
Squirrel	3.0	Reference	Manual

version	3.0.7	release	stable

Alberto	Demichelis

Extensive	review:	Wouter	Van	Oortmersern

Copyright	©	2003-2015	Alberto	Demichelis

Permission	is	hereby	granted,	free	of	charge,	to	any	person	obtaining	a	copy	of
this	software	and	associated	documentation	files	(the	"Software"),	to	deal	in	the
Software	without	restriction,	including	without	limitation	the	rights	to	use,	copy,
modify,	merge,	publish,	distribute,	sublicense,	and/or	sell	copies	of	the	Software,
and	to	permit	persons	to	whom	the	Software	is	furnished	to	do	so,	subject	to	the
following	conditions:

The	above	copyright	notice	and	this	permission	notice	shall	be	included	in	all
copies	or	substantial	portions	of	the	Software.

THE	SOFTWARE	IS	PROVIDED	"AS	IS",	WITHOUT	WARRANTY	OF	ANY
KIND,	EXPRESS	OR	IMPLIED,	INCLUDING	BUT	NOT	LIMITED	TO	THE
WARRANTIES	OF	MERCHANTABILITY,	FITNESS	FOR	A	PARTICULAR
PURPOSE	AND	NONINFRINGEMENT.	IN	NO	EVENT	SHALL	THE
AUTHORS	OR	COPYRIGHT	HOLDERS	BE	LIABLE	FOR	ANY	CLAIM,
DAMAGES	OR	OTHER	LIABILITY,	WHETHER	IN	AN	ACTION	OF
CONTRACT,	TORT	OR	OTHERWISE,	ARISING	FROM,	OUT	OF	OR	IN
CONNECTION	WITH	THE	SOFTWARE	OR	THE	USE	OR	OTHER
DEALINGS	IN	THE	SOFTWARE.

Chapter	1.	Introduction

Squirrel	is	a	high	level	imperative-OO	programming	language,	designed	to	be	a
powerful	scripting	tool	that	fits	in	the	size,	memory	bandwidth,	and	real-time
requirements	of	applications	like	games.	Although	Squirrel	offers	a	wide	range
of	features	like	dynamic	typing,	delegation,	higher	order	functions,	generators,
tail	recursion,	exception	handling,	automatic	memory	management,	both
compiler	and	virtual	machine	fit	together	in	about	6k	lines	of	C++	code.

Chapter	2.	The	language

This	part	of	the	document	describes	the	syntax	and	semantics	of	the	language.

Lexical	structure

Identifiers

Identifiers	start	with	a	alphabetic	character	or	'_'	followed	by	any	number	of
alphabetic	characters,	'_'	or	digits	([0-9]).	Squirrel	is	a	case	sensitive	language,
this	means	that	the	lowercase	and	uppercase	representation	of	the	same
alphabetic	character	are	considered	different	characters.	For	instance	"foo",
"Foo"	and	"fOo"	will	be	treated	as	3	distinct	identifiers.

id:=	[a-zA-Z_]+[a-zA-Z_0-9]*

Keywords

The	following	words	are	reserved	words	by	the	language	and	cannot	be	used	as
identifiers:

base breakcase catch class clone
continue const default delete else enum
extends for foreachfunction if in
local null resume return switch this
throw try typeof while yield constructor
instanceof true false static 	 	

Keywords	are	covered	in	detail	later	in	this	document.

Operators

Squirrel	recognizes	the	following	operators:

! != || ==&&<==> >
<=>+ += - -= / /= *
*= %%=++-- <- = 	
& ^ | ~ >> <<>>>

Other	tokens

Other	used	tokens	are:

{} [] . : :: ' ; "@" 	

Literals

Squirrel	accepts	integer	numbers,	floating	point	numbers	and	strings	literals.

34 Integer	number(base	10)
0xFF00A120 Integer	number(base	16)
0753 Integer	number(base	8)
'a' Integer	number
1.52 Floating	point	number
1.e2 Floating	point	number
1.e-2 Floating	point	number
"I'm	a	string" String
@"I'm	a	verbatim	string" String
@"	I'm	a	multiline	verbatim	string	" String

IntegerLiteral	:=	[1-9][0-9]*	|	'0x'	[0-9A-Fa-f]+	|	'''	[.]+	'''	|	0[0-7]+
FloatLiteral	:=	[0-9]+	'.'	[0-9]+
FloatLiteral	:=	[0-9]+	'.'	'e'|'E'	'+'|'-'	[0-9]+
StringLiteral:=	'"'[.]*	'"'
VerbatimStringLiteral:=	'@''"'[.]*	'"'
						

Comments
A	comment	is	text	that	the	compiler	ignores	but	that	is	useful	for	programmers.
Comments	are	normally	used	to	embed	annotations	in	the	code.	The	compiler
treats	them	as	white	space.

The	/*	(slash,	asterisk)	characters,	followed	by	any	sequence	of	characters
(including	new	lines),	followed	by	the	*/	characters.	This	syntax	is	the	same	as
ANSI	C.

/*	
this	is

a	multiline	comment.
this	lines	will	be	ignored	by	the	compiler
*/	 	 	 	
	 	 	 	

The	//	(two	slashes)	characters,	followed	by	any	sequence	of	characters.	A	new
line	not	immediately	preceded	by	a	backslash	terminates	this	form	of	comment.
It	is	commonly	called	a	“single-line	comment.”

//this	is	a	single	line	comment.	this	line	will	be	ignored	by	the	compiler	
	 	 	 	

The	character	#	is	an	alternative	syntax	for	single	line	comment.

										
#this	is	also	a	single	line	comment.
								

This	to	facilitate	the	use	of	squirrel	in	UNIX-style	shell	scripts.

Values	and	Data	types

Squirrel	is	a	dynamically	typed	language	so	variables	do	not	have	a	type,
although	they	refer	to	a	value	that	does	have	a	type.	Squirrel	basic	types	are
integer,	float,	string,	null,	table,	array,	function,	generator,	class,	instance,	bool,
thread	and	userdata.

Integer

An	Integer	represents	a	32	bits	(or	better)	signed	number.

local	a	=	123	//decimal
local	b	=	0x0012	//hexadecimal
local	c	=	075	//octal
local	d	=	'w'	//char	code
						

Float

A	float	represents	a	32	bits	(or	better)	floating	point	number.

local	a=1.0
local	b=0.234
	 	 	

String

Strings	are	an	immutable	sequence	of	characters	to	modify	a	string	is	necessary
create	a	new	one.

Squirrel's	strings,	behave	like	C	or	C++,	are	delimited	by	quotation	marks(")	and
can	contain	escape	sequences(\t,\a,\b,\n,\r,\v,\f,\\,\",\',\0,\xhhhh).

Verbatim	string	literals	begin	with	@"	and	end	with	the	matching	quote.
Verbatim	string	literals	also	can	extend	over	a	line	break.	If	they	do,	they	include
any	white	space	characters	between	the	quotes:

local	a	=	"I'm	a	wonderful	string\n"

//	has	a	newline	at	the	end	of	the	string
local	x	=	@"I'm	a	verbatim	string\n"
//	the	\n	is	copied	in	the	string	same	as	\\n	in	a	regular	string	"I'm	a	verbatim	string\n"

The	only	exception	to	the	"no	escape	sequence"	rule	for	verbatim	string	literals
is	that	you	can	put	a	double	quotation	mark	inside	a	verbatim	string	by	doubling
it:

local	multiline	=	@"
	 this	is	a	multiline	string
	 it	will	""embed""	all	the	new	line	
	 characters
"
	 	 	

Null

The	null	value	is	a	primitive	value	that	represents	the	null,	empty,	or	non-existent
reference.	The	type	Null	has	exactly	one	value,	called	null.

local	a=null
	 	 	

Bool

the	bool	data	type	can	have	only	two.	They	are	the	literals	true	and	false.	A	bool
value	expresses	the	validity	of	a	condition	(tells	whether	the	condition	is	true	or
false).

local	a	=	true;
	 	 	

Table

Tables	are	associative	containers	implemented	as	pairs	of	key/value	(called	a
slot).

local	t={}
local	test=

{
				a=10
				b=function(a)	{	return	a+1;	}
}
	 	 	

Array

Arrays	are	simple	sequence	of	objects,	their	size	is	dynamic	and	their	index
starts	always	from	0.

local	a=["I'm","an","array"]
local	b=[null]
b[0]=a[2];
	 	 	

Function

Functions	are	similar	to	those	in	other	C-like	languages	and	to	most
programming	languages	in	general,	however	there	are	a	few	key	differences	(see
below).

Class

Classes	are	associative	containers	implemented	as	pairs	of	key/value.	Classes	are
created	through	a	'class	expression'	or	a	'class	statement'.	class	members	can	be
inherited	from	another	class	object	at	creation	time.	After	creation	members	can
be	added	until	a	instance	of	the	class	is	created.

Class	instance

Class	instances	are	created	by	calling	a	class	object.	Instances,	as	tables,	are
implemented	as	pair	of	key/value.	Instances	members	cannot	be	dyncamically
added	or	removed	however	the	value	of	the	members	can	be	changed.

Generator

Generators	are	functions	that	can	be	suspended	with	the	statement	'yield'	and
resumed	later	(see	Generators).

Userdata

Userdata	objects	are	blobs	of	memory(or	pointers)	defined	by	the	host
application	but	stored	into	Squirrel	variables	(See	Userdata	and	UserPointers).

Thread

Threads	are	objects	that	represents	a	cooperative	thread	of	execution,	also	known
as	coroutines.

Weak	References

Weak	References	are	objects	that	point	to	another(non	scalar)	object	but	do	not
own	a	strong	reference	to	it.	(See	Weak	References).

Execution	Context

The	execution	context	is	the	union	of	the	function	stack	frame	and	the	function
environment	object(this).	The	stack	frame	is	the	portion	of	stack	where	the	local
variables	declared	in	its	body	are	stored.	The	environment	object	is	an	implicit
parameter	that	is	automatically	passed	by	the	function	caller	(see	Functions).
During	the	execution,	the	body	of	a	function	can	only	transparently	refer	to	his
execution	context.	This	mean	that	a	single	identifier	can	refer	either	to	a	local
variable	or	to	an	environment	object	slot;	Global	variables	require	a	special
syntax	(see	Variables).	The	environment	object	can	be	explicitly	accessed	by	the
keyword	this.

Variables

There	are	two	types	of	variables	in	Squirrel,	local	variables	and	tables/arrays
slots.	Because	global	variables	are	stored	in	a	table,	they	are	table	slots.

A	single	identifier	refers	to	a	local	variable	or	a	slot	in	the	environment	object.

derefexp	:=	id;

_table["foo"]
_array[10]

with	tables	we	can	also	use	the	'.'	syntax

derefexp	:=	exp	'.'	id

_table.foo

Squirrel	first	checks	if	an	identifier	is	a	local	variable	(function	arguments	are
local	variables)	if	not	it	checks	if	it	is	a	member	of	the	environment	object	(this).

For	instance:

function	testy(arg)
{
				local	a=10;
				print(a);

				return	arg;
}	 	 	
	 	 	

will	access	to	local	variable	'a'	and	prints	10.

function	testy(arg)
{
				local	a=10;
				return	arg+foo;
}
	 	 	

in	this	case	'foo'	will	be	equivalent	to	'this.foo'	or	this["foo"].

Global	variables	are	stored	in	a	table	called	the	root	table.	Usually	in	the	global
scope	the	environment	object	is	the	root	table,	but	to	explicitly	access	the	global
table	from	another	scope,	the	slot	name	must	be	prefixed	with	'::'	(::foo).

exp:=	'::'	id

For	instance:

function	testy(arg)
{
				local	a=10;
				return	arg+::foo;
}
	 	 	

accesses	the	global	variable	'foo'.

However	(since	squirrel	2.0)	if	a	variable	is	not	local	and	is	not	found	in	the	'this'
object	Squirrel	will	search	it	in	the	root	table.

function	test()	{
	 foo	=	10;
}

is	equivalent	to	write

function	test()	{
	 if("foo"	in	this)	{
	 	 this.foo	=	10;
	 }else	{
	 	 ::foo	=	10;
	 }
}

Statements

A	squirrel	program	is	a	simple	sequence	of	statements.

stats	:=	stat	[';'|'\n']	stats

Statements	in	squirrel	are	comparable	to	the	C-Family	languages	(C/C++,	Java,
C#	etc...):	assignment,	function	calls,	program	flow	control	structures	etc..	plus
some	custom	statement	like	yield,	table	and	array	constructors	(All	those	will	be
covered	in	detail	later	in	this	document).	Statements	can	be	separated	with	a	new
line	or	';'	(or	with	the	keywords	case	or	default	if	inside	a	switch/case	statement),
both	symbols	are	not	required	if	the	statement	is	followed	by	'}'.

Block

stat	:=	'{'	stats	'}'

A	sequence	of	statements	delimited	by	curly	brackets	({	})	is	called	block;	a
block	is	a	statement	itself.

Control	Flow	Statements

squirrel	implements	the	most	common	control	flow	statements:	if,	while,	do-
while,	switch-case,	for,	foreach.

true	and	false

Squirrel	has	a	boolean	type(bool)	however	like	C++	it	considers	null,	0(integer)
and	0.0(float)	as	false,	any	other	value	is	considered	true.

if/else

stat:=	'if'	'('	exp	')'	stat	['else'	stat]

Conditionally	execute	a	statement	depending	on	the	result	of	an	expression.

if(a>b)
				a=b;
else

				b=a;
////
if(a==10)
{
				b=a+b;
				return	a;
}
	 	 	 	

while

stat:=	'while'	'('	exp	')'	stat

Executes	a	statement	while	the	condition	is	true.

	 	 	 	
function	testy(n)
{
				local	a=0;
				while(a<n)	a+=1;
	
	 while(1)
	 {
								if(a<0)	break;
								a-=1;
				}
}	 	 	 	 	
	 	 	 	

do/while

stat:=	'do'	stat	'while'	'('	expression	')'

Executes	a	statement	once,	and	then	repeats	execution	of	the	statement	until	a
condition	expression	evaluates	to	false.

	 	 	 	
local	a=0;
do
{

				print(a+"\n");
				a+=1;
}	while(a>100)	 	 	
	 	 	 	

switch

stat	:=	'switch'	''(exp	')'	'{'
	 'case'	case_exp	':'
	 	 stats
	 ['default'	':'
	 	 stats]
'}'
	 	 	 	

Is	a	control	statement	allows	multiple	selections	of	code	by	passing	control	to
one	of	the	case	statements	within	its	body.	The	control	is	transferred	to	the	case
label	whose	case_exp	matches	with	exp	if	none	of	the	case	match	will	jump	to
the	default	label	(if	present).	A	switch	statement	can	contain	any	number	if	case
instances,	if	2	case	have	the	same	expression	result	the	first	one	will	be	taken	in
account	first.	The	default	label	is	only	allowed	once	and	must	be	the	last	one.	A
break	statement	will	jump	outside	the	switch	block.

Loops

for

stat:=	'for'	'('	[initexp]	';'	[condexp]	';'	[incexp]	')'	statement

Executes	a	statement	as	long	as	a	condition	is	different	than	false.

	 	 	 	
for(local	a=0;a<10;a+=1)
				print(a+"\n");
//or
glob	<-	null
for(glob=0;glob<10;glob+=1){
				print(glob+"\n");

}
//or
for(;;){
				print(loops	forever+"\n");
}	 	 	 	
	 	 	 	

foreach

'foreach'	'('	[index_id',']	value_id	'in'	exp	')'	stat

Executes	a	statement	for	every	element	contained	in	an	array,	table,	class,	string
or	generator.	If	exp	is	a	generator	it	will	be	resumed	every	iteration	as	long	as	it
is	alive;	the	value	will	be	the	result	of	'resume'	and	the	index	the	sequence
number	of	the	iteration	starting	from	0.

	 	 	 	
local	a=[10,23,33,41,589,56]
foreach(idx,val	in	a)
				print("index="+idx+"	value="+val+"\n");
//or
foreach(val	in	a)
				print("value="+val+"\n");
	 	 	 	
	 	 	 	

break

stat	:=	'break'

The	break	statement	terminates	the	execution	of	a	loop	(for,	foreach,	while	or
do/while)	or	jumps	out	of	switch	statement;

continue

stat	:=	'continue'

The	continue	operator	jumps	to	the	next	iteration	of	the	loop	skipping	the
execution	of	the	following	statements.

return

stat:=	return	[exp]

The	return	statement	terminates	the	execution	of	the	current	function/generator
and	optionally	returns	the	result	of	an	expression.	If	the	expression	is	omitted	the
function	will	return	null.	If	the	return	statement	is	used	inside	a	generator,	the
generator	will	not	be	resumable	anymore.

yield

stat	:=	yield	[exp]

(see	Generators).

Local	variables	declaration

initz	:=	id	[=	exp][','	initz]
stat	:=	'local'	initz
	 	 	

Local	variables	can	be	declared	at	any	point	in	the	program;	they	exist	between
their	declaration	to	the	end	of	the	block	where	they	have	been	declared.
EXCEPTION:	a	local	declaration	statement	is	allowed	as	first	expression	in	a	for
loop.

for(local	a=0;a<10;a+=1)
				print(a);	
	 	 	

Function	declaration

funcname	:=	id	['::'	id]
stat:=	'function'	id	['::'	id]+	'('	args	')'[':'	'('	args	')']	stat
	 	 	

creates	a	new	function.

Class	declaration

memberdecl	:=	id	'='	exp	[';']	|	 '['	exp	']'	'='	exp	[';']	|	 functionstat	|	'constructor'	functionexp
stat:=	'class'	derefexp	['extends'	derefexp]	'{'
	 	 	 [memberdecl]
	 	 '}'
	 	 	

creates	a	new	class.

try/catch

stat:=	'try'	stat	'catch'	'('	id	')'	stat

The	try	statement	encloses	a	block	of	code	in	which	an	exceptional	condition	can
occur,	such	as	a	runtime	error	or	a	throw	statement.	The	catch	clause	provides
the	exceptionhandling	code.	When	a	catch	clause	catches	an	exception,	its	id	is
bound	to	that	exception.

throw

stat:=	'throw'	exp

Throws	an	exception.	Any	value	can	be	thrown.

const

stat:=	'const'	id	'='	'Integer	|	Float	|	StringLiteral
						

Declares	a	constant	(see	Constants	&	Enumerations).

enum

								
										enumerations	:=	(‘id’	'='	Integer	|	Float	|	StringLiteral)	[‘,’]
										stat:=	'enum'	id	'{'	enumerations	'}'
								
						

Declares	an	enumeration	(see	Constants	&	Enumerations).

expression	statement

stat	:=	exp

In	Squirrel	every	expression	is	also	allowed	as	statement,	if	so,	the	result	of	the
expression	is	thrown	away.

Expressions

Assignment(=)	&	new	slot(<-)

exp	:=	derefexp	'='	exp
exp:=	derefexp	'<-'	exp
	 	 	

squirrel	implements	2	kind	of	assignment:	the	normal	assignment(=)

a=10;

and	the	"new	slot"	assignment.

a	<-	10;

The	new	slot	expression	allows	to	add	a	new	slot	into	a	table(see	Tables).	If	the
slot	already	exists	in	the	table	it	behaves	like	a	normal	assignment.

Operators

?:	Operator

exp	:=	exp_cond	'?'	exp1	':'	exp2

conditionally	evaluate	an	expression	depending	on	the	result	of	an	expression.

Arithmetic

exp:=	'exp'	op	'exp'

Squirrel	supports	the	standard	arithmetic	operators	+,	-,	*,	/	and	%.	Other	than
that	is	also	supports	compact	operators	(+=,-=,*=,/=,%=)	and	increment	and
decrement	operators(++	and	--);

a+=2;
//is	the	same	as	writing
a=a+2;

x++
//is	the	same	as	writing
x=x+1
	 	 	 	

All	operators	work	normally	with	integers	and	floats;	if	one	operand	is	an	integer
and	one	is	a	float	the	result	of	the	expression	will	be	float.	The	+	operator	has	a
special	behavior	with	strings;	if	one	of	the	operands	is	a	string	the	operator	+
will	try	to	convert	the	other	operand	to	string	as	well	and	concatenate	both
together.	For	instances	and	tables,	_tostring	is	invoked.

Relational

exp:=	'exp'	op	'exp'

Relational	operators	in	Squirrel	are	:	==	<	<=	>	>=	!=

These	operators	return	true	if	the	expression	is	false	and	a	value	different	than
true	if	the	expression	is	true.	Internally	the	VM	uses	the	integer	1	as	true	but	this
could	change	in	the	future.

3	ways	compare

exp:=	'exp'	op	'exp'

the	3	ways	compare	operator	<=>	compares	2	values	A	and	B	and	returns	an
integer	less	than	0	if	A	<	B,	0	if	A	==	B	and	an	integer	greater	than	0	if	A	>	B.

Logical

exp	:=	exp	op	exp
exp	:=	'!'	exp
	 	 	 	

Logical	operators	in	Squirrel	are	:	&&	||	!

The	operator	&&	(logical	and)	returns	null	if	its	first	argument	is	null,	otherwise
returns	its	second	argument.	The	operator	||	(logical	or)	returns	its	first	argument
if	is	different	than	null,	otherwise	returns	the	second	argument.

The	'!'	operator	will	return	null	if	the	given	value	to	negate	was	different	than
null,	or	a	value	different	than	null	if	the	given	value	was	null.

in	operator

exp:=	keyexp	'in'	tableexp

Tests	the	existence	of	a	slot	in	a	table.	Returns	true	if	keyexp	is	a	valid	key	in
tableexp

local	t=
{
				foo="I'm	foo",
				[123]="I'm	not	foo"
}

if("foo"	in	t)	dostuff("yep");
if(123	in	t)	dostuff();
	 	 	 	

instanceof	operator

exp:=	instanceexp	'instanceof'	classexp

Tests	if	a	class	instance	is	an	instance	of	a	certain	class.	Returns	true	if
instanceexp	is	an	instance	of	classexp.

typeof	operator

exp:=	'typeof'	exp

returns	the	type	name	of	a	value	as	string.

local	a={},b="squirrel"
print(typeof	a);	//will	print	"table"
print(typeof	b);	//will	print	"string"		
	 	 	 	

comma	operator

exp:=	exp	','	exp

The	comma	operator	evaluates	two	expression	left	to	right,	the	result	of	the
operator	is	the	result	of	the	expression	on	the	right;	the	result	of	the	left
expression	is	discarded.

local	j=0,k=0;
for(local	i=0;	i<10;	i++	,	j++)
{
	 k	=	i	+	j;
}
local	a,k;
a	=	(k=1,k+2);	//a	becomes	3	 	
	 	 	 	

Bitwise	Operators

exp:=	'exp'	op	'exp'
exp	:=	'~'	exp
	 	 	 	

Squirrel	supports	the	standard	c-like	bit	wise	operators	&,|,^,~,<<,>>	plus	the
unsigned	right	shift	operator	>>>.	The	unsigned	right	shift	works	exactly	like	the
normal	right	shift	operator(>>)	except	for	treating	the	left	operand	as	an
unsigned	integer,	so	is	not	affected	by	the	sign.	Those	operators	only	work	on
integers	values,	passing	of	any	other	operand	type	to	these	operators	will	cause
an	exception.

Operators	precedence
-,~,!,typeof	,++,-- highest
/,	*,	% ...
+,	- 	
<<,	>>,>>> 	
<,	<=,	>,	>= 	
==,	!=,	<=> 	
& 	
^ 	

| 	
&&,	in 	
|| 	
?: 	
+=,=,-= ...
,(comma	operator) lowest

Table	constructor

tslots	:=	(‘id’	‘=’	exp	|	‘[‘	exp	‘]’	‘=’	exp)	[‘,’]
exp	:=	‘{’	[tslots]	‘}’
	 	 	

Creates	a	new	table.

local	a={}	//create	an	empty	table	 	 	 	
	 	 	

A	table	constructor	can	also	contain	slots	declaration;	With	the	syntax:

id	=	exp	[',']

a	new	slot	with	id	as	key	and	exp	as	value	is	created

local	a=
{
				slot1="I'm	the	slot	value"
}
	 	 	

An	alternative	syntax	can	be

'['	exp1	']'	=	exp2	[',']

A	new	slot	with	exp1	as	key	and	exp2	as	value	is	created

local	a=
{

				[1]="I'm	the	value"
}
	 	 	

both	syntaxes	can	be	mixed

local	table=
{
				a=10,
				b="string",
				[10]={},
				function	bau(a,b)
				{
								return	a+b;
				}
}
	 	 	

The	comma	between	slots	is	optional.

Table	with	JSON	syntax

Since	Squirrel	3.0	is	possible	to	declare	a	table	using	JSON	syntax(see
http://www.wikipedia.org/wiki/JSON).

the	following	JSON	snippet:

local	x	=	{
		"id":	1,
		"name":	"Foo",
		"price":	123,
		"tags":	["Bar","Eek"]
}
								

is	equivalent	to	the	following	squirrel	code:

local	x	=	{
		id	=	1,
		name	=	"Foo",

		price	=	123,
		tags	=	["Bar","Eek"]
}
							

clone

exp:=	‘clone’	exp

Clone	performs	shallow	copy	of	a	table,	array	or	class	instance	(copies	all	slots
in	the	new	object	without	recursion).	If	the	source	table	has	a	delegate,	the	same
delegate	will	be	assigned	as	delegate	(not	copied)	to	the	new	table	(see
Delegation).

After	the	new	object	is	ready	the	“_cloned”	meta	method	is	called	(see
Metamethods).

When	a	class	instance	is	cloned	the	constructor	is	not	invoked(initializations
must	rely	on	_cloned	instead

Array	constructor

exp	:=	‘[’	[explist]	‘]’

Creates	a	new	array.

a	<-	[]	//creates	an	empty	array
	 	 	

arrays	can	be	initialized	with	values	during	the	construction

a	<-	[1,"string!",[],{}]	//creates	an	array	with	4	elements
	 	 	

Tables

Tables	are	associative	containers	implemented	as	pairs	of	key/value	(called	slot);
values	can	be	any	possible	type	and	keys	any	type	except	'null'.	Tables	are
squirrel's	skeleton,	delegation	and	many	other	features	are	all	implemented
through	this	type;	even	the	environment,	where	global	variables	are	stored,	is	a
table	(known	as	root	table).

Construction

Tables	are	created	through	the	table	constructor	(see	Table	constructor)

Slot	creation

Adding	a	new	slot	in	a	existing	table	is	done	through	the	"new	slot"	operator	'<-';
this	operator	behaves	like	a	normal	assignment	except	that	if	the	slot	does	not
exists	it	will	be	created.

local	a={}
	 	 	

The	following	line	will	cause	an	exception	because	the	slot	named	'newslot'	does
not	exist	in	the	table	‘a’

a.newslot	=	1234
	 	 	

this	will	succeed:

a.newslot	<-	1234;
	 	 	

or

a[1]	<-	"I'm	the	value	of	the	new	slot";
	 	 	

Slot	deletion

exp:=	delete	derefexp

Deletion	of	a	slot	is	done	through	the	keyword	delete;	the	result	of	this
expression	will	be	the	value	of	the	deleted	slot.

a	<-	{
				test1=1234
				deleteme="now"
}

delete	a.test1
print(delete	a.deleteme);	//this	will	print	the	string	"now"
	 	 	

Arrays

An	array	is	a	sequence	of	values	indexed	by	a	integer	number	from	0	to	the	size
of	the	array	minus	1.	Arrays	elements	can	be	obtained	through	their	index.

local	a=[“I’m	a	string”,	123]
print(typeof	a[0])	//prints	"string"
print(typeof	a[1])	//prints	"integer"		 	
	 	

Resizing,	insertion,	deletion	of	arrays	and	arrays	elements	is	done	through	a	set
of	standard	functions	(see	built-in	functions).

Functions

Functions	are	first	class	values	like	integer	or	strings	and	can	be	stored	in	table
slots,	local	variables,	arrays	and	passed	as	function	parameters.	Functions	can	be
implemented	in	Squirrel	or	in	a	native	language	with	calling	conventions
compatible	with	ANSI	C.

Function	declaration

Functions	are	declared	through	the	function	expression

local	a=	function(a,b,c)	{return	a+b-c;}		
	 	 	

or	with	the	syntactic	sugar

function	ciao(a,b,c)
{
				return	a+b-c;
}	 	
	 	 	

that	is	equivalent	to

this.ciao	<-	function(a,b,c)
{
				return	a+b-c;
}
	 	 	

a	local	function	can	be	declared	with	this	syntactic	sugar

								
local	function	tuna(a,b,c)
{
				return	a+b-c;
}
	 	 	
						

that	is	equivalent	to

								
local	tuna	=	function(a,b,c)
{
				return	a+b-c;
}
	 	 	
						

is	also	possible	to	declare	something	like

T	<-	{}
function	T::ciao(a,b,c)
{
				return	a+b-c;
}

//that	is	equivalent	to	write

T.ciao	<-	function(a,b,c)
{
				return	a+b-c;
}

//or

T	<-	{
	 function	ciao(a,b,c)
	 {
	 	 return	a+b-c;
	 }
}
	 	 	

Default	Paramaters
Squirrel's	functions	can	have	default	parameters.

A	function	with	default	parameters	is	declared	as	follows:

								
function	test(a,b,c	=	10,	d	=	20)
{
	
}
								
								

when	the	function	test	is	invoked	and	the	parameter	c	or	d	are	not	specified,	the
VM	autometically	assigns	the	default	value	to	the	unspecified	parameter.	A
default	parameter	can	be	any	valid	squirrel	expression.	The	expression	is
evaluated	at	runtime.

Function	with	variable	number	of	paramaters
Squirrel's	functions	can	have	variable	number	of	parameters(varargs	functions).

A	vararg	function	is	declared	by	adding	three	dots	(`...´)	at	the	end	of	its
parameter	list.

When	the	function	is	called	all	the	extra	parameters	will	be	accessible	through
the	array	called	vargv,	that	is	passed	as	implicit	parameter.

vargv	is	a	regular	squirrel	array	and	can	be	used	accordingly.

						
function	test(a,b,...)
{
	 for(local	i	=	0;	i<	vargv.len();	i++)
	 {
	 	 ::print("varparam	"+i+"	=	"+vargv[i]+"\n");
	 }
		foreach(i,val	in	vargv)
	 {
	 	 ::print("varparam	"+i+"	=	"+val+"\n");
	 }
}

test("goes	in	a","goes	in	b",0,1,2,3,4,5,6,7,8);
	 	 	 		

Function	calls

exp:=	derefexp	‘(‘	explist	‘)’

The	expression	is	evaluated	in	this	order:	derefexp	after	the	explist	(arguments)
and	at	the	end	the	call.

Every	function	call	in	Squirrel	passes	the	environment	object	‘this’	as	hidden
parameter	to	the	called	function.	The	‘this’	parameter	is	the	object	where	the
function	was	indexed	from.

If	we	call	a	function	with	this	syntax

table.foo(a)
	 	 	

the	environment	object	passed	to	foo	will	be	‘table’

foo(x,y)	//	equivalent	to	this.foo(x,y)
	 	 	

The	environment	object	will	be	‘this’	(the	same	of	the	caller	function).

Binding	an	environment	to	a	function

while	by	default	a	squirrel	function	call	passes	as	environment	object	'this',	the
object	where	the	function	was	indexed	from.	However,	is	also	possible	to
statically	bind	an	evironment	to	a	closure	using	the	built-in	method
closure.bindenv(env_obj).	The	method	bindenv()	returns	a	new	instance	of	a
closure	with	the	environment	bound	to	it.	When	an	environment	object	is	bound
to	a	function,	every	time	the	function	is	invoked,	its	'this'	parameter	will	always
be	the	previously	bound	environent.	This	mechanism	is	useful	to	implement
callbacks	systems	similar	to	C#	delegates.

Note
The	closure	keeps	a	weak	reference	to	the	bound	environmet	object,
because	of	this	if	the	object	is	deleted,	the	next	call	to	the	closure

will	result	in	a	null	environment	object.

Lambda	expressions

exp	:=	'@'	'('	paramlist	')'	exp

Lambda	expressions	are	a	synctactic	sugar	to	quickly	define	a	function	that
consists	of	a	single	expression.	This	feature	comes	handy	when	functional
programming	patterns	are	applied,	like	map/reduce	or	passing	a	compare	method
to	array.sort().

here	a	lambda	expression

								local	myexp	=	@(a,b)	a	+	b

that	is	equivalent	to

								local	myexp	=	function(a,b)	{	return	a	+	b;	}

a	more	useful	usage	could	be

								local	arr	=	[2,3,5,8,3,5,1,2,6];
								arr.sort(@(a,b)	a	<=>	b);
								arr.sort(@(a,b)	-(a	<=>	b));

that	could	have	been	written	as

								local	arr	=	[2,3,5,8,3,5,1,2,6];
								arr.sort(function(a,b)	{	return	a	<=>	b;	});
								arr.sort(function(a,b)	{	return	-(a	<=>	b);	});

other	than	being	limited	to	a	single	expression	lambdas	support	all	features	of
regular	functions.	in	fact	are	implemented	as	a	compile	time	feature.

Free	variables

A	free	variable	is	a	variable	external	from	the	function	scope	as	is	not	a	local
variable	or	parameter	of	the	function.	Free	variables	reference	a	local	variable
from	a	outer	scope.	In	the	following	example	the	variables	'testy',	'x'	and	'y'	are
bound	to	the	function	'foo'.

local	x=10,y=20
local	testy=“I’m	testy”

function	foo(a,b)
{
				::print(testy);
				return	a+b+x+y;
}
	 	 	

A	program	can	read	or	write	a	free	variable.

Tail	recursion

Tail	recursion	is	a	method	for	partially	transforming	a	recursion	in	a	program
into	an	iteration:	it	applies	when	the	recursive	calls	in	a	function	are	the	last
executed	statements	in	that	function	(just	before	the	return).	If	this	happenes	the
squirrel	interpreter	collapses	the	caller	stack	frame	before	the	recursive	call;
because	of	that	very	deep	recursions	are	possible	without	risk	of	a	stack
overflow.

function	loopy(n)
{
				if(n>0){
								::print(“n=”+n+”\n”);
								return	loopy(n-1);
				}
}

loopy(1000);
	 	 	

Classes

Squirrel	implements	a	class	mechanism	similar	to	languages	like	Java/C++/etc...
however	because	of	its	dynamic	nature	it	differs	in	several	aspects.	Classes	are
first	class	objects	like	integer	or	strings	and	can	be	stored	in	table	slots	local
variables,	arrays	and	passed	as	function	parameters.

Class	declaration

A	class	object	is	created	through	the	keyword	'class'	.	The	class	object	follows
the	same	declaration	syntax	of	a	table(see	tables)	with	the	only	difference	of
using	';'	as	optional	separator	rather	than	','.

For	instance:

class	Foo	{
	 //constructor
	 constructor(a)
	 {
	 	 testy	=	["stuff",1,2,3,a];
	 }
	 //member	function
	 function	PrintTesty()
	 {
	 	 foreach(i,val	in	testy)
	 	 {
	 	 	 ::print("idx	=	"+i+"	=	"+val+"	\n");
	 	 }
	 }
	 //property
	 testy	=	null;
	
}

the	previous	code	examples	is	a	syntactic	sugar	for:

Foo	<-	class	{
	 //constructor

	 constructor(a)
	 {
	 	 testy	=	["stuff",1,2,3,a];
	 }
	 //member	function
	 function	PrintTesty()
	 {
	 	 foreach(i,val	in	testy)
	 	 {
	 	 	 ::print("idx	=	"+i+"	=	"+val+"	\n");
	 	 }
	 }
	 //property
	 testy	=	null;
	
}

in	order	to	emulate	namespaces,	is	also	possible	to	declare	something	like	this

//just	2	regular	nested	tables
FakeNamespace	<-	{
	 Utils	=	{}
}

class	FakeNamespace.Utils.SuperClass	{
	 constructor()
	 {
	 	 ::print("FakeNamespace.Utils.SuperClass")
	 }
	 function	DoSomething()
	 {
	 	 ::print("DoSomething()")
	 }
}

function	FakeNamespace::Utils::SuperClass::DoSomethingElse()
{
	 ::print("FakeNamespace::Utils::SuperClass::DoSomethingElse()")
}

local	testy	=	FakeNamespace.Utils.SuperClass();
testy.DoSomething();
testy.DoSomethingElse();

After	its	declaration,	methods	or	properties	can	be	added	or	modified	by
following	the	same	rules	that	apply	to	a	table(operator	<-	and	=).

//adds	a	new	property
Foo.stuff	<-	10;

//modifies	the	default	value	of	an	existing	property
Foo.testy	=	"I'm	a	string";

//adds	a	new	method
function	Foo::DoSomething(a,b)
{
	 return	a+b;
}

After	a	class	is	instantiated	is	no	longer	possible	to	add	new	properties	however
is	possible	to	add	or	replace	methods.

Static	variables
Squirrel's	classes	support	static	member	variables.	A	static	variable	shares	its
value	between	all	instances	of	the	class.	Statics	are	declared	by	prefixing	the
variable	declaration	with	the	keyword	static;	the	declaration	must	be	in	the	class
body.

Note
Statics	are	read-only.

class	Foo	{
	 constructor()
	 {
	 	 //..stuff
	 }
	 name	=	"normal	variable";
	 //static	variable

	 static	classname	=	"The	class	name	is	foo";
};

Class	attributes
Classes	allow	to	associate	attributes	to	it's	members.	Attributes	are	a	form	of
metadata	that	can	be	used	to	store	application	specific	informations,	like
documentations	strings,	properties	for	IDEs,	code	generators	etc...	Class
attributes	are	declared	in	the	class	body	by	preceding	the	member	declaration
and	are	delimited	by	the	symbol	</	and	/>.	Here	an	example:

class	Foo	</	test	=	"I'm	a	class	level	attribute"	/>{
	 </	test	=	"freakin	attribute"	/>	//attributes	of	PrintTesty
	 function	PrintTesty()
	 {
	 	 foreach(i,val	in	testy)
	 	 {
	 	 	 ::print("idx	=	"+i+"	=	"+val+"	\n");
	 	 }
	 }
	 </	flippy	=	10	,	second	=	[1,2,3]	/>	//attributes	of	testy
	 testy	=	null;
	
}

Attributes	are,	matter	of	fact,	a	table.	Squirrel	uses	</	/>	syntax	instead	of	curly
brackets	{}	for	the	attribute	declaration	to	increase	readability.

This	means	that	all	rules	that	apply	to	tables	apply	to	attributes.

Attributes	can	be	retrieved	through	the	built-in	function
classobj.getattributes(membername)	(see	built-in	functions).	and	can	be
modified/added	through	the	built-in	function
classobj.setattributes(membername,val).

the	following	code	iterates	through	the	attributes	of	all	Foo	members.

foreach(member,val	in	Foo)
{
	 ::print(member+"\n");

	 local	attr;
	 if((attr	=	Foo.getattributes(member))	!=	null)	{
	 	 foreach(i,v	in	attr)
	 	 {
	 	 	 ::print("\t"+i+"	=	"+(typeof	v)+"\n");
	 	 }
	 }
	 else	{
	 	 ::print("\t<no	attributes>\n")
	 }
}

Class	instances

The	class	objects	inherits	several	of	the	table's	feature	with	the	difference	that
multiple	instances	of	the	same	class	can	be	created.	A	class	instance	is	an	object
that	share	the	same	structure	of	the	table	that	created	it	but	holds	is	own	values.
Class	instantiation	uses	function	notation.	A	class	instance	is	created	by	calling	a
class	object.	Can	be	useful	to	imagine	a	class	like	a	function	that	returns	a	class
instance.

//creates	a	new	instance	of	Foo
local	inst	=	Foo();	

When	a	class	instance	is	created	its	member	are	initialized	with	the	same	value
specified	in	the	class	declaration.	The	values	are	copied	verbatim,	no	cloning	is
performed	even	if	the	value	is	a	container	or	a	class	instances.

Note
FOR	C#	and	Java	programmers:

Squirrel	doesn't	clone	member's	default	values	nor	executes	the
member	declaration	for	each	instace(as	C#	or	java).	So	consider	this
example:

class	Foo	{
		myarray	=	[1,2,3]
		mytable	=	{}
}

local	a	=	Foo();
local	b	=	Foo();

In	the	snippet	above	both	instances	will	refer	to	the	same	array	and
same	table.To	archieve	what	a	C#	or	Java	programmer	would
exepect,	the	following	approach	should	be	taken.

class	Foo	{
		myarray	=	null
		mytable	=	null
		constructor()
		{
				myarray	=	[1,2,3]
				mytable	=	{}
		}
}

local	a	=	Foo();
local	b	=	Foo();

When	a	class	defines	a	method	called	'constructor',	the	class	instantiation
operation	will	automatically	invoke	it	for	the	newly	created	instance.	The
constructor	method	can	have	parameters,	this	will	impact	on	the	number	of
parameters	that	the	instantiation	operation	will	require.	Constructors,	as	normal
functions,	can	have	variable	number	of	parameters	(using	the	parameter	...).

class	Rect	{
	 constructor(w,h)
	 {
	 	 width	=	w;
	 	 height	=	h;	 	
	 }
	 x	=	0;
	 y	=	0;
	 width	=	null;
	 height	=	null;

}

//Rect's	constructor	has	2	parameters	so	the	class	has	to	be	'called'
//with	2	parameters
local	rc	=	Rect(100,100);
	

After	an	instance	is	created,	its	properties	can	be	set	or	fetched	following	the
same	rules	that	apply	to	tables.	Methods	cannot	be	set.

Instance	members	cannot	be	removed.

The	class	object	that	created	a	certain	instance	can	be	retrieved	through	the	built-
in	function	instance.getclass()(see	built-in	functions)

The	operator	instanceof	tests	if	a	class	instance	is	an	instance	of	a	certain	class.

local	rc	=	Rect(100,100);
if(rc	instanceof	::Rect)	{
	 ::print("It's	a	rect");
}
else	{
	 ::print("It	isn't	a	rect");
}
	 	 	

Note
Since	Squirrel	3.x	instanceof	doesn't	throw	an	exception	if	the	left
expression	is	not	a	class,	it	simply	fails

Inheritance

Squirrel's	classes	support	single	inheritance	by	adding	the	keyword	extends,
followed	by	an	expression,	in	the	class	declaration.	The	syntax	for	a	derived
class	is	the	following:

class	SuperFoo	extends	Foo	{
	 function	DoSomething()	{
	 	 ::print("I'm	doing	something");

	 }
}
	 	 	

When	a	derived	class	is	declared,	Squirrel	first	copies	all	base's	members	in	the
new	class	then	proceeds	with	evaluating	the	rest	of	the	declaration.

A	derived	class	inherit	all	members	and	properties	of	it's	base,	if	the	derived
class	overrides	a	base	function	the	base	implementation	is	shadowed.	It's
possible	to	access	a	overridden	method	of	the	base	class	by	fetching	the	method
from	through	the	'base'	keyword.

Here	an	example:

class	Foo	{
	 function	DoSomething()	{
	 	 ::print("I'm	the	base");
	 }
};

class	SuperFoo	extends	Foo	{
	 //overridden	method
	 function	DoSomething()	{
	 	 //calls	the	base	method
	 	 base.DoSomething();
	 	 ::print("I'm	doing	something");
	 }
}
	 	 	

Same	rule	apply	to	the	constructor.	The	constructor	is	a	regular	function	(apart
from	being	automatically	invoked	on	contruction).

		
class	BaseClass	{
	 constructor()
	 {
	 	 ::print("Base	constructor\n");
	 }

}

class	ChildClass	extends	BaseClass	{
	 constructor()
	 {
	 	 base.constructor();
	 	 ::print("Child	constructor\n");
	 }
}

local	test	=	ChildClass();

The	base	class	of	a	derived	class	can	be	retrieved	through	the	built-in	method
getbase().

local	thebaseclass	=	SuperFoo.getbase();
	 	 	

Note	that	because	methods	do	not	have	special	protection	policies	when	calling
methods	of	the	same	objects,	a	method	of	a	base	class	that	calls	a	method	of	the
same	class	can	end	up	calling	a	overridden	method	of	the	derived	class.

A	method	of	a	base	class	can	be	explicitly	invoked	by	a	method	of	a	derived
class	though	the	keyword	base(as	in	base.MyMethod()).

class	Foo	{
	 function	DoSomething()	{
	 	 ::print("I'm	the	base");
	 }
	 function	DoIt()
	 {
	 	 DoSomething();
	 }
};

class	SuperFoo	extends	Foo	{
	 //overridden	method
	 function	DoSomething()	{
	 	 ::print("I'm	the	derived");

	 	
	 }
	 function	DoIt()	{
	 	 base.DoIt();
	 }
}

//creates	a	new	instance	of	SuperFoo
local	inst	=	SuperFoo();	

//prints	"I'm	the	derived"
inst.DoIt();

	 	 	

Metamethods

Class	instances	allow	the	customization	of	certain	aspects	of	the	their	semantics
through	metamethods(see	Metamethods).	For	C++	programmers:	"metamethods
behave	roughly	like	overloaded	operators".	The	metamethods	supported	by
classes	are	_add,	_sub,	_mul,	_div,	_unm,	_modulo,	_set,	_get,	_typeof,	_nexti,
_cmp,	_call,	_delslot,_tostring

Class	objects	instead	support	only	2	metamethods	:	_newmember	and	_inherited

the	following	example	show	how	to	create	a	class	that	implements	the
metamethod	_add.

class	Vector3	{
	 constructor(...)
	 {
	 	 if(vargv.len()	>=	3)	{
	 	 	 x	=	vargv[0];
	 	 	 y	=	vargv[1];
	 	 	 z	=	vargv[2];
	 	 }
	 }
	 function	_add(other)

	 {
	 	 return	::Vector3(x+other.x,y+other.y,z+other.z);
	 }
	
	 x	=	0;
	 y	=	0;
	 z	=	0;
}

local	v0	=	Vector3(1,2,3)
local	v1	=	Vector3(11,12,13)
local	v2	=	v0	+	v1;
::print(v2.x+","+v2.y+","+v2.z+"\n");

Since	version	2.1,	classes	support	2	metamethods	_inherited	and	_newmember.
_inherited	is	invoked	when	a	class	inherits	from	the	one	that	implements
_inherited.	_newmember	is	invoked	for	each	member	that	is	added	to	the	class(at
declaration	time).

Generators

A	function	that	contains	a	yield	statement	is	called	‘generator	function’.	When	a
generator	function	is	called,	it	does	not	execute	the	function	body,	instead	it
returns	a	new	suspended	generator.	The	returned	generator	can	be	resumed
through	the	resume	statement	while	it	is	alive.	The	yield	keyword,	suspends	the
execution	of	a	generator	and	optionally	returns	the	result	of	an	expression	to	the
function	that	resumed	the	generator.	The	generator	dies	when	it	returns,	this	can
happen	through	an	explicit	return	statement	or	by	exiting	the	function	body;	If	an
unhandled	exception	(or	runtime	error)	occurs	while	a	generator	is	running,	the
generator	will	automatically	die.	A	dead	generator	cannot	be	resumed	anymore.

function	geny(n)
{
				for(local	i=0;i<n;i+=1)
								yield	i;
				return	null;
}

local	gtor=geny(10);
local	x;
while(x=resume	gtor)	print(x+”\n”);
	 	

the	output	of	this	program	will	be

0
1
2
3
4
5
6
7
8
9
	 	

generators	can	also	be	iterated	using	the	foreach	statement.	When	a	generator	is
evaluated	by	foreach,	the	generator	will	be	resumed	for	each	iteration	until	it
returns.	The	value	returned	by	the	return	statement	will	be	ignored.

Note
A	suspended	generator	will	hold	a	strong	reference	to	all	the	values
stored	in	it's	local	variables	except	the	this	object	that	is	only	a	weak
reference.	A	running	generator	hold	a	strong	reference	also	to	the
this	object.

Constants	&	Enumerations

Squirrel	allows	to	bind	constant	values	to	an	identifier	that	will	be	evaluated
compile-time.	This	is	archieved	though	constants	and	enumarations.

Constants

Constants	bind	a	specific	value	to	an	indentifier.	Constants	are	similar	to	global
values,	except	that	they	are	evaluated	compile	time	and	their	value	cannot	be
changed.

constants	values	can	only	be	integers,	floats	or	string	literals.	No	expression	are
allowed.	are	declared	with	the	following	syntax.

										
const	foobar	=	100;
const	floatbar	=	1.2;
const	stringbar	=	"I'm	a	contant	string";
										
								

constants	are	always	globally	scoped,	from	the	moment	they	are	declared,	any
following	code	can	reference	them.	Constants	will	shadow	any	global	slot	with
the	same	name(the	global	slot	will	remain	visible	by	using	the	::	syntax).

									
local	x	=	foobar	*	2;
								
								

Enumerations

As	Constants,	Enumerations	bind	a	specific	value	to	a	name.	Enumerations	are
also	evaluated	compile	time	and	their	value	cannot	be	changed.

An	enum	declaration	introduces	a	new	enumeration	into	the	program.
Enumerations	values	can	only	be	integers,	floats	or	string	literals.	No	expression
are	allowed.

								
enum	Stuff	{
		first,	//this	will	be	0
		second,	//this	will	be	1
		third	//this	will	be	2
}
								
								

or

enum	Stuff	{
		first	=	10
		second	=	"string"
		third	=	1.2
}

	

An	enum	value	is	accessed	in	a	manner	that's	similar	to	accessing	a	static	class
member.	The	name	of	the	member	must	be	qualified	with	the	name	of	the
enumeration,	for	example	Stuff.second.	Enumerations	will	shadow	any	global
slot	with	the	same	name(the	global	slot	will	remain	visible	by	using	the	::
syntax).

										
local	x	=	Stuff.first	*	2;

								

Implementation	notes

Enumerations	and	Contants	are	a	compile-time	feature.	Only	integers,	string	and
floats	can	be	declared	as	const/enum;	No	expressions	are	allowed(because	they
would	have	to	be	evaluated	compile	time).	When	a	const	or	an	enum	is	declared,
it	is	added	compile	time	to	the	consttable.	This	table	is	stored	in	the	VM	shared
state	and	is	shared	by	the	VM	and	all	its	threads.	The	consttable	is	a	regular
squirrel	table;	In	the	same	way	as	the	roottable	it	can	be	modified	runtime.	You

can	access	the	consttable	through	the	built-in	function	getconsttable()	and	also
change	it	through	the	built-in	function	setconsttable()

here	some	example:

										
//create	a	constant
getconsttable()["something"]	<-	10"
//create	an	enumeration
getconsttable()["somethingelse"]	<-	{	a	=	"10",	c	=	"20",	d	=	"200"};
//deletes	the	constant
delete	getconsttable()["something"]
//deletes	the	enumeration
delete	getconsttable()["somethingelse"]
								
								

This	system	allows	to	procedurally	declare	constants	and	enumerations,	it	is	also
possible	to	assign	any	squirrel	type	to	a	constant/enumeration(function,classes
etc...).	However	this	will	make	serialization	of	a	code	chunk	impossible.

Threads

Squirrel	supports	cooperative	threads(also	known	as	coroutines).	A	cooperative
thread	is	a	subroutine	that	can	suspended	in	mid-execution	and	provide	a	value
to	the	caller	without	returning	program	flow,	then	its	execution	can	be	resumed
later	from	the	same	point	where	it	was	suspended.	At	first	look	a	Squirrel	thread
can	be	confused	with	a	generator,	in	fact	their	behaviour	is	quite	similar.
However	while	a	generator	runs	in	the	caller	stack	and	can	suspend	only	the
local	routine	stack	a	thread	has	its	own	execution	stack,	global	table	and	error
handler;	This	allows	a	thread	to	suspend	nested	calls	and	have	it's	own	error
policies.

Using	threads

Threads	are	created	through	the	built-in	function	'newthread(func)';	this	function
gets	as	parameter	a	squirrel	function	and	bind	it	to	the	new	thread	objecs(will	be
the	thread	body).	The	returned	thread	object	is	initially	in	'idle'	state.	the	thread
can	be	started	with	the	function	'threadobj.call()';	the	parameters	passed	to	'call'
are	passed	to	the	thread	function.

A	thread	can	be	be	suspended	calling	the	function	suspend(),	when	this	happens
the	function	that	wokeup(or	started)	the	thread	returns	(If	a	parametrer	is	passed
to	suspend()	it	will	be	the	return	value	of	the	wakeup	function	,	if	no	parameter
is	passed	the	return	value	will	be	null).	A	suspended	thread	can	be	resumed
calling	the	funtion	'threadobj.wakeup',	when	this	happens	the	function	that
suspended	the	thread	will	return(if	a	parameter	is	passed	to	wakeup	it	will	be	the
return	value	of	the	suspend	function,	if	no	parameter	is	passed	the	return	value
will	be	null).

A	thread	terminates	when	its	main	function	returns	or	when	an	unhandled
exception	occurs	during	its	execution.

function	coroutine_test(a,b)
{
	 ::print(a+"	"+b+"\n");
	 local	ret	=	::suspend("suspend	1");
	 ::print("the	coroutine	says	"+ret+"\n");
	 ret	=	::suspend("suspend	2");

	 ::print("the	coroutine	says	"+ret+"\n");
	 ret	=	::suspend("suspend	3");
	 ::print("the	coroutine	says	"+ret+"\n");
	 return	"I'm	done"
}

local	coro	=	::newthread(coroutine_test);

local	susparam	=	coro.call("test","coroutine");	//starts	the	coroutine

local	i	=	1;
do
{
	 ::print("suspend	passed	("+susparam+")\n")
	 susparam	=	coro.wakeup("ciao	"+i);
	 ++i;
}while(coro.getstatus()=="suspended")

::print("return	passed	("+susparam+")\n")
	 	

the	result	of	this	program	will	be

test	coroutine
suspend	passed	(suspend	1)
the	coroutine	says	ciao	1
suspend	passed	(suspend	2)
the	coroutine	says	ciao	2
suspend	passed	(suspend	3)
the	coroutine	says	ciao	3
return	passed	(I'm	done).
	 	

the	following	is	an	interesting	example	of	how	threads	and	tail	recursion	can	be
combined.

	 	
function	state1()
{

	 ::suspend("state1");
	 return	state2();	//tail	call
}

function	state2()
{
	 ::suspend("state2");
	 return	state3();	//tail	call
}

function	state3()
{
	 ::suspend("state3");
	 return	state1();	//tail	call
}

local	statethread	=	::newthread(state1)

::print(statethread.call()+"\n");

for(local	i	=	0;	i	<	10000;	i++)
	 ::print(statethread.wakeup()+"\n");

Weak	References

The	weak	references	allows	the	programmers	to	create	references	to	objects
without	influencing	the	lifetime	of	the	object	itself.	In	squirrel	Weak	references
are	first-class	objects	created	through	the	built-in	method	obj.weakref().	All
types	except	null	implement	the	weakref()	method;	however	in	bools,integers
and	float	the	method	simply	returns	the	object	itself(this	because	this	types	are
always	passed	by	value).	When	a	weak	references	is	assigned	to	a	container
(table	slot,array,class	or	instance)	is	treated	differently	than	other	objects;	When
a	container	slot	that	hold	a	weak	reference	is	fetched,	it	always	returns	the	value
pointed	by	the	weak	reference	instead	of	the	weak	reference	object.	This	allow
the	programmer	to	ignore	the	fact	that	the	value	handled	is	weak.	When	the
object	pointed	by	weak	reference	is	destroyed,	the	weak	reference	is
automatically	set	to	null.

local	t	=	{}
local	a	=	["first","second","third"]
//creates	a	weakref	to	the	array	and	assigns	it	to	a	table	slot
t.thearray	<-	a.weakref();
	 	 	

The	table	slot	'thearray'	contains	a	weak	reference	to	an	array.	The	following	line
prints	"first",	because	tables(and	all	other	containers)	always	return	the	object
pointed	by	a	weak	ref

print(t.thearray[0]);
	 	 	

the	only	strong	reference	to	the	array	is	owned	by	the	local	variable	'a',	so
because	the	following	line	assigns	a	integer	to	'a'	the	array	is	destroyed.

a	=	123;
	 	 	

When	an	object	pointed	by	a	weak	ref	is	destroyed	the	weak	ref	is	automatically
set	to	null,	so	the	following	line	will	print	"null".

::print(typeof(t.thearray))
	 	 	

Handling	weak	references	explicitly

If	a	weak	reference	is	assigned	to	a	local	variable,	then	is	treated	as	any	other
value.

local	t	=	{}
local	weakobj	=	t.weakref();
	 	 	

the	following	line	prints	"weakref".

::print(typeof(weakobj))
	 	 	

the	object	pointed	by	the	weakref	can	be	obtained	through	the	built-in	method
weakref.ref().

The	following	line	prints	"table".

::print(typeof(weakobj.ref()))
	 	 	

Delegation

Squirrel	supports	implicit	delegation.	Every	table	or	userdata	can	have	a	parent
table	(delegate).	A	parent	table	is	a	normal	table	that	allows	the	definition	of
special	behaviors	for	his	child.	When	a	table	(or	userdata)	is	indexed	with	a	key
that	doesn’t	correspond	to	one	of	its	slots,	the	interpreter	automatically	delegates
the	get	(or	set)	operation	to	its	parent.

		
Entity	<-	{
}

function	Entity::DoStuff()
{
				::print(_name);
}

local	newentity	=	{
				_name=”I’m	the	new	entity”
}
newentity.setdelegate(Entity)

newentity.DoStuff();	//prints	“I’m	the	new	entity”
	 	

The	delegate	of	a	table	can	be	retreived	through	built-in	method
table.getdelegate().

local	thedelegate	=	newentity.getdelegate();
	 	

Metamethods

Metamethods	are	a	mechanism	that	allows	the	customization	of	certain	aspects
of	the	language	semantics.	Those	methods	are	normal	functions	placed	in	a	table
parent(delegate)	or	class	declaration;	Is	possible	to	change	many	aspect	of	a
table/class	instance	behavior	by	just	defining	a	metamethod.	Class	objects(not
instances)	supports	only	2	metamethods	_newmember,_inherited.

For	example	when	we	use	relational	operators	other	than	‘==’	on	2	tables,	the
VM	will	check	if	the	table	has	a	method	in	his	parent	called	‘_cmp’	if	so	it	will
call	it	to	determine	the	relation	between	the	tables.

		
local	comparable={
				_cmp	=	function	(other)
				{
								if(name<other.name)return	–1;
								if(name>other.name)return	1;
								return	0;
				}
}

local	a={	name="Alberto"	}.setdelegate(comparable);
local	b={	name="Wouter"	}.setdelegate(comparable);

if(a>b)
				print("a>b")
else
				print("b<=a");

for	classes	the	previous	code	become:

class	Comparable	{
	 constructor(n)
	 {
	 	 name	=	n;
	 }
	 function	_cmp(other)

	 {
	 	 if(name<other.name)	return	-1;
	 	 if(name>other.name)	return	1;
	 	 return	0;
	 }
	 name	=	null;
}

local	a	=	Comparable("Alberto");
local	b	=	Comparable("Wouter");

if(a>b)
				print("a>b")
else
				print("b<=a");

_set

invoked	when	the	index	idx	is	not	present	in	the	object	or	in	its	delegate	chain.
_set	must	'throw	null'	to	notify	that	a	key	wasn't	found	but	the	there	were	not
runtime	errors(clean	failure).	This	allows	the	program	to	defferentieate	between
a	runtime	error	and	a	'index	not	found'.

function	_set(idx,val)	//returns	val

_get

invoked	when	the	index	idx	is	not	present	in	the	object	or	in	its	delegate	chain.
_get	must	'throw	null'	to	notify	that	a	key	wasn't	found	but	the	there	were	not
runtime	errors(clean	failure).	This	allows	the	program	to	defferentieate	between
a	runtime	error	and	a	'index	not	found'.

function	_get(idx)	//return	the	fetched	values

_newslot

invoked	when	a	script	tries	to	add	a	new	slot	in	a	table.

function	_newslot(key,value)	//returns	val

if	the	slot	already	exists	in	the	target	table	the	method	will	not	be	invoked	also	if
the	“new	slot”	operator	is	used.

_delslot

invoked	when	a	script	deletes	a	slot	from	a	table.

if	the	method	is	invoked	squirrel	will	not	try	to	delete	the	slot	himself

function	_delslot(key)

_add

the	+	operator

function	_add(op)	//returns	this+op

_sub

the	–	operator	(like	_add)

_mul

the	*	operator	(like	_add)

_div

the	/	operator	(like	_add)

_modulo

the	%	operator	(like	_add)

_unm

the	unary	minus	operator

function	_unm()

_typeof

invoked	by	the	typeof	operator	on	tables	,userdata	and	class	instances

function	_typeof()	//returns	the	type	of	this	as	string

_cmp

invoked	to	emulate	the	<	>	<=	>=	operators

function	_cmp(other)

returns	an	integer:

>0 if	this	>	other
0 if	this	==	other
<0 if	this	<	other

_call

invoked	when	a	table,	userdata	or	class	instance	is	called

function	_call(original_this,params…)

_cloned

invoked	when	a	table	or	class	instance	is	cloned(in	the	cloned	table)

function	_cloned(original)

_nexti

invoked	when	a	userdata	or	class	instance	is	iterated	by	a	foreach	loop

function	_nexti(previdx)

if	previdx==null	it	means	that	it	is	the	first	iteration.	The	function	has	to	return

the	index	of	the	‘next’	value.

_tostring

invoked	when	during	string	conacatenation	or	when	the	print	function	prints	a
table,	instance	or	userdata.	The	method	is	also	invoked	by	the	sq_tostring()	api

function	_tostring()

must	return	a	string	representation	of	the	object.

_inherited

invoked	when	a	class	object	inherits	from	the	class	implementing	_inherited	the
this	contains	the	new	class.

function	_inherited(attributes)

return	value	is	ignored.

_newmember

invoked	for	each	member	declared	in	a	class	body(at	declaration	time).

function	_newmember(index,value,attributes,isstatic)

if	the	function	is	implemented,	members	will	not	be	added	to	the	class.

Built-in	functions

The	squirrel	virtual	machine	has	a	set	of	built	utility	functions.

Global	symbols

array(size,[fill])

create	and	returns	array	of	a	specified	size.if	the	optional	parameter	fill	is
specified	its	value	will	be	used	to	fill	the	new	array's	slots.	If	the	fill	paramter
is	omitted	null	is	used	instead.

seterrorhandler(func)

sets	the	runtime	error	handler

callee()

returns	the	currently	running	closure

setdebughook(hook_func)

sets	the	debug	hook

enabledebuginfo(enable)

enable/disable	the	debug	line	information	generation	at	compile	time.	enable	!=
null	enables	.	enable	==	null	disables.

getroottable()

returns	the	root	table	of	the	VM.

setroottable(table)

sets	the	root	table	of	the	VM.	And	returns	the	previous	root	table.

getconsttable()

returns	the	const	table	of	the	VM.

setconsttable(table)

sets	the	const	table	of	the	VM.	And	returns	the	previous	const	table.

assert(exp)

throws	an	exception	if	exp	is	null

print(x)

prints	x	in	the	standard	output

error(x)

prints	x	in	the	standard	error	output

compilestring(string,[buffername])

compiles	a	string	containing	a	squirrel	script	into	a	function	and	returns	it

local	compiledscript=compilestring("::print(\"ciao\")");
//run	the	script		 	 	
compiledscript();
	 	 	 	

collectgarbage()

runs	the	garbage	collector	and	returns	the	number	of	reference	cycles	found(and
deleted)	This	function	only	works	on	garbage	collector	builds.

resurrectunreachable()

runs	the	garbage	collector	and	returns	an	array	containing	all	unreachable	object
found.	If	no	unreachable	object	is	found,	null	is	returned	instead.	This	function	is
meant	to	help	debugging	reference	cycles.	This	function	only	works	on	garbage
collector	builds.

type(obj)

return	the	'raw'	type	of	an	object	without	invoking	the	metatmethod	'_typeof'.

getstackinfos(level)

returns	the	stack	informations	of	a	given	call	stack	level.	returns	a	table
formatted	as	follow:

{
	 func="DoStuff",	 //function	name
	
	 src="test.nut",	//source	file
	
	 line=10,	 	 //line	number
	
	 locals	=	{		 //a	table	containing	the	local	variables
	
	 	 a=10,
	 	
	 	 testy="I'm	a	string"
	 }
}
	 	 	 	

level	=	0	is	the	current	function,	level	=	1	is	the	caller	and	so	on.	If	the	stack
level	doesn't	exist	the	function	returns	null.

newthread(threadfunc)

creates	a	new	cooperative	thread	object(coroutine)	and	returns	it

versionnumber

integer	values	describing	the	version	of	VM	and	compiler.	eg.	for	Squirrel	3.0.1
this	value	will	be	301

version

string	values	describing	the	version	of	VM	and	compiler.

charsize

size	in	bytes	of	the	internal	VM	rapresentation	for	characters(1	for	ASCII	builds

2	for	UNICODE	builds).

intsize

size	in	bytes	of	the	internal	VM	rapresentation	for	integers(4	for	32bits	builds	8
for	64bits	builds).

floatsize

size	in	bytes	of	the	internal	VM	rapresentation	for	floats(4	for	single	precision
builds	8	for	double	precision	builds).

Default	delegates

Except	null	and	userdata	every	squirrel	object	has	a	default	delegate	containing	a
set	of	functions	to	manipulate	and	retrieve	information	from	the	object	itself.

Integer

tofloat()

convert	the	number	to	float	and	returns	it

tostring()

converts	the	number	to	string	and	returns	it

tointeger()

returns	the	value	of	the	integer(dummy	function)

tochar()

returns	a	string	containing	a	single	character	rapresented	by	the	integer.

weakref()

dummy	function,	returns	the	integer	itself.

Float

tofloat()

returns	the	value	of	the	float(dummy	function)

tointeger()

converts	the	number	to	integer	and	returns	it

tostring()

converts	the	number	to	string	and	returns	it

tochar()

returns	a	string	containing	a	single	character	rapresented	by	the	integer	part	of
the	float.

weakref()

dummy	function,	returns	the	float	itself.

Bool

tofloat()

returns	1.0	for	true	0.0	for	false

tointeger()

returns	1	for	true	0	for	false

tostring()

returns	"true"	for	true	"false"	for	false

weakref()

dummy	function,	returns	the	bool	itself.

String

len()

returns	the	string	length

tointeger()

converts	the	string	to	integer	and	returns	it

tofloat()

converts	the	string	to	float	and	returns	it

tostring()

returns	the	string(dummy	function)

slice(start,[end])

returns	a	section	of	the	string	as	new	string.	Copies	from	start	to	the	end	(not
included).	If	start	is	negative	the	index	is	calculated	as	length	+	start,	if	end	is
negative	the	index	is	calculated	as	length	+	end.	If	end	is	omitted	end	is	equal	to
the	string	length.

find(substr,[startidx])

search	a	sub	string(substr)	starting	from	the	index	startidx	and	returns	the	index
of	its	first	occurrence.	If	startidx	is	omitted	the	search	operation	starts	from	the
beginning	of	the	string.	The	function	returns	null	if	substr	is	not	found.

tolower()

returns	a	lowercase	copy	of	the	string.

toupper()

returns	a	uppercase	copy	of	the	string.

weakref()

returns	a	weak	reference	to	the	object.

Table

len()

returns	the	number	of	slots	contained	in	a	table

rawget(key)

tries	to	get	a	value	from	the	slot	‘key’	without	employing	delegation

rawset(key,val)

sets	the	slot	‘key’	with	the	value	‘val’	without	employing	delegation.	If	the	slot
does	not	exists	,	it	will	be	created.

rawdelete()

deletes	the	slot	key	without	emplying	delegetion	and	retunrs	his	value.	if	the	slo
does	not	exists	returns	always	null.

rawin(key)

returns	true	if	the	slot	‘key’	exists.	the	function	has	the	same	eddect	as	the
operator	'in'	but	does	not	employ	delegation.

weakref()

returns	a	weak	reference	to	the	object.

tostring()

tries	to	invoke	the	_tostring	metamethod,	if	failed.	returns	"(table	:	pointer)".

clear()

removes	all	the	slot	from	the	table

setdelegate(table)

sets	the	delegate	of	the	table,	to	remove	a	delegate	'null'	must	be	passed	to	the
function.	The	function	returns	the	table	itself	(eg.	a.setdelegate(b)	in	this	case	'a'

is	the	return	value).

getdelegate()

returns	the	table's	delegate	or	null	if	no	delegate	was	set.

Array

len()

returns	the	length	of	the	array

append(val)

appends	the	value	‘val’	at	the	end	of	the	array

push(val)

appends	the	value	‘val’	at	the	end	of	the	array

extend(array)

Extends	the	array	by	appending	all	the	items	in	the	given	array.

pop()

removes	a	value	from	the	back	of	the	array	and	returns	it.

top()

returns	the	value	of	the	array	with	the	higher	index

insert(idx,val)

inserst	the	value	‘val’	at	the	position	‘idx’	in	the	array

remove(idx)

removes	the	value	at	the	position	‘idx’	in	the	array

resize(size,[fill])

resizes	the	array,	if	the	optional	parameter	fill	is	specified	its	value	will	be	used
to	fill	the	new	array's	slots(if	the	size	specified	is	bigger	than	the	previous	size)	.
If	the	fill	paramter	is	omitted	null	is	used	instead.

sort([compare_func])

sorts	the	array.	a	custom	compare	function	can	be	optionally	passed.The	function
prototype	as	to	be	the	following.

function	custom_compare(a,b)
{
	 if(a>b)	return	1
	 else	if(a<b)	return	-1
	 return	0;
}
	 	 	 	 	

a	more	compact	version	of	a	custom	compare	can	be	written	using	a	lambda
expression	and	the	operator	<=>

arr.sort(@(a,b)	a	<=>	b);
								

reverse()

reverse	the	elements	of	the	array	in	place

slice(start,[end])

returns	a	section	of	the	array	as	new	array.	Copies	from	start	to	the	end	(not
included).	If	start	is	negative	the	index	is	calculated	as	length	+	start,	if	end	is
negative	the	index	is	calculated	as	length	+	end.	If	end	is	omitted	end	is	equal	to
the	array	length.

weakref()

returns	a	weak	reference	to	the	object.

tostring()

returns	the	string	"(array	:	pointer)".

clear()

removes	all	the	items	from	the	array

map(func(a))

creates	a	new	array	of	the	same	size.	for	each	element	in	the	original	array
invokes	the	function	'func'	and	assigns	the	return	value	of	the	function	to	the
corresponding	element	of	the	newly	created	array.

apply(func(a))

for	each	element	in	the	array	invokes	the	function	'func'	and	replace	the	original
value	of	the	element	with	the	return	value	of	the	function.

reduce(func(prevval,curval))

Reduces	an	array	to	a	single	value.	For	each	element	in	the	array	invokes	the
function	'func'	passing	the	initial	value	(or	value	from	the	previous	callback	call)
and	the	value	of	the	current	element.	the	return	value	of	the	function	is	then	used
as	'prevval'	for	the	next	element.	Given	an	array	of	length	0,	returns	null.	Given
an	array	of	length	1,	returns	the	first	element.	Given	an	array	with	2	or	more
elements	calls	the	function	with	the	first	two	elements	as	the	parameters,	gets
that	result,	then	calls	the	function	with	that	result	and	the	third	element,	gets	that
result,	calls	the	function	with	that	result	and	the	fourth	parameter	and	so	on	until
all	element	have	been	processed.	Finally	returns	the	return	value	of	the	last
invocation	of	func.

filter(func(index,val))

Creates	a	new	array	with	all	elements	that	pass	the	test	implemented	by	the
provided	function.	In	detail,	it	creates	a	new	array,	for	each	element	in	the
original	array	invokes	the	specified	function	passing	the	index	of	the	element
and	it's	value;	if	the	function	returns	'true',	then	the	value	of	the	corresponding
element	is	added	on	the	newly	created	array.

find(value)

Performs	a	linear	search	for	the	value	in	the	array.	Returns	the	index	of	the	value
if	it	was	found	null	otherwise.

Function

call(_this,args…)

calls	the	function	with	the	specified	environment	object(’this’)	and	parameters

pcall(_this,args…)

calls	the	function	with	the	specified	environment	object(’this’)	and	parameters,
this	function	will	not	invoke	the	error	callback	in	case	of	failure(pcall	stays	for
'protected	call')

acall(array_args)

calls	the	function	with	the	specified	environment	object(’this’)	and	parameters.
The	function	accepts	an	array	containing	the	parameters	that	will	be	passed	to
the	called	function.Where	array_args	has	to	contain	the	required	'this'	object	at
the	[0]	position.

pacall(array_args)

calls	the	function	with	the	specified	environment	object(’this’)	and	parameters.
The	function	accepts	an	array	containing	the	parameters	that	will	be	passed	to
the	called	function.Where	array_args	has	to	contain	the	required	'this'	object	at
the	[0]	position.	This	function	will	not	invoke	the	error	callback	in	case	of
failure(pacall	stays	for	'protected	array	call')

weakref()

returns	a	weak	reference	to	the	object.

tostring()

returns	the	string	"(closure	:	pointer)".

bindenv(env)

clones	the	function(aka	closure)	and	bind	the	enviroment	object	to	it(table,class
or	instance).	the	this	parameter	of	the	newly	create	function	will	always	be	set	to
env.	Note	that	the	created	function	holds	a	weak	reference	to	its	environment
object	so	cannot	be	used	to	control	its	lifetime.

getinfos()

returns	a	table	containing	informations	about	the	function,	like	parameters,	name
and	source	name;

		
//the	data	is	returned	as	a	table	is	in	form
//pure	squirrel	function
{
		native	=	false
		name	=	"zefuncname"
		src	=	"/somthing/something.nut"
		parameters	=	["a","b","c"]
		defparams	=	[1,"def"]
		varargs	=	2
}
//native	C	function
{
		native	=	true
		name	=	"zefuncname"
		paramscheck	=	2
		typecheck	=	[83886082,83886384]	//this	is	the	typemask	(see	C	defines	OT_INTEGER,OT_FLOAT	etc...)
}

		

Class

instance()

returns	a	new	instance	of	the	class.	this	function	does	not	invoke	the	instance
constructor.	The	constructor	must	be	explicitly	called(eg.
class_inst.constructor(class_inst)).

getattributes(membername)

returns	the	attributes	of	the	specified	member.	if	the	parameter	member	is	null
the	function	returns	the	class	level	attributes.

setattributes(membername,attr)

sets	the	attribute	of	the	specified	member	and	returns	the	previous	attribute
value.	if	the	parameter	member	is	null	the	function	sets	the	class	level	attributes.

rawin(key)

returns	true	if	the	slot	‘key’	exists.	the	function	has	the	same	eddect	as	the
operator	'in'	but	does	not	employ	delegation.

weakref()

returns	a	weak	reference	to	the	object.

tostring()

returns	the	string	"(class	:	pointer)".

rawget(key)

tries	to	get	a	value	from	the	slot	‘key’	without	employing	delegation

rawset(key,val)

sets	the	slot	‘key’	with	the	value	‘val’	without	employing	delegation.	If	the	slot
does	not	exists	,	it	will	be	created.

newmember(key,val,[attrs],[bstatic])

sets/adds	the	slot	‘key’	with	the	value	‘val’	and	attributes	'attrs'	and	if	present
invokes	the	_newmember	metamethod.	If	bstatic	is	true	the	slot	will	be	added	as
static.	If	the	slot	does	not	exists	,	it	will	be	created.

rawnewmember(key,val,[attrs],[bstatic])

sets/adds	the	slot	‘key’	with	the	value	‘val’	and	attributes	'attrs'.If	bstatic	is	true

the	slot	will	be	added	as	static.	If	the	slot	does	not	exists	,	it	will	be	created.	It
doesn't	invoke	any	metamethod.

Class	Instance

getclass()

returns	the	class	that	created	the	instance.

rawin(key)

returns	true	if	the	slot	‘key’	exists.	the	function	has	the	same	eddect	as	the
operator	'in'	but	does	not	employ	delegation.

weakref()

returns	a	weak	reference	to	the	object.

tostring()

tries	to	invoke	the	_tostring	metamethod,	if	failed.	returns	"(insatnce	:	pointer)".

rawget(key)

tries	to	get	a	value	from	the	slot	‘key’	without	employing	delegation

rawset(key,val)

sets	the	slot	‘key’	with	the	value	‘val’	without	employing	delegation.	If	the	slot
does	not	exists	,	it	will	be	created.

Generator

getstatus()

returns	the	status	of	the	generator	as	string	:	“running”,	”dead”	or	”suspended”.

weakref()

returns	a	weak	reference	to	the	object.

tostring()

returns	the	string	"(generator	:	pointer)".

Thread

call(...)

starts	the	thread	with	the	specified	parameters

wakeup([wakeupval])

wakes	up	a	suspended	thread,	accepts	a	optional	parameter	that	will	be	used	as
return	value	for	the	function	that	suspended	the	thread(usually	suspend())

getstatus()

returns	the	status	of	the	thread	("idle","running","suspended")

weakref()

returns	a	weak	reference	to	the	object.

tostring()

returns	the	string	"(thread	:	pointer)".

getstackinfos(stacklevel)

returns	the	stack	frame	informations	at	the	given	stack	level	(0	is	the	current
function	1	is	the	caller	and	so	on).

Weak	Reference

ref()

returns	the	object	that	the	weak	reference	is	pointing	at,	null	if	the	object	that
was	point	at	was	destroyed.

weakref()

returns	a	weak	reference	to	the	object.

tostring()

returns	the	string	"(weakref	:	pointer)".

Chapter	3.	Embedding	Squirrel

This	section	describes	how	to	embed	Squirrel	in	a	host	application,	C	language
knowledge	is	required	to	understand	this	part	of	the	manual.

Because	of	his	nature	of	extension	language,	Squirrel’s	compiler	and	virtual
machine	are	implemented	as	C	library.	The	library	exposes	a	set	of	functions	to
compile	scripts,	call	functions,	manipulate	data	and	extend	the	virtual	machine.
All	declarations	needed	for	embedding	the	language	in	an	application	are	in	the
header	file	‘squirrel.h’.

Memory	management

Squirrel	uses	reference	counting	(RC)	as	primary	system	for	memory
management;	however,	the	virtual	machine	(VM)	has	an	auxiliary	mark	and
sweep	garbage	collector	that	can	be	invoked	on	demand.

There	are	2	possible	compile	time	options:

The	default	configuration	consists	in	RC	plus	a	mark	and	sweep	garbage
collector.	The	host	program	can	call	the	function	sq_collectgarbage()
and	perform	a	garbage	collection	cycle	during	the	program	execution.
The	garbage	collector	isn’t	invoked	by	the	VM	and	has	to	be	explicitly
called	by	the	host	program.

The	second	a	situation	consists	in	RC	only(define
NO_GARBAGE_COLLECTOR);	in	this	case	is	impossible	for	the	VM
to	detect	reference	cycles,	so	is	the	programmer	that	has	to	solve	them
explicitly	in	order	to	avoid	memory	leaks.

The	only	advantage	introduced	by	the	second	option	is	that	saves	2	additional
pointers	that	have	to	be	stored	for	each	object	in	the	default	configuration	with
garbage	collector(8	bytes	for	32	bits	systems).	The	types	involved	are:	tables,
arrays,	functions,	threads,	userdata	and	generators;	all	other	types	are	untouched.
These	options	do	not	affect	execution	speed.

Unicode

By	default	Squirrel	strings	are	plain	8-bits	ASCII	characters;	however	if	the
symbol	'SQUNICODE'	is	defined	the	VM,	compiler	and	API	will	use	16-bits
characters.

Squirrel	on	64	bits	architectures

Squirrel	can	be	compiled	on	64	bits	architectures	by	defining	'_SQ64'	in	the	C++
preprocessor.	This	flag	should	be	defined	in	any	project	that	includes	'squirrel.h'.

Userdata	alignment

Both	class	instances	and	userdatas	can	have	a	buffer	associated	to	them.	Squirrel
specifies	the	alignment(in	bytes)	through	the	peroprocessor	defining
'SQ_ALIGNMENT'.	By	default	SQ_ALIGNMENT	is	defined	as	4	for	32	bits
builds	and	8	for	64bits	builds	and	builds	that	use	64bits	floats.	It	is	possible	to
override	the	value	of	SQ_ALIGNMENT	respecting	the	following	rules.
SQ_ALIGNMENT	shall	be	less	than	or	equal	to	SQ_MALLOC	alignments,	and
it	shall	be	power	of	2.

Note
This	only	applies	for	userdata	allocated	by	the	VM,	specified	via
sq_setclassudsize()	or	belonging	to	a	userdata	object.	userpointers
specified	by	the	user	are	not	affected	by	alignemnt	rules.

Stand-alone	VM	without	compiler

Squirrel's	VM	can	be	compiled	without	it's	compiler	by	defining
'NO_COMPILER'	in	the	C++	preprocessor.	When	'NO_COMPILER'	is	defined
all	function	related	to	the	compiler	(eg.	sq_compile)	will	fail.	Other	functions
that	conditionally	load	precompiled	bytecode	or	compile	a	file	(eg.	sqstd_dofile)
will	only	work	with	precompiled	bytecode.

Error	conventions

Most	of	the	functions	in	the	API	return	a	SQRESULT	value;	SQRESULT
indicates	if	a	function	completed	successfully	or	not.	The	macros
SQ_SUCCEEDED()	and	SQ_FAILED()	are	used	to	test	the	result	of	a	function.

if(SQ_FAILED(sq_getstring(v,-1,&s)))
				printf(“getstring	failed”);
	 	

Initializing	Squirrel

The	first	thing	that	a	host	application	has	to	do,	is	create	a	virtual	machine.	The
host	application	can	create	any	number	of	virtual	machines	through	the	function
sq_open().

Every	single	VM	has	to	be	released	with	the	function	sq_close()	when	it	is	not
needed	anymore.

int	main(int	argc,	char*	argv[])
{
				HSQUIRRELVM	v;
				v	=	sq_open(1024);	//creates	a	VM	with	initial	stack	size	1024
				
				//do	some	stuff	with	squirrel	here
				
				sq_close(v);
}
	 	

The	Stack

Squirrel	exchanges	values	with	the	virtual	machine	through	a	stack.	This
mechanism	has	been	inherited	from	the	language	Lua.	For	instance	to	call	a
Squirrel	function	from	C	it	is	necessary	to	push	the	function	and	the	arguments
in	the	stack	and	then	invoke	the	function;	also	when	Squirrel	calls	a	C	function
the	parameters	will	be	in	the	stack	as	well.

Stack	indexes

Many	API	functions	can	arbitrarily	refer	to	any	element	in	the	stack	through	an
index.	The	stack	indexes	follow	those	conventions:

1	is	the	stack	base

Negative	indexes	are	considered	an	offset	from	top	of	the	stack.	For
instance	–1	is	the	top	of	the	stack.

0	is	an	invalid	index

Here	an	example	(let’s	pretend	that	this	table	is	the	VM	stack)

STACK 	positive	index negative	index
"test" 	 4 -1(top)
1 	 3 -2
0.5 	 2 -3
"foo" 	 1(base) -4

In	this	case,	the	function	sq_gettop	would	return	4;

Stack	manipulation

The	API	offers	several	functions	to	push	and	retrieve	data	from	the	Squirrel
stack.

To	push	a	value	that	is	already	present	in	the	stack	in	the	top	position

void	sq_push(HSQUIRRELVM	v,SQInteger	idx);

To	pop	an	arbitrary	number	of	elements

void	sq_pop(HSQUIRRELVM	v,SQInteger	nelemstopop);

To	remove	an	element	from	the	stack

void	sq_remove(HSQUIRRELVM	v,SQInteger	idx);

To	retrieve	the	top	index	(and	size)	of	the	current	virtual	stack	you	must	call
sq_gettop

SQInteger	sq_gettop(HSQUIRRELVM	v);

To	force	the	stack	to	a	certain	size	you	can	call	sq_settop

void	sq_settop(HSQUIRRELVM	v,SQInteger	newtop);

If	the	newtop	is	bigger	than	the	previous	one,	the	new	posistions	in	the	stack	will
be	filled	with	null	values.

The	following	function	pushes	a	C	value	into	the	stack

void	sq_pushstring(HSQUIRRELVM	v,const	SQChar	*s,SQInteger	len);
void	sq_pushfloat(HSQUIRRELVM	v,SQFloat	f);
void	sq_pushinteger(HSQUIRRELVM	v,SQInteger	n);
void	sq_pushuserpointer(HSQUIRRELVM	v,SQUserPointer	p);
void	sq_pushbool(HSQUIRRELVM	v,SQBool	b);
	 	 	

this	function	pushes	a	null	into	the	stack

void	sq_pushnull(HSQUIRRELVM	v);

returns	the	type	of	the	value	in	a	arbitrary	position	in	the	stack

SQObjectType	sq_gettype(HSQUIRRELVM	v,SQInteger	idx);

the	result	can	be	one	of	the	following	values:

OT_NULL,OT_INTEGER,OT_FLOAT,OT_STRING,OT_TABLE,OT_ARRAY,OT_USERDATA,
OT_CLOSURE,OT_NATIVECLOSURE,OT_GENERATOR,OT_USERPOINTER,OT_BOOL,OT_INSTANCE,OT_CLASS,OT_WEAKREF

	 	 	 	

The	following	functions	convert	a	squirrel	value	in	the	stack	to	a	C	value

SQRESULT	sq_getstring(HSQUIRRELVM	v,SQInteger	idx,const	SQChar	**c);
SQRESULT	sq_getinteger(HSQUIRRELVM	v,SQInteger	idx,SQInteger	*i);
SQRESULT	sq_getfloat(HSQUIRRELVM	v,SQInteger	idx,SQFloat	*f);
SQRESULT	sq_getuserpointer(HSQUIRRELVM	v,SQInteger	idx,SQUserPointer	*p);
SQRESULT	sq_getuserdata(HSQUIRRELVM	v,SQInteger	idx,SQUserPointer	*p,SQUserPointer	*typetag);
SQRESULT	sq_getbool(HSQUIRRELVM	v,SQInteger	idx,SQBool	*p);
	 	 	

The	function	sq_cmp	compares	2	values	from	the	stack	and	returns	their	relation
(like	strcmp()	in	ANSI	C).

SQInteger	sq_cmp(HSQUIRRELVM	v);

Runtime	error	handling

When	an	exception	is	not	handled	by	Squirrel	code	with	a	try/catch	statement,	a
runtime	error	is	raised	and	the	execution	of	the	current	program	is	interrupted.	It
is	possible	to	set	a	call	back	function	to	intercept	the	runtime	error	from	the	host
program;	this	is	useful	to	show	meaningful	errors	to	the	script	writer	and	for
implementing	visual	debuggers.	The	following	API	call	pops	a	Squirrel	function
from	the	stack	and	sets	it	as	error	handler.

SQUIRREL_API	void	sq_seterrorhandler(HSQUIRRELVM	v);

The	error	handler	is	called	with	2	parameters,	an	environment	object	(this)	and	a
object.	The	object	can	be	any	squirrel	type.

Compiling	a	script

You	can	compile	a	Squirrel	script	with	the	function	sq_compile.

typedef	SQInteger	(*SQLEXREADFUNC)(SQUserPointer	userdata);

SQRESULT	sq_compile(HSQUIRRELVM	v,SQREADFUNC	read,SQUserPointer	p,
	 const	SQChar	*sourcename,SQBool	raiseerror);
	 	

In	order	to	compile	a	script	is	necessary	for	the	host	application	to	implement	a
reader	function	(SQLEXREADFUNC);	this	function	is	used	to	feed	the	compiler
with	the	script	data.	The	function	is	called	every	time	the	compiler	needs	a
character;	It	has	to	return	a	character	code	if	succeed	or	0	if	the	source	is
finished.

If	sq_compile	succeeds,	the	compiled	script	will	be	pushed	as	Squirrel	function
in	the	stack.

Note
In	order	to	execute	the	script,	the	function	generated	by	sq_compile()
has	to	be	called	through	sq_call()

Here	an	example	of	a	‘read’	function	that	read	from	a	file:

SQInteger	file_lexfeedASCII(SQUserPointer	file)
{
				int	ret;
				char	c;
				if((ret=fread(&c,sizeof(c),1,(FILE	*)file)>0))
								return	c;
				return	0;
}

int	compile_file(HSQUIRRELVM	v,const	char	*filename)
{
				FILE	*f=fopen(filename,”rb”);
				if(f)

				{
									sq_compile(v,file_lexfeedASCII,f,filename,1);
									fclose(f);
									return	1;
				}
				return	0;
}
	 	

When	the	compiler	fails	for	a	syntax	error	it	will	try	to	call	the	‘compiler	error
handler’;	this	function	must	be	declared	as	follow

typedef	void	(*SQCOMPILERERROR)(HSQUIRRELVM	/*v*/,const	SQChar	*	/*desc*/,const	SQChar	*
/*source*/,SQInteger	/*line*/,SQInteger	/*column*/);
	 	

and	can	be	set	with	the	following	API	call

void	sq_setcompilererrorhandler(HSQUIRRELVM	v,SQCOMPILERERROR	f);

Calling	a	function

To	call	a	squirrel	function	it	is	necessary	to	push	the	function	in	the	stack
followed	by	the	parameters	and	then	call	the	function	sq_call.	The	function	will
pop	the	parameters	and	push	the	return	value	if	the	last	sq_call	parameter	is	>0.

sq_pushroottable(v);
sq_pushstring(v,“foo”,-1);
sq_get(v,-2);	//get	the	function	from	the	root	table
sq_pushroottable(v);	//’this’	(function	environment	object)
sq_pushinteger(v,1);
sq_pushfloat(v,2.0);
sq_pushstring(v,”three”,-1);
sq_call(v,4,SQFalse);
sq_pop(v,2);	//pops	the	roottable	and	the	function
	 	

this	is	equivalent	to	the	following	Squirrel	code

foo(1,2.0,”three”);

If	a	runtime	error	occurs	(or	a	exception	is	thrown)	during	the	squirrel	code
execution	the	sq_call	will	fail.

Create	a	C	function

A	native	C	function	must	have	the	following	prototype:

typedef	SQInteger	(*SQFUNCTION)(HSQUIRRELVM);

The	parameters	is	an	handle	to	the	calling	VM	and	the	return	value	is	an	integer
respecting	the	following	rules:

1	if	the	function	returns	a	value

0	if	the	function	does	not	return	a	value

SQ_ERROR	runtime	error	is	thrown

In	order	to	obtain	a	new	callable	squirrel	function	from	a	C	function	pointer,	is
necessary	to	call	sq_newclosure()	passing	the	C	function	to	it;	the	new	Squirrel
function	will	be	pushed	in	the	stack.

When	the	function	is	called,	the	stackbase	is	the	first	parameter	of	the	function
and	the	top	is	the	last.	In	order	to	return	a	value	the	function	has	to	push	it	in	the
stack	and	return	1.

Function	parameters	are	in	the	stack	from	postion	1	('this')	to	n.	sq_gettop()	can
be	used	to	determinate	the	number	of	parameters.

If	the	function	has	free	variables,	those	will	be	in	the	stack	after	the	explicit
parameters	an	can	be	handled	as	normal	parameters.	Note	also	that	the	value
returned	bysq_gettop()	will	be	affected	by	free	variables.	sq_gettop()	will	return
the	number	of	parameters	plus	number	of	free	variables.

Here	an	example,	the	following	function	print	the	value	of	each	argument	and
return	the	number	of	arguments.

																		
SQInteger	print_args(HSQUIRRELVM	v)
{
				SQInteger	nargs	=	sq_gettop(v);	//number	of	arguments

				for(SQInteger	n=1;n<=nargs;n++)
				{
								printf("arg	%d	is	",n);
								switch(sq_gettype(v,n))
								{
												case	OT_NULL:
																printf("null");								
																break;
												case	OT_INTEGER:
																printf("integer");
																break;
												case	OT_FLOAT:
																printf("float");
																break;
												case	OT_STRING:
																printf("string");
																break;				
												case	OT_TABLE:
																printf("table");
																break;
												case	OT_ARRAY:
																printf("array");
																break;
												case	OT_USERDATA:
																printf("userdata");
																break;
												case	OT_CLOSURE:								
																printf("closure(function)");				
																break;
												case	OT_NATIVECLOSURE:
																printf("native	closure(C	function)");
																break;
												case	OT_GENERATOR:
																printf("generator");
																break;
												case	OT_USERPOINTER:
																printf("userpointer");
																break;
												case	OT_CLASS:

																printf("class");
																break;
												case	OT_INSTANCE:
																printf("instance");
																break;
												case	OT_WEAKREF:
																printf("weak	reference");
																break;
												default:
																return	sq_throwerror(v,"invalid	param");	//throws	an	exception
								}
				}
				printf("\n");
				sq_pushinteger(v,nargs);	//push	the	number	of	arguments	as	return	value
				return	1;	//1	because	1	value	is	returned
}
	 	

Here	an	example	of	how	to	register	a	function

SQInteger	register_global_func(HSQUIRRELVM	v,SQFUNCTION	f,const	char	*fname)
{
				sq_pushroottable(v);
				sq_pushstring(v,fname,-1);
				sq_newclosure(v,f,0,0);	//create	a	new	function
				sq_newslot(v,-3,SQFalse);	
				sq_pop(v,1);	//pops	the	root	table				
}
	 	

Tables	and	arrays	manipulation

A	new	table	is	created	calling	sq_newtable,	this	function	pushes	a	new	table	in
the	stack.

void	sq_newtable	(HSQUIRRELVM	v);

To	create	a	new	slot

SQRESULT	sq_newslot(HSQUIRRELVM	v,SQInteger	idx,SQBool	bstatic);

To	set	or	get	the	table	delegate

SQRESULT	sq_setdelegate(HSQUIRRELVM	v,SQInteger	idx);
SQRESULT	sq_getdelegate(HSQUIRRELVM	v,SQInteger	idx);
	 	 	 	

A	new	array	is	created	calling	sq_newarray,	the	function	pushes	a	new	array	in
the	stack;	if	the	parameters	size	is	bigger	than	0	the	elements	are	initialized	to
null.

void	sq_newarray	(HSQUIRRELVM	v,SQInteger	size);

To	append	a	value	to	the	back	of	the	array

SQRESULT	sq_arrayappend(HSQUIRRELVM	v,SQInteger	idx);

To	remove	a	value	from	the	back	of	the	array

SQRESULT	sq_arraypop(HSQUIRRELVM	v,SQInteger	idx,SQInteger	pushval);

To	resize	the	array

SQRESULT	sq_arrayresize(HSQUIRRELVM	v,SQInteger	idx,SQInteger	newsize);

To	retrieve	the	size	of	a	table	or	an	array	you	must	use	sq_getsize()

SQInteger	sq_getsize(HSQUIRRELVM	v,SQInteger	idx);

To	set	a	value	in	an	array	or	table

SQRESULT	sq_set(HSQUIRRELVM	v,SQInteger	idx);

To	get	a	value	from	an	array	or	table

SQRESULT	sq_get(HSQUIRRELVM	v,SQInteger	idx);

To	get	or	set	a	value	from	a	table	without	employ	delegation

SQRESULT	sq_rawget(HSQUIRRELVM	v,SQInteger	idx);
SQRESULT	sq_rawset(HSQUIRRELVM	v,SQInteger	idx);
	 	 	 	

To	iterate	a	table	or	an	array

SQRESULT	sq_next(HSQUIRRELVM	v,SQInteger	idx);

Here	an	example	of	how	to	perform	an	iteration:

//push	your	table/array	here
sq_pushnull(v)		//null	iterator
while(SQ_SUCCEEDED(sq_next(v,-2)))
{
				//here	-1	is	the	value	and	-2	is	the	key
				
				sq_pop(v,2);	//pops	key	and	val	before	the	nex	iteration
}

sq_pop(v,1);	//pops	the	null	iterator
	 	 	 	

Userdata	and	UserPointers

Squirrel	allows	the	host	application	put	arbitrary	data	chunks	into	a	Squirrel
value,	this	is	possible	through	the	data	type	userdata.

SQUserPointer	sq_newuserdata	(HSQUIRRELVM	v,SQUnsignedInteger	size);

When	the	function	sq_newuserdata	is	called,	Squirrel	allocates	a	new	userdata
with	the	specified	size,	returns	a	pointer	to	his	payload	buffer	and	push	the	object
in	the	stack;	at	this	point	the	application	can	do	whatever	it	want	with	this
memory	chunk,	the	VM	will	automatically	take	cake	of	the	memory	deallocation
like	for	every	other	built-in	type.	A	userdata	can	be	passed	to	a	function	or	stored
in	a	table	slot.	By	default	Squirrel	cannot	manipulate	directly	userdata;	however
is	possible	to	assign	a	delegate	to	it	and	define	a	behavior	like	it	would	be	a
table.	Because	the	application	would	want	to	do	something	with	the	data	stored
in	a	userdata	object	when	it	get	deleted,	is	possible	to	assign	a	callback	that	will
be	called	by	the	VM	just	before	deleting	a	certain	userdata.	This	is	done	through
the	API	call	sq_setreleasehook.

typedef	SQInteger	(*SQRELEASEHOOK)(SQUserPointer,SQInteger	size);

void	sq_setreleasehook(HSQUIRRELVM	v,SQInteger	idx,SQRELEASEHOOK	hook);
	 	 	

Another	kind	of	userdata	is	the	userpointer;	this	type	is	not	a	memory	chunk	like
the	normal	userdata,	but	just	a	‘void*’	pointer.	It	cannot	have	a	delegate	and	is
passed	by	value,	so	pushing	a	userpointer	doesn’t	cause	any	memory	allocation.

void	sq_pushuserpointer(HSQUIRRELVM	v,SQUserPointer	p);

The	registry	table

The	registry	table	is	an	hidden	table	shared	between	vm	and	all	his	thread(friend
vms).	This	table	is	accessible	only	through	the	C	API	and	is	ment	to	be	an	utility
structure	for	native	C	library	implementation.	For	instance	the	sqstdlib(squirrel
standard	library)uses	it	to	store	configuration	and	shared	objects	delegates.	The
registry	is	accessible	through	the	API	call	sq_pushregistrytable.

void	sq_pushregistrytable(HSQUIRRELVM	v);

Mantaining	strong	references	to	Squirrel	values	from	the	C	API

Squirrel	allows	to	reference	values	through	the	C	API;	the	function
sq_getstackobj()	gets	a	handle	to	a	squirrel	object(any	type).	The	object	handle
can	be	used	to	control	the	lifetime	of	an	object	by	adding	or	removing	references
to	it(see	sq_addref()	and	sq_release()).	The	object	can	be	also	re-pushed	in	the
VM	stack	using	sq_pushobject().

HSQOBJECT	obj;

sq_resetobject(v,&obj)	//initialize	the	handle
sq_getstackobj(v,-2,&obj);	//retrieve	an	object	handle	from	the	pos	–2
sq_addref(v,&obj);	//adds	a	reference	to	the	object

…	//do	stuff

sq_pushobject(v,&obj);	//push	the	object	in	the	stack
sq_release(v,&obj);	//relese	the	object
	 	 	 	

Debug	Interface

The	squirrel	VM	exposes	a	very	simple	debug	interface	that	allows	to	easily
built	a	full	featured	debugger.	Through	the	functions	sq_setdebughook	and
sq_setnativedebughook	is	possible	in	fact	to	set	a	callback	function	that	will	be
called	every	time	the	VM	executes	an	new	line	of	a	script	or	if	a	function	get
called/returns.	The	callback	will	pass	as	argument	the	current	line	the	current
source	and	the	current	function	name	(if	any).

SQUIRREL_API	void	sq_setdebughook(HSQUIRRELVM	v);

or

SQUIRREL_API	void	sq_setnativedebughook(HSQUIRRELVM	v,SQDEBUGHOOK	hook);

The	following	code	shows	how	a	debug	hook	could	look	like(obviously	is
possible	to	implement	this	function	in	C	as	well).

function	debughook(event_type,sourcefile,line,funcname)
{
				local	fname=funcname?funcname:"unknown";
				local	srcfile=sourcefile?sourcefile:"unknown"
				switch	(event_type)	{
				case	'l':	//called	every	line(that	contains	some	code)
								::print("LINE	line	["	+	line	+	"]	func	["	+	fname	+	"]");
								::print("file	["	+	srcfile	+	"]\n");
	 	 break;
				case	'c':	//called	when	a	function	has	been	called
								::print("LINE	line	["	+	line	+	"]	func	["	+	fname	+	"]");
								::print("file	["	+	srcfile	+	"]\n");
	 	 break;
				case	'r':	//called	when	a	function	returns
								::print("LINE	line	["	+	line	+	"]	func	["	+	fname	+	"]");
								::print("file	["	+	srcfile	+	"]\n");
	 	 break;
	 }
}
	 	 	

The	parameter	event_type	can	be	'l'	,'c'	or	'r'	;	a	hook	with	a	'l'	event	is	called	for
each	line	that	gets	executed,	'c'	every	time	a	function	gets	called	and	'r'	every
time	a	function	returns.

A	full-featured	debugger	always	allows	displaying	local	variables	and	calls
stack.	The	call	stack	information	are	retrieved	through	sq_getstackinfos()

SQInteger	sq_stackinfos(HSQUIRRELVM	v,SQInteger	level,SQStackInfos	*si);

While	the	local	variables	info	through	sq_getlocal()

SQInteger	sq_getlocal(HSQUIRRELVM	v,SQUnsignedInteger	level,SQUnsignedInteger	nseq);

In	order	to	receive	line	callbacks	the	scripts	have	to	be	compiled	with	debug
infos	enabled	this	is	done	through	sq_enabledebuginfo();

void	sq_enabledebuginfo(HSQUIRRELVM	v,	SQInteger	debuginfo);

Chapter	4.	API	Reference

Virtual	Machine

sq_close

void	sq_close(HSQUIRRELVM	v);

releases	a	squirrel	VM	and	all	related	friend	VMs

parameters:
HSQUIRRELVM	v

the	target	VM

sq_geterrorfunc

SQPRINTFUNCTION	sq_geterrorfunc(HSQUIRRELVM	v);

returns	the	current	error	function	of	the	given	Virtual	machine.	(see
sq_setprintfunc())

parameters:
HSQUIRRELVM	v

the	target	VM

return:

a	pointer	to	a	SQPRINTFUNCTION,	or	NULL	if	no	function	has	been	set.	

sq_getforeignptr

SQUserPointer	sq_getforeignptr(HSQUIRRELVM	v);

Returns	the	foreign	pointer	of	a	VM	instance.

parameters:
HSQUIRRELVM	v

the	target	VM

return:

the	current	VMs	foreign	pointer.	

sq_getprintfunc

SQPRINTFUNCTION	sq_getprintfunc(HSQUIRRELVM	v);

returns	the	current	print	function	of	the	given	Virtual	machine.	(see
sq_setprintfunc())

parameters:
HSQUIRRELVM	v

the	target	VM

return:

a	pointer	to	a	SQPRINTFUNCTION,	or	NULL	if	no	function	has	been	set.	

sq_getversion

SQInteger	sq_getversion();

returns	the	version	number	of	the	vm.

return:

version	number	of	the	vm(as	in	SQUIRREL_VERSION_NUMBER).	

sq_getvmstate

SQInteger	sq_getvmstate(HSQUIRRELVM	v);

returns	the	execution	state	of	a	virtual	machine

parameters:
HSQUIRRELVM	v

the	target	VM

return:

the	state	of	the	vm	encoded	as	integer	value.	The	following	constants	are
defined:	SQ_VMSTATE_IDLE,	SQ_VMSTATE_RUNNING,
SQ_VMSTATE_SUSPENDED.	

sq_move

void	sq_move(HSQUIRRELVM	dest,	HSQUIRRELVM	src,	SQInteger	idx);

pushes	the	object	at	the	position	'idx'	of	the	source	vm	stack	in	the	destination
vm	stack.

parameters:
HSQUIRRELVM	dest

the	destination	VM

HSQUIRRELVM	src

the	source	VM

SQInteger	idx

the	index	in	the	source	stack	of	the	value	that	has	to	be	moved

sq_newthread

HSQUIRRELVM	sq_newthread(HSQUIRRELVM	friendvm,
SQInteger	initialstacksize);

creates	a	new	vm	friendvm	of	the	one	passed	as	first	parmeter	and	pushes	it	in	its
stack	as	"thread"	object.

parameters:
HSQUIRRELVM	friendvm

a	friend	VM

SQInteger	initialstacksize

the	size	of	the	stack	in	slots(number	of	objects)

return:

a	pointer	to	the	new	VM.	

remarks:

By	default	the	roottable	is	shared	with	the	VM	passed	as	first	parameter.	The
new	VM	lifetime	is	bound	to	the	"thread"	object	pushed	in	the	stack	and
behave	like	a	normal	squirrel	object.

sq_open

HSQUIRRELVM	sq_open(SQInteger	initialstacksize);

creates	a	new	instance	of	a	squirrel	VM	that	consists	in	a	new	execution	stack.

parameters:
SQInteger	initialstacksize

the	size	of	the	stack	in	slots(number	of	objects)

return:

an	handle	to	a	squirrel	vm	

remarks:

the	returned	VM	has	to	be	released	with	sq_releasevm

sq_pushconsttable

void	sq_pushconsttable(HSQUIRRELVM	v);

pushes	the	current	const	table	in	the	stack

parameters:
HSQUIRRELVM	v

the	target	VM

sq_pushregistrytable

void	sq_pushregistrytable(HSQUIRRELVM	v);

pushes	the	registry	table	in	the	stack

parameters:
HSQUIRRELVM	v

the	target	VM

sq_pushroottable

void	sq_pushroottable(HSQUIRRELVM	v);

pushes	the	current	root	table	in	the	stack

parameters:
HSQUIRRELVM	v

the	target	VM

sq_setconsttable

void	sq_setconsttable(HSQUIRRELVM	v);

pops	a	table	from	the	stack	and	set	it	as	const	table

parameters:
HSQUIRRELVM	v

the	target	VM

sq_seterrorhandler

void	sq_seterrorhandler(HSQUIRRELVM	v);

pops	from	the	stack	a	closure	or	native	closure	an	sets	it	as	runtime-error
handler.

parameters:
HSQUIRRELVM	v

the	target	VM

remarks:

the	error	handler	is	shared	by	friend	VMs

sq_setforeignptr

void	sq_setforeignptr(HSQUIRRELVM	v,	SQUserPointer	p);

Sets	the	foreign	pointer	of	a	certain	VM	instance.	The	foreign	pointer	is	an
arbitrary	user	defined	pointer	associated	to	a	VM	(by	default	is	value	id	0).	This
pointer	is	ignored	by	the	VM.

parameters:
HSQUIRRELVM	v

the	target	VM

SQUserPointer	p

The	pointer	that	has	to	be	set

sq_setprintfunc

void	sq_setprintfunc(HSQUIRRELVM	v,	SQPRINTFUNCTION	printfunc,
SQPRINTFUNCTION	errorfunc);

sets	the	print	function	of	the	virtual	machine.	This	function	is	used	by	the	built-
in	function	'::print()'	to	output	text.

parameters:
HSQUIRRELVM	v

the	target	VM

SQPRINTFUNCTION	printfunc

a	pointer	to	the	print	func	or	NULL	to	disable	the	output.

SQPRINTFUNCTION	errorfunc

a	pointer	to	the	error	func	or	NULL	to	disable	the	output.

remarks:

the	print	func	has	the	following	prototype:	void	printfunc(HSQUIRRELVM
v,const	SQChar	*s,...)

sq_setroottable

void	sq_setroottable(HSQUIRRELVM	v);

pops	a	table	from	the	stack	and	set	it	as	root	table

parameters:
HSQUIRRELVM	v

the	target	VM

sq_suspendvm

HRESULT	sq_suspendvm(HSQUIRRELVM	v);

Suspends	the	execution	of	the	specified	vm.

parameters:
HSQUIRRELVM	v

the	target	VM

return:

an	SQRESULT(that	has	to	be	returned	by	a	C	function)	

remarks:

sq_result	can	only	be	called	as	return	expression	of	a	C	function.	The
function	will	fail	is	the	suspension	is	done	through	more	C	calls	or	in	a
metamethod.

eg.

SQInteger	suspend_vm_example(HSQUIRRELVM	v)
{
	 return	sq_suspendvm(v);
}
	 	 	 	

sq_wakeupvm

HRESULT	sq_wakeupvm(HSQUIRRELVM	v,	SQBool	resumedret,
SQBool	retval,	SQBool	raiseerror,	SQBool	throwerror);

Wake	up	the	execution	a	previously	suspended	virtual	machine.

parameters:
HSQUIRRELVM	v

the	target	VM

SQBool	resumedret

if	true	the	function	will	pop	a	value	from	the	stack	and	use	it	as	return
value	for	the	function	that	has	previously	suspended	the	virtual	machine.

SQBool	retval

if	true	the	function	will	push	the	return	value	of	the	function	that	suspend
the	excution	or	the	main	function	one.

SQBool	raiseerror

if	true,	if	a	runtime	error	occurs	during	the	execution	of	the	call,	the	vm
will	invoke	the	error	handler.

SQBool	throwerror

if	true,	the	vm	will	thow	an	exception	as	soon	as	is	resumed.	the	exception
payload	must	be	set	beforehand	invoking	sq_thowerror().

return:

an	HRESULT.	

Compiler

sq_compile

SQRESULT	sq_compile(HSQUIRRELVM	v,	HSQLEXREADFUNC	read,
SQUserPointer	p,	const	SQChar	*	sourcename,	SQBool	raiseerror);

compiles	a	squirrel	program;	if	it	succeeds,	push	the	compiled	script	as	function
in	the	stack.

parameters:
HSQUIRRELVM	v

the	target	VM

HSQLEXREADFUNC	read

a	pointer	to	a	read	function	that	will	feed	the	compiler	with	the	program.

SQUserPointer	p

a	user	defined	pointer	that	will	be	passed	by	the	compiler	to	the	read
function	at	each	invocation.

const	SQChar	*	sourcename

the	symbolic	name	of	the	program	(used	only	for	more	meaningful
runtime	errors)

SQBool	raiseerror

if	this	value	is	true	the	compiler	error	handler	will	be	called	in	case	of	an
error

return:

a	SQRESULT.	If	the	sq_compile	fails	nothing	is	pushed	in	the	stack.	

remarks:

in	case	of	an	error	the	function	will	call	the	function	set	by
sq_setcompilererrorhandler().

sq_compilebuffer

SQRESULT	sq_compilebuffer(HSQUIRRELVM	v,	const	SQChar*	s,
SQInteger	size,	const	SQChar	*	sourcename,	SQBool	raiseerror);

compiles	a	squirrel	program	from	a	memory	buffer;	if	it	succeeds,	push	the
compiled	script	as	function	in	the	stack.

parameters:
HSQUIRRELVM	v

the	target	VM

const	SQChar*	s

a	pointer	to	the	buffer	that	has	to	be	compiled.

SQInteger	size

size	in	characters	of	the	buffer	passed	in	the	parameter	's'.

const	SQChar	*	sourcename

the	symbolic	name	of	the	program	(used	only	for	more	meaningful
runtime	errors)

SQBool	raiseerror

if	this	value	true	the	compiler	error	handler	will	be	called	in	case	of	an
error

return:

a	SQRESULT.	If	the	sq_compilebuffer	fails	nothing	is	pushed	in	the	stack.	

remarks:

in	case	of	an	error	the	function	will	call	the	function	set	by
sq_setcompilererrorhandler().

sq_enabledebuginfo

void	sq_enabledebuginfo(HSQUIRRELVM	v,	SQBool	enable);

enable/disable	the	debug	line	information	generation	at	compile	time.

parameters:
HSQUIRRELVM	v

the	target	VM

SQBool	enable

if	true	enables	the	debug	info	generation,	if	==	0	disables	it.

remarks:

The	function	affects	all	threads	as	well.

sq_notifyallexceptions

void	sq_notifyallexceptions(HSQUIRRELVM	v,	SQBool	enable);

enable/disable	the	error	callback	notification	of	handled	exceptions.

parameters:
HSQUIRRELVM	v

the	target	VM

SQBool	enable

if	true	enables	the	error	callback	notification	of	handled	exceptions.

remarks:

By	default	the	VM	will	invoke	the	error	callback	only	if	an	exception	is	not
handled	(no	try/catch	traps	are	present	in	the	call	stack).	If	notifyallexceptions
is	enabled,	the	VM	will	call	the	error	callback	for	any	exception	even	if
between	try/catch	blocks.	This	feature	is	useful	for	implementing	debuggers.

sq_setcompilererrorhandler

void	sq_setcompilererrorhandler(HSQUIRRELVM	v,
SQCOMPILERERROR	f);

sets	the	compiler	error	handler	function

parameters:
HSQUIRRELVM	v

the	target	VM

SQCOMPILERERROR	f

A	pointer	to	the	error	handler	function

remarks:

if	the	parameter	f	is	NULL	no	function	will	be	called	when	a	compiler	error
occurs.	The	compiler	error	handler	is	shared	between	friend	VMs.

Stack	Operations

sq_cmp

SQInteger	sq_cmp(HSQUIRRELVM	v);

compares	2	object	from	the	stack	and	compares	them.

parameters:
HSQUIRRELVM	v

the	target	VM

return:

>	0	if	obj1>obj2
==	0	if	obj1==obj2
<	0	if	obj1<obj2

sq_gettop

SQInteger	sq_gettop(HSQUIRRELVM	v);

returns	the	index	of	the	top	of	the	stack

parameters:
HSQUIRRELVM	v

the	target	VM

return:

an	integer	representing	the	index	of	the	top	of	the	stack	

sq_pop

void	sq_pop(HSQUIRRELVM	v,	SQInteger	nelementstopop);

pops	n	elements	from	the	stack

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	nelementstopop

the	number	of	elements	to	pop

sq_poptop

void	sq_poptop(HSQUIRRELVM	v);

pops	1	object	from	the	stack

parameters:
HSQUIRRELVM	v

the	target	VM

sq_push

void	sq_push(HSQUIRRELVM	v,	SQInteger	idx);

pushes	in	the	stack	the	value	at	the	index	idx

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

the	index	in	the	stack	of	the	value	that	has	to	be	pushed

sq_remove

void	sq_remove(HSQUIRRELVM	v,	SQInteger	idx);

removes	an	element	from	an	arbitrary	position	in	the	stack

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

index	of	the	element	that	has	to	be	removed

sq_reservestack

SQRESULT	sq_reservestack(HSQUIRRELVM	v,	SQInteger	nsize);

ensure	that	the	stack	space	left	is	at	least	of	a	specified	size.If	the	stack	is	smaller
it	will	automatically	grow.	if	there's	a	memtamethod	currently	running	the
function	will	fail	and	the	stack	will	not	be	resized,	this	situatuation	has	to	be
considered	a	"stack	overflow".

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	nsize

required	stack	size

return:

a	SQRESULT	

sq_settop

void	sq_settop(HSQUIRRELVM	v,	SQInteger	v);

resize	the	stack,	if	new	top	is	bigger	then	the	current	top	the	function	will	push
nulls.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	v

the	new	top	index

Object	creation	and	handling

sq_bindenv

SQRESULT	sq_bindenv(HSQUIRRELVM	v,	SQInteger	idx);

pops	an	object	from	the	stack(must	be	a	table,instance	or	class)	clones	the
closure	at	position	idx	in	the	stack	and	sets	the	popped	object	as	environment	of
the	cloned	closure.	Then	pushes	the	new	cloned	closure	on	top	of	the	stack.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

index	of	the	target	closure

return:

a	SQRESULT	

remarks:

the	cloned	closure	holds	the	environment	object	as	weak	reference

sq_createinstance

SQRESULT	sq_createinstance(HSQUIRRELVM	v,	SQInteger	idx);

creates	an	instance	of	the	class	at	'idx'	position	in	the	stack.	The	new	class
instance	is	pushed	on	top	of	the	stack.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

index	of	the	target	class

return:

a	SQRESULT	

remarks:

the	function	doesn't	invoke	the	instance	contructor.	To	create	an	instance	and
automatically	invoke	its	contructor,	sq_call	must	be	used	instead.

sq_getbool

SQRESULT	sq_getbool(HSQUIRRELVM	v,	SQInteger	idx,	SQBool	*	b);

gets	the	value	of	the	bool	at	the	idx	position	in	the	stack.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

an	index	in	the	stack

SQBool	*	b

A	pointer	to	the	bool	that	will	store	the	value

return:

a	SQRESULT	

sq_getbyhandle

SQRESULT	sq_getbyhandle(HSQUIRRELVM	v,	SQInteger	idx,
HSQMEMBERHANDLE*	handle);

pushes	the	value	of	a	class	or	instance	member	using	a	member	handle	(see
sq_getmemberhandle)

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

an	index	in	the	stack	pointing	to	the	class

HSQMEMBERHANDLE*	handle

a	pointer	the	member	handle

return:

a	SQRESULT

sq_getclosureinfo

SQRESULT	sq_getclosureinfo(HSQUIRRELVM	v,	SQInteger	idx,
SQUnsignedInteger	*	nparams,	SQUnsignedInteger	*	nfreevars);

retrieves	number	of	parameters	and	number	of	freevariables	from	a	squirrel
closure.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

index	of	the	target	closure

SQUnsignedInteger	*	nparams

a	pointer	to	an	unsigned	integer	that	will	store	the	number	of	parameters

SQUnsignedInteger	*	nfreevars

a	pointer	to	an	unsigned	integer	that	will	store	the	number	of	free	variables

return:

an	SQRESULT	

sq_getclosurename

SQRESULT	sq_getclosurename(HSQUIRRELVM	v,	SQInteger	idx);

pushes	the	name	of	the	closure	at	poistion	idx	in	the	stack.	Note	that	the	name
can	be	a	string	or	null	if	the	closure	is	anonymous	or	a	native	closure	with	no
name	assigned	to	it.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

index	of	the	target	closure

return:

an	SQRESULT	

sq_getfloat

SQRESULT	sq_getfloat(HSQUIRRELVM	v,	SQInteger	idx,	SQFloat	*	f);

gets	the	value	of	the	float	at	the	idx	position	in	the	stack.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

an	index	in	the	stack

SQFloat	*	f

A	pointer	to	the	float	that	will	store	the	value

return:

a	SQRESULT	

sq_gethash

SQHash	sq_gethash(HSQUIRRELVM	v,	SQInteger	idx);

returns	the	hash	key	of	a	value	at	the	idx	position	in	the	stack.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

an	index	in	the	stack

return:

the	hash	key	of	the	value	at	the	position	idx	in	the	stack	

remarks:

the	hash	value	function	is	the	same	used	by	the	VM.

sq_getinstanceup

SQRESULT	sq_getinstanceup(HSQUIRRELVM	v,	SQInteger	idx,
SQUserPointer	*	up,	SQUSerPointer	typetag);

gets	the	userpointer	of	the	class	instance	at	position	idx	in	the	stack.	if	the
parameter	'typetag'	is	different	than	0,	the	function	checks	that	the	class	or	a	base
class	of	the	instance	is	tagged	with	the	specified	tag;	if	not	the	function	fails.	If
'typetag'	is	0	the	function	will	ignore	the	tag	check.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

an	index	in	the	stack

SQUserPointer	*	up

a	pointer	to	the	userpointer	that	will	store	the	result

SQUSerPointer	typetag

the	typetag	that	has	to	be	checked,	if	this	value	is	set	to	0	the	typetag	is
ignored.

return:

a	SQRESULT	

sq_getinteger

SQRESULT	sq_getinteger(HSQUIRRELVM	v,	SQInteger	idx,	SQInteger	*	i);

gets	the	value	of	the	integer	at	the	idx	position	in	the	stack.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

an	index	in	the	stack

SQInteger	*	i

A	pointer	to	the	integer	that	will	store	the	value

return:

a	SQRESULT	

sq_getmemberhandle

SQRESULT	sq_getmemberhandle(HSQUIRRELVM	v,	SQInteger	idx,
HSQMEMBERHANDLE*	handle);

pops	a	value	from	the	stack	and	uses	it	as	index	to	fetch	the	handle	of	a	class
member.	The	handle	can	be	later	used	to	set	or	get	the	member	value	using
sq_getbyhandle(),sq_setbyhandle().

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

an	index	in	the	stack	pointing	to	the	class

HSQMEMBERHANDLE*	handle

a	pointer	to	the	variable	that	will	store	the	handle

return:

a	SQRESULT

remarks:

This	method	works	only	with	classes	and	instances.	A	handle	retrieved
through	a	class	can	be	later	used	to	set	or	get	values	from	one	of	the	class
instances	and	vice-versa.	Handles	retrieved	from	base	classes	are	still	valid	in
derived	classes	and	respect	inheritance	rules.

sq_getscratchpad

SQChar	*	sq_getscratchpad(HSQUIRRELVM	v,	SQInteger	minsize);

returns	a	pointer	to	a	memory	buffer	that	is	at	least	as	big	as	minsize.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	minsize

the	requested	size	for	the	scratchpad	buffer

remarks:

the	buffer	is	valid	until	the	next	call	to	sq_getscratchpad

sq_getsize

SQObjectType	sq_getsize(HSQUIRRELVM	v,	SQInteger	idx);

returns	the	size	of	a	value	at	the	idx	position	in	the	stack,	if	the	value	is	a	class	or
a	class	instance	the	size	returned	is	the	size	of	the	userdata	buffer(see
sq_setclassudsize).

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

an	index	in	the	stack

return:

the	size	of	the	value	at	the	position	idx	in	the	stack	

remarks:

this	function	only	works	with	strings,arrays,tables,classes,instances	and
userdata	if	the	value	is	not	a	valid	type	types	the	function	will	return	–1.

sq_getstring

SQRESULT	sq_getstring(HSQUIRRELVM	v,	SQInteger	idx,	const	SQChar
**	c);

gets	a	pointer	to	the	string	at	the	idx	position	in	the	stack.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

an	index	in	the	stack

const	SQChar	**	c

a	pointer	to	the	pointer	that	will	point	to	the	string

return:

a	SQRESULT	

sq_getthread

SQRESULT	sq_getthread(HSQUIRRELVM	v,	SQInteger	idx,
HSQUIRRELVM*	v);

gets	a	a	pointer	to	the	thread	the	idx	position	in	the	stack.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

an	index	in	the	stack

HSQUIRRELVM*	v

A	pointer	to	the	variable	that	will	store	the	thread	pointer

return:

a	SQRESULT	

sq_gettype

SQObjectType	sq_gettype(HSQUIRRELVM	v,	SQInteger	idx);

returns	the	type	of	the	value	at	the	position	idx	in	the	stack

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

an	index	in	the	stack

return:

the	type	of	the	value	at	the	position	idx	in	the	stack	

sq_gettypetag

SQRESULT	sq_gettypetag(HSQUIRRELVM	v,	SQInteger	idx,	SQUserPointer
*	typetag);

gets	the	typetag	of	the	object(userdata	or	class)	at	position	idx	in	the	stack.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

an	index	in	the	stack

SQUserPointer	*	typetag

a	pointer	to	the	variable	that	will	store	the	tag

return:

a	SQRESULT	

remarks:

the	function	works	also	with	instances.	if	the	taget	object	is	an	instance,	the
typetag	of	it's	base	class	is	fetched.

sq_getuserdata

SQRESULT	sq_getuserdata(HSQUIRRELVM	v,	SQInteger	idx,	SQUserPointer
*	p,	SQUserPointer	*	typetag);

gets	a	pointer	to	the	value	of	the	userdata	at	the	idx	position	in	the	stack.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

an	index	in	the	stack

SQUserPointer	*	p

A	pointer	to	the	userpointer	that	will	point	to	the	userdata's	payload

SQUserPointer	*	typetag

A	pointer	to	a	SQUserPointer	that	will	store	the	userdata	tag(see
sq_settypetag).	The	parameter	can	be	NULL.

return:

a	SQRESULT	

sq_getuserpointer

SQRESULT	sq_getuserpointer(HSQUIRRELVM	v,	SQInteger	idx,
SQUserPointer	*	p);

gets	the	value	of	the	userpointer	at	the	idx	position	in	the	stack.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

an	index	in	the	stack

SQUserPointer	*	p

A	pointer	to	the	userpointer	that	will	store	the	value

return:

a	SQRESULT	

sq_newarray

void	sq_newarray(HSQUIRRELVM	v,	SQInteger	size);

creates	a	new	array	and	pushes	it	in	the	stack

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	size

the	size	of	the	array	that	as	to	be	created

sq_newclass

SQRESULT	sq_newclass(HSQUIRRELVM	v,	SQBool	hasbase);

creates	a	new	class	object.	If	the	parameter	'hasbase'	is	different	than	0,	the
function	pops	a	class	from	the	stack	and	inherits	the	new	created	class	from	it.

parameters:
HSQUIRRELVM	v

the	target	VM

SQBool	hasbase

if	the	parameter	is	true	the	function	expects	a	base	class	on	top	of	the
stack.

return:

a	SQRESULT	

sq_newclosure

void	sq_newclosure(HSQUIRRELVM	v,	HSQFUNCTION	func,
SQInteger	nfreevars);

create	a	new	native	closure,	pops	n	values	set	those	as	free	variables	of	the	new
closure,	and	push	the	new	closure	in	the	stack.

parameters:
HSQUIRRELVM	v

the	target	VM

HSQFUNCTION	func

a	pointer	to	a	native-function

SQInteger	nfreevars

number	of	free	variables(can	be	0)

sq_newtable

void	sq_newtable(HSQUIRRELVM	v);

creates	a	new	table	and	pushes	it	in	the	stack

parameters:
HSQUIRRELVM	v

the	target	VM

sq_newtableex

void	sq_newtableex(HSQUIRRELVM	v,	SQInteger	initialcapacity);

creates	a	new	table	and	pushes	it	in	the	stack.	This	function	allows	to	specify	the
initial	capacity	of	the	table	to	prevent	unnecessary	rehashing	when	the	number	of
slots	required	is	known	at	creation-time.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	initialcapacity

number	of	key/value	pairs	to	preallocate

sq_newuserdata

SQUserPointer	sq_newuserdata(HSQUIRRELVM	v,	SQUnsignedInteger	size);

creates	a	new	userdata	and	pushes	it	in	the	stack

parameters:
HSQUIRRELVM	v

the	target	VM

SQUnsignedInteger	size

the	size	of	the	userdata	that	as	to	be	created	in	bytes

sq_pushbool

void	sq_pushbool(HSQUIRRELVM	v,	SQBool	b);

pushes	a	bool	into	the	stack

parameters:
HSQUIRRELVM	v

the	target	VM

SQBool	b

the	bool	that	has	to	be	pushed(SQTrue	or	SQFalse)

sq_pushfloat

void	sq_pushfloat(HSQUIRRELVM	v,	SQFloat	f);

pushes	a	float	into	the	stack

parameters:
HSQUIRRELVM	v

the	target	VM

SQFloat	f

the	float	that	has	to	be	pushed

sq_pushinteger

void	sq_pushinteger(HSQUIRRELVM	v,	SQInteger	n);

pushes	a	integer	into	the	stack

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	n

the	integer	that	has	to	be	pushed

sq_pushnull

void	sq_pushnull(HSQUIRRELVM	v);

pushes	a	null	value	into	the	stack

parameters:
HSQUIRRELVM	v

the	target	VM

sq_pushstring

void	sq_pushstring(HSQUIRRELVM	v,	const	SQChar	*	s,	SQInteger	len);

pushes	a	string	in	the	stack

parameters:
HSQUIRRELVM	v

the	target	VM

const	SQChar	*	s

pointer	to	the	string	that	has	to	be	pushed

SQInteger	len

lenght	of	the	string	pointed	by	s

remarks:

if	the	parameter	len	is	less	than	0	the	VM	will	calculate	the	length	using
strlen(s)

sq_pushuserpointer

void	sq_pushuserpointer(HSQUIRRELVM	v,	SQUserPointer	p);

pushes	a	userpointer	into	the	stack

parameters:
HSQUIRRELVM	v

the	target	VM

SQUserPointer	p

the	pointer	that	as	to	be	pushed

sq_setbyhandle

SQRESULT	sq_setbyhandle(HSQUIRRELVM	v,	SQInteger	idx,
HSQMEMBERHANDLE*	handle);

pops	a	value	from	the	stack	and	sets	it	to	a	class	or	instance	member	using	a
member	handle	(see	sq_getmemberhandle)

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

an	index	in	the	stack	pointing	to	the	class

HSQMEMBERHANDLE*	handle

a	pointer	the	member	handle

return:

a	SQRESULT

sq_setclassudsize

SQRESULT	sq_setclassudsize(HSQUIRRELVM	v,	SQInteger	idx,
SQInteger	udsize);

Sets	the	user	data	size	of	a	class.	If	a	class	'user	data	size'	is	greater	than	0.	When
an	instance	of	the	class	is	created	additional	space	will	is	reserved	at	the	end	of
the	memory	chunk	where	the	instance	is	stored.	The	userpointer	of	the	instance
will	also	be	automatically	set	to	this	memory	area.	This	allows	to	minimize
allocations	in	applications	that	have	to	carry	data	along	with	the	class	instance.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

an	index	in	the	stack	pointing	to	the	class

SQInteger	udsize

size	in	bytes	reserved	for	user	data

return:

a	SQRESULT	

sq_setinstanceup

SQRESULT	sq_setinstanceup(HSQUIRRELVM	v,	SQInteger	idx,
SQUserPointer	up);

sets	the	userpointer	of	the	class	instance	at	position	idx	in	the	stack.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

an	index	in	the	stack

SQUserPointer	up

an	arbitrary	user	pointer

return:

a	SQRESULT	

sq_setnativeclosurename

SQRESULT	sq_setnativeclosurename(HSQUIRRELVM	v,	SQInteger	idx,	const
SQChar	*	name);

sets	the	name	of	the	native	closure	at	the	position	idx	in	the	stack.	the	name	of	a
native	closure	is	purely	for	debug	pourposes.	The	name	is	retieved	trough	the
function	sq_stackinfos()	while	the	closure	is	in	the	call	stack.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

index	of	the	target	native	closure

const	SQChar	*	name

the	name	that	has	to	be	set

return:

an	SQRESULT	

sq_setparamscheck

SQRESULT	sq_setparamscheck(HSQUIRRELVM	v,	SQInteger	nparamscheck,
const	SQChar	*	typemask);

Sets	the	parameters	validation	scheme	for	the	native	closure	at	the	top	position	in
the	stack.	Allows	to	validate	the	number	of	paramters	accepted	by	the	function
and	optionally	their	types.	If	the	function	call	do	not	comply	with	the	parameter
schema	set	by	sq_setparamscheck,	an	exception	is	thrown.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	nparamscheck

defines	the	parameters	number	check	policy(0	disable	the	param
checking).	if	nparamscheck	is	greater	than	0	the	VM	ensures	that	the
number	of	parameters	is	exactly	the	number	specified	in	nparamscheck(eg.
if	nparamscheck	==	3	the	function	can	only	be	called	with	3	parameters).
if	nparamscheck	is	less	than	0	the	VM	ensures	that	the	closure	is	called
with	at	least	the	absolute	value	of	the	number	specified	in
nparamcheck(eg.	nparamscheck	==	-3	will	check	that	the	function	is
called	with	at	least	3	parameters).	the	hidden	paramater	'this'	is	included	in
this	number	free	variables	aren't.	If	SQ_MATCHTYPEMASKSTRING	is
passed	instead	of	the	number	of	parameters,	the	function	will
automatically	extrapolate	the	number	of	parameters	to	check	from	the
typemask(eg.	if	the	typemask	is	".sn"	is	like	passing	3).

const	SQChar	*	typemask

defines	a	mask	to	validate	the	parametes	types	passed	to	the	function.	if
the	parameter	is	NULL	no	typechecking	is	applyed(default).

remarks:

The	typemask	consists	in	a	zero	teminated	string	that	represent	the	expected
parameter	type.	The	types	are	expressed	as	follows:	'o'	null,	'i'	integer,	'f'	float,
'n'	integer	or	float,	's'	string,	't'	table,	'a'	array,	'u'	userdata,	'c'	closure	and

nativeclosure,	'g'	generator,	'p'	userpointer,	'v'	thread,	'x'	instance(class
instance),	'y'	class,	'b'	bool.	and	'.'	any	type.	The	symbol	'|'	can	be	used	as	'or'
to	accept	multiple	types	on	the	same	parameter.	There	isn't	any	limit	on	the
number	of	'or'	that	can	be	used.	Spaces	are	ignored	so	can	be	inserted
between	types	to	increase	readbility.	For	instance	to	check	a	function	that
espect	a	table	as	'this'	a	string	as	first	parameter	and	a	number	or	a	userpointer
as	second	parameter,	the	string	would	be	"tsn|p"	(table,string,number	or
userpointer).	If	the	parameters	mask	is	contains	less	parameters	than
'nparamscheck'	the	remaining	parameters	will	not	be	typechecked.

eg.

//example
SQInteger	testy(HSQUIRRELVM	v)
{
	 SQUserPointer	p;
	 const	SQChar	*s;
	 SQInteger	i;
	 //no	type	checking,	if	the	call	comply	to	the	mask	
	 //surely	the	functions	will	succeed.
	 sq_getuserdata(v,1,&p,NULL);
	 sq_getstring(v,2,&s);
	 sq_getinteger(v,3,&i);
	 //...	do	something
	 return	0;
}

//the	reg	code

//....stuff
sq_newclosure(v,testy,0);
//expects	exactly	3	parameters(userdata,string,number)
sq_setparamscheck(v,3,_SC("usn"));	
//....stuff
	 	 	

sq_setreleasehook

void	sq_setreleasehook(HSQUIRRELVM	v,	SQInteger	idx,
SQRELEASEHOOK	hook);

sets	the	release	hook	of	the	userdata,	class	instance	or	class	at	position	idx	in	the
stack.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

an	index	in	the	stack

SQRELEASEHOOK	hook

a	function	pointer	to	the	hook(see	sample	below)

remarks:

the	function	hook	is	called	by	the	VM	before	the	userdata	memory	is	deleted.

eg.

/*	tyedef	SQInteger	(*SQRELEASEHOOK)(SQUserPointer,SQInteger	size);	*/

SQInteger	my_release_hook(SQUserPointer	p,SQInteger	size)
{
	 /*	do	something	here	*/
	 return	1;
}
	 	 	 	

sq_settypetag

SQRESULT	sq_settypetag(HSQUIRRELVM	v,	SQInteger	idx,
SQUserPointer	typetag);

sets	the	typetag	of	the	object(userdata	or	class)	at	position	idx	in	the	stack.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

an	index	in	the	stack

SQUserPointer	typetag

an	arbitrary	SQUserPointer

return:

a	SQRESULT	

sq_tobool

void	sq_tobool(HSQUIRRELVM	v,	SQInteger	idx,	SQBool	*	b);

gets	the	value	at	position	idx	in	the	stack	as	bool.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

an	index	in	the	stack

SQBool	*	b

A	pointer	to	the	bool	that	will	store	the	value

remarks:

if	the	object	is	not	a	bool	the	function	converts	the	value	too	bool	according
to	squirrel's	rules.	For	instance	the	number	1	will	result	in	true,	and	the
number	0	in	false.

sq_tostring

void	sq_tostring(HSQUIRRELVM	v,	SQInteger	idx);

converts	the	object	at	position	idx	in	the	stack	to	string	and	pushes	the	resulting
string	in	the	stack.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

an	index	in	the	stack

sq_typeof

SQObjectType	sq_typeof(HSQUIRRELVM	v,	SQInteger	idx);

pushes	the	type	name	of	the	value	at	the	position	idx	in	the	stack,	it	also	invokes
the	_typeof	metamethod	for	tables	and	class	instances	that	implement	it;	in	that
case	the	pushed	object	could	be	something	other	than	a	string	(is	up	to	the
_typeof	implementation).

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

an	index	in	the	stack

return:

a	SQRESULT	

Calls

sq_call

SQRESULT	sq_call(HSQUIRRELVM	v,	SQInteger	params,	SQBool	retval,
SQBool	raiseerror);

calls	a	closure	or	a	native	closure.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	params

number	of	parameters	of	the	function

SQBool	retval

if	true	the	function	will	push	the	return	value	in	the	stack

SQBool	raiseerror

if	true,	if	a	runtime	error	occurs	during	the	execution	of	the	call,	the	vm
will	invoke	the	error	handler.

return:

a	SQRESULT	

remarks:

the	function	pops	all	the	parameters	and	leave	the	closure	in	the	stack;	if
retval	is	true	the	return	value	of	the	closure	is	pushed.	If	the	execution	of	the
function	is	suspended	through	sq_suspendvm(),	the	closure	and	the	arguments
will	not	be	automatically	popped	from	the	stack.

sq_getcallee

SQRESULT	sq_getcallee(HSQUIRRELVM	v);

push	in	the	stack	the	currently	running	closure.

parameters:
HSQUIRRELVM	v

the	target	VM

return:

a	SQRESULT	

sq_getlasterror

SQRESULT	sq_getlasterror(HSQUIRRELVM	v);

pushes	the	last	error	in	the	stack.

parameters:
HSQUIRRELVM	v

the	target	VM

return:

a	SQRESULT	

remarks:

the	pushed	error	descriptor	can	be	any	valid	squirrel	type.

sq_getlocal

const	SQChar	*	sq_getlocal(HSQUIRRELVM	v,	SQUnsignedInteger	level,
SQUnsignedInteger	nseq);

Returns	the	name	of	a	local	variable	given	stackframe	and	sequence	in	the	stack
and	pushes	is	current	value.	Free	variables	are	treated	as	local	variables,	by
sq_getlocal(),	and	will	be	returned	as	they	would	be	at	the	base	of	the	stack,	just
before	the	real	local	variables.

parameters:
HSQUIRRELVM	v

the	target	VM

SQUnsignedInteger	level

the	function	index	in	the	calls	stack,	0	is	the	current	function

SQUnsignedInteger	nseq

the	index	of	the	local	variable	in	the	stack	frame	(0	is	‘this’)

return:

the	name	of	the	local	variable	if	a	variable	exists	at	the	given	level/seq
otherwise	NULL.	

sq_reseterror

void	sq_reseterror(HSQUIRRELVM	v);

reset	the	last	error	in	the	virtual	machine	to	null

parameters:
HSQUIRRELVM	v

the	target	VM

sq_resume

SQRESULT	sq_resume(HSQUIRRELVM	v,	SQBool	retval,	SQBool	raiseerror);

resumes	the	generator	at	the	top	position	of	the	stack.

parameters:
HSQUIRRELVM	v

the	target	VM

SQBool	retval

if	true	the	function	will	push	the	return	value	in	the	stack

SQBool	raiseerror

if	true,	if	a	runtime	error	occurs	during	the	execution	of	the	call,	the	vm
will	invoke	the	error	handler.

return:

a	SQRESULT	

remarks:

if	retval	!=	0	the	return	value	of	the	generator	is	pushed.

sq_throwerror

SQRESULT	sq_throwerror(HSQUIRRELVM	v,	const	SQChar	*	err);

sets	the	last	error	in	the	virtual	machine	and	returns	the	value	that	has	to	be
returned	by	a	native	closure	in	order	to	trigger	an	exception	in	the	virtual
machine.

parameters:
HSQUIRRELVM	v

the	target	VM

const	SQChar	*	err

the	description	of	the	error	that	has	to	be	thrown

return:

the	value	that	has	to	be	returned	by	a	native	closure	in	order	to	throw	an
exception	in	the	virtual	machine.	

sq_throwobject

SQRESULT	sq_throwobject(HSQUIRRELVM	v);

pops	a	value	from	the	stack	sets	it	as	the	last	error	in	the	virtual	machine.
Returns	the	value	that	has	to	be	returned	by	a	native	closure	in	order	to	trigger	an
exception	in	the	virtual	machine	(aka	SQ_ERROR).

parameters:
HSQUIRRELVM	v

the	target	VM

return:

the	value	that	has	to	be	returned	by	a	native	closure	in	order	to	throw	an
exception	in	the	virtual	machine.	

Objects	manipulation

sq_arrayappend

SQRESULT	sq_arrayappend(HSQUIRRELVM	v,	SQInteger	idx);

pops	a	value	from	the	stack	and	pushes	it	in	the	back	of	the	array	at	the	position
idx	in	the	stack.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

index	of	the	target	array	in	the	stack

return:

a	SQRESULT	

remarks:

Only	works	on	arrays.

sq_arrayinsert

SQRESULT	sq_arrayinsert(HSQUIRRELVM	v,	SQInteger	idx,
SQInteger	destpos);

pops	a	value	from	the	stack	and	inserts	it	in	an	array	at	the	specified	position

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

index	of	the	target	array	in	the	stack

SQInteger	destpos

the	postion	in	the	array	where	the	item	has	to	be	inserted

return:

a	SQRESULT	

remarks:

Only	works	on	arrays.

sq_arraypop

SQRESULT	sq_arraypop(HSQUIRRELVM	v,	SQInteger	idx);

pops	a	value	from	the	back	of	the	array	at	the	position	idx	in	the	stack.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

index	of	the	target	array	in	the	stack

return:

a	SQRESULT	

remarks:

Only	works	on	arrays.

sq_arrayremove

SQRESULT	sq_arrayremove(HSQUIRRELVM	v,	SQInteger	idx,
SQInteger	itemidx);

removes	an	item	from	an	array

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

index	of	the	target	array	in	the	stack

SQInteger	itemidx

the	index	of	the	item	in	the	array	that	has	to	be	removed

return:

a	SQRESULT	

remarks:

Only	works	on	arrays.

sq_arrayresize

SQRESULT	sq_arrayresize(HSQUIRRELVM	v,	SQInteger	idx,
SQInteger	newsize);

resizes	the	array	at	the	position	idx	in	the	stack.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

index	of	the	target	array	in	the	stack

SQInteger	newsize

requested	size	of	the	array

return:

a	SQRESULT	

remarks:

Only	works	on	arrays.if	newsize	if	greater	than	the	current	size	the	new	array
slots	will	be	filled	with	nulls.

sq_arrayreverse

SQRESULT	sq_arrayreverse(HSQUIRRELVM	v,	SQInteger	idx);

reverse	an	array	in	place.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

index	of	the	target	array	in	the	stack

return:

a	SQRESULT	

remarks:

Only	works	on	arrays.

sq_clear

SQRESULT	sq_clear(HSQUIRRELVM	v,	SQInteger	idx);

clears	all	the	element	of	the	table/array	at	position	idx	in	the	stack.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

index	of	the	target	object	in	the	stack

return:

a	SQRESULT	

remarks:

Only	works	on	tables	and	arrays.

sq_clone

SQRESULT	sq_clone(HSQUIRRELVM	v,	SQInteger	idx);

Clones	the	table,	array	or	class	instance	at	the	position	idx,	clones	it	and	pushes
the	new	object	in	the	stack.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

index	of	the	target	object	in	the	stack

return:

a	SQRESULT	

sq_createslot

SQRESULT	sq_createslot(HSQUIRRELVM	v,	SQInteger	idx);

pops	a	key	and	a	value	from	the	stack	and	performs	a	set	operation	on	the	table
or	class	that	is	at	position	idx	in	the	stack,	if	the	slot	does	not	exits	it	will	be
created.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

index	of	the	target	table	in	the	stack

return:

a	SQRESULT	

remarks:

invoke	the	_newslot	metamethod	in	the	table	delegate.	it	only	works	on
tables.	[this	function	is	deperecated	since	version	2.0.5	use	sq_newslot()
instead]

sq_deleteslot

SQRESULT	sq_deleteslot(HSQUIRRELVM	v,	SQInteger	idx,	SQBool	pushval);

pops	a	key	from	the	stack	and	delete	the	slot	indexed	by	it	from	the	table	at
position	idx	in	the	stack,	if	the	slot	does	not	exits	nothing	happens.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

index	of	the	target	table	in	the	stack

SQBool	pushval

if	this	param	is	true	the	function	will	push	the	value	of	the	deleted	slot.

return:

a	SQRESULT	

remarks:

invoke	the	_delslot	metamethod	in	the	table	delegate.	it	only	works	on	tables.

sq_get

SQRESULT	sq_get(HSQUIRRELVM	v,	SQInteger	idx);

pops	a	key	from	the	stack	and	performs	a	get	operation	on	the	object	at	the
position	idx	in	the	stack,	and	pushes	the	result	in	the	stack.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

index	of	the	target	object	in	the	stack

return:

a	SQRESULT	

remarks:

this	call	will	invokes	the	delegation	system	like	a	normal	dereference	it	only
works	on	tables,	arrays	and	userdata.	if	the	function	fails	nothing	will	be
pushed	in	the	stack.

sq_getattributes

SQRESULT	sq_getattributes(HSQUIRRELVM	v,	SQInteger	idx);

Gets	the	attribute	of	a	class	mameber.	The	function	pops	a	key	from	the	stack
and	pushes	the	attribute	of	the	class	member	indexed	by	they	key	from	class	at
position	idx	in	the	stack.	If	key	is	null	the	function	gets	the	class	level	attribute.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

index	of	the	target	class	in	the	stack

return:

a	SQRESULT	

sq_getclass

SQRESULT	sq_getclass(HSQUIRRELVM	v,	SQInteger	idx);

pushes	the	class	of	the	'class	instance'	at	stored	position	idx	in	the	stack.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

index	of	the	target	class	instance	in	the	stack

return:

a	SQRESULT	

sq_getdelegate

SQRESULT	sq_getdelegate(HSQUIRRELVM	v,	SQInteger	idx);

pushes	the	current	delegate	of	the	object	at	the	position	idx	in	the	stack.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

index	of	the	target	object	in	the	stack

return:

a	SQRESULT	

sq_getfreevariable

const	SQChar	*	sq_getfreevariable(HSQUIRRELVM	v,	SQInteger	idx,
SQInteger	nval);

gets	the	value	of	the	free	variable	of	the	closure	at	the	position	idx	in	the	stack.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

index	of	the	target	object	in	the	stack(closure)

SQInteger	nval

0	based	index	of	the	free	variable(relative	to	the	closure).

return:

the	name	of	the	free	variable	for	pure	squirrel	closures.	NULL	in	case	of	error
or	if	the	index	of	the	variable	is	out	of	range.	In	case	the	target	closure	is	a
native	closure,	the	return	name	is	always	"@NATIVE".	

remarks:

The	function	works	for	both	squirrel	closure	and	native	closure.

sq_getweakrefval

SQRESULT	sq_getweakrefval(HSQUIRRELVM	v,	SQInteger	idx);

pushes	the	object	pointed	by	the	weak	reference	at	position	idx	in	the	stack.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

index	of	the	target	weak	reference

return:

a	SQRESULT	

remarks:

if	the	function	fails,	nothing	is	pushed	in	the	stack.

sq_instanceof

SQBool	sq_instanceof(HSQUIRRELVM	v);

Determintes	if	an	object	is	an	instance	of	a	certain	class.	Expects	an	istance	and	a
class	in	the	stack.

parameters:
HSQUIRRELVM	v

the	target	VM

return:

SQTrue	if	the	instance	at	position	-2	in	the	stack	is	an	instance	of	the	class
object	at	position	-1	in	the	stack.	

remarks:

The	function	doesn't	pop	any	object	from	the	stack.

sq_newmember

SQRESULT	sq_newmember(HSQUIRRELVM	v,	SQInteger	idx,
SQBool	bstatic);

pops	a	key,	a	value	and	an	object(that	will	be	set	as	attribute	of	the	member)
from	the	stack	and	performs	a	new	slot	operation	on	the	class	that	is	at	position
idx	in	the	stack,	if	the	slot	does	not	exits	it	will	be	created.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

index	of	the	target	table	in	the	stack

SQBool	bstatic

if	SQTrue	creates	a	static	member.

return:

a	SQRESULT	

remarks:

Invokes	the	_newmember	metamethod	in	the	class.	it	only	works	on	classes.

sq_newslot

SQRESULT	sq_newslot(HSQUIRRELVM	v,	SQInteger	idx,	SQBool	bstatic);

pops	a	key	and	a	value	from	the	stack	and	performs	a	set	operation	on	the	table
or	class	that	is	at	position	idx	in	the	stack,	if	the	slot	does	not	exits	it	will	be
created.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

index	of	the	target	table	in	the	stack

SQBool	bstatic

if	SQTrue	creates	a	static	member.	This	parameter	is	only	used	if	the	target
object	is	a	class.

return:

a	SQRESULT	

remarks:

Invokes	the	_newslot	metamethod	in	the	table	delegate.	it	only	works	on
tables	and	classes.

sq_next

SQRESULT	sq_next(HSQUIRRELVM	v,	SQInteger	idx);

Pushes	in	the	stack	the	next	key	and	value	of	an	array,	table	or	class	slot.	To	start
the	iteration	this	function	expects	a	null	value	on	top	of	the	stack;	at	every	call
the	function	will	substitute	the	null	value	with	an	iterator	and	push	key	and	value
of	the	container	slot.	Every	iteration	the	application	has	to	pop	the	previous	key
and	value	but	leave	the	iterator(that	is	used	as	reference	point	for	the	next
iteration).	The	function	will	fail	when	all	slots	have	been	iterated(see	Tables	and
arrays	manipulation).

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

index	of	the	target	object	in	the	stack

return:

a	SQRESULT	

sq_rawdeleteslot

SQRESULT	sq_rawdeleteslot(HSQUIRRELVM	v,	SQInteger	idx,
SQBool	pushval);

Deletes	a	slot	from	a	table	without	employing	the	_delslot	metamethod.	pops	a
key	from	the	stack	and	delete	the	slot	indexed	by	it	from	the	table	at	position	idx
in	the	stack,	if	the	slot	does	not	exits	nothing	happens.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

index	of	the	target	table	in	the	stack

SQBool	pushval

if	this	param	is	true	the	function	will	push	the	value	of	the	deleted	slot.

return:

a	SQRESULT	

sq_rawget

SQRESULT	sq_rawget(HSQUIRRELVM	v,	SQInteger	idx);

pops	a	key	from	the	stack	and	performs	a	get	operation	on	the	object	at	position
idx	in	the	stack,	without	employing	delegation	or	metamethods.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

index	of	the	target	object	in	the	stack

return:

a	SQRESULT	

remarks:

Only	works	on	tables	and	arrays.

sq_rawnewmember

SQRESULT	sq_rawnewmember(HSQUIRRELVM	v,	SQInteger	idx,
SQBool	bstatic);

pops	a	key,	a	value	and	an	object(that	will	be	set	as	attribute	of	the	member)
from	the	stack	and	performs	a	new	slot	operation	on	the	class	that	is	at	position
idx	in	the	stack,	if	the	slot	does	not	exits	it	will	be	created.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

index	of	the	target	table	in	the	stack

SQBool	bstatic

if	SQTrue	creates	a	static	member.

return:

a	SQRESULT	

remarks:

it	only	works	on	classes.

sq_rawset

SQRESULT	sq_rawset(HSQUIRRELVM	v,	SQInteger	idx);

pops	a	key	and	a	value	from	the	stack	and	performs	a	set	operation	on	the	object
at	position	idx	in	the	stack,	without	employing	delegation	or	metamethods.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

index	of	the	target	object	in	the	stack

return:

a	SQRESULT	

remarks:

it	only	works	on	tables	and	arrays.	if	the	function	fails	nothing	will	be	pushed
in	the	stack.

sq_set

SQRESULT	sq_set(HSQUIRRELVM	v,	SQInteger	idx);

pops	a	key	and	a	value	from	the	stack	and	performs	a	set	operation	on	the	object
at	position	idx	in	the	stack.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

index	of	the	target	object	in	the	stack

return:

a	SQRESULT	

remarks:

this	call	will	invoke	the	delegation	system	like	a	normal	assignment,	it	only
works	on	tables,	arrays	and	userdata.

sq_setattributes

SQRESULT	sq_setattributes(HSQUIRRELVM	v,	SQInteger	idx);

Sets	the	attribute	of	a	class	mameber.	The	function	pops	a	key	and	a	value	from
the	stack	and	sets	the	attribute	(indexed	by	they	key)	on	the	class	at	position	idx
in	the	stack.	If	key	is	null	the	function	sets	the	class	level	attribute.	If	the
function	succeed,	the	old	attribute	value	is	pushed	in	the	stack.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

index	of	the	target	class	in	the	stack.

return:

a	SQRESULT	

sq_setdelegate

SQRESULT	sq_setdelegate(HSQUIRRELVM	v,	SQInteger	idx);

pops	a	table	from	the	stack	and	sets	it	as	delegate	of	the	object	at	the	position	idx
in	the	stack.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

index	of	the	target	object	in	the	stack

return:

a	SQRESULT	

remarks:

to	remove	the	delgate	from	an	object	is	necessary	to	use	null	as	delegate
instead	of	a	table.

sq_setfreevariable

SQRESULT	sq_setfreevariable(HSQUIRRELVM	v,	SQInteger	idx,
SQInteger	nval);

pops	a	value	from	the	stack	and	sets	it	as	free	variable	of	the	closure	at	the
position	idx	in	the	stack.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

index	of	the	target	object	in	the	stack

SQInteger	nval

0	based	index	of	the	free	variable(relative	to	the	closure).

return:

a	SQRESULT	

sq_weakref

void	sq_weakref(HSQUIRRELVM	v,	SQInteger	idx);

pushes	a	weak	reference	to	the	object	at	position	idx	in	the	stack.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

index	to	the	target	object	in	the	stack

return:

a	SQRESULT	

remarks:

if	the	object	at	idx	position	is	an	integer,float,bool	or	null	the	object	itself	is
pushed	instead	of	a	weak	ref.

Bytecode	serialization

sq_readclosure

SQRESULT	sq_readclosure(HSQUIRRELVM	v,	SQREADFUNC	readf,
SQUserPointer	up);

serialize	(read)	a	closure	and	pushes	it	on	top	of	the	stack,	the	source	is	user
defined	through	a	read	callback.

parameters:
HSQUIRRELVM	v

the	target	VM

SQREADFUNC	readf

pointer	to	a	read	function	that	will	be	invoked	by	the	vm	during	the
serialization.

SQUserPointer	up

pointer	that	will	be	passed	to	each	call	to	the	read	function

return:

a	SQRESULT	

sq_writeclosure

SQRESULT	sq_writeclosure(HSQUIRRELVM	v,	SQWRITEFUNC	writef,
SQUserPointer	up);

serialize(write)	the	closure	on	top	of	the	stack,	the	desination	is	user	defined
through	a	write	callback.

parameters:
HSQUIRRELVM	v

the	target	VM

SQWRITEFUNC	writef

pointer	to	a	write	function	that	will	be	invoked	by	the	vm	during	the
serialization.

SQUserPointer	up

pointer	that	will	be	passed	to	each	call	to	the	write	function

return:

a	SQRESULT	

remarks:

closures	with	free	variables	cannot	be	serialized

Raw	object	handling

sq_addref

void	sq_addref(HSQUIRRELVM	v,	HSQOBJECT	*	po);

adds	a	reference	to	an	object	handler.

parameters:
HSQUIRRELVM	v

the	target	VM

HSQOBJECT	*	po

pointer	to	an	object	handler

sq_getobjtypetag

SQRESULT	sq_getobjtypetag(HSQOBJECT	*	o,	SQUserPointer	*	typetag);

gets	the	typetag	of	a	raw	object	reference(userdata	or	class).

parameters:
HSQOBJECT	*	o

pointer	to	an	object	handler

SQUserPointer	*	typetag

a	pointer	to	the	variable	that	will	store	the	tag

return:

a	SQRESULT	

remarks:

the	function	works	also	with	instances.	if	the	taget	object	is	an	instance,	the
typetag	of	it's	base	class	is	fetched.

sq_getrefcount

SQUnsignedInteger	sq_getrefcount(HSQUIRRELVM	v,	HSQOBJECT	*po);

returns	the	number	of	references	of	a	given	object.

parameters:
HSQUIRRELVM	v

the	target	VM

HSQOBJECT	*po

object	handler

sq_getstackobj

SQRESULT	sq_getstackobj(HSQUIRRELVM	v,	SQInteger	idx,	HSQOBJECT
*	po);

gets	an	object	from	the	stack	and	stores	it	in	a	object	handler.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	idx

index	of	the	target	object	in	the	stack

HSQOBJECT	*	po

pointer	to	an	object	handler

return:

a	SQRESULT	

sq_objtobool

SQBool	sq_objtobool(HSQOBJECT	*	po);

return	the	bool	value	of	a	raw	object	reference.

parameters:
HSQOBJECT	*	po

pointer	to	an	object	handler

remarks:

If	the	object	is	not	a	bool	will	always	return	false.

sq_objtofloat

SQFloat	sq_objtofloat(HSQOBJECT	*	po);

return	the	float	value	of	a	raw	object	reference.

parameters:
HSQOBJECT	*	po

pointer	to	an	object	handler

remarks:

If	the	object	is	an	integer	will	convert	it	to	float.	If	the	object	is	not	a	number
will	always	return	0.

sq_objtointeger

SQInteger	sq_objtointeger(HSQOBJECT	*	po);

return	the	integer	value	of	a	raw	object	reference.

parameters:
HSQOBJECT	*	po

pointer	to	an	object	handler

remarks:

If	the	object	is	a	float	will	convert	it	to	integer.	If	the	object	is	not	a	number
will	always	return	0.

sq_objtostring

const	SQChar	*	sq_objtostring(HSQOBJECT	*	po);

return	the	string	value	of	a	raw	object	reference.

parameters:
HSQOBJECT	*	po

pointer	to	an	object	handler

remarks:

If	the	object	doesn't	reference	a	string	it	returns	NULL.

sq_objtouserpointer

SQUserPointer	sq_objtouserpointer(HSQOBJECT	*	po);

return	the	userpointer	value	of	a	raw	object	reference.

parameters:
HSQOBJECT	*	po

pointer	to	an	object	handler

remarks:

If	the	object	doesn't	reference	a	userpointer	it	returns	NULL.

sq_pushobject

void	sq_pushobject(HSQUIRRELVM	v,	HSQOBJECT	obj);

push	an	object	referenced	by	an	object	handler	into	the	stack.

parameters:
HSQUIRRELVM	v

the	target	VM

HSQOBJECT	obj

object	handler

sq_release

SQBool	sq_release(HSQUIRRELVM	v,	HSQOBJECT	*	po);

remove	a	reference	from	an	object	handler.

parameters:
HSQUIRRELVM	v

the	target	VM

HSQOBJECT	*	po

pointer	to	an	object	handler

return:

SQTrue	if	the	object	handler	released	has	lost	all	is	references(the	ones	added
with	sq_addref).	SQFalse	otherwise.	

remarks:

the	function	will	reset	the	object	handler	to	null	when	it	losts	all	references.

sq_resetobject

void	sq_resetobject(HSQOBJECT	*	po);

resets(initialize)	an	object	handler.

parameters:
HSQOBJECT	*	po

pointer	to	an	object	handler

remarks:

Every	object	handler	has	to	be	initialized	with	this	function.

Garbage	Collector

sq_collectgarbage

SQInteger	sq_collectgarbage(HSQUIRRELVM	v);

runs	the	garbage	collector	and	returns	the	number	of	reference	cycles	found(and
deleted)

parameters:
HSQUIRRELVM	v

the	target	VM

remarks:

this	api	only	works	with	gabage	collector	builds
(NO_GARBAGE_COLLECTOR	is	not	defined)

sq_resurrectunreachable

SQRESULT	sq_resurrectunreachable(HSQUIRRELVM	v);

runs	the	garbage	collector	and	pushes	an	array	in	the	stack	containing	all
unreachable	object	found.	If	no	unreachable	object	is	found,	null	is	pushed
instead.	This	function	is	meant	to	help	debugging	reference	cycles.

parameters:
HSQUIRRELVM	v

the	target	VM

remarks:

this	api	only	works	with	gabage	collector	builds
(NO_GARBAGE_COLLECTOR	is	not	defined)

Debug	interface

sq_getfunctioninfo

SQRESULT	sq_getfunctioninfo(HSQUIRRELVM	v,	SQInteger	level,
SQFunctionInfo	*	fi);

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	level

calls	stack	level

SQFunctionInfo	*	fi

pointer	to	the	SQFunctionInfo	structure	that	will	store	the	closure
informations

return:

a	SQRESULT.	

remarks:

the	member	'funcid'	of	the	returned	SQFunctionInfo	structure	is	a	unique
identifier	of	the	function;	this	can	be	useful	to	identify	a	specific	piece	of
squirrel	code	in	an	application	like	for	instance	a	profiler.	this	method	will
fail	if	the	closure	in	the	stack	is	a	native	C	closure.

eg.

								
typedef	struct	tagSQFunctionInfo	{
	 SQUserPointer	funcid;	//unique	idetifier	for	a	function	(all	it's	closures	will	share	the	same	funcid)
	 const	SQChar	*name;	//function	name
	 const	SQChar	*source;	//function	source	file	name
}SQFunctionInfo;
						
						

sq_setdebughook

void	sq_setdebughook(HSQUIRRELVM	v);

pops	a	closure	from	the	stack	an	sets	it	as	debug	hook.	When	a	debug	hook	is	set
it	overrides	any	previously	set	native	or	non	native	hooks.	if	the	hook	is	null	the
debug	hook	will	be	disabled.

parameters:
HSQUIRRELVM	v

the	target	VM

remarks:

In	order	to	receive	a	'per	line'	callback,	is	necessary	to	compile	the	scripts
with	the	line	informations.	Without	line	informations	activated,	only	the
'call/return'	callbacks	will	be	invoked.

sq_setnativedebughook

void	sq_setnativedebughook(HSQUIRRELVM	v,	SQDEBUGHOOK	hook);

sets	the	native	debug	hook.	When	a	native	hook	is	set	it	overrides	any	previously
set	native	or	non	native	hooks.	if	the	hook	is	NULL	the	debug	hook	will	be
disabled.

parameters:
HSQUIRRELVM	v

the	target	VM

SQDEBUGHOOK	hook

the	native	hook	function

remarks:

In	order	to	receive	a	'per	line'	callback,	is	necessary	to	compile	the	scripts
with	the	line	informations.	Without	line	informations	activated,	only	the
'call/return'	callbacks	will	be	invoked.

sq_stackinfos

SQRESULT	sq_stackinfos(HSQUIRRELVM	v,	SQInteger	level,	SQStackInfos
*	si);

retrieve	the	calls	stack	informations	of	a	ceratain	level	in	the	calls	stack.

parameters:
HSQUIRRELVM	v

the	target	VM

SQInteger	level

calls	stack	level

SQStackInfos	*	si

pointer	to	the	SQStackInfos	structure	that	will	store	the	stack	informations

return:

a	SQRESULT.	

	Squirrel 3.0 Reference Manual
	Introduction
	The language
	Values and Data types
	Execution Context
	Statements
	Expressions
	Tables
	Arrays
	Functions
	Classes
	Generators
	Constants & Enumerations
	Threads
	Weak References
	Delegation
	Metamethods
	Built-in functions

	Embedding Squirrel
	Unicode
	Squirrel on 64 bits architectures
	Userdata alignment
	Stand-alone VM without compiler
	Error conventions
	Initializing Squirrel
	The Stack
	Runtime error handling
	Compiling a script
	Calling a function
	Create a C function
	Tables and arrays manipulation
	Userdata and UserPointers
	The registry table
	Mantaining strong references to Squirrel values from the C API
	Debug Interface

	API Reference
	Virtual Machine
	sq_close
	sq_geterrorfunc
	sq_getforeignptr
	sq_getprintfunc
	sq_getversion
	sq_getvmstate
	sq_move
	sq_newthread
	sq_open
	sq_pushconsttable
	sq_pushregistrytable
	sq_pushroottable
	sq_setconsttable
	sq_seterrorhandler
	sq_setforeignptr
	sq_setprintfunc
	sq_setroottable
	sq_suspendvm
	sq_wakeupvm

	Compiler
	sq_compile
	sq_compilebuffer
	sq_enabledebuginfo
	sq_notifyallexceptions
	sq_setcompilererrorhandler

	Stack Operations
	sq_cmp
	sq_gettop
	sq_pop
	sq_poptop
	sq_push
	sq_remove
	sq_reservestack
	sq_settop

	Object creation and handling
	sq_bindenv
	sq_createinstance
	sq_getbool
	sq_getbyhandle
	sq_getclosureinfo
	sq_getclosurename
	sq_getfloat
	sq_gethash
	sq_getinstanceup
	sq_getinteger
	sq_getmemberhandle
	sq_getscratchpad
	sq_getsize
	sq_getstring
	sq_getthread
	sq_gettype
	sq_gettypetag
	sq_getuserdata
	sq_getuserpointer
	sq_newarray
	sq_newclass
	sq_newclosure
	sq_newtable
	sq_newtableex
	sq_newuserdata
	sq_pushbool
	sq_pushfloat
	sq_pushinteger
	sq_pushnull
	sq_pushstring
	sq_pushuserpointer
	sq_setbyhandle
	sq_setclassudsize
	sq_setinstanceup
	sq_setnativeclosurename
	sq_setparamscheck
	sq_setreleasehook
	sq_settypetag
	sq_tobool
	sq_tostring
	sq_typeof

	Calls
	sq_call
	sq_getcallee
	sq_getlasterror
	sq_getlocal
	sq_reseterror
	sq_resume
	sq_throwerror
	sq_throwobject

	Objects manipulation
	sq_arrayappend
	sq_arrayinsert
	sq_arraypop
	sq_arrayremove
	sq_arrayresize
	sq_arrayreverse
	sq_clear
	sq_clone
	sq_createslot
	sq_deleteslot
	sq_get
	sq_getattributes
	sq_getclass
	sq_getdelegate
	sq_getfreevariable
	sq_getweakrefval
	sq_instanceof
	sq_newmember
	sq_newslot
	sq_next
	sq_rawdeleteslot
	sq_rawget
	sq_rawnewmember
	sq_rawset
	sq_set
	sq_setattributes
	sq_setdelegate
	sq_setfreevariable
	sq_weakref

	Bytecode serialization
	sq_readclosure
	sq_writeclosure

	Raw object handling
	sq_addref
	sq_getobjtypetag
	sq_getrefcount
	sq_getstackobj
	sq_objtobool
	sq_objtofloat
	sq_objtointeger
	sq_objtostring
	sq_objtouserpointer
	sq_pushobject
	sq_release
	sq_resetobject

	Garbage Collector
	sq_collectgarbage
	sq_resurrectunreachable

	Debug interface
	sq_getfunctioninfo
	sq_setdebughook
	sq_setnativedebughook
	sq_stackinfos

