
	
TMS	International	BV
	

TMSi	Data	Acquisition	SDK
	

	

	

Application	interface	to	real-time	data	
	

TMSi	develops,	produces	and	sells,	signal	acquisition	devices	for	medical
use.	These	devices	have	one	or	more	options	of	communication	with	a
PC:	Bluetooth,	WLAN	or	USB	2.0.	The	options	depend	on	the	type	of
device.

This	Software	Development	Kit	is	intended	for	people	who	want	to	write
their	own	application	software	for	viewing	or	analyzing	the	signals
measured	with	the	TMSi	front	ends.	This	SDK	is	installed	when	installing
driver	software	for	the	your	frontend,	and	contains	an	include	file	and	a
DLL.

This	SDK	supports	only	front	ends	which	uses	WLAN,	Bluetooth
and	USB	to	connect	to	the	PC.

For	supported	OS	versions,	see	the	installation	manual.

This	document	belongs	to	SDK	revision	7.2.144.0.

	

			

TMS	International	BV
Zuthpenstraat	57,	7575	EJ,	Oldenzaal

The	Netherlands
tel:	+31	(0)	541	534603
fax:	+31	(0)	541	534628
e-mail:	info@tmsi.com

http://www.tmsi.com
mailto:Info@tmsi.com

For	comments	or	questions	about	this	SDK
please	contact:	support@tmsi.com

	

	

Next	:	Getting	Started

mailto:support@tmsi.com

	
TMS	International	BV

	

Getting	started
The	driver	package	provides	support	for	a	large	variety	of	TMSi	data
acquisition	devices.	To	simplify	application	development	all
communication	with	the	devices	is	performed	through	a	single	Dynamic
Link	Library	(DLL)	that	exports	a	limited	number	of	functions.	

In	the	directory	ExampleCode	on	de	Driver	CD,	you	will	find	example
code	written	in	C,	and	the	TMSiSDK.h	include	file	with	the	prototypes	of
the	functions.

The	frontends	can	be	connected	to	the	PC	using	an	WLAN,	Bluetooth	or
USB	connection.	

All	communication	with	the	frontends	is	performed	through	a	single	DLL.
This	DLLis	named	'TMSiSDK.DLL'	and	is	automatically	installed	in	the
Windows	system	directory	during	driver	installation.	This	library	exports
functions	for	controlling	the	front	ends.	The	functions	use	the	Microsoft
__stdcall	calling	convention,	and	have	a	"C"	declaration,	so	they	can	be
called	from	a	C	program.

Because	the	location	of	the	Windows	System	directory	may	vary	from
system	to	system	it	is	best	to	use	the	WIN32	API	GetSystemDirectory
to	locate	this	library.	A	handle	to	the	TMSiSDK.DLL	can	now	be	opened
and	the	pointers	to	these	functions	loaded	using	the	GetProcAddress
function.	The	following	example	shows	how	a	pointer	to	an	exported
function	can	be	obtained.

Excerpt	from	the	example	code:

typedef	BOOL	(__stdcall	*	PCLOSE)(HANDLE	hHandle);	//	Prototype	from	TMSiSDK.h

TCHAR	Path[MAX_PATH];

GetSystemDirectory(Path,	sizeof(Path)	/	sizeof(TCHAR));

lstrcat(Path,	"\\TMSiSDK.dll");

HINSTANCE	LibHandle	=	LoadLibrary(Path);

PCLOSE	Close	=	(PCLOSE)	GetProcAddress(LibHandle	,	"Close");

Refer	to	your	Microsoft	Windows	Platform	SDK	for	more	information

about	using	dynamic	link	libraries	and	runtime	linking.	For	a	complete	list
of	all	available	functions	see	the	functions	part	of	the	SDK
documentation.

In	case	loading	any	function	exported	by	the	DLL	fails,	use	the	WIN32
function	GetLastError	for	more	information.

The	TMSiSDK.dll	is	not	thread-safe.	When	using	threads	in	your
application,	you	must	take	care	that	functions	are	not	called	concurrently.

The	example	code	demonstrates	how	several	common	tasks	are	done,
like	getting	information	about	the	serial	number	and	name	of	the
connected	frontend,	the	channel	layout	and	properties,	setting	the	RTC
clock	etc.

	
TMS	International	BV

	

Changes	between	WDM	driver	v6.*	and	TMSi	SDK
v7.*

This	TMSi	SDK	version	7	is	the	successor	of	WDM	driver	6.*.
TMSi	SDK	version	7	is	newly	build	from	the	ground	up	to	provide	an
easier	way	to	connect	to	TMSi	front	ends,	and	to	unify	access	methods
over	different	communication	interfaces	such	as	WLAN,	Bluetooth	and
USB.		

As	a	result	of	this,	there	are	several	significant	differences	between	this
driver	and	the	WDM	driver	v6.*,	which	makes	it	impossible	to	simply
recompile	your	current	software	to	use	this	TMSi	SDK	version	7.

Compared	to	WDM	driver	6.*,		all	functions	which	were	marked	as
deprecated	in	the	SDK	of	WDM	driver	v6.*	are	removed.	These	are
functions	GetNrDevices,GetDevicePath,		GetSADHandle,
GetManufacturer,	GetDescription,	GetId	GetSignalInfo,	GetDeviceKey,
ans	structures	DEVICE_FEATURE_GAIN,
DEVICE_FEATURE_HIGHPASS,	DEVICE_FEATURE_LOWPASS,
DEVICE_FEATURE_OFFSET.

It	is	no	longer	necessary	to	interrogate	the	registry	to	find	out	if	a	TMSi
USB	device	is	connected	(like	Fusbi,	Synfi	or	Mobita).	

Functions	GetInstanceId,	OpenRegKey,	structures	SP_DEVICE_PATH
are	not	present	in	this	SDK.

It	is	no	longer	possible	to	use	master/slave	devices	directly	using	Fiber
cables.	

Functions	AddSlave,	GetSlaveHandle	are	not	present	in	this	SDK.

Functions	GetSamples	is	changed	and	now	always	delivers	a	sample
value	of	4	bytes	per	channel.

New	functions	are	added	for	acquiring	samples	that	are	stored	in	the

internal	memory	of	Mobita:	CloseCardFile,	OpenCardFile,	StartCardFile,
StopCardFile,	GetCardFileSamples,	GetCardFileSignalFormat,
GetCardFileList.

For	USB	connected	devices	(like	Fusbi,	Synfi	or	Mobita)	Windows	only
displays	the	device	itself	in	de	Windows	device	manager,	and	not	the
frontend(s)	that	is	(are)	connected	to	this	device.		So	if	you	connect	a
Refa	to	a	Fusbi,	you	will	only	see	the	Fusbi	in	the	Windows	device
manager,	not	the	Refa.

The	average	reference	calculation	in	the	driver	is	now	deactivated	by
default	for	all	devices.	This	means	that	all	EXG	channels	now	have	the
unmodified	signals,	i.e.	without	the	common	average	removed	from	the
signals.	If	you	want	the	driver	to	perform	the	average	reference
calculation	use	the	SetRefCalculation()	function	to	turn	it	on.	

WARNING:	when	using	Synfi	to	acquire	EXG	signals	from	two	TMSi
frontends	simultaneously,	the	average	reference	calculation	in	the	driver
should	always	be	switched	off.	Please	refer	to	the	Synfi	User	Manual	for
more	details.

Compilation
First	install	the	TMSi	SDK	on	your	PC	using	the	CD	delivered	with	your
frontend.	Please	follow	the	instructions	in	the	installation	manual
carefully.

After	installation,	TMSiSDK.dll	is	located	in	the	C:/Windows/system32
directory.	The	TMSi	SDK	also	contains	a	TMSiSDK.h	include	file,	which
contains	definitions	of	all	structures	and	prototypes	of	all	functions.		This
file	is	not	installed,	but	must	be	copied	from	installation	CD	to	the
directory	in	which	you	keep	your	development	files.

The	TMSi	SDK	files	are	created	using	Visual	Studio	2010	on	a	Windows
7	64-bit	platform,	and	are	compiled	for	Windows	7	and	8.1.

In	order	to	test	if	you	can	compile,	link,	and	run	the	SDK,	first	use	the
example	code	on	the	CD	to	see	if	you	can	communicate	with	your
frontend.	The	example	code	has	been	tested	thoroughly,	which	means
that	any	error	occurs	during	compilation,	linking	and	running	are	most
likely	due	to	a	misconfiguration	in	your	development	environment.

WARNING:	If	you	run	the	ExampleCode.exe	without	Visual	Studio	2010
installed,	loading	the	TmsiSDK.dll	will	fail.	Please	install	the
vcredist_vs2010_x86.exe	from	the	ExampleCode	directory.

If	the	test	with	the	example	code	was	successful,	you	can	start	with
writing	code	for	this	version	of	the	SDK.

WARNING:	The	TMSiSDK.h	file	and	SADIO.h	file	from	the	WDM	6.*
driver	have	the	same	C	structures.	This	is	done	to	minimize	the	amount
of	work	needed	for	development	with	this	driver.	As	a	result,	including
both	TMSiSDK.h	file	and	SADIO.h	in	one	C	file	result	in	compile	errors
and	warnings.

The	concept	of	the	SDK	is	that	you	start	the	library	with	the	desired
communication	interface(WLAN,	Bluetooth,	USB),	perform	the	desired

actions	(acquiring	samples,	reading	samples	from	memory	card)	and
close	the	library.		For	each	desired	communication	interface	you	need	to
start	the	library,	but	is	is	possible	to	start	several	libraries	parallel	to	each
other,	with	each	library	using	a	different	communication	interface.	In	order
to	select	a	device,	call	GetDeviceList	to	get	a	list	of	all	connected	TMSi
devices.

The	error	handling	of	the	library	is	designed	to	be	as	uniform	as	possible.
For	each	function	which	returns	a	Boolean	FALSE,	you	can	call	the
GetErrorCode()	function	to	retrieve	the	specific	error	code	for	that
function.	

The	order	in	which	you	need	to	call	functions	from	the	SDK,	and	the
naming	of	those	functions	is	mostly	unchanged	with	respect	the	WDM
driver	6.*.	However,	it	is	possible	that	parameters	or	return	type	have	a
different	type.

If	you	do	not	have	any	code	for	the	previous	WDM	driver	6.*,	the	fastest
way	to	get	started	is	to	copy	the	example	code,	and	modify	that.

If	you	already	have	code	used	with	the	previous	WDM	driver	6.*,	the
fastest	way	to	get	started	is	to	copy	your	code,		rename	it,		remove	the
SADIO.h	from	the	code,	include	TMSiSDK.h,	and	recompile.	This	will	not
work	at	once,	because	parameters	or	return	types	of	functions	can	have
a	different	type.	First	fix	all	code	which	gives	an	compiler	error,	using	the
example	code	and	this	reference	documentation.	Then	fix	all	code	which
gives	an	compiler	warning,	using	the	example	code	and	this	reference
documentation.

The	following	functions	have	changed:

GetMeasuringMode	is	still	present,	but	does	not	work,	and	always	return
FALSE.
SetMeasuringMode	has	changed	parameters,	and	does	work.
SetSignalBuffer	is	still	present,	does	set	the	size	of	the	buffer.	Getting
and	setting	the	sample	rate	does	work.
GetSignalFormat	has	a	parameter	changed.
GetSamples	returns	now	a	signed	long.

GetDeviceState	is	removed.

Installation
During	installation	on	a	32	bit	platform,	the	TMSiSDK.dll	is	installed	in	the
%windir%\System32	directory.

During	installation	on	a	64	bit	platform,	the	64	bit	TMSiSDK.dll	is	installed
in	the	%windir%\System32	directory	and	the	32	bit	TMSiSDK32bit.dll	is
installed	in	the	%windir%\SysWOW64	directory.

See	http://msdn.microsoft.com/en-
us/library/aa384249%28v=VS.85%29.aspx	for	more	information	on	how
Windows	handles	32-bit	applications	and	dlls	on	64-bit	platforms.

Because	the	Microsoft	installer	enforces	unique	names	for	all	files,	it	is
not	possible	to	use	the	TMSiSDK.dll	name	in	both	directories.	

	
TMS	International	BV

	

Porting	your	program	from	PortiSerial	to	TMSi
SDK	v7.*

This	TMSi	SDK	version	7	is	the	successor	of	the	WDM	driver	6.*	AND
Portiserial.dll.	The	latter	is	used	to	provide	an	application	interface	for
TMSi	frontends	that	communicate	using	a	Bluetooth	interface.
TMSi	SDK	version	7	is	build	from	scratch	to	provide	an	easier	way	to
connect	to	all	TMSi	frontends,	and	to	unify	access	methods	over	different
communication	interfaces	(WLAN,	Bluetooth	and	USB).		
As	a	result,	there	are	huge	differences	between	TMSi	SDK	version	7	and
the	existing	PortiSerial.dll,	which	makes	it	impossible	to	just	recompile
your	current	software	to	use	this	TMSi	SDK	version	7.

Bluetooth	driver
The	TMSiSDK.dll	works	with	the	Microsoft	Bluetooth	stack	ONLY.	As
Windows	only	allows	one	Bluetooth	stack	to	be	installed	on	the	system,
this	means	that	a	currently	installed	non-Microsoft	Bluetooth	stack	needs
to	be	deinstalled	first.	This	can	be	done	by	removing	a	currently	inserted
Bluetooth	stick,	and	deinstallating	the	non-microsoft	Bluetooth	driver
(such	as	the	Toshiba	or	Widdcom	stack).	Then	re-insert	your	Bluetooth
stick	and	install	the	Microsoft	Bluetooth	stack.	

For	internal	Bluetooth	devices,	remove	the	device	using	the	Windows
Device	Manager	and	deinstall	the	Bluetooth	stack.	However,	we	have	not
tested	it	,	and	can	not	garantee	that	is	will	work	properly.	If	your	internal
Bluetooth	devices	refuse	to	work	with	the	Microsoft	Bluetooth	stack,	use
the	Device	Manager	to	disable	the	device,	and	use	the	TMSi	supplied
Bluetooth	device.

Compilation
First	install	the	TMSi	SDK	on	your	PC	using	the	CD	delivered	with	you
frontend.	Please	follow	the	instructions	in	the	installation	manual
carefully.

After	installation,	the	TMSiSDK.dll	is	located	in	the	C:/Windows/system32
directory.	The	TMSi	SDK	also	includes	the	TMSiSDK.h	include	file,	which
contains	definitions	of	all	structures	and	prototypes	of	all	functions.		This
file	is	not	installed,	but	must	be	copied	from	cd	to	the	directory	in	which
you	have	your	development	files.

The	TMSi	SDK	files	are	created	using	Visual	Studio	2010	on	a	Windows
7	64-bit	platform,	and	are	compiled	for	Windows	7	and	8.1.

In	order	to	test	if	you	can	compile,	link,	and	run	the	SDK,	first	use	the
example	code	on	the	CD	to	see	if	you	can	communicate	with	the
frontend.	Because	the	example	code	has	been	tested	thoroughly,	it	is
likely	that	any	error	that	occurs	during	compilation,	linking	and	running	is
due	to	a	misconfiguration	in	your	development	environment.

WARNING:	If	you	run	the	ExampleCode.exe	without	Visual	Studio	2010
installed,	loading	the	TMSiSDK.dll	will	fail.	In	that	case,	install
vcredist_vs2010_x86.exe	from	the	ExampleCode	directory.

If	the	test	with	the	example	code	has	been	successful,	you	can	start	with
writing	code	for	this	version	of	the	SDK.

The	concept	of	the	SDK	is	that	you	start	the	library	with	the	desired
communication	method	(WLAN,	Bluetooth,	USB),	perform	the	desired
actions	(acquiring	samples,	reading	samples	from	memory	card)	and
close	the	library.		For	each	desired	communication	interface	you	need	to
start	the	library,	but	it	is	possible	to	start	several	libraries	parallel	to	each
other,	with	each	library	using	a	different	communication	interface.	In	order
to	select	a	device,	call	GetDeviceList()	to	get	a	list	of	available	devices.

The	error	handling	of	the	library	is	designed	to	be	as	uniform	as	possible.
For	each	function	that	returns	a	Boolean	FALSE,	you	can	call	the
GetErrorCode()	function	to	retrieve	the	specific	error	code	for	that
function.	

The	order	in	which	you	need	to	call	functions	from	the	SDK,	and	the
naming	of	those	functions	is	different	from	the	function	names	of
PortiSerial.dll.

Porting
The	PortiSerial.dll	and	PortiSerialSDK.dll	are	written	in	C++	with	a	COM
interface.		The	TMSiSDK.dll	is	written	in	C	code,	and	does	not	have	a
COM	interface.	Also,	it	does	not	need	to	be	registered	using	regsvr32.
The	PortiSerial.dll	used	the	Bluetooth	stack	from	the	driver	CD	of	the
Bluetooth	dongle	supplied	by	TMSi.	The	TMSiSDK.dll	uses	the	Microsoft
Bluetooth	stack	ONLY.	If	you	do	not	use	the	Microsoft	Bluetooth	stack,	it
is	not	possible	to	detect	TMSi	Bluetooth	frontends,	and	the	function	will
fail.

The	functions	put_ComPort()	and	get_Comport()	are	not	needed
anymore.	The	functions	GetDeviceList()	and	Open()	are	used	to	find	a
Bluetooth	frontend,	Close()	is	used	to	close	a	Bluetooth	frontend.
InitilizeSerialPortAndFrontend()	can	be	replaced	by	Open()	and
SetSignalBuffer().
get_Caption()	can	be	replaced	by	GetSignalFormat().
put_Caption()	has	no	equivalent	function.
StartAcq()	can	be	replaced	by	Start().	The	sample	rate	must	be	set	in
SetSignalBuffer()	before	calling	Start().
StopAcq()	can	be	replaced	by	Stop().
GetSampleRecordAsVariant()	can	be	replaced	by	GetSamples().
GetStationairSampleRecords()	has	no	equivalent	function.
KeepSerialPortInUse()	has	no	equivalent	function,	as	the	TMSiSDK.dll
performs	this	function	itself.
ReleaseSerialPort()	is	replaced	by	Close().
TestBlock()	has	no	equivalent	function.
The	functions	GetFrontendNrOfChannels(),
get_FrontendNrOfChannels(),	get_FrontendSerialNumber(),
get_FrontendId(),	get_FrontendHardwareVersion(),
get_FrontendSoftwareVersion(),	get_FrontendCommandBufferSize(),
get_FrontendSendBufferSize()	are	replaced	by	GetFrontEndInfo().	
get_SampleRate()	has	no	equivalent	function.
put_SampleRate()	has	no	equivalent	function.
GetRawData()	has	no	equivalent	function.
ResetRawData()	has	no	equivalent	function.

Refer	the	functions	part	of	the	SDK	documentation	for	a	full	description	of
the	functions.

Installation
During	installation	on	a	32	bit	platform,	the	TMSiSDK.dll	is	installed	in	the
%windir%\System32	directory.

During	installation	on	a	64	bit	platform,	the	64	bit	TMSiSDK.dll	is	installed
in	the	%windir%\System32	directory	and	the	32	bit	TMSiSDK32bit.dll	is
installed	in	the	%windir%\SysWOW64	directory.

See	http://msdn.microsoft.com/en-
us/library/aa384249%28v=VS.85%29.aspx	for	more	information	on	how
Windows	handles	32	bit	applications	and	DLLs	on	64	bit	platforms.

Because	the	Microsoft	installer	enforces	unique	names	for	all	files,	it	is
not	possible	to	use	the	TMsiSDK.dll	name	in	both	directories.	

	
TMS	International	BV

	

Programming	for	the	Synfi
The	Synfi	is	a	device	which	synchronizes	sample	data	from	two	identical
Signal	Acquisition	Devices,	which	are	connected	to	the	SynFi	using	fiber
optical	cables.

The	concept	of	the	Synfi	is	that	it	presents	itself	to	the	TMSi	driver	as	any
other	Signal	Acquisition	Device,	but	connect	two	frontends
simultaneously.	Although	we	tried	to	implement	that	concept	to	the	fullest,
some	small	differences	in	behavior	could	not	be	avoided.

Number	of	channels,	channel	names	and	channel	ordering

The	Synfi	combines	(and	synchronizes)	the	outputs	of	two	Signal
Acquisition	Devices.	During	that	process,	there	are	some	rules	regarding
the	order	in	which	the	Signal	Acquisition	Devices	and	the	channel	names
are	displayed.

The	SynFi	has	2	Fiber	ports,	labeled	“1”	and	“2”.		The	channel	names	of
the	Signal	Acquisition	Device	connected	to	port	1	are	prefixed	by	“F1_”.
So	if	the	Signal	Acquisition	Device	has	a	channel	name	“Exg1”,	the	SynFi
shall	list	the	name	of	that	channel	as	“F1_Exg1”.		The	channel	names	of
the	Signal	Acquisition	Device	connected	to	port	2	are	prefixed	by	“F2_”.
So	if	the	Signal	Acquisition	Device	has	a	channel	name	“Exg7”,	the	SynFi
shall	list	the	name	of	that	channel	as	“F2_Exg7”.	The	channel	order	of
the	Synfi	is	that	first	the	channels	of	the	Signal	Acquisition	Device
connected	to	port	1	are	shown,	and	then	the	channels	of	the	Signal
Acquisition	Device	connected	to	port	2	are	shown.	

The	last	channel	of	the	Synfi	carries	the	sawtooth,	with	channel	name
“/|/|/|”.	The	individual	saw	tooth	channels	of	the	connected	Signal
Acquisition	Devices	are	not	displayed.	The	sawtooth	of	the	SynFi	is
created	based	upon	the	sawtooth	of	both	connected	Signal	Acquisition
Devices.	If	one	or	both	of	the	Signal	Acquisition	Devices	misses	a
sample,	the	sawtooth	of	the	Synfi	will	proportionally	show	this.	Example:
The	slave	Signal	Acquisition	Device	misses	one	sample.	Then	the
sawtooth	of	the	SynFi	will	also	miss	a	sample.

Some	Signal	Acquisition	Devices	have	one	channel	in	which	the	digi
input	is	combined	with	the	sawtooth.	The	Synfi	then	removes	the
sawtooth	from	that	channel,	and	keep	the	digi	input.	As	a	result	of	that
action,	and	due	to	technical	reasons,	the	GetFrontEndInfo()	will	return	a
lower	number	of	channels	than	the	GetSignalFormat().	You	should
always	use	the	number	of	channels	from	the	GetSignalFormat().

The	Digi	channels	of	each	Signal	Acquisition	Device	are	the	last	shown
channels	for	that	Signal	Acquisition	Device.

It	is	possible	that	applications	of	OEM's	or	customers	re-order	the
channels	in	a	way	they	find	useful.	This	is	the	responsibility	of	the
application	itself,	and	should	be	described	in	the	manual	of	the
application.

Common	reference	calculation

To	get	the	unmodified	signal	to	the	measuring	application,	the	common
reference	calculation	should	not	performed	by	the	driver	when	connecting
the	Synfi.	The	reason	is	that	the	driver	can	not	make	a	difference
between	the	channel	sets	of	each	frontend	connected	to	the	Synfi.	So
when	using	the	Synfi,	turn	of	the	reference	calculation	by	using
SetRefCalculation.	

This	means	that	the	Common	Reference	Derivation	must	be	done	in	the
application.	To	do	this,	we	assume	that	the	patient	is	connected	as
described	in	the	Synfi	Manual,	i.e.	the	patient	ground	is	connected	to	the
Signal	Acquisition	Devices,	and	the	Common	Reference	electrode	is
connected	to	channel	1	on	both	Signal	Acquisition	Devices.	Channel	1
must	be	an	EXG	channel.

Because	the	signals	coming	from	the	Signal	Acquisition	Device	are
unprocessed,	it	is	possible	that	signals	show	jumps	in	value	when	any
other	channels	are	switched	off	when	signals	on	those	channels	are	out
of	range.	After	the	Common	Reference	Derivation	is	done,	these	jumps
are	removed.

For	each	received	sample,		for	the	Signal	Acquisition	Device	connected

to	port	Fiber1,	we	subtract	the	value	of	channel	1	(channel	F1_EXG1)
from	all	other	EXG	channels.	Then	for	the	Signal	Acquisition	Device
connected	to	port	Fiber2,	we	subtract	the	value	of	channel	1	(channel
F2_EXG1)	from	all	other	EXG	channels.	

After	the	Common	Reference	Derivation	is	done,	the	resulting	values	for
all	channels	can	be	used	for	any	kind	of	mathematical	operation.

To	find	out	if	a	Synfi	is	connected,	check	the	serial	number	in	the
FrontEndInfo	structure.	Each	TMSi	frontend	has	a	10	digit	serial	number,
starting	with	a	zero.	The	first	4	digits	of	the	serial	number	of	a	Synfi	are
0393.	Because	the	serial	number	in	the	FrontEndInfo	structure	is	an
integer,	the	leading	zero	is	not	shown.

Impedance	measurement

The	impedance	measurement	is	done	in	two	steps,	assuming	both	Signal
Acquisition	Devices	support	impedance	measurement.	Check	the
manuals	of	your	Signal	Acquisition	Devices	to	see	if	they	do.

During	impedance	measurement	only	one	Signal	Acquisition	Devices	is
in	impedance	mode,	and	the	other	Signal	Acquisition	Device	does	not	do
anything.	This	is	for	reasons	of	patient	safety.	

Keep	in	mind	that	during	impedance	mode,	the	number	of	channels
produced	by	the	Synfi	is	still	the	combined	number	of	channels	of	both
frontends.	The	sample	values	of	the	channels	of	the	frontend	that	is	not
in	impedance	mode	are	set	to	zero.

The	first	time	an	impedance	measurement	is	done	using
SetMeasuringMode	with	MEASURE_MODE_IMPEDANCE	,	the	Signal
Acquisition	Device	connected	to	port	Fiber_1	is	set	in	impedance	mode,
as	can	be	seen	by	the	switching	on	of	the	amber-colored	LED’s	on	the
front.	The	impedance	measurement	is	stopped	by	using
SetMeasuringMode	with	MEASURE_MODE_NORMAL,	then	the
impedance	mode	of	the	Signal	Acquisition	Device	connected	to	port
Fiber_1	is	turned	off.

The	second	time	a	impedance	measurement	is	done	(using
SetMeasuringMode	with	MEASURE_MODE_IMPEDANCE),	the
impedance	mode	of	the	the	Signal	Acquisition	Device	connected	to	port
Fiber_2	is	set	in	impedance	mode,	as	can	be	seen	by	the	switching	on	of
the	amber-colored	LED’s	on	the	front	plate.	The	impedance
measurement	is	ended	by	using	SetMeasuringMode	with
MEASURE_MODE_NORMAL,	then	the	impedance	mode	of	the	Signal
Acquisition	Device	connected	to	port	Fiber_2	is	turned	off.

The	third	time	a	impedance	measurement	is	done,	the	Signal	Acquisition
Device		connected		to	port	Fiber_1	is	set	in	impedance	mode	again,	and
so	on.	
		

Set/Get	the	RTC	clock

It	is	not	possible	to	read	out	the	RTC	clock	or	set	the	RTC	clock	of		a
single	or	both	Signal	Acquisition	Devices	using	the	Synfi.	

	

Next:	Legal	Information

	
TMS	International	BV

	

Start	measuring
The	data	acquisition	device	supplies	its	data	in	a	constant	stream	of	data.
For	each	sample,	the	driver	generates	a	conversion	result	for	each
channel.	Because	the	user	mode	application	runs	in	a	multitasking
environment,	processing	time	for	each	sample	can	not	be	guaranteed.
This	is	why	samples	need	to	be	buffered.	Before	a	measurement	is
started,	the	size	of	this	buffer	needs	to	be	set.	We	also	need	to	set	the
required	sample	rate	of	the	measurement.	Both	of	these	settings	are
done	with	the	function	SetSignalBuffer.	It	is	not	possible	to	set	or	select
individual	channels	of	the	frontend.

After	the	SetSignalBuffer	function	completes	successfully,	Start	can	be
called.	This	will	start	the	generation	of	samples.	All	samples	for	all
channels	of	a	device	are	stored	in	the	allocated	signal	buffer.	It	is	now	is
the	task	of	the	application	to	read	these	samples	from	the	buffer	as	they
become	available.	If	the	application	cannot	keep	up	with	generated
samples	the	buffer	will	overrun	and	data	is	lost.	The	application	can	call
GetBufferInfo	to	get	information	about	the	status	of	the	signal	buffer.

Reading	the	samples	from	the	signal	buffer	is	done	by	calling
GetSamples.	The	samples	read	from	the	buffer	are	automatically
removed	from	it.	The	format	of	the	sample	data	depends	on	the	frontend
that	is	used.	Application	needs	the	information	returned	by
GetSignalFormat	to	interpret	this	sample	data.	

	

	

Also	see

Start,	Stop,	SetSignalBuffer,	GetBufferInfo,	GetSamples,
GetSignalFormat

	

	
TMS	International	BV

Legal	Information
Information	in	this	document	is	subject	to	change	without	notice.	The
example	companies,	organizations,	products,	people	and	events
depicted	herein	are	fictitious.	No	association	with	any	real	company,
organization,	product,	person	or	event	is	intended	or	should	be	inferred.
Complying	with	all	applicable	copyright	laws	is	the	responsibility	of	the
user.	Without	limiting	the	rights	under	copyright,	no	part	of	this	document
may	be	reproduced,	stored	in	or	introduced	into	a	retrieval	system,	or
transmitted	in	any	form	or	by	any	means	(electronic,	mechanical,
photocopying,	recording,	or	otherwise),	or	for	any	purpose,	without	the
express	written	permission	of	TMS	International	BV.

TMS	International	BV	may	have	patents,	patent	applications,	trademarks,
copyrights,	or	other	intellectual	property	rights	covering	subject	matter	in
this	document.	Except	as	expressly	provided	in	any	written	license
agreement	from	TMSi,	the	furnishing	of	this	document	does	not	give	you
any	license	to	these	patents,	trademarks,	copyrights,	or	other	intellectual
property.	

©	2001-2012	TMS	International	BV.	All	rights	reserved

	
TMS	International	BV

	

Functions
The	following	functions	are	exported	by	TMSiSDK.DLL.		To	get	channel
information	and	sample	data	from	the	frontend,	it	is	necessary	to	call
several	functions	in	a	specific	order:

1.	 LibraryInit()	to	initialize	the	SDK	library	for	the	chosen
communication	interface

2.	 GetDeviceList()	to	get	a	list	of	connected	frontends

3.	 Open()	to	open	the	communication	path	with	the	chosen
frontend

4.	 FreeDeviceList()		to	free	the	device	list	given	by
GetDeviceList

5.	 SetRtcTime()	(optional):	if	the	frontend	has	an	internal	clock
and	you	want	to	set	this	clock

6.	 GetSignalFormat()	to	get	channel	information

7.	 SetSignalBuffer()	to	get	the	maximum	sample	rate	and	the
recommended	buffer	size	for	the	maximum	sample	rate

8.	 SetSignalBuffer()	to	set	the	desired	sample	rate	and	the
desired	buffer	size	for	that	sample	rate

9.	 Start()	to	start	sampling

10.	 GetSamples()	to	get	the	samples.	Call	GetSamples
repeatedly	until	Stop	is	called.

11.	 Stop()	to	stop	sampling.	Optional	you	can	start	again	at	9)	or
8)

12.	 Close()	to	stop	the	communication	path	with	the	chosen
frontend.	Optional	you	can	start	again	at	3)	or	2)

13.	 LibraryExit()	to	exit	the	library.

Impedance	is	not	available	on	all	frontends,	so	check	the	manual	of	the
frontend.

	

	
TMS	International	BV

Close
BOOL	Close(

		IN	HANDLE	Handle

);

Parameters

Handle
				The	handle	of	the	library	

Return	Value

If	successful	this	function	returns	TRUE.	If	the	function	returns	FALSE,
use	GetErrorCode	to	get	the	error	code.

Comments

This	function	closes	the	connection	to	the	frontend.	To	reconnect,	call
Open.

Also	see

Open

	
TMS	International	BV

CloseCardFile
BOOL	CloseCardFile(

		IN	HANDLE	Handle

);

Parameters

Handle
				The	handle	of	the	library	

Return	Value

If	successful	this	function	returns	TRUE.	If	the	function	return	FALSE,	use
GetErrorCode	to	get	the	error	code.

Comments

This	function	closes	the	connection	to	the	file	on	the	card.	To	reconnect,
call	OpenCardFile.

This	function	is	for	Mobita	only.	

Also	see

OpenCardFile

	
TMS	International	BV

ConvertSignalFormat
PSIGNAL_FORMAT	ConvertSignalFormat	(

	 IN	HANDLE	Handle,

	 IN	PSIGNAL_FORMAT	pSignalFormat,

	 IN	unsigned	int	ChannelNumber,

	 IN	OUT	int	*Size,

	 IN	OUT	int	*Format,

	 IN	OUT	int	*Type,

	 IN	OUT	int	*SubType,	

	 IN	OUT	float	*UnitGain,	

	 IN	OUT	float	*UnitOffSet,

	 IN	OUT	int	*UnitId,	

	 IN	OUT	int	*UnitExponent,

	 IN	OUT	char	Name[SIGNAL_NAME]);

Parameters

Handle
				Handle	of	the	library.

pSignalFormat
				pointer	to	an	existing	array	of	SIGNAL_FORMAT	structures,	retrieved
by	a	previous	call	to	GetSignalFormat.

	ChannelNumber
				Number	of	the	channel	you	want	the	information	from.

Other	parameters
				See	SIGNAL_FORMAT	for	a	description	of	the	parameters

Return	Value

If	successful	this	function	returns	TRUE.	If	unsuccessful	(i.e	wrong
Handle,	null	pSignalFormat	pointer)	this	function	returns	FALSE.

Comments

This	function	was	created	to	help	LabView	understand	the	SignalFormat
structure.		See	SIGNAL_FORMAT	for	a	description	of	the	returned
structures.	

Also	see

SIGNAL_FORMAT

	

	
TMS	International	BV

Free
BOOL	Free(

		IN	VOID	*Memory

);

Parameters

Memory
				Pointer	to	the	memory	block	that	has	to	be	released.	

Return	Value

If	successful	this	function	returns	TRUE.	If	the	release	of	the	memory
block	failed	for	any	reason	it	will	return	FALSE.

Comments

Use	this	function	to	release	any	memory	structures	allocated	by	the
TMSiSDK	DLL	only.	
After	this	function	is	called,	the	pointer	to	the	memory	should	NOT	be
used	anymore.

Also	See

GetSignalFormat

	
TMS	International	BV

FreeDeviceList
void	APIENTRY	FreeDeviceList(

HANDLE	Handle,	

int	NrOfFrontEnds,	

char**	DeviceList)

Parameters

Handle
				Handle	of	the	library
NrOfFrontEnds
				Number	of	found	frontends
DeviceList
				Array	of	found	frontends

				

Return	Value

None.

Comments

The	given	char	array	should	not	be	used	after	FreeDeviceList	is	called.

	

Also	see

Start,	SetSignalBuffer

	
TMS	International	BV

GetBufferInfo
BOOLEAN	GetBufferInfo(

		IN	HANDLE	Handle,

		OUT	PULONG	Overflow,	

		OUT	PULONG	PercentFull

);	

Parameters

Handle
				Handle	of	the	library

Overflow
			This	value	will	increment	each	time	the	input	buffer	overruns.	This
happens	if	the	rate	at	which	the	driver	fills	the	buffer	exceeds	the	rate	at
which	it	is	read	by	the	application.	If	a	buffer	overflow	occurs	all	data	in
that	buffer	is	lost.	This	value	is	reset	automatically	at	Start()	and	Stop().

PercentFull
				Can	be	anything	between	0	and	100%.	Used	to	indicate	the	amount	of
samples	available	to	the	application.	If	100%	is	reached	the	Overflow	will
increment	and	the	PercentFull	parameter	will	be	reset	to	0.	In	that	case
one	buffer	of	samples	is	lost.	If	this	percentage	increases	during	a
measurement,	the	application	cannot	keep	up	with	the	data	rate	of	the
drivers.	To	prevent	data	loss	the	application	can	increase	its	thread
priority,	or	use	a	larger	buffer	when	calling	GetSamples.

				

Return	Value

If	successful	this	function	returns	TRUE.	If	the	function	return	FALSE,	use
GetErrorCode	to	get	the	error	code.

Comments

This	function	only	works	after	Start()	is	called	and	before	Stop()	is	called.

	Also	see

SetSignalBuffer,	GetSamples

	
TMS	International	BV

GetCardFileList
TMSiFileInfoType	GetCardFileList	(

	 IN	HANDLE	Handle,

	 IN	OUT	int*	NrOfFiles)

Parameters

Handle
				Handle	of	the	library.

NrOfFiles
				Pointer	to	the	number	of	files	found	on	the	card

			

Return	Value

If	successful	the	pointer	to	the	first	element	in	the	array	is	returned.	If
unsuccessful	this	function	returns	NULL,	in	that	case	use	GetErrorCode
to	get	the	error	code.

Comments

The	internal	card	on	the	device	can	have	multiple		files.	This	function	is
used	to	get	information	about	each	of	these	files.	This	function	returns	a
structure	for	each	file	on	the	card.	This	array	of	structures	is	allocated	by
the	SDK	and	must	be	freed	using	Free().	

This	function	is	for	Mobita	only.

Also	see

OpenCardFile	,	CloseCardFile

	
TMS	International	BV

GetCardFileSamples
LONG	GetCardFileSamples(

		IN	HANDLE	Handle,

		OUT	PULONG	SampleBuffer,	

		IN	ULONG	Size

);	

Parameters

Handle
				Handle	of	the	library

SampleBuffer
			Pointer	to	a	buffer	where	this	function	will	store	the	samples

Size
			Size	of	this	buffer	in	bytes

				

Return	Value

Returns	the	total	number	of	bytes	read	from	the	internal	card.	Returns	0	if
no	new	data	is	available,	and	a	negative	value	(which	is	the	Error	code)	if
an	error	occurred.	

	

Comments

This	function	is	used	to	get	one	or	more	samples	from	the	internal	card.	A
pointer	to	a	buffer	allocated	by	the	application	and	the	size	of	this	buffer
in	bytes	should	be	used	as	input	parameters.	

The	driver	will	fill	this	buffer	with	the	available	samples.	The	number	of
samples	returned	depends	on	the	size	of	the	given	buffer	and	the	amount
of	samples	available.	One	sample	means	one	conversion	result	from
each	channel	of	the	device.

Example:	a	measurement	on	the	device	has	6	input	signals,	while
running	at	a	sample	rate	of	100	Hz.	As	stated	before,	each	signal	needs

4	bytes	for	storing	the	conversion	result.	The	buffer	must	be	at	least	6*4	=
24	bytes	for	one	sample.	When	getting	100	samples,	you	need	a	buffer	of
6*4*100	=	2400	bytes.	

	When	a	channel	is	not	connected	or	out-of-range,	the	returned	value	is
0x80000000.

The	only	allowed	function	after	this	call	is	the	StopCardFile	function.

This	function	is	for	Mobita	only.		

	Also	see

StopCardFile,	GetCardFileSignalFormat

	
TMS	International	BV

GetConnectionProperties
BOOL	GetConnectionPropertie(

	 HANDLE	Handle,	

	 int	*SignalStrength,

	 unsigned	int	*NrOfCRCErrors,	

	 unsigned	int	*NrOfSampleBlocks)	

Parameters

Handle
				Handle	of	the	library
SignalStrength
				For	WLAN	connections	:	the	signal	strength	of	the	connection	to	the
frontend,	between	0	and	100.
				For	USB	connections	:	the	signal	strength	is	not	available	and	the
variable	is	set	to	-1.
				For	Bluetooth	connections	:	the	signal	strength	is	not	available	and	the
variable	is	set	to	-1.

NrOfCrcErrors
				The	number	of	CRC	errors	in	the	received	data	blocks	from	the
Frontend	since	the	last	call	of	Start().
NrOfSampleBlocks
				The	number	received	data	blocks	from	the	Frontend	since	the	last	call
of	Start().

				

Return	Value

If	successful	this	function	returns	TRUE.	If	the	function	return	FALSE,	use
GetErrorCode	to	get	the	error	code.

Comments

The	Open	function	must	have	been	called	before.	

It	is	recommended	to	call	this	function	only	when	the	frontend	is	not
sampling,	i.e.	do	NOT	call	this	function	when	Start()	is	called,	and	Stop()
is	not	called	yet.

The	Start()	function	resets	the	NrOfSampleBlocks	and	NrOfCrcErrors
counters.

Data	blocks	are	send	with	a	Cyclic	Redundancy	Check	(CRC)	to	the	PC.
In	this	way,	it	is	verified	if	the	data	has	been	corrupted	during	the	data
transport	from	the	frontend	to	the	PC.	When	a		CRC	error	is	found,	the
data	block	is	discarded,	and	the	NrOfCRCErrors	counter	is	incremented.

Also	see

Open

	
TMS	International	BV

GetDeviceList
const	char**	APIENTRY	GetDeviceList(

HANDLE	Handle,	

int	*NrOfFrontEnds)	

Parameters

Handle
				Handle	of	the	library
NrOfFrontEnds
				Number	of	found	frontends

				

Return	Value

If	successful	this	function	returns	an	array	of	NrOfFrontEnds	strings	that
contain	connection	identifiers.	If	the	function	return	NULL,	no	frontends
are	found,	and	use	GetErrorCode	to	get	the	error	code.

Comments

The	array	must	be	freed	using	FreeDeviceList.

For	Bluetooth	devices	to	show	up	in	the	list,	they	must	be	paired	before
this	function	is	called.

For	WLAN	devices	to	show	up	in	the	list,	they	must	be	a	point-to-point
connection	configured	before	this	function	is	called.	

For	USB	devices	to	show	up	in	the	list,	they	must	be	connected	before
this	function	is	called.	For	any	connected	USB	device,	the	sampling	is
stopped.

Also	see

Start,	SetSignalBuffer

	
TMS	International	BV

GetErrorCode
int	APIENTRY	GetErrorCode(

IN	HANDLE	Handle

);	

Parameters

Handle
				Handle	of	the	library

				

Return	Value

This	function	returns	the	error	code	of	the	previously	called	function.

Comments

This	function	should	only	be	called	if	the	previously	called	SDK	function
returns	FALSE.	

Use	the	GetErrorCodeMessage	function	to	get	a	text	string	(in	English)
describing	the	error	code.

Error	codes	can	be	negative	or	positive	values.	A	negative	code	means
someting	went	wrong	in	the	SDK.		A	zero	error	code	means	there	is	no
error.	

Error	Codes
The	following	is	a	list	of	TMSi	internal	error	codes	which	are	returned	by
GetErrorCode.
Positive	error	codes	>	255	are	from	the	OS.

Code Message Possible	cause
-1 Undefined	error Unclear

-2
A	NULL	parameter
is	given	to	the	API
where	not	allowed

Programming	error	of	the	calling	application

-3
IO	port	on	which	is
read/write	is	not
initialized

There	is	no	longer	a	connection	to	the
frontend

-4
A	received	data-
block	contains	a
CRC	error

Due	to	transmission	errors	the	data	block
was	not	received	correctly.

-5 Not	enough	data
for	block-type

Due	to	transmission	errors	the	data	block
was	not	received	correctly.

-6 No	data	received
from	frontend

The	frontend	does	not	respond

-7
Buffer	given	in
function	call	is	too
small

Programming	error	of	the	calling	application

-8
Connection	has
been	broken	for
unknown	reasons

For	wireless	connections:	The	device	has
moved	out-of-range.

-9 Unexpected	block-
type	received

Device	is	busy	processing	older	requests	

-10 Invalid	handle
given	to	function

Function	is	called	with	an	invalid
handle/pointer

-11 Allocation	of
memory	failed

Programming	error	of	the	calling	application:
To	much	memory	is	used

Initalization	of Missing	libraries	on	the	OS

-12 (underlying)	library
failed	

-13 No	USB	device
found

Dongle	has	been	removed	by	user,	or
frontend	has	been	switched	off

-14 No	WLAN	device
found

Dongle	has	been	removed	by	user,	or
frontend	has	been	switched	off

-15
Parameter	in	data-
block	Out-Of-
Range

Development	firmware	in	the	device

-16
Function
Parameter1	Out-
Of-Range

The	value	of	the	first	parameter	after	the
handle	is	invalid

-17
Function
Parameter2	Out-
Of-Range

The	value	of	the	second	parameter	after	the
handle	is	invalid

-18
Function
Parameter3	Out-
Of-Range

The	value	of	the	third	parameter	after	the
handle	is	invalid

-19 Bluetooth	Name
Not	Found

Name	of	the	Bluetooth	frontend	is	not	found

-20 Not	Implemented This	function	is	not	implemented
-21 No	WLAN	Dongle No	WLAN	Dongle	on	PC	found
-22 No	Bluetooth

Dongle
No	Bluetooth	Dongle	on	PC	found

-23 Wrong	Order	Of
Calls

The	order	in	which	the	API	functions	are
called	is	wrong

0 No	error,	positive
acknowledge

All	is	OK

1
Unknown	or	not
implemented	block-
type

Function	is	not	supported	by	the	frontend.
Examples	could	be	Get/Set	Clock,	Set
Impedance.

2 CRC	error	in
received	block

3

Error	in	command
data	(can't	do	that
for	this
communication
method)

Application	calls	a	function	which	is	not
supported	on	the	selected	communication
method,	like	calling	a	function	using	a
Bluetooth	connection,	while	the	function	is
only	supported	on	a	USB	connection.

4 Invalid	block	size
(too	large)

17	 No	external	power
supplied

You	try	to	do	something	for	which	the
frontend	needs	external	power,	and	the
power	supply	is	not	connected	or	not	working

18	

Not	possible
because	the
frontend	is
recording

Application	calls	a	function	to	change	some
configuration	settings,	while	the	frontend	is
busy	recording	sample	data	on	(internal)
storage.

19	 Storage	medium	is
busy

Application	calls	a	function	to	do	something
with	the	(internal)	storage,	while	that	storage
is	busy	doing	something

20	 Flash	memory	not
present

Application	calls	a	function	to	change	data	on
flash	memory,	while	the	device	has	no	flash
memory	at	all.

21	

Number	of	words
to	read	from	flash
memory	out	of
range

Application	calls	a	function	to	read	data	on
flash	memory,	but	ask	more	data	than
available

22	 Flash	memory	is
write	protected

Application	calls	a	function	to	write	data	on
flash	memory,	but	the	flash	memory	is	write
protected.

23	
Incorrect	value	for
initial	inflation
pressure

24	
Wrong	size	or
values	in	BP	cycle
list
Selected	sample You	try	to	use	a	sample	rate	which	is	too	low

25	
frequency	out	of
range	for	this
communication
method

for	the	connected	frontend

26	
Wrong	nr	of	user
channels	(<=0,
>maxUSRchan)

Invalid	number	of	channels	(<0		or	more	than
the	frontend	has	available)

27	
Address	flash
memory	out	of
range

Application	calls	a	function	to	read/write	data
on	flash	memory,	but	asks	data	on	a	address
larger	than	the	amount	of	flash	memory
available

28	
Erasing	not
possible	because
battery	low

Application	calls	a	function	to		erase	data	on
(internal)	storage,	but	there	is	no	sufficient
amount	of	power	available	to	perform	the
erase.	Load	the	battery	or	use	an	external
power	supply.

29 Frontend	locked The	frontend	is	locked	and	can	only	be
unlocked	by	the	OEM	application

30 No	valid	data
available

There	is	no	valid	data	available	as	answer	on
the	send	command

31 Requested	sample
frequency	is
different	from
configured
ambulant	recording
frequency

The	requested	sample	frequency	for	the
selected	communication	method	is	different
from	configured	ambulant	recording
frequency	on	the	frontend

Also	see

GetErrorCodeMessage

	
TMS	International	BV

GetErrorCodeMessage
const	char*	APIENTRY	GetErrorCodeMessage(

IN	void*	Handle,	

IN	int	ErrorCode)

);	

Parameters

Handle
				Handle	of	the	library
ErrorCode
				Error	code	from	which	the	message	is	wanted

				

Return	Value

This	function	returns	the	error	message	(in	English)	for	the	given	error
code.

Comments

This	function	should	only	be	called	if	you	want	the	error	message	string
for	the	error	code	given	by	the	GetErrorCode	function.	The	strings	given
by	GetErrorCodeMessage	should	not	be	displayed	in	any	application.
The	returned	char	pointer	should	not	be	freed.

	

Also	see

GetErrorCode

	
TMS	International	BV

GetExtFrontEndInfo
BOOL	GetExtFrontEndInfo(

	 HANDLE	Handle,	

	 IN	OUT	TMSiExtFrontendInfoType	*ExtFrontEndInfo,

	 TMSiBatReportType	*BatteryReport,	

	 TMSiStorageReportType	*StorageReport,

	 TMSiDeviceReportType	*DeviceReport	

)	

Parameters

Handle
				Handle	of	the	library
ExtFrontEndInfo
				Extended	information	of	the	frontend
BatteryReport
				Information	on	the	battery	capacity	and	current	charge
StorageReport
				Information	of	the	memory	card	capacity	and	current	usage
DeviceReport
				Information	of	the	amount	of	usage	of	the	FrontEnd

				

Return	Value

If	successful	this	function	returns	TRUE.	If	the	function	return	FALSE,	use
GetErrorCode	to	get	the	error	code.

Comments

The	Open	function	must	have	been	called	before.	For	the	application,	the
fields	NrOfChannels,	Serial,	NrExg,	NrAux	from	the	FRONTENDINFO
are	most	useful.

This	function	is	for	Mobita	only.

Also	see

Open

	
TMS	International	BV

GetFrontEndInfo
BOOL	GetFrontEndInfo(

	 HANDLE	Handle,	

	 FRONTENDINFO	*FrontEndInfo)	

Parameters

Handle
				Handle	of	the	library
FrontEndInfo
				Information	of	the	FrontEnd

				

Return	Value

If	successful	this	function	returns	TRUE.	If	the	function	returns	FALSE,
use	GetErrorCode	to	get	the	error	code.

Comments

The	Open	function	must	have	been	called	before.	For	the	application,	the
fields	NrOfChannels,	Serial,	NrExg,	NrAux	from	the	FRONTENDINFO
are	most	useful.

	

Also	see

Open

	
TMS	International	BV

GetRecordingConfiguration
BOOLEAN	GetRecordingConfiguration(
	 IN	HANDLE	Handle,

	 IN	OUT	TMSiRecordingConfigType	*RecordingConfig,

	 IN	OUT	unsigned	int	*ChannelConfig,	

	 IN	OUT	unsigned	int	*NrOfChannels)

);	

Parameters

Handle
				Handle	of	the	library

RecordingConfig
			Pointer	to	a	recording	configuration	for	the	device

ChannelConfig
			Reserved,	use	NULL	pointer.
NrOfChannels
			Reserved,	use	0.

				

Return	Value

If	successful	this	function	returns	TRUE.	If	the	function	returns	FALSE,
use	GetErrorCode	to	get	the	error	code.

	

Comments

This	function	is	used	to	get	the	current	measurement	recording	schedule
and	settings	of	the	frontend.	

The	Open	function	must	have	been	successfully	called	before	using	this
function.

This	function	is	for	Mobita	only.

	Also	see

Open,	SetRecordingConfiguration

	
TMS	International	BV

GetSamples
LONG	GetSamples(

		IN	HANDLE	Handle,

		OUT	PULONG	SampleBuffer,	

		IN	ULONG	Size

);	

Parameters

Handle
				Handle	of	the	library

SampleBuffer
			Pointer	to	a	user-allocated	buffer	where	this	function	will	store	the
samples

Size
			Size	of	this	buffer	in	bytes

				

Return	Value

Returns	the	total	number	of	bytes	put	into	the	user-allocated	buffer.
Return	0	if	no	new	data	is	available.	Returns	a	negative	value	(which	is
the	error	code)	if	an	error	occurred.	

	

Comments

This	function	is	used	to	write	one	or	more	samples	to	the	user-allocated
buffer.	A	pointer	to	a	buffer	allocated	by	the	application	and	the	size	of
this	buffer	in	bytes	are	used	as	input	parameters.	The	size	of	the	input
buffer	in	samples	should	be	larger	or	the	same	as	the	size	of	the	internal
buffer	as	previously	set	using	the	SetSignalBuffer	function.

The	driver	will	fill	the	user-allocated	buffer	with	the	available	samples.
The	number	of	samples	returned	depends	on	the	size	of	this	user-
allocated	buffer	and	the	amount	of	samples	available.	One	sample
means	one	conversion	result	from	each	channel	of	the	device.	All

samples	read	by	the	application	are	no	longer	available	from	the	driver.
Use	the	function	GetSignalFormat	to	interpret	the	sample	data	returned
by	the	Getsample	function.	The	values	are	always	stored	in	the	buffer	as
32-bit	numbers,	i.e.	they	need	4	bytes	each,	regardless	of	the	channel
size	as	given	by	the	GetSignalformat.

Example:	a	device	has	6	input	signals,	while	running	at	a	sample	rate	of
100	Hz.	As	stated	before,	each	signal	needs	4	bytes	for	storing	the
conversion	result.	The	buffer	must	be	at	least	6*4	=	24	bytes	for	one
sample.	When	acquiring	100	samples,	you	need	a	buffer	of	6*4*100	=
2400	bytes.	

When	a	channel	of	type	EXG,	BIP,	AUX	is	not	connected	or	out-of-range,
the	value	returned	is	0x80000000.

The	only	allowed	function	after	this	call	is	the	Stop()	function.	

	

Warning

When	using	Bluetooth	or	WLAN,	do	NOT	use	the	Windows	OS	functions
to	scan	for	other	Bluetooth	or	WLAN	frontends.	The	scan	will	access	the
Bluetooth	or	WLAN	dongle,		and	disturb	the	received	signal	from	the
sampling	frontend,	with	loss	of	samples	as	a	result.	

The	GetSamples	function	should	be	called	at	least	16	times	per	second.
If	you	prefer	to	call	it	less	often,	you	have	to	make	sure	that	your	defined
buffer	is	large	enough	to	store	all	incoming	samples.

When	GetSamples()	returns	a	negative	value,	the	application	should	try
to	stop	the	frontend	by	calling	Stop()	and	after	that	calling	Close().	Then
the	application	should	try	to	reconnect	using	Open().

	Also	see

GetBufferInfo,	GetSignalFormat

	
TMS	International	BV

GetSignalFormat
PSIGNAL_FORMAT	GetSignalFormat	(

	 IN	HANDLE	Handle,

	 IN	OUT	char*	FrontEndName)

Parameters

Handle
				Handle	of	the	library

FrontEndName
				Pointer	to	char	array	of	length	MAX_FRONTENDNAME_LENGTH,	as
declared	in	TMSiSDK.h,	or	a	NULL	pointer.	When	the	FrontEndName	is
given,	it	is	filled	by	the	function	with	the	FrontEndName	of	the	connected
FrontEnd.

			

Return	Value

If	successful	returns	the	pointer	to	the	first	element	in	the	array.	If
unsuccessful	this	function	returns	NULL,	in	that	case	use	GetErrorCode
to	get	the	error	code.

Comments

One	device	can	have	multiple	channels.	This	function	is	used	to	get
information	about	each	of	these	channels.	This	function	returns	a
structure	for	each	channel	in	the	system.	See	SIGNAL_FORMAT	for	a
description	of	the	returned	structures.	

Also	see

SIGNAL_FORMAT

	

	
TMS	International	BV

LibraryExit
int	APIENTRY	LibraryExit(

	 HANDLE	Handle)

Parameters

Handle

				Handle	of	the	library

Return	Value

The	return	value	is	an	error	code.	If	successful	this	function	returns	zero,
else	a	non-zero	value.	If	the	function	returns	a	non-zero	value,	you	can
NOT	use	GetErrorCodeMessage	to	get	the	string	explaining	the	error
code,	because	the	library	is	already	shut	down.

Comments

The	handle	(and	the	library)	can	no	longer	be	used	after	using	this
function.	The	function	Close	must	be	called	before	calling	this	function.
To	use	the	library	again,	call	LibraryInit	to	get	a	new	handle.

Also	see

Close,	LibraryInit

	
TMS	International	BV

LibraryInit
HANDLE	APIENTRY	LibraryInit(

TMSiConnectionType	GivenConnectionType,	

int	*ErrorCode)	

Parameters

GivenConnectionType

				Chosen	connection	type	(WLAN,	USB,	Bluetooth)

ErrorCode

				When	an	error	occurs,	this	code	contains	the	cause	of	the	error.

Return	Value

If	successful	this	function	returns	the	handle	to	the	library.	If	unsuccessful
returns	INVALID_HANDLE_VALUE,	and	the	ErrorCode	parameter
contains	the	error	code.

Comments

This	is	the	first	function	to	call	after	the	TMSiSDK.dll	is	loaded	and	all
function	pointers	are	loaded.	If	the	returned	handle	is	no	longer	needed	it
can	be	released	using	the	LibraryExit	function.	

Also	see

Close,	LibraryExit

	
TMS	International	BV

Open
BOOLEAN	Open(

		IN	HANDLE	Handle	

		IN	const	char*	DeviceLocator	

);	

Parameters

Handle

				Handle	of	the	library

DeviceLocator

				Name	of	the	device	you	want	to	open,	as	given	by	GetDeviceList

Return	Value

If	successful	this	function	returns	TRUE.	If	the	function	returns	FALSE,
use	GetErrorCode	to	get	the	error	code.

Comments

Open	tries	to	interrogate	the	device	given	by	the	DeviceLocator.	The
DeviceLocator	string	must	be	a	pointer	to	a	string	previously	given	by	the
GetDeviceList	function.

Also	see

Close

	
TMS	International	BV

OpenCardFile
BOOLEAN	OpenCardFile	(

	 IN	HANDLE	Handle,

	 IN	short	FileId,

	 OUT	TMSiFileHeaderType	*FileHeader)

Parameters

Handle
				Handle	of	the	library.

FileId
				The	file	identifier	as	found	in	the	TMSiFileInfoType	structure	given	by
GetCardFileList

FileHeader

				The	header	of	the	selected	file.

Return	Value

If	successful	this	function	returns	TRUE.	If	the	function	returns	FALSE,
use	GetErrorCode	to	get	the	error	code.

Comments

The	header	of	the	file	contains	information	about	the	measurement,	such
as	start	and	stop	time,	serial	number	of	the	device,	sample	rate,	and
patient	identifier.

This	function	is	for	Mobita	only.

Also	see

GetCardFileList,					TMSiFileHeaderType

	

	
TMS	International	BV

SetMeasuringMode
BOOLEAN	APIENTRY	SetMeasuringMode(

IN	HANDLE	Handle,

IN	ULONG	*Mode,

IN	int	Value)

Members

Handle	
				Handle	of	the	library

Mode
				The	mode	in	which	the	frontend	should	be	set

Value
				The	value	which	is	used	by	the	chosen	mode
			

Return	Value

If	successful	this	function	returns	TRUE,	else	FALSE.	If	the	function
returns	FALSE,	use	GetErrorCode	to	get	the	error	code.	
If	the	returned	error	code	is	1,	the	frontend	can	not	be	set		in	the
requested	mode.

Comments

Most	Refa	systems	support	impedance	measurement.	During	impedance
measurement	the	device	measures	the	electrode	impedance	of	each
input	channel.	This	feature	is	added	to	switch	between	these	modes	of
operation.

Mode 	Description	
MEASURE_MODE_NORMAL Normal	mode
MEASURE_MODE_IMPEDANCE_EX Impedance	mode

Impedance	measurement	

To	put	the	device	in	impedance	mode,	set	the	Mode	parameter	to
MEASURE_MODE_IMPEDANCE_EX.	In	this	case	the	Value	parameter
is	used	to	select	at	which	level	to	LED	on	the	device	should	indicate	that
the	electrode	impedance	is	too	high.	The	Value	parameter	can	be	any	of
the	following	values:	

Value 	Description	
IC_OHM_002 Impedance	limit	at	2	kOhm	
IC_OHM_005 Impedance	limit	at	5	kOhm	
IC_OHM_010 Impedance	limit	at	10	kOhm	
IC_OHM_020	 Impedance	limit	at	20	kOhm	
IC_OHM_050 Impedance	limit	at	50	kOhm	
IC_OHM_100 Impedance	limit	at	100	kOhm	
IC_OHM_200 Impedance	limit	at	200	kOhm	

Before	calling	this	function,	stop	the	frontend	by	calling	Stop().

Check	the	user	manual	of	your	frontend	to	see	if	your	frontend	supports
impedance	modes.

To	set	the	frontend	back	to	normal	mode	(=sampling),	use	the
MEASURE_MODE_NORMAL	value	for	the	Mode	parameter	and	0	for
the	Value	parameter.

Applies	to	

All	frontends	that	support	impedance	measurements.	Refer	to	the	manual
of	your	frontend.

Also	see

Open

			

	
TMS	International	BV

SetOEMData
BOOLEAN	APIENTRY	SetOEMData(IN	HANDLE	Handle,

	 unsigned	char	*OEMData,

	 unsigned	int	OEMDataLengthInBytes)

);	

Parameters

Handle
				Handle	of		the	library
OEMData
				Array	in	which	the	data	from	the	OEM	storage	is	stored
LengthInBytes
				Length	of	the	array	in	bytes

Return	Value

If	successful	this	function	returns	TRUE,	else	FALSE.	If	the	function
returns	FALSE,	use	GetErrorCode	to	get	the	error	code.

Comments

This	function	is	not	supported	by	all	frontends.	The	Open()	function	and
GetOEMSize()	function	must	have	been	called	before.	This	function	will
send	the	data	to	the	OEM	storage	on	the	frontend.	The	length	of	the
buffer	must	be	equal	or	smaller	than	the	value	returned	by
GetOEMSize().	

Also	see

GetOEMData

	

	
TMS	International	BV

SetRTCTime
BOOLEAN	APIENTRY	SetRtcTime(

IN	HANDLE	Handle,

IN	SYSTEMTIME	*InTime)

Members

Handle	
				Handle	of	the	library

InTime
				Win32	defined	data	structure	for	holding	time	and	date	information	
			

Return	Value

If	successful	this	function	returns	TRUE,	else	FALSE.	If	the	functions
return	FALSE,	use	GetErrorCode	to	get	the	error	code.	

Comments

RTC	stands	for	Real	Time	Clock.	Most	portable	devices	made	by	TMSi
have	an	internal	RTC.	In	some	cases,	the	value	of	the	RTC	can	be
displayed	on	the	device's	display.	It	is	used	to	keep	track	of	the	start	time
of	locally	stored	measurements.	In	some	cases	it	can	be	used	to
automatically	start	a	measurement	at	a	programmable	date	and	time
(ambulatory	recording).	This	function	is	used	to	write	clock	information	to
the	frontend.

The	example	below	demonstrates	how	this	is	done:

#include	<windows.h>

SYSTEMTIME	Time	=	{0};	
GetSystemTime(&Time);	//	For	time	in	UTC
GetLocalTime(&Time);	//	For	time	in	local	timezone

Status	=	SetRtcTime(Handle,	&Time);	

Keep	in	mind	that	for	frontends	that	do	not	have	an	internal	clock,	the

function	returns	FALSE,	and	the	error	code	returned	by	GetErrorCode	will
be	non-zero.

Applies	to	

All	frontends	that	have	an	RTC.	Refer	to	the	manual	of	your	frontend.

Also	see

Open

	

	
TMS	International	BV

SetRefCalculation
BOOLEAN	SetRefCalculation(

		IN	HANDLE	Handle,

		IN	int	OnOrOff

);	

Parameters

Handle
				Handle	of	the	library

OnOrOff
			If	the	average	reference	calculation	is	turned	on	(value	!=	0),	or	off
(value	==	0)

				

Return	Value

If	successful	this	function	returns	TRUE,	else	FALSE.	If	the	function
returns	FALSE,	use	GetErrorCode	to	get	the	error	code.
	

Comments

This	function	is	used	to	turn	the	average	reference	calculation	in	the
driver	ON	or	OFF.	
When	using	Synfi,	the	average	reference	calculation	in	the	driver	should
always	be	OFF.	Refer	to	the	User	Manual	of	the	Synfi	for	more
information	on	this.	

Warning

By	default,	it	is	OFF	for	all	devices.	This	means	that	all	EXG	channels
carry	raw	signals,	i.e.	without	the	common	average	removed	from	the
signals,	and	this	will	result	in	showing	50/60	Hz	interference	in	the
signals.

	Also	see

Start

	
TMS	International	BV

SetSignalBuffer
BOOLEAN	SetSignalBuffer(

		IN	HANDLE	Handle,

		IN	OUT	PULONG	SampleRate,	

		IN	OUT	PULONG	BufferSize

);	

Parameters

Handle
				Handle	of	the	library

SampleRate
				The	SampleRate	argument	is	a	pointer	to	an	unsigned	long.	Before
calling	this	function	this	location	must	be	filled	with	required	sample	rate.
If	the	hardware	can	not	match	the	required	sample	rate,	it	will	be	set	to
the	first	available	sample	rate	below	the	requested	sample	rate.	The
location	used	for	the	input	sample	rate	is	then	overwritten	by	this	function
with	the	sample	rate	that	is	actually	set.	The	sample	rate	used	in	this
function	is	defined	in	milliHertz.	So	to	set	a	sample	rate	of	1Hz	use	1000
as	input	value.

BufferSize
		This	parameter	is	used	to	set	the	buffer	size	which	the	application	is
going	to	use	in	the	GetSamples	function.	This	size	is	not	defined	in	bytes
but	as	the	amount	of	samples	that	can	be	stored.	A	sample	in	this	case	is
one	conversion	result	for	all	input	channels.	If	this	value	is	set	to	100	and
the	sample	rate	of	the	device	is	100Hz,	1	second	of	conversion	results
can	be	stored.	

				

Return	Value

If	successful	this	function	returns	TRUE,	else	FALSE.	If	the	function
return	FALSE,	use	GetErrorCode	to	get	the	error	code.

Comments

To	find	out	what	the	maximal	sample	rate	and	maximal	buffer	size	is,	call

SetSignalBuffer	with	value	0xFFFFFFFF	for	both	parameters.	After
return,	the	parameters	will	contain	the	maximal	sample	rate	of	the
connected	device.

Before	starting	a	measurement	(by	calling	Start)	call	this	function	to	set
the	sample	rate	and	buffer	size.

The	minimum	required	buffer	size	is	at	least	16	samples,	and	can	be
higher	based	on	the	given	sample	rate.	The	GetSamples()	function
should	be	called	at	least	16	times	per	second.	

	

Also	see

Start

	
TMS	International	BV

SetRecordingConfiguration
BOOLEAN	GetRecordingConfiguration(
	 IN	HANDLE	Handle,

	 IN	TMSiRecordingConfigType	*RecordingConfig,

	 IN	unsigned	int	*ChannelConfig,	

	 IN	unsigned	int	NrOfChannels)

);	

Parameters

Handle
				Handle	of	the	library

RecordingConfig
			Pointer	to	a	recording	configuration	for	the	device

ChannelConfig
			Reserved,	use	NULL	pointer
NrOfChannels
			Reserved,	use	0

				

Return	Value

If	successful	this	function	returns	TRUE.	If	the	function	returns	FALSE,
use	GetErrorCode	to	get	the	error	code.

	

Comments

This	function	is	for	the	Mobita	only.	

This	function	is	used	to	set	the	measurement	recording	schedule	and
settings	of	the	frontend.	A	previous	recording	schedule	(if	present)	will	be
overwritten.

The	Open()	function	must	have	been	successfully	called	before	using	this
function.

	Also	see

Open,	GetRecordingConfiguration

	
TMS	International	BV

Start
BOOLEAN	Start(

		IN	HANDLE	Handle

);	

Parameters

Handle
				Handle	of		the	library

				

Return	Value

If	successful	this	function	returns	TRUE,	else	FALSE.	If	the	function
returns	FALSE,	use	GetErrorCode	to	get	the	error	code.

Comments

This	function	will	start	data	acquisition.	Call	this	function	after	the		sample
rate	of	the	frontend	has	been	configured.	Always	call	SetSignalBuffer()
before	(re)starting	a	new	measurement.	After	starting	the	device	use
GetSamples	to	get	the	actual	conversion	results	from	the	device,	or	stop
the	frontend	by	calling	Stop().	
	

Also	see

Stop,	GetSamples,	SetSignalBuffer

	

	
TMS	International	BV

StartCardFile
BOOLEAN	StartCardFile(

		IN	HANDLE	Handle

);	

Parameters

Handle
				Handle	of		the	library

				

Return	Value

If	successful	this	function	returns	TRUE,	else	FALSE.	If	the	functions
return	FALSE,	use	GetErrorCode	to	get	the	error	code.

Comments

This	function	will	start	reading	data	from	the	file	on	the	card.	After	starting
the	device	use	GetCardFileSamples()	to	get	the	sample	data	from	the
card.		

This	function	is	for	Mobita	only.	

Also	see

StopCardFile,	GetCardFileSamples

	

	
TMS	International	BV

Stop
BOOLEAN	Stop(

		IN	HANDLE	Handle

);	

Parameters

Handle
				Handle	of	the	library

				

Return	Value

If	successful	this	function	returns	TRUE,	else	FALSE.	If	the	function
returns	FALSE,	use	GetErrorCode	to	get	the	error	code.

Comments

Stops	the	data	acquisition.	Call	SetSignalBuffer()	before	starting	data
acquisition	again.

	

Also	see

Start,	SetSignalBuffer

	
TMS	International	BV

StopCardFile
BOOLEAN	StopCardFile(

		IN	HANDLE	Handle

);	

Parameters

Handle
				Handle	of		the	library

				

Return	Value

If	successful	this	function	returns	TRUE,	else	FALSE.	If	the	function
returns	FALSE,	use	GetErrorCode	to	get	the	error	code.

Comments

This	function	stops	reading	data	from	the	file	on	the	card.	After	stopping
the	device	do	not	use	GetCardFileSamples	any	more.

This	function	is	for	Mobita	only.	

Also	see

StartCardFile,	GetCardFileSamples

	

	
TMS	International	BV

SYSTEMTIME
typedef	struct	_SYSTEMTIME	{

		WORD	wYear;

		WORD	wMonth;

		WORD	wDayOfWeek;

		WORD	wDay;

		WORD	wHour;

		WORD	wMinute;

		WORD	wSecond;

		WORD	wMilliseconds;

}	SYSTEMTIME;

Members

wYear	
				The	current	year

wMonth	
				The	current	month;	January	is	1

wDayOfWeek
				The	current	day	of	the	week;	Sunday	is	0,	Monday	is	1,	and	so	on

wDay
				The	current	day	of	the	month

wHour
				The	current	hour

wMinute
				The	current	minute

wSecond

				The	current	second

wMilliseconds
				The	current	millisecond

	

Include

WINDOWS.H

Also	see

TMSiRecordingConfigType

	

	
TMS	International	BV

SIGNAL_FORMAT
typedef	struct	_SignalFormat

{		ULONG	Size;	 	

			ULONG	Channels;	 	

			ULONG	Type;	 	

			ULONG	SubType;	 	

			ULONG	Format;

			ULONG	Bytes;

			FLOAT	UnitGain;	 	 		

			FLOAT	UnitOffSet;	

			ULONG	UnitId;	 	 	

			LONG	UnitExponent;	

			WCHAR	Name[40];	

			ULONG	Port;	

			WCHAR	PortName[40];	

			ULONG	SerialNumber;	

}SIGNAL_FORMAT,	*PSIGNAL_FORMAT;	

Members

Size
				The	size	in	bytes	of	this	structure.	

Channels
				Total	number	of	channels	in	this	configuration.

Type
				These	values	identify	the	channels	type.	Below	a	list	of	all	types
defined.	

			

Type Name Description

0 Unknown Set	if	the	driver	cannot	determine
the	channel	type		

1 EXG
Electro	physiological	input	on	a
common	average	reference
amplifier.		

2 BIP Electro	physiological	input
measured	on	a	bipolar	amplifier	

3 AUX	 Signal	measured	on	an	auxiliary
input			

4 DIG Digital	input.		
5 TIME	 Signal	used	for	synchronization	

6 LEAK Measuring	leakage	for	urology
purposes.	

7 PRESSURE	 Signal	for	measuring	pressure

8 ENVELOPE	 EMG	Envelope	signal	derived	froman	electro	physiological	input
9 MARKER Marker	input	
10 RAMP Internally	generated	test	signal

11 SAO2 Signals	measure	with	an	oxygen
saturation	measuring	device	

	

SubType
				By	means	of	this	parameter	you	can	get	more	specific	information
about	a	channel.	These	values	are	device	specific	and	are	subject	to
change.	Refer	to	your	device	manual	for	more	information.	

Format	
				Specifies	the	data		format	of	this	channel.	Channel	data	is	in	integer
format.	The	following	table	shows	all	supported	formats:	

	

Format Description	
0 Unsigned	integer
1 Signed	integer

	

Bytes
				This	parameter	can	be	ignored.	All	data	in	the	buffer	(see	GetSamples)
is	32	bits.

UnitGain	&	UnitOffset

				These	are	two	32Bit	floating	point	values.	Data	measured	on	a
channels	represents	some	form	of	units.	For	example	electro
physiological	measure	there	data	in	micro	volts.	To	use	these	units	the
conversion	results	from	a	channel	need	to	translated.	Translating	to	units
is	done	by	multiplying	the	result	with	UnitGain	and	then	adding
UnitOffset.	The	driver	does	NOT	perform	this	calculation,	but	this	must	be
done	by	the	application.

UnitId
				The	following	list	shows	all	defined	units

UnitId Name Description

0 UNIT_UNKNOWN If	the	driver	cannot	determine
the	units	of	a	channel

1 UNIT_VOLT Channel	measures	voltage

2 UNIT_PERCENT Channel	measures	a
percentage

3 UNIT_BPM Beats	per	minute
4 UNIT_BAR Pressure	in	bar
5 UNIT_PSI Pressure	in	psi

6 UNIT_MH20 Pressure	calibrated	to	meters
water

7 UNIT_MHG Pressure	calibrated	to	meters
mercury

8 UNIT_BIT Used	for	digital	inputs

	

UnitExponent
				Used	for	defining	the	exponent	of	a	measured	unit.	e.g	if	a	channel
measures	micro	volts	the	UnitExponent	will	be	-6.	For	kilo	volt
UnitExponent	will	be	3,	etc.	If	a	driver	cannot	determine	the	unit	type	this
value	will	be	zero.	

Port
				Some	devices	support	multiple	input	boxes	or	ports.	If	so	this	value

identifies	the	port	number	of	the	device	on	which	this	channel	is
connected.

PortName
				Name	of	the	device,	or	if	a	device	has	multiple	input	ports	the	name	of
the	input	port,	on	which	this	channel	is	connected		

SerialNumber
				The	serial	number	or	id	of	the	source	device	of	this	channel.

	

Include

TMSiSDK.h

Also	see

GetSignalFormat

	

	
TMS	International	BV

TMSiFileHeaderType
typedef	struct	TMSiTDFHeader

{

	 unsigned	int	 	 NumberOfSamp;

	 SYSTEMTIME	 	 StartRecTime;

	 SYSTEMTIME	 	 EndRecTime;

	 unsigned	int	 	 FrontEndSN;

	 unsigned	int	 	 FrontEndAdpSN;

	 unsigned	short	 	 FrontEndHWVer;

	 unsigned	short	 	 FrontEndSWVer;

	 unsigned	short	 	 FrontEndAdpHWVer;

	 unsigned	short	 	 FrontEndAdpSWVer;

	 unsigned	short	 	 ADCSampleRate;

	 char	 	 	 PatientID[MAX_PATIENTID_LENGTH];

	 char	 	 	 UserString1[MAX_USERSTRING_LENGTH];

}	TMSiFileHeaderType;

Members

				NumberOfSamples
The	number	of	samples	stored	in	this	file

				StartRecTime
The	Start	time	of	the	recording	of	this	file

				StopRecTime
The	Stop	time	of	the	recording	of	this	file

				FrontendSN
The	serial	number	of	the	device	for	which	the	recording	configuration	is	to
be	used.	After	recording	this	field	contains	the	complete	serial	number	of
the	device	which	was	used	to	do	the	recording

				FrontendAdpSN
The	serial	number	of	the	adapter	for	which	the	recording	configuration	is
to	be	used.	After	recording	this	field	contains	the	complete	serial	number

of	the	adapter	which	was	used	to	do	the	recording

				FrontendHWVers
The	hardware	version	number	of	the	device	on	which	the	file	is	recorded

				FrontendSWVers
The	firmware	version	number	of	the	device	on	which	the	file	is	recorded

				FrontendAdpHWVers
The	hardware	version	number	of	the	adapter	that	was	connected	to	the
device	on	which	the	file	is	recorded

				FrontendAdpSWVers
The	firmware	version	number	of	the	adapter	that	was	connected	to	the
device	on	which	the	file	is	recorded

				ADCSampleRate
This	integer	value	contains	the	sample	rate	used	during	recording

				PatientId
This	is	an	area	that	can	be	used	to	store	patient	information.	The	string	is
64	bytes	long

				UserString1
This	is	an	area	that	can	be	used	by	the	initialization/export	application	to
store	information	about	the	application	name	or	version	etc.	The	string	is
64	bytes	long

	

Include

TMSiSDK.H

Also	see

SetRecordingConfiguration,	GetRecordingConfiguration

	

	
TMS	International	BV

TMSiFileInfoType
typedef	struct	TMSiFileInfo

{

	 unsigned	int	 	 FileId;

	 SYSTEMTIME	 	 StartRecTime;

	 SYSTEMTIME	 	 EndRecTime;

}	TMSiFileInfoType;

Members

				FileId
File	identifier	that	is	unique	for	the	files	in	the	internal	storage	of	the
Mobita.

				StartRecTime
The	Start	time	of	the	recording	of	this	file.

				StopRecTime
The	Stop	time	of	the	recording	of	this	file.

Include

TMSiSDK.H

Also	see

SetRecordingConfiguration,	GetRecordingConfiguration

	

	
TMS	International	BV

TMSiRecordingConfig
typedef	struct	TMSiRecordingConfig

{

	 unsigned	short	 	 StorageType;

	 unsigned	short	 	 ADCSampRate;

	 unsigned	short	 	 NumberOfChan;

	 unsigned	int	 	 StartControl;

	 unsigned	int	 	 EndControl;

	 unsigned	int	 	 CardStatus;

	 unsigned	int	 	 InitIdentifier;

	 char	 	 	 MeasureFileName[MAX_MEASUREFILENAME_LENGTH];

	 SYSTEMTIME	 	 AlarmTimeStart;

	 SYSTEMTIME	 	 AlarmTimeStop;

	 SYSTEMTIME	 	 AlarmTimeInterval;

	 unsigned	int	 	 AlarmTimeCount;

	 unsigned	int	 	 FrontEndSN;

	 unsigned	int	 	 FrontEndAdpSN;/*!<		Serial	number	of	the	Adapter	connected	to	the	Mobita	during	the	measurement	*/

	 unsigned	int	 	 RecordCondition;

	 SYSTEMTIME	 	 RFInterfStartTime;

	 SYSTEMTIME	 	 RFInterfStopTime;

	 SYSTEMTIME	 	 RFInterfInterval;

	 unsigned	int	 	 RFInterfCount;

	 char	 	 	 	 PatientID[MAX_PATIENTID_LENGTH];	 /*!<		Patient	identifier	*/

	 char	 	 	 	 UserString1[MAX_USERSTRING_LENGTH];	/*!<	User/Application	specific	string	*/

}	TMSiRecordingConfigType;

Members

FileType
				Reserved

StorageType
				These	values	identify	the	storage	type.	Below	is	a	list	of	all	types
defined.	

			

Bit Name Description

0 Raw
Mode

If	bit0	is	set,	then	the	data	as	it	would
be	sent	over	the	wireless/USB/Fiber
connection	will	be	stored	in	the
measurement	file.

1 Reserved
2 Reserved
3 Reserved
4 Reserved
5 Reserved
6 Reserved
7 Reserved
8 Reserved
9 Reserved
10 Reserved
11 Reserved

	

ADCSampleRate

				This	integer	value	contains	the	sample	rate	of	ADCs	in	Hertz.	The
ADC	sample	rate	is	defined	by	the	maximum	sample	rate	of	the	frontend.

NrOfChannels
This	integer	value	contains	the	sum	of	storable	channels,	ExG,	Aux,	BIP
etc.	(analog)		and		Digi,	SaO2,	3D	etc.	(digital)	that	are	available	on	the
frontend.

StartControl

				This	integer	consists	of	a	number	of	bits	that	control	the	start-up
behavior	of	the	system.

WARNING:	If	both	the	RTC_SET	and	ALARM_RECORD_AUTO_START
bit	are	set,	both	bits	will	be	ignored,	an	error	indication	appears,	and	both
bits	will	be	cleared,	so	that	at	a	next	attempt	a	recording	will	start	in	the
normal	way.
If	ALARM_RECORD_AUTO_START,	BUTTON_ENABLE	and	POWER-
ON	RECORD	AUTO	START	are	all	0,	then	there	is	no	way	to	start	a
recording!

			

Bit Name Description

0 RTC_SET

If	this	bit
(least
significant
bit)	is	set
then	the
‘Alarm	time’
settings	are
used	to	set
the	Real	Time
Clock	(RTC).
This	happens
at	the
moment	that
the	user
switches	the
TMSi	frontend
ON	for	the
first	time,
after	this	bit
has	been	set.
At	the	same
time	the	bit
will	be
cleared,	so
that	the
same	RTC
time	will	be
not	be	set
again.

1 ALARM_RECORD_AUTO_START

If	this	bit	is
set	the	alarm
settings	of
the	RTC	are
used	to
automatically
start	the
recording.
The	auto
start	time	is
programmed
at	the
moment	that
the	user
switches	the
TMSi	frontend
on	for	the
first	time,
after	the	bit
has	been	set.
At	the	same
time	the	bit
will	be
cleared,	so
that	the
same	auto
start	time	will
be	not	be	set
again.	After
the	auto	start
time,	this
time	is	also

cleared	from
TMSi	frontend
internal
memory.

2 MAN_RECORD_ENABLE

If	this	bit	is
set	then	the
recording	can
be	started
and	stopped
manually.
Otherwise,
when	bit	2	is
0,	the	user
ON/OFF	is
ignored
during	a
recording.

3
POWER-
ON_RECORD_AUTO_START

If	this	bit	is
set,	recording
is	started
automatically
at	power	on,
without	the
need	for	user
intervention.
If	this	bit	is
not	set,	data
will	not	be
stored	on	the
SD	card.

If	this	bit	is

4 ALARM_RECURRING

set,	the
system	will
reinitialize
the	RTC
ALARM	after
the	previous
ALARM,
based	on	the
Alarm	Time
values
specified.

5 RF_AUTO_START

If	this	bit	is
set,	the
system	will
enable	the	RF
module
directly	after
power-up.

6 RF_TIMED_START

If	this	bit	is
set,	the
system	will
enable	the	RF
module
according	to
the	wireless
interface
parameters.

If	this	bit	is
set,	the
system	will
reinitialize

7 RF_RECURRING
the	RF
ALARM	after
the	previous
ALARM,
based	on	the
Wireless	Time
values
specified.

8 MAN_SHUTDOWN_ENABLE

If	this	bit	is
set,	the	user
can	manually
shutdown	the
system.
Otherwise,
the	system
can	only	shut
down
automatically.

9 Reserved
10 Reserved
11 Reserved

	

EndControl

If	this	value	is	0	then	the	recording	is	continued	until	the	end	of	the	flash
memory	is	reached,	until	the	recording	is	stopped	manually,	by	RTCor
when	the	system	battery	is	empty.

Otherwise	this	value	determines	the	recording	length.	In	that	case	this
value	represents	the	number	of	sample	periods	of	a	recording	(counted
at	the	sample	rate	of	the	ADC	Rate).

CardStatus

				The	following	list	shows	all	defined	units

UnitId Name Description

0 Unknown Unknown	state	for
internal	SD	card

1 Formatted Internal	SD	card	is
formatted

2 Filled
Internal	SD	card	has	files,
but	still	has	space
available

3 Full Internal	SD	card	is	full
0x7FFFFFFF Error Error	on	internal	SD	card

0xFFFFFFFF Default

	

InitIdentifier
				Reserved

MeasureFilename

				The	TMSi	frontend	uses	these	fields	to	name	the	measurement	files
that	are	made.		All	characters	are	printable	ASCII	characters.	The	default
name	is	YYYYMMDD_HHMMSS

				AlarmtimeSTART	/	ALARMTIMEstop
When	bit	0	or	bit	1	is	set	in	the	field	START	CONTROL	the	defined	time
in	this	field	will	be	used	to	program	the	RTC	time	or	auto	start	time	of	real
time	clock	in	the	ambulatory	system.	The	real	time	clock	is	programmed
when	the	system	is	turned	on.

				Alarminterval
The	alarm	repetition	interval	is	relative	to	the	ALARM	TIMESTART	and
must	be	larger	than	the	time	difference	:	ALARMTIMESTOP	–

ALARMTIMESTART.

If	ALARMINTERVAL	is	not	all	zeroes	then	after	passing
ALARMTIMESTOP	the	value	of	ALARMINTERVAL	is	added	to
ALARMTIMESTART	and	ALARMTIMESTOP	to	set	the	new	recording
start	and	stop	times.	Only	Day,	Hours,	Minutes	and	Seconds	are	used,
the	other	fields	are	ignored.

				AlarmCount
The	alarm	repetition	count	is	decreased	every	Alarm	repetition	interval,
until	it	is	zero.

				FrontendSN
The	serial	number	of	the	device	for	which	this	recording	configuration	will
be	used.	When	initialized	this	field	contains	only	the	first	part	of	the	serial
number	=	device	identification,	e.g.	0710	for	a	Mobita.	After	recording	this
field	contains	the	complete	serial	number	of	the	device	which	was	used
to	do	the	recording.

				FrontendadpSN
The	serial	number	of	the	adapter	for	which	this	recording	configuration	is
to	be	used.	When	initialized	this	field	contains	only	the	first	part	of	the
serial	number	=	device	identification,	e.g.	0710	for	a	Mobita.	After
recording	this	field	contains	the	complete	serial	number	of	the	adapter
which	was	used	to	do	the	recording.

				RFInterfStartTime	/	StopTime
Not	used.

				RFInterfCount
Not	used.

				PatientId
This	is	an	area	that	is	used	by	the	initialization/export	program	to	store

information	about	the	patient	or	the	type	of	measurement	that	is	done
with	this	card.	The	frontend	itself	does	not	use	this	information.	If	the
TMSi	application	is	not	used	to	build	a	measurement	and	process	the
measurement	data,	this	field	may	freely	be	used	for	other	administration
purposes.

				USERSTRING1
This	is	an	area	that	is	used	by	the	initialization/export	program	to	store
information	about	the	application	etc.

	

Include

TMSiSDK.H

Also	see

SetRecordingConfiguration,	GetRecordingConfiguration

	

	
TMS	International	BV

GetCardFileSignalFormat
PSIGNAL_FORMAT	GetCardFileSignalFormat	(

	 IN	HANDLE)

Parameters

Handle
				Handle	of	the	library.

Return	Value

If	successful	returns	the	pointer	to	the	first	element	in	the	array.	If
unsuccessful	this	function	returns	NULL,	in	that	case	use	GetErrorCode
to	get	the	error	code.

Comments

For	this	function	to	work,	OpenCardFile	must	be	called	first.	

One	file	can	have	multiple	channels.	This	function	is	used	to	get
information	about	each	of	these	channels.	This	function	returns	a
structure	for	each	channel	in	the	system.	This	array	of	structures	is
allocated	by	the	SDK	and	must	be	freed	using	Free().	See
SIGNAL_FORMAT	for	a	description	of	the	returned	structures.	

	This	function	is	for	Mobita	only.

Also	see

SIGNAL_FORMAT

	

	
TMS	International	BV

GetOEMSize
BOOLEAN	APIENTRY	GetOEMSize(

	 void	*Handle,

	 unsigned	int	*LengthInBytes

);	

Parameters

Handle
				Handle	of		the	library
LengthInBytes
				Length	of	the	available	OEM	storage	on	the	frontend	in	bytes.

Return	Value

If	successful	this	function	returns	TRUE,	else	FALSE.	If	the	function
returns	FALSE,	use	GetErrorCode	to	get	the	error	code.

Comments

This	function	is	not	supported	by	all	frontends.	The	Open()	function	must
have	been	called	before.	This	function	will	retrieve	the	length	of	the
available	OEM	storage	on	the	frontend.

Also	see

GetRandomKey

	

	
TMS	International	BV

GetOEMData
BOOLEAN	APIENTRY	GetOEMData(IN	HANDLE	Handle,

	 unsigned	char	*OEMData,

	 unsigned	int	*OEMDataLengthInBytes)

);	

Parameters

Handle
				Handle	of		the	library
OEMData
				Array	in	which	the	data	from	the	OEM	storage	is	stored.
LengthInBytes
				Length	of	the	array	in	bytes.

Return	Value

If	successful	this	function	returns	TRUE,	else	FALSE.	If	the	function
returns	FALSE,	use	GetErrorCode	to	get	the	error	code.

Comments

This	function	is	not	supported	by	all	frontends.	The	Open()	function	and
GetOEMSize()	function	must	have	been	called	before.	This	function	will
retrieve	the	data	from	the	OEM	storage	on	the	frontend.	The	length	of	the
buffer	must	be	equal	or	larger	than	the	value	returned	by	GetOEMSize().
After	return,	the	OEMDataLengthInBytes	is	set	to	the	returned	number	of
bytes.

Also	see

SetOEMData

	

	
TMS	International	BV

GetRandomKey
BOOLEAN	APIENTRY	GetRandomKey(

	 void	*Handle,	

	 char	*Key,	

	 unsigned	int	*LengthKeyInBytes

);	

Parameters

Handle
				Handle	of		the	library
	Key
				Array	in	which	the	retrieved	key	is	stored.	
LengthKeyInBytes
				Length	of	the	given	array	in	bytes.

Return	Value

If	successful	this	function	returns	TRUE,	else	FALSE.	If	the	function
returns	FALSE,	use	GetErrorCode	to	get	the	error	code.

Comments

This	function	is	not	supported	by	all	front	ends.	The	Open()	function	must
have	been	called	before.	This	function	will	retrieve	a	random	key	from	the
frontend.	The	given	array	should	have	a	length	of	at	least	16	bytes	(=128
bits).	The	retrieved	key	must	be	transformed	in	an	OEM-specific	way.
Then	the	transformed	key	is	given		to	UnlockFrontend	to	unlock	the
frontend	for	further	use.

Also	see

UnlockFrontend

	

	
TMS	International	BV

UnlockFrontEnd
BOOLEAN	BOOLEAN	APIENTRY	UnlockFrontEnd(

	 void	*Handle,	

	 char	*Key,	

	 unsigned	int	*LengthKeyInBytes

);	

Parameters

Handle
				Handle	of		the	library
	Key
				Array	in	which	the	transformed	key	is	stored
LengthKeyInBytes
				Length	of	the	given	array	in	bytes

Return	Value

If	successful	this	function	returns	TRUE,	else	FALSE.	If	the	function
returns	FALSE,	use	GetErrorCode	to	get	the	error	code.

Comments

This	function	is	not	supported	by	all	frontends.	The	Open()	function	and
GetRandomKey()	function	must	have	been	called	before.	This	function
will	send	the	given	key	to	the	frontend.	If	the	function	returns	TRUE,	the
frontend	is	unlocked	will	respond	to	other	commands.	

Also	see

GetRandomKey

	

	TMSi Data Acquisition SDK
	Getting started
	Changes between WDM driver v6 and v7
	Porting PortiSerial to TMSiSDK
	Programming for the Synfi
	Start measuring
	Legal Information

