
Squirrel	Standard	Library	3.0

Alberto	Demichelis

Copyright	©	2003-2015	Alberto	Demichelis

Permission	is	hereby	granted,	free	of	charge,	to	any	person	obtaining	a	copy	of
this	software	and	associated	documentation	files	(the	"Software"),	to	deal	in	the
Software	without	restriction,	including	without	limitation	the	rights	to	use,	copy,
modify,	merge,	publish,	distribute,	sublicense,	and/or	sell	copies	of	the	Software,
and	to	permit	persons	to	whom	the	Software	is	furnished	to	do	so,	subject	to	the
following	conditions:

The	above	copyright	notice	and	this	permission	notice	shall	be	included	in	all
copies	or	substantial	portions	of	the	Software.

THE	SOFTWARE	IS	PROVIDED	"AS	IS",	WITHOUT	WARRANTY	OF	ANY
KIND,	EXPRESS	OR	IMPLIED,	INCLUDING	BUT	NOT	LIMITED	TO	THE
WARRANTIES	OF	MERCHANTABILITY,	FITNESS	FOR	A	PARTICULAR
PURPOSE	AND	NONINFRINGEMENT.	IN	NO	EVENT	SHALL	THE
AUTHORS	OR	COPYRIGHT	HOLDERS	BE	LIABLE	FOR	ANY	CLAIM,
DAMAGES	OR	OTHER	LIABILITY,	WHETHER	IN	AN	ACTION	OF
CONTRACT,	TORT	OR	OTHERWISE,	ARISING	FROM,	OUT	OF	OR	IN
CONNECTION	WITH	THE	SOFTWARE	OR	THE	USE	OR	OTHER
DEALINGS	IN	THE	SOFTWARE.

Chapter	1.	Introduction

The	squirrel	standard	libraries	consist	in	a	set	of	modules	implemented	in	C++.
While	are	not	essential	for	the	language,	they	provide	a	set	of	useful	services	that
are	commonly	used	by	a	wide	range	of	applications(file	I/O,	regular	expressions,
etc...),	plus	they	offer	a	foundation	for	developing	additional	libraries.

All	libraries	are	implemented	through	the	squirrel	API	and	the	ANSI	C	runtime
library.	The	modules	are	organized	in	the	following	way:

I/O	:	input	and	output

blob	:	binary	buffers	manipilation

math	:	basic	mathematical	routines

system	:	system	access	function

string	:	string	formatting	and	manipulation

The	libraries	can	be	registered	independently,except	for	the	IO	library	that
depends	from	the	bloblib.

Chapter	2.	The	Input/Output	library

the	input	lib	implements	basic	input/output	routines.

Squirrel	API

Global	symbols

dofile(path,	[raiseerror]);

compiles	a	squirrel	script	or	loads	a	precompiled	one	and	executes	it.	returns	the
value	returned	by	the	script	or	null	if	no	value	is	returned.	if	the	optional
parameter	'raiseerror'	is	true,	the	compiler	error	handler	is	invoked	in	case	of	a
syntax	error.	If	raiseerror	is	omitted	or	set	to	false,	the	compiler	error	handler	is
not	ivoked.	When	squirrel	is	compiled	in	unicode	mode	the	function	can	handle
different	character	ecodings,	UTF8	with	and	without	prefix	and	UCS-2
prefixed(both	big	endian	an	little	endian).	If	the	source	stream	is	not	prefixed
UTF8	ecoding	is	used	as	default.

loadfile(path,	[raiseerror]);

compiles	a	squirrel	script	or	loads	a	precompiled	one	an	returns	it	as	as	function.
if	the	optional	parameter	'raiseerror'	is	true,	the	compiler	error	handler	is	invoked
in	case	of	a	syntax	error.	If	raiseerror	is	omitted	or	set	to	false,	the	compiler	error
handler	is	not	ivoked.	When	squirrel	is	compiled	in	unicode	mode	the	function
can	handle	different	character	ecodings,	UTF8	with	and	without	prefix	and	UCS-
2	prefixed(both	big	endian	an	little	endian).	If	the	source	stream	is	not	prefixed
UTF8	ecoding	is	used	as	default.

writeclosuretofile(destpath,	closure);

serializes	a	closure	to	a	bytecode	file	(destpath).	The	serialized	file	can	be	loaded
using	loadfile()	and	dofile().

stderr

File	object	bound	on	the	os	standard	error	stream

stdin

File	object	bound	on	the	os	standard	input	stream

stdout

File	object	bound	on	the	os	standard	output	stream

File	class

The	file	object	implements	a	stream	on	a	operating	system	file.	It's	contructor
imitate	the	behaviour	of	the	C	runtime	function	fopen	for	eg.

										
local	myfile	=	file("test.xxx","wb+");
	 	 	 	 	
								

creates	a	file	with	read/write	access	in	the	current	directory.

close();

closes	the	file

eos();

returns	a	non	null	value	if	the	read/write	pointer	is	at	the	end	of	the	stream.

flush();

flushes	the	stream.return	a	value	!=	null	if	succeded,	otherwise	returns	null

len();

returns	the	lenght	of	the	stream

readblob(size);

read	n	bytes	from	the	stream	and	retuns	them	as	blob

readn(type);

reads	a	number	from	the	stream	according	to	the	type	parameter.	type	can	have
the	following	values:

'i' 32bits	number returns	an	integer

's' 16bits	signed	integer returns	an	integer
'w'16bits	unsigned	integer returns	an	integer
'c' 8bits	signed	integer returns	an	integer
'b' 8bits	unsigned	integer returns	an	integer
'f' 32bits	float returns	an	float
'd' 64bits	float returns	an	float

seek(seek,	[origin]);

Moves	the	read/write	pointer	to	a	specified	location.	offset	indicates	the
number	of	bytes	from	origin.	origin	can	be	'b'	beginning	of	the	stream,'c'
current	location	or	'e'	end	of	the	stream.	If	origin	is	omitted	the	parameter	is
defaulted	as	'b'(beginning	of	the	stream).

tell();

returns	read/write	pointer	absolute	position

writeblob(blob);

writes	a	blob	in	the	stream

writen(n,	type);

writes	a	number	in	the	stream	formatted	according	to	the	type	parameter.	type
can	have	the	following	values:

'l' processor	dependent,	32bits	on	32bits	processors,	64bits	on
64bits	prcessors

returns	an	integer 'i'
32bits	number 's'
16bits	signed
integer 'w'

16bits	unsigned
integer 'c'

8bits	signed
integer 'b'

8bits	unsigned
integer 'f'

32bits	float 'd'
64bits	float 	

C	API

Initialization
sqstd_register_iolib

SQRESULT	sqstd_register_iolib(HSQUIRRELVM	v);

initialize	and	register	the	io	library	in	the	given	VM.

parameters:
HSQUIRRELVM	v

the	target	VM

return:

an	SQRESULT	

remarks:

The	function	aspects	a	table	on	top	of	the	stack	where	to	register	the	global
library	functions.

File	object
sqstd_createfile

SQRESULT	sqstd_createfile(HSQUIRRELVM	v,	SQFILE	file,	SQBool	own);

creates	a	file	object	bound	to	the	SQFILE	passed	as	parameter	and	pushes	it	in
the	stack

parameters:
HSQUIRRELVM	v

the	target	VM

SQFILE	file

the	stream	that	will	be	rapresented	by	the	file	object

SQBool	own

if	different	true	the	stream	will	be	automatically	closed	when	the	newly
create	file	object	is	destroyed.

return:

an	SQRESULT	

sqstd_getfile

SQRESULT	sqstd_getfile(HSQUIRRELVM	v,	SQInteger	idx,	SQFILE	*	file);

retrieve	the	pointer	of	a	stream	handle	from	an	arbitrary	position	in	the	stack.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

and	index	in	the	stack

SQFILE	*	file

A	pointer	to	a	SQFILE	handle	that	will	store	the	result

return:

an	SQRESULT	

Script	loading	and	serialization
sqstd_loadfile

SQRESULT	sqstd_loadfile(HSQUIRRELVM	v,	const	SQChar	*	filename,
SQBool	printerror);

compiles	a	squirrel	script	or	loads	a	precompiled	one	an	pushes	it	as	closure	in

the	stack.	When	squirrel	is	compiled	in	unicode	mode	the	function	can	handle
different	character	ecodings,	UTF8	with	and	without	prefix	and	UCS-2
prefixed(both	big	endian	an	little	endian).	If	the	source	stream	is	not	prefixed
UTF8	ecoding	is	used	as	default.

parameters:
HSQUIRRELVM	v

the	target	VM

const	SQChar	*	filename

path	of	the	script	that	has	to	be	loaded

SQBool	printerror

if	true	the	compiler	error	handler	will	be	called	if	a	error	occurs.

return:

an	SQRESULT	

sqstd_dofile

SQRESULT	sqstd_dofile(HSQUIRRELVM	v,	const	SQChar	*	filename,
SQBool	retval,	SQBool	printerror);

Compiles	a	squirrel	script	or	loads	a	precompiled	one	and	executes	it.	Optionally
pushes	the	return	value	of	the	executed	script	in	the	stack.	When	squirrel	is
compiled	in	unicode	mode	the	function	can	handle	different	character	ecodings,
UTF8	with	and	without	prefix	and	UCS-2	prefixed(both	big	endian	an	little
endian).	If	the	source	stream	is	not	prefixed	UTF8	ecoding	is	used	as	default.

parameters:
HSQUIRRELVM	v

the	target	VM

const	SQChar	*	filename

path	of	the	script	that	has	to	be	loaded

SQBool	retval

if	true	the	function	will	push	the	return	value	of	the	executed	script	in	the
stack.

SQBool	printerror

if	true	the	compiler	error	handler	will	be	called	if	a	error	occurs.

return:

an	SQRESULT	

remarks:

the	function	aspects	a	table	on	top	of	the	stack	that	will	be	used	as	'this'	for
the	execution	of	the	script.	The	'this'	parameter	is	left	untouched	in	the	stack.

eg.

sq_pushroottable(v);	//push	the	root	table(were	the	globals	of	the	script	will	are	stored)
sqstd_dofile(v,	_SC("test.nut"),	SQFalse,	SQTrue);//	also	prints	syntax	errors	if	any	
	 	 	 	

sqstd_writeclosuretofile

SQRESULT	sqstd_writeclosuretofile(HSQUIRRELVM	v,	const	SQChar
*	filename);

serializes	the	closure	at	the	top	position	in	the	stack	as	bytecode	in	the	file
specified	by	the	paremeter	filename.	If	a	file	with	the	same	name	already	exists,
it	will	be	overwritten.

parameters:
HSQUIRRELVM	v

the	target	VM

const	SQChar	*	filename

path	of	the	script	that	has	to	be	loaded

return:

an	SQRESULT	

Chapter	3.	The	Blob	library

The	blob	library	implements	binary	data	manipulations	routines.	The	library	is
based	on	blob	objects	that	rapresent	a	buffer	of	arbitrary	binary	data.

Squirrel	API

Global	symbols

blob(size);

returns	a	new	instance	of	a	blob	class	of	the	specified	size	in	bytes

castf2i(f);

casts	a	float	to	a	int

casti2f(n);

casts	a	int	to	a	float

swap2(n);

swap	the	byte	order	of	a	number	(like	it	would	be	a	16bits	integer)

swap4(n);

swap	the	byte	order	of	an	integer

swapfloat(f);

swaps	the	byteorder	of	a	float

The	blob	class

The	blob	object	is	a	buffer	of	arbitrary	binary	data.	The	object	behaves	like	a	file
stream,	it	has	a	read/write	pointer	and	it	automatically	grows	if	data	is	written
out	of	his	boundary.
A	blob	can	also	be	accessed	byte	by	byte	through	the	[]	operator.

eos();

returns	a	non	null	value	if	the	read/write	pointer	is	at	the	end	of	the	stream.

flush();

flushes	the	stream.return	a	value	!=	null	if	succeded,	otherwise	returns	null

len();

returns	the	lenght	of	the	stream

readblob(size);

read	n	bytes	from	the	stream	and	retuns	them	as	blob

readn(type);

reads	a	number	from	the	stream	according	to	the	type	pameter.	type	can	have	the
following	values:

'l' processor	dependent,	32bits	on	32bits	processors,	64bits	on64bits	prcessors
returns	an
integer

'i' 32bits	number returns	an
integer

's' 16bits	signed	integer returns	an
integer

'w'16bits	unsigned	integer returns	an
integer

'c' 8bits	signed	integer returns	an
integer

'b' 8bits	unsigned	integer returns	an
integer

'f' 32bits	float returns	an
float

'd' 64bits	float returns	an
float

resize(size);

resizes	the	blob	to	the	specified	size

seek(seek,	[origin]);

Moves	the	read/write	pointer	to	a	specified	location.	offset	indicates	the
number	of	bytes	from	origin.	origin	can	be	'b'	beginning	of	the	stream,'c'
current	location	or	'e'	end	of	the	stream.	If	origin	is	omitted	the	parameter	is
defaulted	as	'b'(beginning	of	the	stream).

swap2();

swaps	the	byte	order	of	the	blob	content	as	it	would	be	an	array	of	16bits
integers

swap4();

swaps	the	byte	order	of	the	blob	content	as	it	would	be	an	array	of	32bits
integers

tell();

returns	read/write	pointer	absolute	position

writeblob(blob);

writes	a	blob	in	the	stream

writen(n,	type);

writes	a	number	in	the	stream	formatted	according	to	the	type	pameter.	type	can
have	the	following	values:

'i' 32bits	number
's' 16bits	signed	integer
'w'16bits	unsigned	integer
'c' 8bits	signed	integer
'b' 8bits	unsigned	integer
'f' 32bits	float
'd' 64bits	float

C	API

Initialization
sqstd_register_bloblib

SQRESULT	sqstd_register_bloblib(HSQUIRRELVM	v);

initialize	and	register	the	blob	library	in	the	given	VM.

parameters:
HSQUIRRELVM	v

the	target	VM

return:

an	SQRESULT	

remarks:

The	function	aspects	a	table	on	top	of	the	stack	where	to	register	the	global
library	functions.

Blob	object
sqstd_getblob

SQRESULT	sqstd_getblob(HSQUIRRELVM	v,	SQInteger	idx,	SQUserPointer
*	ptr);

retrieve	the	pointer	of	a	blob's	payload	from	an	arbitrary	position	in	the	stack.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

and	index	in	the	stack

SQUserPointer	*	ptr

A	pointer	to	the	userpointer	that	will	point	to	the	blob's	payload

return:

an	SQRESULT	

sqstd_getblobsize

SQInteger	sqstd_getblobsize(HSQUIRRELVM	v,	SQInteger	idx);

retrieve	the	size	of	a	blob's	payload	from	an	arbitrary	position	in	the	stack.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

and	index	in	the	stack

return:

the	size	of	the	blob	at	idx	position	

sqstd_createblob

SQUserPointer	sqstd_createblob(HSQUIRRELVM	v,	SQInteger	size);

creates	a	blob	with	the	given	payload	size	and	pushes	it	in	the	stack.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	size

the	size	of	the	blob	payload	that	has	to	be	created

return:

a	pointer	to	the	newly	created	blob	payload	

Chapter	4.	The	Math	library

the	math	lib	provides	basic	mathematic	routines.	The	library	mimics	the	C
runtime	library	implementation.

Squirrel	API

Global	symbols

abs(x);

returns	the	absolute	value	of	x	as	integer

acos(x);

returns	the	arccosine	of	x

asin(x);

returns	the	arcsine	of	x

atan(x);

returns	the	arctangent	of	x

atan2(x,	y);

returns	the	arctangent	of	y/x.

ceil(x);

returns	a	float	value	representing	the	smallest	integer	that	is	greater	than	or	equal
to	x

cos(x);

returns	the	cosine	of	x

exp(x);

returns	the	exponential	value	of	the	float	parameter	x

fabs(x);

returns	the	absolute	value	of	x	as	float

floor(x);

returns	a	float	value	representing	the	largest	integer	that	is	less	than	or	equal	to	x

log(x);

returns	the	natural	logarithm	of	x

log10(x);

returns	the	logarithm	base-10	of	x

pow(x,	y);

returns	x	raised	to	the	power	of	y.

rand();

returns	a	pseudorandom	integer	in	the	range	0	to	RAND_MAX

sin(x);

returns	the	sine	of	x

sqrt(x);

returns	the	square	root	of	x

srand(seed);

sets	the	starting	point	for	generating	a	series	of	pseudorandom	integers

tan(x);

returns	the	tangent	of	x

PI

The	numeric	constant	pi	(3.141592)	is	the	ratio	of	the	circumference	of	a	circle
to	its	diameter

RAND_MAX

the	maximum	value	that	can	be	returned	by	the	rand()	function

C	API

Initialization
sqstd_register_mathlib

SQRESULT	sqstd_register_mathlib(HSQUIRRELVM	v);

initialize	and	register	the	math	library	in	the	given	VM.

parameters:
HSQUIRRELVM	v

the	target	VM

return:

an	SQRESULT	

remarks:

The	function	aspects	a	table	on	top	of	the	stack	where	to	register	the	global
library	functions.

Chapter	5.	The	System	library

The	system	library	exposes	operating	system	facilities	like	environment
variables,	date	time	manipulation	etc..

Squirrel	API

Global	symbols

clock();

returns	a	float	representing	the	number	of	seconds	elapsed	since	the	start	of	the
process

date([time],	[format]);

returns	a	table	containing	a	date/time	splitted	in	the	slots:

sec Seconds	after	minute	(0	-	59).
min Minutes	after	hour	(0	-	59).
hour Hours	since	midnight	(0	-	23).
day Day	of	month	(1	-	31).
monthMonth	(0	-	11;	January	=	0).
year Year	(current	year).
wday Day	of	week	(0	-	6;	Sunday	=	0).
yday Day	of	year	(0	-	365;	January	1	=	0).

if	time	is	omitted	the	current	time	is	used.	
if	format	can	be	'l'	local	time	or	'u'	UTC	time,	if	omitted	is	defaulted	as	'l'(local
time).

getenv(varaname);

Returns	a	string	containing	the	value	of	the	environment	variable	varname

remove(path);

deletes	the	file	specified	by	path

rename(oldname,	newname);

renames	the	file	or	directory	specified	by	oldname	to	the	name	given	by	newname

system(cmd);

executes	the	string	cmd	through	the	os	command	interpreter.

time();

returns	the	number	of	seconds	elapsed	since	midnight	00:00:00,	January	1,	1970.

the	result	of	this	function	can	be	formatted	through	the	faunction	date

C	API

Initialization
sqstd_register_systemlib

SQRESULT	sqstd_register_systemlib(HSQUIRRELVM	v);

initialize	and	register	the	system	library	in	the	given	VM.

parameters:
HSQUIRRELVM	v

the	target	VM

return:

an	SQRESULT	

remarks:

The	function	aspects	a	table	on	top	of	the	stack	where	to	register	the	global
library	functions.

Chapter	6.	The	String	library

the	string	lib	implements	string	formatting	and	regular	expression	matching
routines.

Squirrel	API

Global	symbols

format(formatstr,	...);

Returns	a	string	formatted	according	formatstr	and	the	optional	parameters
following	it.	The	format	string	follows	the	same	rules	as	the	printf	family	of
standard	C	functions(the	"*"	is	not	supported).

eg.
sq>	print(format("%s	%d	0x%02X\n","this	is	a	test	:",123,10));
this	is	a	test	:	123	0x0A

	 	 	 	 	

lstrip(str);

Strips	white-space-only	characters	that	might	appear	at	the	beginning	of	the
given	string	and	returns	the	new	stripped	string.

regexp(pattern);

compiles	a	regular	expression	pattern	and	returns	it	as	a	new	regexp	class
instance.

\ Quote	the	next	metacharacter
^ Match	the	beginning	of	the	string
. Match	any	character
$ Match	the	end	of	the	string
| Alternation
(subexp) Grouping	(creates	a	capture)
(?:subexp)No	Capture	Grouping	(no	capture)
[] Character	class

GREEDY	CLOSURES.	

* Match	0	or	more	times

+ Match	1	or	more	times
? Match	1	or	0	times
{n} Match	exactly	n	times
{n,} Match	at	least	n	times
{n,m}Match	at	least	n	but	not	more	than	m	times

ESCAPE	CHARACTERS.	

\t tab	(HT,	TAB)
\nnewline	(LF,	NL)
\r return	(CR)
\f form	feed	(FF)

PREDEFINED	CLASSES.	

\l lowercase	next	char
\u uppercase	next	char
\a letters
\A non	letters
\w alphanumeric	[_0-9a-zA-Z]
\Wnon	alphanumeric	[^_0-9a-zA-Z]
\s space
\S non	space
\d digits
\D non	nondigits
\x exadecimal	digits
\X non	exadecimal	digits
\c control	charactrs
\C non	control	charactrs
\p punctation
\P non	punctation
\b word	boundary
\B non	word	boundary

rstrip(str);

Strips	white-space-only	characters	that	might	appear	at	the	end	of	the	given

string	and	returns	the	new	stripped	string.

split(str,	separators);

returns	an	array	of	strings	split	at	each	point	where	a	separator	character	occurs
in	str.	The	separator	is	not	returned	as	part	of	any	array	element.	the	parameter
separators	is	a	string	that	specifies	the	characters	as	to	be	used	for	the	splitting.

														
eg.
local	a	=	split("1.2-3;4/5",".-/;");
//	the	result	will	be		[1,2,3,4,5]

	 	 	 	 	
												

strip(str);

Strips	white-space-only	characters	that	might	appear	at	the	beginning	or	end	of
the	given	string	and	returns	the	new	stripped	string.

Regexp	class

The	regexp	object	rapresent	a	precompiled	regular	experssion	pattern.	The	object
is	created	trough	the	function	regexp().

capture(str,	[start]);

returns	an	array	of	tables	containing	two	indexs("begin"	and	"end")of	the	first
match	of	the	regular	expression	in	the	string	str.	An	array	entry	is	created	for
each	captured	sub	expressions.	If	no	match	occurs	returns	null.	The	search	starts
from	the	index	start	of	the	string,	if	start	is	omitted	the	search	starts	from	the
beginning	of	the	string.

the	first	element	of	the	returned	array(index	0)	always	contains	the	complete
match.

	
local	ex	=	regexp(@"(\d+)	([a-zA-Z]+)(\p)");
local	string	=	"stuff	123	Test;";

local	res	=	ex.capture(string);
foreach(i,val	in	res)
{
	 print(format("match	number[%02d]	%s\n",
	 	 	 i,string.slice(val.begin,val.end)));	//prints	"Test"
}

...
will	print
match	number[00]	123	Test;
match	number[01]	123
match	number[02]	Test
match	number[03]	;
	 	 	 	
	 	 	 	

match(str);

returns	a	true	if	the	regular	expression	matches	the	string	str,	otherwise	returns
false.

search(str,	[start]);

returns	a	table	containing	two	indexs("begin"	and	"end")	of	the	first	match	of	the
regular	expression	in	the	string	str,	otherwise	if	no	match	occurs	returns	null.
The	search	starts	from	the	index	start	of	the	string,	if	start	is	omitted	the
search	starts	from	the	beginning	of	the	string.

	
local	ex	=	regexp("[a-zA-Z]+");
local	string	=	"123	Test;";
local	res	=	ex.search(string);
print(string.slice(res.begin,res.end));	//prints	"Test"
	 	 	 	
	 	 	 	

C	API

Initialization
sqstd_register_stringlib

SQRESULT	sqstd_register_stringlib(HSQUIRRELVM	v);

initialize	and	register	the	string	library	in	the	given	VM.

parameters:
HSQUIRRELVM	v

the	target	VM

return:

an	SQRESULT	

remarks:

The	function	aspects	a	table	on	top	of	the	stack	where	to	register	the	global
library	functions.

Formatting
sqstd_format

SQRESULT	sqstd_format(HSQUIRRELVM	v,	SQInteger	nformatstringidx,
SQInteger	*	outlen,	SQChar	**	output);

creates	a	new	string	formatted	according	to	the	object	at
positionnformatstringidx	and	the	optional	parameters	following	it.	The	format
string	follows	the	same	rules	as	the	printf	family	of	standard	C	functions(the	"*"
is	not	supported).

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	nformatstringidx

index	in	the	stack	of	the	format	string

SQInteger	*	outlen

a	pointer	to	an	integer	that	will	be	filled	with	the	length	of	the	newly
created	string

SQChar	**	output

a	pointer	to	a	string	pointer	that	will	receive	the	newly	created	string

return:

an	SQRESULT	

remarks:

the	newly	created	string	is	allocated	in	the	scratchpad	memory.

Regular	Expessions
sqstd_rex_compile

SQRex	*	sqstd_rex_compile(const	SQChar	*	pattern,	const	SQChar	**	error);

compiles	an	expression	and	returns	a	pointer	to	the	compiled	version.	in	case	of
failure	returns	NULL.The	returned	object	has	to	be	deleted	through	the	function
sqstd_rex_free().

parameters:
const	SQChar	*	pattern

a	pointer	to	a	zero	terminated	string	containing	the	pattern	that	has	to	be
compiled.

const	SQChar	**	error

a	pointer	to	a	string	pointer	that	will	be	set	with	an	error	string	in	case	of
failure.

return:

a	pointer	to	the	compiled	pattern	

sqstd_rex_free

void	sqstd_rex_free(SQRex	*	exp);

deletes	a	expression	structure	created	with	sqstd_rex_compile()

parameters:
SQRex	*	exp

the	expression	structure	that	has	to	be	deleted

sqstd_rex_match

SQBool	sqstd_rex_match(SQRex	*	exp,	const	SQChar	*	text);

returns	SQTrue	if	the	string	specified	in	the	parameter	text	is	an	exact	match	of
the	expression,	otherwise	returns	SQFalse.

parameters:
SQRex	*	exp

the	compiled	expression

const	SQChar	*	text

the	string	that	has	to	be	tested

return:

SQTrue	if	successful	otherwise	SQFalse	

sqstd_rex_search

SQBool	sqstd_rex_search(SQRex	*	exp,	const	SQChar	*	text,	const	SQChar
**	out_begin,	const	SQChar	**	out_end);

searches	the	first	match	of	the	expressin	in	the	string	specified	in	the	parameter
text.	if	the	match	is	found	returns	SQTrue	and	the	sets	out_begin	to	the
beginning	of	the	match	and	out_end	at	the	end	of	the	match;	otherwise	returns
SQFalse.

parameters:
SQRex	*	exp

the	compiled	expression

const	SQChar	*	text

the	string	that	has	to	be	tested

const	SQChar	**	out_begin

a	pointer	to	a	string	pointer	that	will	be	set	with	the	beginning	of	the	match

const	SQChar	**	out_end

a	pointer	to	a	string	pointer	that	will	be	set	with	the	end	of	the	match

return:

SQTrue	if	successful	otherwise	SQFalse	

sqstd_rex_searchrange

SQBool	sqstd_rex_searchrange(SQRex	*	exp,	const	SQChar	*	text_begin,
const	SQChar	*	text_end,	const	SQChar	**	out_begin,	const	SQChar
**	out_end);

searches	the	first	match	of	the	expressin	in	the	string	delimited	by	the	parameter
text_begin	and	text_end.	if	the	match	is	found	returns	SQTrue	and	the	sets
out_begin	to	the	beginning	of	the	match	and	out_end	at	the	end	of	the	match;
otherwise	returns	SQFalse.

parameters:
SQRex	*	exp

the	compiled	expression

const	SQChar	*	text_begin

a	pointer	to	the	beginnning	of	the	string	that	has	to	be	tested

const	SQChar	*	text_end

a	pointer	to	the	end	of	the	string	that	has	to	be	tested

const	SQChar	**	out_begin

a	pointer	to	a	string	pointer	that	will	be	set	with	the	beginning	of	the	match

const	SQChar	**	out_end

a	pointer	to	a	string	pointer	that	will	be	set	with	the	end	of	the	match

return:

an	SQRESULT	

sqstd_rex_getsubexpcount

SQInteger	sqstd_rex_getsubexpcount(SQRex	*	exp);

returns	the	number	of	sub	expressions	matched	by	the	expression

parameters:
SQRex	*	exp

the	compiled	expression

return:

the	number	of	sub	expressions	matched	by	the	expression	

sqstd_rex_getsubexp

SQInteger	sqstd_rex_getsubexp(SQRex	*	exp,	SQInteger	n,	SQRexMatch
*	subexp);

retrieve	the	begin	and	and	pointer	to	the	length	of	the	sub	expression	indexed	by
n.	The	result	is	passed	trhough	the	struct	SQRexMatch.

parameters:
SQRex	*	exp

the	compiled	expression

SQInteger	n

the	index	of	the	submatch(0	is	the	complete	match)

SQRexMatch	*	subexp

a	pointer	to	structure	that	will	store	the	result

return:

the	function	returns	SQTrue	if	n	is	valid	index	otherwise	SQFalse.	

Chapter	7.	The	Aux	library

The	aux	library	implements	default	handlers	for	compiler	and	runtime	errors	and
a	stack	dumping.

C	API

Error	handling
sqstd_seterrorhandlers

void	sqstd_seterrorhandlers(HSQUIRRELVM	v);

initialize	compiler	and	runtime	error	handlers,	the	handlers	use	the	print	function
set	through(sq_setprintfunc)	to	output	the	error.

parameters:
HSQUIRRELVM	v

the	target	VM

sqstd_printcallstack

void	sqstd_printcallstack(HSQUIRRELVM	v);

print	the	call	stack	and	stack	contents.the	function	uses	the	print	function	set
through(sq_setprintfunc)	to	output	the	stack	dump.

parameters:
HSQUIRRELVM	v

the	target	VM

	Squirrel Standard Library 3.0
	Introduction
	The Input/Output library
	C API

	The Blob library
	C API

	The Math library
	C API

	The System library
	C API

	The String library
	C API

	The Aux library

