
Home Get	it Docs Extend/Develop

indexmodules 	|Sphinx	home 	| Documentation 	»

What	users	say:

“Cheers	for	a	great	tool	that
actually	makes
programmers	want	to	write
documentation!”

Welcome
Sphinx	is	a	tool	that	makes	it	easy
to	create	intelligent	and	beautiful
documentation,	written	by	Georg
Brandl	and	licensed	under	the	BSD
license.

It	was	originally	created	for	the	new
Python	documentation,	and	it	has	excellent	facilities	for	the
documentation	of	Python	projects,	but	C/C++	is	already	supported
as	well,	and	it	is	planned	to	add	special	support	for	other	languages
as	well.	Of	course,	this	site	is	also	created	from	reStructuredText
sources	using	Sphinx!	The	following	features	should	be	highlighted:

Output	formats:	HTML	(including	Windows	HTML	Help),	LaTeX
(for	printable	PDF	versions),	Texinfo,	manual	pages,	plain	text
Extensive	cross-references:	semantic	markup	and	automatic
links	for	functions,	classes,	citations,	glossary	terms	and	similar
pieces	of	information
Hierarchical	structure:	easy	definition	of	a	document	tree,	with
automatic	links	to	siblings,	parents	and	children
Automatic	indices:	general	index	as	well	as	a	language-
specific	module	indices
Code	handling:	automatic	highlighting	using	the	Pygments
highlighter
Extensions:	automatic	testing	of	code	snippets,	inclusion	of
docstrings	from	Python	modules	(API	docs),	and	more

Sphinx	uses	reStructuredText	as	its	markup	language,	and	many	of
its	strengths	come	from	the	power	and	straightforwardness	of
reStructuredText	and	its	parsing	and	translating	suite,	the	Docutils.

http://docs.python.org/
http://pygments.org
http://docutils.sf.net/rst.html
http://docutils.sf.net/

Documentation

First	steps	with
Sphinx	overview	of	basic	tasks

Contents
for	a	complete	overview

Search	page
search	the	documentation

General	Index
all	functions,	classes,	terms

You	can	also	download	PDF	versions	of	the	Sphinx	documentation:
a	version	generated	from	the	LaTeX	Sphinx	produces,	and	a	version
generated	by	rst2pdf.

http://sphinx-doc.org/sphinx.pdf
http://sphinx-doc.org/sphinx-rst2pdf.pdf

indexmodules 	|Sphinx	home 	| Documentation 	»

Examples

Links	to	documentation	generated	with	Sphinx	can	be	found	on	the
Projects	using	Sphinx	page.

For	examples	of	how	Sphinx	source	files	look,	use	the	“Show
source”	links	on	all	pages	of	the	documentation	apart	from	this
welcome	page.

You	may	also	be	interested	in	the	very	nice	tutorial	on	how	to	create
a	customized	documentation	using	Sphinx	written	by	the	matplotlib
developers.

There	is	a	Japanese	translation	of	this	documentation,	thanks	to	the
Japanese	Sphinx	user	group.

A	Japanese	book	about	Sphinx	has	been	published	by	O'Reilly:
Sphinx	/	 Learning	Sphinx:

©	Copyright	2007-2013,	Georg	Brandl.	Created	using	Sphinx	1.2.

http://matplotlib.sourceforge.net/sampledoc/
http://docs.sphinx-users.jp/
http://www.oreilly.co.jp/books/9784873116488/
http://sphinx-doc.org/

Home Get	it Docs Extend/Develop

indexmodules 	|Sphinx	home 	| Documentation 	»

Python	Module	Index
a	|	b	|	c	|	d	|	e

	
a
sphinx.application Application	class	and

extensibility	interface.
	
b
sphinx.builders Available	built-in

builder	classes.
				sphinx.builders.changes
				sphinx.builders.devhelp
				sphinx.builders.epub
				sphinx.builders.gettext
				sphinx.builders.html
				sphinx.builders.htmlhelp
				sphinx.builders.latex
				sphinx.builders.linkcheck
				sphinx.builders.manpage
				sphinx.builders.qthelp
				sphinx.builders.texinfo
				sphinx.builders.text
				sphinx.builders.xml
	
c
conf Build	configuration

file.
	
d
sphinx.domains
	
e
sphinx.ext
				sphinx.ext.autodoc Include

documentation	from
docstrings.

				sphinx.ext.autosummary Generate	autodoc
summaries

				sphinx.ext.coverage Check	Python
modules	and	C	API
for	coverage	in	the
documentation.

				sphinx.ext.doctest Test	snippets	in	the
documentation.

				sphinx.ext.extlinks Allow	inserting
external	links	with
common	base	URLs
easily.

				sphinx.ext.graphviz Support	for	Graphviz
graphs.

				sphinx.ext.ifconfig Include
documentation
content	based	on
configuration	values.

			
sphinx.ext.inheritance_diagram

Support	for	displaying
inheritance	diagrams
via	graphviz.

				sphinx.ext.intersphinx Link	to	other	Sphinx
documentation.

indexmodules 	|Sphinx	home 	| Documentation 	»

				sphinx.ext.jsmath Render	math	using
JavaScript	via
JSMath.

				sphinx.ext.linkcode Add	external	links	to
source	code.

				sphinx.ext.mathbase Common	math
support	for	pngmath
and	mathjax	/	jsmath.

				sphinx.ext.mathjax Render	math	using
JavaScript	via
MathJax.

				sphinx.ext.oldcmarkup Allow	further	use	of
the	pre-domain	C
markup

				sphinx.ext.pngmath Render	math	as	PNG
images.

				sphinx.ext.todo Allow	inserting	todo
items	into	documents.

				sphinx.ext.viewcode Add	links	to	a
highlighted	version	of
the	source	code.

©	Copyright	2007-2013,	Georg	Brandl.	Created	using	Sphinx	1.2.

http://sphinx-doc.org/

Home Get	it Docs Extend/Develop

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	»

Introduction
This	is	the	documentation	for	the	Sphinx	documentation	builder.
Sphinx	is	a	tool	that	translates	a	set	of	reStructuredText	source	files
into	various	output	formats,	automatically	producing	cross-
references,	indices	etc.	That	is,	if	you	have	a	directory	containing	a
bunch	of	reST-formatted	documents	(and	possibly	subdirectories	of
docs	in	there	as	well),	Sphinx	can	generate	a	nicely-organized
arrangement	of	HTML	files	(in	some	other	directory)	for	easy
browsing	and	navigation.	But	from	the	same	source,	it	can	also
generate	a	LaTeX	file	that	you	can	compile	into	a	PDF	version	of	the
documents,	or	a	PDF	file	directly	using	rst2pdf.

The	focus	is	on	hand-written	documentation,	rather	than	auto-
generated	API	docs.	Though	there	is	support	for	that	kind	of	docs	as
well	(which	is	intended	to	be	freely	mixed	with	hand-written	content),
if	you	need	pure	API	docs	have	a	look	at	Epydoc,	which	also
understands	reST.

http://docutils.sf.net/rst.html
http://rst2pdf.googlecode.com
http://epydoc.sf.net/

Conversion	from	other	systems

This	section	is	intended	to	collect	helpful	hints	for	those	wanting	to
migrate	to	reStructuredText/Sphinx	from	other	documentation
systems.

Gerard	Flanagan	has	written	a	script	to	convert	pure	HTML	to
reST;	it	can	be	found	at	the	Python	Package	Index.
For	converting	the	old	Python	docs	to	Sphinx,	a	converter	was
written	which	can	be	found	at	the	Python	SVN	repository.	It
contains	generic	code	to	convert	Python-doc-style	LaTeX
markup	to	Sphinx	reST.
Marcin	Wojdyr	has	written	a	script	to	convert	Docbook	to	reST
with	Sphinx	markup;	it	is	at	Google	Code.
Christophe	de	Vienne	wrote	a	tool	to	convert	from
Open/LibreOffice	documents	to	Sphinx:	odt2sphinx.
To	convert	different	markups,	Pandoc	is	a	very	helpful	tool.

http://pypi.python.org/pypi/html2rest
http://svn.python.org/projects/doctools/converter
http://code.google.com/p/db2rst/
http://pypi.python.org/pypi/odt2sphinx/
http://johnmacfarlane.net/pandoc/

Use	with	other	systems

See	the	pertinent	section	in	the	FAQ	list.

Prerequisites

Sphinx	needs	at	least	Python	2.5	or	Python	3.1	to	run,	as	well	as
the	docutils	and	Jinja2	libraries.	Sphinx	should	work	with	docutils
version	0.7	or	some	(not	broken)	SVN	trunk	snapshot.	If	you	like	to
have	source	code	highlighting	support,	you	must	also	install	the
Pygments	library.

http://docutils.sf.net/
http://jinja.pocoo.org/
http://pygments.org/

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	»

Usage

See	First	Steps	with	Sphinx	for	an	introduction.	It	also	contains	links
to	more	advanced	sections	in	this	manual	for	the	topics	it	discusses.

©	Copyright	2007-2013,	Georg	Brandl.	Created	using	Sphinx	1.2.

http://sphinx-doc.org/

Home Get	it Docs Extend/Develop

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	»

First	Steps	with	Sphinx
This	document	is	meant	to	give	a	tutorial-like	overview	of	all	common
tasks	while	using	Sphinx.

The	green	arrows	designate	“more	info”	links	leading	to	advanced
sections	about	the	described	task.

Setting	up	the	documentation	sources

The	root	directory	of	a	Sphinx	collection	of	reStructuredText
document	sources	is	called	the	source	directory.	This	directory	also
contains	the	Sphinx	configuration	file	conf.py,	where	you	can
configure	all	aspects	of	how	Sphinx	reads	your	sources	and	builds
your	documentation.	[1]

Sphinx	comes	with	a	script	called	sphinx-quickstart	that	sets	up	a
source	directory	and	creates	a	default	conf.py	with	the	most	useful
configuration	values	from	a	few	questions	it	asks	you.	Just	run

$	sphinx-quickstart

and	answer	its	questions.	(Be	sure	to	say	yes	to	the	“autodoc”
extension.)

There	is	also	an	automatic	“API	documentation”	generator	called
sphinx-apidoc;	see	Invocation	of	sphinx-apidoc	for	details.

reStructuredText
directives

toctree	is	a
reStructuredText	directive,
a	very	versatile	piece	of
markup.	Directives	can
have	arguments,	options
and	content.

Arguments	are	given
directly	after	the	double
colon	following	the
directive’s	name.	Each
directive	decides	whether	it
can	have	arguments,	and
how	many.

Options	are	given	after	the
arguments,	in	form	of	a
“field	list”.	The	maxdepth
is	such	an	option	for	the
toctree	directive.

Content	follows	the	options
or	arguments	after	a	blank
line.	Each	directive	decides
whether	to	allow	content,

Defining	document	structure

Let’s	assume	you’ve	run	sphinx-quickstart.	It	created	a	source
directory	with	conf.py	and	a	master	document,	index.rst	(if	you
accepted	the	defaults).	The	main	function	of	the	master	document	is
to	serve	as	a	welcome	page,	and	to	contain	the	root	of	the	“table	of
contents	tree”	(or	toctree).	This	is	one	of	the	main	things	that	Sphinx
adds	to	reStructuredText,	a	way	to	connect	multiple	files	to	a	single
hierarchy	of	documents.

The	toctree	directive	initially	is
empty,	and	looks	like	this:

..	toctree::
			:maxdepth:	2

You	add	documents	listing	them	in
the	content	of	the	directive:

..	toctree::
			:maxdepth:	2

			intro
			tutorial
			...

This	is	exactly	how	the	toctree	for
this	documentation	looks.	The
documents	to	include	are	given	as
document	names,	which	in	short
means	that	you	leave	off	the	file
name	extension	and	use	slashes	as
directory	separators.

	Read	more	about	the	toctree

and	what	to	do	with	it.

A	common	gotcha	with
directives	is	that	the	first
line	of	the	content	must
be	indented	to	the	same
level	as	the	options	are.

directive.

You	can	now	create	the	files	you
listed	in	the	toctree	and	add	content,
and	their	section	titles	will	be
inserted	(up	to	the	“maxdepth”	level)
at	the	place	where	the	toctree
directive	is	placed.	Also,	Sphinx	now
knows	about	the	order	and	hierarchy	of	your	documents.	(They	may
contain	toctree	directives	themselves,	which	means	you	can
create	deeply	nested	hierarchies	if	necessary.)

Adding	content

In	Sphinx	source	files,	you	can	use	most	features	of	standard
reStructuredText.	There	are	also	several	features	added	by	Sphinx.
For	example,	you	can	add	cross-file	references	in	a	portable	way
(which	works	for	all	output	types)	using	the	ref	role.

For	an	example,	if	you	are	viewing	the	HTML	version	you	can	look	at
the	source	for	this	document	–	use	the	“Show	Source”	link	in	the
sidebar.

	See	reStructuredText	Primer	for	a	more	in-depth	introduction	to
reStructuredText	and	Sphinx	Markup	Constructs	for	a	full	list	of
markup	added	by	Sphinx.

Running	the	build

Now	that	you	have	added	some	files	and	content,	let’s	make	a	first
build	of	the	docs.	A	build	is	started	with	the	sphinx-build	program,
called	like	this:

$	sphinx-build	-b	html	sourcedir	builddir

where	sourcedir	is	the	source	directory,	and	builddir	is	the	directory
in	which	you	want	to	place	the	built	documentation.	The	-b	option
selects	a	builder;	in	this	example	Sphinx	will	build	HTML	files.

	See	Invocation	of	sphinx-build	for	all	options	that	sphinx-build
supports.

However,	sphinx-quickstart	script	creates	a	Makefile	and	a
make.bat	which	make	life	even	easier	for	you:	with	them	you	only
need	to	run

$	make	html

to	build	HTML	docs	in	the	build	directory	you	chose.	Execute	make
without	an	argument	to	see	which	targets	are	available.

How	do	I	generate	PDF	documents?

make	latexpdf 	runs	the	LaTeX	builder	and	readily	invokes	the
pdfTeX	toolchain	for	you.

Documenting	objects

One	of	Sphinx’	main	objectives	is	easy	documentation	of	objects	(in
a	very	general	sense)	in	any	domain.	A	domain	is	a	collection	of
object	types	that	belong	together,	complete	with	markup	to	create
and	reference	descriptions	of	these	objects.

The	most	prominent	domain	is	the	Python	domain.	To	e.g.	document
the	Python	built-in	function	enumerate(),	you	would	add	this	to
one	of	your	source	files:

..	py:function::	enumerate(sequence[,	start=0])

			Return	an	iterator	that	yields	tuples	of	an	index	and	an	item	of	the
			sequence.	(And	so	on.)

This	is	rendered	like	this:

enumerate(sequence[,	start=0])
Return	an	iterator	that	yields	tuples	of	an	index	and	an	item	of	the
sequence.	(And	so	on.)

The	argument	of	the	directive	is	the	signature	of	the	object	you
describe,	the	content	is	the	documentation	for	it.	Multiple	signatures
can	be	given,	each	in	its	own	line.

The	Python	domain	also	happens	to	be	the	default	domain,	so	you
don’t	need	to	prefix	the	markup	with	the	domain	name:

..	function::	enumerate(sequence[,	start=0])

			...

does	the	same	job	if	you	keep	the	default	setting	for	the	default
domain.

There	are	several	more	directives	for	documenting	other	types	of
Python	objects,	for	example	py:class	or	py:method.	There	is	also
a	cross-referencing	role	for	each	of	these	object	types.	This	markup
will	create	a	link	to	the	documentation	of	enumerate():

The	:py:func:`enumerate`	function	can	be	used	for	...

And	here	is	the	proof:	A	link	to	enumerate().

Again,	the	py:	can	be	left	out	if	the	Python	domain	is	the	default
one.	It	doesn’t	matter	which	file	contains	the	actual	documentation
for	enumerate();	Sphinx	will	find	it	and	create	a	link	to	it.

Each	domain	will	have	special	rules	for	how	the	signatures	can	look
like,	and	make	the	formatted	output	look	pretty,	or	add	specific
features	like	links	to	parameter	types,	e.g.	in	the	C/C++	domains.

	See	Sphinx	Domains	for	all	the	available	domains	and	their
directives/roles.

Basic	configuration

Earlier	we	mentioned	that	the	conf.py	file	controls	how	Sphinx
processes	your	documents.	In	that	file,	which	is	executed	as	a
Python	source	file,	you	assign	configuration	values.	For	advanced
users:	since	it	is	executed	by	Sphinx,	you	can	do	non-trivial	tasks	in
it,	like	extending	sys.path	or	importing	a	module	to	find	out	the
version	your	are	documenting.

The	config	values	that	you	probably	want	to	change	are	already	put
into	the	conf.py	by	sphinx-quickstart	and	initially	commented	out
(with	standard	Python	syntax:	a	#	comments	the	rest	of	the	line).	To
change	the	default	value,	remove	the	hash	sign	and	modify	the
value.	To	customize	a	config	value	that	is	not	automatically	added	by
sphinx-quickstart,	just	add	an	additional	assignment.

Keep	in	mind	that	the	file	uses	Python	syntax	for	strings,	numbers,
lists	and	so	on.	The	file	is	saved	in	UTF-8	by	default,	as	indicated	by
the	encoding	declaration	in	the	first	line.	If	you	use	non-ASCII
characters	in	any	string	value,	you	need	to	use	Python	Unicode
strings	(like	project	=	u'Exposé').

	See	The	build	configuration	file	for	documentation	of	all	available
config	values.

Autodoc

When	documenting	Python	code,	it	is	common	to	put	a	lot	of
documentation	in	the	source	files,	in	documentation	strings.	Sphinx
supports	the	inclusion	of	docstrings	from	your	modules	with	an
extension	(an	extension	is	a	Python	module	that	provides	additional
features	for	Sphinx	projects)	called	“autodoc”.

In	order	to	use	autodoc,	you	need	to	activate	it	in	conf.py	by
putting	the	string	'sphinx.ext.autodoc'	into	the	list	assigned	to
the	extensions	config	value.	Then,	you	have	a	few	additional
directives	at	your	disposal.

For	example,	to	document	the	function	io.open(),	reading	its
signature	and	docstring	from	the	source	file,	you’d	write	this:

..	autofunction::	io.open

You	can	also	document	whole	classes	or	even	modules
automatically,	using	member	options	for	the	auto	directives,	like

..	automodule::	io
			:members:

autodoc	needs	to	import	your	modules	in	order	to	extract	the
docstrings.	Therefore,	you	must	add	the	appropriate	path	to
sys.path	in	your	conf.py.

	See	sphinx.ext.autodoc	for	the	complete	description	of	the
features	of	autodoc.

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	»

More	topics	to	be	covered

Other	extensions	(math,	intersphinx,	viewcode,	doctest)
Static	files
Selecting	a	theme
Templating
Using	extensions
Writing	extensions

Footnotes

[1]
This	is	the	usual	lay-out.	However,	conf.py	can	also	live	in
another	directory,	the	configuration	directory.	See	Invocation	of
sphinx-build.

©	Copyright	2007-2013,	Georg	Brandl.	Created	using	Sphinx	1.2.

http://sphinx-doc.org/

Home Get	it Docs Extend/Develop

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	»

Invocation	of	sphinx-build
The	sphinx-build	script	builds	a	Sphinx	documentation	set.	It	is
called	like	this:

$	sphinx-build	[options]	sourcedir	builddir	[filenames]

where	sourcedir	is	the	source	directory,	and	builddir	is	the	directory
in	which	you	want	to	place	the	built	documentation.	Most	of	the	time,
you	don’t	need	to	specify	any	filenames.

The	sphinx-build	script	has	several	options:

-b	buildername
The	most	important	option:	it	selects	a	builder.	The	most	common
builders	are:

html
Build	HTML	pages.	This	is	the	default	builder.

dirhtml
Build	HTML	pages,	but	with	a	single	directory	per	document.
Makes	for	prettier	URLs	(no	.html)	if	served	from	a
webserver.

singlehtml
Build	a	single	HTML	with	the	whole	content.

htmlhelp,	qthelp,	devhelp,	epub
Build	HTML	files	with	additional	information	for	building	a
documentation	collection	in	one	of	these	formats.

latex
Build	LaTeX	sources	that	can	be	compiled	to	a	PDF	document
using	pdflatex.

man
Build	manual	pages	in	groff	format	for	UNIX	systems.

texinfo
Build	Texinfo	files	that	can	be	processed	into	Info	files	using
makeinfo.

text
Build	plain	text	files.

gettext
Build	gettext-style	message	catalogs	(.pot	files).

doctest
Run	all	doctests	in	the	documentation,	if	the	doctest
extension	is	enabled.

linkcheck
Check	the	integrity	of	all	external	links.

xml
Build	Docutils-native	XML	files.

pseudoxml
Build	compact	pretty-printed	“pseudo-XML”	files	displaying	the
internal	structure	of	the	intermediate	document	trees.

See	Available	builders	for	a	list	of	all	builders	shipped	with
Sphinx.	Extensions	can	add	their	own	builders.

-a
If	given,	always	write	all	output	files.	The	default	is	to	only	write
output	files	for	new	and	changed	source	files.	(This	may	not
apply	to	all	builders.)

-E
Don’t	use	a	saved	environment	(the	structure	caching	all	cross-
references),	but	rebuild	it	completely.	The	default	is	to	only	read
and	parse	source	files	that	are	new	or	have	changed	since	the
last	run.

-t	tag
Define	the	tag	tag.	This	is	relevant	for	only	directives	that	only
include	their	content	if	this	tag	is	set.

New	in	version	0.6.

-d	path
Since	Sphinx	has	to	read	and	parse	all	source	files	before	it	can
write	an	output	file,	the	parsed	source	files	are	cached	as
“doctree	pickles”.	Normally,	these	files	are	put	in	a	directory
called	.doctrees	under	the	build	directory;	with	this	option	you
can	select	a	different	cache	directory	(the	doctrees	can	be	shared
between	all	builders).

-j	N
Distribute	the	build	over	N	processes	in	parallel,	to	make	building
on	multiprocessor	machines	more	effective.	Note	that	not	all
parts	and	not	all	builders	of	Sphinx	can	be	parallelized.

New	in	version	1.2:	This	option	should	be	considered
experimental.

-c	path
Don’t	look	for	the	conf.py	in	the	source	directory,	but	use	the
given	configuration	directory	instead.	Note	that	various	other	files
and	paths	given	by	configuration	values	are	expected	to	be
relative	to	the	configuration	directory,	so	they	will	have	to	be
present	at	this	location	too.

New	in	version	0.3.

-C
Don’t	look	for	a	configuration	file;	only	take	options	via	the	-D
option.

New	in	version	0.5.

-D	setting=value
Override	a	configuration	value	set	in	the	conf.py	file.	The	value
must	be	a	string	or	dictionary	value.	For	the	latter,	supply	the
setting	name	and	key	like	this:	-D
latex_elements.docclass=scrartcl.	For	boolean	values,
use	0	or	1	as	the	value.

Changed	in	version	0.6:	The	value	can	now	be	a	dictionary	value.

-A	name=value
Make	the	name	assigned	to	value	in	the	HTML	templates.

New	in	version	0.5.

-n
Run	in	nit-picky	mode.	Currently,	this	generates	warnings	for	all
missing	references.

-N
Do	not	emit	colored	output.	(On	Windows,	colored	output	is
disabled	in	any	case.)

-v
Increase	verbosity.	This	option	can	be	given	up	to	three	times	to
get	more	debug	output.	It	implies	-T.

New	in	version	1.2.

-q
Do	not	output	anything	on	standard	output,	only	write	warnings
and	errors	to	standard	error.

-Q
Do	not	output	anything	on	standard	output,	also	suppress
warnings.	Only	errors	are	written	to	standard	error.

-w	file
Write	warnings	(and	errors)	to	the	given	file,	in	addition	to
standard	error.

-W
Turn	warnings	into	errors.	This	means	that	the	build	stops	at	the
first	warning	and	sphinx-build	exits	with	exit	status	1.

-T

Display	the	full	traceback	when	an	unhandled	exception	occurs.
Otherwise,	only	a	summary	is	displayed	and	the	traceback
information	is	saved	to	a	file	for	further	analysis.

New	in	version	1.2.

-P
(Useful	for	debugging	only.)	Run	the	Python	debugger,	pdb,	if	an
unhandled	exception	occurs	while	building.

-h,	--help,	--version
Display	usage	summary	or	Sphinx	version.

New	in	version	1.2.

You	can	also	give	one	or	more	filenames	on	the	command	line	after
the	source	and	build	directories.	Sphinx	will	then	try	to	build	only
these	output	files	(and	their	dependencies).

Makefile	options

The	Makefile	and	make.bat	files	created	by	sphinx-quickstart
usually	run	sphinx-build	only	with	the	-b	and	-d	options.	However,
they	support	the	following	variables	to	customize	behavior:

PAPER
The	value	for	latex_paper_size.

SPHINXBUILD
The	command	to	use	instead	of	sphinx-build.

BUILDDIR
The	build	directory	to	use	instead	of	the	one	chosen	in	sphinx-
quickstart.

SPHINXOPTS
Additional	options	for	sphinx-build.

Invocation	of	sphinx-apidoc
The	sphinx-apidoc	generates	completely	automatic	API
documentation	for	a	Python	package.	It	is	called	like	this:

$	sphinx-apidoc	[options]	-o	outputdir	packagedir	[pathnames]

where	packagedir	is	the	path	to	the	package	to	document,	and
outputdir	is	the	directory	where	the	generated	sources	are	placed.
Any	pathnames	given	are	paths	to	be	excluded	ignored	during
generation.

The	sphinx-apidoc	script	has	several	options:

-o	outputdir
Gives	the	directory	in	which	to	place	the	generated	output.

-f,	--force
Normally,	sphinx-apidoc	does	not	overwrite	any	files.	Use	this
option	to	force	the	overwrite	of	all	files	that	it	generates.

-n,	--dry-run
With	this	option	given,	no	files	will	be	written	at	all.

-s	suffix
This	option	selects	the	file	name	suffix	of	output	files.	By	default,
this	is	rst.

-d	maxdepth
This	sets	the	maximum	depth	of	the	table	of	contents,	if	one	is
generated.

-l,	--follow-links
This	option	makes	sphinx-apidoc	follow	symbolic	links	when
recursing	the	filesystem	to	discover	packages	and	modules.	You

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	»

may	need	it	if	you	want	to	generate	documentation	from	a	source
directory	managed	by	collective.recipe.omelette.	By	default,
symbolic	links	are	skipped.

New	in	version	1.2.

-T,	--no-toc
This	prevents	the	generation	of	a	table-of-contents	file
modules.rst.	This	has	no	effect	when	--full	is	given.

-F,	--full
This	option	makes	sphinx-apidoc	create	a	full	Sphinx	project,
using	the	same	mechanism	as	sphinx-quickstart.	Most
configuration	values	are	set	to	default	values,	but	you	can
influence	the	most	important	ones	using	the	following	options.

-H	project
Sets	the	project	name	to	put	in	generated	files	(see	project).

-A	author
Sets	the	author	name(s)	to	put	in	generated	files	(see
copyright).

-V	version
Sets	the	project	version	to	put	in	generated	files	(see	version).

-R	release
Sets	the	project	release	to	put	in	generated	files	(see	release).

©	Copyright	2007-2013,	Georg	Brandl.	Created	using	Sphinx	1.2.

http://pypi.python.org/pypi/collective.recipe.omelette/
http://sphinx-doc.org/

Home Get	it Docs Extend/Develop

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	»

reStructuredText	Primer
This	section	is	a	brief	introduction	to	reStructuredText	(reST)
concepts	and	syntax,	intended	to	provide	authors	with	enough
information	to	author	documents	productively.	Since	reST	was
designed	to	be	a	simple,	unobtrusive	markup	language,	this	will	not
take	too	long.

See	also
The	authoritative	reStructuredText	User	Documentation.	The	“ref”	links	in	this
document	link	to	the	description	of	the	individual	constructs	in	the	reST	reference.

http://docutils.sourceforge.net/rst.html

Paragraphs

The	paragraph	(ref)	is	the	most	basic	block	in	a	reST	document.
Paragraphs	are	simply	chunks	of	text	separated	by	one	or	more
blank	lines.	As	in	Python,	indentation	is	significant	in	reST,	so	all
lines	of	the	same	paragraph	must	be	left-aligned	to	the	same	level	of
indentation.

http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#paragraphs

Inline	markup

The	standard	reST	inline	markup	is	quite	simple:	use

one	asterisk:	*text*	for	emphasis	(italics),
two	asterisks:	**text**	for	strong	emphasis	(boldface),	and
backquotes:	``text``	for	code	samples.

If	asterisks	or	backquotes	appear	in	running	text	and	could	be
confused	with	inline	markup	delimiters,	they	have	to	be	escaped	with
a	backslash.

Be	aware	of	some	restrictions	of	this	markup:

it	may	not	be	nested,
content	may	not	start	or	end	with	whitespace:	*	text*	is
wrong,
it	must	be	separated	from	surrounding	text	by	non-word
characters.	Use	a	backslash	escaped	space	to	work	around
that:	thisis\	*one*\	word.

These	restrictions	may	be	lifted	in	future	versions	of	the	docutils.

reST	also	allows	for	custom	“interpreted	text	roles”,	which	signify	that
the	enclosed	text	should	be	interpreted	in	a	specific	way.	Sphinx
uses	this	to	provide	semantic	markup	and	cross-referencing	of
identifiers,	as	described	in	the	appropriate	section.	The	general
syntax	is	:rolename:`content`.

Standard	reST	provides	the	following	roles:

emphasis	–	alternate	spelling	for	*emphasis*
strong	–	alternate	spelling	for	**strong**
literal	–	alternate	spelling	for	``literal``
subscript	–	subscript	text
superscript	–	superscript	text
title-reference	–	for	titles	of	books,	periodicals,	and	other
materials

http://docutils.sourceforge.net/docs/ref/rst/roles.html#emphasis
http://docutils.sourceforge.net/docs/ref/rst/roles.html#strong
http://docutils.sourceforge.net/docs/ref/rst/roles.html#literal
http://docutils.sourceforge.net/docs/ref/rst/roles.html#subscript
http://docutils.sourceforge.net/docs/ref/rst/roles.html#superscript
http://docutils.sourceforge.net/docs/ref/rst/roles.html#title-reference

See	Inline	markup	for	roles	added	by	Sphinx.

Lists	and	Quote-like	blocks

List	markup	(ref)	is	natural:	just	place	an	asterisk	at	the	start	of	a
paragraph	and	indent	properly.	The	same	goes	for	numbered	lists;
they	can	also	be	autonumbered	using	a	#	sign:

*	This	is	a	bulleted	list.
*	It	has	two	items,	the	second
		item	uses	two	lines.

1.	This	is	a	numbered	list.
2.	It	has	two	items	too.

#.	This	is	a	numbered	list.
#.	It	has	two	items	too.

Nested	lists	are	possible,	but	be	aware	that	they	must	be	separated
from	the	parent	list	items	by	blank	lines:

*	this	is
*	a	list

		*	with	a	nested	list
		*	and	some	subitems

*	and	here	the	parent	list	continues

Definition	lists	(ref)	are	created	as	follows:

term	(up	to	a	line	of	text)
			Definition	of	the	term,	which	must	be	indented

			and	can	even	consist	of	multiple	paragraphs

http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#bullet-lists
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#definition-lists

next	term
			Description.

Note	that	the	term	cannot	have	more	than	one	line	of	text.

Quoted	paragraphs	(ref)	are	created	by	just	indenting	them	more
than	the	surrounding	paragraphs.

Line	blocks	(ref)	are	a	way	of	preserving	line	breaks:

|	These	lines	are
|	broken	exactly	like	in
|	the	source	file.

There	are	also	several	more	special	blocks	available:

field	lists	(ref)
option	lists	(ref)
quoted	literal	blocks	(ref)
doctest	blocks	(ref)

http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#block-quotes
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#line-blocks
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#field-lists
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#option-lists
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#quoted-literal-blocks
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#doctest-blocks

Source	Code

Literal	code	blocks	(ref)	are	introduced	by	ending	a	paragraph	with
the	special	marker	::.	The	literal	block	must	be	indented	(and,	like
all	paragraphs,	separated	from	the	surrounding	ones	by	blank	lines):

This	is	a	normal	text	paragraph.	The	next	paragraph	is	a	code	sample

			It	is	not	processed	in	any	way,	except
			that	the	indentation	is	removed.

			It	can	span	multiple	lines.

This	is	a	normal	text	paragraph	again.

The	handling	of	the	::	marker	is	smart:

If	it	occurs	as	a	paragraph	of	its	own,	that	paragraph	is
completely	left	out	of	the	document.
If	it	is	preceded	by	whitespace,	the	marker	is	removed.
If	it	is	preceded	by	non-whitespace,	the	marker	is	replaced	by	a
single	colon.

That	way,	the	second	sentence	in	the	above	example’s	first
paragraph	would	be	rendered	as	“The	next	paragraph	is	a	code
sample:”.

http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#literal-blocks

Tables

Two	forms	of	tables	are	supported.	For	grid	tables	(ref),	you	have	to
“paint”	the	cell	grid	yourself.	They	look	like	this:

+------------------------+------------+----------+----------+
|	Header	row,	column	1			|	Header	2			|	Header	3	|	Header	4	|
|	(header	rows	optional)	|												|										|										|
+========================+============+==========+==========+
|	body	row	1,	column	1			|	column	2			|	column	3	|	column	4	|
+------------------------+------------+----------+----------+
|	body	row	2													|	...								|	...						|										|
+------------------------+------------+----------+----------+

Simple	tables	(ref)	are	easier	to	write,	but	limited:	they	must	contain
more	than	one	row,	and	the	first	column	cannot	contain	multiple
lines.	They	look	like	this:

=====		=====		=======
A						B						A	and	B
=====		=====		=======
False		False		False
True			False		False
False		True			False
True			True			True
=====		=====		=======

http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#grid-tables
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#simple-tables

Hyperlinks

External	links
Use	`Link	text	<http://example.com/>`_	for	inline	web
links.	If	the	link	text	should	be	the	web	address,	you	don’t	need
special	markup	at	all,	the	parser	finds	links	and	mail	addresses	in
ordinary	text.

You	can	also	separate	the	link	and	the	target	definition	(ref),	like	this:

This	is	a	paragraph	that	contains	`a	link`_.

..	_a	link:	http://example.com/

Internal	links
Internal	linking	is	done	via	a	special	reST	role	provided	by	Sphinx,
see	the	section	on	specific	markup,	Cross-referencing	arbitrary
locations.

http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#hyperlink-targets

Sections

Section	headers	(ref)	are	created	by	underlining	(and	optionally
overlining)	the	section	title	with	a	punctuation	character,	at	least	as
long	as	the	text:

=================
This	is	a	heading
=================

Normally,	there	are	no	heading	levels	assigned	to	certain	characters
as	the	structure	is	determined	from	the	succession	of	headings.
However,	for	the	Python	documentation,	this	convention	is	used
which	you	may	follow:

#	with	overline,	for	parts
*	with	overline,	for	chapters
=,	for	sections
-,	for	subsections
^,	for	subsubsections
",	for	paragraphs

Of	course,	you	are	free	to	use	your	own	marker	characters	(see	the
reST	documentation),	and	use	a	deeper	nesting	level,	but	keep	in
mind	that	most	target	formats	(HTML,	LaTeX)	have	a	limited
supported	nesting	depth.

http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#sections

Explicit	Markup

“Explicit	markup”	(ref)	is	used	in	reST	for	most	constructs	that	need
special	handling,	such	as	footnotes,	specially-highlighted
paragraphs,	comments,	and	generic	directives.

An	explicit	markup	block	begins	with	a	line	starting	with	..	followed
by	whitespace	and	is	terminated	by	the	next	paragraph	at	the	same
level	of	indentation.	(There	needs	to	be	a	blank	line	between	explicit
markup	and	normal	paragraphs.	This	may	all	sound	a	bit
complicated,	but	it	is	intuitive	enough	when	you	write	it.)

http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#explicit-markup-blocks

Directives

A	directive	(ref)	is	a	generic	block	of	explicit	markup.	Besides	roles,	it
is	one	of	the	extension	mechanisms	of	reST,	and	Sphinx	makes
heavy	use	of	it.

Docutils	supports	the	following	directives:

Admonitions:	attention,	caution,	danger,	error,	hint,	important,
note,	tip,	warning	and	the	generic	admonition.	(Most	themes
style	only	“note”	and	“warning”	specially.)

Images:

image	(see	also	Images	below)
figure	(an	image	with	caption	and	optional	legend)

Additional	body	elements:

contents	(a	local,	i.e.	for	the	current	file	only,	table	of
contents)
container	(a	container	with	a	custom	class,	useful	to
generate	an	outer	<div>	in	HTML)
rubric	(a	heading	without	relation	to	the	document
sectioning)
topic,	sidebar	(special	highlighted	body	elements)
parsed-literal	(literal	block	that	supports	inline	markup)
epigraph	(a	block	quote	with	optional	attribution	line)
highlights,	pull-quote	(block	quotes	with	their	own	class
attribute)
compound	(a	compound	paragraph)

Special	tables:

table	(a	table	with	title)
csv-table	(a	table	generated	from	comma-separated	values)
list-table	(a	table	generated	from	a	list	of	lists)

Special	directives:

raw	(include	raw	target-format	markup)
include	(include	reStructuredText	from	another	file)	–	in
Sphinx,	when	given	an	absolute	include	file	path,	this

http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#directives
http://docutils.sourceforge.net/docs/ref/rst/directives.html#attention
http://docutils.sourceforge.net/docs/ref/rst/directives.html#caution
http://docutils.sourceforge.net/docs/ref/rst/directives.html#danger
http://docutils.sourceforge.net/docs/ref/rst/directives.html#error
http://docutils.sourceforge.net/docs/ref/rst/directives.html#hint
http://docutils.sourceforge.net/docs/ref/rst/directives.html#important
http://docutils.sourceforge.net/docs/ref/rst/directives.html#note
http://docutils.sourceforge.net/docs/ref/rst/directives.html#tip
http://docutils.sourceforge.net/docs/ref/rst/directives.html#warning
http://docutils.sourceforge.net/docs/ref/rst/directives.html#admonitions
http://docutils.sourceforge.net/docs/ref/rst/directives.html#image
http://docutils.sourceforge.net/docs/ref/rst/directives.html#figure
http://docutils.sourceforge.net/docs/ref/rst/directives.html#table-of-contents
http://docutils.sourceforge.net/docs/ref/rst/directives.html#container
http://docutils.sourceforge.net/docs/ref/rst/directives.html#rubric
http://docutils.sourceforge.net/docs/ref/rst/directives.html#topic
http://docutils.sourceforge.net/docs/ref/rst/directives.html#sidebar
http://docutils.sourceforge.net/docs/ref/rst/directives.html#parsed-literal
http://docutils.sourceforge.net/docs/ref/rst/directives.html#epigraph
http://docutils.sourceforge.net/docs/ref/rst/directives.html#highlights
http://docutils.sourceforge.net/docs/ref/rst/directives.html#pull-quote
http://docutils.sourceforge.net/docs/ref/rst/directives.html#compound-paragraph
http://docutils.sourceforge.net/docs/ref/rst/directives.html#table
http://docutils.sourceforge.net/docs/ref/rst/directives.html#csv-table
http://docutils.sourceforge.net/docs/ref/rst/directives.html#list-table
http://docutils.sourceforge.net/docs/ref/rst/directives.html#raw-data-pass-through
http://docutils.sourceforge.net/docs/ref/rst/directives.html#include

directive	takes	it	as	relative	to	the	source	directory
class	(assign	a	class	attribute	to	the	next	element)	[1]

HTML	specifics:

meta	(generation	of	HTML	<meta>	tags)
title	(override	document	title)

Influencing	markup:

default-role	(set	a	new	default	role)
role	(create	a	new	role)

Since	these	are	only	per-file,	better	use	Sphinx’	facilities	for
setting	the	default_role.

Do	not	use	the	directives	sectnum,	header	and	footer.

Directives	added	by	Sphinx	are	described	in	Sphinx	Markup
Constructs.

Basically,	a	directive	consists	of	a	name,	arguments,	options	and
content.	(Keep	this	terminology	in	mind,	it	is	used	in	the	next	chapter
describing	custom	directives.)	Looking	at	this	example,

..	function::	foo(x)
														foo(y,	z)
			:module:	some.module.name

			Return	a	line	of	text	input	from	the	user.

function	is	the	directive	name.	It	is	given	two	arguments	here,	the
remainder	of	the	first	line	and	the	second	line,	as	well	as	one	option
module	(as	you	can	see,	options	are	given	in	the	lines	immediately
following	the	arguments	and	indicated	by	the	colons).	Options	must
be	indented	to	the	same	level	as	the	directive	content.

The	directive	content	follows	after	a	blank	line	and	is	indented
relative	to	the	directive	start.

http://docutils.sourceforge.net/docs/ref/rst/directives.html#class
http://docutils.sourceforge.net/docs/ref/rst/directives.html#meta
http://docutils.sourceforge.net/docs/ref/rst/directives.html#metadata-document-title
http://docutils.sourceforge.net/docs/ref/rst/directives.html#default-role
http://docutils.sourceforge.net/docs/ref/rst/directives.html#role
http://docutils.sourceforge.net/docs/ref/rst/directives.html#sectnum
http://docutils.sourceforge.net/docs/ref/rst/directives.html#header
http://docutils.sourceforge.net/docs/ref/rst/directives.html#footer

Images

reST	supports	an	image	directive	(ref),	used	like	so:

..	image::	gnu.png
			(options)

When	used	within	Sphinx,	the	file	name	given	(here	gnu.png)	must
either	be	relative	to	the	source	file,	or	absolute	which	means	that
they	are	relative	to	the	top	source	directory.	For	example,	the	file
sketch/spam.rst	could	refer	to	the	image	images/spam.png	as
../images/spam.png	or	/images/spam.png.

Sphinx	will	automatically	copy	image	files	over	to	a	subdirectory	of
the	output	directory	on	building	(e.g.	the	_static	directory	for
HTML	output.)

Interpretation	of	image	size	options	(width	and	height)	is	as
follows:	if	the	size	has	no	unit	or	the	unit	is	pixels,	the	given	size	will
only	be	respected	for	output	channels	that	support	pixels	(i.e.	not	in
LaTeX	output).	Other	units	(like	pt	for	points)	will	be	used	for	HTML
and	LaTeX	output.

Sphinx	extends	the	standard	docutils	behavior	by	allowing	an
asterisk	for	the	extension:

..	image::	gnu.*

Sphinx	then	searches	for	all	images	matching	the	provided	pattern
and	determines	their	type.	Each	builder	then	chooses	the	best	image
out	of	these	candidates.	For	instance,	if	the	file	name	gnu.*	was
given	and	two	files	gnu.pdf	and	gnu.png	existed	in	the	source
tree,	the	LaTeX	builder	would	choose	the	former,	while	the	HTML
builder	would	prefer	the	latter.

Changed	in	version	0.4:	Added	the	support	for	file	names	ending	in

http://docutils.sourceforge.net/docs/ref/rst/directives.html#image

an	asterisk.

Changed	in	version	0.6:	Image	paths	can	now	be	absolute.

Footnotes

For	footnotes	(ref),	use	[#name]_	to	mark	the	footnote	location,	and
add	the	footnote	body	at	the	bottom	of	the	document	after	a
“Footnotes”	rubric	heading,	like	so:

Lorem	ipsum	[#f1]_	dolor	sit	amet	...	[#f2]_

..	rubric::	Footnotes

..	[#f1]	Text	of	the	first	footnote.

..	[#f2]	Text	of	the	second	footnote.

You	can	also	explicitly	number	the	footnotes	([1]_)	or	use	auto-
numbered	footnotes	without	names	([#]_).

http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#footnotes

Citations

Standard	reST	citations	(ref)	are	supported,	with	the	additional
feature	that	they	are	“global”,	i.e.	all	citations	can	be	referenced	from
all	files.	Use	them	like	so:

Lorem	ipsum	[Ref]_	dolor	sit	amet.

..	[Ref]	Book	or	article	reference,	URL	or	whatever.

Citation	usage	is	similar	to	footnote	usage,	but	with	a	label	that	is	not
numeric	or	begins	with	#.

http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#citations

Substitutions

reST	supports	“substitutions”	(ref),	which	are	pieces	of	text	and/or
markup	referred	to	in	the	text	by	|name|.	They	are	defined	like
footnotes	with	explicit	markup	blocks,	like	this:

..	|name|	replace::	replacement	*text*

or	this:

..	|caution|	image::	warning.png
													:alt:	Warning!

See	the	reST	reference	for	substitutions	for	details.

If	you	want	to	use	some	substitutions	for	all	documents,	put	them
into	rst_prolog	or	put	them	into	a	separate	file	and	include	it	into
all	documents	you	want	to	use	them	in,	using	the	include	directive.
(Be	sure	to	give	the	include	file	a	file	name	extension	differing	from
that	of	other	source	files,	to	avoid	Sphinx	finding	it	as	a	standalone
document.)

Sphinx	defines	some	default	substitutions,	see	Substitutions.

http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#substitution-definitions
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#substitution-definitions

Comments

Every	explicit	markup	block	which	isn’t	a	valid	markup	construct	(like
the	footnotes	above)	is	regarded	as	a	comment	(ref).	For	example:

..	This	is	a	comment.

You	can	indent	text	after	a	comment	start	to	form	multiline
comments:

..
			This	whole	indented	block
			is	a	comment.

			Still	in	the	comment.

http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#comments

Source	encoding

Since	the	easiest	way	to	include	special	characters	like	em	dashes
or	copyright	signs	in	reST	is	to	directly	write	them	as	Unicode
characters,	one	has	to	specify	an	encoding.	Sphinx	assumes	source
files	to	be	encoded	in	UTF-8	by	default;	you	can	change	this	with	the
source_encoding	config	value.

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	»

Gotchas

There	are	some	problems	one	commonly	runs	into	while	authoring
reST	documents:

Separation	of	inline	markup:	As	said	above,	inline	markup
spans	must	be	separated	from	the	surrounding	text	by	non-word
characters,	you	have	to	use	a	backslash-escaped	space	to	get
around	that.	See	the	reference	for	the	details.
No	nested	inline	markup:	Something	like	*see
:func:`foo`*	is	not	possible.

Footnotes

[1]
When	the	default	domain	contains	a	class	directive,	this
directive	will	be	shadowed.	Therefore,	Sphinx	re-exports	it	as
rst-class.

©	Copyright	2007-2013,	Georg	Brandl.	Created	using	Sphinx	1.2.

http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#substitution-definitions
http://sphinx-doc.org/

Home Get	it Docs Extend/Develop

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	» Sphinx	Markup	Constructs 	»

The	TOC	tree
Since	reST	does	not	have	facilities	to	interconnect	several
documents,	or	split	documents	into	multiple	output	files,	Sphinx	uses
a	custom	directive	to	add	relations	between	the	single	files	the
documentation	is	made	of,	as	well	as	tables	of	contents.	The
toctree	directive	is	the	central	element.

Note
Simple	“inclusion”	of	one	file	in	another	can	be	done	with	the	include	directive.

..	toctree::
This	directive	inserts	a	“TOC	tree”	at	the	current	location,	using
the	individual	TOCs	(including	“sub-TOC	trees”)	of	the
documents	given	in	the	directive	body.	Relative	document	names
(not	beginning	with	a	slash)	are	relative	to	the	document	the
directive	occurs	in,	absolute	names	are	relative	to	the	source
directory.	A	numeric	maxdepth	option	may	be	given	to	indicate
the	depth	of	the	tree;	by	default,	all	levels	are	included.	[1]

Consider	this	example	(taken	from	the	Python	docs’	library
reference	index):

..	toctree::
			:maxdepth:	2

			intro
			strings
			datatypes
			numeric
			(many	more	documents	listed	here)

This	accomplishes	two	things:

Tables	of	contents	from	all	those	documents	are	inserted,
with	a	maximum	depth	of	two,	that	means	one	nested

http://docutils.sourceforge.net/docs/ref/rst/directives.html#include

heading.	toctree	directives	in	those	documents	are	also
taken	into	account.
Sphinx	knows	that	the	relative	order	of	the	documents
intro,	strings	and	so	forth,	and	it	knows	that	they	are
children	of	the	shown	document,	the	library	index.	From	this
information	it	generates	“next	chapter”,	“previous	chapter”
and	“parent	chapter”	links.

Entries
Document	titles	in	the	toctree	will	be	automatically	read	from
the	title	of	the	referenced	document.	If	that	isn’t	what	you	want,
you	can	specify	an	explicit	title	and	target	using	a	similar	syntax
to	reST	hyperlinks	(and	Sphinx’s	cross-referencing	syntax).	This
looks	like:

..	toctree::

			intro
			All	about	strings	<strings>
			datatypes

The	second	line	above	will	link	to	the	strings	document,	but
will	use	the	title	“All	about	strings”	instead	of	the	title	of	the
strings	document.
You	can	also	add	external	links,	by	giving	an	HTTP	URL	instead
of	a	document	name.

Section	numbering
If	you	want	to	have	section	numbers	even	in	HTML	output,	give
the	toctree	a	numbered	option.	For	example:

..	toctree::
			:numbered:

			foo
			bar

Numbering	then	starts	at	the	heading	of	foo.	Sub-toctrees	are
automatically	numbered	(don’t	give	the	numbered	flag	to	those).
Numbering	up	to	a	specific	depth	is	also	possible,	by	giving	the
depth	as	a	numeric	argument	to	numbered.
Additional	options
If	you	want	only	the	titles	of	documents	in	the	tree	to	show	up,	not
other	headings	of	the	same	level,	you	can	use	the	titlesonly
option:

..	toctree::
			:titlesonly:

			foo
			bar

You	can	use	“globbing”	in	toctree	directives,	by	giving	the	glob
flag	option.	All	entries	are	then	matched	against	the	list	of
available	documents,	and	matches	are	inserted	into	the	list
alphabetically.	Example:

..	toctree::
			:glob:

			intro*
			recipe/*
			*

This	includes	first	all	documents	whose	names	start	with	intro,
then	all	documents	in	the	recipe	folder,	then	all	remaining
documents	(except	the	one	containing	the	directive,	of	course.)
[2]

The	special	entry	name	self	stands	for	the	document
containing	the	toctree	directive.	This	is	useful	if	you	want	to
generate	a	“sitemap”	from	the	toctree.

You	can	also	give	a	“hidden”	option	to	the	directive,	like	this:

..	toctree::
			:hidden:

			doc_1
			doc_2

This	will	still	notify	Sphinx	of	the	document	hierarchy,	but	not
insert	links	into	the	document	at	the	location	of	the	directive	–	this
makes	sense	if	you	intend	to	insert	these	links	yourself,	in	a
different	style,	or	in	the	HTML	sidebar.

In	cases	where	you	want	to	have	only	one	top-level	toctree	and
hide	all	other	lower	level	toctrees	you	can	add	the
“includehidden”	option	to	the	top-level	toctree	entry:

..	toctree::
			:includehidden:

			doc_1
			doc_2

All	other	toctree	entries	can	then	be	eliminated	by	the	“hidden”
option.

In	the	end,	all	documents	in	the	source	directory	(or
subdirectories)	must	occur	in	some	toctree	directive;	Sphinx
will	emit	a	warning	if	it	finds	a	file	that	is	not	included,	because
that	means	that	this	file	will	not	be	reachable	through	standard
navigation.	Use	unused_docs	to	explicitly	exclude	documents
from	building,	and	exclude_trees	to	exclude	whole	directories.
The	“master	document”	(selected	by	master_doc)	is	the	“root”
of	the	TOC	tree	hierarchy.	It	can	be	used	as	the	documentation’s
main	page,	or	as	a	“full	table	of	contents”	if	you	don’t	give	a
maxdepth	option.
Changed	in	version	0.3:	Added	“globbing”	option.

Changed	in	version	0.6:	Added	“numbered”	and	“hidden”	options
as	well	as	external	links	and	support	for	“self”	references.

Changed	in	version	1.0:	Added	“titlesonly”	option.

Changed	in	version	1.1:	Added	numeric	argument	to	“numbered”.

Changed	in	version	1.2:	Added	“includehidden”	option.

Special	names

Sphinx	reserves	some	document	names	for	its	own	use;	you	should
not	try	to	create	documents	with	these	names	–	it	will	cause
problems.

The	special	document	names	(and	pages	generated	for	them)	are:

genindex,	modindex,	search

These	are	used	for	the	general	index,	the	Python	module	index,
and	the	search	page,	respectively.

The	general	index	is	populated	with	entries	from	modules,	all
index-generating	object	descriptions,	and	from	index
directives.

The	Python	module	index	contains	one	entry	per	py:module
directive.

The	search	page	contains	a	form	that	uses	the	generated	JSON
search	index	and	JavaScript	to	full-text	search	the	generated
documents	for	search	words;	it	should	work	on	every	major
browser	that	supports	modern	JavaScript.

every	name	beginning	with	_

Though	only	few	such	names	are	currently	used	by	Sphinx,	you
should	not	create	documents	or	document-containing	directories
with	such	names.	(Using	_	as	a	prefix	for	a	custom	template
directory	is	fine.)

Warning
Be	careful	with	unusual	characters	in	filenames.	Some	formats	may	interpret	these
characters	in	unexpected	ways:

Do	not	user	the	colon	: 	for	HTML	based	formats.	Links	to	other	parts	may	not
work.
Do	not	use	the	plus	+ 	for	the	ePub	format.	Some	resources	may	not	be	found.

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	» Sphinx	Markup	Constructs 	»

Footnotes

[1]

The	maxdepth	option	does	not	apply	to	the	LaTeX	writer,	where
the	whole	table	of	contents	will	always	be	presented	at	the	begin
of	the	document,	and	its	depth	is	controlled	by	the	tocdepth
counter,	which	you	can	reset	in	your	latex_preamble	config
value	using	e.g.	\setcounter{tocdepth}{2}.

[2]

A	note	on	available	globbing	syntax:	you	can	use	the	standard
shell	constructs	*,	?,	[...]	and	[!...]	with	the	feature	that
these	all	don’t	match	slashes.	A	double	star	**	can	be	used	to
match	any	sequence	of	characters	including	slashes.

©	Copyright	2007-2013,	Georg	Brandl.	Created	using	Sphinx	1.2.

http://sphinx-doc.org/

Home Get	it Docs Extend/Develop

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	» Sphinx	Markup	Constructs 	»

Paragraph-level	markup
These	directives	create	short	paragraphs	and	can	be	used	inside
information	units	as	well	as	normal	text:

..	note::
An	especially	important	bit	of	information	about	an	API	that	a
user	should	be	aware	of	when	using	whatever	bit	of	API	the	note
pertains	to.	The	content	of	the	directive	should	be	written	in
complete	sentences	and	include	all	appropriate	punctuation.

Example:

..	note::

			This	function	is	not	suitable	for	sending	spam	e-mails.

..	warning::
An	important	bit	of	information	about	an	API	that	a	user	should	be
very	aware	of	when	using	whatever	bit	of	API	the	warning
pertains	to.	The	content	of	the	directive	should	be	written	in
complete	sentences	and	include	all	appropriate	punctuation.	This
differs	from	note	in	that	it	is	recommended	over	note	for
information	regarding	security.

..	versionadded::	version
This	directive	documents	the	version	of	the	project	which	added
the	described	feature	to	the	library	or	C	API.	When	this	applies	to
an	entire	module,	it	should	be	placed	at	the	top	of	the	module
section	before	any	prose.

The	first	argument	must	be	given	and	is	the	version	in	question;
you	can	add	a	second	argument	consisting	of	a	brief	explanation
of	the	change.

Example:

..	versionadded::	2.5
			The	*spam*	parameter.

Note	that	there	must	be	no	blank	line	between	the	directive	head
and	the	explanation;	this	is	to	make	these	blocks	visually
continuous	in	the	markup.

..	versionchanged::	version
Similar	to	versionadded,	but	describes	when	and	what
changed	in	the	named	feature	in	some	way	(new	parameters,
changed	side	effects,	etc.).

..	deprecated::	version
Similar	to	versionchanged,	but	describes	when	the	feature	was
deprecated.	An	explanation	can	also	be	given,	for	example	to
inform	the	reader	what	should	be	used	instead.	Example:

..	deprecated::	3.1
			Use	:func:`spam`	instead.

..	seealso::
Many	sections	include	a	list	of	references	to	module
documentation	or	external	documents.	These	lists	are	created
using	the	seealso	directive.
The	seealso	directive	is	typically	placed	in	a	section	just	before
any	sub-sections.	For	the	HTML	output,	it	is	shown	boxed	off
from	the	main	flow	of	the	text.

The	content	of	the	seealso	directive	should	be	a	reST	definition
list.	Example:

..	seealso::

			Module	:py:mod:`zipfile`
						Documentation	of	the	:py:mod:`zipfile`	standard	module.

			`GNU	tar	manual,	Basic	Tar	Format	<http://link>
						Documentation	for	tar	archive	files,	including	GNU	tar	extensions.

There’s	also	a	“short	form”	allowed	that	looks	like	this:

..	seealso::	modules	:py:mod:`zipfile`,	:py:mod:

New	in	version	0.5:	The	short	form.

..	rubric::	title
This	directive	creates	a	paragraph	heading	that	is	not	used	to
create	a	table	of	contents	node.

Note
If	the	title	of	the	rubric	is	“Footnotes”	(or	the	selected	language’s	equivalent),	this
rubric	is	ignored	by	the	LaTeX	writer,	since	it	is	assumed	to	only	contain	footnote
definitions	and	therefore	would	create	an	empty	heading.

..	centered::
This	directive	creates	a	centered	boldfaced	line	of	text.	Use	it	as
follows:

..	centered::	LICENSE	AGREEMENT

Deprecated	since	version	1.1:	This	presentation-only	directive	is
a	legacy	from	older	versions.	Use	a	rst-class	directive	instead
and	add	an	appropriate	style.

..	hlist::
This	directive	must	contain	a	bullet	list.	It	will	transform	it	into	a
more	compact	list	by	either	distributing	more	than	one	item

horizontally,	or	reducing	spacing	between	items,	depending	on
the	builder.
For	builders	that	support	the	horizontal	distribution,	there	is	a
columns	option	that	specifies	the	number	of	columns;	it	defaults
to	2.	Example:

..	hlist::
			:columns:	3

			*	A	list	of
			*	short	items
			*	that	should	be
			*	displayed
			*	horizontally

New	in	version	0.6.

Table-of-contents	markup
The	toctree	directive,	which	generates	tables	of	contents	of
subdocuments,	is	described	in	The	TOC	tree.

For	local	tables	of	contents,	use	the	standard	reST	contents
directive.

http://docutils.sourceforge.net/docs/ref/rst/directives.html#table-of-contents

Glossary
..	glossary::

This	directive	must	contain	a	reST	definition-list-like	markup	with
terms	and	definitions.	The	definitions	will	then	be	referencable
with	the	term	role.	Example:

..	glossary::

			environment
						A	structure	where	information	about	all	documents	under	the	root	is
						saved,	and	used	for	cross-referencing.		The	environment	is	pickled
						after	the	parsing	stage,	so	that	successive	runs	only	need	to	read
						and	parse	new	and	changed	documents.

			source	directory
						The	directory	which,	including	its	subdirectories,	contains	all
						source	files	for	one	Sphinx	project.

In	contrast	to	regular	definition	lists,	multiple	terms	per	entry	are
allowed,	and	inline	markup	is	allowed	in	terms.	You	can	link	to	all
of	the	terms.	For	example:

..	glossary::

			term	1
			term	2
						Definition	of	both	terms.

(When	the	glossary	is	sorted,	the	first	term	determines	the	sort
order.)

New	in	version	0.6:	You	can	now	give	the	glossary	directive	a
:sorted:	flag	that	will	automatically	sort	the	entries

alphabetically.

Changed	in	version	1.1:	Now	supports	multiple	terms	and	inline
markup	in	terms.

Grammar	production	displays
Special	markup	is	available	for	displaying	the	productions	of	a	formal
grammar.	The	markup	is	simple	and	does	not	attempt	to	model	all
aspects	of	BNF	(or	any	derived	forms),	but	provides	enough	to	allow
context-free	grammars	to	be	displayed	in	a	way	that	causes	uses	of
a	symbol	to	be	rendered	as	hyperlinks	to	the	definition	of	the	symbol.
There	is	this	directive:

..	productionlist::	[name]
This	directive	is	used	to	enclose	a	group	of	productions.	Each
production	is	given	on	a	single	line	and	consists	of	a	name,
separated	by	a	colon	from	the	following	definition.	If	the	definition
spans	multiple	lines,	each	continuation	line	must	begin	with	a
colon	placed	at	the	same	column	as	in	the	first	line.

The	argument	to	productionlist	serves	to	distinguish
different	sets	of	production	lists	that	belong	to	different
grammars.

Blank	lines	are	not	allowed	within	productionlist	directive
arguments.

The	definition	can	contain	token	names	which	are	marked	as
interpreted	text	(e.g.	sum	::=	`integer`	"+"	`integer`)	–
this	generates	cross-references	to	the	productions	of	these
tokens.	Outside	of	the	production	list,	you	can	reference	to	token
productions	using	token.
Note	that	no	further	reST	parsing	is	done	in	the	production,	so
that	you	don’t	have	to	escape	*	or	|	characters.

The	following	is	an	example	taken	from	the	Python	Reference
Manual:

..	productionlist::
			try_stmt:	try1_stmt	|	try2_stmt
			try1_stmt:	"try"	":"	`suite`
												:	("except"	[`expression`	[","	`target`

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	» Sphinx	Markup	Constructs 	»

												:	["else"	":"	`suite`]
												:	["finally"	":"	`suite`]
			try2_stmt:	"try"	":"	`suite`
												:	"finally"	":"	`suite`

©	Copyright	2007-2013,	Georg	Brandl.	Created	using	Sphinx	1.2.

http://sphinx-doc.org/

Home Get	it Docs Extend/Develop

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	» Sphinx	Markup	Constructs 	»

Showing	code	examples
Examples	of	Python	source	code	or	interactive	sessions	are
represented	using	standard	reST	literal	blocks.	They	are	started	by	a
::	at	the	end	of	the	preceding	paragraph	and	delimited	by
indentation.

Representing	an	interactive	session	requires	including	the	prompts
and	output	along	with	the	Python	code.	No	special	markup	is
required	for	interactive	sessions.	After	the	last	line	of	input	or	output
presented,	there	should	not	be	an	“unused”	primary	prompt;	this	is
an	example	of	what	not	to	do:

>>>	1	+	1
2
>>>

Syntax	highlighting	is	done	with	Pygments	(if	it’s	installed)	and
handled	in	a	smart	way:

There	is	a	“highlighting	language”	for	each	source	file.	Per
default,	this	is	'python'	as	the	majority	of	files	will	have	to
highlight	Python	snippets,	but	the	doc-wide	default	can	be	set
with	the	highlight_language	config	value.
Within	Python	highlighting	mode,	interactive	sessions	are
recognized	automatically	and	highlighted	appropriately.	Normal
Python	code	is	only	highlighted	if	it	is	parseable	(so	you	can	use
Python	as	the	default,	but	interspersed	snippets	of	shell
commands	or	other	code	blocks	will	not	be	highlighted	as
Python).

The	highlighting	language	can	be	changed	using	the
highlight	directive,	used	as	follows:

..	highlight::	c

http://pygments.org

This	language	is	used	until	the	next	highlight	directive	is
encountered.

For	documents	that	have	to	show	snippets	in	different
languages,	there’s	also	a	code-block	directive	that	is	given
the	highlighting	language	directly:

..	code-block::	ruby

			Some	Ruby	code.

The	directive’s	alias	name	sourcecode	works	as	well.
The	valid	values	for	the	highlighting	language	are:

none	(no	highlighting)
python	(the	default	when	highlight_language	isn’t	set)
guess	(let	Pygments	guess	the	lexer	based	on	contents,
only	works	with	certain	well-recognizable	languages)
rest
c
...	and	any	other	lexer	name	that	Pygments	supports.

If	highlighting	with	the	selected	language	fails,	the	block	is	not
highlighted	in	any	way.

Line	numbers

If	installed,	Pygments	can	generate	line	numbers	for	code	blocks.
For	automatically-highlighted	blocks	(those	started	by	::),	line
numbers	must	be	switched	on	in	a	highlight	directive,	with	the
linenothreshold	option:

..	highlight::	python
			:linenothreshold:	5

This	will	produce	line	numbers	for	all	code	blocks	longer	than	five
lines.

For	code-block	blocks,	a	linenos	flag	option	can	be	given	to
switch	on	line	numbers	for	the	individual	block:

..	code-block::	ruby
			:linenos:

			Some	more	Ruby	code.

Additionally,	an	emphasize-lines	option	can	be	given	to	have
Pygments	emphasize	particular	lines:

..	code-block::	python
			:emphasize-lines:	3,5

			def	some_function():
							interesting	=	False
							print	'This	line	is	highlighted.'
							print	'This	one	is	not...'
							print	'...but	this	one	is.'

Changed	in	version	1.1:	emphasize-lines	has	been	added.

Includes

..	literalinclude::	filename
Longer	displays	of	verbatim	text	may	be	included	by	storing	the
example	text	in	an	external	file	containing	only	plain	text.	The	file
may	be	included	using	the	literalinclude	directive.	[1]	For
example,	to	include	the	Python	source	file	example.py,	use:

..	literalinclude::	example.py

The	file	name	is	usually	relative	to	the	current	file’s	path.
However,	if	it	is	absolute	(starting	with	/),	it	is	relative	to	the	top
source	directory.

Tabs	in	the	input	are	expanded	if	you	give	a	tab-width	option
with	the	desired	tab	width.

The	directive	also	supports	the	linenos	flag	option	to	switch	on
line	numbers,	the	emphasize-lines	option	to	emphasize
particular	lines,	and	a	language	option	to	select	a	language
different	from	the	current	file’s	standard	language.	Example	with
options:

..	literalinclude::	example.rb
			:language:	ruby
			:emphasize-lines:	12,15-18
			:linenos:

Include	files	are	assumed	to	be	encoded	in	the
source_encoding.	If	the	file	has	a	different	encoding,	you	can
specify	it	with	the	encoding	option:

..	literalinclude::	example.py
			:encoding:	latin-1

The	directive	also	supports	including	only	parts	of	the	file.	If	it	is	a
Python	module,	you	can	select	a	class,	function	or	method	to
include	using	the	pyobject	option:

..	literalinclude::	example.py
			:pyobject:	Timer.start

This	would	only	include	the	code	lines	belonging	to	the	start()
method	in	the	Timer	class	within	the	file.
Alternately,	you	can	specify	exactly	which	lines	to	include	by
giving	a	lines	option:

..	literalinclude::	example.py
			:lines:	1,3,5-10,20-

This	includes	the	lines	1,	3,	5	to	10	and	lines	20	to	the	last	line.

Another	way	to	control	which	part	of	the	file	is	included	is	to	use
the	start-after	and	end-before	options	(or	only	one	of
them).	If	start-after	is	given	as	a	string	option,	only	lines	that
follow	the	first	line	containing	that	string	are	included.	If	end-
before	is	given	as	a	string	option,	only	lines	that	precede	the
first	lines	containing	that	string	are	included.

You	can	prepend	and/or	append	a	line	to	the	included	code,
using	the	prepend	and	append	option,	respectively.	This	is
useful	e.g.	for	highlighting	PHP	code	that	doesn’t	include	the	<?
php/?>	markers.
New	in	version	0.4.3:	The	encoding	option.
New	in	version	0.6:	The	pyobject,	lines,	start-after	and
end-before	options,	as	well	as	support	for	absolute	filenames.
New	in	version	1.0:	The	prepend	and	append	options,	as	well
as	tab-width.

Footnotes

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	» Sphinx	Markup	Constructs 	»

[1] There	is	a	standard	..	include	directive,	but	it	raises	errors	if
the	file	is	not	found.	This	one	only	emits	a	warning.

©	Copyright	2007-2013,	Georg	Brandl.	Created	using	Sphinx	1.2.

http://sphinx-doc.org/

Home Get	it Docs Extend/Develop

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	» Sphinx	Markup	Constructs 	»

Inline	markup
Sphinx	uses	interpreted	text	roles	to	insert	semantic	markup	into
documents.	They	are	written	as	:rolename:`content`.

Note

The	default	role	(`content`)	has	no	special	meaning	by	default.	You	are	free	to
use	it	for	anything	you	like,	e.g.	variable	names;	use	the	default_role	config
value	to	set	it	to	a	known	role.

See	Sphinx	Domains	for	roles	added	by	domains.

Cross-referencing	syntax

Cross-references	are	generated	by	many	semantic	interpreted	text
roles.	Basically,	you	only	need	to	write	:role:`target`,	and	a	link
will	be	created	to	the	item	named	target	of	the	type	indicated	by	role.
The	links’s	text	will	be	the	same	as	target.

There	are	some	additional	facilities,	however,	that	make	cross-
referencing	roles	more	versatile:

You	may	supply	an	explicit	title	and	reference	target,	like	in	reST
direct	hyperlinks:	:role:`title	<target>`	will	refer	to
target,	but	the	link	text	will	be	title.

If	you	prefix	the	content	with	!,	no	reference/hyperlink	will	be
created.

If	you	prefix	the	content	with	~,	the	link	text	will	only	be	the	last
component	of	the	target.	For	example,
:py:meth:`~Queue.Queue.get`	will	refer	to
Queue.Queue.get	but	only	display	get	as	the	link	text.

In	HTML	output,	the	link’s	title	attribute	(that	is	e.g.	shown	as
a	tool-tip	on	mouse-hover)	will	always	be	the	full	target	name.

Cross-referencing	objects
These	roles	are	described	with	their	respective	domains:

Python
C
C++
JavaScript
ReST

Cross-referencing	arbitrary	locations
:ref:

To	support	cross-referencing	to	arbitrary	locations	in	any
document,	the	standard	reST	labels	are	used.	For	this	to	work
label	names	must	be	unique	throughout	the	entire
documentation.	There	are	two	ways	in	which	you	can	refer	to
labels:

If	you	place	a	label	directly	before	a	section	title,	you	can
reference	to	it	with	:ref:`label-name`.	Example:

..	_my-reference-label:

Section	to	cross-reference

This	is	the	text	of	the	section.

It	refers	to	the	section	itself,	see	:ref:`my-reference-label`

The	:ref:	role	would	then	generate	a	link	to	the	section,
with	the	link	title	being	“Section	to	cross-reference”.	This
works	just	as	well	when	section	and	reference	are	in	different
source	files.

Automatic	labels	also	work	with	figures:	given

..	_my-figure:

..	figure::	whatever

			Figure	caption

a	reference	:ref:`my-figure`	would	insert	a	reference	to
the	figure	with	link	text	“Figure	caption”.

The	same	works	for	tables	that	are	given	an	explicit	caption
using	the	table	directive.

Labels	that	aren’t	placed	before	a	section	title	can	still	be

http://docutils.sourceforge.net/docs/ref/rst/directives.html#table

referenced	to,	but	you	must	give	the	link	an	explicit	title,
using	this	syntax:	:ref:`Link	title	<label-name>`.

Using	ref	is	advised	over	standard	reStructuredText	links	to
sections	(like	`Section	title`_)	because	it	works	across
files,	when	section	headings	are	changed,	and	for	all	builders	that
support	cross-references.

Cross-referencing	documents
New	in	version	0.6.

There	is	also	a	way	to	directly	link	to	documents:

:doc:
Link	to	the	specified	document;	the	document	name	can	be
specified	in	absolute	or	relative	fashion.	For	example,	if	the
reference	:doc:`parrot`	occurs	in	the	document
sketches/index,	then	the	link	refers	to	sketches/parrot.	If
the	reference	is	:doc:`/people`	or	:doc:`../people`,	the
link	refers	to	people.
If	no	explicit	link	text	is	given	(like	usual:	:doc:`Monty	Python
members	</people>`),	the	link	caption	will	be	the	title	of	the
given	document.

Referencing	downloadable	files
New	in	version	0.6.

:download:
This	role	lets	you	link	to	files	within	your	source	tree	that	are	not
reST	documents	that	can	be	viewed,	but	files	that	can	be
downloaded.

When	you	use	this	role,	the	referenced	file	is	automatically
marked	for	inclusion	in	the	output	when	building	(obviously,	for
HTML	output	only).	All	downloadable	files	are	put	into	the
_downloads	subdirectory	of	the	output	directory;	duplicate
filenames	are	handled.

An	example:

See	:download:`this	example	script	<../example.py>`

The	given	filename	is	usually	relative	to	the	directory	the	current
source	file	is	contained	in,	but	if	it	absolute	(starting	with	/),	it	is
taken	as	relative	to	the	top	source	directory.

The	example.py	file	will	be	copied	to	the	output	directory,	and	a
suitable	link	generated	to	it.

Cross-referencing	other	items	of	interest
The	following	roles	do	possibly	create	a	cross-reference,	but	do	not
refer	to	objects:

:envvar:
An	environment	variable.	Index	entries	are	generated.	Also
generates	a	link	to	the	matching	envvar	directive,	if	it	exists.

:token:
The	name	of	a	grammar	token	(used	to	create	links	between
productionlist	directives).

:keyword:
The	name	of	a	keyword	in	Python.	This	creates	a	link	to	a
reference	label	with	that	name,	if	it	exists.

:option:
A	command-line	option	to	an	executable	program.	The	leading
hyphen(s)	must	be	included.	This	generates	a	link	to	a	option
directive,	if	it	exists.

The	following	role	creates	a	cross-reference	to	the	term	in	the
glossary:

:term:

Reference	to	a	term	in	the	glossary.	The	glossary	is	created
using	the	glossary	directive	containing	a	definition	list	with
terms	and	definitions.	It	does	not	have	to	be	in	the	same	file	as
the	term	markup,	for	example	the	Python	docs	have	one	global
glossary	in	the	glossary.rst	file.
If	you	use	a	term	that’s	not	explained	in	a	glossary,	you’ll	get	a
warning	during	build.

Other	semantic	markup

The	following	roles	don’t	do	anything	special	except	formatting	the
text	in	a	different	style:

:abbr:
An	abbreviation.	If	the	role	content	contains	a	parenthesized
explanation,	it	will	be	treated	specially:	it	will	be	shown	in	a	tool-
tip	in	HTML,	and	output	only	once	in	LaTeX.

Example:	:abbr:`LIFO	(last-in,	first-out)`.
New	in	version	0.6.

:command:
The	name	of	an	OS-level	command,	such	as	rm.

:dfn:
Mark	the	defining	instance	of	a	term	in	the	text.	(No	index	entries
are	generated.)

:file:
The	name	of	a	file	or	directory.	Within	the	contents,	you	can	use
curly	braces	to	indicate	a	“variable”	part,	for	example:

...	is	installed	in	:file:`/usr/lib/python2.{x}/site-packages`	...

In	the	built	documentation,	the	x	will	be	displayed	differently	to
indicate	that	it	is	to	be	replaced	by	the	Python	minor	version.

:guilabel:
Labels	presented	as	part	of	an	interactive	user	interface	should
be	marked	using	guilabel.	This	includes	labels	from	text-
based	interfaces	such	as	those	created	using	curses	or	other
text-based	libraries.	Any	label	used	in	the	interface	should	be

marked	with	this	role,	including	button	labels,	window	titles,	field
names,	menu	and	menu	selection	names,	and	even	values	in
selection	lists.

Changed	in	version	1.0:	An	accelerator	key	for	the	GUI	label	can
be	included	using	an	ampersand;	this	will	be	stripped	and
displayed	underlined	in	the	output	(example:
:guilabel:`&Cancel`).	To	include	a	literal	ampersand,	double
it.

:kbd:
Mark	a	sequence	of	keystrokes.	What	form	the	key	sequence
takes	may	depend	on	platform-	or	application-specific
conventions.	When	there	are	no	relevant	conventions,	the	names
of	modifier	keys	should	be	spelled	out,	to	improve	accessibility	for
new	users	and	non-native	speakers.	For	example,	an	xemacs
key	sequence	may	be	marked	like	:kbd:`C-x	C-f`,	but
without	reference	to	a	specific	application	or	platform,	the	same
sequence	should	be	marked	as	:kbd:`Control-x	Control-
f`.

:mailheader:
The	name	of	an	RFC	822-style	mail	header.	This	markup	does
not	imply	that	the	header	is	being	used	in	an	email	message,	but
can	be	used	to	refer	to	any	header	of	the	same	“style.”	This	is
also	used	for	headers	defined	by	the	various	MIME
specifications.	The	header	name	should	be	entered	in	the	same
way	it	would	normally	be	found	in	practice,	with	the	camel-casing
conventions	being	preferred	where	there	is	more	than	one
common	usage.	For	example:	:mailheader:`Content-
Type`.

:makevar:
The	name	of	a	make	variable.

:manpage:
A	reference	to	a	Unix	manual	page	including	the	section,	e.g.
:manpage:`ls(1)`.

:menuselection:
Menu	selections	should	be	marked	using	the	menuselection
role.	This	is	used	to	mark	a	complete	sequence	of	menu
selections,	including	selecting	submenus	and	choosing	a	specific
operation,	or	any	subsequence	of	such	a	sequence.	The	names
of	individual	selections	should	be	separated	by	-->.
For	example,	to	mark	the	selection	“Start	>	Programs”,	use	this
markup:

:menuselection:`Start	-->	Programs`

When	including	a	selection	that	includes	some	trailing	indicator,
such	as	the	ellipsis	some	operating	systems	use	to	indicate	that
the	command	opens	a	dialog,	the	indicator	should	be	omitted
from	the	selection	name.

menuselection	also	supports	ampersand	accelerators	just	like
guilabel.

:mimetype:
The	name	of	a	MIME	type,	or	a	component	of	a	MIME	type	(the
major	or	minor	portion,	taken	alone).

:newsgroup:
The	name	of	a	Usenet	newsgroup.

:program:
The	name	of	an	executable	program.	This	may	differ	from	the	file
name	for	the	executable	for	some	platforms.	In	particular,	the
.exe	(or	other)	extension	should	be	omitted	for	Windows
programs.

:regexp:
A	regular	expression.	Quotes	should	not	be	included.

:samp:
A	piece	of	literal	text,	such	as	code.	Within	the	contents,	you	can

use	curly	braces	to	indicate	a	“variable”	part,	as	in	file.	For
example,	in	:samp:`print	1+{variable}`,	the	part
variable	would	be	emphasized.
If	you	don’t	need	the	“variable	part”	indication,	use	the	standard
``code``	instead.

There	is	also	an	index	role	to	generate	index	entries.

The	following	roles	generate	external	links:

:pep:
A	reference	to	a	Python	Enhancement	Proposal.	This	generates
appropriate	index	entries.	The	text	“PEP	number”	is	generated;	in
the	HTML	output,	this	text	is	a	hyperlink	to	an	online	copy	of	the
specified	PEP.	You	can	link	to	a	specific	section	by	saying
:pep:`number#anchor`.

:rfc:
A	reference	to	an	Internet	Request	for	Comments.	This	generates
appropriate	index	entries.	The	text	“RFC	number”	is	generated;	in
the	HTML	output,	this	text	is	a	hyperlink	to	an	online	copy	of	the
specified	RFC.	You	can	link	to	a	specific	section	by	saying
:rfc:`number#anchor`.

Note	that	there	are	no	special	roles	for	including	hyperlinks	as	you
can	use	the	standard	reST	markup	for	that	purpose.

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	» Sphinx	Markup	Constructs 	»

Substitutions

The	documentation	system	provides	three	substitutions	that	are
defined	by	default.	They	are	set	in	the	build	configuration	file.

|release|
Replaced	by	the	project	release	the	documentation	refers	to.	This
is	meant	to	be	the	full	version	string	including	alpha/beta/release
candidate	tags,	e.g.	2.5.2b3.	Set	by	release.

|version|
Replaced	by	the	project	version	the	documentation	refers	to.	This
is	meant	to	consist	only	of	the	major	and	minor	version	parts,	e.g.
2.5,	even	for	version	2.5.1.	Set	by	version.

|today|
Replaced	by	either	today’s	date	(the	date	on	which	the	document
is	read),	or	the	date	set	in	the	build	configuration	file.	Normally
has	the	format	April	14,	2007.	Set	by	today_fmt	and
today.

©	Copyright	2007-2013,	Georg	Brandl.	Created	using	Sphinx	1.2.

http://sphinx-doc.org/

Home Get	it Docs Extend/Develop

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	» Sphinx	Markup	Constructs 	»

Miscellaneous	markup

File-wide	metadata

reST	has	the	concept	of	“field	lists”;	these	are	a	sequence	of	fields
marked	up	like	this:

:fieldname:	Field	content

A	field	list	near	the	top	of	a	file	is	parsed	by	docutils	as	the	“docinfo”
which	is	normally	used	to	record	the	author,	date	of	publication	and
other	metadata.	In	Sphinx,	a	field	list	preceding	any	other	markup	is
moved	from	the	docinfo	to	the	Sphinx	environment	as	document
metadata	and	is	not	displayed	in	the	output;	a	field	list	appearing
after	the	document	title	will	be	part	of	the	docinfo	as	normal	and	will
be	displayed	in	the	output.

At	the	moment,	these	metadata	fields	are	recognized:

tocdepth
The	maximum	depth	for	a	table	of	contents	of	this	file.

New	in	version	0.4.

nocomments
If	set,	the	web	application	won’t	display	a	comment	form	for	a
page	generated	from	this	source	file.

orphan
If	set,	warnings	about	this	file	not	being	included	in	any	toctree
will	be	suppressed.

New	in	version	1.0.

Meta-information	markup

..	sectionauthor::	name	<email>
Identifies	the	author	of	the	current	section.	The	argument	should
include	the	author’s	name	such	that	it	can	be	used	for
presentation	and	email	address.	The	domain	name	portion	of	the
address	should	be	lower	case.	Example:

..	sectionauthor::	Guido	van	Rossum	<guido@python.org>

By	default,	this	markup	isn’t	reflected	in	the	output	in	any	way	(it
helps	keep	track	of	contributions),	but	you	can	set	the
configuration	value	show_authors	to	True	to	make	them
produce	a	paragraph	in	the	output.

..	codeauthor::	name	<email>
The	codeauthor	directive,	which	can	appear	multiple	times,
names	the	authors	of	the	described	code,	just	like
sectionauthor	names	the	author(s)	of	a	piece	of
documentation.	It	too	only	produces	output	if	the	show_authors
configuration	value	is	True.

Index-generating	markup

Sphinx	automatically	creates	index	entries	from	all	object
descriptions	(like	functions,	classes	or	attributes)	like	discussed	in
Sphinx	Domains.

However,	there	is	also	explicit	markup	available,	to	make	the	index
more	comprehensive	and	enable	index	entries	in	documents	where
information	is	not	mainly	contained	in	information	units,	such	as	the
language	reference.

..	index::	<entries>
This	directive	contains	one	or	more	index	entries.	Each	entry
consists	of	a	type	and	a	value,	separated	by	a	colon.

For	example:

..	index::
			single:	execution;	context
			module:	__main__
			module:	sys
			triple:	module;	search;	path

The	execution	context

...

This	directive	contains	five	entries,	which	will	be	converted	to
entries	in	the	generated	index	which	link	to	the	exact	location	of
the	index	statement	(or,	in	case	of	offline	media,	the
corresponding	page	number).

Since	index	directives	generate	cross-reference	targets	at	their
location	in	the	source,	it	makes	sense	to	put	them	before	the
thing	they	refer	to	–	e.g.	a	heading,	as	in	the	example	above.

The	possible	entry	types	are:

single
Creates	a	single	index	entry.	Can	be	made	a	subentry	by
separating	the	subentry	text	with	a	semicolon	(this	notation	is
also	used	below	to	describe	what	entries	are	created).

pair
pair:	loop;	statement	is	a	shortcut	that	creates	two
index	entries,	namely	loop;	statement	and	statement;
loop.

triple
Likewise,	triple:	module;	search;	path	is	a	shortcut
that	creates	three	index	entries,	which	are	module;	search
path,	search;	path,	module	and	path;	module
search.

see
see:	entry;	other	creates	an	index	entry	that	refers	from
entry	to	other.

seealso
Like	see,	but	inserts	“see	also”	instead	of	“see”.

module,	keyword,	operator,	object,	exception,	statement,	builtin
These	all	create	two	index	entries.	For	example,	module:
hashlib	creates	the	entries	module;	hashlib	and
hashlib;	module.	(These	are	Python-specific	and
therefore	deprecated.)

You	can	mark	up	“main”	index	entries	by	prefixing	them	with	an
exclamation	mark.	The	references	to	“main”	entries	are
emphasized	in	the	generated	index.	For	example,	if	two	pages
contain

..	index::	Python

and	one	page	contains

..	index::	!	Python

then	the	backlink	to	the	latter	page	is	emphasized	among	the
three	backlinks.

For	index	directives	containing	only	“single”	entries,	there	is	a
shorthand	notation:

..	index::	BNF,	grammar,	syntax,	notation

This	creates	four	index	entries.

Changed	in	version	1.1:	Added	see	and	seealso	types,	as	well
as	marking	main	entries.

:index:
While	the	index	directive	is	a	block-level	markup	and	links	to	the
beginning	of	the	next	paragraph,	there	is	also	a	corresponding
role	that	sets	the	link	target	directly	where	it	is	used.

The	content	of	the	role	can	be	a	simple	phrase,	which	is	then
kept	in	the	text	and	used	as	an	index	entry.	It	can	also	be	a
combination	of	text	and	index	entry,	styled	like	with	explicit
targets	of	cross-references.	In	that	case,	the	“target”	part	can	be
a	full	entry	as	described	for	the	directive	above.	For	example:

This	is	a	normal	reST	:index:`paragraph`	that	contains	several
:index:`index	entries	<pair:	index;	entry>`.

New	in	version	1.1.

Including	content	based	on	tags

..	only::	<expression>
Include	the	content	of	the	directive	only	if	the	expression	is	true.
The	expression	should	consist	of	tags,	like	this:

..	only::	html	and	draft

Undefined	tags	are	false,	defined	tags	(via	the	-t	command-line
option	or	within	conf.py)	are	true.	Boolean	expressions,	also
using	parentheses	(like	html	and	(latex	or	draft))	are
supported.

The	format	and	the	name	of	the	current	builder	(html,	latex	or
text)	are	always	set	as	a	tag	[1].	To	make	the	distinction
between	format	and	name	explicit,	they	are	also	added	with	the
prefix	format_	and	builder_,	e.g.	the	epub	builder	defines	the
tags	html,	epub,	format_html	and	builder_epub.
New	in	version	0.6.

Changed	in	version	1.2:	Added	the	name	of	the	builder	and	the
prefixes.

Tables

Use	standard	reStructuredText	tables.	They	work	fine	in	HTML
output,	however	there	are	some	gotchas	when	using	tables	in
LaTeX:	the	column	width	is	hard	to	determine	correctly	automatically.
For	this	reason,	the	following	directive	exists:

..	tabularcolumns::	column	spec
This	directive	gives	a	“column	spec”	for	the	next	table	occurring
in	the	source	file.	The	spec	is	the	second	argument	to	the	LaTeX
tabulary	package’s	environment	(which	Sphinx	uses	to
translate	tables).	It	can	have	values	like

|l|l|l|

which	means	three	left-adjusted,	nonbreaking	columns.	For
columns	with	longer	text	that	should	automatically	be	broken,	use
either	the	standard	p{width}	construct,	or	tabulary’s	automatic
specifiers:

L ragged-left	column	with	automatic	width

R ragged-right	column	with	automatic
width

C centered	column	with	automatic	width
J justified	column	with	automatic	width

The	automatic	width	is	determined	by	rendering	the	content	in	the
table,	and	scaling	them	according	to	their	share	of	the	total	width.

By	default,	Sphinx	uses	a	table	layout	with	L	for	every	column.
New	in	version	0.3.

Warning
Tables	that	contain	list-like	elements	such	as	object	descriptions,	blockquotes	or	any
kind	of	lists	cannot	be	set	out	of	the	box	with	tabulary .	They	are	therefore	set
with	the	standard	LaTeX	tabular 	environment	if	you	don’t	give	a

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	» Sphinx	Markup	Constructs 	»

tabularcolumns 	directive.	If	you	do,	the	table	will	be	set	with	tabulary ,
but	you	must	use	the	p{width} 	construct	for	the	columns	that	contain	these
elements.

Literal	blocks	do	not	work	with	tabulary 	at	all,	so	tables	containing	a	literal	block
are	always	set	with	tabular .	Also,	the	verbatim	environment	used	for	literal	blocks
only	works	in	p{width} 	columns,	which	means	that	by	default,	Sphinx	generates
such	column	specs	for	such	tables.	Use	the	tabularcolumns	directive	to	get
finer	control	over	such	tables.

Footnotes

[1]
For	most	builders	name	and	format	are	the	same.	At	the	moment
only	builders	derived	from	the	html	builder	distinguish	between
the	builder	format	and	the	builder	name.

©	Copyright	2007-2013,	Georg	Brandl.	Created	using	Sphinx	1.2.

http://sphinx-doc.org/

Home Get	it Docs Extend/Develop

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	»

Sphinx	Domains
New	in	version	1.0.

What	is	a	Domain?

Originally,	Sphinx	was	conceived	for	a	single	project,	the
documentation	of	the	Python	language.	Shortly	afterwards,	it	was
made	available	for	everyone	as	a	documentation	tool,	but	the
documentation	of	Python	modules	remained	deeply	built	in	–	the
most	fundamental	directives,	like	function,	were	designed	for
Python	objects.	Since	Sphinx	has	become	somewhat	popular,
interest	developed	in	using	it	for	many	different	purposes:	C/C++
projects,	JavaScript,	or	even	reStructuredText	markup	(like	in	this
documentation).

While	this	was	always	possible,	it	is	now	much	easier	to	easily
support	documentation	of	projects	using	different	programming
languages	or	even	ones	not	supported	by	the	main	Sphinx
distribution,	by	providing	a	domain	for	every	such	purpose.

A	domain	is	a	collection	of	markup	(reStructuredText	directives	and
roles)	to	describe	and	link	to	objects	belonging	together,	e.g.
elements	of	a	programming	language.	Directive	and	role	names	in	a
domain	have	names	like	domain:name,	e.g.	py:function.
Domains	can	also	provide	custom	indices	(like	the	Python	Module
Index).

Having	domains	means	that	there	are	no	naming	problems	when
one	set	of	documentation	wants	to	refer	to	e.g.	C++	and	Python
classes.	It	also	means	that	extensions	that	support	the
documentation	of	whole	new	languages	are	much	easier	to	write.

This	section	describes	what	the	domains	that	come	with	Sphinx
provide.	The	domain	API	is	documented	as	well,	in	the	section
Domain	API.

Basic	Markup

Most	domains	provide	a	number	of	object	description	directives,
used	to	describe	specific	objects	provided	by	modules.	Each
directive	requires	one	or	more	signatures	to	provide	basic
information	about	what	is	being	described,	and	the	content	should	be
the	description.	The	basic	version	makes	entries	in	the	general
index;	if	no	index	entry	is	desired,	you	can	give	the	directive	option
flag	:noindex:.	An	example	using	a	Python	domain	directive:

..	py:function::	spam(eggs)
																	ham(eggs)

			Spam	or	ham	the	foo.

This	describes	the	two	Python	functions	spam	and	ham.	(Note	that
when	signatures	become	too	long,	you	can	break	them	if	you	add	a
backslash	to	lines	that	are	continued	in	the	next	line.	Example:

..	py:function::	filterwarnings(action,	message='',	category=Warning,	\
																																module='',	lineno=0,	append=False)
			:noindex:

(This	example	also	shows	how	to	use	the	:noindex:	flag.)

The	domains	also	provide	roles	that	link	back	to	these	object
descriptions.	For	example,	to	link	to	one	of	the	functions	described	in
the	example	above,	you	could	say

The	function	:py:func:`spam`	does	a	similar	thing.

As	you	can	see,	both	directive	and	role	names	contain	the	domain
name	and	the	directive	name.

Default	Domain

To	avoid	having	to	writing	the	domain	name	all	the	time	when	you
e.g.	only	describe	Python	objects,	a	default	domain	can	be	selected
with	either	the	config	value	primary_domain	or	this	directive:

..	default-domain::	name
Select	a	new	default	domain.	While	the	primary_domain
selects	a	global	default,	this	only	has	an	effect	within	the	same
file.

If	no	other	default	is	selected,	the	Python	domain	(named	py)	is	the
default	one,	mostly	for	compatibility	with	documentation	written	for
older	versions	of	Sphinx.

Directives	and	roles	that	belong	to	the	default	domain	can	be
mentioned	without	giving	the	domain	name,	i.e.

..	function::	pyfunc()

			Describes	a	Python	function.

Reference	to	:func:`pyfunc`.

Cross-referencing	syntax
For	cross-reference	roles	provided	by	domains,	the	same	facilities
exist	as	for	general	cross-references.	See	Cross-referencing	syntax.

In	short:

You	may	supply	an	explicit	title	and	reference	target:
:role:`title	<target>`	will	refer	to	target,	but	the	link	text
will	be	title.
If	you	prefix	the	content	with	!,	no	reference/hyperlink	will	be
created.
If	you	prefix	the	content	with	~,	the	link	text	will	only	be	the	last
component	of	the	target.	For	example,

:py:meth:`~Queue.Queue.get`	will	refer	to
Queue.Queue.get	but	only	display	get	as	the	link	text.

The	Python	Domain

The	Python	domain	(name	py)	provides	the	following	directives	for
module	declarations:

..	py:module::	name
This	directive	marks	the	beginning	of	the	description	of	a	module
(or	package	submodule,	in	which	case	the	name	should	be	fully
qualified,	including	the	package	name).	It	does	not	create	content
(like	e.g.	py:class	does).
This	directive	will	also	cause	an	entry	in	the	global	module	index.

The	platform	option,	if	present,	is	a	comma-separated	list	of
the	platforms	on	which	the	module	is	available	(if	it	is	available	on
all	platforms,	the	option	should	be	omitted).	The	keys	are	short
identifiers;	examples	that	are	in	use	include	“IRIX”,	“Mac”,
“Windows”,	and	“Unix”.	It	is	important	to	use	a	key	which	has
already	been	used	when	applicable.

The	synopsis	option	should	consist	of	one	sentence	describing
the	module’s	purpose	–	it	is	currently	only	used	in	the	Global
Module	Index.

The	deprecated	option	can	be	given	(with	no	value)	to	mark	a
module	as	deprecated;	it	will	be	designated	as	such	in	various
locations	then.

..	py:currentmodule::	name
This	directive	tells	Sphinx	that	the	classes,	functions	etc.
documented	from	here	are	in	the	given	module	(like
py:module),	but	it	will	not	create	index	entries,	an	entry	in	the
Global	Module	Index,	or	a	link	target	for	py:mod.	This	is	helpful
in	situations	where	documentation	for	things	in	a	module	is
spread	over	multiple	files	or	sections	–	one	location	has	the
py:module	directive,	the	others	only	py:currentmodule.

The	following	directives	are	provided	for	module	and	class	contents:

..	py:data::	name
Describes	global	data	in	a	module,	including	both	variables	and
values	used	as	“defined	constants.”	Class	and	object	attributes
are	not	documented	using	this	environment.

..	py:exception::	name
Describes	an	exception	class.	The	signature	can,	but	need	not
include	parentheses	with	constructor	arguments.

..	py:function::	name(parameters)
Describes	a	module-level	function.	The	signature	should	include
the	parameters,	enclosing	optional	parameters	in	brackets.
Default	values	can	be	given	if	it	enhances	clarity;	see	Python
Signatures.	For	example:

..	py:function::	Timer.repeat([repeat=3[,	number=1000000]])

Object	methods	are	not	documented	using	this	directive.	Bound
object	methods	placed	in	the	module	namespace	as	part	of	the
public	interface	of	the	module	are	documented	using	this,	as	they
are	equivalent	to	normal	functions	for	most	purposes.

The	description	should	include	information	about	the	parameters
required	and	how	they	are	used	(especially	whether	mutable
objects	passed	as	parameters	are	modified),	side	effects,	and
possible	exceptions.	A	small	example	may	be	provided.

..	py:class::	name

..	py:class::	name(parameters)
Describes	a	class.	The	signature	can	optionally	include
parentheses	with	parameters	which	will	be	shown	as	the
constructor	arguments.	See	also	Python	Signatures.

Methods	and	attributes	belonging	to	the	class	should	be	placed	in
this	directive’s	body.	If	they	are	placed	outside,	the	supplied
name	should	contain	the	class	name	so	that	cross-references	still
work.	Example:

..	py:class::	Foo
			..	py:method::	quux()

--	or	--

..	py:class::	Bar

..	py:method::	Bar.quux()

The	first	way	is	the	preferred	one.

..	py:attribute::	name
Describes	an	object	data	attribute.	The	description	should	include
information	about	the	type	of	the	data	to	be	expected	and
whether	it	may	be	changed	directly.

..	py:method::	name(parameters)
Describes	an	object	method.	The	parameters	should	not	include
the	self	parameter.	The	description	should	include	similar
information	to	that	described	for	function.	See	also	Python
Signatures.

..	py:staticmethod::	name(parameters)
Like	py:method,	but	indicates	that	the	method	is	a	static
method.

New	in	version	0.4.

..	py:classmethod::	name(parameters)
Like	py:method,	but	indicates	that	the	method	is	a	class
method.

New	in	version	0.6.

..	py:decorator::	name

..	py:decorator::	name(parameters)
Describes	a	decorator	function.	The	signature	should	not

represent	the	signature	of	the	actual	function,	but	the	usage	as	a
decorator.	For	example,	given	the	functions

def	removename(func):
				func.__name__	=	''
				return	func

def	setnewname(name):
				def	decorator(func):
								func.__name__	=	name
								return	func
				return	decorator

the	descriptions	should	look	like	this:

..	py:decorator::	removename

			Remove	name	of	the	decorated	function.

..	py:decorator::	setnewname(name)

			Set	name	of	the	decorated	function	to	*name*.

(as	opposed	to	..	py:decorator::	removename(func).)
There	is	no	py:deco	role	to	link	to	a	decorator	that	is	marked	up
with	this	directive;	rather,	use	the	py:func	role.

..	py:decoratormethod::	name

..	py:decoratormethod::	name(signature)
Same	as	py:decorator,	but	for	decorators	that	are	methods.
Refer	to	a	decorator	method	using	the	py:meth	role.

Python	Signatures

Signatures	of	functions,	methods	and	class	constructors	can	be
given	like	they	would	be	written	in	Python,	with	the	exception	that
optional	parameters	can	be	indicated	by	brackets:

..	py:function::	compile(source[,	filename[,	symbol]])

It	is	customary	to	put	the	opening	bracket	before	the	comma.	In
addition	to	this	“nested”	bracket	style,	a	“flat”	style	can	also	be	used,
due	to	the	fact	that	most	optional	parameters	can	be	given
independently:

..	py:function::	compile(source[,	filename,	symbol])

Default	values	for	optional	arguments	can	be	given	(but	if	they
contain	commas,	they	will	confuse	the	signature	parser).	Python	3-
style	argument	annotations	can	also	be	given	as	well	as	return	type
annotations:

..	py:function::	compile(source	:	string[,	filename,	symbol])	->	ast	object

Info	field	lists
New	in	version	0.4.

Inside	Python	object	description	directives,	reST	field	lists	with	these
fields	are	recognized	and	formatted	nicely:

param,	parameter,	arg,	argument,	key,	keyword:
Description	of	a	parameter.
type:	Type	of	a	parameter.
raises,	raise,	except,	exception:	That	(and	when)	a
specific	exception	is	raised.
var,	ivar,	cvar:	Description	of	a	variable.
returns,	return:	Description	of	the	return	value.

rtype:	Return	type.

The	field	names	must	consist	of	one	of	these	keywords	and	an
argument	(except	for	returns	and	rtype,	which	do	not	need	an
argument).	This	is	best	explained	by	an	example:

..	py:function::	send_message(sender,	recipient,	message_body,	[priority=1])

			Send	a	message	to	a	recipient

			:param	str	sender:	The	person	sending	the	message
			:param	str	recipient:	The	recipient	of	the	message
			:param	str	message_body:	The	body	of	the	message
			:param	priority:	The	priority	of	the	message,	can	be	a	number	1-5
			:type	priority:	integer	or	None
			:return:	the	message	id
			:rtype:	int
			:raises	ValueError:	if	the	message_body	exceeds	160	characters
			:raises	TypeError:	if	the	message_body	is	not	a	basestring

This	will	render	like	this:

send_message(sender,	recipient,	message_body[,
priority=1])

Send	a	message	to	a	recipient

Parameters:

sender	(str)	–	The	person	sending	the
message
recipient	(str)	–	The	recipient	of	the
message
message_body	(str)	–	The	body	of	the
message
priority	(integer	or	None)	–	The	priority	of
the	message,	can	be	a	number	1-5

Returns: the	message	id
Return int

type:

Raises:

ValueError	–	if	the	message_body	exceeds
160	characters
TypeError	–	if	the	message_body	is	not	a
basestring

It	is	also	possible	to	combine	parameter	type	and	description,	if	the
type	is	a	single	word,	like	this:

:param	int	priority:	The	priority	of	the	message,	can	be	a	number	1-5

Cross-referencing	Python	objects
The	following	roles	refer	to	objects	in	modules	and	are	possibly
hyperlinked	if	a	matching	identifier	is	found:

:py:mod:
Reference	a	module;	a	dotted	name	may	be	used.	This	should
also	be	used	for	package	names.

:py:func:
Reference	a	Python	function;	dotted	names	may	be	used.	The
role	text	needs	not	include	trailing	parentheses	to	enhance
readability;	they	will	be	added	automatically	by	Sphinx	if	the
add_function_parentheses	config	value	is	true	(the	default).

:py:data:
Reference	a	module-level	variable.

:py:const:
Reference	a	“defined”	constant.	This	may	be	a	C-language
#define	or	a	Python	variable	that	is	not	intended	to	be
changed.

:py:class:
Reference	a	class;	a	dotted	name	may	be	used.

:py:meth:
Reference	a	method	of	an	object.	The	role	text	can	include	the
type	name	and	the	method	name;	if	it	occurs	within	the
description	of	a	type,	the	type	name	can	be	omitted.	A	dotted
name	may	be	used.

:py:attr:
Reference	a	data	attribute	of	an	object.

:py:exc:
Reference	an	exception.	A	dotted	name	may	be	used.

:py:obj:
Reference	an	object	of	unspecified	type.	Useful	e.g.	as	the
default_role.
New	in	version	0.4.

The	name	enclosed	in	this	markup	can	include	a	module	name
and/or	a	class	name.	For	example,	:py:func:`filter`	could
refer	to	a	function	named	filter	in	the	current	module,	or	the	built-
in	function	of	that	name.	In	contrast,	:py:func:`foo.filter`
clearly	refers	to	the	filter	function	in	the	foo	module.

Normally,	names	in	these	roles	are	searched	first	without	any	further
qualification,	then	with	the	current	module	name	prepended,	then
with	the	current	module	and	class	name	(if	any)	prepended.	If	you
prefix	the	name	with	a	dot,	this	order	is	reversed.	For	example,	in	the
documentation	of	Python’s	codecs	module,	:py:func:`open`
always	refers	to	the	built-in	function,	while	:py:func:`.open`
refers	to	codecs.open().

A	similar	heuristic	is	used	to	determine	whether	the	name	is	an
attribute	of	the	currently	documented	class.

Also,	if	the	name	is	prefixed	with	a	dot,	and	no	exact	match	is	found,
the	target	is	taken	as	a	suffix	and	all	object	names	with	that	suffix	are
searched.	For	example,	:py:meth:`.TarFile.close`
references	the	tarfile.TarFile.close()	function,	even	if	the

current	module	is	not	tarfile.	Since	this	can	get	ambiguous,	if
there	is	more	than	one	possible	match,	you	will	get	a	warning	from
Sphinx.

Note	that	you	can	combine	the	~	and	.	prefixes:
:py:meth:`~.TarFile.close`	will	reference	the
tarfile.TarFile.close()	method,	but	the	visible	link	caption
will	only	be	close().

The	C	Domain

The	C	domain	(name	c)	is	suited	for	documentation	of	C	API.

..	c:function::	type	name(signature)
Describes	a	C	function.	The	signature	should	be	given	as	in	C,
e.g.:

..	c:function::	PyObject*	PyType_GenericAlloc(PyTypeObject	*

This	is	also	used	to	describe	function-like	preprocessor	macros.
The	names	of	the	arguments	should	be	given	so	they	may	be
used	in	the	description.

Note	that	you	don’t	have	to	backslash-escape	asterisks	in	the
signature,	as	it	is	not	parsed	by	the	reST	inliner.

..	c:member::	type	name
Describes	a	C	struct	member.	Example	signature:

..	c:member::	PyObject*	PyTypeObject.tp_bases

The	text	of	the	description	should	include	the	range	of	values
allowed,	how	the	value	should	be	interpreted,	and	whether	the
value	can	be	changed.	References	to	structure	members	in	text
should	use	the	member	role.

..	c:macro::	name
Describes	a	“simple”	C	macro.	Simple	macros	are	macros	which
are	used	for	code	expansion,	but	which	do	not	take	arguments	so
cannot	be	described	as	functions.	This	is	not	to	be	used	for
simple	constant	definitions.	Examples	of	its	use	in	the	Python
documentation	include	PyObject_HEAD	and
Py_BEGIN_ALLOW_THREADS.

..	c:type::	name
Describes	a	C	type	(whether	defined	by	a	typedef	or	struct).	The
signature	should	just	be	the	type	name.

..	c:var::	type	name
Describes	a	global	C	variable.	The	signature	should	include	the
type,	such	as:

..	c:var::	PyObject*	PyClass_Type

Cross-referencing	C	constructs
The	following	roles	create	cross-references	to	C-language	constructs
if	they	are	defined	in	the	documentation:

:c:data:
Reference	a	C-language	variable.

:c:func:
Reference	a	C-language	function.	Should	include	trailing
parentheses.

:c:macro:
Reference	a	“simple”	C	macro,	as	defined	above.

:c:type:
Reference	a	C-language	type.

The	C++	Domain

The	C++	domain	(name	cpp)	supports	documenting	C++	projects.

The	following	directives	are	available:

..	cpp:class::	signatures

..	cpp:function::	signatures

..	cpp:member::	signatures

..	cpp:type::	signatures
Describe	a	C++	object.	Full	signature	specification	is	supported	–
give	the	signature	as	you	would	in	the	declaration.	Here	some
examples:

..	cpp:function::	bool	namespaced::theclass::method(int	arg1,	std::string	arg2)

			Describes	a	method	with	parameters	and	types.

..	cpp:function::	bool	namespaced::theclass::method(arg1,	arg2)

			Describes	a	method	without	types.

..	cpp:function::	const	T	&array<T>::operator[]()	const

			Describes	the	constant	indexing	operator	of	a	templated	array.

..	cpp:function::	operator	bool()	const

			Describe	a	casting	operator	here.

..	cpp:function::	constexpr	void	foo(std::string	&bar[2])	noexcept

			Describe	a	constexpr	function	here.

..	cpp:member::	std::string	theclass::name

..	cpp:member::	std::string	theclass::name[N][M]

..	cpp:type::	theclass::const_iterator

Will	be	rendered	like	this:

bool	namespaced::theclass::method(int	arg1,
std::string	arg2)

Describes	a	method	with	parameters	and	types.

bool	namespaced::theclass::method(arg1,	arg2)
Describes	a	method	without	types.

const	T&	array<T>::operator[]()	const
Describes	the	constant	indexing	operator	of	a	templated
array.

operator	bool()	const
Describe	a	casting	operator	here.

constexpr	void	foo(std::string&	bar[2])	noexcept
Describe	a	constexpr	function	here.

std::string	theclass::name

std::string	theclass::name[N][M]

type	theclass::const_iterator

..	cpp:namespace::	namespace
Select	the	current	C++	namespace	for	the	following	objects.

These	roles	link	to	the	given	object	types:

:cpp:class:
:cpp:func:
:cpp:member:

:cpp:type:
Reference	a	C++	object.	You	can	give	the	full	signature	(and
need	to,	for	overloaded	functions.)

Note
Sphinx’	syntax	to	give	references	a	custom	title	can	interfere	with	linking	to
template	classes,	if	nothing	follows	the	closing	angle	bracket,	i.e.	if	the	link	looks
like	this:	:cpp:class:`MyClass<T>` .	This	is	interpreted	as	a	link	to
T 	with	a	title	of	MyClass .	In	this	case,	please	escape	the	opening	angle
bracket	with	a	backslash,	like	this:	:cpp:class:`MyClass\<T>` .

Note	on	References
It	is	currently	impossible	to	link	to	a	specific	version	of	an	overloaded	method.	Currently
the	C++	domain	is	the	first	domain	that	has	basic	support	for	overloaded	methods	and
until	there	is	more	data	for	comparison	we	don’t	want	to	select	a	bad	syntax	to
reference	a	specific	overload.	Currently	Sphinx	will	link	to	the	first	overloaded	version
of	the	method	/	function.

The	Standard	Domain

The	so-called	“standard”	domain	collects	all	markup	that	doesn’t
warrant	a	domain	of	its	own.	Its	directives	and	roles	are	not	prefixed
with	a	domain	name.

The	standard	domain	is	also	where	custom	object	descriptions,
added	using	the	add_object_type()	API,	are	placed.

There	is	a	set	of	directives	allowing	documenting	command-line
programs:

..	option::	name	args,	name	args,	...
Describes	a	command	line	option	or	switch.	Option	argument
names	should	be	enclosed	in	angle	brackets.	Example:

..	option::	-m	<module>,	--module	<module>

			Run	a	module	as	a	script.

The	directive	will	create	a	cross-reference	target	named	after	the
first	option,	referencable	by	option	(in	the	example	case,	you’d
use	something	like	:option:`-m`).

..	envvar::	name
Describes	an	environment	variable	that	the	documented	code	or
program	uses	or	defines.	Referencable	by	envvar.

..	program::	name
Like	py:currentmodule,	this	directive	produces	no	output.
Instead,	it	serves	to	notify	Sphinx	that	all	following	option
directives	document	options	for	the	program	called	name.

If	you	use	program,	you	have	to	qualify	the	references	in	your
option	roles	by	the	program	name,	so	if	you	have	the	following
situation

..	program::	rm

..	option::	-r

			Work	recursively.

..	program::	svn

..	option::	-r	revision

			Specify	the	revision	to	work	upon.

then	:option:`rm	-r`	would	refer	to	the	first	option,	while
:option:`svn	-r`	would	refer	to	the	second	one.
The	program	name	may	contain	spaces	(in	case	you	want	to
document	subcommands	like	svn	add	and	svn	commit
separately).

New	in	version	0.5.

There	is	also	a	very	generic	object	description	directive,	which	is	not
tied	to	any	domain:

..	describe::	text

..	object::	text
This	directive	produces	the	same	formatting	as	the	specific	ones
provided	by	domains,	but	does	not	create	index	entries	or	cross-
referencing	targets.	Example:

..	describe::	PAPER

			You	can	set	this	variable	to	select	a	paper	size.

The	JavaScript	Domain

The	JavaScript	domain	(name	js)	provides	the	following	directives:

..	js:function::	name(signature)
Describes	a	JavaScript	function	or	method.	If	you	want	to
describe	arguments	as	optional	use	square	brackets	as
documented	for	Python	signatures.

You	can	use	fields	to	give	more	details	about	arguments	and	their
expected	types,	errors	which	may	be	thrown	by	the	function,	and
the	value	being	returned:

..	js:function::	$.getJSON(href,	callback[,	errback])

			:param	string	href:	An	URI	to	the	location	of	the	resource.
			:param	callback:	Get's	called	with	the	object.
			:param	errback:
							Get's	called	in	case	the	request	fails.	And	a	lot	of	other
							text	so	we	need	multiple	lines
			:throws	SomeError:	For	whatever	reason	in	that	case.
			:returns:	Something

This	is	rendered	as:

$.getJSON(href,	callback[,	errback])

Arguments:

href	(string)	–	An	URI	to	the	location	of
the	resource.
callback	–	Get’s	called	with	the	object.
errback	–	Get’s	called	in	case	the
request	fails.	And	a	lot	of	other	text	so	we
need	multiple	lines.

Throws	SomeError:
	 For	whatever	reason	in	that	case.
Returns: Something

..	js:class::	name
Describes	a	constructor	that	creates	an	object.	This	is	basically
like	a	function	but	will	show	up	with	a	class	prefix:

..	js:class::	MyAnimal(name[,	age])

			:param	string	name:	The	name	of	the	animal
			:param	number	age:	an	optional	age	for	the	animal

This	is	rendered	as:

class	MyAnimal(name[,	age])

Arguments:
name	(string)	–	The	name	of	the	animal
age	(number)	–	an	optional	age	for	the
animal

..	js:data::	name
Describes	a	global	variable	or	constant.

..	js:attribute::	object.name
Describes	the	attribute	name	of	object.

These	roles	are	provided	to	refer	to	the	described	objects:

:js:func:
:js:class:
:js:data:
:js:attr:

The	reStructuredText	domain

The	reStructuredText	domain	(name	rst)	provides	the	following
directives:

..	rst:directive::	name
Describes	a	reST	directive.	The	name	can	be	a	single	directive
name	or	actual	directive	syntax	(..	prefix	and	::	suffix)	with
arguments	that	will	be	rendered	differently.	For	example:

..	rst:directive::	foo

			Foo	description.

..	rst:directive::	..	bar::	baz

			Bar	description.

will	be	rendered	as:

..	foo::
Foo	description.

..	bar::	baz
Bar	description.

..	rst:role::	name
Describes	a	reST	role.	For	example:

..	rst:role::	foo

			Foo	description.

will	be	rendered	as:

:foo:
Foo	description.

These	roles	are	provided	to	refer	to	the	described	objects:

:rst:dir:
:rst:role:

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	»

More	domains

The	sphinx-contrib	repository	contains	more	domains	available	as
extensions;	currently	Ada,	CoffeeScript,	Erlang,	HTTP,	Lasso,
MATLAB,	PHP,	and	Ruby	domains.	Also	available	are	domains	for
Common	Lisp,	dqn,	Go,	Jinja,	Operation,	and	Scala.

©	Copyright	2007-2013,	Georg	Brandl.	Created	using	Sphinx	1.2.

https://bitbucket.org/birkenfeld/sphinx-contrib/
http://pypi.python.org/pypi/sphinxcontrib-adadomain
http://pypi.python.org/pypi/sphinxcontrib-coffee
http://pypi.python.org/pypi/sphinxcontrib-erlangdomain
http://pypi.python.org/pypi/sphinxcontrib-httpdomain
http://pypi.python.org/pypi/sphinxcontrib-lassodomain
http://pypi.python.org/pypi/sphinxcontrib-matlabdomain
http://pypi.python.org/pypi/sphinxcontrib-phpdomain
http://bitbucket.org/birkenfeld/sphinx-contrib/src/default/rubydomain
http://pypi.python.org/pypi/sphinxcontrib-cldomain
http://pypi.python.org/pypi/sphinxcontrib-dqndomain
http://pypi.python.org/pypi/sphinxcontrib-golangdomain
http://pypi.python.org/pypi/sphinxcontrib-jinjadomain
http://pypi.python.org/pypi/sphinxcontrib-operationdomain
http://pypi.python.org/pypi/sphinxcontrib-scaladomain
http://sphinx-doc.org/

Home Get	it Docs Extend/Develop

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	»

Available	builders
These	are	the	built-in	Sphinx	builders.	More	builders	can	be	added
by	extensions.

The	builder’s	“name”	must	be	given	to	the	-b	command-line	option	of
sphinx-build	to	select	a	builder.

class	sphinx.builders.html.StandaloneHTMLBuilder
This	is	the	standard	HTML	builder.	Its	output	is	a	directory	with
HTML	files,	complete	with	style	sheets	and	optionally	the	reST
sources.	There	are	quite	a	few	configuration	values	that
customize	the	output	of	this	builder,	see	the	chapter	Options	for
HTML	output	for	details.

Its	name	is	html.

class	sphinx.builders.html.DirectoryHTMLBuilder
This	is	a	subclass	of	the	standard	HTML	builder.	Its	output	is	a
directory	with	HTML	files,	where	each	file	is	called	index.html
and	placed	in	a	subdirectory	named	like	its	page	name.	For
example,	the	document	markup/rest.rst	will	not	result	in	an
output	file	markup/rest.html,	but
markup/rest/index.html.	When	generating	links	between
pages,	the	index.html	is	omitted,	so	that	the	URL	would	look
like	markup/rest/.
Its	name	is	dirhtml.
New	in	version	0.6.

class	sphinx.builders.html.SingleFileHTMLBuilder
This	is	an	HTML	builder	that	combines	the	whole	project	in	one
output	file.	(Obviously	this	only	works	with	smaller	projects.)	The
file	is	named	like	the	master	document.	No	indices	will	be
generated.

Its	name	is	singlehtml.

New	in	version	1.0.

class	sphinx.builders.htmlhelp.HTMLHelpBuilder
This	builder	produces	the	same	output	as	the	standalone	HTML
builder,	but	also	generates	HTML	Help	support	files	that	allow	the
Microsoft	HTML	Help	Workshop	to	compile	them	into	a	CHM	file.

Its	name	is	htmlhelp.

class	sphinx.builders.qthelp.QtHelpBuilder
This	builder	produces	the	same	output	as	the	standalone	HTML
builder,	but	also	generates	Qt	help	collection	support	files	that
allow	the	Qt	collection	generator	to	compile	them.

Its	name	is	qthelp.

class	sphinx.builders.devhelp.DevhelpBuilder
This	builder	produces	the	same	output	as	the	standalone	HTML
builder,	but	also	generates	GNOME	Devhelp	support	file	that
allows	the	GNOME	Devhelp	reader	to	view	them.

Its	name	is	devhelp.

class	sphinx.builders.epub.EpubBuilder
This	builder	produces	the	same	output	as	the	standalone	HTML
builder,	but	also	generates	an	epub	file	for	ebook	readers.	See
Epub	info	for	details	about	it.	For	definition	of	the	epub	format,
have	a	look	at	http://idpf.org/epub	or
http://en.wikipedia.org/wiki/EPUB.	The	builder	creates	EPUB	2
files.

Its	name	is	epub.

class	sphinx.builders.latex.LaTeXBuilder
This	builder	produces	a	bunch	of	LaTeX	files	in	the	output
directory.	You	have	to	specify	which	documents	are	to	be
included	in	which	LaTeX	files	via	the	latex_documents
configuration	value.	There	are	a	few	configuration	values	that
customize	the	output	of	this	builder,	see	the	chapter	Options	for
LaTeX	output	for	details.

http://doc.trolltech.com/4.6/qthelp-framework.html
http://live.gnome.org/devhelp
http://idpf.org/epub
http://en.wikipedia.org/wiki/EPUB

Note
The	produced	LaTeX	file	uses	several	LaTeX	packages	that	may	not	be	present	in
a	“minimal”	TeX	distribution	installation.	For	TeXLive,	the	following	packages	need
to	be	installed:

latex-recommended
latex-extra
fonts-recommended

Its	name	is	latex.

Note	that	a	direct	PDF	builder	using	ReportLab	is	available	in	rst2pdf
version	0.12	or	greater.	You	need	to	add	'rst2pdf.pdfbuilder'
to	your	extensions	to	enable	it,	its	name	is	pdf.	Refer	to	the
rst2pdf	manual	for	details.

class	sphinx.builders.text.TextBuilder
This	builder	produces	a	text	file	for	each	reST	file	–	this	is	almost
the	same	as	the	reST	source,	but	with	much	of	the	markup
stripped	for	better	readability.

Its	name	is	text.
New	in	version	0.4.

class	sphinx.builders.manpage.ManualPageBuilder
This	builder	produces	manual	pages	in	the	groff	format.	You	have
to	specify	which	documents	are	to	be	included	in	which	manual
pages	via	the	man_pages	configuration	value.
Its	name	is	man.

Note
This	builder	requires	the	docutils	manual	page	writer,	which	is	only	available	as	of
docutils	0.6.

New	in	version	1.0.

class	sphinx.builders.texinfo.TexinfoBuilder
This	builder	produces	Texinfo	files	that	can	be	processed	into	Info
files	by	the	makeinfo	program.	You	have	to	specify	which

http://rst2pdf.googlecode.com
http://lateral.netmanagers.com.ar/static/manual.pdf

documents	are	to	be	included	in	which	Texinfo	files	via	the
texinfo_documents	configuration	value.
The	Info	format	is	the	basis	of	the	on-line	help	system	used	by
GNU	Emacs	and	the	terminal-based	program	info.	See	Texinfo
info	for	more	details.	The	Texinfo	format	is	the	official
documentation	system	used	by	the	GNU	project.	More
information	on	Texinfo	can	be	found	at
http://www.gnu.org/software/texinfo/.

Its	name	is	texinfo.
New	in	version	1.1.

class	sphinx.builders.html.SerializingHTMLBuilder
This	builder	uses	a	module	that	implements	the	Python
serialization	API	(pickle,	simplejson,	phpserialize,	and
others)	to	dump	the	generated	HTML	documentation.	The	pickle
builder	is	a	subclass	of	it.

A	concrete	subclass	of	this	builder	serializing	to	the	PHP
serialization	format	could	look	like	this:

import	phpserialize

class	PHPSerializedBuilder(SerializingHTMLBuilder
				name	=	'phpserialized'
				implementation	=	phpserialize
				out_suffix	=	'.file.phpdump'
				globalcontext_filename	=	'globalcontext.phpdump'
				searchindex_filename	=	'searchindex.phpdump'

implementation
A	module	that	implements	dump(),	load(),	dumps()	and
loads()	functions	that	conform	to	the	functions	with	the
same	names	from	the	pickle	module.	Known	modules
implementing	this	interface	are	simplejson	(or	json	in
Python	2.6),	phpserialize,	plistlib,	and	others.

http://www.gnu.org/software/texinfo/
http://pypi.python.org/pypi/phpserialize

out_suffix
The	suffix	for	all	regular	files.

globalcontext_filename
The	filename	for	the	file	that	contains	the	“global	context”.
This	is	a	dict	with	some	general	configuration	values	such	as
the	name	of	the	project.

searchindex_filename
The	filename	for	the	search	index	Sphinx	generates.

See	Serialization	builder	details	for	details	about	the	output
format.

New	in	version	0.5.

class	sphinx.builders.html.PickleHTMLBuilder
This	builder	produces	a	directory	with	pickle	files	containing
mostly	HTML	fragments	and	TOC	information,	for	use	of	a	web
application	(or	custom	postprocessing	tool)	that	doesn’t	use	the
standard	HTML	templates.

See	Serialization	builder	details	for	details	about	the	output
format.

Its	name	is	pickle.	(The	old	name	web	still	works	as	well.)
The	file	suffix	is	.fpickle.	The	global	context	is	called
globalcontext.pickle,	the	search	index
searchindex.pickle.

class	sphinx.builders.html.JSONHTMLBuilder
This	builder	produces	a	directory	with	JSON	files	containing
mostly	HTML	fragments	and	TOC	information,	for	use	of	a	web
application	(or	custom	postprocessing	tool)	that	doesn’t	use	the
standard	HTML	templates.

See	Serialization	builder	details	for	details	about	the	output
format.

Its	name	is	json.

The	file	suffix	is	.fjson.	The	global	context	is	called
globalcontext.json,	the	search	index	searchindex.json.
New	in	version	0.5.

class
sphinx.builders.gettext.MessageCatalogBuilder

This	builder	produces	gettext-style	message	catalogs.	Each	top-
level	file	or	subdirectory	grows	a	single	.pot	catalog	template.
See	the	documentation	on	Internationalization	for	further
reference.

Its	name	is	gettext.
New	in	version	1.1.

class	sphinx.builders.changes.ChangesBuilder
This	builder	produces	an	HTML	overview	of	all	versionadded,
versionchanged	and	deprecated	directives	for	the	current
version.	This	is	useful	to	generate	a	ChangeLog	file,	for
example.

Its	name	is	changes.

class
sphinx.builders.linkcheck.CheckExternalLinksBuilder

This	builder	scans	all	documents	for	external	links,	tries	to	open
them	with	urllib2,	and	writes	an	overview	which	ones	are
broken	and	redirected	to	standard	output	and	to	output.txt	in
the	output	directory.

Its	name	is	linkcheck.

class	sphinx.builders.xml.XMLBuilder
This	builder	produces	Docutils-native	XML	files.	The	output	can
be	transformed	with	standard	XML	tools	such	as	XSLT
processors	into	arbitrary	final	forms.

Its	name	is	xml.
New	in	version	1.2.

class	sphinx.builders.xml.PseudoXMLBuilder
This	builder	is	used	for	debugging	the	Sphinx/Docutils	“Reader	to
Transform	to	Writer”	pipeline.	It	produces	compact	pretty-printed
“pseudo-XML”,	files	where	nesting	is	indicated	by	indentation	(no
end-tags).	External	attributes	for	all	elements	are	output,	and
internal	attributes	for	any	leftover	“pending”	elements	are	also
given.

Its	name	is	pseudoxml.
New	in	version	1.2.

Built-in	Sphinx	extensions	that	offer	more	builders	are:

doctest
coverage

Serialization	builder	details

All	serialization	builders	outputs	one	file	per	source	file	and	a	few
special	files.	They	also	copy	the	reST	source	files	in	the	directory
_sources	under	the	output	directory.

The	PickleHTMLBuilder	is	a	builtin	subclass	that	implements	the
pickle	serialization	interface.

The	files	per	source	file	have	the	extensions	of	out_suffix,	and
are	arranged	in	directories	just	as	the	source	files	are.	They
unserialize	to	a	dictionary	(or	dictionary	like	structure)	with	these
keys:

body
The	HTML	“body”	(that	is,	the	HTML	rendering	of	the	source	file),
as	rendered	by	the	HTML	translator.

title
The	title	of	the	document,	as	HTML	(may	contain	markup).

toc
The	table	of	contents	for	the	file,	rendered	as	an	HTML	.

display_toc
A	boolean	that	is	True	if	the	toc	contains	more	than	one	entry.

current_page_name
The	document	name	of	the	current	file.

parents,	prev	and	next
Information	about	related	chapters	in	the	TOC	tree.	Each	relation
is	a	dictionary	with	the	keys	link	(HREF	for	the	relation)	and
title	(title	of	the	related	document,	as	HTML).	parents	is	a
list	of	relations,	while	prev	and	next	are	a	single	relation.

sourcename
The	name	of	the	source	file	under	_sources.

The	special	files	are	located	in	the	root	output	directory.	They	are:

SerializingHTMLBuilder.globalcontext_filename
A	pickled	dict	with	these	keys:

project,	copyright,	release,	version
The	same	values	as	given	in	the	configuration	file.

style
html_style.

last_updated
Date	of	last	build.

builder
Name	of	the	used	builder,	in	the	case	of	pickles	this	is	always
'pickle'.

titles
A	dictionary	of	all	documents’	titles,	as	HTML	strings.

SerializingHTMLBuilder.searchindex_filename
An	index	that	can	be	used	for	searching	the	documentation.	It	is
a	pickled	list	with	these	entries:

A	list	of	indexed	docnames.
A	list	of	document	titles,	as	HTML	strings,	in	the	same	order
as	the	first	list.
A	dict	mapping	word	roots	(processed	by	an	English-
language	stemmer)	to	a	list	of	integers,	which	are	indices
into	the	first	list.

environment.pickle
The	build	environment.	This	is	always	a	pickle	file,	independent
of	the	builder	and	a	copy	of	the	environment	that	was	used	when
the	builder	was	started.

Todo
Document	common	members.

Unlike	the	other	pickle	files	this	pickle	file	requires	that	the
sphinx	package	is	available	on	unpickling.

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	»
©	Copyright	2007-2013,	Georg	Brandl.	Created	using	Sphinx	1.2.

http://sphinx-doc.org/

Home Get	it Docs Extend/Develop

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	»

The	build	configuration	file
The	configuration	directory	must	contain	a	file	named	conf.py.	This
file	(containing	Python	code)	is	called	the	“build	configuration	file”
and	contains	all	configuration	needed	to	customize	Sphinx	input	and
output	behavior.

The	configuration	file	is	executed	as	Python	code	at	build	time	(using
execfile(),	and	with	the	current	directory	set	to	its	containing
directory),	and	therefore	can	execute	arbitrarily	complex	code.
Sphinx	then	reads	simple	names	from	the	file’s	namespace	as	its
configuration.

Important	points	to	note:

If	not	otherwise	documented,	values	must	be	strings,	and	their
default	is	the	empty	string.
The	term	“fully-qualified	name”	refers	to	a	string	that	names	an
importable	Python	object	inside	a	module;	for	example,	the	FQN
"sphinx.builders.Builder"	means	the	Builder	class	in
the	sphinx.builders	module.
Remember	that	document	names	use	/	as	the	path	separator
and	don’t	contain	the	file	name	extension.
Since	conf.py	is	read	as	a	Python	file,	the	usual	rules	apply
for	encodings	and	Unicode	support:	declare	the	encoding	using
an	encoding	cookie	(a	comment	like	#	-*-	coding:	utf-8
-*-)	and	use	Unicode	string	literals	when	you	include	non-
ASCII	characters	in	configuration	values.
The	contents	of	the	config	namespace	are	pickled	(so	that
Sphinx	can	find	out	when	configuration	changes),	so	it	may	not
contain	unpickleable	values	–	delete	them	from	the	namespace
with	del	if	appropriate.	Modules	are	removed	automatically,	so
you	don’t	need	to	del	your	imports	after	use.
There	is	a	special	object	named	tags	available	in	the	config
file.	It	can	be	used	to	query	and	change	the	tags	(see	Including
content	based	on	tags).	Use	tags.has('tag')	to	query,
tags.add('tag')	and	tags.remove('tag')	to	change.

General	configuration

extensions
A	list	of	strings	that	are	module	names	of	Sphinx	extensions.
These	can	be	extensions	coming	with	Sphinx	(named
sphinx.ext.*)	or	custom	ones.
Note	that	you	can	extend	sys.path	within	the	conf	file	if	your
extensions	live	in	another	directory	–	but	make	sure	you	use
absolute	paths.	If	your	extension	path	is	relative	to	the
configuration	directory,	use	os.path.abspath()	like	so:

import	sys,	os

sys.path.append(os.path.abspath('sphinxext'))

extensions	=	['extname']

That	way,	you	can	load	an	extension	called	extname	from	the
subdirectory	sphinxext.
The	configuration	file	itself	can	be	an	extension;	for	that,	you	only
need	to	provide	a	setup()	function	in	it.

source_suffix
The	file	name	extension	of	source	files.	Only	files	with	this	suffix
will	be	read	as	sources.	Default	is	'.rst'.

source_encoding
The	encoding	of	all	reST	source	files.	The	recommended
encoding,	and	the	default	value,	is	'utf-8-sig'.
New	in	version	0.5:	Previously,	Sphinx	accepted	only	UTF-8
encoded	sources.

master_doc

The	document	name	of	the	“master”	document,	that	is,	the
document	that	contains	the	root	toctree	directive.	Default	is
'contents'.

exclude_patterns
A	list	of	glob-style	patterns	that	should	be	excluded	when	looking
for	source	files.	[1]	They	are	matched	against	the	source	file
names	relative	to	the	source	directory,	using	slashes	as	directory
separators	on	all	platforms.

Example	patterns:

'library/xml.rst'	–	ignores	the	library/xml.rst	file
(replaces	entry	in	unused_docs)
'library/xml'	–	ignores	the	library/xml	directory
(replaces	entry	in	exclude_trees)
'library/xml*'	–	ignores	all	files	and	directories	starting
with	library/xml
'**/.svn'	–	ignores	all	.svn	directories	(replaces	entry	in
exclude_dirnames)

exclude_patterns	is	also	consulted	when	looking	for	static
files	in	html_static_path.
New	in	version	1.0.

unused_docs
A	list	of	document	names	that	are	present,	but	not	currently
included	in	the	toctree.	Use	this	setting	to	suppress	the	warning
that	is	normally	emitted	in	that	case.

Deprecated	since	version	1.0:	Use	exclude_patterns	instead.

exclude_trees
A	list	of	directory	paths,	relative	to	the	source	directory,	that	are	to
be	recursively	excluded	from	the	search	for	source	files,	that	is,
their	subdirectories	won’t	be	searched	too.	The	default	is	[].
New	in	version	0.4.

Deprecated	since	version	1.0:	Use	exclude_patterns	instead.

exclude_dirnames
A	list	of	directory	names	that	are	to	be	excluded	from	any
recursive	operation	Sphinx	performs	(e.g.	searching	for	source
files	or	copying	static	files).	This	is	useful,	for	example,	to	exclude
version-control-specific	directories	like	'CVS'.	The	default	is	[].
New	in	version	0.5.

Deprecated	since	version	1.0:	Use	exclude_patterns	instead.

templates_path
A	list	of	paths	that	contain	extra	templates	(or	templates	that
overwrite	builtin/theme-specific	templates).	Relative	paths	are
taken	as	relative	to	the	configuration	directory.

template_bridge
A	string	with	the	fully-qualified	name	of	a	callable	(or	simply	a
class)	that	returns	an	instance	of	TemplateBridge.	This
instance	is	then	used	to	render	HTML	documents,	and	possibly
the	output	of	other	builders	(currently	the	changes	builder).	(Note
that	the	template	bridge	must	be	made	theme-aware	if	HTML
themes	are	to	be	used.)

rst_epilog
A	string	of	reStructuredText	that	will	be	included	at	the	end	of
every	source	file	that	is	read.	This	is	the	right	place	to	add
substitutions	that	should	be	available	in	every	file.	An	example:

rst_epilog	=	"""
..	|psf|	replace::	Python	Software	Foundation
"""

New	in	version	0.6.

rst_prolog
A	string	of	reStructuredText	that	will	be	included	at	the	beginning
of	every	source	file	that	is	read.

New	in	version	1.0.

primary_domain
The	name	of	the	default	domain.	Can	also	be	None	to	disable	a
default	domain.	The	default	is	'py'.	Those	objects	in	other
domains	(whether	the	domain	name	is	given	explicitly,	or
selected	by	a	default-domain	directive)	will	have	the	domain
name	explicitly	prepended	when	named	(e.g.,	when	the	default
domain	is	C,	Python	functions	will	be	named	“Python	function”,
not	just	“function”).

New	in	version	1.0.

default_role
The	name	of	a	reST	role	(builtin	or	Sphinx	extension)	to	use	as
the	default	role,	that	is,	for	text	marked	up	`like	this`.	This
can	be	set	to	'py:obj'	to	make	`filter`	a	cross-reference	to
the	Python	function	“filter”.	The	default	is	None,	which	doesn’t
reassign	the	default	role.

The	default	role	can	always	be	set	within	individual	documents
using	the	standard	reST	default-role	directive.
New	in	version	0.4.

keep_warnings
If	true,	keep	warnings	as	“system	message”	paragraphs	in	the
built	documents.	Regardless	of	this	setting,	warnings	are	always
written	to	the	standard	error	stream	when	sphinx-build	is	run.
The	default	is	False,	the	pre-0.5	behavior	was	to	always	keep
them.

New	in	version	0.5.

needs_sphinx
If	set	to	a	major.minor	version	string	like	'1.1',	Sphinx	will
compare	it	with	its	version	and	refuse	to	build	if	it	is	too	old.
Default	is	no	requirement.

New	in	version	1.0.

nitpicky
If	true,	Sphinx	will	warn	about	all	references	where	the	target
cannot	be	found.	Default	is	False.	You	can	activate	this	mode
temporarily	using	the	-n	command-line	switch.

New	in	version	1.0.

nitpick_ignore
A	list	of	(type,	target)	tuples	(by	default	empty)	that	should
be	ignored	when	generating	warnings	in	“nitpicky	mode”.	Note
that	type	should	include	the	domain	name.	An	example	entry
would	be	('py:func',	'int').
New	in	version	1.1.

Project	information

project
The	documented	project’s	name.

copyright
A	copyright	statement	in	the	style	'2008,	Author	Name'.

version
The	major	project	version,	used	as	the	replacement	for
|version|.	For	example,	for	the	Python	documentation,	this
may	be	something	like	2.6.

release
The	full	project	version,	used	as	the	replacement	for	|release|
and	e.g.	in	the	HTML	templates.	For	example,	for	the	Python
documentation,	this	may	be	something	like	2.6.0rc1.
If	you	don’t	need	the	separation	provided	between	version	and
release,	just	set	them	both	to	the	same	value.

today
today_fmt

These	values	determine	how	to	format	the	current	date,	used	as
the	replacement	for	|today|.

If	you	set	today	to	a	non-empty	value,	it	is	used.
Otherwise,	the	current	time	is	formatted	using
time.strftime()	and	the	format	given	in	today_fmt.

The	default	is	no	today	and	a	today_fmt	of	'%B	%d,	%Y'	(or,
if	translation	is	enabled	with	language,	an	equivalent	%format
for	the	selected	locale).

highlight_language
The	default	language	to	highlight	source	code	in.	The	default	is

'python'.	The	value	should	be	a	valid	Pygments	lexer	name,
see	Showing	code	examples	for	more	details.

New	in	version	0.5.

pygments_style
The	style	name	to	use	for	Pygments	highlighting	of	source	code.
The	default	style	is	selected	by	the	theme	for	HTML	output,	and
'sphinx'	otherwise.
Changed	in	version	0.3:	If	the	value	is	a	fully-qualified	name	of	a
custom	Pygments	style	class,	this	is	then	used	as	custom	style.

add_function_parentheses
A	boolean	that	decides	whether	parentheses	are	appended	to
function	and	method	role	text	(e.g.	the	content	of
:func:`input`)	to	signify	that	the	name	is	callable.	Default	is
True.

add_module_names
A	boolean	that	decides	whether	module	names	are	prepended	to
all	object	names	(for	object	types	where	a	“module”	of	some	kind
is	defined),	e.g.	for	py:function	directives.	Default	is	True.

show_authors
A	boolean	that	decides	whether	codeauthor	and
sectionauthor	directives	produce	any	output	in	the	built	files.

modindex_common_prefix
A	list	of	prefixes	that	are	ignored	for	sorting	the	Python	module
index	(e.g.,	if	this	is	set	to	['foo.'],	then	foo.bar	is	shown
under	B,	not	F).	This	can	be	handy	if	you	document	a	project
that	consists	of	a	single	package.	Works	only	for	the	HTML
builder	currently.	Default	is	[].
New	in	version	0.6.

trim_footnote_reference_space
Trim	spaces	before	footnote	references	that	are	necessary	for

the	reST	parser	to	recognize	the	footnote,	but	do	not	look	too
nice	in	the	output.

New	in	version	0.6.

trim_doctest_flags
If	true,	doctest	flags	(comments	looking	like	#	doctest:	FLAG,
...)	at	the	ends	of	lines	and	<BLANKLINE>	markers	are
removed	for	all	code	blocks	showing	interactive	Python	sessions
(i.e.	doctests).	Default	is	true.	See	the	extension	doctest	for
more	possibilities	of	including	doctests.

New	in	version	1.0.

Changed	in	version	1.1:	Now	also	removes	<BLANKLINE>.

Options	for	internationalization

These	options	influence	Sphinx’	Native	Language	Support.	See	the
documentation	on	Internationalization	for	details.

language
The	code	for	the	language	the	docs	are	written	in.	Any	text
automatically	generated	by	Sphinx	will	be	in	that	language.	Also,
Sphinx	will	try	to	substitute	individual	paragraphs	from	your
documents	with	the	translation	sets	obtained	from
locale_dirs.	In	the	LaTeX	builder,	a	suitable	language	will	be
selected	as	an	option	for	the	Babel	package.	Default	is	None,
which	means	that	no	translation	will	be	done.

New	in	version	0.5.

Currently	supported	languages	by	Sphinx	are:

bn	–	Bengali
ca	–	Catalan
cs	–	Czech
da	–	Danish
de	–	German
en	–	English
es	–	Spanish
et	–	Estonian
eu	–	Basque
fa	–	Iranian
fi	–	Finnish
fr	–	French
hr	–	Croatian
hu	–	Hungarian
id	–	Indonesian
it	–	Italian
ja	–	Japanese
ko	–	Korean
lt	–	Lithuanian

lv	–	Latvian
mk	–	Macedonian
nb_NO	–	Norwegian	Bokmal
ne	–	Nepali
nl	–	Dutch
pl	–	Polish
pt_BR	–	Brazilian	Portuguese
ru	–	Russian
si	–	Sinhala
sk	–	Slovak
sl	–	Slovenian
sv	–	Swedish
tr	–	Turkish
uk_UA	–	Ukrainian
zh_CN	–	Simplified	Chinese
zh_TW	–	Traditional	Chinese

locale_dirs
New	in	version	0.5.

Directories	in	which	to	search	for	additional	message	catalogs
(see	language),	relative	to	the	source	directory.	The	directories
on	this	path	are	searched	by	the	standard	gettext	module.
Internal	messages	are	fetched	from	a	text	domain	of	sphinx;	so
if	you	add	the	directory	./locale	to	this	settting,	the	message
catalogs	(compiled	from	.po	format	using	msgfmt)	must	be	in
./locale/language/LC_MESSAGES/sphinx.mo.	The	text
domain	of	individual	documents	depends	on	gettext_compact.
The	default	is	[].

gettext_compact
New	in	version	1.1.

If	true,	a	document’s	text	domain	is	its	docname	if	it	is	a	top-level
project	file	and	its	very	base	directory	otherwise.

By	default,	the	document	markup/code.rst	ends	up	in	the
markup	text	domain.	With	this	option	set	to	False,	it	is

markup/code.

Options	for	HTML	output

These	options	influence	HTML	as	well	as	HTML	Help	output,	and
other	builders	that	use	Sphinx’	HTMLWriter	class.

html_theme
The	“theme”	that	the	HTML	output	should	use.	See	the	section
about	theming.	The	default	is	'default'.
New	in	version	0.6.

html_theme_options
A	dictionary	of	options	that	influence	the	look	and	feel	of	the
selected	theme.	These	are	theme-specific.	For	the	options
understood	by	the	builtin	themes,	see	this	section.

New	in	version	0.6.

html_theme_path
A	list	of	paths	that	contain	custom	themes,	either	as
subdirectories	or	as	zip	files.	Relative	paths	are	taken	as	relative
to	the	configuration	directory.

New	in	version	0.6.

html_style
The	style	sheet	to	use	for	HTML	pages.	A	file	of	that	name	must
exist	either	in	Sphinx’	static/	path,	or	in	one	of	the	custom
paths	given	in	html_static_path.	Default	is	the	stylesheet
given	by	the	selected	theme.	If	you	only	want	to	add	or	override	a
few	things	compared	to	the	theme’s	stylesheet,	use	CSS
@import	to	import	the	theme’s	stylesheet.

html_title
The	“title”	for	HTML	documentation	generated	with	Sphinx’	own
templates.	This	is	appended	to	the	<title>	tag	of	individual
pages,	and	used	in	the	navigation	bar	as	the	“topmost”	element.

It	defaults	to	'<project>	v<revision>	documentation',
where	the	placeholders	are	replaced	by	the	config	values	of	the
same	name.

html_short_title
A	shorter	“title”	for	the	HTML	docs.	This	is	used	in	for	links	in	the
header	and	in	the	HTML	Help	docs.	If	not	given,	it	defaults	to	the
value	of	html_title.
New	in	version	0.4.

html_context
A	dictionary	of	values	to	pass	into	the	template	engine’s	context
for	all	pages.	Single	values	can	also	be	put	in	this	dictionary
using	the	-A	command-line	option	of	sphinx-build.
New	in	version	0.5.

html_logo
If	given,	this	must	be	the	name	of	an	image	file	that	is	the	logo	of
the	docs.	It	is	placed	at	the	top	of	the	sidebar;	its	width	should
therefore	not	exceed	200	pixels.	Default:	None.
New	in	version	0.4.1:	The	image	file	will	be	copied	to	the
_static	directory	of	the	output	HTML,	so	an	already	existing	file
with	that	name	will	be	overwritten.

html_favicon
If	given,	this	must	be	the	name	of	an	image	file	(within	the	static
path,	see	below)	that	is	the	favicon	of	the	docs.	Modern	browsers
use	this	as	icon	for	tabs,	windows	and	bookmarks.	It	should	be	a
Windows-style	icon	file	(.ico),	which	is	16x16	or	32x32	pixels
large.	Default:	None.
New	in	version	0.4.

html_static_path
A	list	of	paths	that	contain	custom	static	files	(such	as	style
sheets	or	script	files).	Relative	paths	are	taken	as	relative	to	the
configuration	directory.	They	are	copied	to	the	output’s	_static

directory	after	the	theme’s	static	files,	so	a	file	named
default.css	will	overwrite	the	theme’s	default.css.
Changed	in	version	0.4:	The	paths	in	html_static_path	can
now	contain	subdirectories.

Changed	in	version	1.0:	The	entries	in	html_static_path	can
now	be	single	files.

html_extra_path
A	list	of	paths	that	contain	extra	files	not	directly	related	to	the
documentation,	such	as	robots.txt	or	.htaccess.	Relative
paths	are	taken	as	relative	to	the	configuration	directory.	They
are	copied	to	the	output	directory.	They	will	overwrite	any	existing
file	of	the	same	name.

As	these	files	are	not	meant	to	be	built,	they	are	automatically
added	to	exclude_patterns.
New	in	version	1.2.

html_last_updated_fmt
If	this	is	not	the	empty	string,	a	‘Last	updated	on:’	timestamp	is
inserted	at	every	page	bottom,	using	the	given	strftime()
format.	Default	is	'%b	%d,	%Y'	(or	a	locale-dependent
equivalent).

html_use_smartypants
If	true,	SmartyPants	will	be	used	to	convert	quotes	and	dashes	to
typographically	correct	entities.	Default:	True.

html_add_permalinks
Sphinx	will	add	“permalinks”	for	each	heading	and	description
environment	as	paragraph	signs	that	become	visible	when	the
mouse	hovers	over	them.

This	value	determines	the	text	for	the	permalink;	it	defaults	to
"¶".	Set	it	to	None	or	the	empty	string	to	disable	permalinks.
New	in	version	0.6:	Previously,	this	was	always	activated.

Changed	in	version	1.1:	This	can	now	be	a	string	to	select	the

actual	text	of	the	link.	Previously,	only	boolean	values	were
accepted.

html_sidebars
Custom	sidebar	templates,	must	be	a	dictionary	that	maps
document	names	to	template	names.

The	keys	can	contain	glob-style	patterns	[1],	in	which	case	all
matching	documents	will	get	the	specified	sidebars.	(A	warning	is
emitted	when	a	more	than	one	glob-style	pattern	matches	for	any
document.)

The	values	can	be	either	lists	or	single	strings.

If	a	value	is	a	list,	it	specifies	the	complete	list	of	sidebar
templates	to	include.	If	all	or	some	of	the	default	sidebars	are
to	be	included,	they	must	be	put	into	this	list	as	well.

The	default	sidebars	(for	documents	that	don’t	match	any
pattern)	are:	['localtoc.html',	'relations.html',
'sourcelink.html',	'searchbox.html'].
If	a	value	is	a	single	string,	it	specifies	a	custom	sidebar	to
be	added	between	the	'sourcelink.html'	and
'searchbox.html'	entries.	This	is	for	compatibility	with
Sphinx	versions	before	1.0.

Builtin	sidebar	templates	that	can	be	rendered	are:

localtoc.html	–	a	fine-grained	table	of	contents	of	the
current	document
globaltoc.html	–	a	coarse-grained	table	of	contents	for	the
whole	documentation	set,	collapsed
relations.html	–	two	links	to	the	previous	and	next
documents
sourcelink.html	–	a	link	to	the	source	of	the	current
document,	if	enabled	in	html_show_sourcelink
searchbox.html	–	the	“quick	search”	box

Example:

html_sidebars	=	{

			'**':	['globaltoc.html',	'sourcelink.html',	'searchbox.html'
			'using/windows':	['windowssidebar.html',	'searchbox.html'
}

This	will	render	the	custom	template	windowssidebar.html
and	the	quick	search	box	within	the	sidebar	of	the	given
document,	and	render	the	default	sidebars	for	all	other	pages
(except	that	the	local	TOC	is	replaced	by	the	global	TOC).

New	in	version	1.0:	The	ability	to	use	globbing	keys	and	to
specify	multiple	sidebars.

Note	that	this	value	only	has	no	effect	if	the	chosen	theme	does
not	possess	a	sidebar,	like	the	builtin	scrolls	and	haiku	themes.

html_additional_pages
Additional	templates	that	should	be	rendered	to	HTML	pages,
must	be	a	dictionary	that	maps	document	names	to	template
names.

Example:

html_additional_pages	=	{
				'download':	'customdownload.html',
}

This	will	render	the	template	customdownload.html	as	the
page	download.html.

html_domain_indices
If	true,	generate	domain-specific	indices	in	addition	to	the	general
index.	For	e.g.	the	Python	domain,	this	is	the	global	module
index.	Default	is	True.
This	value	can	be	a	bool	or	a	list	of	index	names	that	should	be
generated.	To	find	out	the	index	name	for	a	specific	index,	look	at
the	HTML	file	name.	For	example,	the	Python	module	index	has
the	name	'py-modindex'.

New	in	version	1.0.

html_use_modindex
If	true,	add	a	module	index	to	the	HTML	documents.	Default	is
True.
Deprecated	since	version	1.0:	Use	html_domain_indices.

html_use_index
If	true,	add	an	index	to	the	HTML	documents.	Default	is	True.
New	in	version	0.4.

html_split_index
If	true,	the	index	is	generated	twice:	once	as	a	single	page	with
all	the	entries,	and	once	as	one	page	per	starting	letter.	Default	is
False.
New	in	version	0.4.

html_copy_source
If	true,	the	reST	sources	are	included	in	the	HTML	build	as
_sources/name.	The	default	is	True.

Warning

If	this	config	value	is	set	to	False ,	the	JavaScript	search	function	will	only
display	the	titles	of	matching	documents,	and	no	excerpt	from	the	matching
contents.

html_show_sourcelink
If	true	(and	html_copy_source	is	true	as	well),	links	to	the	reST
sources	will	be	added	to	the	sidebar.	The	default	is	True.
New	in	version	0.6.

html_use_opensearch
If	nonempty,	an	OpenSearch	<http://opensearch.org>
description	file	will	be	output,	and	all	pages	will	contain	a	<link>
tag	referring	to	it.	Since	OpenSearch	doesn’t	support	relative

URLs	for	its	search	page	location,	the	value	of	this	option	must
be	the	base	URL	from	which	these	documents	are	served
(without	trailing	slash),	e.g.	"http://docs.python.org".	The
default	is	''.

html_file_suffix
This	is	the	file	name	suffix	for	generated	HTML	files.	The	default
is	".html".
New	in	version	0.4.

html_link_suffix
Suffix	for	generated	links	to	HTML	files.	The	default	is	whatever
html_file_suffix	is	set	to;	it	can	be	set	differently	(e.g.	to
support	different	web	server	setups).

New	in	version	0.6.

html_translator_class
A	string	with	the	fully-qualified	name	of	a	HTML	Translator	class,
that	is,	a	subclass	of	Sphinx’	HTMLTranslator,	that	is	used	to
translate	document	trees	to	HTML.	Default	is	None	(use	the
builtin	translator).

html_show_copyright
If	true,	“(C)	Copyright	...”	is	shown	in	the	HTML	footer.	Default	is
True.
New	in	version	1.0.

html_show_sphinx
If	true,	“Created	using	Sphinx”	is	shown	in	the	HTML	footer.
Default	is	True.
New	in	version	0.4.

html_output_encoding
Encoding	of	HTML	output	files.	Default	is	'utf-8'.	Note	that
this	encoding	name	must	both	be	a	valid	Python	encoding	name

and	a	valid	HTML	charset	value.
New	in	version	1.0.

html_compact_lists
If	true,	list	items	containing	only	a	single	paragraph	will	not	be
rendered	with	a	<p>	element.	This	is	standard	docutils	behavior.
Default:	True.
New	in	version	1.0.

html_secnumber_suffix
Suffix	for	section	numbers.	Default:	".	".	Set	to	"	"	to
suppress	the	final	dot	on	section	numbers.

New	in	version	1.0.

html_search_language
Language	to	be	used	for	generating	the	HTML	full-text	search
index.	This	defaults	to	the	global	language	selected	with
language.	If	there	is	no	support	for	this	language,	"en"	is	used
which	selects	the	English	language.

Support	is	present	for	these	languages:

en	–	English
ja	–	Japanese

New	in	version	1.1.

html_search_options
A	dictionary	with	options	for	the	search	language	support,	empty
by	default.	The	meaning	of	these	options	depends	on	the
language	selected.

The	English	support	has	no	options.

The	Japanese	support	has	these	options:

type	–	'mecab'	or	'default'	(selects	either	MeCab	or
TinySegmenter	word	splitter	algorithm)
dic_enc	–	the	encoding	for	the	MeCab	algorithm

dict	–	the	dictionary	to	use	for	the	MeCab	algorithm
lib	–	the	library	name	for	finding	the	MeCab	library	via
ctypes	if	the	Python	binding	is	not	installed

New	in	version	1.1.

html_search_scorer
The	name	of	a	javascript	file	(relative	to	the	configuration
directory)	that	implements	a	search	results	scorer.	If	empty,	the
default	will	be	used.

New	in	version	1.2.

htmlhelp_basename
Output	file	base	name	for	HTML	help	builder.	Default	is
'pydoc'.

Options	for	epub	output

These	options	influence	the	epub	output.	As	this	builder	derives	from
the	HTML	builder,	the	HTML	options	also	apply	where	appropriate.
The	actual	values	for	some	of	the	options	is	not	really	important,	they
just	have	to	be	entered	into	the	Dublin	Core	metadata.

epub_basename
The	basename	for	the	epub	file.	It	defaults	to	the	project	name.

epub_theme
The	HTML	theme	for	the	epub	output.	Since	the	default	themes
are	not	optimized	for	small	screen	space,	using	the	same	theme
for	HTML	and	epub	output	is	usually	not	wise.	This	defaults	to
'epub',	a	theme	designed	to	save	visual	space.

epub_theme_options
A	dictionary	of	options	that	influence	the	look	and	feel	of	the
selected	theme.	These	are	theme-specific.	For	the	options
understood	by	the	builtin	themes,	see	this	section.

New	in	version	1.2.

epub_title
The	title	of	the	document.	It	defaults	to	the	html_title	option
but	can	be	set	independently	for	epub	creation.

epub_author
The	author	of	the	document.	This	is	put	in	the	Dublin	Core
metadata.	The	default	value	is	'unknown'.

epub_language
The	language	of	the	document.	This	is	put	in	the	Dublin	Core
metadata.	The	default	is	the	language	option	or	'en'	if	unset.

epub_publisher

http://dublincore.org/

The	publisher	of	the	document.	This	is	put	in	the	Dublin	Core
metadata.	You	may	use	any	sensible	string,	e.g.	the	project
homepage.	The	default	value	is	'unknown'.

epub_copyright
The	copyright	of	the	document.	It	defaults	to	the	copyright
option	but	can	be	set	independently	for	epub	creation.

epub_identifier
An	identifier	for	the	document.	This	is	put	in	the	Dublin	Core
metadata.	For	published	documents	this	is	the	ISBN	number,	but
you	can	also	use	an	alternative	scheme,	e.g.	the	project
homepage.	The	default	value	is	'unknown'.

epub_scheme
The	publication	scheme	for	the	epub_identifier.	This	is	put	in
the	Dublin	Core	metadata.	For	published	books	the	scheme	is
'ISBN'.	If	you	use	the	project	homepage,	'URL'	seems
reasonable.	The	default	value	is	'unknown'.

epub_uid
A	unique	identifier	for	the	document.	This	is	put	in	the	Dublin
Core	metadata.	You	may	use	a	random	string.	The	default	value
is	'unknown'.

epub_cover
The	cover	page	information.	This	is	a	tuple	containing	the
filenames	of	the	cover	image	and	the	html	template.	The
rendered	html	cover	page	is	inserted	as	the	first	item	in	the	spine
in	content.opf.	If	the	template	filename	is	empty,	no	html
cover	page	is	created.	No	cover	at	all	is	created	if	the	tuple	is
empty.	Examples:

epub_cover	=	('_static/cover.png',	'epub-cover.html'
epub_cover	=	('_static/cover.png',	'')
epub_cover	=	()

The	default	value	is	().
New	in	version	1.1.

epub_guide
Meta	data	for	the	guide	element	of	content.opf.	This	is	a
sequence	of	tuples	containing	the	type,	the	uri	and	the	title	of	the
optional	guide	information.	See	the	OPF	documentation	at
http://idpf.org/epub	for	details.	If	possible,	default	entries	for	the
cover	and	toc	types	are	automatically	inserted.	However,	the
types	can	be	explicitely	overwritten	if	the	default	entries	are	not
appropriate.	Example:

epub_guide	=	(('cover',	'cover.html',	u'Cover	Page'

The	default	value	is	().

epub_pre_files
Additional	files	that	should	be	inserted	before	the	text	generated
by	Sphinx.	It	is	a	list	of	tuples	containing	the	file	name	and	the
title.	If	the	title	is	empty,	no	entry	is	added	to	toc.ncx.	Example:

epub_pre_files	=	[
				('index.html',	'Welcome'),
]

The	default	value	is	[].

epub_post_files
Additional	files	that	should	be	inserted	after	the	text	generated	by
Sphinx.	It	is	a	list	of	tuples	containing	the	file	name	and	the	title.
This	option	can	be	used	to	add	an	appendix.	If	the	title	is	empty,
no	entry	is	added	to	toc.ncx.	The	default	value	is	[].

epub_exclude_files
A	list	of	files	that	are	generated/copied	in	the	build	directory	but

http://idpf.org/epub

should	not	be	included	in	the	epub	file.	The	default	value	is	[].

epub_tocdepth
The	depth	of	the	table	of	contents	in	the	file	toc.ncx.	It	should
be	an	integer	greater	than	zero.	The	default	value	is	3.	Note:	A
deeply	nested	table	of	contents	may	be	difficult	to	navigate.

epub_tocdup
This	flag	determines	if	a	toc	entry	is	inserted	again	at	the
beginning	of	it’s	nested	toc	listing.	This	allows	easier	navitation	to
the	top	of	a	chapter,	but	can	be	confusing	because	it	mixes
entries	of	differnet	depth	in	one	list.	The	default	value	is	True.

epub_tocscope
This	setting	control	the	scope	of	the	epub	table	of	contents.	The
setting	can	have	the	following	values:

'default'	–	include	all	toc	entries	that	are	not	hidden
(default)
'includehidden'	–	include	all	toc	entries

New	in	version	1.2.

epub_fix_images
This	flag	determines	if	sphinx	should	try	to	fix	image	formats	that
are	not	supported	by	some	epub	readers.	At	the	moment	palette
images	with	a	small	color	table	are	upgraded.	You	need	the
Python	Image	Library	(PIL)	installed	to	use	this	option.	The
default	value	is	False	because	the	automatic	conversion	may
lose	information.

New	in	version	1.2.

epub_max_image_width
This	option	specifies	the	maximum	width	of	images.	If	it	is	set	to	a
value	greater	than	zero,	images	with	a	width	larger	than	the	given
value	are	scaled	accordingly.	If	it	is	zero,	no	scaling	is	performed.
The	default	value	is	0.	You	need	the	Python	Image	Library	(PIL)
installed	to	use	this	option.

New	in	version	1.2.

epub_show_urls
Control	whether	to	display	URL	addresses.	This	is	very	useful	for
readers	that	have	no	other	means	to	display	the	linked	URL.	The
settings	can	have	the	following	values:

'inline'	–	display	URLs	inline	in	parentheses	(default)
'footnote'	–	display	URLs	in	footnotes
'no'	–	do	not	display	URLs

The	display	of	inline	URLs	can	be	customized	by	adding	CSS
rules	for	the	class	link-target.
New	in	version	1.2.

epub_use_index
If	true,	add	an	index	to	the	epub	document.	It	defaults	to	the
html_use_index	option	but	can	be	set	independently	for	epub
creation.

New	in	version	1.2.

Options	for	LaTeX	output

These	options	influence	LaTeX	output.

latex_documents
This	value	determines	how	to	group	the	document	tree	into
LaTeX	source	files.	It	must	be	a	list	of	tuples	(startdocname,
targetname,	title,	author,	documentclass,
toctree_only),	where	the	items	are:

startdocname:	document	name	that	is	the	“root”	of	the	LaTeX
file.	All	documents	referenced	by	it	in	TOC	trees	will	be
included	in	the	LaTeX	file	too.	(If	you	want	only	one	LaTeX
file,	use	your	master_doc	here.)
targetname:	file	name	of	the	LaTeX	file	in	the	output
directory.
title:	LaTeX	document	title.	Can	be	empty	to	use	the	title	of
the	startdoc.	This	is	inserted	as	LaTeX	markup,	so	special
characters	like	a	backslash	or	ampersand	must	be
represented	by	the	proper	LaTeX	commands	if	they	are	to	be
inserted	literally.
author:	Author	for	the	LaTeX	document.	The	same	LaTeX
markup	caveat	as	for	title	applies.	Use	\and	to	separate
multiple	authors,	as	in:	'John	\and	Sarah'.
documentclass:	Normally,	one	of	'manual'	or	'howto'
(provided	by	Sphinx).	Other	document	classes	can	be	given,
but	they	must	include	the	“sphinx”	package	in	order	to	define
Sphinx’	custom	LaTeX	commands.	“howto”	documents	will
not	get	appendices.	Also,	howtos	will	have	a	simpler	title
page.
toctree_only:	Must	be	True	or	False.	If	True,	the	startdoc
document	itself	is	not	included	in	the	output,	only	the
documents	referenced	by	it	via	TOC	trees.	With	this	option,
you	can	put	extra	stuff	in	the	master	document	that	shows	up
in	the	HTML,	but	not	the	LaTeX	output.

New	in	version	1.2:	In	the	past	including	your	own	document

class	required	you	to	prepend	the	document	class	name	with	the
string	“sphinx”.	This	is	not	necessary	anymore.

New	in	version	0.3:	The	6th	item	toctree_only.	Tuples	with	5
items	are	still	accepted.

latex_logo
If	given,	this	must	be	the	name	of	an	image	file	(relative	to	the
configuration	directory)	that	is	the	logo	of	the	docs.	It	is	placed	at
the	top	of	the	title	page.	Default:	None.

latex_use_parts
If	true,	the	topmost	sectioning	unit	is	parts,	else	it	is	chapters.
Default:	False.
New	in	version	0.3.

latex_appendices
A	list	of	document	names	to	append	as	an	appendix	to	all
manuals.

latex_domain_indices
If	true,	generate	domain-specific	indices	in	addition	to	the	general
index.	For	e.g.	the	Python	domain,	this	is	the	global	module
index.	Default	is	True.
This	value	can	be	a	bool	or	a	list	of	index	names	that	should	be
generated,	like	for	html_domain_indices.
New	in	version	1.0.

latex_use_modindex
If	true,	add	a	module	index	to	LaTeX	documents.	Default	is
True.
Deprecated	since	version	1.0:	Use	latex_domain_indices.

latex_show_pagerefs
If	true,	add	page	references	after	internal	references.	This	is	very
useful	for	printed	copies	of	the	manual.	Default	is	False.

New	in	version	1.0.

latex_show_urls
Control	whether	to	display	URL	addresses.	This	is	very	useful	for
printed	copies	of	the	manual.	The	setting	can	have	the	following
values:

'no'	–	do	not	display	URLs	(default)
'footnote'	–	display	URLs	in	footnotes
'inline'	–	display	URLs	inline	in	parentheses

New	in	version	1.0.

Changed	in	version	1.1:	This	value	is	now	a	string;	previously	it
was	a	boolean	value,	and	a	true	value	selected	the	'inline'
display.	For	backwards	compatibility,	True	is	still	accepted.

latex_elements
New	in	version	0.5.

A	dictionary	that	contains	LaTeX	snippets	that	override	those
Sphinx	usually	puts	into	the	generated	.tex	files.
Keep	in	mind	that	backslashes	must	be	doubled	in	Python	string
literals	to	avoid	interpretation	as	escape	sequences.

Keys	that	you	may	want	to	override	include:

'papersize'
Paper	size	option	of	the	document	class	('a4paper'	or
'letterpaper'),	default	'letterpaper'.

'pointsize'
Point	size	option	of	the	document	class	('10pt',
'11pt'	or	'12pt'),	default	'10pt'.

'babel'
“babel”	package	inclusion,	default
'\\usepackage{babel}'.

'fontpkg'
Font	package	inclusion,	default
'\\usepackage{times}'	(which	uses	Times	and

Helvetica).	You	can	set	this	to	''	to	use	the	Computer
Modern	fonts.

Changed	in	version	1.2:	Defaults	to	''	when	the
language	uses	the	Cyrillic	script.

'fncychap'
Inclusion	of	the	“fncychap”	package	(which	makes	fancy
chapter	titles),	default	'\\usepackage[Bjarne]
{fncychap}'	for	English	documentation,
'\\usepackage[Sonny]{fncychap}'	for
internationalized	docs	(because	the	“Bjarne”	style	uses
numbers	spelled	out	in	English).	Other	“fncychap”	styles
you	can	try	include	“Lenny”,	“Glenn”,	“Conny”	and
“Rejne”.	You	can	also	set	this	to	''	to	disable	fncychap.

'preamble'
Additional	preamble	content,	default	empty.

'footer'
Additional	footer	content	(before	the	indices),	default
empty.

Keys	that	don’t	need	be	overridden	unless	in	special	cases
are:

'inputenc'
“inputenc”	package	inclusion,	default
'\\usepackage[utf8]{inputenc}'.

'cmappkg'
“cmap”	package	inclusion,	default
'\\usepackage{cmap}'.
New	in	version	1.2.

'fontenc'
“fontenc”	package	inclusion,	default
'\\usepackage[T1]{fontenc}'.

'maketitle'
“maketitle”	call,	default	'\\maketitle'.	Override	if	you

want	to	generate	a	differently-styled	title	page.

'tableofcontents'
“tableofcontents”	call,	default	'\\tableofcontents'.
Override	if	you	want	to	generate	a	different	table	of
contents	or	put	content	between	the	title	page	and	the
TOC.

'transition'
Commands	used	to	display	transitions,	default
'\n\n\\bigskip\\hrule{}\\bigskip\n\n'.
Override	if	you	want	to	display	transitions	differently.

New	in	version	1.2.

'printindex'
“printindex”	call,	the	last	thing	in	the	file,	default
'\\printindex'.	Override	if	you	want	to	generate	the
index	differently	or	append	some	content	after	the	index.

Keys	that	are	set	by	other	options	and	therefore	should	not
be	overridden	are:

'docclass'	'classoptions'	'title'	'date'
'release'	'author'	'logo'	'releasename'
'makeindex'	'shorthandoff'

latex_docclass
A	dictionary	mapping	'howto'	and	'manual'	to	names	of	real
document	classes	that	will	be	used	as	the	base	for	the	two
Sphinx	classes.	Default	is	to	use	'article'	for	'howto'	and
'report'	for	'manual'.
New	in	version	1.0.

latex_additional_files
A	list	of	file	names,	relative	to	the	configuration	directory,	to	copy
to	the	build	directory	when	building	LaTeX	output.	This	is	useful
to	copy	files	that	Sphinx	doesn’t	copy	automatically,	e.g.	if	they
are	referenced	in	custom	LaTeX	added	in	latex_elements.
Image	files	that	are	referenced	in	source	files	(e.g.	via	..

image::)	are	copied	automatically.
You	have	to	make	sure	yourself	that	the	filenames	don’t	collide
with	those	of	any	automatically	copied	files.

New	in	version	0.6.

Changed	in	version	1.2:	This	overrides	the	files	which	is	provided
from	Sphinx	such	as	sphinx.sty.

latex_preamble
Additional	LaTeX	markup	for	the	preamble.

Deprecated	since	version	0.5:	Use	the	'preamble'	key	in	the
latex_elements	value.

latex_paper_size
The	output	paper	size	('letter'	or	'a4').	Default	is
'letter'.
Deprecated	since	version	0.5:	Use	the	'papersize'	key	in	the
latex_elements	value.

latex_font_size
The	font	size	(‘10pt’,	‘11pt’	or	‘12pt’).	Default	is	'10pt'.
Deprecated	since	version	0.5:	Use	the	'pointsize'	key	in	the
latex_elements	value.

Options	for	text	output

These	options	influence	text	output.

text_newlines
Determines	which	end-of-line	character(s)	are	used	in	text	output.

'unix':	use	Unix-style	line	endings	(\n)
'windows':	use	Windows-style	line	endings	(\r\n)
'native':	use	the	line	ending	style	of	the	platform	the
documentation	is	built	on

Default:	'unix'.
New	in	version	1.1.

text_sectionchars
A	string	of	7	characters	that	should	be	used	for	underlining
sections.	The	first	character	is	used	for	first-level	headings,	the
second	for	second-level	headings	and	so	on.

The	default	is	'*=-~"+`'.
New	in	version	1.1.

Options	for	manual	page	output

These	options	influence	manual	page	output.

man_pages
This	value	determines	how	to	group	the	document	tree	into
manual	pages.	It	must	be	a	list	of	tuples	(startdocname,
name,	description,	authors,	section),	where	the	items
are:

startdocname:	document	name	that	is	the	“root”	of	the
manual	page.	All	documents	referenced	by	it	in	TOC	trees
will	be	included	in	the	manual	file	too.	(If	you	want	one
master	manual	page,	use	your	master_doc	here.)
name:	name	of	the	manual	page.	This	should	be	a	short
string	without	spaces	or	special	characters.	It	is	used	to
determine	the	file	name	as	well	as	the	name	of	the	manual
page	(in	the	NAME	section).
description:	description	of	the	manual	page.	This	is	used	in
the	NAME	section.
authors:	A	list	of	strings	with	authors,	or	a	single	string.	Can
be	an	empty	string	or	list	if	you	do	not	want	to	automatically
generate	an	AUTHORS	section	in	the	manual	page.
section:	The	manual	page	section.	Used	for	the	output	file
name	as	well	as	in	the	manual	page	header.

New	in	version	1.0.

man_show_urls
If	true,	add	URL	addresses	after	links.	Default	is	False.
New	in	version	1.1.

Options	for	Texinfo	output

These	options	influence	Texinfo	output.

texinfo_documents
This	value	determines	how	to	group	the	document	tree	into
Texinfo	source	files.	It	must	be	a	list	of	tuples	(startdocname,
targetname,	title,	author,	dir_entry,
description,	category,	toctree_only),	where	the	items
are:

startdocname:	document	name	that	is	the	“root”	of	the
Texinfo	file.	All	documents	referenced	by	it	in	TOC	trees	will
be	included	in	the	Texinfo	file	too.	(If	you	want	only	one
Texinfo	file,	use	your	master_doc	here.)
targetname:	file	name	(no	extension)	of	the	Texinfo	file	in	the
output	directory.
title:	Texinfo	document	title.	Can	be	empty	to	use	the	title	of
the	startdoc.	Inserted	as	Texinfo	markup,	so	special
characters	like	@	and	{}	will	need	to	be	escaped	to	be
inserted	literally.
author:	Author	for	the	Texinfo	document.	Inserted	as	Texinfo
markup.	Use	@*	to	separate	multiple	authors,	as	in:
'John@*Sarah'.
dir_entry:	The	name	that	will	appear	in	the	top-level	DIR
menu	file.
description:	Descriptive	text	to	appear	in	the	top-level	DIR
menu	file.
category:	Specifies	the	section	which	this	entry	will	appear	in
the	top-level	DIR	menu	file.
toctree_only:	Must	be	True	or	False.	If	True,	the	startdoc
document	itself	is	not	included	in	the	output,	only	the
documents	referenced	by	it	via	TOC	trees.	With	this	option,
you	can	put	extra	stuff	in	the	master	document	that	shows	up
in	the	HTML,	but	not	the	Texinfo	output.

New	in	version	1.1.

texinfo_appendices
A	list	of	document	names	to	append	as	an	appendix	to	all
manuals.

New	in	version	1.1.

texinfo_domain_indices
If	true,	generate	domain-specific	indices	in	addition	to	the	general
index.	For	e.g.	the	Python	domain,	this	is	the	global	module
index.	Default	is	True.
This	value	can	be	a	bool	or	a	list	of	index	names	that	should	be
generated,	like	for	html_domain_indices.
New	in	version	1.1.

texinfo_show_urls
Control	how	to	display	URL	addresses.

'footnote'	–	display	URLs	in	footnotes	(default)
'no'	–	do	not	display	URLs
'inline'	–	display	URLs	inline	in	parentheses

New	in	version	1.1.

texinfo_no_detailmenu
If	true,	do	not	generate	a	@detailmenu	in	the	“Top”	node’s
menu	containing	entries	for	each	sub-node	in	the	document.
Default	is	False.
New	in	version	1.2.

texinfo_elements
A	dictionary	that	contains	Texinfo	snippets	that	override	those
Sphinx	usually	puts	into	the	generated	.texi	files.

Keys	that	you	may	want	to	override	include:

'paragraphindent'
Number	of	spaces	to	indent	the	first	line	of	each
paragraph,	default	2.	Specify	0	for	no	indentation.

'exampleindent'
Number	of	spaces	to	indent	the	lines	for	examples	or
literal	blocks,	default	4.	Specify	0	for	no	indentation.

'preamble'
Texinfo	markup	inserted	near	the	beginning	of	the	file.

'copying'
Texinfo	markup	inserted	within	the	@copying	block	and
displayed	after	the	title.	The	default	value	consists	of	a
simple	title	page	identifying	the	project.

Keys	that	are	set	by	other	options	and	therefore	should	not
be	overridden	are:

'author'	'body'	'date'	'direntry'	'filename'
'project'	'release'	'title'	'direntry'

New	in	version	1.1.

Options	for	the	linkcheck	builder

linkcheck_ignore
A	list	of	regular	expressions	that	match	URIs	that	should	not	be
checked	when	doing	a	linkcheck	build.	Example:

linkcheck_ignore	=	[r'http://localhost:\d+/']

New	in	version	1.1.

linkcheck_timeout
A	timeout	value,	in	seconds,	for	the	linkcheck	builder.	Only
works	in	Python	2.6	and	higher.	The	default	is	to	use	Python’s
global	socket	timeout.

New	in	version	1.1.

linkcheck_workers
The	number	of	worker	threads	to	use	when	checking	links.
Default	is	5	threads.

New	in	version	1.1.

linkcheck_anchors
True	or	false,	whether	to	check	the	validity	of	#anchors	in	links.
Since	this	requires	downloading	the	whole	document,	it’s
considerably	slower	when	enabled.	Default	is	True.
New	in	version	1.2.

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	»

Options	for	the	XML	builder

xml_pretty
If	True,	pretty-print	the	XML.	Default	is	True.
New	in	version	1.2.

Footnotes

[1]

(1,	2)	A	note	on	available	globbing	syntax:	you	can	use	the
standard	shell	constructs	*,	?,	[...]	and	[!...]	with	the
feature	that	these	all	don’t	match	slashes.	A	double	star	**	can
be	used	to	match	any	sequence	of	characters	including	slashes.

©	Copyright	2007-2013,	Georg	Brandl.	Created	using	Sphinx	1.2.

http://sphinx-doc.org/

Home Get	it Docs Extend/Develop

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	»

Internationalization
New	in	version	1.1.

Complementary	to	translations	provided	for	Sphinx-generated
messages	such	as	navigation	bars,	Sphinx	provides	mechanisms
facilitating	document	translations	in	itself.	See	the	Options	for
internationalization	for	details	on	configuration.

Workflow	visualization	of	translations	in	Sphinx.	(The	stick-figure	is
taken	from	an	XKCD	comic.)

Sphinx	internationalization	details
Translating	with	sphinx-intl

Quick	guide
Translating
Update	your	po	files	by	new	pot	files

Using	Transifex	service	for	team	translation
Contributing	to	Sphinx	reference	translation

http://xkcd.com/779/

Sphinx	internationalization	details

gettext	[1]	is	an	established	standard	for	internationalization	and
localization.	It	naively	maps	messages	in	a	program	to	a	translated
string.	Sphinx	uses	these	facilities	to	translate	whole	documents.

Initially	project	maintainers	have	to	collect	all	translatable	strings
(also	referred	to	as	messages)	to	make	them	known	to	translators.
Sphinx	extracts	these	through	invocation	of	sphinx-build	-b
gettext.

Every	single	element	in	the	doctree	will	end	up	in	a	single	message
which	results	in	lists	being	equally	split	into	different	chunks	while
large	paragraphs	will	remain	as	coarsely-grained	as	they	were	in	the
original	document.	This	grants	seamless	document	updates	while
still	providing	a	little	bit	of	context	for	translators	in	free-text
passages.	It	is	the	maintainer’s	task	to	split	up	paragraphs	which	are
too	large	as	there	is	no	sane	automated	way	to	do	that.

After	Sphinx	successfully	ran	the	MessageCatalogBuilder	you
will	find	a	collection	of	.pot	files	in	your	output	directory.	These	are
catalog	templates	and	contain	messages	in	your	original	language
only.

They	can	be	delivered	to	translators	which	will	transform	them	to
.po	files	—	so	called	message	catalogs	—	containing	a	mapping
from	the	original	messages	to	foreign-language	strings.

Gettext	compiles	them	into	a	binary	format	known	as	binary
catalogs	through	msgfmt	for	efficiency	reasons.	If	you	make	these
files	discoverable	with	locale_dirs	for	your	language,	Sphinx	will
pick	them	up	automatically.

An	example:	you	have	a	document	usage.rst	in	your	Sphinx
project.	The	gettext	builder	will	put	its	messages	into	usage.pot.
Imagine	you	have	Spanish	translations	[2]	on	your	hands	in
usage.po	—	for	your	builds	to	be	translated	you	need	to	follow
these	instructions:

Compile	your	message	catalog	to	a	locale	directory,	say
locale,	so	it	ends	up	in
./locale/es/LC_MESSAGES/usage.mo	in	your	source
directory	(where	es	is	the	language	code	for	Spanish.)

msgfmt	"usage.po"	-o	"locale/es/LC_MESSAGES/usage.mo"

Set	locale_dirs	to	["locale/"].
Set	language	to	es	(also	possible	via	-D).
Run	your	desired	build.

Translating	with	sphinx-intl

Quick	guide
sphinx-intl	is	a	useful	tool	to	work	with	Sphinx	translation	flow.	This
section	describe	a	easy	way	to	translate	with	sphinx-intl.

1.	 Install	sphinx-intl	by	pip	install	sphinx-intl	or	easy_install
sphinx-intl.

2.	 Add	configurations	to	your	conf.py:

locale_dirs	=	['locale/']			#path	is	example	but	recommended.
gettext_compact	=	False					#optional.

This	case-study	assumes	that	locale_dirs	is	set	to	‘locale/’
and	gettext_compact	is	set	to	False	(the	Sphinx	document
is	already	configured	as	such).

3.	 Extract	document’s	translatable	messages	into	pot	files:

$	make	gettext

As	a	result,	many	pot	files	are	generated	under
_build/locale	directory.

4.	 Setup/Update	your	locale_dir:

$	sphinx-intl	update	-p	_build/locale	-l	de	-l	ja

Done.	You	got	these	directories	that	contain	po	files:

./locale/de/LC_MESSAGES/

./locale/ja/LC_MESSAGES/
5.	 Translate	your	po	files	under

https://pypi.python.org/pypi/sphinx-intl
https://pypi.python.org/pypi/sphinx-intl

./locale/<lang>/LC_MESSAGES/.
6.	 Build	mo	files	and	make	translated	document.

You	need	language	parameter	in	conf.py	or	you	may	also
specify	the	parameter	on	the	command	line:

$	sphinx-intl	build
$	make	-e	SPHINXOPTS="-D	language='de'"	html

Congratulations!!	You	got	the	translated	document	in	_build/html
directory.

Translating
Translate	po	file	under	./locale/de/LC_MESSAGES	directory.	The
case	of	builders.po	file	for	sphinx	document:

#	a5600c3d2e3d48fc8c261ea0284db79b
#:	../../builders.rst:4
msgid	"Available	builders"
msgstr	"<FILL	HERE	BY	TARGET	LANGUAGE>"

Another	case,	msgid	is	multi-line	text	and	contains	reStructuredText
syntax:

#	302558364e1d41c69b3277277e34b184
#:	../../builders.rst:9
msgid	""
"These	are	the	built-in	Sphinx	builders.	More	builders	can	be	added	by	"
":ref:`extensions	<extensions>`."
msgstr	""
"FILL	HERE	BY	TARGET	LANGUAGE	FILL	HERE	BY	TARGET	LANGUAGE	FILL	HERE	"
"BY	TARGET	LANGUAGE	:ref:`EXTENSIONS	<extensions>`	FILL	HERE."

Please	be	careful	not	to	break	reST	notation.

Update	your	po	files	by	new	pot	files
If	the	document	is	updated,	it	is	necessary	to	generate	updated	pot
files	and	to	apply	differences	to	translated	po	files.	In	order	to	apply
the	updating	difference	of	a	pot	file	to	po	file,	using	sphinx-intl
update	command.

$	sphinx-intl	update	-p	_build/locale

Using	Transifex	service	for	team	translation

1.	 Install	transifex-client

You	need	tx	command	to	upload	resources	(pot	files).

$	pip	install	transifex-client

See	also
Transifex	Client	v0.8	—	Transifex	documentation

2.	 Create	your	transifex	account	and	create	new	project	for	your
document

Currently,	transifex	does	not	allow	for	a	translation	project	to
have	more	than	one	version	of	document,	so	you’d	better
include	a	version	number	in	your	project	name.

For	example:

Project
ID: sphinx-document-test_1_0

Project
URL:

https://www.transifex.com/projects/p/sphinx-
document-test_1_0/

3.	 Create	config	files	for	tx	command

This	process	will	create	.tx/config	in	the	current	directory,	as
well	as	~/.transifexrc	file	that	includes	auth	information.

$	tx	init	--user=<transifex-username>	--pass=<transifex-password>
Creating	.tx	folder...
Transifex	instance	[https://www.transifex.com]:
...
Done.

https://pypi.python.org/pypi/transifex-client
http://help.transifex.com/features/client/index.html
https://www.transifex.com/
https://www.transifex.com/projects/p/sphinx-document-test_1_0/

4.	 Upload	pot	files	to	transifex	service

Register	pot	files	to	.tx/config	file:

$	cd	/your/document/root
$	sphinx-intl	update-txconfig-resources	--pot-dir	_build/locale	
		--transifex-project-name	sphinx-document-test_1_0

and	upload	pot	files:

$	tx	push	-s
Pushing	translations	for	resource	sphinx-document-test_1_0.builders:
Pushing	source	file	(locale/pot/builders.pot)
Resource	does	not	exist.		Creating...
...
Done.

5.	 Forward	the	translation	on	transifex

6.	 Pull	translated	po	files	and	make	translated	html

Get	translated	catalogs	and	build	mo	files	(ex.	for	‘de’):

$	cd	/your/document/root
$	tx	pull	-l	de
Pulling	translations	for	resource	sphinx-document-test_1_0.builders	
	->	de:	locale/de/LC_MESSAGES/builders.po
...
Done.

Build	po	files	into	mo	and	make	html:

$	sphinx-intl	build
$	make	-e	SPHINXOPTS="-D	language='de'"	html

That’s	all!

Tip
Translating	on	local	and	Transifex

If	you	want	to	push	all	language’s	po	files,	you	can	be	done	by	using	tx	push	-t
command.	Watch	out!	this	operation	overwrites	translations	in	transifex.
In	other	words,	if	you	have	updated	each	in	the	service	and	local	po	files,	it	would	take
much	time	and	effort	to	integrate	them.

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	»

Contributing	to	Sphinx	reference	translation

The	recommended	way	for	new	contributors	to	translate	Sphinx
reference	is	to	join	the	translation	team	on	Transifex.

There	is	sphinx	translation	page	for	Sphinx-1.2	document.

1.	 Login	to	transifex	service.
2.	 Go	to	sphinx	translation	page.
3.	 Click	Request	language	and	fill	form.
4.	 Wait	acceptance	by	transifex	sphinx	translation	maintainers.
5.	 (after	acceptance)	translate	on	transifex.

Footnotes
[1] See	the	GNU	gettext	utilites	for	details	on	that	software	suite.
[2] Because	nobody	expects	the	Spanish	Inquisition!

©	Copyright	2007-2013,	Georg	Brandl.	Created	using	Sphinx	1.2.

https://www.transifex.com/projects/p/sphinx-doc-1_2_0/
https://www.transifex.com/
https://www.transifex.com/projects/p/sphinx-doc-1_2_0/
http://www.gnu.org/software/gettext/manual/gettext.html#Introduction
http://sphinx-doc.org/

Home Get	it Docs Extend/Develop

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	»

HTML	theming	support
New	in	version	0.6.

Sphinx	supports	changing	the	appearance	of	its	HTML	output	via
themes.	A	theme	is	a	collection	of	HTML	templates,	stylesheet(s)
and	other	static	files.	Additionally,	it	has	a	configuration	file	which
specifies	from	which	theme	to	inherit,	which	highlighting	style	to	use,
and	what	options	exist	for	customizing	the	theme’s	look	and	feel.

Themes	are	meant	to	be	project-unaware,	so	they	can	be	used	for
different	projects	without	change.

Using	a	theme

Using	an	existing	theme	is	easy.	If	the	theme	is	builtin	to	Sphinx,	you
only	need	to	set	the	html_theme	config	value.	With	the
html_theme_options	config	value	you	can	set	theme-specific
options	that	change	the	look	and	feel.	For	example,	you	could	have
the	following	in	your	conf.py:

html_theme	=	"default"
html_theme_options	=	{
				"rightsidebar":	"true",
				"relbarbgcolor":	"black"
}

That	would	give	you	the	default	theme,	but	with	a	sidebar	on	the
right	side	and	a	black	background	for	the	relation	bar	(the	bar	with
the	navigation	links	at	the	page’s	top	and	bottom).

If	the	theme	does	not	come	with	Sphinx,	it	can	be	in	two	static	forms:
either	a	directory	(containing	theme.conf	and	other	needed	files),
or	a	zip	file	with	the	same	contents.	Either	of	them	must	be	put
where	Sphinx	can	find	it;	for	this	there	is	the	config	value
html_theme_path.	It	gives	a	list	of	directories,	relative	to	the
directory	containing	conf.py,	that	can	contain	theme	directories	or
zip	files.	For	example,	if	you	have	a	theme	in	the	file	blue.zip,	you
can	put	it	right	in	the	directory	containing	conf.py	and	use	this
configuration:

html_theme	=	"blue"
html_theme_path	=	["."]

The	third	form	provides	your	theme	path	dynamically	to	Sphinx	if	the
setuptools	package	is	installed.	You	can	provide	an	entry	point
section	called	sphinx_themes	in	your	setup.py	file	and	write	a
get_path	function	that	has	to	return	the	directory	with	themes	in	it:

//	in	your	'setup.py'

setup(
				...
				entry_points	=	{
								'sphinx_themes':	[
												'path	=	your_package:get_path',
]
				},
				...
)

//	in	'your_package.py'

from	os	import	path
package_dir	=	path.abspath(path.dirname(__file__))
template_path	=	path.join(package_dir,	'themes')

def	get_path():
				return	template_path

New	in	version	1.2:	‘sphinx_themes’	entry_points	feature.

Builtin	themes

Theme	overview 	

default sphinxdoc

scrolls agogo

traditional nature

haiku pyramid

Sphinx	comes	with	a	selection	of	themes	to	choose	from.

These	themes	are:

basic	–	This	is	a	basically	unstyled	layout	used	as	the	base	for
the	other	themes,	and	usable	as	the	base	for	custom	themes	as
well.	The	HTML	contains	all	important	elements	like	sidebar	and
relation	bar.	There	are	these	options	(which	are	inherited	by	the
other	themes):

nosidebar	(true	or	false):	Don’t	include	the	sidebar.
Defaults	to	false.
sidebarwidth	(an	integer):	Width	of	the	sidebar	in	pixels.
(Do	not	include	px	in	the	value.)	Defaults	to	230	pixels.

default	–	This	is	the	default	theme,	which	looks	like	the	Python
documentation.	It	can	be	customized	via	these	options:

rightsidebar	(true	or	false):	Put	the	sidebar	on	the	right
side.	Defaults	to	false.
stickysidebar	(true	or	false):	Make	the	sidebar	“fixed”	so
that	it	doesn’t	scroll	out	of	view	for	long	body	content.	This
may	not	work	well	with	all	browsers.	Defaults	to	false.
collapsiblesidebar	(true	or	false):	Add	an	experimental
JavaScript	snippet	that	makes	the	sidebar	collapsible	via	a
button	on	its	side.	Doesn’t	work	with	“stickysidebar”.
Defaults	to	false.
externalrefs	(true	or	false):	Display	external	links	differently
from	internal	links.	Defaults	to	false.

http://docs.python.org/

There	are	also	various	color	and	font	options	that	can	change
the	color	scheme	without	having	to	write	a	custom	stylesheet:

footerbgcolor	(CSS	color):	Background	color	for	the	footer
line.
footertextcolor	(CSS	color):	Text	color	for	the	footer	line.
sidebarbgcolor	(CSS	color):	Background	color	for	the
sidebar.
sidebarbtncolor	(CSS	color):	Background	color	for	the
sidebar	collapse	button	(used	when	collapsiblesidebar	is
true).
sidebartextcolor	(CSS	color):	Text	color	for	the	sidebar.
sidebarlinkcolor	(CSS	color):	Link	color	for	the	sidebar.
relbarbgcolor	(CSS	color):	Background	color	for	the
relation	bar.
relbartextcolor	(CSS	color):	Text	color	for	the	relation	bar.
relbarlinkcolor	(CSS	color):	Link	color	for	the	relation	bar.
bgcolor	(CSS	color):	Body	background	color.
textcolor	(CSS	color):	Body	text	color.
linkcolor	(CSS	color):	Body	link	color.
visitedlinkcolor	(CSS	color):	Body	color	for	visited	links.
headbgcolor	(CSS	color):	Background	color	for	headings.
headtextcolor	(CSS	color):	Text	color	for	headings.
headlinkcolor	(CSS	color):	Link	color	for	headings.
codebgcolor	(CSS	color):	Background	color	for	code
blocks.
codetextcolor	(CSS	color):	Default	text	color	for	code
blocks,	if	not	set	differently	by	the	highlighting	style.
bodyfont	(CSS	font-family):	Font	for	normal	text.
headfont	(CSS	font-family):	Font	for	headings.

sphinxdoc	–	The	theme	used	for	this	documentation.	It	features
a	sidebar	on	the	right	side.	There	are	currently	no	options
beyond	nosidebar	and	sidebarwidth.

scrolls	–	A	more	lightweight	theme,	based	on	the	Jinja
documentation.	The	following	color	options	are	available:

headerbordercolor
subheadlinecolor
linkcolor

http://jinja.pocoo.org/

visitedlinkcolor
admonitioncolor

agogo	–	A	theme	created	by	Andi	Albrecht.	The	following
options	are	supported:

bodyfont	(CSS	font	family):	Font	for	normal	text.
headerfont	(CSS	font	family):	Font	for	headings.
pagewidth	(CSS	length):	Width	of	the	page	content,	default
70em.
documentwidth	(CSS	length):	Width	of	the	document
(without	sidebar),	default	50em.
sidebarwidth	(CSS	length):	Width	of	the	sidebar,	default
20em.
bgcolor	(CSS	color):	Background	color.
headerbg	(CSS	value	for	“background”):	background	for
the	header	area,	default	a	grayish	gradient.
footerbg	(CSS	value	for	“background”):	background	for	the
footer	area,	default	a	light	gray	gradient.
linkcolor	(CSS	color):	Body	link	color.
headercolor1,	headercolor2	(CSS	color):	colors	for	<h1>
and	<h2>	headings.
headerlinkcolor	(CSS	color):	Color	for	the	backreference
link	in	headings.
textalign	(CSS	text-align	value):	Text	alignment	for	the
body,	default	is	justify.

nature	–	A	greenish	theme.	There	are	currently	no	options
beyond	nosidebar	and	sidebarwidth.

pyramid	–	A	theme	from	the	Pyramid	web	framework	project,
designed	by	Blaise	Laflamme.	There	are	currently	no	options
beyond	nosidebar	and	sidebarwidth.

haiku	–	A	theme	without	sidebar	inspired	by	the	Haiku	OS	user
guide.	The	following	options	are	supported:

full_logo	(true	or	false,	default	false):	If	this	is	true,	the
header	will	only	show	the	html_logo.	Use	this	for	large
logos.	If	this	is	false,	the	logo	(if	present)	will	be	shown
floating	right,	and	the	documentation	title	will	be	put	in	the
header.
textcolor,	headingcolor,	linkcolor,	visitedlinkcolor,

http://www.haiku-os.org/docs/userguide/en/contents.html

hoverlinkcolor	(CSS	colors):	Colors	for	various	body
elements.

traditional	–	A	theme	resembling	the	old	Python
documentation.	There	are	currently	no	options	beyond
nosidebar	and	sidebarwidth.

epub	–	A	theme	for	the	epub	builder.	This	theme	tries	to	save
visual	space	which	is	a	sparse	resource	on	ebook	readers.	The
following	options	are	supported:

relbar1	(true	or	false,	default	true):	If	this	is	true,	the
relbar1	block	is	inserted	in	the	epub	output,	otherwise	it	is
omitted.
footer	(true	or	false,	default	true):	If	this	is	true,	the	footer
block	is	inserted	in	the	epub	output,	otherwise	it	is
ommitted.

Creating	themes

As	said,	themes	are	either	a	directory	or	a	zipfile	(whose	name	is	the
theme	name),	containing	the	following:

A	theme.conf	file,	see	below.
HTML	templates,	if	needed.
A	static/	directory	containing	any	static	files	that	will	be
copied	to	the	output	static	directory	on	build.	These	can	be
images,	styles,	script	files.

The	theme.conf	file	is	in	INI	format	[1]	(readable	by	the	standard
Python	ConfigParser	module)	and	has	the	following	structure:

[theme]
inherit	=	base	theme
stylesheet	=	main	CSS	name
pygments_style	=	stylename

[options]
variable	=	default	value

The	inherit	setting	gives	the	name	of	a	“base	theme”,	or	none.
The	base	theme	will	be	used	to	locate	missing	templates	(most
themes	will	not	have	to	supply	most	templates	if	they	use
basic	as	the	base	theme),	its	options	will	be	inherited,	and	all
of	its	static	files	will	be	used	as	well.
The	stylesheet	setting	gives	the	name	of	a	CSS	file	which	will
be	referenced	in	the	HTML	header.	If	you	need	more	than	one
CSS	file,	either	include	one	from	the	other	via	CSS’	@import,
or	use	a	custom	HTML	template	that	adds	<link
rel="stylesheet">	tags	as	necessary.	Setting	the
html_style	config	value	will	override	this	setting.
The	pygments_style	setting	gives	the	name	of	a	Pygments
style	to	use	for	highlighting.	This	can	be	overridden	by	the	user

in	the	pygments_style	config	value.
The	options	section	contains	pairs	of	variable	names	and
default	values.	These	options	can	be	overridden	by	the	user	in
html_theme_options	and	are	accessible	from	all	templates
as	theme_<name>.

Templating
The	guide	to	templating	is	helpful	if	you	want	to	write	your	own
templates.	What	is	important	to	keep	in	mind	is	the	order	in	which
Sphinx	searches	for	templates:

First,	in	the	user’s	templates_path	directories.
Then,	in	the	selected	theme.
Then,	in	its	base	theme,	its	base’s	base	theme,	etc.

When	extending	a	template	in	the	base	theme	with	the	same	name,
use	the	theme	name	as	an	explicit	directory:	{%	extends
"basic/layout.html"	%}.	From	a	user	templates_path
template,	you	can	still	use	the	“exclamation	mark”	syntax	as
described	in	the	templating	document.

Static	templates
Since	theme	options	are	meant	for	the	user	to	configure	a	theme
more	easily,	without	having	to	write	a	custom	stylesheet,	it	is
necessary	to	be	able	to	template	static	files	as	well	as	HTML	files.
Therefore,	Sphinx	supports	so-called	“static	templates”,	like	this:

If	the	name	of	a	file	in	the	static/	directory	of	a	theme	(or	in	the
user’s	static	path,	for	that	matter)	ends	with	_t,	it	will	be	processed
by	the	template	engine.	The	_t	will	be	left	from	the	final	file	name.
For	example,	the	default	theme	has	a	file	static/default.css_t
which	uses	templating	to	put	the	color	options	into	the	stylesheet.
When	a	documentation	is	built	with	the	default	theme,	the	output
directory	will	contain	a	_static/default.css	file	where	all
template	tags	have	been	processed.

It	is	not	an	executable	Python	file,	as	opposed	to	conf.py,

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	»

[1] because	that	would	pose	an	unnecessary	security	risk	if	themes
are	shared.

©	Copyright	2007-2013,	Georg	Brandl.	Created	using	Sphinx	1.2.

http://sphinx-doc.org/

Home Get	it Docs Extend/Develop

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	»

Templating
Sphinx	uses	the	Jinja	templating	engine	for	its	HTML	templates.
Jinja	is	a	text-based	engine,	and	inspired	by	Django	templates,	so
anyone	having	used	Django	will	already	be	familiar	with	it.	It	also	has
excellent	documentation	for	those	who	need	to	make	themselves
familiar	with	it.

http://jinja.pocoo.org

Do	I	need	to	use	Sphinx’	templates	to	produce
HTML?

No.	You	have	several	other	options:

You	can	write	a	TemplateBridge	subclass	that	calls	your
template	engine	of	choice,	and	set	the	template_bridge
configuration	value	accordingly.
You	can	write	a	custom	builder	that	derives	from
StandaloneHTMLBuilder	and	calls	your	template	engine	of
choice.
You	can	use	the	PickleHTMLBuilder	that	produces	pickle
files	with	the	page	contents,	and	postprocess	them	using	a
custom	tool,	or	use	them	in	your	Web	application.

Jinja/Sphinx	Templating	Primer

The	default	templating	language	in	Sphinx	is	Jinja.	It’s
Django/Smarty	inspired	and	easy	to	understand.	The	most	important
concept	in	Jinja	is	template	inheritance,	which	means	that	you	can
overwrite	only	specific	blocks	within	a	template,	customizing	it	while
also	keeping	the	changes	at	a	minimum.

To	customize	the	output	of	your	documentation	you	can	override	all
the	templates	(both	the	layout	templates	and	the	child	templates)	by
adding	files	with	the	same	name	as	the	original	filename	into	the
template	directory	of	the	structure	the	Sphinx	quickstart	generated
for	you.

Sphinx	will	look	for	templates	in	the	folders	of	templates_path
first,	and	if	it	can’t	find	the	template	it’s	looking	for	there,	it	falls	back
to	the	selected	theme’s	templates.

A	template	contains	variables,	which	are	replaced	with	values	when
the	template	is	evaluated,	tags,	which	control	the	logic	of	the
template	and	blocks	which	are	used	for	template	inheritance.

Sphinx’	basic	theme	provides	base	templates	with	a	couple	of	blocks
it	will	fill	with	data.	These	are	located	in	the	themes/basic
subdirectory	of	the	Sphinx	installation	directory,	and	used	by	all
builtin	Sphinx	themes.	Templates	with	the	same	name	in	the
templates_path	override	templates	supplied	by	the	selected
theme.

For	example,	to	add	a	new	link	to	the	template	area	containing
related	links	all	you	have	to	do	is	to	add	a	new	template	called
layout.html	with	the	following	contents:

{%	extends	"!layout.html"	%}
{%	block	rootrellink	%}
				Project	Homepage
				{{	super()	}}

{%	endblock	%}

By	prefixing	the	name	of	the	overridden	template	with	an
exclamation	mark,	Sphinx	will	load	the	layout	template	from	the
underlying	HTML	theme.

Important:	If	you	override	a	block,	call	{{	super()	}}	somewhere
to	render	the	block’s	content	in	the	extended	template	–	unless	you
don’t	want	that	content	to	show	up.

Working	with	the	builtin	templates

The	builtin	basic	theme	supplies	the	templates	that	all	builtin	Sphinx
themes	are	based	on.	It	has	the	following	elements	you	can	override
or	use:

Blocks
The	following	blocks	exist	in	the	layout.html	template:

doctype
The	doctype	of	the	output	format.	By	default	this	is	XHTML	1.0
Transitional	as	this	is	the	closest	to	what	Sphinx	and	Docutils
generate	and	it’s	a	good	idea	not	to	change	it	unless	you	want	to
switch	to	HTML	5	or	a	different	but	compatible	XHTML	doctype.

linktags
This	block	adds	a	couple	of	<link>	tags	to	the	head	section	of
the	template.

extrahead
This	block	is	empty	by	default	and	can	be	used	to	add	extra
contents	into	the	<head>	tag	of	the	generated	HTML	file.	This	is
the	right	place	to	add	references	to	JavaScript	or	extra	CSS	files.

relbar1	/	relbar2
This	block	contains	the	relation	bar,	the	list	of	related	links	(the
parent	documents	on	the	left,	and	the	links	to	index,	modules	etc.
on	the	right).	relbar1	appears	before	the	document,	relbar2
after	the	document.	By	default,	both	blocks	are	filled;	to	show	the
relbar	only	before	the	document,	you	would	override	relbar2
like	this:

{%	block	relbar2	%}{%	endblock	%}

rootrellink	/	relbaritems
Inside	the	relbar	there	are	three	sections:	The	rootrellink,	the

links	from	the	documentation	and	the	custom	relbaritems.	The
rootrellink	is	a	block	that	by	default	contains	a	list	item
pointing	to	the	master	document	by	default,	the	relbaritems	is
an	empty	block.	If	you	override	them	to	add	extra	links	into	the
bar	make	sure	that	they	are	list	items	and	end	with	the
reldelim1.

document
The	contents	of	the	document	itself.	It	contains	the	block	“body”
where	the	individual	content	is	put	by	subtemplates	like
page.html.

sidebar1	/	sidebar2
A	possible	location	for	a	sidebar.	sidebar1	appears	before	the
document	and	is	empty	by	default,	sidebar2	after	the	document
and	contains	the	default	sidebar.	If	you	want	to	swap	the	sidebar
location	override	this	and	call	the	sidebar	helper:

{%	block	sidebar1	%}{{	sidebar()	}}{%	endblock	%}
{%	block	sidebar2	%}{%	endblock	%}

(The	sidebar2	location	for	the	sidebar	is	needed	by	the
sphinxdoc.css	stylesheet,	for	example.)

sidebarlogo
The	logo	location	within	the	sidebar.	Override	this	if	you	want	to
place	some	content	at	the	top	of	the	sidebar.

footer
The	block	for	the	footer	div.	If	you	want	a	custom	footer	or
markup	before	or	after	it,	override	this	one.

The	following	four	blocks	are	only	used	for	pages	that	do	not	have
assigned	a	list	of	custom	sidebars	in	the	html_sidebars	config
value.	Their	use	is	deprecated	in	favor	of	separate	sidebar
templates,	which	can	be	included	via	html_sidebars.

sidebartoc

The	table	of	contents	within	the	sidebar.

Deprecated	since	version	1.0.

sidebarrel
The	relation	links	(previous,	next	document)	within	the	sidebar.

Deprecated	since	version	1.0.

sidebarsourcelink
The	“Show	source”	link	within	the	sidebar	(normally	only	shown	if
this	is	enabled	by	html_show_sourcelink).
Deprecated	since	version	1.0.

sidebarsearch
The	search	box	within	the	sidebar.	Override	this	if	you	want	to
place	some	content	at	the	bottom	of	the	sidebar.

Deprecated	since	version	1.0.

Configuration	Variables
Inside	templates	you	can	set	a	couple	of	variables	used	by	the	layout
template	using	the	{%	set	%}	tag:

reldelim1
The	delimiter	for	the	items	on	the	left	side	of	the	related	bar.	This
defaults	to	'	»'	Each	item	in	the	related	bar	ends	with
the	value	of	this	variable.

reldelim2
The	delimiter	for	the	items	on	the	right	side	of	the	related	bar.
This	defaults	to	'	|'.	Each	item	except	of	the	last	one	in	the
related	bar	ends	with	the	value	of	this	variable.

Overriding	works	like	this:

{%	extends	"!layout.html"	%}
{%	set	reldelim1	=	'	>'	%}

script_files
Add	additional	script	files	here,	like	this:

{%	set	script_files	=	script_files	+	["_static/myscript.js"

css_files
Similar	to	script_files,	for	CSS	files.

Helper	Functions
Sphinx	provides	various	Jinja	functions	as	helpers	in	the	template.
You	can	use	them	to	generate	links	or	output	multiply	used
elements.

pathto(document)
Return	the	path	to	a	Sphinx	document	as	a	URL.	Use	this	to	refer
to	built	documents.

pathto(file,	1)
Return	the	path	to	a	file	which	is	a	filename	relative	to	the	root	of
the	generated	output.	Use	this	to	refer	to	static	files.

hasdoc(document)
Check	if	a	document	with	the	name	document	exists.

sidebar()
Return	the	rendered	sidebar.

relbar()
Return	the	rendered	relation	bar.

Global	Variables
These	global	variables	are	available	in	every	template	and	are	safe
to	use.	There	are	more,	but	most	of	them	are	an	implementation
detail	and	might	change	in	the	future.

builder
The	name	of	the	builder	(e.g.	html	or	htmlhelp).

copyright
The	value	of	copyright.

docstitle
The	title	of	the	documentation	(the	value	of	html_title).

embedded
True	if	the	built	HTML	is	meant	to	be	embedded	in	some	viewing
application	that	handles	navigation,	not	the	web	browser,	such	as
for	HTML	help	or	Qt	help	formats.	In	this	case,	the	sidebar	is	not
included.

favicon
The	path	to	the	HTML	favicon	in	the	static	path,	or	''.

file_suffix
The	value	of	the	builder’s	out_suffix	attribute,	i.e.	the	file
name	extension	that	the	output	files	will	get.	For	a	standard
HTML	builder,	this	is	usually	.html.

has_source
True	if	the	reST	document	sources	are	copied	(if
html_copy_source	is	true).

last_updated
The	build	date.

logo
The	path	to	the	HTML	logo	image	in	the	static	path,	or	''.

master_doc
The	value	of	master_doc,	for	usage	with	pathto().

next
The	next	document	for	the	navigation.	This	variable	is	either	false
or	has	two	attributes	link	and	title.	The	title	contains	HTML
markup.	For	example,	to	generate	a	link	to	the	next	page,	you
can	use	this	snippet:

{%	if	next	%}
{{	next.title	}}
{%	endif	%}

pagename
The	“page	name”	of	the	current	file,	i.e.	either	the	document
name	if	the	file	is	generated	from	a	reST	source,	or	the
equivalent	hierarchical	name	relative	to	the	output	directory
([directory/]filename_without_extension).

parents
A	list	of	parent	documents	for	navigation,	structured	like	the	next
item.

prev
Like	next,	but	for	the	previous	page.

project
The	value	of	project.

release
The	value	of	release.

rellinks
A	list	of	links	to	put	at	the	left	side	of	the	relbar,	next	to	“next”	and
“prev”.	This	usually	contains	links	to	the	general	index	and	other
indices,	such	as	the	Python	module	index.	If	you	add	something
yourself,	it	must	be	a	tuple	(pagename,	link	title,
accesskey,	link	text).

shorttitle
The	value	of	html_short_title.

show_source
True	if	html_show_sourcelink	is	true.

sphinx_version
The	version	of	Sphinx	used	to	build.

style
The	name	of	the	main	stylesheet,	as	given	by	the	theme	or
html_style.

title
The	title	of	the	current	document,	as	used	in	the	<title>	tag.

use_opensearch
The	value	of	html_use_opensearch.

version
The	value	of	version.

In	addition	to	these	values,	there	are	also	all	theme	options
available	(prefixed	by	theme_),	as	well	as	the	values	given	by	the
user	in	html_context.

In	documents	that	are	created	from	source	files	(as	opposed	to
automatically-generated	files	like	the	module	index,	or	documents
that	already	are	in	HTML	form),	these	variables	are	also	available:

meta
Document	metadata	(a	dictionary),	see	File-wide	metadata.

sourcename
The	name	of	the	copied	source	file	for	the	current	document.	This
is	only	nonempty	if	the	html_copy_source	value	is	true.

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	»

toc
The	local	table	of	contents	for	the	current	page,	rendered	as
HTML	bullet	lists.

toctree
A	callable	yielding	the	global	TOC	tree	containing	the	current
page,	rendered	as	HTML	bullet	lists.	Optional	keyword
arguments:

collapse	(true	by	default):	if	true,	all	TOC	entries	that	are
not	ancestors	of	the	current	page	are	collapsed
maxdepth	(defaults	to	the	max	depth	selected	in	the	toctree
directive):	the	maximum	depth	of	the	tree;	set	it	to	-1	to
allow	unlimited	depth
titles_only	(false	by	default):	if	true,	put	only	toplevel
document	titles	in	the	tree
includehidden	(false	by	default):	if	true,	the	TOC	tree	will
also	contain	hidden	entries.

©	Copyright	2007-2013,	Georg	Brandl.	Created	using	Sphinx	1.2.

http://sphinx-doc.org/

Home Get	it Docs Extend/Develop

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	»

Sphinx	Extensions
Since	many	projects	will	need	special	features	in	their
documentation,	Sphinx	is	designed	to	be	extensible	on	several
levels.

This	is	what	you	can	do	in	an	extension:	First,	you	can	add	new
builders	to	support	new	output	formats	or	actions	on	the	parsed
documents.	Then,	it	is	possible	to	register	custom	reStructuredText
roles	and	directives,	extending	the	markup.	And	finally,	there	are	so-
called	“hook	points”	at	strategic	places	throughout	the	build	process,
where	an	extension	can	register	a	hook	and	run	specialized	code.

An	extension	is	simply	a	Python	module.	When	an	extension	is
loaded,	Sphinx	imports	this	module	and	executes	its	setup()
function,	which	in	turn	notifies	Sphinx	of	everything	the	extension
offers	–	see	the	extension	tutorial	for	examples.

The	configuration	file	itself	can	be	treated	as	an	extension	if	it
contains	a	setup()	function.	All	other	extensions	to	load	must	be
listed	in	the	extensions	configuration	value.

Tutorial:	Writing	a	simple	extension
Build	Phases
Extension	Design
The	Setup	Function
The	Node	Classes
The	Directive	Classes
The	Event	Handlers

Extension	API
Sphinx	core	events
Checking	the	Sphinx	version
The	template	bridge
Domain	API

Writing	new	builders

Builtin	Sphinx	extensions

These	extensions	are	built	in	and	can	be	activated	by	respective
entries	in	the	extensions	configuration	value:

sphinx.ext.autodoc	–	Include	documentation	from
docstrings

Docstring	preprocessing
Skipping	members

sphinx.ext.autosummary	–	Generate	autodoc	summaries
sphinx-autogen	–	generate	autodoc	stub	pages
Generating	stub	pages	automatically
Customizing	templates

sphinx.ext.doctest	–	Test	snippets	in	the	documentation
sphinx.ext.intersphinx	–	Link	to	other	projects’
documentation
Math	support	in	Sphinx

sphinx.ext.pngmath	–	Render	math	as	PNG	images
sphinx.ext.mathjax	–	Render	math	via	JavaScript
sphinx.ext.jsmath	–	Render	math	via	JavaScript

sphinx.ext.graphviz	–	Add	Graphviz	graphs
sphinx.ext.inheritance_diagram	–	Include	inheritance
diagrams
sphinx.ext.ifconfig	–	Include	content	based	on
configuration
sphinx.ext.coverage	–	Collect	doc	coverage	stats
sphinx.ext.todo	–	Support	for	todo	items
sphinx.ext.extlinks	–	Markup	to	shorten	external	links
sphinx.ext.viewcode	–	Add	links	to	highlighted	source	code
sphinx.ext.linkcode	–	Add	external	links	to	source	code
sphinx.ext.oldcmarkup	–	Compatibility	extension	for	old	C
markup

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	»

Third-party	extensions

You	can	find	several	extensions	contributed	by	users	in	the	Sphinx
Contrib	repository.	It	is	open	for	anyone	who	wants	to	maintain	an
extension	publicly;	just	send	a	short	message	asking	for	write
permissions.

There	are	also	several	extensions	hosted	elsewhere.	The	Wiki	at
BitBucket	maintains	a	list	of	those.

If	you	write	an	extension	that	you	think	others	will	find	useful	or	you
think	should	be	included	as	a	part	of	Sphinx,	please	write	to	the
project	mailing	list	(join	here).

Where	to	put	your	own	extensions?
Extensions	local	to	a	project	should	be	put	within	the	project’s
directory	structure.	Set	Python’s	module	search	path,	sys.path,
accordingly	so	that	Sphinx	can	find	them.	E.g.,	if	your	extension
foo.py	lies	in	the	exts	subdirectory	of	the	project	root,	put	into
conf.py:

import	sys,	os

sys.path.append(os.path.abspath('exts'))

extensions	=	['foo']

You	can	also	install	extensions	anywhere	else	on	sys.path,	e.g.	in
the	site-packages	directory.

©	Copyright	2007-2013,	Georg	Brandl.	Created	using	Sphinx	1.2.

https://www.bitbucket.org/birkenfeld/sphinx-contrib
https://www.bitbucket.org/birkenfeld/sphinx/wiki/Home
http://groups.google.com/group/sphinx-dev
http://sphinx-doc.org/

Home Get	it Docs Extend/Develop

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	» Sphinx	Extensions 	»

Extension	API
Each	Sphinx	extension	is	a	Python	module	with	at	least	a	setup()
function.	This	function	is	called	at	initialization	time	with	one
argument,	the	application	object	representing	the	Sphinx	process.
This	application	object	has	the	following	public	API:

Sphinx.setup_extension(name)
Load	the	extension	given	by	the	module	name.	Use	this	if	your
extension	needs	the	features	provided	by	another	extension.

Sphinx.add_builder(builder)
Register	a	new	builder.	builder	must	be	a	class	that	inherits	from
Builder.

Sphinx.add_config_value(name,	default,	rebuild)
Register	a	configuration	value.	This	is	necessary	for	Sphinx	to
recognize	new	values	and	set	default	values	accordingly.	The
name	should	be	prefixed	with	the	extension	name,	to	avoid
clashes.	The	default	value	can	be	any	Python	object.	The	string
value	rebuild	must	be	one	of	those	values:

'env'	if	a	change	in	the	setting	only	takes	effect	when	a
document	is	parsed	–	this	means	that	the	whole	environment
must	be	rebuilt.
'html'	if	a	change	in	the	setting	needs	a	full	rebuild	of
HTML	documents.
''	if	a	change	in	the	setting	will	not	need	any	special
rebuild.

Changed	in	version	0.4:	If	the	default	value	is	a	callable,	it	will	be
called	with	the	config	object	as	its	argument	in	order	to	get	the
default	value.	This	can	be	used	to	implement	config	values
whose	default	depends	on	other	values.

Changed	in	version	0.6:	Changed	rebuild	from	a	simple	boolean
(equivalent	to	''	or	'env')	to	a	string.	However,	booleans	are
still	accepted	and	converted	internally.

Sphinx.add_domain(domain)
Make	the	given	domain	(which	must	be	a	class;	more	precisely,	a
subclass	of	Domain)	known	to	Sphinx.
New	in	version	1.0.

Sphinx.override_domain(domain)
Make	the	given	domain	class	known	to	Sphinx,	assuming	that
there	is	already	a	domain	with	its	.name.	The	new	domain	must
be	a	subclass	of	the	existing	one.

New	in	version	1.0.

Sphinx.add_index_to_domain(domain,	index)
Add	a	custom	index	class	to	the	domain	named	domain.	index
must	be	a	subclass	of	Index.
New	in	version	1.0.

Sphinx.add_event(name)
Register	an	event	called	name.	This	is	needed	to	be	able	to	emit
it.

Sphinx.add_node(node,	**kwds)
Register	a	Docutils	node	class.	This	is	necessary	for	Docutils
internals.	It	may	also	be	used	in	the	future	to	validate	nodes	in
the	parsed	documents.

Node	visitor	functions	for	the	Sphinx	HTML,	LaTeX,	text	and
manpage	writers	can	be	given	as	keyword	arguments:	the
keyword	must	be	one	or	more	of	'html',	'latex',	'text',
'man',	'texinfo',	the	value	a	2-tuple	of	(visit,	depart)
methods.	depart	can	be	None	if	the	visit	function	raises
docutils.nodes.SkipNode.	Example:

class	math(docutils.nodes.Element):	pass

def	visit_math_html(self,	node):
				self.body.append(self.starttag(node,	'math'))

def	depart_math_html(self,	node):
				self.body.append('</math>')

app.add_node(math,	html=(visit_math_html,	depart_math_html

Obviously,	translators	for	which	you	don’t	specify	visitor	methods
will	choke	on	the	node	when	encountered	in	a	document	to
translate.

Changed	in	version	0.5:	Added	the	support	for	keyword
arguments	giving	visit	functions.

Sphinx.add_directive(name,	func,	content,	arguments,
**options)
Sphinx.add_directive(name,	directiveclass)

Register	a	Docutils	directive.	name	must	be	the	prospective
directive	name.	There	are	two	possible	ways	to	write	a	directive:

In	the	docutils	0.4	style,	obj	is	the	directive	function.	content,
arguments	and	options	are	set	as	attributes	on	the	function
and	determine	whether	the	directive	has	content,	arguments
and	options,	respectively.	This	style	is	deprecated.
In	the	docutils	0.5	style,	directiveclass	is	the	directive	class.
It	must	already	have	attributes	named	has_content,
required_arguments,	optional_arguments,
final_argument_whitespace	and	option_spec	that	correspond
to	the	options	for	the	function	way.	See	the	Docutils	docs	for
details.

The	directive	class	must	inherit	from	the	class
docutils.parsers.rst.Directive.

For	example,	the	(already	existing)	literalinclude	directive
would	be	added	like	this:

from	docutils.parsers.rst	import	directives
add_directive('literalinclude',	literalinclude_directive
														content	=	0,	arguments	=	(1,	0,	0),

http://docutils.sourceforge.net/docs/howto/rst-directives.html

														linenos	=	directives.flag,
														language	=	direcitves.unchanged,
														encoding	=	directives.encoding)

Changed	in	version	0.6:	Docutils	0.5-style	directive	classes	are
now	supported.

Sphinx.add_directive_to_domain(domain,	name,	func,
content,	arguments,	**options)
Sphinx.add_directive_to_domain(domain,	name,
directiveclass)

Like	add_directive(),	but	the	directive	is	added	to	the	domain
named	domain.

New	in	version	1.0.

Sphinx.add_role(name,	role)
Register	a	Docutils	role.	name	must	be	the	role	name	that	occurs
in	the	source,	role	the	role	function	(see	the	Docutils
documentation	on	details).

Sphinx.add_role_to_domain(domain,	name,	role)
Like	add_role(),	but	the	role	is	added	to	the	domain	named
domain.

New	in	version	1.0.

Sphinx.add_generic_role(name,	nodeclass)
Register	a	Docutils	role	that	does	nothing	but	wrap	its	contents	in
the	node	given	by	nodeclass.

New	in	version	0.6.

Sphinx.add_object_type(directivename,	rolename,
indextemplate='',	parse_node=None,	ref_nodeclass=None,
objname='',	doc_field_types=[])

This	method	is	a	very	convenient	way	to	add	a	new	object	type

http://docutils.sourceforge.net/docs/howto/rst-roles.html

that	can	be	cross-referenced.	It	will	do	this:

Create	a	new	directive	(called	directivename)	for
documenting	an	object.	It	will	automatically	add	index	entries
if	indextemplate	is	nonempty;	if	given,	it	must	contain	exactly
one	instance	of	%s.	See	the	example	below	for	how	the
template	will	be	interpreted.
Create	a	new	role	(called	rolename)	to	cross-reference	to
these	object	descriptions.
If	you	provide	parse_node,	it	must	be	a	function	that	takes	a
string	and	a	docutils	node,	and	it	must	populate	the	node
with	children	parsed	from	the	string.	It	must	then	return	the
name	of	the	item	to	be	used	in	cross-referencing	and	index
entries.	See	the	conf.py	file	in	the	source	for	this
documentation	for	an	example.
The	objname	(if	not	given,	will	default	to	directivename)
names	the	type	of	object.	It	is	used	when	listing	objects,	e.g.
in	search	results.

For	example,	if	you	have	this	call	in	a	custom	Sphinx	extension:

app.add_object_type('directive',	'dir',	'pair:	%s;	directive')

you	can	use	this	markup	in	your	documents:

..	rst:directive::	function

			Document	a	function.

<...>

See	also	the	:rst:dir:`function`	directive.

For	the	directive,	an	index	entry	will	be	generated	as	if	you	had
prepended

..	index::	pair:	function;	directive

The	reference	node	will	be	of	class	literal	(so	it	will	be
rendered	in	a	proportional	font,	as	appropriate	for	code)	unless
you	give	the	ref_nodeclass	argument,	which	must	be	a	docutils
node	class	(most	useful	are	docutils.nodes.emphasis	or
docutils.nodes.strong	–	you	can	also	use
docutils.nodes.generated	if	you	want	no	further	text
decoration).

For	the	role	content,	you	have	the	same	syntactical	possibilities
as	for	standard	Sphinx	roles	(see	Cross-referencing	syntax).

This	method	is	also	available	under	the	deprecated	alias
add_description_unit.

Sphinx.add_crossref_type(directivename,	rolename,
indextemplate='',	ref_nodeclass=None,	objname='')

This	method	is	very	similar	to	add_object_type()	except	that
the	directive	it	generates	must	be	empty,	and	will	produce	no
output.

That	means	that	you	can	add	semantic	targets	to	your	sources,
and	refer	to	them	using	custom	roles	instead	of	generic	ones	(like
ref).	Example	call:

app.add_crossref_type('topic',	'topic',	'single:	%s',	docutils.nodes.emphasis)

Example	usage:

..	topic::	application	API

The	application	API

<...>

See	also	:topic:`this	section	<application	API>`

(Of	course,	the	element	following	the	topic	directive	needn’t	be
a	section.)

Sphinx.add_transform(transform)
Add	the	standard	docutils	Transform	subclass	transform	to	the
list	of	transforms	that	are	applied	after	Sphinx	parses	a	reST
document.

Sphinx.add_javascript(filename)
Add	filename	to	the	list	of	JavaScript	files	that	the	default	HTML
template	will	include.	The	filename	must	be	relative	to	the	HTML
static	path,	see	the	docs	for	the	config	value.	A	full	URI
with	scheme,	like	http://example.org/foo.js,	is	also
supported.

New	in	version	0.5.

Sphinx.add_stylesheet(filename)
Add	filename	to	the	list	of	CSS	files	that	the	default	HTML
template	will	include.	Like	for	add_javascript(),	the	filename
must	be	relative	to	the	HTML	static	path,	or	a	full	URI	with
scheme.

New	in	version	1.0.

Sphinx.add_lexer(alias,	lexer)
Use	lexer,	which	must	be	an	instance	of	a	Pygments	lexer	class,
to	highlight	code	blocks	with	the	given	language	alias.

New	in	version	0.6.

Sphinx.add_autodocumenter(cls)
Add	cls	as	a	new	documenter	class	for	the
sphinx.ext.autodoc	extension.	It	must	be	a	subclass	of
sphinx.ext.autodoc.Documenter.	This	allows	to	auto-
document	new	types	of	objects.	See	the	source	of	the	autodoc
module	for	examples	on	how	to	subclass	Documenter.
New	in	version	0.6.

Sphinx.add_autodoc_attrgetter(type,	getter)
Add	getter,	which	must	be	a	function	with	an	interface	compatible
to	the	getattr()	builtin,	as	the	autodoc	attribute	getter	for
objects	that	are	instances	of	type.	All	cases	where	autodoc	needs
to	get	an	attribute	of	a	type	are	then	handled	by	this	function
instead	of	getattr().
New	in	version	0.6.

Sphinx.add_search_language(cls)
Add	cls,	which	must	be	a	subclass	of
sphinx.search.SearchLanguage,	as	a	support	language	for
building	the	HTML	full-text	search	index.	The	class	must	have	a
lang	attribute	that	indicates	the	language	it	should	be	used	for.
See	html_search_language.
New	in	version	1.1.

Sphinx.connect(event,	callback)
Register	callback	to	be	called	when	event	is	emitted.	For	details
on	available	core	events	and	the	arguments	of	callback	functions,
please	see	Sphinx	core	events.

The	method	returns	a	“listener	ID”	that	can	be	used	as	an
argument	to	disconnect().

Sphinx.disconnect(listener_id)
Unregister	callback	listener_id.

Sphinx.emit(event,	*arguments)
Emit	event	and	pass	arguments	to	the	callback	functions.	Return
the	return	values	of	all	callbacks	as	a	list.	Do	not	emit	core
Sphinx	events	in	extensions!

Sphinx.emit_firstresult(event,	*arguments)
Emit	event	and	pass	arguments	to	the	callback	functions.	Return
the	result	of	the	first	callback	that	doesn’t	return	None.
New	in	version	0.5.

Sphinx.require_sphinx(version)
Compare	version	(which	must	be	a	major.minor	version	string,
e.g.	'1.1')	with	the	version	of	the	running	Sphinx,	and	abort	the
build	when	it	is	too	old.

New	in	version	1.0.

exception	sphinx.application.ExtensionError
All	these	functions	raise	this	exception	if	something	went	wrong
with	the	extension	API.

Examples	of	using	the	Sphinx	extension	API	can	be	seen	in	the
sphinx.ext	package.

Sphinx	core	events

These	events	are	known	to	the	core.	The	arguments	shown	are
given	to	the	registered	event	handlers.

builder-inited(app)
Emitted	when	the	builder	object	has	been	created.	It	is	available
as	app.builder.

env-get-outdated(app,	env,	added,	changed,	removed)
Emitted	when	the	environment	determines	which	source	files
have	changed	and	should	be	re-read.	added,	changed	and
removed	are	sets	of	docnames	that	the	environment	has
determined.	You	can	return	a	list	of	docnames	to	re-read	in
addition	to	these.

New	in	version	1.1.

env-purge-doc(app,	env,	docname)
Emitted	when	all	traces	of	a	source	file	should	be	cleaned	from
the	environment,	that	is,	if	the	source	file	is	removed	or	before	it
is	freshly	read.	This	is	for	extensions	that	keep	their	own	caches
in	attributes	of	the	environment.

For	example,	there	is	a	cache	of	all	modules	on	the	environment.
When	a	source	file	has	been	changed,	the	cache’s	entries	for	the
file	are	cleared,	since	the	module	declarations	could	have	been
removed	from	the	file.

New	in	version	0.5.

source-read(app,	docname,	source)
Emitted	when	a	source	file	has	been	read.	The	source	argument
is	a	list	whose	single	element	is	the	contents	of	the	source	file.
You	can	process	the	contents	and	replace	this	item	to	implement
source-level	transformations.

For	example,	if	you	want	to	use	$	signs	to	delimit	inline	math,	like

in	LaTeX,	you	can	use	a	regular	expression	to	replace	$...$	by
:math:`...`.
New	in	version	0.5.

doctree-read(app,	doctree)
Emitted	when	a	doctree	has	been	parsed	and	read	by	the
environment,	and	is	about	to	be	pickled.	The	doctree	can	be
modified	in-place.

missing-reference(app,	env,	node,	contnode)
Emitted	when	a	cross-reference	to	a	Python	module	or	object
cannot	be	resolved.	If	the	event	handler	can	resolve	the
reference,	it	should	return	a	new	docutils	node	to	be	inserted	in
the	document	tree	in	place	of	the	node	node.	Usually	this	node	is
a	reference	node	containing	contnode	as	a	child.

Parameters:

env	–	The	build	environment
(app.builder.env).
node	–	The	pending_xref	node	to	be
resolved.	Its	attributes	reftype,	reftarget,
modname	and	classname	attributes	determine
the	type	and	target	of	the	reference.
contnode	–	The	node	that	carries	the	text	and
formatting	inside	the	future	reference	and	should
be	a	child	of	the	returned	reference	node.

New	in	version	0.5.

doctree-resolved(app,	doctree,	docname)
Emitted	when	a	doctree	has	been	“resolved”	by	the	environment,
that	is,	all	references	have	been	resolved	and	TOCs	have	been
inserted.	The	doctree	can	be	modified	in	place.

Here	is	the	place	to	replace	custom	nodes	that	don’t	have	visitor
methods	in	the	writers,	so	that	they	don’t	cause	errors	when	the
writers	encounter	them.

env-updated(app,	env)
Emitted	when	the	update()	method	of	the	build	environment

has	completed,	that	is,	the	environment	and	all	doctrees	are	now
up-to-date.

New	in	version	0.5.

html-collect-pages(app)
Emitted	when	the	HTML	builder	is	starting	to	write	non-document
pages.	You	can	add	pages	to	write	by	returning	an	iterable	from
this	event	consisting	of	(pagename,	context,
templatename).
New	in	version	1.0.

html-page-context(app,	pagename,	templatename,	context,
doctree)

Emitted	when	the	HTML	builder	has	created	a	context	dictionary
to	render	a	template	with	–	this	can	be	used	to	add	custom
elements	to	the	context.

The	pagename	argument	is	the	canonical	name	of	the	page
being	rendered,	that	is,	without	.html	suffix	and	using	slashes
as	path	separators.	The	templatename	is	the	name	of	the
template	to	render,	this	will	be	'page.html'	for	all	pages	from
reST	documents.

The	context	argument	is	a	dictionary	of	values	that	are	given	to
the	template	engine	to	render	the	page	and	can	be	modified	to
include	custom	values.	Keys	must	be	strings.

The	doctree	argument	will	be	a	doctree	when	the	page	is	created
from	a	reST	documents;	it	will	be	None	when	the	page	is	created
from	an	HTML	template	alone.

New	in	version	0.4.

build-finished(app,	exception)
Emitted	when	a	build	has	finished,	before	Sphinx	exits,	usually
used	for	cleanup.	This	event	is	emitted	even	when	the	build
process	raised	an	exception,	given	as	the	exception	argument.
The	exception	is	reraised	in	the	application	after	the	event
handlers	have	run.	If	the	build	process	raised	no	exception,

exception	will	be	None.	This	allows	to	customize	cleanup	actions
depending	on	the	exception	status.

New	in	version	0.5.

Checking	the	Sphinx	version

Use	this	to	adapt	your	extension	to	API	changes	in	Sphinx.

sphinx.version_info
A	tuple	of	five	elements;	for	Sphinx	version	1.2.1	beta	3	this
would	be	(1,	2,	1,	'beta',	3).
New	in	version	1.2:	Before	version	1.2,	check	the	string
sphinx.__version__.

The	template	bridge

class	sphinx.application.TemplateBridge
This	class	defines	the	interface	for	a	“template	bridge”,	that	is,	a
class	that	renders	templates	given	a	template	name	and	a
context.

init(builder,	theme=None,	dirs=None)
Called	by	the	builder	to	initialize	the	template	system.

builder	is	the	builder	object;	you’ll	probably	want	to	look	at	the
value	of	builder.config.templates_path.
theme	is	a	sphinx.theming.Theme	object	or	None;	in	the
latter	case,	dirs	can	be	list	of	fixed	directories	to	look	for
templates.

newest_template_mtime()
Called	by	the	builder	to	determine	if	output	files	are	outdated
because	of	template	changes.	Return	the	mtime	of	the	newest
template	file	that	was	changed.	The	default	implementation
returns	0.

render(template,	context)
Called	by	the	builder	to	render	a	template	given	as	a	filename
with	a	specified	context	(a	Python	dictionary).

render_string(template,	context)
Called	by	the	builder	to	render	a	template	given	as	a	string
with	a	specified	context	(a	Python	dictionary).

Domain	API

class	sphinx.domains.Domain(env)
A	Domain	is	meant	to	be	a	group	of	“object”	description	directives
for	objects	of	a	similar	nature,	and	corresponding	roles	to	create
references	to	them.	Examples	would	be	Python	modules,
classes,	functions	etc.,	elements	of	a	templating	language,
Sphinx	roles	and	directives,	etc.

Each	domain	has	a	separate	storage	for	information	about
existing	objects	and	how	to	reference	them	in	self.data,	which
must	be	a	dictionary.	It	also	must	implement	several	functions
that	expose	the	object	information	in	a	uniform	way	to	parts	of
Sphinx	that	allow	the	user	to	reference	or	search	for	objects	in	a
domain-agnostic	way.

About	self.data:	since	all	object	and	cross-referencing
information	is	stored	on	a	BuildEnvironment	instance,	the
domain.data	object	is	also	stored	in	the	env.domaindata	dict
under	the	key	domain.name.	Before	the	build	process	starts,
every	active	domain	is	instantiated	and	given	the	environment
object;	the	domaindata	dict	must	then	either	be	nonexistent	or	a
dictionary	whose	‘version’	key	is	equal	to	the	domain	class’
data_version	attribute.	Otherwise,	IOError	is	raised	and	the
pickled	environment	is	discarded.

clear_doc(docname)
Remove	traces	of	a	document	in	the	domain-specific
inventories.

directive(name)
Return	a	directive	adapter	class	that	always	gives	the
registered	directive	its	full	name	(‘domain:name’)	as
self.name.

get_objects()
Return	an	iterable	of	“object	descriptions”,	which	are	tuples
with	five	items:

name	–	fully	qualified	name
dispname	–	name	to	display	when	searching/linking
type	–	object	type,	a	key	in	self.object_types
docname	–	the	document	where	it	is	to	be	found
anchor	–	the	anchor	name	for	the	object
priority	–	how	“important”	the	object	is	(determines
placement	in	search	results)

1:	default	priority	(placed	before	full-text	matches)
0:	object	is	important	(placed	before	default-priority
objects)
2:	object	is	unimportant	(placed	after	full-text
matches)
-1:	object	should	not	show	up	in	search	at	all

get_type_name(type,	primary=False)
Return	full	name	for	given	ObjType.

process_doc(env,	docname,	document)
Process	a	document	after	it	is	read	by	the	environment.

resolve_xref(env,	fromdocname,	builder,	typ,	target,	node,
contnode)

Resolve	the	pending_xref	node	with	the	given	typ	and	target.

This	method	should	return	a	new	node,	to	replace	the	xref
node,	containing	the	contnode	which	is	the	markup	content	of
the	cross-reference.

If	no	resolution	can	be	found,	None	can	be	returned;	the	xref
node	will	then	given	to	the	‘missing-reference’	event,	and	if
that	yields	no	resolution,	replaced	by	contnode.

The	method	can	also	raise	sphinx.environment.NoUri	to
suppress	the	‘missing-reference’	event	being	emitted.

role(name)
Return	a	role	adapter	function	that	always	gives	the	registered
role	its	full	name	(‘domain:name’)	as	the	first	argument.

dangling_warnings	=	{}

role	name	->	a	warning	message	if	reference	is	missing

data_version	=	0
data	version,	bump	this	when	the	format	of	self.data
changes

directives	=	{}
directive	name	->	directive	class

indices	=	[]
a	list	of	Index	subclasses

initial_data	=	{}
data	value	for	a	fresh	environment

label	=	''
domain	label:	longer,	more	descriptive	(used	in	messages)

name	=	''
domain	name:	should	be	short,	but	unique

object_types	=	{}
type	(usually	directive)	name	->	ObjType	instance

roles	=	{}
role	name	->	role	callable

class	sphinx.domains.ObjType(lname,	*roles,	**attrs)
An	ObjType	is	the	description	for	a	type	of	object	that	a	domain
can	document.	In	the	object_types	attribute	of	Domain
subclasses,	object	type	names	are	mapped	to	instances	of	this
class.

Constructor	arguments:

lname:	localized	name	of	the	type	(do	not	include	domain
name)
roles:	all	the	roles	that	can	refer	to	an	object	of	this	type
attrs:	object	attributes	–	currently	only	“searchprio”	is	known,
which	defines	the	object’s	priority	in	the	full-text	search

index,	see	Domain.get_objects().

class	sphinx.domains.Index(domain)
An	Index	is	the	description	for	a	domain-specific	index.	To	add	an
index	to	a	domain,	subclass	Index,	overriding	the	three	name
attributes:

name	is	an	identifier	used	for	generating	file	names.
localname	is	the	section	title	for	the	index.
shortname	is	a	short	name	for	the	index,	for	use	in	the
relation	bar	in	HTML	output.	Can	be	empty	to	disable	entries
in	the	relation	bar.

and	providing	a	generate()	method.	Then,	add	the	index	class
to	your	domain’s	indices	list.	Extensions	can	add	indices	to
existing	domains	using	add_index_to_domain().

generate(docnames=None)
Return	entries	for	the	index	given	by	name.	If	docnames	is
given,	restrict	to	entries	referring	to	these	docnames.

The	return	value	is	a	tuple	of	(content,	collapse),	where
collapse	is	a	boolean	that	determines	if	sub-entries	should
start	collapsed	(for	output	formats	that	support	collapsing	sub-
entries).

content	is	a	sequence	of	(letter,	entries)	tuples,	where
letter	is	the	“heading”	for	the	given	entries,	usually	the	starting
letter.

entries	is	a	sequence	of	single	entries,	where	a	single	entry	is
a	sequence	[name,	subtype,	docname,	anchor,
extra,	qualifier,	descr].	The	items	in	this	sequence
have	the	following	meaning:

name	–	the	name	of	the	index	entry	to	be	displayed
subtype	–	sub-entry	related	type:	0	–	normal	entry	1	–
entry	with	sub-entries	2	–	sub-entry
docname	–	docname	where	the	entry	is	located
anchor	–	anchor	for	the	entry	within	docname
extra	–	extra	info	for	the	entry

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	» Sphinx	Extensions 	»

qualifier	–	qualifier	for	the	description
descr	–	description	for	the	entry

Qualifier	and	description	are	not	rendered	e.g.	in	LaTeX
output.

©	Copyright	2007-2013,	Georg	Brandl.	Created	using	Sphinx	1.2.

http://sphinx-doc.org/

Home Get	it Docs Extend/Develop

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	» Sphinx	Extensions 	»

Writing	new	builders
Todo
Expand	this.

class	sphinx.builders.Builder
This	is	the	base	class	for	all	builders.

These	methods	are	predefined	and	will	be	called	from	the
application:

get_relative_uri(from_,	to,	typ=None)
Return	a	relative	URI	between	two	source	filenames.

May	raise	environment.NoUri	if	there’s	no	way	to	return	a
sensible	URI.

build_all()
Build	all	source	files.

build_specific(filenames)
Only	rebuild	as	much	as	needed	for	changes	in	the	filenames.

build_update()
Only	rebuild	what	was	changed	or	added	since	last	build.

build(docnames,	summary=None,	method='update')
Main	build	method.

First	updates	the	environment,	and	then	calls	write().

These	methods	can	be	overridden	in	concrete	builder	classes:

init()
Load	necessary	templates	and	perform	initialization.	The
default	implementation	does	nothing.

get_outdated_docs()

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	» Sphinx	Extensions 	»

Return	an	iterable	of	output	files	that	are	outdated,	or	a	string
describing	what	an	update	build	will	build.

If	the	builder	does	not	output	individual	files	corresponding	to
source	files,	return	a	string	here.	If	it	does,	return	an	iterable
of	those	files	that	need	to	be	written.

get_target_uri(docname,	typ=None)
Return	the	target	URI	for	a	document	name.

typ	can	be	used	to	qualify	the	link	characteristic	for	individual
builders.

prepare_writing(docnames)
A	place	where	you	can	add	logic	before	write_doc()	is	run

write_doc(docname,	doctree)
Where	you	actually	write	something	to	the	filesystem.

finish()
Finish	the	building	process.

The	default	implementation	does	nothing.

©	Copyright	2007-2013,	Georg	Brandl.	Created	using	Sphinx	1.2.

http://sphinx-doc.org/

Home Get	it Docs Extend/Develop

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	» Sphinx	Extensions 	»

sphinx.ext.autodoc	–	Include
documentation	from	docstrings
This	extension	can	import	the	modules	you	are	documenting,	and
pull	in	documentation	from	docstrings	in	a	semi-automatic	way.

Note
For	Sphinx	(actually,	the	Python	interpreter	that	executes	Sphinx)	to	find	your	module,
it	must	be	importable.	That	means	that	the	module	or	the	package	must	be	in	one	of
the	directories	on	sys.path	–	adapt	your	sys.path	in	the	configuration	file
accordingly.

For	this	to	work,	the	docstrings	must	of	course	be	written	in	correct
reStructuredText.	You	can	then	use	all	of	the	usual	Sphinx	markup	in
the	docstrings,	and	it	will	end	up	correctly	in	the	documentation.
Together	with	hand-written	documentation,	this	technique	eases	the
pain	of	having	to	maintain	two	locations	for	documentation,	while	at
the	same	time	avoiding	auto-generated-looking	pure	API
documentation.

autodoc	provides	several	directives	that	are	versions	of	the	usual
py:module,	py:class	and	so	forth.	On	parsing	time,	they	import
the	corresponding	module	and	extract	the	docstring	of	the	given
objects,	inserting	them	into	the	page	source	under	a	suitable
py:module,	py:class	etc.	directive.

Note

Just	as	py:class	respects	the	current	py:module,	autoclass	will	also
do	so.	Likewise,	automethod	will	respect	the	current	py:class.

..	automodule::

..	autoclass::

..	autoexception::
Document	a	module,	class	or	exception.	All	three	directives	will

by	default	only	insert	the	docstring	of	the	object	itself:

..	autoclass::	Noodle

will	produce	source	like	this:

..	class::	Noodle

			Noodle's	docstring.

The	“auto”	directives	can	also	contain	content	of	their	own,	it	will
be	inserted	into	the	resulting	non-auto	directive	source	after	the
docstring	(but	before	any	automatic	member	documentation).

Therefore,	you	can	also	mix	automatic	and	non-automatic
member	documentation,	like	so:

..	autoclass::	Noodle
			:members:	eat,	slurp

			..	method::	boil(time=10)

						Boil	the	noodle	*time*	minutes.

Options	and	advanced	usage
If	you	want	to	automatically	document	members,	there’s	a
members	option:

..	automodule::	noodle
			:members:

will	document	all	module	members	(recursively),	and

..	autoclass::	Noodle
			:members:

will	document	all	non-private	member	functions	and
properties	(that	is,	those	whose	name	doesn’t	start	with	_).
For	modules,	__all__	will	be	respected	when	looking	for
members;	the	order	of	the	members	will	also	be	the	order	in
__all__.
You	can	also	give	an	explicit	list	of	members;	only	these	will
then	be	documented:

..	autoclass::	Noodle
			:members:	eat,	slurp

If	you	want	to	make	the	members	option	(or	other	flag
options	described	below)	the	default,	see
autodoc_default_flags.
Members	without	docstrings	will	be	left	out,	unless	you	give
the	undoc-members	flag	option:

..	automodule::	noodle
			:members:
			:undoc-members:

“Private”	members	(that	is,	those	named	like	_private	or
__private)	will	be	included	if	the	private-members	flag
option	is	given.

New	in	version	1.1.

Python	“special”	members	(that	is,	those	named	like
__special__)	will	be	included	if	the	special-members
flag	option	is	given:

..	autoclass::	my.Class
			:members:
			:private-members:
			:special-members:

would	document	both	“private”	and	“special”	members	of	the
class.

New	in	version	1.1.

Changed	in	version	1.2:	The	option	can	now	take	arguments,
i.e.	the	special	members	to	document.

For	classes	and	exceptions,	members	inherited	from	base
classes	will	be	left	out	when	documenting	all	members,
unless	you	give	the	inherited-members	flag	option,	in
addition	to	members:

..	autoclass::	Noodle
			:members:
			:inherited-members:

This	can	be	combined	with	undoc-members	to	document	all
available	members	of	the	class	or	module.

Note:	this	will	lead	to	markup	errors	if	the	inherited	members
come	from	a	module	whose	docstrings	are	not	reST
formatted.

New	in	version	0.3.

It’s	possible	to	override	the	signature	for	explicitly
documented	callable	objects	(functions,	methods,	classes)
with	the	regular	syntax	that	will	override	the	signature	gained
from	introspection:

..	autoclass::	Noodle(type)

			..	automethod::	eat(persona)

This	is	useful	if	the	signature	from	the	method	is	hidden	by	a
decorator.

New	in	version	0.4.

The	automodule,	autoclass	and	autoexception

directives	also	support	a	flag	option	called	show-
inheritance.	When	given,	a	list	of	base	classes	will	be
inserted	just	below	the	class	signature	(when	used	with
automodule,	this	will	be	inserted	for	every	class	that	is
documented	in	the	module).

New	in	version	0.4.

All	autodoc	directives	support	the	noindex	flag	option	that
has	the	same	effect	as	for	standard	py:function	etc.
directives:	no	index	entries	are	generated	for	the
documented	object	(and	all	autodocumented	members).

New	in	version	0.4.

automodule	also	recognizes	the	synopsis,	platform
and	deprecated	options	that	the	standard	py:module
directive	supports.

New	in	version	0.5.

automodule	and	autoclass	also	has	an	member-order
option	that	can	be	used	to	override	the	global	value	of
autodoc_member_order	for	one	directive.
New	in	version	0.6.

The	directives	supporting	member	documentation	also	have
a	exclude-members	option	that	can	be	used	to	exclude
single	member	names	from	documentation,	if	all	members
are	to	be	documented.

New	in	version	0.6.

In	an	automodule	directive	with	the	members	option	set,
only	module	members	whose	__module__	attribute	is	equal
to	the	module	name	as	given	to	automodule	will	be
documented.	This	is	to	prevent	documentation	of	imported
classes	or	functions.	Set	the	imported-members	option	if
you	want	to	prevent	this	behavior	and	document	all	available
members.	Note	that	attributes	from	imported	modules	will	not
be	documented,	because	attribute	documentation	is
discovered	by	parsing	the	source	file	of	the	current	module.

New	in	version	1.2.

..	autofunction::

..	autodata::

..	automethod::

..	autoattribute::
These	work	exactly	like	autoclass	etc.,	but	do	not	offer	the
options	used	for	automatic	member	documentation.

autodata	and	autoattribute	support	the	annotation
option.	Without	this	option,	the	representation	of	the	object	will	be
shown	in	the	documentation.	When	the	option	is	given	without
arguments,	only	the	name	of	the	object	will	be	printed:

..	autodata::	CD_DRIVE
			:annotation:

You	can	tell	sphinx	what	should	be	printed	after	the	name:

..	autodata::	CD_DRIVE
			:annotation:	=	your	CD	device	name

For	module	data	members	and	class	attributes,	documentation
can	either	be	put	into	a	comment	with	special	formatting	(using	a
#:	to	start	the	comment	instead	of	just	#),	or	in	a	docstring	after
the	definition.	Comments	need	to	be	either	on	a	line	of	their	own
before	the	definition,	or	immediately	after	the	assignment	on	the
same	line.	The	latter	form	is	restricted	to	one	line	only.

This	means	that	in	the	following	class	definition,	all	attributes	can
be	autodocumented:

class	Foo:
				"""Docstring	for	class	Foo."""

				#:	Doc	comment	for	class	attribute	Foo.bar.
				#:	It	can	have	multiple	lines.

				bar	=	1

				flox	=	1.5			#:	Doc	comment	for	Foo.flox.	One	line	only.

				baz	=	2
				"""Docstring	for	class	attribute	Foo.baz."""

				def	__init__(self):
								#:	Doc	comment	for	instance	attribute	qux.
								self.qux	=	3

								self.spam	=	4
								"""Docstring	for	instance	attribute	spam."""

Changed	in	version	0.6:	autodata	and	autoattribute	can
now	extract	docstrings.

Changed	in	version	1.1:	Comment	docs	are	now	allowed	on	the
same	line	after	an	assignment.

Changed	in	version	1.2:	autodata	and	autoattribute	have
an	annotation	option

Note
If	you	document	decorated	functions	or	methods,	keep	in	mind	that	autodoc
retrieves	its	docstrings	by	importing	the	module	and	inspecting	the	__doc__
attribute	of	the	given	function	or	method.	That	means	that	if	a	decorator	replaces
the	decorated	function	with	another,	it	must	copy	the	original	__doc__ 	to	the
new	function.

From	Python	2.5,	functools.wraps()	can	be	used	to	create	well-
behaved	decorating	functions.

There	are	also	new	config	values	that	you	can	set:

autoclass_content
This	value	selects	what	content	will	be	inserted	into	the	main
body	of	an	autoclass	directive.	The	possible	values	are:

"class"
Only	the	class’	docstring	is	inserted.	This	is	the	default.	You
can	still	document	__init__	as	a	separate	method	using
automethod	or	the	members	option	to	autoclass.

"both"
Both	the	class’	and	the	__init__	method’s	docstring	are
concatenated	and	inserted.

"init"
Only	the	__init__	method’s	docstring	is	inserted.

New	in	version	0.3.

autodoc_member_order
This	value	selects	if	automatically	documented	members	are
sorted	alphabetical	(value	'alphabetical'),	by	member	type
(value	'groupwise')	or	by	source	order	(value	'bysource').
The	default	is	alphabetical.

Note	that	for	source	order,	the	module	must	be	a	Python	module
with	the	source	code	available.

New	in	version	0.6.

Changed	in	version	1.0:	Support	for	'bysource'.

autodoc_default_flags
This	value	is	a	list	of	autodoc	directive	flags	that	should	be
automatically	applied	to	all	autodoc	directives.	The	supported
flags	are	'members',	'undoc-members',	'private-
members',	'special-members',	'inherited-members'
and	'show-inheritance'.
If	you	set	one	of	these	flags	in	this	config	value,	you	can	use	a
negated	form,	'no-flag',	in	an	autodoc	directive,	to	disable	it
once.	For	example,	if	autodoc_default_flags	is	set	to
['members',	'undoc-members'],	and	you	write	a	directive
like	this:

..	automodule::	foo
			:no-undoc-members:

the	directive	will	be	interpreted	as	if	only	:members:	was	given.
New	in	version	1.0.

autodoc_docstring_signature
Functions	imported	from	C	modules	cannot	be	introspected,	and
therefore	the	signature	for	such	functions	cannot	be	automatically
determined.	However,	it	is	an	often-used	convention	to	put	the
signature	into	the	first	line	of	the	function’s	docstring.

If	this	boolean	value	is	set	to	True	(which	is	the	default),	autodoc
will	look	at	the	first	line	of	the	docstring	for	functions	and
methods,	and	if	it	looks	like	a	signature,	use	the	line	as	the
signature	and	remove	it	from	the	docstring	content.

New	in	version	1.1.

Docstring	preprocessing

autodoc	provides	the	following	additional	events:

autodoc-process-docstring(app,	what,	name,	obj,
options,	lines)

New	in	version	0.4.

Emitted	when	autodoc	has	read	and	processed	a	docstring.	lines
is	a	list	of	strings	–	the	lines	of	the	processed	docstring	–	that	the
event	handler	can	modify	in	place	to	change	what	Sphinx	puts
into	the	output.

Parameters:

app	–	the	Sphinx	application	object
what	–	the	type	of	the	object	which	the	docstring
belongs	to	(one	of	"module",	"class",
"exception",	"function",	"method",
"attribute")
name	–	the	fully	qualified	name	of	the	object
obj	–	the	object	itself
options	–	the	options	given	to	the	directive:	an
object	with	attributes	inherited_members,
undoc_members,	show_inheritance	and
noindex	that	are	true	if	the	flag	option	of	same
name	was	given	to	the	auto	directive
lines	–	the	lines	of	the	docstring,	see	above

autodoc-process-signature(app,	what,	name,	obj,
options,	signature,	return_annotation)

New	in	version	0.5.

Emitted	when	autodoc	has	formatted	a	signature	for	an	object.
The	event	handler	can	return	a	new	tuple	(signature,
return_annotation)	to	change	what	Sphinx	puts	into	the
output.

app	–	the	Sphinx	application	object
what	–	the	type	of	the	object	which	the	docstring

Parameters:

belongs	to	(one	of	"module",	"class",
"exception",	"function",	"method",
"attribute")
name	–	the	fully	qualified	name	of	the	object
obj	–	the	object	itself
options	–	the	options	given	to	the	directive:	an
object	with	attributes	inherited_members,
undoc_members,	show_inheritance	and
noindex	that	are	true	if	the	flag	option	of	same
name	was	given	to	the	auto	directive
signature	–	function	signature,	as	a	string	of	the
form	"(parameter_1,	parameter_2)",	or
None	if	introspection	didn’t	succeed	and
signature	wasn’t	specified	in	the	directive.
return_annotation	–	function	return	annotation
as	a	string	of	the	form	"	->	annotation",	or
None	if	there	is	no	return	annotation

The	sphinx.ext.autodoc	module	provides	factory	functions	for
commonly	needed	docstring	processing	in	event	autodoc-
process-docstring:

sphinx.ext.autodoc.cut_lines(pre,	post=0,	what=None)
Return	a	listener	that	removes	the	first	pre	and	last	post	lines	of
every	docstring.	If	what	is	a	sequence	of	strings,	only	docstrings
of	a	type	in	what	will	be	processed.

Use	like	this	(e.g.	in	the	setup()	function	of	conf.py):

from	sphinx.ext.autodoc	import	cut_lines
app.connect('autodoc-process-docstring',	cut_lines(4,	what=['module']))

This	can	(and	should)	be	used	in	place	of
automodule_skip_lines.

sphinx.ext.autodoc.between(marker,	what=None,
keepempty=False,	exclude=False)

Return	a	listener	that	either	keeps,	or	if	exclude	is	True	excludes,
lines	between	lines	that	match	the	marker	regular	expression.	If
no	line	matches,	the	resulting	docstring	would	be	empty,	so	no
change	will	be	made	unless	keepempty	is	true.

If	what	is	a	sequence	of	strings,	only	docstrings	of	a	type	in	what
will	be	processed.

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	» Sphinx	Extensions 	»

Skipping	members

autodoc	allows	the	user	to	define	a	custom	method	for	determining
whether	a	member	should	be	included	in	the	documentation	by	using
the	following	event:

autodoc-skip-member(app,	what,	name,	obj,	skip,	options)
New	in	version	0.5.

Emitted	when	autodoc	has	to	decide	whether	a	member	should
be	included	in	the	documentation.	The	member	is	excluded	if	a
handler	returns	True.	It	is	included	if	the	handler	returns	False.

Parameters:

app	–	the	Sphinx	application	object
what	–	the	type	of	the	object	which	the	docstring
belongs	to	(one	of	"module",	"class",
"exception",	"function",	"method",
"attribute")
name	–	the	fully	qualified	name	of	the	object
obj	–	the	object	itself
skip	–	a	boolean	indicating	if	autodoc	will	skip
this	member	if	the	user	handler	does	not	override
the	decision
options	–	the	options	given	to	the	directive:	an
object	with	attributes	inherited_members,
undoc_members,	show_inheritance	and
noindex	that	are	true	if	the	flag	option	of	same
name	was	given	to	the	auto	directive

©	Copyright	2007-2013,	Georg	Brandl.	Created	using	Sphinx	1.2.

http://sphinx-doc.org/

Home Get	it Docs Extend/Develop

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	» Sphinx	Extensions 	»

sphinx.ext.autosummary	–
Generate	autodoc	summaries
New	in	version	0.6.

This	extension	generates	function/method/attribute	summary	lists,
similar	to	those	output	e.g.	by	Epydoc	and	other	API	doc	generation
tools.	This	is	especially	useful	when	your	docstrings	are	long	and
detailed,	and	putting	each	one	of	them	on	a	separate	page	makes
them	easier	to	read.

The	sphinx.ext.autosummary	extension	does	this	in	two	parts:

1.	 There	is	an	autosummary	directive	for	generating	summary
listings	that	contain	links	to	the	documented	items,	and	short
summary	blurbs	extracted	from	their	docstrings.

2.	 Optionally,	the	convenience	script	sphinx-autogen	or	the	new
autosummary_generate	config	value	can	be	used	to	generate
short	“stub”	files	for	the	entries	listed	in	the	autosummary
directives.	These	files	by	default	contain	only	the	corresponding
sphinx.ext.autodoc	directive,	but	can	be	customized	with
templates.

..	autosummary::
Insert	a	table	that	contains	links	to	documented	items,	and	a
short	summary	blurb	(the	first	sentence	of	the	docstring)	for	each
of	them.

The	autosummary	directive	can	also	optionally	serve	as	a
toctree	entry	for	the	included	items.	Optionally,	stub	.rst	files
for	these	items	can	also	be	automatically	generated.

For	example,

..	currentmodule::	sphinx

..	autosummary::

			environment.BuildEnvironment
			util.relative_uri

produces	a	table	like	this:

environment.BuildEnvironment(srcdir,	...)

The
environment
in	which	the
ReST	files
are
translated.

util.relative_uri(base,	to)

Return	a
relative	URL
from	base
to	to.

Autosummary	preprocesses	the	docstrings	and	signatures	with
the	same	autodoc-process-docstring	and	autodoc-
process-signature	hooks	as	autodoc.
Options

If	you	want	the	autosummary	table	to	also	serve	as	a
toctree	entry,	use	the	toctree	option,	for	example:

..	autosummary::
			:toctree:	DIRNAME

			sphinx.environment.BuildEnvironment
			sphinx.util.relative_uri

The	toctree	option	also	signals	to	the	sphinx-autogen
script	that	stub	pages	should	be	generated	for	the	entries
listed	in	this	directive.	The	option	accepts	a	directory	name
as	an	argument;	sphinx-autogen	will	by	default	place	its
output	in	this	directory.	If	no	argument	is	given,	output	is
placed	in	the	same	directory	as	the	file	that	contains	the

directive.

If	you	don’t	want	the	autosummary	to	show	function
signatures	in	the	listing,	include	the	nosignatures	option:

..	autosummary::
			:nosignatures:

			sphinx.environment.BuildEnvironment
			sphinx.util.relative_uri

You	can	specify	a	custom	template	with	the	template
option.	For	example,

..	autosummary::
			:template:	mytemplate.rst

			sphinx.environment.BuildEnvironment

would	use	the	template	mytemplate.rst	in	your
templates_path	to	generate	the	pages	for	all	entries
listed.	See	Customizing	templates	below.

New	in	version	1.0.

sphinx-autogen	–	generate	autodoc	stub	pages
The	sphinx-autogen	script	can	be	used	to	conveniently	generate
stub	documentation	pages	for	items	included	in	autosummary
listings.

For	example,	the	command

$	sphinx-autogen	-o	generated	*.rst

will	read	all	autosummary	tables	in	the	*.rst	files	that	have	the
:toctree:	option	set,	and	output	corresponding	stub	pages	in
directory	generated	for	all	documented	items.	The	generated
pages	by	default	contain	text	of	the	form:

sphinx.util.relative_uri
========================

..	autofunction::	sphinx.util.relative_uri

If	the	-o	option	is	not	given,	the	script	will	place	the	output	files	in
the	directories	specified	in	the	:toctree:	options.

Generating	stub	pages	automatically

If	you	do	not	want	to	create	stub	pages	with	sphinx-autogen,	you
can	also	use	this	new	config	value:

autosummary_generate
Boolean	indicating	whether	to	scan	all	found	documents	for
autosummary	directives,	and	to	generate	stub	pages	for	each.

Can	also	be	a	list	of	documents	for	which	stub	pages	should	be
generated.

The	new	files	will	be	placed	in	the	directories	specified	in	the
:toctree:	options	of	the	directives.

Customizing	templates

New	in	version	1.0.

You	can	customize	the	stub	page	templates,	in	a	similar	way	as	the
HTML	Jinja	templates,	see	Templating.	(TemplateBridge	is	not
supported.)

Note
If	you	find	yourself	spending	much	time	tailoring	the	stub	templates,	this	may	indicate
that	it’s	a	better	idea	to	write	custom	narrative	documentation	instead.

Autosummary	uses	the	following	template	files:

autosummary/base.rst	–	fallback	template
autosummary/module.rst	–	template	for	modules
autosummary/class.rst	–	template	for	classes
autosummary/function.rst	–	template	for	functions
autosummary/attribute.rst	–	template	for	class	attributes
autosummary/method.rst	–	template	for	class	methods

The	following	variables	available	in	the	templates:

name
Name	of	the	documented	object,	excluding	the	module	and	class
parts.

objname
Name	of	the	documented	object,	excluding	the	module	parts.

fullname
Full	name	of	the	documented	object,	including	module	and	class
parts.

module
Name	of	the	module	the	documented	object	belongs	to.

class
Name	of	the	class	the	documented	object	belongs	to.	Only
available	for	methods	and	attributes.

underline
A	string	containing	len(full_name)	*	'='.

members
List	containing	names	of	all	members	of	the	module	or	class.
Only	available	for	modules	and	classes.

functions
List	containing	names	of	“public”	functions	in	the	module.	Here,
“public”	here	means	that	the	name	does	not	start	with	an
underscore.	Only	available	for	modules.

classes
List	containing	names	of	“public”	classes	in	the	module.	Only
available	for	modules.

exceptions
List	containing	names	of	“public”	exceptions	in	the	module.	Only
available	for	modules.

methods
List	containing	names	of	“public”	methods	in	the	class.	Only
available	for	classes.

attributes
List	containing	names	of	“public”	attributes	in	the	class.	Only
available	for	classes.

Note

You	can	use	the	autosummary	directive	in	the	stub	pages.	Stub	pages	are
generated	also	based	on	these	directives.

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	» Sphinx	Extensions 	»
©	Copyright	2007-2013,	Georg	Brandl.	Created	using	Sphinx	1.2.

http://sphinx-doc.org/

Home Get	it Docs Extend/Develop

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	» Sphinx	Extensions 	»

sphinx.ext.doctest	–	Test
snippets	in	the	documentation
This	extension	allows	you	to	test	snippets	in	the	documentation	in	a
natural	way.	It	works	by	collecting	specially-marked	up	code	blocks
and	running	them	as	doctest	tests.

Within	one	document,	test	code	is	partitioned	in	groups,	where	each
group	consists	of:

zero	or	more	setup	code	blocks	(e.g.	importing	the	module	to
test)
one	or	more	test	blocks

When	building	the	docs	with	the	doctest	builder,	groups	are
collected	for	each	document	and	run	one	after	the	other,	first
executing	setup	code	blocks,	then	the	test	blocks	in	the	order	they
appear	in	the	file.

There	are	two	kinds	of	test	blocks:

doctest-style	blocks	mimic	interactive	sessions	by	interleaving
Python	code	(including	the	interpreter	prompt)	and	output.
code-output-style	blocks	consist	of	an	ordinary	piece	of	Python
code,	and	optionally,	a	piece	of	output	for	that	code.

The	doctest	extension	provides	four	directives.	The	group	argument
is	interpreted	as	follows:	if	it	is	empty,	the	block	is	assigned	to	the
group	named	default.	If	it	is	*,	the	block	is	assigned	to	all	groups
(including	the	default	group).	Otherwise,	it	must	be	a	comma-
separated	list	of	group	names.

..	testsetup::	[group]
A	setup	code	block.	This	code	is	not	shown	in	the	output	for	other
builders,	but	executed	before	the	doctests	of	the	group(s)	it
belongs	to.

..	testcleanup::	[group]
A	cleanup	code	block.	This	code	is	not	shown	in	the	output	for
other	builders,	but	executed	after	the	doctests	of	the	group(s)	it
belongs	to.

New	in	version	1.1.

..	doctest::	[group]
A	doctest-style	code	block.	You	can	use	standard	doctest	flags
for	controlling	how	actual	output	is	compared	with	what	you	give
as	output.	By	default,	these	options	are	enabled:	ELLIPSIS
(allowing	you	to	put	ellipses	in	the	expected	output	that	match
anything	in	the	actual	output),	IGNORE_EXCEPTION_DETAIL	(not
comparing	tracebacks),	DONT_ACCEPT_TRUE_FOR_1	(by	default,
doctest	accepts	“True”	in	the	output	where	“1”	is	given	–	this	is	a
relic	of	pre-Python	2.2	times).

This	directive	supports	two	options:

hide,	a	flag	option,	hides	the	doctest	block	in	other	builders.
By	default	it	is	shown	as	a	highlighted	doctest	block.
options,	a	string	option,	can	be	used	to	give	a	comma-
separated	list	of	doctest	flags	that	apply	to	each	example	in
the	tests.	(You	still	can	give	explicit	flags	per	example,	with
doctest	comments,	but	they	will	show	up	in	other	builders
too.)

Note	that	like	with	standard	doctests,	you	have	to	use
<BLANKLINE>	to	signal	a	blank	line	in	the	expected	output.	The
<BLANKLINE>	is	removed	when	building	presentation	output
(HTML,	LaTeX	etc.).

Also,	you	can	give	inline	doctest	options,	like	in	doctest:

>>>	datetime.date.now()			#	doctest:	+SKIP
datetime.date(2008,	1,	1)

They	will	be	respected	when	the	test	is	run,	but	stripped	from
presentation	output.

..	testcode::	[group]
A	code	block	for	a	code-output-style	test.

This	directive	supports	one	option:

hide,	a	flag	option,	hides	the	code	block	in	other	builders.
By	default	it	is	shown	as	a	highlighted	code	block.

Note

Code	in	a	testcode 	block	is	always	executed	all	at	once,	no	matter	how
many	statements	it	contains.	Therefore,	output	will	not	be	generated	for	bare
expressions	–	use	print .	Example:

..	testcode::

			1+1								#	this	will	give	no	output!
			print	2+2		#	this	will	give	output

..	testoutput::

			4

Also,	please	be	aware	that	since	the	doctest	module	does	not	support	mixing
regular	output	and	an	exception	message	in	the	same	snippet,	this	applies	to
testcode/testoutput	as	well.

..	testoutput::	[group]
The	corresponding	output,	or	the	exception	message,	for	the	last
testcode	block.
This	directive	supports	two	options:

hide,	a	flag	option,	hides	the	output	block	in	other	builders.
By	default	it	is	shown	as	a	literal	block	without	highlighting.
options,	a	string	option,	can	be	used	to	give	doctest	flags
(comma-separated)	just	like	in	normal	doctest	blocks.

Example:

..	testcode::

			print	'Output					text.'

..	testoutput::
			:hide:
			:options:	-ELLIPSIS,	+NORMALIZE_WHITESPACE

			Output	text.

The	following	is	an	example	for	the	usage	of	the	directives.	The	test
via	doctest	and	the	test	via	testcode	and	testoutput	are
equivalent.

The	parrot	module
=================

..	testsetup::	*

			import	parrot

The	parrot	module	is	a	module	about	parrots.

Doctest	example:

..	doctest::

			>>>	parrot.voom(3000)
			This	parrot	wouldn't	voom	if	you	put	3000	volts	through	it!

Test-Output	example:

..	testcode::

			parrot.voom(3000)

This	would	output:

..	testoutput::

			This	parrot	wouldn't	voom	if	you	put	3000	volts	through	it!

There	are	also	these	config	values	for	customizing	the	doctest
extension:

doctest_path
A	list	of	directories	that	will	be	added	to	sys.path	when	the
doctest	builder	is	used.	(Make	sure	it	contains	absolute	paths.)

doctest_global_setup
Python	code	that	is	treated	like	it	were	put	in	a	testsetup
directive	for	every	file	that	is	tested,	and	for	every	group.	You	can
use	this	to	e.g.	import	modules	you	will	always	need	in	your
doctests.

New	in	version	0.6.

doctest_global_cleanup
Python	code	that	is	treated	like	it	were	put	in	a	testcleanup
directive	for	every	file	that	is	tested,	and	for	every	group.	You	can
use	this	to	e.g.	remove	any	temporary	files	that	the	tests	leave
behind.

New	in	version	1.1.

doctest_test_doctest_blocks
If	this	is	a	nonempty	string	(the	default	is	'default'),	standard
reST	doctest	blocks	will	be	tested	too.	They	will	be	assigned	to
the	group	name	given.

reST	doctest	blocks	are	simply	doctests	put	into	a	paragraph	of
their	own,	like	so:

Some	documentation	text.

>>>	print	1

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	» Sphinx	Extensions 	»

1

Some	more	documentation	text.

(Note	that	no	special	::	is	used	to	introduce	a	doctest	block;
docutils	recognizes	them	from	the	leading	>>>.	Also,	no
additional	indentation	is	used,	though	it	doesn’t	hurt.)

If	this	value	is	left	at	its	default	value,	the	above	snippet	is
interpreted	by	the	doctest	builder	exactly	like	the	following:

Some	documentation	text.

..	doctest::

			>>>	print	1
			1

Some	more	documentation	text.

This	feature	makes	it	easy	for	you	to	test	doctests	in	docstrings
included	with	the	autodoc	extension	without	marking	them	up
with	a	special	directive.

Note	though	that	you	can’t	have	blank	lines	in	reST	doctest
blocks.	They	will	be	interpreted	as	one	block	ending	and	another
one	starting.	Also,	removal	of	<BLANKLINE>	and	#	doctest:
options	only	works	in	doctest	blocks,	though	you	may	set
trim_doctest_flags	to	achieve	that	in	all	code	blocks	with
Python	console	content.

©	Copyright	2007-2013,	Georg	Brandl.	Created	using	Sphinx	1.2.

http://sphinx-doc.org/

Home Get	it Docs Extend/Develop

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	» Sphinx	Extensions 	»

sphinx.ext.intersphinx	–
Link	to	other	projects’
documentation
New	in	version	0.5.

This	extension	can	generate	automatic	links	to	the	documentation	of
objects	in	other	projects.

Usage	is	simple:	whenever	Sphinx	encounters	a	cross-reference	that
has	no	matching	target	in	the	current	documentation	set,	it	looks	for
targets	in	the	documentation	sets	configured	in
intersphinx_mapping.	A	reference	like
:py:class:`zipfile.ZipFile`	can	then	link	to	the	Python
documentation	for	the	ZipFile	class,	without	you	having	to	specify
where	it	is	located	exactly.

When	using	the	“new”	format	(see	below),	you	can	even	force	lookup
in	a	foreign	set	by	prefixing	the	link	target	appropriately.	A	link	like
:ref:`comparison	manual	<python:comparisons>`	will	then
link	to	the	label	“comparisons”	in	the	doc	set	“python”,	if	it	exists.

Behind	the	scenes,	this	works	as	follows:

Each	Sphinx	HTML	build	creates	a	file	named	objects.inv
that	contains	a	mapping	from	object	names	to	URIs	relative	to
the	HTML	set’s	root.
Projects	using	the	Intersphinx	extension	can	specify	the	location
of	such	mapping	files	in	the	intersphinx_mapping	config
value.	The	mapping	will	then	be	used	to	resolve	otherwise
missing	references	to	objects	into	links	to	the	other
documentation.
By	default,	the	mapping	file	is	assumed	to	be	at	the	same
location	as	the	rest	of	the	documentation;	however,	the	location
of	the	mapping	file	can	also	be	specified	individually,	e.g.	if	the
docs	should	be	buildable	without	Internet	access.

To	use	intersphinx	linking,	add	'sphinx.ext.intersphinx'	to
your	extensions	config	value,	and	use	these	new	config	values	to
activate	linking:

intersphinx_mapping
This	config	value	contains	the	locations	and	names	of	other
projects	that	should	be	linked	to	in	this	documentation.

Relative	local	paths	for	target	locations	are	taken	as	relative	to
the	base	of	the	built	documentation,	while	relative	local	paths	for
inventory	locations	are	taken	as	relative	to	the	source	directory.

When	fetching	remote	inventory	files,	proxy	settings	will	be	read
from	the	$HTTP_PROXY	environment	variable.
Old	format	for	this	config	value
This	is	the	format	used	before	Sphinx	1.0.	It	is	still	recognized.

A	dictionary	mapping	URIs	to	either	None	or	an	URI.	The	keys
are	the	base	URI	of	the	foreign	Sphinx	documentation	sets	and
can	be	local	paths	or	HTTP	URIs.	The	values	indicate	where	the
inventory	file	can	be	found:	they	can	be	None	(at	the	same
location	as	the	base	URI)	or	another	local	or	HTTP	URI.

New	format	for	this	config	value
New	in	version	1.0.

A	dictionary	mapping	unique	identifiers	to	a	tuple	(target,
inventory).	Each	target	is	the	base	URI	of	a	foreign	Sphinx
documentation	set	and	can	be	a	local	path	or	an	HTTP	URI.	The
inventory	indicates	where	the	inventory	file	can	be	found:	it
can	be	None	(at	the	same	location	as	the	base	URI)	or	another
local	or	HTTP	URI.

The	unique	identifier	can	be	used	to	prefix	cross-reference
targets,	so	that	it	is	clear	which	intersphinx	set	the	target	belongs
to.	A	link	like	:ref:`comparison	manual
<python:comparisons>`	will	link	to	the	label	“comparisons”	in
the	doc	set	“python”,	if	it	exists.

Example

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	» Sphinx	Extensions 	»

To	add	links	to	modules	and	objects	in	the	Python	standard
library	documentation,	use:

intersphinx_mapping	=	{'python':	('http://docs.python.org/3.2'

This	will	download	the	corresponding	objects.inv	file	from	the
Internet	and	generate	links	to	the	pages	under	the	given	URI.
The	downloaded	inventory	is	cached	in	the	Sphinx	environment,
so	it	must	be	redownloaded	whenever	you	do	a	full	rebuild.

A	second	example,	showing	the	meaning	of	a	non-None	value	of
the	second	tuple	item:

intersphinx_mapping	=	{'python':	('http://docs.python.org/3.2'
																																		'python-inv.txt'

This	will	read	the	inventory	from	python-inv.txt	in	the	source
directory,	but	still	generate	links	to	the	pages	under
http://docs.python.org/3.2.	It	is	up	to	you	to	update	the
inventory	file	as	new	objects	are	added	to	the	Python
documentation.

intersphinx_cache_limit
The	maximum	number	of	days	to	cache	remote	inventories.	The
default	is	5,	meaning	five	days.	Set	this	to	a	negative	value	to
cache	inventories	for	unlimited	time.

©	Copyright	2007-2013,	Georg	Brandl.	Created	using	Sphinx	1.2.

http://sphinx-doc.org/

Home Get	it Docs Extend/Develop

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	» Sphinx	Extensions 	»

Math	support	in	Sphinx
New	in	version	0.5.

Since	mathematical	notation	isn’t	natively	supported	by	HTML	in	any
way,	Sphinx	supports	math	in	documentation	with	several
extensions.

The	basic	math	support	is	contained	in	sphinx.ext.mathbase.
Other	math	support	extensions	should,	if	possible,	reuse	that	support
too.

Note

mathbase	is	not	meant	to	be	added	to	the	extensions	config	value,	instead,
use	either	sphinx.ext.pngmath	or	sphinx.ext.mathjax	as
described	below.

The	input	language	for	mathematics	is	LaTeX	markup.	This	is	the	de-
facto	standard	for	plain-text	math	notation	and	has	the	added
advantage	that	no	further	translation	is	necessary	when	building
LaTeX	output.

Keep	in	mind	that	when	you	put	math	markup	in	Python	docstrings
read	by	autodoc,	you	either	have	to	double	all	backslashes,	or	use
Python	raw	strings	(r"raw").

mathbase	defines	these	new	markup	elements:

:math:
Role	for	inline	math.	Use	like	this:

Since	Pythagoras,	we	know	that	:math:`a^2	+	b^2	=	c^2`

..	math::
Directive	for	displayed	math	(math	that	takes	the	whole	line	for

itself).

The	directive	supports	multiple	equations,	which	should	be
separated	by	a	blank	line:

..	math::

			(a	+	b)^2	=	a^2	+	2ab	+	b^2

			(a	-	b)^2	=	a^2	-	2ab	+	b^2

In	addition,	each	single	equation	is	set	within	a	split
environment,	which	means	that	you	can	have	multiple	aligned
lines	in	an	equation,	aligned	at	&	and	separated	by	\\:

..	math::

			(a	+	b)^2		&=		(a	+	b)(a	+	b)	\\
														&=		a^2	+	2ab	+	b^2

For	more	details,	look	into	the	documentation	of	the	AmSMath
LaTeX	package.

When	the	math	is	only	one	line	of	text,	it	can	also	be	given	as	a
directive	argument:

..	math::	(a	+	b)^2	=	a^2	+	2ab	+	b^2

Normally,	equations	are	not	numbered.	If	you	want	your	equation
to	get	a	number,	use	the	label	option.	When	given,	it	selects	an
internal	label	for	the	equation,	by	which	it	can	be	cross-
referenced,	and	causes	an	equation	number	to	be	issued.	See
eqref	for	an	example.	The	numbering	style	depends	on	the
output	format.

There	is	also	an	option	nowrap	that	prevents	any	wrapping	of
the	given	math	in	a	math	environment.	When	you	give	this	option,
you	must	make	sure	yourself	that	the	math	is	properly	set	up.	For

http://www.ams.org/publications/authors/tex/amslatex

example:

..	math::
			:nowrap:

			\begin{eqnarray}
						y				&	=	&	ax^2	+	bx	+	c	\\
						f(x)	&	=	&	x^2	+	2xy	+	y^2
			\end{eqnarray}

:eq:
Role	for	cross-referencing	equations	via	their	label.	This	currently
works	only	within	the	same	document.	Example:

..	math::	e^{i\pi}	+	1	=	0
			:label:	euler

Euler's	identity,	equation	:eq:`euler`,	was	elected	one	of	the	most
beautiful	mathematical	formulas.

sphinx.ext.pngmath	–	Render	math	as	PNG
images

This	extension	renders	math	via	LaTeX	and	dvipng	into	PNG
images.	This	of	course	means	that	the	computer	where	the	docs	are
built	must	have	both	programs	available.

There	are	various	config	values	you	can	set	to	influence	how	the
images	are	built:

pngmath_latex
The	command	name	with	which	to	invoke	LaTeX.	The	default	is
'latex';	you	may	need	to	set	this	to	a	full	path	if	latex	is	not
in	the	executable	search	path.

Since	this	setting	is	not	portable	from	system	to	system,	it	is
normally	not	useful	to	set	it	in	conf.py;	rather,	giving	it	on	the
sphinx-build	command	line	via	the	-D	option	should	be
preferable,	like	this:

sphinx-build	-b	html	-D	pngmath_latex=C:\tex\latex.exe	.	_build/html

Changed	in	version	0.5.1:	This	value	should	only	contain	the	path
to	the	latex	executable,	not	further	arguments;	use
pngmath_latex_args	for	that	purpose.

pngmath_dvipng
The	command	name	with	which	to	invoke	dvipng.	The	default	is
'dvipng';	you	may	need	to	set	this	to	a	full	path	if	dvipng	is
not	in	the	executable	search	path.

pngmath_latex_args
Additional	arguments	to	give	to	latex,	as	a	list.	The	default	is	an
empty	list.

New	in	version	0.5.1.

http://savannah.nongnu.org/projects/dvipng/

pngmath_latex_preamble
Additional	LaTeX	code	to	put	into	the	preamble	of	the	short
LaTeX	files	that	are	used	to	translate	the	math	snippets.	This	is
empty	by	default.	Use	it	e.g.	to	add	more	packages	whose
commands	you	want	to	use	in	the	math.

pngmath_dvipng_args
Additional	arguments	to	give	to	dvipng,	as	a	list.	The	default
value	is	['-gamma',	'1.5',	'-D',	'110',	'-bg',
'Transparent']	which	makes	the	image	a	bit	darker	and
larger	then	it	is	by	default,	and	produces	PNGs	with	a	transparent
background.

Changed	in	version	1.2:	Now	includes	-bg	Transparent	by
default.

pngmath_use_preview
dvipng	has	the	ability	to	determine	the	“depth”	of	the	rendered
text:	for	example,	when	typesetting	a	fraction	inline,	the	baseline
of	surrounding	text	should	not	be	flush	with	the	bottom	of	the
image,	rather	the	image	should	extend	a	bit	below	the	baseline.
This	is	what	TeX	calls	“depth”.	When	this	is	enabled,	the	images
put	into	the	HTML	document	will	get	a	vertical-align	style
that	correctly	aligns	the	baselines.

Unfortunately,	this	only	works	when	the	preview-latex	package	is
installed.	Therefore,	the	default	for	this	option	is	False.

pngmath_add_tooltips
Default:	true.	If	false,	do	not	add	the	LaTeX	code	as	an	“alt”
attribute	for	math	images.

New	in	version	1.1.

http://www.gnu.org/software/auctex/preview-latex.html

sphinx.ext.mathjax	–	Render	math	via
JavaScript

New	in	version	1.1.

This	extension	puts	math	as-is	into	the	HTML	files.	The	JavaScript
package	MathJax	is	then	loaded	and	transforms	the	LaTeX	markup
to	readable	math	live	in	the	browser.

Because	MathJax	(and	the	necessary	fonts)	is	very	large,	it	is	not
included	in	Sphinx.

mathjax_path
The	path	to	the	JavaScript	file	to	include	in	the	HTML	files	in
order	to	load	MathJax.

The	default	is	the	http://	URL	that	loads	the	JS	files	from	the
MathJax	CDN.	If	you	want	MathJax	to	be	available	offline,	you
have	to	donwload	it	and	set	this	value	to	a	different	path.

The	path	can	be	absolute	or	relative;	if	it	is	relative,	it	is	relative	to
the	_static	directory	of	the	built	docs.
For	example,	if	you	put	MathJax	into	the	static	path	of	the	Sphinx
docs,	this	value	would	be	MathJax/MathJax.js.	If	you	host
more	than	one	Sphinx	documentation	set	on	one	server,	it	is
advisable	to	install	MathJax	in	a	shared	location.

You	can	also	give	a	full	http://	URL	different	from	the	CDN
URL.

http://www.mathjax.org/
http://docs.mathjax.org/en/latest/start.html

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	» Sphinx	Extensions 	»

sphinx.ext.jsmath	–	Render	math	via
JavaScript

This	extension	works	just	as	the	MathJax	extension	does,	but	uses
the	older	package	jsMath.	It	provides	this	config	value:

jsmath_path
The	path	to	the	JavaScript	file	to	include	in	the	HTML	files	in
order	to	load	JSMath.	There	is	no	default.

The	path	can	be	absolute	or	relative;	if	it	is	relative,	it	is	relative	to
the	_static	directory	of	the	built	docs.
For	example,	if	you	put	JSMath	into	the	static	path	of	the	Sphinx
docs,	this	value	would	be	jsMath/easy/load.js.	If	you	host
more	than	one	Sphinx	documentation	set	on	one	server,	it	is
advisable	to	install	jsMath	in	a	shared	location.

©	Copyright	2007-2013,	Georg	Brandl.	Created	using	Sphinx	1.2.

http://www.math.union.edu/~dpvc/jsmath/
http://sphinx-doc.org/

Home Get	it Docs Extend/Develop

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	» Sphinx	Extensions 	»

sphinx.ext.graphviz	–	Add
Graphviz	graphs
New	in	version	0.6.

This	extension	allows	you	to	embed	Graphviz	graphs	in	your
documents.

It	adds	these	directives:

..	graphviz::
Directive	to	embed	graphviz	code.	The	input	code	for	dot	is
given	as	the	content.	For	example:

..	graphviz::

			digraph	foo	{
						"bar"	->	"baz";
			}

In	HTML	output,	the	code	will	be	rendered	to	a	PNG	or	SVG
image	(see	graphviz_output_format).	In	LaTeX	output,	the
code	will	be	rendered	to	an	embeddable	PDF	file.

You	can	also	embed	external	dot	files,	by	giving	the	file	name	as
an	argument	to	graphviz	and	no	additional	content:

..	graphviz::	external.dot

As	for	all	file	references	in	Sphinx,	if	the	filename	is	absolute,	it	is
taken	as	relative	to	the	source	directory.

Changed	in	version	1.1:	Added	support	for	external	files.

..	graph::
Directive	for	embedding	a	single	undirected	graph.	The	name	is

http://graphviz.org/

given	as	a	directive	argument,	the	contents	of	the	graph	are	the
directive	content.	This	is	a	convenience	directive	to	generate
graph	<name>	{	<content>	}.
For	example:

..	graph::	foo

			"bar"	--	"baz";

..	digraph::
Directive	for	embedding	a	single	directed	graph.	The	name	is
given	as	a	directive	argument,	the	contents	of	the	graph	are	the
directive	content.	This	is	a	convenience	directive	to	generate
digraph	<name>	{	<content>	}.
For	example:

..	digraph::	foo

			"bar"	->	"baz"	->	"quux";

New	in	version	1.0:	All	three	directives	support	an	alt	option	that
determines	the	image’s	alternate	text	for	HTML	output.	If	not	given,
the	alternate	text	defaults	to	the	graphviz	code.

New	in	version	1.1:	All	three	directives	support	an	inline	flag	that
controls	paragraph	breaks	in	the	output.	When	set,	the	graph	is
inserted	into	the	current	paragraph.	If	the	flag	is	not	given,	paragraph
breaks	are	introduced	before	and	after	the	image	(the	default).

New	in	version	1.1:	All	three	directives	support	a	caption	option
that	can	be	used	to	give	a	caption	to	the	diagram.	Naturally,
diagrams	marked	as	“inline”	cannot	have	a	caption.

There	are	also	these	new	config	values:

graphviz_dot

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	» Sphinx	Extensions 	»

The	command	name	with	which	to	invoke	dot.	The	default	is
'dot';	you	may	need	to	set	this	to	a	full	path	if	dot	is	not	in	the
executable	search	path.

Since	this	setting	is	not	portable	from	system	to	system,	it	is
normally	not	useful	to	set	it	in	conf.py;	rather,	giving	it	on	the
sphinx-build	command	line	via	the	-D	option	should	be
preferable,	like	this:

sphinx-build	-b	html	-D	graphviz_dot=C:\graphviz\bin\dot.exe	.	_build/html

graphviz_dot_args
Additional	command-line	arguments	to	give	to	dot,	as	a	list.	The
default	is	an	empty	list.	This	is	the	right	place	to	set	global	graph,
node	or	edge	attributes	via	dot’s	-G,	-N	and	-E	options.

graphviz_output_format
The	output	format	for	Graphviz	when	building	HTML	files.	This
must	be	either	'png'	or	'svg';	the	default	is	'png'.
New	in	version	1.0:	Previously,	output	always	was	PNG.

©	Copyright	2007-2013,	Georg	Brandl.	Created	using	Sphinx	1.2.

http://sphinx-doc.org/

Home Get	it Docs Extend/Develop

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	» Sphinx	Extensions 	»

sphinx.ext.inheritance_diagram
–	Include	inheritance	diagrams
New	in	version	0.6.

This	extension	allows	you	to	include	inheritance	diagrams,	rendered
via	the	Graphviz	extension.

It	adds	this	directive:

..	inheritance-diagram::
This	directive	has	one	or	more	arguments,	each	giving	a	module
or	class	name.	Class	names	can	be	unqualified;	in	that	case	they
are	taken	to	exist	in	the	currently	described	module	(see
py:module).
For	each	given	class,	and	each	class	in	each	given	module,	the
base	classes	are	determined.	Then,	from	all	classes	and	their
base	classes,	a	graph	is	generated	which	is	then	rendered	via
the	graphviz	extension	to	a	directed	graph.

This	directive	supports	an	option	called	parts	that,	if	given,
must	be	an	integer,	advising	the	directive	to	remove	that	many
parts	of	module	names	from	the	displayed	names.	(For	example,
if	all	your	class	names	start	with	lib.,	you	can	give	:parts:	1
to	remove	that	prefix	from	the	displayed	node	names.)

It	also	supports	a	private-bases	flag	option;	if	given,	private
base	classes	(those	whose	name	starts	with	_)	will	be	included.
Changed	in	version	1.1:	Added	private-bases	option;
previously,	all	bases	were	always	included.

New	config	values	are:

inheritance_graph_attrs
A	dictionary	of	graphviz	graph	attributes	for	inheritance	diagrams.

For	example:

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	» Sphinx	Extensions 	»

inheritance_graph_attrs	=	dict(rankdir="LR",	size='"6.0,	8.0"',
																															fontsize=14,	ratio='compress')

inheritance_node_attrs
A	dictionary	of	graphviz	node	attributes	for	inheritance	diagrams.

For	example:

inheritance_node_attrs	=	dict(shape='ellipse',	fontsize=14,	height=0.75,
																														color='dodgerblue1',	style='filled')

inheritance_edge_attrs
A	dictionary	of	graphviz	edge	attributes	for	inheritance	diagrams.

©	Copyright	2007-2013,	Georg	Brandl.	Created	using	Sphinx	1.2.

http://sphinx-doc.org/

Home Get	it Docs Extend/Develop

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	» Sphinx	Extensions 	»

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	» Sphinx	Extensions 	»

sphinx.ext.ifconfig	–
Include	content	based	on
configuration
This	extension	is	quite	simple,	and	features	only	one	directive:

..	ifconfig::
Include	content	of	the	directive	only	if	the	Python	expression
given	as	an	argument	is	True,	evaluated	in	the	namespace	of
the	project’s	configuration	(that	is,	all	registered	variables	from
conf.py	are	available).
For	example,	one	could	write

..	ifconfig::	releaselevel	in	('alpha',	'beta',	'rc')

			This	stuff	is	only	included	in	the	built	docs	for	unstable	versions.

To	make	a	custom	config	value	known	to	Sphinx,	use
add_config_value()	in	the	setup	function	in	conf.py,	e.g.:

def	setup(app):
				app.add_config_value('releaselevel',	'',	True)

The	second	argument	is	the	default	value,	the	third	should
always	be	True	for	such	values	(it	selects	if	Sphinx	re-reads	the
documents	if	the	value	changes).

©	Copyright	2007-2013,	Georg	Brandl.	Created	using	Sphinx	1.2.

http://sphinx-doc.org/

Home Get	it Docs Extend/Develop

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	» Sphinx	Extensions 	»

sphinx.ext.coverage	–
Collect	doc	coverage	stats
This	extension	features	one	additional	builder,	the
CoverageBuilder.

class	sphinx.ext.coverage.CoverageBuilder
To	use	this	builder,	activate	the	coverage	extension	in	your
configuration	file	and	give	-b	coverage	on	the	command	line.

Todo
Write	this	section.

Several	new	configuration	values	can	be	used	to	specify	what	the
builder	should	check:

coverage_ignore_modules

coverage_ignore_functions

coverage_ignore_classes

coverage_c_path

coverage_c_regexes

coverage_ignore_c_items

coverage_write_headline
Set	to	False	to	not	write	headlines.
New	in	version	1.1.

coverage_skip_undoc_in_source
Skip	objects	that	are	not	documented	in	the	source	with	a

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	» Sphinx	Extensions 	»

docstring.	False	by	default.
New	in	version	1.1.

©	Copyright	2007-2013,	Georg	Brandl.	Created	using	Sphinx	1.2.

http://sphinx-doc.org/

Home Get	it Docs Extend/Develop

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	» Sphinx	Extensions 	»

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	» Sphinx	Extensions 	»

sphinx.ext.todo	–	Support	for
todo	items
Module	author:	Daniel	Bültmann

New	in	version	0.5.

There	are	two	additional	directives	when	using	this	extension:

..	todo::
Use	this	directive	like,	for	example,	note.
It	will	only	show	up	in	the	output	if	todo_include_todos	is
true.

..	todolist::
This	directive	is	replaced	by	a	list	of	all	todo	directives	in	the
whole	documentation,	if	todo_include_todos	is	true.

There	is	also	an	additional	config	value:

todo_include_todos
If	this	is	True,	todo	and	todolist	produce	output,	else	they
produce	nothing.	The	default	is	False.

©	Copyright	2007-2013,	Georg	Brandl.	Created	using	Sphinx	1.2.

http://sphinx-doc.org/

Home Get	it Docs Extend/Develop

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	» Sphinx	Extensions 	»

sphinx.ext.extlinks	–
Markup	to	shorten	external	links
Module	author:	Georg	Brandl

New	in	version	1.0.

This	extension	is	meant	to	help	with	the	common	pattern	of	having
many	external	links	that	point	to	URLs	on	one	and	the	same	site,
e.g.	links	to	bug	trackers,	version	control	web	interfaces,	or	simply
subpages	in	other	websites.	It	does	so	by	providing	aliases	to	base
URLs,	so	that	you	only	need	to	give	the	subpage	name	when
creating	a	link.

Let’s	assume	that	you	want	to	include	many	links	to	issues	at	the
Sphinx	tracker,	at
http://bitbucket.org/birkenfeld/sphinx/issue/num.
Typing	this	URL	again	and	again	is	tedious,	so	you	can	use
extlinks	to	avoid	repeating	yourself.

The	extension	adds	one	new	config	value:

extlinks
This	config	value	must	be	a	dictionary	of	external	sites,	mapping
unique	short	alias	names	to	a	base	URL	and	a	prefix.	For
example,	to	create	an	alias	for	the	above	mentioned	issues,	you
would	add

extlinks	=	{'issue':	('https://bitbucket.org/birkenfeld/sphinx/issue/
																						'issue	')}

Now,	you	can	use	the	alias	name	as	a	new	role,	e.g.
:issue:`123`.	This	then	inserts	a	link	to
https://bitbucket.org/birkenfeld/sphinx/issue/123.	As	you	can	see,
the	target	given	in	the	role	is	substituted	in	the	base	URL	in	the

https://bitbucket.org/birkenfeld/sphinx/issue/123

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	» Sphinx	Extensions 	»

place	of	%s.
The	link	caption	depends	on	the	second	item	in	the	tuple,	the
prefix:

If	the	prefix	is	None,	the	link	caption	is	the	full	URL.
If	the	prefix	is	the	empty	string,	the	link	caption	is	the	partial
URL	given	in	the	role	content	(123	in	this	case.)
If	the	prefix	is	a	non-empty	string,	the	link	caption	is	the
partial	URL,	prepended	by	the	prefix	–	in	the	above	example,
the	link	caption	would	be	issue	123.

You	can	also	use	the	usual	“explicit	title”	syntax	supported	by
other	roles	that	generate	links,	i.e.	:issue:`this	issue
<123>`.	In	this	case,	the	prefix	is	not	relevant.

Note
Since	links	are	generated	from	the	role	in	the	reading	stage,	they	appear	as	ordinary
links	to	e.g.	the	linkcheck 	builder.

©	Copyright	2007-2013,	Georg	Brandl.	Created	using	Sphinx	1.2.

http://sphinx-doc.org/

Home Get	it Docs Extend/Develop

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	» Sphinx	Extensions 	»

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	» Sphinx	Extensions 	»

sphinx.ext.viewcode	–	Add
links	to	highlighted	source	code
Module	author:	Georg	Brandl

New	in	version	1.0.

This	extension	looks	at	your	Python	object	descriptions	(..
class::,	..	function::	etc.)	and	tries	to	find	the	source	files
where	the	objects	are	contained.	When	found,	a	separate	HTML
page	will	be	output	for	each	module	with	a	highlighted	version	of	the
source	code,	and	a	link	will	be	added	to	all	object	descriptions	that
leads	to	the	source	code	of	the	described	object.	A	link	back	from	the
source	to	the	description	will	also	be	inserted.

There	are	currently	no	configuration	values	for	this	extension;	you
just	need	to	add	'sphinx.ext.viewcode'	to	your	extensions
value	for	it	to	work.

©	Copyright	2007-2013,	Georg	Brandl.	Created	using	Sphinx	1.2.

http://sphinx-doc.org/

Home Get	it Docs Extend/Develop

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	» Sphinx	Extensions 	»

sphinx.ext.linkcode	–	Add
external	links	to	source	code
Module	author:	Pauli	Virtanen

New	in	version	1.2.

This	extension	looks	at	your	object	descriptions	(..	class::,	..
function::	etc.)	and	adds	external	links	to	code	hosted
somewhere	on	the	web.	The	intent	is	similar	to	the
sphinx.ext.viewcode	extension,	but	assumes	the	source	code
can	be	found	somewhere	on	the	Internet.

In	your	configuration,	you	need	to	specify	a	linkcode_resolve
function	that	returns	an	URL	based	on	the	object.

linkcode_resolve
This	is	a	function	linkcode_resolve(domain,	info),	which
should	return	the	URL	to	source	code	corresponding	to	the	object
in	given	domain	with	given	information.

The	function	should	return	None	if	no	link	is	to	be	added.
The	argument	domain	specifies	the	language	domain	the	object
is	in.	info	is	a	dictionary	with	the	following	keys	guaranteed	to
be	present	(dependent	on	the	domain):

py:	module	(name	of	the	module),	fullname	(name	of	the
object)
c:	names	(list	of	names	for	the	object)
cpp:	names	(list	of	names	for	the	object)
javascript:	object	(name	of	the	object),	fullname
(name	of	the	item)

Example:

def	linkcode_resolve(domain,	info):
				if	domain	!=	'py':

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	» Sphinx	Extensions 	»

								return	None
				if	not	info['module']:
								return	None
				filename	=	info['module'].replace('.',	'/')
				return	"http://somesite/sourcerepo/%s.py"	%	

©	Copyright	2007-2013,	Georg	Brandl.	Created	using	Sphinx	1.2.

http://sphinx-doc.org/

Home Get	it Docs Extend/Develop

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	» Sphinx	Extensions 	»

sphinx.ext.oldcmarkup	–
Compatibility	extension	for	old	C
markup
Module	author:	Georg	Brandl

New	in	version	1.0.

This	extension	is	a	transition	helper	for	projects	that	used	the	old
(pre-domain)	C	markup,	i.e.	the	directives	like	cfunction	and	roles
like	cfunc.	Since	the	introduction	of	domains,	they	must	be	called
by	their	fully-qualified	name	(c:function	and	c:func,
respectively)	or,	with	the	default	domain	set	to	c,	by	their	new	name
(function	and	func).	(See	The	C	Domain	for	the	details.)

If	you	activate	this	extension,	it	will	register	the	old	names,	and	you
can	use	them	like	before	Sphinx	1.0.	The	directives	are:

cfunction
cmember
cmacro
ctype
cvar

The	roles	are:

cdata
cfunc
cmacro
ctype

However,	it	is	advised	to	migrate	to	the	new	markup	–	this	extension
is	a	compatibility	convenience	and	will	disappear	in	a	future	version
of	Sphinx.

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	» Sphinx	Extensions 	»
©	Copyright	2007-2013,	Georg	Brandl.	Created	using	Sphinx	1.2.

http://sphinx-doc.org/

Home Get	it Docs Extend/Develop

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	»

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	»

Sphinx	Web	Support
New	in	version	1.1.

Sphinx	provides	a	Python	API	to	easily	integrate	Sphinx
documentation	into	your	web	application.	To	learn	more	read	the
Web	Support	Quick	Start.

Web	Support	Quick	Start
Building	Documentation	Data
Integrating	Sphinx	Documents	Into	Your	Webapp

Authentication
Performing	Searches
Comments	&	Proposals
Comment	Moderation

The	WebSupport	Class
Methods

Search	Adapters
BaseSearch	Methods

Storage	Backends
StorageBackend	Methods

©	Copyright	2007-2013,	Georg	Brandl.	Created	using	Sphinx	1.2.

http://sphinx-doc.org/

Home Get	it Docs Extend/Develop

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	» Sphinx	Web	Support 	»

Web	Support	Quick	Start

Building	Documentation	Data

To	make	use	of	the	web	support	package	in	your	application	you’ll
need	to	build	the	data	it	uses.	This	data	includes	pickle	files
representing	documents,	search	indices,	and	node	data	that	is	used
to	track	where	comments	and	other	things	are	in	a	document.	To	do
this	you	will	need	to	create	an	instance	of	the	WebSupport	class
and	call	its	build()	method:

from	sphinx.websupport	import	WebSupport

support	=	WebSupport(srcdir='/path/to/rst/sources/'
																					builddir='/path/to/build/outdir'
																					search='xapian')

support.build()

This	will	read	reStructuredText	sources	from	srcdir	and	place	the
necessary	data	in	builddir.	The	builddir	will	contain	two	sub-
directories:	one	named	“data”	that	contains	all	the	data	needed	to
display	documents,	search	through	documents,	and	add	comments
to	documents.	The	other	directory	will	be	called	“static”	and	contains
static	files	that	should	be	served	from	“/static”.

Note
If	you	wish	to	serve	static	files	from	a	path	other	than	“/static”,	you	can	do	so	by
providing	the	staticdir	keyword	argument	when	creating	the	WebSupport	object.

Integrating	Sphinx	Documents	Into	Your	Webapp

Now	that	the	data	is	built,	it’s	time	to	do	something	useful	with	it.
Start	off	by	creating	a	WebSupport	object	for	your	application:

from	sphinx.websupport	import	WebSupport

support	=	WebSupport(datadir='/path/to/the/data',
																					search='xapian')

You’ll	only	need	one	of	these	for	each	set	of	documentation	you	will
be	working	with.	You	can	then	call	it’s	get_document()	method	to
access	individual	documents:

contents	=	support.get_document('contents')

This	will	return	a	dictionary	containing	the	following	items:

body:	The	main	body	of	the	document	as	HTML
sidebar:	The	sidebar	of	the	document	as	HTML
relbar:	A	div	containing	links	to	related	documents
title:	The	title	of	the	document
css:	Links	to	css	files	used	by	Sphinx
js:	Javascript	containing	comment	options

This	dict	can	then	be	used	as	context	for	templates.	The	goal	is	to	be
easy	to	integrate	with	your	existing	templating	system.	An	example
using	Jinja2	is:

{%-	extends	"layout.html"	%}

{%-	block	title	%}
				{{	document.title	}}
{%-	endblock	%}

http://jinja.pocoo.org/

{%	block	css	%}
				{{	super()	}}
				{{	document.css|safe	}}
				<link	rel="stylesheet"	href="/static/websupport-custom.css"
{%	endblock	%}

{%-	block	js	%}
				{{	super()	}}
				{{	document.js|safe	}}
{%-	endblock	%}

{%-	block	relbar	%}
				{{	document.relbar|safe	}}
{%-	endblock	%}

{%-	block	body	%}
				{{	document.body|safe	}}
{%-	endblock	%}

{%-	block	sidebar	%}
				{{	document.sidebar|safe	}}
{%-	endblock	%}

Authentication
To	use	certain	features	such	as	voting,	it	must	be	possible	to
authenticate	users.	The	details	of	the	authentication	are	left	to	your
application.	Once	a	user	has	been	authenticated	you	can	pass	the
user’s	details	to	certain	WebSupport	methods	using	the	username
and	moderator	keyword	arguments.	The	web	support	package	will
store	the	username	with	comments	and	votes.	The	only	caveat	is
that	if	you	allow	users	to	change	their	username	you	must	update
the	websupport	package’s	data:

support.update_username(old_username,	new_username)

username	should	be	a	unique	string	which	identifies	a	user,	and
moderator	should	be	a	boolean	representing	whether	the	user	has
moderation	privilieges.	The	default	value	for	moderator	is	False.

An	example	Flask	function	that	checks	whether	a	user	is	logged	in
and	then	retrieves	a	document	is:

from	sphinx.websupport.errors	import	*

@app.route('/<path:docname>')
def	doc(docname):
				username	=	g.user.name	if	g.user	else	''
				moderator	=	g.user.moderator	if	g.user	else	False
				try:
								document	=	support.get_document(docname,	username
				except	DocumentNotFoundError:
								abort(404)
				return	render_template('doc.html',	document=document

The	first	thing	to	notice	is	that	the	docname	is	just	the	request	path.
This	makes	accessing	the	correct	document	easy	from	a	single	view.
If	the	user	is	authenticated,	then	the	username	and	moderation
status	are	passed	along	with	the	docname	to	get_document().
The	web	support	package	will	then	add	this	data	to	the
COMMENT_OPTIONS	that	are	used	in	the	template.

Note
This	only	works	works	if	your	documentation	is	served	from	your	document	root.	If	it	is
served	from	another	directory,	you	will	need	to	prefix	the	url	route	with	that	directory,
and	give	the	docroot	keyword	argument	when	creating	the	web	support	object:

support	=	WebSupport(...,	docroot='docs')

@app.route('/docs/<path:docname>')

http://flask.pocoo.org/

Performing	Searches

To	use	the	search	form	built-in	to	the	Sphinx	sidebar,	create	a
function	to	handle	requests	to	the	url	‘search’	relative	to	the
documentation	root.	The	user’s	search	query	will	be	in	the	GET
parameters,	with	the	key	q.	Then	use	the	get_search_results()
method	to	retrieve	search	results.	In	Flask	that	would	be	like	this:

@app.route('/search')
def	search():
				q	=	request.args.get('q')
				document	=	support.get_search_results(q)
				return	render_template('doc.html',	document=document

Note	that	we	used	the	same	template	to	render	our	search	results	as
we	did	to	render	our	documents.	That’s	because
get_search_results()	returns	a	context	dict	in	the	same	format
that	get_document()	does.

http://flask.pocoo.org/

Comments	&	Proposals

Now	that	this	is	done	it’s	time	to	define	the	functions	that	handle	the
AJAX	calls	from	the	script.	You	will	need	three	functions.	The	first
function	is	used	to	add	a	new	comment,	and	will	call	the	web	support
method	add_comment():

@app.route('/docs/add_comment',	methods=['POST'])
def	add_comment():
				parent_id	=	request.form.get('parent',	'')
				node_id	=	request.form.get('node',	'')
				text	=	request.form.get('text',	'')
				proposal	=	request.form.get('proposal',	'')
				username	=	g.user.name	if	g.user	is	not	None	else
				comment	=	support.add_comment(text,	node_id='node_id'
																																		parent_id='parent_id'
																																		username=username,
				return	jsonify(comment=comment)

You’ll	notice	that	both	a	parent_id	and	node_id	are	sent	with	the
request.	If	the	comment	is	being	attached	directly	to	a	node,
parent_id	will	be	empty.	If	the	comment	is	a	child	of	another
comment,	then	node_id	will	be	empty.	Then	next	function	handles
the	retrieval	of	comments	for	a	specific	node,	and	is	aptly	named
get_data():

@app.route('/docs/get_comments')
def	get_comments():
				username	=	g.user.name	if	g.user	else	None
				moderator	=	g.user.moderator	if	g.user	else	False
				node_id	=	request.args.get('node',	'')
				data	=	support.get_data(node_id,	username,	moderator
				return	jsonify(**data)

The	final	function	that	is	needed	will	call	process_vote(),	and	will
handle	user	votes	on	comments:

@app.route('/docs/process_vote',	methods=['POST'])
def	process_vote():
				if	g.user	is	None:
								abort(401)
				comment_id	=	request.form.get('comment_id')
				value	=	request.form.get('value')
				if	value	is	None	or	comment_id	is	None:
								abort(400)
				support.process_vote(comment_id,	g.user.id,	value
				return	"success"

Comment	Moderation

By	default,	all	comments	added	through	add_comment()	are
automatically	displayed.	If	you	wish	to	have	some	form	of
moderation,	you	can	pass	the	displayed	keyword	argument:

comment	=	support.add_comment(text,	node_id='node_id'
																														parent_id='parent_id'
																														username=username,	proposal
																														displayed=False)

You	can	then	create	a	new	view	to	handle	the	moderation	of
comments.	It	will	be	called	when	a	moderator	decides	a	comment
should	be	accepted	and	displayed:

@app.route('/docs/accept_comment',	methods=['POST'])
def	accept_comment():
				moderator	=	g.user.moderator	if	g.user	else	False
				comment_id	=	request.form.get('id')
				support.accept_comment(comment_id,	moderator=moderator
				return	'OK'

Rejecting	comments	happens	via	comment	deletion.

To	perform	a	custom	action	(such	as	emailing	a	moderator)	when	a
new	comment	is	added	but	not	displayed,	you	can	pass	callable	to
the	WebSupport	class	when	instantiating	your	support	object:

def	moderation_callback(comment):
				"""Do	something..."""

support	=	WebSupport(...,	moderation_callback=moderation_callback

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	» Sphinx	Web	Support 	»

The	moderation	callback	must	take	one	argument,	which	will	be	the
same	comment	dict	that	is	returned	by	add_comment().

©	Copyright	2007-2013,	Georg	Brandl.	Created	using	Sphinx	1.2.

http://sphinx-doc.org/

Home Get	it Docs Extend/Develop

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	» Sphinx	Web	Support 	»

The	WebSupport	Class
class	sphinx.websupport.WebSupport

The	main	API	class	for	the	web	support	package.	All	interactions
with	the	web	support	package	should	occur	through	this	class.

The	class	takes	the	following	keyword	arguments:

srcdir
The	directory	containing	reStructuredText	source	files.

builddir
The	directory	that	build	data	and	static	files	should	be	placed
in.	This	should	be	used	when	creating	a	WebSupport	object
that	will	be	used	to	build	data.

datadir
The	directory	that	the	web	support	data	is	in.	This	should	be
used	when	creating	a	WebSupport	object	that	will	be	used	to
retrieve	data.

search
This	may	contain	either	a	string	(e.g.	‘xapian’)	referencing	a
built-in	search	adapter	to	use,	or	an	instance	of	a	subclass	of
BaseSearch.

storage
This	may	contain	either	a	string	representing	a	database	uri,
or	an	instance	of	a	subclass	of	StorageBackend.	If	this	is
not	provided,	a	new	sqlite	database	will	be	created.

moderation_callback
A	callable	to	be	called	when	a	new	comment	is	added	that	is
not	displayed.	It	must	accept	one	argument:	a	dictionary
representing	the	comment	that	was	added.

staticdir
If	static	files	are	served	from	a	location	besides	'/static',
this	should	be	a	string	with	the	name	of	that	location	(e.g.
'/static_files').

docroot
If	the	documentation	is	not	served	from	the	base	path	of	a
URL,	this	should	be	a	string	specifying	that	path	(e.g.
'docs').

Methods

WebSupport.build()
Build	the	documentation.	Places	the	data	into	the	outdir
directory.	Use	it	like	this:

support	=	WebSupport(srcdir,	builddir,	search='xapian'
support.build()

This	will	read	reStructured	text	files	from	srcdir.	Then	it	will
build	the	pickles	and	search	index,	placing	them	into	builddir.
It	will	also	save	node	data	to	the	database.

WebSupport.get_document(docname,	username='',
moderator=False)

Load	and	return	a	document	from	a	pickle.	The	document	will	be
a	dict	object	which	can	be	used	to	render	a	template:

support	=	WebSupport(datadir=datadir)
support.get_document('index',	username,	moderator

In	most	cases	docname	will	be	taken	from	the	request	path	and
passed	directly	to	this	function.	In	Flask,	that	would	be	something
like	this:

@app.route('/<path:docname>')
def	index(docname):
				username	=	g.user.name	if	g.user	else	''
				moderator	=	g.user.moderator	if	g.user	else	
				try:
								document	=	support.get_document(docname,
																																								moderator

				except	DocumentNotFoundError:
								abort(404)
				render_template('doc.html',	document=document

The	document	dict	that	is	returned	contains	the	following	items	to
be	used	during	template	rendering.

body:	The	main	body	of	the	document	as	HTML
sidebar:	The	sidebar	of	the	document	as	HTML
relbar:	A	div	containing	links	to	related	documents
title:	The	title	of	the	document
css:	Links	to	css	files	used	by	Sphinx
script:	Javascript	containing	comment	options

This	raises	DocumentNotFoundError	if	a	document	matching
docname	is	not	found.
Parameters: docname	–	the	name	of	the	document	to	load.

WebSupport.get_data(node_id,	username=None,
moderator=False)

Get	the	comments	and	source	associated	with	node_id.	If
username	is	given	vote	information	will	be	included	with	the
returned	comments.	The	default	CommentBackend	returns	a	dict
with	two	keys,	source,	and	comments.	source	is	raw	source	of
the	node	and	is	used	as	the	starting	point	for	proposals	a	user
can	add.	comments	is	a	list	of	dicts	that	represent	a	comment,
each	having	the	following	items:

Key Contents
text The	comment	text.
username The	username	that	was	stored	with	the	comment.
id The	comment’s	unique	identifier.
rating The	comment’s	current	rating.

age The	time	in	seconds	since	the	comment	was
added.
A	dict	containing	time	information.	It	contains	the
following	keys:	year,	month,	day,	hour,	minute,

time second,	iso,	and	delta.	iso	is	the	time	formatted	in
ISO	8601	format.	delta	is	a	printable	form	of	how
old	the	comment	is	(e.g.	“3	hours	ago”).

vote
If	user_id	was	given,	this	will	be	an	integer
representing	the	vote.	1	for	an	upvote,	-1	for	a
downvote,	or	0	if	unvoted.

node
The	id	of	the	node	that	the	comment	is	attached	to.
If	the	comment’s	parent	is	another	comment	rather
than	a	node,	this	will	be	null.

parent The	id	of	the	comment	that	this	comment	is
attached	to	if	it	is	not	attached	to	a	node.

children A	list	of	all	children,	in	this	format.

proposal_diff
An	HTML	representation	of	the	differences	between
the	the	current	source	and	the	user’s	proposed
source.

Parameters:

node_id	–	the	id	of	the	node	to	get	comments
for.
username	–	the	username	of	the	user	viewing
the	comments.
moderator	–	whether	the	user	is	a	moderator.

WebSupport.add_comment(text,	node_id='',	parent_id='',
displayed=True,	username=None,	time=None,	proposal=None,
moderator=False)

Add	a	comment	to	a	node	or	another	comment.	Returns	the
comment	in	the	same	format	as	get_comments().	If	the
comment	is	being	attached	to	a	node,	pass	in	the	node’s	id	(as	a
string)	with	the	node	keyword	argument:

comment	=	support.add_comment(text,	node_id=node_id

If	the	comment	is	the	child	of	another	comment,	provide	the
parent’s	id	(as	a	string)	with	the	parent	keyword	argument:

comment	=	support.add_comment(text,	parent_id=parent_id

If	you	would	like	to	store	a	username	with	the	comment,	pass	in
the	optional	username	keyword	argument:

comment	=	support.add_comment(text,	node=node_id
																														username=username)

Parameters:

parent_id	–	the	prefixed	id	of	the	comment’s
parent.
text	–	the	text	of	the	comment.
displayed	–	for	moderation	purposes
username	–	the	username	of	the	user	making
the	comment.
time	–	the	time	the	comment	was	created,
defaults	to	now.

WebSupport.process_vote(comment_id,	username,	value)
Process	a	user’s	vote.	The	web	support	package	relies	on	the
API	user	to	perform	authentication.	The	API	user	will	typically
receive	a	comment_id	and	value	from	a	form,	and	then	make
sure	the	user	is	authenticated.	A	unique	username	must	be
passed	in,	which	will	also	be	used	to	retrieve	the	user’s	past
voting	data.	An	example,	once	again	in	Flask:

@app.route('/docs/process_vote',	methods=['POST'
def	process_vote():
				if	g.user	is	None:
								abort(401)
				comment_id	=	request.form.get('comment_id')
				value	=	request.form.get('value')
				if	value	is	None	or	comment_id	is	None:
								abort(400)
				support.process_vote(comment_id,	g.user.name
				return	"success"

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	» Sphinx	Web	Support 	»

Parameters:

comment_id	–	the	comment	being	voted	on
username	–	the	unique	username	of	the	user
voting
value	–	1	for	an	upvote,	-1	for	a	downvote,	0	for
an	unvote.

WebSupport.get_search_results(q)
Perform	a	search	for	the	query	q,	and	create	a	set	of	search
results.	Then	render	the	search	results	as	html	and	return	a
context	dict	like	the	one	created	by	get_document():

document	=	support.get_search_results(q)

Parameters: q	–	the	search	query

©	Copyright	2007-2013,	Georg	Brandl.	Created	using	Sphinx	1.2.

http://sphinx-doc.org/

Home Get	it Docs Extend/Develop

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	» Sphinx	Web	Support 	»

Search	Adapters
To	create	a	custom	search	adapter	you	will	need	to	subclass	the
BaseSearch	class.	Then	create	an	instance	of	the	new	class	and
pass	that	as	the	search	keyword	argument	when	you	create	the
WebSupport	object:

support	=	WebSupport(srcdir=srcdir,
																					builddir=builddir,
																					search=MySearch())

For	more	information	about	creating	a	custom	search	adapter,
please	see	the	documentation	of	the	BaseSearch	class	below.

class	sphinx.websupport.search.BaseSearch
Defines	an	interface	for	search	adapters.

BaseSearch	Methods

The	following	methods	are	defined	in	the	BaseSearch	class.
Some	methods	do	not	need	to	be	overridden,	but	some
(add_document()	and	handle_query())	must	be	overridden
in	your	subclass.	For	a	working	example,	look	at	the	built-in
adapter	for	whoosh.

BaseSearch.init_indexing(changed=[])
Called	by	the	builder	to	initialize	the	search	indexer.	changed	is	a
list	of	pagenames	that	will	be	reindexed.	You	may	want	to
remove	these	from	the	search	index	before	indexing	begins.

Parameters: changed	–	a	list	of	pagenames	that	will	be	re-
indexed

BaseSearch.finish_indexing()
Called	by	the	builder	when	writing	has	been	completed.	Use	this
to	perform	any	finalization	or	cleanup	actions	after	indexing	is
complete.

BaseSearch.feed(pagename,	title,	doctree)
Called	by	the	builder	to	add	a	doctree	to	the	index.	Converts	the
doctree	to	text	and	passes	it	to	add_document().	You
probably	won’t	want	to	override	this	unless	you	need	access	to
the	doctree.	Override	add_document()	instead.

Parameters:
pagename	–	the	name	of	the	page	to	be	indexed
title	–	the	title	of	the	page	to	be	indexed
doctree	–	is	the	docutils	doctree	representation
of	the	page

BaseSearch.add_document(pagename,	title,	text)
Called	by	feed()	to	add	a	document	to	the	search	index.	This
method	should	should	do	everything	necessary	to	add	a	single
document	to	the	search	index.

pagename	is	name	of	the	page	being	indexed.	It	is	the
combination	of	the	source	files	relative	path	and	filename,	minus
the	extension.	For	example,	if	the	source	file	is	“ext/builders.rst”,
the	pagename	would	be	“ext/builders”.	This	will	need	to	be
returned	with	search	results	when	processing	a	query.

Parameters:
pagename	–	the	name	of	the	page	being
indexed
title	–	the	page’s	title
text	–	the	full	text	of	the	page

BaseSearch.query(q)
Called	by	the	web	support	api	to	get	search	results.	This	method
compiles	the	regular	expression	to	be	used	when	extracting
context,	then	calls	handle_query().	You	won’t	want	to
override	this	unless	you	don’t	want	to	use	the	included
extract_context()	method.	Override	handle_query()
instead.

Parameters: q	–	the	search	query	string.

BaseSearch.handle_query(q)
Called	by	query()	to	retrieve	search	results	for	a	search	query
q.	This	should	return	an	iterable	containing	tuples	of	the	following
format:

(<path>,	<title>,	<context>)

path	and	title	are	the	same	values	that	were	passed	to
add_document(),	and	context	should	be	a	short	text	snippet
of	the	text	surrounding	the	search	query	in	the	document.

The	extract_context()	method	is	provided	as	a	simple	way
to	create	the	context.
Parameters: q	–	the	search	query

BaseSearch.extract_context(text,	length=240)
Extract	the	context	for	the	search	query	from	the	document’s	full

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	» Sphinx	Web	Support 	»

text.

Parameters:
text	–	the	full	text	of	the	document	to	create	the
context	for
length	–	the	length	of	the	context	snippet	to
return.

©	Copyright	2007-2013,	Georg	Brandl.	Created	using	Sphinx	1.2.

http://sphinx-doc.org/

Home Get	it Docs Extend/Develop

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	» Sphinx	Web	Support 	»

Storage	Backends
To	create	a	custom	storage	backend	you	will	need	to	subclass	the
StorageBackend	class.	Then	create	an	instance	of	the	new	class
and	pass	that	as	the	storage	keyword	argument	when	you	create
the	WebSupport	object:

support	=	WebSupport(srcdir=srcdir,
																					builddir=builddir,
																					storage=MyStorage())

For	more	information	about	creating	a	custom	storage	backend,
please	see	the	documentation	of	the	StorageBackend	class	below.

class	sphinx.websupport.storage.StorageBackend
Defines	an	interface	for	storage	backends.

StorageBackend	Methods

StorageBackend.pre_build()
Called	immediately	before	the	build	process	begins.	Use	this	to
prepare	the	StorageBackend	for	the	addition	of	nodes.

StorageBackend.add_node(id,	document,	source)
Add	a	node	to	the	StorageBackend.

Parameters:
id	–	a	unique	id	for	the	comment.
document	–	the	name	of	the	document	the	node
belongs	to.
source	–	the	source	files	name.

StorageBackend.post_build()
Called	after	a	build	has	completed.	Use	this	to	finalize	the
addition	of	nodes	if	needed.

StorageBackend.add_comment(text,	displayed,	username,
time,	proposal,	node_id,	parent_id,	moderator)

Called	when	a	comment	is	being	added.

Parameters:

text	–	the	text	of	the	comment
displayed	–	whether	the	comment	should	be
displayed
username	–	the	name	of	the	user	adding	the
comment
time	–	a	date	object	with	the	time	the	comment
was	added
proposal	–	the	text	of	the	proposal	the	user
made
node_id	–	the	id	of	the	node	that	the	comment	is
being	added	to
parent_id	–	the	id	of	the	comment’s	parent
comment.
moderator	–	whether	the	user	adding	the
comment	is	a	moderator

StorageBackend.delete_comment(comment_id,	username,
moderator)

Delete	a	comment.

Raises	UserNotAuthorizedError	if	moderator	is	False	and
username	doesn’t	match	the	username	on	the	comment.

Parameters:

comment_id	–	The	id	of	the	comment	being
deleted.
username	–	The	username	of	the	user
requesting	the	deletion.
moderator	–	Whether	the	user	is	a	moderator.

StorageBackend.get_data(node_id,	username,	moderator)
Called	to	retrieve	all	data	for	a	node.	This	should	return	a	dict
with	two	keys,	source	and	comments	as	described	by
WebSupport‘s	get_data()	method.

Parameters:

node_id	–	The	id	of	the	node	to	get	data	for.
username	–	The	name	of	the	user	requesting
the	data.
moderator	–	Whether	the	requestor	is	a
moderator.

StorageBackend.process_vote(comment_id,	username,
value)

Process	a	vote	that	is	being	cast.	value	will	be	either	-1,	0,	or	1.

Parameters:

comment_id	–	The	id	of	the	comment	being
voted	on.
username	–	The	username	of	the	user	casting
the	vote.
value	–	The	value	of	the	vote	being	cast.

StorageBackend.update_username(old_username,
new_username)

If	a	user	is	allowed	to	change	their	username	this	method	should
be	called	so	that	there	is	not	stagnate	data	in	the	storage	system.

old_username	–	The	username	being	changed.

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	» Sphinx	Web	Support 	»

Parameters: new_username	–	What	the	username	is	being
changed	to.

StorageBackend.accept_comment(comment_id)
Called	when	a	moderator	accepts	a	comment.	After	the	method
is	called	the	comment	should	be	displayed	to	all	users.

Parameters: comment_id	–	The	id	of	the	comment	being
accepted.

©	Copyright	2007-2013,	Georg	Brandl.	Created	using	Sphinx	1.2.

http://sphinx-doc.org/

Home Get	it Docs Extend/Develop

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	»

Sphinx	FAQ
This	is	a	list	of	Frequently	Asked	Questions	about	Sphinx.	Feel	free
to	suggest	new	entries!

How	do	I...

...	create	PDF	files	without	LaTeX?
You	can	use	rst2pdf	version	0.12	or	greater	which	comes	with
built-in	Sphinx	integration.	See	the	Available	builders	section	for
details.

...	get	section	numbers?
They	are	automatic	in	LaTeX	output;	for	HTML,	give	a
:numbered:	option	to	the	toctree	directive	where	you	want	to
start	numbering.

...	customize	the	look	of	the	built	HTML	files?
Use	themes,	see	HTML	theming	support.

...	add	global	substitutions	or	includes?
Add	them	in	the	rst_epilog	config	value.

...	display	the	whole	TOC	tree	in	the	sidebar?
Use	the	toctree	callable	in	a	custom	layout	template,	probably
in	the	sidebartoc	block.

...	write	my	own	extension?
See	the	extension	tutorial.

...	convert	from	my	existing	docs	using	MoinMoin	markup?
The	easiest	way	is	to	convert	to	xhtml,	then	convert	xhtml	to
reST.	You’ll	still	need	to	mark	up	classes	and	such,	but	the
headings	and	code	examples	come	through	cleanly.

...	create	HTML	slides	from	Sphinx	documents?
See	the	“Hieroglyph”	package	at
http://github.com/nyergler/hieroglyph.

For	many	more	extensions	and	other	contributed	stuff,	see	the
sphinx-contrib	repository.

http://rst2pdf.googlecode.com
http://docutils.sourceforge.net/sandbox/xhtml2rest/xhtml2rest.py
http://github.com/nyergler/hieroglyph
https://bitbucket.org/birkenfeld/sphinx-contrib/

Using	Sphinx	with...

Read	the	Docs
http://readthedocs.org	is	a	documentation	hosting	service	based
around	Sphinx.	They	will	host	sphinx	documentation,	along	with
supporting	a	number	of	other	features	including	version	support,
PDF	generation,	and	more.	The	Getting	Started	guide	is	a	good
place	to	start.

Epydoc
There’s	a	third-party	extension	providing	an	api	role	which	refers
to	Epydoc’s	API	docs	for	a	given	identifier.

Doxygen
Michael	Jones	is	developing	a	reST/Sphinx	bridge	to	doxygen
called	breathe.

SCons
Glenn	Hutchings	has	written	a	SCons	build	script	to	build	Sphinx
documentation;	it	is	hosted	here:
https://bitbucket.org/zondo/sphinx-scons

PyPI
Jannis	Leidel	wrote	a	setuptools	command	that	automatically
uploads	Sphinx	documentation	to	the	PyPI	package
documentation	area	at	http://packages.python.org/.

GitHub	Pages
Directories	starting	with	underscores	are	ignored	by	default	which
breaks	static	files	in	Sphinx.	GitHub’s	preprocessor	can	be
disabled	to	support	Sphinx	HTML	output	properly.

MediaWiki
See	https://bitbucket.org/kevindunn/sphinx-wiki,	a	project	by
Kevin	Dunn.

Google	Analytics
You	can	use	a	custom	layout.html	template,	like	this:

http://readthedocs.org
http://read-the-docs.readthedocs.org/en/latest/getting_started.html
http://git.savannah.gnu.org/cgit/kenozooid.git/tree/doc/extapi.py
http://github.com/michaeljones/breathe/tree/master
https://bitbucket.org/zondo/sphinx-scons
http://pypi.python.org/pypi/Sphinx-PyPI-upload
http://packages.python.org/
https://github.com/blog/572-bypassing-jekyll-on-github-pages
https://bitbucket.org/kevindunn/sphinx-wiki

{%	extends	"!layout.html"	%}

{%-	block	extrahead	%}
{{	super()	}}
<script	type="text/javascript">
		var	_gaq	=	_gaq	||	[];
		_gaq.push(['_setAccount',	'XXX	account	number	XXX'
		_gaq.push(['_trackPageview']);
</script>
{%	endblock	%}

{%	block	footer	%}
{{	super()	}}
<div	class="footer">This	page	uses	<a	href="http://analytics.google.com/"
Google	Analytics	to	collect	statistics.	You	can	disable	it	by	blocking
the	JavaScript	coming	from	www.google-analytics.com.
<script	type="text/javascript">
		(function()	{
				var	ga	=	document.createElement('script');
				ga.src	=	('https:'	==	document.location.protocol
														'https://ssl'	:	'http://www')	+	'.google-analytics.com/ga.js'
				ga.setAttribute('async',	'true');
				document.documentElement.firstChild.appendChild
		})();
</script>
</div>
{%	endblock	%}

Epub	info

The	following	list	gives	some	hints	for	the	creation	of	epub	files:

Split	the	text	into	several	files.	The	longer	the	individual	HTML
files	are,	the	longer	it	takes	the	ebook	reader	to	render	them.	In
extreme	cases,	the	rendering	can	take	up	to	one	minute.

Try	to	minimize	the	markup.	This	also	pays	in	rendering	time.

For	some	readers	you	can	use	embedded	or	external	fonts
using	the	CSS	@font-face	directive.	This	is	extremely	useful
for	code	listings	which	are	often	cut	at	the	right	margin.	The
default	Courier	font	(or	variant)	is	quite	wide	and	you	can	only
display	up	to	60	characters	on	a	line.	If	you	replace	it	with	a
narrower	font,	you	can	get	more	characters	on	a	line.	You	may
even	use	FontForge	and	create	narrow	variants	of	some	free
font.	In	my	case	I	get	up	to	70	characters	on	a	line.

You	may	have	to	experiment	a	little	until	you	get	reasonable
results.

Test	the	created	epubs.	You	can	use	several	alternatives.	The
ones	I	am	aware	of	are	Epubcheck,	Calibre,	FBreader	(although
it	does	not	render	the	CSS),	and	Bookworm.	For	bookworm	you
can	download	the	source	from
http://code.google.com/p/threepress/	and	run	your	own	local
server.

Large	floating	divs	are	not	displayed	properly.	If	they	cover	more
than	one	page,	the	div	is	only	shown	on	the	first	page.	In	that
case	you	can	copy	the	epub.css	from	the
sphinx/themes/epub/static/	directory	to	your	local
_static/	directory	and	remove	the	float	settings.
Files	that	are	inserted	outside	of	the	toctree	directive	must	be
manually	included.	This	sometimes	applies	to	appendixes,	e.g.
the	glossary	or	the	indices.	You	can	add	them	with	the
epub_post_files	option.

http://fontforge.sourceforge.net/
http://code.google.com/p/epubcheck/
http://calibre-ebook.com/
http://www.fbreader.org/
http://bookworm.oreilly.com/
http://code.google.com/p/threepress/

The	handling	of	the	epub	cover	page	differs	from	the
reStructuredText	procedure	which	automatically	resolves	image
paths	and	puts	the	images	into	the	_images	directory.	For	the
epub	cover	page	put	the	image	in	the	html_static_path
directory	and	reference	it	with	its	full	path	in	the	epub_cover
config	option.

Texinfo	info

There	are	two	main	programs	for	reading	Info	files,	info	and	GNU
Emacs.	The	info	program	has	less	features	but	is	available	in	most
Unix	environments	and	can	be	quickly	accessed	from	the	terminal.
Emacs	provides	better	font	and	color	display	and	supports	extensive
customization	(of	course).

Displaying	Links
One	noticeable	problem	you	may	encounter	with	the	generated	Info
files	is	how	references	are	displayed.	If	you	read	the	source	of	an
Info	file,	a	reference	to	this	section	would	look	like:

*	note	Displaying	Links:	target-id

In	the	stand-alone	reader,	info,	references	are	displayed	just	as
they	appear	in	the	source.	Emacs,	on	the	other-hand,	will	by	default
replace	*note:	with	see	and	hide	the	target-id.	For	example:

Displaying	Links

The	exact	behavior	of	how	Emacs	displays	references	is	dependent
on	the	variable	Info-hide-note-references.	If	set	to	the	value
of	hide,	Emacs	will	hide	both	the	*note:	part	and	the	target-
id.	This	is	generally	the	best	way	to	view	Sphinx-based	documents
since	they	often	make	frequent	use	of	links	and	do	not	take	this
limitation	into	account.	However,	changing	this	variable	affects	how
all	Info	documents	are	displayed	and	most	due	take	this	behavior
into	account.

If	you	want	Emacs	to	display	Info	files	produced	by	Sphinx	using	the
value	hide	for	Info-hide-note-references	and	the	default
value	for	all	other	Info	files,	try	adding	the	following	Emacs	Lisp	code
to	your	start-up	file,	~/.emacs.d/init.el.

(defadvice	info-insert-file-contents	(after
																																						sphinx-info-insert-file-contents
																																						activate)
		"Hack	to	make	`Info-hide-note-references'	buffer-local	and
automatically	set	to	`hide'	iff	it	can	be	determined	that	this	file
was	created	from	a	Texinfo	file	generated	by	Docutils	or	Sphinx."
		(set	(make-local-variable	'Info-hide-note-references)
							(default-value	'Info-hide-note-references))
		(save-excursion
				(save-restriction
						(widen)	(goto-char	(point-min))
						(when	(re-search-forward
													"^Generated	by	\\(Sphinx\\|Docutils\\)"
													(save-excursion	(search-forward	"\x1f"	nil	t))	t)
								(set	(make-local-variable	'Info-hide-note-references)
													'hide)))))

Notes
The	following	notes	may	be	helpful	if	you	want	to	create	Texinfo	files:

Each	section	corresponds	to	a	different	node	in	the	Info	file.
Colons	(:)	cannot	be	properly	escaped	in	menu	entries	and
xrefs.	They	will	be	replaced	with	semicolons	(;).
Links	to	external	Info	files	can	be	created	using	the	somewhat
official	URI	scheme	info.	For	example:

info:Texinfo#makeinfo_options

which	produces:

info:Texinfo#makeinfo_options

Inline	markup

info:Texinfo#makeinfo_options

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	»

The	standard	formatting	for	*strong*	and	_emphasis_	can
result	in	ambiguous	output	when	used	to	markup	parameter
names	and	other	values.	Since	this	is	a	fairly	common	practice,
the	default	formatting	has	been	changed	so	that	emphasis	and
strong	are	now	displayed	like	`literal's.

The	standard	formatting	can	be	re-enabled	by	adding	the
following	to	your	conf.py:

texinfo_elements	=	{'preamble':	"""
@definfoenclose	strong,*,*
@definfoenclose	emph,_,_
"""}

©	Copyright	2007-2013,	Georg	Brandl.	Created	using	Sphinx	1.2.

http://sphinx-doc.org/

Home Get	it Docs Extend/Develop

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	»

Glossary
builder

A	class	(inheriting	from	Builder)	that	takes	parsed	documents
and	performs	an	action	on	them.	Normally,	builders	translate	the
documents	to	an	output	format,	but	it	is	also	possible	to	use	the
builder	builders	that	e.g.	check	for	broken	links	in	the
documentation,	or	build	coverage	information.

See	Available	builders	for	an	overview	over	Sphinx’	built-in
builders.

configuration	directory
The	directory	containing	conf.py.	By	default,	this	is	the	same
as	the	source	directory,	but	can	be	set	differently	with	the	-c
command-line	option.

directive
A	reStructuredText	markup	element	that	allows	marking	a	block
of	content	with	special	meaning.	Directives	are	supplied	not	only
by	docutils,	but	Sphinx	and	custom	extensions	can	add	their	own.
The	basic	directive	syntax	looks	like	this:

..	directivename::	argument	...
			:option:	value

			Content	of	the	directive.

See	Directives	for	more	information.

document	name
Since	reST	source	files	can	have	different	extensions	(some
people	like	.txt,	some	like	.rst	–	the	extension	can	be
configured	with	source_suffix)	and	different	OSes	have
different	path	separators,	Sphinx	abstracts	them:	document
names	are	always	relative	to	the	source	directory,	the	extension
is	stripped,	and	path	separators	are	converted	to	slashes.	All

values,	parameters	and	such	referring	to	“documents”	expect
such	document	names.

Examples	for	document	names	are	index,	library/zipfile,
or	reference/datamodel/types.	Note	that	there	is	no	leading
or	trailing	slash.

domain
A	domain	is	a	collection	of	markup	(reStructuredText	directives
and	roles)	to	describe	and	link	to	objects	belonging	together,	e.g.
elements	of	a	programming	language.	Directive	and	role	names
in	a	domain	have	names	like	domain:name,	e.g.	py:function.
Having	domains	means	that	there	are	no	naming	problems	when
one	set	of	documentation	wants	to	refer	to	e.g.	C++	and	Python
classes.	It	also	means	that	extensions	that	support	the
documentation	of	whole	new	languages	are	much	easier	to	write.
For	more	information	about	domains,	see	the	chapter	Sphinx
Domains.

environment
A	structure	where	information	about	all	documents	under	the	root
is	saved,	and	used	for	cross-referencing.	The	environment	is
pickled	after	the	parsing	stage,	so	that	successive	runs	only	need
to	read	and	parse	new	and	changed	documents.

master	document
The	document	that	contains	the	root	toctree	directive.

object
The	basic	building	block	of	Sphinx	documentation.	Every	“object
directive”	(e.g.	function	or	object)	creates	such	a	block;	and
most	objects	can	be	cross-referenced	to.

role
A	reStructuredText	markup	element	that	allows	marking	a	piece
of	text.	Like	directives,	roles	are	extensible.	The	basic	syntax
looks	like	this:	:rolename:`content`.	See	Inline	markup	for
details.

source	directory

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	»

The	directory	which,	including	its	subdirectories,	contains	all
source	files	for	one	Sphinx	project.

©	Copyright	2007-2013,	Georg	Brandl.	Created	using	Sphinx	1.2.

http://sphinx-doc.org/

Home Get	it Docs Extend/Develop

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	»

Sphinx	Developer’s	Guide
Abstract

This	document	describes	the	development	process	of	Sphinx,	a
documentation	system	used	by	developers	to	document	systems
used	by	other	developers	to	develop	other	systems	that	may	also
be	documented	using	Sphinx.

The	Sphinx	source	code	is	managed	using	Mercurial	and	is	hosted
on	BitBucket.

hg	clone	https://bitbucket.org/birkenfeld/sphinx

Community

sphinx-users	<sphinx-users@googlegroups.com>
Mailing	list	for	user	support.

sphinx-dev	<sphinx-dev@googlegroups.com>
Mailing	list	for	development	related	discussions.

#sphinx-doc	on	irc.freenode.net
IRC	channel	for	development	questions	and	user	support.

http://mercurial.selenic.com/
http://bitbucket.org
https://bitbucket.org/birkenfeld/sphinx
mailto:sphinx-users%40googlegroups.com
mailto:sphinx-dev%40googlegroups.com

Bug	Reports	and	Feature	Requests

If	you	have	encountered	a	problem	with	Sphinx	or	have	an	idea	for	a
new	feature,	please	submit	it	to	the	issue	tracker	on	BitBucket	or
discuss	it	on	the	sphinx-dev	mailing	list.

For	bug	reports,	please	include	the	output	produced	during	the	build
process	and	also	the	log	file	Sphinx	creates	after	it	encounters	an
un-handled	exception.	The	location	of	this	file	should	be	shown
towards	the	end	of	the	error	message.

Including	or	providing	a	link	to	the	source	files	involved	may	help	us
fix	the	issue.	If	possible,	try	to	create	a	minimal	project	that	produces
the	error	and	post	that	instead.

http://bitbucket.org/birkenfeld/sphinx/issues

Contributing	to	Sphinx

The	recommended	way	for	new	contributors	to	submit	code	to
Sphinx	is	to	fork	the	Mercurial	repository	on	BitBucket	and	then
submit	a	pull	request	after	committing	the	changes.	The	pull	request
will	then	need	to	be	approved	by	one	of	the	core	developers	before	it
is	merged	into	the	main	repository.

Getting	Started
These	are	the	basic	steps	needed	to	start	developing	on	Sphinx.

1.	 Create	an	account	on	BitBucket.

2.	 Fork	the	main	Sphinx	repository	(birkenfeld/sphinx)	using	the
BitBucket	interface.

3.	 Clone	the	forked	repository	to	your	machine.

hg	clone	https://bitbucket.org/USERNAME/sphinx-fork
cd	sphinx-fork

4.	 Checkout	the	appropriate	branch.

For	changes	that	should	be	included	in	the	next	minor	release
(namely	bug	fixes),	use	the	stable	branch.

hg	checkout	stable

For	new	features	or	other	substantial	changes	that	should	wait
until	the	next	major	release,	use	the	default	branch.

5.	 Setup	your	Python	environment.

virtualenv	~/sphinxenv
.	~/sphinxenv/bin/activate

https://bitbucket.org/birkenfeld/sphinx

pip	install	-e	.

6.	 Hack,	hack,	hack.

For	tips	on	working	with	the	code,	see	the	Coding	Guide.

7.	 Test,	test,	test.

Run	the	unit	tests:

pip	install	nose
make	test

Build	the	documentation	and	check	the	output	for	different
builders:

cd	docs
make	clean	html	text	man	info	latexpdf

Run	the	unit	tests	under	different	Python	environments	using
tox:

pip	install	tox
tox	-v

Add	a	new	unit	test	in	the	tests	directory	if	you	can.

For	bug	fixes,	first	add	a	test	that	fails	without	your	changes	and
passes	after	they	are	applied.

8.	 Commit	your	changes.

hg	commit	-m	'Add	useful	new	feature	that	does	this.'

BitBucket	recognizes	certain	phrases	that	can	be	used	to
automatically	update	the	issue	tracker.

https://confluence.atlassian.com/display/BITBUCKET/Automatically+Resolving+Issues+when+Users+Push+Code

For	example:

hg	commit	-m	'Closes	#42:	Fix	invalid	markup	in	docstring	of	Foo.bar.'

would	close	issue	#42.

9.	 Push	changes	to	your	forked	repository	on	BitBucket.

hg	push

10.	 Submit	a	pull	request	from	your	repository	to
birkenfeld/sphinx	using	the	BitBucket	interface.

11.	 Wait	for	a	core	developer	to	review	your	changes.

Core	Developers
The	core	developers	of	Sphinx	have	write	access	to	the	main
repository.	They	can	commit	changes,	accept/reject	pull	requests,
and	manage	items	on	the	issue	tracker.

You	do	not	need	to	be	a	core	developer	or	have	write	access	to	be
involved	in	the	development	of	Sphinx.	You	can	submit	patches	or
create	pull	requests	from	forked	repositories	and	have	a	core
developer	add	the	changes	for	you.

The	following	are	some	general	guidelines	for	core	developers:

Questionable	or	extensive	changes	should	be	submitted	as	a
pull	request	instead	of	being	committed	directly	to	the	main
repository.	The	pull	request	should	be	reviewed	by	another	core
developer	before	it	is	merged.
Trivial	changes	can	be	committed	directly	but	be	sure	to	keep
the	repository	in	a	good	working	state	and	that	all	tests	pass
before	pushing	your	changes.
When	committing	code	written	by	someone	else,	please
attribute	the	original	author	in	the	commit	message	and	any
relevant	CHANGES	entry.

Using	Mercurial	named	branches	other	than	default	and
stable	is	not	encouraged.

Locale	updates
The	parts	of	messages	in	Sphinx	that	go	into	builds	are	translated
into	several	locales.	The	translations	are	kept	as	gettext	.po	files
translated	from	the	master	template	sphinx/locale/sphinx.pot.

Sphinx	uses	Babel	to	extract	messages	and	maintain	the	catalog
files.	It	is	integrated	in	setup.py:

Use	python	setup.py	extract_messages	to	update	the
.pot	template.
Use	python	setup.py	update_catalog	to	update	all
existing	language	catalogs	in
sphinx/locale/*/LC_MESSAGES	with	the	current	messages
in	the	template	file.
Use	python	setup.py	compile_catalog	to	compile	the
.po	files	to	binary	.mo	files	and	.js	files.

When	an	updated	.po	file	is	submitted,	run	compile_catalog	to
commit	both	the	source	and	the	compiled	catalogs.

When	a	new	locale	is	submitted,	add	a	new	directory	with	the	ISO
639-1	language	identifier	and	put	sphinx.po	in	there.	Don’t	forget
to	update	the	possible	values	for	language	in	doc/config.rst.

The	Sphinx	core	messages	can	also	be	translated	on	Transifex.
There	exists	a	client	tool	named	tx	in	the	Python	package
“transifex_client”,	which	can	be	used	to	pull	translations	in	.po
format	from	Transifex.	To	do	this,	go	to	sphinx/locale	and	then
run	tx	pull	-f	-l	LANG	where	LANG	is	an	existing	language
identifier.	It	is	good	practice	to	run	python	setup.py
update_catalog	afterwards	to	make	sure	the	.po	file	has	the
canonical	Babel	formatting.

http://babel.edgewall.org
http://transifex.com

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	»

Coding	Guide

Try	to	use	the	same	code	style	as	used	in	the	rest	of	the	project.
See	the	Pocoo	Styleguide	for	more	information.
For	non-trivial	changes,	please	update	the	CHANGES	file.	If	your
changes	alter	existing	behavior,	please	document	this.
New	features	should	be	documented.	Include	examples	and	use
cases	where	appropriate.	If	possible,	include	a	sample	that	is
displayed	in	the	generated	output.
When	adding	a	new	configuration	variable,	be	sure	to	document
it	and	update	sphinx/quickstart.py.
Use	the	included	utils/check_sources.py	script	to	check	for
common	formatting	issues	(trailing	whitespace,	lengthy	lines,
etc).
Add	appropriate	unit	tests.

Debugging	Tips
Delete	the	build	cache	before	building	documents	if	you	make
changes	in	the	code	by	running	the	command	make	clean	or
using	the	sphinx-build	-E	option.
Use	the	sphinx-build	-P	option	to	run	Pdb	on	exceptions.
Use	node.pformat()	and	node.asdom().toxml()	to
generate	a	printable	representation	of	the	document	structure.
Set	the	configuration	variable	keep_warnings	to	True	so
warnings	will	be	displayed	in	the	generated	output.
Set	the	configuration	variable	nitpicky	to	True	so	that	Sphinx
will	complain	about	references	without	a	known	target.
Set	the	debugging	options	in	the	Docutils	configuration	file.

©	Copyright	2007-2013,	Georg	Brandl.	Created	using	Sphinx	1.2.

http://flask.pocoo.org/docs/styleguide/
http://docutils.sourceforge.net/docs/user/config.html
http://sphinx-doc.org/

Home Get	it Docs Extend/Develop

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	»

Changes	in	Sphinx

Release	1.2	(released	Dec	10,	2013)

Features	added
Added	sphinx.version_info	tuple	for	programmatic
checking	of	the	Sphinx	version.

Incompatible	changes
Removed	the	sphinx.ext.refcounting	extension	–	it	is
very	specific	to	CPython	and	has	no	place	in	the	main
distribution.

Bugs	fixed
Restore	versionmodified	CSS	class	for
versionadded/changed	and	deprecated	directives.
Fix:	html_theme_path=[‘.’]	is	a	trigger	of	rebuild	all
documents	always	(This	change	keeps	the	current	“theme
changes	cause	a	rebuild”	feature).
#1296:	Fix	invalid	charset	in	HTML	help	generated	HTML	files
for	default	locale.
PR#190:	Fix	gettext	does	not	extract	figure	caption	and	rubric
title	inside	other	blocks.	Thanks	to	Michael	Schlenker.
PR#176:	Make	sure	setup_command	test	can	always	import
Sphinx.	Thanks	to	Dmitry	Shachnev.
#1311:	Fix	test_linkcode.test_html	fails	with	C	locale	and	Python
3.
#1269:	Fix	ResourceWarnings	with	Python	3.2	or	later.
#1138:	Fix:	When	autodoc_docstring_signature	=	True
and	autoclass_content	=	'init'	or	'both',	__init__	line
should	be	removed	from	class	documentation.

Release	1.2	beta3	(released	Oct	3,	2013)

Features	added
The	Sphinx	error	log	files	will	now	include	a	list	of	the	loaded
extensions	for	help	in	debugging.

Incompatible	changes
PR#154:	Remove	“sphinx”	prefix	from	LaTeX	class	name	except
‘sphinxmanual’	and	‘sphinxhowto’.	Now	you	can	use	your
custom	document	class	without	‘sphinx’	prefix.	Thanks	to	Erik	B.

Bugs	fixed
#1265:	Fix	i18n:	crash	when	translating	a	section	name	that	is
pointed	to	from	a	named	target.
A	wrong	condition	broke	the	search	feature	on	first	page	that	is
usually	index.rst.	This	issue	was	introduced	in	1.2b1.
#703:	When	Sphinx	can’t	decode	filenames	with	non-ASCII
characters,	Sphinx	now	catches	UnicodeError	and	will	continue
if	possible	instead	of	raising	the	exception.

Release	1.2	beta2	(released	Sep	17,	2013)

Features	added
apidoc	now	ignores	“_private”	modules	by	default,	and	has	an
option	-P	to	include	them.
apidoc	now	has	an	option	to	not	generate	headings	for
packages	and	modules,	for	the	case	that	the	module	docstring
already	includes	a	reST	heading.
PR#161:	apidoc	can	now	write	each	module	to	a	standalone
page	instead	of	combining	all	modules	in	a	package	on	one
page.
Builders:	rebuild	i18n	target	document	when	catalog	updated.
Support	docutils.conf	‘writers’	and	‘html4css1	writer’	section	in
the	HTML	writer.	The	latex,	manpage	and	texinfo	writers	also
support	their	respective	‘writers’	sections.
The	new	html_extra_path	config	value	allows	to	specify
directories	with	files	that	should	be	copied	directly	to	the	HTML
output	directory.
Autodoc	directives	for	module	data	and	attributes	now	support
an	annotation	option,	so	that	the	default	display	of	the
data/attribute	value	can	be	overridden.
PR#136:	Autodoc	directives	now	support	an	imported-
members	option	to	include	members	imported	from	different
modules.
New	locales:	Macedonian,	Sinhala,	Indonesian.
Theme	package	collection	by	using	setuptools	plugin
mechanism.

Incompatible	changes
PR#144,	#1182:	Force	timezone	offset	to	LocalTimeZone	on
POT-Creation-Date	that	was	generated	by	gettext	builder.
Thanks	to	masklinn	and	Jakub	Wilk.

Bugs	fixed
PR#132:	Updated	jQuery	version	to	1.8.3.
PR#141,	#982:	Avoid	crash	when	writing	PNG	file	using	Python
3.	Thanks	to	Marcin	Wojdyr.
PR#145:	In	parallel	builds,	sphinx	drops	second	document	file	to
write.	Thanks	to	tychoish.
PR#151:	Some	styling	updates	to	tables	in	LaTeX.
PR#153:	The	“extensions”	config	value	can	now	be	overridden.
PR#155:	Added	support	for	some	C++11	function	qualifiers.
Fix:	‘make	gettext’	caused	UnicodeDecodeError	when	templates
contain	utf-8	encoded	strings.
#828:	use	inspect.getfullargspec()	to	be	able	to	document
functions	with	keyword-only	arguments	on	Python	3.
#1090:	Fix	i18n:	multiple	cross	references	(term,	ref,	doc)	in	the
same	line	return	the	same	link.
#1157:	Combination	of	‘globaltoc.html’	and	hidden	toctree
caused	exception.
#1159:	fix	wrong	generation	of	objects	inventory	for	Python
modules,	and	add	a	workaround	in	intersphinx	to	fix	handling	of
affected	inventories.
#1160:	Citation	target	missing	caused	an	AssertionError.
#1162,	PR#139:	singlehtml	builder	didn’t	copy	images	to
_images/.
#1173:	Adjust	setup.py	dependencies	because	Jinja2	2.7
discontinued	compatibility	with	Python	<	3.3	and	Python	<	2.6.
Thanks	to	Alexander	Dupuy.
#1185:	Don’t	crash	when	a	Python	module	has	a	wrong	or	no
encoding	declared,	and	non-ASCII	characters	are	included.
#1188:	sphinx-quickstart	raises	UnicodeEncodeError	if	“Project
version”	includes	non-ASCII	characters.
#1189:	“Title	underline	is	too	short”	WARNING	is	given	when
using	fullwidth	characters	to	“Project	name”	on	quickstart.
#1190:	Output	TeX/texinfo/man	filename	has	no	basename	(only
extension)	when	using	non-ASCII	characters	in	the	“Project
name”	on	quickstart.
#1192:	Fix	escaping	problem	for	hyperlinks	in	the	manpage
writer.
#1193:	Fix	i18n:	multiple	link	references	in	the	same	line	return

the	same	link.
#1176:	Fix	i18n:	footnote	reference	number	missing	for	auto
numbered	named	footnote	and	auto	symbol	footnote.
PR#146,#1172:	Fix	ZeroDivisionError	in	parallel	builds.	Thanks
to	tychoish.
#1204:	Fix	wrong	generation	of	links	to	local	intersphinx	targets.
#1206:	Fix	i18n:	gettext	did	not	translate	admonition	directive’s
title.
#1232:	Sphinx	generated	broken	ePub	files	on	Windows.
#1259:	Guard	the	debug	output	call	when	emitting	events;	to
prevent	the	repr()	implementation	of	arbitrary	objects	causing
build	failures.
#1142:	Fix	NFC/NFD	normalizing	problem	of	rst	filename	on
Mac	OS	X.
#1234:	Ignoring	the	string	consists	only	of	white-space
characters.

Release	1.2	beta1	(released	Mar	31,	2013)

Incompatible	changes
Removed	sphinx.util.compat.directive_dwim()	and
sphinx.roles.xfileref_role()	which	were	deprecated
since	version	1.0.
PR#122:	the	files	given	in	latex_additional_files	now
override	TeX	files	included	by	Sphinx,	such	as	sphinx.sty.
PR#124:	the	node	generated	by	versionadded,
versionchanged	and	deprecated	directives	now	includes	all
added	markup	(such	as	“New	in	version	X”)	as	child	nodes,	and
no	additional	text	must	be	generated	by	writers.
PR#99:	the	seealso	directive	now	generates	admonition	nodes
instead	of	the	custom	seealso	node.

Features	added
Markup

The	toctree	directive	and	the	toctree()	template
function	now	have	an	includehidden	option	that	includes
hidden	toctree	entries	(bugs	#790	and	#1047).	A	bug	in	the
maxdepth	option	for	the	toctree()	template	function	has
been	fixed	(bug	#1046).
PR#99:	Strip	down	seealso	directives	to	normal
admonitions.	This	removes	their	unusual	CSS	classes
(admonition-see-also),	inconsistent	LaTeX	admonition	title
(“See	Also”	instead	of	“See	also”),	and	spurious	indentation
in	the	text	builder.

HTML	builder
#783:	Create	a	link	to	full	size	image	if	it	is	scaled	with	width
or	height.
#1067:	Improve	the	ordering	of	the	JavaScript	search
results:	matches	in	titles	come	before	matches	in	full	text,
and	object	results	are	better	categorized.	Also	implement	a
pluggable	search	scorer.

#1053:	The	“rightsidebar”	and	“collapsiblesidebar”	HTML
theme	options	now	work	together.
Update	to	jQuery	1.7.1	and	Underscore.js	1.3.1.

Texinfo	builder
An	“Index”	node	is	no	longer	added	when	there	are	no
entries.
“deffn”	categories	are	no	longer	capitalized	if	they	contain
capital	letters.
desc_annotation	nodes	are	now	rendered.
strong	and	emphasis	nodes	are	now	formatted	like
literals.	The	reason	for	this	is	because	the	standard
Texinfo	markup	(*strong*	and	_emphasis_)	resulted	in
confusing	output	due	to	the	common	usage	of	using	these
constructs	for	documenting	parameter	names.
Field	lists	formatting	has	been	tweaked	to	better	display
“Info	field	lists”.
system_message	and	problematic	nodes	are	now
formatted	in	a	similar	fashion	as	done	by	the	text	builder.
“en-dash”	and	“em-dash”	conversion	of	hyphens	is	no
longer	performed	in	option	directive	signatures.
@ref	is	now	used	instead	of	@pxref	for	cross-references
which	prevents	the	word	“see”	from	being	added	before	the
link	(does	not	affect	the	Info	output).
The	@finalout	command	has	been	added	for	better	TeX
output.
transition	nodes	are	now	formatted	using	underscores
(“_”)	instead	of	asterisks	(“*”).
The	default	value	for	the	paragraphindent	has	been
changed	from	2	to	0	meaning	that	paragraphs	are	no	longer
indented	by	default.
#1110:	A	new	configuration	value
texinfo_no_detailmenu	has	been	added	for	controlling
whether	a	@detailmenu	is	added	in	the	“Top”	node’s
menu.
Detailed	menus	are	no	longer	created	except	for	the	“Top”
node.
Fixed	an	issue	where	duplicate	domain	indices	would	result
in	invalid	output.

LaTeX	builder:
PR#115:	Add	'transition'	item	in	latex_elements
for	customizing	how	transitions	are	displayed.	Thanks	to
Jeff	Klukas.
PR#114:	The	LaTeX	writer	now	includes	the	“cmap”
package	by	default.	The	'cmappkg'	item	in
latex_elements	can	be	used	to	control	this.	Thanks	to
Dmitry	Shachnev.
The	'fontpkg'	item	in	latex_elements	now	defaults	to
''	when	the	language	uses	the	Cyrillic	script.	Suggested
by	Dmitry	Shachnev.
The	latex_documents,	texinfo_documents,	and
man_pages	configuration	values	will	be	set	to	default
values	based	on	the	master_doc	if	not	explicitly	set	in
conf.py.	Previously,	if	these	values	were	not	set,	no
output	would	be	genereted	by	their	respective	builders.

Internationalization:
Add	i18n	capabilities	for	custom	templates.	For	example:
The	Sphinx	reference	documentation	in	doc	directory
provides	a	sphinx.pot	file	with	message	strings	from
doc/_templates/*.html	when	using	make	gettext.

Other	builders:
Added	the	Docutils-native	XML	and	pseudo-XML	builders.
See	XMLBuilder	and	PseudoXMLBuilder.
PR#45:	The	linkcheck	builder	now	checks	#anchors	for
existence.
PR#123,	#1106:	Add	epub_use_index	configuration
value.	If	provided,	it	will	be	used	instead	of
html_use_index	for	epub	builder.
PR#126:	Add	epub_tocscope	configuration	value.	The
setting	controls	the	generation	of	the	epub	toc.	The	user
can	now	also	include	hidden	toc	entries.
PR#112:	Add	epub_show_urls	configuration	value.

Extensions:
PR#52:	special_members	flag	to	autodoc	now	behaves
like	members.
PR#47:	Added	sphinx.ext.linkcode	extension.
PR#25:	In	inheritance	diagrams,	the	first	line	of	the	class

docstring	is	now	the	tooltip	for	the	class.
Command-line	interfaces:

PR#75:	Added	--follow-links	option	to	sphinx-apidoc.
#869:	sphinx-build	now	has	the	option	-T	for	printing	the	full
traceback	after	an	unhandled	exception.
sphinx-build	now	supports	the	standard	--help	and	--version
options.
sphinx-build	now	provides	more	specific	error	messages
when	called	with	invalid	options	or	arguments.
sphinx-build	now	has	a	verbose	option	-v	which	can	be
repeated	for	greater	effect.	A	single	occurrance	provides	a
slightly	more	verbose	output	than	normal.	Two	or	more
occurrences	of	this	option	provides	more	detailed	output
which	may	be	useful	for	debugging.

Locales:
PR#74:	Fix	some	Russian	translation.
PR#54:	Added	Norwegian	bokmaal	translation.
PR#35:	Added	Slovak	translation.
PR#28:	Added	Hungarian	translation.
#1113:	Add	Hebrew	locale.
#1097:	Add	Basque	locale.
#1037:	Fix	typos	in	Polish	translation.	Thanks	to	Jakub
Wilk.
#1012:	Update	Estonian	translation.

Optimizations:
Speed	up	building	the	search	index	by	caching	the	results
of	the	word	stemming	routines.	Saves	about	20	seconds
when	building	the	Python	documentation.
PR#108:	Add	experimental	support	for	parallel	building	with
a	new	-j	option.

Documentation
PR#88:	Added	the	“Sphinx	Developer’s	Guide”
(doc/devguide.rst)	which	outlines	the	basic	development
process	of	the	Sphinx	project.
Added	a	detailed	“Installing	Sphinx”	document
(doc/install.rst).

Bugs	fixed
PR#124:	Fix	paragraphs	in	versionmodified	are	ignored	when	it
has	no	dangling	paragraphs.	Fix	wrong	html	output	(nested	<p>
tag).	Fix	versionmodified	is	not	translatable.	Thanks	to	Nozomu
Kaneko.
PR#111:	Respect	add_autodoc_attrgetter()	even	when
inherited-members	is	set.	Thanks	to	A.	Jesse	Jiryu	Davis.
PR#97:	Fix	footnote	handling	in	translated	documents.
Fix	text	writer	not	handling	visit_legend	for	figure	directive
contents.
Fix	text	builder	not	respecting	wide/fullwidth	characters:	title
underline	width,	table	layout	width	and	text	wrap	width.
Fix	leading	space	in	LaTeX	table	header	cells.
#1132:	Fix	LaTeX	table	output	for	multi-row	cells	in	the	first
column.
#1128:	Fix	Unicode	errors	when	trying	to	format	time	strings	with
a	non-standard	locale.
#1127:	Fix	traceback	when	autodoc	tries	to	tokenize	a	non-
Python	file.
#1126:	Fix	double-hyphen	to	en-dash	conversion	in	wrong
places	such	as	command-line	option	names	in	LaTeX.
#1123:	Allow	whitespaces	in	filenames	given	to
literalinclude.
#1120:	Added	improvements	about	i18n	for	themes	“basic”,
“haiku”	and	“scrolls”	that	Sphinx	built-in.	Thanks	to	Leonardo	J.
Caballero	G.
#1118:	Updated	Spanish	translation.	Thanks	to	Leonardo	J.
Caballero	G.
#1117:	Handle	.pyx	files	in	sphinx-apidoc.
#1112:	Avoid	duplicate	download	files	when	referenced	from
documents	in	different	ways	(absolute/relative).
#1111:	Fix	failure	to	find	uppercase	words	in	search	when
html_search_language	is	‘ja’.	Thanks	to	Tomo	Saito.
#1108:	The	text	writer	now	correctly	numbers	enumerated	lists
with	non-default	start	values	(based	on	patch	by	Ewan
Edwards).
#1102:	Support	multi-context	“with”	statements	in	autodoc.
#1090:	Fix	gettext	not	extracting	glossary	terms.

#1074:	Add	environment	version	info	to	the	generated	search
index	to	avoid	compatibility	issues	with	old	builds.
#1070:	Avoid	un-pickling	issues	when	running	Python	3	and	the
saved	environment	was	created	under	Python	2.
#1069:	Fixed	error	caused	when	autodoc	would	try	to	format
signatures	of	“partial”	functions	without	keyword	arguments
(patch	by	Artur	Gaspar).
#1062:	sphinx.ext.autodoc	use	__init__	method	signature	for
class	signature.
#1055:	Fix	web	support	with	relative	path	to	source	directory.
#1043:	Fix	sphinx-quickstart	asking	again	for	yes/no	questions
because	input()	returns	values	with	an	extra	‘r’	on	Python
3.2.0	+	Windows.	Thanks	to	Régis	Décamps.
#1041:	Fix	failure	of	the	cpp	domain	parser	to	parse	a	const
type	with	a	modifier.
#1038:	Fix	failure	of	the	cpp	domain	parser	to	parse	C+11	“static
constexpr”	declarations.	Thanks	to	Jakub	Wilk.
#1029:	Fix	intersphinx_mapping	values	not	being	stable	if	the
mapping	has	plural	key/value	set	with	Python	3.3.
#1028:	Fix	line	block	output	in	the	text	builder.
#1024:	Improve	Makefile/make.bat	error	message	if	Sphinx	is
not	found.	Thanks	to	Anatoly	Techtonik.
#1018:	Fix	“container”	directive	handling	in	the	text	builder.
#1015:	Stop	overriding	jQuery	contains()	in	the	JavaScript.
#1010:	Make	pngmath	images	transparent	by	default;	IE7+
should	handle	it.
#1008:	Fix	test	failures	with	Python	3.3.
#995:	Fix	table-of-contents	and	page	numbering	for	the	LaTeX
“howto”	class.
#976:	Fix	gettext	does	not	extract	index	entries.
PR#72:	#975:	Fix	gettext	not	extracting	definition	terms	before
docutils	0.10.
#961:	Fix	LaTeX	output	for	triple	quotes	in	code	snippets.
#958:	Do	not	preserve	environment.pickle	after	a	failed
build.
#955:	Fix	i18n	transformation.
#940:	Fix	gettext	does	not	extract	figure	caption.
#920:	Fix	PIL	packaging	issue	that	allowed	to	import	Image
without	PIL	namespace.	Thanks	to	Marc	Schlaich.

#723:	Fix	the	search	function	on	local	files	in	WebKit	based
browsers.
#440:	Fix	coarse	timestamp	resolution	in	some	filesystem
generating	a	wrong	list	of	outdated	files.

Release	1.1.3	(Mar	10,	2012)

PR#40:	Fix	safe_repr	function	to	decode	bytestrings	with
non-ASCII	characters	correctly.
PR#37:	Allow	configuring	sphinx-apidoc	via
SPHINX_APIDOC_OPTIONS.
PR#34:	Restore	Python	2.4	compatibility.
PR#36:	Make	the	“bibliography	to	TOC”	fix	in	LaTeX	output
specific	to	the	document	class.
#695:	When	the	highlight	language	“python”	is	specified
explicitly,	do	not	try	to	parse	the	code	to	recognize	non-Python
snippets.
#859:	Fix	exception	under	certain	circumstances	when	not
finding	appropriate	objects	to	link	to.
#860:	Do	not	crash	when	encountering	invalid	doctest
examples,	just	emit	a	warning.
#864:	Fix	crash	with	some	settings	of
modindex_common_prefix.
#862:	Fix	handling	of	-D	and	-A	options	on	Python	3.
#851:	Recognize	and	warn	about	circular	toctrees,	instead	of
running	into	recursion	errors.
#853:	Restore	compatibility	with	docutils	trunk.
#852:	Fix	HtmlHelp	index	entry	links	again.
#854:	Fix	inheritance_diagram	raising	attribute	errors	on	builtins.
#832:	Fix	crashes	when	putting	comments	or	lone	terms	in	a
glossary.
#834,	#818:	Fix	HTML	help	language/encoding	mapping	for	all
Sphinx	supported	languages.
#844:	Fix	crashes	when	dealing	with	Unicode	output	in	doctest
extension.
#831:	Provide	--project	flag	in	setup_command	as
advertised.
#875:	Fix	reading	config	files	under	Python	3.
#876:	Fix	quickstart	test	under	Python	3.
#870:	Fix	spurious	KeyErrors	when	removing	documents.
#892:	Fix	single-HTML	builder	misbehaving	with	the	master

document	in	a	subdirectory.
#873:	Fix	assertion	errors	with	empty	only	directives.
#816:	Fix	encoding	issues	in	the	Qt	help	builder.

Release	1.1.2	(Nov	1,	2011)	–	1.1.1	is	a	silly
version	number	anyway!

#809:	Include	custom	fixers	in	the	source	distribution.

Release	1.1.1	(Nov	1,	2011)

#791:	Fix	QtHelp,	DevHelp	and	HtmlHelp	index	entry	links.
#792:	Include	“sphinx-apidoc”	in	the	source	distribution.
#797:	Don’t	crash	on	a	misformatted	glossary.
#801:	Make	intersphinx	work	properly	without	SSL	support.
#805:	Make	the	Sphinx.add_index_to_domain	method	work
correctly.
#780:	Fix	Python	2.5	compatibility.

Release	1.1	(Oct	9,	2011)

Incompatible	changes
The	py:module	directive	doesn’t	output	its	platform	option
value	anymore.	(It	was	the	only	thing	that	the	directive	did
output,	and	therefore	quite	inconsistent.)
Removed	support	for	old	dependency	versions;	requirements
are	now:

Pygments	>=	1.2
Docutils	>=	0.7
Jinja2	>=	2.3

Features	added
Added	Python	3.x	support.
New	builders	and	subsystems:

Added	a	Texinfo	builder.
Added	i18n	support	for	content,	a	gettext	builder	and
related	utilities.
Added	the	websupport	library	and	builder.
#98:	Added	a	sphinx-apidoc	script	that	autogenerates	a
hierarchy	of	source	files	containing	autodoc	directives	to
document	modules	and	packages.
#273:	Add	an	API	for	adding	full-text	search	support	for
languages	other	than	English.	Add	support	for	Japanese.

Markup:
#138:	Added	an	index	role,	to	make	inline	index	entries.
#454:	Added	more	index	markup	capabilities:	marking
see/seealso	entries,	and	main	entries	for	a	given	key.
#460:	Allowed	limiting	the	depth	of	section	numbers	for
HTML	using	the	toctree‘s	numbered	option.
#586:	Implemented	improved	glossary	markup	which
allows	multiple	terms	per	definition.
#478:	Added	py:decorator	directive	to	describe
decorators.

C++	domain	now	supports	array	definitions.
C++	domain	now	supports	doc	fields	(:param	x:	inside
directives).
Section	headings	in	only	directives	are	now	correctly
handled.
Added	emphasize-lines	option	to	source	code
directives.
#678:	C++	domain	now	supports	superclasses.

HTML	builder:
Added	pyramid	theme.
#559:	html_add_permalinks	is	now	a	string	giving	the
text	to	display	in	permalinks.
#259:	HTML	table	rows	now	have	even/odd	CSS	classes	to
enable	“Zebra	styling”.
#554:	Add	theme	option	sidebarwidth	to	the	basic
theme.

Other	builders:
#516:	Added	new	value	of	the	latex_show_urls	option	to
show	the	URLs	in	footnotes.
#209:	Added	text_newlines	and	text_sectionchars
config	values.
Added	man_show_urls	config	value.
#472:	linkcheck	builder:	Check	links	in	parallel,	use	HTTP
HEAD	requests	and	allow	configuring	the	timeout.	New
config	values:	linkcheck_timeout	and
linkcheck_workers.
#521:	Added	linkcheck_ignore	config	value.
#28:	Support	row/colspans	in	tables	in	the	LaTeX	builder.

Configuration	and	extensibility:
#537:	Added	nitpick_ignore.
#306:	Added	env-get-outdated	event.
Application.add_stylesheet()	now	accepts	full
URIs.

Autodoc:
#564:	Add	autodoc_docstring_signature.	When
enabled	(the	default),	autodoc	retrieves	the	signature	from
the	first	line	of	the	docstring,	if	it	is	found	there.
#176:	Provide	private-members	option	for	autodoc

directives.
#520:	Provide	special-members	option	for	autodoc
directives.
#431:	Doc	comments	for	attributes	can	now	be	given	on	the
same	line	as	the	assignment.
#437:	autodoc	now	shows	values	of	class	data	attributes.
autodoc	now	supports	documenting	the	signatures	of
functools.partial	objects.

Other	extensions:
Added	the	sphinx.ext.mathjax	extension.
#443:	Allow	referencing	external	graphviz	files.
Added	inline	option	to	graphviz	directives,	and	fixed	the
default	(block-style)	in	LaTeX	output.
#590:	Added	caption	option	to	graphviz	directives.
#553:	Added	testcleanup	blocks	in	the	doctest
extension.
#594:	trim_doctest_flags	now	also	removes
<BLANKLINE>	indicators.
#367:	Added	automatic	exclusion	of	hidden	members	in
inheritance	diagrams,	and	an	option	to	selectively	enable	it.
Added	pngmath_add_tooltips.
The	math	extension	displaymath	directives	now	support
name	in	addition	to	label	for	giving	the	equation	label,	for
compatibility	with	Docutils.

New	locales:
#221:	Added	Swedish	locale.
#526:	Added	Iranian	locale.
#694:	Added	Latvian	locale.
Added	Nepali	locale.
#714:	Added	Korean	locale.
#766:	Added	Estonian	locale.

Bugs	fixed:
#778:	Fix	“hide	search	matches”	link	on	pages	linked	by
search.
Fix	the	source	positions	referenced	by	the	“viewcode”
extension.

Release	1.0.8	(Sep	23,	2011)

#627:	Fix	tracebacks	for	AttributeErrors	in	autosummary
generation.
Fix	the	abbr	role	when	the	abbreviation	has	newlines	in	it.
#727:	Fix	the	links	to	search	results	with	custom	object	types.
#648:	Fix	line	numbers	reported	in	warnings	about	undefined
references.
#696,	#666:	Fix	C++	array	definitions	and	template	arguments
that	are	not	type	names.
#633:	Allow	footnotes	in	section	headers	in	LaTeX	output.
#616:	Allow	keywords	to	be	linked	via	intersphinx.
#613:	Allow	Unicode	characters	in	production	list	token	names.
#720:	Add	dummy	visitors	for	graphviz	nodes	for	text	and	man.
#704:	Fix	image	file	duplication	bug.
#677:	Fix	parsing	of	multiple	signatures	in	C++	domain.
#637:	Ignore	Emacs	lock	files	when	looking	for	source	files.
#544:	Allow	.pyw	extension	for	importable	modules	in	autodoc.
#700:	Use	$(MAKE)	in	quickstart-generated	Makefiles.
#734:	Make	sidebar	search	box	width	consistent	in	browsers.
#644:	Fix	spacing	of	centered	figures	in	HTML	output.
#767:	Safely	encode	SphinxError	messages	when	printing	them
to	sys.stderr.
#611:	Fix	LaTeX	output	error	with	a	document	with	no	sections
but	a	link	target.
Correctly	treat	built-in	method	descriptors	as	methods	in
autodoc.
#706:	Stop	monkeypatching	the	Python	textwrap	module.
#657:	viewcode	now	works	correctly	with	source	files	that	have
non-ASCII	encoding.
#669:	Respect	the	noindex	flag	option	in	py:module	directives.
#675:	Fix	IndexErrors	when	including	nonexisting	lines	with
literalinclude.
#676:	Respect	custom	function/method	parameter	separator
strings.
#682:	Fix	JS	incompatibility	with	jQuery	>=	1.5.
#693:	Fix	double	encoding	done	when	writing	HTMLHelp	.hhk

files.
#647:	Do	not	apply	SmartyPants	in	parsed-literal	blocks.
C++	domain	now	supports	array	definitions.

Release	1.0.7	(Jan	15,	2011)

#347:	Fix	wrong	generation	of	directives	of	static	methods	in
autosummary.
#599:	Import	PIL	as	from	PIL	import	Image.
#558:	Fix	longtables	with	captions	in	LaTeX	output.
Make	token	references	work	as	hyperlinks	again	in	LaTeX
output.
#572:	Show	warnings	by	default	when	reference	labels	cannot
be	found.
#536:	Include	line	number	when	complaining	about	missing
reference	targets	in	nitpicky	mode.
#590:	Fix	inline	display	of	graphviz	diagrams	in	LaTeX	output.
#589:	Build	using	app.build()	in	setup	command.
Fix	a	bug	in	the	inheritance	diagram	exception	that	caused	base
classes	to	be	skipped	if	one	of	them	is	a	builtin.
Fix	general	index	links	for	C++	domain	objects.
#332:	Make	admonition	boundaries	in	LaTeX	output	visible.
#573:	Fix	KeyErrors	occurring	on	rebuild	after	removing	a	file.
Fix	a	traceback	when	removing	files	with	globbed	toctrees.
If	an	autodoc	object	cannot	be	imported,	always	re-read	the
document	containing	the	directive	on	next	build.
If	an	autodoc	object	cannot	be	imported,	show	the	full	traceback
of	the	import	error.
Fix	a	bug	where	the	removal	of	download	files	and	images
wasn’t	noticed.
#571:	Implement	~	cross-reference	prefix	for	the	C	domain.
Fix	regression	of	LaTeX	output	with	the	fix	of	#556.
#568:	Fix	lookup	of	class	attribute	documentation	on	descriptors
so	that	comment	documentation	now	works.
Fix	traceback	with	only	directives	preceded	by	targets.
Fix	tracebacks	occurring	for	duplicate	C++	domain	objects.
Fix	JavaScript	domain	links	to	objects	with	$	in	their	name.

Release	1.0.6	(Jan	04,	2011)

#581:	Fix	traceback	in	Python	domain	for	empty	cross-reference
targets.
#283:	Fix	literal	block	display	issues	on	Chrome	browsers.
#383,	#148:	Support	sorting	a	limited	range	of	accented
characters	in	the	general	index	and	the	glossary.
#570:	Try	decoding	-D	and	-A	command-line	arguments	with
the	locale’s	preferred	encoding.
#528:	Observe	locale_dirs	when	looking	for	the	JS
translations	file.
#574:	Add	special	code	for	better	support	of	Japanese
documents	in	the	LaTeX	builder.
Regression	of	#77:	If	there	is	only	one	parameter	given	with
:param:	markup,	the	bullet	list	is	now	suppressed	again.
#556:	Fix	missing	paragraph	breaks	in	LaTeX	output	in	certain
situations.
#567:	Emit	the	autodoc-process-docstring	event	even	for
objects	without	a	docstring	so	that	it	can	add	content.
#565:	In	the	LaTeX	builder,	not	only	literal	blocks	require
different	table	handling,	but	also	quite	a	few	other	list-like	block
elements.
#515:	Fix	tracebacks	in	the	viewcode	extension	for	Python
objects	that	do	not	have	a	valid	signature.
Fix	strange	reportings	of	line	numbers	for	warnings	generated
from	autodoc-included	docstrings,	due	to	different	behavior
depending	on	docutils	version.
Several	fixes	to	the	C++	domain.

Release	1.0.5	(Nov	12,	2010)

#557:	Add	CSS	styles	required	by	docutils	0.7	for	aligned
images	and	figures.
In	the	Makefile	generated	by	LaTeX	output,	do	not	delete	pdf
files	on	clean;	they	might	be	required	images.
#535:	Fix	LaTeX	output	generated	for	line	blocks.
#544:	Allow	.pyw	as	a	source	file	extension.

Release	1.0.4	(Sep	17,	2010)

#524:	Open	intersphinx	inventories	in	binary	mode	on	Windows,
since	version	2	contains	zlib-compressed	data.
#513:	Allow	giving	non-local	URIs	for	JavaScript	files,	e.g.	in	the
JSMath	extension.
#512:	Fix	traceback	when	intersphinx_mapping	is	empty.

Release	1.0.3	(Aug	23,	2010)

#495:	Fix	internal	vs.	external	link	distinction	for	links	coming
from	a	docutils	table-of-contents.
#494:	Fix	the	maxdepth	option	for	the	toctree()	template
callable	when	used	with	collapse=True.
#507:	Fix	crash	parsing	Python	argument	lists	containing
brackets	in	string	literals.
#501:	Fix	regression	when	building	LaTeX	docs	with	figures	that
don’t	have	captions.
#510:	Fix	inheritance	diagrams	for	classes	that	are	not	picklable.
#497:	Introduce	separate	background	color	for	the	sidebar
collapse	button,	making	it	easier	to	see.
#502,	#503,	#496:	Fix	small	layout	bugs	in	several	builtin
themes.

Release	1.0.2	(Aug	14,	2010)

#490:	Fix	cross-references	to	objects	of	types	added	by	the
add_object_type()	API	function.
Fix	handling	of	doc	field	types	for	different	directive	types.
Allow	breaking	long	signatures,	continuing	with	backlash-
escaped	newlines.
Fix	unwanted	styling	of	C	domain	references	(because	of	a
namespace	clash	with	Pygments	styles).
Allow	references	to	PEPs	and	RFCs	with	explicit	anchors.
#471:	Fix	LaTeX	references	to	figures.
#482:	When	doing	a	non-exact	search,	match	only	the	given
type	of	object.
#481:	Apply	non-exact	search	for	Python	reference	targets	with
.name	for	modules	too.
#484:	Fix	crash	when	duplicating	a	parameter	in	an	info	field	list.
#487:	Fix	setting	the	default	role	to	one	provided	by	the
oldcmarkup	extension.
#488:	Fix	crash	when	json-py	is	installed,	which	provides	a
json	module	but	is	incompatible	to	simplejson.
#480:	Fix	handling	of	target	naming	in	intersphinx.
#486:	Fix	removal	of	!	for	all	cross-reference	roles.

Release	1.0.1	(Jul	27,	2010)

#470:	Fix	generated	target	names	for	reST	domain	objects;	they
are	not	in	the	same	namespace.
#266:	Add	Bengali	language.
#473:	Fix	a	bug	in	parsing	JavaScript	object	names.
#474:	Fix	building	with	SingleHTMLBuilder	when	there	is	no
toctree.
Fix	display	names	for	objects	linked	to	by	intersphinx	with
explicit	targets.
Fix	building	with	the	JSON	builder.
Fix	hyperrefs	in	object	descriptions	for	LaTeX.

Release	1.0	(Jul	23,	2010)

Incompatible	changes
Support	for	domains	has	been	added.	A	domain	is	a	collection
of	directives	and	roles	that	all	describe	objects	belonging
together,	e.g.	elements	of	a	programming	language.	A	few
builtin	domains	are	provided:

Python
C
C++
JavaScript
reStructuredText

The	old	markup	for	defining	and	linking	to	C	directives	is	now
deprecated.	It	will	not	work	anymore	in	future	versions	without
activating	the	oldcmarkup	extension;	in	Sphinx	1.0,	it	is
activated	by	default.
Removed	support	for	old	dependency	versions;	requirements
are	now:

docutils	>=	0.5
Jinja2	>=	2.2

Removed	deprecated	elements:
exclude_dirs	config	value
sphinx.builder	module

Features	added
General:

Added	a	“nitpicky”	mode	that	emits	warnings	for	all	missing
references.	It	is	activated	by	the	-n	command-line	switch	or
the	nitpicky	config	value.
Added	latexpdf	target	in	quickstart	Makefile.

Markup:
The	menuselection	and	guilabel	roles	now	support
ampersand	accelerators.
New	more	compact	doc	field	syntax	is	now	recognized:

:param	type	name:	description.
Added	tab-width	option	to	literalinclude	directive.
Added	titlesonly	option	to	toctree	directive.
Added	the	prepend	and	append	options	to	the
literalinclude	directive.
#284:	All	docinfo	metadata	is	now	put	into	the	document
metadata,	not	just	the	author.
The	ref	role	can	now	also	reference	tables	by	caption.
The	include	directive	now	supports	absolute	paths,	which
are	interpreted	as	relative	to	the	source	directory.
In	the	Python	domain,	references	like	:func:`.name`
now	look	for	matching	names	with	any	prefix	if	no	direct
match	is	found.

Configuration:
Added	rst_prolog	config	value.
Added	html_secnumber_suffix	config	value	to	control
section	numbering	format.
Added	html_compact_lists	config	value	to	control
docutils’	compact	lists	feature.
The	html_sidebars	config	value	can	now	contain
patterns	as	keys,	and	the	values	can	be	lists	that	explicitly
select	which	sidebar	templates	should	be	rendered.	That
means	that	the	builtin	sidebar	contents	can	be	included	only
selectively.
html_static_path	can	now	contain	single	file	entries.
The	new	universal	config	value	exclude_patterns
makes	the	old	unused_docs,	exclude_trees	and
exclude_dirnames	obsolete.
Added	html_output_encoding	config	value.
Added	the	latex_docclass	config	value	and	made	the
“twoside”	documentclass	option	overridable	by	“oneside”.
Added	the	trim_doctest_flags	config	value,	which	is
true	by	default.
Added	html_show_copyright	config	value.
Added	latex_show_pagerefs	and	latex_show_urls
config	values.
The	behavior	of	html_file_suffix	changed	slightly:	the
empty	string	now	means	“no	suffix”	instead	of	“default

suffix”,	use	None	for	“default	suffix”.
New	builders:

Added	a	builder	for	the	Epub	format.
Added	a	builder	for	manual	pages.
Added	a	single-file	HTML	builder.

HTML	output:
Inline	roles	now	get	a	CSS	class	with	their	name,	allowing
styles	to	customize	their	appearance.	Domain-specific	roles
get	two	classes,	domain	and	domain-rolename.
References	now	get	the	class	internal	if	they	are	internal
to	the	whole	project,	as	opposed	to	internal	to	the	current
page.
External	references	can	be	styled	differently	with	the	new
externalrefs	theme	option	for	the	default	theme.
In	the	default	theme,	the	sidebar	can	experimentally	now	be
made	collapsible	using	the	new	collapsiblesidebar
theme	option.
#129:	Toctrees	are	now	wrapped	in	a	div	tag	with	class
toctree-wrapper	in	HTML	output.
The	toctree	callable	in	templates	now	has	a	maxdepth
keyword	argument	to	control	the	depth	of	the	generated
tree.
The	toctree	callable	in	templates	now	accepts	a
titles_only	keyword	argument.
Added	htmltitle	block	in	layout	template.
In	the	JavaScript	search,	allow	searching	for	object	names
including	the	module	name,	like	sys.argv.
Added	new	theme	haiku,	inspired	by	the	Haiku	OS	user
guide.
Added	new	theme	nature.
Added	new	theme	agogo,	created	by	Andi	Albrecht.
Added	new	theme	scrolls,	created	by	Armin	Ronacher.
#193:	Added	a	visitedlinkcolor	theme	option	to	the
default	theme.
#322:	Improved	responsiveness	of	the	search	page	by
loading	the	search	index	asynchronously.

Extension	API:
Added	html-collect-pages.

Added	needs_sphinx	config	value	and
require_sphinx()	application	API	method.
#200:	Added	add_stylesheet()	application	API	method.

Extensions:
Added	the	viewcode	extension.
Added	the	extlinks	extension.
Added	support	for	source	ordering	of	members	in	autodoc,
with	autodoc_member_order	=	'bysource'.
Added	autodoc_default_flags	config	value,	which	can
be	used	to	select	default	flags	for	all	autodoc	directives.
Added	a	way	for	intersphinx	to	refer	to	named	labels	in
other	projects,	and	to	specify	the	project	you	want	to	link	to.
#280:	Autodoc	can	now	document	instance	attributes
assigned	in	__init__	methods.
Many	improvements	and	fixes	to	the	autosummary
extension,	thanks	to	Pauli	Virtanen.
#309:	The	graphviz	extension	can	now	output	SVG
instead	of	PNG	images,	controlled	by	the
graphviz_output_format	config	value.
Added	alt	option	to	graphviz	extension	directives.
Added	exclude	argument	to	autodoc.between().

Translations:
Added	Croatian	translation,	thanks	to	Bojan	Mihelač.
Added	Turkish	translation,	thanks	to	Firat	Ozgul.
Added	Catalan	translation,	thanks	to	Pau	Fernández.
Added	simplified	Chinese	translation.
Added	Danish	translation,	thanks	to	Hjorth	Larsen.
Added	Lithuanian	translation,	thanks	to	Dalius
Dobravolskas.

Bugs	fixed:
#445:	Fix	links	to	result	pages	when	using	the	search
function	of	HTML	built	with	the	dirhtml	builder.
#444:	In	templates,	properly	re-escape	values	treated	with
the	“striptags”	Jinja	filter.

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	»

Previous	versions

The	changelog	for	versions	before	1.0	can	be	found	in	the	file
CHANGES.old	in	the	source	distribution	or	at	BitBucket.

©	Copyright	2007-2013,	Georg	Brandl.	Created	using	Sphinx	1.2.

http://bitbucket.org/birkenfeld/sphinx/raw/tip/CHANGES.old
http://sphinx-doc.org/

Home Get	it Docs Extend/Develop

indexmodules 	|previous 	|Sphinx	home 	| Documentation 	»

Projects	using	Sphinx
This	is	an	(incomplete)	alphabetic	list	of	projects	that	use	Sphinx	or
are	experimenting	with	using	it	for	their	documentation.	If	you	like	to
be	included,	please	mail	to	the	Google	group.

I’ve	grouped	the	list	into	sections	to	make	it	easier	to	find	interesting
examples.

http://groups.google.com/group/sphinx-users

Documentation	using	the	default	theme

APSW:	http://apidoc.apsw.googlecode.com/hg/index.html
ASE:	https://wiki.fysik.dtu.dk/ase/
boostmpi:	http://documen.tician.de/boostmpi/
Calibre:	http://calibre-ebook.com/user_manual/
CodePy:	http://documen.tician.de/codepy/
Cython:	http://docs.cython.org/
C\C++	Python	language	binding	project:	http://language-
binding.net/index.html
Cormoran:	http://cormoran.nhopkg.org/docs/
Director:	http://packages.python.org/director/
Dirigible:	http://www.projectdirigible.com/documentation/
Elemental:
http://elemental.googlecode.com/hg/doc/build/html/index.html
F2py:	http://f2py.sourceforge.net/docs/
GeoDjango:	http://geodjango.org/docs/
Genomedata:
http://noble.gs.washington.edu/proj/genomedata/doc/1.2.2/genomedata.html
gevent:	http://www.gevent.org/
Google	Wave	API:	http://wave-robot-python-
client.googlecode.com/svn/trunk/pydocs/index.html
GSL	Shell:	http://www.nongnu.org/gsl-shell/
Heapkeeper:	http://heapkeeper.org/
Hands-on	Python	Tutorial:	http://anh.cs.luc.edu/python/hands-
on/3.1/handsonHtml/
Hedge:	http://documen.tician.de/hedge/
Kaa:	http://doc.freevo.org/api/kaa/
Leo:	http://webpages.charter.net/edreamleo/front.html
Lino:	http://lino.saffre-rumma.net/
MeshPy:	http://documen.tician.de/meshpy/
mpmath:
http://mpmath.googlecode.com/svn/trunk/doc/build/index.html
OpenEXR:	http://excamera.com/articles/26/doc/index.html
OpenGDA:	http://www.opengda.org/gdadoc/html/
openWNS:	http://docs.openwns.org/
Paste:	http://pythonpaste.org/script/

http://apidoc.apsw.googlecode.com/hg/index.html
https://wiki.fysik.dtu.dk/ase/
http://documen.tician.de/boostmpi/
http://calibre-ebook.com/user_manual/
http://documen.tician.de/codepy/
http://docs.cython.org/
http://language-binding.net/index.html
http://cormoran.nhopkg.org/docs/
http://packages.python.org/director/
http://www.projectdirigible.com/documentation/
http://elemental.googlecode.com/hg/doc/build/html/index.html
http://f2py.sourceforge.net/docs/
http://geodjango.org/docs/
http://noble.gs.washington.edu/proj/genomedata/doc/1.2.2/genomedata.html
http://www.gevent.org/
http://wave-robot-python-client.googlecode.com/svn/trunk/pydocs/index.html
http://www.nongnu.org/gsl-shell/
http://heapkeeper.org/
http://anh.cs.luc.edu/python/hands-on/3.1/handsonHtml/
http://documen.tician.de/hedge/
http://doc.freevo.org/api/kaa/
http://webpages.charter.net/edreamleo/front.html
http://lino.saffre-rumma.net/
http://documen.tician.de/meshpy/
http://mpmath.googlecode.com/svn/trunk/doc/build/index.html
http://excamera.com/articles/26/doc/index.html
http://www.opengda.org/gdadoc/html/
http://docs.openwns.org/
http://pythonpaste.org/script/

Paver:	http://paver.github.com/paver/
Pioneers	and	Prominent	Men	of	Utah:
http://pioneers.rstebbing.com/
Pyccuracy:	https://github.com/heynemann/pyccuracy/wiki/
PyCuda:	http://documen.tician.de/pycuda/
Pyevolve:	http://pyevolve.sourceforge.net/
Pylo:	http://documen.tician.de/pylo/
PyMQI:	http://packages.python.org/pymqi/
PyPubSub:	http://pubsub.sourceforge.net/
pyrticle:	http://documen.tician.de/pyrticle/
Python:	http://docs.python.org/
python-apt:	http://apt.alioth.debian.org/python-apt-doc/
PyUblas:	http://documen.tician.de/pyublas/
Quex:	http://quex.sourceforge.net/doc/html/main.html
Scapy:	http://www.secdev.org/projects/scapy/doc/
Segway:
http://noble.gs.washington.edu/proj/segway/doc/1.1.0/segway.html
SimPy:	http://simpy.sourceforge.net/SimPyDocs/index.html
SymPy:	http://docs.sympy.org/
WTForms:	http://wtforms.simplecodes.com/docs/
z3c:	http://docs.carduner.net/z3c-tutorial/

http://paver.github.com/paver/
http://pioneers.rstebbing.com/
https://github.com/heynemann/pyccuracy/wiki/
http://documen.tician.de/pycuda/
http://pyevolve.sourceforge.net/
http://documen.tician.de/pylo/
http://packages.python.org/pymqi/
http://pubsub.sourceforge.net/
http://documen.tician.de/pyrticle/
http://docs.python.org/
http://apt.alioth.debian.org/python-apt-doc/
http://documen.tician.de/pyublas/
http://quex.sourceforge.net/doc/html/main.html
http://www.secdev.org/projects/scapy/doc/
http://noble.gs.washington.edu/proj/segway/doc/1.1.0/segway.html
http://simpy.sourceforge.net/SimPyDocs/index.html
http://docs.sympy.org/
http://wtforms.simplecodes.com/docs/
http://docs.carduner.net/z3c-tutorial/

Documentation	using	a	customized	version	of
the	default	theme

Advanced	Generic	Widgets:
http://xoomer.virgilio.it/infinity77/AGW_Docs/index.html
Bazaar:	http://doc.bazaar.canonical.com/en/
CakePHP:	http://book.cakephp.org/2.0/en/index.html
Chaco:	http://code.enthought.com/projects/chaco/docs/html/
Chef:	http://docs.opscode.com/
Djagios:	http://djagios.org/
GetFEM++:	http://home.gna.org/getfem/
Google	or-tools:	https://or-
tools.googlecode.com/svn/trunk/documentation/user_manual/index.html
GPAW:	https://wiki.fysik.dtu.dk/gpaw/
Grok:	http://grok.zope.org/doc/current/
IFM:	http://fluffybunny.memebot.com/ifm-docs/index.html
LEPL:	http://www.acooke.org/lepl/
Mayavi:
http://code.enthought.com/projects/mayavi/docs/development/html/mayavi
NOC:	http://redmine.nocproject.org/projects/noc
NumPy:	http://docs.scipy.org/doc/numpy/reference/
OpenCV:	http://docs.opencv.org/
Peach^3:	http://peach3.nl/doc/latest/userdoc/
PyLit:	http://pylit.berlios.de/
Sage:	http://sagemath.org/doc/
SciPy:	http://docs.scipy.org/doc/scipy/reference/
simuPOP:
http://simupop.sourceforge.net/manual_release/build/userGuide.html
Sprox:	http://sprox.org/
TurboGears:	http://turbogears.org/2.0/docs/
Varnish:	https://www.varnish-cache.org/docs/
Zentyal:	http://doc.zentyal.org/
Zope:	http://docs.zope.org/zope2/index.html
zc.async:	http://packages.python.org/zc.async/1.5.0/

http://xoomer.virgilio.it/infinity77/AGW_Docs/index.html
http://doc.bazaar.canonical.com/en/
http://book.cakephp.org/2.0/en/index.html
http://code.enthought.com/projects/chaco/docs/html/
http://docs.opscode.com/
http://djagios.org/
http://home.gna.org/getfem/
https://or-tools.googlecode.com/svn/trunk/documentation/user_manual/index.html
https://wiki.fysik.dtu.dk/gpaw/
http://grok.zope.org/doc/current/
http://fluffybunny.memebot.com/ifm-docs/index.html
http://www.acooke.org/lepl/
http://code.enthought.com/projects/mayavi/docs/development/html/mayavi
http://redmine.nocproject.org/projects/noc
http://docs.scipy.org/doc/numpy/reference/
http://docs.opencv.org/
http://peach3.nl/doc/latest/userdoc/
http://pylit.berlios.de/
http://sagemath.org/doc/
http://docs.scipy.org/doc/scipy/reference/
http://simupop.sourceforge.net/manual_release/build/userGuide.html
http://sprox.org/
http://turbogears.org/2.0/docs/
https://www.varnish-cache.org/docs/
http://doc.zentyal.org/
http://docs.zope.org/zope2/index.html
http://packages.python.org/zc.async/1.5.0/

Documentation	using	the	sphinxdoc	theme

Fityk:	http://fityk.nieto.pl/
MapServer:	http://mapserver.org/
Matplotlib:	http://matplotlib.sourceforge.net/
Music21:	http://mit.edu/music21/doc/html/contents.html
MyHDL:	http://www.myhdl.org/doc/0.6/
NetworkX:	http://networkx.lanl.gov/
Pweave:	http://mpastell.com/pweave/
Pyre:	http://docs.danse.us/pyre/sphinx/
Pysparse:	http://pysparse.sourceforge.net/
PyTango:	http://www.tango-
controls.org/static/PyTango/latest/doc/html/index.html
Python	Wild	Magic:	http://python-wild-
magic.googlecode.com/svn/doc/html/index.html
Reteisi:	http://www.reteisi.org/contents.html
Satchmo:	http://www.satchmoproject.com/docs/dev/
Sphinx:	http://sphinx-doc.org/
Sqlkit:	http://sqlkit.argolinux.org/
Tau:	http://www.tango-
controls.org/static/tau/latest/doc/html/index.html
Total	Open	Station:	http://tops.berlios.de/
Turbulenz:	http://docs.turbulenz.com/
WebFaction:	http://docs.webfaction.com/

http://fityk.nieto.pl/
http://mapserver.org/
http://matplotlib.sourceforge.net/
http://mit.edu/music21/doc/html/contents.html
http://www.myhdl.org/doc/0.6/
http://networkx.lanl.gov/
http://mpastell.com/pweave/
http://docs.danse.us/pyre/sphinx/
http://pysparse.sourceforge.net/
http://www.tango-controls.org/static/PyTango/latest/doc/html/index.html
http://python-wild-magic.googlecode.com/svn/doc/html/index.html
http://www.reteisi.org/contents.html
http://www.satchmoproject.com/docs/dev/
http://sphinx-doc.org/
http://sqlkit.argolinux.org/
http://www.tango-controls.org/static/tau/latest/doc/html/index.html
http://tops.berlios.de/
http://docs.turbulenz.com/
http://docs.webfaction.com/

Documentation	using	another	builtin	theme

C/C++	Development	with	Eclipse:	http://eclipsebook.in/	(agogo)
Distribute:	http://packages.python.org/distribute/	(nature)
Jinja:	http://jinja.pocoo.org/	(scrolls)
jsFiddle:	http://doc.jsfiddle.net/	(nature)
MPipe:	http://vmlaker.github.io/mpipe/	(sphinx13)
pip:	http://pip.openplans.org/	(nature)
Programmieren	mit	PyGTK	und	Glade	(German):
http://www.florian-diesch.de/doc/python-und-glade/online/
(agogo)
Spring	Python:
http://springpython.webfactional.com/current/sphinx/index.html
(nature)
sqlparse:	http://python-
sqlparse.googlecode.com/svn/docs/api/index.html	(agogo)
Sylli:	http://sylli.sourceforge.net/	(nature)
libLAS:	http://liblas.org/	(nature)
Valence:	http://docs.valence.desire2learn.com/	(haiku)

http://eclipsebook.in/
http://packages.python.org/distribute/
http://jinja.pocoo.org/
http://doc.jsfiddle.net/
http://vmlaker.github.io/mpipe/
http://pip.openplans.org/
http://www.florian-diesch.de/doc/python-und-glade/online/
http://springpython.webfactional.com/current/sphinx/index.html
http://python-sqlparse.googlecode.com/svn/docs/api/index.html
http://sylli.sourceforge.net/
http://liblas.org/
http://docs.valence.desire2learn.com/

Documentation	using	a	custom	theme/integrated
in	a	site

Blender:	http://www.blender.org/documentation/250PythonDoc/
Blinker:	http://discorporate.us/projects/Blinker/docs/
Classy:	http://classy.pocoo.org/
DEAP:	http://deap.gel.ulaval.ca/doc/0.8/index.html
Django:	http://docs.djangoproject.com/
Enterprise	Toolkit	for	Acrobat	products:
http://www.adobe.com/devnet-docs/acrobatetk/
e-cidadania:	http://e-cidadania.readthedocs.org/en/latest/
Flask:	http://flask.pocoo.org/docs/
Flask-OpenID:	http://packages.python.org/Flask-OpenID/
Gameduino:	http://excamera.com/sphinx/gameduino/
GeoServer:	http://docs.geoserver.org/
Glashammer:	http://glashammer.org/
Istihza	(Turkish	Python	documentation	project):
http://www.istihza.com/py2/icindekiler_python.html
MathJax:	http://docs.mathjax.org/en/latest/
MirrorBrain:	http://mirrorbrain.org/docs/
nose:	http://somethingaboutorange.com/mrl/projects/nose/
NoTex:	https://notex.ch/overview/
ObjectListView:	http://objectlistview.sourceforge.net/python
Open	ERP:	http://doc.openerp.com/
OpenCV:	http://docs.opencv.org/
OpenLayers:	http://docs.openlayers.org/
PyEphem:	http://rhodesmill.org/pyephem/
German	Plone	user	manual:	http://www.hasecke.com/plone-
benutzerhandbuch/
PSI4:	http://sirius.chem.vt.edu/psi4manual/latest/index.html
Pylons:	http://pylonshq.com/docs/en/0.9.7/
PyMOTW:	http://www.doughellmann.com/PyMOTW/
pypol:	http://pypol.altervista.org/	(celery)
QGIS:	http://qgis.org/
qooxdoo:	http://manual.qooxdoo.org/current
Roundup:	http://www.roundup-tracker.org/

http://www.blender.org/documentation/250PythonDoc/
http://discorporate.us/projects/Blinker/docs/
http://classy.pocoo.org/
http://deap.gel.ulaval.ca/doc/0.8/index.html
http://docs.djangoproject.com/
http://www.adobe.com/devnet-docs/acrobatetk/
http://e-cidadania.readthedocs.org/en/latest/
http://flask.pocoo.org/docs/
http://packages.python.org/Flask-OpenID/
http://excamera.com/sphinx/gameduino/
http://docs.geoserver.org/
http://glashammer.org/
http://www.istihza.com/py2/icindekiler_python.html
http://docs.mathjax.org/en/latest/
http://mirrorbrain.org/docs/
http://somethingaboutorange.com/mrl/projects/nose/
https://notex.ch/overview/
http://objectlistview.sourceforge.net/python
http://doc.openerp.com/
http://docs.opencv.org/
http://docs.openlayers.org/
http://rhodesmill.org/pyephem/
http://www.hasecke.com/plone-benutzerhandbuch/
http://sirius.chem.vt.edu/psi4manual/latest/index.html
http://pylonshq.com/docs/en/0.9.7/
http://www.doughellmann.com/PyMOTW/
http://pypol.altervista.org/
http://qgis.org/
http://manual.qooxdoo.org/current
http://www.roundup-tracker.org/

Selenium:	http://seleniumhq.org/docs/
Self:	http://selflanguage.org/
Tablib:	http://tablib.org/
SQLAlchemy:	http://www.sqlalchemy.org/docs/
tinyTiM:	http://tinytim.sourceforge.net/docs/2.0/
tipfy:	http://www.tipfy.org/docs/
Ubuntu	packaging	guide:
http://developer.ubuntu.com/packaging/html/
Werkzeug:	http://werkzeug.pocoo.org/docs/
WFront:	http://discorporate.us/projects/WFront/

http://seleniumhq.org/docs/
http://selflanguage.org/
http://tablib.org/
http://www.sqlalchemy.org/docs/
http://tinytim.sourceforge.net/docs/2.0/
http://www.tipfy.org/docs/
http://developer.ubuntu.com/packaging/html/
http://werkzeug.pocoo.org/docs/
http://discorporate.us/projects/WFront/

Homepages	and	other	non-documentation	sites

Applied	Mathematics	at	the	Stellenbosch	University:
http://dip.sun.ac.za/
A	personal	page:	http://www.dehlia.in/
Benoit	Boissinot:	http://bboissin.appspot.com/
lunarsite:	http://lunaryorn.de/
Red	Hot	Chili	Python:	http://redhotchilipython.com/
The	Wine	Cellar	Book:
http://www.thewinecellarbook.com/doc/en/
VOR:	http://www.vor-cycling.be/

http://dip.sun.ac.za/
http://www.dehlia.in/
http://bboissin.appspot.com/
http://lunaryorn.de/
http://redhotchilipython.com/
http://www.thewinecellarbook.com/doc/en/
http://www.vor-cycling.be/

Books	produced	using	Sphinx

“The	repoze.bfg	Web	Application	Framework”:
http://www.amazon.com/repoze-bfg-Web-Application-
Framework-Version/dp/0615345379
A	Theoretical	Physics	Reference	book:	http://theoretical-
physics.net/
“Simple	and	Steady	Way	of	Learning	for	Software	Engineering”
(in	Japanese):	http://www.amazon.co.jp/dp/477414259X/
“Expert	Python	Programming”:	http://www.packtpub.com/expert-
python-programming/book
“Expert	Python	Programming”	(Japanese	translation):
http://www.amazon.co.jp/dp/4048686291/
“Pomodoro	Technique	Illustrated”	(Japanese	translation):
http://www.amazon.co.jp/dp/4048689525/
“Python	Professional	Programming”	(in	Japanese):
http://www.amazon.co.jp/dp/4798032948/
“Die	Wahrheit	des	Sehens.	Der	DEKALOG	von	Krzysztof
Kieślowski”:	http://www.hasecke.eu/Dekalog/
The	“Varnish	Book”:	https://www.varnish-
software.com/static/book/
“Learning	Sphinx”	(in	Japanese):
http://www.oreilly.co.jp/books/9784873116488/

http://www.amazon.com/repoze-bfg-Web-Application-Framework-Version/dp/0615345379
http://theoretical-physics.net/
http://www.amazon.co.jp/dp/477414259X/
http://www.packtpub.com/expert-python-programming/book
http://www.amazon.co.jp/dp/4048686291/
http://www.amazon.co.jp/dp/4048689525/
http://www.amazon.co.jp/dp/4798032948/
http://www.hasecke.eu/Dekalog/
https://www.varnish-software.com/static/book/
http://www.oreilly.co.jp/books/9784873116488/

indexmodules 	|previous 	|Sphinx	home 	| Documentation 	»

Thesis	using	Sphinx

“A	Web-Based	System	for	Comparative	Analysis	of
OpenStreetMap	Data	by	the	Use	of	CouchDB”:
http://gisforge.no-
ip.org/files/MasterThesis_MarkusMayr_0542042.pdf

©	Copyright	2007-2013,	Georg	Brandl.	Created	using	Sphinx	1.2.

http://gisforge.no-ip.org/files/MasterThesis_MarkusMayr_0542042.pdf
http://sphinx-doc.org/

Home Get	it Docs Extend/Develop

indexmodules 	|Sphinx	home 	| Documentation 	»

Installing	Sphinx
Since	Sphinx	is	written	in	the	Python	language,	you	need	to	install
Python	(the	required	version	is	at	least	2.5)	and	Sphinx.

Sphinx	packages	are	available	on	the	Python	Package	Index.

You	can	also	download	a	snapshot	from	the	Mercurial	development
repository:

as	a	.tar.bz2	file	or
as	a	.zip	file

There	are	introductions	for	several	environments:

Debian/Ubuntu:	Install	Sphinx	using	packaging	system
Other	Linux	distributions
Mac	OS	X:	Install	Sphinx	using	MacPorts
Windows:	Install	Python	and	Sphinx
Installing	Sphinx	with	easy_install

http://pypi.python.org/pypi/Sphinx
https://bitbucket.org/birkenfeld/sphinx/get/default.tar.bz2
https://bitbucket.org/birkenfeld/sphinx/get/default.zip

Debian/Ubuntu:	Install	Sphinx	using	packaging
system

You	may	install	using	this	command	if	you	use	Debian/Ubuntu.

$	apt-get	install	python-sphinx

Other	Linux	distributions

Most	Linux	distributions	have	Sphinx	in	their	package	repositories.
Usually	the	package	is	called	“python-sphinx”,	“python-Sphinx”	or
“sphinx”.	Be	aware	that	there	are	two	other	packages	with	“sphinx”	in
their	name:	a	speech	recognition	toolkit	(CMU	Sphinx)	and	a	full-text
search	database	(Sphinx	search).

Mac	OS	X:	Install	Sphinx	using	MacPorts

If	you	use	Mac	OS	X	MacPorts,	use	this	command	to	install	all
necessary	software.

$	sudo	port	install	py27-sphinx

To	set	up	the	executable	paths,	use	the	port	select	command:

$	sudo	port	select	--set	python	python27
$	sudo	port	select	--set	sphinx	py27-sphinx

Type	which	sphinx-quickstart	to	check	if	the	installation	was
successful.

http://www.macports.org/

Windows:	Install	Python	and	Sphinx

Install	Python
Most	Windows	users	do	not	have	Python,	so	we	begin	with	the
installation	of	Python	itself.	If	you	have	already	installed	Python,
please	skip	this	section.

Go	to	http://python.org,	the	main	download	site	for	Python.	Look	at
the	left	sidebar	and	under	“Quick	Links”,	click	“Windows	Installer”	to
download.

Note
Currently,	Python	offers	two	major	versions,	2.x	and	3.x.	Sphinx	1.2	can	run	under
Python	2.5	to	2.7	and	3.1	to	3.3,	with	the	recommended	version	being	2.7.	This	chapter
assumes	you	have	installed	Python	2.7.

Follow	the	Windows	installer	for	Python.

http://python.org

After	installation,	you	better	add	the	Python	executable	directories	to
the	environment	variable	PATH	in	order	to	run	Python	and	package
commands	such	as	sphinx-build	easily	from	the	Command
Prompt.

Right-click	the	“My	Computer”	icon	and	choose	“Properties”

Click	the	“Environment	Variables”	button	under	the	“Advanced”
tab

If	“Path”	(or	“PATH”)	is	already	an	entry	in	the	“System
variables”	list,	edit	it.	If	it	is	not	present,	add	a	new	variable
called	“PATH”.

Add	these	paths,	separating	entries	by	”;”:

C:\Python27	–	this	folder	contains	the	main	Python
executable
C:\Python27\Scripts	–	this	folder	will	contain
executables	added	by	Python	packages	installed	with
easy_install	(see	below)

This	is	for	Python	2.7.	If	you	use	another	version	of	Python	or
installed	to	a	non-default	location,	change	the	digits	“27”
accordingly.

Now	run	the	Command	Prompt.	After	command	prompt

window	appear,	type	python	and	Enter.	If	the	Python
installation	was	successful,	the	installed	Python	version	is
printed,	and	you	are	greeted	by	the	prompt	>>>.	Type	Ctrl+Z
and	Enter	to	quit.

Install	the	easy_install	command
Python	has	a	very	useful	easy_install	command	which	can
download	and	install	3rd-party	libraries	with	a	single	command.	This
is	provided	by	the	“setuptools”	project:
http://pypi.python.org/pypi/setuptools.

To	install	setuptools,	download
https://bitbucket.org/pypa/setuptools/raw/bootstrap/ez_setup.py	and
save	it	somewhere.	After	download,	invoke	the	command	prompt,	go
to	the	directory	with	ez_setup.py	and	run	this	command:

C:\>	python	ez_setup.py

Now	setuptools	and	its	easy_install	command	is	installed.	From
there	we	can	go	to	the	Sphinx	install.

http://pypi.python.org/pypi/setuptools
https://bitbucket.org/pypa/setuptools/raw/bootstrap/ez_setup.py

indexmodules 	|Sphinx	home 	| Documentation 	»

Installing	Sphinx	with	easy_install

If	you	finished	the	installation	of	setuptools,	type	this	line	in	the
command	prompt:

C:\>	easy_install	sphinx

After	installation,	type	sphinx-build	on	the	command	prompt.	If
everything	worked	fine,	you	will	get	a	Sphinx	version	number	and	a
list	of	options	for	this	command.

That	it.	Installation	is	over.	Head	to	First	Steps	with	Sphinx	to	make	a
Sphinx	project.

©	Copyright	2007-2013,	Georg	Brandl.	Created	using	Sphinx	1.2.

http://sphinx-doc.org/

Home Get	it Docs Extend/Develop

indexmodules 	|next 	|Sphinx	home 	| Documentation 	»

Sphinx	documentation	contents
Introduction

Conversion	from	other	systems
Use	with	other	systems
Prerequisites
Usage

First	Steps	with	Sphinx
Setting	up	the	documentation	sources
Defining	document	structure
Adding	content
Running	the	build
Documenting	objects
Basic	configuration
Autodoc
More	topics	to	be	covered

Invocation	of	sphinx-build
Makefile	options

Invocation	of	sphinx-apidoc
reStructuredText	Primer

Paragraphs
Inline	markup
Lists	and	Quote-like	blocks
Source	Code
Tables
Hyperlinks
Sections
Explicit	Markup
Directives
Images
Footnotes
Citations
Substitutions
Comments
Source	encoding
Gotchas

Sphinx	Markup	Constructs

The	TOC	tree
Paragraph-level	markup
Table-of-contents	markup
Glossary
Grammar	production	displays
Showing	code	examples
Inline	markup
Miscellaneous	markup

Sphinx	Domains
What	is	a	Domain?
Basic	Markup
The	Python	Domain
The	C	Domain
The	C++	Domain
The	Standard	Domain
The	JavaScript	Domain
The	reStructuredText	domain
More	domains

Available	builders
Serialization	builder	details

The	build	configuration	file
General	configuration
Project	information
Options	for	internationalization
Options	for	HTML	output
Options	for	epub	output
Options	for	LaTeX	output
Options	for	text	output
Options	for	manual	page	output
Options	for	Texinfo	output
Options	for	the	linkcheck	builder
Options	for	the	XML	builder

Internationalization
Sphinx	internationalization	details
Translating	with	sphinx-intl
Using	Transifex	service	for	team	translation
Contributing	to	Sphinx	reference	translation

HTML	theming	support
Using	a	theme

Builtin	themes
Creating	themes

Templating
Do	I	need	to	use	Sphinx’	templates	to	produce	HTML?
Jinja/Sphinx	Templating	Primer
Working	with	the	builtin	templates

Sphinx	Extensions
Tutorial:	Writing	a	simple	extension
Extension	API
Writing	new	builders
Builtin	Sphinx	extensions
Third-party	extensions

Sphinx	Web	Support
Web	Support	Quick	Start
The	WebSupport	Class
Search	Adapters
Storage	Backends

Sphinx	FAQ
How	do	I...
Using	Sphinx	with...
Epub	info
Texinfo	info

Glossary
Sphinx	Developer’s	Guide

Bug	Reports	and	Feature	Requests
Contributing	to	Sphinx
Coding	Guide

Changes	in	Sphinx
Release	1.2	(released	Dec	10,	2013)
Release	1.2	beta3	(released	Oct	3,	2013)
Release	1.2	beta2	(released	Sep	17,	2013)
Release	1.2	beta1	(released	Mar	31,	2013)
Release	1.1.3	(Mar	10,	2012)
Release	1.1.2	(Nov	1,	2011)	–	1.1.1	is	a	silly	version
number	anyway!
Release	1.1.1	(Nov	1,	2011)
Release	1.1	(Oct	9,	2011)
Release	1.0.8	(Sep	23,	2011)
Release	1.0.7	(Jan	15,	2011)

Release	1.0.6	(Jan	04,	2011)
Release	1.0.5	(Nov	12,	2010)
Release	1.0.4	(Sep	17,	2010)
Release	1.0.3	(Aug	23,	2010)
Release	1.0.2	(Aug	14,	2010)
Release	1.0.1	(Jul	27,	2010)
Release	1.0	(Jul	23,	2010)
Previous	versions

Projects	using	Sphinx
Documentation	using	the	default	theme
Documentation	using	a	customized	version	of	the	default
theme
Documentation	using	the	sphinxdoc	theme
Documentation	using	another	builtin	theme
Documentation	using	a	custom	theme/integrated	in	a	site
Homepages	and	other	non-documentation	sites
Books	produced	using	Sphinx
Thesis	using	Sphinx

indexmodules 	|next 	|Sphinx	home 	| Documentation 	»

Indices	and	tables
Index
Module	Index
Search	Page
Glossary

©	Copyright	2007-2013,	Georg	Brandl.	Created	using	Sphinx	1.2.

http://sphinx-doc.org/

Home Get	it Docs Extend/Develop

indexmodules 	|Sphinx	home 	| Documentation 	»

Sphinx	development
Sphinx	is	a	maintained	by	a	group	of	volunteers.	We	value	every
contribution!

The	code	can	be	found	in	a	Mercurial	repository,	at
http://bitbucket.org/birkenfeld/sphinx/.
Issues	and	feature	requests	should	be	raised	in	the	tracker.
The	mailing	list	for	development	is	at	Google	Groups.
There	is	also	the	#sphinx-doc	IRC	channel	on	freenode.

For	more	about	our	development	process	and	methods,	see	the
Sphinx	Developer’s	Guide.

http://bitbucket.org/birkenfeld/sphinx/
http://bitbucket.org/birkenfeld/sphinx/issues/
http://groups.google.com/group/sphinx-dev/
http://freenode.net/

Extensions
The	sphinx-contrib	repository	contains	many	contributed	extensions.
Some	of	them	have	their	own	releases	on	PyPI,	others	you	can
install	from	a	checkout.

This	is	the	current	list	of	contributed	extensions	in	that	repository:

aafig:	render	embeded	ASCII	art	as	nice	images	using	aafigure.
actdiag:	embed	activity	diagrams	by	using	actdiag
adadomain:	an	extension	for	Ada	support	(Sphinx	1.0	needed)
ansi:	parse	ANSI	color	sequences	inside	documents
autorun:	Execute	code	in	a	runblock	directive.
blockdiag:	embed	block	diagrams	by	using	blockdiag
cheeseshop:	easily	link	to	PyPI	packages
clearquest:	create	tables	from	ClearQuest	queries.
coffeedomain:	a	domain	for	(auto)documenting	CoffeeScript
source	code.
context:	a	builder	for	ConTeXt.
doxylink:	Link	to	external	Doxygen-generated	HTML
documentation
email:	obfuscate	email	addresses
erlangdomain:	an	extension	for	Erlang	support	(Sphinx	1.0
needed)
exceltable:	embed	Excel	spreadsheets	into	documents	using
exceltable
feed:	an	extension	for	creating	syndication	feeds	and	time-
based	overviews	from	your	site	content
gnuplot:	produces	images	using	gnuplot	language.
googleanalytics:	track	html	visitors	statistics
googlechart:	embed	charts	by	using	Google	Chart
googlemaps:	embed	maps	by	using	Google	Maps
httpdomain:	a	domain	for	documenting	RESTful	HTTP	APIs.
hyphenator:	client-side	hyphenation	of	HTML	using	hyphenator
lilypond:	an	extension	inserting	music	scripts	from	Lilypond	in
PNG	format.
mscgen:	embed	mscgen-formatted	MSC	(Message	Sequence

http://bitbucket.org/birkenfeld/sphinx-contrib/
https://launchpad.net/aafigure
http://blockdiag.com/
http://blockdiag.com/
http://www-01.ibm.com/software/awdtools/clearquest/
http://packages.python.org/sphinxcontrib-exceltable/
http://www.gnuplot.info/
http://code.google.com/intl/ja/apis/chart/
http://maps.google.com/
http://code.google.com/p/hyphenator/
http://lilypond.org/web/

indexmodules 	|Sphinx	home 	| Documentation 	»

Chart)s.
nicoviceo:	embed	videos	from	nicovideo
nwdiag:	embed	network	diagrams	by	using	nwdiag
omegat:	support	tools	to	collaborate	with	OmegaT	(Sphinx	1.1
needed)
osaka:	convert	standard	Japanese	doc	to	Osaka	dialect	(it	is
joke	extension)
paverutils:	an	alternate	integration	of	Sphinx	with	Paver.
phpdomain:	an	extension	for	PHP	support
plantuml:	embed	UML	diagram	by	using	PlantUML
rawfiles:	copy	raw	files,	like	a	CNAME.
requirements:	declare	requirements	wherever	you	need	(e.g.	in
test	docstrings),	mark	statuses	and	collect	them	in	a	single	list
rubydomain:	an	extension	for	Ruby	support	(Sphinx	1.0	needed)
sadisplay:	display	SqlAlchemy	model	sadisplay
sdedit:	an	extension	inserting	sequence	diagram	by	using	Quick
Sequence.	Diagram	Editor	(sdedit)
seqdiag:	embed	sequence	diagrams	by	using	seqdiag
slide:	embed	presentation	slides	on	slideshare	and	other	sites.
swf:	embed	flash	files
sword:	an	extension	inserting	Bible	verses	from	Sword.
tikz:	draw	pictures	with	the	TikZ/PGF	LaTeX	package.
traclinks:	create	TracLinks	to	a	Trac	instance	from	within	Sphinx
whooshindex:	whoosh	indexer	extension
youtube:	embed	videos	from	YouTube
zopeext:	provide	an	autointerface	directive	for	using	Zope
interfaces.

See	the	extension	tutorial	on	getting	started	with	writing	your	own
extensions.

©	Copyright	2007-2013,	Georg	Brandl.	Created	using	Sphinx	1.2.

http://blockdiag.com/
http://www.omegat.org/
http://www.blueskyonmars.com/projects/paver/
http://plantuml.sourceforge.net/
http://bitbucket.org/estin/sadisplay/wiki/Home
http://sdedit.sourceforge.net/
http://blockdiag.com/
http://www.slideshare.net/
http://www.crosswire.org/sword/
http://sourceforge.net/projects/pgf/
http://trac.edgewall.org/wiki/TracLinks
http://trac.edgewall.org
http://www.youtube.com/
http://docs.zope.org/zope.interface/README.html
http://sphinx-doc.org/

Home Get	it Docs Extend/Develop

indexmodules 	|Sphinx	home 	| Documentation 	»

Index
Symbols	|	A	|	B	|	C	|	D	|	E	|	F	|	G	|	H	|	I	|	J	|	K	|	L	|	M	|	N	|	O	|	P	|	Q
|	R	|	S	|	T	|	U	|	V	|	W	|	X

Symbols

$.getJSON()	($	method)
-a

sphinx-build	command	line
option

-A	author
sphinx-apidoc	command	line
option

-A	name=value
sphinx-build	command	line
option

-b	buildername
sphinx-build	command	line
option

-C
sphinx-build	command	line
option

-c	path
sphinx-build	command	line
option

-d	maxdepth
sphinx-apidoc	command	line
option

-d	path
sphinx-build	command	line
option

-D	setting=value
sphinx-build	command	line
option

-E
sphinx-build	command	line
option

-f,	--force
sphinx-apidoc	command	line
option

-F,	--full

-N
sphinx-build	command	line
option

-n
sphinx-build	command	line
option

-n,	--dry-run
sphinx-apidoc	command	line
option

-o	outputdir
sphinx-apidoc	command	line
option

-P
sphinx-build	command	line
option

-Q
sphinx-build	command	line
option

-q
sphinx-build	command	line
option

-R	release
sphinx-apidoc	command	line
option

-s	suffix
sphinx-apidoc	command	line
option

-T
sphinx-build	command	line
option

-t	tag
sphinx-build	command	line
option

-T,	--no-toc
sphinx-apidoc	command	line

sphinx-apidoc	command	line
option

-H	project
sphinx-apidoc	command	line
option

-h,	--help,	--version
sphinx-build	command	line
option

-j	N
sphinx-build	command	line
option

-l,	--follow-links
sphinx-apidoc	command	line
option

option
-v

sphinx-build	command	line
option

-V	version
sphinx-apidoc	command	line
option

-W
sphinx-build	command	line
option

-w	file
sphinx-build	command	line
option

A

abbr	(role)
accept_comment()
(sphinx.websupport.storage.StorageBackend
method)
add_autodoc_attrgetter()
(sphinx.application.Sphinx	method)
add_autodocumenter()
(sphinx.application.Sphinx	method)
add_builder()	(sphinx.application.Sphinx
method)
add_comment()
(sphinx.websupport.storage.StorageBackend
method)

(sphinx.websupport.WebSupport	method)
add_config_value()	(sphinx.application.Sphinx
method)
add_crossref_type()	(sphinx.application.Sphinx
method)
add_directive()	(sphinx.application.Sphinx
method)
add_directive_to_domain()
(sphinx.application.Sphinx	method)
add_document()
(sphinx.websupport.search.BaseSearch
method)
add_domain()	(sphinx.application.Sphinx
method)
add_event()	(sphinx.application.Sphinx	method)
add_function_parentheses

configuration	value
add_generic_role()	(sphinx.application.Sphinx
method)
add_index_to_domain()
(sphinx.application.Sphinx	method)
add_javascript()	(sphinx.application.Sphinx

add_search_language()
(sphinx.application.Sphinx
method)
add_stylesheet()
(sphinx.application.Sphinx
method)
add_transform()
(sphinx.application.Sphinx
method)
array<T>::operator[]	(C++
function)
attributes	(built-in	variable)
autoattribute	(directive)
autoclass	(directive)
autoclass_content

configuration	value
autodata	(directive)
autodoc-process-docstring

event
autodoc-process-signature

event
autodoc-skip-member

event
autodoc_default_flags

configuration	value
autodoc_docstring_signature

configuration	value
autodoc_member_order

configuration	value
autoexception	(directive)
autofunction	(directive)
automatic

documentation
linking
testing

method)
add_lexer()	(sphinx.application.Sphinx	method)
add_module_names

configuration	value
add_node()	(sphinx.application.Sphinx	method)

(sphinx.websupport.storage.StorageBackend
method)

add_object_type()	(sphinx.application.Sphinx
method)
add_role()	(sphinx.application.Sphinx	method)
add_role_to_domain()
(sphinx.application.Sphinx	method)

automethod	(directive)
automodule	(directive)
autosummary	(directive)
autosummary_generate

configuration	value

B

bar	(directive)
BaseSearch	(class	in
sphinx.websupport.search)
between()	(in	module
sphinx.ext.autodoc)
build()	(sphinx.builders.Builder
method)

(sphinx.websupport.WebSupport
method)

build-finished
event

build_all()	(sphinx.builders.Builder
method)

build_specific()
(sphinx.builders.Builder
method)
build_update()
(sphinx.builders.Builder
method)
builder

(built-in	variable)
Builder	(class	in
sphinx.builders)
builder-inited

event

C

c:data	(role)
c:func	(role)
c:function	(directive)
c:macro	(directive)

(role)
c:member	(directive)
c:type	(directive)

(role)
c:var	(directive)
centered	(directive)
changes

in	version
ChangesBuilder	(class	in
sphinx.builders.changes)
CheckExternalLinksBuilder	(class	in
sphinx.builders.linkcheck)
class	(built-in	variable)
classes	(built-in	variable)
clear_doc()
(sphinx.domains.Domain	method)
code

examples
codeauthor	(directive)
command	(role)
conf	(module)
configuration	directory
configuration	value

add_function_parentheses
add_module_names
autoclass_content
autodoc_default_flags
autodoc_docstring_signature
autodoc_member_order
autosummary_generate
copyright

contents
table	of

copyright
configuration	value

copyright	(built-in	variable)
coverage_c_path

configuration	value
coverage_c_regexes

configuration	value
coverage_ignore_c_items

configuration	value
coverage_ignore_classes

configuration	value
coverage_ignore_functions

configuration	value
coverage_ignore_modules

configuration	value
coverage_skip_undoc_in_source

configuration	value
coverage_write_headline

configuration	value
CoverageBuilder	(class	in
sphinx.ext.coverage)
cpp:class	(directive)

(role)
cpp:func	(role)
cpp:function	(directive)
cpp:member	(directive)

(role)
cpp:namespace	(directive)
cpp:type	(directive)

(role)
css_files	(built-in	variable)
cut_lines()	(in	module
sphinx.ext.autodoc)

coverage_c_path
coverage_c_regexes
coverage_ignore_c_items
coverage_ignore_classes
coverage_ignore_functions
coverage_ignore_modules
coverage_skip_undoc_in_source
coverage_write_headline
default_role
doctest_global_cleanup
doctest_global_setup
doctest_path
doctest_test_doctest_blocks
epub_author
epub_basename
epub_copyright
epub_cover
epub_exclude_files
epub_fix_images
epub_guide
epub_identifier
epub_language
epub_max_image_width
epub_post_files
epub_pre_files
epub_publisher
epub_scheme
epub_show_urls
epub_theme
epub_theme_options
epub_title
epub_tocdepth
epub_tocdup
epub_tocscope
epub_uid
epub_use_index
exclude_dirnames
exclude_patterns
exclude_trees

extensions
extlinks
gettext_compact
graphviz_dot
graphviz_dot_args
graphviz_output_format
highlight_language
html_add_permalinks
html_additional_pages
html_compact_lists
html_context
html_copy_source
html_domain_indices
html_extra_path
html_favicon
html_file_suffix
html_last_updated_fmt
html_link_suffix
html_logo
html_output_encoding
html_search_language
html_search_options
html_search_scorer
html_secnumber_suffix
html_short_title
html_show_copyright
html_show_sourcelink
html_show_sphinx
html_sidebars
html_split_index
html_static_path
html_style
html_theme
html_theme_options
html_theme_path
html_title
html_translator_class
html_use_index
html_use_modindex

html_use_opensearch
html_use_smartypants
htmlhelp_basename
inheritance_edge_attrs
inheritance_graph_attrs
inheritance_node_attrs
intersphinx_cache_limit
intersphinx_mapping
jsmath_path
keep_warnings
language
latex_additional_files
latex_appendices
latex_docclass
latex_documents
latex_domain_indices
latex_elements
latex_font_size
latex_logo
latex_paper_size
latex_preamble
latex_show_pagerefs
latex_show_urls
latex_use_modindex
latex_use_parts
linkcheck_anchors
linkcheck_ignore
linkcheck_timeout
linkcheck_workers
linkcode_resolve
locale_dirs
man_pages
man_show_urls
master_doc
mathjax_path
modindex_common_prefix
needs_sphinx
nitpick_ignore
nitpicky

pngmath_add_tooltips
pngmath_dvipng
pngmath_dvipng_args
pngmath_latex
pngmath_latex_args
pngmath_latex_preamble
pngmath_use_preview
primary_domain
project
pygments_style
release
rst_epilog
rst_prolog
show_authors
source_encoding
source_suffix
template_bridge
templates_path
texinfo_appendices
texinfo_documents
texinfo_domain_indices
texinfo_elements
texinfo_no_detailmenu
texinfo_show_urls
text_newlines
text_sectionchars
today
today_fmt
todo_include_todos
trim_doctest_flags
trim_footnote_reference_space
unused_docs
version
xml_pretty

connect()	(sphinx.application.Sphinx
method)

D

dangling_warnings	(sphinx.domains.Domain
attribute)
data_version	(sphinx.domains.Domain
attribute)
default

domain
role

default-domain	(directive)
default_role

configuration	value
delete_comment()
(sphinx.websupport.storage.StorageBackend
method)
deprecated	(directive)
describe	(directive)
DevhelpBuilder	(class	in
sphinx.builders.devhelp)
dfn	(role)
digraph	(directive)
directive
directive()	(sphinx.domains.Domain	method)
directives	(sphinx.domains.Domain	attribute)
DirectoryHTMLBuilder	(class	in
sphinx.builders.html)
disconnect()	(sphinx.application.Sphinx
method)

doc	(role)
docstitle	(built-in	variable)
docstring
doctest

(directive)
doctest_global_cleanup

configuration	value
doctest_global_setup

configuration	value
doctest_path

configuration	value
doctest_test_doctest_blocks

configuration	value
doctree-read

event
doctree-resolved

event
document	name
documentation

automatic
domain
Domain	(class	in
sphinx.domains)
download	(role)

E

embedded	(built-in
variable)
emit()
(sphinx.application.Sphinx
method)
emit_firstresult()
(sphinx.application.Sphinx
method)
enumerate()	(built-in
function)
env-get-outdated

event
env-purge-doc

event
env-updated

event
environment
envvar	(directive)

(role)
epub_author

configuration	value
epub_basename

configuration	value
epub_copyright

configuration	value
epub_cover

configuration	value
epub_exclude_files

configuration	value
epub_fix_images

configuration	value
epub_guide

configuration	value
epub_identifier

configuration	value

epub_scheme
configuration	value

epub_show_urls
configuration	value

epub_theme
configuration	value

epub_theme_options
configuration	value

epub_title
configuration	value

epub_tocdepth
configuration	value

epub_tocdup
configuration	value

epub_tocscope
configuration	value

epub_uid
configuration	value

epub_use_index
configuration	value

EpubBuilder	(class	in
sphinx.builders.epub)
eq	(role)
event

autodoc-process-docstring
autodoc-process-signature
autodoc-skip-member
build-finished
builder-inited
doctree-read
doctree-resolved
env-get-outdated
env-purge-doc
env-updated
html-collect-pages

epub_language
configuration	value

epub_max_image_width
configuration	value

epub_post_files
configuration	value

epub_pre_files
configuration	value

epub_publisher
configuration	value

html-page-context
missing-reference
source-read

examples
code

exceptions	(built-in	variable)
exclude_dirnames

configuration	value
exclude_patterns

configuration	value
exclude_trees

configuration	value
ExtensionError
extensions

configuration	value
extlinks

configuration	value
extract_context()
(sphinx.websupport.search.BaseSearch
method)

F

favicon	(built-in	variable)
feed()
(sphinx.websupport.search.BaseSearch
method)
file	(role)
file_suffix	(built-in	variable)
finish()	(sphinx.builders.Builder	method)

finish_indexing()
(sphinx.websupport.search.BaseSearch
method)
foo	(C++	function)

(directive)
(role)

fullname	(built-in	variable)
functions	(built-in	variable)

G

generate()	(sphinx.domains.Index	method)
get_data()
(sphinx.websupport.storage.StorageBackend
method)

(sphinx.websupport.WebSupport	method)
get_document()
(sphinx.websupport.WebSupport	method)
get_objects()	(sphinx.domains.Domain
method)
get_outdated_docs()	(sphinx.builders.Builder
method)
get_relative_uri()	(sphinx.builders.Builder
method)
get_search_results()
(sphinx.websupport.WebSupport	method)
get_target_uri()	(sphinx.builders.Builder
method)
get_type_name()	(sphinx.domains.Domain
method)
gettext_compact

configuration	value

global
substitutions

globalcontext_filename
(sphinx.builders.html.SerializingHTMLBuilder
attribute)
glossary	(directive)
graph	(directive)
graphviz	(directive)
graphviz_dot

configuration	value
graphviz_dot_args

configuration	value
graphviz_output_format

configuration	value
guilabel	(role)

H

handle_query()
(sphinx.websupport.search.BaseSearch
method)
has_source	(built-in	variable)
hasdoc()	(built-in	function)
highlight_language

configuration	value
hlist	(directive)
html-collect-pages

event
html-page-context

event
html_add_permalinks

configuration	value
html_additional_pages

configuration	value
html_compact_lists

configuration	value
html_context

configuration	value
html_copy_source

configuration	value
html_domain_indices

configuration	value
html_extra_path

configuration	value
html_favicon

configuration	value
html_file_suffix

configuration	value
html_last_updated_fmt

configuration	value
html_link_suffix

configuration	value
html_logo

html_search_scorer
configuration	value

html_secnumber_suffix
configuration	value

html_short_title
configuration	value

html_show_copyright
configuration	value

html_show_sourcelink
configuration	value

html_show_sphinx
configuration	value

html_sidebars
configuration	value

html_split_index
configuration	value

html_static_path
configuration	value

html_style
configuration	value

html_theme
configuration	value

html_theme_options
configuration	value

html_theme_path
configuration	value

html_title
configuration	value

html_translator_class
configuration	value

html_use_index
configuration	value

html_use_modindex
configuration	value

html_use_opensearch

configuration	value
html_output_encoding

configuration	value
html_search_language

configuration	value
html_search_options

configuration	value

configuration	value
html_use_smartypants

configuration	value
htmlhelp_basename

configuration	value
HTMLHelpBuilder	(class
in
sphinx.builders.htmlhelp)

I

ifconfig	(directive)
implementation
(sphinx.builders.html.SerializingHTMLBuilder
attribute)
in	version

changes
Index	(class	in	sphinx.domains)
index	(directive)

(role)
indices	(sphinx.domains.Domain	attribute)
inheritance-diagram	(directive)
inheritance_edge_attrs

configuration	value

inheritance_graph_attrs
configuration	value

inheritance_node_attrs
configuration	value

init()
(sphinx.application.TemplateBridge
method)

(sphinx.builders.Builder	method)
init_indexing()
(sphinx.websupport.search.BaseSearch
method)
initial_data	(sphinx.domains.Domain
attribute)
intersphinx_cache_limit

configuration	value
intersphinx_mapping

configuration	value

J

js:attr	(role)
js:attribute	(directive)
js:class	(directive)

(role)
js:data	(directive)

(role)

js:func	(role)
js:function	(directive)
jsmath_path

configuration	value
JSONHTMLBuilder	(class	in
sphinx.builders.html)

K

kbd	(role)
keep_warnings

configuration	value

keyword	(role)

L

label	(sphinx.domains.Domain
attribute)
language

configuration	value
last_updated	(built-in	variable)
latex_additional_files

configuration	value
latex_appendices

configuration	value
latex_docclass

configuration	value
latex_documents

configuration	value
latex_domain_indices

configuration	value
latex_elements

configuration	value
latex_font_size

configuration	value
latex_logo

configuration	value
latex_paper_size

configuration	value
latex_preamble

configuration	value
latex_show_pagerefs

configuration	value

latex_show_urls
configuration	value

latex_use_modindex
configuration	value

latex_use_parts
configuration	value

LaTeXBuilder	(class	in
sphinx.builders.latex)
linkcheck_anchors

configuration	value
linkcheck_ignore

configuration	value
linkcheck_timeout

configuration	value
linkcheck_workers

configuration	value
linkcode_resolve

configuration	value
linking

automatic
literalinclude	(directive)
locale_dirs

configuration	value
logo	(built-in	variable)

M

mailheader	(role)
makevar	(role)
man_pages

configuration	value
man_show_urls

configuration	value
manpage	(role)
ManualPageBuilder	(class	in
sphinx.builders.manpage)
master	document
master_doc

configuration	value
master_doc	(built-in	variable)
math	(directive)

(role)
mathjax_path

configuration	value

members	(built-in	variable)
menuselection	(role)
MessageCatalogBuilder	(class
in	sphinx.builders.gettext)
meta	(built-in	variable)
methods	(built-in	variable)
mimetype	(role)
missing-reference

event
modindex_common_prefix

configuration	value
module	(built-in	variable)
MyAnimal()	(class)

N

name	(built-in	variable)
(sphinx.domains.Domain	attribute)

namespaced::theclass::method	(C++
function),	[1]
needs_sphinx

configuration	value
newest_template_mtime()
(sphinx.application.TemplateBridge
method)
newsgroup	(role)

next	(built-in	variable)
nitpick_ignore

configuration	value
nitpicky

configuration	value
note

(directive)

O

object
(directive)

object_types
(sphinx.domains.Domain
attribute)
objname	(built-in
variable)
ObjType	(class	in
sphinx.domains)
only	(directive)

operator	bool	(C++	function)
option	(directive)

(role)
out_suffix
(sphinx.builders.html.SerializingHTMLBuilder
attribute)
override_domain()
(sphinx.application.Sphinx	method)

P

pagename	(built-in	variable)
parents	(built-in	variable)
pathto()	(built-in	function),	[1]
pep	(role)
PickleHTMLBuilder	(class	in
sphinx.builders.html)
pngmath_add_tooltips

configuration	value
pngmath_dvipng

configuration	value
pngmath_dvipng_args

configuration	value
pngmath_latex

configuration	value
pngmath_latex_args

configuration	value
pngmath_latex_preamble

configuration	value
pngmath_use_preview

configuration	value
post_build()
(sphinx.websupport.storage.StorageBackend
method)
pre_build()
(sphinx.websupport.storage.StorageBackend
method)
prepare_writing()	(sphinx.builders.Builder
method)
prev	(built-in	variable)
primary

domain
primary_domain

configuration	value
process_doc()	(sphinx.domains.Domain
method)

project	(built-in
variable)
PseudoXMLBuilder
(class	in
sphinx.builders.xml)
py:attr	(role)
py:attribute
(directive)
py:class	(directive)

(role)
py:classmethod
(directive)
py:const	(role)
py:currentmodule
(directive)
py:data	(directive)

(role)
py:decorator
(directive)
py:decoratormethod
(directive)
py:exc	(role)
py:exception
(directive)
py:func	(role)
py:function
(directive)
py:meth	(role)
py:method
(directive)
py:mod	(role)
py:module
(directive)
py:obj	(role)
py:staticmethod

process_vote()
(sphinx.websupport.storage.StorageBackend
method)

(sphinx.websupport.WebSupport	method)
productionlist	(directive)
program	(directive)

(role)
project

configuration	value

(directive)
pygments_style

configuration
value

Q

QtHelpBuilder	(class	in
sphinx.builders.qthelp)

query()
(sphinx.websupport.search.BaseSearch
method)

R

ref	(role)
regexp	(role)
relbar()	(built-in	function)
reldelim1	(built-in	variable)
reldelim2	(built-in	variable)
release

configuration	value
release	(built-in	variable)
rellinks	(built-in	variable)
render()
(sphinx.application.TemplateBridge
method)
render_string()
(sphinx.application.TemplateBridge
method)
require_sphinx()
(sphinx.application.Sphinx	method)

resolve_xref()
(sphinx.domains.Domain
method)
rfc	(role)
role
role()
(sphinx.domains.Domain
method)
roles
(sphinx.domains.Domain
attribute)
rst:dir	(role)
rst:directive	(directive)
rst:role	(directive)

(role)
rst_epilog

configuration	value
rst_prolog

configuration	value
rubric	(directive)

S

samp	(role)
script_files	(built-in	variable)
searchindex_filename
(sphinx.builders.html.SerializingHTMLBuilder
attribute)
sectionauthor	(directive)
seealso	(directive)
SerializingHTMLBuilder	(class	in
sphinx.builders.html)
setup_extension()	(sphinx.application.Sphinx
method)
shorttitle	(built-in	variable)
show_authors

configuration	value
show_source	(built-in	variable)
sidebar()	(built-in	function)
SingleFileHTMLBuilder	(class	in
sphinx.builders.html)
snippets

testing
source	directory
source-read

event
source_encoding

configuration	value
source_suffix

configuration	value
sourcecode
sourcename	(built-in	variable)
sphinx-apidoc	command	line	option

-A	author
-F,	--full
-H	project
-R	release
-T,	--no-toc

sphinx.builders.linkcheck
(module)
sphinx.builders.manpage
(module)
sphinx.builders.qthelp
(module)
sphinx.builders.texinfo
(module)
sphinx.builders.text	(module)
sphinx.builders.xml	(module)
sphinx.domains	(module)
sphinx.ext.autodoc	(module)
sphinx.ext.autosummary
(module)
sphinx.ext.coverage	(module)
sphinx.ext.doctest	(module)
sphinx.ext.extlinks	(module)
sphinx.ext.graphviz	(module)
sphinx.ext.ifconfig	(module)
sphinx.ext.inheritance_diagram
(module)
sphinx.ext.intersphinx	(module)
sphinx.ext.jsmath	(module)
sphinx.ext.linkcode	(module)
sphinx.ext.mathbase	(module)
sphinx.ext.mathjax	(module)
sphinx.ext.oldcmarkup
(module)
sphinx.ext.pngmath	(module)
sphinx.ext.todo	(module)
sphinx.ext.viewcode	(module)
sphinx_version	(built-in
variable)
StandaloneHTMLBuilder	(class
in	sphinx.builders.html)

-V	version
-d	maxdepth
-f,	--force
-l,	--follow-links
-n,	--dry-run
-o	outputdir
-s	suffix

sphinx-build	command	line	option
-A	name=value
-C
-D	setting=value
-E
-N
-P
-Q
-T
-W
-a
-b	buildername
-c	path
-d	path
-h,	--help,	--version
-j	N
-n
-q
-t	tag
-v
-w	file

sphinx.application	(module)
sphinx.builders	(module)
sphinx.builders.changes	(module)
sphinx.builders.devhelp	(module)
sphinx.builders.epub	(module)
sphinx.builders.gettext	(module)
sphinx.builders.html	(module)
sphinx.builders.htmlhelp	(module)
sphinx.builders.latex	(module)

StorageBackend	(class	in
sphinx.websupport.storage)
style	(built-in	variable)
substitutions

global

T

table	of
contents

tabularcolumns	(directive)
template_bridge

configuration	value
TemplateBridge	(class	in
sphinx.application)
templates_path

configuration	value
term	(role)
testcleanup	(directive)
testcode	(directive)
testing

automatic
snippets

testoutput	(directive)
testsetup	(directive)
texinfo_appendices

configuration	value
texinfo_documents

configuration	value
texinfo_domain_indices

configuration	value
texinfo_elements

configuration	value
texinfo_no_detailmenu

configuration	value
texinfo_show_urls

configuration	value

TexinfoBuilder	(class	in
sphinx.builders.texinfo)
text_newlines

configuration	value
text_sectionchars

configuration	value
TextBuilder	(class	in
sphinx.builders.text)
theclass::const_iterator	(C++	type)
theclass::name	(C++	member),	[1]
title	(built-in	variable)
toc	(built-in	variable)
toctree	(built-in	variable)

(directive)
today

configuration	value
today_fmt

configuration	value
todo	(directive)
todo_include_todos

configuration	value
todolist	(directive)
token	(role)
trim_doctest_flags

configuration	value
trim_footnote_reference_space

configuration	value

U

underline	(built-in
variable)
unused_docs

configuration
value

update_username()
(sphinx.websupport.storage.StorageBackend
method)
use_opensearch	(built-in	variable)

V

version
configuration	value

version	(built-in	variable)
version_info	(in	module	sphinx)

versionadded	(directive)
versionchanged	(directive)

W

warning
(directive)

WebSupport	(class	in
sphinx.websupport)

write_doc()
(sphinx.builders.Builder	method)

indexmodules 	|Sphinx	home 	| Documentation 	»

X

xml_pretty
configuration	value

XMLBuilder	(class	in
sphinx.builders.xml)

©	Copyright	2007-2013,	Georg	Brandl.	Created	using	Sphinx	1.2.

http://sphinx-doc.org/

Home Get	it Docs Extend/Develop

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	»

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	»

Sphinx	Markup	Constructs
Sphinx	adds	a	lot	of	new	directives	and	interpreted	text	roles	to
standard	reST	markup.	This	section	contains	the	reference	material
for	these	facilities.

The	TOC	tree
Special	names

Paragraph-level	markup
Table-of-contents	markup
Glossary
Grammar	production	displays
Showing	code	examples

Line	numbers
Includes

Inline	markup
Cross-referencing	syntax

Cross-referencing	objects
Cross-referencing	arbitrary	locations
Cross-referencing	documents
Referencing	downloadable	files
Cross-referencing	other	items	of	interest

Other	semantic	markup
Substitutions

Miscellaneous	markup
File-wide	metadata
Meta-information	markup
Index-generating	markup
Including	content	based	on	tags
Tables

More	markup	is	added	by	Sphinx	Domains.

©	Copyright	2007-2013,	Georg	Brandl.	Created	using	Sphinx	1.2.

http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html
http://sphinx-doc.org/

Home Get	it Docs Extend/Develop

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	» Sphinx	Extensions 	»

Tutorial:	Writing	a	simple
extension
This	section	is	intended	as	a	walkthrough	for	the	creation	of	custom
extensions.	It	covers	the	basics	of	writing	and	activating	an
extensions,	as	well	as	commonly	used	features	of	extensions.

As	an	example,	we	will	cover	a	“todo”	extension	that	adds
capabilities	to	include	todo	entries	in	the	documentation,	and
collecting	these	in	a	central	place.	(A	similar	“todo”	extension	is
distributed	with	Sphinx.)

Build	Phases

One	thing	that	is	vital	in	order	to	understand	extension	mechanisms
is	the	way	in	which	a	Sphinx	project	is	built:	this	works	in	several
phases.

Phase	0:	Initialization

In	this	phase,	almost	nothing	interesting	for	us	happens.	The
source	directory	is	searched	for	source	files,	and	extensions	are
initialized.	Should	a	stored	build	environment	exist,	it	is	loaded,
otherwise	a	new	one	is	created.

Phase	1:	Reading

In	Phase	1,	all	source	files	(and	on	subsequent	builds,	those
that	are	new	or	changed)	are	read	and	parsed.	This	is	the	phase
where	directives	and	roles	are	encountered	by	the	docutils,	and
the	corresponding	functions	are	called.	The	output	of	this	phase
is	a	doctree	for	each	source	files,	that	is	a	tree	of	docutils	nodes.
For	document	elements	that	aren’t	fully	known	until	all	existing
files	are	read,	temporary	nodes	are	created.

During	reading,	the	build	environment	is	updated	with	all	meta-
and	cross	reference	data	of	the	read	documents,	such	as	labels,
the	names	of	headings,	described	Python	objects	and	index
entries.	This	will	later	be	used	to	replace	the	temporary	nodes.

The	parsed	doctrees	are	stored	on	the	disk,	because	it	is	not
possible	to	hold	all	of	them	in	memory.

Phase	2:	Consistency	checks

Some	checking	is	done	to	ensure	no	surprises	in	the	built
documents.

Phase	3:	Resolving

Now	that	the	metadata	and	cross-reference	data	of	all	existing

documents	is	known,	all	temporary	nodes	are	replaced	by
nodes	that	can	be	converted	into	output.	For	example,	links	are
created	for	object	references	that	exist,	and	simple	literal	nodes
are	created	for	those	that	don’t.

Phase	4:	Writing

This	phase	converts	the	resolved	doctrees	to	the	desired	output
format,	such	as	HTML	or	LaTeX.	This	happens	via	a	so-called
docutils	writer	that	visits	the	individual	nodes	of	each	doctree
and	produces	some	output	in	the	process.

Note
Some	builders	deviate	from	this	general	build	plan,	for	example,	the	builder	that	checks
external	links	does	not	need	anything	more	than	the	parsed	doctrees	and	therefore
does	not	have	phases	2–4.

Extension	Design

We	want	the	extension	to	add	the	following	to	Sphinx:

A	“todo”	directive,	containing	some	content	that	is	marked	with
“TODO”,	and	only	shown	in	the	output	if	a	new	config	value	is
set.	(Todo	entries	should	not	be	in	the	output	by	default.)
A	“todolist”	directive	that	creates	a	list	of	all	todo	entries
throughout	the	documentation.

For	that,	we	will	need	to	add	the	following	elements	to	Sphinx:

New	directives,	called	todo	and	todolist.
New	document	tree	nodes	to	represent	these	directives,
conventionally	also	called	todo	and	todolist.	We	wouldn’t
need	new	nodes	if	the	new	directives	only	produced	some
content	representable	by	existing	nodes.
A	new	config	value	todo_include_todos	(config	value
names	should	start	with	the	extension	name,	in	order	to	stay
unique)	that	controls	whether	todo	entries	make	it	into	the
output.
New	event	handlers:	one	for	the	doctree-resolved	event,	to
replace	the	todo	and	todolist	nodes,	and	one	for	env-purge-
doc	(the	reason	for	that	will	be	covered	later).

The	Setup	Function

The	new	elements	are	added	in	the	extension’s	setup	function.	Let
us	create	a	new	Python	module	called	todo.py	and	add	the	setup
function:

def	setup(app):
				app.add_config_value('todo_include_todos',	False

				app.add_node(todolist)
				app.add_node(todo,
																	html=(visit_todo_node,	depart_todo_node
																	latex=(visit_todo_node,	depart_todo_node
																	text=(visit_todo_node,	depart_todo_node

				app.add_directive('todo',	TodoDirective)
				app.add_directive('todolist',	TodolistDirective
				app.connect('doctree-resolved',	process_todo_nodes
				app.connect('env-purge-doc',	purge_todos)

The	calls	in	this	function	refer	to	classes	and	functions	not	yet
written.	What	the	individual	calls	do	is	the	following:

add_config_value()	lets	Sphinx	know	that	it	should
recognize	the	new	config	value	todo_include_todos,	whose
default	value	should	be	False	(this	also	tells	Sphinx	that	it	is	a
boolean	value).

If	the	third	argument	was	True,	all	documents	would	be	re-read
if	the	config	value	changed	its	value.	This	is	needed	for	config
values	that	influence	reading	(build	phase	1).

add_node()	adds	a	new	node	class	to	the	build	system.	It	also
can	specify	visitor	functions	for	each	supported	output	format.
These	visitor	functions	are	needed	when	the	new	nodes	stay

until	phase	4	–	since	the	todolist	node	is	always	replaced	in
phase	3,	it	doesn’t	need	any.

We	need	to	create	the	two	node	classes	todo	and	todolist
later.

add_directive()	adds	a	new	directive,	given	by	name	and
class.

The	handler	functions	are	created	later.

Finally,	connect()	adds	an	event	handler	to	the	event	whose
name	is	given	by	the	first	argument.	The	event	handler	function
is	called	with	several	arguments	which	are	documented	with	the
event.

The	Node	Classes

Let’s	start	with	the	node	classes:

from	docutils	import	nodes

class	todo(nodes.Admonition,	nodes.Element):
				pass

class	todolist(nodes.General,	nodes.Element):
				pass

def	visit_todo_node(self,	node):
				self.visit_admonition(node)

def	depart_todo_node(self,	node):
				self.depart_admonition(node)

Node	classes	usually	don’t	have	to	do	anything	except	inherit	from
the	standard	docutils	classes	defined	in	docutils.nodes.	todo
inherits	from	Admonition	because	it	should	be	handled	like	a	note
or	warning,	todolist	is	just	a	“general”	node.

The	Directive	Classes

A	directive	class	is	a	class	deriving	usually	from
docutils.parsers.rst.Directive.	Since	the	class-based
directive	interface	doesn’t	exist	yet	in	Docutils	0.4,	Sphinx	has
another	base	class	called	sphinx.util.compat.Directive	that
you	can	derive	your	directive	from,	and	it	will	work	with	both	Docutils
0.4	and	0.5	upwards.	The	directive	interface	is	covered	in	detail	in
the	docutils	documentation;	the	important	thing	is	that	the	class	has
a	method	run	that	returns	a	list	of	nodes.

The	todolist	directive	is	quite	simple:

from	sphinx.util.compat	import	Directive

class	TodolistDirective(Directive):

				def	run(self):
								return	[todolist('')]

An	instance	of	our	todolist	node	class	is	created	and	returned.
The	todolist	directive	has	neither	content	nor	arguments	that	need	to
be	handled.

The	todo	directive	function	looks	like	this:

from	sphinx.util.compat	import	make_admonition

class	TodoDirective(Directive):

				#	this	enables	content	in	the	directive
				has_content	=	True

				def	run(self):
								env	=	self.state.document.settings.env

http://docutils.sourceforge.net/docs/ref/rst/directives.html

								targetid	=	"todo-%d"	%	env.new_serialno('todo'
								targetnode	=	nodes.target('',	'',	ids=[targetid

								ad	=	make_admonition(todo,	self.name,	[_('Todo'
																													self.content,	self.lineno
																													self.block_text,	self.

								if	not	hasattr(env,	'todo_all_todos'):
												env.todo_all_todos	=	[]
								env.todo_all_todos.append({
												'docname':	env.docname,
												'lineno':	self.lineno,
												'todo':	ad[0].deepcopy(),
												'target':	targetnode,
								})

								return	[targetnode]	+	ad

Several	important	things	are	covered	here.	First,	as	you	can	see,
you	can	refer	to	the	build	environment	instance	using
self.state.document.settings.env.

Then,	to	act	as	a	link	target	(from	the	todolist),	the	todo	directive
needs	to	return	a	target	node	in	addition	to	the	todo	node.	The	target
ID	(in	HTML,	this	will	be	the	anchor	name)	is	generated	by	using
env.new_serialno	which	is	returns	a	new	integer	directive	on
each	call	and	therefore	leads	to	unique	target	names.	The	target
node	is	instantiated	without	any	text	(the	first	two	arguments).

An	admonition	is	created	using	a	standard	docutils	function
(wrapped	in	Sphinx	for	docutils	cross-version	compatibility).	The	first
argument	gives	the	node	class,	in	our	case	todo.	The	third
argument	gives	the	admonition	title	(use	arguments	here	to	let	the
user	specify	the	title).	A	list	of	nodes	is	returned	from
make_admonition.

Then,	the	todo	node	is	added	to	the	environment.	This	is	needed	to

be	able	to	create	a	list	of	all	todo	entries	throughout	the
documentation,	in	the	place	where	the	author	puts	a	todolist
directive.	For	this	case,	the	environment	attribute	todo_all_todos
is	used	(again,	the	name	should	be	unique,	so	it	is	prefixed	by	the
extension	name).	It	does	not	exist	when	a	new	environment	is
created,	so	the	directive	must	check	and	create	it	if	necessary.
Various	information	about	the	todo	entry’s	location	are	stored	along
with	a	copy	of	the	node.

In	the	last	line,	the	nodes	that	should	be	put	into	the	doctree	are
returned:	the	target	node	and	the	admonition	node.

The	node	structure	that	the	directive	returns	looks	like	this:

+--------------------+
|	target	node								|
+--------------------+
+--------------------+
|	todo	node										|
+--------------------+
		__+--------------------+
					|	admonition	title			|
					+--------------------+
					|	paragraph										|
					+--------------------+
					|	...																|
					+--------------------+

The	Event	Handlers

Finally,	let’s	look	at	the	event	handlers.	First,	the	one	for	the	env-
purge-doc	event:

def	purge_todos(app,	env,	docname):
				if	not	hasattr(env,	'todo_all_todos'):
								return
				env.todo_all_todos	=	[todo	for	todo	in	env.todo_all_todos
																										if	todo['docname']	!=	docname

Since	we	store	information	from	source	files	in	the	environment,
which	is	persistent,	it	may	become	out	of	date	when	the	source	file
changes.	Therefore,	before	each	source	file	is	read,	the
environment’s	records	of	it	are	cleared,	and	the	env-purge-doc
event	gives	extensions	a	chance	to	do	the	same.	Here	we	clear	out
all	todos	whose	docname	matches	the	given	one	from	the
todo_all_todos	list.	If	there	are	todos	left	in	the	document,	they
will	be	added	again	during	parsing.

The	other	handler	belongs	to	the	doctree-resolved	event.	This
event	is	emitted	at	the	end	of	phase	3	and	allows	custom	resolving
to	be	done:

def	process_todo_nodes(app,	doctree,	fromdocname):
				if	not	app.config.todo_include_todos:
								for	node	in	doctree.traverse(todo):
												node.parent.remove(node)

				#	Replace	all	todolist	nodes	with	a	list	of	the	collected	todos.
				#	Augment	each	todo	with	a	backlink	to	the	original	location.
				env	=	app.builder.env

				for	node	in	doctree.traverse(todolist):

								if	not	app.config.todo_include_todos:
												node.replace_self([])
												continue

								content	=	[]

								for	todo_info	in	env.todo_all_todos:
												para	=	nodes.paragraph()
												filename	=	env.doc2path(todo_info['docname'
												description	=	(
																_('(The	original	entry	is	located	in	
																(filename,	todo_info['lineno']))
												para	+=	nodes.Text(description,	description

												#	Create	a	reference
												newnode	=	nodes.reference('',	'')
												innernode	=	nodes.emphasis(_('here'),	_
												newnode['refdocname']	=	todo_info['docname'
												newnode['refuri']	=	app.builder.get_relative_uri
																fromdocname,	todo_info['docname'])
												newnode['refuri']	+=	'#'	+	todo_info['target'
												newnode.append(innernode)
												para	+=	newnode
												para	+=	nodes.Text('.)',	'.)')

												#	Insert	into	the	todolist
												content.append(todo_info['todo'])
												content.append(para)

								node.replace_self(content)

It	is	a	bit	more	involved.	If	our	new	“todo_include_todos”	config	value
is	false,	all	todo	and	todolist	nodes	are	removed	from	the
documents.

If	not,	todo	nodes	just	stay	where	and	how	they	are.	Todolist	nodes
are	replaced	by	a	list	of	todo	entries,	complete	with	backlinks	to	the

indexmodules 	|next 	|previous 	|Sphinx	home 	|

Documentation 	» Sphinx	Extensions 	»

location	where	they	come	from.	The	list	items	are	composed	of	the
nodes	from	the	todo	entry	and	docutils	nodes	created	on	the	fly:	a
paragraph	for	each	entry,	containing	text	that	gives	the	location,	and
a	link	(reference	node	containing	an	italic	node)	with	the
backreference.	The	reference	URI	is	built	by
app.builder.get_relative_uri	which	creates	a	suitable	URI
depending	on	the	used	builder,	and	appending	the	todo	node’s	(the
target’s)	ID	as	the	anchor	name.

©	Copyright	2007-2013,	Georg	Brandl.	Created	using	Sphinx	1.2.

http://sphinx-doc.org/

	Sphinx 1.2 documentation
	Python Module Index
	Introduction
	First Steps with Sphinx
	Invocation of sphinx-build
	reStructuredText Primer
	Sphinx Markup Constructs
	The TOC tree
	Paragraph-level markup
	Showing code examples
	Inline markup
	Miscellaneous markup

	Sphinx Domains
	Available builders
	The build configuration file
	Internationalization
	HTML theming support
	Templating
	Sphinx Extensions
	Tutorial: Writing a simple extension
	Extension API
	Writing new builders

	Sphinx Web Support
	Web Support Quick Start
	The WebSupport Class
	Search Adapters
	Storage Backends

	Sphinx FAQ
	Glossary
	Sphinx Developer's Guide
	Changes in Sphinx
	Projects using Sphinx

