.

A	similar	problem	occurs	for	the	cursor	argument	passed	to
Tk_DefineCursor.	The	solution	is	the	same	as	for	pixmaps	above:	call

Tk_MakeWindowExist	before	freeing	the	cursor.

SEE	ALSO

Tk_MoveToplevelWindow,	Tk_RestackWindow

KEYWORDS

attributes,	border,	color,	configure,	height,	pixel,	pixmap,	width,	window,
x,	y

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990-1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	GetFont

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tk_AllocFontFromObj,	Tk_GetFont,	Tk_GetFontFromObj,
Tk_NameOfFont,	Tk_FreeFontFromObj,	Tk_FreeFont	-
maintain	database	of	fonts

SYNOPSIS
#include	<tk.h>
Tk_Font
Tk_AllocFontFromObj(interp,	tkwin,	objPtr)
Tk_Font
Tk_GetFont(interp,	tkwin,	string)
Tk_Font
Tk_GetFontFromObj(tkwin,	objPtr)
const	char	*
Tk_NameOfFont(tkfont)
Tk_Font
Tk_FreeFontFromObj(tkwin,	objPtr)
void
Tk_FreeFont(tkfont)

ARGUMENTS
DESCRIPTION
SEE	ALSO
KEYWORDS

NAME

Tk_AllocFontFromObj,	Tk_GetFont,	Tk_GetFontFromObj,
Tk_NameOfFont,	Tk_FreeFontFromObj,	Tk_FreeFont	-	maintain
database	of	fonts

SYNOPSIS

#include	<tk.h>

Tcl_Interp	*interp	(in)

Tk_Window	tkwin	(in)

Tcl_Obj	*objPtr	(in/out)

const	char	*string	(in)

Tk_Font	
Tk_AllocFontFromObj(interp,	tkwin,	objPtr)
Tk_Font	
Tk_GetFont(interp,	tkwin,	string)	
Tk_Font	
Tk_GetFontFromObj(tkwin,	objPtr)
const	char	*
Tk_NameOfFont(tkfont)
Tk_Font	
Tk_FreeFontFromObj(tkwin,	objPtr)
void
Tk_FreeFont(tkfont)

ARGUMENTS

Interpreter	to	use	for	error
reporting.	If	NULL,	then	no
error	messages	are	left
after	errors.

Token	for	window	in	which
font	will	be	used.

Gives	name	or	description
of	font.	See	documentation
for	the	font	command	for
details	on	acceptable
formats.	Internal	rep	will	be
modified	to	cache
corresponding	Tk_Font.

Same	as	objPtr	except
description	of	font	is
passed	as	a	string	and
resulting	Tk_Font	is	not
cached.

Tk_Font	tkfont	(in) Opaque	font	token.

DESCRIPTION

Tk_AllocFontFromObj	finds	the	font	indicated	by	objPtr	and	returns	a
token	that	represents	the	font.	The	return	value	can	be	used	in
subsequent	calls	to	procedures	such	as	Tk_GetFontMetrics,
Tk_MeasureChars,	and	Tk_FreeFont.	The	Tk_Font	token	will	remain
valid	until	Tk_FreeFontFromObj	or	Tk_FreeFont	is	called	to	release	it.
ObjPtr	can	contain	either	a	symbolic	name	or	a	font	description;	see	the
documentation	for	the	font	command	for	a	description	of	the	valid
formats.	If	Tk_AllocFontFromObj	is	unsuccessful	(because,	for
example,	objPtr	did	not	contain	a	valid	font	specification)	then	it	returns
NULL	and	leaves	an	error	message	in	interp's	result	if	interp	is	not
NULL.	Tk_AllocFontFromObj	caches	information	about	the	return
value	in	objPtr,	which	speeds	up	future	calls	to	procedures	such	as
Tk_AllocFontFromObj	and	Tk_GetFontFromObj.

Tk_GetFont	is	identical	to	Tk_AllocFontFromObj	except	that	the
description	of	the	font	is	specified	with	a	string	instead	of	an	object.	This
prevents	Tk_GetFont	from	caching	the	matching	Tk_Font,	so
Tk_GetFont	is	less	efficient	than	Tk_AllocFontFromObj.

Tk_GetFontFromObj	returns	the	token	for	an	existing	font,	given	the
window	and	description	used	to	create	the	font.	Tk_GetFontFromObj
does	not	actually	create	the	font;	the	font	must	already	have	been
created	with	a	previous	call	to	Tk_AllocFontFromObj	or	Tk_GetFont.
The	return	value	is	cached	in	objPtr,	which	speeds	up	future	calls	to
Tk_GetFontFromObj	with	the	same	objPtr	and	tkwin.

Tk_AllocFontFromObj	and	Tk_GetFont	maintain	a	database	of	all
fonts	they	have	allocated.	If	the	same	font	is	requested	multiple	times
(e.g.	by	different	windows	or	for	different	purposes),	then	a	single
Tk_Font	will	be	shared	for	all	uses.	The	underlying	resources	will	be
freed	automatically	when	no-one	is	using	the	font	anymore.

The	procedure	Tk_NameOfFont	is	roughly	the	inverse	of	Tk_GetFont.

Given	a	tkfont	that	was	created	by	Tk_GetFont	(or
Tk_AllocFontFromObj),	the	return	value	is	the	string	argument	that
was	passed	to	Tk_GetFont	to	create	the	font.	The	string	returned	by
Tk_NameOfFont	is	only	guaranteed	to	persist	until	the	tkfont	is	deleted.
The	caller	must	not	modify	this	string.

When	a	font	is	no	longer	needed,	Tk_FreeFontFromObj	or
Tk_FreeFont	should	be	called	to	release	it.	For	Tk_FreeFontFromObj
the	font	to	release	is	specified	with	the	same	information	used	to	create
it;	for	Tk_FreeFont	the	font	to	release	is	specified	with	its	Tk_Font
token.	There	should	be	exactly	one	call	to	Tk_FreeFontFromObj	or
Tk_FreeFont	for	each	call	to	Tk_AllocFontFromObj	or	Tk_GetFont.

SEE	ALSO

Tk_FontId

KEYWORDS

font

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990-1992	The	Regents	of	the	University	of	California.
Copyright	©	1994-1998	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	FindPhoto

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tk_FindPhoto,	Tk_PhotoPutBlock,	Tk_PhotoPutZoomedBlock,
Tk_PhotoGetImage,	Tk_PhotoBlank,	Tk_PhotoExpand,
Tk_PhotoGetSize,	Tk_PhotoSetSize	-	manipulate	the	image
data	stored	in	a	photo	image.

SYNOPSIS
#include	<tk.h>
Tk_PhotoHandle
Tk_FindPhoto(interp,	imageName)
int
Tk_PhotoPutBlock(interp,	handle,	blockPtr,	x,	y,	width,	height,
compRule)
int
Tk_PhotoPutZoomedBlock(interp,	handle,	blockPtr,	x,	y,
width,	height,
zoomX,	zoomY,	subsampleX,	subsampleY,	compRule)
int
Tk_PhotoGetImage(handle,	blockPtr)
void
Tk_PhotoBlank(handle)
int
Tk_PhotoExpand(interp,	handle,	width,	height)
void
Tk_PhotoGetSize(handle,	widthPtr,	heightPtr)
int
Tk_PhotoSetSize(interp.	handle,	width,	height)

ARGUMENTS
DESCRIPTION
PORTABILITY
CREDITS
KEYWORDS

Tcl_Interp	*interp	(in)

const	char	*imageName	(in)

NAME

Tk_FindPhoto,	Tk_PhotoPutBlock,	Tk_PhotoPutZoomedBlock,
Tk_PhotoGetImage,	Tk_PhotoBlank,	Tk_PhotoExpand,
Tk_PhotoGetSize,	Tk_PhotoSetSize	-	manipulate	the	image	data	stored
in	a	photo	image.

SYNOPSIS

#include	<tk.h>
Tk_PhotoHandle
Tk_FindPhoto(interp,	imageName)
int
Tk_PhotoPutBlock(interp,	handle,	blockPtr,	x,	y,	width,	height,
compRule)
int
Tk_PhotoPutZoomedBlock(interp,	handle,	blockPtr,	x,	y,	width,	height,
zoomX,	zoomY,	subsampleX,	subsampleY,	compRule)
int
Tk_PhotoGetImage(handle,	blockPtr)
void
Tk_PhotoBlank(handle)
int
Tk_PhotoExpand(interp,	handle,	width,	height)
void
Tk_PhotoGetSize(handle,	widthPtr,	heightPtr)
int
Tk_PhotoSetSize(interp.	handle,	width,	height)

ARGUMENTS

Interpreter	in	which	image
was	created	and	in	which
error	reporting	is	to	be
done.

Name	of	the	photo	image.

Tk_PhotoHandle	handle	(in)

Tk_PhotoImageBlock	*blockPtr	(in)

int	x	(in)

int	y	(in)

int	width	(in)

int	compRule	(in)

Opaque	handle	identifying
the	photo	image	to	be
affected.

Specifies	the	address	and
storage	layout	of	image
data.

Specifies	the	X	coordinate
where	the	top-left	corner	of
the	block	is	to	be	placed
within	the	image.

Specifies	the	Y	coordinate
where	the	top-left	corner	of
the	block	is	to	be	placed
within	the	image.

Specifies	the	width	of	the
image	area	to	be	affected
(for	Tk_PhotoPutBlock)
or	the	desired	image	width
(for	Tk_PhotoExpand	and
Tk_PhotoSetSize).

Specifies	the	compositing
rule	used	when	combining
transparent	pixels	in	a
block	of	data	with	a	photo
image.	Must	be	one	of
TK_PHOTO_COMPOSITE_OVERLAY
(which	puts	the	block	of
data	over	the	top	of	the
existing	photo	image,	with
the	previous	contents
showing	through	in	the
transparent	bits)	or

int	height	(in)

int	*widthPtr	(out)

int	*heightPtr	(out)

int	subsampleX	(in)

int	subsampleY	(in)

int	zoomX	(in)

int	zoomY	(in)

TK_PHOTO_COMPOSITE_SET
(which	discards	the
existing	photo	image
contents	in	the	rectangle
covered	by	the	data	block.)

Specifies	the	height	of	the
image	area	to	be	affected
(for	Tk_PhotoPutBlock)
or	the	desired	image
height	(for
Tk_PhotoExpand	and
Tk_PhotoSetSize).

Pointer	to	location	in	which
to	store	the	image	width.

Pointer	to	location	in	which
to	store	the	image	height.

Specifies	the	subsampling
factor	in	the	X	direction	for
input	image	data.

Specifies	the	subsampling
factor	in	the	Y	direction	for
input	image	data.

Specifies	the	zoom	factor
to	be	applied	in	the	X
direction	to	pixels	being
written	to	the	photo	image.

Specifies	the	zoom	factor
to	be	applied	in	the	Y
direction	to	pixels	being
written	to	the	photo	image.

DESCRIPTION

Tk_FindPhoto	returns	an	opaque	handle	that	is	used	to	identify	a
particular	photo	image	to	the	other	procedures.	The	parameter	is	the
name	of	the	image,	that	is,	the	name	specified	to	the	image	create
photo	command,	or	assigned	by	that	command	if	no	name	was
specified.

Tk_PhotoPutBlock	is	used	to	supply	blocks	of	image	data	to	be
displayed.	The	call	affects	an	area	of	the	image	of	size	width	x	height
pixels,	with	its	top-left	corner	at	coordinates	(x,y).	All	of	width,	height,	x,
and	y	must	be	non-negative.	If	part	of	this	area	lies	outside	the	current
bounds	of	the	image,	the	image	will	be	expanded	to	include	the	area,
unless	the	user	has	specified	an	explicit	image	size	with	the	-width
and/or	-height	widget	configuration	options	(see	photo(n));	in	that	case
the	area	is	silently	clipped	to	the	image	boundaries.

The	block	parameter	is	a	pointer	to	a	Tk_PhotoImageBlock	structure,
defined	as	follows:

typedef	struct	{

				unsigned	char	*pixelPtr;

				int	width;

				int	height;

				int	pitch;

				int	pixelSize;

				int	offset[4];

}	Tk_PhotoImageBlock;

The	pixelPtr	field	points	to	the	first	pixel,	that	is,	the	top-left	pixel	in	the
block.	The	width	and	height	fields	specify	the	dimensions	of	the	block	of
pixels.	The	pixelSize	field	specifies	the	address	difference	between	two
horizontally	adjacent	pixels.	Often	it	is	3	or	4,	but	it	can	have	any	value.
The	pitch	field	specifies	the	address	difference	between	two	vertically
adjacent	pixels.	The	offset	array	contains	the	offsets	from	the	address

of	a	pixel	to	the	addresses	of	the	bytes	containing	the	red,	green,	blue
and	alpha	(transparency)	components.	These	are	normally	0,	1,	2	and
3,	but	can	have	other	values,	e.g.,	for	images	that	are	stored	as
separate	red,	green	and	blue	planes.

The	compRule	parameter	to	Tk_PhotoPutBlock	specifies	a
compositing	rule	that	says	what	to	do	with	transparent	pixels.	The	value
TK_PHOTO_COMPOSITE_OVERLAY	says	that	the	previous	contents
of	the	photo	image	should	show	through,	and	the	value
TK_PHOTO_COMPOSITE_SET	says	that	the	previous	contents	of	the
photo	image	should	be	completely	ignored,	and	the	values	from	the
block	be	copied	directly	across.	The	behavior	in	Tk8.3	and	earlier	was
equivalent	to	having	TK_PHOTO_COMPOSITE_OVERLAY	as	a
compositing	rule.

The	value	given	for	the	width	and	height	parameters	to
Tk_PhotoPutBlock	do	not	have	to	correspond	to	the	values	specified
in	block.	If	they	are	smaller,	Tk_PhotoPutBlock	extracts	a	sub-block
from	the	image	data	supplied.	If	they	are	larger,	the	data	given	are
replicated	(in	a	tiled	fashion)	to	fill	the	specified	area.	These	rules
operate	independently	in	the	horizontal	and	vertical	directions.

Tk_PhotoPutBlock	normally	returns	TCL_OK,	though	if	it	cannot
allocate	sufficient	memory	to	hold	the	resulting	image,	TCL_ERROR	is
returned	instead	and,	if	the	interp	argument	is	non-NULL,	an	error
message	is	placed	in	the	interpreter's	result.

Tk_PhotoPutZoomedBlock	works	like	Tk_PhotoPutBlock	except	that
the	image	can	be	reduced	or	enlarged	for	display.	The	subsampleX	and
subsampleY	parameters	allow	the	size	of	the	image	to	be	reduced	by
subsampling.	Tk_PhotoPutZoomedBlock	will	use	only	pixels	from	the
input	image	whose	X	coordinates	are	multiples	of	subsampleX,	and
whose	Y	coordinates	are	multiples	of	subsampleY.	For	example,	an
image	of	512x512	pixels	can	be	reduced	to	256x256	by	setting
subsampleX	and	subsampleY	to	2.

The	zoomX	and	zoomY	parameters	allow	the	image	to	be	enlarged	by
pixel	replication.	Each	pixel	of	the	(possibly	subsampled)	input	image

will	be	written	to	a	block	zoomX	pixels	wide	and	zoomY	pixels	high	of
the	displayed	image.	Subsampling	and	zooming	can	be	used	together
for	special	effects.

Tk_PhotoGetImage	can	be	used	to	retrieve	image	data	from	a	photo
image.	Tk_PhotoGetImage	fills	in	the	structure	pointed	to	by	the
blockPtr	parameter	with	values	that	describe	the	address	and	layout	of
the	image	data	that	the	photo	image	has	stored	internally.	The	values
are	valid	until	the	image	is	destroyed	or	its	size	is	changed.
Tk_PhotoGetImage	returns	1	for	compatibility	with	the	corresponding
procedure	in	the	old	photo	widget.

Tk_PhotoBlank	blanks	the	entire	area	of	the	photo	image.	Blank	areas
of	a	photo	image	are	transparent.

Tk_PhotoExpand	requests	that	the	widget's	image	be	expanded	to	be
at	least	width	x	height	pixels	in	size.	The	width	and/or	height	are
unchanged	if	the	user	has	specified	an	explicit	image	width	or	height
with	the	-width	and/or	-height	configuration	options,	respectively.	If	the
image	data	are	being	supplied	in	many	small	blocks,	it	is	more	efficient
to	use	Tk_PhotoExpand	or	Tk_PhotoSetSize	at	the	beginning	rather
than	allowing	the	image	to	expand	in	many	small	increments	as	image
blocks	are	supplied.

Tk_PhotoExpand	normally	returns	TCL_OK,	though	if	it	cannot
allocate	sufficient	memory	to	hold	the	resulting	image,	TCL_ERROR	is
returned	instead	and,	if	the	interp	argument	is	non-NULL,	an	error
message	is	placed	in	the	interpreter's	result.

Tk_PhotoSetSize	specifies	the	size	of	the	image,	as	if	the	user	had
specified	the	given	width	and	height	values	to	the	-width	and	-height
configuration	options.	A	value	of	zero	for	width	or	height	does	not
change	the	image's	width	or	height,	but	allows	the	width	or	height	to	be
changed	by	subsequent	calls	to	Tk_PhotoPutBlock,
Tk_PhotoPutZoomedBlock	or	Tk_PhotoExpand.

Tk_PhotoSetSize	normally	returns	TCL_OK,	though	if	it	cannot
allocate	sufficient	memory	to	hold	the	resulting	image,	TCL_ERROR	is

returned	instead	and,	if	the	interp	argument	is	non-NULL,	an	error
message	is	placed	in	the	interpreter's	result.

Tk_PhotoGetSize	returns	the	dimensions	of	the	image	in	*widthPtr	and
*heightPtr.

PORTABILITY

In	Tk	8.3	and	earlier,	Tk_PhotoPutBlock	and
Tk_PhotoPutZoomedBlock	had	different	signatures.	If	you	want	to
compile	code	that	uses	the	old	interface	against	8.4	without	updating
your	code,	compile	it	with	the	flag	-
DUSE_COMPOSITELESS_PHOTO_PUT_BLOCK.	Code	linked	using
Stubs	against	older	versions	of	Tk	will	continue	to	work.

In	Tk	8.4,	Tk_PhotoPutBlock,	Tk_PhotoPutZoomedBlock,
Tk_PhotoExpand	and	Tk_PhotoSetSize	did	not	take	an	interp
argument	or	return	any	result	code.	If	insufficient	memory	was	available
for	an	image,	Tk	would	panic.	This	behaviour	is	still	supported	if	you
compile	your	extension	with	the	additional	flag	-
DUSE_PANIC_ON_PHOTO_ALLOC_FAILURE.	Code	linked	using
Stubs	against	older	versions	of	Tk	will	continue	to	work.

CREDITS

The	code	for	the	photo	image	type	was	developed	by	Paul	Mackerras,
based	on	his	earlier	photo	widget	code.

KEYWORDS

photo,	image

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1994	The	Australian	National	University
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tk_Window	tkwin	(in)

int	xPtr	(out)

int	yPtr	(out)

int	widthPtr	(out)

int	heightPtr	(out)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	GetVRoot

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tk_GetVRootGeometry	-	Get	location	and	size	of	virtual	root	for	window

SYNOPSIS

#include	<tk.h>
Tk_GetVRootGeometry(tkwin,	xPtr,	yPtr,	widthPtr,	heightPtr)

ARGUMENTS

Token	for	window	whose
virtual	root	is	to	be
queried.

Points	to	word	in	which	to
store	x-offset	of	virtual
root.

Points	to	word	in	which	to
store	y-offset	of	virtual
root.

Points	to	word	in	which	to
store	width	of	virtual	root.

Points	to	word	in	which	to
store	height	of	virtual	root.

DESCRIPTION

Tk_GetVRootGeometry	returns	geometry	information	about	the	virtual
root	window	associated	with	tkwin.	The	“associated”	virtual	root	is	the
one	in	which	tkwin's	nearest	top-level	ancestor	(or	tkwin	itself	if	it	is	a
top-level	window)	has	been	reparented	by	the	window	manager.	This
window	is	identified	by	a	__SWM_ROOT	or	__WM_ROOT	property
placed	on	the	top-level	window	by	the	window	manager.	If	tkwin	is	not
associated	with	a	virtual	root	(e.g.	because	the	window	manager	does
not	use	virtual	roots)	then	*xPtr	and	*yPtr	will	be	set	to	0	and	*widthPtr
and	*heightPtr	will	be	set	to	the	dimensions	of	the	screen	containing
tkwin.

KEYWORDS

geometry,	height,	location,	virtual	root,	width,	window	manager

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tk_Window	tkwin	(in)

int	aboveBelow	(in)

Tk_Window	other	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	Restack

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tk_RestackWindow	-	Change	a	window's	position	in	the	stacking	order

SYNOPSIS

#include	<tk.h>
int
Tk_RestackWindow(tkwin,	aboveBelow,	other)

ARGUMENTS

Token	for	window	to
restack.

Indicates	new	position	of
tkwin	relative	to	other;
must	be	Above	or	Below.

Tkwin	will	be	repositioned
just	above	or	below	this
window.	Must	be	a	sibling
of	tkwin	or	a	descendant	of
a	sibling.	If	NULL	then
tkwin	is	restacked	above	or
below	all	siblings.

DESCRIPTION

Tk_RestackWindow	changes	the	stacking	order	of	window	relative	to
its	siblings.	If	other	is	specified	as	NULL	then	window	is	repositioned	at

the	top	or	bottom	of	its	stacking	order,	depending	on	whether
aboveBelow	is	Above	or	Below.	If	other	has	a	non-NULL	value	then
window	is	repositioned	just	above	or	below	other.

The	aboveBelow	argument	must	have	one	of	the	symbolic	values
Above	or	Below.	Both	of	these	values	are	defined	by	the	include	file
<X11/Xlib.h>.

KEYWORDS

above,	below,	obscure,	stacking	order

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Window	window	(in)

Tk_Window	tkwin	(in)

HWND	hwnd	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	GetHWND

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tk_GetHWND,	Tk_AttachHWND	-	manage	interactions	between	the
Windows	handle	and	an	X	window

SYNOPSIS

#include	<tkPlatDecls.h>
HWND
Tk_GetHWND(window)
Window
Tk_AttachHWND(tkwin,	hwnd)

ARGUMENTS

X	token	for	window.

Tk	window	for	window.

Windows	HWND	for
window.

DESCRIPTION

Tk_GetHWND	returns	the	Windows	HWND	identifier	for	X	Windows
window	given	by	window.

Tk_AttachHWND	binds	the	Windows	HWND	identifier	to	the	specified
Tk_Window	given	by	tkwin.	It	returns	an	X	Windows	window	that
encapsulates	the	HWND.

KEYWORDS

identifier,	window

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1998-2000	by	Scriptics	Corporation.

Tcl_Interp	*interp	(in)

Tk_Window	tkwin	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	Grab

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tk_Grab,	Tk_Ungrab	-	manipulate	grab	state	in	an	application

SYNOPSIS
#include	<tk.h>
int
Tk_Grab(interp,	tkwin,	grabGlobal)
void
Tk_Ungrab(tkwin)

ARGUMENTS
DESCRIPTION
KEYWORDS

NAME

Tk_Grab,	Tk_Ungrab	-	manipulate	grab	state	in	an	application

SYNOPSIS

#include	<tk.h>
int
Tk_Grab(interp,	tkwin,	grabGlobal)
void
Tk_Ungrab(tkwin)

ARGUMENTS

Interpreter	to	use	for	error
reporting

Window	on	whose	behalf
the	pointer	is	to	be

int	grabGlobal	(in)

grabbed	or	released

Boolean	indicating
whether	the	grab	is	global
or	application	local

DESCRIPTION

These	functions	are	used	to	set	or	release	a	global	or	application	local
grab.	When	a	grab	is	set	on	a	particular	window	in	a	Tk	application,
mouse	and	keyboard	events	can	only	be	received	by	that	window	and
its	descendants.	Mouse	and	keyboard	events	for	windows	outside	the
tree	rooted	at	tkwin	will	be	redirected	to	tkwin.	If	the	grab	is	global,	then
all	mouse	and	keyboard	events	for	windows	outside	the	tree	rooted	at
tkwin	(even	those	intended	for	windows	in	other	applications)	will	be
redirected	to	tkwin.	If	the	grab	is	application	local,	only	mouse	and
keyboard	events	intended	for	a	windows	within	the	same	application
(but	outside	the	tree	rooted	at	tkwin)	will	be	redirected.

Tk_Grab	sets	a	grab	on	a	particular	window.	Tkwin	specifies	the
window	on	whose	behalf	the	pointer	is	to	be	grabbed.	GrabGlobal
indicates	whether	the	grab	should	be	global	or	application	local;	if	it	is
non-zero,	it	means	the	grab	should	be	global.	Normally,	Tk_Grab
returns	TCL_OK;	if	an	error	occurs	and	the	grab	cannot	be	set,
TCL_ERROR	is	returned	and	an	error	message	is	left	if	interp's	result.
Once	this	call	completes	successfully,	no	window	outside	the	tree
rooted	at	tkwin	will	receive	pointer-	or	keyboard-related	events	until	the
next	call	to	Tk_Ungrab.	If	a	previous	grab	was	in	effect	within	the
application,	then	it	is	replaced	with	a	new	one.

Tcl_Ungrab	releases	a	grab	on	the	mouse	pointer	and	keyboard,	if
there	is	one	set	on	the	window	given	by	tkwin.	Once	a	grab	is	released,
pointer	and	keyboard	events	will	start	being	delivered	to	other	windows
again.

KEYWORDS

grab,	window

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1998-2000	by	Scriptics	Corporation.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	SetOptions

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tk_CreateOptionTable,	Tk_DeleteOptionTable,	Tk_InitOptions,
Tk_SetOptions,	Tk_FreeSavedOptions,
Tk_RestoreSavedOptions,	Tk_GetOptionValue,
Tk_GetOptionInfo,	Tk_FreeConfigOptions,	Tk_Offset	-	process
configuration	options

SYNOPSIS
#include	<tk.h>
Tk_OptionTable
Tk_CreateOptionTable(interp,	templatePtr)
Tk_DeleteOptionTable(optionTable)
int
Tk_InitOptions(interp,	recordPtr,	optionTable,	tkwin)
int
Tk_SetOptions(interp,	recordPtr,	optionTable,	objc,	objv,
tkwin,	savePtr,	maskPtr)
Tk_FreeSavedOptions(savedPtr)
Tk_RestoreSavedOptions(savedPtr)
Tcl_Obj	*
Tk_GetOptionValue(interp,	recordPtr,	optionTable,	namePtr,
tkwin)
Tcl_Obj	*
Tk_GetOptionInfo(interp,	recordPtr,	optionTable,	namePtr,
tkwin)
Tk_FreeConfigOptions(recordPtr,	optionTable,	tkwin)
int
Tk_Offset(type,	field)

ARGUMENTS
DESCRIPTION
TEMPLATES

TK_OPTION_ANCHOR

TK_OPTION_BITMAP
TK_OPTION_BOOLEAN
TK_OPTION_BORDER
TK_OPTION_COLOR
TK_OPTION_CURSOR
TK_OPTION_CUSTOM
TK_OPTION_DOUBLE
TK_OPTION_END
TK_OPTION_FONT
TK_OPTION_INT
TK_OPTION_JUSTIFY
TK_OPTION_PIXELS
TK_OPTION_RELIEF
TK_OPTION_STRING
TK_OPTION_STRING_TABLE
TK_OPTION_SYNONYM
TK_OPTION_WINDOW

STORAGE	MANAGEMENT	ISSUES
OBJOFFSET	VS.	INTERNALOFFSET
CUSTOM	OPTION	TYPES

clientData
interp
Tkwin
valuePtr
recordPtr
internalOffset
saveInternalPtr
flags

KEYWORDS

NAME

Tk_CreateOptionTable,	Tk_DeleteOptionTable,	Tk_InitOptions,
Tk_SetOptions,	Tk_FreeSavedOptions,	Tk_RestoreSavedOptions,
Tk_GetOptionValue,	Tk_GetOptionInfo,	Tk_FreeConfigOptions,
Tk_Offset	-	process	configuration	options

Tcl_Interp	*interp	(in)

const	Tk_OptionSpec	*templatePtr	(in)

SYNOPSIS

#include	<tk.h>
Tk_OptionTable
Tk_CreateOptionTable(interp,	templatePtr)
Tk_DeleteOptionTable(optionTable)
int
Tk_InitOptions(interp,	recordPtr,	optionTable,	tkwin)
int
Tk_SetOptions(interp,	recordPtr,	optionTable,	objc,	objv,	tkwin,
savePtr,	maskPtr)
Tk_FreeSavedOptions(savedPtr)
Tk_RestoreSavedOptions(savedPtr)
Tcl_Obj	*
Tk_GetOptionValue(interp,	recordPtr,	optionTable,	namePtr,	tkwin)
Tcl_Obj	*
Tk_GetOptionInfo(interp,	recordPtr,	optionTable,	namePtr,	tkwin)
Tk_FreeConfigOptions(recordPtr,	optionTable,	tkwin)
int
Tk_Offset(type,	field)

ARGUMENTS

A	Tcl	interpreter.	Most
procedures	use	this	only
for	returning	error
messages;	if	it	is	NULL
then	no	error	messages
are	returned.	For
Tk_CreateOptionTable
the	value	cannot	be	NULL;
it	gives	the	interpreter	in
which	the	option	table	will
be	used.

Points	to	an	array	of	static
information	that	describes

Tk_OptionTable	optionTable	(in)

char	*recordPtr	(in/out)

Tk_Window	tkwin	(in)

int	objc	(in)

Tcl_Obj	*const	objv[]	(in)

the	configuration	options
that	are	supported.	Used
to	build	a	Tk_OptionTable.
The	information	pointed	to
by	this	argument	must
exist	for	the	lifetime	of	the
Tk_OptionTable.

Token	for	an	option	table.
Must	have	been	returned
by	a	previous	call	to
Tk_CreateOptionTable.

Points	to	structure	in	which
values	of	configuration
options	are	stored;	fields	of
this	record	are	modified	by
procedures	such	as
Tk_SetOptions	and	read
by	procedures	such	as
Tk_GetOptionValue.

For	options	such	as
TK_OPTION_COLOR,	this
argument	indicates	the
window	in	which	the	option
will	be	used.	If	optionTable
uses	no	window-
dependent	options,	then	a
NULL	value	may	be
supplied	for	this	argument.

Number	of	values	in	objv.

Command-line	arguments
for	setting	configuring
options.

Tk_SavedOptions	*savePtr	(out)

int	*maskPtr	(out)

Tk_SavedOptions	*savedPtr	(in/out)

Tcl_Obj	*namePtr	(in)

type	name	type	(in)

field	name	field	(in)

If	not	NULL,	the	structure
pointed	to	by	this
argument	is	filled	in	with
the	old	values	of	any
options	that	were	modified
and	old	values	are
restored	automatically	if	an
error	occurs	in
Tk_SetOptions.

If	not	NULL,	the	word
pointed	to	by	maskPtr	is
filled	in	with	the	bit-wise
OR	of	the	typeMask	fields
for	the	options	that	were
modified.

Points	to	a	structure
previously	filled	in	by
Tk_SetOptions	with	old
values	of	modified	options.

The	value	of	this	object	is
the	name	of	a	particular
option.	If	NULL	is	passed
to	Tk_GetOptionInfo	then
information	is	returned	for
all	options.	Must	not	be
NULL	when
Tk_GetOptionValue	is
called.

The	name	of	the	type	of	a
record.

The	name	of	a	field	in
records	of	type	type.

DESCRIPTION

These	procedures	handle	most	of	the	details	of	parsing	configuration
options	such	as	those	for	Tk	widgets.	Given	a	description	of	what
options	are	supported,	these	procedures	handle	all	the	details	of
parsing	options	and	storing	their	values	into	a	C	structure	associated
with	the	widget	or	object.	The	procedures	were	designed	primarily	for
widgets	in	Tk,	but	they	can	also	be	used	for	other	kinds	of	objects	that
have	configuration	options.	In	the	rest	of	this	manual	page	“widget”	will
be	used	to	refer	to	the	object	whose	options	are	being	managed;	in
practice	the	object	may	not	actually	be	a	widget.	The	term	“widget
record”	is	used	to	refer	to	the	C-level	structure	in	which	information
about	a	particular	widget	or	object	is	stored.

Note:	the	easiest	way	to	learn	how	to	use	these	procedures	is	to	look	at
a	working	example.	In	Tk,	the	simplest	example	is	the	code	that
implements	the	button	family	of	widgets,	which	is	in	tkButton.c.	Other
examples	are	in	tkSquare.c	and	tkMenu.c.

In	order	to	use	these	procedures,	the	code	that	implements	the	widget
must	contain	a	static	array	of	Tk_OptionSpec	structures.	This	is	a
template	that	describes	the	various	options	supported	by	that	class	of
widget;	there	is	a	separate	template	for	each	kind	of	widget.	The
template	contains	information	such	as	the	name	of	each	option,	its	type,
its	default	value,	and	where	the	value	of	the	option	is	stored	in	the
widget	record.	See	TEMPLATES	below	for	more	detail.

In	order	to	process	configuration	options	efficiently,	the	static	template
must	be	augmented	with	additional	information	that	is	available	only	at
runtime.	The	procedure	Tk_CreateOptionTable	creates	this	dynamic
information	from	the	template	and	returns	a	Tk_OptionTable	token	that
describes	both	the	static	and	dynamic	information.	All	of	the	other
procedures,	such	as	Tk_SetOptions,	take	a	Tk_OptionTable	token	as
argument.	Typically,	Tk_CreateOptionTable	is	called	the	first	time	that
a	widget	of	a	particular	class	is	created	and	the	resulting
Tk_OptionTable	is	used	in	the	future	for	all	widgets	of	that	class.	A
Tk_OptionTable	may	be	used	only	in	a	single	interpreter,	given	by	the

interp	argument	to	Tk_CreateOptionTable.	When	an	option	table	is	no
longer	needed	Tk_DeleteOptionTable	should	be	called	to	free	all	of	its
resources.	All	of	the	option	tables	for	a	Tcl	interpreter	are	freed
automatically	if	the	interpreter	is	deleted.

Tk_InitOptions	is	invoked	when	a	new	widget	is	created	to	set	the
default	values	for	all	of	the	widget's	configuration	options.
Tk_InitOptions	is	passed	a	token	for	an	option	table	(optionTable)	and
a	pointer	to	a	widget	record	(recordPtr),	which	is	the	C	structure	that
holds	information	about	this	widget.	Tk_InitOptions	uses	the
information	in	the	option	table	to	choose	an	appropriate	default	for	each
option,	then	it	stores	the	default	value	directly	into	the	widget	record,
overwriting	any	information	that	was	already	present	in	the	widget
record.	Tk_InitOptions	normally	returns	TCL_OK.	If	an	error	occurred
while	setting	the	default	values	(e.g.,	because	a	default	value	was
erroneous)	then	TCL_ERROR	is	returned	and	an	error	message	is	left
in	interp's	result	if	interp	is	not	NULL.

Tk_SetOptions	is	invoked	to	modify	configuration	options	based	on
information	specified	in	a	Tcl	command.	The	command	might	be	one
that	creates	a	new	widget,	or	a	command	that	modifies	options	on	an
existing	widget.	The	objc	and	objv	arguments	describe	the	values	of	the
arguments	from	the	Tcl	command.	Objv	must	contain	an	even	number
of	objects:	the	first	object	of	each	pair	gives	the	name	of	an	option	and
the	second	object	gives	the	new	value	for	that	option.	Tk_SetOptions
looks	up	each	name	in	optionTable,	checks	that	the	new	value	of	the
option	conforms	to	the	type	in	optionTable,	and	stores	the	value	of	the
option	into	the	widget	record	given	by	recordPtr.	Tk_SetOptions
normally	returns	TCL_OK.	If	an	error	occurred	(such	as	an	unknown
option	name	or	an	illegal	option	value)	then	TCL_ERROR	is	returned
and	an	error	message	is	left	in	interp's	result	if	interp	is	not	NULL.

Tk_SetOptions	has	two	additional	features.	First,	if	the	maskPtr
argument	is	not	NULL	then	it	points	to	an	integer	value	that	is	filled	in
with	information	about	the	options	that	were	modified.	For	each	option
in	the	template	passed	to	Tk_CreateOptionTable	there	is	a	typeMask
field.	The	bits	of	this	field	are	defined	by	the	code	that	implements	the
widget;	for	example,	each	bit	might	correspond	to	a	particular

configuration	option.	Alternatively,	bits	might	be	used	functionally.	For
example,	one	bit	might	be	used	for	redisplay:	all	options	that	affect	the
widget's	display,	such	that	changing	the	option	requires	the	widget	to	be
redisplayed,	might	have	that	bit	set.	Another	bit	might	indicate	that	the
geometry	of	the	widget	must	be	recomputed,	and	so	on.
Tk_SetOptions	OR's	together	the	typeMask	fields	from	all	the	options
that	were	modified	and	returns	this	value	at	*maskPtr;	the	caller	can
then	use	this	information	to	optimize	itself	so	that,	for	example,	it	does
not	redisplay	the	widget	if	the	modified	options	do	not	affect	the	widget's
appearance.

The	second	additional	feature	of	Tk_SetOptions	has	to	do	with	error
recovery.	If	an	error	occurs	while	processing	configuration	options,	this
feature	makes	it	possible	to	restore	all	the	configuration	options	to	their
previous	values.	Errors	can	occur	either	while	processing	options	in
Tk_SetOptions	or	later	in	the	caller.	In	many	cases	the	caller	does
additional	processing	after	Tk_SetOptions	returns;	for	example,	it
might	use	an	option	value	to	set	a	trace	on	a	variable	and	may	detect
an	error	if	the	variable	is	an	array	instead	of	a	scalar.	Error	recovery	is
enabled	by	passing	in	a	non-NULL	value	for	the	savePtr	argument	to
Tk_SetOptions;	this	should	be	a	pointer	to	an	uninitialized
Tk_SavedOptions	structure	on	the	caller's	stack.	Tk_SetOptions
overwrites	the	structure	pointed	to	by	savePtr	with	information	about	the
old	values	of	any	options	modified	by	the	procedure.	If	Tk_SetOptions
returns	successfully,	the	caller	uses	the	structure	in	one	of	two	ways.	If
the	caller	completes	its	processing	of	the	new	options	without	any
errors,	then	it	must	pass	the	structure	to	Tk_FreeSavedOptions	so	that
the	old	values	can	be	freed.	If	the	caller	detects	an	error	in	its
processing	of	the	new	options,	then	it	should	pass	the	structure	to
Tk_RestoreSavedOptions,	which	will	copy	the	old	values	back	into	the
widget	record	and	free	the	new	values.	If	Tk_SetOptions	detects	an
error	then	it	automatically	restores	any	options	that	had	already	been
modified	and	leaves	*savePtr	in	an	empty	state:	the	caller	need	not	call
either	Tk_FreeSavedOptions	or	Tk_RestoreSavedOptions.	If	the
savePtr	argument	to	Tk_SetOptions	is	NULL	then	Tk_SetOptions
frees	each	old	option	value	immediately	when	it	sets	a	new	value	for	the
option.	In	this	case,	if	an	error	occurs	in	the	third	option,	the	old	values

for	the	first	two	options	cannot	be	restored.

Tk_GetOptionValue	returns	the	current	value	of	a	configuration	option
for	a	particular	widget.	The	namePtr	argument	contains	the	name	of	an
option;	Tk_GetOptionValue	uses	optionTable	to	lookup	the	option	and
extract	its	value	from	the	widget	record	pointed	to	by	recordPtr,	then	it
returns	an	object	containing	that	value.	If	an	error	occurs	(e.g.,	because
namePtr	contains	an	unknown	option	name)	then	NULL	is	returned	and
an	error	message	is	left	in	interp's	result	unless	interp	is	NULL.

Tk_GetOptionInfo	returns	information	about	configuration	options	in	a
form	suitable	for	configure	widget	commands.	If	the	namePtr	argument
is	not	NULL,	it	points	to	an	object	that	gives	the	name	of	a	configuration
option;	Tk_GetOptionInfo	returns	an	object	containing	a	list	with	five
elements,	which	are	the	name	of	the	option,	the	name	and	class	used
for	the	option	in	the	option	database,	the	default	value	for	the	option,
and	the	current	value	for	the	option.	If	the	namePtr	argument	is	NULL,
then	Tk_GetOptionInfo	returns	information	about	all	options	in	the	form
of	a	list	of	lists;	each	sublist	describes	one	option.	Synonym	options	are
handled	differently	depending	on	whether	namePtr	is	NULL:	if	namePtr
is	NULL	then	the	sublist	for	each	synonym	option	has	only	two
elements,	which	are	the	name	of	the	option	and	the	name	of	the	other
option	that	it	refers	to;	if	namePtr	is	non-NULL	and	names	a	synonym
option	then	the	object	returned	is	the	five-element	list	for	the	other
option	that	the	synonym	refers	to.	If	an	error	occurs	(e.g.,	because
namePtr	contains	an	unknown	option	name)	then	NULL	is	returned	and
an	error	message	is	left	in	interp's	result	unless	interp	is	NULL.

Tk_FreeConfigOptions	must	be	invoked	when	a	widget	is	deleted.	It
frees	all	of	the	resources	associated	with	any	of	the	configuration
options	defined	in	recordPtr	by	optionTable.

The	Tk_Offset	macro	is	provided	as	a	safe	way	of	generating	the
objOffset	and	internalOffset	values	for	entries	in	Tk_OptionSpec
structures.	It	takes	two	arguments:	the	name	of	a	type	of	record,	and
the	name	of	a	field	in	that	record.	It	returns	the	byte	offset	of	the	named
field	in	records	of	the	given	type.

TEMPLATES

The	array	of	Tk_OptionSpec	structures	passed	to
Tk_CreateOptionTable	via	its	templatePtr	argument	describes	the
configuration	options	supported	by	a	particular	class	of	widgets.	Each
structure	specifies	one	configuration	option	and	has	the	following	fields:

typedef	struct	{

				Tk_OptionType	type;

				const	char	*optionName;

				const	char	*dbName;

				const	char	*dbClass;

				const	char	*defValue;

				int	objOffset;

				int	internalOffset;

				int	flags;

				ClientData	clientData;

				int	typeMask;

}	Tk_OptionSpec;

The	type	field	indicates	what	kind	of	configuration	option	this	is	(e.g.
TK_OPTION_COLOR	for	a	color	value,	or	TK_OPTION_INT	for	an
integer	value).	Type	determines	how	the	value	of	the	option	is	parsed
(more	on	this	below).	The	optionName	field	is	a	string	such	as	-font	or	-
bg;	it	is	the	name	used	for	the	option	in	Tcl	commands	and	passed	to
procedures	via	the	objc	or	namePtr	arguments.	The	dbName	and
dbClass	fields	are	used	by	Tk_InitOptions	to	look	up	a	default	value	for
this	option	in	the	option	database;	if	dbName	is	NULL	then	the	option
database	is	not	used	by	Tk_InitOptions	for	this	option.	The	defValue
field	specifies	a	default	value	for	this	configuration	option	if	no	value	is
specified	in	the	option	database.	The	objOffset	and	internalOffset	fields
indicate	where	to	store	the	value	of	this	option	in	widget	records	(more
on	this	below);	values	for	the	objOffset	and	internalOffset	fields	should
always	be	generated	with	the	Tk_Offset	macro.	The	flags	field	contains
additional	information	to	control	the	processing	of	this	configuration
option	(see	below	for	details).	ClientData	provides	additional	type-

specific	data	needed	by	certain	types.	For	instance,	for
TK_OPTION_COLOR	types,	clientData	is	a	string	giving	the	default
value	to	use	on	monochrome	displays.	See	the	descriptions	of	the
different	types	below	for	details.	The	last	field,	typeMask,	is	used	by
Tk_SetOptions	to	return	information	about	which	options	were
modified;	see	the	description	of	Tk_SetOptions	above	for	details.

When	Tk_InitOptions	and	Tk_SetOptions	store	the	value	of	an	option
into	the	widget	record,	they	can	do	it	in	either	of	two	ways.	If	the
objOffset	field	of	the	Tk_OptionSpec	is	greater	than	or	equal	to	zero,
then	the	value	of	the	option	is	stored	as	a	(Tcl_Obj	*)	at	the	location	in
the	widget	record	given	by	objOffset.	If	the	internalOffset	field	of	the
Tk_OptionSpec	is	greater	than	or	equal	to	zero,	then	the	value	of	the
option	is	stored	in	a	type-specific	internal	form	at	the	location	in	the
widget	record	given	by	internalOffset.	For	example,	if	the	option's	type
is	TK_OPTION_INT	then	the	internal	form	is	an	integer.	If	the	objOffset
or	internalOffset	field	is	negative	then	the	value	is	not	stored	in	that
form.	At	least	one	of	the	offsets	must	be	greater	than	or	equal	to	zero.

The	flags	field	consists	of	one	or	more	bits	ORed	together.	At	present
only	a	single	flag	is	supported:	TK_OPTION_NULL_OK.	If	this	bit	is	set
for	an	option	then	an	empty	string	will	be	accepted	as	the	value	for	the
option	and	the	resulting	internal	form	will	be	a	NULL	pointer,	a	zero
value,	or	None,	depending	on	the	type	of	the	option.	If	the	flag	is	not	set
then	empty	strings	will	result	in	errors.	TK_OPTION_NULL_OK	is
typically	used	to	allow	a	feature	to	be	turned	off	entirely,	e.g.	set	a
cursor	value	to	None	so	that	a	window	simply	inherits	its	parent's
cursor.	Not	all	option	types	support	the	TK_OPTION_NULL_OK	flag;
for	those	that	do,	there	is	an	explicit	indication	of	that	fact	in	the
descriptions	below.

The	type	field	of	each	Tk_OptionSpec	structure	determines	how	to
parse	the	value	of	that	configuration	option.	The	legal	value	for	type,
and	the	corresponding	actions,	are	described	below.	If	the	type	requires
a	tkwin	value	to	be	passed	into	procedures	like	Tk_SetOptions,	or	if	it
uses	the	clientData	field	of	the	Tk_OptionSpec,	then	it	is	indicated
explicitly;	if	not	mentioned,	the	type	requires	neither	tkwin	nor
clientData.

TK_OPTION_ANCHOR
The	value	must	be	a	standard	anchor	position	such	as	ne	or
center.	The	internal	form	is	a	Tk_Anchor	value	like	the	ones
returned	by	Tk_GetAnchorFromObj.

TK_OPTION_BITMAP
The	value	must	be	a	standard	Tk	bitmap	name.	The	internal	form	is
a	Pixmap	token	like	the	ones	returned	by
Tk_AllocBitmapFromObj.	This	option	type	requires	tkwin	to	be
supplied	to	procedures	such	as	Tk_SetOptions,	and	it	supports
the	TK_OPTION_NULL_OK	flag.

TK_OPTION_BOOLEAN
The	value	must	be	a	standard	boolean	value	such	as	true	or	no.
The	internal	form	is	an	integer	with	value	0	or	1.

TK_OPTION_BORDER
The	value	must	be	a	standard	color	name	such	as	red	or	#ff8080.
The	internal	form	is	a	Tk_3DBorder	token	like	the	ones	returned	by
Tk_Alloc3DBorderFromObj.	This	option	type	requires	tkwin	to	be
supplied	to	procedures	such	as	Tk_SetOptions,	and	it	supports
the	TK_OPTION_NULL_OK	flag.

TK_OPTION_COLOR
The	value	must	be	a	standard	color	name	such	as	red	or	#ff8080.
The	internal	form	is	an	(XColor	*)	token	like	the	ones	returned	by
Tk_AllocColorFromObj.	This	option	type	requires	tkwin	to	be
supplied	to	procedures	such	as	Tk_SetOptions,	and	it	supports
the	TK_OPTION_NULL_OK	flag.

TK_OPTION_CURSOR
The	value	must	be	a	standard	cursor	name	such	as	cross	or
@foo.	The	internal	form	is	a	Tk_Cursor	token	like	the	ones
returned	by	Tk_AllocCursorFromObj.	This	option	type	requires
tkwin	to	be	supplied	to	procedures	such	as	Tk_SetOptions,	and
when	the	option	is	set	the	cursor	for	the	window	is	changed	by
calling	XDefineCursor.	This	option	type	also	supports	the

TK_OPTION_NULL_OK	flag.

TK_OPTION_CUSTOM
This	option	allows	applications	to	define	new	option	types.	The
clientData	field	of	the	entry	points	to	a	structure	defining	the	new
option	type.	See	the	section	CUSTOM	OPTION	TYPES	below	for
details.

TK_OPTION_DOUBLE
The	string	value	must	be	a	floating-point	number	in	the	format
accepted	by	strtol.	The	internal	form	is	a	C	double	value.	This
option	type	supports	the	TK_OPTION_NULL_OK	flag;	if	a	NULL
value	is	set,	the	internal	representation	is	set	to	zero.

TK_OPTION_END
Marks	the	end	of	the	template.	There	must	be	a	Tk_OptionSpec
structure	with	type	TK_OPTION_END	at	the	end	of	each	template.
If	the	clientData	field	of	this	structure	is	not	NULL,	then	it	points	to
an	additional	array	of	Tk_OptionSpec's,	which	is	itself	terminated
by	another	TK_OPTION_END	entry.	Templates	may	be	chained
arbitrarily	deeply.	This	feature	allows	common	options	to	be	shared
by	several	widget	classes.

TK_OPTION_FONT
The	value	must	be	a	standard	font	name	such	as	Times	16.	The
internal	form	is	a	Tk_Font	handle	like	the	ones	returned	by
Tk_AllocFontFromObj.	This	option	type	requires	tkwin	to	be
supplied	to	procedures	such	as	Tk_SetOptions,	and	it	supports
the	TK_OPTION_NULL_OK	flag.

TK_OPTION_INT
The	string	value	must	be	an	integer	in	the	format	accepted	by
strtol	(e.g.	0	and	0x	prefixes	may	be	used	to	specify	octal	or
hexadecimal	numbers,	respectively).	The	internal	form	is	a	C	int
value.

TK_OPTION_JUSTIFY
The	value	must	be	a	standard	justification	value	such	as	left.	The

internal	form	is	a	Tk_Justify	like	the	values	returned	by
Tk_GetJustifyFromObj.

TK_OPTION_PIXELS
The	value	must	specify	a	screen	distance	such	as	2i	or	6.4.	The
internal	form	is	an	integer	value	giving	a	distance	in	pixels,	like	the
values	returned	by	Tk_GetPixelsFromObj.	Note:	if	the	objOffset
field	is	not	used	then	information	about	the	original	value	of	this
option	will	be	lost.	See	OBJOFFSET	VS.	INTERNALOFFSET
below	for	details.	This	option	type	supports	the
TK_OPTION_NULL_OK	flag;	if	a	NULL	value	is	set,	the	internal
representation	is	set	to	zero.

TK_OPTION_RELIEF
The	value	must	be	standard	relief	such	as	raised.	The	internal	form
is	an	integer	relief	value	such	as	TK_RELIEF_RAISED.	This	option
type	supports	the	TK_OPTION_NULL_OK	flag;	if	the	empty	string
is	specified	as	the	value	for	the	option,	the	integer	relief	value	is	set
to	TK_RELIEF_NULL.

TK_OPTION_STRING
The	value	may	be	any	string.	The	internal	form	is	a	(char	*)	pointer
that	points	to	a	dynamically	allocated	copy	of	the	value.	This	option
type	supports	the	TK_OPTION_NULL_OK	flag.

TK_OPTION_STRING_TABLE
For	this	type,	clientData	is	a	pointer	to	an	array	of	strings	suitable
for	passing	to	Tcl_GetIndexFromObj.	The	value	must	be	one	of
the	strings	in	the	table,	or	a	unique	abbreviation	of	one	of	the
strings.	The	internal	form	is	an	integer	giving	the	index	into	the
table	of	the	matching	string,	like	the	return	value	from
Tcl_GetStringFromObj.

TK_OPTION_SYNONYM
This	type	is	used	to	provide	alternative	names	for	an	option	(for
example,	-bg	is	often	used	as	a	synonym	for	-background).	The
clientData	field	is	a	(char	*)	pointer	that	gives	the	name	of	another
option	in	the	same	table.	Whenever	the	synonym	option	is	used,

the	information	from	the	other	option	will	be	used	instead.

TK_OPTION_WINDOW
The	value	must	be	a	window	path	name.	The	internal	form	is	a
Tk_Window	token	for	the	window.	This	option	type	requires	tkwin
to	be	supplied	to	procedures	such	as	Tk_SetOptions	(in	order	to
identify	the	application),	and	it	supports	the
TK_OPTION_NULL_OK	flag.

STORAGE	MANAGEMENT	ISSUES

If	a	field	of	a	widget	record	has	its	offset	stored	in	the	objOffset	or
internalOffset	field	of	a	Tk_OptionSpec	structure	then	the	procedures
described	here	will	handle	all	of	the	storage	allocation	and	resource
management	issues	associated	with	the	field.	When	the	value	of	an
option	is	changed,	Tk_SetOptions	(or	Tk_FreeSavedOptions)	will
automatically	free	any	resources	associated	with	the	old	value,	such	as
Tk_Fonts	for	TK_OPTION_FONT	options	or	dynamically	allocated
memory	for	TK_OPTION_STRING	options.	For	an	option	stored	as	an
object	using	the	objOffset	field	of	a	Tk_OptionSpec,	the	widget	record
shares	the	object	pointed	to	by	the	objv	value	from	the	call	to
Tk_SetOptions.	The	reference	count	for	this	object	is	incremented
when	a	pointer	to	it	is	stored	in	the	widget	record	and	decremented
when	the	option	is	modified.	When	the	widget	is	deleted
Tk_FreeConfigOptions	should	be	invoked;	it	will	free	the	resources
associated	with	all	options	and	decrement	reference	counts	for	any
objects.

However,	the	widget	code	is	responsible	for	storing	NULL	or	None	in	all
pointer	and	token	fields	before	invoking	Tk_InitOptions.	This	is	needed
to	allow	proper	cleanup	in	the	rare	case	where	an	error	occurs	in
Tk_InitOptions.

OBJOFFSET	VS.	INTERNALOFFSET

In	most	cases	it	is	simplest	to	use	the	internalOffset	field	of	a
Tk_OptionSpec	structure	and	not	the	objOffset	field.	This	makes	the
internal	form	of	the	value	immediately	available	to	the	widget	code	so

the	value	does	not	have	to	be	extracted	from	an	object	each	time	it	is
used.	However,	there	are	two	cases	where	the	objOffset	field	is	useful.
The	first	case	is	for	TK_OPTION_PIXELS	options.	In	this	case,	the
internal	form	is	an	integer	pixel	value	that	is	valid	only	for	a	particular
screen.	If	the	value	of	the	option	is	retrieved,	it	will	be	returned	as	a
simple	number.	For	example,	after	the	command	.b	configure	-
borderwidth	2m,	the	command	.b	configure	-borderwidth	might
return	7,	which	is	the	integer	pixel	value	corresponding	to	2m.
Unfortunately,	this	loses	the	original	screen-independent	value.	Thus	for
TK_OPTION_PIXELS	options	it	is	better	to	use	the	objOffset	field.	In
this	case	the	original	value	of	the	option	is	retained	in	the	object	and
can	be	returned	when	the	option	is	retrieved.	In	most	cases	it	is
convenient	to	use	the	internalOffset	field	as	well,	so	that	the	integer
value	is	immediately	available	for	use	in	the	widget	code	(alternatively,
Tk_GetPixelsFromObj	can	be	used	to	extract	the	integer	value	from
the	object	whenever	it	is	needed).	Note:	the	problem	of	losing
information	on	retrievals	exists	only	for	TK_OPTION_PIXELS	options.

The	second	reason	to	use	the	objOffset	field	is	in	order	to	implement
new	types	of	options	not	supported	by	these	procedures.	To	implement
a	new	type	of	option,	you	can	use	TK_OPTION_STRING	as	the	type	in
the	Tk_OptionSpec	structure	and	set	the	objOffset	field	but	not	the
internalOffset	field.	Then,	after	calling	Tk_SetOptions,	convert	the
object	to	internal	form	yourself.

CUSTOM	OPTION	TYPES

Applications	can	extend	the	built-in	configuration	types	with	additional
configuration	types	by	writing	procedures	to	parse,	print,	free,	and
restore	saved	copies	of	the	type	and	creating	a	structure	pointing	to
those	procedures:

typedef	struct	Tk_ObjCustomOption	{

				char	*name;

				Tk_CustomOptionSetProc	*setProc;

				Tk_CustomOptionGetProc	*getProc;

				Tk_CustomOptionRestoreProc	*restoreProc;

				Tk_CustomOptionFreeProc	*freeProc;

				ClientData	clientData;

}	Tk_ObjCustomOption;

typedef	int	Tk_CustomOptionSetProc(

				ClientData	clientData,

				Tcl_Interp	*interp,	

				Tk_Window	tkwin,	

				Tcl_Obj	**valuePtr,

				char	*recordPtr,

				int	internalOffset,

				char	*saveInternalPtr,	

				int	flags);

typedef	Tcl_Obj	*Tk_CustomOptionGetProc(

				ClientData	clientData,

				Tk_Window	tkwin,	

				char	*recordPtr,

				int	internalOffset);

typedef	void	Tk_CustomOptionRestoreProc(

				ClientData	clientData,

				Tk_Window	tkwin,	

				char	*internalPtr,	

				char	*saveInternalPtr);

typedef	void	Tk_CustomOptionFreeProc(

				ClientData	clientData,

				Tk_Window	tkwin,	

				char	*internalPtr);

The	Tk_ObjCustomOption	structure	contains	six	fields:	a	name	for	the
custom	option	type;	pointers	to	the	four	procedures;	and	a	clientData
value	to	be	passed	to	those	procedures	when	they	are	invoked.	The
clientData	value	typically	points	to	a	structure	containing	information
that	is	needed	by	the	procedures	when	they	are	parsing	and	printing

options.	RestoreProc	and	freeProc	may	be	NULL,	indicating	that	no
function	should	be	called	for	those	operations.

The	setProc	procedure	is	invoked	by	Tk_SetOptions	to	convert	a
Tcl_Obj	into	an	internal	representation	and	store	the	resulting	value	in
the	widget	record.	The	arguments	are:

clientData
A	copy	of	the	clientData	field	in	the	Tk_ObjCustomOption	structure.

interp
A	pointer	to	a	Tcl	interpreter,	used	for	error	reporting.

Tkwin
A	copy	of	the	tkwin	argument	to	Tk_SetOptions

valuePtr
A	pointer	to	a	reference	to	a	Tcl_Obj	describing	the	new	value	for
the	option;	it	could	have	been	specified	explicitly	in	the	call	to
Tk_SetOptions	or	it	could	come	from	the	option	database	or	a
default.	If	the	objOffset	for	the	option	is	non-negative	(the	option
value	is	stored	as	a	(Tcl_Obj	*)	in	the	widget	record),	the	Tcl_Obj
pointer	referenced	by	valuePtr	is	the	pointer	that	will	be	stored	at
the	objOffset	for	the	option.	SetProc	may	modify	the	value	if
necessary;	for	example,	setProc	may	change	the	value	to	NULL	to
support	the	TK_OPTION_NULL_OK	flag.

recordPtr
A	pointer	to	the	start	of	the	widget	record	to	modify.

internalOffset
Offset	in	bytes	from	the	start	of	the	widget	record	to	the	location
where	the	internal	representation	of	the	option	value	is	to	be
placed.

saveInternalPtr
A	pointer	to	storage	allocated	in	a	Tk_SavedOptions	structure	for
the	internal	representation	of	the	original	option	value.	Before

setting	the	option	to	its	new	value,	setProc	should	set	the	value
referenced	by	saveInternalPtr	to	the	original	value	of	the	option	in
order	to	support	Tk_RestoreSavedOptions.

flags
A	copy	of	the	flags	field	in	the	Tk_OptionSpec	structure	for	the
option

SetProc	returns	a	standard	Tcl	result:	TCL_OK	to	indicate	successful
processing,	or	TCL_ERROR	to	indicate	a	failure	of	any	kind.	An	error
message	may	be	left	in	the	Tcl	interpreter	given	by	interp	in	the	case	of
an	error.

The	getProc	procedure	is	invoked	by	Tk_GetOptionValue	and
Tk_GetOptionInfo	to	retrieve	a	Tcl_Obj	representation	of	the	internal
representation	of	an	option.	The	clientData	argument	is	a	copy	of	the
clientData	field	in	the	Tk_ObjCustomOption	structure.	Tkwin	is	a	copy	of
the	tkwin	argument	to	Tk_GetOptionValue	or	Tk_GetOptionInfo.
RecordPtr	is	a	pointer	to	the	beginning	of	the	widget	record	to	query.
InternalOffset	is	the	offset	in	bytes	from	the	beginning	of	the	widget
record	to	the	location	where	the	internal	representation	of	the	option
value	is	stored.	GetProc	must	return	a	pointer	to	a	Tcl_Obj	representing
the	value	of	the	option.

The	restoreProc	procedure	is	invoked	by	Tk_RestoreSavedOptions	to
restore	a	previously	saved	internal	representation	of	a	custom	option
value.	The	clientData	argument	is	a	copy	of	the	clientData	field	in	the
Tk_ObjCustomOption	structure.	Tkwin	is	a	copy	of	the	tkwin	argument
to	Tk_GetOptionValue	or	Tk_GetOptionInfo.	InternalPtr	is	a	pointer	to
the	location	where	internal	representation	of	the	option	value	is	stored.
SaveInternalPtr	is	a	pointer	to	the	saved	value.	RestoreProc	must	copy
the	value	from	saveInternalPtr	to	internalPtr	to	restore	the	value.
RestoreProc	need	not	free	any	memory	associated	with	either
internalPtr	or	saveInternalPtr;	freeProc	will	be	invoked	to	free	that
memory	if	necessary.	RestoreProc	has	no	return	value.

The	freeProc	procedure	is	invoked	by	Tk_SetOptions	and
Tk_FreeSavedOptions	to	free	any	storage	allocated	for	the	internal

representation	of	a	custom	option.	The	clientData	argument	is	a	copy	of
the	clientData	field	in	the	Tk_ObjCustomOption	structure.	Tkwin	is	a
copy	of	the	tkwin	argument	to	Tk_GetOptionValue	or
Tk_GetOptionInfo.	InternalPtr	is	a	pointer	to	the	location	where	the
internal	representation	of	the	option	value	is	stored.	The	freeProc	must
free	any	storage	associated	with	the	option.	FreeProc	has	no	return
value.

KEYWORDS

anchor,	bitmap,	boolean,	border,	color,	configuration	option,	cursor,
double,	font,	integer,	justify,	pixels,	relief,	screen	distance,	synonym

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1998	Sun	Microsystems,	Inc.

XEvent	*eventPtr	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	HandleEvent

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tk_HandleEvent	-	invoke	event	handlers	for	window	system	events

SYNOPSIS

#include	<tk.h>
Tk_HandleEvent(eventPtr)

ARGUMENTS

Pointer	to	X	event	to
dispatch	to	relevant
handler(s).

DESCRIPTION

Tk_HandleEvent	is	a	lower-level	procedure	that	deals	with	window
events.	It	is	called	by	Tcl_ServiceEvent	(and	indirectly	by
Tk_DoOneEvent),	and	in	a	few	other	cases	within	Tk.	It	makes
callbacks	to	any	window	event	handlers	(created	by	calls	to
Tk_CreateEventHandler)	that	match	eventPtr	and	then	returns.	In
some	cases	it	may	be	useful	for	an	application	to	bypass	the	Tk	event
queue	and	call	Tk_HandleEvent	directly	instead	of	calling
Tcl_QueueEvent	followed	by	Tcl_ServiceEvent.

This	procedure	may	be	invoked	recursively.	For	example,	it	is	possible
to	invoke	Tk_HandleEvent	recursively	from	a	handler	called	by
Tk_HandleEvent.	This	sort	of	operation	is	useful	in	some	modal
situations,	such	as	when	a	notifier	has	been	popped	up	and	an
application	wishes	to	wait	for	the	user	to	click	a	button	in	the	notifier

before	doing	anything	else.

KEYWORDS

callback,	event,	handler,	window

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990-1992	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tk_RestrictProc	*proc	(in)

ClientData	clientData	(in)

ClientData	*prevClientDataPtr	(out)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	RestrictEv

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tk_RestrictEvents	-	filter	and	selectively	delay	X	events

SYNOPSIS

#include	<tk.h>
Tk_RestrictProc	*
Tk_RestrictEvents(proc,	clientData,	prevClientDataPtr)

ARGUMENTS

Predicate	procedure	to	call
to	filter	incoming	X	events.
NULL	means	do	not
restrict	events	at	all.

Arbitrary	argument	to	pass
to	proc.

Pointer	to	place	to	save
argument	to	previous
restrict	procedure.

DESCRIPTION

This	procedure	is	useful	in	certain	situations	where	applications	are
only	prepared	to	receive	certain	X	events.	After	Tk_RestrictEvents	is
called,	Tk_DoOneEvent	(and	hence	Tk_MainLoop)	will	filter	X	input
events	through	proc.	Proc	indicates	whether	a	given	event	is	to	be
processed	immediately,	deferred	until	some	later	time	(e.g.	when	the

event	restriction	is	lifted),	or	discarded.	Proc	is	a	procedure	with
arguments	and	result	that	match	the	type	Tk_RestrictProc:

typedef	Tk_RestrictAction	Tk_RestrictProc(

				ClientData	clientData,

				XEvent	*eventPtr);

The	clientData	argument	is	a	copy	of	the	clientData	passed	to
Tk_RestrictEvents;	it	may	be	used	to	provide	proc	with	information	it
needs	to	filter	events.	The	eventPtr	points	to	an	event	under
consideration.	Proc	returns	a	restrict	action	(enumerated	type
Tk_RestrictAction)	that	indicates	what	Tk_DoOneEvent	should	do
with	the	event.	If	the	return	value	is	TK_PROCESS_EVENT,	then	the
event	will	be	handled	immediately.	If	the	return	value	is
TK_DEFER_EVENT,	then	the	event	will	be	left	on	the	event	queue	for
later	processing.	If	the	return	value	is	TK_DISCARD_EVENT,	then	the
event	will	be	removed	from	the	event	queue	and	discarded	without
being	processed.

Tk_RestrictEvents	uses	its	return	value	and	prevClientDataPtr	to
return	information	about	the	current	event	restriction	procedure	(a	NULL
return	value	means	there	are	currently	no	restrictions).	These	values
may	be	used	to	restore	the	previous	restriction	state	when	there	is	no
longer	any	need	for	the	current	restriction.

There	are	very	few	places	where	Tk_RestrictEvents	is	needed.	In
most	cases,	the	best	way	to	restrict	events	is	by	changing	the	bindings
with	the	bind	Tcl	command	or	by	calling	Tk_CreateEventHandler	and
Tk_DeleteEventHandler	from	C.	The	main	place	where
Tk_RestrictEvents	must	be	used	is	when	performing	synchronous
actions	(for	example,	if	you	need	to	wait	for	a	particular	event	to	occur
on	a	particular	window	but	you	do	not	want	to	invoke	any	handlers	for
any	other	events).	The	“obvious”	solution	in	these	situations	is	to	call
XNextEvent	or	XWindowEvent,	but	these	procedures	cannot	be	used
because	Tk	keeps	its	own	event	queue	that	is	separate	from	the	X
event	queue.	Instead,	call	Tk_RestrictEvents	to	set	up	a	filter,	then	call

Tk_DoOneEvent	to	retrieve	the	desired	event(s).

KEYWORDS

delay,	event,	filter,	restriction

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	BindTable

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tk_CreateBindingTable,	Tk_DeleteBindingTable,
Tk_CreateBinding,	Tk_DeleteBinding,	Tk_GetBinding,
Tk_GetAllBindings,	Tk_DeleteAllBindings,	Tk_BindEvent	-
invoke	scripts	in	response	to	X	events

SYNOPSIS
#include	<tk.h>
Tk_BindingTable
Tk_CreateBindingTable(interp)
Tk_DeleteBindingTable(bindingTable)
unsigned	long
Tk_CreateBinding(interp,	bindingTable,	object,	eventString,
script,	append)
int
Tk_DeleteBinding(interp,	bindingTable,	object,	eventString)
const	char	*
Tk_GetBinding(interp,	bindingTable,	object,	eventString)
Tk_GetAllBindings(interp,	bindingTable,	object)
Tk_DeleteAllBindings(bindingTable,	object)
Tk_BindEvent(bindingTable,	eventPtr,	tkwin,	numObjects,
objectPtr)

ARGUMENTS
DESCRIPTION
KEYWORDS

NAME

Tk_CreateBindingTable,	Tk_DeleteBindingTable,	Tk_CreateBinding,
Tk_DeleteBinding,	Tk_GetBinding,	Tk_GetAllBindings,
Tk_DeleteAllBindings,	Tk_BindEvent	-	invoke	scripts	in	response	to	X
events

Tcl_Interp	*interp	(in)

Tk_BindingTable	bindingTable	(in)

ClientData	object	(in)

const	char	*eventString	(in)

SYNOPSIS

#include	<tk.h>
Tk_BindingTable
Tk_CreateBindingTable(interp)
Tk_DeleteBindingTable(bindingTable)
unsigned	long
Tk_CreateBinding(interp,	bindingTable,	object,	eventString,	script,
append)
int
Tk_DeleteBinding(interp,	bindingTable,	object,	eventString)
const	char	*
Tk_GetBinding(interp,	bindingTable,	object,	eventString)
Tk_GetAllBindings(interp,	bindingTable,	object)
Tk_DeleteAllBindings(bindingTable,	object)
Tk_BindEvent(bindingTable,	eventPtr,	tkwin,	numObjects,	objectPtr)

ARGUMENTS

Interpreter	to	use	when
invoking	bindings	in
binding	table.	Also	used
for	returning	results	and
errors	from	binding
procedures.

Token	for	binding	table;
must	have	been	returned
by	some	previous	call	to
Tk_CreateBindingTable.

Identifies	object	with	which
binding	is	associated.

String	describing	event
sequence.

char	*script	(in)

int	append	(in)

XEvent	*eventPtr	(in)

Tk_Window	tkwin	(in)

int	numObjects	(in)

ClientData	*objectPtr	(in)

Tcl	script	to	invoke	when
binding	triggers.

Non-zero	means	append
script	to	existing	script	for
binding,	if	any;	zero	means
replace	existing	script	with
new	one.

X	event	to	match	against
bindings	in	bindingTable.

Identifier	for	any	window
on	the	display	where	the
event	occurred.	Used	to
find	display-related
information	such	as	key
maps.

Number	of	object
identifiers	pointed	to	by
objectPtr.

Points	to	an	array	of	object
identifiers:	bindings	will	be
considered	for	each	of
these	objects	in	order	from
first	to	last.

DESCRIPTION

These	procedures	provide	a	general-purpose	mechanism	for	creating
and	invoking	bindings.	Bindings	are	organized	in	terms	of	binding
tables.	A	binding	table	consists	of	a	collection	of	bindings	plus	a	history
of	recent	events.	Within	a	binding	table,	bindings	are	associated	with
objects.	The	meaning	of	an	object	is	defined	by	clients	of	the	binding

package.	For	example,	Tk	keeps	uses	one	binding	table	to	hold	all	of
the	bindings	created	by	the	bind	command.	For	this	table,	objects	are
pointers	to	strings	such	as	window	names,	class	names,	or	other
binding	tags	such	as	all.	Tk	also	keeps	a	separate	binding	table	for
each	canvas	widget,	which	manages	bindings	created	by	the	canvas's
bind	widget	command;	within	this	table,	an	object	is	either	a	pointer	to
the	internal	structure	for	a	canvas	item	or	a	Tk_Uid	identifying	a	tag.

The	procedure	Tk_CreateBindingTable	creates	a	new	binding	table
and	associates	interp	with	it	(when	bindings	in	the	table	are	invoked,
the	scripts	will	be	evaluated	in	interp).	Tk_CreateBindingTable	returns
a	token	for	the	table,	which	must	be	used	in	calls	to	other	procedures
such	as	Tk_CreateBinding	or	Tk_BindEvent.

Tk_DeleteBindingTable	frees	all	of	the	state	associated	with	a	binding
table.	Once	it	returns	the	caller	should	not	use	the	bindingTable	token
again.

Tk_CreateBinding	adds	a	new	binding	to	an	existing	table.	The	object
argument	identifies	the	object	with	which	the	binding	is	to	be
associated,	and	it	may	be	any	one-word	value.	Typically	it	is	a	pointer	to
a	string	or	data	structure.	The	eventString	argument	identifies	the	event
or	sequence	of	events	for	the	binding;	see	the	documentation	for	the
bind	command	for	a	description	of	its	format.	script	is	the	Tcl	script	to
be	evaluated	when	the	binding	triggers.	append	indicates	what	to	do	if
there	already	exists	a	binding	for	object	and	eventString:	if	append	is
zero	then	script	replaces	the	old	script;	if	append	is	non-zero	then	the
new	script	is	appended	to	the	old	one.	Tk_CreateBinding	returns	an	X
event	mask	for	all	the	events	associated	with	the	bindings.	This
information	may	be	useful	to	invoke	XSelectInput	to	select	relevant
events,	or	to	disallow	the	use	of	certain	events	in	bindings.	If	an	error
occurred	while	creating	the	binding	(e.g.,	eventString	refers	to	a	non-
existent	event),	then	0	is	returned	and	an	error	message	is	left	in	interp-
>result.

Tk_DeleteBinding	removes	from	bindingTable	the	binding	given	by
object	and	eventString,	if	such	a	binding	exists.	Tk_DeleteBinding
always	returns	TCL_OK.	In	some	cases	it	may	reset	interp->result	to

the	default	empty	value.

Tk_GetBinding	returns	a	pointer	to	the	script	associated	with
eventString	and	object	in	bindingTable.	If	no	such	binding	exists	then
NULL	is	returned	and	an	error	message	is	left	in	interp->result.

Tk_GetAllBindings	returns	in	interp->result	a	list	of	all	the	event
strings	for	which	there	are	bindings	in	bindingTable	associated	with
object.	If	there	are	no	bindings	for	object	then	an	empty	string	is
returned	in	interp->result.

Tk_DeleteAllBindings	deletes	all	of	the	bindings	in	bindingTable	that
are	associated	with	object.

Tk_BindEvent	is	called	to	process	an	event.	It	makes	a	copy	of	the
event	in	an	internal	history	list	associated	with	the	binding	table,	then	it
checks	for	bindings	that	match	the	event.	Tk_BindEvent	processes
each	of	the	objects	pointed	to	by	objectPtr	in	turn.	For	each	object,	it
finds	all	the	bindings	that	match	the	current	event	history,	selects	the
most	specific	binding	using	the	priority	mechanism	described	in	the
documentation	for	bind,	and	invokes	the	script	for	that	binding.	If	there
are	no	matching	bindings	for	a	particular	object,	then	the	object	is
skipped.	Tk_BindEvent	continues	through	all	of	the	objects,	handling
exceptions	such	as	errors,	break,	and	continue	as	described	in	the
documentation	for	bind.

KEYWORDS

binding,	event,	object,	script

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	Tk_Init

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tk_Init,	Tk_SafeInit	-	add	Tk	to	an	interpreter	and	make	a	new
Tk	application.

SYNOPSIS
#include	<tk.h>
int
Tk_Init(interp)
int
Tk_SafeInit(interp)

ARGUMENTS
DESCRIPTION

bell
clipboard
grab
menu
selection
send
tk
tkwait
toplevel
wm

KEYWORDS

NAME

Tk_Init,	Tk_SafeInit	-	add	Tk	to	an	interpreter	and	make	a	new	Tk
application.

SYNOPSIS

#include	<tk.h>
int

Tcl_Interp	*interp	(in)

Tk_Init(interp)
int
Tk_SafeInit(interp)

ARGUMENTS

Interpreter	in	which	to	load
Tk.	Tk	should	not	already
be	loaded	in	this
interpreter.

DESCRIPTION

Tk_Init	is	the	package	initialization	procedure	for	Tk.	It	is	normally
invoked	by	the	Tcl_AppInit	procedure	for	an	application	or	by	the	load
command.	Tk_Init	adds	all	of	Tk's	commands	to	interp	and	creates	a
new	Tk	application,	including	its	main	window.	If	the	initialization	is
successful	Tk_Init	returns	TCL_OK;	if	there	is	an	error	it	returns
TCL_ERROR.	Tk_Init	also	leaves	a	result	or	error	message	in	interp-
>result.

If	there	is	a	variable	argv	in	interp,	Tk_Init	treats	the	contents	of	this
variable	as	a	list	of	options	for	the	new	Tk	application.	The	options	may
have	any	of	the	forms	documented	for	the	wish	application	(in	fact,
wish	uses	Tk_Init	to	process	its	command-line	arguments).

Tk_SafeInit	is	identical	to	Tk_Init	except	that	it	removes	all	Tk
commands	that	are	considered	unsafe.	Those	commands	and	the
reasons	for	their	exclusion	are:

bell
Continuous	ringing	of	the	bell	is	a	nuisance.

clipboard
A	malicious	script	could	replace	the	contents	of	the	clipboard	with
the	string	“rm	-r	*”	and	lead	to	surprises	when	the	contents	of	the
clipboard	are	pasted.

grab
Grab	can	be	used	to	block	the	user	from	using	any	other
applications.

menu
Menus	can	be	used	to	cover	the	entire	screen	and	to	steal	input
from	the	user.

selection
See	clipboard.

send
Send	can	be	used	to	cause	unsafe	interpreters	to	execute
commands.

tk
The	tk	command	recreates	the	send	command,	which	is	unsafe.

tkwait
Tkwait	can	block	the	containing	process	forever

toplevel
Toplevels	can	be	used	to	cover	the	entire	screen	and	to	steal	input
from	the	user.

wm
If	toplevels	are	ever	allowed,	wm	can	be	used	to	remove
decorations,	move	windows	around,	etc.

KEYWORDS

safe,	application,	initialization,	load,	main	window

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1995-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	CanvTkwin

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tk_CanvasTkwin,	Tk_CanvasGetCoord,
Tk_CanvasDrawableCoords,	Tk_CanvasSetStippleOrigin,
Tk_CanvasWindowCoords,	Tk_CanvasEventuallyRedraw,
Tk_CanvasTagsOption	-	utility	procedures	for	canvas	type
managers

SYNOPSIS
#include	<tk.h>
Tk_Window
Tk_CanvasTkwin(canvas)
int
Tk_CanvasGetCoord(interp,	canvas,	string,	doublePtr)
Tk_CanvasDrawableCoords(canvas,	x,	y,	drawableXPtr,
drawableYPtr)
Tk_CanvasSetStippleOrigin(canvas,	gc)
Tk_CanvasWindowCoords(canvas,	x,	y,	screenXPtr,
screenYPtr)
Tk_CanvasEventuallyRedraw(canvas,	x1,	y1,	x2,	y2)
Tk_OptionParseProc	*Tk_CanvasTagsParseProc;
Tk_OptionPrintProc	*Tk_CanvasTagsPrintProc;

ARGUMENTS
DESCRIPTION
KEYWORDS

NAME

Tk_CanvasTkwin,	Tk_CanvasGetCoord,	Tk_CanvasDrawableCoords,
Tk_CanvasSetStippleOrigin,	Tk_CanvasWindowCoords,
Tk_CanvasEventuallyRedraw,	Tk_CanvasTagsOption	-	utility
procedures	for	canvas	type	managers

Tk_Canvas	canvas	(in)

Tcl_Interp	*interp	(in/out)

const	char	*string	(in)

double	*doublePtr	(out)

double	x	(in)

double	y	(in)

short	*drawableXPtr	(out)

SYNOPSIS

#include	<tk.h>
Tk_Window
Tk_CanvasTkwin(canvas)
int
Tk_CanvasGetCoord(interp,	canvas,	string,	doublePtr)
Tk_CanvasDrawableCoords(canvas,	x,	y,	drawableXPtr,
drawableYPtr)
Tk_CanvasSetStippleOrigin(canvas,	gc)
Tk_CanvasWindowCoords(canvas,	x,	y,	screenXPtr,	screenYPtr)
Tk_CanvasEventuallyRedraw(canvas,	x1,	y1,	x2,	y2)
Tk_OptionParseProc	*Tk_CanvasTagsParseProc;
Tk_OptionPrintProc	*Tk_CanvasTagsPrintProc;

ARGUMENTS

A	token	that	identifies	a
canvas	widget.

Interpreter	to	use	for	error
reporting.

Textual	description	of	a
canvas	coordinate.

Points	to	place	to	store	a
converted	coordinate.

An	x	coordinate	in	the
space	of	the	canvas.

A	y	coordinate	in	the
space	of	the	canvas.

Pointer	to	a	location	in
which	to	store	an	x

short	*drawableYPtr	(out)

GC	gc	(out)

short	*screenXPtr	(out)

short	*screenYPtr	(out)

int	x1	(in)

int	y1	(in)

coordinate	in	the	space	of
the	drawable	currently
being	used	to	redisplay	the
canvas.

Pointer	to	a	location	in
which	to	store	a	y
coordinate	in	the	space	of
the	drawable	currently
being	used	to	redisplay	the
canvas.

Graphics	context	to
modify.

Points	to	a	location	in
which	to	store	the	screen
coordinate	in	the	canvas
window	that	corresponds
to	x.

Points	to	a	location	in
which	to	store	the	screen
coordinate	in	the	canvas
window	that	corresponds
to	y.

Left	edge	of	the	region	that
needs	redisplay.	Only
pixels	at	or	to	the	right	of
this	coordinate	need	to	be
redisplayed.

Top	edge	of	the	region	that
needs	redisplay.	Only
pixels	at	or	below	this
coordinate	need	to	be

int	x2	(in)

int	y2	(in)

redisplayed.

Right	edge	of	the	region
that	needs	redisplay.	Only
pixels	to	the	left	of	this
coordinate	need	to	be
redisplayed.

Bottom	edge	of	the	region
that	needs	redisplay.	Only
pixels	above	this
coordinate	need	to	be
redisplayed.

DESCRIPTION

These	procedures	are	called	by	canvas	type	managers	to	perform
various	utility	functions.

Tk_CanvasTkwin	returns	the	Tk_Window	associated	with	a	particular
canvas.

Tk_CanvasGetCoord	translates	a	string	specification	of	a	coordinate
(such	as	2p	or	1.6c)	into	a	double-precision	canvas	coordinate.	If	string
is	a	valid	coordinate	description	then	Tk_CanvasGetCoord	stores	the
corresponding	canvas	coordinate	at	*doublePtr	and	returns	TCL_OK.
Otherwise	it	stores	an	error	message	in	interp->result	and	returns
TCL_ERROR.

Tk_CanvasDrawableCoords	is	called	by	type	managers	during
redisplay	to	compute	where	to	draw	things.	Given	x	and	y	coordinates
in	the	space	of	the	canvas,	Tk_CanvasDrawableCoords	computes	the
corresponding	pixel	in	the	drawable	that	is	currently	being	used	for
redisplay;	it	returns	those	coordinates	in	*drawableXPtr	and
*drawableYPtr.	This	procedure	should	not	be	invoked	except	during
redisplay.

Tk_CanvasSetStippleOrigin	is	also	used	during	redisplay.	It	sets	the
stipple	origin	in	gc	so	that	stipples	drawn	with	gc	in	the	current	offscreen
pixmap	will	line	up	with	stipples	drawn	with	origin	(0,0)	in	the	canvas's
actual	window.	Tk_CanvasSetStippleOrigin	is	needed	in	order	to
guarantee	that	stipple	patterns	line	up	properly	when	the	canvas	is
redisplayed	in	small	pieces.	Redisplays	are	carried	out	in	double-
buffered	fashion	where	a	piece	of	the	canvas	is	redrawn	in	an	offscreen
pixmap	and	then	copied	back	onto	the	screen.	In	this	approach	the
stipple	origins	in	graphics	contexts	need	to	be	adjusted	during	each
redisplay	to	compensate	for	the	position	of	the	off-screen	pixmap
relative	to	the	window.	If	an	item	is	being	drawn	with	stipples,	its	type
manager	typically	calls	Tk_CanvasSetStippleOrigin	just	before	using
gc	to	draw	something;	after	it	is	finished	drawing,	the	type	manager
calls	XSetTSOrigin	to	restore	the	origin	in	gc	back	to	(0,0)	(the	restore
is	needed	because	graphics	contexts	are	shared,	so	they	cannot	be
modified	permanently).

Tk_CanvasWindowCoords	is	similar	to	Tk_CanvasDrawableCoords
except	that	it	returns	coordinates	in	the	canvas's	window	on	the	screen,
instead	of	coordinates	in	an	off-screen	pixmap.

Tk_CanvasEventuallyRedraw	may	be	invoked	by	a	type	manager	to
inform	Tk	that	a	portion	of	a	canvas	needs	to	be	redrawn.	The	x1,	y1,
x2,	and	y2	arguments	specify	the	region	that	needs	to	be	redrawn,	in
canvas	coordinates.	Type	managers	rarely	need	to	invoke
Tk_CanvasEventuallyRedraw,	since	Tk	can	normally	figure	out	when
an	item	has	changed	and	make	the	redisplay	request	on	its	behalf	(this
happens,	for	example	whenever	Tk	calls	a	configureProc	or	scaleProc).
The	only	time	that	a	type	manager	needs	to	call
Tk_CanvasEventuallyRedraw	is	if	an	item	has	changed	on	its	own
without	being	invoked	through	one	of	the	procedures	in	its
Tk_ItemType;	this	could	happen,	for	example,	in	an	image	item	if	the
image	is	modified	using	image	commands.

Tk_CanvasTagsParseProc	and	Tk_CanvasTagsPrintProc	are
procedures	that	handle	the	-tags	option	for	canvas	items.	The	code	of	a
canvas	type	manager	will	not	call	these	procedures	directly,	but	will	use
their	addresses	to	create	a	Tk_CustomOption	structure	for	the	-tags

option.	The	code	typically	looks	like	this:

static	Tk_CustomOption	tagsOption	=	{Tk_CanvasTagsParseProc,

				Tk_CanvasTagsPrintProc,	(ClientData)	NULL

};

static	Tk_ConfigSpec	configSpecs[]	=	{

				...

				{TK_CONFIG_CUSTOM,	"-tags",	(char	*)	NULL,	(char	*)	NULL,

								(char	*)	NULL,	0,	TK_CONFIG_NULL_OK,	&tagsOption},

				...

};

KEYWORDS

canvas,	focus,	item	type,	redisplay,	selection,	type	manager

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

HWND	hwnd	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	HWNDToWindow

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tk_HWNDToWindow	-	Find	Tk's	window	information	for	a	Windows
window

SYNOPSIS

#include	<tkPlatDecls.h>
Tk_Window
Tk_HWNDToWindow(hwnd)

ARGUMENTS

Windows	handle	for	the
window.

DESCRIPTION

Given	a	Windows	HWND	window	identifier,	this	procedure	returns	the
corresponding	Tk_Window	handle.	If	there	is	no	Tk_Window
corresponding	to	hwnd	then	NULL	is	returned.

KEYWORDS

Windows	window	id

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1998-2000	by	Scriptics	Corporation.

Display	*display	(in)

Window	window	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	IdToWindow

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tk_IdToWindow	-	Find	Tk's	window	information	for	an	X	window

SYNOPSIS

#include	<tk.h>
Tk_Window
Tk_IdToWindow(display,	window)

ARGUMENTS

X	display	containing	the
window.

X	id	for	window.

DESCRIPTION

Given	an	X	window	identifier	and	the	X	display	it	corresponds	to,	this
procedure	returns	the	corresponding	Tk_Window	handle.	If	there	is	no
Tk_Window	corresponding	to	window	then	NULL	is	returned.

KEYWORDS

X	window	id

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1995-1996	Sun	Microsystems,	Inc.

Tk_ImageMaster	imageMaster	(in)

int	x	(in)

int	y	(in)

int	width	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	ImgChanged

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tk_ImageChanged	-	notify	widgets	that	image	needs	to	be	redrawn

SYNOPSIS

#include	<tk.h>
Tk_ImageChanged(imageMaster,	x,	y,	width,	height,	imageWidth,
imageHeight)

ARGUMENTS

Token	for	image,	which
was	passed	to	image's
createProc	when	the
image	was	created.

X-coordinate	of	upper-left
corner	of	region	that	needs
redisplay	(measured	from
upper-left	corner	of
image).

Y-coordinate	of	upper-left
corner	of	region	that	needs
redisplay	(measured	from
upper-left	corner	of
image).

Width	of	region	that	needs
to	be	redrawn,	in	pixels.

int	height	(in)

int	imageWidth	(in)

int	imageHeight	(in)

Height	of	region	that
needs	to	be	redrawn,	in
pixels.

Current	width	of	image,	in
pixels.

Current	height	of	image,	in
pixels.

DESCRIPTION

An	image	manager	calls	Tk_ImageChanged	for	an	image	whenever
anything	happens	that	requires	the	image	to	be	redrawn.	As	a	result	of
calling	Tk_ImageChanged,	any	widgets	using	the	image	are	notified	so
that	they	can	redisplay	themselves	appropriately.	The	imageMaster
argument	identifies	the	image,	and	x,	y,	width,	and	height	specify	a
rectangular	region	within	the	image	that	needs	to	be	redrawn.
imageWidth	and	imageHeight	specify	the	image's	(new)	size.

An	image	manager	should	call	Tk_ImageChanged	during	its
createProc	to	specify	the	image's	initial	size	and	to	force	redisplay	if
there	are	existing	instances	for	the	image.	If	any	of	the	pixel	values	in
the	image	should	change	later	on,	Tk_ImageChanged	should	be	called
again	with	x,	y,	width,	and	height	values	that	cover	all	the	pixels	that
changed.	If	the	size	of	the	image	should	change,	then
Tk_ImageChanged	must	be	called	to	indicate	the	new	size,	even	if	no
pixels	need	to	be	redisplayed.

SEE	ALSO

Tk_CreateImageType

KEYWORDS

images,	redisplay,	image	size	changes

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tk_Window	tkwin	(in)

const	char	*name	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	SetAppName

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tk_SetAppName	-	Set	the	name	of	an	application	for	'send'	commands

SYNOPSIS

#include	<tk.h>
const	char	*
Tk_SetAppName(tkwin,	name)

ARGUMENTS

Token	for	window	in
application.	Used	only	to
select	a	particular
application.

Name	under	which	to
register	the	application.

DESCRIPTION

Tk_SetAppName	associates	a	name	with	a	given	application	and
records	that	association	on	the	display	containing	with	the	application's
main	window.	After	this	procedure	has	been	invoked,	other	applications
on	the	display	will	be	able	to	use	the	send	command	to	invoke
operations	in	the	application.	If	name	is	already	in	use	by	some	other
application	on	the	display,	then	a	new	name	will	be	generated	by
appending	“	#2”	to	name;	if	this	name	is	also	in	use,	the	number	will	be
incremented	until	an	unused	name	is	found.	The	return	value	from	the
procedure	is	a	pointer	to	the	name	actually	used.

If	the	application	already	has	a	name	when	Tk_SetAppName	is	called,
then	the	new	name	replaces	the	old	name.

Tk_SetAppName	also	adds	a	send	command	to	the	application's
interpreter,	which	can	be	used	to	send	commands	from	this	application
to	others	on	any	of	the	displays	where	the	application	has	windows.

The	application's	name	registration	persists	until	the	interpreter	is
deleted	or	the	send	command	is	deleted	from	interp,	at	which	point	the
name	is	automatically	unregistered	and	the	application	becomes
inaccessible	via	send.	The	application	can	be	made	accessible	again
by	calling	Tk_SetAppName.

Tk_SetAppName	is	called	automatically	by	Tk_Init,	so	applications	do
not	normally	need	to	call	it	explicitly.

The	command	tk	appname	provides	Tcl-level	access	to	the	functionality
of	Tk_SetAppName.

KEYWORDS

application,	name,	register,	send	command

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1997	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	CanvPsY

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tk_CanvasPsY,	Tk_CanvasPsBitmap,	Tk_CanvasPsColor,
Tk_CanvasPsFont,	Tk_CanvasPsPath,	Tk_CanvasPsStipple	-
utility	procedures	for	generating	Postscript	for	canvases

SYNOPSIS
#include	<tk.h>
double
Tk_CanvasPsY(canvas,	canvasY)
int
Tk_CanvasPsBitmap(interp,	canvas,	bitmap,	x,	y,	width,
height)
int
Tk_CanvasPsColor(interp,	canvas,	colorPtr)
int
Tk_CanvasPsFont(interp,	canvas,	tkFont)
Tk_CanvasPsPath(interp,	canvas,	coordPtr,	numPoints)
int
Tk_CanvasPsStipple(interp,	canvas,	bitmap)

ARGUMENTS
DESCRIPTION
KEYWORDS

NAME

Tk_CanvasPsY,	Tk_CanvasPsBitmap,	Tk_CanvasPsColor,
Tk_CanvasPsFont,	Tk_CanvasPsPath,	Tk_CanvasPsStipple	-	utility
procedures	for	generating	Postscript	for	canvases

SYNOPSIS

#include	<tk.h>
double

Tk_Canvas	canvas	(in)

double	canvasY	(in)

Tcl_Interp	*interp	(in/out)

Pixmap	bitmap	(in)

int	x	(in)

int	y	(in)

Tk_CanvasPsY(canvas,	canvasY)
int
Tk_CanvasPsBitmap(interp,	canvas,	bitmap,	x,	y,	width,	height)
int
Tk_CanvasPsColor(interp,	canvas,	colorPtr)
int
Tk_CanvasPsFont(interp,	canvas,	tkFont)
Tk_CanvasPsPath(interp,	canvas,	coordPtr,	numPoints)
int
Tk_CanvasPsStipple(interp,	canvas,	bitmap)

ARGUMENTS

A	token	that	identifies	a
canvas	widget	for	which
Postscript	is	being
generated.

Y-coordinate	in	the	space
of	the	canvas.

A	Tcl	interpreter;	Postscript
is	appended	to	its	result,
or	the	result	may	be
replaced	with	an	error
message.

Bitmap	to	use	for
generating	Postscript.

X-coordinate	within	bitmap
of	left	edge	of	region	to
output.

Y-coordinate	within	bitmap
of	top	edge	of	region	to
output.

int	width	(in)

int	height	(in)

XColor	*colorPtr	(in)

Tk_Font	tkFont	(in)

double	*coordPtr	(in)

int	numPoints	(in)

Width	of	region	of	bitmap
to	output,	in	pixels.

Height	of	region	of	bitmap
to	output,	in	pixels.

Information	about	color
value	to	set	in	Postscript.

Font	for	which	Postscript	is
to	be	generated.

Pointer	to	an	array	of
coordinates	for	one	or
more	points	specified	in
canvas	coordinates.	The
order	of	values	in	coordPtr
is	x1,	y1,	x2,	y2,	x3,	y3,
and	so	on.

Number	of	points	at
coordPtr.

DESCRIPTION

These	procedures	are	called	by	canvas	type	managers	to	carry	out
common	functions	related	to	generating	Postscript.	Most	of	the
procedures	take	a	canvas	argument,	which	refers	to	a	canvas	widget
for	which	Postscript	is	being	generated.

Tk_CanvasPsY	takes	as	argument	a	y-coordinate	in	the	space	of	a
canvas	and	returns	the	value	that	should	be	used	for	that	point	in	the
Postscript	currently	being	generated	for	canvas.	Y	coordinates	require
transformation	because	Postscript	uses	an	origin	at	the	lower-left	corner
whereas	X	uses	an	origin	at	the	upper-left	corner.	Canvas	x	coordinates
can	be	used	directly	in	Postscript	without	transformation.

Tk_CanvasPsBitmap	generates	Postscript	to	describe	a	region	of	a
bitmap.	The	Postscript	is	generated	in	proper	image	data	format	for
Postscript,	i.e.,	as	data	between	angle	brackets,	one	bit	per	pixel.	The
Postscript	is	appended	to	interp->result	and	TCL_OK	is	returned	unless
an	error	occurs,	in	which	case	TCL_ERROR	is	returned	and	interp-
>result	is	overwritten	with	an	error	message.

Tk_CanvasPsColor	generates	Postscript	to	set	the	current	color	to
correspond	to	its	colorPtr	argument,	taking	into	account	any	color	map
specified	in	the	postscript	command.	It	appends	the	Postscript	to
interp->result	and	returns	TCL_OK	unless	an	error	occurs,	in	which
case	TCL_ERROR	is	returned	and	interp->result	is	overwritten	with	an
error	message.

Tk_CanvasPsFont	generates	Postscript	that	sets	the	current	font	to
match	tkFont	as	closely	as	possible.	Tk_CanvasPsFont	takes	into
account	any	font	map	specified	in	the	postscript	command,	and	it	does
the	best	it	can	at	mapping	X	fonts	to	Postscript	fonts.	It	appends	the
Postscript	to	interp->result	and	returns	TCL_OK	unless	an	error	occurs,
in	which	case	TCL_ERROR	is	returned	and	interp->result	is	overwritten
with	an	error	message.

Tk_CanvasPsPath	generates	Postscript	to	set	the	current	path	to	the
set	of	points	given	by	coordPtr	and	numPoints.	It	appends	the	resulting
Postscript	to	interp->result.

Tk_CanvasPsStipple	generates	Postscript	that	will	fill	the	current	path
in	stippled	fashion.	It	uses	bitmap	as	the	stipple	pattern	and	the	current
Postscript	color;	ones	in	the	stipple	bitmap	are	drawn	in	the	current
color,	and	zeroes	are	not	drawn	at	all.	The	Postscript	is	appended	to
interp->result	and	TCL_OK	is	returned,	unless	an	error	occurs,	in	which
case	TCL_ERROR	is	returned	and	interp->result	is	overwritten	with	an
error	message.

KEYWORDS

bitmap,	canvas,	color,	font,	path,	Postscript,	stipple

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl_Interp	*interp	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	CrtConsoleChan

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tk_InitConsoleChannels	-	Install	the	console	channels	as	standard
channels

SYNOPSIS

#include	<tk.h>
Tk_InitConsoleChannels(interp)

ARGUMENTS

Interpreter	in	which	the
console	channels	are
created.

DESCRIPTION

Tk_InitConsoleChannels	is	invoked	to	create	a	set	of	console
channels	and	install	them	as	the	standard	channels.	All	I/O	on	these
channels	will	be	discarded	until	Tk_CreateConsoleWindow	is	called	to
attach	the	console	to	a	text	widget.

This	function	is	for	use	by	shell	applications	based	on	Tk,	like	wish,	on
platforms	which	have	no	standard	channels	in	graphical	mode,	like
Win32.

The	interp	argument	is	the	interpreter	in	which	to	create	and	install	the
console	channels.

NOTE:	If	this	function	is	used	it	has	to	be	called	before	the	first	call	to

Tcl_RegisterChannel,	directly,	or	indirectly	through	other	channel
functions.	Because	otherwise	the	standard	channels	will	be	already
initialized	to	the	system	defaults,	which	will	be	nonsensical	for	the	case
Tk_InitConsoleChannels	is	for.

SEE	ALSO

console

KEYWORDS

standard	channels,	console

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	2007	ActiveState	Software	Inc.

Tk_Window	tkwin	(in)

int	x	(in)

int	y	(in)

int	h	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	SetCaret

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tk_SetCaretPos	-	set	the	display	caret	location

SYNOPSIS

#include	<tk.h>
int
Tk_SetCaretPos(tkwin,	x,	y,	height)

ARGUMENTS

Token	for	window.

Window-relative	x
coordinate.

Window-relative	y
coordinate.

Height	of	the	caret	in	the
window.

DESCRIPTION

Tk_SetCaretPos	sets	the	caret	location	for	the	display	of	the	specified
Tk_Window	tkwin.	The	caret	is	the	per-display	cursor	location	used	for
indicating	global	focus	(e.g.	to	comply	with	Microsoft	Accessibility
guidelines),	as	well	as	for	location	of	the	over-the-spot	XIM	(X	Input
Methods)	or	Windows	IME	windows.

KEYWORDS

caret,	cursor

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	2002	ActiveState	Corporation.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	CrtImgType

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tk_CreateImageType,	Tk_GetImageMasterData,
Tk_InitImageArgs	-	define	new	kind	of	image

SYNOPSIS
#include	<tk.h>
Tk_CreateImageType(typePtr)
ClientData
Tk_GetImageMasterData(interp,	name,	typePtrPtr)
Tk_InitImageArgs(interp,	argc,	argvPtr)

ARGUMENTS
DESCRIPTION
NAME
CREATEPROC
GETPROC
DISPLAYPROC
FREEPROC
DELETEPROC
TK_GETIMAGEMASTERDATA
LEGACY	INTERFACE	SUPPORT
SEE	ALSO
KEYWORDS

NAME

Tk_CreateImageType,	Tk_GetImageMasterData,	Tk_InitImageArgs	-
define	new	kind	of	image

SYNOPSIS

#include	<tk.h>
Tk_CreateImageType(typePtr)
ClientData

Tk_ImageType	*typePtr	(in)

Tcl_Interp	*interp	(in)

const	char	*name	(in)

Tk_ImageType	**typePtrPtr	(out)

int	argc	(in)

char	***argvPtr	(in/out)

Tk_GetImageMasterData(interp,	name,	typePtrPtr)
Tk_InitImageArgs(interp,	argc,	argvPtr)

ARGUMENTS

Structure	that	defines	the
new	type	of	image.	Must
be	static:	a	pointer	to	this
structure	is	retained	by	the
image	code.

Interpreter	in	which	image
was	created.

Name	of	existing	image.

Points	to	word	in	which	to
store	a	pointer	to	type
information	for	the	given
image,	if	it	exists.

Number	of	arguments

Pointer	to	argument	list

DESCRIPTION

Tk_CreateImageType	is	invoked	to	define	a	new	kind	of	image.	An
image	type	corresponds	to	a	particular	value	of	the	type	argument	for
the	image	create	command.	There	may	exist	any	number	of	different
image	types,	and	new	types	may	be	defined	dynamically	by	calling
Tk_CreateImageType.	For	example,	there	might	be	one	type	for	2-
color	bitmaps,	another	for	multi-color	images,	another	for	dithered
images,	another	for	video,	and	so	on.

The	code	that	implements	a	new	image	type	is	called	an	image

manager.	It	consists	of	a	collection	of	procedures	plus	three	different
kinds	of	data	structures.	The	first	data	structure	is	a	Tk_ImageType
structure,	which	contains	the	name	of	the	image	type	and	pointers	to
five	procedures	provided	by	the	image	manager	to	deal	with	images	of
this	type:

typedef	struct	Tk_ImageType	{

				char	*name;

				Tk_ImageCreateProc	*createProc;

				Tk_ImageGetProc	*getProc;

				Tk_ImageDisplayProc	*displayProc;

				Tk_ImageFreeProc	*freeProc;

				Tk_ImageDeleteProc	*deleteProc;

}	Tk_ImageType;

The	fields	of	this	structure	will	be	described	in	later	subsections	of	this
entry.

The	second	major	data	structure	manipulated	by	an	image	manager	is
called	an	image	master;	it	contains	overall	information	about	a
particular	image,	such	as	the	values	of	the	configuration	options
specified	in	an	image	create	command.	There	will	usually	be	one	of
these	structures	for	each	invocation	of	the	image	create	command.

The	third	data	structure	related	to	images	is	an	image	instance.	There
will	usually	be	one	of	these	structures	for	each	usage	of	an	image	in	a
particular	widget.	It	is	possible	for	a	single	image	to	appear
simultaneously	in	multiple	widgets,	or	even	multiple	times	in	the	same
widget.	Furthermore,	different	instances	may	be	on	different	screens	or
displays.	The	image	instance	data	structure	describes	things	that	may
vary	from	instance	to	instance,	such	as	colors	and	graphics	contexts	for
redisplay.	There	is	usually	one	instance	structure	for	each	-image
option	specified	for	a	widget	or	canvas	item.

The	following	subsections	describe	the	fields	of	a	Tk_ImageType	in
more	detail.

NAME

typePtr->name	provides	a	name	for	the	image	type.	Once
Tk_CreateImageType	returns,	this	name	may	be	used	in	image	create
commands	to	create	images	of	the	new	type.	If	there	already	existed	an
image	type	by	this	name	then	the	new	image	type	replaces	the	old	one.

CREATEPROC

typePtr->createProc	provides	the	address	of	a	procedure	for	Tk	to	call
whenever	image	create	is	invoked	to	create	an	image	of	the	new	type.
typePtr->createProc	must	match	the	following	prototype:

typedef	int	Tk_ImageCreateProc(

				Tcl_Interp	*interp,

				char	*name,

				int	objc,

				Tcl_Obj	*const	objv[],

				Tk_ImageType	*typePtr,

				Tk_ImageMaster	master,

				ClientData	*masterDataPtr);

The	interp	argument	is	the	interpreter	in	which	the	image	command
was	invoked,	and	name	is	the	name	for	the	new	image,	which	was
either	specified	explicitly	in	the	image	command	or	generated
automatically	by	the	image	command.	The	objc	and	objv	arguments
describe	all	the	configuration	options	for	the	new	image	(everything
after	the	name	argument	to	image).	The	master	argument	is	a	token
that	refers	to	Tk's	information	about	this	image;	the	image	manager
must	return	this	token	to	Tk	when	invoking	the	Tk_ImageChanged
procedure.	Typically	createProc	will	parse	objc	and	objv	and	create	an
image	master	data	structure	for	the	new	image.	createProc	may	store
an	arbitrary	one-word	value	at	*masterDataPtr,	which	will	be	passed
back	to	the	image	manager	when	other	callbacks	are	invoked.	Typically
the	value	is	a	pointer	to	the	master	data	structure	for	the	image.

If	createProc	encounters	an	error,	it	should	leave	an	error	message	in
the	interpreter	result	and	return	TCL_ERROR;	otherwise	it	should
return	TCL_OK.

createProc	should	call	Tk_ImageChanged	in	order	to	set	the	size	of
the	image	and	request	an	initial	redisplay.

GETPROC

typePtr->getProc	is	invoked	by	Tk	whenever	a	widget	calls
Tk_GetImage	to	use	a	particular	image.	This	procedure	must	match	the
following	prototype:

typedef	ClientData	Tk_ImageGetProc(

				Tk_Window	tkwin,

				ClientData	masterData);

The	tkwin	argument	identifies	the	window	in	which	the	image	will	be
used	and	masterData	is	the	value	returned	by	createProc	when	the
image	master	was	created.	getProc	will	usually	create	a	data	structure
for	the	new	instance,	including	such	things	as	the	resources	needed	to
display	the	image	in	the	given	window.	getProc	returns	a	one-word
token	for	the	instance,	which	is	typically	the	address	of	the	instance
data	structure.	Tk	will	pass	this	value	back	to	the	image	manager	when
invoking	its	displayProc	and	freeProc	procedures.

DISPLAYPROC

typePtr->displayProc	is	invoked	by	Tk	whenever	an	image	needs	to	be
displayed	(i.e.,	whenever	a	widget	calls	Tk_RedrawImage).
displayProc	must	match	the	following	prototype:

typedef	void	Tk_ImageDisplayProc(

				ClientData	instanceData,

				Display	*display,

				Drawable	drawable,

				int	imageX,

				int	imageY,

				int	width,

				int	height,

				int	drawableX,

				int	drawableY);

The	instanceData	will	be	the	same	as	the	value	returned	by	getProc
when	the	instance	was	created.	display	and	drawable	indicate	where	to
display	the	image;	drawable	may	be	a	pixmap	rather	than	the	window
specified	to	getProc	(this	is	usually	the	case,	since	most	widgets
double-buffer	their	redisplay	to	get	smoother	visual	effects).	imageX,
imageY,	width,	and	height	identify	the	region	of	the	image	that	must	be
redisplayed.	This	region	will	always	be	within	the	size	of	the	image	as
specified	in	the	most	recent	call	to	Tk_ImageChanged.	drawableX	and
drawableY	indicate	where	in	drawable	the	image	should	be	displayed;
displayProc	should	display	the	given	region	of	the	image	so	that	point
(imageX,	imageY)	in	the	image	appears	at	(drawableX,	drawableY)	in
drawable.

FREEPROC

typePtr->freeProc	contains	the	address	of	a	procedure	that	Tk	will
invoke	when	an	image	instance	is	released	(i.e.,	when	Tk_FreeImage
is	invoked).	This	can	happen,	for	example,	when	a	widget	is	deleted	or
a	image	item	in	a	canvas	is	deleted,	or	when	the	image	displayed	in	a
widget	or	canvas	item	is	changed.	freeProc	must	match	the	following
prototype:

typedef	void	Tk_ImageFreeProc(

				ClientData	instanceData,

				Display	*display);

The	instanceData	will	be	the	same	as	the	value	returned	by	getProc

when	the	instance	was	created,	and	display	is	the	display	containing
the	window	for	the	instance.	freeProc	should	release	any	resources
associated	with	the	image	instance,	since	the	instance	will	never	be
used	again.

DELETEPROC

typePtr->deleteProc	is	a	procedure	that	Tk	invokes	when	an	image	is
being	deleted	(i.e.	when	the	image	delete	command	is	invoked).	Before
invoking	deleteProc	Tk	will	invoke	freeProc	for	each	of	the	image's
instances.	deleteProc	must	match	the	following	prototype:

typedef	void	Tk_ImageDeleteProc(

				ClientData	masterData);

The	masterData	argument	will	be	the	same	as	the	value	stored	in
*masterDataPtr	by	createProc	when	the	image	was	created.	deleteProc
should	release	any	resources	associated	with	the	image.

TK_GETIMAGEMASTERDATA

The	procedure	Tk_GetImageMasterData	may	be	invoked	to	retrieve
information	about	an	image.	For	example,	an	image	manager	can	use
this	procedure	to	locate	its	image	master	data	for	an	image.	If	there
exists	an	image	named	name	in	the	interpreter	given	by	interp,	then
*typePtrPtr	is	filled	in	with	type	information	for	the	image	(the	typePtr
value	passed	to	Tk_CreateImageType	when	the	image	type	was
registered)	and	the	return	value	is	the	ClientData	value	returned	by	the
createProc	when	the	image	was	created	(this	is	typically	a	pointer	to	the
image	master	data	structure).	If	no	such	image	exists	then	NULL	is
returned	and	NULL	is	stored	at	*typePtrPtr.

LEGACY	INTERFACE	SUPPORT

In	Tk	8.2	and	earlier,	the	definition	of	Tk_ImageCreateProc	was
incompatibly	different,	with	the	following	prototype:

typedef	int	Tk_ImageCreateProc(

				Tcl_Interp	*interp,

				char	*name,

				int	argc,

				char	**argv,

				Tk_ImageType	*typePtr,

				Tk_ImageMaster	master,

				ClientData	*masterDataPtr);

Legacy	programs	and	libraries	dating	from	those	days	may	still	contain
code	that	defines	extended	Tk	image	types	using	the	old	interface.	The
Tk	header	file	will	still	support	this	legacy	interface	if	the	code	is
compiled	with	the	macro	USE_OLD_IMAGE	defined.

When	the	USE_OLD_IMAGE	legacy	support	is	enabled,	you	may	see
the	routine	Tk_InitImageArgs	in	use.	This	was	a	migration	tool	used	to
create	stub-enabled	extensions	that	could	be	loaded	into	interps
containing	all	versions	of	Tk	8.1	and	later.	Tk	8.5	no	longer	provides	this
routine,	but	uses	a	macro	to	convert	any	attempted	calls	of	this	routine
into	an	empty	comment.	Any	stub-enabled	extension	providing	an
extended	image	type	via	the	legacy	interface	that	is	compiled	against
Tk	8.5	headers	and	linked	against	the	Tk	8.5	stub	library	will	produce	a
file	that	can	be	loaded	only	into	interps	with	Tk	8.5	or	later;	that	is,	the
normal	stub-compatibility	rules.	If	a	developer	needs	to	generate	from
such	code	a	file	that	is	loadable	into	interps	with	Tk	8.4	or	earlier,	they
must	use	Tk	8.4	headers	and	stub	libraries	to	do	so.

Any	new	code	written	today	should	not	make	use	of	the	legacy
interfaces.	Expect	their	support	to	go	away	in	Tk	9.

SEE	ALSO

Tk_ImageChanged,	Tk_GetImage,	Tk_FreeImage,
Tk_RedrawImage,	Tk_SizeOfImage

KEYWORDS

image	manager,	image	type,	instance,	master

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1997	Sun	Microsystems,	Inc.

Tk_Window	tkwin	(in)

char	*class	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	SetClass

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tk_SetClass,	Tk_Class	-	set	or	retrieve	a	window's	class

SYNOPSIS

#include	<tk.h>
Tk_SetClass(tkwin,	class)
Tk_Uid
Tk_Class(tkwin)

ARGUMENTS

Token	for	window.

New	class	name	for
window.

DESCRIPTION

Tk_SetClass	is	called	to	associate	a	class	with	a	particular	window.
The	class	string	identifies	the	type	of	the	window;	all	windows	with	the
same	general	class	of	behavior	(button,	menu,	etc.)	should	have	the
same	class.	By	convention	all	class	names	start	with	a	capital	letter,
and	there	exists	a	Tcl	command	with	the	same	name	as	each	class
(except	all	in	lower-case)	which	can	be	used	to	create	and	manipulate
windows	of	that	class.	A	window's	class	string	is	initialized	to	NULL
when	the	window	is	created.

For	main	windows,	Tk	automatically	propagates	the	name	and	class	to
the	WM_CLASS	property	used	by	window	managers.	This	happens

either	when	a	main	window	is	actually	created	(e.g.	in
Tk_MakeWindowExist),	or	when	Tk_SetClass	is	called,	whichever
occurs	later.	If	a	main	window	has	not	been	assigned	a	class	then	Tk
will	not	set	the	WM_CLASS	property	for	the	window.

Tk_Class	is	a	macro	that	returns	the	current	value	of	tkwin's	class.	The
value	is	returned	as	a	Tk_Uid,	which	may	be	used	just	like	a	string
pointer	but	also	has	the	properties	of	a	unique	identifier	(see	the
manual	entry	for	Tk_GetUid	for	details).	If	tkwin	has	not	yet	been	given
a	class,	then	Tk_Class	will	return	NULL.

KEYWORDS

class,	unique	identifier,	window,	window	manager

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tk_Window	tkwin	(in)

Tk_ClassProcs	*procs	(in)

ClientData	instanceData	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	SetClassProcs

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tk_SetClassProcs	-	register	widget	specific	procedures

SYNOPSIS

#include	<tk.h>
Tk_SetClassProcs(tkwin,	procs,	instanceData)

ARGUMENTS

Token	for	window	to
modify.

Pointer	to	data	structure
containing	widget	specific
procedures.	The	data
structure	pointed	to	by
procs	must	be	static:	Tk
keeps	a	reference	to	it	as
long	as	the	window	exists.

Arbitrary	one-word	value
to	pass	to	widget
callbacks.

DESCRIPTION

Tk_SetClassProcs	is	called	to	register	a	set	of	procedures	that	are
used	as	callbacks	in	different	places.

The	structure	pointed	to	by	procs	contains	the	following:

typedef	struct	Tk_ClassProcs	{

				unsigned	int	size;

				Tk_ClassWorldChangedProc	*worldChangedProc;

				Tk_ClassCreateProc	*createProc;

				Tk_ClassModalProc	*modalProc;

}	Tk_ClassProcs;

The	size	field	is	used	to	simplify	future	expansion	of	the	structure.	It
should	always	be	set	to	(literally)	sizeof(Tk_ClassProcs).

worldChangedProc	is	invoked	when	the	system	has	altered	in	some
way	that	requires	some	reaction	from	the	widget.	For	example,	when	a
font	alias	(see	the	font	manual	entry)	is	reconfigured,	widgets
configured	to	use	that	font	alias	must	update	their	display	accordingly.
worldChangedProc	should	have	arguments	and	results	that	match	the
type	Tk_ClassWorldChangedProc:

typedef	void	Tk_ClassWorldChangedProc(

				ClientData	instanceData);

The	instanceData	parameter	passed	to	the	worldChangedProc	will	be
identical	to	the	instanceData	parameter	passed	to	Tk_SetClassProcs.

createProc	is	used	to	create	platform-dependant	windows.	It	is	invoked
by	Tk_MakeWindowExist.	createProc	should	have	arguments	and
results	that	match	the	type	Tk_ClassCreateProc:

typedef	Window	Tk_ClassCreateProc(

				Tk_Window	tkwin,

				Window	parent,

				ClientData	instanceData);

The	tkwin	and	instanceData	parameters	will	be	identical	to	the	tkwin
and	instanceData	parameters	passed	to	Tk_SetClassProcs.	The
parent	parameter	will	be	the	parent	of	the	window	to	be	created.	The
createProc	should	return	the	created	window.

modalProc	is	invoked	after	all	bindings	on	a	widget	have	been	triggered
in	order	to	handle	a	modal	loop.	modalProc	should	have	arguments	and
results	that	match	the	type	Tk_ClassModalProc:

typedef	void	Tk_ClassModalProc(

				Tk_Window	tkwin,

				XEvent	*eventPtr);

The	tkwin	parameter	to	modalProc	will	be	identical	to	the	tkwin
parameter	passed	to	Tk_SetClassProcs.	The	eventPtr	parameter	will
be	a	pointer	to	an	XEvent	structure	describing	the	event	being
processed.

KEYWORDS

callback,	class

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	2000	Ajuba	Solutions.

Tcl_Interp	*interp	(in)

char	*version	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	TkInitStubs

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tk_InitStubs	-	initialize	the	Tk	stubs	mechanism

SYNOPSIS
#include	<tk.h>
const	char	*
Tk_InitStubs(interp,	version,	exact)

ARGUMENTS
INTRODUCTION

1)
2)
2)
3)

DESCRIPTION
SEE	ALSO
KEYWORDS

NAME

Tk_InitStubs	-	initialize	the	Tk	stubs	mechanism

SYNOPSIS

#include	<tk.h>
const	char	*
Tk_InitStubs(interp,	version,	exact)

ARGUMENTS

Tcl	interpreter	handle.

A	version	string	consisting
of	one	or	more	decimal

int	exact	(in)

numbers	separated	by
dots.

Non-zero	means	that	only
the	particular	Tk	version
specified	by	version	is
acceptable.	Zero	means
that	versions	newer	than
version	are	also
acceptable	as	long	as	they
have	the	same	major
version	number	as	version.

INTRODUCTION

The	Tcl	stubs	mechanism	defines	a	way	to	dynamically	bind	extensions
to	a	particular	Tcl	implementation	at	run	time.	the	stubs	mechanism
requires	no	changes	to	applications	incoporating	Tcl/Tk	interpreters.
Only	developers	creating	C-based	Tcl/Tk	extensions	need	to	take	steps
to	use	the	stubs	mechanism	with	their	extensions.	See	the
Tcl_InitStubs	page	for	more	information.

Enabling	the	stubs	mechanism	for	a	Tcl/Tk	extension	requires	the
following	steps:

1)
Call	Tcl_InitStubs	in	the	extension	before	calling	any	other	Tcl
functions.

2)
Call	Tk_InitStubs	if	the	extension	before	calling	any	other	Tk
functions.

2)
Define	the	USE_TCL_STUBS	symbol.	Typically,	you	would	include
the	-DUSE_TCL_STUBS	flag	when	compiling	the	extension.

3)
Link	the	extension	with	the	Tcl	and	Tk	stubs	libraries	instead	of	the
standard	Tcl	and	Tk	libraries.	On	Unix	platforms,	the	library	names
are	libtclstub8.4.a	and	libtkstub8.4.a;	on	Windows	platforms,	the
library	names	are	tclstub84.lib	and	tkstub84.lib	(adjust	names	with
appropriate	version	number).

DESCRIPTION

Tk_InitStubs	attempts	to	initialize	the	Tk	stub	table	pointers	and	ensure
that	the	correct	version	of	Tk	is	loaded.	In	addition	to	an	interpreter
handle,	it	accepts	as	arguments	a	version	number	and	a	Boolean	flag
indicating	whether	the	extension	requires	an	exact	version	match	or	not.
If	exact	is	0,	then	the	extension	is	indicating	that	newer	versions	of	Tk
are	acceptable	as	long	as	they	have	the	same	major	version	number	as
version;	non-zero	means	that	only	the	specified	version	is	acceptable.
Tcl_InitStubs	returns	a	string	containing	the	actual	version	of	Tk
satisfying	the	request,	or	NULL	if	the	Tk	version	is	not	acceptable,	does
not	support	the	stubs	mechanism,	or	any	other	error	condition	occurred.

SEE	ALSO

Tcl_InitStubs

KEYWORDS

stubs

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1999	Scriptics	Corporation

Tk_Window	tkwin	(in)

int	reqWidth	(in)

int	reqHeight	(in)

int	widthInc	(in)

int	heightInc	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	SetGrid

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tk_SetGrid,	Tk_UnsetGrid	-	control	the	grid	for	interactive	resizing

SYNOPSIS

#include	<tk.h>
Tk_SetGrid(tkwin,	reqWidth,	reqHeight,	widthInc,	heightInc)
Tk_UnsetGrid(tkwin)

ARGUMENTS

Token	for	window.

Width	in	grid	units	that
corresponds	to	the	pixel
dimension	tkwin	has
requested	via
Tk_GeometryRequest.

Height	in	grid	units	that
corresponds	to	the	pixel
dimension	tkwin	has
requested	via
Tk_GeometryRequest.

Width	of	one	grid	unit,	in
pixels.

Height	of	one	grid	unit,	in
pixels.

DESCRIPTION

Tk_SetGrid	turns	on	gridded	geometry	management	for	tkwin's	toplevel
window	and	specifies	the	geometry	of	the	grid.	Tk_SetGrid	is	typically
invoked	by	a	widget	when	its	setGrid	option	is	true.	It	restricts
interactive	resizing	of	tkwin's	toplevel	window	so	that	the	space
allocated	to	the	toplevel	is	equal	to	its	requested	size	plus	or	minus
even	multiples	of	widthInc	and	heightInc.	Furthermore,	the	reqWidth
and	reqHeight	values	are	passed	to	the	window	manager	so	that	it	can
report	the	window's	size	in	grid	units	during	interactive	resizes.	If	tkwin's
configuration	changes	(e.g.,	the	size	of	a	grid	unit	changes)	then	the
widget	should	invoke	Tk_SetGrid	again	with	the	new	information.

Tk_UnsetGrid	cancels	gridded	geometry	management	for	tkwin's
toplevel	window.

For	each	toplevel	window	there	can	be	at	most	one	internal	window	with
gridding	enabled.	If	Tk_SetGrid	or	Tk_UnsetGrid	is	invoked	when
some	other	window	is	already	controlling	gridding	for	tkwin's	toplevel,
the	calls	for	the	new	window	have	no	effect.

See	the	wm	manual	entry	for	additional	information	on	gridded
geometry	management.

KEYWORDS

grid,	window,	window	manager

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990-1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tk_Window	tkwin	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	GeomReq

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tk_GeometryRequest,	Tk_SetMinimumRequestSize,
Tk_SetInternalBorder,	Tk_SetInternalBorderEx	-	specify
desired	geometry	or	internal	border	for	a	window

SYNOPSIS
#include	<tk.h>
Tk_GeometryRequest(tkwin,	reqWidth,	reqHeight)
Tk_SetMinimumRequestSize(tkwin,	minWidth,	minHeight)
Tk_SetInternalBorder(tkwin,	width)
Tk_SetInternalBorderEx(tkwin,	left,	right,	top,	bottom)

ARGUMENTS
DESCRIPTION
KEYWORDS

NAME

Tk_GeometryRequest,	Tk_SetMinimumRequestSize,
Tk_SetInternalBorder,	Tk_SetInternalBorderEx	-	specify	desired
geometry	or	internal	border	for	a	window

SYNOPSIS

#include	<tk.h>
Tk_GeometryRequest(tkwin,	reqWidth,	reqHeight)
Tk_SetMinimumRequestSize(tkwin,	minWidth,	minHeight)
Tk_SetInternalBorder(tkwin,	width)
Tk_SetInternalBorderEx(tkwin,	left,	right,	top,	bottom)

ARGUMENTS

Window	for	which
geometry	is	being

int	reqWidth	(in)

int	reqHeight	(in)

int	minWidth	(in)

int	minHeight	(in)

int	width	(in)

int	left	(in)

int	right	(in)

int	top	(in)

int	bottom	(in)

requested.

Desired	width	for	tkwin,	in
pixel	units.

Desired	height	for	tkwin,	in
pixel	units.

Desired	minimum
requested	width	for	tkwin,
in	pixel	units.

Desired	minimum
requested	height	for	tkwin,
in	pixel	units.

Space	to	leave	for	internal
border	for	tkwin,	in	pixel
units.

Space	to	leave	for	left	side
of	internal	border	for	tkwin,
in	pixel	units.

Space	to	leave	for	right
side	of	internal	border	for
tkwin,	in	pixel	units.

Space	to	leave	for	top	side
of	internal	border	for	tkwin,
in	pixel	units.

Space	to	leave	for	bottom
side	of	internal	border	for
tkwin,	in	pixel	units.

DESCRIPTION

Tk_GeometryRequest	is	called	by	widget	code	to	indicate	its
preference	for	the	dimensions	of	a	particular	window.	The	arguments	to
Tk_GeometryRequest	are	made	available	to	the	geometry	manager
for	the	window,	which	then	decides	on	the	actual	geometry	for	the
window.	Although	geometry	managers	generally	try	to	satisfy	requests
made	to	Tk_GeometryRequest,	there	is	no	guarantee	that	this	will
always	be	possible.	Widget	code	should	not	assume	that	a	geometry
request	will	be	satisfied	until	it	receives	a	ConfigureNotify	event
indicating	that	the	geometry	change	has	occurred.	Widget	code	should
never	call	procedures	like	Tk_ResizeWindow	directly.	Instead,	it	should
invoke	Tk_GeometryRequest	and	leave	the	final	geometry	decisions	to
the	geometry	manager.

If	tkwin	is	a	top-level	window,	then	the	geometry	information	will	be
passed	to	the	window	manager	using	the	standard	ICCCM	protocol.

Tk_SetInternalBorder	is	called	by	widget	code	to	indicate	that	the
widget	has	an	internal	border.	This	means	that	the	widget	draws	a
decorative	border	inside	the	window	instead	of	using	the	standard	X
borders,	which	are	external	to	the	window's	area.	For	example,	internal
borders	are	used	to	draw	3-D	effects.	Width	specifies	the	width	of	the
border	in	pixels.	Geometry	managers	will	use	this	information	to	avoid
placing	any	children	of	tkwin	overlapping	the	outermost	width	pixels	of
tkwin's	area.

Tk_SetInternalBorderEx	works	like	Tk_SetInternalBorder	but	lets	you
specify	different	widths	for	different	sides	of	the	window.

Tk_SetMinimumRequestSize	is	called	by	widget	code	to	indicate	that
a	geometry	manager	should	request	at	least	this	size	for	the	widget.
This	allows	a	widget	to	have	some	control	over	its	size	when	a
propagating	geometry	manager	is	used	inside	it.

The	information	specified	in	calls	to	Tk_GeometryRequest,
Tk_SetMinimumRequestSize,	Tk_SetInternalBorder	and
Tk_SetInternalBorderEx	can	be	retrieved	using	the	macros

Tk_ReqWidth,	Tk_ReqHeight,	Tk_MinReqWidth,	Tk_MinReqHeight,
Tk_MinReqWidth,	Tk_InternalBorderLeft,	Tk_InternalBorderRight,
Tk_InternalBorderTop	and	Tk_InternalBorderBottom.	See	the
Tk_WindowId	manual	entry	for	details.

KEYWORDS

geometry,	request

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990-1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tk_Window	tkwin	(in)

unsigned	long	valueMask	(in)

XGCValues	*valuePtr	(in)

Display	*display	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	GetGC

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tk_GetGC,	Tk_FreeGC	-	maintain	database	of	read-only	graphics
contexts

SYNOPSIS

#include	<tk.h>
GC
Tk_GetGC(tkwin,	valueMask,	valuePtr)
Tk_FreeGC(display,	gc)

ARGUMENTS

Token	for	window	in	which
the	graphics	context	will
be	used.

Mask	of	bits	(such	as
GCForeground	or
GCStipple)	indicating
which	fields	of	*valuePtr
are	valid.

Pointer	to	structure
describing	the	desired
values	for	the	graphics
context.

Display	for	which	gc	was
allocated.

GC	gc	(in) X	identifier	for	graphics
context	that	is	no	longer
needed.	Must	have	been
allocated	by	Tk_GetGC.

DESCRIPTION

Tk_GetGC	and	Tk_FreeGC	manage	a	collection	of	graphics	contexts
being	used	by	an	application.	The	procedures	allow	graphics	contexts
to	be	shared,	thereby	avoiding	the	server	overhead	that	would	be
incurred	if	a	separate	GC	were	created	for	each	use.	Tk_GetGC	takes
arguments	describing	the	desired	graphics	context	and	returns	an	X
identifier	for	a	GC	that	fits	the	description.	The	graphics	context	that	is
returned	will	have	default	values	in	all	of	the	fields	not	specified
explicitly	by	valueMask	and	valuePtr.

Tk_GetGC	maintains	a	database	of	all	the	graphics	contexts	it	has
created.	Whenever	possible,	a	call	to	Tk_GetGC	will	return	an	existing
graphics	context	rather	than	creating	a	new	one.	This	approach	can
substantially	reduce	server	overhead,	so	Tk_GetGC	should	generally
be	used	in	preference	to	the	Xlib	procedure	XCreateGC,	which	creates
a	new	graphics	context	on	each	call.

Since	the	return	values	of	Tk_GetGC	are	shared,	callers	should	never
modify	the	graphics	contexts	returned	by	Tk_GetGC.	If	a	graphics
context	must	be	modified	dynamically,	then	it	should	be	created	by
calling	XCreateGC	instead	of	Tk_GetGC.

When	a	graphics	context	is	no	longer	needed,	Tk_FreeGC	should	be
called	to	release	it.	There	should	be	exactly	one	call	to	Tk_FreeGC	for
each	call	to	Tk_GetGC.	When	a	graphics	context	is	no	longer	in	use
anywhere	(i.e.	it	has	been	freed	as	many	times	as	it	has	been	gotten)
Tk_FreeGC	will	release	it	to	the	X	server	and	delete	it	from	the
database.

KEYWORDS

graphics	context

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tk_Canvas	canvas	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	CanvTxtInfo

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tk_CanvasTextInfo	-	additional	information	for	managing	text	items	in
canvases

SYNOPSIS

#include	<tk.h>
Tk_CanvasTextInfo	*
Tk_CanvasGetTextInfo(canvas)

ARGUMENTS

A	token	that	identifies	a
particular	canvas	widget.

DESCRIPTION

Textual	canvas	items	are	somewhat	more	complicated	to	manage	than
other	items,	due	to	things	like	the	selection	and	the	input	focus.
Tk_CanvasGetTextInfo	may	be	invoked	by	a	type	manager	to	obtain
additional	information	needed	for	items	that	display	text.	The	return
value	from	Tk_CanvasGetTextInfo	is	a	pointer	to	a	structure	that	is
shared	between	Tk	and	all	the	items	that	display	text.	The	structure	has
the	following	form:

typedef	struct	Tk_CanvasTextInfo	{

				Tk_3DBorder	selBorder;

				int	selBorderWidth;

				XColor	*selFgColorPtr;

				Tk_Item	*selItemPtr;

				int	selectFirst;

				int	selectLast;

				Tk_Item	*anchorItemPtr;

				int	selectAnchor;

				Tk_3DBorder	insertBorder;

				int	insertWidth;

				int	insertBorderWidth;

				Tk_Item	*focusItemPtr;

				int	gotFocus;

				int	cursorOn;

}	Tk_CanvasTextInfo;

The	selBorder	field	identifies	a	Tk_3DBorder	that	should	be	used	for
drawing	the	background	under	selected	text.	selBorderWidth	gives	the
width	of	the	raised	border	around	selected	text,	in	pixels.	selFgColorPtr
points	to	an	XColor	that	describes	the	foreground	color	to	be	used	when
drawing	selected	text.	selItemPtr	points	to	the	item	that	is	currently
selected,	or	NULL	if	there	is	no	item	selected	or	if	the	canvas	does	not
have	the	selection.	selectFirst	and	selectLast	give	the	indices	of	the	first
and	last	selected	characters	in	selItemPtr,	as	returned	by	the	indexProc
for	that	item.	anchorItemPtr	points	to	the	item	that	currently	has	the
selection	anchor;	this	is	not	necessarily	the	same	as	selItemPtr.
selectAnchor	is	an	index	that	identifies	the	anchor	position	within
anchorItemPtr.	insertBorder	contains	a	Tk_3DBorder	to	use	when
drawing	the	insertion	cursor;	insertWidth	gives	the	total	width	of	the
insertion	cursor	in	pixels,	and	insertBorderWidth	gives	the	width	of	the
raised	border	around	the	insertion	cursor.	focusItemPtr	identifies	the
item	that	currently	has	the	input	focus,	or	NULL	if	there	is	no	such	item.
gotFocus	is	1	if	the	canvas	widget	has	the	input	focus	and	0	otherwise.
cursorOn	is	1	if	the	insertion	cursor	should	be	drawn	in	focusItemPtr
and	0	if	it	should	not	be	drawn;	this	field	is	toggled	on	and	off	by	Tk	to
make	the	cursor	blink.

The	structure	returned	by	Tk_CanvasGetTextInfo	is	shared	between
Tk	and	the	type	managers;	typically	the	type	manager	calls

Tk_CanvasGetTextInfo	once	when	an	item	is	created	and	then	saves
the	pointer	in	the	item's	record.	Tk	will	update	information	in	the
Tk_CanvasTextInfo;	for	example,	a	configure	widget	command	might
change	the	selBorder	field,	or	a	select	widget	command	might	change
the	selectFirst	field,	or	Tk	might	change	cursorOn	in	order	to	make	the
insertion	cursor	flash	on	and	off	during	successive	redisplays.

Type	managers	should	treat	all	of	the	fields	of	the	Tk_CanvasTextInfo
structure	as	read-only,	except	for	selItemPtr,	selectFirst,	selectLast,	and
selectAnchor.	Type	managers	may	change	selectFirst,	selectLast,	and
selectAnchor	to	adjust	for	insertions	and	deletions	in	the	item	(but	only
if	the	item	is	the	current	owner	of	the	selection	or	anchor,	as	determined
by	selItemPtr	or	anchorItemPtr).	If	all	of	the	selected	text	in	the	item	is
deleted,	the	item	should	set	selItemPtr	to	NULL	to	indicate	that	there	is
no	longer	a	selection.

KEYWORDS

canvas,	focus,	insertion	cursor,	selection,	selection	anchor,	text

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	ConfigWidg

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tk_ConfigureWidget,	Tk_ConfigureInfo,	Tk_ConfigureValue,
Tk_FreeOptions	-	process	configuration	options	for	widgets

SYNOPSIS
#include	<tk.h>
int
Tk_ConfigureWidget(interp,	tkwin,	specs,	argc,	argv,
widgRec,	flags)
int
Tk_ConfigureInfo(interp,	tkwin,	specs,	widgRec,	argvName,
flags)
int
Tk_ConfigureValue(interp,	tkwin,	specs,	widgRec,	argvName,
flags)
Tk_FreeOptions(specs,	widgRec,	display,	flags)

ARGUMENTS
DESCRIPTION

TK_CONFIG_ACTIVE_CURSOR
TK_CONFIG_ANCHOR
TK_CONFIG_BITMAP
TK_CONFIG_BOOLEAN
TK_CONFIG_BORDER
TK_CONFIG_CAP_STYLE
TK_CONFIG_COLOR
TK_CONFIG_CURSOR
TK_CONFIG_CUSTOM
TK_CONFIG_DOUBLE
TK_CONFIG_END
TK_CONFIG_FONT
TK_CONFIG_INT
TK_CONFIG_JOIN_STYLE

TK_CONFIG_JUSTIFY
TK_CONFIG_MM
TK_CONFIG_PIXELS
TK_CONFIG_RELIEF
TK_CONFIG_STRING
TK_CONFIG_SYNONYM
TK_CONFIG_UID
TK_CONFIG_WINDOW

GROUPED	ENTRIES
FLAGS

TK_CONFIG_COLOR_ONLY
TK_CONFIG_MONO_ONLY
TK_CONFIG_NULL_OK
TK_CONFIG_DONT_SET_DEFAULT
TK_CONFIG_OPTION_SPECIFIED

TK_OFFSET
TK_CONFIGUREINFO
TK_CONFIGUREVALUE
TK_FREEOPTIONS
CUSTOM	OPTION	TYPES
EXAMPLES
SEE	ALSO
KEYWORDS

NAME

Tk_ConfigureWidget,	Tk_ConfigureInfo,	Tk_ConfigureValue,
Tk_FreeOptions	-	process	configuration	options	for	widgets

SYNOPSIS

#include	<tk.h>
int
Tk_ConfigureWidget(interp,	tkwin,	specs,	argc,	argv,	widgRec,	flags)
int
Tk_ConfigureInfo(interp,	tkwin,	specs,	widgRec,	argvName,	flags)
int
Tk_ConfigureValue(interp,	tkwin,	specs,	widgRec,	argvName,	flags)

Tcl_Interp	*interp	(in)

Tk_Window	tkwin	(in)

Tk_ConfigSpec	*specs	(in)

int	argc	(in)

const	char	**argv	(in)

char	*widgRec	(in/out)

int	flags	(in)

Tk_FreeOptions(specs,	widgRec,	display,	flags)

ARGUMENTS

Interpreter	to	use	for
returning	error	messages.

Window	used	to	represent
widget	(needed	to	set	up	X
resources).

Pointer	to	table	specifying
legal	configuration	options
for	this	widget.

Number	of	arguments	in
argv.

Command-line	options	for
configuring	widget.

Points	to	widget	record
structure.	Fields	in	this
structure	get	modified	by
Tk_ConfigureWidget	to
hold	configuration
information.

If	non-zero,	then	it
specifies	an	OR-ed
combination	of	flags	that
control	the	processing	of
configuration	information.
TK_CONFIG_ARGV_ONLY
causes	the	option
database	and	defaults	to
be	ignored,	and	flag	bits

type	name	type	(in)

field	name	field	(in)

const	char	*argvName	(in)

Display	*display	(in)

TK_CONFIG_USER_BIT
and	higher	are	used	to
selectively	disable	entries
in	specs.

The	name	of	the	type	of	a
widget	record.

The	name	of	a	field	in
records	of	type	type.

The	name	used	on	Tcl
command	lines	to	refer	to
a	particular	option	(e.g.
when	creating	a	widget	or
invoking	the	configure
widget	command).	If	non-
NULL,	then	information	is
returned	only	for	this
option.	If	NULL,	then
information	is	returned	for
all	available	options.

Display	containing	widget
whose	record	is	being
freed;	needed	in	order	to
free	up	resources.

DESCRIPTION

Note:	Tk_ConfigureWidget	should	be	replaced	with	the	new	Tcl_Obj
based	API	Tk_SetOptions.	The	old	interface	is	retained	for	backward
compatibility.

Tk_ConfigureWidget	is	called	to	configure	various	aspects	of	a	widget,
such	as	colors,	fonts,	border	width,	etc.	It	is	intended	as	a	convenience

procedure	to	reduce	the	amount	of	code	that	must	be	written	in
individual	widget	managers	to	handle	configuration	information.	It	is
typically	invoked	when	widgets	are	created,	and	again	when	the
configure	command	is	invoked	for	a	widget.	Although	intended
primarily	for	widgets,	Tk_ConfigureWidget	can	be	used	in	other
situations	where	argc-argv	information	is	to	be	used	to	fill	in	a	record
structure,	such	as	configuring	graphical	elements	for	a	canvas	widget	or
entries	of	a	menu.

Tk_ConfigureWidget	processes	a	table	specifying	the	configuration
options	that	are	supported	(specs)	and	a	collection	of	command-line
arguments	(argc	and	argv)	to	fill	in	fields	of	a	record	(widgRec).	It	uses
the	option	database	and	defaults	specified	in	specs	to	fill	in	fields	of
widgRec	that	are	not	specified	in	argv.	Tk_ConfigureWidget	normally
returns	the	value	TCL_OK;	in	this	case	it	does	not	modify	interp.	If	an
error	occurs	then	TCL_ERROR	is	returned	and	Tk_ConfigureWidget
will	leave	an	error	message	in	interp->result	in	the	standard	Tcl	fashion.
In	the	event	of	an	error	return,	some	of	the	fields	of	widgRec	could
already	have	been	set,	if	configuration	information	for	them	was
successfully	processed	before	the	error	occurred.	The	other	fields	will
be	set	to	reasonable	initial	values	so	that	Tk_FreeOptions	can	be
called	for	cleanup.

The	specs	array	specifies	the	kinds	of	configuration	options	expected
by	the	widget.	Each	of	its	entries	specifies	one	configuration	option	and
has	the	following	structure:

typedef	struct	{

				int	type;

				char	*argvName;

				char	*dbName;

				char	*dbClass;

				char	*defValue;

				int	offset;

				int	specFlags;

				Tk_CustomOption	*customPtr;

}	Tk_ConfigSpec;

The	type	field	indicates	what	type	of	configuration	option	this	is	(e.g.
TK_CONFIG_COLOR	for	a	color	value,	or	TK_CONFIG_INT	for	an
integer	value).	The	type	field	indicates	how	to	use	the	value	of	the
option	(more	on	this	below).	The	argvName	field	is	a	string	such	as	“-
font”	or	“-bg”,	which	is	compared	with	the	values	in	argv	(if	argvName	is
NULL	it	means	this	is	a	grouped	entry;	see	GROUPED	ENTRIES
below).	The	dbName	and	dbClass	fields	are	used	to	look	up	a	value	for
this	option	in	the	option	database.	The	defValue	field	specifies	a	default
value	for	this	configuration	option	if	no	value	is	specified	in	either	argv
or	the	option	database.	Offset	indicates	where	in	widgRec	to	store
information	about	this	option,	and	specFlags	contains	additional
information	to	control	the	processing	of	this	configuration	option	(see
FLAGS	below).	The	last	field,	customPtr,	is	only	used	if	type	is
TK_CONFIG_CUSTOM;	see	CUSTOM	OPTION	TYPES	below.

Tk_ConfigureWidget	first	processes	argv	to	see	which	(if	any)
configuration	options	are	specified	there.	Argv	must	contain	an	even
number	of	fields;	the	first	of	each	pair	of	fields	must	match	the
argvName	of	some	entry	in	specs	(unique	abbreviations	are
acceptable),	and	the	second	field	of	the	pair	contains	the	value	for	that
configuration	option.	If	there	are	entries	in	spec	for	which	there	were	no
matching	entries	in	argv,	Tk_ConfigureWidget	uses	the	dbName	and
dbClass	fields	of	the	specs	entry	to	probe	the	option	database;	if	a
value	is	found,	then	it	is	used	as	the	value	for	the	option.	Finally,	if	no
entry	is	found	in	the	option	database,	the	defValue	field	of	the	specs
entry	is	used	as	the	value	for	the	configuration	option.	If	the	defValue	is
NULL,	or	if	the	TK_CONFIG_DONT_SET_DEFAULT	bit	is	set	in	flags,
then	there	is	no	default	value	and	this	specs	entry	will	be	ignored	if	no
value	is	specified	in	argv	or	the	option	database.

Once	a	string	value	has	been	determined	for	a	configuration	option,
Tk_ConfigureWidget	translates	the	string	value	into	a	more	useful
form,	such	as	a	color	if	type	is	TK_CONFIG_COLOR	or	an	integer	if
type	is	TK_CONFIG_INT.	This	value	is	then	stored	in	the	record
pointed	to	by	widgRec.	This	record	is	assumed	to	contain	information
relevant	to	the	manager	of	the	widget;	its	exact	type	is	unknown	to

Tk_ConfigureWidget.	The	offset	field	of	each	specs	entry	indicates
where	in	widgRec	to	store	the	information	about	this	configuration
option.	You	should	use	the	Tk_Offset	macro	to	generate	offset	values
(see	below	for	a	description	of	Tk_Offset).	The	location	indicated	by
widgRec	and	offset	will	be	referred	to	as	the	“target”	in	the	descriptions
below.

The	type	field	of	each	entry	in	specs	determines	what	to	do	with	the
string	value	of	that	configuration	option.	The	legal	values	for	type,	and
the	corresponding	actions,	are:

TK_CONFIG_ACTIVE_CURSOR
The	value	must	be	an	ASCII	string	identifying	a	cursor	in	a	form
suitable	for	passing	to	Tk_GetCursor.	The	value	is	converted	to	a
Tk_Cursor	by	calling	Tk_GetCursor	and	the	result	is	stored	in	the
target.	In	addition,	the	resulting	cursor	is	made	the	active	cursor	for
tkwin	by	calling	XDefineCursor.	If	TK_CONFIG_NULL_OK	is
specified	in	specFlags	then	the	value	may	be	an	empty	string,	in
which	case	the	target	and	tkwin's	active	cursor	will	be	set	to	None.
If	the	previous	value	of	the	target	was	not	None,	then	it	is	freed	by
passing	it	to	Tk_FreeCursor.

TK_CONFIG_ANCHOR
The	value	must	be	an	ASCII	string	identifying	an	anchor	point	in
one	of	the	ways	accepted	by	Tk_GetAnchor.	The	string	is
converted	to	a	Tk_Anchor	by	calling	Tk_GetAnchor	and	the	result
is	stored	in	the	target.

TK_CONFIG_BITMAP
The	value	must	be	an	ASCII	string	identifying	a	bitmap	in	a	form
suitable	for	passing	to	Tk_GetBitmap.	The	value	is	converted	to	a
Pixmap	by	calling	Tk_GetBitmap	and	the	result	is	stored	in	the
target.	If	TK_CONFIG_NULL_OK	is	specified	in	specFlags	then
the	value	may	be	an	empty	string,	in	which	case	the	target	is	set	to
None.	If	the	previous	value	of	the	target	was	not	None,	then	it	is
freed	by	passing	it	to	Tk_FreeBitmap.

TK_CONFIG_BOOLEAN

The	value	must	be	an	ASCII	string	specifying	a	boolean	value.	Any
of	the	values	“true”,	“yes”,	“on”,	or	“1”,	or	an	abbreviation	of	one	of
these	values,	means	true;	any	of	the	values	“false”,	“no”,	“off”,	or
“0”,	or	an	abbreviation	of	one	of	these	values,	means	false.	The
target	is	expected	to	be	an	integer;	for	true	values	it	will	be	set	to	1
and	for	false	values	it	will	be	set	to	0.

TK_CONFIG_BORDER
The	value	must	be	an	ASCII	string	identifying	a	border	color	in	a
form	suitable	for	passing	to	Tk_Get3DBorder.	The	value	is
converted	to	a	(Tk_3DBorder	*)	by	calling	Tk_Get3DBorder	and
the	result	is	stored	in	the	target.	If	TK_CONFIG_NULL_OK	is
specified	in	specFlags	then	the	value	may	be	an	empty	string,	in
which	case	the	target	will	be	set	to	NULL.	If	the	previous	value	of
the	target	was	not	NULL,	then	it	is	freed	by	passing	it	to
Tk_Free3DBorder.

TK_CONFIG_CAP_STYLE
The	value	must	be	an	ASCII	string	identifying	a	cap	style	in	one	of
the	ways	accepted	by	Tk_GetCapStyle.	The	string	is	converted	to
an	integer	value	corresponding	to	the	cap	style	by	calling
Tk_GetCapStyle	and	the	result	is	stored	in	the	target.

TK_CONFIG_COLOR
The	value	must	be	an	ASCII	string	identifying	a	color	in	a	form
suitable	for	passing	to	Tk_GetColor.	The	value	is	converted	to	an
(XColor	*)	by	calling	Tk_GetColor	and	the	result	is	stored	in	the
target.	If	TK_CONFIG_NULL_OK	is	specified	in	specFlags	then
the	value	may	be	an	empty	string,	in	which	case	the	target	will	be
set	to	None.	If	the	previous	value	of	the	target	was	not	NULL,	then
it	is	freed	by	passing	it	to	Tk_FreeColor.

TK_CONFIG_CURSOR
This	option	is	identical	to	TK_CONFIG_ACTIVE_CURSOR	except
that	the	new	cursor	is	not	made	the	active	one	for	tkwin.

TK_CONFIG_CUSTOM
This	option	allows	applications	to	define	new	option	types.	The

customPtr	field	of	the	entry	points	to	a	structure	defining	the	new
option	type.	See	the	section	CUSTOM	OPTION	TYPES	below	for
details.

TK_CONFIG_DOUBLE
The	value	must	be	an	ASCII	floating-point	number	in	the	format
accepted	by	strtol.	The	string	is	converted	to	a	double	value,	and
the	value	is	stored	in	the	target.

TK_CONFIG_END
Marks	the	end	of	the	table.	The	last	entry	in	specs	must	have	this
type;	all	of	its	other	fields	are	ignored	and	it	will	never	match	any
arguments.

TK_CONFIG_FONT
The	value	must	be	an	ASCII	string	identifying	a	font	in	a	form
suitable	for	passing	to	Tk_GetFont.	The	value	is	converted	to	a
Tk_Font	by	calling	Tk_GetFont	and	the	result	is	stored	in	the
target.	If	TK_CONFIG_NULL_OK	is	specified	in	specFlags	then
the	value	may	be	an	empty	string,	in	which	case	the	target	will	be
set	to	NULL.	If	the	previous	value	of	the	target	was	not	NULL,	then
it	is	freed	by	passing	it	to	Tk_FreeFont.

TK_CONFIG_INT
The	value	must	be	an	ASCII	integer	string	in	the	format	accepted
by	strtol	(e.g.	“0”	and	“0x”	prefixes	may	be	used	to	specify	octal	or
hexadecimal	numbers,	respectively).	The	string	is	converted	to	an
integer	value	and	the	integer	is	stored	in	the	target.

TK_CONFIG_JOIN_STYLE
The	value	must	be	an	ASCII	string	identifying	a	join	style	in	one	of
the	ways	accepted	by	Tk_GetJoinStyle.	The	string	is	converted	to
an	integer	value	corresponding	to	the	join	style	by	calling
Tk_GetJoinStyle	and	the	result	is	stored	in	the	target.

TK_CONFIG_JUSTIFY
The	value	must	be	an	ASCII	string	identifying	a	justification	method
in	one	of	the	ways	accepted	by	Tk_GetJustify.	The	string	is

converted	to	a	Tk_Justify	by	calling	Tk_GetJustify	and	the	result
is	stored	in	the	target.

TK_CONFIG_MM
The	value	must	specify	a	screen	distance	in	one	of	the	forms
acceptable	to	Tk_GetScreenMM.	The	string	is	converted	to
double-precision	floating-point	distance	in	millimeters	and	the	value
is	stored	in	the	target.

TK_CONFIG_PIXELS
The	value	must	specify	screen	units	in	one	of	the	forms	acceptable
to	Tk_GetPixels.	The	string	is	converted	to	an	integer	distance	in
pixels	and	the	value	is	stored	in	the	target.

TK_CONFIG_RELIEF
The	value	must	be	an	ASCII	string	identifying	a	relief	in	a	form
suitable	for	passing	to	Tk_GetRelief.	The	value	is	converted	to	an
integer	relief	value	by	calling	Tk_GetRelief	and	the	result	is	stored
in	the	target.

TK_CONFIG_STRING
A	copy	of	the	value	is	made	by	allocating	memory	space	with
Tcl_Alloc	and	copying	the	value	into	the	dynamically-allocated
space.	A	pointer	to	the	new	string	is	stored	in	the	target.	If
TK_CONFIG_NULL_OK	is	specified	in	specFlags	then	the	value
may	be	an	empty	string,	in	which	case	the	target	will	be	set	to
NULL.	If	the	previous	value	of	the	target	was	not	NULL,	then	it	is
freed	by	passing	it	to	Tcl_Free.

TK_CONFIG_SYNONYM
This	type	value	identifies	special	entries	in	specs	that	are
synonyms	for	other	entries.	If	an	argv	value	matches	the	argvName
of	a	TK_CONFIG_SYNONYM	entry,	the	entry	is	not	used	directly.
Instead,	Tk_ConfigureWidget	searches	specs	for	another	entry
whose	argvName	is	the	same	as	the	dbName	field	in	the
TK_CONFIG_SYNONYM	entry;	this	new	entry	is	used	just	as	if	its
argvName	had	matched	the	argv	value.	The	synonym	mechanism
allows	multiple	argv	values	to	be	used	for	a	single	configuration

option,	such	as	“-background”	and	“-bg”.

TK_CONFIG_UID
The	value	is	translated	to	a	Tk_Uid	(by	passing	it	to	Tk_GetUid).
The	resulting	value	is	stored	in	the	target.	If
TK_CONFIG_NULL_OK	is	specified	in	specFlags	and	the	value	is
an	empty	string	then	the	target	will	be	set	to	NULL.

TK_CONFIG_WINDOW
The	value	must	be	a	window	path	name.	It	is	translated	to	a
Tk_Window	token	and	the	token	is	stored	in	the	target.

GROUPED	ENTRIES

In	some	cases	it	is	useful	to	generate	multiple	resources	from	a	single
configuration	value.	For	example,	a	color	name	might	be	used	both	to
generate	the	background	color	for	a	widget	(using
TK_CONFIG_COLOR)	and	to	generate	a	3-D	border	to	draw	around
the	widget	(using	TK_CONFIG_BORDER).	In	cases	like	this	it	is
possible	to	specify	that	several	consecutive	entries	in	specs	are	to	be
treated	as	a	group.	The	first	entry	is	used	to	determine	a	value	(using
its	argvName,	dbName,	dbClass,	and	defValue	fields).	The	value	will	be
processed	several	times	(one	for	each	entry	in	the	group),	generating
multiple	different	resources	and	modifying	multiple	targets	within
widgRec.	Each	of	the	entries	after	the	first	must	have	a	NULL	value	in
its	argvName	field;	this	indicates	that	the	entry	is	to	be	grouped	with	the
entry	that	precedes	it.	Only	the	type	and	offset	fields	are	used	from
these	follow-on	entries.

FLAGS

The	flags	argument	passed	to	Tk_ConfigureWidget	is	used	in
conjunction	with	the	specFlags	fields	in	the	entries	of	specs	to	provide
additional	control	over	the	processing	of	configuration	options.	These
values	are	used	in	three	different	ways	as	described	below.

First,	if	the	flags	argument	to	Tk_ConfigureWidget	has	the
TK_CONFIG_ARGV_ONLY	bit	set	(i.e.,	flags	|

TK_CONFIG_ARGV_ONLY	!=	0),	then	the	option	database	and
defValue	fields	are	not	used.	In	this	case,	if	an	entry	in	specs	does	not
match	a	field	in	argv	then	nothing	happens:	the	corresponding	target	is
not	modified.	This	feature	is	useful	when	the	goal	is	to	modify	certain
configuration	options	while	leaving	others	in	their	current	state,	such	as
when	a	configure	widget	command	is	being	processed.

Second,	the	specFlags	field	of	an	entry	in	specs	may	be	used	to	control
the	processing	of	that	entry.	Each	specFlags	field	may	consists	of	an
OR-ed	combination	of	the	following	values:

TK_CONFIG_COLOR_ONLY
If	this	bit	is	set	then	the	entry	will	only	be	considered	if	the	display
for	tkwin	has	more	than	one	bit	plane.	If	the	display	is
monochromatic	then	this	specs	entry	will	be	ignored.

TK_CONFIG_MONO_ONLY
If	this	bit	is	set	then	the	entry	will	only	be	considered	if	the	display
for	tkwin	has	exactly	one	bit	plane.	If	the	display	is	not
monochromatic	then	this	specs	entry	will	be	ignored.

TK_CONFIG_NULL_OK
This	bit	is	only	relevant	for	some	types	of	entries	(see	the
descriptions	of	the	various	entry	types	above).	If	this	bit	is	set,	it
indicates	that	an	empty	string	value	for	the	field	is	acceptable	and	if
it	occurs	then	the	target	should	be	set	to	NULL	or	None,	depending
on	the	type	of	the	target.	This	flag	is	typically	used	to	allow	a
feature	to	be	turned	off	entirely,	e.g.	set	a	cursor	value	to	None	so
that	a	window	simply	inherits	its	parent's	cursor.	If	this	bit	is	not	set
then	empty	strings	are	processed	as	strings,	which	generally
results	in	an	error.

TK_CONFIG_DONT_SET_DEFAULT
If	this	bit	is	one,	it	means	that	the	defValue	field	of	the	entry	should
only	be	used	for	returning	the	default	value	in	Tk_ConfigureInfo.
In	calls	to	Tk_ConfigureWidget	no	default	will	be	supplied	for
entries	with	this	flag	set;	it	is	assumed	that	the	caller	has	already
supplied	a	default	value	in	the	target	location.	This	flag	provides	a

performance	optimization	where	it	is	expensive	to	process	the
default	string:	the	client	can	compute	the	default	once,	save	the
value,	and	provide	it	before	calling	Tk_ConfigureWidget.

TK_CONFIG_OPTION_SPECIFIED
This	bit	is	deprecated.	It	used	to	be	set	and	cleared	by
Tk_ConfigureWidget	so	that	callers	could	detect	what	entries
were	specified	in	argv,	but	it	was	removed	because	it	was
inherently	thread-unsafe.	Code	that	wishes	to	detect	what	options
were	specified	should	use	Tk_SetOptions	instead.

The	TK_CONFIG_MONO_ONLY	and	TK_CONFIG_COLOR_ONLY
flags	are	typically	used	to	specify	different	default	values	for
monochrome	and	color	displays.	This	is	done	by	creating	two	entries	in
specs	that	are	identical	except	for	their	defValue	and	specFlags	fields.
One	entry	should	have	the	value	TK_CONFIG_MONO_ONLY	in	its
specFlags	and	the	default	value	for	monochrome	displays	in	its
defValue;	the	other	entry	should	have	the	value
TK_CONFIG_COLOR_ONLY	in	its	specFlags	and	the	appropriate
defValue	for	color	displays.

Third,	it	is	possible	to	use	flags	and	specFlags	together	to	selectively
disable	some	entries.	This	feature	is	not	needed	very	often.	It	is	useful
in	cases	where	several	similar	kinds	of	widgets	are	implemented	in	one
place.	It	allows	a	single	specs	table	to	be	created	with	all	the
configuration	options	for	all	the	widget	types.	When	processing	a
particular	widget	type,	only	entries	relevant	to	that	type	will	be	used.
This	effect	is	achieved	by	setting	the	high-order	bits	(those	in	positions
equal	to	or	greater	than	TK_CONFIG_USER_BIT)	in	specFlags	values
or	in	flags.	In	order	for	a	particular	entry	in	specs	to	be	used,	its	high-
order	bits	must	match	exactly	the	high-order	bits	of	the	flags	value
passed	to	Tk_ConfigureWidget.	If	a	specs	table	is	being	used	for	N
different	widget	types,	then	N	of	the	high-order	bits	will	be	used.	Each
specs	entry	will	have	one	of	more	of	those	bits	set	in	its	specFlags	field
to	indicate	the	widget	types	for	which	this	entry	is	valid.	When	calling
Tk_ConfigureWidget,	flags	will	have	a	single	one	of	these	bits	set	to
select	the	entries	for	the	desired	widget	type.	For	a	working	example	of
this	feature,	see	the	code	in	tkButton.c.

TK_OFFSET

The	Tk_Offset	macro	is	provided	as	a	safe	way	of	generating	the	offset
values	for	entries	in	Tk_ConfigSpec	structures.	It	takes	two	arguments:
the	name	of	a	type	of	record,	and	the	name	of	a	field	in	that	record.	It
returns	the	byte	offset	of	the	named	field	in	records	of	the	given	type.

TK_CONFIGUREINFO

The	Tk_ConfigureInfo	procedure	may	be	used	to	obtain	information
about	one	or	all	of	the	options	for	a	given	widget.	Given	a	token	for	a
window	(tkwin),	a	table	describing	the	configuration	options	for	a	class
of	widgets	(specs),	a	pointer	to	a	widget	record	containing	the	current
information	for	a	widget	(widgRec),	and	a	NULL	argvName	argument,
Tk_ConfigureInfo	generates	a	string	describing	all	of	the	configuration
options	for	the	window.	The	string	is	placed	in	interp->result.	Under
normal	circumstances	it	returns	TCL_OK;	if	an	error	occurs	then	it
returns	TCL_ERROR	and	interp->result	contains	an	error	message.

If	argvName	is	NULL,	then	the	value	left	in	interp->result	by
Tk_ConfigureInfo	consists	of	a	list	of	one	or	more	entries,	each	of
which	describes	one	configuration	option	(i.e.	one	entry	in	specs).	Each
entry	in	the	list	will	contain	either	two	or	five	values.	If	the	corresponding
entry	in	specs	has	type	TK_CONFIG_SYNONYM,	then	the	list	will
contain	two	values:	the	argvName	for	the	entry	and	the	dbName
(synonym	name).	Otherwise	the	list	will	contain	five	values:	argvName,
dbName,	dbClass,	defValue,	and	current	value.	The	current	value	is
computed	from	the	appropriate	field	of	widgRec	by	calling	procedures
like	Tk_NameOfColor.

If	the	argvName	argument	to	Tk_ConfigureInfo	is	non-NULL,	then	it
indicates	a	single	option,	and	information	is	returned	only	for	that
option.	The	string	placed	in	interp->result	will	be	a	list	containing	two	or
five	values	as	described	above;	this	will	be	identical	to	the
corresponding	sublist	that	would	have	been	returned	if	argvName	had
been	NULL.

The	flags	argument	to	Tk_ConfigureInfo	is	used	to	restrict	the	specs
entries	to	consider,	just	as	for	Tk_ConfigureWidget.

TK_CONFIGUREVALUE

Tk_ConfigureValue	takes	arguments	similar	to	Tk_ConfigureInfo;
instead	of	returning	a	list	of	values,	it	just	returns	the	current	value	of
the	option	given	by	argvName	(argvName	must	not	be	NULL).	The
value	is	returned	in	interp->result	and	TCL_OK	is	normally	returned	as
the	procedure's	result.	If	an	error	occurs	in	Tk_ConfigureValue	(e.g.,
argvName	is	not	a	valid	option	name),	TCL_ERROR	is	returned	and	an
error	message	is	left	in	interp->result.	This	procedure	is	typically	called
to	implement	cget	widget	commands.

TK_FREEOPTIONS

The	Tk_FreeOptions	procedure	may	be	invoked	during	widget	cleanup
to	release	all	of	the	resources	associated	with	configuration	options.	It
scans	through	specs	and	for	each	entry	corresponding	to	a	resource
that	must	be	explicitly	freed	(e.g.	those	with	type
TK_CONFIG_COLOR),	it	frees	the	resource	in	the	widget	record.	If	the
field	in	the	widget	record	does	not	refer	to	a	resource	(e.g.	it	contains	a
null	pointer)	then	no	resource	is	freed	for	that	entry.	After	freeing	a
resource,	Tk_FreeOptions	sets	the	corresponding	field	of	the	widget
record	to	null.

CUSTOM	OPTION	TYPES

Applications	can	extend	the	built-in	configuration	types	with	additional
configuration	types	by	writing	procedures	to	parse	and	print	options	of
the	a	type	and	creating	a	structure	pointing	to	those	procedures:

typedef	struct	Tk_CustomOption	{

				Tk_OptionParseProc	*parseProc;

				Tk_OptionPrintProc	*printProc;

				ClientData	clientData;

}	Tk_CustomOption;

typedef	int	Tk_OptionParseProc(

				ClientData	clientData,

				Tcl_Interp	*interp,

				Tk_Window	tkwin,

				char	*value,

				char	*widgRec,

				int	offset);

typedef	char	*Tk_OptionPrintProc(

				ClientData	clientData,

				Tk_Window	tkwin,

				char	*widgRec,

				int	offset,

				Tcl_FreeProc	**freeProcPtr);

The	Tk_CustomOption	structure	contains	three	fields,	which	are
pointers	to	the	two	procedures	and	a	clientData	value	to	be	passed	to
those	procedures	when	they	are	invoked.	The	clientData	value	typically
points	to	a	structure	containing	information	that	is	needed	by	the
procedures	when	they	are	parsing	and	printing	options.

The	parseProc	procedure	is	invoked	by	Tk_ConfigureWidget	to	parse
a	string	and	store	the	resulting	value	in	the	widget	record.	The
clientData	argument	is	a	copy	of	the	clientData	field	in	the
Tk_CustomOption	structure.	The	interp	argument	points	to	a	Tcl
interpreter	used	for	error	reporting.	Tkwin	is	a	copy	of	the	tkwin
argument	to	Tk_ConfigureWidget.	The	value	argument	is	a	string
describing	the	value	for	the	option;	it	could	have	been	specified
explicitly	in	the	call	to	Tk_ConfigureWidget	or	it	could	come	from	the
option	database	or	a	default.	Value	will	never	be	a	null	pointer	but	it
may	point	to	an	empty	string.	RecordPtr	is	the	same	as	the	widgRec
argument	to	Tk_ConfigureWidget;	it	points	to	the	start	of	the	widget
record	to	modify.	The	last	argument,	offset,	gives	the	offset	in	bytes
from	the	start	of	the	widget	record	to	the	location	where	the	option	value
is	to	be	placed.	The	procedure	should	translate	the	string	to	whatever

form	is	appropriate	for	the	option	and	store	the	value	in	the	widget
record.	It	should	normally	return	TCL_OK,	but	if	an	error	occurs	in
translating	the	string	to	a	value	then	it	should	return	TCL_ERROR	and
store	an	error	message	in	interp->result.

The	printProc	procedure	is	called	by	Tk_ConfigureInfo	to	produce	a
string	value	describing	an	existing	option.	Its	clientData,	tkwin,
widgRec,	and	offset	arguments	all	have	the	same	meaning	as	for
Tk_OptionParseProc	procedures.	The	printProc	procedure	should
examine	the	option	whose	value	is	stored	at	offset	in	widgRec,	produce
a	string	describing	that	option,	and	return	a	pointer	to	the	string.	If	the
string	is	stored	in	dynamically-allocated	memory,	then	the	procedure
must	set	*freeProcPtr	to	the	address	of	a	procedure	to	call	to	free	the
string's	memory;	Tk_ConfigureInfo	will	call	this	procedure	when	it	is
finished	with	the	string.	If	the	result	string	is	stored	in	static	memory
then	printProc	need	not	do	anything	with	the	freeProcPtr	argument.

Once	parseProc	and	printProc	have	been	defined	and	a
Tk_CustomOption	structure	has	been	created	for	them,	options	of	this
new	type	may	be	manipulated	with	Tk_ConfigSpec	entries	whose	type
fields	are	TK_CONFIG_CUSTOM	and	whose	customPtr	fields	point	to
the	Tk_CustomOption	structure.

EXAMPLES

Although	the	explanation	of	Tk_ConfigureWidget	is	fairly	complicated,
its	actual	use	is	pretty	straightforward.	The	easiest	way	to	get	started	is
to	copy	the	code	from	an	existing	widget.	The	library	implementation	of
frames	(tkFrame.c)	has	a	simple	configuration	table,	and	the	library
implementation	of	buttons	(tkButton.c)	has	a	much	more	complex	table
that	uses	many	of	the	fancy	specFlags	mechanisms.

SEE	ALSO

Tk_SetOptions

KEYWORDS

anchor,	bitmap,	boolean,	border,	cap	style,	color,	configuration	options,
cursor,	custom,	double,	font,	integer,	join	style,	justify,	millimeters,
pixels,	relief,	synonym,	uid

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990-1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tk_Window	tkwin	(in)

const	char	*name	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	InternAtom

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tk_InternAtom,	Tk_GetAtomName	-	manage	cache	of	X	atoms

SYNOPSIS
#include	<tk.h>
Atom
Tk_InternAtom(tkwin,	name)
const	char	*
Tk_GetAtomName(tkwin,	atom)

ARGUMENTS
DESCRIPTION
KEYWORDS

NAME

Tk_InternAtom,	Tk_GetAtomName	-	manage	cache	of	X	atoms

SYNOPSIS

#include	<tk.h>
Atom
Tk_InternAtom(tkwin,	name)
const	char	*
Tk_GetAtomName(tkwin,	atom)

ARGUMENTS

Token	for	window.	Used	to
map	atom	or	name	relative
to	a	particular	display.

String	name	for	which
atom	is	desired.

Atom	atom	(in) Atom	for	which
corresponding	string	name
is	desired.

DESCRIPTION

These	procedures	are	similar	to	the	Xlib	procedures	XInternAtom	and
XGetAtomName.	Tk_InternAtom	returns	the	atom	identifier	associated
with	string	given	by	name;	the	atom	identifier	is	only	valid	for	the	display
associated	with	tkwin.	Tk_GetAtomName	returns	the	string	associated
with	atom	on	tkwin's	display.	The	string	returned	by	Tk_GetAtomName
is	in	Tk's	storage:	the	caller	need	not	free	this	space	when	finished	with
the	string,	and	the	caller	should	not	modify	the	contents	of	the	returned
string.	If	there	is	no	atom	atom	on	tkwin's	display,	then
Tk_GetAtomName	returns	the	string	“?bad	atom?”.

Tk	caches	the	information	returned	by	Tk_InternAtom	and
Tk_GetAtomName	so	that	future	calls	for	the	same	information	can	be
serviced	from	the	cache	without	contacting	the	server.	Thus
Tk_InternAtom	and	Tk_GetAtomName	are	generally	much	faster	than
their	Xlib	counterparts,	and	they	should	be	used	in	place	of	the	Xlib
procedures.

KEYWORDS

atom,	cache,	display

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Display	*display	(in)

Drawable	d	(in)

int	width	(in)

int	height	(in)

int	depth	(in)

Pixmap	pixmap	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	GetPixmap

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tk_GetPixmap,	Tk_FreePixmap	-	allocate	and	free	pixmaps

SYNOPSIS

#include	<tk.h>
Pixmap
Tk_GetPixmap(display,	d,	width,	height,	depth)
Tk_FreePixmap(display,	pixmap)

ARGUMENTS

X	display	for	the	pixmap.

Pixmap	or	window	where
the	new	pixmap	will	be
used	for	drawing.

Width	of	pixmap.

Height	of	pixmap.

Number	of	bits	per	pixel	in
pixmap.

Pixmap	to	destroy.

DESCRIPTION

These	procedures	are	identical	to	the	Xlib	procedures	XCreatePixmap

and	XFreePixmap,	except	that	they	have	extra	code	to	manage	X
resource	identifiers	so	that	identifiers	for	deleted	pixmaps	can	be
reused	in	the	future.	It	is	important	for	Tk	applications	to	use	these
procedures	rather	than	XCreatePixmap	and	XFreePixmap;	otherwise
long-running	applications	may	run	out	of	resource	identifiers.

Tk_GetPixmap	creates	a	pixmap	suitable	for	drawing	in	d,	with
dimensions	given	by	width,	height,	and	depth,	and	returns	its	identifier.
Tk_FreePixmap	destroys	the	pixmap	given	by	pixmap	and	makes	its
resource	identifier	available	for	reuse.

KEYWORDS

pixmap,	resource	identifier

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Display	*display	(in)

XID	id	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	FreeXId

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tk_FreeXId	-	make	X	resource	identifier	available	for	reuse

SYNOPSIS

#include	<tk.h>
Tk_FreeXId(display,	id)

ARGUMENTS

Display	for	which	id	was
allocated.

Identifier	of	X	resource
(window,	font,	pixmap,
cursor,	graphics	context,	or
colormap)	that	is	no	longer
in	use.

DESCRIPTION

The	default	allocator	for	resource	identifiers	provided	by	Xlib	is	very
simple-minded	and	does	not	allow	resource	identifiers	to	be	re-used.	If
a	long-running	application	reaches	the	end	of	the	resource	id	space,	it
will	generate	an	X	protocol	error	and	crash.	Tk	replaces	the	default	id
allocator	with	its	own	allocator,	which	allows	identifiers	to	be	reused.	In
order	for	this	to	work,	Tk_FreeXId	must	be	called	to	tell	the	allocator
about	resources	that	have	been	freed.	Tk	automatically	calls
Tk_FreeXId	whenever	it	frees	a	resource,	so	if	you	use	procedures	like
Tk_GetFont,	Tk_GetGC,	and	Tk_GetPixmap	then	you	need	not	call

Tk_FreeXId.	However,	if	you	allocate	resources	directly	from	Xlib,	for
example	by	calling	XCreatePixmap,	then	you	should	call	Tk_FreeXId
when	you	call	the	corresponding	Xlib	free	procedure,	such	as
XFreePixmap.	If	you	do	not	call	Tk_FreeXId	then	the	resource
identifier	will	be	lost,	which	could	cause	problems	if	the	application	runs
long	enough	to	lose	all	of	the	available	identifiers.

KEYWORDS

resource	identifier

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tk_Window	tkwin	(in)

Atom	selection	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	ClrSelect

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tk_ClearSelection	-	Deselect	a	selection

SYNOPSIS

#include	<tk.h>
Tk_ClearSelection(tkwin,	selection)

ARGUMENTS

The	selection	will	be
cleared	from	the	display
containing	this	window.

The	name	of	selection	to
be	cleared.

DESCRIPTION

Tk_ClearSelection	cancels	the	selection	specified	by	the	atom
selection	for	the	display	containing	tkwin.	The	selection	need	not	be	in
tkwin	itself	or	even	in	tkwin's	application.	If	there	is	a	window	anywhere
on	tkwin's	display	that	owns	selection,	the	window	will	be	notified	and
the	selection	will	be	cleared.	If	there	is	no	owner	for	selection	on	the
display,	then	the	procedure	has	no	effect.

KEYWORDS

clear,	selection

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1992-1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tk_Window	tkwin	(in)

Visual	*visual	(in)

int	depth	(in)

Colormap	colormap	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	SetVisual

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tk_SetWindowVisual	-	change	visual	characteristics	of	window

SYNOPSIS

#include	<tk.h>
int
Tk_SetWindowVisual(tkwin,	visual,	depth,	colormap)

ARGUMENTS

Token	for	window.

New	visual	type	to	use	for
tkwin.

Number	of	bits	per	pixel
desired	for	tkwin.

New	colormap	for	tkwin,
which	must	be	compatible
with	visual	and	depth.

DESCRIPTION

When	Tk	creates	a	new	window	it	assigns	it	the	default	visual
characteristics	(visual,	depth,	and	colormap)	for	its	screen.
Tk_SetWindowVisual	may	be	called	to	change	them.
Tk_SetWindowVisual	must	be	called	before	the	window	has	actually
been	created	in	X	(e.g.	before	Tk_MapWindow	or

Tk_MakeWindowExist	has	been	invoked	for	the	window).	The	safest
thing	is	to	call	Tk_SetWindowVisual	immediately	after	calling
Tk_CreateWindow.	If	tkwin	has	already	been	created	before
Tk_SetWindowVisual	is	called	then	it	returns	0	and	does	not	make	any
changes;	otherwise	it	returns	1	to	signify	that	the	operation	completed
successfully.

Note:	Tk_SetWindowVisual	should	not	be	called	if	you	just	want	to
change	a	window's	colormap	without	changing	its	visual	or	depth;	call
Tk_SetWindowColormap	instead.

KEYWORDS

colormap,	depth,	visual

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1992	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl_Interp	*interp	(in)

Tk_Window	tkwin	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	Clipboard

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tk_ClipboardClear,	Tk_ClipboardAppend	-	Manage	the
clipboard

SYNOPSIS
#include	<tk.h>
int
Tk_ClipboardClear(interp,	tkwin)
int
Tk_ClipboardAppend(interp,	tkwin,	target,	format,	buffer)

ARGUMENTS
DESCRIPTION
KEYWORDS

NAME

Tk_ClipboardClear,	Tk_ClipboardAppend	-	Manage	the	clipboard

SYNOPSIS

#include	<tk.h>
int
Tk_ClipboardClear(interp,	tkwin)
int
Tk_ClipboardAppend(interp,	tkwin,	target,	format,	buffer)

ARGUMENTS

Interpreter	to	use	for
reporting	errors.

Window	that	determines
which	display's	clipboard

Atom	target	(in)

Atom	format	(in)

char	*buffer	(in)

to	manipulate.

Conversion	type	for	this
clipboard	item;	has	same
meaning	as	target
argument	to
Tk_CreateSelHandler.

Representation	to	use
when	data	is	retrieved;	has
same	meaning	as	format
argument	to
Tk_CreateSelHandler.

Null	terminated	string
containing	the	data	to	be
appended	to	the	clipboard.

DESCRIPTION

These	two	procedures	manage	the	clipboard	for	Tk.	The	clipboard	is
typically	managed	by	calling	Tk_ClipboardClear	once,	then	calling
Tk_ClipboardAppend	to	add	data	for	any	number	of	targets.

Tk_ClipboardClear	claims	the	CLIPBOARD	selection	and	frees	any
data	items	previously	stored	on	the	clipboard	in	this	application.	It
normally	returns	TCL_OK,	but	if	an	error	occurs	it	returns	TCL_ERROR
and	leaves	an	error	message	in	interp->result.	Tk_ClipboardClear
must	be	called	before	a	sequence	of	Tk_ClipboardAppend	calls	can
be	issued.

Tk_ClipboardAppend	appends	a	buffer	of	data	to	the	clipboard.	The
first	buffer	for	a	given	target	determines	the	format	for	that	target.	Any
successive	appends	for	that	target	must	have	the	same	format	or	an
error	will	be	returned.	Tk_ClipboardAppend	returns	TCL_OK	if	the
buffer	is	successfully	copied	onto	the	clipboard.	If	the	clipboard	is	not
currently	owned	by	the	application,	either	because	Tk_ClipboardClear

has	not	been	called	or	because	ownership	of	the	clipboard	has	changed
since	the	last	call	to	Tk_ClipboardClear,	Tk_ClipboardAppend
returns	TCL_ERROR	and	leaves	an	error	message	in	interp->result.

In	order	to	guarantee	atomicity,	no	event	handling	should	occur
between	Tk_ClipboardClear	and	the	following	Tk_ClipboardAppend
calls	(otherwise	someone	could	retrieve	a	partially	completed	clipboard
or	claim	ownership	away	from	this	application).

Tk_ClipboardClear	may	invoke	callbacks,	including	arbitrary	Tcl
scripts,	as	a	result	of	losing	the	CLIPBOARD	selection,	so	any	calling
function	should	take	care	to	be	reentrant	at	the	point
Tk_ClipboardClear	is	invoked.

KEYWORDS

append,	clipboard,	clear,	format,	type

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

int	argc	(in)

char	*argv[]	(in)

Tcl_AppInitProc	*appInitProc	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	Tk_Main

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tk_Main	-	main	program	for	Tk-based	applications

SYNOPSIS

#include	<tk.h>
Tk_Main(argc,	argv,	appInitProc)

ARGUMENTS

Number	of	elements	in
argv.

Array	of	strings	containing
command-line	arguments.

Address	of	an	application-
specific	initialization
procedure.	The	value	for
this	argument	is	usually
Tcl_AppInit.

DESCRIPTION

Tk_Main	acts	as	the	main	program	for	most	Tk-based	applications.
Starting	with	Tk	4.0	it	is	not	called	main	anymore	because	it	is	part	of
the	Tk	library	and	having	a	function	main	in	a	library	(particularly	a
shared	library)	causes	problems	on	many	systems.	Having	main	in	the
Tk	library	would	also	make	it	hard	to	use	Tk	in	C++	programs,	since
C++	programs	must	have	special	C++	main	functions.

Normally	each	application	contains	a	small	main	function	that	does
nothing	but	invoke	Tk_Main.	Tk_Main	then	does	all	the	work	of
creating	and	running	a	wish-like	application.

When	it	is	has	finished	its	own	initialization,	but	before	it	processes
commands,	Tk_Main	calls	the	procedure	given	by	the	appInitProc
argument.	This	procedure	provides	a	“hook”	for	the	application	to
perform	its	own	initialization,	such	as	defining	application-specific
commands.	The	procedure	must	have	an	interface	that	matches	the
type	Tcl_AppInitProc:

typedef	int	Tcl_AppInitProc(Tcl_Interp	*interp);

AppInitProc	is	almost	always	a	pointer	to	Tcl_AppInit;	for	more	details
on	this	procedure,	see	the	documentation	for	Tcl_AppInit.

KEYWORDS

application-specific	initialization,	command-line	arguments,	main
program

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	MainLoop

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tk_MainLoop	-	loop	for	events	until	all	windows	are	deleted

SYNOPSIS

#include	<tk.h>
Tk_MainLoop()

DESCRIPTION

Tk_MainLoop	is	a	procedure	that	loops	repeatedly	calling
Tcl_DoOneEvent.	It	returns	only	when	there	are	no	applications	left	in
this	process	(i.e.	no	main	windows	exist	anymore).	Most	windowing
applications	will	call	Tk_MainLoop	after	initialization;	the	main
execution	of	the	application	will	consist	entirely	of	callbacks	invoked	via
Tcl_DoOneEvent.

KEYWORDS

application,	event,	main	loop

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990-1992	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	GetAnchor

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tk_GetAnchorFromObj,	Tk_GetAnchor,	Tk_NameOfAnchor	-
translate	between	strings	and	anchor	positions

SYNOPSIS
#include	<tk.h>
int
Tk_GetAnchorFromObj(interp,	objPtr,	anchorPtr)
int
Tk_GetAnchor(interp,	string,	anchorPtr)
const	char	*
Tk_NameOfAnchor(anchor)

ARGUMENTS
DESCRIPTION
KEYWORDS

NAME

Tk_GetAnchorFromObj,	Tk_GetAnchor,	Tk_NameOfAnchor	-	translate
between	strings	and	anchor	positions

SYNOPSIS

#include	<tk.h>
int
Tk_GetAnchorFromObj(interp,	objPtr,	anchorPtr)
int
Tk_GetAnchor(interp,	string,	anchorPtr)
const	char	*
Tk_NameOfAnchor(anchor)

ARGUMENTS

Tcl_Interp	*interp	(in)

Tcl_Obj	*objPtr	(in/out)

const	char	*string	(in)

int	*anchorPtr	(out)

Tk_Anchor	anchor	(in)

Interpreter	to	use	for	error
reporting,	or	NULL.

String	value	contains
name	of	anchor	point:	“n”,
“ne”,	“e”,	“se”,	“s”,	“sw”,
“w”,	“nw”,	or	“center”;
internal	rep	will	be
modified	to	cache
corresponding	Tk_Anchor.

Same	as	objPtr	except
description	of	anchor	point
is	passed	as	a	string.

Pointer	to	location	in	which
to	store	anchor	position
corresponding	to	objPtr	or
string.

Anchor	position,	e.g.
TCL_ANCHOR_CENTER.

DESCRIPTION

Tk_GetAnchorFromObj	places	in	*anchorPtr	an	anchor	position
(enumerated	type	Tk_Anchor)	corresponding	to	objPtr's	value.	The
result	will	be	one	of	TK_ANCHOR_N,	TK_ANCHOR_NE,
TK_ANCHOR_E,	TK_ANCHOR_SE,	TK_ANCHOR_S,
TK_ANCHOR_SW,	TK_ANCHOR_W,	TK_ANCHOR_NW,	or
TK_ANCHOR_CENTER.	Anchor	positions	are	typically	used	for
indicating	a	point	on	an	object	that	will	be	used	to	position	the	object,
e.g.	TK_ANCHOR_N	means	position	the	top	center	point	of	the	object
at	a	particular	place.

Under	normal	circumstances	the	return	value	is	TCL_OK	and	interp	is

unused.	If	string	does	not	contain	a	valid	anchor	position	or	an
abbreviation	of	one	of	these	names,	TCL_ERROR	is	returned,
*anchorPtr	is	unmodified,	and	an	error	message	is	stored	in	interp's
result	if	interp	is	not	NULL.	Tk_GetAnchorFromObj	caches	information
about	the	return	value	in	objPtr,	which	speeds	up	future	calls	to
Tk_GetAnchorFromObj	with	the	same	objPtr.

Tk_GetAnchor	is	identical	to	Tk_GetAnchorFromObj	except	that	the
description	of	the	anchor	is	specified	with	a	string	instead	of	an	object.
This	prevents	Tk_GetAnchor	from	caching	the	return	value,	so
Tk_GetAnchor	is	less	efficient	than	Tk_GetAnchorFromObj.

Tk_NameOfAnchor	is	the	logical	inverse	of	Tk_GetAnchor.	Given	an
anchor	position	such	as	TK_ANCHOR_N	it	returns	a	statically-allocated
string	corresponding	to	anchor.	If	anchor	is	not	a	legal	anchor	value,
then	“unknown	anchor	position”	is	returned.

KEYWORDS

anchor	position

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990	The	Regents	of	the	University	of	California.
Copyright	©	1994-1998	Sun	Microsystems,	Inc.

Tk_Window	slave	(in)

Tk_Window	master	(in)

int	x	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	MaintGeom

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tk_MaintainGeometry,	Tk_UnmaintainGeometry	-	maintain
geometry	of	one	window	relative	to	another

SYNOPSIS
#include	<tk.h>
Tk_MaintainGeometry(slave,	master,	x,	y,	width,	height)
Tk_UnmaintainGeometry(slave,	master)

ARGUMENTS
DESCRIPTION
KEYWORDS

NAME

Tk_MaintainGeometry,	Tk_UnmaintainGeometry	-	maintain	geometry	of
one	window	relative	to	another

SYNOPSIS

#include	<tk.h>
Tk_MaintainGeometry(slave,	master,	x,	y,	width,	height)
Tk_UnmaintainGeometry(slave,	master)

ARGUMENTS

Window	whose	geometry
is	to	be	controlled.

Window	relative	to	which
slave's	geometry	will	be
controlled.

Desired	x-coordinate	of

int	y	(in)

int	width	(in)

int	height	(in)

slave	in	master,	measured
in	pixels	from	the	inside	of
master's	left	border	to	the
outside	of	slave's	left
border.

Desired	y-coordinate	of
slave	in	master,	measured
in	pixels	from	the	inside	of
master's	top	border	to	the
outside	of	slave's	top
border.

Desired	width	for	slave,	in
pixels.

Desired	height	for	slave,	in
pixels.

DESCRIPTION

Tk_MaintainGeometry	and	Tk_UnmaintainGeometry	make	it	easier
for	geometry	managers	to	deal	with	slaves	whose	masters	are	not	their
parents.	Three	problems	arise	if	the	master	for	a	slave	is	not	its	parent:

[1]
The	x-	and	y-position	of	the	slave	must	be	translated	from	the
coordinate	system	of	the	master	to	that	of	the	parent	before
positioning	the	slave.

[2]
If	the	master	window,	or	any	of	its	ancestors	up	to	the	slave's
parent,	is	moved,	then	the	slave	must	be	repositioned	within	its
parent	in	order	to	maintain	the	correct	position	relative	to	the
master.

[3]

If	the	master	or	one	of	its	ancestors	is	mapped	or	unmapped,	then
the	slave	must	be	mapped	or	unmapped	to	correspond.

None	of	these	problems	is	an	issue	if	the	parent	and	master	are	the
same.	For	example,	if	the	master	or	one	of	its	ancestors	is	unmapped,
the	slave	is	automatically	removed	by	the	screen	by	X.

Tk_MaintainGeometry	deals	with	these	problems	for	slaves	whose
masters	are	not	their	parents,	as	well	as	handling	the	simpler	case	of
slaves	whose	masters	are	their	parents.	Tk_MaintainGeometry	is
typically	called	by	a	window	manager	once	it	has	decided	where	a	slave
should	be	positioned	relative	to	its	master.	Tk_MaintainGeometry
translates	the	coordinates	to	the	coordinate	system	of	slave's	parent
and	then	moves	and	resizes	the	slave	appropriately.	Furthermore,	it
remembers	the	desired	position	and	creates	event	handlers	to	monitor
the	master	and	all	of	its	ancestors	up	to	(but	not	including)	the	slave's
parent.	If	any	of	these	windows	is	moved,	mapped,	or	unmapped,	the
slave	will	be	adjusted	so	that	it	is	mapped	only	when	the	master	is
mapped	and	its	geometry	relative	to	the	master	remains	as	specified	by
x,	y,	width,	and	height.

When	a	window	manager	relinquishes	control	over	a	window,	or	if	it
decides	that	it	does	not	want	the	window	to	appear	on	the	screen	under
any	conditions,	it	calls	Tk_UnmaintainGeometry.
Tk_UnmaintainGeometry	unmaps	the	window	and	cancels	any
previous	calls	to	Tk_MaintainGeometry	for	the	master-slave	pair,	so
that	the	slave's	geometry	and	mapped	state	are	no	longer	maintained
automatically.	Tk_UnmaintainGeometry	need	not	be	called	by	a
geometry	manager	if	the	slave,	the	master,	or	any	of	the	master's
ancestors	is	destroyed:	Tk	will	call	it	automatically.

If	Tk_MaintainGeometry	is	called	repeatedly	for	the	same	master-
slave	pair,	the	information	from	the	most	recent	call	supersedes	any
older	information.	If	Tk_UnmaintainGeometry	is	called	for	a	master-
slave	pair	that	is	is	not	currently	managed,	the	call	has	no	effect.

KEYWORDS

geometry	manager,	map,	master,	parent,	position,	slave,	unmap

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tk_Window	tkwin	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	StrictMotif

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tk_StrictMotif	-	Return	value	of	tk_strictMotif	variable

SYNOPSIS

#include	<tk.h>
int
Tk_StrictMotif(tkwin)

ARGUMENTS

Token	for	window.

DESCRIPTION

This	procedure	returns	the	current	value	of	the	tk_strictMotif	variable
in	the	interpreter	associated	with	tkwin's	application.	The	value	is
returned	as	an	integer	that	is	either	0	or	1.	1	means	that	strict	Motif
compliance	has	been	requested,	so	anything	that	is	not	part	of	the	Motif
specification	should	be	avoided.	0	means	that	“Motif-like”	is	good
enough,	and	extra	features	are	welcome.

This	procedure	uses	a	link	to	the	Tcl	variable	to	provide	much	faster
access	to	the	variable's	value	than	could	be	had	by	calling	Tcl_GetVar.

KEYWORDS

Motif	compliance,	tk_strictMotif	variable

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1995-1996	Sun	Microsystems,	Inc.

Tcl_Interp	*interp	(in/out)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	MainWin

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tk_MainWindow,	Tk_GetNumMainWindows	-	functions	for	querying
main	window	information

SYNOPSIS

#include	<tk.h>
Tk_Window
Tk_MainWindow(interp)
int
Tk_GetNumMainWindows()

ARGUMENTS

Interpreter	associated	with
the	application.

DESCRIPTION

A	main	window	is	a	special	kind	of	toplevel	window	used	as	the
outermost	window	in	an	application.

If	interp	is	associated	with	a	Tk	application	then	Tk_MainWindow
returns	the	application's	main	window.	If	there	is	no	Tk	application
associated	with	interp	then	Tk_MainWindow	returns	NULL	and	leaves
an	error	message	in	interp->result.

Tk_GetNumMainWindows	returns	a	count	of	the	number	of	main
windows	currently	open	in	the	process.

KEYWORDS

application,	main	window

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	CrtWindow

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tk_CreateWindow,	Tk_CreateWindowFromPath,
Tk_DestroyWindow,	Tk_MakeWindowExist	-	create	or	delete
window

SYNOPSIS
#include	<tk.h>
Tk_Window
Tk_CreateWindow(interp,	parent,	name,	topLevScreen)
Tk_Window
Tk_CreateAnonymousWindow(interp,	parent,	topLevScreen)
Tk_Window
Tk_CreateWindowFromPath(interp,	tkwin,	pathName,
topLevScreen)
Tk_DestroyWindow(tkwin)
Tk_MakeWindowExist(tkwin)

ARGUMENTS
DESCRIPTION
KEYWORDS

NAME

Tk_CreateWindow,	Tk_CreateWindowFromPath,	Tk_DestroyWindow,
Tk_MakeWindowExist	-	create	or	delete	window

SYNOPSIS

#include	<tk.h>
Tk_Window
Tk_CreateWindow(interp,	parent,	name,	topLevScreen)
Tk_Window
Tk_CreateAnonymousWindow(interp,	parent,	topLevScreen)
Tk_Window

Tcl_Interp	*interp	(out)

Tk_Window	parent	(in)

const	char	*name	(in)

const	char	*topLevScreen	(in)

Tk_Window	tkwin	(in)

const	char	*pathName	(in)

Tk_CreateWindowFromPath(interp,	tkwin,	pathName,	topLevScreen)
Tk_DestroyWindow(tkwin)
Tk_MakeWindowExist(tkwin)

ARGUMENTS

Tcl	interpreter	to	use	for
error	reporting.	If	no	error
occurs,	then	*interp	is	not
modified.

Token	for	the	window	that
is	to	serve	as	the	logical
parent	of	the	new	window.

Name	to	use	for	this
window.	Must	be	unique
among	all	children	of	the
same	parent.

Has	same	format	as
screenName.	If	NULL,
then	new	window	is
created	as	an	internal
window.	If	non-NULL,	new
window	is	created	as	a
top-level	window	on	screen
topLevScreen.	If
topLevScreen	is	an	empty
string	(“”)	then	new	window
is	created	as	top-level
window	of	parent's	screen.

Token	for	window.

Name	of	new	window,
specified	as	path	name

within	application	(e.g.
.a.b.c).

DESCRIPTION

The	procedures	Tk_CreateWindow,	Tk_CreateAnonymousWindow,
and	Tk_CreateWindowFromPath	are	used	to	create	new	windows	for
use	in	Tk-based	applications.	Each	of	the	procedures	returns	a	token
that	can	be	used	to	manipulate	the	window	in	other	calls	to	the	Tk
library.	If	the	window	could	not	be	created	successfully,	then	NULL	is
returned	and	interp->result	is	modified	to	hold	an	error	message.

Tk	supports	two	different	kinds	of	windows:	internal	windows	and	top-
level	windows.	An	internal	window	is	an	interior	window	of	a	Tk
application,	such	as	a	scrollbar	or	menu	bar	or	button.	A	top-level
window	is	one	that	is	created	as	a	child	of	a	screen's	root	window,
rather	than	as	an	interior	window,	but	which	is	logically	part	of	some
existing	main	window.	Examples	of	top-level	windows	are	pop-up
menus	and	dialog	boxes.

New	windows	may	be	created	by	calling	Tk_CreateWindow.	If	the
topLevScreen	argument	is	NULL,	then	the	new	window	will	be	an
internal	window.	If	topLevScreen	is	non-NULL,	then	the	new	window	will
be	a	top-level	window:	topLevScreen	indicates	the	name	of	a	screen
and	the	new	window	will	be	created	as	a	child	of	the	root	window	of
topLevScreen.	In	either	case	Tk	will	consider	the	new	window	to	be	the
logical	child	of	parent:	the	new	window's	path	name	will	reflect	this	fact,
options	may	be	specified	for	the	new	window	under	this	assumption,
and	so	on.	The	only	difference	is	that	new	X	window	for	a	top-level
window	will	not	be	a	child	of	parent's	X	window.	For	example,	a	pull-
down	menu's	parent	would	be	the	button-like	window	used	to	invoke	it,
which	would	in	turn	be	a	child	of	the	menu	bar	window.	A	dialog	box
might	have	the	application's	main	window	as	its	parent.

Tk_CreateAnonymousWindow	differs	from	Tk_CreateWindow	in	that
it	creates	an	unnamed	window.	This	window	will	be	manipulable	only
using	C	interfaces,	and	will	not	be	visible	to	Tcl	scripts.	Both	interior

windows	and	top-level	windows	may	be	created	with
Tk_CreateAnonymousWindow.

Tk_CreateWindowFromPath	offers	an	alternate	way	of	specifying	new
windows.	In	Tk_CreateWindowFromPath	the	new	window	is	specified
with	a	token	for	any	window	in	the	target	application	(tkwin),	plus	a	path
name	for	the	new	window.	It	produces	the	same	effect	as
Tk_CreateWindow	and	allows	both	top-level	and	internal	windows	to
be	created,	depending	on	the	value	of	topLevScreen.	In	calls	to
Tk_CreateWindowFromPath,	as	in	calls	to	Tk_CreateWindow,	the
parent	of	the	new	window	must	exist	at	the	time	of	the	call,	but	the	new
window	must	not	already	exist.

The	window	creation	procedures	do	not	actually	issue	the	command	to
X	to	create	a	window.	Instead,	they	create	a	local	data	structure
associated	with	the	window	and	defer	the	creation	of	the	X	window.	The
window	will	actually	be	created	by	the	first	call	to	Tk_MapWindow.
Deferred	window	creation	allows	various	aspects	of	the	window	(such
as	its	size,	background	color,	etc.)	to	be	modified	after	its	creation
without	incurring	any	overhead	in	the	X	server.	When	the	window	is
finally	mapped	all	of	the	window	attributes	can	be	set	while	creating	the
window.

The	value	returned	by	a	window-creation	procedure	is	not	the	X	token
for	the	window	(it	cannot	be,	since	X	has	not	been	asked	to	create	the
window	yet).	Instead,	it	is	a	token	for	Tk's	local	data	structure	for	the
window.	Most	of	the	Tk	library	procedures	take	Tk_Window	tokens,
rather	than	X	identifiers.	The	actual	X	window	identifier	can	be	retrieved
from	the	local	data	structure	using	the	Tk_WindowId	macro;	see	the
manual	entry	for	Tk_WindowId	for	details.

Tk_DestroyWindow	deletes	a	window	and	all	the	data	structures
associated	with	it,	including	any	event	handlers	created	with
Tk_CreateEventHandler.	In	addition,	Tk_DestroyWindow	will	delete
any	children	of	tkwin	recursively	(where	children	are	defined	in	the	Tk
sense,	consisting	of	all	windows	that	were	created	with	the	given
window	as	parent).	If	tkwin	is	an	internal	window,	then	event	handlers
interested	in	destroy	events	are	invoked	immediately.	If	tkwin	is	a	top-

level	or	main	window,	then	the	event	handlers	will	be	invoked	later,	after
X	has	seen	the	request	and	returned	an	event	for	it.

If	a	window	has	been	created	but	has	not	been	mapped,	so	no	X
window	exists,	it	is	possible	to	force	the	creation	of	the	X	window	by
calling	Tk_MakeWindowExist.	This	procedure	issues	the	X	commands
to	instantiate	the	window	given	by	tkwin.

KEYWORDS

create,	deferred	creation,	destroy,	display,	internal	window,	screen,	top-
level	window,	window

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tk_Window	tkwin	(in)

const	Tk_GeomMgr	*mgrPtr	(in)

ClientData	clientData	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	ManageGeom

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tk_ManageGeometry	-	arrange	to	handle	geometry	requests	for	a
window

SYNOPSIS

#include	<tk.h>
Tk_ManageGeometry(tkwin,	mgrPtr,	clientData)

ARGUMENTS

Token	for	window	to	be
managed.

Pointer	to	data	structure
containing	information
about	the	geometry
manager,	or	NULL	to
indicate	that	tkwin's
geometry	should	not	be
managed	anymore.	The
data	structure	pointed	to
by	mgrPtr	must	be	static:
Tk	keeps	a	reference	to	it
as	long	as	the	window	is
managed.

Arbitrary	one-word	value
to	pass	to	geometry
manager	callbacks.

DESCRIPTION

Tk_ManageGeometry	arranges	for	a	particular	geometry	manager,
described	by	the	mgrPtr	argument,	to	control	the	geometry	of	a
particular	slave	window,	given	by	tkwin.	If	tkwin	was	previously
managed	by	some	other	geometry	manager,	the	previous	manager
loses	control	in	favor	of	the	new	one.	If	mgrPtr	is	NULL,	geometry
management	is	cancelled	for	tkwin.

The	structure	pointed	to	by	mgrPtr	contains	information	about	the
geometry	manager:

typedef	struct	{

				const	char	*name;

				Tk_GeomRequestProc	*requestProc;

				Tk_GeomLostSlaveProc	*lostSlaveProc;

}	Tk_GeomMgr;

The	name	field	is	the	textual	name	for	the	geometry	manager,	such	as
pack	or	place;	this	value	will	be	returned	by	the	command	winfo
manager.

requestProc	is	a	procedure	in	the	geometry	manager	that	will	be
invoked	whenever	Tk_GeometryRequest	is	called	by	the	slave	to
change	its	desired	geometry.	requestProc	should	have	arguments	and
results	that	match	the	type	Tk_GeomRequestProc:

typedef	void	Tk_GeomRequestProc(

				ClientData	clientData,

				Tk_Window	tkwin);

The	parameters	to	requestProc	will	be	identical	to	the	corresponding
parameters	passed	to	Tk_ManageGeometry.	clientData	usually	points
to	a	data	structure	containing	application-specific	information	about	how
to	manage	tkwin's	geometry.

The	lostSlaveProc	field	of	mgrPtr	points	to	another	procedure	in	the
geometry	manager.	Tk	will	invoke	lostSlaveProc	if	some	other	manager
calls	Tk_ManageGeometry	to	claim	tkwin	away	from	the	current
geometry	manager.	lostSlaveProc	is	not	invoked	if
Tk_ManageGeometry	is	called	with	a	NULL	value	for	mgrPtr
(presumably	the	current	geometry	manager	has	made	this	call,	so	it
already	knows	that	the	window	is	no	longer	managed),	nor	is	it	called	if
mgrPtr	is	the	same	as	the	window's	current	geometry	manager.
lostSlaveProc	should	have	arguments	and	results	that	match	the
following	prototype:

typedef	void	Tk_GeomLostSlaveProc(

				ClientData	clientData,

				Tk_Window	tkwin);

The	parameters	to	lostSlaveProc	will	be	identical	to	the	corresponding
parameters	passed	to	Tk_ManageGeometry.

KEYWORDS

callback,	geometry,	managed,	request,	unmanaged

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990-1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tk_Window	tkwin	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	MapWindow

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tk_MapWindow,	Tk_UnmapWindow	-	map	or	unmap	a	window

SYNOPSIS

#include	<tk.h>
Tk_Window
Tk_MapWindow(tkwin)
Tk_UnmapWindow(tkwin)

ARGUMENTS

Token	for	window.

DESCRIPTION

These	procedures	may	be	used	to	map	and	unmap	windows	managed
by	Tk.	Tk_MapWindow	maps	the	window	given	by	tkwin,	and	also
creates	an	X	window	corresponding	to	tkwin	if	it	does	not	already	exist.
See	the	Tk_CreateWindow	manual	entry	for	information	on	deferred
window	creation.	Tk_UnmapWindow	unmaps	tkwin's	window	from	the
screen.

If	tkwin	is	a	child	window	(i.e.	Tk_CreateWindow	was	used	to	create	a
child	window),	then	event	handlers	interested	in	map	and	unmap	events
are	invoked	immediately.	If	tkwin	is	not	an	internal	window,	then	the
event	handlers	will	be	invoked	later,	after	X	has	seen	the	request	and
returned	an	event	for	it.

These	procedures	should	be	used	in	place	of	the	X	procedures

XMapWindow	and	XUnmapWindow,	since	they	update	Tk's	local	data
structure	for	tkwin.	Applications	using	Tk	should	not	invoke
XMapWindow	and	XUnmapWindow	directly.

KEYWORDS

map,	unmap,	window

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990	The	Regents	of	the	University	of	California.
Copyright	©	1994-1997	Sun	Microsystems,	Inc.

Tcl_Interp	*interp	(in)

const	char	*string	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	GetCapStyl

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tk_GetCapStyle,	Tk_NameOfCapStyle	-	translate	between
strings	and	cap	styles

SYNOPSIS
#include	<tk.h>
int
Tk_GetCapStyle(interp,	string,	capPtr)
const	char	*
Tk_NameOfCapStyle(cap)

ARGUMENTS
DESCRIPTION
KEYWORDS

NAME

Tk_GetCapStyle,	Tk_NameOfCapStyle	-	translate	between	strings	and
cap	styles

SYNOPSIS

#include	<tk.h>
int
Tk_GetCapStyle(interp,	string,	capPtr)
const	char	*
Tk_NameOfCapStyle(cap)

ARGUMENTS

Interpreter	to	use	for	error
reporting.

String	containing	name	of

int	*capPtr	(out)

int	cap	(in)

cap	style:	one	of	“butt”,
“projecting”,	or	“round”.

Pointer	to	location	in	which
to	store	X	cap	style
corresponding	to	string.

Cap	style:	one	of	CapButt,
CapProjecting,	or
CapRound.

DESCRIPTION

Tk_GetCapStyle	places	in	*capPtr	the	X	cap	style	corresponding	to
string.	This	will	be	one	of	the	values	CapButt,	CapProjecting,	or
CapRound.	Cap	styles	are	typically	used	in	X	graphics	contexts	to
indicate	how	the	end-points	of	lines	should	be	capped.	See	the	X
documentation	for	information	on	what	each	style	implies.

Under	normal	circumstances	the	return	value	is	TCL_OK	and	interp	is
unused.	If	string	does	not	contain	a	valid	cap	style	or	an	abbreviation	of
one	of	these	names,	then	an	error	message	is	stored	in	interp->result,
TCL_ERROR	is	returned,	and	*capPtr	is	unmodified.

Tk_NameOfCapStyle	is	the	logical	inverse	of	Tk_GetCapStyle.	Given
a	cap	style	such	as	CapButt	it	returns	a	statically-allocated	string
corresponding	to	cap.	If	cap	is	not	a	legal	cap	style,	then	“unknown	cap
style”	is	returned.

KEYWORDS

butt,	cap	style,	projecting,	round

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

int	rootX	(in)

int	rootY	(in)

Tk_Window	tkwin	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	CoordToWin

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tk_CoordsToWindow	-	Find	window	containing	a	point

SYNOPSIS

#include	<tk.h>
Tk_Window
Tk_CoordsToWindow(rootX,	rootY,	tkwin)

ARGUMENTS

X-coordinate	(in	root
window	coordinates).

Y-coordinate	(in	root
window	coordinates).

Token	for	window	that
identifies	application.

DESCRIPTION

Tk_CoordsToWindow	locates	the	window	that	contains	a	given	point.
The	point	is	specified	in	root	coordinates	with	rootX	and	rootY	(if	a
virtual-root	window	manager	is	in	use	then	rootX	and	rootY	are	in	the
coordinate	system	of	the	virtual	root	window).	The	return	value	from	the
procedure	is	a	token	for	the	window	that	contains	the	given	point.	If	the
point	is	not	in	any	window,	or	if	the	containing	window	is	not	in	the	same
application	as	tkwin,	then	NULL	is	returned.

The	containing	window	is	decided	using	the	same	rules	that	determine
which	window	contains	the	mouse	cursor:	if	a	parent	and	a	child	both
contain	the	point	then	the	child	gets	preference,	and	if	two	siblings	both
contain	the	point	then	the	highest	one	in	the	stacking	order	(i.e.	the	one
that's	visible	on	the	screen)	gets	preference.

KEYWORDS

containing,	coordinates,	root	window

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990-1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tk_Window	tkwin	(in)

int	x	(in)

int	y	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	MoveToplev

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tk_MoveToplevelWindow	-	Adjust	the	position	of	a	top-level	window

SYNOPSIS

#include	<tk.h>
Tk_MoveToplevelWindow(tkwin,	x,	y)

ARGUMENTS

Token	for	top-level	window
to	move.

New	x-coordinate	for	the
top-left	pixel	of	tkwin's
border,	or	the	top-left	pixel
of	the	decorative	border
supplied	for	tkwin	by	the
window	manager,	if	there
is	one.

New	y-coordinate	for	the
top-left	pixel	of	tkwin's
border,	or	the	top-left	pixel
of	the	decorative	border
supplied	for	tkwin	by	the
window	manager,	if	there
is	one.

DESCRIPTION

In	general,	a	window	should	never	set	its	own	position;	this	should	be
done	only	by	the	geometry	manger	that	is	responsible	for	the	window.
For	top-level	windows	the	window	manager	is	effectively	the	geometry
manager;	Tk	provides	interface	code	between	the	application	and	the
window	manager	to	convey	the	application's	desires	to	the	geometry
manager.	The	desired	size	for	a	top-level	window	is	conveyed	using	the
usual	Tk_GeometryRequest	mechanism.	The	procedure
Tk_MoveToplevelWindow	may	be	used	by	an	application	to	request	a
particular	position	for	a	top-level	window;	this	procedure	is	similar	in
function	to	the	wm	geometry	Tcl	command	except	that	negative	offsets
cannot	be	specified.	It	is	invoked	by	widgets	such	as	menus	that	want
to	appear	at	a	particular	place	on	the	screen.

When	Tk_MoveToplevelWindow	is	called	it	does	not	immediately	pass
on	the	new	desired	location	to	the	window	manager;	it	defers	this	action
until	all	other	outstanding	work	has	been	completed,	using	the
Tk_DoWhenIdle	mechanism.

KEYWORDS

position,	top-level	window,	window	manager

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990-1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tk_ClientMessageProc	*proc	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	CrtCmHdlr

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tk_CreateClientMessageHandler,	Tk_DeleteClientMessageHandler	-
associate	procedure	callback	with	ClientMessage	type	X	events

SYNOPSIS

#include	<tk.h>
Tk_CreateClientMessageHandler(proc)
Tk_DeleteClientMessageHandler(proc)

ARGUMENTS

Procedure	to	invoke
whenever	a
ClientMessage	X	event
occurs	on	any	display.

DESCRIPTION

Tk_CreateClientMessageHandler	arranges	for	proc	to	be	invoked	in
the	future	whenever	a	ClientMessage	X	event	occurs	that	is	not
handled	by	WM_PROTOCOL.	Tk_CreateClientMessageHandler	is
intended	for	use	by	applications	which	need	to	watch	X	ClientMessage
events,	such	as	drag	and	drop	applications.

The	callback	to	proc	will	be	made	by	Tk_HandleEvent;	this	mechanism
only	works	in	programs	that	dispatch	events	through	Tk_HandleEvent
(or	through	other	Tk	procedures	that	call	Tk_HandleEvent,	such	as
Tk_DoOneEvent	or	Tk_MainLoop).

Proc	should	have	arguments	and	result	that	match	the	type
Tk_ClientMessageProc:

typedef	int	Tk_ClientMessageProc(

				Tk_Window	tkwin,

				XEvent	*eventPtr);

The	tkwin	parameter	to	proc	is	the	Tk	window	which	is	associated	with
this	event.	EventPtr	is	a	pointer	to	the	X	event.

Whenever	an	X	ClientMessage	event	is	processed	by
Tk_HandleEvent,	the	proc	is	called	if	it	was	not	handled	as	a
WM_PROTOCOL.	The	return	value	from	proc	is	normally	0.	A	non-zero
return	value	indicates	that	the	event	is	not	to	be	handled	further;	that	is,
proc	has	done	all	processing	that	is	to	be	allowed	for	the	event.

If	there	are	multiple	ClientMessage	event	handlers,	each	one	is	called
for	each	event,	in	the	order	in	which	they	were	established.

Tk_DeleteClientMessageHandler	may	be	called	to	delete	a
previously-created	ClientMessage	event	handler:	it	deletes	each
handler	it	finds	that	matches	the	proc	argument.	If	no	such	handler
exists,	then	Tk_DeleteClientMessageHandler	returns	without	doing
anything.	Although	Tk	supports	it,	it's	probably	a	bad	idea	to	have	more
than	one	callback	with	the	same	proc	argument.

KEYWORDS

bind,	callback,	event,	handler

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	2000	Ajuba	Solutions.

Display	*display	(in)

int	error	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	CrtErrHdlr

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tk_CreateErrorHandler,	Tk_DeleteErrorHandler	-	handle	X
protocol	errors

SYNOPSIS
#include	<tk.h>
Tk_ErrorHandler
Tk_CreateErrorHandler(display,	error,	request,	minor,	proc,
clientData)
Tk_DeleteErrorHandler(handler)

ARGUMENTS
DESCRIPTION
KEYWORDS

NAME

Tk_CreateErrorHandler,	Tk_DeleteErrorHandler	-	handle	X	protocol
errors

SYNOPSIS

#include	<tk.h>
Tk_ErrorHandler
Tk_CreateErrorHandler(display,	error,	request,	minor,	proc,	clientData)
Tk_DeleteErrorHandler(handler)

ARGUMENTS

Display	whose	errors	are
to	be	handled.

Match	only	error	events
with	this	value	in	the

int	request	(in)

int	minor	(in)

Tk_ErrorProc	*proc	(in)

ClientData	clientData	(in)

Tk_ErrorHandler	handler	(in)

error_code	field.	If	-1,	then
match	any	error_code
value.

Match	only	error	events
with	this	value	in	the
request_code	field.	If	-1,
then	match	any
request_code	value.

Match	only	error	events
with	this	value	in	the
minor_code	field.	If	-1,
then	match	any
minor_code	value.

Procedure	to	invoke
whenever	an	error	event	is
received	for	display	and
matches	error,	request,
and	minor.	NULL	means
ignore	any	matching
errors.

Arbitrary	one-word	value
to	pass	to	proc.

Token	for	error	handler	to
delete	(return	value	from	a
previous	call	to
Tk_CreateErrorHandler).

DESCRIPTION

Tk_CreateErrorHandler	arranges	for	a	particular	procedure	(proc)	to
be	called	whenever	certain	protocol	errors	occur	on	a	particular	display

(display).	Protocol	errors	occur	when	the	X	protocol	is	used	incorrectly,
such	as	attempting	to	map	a	window	that	does	not	exist.	See	the	Xlib
documentation	for	XSetErrorHandler	for	more	information	on	the	kinds
of	errors	that	can	occur.	For	proc	to	be	invoked	to	handle	a	particular
error,	five	things	must	occur:

[1]
The	error	must	pertain	to	display.

[2]
Either	the	error	argument	to	Tk_CreateErrorHandler	must	have
been	-1,	or	the	error	argument	must	match	the	error_code	field
from	the	error	event.

[3]
Either	the	request	argument	to	Tk_CreateErrorHandler	must	have
been	-1,	or	the	request	argument	must	match	the	request_code
field	from	the	error	event.

[4]
Either	the	minor	argument	to	Tk_CreateErrorHandler	must	have
been	-1,	or	the	minor	argument	must	match	the	minor_code	field
from	the	error	event.

[5]
The	protocol	request	to	which	the	error	pertains	must	have	been
made	when	the	handler	was	active	(see	below	for	more
information).

Proc	should	have	arguments	and	result	that	match	the	following	type:

typedef	int	Tk_ErrorProc(

				ClientData	clientData,

				XErrorEvent	*errEventPtr);

The	clientData	parameter	to	proc	is	a	copy	of	the	clientData	argument
given	to	Tcl_CreateErrorHandler	when	the	callback	was	created.

Typically,	clientData	points	to	a	data	structure	containing	application-
specific	information	that	is	needed	to	deal	with	the	error.	ErrEventPtr	is
a	pointer	to	the	X	error	event.	The	procedure	proc	should	return	an
integer	value.	If	it	returns	0	it	means	that	proc	handled	the	error
completely	and	there	is	no	need	to	take	any	other	action	for	the	error.	If
it	returns	non-zero	it	means	proc	was	unable	to	handle	the	error.

If	a	value	of	NULL	is	specified	for	proc,	all	matching	errors	will	be
ignored:	this	will	produce	the	same	result	as	if	a	procedure	had	been
specified	that	always	returns	0.

If	more	than	more	than	one	handler	matches	a	particular	error,	then
they	are	invoked	in	turn.	The	handlers	will	be	invoked	in	reverse	order
of	creation:	most	recently	declared	handler	first.	If	any	handler	returns
0,	then	subsequent	(older)	handlers	will	not	be	invoked.	If	no	handler
returns	0,	then	Tk	invokes	X's	default	error	handler,	which	prints	an
error	message	and	aborts	the	program.	If	you	wish	to	have	a	default
handler	that	deals	with	errors	that	no	other	handler	can	deal	with,	then
declare	it	first.

The	X	documentation	states	that	“the	error	handler	should	not	call	any
functions	(directly	or	indirectly)	on	the	display	that	will	generate	protocol
requests	or	that	will	look	for	input	events.”	This	restriction	applies	to
handlers	declared	by	Tk_CreateErrorHandler;	disobey	it	at	your	own
risk.

Tk_DeleteErrorHandler	may	be	called	to	delete	a	previously-created
error	handler.	The	handler	argument	identifies	the	error	handler,	and
should	be	a	value	returned	by	a	previous	call	to
Tk_CreateEventHandler.

A	particular	error	handler	applies	to	errors	resulting	from	protocol
requests	generated	between	the	call	to	Tk_CreateErrorHandler	and
the	call	to	Tk_DeleteErrorHandler.	However,	the	actual	callback	to
proc	may	not	occur	until	after	the	Tk_DeleteErrorHandler	call,	due	to
buffering	in	the	client	and	server.	If	an	error	event	pertains	to	a	protocol
request	made	just	before	calling	Tk_DeleteErrorHandler,	then	the
error	event	may	not	have	been	processed	before	the

Tk_DeleteErrorHandler	call.	When	this	situation	arises,	Tk	will	save
information	about	the	handler	and	invoke	the	handler's	proc	later	when
the	error	event	finally	arrives.	If	an	application	wishes	to	delete	an	error
handler	and	know	for	certain	that	all	relevant	errors	have	been
processed,	it	should	first	call	Tk_DeleteErrorHandler	and	then	call
XSync;	this	will	flush	out	any	buffered	requests	and	errors,	but	will
result	in	a	performance	penalty	because	it	requires	communication	to
and	from	the	X	server.	After	the	XSync	call	Tk	is	guaranteed	not	to	call
any	error	handlers	deleted	before	the	XSync	call.

For	the	Tk	error	handling	mechanism	to	work	properly,	it	is	essential
that	application	code	never	calls	XSetErrorHandler	directly;
applications	should	use	only	Tk_CreateErrorHandler.

KEYWORDS

callback,	error,	event,	handler

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	Name

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tk_Name,	Tk_PathName,	Tk_NameToWindow	-	convert
between	names	and	window	tokens

SYNOPSIS
#include	<tk.h>
Tk_Uid
Tk_Name(tkwin)
char	*
Tk_PathName(tkwin)
Tk_Window
Tk_NameToWindow(interp,	pathName,	tkwin)

ARGUMENTS
DESCRIPTION
KEYWORDS

NAME

Tk_Name,	Tk_PathName,	Tk_NameToWindow	-	convert	between
names	and	window	tokens

SYNOPSIS

#include	<tk.h>
Tk_Uid
Tk_Name(tkwin)
char	*
Tk_PathName(tkwin)
Tk_Window
Tk_NameToWindow(interp,	pathName,	tkwin)

ARGUMENTS

Tk_Window	tkwin	(in)

Tcl_Interp	*interp	(out)

const	char	*pathName	(in)

Token	for	window.

Interpreter	to	use	for	error
reporting.

Character	string	containing
path	name	of	window.

DESCRIPTION

Each	window	managed	by	Tk	has	two	names,	a	short	name	that
identifies	a	window	among	children	of	the	same	parent,	and	a	path
name	that	identifies	the	window	uniquely	among	all	the	windows
belonging	to	the	same	main	window.	The	path	name	is	used	more	often
in	Tk	than	the	short	name;	many	commands,	like	bind,	expect	path
names	as	arguments.

The	Tk_Name	macro	returns	a	window's	short	name,	which	is	the	same
as	the	name	argument	passed	to	Tk_CreateWindow	when	the	window
was	created.	The	value	is	returned	as	a	Tk_Uid,	which	may	be	used
just	like	a	string	pointer	but	also	has	the	properties	of	a	unique	identifier
(see	the	manual	entry	for	Tk_GetUid	for	details).

The	Tk_PathName	macro	returns	a	hierarchical	name	for	tkwin.	Path
names	have	a	structure	similar	to	file	names	in	Unix	but	with	dots
between	elements	instead	of	slashes:	the	main	window	for	an
application	has	the	path	name	“.”;	its	children	have	names	like	“.a”	and
“.b”;	their	children	have	names	like	“.a.aa”	and	“.b.bb”;	and	so	on.	A
window	is	considered	to	be	a	child	of	another	window	for	naming
purposes	if	the	second	window	was	named	as	the	first	window's	parent
when	the	first	window	was	created.	This	is	not	always	the	same	as	the
X	window	hierarchy.	For	example,	a	pop-up	is	created	as	a	child	of	the
root	window,	but	its	logical	parent	will	usually	be	a	window	within	the
application.

The	procedure	Tk_NameToWindow	returns	the	token	for	a	window
given	its	path	name	(the	pathName	argument)	and	another	window

belonging	to	the	same	main	window	(tkwin).	It	normally	returns	a	token
for	the	named	window,	but	if	no	such	window	exists
Tk_NameToWindow	leaves	an	error	message	in	interp->result	and
returns	NULL.	The	tkwin	argument	to	Tk_NameToWindow	is	needed
because	path	names	are	only	unique	within	a	single	application
hierarchy.	If,	for	example,	a	single	process	has	opened	two	main
windows,	each	will	have	a	separate	naming	hierarchy	and	the	same
path	name	might	appear	in	each	of	the	hierarchies.	Normally	tkwin	is
the	main	window	of	the	desired	hierarchy,	but	this	need	not	be	the	case:
any	window	in	the	desired	hierarchy	may	be	used.

KEYWORDS

name,	path	name,	token,	window

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990	The	Regents	of	the	University	of	California.
Copyright	©	1994-1997	Sun	Microsystems,	Inc.

Tk_Window	tkwin	(in)

unsigned	long	mask	(in)

Tk_EventProc	*proc	(in)

ClientData	clientData	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	EventHndlr

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tk_CreateEventHandler,	Tk_DeleteEventHandler	-	associate	procedure
callback	with	an	X	event

SYNOPSIS

#include	<tk.h>
Tk_CreateEventHandler(tkwin,	mask,	proc,	clientData)
Tk_DeleteEventHandler(tkwin,	mask,	proc,	clientData)

ARGUMENTS

Token	for	window	in	which
events	may	occur.

Bit-mask	of	events	(such
as	ButtonPressMask)	for
which	proc	should	be
called.

Procedure	to	invoke
whenever	an	event	in
mask	occurs	in	the	window
given	by	tkwin.

Arbitrary	one-word	value
to	pass	to	proc.

DESCRIPTION

Tk_CreateEventHandler	arranges	for	proc	to	be	invoked	in	the	future
whenever	one	of	the	event	types	specified	by	mask	occurs	in	the
window	specified	by	tkwin.	The	callback	to	proc	will	be	made	by
Tk_HandleEvent;	this	mechanism	only	works	in	programs	that	dispatch
events	through	Tk_HandleEvent	(or	through	other	Tk	procedures	that
call	Tk_HandleEvent,	such	as	Tk_DoOneEvent	or	Tk_MainLoop).

Proc	should	have	arguments	and	result	that	match	the	type
Tk_EventProc:

typedef	void	Tk_EventProc(

				ClientData	clientData,

				XEvent	*eventPtr);

The	clientData	parameter	to	proc	is	a	copy	of	the	clientData	argument
given	to	Tk_CreateEventHandler	when	the	callback	was	created.
Typically,	clientData	points	to	a	data	structure	containing	application-
specific	information	about	the	window	in	which	the	event	occurred.
EventPtr	is	a	pointer	to	the	X	event,	which	will	be	one	of	the	ones
specified	in	the	mask	argument	to	Tk_CreateEventHandler.

Tk_DeleteEventHandler	may	be	called	to	delete	a	previously-created
event	handler:	it	deletes	the	first	handler	it	finds	that	is	associated	with
tkwin	and	matches	the	mask,	proc,	and	clientData	arguments.	If	no
such	handler	exists,	then	Tk_HandleEvent	returns	without	doing
anything.	Although	Tk	supports	it,	it's	probably	a	bad	idea	to	have	more
than	one	callback	with	the	same	mask,	proc,	and	clientData	arguments.
When	a	window	is	deleted	all	of	its	handlers	will	be	deleted
automatically;	in	this	case	there	is	no	need	to	call
Tk_DeleteEventHandler.

If	multiple	handlers	are	declared	for	the	same	type	of	X	event	on	the
same	window,	then	the	handlers	will	be	invoked	in	the	order	they	were
created.

KEYWORDS

bind,	callback,	event,	handler

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tk_GenericProc	*proc	(in)

ClientData	clientData	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	CrtGenHdlr

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tk_CreateGenericHandler,	Tk_DeleteGenericHandler	-	associate
procedure	callback	with	all	X	events

SYNOPSIS

#include	<tk.h>
Tk_CreateGenericHandler(proc,	clientData)
Tk_DeleteGenericHandler(proc,	clientData)

ARGUMENTS

Procedure	to	invoke
whenever	any	X	event
occurs	on	any	display.

Arbitrary	one-word	value
to	pass	to	proc.

DESCRIPTION

Tk_CreateGenericHandler	arranges	for	proc	to	be	invoked	in	the
future	whenever	any	X	event	occurs.	This	mechanism	is	not	intended
for	dispatching	X	events	on	windows	managed	by	Tk	(you	should	use
Tk_CreateEventHandler	for	this	purpose).	Tk_CreateGenericHandler
is	intended	for	other	purposes,	such	as	tracing	X	events,	monitoring
events	on	windows	not	owned	by	Tk,	accessing	X-related	libraries	that
were	not	originally	designed	for	use	with	Tk,	and	so	on.

The	callback	to	proc	will	be	made	by	Tk_HandleEvent;	this	mechanism

only	works	in	programs	that	dispatch	events	through	Tk_HandleEvent
(or	through	other	Tk	procedures	that	call	Tk_HandleEvent,	such	as
Tk_DoOneEvent	or	Tk_MainLoop).

Proc	should	have	arguments	and	result	that	match	the	type
Tk_GenericProc:

typedef	int	Tk_GenericProc(

				ClientData	clientData,

				XEvent	*eventPtr);

The	clientData	parameter	to	proc	is	a	copy	of	the	clientData	argument
given	to	Tk_CreateGenericHandler	when	the	callback	was	created.
Typically,	clientData	points	to	a	data	structure	containing	application-
specific	information	about	how	to	handle	events.	EventPtr	is	a	pointer	to
the	X	event.

Whenever	an	X	event	is	processed	by	Tk_HandleEvent,	proc	is	called.
The	return	value	from	proc	is	normally	0.	A	non-zero	return	value
indicates	that	the	event	is	not	to	be	handled	further;	that	is,	proc	has
done	all	processing	that	is	to	be	allowed	for	the	event.

If	there	are	multiple	generic	event	handlers,	each	one	is	called	for	each
event,	in	the	order	in	which	they	were	established.

Tk_DeleteGenericHandler	may	be	called	to	delete	a	previously-
created	generic	event	handler:	it	deletes	each	handler	it	finds	that
matches	the	proc	and	clientData	arguments.	If	no	such	handler	exists,
then	Tk_DeleteGenericHandler	returns	without	doing	anything.
Although	Tk	supports	it,	it's	probably	a	bad	idea	to	have	more	than	one
callback	with	the	same	proc	and	clientData	arguments.

Establishing	a	generic	event	handler	does	nothing	to	ensure	that	the
process	will	actually	receive	the	X	events	that	the	handler	wants	to
process.	For	example,	it	is	the	caller's	responsibility	to	invoke
XSelectInput	to	select	the	desired	events,	if	that	is	necessary.

KEYWORDS

bind,	callback,	event,	handler

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1992-1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl_Interp	*interp	(in)

const	char	*	string	(in)

Tk_Dash	*dashPtr	(out)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	GetDash

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tk_GetDash	-	convert	from	string	to	valid	dash	structure.

SYNOPSIS

#include	<tk.h>
int
Tk_GetDash(interp,	string,	dashPtr)

ARGUMENTS

Interpreter	to	use	for	error
reporting.

Textual	value	to	be
converted.

Points	to	place	to	store	the
dash	pattern	value
converted	from	string.

DESCRIPTION

These	procedure	parses	the	string	and	fills	in	the	result	in	the	Tk_Dash
structure.	The	string	can	be	a	list	of	integers	or	a	character	string
containing	only	“.,-_”	or	spaces.	If	all	goes	well,	TCL_OK	is	returned.	If
string	does	not	have	the	proper	syntax	then	TCL_ERROR	is	returned,
an	error	message	is	left	in	the	interpreter's	result,	and	nothing	is	stored
at	*dashPtr.

The	first	possible	syntax	is	a	list	of	integers.	Each	element	represents
the	number	of	pixels	of	a	line	segment.	Only	the	odd	segments	are
drawn	using	the	“outline”	color.	The	other	segments	are	drawn
transparent.

The	second	possible	syntax	is	a	character	list	containing	only	5
possible	characters	“.,-_	”.	The	space	can	be	used	to	enlarge	the	space
between	other	line	elements,	and	can	not	occur	as	the	first	position	in
the	string.	Some	examples:

-dash	.					=	-dash	{2	4}

				-dash	-					=	-dash	{6	4}

				-dash	-.				=	-dash	{6	4	2	4}

				-dash	-..			=	-dash	{6	4	2	4	2	4}

				-dash	{.	}		=	-dash	{2	8}

				-dash	,					=	-dash	{4	4}

The	main	difference	of	this	syntax	with	the	previous	is	that	it	is	shape-
conserving.	This	means	that	all	values	in	the	dash	list	will	be	multiplied
by	the	line	width	before	display.	This	assures	that	“.”	will	always	be
displayed	as	a	dot	and	“-”	always	as	a	dash	regardless	of	the	line	width.

On	systems	where	only	a	limited	set	of	dash	patterns,	the	dash	pattern
will	be	displayed	as	the	most	close	dash	pattern	that	is	available.	For
example,	on	Windows	only	the	first	4	of	the	above	examples	are
available.	The	last	2	examples	will	be	displayed	identically	as	the	first
one.

KEYWORDS

dash,	conversion

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1989-1993	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	CrtItemType

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tk_CreateItemType,	Tk_GetItemTypes	-	define	new	kind	of
canvas	item

SYNOPSIS
#include	<tk.h>
Tk_CreateItemType(typePtr)
Tk_ItemType	*
Tk_GetItemTypes()

ARGUMENTS
INTRODUCTION
DATA	STRUCTURES
NAME
ITEMSIZE
CREATEPROC
CONFIGSPECS
CONFIGPROC
COORDPROC
DELETEPROC
DISPLAYPROC	AND	ALWAYSREDRAW
POINTPROC
AREAPROC
POSTSCRIPTPROC
SCALEPROC
TRANSLATEPROC
INDEXPROC
ICURSORPROC
SELECTIONPROC
INSERTPROC
DCHARSPROC
SEE	ALSO
KEYWORDS

Tk_ItemType	*typePtr	(in)

NAME

Tk_CreateItemType,	Tk_GetItemTypes	-	define	new	kind	of	canvas	item

SYNOPSIS

#include	<tk.h>
Tk_CreateItemType(typePtr)
Tk_ItemType	*
Tk_GetItemTypes()

ARGUMENTS

Structure	that	defines	the
new	type	of	canvas	item.

INTRODUCTION

Tk_CreateItemType	is	invoked	to	define	a	new	kind	of	canvas	item
described	by	the	typePtr	argument.	An	item	type	corresponds	to	a
particular	value	of	the	type	argument	to	the	create	widget	command	for
canvases,	and	the	code	that	implements	a	canvas	item	type	is	called	a
type	manager.	Tk	defines	several	built-in	item	types,	such	as	rectangle
and	text	and	image,	but	Tk_CreateItemType	allows	additional	item
types	to	be	defined.	Once	Tk_CreateItemType	returns,	the	new	item
type	may	be	used	in	new	or	existing	canvas	widgets	just	like	the	built-in
item	types.

Tk_GetItemTypes	returns	a	pointer	to	the	first	in	the	list	of	all	item
types	currently	defined	for	canvases.	The	entries	in	the	list	are	linked
together	through	their	nextPtr	fields,	with	the	end	of	the	list	marked	by	a
NULL	nextPtr.

You	may	find	it	easier	to	understand	the	rest	of	this	manual	entry	by
looking	at	the	code	for	an	existing	canvas	item	type	such	as	bitmap	(file
tkCanvBmap.c)	or	text	(tkCanvText.c).	The	easiest	way	to	create	a	new
type	manager	is	to	copy	the	code	for	an	existing	type	and	modify	it	for

the	new	type.

Tk	provides	a	number	of	utility	procedures	for	the	use	of	canvas	type
managers,	such	as	Tk_CanvasCoords	and	Tk_CanvasPsColor;	these
are	described	in	separate	manual	entries.

DATA	STRUCTURES

A	type	manager	consists	of	a	collection	of	procedures	that	provide	a
standard	set	of	operations	on	items	of	that	type.	The	type	manager
deals	with	three	kinds	of	data	structures.	The	first	data	structure	is	a
Tk_ItemType;	it	contains	information	such	as	the	name	of	the	type	and
pointers	to	the	standard	procedures	implemented	by	the	type	manager:

typedef	struct	Tk_ItemType	{

				char	*name;

				int	itemSize;

				Tk_ItemCreateProc	*createProc;

				Tk_ConfigSpec	*configSpecs;

				Tk_ItemConfigureProc	*configProc;

				Tk_ItemCoordProc	*coordProc;

				Tk_ItemDeleteProc	*deleteProc;

				Tk_ItemDisplayProc	*displayProc;

				int	alwaysRedraw;

				Tk_ItemPointProc	*pointProc;

				Tk_ItemAreaProc	*areaProc;

				Tk_ItemPostscriptProc	*postscriptProc;

				Tk_ItemScaleProc	*scaleProc;

				Tk_ItemTranslateProc	*translateProc;

				Tk_ItemIndexProc	*indexProc;

				Tk_ItemCursorProc	*icursorProc;

				Tk_ItemSelectionProc	*selectionProc;

				Tk_ItemInsertProc	*insertProc;

				Tk_ItemDCharsProc	*dCharsProc;

				Tk_ItemType	*nextPtr;

}	Tk_ItemType;

The	fields	of	a	Tk_ItemType	structure	are	described	in	more	detail	later
in	this	manual	entry.	When	Tk_CreateItemType	is	called,	its	typePtr
argument	must	point	to	a	structure	with	all	of	the	fields	initialized	except
nextPtr,	which	Tk	sets	to	link	all	the	types	together	into	a	list.	The
structure	must	be	in	permanent	memory	(either	statically	allocated	or
dynamically	allocated	but	never	freed);	Tk	retains	a	pointer	to	this
structure.

The	second	data	structure	manipulated	by	a	type	manager	is	an	item
record.	For	each	item	in	a	canvas	there	exists	one	item	record.	All	of
the	items	of	a	given	type	generally	have	item	records	with	the	same
structure,	but	different	types	usually	have	different	formats	for	their	item
records.	The	first	part	of	each	item	record	is	a	header	with	a	standard
structure	defined	by	Tk	via	the	type	Tk_Item;	the	rest	of	the	item	record
is	defined	by	the	type	manager.	A	type	manager	must	define	its	item
records	with	a	Tk_Item	as	the	first	field.	For	example,	the	item	record
for	bitmap	items	is	defined	as	follows:

typedef	struct	BitmapItem	{

				Tk_Item	header;

				double	x,	y;

				Tk_Anchor	anchor;

				Pixmap	bitmap;

				XColor	*fgColor;

				XColor	*bgColor;

				GC	gc;

}	BitmapItem;

The	header	substructure	contains	information	used	by	Tk	to	manage
the	item,	such	as	its	identifier,	its	tags,	its	type,	and	its	bounding	box.
The	fields	starting	with	x	belong	to	the	type	manager:	Tk	will	never	read
or	write	them.	The	type	manager	should	not	need	to	read	or	write	any	of
the	fields	in	the	header	except	for	four	fields	whose	names	are	x1,	y1,
x2,	and	y2.	These	fields	give	a	bounding	box	for	the	items	using	integer
canvas	coordinates:	the	item	should	not	cover	any	pixels	with	x-
coordinate	lower	than	x1	or	y-coordinate	lower	than	y1,	nor	should	it

cover	any	pixels	with	x-coordinate	greater	than	or	equal	to	x2	or	y-
coordinate	greater	than	or	equal	to	y2.	It	is	up	to	the	type	manager	to
keep	the	bounding	box	up	to	date	as	the	item	is	moved	and
reconfigured.

Whenever	Tk	calls	a	procedure	in	a	type	manager	it	passes	in	a	pointer
to	an	item	record.	The	argument	is	always	passed	as	a	pointer	to	a
Tk_Item;	the	type	manager	will	typically	cast	this	into	a	pointer	to	its
own	specific	type,	such	as	BitmapItem.

The	third	data	structure	used	by	type	managers	has	type	Tk_Canvas;	it
serves	as	an	opaque	handle	for	the	canvas	widget	as	a	whole.	Type
managers	need	not	know	anything	about	the	contents	of	this	structure.
A	Tk_Canvas	handle	is	typically	passed	in	to	the	procedures	of	a	type
manager,	and	the	type	manager	can	pass	the	handle	back	to	library
procedures	such	as	Tk_CanvasTkwin	to	fetch	information	about	the
canvas.

NAME

This	section	and	the	ones	that	follow	describe	each	of	the	fields	in	a
Tk_ItemType	structure	in	detail.	The	name	field	provides	a	string	name
for	the	item	type.	Once	Tk_CreateImageType	returns,	this	name	may
be	used	in	create	widget	commands	to	create	items	of	the	new	type.	If
there	already	existed	an	item	type	by	this	name	then	the	new	item	type
replaces	the	old	one.

ITEMSIZE

typePtr->itemSize	gives	the	size	in	bytes	of	item	records	of	this	type,
including	the	Tk_Item	header.	Tk	uses	this	size	to	allocate	memory
space	for	items	of	the	type.	All	of	the	item	records	for	a	given	type	must
have	the	same	size.	If	variable	length	fields	are	needed	for	an	item
(such	as	a	list	of	points	for	a	polygon),	the	type	manager	can	allocate	a
separate	object	of	variable	length	and	keep	a	pointer	to	it	in	the	item
record.

CREATEPROC

typePtr->createProc	points	to	a	procedure	for	Tk	to	call	whenever	a	new
item	of	this	type	is	created.	typePtr->createProc	must	match	the
following	prototype:

typedef	int	Tk_ItemCreateProc(

				Tcl_Interp	*interp,

				Tk_Canvas	canvas,

				Tk_Item	*itemPtr,

				int	objc,

				Tcl_Obj*	const	objv[]);

The	interp	argument	is	the	interpreter	in	which	the	canvas's	create
widget	command	was	invoked,	and	canvas	is	a	handle	for	the	canvas
widget.	itemPtr	is	a	pointer	to	a	newly-allocated	item	of	size	typePtr-
>itemSize.	Tk	has	already	initialized	the	item's	header	(the	first
sizeof(Tk_ItemType)	bytes).	The	objc	and	objv	arguments	describe	all
of	the	arguments	to	the	create	command	after	the	type	argument.	For
example,	in	the	widget	command

	.c	create	rectangle	10	20	50	50	-fill	black

objc	will	be	6	and	objv[0]	will	contain	the	integer	object	10.

createProc	should	use	objc	and	objv	to	initialize	the	type-specific	parts
of	the	item	record	and	set	an	initial	value	for	the	bounding	box	in	the
item's	header.	It	should	return	a	standard	Tcl	completion	code	and	leave
an	error	message	in	interp->result	if	an	error	occurs.	If	an	error	occurs
Tk	will	free	the	item	record,	so	createProc	must	be	sure	to	leave	the
item	record	in	a	clean	state	if	it	returns	an	error	(e.g.,	it	must	free	any
additional	memory	that	it	allocated	for	the	item).

CONFIGSPECS

Each	type	manager	must	provide	a	standard	table	describing	its
configuration	options,	in	a	form	suitable	for	use	with
Tk_ConfigureWidget.	This	table	will	normally	be	used	by	typePtr-
>createProc	and	typePtr->configProc,	but	Tk	also	uses	it	directly	to
retrieve	option	information	in	the	itemcget	and	itemconfigure	widget
commands.	typePtr->configSpecs	must	point	to	the	configuration	table
for	this	type.	Note:	Tk	provides	a	custom	option	type
tk_CanvasTagsOption	for	implementing	the	-tags	option;	see	an
existing	type	manager	for	an	example	of	how	to	use	it	in	configSpecs.

CONFIGPROC

typePtr->configProc	is	called	by	Tk	whenever	the	itemconfigure	widget
command	is	invoked	to	change	the	configuration	options	for	a	canvas
item.	This	procedure	must	match	the	following	prototype:

typedef	int	Tk_ItemConfigureProc(

				Tcl_Interp	*interp,

				Tk_Canvas	canvas,

				Tk_Item	*itemPtr,

				int	objc,

				Tcl_Obj*	const	objv[],

				int	flags);

The	interp	objument	identifies	the	interpreter	in	which	the	widget
command	was	invoked,	canvas	is	a	handle	for	the	canvas	widget,	and
itemPtr	is	a	pointer	to	the	item	being	configured.	objc	and	objv	contain
the	configuration	options.	For	example,	if	the	following	command	is
invoked:

	.c	itemconfigure	2	-fill	red	-outline	black

objc	is	4	and	objv	contains	the	string	objects	-fill	through	black.	objc
will	always	be	an	even	value.	The	flags	argument	contains	flags	to	pass

to	Tk_ConfigureWidget;	currently	this	value	is	always
TK_CONFIG_ARGV_ONLY	when	Tk	invokes	typePtr->configProc,	but
the	type	manager's	createProc	procedure	will	usually	invoke	configProc
with	different	flag	values.

typePtr->configProc	returns	a	standard	Tcl	completion	code	and	leaves
an	error	message	in	interp->result	if	an	error	occurs.	It	must	update	the
item's	bounding	box	to	reflect	the	new	configuration	options.

COORDPROC

typePtr->coordProc	is	invoked	by	Tk	to	implement	the	coords	widget
command	for	an	item.	It	must	match	the	following	prototype:

typedef	int	Tk_ItemCoordProc(

				Tcl_Interp	*interp,

				Tk_Canvas	canvas,

				Tk_Item	*itemPtr,

				int	objc,

				Tcl_Obj*	const	objv[]);

The	arguments	interp,	canvas,	and	itemPtr	all	have	the	standard
meanings,	and	objc	and	objv	describe	the	coordinate	arguments.	For
example,	if	the	following	widget	command	is	invoked:

	.c	coords	2	30	90

objc	will	be	2	and	objv	will	contain	the	integer	objects	30	and	90.

The	coordProc	procedure	should	process	the	new	coordinates,	update
the	item	appropriately	(e.g.,	it	must	reset	the	bounding	box	in	the	item's
header),	and	return	a	standard	Tcl	completion	code.	If	an	error	occurs,
coordProc	must	leave	an	error	message	in	interp->result.

DELETEPROC

typePtr->deleteProc	is	invoked	by	Tk	to	delete	an	item	and	free	any
resources	allocated	to	it.	It	must	match	the	following	prototype:

typedef	void	Tk_ItemDeleteProc(

				Tk_Canvas	canvas,

				Tk_Item	*itemPtr,

				Display	*display);

The	canvas	and	itemPtr	arguments	have	the	usual	interpretations,	and
display	identifies	the	X	display	containing	the	canvas.	deleteProc	must
free	up	any	resources	allocated	for	the	item,	so	that	Tk	can	free	the
item	record.	deleteProc	should	not	actually	free	the	item	record;	this	will
be	done	by	Tk	when	deleteProc	returns.

DISPLAYPROC	AND	ALWAYSREDRAW

typePtr->displayProc	is	invoked	by	Tk	to	redraw	an	item	on	the	screen.
It	must	match	the	following	prototype:

typedef	void	Tk_ItemDisplayProc(

				Tk_Canvas	canvas,

				Tk_Item	*itemPtr,

				Display	*display,

				Drawable	dst,

				int	x,

				int	y,

				int	width,

				int	height);

The	canvas	and	itemPtr	arguments	have	the	usual	meaning.	display
identifies	the	display	containing	the	canvas,	and	dst	specifies	a
drawable	in	which	the	item	should	be	rendered;	typically	this	is	an	off-
screen	pixmap,	which	Tk	will	copy	into	the	canvas's	window	once	all
relevant	items	have	been	drawn.	x,	y,	width,	and	height	specify	a

rectangular	region	in	canvas	coordinates,	which	is	the	area	to	be
redrawn;	only	information	that	overlaps	this	area	needs	to	be	redrawn.
Tk	will	not	call	displayProc	unless	the	item's	bounding	box	overlaps	the
redraw	area,	but	the	type	manager	may	wish	to	use	the	redraw	area	to
optimize	the	redisplay	of	the	item.

Because	of	scrolling	and	the	use	of	off-screen	pixmaps	for	double-
buffered	redisplay,	the	item's	coordinates	in	dst	will	not	necessarily	be
the	same	as	those	in	the	canvas.	displayProc	should	call
Tk_CanvasDrawableCoords	to	transform	coordinates	from	those	of
the	canvas	to	those	of	dst.

Normally	an	item's	displayProc	is	only	invoked	if	the	item	overlaps	the
area	being	displayed.	However,	if	typePtr->alwaysRedraw	has	a	non-
zero	value,	then	displayProc	is	invoked	during	every	redisplay
operation,	even	if	the	item	does	not	overlap	the	area	of	redisplay.
alwaysRedraw	should	normally	be	set	to	0;	it	is	only	set	to	1	in	special
cases	such	as	window	items	that	need	to	be	unmapped	when	they	are
off-screen.

POINTPROC

typePtr->pointProc	is	invoked	by	Tk	to	find	out	how	close	a	given	point
is	to	a	canvas	item.	Tk	uses	this	procedure	for	purposes	such	as
locating	the	item	under	the	mouse	or	finding	the	closest	item	to	a	given
point.	The	procedure	must	match	the	following	prototype:

typedef	double	Tk_ItemPointProc(

				Tk_Canvas	canvas,

				Tk_Item	*itemPtr,

				double	*pointPtr);

canvas	and	itemPtr	have	the	usual	meaning.	pointPtr	points	to	an	array
of	two	numbers	giving	the	x	and	y	coordinates	of	a	point.	pointProc
must	return	a	real	value	giving	the	distance	from	the	point	to	the	item,
or	0	if	the	point	lies	inside	the	item.

AREAPROC

typePtr->areaProc	is	invoked	by	Tk	to	find	out	the	relationship	between
an	item	and	a	rectangular	area.	It	must	match	the	following	prototype:

typedef	int	Tk_ItemAreaProc(

				Tk_Canvas	canvas,

				Tk_Item	*itemPtr,

				double	*rectPtr);

canvas	and	itemPtr	have	the	usual	meaning.	rectPtr	points	to	an	array
of	four	real	numbers;	the	first	two	give	the	x	and	y	coordinates	of	the
upper	left	corner	of	a	rectangle,	and	the	second	two	give	the	x	and	y
coordinates	of	the	lower	right	corner.	areaProc	must	return	-1	if	the	item
lies	entirely	outside	the	given	area,	0	if	it	lies	partially	inside	and
partially	outside	the	area,	and	1	if	it	lies	entirely	inside	the	area.

POSTSCRIPTPROC

typePtr->postscriptProc	is	invoked	by	Tk	to	generate	Postscript	for	an
item	during	the	postscript	widget	command.	If	the	type	manager	is	not
capable	of	generating	Postscript	then	typePtr->postscriptProc	should	be
NULL.	The	procedure	must	match	the	following	prototype:

typedef	int	Tk_ItemPostscriptProc(

				Tcl_Interp	*interp,

				Tk_Canvas	canvas,

				Tk_Item	*itemPtr,

				int	prepass);

The	interp,	canvas,	and	itemPtr	arguments	all	have	standard	meanings;
prepass	will	be	described	below.	If	postscriptProc	completes
successfully,	it	should	append	Postscript	for	the	item	to	the	information
in	interp->result	(e.g.	by	calling	Tcl_AppendResult,	not	Tcl_SetResult)

and	return	TCL_OK.	If	an	error	occurs,	postscriptProc	should	clear	the
result	and	replace	its	contents	with	an	error	message;	then	it	should
return	TCL_ERROR.

Tk	provides	a	collection	of	utility	procedures	to	simplify	postscriptProc.
For	example,	Tk_CanvasPsColor	will	generate	Postscript	to	set	the
current	color	to	a	given	Tk	color	and	Tk_CanvasPsFont	will	set	up	font
information.	When	generating	Postscript,	the	type	manager	is	free	to
change	the	graphics	state	of	the	Postscript	interpreter,	since	Tk	places
gsave	and	grestore	commands	around	the	Postscript	for	the	item.	The
type	manager	can	use	canvas	x	coordinates	directly	in	its	Postscript,
but	it	must	call	Tk_CanvasPsY	to	convert	y	coordinates	from	the	space
of	the	canvas	(where	the	origin	is	at	the	upper	left)	to	the	space	of
Postscript	(where	the	origin	is	at	the	lower	left).

In	order	to	generate	Postscript	that	complies	with	the	Adobe	Document
Structuring	Conventions,	Tk	actually	generates	Postscript	in	two
passes.	It	calls	each	item's	postscriptProc	in	each	pass.	The	only
purpose	of	the	first	pass	is	to	collect	font	information	(which	is	done	by
Tk_CanvasPsFont);	the	actual	Postscript	is	discarded.	Tk	sets	the
prepass	argument	to	postscriptProc	to	1	during	the	first	pass;	the	type
manager	can	use	prepass	to	skip	all	Postscript	generation	except	for
calls	to	Tk_CanvasPsFont.	During	the	second	pass	prepass	will	be	0,
so	the	type	manager	must	generate	complete	Postscript.

SCALEPROC

typePtr->scaleProc	is	invoked	by	Tk	to	rescale	a	canvas	item	during	the
scale	widget	command.	The	procedure	must	match	the	following
prototype:

typedef	void	Tk_ItemScaleProc(

				Tk_Canvas	canvas,

				Tk_Item	*itemPtr,

				double	originX,

				double	originY,

				double	scaleX,

				double	scaleY);

The	canvas	and	itemPtr	arguments	have	the	usual	meaning.	originX
and	originY	specify	an	origin	relative	to	which	the	item	is	to	be	scaled,
and	scaleX	and	scaleY	give	the	x	and	y	scale	factors.	The	item	should
adjust	its	coordinates	so	that	a	point	in	the	item	that	used	to	have
coordinates	x	and	y	will	have	new	coordinates	x′	and	y′,	where

x′	=	originX		+	scaleX*(x-originX)

y′	=	originY	+	scaleY*(y-originY)

scaleProc	must	also	update	the	bounding	box	in	the	item's	header.

TRANSLATEPROC

typePtr->translateProc	is	invoked	by	Tk	to	translate	a	canvas	item
during	the	move	widget	command.	The	procedure	must	match	the
following	prototype:

typedef	void	Tk_ItemTranslateProc(

				Tk_Canvas	canvas,

				Tk_Item	*itemPtr,

				double	deltaX,

				double	deltaY);

The	canvas	and	itemPtr	arguments	have	the	usual	meaning,	and	deltaX
and	deltaY	give	the	amounts	that	should	be	added	to	each	x	and	y
coordinate	within	the	item.	The	type	manager	should	adjust	the	item's
coordinates	and	update	the	bounding	box	in	the	item's	header.

INDEXPROC

typePtr->indexProc	is	invoked	by	Tk	to	translate	a	string	index

specification	into	a	numerical	index,	for	example	during	the	index
widget	command.	It	is	only	relevant	for	item	types	that	support
indexable	text;	typePtr->indexProc	may	be	specified	as	NULL	for	non-
textual	item	types.	The	procedure	must	match	the	following	prototype:

typedef	int	Tk_ItemIndexProc(

				Tcl_Interp	*interp,

				Tk_Canvas	canvas,

				Tk_Item	*itemPtr,

				char	indexString,

				int	*indexPtr);

The	interp,	canvas,	and	itemPtr	arguments	all	have	the	usual	meaning.
indexString	contains	a	textual	description	of	an	index,	and	indexPtr
points	to	an	integer	value	that	should	be	filled	in	with	a	numerical	index.
It	is	up	to	the	type	manager	to	decide	what	forms	of	index	are	supported
(e.g.,	numbers,	insert,	sel.first,	end,	etc.).	indexProc	should	return	a
Tcl	completion	code	and	set	interp->result	in	the	event	of	an	error.

ICURSORPROC

typePtr->icursorProc	is	invoked	by	Tk	during	the	icursor	widget
command	to	set	the	position	of	the	insertion	cursor	in	a	textual	item.	It	is
only	relevant	for	item	types	that	support	an	insertion	cursor;	typePtr-
>icursorProc	may	be	specified	as	NULL	for	item	types	that	do	not
support	an	insertion	cursor.	The	procedure	must	match	the	following
prototype:

typedef	void	Tk_ItemCursorProc(

				Tk_Canvas	canvas,

				Tk_Item	*itemPtr,

				int	index);

canvas	and	itemPtr	have	the	usual	meanings,	and	index	is	an	index	into

the	item's	text,	as	returned	by	a	previous	call	to	typePtr->insertProc.
The	type	manager	should	position	the	insertion	cursor	in	the	item	just
before	the	character	given	by	index.	Whether	or	not	to	actually	display
the	insertion	cursor	is	determined	by	other	information	provided	by
Tk_CanvasGetTextInfo.

SELECTIONPROC

typePtr->selectionProc	is	invoked	by	Tk	during	selection	retrievals;	it
must	return	part	or	all	of	the	selected	text	in	the	item	(if	any).	It	is	only
relevant	for	item	types	that	support	text;	typePtr->selectionProc	may	be
specified	as	NULL	for	non-textual	item	types.	The	procedure	must
match	the	following	prototype:

typedef	int	Tk_ItemSelectionProc(

				Tk_Canvas	canvas,

				Tk_Item	*itemPtr,

				int	offset,

				char	*buffer,

				int	maxBytes);

canvas	and	itemPtr	have	the	usual	meanings.	offset	is	an	offset	in	bytes
into	the	selection	where	0	refers	to	the	first	byte	of	the	selection;	it
identifies	the	first	character	that	is	to	be	returned	in	this	call.	buffer
points	to	an	area	of	memory	in	which	to	store	the	requested	bytes,	and
maxBytes	specifies	the	maximum	number	of	bytes	to	return.
selectionProc	should	extract	up	to	maxBytes	characters	from	the
selection	and	copy	them	to	maxBytes;	it	should	return	a	count	of	the
number	of	bytes	actually	copied,	which	may	be	less	than	maxBytes	if
there	are	not	offset+maxBytes	bytes	in	the	selection.

INSERTPROC

typePtr->insertProc	is	invoked	by	Tk	during	the	insert	widget	command
to	insert	new	text	into	a	canvas	item.	It	is	only	relevant	for	item	types
that	support	text;	typePtr->insertProc	may	be	specified	as	NULL	for

non-textual	item	types.	The	procedure	must	match	the	following
prototype:

typedef	void	Tk_ItemInsertProc(

				Tk_Canvas	canvas,

				Tk_Item	*itemPtr,

				int	index,

				char	*string);

canvas	and	itemPtr	have	the	usual	meanings.	index	is	an	index	into	the
item's	text,	as	returned	by	a	previous	call	to	typePtr->insertProc,	and
string	contains	new	text	to	insert	just	before	the	character	given	by
index.	The	type	manager	should	insert	the	text	and	recompute	the
bounding	box	in	the	item's	header.

DCHARSPROC

typePtr->dCharsProc	is	invoked	by	Tk	during	the	dchars	widget
command	to	delete	a	range	of	text	from	a	canvas	item.	It	is	only
relevant	for	item	types	that	support	text;	typePtr->dCharsProc	may	be
specified	as	NULL	for	non-textual	item	types.	The	procedure	must
match	the	following	prototype:

typedef	void	Tk_ItemDCharsProc(

				Tk_Canvas	canvas,

				Tk_Item	*itemPtr,

				int	first,

				int	last);

canvas	and	itemPtr	have	the	usual	meanings.	first	and	last	give	the
indices	of	the	first	and	last	bytes	to	be	deleted,	as	returned	by	previous
calls	to	typePtr->indexProc.	The	type	manager	should	delete	the
specified	characters	and	update	the	bounding	box	in	the	item's	header.

SEE	ALSO

Tk_CanvasPsY,	Tk_CanvasTextInfo,	Tk_CanvasTkwin

KEYWORDS

canvas,	focus,	item	type,	selection,	type	manager

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1994-1995	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	ttk_Geometry

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Ttk_MakeBox,	Ttk_PadBox,	Ttk_ExpandBox,	Ttk_PackBox,
Ttk_StickBox,	Ttk_PlaceBox,	Ttk_BoxContains,
Ttk_MakePadding,	Ttk_UniformPadding,	Ttk_AddPadding,
Ttk_RelievePadding,	Ttk_GetPaddingFromObj,
Ttk_GetBorderFromObj,	Ttk_GetStickyFromObj	-	Tk	themed
geometry	utilities

SYNOPSIS
#include	<tkTheme.h>
Ttk_Box
Ttk_MakeBox(int	x,	int	y,	int	width,	int	height);
Ttk_Box
Ttk_PadBox(Ttk_Box	parcel,	Ttk_Padding	padding);
Ttk_Box
Ttk_ExpandBox(Ttk_Box	parcel,	Ttk_Padding	padding);
Ttk_Box
Ttk_PackBox(Ttk_Box	*cavity,	int	width,	int	height,	Ttk_Side
side);
Ttk_Box
Ttk_StickBox(Ttk_Box	parcel,	int	width,	int	height,	unsigned
sticky);
Ttk_Box
Ttk_PlaceBox(Ttk_Box	*cavity,	int	width,	int	height,	Ttk_Side
side,	unsigned	sticky);
Ttk_Box
Ttk_AnchorBox(Ttk_Box	parcel,	int	width,	int	height,
Tk_Anchor	anchor);
Ttk_Padding
Ttk_MakePadding(short	left,	short	top,	short	right,	short
bottom);
Ttk_Padding

Ttk_UniformPadding(short	border);
Ttk_Padding
Ttk_AddPadding(Ttk_Padding	padding1,	Ttk_Padding
padding2;
Ttk_Padding
Ttk_RelievePadding(Ttk_Padding	padding,	int	relief);
int
Ttk_BoxContains(Ttk_Box	box,	int	x,	int	y);
int
Ttk_GetPaddingFromObj(Tcl_Interp	*interp,	Tk_Window
tkwin,	Tcl_Obj	*objPtr,	Ttk_Padding	*padding_rtn);
int
Ttk_GetBorderFromObj(Tcl_Interp	*interp,	Tcl_Obj	*objPtr,
Ttk_Padding	*padding_rtn);
int
Ttk_GetStickyFromObj(Tcl_Interp	*interp,	Tcl_Obj	*objPtr,	int
*sticky_rtn);

ARGUMENTS
BOXES
PADDDING
CONVERSION	ROUTINES
SEE	ALSO
KEYWORDS

NAME

Ttk_MakeBox,	Ttk_PadBox,	Ttk_ExpandBox,	Ttk_PackBox,
Ttk_StickBox,	Ttk_PlaceBox,	Ttk_BoxContains,	Ttk_MakePadding,
Ttk_UniformPadding,	Ttk_AddPadding,	Ttk_RelievePadding,
Ttk_GetPaddingFromObj,	Ttk_GetBorderFromObj,
Ttk_GetStickyFromObj	-	Tk	themed	geometry	utilities

SYNOPSIS

#include	<tkTheme.h>

Ttk_Box
Ttk_MakeBox(int	x,	int	y,	int	width,	int	height);

Ttk_Box
Ttk_PadBox(Ttk_Box	parcel,	Ttk_Padding	padding);

Ttk_Box
Ttk_ExpandBox(Ttk_Box	parcel,	Ttk_Padding	padding);

Ttk_Box
Ttk_PackBox(Ttk_Box	*cavity,	int	width,	int	height,	Ttk_Side	side);

Ttk_Box
Ttk_StickBox(Ttk_Box	parcel,	int	width,	int	height,	unsigned	sticky);

Ttk_Box
Ttk_PlaceBox(Ttk_Box	*cavity,	int	width,	int	height,	Ttk_Side	side,
unsigned	sticky);

Ttk_Box
Ttk_AnchorBox(Ttk_Box	parcel,	int	width,	int	height,	Tk_Anchor
anchor);

Ttk_Padding
Ttk_MakePadding(short	left,	short	top,	short	right,	short	bottom);

Ttk_Padding
Ttk_UniformPadding(short	border);

Ttk_Padding
Ttk_AddPadding(Ttk_Padding	padding1,	Ttk_Padding	padding2;

Ttk_Padding	
Ttk_RelievePadding(Ttk_Padding	padding,	int	relief);

int
Ttk_BoxContains(Ttk_Box	box,	int	x,	int	y);

int

Tk_Anchor	anchor	(in)

Ttk_Box	*	cavity	(in/out)

short	border	(in)

short	bottom	(in)

Ttk_Box	box	(in)
Ttk_Box	*	box_rtn	(out)

int	height	(in)

Ttk_GetPaddingFromObj(Tcl_Interp	*interp,	Tk_Window	tkwin,	Tcl_Obj
*objPtr,	Ttk_Padding	*padding_rtn);

int
Ttk_GetBorderFromObj(Tcl_Interp	*interp,	Tcl_Obj	*objPtr,
Ttk_Padding	*padding_rtn);

int
Ttk_GetStickyFromObj(Tcl_Interp	*interp,	Tcl_Obj	*objPtr,	int
*sticky_rtn);

ARGUMENTS

One	of	the	symbolic
constants
TK_ANCHOR_N,
TK_ANCHOR_NE,	etc.
See
Tk_GetAnchorFromObj(3).

A	rectangular	region	from
which	a	parcel	is
allocated.

Extra	padding	(in	pixels)	to
add	uniformly	to	each	side
of	a	region.

Extra	padding	(in	pixels)	to
add	to	the	bottom	of	a
region.

Specifies	a	rectangular
region.

The	height	in	pixels	of	a

Tcl_Interp	*	interp	(in)

int	left	(in)

Tcl_Obj	*	objPtr	(in)

Ttk_Padding	padding	(in)
Ttk_Padding	*	padding_rtn	(out)

Ttk_Box	parcel	(in)

int	relief	(in)

short	right	(in)

Ttk_Side	side	(in)

region.

Used	to	store	error
messages.

Extra	padding	(in	pixels)	to
add	to	the	left	side	of	a
region.

String	value	contains	a
symbolic	name	to	be
converted	to	an
enumerated	value	or
bitmask.	Internal	rep	may
be	be	modified	to	cache
corresponding	value.

Extra	padding	to	add	on
the	inside	of	a	region.

A	rectangular	region,
allocated	from	a	cavity.

One	of	the	standard	Tk
relief	options
(TK_RELIEF_RAISED,
TK_RELIEF_SUNKEN,
etc.).	See
Tk_GetReliefFromObj.

Extra	padding	(in	pixles)	to
add	to	the	right	side	of	a
region.

One	of	TTK_SIDE_LEFT,
TTK_SIDE_TOP,

unsigned	sticky	(in)

Tk_Window	tkwin	(in)

short	top	(in)

int	width	(in)

int	x	(in)

int	y	(in)

TTK_SIDE_RIGHT,	or
TTK_SIDE_BOTTOM.

A	bitmask	containing	one
or	more	of	the	bits
TTK_STICK_W	(west,	or
left),	TTK_STICK_E	(east,
or	right,	TTK_STICK_N
(north,	or	top),	and
TTK_STICK_S	(south,	or
bottom).	TTK_FILL_X	is
defined	as	a	synonym	for
(TTK_STICK_W|TTK_STICK_E),
TTK_FILL_Y	is	a	synonym
for
(TTK_STICK_N|TTK_STICK_S),
and	TTK_FILL_BOTH	and
TTK_STICK_ALL	are
synonyms	for
(TTK_FILL_X|TTK_FILL_Y).
See	also:	grid(n).

Window	whose	screen
geometry	determines	the
conversion	between
absolute	units	and	pixels.

Extra	padding	at	the	top	of
a	region.

The	width	in	pixels	of	a
region.

X	coordinate	of	upper-left
corner	of	region.

Y	coordinate	of	upper-left

corner	of	region.

BOXES

The	Ttk_Box	structure	represents	a	rectangular	region	of	a	window:

typedef	struct		{

				int	x;

				int	y;

				int	width;

				int	height;

}	Ttk_Box;

All	coordinates	are	relative	to	the	window.

Ttk_MakeBox	is	a	convenience	routine	that	contsructs	a	Ttk_Box
structure	representing	a	region	width	pixels	wide,	height	pixels	tall,	at
the	specified	x,	y	coordinates.

Ttk_PadBox	returns	a	new	box	located	inside	the	specified	parcel,
shrunken	according	to	the	left,	top,	right,	and	bottom	margins	specified
by	padding.

Ttk_ExpandBox	is	the	inverse	of	Ttk_PadBox:	it	returns	a	new	box
surrounding	the	specified	parcel,	expanded	according	to	the	left,	top,
right,	and	bottom	margins	specified	by	padding.

Ttk_PackBox	allocates	a	parcel	width	by	height	pixels	wide	on	the
specified	side	of	the	cavity,	and	shrinks	the	cavity	accordingly.

Ttk_StickBox	places	a	box	with	the	requested	width	and	height	inside
the	parcel	according	to	the	sticky	bits.

Ttk_PlaceBox	combines	Ttk_PackBox	and	Ttk_StickBox:	it	allocates
a	parcel	on	the	specified	side	of	the	cavity,	places	a	box	of	the
requested	size	inside	the	parcel	according	to	sticky,	and	shrinks	the

cavity.

Ttk_AnchorBox	places	a	box	with	the	requested	width	and	height
inside	the	parcel	according	to	the	specified	anchor	option.

Ttk_BoxContains	tests	if	the	specified	x,	y	coordinate	lies	within	the
rectangular	region	box.

PADDDING

The	Ttk_Padding	structure	is	used	to	represent	borders,	internal
padding,	and	external	margins:

typedef	struct	{

				short	left;

				short	top;

				short	right;

				short	bottom;

}	Ttk_Padding;

Ttk_MakePadding	is	a	convenience	routine	that	contsructs	a
Ttk_Padding	structure	with	the	specified	left,	top,	right,	and	bottom
components.

Ttk_UniformPadding	constructs	a	Ttk_Padding	structure	with	all
components	equal	to	the	specified	border.

Ttk_AddPadding	adds	two	Ttk_Paddings	together	and	returns	a
combined	padding	containing	the	sum	of	the	individual	padding
components.

Ttk_RelievePadding	adds	an	extra	2	pixels	of	padding	to	padding
according	to	the	specified	relief.	If	relief	is	TK_RELIEF_SUNKEN,	adds
two	pixels	at	the	top	and	left	so	the	inner	region	is	shifted	down	and	to
the	left.	If	it	is	TK_RELIEF_RAISED,	adds	two	pixels	at	the	bottom	and
right	so	the	inner	region	is	shifted	up	and	to	the	right.	Otherwise,	adds	1
pixel	on	all	sides.	This	is	typically	used	in	element	geometry	procedures

to	simulate	a	“pressed-in”	look	for	pushbuttons.

CONVERSION	ROUTINES

Ttk_GetPaddingFromObj	converts	the	string	in	objPtr	to	a
Ttk_Padding	structure.	The	string	representation	is	a	list	of	up	to	four
length	specifications	“left	top	right	bottom”.	If	fewer	than	four	elements
are	specified,	bottom	defaults	to	top,	right	defaults	to	left,	and	top
defaults	to	left.	See	Tk_GetPixelsFromObj(3)	for	the	syntax	of	length
specifications.

Ttk_GetBorderFromObj	is	the	same	as	Ttk_GetPaddingFromObj
except	that	the	lengths	are	specified	as	integers	(i.e.,	resolution-
dependant	values	like	3m	are	not	allowed).

Ttk_GetStickyFromObj	converts	the	string	in	objPtr	to	a	sticky
bitmask.	The	string	contains	zero	or	more	of	the	characters	n,	s,	e,	or
w.

SEE	ALSO

Tk_GetReliefFromObj,	Tk_GetPixelsFromObj,
Tk_GetAnchorFromObj

KEYWORDS

geometry,	padding,	margins,	box,	region,	sticky,	relief

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	2004	Joe	English

Tk_PhotoImageFormat	*formatPtr	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	CrtPhImgFmt

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tk_CreatePhotoImageFormat	-	define	new	file	format	for	photo
images

SYNOPSIS
#include	<tk.h>
Tk_CreatePhotoImageFormat(formatPtr)

ARGUMENTS
DESCRIPTION
NAME
FILEMATCHPROC
STRINGMATCHPROC
FILEREADPROC
STRINGREADPROC
FILEWRITEPROC
STRINGWRITEPROC
LEGACY	INTERFACE	SUPPORT
SEE	ALSO
KEYWORDS

NAME

Tk_CreatePhotoImageFormat	-	define	new	file	format	for	photo	images

SYNOPSIS

#include	<tk.h>
Tk_CreatePhotoImageFormat(formatPtr)

ARGUMENTS

Structure	that	defines	the
new	file	format.

DESCRIPTION

Tk_CreatePhotoImageFormat	is	invoked	to	define	a	new	file	format	for
image	data	for	use	with	photo	images.	The	code	that	implements	an
image	file	format	is	called	an	image	file	format	handler,	or	handler	for
short.	The	photo	image	code	maintains	a	list	of	handlers	that	can	be
used	to	read	and	write	data	to	or	from	a	file.	Some	handlers	may	also
support	reading	image	data	from	a	string	or	converting	image	data	to	a
string	format.	The	user	can	specify	which	handler	to	use	with	the	-
format	image	configuration	option	or	the	-format	option	to	the	read	and
write	photo	image	subcommands.

An	image	file	format	handler	consists	of	a	collection	of	procedures	plus
a	Tk_PhotoImageFormat	structure,	which	contains	the	name	of	the
image	file	format	and	pointers	to	six	procedures	provided	by	the	handler
to	deal	with	files	and	strings	in	this	format.	The	Tk_PhotoImageFormat
structure	contains	the	following	fields:

typedef	struct	Tk_PhotoImageFormat	{

				char	*name;

				Tk_ImageFileMatchProc	*fileMatchProc;

				Tk_ImageStringMatchProc	*stringMatchProc;

				Tk_ImageFileReadProc	*fileReadProc;

				Tk_ImageStringReadProc	*stringReadProc;

				Tk_ImageFileWriteProc	*fileWriteProc;

				Tk_ImageStringWriteProc	*stringWriteProc;

}	Tk_PhotoImageFormat;

The	handler	need	not	provide	implementations	of	all	six	procedures.	For
example,	the	procedures	that	handle	string	data	would	not	be	provided
for	a	format	in	which	the	image	data	are	stored	in	binary,	and	could
therefore	contain	null	characters.	If	any	procedure	is	not	implemented,
the	corresponding	pointer	in	the	Tk_PhotoImageFormat	structure
should	be	set	to	NULL.	The	handler	must	provide	the	fileMatchProc
procedure	if	it	provides	the	fileReadProc	procedure,	and	the

stringMatchProc	procedure	if	it	provides	the	stringReadProc	procedure.

NAME

formatPtr->name	provides	a	name	for	the	image	type.	Once
Tk_CreatePhotoImageFormat	returns,	this	name	may	be	used	in	the	-
format	photo	image	configuration	and	subcommand	option.	The
manual	page	for	the	photo	image	(photo(n))	describes	how	image	file
formats	are	chosen	based	on	their	names	and	the	value	given	to	the	-
format	option.	The	first	character	of	formatPtr->name	must	not	be	an
uppercase	character	from	the	ASCII	character	set	(that	is,	one	of	the
characters	A-Z).	Such	names	are	used	only	for	legacy	interface	support
(see	below).

FILEMATCHPROC

formatPtr->fileMatchProc	provides	the	address	of	a	procedure	for	Tk	to
call	when	it	is	searching	for	an	image	file	format	handler	suitable	for
reading	data	in	a	given	file.	formatPtr->fileMatchProc	must	match	the
following	prototype:

typedef	int	Tk_ImageFileMatchProc(

				Tcl_Channel	chan,

				const	char	*fileName,

				Tcl_Obj	*format,

				int	*widthPtr,

				int	*heightPtr,

				Tcl_Interp	*interp);

The	fileName	argument	is	the	name	of	the	file	containing	the	image
data,	which	is	open	for	reading	as	chan.	The	format	argument	contains
the	value	given	for	the	-format	option,	or	NULL	if	the	option	was	not
specified.	If	the	data	in	the	file	appears	to	be	in	the	format	supported	by
this	handler,	the	formatPtr->fileMatchProc	procedure	should	store	the
width	and	height	of	the	image	in	*widthPtr	and	*heightPtr	respectively,
and	return	1.	Otherwise	it	should	return	0.

STRINGMATCHPROC

formatPtr->stringMatchProc	provides	the	address	of	a	procedure	for	Tk
to	call	when	it	is	searching	for	an	image	file	format	handler	for	suitable
for	reading	data	from	a	given	string.	formatPtr->stringMatchProc	must
match	the	following	prototype:

typedef	int	Tk_ImageStringMatchProc(

				Tcl_Obj	*data,

				Tcl_Obj	*format,

				int	*widthPtr,

				int	*heightPtr,

				Tcl_Interp	*interp);

The	data	argument	points	to	the	object	containing	the	image	data.	The
format	argument	contains	the	value	given	for	the	-format	option,	or
NULL	if	the	option	was	not	specified.	If	the	data	in	the	string	appears	to
be	in	the	format	supported	by	this	handler,	the	formatPtr-
>stringMatchProc	procedure	should	store	the	width	and	height	of	the
image	in	*widthPtr	and	*heightPtr	respectively,	and	return	1.	Otherwise
it	should	return	0.

FILEREADPROC

formatPtr->fileReadProc	provides	the	address	of	a	procedure	for	Tk	to
call	to	read	data	from	an	image	file	into	a	photo	image.	formatPtr-
>fileReadProc	must	match	the	following	prototype:

typedef	int	Tk_ImageFileReadProc(

				Tcl_Interp	*interp,

				Tcl_Channel	chan,

				const	char	*fileName,

				Tcl_Obj	*format,

				PhotoHandle	imageHandle,

				int	destX,	int	destY,

				int	width,	int	height,

				int	srcX,	int	srcY);

The	interp	argument	is	the	interpreter	in	which	the	command	was
invoked	to	read	the	image;	it	should	be	used	for	reporting	errors.	The
image	data	is	in	the	file	named	fileName,	which	is	open	for	reading	as
chan.	The	format	argument	contains	the	value	given	for	the	-format
option,	or	NULL	if	the	option	was	not	specified.	The	image	data	in	the
file,	or	a	subimage	of	it,	is	to	be	read	into	the	photo	image	identified	by
the	handle	imageHandle.	The	subimage	of	the	data	in	the	file	is	of
dimensions	width	x	height	and	has	its	top-left	corner	at	coordinates
(srcX,srcY).	It	is	to	be	stored	in	the	photo	image	with	its	top-left	corner
at	coordinates	(destX,destY)	using	the	Tk_PhotoPutBlock	procedure.
The	return	value	is	a	standard	Tcl	return	value.

STRINGREADPROC

formatPtr->stringReadProc	provides	the	address	of	a	procedure	for	Tk
to	call	to	read	data	from	a	string	into	a	photo	image.	formatPtr-
>stringReadProc	must	match	the	following	prototype:

typedef	int	Tk_ImageStringReadProc(

				Tcl_Interp	*interp,

				Tcl_Obj	*data,

				Tcl_Obj	*format,

				PhotoHandle	imageHandle,

				int	destX,	int	destY,

				int	width,	int	height,

				int	srcX,	int	srcY);

The	interp	argument	is	the	interpreter	in	which	the	command	was
invoked	to	read	the	image;	it	should	be	used	for	reporting	errors.	The
data	argument	points	to	the	image	data	in	object	form.	The	format
argument	contains	the	value	given	for	the	-format	option,	or	NULL	if	the
option	was	not	specified.	The	image	data	in	the	string,	or	a	subimage	of

it,	is	to	be	read	into	the	photo	image	identified	by	the	handle
imageHandle.	The	subimage	of	the	data	in	the	string	is	of	dimensions
width	x	height	and	has	its	top-left	corner	at	coordinates	(srcX,srcY).	It	is
to	be	stored	in	the	photo	image	with	its	top-left	corner	at	coordinates
(destX,destY)	using	the	Tk_PhotoPutBlock	procedure.	The	return
value	is	a	standard	Tcl	return	value.

FILEWRITEPROC

formatPtr->fileWriteProc	provides	the	address	of	a	procedure	for	Tk	to
call	to	write	data	from	a	photo	image	to	a	file.	formatPtr->fileWriteProc
must	match	the	following	prototype:

typedef	int	Tk_ImageFileWriteProc(

				Tcl_Interp	*interp,

				const	char	*fileName,

				Tcl_Obj	*format,

				Tk_PhotoImageBlock	*blockPtr);

The	interp	argument	is	the	interpreter	in	which	the	command	was
invoked	to	write	the	image;	it	should	be	used	for	reporting	errors.	The
image	data	to	be	written	are	in	memory	and	are	described	by	the
Tk_PhotoImageBlock	structure	pointed	to	by	blockPtr;	see	the	manual
page	FindPhoto(3)	for	details.	The	fileName	argument	points	to	the
string	giving	the	name	of	the	file	in	which	to	write	the	image	data.	The
format	argument	contains	the	value	given	for	the	-format	option,	or
NULL	if	the	option	was	not	specified.	The	format	string	can	contain
extra	characters	after	the	name	of	the	format.	If	appropriate,	the
formatPtr->fileWriteProc	procedure	may	interpret	these	characters	to
specify	further	details	about	the	image	file.	The	return	value	is	a
standard	Tcl	return	value.

STRINGWRITEPROC

formatPtr->stringWriteProc	provides	the	address	of	a	procedure	for	Tk
to	call	to	translate	image	data	from	a	photo	image	into	a	string.

formatPtr->stringWriteProc	must	match	the	following	prototype:

typedef	int	Tk_ImageStringWriteProc(

				Tcl_Interp	*interp,

				Tcl_Obj	*format,

				Tk_PhotoImageBlock	*blockPtr);

The	interp	argument	is	the	interpreter	in	which	the	command	was
invoked	to	convert	the	image;	it	should	be	used	for	reporting	errors.	The
image	data	to	be	converted	are	in	memory	and	are	described	by	the
Tk_PhotoImageBlock	structure	pointed	to	by	blockPtr;	see	the	manual
page	FindPhoto(3)	for	details.	The	data	for	the	string	should	be	put	in
the	interpreter	interp	result.	The	format	argument	contains	the	value
given	for	the	-format	option,	or	NULL	if	the	option	was	not	specified.
The	format	string	can	contain	extra	characters	after	the	name	of	the
format.	If	appropriate,	the	formatPtr->stringWriteProc	procedure	may
interpret	these	characters	to	specify	further	details	about	the	image	file.
The	return	value	is	a	standard	Tcl	return	value.

LEGACY	INTERFACE	SUPPORT

In	Tk	8.2	and	earlier,	the	definition	of	all	the	function	pointer	types
stored	in	fields	of	a	Tk_PhotoImageFormat	struct	were	incompatibly
different.	Legacy	programs	and	libraries	dating	from	those	days	may
still	contain	code	that	defines	extended	Tk	photo	image	formats	using
the	old	interface.	The	Tk	header	file	will	still	support	this	legacy
interface	if	the	code	is	compiled	with	the	macro	USE_OLD_IMAGE
defined.	Alternatively,	the	legacy	interfaces	are	used	if	the	first
character	of	formatPtr->name	is	an	uppercase	ASCII	character	(A-Z),
and	explicit	casts	are	used	to	forgive	the	type	mismatch.	For	example,

static	Tk_PhotoImageFormat	myFormat	=	{

				"MyFormat",

				(Tk_ImageFileMatchProc	*)	FileMatch,

				NULL,

				(Tk_ImageFileReadProc	*)	FileRead,

				NULL,

				NULL,

				NULL

};

would	define	a	minimal	Tk_PhotoImageFormat	that	operates	provide
only	file	reading	capability,	where	FileMatch	and	FileRead	are	written
according	to	the	legacy	interfaces	of	Tk	8.2	or	earlier.

Any	stub-enabled	extension	providing	an	extended	photo	image	format
via	the	legacy	interface	enabled	by	the	USE_OLD_IMAGE	macro	that	is
compiled	against	Tk	8.5	headers	and	linked	against	the	Tk	8.5	stub
library	will	produce	a	file	that	can	be	loaded	only	into	interps	with	Tk	8.5
or	later;	that	is,	the	normal	stub-compatibility	rules.	If	a	developer	needs
to	generate	from	such	code	a	file	that	is	loadable	into	interps	with	Tk	8.4
or	earlier,	they	must	use	Tk	8.4	headers	and	stub	libraries	to	do	so.

Any	new	code	written	today	should	not	make	use	of	the	legacy
interfaces.	Expect	their	support	to	go	away	in	Tk	9.

SEE	ALSO

Tk_FindPhoto,	Tk_PhotoPutBlock

KEYWORDS

photo	image,	image	file

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1994	The	Australian	National	University
Copyright	©	1994-1997	Sun	Microsystems,	Inc.

Tk_Window	tkwin	(in)

Atom	selection	(in)

Atom	target	(in)

Tk_SelectionProc	*proc	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	CrtSelHdlr

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tk_CreateSelHandler,	Tk_DeleteSelHandler	-	arrange	to	handle
requests	for	a	selection

SYNOPSIS

#include	<tk.h>
Tk_CreateSelHandler(tkwin,	selection,	target,	proc,	clientData,	format)
Tk_DeleteSelHandler(tkwin,	selection,	target)

ARGUMENTS

Window	for	which	proc	will
provide	selection
information.

The	name	of	the	selection
for	which	proc	will	provide
selection	information.

Form	in	which	proc	can
provide	the	selection	(e.g.
STRING	or	FILE_NAME).
Corresponds	to	type
arguments	in	selection
commands.

Procedure	to	invoke
whenever	the	selection	is
owned	by	tkwin	and	the

ClientData	clientData	(in)

Atom	format	(in)

selection	contents	are
requested	in	the	format
given	by	target.

Arbitrary	one-word	value
to	pass	to	proc.

If	the	selection	requestor
is	not	in	this	process,
format	determines	the
representation	used	to
transmit	the	selection	to	its
requestor.

DESCRIPTION

Tk_CreateSelHandler	arranges	for	a	particular	procedure	(proc)	to	be
called	whenever	selection	is	owned	by	tkwin	and	the	selection	contents
are	requested	in	the	form	given	by	target.	Target	should	be	one	of	the
entries	defined	in	the	left	column	of	Table	2	of	the	X	Inter-Client
Communication	Conventions	Manual	(ICCCM)	or	any	other	form	in
which	an	application	is	willing	to	present	the	selection.	The	most
common	form	is	STRING.

Proc	should	have	arguments	and	result	that	match	the	type
Tk_SelectionProc:

typedef	int	Tk_SelectionProc(

				ClientData	clientData,

				int	offset,

				char	*buffer,

				int	maxBytes);

The	clientData	parameter	to	proc	is	a	copy	of	the	clientData	argument
given	to	Tk_CreateSelHandler.	Typically,	clientData	points	to	a	data

structure	containing	application-specific	information	that	is	needed	to
retrieve	the	selection.	Offset	specifies	an	offset	position	into	the
selection,	buffer	specifies	a	location	at	which	to	copy	information	about
the	selection,	and	maxBytes	specifies	the	amount	of	space	available	at
buffer.	Proc	should	place	a	NULL-terminated	string	at	buffer	containing
maxBytes	or	fewer	characters	(not	including	the	terminating	NULL),	and
it	should	return	a	count	of	the	number	of	non-NULL	characters	stored	at
buffer.	If	the	selection	no	longer	exists	(e.g.	it	once	existed	but	the	user
deleted	the	range	of	characters	containing	it),	then	proc	should	return
-1.

When	transferring	large	selections,	Tk	will	break	them	up	into	smaller
pieces	(typically	a	few	thousand	bytes	each)	for	more	efficient
transmission.	It	will	do	this	by	calling	proc	one	or	more	times,	using
successively	higher	values	of	offset	to	retrieve	successive	portions	of
the	selection.	If	proc	returns	a	count	less	than	maxBytes	it	means	that
the	entire	remainder	of	the	selection	has	been	returned.	If	proc's	return
value	is	maxBytes	it	means	there	may	be	additional	information	in	the
selection,	so	Tk	must	make	another	call	to	proc	to	retrieve	the	next
portion.

Proc	always	returns	selection	information	in	the	form	of	a	character
string.	However,	the	ICCCM	allows	for	information	to	be	transmitted
from	the	selection	owner	to	the	selection	requestor	in	any	of	several
formats,	such	as	a	string,	an	array	of	atoms,	an	array	of	integers,	etc.
The	format	argument	to	Tk_CreateSelHandler	indicates	what	format
should	be	used	to	transmit	the	selection	to	its	requestor	(see	the	middle
column	of	Table	2	of	the	ICCCM	for	examples).	If	format	is	not	STRING,
then	Tk	will	take	the	value	returned	by	proc	and	divided	it	into	fields
separated	by	white	space.	If	format	is	ATOM,	then	Tk	will	return	the
selection	as	an	array	of	atoms,	with	each	field	in	proc's	result	treated	as
the	name	of	one	atom.	For	any	other	value	of	format,	Tk	will	return	the
selection	as	an	array	of	32-bit	values	where	each	field	of	proc's	result	is
treated	as	a	number	and	translated	to	a	32-bit	value.	In	any	event,	the
format	atom	is	returned	to	the	selection	requestor	along	with	the
contents	of	the	selection.

If	Tk_CreateSelHandler	is	called	when	there	already	exists	a	handler

for	selection	and	target	on	tkwin,	then	the	existing	handler	is	replaced
with	a	new	one.

Tk_DeleteSelHandler	removes	the	handler	given	by	tkwin,	selection,
and	target,	if	such	a	handler	exists.	If	there	is	no	such	handler	then	it
has	no	effect.

KEYWORDS

format,	handler,	selection,	target

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990-1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl_Interp	*	interp	(in)

Ttk_Theme	parentTheme	(in)

const	char	*	name	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	ttk_Theme

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Ttk_CreateTheme,	Ttk_GetTheme,	Ttk_GetDefaultTheme,
Ttk_GetCurrentTheme	-	create	and	use	Tk	themes.

SYNOPSIS

Ttk_Theme	Ttk_CreateTheme(interp,	name,	parentTheme);
Ttk_Theme	Ttk_GetTheme(interp,	name);
Ttk_Theme	Ttk_GetDefaultTheme(interp);
Ttk_Theme	Ttk_GetCurrentTheme(interp);

ARGUMENTS

The	Tcl	interpreter	in	which
to	register/query	available
themes.

Fallback	or	parent	theme
from	which	the	new	theme
will	inherit	elements	and
layouts.

The	name	of	the	theme.

DESCRIPTION

SEE	ALSO

Ttk_RegisterLayout,	Ttk_BuildLayout

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	2003	Joe	English

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	GetHINSTANCE

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tk_GetHINSTANCE	-	retrieve	the	global	application	instance	handle

SYNOPSIS

#include	<tk.h>
HINSTANCE
Tk_GetHINSTANCE()

DESCRIPTION

Tk_GetHINSTANCE	returns	the	Windows	application	instance	handle
for	the	Tk	application.	This	function	is	only	available	on	Windows
platforms.

KEYWORDS

identifier,	instance

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1998-2000	by	Scriptics	Corporation.

Tk_ImageMaster	*masterPtr	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	NameOfImg

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tk_NameOfImage	-	Return	name	of	image.

SYNOPSIS

#include	<tk.h>
const	char	*
Tk_NameOfImage(typePtr)

ARGUMENTS

Token	for	image,	which
was	passed	to	image
manager's	createProc
when	the	image	was
created.

DESCRIPTION

This	procedure	is	invoked	by	image	managers	to	find	out	the	name	of
an	image.	Given	the	token	for	the	image,	it	returns	the	string	name	for
the	image.

KEYWORDS

image	manager,	image	name

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1995-1996	Sun	Microsystems,	Inc.

Tcl_Interp	*interp	(in)

const	char	*string	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	GetJoinStl

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tk_GetJoinStyle,	Tk_NameOfJoinStyle	-	translate	between
strings	and	join	styles

SYNOPSIS
#include	<tk.h>
int
Tk_GetJoinStyle(interp,	string,	joinPtr)
const	char	*
Tk_NameOfJoinStyle(join)

ARGUMENTS
DESCRIPTION
KEYWORDS

NAME

Tk_GetJoinStyle,	Tk_NameOfJoinStyle	-	translate	between	strings	and
join	styles

SYNOPSIS

#include	<tk.h>
int
Tk_GetJoinStyle(interp,	string,	joinPtr)
const	char	*
Tk_NameOfJoinStyle(join)

ARGUMENTS

Interpreter	to	use	for	error
reporting.

String	containing	name	of

int	*joinPtr	(out)

int	join	(in)

join	style:	one	of	“bevel”,
“miter”,	or	“round”.

Pointer	to	location	in	which
to	store	X	join	style
corresponding	to	string.

Join	style:	one	of
JoinBevel,	JoinMiter,
JoinRound.

DESCRIPTION

Tk_GetJoinStyle	places	in	*joinPtr	the	X	join	style	corresponding	to
string,	which	will	be	one	of	JoinBevel,	JoinMiter,	or	JoinRound.	Join
styles	are	typically	used	in	X	graphics	contexts	to	indicate	how	adjacent
line	segments	should	be	joined	together.	See	the	X	documentation	for
information	on	what	each	style	implies.

Under	normal	circumstances	the	return	value	is	TCL_OK	and	interp	is
unused.	If	string	does	not	contain	a	valid	join	style	or	an	abbreviation	of
one	of	these	names,	then	an	error	message	is	stored	in	interp->result,
TCL_ERROR	is	returned,	and	*joinPtr	is	unmodified.

Tk_NameOfJoinStyle	is	the	logical	inverse	of	Tk_GetJoinStyle.	Given
a	join	style	such	as	JoinBevel	it	returns	a	statically-allocated	string
corresponding	to	join.	If	join	is	not	a	legal	join	style,	then	“unknown	join
style”	is	returned.

KEYWORDS

bevel,	join	style,	miter,	round

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	GetJustify

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tk_GetJustifyFromObj,	Tk_GetJustify,	Tk_NameOfJustify	-
translate	between	strings	and	justification	styles

SYNOPSIS
#include	<tk.h>
int
Tk_GetJustifyFromObj(interp,	objPtr,	justifyPtr)
int
Tk_GetJustify(interp,	string,	justifyPtr)
const	char	*
Tk_NameOfJustify(justify)

ARGUMENTS
DESCRIPTION

TK_JUSTIFY_LEFT
TK_JUSTIFY_RIGHT
TK_JUSTIFY_CENTER

KEYWORDS

NAME

Tk_GetJustifyFromObj,	Tk_GetJustify,	Tk_NameOfJustify	-	translate
between	strings	and	justification	styles

SYNOPSIS

#include	<tk.h>
int
Tk_GetJustifyFromObj(interp,	objPtr,	justifyPtr)
int
Tk_GetJustify(interp,	string,	justifyPtr)
const	char	*
Tk_NameOfJustify(justify)

Tcl_Interp	*interp	(in)

Tcl_Obj	*objPtr	(in/out)

const	char	*string	(in)

int	*justifyPtr	(out)

Tk_Justify	justify	(in)

ARGUMENTS

Interpreter	to	use	for	error
reporting,	or	NULL.

String	value	contains
name	of	justification	style,
one	of	“left”,	“right”,	or
“center”.	The	internal	rep
will	be	modified	to	cache
corresponding	justify
value.

Same	as	objPtr	except
description	of	justification
style	is	passed	as	a	string.

Pointer	to	location	in	which
to	store	justify	value
corresponding	to	objPtr	or
string.

Justification	style	(one	of
the	values	listed	below).

DESCRIPTION

Tk_GetJustifyFromObj	places	in	*justifyPtr	the	justify	value
corresponding	to	objPtr's	value.	This	value	will	be	one	of	the	following:

TK_JUSTIFY_LEFT
Means	that	the	text	on	each	line	should	start	at	the	left	edge	of	the
line;	as	a	result,	the	right	edges	of	lines	may	be	ragged.

TK_JUSTIFY_RIGHT
Means	that	the	text	on	each	line	should	end	at	the	right	edge	of	the

line;	as	a	result,	the	left	edges	of	lines	may	be	ragged.

TK_JUSTIFY_CENTER
Means	that	the	text	on	each	line	should	be	centered;	as	a	result,
both	the	left	and	right	edges	of	lines	may	be	ragged.

Under	normal	circumstances	the	return	value	is	TCL_OK	and	interp	is
unused.	If	objPtr	does	not	contain	a	valid	justification	style	or	an
abbreviation	of	one	of	these	names,	TCL_ERROR	is	returned,
*justifyPtr	is	unmodified,	and	an	error	message	is	stored	in	interp's
result	if	interp	is	not	NULL.	Tk_GetJustifyFromObj	caches	information
about	the	return	value	in	objPtr,	which	speeds	up	future	calls	to
Tk_GetJustifyFromObj	with	the	same	objPtr.

Tk_GetJustify	is	identical	to	Tk_GetJustifyFromObj	except	that	the
description	of	the	justification	is	specified	with	a	string	instead	of	an
object.	This	prevents	Tk_GetJustify	from	caching	the	return	value,	so
Tk_GetJustify	is	less	efficient	than	Tk_GetJustifyFromObj.

Tk_NameOfJustify	is	the	logical	inverse	of	Tk_GetJustify.	Given	a
justify	value	it	returns	a	statically-allocated	string	corresponding	to
justify.	If	justify	is	not	a	legal	justify	value,	then	“unknown	justification
style”	is	returned.

KEYWORDS

center,	fill,	justification,	string

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990-1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1998	Sun	Microsystems,	Inc.

Tk_Window	tkwin	(in)

Atom	selection	(in)

Tk_LostSelProc	*proc	(in)

ClientData	clientData	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	OwnSelect

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tk_OwnSelection	-	make	a	window	the	owner	of	the	primary	selection

SYNOPSIS

#include	<tk.h>
Tk_OwnSelection(tkwin,	selection,	proc,	clientData)

ARGUMENTS

Window	that	is	to	become
new	selection	owner.

The	name	of	the	selection
to	be	owned,	such	as
XA_PRIMARY.

Procedure	to	invoke	when
tkwin	loses	selection
ownership	later.

Arbitrary	one-word	value
to	pass	to	proc.

DESCRIPTION

Tk_OwnSelection	arranges	for	tkwin	to	become	the	new	owner	of	the
selection	specified	by	the	atom	selection.	After	this	call	completes,
future	requests	for	the	selection	will	be	directed	to	handlers	created	for
tkwin	using	Tk_CreateSelHandler.	When	tkwin	eventually	loses	the

selection	ownership,	proc	will	be	invoked	so	that	the	window	can	clean
itself	up	(e.g.	by	unhighlighting	the	selection).	Proc	should	have
arguments	and	result	that	match	the	type	Tk_LostSelProc:

typedef	void	Tk_LostSelProc(ClientData	clientData);

The	clientData	parameter	to	proc	is	a	copy	of	the	clientData	argument
given	to	Tk_OwnSelection,	and	is	usually	a	pointer	to	a	data	structure
containing	application-specific	information	about	tkwin.

KEYWORDS

own,	selection	owner

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990-1994	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	ParseArgv

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME
Tk_ParseArgv	-	process	command-line	options

SYNOPSIS
#include	<tk.h>
int
Tk_ParseArgv(interp,	tkwin,	argcPtr,	argv,	argTable,	flags)

ARGUMENTS
DESCRIPTION

TK_ARGV_END
TK_ARGV_CONSTANT
TK_ARGV_INT
TK_ARGV_FLOAT
TK_ARGV_STRING
TK_ARGV_UID
TK_ARGV_CONST_OPTION
TK_ARGV_OPTION_VALUE
TK_ARGV_OPTION_NAME_VALUE
TK_ARGV_HELP
TK_ARGV_REST
TK_ARGV_FUNC
TK_ARGV_GENFUNC

FLAGS
TK_ARGV_DONT_SKIP_FIRST_ARG
TK_ARGV_NO_ABBREV
TK_ARGV_NO_LEFTOVERS
TK_ARGV_NO_DEFAULTS

EXAMPLE
KEYWORDS

NAME

Tcl_Interp	*interp	(in)

Tk_Window	tkwin	(in)

int	argcPtr	(in/out)

const	char	**argv	(in/out)

Tk_ArgvInfo	*argTable	(in)

int	flags	(in)

Tk_ParseArgv	-	process	command-line	options

SYNOPSIS

#include	<tk.h>
int
Tk_ParseArgv(interp,	tkwin,	argcPtr,	argv,	argTable,	flags)

ARGUMENTS

Interpreter	to	use	for
returning	error	messages.

Window	to	use	when
arguments	specify	Tk
options.	If	NULL,	then	no
Tk	options	will	be
processed.

Pointer	to	number	of
arguments	in	argv;	gets
modified	to	hold	number	of
unprocessed	arguments
that	remain	after	the	call.

Command	line	arguments
passed	to	main	program.
Modified	to	hold
unprocessed	arguments
that	remain	after	the	call.

Array	of	argument
descriptors,	terminated	by
element	with	type
TK_ARGV_END.

If	non-zero,	then	it

specifies	one	or	more	flags
that	control	the	parsing	of
arguments.	Different	flags
may	be	OR'ed	together.
The	flags	currently	defined
are
TK_ARGV_DONT_SKIP_FIRST_ARG
TK_ARGV_NO_ABBREV,
TK_ARGV_NO_LEFTOVERS
and
TK_ARGV_NO_DEFAULTS

DESCRIPTION

Tk_ParseArgv	processes	an	array	of	command-line	arguments
according	to	a	table	describing	the	kinds	of	arguments	that	are
expected.	Each	of	the	arguments	in	argv	is	processed	in	turn:	if	it
matches	one	of	the	entries	in	argTable,	the	argument	is	processed
according	to	that	entry	and	discarded.	The	arguments	that	do	not	match
anything	in	argTable	are	copied	down	to	the	beginning	of	argv	(retaining
their	original	order)	and	returned	to	the	caller.	At	the	end	of	the	call
Tk_ParseArgv	sets	*argcPtr	to	hold	the	number	of	arguments	that	are
left	in	argv,	and	argv[*argcPtr]	will	hold	the	value	NULL.	Normally,
Tk_ParseArgv	assumes	that	argv[0]	is	a	command	name,	so	it	is
treated	like	an	argument	that	does	not	match	argTable	and	returned	to
the	caller;	however,	if	the	TK_ARGV_DONT_SKIP_FIRST_ARG	bit	is
set	in	flags	then	argv[0]	will	be	processed	just	like	the	other	elements	of
argv.

Tk_ParseArgv	normally	returns	the	value	TCL_OK.	If	an	error	occurs
while	parsing	the	arguments,	then	TCL_ERROR	is	returned	and
Tk_ParseArgv	will	leave	an	error	message	in	interp->result	in	the
standard	Tcl	fashion.	In	the	event	of	an	error	return,	*argvPtr	will	not
have	been	modified,	but	argv	could	have	been	partially	modified.	The
possible	causes	of	errors	are	explained	below.

The	argTable	array	specifies	the	kinds	of	arguments	that	are	expected;

each	of	its	entries	has	the	following	structure:

typedef	struct	{

				char	*key;

				int	type;

				char	*src;

				char	*dst;

				char	*help;

}	Tk_ArgvInfo;

The	key	field	is	a	string	such	as	“-display”	or	“-bg”	that	is	compared	with
the	values	in	argv.	Type	indicates	how	to	process	an	argument	that
matches	key	(more	on	this	below).	Src	and	dst	are	additional	values
used	in	processing	the	argument.	Their	exact	usage	depends	on	type,
but	typically	src	indicates	a	value	and	dst	indicates	where	to	store	the
value.	The	char	*	declarations	for	src	and	dst	are	placeholders:	the
actual	types	may	be	different.	Lastly,	help	is	a	string	giving	a	brief
description	of	this	option;	this	string	is	printed	when	users	ask	for	help
about	command-line	options.

When	processing	an	argument	in	argv,	Tk_ParseArgv	compares	the
argument	to	each	of	the	key's	in	argTable.	Tk_ParseArgv	selects	the
first	specifier	whose	key	matches	the	argument	exactly,	if	such	a
specifier	exists.	Otherwise	Tk_ParseArgv	selects	a	specifier	for	which
the	argument	is	a	unique	abbreviation.	If	the	argument	is	a	unique
abbreviation	for	more	than	one	specifier,	then	an	error	is	returned.	If
there	is	no	matching	entry	in	argTable,	then	the	argument	is	skipped
and	returned	to	the	caller.

Once	a	matching	argument	specifier	is	found,	Tk_ParseArgv
processes	the	argument	according	to	the	type	field	of	the	specifier.	The
argument	that	matched	key	is	called	“the	matching	argument”	in	the
descriptions	below.	As	part	of	the	processing,	Tk_ParseArgv	may	also
use	the	next	argument	in	argv	after	the	matching	argument,	which	is
called	“the	following	argument”.	The	legal	values	for	type,	and	the
processing	that	they	cause,	are	as	follows:

TK_ARGV_END
Marks	the	end	of	the	table.	The	last	entry	in	argTable	must	have
this	type;	all	of	its	other	fields	are	ignored	and	it	will	never	match
any	arguments.

TK_ARGV_CONSTANT
Src	is	treated	as	an	integer	and	dst	is	treated	as	a	pointer	to	an
integer.	Src	is	stored	at	*dst.	The	matching	argument	is	discarded.

TK_ARGV_INT
The	following	argument	must	contain	an	integer	string	in	the	format
accepted	by	strtol	(e.g.	“0”	and	“0x”	prefixes	may	be	used	to
specify	octal	or	hexadecimal	numbers,	respectively).	Dst	is	treated
as	a	pointer	to	an	integer;	the	following	argument	is	converted	to	an
integer	value	and	stored	at	*dst.	Src	is	ignored.	The	matching	and
following	arguments	are	discarded	from	argv.

TK_ARGV_FLOAT
The	following	argument	must	contain	a	floating-point	number	in	the
format	accepted	by	strtol.	Dst	is	treated	as	the	address	of	a
double-precision	floating	point	value;	the	following	argument	is
converted	to	a	double-precision	value	and	stored	at	*dst.	The
matching	and	following	arguments	are	discarded	from	argv.

TK_ARGV_STRING
In	this	form,	dst	is	treated	as	a	pointer	to	a	(char	*);	Tk_ParseArgv
stores	at	*dst	a	pointer	to	the	following	argument,	and	discards	the
matching	and	following	arguments	from	argv.	Src	is	ignored.

TK_ARGV_UID
This	form	is	similar	to	TK_ARGV_STRING,	except	that	the
argument	is	turned	into	a	Tk_Uid	by	calling	Tk_GetUid.	Dst	is
treated	as	a	pointer	to	a	Tk_Uid;	Tk_ParseArgv	stores	at	*dst	the
Tk_Uid	corresponding	to	the	following	argument,	and	discards	the
matching	and	following	arguments	from	argv.	Src	is	ignored.

TK_ARGV_CONST_OPTION
This	form	causes	a	Tk	option	to	be	set	(as	if	the	option	command

had	been	invoked).	The	src	field	is	treated	as	a	pointer	to	a	string
giving	the	value	of	an	option,	and	dst	is	treated	as	a	pointer	to	the
name	of	the	option.	The	matching	argument	is	discarded.	If	tkwin	is
NULL,	then	argument	specifiers	of	this	type	are	ignored	(as	if	they
did	not	exist).

TK_ARGV_OPTION_VALUE
This	form	is	similar	to	TK_ARGV_CONST_OPTION,	except	that
the	value	of	the	option	is	taken	from	the	following	argument	instead
of	from	src.	Dst	is	used	as	the	name	of	the	option.	Src	is	ignored.
The	matching	and	following	arguments	are	discarded.	If	tkwin	is
NULL,	then	argument	specifiers	of	this	type	are	ignored	(as	if	they
did	not	exist).

TK_ARGV_OPTION_NAME_VALUE
In	this	case	the	following	argument	is	taken	as	the	name	of	a	Tk
option	and	the	argument	after	that	is	taken	as	the	value	for	that
option.	Both	src	and	dst	are	ignored.	All	three	arguments	are
discarded	from	argv.	If	tkwin	is	NULL,	then	argument	specifiers	of
this	type	are	ignored	(as	if	they	did	not	exist).

TK_ARGV_HELP
When	this	kind	of	option	is	encountered,	Tk_ParseArgv	uses	the
help	fields	of	argTable	to	format	a	message	describing	all	the	valid
arguments.	The	message	is	placed	in	interp->result	and
Tk_ParseArgv	returns	TCL_ERROR.	When	this	happens,	the
caller	normally	prints	the	help	message	and	aborts.	If	the	key	field
of	a	TK_ARGV_HELP	specifier	is	NULL,	then	the	specifier	will
never	match	any	arguments;	in	this	case	the	specifier	simply
provides	extra	documentation,	which	will	be	included	when	some
other	TK_ARGV_HELP	entry	causes	help	information	to	be
returned.

TK_ARGV_REST
This	option	is	used	by	programs	or	commands	that	allow	the	last
several	of	their	options	to	be	the	name	and/or	options	for	some
other	program.	If	a	TK_ARGV_REST	argument	is	found,	then
Tk_ParseArgv	does	not	process	any	of	the	remaining	arguments;

it	returns	them	all	at	the	beginning	of	argv	(along	with	any	other
unprocessed	arguments).	In	addition,	Tk_ParseArgv	treats	dst	as
the	address	of	an	integer	value,	and	stores	at	*dst	the	index	of	the
first	of	the	TK_ARGV_REST	options	in	the	returned	argv.	This
allows	the	program	to	distinguish	the	TK_ARGV_REST	options
from	other	unprocessed	options	that	preceded	the
TK_ARGV_REST.

TK_ARGV_FUNC
For	this	kind	of	argument,	src	is	treated	as	the	address	of	a
procedure,	which	is	invoked	to	process	the	following	argument.	The
procedure	should	have	the	following	structure:

int

func(dst,	key,	nextArg)

				char	*dst;

				char	*key;

				char	*nextArg;

{

}

The	dst	and	key	parameters	will	contain	the	corresponding	fields
from	the	argTable	entry,	and	nextArg	will	point	to	the	following
argument	from	argv	(or	NULL	if	there	are	not	any	more	arguments
left	in	argv).	If	func	uses	nextArg	(so	that	Tk_ParseArgv	should
discard	it),	then	it	should	return	1.	Otherwise	it	should	return	0	and
TkParseArgv	will	process	the	following	argument	in	the	normal
fashion.	In	either	event	the	matching	argument	is	discarded.

TK_ARGV_GENFUNC
This	form	provides	a	more	general	procedural	escape.	It	treats	src
as	the	address	of	a	procedure,	and	passes	that	procedure	all	of	the
remaining	arguments.	The	procedure	should	have	the	following
form:

int

genfunc(dst,	interp,	key,	argc,	argv)

				char	*dst;

				Tcl_Interp	*interp;

				char	*key;

				int	argc;

				char	**argv;

{

}

The	dst	and	key	parameters	will	contain	the	corresponding	fields
from	the	argTable	entry.	Interp	will	be	the	same	as	the	interp
argument	to	Tcl_ParseArgv.	Argc	and	argv	refer	to	all	of	the
options	after	the	matching	one.	Genfunc	should	behave	in	a
fashion	similar	to	Tk_ParseArgv:	parse	as	many	of	the	remaining
arguments	as	it	can,	then	return	any	that	are	left	by	compacting
them	to	the	beginning	of	argv	(starting	at	argv[0]).	Genfunc	should
return	a	count	of	how	many	arguments	are	left	in	argv;
Tk_ParseArgv	will	process	them.	If	genfunc	encounters	an	error
then	it	should	leave	an	error	message	in	interp->result,	in	the	usual
Tcl	fashion,	and	return	-1;	when	this	happens	Tk_ParseArgv	will
abort	its	processing	and	return	TCL_ERROR.

FLAGS

TK_ARGV_DONT_SKIP_FIRST_ARG
Tk_ParseArgv	normally	treats	argv[0]	as	a	program	or	command
name,	and	returns	it	to	the	caller	just	as	if	it	had	not	matched
argTable.	If	this	flag	is	given,	then	argv[0]	is	not	given	special
treatment.

TK_ARGV_NO_ABBREV
Normally,	Tk_ParseArgv	accepts	unique	abbreviations	for	key
values	in	argTable.	If	this	flag	is	given	then	only	exact	matches	will
be	acceptable.

TK_ARGV_NO_LEFTOVERS
Normally,	Tk_ParseArgv	returns	unrecognized	arguments	to	the
caller.	If	this	bit	is	set	in	flags	then	Tk_ParseArgv	will	return	an
error	if	it	encounters	any	argument	that	does	not	match	argTable.
The	only	exception	to	this	rule	is	argv[0],	which	will	be	returned	to
the	caller	with	no	errors	as	long	as
TK_ARGV_DONT_SKIP_FIRST_ARG	is	not	specified.

TK_ARGV_NO_DEFAULTS
Normally,	Tk_ParseArgv	searches	an	internal	table	of	standard
argument	specifiers	in	addition	to	argTable.	If	this	bit	is	set	in	flags,
then	Tk_ParseArgv	will	use	only	argTable	and	not	its	default	table.

EXAMPLE

Here	is	an	example	definition	of	an	argTable	and	some	sample
command	lines	that	use	the	options.	Note	the	effect	on	argc	and	argv;
arguments	processed	by	Tk_ParseArgv	are	eliminated	from	argv,	and
argc	is	updated	to	reflect	reduced	number	of	arguments.

/*

	*	Define	and	set	default	values	for	globals.

	*/

int	debugFlag	=	0;

int	numReps	=	100;

char	defaultFileName[]	=	"out";

char	*fileName	=	defaultFileName;

Boolean	exec	=	FALSE;

/*

	*	Define	option	descriptions.

	*/

Tk_ArgvInfo	argTable[]	=	{

				{"-X",	TK_ARGV_CONSTANT,	(char	*)	1,	(char	*)	&debugFlag,

								"Turn	on	debugging	printfs"},

				{"-N",	TK_ARGV_INT,	(char	*)	NULL,	(char	*)	&numReps,

								"Number	of	repetitions"},

				{"-of",	TK_ARGV_STRING,	(char	*)	NULL,	(char	*)	&fileName,

								"Name	of	file	for	output"},

				{"x",	TK_ARGV_REST,	(char	*)	NULL,	(char	*)	&exec,

								"File	to	exec,	followed	by	any	arguments	(must	be	last	argument)."},

				{(char	*)	NULL,	TK_ARGV_END,	(char	*)	NULL,	(char	*)	NULL,

								(char	*)	NULL}

};

main(argc,	argv)

				int	argc;

				char	*argv[];

{

					...

				if	(Tk_ParseArgv(interp,	tkwin,	&argc,	argv,	argTable,	0)	!=	TCL_OK)	{

								fprintf(stderr,	"%s\n",	interp->result);

								exit(1);

				}

				/*

					*	Remainder	of	the	program.

					*/

}

Note	that	default	values	can	be	assigned	to	variables	named	in
argTable:	the	variables	will	only	be	overwritten	if	the	particular
arguments	are	present	in	argv.	Here	are	some	example	command	lines
and	their	effects.

prog	-N	200	infile								#	just	sets	the	numReps	variable	to	200

prog	-of	out200	infile				#	sets	fileName	to	reference	"out200"

prog	-XN	10	infile								#	sets	the	debug	flag,	also	sets	numReps

In	all	of	the	above	examples,	argc	will	be	set	by	Tk_ParseArgv	to	2,

argv[0]	will	be	“prog”,	argv[1]	will	be	“infile”,	and	argv[2]	will	be	NULL.

KEYWORDS

arguments,	command	line,	options

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990-1992	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tk_Window	tkwin	(in)

const	char	*name	(in)

const	char	*class	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	GetOption

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tk_GetOption	-	retrieve	an	option	from	the	option	database

SYNOPSIS

#include	<tk.h>
Tk_Uid
Tk_GetOption(tkwin,	name,	class)

ARGUMENTS

Token	for	window.

Name	of	desired	option.

Class	of	desired	option.
Null	means	there	is	no
class	for	this	option;	do
lookup	based	on	name
only.

DESCRIPTION

This	procedure	is	invoked	to	retrieve	an	option	from	the	database
associated	with	tkwin's	main	window.	If	there	is	an	option	for	tkwin	that
matches	the	given	name	or	class,	then	it	is	returned	in	the	form	of	a
Tk_Uid.	If	multiple	options	match	name	and	class,	then	the	highest-
priority	one	is	returned.	If	no	option	matches,	then	NULL	is	returned.

Tk_GetOption	caches	options	related	to	tkwin	so	that	successive	calls

for	the	same	tkwin	will	execute	much	more	quickly	than	successive	calls
for	different	windows.

KEYWORDS

class,	name,	option,	retrieve

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1990	The	Regents	of	the	University	of	California.
Copyright	©	1994-1996	Sun	Microsystems,	Inc.

Tcl_Interp	*interp	(in)

const	char	*name	(in)

Tcl8.5.8/Tk8.5.8	Documentation	>	TkLib	>	DeleteImg

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

NAME

Tk_DeleteImage	-	Destroy	an	image.

SYNOPSIS

#include	<tk.h>
Tk_DeleteImage(interp,	name)

ARGUMENTS

Interpreter	for	which	the
image	was	created.

Name	of	the	image.

DESCRIPTION

Tk_DeleteImage	deletes	the	image	given	by	interp	and	name,	if	there
is	one.	All	instances	of	that	image	will	redisplay	as	empty	regions.	If	the
given	image	does	not	exist	then	the	procedure	has	no	effect.

KEYWORDS

delete	image,	image	manager

Copyright	©	1995-1997	Roger	E.	Critchlow	Jr.
Copyright	©	1995-1996	Sun	Microsystems,	Inc.

abort
above
absolute	file	name
access
access	mode
access	point
access	position
add
alias

alloc
allocation
alpha
anchor
anchor	position
anonymous	function
appearance

append

application

Tcl8.5.8/Tk8.5.8	Documentation	>	Tcl/Tk	Keywords	-	A

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

A	|	B	|	C	|	D	|	E	|	F	|	G	|	H	|	I	|	J	|	K	|	L	|	M	|	N	|	O	|	P	|	Q	|	R	|	S	|	T	|	U	|	V	|
W	|	X	|	Y	|	Z

break,	Panic
Restack
filename
Access,	FileSystem
open
OpenFileChnl
seek,	tell
incr,	AddOption
interp,	safe,	loadTk,
CrtSlave
Alloc
Alloc
GetVersion
ConfigWidg,	SetOptions
GetAnchor
apply
ttk_image,	ttk_style,
ttk_vsapi
append,	lappend,	open,
clipboard,	DString,	ListObj,
SetResult,	StringObj,
Clipboard
dde,	destroy,	send,
AppInit,	Init,	MainLoop,
MainWin,	SetAppName,

application	name
application-specific	initialization

architecture
argument
arguments
arithmetic
array
aspect	ratio
assign
association
asynchronous	event
asynchronous	I/O
atom
attributes
auto-exec
auto-load

auto-loading
auto_mkindex

Tk_Init
tk
SourceRCFile,	Tcl_Main,
Tk_Main
platform,	platform_shell
tclsh,	apply,	proc,	AppInit
ParseArgv
expr,	tclvars
array,	SetVar
wm
lassign
AssocData
Async
fileevent
winfo,	GetUid,	InternAtom
file,	ConfigWind,	WindowId
library
library,	packagens,
pkgMkIndex
safe,	loadTk
safe,	loadTk

Copyright	©	1989-1994	The	Regents	of	the	University	of	California
Copyright	©	1992-1999	Karl	Lehenbauer	&	Mark	Diekhans
Copyright	©	1992-1999	Karl	Lehenbauer	and	Mark	Diekhans
Copyright	©	1993-1997	Bell	Labs	Innovations	for	Lucent	Technologies
Copyright	©	1994	The	Australian	National	University
Copyright	©	1994-2000	Sun	Microsystems,	Inc
Copyright	©	1995-1997	Roger	E.	Critchlow	Jr
Copyright	©	1997-2000	Ajuba	Solutions
Copyright	©	1997-2000	Scriptics	Corporation
Copyright	©	1998	Mark	Harrison
Copyright	©	2000	Jeffrey	Hobbs
Copyright	©	2001	ActiveState	Tool	Corp
Copyright	©	2001	Vincent	Darley
Copyright	©	2001-2004	ActiveState	Corporation
Copyright	©	2001-2005	Kevin	B.	Kenny	<kennykb(at)acm.org>

Copyright	©	2001-2008	Donal	K.	Fellows
Copyright	©	2002-2008	Andreas	Kupries	<andreas_kupries(at)users.sourceforge.net>
Copyright	©	2003	George	Petasis	<petasis(at)iit.demokritos.gr>
Copyright	©	2003	Simon	Geard
Copyright	©	2003-2006	Joe	English
Copyright	©	2006	Miguel	Sofer
Copyright	©	2006-2007	Daniel	A.	Steffen	<das(at)users.sourceforge.net>
Copyright	©	2006-2008	ActiveState	Software	Inc
Copyright	©	2008	Pat	Thoyts

background

background	error
backslash
backslash	substitution

beep
bell
below
beta
bevel
bgerror
binary

binary	code
binary	library
bind

binding

bisque
bitmap

Tcl8.5.8/Tk8.5.8	Documentation	>	Tcl/Tk	Keywords	-	B

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

A	|	B	|	C	|	D	|	E	|	F	|	G	|	H	|	I	|	J	|	K	|	L	|	M	|	N	|	O	|	P	|	Q	|	R	|	S	|	T	|	U	|	V	|
W	|	X	|	Y	|	Z

BackgdErr,	DetachPids,
3DBorder
bgerror,	tkerror
Backslash,	SplitList,	Utf
subst,	ParseCmd,
SubstObj
bell
bell
Restack
GetVersion
GetJoinStl
BackgdErr
binary,	fconfigure,
FindExec
load,	unload
RegConfig
socket,	keysyms,
CrtCommand,	CrtObjCmd,
CrtCmHdlr,	CrtGenHdlr,
EventHndlr
bind,	bindtags,	event,
keysyms,	BindTable
palette
bitmap,	dialog,	CanvPsY,
ConfigWidg,	GetBitmap,

blocking

boolean

boolean	value
border

box
braces
break
buffer
buffered	I/O
buffering
butt
button

byte	array
bytecode

SetOptions
close,	fblocked,	fconfigure,
fcopy,	fileevent,	flush,
gets,	read,	CrtChannel,
CrtChnlHdlr,	OpenFileChnl
expr,	if,	BoolObj,
ExprLong,	ExprLongObj,
GetInt,	LinkVar,
ConfigWidg,	SetOptions
while
3DBorder,	ConfigWidg,
ConfigWind,	SetOptions
ttk_Geometry
ParseCmd
break,	return,	AllowExc
flush
OpenFileChnl
fconfigure
GetCapStyl
button,	ttk_button,
ttk_checkbutton,
ttk_menubutton,
ttk_radiobutton
fconfigure,	ByteArrObj
tclvars

Copyright	©	1989-1994	The	Regents	of	the	University	of	California
Copyright	©	1992-1999	Karl	Lehenbauer	&	Mark	Diekhans
Copyright	©	1992-1999	Karl	Lehenbauer	and	Mark	Diekhans
Copyright	©	1993-1997	Bell	Labs	Innovations	for	Lucent	Technologies
Copyright	©	1994	The	Australian	National	University
Copyright	©	1994-2000	Sun	Microsystems,	Inc
Copyright	©	1995-1997	Roger	E.	Critchlow	Jr
Copyright	©	1997-2000	Ajuba	Solutions
Copyright	©	1997-2000	Scriptics	Corporation
Copyright	©	1998	Mark	Harrison

Copyright	©	2000	Jeffrey	Hobbs
Copyright	©	2001	ActiveState	Tool	Corp
Copyright	©	2001	Vincent	Darley
Copyright	©	2001-2004	ActiveState	Corporation
Copyright	©	2001-2005	Kevin	B.	Kenny	<kennykb(at)acm.org>
Copyright	©	2001-2008	Donal	K.	Fellows
Copyright	©	2002-2008	Andreas	Kupries	<andreas_kupries(at)users.sourceforge.net>
Copyright	©	2003	George	Petasis	<petasis(at)iit.demokritos.gr>
Copyright	©	2003	Simon	Geard
Copyright	©	2003-2006	Joe	English
Copyright	©	2006	Miguel	Sofer
Copyright	©	2006-2007	Daniel	A.	Steffen	<das(at)users.sourceforge.net>
Copyright	©	2006-2008	ActiveState	Software	Inc
Copyright	©	2008	Pat	Thoyts

cache
callback

cancel
canvas

cap	style
caret
carriage	return
case
case	conversion
catch
cell
center
centimeters
channel

Tcl8.5.8/Tk8.5.8	Documentation	>	Tcl/Tk	Keywords	-	C

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

A	|	B	|	C	|	D	|	E	|	F	|	G	|	H	|	I	|	J	|	K	|	L	|	M	|	N	|	O	|	P	|	Q	|	R	|	S	|	T	|	U	|	V	|
W	|	X	|	Y	|	Z

InternAtom
CallDel,	CrtChnlHdlr,
CrtCloseHdlr,	CrtFileHdlr,
CrtTimerHdlr,
DoOneEvent,	DoWhenIdle,
Exit,	Limit,	CrtCmHdlr,
CrtErrHdlr,	CrtGenHdlr,
EventHndlr,	HandleEvent,
ManageGeom,
QWinEvent,
SetClassProcs
after
canvas,	CanvPsY,
CanvTkwin,	CanvTxtInfo,
CrtItemType
ConfigWidg,	GetCapStyl
SetCaret
fconfigure
ToUpper
string
catch,	return
grid
GetJustify
GetPixels
chan,	close,	eof,	fcopy,

channel	closing
channel	driver

channel	registration
channel	type
character
check
checkbutton
child
children
choice
class

classification
cleanup
clear

client
clientData
clipboard
clock

close
color

color	selection	dialog

fileevent,	flush,	gets,	puts,
read,	refchan,	socket,	tell,
ChnlStack,	CrtChnlHdlr,
GetOpnFl,	OpenFileChnl
CrtCloseHdlr
CrtChannel,
OpenFileChnl,	SetChanErr
CrtChannel
CrtChannel,	SetChanErr
string
ttk_checkbutton
checkbutton
DetachPids
winfo
ttk_combobox
options,	winfo,	AddOption,
GetOption,	SetClass,
SetClassProcs
UniCharIsAlpha
Exit
clipboard,	selection,
Clipboard,	ClrSelect
OpenTcp
TraceCmd,	TraceVar
clipboard,	Clipboard
clock,	CrtTimerHdlr,
QWinEvent
close
colors,	palette,	photo,
3DBorder,	CanvPsY,
ConfigWidg,	ConfigWind,
GetColor,	SetOptions
chooseColor

colormap

command

command	line
command	substitution
command-line	arguments
commands
compare
compiler
complete	command
compression
concat
concatenate

condition	variable
conditional
configuration
configuration	option
configuration	options
configure
connection
console
container
containing

GetClrmap,	GetVisual,
SetVisual,	WindowId
info,	mathop,	namespace,
rename,	trace,	ttk_button,
AppInit,	CrtCommand,
CrtInterp,	CrtObjCmd,
CrtSlave,	CrtTrace,
Namespace,	ParseCmd,
RecEvalObj,	RecordEval,
SetResult,	TraceCmd,
WrongNumArgs
ParseArgv
subst,	SubstObj
Tcl_Main,	Tk_Main
Limit
expr,	string
tclvars
CmdCmplt
ChnlStack
StringObj
concat,	eval,	Concat,
StringObj
Thread
if
RegConfig
SetOptions
ConfigWidg
ttk_widget,	ConfigWind
socket
console,	CrtConsoleChan
ttk_frame,	ttk_labelframe
CoordToWin

context
continue
conversion
conversion	specifier
convert

coordinates
copy	files
cpu	architecture
create

ctype
current	directory
cursor

custom

uplevel,	upvar
continue,	return,	AllowExc
GetInt,	PrintDbl,	GetDash
format,	scan
Encoding,	SplitList,
GetPixels
CoordToWin,	GetRootCrd
file
platform,	platform_shell
dict,	open,	CrtCommand,
CrtInterp,	CrtObjCmd,
CrtTrace,	CrtWindow
string
filename
cursors,	ConfigWidg,
GetCursor,	SetCaret,
SetOptions
ConfigWidg

Copyright	©	1989-1994	The	Regents	of	the	University	of	California
Copyright	©	1992-1999	Karl	Lehenbauer	&	Mark	Diekhans
Copyright	©	1992-1999	Karl	Lehenbauer	and	Mark	Diekhans
Copyright	©	1993-1997	Bell	Labs	Innovations	for	Lucent	Technologies
Copyright	©	1994	The	Australian	National	University
Copyright	©	1994-2000	Sun	Microsystems,	Inc
Copyright	©	1995-1997	Roger	E.	Critchlow	Jr
Copyright	©	1997-2000	Ajuba	Solutions
Copyright	©	1997-2000	Scriptics	Corporation
Copyright	©	1998	Mark	Harrison
Copyright	©	2000	Jeffrey	Hobbs
Copyright	©	2001	ActiveState	Tool	Corp
Copyright	©	2001	Vincent	Darley
Copyright	©	2001-2004	ActiveState	Corporation
Copyright	©	2001-2005	Kevin	B.	Kenny	<kennykb(at)acm.org>
Copyright	©	2001-2008	Donal	K.	Fellows
Copyright	©	2002-2008	Andreas	Kupries	<andreas_kupries(at)users.sourceforge.net>
Copyright	©	2003	George	Petasis	<petasis(at)iit.demokritos.gr>
Copyright	©	2003	Simon	Geard
Copyright	©	2003-2006	Joe	English

Copyright	©	2006	Miguel	Sofer
Copyright	©	2006-2007	Daniel	A.	Steffen	<das(at)users.sourceforge.net>
Copyright	©	2006-2008	ActiveState	Software	Inc
Copyright	©	2008	Pat	Thoyts

dash
data
database
date
dde
debug

default
defer
deferred	creation
define
deiconify
delay
delete

delete	files
delete	image
deletion	procedure
depressed
depth
destroy
detach

Tcl8.5.8/Tk8.5.8	Documentation	>	Tcl/Tk	Keywords	-	D

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

A	|	B	|	C	|	D	|	E	|	F	|	G	|	H	|	I	|	J	|	K	|	L	|	M	|	N	|	O	|	P	|	Q	|	R	|	S	|	T	|	U	|	V	|
W	|	X	|	Y	|	Z

GetDash
AssocData
option
clock,	GetTime
dde,	send
memory,
DumpActiveMemory,
TCL_MEM_DEBUG
ttk_button
DoWhenIdle
CrtWindow
event
wm
after,	RestrictEv
rename,	CallDel,
CrtCommand,	CrtInterp,
CrtObjCmd,	CrtTrace
file
DeleteImg
AssocData
3DBorder
SetVisual,	WindowId
destroy,	CrtWindow
DetachPids

dialog
dict
dict	object
dictionary
dictionary	object
directory
display

domain	name
double

double	object
double	type
double-precision
dynamic	loading
dynamic	string

chooseDirectory,	dialog
DictObj
DictObj
dict,	DictObj
DictObj
file,	chooseDirectory
CrtWindow,	InternAtom,
WindowId
socket
DoubleObj,	ExprLong,
ExprLongObj,	GetInt,
ConfigWidg,	SetOptions
DoubleObj
DoubleObj
PrintDbl
Exit
DString

Copyright	©	1989-1994	The	Regents	of	the	University	of	California
Copyright	©	1992-1999	Karl	Lehenbauer	&	Mark	Diekhans
Copyright	©	1992-1999	Karl	Lehenbauer	and	Mark	Diekhans
Copyright	©	1993-1997	Bell	Labs	Innovations	for	Lucent	Technologies
Copyright	©	1994	The	Australian	National	University
Copyright	©	1994-2000	Sun	Microsystems,	Inc
Copyright	©	1995-1997	Roger	E.	Critchlow	Jr
Copyright	©	1997-2000	Ajuba	Solutions
Copyright	©	1997-2000	Scriptics	Corporation
Copyright	©	1998	Mark	Harrison
Copyright	©	2000	Jeffrey	Hobbs
Copyright	©	2001	ActiveState	Tool	Corp
Copyright	©	2001	Vincent	Darley
Copyright	©	2001-2004	ActiveState	Corporation
Copyright	©	2001-2005	Kevin	B.	Kenny	<kennykb(at)acm.org>
Copyright	©	2001-2008	Donal	K.	Fellows
Copyright	©	2002-2008	Andreas	Kupries	<andreas_kupries(at)users.sourceforge.net>
Copyright	©	2003	George	Petasis	<petasis(at)iit.demokritos.gr>
Copyright	©	2003	Simon	Geard
Copyright	©	2003-2006	Joe	English
Copyright	©	2006	Miguel	Sofer

Copyright	©	2006-2007	Daniel	A.	Steffen	<das(at)users.sourceforge.net>
Copyright	©	2006-2008	ActiveState	Software	Inc
Copyright	©	2008	Pat	Thoyts

element

element	names
else
embedding
encoding

end	application
end	of	file

end	of	line

ensemble
entry

environment
equal
errno
error

Tcl8.5.8/Tk8.5.8	Documentation	>	Tcl/Tk	Keywords	-	E

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

A	|	B	|	C	|	D	|	E	|	F	|	G	|	H	|	I	|	J	|	K	|	L	|	M	|	N	|	O	|	P	|	Q	|	R	|	S	|	T	|	U	|	V	|
W	|	X	|	Y	|	Z

join,	lappend,	lassign,
lindex,	linsert,	list,	llength,
lrange,	lrepeat,	lreplace,
lreverse,	lset,	lsort,
SetResult,	SplitList
array
if
RegConfig
encoding,	fconfigure,	read,
Encoding
Exit
eof,	fcopy,	gets,	read,
OpenFileChnl
fconfigure,	fcopy,	gets,
read
namespace
entry,	spinbox,
ttk_combobox,	ttk_entry
tclvars,	Environment
string
SetErrno
catch,	error,	return,
tclvars,	unknown,
AddErrInfo,	BackgdErr,
Panic,	CrtErrHdlr

error	code
error	message
error	messages
evaluate

event

event	handler
event	queue
event	sources
events

exception
executable	file
execute

exist
exit
exported
exposed	commands
expression

SetErrno
WrongNumArgs
SetChanErr
eval,	ExprLong,
ExprLongObj
history,	update,	vwait,
bind,	bindtags,	event,
DoOneEvent,	Notifier,
RecEvalObj,	RecordEval,
BindTable,	CrtCmHdlr,
CrtErrHdlr,	CrtGenHdlr,
EventHndlr,	HandleEvent,
MainLoop,	RestrictEv
fileevent
Notifier
Notifier
chan,	focus,	CrtChnlHdlr,
QWinEvent
AllowExc
FindExec
exec,	Eval,	RecEvalObj,
RecordEval
glob
exit,	Exit
namespace
CrtSlave
expr,	mathop,	CrtMathFnc,
ExprLong,	ExprLongObj,
ParseCmd

Copyright	©	1989-1994	The	Regents	of	the	University	of	California
Copyright	©	1992-1999	Karl	Lehenbauer	&	Mark	Diekhans
Copyright	©	1992-1999	Karl	Lehenbauer	and	Mark	Diekhans
Copyright	©	1993-1997	Bell	Labs	Innovations	for	Lucent	Technologies

Copyright	©	1994	The	Australian	National	University
Copyright	©	1994-2000	Sun	Microsystems,	Inc
Copyright	©	1995-1997	Roger	E.	Critchlow	Jr
Copyright	©	1997-2000	Ajuba	Solutions
Copyright	©	1997-2000	Scriptics	Corporation
Copyright	©	1998	Mark	Harrison
Copyright	©	2000	Jeffrey	Hobbs
Copyright	©	2001	ActiveState	Tool	Corp
Copyright	©	2001	Vincent	Darley
Copyright	©	2001-2004	ActiveState	Corporation
Copyright	©	2001-2005	Kevin	B.	Kenny	<kennykb(at)acm.org>
Copyright	©	2001-2008	Donal	K.	Fellows
Copyright	©	2002-2008	Andreas	Kupries	<andreas_kupries(at)users.sourceforge.net>
Copyright	©	2003	George	Petasis	<petasis(at)iit.demokritos.gr>
Copyright	©	2003	Simon	Geard
Copyright	©	2003-2006	Joe	English
Copyright	©	2006	Miguel	Sofer
Copyright	©	2006-2007	Daniel	A.	Steffen	<das(at)users.sourceforge.net>
Copyright	©	2006-2008	ActiveState	Software	Inc
Copyright	©	2008	Pat	Thoyts

false
fatal
file

file	events
file	handle
file	name
file	selection	dialog
filename
filesystem
fill
filter
floating-point
flush

flushing
focus

focus	model
font

Tcl8.5.8/Tk8.5.8	Documentation	>	Tcl/Tk	Keywords	-	F

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

A	|	B	|	C	|	D	|	E	|	F	|	G	|	H	|	I	|	J	|	K	|	L	|	M	|	N	|	O	|	P	|	Q	|	R	|	S	|	T	|	U	|	V	|
W	|	X	|	Y	|	Z

if
Panic
file,	glob,	open,	pid,	seek,
source,	CrtFileHdlr,	Eval,
SplitPath
Notifier
GetOpnFl
Translate
getOpenFile
SplitPath
FileSystem
GetJustify
dict,	fconfigure,	RestrictEv
GetInt,	PrintDbl
flush,	update,
OpenFileChnl
fconfigure
focus,	focusNext,
CanvTkwin,	CanvTxtInfo,
CrtItemType,	DrawFocHlt
wm
font,	CanvPsY,
ConfigWidg,	FontId,
GetFont,	MeasureChar,
SetOptions,	TextLayout

for
foreach
format

frame

free

fuzzy	comparison

for
foreach
binary,	format,	clipboard,
selection,	Clipboard,
CrtSelHdlr,	GetSelect
upvar,	frame,	ttk_frame,
ttk_labelframe
Alloc,	DString,	Interp,
Preserve
expr

Copyright	©	1989-1994	The	Regents	of	the	University	of	California
Copyright	©	1992-1999	Karl	Lehenbauer	&	Mark	Diekhans
Copyright	©	1992-1999	Karl	Lehenbauer	and	Mark	Diekhans
Copyright	©	1993-1997	Bell	Labs	Innovations	for	Lucent	Technologies
Copyright	©	1994	The	Australian	National	University
Copyright	©	1994-2000	Sun	Microsystems,	Inc
Copyright	©	1995-1997	Roger	E.	Critchlow	Jr
Copyright	©	1997-2000	Ajuba	Solutions
Copyright	©	1997-2000	Scriptics	Corporation
Copyright	©	1998	Mark	Harrison
Copyright	©	2000	Jeffrey	Hobbs
Copyright	©	2001	ActiveState	Tool	Corp
Copyright	©	2001	Vincent	Darley
Copyright	©	2001-2004	ActiveState	Corporation
Copyright	©	2001-2005	Kevin	B.	Kenny	<kennykb(at)acm.org>
Copyright	©	2001-2008	Donal	K.	Fellows
Copyright	©	2002-2008	Andreas	Kupries	<andreas_kupries(at)users.sourceforge.net>
Copyright	©	2003	George	Petasis	<petasis(at)iit.demokritos.gr>
Copyright	©	2003	Simon	Geard
Copyright	©	2003-2006	Joe	English
Copyright	©	2006	Miguel	Sofer
Copyright	©	2006-2007	Daniel	A.	Steffen	<das(at)users.sourceforge.net>
Copyright	©	2006-2008	ActiveState	Software	Inc
Copyright	©	2008	Pat	Thoyts

geometry

geometry	management
geometry	manager

get
get	variable
glob
global

global	variables
grab
graphics	context
grid
group
groupbox
grow	box

Tcl8.5.8/Tk8.5.8	Documentation	>	Tcl/Tk	Keywords	-	G

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

A	|	B	|	C	|	D	|	E	|	F	|	G	|	H	|	I	|	J	|	K	|	L	|	M	|	N	|	O	|	P	|	Q	|	R	|	S	|	T	|	U	|	V	|
W	|	X	|	Y	|	Z

winfo,	wm,	GeomReq,
GetVRoot,	ManageGeom,
ttk_Geometry
panedwindow
grid,	pack,	place,
MaintGeom,	WindowId
GetSelect
SetVar
glob
global,	upvar,	variable,
Eval
SetErrno
grab,	Grab
GetGC
grid,	wm,	SetGrid
wm
ttk_labelframe
ttk_sizegrip

Copyright	©	1989-1994	The	Regents	of	the	University	of	California
Copyright	©	1992-1999	Karl	Lehenbauer	&	Mark	Diekhans
Copyright	©	1992-1999	Karl	Lehenbauer	and	Mark	Diekhans
Copyright	©	1993-1997	Bell	Labs	Innovations	for	Lucent	Technologies
Copyright	©	1994	The	Australian	National	University
Copyright	©	1994-2000	Sun	Microsystems,	Inc
Copyright	©	1995-1997	Roger	E.	Critchlow	Jr
Copyright	©	1997-2000	Ajuba	Solutions

Copyright	©	1997-2000	Scriptics	Corporation
Copyright	©	1998	Mark	Harrison
Copyright	©	2000	Jeffrey	Hobbs
Copyright	©	2001	ActiveState	Tool	Corp
Copyright	©	2001	Vincent	Darley
Copyright	©	2001-2004	ActiveState	Corporation
Copyright	©	2001-2005	Kevin	B.	Kenny	<kennykb(at)acm.org>
Copyright	©	2001-2008	Donal	K.	Fellows
Copyright	©	2002-2008	Andreas	Kupries	<andreas_kupries(at)users.sourceforge.net>
Copyright	©	2003	George	Petasis	<petasis(at)iit.demokritos.gr>
Copyright	©	2003	Simon	Geard
Copyright	©	2003-2006	Joe	English
Copyright	©	2006	Miguel	Sofer
Copyright	©	2006-2007	Daniel	A.	Steffen	<das(at)users.sourceforge.net>
Copyright	©	2006-2008	ActiveState	Software	Inc
Copyright	©	2008	Pat	Thoyts

handle
handler

hash	table
height

hidden	commands
history

home	directory
host
hostname

Tcl8.5.8/Tk8.5.8	Documentation	>	Tcl/Tk	Keywords	-	H

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

A	|	B	|	C	|	D	|	E	|	F	|	G	|	H	|	I	|	J	|	K	|	L	|	M	|	N	|	O	|	P	|	Q	|	R	|	S	|	T	|	U	|	V	|
W	|	X	|	Y	|	Z

event
update,	selection,	Async,
CrtChnlHdlr,	CrtFileHdlr,
CrtTimerHdlr,
DoOneEvent,	CrtCmHdlr,
CrtErrHdlr,	CrtGenHdlr,
CrtSelHdlr,	EventHndlr,
HandleEvent,	QWinEvent
DictObj,	Hash
image,	place,	winfo,
ConfigWind,	GetVRoot,
WindowId
CrtSlave
history,	RecEvalObj,
RecordEval
Translate
socket
GetHostName

Copyright	©	1989-1994	The	Regents	of	the	University	of	California
Copyright	©	1992-1999	Karl	Lehenbauer	&	Mark	Diekhans
Copyright	©	1992-1999	Karl	Lehenbauer	and	Mark	Diekhans
Copyright	©	1993-1997	Bell	Labs	Innovations	for	Lucent	Technologies
Copyright	©	1994	The	Australian	National	University
Copyright	©	1994-2000	Sun	Microsystems,	Inc
Copyright	©	1995-1997	Roger	E.	Critchlow	Jr
Copyright	©	1997-2000	Ajuba	Solutions
Copyright	©	1997-2000	Scriptics	Corporation
Copyright	©	1998	Mark	Harrison

Copyright	©	2000	Jeffrey	Hobbs
Copyright	©	2001	ActiveState	Tool	Corp
Copyright	©	2001	Vincent	Darley
Copyright	©	2001-2004	ActiveState	Corporation
Copyright	©	2001-2005	Kevin	B.	Kenny	<kennykb(at)acm.org>
Copyright	©	2001-2008	Donal	K.	Fellows
Copyright	©	2002-2008	Andreas	Kupries	<andreas_kupries(at)users.sourceforge.net>
Copyright	©	2003	George	Petasis	<petasis(at)iit.demokritos.gr>
Copyright	©	2003	Simon	Geard
Copyright	©	2003-2006	Joe	English
Copyright	©	2006	Miguel	Sofer
Copyright	©	2006-2007	Daniel	A.	Steffen	<das(at)users.sourceforge.net>
Copyright	©	2006-2008	ActiveState	Software	Inc
Copyright	©	2008	Pat	Thoyts

i18n
ICCCM
icon
iconify
identifier

idle

idle	callback
if
illumination
image

image	file
image	manager

image	name
image	size	changes
image	type
images
inactive
inches
increment
increments

Tcl8.5.8/Tk8.5.8	Documentation	>	Tcl/Tk	Keywords	-	I

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

A	|	B	|	C	|	D	|	E	|	F	|	G	|	H	|	I	|	J	|	K	|	L	|	M	|	N	|	O	|	P	|	Q	|	R	|	S	|	T	|	U	|	V	|
W	|	X	|	Y	|	Z

msgcat
selection
wm
wm
winfo,	GetHINSTANCE,
GetHWND,	WindowId
update,	DoOneEvent,
Notifier,	Inactive
after,	DoWhenIdle
if
3DBorder
bitmap,	image,	photo,
ttk_image,	FindPhoto
CrtPhImgFmt
CrtImgType,	DeleteImg,
NameOfImg
NameOfImg
ImgChanged
CrtImgType
GetImage,	ImgChanged
Inactive
GetPixels
incr
wm

index

information
initialization
initialization	procedure
initialized
input
insert
insertion	cursor
instance

integer

integer	object
integer	type
intensity
interactive
internal
internal	representation

internal	window
internationalization
interp
interpreter

lindex,	lrepeat,	lset,
packagens,	pkgMkIndex,
string,	GetIndex,	ListObj
info,	winfo
AppInit,	Init,	Tk_Init
StaticPkg
Interp
chan,	OpenFileChnl
linsert,	ListObj
CanvTxtInfo
CrtImgType,
GetHINSTANCE
ExprLong,	ExprLongObj,
GetInt,	IntObj,	LinkVar,
ConfigWidg,	SetOptions
IntObj
IntObj
GetColor
console
namespace
DoubleObj,	IntObj,	ListObj,
Object,	ObjectType,
StringObj
CrtWindow
msgcat,	ByteArrObj
BackgdErr,	SaveResult
tclsh,	info,	console,
AllowExc,	AppInit,
AssocData,	CallDel,
CrtCommand,	CrtInterp,
CrtSlave,	CrtTrace,	Init,
Interp,	Limit,	RecEvalObj,
RecordEval,	SetResult,

interpreters
invoke
item	type
iterate
iteration

SetVar
winfo
CrtSlave
CanvTkwin,	CrtItemType
dict
continue,	for,	foreach,
DictObj

Copyright	©	1989-1994	The	Regents	of	the	University	of	California
Copyright	©	1992-1999	Karl	Lehenbauer	&	Mark	Diekhans
Copyright	©	1992-1999	Karl	Lehenbauer	and	Mark	Diekhans
Copyright	©	1993-1997	Bell	Labs	Innovations	for	Lucent	Technologies
Copyright	©	1994	The	Australian	National	University
Copyright	©	1994-2000	Sun	Microsystems,	Inc
Copyright	©	1995-1997	Roger	E.	Critchlow	Jr
Copyright	©	1997-2000	Ajuba	Solutions
Copyright	©	1997-2000	Scriptics	Corporation
Copyright	©	1998	Mark	Harrison
Copyright	©	2000	Jeffrey	Hobbs
Copyright	©	2001	ActiveState	Tool	Corp
Copyright	©	2001	Vincent	Darley
Copyright	©	2001-2004	ActiveState	Corporation
Copyright	©	2001-2005	Kevin	B.	Kenny	<kennykb(at)acm.org>
Copyright	©	2001-2008	Donal	K.	Fellows
Copyright	©	2002-2008	Andreas	Kupries	<andreas_kupries(at)users.sourceforge.net>
Copyright	©	2003	George	Petasis	<petasis(at)iit.demokritos.gr>
Copyright	©	2003	Simon	Geard
Copyright	©	2003-2006	Joe	English
Copyright	©	2006	Miguel	Sofer
Copyright	©	2006-2007	Daniel	A.	Steffen	<das(at)users.sourceforge.net>
Copyright	©	2006-2008	ActiveState	Software	Inc
Copyright	©	2008	Pat	Thoyts

join
join	style
justification
justify

Tcl8.5.8/Tk8.5.8	Documentation	>	Tcl/Tk	Keywords	-	J

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

A	|	B	|	C	|	D	|	E	|	F	|	G	|	H	|	I	|	J	|	K	|	L	|	M	|	N	|	O	|	P	|	Q	|	R	|	S	|	T	|	U	|	V	|
W	|	X	|	Y	|	Z

concat,	join,	SplitPath
ConfigWidg,	GetJoinStl
GetJustify
ConfigWidg,	SetOptions

Copyright	©	1989-1994	The	Regents	of	the	University	of	California
Copyright	©	1992-1999	Karl	Lehenbauer	&	Mark	Diekhans
Copyright	©	1992-1999	Karl	Lehenbauer	and	Mark	Diekhans
Copyright	©	1993-1997	Bell	Labs	Innovations	for	Lucent	Technologies
Copyright	©	1994	The	Australian	National	University
Copyright	©	1994-2000	Sun	Microsystems,	Inc
Copyright	©	1995-1997	Roger	E.	Critchlow	Jr
Copyright	©	1997-2000	Ajuba	Solutions
Copyright	©	1997-2000	Scriptics	Corporation
Copyright	©	1998	Mark	Harrison
Copyright	©	2000	Jeffrey	Hobbs
Copyright	©	2001	ActiveState	Tool	Corp
Copyright	©	2001	Vincent	Darley
Copyright	©	2001-2004	ActiveState	Corporation
Copyright	©	2001-2005	Kevin	B.	Kenny	<kennykb(at)acm.org>
Copyright	©	2001-2008	Donal	K.	Fellows
Copyright	©	2002-2008	Andreas	Kupries	<andreas_kupries(at)users.sourceforge.net>
Copyright	©	2003	George	Petasis	<petasis(at)iit.demokritos.gr>
Copyright	©	2003	Simon	Geard
Copyright	©	2003-2006	Joe	English
Copyright	©	2006	Miguel	Sofer
Copyright	©	2006-2007	Daniel	A.	Steffen	<das(at)users.sourceforge.net>
Copyright	©	2006-2008	ActiveState	Software	Inc
Copyright	©	2008	Pat	Thoyts

key
keyboard
keyboard	events
keyboard	traversal
keysym

Tcl8.5.8/Tk8.5.8	Documentation	>	Tcl/Tk	Keywords	-	K

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

A	|	B	|	C	|	D	|	E	|	F	|	G	|	H	|	I	|	J	|	K	|	L	|	M	|	N	|	O	|	P	|	Q	|	R	|	S	|	T	|	U	|	V	|
W	|	X	|	Y	|	Z

AssocData,	Hash
focus
grab
focusNext
keysyms

Copyright	©	1989-1994	The	Regents	of	the	University	of	California
Copyright	©	1992-1999	Karl	Lehenbauer	&	Mark	Diekhans
Copyright	©	1992-1999	Karl	Lehenbauer	and	Mark	Diekhans
Copyright	©	1993-1997	Bell	Labs	Innovations	for	Lucent	Technologies
Copyright	©	1994	The	Australian	National	University
Copyright	©	1994-2000	Sun	Microsystems,	Inc
Copyright	©	1995-1997	Roger	E.	Critchlow	Jr
Copyright	©	1997-2000	Ajuba	Solutions
Copyright	©	1997-2000	Scriptics	Corporation
Copyright	©	1998	Mark	Harrison
Copyright	©	2000	Jeffrey	Hobbs
Copyright	©	2001	ActiveState	Tool	Corp
Copyright	©	2001	Vincent	Darley
Copyright	©	2001-2004	ActiveState	Corporation
Copyright	©	2001-2005	Kevin	B.	Kenny	<kennykb(at)acm.org>
Copyright	©	2001-2008	Donal	K.	Fellows
Copyright	©	2002-2008	Andreas	Kupries	<andreas_kupries(at)users.sourceforge.net>
Copyright	©	2003	George	Petasis	<petasis(at)iit.demokritos.gr>
Copyright	©	2003	Simon	Geard
Copyright	©	2003-2006	Joe	English
Copyright	©	2006	Miguel	Sofer
Copyright	©	2006-2007	Daniel	A.	Steffen	<das(at)users.sourceforge.net>
Copyright	©	2006-2008	ActiveState	Software	Inc
Copyright	©	2008	Pat	Thoyts

l10n
label
labelframe
length
level
library
limit
line
linemode
link
linked	variable
list

list	box
list	object
list	type
listbox
lists
load
loading

Tcl8.5.8/Tk8.5.8	Documentation	>	Tcl/Tk	Keywords	-	L

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

A	|	B	|	C	|	D	|	E	|	F	|	G	|	H	|	I	|	J	|	K	|	L	|	M	|	N	|	O	|	P	|	Q	|	R	|	S	|	T	|	U	|	V	|
W	|	X	|	Y	|	Z

msgcat
label,	ttk_labelframe
labelframe
llength,	ListObj
info,	uplevel,	upvar
library
Limit
gets
fconfigure
LinkVar
UpVar
foreach,	join,	lappend,
lassign,	lindex,	linsert,	list,
llength,	lrange,	lrepeat,
lreplace,	lreverse,	lsearch,
lset,	lsort,	split,	ListObj,
SetResult,	SplitList
ttk_combobox
ListObj
ListObj
listbox
concat
safe,	loadTk,	Tk_Init
load

localization
location

lookup
loop
looping
lower

msgcat
grid,	pack,	place,
GetVRoot
dict,	Hash
break,	continue,	while
for,	foreach
lower

Copyright	©	1989-1994	The	Regents	of	the	University	of	California
Copyright	©	1992-1999	Karl	Lehenbauer	&	Mark	Diekhans
Copyright	©	1992-1999	Karl	Lehenbauer	and	Mark	Diekhans
Copyright	©	1993-1997	Bell	Labs	Innovations	for	Lucent	Technologies
Copyright	©	1994	The	Australian	National	University
Copyright	©	1994-2000	Sun	Microsystems,	Inc
Copyright	©	1995-1997	Roger	E.	Critchlow	Jr
Copyright	©	1997-2000	Ajuba	Solutions
Copyright	©	1997-2000	Scriptics	Corporation
Copyright	©	1998	Mark	Harrison
Copyright	©	2000	Jeffrey	Hobbs
Copyright	©	2001	ActiveState	Tool	Corp
Copyright	©	2001	Vincent	Darley
Copyright	©	2001-2004	ActiveState	Corporation
Copyright	©	2001-2005	Kevin	B.	Kenny	<kennykb(at)acm.org>
Copyright	©	2001-2008	Donal	K.	Fellows
Copyright	©	2002-2008	Andreas	Kupries	<andreas_kupries(at)users.sourceforge.net>
Copyright	©	2003	George	Petasis	<petasis(at)iit.demokritos.gr>
Copyright	©	2003	Simon	Geard
Copyright	©	2003-2006	Joe	English
Copyright	©	2006	Miguel	Sofer
Copyright	©	2006-2007	Daniel	A.	Steffen	<das(at)users.sourceforge.net>
Copyright	©	2006-2008	ActiveState	Software	Inc
Copyright	©	2008	Pat	Thoyts

main	loop
main	program

main	window
major
malloc
managed
map
mapped
margins
master

master	interpreter
match

mathematical	function
measurement
memory

menu

menubutton
merge

Tcl8.5.8/Tk8.5.8	Documentation	>	Tcl/Tk	Keywords	-	M

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

A	|	B	|	C	|	D	|	E	|	F	|	G	|	H	|	I	|	J	|	K	|	L	|	M	|	N	|	O	|	P	|	Q	|	R	|	S	|	T	|	U	|	V	|
W	|	X	|	Y	|	Z

MainLoop
SourceRCFile,	Tcl_Main,
Tk_Main
MainWin,	Tk_Init
GetVersion
Alloc,	Interp
ManageGeom
MaintGeom,	MapWindow
winfo,	WindowId
ttk_Geometry
place,	CrtSlave,
CrtImgType,	MaintGeom
interp,	safe,	loadTk
lsearch,	re_syntax,
regexp,	regsub,	string,
switch,	RegExp,	StrMatch
CrtMathFnc
FontId,	MeasureChar
memory,	Alloc,
DumpActiveMemory,
TCL_MEM_DEBUG
menu,	popup,
ttk_menubutton
menubutton
SplitList

message
message	box
millimeters
minor
miter
modal
modal	timeout
modules
Motif	compliance
move	files
multiple
mutex

msgcat,	message
messageBox
ConfigWidg,	GetPixels
GetVersion
GetJoinStl
dialog
QWinEvent
tm
StrictMotif
file
lassign
Thread

Copyright	©	1989-1994	The	Regents	of	the	University	of	California
Copyright	©	1992-1999	Karl	Lehenbauer	&	Mark	Diekhans
Copyright	©	1992-1999	Karl	Lehenbauer	and	Mark	Diekhans
Copyright	©	1993-1997	Bell	Labs	Innovations	for	Lucent	Technologies
Copyright	©	1994	The	Australian	National	University
Copyright	©	1994-2000	Sun	Microsystems,	Inc
Copyright	©	1995-1997	Roger	E.	Critchlow	Jr
Copyright	©	1997-2000	Ajuba	Solutions
Copyright	©	1997-2000	Scriptics	Corporation
Copyright	©	1998	Mark	Harrison
Copyright	©	2000	Jeffrey	Hobbs
Copyright	©	2001	ActiveState	Tool	Corp
Copyright	©	2001	Vincent	Darley
Copyright	©	2001-2004	ActiveState	Corporation
Copyright	©	2001-2005	Kevin	B.	Kenny	<kennykb(at)acm.org>
Copyright	©	2001-2008	Donal	K.	Fellows
Copyright	©	2002-2008	Andreas	Kupries	<andreas_kupries(at)users.sourceforge.net>
Copyright	©	2003	George	Petasis	<petasis(at)iit.demokritos.gr>
Copyright	©	2003	Simon	Geard
Copyright	©	2003-2006	Joe	English
Copyright	©	2006	Miguel	Sofer
Copyright	©	2006-2007	Daniel	A.	Steffen	<das(at)users.sourceforge.net>
Copyright	©	2006-2008	ActiveState	Software	Inc
Copyright	©	2008	Pat	Thoyts

name

namespace

nesting	depth
network	address
newline
non-blocking
non-existent	command
nonblocking

nonblocking.
notifier

Tcl8.5.8/Tk8.5.8	Documentation	>	Tcl/Tk	Keywords	-	N

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

A	|	B	|	C	|	D	|	E	|	F	|	G	|	H	|	I	|	J	|	K	|	L	|	M	|	N	|	O	|	P	|	Q	|	R	|	S	|	T	|	U	|	V	|
W	|	X	|	Y	|	Z

dde,	file,	options,	send,
AddOption,	GetOption,
GetRelief,	Name,
SetAppName
global,	info,	rename,
uplevel,	upvar,	variable,
CrtCommand,	CrtObjCmd,
Namespace
SetRecLmt
socket
fconfigure,	puts
open
unknown
close,	fblocked,	fconfigure,
fcopy,	fileevent,	flush,
gets,	read,	CrtChannel,
OpenFileChnl
CrtChnlHdlr
Notifier

Copyright	©	1989-1994	The	Regents	of	the	University	of	California
Copyright	©	1992-1999	Karl	Lehenbauer	&	Mark	Diekhans
Copyright	©	1992-1999	Karl	Lehenbauer	and	Mark	Diekhans
Copyright	©	1993-1997	Bell	Labs	Innovations	for	Lucent	Technologies
Copyright	©	1994	The	Australian	National	University
Copyright	©	1994-2000	Sun	Microsystems,	Inc
Copyright	©	1995-1997	Roger	E.	Critchlow	Jr
Copyright	©	1997-2000	Ajuba	Solutions

Copyright	©	1997-2000	Scriptics	Corporation
Copyright	©	1998	Mark	Harrison
Copyright	©	2000	Jeffrey	Hobbs
Copyright	©	2001	ActiveState	Tool	Corp
Copyright	©	2001	Vincent	Darley
Copyright	©	2001-2004	ActiveState	Corporation
Copyright	©	2001-2005	Kevin	B.	Kenny	<kennykb(at)acm.org>
Copyright	©	2001-2008	Donal	K.	Fellows
Copyright	©	2002-2008	Andreas	Kupries	<andreas_kupries(at)users.sourceforge.net>
Copyright	©	2003	George	Petasis	<petasis(at)iit.demokritos.gr>
Copyright	©	2003	Simon	Geard
Copyright	©	2003-2006	Joe	English
Copyright	©	2006	Miguel	Sofer
Copyright	©	2006-2007	Daniel	A.	Steffen	<das(at)users.sourceforge.net>
Copyright	©	2006-2008	ActiveState	Software	Inc
Copyright	©	2008	Pat	Thoyts

object

object	creation
object	result
object	type

obscure
offset
open
operating	system
operator
option

option	menu
options

Tcl8.5.8/Tk8.5.8	Documentation	>	Tcl/Tk	Keywords	-	O

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

A	|	B	|	C	|	D	|	E	|	F	|	G	|	H	|	I	|	J	|	K	|	L	|	M	|	N	|	O	|	P	|	Q	|	R	|	S	|	T	|	U	|	V	|
W	|	X	|	Y	|	Z

AddErrInfo,	BoolObj,
ByteArrObj,	CrtObjCmd,
DictObj,	DoubleObj,	Eval,
ExprLong,	ExprLongObj,
GetIndex,	IntObj,	ListObj,
Object,	ObjectType,
RecEvalObj,	SetResult,
SetVar,	StringObj,
3DBorder,	BindTable,
GetColor
Object
AddErrInfo
DoubleObj,	IntObj,	ListObj,
Object,	ObjectType,
StringObj
lower,	raise,	Restack
chan
open
platform,	platform_shell
mathop
colors,	cursors,	option,
ttk_checkbutton,
ttk_radiobutton,	ttk_widget,
AddOption,	GetOption
optionMenu
ParseArgv

order
output

output	channels
own

lsort
chan,	flush,	puts,
OpenFileChnl
console
selection,	OwnSelect

Copyright	©	1989-1994	The	Regents	of	the	University	of	California
Copyright	©	1992-1999	Karl	Lehenbauer	&	Mark	Diekhans
Copyright	©	1992-1999	Karl	Lehenbauer	and	Mark	Diekhans
Copyright	©	1993-1997	Bell	Labs	Innovations	for	Lucent	Technologies
Copyright	©	1994	The	Australian	National	University
Copyright	©	1994-2000	Sun	Microsystems,	Inc
Copyright	©	1995-1997	Roger	E.	Critchlow	Jr
Copyright	©	1997-2000	Ajuba	Solutions
Copyright	©	1997-2000	Scriptics	Corporation
Copyright	©	1998	Mark	Harrison
Copyright	©	2000	Jeffrey	Hobbs
Copyright	©	2001	ActiveState	Tool	Corp
Copyright	©	2001	Vincent	Darley
Copyright	©	2001-2004	ActiveState	Corporation
Copyright	©	2001-2005	Kevin	B.	Kenny	<kennykb(at)acm.org>
Copyright	©	2001-2008	Donal	K.	Fellows
Copyright	©	2002-2008	Andreas	Kupries	<andreas_kupries(at)users.sourceforge.net>
Copyright	©	2003	George	Petasis	<petasis(at)iit.demokritos.gr>
Copyright	©	2003	Simon	Geard
Copyright	©	2003-2006	Joe	English
Copyright	©	2006	Miguel	Sofer
Copyright	©	2006-2007	Daniel	A.	Steffen	<das(at)users.sourceforge.net>
Copyright	©	2006-2008	ActiveState	Software	Inc
Copyright	©	2008	Pat	Thoyts

pack
package

packer
padding
palette
pane
panedwindow
parcel
parent
parse

parsing
partial	command
patchlevel
path
path	name
pattern

permissions
photo
photo	image

Tcl8.5.8/Tk8.5.8	Documentation	>	Tcl/Tk	Keywords	-	P

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

A	|	B	|	C	|	D	|	E	|	F	|	G	|	H	|	I	|	J	|	K	|	L	|	M	|	N	|	O	|	P	|	Q	|	R	|	S	|	T	|	U	|	V	|
W	|	X	|	Y	|	Z

grid
package,	packagens,
pkgMkIndex,	tm,
PkgRequire,	StaticPkg
pack
ttk_Geometry
palette
ttk_notebook
panedwindow
pack
winfo,	MaintGeom
scan,	Backslash,
ParseCmd,	GetScroll
regexp
CmdCmplt
GetVersion
SplitPath,	CanvPsY
winfo,	Name
glob,	lsearch,	regexp,
regsub,	string,	RegExp,
StrMatch
open,	GetOpnFl
photo,	FindPhoto
CrtPhImgFmt

pipeline
pixel
pixel	value
pixels

pixmap

pixmap	theme
place
platform

platform-specific
pointer	events
points
polygon
popup
portability
position

POSIX
Postscript
precision
present
priority
procedure

process
process	identifier
projecting
prompt
propagation

exec,	open,	pid,	GetOpnFl
ConfigWind
GetColor
ConfigWidg,	GetPixels,
SetOptions
ConfigWind,	GetBitmap,
GetPixmap
ttk_image
place
fconfigure,	platform,
platform_shell
chooseDirectory
grab
GetPixels
3DBorder
popup
filename
wm,	MaintGeom,
MoveToplev
tclvars
CanvPsY,	FontId
tclvars
PkgRequire
option
apply,	global,	info,	proc,
return,	upvar,	variable
exit,	open,	DetachPids
pid
GetCapStyl
tclsh
grid,	pack

provide
pwd

PkgRequire
GetCwd

Copyright	©	1989-1994	The	Regents	of	the	University	of	California
Copyright	©	1992-1999	Karl	Lehenbauer	&	Mark	Diekhans
Copyright	©	1992-1999	Karl	Lehenbauer	and	Mark	Diekhans
Copyright	©	1993-1997	Bell	Labs	Innovations	for	Lucent	Technologies
Copyright	©	1994	The	Australian	National	University
Copyright	©	1994-2000	Sun	Microsystems,	Inc
Copyright	©	1995-1997	Roger	E.	Critchlow	Jr
Copyright	©	1997-2000	Ajuba	Solutions
Copyright	©	1997-2000	Scriptics	Corporation
Copyright	©	1998	Mark	Harrison
Copyright	©	2000	Jeffrey	Hobbs
Copyright	©	2001	ActiveState	Tool	Corp
Copyright	©	2001	Vincent	Darley
Copyright	©	2001-2004	ActiveState	Corporation
Copyright	©	2001-2005	Kevin	B.	Kenny	<kennykb(at)acm.org>
Copyright	©	2001-2008	Donal	K.	Fellows
Copyright	©	2002-2008	Andreas	Kupries	<andreas_kupries(at)users.sourceforge.net>
Copyright	©	2003	George	Petasis	<petasis(at)iit.demokritos.gr>
Copyright	©	2003	Simon	Geard
Copyright	©	2003-2006	Joe	English
Copyright	©	2006	Miguel	Sofer
Copyright	©	2006-2007	Daniel	A.	Steffen	<das(at)users.sourceforge.net>
Copyright	©	2006-2008	ActiveState	Software	Inc
Copyright	©	2008	Pat	Thoyts

quoting

Tcl8.5.8/Tk8.5.8	Documentation	>	Tcl/Tk	Keywords	-	Q

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

A	|	B	|	C	|	D	|	E	|	F	|	G	|	H	|	I	|	J	|	K	|	L	|	M	|	N	|	O	|	P	|	Q	|	R	|	S	|	T	|	U	|	V	|
W	|	X	|	Y	|	Z

regsub

Copyright	©	1989-1994	The	Regents	of	the	University	of	California
Copyright	©	1992-1999	Karl	Lehenbauer	&	Mark	Diekhans
Copyright	©	1992-1999	Karl	Lehenbauer	and	Mark	Diekhans
Copyright	©	1993-1997	Bell	Labs	Innovations	for	Lucent	Technologies
Copyright	©	1994	The	Australian	National	University
Copyright	©	1994-2000	Sun	Microsystems,	Inc
Copyright	©	1995-1997	Roger	E.	Critchlow	Jr
Copyright	©	1997-2000	Ajuba	Solutions
Copyright	©	1997-2000	Scriptics	Corporation
Copyright	©	1998	Mark	Harrison
Copyright	©	2000	Jeffrey	Hobbs
Copyright	©	2001	ActiveState	Tool	Corp
Copyright	©	2001	Vincent	Darley
Copyright	©	2001-2004	ActiveState	Corporation
Copyright	©	2001-2005	Kevin	B.	Kenny	<kennykb(at)acm.org>
Copyright	©	2001-2008	Donal	K.	Fellows
Copyright	©	2002-2008	Andreas	Kupries	<andreas_kupries(at)users.sourceforge.net>
Copyright	©	2003	George	Petasis	<petasis(at)iit.demokritos.gr>
Copyright	©	2003	Simon	Geard
Copyright	©	2003-2006	Joe	English
Copyright	©	2006	Miguel	Sofer
Copyright	©	2006-2007	Daniel	A.	Steffen	<das(at)users.sourceforge.net>
Copyright	©	2006-2008	ActiveState	Software	Inc
Copyright	©	2008	Pat	Thoyts

radiobutton
raise
raised
range
rc	file
read

read-only
readable
real
realloc
record

recursion
redirection
redisplay

reference	count
reference	counting
reflection
region
register
registry

Tcl8.5.8/Tk8.5.8	Documentation	>	Tcl/Tk	Keywords	-	R

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

A	|	B	|	C	|	D	|	E	|	F	|	G	|	H	|	I	|	J	|	K	|	L	|	M	|	N	|	O	|	P	|	Q	|	R	|	S	|	T	|	U	|	V	|
W	|	X	|	Y	|	Z

radiobutton
raise
3DBorder
lrange
SourceRCFile
fcopy,	gets,	read,	set,
trace,	GetOpnFl,
OpenFileChnl
LinkVar
fileevent
LinkVar
Alloc
history,	RecEvalObj,
RecordEval
SetRecLmt
exec
CanvTkwin,	GetImage,
ImgChanged
Preserve
Object
refchan
ttk_Geometry
SetAppName
registry

regular	expression

relative	file	name
release
relief

remote	execution
remove
rename
rename	files
replace
reporting
request
requested	size
require
resource
resource	identifier
restriction
result

retrieve
return
return	value
reverse
ring
root	window
round
rubber	sheet

lsearch,	re_syntax,
regexp,	regsub,	switch,
RegExp
filename
GetVersion
ConfigWidg,	GetRelief,
SetOptions,	ttk_Geometry
dde,	send
unset
rename,	trace
file
lreplace,	lset,	ListObj
bgerror,	tkerror
GeomReq,	ManageGeom
WindowId
PkgRequire
Limit
FreeXId,	GetPixmap
RestrictEv
DString,	Eval,	Interp,
SaveResult,	SetResult
option,	GetOption
return
SetResult
lreverse,	string
bell
CoordToWin,	GetRootCrd
GetCapStyl,	GetJoinStl
place

Copyright	©	1989-1994	The	Regents	of	the	University	of	California
Copyright	©	1992-1999	Karl	Lehenbauer	&	Mark	Diekhans

Copyright	©	1992-1999	Karl	Lehenbauer	and	Mark	Diekhans
Copyright	©	1993-1997	Bell	Labs	Innovations	for	Lucent	Technologies
Copyright	©	1994	The	Australian	National	University
Copyright	©	1994-2000	Sun	Microsystems,	Inc
Copyright	©	1995-1997	Roger	E.	Critchlow	Jr
Copyright	©	1997-2000	Ajuba	Solutions
Copyright	©	1997-2000	Scriptics	Corporation
Copyright	©	1998	Mark	Harrison
Copyright	©	2000	Jeffrey	Hobbs
Copyright	©	2001	ActiveState	Tool	Corp
Copyright	©	2001	Vincent	Darley
Copyright	©	2001-2004	ActiveState	Corporation
Copyright	©	2001-2005	Kevin	B.	Kenny	<kennykb(at)acm.org>
Copyright	©	2001-2008	Donal	K.	Fellows
Copyright	©	2002-2008	Andreas	Kupries	<andreas_kupries(at)users.sourceforge.net>
Copyright	©	2003	George	Petasis	<petasis(at)iit.demokritos.gr>
Copyright	©	2003	Simon	Geard
Copyright	©	2003-2006	Joe	English
Copyright	©	2006	Miguel	Sofer
Copyright	©	2006-2007	Daniel	A.	Steffen	<das(at)users.sourceforge.net>
Copyright	©	2006-2008	ActiveState	Software	Inc
Copyright	©	2008	Pat	Thoyts

safe
safe	interpreter
safe	interpreter
scalar
scale
scan
screen

screen	distance
screen	units
script

script	file
scrollbar

scrolling	command
search
security
security	policy
seek
seeking
selection

Tcl8.5.8/Tk8.5.8	Documentation	>	Tcl/Tk	Keywords	-	S

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

A	|	B	|	C	|	D	|	E	|	F	|	G	|	H	|	I	|	J	|	K	|	L	|	M	|	N	|	O	|	P	|	Q	|	R	|	S	|	T	|	U	|	V	|
W	|	X	|	Y	|	Z

Tk_Init
safe,	loadTk
interp,	load,	unload
SetVar
scale,	ttk_scale
binary,	scan
winfo,	CrtWindow,
GetVisual,	WindowId
SetOptions
GetPixels
eval,	fileevent,	source,
time,	Eval,	BindTable
tclsh
scrollbar,	ttk_scrollbar,
GetScroll
GetScroll
array,	lsearch,	Hash
send
http
seek,	OpenFileChnl
tell
chooseDirectory,
clipboard,	selection,
CanvTkwin,	CanvTxtInfo,

selection	anchor
selection	owner
selection	retrieval
send
send	command
separator
serial
server
service	mode
set
shadow
shared	library
shell
signal
signal	numbers
signals
size
sizegrip
slave

slave	interpreter
sleep
slider
socket
sort
source
spinbox
split
splitting

ClrSelect,	CrtItemType,
CrtSelHdlr
CanvTxtInfo
OwnSelect
GetSelect
send,	tk
SetAppName
join,	ttk_separator
open
OpenTcp
Notifier
lassign,	lset,	SetVar
3DBorder
load,	unload
tclsh,	wish
Async
Signal
Signal
grid,	pack,	wm
ttk_sizegrip
place,	CrtSlave,
MaintGeom
interp,	safe,	loadTk
after,	Sleep
scale,	ttk_scale
http,	socket
lsort
safe,	loadTk
spinbox
split,	SplitList,	SplitPath
regexp

sprintf
stack
stack	frame
stacking	order
standard	channel
standard	channels

standard	error
standard	input
standard	option
standard	output
stat
state
static	linking
sticky
stipple
storage
string

string	object
string	representation

string	type
strings
stubs
style

format
AddErrInfo
uplevel
lower,	raise,	Restack
GetStdChan
StdChannels,
CrtConsoleChan
GetStdChan
GetStdChan
options
GetStdChan
file,	Access,	FileSystem
ttk_widget,	SaveResult
StaticPkg
ttk_Geometry
CanvPsY
Preserve
format,	lsearch,	re_syntax,
regexp,	split,	string,
ExprLong,	ExprLongObj,
LinkVar,	PrintDbl,	RegExp,
StrMatch,	GetJustify,
GetRelief
StringObj
DoubleObj,	IntObj,	ListObj,
Object,	ObjectType,
StringObj
StringObj
Concat,	SplitList
InitStubs,	TkInitStubs
ttk_image,	ttk_style,
ttk_vsapi

subexpression
sublist
subprocess
substitute
substitution
switch
synonym

RegExp
lrange
exec,	tclvars
regsub
format
switch,	options
ConfigWidg,	SetOptions

Copyright	©	1989-1994	The	Regents	of	the	University	of	California
Copyright	©	1992-1999	Karl	Lehenbauer	&	Mark	Diekhans
Copyright	©	1992-1999	Karl	Lehenbauer	and	Mark	Diekhans
Copyright	©	1993-1997	Bell	Labs	Innovations	for	Lucent	Technologies
Copyright	©	1994	The	Australian	National	University
Copyright	©	1994-2000	Sun	Microsystems,	Inc
Copyright	©	1995-1997	Roger	E.	Critchlow	Jr
Copyright	©	1997-2000	Ajuba	Solutions
Copyright	©	1997-2000	Scriptics	Corporation
Copyright	©	1998	Mark	Harrison
Copyright	©	2000	Jeffrey	Hobbs
Copyright	©	2001	ActiveState	Tool	Corp
Copyright	©	2001	Vincent	Darley
Copyright	©	2001-2004	ActiveState	Corporation
Copyright	©	2001-2005	Kevin	B.	Kenny	<kennykb(at)acm.org>
Copyright	©	2001-2008	Donal	K.	Fellows
Copyright	©	2002-2008	Andreas	Kupries	<andreas_kupries(at)users.sourceforge.net>
Copyright	©	2003	George	Petasis	<petasis(at)iit.demokritos.gr>
Copyright	©	2003	Simon	Geard
Copyright	©	2003-2006	Joe	English
Copyright	©	2006	Miguel	Sofer
Copyright	©	2006-2007	Daniel	A.	Steffen	<das(at)users.sourceforge.net>
Copyright	©	2006-2008	ActiveState	Software	Inc
Copyright	©	2008	Pat	Thoyts

tab
table	lookup
tag
target
TCL_MEM_DEBUG
Tcl_RegExpIndices
Tcl_RegExpInfo
Tcl_SaveInterpState
TCP
tcp
test
test	harness
test	suite
text

text	box
text	field
theme

thread
thread	local	storage
threads
three-dimensional	effect
tilde

Tcl8.5.8/Tk8.5.8	Documentation	>	Tcl/Tk	Keywords	-	T

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

A	|	B	|	C	|	D	|	E	|	F	|	G	|	H	|	I	|	J	|	K	|	L	|	M	|	N	|	O	|	P	|	Q	|	R	|	S	|	T	|	U	|	V	|
W	|	X	|	Y	|	Z

ttk_notebook
GetIndex
bindtags
selection,	CrtSelHdlr
Alloc
RegExp
RegExp
Async
OpenTcp
socket
tcltest,	while
tcltest
tcltest
msgcat,	text,	tkvars,
CanvTxtInfo
ttk_combobox
ttk_entry
ttk_image,	ttk_style,
ttk_vsapi
Async,	Exit,	Thread
Thread
Notifier
3DBorder
Translate

time

timer

title
tk_strictMotif	variable
tkvars
toggle
token
tolower
toolkit
top-level

top-level	window

toplevel
totitle
toupper
trace

traces
translate
translation

traversal	highlight
trough
true
type

type	conversion
type	manager

after,	clock,	time,	GetTime,
Limit,	Sleep
CrtTimerHdlr,
DoOneEvent,	Notifier
wm
StrictMotif
text
ttk_checkbutton
ParseCmd,	Name
ToUpper
wish
focus,	focusNext,
WindowId
wm,	CrtWindow,
MoveToplev
toplevel
ToUpper
ToUpper
trace,	AddErrInfo,
CrtTrace,	TraceCmd,
TraceVar
LinkVar
Translate
fconfigure,	fcopy,	msgcat,
read
DrawFocHlt
scale,	ttk_scale
if
clipboard,	selection,
SplitPath,	Clipboard
Object,	ObjectType
CanvTkwin,	CrtItemType

types	of	images image

Copyright	©	1989-1994	The	Regents	of	the	University	of	California
Copyright	©	1992-1999	Karl	Lehenbauer	&	Mark	Diekhans
Copyright	©	1992-1999	Karl	Lehenbauer	and	Mark	Diekhans
Copyright	©	1993-1997	Bell	Labs	Innovations	for	Lucent	Technologies
Copyright	©	1994	The	Australian	National	University
Copyright	©	1994-2000	Sun	Microsystems,	Inc
Copyright	©	1995-1997	Roger	E.	Critchlow	Jr
Copyright	©	1997-2000	Ajuba	Solutions
Copyright	©	1997-2000	Scriptics	Corporation
Copyright	©	1998	Mark	Harrison
Copyright	©	2000	Jeffrey	Hobbs
Copyright	©	2001	ActiveState	Tool	Corp
Copyright	©	2001	Vincent	Darley
Copyright	©	2001-2004	ActiveState	Corporation
Copyright	©	2001-2005	Kevin	B.	Kenny	<kennykb(at)acm.org>
Copyright	©	2001-2008	Donal	K.	Fellows
Copyright	©	2002-2008	Andreas	Kupries	<andreas_kupries(at)users.sourceforge.net>
Copyright	©	2003	George	Petasis	<petasis(at)iit.demokritos.gr>
Copyright	©	2003	Simon	Geard
Copyright	©	2003-2006	Joe	English
Copyright	©	2006	Miguel	Sofer
Copyright	©	2006-2007	Daniel	A.	Steffen	<das(at)users.sourceforge.net>
Copyright	©	2006-2008	ActiveState	Software	Inc
Copyright	©	2008	Pat	Thoyts

uid
unicode

unique	identifier
units
unknown
unloading
unmanaged
unmap
unset
update
upvar
user
utf

Tcl8.5.8/Tk8.5.8	Documentation	>	Tcl/Tk	Keywords	-	U

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

A	|	B	|	C	|	D	|	E	|	F	|	G	|	H	|	I	|	J	|	K	|	L	|	M	|	N	|	O	|	P	|	Q	|	R	|	S	|	T	|	U	|	V	|
W	|	X	|	Y	|	Z

ConfigWidg
ByteArrObj,	StringObj,
ToUpper,	UniCharIsAlpha,
Utf
GetUid,	SetClass
wm
library
unload,	Exit
ManageGeom
MaintGeom,	MapWindow
trace,	SetVar
dict,	update
UpVar
Translate
ByteArrObj,	Encoding,
ToUpper,	Utf

Copyright	©	1989-1994	The	Regents	of	the	University	of	California
Copyright	©	1992-1999	Karl	Lehenbauer	&	Mark	Diekhans
Copyright	©	1992-1999	Karl	Lehenbauer	and	Mark	Diekhans
Copyright	©	1993-1997	Bell	Labs	Innovations	for	Lucent	Technologies
Copyright	©	1994	The	Australian	National	University
Copyright	©	1994-2000	Sun	Microsystems,	Inc
Copyright	©	1995-1997	Roger	E.	Critchlow	Jr
Copyright	©	1997-2000	Ajuba	Solutions
Copyright	©	1997-2000	Scriptics	Corporation
Copyright	©	1998	Mark	Harrison
Copyright	©	2000	Jeffrey	Hobbs

Copyright	©	2001	ActiveState	Tool	Corp
Copyright	©	2001	Vincent	Darley
Copyright	©	2001-2004	ActiveState	Corporation
Copyright	©	2001-2005	Kevin	B.	Kenny	<kennykb(at)acm.org>
Copyright	©	2001-2008	Donal	K.	Fellows
Copyright	©	2002-2008	Andreas	Kupries	<andreas_kupries(at)users.sourceforge.net>
Copyright	©	2003	George	Petasis	<petasis(at)iit.demokritos.gr>
Copyright	©	2003	Simon	Geard
Copyright	©	2003-2006	Joe	English
Copyright	©	2006	Miguel	Sofer
Copyright	©	2006-2007	Daniel	A.	Steffen	<das(at)users.sourceforge.net>
Copyright	©	2006-2008	ActiveState	Software	Inc
Copyright	©	2008	Pat	Thoyts

value
variable

variable	substitution

variables
version

vfs
virtual
virtual	event
virtual	root
visibility
visual

volume-relative	file	name

Tcl8.5.8/Tk8.5.8	Documentation	>	Tcl/Tk	Keywords	-	V

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

A	|	B	|	C	|	D	|	E	|	F	|	G	|	H	|	I	|	J	|	K	|	L	|	M	|	N	|	O	|	P	|	Q	|	R	|	S	|	T	|	U	|	V	|
W	|	X	|	Y	|	Z

incr,	Hash
append,	global,	incr,	info,
lappend,	lassign,
namespace,	set,	trace,
unset,	upvar,	variable,
vwait,	tkwait,	AddErrInfo,
Environment,	LinkVar,
SetVar,	TraceVar,	UpVar
subst,	ParseCmd,
SubstObj
tclvars,	uplevel,	tkvars
package,	packagens,
pkgMkIndex,	tkvars,
GetVersion,	PkgRequire
FileSystem
FileSystem
event
winfo,	GetVRoot
tkwait
GetClrmap,	GetVisual,
SetVisual,	WindowId
filename

Copyright	©	1989-1994	The	Regents	of	the	University	of	California
Copyright	©	1992-1999	Karl	Lehenbauer	&	Mark	Diekhans
Copyright	©	1992-1999	Karl	Lehenbauer	and	Mark	Diekhans

Copyright	©	1993-1997	Bell	Labs	Innovations	for	Lucent	Technologies
Copyright	©	1994	The	Australian	National	University
Copyright	©	1994-2000	Sun	Microsystems,	Inc
Copyright	©	1995-1997	Roger	E.	Critchlow	Jr
Copyright	©	1997-2000	Ajuba	Solutions
Copyright	©	1997-2000	Scriptics	Corporation
Copyright	©	1998	Mark	Harrison
Copyright	©	2000	Jeffrey	Hobbs
Copyright	©	2001	ActiveState	Tool	Corp
Copyright	©	2001	Vincent	Darley
Copyright	©	2001-2004	ActiveState	Corporation
Copyright	©	2001-2005	Kevin	B.	Kenny	<kennykb(at)acm.org>
Copyright	©	2001-2008	Donal	K.	Fellows
Copyright	©	2002-2008	Andreas	Kupries	<andreas_kupries(at)users.sourceforge.net>
Copyright	©	2003	George	Petasis	<petasis(at)iit.demokritos.gr>
Copyright	©	2003	Simon	Geard
Copyright	©	2003-2006	Joe	English
Copyright	©	2006	Miguel	Sofer
Copyright	©	2006-2007	Daniel	A.	Steffen	<das(at)users.sourceforge.net>
Copyright	©	2006-2008	ActiveState	Software	Inc
Copyright	©	2008	Pat	Thoyts

wait

while
whitespace
widget

width

window

Tcl8.5.8/Tk8.5.8	Documentation	>	Tcl/Tk	Keywords	-	W

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

A	|	B	|	C	|	D	|	E	|	F	|	G	|	H	|	I	|	J	|	K	|	L	|	M	|	N	|	O	|	P	|	Q	|	R	|	S	|	T	|	U	|	V	|
W	|	X	|	Y	|	Z

vwait,	tkwait,	DetachPids,
Sleep
while
library
button,	canvas,
checkbutton,	entry,	frame,
label,	labelframe,	listbox,
menu,	menubutton,
message,	panedwindow,
radiobutton,	scale,
scrollbar,	spinbox,	text,
toplevel,	ttk_button,
ttk_checkbutton,
ttk_combobox,	ttk_entry,
ttk_frame,	ttk_labelframe,
ttk_menubutton,
ttk_radiobutton,	ttk_scale,
ttk_scrollbar,
ttk_separator,	ttk_sizegrip
image,	place,	winfo,
ConfigWind,	GetVRoot,
WindowId
console,	destroy,	grab,
tkwait,	winfo,	ConfigWind,
CrtWindow,	GetHWND,
Grab,	HandleEvent,
MapWindow,	Name,

window	manager

windows
Windows	window	id
word
working	directory
writable.
write

wrong	number	of	arguments

SetClass,	SetGrid,
WindowId
focus,	wm,	GetVRoot,
MoveToplev,	SetClass,
SetGrid
ttk_vsapi
HWNDToWindow
library,	string
cd,	pwd
fileevent
puts,	set,	trace,	GetOpnFl,
OpenFileChnl
WrongNumArgs

Copyright	©	1989-1994	The	Regents	of	the	University	of	California
Copyright	©	1992-1999	Karl	Lehenbauer	&	Mark	Diekhans
Copyright	©	1992-1999	Karl	Lehenbauer	and	Mark	Diekhans
Copyright	©	1993-1997	Bell	Labs	Innovations	for	Lucent	Technologies
Copyright	©	1994	The	Australian	National	University
Copyright	©	1994-2000	Sun	Microsystems,	Inc
Copyright	©	1995-1997	Roger	E.	Critchlow	Jr
Copyright	©	1997-2000	Ajuba	Solutions
Copyright	©	1997-2000	Scriptics	Corporation
Copyright	©	1998	Mark	Harrison
Copyright	©	2000	Jeffrey	Hobbs
Copyright	©	2001	ActiveState	Tool	Corp
Copyright	©	2001	Vincent	Darley
Copyright	©	2001-2004	ActiveState	Corporation
Copyright	©	2001-2005	Kevin	B.	Kenny	<kennykb(at)acm.org>
Copyright	©	2001-2008	Donal	K.	Fellows
Copyright	©	2002-2008	Andreas	Kupries	<andreas_kupries(at)users.sourceforge.net>
Copyright	©	2003	George	Petasis	<petasis(at)iit.demokritos.gr>
Copyright	©	2003	Simon	Geard
Copyright	©	2003-2006	Joe	English
Copyright	©	2006	Miguel	Sofer
Copyright	©	2006-2007	Daniel	A.	Steffen	<das(at)users.sourceforge.net>
Copyright	©	2006-2008	ActiveState	Software	Inc
Copyright	©	2008	Pat	Thoyts

x
X	window	id
xview

Tcl8.5.8/Tk8.5.8	Documentation	>	Tcl/Tk	Keywords	-	X

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

A	|	B	|	C	|	D	|	E	|	F	|	G	|	H	|	I	|	J	|	K	|	L	|	M	|	N	|	O	|	P	|	Q	|	R	|	S	|	T	|	U	|	V	|
W	|	X	|	Y	|	Z

ConfigWind,	WindowId
IdToWindow
GetScroll

Copyright	©	1989-1994	The	Regents	of	the	University	of	California
Copyright	©	1992-1999	Karl	Lehenbauer	&	Mark	Diekhans
Copyright	©	1992-1999	Karl	Lehenbauer	and	Mark	Diekhans
Copyright	©	1993-1997	Bell	Labs	Innovations	for	Lucent	Technologies
Copyright	©	1994	The	Australian	National	University
Copyright	©	1994-2000	Sun	Microsystems,	Inc
Copyright	©	1995-1997	Roger	E.	Critchlow	Jr
Copyright	©	1997-2000	Ajuba	Solutions
Copyright	©	1997-2000	Scriptics	Corporation
Copyright	©	1998	Mark	Harrison
Copyright	©	2000	Jeffrey	Hobbs
Copyright	©	2001	ActiveState	Tool	Corp
Copyright	©	2001	Vincent	Darley
Copyright	©	2001-2004	ActiveState	Corporation
Copyright	©	2001-2005	Kevin	B.	Kenny	<kennykb(at)acm.org>
Copyright	©	2001-2008	Donal	K.	Fellows
Copyright	©	2002-2008	Andreas	Kupries	<andreas_kupries(at)users.sourceforge.net>
Copyright	©	2003	George	Petasis	<petasis(at)iit.demokritos.gr>
Copyright	©	2003	Simon	Geard
Copyright	©	2003-2006	Joe	English
Copyright	©	2006	Miguel	Sofer
Copyright	©	2006-2007	Daniel	A.	Steffen	<das(at)users.sourceforge.net>
Copyright	©	2006-2008	ActiveState	Software	Inc
Copyright	©	2008	Pat	Thoyts

y
yview

Tcl8.5.8/Tk8.5.8	Documentation	>	Tcl/Tk	Keywords	-	Y

Tcl/Tk	Applications	|	Tcl	Commands	|	Tk	Commands	|	Tcl	Library	|	Tk
Library

A	|	B	|	C	|	D	|	E	|	F	|	G	|	H	|	I	|	J	|	K	|	L	|	M	|	N	|	O	|	P	|	Q	|	R	|	S	|	T	|	U	|	V	|
W	|	X	|	Y	|	Z

ConfigWind,	WindowId
GetScroll

Copyright	©	1989-1994	The	Regents	of	the	University	of	California
Copyright	©	1992-1999	Karl	Lehenbauer	&	Mark	Diekhans
Copyright	©	1992-1999	Karl	Lehenbauer	and	Mark	Diekhans
Copyright	©	1993-1997	Bell	Labs	Innovations	for	Lucent	Technologies
Copyright	©	1994	The	Australian	National	University
Copyright	©	1994-2000	Sun	Microsystems,	Inc
Copyright	©	1995-1997	Roger	E.	Critchlow	Jr
Copyright	©	1997-2000	Ajuba	Solutions
Copyright	©	1997-2000	Scriptics	Corporation
Copyright	©	1998	Mark	Harrison
Copyright	©	2000	Jeffrey	Hobbs
Copyright	©	2001	ActiveState	Tool	Corp
Copyright	©	2001	Vincent	Darley
Copyright	©	2001-2004	ActiveState	Corporation
Copyright	©	2001-2005	Kevin	B.	Kenny	<kennykb(at)acm.org>
Copyright	©	2001-2008	Donal	K.	Fellows
Copyright	©	2002-2008	Andreas	Kupries	<andreas_kupries(at)users.sourceforge.net>
Copyright	©	2003	George	Petasis	<petasis(at)iit.demokritos.gr>
Copyright	©	2003	Simon	Geard
Copyright	©	2003-2006	Joe	English
Copyright	©	2006	Miguel	Sofer
Copyright	©	2006-2007	Daniel	A.	Steffen	<das(at)users.sourceforge.net>
Copyright	©	2006-2008	ActiveState	Software	Inc
Copyright	©	2008	Pat	Thoyts

	Tcl/Tk Applications
	Tcl Commands
	Tk Commands
	Tcl Library
	Tk Library
	Keywords
	Tcl8.5.8/Tk8.5.8 Documentation
	tclsh
	wish
	after
	error
	lappend
	platform
	tcl_findLibrary
	append
	eval
	lassign
	platform::shell
	apply
	exec
	lindex
	proc
	array
	exit
	linsert
	puts
	expr
	list
	pwd
	fblocked
	llength
	re_syntax
	tcltest
	fconfigure
	load
	read
	tclvars
	fcopy
	lrange
	refchan
	tell
	file
	lrepeat
	regexp
	time
	fileevent
	lreplace
	registry
	tm
	filename

