
|	Community

To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com

Copyright	©	2011	by	Microsoft	Corporation.	All	rights	reserved.

Silk	1.0	-	June	2011

Project	Silk:	Web	Guidance	Table	of	Contents

Here	is	the	Table	of	Contents.	At	this	point,	we	have	drafts	of	the	chapters	that
are	linked	below.	These	chapters	are	ready	for	your	review	and	feedback.

Chapter	1:	Introduction
Chapter	2:	Architecture
Chapter	3:	jQuery	UI	Widgets
Chapter	4:	Design	and	Layout
Chapter	5:	HTML	Templates
Chapter	6:	Application	Notifications
Chapter	7:	Modularity
Chapter	8:	Communication
Chapter	9:	Navigation
Chapter	10:	Client	Data	Management	and	Caching
Chapter	11:	Server-Side	Implementation
Chapter	12:	Security
Chapter	13:	Unit	Testing	Web	Applications
Glossary
Appendix	A:	How-to	Topic	Listing
Appendix	B:	Widget	QuickStart
Appendix	C:	How	to:	Check	UIElement	Properties	with	Coded	UI	Test
Appendix	D:	How	to:	Create	Automation	Negative	case	with	Coded	UI
Test
Appendix	E:	How	to:	Create	Web	Client	UI	Test	using	Coded	UI	Test

Known	issue:	The	graphics	are	not	in	their	final	format.	They	will	be	fixed
before	publication.

http://www.codeplex.com/silk
mailto:pagdoc@microsoft.com?subject=Feedback about Project Silk: Web Guidance Table of Contents

Silk	1.0	-	June	2011

Introduction

Project	Silk	provides	guidance	for	building	secure	cross-browser	web
applications	that	are	characterized	by	rich	graphics,	interactivity,	and	a
responsive	user	interface	(UI)	which	enables	an	immersive	and	engaging	user
experience	(UX).	These	applications	leverage	the	latest	web	standards	like
HTML5,	CSS3	and	ECMAScript	version	5,	and	modern	web	technologies	such
as	jQuery,	and	ASP.NET	MVC3.

The	application	performance	is	in-part	due	to	the	fast	JavaScript	engines	of	the
modern	standards	based	web	browsers	which	enable	developers	to	deliver
applications	whose	experience	and	execution	speed	rivals	that	of	a	desktop
application.	Windows	Internet	Explorer	9	further	enriches	the	user	experience
by	taking	full	advantage	of	the	modern	PC	hardware	providing	hardware
accelerated	graphics.	High-definition	videos	are	smooth,	graphics	are	clearer
and	more	responsive,	colors	are	truer,	and	web	applications	are	more	interactive.

The	Project	Silk	written	guidance	is	demonstrated	in	the	Mileage	Stats
Reference	Implementation	(Mileage	Stats),	a	real-world	customer	facing	web
application	that	provides	users	the	ability	to	track	and	compare	their	vehicles:
fuel	efficiency,	usage,	operation	costs,	as	well	as	the	scheduling	of	vehicle
maintenance	reminders.

Getting	Started
This	section	describes	how	to	install	and	start	exploring	the	Project	Silk
guidance.	You	can	download	Project	Silk	from	MSDN.

Prerequisites
This	guidance	is	intended	for	web	developers	and	assumes	you	have	hands-on
experience	with	ASP.NET	MVC	3,	CSS,	HTML,	JavaScript,	and	the	jQuery
libraries.	There	are	a	few	important	JavaScript	concepts	that	Project	Silk	uses
heavily	that	you	need	to	be	familiar	with.	If	you	are	unsure	of	these	concepts	or
have	not	used	them	in	your	own	projects,	please	see	the	Further	Reading	section
at	the	end	of	this	chapter	which	provides	links	to	resources	for	learning	these.

Closures.	JavaScript	closures	are	a	powerful	feature	of	the	language	that
ensures	an	inner	function	always	has	access	to	the	variables	and
parameters	of	its	outer	function,	even	after	the	outer	function	has
returned.
jQuery	selectors.	jQuery	selectors	and	attribute	selectors	allow	you	to
select	all	DOM	elements	or	groups	of	elements	for	a	given	tag	name,	id,
attribute	name	or	value	and	allow	you	to	manipulate	them	as	a	group	or	a
single	node.

System	Requirements
This	guidance	was	designed	to	run	on	the	Microsoft	Windows	7	or	Windows
Server	2008	operating	system.	It	has	been	smoke	tested	on	Windows	Vista	and
XP.

Before	you	can	compile	and	run	the	Mileage	Stats	application,	the	following
must	be	installed:

Microsoft	Visual	Studio	2010	Professional,	Premium,	or	Ultimate	edition
Microsoft	Visual	Studio	2010	SP1
Microsoft	.NET	Framework	4.0	(installed	with	Visual	Studio	2010)
ASP.NET	MVC	3
Microsoft	SQL	Server	Compact	4.0
ADO.NET	Entity	Framework	4.1.	For	more	information	about	this
Entity	Framework	release,	see	EF	4.1	Released.
NuGet

http://www.microsoft.com/downloads/en/details.aspx?FamilyID=75568aa6-8107-475d-948a-ef22627e57a5&displaylang=en
http://www.asp.net/mvc/mvc3
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=033cfb76-5382-44fb-bc7e-b3c8174832e2
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=b41c728e-9b4f-4331-a1a8-537d16c6acdf&displaylang=en
http://blogs.msdn.com/b/adonet/archive/2011/04/11/ef-4-1-released.aspx
http://nuget.org/

Downloading	and	Installation
To	download	and	install	Project	Silk's	guidance	which	includes:	source	code	for
the	Mileage	Stats	Reference	Implementation	and	jQuery	UI	Widget	QuickStart,
this	written	guidance,	and	additional	How	To	appendixes	in	.chm	and	.pdf
formats,	please	following	these	steps:

1.	 Download	Project	Silk.
2.	 To	extract	the	download,	right-click	the	.exe	file	and	then	click	Run	as

administrator.	This	will	extract	the	source	code	and	documentation
into	the	folder	of	your	choice.

3.	 Read	the	ReadMe	file	which	contains	instructions	on	installing	external
dependencies	from	NuGet	and	downloading	the	required	external
JavaScript	libraries.

Spectrum	of	Web	Applications
Before	diving	deep	into	the	design	and	coding	of	these	rich	and	interactive	web
applications,	it	would	be	prudent	on	our	part	to	first	survey	the	spectrum	of	web
applications	being	built	today.	This	exercise	will	better	equip	you	to	make
technology	and	design	choices	that	provide	solutions	for	your	scenarios.

The	below	four	general	types	of	web	applications	are	categorized	by	their	full
page	reload	requirements	and	the	client-side	interactivity	they	provide.	Each
application	type	provides	a	richer	experience	than	the	one	listed	above	it.

Static.	Web	sites	consisting	of	static	HTML	pages,	CSS	and	images.	As
each	page	is	navigated	to,	the	browser	performs	a	full	page	reload.
Server	rendered.	Web	application	where	the	server	dynamically
assembles	the	page	from	one	or	more	source	files	and	can	inject	data
values	during	the	rendering.	This	type	of	application	typically	has	some
but	not	a	lot	of	client-side	code.	As	each	page	is	navigated	to,	the
browser	performs	a	full	page	reload.	ASP.NET	MVC	or	ASP.NET	Web
Forms	applications	that	don't	make	heavy	use	of	client-side	JavaScript
are	examples	of	server	rendered	web	applications.
Hybrid	design.	Web	application	has	the	same	characteristics	as	the
server	rendered	web	application,	except	that	it	relies	heavily	on	client-
side	code	to	deliver	an	engaging	experience.	This	type	of	application	has
islands	of	interactivity	within	the	site	that	do	not	require	full	page	reloads
to	change	the	user	interface,	as	well	as	some	pages	that	require	a	full
page	reload.	Mileage	Stats	is	an	example	of	a	web	application	using	a
hybrid	design.
Single	page	interface.	Web	application	where	the	user	is	only	required
to	perform	a	full	page	load	once.	From	that	point	on,	all	page	changes
and	data	loading	is	performed	without	a	full	page	reload.	Hotmail,	Office
Live,	and	Twitter	are	examples	of	single	page	interface	web	applications.

Characteristics	of	Modern	Web	Applications
While	there	are	many	types	of	modern	web	applications	that	address	very
different	needs	and	scenarios,	these	applications	tend	to	have	the	below
characteristics	in	common.

Standards-based.	To	have	the	broadest	reach	across	multiple	platforms,
standards-based	applications	don't	rely	on	proprietary	implementations
of	HTML5	or	CSS3.
Interactive.	Modern	web	applications	keep	the	user	engaged	by
providing	constant,	yet	subtle	feedback.	This	feedback	can	be	in	the	form
of	user	messages,	animations	to	hide	or	show	elements,	mouse	over	UI
element	effects,	drag	and	drop	feedback,	or	the	automatic	refreshing	of
screen	data.	Interactive	applications	strive	to	provide	feedback	during
application	state	or	page	changes.	This	feedback	can	be	in	the	form	of
animating	elements	into	new	positions	or	animating	of	their	opacity	to
provide	fade	in	or	fade	out	visual	effects.	Interactive	applications
leverage	the	fast	JavaScript	engines	in	modern	browsers	to	perform	their
client-side	tasks.
Limit	full	page	reloads.	Modern	web	applications	seek	to	limit	the
number	of	full	page	reloads.	Reloads	are	much	slower	than	a	localized
Ajax	call	to	update	a	portion	of	the	UI.	Full	page	reloads	also	limits	the
ability	to	animate	state	or	page	changes.	By	not	performing	a	full	page
reload;	the	user	can	be	kept	in	context,	providing	a	fluid	experience	as
they	navigate	from	one	task	to	another.
Asynchronous.	Modern	web	applications	use	Ajax	to	dynamically	load
data,	templates,	or	partial	views	as	required	instead	of	performing	a	full
page	reload	to	acquire	data	or	HTML	structure.	The	asynchronous
loading	of	data	allows	the	UI	to	stay	responsive	and	keep	the	user
informed	while	the	data	request	is	being	fulfilled.	This	asynchronous	on-
demand	loading	also	reduces	application	response	time	because	requests
can	be	tuned	to	only	return	exactly	what	is	needed	to	fulfill	the	request.
Data	management.	When	applicable,	modern	web	applications	provide
client-side	data	caching	and	pre-fetching	to	boost	client-side
performance.	This	enables	the	user	interface	to	immediately	respond	to
user	input	gestures	because	it	does	not	have	to	make	a	call	to	the	server
for	data.	Data	caching	also	serves	to	minimize	the	impact	on	server

resources	increasing	application	scalability	because	fewer	calls	to	the
server	are	required.

Considerations	for	Building	Modern	Web	Applications
Building	a	rich	modern	web	application	can	be	rewarding	and	fun.	For
developers	or	web	software	firms	that	have	typically	delivered	server-centric
applications,	possibly	with	small	amounts	of	JavaScript,	embarking	on	a
modern	web	application	project	will	involve	a	paradigm	change	that	should	not
be	minimized	or	overlooked.

In	the	next	two	sections	we	will	examine	the	skillsets	a	project	team	will	need
and	the	technologies	used	when	building	a	modern	web	application.

Team	Skillsets
Developing	modern	web	applications	requires	a	broad	range	of	skills.
Depending	on	your	application	requirements,	your	team	will	need	expertise
provided	by	people	in	the	following	roles:

Designer	roles:	user	experience,	user	interface,	graphics
Client-side	developer	roles:	user	interface,	user	interaction,	test
Server-side	developer	roles:	website,	business	objects	&	logic,
database,	test

The	composition	of	the	web	project	team	will	vary	from	project	to	project	based
on	the	application's	requirements	and	the	team's	resources.	For	example,	on	a
large	project	each	of	the	roles	would	probably	be	filled	by	a	different	person	or
possibly	a	team,	while	on	a	small	project	team	members	will	likely	fill	multiple
roles	with	augmentation	from	consultants	as	required	to	fill	in	the	gaps.

On	Project	Silk	the	all	of	the	above	roles	were	filled	by	a	lead	developer,
designer,	server-side	developer,	and	two	client-side	developers.

Project	Silk	also	had	a	test	team	that	consisted	of	a	test	manager,	test	program
manager,	and	two	software	test	engineers.	The	test	team	was	responsible	for
cross-browser,	deployment,	performance,	stress,	and	security	testing.	To
accomplish	this,	the	test	team	set	up	lab	with	Windows	Server	2008	web	servers
that	had	different	configurations,	and	client	computers	configured	with	different
operating	systems	and	installed	browsers.	These	system	where	then	used	to
perform	daily	automated	and	manual	tests.

Technologies
This	section	will	familiarize	you	with	technologies	and	patterns	used	in	building
the	Mileage	Stats	application.	If	any	of	these	are	new	to	you	please	review	the
Further	Reading	topics	so	that	you	will	get	the	most	from	the	guidance	and	will
be	able	to	understand	the	Mileage	Stats	JavaScript,	HTML5,	CSS3	and	C#	code.

Ajax
The	web	has	been	benefiting	from	the	ability	to	replace	full	page	reloads	with
Ajax	calls	for	over	10	years	now.	But	given	the	advances	in	standards,	browsers
adherence	to	those	standards,	and	the	arrival	of	powerful,	cross-browser
JavaScript	frameworks,	we	have	all	the	tools	necessary	to	build	highly	engaging
client-side	experiences	using	the	latest	web	standards	and	technologies.

The	Ajax	technology	facilitates	a	paradigm	change	in	web	development	from
the	traditional	full	page	reload	model	of	server-centric	applications	to	rich	and
responsive	client-centric	applications.	The	client	receives	data	and	updates	the
user	interface	(UI)	using	JavaScript.	Bandwidth	requirements	are	minimized
because	the	server	responds	to	requests	by	returning	just	the	requested	data
instead	of	HTML	pages	with	data.	The	application	runs	faster	because	the	data
requests	take	less	time	to	complete,	and	the	UI	is	quickly	updated	without	a	full
page	reload.	Asynchronous	calls	are	essential	to	keeping	interactive	and
immersive	applications	responsive	from	the	user's	perspective.

JavaScript
This	section	will	be	completed	soon.

jQuery
This	section	will	be	completed	soon.

Modernizr
This	section	will	be	completed	soon.

ASP.NET	MVC	Razor
Razor	is	a	codename	for	the	new	view	engine	in	ASP.NET	MVC	3.	A	view
engine	is	a	mechanism	that	is	plugged	into	the	ASP.NET	MVC	framework	by
which	MVC	views	are	rendered.	Razor	is	a	view	engine	that	is	optimized	for
HTML	rendering	that	is	compact,	expressive,	and	easy	to	learn.

The	Razor	syntax	is	clean	and	concise,	easy	to	learn,	and	Visual	Studio	includes
IntelliSense	and	code	colorization	for	Razor	syntax.	Additionally,	Razor	views
can	be	unit	tested	without	requiring	that	you	run	the	application	or	launch	a	web
server.

For	a	more	detailed	overview	about	Razor,	see	"ASP.NET	MVC	3	Overview,	The
Razor	View	Engine"	in	the	further	reading	section.

Dependency	Injection
Dependency	injection	is	a	variant	of	the	Inversion	of	Control	design	pattern.
Dependency	injection	containers	reduce	the	dependency	coupling	between
objects	by	providing	a	facility	to	instantiate	instances	of	classes	and	manage
their	lifetime	based	on	the	configuration	of	the	container.	During	the	creation	of
objects,	the	container	injects	any	dependencies	that	the	object	requires	into	it.	If
those	dependencies	have	not	yet	been	created,	the	container	creates	and	resolves
their	dependencies	first.

Dependency	injection	provides	applications	several	benefits:
Reduced	coupling	as	classes	and	components	don't	have	to	locate
dependencies	or	manage	their	lifetimes.
Improved	testability	because	dependencies	can	be	easily	substituted	with
mocked	implementations
Improvedflexibility	and	maintainability	as	dependencies	can	be	swapped
out	easily.

ASP.NET	MVC	3	provides	better	support	for	applying	Dependency	Injection
and	for	integrating	with	Dependency	Injection	or	Inversion	of	Control
containers.	For	a	complete	coverage	of	Dependency	Injection	in	ASP.NET
MVC	3	see,	"ASP.NET	MVC	3	Overview,	Dependency	Injection	Improvements"
in	the	further	reading	section.

Exploring	this	Guidance
The	purpose	of	this	guidance	is	to	show	you	how	to	plan,	design,	and	build	a
rich	interactive	web	application	that	your	users	will	enjoy	using.	This	guidance
includes	written	documentation	in	the	form	of	topical	chapters,	Mileage	Stats
Reference	Implementation,	and	jQuery	UI	Widget	QuickStart.

What	is	a	reference	implementation?	Reference	implementations	are	a	means
to	an	end,	with	a	singular	goal	of	demonstrating	solutions	to	real-world
scenarios	and	challenges.	They	are	by	nature	not	packed	with	a	lot	of	features,
but	focus	on	clearly	communicating	coding	patterns,	techniques,	application
architecture,	and	unit	testing	necessary	to	demonstrate	and	support	the
accompanying	written	guidance.

Documentation.	This	guidance	provides	an	architectural	overview	of
rich	web	applications	and	the	accompanying	detailed	chapters	that	cover
the	design,	concepts,	patterns,	security,	testing,	and	implementation	of
the	Mileage	Stats	ASP.NET	MVC	application.
Reference	Implementation.	Comprehensive	sample	application
demonstrating	a	real-world,	interactive,	cross-browser,	consumer	facing,
rich	web	application.	The	reference	implementation	is	intentionally
incomplete	but	does	illustrate	the	core	concepts,	design	patterns,	security
requirements,	web	technologies,	and	unit	testing	necessary	to	be
successful.
QuickStart.	The	guidance	includes	the	source	code	and	documentation
for	understanding	how	to	use	and	develop	jQuery	UI	Widgets.

Exploring	the	Mileage	Stats	Reference	Implementation
The	Mileage	Stats	Reference	Implementation	(Mileage	Stats)	is	an	ASP.NET
MVC	application	that	enables	users	to	track	and	compare	various	metrics	about
their	vehicles	including	fuel	consumption,	fuel	costs,	miles	driven,	and
maintenance	reminders.	The	application	is	a	multi-page	interactive	web
application	where	the	pages	are	rendered	without	requiring	a	full	page	reload.
This	creates	the	illusion	of	a	desktop	application.	The	lack	of	full	page	reloads
enables	rich	UI	transitions	between	states	(pages)	and	the	application	runs	very
fast	because	of	the	client-side	data	caching	and	some	data	pre-fetching.

Much	of	the	effort	in	building	Mileage	Stats	was	applied	to	the	usability	and
rich	interactivity	of	the	experience.	Animations	were	included	to	enhance	the
enjoyment	of	the	site	and	Ajax	is	used	to	keep	the	interface	responsive	and
immersive.	A	great	deal	of	care	was	also	taken	to	ensure	the	client-side
JavaScript	was	modularized	for	maintainability.	To	accomplish	these	design
goals,	the	JavaScript	code	was	structured	using	the	jQuery	UI	Widget	Factory.
Widgets	allow	breaking	the	UI	into	small	discrete	stateful	objects;	providing	a
clean	separation	of	responsibilities	and	concerns.

Mileage	Stats	is	partitioned	into	three	layers:	data,	business,	and	web	spread
across	five	Visual	Studio	projects	pictured	on	the	left	side	of	the	below	image.
In	addition,	Mileage	Stats	includes	four	unit	test	projects	for	testing	the	five	C#
projects	and	a	suite	of	JavaScript	unit	tests,	pictured	on	the	right	side	of	the
below	image.

Mileage	Stats	unit	tests

The	design	and	implementation	of	the	above	Mileage	Stats	solution	is	the
subject	of	this	guidance	and	will	be	covered	in	the	remaining	chapters.	Now	let's
walk	through	the	Mileage	Stats	application	from	a	user's	perspective.

Using	the	Mileage	Stats
Unauthenticated	users	accessing	the	Mileage	Stats	website	will	be	redirected	to
the	landing	page	to	sign	in.	Mileage	Stats	uses	3rd	party	OpenID	providers	for
user	authentication.	Mileage	Stats	supports	deep	linking	so	that	previously
authenticated	users	returning	to	the	website	can	go	directly	to	any	page.

The	Mileage	Stats	introduction	tutorial	video	can	also	be	viewed	from	the
landing	page.

For	Internet	Explorer	9	users,	Mileage	Stats	provides	a	customized	pinned	sites
experience	that	is	accessed	from	the	landing	page.	The	below	image	shows	the
site	in	its	pinned	state	running	in	the	pinned	sites	customized	chrome	of	Internet

Explorer	9.	The	menu,	favorites	bar,	command	bar,	and	status	bar	have	been
removed	from	view.	The	back	and	forward	buttons	are	rendered	with	a	custom
color	and	the	site's	favicon	is	displayed	to	the	left	of	the	back	button.

Landing	page

The	first	time	a	new	user	logs	into	the	Mileage	Stats	application	the	summary
pane	will	display	the	Complete	your	Registration	form	pictured	below.	This
form	will	continue	to	be	displayed	in	the	summary	pane	until	the	user	clicks	the
Save	button.	Further	edits	to	the	users	profile	can	be	made	by	clicking	the

Profile	link	at	the	top	right	of	the	browser	window.

3rd	party	authentication	providers	do	not	uniformly	expose	their	user	data	to
applications	requesting	authentication	services.	For	example,	a	user	may	have
an	OpenID	account,	but	the	Mileage	Stats	application	may	not	be	able	to	request
information	from	the	provider	like	the	users	first	and	last	name	to	populate	the
below	Display	Name	field.	Our	team's	UX	designer	did	not	want	to	force	a	new
user	to	complete	a	form,	just	to	use	Mileage	Stats	after	authenticating.	So	we
implemented	a	non-intrusive	form	for	collecting	the	new	users	name,	country
and	postal	code.	The	new	user	can	immediately	use	the	Mileage	Stats
application	and	can	complete	the	registration	information	at	their	leisure.

First	time	logging	in

The	Dashboard	provides	a	summary	view	of	the	user's	vehicles.	From	here	the
user	can	add	a	new	vehicle,	drill	down	to	more	detail	for	a	vehicle,	and	can	see
maintenance	reminders	that	are	overdue	or	due	soon.

There	is	a	navigation	bar	at	the	top	of	the	browser	window	that	provides	top-
level	navigation	to	the	Dashboard,	Charts,	or	Profile	pages	and	a	Sign	Out	link
to	sign	out	of	application.

Dashboard

A	high	value	scenario	for	this	guidance	was	to	demonstrate	fluid	and	rich	UI
transitions,	and	animations.

The	below	image	shows	the	application	transitioning	from	the	Dashboard	(two

column	vehicle	listing)	to	the	Details	view	(single	column	vehicle	listing)	in
response	to	the	user	clicking	on	the	Details	button	in	Hot	Rod's	vehicle	tile.

The	below	image	demonstrates	the	synchronization	of	animated	opacity	changes
and	UI	element	movement	as	the	summary	pane,	vehicle	tiles,	and	info	pane
animate	into	their	respective	positions.

Transitioning	from	the	Dashboard	to	Details

The	Details	view	displays	aggregated	monthly	values	for:	fuel	efficiency,
distance	travelled,	and	fuel	cost.	The	user	is	able	to	quickly	see	trends	in	their

vehicle	usage	as	well	as	overdue	maintenance	reminders.	The	Details	view
allows	the	user	to	edit	or	delete	the	vehicle,	as	well	as	navigate	to	the	fill	ups
and	reminders	views.

Details

The	Charts	page	provides	three	charts	which	allow	the	user	to	easily	compare
their	vehicles	fuel	efficiency,	distance	travelled,	and	cost.	The	displayed	data
can	be	filtered	by	vehicle	and	date	range.	The	data	displayed	in	these	charts	is
pre-fetched	and	cached,	providing	a	very	fast	user	experience.

Charts

Exploring	the	Documentation
This	guidance	covers	a	wide	range	of	topics	that	includes:	planning	and
designing	your	application,	understanding	and	writing	jQuery	UI	Widgets,
writing	server-side	code	that	supports	the	client-side	application,	patterns	and
concepts	used	in	JavaScript	code,	data	and	caching,	securing,	and	testing	your
application.

The	printed	book	contains	all	of	the	below	chapters	and	Appendixes	A	and	B.
The	remaining	appendixes	can	be	read	online	and	are	also	included	with	the
Project	Silk	download.

The	written	and	online	documentation	includes	the	following:
Chapter	2,	"Architecture."	This	chapter	explains	the	Mileage	Stats
client-side	architecture	by	studying	how	its	structure,	modularity,
communication,	navigation,	and	data	relate	to	one	another.
Chapter	3,	"jQuery	UI	Widgets."	An	understanding	of	jQuery	UI
Widgets	is	critical	to	comprehending	this	guidance	and	the	Mileage	Stats
application	because	Mileage	Stats	makes	heavy	use	of	widgets	to
modularize	its	JavaScript.	This	chapter	provides	ample	instruction	on
widget	fundamentals,	lifetime,	creation,	events,	properties	and	methods,
and	inheritance.
Chapter	4,	"Design	and	Layout."	This	chapter	explains	the	importance
of	an	iterative	design	process	and	the	roles	different	team	members
fulfill.	After	a	survey	of	user	experience	and	user	interface	design
considerations,	we	will	walk	through	the	design	and	building	of	the
Mileage	Stats	application	and	how	these	considerations	influenced	the
application.
Chapter	5,	"HTML	Templates."	This	chapter	discusses	how	an
interactive	application	like	Mileage	Stats	can	manage	client-side	HTML
changes	with	having	to	fully	reload	the	page	each	time	the	user	navigates
or	completes	a	task.
Chapter	6,	"Application	Notifications."	Web	applications	that	users
consider	responsive	have	one	thing	in	common;	they	provide	appropriate
and	timely	feedback	to	the	user.	In	this	chapter	we	will	show	how	to
provide	unobtrusive	feedback	to	the	user	and	how	to	implement
notifications	on	the	desktop	with	the	Pinned	Sites	API.
Chapter	7,	"Modularity."	Rich	and	interactive	web	applications	can

require	a	fair	amount	of	JavaScript	coding.	Modularizing	your	JavaScript
makes	your	code	easier	to	maintain	and	evolve.	In	this	chapter	we	will
explain	how	the	Mileage	Stats	JavaScript	was	modularized	using	jQuery
UI	Widgets	and	JavaScript	objects.
Chapter	8,	"Communication."	This	chapter	explains	how
communication	between	widgets	and	JavaScript	objects	was
implemented	in	Mileage	Stats.	Topics	such	as	loose	communication	that
use	the,	"publish	and	subscribe"	metaphor,	events,	and	inter-widget
communication	are	covered.
Chapter	9,	"Navigation."	Rich	web	applications	support	client-side
transitions,	animations,	as	well	as	deep	linking.	Web	users	expect	their
browser	back-button	to	function	as	expected.	This	chapter	explains	the
challenges	client-side	web	developers	face	maintaining	the	browser
history	when	using	Ajax	calls	instead	of	full	page	reloads.	In	addition,
the	Mileage	Stats	state	change	management	is	fully	explained.
Chapter	10,	"Client-Side	Data	Management	and	Caching."	This
chapter	covers	how	Mileage	Stats	JavaScript	objects	request,	and	send
data	as	well	as	the	data	manager	façade	that	performs	the	Ajax	calls	to
the	server	and	provides	transparent	data	caching.
Chapter	11,	"Server-Side	Implementation."	This	chapter	covers	the
Mileage	Stats	ASP.NET	MVC	(module	view	controller)	application	and
the	other	server-side	components	and	the	services	they	provide	to
support	the	client-side	JavaScript	objects.	Coverage	takes	you	from	the
database,	through	the	repositories,	to	the	business	objects	that	provide
data	validation	and	data	shaping	services	to	the	controllers	that	consume
their	data	and	render	it	to	the	client.
Chapter	12,	"Security."	Web	security	is	critical	to	consumer
confidence.	Poor	security	can	result	in	compromising	your	customer's
data,	your	own	data	and	intellectual	property.	This	chapter	covers	some
of	the	security	features	of	the	ASP.NET	MVC	platform	and	security
features	in	Mileage	Stats	that	provide	countermeasures	against	the
relevant	threats	for	authentication,	input	validation,	anti-forgery,	and
JavaScript	Object	Notation	(JSON)	hijacking.
Chapter	13,	"Unit	Testing	Web	Applications."	Unit	tests	are	long-term
investments	that	provide	the	development	team	confidence	when
refactoring	or	evolving	the	application,	and	when	external	dependencies
such	as	versions	of	jQuery	or	a	3rd	party	jQuery	UI	plug-in	are	updated.

This	is	a	getting	started	chapter	for	JavaScript	and	ASP.NET	MVC	code.
Appendix	A,	"Glossary."	This	appendix	provides	a	concise	summary	of
the	terms,	concepts,	and	technologies	used	in	the	Mileage	Stats
application	and	this	guidance.
Appendix	B,	"How-do-I	Topics."	This	appendix	is	an	at-a-glance	list
of	topics	to	facilitate	locating	a	section	of	guidance	by	topic.
Appendix	C,	"Widget	QuickStart."
Appendix	D,	"How	to	Check	UIElement	Properties	with	Coded	UI
Test."
Appendix	E,	"How	to	Create	Automation	Negative	case	with	Coded
UI	Test."
Appendix	F,	"How	to	Create	Web	Client	Test	Automation	with
Coded	UI	Test."

Exploring	the	QuickStart
The	Widget	QuickStart	illustrates	the	way	Mileage	Stats	uses	the	jQuery	UI
Widget	Factory	to	create	maintainable	widgets	that	implement	client-side
behavior.

Further	Reading
For	information	on	the	designer	role,	see	Chapter	4,	"Design	and	Layout."

For	information	on	unit	testing,	see	Chapter	13,	"Unit	Testing	Web
Applications."

Stefanov,	Stoyan.	JavaScript	Patterns,	O'Reilly	Media,	2010

Crockford,	Douglas.	JavaScript:	The	Good	Parts,	O'Reilly	Media,	2008

ASP.NET	MVC	3	Overview,	The	Razor	View	Engine
http://www.asp.net/mvc/mvc3#BM_TheRazorViewEngine

ASP.NET	MVC	3	Overview,	Dependency	Injection	Improvements
http://www.asp.net/mvc/mvc3#BM_Dependency_Injection_Improvements

http://www.asp.net/mvc/mvc3#BM_TheRazorViewEngine
http://www.asp.net/mvc/mvc3b2f450d2-3e1d-448a-b370-a23905d885c7.html#BM_Dependency_Injection_Improvements

|	Community

To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com

Copyright	©	2011	by	Microsoft	Corporation.	All	rights	reserved.

Community
Project	Silk's	community	site	is:	http://silk.codeplex.com.	On	this	community
site,	you	can	post	questions,	provide	feedback,	or	connect	with	other	users	for
sharing	ideas.	Community	members	can	also	help	Microsoft	plan	and	test	future
offerings.

The	community	site	also	has	links	to	tutorial	videos,	MSDN	content,	the
Readme,	and	this	documentation	in	.chm	and	.pdf	formats.

http://silk.codeplex.com/
http://www.codeplex.com/silk
mailto:pagdoc@microsoft.com?subject=Feedback about Introduction

Silk	1.0	-	June	2011

Architecture

Introduction

The	Mileage	Stats	Reference	Implementation	(Mileage	Stats)	is	a	cross-browser,
ASP.NET	Model	View	Controller	(MVC)	application	that	takes	advantage	of
the	features	of	modern	browsers.	The	application	offers	two	types	of	user
experiences:

1.	 A	traditional	website	experience.	In	this	approach,	a	form	post	and
page	reload	are	executed	each	time	a	button	or	hyperlink	is	clicked.

2.	 A	rich	website	experience.	In	this	approach,	the	initial	page	is	loaded
once,	and	server	requests	are	only	made	when	new	data	is	required	or
updated.	In	addition	to	other	user-friendly	features,	the	lack	of	a	full-
page	reload	enables	the	animation	of	client-side	state	changes.

The	rich	website	approach	provides	a	superior	experience	for	the	user,	as	the
application	feels	more	responsive	and	more	like	a	desktop	application.	But
because	some	users	do	not	have	scripting	enabled	or	available	on	their	user
agent	(web	browser	or	accessibility	tool,	such	as	a	screen	reader),	which	is
necessary	for	the	partial-page	reloads,	we	must	support	the	traditional	website
experience	for	them.

In	the	traditional	approach,	the	ASP.NET	MVC	controllers	are	responsible	for
acquiring	data	and	returning	a	built-up	view	that	consists	of	HTML	structure
and	data.	In	the	case	of	the	rich	website	experience,	we	perform	asynchronous
data	requests	and	the	controller	returns	only	data.	The	client	then	renders	the
data	in	the	user	interface	(UI)	without	reloading	the	whole	page.

Supporting	both	these	experiences	introduces	complexity	that	requires	careful
planning	on	both	the	client	and	server	sides	to	ensure	that	the	application	is
responsive,	maintainable,	has	a	clean	separation	of	concerns,	and	is	testable.

You	should	determine	early	in	the	design	phase	which	experience	the	user
should	expect	in	each	browser	and	browser	version	the	application	will	support.
If	you	choose	to	support	older	browsers,	you	may	limit	your	technology	choices
and	affect	the	run-time	experience	of	the	application.	Shims	and	polyfills,	such
as	those	that	provide	HTML5	support,	are	available	for	adding	support	for	some
technologies	in	older	browsers,	but	these	come	at	the	cost	of	additional
dependencies	(see	"Further	Reading"	at	the	end	of	the	chapter	to	learn	more
about	shims	and	polyfill	solutions).	Making	decisions	about	which	technologies

you	will	need	to	support	early	on	allows	you	to	establish	realistic	expectations
for	users	and	project	stakeholders.

This	chapter	provides	a	high-level	map	of	the	Mileage	Stats	client-side
architecture,	and	is	divided	into	five	areas	of	discussion:	structure,	modularity,
communication,	navigation,	and	data.

Structure	refers	to	client-side	HTML	structure	and	manipulation	which
is	represented	below	as	the	Template.
Modularity	refers	to	how	a	clean	separation	of	JavaScript	objects	helps
create	a	more	maintainable	application	which	is	represented	below	as	the
Widget.
Communication	defines	how	JavaScript	objects	communicate,	and	is
represented	by	the	Pub/Sub.
Navigation	explains	how	to	manage	user	gestures	and	coordinate
animations,	and	is	represented	by	the	Navigation	and	Layout	Manager.
Data	provides	guidance	for	client-side	data	requests	and	data	caching
and	is	represented	below	as	the	Data	Manager.

Mileage	Stats	client	architecture

In	this	chapter	you	will	learn:

Options	and	strategies	for	getting	the	right	HTML	to	the	client.
The	advantages	of	modular	code	and	techniques	for	using	jQuery	UI
widgets.
How	the	pub/sub	pattern	can	be	used	for	loosely	coupled
communication.
How	to	solve	browser	history	and	back-button	problems	when	the	site
doesn't	perform	full-page	reloads.
How	a	loosely	coupled	data	layer	can	simplify	caching	for	client	side
data	requests.
How	the	Mileage	Stats	team	solved	a	number	of	challenges	related	to
structure,	modularity,	communication,	navigation,	and	data.

The	technologies	and	libraries	discussed	in	this	chapter	are	JavaScript,	jQuery,
jQuery	UI	Widgets,	and	jQuery	Back	Button	&	Query	Library	(jQuery	BBQ).

Structure
Websites	like	Mileage	Stats	provide	an	engaging	user	experience	when	viewed
using	modern	browsers	with	JavaScript	enabled.	The	site	can	also	be	viewed
without	JavaScript	enabled	and	will	function	when	viewed	in	an	older	browser.

To	provide	an	engaging,	responsive,	and	interactive	experience,	the	application
needs	to	manage	client-side	structure	changes	without	performing	full-page
reloads.	This	requires	client-side	loading,	creation,	and	replacement	of	HTML
fragments	or	pages.

To	support	both	rich	and	traditional	user	experiences,	the	Project	Silk	team
chose	to	have	the	web	server	generate	the	initial	HTML;	then,	after	using
JavaScript	to	detect	the	browser	capabilities,	we	enhance	the	user	experience	by
replacing	the	server-generated	HTML	structure	with	a	client-side	version	in
capable	browsers.	Elements	replaced	include	portions	of	HTML,	button	actions,
and	CSS	classes.	Enhancement	can	mean	adding	animation,	page	transitions,	or
Ajax	functionality	to	client-side	elements.	Client-side	enhancement	of	server-
generated	HTML	is	called	progressive	enhancement.	Progressive	enhancement
enables	and	adds	features	to	the	client-side	experience	based	on	browser
capabilities.

After	the	initial	enhancement	of	the	server-generated	HTML,	the	client-side
JavaScript	responds	to	user	gestures,	requests	data,	and	initiates	UI	changes
without	posting	back	to	the	server.

Client-side	UI	structure	can	be	generated	with	JavaScript,	loaded	on	demand
from	the	server,	or	rendered	by	a	plug-in	or	a	library.	Initially,	the	team	tried	on-
demand	loading	of	granular	HTML	fragments	from	the	server.	This	approach
was	motivated	by	the	team's	desire	to	limit	the	creation	of	HTML	to	a	single
location.	However,	this	approach	failed	to	provide	the	desired	result,	so	the	team
changed	tactics	and	used	jQuery	templates	instead.	See	Chapter	5,	"HTML
Templates"	for	a	full	explanation	of	this	choice.

jQuery	Templates
jQuery	templates	are	HTML	markup	with	inline	JavaScript	expressions	that	are
used	to	populate	values	in	the	markup.	The	jQuery	Template	plug-in	applies
data	to	the	template	and	renders	the	output	into	the	DOM.	Mileage	Stats	uses
jQuery	UI	widgets	to	coordinate	the	data	retrieval,	applying	it	to	the	template
using	the	plug-in,	and	overwriting	the	DOM	element.

jQuery	template	rendering

The	data	can	be	a	single	object	or	an	array	of	objects.	jQuery	templates	separate
structure	and	data,	making	the	application	easier	to	code,	test,	and	maintain.

If	you	use	ASP.NET	MVC	or	ASP.NET	Web	Forms,	you	can	use	the	rendering
engine	to	dynamically	create	or	modify	the	jQuery	template	while	it's	being
rendered.	Mileage	Stats	uses	this	capability	to	inject	URLs	and	data-dash
attributes	into	the	templates	at	render	time.

Mileage	Stats	loads	all	jQuery	templates	as	part	of	the	initial	page	load.
Preloading	templates	simplifies	the	client-side	application	and	provides	much
faster	client-side	rendering	than	on-demand	loading	of	templates	provides.

For	more	information	on	the	jQuery	Template	plug-in	and	authoring	templates,
see	"jQuery	Templates"	in	the	"Further	Reading"	section.	For	more	information
on	jQuery	templates	in	Mileage	Stats,	see	Chapter	5,	"HTML	Templates."

http://api.jquery.com/category/plugins/templates/

Modularity
Modularized	code	simplifies	the	overall	application,	establishes	clear
boundaries	of	responsibility,	provides	separation	of	concerns,	increases
testability,	eases	maintenance,	and	enables	reuse.	The	modularization	of	code	in
Mileage	Stats	is	achieved	by	composing	client-side	JavaScript	into	jQuery	UI
widgets	and	JavaScript	objects.

jQuery	widgets	are	objects	attached	to	page	elements	that	supply	services	for
managing	lifetime,	state,	inheritance,	theming,	and	communication	with	other
widgets	or	JavaScript	objects.	Objects	in	Mileage	Stats	belong	to	one	of	the
following	functional	categories:

UI.	Includes	these	jQuery	UI	widgets:	vehicle,	vehicle	list,	information
pane,	vehicle	details,	vehicle	fill	ups,	vehicle	reminders,	registration,
statistics,	summary,	status,	header,	and	charts.
Behavior.	Includes	the	tile	and	layout	manager	widgets,	and	JavaScript
objects	for	pinned	sites	and	validation.
Infrastructure.	Includes	JavaScript	objects	for	data	access,	caching,	and
pub/sub	messaging.

The	jQuery	widgets	that	compose	the	Mileage	Stats	Dashboard	are	pictured	in
the	image	below.	The	complexity	of	the	application	demonstrates	the	need	for
modularization.	By	breaking	the	implementation	into	discrete,	loosely	coupled
objects,	the	client-side	code	is	much	easier	to	understand,	author,	maintain,	test,
and	debug.

1.	 Pinned	sites.	JavaScript	object	provides	the	pinned	sites
implementation	for	Windows	Internet	Explorer	9.

2.	 Status	widget.	Provides	management	and	display	of	user	notification
messages.

3.	 Summary	widget.	Acts	as	a	container,	managing	its	child	registration,
statistics,	and	reminders	widgets.

4.	 Statistics	widget.	Displays	summary	statistics	for	all	vehicles.
5.	 Reminders	widget.	Lists	overdue	and	upcoming	maintenance

reminders.	Manages	the	action	of	clicking	on	a	reminder.
6.	 Layout	manager	widget.	Services	navigation	requests	and	coordinates

UI	layout	changes.
7.	 Vehicle	list	widget.	Displays	the	vehicle	tiles	in	a	one-column	or	two-

column	listing.	Invokes	the	child	widget	animation	when	required	and
controls	when	child	widgets	are	displayed	in	expanded	or	contracted
view.

8.	 Tile	widget.	Provides	drag-and-drop	capability	for	the	child	vehicle
widget.

9.	 Vehicle	widget.	Displays	vehicle	information	in	expanded	or
contracted	view.	Manages	the	actions	of	each	button.

10.	 Header	widget.	Provides	top-level	navigation	and	user	name	display.
Manages	actions	when	a	hyperlink	in	the	header	is	clicked.

Modularization	in	Mileage	Stats

For	more	information	on	modularity	in	Mileage	Stats,	see	Chapter	7,
"Modularity."	For	more	information	on	jQuery	UI	widgets	see	Chapter	3,
"jQuery	UI	Widgets"	and	Chapter	7,	"Modularity."	For	more	information	on
pinned	sites,	see	Chapter	6,	"Application	Notifications."

Communication
jQuery	widgets	and	JavaScript	objects	help	you	modularize	your	code,	but	these
objects	are	not	isolated	solitary	islands;	rather	they	are	small	objects	that	work
together	to	form	the	complete	application.	Well-defined	communication
between	objects	is	critical	not	only	from	a	functional	view,	but	from	an
architectural	view	as	well.

If	not	carefully	planned,	communication	between	objects	can	lead	to	tight
coupling	and	undesirable	dependencies.	Mileage	Stats	objects	communicate
directly	with	one	another,	or	loosely	by	using	a	publish	and	subscribe	pattern
(pub/sub).

Direct	Communication
Direct	widget	communication	is	typically	reserved	for	high-level	widgets
controlling	lower-level	widgets,	such	as	when	the	layout	manager	tells	a	widget
to	hide	or	show	itself.

Layout	manager	and	pub/sub

Loose	Communication
Pub/sub	is	a	messaging	pattern	that	enables	loose	communication	between
publishers	and	subscribers.	When	a	message	is	published,	zero	or	more
subscribers	will	be	notified.	A	pub/sub	object	manages	communication,
relieving	the	publishers	and	subscribers	of	needing	direct	knowledge	of	one
another.	Pub/sub	messages	are	individually	defined	and	can	optionally	contain	a
payload.

The	pub/sub	pattern	provides	clean	separation	between	the	object	invoking	the
action	and	the	object	that	handles	the	action.	This	separation	allows	the
publisher	or	subscriber's	internal	implementation	to	evolve	without	affecting	the
other.

Mileage	Stats	has	its	own	pub/sub	implementation	that	provides	for	loose
communication.	For	example,	the	Status	widget	subscribes	to	the	status
message.	The	status	message	has	a	payload	that	contains	message,	type,
duration,	and	priority	values.	Publishers	of	the	status	message	provide	these
values	when	publishing	this	message.

Mileage	Stats	widgets	have	publish	and	subscribe	functions	passed	in	their
options	object	during	construction	to	decouple	them	from	the	pub/sub
implementation.

For	more	information	about	the	pub/sub	implementation	in	Mileage	Stats,	see
Chapter	8,	"Communication."

Navigation
Rich	client-side	web	applications	like	Mileage	Stats	do	not	perform	full-page
reloads	each	time	a	button	or	hyperlink	is	clicked.	Instead,	client-side
application	code	handles	these	events.

The	jQuery	BBQ	plug-in	(Back	Button	&	Query	Library)	is	responsible	for
providing	address	bar	URL	changes.	Changing	the	address	bar	URL	performs
two	functions.	First,	it	allows	users	to	bookmark	addresses	into	the	application
so	that	they	can	return	directly	to	that	state.	This	is	also	known	as	deep	linking.
Second,	it	enables	the	browser	history	and	back	button	to	perform	as	the	user
expects.

The	Mileage	Stats	layout	manager	is	a	widget	that	works	in	conjunction	with	the
BBQ	plug-in	to	service	navigation	requests.	It	subscribes	to	the	BBQ	plug-in
hashchange	event,	and	initiates	layout	changes	based	on	address	bar	URL
changes.

Navigation	and	layout	manager

Along	with	hiding	and	showing	UI	elements,	the	layout	manager	is	also
responsible	for	initiating	UI	animations	during	navigation.	The	layout	manager
does	not	perform	the	animation,	but	sequentially	calls	methods	on	one	or	more
lower-level	widgets,	resulting	in	an	engaging	UI	transition.

As	part	of	the	layout	manager's	top-level	widget	responsibilities,	it	subscribes	to
several	pub/sub	messages	and	invokes	lower-level	widget	data	refresh	methods
when	those	messages	are	published.

Data
When	designing	your	client-side	data	architecture,	several	key	decisions	will
impact	application	performance,	maintainability,	and	browser	support.	Will	data
requests	flow	through	a	central	object	or	will	objects	make	direct	calls	to	the
server?	Will	data	be	cached,	and	if	so,	how	much?	Will	data	be	pre-fetched,	and
if	so,	how	much?	Answers	to	these	questions	will	vary	based	on	your
application's	specific	requirements.

In	Mileage	Stats,	all	data	requests	are	made	via	Ajax	and	are	routed	through	the
data	manager.	Having	a	single	object	handle	data	requests	simplifies	the	client-
side	calling	code,	improves	application	testability,	and	facilitates	cleaner
application	evolution	when	client-side	libraries	advance	or	change.	The	single
data	manager	object	also	affords	you	the	opportunity	to	implement	client-side
data	caching	in	a	central	location.	Data	is	cached	in	a	JavaScript	object,	rather
than	using	HTML5	local	storage	or	similar	APIs,	in	order	to	meet	the	cross-
browser	requirements	of	the	application.

Mileage	Stats	pre-fetches	chart	data	during	the	initial	page	load,	enabling	instant
application	response	when	the	user	navigates	to	the	charts	page.	Whenever	data
is	returned	from	the	server,	it's	cached.	This	can	make	the	application	more
scalable	because	repeated	requests	to	the	server	for	the	same	data	are	no	longer
necessary,	requiring	less	server	processing	per	user.

Widgets	and	JavaScript	objects	request	their	data	from	the	data	manager.	The
data	manager	services	the	request,	first	checking	if	the	request	should	be
cached,	and	if	so,	checks	the	cache	before	making	a	call	to	the	server.	Upon
successful	completion	of	the	request,	the	returned	data	will	be	added	to	the
cache,	and	then	passed	to	the	calling	widget.	If	an	error	occurs,	the	error	will	be
returned	to	the	calling	widget.

Data	request

For	in-depth	coverage	of	data	management	and	caching,	see	Chapter	10,	"Data,
Caching,	and	Validation."

Summary
Building	a	rich	web	application	that	reduces	the	number	of	full-page	loads,
includes	animations,	and	is	responsible	for	updating	the	UI	dynamically	requires
a	thoughtful	approach	to	managing	structure,	modularity,	communication,
navigation,	and	data.	This	chapter	provided	a	high-level	view	of	the	Mileage
Stats	client-side	application	architecture.	The	following	image	shows	the	client-
side	objects	and	their	implementation	mapped	to	libraries	or	frameworks.

Mileage	Stats	client	architecture	technology	map

|	Community

To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com

Copyright	©	2011	by	Microsoft	Corporation.	All	rights	reserved.

Further	Reading
For	more	information	on	jQuery	UI	widgets	see	Chapter	3,	"jQuery	UI	Widgets"
and	Chapter	7,	"Modularity."

For	more	information	on	jQuery	templates	in	Mileage	Stats,	see	Chapter	5,
"HTML	Templates."

For	more	information	on	pinned	sites,	see	Chapter	6,	"Application
Notifications."

For	more	information	on	modularity	in	Mileage	Stats,	see	Chapter	7,
"Modularity."

For	more	information	about	the	pub/sub	implementation	in	Mileage	Stats,	see
Chapter	8,	"Communication."

For	more	information	about	the	libraries	and	guidelines	discussed	in	this
chapter,	see	the	following:

jQuery:
http://jquery.org
jQuery	Templates:	
http://api.jquery.com/category/plugins/templates/
"jQuery	BBQ:	Back	Button	&	Query	Library"	on	Ben	Alman's	blog:	
http://benalman.com/projects/jquery-bbq-plugin/
"Filling	the	HTML5	Gaps	with	Polyfills	and	Shims"	from	Rey	Bango's
MIX11	session:	
http://channel9.msdn.com/Events/MIX/MIX11/HTM04

http://jquery.org/
http://api.jquery.com/category/plugins/templates/
http://benalman.com/projects/jquery-bbq-plugin/
http://channel9.msdn.com/Events/MIX/MIX11/HTM04
http://www.codeplex.com/silk
mailto:pagdoc@microsoft.com?subject=Feedback about Architecture

Silk	1.0	-	June	2011

jQuery	UI	Widgets

Introduction

When	building	rich	client-side	web	applications,	some	of	the	visual	elements	on
the	page	will	naturally	take	on	roles,	responsibilities,	and	state.	As	more	of	these
elements	are	added	to	the	page,	complexity	will	increase,	so	it's	important	for
the	design	to	support	a	maintainable	codebase.	Maintainable	solutions	have	at
least	two	important	characteristics:	they	have	unit	tests,	and	they	have	an
intentional	design	that	plays	to	the	strengths	of	the	platform,	language,	and	key
parts	of	the	environment.

The	web	browser	is	the	platform.	JavaScript	represents	the	language	and	various
JavaScript	libraries	represent	key	parts	of	the	solution.	Among	other	benefits,
libraries	like	jQuery	and	jQuery	UI	are	used	to:

Address	typical	challenges	like	browser	compatibility
Provide	consistency	for	AJAX	interactions,	animations,	and	events
Assist	in	creating	a	maintainable	codebase	through	modularity

According	to	the	official	jQuery	UI	project,	"[it]	provides	abstractions	for	low-
level	interaction	and	animation,	advanced	effects	and	high-level,	themeable
widgets,	built	on	top	of	the	jQuery	JavaScript	Library,	that	you	can	use	to	build
highly	interactive	web	applications."	A	central	concept	in	the	visual	parts	of
jQuery	UI	is	the	widget.	Widgets	are	objects	attached	to	page	elements	that
supply	services	for	managing	lifetime,	state,	inheritance,	theming,	and
communication	with	other	widgets	or	JavaScript	objects.

Even	though	they	have	a	number	of	additional	features	on	top	of	typical	jQuery
plugins,	it's	important	to	know	a	widget	is	a	jQuery	plugin.	This	may	not	be
obvious	because	they	are	defined	differently,	but	widgets	are	used	the	same	way
you	use	official	jQuery	methods	and	most	custom	plugins.	Sometimes	a	plugin
is	sufficient	and	other	times	a	widget	is	more	appropriate.	When	you	need	to
apply	behavior	or	state	to	individual	elements	and	need	to	communicate
between	elements,	widgets	provide	a	number	of	capabilities	you	would
otherwise	have	to	write	yourself.	This	chapter	illustrates	the	use	of	these
capabilities.

In	this	chapter	you	will	learn:
How	to	define	and	apply	widgets
How	to	manage	the	lifetime	of	widgets

How	to	define	default	options	that	permit	overrides	and	change
notifications
How	to	use	options	for	decoupling	behavior	and	facilitating	event
subscriptions
How	to	use	private	methods	to	improve	the	readability	of	the	code
How	to	define	and	use	public	methods,	properties,	and	events
How	to	inherit	from	a	base	widget

The	technologies	discussed	in	this	chapter	are	jQuery	Plugins	and	the	jQuery	UI
Widget	Factory.	The	code	examples	used	in	this	chapter	come	from	the	Widget
QuickStart	included	with	Project	Silk.	For	more	information,	see	Appendix	B:
Widget	QuickStart.

Widget	Fundamentals
If	you	know	how	to	use	jQuery,	you	know	how	to	use	a	widget.	However,
before	you	can	use	a	widget,	it	has	to	be	defined.	Once	it	has	been	defined	it	can
be	applied	to	elements.	Widgets	are	defined	using	the	widget	factory.	When	the
widget	factory	is	invoked,	it	creates	a	widget	method	on	the	jQuery	prototype,
$.fn	–	the	same	place	plugins	and	other	jQuery	functions	are	located.	The
widget	method	represents	the	primary	interface	for	applying	the	widget	to
elements	and	using	the	widget	after	it's	applied.

Copy	Code

Defining	a	Widget
The	dependencies	for	a	widget	can	be	fulfilled	with	script	references	to	the
CDN	locations	for	jQuery	and	jQuery	UI.	Widgets	often	reside	in	their	own	.js
file	and	are	wrapped	in	a	self-executing	function.	This	wrapper	creates	a
JavaScript	closure	which	prevents	new	variables	from	being	globally	scoped.	A
single	solution	should	prevent	any	more	than	one	global	object	according	to
well-accepted	JavaScript	practices.	The	$	and	undefined	arguments	reestablish
their	default	expectations	inside	the	closure	in	case	another	script	previously
defined	them	as	something	else.
JavaScript

//	Contained	in	jquery.qs.tagger.js

(function($,	undefined)	{

		$.widget('qs.tagger',	{

				//	definition	of	the	widget	goes	here

		});

}(jQuery));

The	call	to	$.widget	invokes	the	widget	factory	which	makes	the	widget
available	to	use.	The	first	argument,	qs.tagger,	is	the	widget's	namespace	and
name	separated	by	a	period.	The	name	is	used	as	the	name	of	the	widget	method
placed	on	the	jQuery	prototype.	The	second	argument,	called	the	widget
prototype,	is	an	object	literal	that	defines	the	specifics	of	the	widget.	The	widget
prototype	is	stored	directly	on	the	jQuery	object	under	the	namespace	provided:
$.qs.tagger.

http://www.asp.net/ajaxlibrary/cdn.ashx

Copy	Code

Using	a	Widget
Once	a	widget	has	been	defined,	it's	ready	to	be	applied	to	elements.	To	apply
the	widget	to	the	matched	elements,	invoke	the	widget	method	just	like	you
would	other	jQuery	methods.	The	following	code	shows	how	to	apply	the	tagger
widget	to	all	span	elements	with	a	data-tag	attribute.
JavaScript

//	Contained	in	startup.widget.js

$('span[data-tag]').tagger();

Because	the	widget	method	is	used	as	the	primary	interface	to	the	widget,	it's
not	only	called	when	initially	applying	the	widget	to	the	element,	it's	also	used
for	calling	methods	and	reading	and	writing	options	and	properties	on	the
widget.	When	widgets	are	applied	to	elements,	an	instance	of	the	widget
prototype	is	created	and	stored	inside	each	element.	This	is	how	the	widget
factory	knows	if	a	widget	has	already	been	attached	to	an	element	so	it	can	take
the	correct	action	in	subsequent	calls.

Managing	Lifetime
There	are	three	phases	of	a	widget's	lifetime	that	you	can	control:	creation,
initialization,	and	destruction.

Copy	Code

Creation
The	first	time	the	widget	is	applied	to	an	element,	the	factory	calls	the	widget's
_create	function.	Method	names	preceded	with	an	underscore	have	private
scope	by	convention,	which	means	they	only	expect	to	be	invoked	from	inside
the	widget.	The	following	code	shows	the	_create	method	in	the	infobox
widget.
JavaScript

//	Contained	in	jquery.qs.infobox.js

_create:	function	()	{

				var	that	=	this,

								name	=	that.name;

				that.infoboxElement	=	$('<div	class="qs-infobox"	/>');

				that.infoboxElement.appendTo('body')

				.bind('mouseenter.'	+	name,	function	()	{

								mouseOverBox	=	true;

				})

				.bind('mouseleave.'	+	name,	function	()	{

								mouseOverBox	=	false;

								that.hideTagLinks();

				});

},

The	_create	method	is	the	most	appropriate	place	to	perform	a	number
of	common	tasks	including	the	following:
Adding	classes	to	various	elements	in	the	widget	is	the	recommended
way	to	apply	styling,	layout	theming	and	more	to	the	widget.
Storing	references	can	increase	performance	when	a	particular	set	of
elements	are	used	from	a	number	of	methods.	Simply	create	object-level
variables	for	them	once	and	all	other	methods	can	use	them.	This	is	an
accepted	jQuery	performance	best	practice.
Creating	elements	is	common	for	widgets	that	have	requirements	like
animations,	effects,	styling,	accessibility,	and	cross-browser
compatibility.	As	an	example,	consider	the	div.qs-infobox	element
created	by	the	infobox	widget.

Applying	other	widgets	is	recommended	during	creation	when	you	need
them	available	as	soon	as	possible.	Even	if	your	widgets	don't	require
each	other,	consider	using	the	official	jQuery	UI	widgets	from	inside
yours	to	add	useful	behaviors	and	interactions.

Initialization
While	the	_create	method	is	only	called	when	the	widget	is	first	applied
to	the	element,	the	_init	method	is	called	each	time	the	widget	method	is
called	with	no	arguments	or	with	options.	When	the	widget	is	applied	to
the	element	the	first	time,	_init	is	called	after	_create.	When	the	widget
method	is	called	after	the	widget	has	been	attached,	only	_init	will	be
called.	The	_init	method	is	the	recommended	place	for	setting	up	more
complex	initialization	and	is	a	good	way	to	give	the	widget	a	way	to
reset.	Although,	it's	not	uncommon	for	widgets	to	not	implement	an	_init
method.

Copy	Code

Destruction
The	widget's	destroy	method	is	used	to	detach	a	widget	from	an	element.
The	goal	of	the	destroy	method	is	to	leave	the	element	exactly	like	it
was	before	the	widget	was	attached.	Therefore,	it's	not	surprising	the
common	tasks	are	to	remove	any	added	classes,	detach	any	added
elements	and	destroy	any	initialized	widgets.	Here	is	the	destroy	method
for	the	tagger	widget.

JavaScript

//	Contained	in	jquery.qs.tagger.js

destroy:	function	()	{

				this.element.removeClass('qs-tagged');

				//	if	using	jQuery	UI	1.8.x

				$.Widget.prototype.destroy.call(this);

				//	if	using	jQuery	UI	1.9.x

				//this._destroy();

}

The	last	part	calls	the	widget's	base	implementation	of	destroy	and	is	a
recommended	practice.	The	base	destroy	will	remove	the	instance	of	the	widget
from	the	element	and	unbind	all	namespaced	event	bindings,	which	are	covered
later	in	the	chapter.

Copy	Code

Copy	Code

Defining	Options
Options	give	widgets	the	ability	to	have	state	that	is	public,	readable,	writable,
and	callable.	Options	are	automatically	merged	with	the	widget's	default	options
during	creation	and	the	widget	factory	supports	change	notifications	when
option	values	change.	In	principle,	you	should	be	able	to	save	the	options	on	a
widget,	remove	the	widget	from	memory,	recreate	the	widget	with	the	saved
options	and	have	the	same	widget	you	started	with.

Options	are	defined	in	the	options	property	of	the	widget	prototype	as	shown
below	in	the	infobox	widget.
JavaScript

//	Contained	in	jquery.qs.infobox.js

$.widget('qs.infobox',	{

				options:	{

								dataUrl:	''

								maxItems:	10,

				},

				...

To	override	default	options	during	the	creation	of	the	widget,	pass	them	in	as	an
object	literal	to	the	widget	method	as	shown	below	in	the	startup	code.
JavaScript

//	Contained	in	startup.widget.js

var	infobox	=	$('body').infobox({

				dataUrl:	'http://feeds.delicious.com/v2/json/popular/'

});

This	can	be	done	as	many	times	on	an	element	as	needed.	The	options	will
always	be	merged	with	the	options	already	in	the	widget.

To	read	the	options	from	inside	the	widget,	use	the	options	property	directly	as
shown	on	the	last	line	below.
JavaScript

Copy	Code

//	Contained	in	jquery.qs.infobox.js

displayTagLinks:	function	(event,	tagName)	{

				var	i,

								that	=	this,

								options	=	that.options,

								url	=	options.dataUrl	+	tagName	+	'?count='	+	options.maxItems,

								...

Reading	the	values	directly	off	of	options	is	acceptable	when	reading	values
from	inside	the	widget,	but	you	should	not	use	this	approach	when	changing	the
value	of	options.	Instead,	use	the	option	method	(without	an	's').
JavaScript

//	Code	illustration:	not	in	QuickStart

var	max	=	this.option('maxItems');

this.option('maxItems',	max	+	4);

The	option	method	is	called	with	one	argument	when	reading	the	option's	value,
two	arguments	when	setting	a	value	and	a	single	object	hash	when	setting	more
than	one	option.	The	option	method	should	always	be	used	to	change	the	value
of	options	so	change	notifications	will	work	as	expected.	Changing	the	option
directly	on	the	options	property	bypasses	the	notification	mechanism.

Copy	Code

Copy	Code

When	Options	Change
If	the	widget	needs	to	react	to	an	option's	value	being	changed,	it	should	use	the
_setOption	method.	This	method	is	called	by	the	widget	factory	just	after	the
value	has	been	set	on	the	options	property.	The	Widget	QuickStart	doesn't	have
a	need	for	_setOption,	but	if	the	number	of	links	in	the	infobox	widget	were
configurable	by	the	user,	as	an	example,	the	widget	might	need	to	adjust	the	size
of	the	box	when	maxItems	changes.
JavaScript

//	Code	illustration:	not	in	QuickStart

_setOption:	function	(name,	value)	{

				if(name	===	'maxItems')	{	

								this._resizeBoxForMaxItemsOf(value);	

				}

				$.Widget.prototype._setOption.apply(this,	arguments);

},

If	maxItems	is	the	name	of	the	option	being	provided,	the
_resizeBoxForMaxItemsOf	method	will	be	called.	The	last	line	is	calling	the
base	widget's	_setOption	method.	This	will	set	the	value	of	the	option	and	will
aid	in	supporting	a	disabled	state.
Note:

All	widgets	support	the	notion	of	being	disabled	whether	they	choose	to
implement	it	or	not.	The	Boolean	value	is	stored	at	this.options.disabled	or
$(selector).widget('option',	'disabled')	if	you're	asking	from	the	outside.	In
return	for	honoring	this	option	(whatever	that	would	mean	for	the	UI	and
behavior	of	your	widget)	the	widget	factory	will	default	it	to	false	and
manage	some	CSS	classes	related	to	theming	and	accessibility.

The	_setOption	method	is	not	called	for	the	options	passed	in	during	the
creation	of	the	widget.	When	a	widget	has	changed	some	of	its	options,	inside
_create	for	example,	and	wants	_setOption	to	be	called	on	each	option,	a
convenient	approach	is	to	use	the	_setOptions	method	(with	an	's')	as	in	the
following	example.
JavaScript

//	calls	this._setOption	on	all	options

this._setOptions(this.options);

If	options	are	passed	to	the	widget	method	after	it	has	been	created,	_setOption
will	be	called	on	each	passed	option	just	before	_init	is	called.

Copy	Code

Copy	Code

Functions	as	Options
Defining	functions	as	options	is	a	powerful	way	to	decouple	the	widget	from
functionality	better	located	elsewhere.
Note:

The	widgets	in	Mileage	Stats	use	this	approach	for	publishing	and
subscribing	to	global	events	by	using	their	publish	and	subscribe	options
and	getting	data	from	the	dataManager	using	their	sendRequest	option.	To
learn	more	about	the	pub/sub	engine,	see	the	Communication	chapter	and	the
Data	chapter	for	more	on	the	dataManager.

For	example,	rather	than	forcing	the	tagger	widget	to	know	how	to	invoke	the
public	methods	on	the	infobox	widget,	they	can	be	kept	free	of	any	knowledge
of	each	other	by	passing	in	the	functions	from	the	startup	script	since	it	already
knows	about	both	widgets.	To	set	this	up,	the	tagger	widget	defines	activated
and	deactivated	options.
JavaScript

//	Contained	in	jquery.qs.tagger.js

$.widget('qs.tagger',	{

				options:	{

								activated:	null,

								deactivated:	null

				},

Just	like	normal	options,	these	can	either	define	defaults	or	not.	The	startup
script	will	provide	these	options	when	it	applies	the	tagger	widget	to	the	span
elements.
JavaScript

//	Contained	in	jquery.qs.tagger.js

$('span[data-tag]').tagger({

				activate:	function	(event,	data)	{

								//	call	displayTagLinks()	on	infobox	here

				},

				deactivate:	function	()	{

								//	call	hideTagLinks()	on	infobox	here

				}

});

In	the	above	code	examples,	the	options	are	being	set	and	read	from	inside	the
widget's	implementation	or	passed	in	during	creation	or	initialization.	These
options	can	also	be	read	and	written	to	from	outside	the	widget	through	a	public
interface.	Later	in	the	chapter	you'll	see	how	function-based	options	are	used	as
callbacks	for	events.

The	Widget	Method
Well-designed	objects	have	public	interfaces	that	are	intentional,	intuitive,	and
focused.	Widgets	go	one	step	further	and	provide	a	single	method	that
represents	the	entire	public	interface	of	the	widget.	The	action	the	widget
performs	when	you	call	this	method	depends	on	the	number	and	type	of
arguments	provided	in	the	call.	In	addition	to	creating	and	initializing	the	widget
as	shown	earlier,	the	widget	method	is	also	used	to	do	the	following:

Invoke	public	methods
Read	and	write	public	properties
Read	and	write	options

Copy	Code

Copy	Code

Copy	Code

Public	Methods
Public	methods	are	defined	on	the	widget	prototype	as	you	can	see	here	in	the
infobox	widget.	The	public	methods	are	hideTagLinks	and	displayTagLinks.
JavaScript

//	Contained	in	jquery.qs.infobox.js

$.widget('qs.infobox',	{

				hideTagLinks:	function()	{

								...

				},

				displayTagLinks:	function(event,	tagName)	{

								...

				}

Widgets	must	be	created	before	their	methods	can	be	called.	So	the	following
calls	to	the	infobox	widget	assume	the	widget	method	has	already	been	called
once	to	apply	the	widget	to	the	body	element.	To	call	hideTagLinks	from
outside	the	widget,	use	a	jQuery	selector	to	match	the	element	and	pass	the
name	of	the	method	to	the	widget	method	as	its	only	argument.
JavaScript

//	Code	illustration:	not	in	QuickStart

$('body').infobox('hideTagLinks');

When	you	have	to	pass	arguments	into	the	call,	like	displayTagLinks,	simply
add	the	arguments	after	the	method	name.
JavaScript

//	Code	illustration:	not	in	QuickStart

$('body').infobox('displayTagLinks',	event,	data.name);

The	option	method	covered	earlier	in	Defining	Options	(not	to	be	confused	with
the	options	property)	is	an	example	of	a	public	method.	When	one	argument	is

Copy	Code

passed	to	it,	the	method	will	return	the	value	of	that	option.	When	two
arguments	are	passed,	it	will	set	the	option	specified	in	the	first	argument	to	the
value	of	the	second	argument.	When	calling	this	method	from	outside	the
widget,	pass	the	method	name,	option,	as	the	first	argument,	the	name	of	the
option	as	the	second,	and	the	value	as	the	third	argument	as	shown	here.
JavaScript

//	Code	illustration:	not	in	QuickStart

var	max	=	$('body').infobox('option',	'maxItems',	12);

As	you	can	see	above,	public	methods	can	also	return	values	by	putting	the
statement	on	the	right	hand	side	of	a	variable	declaration.	Returning	a	value
from	methods	on	infobox	is	reasonable	because	it	is	only	attached	to	a	single
element.	But	be	aware	if	you	call	a	method	on	a	wrapped	set	that	contains	more
than	one	element,	the	method	will	only	be	called	on	and	return	from	the	first
element.

In	the	examples	so	far,	each	time	the	widget	method	is	invoked,	it	is	being
called	on	the	instance	returned	by	the	jQuery	function,	$(selector),	which
requires	accessing	the	DOM.	The	next	section	recommends	a	couple	of
alternatives.

Copy	Code

Reusing	an	Instance
Each	time	the	jQuery	function	uses	a	selector	to	invoke	the	widget	method	it
must	search	the	DOM.	This	has	a	negative	impact	on	performance	and	is
unnecessary	because	widget	methods	return	a	jQuery	object,	which	includes	the
wrapped	set	of	matched	elements.
JavaScript

//	Code	illustration:	not	in	QuickStart

var	ib	=	$('body').infobox();		//	queries	the	DOM

ib.infobox('displayTagLinks');	//	does	not	query	the	DOM

Rather	than	use	a	selector	with	the	jQuery	method	each	time	you	need	to	call	a
method	on	a	widget,	create	a	variable	when	the	widget	is	initially	attached	to	the
elements.	This	will	access	the	DOM,	but	it	should	be	the	only	time	you	need	to.
In	subsequent	calls,	like	the	second	line	in	the	snippet	above,	you	can	call	the
widget	method	on	the	variable	you	created	and	it	won't	access	the	DOM.

Using	the	Pseudo	Selector
In	a	situation	where	neither	the	selector	nor	the	instance	is	available,	there	is
still	a	way	to	obtain	all	instances	of	a	particular	widget.	As	long	as	you	know
the	name	of	the	widget	you	can	use	a	pseudo	selector	to	get	all	instances	that
have	been	applied	to	elements.
JavaScript

//	contained	in	an	older,	more	tightly	coupled	version	of	startup.js

$('body').infobox();

//	contained	in	an	older,	more	tightly	coupled	version	of	jquery.qs.tagger.js

var	ibInstance	=	$(':qs-infobox');

ibInstance.infobox('displayTagLinks',						//	method	name

																			$(this).text(),									//	tag

																			event.pageY	+	offsetY,		//	top

																			event.pageX	+	offsetX);	//	left

The	pseudo	selector	begins	with	a	colon,	followed	by	the	widget's	namespace
and	name	separated	by	a	hyphen.	This	selector	has	the	potential	to	increase
coupling	between	widgets	so	be	aware	of	this	if	you	intend	to	use	it.

Private	Members
Private	methods	and	properties	have	private	scope,	which	means	you	can	only
invoke	these	members	from	inside	the	widget.	Using	private	members	is	a	good
idea	because	they	improve	the	readability	of	the	code.

Methods
Private	methods	are	methods	that	start	with	an	underscore.	They	are	expected	to
be	accessed	directly	using	this.	Private	methods	are	common	and
recommended.

Private	methods	are	only	private	by	convention.	This	means	if	a	widget	isn't
called	according	to	the	convention	for	calling	public	methods,	described	later,
then	its	private	methods	can	still	be	accessed.	The	convention	is	easy	and
consistent,	and	the	underscore	makes	it	easy	to	distinguish	between	the	public
and	private	interface.

Properties
Unlike	methods,	properties	on	the	widget	prototype	are	not	made	private	by
prepending	an	underscore	–	they	are	private	by	default.	Only	methods	are	made
private	with	underscores.	Properties	don't	need	underscores	because	they	cannot
be	accessed	through	the	widget	method.
JavaScript

//	Code	illustration:	not	in	QuickStart

$.widget('qs.infobox',	{

				dataUrl:	'',			//	should	only	be	accessed	using	this.dataUrl

				_maxItems:	10		//	unnecessary,	properties	are	already	private

});

Because	each	element	contains	its	own	instance	of	the	widget,	the	dataUrl
property	can	be	different	for	each	element.

Clearly	dataUrl	is	best	exposed	as	an	option,	but	if	this	was	not	a	configurable
option,	you	would	likely	want	to	define	it	so	only	one	copy	of	the	value	was
available	to	all	instances	of	the	widget.	Let's	call	these	static	members.

Copy	Code

Copy	Code

Static	Members
To	define	a	variable	that's	available	to	all	instances	of	the	widget	but	nowhere
else,	place	them	inside	the	self-executing	function	wrapper,	but	above	the	call	to
the	widget	factory	as	shown	in	the	tagger	widget.
JavaScript

//	Contained	in	jquery.qs.tagger.js

(function	($)	{

				var	timer,

								hideAfter	=	1000;	//	ms

				$.widget('qs.tagger',	{

								...

Because	the	timer	variable	is	defined	outside	of	the	widget	prototype,	only	a
single	timer	will	be	created	and	shared	across	all	instances	of	the	tagger	widget.
Functions	that	don't	rely	on	the	instance	of	the	widget	can	also	be	defined	here.

If	you	need	access	to	static	members	from	outside	the	widget,	they	can	be	added
to	the	widget	after	the	widget's	definition.	A	fictitious	change	can	be	made	to	the
infobox	widget	to	illustrate	this.	Inside	the	displayTagLinks	method	in	the
infobox	widget,	a	function	variable	called	displayResult	is	defined.
JavaScript

//	Contained	in	jquery.qs.infobox.js

displayResult	=	function	()	{

				//	don't	need	to	pass	in	elem,	html,	top,	or	left

				//	since	they	are	in	scope

				elem

				.html(html);

				.css({top:	top,	left:	left});

				.show();

};

Copy	Code

It	is	defined	in	displayTagLinks	because	it's	the	only	method	that	uses	it.	If	the
infobox	widget	needs	to	make	AJAX	calls	from	other	methods,	the
displayResult	function	might	need	to	be	moved	so	it	is	available	to	all	methods
that	need	it.	Defining	it	outside	the	scope	of	the	widget	is	a	way	to	make	this
happen.
JavaScript

//	Code	illustration:	not	in	QuickStart

$.widget('qs.infobox',	{

				...

});	

$.extend($.qs.infobox,	{

				displayResult:	function(elem,	html,	top,	left)	{

								elem

								.html(html);

								.css({top:	top,	left:	left})

								.show();

				}

});

The	$.extend	method	is	used	to	merge	the	object	passed	as	the	second	argument
into	the	object	passed	as	the	first	argument.	Therefore,	the	displayResult
method	is	merged	into	the	prototype	of	the	widget,	$.qs.infobox.	With
displayResult	defined	here,	the	infobox	widget	can	use	it	from	anywhere	as
shown	here.
JavaScript

//	Code	illustration:	not	in	QuickStart

//	assume	elem,	html,	top,	and	left	variables	were	already	defined

$.qs.infobox.displayResult(elem,	html,	top,	left);

Events
Events	are	an	effective	way	to	communicate	between	widgets	without	forcing
them	to	be	tightly	coupled.	jQuery	supports	and	extends	the	DOM	event	model
and	provides	the	ability	to	raise	and	handle	custom	events	that	are	not	defined	in
the	DOM.

Binding	Handlers
Event	handlers	bind	to	widget	events	the	same	way	they	bind	to	other	events.
JavaScript

//	Code	illustration:	not	in	QuickStart

$('span[data-tag]').bind('taggeractivated',	function(event,	data)	{

				//	handle	the	event

});

Notice	how	the	name	of	the	event	being	bound	to	has	had	the	name	of	the
widget	prepended.	This	is	the	default	behavior	for	event	names.	If	you	would
prefer	a	different	name	so	your	code	is	more	readable,	this	behavior	can	be
changed.

Copy	Code

Event	Naming
The	widgetEventPrefix	property	defines	what	will	be	prepended	to	the	names
of	the	events	the	widget	raises.	By	default	the	value	is	the	name	of	the	widget
and	is	set	by	the	widget	factory.	If	you	want	to	use	something	other	than	the
widget	name,	simply	define	this	property	and	provide	an	alternative	value.
JavaScript

//	Contained	in	jquery.qs.tagger.js

$.widget('qs.tagger',	{

				widgetEventPrefix:	'tag',

				options:	{

								activated:	null,

								deactivated:	null

				},

When	widgetEventPrefix	has	a	value,	it	will	be	used	instead	of	the	widget
name.

Copy	Code

Raising	the	Event
The	widget	naming	convention	described	above	is	only	applicable	to	the	event
handler.	Inside	the	widget,	the	original	event	name	is	used	to	raise	the	event.
The	following	code	sample	shows	one	way	the	tagger	widget	might	raise	the
activated	event	when	the	mouse	enters	the	element.
JavaScript

//	Code	illustration:	not	in	QuickStart

_create:	function	()	{

				var	that	=	this,

								tag	=	that.infoboxElement.text();

				that.infoboxElement

								.bind('mouseenter',	function	(event)	{

												that._trigger('activated',	event,	{name:	tag});

								});

},

When	trigger	is	called,	the	event	will	be	raised	and	any	bindings	will	be
invoked.	The	problem	with	binding	directly	from	inside	a	widget	is	that	it
creates	more	coupling	than	is	needed	for	event	handlers.	If	the	widget	is
following	well-accepted	widget	design	practices,	the	widget	will	have	callbacks
defined	in	its	options.

Copy	Code

Relationship	to	Options
When	options	are	defined	as	functions	and	their	names	correspond	to	an	event
name	without	the	prefix,	they	are	referred	to	as	callbacks.	The	_trigger	method
on	the	base	widget	will	automatically	invoke	the	callback	whose	name	matches
the	event	being	raised.
JavaScript

//	Contained	in	jquery.qs.tagger.js

widgetEventPrefix:	'tag',

options:	{

				activated:	null,

				deactivated:	null

},

_create:	function	()	{

				var	that	=	this,

								name	=	this.name(),

								tag	=	this.element.text();

				this.element

								.bind('mouseenter.'	+	name,	function	(event)	{

												that._trigger('activated',	event,	{name:	tag});

								});

},

The	JavaScript	that	creates	the	tagger	widget	can	now	define	the	handler	for	the
activated	and	deactivated	events	when	it	creates	the	widgets.
JavaScript

$('span[data-tag]').tagger({

				activated:	function	(event,	data)	{

								infobox.infobox('displayTagLinks',	event,	data.name);

				},

				deactivated:	function	()	{

								infobox.infobox('hideTagLinks');

				}

});

This	allows	the	two	widgets	to	interact	without	explicitly	knowing	about	each
other.	Using	this	approach	causes	the	script	that	invokes	the	widgets	to	act	as	a
connective	tissue	that	describes	a	lot	about	the	solution	in	a	succinct	readable
format.

Copy	Code

Inheritance
Sometimes	when	building	a	widget,	another	widget	already	has	a	lot	of	what	the
new	widget	needs.	The	widget	factory's	inheritance	support	is	designed	for	this
case.	For	illustration	purposes,	consider	the	following	widget.
JavaScript

//	Code	illustration:	not	in	QuickStart

(function	($)	{

				$.widget('a.container',	{

								...

								resize:	function()	{

												//	resize	width	and	height

								},

								...

				});

}(jQuery));

If	this	widget	was	built	elsewhere	and	you	want	to	change	its	resizing	behavior
to	animate,	a	reasonable	approach	would	be	to	inherit	from	a.container	and
override	its	resize	method.	Inheritance	is	accomplished	by	passing	three
arguments	into	the	widget	factory.	The	first	argument	is	the	namespace	and
name	of	the	widget,	the	second	is	the	base	widget	being	inherited	from,	and	the
third	argument	is	the	object	prototype	of	the	derived	widget.
JavaScript

//	Code	illustration:	not	in	QuickStart

(function	($)	{

				$.widget('an.animatedContainer',	$.a.container.prototype,	{

								...

								resize:	function()	{

												//	override	with	animations

								},

				});

}(jQuery));

The	only	difference	between	the	signature	above	and	the	signature	usually	used
for	defining	widgets	is	addition	of	the	second	parameter.

Inheritance	is	a	useful	tool	when	you	are	using	a	widget	that	almost	does	what
you	want	it	to	do.	In	version	1.9	of	jQuery	UI,	widgets	will	be	able	to	inherit
from	themselves,	which	makes	it	even	easier	to	extend	the	functionality	of
widgets.

Summary
Using	the	jQuery	UI	widget	factory	is	a	great	way	to	add	modularity	to	client-
side	web	applications.	Their	lifetimes	can	be	managed	with	_create,	_init,	and
destroy.	Options	should	have	intelligent	defaults	but	can	be	overridden	at	any
time	by	passing	them	to	the	widget	method	or	calling	the	option	method
directly.	Functions	are	a	powerful	way	to	decouple	functionality	and	using	them
for	callbacks	makes	raising	and	handling	events	straight-forward.	Widgets	can
have	public	methods	and	properties	and	uses	a	prepended	underscore	for	private
methods.	Define	functions	and	variables	outside	of	the	widget	prototype	but
inside	the	self-executing	function	wrapper	when	it's	appropriate	for	all	instances
of	the	widget	to	use	a	single	function	or	variable.	Widgets	can	also	be	inherited
when	base	functionality	can	be	shared	across	different	widgets.	See	the	next
chapter	for	more	places	to	learn	about	jQuery	plugins	and	jQuery	UI.

Further	Reading
Appendix	B:	Widget	QuickStart

Widget	Factory	documentation	on	the	jQuery	UI	wiki:	
http://wiki.jqueryui.com/w/page/12138135/Widget-factory

jQuery	Documentation	for	Plugins/Authoring:	
http://docs.jquery.com/Plugins/Authoring

jQuery	UI	Developer	Guidelines:	
http://jqueryui.com/docs/Developer_Guide

jQuery	UI	source	code:	
https://github.com/jquery/jquery-ui

http://wiki.jqueryui.com/w/page/12138135/Widget-factory
http://docs.jquery.com/Plugins/Authoring
http://jqueryui.com/docs/Developer_Guide
https://github.com/jquery/jquery-ui

|	Community

To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com

Copyright	©	2011	by	Microsoft	Corporation.	All	rights	reserved.

Resources
Content	Delivery	Network	(CDN)	Addresses:
http://www.asp.net/ajaxlibrary/cdn.ashx

http://www.asp.net/ajaxlibrary/cdn.ashx
http://www.codeplex.com/silk
mailto:pagdoc@microsoft.com?subject=Feedback about jQuery UI Widgets

Silk	1.0	-	June	2011

Application	Notifications

Introduction

All	web	applications	that	users	consider	responsive	have	one	thing	in	common:
they	provide	appropriate	and	timely	feedback	to	the	user.	This	feedback	can
come	in	many	forms,	including	a	save	or	success	message	following	a
completed	task,	subtle	animations	in	response	to	a	user	interface	(UI)	gesture,	a
progress	message	for	long-running	tasks	or	input	error	messages	displayed
before	a	page	is	submitted.

How	the	application	surfaces	the	notifications	to	the	user	is	almost	as	important
as	the	information	itself.	Intrusive	message	boxes,	modal	dialogs,	and	overlays
(floating	messages)	that	require	the	user	to	dismiss	messages,	can	interrupt	the
user's	workflow,	get	in	the	way,	and	degrade	the	overall	user	experience.

In	addition	to	providing	feedback	during	normal	application	use,	the	website
must	also	provide	quality	feedback	when	a	non-recoverable	error	occurs.
Quality	feedback	means	providing	understandable	information	about	what	has
occurred,	along	with	clear	instructions	on	how	to	proceed.

What	You	Will	Learn	in	This	Chapter
In	this	chapter	you	will	discover:

How	to	provide	unobtrusive	user	notification	messages.
How	to	handle	multiple	simultaneous	notification	messages	raised	by	the
application.
The	benefits	of	encapsulating	the	display	and	management	of	user
notification	in	a	single	JavaScript	object.
How	to	display	a	helpful	global	error	page.
How	to	set	up	a	global	error	handler	for	Ajax	requests.
Alternatives	to	modal	dialogs	for	prompting	users.
How	to	enable	application	notifications	on	the	desktop	with	the	Pinned
Sites	API.

The	technologies	discussed	in	this	chapter	are	jQuery	UI	Widgets	and	Pinned
Sites	in	Windows®	Internet	Explorer®	9.

For	a	comprehensive	look	at	input	validation	error	messages,	see	Chapter	10,
"Data,	Caching,	and	Validation."

Notifying	the	User
Providing	a	high-quality	application	notification	experience	requires	careful
planning	with	emphasis	on	where	notifications	will	be	displayed,	what	events
initiate	a	message,	how	potential	multiple	simultaneous	messages	will	be
handled,	and	how	to	decouple	the	message	originator	from	the	object	tasked
with	displaying	the	message.

During	the	design	phase	of	the	Mileage	Stats	application,	the	Project	Silk	team
discussed	where	and	how	notification	messages	would	be	displayed.	We	spent
time	prototyping	several	different	notification	designs.

Where	notification	messages	are	displayed	is	an	essential	part	of	the	overall
application	user	experience	(UX)	and	user	interface	design.	Our	initial	design
called	for	messages	and	progress	bars	to	be	displayed	within	the	boundaries	of
each	jQuery	UI	widget.	After	building	several	prototypes	and	performing
usability	testing,	the	team	determined	this	design	was	unnecessary	because	the
UI	loads	very	fast,	alleviating	the	need	for	a	loading	progress	bar	in	this
application.	The	team	decided	that	displaying	user	messages	in	a	single	location
made	for	a	much	better	experience	than	having	messages	displayed	within
individual	widgets.

Throughout	application	development,	the	team	tailored	application	events	that
triggered	user	messages	based	on	usability	testing.	Initially,	the	team	displayed
messages	each	time	an	Ajax	request	was	invoked.	This	caused	the	UI	to	be	too
busy,	so	we	associated	a	time	delay	with	the	message	so	that	it	would	only
display	if	the	request	took	longer	than	the	time	delay.	This	too,	got	messy,
requiring	a	good	deal	of	code	with	little	or	no	value	added	to	the	application.	In
the	end,	the	"less	is	more"	principle	triumphed,	resulting	in	a	good	balance	of
informative	messages.

Interactive	and	engaging	applications	such	as	Mileage	Stats	can	execute
multiple,	asynchronous	operations,	such	as	the	Dashboard	page	that	loads	data
for	several	jQuery	UI	widgets	in	addition	to	the	chart	widget.	Each	of	these
operations	loads	data	for	a	region	of	the	UI.	Any	of	these	operations	is	a
potential	point	of	failure	requiring	an	error	message.	It's	important	that	the
application	notification	implementation	be	able	to	manage	multiple
simultaneous	or	nearly	simultaneous	messages.

From	an	architectural	design	perspective,	it's	critical	that	message	initiators	not

be	responsible	for	determining	how	to	coordinate	the	display	of	messages	in	the
UI.	Decoupling	the	message	initiator	from	the	rendering	object	allows	both	of
them	to	evolve	independently	and	to	be	tested	in	isolation.

The	above	section	provides	a	glimpse	into	how	the	team	worked	together	to
maintain	the	delicate	balance	of	UX,	UI,	and	engineering	concerns.	It's	this	type
of	designer-developer	collaboration	that	enabled	the	team	to	deliver	a	successful
notification	feature.

Where	Notification	Messages	are	Displayed
Mileage	Stats	is	composed	of	widgets.	The	decision	to	create	and	use	a	widget
for	displaying	notification	messages	is	a	natural	architectural	design	fit	for	this
application.	Widgets	have	flexible	and	powerful	UI	capabilities,	provide	for
encapsulation	of	behavior,	and	can	have	external	dependencies	like	publish	and
subscribe	(pub/sub)	injected	into	their	options	object	during	creation.

Mileage	Stats	uses	a	single	widget	called	status	for	displaying	messages	to	the
user.	The	status	widget	subscribes	to	the	Mileage	Stats	status	pub/sub	message.
It	also	handles	the	placement	and	rendering	of	messages	as	well	as	the
coordination	of	multiple	simultaneous	messages.

Location	of	the	status	widget

The	status	widget	is	rendered	within	the	header	widget	UI,	as	pictured	above.
This	top,	semi-central	location	was	chosen	because	it's	easier	for	the	user	to
notice	the	message	in	this	location,	as	opposed	to	a	message	area	along	the
bottom	of	the	browser	window.	The	balance	of	easily	noticed,	easy-to-read,	yet
unobtrusive	user	notifications,	took	time,	patience,	and	usability	testing,	but	the
multiple	design	iterations	were	worth	the	extra	investment	of	time.

Copy	Code

How	Notification	Messages	are	Initiated
Mileage	Stats	notification	messages	are	initiated	by	widgets	and	communicated
to	the	status	widget	using	the	pub/sub	JavaScript	object.	Like	other	pub/sub
messages,	the	status	message	has	an	associated	payload	object	that	is	passed
with	the	message.

Notification	messages	passed	using	Pub/Sub

The	code	snippet	below	is	from	the	vehicleDetails	widget.	The	_publishStatus
method	is	responsible	for	making	the	pub/sub	call.	It's	called	internally	by	other
widget	methods	to	initiate	the	display	of	a	message.	The	status	argument	is	the
message	payload	and	is	forwarded	in	the	publish	call.	The	publish	method	was
passed	in	the	widget	options	object	when	the	widget	was	created	and	points	to
the	pubsub	JavaScript	object.	The	jQuery	isFunction	method	verifies	that
publish	is	a	valid	JavaScript	function	object	before	it's	called.
JavaScript

//	Contained	in	mstats.vehicle-details.js

_publishStatus:	function	(status)	{

				this.options.publish(mstats.events.status,	status);

},

As	stated	earlier,	Mileage	Stats	does	not	bother	the	user	with	data	request
messages.	However,	when	initiating	an	Ajax	operation	such	as	a	save	or	delete,
it's	important	to	keep	the	user	informed	by	updating	the	UI	as	the	request
proceeds	and	concludes.

The	following	functions	show	how	easy	it	is	to	initiate	the	display	of	a	user
message:

The	_showDeletingMessage	function	is	called	after	the	user	confirms
his	intent	to	delete	the	vehicle.	This	message	is	intended	to	inform	the
user	that	the	vehicle	deletion	has	been	submitted	to	the	server.

The	_showDeletedMessage	function	is	called	after	a	successful	deletion
of	the	vehicle,	informing	the	user	that	the	deletion	was	successful.
The	_showDeleteErrorMessage	function	is	called	if	an	error	occurred
while	deleting	the	vehicle.

JavaScript

//	contained	in	mstats.vehicle-details.js

_showDeletingMessage:	function	()	{

		this._publishStatus({

				type:	'saving',

				message:	'Deleting	the	selected	vehicle	...',

				duration:	5000

		});

},

_showDeletedMessage:	function	()	{

		this._publishStatus({

				type:	'saved',

				message:	'Vehicle	deleted.',

				duration:	5000

		});

},

_showDeleteErrorMessage:	function	()	{

		this._publishStatus({

				type:	'saveError',

				message:	'An	error	occurred	deleting	the	selected	vehicle.	Please	try	again.',

				duration:	10000

		});

}

Each	function	creates	an	object	literal	containing	a	type,	message,	and	duration
property.	The	type	property	is	used	by	the	status	widget	to	prioritize	multiple	or
overlapping	display	message	requests.	The	message	is	the	text	of	the	message	to
display	and	the	duration	is	how	long	the	message	should	display.

For	detailed	information	on	the	inner	working	of	the	Mileage	Stats	pub/sub
implementation,	see	Chapter	8,	"Communication."

How	Individual	or	Multiple	Notification	Messages	are	Displayed
In	the	following	_create	method,	the	status	widget	subscribes	to	the	status
event.	When	this	event	is	raised,	the	_statusSubscription	method	is	invoked.

The	_statusSubscription	method	is	responsible	for	displaying	and	hiding
messages	as	well	as	managing	multiple	simultaneous	messages.	If	a	message	is
being	displayed	and	another	message	with	a	higher	priority	arrives,	the	higher
priority	message	will	be	shown.
JavaScript

//	contained	in	mstats.status.js

_create:	function	()	{

		//	handle	global	status	events

		this.options.subscribe(mstats.events.status,	this._statusSubscription,	this);

},

...

_statusSubscription:	function	(status)	{

		var	that	=	this;

		status.priority	=	that._getPriority(status);

		//	cancel	displaying	the	current	message	if	its	priority	is	lower	than

		//	the	new	message.	(the	lower	the	int,	the	higher	priority)

		if	(that.currentStatus	&&	(status.priority	<	that.currentStatus.priority))	{

				clearTimeout(that.currentStatus.timer);

		}

		that.currentStatus	=	status;

		that.element.text(status.message).show();

		//	set	the	message	for	the	duration

		that.currentStatus.timer	=	setTimeout(function	()	{

				that.element.fadeOut();

				that.currentStatus	=	null;

		},	status.duration	||	that.options.duration);

},

User	Session	Timeout	Notification
Mileage	Stats	uses	forms	authentication,	with	a	session	timeout	threshold	of	20
minutes.	If	the	session	has	timed	out,	the	request	(Ajax	or	non-Ajax)	is
redirected	to	the	page	specified	by	the	forms	authentication	loginUrl	in	the
web.config	file.

In	traditional	websites	that	perform	page	reloads	between	pages,	it’s	common	to
redirect	the	user	to	a	sign-in	page	when	their	session	times	out.	Applications
like	Mileage	Stats	that	make	heavy	use	of	Ajax	calls	to	retrieve	data,	perform
few	full-page	reloads.	Consequently,	if	a	session	timeout	occurs,	it’s	usually
during	an	Ajax	request.	Let's	examine	what	happens	when	an	Ajax	request	is
redirected	because	of	an	authentication	session	timeout:

Ajax	JavaScript	Object	Notation	(JSON)	data	request	initiated.
Forms	authentication	runtime	detects	an	expired	session	and	redirects	the
request	to	the	sign-in	page.
A	parsing	error	occurs	because	the	Ajax	handler	is	expecting	JSON	data
and	not	HTML.	The	HTML	is	the	content	of	the	sign-in	page	to	which
the	request	was	redirected.
An	Ajax	error	callback	is	invoked.
A	global	Ajax	error	callback	is	invoked.

Errors	that	can	occur	anywhere	in	the	application	can	often	be	handled	in	a
centralized	location	so	that	individual	objects	don't	need	to	repeat	the	same	error
handling	code.	Mileage	Stats	implements	the	global	ajaxError	method	handler
shown	below	to	catch	errors	occurring	during	an	Ajax	request.	The	primary
purpose	of	this	method	in	Mileage	Stats	is	to	identify	whether	the	initiating	Ajax
request	caused	a	session	timeout	error	and,	if	so,	redirect	the	user	to	the	sign-in
page.

When	looking	at	the	code	below,	"jqXHR.status	===	200"	appears	out	of	place
or	incorrect.	Remember,	this	method	is	only	executed	when	an	Ajax	error
occurs.	If	the	session	times	out	and	the	request	is	redirected	to	the	sign-in	page,
the	response	status	code	will	be	200	because	the	redirect	succeeded.	In	addition
to	checking	for	the	response	status	code,	this	method	also	verifies	that	the
returned	HTML	contains	the	sign-in	page's	title.	If	both	conditions	are	met,	the
browser	is	redirected	to	the	sign-in	page.
JavaScript

//	contained	in	mileagestats.js

//	setup	default	error	handler	for	redirects	due	to	session	timeout.

$(document).ajaxError(function	(ev,	jqXHR,	settings,	errorThrown)	{

						if	((jqXHR.status	===	200)

										&&	(jqXHR.responseText.indexOf('Mileage	Stats	Sign	In')	!==	-1))	{

						window.location.replace(mstats.getRelativeEndpointUrl('/Auth/SignIn'));

				}

});

Note:
If	the	originating	Ajax	calling	code	also	implements	an	error	handler,	the
originating	Ajax	caller's	error	handler	will	be	called	first,	then	the	above
global	Ajax	error	handler	will	be	called.

Website	Error	Notification
ASP.NET	provides	you	with	the	ability	to	specify	a	default	error	page	for	their
website	that	the	ASP.NET	runtime	will	redirect	to	when	an	unhandled	exception
occurs.	This	error	page	is	configured	in	the	web.config	file	customErrors
section.
C#

//	Contained	in	web.config

<customErrors	defaultRedirect="GenericError.htm"	mode="RemoteOnly"	/>

The	error	page	should	look	and	feel	like	it	is	part	of	the	website,	contain	a	brief
explanation	of	why	the	user	has	been	redirected	to	this	page,	and	provide	links
to	continue	using	the	site.

Mileage	Stats	GenericError.htm	page

Prompting	Users
During	the	design	phase	of	Project	Silk,	the	team	had	a	goal	of	not	prompting
users	with	modal	dialogs.	Website	UX	designers	are	getting	away	from	modal
dialogs	that	ask	the	user	questions	like,	"Are	you	sure?"	Instead,	designers
prefer	an	undo	system,	allowing	users	to	undo	the	previous	task.	The	undo
feature	also	enhances	the	application	by	extending	undo	capabilities	to	tasks	that
did	not	require	a	confirmation	dialog.

Since	Mileage	Stats	is	only	a	sample	application,	it	has	limited	functionality.	A
production	application	could	implement	this	undo	feature.	The	team	preferred
the	undo	feature,	but	other	features	took	priority.

The	code	below	uses	the	JavaScript	confirm	function	to	validate	the	user's
request	to	fulfill	a	maintenance	reminder.
JavaScript

//	contained	in	mstats.reminders.js

fulfillReminder:	function	(fulfillmentUrl)	{

				var	shouldfulfill	=	confirm('Are	you	sure	you	want	to	fulfill	this	reminder?');

				if	(shouldfulfill)	{

								this._fulfillReminder(fulfillmentUrl);

				}

},

Note:
The	jQuery	UI	dialog	provides	an	alternative	to	using	the	JavaScript	confirm
dialog.	If	you	are	leveraging	jQuery	UI	plug-ins,	you	should	consider	using
the	jQuery	UI	dialog	for	consistency	in	your	UI.

Desktop	Notifications
Given	that	modern	web	applications	can	provide	excellent	user	experiences	that
rival	desktop	applications,	the	team	wanted	to	take	the	next	logical	step	and
integrate	the	Mileage	Stats	application	with	the	user's	desktop	to	provide
appropriate	dynamic	user	notifications.	This	integration	was	made	possible	by
the	Internet	Explorer	9	Pinned	Site	API.

Websites	that	implement	the	Pinned	Site	API	can	feel	more	like	a	native
Windows	application.	They	can	take	advantage	of	the	Microsoft®	Windows®	7
taskbar	capabilities	and,	when	launched,	the	browser	window	is	customized
specifically	for	the	site.	The	full	Pinned	Sites	experience	requires	Internet
Explorer	9	running	on	Windows	7.	Windows	Vista®	provides	fewer	Pinned
Sites	features—site	pinning,	customized	reduced	chrome,	and	the	disabling	of
browser	add-ons.

Mileage	Stats	uses	Pinned	Sites	to	provide	Windows	7	taskbar	notifications	that
indicate	whether	the	user	has	one	or	more	overdue	maintenance	reminders.	In
addition,	a	dynamic	jump	list	provides	a	direct	link	to	each	overdue
maintenance	reminder.

Mileage	Stats	taskbar	integration

Note:
Jump	list	items	will	be	available	whether	the	site	is	opened	in	a	browser	or
not.	However,	the	notification	icons	are	only	displayed	when	the	site	is

opened	in	the	browser.

The	two	images	below	contrast	Mileage	Stats	running	in	a	normal	browser
window	and	a	customized	Pinned	Sites	browser	window.	The	lower	image
shows	the	clean,	pared	down	browser	window	with	potentially	distracting
browser	features	removed	from	view,	allowing	the	user	to	focus	on	the
application	features.	Applications	run	in	the	customized	browser	window	when
they	are	launched	from	a	taskbar	or	Start	Menu	Pinned	Sites	icon.

Mileage	Stats	without	using	Pinned	Sites

Mileage	Stats	using	Pinned	Sites

In	addition	to	a	cleaner	browser	window,	Pinned	Sites	also	allows	the	developer
to	customize	the	color	of	the	browser	back	and	forward	buttons	and	displays	the
website	favicon	to	the	left	of	the	back	button.	This	favicon	is	also	a	link	to	the
website	home	page.

Implementing	Pinned	Sites
Microsoft	provides	documentation	for	implementing	Pinned	Sites	in	their	web
applications	on	MSDN®.	The	title	of	this	topic	is,	"Pinned	Sites	Developer
Documentation,"	and	is	located	at	http://msdn.microsoft.com/en-
us/library/gg491731(v=VS.85).aspx.

http://msdn.microsoft.com/en-us/library/gg491731(v=VS.85).aspx

Copy	Code

Pinned	Sites	in	Mileage	Stats
The	following	sections	will	not	attempt	to	duplicate	the	MSDN	documentation
just	mentioned	nor	cover	every	line	of	code	pertaining	to	Pinned	Sites.	Instead,
the	Mileage	Stats	implementation	will	be	explained,	enabling	you	to	understand
pieces,	requirements,	capabilities,	and	value	of	the	Pinned	Sites	API.

The	Pinned	Sites	implementation	in	Mileage	Stats	includes	feature	detection,
site	pinning,	dynamic	jump	list	updating,	and	display	of	notification	icons.
These	features	are	encapsulated	in	the	mstats.pinnedSite	JavaScript	object	that
is	contained	in	the	mstats.pinnedsite.js	file.	The	pinnedStite	object	is	initialized
differently	depending	on	whether	or	not	the	user	is	signed	in.	This	initialization
will	be	described	below.

Feature	Detection
Pinned	Sites	feature	detection	is	provided	by	the	Internet	Explorer	9
msIsSiteMode	function.	Verifying	that	the	page	is	opened	as	a	pinned	site
before	executing	Pinned	Site	API	methods	prevents	unnecessary	JavaScript
errors.

The	msIsSiteMode	function	returns	true	if	the	current	page	is	launched	as	a
pinned	site;	false	if	it	is	not.	The	below	isPinned	function	wraps	the
msIsSiteMode	call	and	returns	false	if	the	page	is	not	launched	as	a	pinned	site,
or	the	browser	is	not	Internet	Explorer	9.
JavaScript

//	Contained	in	mstats.pinnedsite.js

isPinned:	function	()	{

				try	{

								return	window.external.msIsSiteMode();

				}

				catch	(e)	{

								return	false;

				}

}

Copy	Code

Enabling	Website	Pinning
Unauthenticated	users	visiting	the	site	are	directed	to	the	landing	page,	which	is
shown	below.	This	page	allows	users	to	sign	in,	pin	the	site,	and	view	the
Mileage	Stats	video	(not	pictured).	The	Pinned	Sites	icon	will	glow	when	it	is
draggable,	allowing	the	user	to	pin	the	site	to	the	taskbar	or	Start	Menu.	The
callout	text	displays	for	5	seconds	when	the	page	loads.	It	will	also	show	and
hide	the	text	as	the	user	moves	her	mouse	over	or	away	from	the	Pinned	Sites
icon.
Note:

Developers	are	not	required	to	implement	a	draggable	site	icon	as	Mileage
Stats	does	to	enable	site	pinning.	Providing	a	draggable	icon	allows	the
website	more	control	over	the	pinning	experience.	
Without	a	draggable	icon,	sites	can	still	be	pinned	by	dragging	the	tab	or	the
favicon	to	the	taskbar.

Landing	page

The	Pinned	Sites	JavaScript	object	is	initialized	when	the	above	page	loads	with
the	below	JavaScript	function.
CSHTML

//	Contained	in	Index.cshtml

<script>

		$(function	()	{

				mstats.pinnedSite.intializePinndedSiteImage();

		});

</script>

If	the	browser	is	Internet	Explorer	9	and	the	website	is	not	currently	pinned,	the
intializePinndedSiteImage	method	will	attach	appropriate	event	handlers	for
hiding	and	showing	the	callout	text.	It	also	adds	the	active	CSS	class	to	the
Pinned	Sites	icon	so	that	the	icon	appears	to	glow.
JavaScript

//	Contained	in	mstats.pinnedsite.js

intializePinndedSiteImage:	function	()	{

		try	{

				//	Do	not	enable	site	pinning	for	non-Internet	Explorer	9	browsers

				//	Do	not	show	the	callout	if	the	site	is	already	pinned

				if	(!(document.documentMode	===	undefined	||	mstats.pinnedSite.isPinned()))	{

						$('#pinnedSiteImage')

												.bind('mousedown	mouseout',	mstats.pinnedSite.hideCallout)

												.bind('mouseover',	mstats.pinnedSite.showCallout)

												.addClass('active');

						$('#pinnedSiteCallout').show();

						setTimeout(mstats.pinnedSite.hideCallout,	5000);

				}

		}

		catch	(e)	{

				//	Fail	silently.	Pinned	Site	API	not	supported.

		}

},

The	HTML	snippet	below	shows	the	required	msPinSite	class	applied	to	the
Pinned	Sites	icon.	This	class	is	used	by	Internet	Explorer	9	to	enable	the	user	to
drag	the	Pinned	Sites	icon	to	the	taskbar	or	Start	Menu	and	pin	the	site.

Copy	CodeCSHTML

//	Contained	in	Index.cshtml

To	call	the	user's	attention	to	the	draggable	Pinned	Sites	icon,	the	active	CSS
class	below	adds	an	attractive	outer	glow	to	it.
CSS

//	Contained	in	static.css

#pinnedSiteImage.active

{

				cursor:	pointer;

				box-shadow:	0px	0px	15px	#6Dffff,	inset	0px	0px	10px	#6Dffff;

				border-radius:	12px;

}

The	user	can	pin	a	website	by	dragging	the	Pinned	Sites	icon,	browser	tab,	or
favicon	to	the	taskbar	or	Start	Menu.	Internet	Explorer	9	integrates	with	the
Windows	shell	to	accomplish	the	pinning.

Dynamic	Jump	List	Updating	and	Notification	Icons
Mileage	Stats	uses	the	jump	list	and	notification	icons	to	notify	users	of	overdue
maintenance	reminders.	When	users	click	on	the	jump	list	entry,	they	will	be
taken	to	that	reminder.	The	notification	overlay	icon	displays	1,	2,	3,	or	3+	to
provide	a	taskbar	indication	of	outstanding	reminders.

Jump	list	and	notification	icon

Copy	Code

On	the	initial	page	load	after	the	user	authenticates,	the	client-side	widgets	and
JavaScript	objects	are	invoked	by	code	in	the	mileagestats.js	file.	The
pinnedSite	object	is	initialized	by	passing	it	a	delegate	to	the	data	manager's
sendRequest	method.
JavaScript

//	Contained	in	mileagestats.js

mstats.pinnedSite.intializeData(mstats.dataManager.sendRequest);

The	initializeData	function	saves	the	sendRequestFunc	in	the	sendRequest
property	for	future	calls	to	the	data	manager	by	the	requeryJumpList	function.
JavaScript

//	Contained	in	mstats.pinnedsite.js

intializeData:	function	(sendRequestFunc)	{

		sendRequest	=	sendRequestFunc;

		mstats.pinnedSite.requeryJumpList();

},

The	below	requeryJumpList	function	is	called	when	the	pinnedSite	object	is
initialized	and	called	by	the	layoutManager	widget	when	a	reminder	is
fulfilled.	It's	the	layout	manager's	call	that	initializes	the	dynamic	updating	of

the	jump	list	and	notification	icon.
Note:

Only	the	essential	lines	of	code	that	demonstrate	the	loading	of	the	jump	list
and	updating	of	the	notification	icon	are	listed	below.

All	of	the	below	msSite	functions	are	provided	by	Internet	Explorer	9.	After
using	feature	detection	to	determine	if	the	site	is	pinned,	the	jump	list	and
overlay	icon	are	cleared,	and	a	new	jump	list	is	created.

Not	shown	below	is	the	Ajax	call	to	the	data	manager	to	get	the	array	of
overdue	reminders.	If	that	Ajax	request	is	successful	and	the	data.Reminders
array	has	data,	a	URL	will	be	constructed	for	each	data	item	and	added	to	the
jump	list.	Next,	the	appropriate	overlay	icon	is	set.	Finally,
msSiteModeShowJumpList	is	called	to	update	the	jump	list.
JavaScript

//	Contained	in	mstats.pinnedsite.js

requeryJumpList:	function	()	{

		try	{

				if	(mstats.pinnedSite.isPinned())	{

						...

						var	g_ext	=	window.external,

						...

						g_ext.msSiteModeClearJumpList();

						g_ext.msSiteModeCreateJumpList("Reminders");

						g_ext.msSiteModeClearIconOverlay();

						if	(data.Reminders)	{

								for	(i	=	0;	i	<	data.Reminders.length;	i	+=	1)	{

										reminderUrl	=	mstats.getRelativeEndpointUrl('/reminder/details/'	+	

												data.Reminders[i].Reminder.ReminderId.toString());

										g_ext.msSiteModeAddJumpListItem(data.Reminders[i].FullTitle,	reminderUrl,	

												"./favicon.ico",	"self");

								}

								if	(data.Reminders.length	>	0)	{

										iconOverlayUrl	=	'/content/overlay-'	+	data.Reminders.length	+	'.ico';

										iconOverlayMessage	=	'You	have	'	+	data.Reminders.length.toString()	+	

												'	maintenance	tasks	that	are	ready	to	be	accomplished.';

										if	(data.Reminders.length	>	3)	{

												iconOverlayUrl	=	'/content/overlay-3plus.ico';

										}

										g_ext.msSiteModeSetIconOverlay(iconOverlayUrl,	iconOverlayMessage);

								}

						}

						g_ext.msSiteModeShowJumpList();

						...

The	above	code	demonstrates	that	with	a	small	investment,	you	can	deliver
dynamic	desktop	notifications	in	your	websites.

Requirement	for	Jump	List	Items	to	Appear
The	Windows	7	taskbar	jump	list	items	can	be	disabled	by	your	users,
preventing	them	from	displaying	even	though	the	website	has	been	pinned	to
the	taskbar.

If	your	website	implements	the	jump	list	feature,	you	should	provide	this
information	to	your	users	and	advise	them	that	the	"Store	and	display	recently
opened	items	in	the	Start	Menu	and	the	taskbar"	property	setting	needs	to	be
checked	for	the	jump	list	items	to	show	up.

Taskbar	and	Start	Menu	properties

In	addition	be	being	able	to	disable	jump	list	items,	users	can	customize	the
number	of	jump	list	items	displayed	on	their	computers.	The	default	value	is	10
and	can	be	changed	in	the	Customize	Start	Menu	dialog	below.	This	dialog	is
opened	by	clicking	the	Customize	button	in	the	Taskbar	and	Start	Menu
Properties	dialog	shown	above.

Customizing	Start	Menu	Properties

Summary
Providing	timely	feedback	that	is	uniformly	displayed,	context	sensitive,	and
understandable	to	your	users	without	breaking	their	workflow	takes	planning	by
designers	and	developers	alike.	Your	users	will	appreciate	this	extra	effort,
which	results	in	a	polished	user	experience.	By	encapsulating	the	display	and
management	of	user	notifications	in	a	single	JavaScript	object,	your	application
will	be	easier	to	code,	maintain	over	time,	and	test.	You	have	also	learned	about
integrating	your	website	with	the	Windows	7	desktop	to	provide	users	with
dynamic	notifications	and	jump	list	items,	as	well	as	browsing	your	site	using	a
customized	browser	window.

|	Community

To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com

Copyright	©	2011	by	Microsoft	Corporation.	All	rights	reserved.

Further	Reading
For	a	comprehensive	look	at	input	validation	error	messages,	see	Chapter	10,
"Data,	Caching,	and	Validation."

For	detailed	information	on	the	inner	working	of	the	Mileage	Stats	pub/sub
implementation,	see	Chapter	8,	"Communication."

For	more	information	about	the	isFunction	method,	see	jQuery.isFunction():
http://api.jquery.com/jQuery.isFunction/

For	more	information	about	Pinned	Sites,	see	the	Pinned	Sites	developer
documentation:
http://msdn.microsoft.com/en-us/library/gg491731(v=VS.85).aspx

http://api.jquery.com/jQuery.isFunction/
http://msdn.microsoft.com/en-us/library/gg491731(v=VS.85).aspx
http://www.codeplex.com/silk
mailto:pagdoc@microsoft.com?subject=Feedback about Application Notifications

Silk	1.0	-	June	2011

Modularity

Introduction

Applying	a	modular	design	makes	solutions	more	maintainable.	By	partitioning
complexity	into	modules	named	after	concepts	in	the	solution	domain,	the
client-side	code	will	be	easier	to	read,	understand,	maintain,	test,	and
troubleshoot.	When	the	source	code	is	difficult	to	follow,	these	tasks	can	be
unreasonably	time	consuming.	While	not	all	websites	contain	enough
complexity	to	warrant	a	deliberate	modular	design,	web	applications	with
immersive	experiences	certainly	do.

Immersive	experiences	use	modern	user	interface	(UI)	design	approaches	to
keep	the	user	in	context	while	inside	the	defined	borders.	In	context	means	the
user	is	never	confused	about	where	they	are	in	the	solution.	Breadcrumbs	are
one	way	to	help	the	user	know	where	they	are,	but	they	don't	match	the	visual
intuitiveness	of	an	immersive	UI.	To	create	these	UIs,	you	must	keep	the
interface	fluid	and	avoid	jarring	or	flickering.	Flickering	is	occurs	when	a	whole
page	has	to	load	in	a	browser	for	the	first	time.	The	user	expects	either	instant
responsiveness	or	some	indication	of	progress	when	using	a	responsive	web
application.	This	requirement	alone	places	a	number	of	non-trivial
responsibilities	on	the	client-side.	Some	of	these	responsibilities	have	to	do	with
Ajax	data	retrieval	and	caching,	updating	UI	content,	state	management,	and
animating	layout	transitions.	For	these	applications	to	be	maintainable,	they
must	be	well-composed	of	objects	that	have	clear	boundaries	and
responsibilities.

Fortunately,	there	are	good	libraries	available	today	that	can	help	make	your
application	more	modular.	This	chapter	uses	Mileage	Stats	to	illustrate	how	to
define	the	boundaries,	responsibilities,	and	interactions	in	an	intentionally
modular	design	that	supports	portions	of	an	immersive	UI.	Mileage	Stats	uses
jQuery	as	its	library	for	DOM	manipulation	and	jQuery	UI	as	its	library	for
helping	achieve	modularity.	As	a	result,	the	rest	of	the	chapter	will	refer	to
modules	either	as	a	JavaScript	object,	a	jQuery	plugin,	or	a	jQuery	UI	widget.

In	this	chapter	you	will	learn:
Strategies	for	defining	the	boundaries	of	widgets
How	to	define	the	interface	based	on	its	interactions
An	understanding	of	the	different	types	of	widgets
When	to	use	a	JavaScript	object,	a	jQuery	plugin,	or	a	jQuery	UI	widget

Copy	Code

Defining	Widget	Boundaries
Widgets	typically	have	a	one-to-one	mapping	with	a	single	or	repeating	element
on	the	page.	These	elements	define	the	boundary	of	the	widget.	The	widget
essentially	attaches	behavior	and	state	to	matching	elements.	For	example,	the
following	HTML	shows	a	condensed	structure	of	the	Mileage	Stats	dashboard
layout.	The	elements	not	relevant	to	this	discussion	are	removed.
HTML

<div	id="dashboard-page">

				<div	id="vehicles">

								<div	id="vehicle-list-content”>

												<div	class="wrapper">

																<div	class="vehicle"/>

																<div	class="vehicle"/>

																<div><a>Add	Vehicle</div>	

												</div>

								</div>

				</div>

				<div	id="main-chart"/>

				<div	id="fixed">

								<div	id="summary">

												<div	id="registration"/>

												<div	id="statistics"/>

												<div	id="reminders"/>

								</div>

								<div	id="info"/>

				</div>

</div>

This	shows	the	structural	relationship	these	regions	have	with	each	other.	These
are	the	elements	the	associated	widgets	are	attached	to.	But	it's	unlikely	you
would	start	with	this.	The	process	of	defining	the	boundaries	of	widgets	can
depend	on	multiple	factors	such	as	application	layouts,	animations,	and	data
refreshes.

Influences	from	the	Layout
The	UI	layout	design	can	provide	good	hints	about	the	boundaries	of	potential
widgets.	A	top	priority	in	Mileage	Stats	was	for	the	user	to	not	see	any	page
refreshes	while	the	user	is	reading	vehicle	statistics	at	various	levels	for
different	vehicles.	This	means	the	user	is	navigating	between	the	dashboard,
details	,	and	charts	layouts.	In	other	words,	this	is	the	boundary	of	the
immersive	experience.

The	three	main	layouts	in	the	immersive	experience

These	layouts	are	made	up	of	four	regions:	summaryPane,	vehicleList,
infoPane,	and	charts.	To	keep	the	user	in	context,	the	vehicleList	is	used	in	both
the	Dashboard	and	Details	layouts,	and	transitions	between	these	layouts	as	they
are	animated.	Because	the	vehicleList	is	used	in	both	Dashboard	and	Details
layouts,	the	user	never	loses	sight	of	the	selected	vehicle.	The	summaryPane
and	the	vehicleList	regions	enter	and	exit	from	the	left	side	of	the	screen	and	the
infoPane	and	charts	enter	and	exit	from	the	right.

Because	navigation	between	these	layouts	isn't	causing	full	page	refreshes,	these
regions	should	know	how	to	respond	to	show,	hide,	and	animate	messages.
Their	need	for	these	behaviors	is	a	good	indication	they	should	be	widgets.
Also,	something	must	be	responsible	for	telling	each	of	these	widgets	to	show,
hide,	or	animate.	This	is	the	role	of	the	layoutManager,	a	widget	that	doesn't
have	any	UI,	but	controls	the	operation	of	other	widgets.	The	layoutManager
widget	will	be	covered	later	in	the	chapter.

Influences	from	Animations
The	vehicleList	widget	contains	two	kinds	of	boxes:	vehicle	boxes	and	a	box	to
hold	the	add	vehicle	link.	When	transitioning	to	and	from	Dashboard	and
Details	layouts,	all	of	these	boxes	animate	between	one	and	two	columns	in	a
two-step	process.	At	the	same	time,	each	of	the	vehicle	boxes	that	were	not
selected	shrink	to	a	compact	size.	The	logic	for	these	animations	is	included	in
two	widgets:	the	tile	widget,	and	the	vehicle	widget.	The	tile	widget	is
responsible	for	animating	the	position	of	all	boxes	horizontally	and	vertically
since	both	of	these	boxes	need	that	behavior.	The	vehicle	widget	is	responsible
for	expanding	and	collapsing	the	boxes	since	only	vehicle	widgets	have	that
behavior.

Animating	from	Dashboard	to	Details

Modularizing	these	animations	into	widgets	provides	clear	boundaries	and
responsibilities.	Another,	perhaps	more	appropriate,	approach	might	be	to	place

all	of	the	logic	for	how	to	animate	items	in	a	container	into	a	single,	application-
agnostic	widget.	Then	the	vehicleList	widget	could	apply	the	animation
behavior	widget	to	itself.

Influences	from	Refreshing	Data
When	all	data	updates	are	happening	through	Ajax	calls,	various	parts	of	the	UI
will	have	to	know	how	and	when	to	request	updates	from	the	server	and	apply
any	necessary	changes	to	the	UI.	The	statistics	and	imminent	reminders	regions
of	the	summaryPane	are	good	examples	of	this.

Statistics	widget	is	responsible	for	refreshing	content

The	statistics	and	imminent	reminders	regions	know	how	to	independently
request	their	data	and	update	their	content	accordingly	when	changes	in	vehicle,
fill	up,	or	reminder	data	are	detected.	Many	of	the	other	widgets	in	Mileage
Stats	are	also	responsible	for	retrieving	and	applying	updated	content.	However,
the	code	that	actually	makes	the	requests,	and	adds	some	caching	functionality,
is	implemented	in	a	separate	module.	To	learn	more	about	the	data	abstraction	in
Mileage	Stats,	see	Chapter	10,	"Client	Data	Management	and	Caching."

This	section	illustrated	how	a	widget's	boundaries	can	be	influenced	by	UI
layout,	behaviors	for	animation	and	interaction,	and	content	updates	for	the	UI.
While	the	boundary	defines	the	scope	of	the	widget,	the	interface	defines	the
widget's	responsibility	and	how	it	interacts	with	other	modules	in	the	solution.
Exploring	these	interactions	can	provide	clues	into	how	to	define	the	widget's
interface.

Defining	the	Interactions
The	interface	of	each	widget	is	designed	so	the	widget	can	work	with	other	parts
of	the	UI	without	any	unnecessary	coupling.	The	interface	of	a	widget	is	made
up	of	three	things:	the	options	it	accepts,	the	public	methods	it	exposes,	and	the
events	it	raises.	As	an	example,	the	following	sequence	diagram	shows	the
public	methods	and	options	called	when	the	Details	button	on	a	vehicle	tile	is
selected	while	on	the	dashboard	layout.

Sequence	when	transitioning	from	Dashboard	to	Details

The	diagram	illustrates	how	the	layoutManager	orchestrates	the	transition	by
calling	methods	on	the	widgets.	Notice	how	the	diagram	doesn't	start	with	the
vehicle	widget	even	though	it	contains	the	button	that	was	clicked.	This	is
because	rather	than	the	vehicle	widget	having	the	responsibility	of	capturing	the
click,	it's	responsible	for	modifying	the	button	to	trigger	the
window.hashchange	event.

The	tile	widget	is	responsible	for	animating	tiles.	Because	of	the	specifics	of	the
tile	animation,	it	exposes	a	beginAnimation	method	to	prepare	for	the
animation	that	happens	when	the	moveTo	method	is	called.	Not	surprisingly,
endAnimation	completes	the	process.	To	learn	more	about	how	the	tile	widget
performs	its	animation,	see	Chapter	9,	"Navigation	."

The	vehicleList	has	the	responsibility	of	collapsing	all	vehicle	tiles	that	are	not

the	selected	vehicle.	To	do	this,	the	vehicleList	loops	over	each	vehicle
comparing	its	id	with	the	selected	vehicle	id.	It	uses	the	option	method	to	get
the	id	of	the	current	vehicle	in	the	loop.

The	previous	diagram	illustrated	interactions	related	to	layout	changes	and
animations.	The	following	diagram	illustrates	an	example	of	an	interaction
related	to	refreshing	data	in	response	to	a	global	event.	When	the	Fulfill	button
on	the	reminders	pane	is	selected,	it	publishes	its	fulfilling	status,	makes	the
Ajax	to	save	the	reminder,	and	finally	publishes	an
mstats.events.vehicle.reminders.fulfilled.

At	this	point,	the	reminders	widget	has	not	yet	updated	its	UI	with	an	updated
list	of	reminders.	It	does	have	this	responsibility,	but	only	when	it	is	told	to	do
so	by	the	infoPane.

These	interactions	illustrate	the	flexibility	of	a	modular	design.	The	remainder
of	the	diagram	shows	the	specific	responsibilities	of	all	widgets	involved	in	the
global	event	of	fulfilling	a	reminder.

So	far	in	this	chapter	you	have	seen	modules	have	a	variety	of	responsibilities.
These	responsibilities	can	be	categorized	into	types.

Types	of	Modules
There	are	three	common	types	of	modules:	the	ones	you	see,	the	ones	you	only
see	the	effects	of,	and	the	ones	you	don't	see.	These	types	directly	relate	to	the
responsibility	the	module.	UI	widgets	are	responsible	for	visual	elements,
behavior	widgets	add	functionality,	and	infrastructure	modules	aren't	associated
with	elements.

UI
UI	widgets	take	responsibility	for	the	UI	for	an	element.	They	can	be
general	purpose	such	as	date	and	time	pickers,	combo	boxes,	or	tab
controls.	They	can	also	be	application	specific	such	as	the	Mileage	Stats
widgets.	The	UI	widgets	in	Mileage	Stats	include	the	vehicleList,
infoPane,	vehicleDetails,	fillups,	reminders,	registration,	statistics,
summary,	status,	header,	and	charts.	They	may	rely	on	solely	on	the
HTML	and	CSS	for	the	appearance	of	the	widget.	Alternatively,	the
widget	may	be	applied	to	a	single	element	that	doesn't	have	any	child
elements,	like	in	the	case	of	the	infoPane	widget.

If	you	have	a	large	application	with	many	different	views,	coordinating	a	large
number	of	widgets	at	the	application	level	can	lead	to	complex,	monolithic
logic.	You	can	prevent	this	by	designating	a	widget	as	a	container	for	other
widgets.	An	example	of	a	container	in	Mileage	Stats	is	the	summary	widget	that
coordinates	the	registration,	statistics,	and	imminentReminders	widgets.	It	is
generally	acceptable	for	containers	to	have	knowledge	of	their	children	as	they
are	often	responsible	for	creating	their	children,	attaching	children	to	the	correct
elements,	and	responding	to	events	from	their	children.	However,	you	should
avoid	creating	components	that	have	knowledge	of	their	parent	because	this
makes	it	more	difficult	to	compose	and	test.

Behavior
Behavior	widgets	add	functionality	to	an	existing	element.	The	jQuery
UI	project	calls	these	interactions	and	it	includes	widgets	such	as
draggable,	droppable,	resizable,	selectable,	and	sortable.	In	Mileage
Stats,	the	behavior	widgets	include	tile,	pinnedSite,	and	layoutManager.

Infrastructure
Infrastructure	widgets	provide	commonly	needed	functionality	that	isn't	related
to	the	visual	aspects	of	the	application.	They	don't	interact	with	the	UI.
Examples	include	data	access,	communication,	logging,	or	caching	strategies.
The	infrastructure	modules	in	Mileage	Stats	include	dataManager.	dataStore,
and	pubsub.

Module	Implementations
This	chapter	is	primarily	about	how	to	use	jQuery	UI	widgets	to	compose	the
client-side,	but	widgets	aren't	the	only	option	when	it	comes	to	writing	modular
code.	You	can	also	use	generic	JavaScript	objects	or,	if	you're	using	jQuery	and
don't	need	the	facilities	of	a	widget,	plugins	are	a	good	choice.

Overall	Approach
Once	you	have	decided	to	support	modularity,	you	must	decide	how	to	use	each
of	these	types	and	you	have	two	options.	You	can	choose	the	most	appropriate
type	for	each	module	in	the	solution	as	described	in	the	next	section	or	you	can
take	the	approach	Mileage	Stats	did	by	using	widgets	for	everything	that	is
associated	with	an	element	and	objects	for	everything	else.

The	benefits	of	the	first	choice	should	be	obvious.	Each	module	will	only	have
as	much	functionality	as	it	needs.	This	will	likely	increase	performance	and
portability.	The	disadvantage	of	this	approach	is	it	requires	the	development
team	to	understand	how	to	choose	between	objects,	plugins,	and	widgets,	as
well	as	how	to	implement	each	one.	Based	on	the	size	and	experience	level	of
the	development	team,	consistency	could	suffer	with	this	choice.

Mileage	Stats	uses	widgets	for	all	modules	attached	to	elements	and	JavaScript
objects	for	all	other	modules.

Objects
JavaScript	objects	are	the	most	basic	implementation	of	a	module.	This	is	a
good	choice	when	the	module	isn't	associated	with	any	elements	on	the	page.	In
Mileage	Stats,	modules	implemented	as	plain	JavaScript	objects	include
dataManager,	dataStore,	mstats.events,	pinnedSite,	pubsub,	and
vehicleDropDownMonitor.

Copy	Code

Copy	Code

Plugins
One	of	the	characteristics	of	a	high	quality	framework,	such	as	jQuery,	is	a
robust	extensibility	mechanism.	Creating	a	jQuery	plugin	is	the	recommended
way	to	extend	jQuery.	In	fact,	a	plugin	that	follows	the	recommendations	in	the
jQuery	Plugin	Authoring	Guidelines	is	indistinguishable	from	the	core	library.
Many	methods	in	jQuery	began	life	as	an	external	plugin	and	were	added	later.

Plugins	manifest	themselves	as	functions	alongside	the	other	jQuery	functions.
As	a	result,	they	can	be	invoked	on	elements	using	the	full	power	of	jQuery
selectors.	As	an	added	advantage,	the	this	keyword	is	the	jQuery	wrapped	set
inside	the	function	body.
JavaScript

(function($){

				$.fn.doubleSizeMe	=	function()	{

		

								return	this.each(function()	{

												var	$this	=	$(this),

																width	=	$this.width(),

																height	=	$this.height();

												$this.width(width	*	2);

												$this.height(height	*	2);

								});

				};

})(jQuery);

The	closure	above	adds	the	doubleSizeMe	method	to	the	jQuery	prototype	so
it's	available	when	operating	on	a	wrapped	set.	For	example,	to	invoke	it	on	all
elements	with	a	class	of	icon,	you	would	use	the	following	call.
JavaScript

$('.icon').doubleSizeMe();

There	is	much	more	functionality	you	can	add	to	your	plugins.	However,	if	you
need	more	than	additional	functions	to	partition	the	logic	in	your	plugin,
widgets	may	be	more	appropriate	for	your	module.

For	more	information	on	authoring	plugins,	see	the	"jQuery	Plugin	Authoring
Guidelines"	in	the	"Further	Reading"	section	at	the	end	of	the	chapter.

Widgets
jQuery	UI	widgets	are	jQuery	plugins	that	include	many	of	the	features	that	are
common	to	a	lot	of	plugins.	Specifically,	widgets	include	features	for	managing
lifetime,	storing	state,	merging	options,	and	exposing	public	methods.
Depending	on	the	features	you	need,	if	you	are	already	using	jQuery	UI,	it
might	be	more	appropriate	to	define	the	module	as	a	widget	rather	than	add
these	features	to	a	plugin.	To	learn	more	about	how	to	build	widgets,	see
Chapter	3,	"jQuery	UI	Widgets."

Summary
Choosing	a	modular	design	allows	your	codebase	to	be	more	maintainable	by
making	it	easier	to	understand.	This	makes	troubleshooting	and	applying	future
changes	much	less	costly.	JavaScript	objects	are	a	good	choice	for	implementing
these	modules	when	they	aren't	associated	with	elements	on	the	page.	When	the
boundaries	of	the	module	are	defined	by	elements,	jQuery	and	jQuery	UI
widgets	provide	a	robust	environment	for	modularizing	your	solution.	When
choosing	these	boundaries	in	your	solution,	consider	the	various	layouts	in	the
application	and	the	regions	in	those	layouts.	Also,	consider	animations	and
content	that	must	be	updated	via	Ajax	when	identifying	boundaries.	Once
identified,	the	modules	will	fall	into	being	related	to	UI,	behaviors,	or	the
underlying	infrastructure.	Independent	of	the	types	of	modules	you	use,	your
solution	will	benefit	from	being	composed	with	widgets.

|	Community

To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com

Copyright	©	2011	by	Microsoft	Corporation.	All	rights	reserved.

Further	Reading
jQuery	Plugin	Authoring	Guidelines:	http://docs.jquery.com/Plugins/Authoring

To	learn	more	about	how	to	build	widgets,	see	Chapter	3,	"jQuery	UI	Widgets."

To	learn	more	about	how	the	tile	widget	performs	its	animation,	see	Chapter	9,
"Navigation	."

To	learn	more	about	the	data	abstraction	in	Mileage	Stats,	see	Chapter	10,
"Client	Data	Management	and	Caching."

http://docs.jquery.com/Plugins/Authoring
http://www.codeplex.com/silk
mailto:pagdoc@microsoft.com?subject=Feedback about Modularity

Silk	1.0	-	June	2011

Client	Data	Management	and	Caching

Introduction

Web	applications	are	in	the	business	of	presenting	data	to	the	user.	In	rich,
interactive,	client-centric	applications	like	Mileage	Stats,	users	expect	the
application	to	respond	quickly	to	mouse	gestures,	page	transitions,	or	saving
form	data.	Delays	caused	by	data	retrieval	or	saving	can	negatively	impact	the
users	experience	and	enjoyment	of	the	site.

A	sound	client-side	data	management	strategy	is	critical	to	the	success	of	a	web
application	and	will	address	fundamental	concerns	such	as:

Maintainability.	Writing	clean	maintainable	JavaScript	code	requires
skill,	discipline,	and	planning.	The	Mileage	Stats	data	implementation
addresses	maintainability	by	providing	a	simple	object	for	other
application	objects	to	use	to	execute	data	requests	and	the	cache	results.
Performance.	Client-side	caching	and	prefetching	of	data,	plays	a	key
role	in	achieving	application	responsiveness	from	the	user's	perspective.
Eliminating	unnecessary	data	calls	to	the	server	enables	the	browser	to
process	other	tasks	quicker	such	as	animations	or	transitions.	In	addition,
maintaining	application	responsiveness	while	its	retrieving	data	from	the
server	is	a	key	factor	in	perceived	responsiveness.	Mileage	Stats
addresses	these	performance	concerns	by	caching	data	returned	from	the
server,	uses	prefetching	to	acquire	data	that	a	user	is	likely	to	view,	and
uses	Ajax	to	perform	asynchronous	data	calls	to	the	server.
Scalability.	Client-side	objects	should	avoid	making	repeated	requests	to
the	server	for	the	same	data.	Unnecessary,	calls	to	the	server	require
additional	resources	which	can	impact	the	scalability	of	your	application.
Mileage	Stats	uses	client-side	data	caching	to	increase	the	scalability	of
the	application.
Browser	support.	The	data	cache	implementation	can	influence	which
browsers	the	application	can	support.	Mileage	Stats	caches	data	using	a
generic	JavaScript	object	so	that	older	browsers	such	as	Windows
Internet	Explorer	7	can	be	used	to	view	the	application.

In	this	chapter	you	will	learn:
Benefits	of	a	client-side	data	manager	and	the	abstraction	of	data
requests
How	to	improve	application	performance	by	caching	and	prefetching

data

The	technologies	and	libraries	discussed	in	this	chapter	are	Ajax,	JavaScript,
jQuery,	and	jQuery	UI	Widgets.
Note:

Data	validation	on	the	client	and	server	is	covered	in	the	next	chapter,
"Server-Side	Implementation."

Client-Side	Data	Design
The	Mileage	Stats	data	solution	centers	on	the	data	manager	which	handles
client-side	data	requests	and	manages	the	data	cache.	The	diagram	below	shows
the	relationship	of	the	client-side	JavaScript	objects	to	one-another	and	the
server	JSON	(JavaScript	Object	Notation)	endpoints.

Mileage	Stats	client-side	data	architecture

Mileage	Stats	objects	use	URLs	when	requesting	data	from	the	server.	URLs
were	chosen	because	their	use	simplified	the	data	manager's	design	by	providing
a	mechanism	to	decouple	the	server	JSON	endpoints	from	the	data	manager's
implementation.

The	URL	contains	the	JSON	endpoint,	and	optionally	a	data	record	key	value
corresponding	to	the	requested	object.	The	URL	typically	aligns	with	the	UI
elements	the	object	is	responsible	for.	For	example	the	reminders	widget	uses
"/Reminder/JsonList/1"	to	retrieve	the	reminders	for	the	vehicle	with	the	ID	of
1.

When	data	is	requested	from	the	data	manager	it	returns	the	data	to	the	caller
and	optionally	caches	the	data.	The	caching	of	data	provides	a	performance
boost	to	the	application	because	repeated	requests	to	the	server	for	the	same	data
are	no	longer	necessary.

In	addition	to	data	caching,	Mileage	Stats	also	prefetches	the	chart	data.	The
chart	data	is	prefetched	on	the	initial	page	load	because	there	is	a	reasonable
expectation	that	the	user	will	use	the	Charts	page	to	compare	their	vehicles.	The
prefetching	of	this	data	enables	instant	application	response	when	the	user
navigates	to	the	Charts	page.

In	your	applications,	the	amount	of	data	you	elect	to	prefetch	should	be	based
on	volatility	of	the	data,	the	likelihood	of	the	user	accessing	that	data,	and	the
relative	cost	to	get	that	data	when	the	user	requests	it.	Of	course,	the	number	of
concurrent	website	users	and	the	capabilities	of	your	web	server	and	database
server	also	play	a	role	in	this	decision.

Data	Manager
All	Ajax	data	requests	are	routed	through	the	dataManager	JavaScript	object
contained	in	the	mstats-data.js	file.	The	data	manager	is	responsible	for
performing	data	requests	and	managing	interactions	with	the	data	cache.	The
data	manager	has	a	simple	public	interface	that	exposes	two	methods,
sendRequest	which	processes	Ajax	calls	to	the	server,	and	resetData	which
removes	a	requested	item	from	the	data	cache.

The	next	three	sections	examine	the	benefits	of	the	data	manager	abstraction,
look	at	how	data	requests	are	initiated	by	jQuery	UI	widgets,	and	show	how
those	requests	are	executed	by	the	data	manager.

Benefits	of	the	Data	Manager	Abstraction
Abstracting	the	data	request	implementation	to	a	data	manager	object	provides
an	injection	point	for	the	cross-cutting	concern,	data	caching.	Data	requestors
get	the	full	benefit	of	data	caching	without	taking	another	dependency	or
implementing	additional	code.	Isolating	the	data	cache	also	makes	changing	the
data	cache	implementation	much	easier	because	only	the	data	manager	has	a
direct	dependency	on	it.

The	data	manager	improves	application	testability	by	being	able	to	unit	test	data
requests	and	caching	in	a	single	place	by	having	the	data	request	code	in	a
single	object.

The	data	manager	also	facilitates	changing	the	application	over	time.	Evolution
of	an	application	is	required	not	only	after	release	but	during	development	as
well.	For	example,	the	team	added	a	feature	to	the	data	manager	that	would
have	required	modifying	all	the	Ajax	request	code.	Had	the	data	manager	not
been	implemented,	the	change	would	have	had	more	risk	and	potential	cost.

This	added	feature	was	the	result	of	deployment	testing	in	various	server
configurations.	The	team	discovered	when	the	website	was	deployed	to	a	virtual
directory	as	opposed	to	the	root	directory	of	the	web	server,	that	URLs	in	the
JavaScript	code	had	not	taken	the	virtual	directory	into	account.	The	fix	for	this
problem	only	had	to	be	applied	to	the	data	manager,	which	saved	the	team
development	and	testing	resources.	This	feature	is	discussed	in	the	"Performing
Ajax	Request"	section	below.

Copy	Code

Data	Request
Client-side	data	requests	in	Mileage	Stats	are	initiated	by	jQuery	UI	widgets	and
JavaScript	objects	and	performed	by	the	data	manger.	The	data	manager
sendRequest	method	has	the	same	method	signature	as	the	jQuery	ajax
method.	Widgets	making	requests	set	their	calls	up	as	if	they	are	calling	jQuery
ajax,	passing	an	options	object	that	encapsulates	the	URL,	success	callback,
and	optionally	an	error	callback	or	other	callbacks	such	as	beforeSend	or
complete.

Data	Request	Options
When	a	widget	is	constructed,	the	options	provided	supply	the	methods	needed
to	execute	a	data	request	or	remove	an	item	from	the	data	cache.	Externally
configuring	widgets	removes	tight	coupling	and	hard-coded	values	from	the
widget.	Widgets	can	also	pass	their	options,	like	sendRequest,	to	other	widgets
that	they	create.

This	technique	of	external	configuration	enables	Mileage	Stats	widgets	to	have
a	common	data	request	method	injected	during	widget	construction.	In	addition
to	run-time	configuration,	this	technique	also	enables	the	ability	to	use	a	mock
implementation	for	the	data	request	methods	at	test-time.

Below,	the	summaryPane	widget	is	constructed,	setting	its	sendRequest	and
invalidateData	options	to	corresponding	data	manager	methods.	The	summary
widget	does	not	make	any	data	requests;	instead	these	two	methods	will	be
passed	into	child	widgets	created	by	the	summary	widget.
JavaScript

//	contained	in	mileagestats.js

summaryPane	=	$('#summary').summaryPane({

		sendRequest:	mstats.dataManager.sendRequest,

		invalidateData:	mstats.dataManager.resetData,

		publish:	mstats.pubsub.publish,

		header:	header

});

In	the	below	code	snippet,	the	summary	widget	is	constructing	the	child	widget

Copy	Code

statisticsPane	and	passes	the	above	sendRequest	and	invalidateData	data
manager	methods	as	options.	Setting	these	options	replaces	the	default
implementation	defined	in	the	statistics	widget	for	making	data	requests.	Now,
when	the	statistics	widget	performs	a	data	request,	the	method	defined	in	the
data	manager	will	be	executed.
JavaScript

//	contained	in	mstats.summary.js

_setupStatisticsWidget:	function	()	{

		var	elem	=	$('#statistics');

		mstats.summaryPane.statistics	=	elem.statisticsPane({

				sendRequest:	this.options.sendRequest,

				dataUrl:	elem.data('url'),

				invalidateData:	this.options.invalidateData,

				templateId:	'#fleet-statistics-template'

		});

},

The	dataUrl	option	is	the	URL	or	endpoint	for	the	data	request.	The	url	value	is
stored	in	the	below	data	dash	attribute	in	the	HTML.	The	statisticsPane	widget
is	attached	to	and	is	queried	by	the	above	elem.data	method	call.	Externally
configuring	data	endpoints	avoids	hard-coding	knowledge	about	the	server	URL
structure	within	the	widget.
CSHTML

//	contained	in	\Views\Vehicle	List.cshtml

<div	id="statistics"	class="statistics	section"	

					data-url="@URL.Action("JsonFleetStatistics","Vehicle")">

...

</div>

Performing	a	Data	Request
Specifically,	the	sendRequest	method	has	the	same	method	signature	as	the
jQuery	ajax	method	that	takes	a	settings	object	as	the	only	argument.	The	below
_getStatisticsData	method	passes	the	sendRequest	method	an	object	literal

Copy	Code

that	encapsulates	the	url,	success,	and	error	callbacks.	When	the	Ajax	call
completes,	the	appropriate	callback	will	be	invoked	and	its	code	will	execute.
JavaScript

//	contained	in	mstats.statistics.js

_getStatisticsData:	function	()	{

				var	that	=	this;

				that.options.sendRequest({

								url:	that.options.dataUrl,

								success:	function	(data)	{

												that._applyTemplate(data);

												that._showStatistics();

								},

								error:	function	()	{

												that._hideStatistics();

												that._showErrorMessage();

								}

				});

},

The	above	pattern	simplified	the	Mileage	Stats	data	request	code	because	this
code	does	not	need	to	know	about	the	data	caching	implementation	or	any	other
functionality	that	the	data	manager	handles.

Now	that	you	understand	how	widgets	and	JavaScript	objects	initiate	a	data
request,	let's	examine	how	the	data	manager	makes	the	Ajax	request	to	the
server	and	see	how	data	caching	is	implemented.

Performing	Ajax	Request
The	data	manager	sendRequest	method	is	used	to	request	data	from	the	server.
Since	the	jQuery	ajax	method	signature	is	the	same	for	requesting	as	well	as
posting	data,	the	team	chose	to	implement	a	single	method	for	Ajax	calls	to	the
server.	In	addition	to	success	and	error	callbacks,	the	sendRequest	method	has
an	option	to	cache	the	request	or	not.	By	default,	requests	are	cached.

Mileage	Stats	has	two	use	cases	where	data	is	not	cached:	data	requests	that
only	post	data	to	the	server,	and	the	Pinned	Sites	requests.	The	Pinned	Sites
requests	are	not	cached	because	these	requests	are	only	initiated	by	events	after
data	has	changed.	Since	Pinned	Sites	only	refreshes	its	data	after	a	change,	the
data	request	needs	to	get	fresh	data	from	the	server.

The	diagram	below	illustrates	the	logical	flow	of	a	data	request.	The	data
manager	services	the	request	by	first	checking	if	the	request	should	be	cached
and	if	so,	checks	the	cache	before	making	a	call	to	the	server.	Upon	successful
completion	of	the	request,	the	resulting	data	will	be	returned	to	the	user	and
added	to	the	cache	according	to	the	option.

Data	request

Now	let's	look	at	the	code	that	implements	the	functionality	of	the	above
diagram.	The	below	sendRequest	method	first	modifies	the	URL	to	account	for
the	virtual	directory	the	website	is	deployed	to	by	calling	the
getRelativeEndpointUrl	function.	Using	the	modified	URL,	it	attempts	to
retrieve	the	requested	data	from	the	data	cache.	The	options	are	then	merged
with	the	data	manager's	default	options.	If	the	caller	wants	the	data	cached,	and
data	was	found	in	the	cache,	it's	immediately	returned	to	the	caller.	If	the	data	is
not	found,	the	jQuery	ajax	call	is	made.	If	successful	and	the	caller	requested
the	data	to	be	cached,	it	is	added	to	the	cache	and	the	caller's	success	callback	is
invoked.	If	an	error	occurs	and	the	caller	implemented	an	error	callback,	it	will
be	invoked.	If	a	global	Ajax	error	handler	has	been	defined,	it	will	be	invoked
after	the	error	callback.
Note:

jQuery	ajax	method	can	be	configured	at	the	global	level	to	define	default
options	as	well	as	default	event	handlers.	Mileage	Stats	defines	the	global
Ajax	error	handler	shown	above.	
For	more	information	about	how	Mileage	Stats	implements	the	global	Ajax
error	handler,	see	the	"User	Session	Timeout	Notification"	section	in	Chapter
6,	"Application	Notifications."

JavaScript

//	contained	in	mstats.data.js

sendRequest:	function	(options)	{

		//	getRelativeEndpointUrl	ensures	the	URL	is	relative	to	the	website	root.

		var	that	=	mstats.dataManager,

												normalizedUrl	=	mstats.getRelativeEndpointUrl(options.url),

												cachedData	=	mstats.dataStore.get(normalizedUrl),

												callerOptions	=	$.extend({	cache:	true	},

																																							that.dataDefaults,

																																							options,	

																																							{	url:	normalizedUrl	});

		if	(callerOptions.cache	&&	cachedData)	{

				options.success(cachedData);

				return;

		}

		callerOptions.success	=	function	(data)	{

				if	(callerOptions.cache)	{

						mstats.dataStore.set(normalizedUrl,	data);

				}

				options.success(data);

		};

		$.ajax(callerOptions);

},

Note:
getRelativeEndpointUrl	is	a	utility	method	in	the	mstats.utils.js	file	that	is

used	to	modify	the	URL	passed	in	the	argument,	inserting	the	virtual
directory	the	website	is	installed	under.	This	is	necessary	since	the	virtual
directory	is	not	known	until	run-time.

Data	Cache
The	Mileage	Stats	data	manager	uses	an	internal	data	cache	for	storing	request
results;	the	data	cache	is	only	accessed	by	the	data	manager.	Making	the	data
caching	internal	to	the	data	manager	allows	the	caching	strategy	to	evolve
independently	without	affecting	other	JavaScript	objects	that	call	the	data
manager.

The	data	cache	is	implemented	using	a	JavaScript	object	named	dataStore	that
is	contained	in	the	mstats-data.js	file.	Other	data	cache	storage	locations	could
include	the	DOM,	browser	data	storage	API	or	3rd	party	library.	The	dataStore
JavaScript	object	was	implemented	because	Mileage	Stats	supports	Internet
Explorer	7,	which	does	not	support	the	HTML5	web	storage	specification	and
the	team	chose	not	to	use	a	shim	or	polyfill.

Copy	Code

Adding	and	Retrieving	Cached	Data
Mileage	Stats	integrates	client-side	data	caching	into	the	data	manager's
sendRequest	method	implementation	that	was	described	in	the	previous
section.

Internally,	the	dataStore	is	implemented	using	a	name	value	pair	strategy.	It
exposes	three	methods:	get	to	retrieve	data	by	a	name,	set	to	cache	data	by	a
name,	and	clear	to	remove	data	corresponding	to	a	name.
JavaScript

//	contained	in	mstats.data.js

mstats.dataStore	=	{

		_data:	{},

		get:	function	(token)	{

				return	this._data[token];

		},

		set:	function	(token,	payload)	{

				this._data[token]	=	payload;

		},

		clear:	function	(token)	{

				this._data[token]	=	undefined;

		},

};

Copy	Code

Removing	a	Data	Cache	Item
In	addition	to	the	data	manager	retrieving	and	adding	data	to	the	cache,	the	data
manager	also	provides	the	resetData	method	for	removing	cached	data	by	URL.
JavaScript

//	contained	in	mstats.data.js

resetData:	function	(endpoint)	{

		mstats.dataStore.clear(mstats.getRelativeEndpointUrl(endpoint));

}

Mileage	Stats	objects	call	the	resetData	method	when	client-side	user	actions
make	the	cached	data	invalid.	For	example,	when	a	maintenance	reminder	is
fulfilled,	the	below	requeryData	method	will	be	called	by	the	layout	manager
widget.	When	designing	your	data	architecture,	it	is	important	to	consider	which
client-side	actions	should	invalidate	the	cache	data.
JavaScript

//	contained	in	mstats.statistics.js

refreshData:	function	()	{

		this._getStatisticsData();

},

requeryData:	function	()	{

		this.options.invalidateData(this.options.dataUrl);

		this.refreshData();

},

The	requeryData	method	first	invokes	the	invalidateData	method	passing	the
URL	of	the	cache	item	to	remove.	invalidateData	is	an	option	on	the	statistics
widget	which	was	passed	the	data	manager's	resetData	method	when	the	widget
was	created.	Now	that	the	data	cache	item	has	been	removed,	the	next	call	to
refreshData	will	result	in	the	data	manager	not	locating	the	cached	data	keyed
by	the	URL,	and	will	then	execute	a	request	to	the	server	for	the	data.

Summary
In	this	chapter,	we	have	examined	the	design,	benefits,	and	implementation	of	a
centralized	client-side	data	manager	that	executes	all	Ajax	requests	and
manages	the	caching	of	data.	We	have	seen	how	this	approach	simplifies	testing,
facilitates	application	or	external	library	changes	over	time,	and	provides	a
consistent	pattern	for	objects	to	execute	data	requests.

We	also	learned	how	Mileage	Stats	keeps	its	widgets	free	from	external
dependencies	and	the	hard-coding	of	server	URLs	by	constructing	and
configuring	them	externally.	This	approach	of	injecting	external	dependencies
increases	the	flexibility	and	maintainability	of	the	JavaScript	code,	and	the
absence	of	hard-coded	server	URLs	averts	brittle	JavaScript	code.

|	Community

To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com

Copyright	©	2011	by	Microsoft	Corporation.	All	rights	reserved.

Further	Reading
For	detailed	information	on	jQuery	UI	widgets,	see	Chapter	3,	"jQuery	UI
Widgets."

For	detailed	information	on	the	global	Ajax	error	handler,	see	Chapter	6,
"Application	Notifications."

For	information	on	data	validation,	see	Chapter	11,	"Server-Side
Implementation."

HTML	5	Web	Storage:
http://dev.w3.org/html5/webstorage/

jQuery:
http://jquery.com/

jQuery	ajax()	method:
http://api.jquery.com/jQuery.ajax/

jQuery	data()	method:
http://api.jquery.com/data/

jQuery	ajaxError()	method:
http://api.jquery.com/ajaxError/

Ajax	Programming	on	Wikipedia:
http://en.wikipedia.org/wiki/Ajax_(programming)

http://dev.w3.org/html5/webstorage/
http://jquery.com/
http://api.jquery.com/jQuery.ajax/
http://api.jquery.com/data/
http://api.jquery.com/ajaxError/
http://en.wikipedia.org/wiki/Ajax_(programming)
http://www.codeplex.com/silk
mailto:pagdoc@microsoft.com?subject=Feedback about Client Data Management and Caching

Silk	1.0	-	June	2011

Server-Side	Implementation

Introduction

Crafting	a	well-architected	web	server	application	requires	meeting	the	needs	of
the	web	client	while	properly	factoring	the	web	server	.NET	Framework	code.	A
web	server	application	is	responsible	for	more	than	just	returning	HTML
content	given	a	URL.	Data	models,	data	access	and	storage,	security,
communication,	resource	management,	and	internationalization	are	all	part	of
creating	a	web	server	application.	This	chapter	covers	ways	you	can	integrate
technologies	in	the	Microsoft	web	platform	into	a	coherent	architecture	that	is
reliable,	testable,	and	capable	of	handling	demanding	web	client	applications.

The	following	diagram	shows	the	architecture	of	the	Mileage	Stats	Reference
Implementation	(Mileage	Stats).	The	data	access	and	repository	layers	are
covered	first,	then	the	MVC	and	business	services	layers	are	discussed.	In	the
context	of	these	layers,	we	will	also	discuss	the	distinctions	between	data
models,	domain	models,	and	view	models.	Lastly,	we’ll	show	you	how	to
provide	asynchronous	data	and	validation	to	web	clients.

Mileage	Stats	High	Level	Architecture

What	you	will	learn	in	this	chapter
Leveraging	Entity	Framework	and	SQL	Server	Compact	to	create	a	data
model.
Techniques	to	separate	concerns	between	your	data	model,	business
logic,	and	user	interface.
How	to	support	interactive	web	clients	with	asynchronous	data.
Managing	data	validation	at	each	level	of	the	stack.

The	technologies	discussed	in	this	chapter	are	ASP.NET	MVC	3,	Entity
Framework	4,	SQL	Server	Compact	Edition	4,	and	Unity	Application	Block	2.0.

Creating	a	Data	Access	Layer
Data	access	is	a	key	part	of	your	application.	The	choice	of	storage	technology
and	data	access	patterns	can	affect	the	entire	application.	This	section	covers	an
approach	using	rapid	modeling	techniques	and	tools	while	allowing	you	to
migrate	to	high-scale	data	storage	in	the	future.

A	well-designed	data	access	layer	captures	key	truths	about	the	data	and	avoids
conditional	logic	specific	to	the	application.	When	you	separate	concerns	that
are	specific	to	data	access	from	those	that	specific	to	the	application’s	logic,	the
application	remains	robust	and	maintainable	as	you	add	features	over	time.	The
typical	concerns	of	a	data	access	layer	include	the	type	of	data,	the	relationships
between	entities,	and	constraints.

The	data	you	store	is	often	in	a	format	that	is	optimized	for	the	storage
technology,	such	as	a	relational	database.	Frequently,	this	format	is	not
convenient	for	consumption	by	the	application.	For	example,	duration	may	be
stored	as	a	number	representing	the	number	of	computer	clock	ticks,	but	having
an	instance	of	a	TimeSpan	would	be	easier	for	the	application	to	use.	In	this
case	the	data	access	layer	should	encapsulate	the	translation	between	the	storage
and	in-memory	formats.	Ideally,	the	data	access	layer	should	not	contain	any
user	interface	or	application	logic.	It	should	fully	abstract	the	underlying	storage
implementation.

In	Mileage	Stats,	the	MileageStats.Model	project	contains	the	data	model.	The
data	model	is	part	of	the	data	access	layer.	The	structure	and	strong-typing	of
the	classes	in	this	project	express	the	data	types,	relationships,	and	constraints
inherent	to	the	data.	For	example,	the	PricePerUnit	property	of	the
FillupEntry	class	is	a	double	to	allow	for	dollar	and	cents,	the	Fillups	property
of	the	Vehicle	class	is	an	ICollection<FillupEntry>	to	express	a	one-to-many
relationship,	and	the	DueDate	property	of	the	Reminder	class	is	a	nullable
DateTime	to	allow	it	to	be	optional.

When	your	application	has	significant	complexity	or	conditional	interaction
with	the	data,	you	should	consider	creating	a	separate	domain	model	that	is
distinct	from	your	data	model.	See	the	"Composing	Application	Logic"	section
for	guidance	about	whether	or	not	to	create	a	separate	domain	model.

Rapid	Data	Modeling	using	the	Entity	Framework	and	SQL
Server	Compact
The	Entity	Framework	provides	three	ways	for	you	to	rapidly	create	a	data
model.	You	can	use	the	code-first	approach	to	author	standard	classes	that	the
Entity	Framework	uses	to	generate	a	database	schema.	Alternatively,	you	can
use	the	database-first	approach	where	the	Entity	Framework	generates	data
model	classes	from	an	existing	database.	Finally,	you	could	chose	use	the
model-first	approach	where	an	Entity	Data	Model	(.EDMX)	can	be	used	to
generate	the	code	and	database.

The	code-first	approach	is	well	suited	for	scenarios	like	Mileage	Stats	where
developers	are	defining	a	new	data	model	that	will	likely	evolve	as	the
application	is	written	and	there	is	not	an	existing	database.	If	you	have	an
existing	database,	prefer	to	use	stored	procedures,	or	have	a	data	architect	on
your	team	then	you	may	prefer	a	more	traditional	database	modeling	techniques
that	lets	you	generate	the	data	model	code	from	the	database.

Using	SQL	Server	Compact	with	the	Entity	Framework	allows	you	to	use	an	on-
disk	database	that	can	easily	be	recreated	whenever	your	schema	changes.	It	can
be	seeded	with	a	small	dataset	useful	for	debugging	and	unit	testing.	SQL
Server	Compact	provides	a	minimal	footprint	and	can	be	migrated	to	SQL
Server	Express,	SQL	Server,	or	SQL	Azure	when	the	application	is	deployed.
Note:

SQL	Server	Compact	provides	query	and	update	functionality,	but	does	not
support	conditional	syntax	(such	as	IF	EXISTS)	nor	stored	procedures.
Consider	other	SQL	Server	editions	as	your	starting	point	if	you	need
database-centric	logic.

Mileage	Stats	uses	the	code-first	approach	with	the	Entity	Framework	and	SQL
Server	Compact.	This	allowed	the	data	model	to	be	built	quickly,	adapt	to
changes,	and	minimized	the	day-to-day	cost	of	database	setup	for	the
development	team.

The	Entity	Framework	lets	you	easily	seed	your	database	with	sample	data	each
time	the	database	is	rebuilt.	This	gives	you	the	opportunity	to	use	realistic
sample	data	while	you	develop	the	application.	We	discovered	many	issues
early	in	the	development	process	of	Mileage	Stats	because	the	sample	data

forced	the	user	interface	and	application	logic	to	work	with	realistic	data.

To	use	the	code-first	approach,	you	first	create	plain	old	CLR	object	(POCO)
classes.	The	Entity	Framework	then	infers	the	database	schema	from	your	class
structure	and	your	property	types.	In	the	following	example,	the	FillupEntry
class	defines	properties	that	the	Entity	Framework	can	map	to	a	database
schema.
C#

//	contained	in	FillupEntry.cs

public	class	FillupEntry

{

		...	

public	int	FillupEntryId	{	get;	set;	}

		public	int	VehicleId	{	get;	set;	}

		public	DateTime	Date	{	get;	set;	}

		public	int	Odometer	{	get;	set;	}

		public	double	PricePerUnit	{	get;	set;	}

	public	string	Vendor	{	get;	set;	}

	public	double	TotalCost

{

get	{	return	(this.PricePerUnit*this.TotalUnits)	+	this.TransactionFee;	}

}

	

...

}

The	Entity	Framework	maps	property	types	like	double,	string,	and	int	to	their
equivalent	SQL	data	type.	Fields	that	represent	unique	entity	identifiers	such	as
FillupEntryId	and	VehicleId	are	automatically	populated.	Calculated
properties	like	TotalCost	can	be	added	that	are	not	saved	to	the	database.

The	Entity	Framework	has	three	mechanisms	for	determining	the	database
schema	from	the	class	definition:

Inspection	of	the	classes	to	create	a	schema.	Some	of	the	decisions	the
Entity	Framework	makes	are	based	on	convention.	For	example,
property	names	that	end	in	Id	are	considered	unique	identifiers.	They	are

auto-populated	with	database	generated	values	when	inserted	in	the
database.
Inspection	of	data	annotation	attributes	attached	to	properties.	These
attributes	are	found	in	the	System.ComponentModel.DataAnnotations
namespace.	For	example,	the	KeyAttribute	indicates	a	unique	entity
identifier.	Attributes	such	as	RequiredAttribute	and
StringLengthAttribute	cause	the	Entity	Framework	to	create	column
constraints	in	the	database.
Calls	to	the	DbModelBuilder	as	part	of	database	creation.	These
methods	directly	determine	the	data	types,	entity	relationships,	and
constraints	for	the	database	schema.

Note:
Using	the	data	annotation	attributes	with	the	Entity	Framework	affects	how
the	Entity	Framework	generates	the	database	schema	as	well	as	performing
validation	of	values	when	the	data	is	saving	using	DbContext.SaveChanges.
However,	using	the	DbModelBuilder	only	changes	the	database	schema.
Which	approach	you	choose	can	change	the	error	messages	you	see	when
invalid	data	is	submitted	as	well	as	whether	a	database	call	is	made.

See	the	"Further	Reading"	section	for	the	Entity	Framework	documentation.	It
contains	the	detailed	API	reference	and	steps	to	apply	each	of	these	techniques.

Mileage	Stats	used	the	DbModelBuilder	approach	to	define	the	storage	schema
and	did	not	apply	any	data	annotation	attributes	to	the	data	model	classes.	This
kept	database-specific	concerns	from	polluting	the	data	model	and	allowed
changing	the	database	schema,	if	necessary,	for	other	kinds	of	database
deployments.	This	approach	was	part	of	the	decision	to	create	a	separate	data
model	and	domain	model.	See	the	"Creating	a	Business	Services	Layer"	section
for	more	information	on	this	decision.

The	domain	model	in	Mileage	Stats	uses	data	annotation	attributes	extensively.
See	the	"Data	Validation"	section	for	details	on	using	attributes	for	validation.

Using	the	DbModelBuilder	to	Create	a	Data	Model
In	Mileage	Stats,	the	MileageStats.Data.SqlCE	project	contains	the
MileageStatsDbContext	class.	A	data	model	built	using	the	Entity	Framework
has	at	least	one	class	derived	from	DbContext.	This	class	provides	the	starting
point	for	accessing	the	data	model.	It	is	also	used	for	defining	the	model	which

results	in	a	database	schema.

The	MileageStatsDbContext	class	overrides	the	OnModelCreating	virtual
method	and	uses	the	DbModelBuilder	parameter	to	provide	the	Entity
Framework	more	information	about	the	schema.	Defining	each	entity	is	factored
out	into	separate	methods	that	MileageStatsDbContext	.OnModelCreating
invokes.	The	following	example	is	one	of	those	methods.	It	builds	the	model	for
the	Vehicle	class.
C#

//	contained	in	MileageStatsDbContext.cs

private	void	SetupVehicleEntity(DbModelBuilder	modelBuilder)

{

modelBuilder.Entity<Vehicle>().HasKey(v	=>	v.VehicleId);

modelBuilder.Entity<Vehicle>().Property(v	=>	v.VehicleId)

.HasDatabaseGeneratedOption(

DatabaseGeneratedOption.Identity);

modelBuilder.Entity<Vehicle>().Property(v	=>	v.Name)

.IsRequired();

modelBuilder.Entity<Vehicle>().Property(v	=>	v.Name)

.HasMaxLength(100);

modelBuilder.Entity<Vehicle>().Property(v	=>	v.SortOrder);

modelBuilder.Entity<Vehicle>().Property(v	=>	v.MakeName)

.HasMaxLength(50);

modelBuilder.Entity<Vehicle>().Property(v	=>	v.ModelName)

.HasMaxLength(50);

modelBuilder.Entity<Vehicle>().HasOptional(v	=>	v.Photo);

modelBuilder.Entity<Vehicle>().HasMany(v	=>	v.Fillups);

modelBuilder.Entity<Vehicle>().HasMany(v	=>	v.Reminders);

}

DbModelBuilder	provides	a	fluent	API	that	allows	you	to	chain	calls	together
because	each	method	returns	an	object	that	can	be	used	in	subsequent	calls.	The
calls	above	use	the	Entity<T>	method	to	locate	the	entity	based	on	the	type	of
the	class.	The	chained	Property	method	locates	a	property	for	that	entity.
Lambda	expressions	like	v	=>	v.VehicleEntryId	allow	the	Property	method	to
work	without	having	to	provide	the	name	of	the	property	as	a	string.	The	last

method	call	defines	the	data	model	type,	relationship,	or	constraint.

It	is	possible	for	you	to	use	data	annotation	attributes	in	conjunction	with	calls
to	DbModelBuilder.	Data	annotation	attributes	provide	a	decentralized
approach	where	relationships	and	constraints	are	attached	to	the	class	properties.
The	DbModelBuilder	approach	provides	you	centralized	control	of	the	data
model	and	a	more	powerful	set	of	modeling	options.	You	should	be	careful	to
keep	the	constraints	in	sync	when	mixing	approaches.	For	this	reason,	it	is
recommended	to	choose	either	using	data	annotation	attributes	or	the
DbModelBuilder,	and	avoid	mixing	approaches.
Note:

There	is	an	order	of	precedence	in	the	Entity	Framework	when	all	three
mechanisms	are	used:	DbModelBuilder	calls	override	data	annotation
attributes	which	override	convention	by	inspection.

Creating	the	Database
Once	you	define	the	data	model	in	code,	you	need	to	create	the	database.	When
you	use	the	code-first	approach,	the	Entity	Framework	doesn't	create	your
database	until	the	first	request	for	data	occurs.	You	should	create	the	database
on	application	start	up	rather	than	on	the	first	request	so	that	the	first	user	isn't
forced	to	wait.	Initializing	during	application	startup	also	reduces	the	chance	of
a	race	condition	during	database	creation.
Note:

Many	web	applications	built	using	the	Entity	Framework	contain	the	auto-
generated	WebActivatorAttribute	code.	This	attribute	automatically	calls
the	database	creation	and	initialization	code.	Mileage	Stats	forgoes	this
approach	because	the	Unity	dependency	injection	container	controls	the
lifetime	of	the	MileageStatsDbContext	instance.

In	Global.asax.cs,	the	Application_Start	method	initializes	the	dependency
injection	container	and	then	initializes	the	database.	The	InitializeDatabase
method	uses	the	dependency	injection	container	to	resolve	an	instance	of	the
IRepositoryInitializer	and	then	calls	the	Initialize	method.	In	the	following
example,	the	constructor	of	the	RepositoryInitializer	configures	the	database
connection	and	initializer	and	the	Initialize	method	requests	some	data	to
ensure	the	database	is	created.

C#

//	contained	in	RepositoryInitializer.cs

publicRepositoryInitializer(IUnitOfWorkunitOfWork)

{

		...

Database.DefaultConnectionFactory	=

newSqlCeConnectionFactory("System.Data.SqlServerCe.4.0");

	

Database.SetInitializer(

newDropCreateIfModelChangesSqlCeInitializer<MileageStatsDbContext>());

}

public	void	Initialize()

{

this.Context.Set<Country>().ToList().Count();

		...

}

Initializing	the	Database
The	Entity	Framework	lets	you	control	how	your	database	is	created	and
initialized	through	the	IDatabaseInitializer<T>	interface	and	the
Database.SetInitializer	method.	You	can	write	the	initializer	with	the	logic	you
need	in	order	to	create	and	populate	your	database.

In	Mileage	Stats,	the	MileageStats.Data.SqlCe	project	contains	three	classes
that	can	initialize	the	database:	CreateIfNotExistsSqlCeInitializer,
DropCreateAlwaysSqlCeInitializer,	and
DropCreateIfModelChangesSqlCeInitializer.	All	three	inherit	from	the
SqlCeInitializer	base	class	that	implements	the	IDatabaseInitializer<T>
interface.
Note:

When	you	use	NuGet	to	add	the	Entity	Framework	to	your	project,	the
package	manager	will	generate	some	default	initializers	similar	to	those
found	in	Mileage	Stats.	Mileage	Stats	classes	are	modified	versions	of	the

Copy	Code

original	generated	classes.	The	modifications	allow	each	initializer	to	share
the	database	seeding	code	used	to	start	the	application	with	some	useful
sample	data.

Each	class	implements	a	different	strategy	for	creating	the	database.	Mileage
Stats	defaults	to	the	DropCreateIfModelChangesSqlCeInitializer	to	drop	and
create	the	database	anytime	the	model	schema	changes.	This	can	be	very	useful
during	product	development	when	the	data	model	is	evolving	and	the	database
doesn't	contain	real	data.

When	deployed	to	a	production	environment,	you	should	change	the	default
initializer	to	CreateIfNotExistsSqlCeInitializer.	If	you	deploy	a	new	version
of	the	application	where	the	schema	needs	to	be	upgraded	you	would	either
need	to	author	an	initializer	that	upgrades	the	database,	or	run	upgrade	scripts
pre-deployment	of	the	newer	version.	Otherwise,	you	would	lose	all	the	data
stored	in	the	database.

Optimized	Data	Access
Many	application	data	models	are	hierarchical	and	connected	with	one-to-many
and	many-to-many	relationships	between	entities.	On	the	other	hand,	web
applications	are	connectionless	and	stateless;	they	take	a	request	and	produce	a
response.	You	should	avoid	loading	large	model	hierarchies	for	requests	that
only	need	a	subset	of	the	data.	Overloading	data	places	additional	processor,
memory,	and	bandwidth	pressure	on	the	server	and	that	can	limit	scalability	and
performance.

Fortunately,	the	Entity	Framework	provides	powerful	querying	support	in	the
DbSet	class	that	allows	you	to	return	just	the	data	you	need.	In	Mileage	Stats,
the	VehicleRepository	class	uses	the	Where	and	Include	methods	on	the
DbSet	to	control	the	data	retrieved	as	shown	in	the	following	code.
C#

//	contained	in	VehicleRepository.cs

public	Vehicle	GetVehicle(int	userId,	int	vehicleId)

{

return	this.GetDbSet<Vehicle>()

.Include("Fillups")

.Include("Reminders")

.Where(v	=>	v.VehicleId	==	vehicleId	&&	v.UserId	==	userId)

.Single();

}

The	Entity	Framework	requires	ICollection<T>	properties	like	Vehicles,	Fill-
ups,	and	Reminders	be	explicitly	included.	Properties	marked	optional	by	data-
annotation	attributes	or	DbModelBuilder	calls	such	as	the	Vehicles.Photo
property	must	also	be	explicitly	included	to	be	retrieved.

The	Entity	Framework	has	additional	features	to	support	lazy	loading	properties
and	change	tracking.	When	using	the	code-first	approach,	lazy	loading	is	done
by	applying	the	virtual	keyword,	and	change	tracking	is	done	through	having
standard	get	and	set	methods	along	with	using	ICollection<T>	for	one-to-many
relationships.	The	Entity	Framework	also	supports	these	features	through
implementing	the	IEntityWithChangeTracker	or	IEntityWithRelationships
interfaces.

Implementing	the	Repository	Pattern
The	Repository	pattern	assists	the	data	model	in	separating	data	storage
concerns	from	the	application	logic.	This	pattern	is	especially	beneficial	when
you	use	the	Entity	Framework	because	it	allows	you	to	hide	Entity	Framework-
specific	classes	such	as	DbContext	and	DbSet,	to	optimize	the	shape	of	the
data	returned	to	the	application,	to	coordinate	updates,	and	to	unit	test	your
application	without	requiring	access	to	physical	data	storage.	See	the	"Further
Reading"	section	for	a	formal	definition	of	the	repository	pattern.

In	the	repository	pattern,	a	repository	is	a	set	of	interfaces	and	implementations
providing	methods	for	data	access.	The	interfaces	do	not	expose	any	types
specific	to	data	storage.	You	can	choose	how	many	repositories	to	create	based
on	how	granular	you	want	to	factor	the	methods	and	the	expected	data	access
pattern	from	your	application.

In	Mileage	Stats,	the	MileageStats.Data	project	contains	the	repository
interfaces	and	the	MileageStats.Data.SqlCe	project	contains	the
implementation.	The	Mileage	Stats	repositories	map	closely	to	the	data	entities
to	match	the	usage	pattern	from	the	business	services	layer.	The	following	code
shows	the	IReminderRepository	interface.
C#

//	contained	in	IReminderRepository.cs

public	interface	IReminderRepository

{

void	Create(int	vehicleId,	Reminder	reminder);

Reminder	GetReminder(int	reminderId);

void	Update(Reminder	reminder);

void	Delete(int	reminderId);

	

IEnumerable<Reminder>	GetRemindersForVehicle(int	vehicleId);

IEnumerable<Reminder>	GetOverdueReminders(int	vehicleId,

DateTime	forDate,	int	forOdometer);

	

IEnumerable<Reminder>	GetUpcomingReminders(int	vehicleId,

DateTime	forStartDate,	DateTime	forEndDate,

int	odometer,	int	warningOdometer);

	

IEnumerable<Reminder>	GetFulfilledRemindersForVehicle(int	vehicleId);

}

Note:
Note	that	the	IReminderRepository	interface	returns	collections	as
IEnumerable<T>,	rather	than	IList<T>	or	ICollection<T>.	This	was	an
intentional	design	choice	to	prevent	the	addition	of	entities	to	the	collections
directly.	To	create	a	new	reminder,	the	developer	must	use	the	Create
method.
Also	note	that	our	actual	implementation	of	the	IReminderRepository	calls
ToList()	before	returning	the	IEnumerable<T>.	This	is	to	ensure	that	the
query	is	executed	inside	the	repository.	If	ToList()	was	not	called,	then	the
repository	would	return	an	IQueryable<T>	and	the	database	would	not	be
hit	until	something	iterated	over	the	IQueryable<T>.	The	problem	with
returning	an	IQueryable<T>	is	that	a	developer	consuming	the	API	is	likely
to	assume	that	query	has	already	executed	and	that	they	are	working	with	the
results.	If	they	iterate	the	query	more	than	once,	it	will	result	in	multiple	calls
to	the	database.
If	you	specifically	want	your	repository	to	return	queries	instead	of	results,
use	the	IQueryable<T>	on	the	interface	in	order	to	make	the	intention
explicit.

Because	web	applications	and	services	follow	a	request/response	pattern,
incoming	data	is	built	from	the	POST	form	data.	This	means	the	incoming
object	class	was	not	retrieved	from	the	DbContext	and	cannot	be	updated
because	it	is	not	attached	to	the	context.	Using	the	repository	pattern	with	the
Entity	Framework	provides	the	proper	place	to	deal	with	attached	and	detached
entities,	as	well	as	setting	entity	state.

In	the	following	example,	the	Update	method	in	the	VehicleRepository	is
passed	an	entity	that	is	not	attached	to	the	Entity	Framework	context.	The
Update	method	locates	the	corresponding	attached	entity,	updates	the	attached
entity,	and	ensures	the	attached	entity	state	is	set	correctly.
C#

//	contained	in	VehicleRepository.cs

public	void	Update(Vehicle	updatedVehicle)

{

Vehicle	vehicleToUpdate	=

this.GetDbSet<Vehicle>().Where(v	=>	v.VehicleId	==

updatedVehicle.VehicleId).First();

	

vehicleToUpdate.Name	=	updatedVehicle.Name;

vehicleToUpdate.Year	=	updatedVehicle.Year;

vehicleToUpdate.MakeName	=	updatedVehicle.MakeName;

vehicleToUpdate.ModelName	=	updatedVehicle.ModelName;

vehicleToUpdate.SortOrder	=	updatedVehicle.SortOrder;

vehicleToUpdate.PhotoId	=	updatedVehicle.PhotoId;

	

this.SetEntityState(vehicleToUpdate,

vehicleToUpdate.VehicleId	==	0	?	EntityState.Added	:	EntityState.Modified);

	this.UnitOfWork.SaveChanges();

}

Composing	Application	Logic
Web	client	applications	built	for	rich	user	interactivity	are	often	more	complex
than	those	built	for	clients	that	post	back	synchronously	on	each	mouse	click
and	always	displaying	static	HTML	in	response.	Web	applications	that	provide
interactive	behavior	on	a	single	page	(via	AJAX	method	calls,	JavaScript
templates,	and	secondary	resource	requests)	require	thoughtful	composition	of
server	application	code.	This	section	covers	several	techniques	and
considerations	to	help	you	create	maintainable	applications	that	provide	a	rich
set	of	services	to	interactive	clients.

Factoring	application	code	with	ASP.NET	MVC
Because	ASP.NET	MVC	is	a	web	platform	technology	built	around	a	design
pattern,	following	the	MVC	pattern	is	a	key	step	in	properly	factoring	your
application	logic.	Well-designed	MVC	applications	have	controllers	and	actions
that	are	small,	and	views	that	are	simple.	Keeping	your	application	code	DRY
(Don't	Repeat	Yourself)	as	the	application	is	built	is	far	easier	than	trying	to
clean	it	up	later.
Note:

The	routes	you	create	in	global.asax.cs	define	the	URL	hierarchy	of	your
application.	Defining	your	URL	strategy,	routes,	and	controller	topology
early	in	a	project	can	help	prevent	having	to	change	your	client	application
code	later.

Since	the	majority	of	the	application	logic	is	contained	within	the	models,	many
MVC	applications	contain	different	kinds	of	models:

View	models	are	built	solely	for	a	view	to	data-bind	against.	These
models	are	contained	within	the	MVC	application	and	often	follow	the
same	composition	hierarchy	as	the	views.	They	are	focused	on
presentation	concerns.	That	is,	they	are	only	concerned	with	presenting
data	in	the	user	interface.	Sometimes	a	special	type	of	view	model	is	also
used,	called	a	form	model,	to	represent	the	data	coming	into	an
application	from	the	user.
Domain	models	are	built	based	on	the	problem	domain.	They	are
focused	on	handling	the	business	logic	of	the	application.	They	represent
the	logical	behavior	of	the	application	independent	of	the	user	interface
and	the	storage	mechanism.	They	may	be	annotated	or	extended	to
support	some	application	features	such	as	validation	or	authentication.
Because	these	models	are	easy	to	round-trip	to	the	client	browser,	they
are	sometimes	contained	within	view	models.	Domain	models	are
sometimes	referred	to	as	application	models	or	service	models	as	well.
Data	models	are	built	for	data	services	and	storage.	These	are	not
exposed	by	the	application	and	are	often	encapsulated	behind	a	services
layer.

Organizing	your	application	into	these	categories	of	models	is	a	way	of
separating	concerns	in	your	code.	This	separation	is	increasingly	important	as

an	application	grows	in	complexity.	If	you	find	that	changes	to	your	application
logic	are	affecting	storage	or	presentations	concern	(or	vice	versa),	this	is	an
indication	that	you	should	factor	the	code	into	separate	models.

In	some	cases	the	models	may	be	very	similar	to	one	another.	In	other	cases,	the
models	may	radically	diverge.	If	your	domain	model	and	your	data	model	are
very	similar	you	can	consider	aggregation	to	contain	an	instance	of	your	data
model	class	within	your	application	model	class.	If	your	application	and	data
models	have	a	matching	hierarchy	and	compatible	interfaces,	you	can	also
consider	inheritance	to	derive	your	application	model	classes	from	your	data
model	classes.	The	following	illustration	shows	the	three	approaches	to	domain
and	data	model	design.
Note:

The	inheritance	approach	provides	the	advantage	of	less	coding	as	you	reuse
your	data	model	as	your	domain	model,	but	at	the	cost	of	tighter	coupling.	If
you	can	ensure	you	will	not	need	to	substitute	a	different	data	model	and	that
the	domain	and	data	models	will	not	deviate,	the	inheritance	approach	can	be
effective.

Three	Approaches	to	Domain	and	Data	Model	Design

As	you're	writing	your	controller	actions,	you	should	factor	complex	methods
into	helper	methods	or	classes	in	your	models	and	services	layer.	You	should
prefer	action	filter	attributes	such	as	the	HttpPostAttribute	to	avoid	writing
conditional	logic	in	each	action	that	inspects	the	HttpContext.	Also,	use	action
filters	for	cross-cutting	concerns	such	as	authentication	(e.g.
AuthorizeAttribute)	and	error	handling	(e.g.	HandleErrorAttribute).	Ideally
methods	that	handle	GET	should	contain	only	a	few	method	calls	and	not
contain	much	conditional	logic;	methods	that	handle	POST	should	validate	the
incoming	data,	perform	the	update	when	the	data	is	valid,	and	conditionally
return	a	view	depending	on	the	success	of	the	update.	The	following	examples
from	Mileage	Stats	show	two	versions	of	the	Add	method	(first	the	GET
version	and	then	the	POST	version).	In	these	examples,	the	generic	method
Using<T>	is	a	helper	method	used	to	delegate	logic	to	the	classes	in	the
services	layer.
C#

//	contained	in	FillupController.cs

[Authorize]

public	ActionResult	Add(int	vehicleId)

{

var	vehicles	=	Using<GetVehicleListForUser>()

.Execute(CurrentUserId);

var	vehicle	=	vehicles.First(v	=>	v.VehicleId	==	vehicleId);

var	newFillupEntry	=	new	FillupEntryFormModel

{

Odometer	=	(vehicle.Odometer.HasValue)				?	vehicle.Odometer.Value	:	0

};

var	fillups	=	Using<GetFillupsForVehicle>()

.Execute(vehicleId)

.OrderByDescending(f	=>	f.Date);

var	viewModel	=	new	FillupAddViewModel

{

VehicleList	=	new	VehicleListViewModel(vehicles,	vehicleId)								{IsCollapsed	=	true},

FillupEntry	=	newFillupEntry,

Fillups	=	new	SelectedItemList<Model.FillupEntry>(fillups),

};

ViewBag.IsFirstFillup	=	(!fillups.Any());

return	View(viewModel);	

}	

C#

//	contained	in	FillupController.cs

[Authorize]

[HttpPost]

public	ActionResult	Add(int	vehicleId,	FillupEntryFormModel	model)

{

var	vehicles	=	Using<GetVehicleListForUser>()

.Execute(CurrentUserId);

if	(ModelState.IsValid)

{

var	errors	=	Using<CanAddFillup>()

.Execute(CurrentUserId,	vehicleId,	model);

ModelState.AddModelErrors(errors,	"AddFillup");

if	(ModelState.IsValid)

{

Using<AddFillupToVehicle>()

					.Execute(CurrentUserId,	vehicleId,	model);

TempData["LastActionMessage"]	=	Resources					.VehicleController_AddFillupSuccessMessage;

return	RedirectToAction("List",	"Fillup",					new	{	vehicleId	=	vehicleId	});

}

}

var	fillups	=	Using<GetFillupsForVehicle>()

.Execute(vehicleId)

.OrderByDescending(f	=>	f.Date);

var	viewModel	=	new	FillupAddViewModel

{

VehicleList	=	new	VehicleListViewModel(vehicles,	vehicleId)	

	{	IsCollapsed	=	true	},

FillupEntry	=	model,

Fillups	=	new	SelectedItemList<Model.FillupEntry>(fillups),

};

ViewBag.IsFirstFillup	=	(!fillups.Any());

return	View(viewModel);

}

Injecting	dependences	through	the	controller's	constructor	is	also	beneficial
when	unit	testing.	Since	the	controller	depends	on	interfaces	and	not	concrete
implementations,	we	can	easily	replace	the	actual	dependencies	with	mock
implementations.	This	allowed	us	test	just	the	code	for	the	action	and	not	the
entire	functional	stack.

After	factoring	your	models	and	controller	actions,	your	views	will	use	the
models	to	produce	the	HTML.	When	building	views,	you	should	keep	the
amount	of	code	to	an	absolute	minimum.	Code	contained	in	views	is	not	easily
testable.	Errors	in	views	are	harder	to	debug	because	the	exception	occurs
during	the	rendering	pass	by	the	view	engine.	Some	very	simple	logic	in	views
is	acceptable.	For	example,	looping	over	items	to	build	a	repeating	section	of
the	user	interface	or	conditional	logic	for	toggling	the	visibility	of	specific
sections.	However,	if	you	find	that	you	need	something	more	complicated	then
try	to	push	that	logic	into	the	view	model.	If	the	logic	is	a	cross	cutting	concern
then	consider	placing	the	logic	inside	an	HTML	helper	extension	method.
Examples	of	built-in	HTML	helper	extension	methods	in	MVC	include
BeginForm,	RenderPartial,	and	ActionLink.	Any	HTML	that	is	repeated	in
multiple	views	is	a	candidate	for	being	factored	into	a	partial	view.
Note:

The	MVC	Razor	syntax	allows	you	to	write	code	more	compactly	as	well	as
easily	mix	code	and	markup.	Don't	let	this	powerful	view	engine	tempt	you
into	writing	a	lot	of	code	within	your	views.	Instead,	let	it	help	you	keep	the
code	you	do	write	clear	and	maintainable.

Design	checklist	for	MVC	applications
The	following	checklist	is	useful	when	reviewing	your	MVC	web	application
code.

Check When	reviewing	your	MVC	web	application	code

☐ Each	controller	handles	a	common	set	of	concerns,	either	for
particular	model	type	or	a	related	set	of	interactions	with	the	user.

☐ Actions	methods	consist	of	a	linear	set	of	calls	to	helper	methods,
helper	classes,	or	model	classes.	They	do	not	contain	complex
branching	conditional	logic.	They	should	be	easy	to	unit	test	and
self-documenting.

☐ The	same	code	is	not	repeated	in	multiple	action	methods.	Action
filter	attributes	are	used	to	handle	cross-cutting	concerns.

☐ The	majority	of	the	application	logic	is	contained	within	the	model
or	service	layer.

☐ The	hierarchy	of	model	classes	used	by	controller	actions	and	views
is	built	to	be	effective	for	the	application.	If	required,	separate	data
model	classes	are	contained	within	another	assembly.

☐ Views	contain	only	small	conditional	statements	and	calls	to	HTML
helper	methods.

☐ The	same	HTML	is	not	repeated	in	multiple	views.	Commonly	used
HTML	is	factored	into	partial	views.

See	the	"Further	Reading"	section	for	links	to	more	MVC	best	practices.

Creating	a	Business	Services	Layer
As	you	factor	your	application	code	from	your	controllers'	action	methods	into
helper	methods	and	classes,	you	may	find	there	are	a	set	of	classes	and	methods
that	help	to	properly	retrieve,	validate,	and	update	data	in	your	data	model.	This
business	logic	code	is	distinguished	from	the	controller	code	because	it
encapsulates	logical	operations	on	the	data	model	and	is	not	specific	to	any
view.

When	you	have	a	significant	amount	of	business	logic,	you	may	need	to	create	a
business	services	layer.	The	business	services	layer	is	another	layer	of
abstraction,	and	there	is	a	cost	to	adding	the	layer	to	the	application.	However,
adding	this	layer	allows	you	to	test	the	business	logic	in	isolation,	as	well	as
simplifying	the	tests	for	your	controllers.	Since	the	service	layer	is	unaware	of
the	user	interface,	you	can	also	reuse	it	when	exposing	additional	interfaces	in
the	future	such	as	a	web	service	(using	service	technologies	like	Windows
Communication	Foundation).	This	can	allow	you	to	support	both	desktop	and
mobile	clients	without	needing	to	modify	the	business	service	layer.

When	deciding	whether	or	not	to	create	a	business	services	layer,	you	should
also	consider	the	decision	of	whether	or	not	to	create	a	separate	domain	model.
See	the	"Factoring	application	code	with	ASP.NET	MVC"	section	for	details	on
the	different	kinds	of	models	and	techniques	for	separating	a	domain	model
from	a	data	model.	Creating	a	separate	domain	model	along	with	a	business
services	layer	is	most	beneficial	when	you	need	to	fully	encapsulate	your	data
model,	your	data	model	does	not	perform	validation,	and	the	domain	model
functionality	will	make	it	easier	for	you	to	write	your	controllers	and	views.
However,	a	separate	domain	model	and	data	model	does	incur	cost	transforming
between	the	two	models.

The	services	layer	in	Mileage	Stats	consists	primarily	of	handlers	and	models.
The	handlers	are	a	set	of	classes	that	implement	the	core	behavior	of	the
application.	They	are	completely	independent	from	and	unaware	of	any
concerns	related	the	user	interface.	Reading	over	the	names	of	the	handler
classes	is	like	reading	a	list	describing	the	features	of	Mileage	Stats.	The	models
are	a	second	set	of	classes	in	the	services	layer.	They	differ	from	both	the	data
models	and	the	view	models.	The	data	models	in	Mileage	Stats	are	primarily
concerned	with	persisting	data	to	the	database.	The	view	models	are	very

specific	to	needs	of	the	user	interface.	However,	the	models	in	the	services	layer
are	not	concerned	with	either	persistence	or	the	user	interface.	The	handlers	and
the	models	in	the	services	layer	represent	the	business	logic	of	the	application.
Together	they	provide	validation,	calculation	of	statistics,	and	other	similar
services.

For	more	information	on	data	validation,	see	the	"Data	Validation"	section.

The	following	illustration	shows	the	high	level	design	of	the	service	layer	and
data	model.

Mileage	Stats	Service	Layer	and	Data	Model

In	following	example	from	Mileage	Stats,	we	see	the	Execute	method	from	the
AddFillupToVehicle	handler.	This	handler	is	represented	as	a	single	class	with
a	single	public	method.	We	chose	the	convention	of	naming	the	method
Execute.	The	general	dependencies	of	the	handler	are	injected	into	the
constructor	of	the	handler.	Any	specific	values	that	may	be	needed	to	invoke	the
handler	are	passed	as	arguments	into	the	Execute	method.	Unity	is	responsible

for	managing	and	injecting	the	dependencies	for	the	handler’s	constructor.
Whereas	the	Execute	method	will	be	invoked	by	some	consumer	and	it	is
expected	that	the	consumer	will	provide	the	necessary	arguments.	In	the	case	of
Mileage	Stats	the	consumer	is	a	controller	action.

Also	note	that	the	handler	has	two	private	helper	methods
AdjustSurroundingFillupEntries	and	ToEntry.	These	helper	methods	are
responsible	for	calculating	the	statistics	and	converting	the	data	to	the	form
needed	by	the	data	layer	respectively.	C#

//	contained	in	AddFillupToVehicle.cs

public	virtual	void	Execute(int	userId,	int	vehicleId,			ICreateFillupEntryCommand	newFillup)

{

if	(newFillup	==	null)	throw	new	ArgumentNullException("newFillup");

try

{

var	vehicle	=	_vehicleRepository.GetVehicle(userId,	vehicleId);

if	(vehicle	!=	null)

{

newFillup.VehicleId	=	vehicleId;

var	fillup	=	newFillup;

var	entity	=	ToEntry(fillup);

AdjustSurroundingFillupEntries(entity);

_fillupRepository.Create(userId,	vehicleId,	entity);

//	update	calculated	value

newFillup.Distance	=	entity.Distance;			

}

}

catch	(InvalidOperationException	ex)

{

throw	new	BusinessServicesException(Resources.UnableToAddFillupToVehicleExceptionMessage,	ex);

}

}

}

In	Mileage	Stats,	the	handlers	are	responsible	for	implementing	the	core
business	logic	of	the	application.	The	controllers	have	the	responsibility	of
accepting	the	users	input	and	invoking	the	handler.	Controllers	then	take	the
results	of	invoking	handlers	and	compose	any	data	necessary	for	rendering
views.	This	data	frequently	takes	the	form	of	classes	that	we	call	view	models.

Overall,	the	business	services	layer	provide	functionality	that	makes	writing
controllers,	actions,	and	views	much	easier.

Supporting	Interactive	Web	Clients
Interactive	web	clients	asynchronously	communicate	with	the	server	and
manipulate	the	document	object	model	(DOM).	Because	multiple	interactions
can	occur	simultaneously,	managing	state	and	tracking	events	can	be	difficult.
This	section	outlines	ways	the	web	application	server	can	support	web	clients
by	providing	services	that	reduce	the	complexity	of	the	JavaScript.

Providing	HTML	Structure
Traditionally,	the	server	in	a	web	application	returns	HTML	as	content	that	the
browser	client	directly	renders.	Because	interactive	web	clients	manipulate	the
HTML	structure,	you	will	need	to	focus	less	on	the	appearance	of	the	HTML
and	more	on	providing	a	useful	hierarchy	for	the	client.	You	should	think	of	the
HTML	structure	as	part	of	the	contract	between	the	client	and	the	server.

In	order	to	modify	the	content,	web	clients	first	need	to	locate	elements	in	the
DOM.	The	popular	jQuery	library	provides	a	powerful	selector	syntax	that	can
be	used	to	locate	elements	in	many	ways	(e.g.	by	ID,	class,	relative	position,
etc.).	If	the	web	client	depends	on	the	hierarchical	structure	of	the	HTML	you
produce,	you	will	likely	break	the	client	application	when	you	modify	the
structure.	See	the	"Client-Side	Architecture"	chapter	for	more	information	on
the	usage	of	jQuery	within	Mileage	Stats.

To	avoid	tightly	coupling	the	client	JavaScript	with	the	HTML	structure,	you
can	use	data-	(pronounced	"data	dash")	attributes	on	your	HTML.	The	data-
attributes	are	attributes	whose	names	are	prefixed	with	"data-".

Many	JavaScript	developers	use	the	id	and	class	attributes	to	locate	elements.
The	id	attribute	is	limited	since	there	can	be	only	one	per	element	and	their
values	are	generally	expected	to	be	unique	within	a	page.	The	class	attributes
cause	confusion	because	they	are	also	used	to	apply	layout	and	style	to	the
element	through	Cascading	Style	Sheets	(CSS).

Since	data-	attributes	are	orthogonal	to	the	HTML	structure,	they	allow	you	to
restructure	the	HTML	without	impacting	the	client.	See	the	"Client-Side	Data
Management,	Caching,	and	Validation"	chapter	for	more	information	on	how
clients	can	consume	and	use	data-	attributes.

Below	are	two	data-	attribute	examples	from	Mileage	Stats.	In	the	first	example
the	data-vehicle-id	attribute	allows	the	client	to	locate	the	associated	element.
Notice	that	we	are	rendering	the	value	for	the	data-	attribute	on	the	server	and
that	it	will	be	consumed	by	JavaScript	on	the	client.
HTML

//	contained	in	Views\Vehicle\List.cshtml

<a	class="list-item@(item.Reminder.IsOverdue	?"overdue":	null)"

href="@Url.Action("Details","Reminder",	new	{	id	=	item.Reminder.ReminderId	})"

data-vehicle-id="@item.Vehicle.VehicleId">

		...

In	the	second	example,	the	data-chart-url	attribute	provides	the	client	a	URL	to
use	in	an	AJAX	call.
HTML

//	contained	in	Views\Vehicle\List.cshtml

<div	id="main-chart"class="article	framed"

		data-chart-url="@Url.Action("JsonGetFleetStatisticSeries","Home")">

Ideally,	your	JavaScript	should	use	only	data-	attribute	to	locate	elements	and	to
discover	contextual	data	from	the	server.	However,	there	are	cases	where	using
a	selector	to	manipulate	all	elements	of	a	given	element	name,	unique	ID,	or
class	is	a	more	practical	approach.	In	these	cases,	you	should	author	the
JavaScript	code	to	allow	for	the	case	where	the	set	of	selected	elements	is
empty.
Note:

If	you	have	developers	writing	the	web	client	independent	of	the	web
application,	we	strongly	recommend	you	ensure	agreement	on	the	expected
HTML	structure	before	coding	the	web	client	JavaScript.

Using	View	Model	and	View	Bag
ASP.NET	MVC	3	introduced	the	ViewBag.	ViewBag	is	a	dynamic	object	that
wraps	the	ViewData	property	that	you	might	recognize	from	previous	versions
of	ASP.NET	MVC.	ViewBag	is	a	name/value	keyed	collection	that	lets	you
store	any	loosely-typed	data	you	like.	This	differs	from	the	Model	property	on
view	which	contains	strongly-type	data.	Having	two	ways	to	provide	the	view
data	can	cause	confusion	about	when	to	use	View.Model	vs.	ViewBag.

The	strongly-typed	View.Model	has	several	benefits	over	ViewBag.	It	enables
IntelliSense	auto-complete	in	the	view.	It	provides	type	safety	when	generating
the	view	model	from	a	controller	action.	Additionally,	many	of	the	helpers	are
specifically	designed	to	work	with	a	strongly-type	model	and	they	can	extract
metadata	from	the	model	to	help	automatically	construct	a	view.

When	you	use	the	View.Model	in	a	form	element,	you	will	have	an	associated
controller	action	(marked	with	the	HttpPostAttribute)	that	accepts	the	model
as	a	parameter.	When	the	form	is	submitted,	the	MVC	model	binder	will	use	the
posted	form	data	to	construct	and	populate	an	instance	of	your	view	model
class.

Often	the	view	model	representing	the	form	that	is	passed	into	a	controller
action	will	be	significantly	different	from	the	view	model	returned	from	the
controller	action.	In	those	cases	you	may	choose	to	create	a	form	model	that
embodies	just	the	data	from	the	form.	An	example	of	this	in	Mileage	Stats	is	the
Add	action	on	VehicleController.	It	has	a	parameter	of	type
VehicleFormModel	and	returns	a	view	model	of	type	VehicleAddViewModel.
The	VehicleAddViewModel	contains	data	such	as	the	current	user	and	a	list	of
vehicles,	as	well	as	the	original	form	model.

You	should	prefer	to	create	a	view	model	specific	to	each	of	your	views.	This
provides	you	complete	control	over	the	data	sent	to	and	from	the	client.	It	also
reduces	confusion	by	making	the	relationship	between	views	and	view	models
explicit.	Likewise,	using	form	models	that	are	specific	to	views	prevents	the
ASP.NET	MVC	model	binder	from	setting	properties	that	you	didn't	expect	to
receive	from	the	client.	In	many	cases,	if	you	follow	this	practice	you	will	never
need	to	use	ViewBag.

However,	there	can	be	cases	when	your	view	needs	additional	data	that	doesn't
belong	in	your	view	model	and	you	don't	want	to	round-trip	to	the	client.	In

these	cases,	consider	placing	the	data	in	ViewBag.

In	Mileage	Stats,	the	_ProfileForm	partial	view	uses	the	User	class	as	the
View.Model.	Part	of	the	view	is	a	drop-down	list	of	countries.	The	following
example	shows	the	ViewBag	used	to	populate	the	drop-down	list	of	countries.
CSHTML

//contained	in	Views\Shared_ProfileForm.cshtml

@modelMileageStats.Domain.Models.User

...

<divclass="editor-label">

@Html.LabelFor(model	=>	model.Country)

</div>

<divclass="editor-field">

@Html.DropDownListFor(model	=>	model.Country,	ViewBag.CountryListasSelectList,

"--	Select	country	--",new{	@class	="editor-textbox"})

@Html.ValidationMessageFor(model	=>	model.Country)

</div>

...

<divclass="editor-commands">

<buttondata-action="profile-save"class="button	generic	small	editor-submit"type="submit">

<imgsrc="@Url.Content(

						"~/Content/button-save.png")"

						title="Save	Profile"alt="Save"/>

</button>

</div>

<divstyle="clear:	both;">

</div>

@Html.ValidationSummary(true)

Mileage	Stats	could	have	had	a	separate	view	model	class	containing	the	User
and	an	ICollection<Country>.	However,	doing	so	would	reduce	the	reusability
of	the	partial	view	because	every	view	model	up	the	hierarchy	of	views	and
partial	views	would	have	to	contain	this	new	view	model.

Providing	Data	Asynchronously
Requesting	data	asynchronously	is	at	the	heart	of	a	responsive,	interactive	web
client.	You	could	use	web	services,	Windows	Communication	Framework
(WCF)	services,	or	even	write	an	HttpHandler	to	serve	data	to	the	client.
Fortunately,	ASP.NET	MVC	web	applications	are	a	great	endpoint	for	serving
data	to	web	clients.	You	can	use	the	same	routing,	controllers,	security,	and
models	that	you	do	for	returning	HTML	structure	when	returning	data.	This
allows	the	web	client	to	use	the	relative	URLs	you	provided	in	the	data-
attributes	as	well	as	some	knowledge	of	the	site's	URL	structure	to	create
requests	for	data.

Choosing	a	Data	Format
Web	clients	typically	request	data	as	HTML,	JavaScript	Object	Notation
(JSON),	XML,	or	as	binary	(i.e.	images,	video,	etc.)	from	the	server.	Each	of
these	formats	helps	the	web	client	in	different	ways.	You	can	think	of	the	initial
request	as	just	the	first	data	request	in	a	series	of	requests	the	client	will	make.

The	JSON	format	is	the	recommended	choice	when	the	web	client	needs	to	bind
data	to	existing	HTML	elements,	generate	new	HTML	from	the	data,	transform
the	data,	or	make	conditional	logic	decisions	about	the	data.	JSON	is	a	very
concise	format	that	has	serialization	support	on	the	client	and	in	ASP.NET
MVC.	Because	JSON	contains	no	markup,	it	helps	separate	user	interface	and
data	service	concerns.

The	HTML	format	is	useful	when	the	client	will	make	minimal	or	no	changes	to
the	returned	content	and	likely	place	the	entire	HTML	result	into	a	pre-
determined	area	of	the	page.	This	can	work	well	for	scenarios	like
advertisements,	content	aggregators,	and	content	management	systems.

The	XML	format	is	useful	when	the	client	receives	data	based	on	a	pre-defined
schema.	XML	is	also	used	when	working	open-standards	formats	such	as	Really
Simple	Syndication	(RSS),	Atom,	and	oData.	Web	clients	can	use	the	known
schema	structure	to	process	the	XML	into	HTML	(often	using	XSLT).

Binary	formats	are	generally	employed	for	media.	Images	are	the	most	common
example;	the	server	returns	an	img	element	with	a	src	attribute,	the	browser
makes	a	secondary	request	to	the	server	and	then	renders	the	binary	result	as	an
image.

Note:
Not	all	browsers	send	the	same	data	to	the	server	when	requesting	images
and	other	resources.	Some	browsers	will	send	authentication	headers	and
cookies	while	others	will	not.	If	you	have	secondary	requests	that	must	be
authenticated	you	will	need	to	verify	those	requests	work	on	the	browsers
you	intend	to	support.	In	addition,	you	should	test	both	in	the	ASP.NET
development	server	and	in	an	IIS	deployed	web	application.

Supporting	a	particular	format	in	ASP.NET	MVC	consists	of	returning	a
JsonResult,	ContentResult,	or	FileResult	instead	of	a	ViewResult	from	your
action	methods.

The	following	example	from	Mileage	Stats	returns	a	JsonResult.	The	view
model	is	created	and	then	the	Controller.Json	method	is	called	to	convert	the
object	into	JSON	for	the	response.
C#

//	contained	in	VehicleController.cs

[Authorize]

[HttpPost]

publicJsonResultJsonDetails(int	id)

{

VehicleModel	vehicle	=	Using<GetVehicleById>()

.Execute(CurrentUserId,	vehicleId:	id);

IEnumerable<ReminderSummaryModel>	overdue	=	Using<GetOverdueRemindersForVehicle>()

.Execute(id,	DateTime.UtcNow,	vehicle.Odometer	??	0);

JsonVehicleViewModel	vm	=	ToJsonVehicleViewModel(vehicle,	overdue);

return	Json(vm);

}	}

Note:
Controller	actions	that	return	a	JsonResult	are	easy	to	unit	test	because	you
can	directly	inspect	the	JsonResult.Data	property.	Conversely,	debugging	a
serialization	issue	with	a	JsonResult	is	harder	because	it	requires	inspecting
the	returned	data	from	the	web	service	in	the	web	client.

Factoring	Controller	Actions	for	AJAX
You	should	continue	following	the	design	guidance	for	factoring	your
application	logic	when	you	incorporate	actions	that	provide	asynchronous	data.

If	you	decide	to	create	a	separate	set	of	URLs	for	returning	data	(i.e.	create	an
independent	data	service	API),	you	may	choose	to	create	separate	controllers
and	routes.	This	is	beneficial	when	you	expect	multiple	types	of	clients	(e.g.
web	client,	Silverlight,	etc.)	to	use	the	data	actions,	but	only	the	web	client	to
use	the	view-based	actions.

If	your	data	actions	are	closely	related	to	your	view-based	actions,	you	may
choose	to	put	data	actions	in	the	same	controller	as	the	view-based	actions.
Mileage	Stats	is	an	example	of	this	scenario	because	the	data	actions	focus	on
the	same	domain	models	as	the	view-based	actions.

If	your	web	client	needs	to	use	the	same	URL	and	request	different	data	formats,
you	may	extend	your	controller	action	methods	by	using	the
HttpRequestBase.IsAjaxRequest	extension	method	to	determine	which	format
of	result	to	call.	This	is	beneficial	when	you	can	reuse	your	view	model	as	your
JSON	model.	If	you	find	that	you	have	large	if-else	blocks	in	your	controller
actions,	you	should	factor	the	view-based	and	JSON	actions	into	different	helper
methods.	Alternatively,	you	could	author	a	custom	AjaxAttribute	action	filter
that	uses	IsAjaxRequest	and	provide	overloaded	action	methods	similar	to	how
the	HttpPostAttribute	works.

When	errors	occur,	your	data	actions	can	throw	exceptions	just	like	view-based
actions.	The	jQuery	method	supports	beforeSend,	send,	success,	error,	and
complete	handlers	you	can	use	to	handle	server	responses	and	failures.	If	you
don't	want	the	friendly	error	page	HTML	content	returned	when	a	JSON	data
action	throws	an	exception,	you	may	need	to	apply	a	different
HandleErrorAttribute	to	your	data	actions.

As	you	design	your	data	actions,	you	should	consider	how	many	round	trips	to
the	server	will	be	required	for	each	interaction	with	the	user.	Every	AJAX
request	requires	separate	threading	on	the	client	as	well	as	resources	for	the
connection,	server	response,	data	download,	and	client	processing.	If	you	create
overly	granular	data	actions,	your	web	client	may	suffer	performance	issues
managing	a	large	number	of	requests	to	satisfy	a	user	action.	If	you	create

monolithic	data	actions,	your	web	client	and	server	may	suffer	performance
issues	because	of	both	the	creation	and	processing	of	data	that	isn't	required.
Note:

If	you	haven't	already,	you	may	find	it	helpful	to	use	web	browser	debugging
and	tracing	tools	such	as	Internet	Explorer	developer	tools,	Fiddler,	and
FireBug	to	see	the	relative	cost	of	the	different	parts	of	each	round	trip	to	the
server.	Depending	on	the	connection	speed	and	distance	between	your	users
and	your	server,	creating	a	connection	can	be	much	more	costly	than
downloading	the	data	once	the	connection	is	made.	Many	web	applications
created	for	users	across	the	globe	favor	requesting	larger	chunks	of	data
when	data	cannot	be	cached	closer	to	the	user.

Data	Validation
Interactive	web	applications	need	to	let	the	user	know	when	they	have	provided
data	that	is	invalid.	Data	validation	checks	need	to	happen	on	the	client	to
inform	the	user	in	the	context	of	what	they	are	trying	to	accomplish,	on	the
server	to	protect	from	untrustworthy	callers,	and	in	the	database	to	ensure	data
integrity.	Having	data	validation	occur	at	multiple	levels	in	the	stack	makes
creating	common	and	consistent	validation	logic	important	to	the	user
experience.	This	section	covers	data	validation	techniques	you	can	use	to
validate	your	data	on	both	the	server	and	the	client.

Data	Annotation	Attributes
Applying	data	annotation	attributes	to	your	model	allows	ASP.NET	MVC	and
the	Entity	Framework	to	provide	data	validation	at	the	server	level.	As
mentioned	in	the	"Creating	a	Data	Model"	section,	the	Entity	Framework	also
inspects	data	annotation	attributes	on	your	entity	classes	to	create	the	database
schema.	You	can	find	the	standard	data	annotation	attributes	in	the
System.ComponentModel.DataAnnotations	namespace.	In	this	section,	data
annotation	attributes	that	provide	validation	are	referred	to	as	validation
attributes.

In	Mileage	Stats,	data	annotations	are	most	commonly	found	on	the	form
models.	The	following	example	shows	the	validation	attributes	applied	to	the
VehicleFormModel	class	in	the	MileageStats.Domain	project.	The	attributes
applied	to	the	VehicleFormModel.Name	property	validate	the	name	is	not	null,
is	not	an	empty	string,	is	no	more	than	20	characters,	and	does	not	contain	script
injection	characters.	Validation	attributes	also	support	localization.	By	using	the
resource	names	the	error	messages	are	loaded	from	a	RESX	file.
C#

//	Contained	in	VehicleFormModel.cs

[StringLength(20,

ErrorMessageResourceName	=	"VehicleNameStringLengthValidationError",

ErrorMessageResourceType	=	typeof(Resources))]

[TextLineInputValidator]

[Required(AllowEmptyStrings	=	false,

ErrorMessageResourceName	=	"VehicleNameRequired",

ErrorMessageResourceType	=	typeof(Resources))]

public	string	Name	{	get;	set;	}

Validating	Data	in	MVC
The	ASP.NET	MVC	default	model	binder	uses	the	Validator	and
ValidationContext	classes	when	parsing	incoming	data	into	an	instance	of	your
model	class.	These	two	classes	work	together	to	validate	the	data	based	on	the
validation	attributes	you	have	applied.

If	any	of	the	validation	fails,	AddModelError	is	called	on	the	ModelState
class.	ModelState.IsValid	returns	false	when	ModelState	has	one	or	more
errors.	Because	all	this	happens	before	your	action	is	called,	validating	data	in
your	controller	actions	is	that	much	easier.	The	following	example	shows	the
FillupController	using	ModelState.IsValid	before	making	the	update.
C#

//	contained	in	FillupController.cs

[Authorize]

[HttpPost]

...

{

var	vehicles	=	Using<GetVehicleListForUser>()

.Execute(CurrentUserId);

if	(ModelState.IsValid)

{

var	errors	=	Using<CanAddFillup>()

.Execute(CurrentUserId,	vehicleId,	model);

ModelState.AddModelErrors(errors,	"AddFillup");

if	(ModelState.IsValid)

{

Using<AddFillupToVehicle>().Execute(CurrentUserId,	vehicleId,	model);

TempData["LastActionMessage"]	=	Resources.VehicleController_AddFillupSuccessMessage;

return	RedirectToAction("List",	"Fillup",	new	{	vehicleId	=	vehicleId	});

}

}

...

var	viewModel	=	new	FillupAddViewModel

{

...

};

return	View(viewModel);

}

Note:
In	the	previous	example,	invoking	the	handler	CanAddFillup	returns	a
collection	ValidationResult.	These	are	validation	results	returned	from	the
business	services	layer.	The	AddModelErrors	extension	method	iterates
over	the	ValidationResult	collection	and	calls	ModelState.AddModelError
for	each.	This	level	of	indirection	keeps	the	business	services	layer	from
depending	on	ASP.NET	MVC.

Creating	Custom	Validation	Attributes
When	the	standard	validation	attributes	don't	provide	what	you	need,	you	can
write	your	own.	All	the	standard	validation	attributes	derive	from	the
ValidationAttribute	class	containing	the	abstract	IsValid	method	to	implement.

The	following	example	shows	the	implementation	to	validate	a	postal	code.	The
implementation	is	simpler	than	would	be	used	in	many	applications,	but	it
shows	cross-field	validation	on	a	model	object.
C#

//	contained	in	PostalCodeValidatorAttribute.cs

protected	override	ValidationResult	IsValid(object	value,	ValidationContext	context)

{

varuserToValidate	=	context.ObjectInstance	as	User;

var	memberNames	=	new	List<string>()	{	context.MemberName	};

	

if	(userToValidate	!=	null)

{

if	(string.IsNullOrEmpty(userToValidate.Country)	&&

string.IsNullOrEmpty(userToValidate.PostalCode))

{

return	ValidationResult.Success;

}

if	(string.IsNullOrEmpty(userToValidate.PostalCode))

{

return	ValidationResult.Success;

}

if	(userToValidate.Country	==	Resources.UnitedStatesDisplayString)

{

if	(USPostalCodeRegex.IsMatch(userToValidate.PostalCode))

{

return	ValidationResult.Success;

}

return	new	ValidationResult(Resources.USPostalCodeValidationErrorMessage,

memberNames);

}

else

{

if	(InternationalPostalCodeRegex.IsMatch(userToValidate.PostalCode))

{

return	ValidationResult.Success;

}

return	new	ValidationResult(

Resources.InternationalPostalCodeValidationErrorMessage,	memberNames);

}

}

return	ValidationResult.Success;

}

Handling	Complex	Data	Validation
You	may	have	noticed	in	the	earlier	example	that	the	FillupController.Add
method	calls	ModelState.IsValid	twice.	The	CanAddFillup	handler	in	the
following	example	contains	validation	logic	that	uses	multiple	objects	in	the
domain	model	and	requires	additional	database	access.	This	validation	logic	is
not	suited	for	a	single	custom	ValidationAttribute.	It	returns	a	collection	of
validation	results	that	the	controller	uses	to	call	ModelState.AddModelError.
In	cases	like	these,	you	should	factor	complex	validation	logic	into	helper
methods	or	a	business	services	layer.
C#

//	contained	in	CanAddFillup.cs

public	virtual	IEnumerable<ValidationResult>	Execute(int	userId,	int	vehicleId,	ICreateFillupEntryCommand	fillup)

{

var	foundVehicle	=	_vehicleRepository.GetVehicle(userId,	vehicleId);

if	(foundVehicle	==	null)

{

yield	return	new	ValidationResult(Resources.VehicleNotFound);

}

else

{

var	fillups	=	_fillupRepository.GetFillups(vehicleId);

if	(!fillups.Any())	yield	break;

var	priorFillup	=	fillups.Where(f	=>	f.Date	<	fillup.Date).FirstOrDefault();

if	((priorFillup	!=	null)	&&	(priorFillup.Odometer	>=	fillup.Odometer))

{

yield	return	new	ValidationResult(

"Odometer",

string.Format(CultureInfo.CurrentUICulture,Resources.OdometerNotGreaterThanPrior,

priorFillup.Odometer));

}

}

}

Supporting	Validation	on	the	Client
ASP.NET	MVC	supports	client-side	validation	of	data	by	sharing	validation
information	from	the	server.	This	is	done	by	implementing	the
IClientValidatable	interface	on	your	validation	attributes.	IClientValidatable
contains	only	the	GetClientValidationRules	method	that	returns	a
ModelClientValidationRule	collection.

In	the	following	example,	the	PostalCodeValidatorAttribute	implements
GetClientValidationRules	by	returning	a	single	ModelClientValidationRule.
By	setting	the	ValidationType	property	to	"postalcode"	the	client	will	use	the
validation	routine	with	the	same	name	registered	on	the	client.	The	validation
parameters	are	added	to	provide	the	client-side	code	the	information	it	needs	to
implement	the	validation	rule.
C#

public	IEnumerable<ModelClientValidationRule>	GetClientValidationRules(

ModelMetadata	metadata,	ControllerContext	context)

{

var	rule	=	new	ModelClientValidationRule()

{

ErrorMessage	=	Resources.InvalidInputCharacter,

ValidationType	=	"postalcode"

};

	

rule.ValidationParameters.Add("internationalerrormessage",

Resources.InternationalPostalCodeValidationErrorMessage);

rule.ValidationParameters.Add("unitedstateserrormessage",

Resources.USPostalCodeValidationErrorMessage);

rule.ValidationParameters.Add("internationalpattern",

Resources.InternationalPostalCodeRegex);

rule.ValidationParameters.Add("unitedstatespattern",

Resources.USPostalCodeRegex);

	

return	new	List<ModelClientValidationRule>()	{	rule	};

}

When	MVC	HTML	helper	extension	methods	such	as	TextBoxFor	and
EditorFor	are	called,	MVC	inspects	the	property	definition	for	validation
attributes.	When	a	validation	attribute	implements	IClientValidatable,	MVC
uses	the	client	validation	rules	to	include	data-val	attributes.	The	following
HTML	fragment	shows	the	data-val	attributes	present	on	the	postal	code	field
in	the	registration	form.
HTML

<input	data-val="true"	

		data-val-length="Postal	code	must	be	less	than	10	characters."	

		data-val-length-max="10"	

		data-val-postalcode="Only	alpha-numeric	characters	and	[.,_-&#39;]	are	allowed."	

		data-val-postalcode-internationalerrormessage=

				"Postal	codes	must	be	alphanumeric	and	ten	characters	or	less."	

		data-val-postalcode-internationalpattern="^[\d\w]{0,10}$"	

		data-val-postalcode-unitedstateserrormessage=

				"United	States	postal	codes	must	be	five	digit	numbers."	

		data-val-postalcode-unitedstatespattern="^[\d]{5}$"	

		data-val-textlineinput=

				"Only	alpha-numeric	characters	and	[.,_-&#39;]	are	allowed."	

		data-val-textlineinput-pattern="^(?!.*--)[A-Za-z0-9\.,'_	\-]*$"	

		id="PostalCode"	maxlength="10"	name="PostalCode"	size="10"	type="text"	value=""	

		/>

		<span	class="field-validation-valid"	data-valmsg-for="PostalCode"	

				data-valmsg-replace="true">

		

The	MVC	validation	JavaScript	(jquery.validate.js	and
jquery.validate.unobtrusive.js)	provides	for	the	standard	validation	attributes
and	provides	you	methods	to	register	validation	routines	and	unobtrusive
validation	adapters.	The	following	example	shows	the	registration	of	the
postalcode	client-side	validation	routine.	Notice	how	it	uses	the	params	object
to	access	the	data-val	attributes.
JavaScript

//	contained	in	mstats.validation.js

$.validator.addMethod('postalcode',	function	(value,	element,	params)	{

if	(!value)	{

return	true;	//	not	testing	'is	required'	here!

}

try	{

var	country	=	$('#Country').val(),

postalCode	=	$('#PostalCode').val(),

usMatch	=	postalCode.match(params.unitedStatesPattern),

internationalMatch	=	postalCode.match(params.internationalPattern),

message	=	'',

match;

	

if	(country.toLowerCase()	===	'united	states')	{

message	=	params.unitedStatesErrorMessage;

match	=	usMatch;

}	else	{

message	=	params.internationalErrorMessage;

match	=	internationalMatch;

}

	

$.extend($.validator.messages,	{

postalcode:	message

});

	

return	(match	&&	(match.index	===	0)	&&

(match[0].length	===	postalCode.length));

}	catch	(e)	{

return	false;

}

});

IClientValidatable	helps	you	to	share	validation	information,	but	you	still	have
two	copies	of	your	validation	logic	to	maintain.	You	may	choose	remote
validators	(i.e.	implementing	validation	actions	in	your	controller)	and	call	them
using	AJAX	from	the	client.	However,	the	round	trip	to	the	server	will	not	be	as
responsive	as	validating	directly	on	the	client.
Note:

It	is	important	to	remember	that	client-side	validation	only	helps	improve	the
user	experience	and	is	not	a	substitute	for	proper	validation	and	security	on
the	server.	Hackers	won't	use	your	web	client	JavaScript	or	even	the	browser
when	maliciously	posting	data	to	the	web	application	on	the	server,	so	you
must	ensure	that	any	client-side	validation	is	repeated	on	the	server	before
any	data	changes	occur.

Validating	Validation
Because	validation	occurs	at	multiple	levels	of	the	stack,	you	may	end	up	with
duplicate	validation	attributes	and	validation	logic	to	keep	in	sync.	While	proper
factoring	of	your	application	logic,	your	models,	and	data	validation
information	can	help,	you	should	always	unit	test	each	layer	in	isolation	to	make
sure	the	validation	works	as	expected.

While	you	don't	need	to	unit	test	the	standard	validation	attributes,	you	should
unit	test	that	the	validation	attributes	are	properly	applied	to	your	model	and
validate	as	expected	(just	as	if	you	had	written	code	inside	the	setter	of	your
model	property).	The	following	example	shows	a	unit	test	verifying	the	Title	of
the	Reminder	is	required.
C#

//	contained	in	ReminderFixture.cs

[Fact]

public	void	WhenTitleSetToNull_ThenValidationFails()

{

Reminder	target	=	new	Reminder();

	

target.Title	=	null;

	

var	validationContext	=	new	ValidationContext(target,	null,	null);

var	validationResults	=	new	List<ValidationResult>();

bool	actual	=	Validator.TryValidateObject(target,	validationContext,	validationResults,	true);

	

Assert.False(actual);

Assert.Equal(1,	validationResults.Count);

Assert.Equal(1,	validationResults[0].MemberNames.Count());

Assert.Equal("Title",	validationResults[0].MemberNames.First());

}

Note:
The	true	parameter	at	the	end	of	the	TryValidateObject	call	is	important	–	it
causes	the	validation	of	all	properties.	It	means	that	your	unit	test	has	to
ensure	that	all	other	properties	are	set	to	valid	values	when	you	try	to	verify

that	one	invalid	property	fails	validation.

Other	Considerations
This	section	briefly	covers	some	other	areas	of	server	architecture	you	may
want	to	consider.

Dependency	Injection
Mileage	Stats	uses	Unity	for	dependency	injection.	The	unity.config	file	in	the
web	application	maps	interfaces	to	concrete	classes.	It	also	determines	the
lifetime	for	each	mapping.	For	example,	Unity	ensures	the	VehicleController
constructor	provides	implementations	of	the	IUserServices,	ICountryServices,
IServiceLocator	and	IChartDataService	interfaces.

In	an	effort	to	manage	dependencies	and	improve	testability	in	the	MVC
pattern,	ASP.NET	MVC	also	provides	a	dependency	resolver.	This	allows
ASP.NET	MVC	applications	a	suitable	place	to	resolve	dependencies	for
framework	created	objects	like	controllers	or	action	filters.	In	the	following
example,	Mileage	Stats	registers	Unity	as	the	MVC	dependency	resolver	as	part
of	initializing	the	dependency	injection	container	for	the	application.
C#

//	contained	in	global.asax.cs

privatestaticvoidInitializeDependencyInjectionContainer()

{

		IUnityContainer	container	=	new	UnityContainerFactory()						.CreateConfiguredContainer();

		var	serviceLocator	=	new	UnityServiceLocator(container);

		ServiceLocator.SetLocatorProvider(()	=>	serviceLocator);

		DependencyResolver.SetResolver(new	UnityDependencyResolver(container));

}

See	the	"Further	Reading"	section	for	more	information	on	dependency
injection	and	Unity.

Unit	Testing
One	of	the	key	reasons	ASP.NET	MVC	follows	the	MVC	pattern	is	to	allow	for
unit	testing	of	the	application	logic.	The	System.Web.Abstractions	assembly
was	introduced	primarily	to	allow	substitution	of	mocked	instances	of	classes
like	HttpContextBase	during	unit	testing.	You	should	unit	test	as	much	of	your
application	logic	as	possible;	it	will	not	only	help	ensure	the	quality	of	your
application,	but	will	also	help	identify	design	issues	early	when	they	are	less
expensive	to	fix.

Mileage	Stats	uses	the	xUnit	unit	test	framework	as	well	as	Moq	for	mocking
interfaces.	The	application	is	unit	tested	at	the	data	model,	business	services,
and	controller	layers.	As	mentioned	in	the	"Composing	Application	Logic"
section,	keeping	controller	actions	simple	and	factoring	application	logic	into	a
business	services	layer	makes	unit	testing	much	easier.	Mileage	Stats	is	an
example	of	reaping	those	benefits.	Unit	testing	was	much	easier	because
interfaces	like	IUserServices	could	be	mocked.

For	more	information	on	quality	assurance	see	the	chapter	"Testing	Web
Applications."

Error	Management
Web	clients	expect	proper	HTTP	status	code	responses	when	a	web	application
cannot	fulfill	a	request.	This	means	you	should	avoid	hiding	errors	like	a
resource	not	being	found	(404),	failure	to	authorize	(403),	and	server	errors
(500+).	ASP.NET	MVC	will	respond	with	the	correct	HTTP	status	code	when
no	valid	route	is	found	and	based	on	the	type	of	exception	when	an	exception	is
thrown	from	a	controller	action.	There	may	be	cases	where	you	need	to	catch	an
exception	from	a	call	and	throw	a	different	exception	type.

Generally,	users	don't	want	to	see	all	the	developer	details	for	an	exception.
ASP.NET	MVC	provides	a	HandleErrorAttribute	that	provides	a	friendly
error	page	when	an	exception	occurs.	The	friendly	page	displayed	is	determined
in	the	web.config	customErrors	section.	Mileage	Stats	applies	the
HandleErrorAttribute	to	all	controller	actions	in	the	RegisterGlobalFilters
methods.

Although	friendly	errors	are	an	improvement,	the	user	experience	shouldn't	be
interrupted	with	HTTP	error	code	if	the	user	enters	an	invalid	value.	Use	the
Post/Redirect/Get	pattern	(PRG)	when	handling	a	POST	action.	When	the	user
has	submitted	invalid	data,	you	should	return	the	same	view	as	the	GET	action
populated	with	the	incoming	data.	When	a	POST	action	succeeds,	it	can
redirect.

In	the	following	example,	if	a	ReminderFormModel	doesn't	pass	data
validation,	the	Add	view	result	is	returned	populated	with	the	reminder	data	that
was	passed	into	the	action	method.
C#

//contained	in	ReminderController.cs[HttpPost]

public	ActionResult	Add(int	vehicleId,	ReminderFormModel	reminder)

{

if	((reminder	!=	null)	&&	ModelState.IsValid)

{

var	errors	=	Using<CanAddReminder>().Execute(CurrentUserId,	reminder);

ModelState.AddModelErrors(errors,	"Add");

if	(ModelState.IsValid)

{

Using<AddReminderToVehicle>().Execute(CurrentUserId,	vehicleId,	reminder);

return	RedirectToAction("Details",	"Reminder",	new	{	id	=	reminder.ReminderId	});

}

}

var	vehicles	=	Using<GetVehicleListForUser>()

.Execute(CurrentUserId);

var	vehicle	=	vehicles.First(v	=>	v.VehicleId	==	vehicleId);

var	reminders	=	Using<GetUnfulfilledRemindersForVehicle>()

.Execute(CurrentUserId,	vehicleId,	vehicle.Odometer	??	0)

.Select(r	=>	new	ReminderSummaryModel(r,	r.IsOverdue	??	false));

var	viewModel	=	new	ReminderAddViewModel

{

VehicleList	=	new	VehicleListViewModel(vehicles,	vehicleId)	{	IsCollapsed	=	true	},

Reminder	=	reminder,

Reminders	=	new	SelectedItemList<ReminderSummaryModel>(reminders),

};

return	View(viewModel);

}

Concurrency
Because	Mileage	Stats	tracks	vehicles	per	user	account,	concurrency	conflict
detection	and	management	was	not	a	scenario	for	the	application.	Even	though
we	choose	not	to	make	use	of	it,	the	Entity	Framework	does	supports	optimistic
concurrency	by	adding	time	stamps	to	the	data	model	and	taking	appropriate
action	when	handling	the	DbUpdateConcurrencyException.

Summary
Hopefully	you	now	have	a	frame	of	reference	for	architecting	your	server-side
web	application.	There	are	many	different	choices	you	will	make	to	structure
your	site,	factor	code,	and	model	data.	Successful	architectures	properly	balance
the	layers	of	abstraction	required	to	solve	the	problem	at	hand	while	keeping	an
eye	on	future	features	and	technologies.

Key	takeaways:
Understand	your	web	client	needs	and	build	a	contract	for	the	HTML
structure,	URL	structure,	and	data	formats	between	the	client	and	server
early	in	the	process.
Decide	on	whether	or	not	to	create	a	business	services	layer	along	with
deciding	whether	or	not	to	create	separate	domain	and	data	models.
Create	slim	controllers	by	placing	the	majority	of	your	application	logic
in	your	domain	models,	a	services	layer,	or	helper	classes	and	methods.
Keep	application	logic	simple	and	partitioned.
Provide	a	data	API	that	allows	web	clients	to	consume	data
asynchronously	in	the	right	format	and	granularity	for	the	application.
Structure	your	validation	logic	to	support	validation	both	on	the	client
and	on	the	server.

|	Community

To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com

Copyright	©	2011	by	Microsoft	Corporation.	All	rights	reserved.

Further	Reading
ADO.NET	Entity	Framework	on	MSDN:
http://msdn.microsoft.com/library/bb399572.aspx

The	Repository	Pattern	on	MSDN:
http://msdn.microsoft.com/en-us/library/ff649690.aspx

Unit	of	Work	pattern:
http://www.martinfowler.com/eaaCatalog/unitOfWork.html

Catalog	of	Patterns	of	Enterprise	Application	Architecture:
http://martinfowler.com/eaaCatalog/

Evans,	Eric.	Domain-Driven	Design:	Tackling	Complexity	in	the	Heart	of
Software.	Addison-Wesley	Professional,	2003.

Nilsson,	Jimmy.	Applying	Domain-Driven	Design	and	Patterns:	With	Examples
in	C#	and	.NET.	Addison-Wesley	Professional,	2006.

Understanding	Models,	Views,	and	Controllers	on	ASP.NET:
http://www.asp.net/mvc/tutorials/understanding-models-views-and-controllers-
cs

Best	Practices	for	ASP.NET	MVC:
http://blogs.msdn.com/b/aspnetue/archive/2010/09/17/second_2d00_post.aspx

Dependency	Injection	on	MSDN	Magazine:
http://msdn.microsoft.com/en-us/magazine/cc163739.aspx

Unity	Application	Block	on	MSDN:
http://www.msdn.com/unity

Post/Redirect/Get	pattern:
http://en.wikipedia.org/wiki/Post/Redirect/Get

http://msdn.microsoft.com/library/bb399572.aspx
http://msdn.microsoft.com/en-us/library/ff649690.aspx
http://www.martinfowler.com/eaaCatalog/unitOfWork.html
http://martinfowler.com/eaaCatalog/
http://www.asp.net/mvc/tutorials/understanding-models-views-and-controllers-cs
http://blogs.msdn.com/b/aspnetue/archive/2010/09/17/second_2d00_post.aspx
http://msdn.microsoft.com/en-us/magazine/cc163739.aspx
http://www.msdn.com/unity
http://en.wikipedia.org/wiki/Post/Redirect/Get
http://www.codeplex.com/silk
mailto:pagdoc@microsoft.com?subject=Feedback about Server-Side Implementation

Silk	1.0	-	June	2011

Security

Introduction

This	chapter	addresses	security-related	topics	for	the	Mileage	Stats	Reference
Implementation	(Mileage	Stats)	and	is	divided	into	three	sections.	The	first
section	introduces	security	threats	relevant	to	Mileage	Stats.	The	second	section
provides	a	guided	tour	of	Mileage	Stats	security	features	that	provide
countermeasures	against	the	relevant	threats.	The	third	section	describes
possible	security	modifications	to	adjust	for	changes	in	the	deployment
environment	and	security	requirements	for	the	application.	After	reading	this
chapter,	you	should	have	an	understanding	of	how	relevant	security	threats	are
mitigated	in	Mileage	Stats	and	of	some	of	the	extensibility	points	for	its
security.

In	this	chapter	you	will	learn:
Key	security	threats	that	you	should	address	in	any	web	application,
including	unauthorized	access,	malicious	input,	content	injection,	cross-
site	scripting,	eavesdropping,	message	tampering,	message	replay,	and
cross-site	request	forgery.
Security	features	in	Mileage	Stats	that	provide	countermeasures	against
the	relevant	threats	for	authentication,	input	validation,	anti-forgery,	and
JavaScript	Object	Notation	(JSON)	hijacking.
Security	modifications	to	adjust	for	changes	in	the	deployment
environment	and	security	requirements	for	the	application.

This	chapter	will	cover	some	security	features	of	ASP.NET	and	ASP.NET	MVC
and	OpenID.

Security	Threats
The	section	describes	a	few	key	security	threats	that	need	to	be	addressed	in	any
web	application.	If	you're	already	familiar	with	the	security	threats	below	and
how	to	mitigate	them,	skip	to	the	next	section	where	the	security	features	for
Mileage	Stats	are	described.

Unauthorized	Access
To	prevent	just	anyone	from	casually	accessing	your	website	and	changing	data,
you	will	need	to	limit	who	can	access	it.	This	is	typically	accomplished	by
requiring	users	to	authenticate.	The	most	common	form	of	authentication
requires	a	user	to	provide	his	user	name	and	password	as	credentials.	Once
verified,	the	user	is	permitted	access.	If	the	credentials	are	not	recognized	by	the
website,	the	user	is	not	allowed	access.

Malicious	Input	–	Content	Injection	and	Cross-Site	Scripting
There	are	a	variety	of	methods	whereby	malicious	users	can	attempt	to	corrupt
content	by	uploading	malicious	input	to	your	website.	Such	attacks	can	result	in
data	corruption	or	even	make	your	website	unusable.	If	links	can	be	uploaded	to
a	website,	a	malicious	user	can	potentially	execute	a	cross-site	scripting	(XSS)
attack,	enabling	them	to	collect	potentially	sensitive	form	data	and	security
information	for	later	exploitation.	A	common	way	to	prevent	the	uploading	of
malicious	input	to	a	website	is	to	limit	the	length	and	type	of	input	that	users	are
allowed	to	provide.	It	is	important	to	limit	the	range	of	characters	that	a	user	is
able	to	provide	for	text	input.	If	you	remove	the	ability	to	submit	tags	by
filtering	out	tag	characters	("<"	and	">"),	it	goes	a	long	way	towards	preventing
malicious	users	from	submitting	scripts	or	HTML	tags.	As	a	rule	of	thumb,
input	allowed	for	submission	to	the	website	should	be	as	limited	as	possible
based	on	expected	length,	content,	and	data	type	for	a	particular	data	field.

Eavesdropping,	Message	Tampering,	and	Message	Replay
Eavesdropping,	message	tampering,	and	message	replay	are	grouped	together
because	they	are	often	encountered	and	mitigated	by	similar	measures.	A
common	and	relatively	simple	way	to	exploit	a	web	application	through
eavesdropping	is	to	use	a	network	data	capture	utility	to	find	and	record	HTTP
requests	and	responses	between	a	website	and	a	client.	Without	protection	from
eavesdropping	and	tampering,	an	attacker	can	alter	the	contents	of	a	captured
HTTP	request	and	re-submit	it	to	the	website.	This	type	of	attack	is	commonly
referred	to	as	a	message	replay	attack.	Even	if	the	website	requires
authentication,	it	processes	the	request	as	if	it	came	from	the	client	since	it
contains	a	legitimate	security	token.	HTTP	requests	can	be	altered	to	cause	the
website	to	behave	undesirably,	deleting	data,	changing	data,	or	causing	large
numbers	of	transactions	to	be	executed.	A	common	way	to	mitigate	message
replay	in	web	applications	using	HTTP	is	by	requiring	communication	via
Secure	Sockets	Layer	(SSL).	When	you	use	SSL	in	a	non-anonymous	mode,
you	prevent	the	ability	to	replay	messages	back	to	the	server.	Two	additional
and	very	important	benefits	of	using	SSL	are	that	it	prevents	any	sensitive
content	in	the	HTTP	traffic	from	being	disclosed	to	eavesdroppers	and	prevents
messages	from	being	tampered	with.

Cross-Site	Request	Forgery
Cross-site	request	forgery	(CSRF,	often	pronounced	as	"sea	surf",)	is	an	attack
whereby	malicious	commands	are	sent	to	a	website	from	the	browser	of	a
trusted	user.	An	attacker	constructs	a	seemingly	harmless	HTML	element	on	a
different	website	that	surreptitiously	calls	the	target	website	and	attempts	to	do
something	malicious	while	posing	as	a	trusted	user.	CSRF	has	great	potential	to
damage	the	website	being	exploited;	an	attacker	can	potentially	tamper	with	or
delete	data,	or	execute	large	numbers	of	unwanted	transactions	on	the	targeted
website.

This	section	is	intended	as	an	introductory	overview	and	is	not	a	substitute	for
more	comprehensive	guidance	or	a	threat	model.	For	more	information	on
ASP.NET	security,	see	the	ASP.NET	Web	Application	Security	reference	at	the
end	of	this	chapter.

http://msdn.microsoft.com/en-us/library/330a99hc.aspx

Web	Platform	Security
This	section	describes	some	of	the	out-of-the-box	security	built	into	the	various
components	of	the	web	application	platform.

MVC	View	Encoding
The	Razor	syntax	uses	the	@	operator	in	MVC	views	to	specify	Microsoft®
.NET	Framework	code.	Any	output	written	to	the	client	in	the	view	from	code
using	the	@	operator	is	automatically	HTML	encoded	for	you.	This	traps
malicious	content	by	preventing	it	from	being	rendered	back	to	the	client.
Trapping	malicious	content	goes	hand-in-hand	with	input	filtering,	because	you
should	never	assume	that	any	data	that	comes	from	users	or	other	applications	is
safe.

ASP.NET	Input	Filtering
Starting	with	version	1.1,	ASP.NET	started	providing	input	filtering	out	of	the
box	as	a	secure	default.	Any	attempt	to	submit	a	request	containing	bracketed
tags	"<"	or	">"	in	any	of	its	form	data,	query	string	parameters,	or	cookies
results	in	an	error	page	indicating	that	malicious	input	has	been	detected.	The
figure	below	is	a	screenshot	of	the	default	ASP.NET	input	validation	failure
page:

Input	validation	failure

While	this	is	good	to	have	as	a	secure	default,	you	should	still	be	validating	user
input	in	your	application	because	this	is	only	a	very	basic	means	of	filtering
input.

Protecting	Application-Specific	Data
Sometimes	applications	host	their	own	data	sources	instead	of	accessing	them
from	a	centrally	hosted	location.	Whenever	you	create	an	application-specific
data	source,	it	should	be	hosted	in	the	App_Data	subdirectory.	For	example,	if
you	add	a	SQL	membership	provider	for	a	specific	application,	the	Microsoft
SQL	Server®	Express	.mdf	file	should	be	created	in	the	App_Data	directory.
ASP.NET	protects	application-specific	data	in	a	few	different	ways.	Files	stored
in	the	App_Data	folder	cannot	be	accessed	directly	by	clients	because	the	folder
is	protected	from	browsing	by	default.

An	additional	layer	of	protection	for	application-specific	data	files	is	configured
using	HTTP	handlers	in	the	machine's	web.config.	Requests	for	certain	file
types	are	routed	to	the	ASP.NET	HttpForbiddenHandler	by	default.	The	code
below	shows	the	configuration	to	handle	HTTP	requests	for	.mdf	and	.mdb	files
used	by	SQL	Server	Express	and	Microsoft	Access®,	respectively,	via	the
HttpForbiddenHandler	in	the	machine's	web.config	file:
XML

<!--contained	in	machine's	default	web.config-->

<addpath="*.mdf"verb="*"type="System.Web.HttpForbiddenHandler"validate="True"/>

<addpath="*.ldf"verb="*"type="System.Web.HttpForbiddenHandler"validate="True"/>

Note	that	the	HTTP	handlers	defined	above	are	for	standard	ASP.NET
applications.	Handlers	for	an	ASP.NET	MVC	application	are	defined	via	route
mappings	in	the	application's	Global.asax.cs	file.	These	files	would	normally	be
inaccessible	when	using	ASP.NET	MVC	unless	you	explicitly	create	a	route
mapping	for	them	or	you	configure	ASP.NET	MVC	to	ignore	routing	for	the	file
type	and	let	ASP.NET	handle	them	using	the	settings	described	above.	Neither
of	them	is	recommended	for	ASP.NET	MVC	applications	because	the	files
should	be	protected	from	client	browsing	by	routing	all	requests	to	the	MVC
controllers.	For	more	information	on	MVC	routing	best	practices,	see	the
reference	on	"Best	Practices	for	ASP.NET	MVC"	on	the	ASP.NET	and	Web
Tools	Developer	Content	Team's	blog	at	the	end	of	this	chapter.

http://blogs.msdn.com/b/aspnetue/archive/2010/09/17/second_2d00_post.aspx

Mileage	Stats	Application	Security
This	section	explains	security	measures	implemented	in	Mileage	Stats	that
mitigate	security	threats	against	it.

Authentication
Mileage	Stats	implements	authentication	using	a	third-party	authentication
provider	(OpenID)	and	ASP.NET	forms	authentication	tickets	to	prevent
unauthorized	access.	Whenever	an	unauthenticated	user	attempts	to	access	the
site,	she	is	redirected	to	the	login	URL	via	ASP.NET	forms	authentication.	The
diagram	below	depicts	the	logical	flow	for	user	authentication	in	Mileage	Stats.

Third-party	user	authentication

1.	 The	user	attempts	to	access	the	site	without	authenticating	first	and	is
redirected	to	the	Mileage	Stats	home	page.

2.	 The	user	navigates	from	the	Mileage	Stats	home	page	to	the	OpenID
sign-in	page	to	authenticate.

3.	 An	authentication	result	is	attached	to	the	response	by	OpenID	and
picked	up	by	Mileage	Stats	for	processing.

4.	 Mileage	Stats	converts	a	successful	authentication	result	from	OpenID
to	an	encrypted	ASP.NET	forms	authentication	ticket	and	caches	it
client-side	as	a	session	cookie	in	the	web	browser.

5.	 The	user	accesses	the	site	successfully	with	a	valid	forms	ticket.
Whenever	a	request	is	processed	with	a	valid	authentication	ticket,	the
expiration	time	of	the	ticket	is	reset	to	provide	a	sliding	expiration
window.

Copy	Code

The	significance	of	this	authentication	model	is	that	a	third	party	(OpenID)	is
responsible	for	managing	and	validating	the	user's	credentials	as	opposed	to
more	commonly	encountered	authentication	models	in	which	the	owner	of	the
website	is	the	same	party	maintaining	and	validating	the	user's	credentials.

While	out-of-the	box	ASP.NET	forms	authentication	is	not	being	used,
encrypted	forms	authentication	tickets	and	forms	ticket	validation	are	being
leveraged	programmatically.	Forms	ticketing	is	an	effective	mechanism	that	you
can	leverage	to	work	with	OpenID	authentication	instead	of	creating	a	security
ticketing	mechanism	from	the	ground	up.

There	are	several	configuration	settings	and	segments	of	code	responsible	for
implementing	authentication	end-to-end	in	Mileage	Stats.	Let's	take	a	look	at
the	configuration	and	major	components.

Configuration
While	the	forms	tickets	are	being	generated	manually	in	Mileage	Stats,	the	code
still	leverages	the	configuration	settings	used	for	configuring	out-of-the-box
forms	authentication.	The	following	configuration	snippet	in	Mileage	Stats
web.config	is	responsible	for	configuring	the	application	for	forms
authentication	and	setting	the	login	redirect	URL:
XML

<!--contained	in	web.config-->

<authenticationmode="Forms">

<formsloginUrl="~/Auth/SignIn"timeout="20"/>

</authentication>

The	relying	party	class	validates	a	user's	credentials	with	an	authentication
provider,	then	uses	them	to	create	a	forms	authentication	ticket.	The	relying
party	implementation	is	configured	in	the	unity.config	file:
XML

<!--contained	in	unity.config-->

<!--NOTE:	This	is	a	real	openId	authentication	mechanism-->

<typetype="MileageStats.Web.Authentication.IOpenIdRelyingParty,	MileageStats.Web"

mapTo="MileageStats.Web.Authentication.DefaultOpenIdRelyingParty,

MileageStats.Web">

<lifetimetype="perRequest"/>

</type>

Note	that	there	are	two	unity.config	files,	and	the	one	used	by	Mileage	Stats
depends	on	which	solution	configuration	is	selected	when	you	compile	the
application.	The	one	shown	above	is	used	when	the	Release	solution
configuration	is	selected.	When	Debug	is	selected,	a	different	unity.config	is
used	that	contains	a	mock	authentication	relying	party	class	that	can	be	used	to
get	the	application	up	and	running.	The	mock	authenticator	will	put	the	user
through	a	mock	authentication	workflow	that	does	not	validate	any	credentials.
To	deploy	the	application,	we	strongly	recommend	that	you	compile	the
application	using	the	Release	solution	configuration	to	use	the	actual	relying
party	class	that	actually	validates	user	credentials.

Both	the	mock	authenticator	and	the	OpenID	relying	party	class	implement	the
IOpenIdRelyingParty	interface,	which	acts	as	a	wrapper	around	the
DotNetOpenAuth	interfaces	to	expose	only	what	is	required	to	interact	with	the
authentication	provider	and	to	process	the	results.	Implementing
IOpenIdRelyingParty	enables	you	to	configure	a	different	relying	party
implementation	if	your	application	requirements	change.

AuthController
AuthController	is	an	Model	View	Controller	(MVC)	controller	in	Mileage
Stats	that	is	responsible	for	handling	the	user	redirect	for	authentication	and
converting	the	response	from	a	successful	authentication	attempt	into	an
ASP.NET	forms	authentication	ticket.	The	AuthController	uses	the	relying
party	implementation	specified	in	the	unity.config	file.	AuthController's
SignInWithProvider	method	is	invoked	to	redirect	the	user	to	the
authentication	provider's	sign-in	page.	The	code	snippet	below	shows	the
SignInWithProvider	method:
C#

//	contained	in	AuthController.cs

publicActionResultSignInWithProvider(stringproviderUrl)

{

if(string.IsNullOrEmpty(providerUrl))

{

returnthis.RedirectToAction("SignIn");

}

	

varfetch	=newFetchRequest();

varreturnUrl	=this.Url.Action("SignInResponse","Auth",null,

this.Request.Url.Scheme);

	

try

{

returnthis.relyingParty.RedirectToProvider(providerUrl,	returnUrl,	fetch);

}

catch(Exception)

{

this.TempData["Message"]	=

Resources.AuthController_SignIn_UnableToAuthenticateWithProvider;

returnthis.RedirectToAction("SignIn");

}

}

The	AuthController's	SignInResponse	method	is	invoked	to	process	the
response	from	the	user's	authentication	attempt	with	the	authentication	provider.
SignInResponse	calls	the	GetResponse	method	on	the	relying	party	class	and
processes	the	result.	If	the	result	is	a	successful	authentication,	AuthController
creates	an	ASP.NET	forms	authentication	ticket	and	attaches	it	to	the	response.
If	anything	other	than	a	successful	authentication	result	is	returned	from	the
authentication	provider,	the	user	is	redirected	back	to	the	authentication
provider's	sign-in	page.
C#

//	contained	in	AuthController.cs

publicActionResultSignInResponse(stringreturnUrl)

{

varresponse	=this.relyingParty.GetResponse();

	

switch(response.Status)

{

caseAuthenticationStatus.Authenticated:

varuser	=this.userServices.GetOrCreateUser(response.ClaimedIdentifier);

this.formsAuthentication.SetAuthCookie(this.HttpContext,

UserAuthenticationTicketBuilder.CreateAuthenticationTicket(user));

	

returnthis.RedirectToRoute("Dashboard");

	

caseAuthenticationStatus.Canceled:

this.TempData["Message"]	="Cancelled	Authentication";

returnthis.RedirectToAction("SignIn");

	

caseAuthenticationStatus.Failed:

this.TempData["Message"]	=	response.Exception.Message;

returnthis.RedirectToAction("SignIn");

	

default:

this.TempData["Message"]	=

Resources.AuthController_SignInResponse_Unable_to_authenticate;

returnthis.RedirectToAction("SignIn");

}

}

The	below	sequence	diagram	shows	the	calls	made	in
AuthController.SignInResponse	to	authenticate	the	user	with	the	relying	party
and	to	attach	the	encrypted	forms	ticket	as	a	cookie	if	the	authentication	attempt
was	successful.

Authentication	sequence	diagram

1.	 AuthController	calls	the	GetResponse	method	of	its	referenced
IOpenIdRelyingParty	implementation	to	get	the	authentication	result
from	the	authentication	provider.

2.	 AuthController	calls	the	GetOrCreateUser	method	of	its	referenced
IUserServices	implementation

3.	 AuthController	calls	the	SetAuthCookie	method	of	its	referenced
IFormsAuthentication	implementation.

4.	 AuthController	invokes	its	own	ReDirectToRoute	method	and	sends
the	user	to	its	landing	page	after	a	successful	authentication.

Let's	take	a	closer	look	at	the	relying	party	implementation	used	in	Mileage
Stats.

DefaultOpenIdRelyingParty
DefaultOpenIdRelyingParty	implements	IOpenIdRelyingParty,	which	is	a
facade	for	the	OpenIdRelyingParty	class	provided	as	part	of	DotNetOpenAuth
that	validates	the	user's	credentials	with	OpenID.	The	code	snippet	below	shows
the	RedirectToProvider	method	on	the	DefaultOpenIdRelyingParty	class,
which	is	responsible	for	redirecting	the	user	to	the	authentication	provider's
login	page:
C#

//	contained	in	DefaultOpenIdRelyingParty.cs

publicActionResultRedirectToProvider(stringproviderUrl,stringreturnUrl,

FetchRequestfetch)

{

IAuthenticationRequestauthenticationRequest	=

this.relyingParty.CreateRequest(providerUrl,Realm.AutoDetect,

newUri(returnUrl));

authenticationRequest.AddExtension(fetch);

	

return

newOutgoingRequestActionResult(authenticationRequest.RedirectingResponse);

}

Forms	Authentication	Sliding	Expiration
Sliding	expiration	of	the	forms	authentication	ticket	in	Mileage	Stats	is
accomplished	by	resetting	the	expiration	of	the	ticket	every	time	the	user	makes
a	new	request	to	the	server.	Normally	this	would	be	enabled	by	setting	the
slidingExpiration	attribute	to	true	on	the	forms	security	configuration	in	the
web.config;	however,	since	the	ticket	is	being	manually	created	and	attached	to
the	response	in	the	AuthController,	it	needs	to	be	refreshed	manually.	A
custom	handler	for	the	HttpApplication.PostAuthenticateRequest	event
implements	the	sliding	expiration	for	the	forms	ticket:
C#

//	contained	in	Global.asax.cs

privatevoidPostAuthenticateRequestHandler(objectsender,EventArgse)

{

HttpCookieauthCookie	=

this.Context.Request.Cookies[FormsAuthentication.FormsCookieName];

if(IsValidAuthCookie(authCookie))

{

varformsAuthentication	=

ServiceLocator.Current.GetInstance<IFormsAuthentication>();

	

varticket	=	formsAuthentication.Decrypt(authCookie.Value);

varmileageStatsIdentity	=newMileageStatsIdentity(ticket);

this.Context.User	=newGenericPrincipal(mileageStatsIdentity,null);

//	Reset	cookie	for	a	sliding	expiration.

formsAuthentication.SetAuthCookie(this.Context,	ticket);

}

}

The	advantage	of	using	a	forms	ticket	with	a	sliding	expiration	is	that	it	does	not
force	the	user	to	re-authenticate	if	he	maintains	a	reasonable	level	of	frequent
activity	in	the	application.	Otherwise,	the	user	would	be	redirected	to
authenticate	after	a	fixed	amount	of	time	had	elapsed	after	authenticating.	While
this	greatly	enhances	the	usability	of	the	application,	it	is	also	a	potential
security	risk	since	the	user's	authenticated	session	can	be	kept	alive	indefinitely
by	submitting	requests	to	the	server	before	the	sliding	expiration	time	on	the
forms	ticket	has	passed.	This	can	be	mitigated	by	introducing	an	additional
timeout	value	that	does	not	slide,	after	which	the	ticket	will	expire	regardless	of
user	activity.	While	this	approach	is	effective,	it	was	not	implemented	in
Mileage	Stats	because	it	would	add	complexity	to	the	forms	ticket	handling	that
is	beyond	the	scope	of	the	application.

Input	Validation
One	of	the	key	methods	of	preventing	an	application	from	accepting	malicious
content	is	validating	any	input	before	it	is	accepted	by	the	application.	While
out-of-the-box	ASP.NET	input	validation	does	a	good	job	of	preventing	script	or
HTML	injection,	it	is	not	always	practical	to	use	this	mechanism	in	an	ASP.NET
MVC	application.	In	Mileage	Stats,	this	mechanism	is	disabled	to	handle	input
validation	directly	within	the	MVC	model	classes.	If	you	don't	implement	your
own	input	validation	and	rely	on	the	built-in	ASP.NET	input	validation	instead,
two	things	will	happen:	first,	the	input	will	not	be	validated	until	after	the
controller	has	processed	it	and	before	the	view	has	rendered.	Next,	you	will	get
the	default	"yellow	screen	of	death"	input	validation	page,	which	is	not	a
pleasant	user	experience.	When	the	out-of-the	box	ASP.NET	input	validation	is
disabled,	you	also	lose	HTML	encoding	on	your	input.	To	account	for	this,	the
@	operator	in	Razor	syntax	automatically	HTML-encodes	output	that	is
rendered	in	an	MVC	view.

Although	input	validation	can	be	done	on	the	client	side	to	reduce	round	trips	to
the	server,	it	must	also	be	performed	on	the	server	since	client-side	validation
can	be	bypassed	by	an	attacker.	One	of	the	advantages	of	ASP.NET	MVC	is	that
it	can	be	configured	to	render	client-side	validation	based	on	server-side
validation	attributes	defined	on	MVC	model	properties.	This	provides	a	single
point	in	the	application	to	define	and	maintain	data	validation	rules.	For
example,	in	Mileage	Stats,	the	_ProfileForm	view	is	configured	to	use	the
MileageStats.ServicesModel.User	class	as	its	MVC	model	via	the	@model
directive.	If	you	look	at	the	DisplayName	property	on	the	class,	you	will	see
attributes	to	limit	the	length	of	the	value,	require	a	value	for	the	property,	and
use	a	custom	text	input	validator	that	filters	input	using	a	regular	expression:
C#

//	contained	in	User.cs

[StringLength(15,

ErrorMessageResourceName	="UserDisplayNameStringLengthValidationError",

ErrorMessageResourceType	=typeof(Resources))]

[TextLineInputValidator]

[Required(AllowEmptyStrings	=false,

ErrorMessageResourceName	="UserDisplayNameRequired",

ErrorMessageResourceType	=typeof(Resources))]

[Display(Name	="UserDisplayNameLabelText",	ResourceType	=typeof(Resources))]

publicstringDisplayName	{get;set;	}

Take	a	look	at	the	custom	input	validator	class	behind	the
TextLineInputValidator	attribute:
C#

//contained	in	TextLineValidatorAttribute.cs

public	class	TextLineInputValidatorAttribute	:	RegularExpressionAttribute,	

																																																IClientValidatable	

{

		public	TextLineInputValidatorAttribute()

				:	base(Resources.TextLineInputValidatorRegEx)	

		{

				this.ErrorMessage	=	Resources.InvalidInputCharacter;

		}

		public	IEnumerable<ModelClientValidationRule>	

				GetClientValidationRules(ModelMetadata	metadata,	ControllerContext	context)	

		{

				var	rule	=	new	ModelClientValidationRule()	

				{

						ErrorMessage	=	Resources.InvalidInputCharacter,

						ValidationType	=	"textlineinput"

				};

				rule.ValidationParameters.Add("pattern",	Resources.TextLineInputValidatorRegEx);

				return	new	List<ModelClientValidationRule>()	{	rule	};

		}

}

The	TextLineInputValidatorAttribute	class	uses	a	set	of	regular	expressions	it
loads	from	the	resources	file.	If	any	of	the	regular	expression	patterns	are
matched	in	the	input,	it	fails	validation.	The	regular	expression	pattern	used	to
validate	text	input	is	^(?!.*--)[A-Za-z0-9\.,'_	\-]*$.	This	limits	the	text	assigned

to	the	property	to	alphanumeric	characters	and	allows	only	a	limited	range	of
punctuation	characters.	Notice	that	the	regular	expression	pattern	is	matching	on
known	characters	that	are	legitimate	rather	than	excluding	invalid	characters.	By
default,	everything	else	outside	of	what's	been	explicitly	defined	in	the	regular
expression	is	not	allowed	in	application	data.	The	list	that	limits	input	by	only
allowing	what	is	known	to	be	valid	is	commonly	referred	to	as	a	safe	list.	The
advantage	of	safe	lists	is	that	anything	that	falls	outside	of	the	valid	set	of
characters	is	not	allowed;	you	don't	have	to	worry	about	accidentally	omitting	a
character	from	the	regular	expression	that	shouldn't	be	allowed	in	the
application	input.

What's	nice	about	this	is	that	the	client-side	validation	for	these	properties	is
generated	for	you	based	on	the	server-side	validation	defined	in	the	MVC	model
when	the	HTML	for	the	MVC	view	is	rendered.	The	following	code	shows	you
what	the	rendered	client-side	validation	looks	like	for	the	user	display	name
form	field	when	you	view	the	HTML	source	of	the	page.
HTML

<!--	rendered	HTML	in	the	client	browser	-->

<input	data-val="true"	

		data-val-length="Display	name	must	be	less	than	15	characters."	

		data-val-length-max="15"	data-val-required="Display	name	is	required."	

		data-val-textlineinput="Only	alpha-numeric	characters	and	[.,_-&#39;]	are	allowed."	

		data-val-textlineinput-pattern="^(?!.*--)[A-Za-z0-9\.,'_	\-]*$"	

		id="DisplayName"	

		maxlength="15"	

		name="DisplayName"	

		type="text"	

		value="Sample	User"	/>

Note:
If	you	want	to	accept	HTML	tags	or	other	types	of	input	that	would	normally
be	rejected	by	simple	input	validation,	you	can	leverage	the	same	mechanism
to	do	it.	However,	you	will	need	to	create	more	sophisticated	patterns	to
allow	the	input	you	want	to	accept	while	still	excluding	the	input	that	you
don't	want	submitted	to	your	application.

Copy	Code

Copy	Code

Anti-Forgery
As	previously	explained	in	the	Security	Concepts	section,	Cross-Site	Request
Forgery	(CSRF)	is	a	security	threat	that	has	a	high	damage	potential	and	should
be	protected	against.	ASP.NET	MVC	has	a	simple,	yet	effective	mechanism	for
mitigating	CSRF	attacks.	In	your	MVC	view	content,	add	an
@Html.AntiForgeryToken	directive	to	the	view,	as	below:
CSHTML

<!--	contained	in	_ProfileForm.cshtml	-->

@modelMileageStats.ServicesModel.User

@Html.AntiForgeryToken()

When	the	view	HTML	is	rendered	to	the	client,	MVC	places	a	unique	value	for
the	user	in	a	hidden	form	field	and	in	a	session	cookie.	The	form	field	in	the
rendered	HTML	might	look	like	this:
HTML

<!--	rendered	HTML	in	the	client	browser	-->

<input	name="__RequestVerificationToken"	

		type="hidden"	

		value="H4zpQFvPdmEdGCLsFgeByj0xg+BODBjIMvtSl5anoNaOfX4V69Pt1OvnjIbZuYrpgzWxWHIjbn

		zFOLxP5SzVR4cM9XZeV78IPi8K4ewkM3k2oFkplrXL4uoAqy+aoSOg8s1m1qxrE7oeBBtvezEHCAs6nKE

		h2jAwn3w0MwmhkcDQiJfJK7hGvN0jXA4d7S8x7rbLxp4Y8IJZS9wka2eOLg=="	/>

There's	another	piece	to	implementing	the	anti-forgery	tokens	in	ASP.NET
MVC.	You	must	also	put	a	ValidateAntiForgeryToken	attribute	on
corresponding	MVC	controller	actions	that	you	want	to	protect.	Below	is	an
example	of	the	attribute	decorating	the	edit	action	on	the	ProfileController
class:
C#

//	contained	in	ProfileController.cs

[HttpPost]

[ValidateInput(false)]

[ValidateAntiForgeryToken]

publicActionResultEdit(UserupdatedUser)

When	ASP.NET	MVC	checks	for	a	request	forgery,	it	verifies	that	the	request
verification	token	form	field	and	cookies	are	present	and	that	the	values	match
each	other.	If	either	the	cookie	or	the	form	field	values	are	missing,	or	the	values
don't	match,	ASP.NET	MVC	does	not	process	the	action	and	returns	an
authorization	failure	instead.
Note:

MVC	anti-forgery	tokens	do	not	work	using	HTTP	GET	requests	because	the
_RequestVerificationToken	value	from	the	client	needs	to	be	sent	as	a
posted	value.	Therefore,	it	is	important	to	make	sure	that	you	only	accept
client	requests	that	use	HTTP	POST	when	you	want	to	implement	anti-
forgery	tokens.	This	shouldn't	be	an	issue	because	you	should	already	be
using	only	HTTP	POST	for	data	updates	and	using	HTTP	GET	exclusively
for	read-only	operations.

If	you	want	to	implement	more	tightly	controlled	anti-forgery	measures	so	that
the	tokens	will	only	validate	to	a	particular	set	of	MVC	views	and	actions,	you
can	pass	a	salt	as	a	parameter	to	the	@Html.AntiForgeryToken	directive	in	the
MVC	model.	Make	sure	that	you	are	using	the	same	salt	values	in	the
@Html.AntiForgeryToken	directive	in	the	MVC	model	and	in	the	parameter
for	the	ValidateAntiForgeryToken	attribute	on	the	MVC	controller	action;
otherwise,	the	anti-forgery	token	will	not	validate	properly	when	the	MVC
action	is	called.	For	more	information	about	using	a	salt	with	an	MVC	anti-
forgery	token,	see	the	reference	to	"Prevent	Cross-Site	Request	Forgery	(CSRF)
using	ASP.NET	MVC'sAntiForgeryToken()helper"	at	the	end	of	the	chapter.

http://blog.stevensanderson.com/2008/09/01/prevent-cross-site-request-forgery-csrf-using-aspnet-mvcs-antiforgerytoken-helper/

Copy	Code

JSON	Hijacking	Prevention
In	some	situations,	it	may	be	possible	for	an	attacker	to	get	at	data	via	a	JSON
request	using	an	attack	that	closely	resembles	a	CSRF	attack.	If	an	attacker	can
get	a	user	to	click	on	a	malicious	link	that	makes	a	JSON	request	via	HTTP
GET	and	returns	a	JSON	array,	it	may	dump	the	contents	of	the	array	in	the
response,	making	it	accessible	to	the	attacker.	The	mitigation	for	JSON
hijacking	is	fairly	straightforward:	either	you	can	make	sure	to	never	return
JSON	arrays	in	a	response,	or	you	can	restrict	JSON	requests	to	responding	only
to	requests	using	the	HTTP	POST	action.	To	configure	a	JSON	action	on	an
MVC	controller	to	respond	to	requests	only	via	HTTP	POST,	add	the	HttpPost
attribute	to	it.	The	code	snippet	below	shows	the	HttpPost	attribute	on	the
ProfileController's	JsonEdit	action.
C#

//	contained	in	ProfileController.cs

[HttpPost]

[ValidateInput(false)]

publicActionResultJsonEdit(UserupdatedUser)

This	may	not	be	an	issue	if	you	don't	care	whether	or	not	someone	can	gain
unauthorized	access	to	data	that	is	not	sensitive;	however,	as	a	general	practice
you	should	protect	your	JSON	calls	against	hijacking.	For	more	information,	see
the	reference	to	JSON	Hijacking	in	the	"Further	Reading"	section	at	the	end	of
the	chapter.

http://haacked.com/archive/2009/06/25/json-hijacking.aspx

Additional	Security	Considerations
This	section	covers	additional	security	considerations	when	deploying	and
configuring	Mileage	Stats.	Securing	communication	between	the	client	and	the
server	is	a	key	feature	for	protecting	the	data	that	goes	back	and	forth	between
them.	You	may	want	to	use	a	different	method	of	authenticating	users	for	the
application,	whether	that	means	using	a	different	relying	party	for	the	existing
authentication	mechanism	or	switching	to	an	ASP.NET	membership	provider.	If
you	expand	the	functionality	of	your	application,	you	may	want	to	restrict
different	levels	of	functionality	to	a	limited	subset	of	application	users.	In	some
cases,	you	may	want	to	deploy	the	data	tier	to	SQL	Server	or	SQL	Server
Express	instead	of	running	it	on	SQL	Server	Compact	Edition.

Securing	Communication	between	Client	and	Server
When	properly	configured,	Secure	Sockets	Layer	(SSL)	is	a	very	effective
mechanism	to	prevent	eavesdropping,	session	hijacking,	message	replay	and
tampering	between	the	client	and	the	server.	Mileage	Stats	does	not	use	SSL	out
of	the	box	because	it	depends	on	your	infrastructure	and	not	on	the	application
itself.	There's	already	a	lot	of	documentation	on	how	to	set	up	SSL	on	your
server,	so	the	specifics	won't	be	covered	here.	For	more	information,	see	the
reference	on	"How	to	Set	Up	SSL	on	IIS	7"	in	the	"Further	Reading"	section	at
the	end	of	this	chapter.	Make	sure	that	when	you	configure	SSL	on	your	server
that	you	do	not	configure	anonymous	SSL.	Otherwise,	communication	between
the	client	and	server	will	still	be	susceptible	to	several	different	attacks.
Note:

Warning:	When	communicating	with	the	server	via	SSL,	a	client	verifies	the
identity	of	the	server	with	which	it	is	communicating	by	checking	the	host
name	provided	in	the	SSL	certificate	against	the	URL	of	the	server.
Sometimes	the	client	does	not	have	a	certificate	that	can	be	used	to	identify
the	server,	and	sometimes	the	server	is	configured	to	use	SSL	protocols	that
do	not	incorporate	identification	of	the	server;	these	are	examples	of
anonymous	SSL.	Anonymous	SSL	can	be	configured	on	some	web	servers	or
by	using	an	SSL	certificate	on	the	server	that	cannot	be	verified	against	the
host's	identity.	While	this	provides	protection	against	tampering	and
eavesdropping,	it	does	not	protect	against	message	replay	or	spoofing	attacks
where	one	party	can	pose	as	the	other	during	communication.

Once	SSL	has	been	set	up	in	your	environment,	there	are	two	changes	to	the
web.config	that	you'll	need	to	make	in	Mileage	Stats.	The	first	configuration
change	is	to	require	ASP.NET	forms	authentication	to	use	SSL.

The	requireSSL	attribute	needs	to	be	added	to	the	forms	element:
XML

<!--contained	in	web.config-->

<authenticationmode="Forms">

<formsloginUrl="~/Auth/SignIn"timeout="20"requireSSL="true"/>

</authentication>

http://learn.iis.net/page.aspx/144/how-to-set-up-ssl-on-iis-7/

Copy	Code

The	default	timeout	for	a	forms	authentication	ticket	is	20	minutes,	though	you
should	feel	free	to	adjust	this	to	a	reasonable	time	to	achieve	the	usability	of	the
sliding	expiration	while	minimizing	the	security	risk	of	indefinitely
authenticated	users.

The	second	configuration	change	is	for	OpenID	to	require	an	SSL
communication	with	the	relying	party.
XML

<!--contained	in	web.config-->

<openid>

<relyingParty>

<securityrequireSsl="true"/>

The	value	of	requireSsl	needs	to	be	set	to	true.	That	way	you	can	ensure	that
the	authentication	provider	will	only	attempt	to	communicate	with	your
application	via	HTTPS.

Any	use	of	the	UrlHelper.Action	method	specifying	a	protocol	(HTTP)	in	your
application	for	constructing	URLs	will	need	to	be	updated	to	HTTPS	for	any
URL	references	that	are	now	secured	via	SSL.	For	more	information	on	the
UrlHelper.Action	method,	see	the	reference	on	the	UrlHelper.Actionmethod	at
the	end	of	the	chapter.

http://msdn.microsoft.com/en-us/library/dd505232.aspx

Protecting	Connection	Strings
If	you	change	data	sources	for	the	application,	you	will	likely	end	up	changing
the	connection	string	in	the	web.config.	As	a	good	practice,	you	should	protect
connection	strings	in	the	web.config	from	disclosure.	For	more	information	on
protecting	connection	strings,	see	the	reference	on	Protecting	Connection
Information	(ADO.NET)	at	the	end	of	the	chapter.

http://msdn.microsoft.com/en-us/library/89211k9b(v=VS.100).aspx

Deploying	to	a	Shared	Environment
In	situations	where	you	are	deploying	your	web	application	to	a	server	that	is
being	shared	by	multiple	parties,	you	may	want	to	protect	your	application	from
others	that	are	hosted	on	the	server.	In	addition	to	protecting	sensitive
information	in	the	web.config	file,	ensure	that	the	application	pools	on	the
server	are	configured	to	run	per	web	application	and	that	the	temporary
ASP.NET	files	cached	on	the	server	are	in	a	location	that	is	not	shared	with	the
other	web	applications	on	the	server.	For	more	information,	see	"How	To:
Secure	an	ASP.NET	Application	on	a	Shared	Server"	on	MSDN®.

http://msdn.microsoft.com/en-us/library/ms228096.aspx

Summary
This	chapter	provided	an	overview	of	security	threats	that	impact	Mileage	Stats:
unauthorized	access,	malicious	input	(content	injection	and	cross-site	scripting),
eavesdropping,	message	tampering,	message	replay,	and	cross-site	request
forgery	and	how	they	are	mitigated	through	various	security	features.	Also,	a
few	ideas	were	provided	on	how	to	extend	or	change	security	for	Mileage	Stats
to	accommodate	different	deployment	environments	and	security	requirements.

Further	Reading
"ASP.NET	Web	Application	Security"	on	MSDN:	
http://msdn.microsoft.com/en-us/library/330a99hc.aspx

"How	to	set	up	SSL	on	IIS	7:"
http://learn.iis.net/page.aspx/144/how-to-set-up-ssl-on-iis-7/

"UrlHelper.Action	Method"	on	MSDN:
http://msdn.microsoft.com/en-us/library/dd505232.aspx

"Understanding	the	Forms	Authentication	Ticket	and	Cookie"	on	Microsoft
Support:	
http://support.microsoft.com/kb/910443

"Authenticating	Users	with	Forms	Authentication"	on	ASP.NET:	
http://www.asp.net/mvc/tutorials/authenticating-users-with-forms-
authentication-cs

Protecting	Connection	Information	(ADO.NET)	on	MSDN:	
http://msdn.microsoft.com/en-us/library/89211k9b(v=VS.100).aspx

"How	To:	Secure	an	ASP.NET	Application	on	a	Shared	Server"	on	MSDN:	
http://msdn.microsoft.com/en-us/library/ms228096.aspx

"A	Guide	to	Claims–based	Identity	and	Access	Control"	on	MSDN:	
http://msdn.microsoft.com/en-us/library/ff423674.aspx

"OWASP	Top	10	Project"	on	OWASP.org:	
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

"JSON	Hijacking"	on	Phil	Haack's	blog:	
http://haacked.com/archive/2009/06/25/json-hijacking.aspx

"Best	Practices	for	ASP.NET	MVC"	on	the	ASP.NET	and	Web	Tools	Developer
Content	Team's	blog:
http://blogs.msdn.com/b/aspnetue/archive/2010/09/17/second_2d00_post.aspx

"Prevent	Cross-Site	Request	Forgery	(CSRF)	using	ASP.NET	MVC's
AntiForgeryToken()	helper"	on	Steve	Sanderson's	blog:
http://blog.stevensanderson.com/2008/09/01/prevent-cross-site-request-forgery-
csrf-using-aspnet-mvcs-antiforgerytoken-helper/

http://msdn.microsoft.com/en-us/library/330a99hc.aspx
http://learn.iis.net/page.aspx/144/how-to-set-up-ssl-on-iis-7/
http://msdn.microsoft.com/en-us/library/dd505232.aspx
http://support.microsoft.com/kb/910443
http://www.asp.net/mvc/tutorials/authenticating-users-with-forms-authentication-cs
http://msdn.microsoft.com/en-us/library/89211k9b(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/ms228096.aspx
http://msdn.microsoft.com/en-us/library/ff423674.aspx
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://haacked.com/archive/2009/06/25/json-hijacking.aspx
http://blogs.msdn.com/b/aspnetue/archive/2010/09/17/second_2d00_post.aspx
http://blog.stevensanderson.com/2008/09/01/prevent-cross-site-request-forgery-csrf-using-aspnet-mvcs-antiforgerytoken-helper/

|	Community

To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com

Copyright	©	2011	by	Microsoft	Corporation.	All	rights	reserved.

http://www.codeplex.com/silk
mailto:pagdoc@microsoft.com?subject=Feedback about Security

Silk	1.0	-	June	2011

Unit	Testing	Web	Applications

Introduction

Unit	testing,	sometimes	referred	to	as	developer	testing,	focuses	on	testing	small
pieces	of	code	a	developer	is	writing,	such	as	a	class.	These	tests	are	critical	for
developers	to	ensure	the	pieces	they	build	work	as	expected	and	should	operate
correctly	when	put	together	with	other	parts	of	the	application.	This	helps
support	management	of	the	application	over	time	by	giving	you	the	confidence
that	changes	you	make	don't	inadvertently	affect	other	parts	of	the	system.

This	chapter	shows	you	how	to	get	started	unit	testing	JavaScript	as	well	as
server-side	code,	but	does	not	cover	all	aspect	of	unit	testing.	References	to
more	detailed	discussions	about	unit	testing	can	be	found	at	the	end	of	this
chapter.

This	chapter	does	not	cover	other	important	aspects	of	testing,	such	as
performance,	stress,	security,	automation,	deployment,	localization,	and
globalization.	Nor	does	it	discuss	other	important	aspects	to	consider	when
testing	the	client-side	such	as	cross-browser	compatibility	or	usability.	However,
these	areas	are	important	for	you	to	consider	when	testing	your	web	application.

What	you	will	learn	in	this	chapter
In	this	chapter	you	will	discover:

How	to	get	started	unit	testing	your	JavaScript	and	ASP.NET	MVC	code.
The	arrange-act-assert	unit	test	structure.
Techniques	to	isolate	your	tests	and	components.
What	to	think	about	when	testing	your	jQuery	UI	widgets.

The	technologies	discussed	in	this	chapter	are	QUnit	to	test	your	JavaScript	and
jQuery	client-side	code	and	xUnit	and	Moq	to	test	your	server-side,	ASP.NET
MVC	code.

JavaScript	Unit	Testing
Testing	the	client-side	portion	of	a	web	application	offers	different	challenges
for	unit,	functional,	and	performance	testing	than	that	of	server-side	testing.	In
addition	to	testing	the	structural	layout	of	a	page	and	basic	application
functionality,	you	may	want	to	verify	that	animations	properly	execute,	that	a
page	with	a	large	amount	of	JavaScript	has	no	memory	leaks,	and	that	the
application	maintains	its	functional	and	performance	expectations	across
multiple	browsers.

As	a	developer,	you	will	use	JavaScript	to	handle	user	interface	(UI)	logic	in
your	application	to	dynamically	build	the	structure,	enable	or	disable	portions	of
your	UI,	or	load	data	in	the	background.	Portions	of	these	pieces	you	build	may
rely	on	libraries	you	adopt,	such	as	jQuery,	or	those	that	you	build	yourself.	You
want	to	be	sure	that	each	of	these	pieces—on	their	own—operate	as	you	expect
so	that,	when	put	into	the	overall	application,	work	as	you	want.

Unit	testing	is	a	way	to	verify	that	individual	pieces	work	as	you	expect	them	to
and	provides	a	way	for	you	to	verify	that	they	continue	to	work	as	libraries	or
tools	evolve.	For	example,	you	may	build	a	jQuery	UI	widget	to	manage	a	piece
of	your	UI.	When	the	next	version	of	jQuery	comes	out	you	can	quickly	and
easily	verify	that	your	widget	is	still	working	by	executing	the	unit	tests	using
the	new	jQuery	libraries.

While	unit	testing	isn't	hard,	there	is	a	learning	curve	for	those	unfamiliar	with
it.	One	common	objection	to	adopting	unit	testing	is	the	perceived	extra	time	it
takes	to	write	unit	tests.	While	it	is	true	that	it	will	take	longer	to	build
something	with	unit	tests	than	without	(after	all,	there	is	more	code	in	the	form
of	unit	tests),	what	is	often	not	reflected	is	the	time	it	will	save	later	in	tracking
down	bugs	or	verifying	that	things	still	work	after	changes	to	the	code	or	by
upgrading	to	new	versions	of	a	library.	For	the	uninitiated,	it	can	also	be
difficult	to	determine	what	should	be	tested	or	how	to	approach	testing	for	a
particular	behavior.	Unit	testing	can	be	a	complicated	topic.	This	section	seeks
to	provide	you	with	the	basics	to	get	started.	It	will	give	you	an	idea	of	what	you
want	to	test	and	provide	some	approaches	to	solving	common	challenges	in	unit
testing	JavaScript	in	your	application.

Getting	Started	With	Unit	Testing
The	Project	Silk	team	decided	to	use	QUnit	for	unit	testing	their	JavaScript
components	since	they	heavily	rely	on	jQuery	and	the	jQuery	UI	widget
framework,	which	also	use	QUnit	.	The	QUnit	unit	testing	framework	can	be
located	on	the	jQuery	website	at	http://docs.jquery.com/QUnit.	The	site	provides
examples,	documentation,	and	links	to	the	download.

Setting	up	QUnit	typically	involves	creating	an	HTML	page	with	specific	QUnit
elements	with	certain	class	attributes	specified,	and	including	the	qunit.js	and
qunit.css	files.	In	Mileage	Stats,	these	were	added	to	the	tests	folder	under	the
Scripts	folder.

QUnit	Files	In	Project

Once	this	is	in	place	you	will	create	a	test	JavaScript	file	for	each	set	of	tests

http://docs.jquery.com/QUnit

Copy	Code

you	want	to	run.	This	set	is	typically	focused	around	a	JavaScript	object.	For
example,	in	Mileage	Stats	there	is	a	JavaScript	test	file	for	each	of	the	jQuery
UI	widgets	that	the	application	implements.

Each	of	these	JavaScript	test	files	and	the	JavaScript	file	of	the	item	being	tested
are	referenced	from	test.htm	file	so	the	QUnit	framework	can	locate	and	execute
the	tests.
HTML

<!--	contained	in	test.htm	-->

<!--	Code	under	test	-->

<scriptsrc="../Debug/mstats.utils.js"></script>

<scriptsrc="../Debug/mstats.events.js"></script>

<scriptsrc="../Debug/mstats.pubsub.js"></script>

...

<!--	Unit	tests	-->

<scriptsrc="mstats.utils.tests.js"></script>

<scriptsrc="mstats.pubsub.tests.js"></script>

<scriptsrc="mstats.data.tests.js"></script>

...

These	unit	tests	can	be	run	by	viewing	the	test	HTML	file	in	a	browser.	From
Visual	Studio,	you	can	right	click	the	test	HTML	file	and	select	View	in
Browser.	For	the	Mileage	Stats	tests	the	output	would	look	like	this	while
executing	the	tests.

QUnit	Test	Run	Output

Copy	Code

Creating	Unit	Tests
There	are	typically	multiple	unit	tests	in	one	file	and	they	are	often	grouped
around	a	particular	topic	or	type	of	test.	Using	QUnit,	the	module	function	is
used	to	denote	a	group	of	tests.
JavaScript

module('Test	Group');

test('Test	one',	function	()	{

		//	Test	logic	goes	here

});

test('Test	two',	function	()	{

		//	Test	logic	goes	here});

Let's	look	at	the	structure	of	a	typical	test.	This	is	a	test	from	the
mstats.data.test.js	to	test	a	data	caching	component	within	the	solution.
JavaScript

//	contained	in	mstats.data.test.js

test('When	data	is	saved,	then	it	can	be	retrieved',function()	{

expect(1);

		//	Arrange

varvalue	='some-data';																										

		

		//	Act

mstats.dataStore.set('	/some/url',	value);									

		//	Assert

		equal(

mstats.dataStore.get('	/some/url'),

value,

'mstats.datastoresaved	and	returned'+	value);

});

Note:

The	test,	expect,	equal,	start	and	stop	methods	are	specific	to	qUnit.

The	basic	structure	of	most	unit	tests	follow	an	arrange-act-assert	pattern,	where
the	setup	for	the	test	is	clearly	grouped	together,	the	action	that	should	be	tested
is	executed,	followed	by	the	verification	of	the	desired	results.

In	the	above	example,	the	'act'	ensures	the	value	can	be	set	in	the	store	and
'assert'	verifies	that	the	value	was	appropriately	set.	The	QUnit	framework
provides	a	number	of	functions	to	help	with	assertions.	The	equal	assertion	is
shown	in	the	example,	but	ok	(which	just	performs	a	Boolean	check)	is	also
typically	used.

You'll	see	we	execute	a	single	assertion	in	this	test	and	keep	the	number	of
assertions	small,	which	typically	results	in	smaller,	more	focused	unit	tests.
Writing	unit	tests	in	this	manner	encourages	you	to	write	code	that	is	also	small
and	focused.	This	tends	to	lead	to	code	that	is	more	composable	because	then	it
will	have	a	single	responsibility.	They	should	generally	take	one	action	and
make	one	assertion.	However,	there	are	cases	where	a	group	of	similar
assertions	will	be	made,	such	as	when	verifying	the	property	values	on	a
deserialized	JSON	object.

The	QUnit	framework	provides	a	mechanism	to	ensure	that	the	proper	number
of	expected	assertions	were	run	using	the	expect	function.	At	the	beginning	of
the	test	you	will	see	that	expect(1)	was	called	to	let	QUnit	know	how	many
assertions	should	be	run.	If	QUnit	does	not	encounter	that	number	of	assertions,
then	it	will	produce	an	error	in	its	output	when	the	tests	are	run.

What	to	Test
Now	that	you	know	how	to	write	a	unit	test,	perhaps	the	more	important
question	is	what	should	be	tested?	Generally	in	a	unit	test	you	are	trying	to
verify	the	functionality	of	a	relatively	small	component,	this	could	be	a
JavaScript	object	or	something	like	a	jQuery	UI	widget.	Each	test	verifies
independent	pieces	such	as	verifying	a	calculation	happened	correctly	or	that	the
proper	DOM	modification	occurred.

When	testing	UI	widgets,	it	can	be	unclear	what	should	be	tested.	The	basic	rule
of	thumb	is	to	test	anything	a	designer	would	not	change.	Logic	that	drives	the
UI	might	be	tested,	such	as	the	right	navigation	was	invoked,	an	element	had	the
proper	class	attribute	applied	(or	removed),	or	that	the	right	event	was	raised.
But,	you	would	not	test	that	a	specific	font	value	was	set	or	the	specific
background	color	of	an	element.

Isolating	Your	Tests
Often	your	object	under	test	will	rely	on	other	objects,	functions,	or	libraries.
You	may	have	an	object	that	makes	Ajax	calls	to	retrieve	data.	If	you	attempt	to
make	Ajax	calls	when	running	the	unit	tests	you	might	get	unpredictable	results
because	the	server	responding	to	the	calls	may	be	unavailable	when	you	run
your	tests.	Generally,	you	want	to	isolate	your	component	from	these	types	of
problems.

You	will	also	want	to	isolate	your	component	from	other	objects	you	build
within	your	system	when	testing.	In	Mileage	Stats,	many	jQuery	UI	widgets
rely	on	a	publish-subscribe	object	for	communication.	During	the	testing	of
objects	with	dependencies,	you	do	not	want	to	invoke	the	actual	dependencies.
If	you	did,	you	would	be	testing	more	than	one	thing	at	a	time.	Instead,	it	is
important	to	test	that	the	component	attempts	to	invoke	a	dependency.	The
typical	strategy	for	isolating	your	component	under	test	in	these	scenarios	is	to
supply	an	alternative	component	or	function	that	the	component	calls	instead	of
the	real	component	during	tests.	These	alternatives	may	also	be	referred	to
fakes,	doubles,	stubs	or	mocks.	As	it	turns	out,	the	ability	to	isolate	your
component	in	this	manner	also	helps	the	overall	design	of	your	application	by
tending	to	create	smaller,	more	focused	components.

With	a	substitute	object	employed,	you	can	then	verify	that	the	correct	calls
were	made	with	the	right	values.	For	example,	when	testing	that	the	Mileage
Stats	data	cache	component	makes	an	Ajax	call	with	the	appropriate	URL	an
alternate	jQuery	Ajax	function	is	supplied	for	testing.	In	this	alternate,	we	verify
that	the	expected	URL	is	invoked	by	the	component.
JavaScript

//	contained	in	mstats.data.tests.jstest('whensendRequestis	called,	then	the	url	from	options	is	used',function()	{

expect(1);

		//	Arrange

$.ajax=function(options)	{

				//	Assert

equal(options.url,'/url','Urlwas	properly	set');

};

			

		//	Act	

Copy	Code

mstats.dataManager.sendRequest({

url:'/url'

});

});

Note	also	that	this	somewhat	changes	the	typical	arrange-act-assert	order	of	the
test	structure	because	the	assertion	is	in	the	supplied	Ajax	function.	This	is	why
it	is	important	to	use	the	expect	function	at	the	beginning	of	your	tests	to	help
ensure	that	all	the	expected	assertions	are	made.

When	providing	these	alternative	functions	or	components,	it	is	also	a	good	idea
to	capture	and	restore	the	original	values	to	avoid	interfering	with	any	other	test
that	may	have	relied	on	these	values.	In	QUnit	this	can	be	done	when	defining
the	test	module	where	the	setup	and	teardown	functions	can	be	supplied.
JavaScript

//	contained	in	mstats.data.tests.jsmodule(

'MileageStatsDataManagersendRequestTests',

{

setup:function()	{

this.savedAjax=	$.ajax;

...

},

teardown:function()	{

$.ajax=this.savedAjax;

...

}

}

);

jQuery	UI	Widget	Testing
When	unit	testing	jQuery	UI	widgets	there	are	some	additional	considerations.
Since	widgets	are	attached	to	a	DOM	element,	you	will	need	to	create	these
elements	either	in	the	test	or,	if	they	are	more	complicated,	in	the	setup	for	a
module.	In	Mileage	Stats,	since	many	of	the	widgets	interact	with	a	section	of
the	DOM,	some	of	that	structure	needs	to	be	created	during	test	setup.	For
example,	the	header	widget	test	creates	the	structure	over	the	DOM	it
manipulates	in	the	setup	for	the	test.
JavaScript

//	contained	in	mstats.header.tests.jsmodule('Header	Widget	Tests',	{

setup:function()	{

$('#qunit-fixture').append(

'<div	class="header"	id="header">'+

'<div><div><h1>Dashboard</h1>'+

'<div	id="notification"></div>'+

'<div	class="nav">'+

'Welcome	Sample	User'+

'[Dashboard'+

'|	Charts'+

'|	Profile'+

'|	Sign	Out]'+

'</div>'+

'</div></div>'+

'</div>'

);

}

});

In	QUnit,	you	add	these	elements	to	the	element	with	the	ID	of	'qunit-fixture'.
You	should	only	add	the	minimal	amount	of	structure	needed	to	appropriately
simulate	your	test	needs	as	this	will	make	the	structural	dependencies	of	the	test
clearer.

When	testing	jQuery	UI	widgets	you	will	also	often	need	to	supply	alternate
implementation	on	dependent	functions	or	objects.	Since	you	don't	control	the

creation	of	the	jQuery	UI	widgets	directly,	you	will	typically	do	this	as	part	of
the	options	object	passed	into	the	widget	(see	the	section	jQuery	UI	widgets	for
more	details	about	the	use	of	an	option	object).	For	example,	when	testing	the
Mileage	Stats	vehicle-details	widget	an	alternative	implementation	for	the	Ajax
method	and	the	event	publisher	are	supplied	as	part	of	the	options.
JavaScript

//	contained	in	mstats.vehicle-details.tests.jstest('when	loading	data	errors	out,	then	triggers	error	status',function()	{

expect(3);

vareventType='loadError',

details	=	$('#details-pane').vehicleDetails({

templateId:'#testTemplate',

getData:function(options)	{options.error({});	},

eventPublisher:function(event,	status)	{

if(status.type===eventType)	{

ok(status,'status	object	passed	to	publisher');

equal(status.type,	eventType,'status	is	of	type	:'+	eventType);

equal(status.origin,'vehicleDetails','status	has	correct	origin');

}

}

});

	

//	force	a	data	refresh

details.vehicleDetails('option','selectedVehicleId',	1);

});

Server-Side	Unit	Testing
Unit	testing	code	on	the	server	typically	involves	many	more	interactive	pieces
than	what	you	encounter	when	testing	client-side	JavaScript.	In	an	ASP.NET
MVC	application,	controllers	will	interact	with	services	or	repositories	to	handle
each	request.	These	interactions	and	expectations	can	be	tested	using	unit	tests
as	each	piece	is	built	to	instill	confidence	that	the	system	will	continue	to	work
as	new	features	are	added	or	new	versions	of	dependent	libraries	are	supplied.

This	section	is	intended	to	provide	you	with	enough	information	to	get	started
unit	testing	your	server	side	application.	Since	each	application	is	different,
testing	all	scenarios	is	out	of	scope	for	this	chapter.	To	find	out	more	about	unit
testing	your	applications,	see	the	"Further	Reading"	section.

Getting	Started	Unit	Testing
There	are	a	number	of	unit	testing	frameworks	to	choose	from	when	unit	testing
server-side	.NET	components.	Most	unit	tests	frameworks	are	similar	and	any
one	of	them	can	be	a	reasonable	choice.	Microsoft	offers	two	technologies	that
can	be	used	for	writing	unit	tests:	Microsoft	Test	and	xUnit.	Microsoft	Test	is
supplied	with	certain	versions	of	Visual	Studio	and	xUnit.net	is	a	Microsoft
developed,	open-sourced	unit	testing	framework	available	on	Codeplex	or
NuGet.

Regardless	of	your	unit	test	framework	choice,	unit	tests	are	placed	in	a	separate
assembly	that	the	unit	test	framework	can	discover	and	use	to	execute	the	tests.
A	typical	Visual	Studio	solution	organization	has	the	unit	test	projects	included
in	the	solution	with	the	projects	under	test.	For	example,	the	Mileage	Stats
solution	has	its	test	projects	in	a	Unit	Tests	solution	folder.

Unit	test	location	in	MileageStats	project

There	is	one	unit	test	project	for	the	Services,	ServicesModel,	SqlCe,	and	Web.
Some	projects	don't	have	a	corresponding	unit	tests	project	primarily	because
these	projects	contain	only	shared	interfaces	and	data	transfer	classes	that	do	not
have	significant	logic	to	test.

The	team	choose	xUnit	as	the	unit	testing	framework	for	the	Mileage	Stats
project.	While	you	can	accomplish	unit	testing	with	either	Microsoft	Test	or
xUnit,	the	team	felt	that	since	xUnit	was	built	specifically	for	developer	unit
testing	that	it	would	better	fit	their	needs.	The	remainder	of	this	section

discusses	unit	testing	using	examples	in	xUnit,	but	you	can	readily	apply	the
same	approaches	with	Microsoft	Test,	although	some	of	the	exact	mechanics
may	be	different.

To	create	a	new	unit	test	project,	you	add	a	C#	or	Visual	Basic	Class	Library
project	and	reference	the	xUnit	assemblies.	In	the	test	project,	there	will	be	a
class	to	contain	all	the	related	tests	for	a	particular	component.	For	example,	the
MileageStats.Web.Tests	project	contains	a	test	class	for	each	controller	in	the
Web	project.	They	generally	are	named	the	same	as	the	controller	name	with	the
term	'Fixture'	appended.

To	write	a	test,	create	a	method	with	the	attribute	Fact	specified.	The	xUnit.net
framework	searches	for	these	attributes	and	executes	these	methods.	Each	test
should	follow	the	arrange-act-assert	pattern.	In	this	pattern	all	the	setup	for	the
test	(e.g.	arrangement)	is	done	first,	then	the	action	to	be	tested	is	executed	(e.g.
act),	and	then	the	validation	is	done	(e.g.	assert).
C#

//contained	in	ReminderFixture.cs[Fact]

publicvoidWhenReminderIsNotOverdue_ThenIsOverdueReturnsFalse()

{

//	Arrange

varreminder	=newReminderFormModel()

{

Title	="future	reminder",

DueDate=DateTime.UtcNow.AddDays(2),

DueDistance=	10000

};

	

reminder.UpdateLastVehicleOdometer(10);

	

//	Act

boolisOverdue=reminder.IsOverdue;

	

//	Assert

Assert.False(isOverdue);

}

Generally	tests	should	be	small	and	focused,	with	only	one	or	two	asserts.	At
times,	there	may	be	more	asserts	in	a	single	test	if	they	are	verifying	in	a	logical
group.

In	addition	to	Assert.False,	xUnit.net	supplies	a	number	of	other	built-in	asserts
available	on	the	Assert	static	class.

Once	the	tests	have	been	built	you	can	execute	them	using	the	xUnit.net	test
runner	to	see	that	they	pass.	The	test	runner	can	be	found	where	you
unpackaged	the	xUnit.net	contents	retrieved	from	Codeplex.	After	you	add	the
test	assembly	into	the	runner	you	can	run	all	the	tests	to	see	if	they	succeed.

Running	Unit	Tests

If	there	is	a	failing	test	it	will	show	up	in	the	console.

Running	Unit	Tests	With	Errors

Alternatively,	you	can	run	tests	by	using	TestDriven.Net	or	Resharper	which
would	run	the	tests	from	within	Visual	Studio.	For	more	details	on	setting	this
up,	see	http://xunit.codeplex.com.

http://xunit.codeplex.com/

What	to	Test
On	the	server	side,	you	should	create	unit	tests	for	any	classes	and	components
that	contain	logic	or	must	interact	with	other	components.	You	should	not	write
unit	tests	for	generated	code	or	code	you	don't	own.	The	team	wrote	unit	tests
for	classes	in	each	of	the	major	layers.

Repository	Layer.	The	repository	layer	provides	the	basic	persistence	for
information	throughout	the	system.	In	Mileage	Stats,	this	relies	heavily	on
Entity	Framework	Code-First	and	SQL	Server	Compact	Edition.	Much	of	the
tests	written	against	this	layer	verifies	that	the	persistence	and	retrieval
implementations	for	the	various	repositories	produce	the	correct	results.	These
tests,	since	they	are	writing	to	an	actual	database,	cannot	strictly	be	considered
unit	tests,	but	are	useful	in	verifying	that	the	persistence	mechanism	for	all	the
models	occurs	as	expected.	Often,	these	are	referred	to	as	integration	tests.

These	tests	were	also	useful	because	the	Entity	Framework	Code-First	library
was	adopted	before	actual	release,	so	these	tests	helped	demonstrate	that	the
expectations	around	Entity	Framework	were	maintained	between	releases.

Business	Logic	Layer.	The	business	services	layer	is	invoked	by	the	controllers
in	the	Web	Layer	in	order	to	execute	business	rules	and	store	data	in	the
repository.	Unit	tests	for	the	business	services	layer	focus	on	verifying	the
business	rules	and	its	interaction	with	the	repository	layer.	The	tests	do	not
actually	store	data	in	the	repository	but	use	a	fake	repository	and	verify	that	the
business	services	layer	uses	it	correctly.	The	models	in	this	layer	are	what	the
web	application	retrieves	from	and	supplies	to	the	business	services	layer.	These
models	often	contain	validation	logic	that	are	verified	in	unit	tests.

Web	Layer.	The	actual	controllers	that	respond	to	requests	have	unit	tests	to
verify	that	they	interact	with	the	services	and	models	appropriately	and	return
correctly	built	View	Models	for	the	Views	or	jQuery	template.

Copy	Code

Isolating	Your	Components
It	is	common	for	the	classes	you	are	testing	to	rely	on	other	classes.	For
example,	a	class	may	rely	on	a	repository	to	persist	a	model.	During	testing	you
want	to	isolate	your	class'	interaction	with	these	other	objects	to	ensure	that	only
the	behavior	of	the	class	in	question	is	tested.	Additionally,	it	can	sometimes	be
painful	to	setup	these	other	classes	appropriately.	For	example,	if	the	class	calls
a	web	service	it	would	be	difficult	to	expect	that	the	web	service	be	up	when
you	want	to	run	your	unit	test.

Instead	of	trying	to	create	the	actual	context	for	the	class	under	test	we	supply	it
with	alternative	implementations	of	the	object	it	depends	on.	These	alternatives
may	also	be	called	fakes,	doubles,	stubs	or	mocks.	Using	these	alternative
implementations	has	the	side-effect	of	also	helping	separate	the	responsibilities
of	our	classes.

To	provide	this	separation,	instead	of	creating	a	class	that	depends	on	a	specific
technology	we	provide	an	abstraction	for	the	class	to	depend	on.	This	allows	us
to	provide	different	implementations	of	the	dependency	at	different	times,	such
as	at	unit	test	time.	Often	this	abstraction	could	be	an	interface	definition	but	it
could	also	be	a	base	or	abstract	class.

For	example,	suppose	we	had	a	class	to	test	that	needed	to	store	values
somewhere.	Instead	of	tying	the	class	directly	to	a	specific	store
implementation,	it	can	depend	on	an	IStore	abstraction.
C#

publicinterfaceIStore

{

voidPersist(stringitem);

}

	

publicclassClassToTest

{

privateIStorestore;

	

publicClassToTest(IStorestore)

{

Copy	Code

this.store=	store;

}

	

publicvoidSave(stringvalue)

{

...

store.Persist(value);

...

}

}

When	we	write	a	test	for	this	class	that	depends	on	IStore,	we	can	then	provide
an	alternative	implementation.
C#

[Fact]

public	voidWhenSaving_ThenSendsValueToStore()

{

varmockStore=	newStoreMock();

varclassToTest=	newClassToTest(mockStore);

	

classToTest.Save("Test");

	

Assert.Equal(mockStore.ValueSaved,	"Test");

}

	

private	classStoreMock:IStore

{

public	stringValueSaved{	get;	set;	}

public	void	Persist(string	item)

{

ValueSaved=	item;

}

}

The	StoreMock	captures	the	saved	item	to	verify	that	ClassToTest	sends	the

Copy	Code

Copy	Code

correct	value	to	the	store.	Instead	of	making	these	mocks	by	hand,	as	shown
above,	the	team	relied	on	Moq—a	mocking	framework—when	writing	Mileage
Stats	tests.	This	allows	us	to	supply	mock	objects	without	requiring	us	to	create
mock	classes	by	hand.	The	same	test	above	would	look	like	this	using	Moq.
C#

[Fact]

publicvoidWhenSaving_ThenSendsValueToStore()

{

varmockStore=newMock<IStore>();

varclassToTest=newClassToTest(mockStore.Object);

	

classToTest.Save("Test");

	

mockStore.Verify(s	=>s.Persist("Test"));

}

Moq	dynamically	builds	the	objects	needed	for	testing	and	in	the	case	of	the
Verify	method,	can	automatically	verify	that	methods	or	properties	were	called
with	the	correct	values.	See	the	Moq	Codeplex	site	for	more	information	about
using	Moq	at	http://moq.codeplex.com.

There	are	times	when	you	don't	control	the	class	that	you	want	to	be	able	to
mock.	For	instance,	if	you	use	a	static	class	built	into	the	.NET	Framework
library	like	FormsAuthentication.	In	these	cases,	you	will	often	create	an
interface	for	just	the	functionality	you	use	and	provide	a	default	implementation
for	run-time	and	a	mock	implementation	at	test-time.	This	was	the	approach
employed	with	Mileage	Stats	when	using	the	DotNetOpenAuth	library.	This
library	helps	with	implementing	the	various	authentication	protocols	used	in
Mileage	Stats.	To	isolate	the	components	and	make	them	more	testable,	the
IOpenIdRelyingParty	interface	was	created.
C#

//	IOpenIdRelyingParty.cs

publicinterfaceIOpenIdRelyingParty

{

ActionResultRedirectToProvider(

http://moq.codeplex.com/

stringproviderUrl,

stringreturnUrl,

FetchRequestfetch);

IAuthenticationResponseGetResponse();

}

Mileage	Stats	has	a	default	implementation	that	uses	the	real	DotNetOpenAuth
library	at	run-time	and	a	mock	implementation	when	testing	the
AuthController.

At	run-time,	all	these	pieces	are	connected	using	a	technique	known	as
dependency	injection.	See	the	"Dependency	Injection"	section	in	Chapter	X	to
better	understand	how	this	works.

Testing	your	ASP.NET	MVC	Controllers
ASP.NET	MVC	was	designed	to	support	the	testability	of	the	controllers,	filters,
and	actions	that	developers	typically	write	when	developing	an	MVC
application.	Since	each	controller	is	responsible	for	handling	a	request	and
MVC	automatically	maps	input	from	the	query	string	or	from	form	data	to	the
data	types	on	your	controller's	methods,	you	can	easily	write	tests	for	your
controllers	and	simply	supply	them	with	the	necessary	inputs.	For	instance,	the
ReminderController's	Add	method	takes	an	integer	value	for	the	vehicle
identifier	and	Reminder	object.
C#

//	contained	in	ReminderController.cs

publicActionResultAdd(intvehicleId,ReminderFormModelreminder)

{

...

returnView(viewModel);

}

In	a	unit	test,	it	is	very	simple	to	just	provide	these	values	for	testing.	The
example	below	demonstrates	supplying	the	reminder	and	vehicle	ID	directly	in
the	test.
C#

//	contained	in	ReminderControllerFixture.cs[Fact]

publicvoidWhenAddReminderWithValidReminder_ThenReturnsToReminderDetailsView()

{

		...

varresult	=(RedirectToRouteResult)controller.Add(vehicle.VehicleId,formModel)

;

		Assert.NotNull(result);

Assert.Equal("Details",result.RouteValues["action"]);

Assert.Equal("Reminder",result.RouteValues["controller"]);

}

While	many	unit	tests	for	controllers	can	use	this	approach,	there	are	still	cases
where	the	controllers	require	access	to	the	HttpContext.	Usually	providing
alternate	implementations	of	HttpContext	is	very	difficult,	thus	making	certain
scenarios	very	hard	to	test.	But	since	the	MVC	base	controller	class	Controller
relies	on	HttpContextBase	instead	of	HttpContext,	it	can	much	more	easily	be
substituted.	Mileage	Stats	uses	this	on	many	of	its	controller	tests	to	ensure	the
User	property	is	set	appropriately	on	HttpContextBase.

To	do	this,	the	Mileage	Stats	uses	an	MvcMockHelpers	class	that	wraps	the
building	of	a	Moq	object	that	substitute	HttpContext	information.	This
controller	context	is	then	set	on	the	controller	under	test	by	calling	the	static
SetFakeControllerContext	method	in	the	MvcMockHelpers	class.	The
RemindersControllerFixture	sets	this	when	it	builds	a	testable	controller.
C#

//	contained	in	RemindersControllerFixture.cs

privateReminderControllerGetTestableReminderController()

{

varreminderController	=newReminderController(this.mockUserServices.Object,

this.mockBusinessServices.Object);

reminderController.SetFakeControllerContext();

reminderController.SetUserIdentity(

newMileageStatsIdentity(this.DefaultUser.AuthorizationId,

this.DefaultUser.DisplayName,

this.DefaultUser.UserId));

returnreminderController;

}

The	fake	context	creates	a	series	of	Moq	objects	that	the	controller	will	interact
with	under	test.	If	you	want	to	adjust	what	they're	doing	you	can	recover	the
mock	and	change	its	behavior.	The	static	SetUserIdentity	above	does	this	for	a
controller	to	set	an	identity	context	for	the	test	into	the	HttpContext.
C#

//	contained	in	ControllerMockHelpers

publicstaticvoidSetUserIdentity(thisControllercontroller,IIdentityidentity)

{

Mock.Get(controller.HttpContext)

.Setup(x	=>x.User)

.Returns(newGenericPrincipal(identity,null));

}

The	types	of	tests	you	typically	write	around	your	controller	include:
View	Models.	You	will	want	to	test	that	the	controller	provides	the
correct	model	data	for	a	specific	view.
Navigation.	You	will	want	to	test	that	the	controller	will	provide	the
correct	redirection	when	it	is	finished	processing	the	request	or	when
there	is	an	error	processing	the	request.
Interaction.	You	will	want	to	test	that	the	controller	makes	the
appropriate	calls	to	your	repository	or	services	layers	(which	will	be
mocked	in	the	tests).	You	will	also	want	to	test	that	your	controller
appropriately	handles	the	situation	when	the	model	data	supplied	to	a
controller	is	in	an	invalid	state.
JSON	Endpoints.	If	you	have	JSON	data	endpoints	you	want	to	make
sure	these	return	appropriate	JSON	results	for	the	call.

Summary
You	should	make	a	conscious	decision	about	whether	or	not	you	are	going	to
unit	test	your	code.	Unit	testing	is	not	hard	but	it	does	require	an	investment	of
time	to	learn	and	apply.	The	time	spent	initially	writing	unit	tests	will	save	time
over	the	life	of	your	project	and	deliver	better	quality	code.	There	are
frameworks	that	help	you	write	unit	tests	available	for	most	languages	and
platforms.	Visual	Studio	includes	unit	test	support	for	C#	and	Visual	Basic
.NET,	among	other	languages,	and	you	can	readily	find	them	for	languages	such
as	JavaScript.

|	Community

To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com

Copyright	©	2011	by	Microsoft	Corporation.	All	rights	reserved.

Further	Reading
Meszaros,	Gerard.	xUnit	Test	Patterns:	Refactoring	Test	Code.	Addison-Wesley,
2007.

Cem	Kaner,	Jack	Falk,	and	Hung	Q.	Nguyen.	Testing	Computer	Software,	2nd
Edition.	Wiley,	1999.

patterns	&practices	Acceptance	Test	Engineering	Guidance	on	CodePlex:
http://testingguidance.codeplex.com/

Performance	Testing	Guidance	for	Web	on	MSDN:	
http://msdn.microsoft.com/en-us/library/bb924375.aspx

Guidance	for	Build,	Deploy	and	Test	Workflows	on	MSDN:
http://msdn.microsoft.com/en-us/library/ff972305.aspx

QUnit	unit	testing	framework	on	the	jQuery	website:
http://docs.jquery.com/QUnit

xUnit.net	on	CodePlex:
http://xunit.codeplex.com.

Moq	on	CodePlex:
http://moq.codeplex.com

"Testing	the	User	Interface	with	Automated	UI	Tests"	on	MSDN:
http://msdn.microsoft.com/en-us/library/dd286726.aspx

"How	to:	Create	a	Coded	UI	Test"	on	MSDN:
http://msdn.microsoft.com/en-us/library/dd286681.aspx

Resharper:
http://www.jetbrains.com/resharper/

TestDriven.NET:
http://testdriven.net

http://testingguidance.codeplex.com/
http://msdn.microsoft.com/en-us/library/bb924375.aspx
http://msdn.microsoft.com/en-us/library/ff972305.aspx
http://docs.jquery.com/QUnit
http://xunit.codeplex.com/
http://moq.codeplex.com/
http://msdn.microsoft.com/en-us/library/dd286726.aspx
http://msdn.microsoft.com/en-us/library/dd286681.aspx
http://www.jetbrains.com/resharper/
http://testdriven.net/
http://www.codeplex.com/silk
mailto:pagdoc@microsoft.com?subject=Feedback about Unit Testing Web Applications

Silk	1.0	-	June	2011

Widget	QuickStart

This	Widget	QuickStart	illustrates	the	way	Project	Silk	uses	the	jQuery	UI
Widget	Factory	to	create	maintainable	widgets	that	implement	client-side
behavior.

http://docs.jquery.com/UI/Developer_Guide

Business	Scenario
Our	team	has	been	asked	to	enable	cross-browser	keyword	lookup	capabilities
in	our	web	pages	by	hyperlinking	select	keywords	to	popular	websites.	This
feature	will	need	to	be	added	dynamically	to	all	company	web	pages.

Another	team	has	been	tasked	with	tagging	the	keywords	in	the	web	pages.	The
words	will	be	tagged	dynamically,	based	on	server-side	business	logic	driven	by
agreements	with	third	parties.

The	focus	of	this	QuickStart	is	to	enable	the	client-side	behavior	for	the	tagged
keywords.	When	a	user	hovers	over	a	keyword,	the	browser	will	display	a	pop-
up	list	of	popular	links	for	that	keyword	from	the	Delicious.com	bookmarking
service.

Walkthrough
To	interact	with	the	completed	scenario,	ensure	you	have	an	Internet	connection
and	follow	the	steps	below:

1.	 Open	the	default.htm	file	using	Windows	Internet	Explorer	9.	After	the
file's	content	is	displayed,	you'll	need	to	click	on	the	Allow	blocked
content	button	at	the	bottom	of	the	browser	window	to	enable	scripts	to
run.	Blocking	active	content	by	default	is	a	security	feature	of	Internet
Explorer	9.
Widget	QuickStart	(default.htm)

2.	 After	allowing	blocked	content,	you'll	notice	that	the	keywords	are
displayed	in	a	new	color	and	have	been	underlined	with	a	dashed	line,
as	pictured	below.
Widget	QuickStart	after	scripts	are	unblocked

3.	 Using	your	mouse,	hover	over	an	underlined	keyword.	A	pop-up	list
with	the	top-10	most	popular	links	for	that	keyword	will	be	displayed.
Notice	that	the	keyword	has	been	repeated	in	the	title	of	the	pop-up	list.

a.	 One	second	after	moving	your	mouse	away	from	the	keyword,
the	pop-up	list	will	close	unless	your	mouse	is	within	the
boundaries	of	the	pop-up	list.

b.	 If	the	keyword	is	on	the	left	side	of	the	page,	the	pop-up	list
will	open	to	the	right	of	the	cursor.	If	the	keyword	is	on	the
right	side	of	the	page,	the	pop-up	list	will	open	to	the	left	side
of	the	cursor,	as	in	the	image	below.
Pop-up	list	for	the	keyword	"jQuery"

4.	 Move	your	mouse	over	the	pop-up	list.	You	can	now	click	on	a	link,
which	will	open	in	a	new	browser	window.
Links	from	Delicious.com	in	the	pop-up	list

5.	 Moving	your	mouse	outside	the	boundaries	of	the	pop-up	list	will	cause
the	pop-up	list	to	close.

Conceptual	View
This	section	illustrates	the	relationship	of	the	jQuery	UI	widgets	to	the	HTML
page.	A	single	infobox	widget	is	attached	to	the	page's	body	element.	After	it's
attached,	it	creates	a	<div>	element	and	dynamically	adds	it	to	the	page's
<body>	element.	Additionally,	a	tagger	widget	is	attached	to	each	keyword.

Relationship	of	the	jQuery	UI	widgets	to	the	HTML	page

The	HTML	below	reveals	a	keyword	tagging	strategy	that	takes	advantage	of
HTML5	data	attributes.	Each	of	the	keywords	has	been	wrapped	in	a	span	tag
with	the	data-tag	attribute	applied.	For	this	scenario,	the	keyword	wrapping
was	accomplished	on	the	server	side.
HTML

<!--	Contained	in	default.htm	-->

<!DOCTYPE	html>

<html>

<head	...>

<body>

		<div	id="container">

				

				<h1>Project	Silk	Overview</h1>

				<p>

						Project	Silk	provides	guidance	and	example	implementations

						that	describe	and	illustrate	recommended	practices	for	

						building	next	generation	web	applications	using	web	

						technologies	like	HTML5,	

						jQuery,	CSS3

						and	Internet	Explorer	9.	The	guidance	will	be	taught	in	

						the	context	of	real-world	development	scenarios	rather	

						than	focusing	on	technology	

						features.</p>

Attaching	Widgets
Once	created,	the	widget	is	attached	to	an	HTML	element	and	its	options	can	be
set.
JavaScript

//	Contained	in	startup.js

(function	($)	{

				var	infobox	=	$('body').infobox({

								dataUrl:	'http://feeds.delicious.com/v2/json/popular/'

				});

				$('span[data-tag]').tagger({

								activated:	function	(event,	data)	{

												infobox.infobox('displayTagLinks',	event,	data.name);

								},

								deactivated:	function	()	{

												infobox.infobox('hideTagLinks');

								}

				});

}	(jQuery));

The	code	above	demonstrates	the	infobox	widget	being	attached	to	the	body
element.	The	dataUrloption	value	will	be	used	when	performing	popular
keyword	link	lookups.

The	jQuery	selector	span[data-tag]	returns	a	jQuery	wrapped	set	that	contains
all	span	tags	with	a	data-tag	attribute.	A	tagger	widget	will	be	attached	to	each
of	the	span	tags	in	the	returned	collection.	The	tagger	widget	has	activated	and
deactivated	options	that	are	used	as	callbacks.	These	callbacks	are	used	to
handle	events	raised	when	the	mouse	hovers	over	the	tag.

Copy	Code

Widget	Initialization
When	a	widget	is	created	(attached),	the	jQuery	UI	widget	factory	will	call	the
private	method	_create.	This	method	provides	the	developer	an	opportunity	to
perform	widget	setup	actions.	Examples	include	building	and	injecting	markup,
adding	CSS	classes,	binding	events,	and	so	forth.
JavaScript

//	Contained	in	jquery.qs.infobox.js

_create:	function	()	{

				var	that	=	this,

								name	=	that.name;

				that.infoboxElement	=	$('<div	class="qs-infobox"	/>');

				that.infoboxElement.appendTo('body')

				.bind('mouseenter.'	+	name,	function	()	{

								mouseOverBox	=	true;

				})

				.bind('mouseleave.'	+	name,	function	()	{

								mouseOverBox	=	false;

								that.hideTagLinks();

				});

},

The	code	snippet	above	first	creates	a	variable	for	this	called	that	within	the
closure,	so	the	widget	can	be	referenced	within	the	mouseenter	and
mouseleave	event	handlers.

Recall	that	the	infobox	widget	is	attached	to	the	body	element.	The	element
div.qs-infobox	will	contain	the	UI	for	this	widget.	It	is	stored	in
that.infoboxElement,	attached	to	the	body	element,	and	bound	to	some	events.
The	name	variable	holds	the	name	of	the	widget	and	is	appended	to	the	name	of
the	event	it's	binding	to.	This	is	a	recommended	practice	when	using	jQuery;	the
reasons	why	will	be	explained	later	in	the	QuickStart.
Note:

Note:	Most	of	the	time,	widgets	are	attached	to	the	element	that	they	will
control;	however,	there	are	times	when	a	widget	will	need	to	create
additional	elements.	

In	the	above	_create	function,	the	infobox	widget	creates	a	div	to	hold	the
list	of	links.	The	default.htm	HTML	page	could	have	been	modified	to
include	the	div	in	the	first	place,	making	it	unnecessary	for	the	widget	to	add
an	additional	structure.	However,	the	code	was	written	this	way	to	illustrate	a
widget	adding	UI	elements	to	an	existing	HTML	structure.

Widget	Interactions
An	interesting	challenge	in	this	scenario	is	giving	the	user	enough	time	to	click
the	links	without	showing	the	pop-up	list	longer	than	needed.	The
implementation	requires	coordination	between	the	two	widgets.

Copy	Code

Copy	Code

Mouse	Entering	a	Keyword	Span
When	the	mouse	enters	the	keyword	span,	the	mouseenter	event	handler	in	the
tagger	widget	is	invoked.	The	name	being	appended	to	the	event	name	is	the
name	of	the	widget	and	is	used	as	a	namespace	for	the	event	binding.	This	is	a
recommended	practice.	Any	string	can	be	used	as	the	namespace,	but	using	the
name	of	the	widget	allows	you	to	tap	into	a	feature	of	the	widget	factory
described	later	in	the	QuickStart.
JavaScript

//	Contained	in	jquery.qs.tagger.js

.bind('mouseenter.'	+	name,	function	(event)	{

				clearTimeout(timer);

				that._trigger('activated',	event,	{name:	tag});

})

The	clearTimeout	call	uses	the	timer	variable,	which	is	defined	outside	of	the
widget	prototype	and	set	in	the	handler	for	mouseleave,	discussed	in	the	next
section.	This	means	there	will	be	only	one	timer	created	and	shared	among	all
instances	of	the	tagger	widget.

The	next	line	raises	the	tagactivated	event.	It	doesn't	raise	the	taggeractivated
event	because	the	widget	sets	the	widgetEventPrefix	property,	as	shown	in	the
next	code	snippet.	It	also	doesn't	raise	the	activated	event	as	you	may	have
suspected	because	the	widget	factory	changes	the	name	of	raised	events	by
prepending	the	name	of	the	widget	to	the	name	of	the	event	being	triggered.
JavaScript

//	Contained	in	jquery.qs.tagger.js

$.widget('qs.tagger',	{

				widgetEventPrefix:	'tag',

				options:	{

When	the	tagactivated	event	is	raised,	the	displayTagLinks	method	is	called

Copy	Code

on	the	infobox	widget.	As	you	will	notice	from	having	a	look	at
jquery.qs.infobox.js,	it	never	binds	to	this	event.	Doing	so	would	create	a
dependency	between	the	widgets.	A	better	option	is	to	follow	a	recommended
pattern	and	take	advantage	of	a	related	jQuery	UI	feature.	It	is	recommended
that	a	widget	provide	callback	options	for	all	of	the	events	it	raises.
JavaScript

//	Contained	in	jquery.qs.tagger.js

options:	{

				activated:	null,

				deactivated:	null

},

The	jQuery	UI	widget	factory	will	automatically	call	any	option	with	the	same
name	as	the	event	being	raised.	This	feature	allows	the	event	handlers	to	be
associated	by	setting	the	value	of	the	option.	The	QuickStart	does	this	in	the
startup	file.
JavaScript

//	Contained	in	startup.js

$('span[data-tag]').tagger({

				activated:	function	(event,	data)	{

								infobox.infobox('displayTagLinks',	event,	data.name);

				},

				deactivated:	function	()	{

								infobox.infobox('hideTagLinks');

				}

});

This	approach	is	also	a	nice	way	to	avoid	having	to	know	if	the	event	is	called
tagactivated	or	taggeractivated	or	something	else.	The	displayTagLinks
method	accepts	a	browser	event	and	the	name	to	look	up.	The	first	part	of	the
method	sets	up	enclosed	variables	to	be	used	in	the	second	part	of	the	method.
JavaScript

//	Contained	in	jquery.qs.infobox.js

displayTagLinks:	function	(event,	tagName)	{

				var	i,

								html,

								that	=	this,

								options	=	that.options,

								elem	=	that.infoboxElement,

								top	=	event.pageY	+	offsetY,

								left	=	event.pageX	+	offsetX,

								url	=	options.dataUrl	+	tagName	+	'?count='	+	options.maxItems,

								displayResult	=	function	()	{

																elem.html(html);

																elem.css({top:	top,	left:	left});

																elem.show();

												};

												

								if	(event.pageX	>	window.screenWidth	/	2)	{

												left	=	event.pageX	+	leftSideAdjustment;	

								}

After	the	closure	is	prepared,	left	is	adjusted	in	case	the	tag	is	on	the	right-hand
side	of	the	page.	The	second	part	of	the	displayTagLinks	method	is	an	Ajax
call	to	the	url,	constructed	above,	for	the	Delicious	bookmarking	service.
JavaScript

//	Contained	in	jquery.qs.infobox.js

$.ajax({

				url:	url,

				dataType:	'jsonp',

				success:	function	(data)	{

								if	(data	!=	null)	{

												html	=	'<h1>Popular	Links	for	'	+	tagName	+	'</h1>';

												for	(i	=	0;	i	<	data.length	-	1;	i	+=	1)	{

																html	+=	'<a	href="'	+

																								data[i].u	+	

																								'"	target="_blank">'	+	

																								data[i].d	+	'';

												}

												html	+=	'';

								}	else	{

												html	=	'<h1>Data	Error</h1><p>[snipped]</p>';

								}

								displayResult();

				},

				error:	function	(jqXHR,	textStatus,	errorThrown)	{

								html	=	'<h1>Ajax	Error</h1>'	+

															'<p>The	Ajax	call	returned	the	following	error:	'	+	

															jqXHR.statusText	+	'.</p>';

								displayResult();

				}

});

The	local	displayResult	function	is	scoped	only	to	the	displayTagLinks
method	since	it	was	needed	for	both	success	and	error	conditions	and	nowhere
else.	This	is	the	method	that	applies	the	result	to	the	element	for	the	user	to	see.

Copy	Code

Copy	Code

Mouse	Leaving	a	Keyword	Span
When	the	mouse	leaves	the	tag's	span,	a	similar	coordination	occurs.	The
tagger	widget	has	a	namespaced	event	bound	to	the	span's	mouseleave	event.
JavaScript

//	Contained	in	jquery.qs.tagger.js

.bind('mouseleave.'	+	name,	function	()	{

				timer	=	setTimeout(function	()	{

								that._trigger('deactivated');

				},	hideAfter);

});

The	timer	is	set	to	raise	the	tagdeactivated	event	after	1000	milliseconds,
which	is	the	value	of	hideAfter.

When	the	tagger	widget	was	applied	to	the	span	elements,	a	function	was
supplied	to	the	deactivated	callback,	as	you	also	saw	earlier	in	the	QuickStart.
JavaScript

//	Contained	in	startup.js

$('span[data-tag]').tagger({

				activated:	function	(event,	data)	{

								infobox.infobox('displayTagLinks',	event,	data.name);

				},

				deactivated:	function	()	{

								infobox.infobox('hideTagLinks');

				}

});

The	function	invokes	the	hideTagLinks	method	on	the	infobox	widget.
JavaScript

//	Contained	in	jquery.qs.infobox.js

hideTagLinks:	function	()	{

				!mouseOverBox	&&	this.infoboxElement.hide();

},

The	infobox	is	only	hidden	if	the	mouse	is	not	over	it.	Effectively,	the	1000	ms
delay	provides	the	user	time	to	move	the	mouse	from	the	keywords	to	the	links.

Copy	Code

Copy	Code

Mouse	Entering	the	Pop-up	List
Internally,	the	infobox	widget	uses	the	mouseOverBox	variable	to	maintain
state	indicating	whether	or	not	the	mouse	is	over	the	pop-up	list.	This	variable	is
defined	in	the	closure	created	by	the	self-executing	anonymous	function
wrapping	the	file.
JavaScript

//	Contained	in	jquery.qs.infobox.js

(function	($)	{

				var	offsetX	=	20,

								offsetY	=	20,

								mouseOverBox	=	false,

								leftSideAdjustment	=	-270;

				$.widget('qs.infobox',	{

When	the	mouse	enters	the	infobox,	mouseOverBox	is	set	to	true.
JavaScript

//	Contained	in	jquery.qs.infobox.js:	_create

.bind('mouseenter.'	+	name,	function	()	{

				mouseOverBox	=	true;

})

Copy	Code

Mouse	Leaving	the	Pop-up	List
When	the	mouse	leaves	the	pop-up	list,	mouseOverBox	is	set	to	false	and
hideTagLinks	is	invoked.
JavaScript

//	Contained	in	infobox.js

.bind('mouseleave.'	+	name,	function	()	{

				mouseOverBox	=	false;

				that.hideTagLinks();

});

hideTagLinks:	function	()	{

				!mouseOverBox	&&	this.infoboxElement.hide();

},

|	Community

To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com

Copyright	©	2011	by	Microsoft	Corporation.	All	rights	reserved.

Further	Reading
You	may	find	the	following	links	useful	in	your	investigation	of	the	jQuery	UI
widget	factory:

jQuery	UI	API	Developer	Guide
Widget	factory	on	the	jQuery	UI	wiki
Tips	for	Developing	jQuery	UI	1.8	Widgets	on	Eric	Hynds'	blog
Understanding	jQuery	UI	widgets:	A	tutorial	on	bililite.com

http://jqueryui.com/docs/Developer_Guide
http://wiki.jqueryui.com/w/page/12138135/Widget-factory
http://www.erichynds.com/jquery/tips-for-developing-jquery-ui-widgets/
http://bililite.com/blog/understanding-jquery-ui-widgets-a-tutorial/
http://www.codeplex.com/silk
mailto:pagdoc@microsoft.com?subject=Feedback about Widget QuickStart

Silk	1.0	-	June	2011

How	to:	Check	UIElement	Properties	with	Coded	UI	Test

The	following	How-to	topic	will	walk	you	through	the	creation	of	an	automated
test	that	checks	for	UIElement	properties	in	a	web	application	by	using	Visual
Studio	2010	Coded	UI	Test.	The	Coded	UI	test	performs	actions	on	the	user
interface	(UI)	controls	and	verifies	that	the	UIElement	properties	are	displayed
with	the	correct	values.	For	this	topic,	the	Mileage	Stats	Reference
Implementation	(Mileage	Stats)	will	be	the	targeted	application	used	for	testing.

The	automated	test	we	will	create	in	this	topic	will	navigate	to	the	Mileage	Stats
home	page	and	verify	that	each	of	the	images	contain	an	Alt	property	with	the
expected	values.	This	is	important	to	ensure	that	the	site	is	accessible	and	usable
to	all	visitors.

Prerequisites
This	topic	requires	you	to	have	the	same	prerequisites	required	by	Mileage
Stats:

Microsoft	Visual	Studio	2010	Professional,	Premium,	or	Ultimate	edition
Microsoft	Visual	Studio	2010	SP1
Microsoft	.NET	Framework	4.0	(installed	with	Visual	Studio	2010)
ASP.NET	MVC	3
Microsoft	SQL	Server	Compact	4.0
ADO.NET	Entity	Framework	4.1
NuGet
Internet	Explorer	9

It	is	assumed	that	the	Mileage	Stats	debug	model	web	application	has	been
deployed	to	a	server	running	Microsoft	Internet	Information	Services	(IIS),	and
that	the	test	site	is	http://localhost/mileagestats.

http://www.microsoft.com/downloads/en/details.aspx?FamilyID=75568aa6-8107-475d-948a-ef22627e57a5&displaylang=en
http://www.asp.net/mvc/mvc3
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=033cfb76-5382-44fb-bc7e-b3c8174832e2
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=b41c728e-9b4f-4331-a1a8-537d16c6acdf&displaylang=en
http://nuget.org/
http://windows.microsoft.com/en-US/windows/downloads/internet-explorer
http://localhost/mileagestats

Steps
1.	 In	Visual	Studio,	create	a	new	Test	Project	named

CheckUIElementProperty.	To	do	this,	point	to	New	on	the	File	menu,
and	then	click	Project.	In	the	New	Project	dialog,	select	Test
Documents	under	Test	Projects.	Set	the	project's	name	to
CheckUIElementProperty,	specify	a	valid	location,	and	then	click
OK.

2.	 Add	a	Coded	UI	Test.	To	do	this,	in	Solution	Explorer,	right-click	the
CheckUIElementProperty	project,	point	to	Add,	and	select	New	Test.
In	the	Add	New	Test	dialog,	select	the	Coded	UI	Test.	Name	the
Coded	UI	Test	VerifyImageAltProperty	and	click	OK.	In	the
Generate	Code	for	Coded	UI	Test	dialog	select	Record	actions,	edit
UI	map	or	add	assertions,	and	click	OK,	as	shown	in	the	screenshot
below.

3.	 Record	the	UI	Test	as	follows:
a.	 Click	the	Record	button	to	start	recording.

b.	
c.	 Open	Internet	Explorer.
d.	 Navigate	to	the	Mileage	Stats	home	page.
e.	 Click	the	Record	button	to	stop	recording.	Click	the	Show

Recorded	Steps	button	to	check	if	the	steps	were	recorded
correctly.	The	coded	UI	test	builder	–	Recorded	Actions	dialog

should	look	like	the	following	screenshot.

f.	 If	there	are	unexpected	steps,	you	can	remove	them	by	right-
clicking	the	step	you	want	to	delete	and	selecting	Delete.

g.	 Click	the	Generate	Code	button.	Name	the	method
GoToHomePage.	Click	the	Add	and	Generate	button.	The
code	will	be	generated	in	a	file	called	UIMap.Designer.cs.
This	code	can	be	customized	according	to	your	needs.
Note:

Each	time	you	generate	the	code	from	a	recorded	method,
the	code	in	the	UIMap.Designer.cs	file	will	be	overwritten.

4.	 Use	the	Coded	UI	Test	Builder	to	create	a	validation	method	to
validate	properties	of	the	target	UI	control.	For	this	example,	you	will
verify	that	the	property	of	each	image	on	the	home	page	is	set	to
expected	values	by	following	these	steps:

a.	 Add	an	assertion	to	the	UI	control.	To	do	this,	drag	the
crosshairs	onto	the	UI	control	in	your	application	that	you
want	to	test.	When	the	box	outlines	your	control,	release	the
mouse.	For	example,	drag	the	crosshairs	to	the	mileage	status
icon,	as	shown	below,	on	the	home	page.
Note:

It	will	be	easier	to	select	the	UI	elements	if	the	browser	is
maximized	to	100%.

b.	 The	properties	for	this	control	are	now	listed	in	the	Coded	UI
Test	Builder	-	Add	Assertions	dialog	box.

c.	 Right-click	the	Alt	property,	and	select	the	Add	Assertion.
Leave	all	values	set	to	the	defaults	and	click	OK.

d.	 Repeat	the	above	three	steps	for	all	images	on	the	home	page,
such	as	MyOpenId,	Yahoo,	and	the	HTML5	icons.	For	this
test,	collect	all	multi-assertions	into	one	Assert	method.

e.	 Click	the	Generate	Code	button.	Name	the	method
AssertImageAltProperty.	The	following	code	snippet	will	be
auto-generated	in	the	VerifyImageAltProperty.cs	file.

C#

	[TestMethod]

		public	void	CodedUITestMethod1()

		{

			//	To	generate	code	for	this	test,	select	"Generate	Code	for				//	Coded	UI	Test"	from	the	shortcut	menu	and	select	one	of	the	menu	items.

			//	For	more	information	on	generated	code,	see				//	http://go.microsoft.com/fwlink/?LinkId=179463

				this.UIMap.VerifyAltPropertyMethod();

				this.UIMap.AssertImageAltProperty();

		}

1.	 Verify	the	assertion	method	generated	in	UIMap.Designer.cs.
C#

//	<summary>

			//	AssertImageAltProperty	-	Use	'AssertImageAltPropertyExpectedValues'			//	to	pass	parameters	into	this	method.

//	</summary>

public	void	AssertImageAltProperty()

{

	#region	Variable	Declarations

		HtmlImage	uIMileageStatsIconImage	=	this.UIBlankPageWindowsInteWindow.UIMileageStatsKnowwherDocument.UIMileageStatsIconImage;

		HtmlImage	uIMyOpenIDImage	=	this.UIBlankPageWindowsInteWindow.UIMileageStatsKnowwherDocument.UILoginPane.UIMyOpenIDImage;

		HtmlImage	uIYahooImage	=	this.UIBlankPageWindowsInteWindow.UIMileageStatsKnowwherDocument.UILoginPane.UIYahooImage;

		HtmlImage	uISignInorRegisterImage	=	this.UIBlankPageWindowsInteWindow.UIMileageStatsKnowwherDocument.UILoginPane.UISignInorRegisterImage;

	#endregion

//	Verify	that	'Mileage	Stats	Icon'	image's	'Alt'	property//	equals	'Mileage	Stats	Icon'

	Assert.AreEqual(this.AssertImageAltPropertyExpectedValues.UIMileageStatsIconImageAlt,	uIMileageStatsIconImage.Alt);

//	Verify	that	'My	OpenID'	image's	'Alt'	property	equals	'My	OpenID'

	Assert.AreEqual(this.AssertImageAltPropertyExpectedValues.UIMyOpenIDImageAlt,	uIMyOpenIDImage.Alt);

//	Verify	that	'Yahoo'	image's	'Alt'	property	equals	'Yahoo'

	Assert.AreEqual(this.AssertImageAltPropertyExpectedValues.UIYahooImageAlt,	uIYahooImage.Alt);

//	Verify	that	'Sign	In	or	Register'	image's	'Alt'	property	equals	'Sign	In	or	Register'

	Assert.AreEqual(this.AssertImageAltPropertyExpectedValues.UISignInorRegisterImageAlt,	uISignInorRegisterImage.Alt);

}

1.	 Modify	the	generated	code	as	follows:
a.	 Copy	the	code	in	UIMap.Designer.cs	and	paste	it	into

UIMap.cs.
b.	 In	UIMap.cs,	if	not	already	present,	add	the	following	using

statement:
C#

using	Microsoft.VisualStudio.TestTools.UITesting.HtmlControls;

c.	 If	you	want	to	close	the	browser	window	automatically	after
each	test	case	runs,	add	a	CloseBrowserWindow	function	in
the	UIMap.cs	partial	class,	as	follows:

C#

public	partial	class	UIMap

	{

				...

				...

				public	void	CloseBrowserWindow()

				{

					#region	Variable	Declarations

						BrowserWindow	currentBrowserWindow	=	this.mUIBlankPageWindowsInteWindow;

					#endregion

						currentBrowserWindow.Close();

				}

	

					...

				

	}

d.	 Add	the	following	code	snippet	to	the
VerifyImageAltProperty	Class	in	the
VerifyImageAltProperty.cs	file.	The	TestCleanup	attribute
in	this	method	marks	this	method	to	be	executed	every	time	a
test	method	completes	its	run.
C#

//Use	TestCleanup	to	run	code	after	each	test	has	run

	[TestCleanup()]

		public	void	MyTestCleanup()

		{

		//	To	generate	code	for	this	test,	select	"Generate	Code	for			//	Coded	UI	Test"	from	the	shortcut	menu	and	select	one	of			//	the	menu	items.

		//	For	more	information	on	generated	code,	see			//	http://go.microsoft.com/fwlink/?LinkId=179463

					this.UIMap.CloseBrowserWindow();

		}

2.	 To	run	the	test,	Close	all	browser	windows.	Right-click	inside	the
VerifyImageAltProperty.cs	file	and	click	Run	Tests.	The	CodedUI

Test	begins	to	execute;	this	will	open	a	browser	and	will	run	the
application	programmatically	based	on	the	recorded	steps	and	will
assert	if	the	conditions	are	met.	If	they	are	met,	the	test	will	pass.
Otherwise,	they	will	fail.	Once	the	test	completes,	the	results	will	be
shown	in	the	Test	Results	window.

Outcome
Here	we	created	the	Automation	test	project,	which	can	be	used	to	automate
testing	of	your	web	application's	UIElement	Alt	property.

|	Community

To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com

Copyright	©	2011	by	Microsoft	Corporation.	All	rights	reserved.

Further	Reading
Testing	the	User	Interface	with	Automated	UI	Tests	on	MSDN
How	to:	Create	a	Coded	UI	Test	on	MSDN

http://msdn.microsoft.com/en-us/library/dd286726.aspx
http://msdn.microsoft.com/en-us/library/dd286681.aspx
http://www.codeplex.com/silk
mailto:pagdoc@microsoft.com?subject=Feedback about How to: Check UIElement Properties with Coded UI Test

Silk	1.0	-	June	2011

How	to:	Create	Automation	Negative	Case	with	Coded	UI	Test

The	following	How-to	topic	will	walk	you	through	the	creation	of	an	automated
test	for	your	web	application	by	building	a	coded	UI	test	using	Visual	Studio
Premium	or	Visual	Studio	Ultimate.	The	coded	UI	test	performs	actions	on	the
user	interface	(UI)	controls	and	verifies	that	the	UI	controls	display	the	expected
values.	For	this	topic,	the	Mileage	Stats	Reference	Implementation	(Mileage
Stats)	will	be	the	targeted	application	used	for	testing.

The	automated	test	created	in	this	topic	will	assert	a	negative	test	case	scenario.
These	tests	will	help	to	test	the	error	handling	capability	of	the	application	at	the
user	level.

Prerequisites
This	topic	requires	you	to	have	the	same	prerequisites	required	by	Mileage
Stats:

Microsoft	Visual	Studio	2010	Professional,	Premium,	or	Ultimate	edition
Microsoft	Visual	Studio	2010	SP1
Microsoft	.NET	Framework	4.0	(installed	with	Visual	Studio	2010)
ASP.NET	MVC	3
Microsoft	SQL	Server	Compact	4.0
ADO.NET	Entity	Framework	4.1
NuGet
Internet	Explorer	9

It	is	assumed	that	the	Mileage	Stats	web	application	has	been	deployed	to	a
server	running	Microsoft	Internet	Information	Services	(IIS)	in	debug	mode,
and	that	the	test	site	is	http://localhost/mileagestats.

http://www.microsoft.com/downloads/en/details.aspx?FamilyID=75568aa6-8107-475d-948a-ef22627e57a5&displaylang=en
http://www.asp.net/mvc/mvc3
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=033cfb76-5382-44fb-bc7e-b3c8174832e2
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=b41c728e-9b4f-4331-a1a8-537d16c6acdf&displaylang=en
http://nuget.org/
http://windows.microsoft.com/en-US/windows/downloads/internet-explorer
http://localhost/mileagestats

Steps
1.	 In	Visual	Studio,	create	a	new	Test	Project	named	NegativeTest.	To	do

this,	point	to	New	on	the	File	menu,	and	then	click	Project.	In	the	New
Project	dialog,	select	Test	Documents	under	Test	Projects.	Set	the
project's	name	to	NegativeTest,	specify	a	valid	location,	and	then	click
OK.

2.	 Add	a	coded	UI	test.	To	do	this,	in	Solution	Explorer,	right-click	the
NegativeTest	project,	point	to	Add,	and	select	New	Test.	In	the	Add
New	Test	dialog,	select	Coded	UI	Test.	Enter	the	Test	name	as
NegativeCodedUITest	and	click	OK.	In	the	Generate	Code	for
Coded	UI	Test	dialog,	select	Record	actions,	edit	UI	map	or	add
assertions,	and	click	OK.

3.	 Record	the	UI	Test	as	follows:
a.	 Click	the	Start	Recording	button	to	start	recording.
b.	 Open	Internet	Explorer.
c.	 Navigate	to	the	Mileage	Stats	home	page.
d.	 Click	the	Sign	in	or	Register	button.
e.	 On	the	Mock	Authentication	page,	click	the	Sign	In	button.
f.	 On	the	Dashboard,	click	Add	Vehicle	button.
g.	 Click	the	Save	button	on	the	Add	Vehicle	form	without

entering	any	data.
4.	 Click	the	Record	button	to	stop	recording.	Click	the	Show	Recorded

Steps	button	to	check	if	the	steps	were	recorded	correctly.	The	coded
UI	test	builder	dialog	should	look	like	the	following	screenshot.

5.	 If	there	are	unexpected	steps,	you	can	remove	them	by	right-clicking
the	step	you	want	to	delete	and	selecting	Delete.

6.	 Click	the	Generate	Code	button.	Name	the	method
AddVehiclewithNullData.	Click	the	Add	and	Generate	button.	The
code	will	be	generated	in	a	file	called	UIMap.Designer.cs.	This	code

can	be	customized	according	to	your	needs.
Note:

Note:	Each	time	you	generate	the	code	from	a	recorded	method,	the
code	in	the	UIMap.Designer.cs	file	will	be	overwritten.

7.	 Use	the	Coded	UI	Test	Builder	to	create	a	validation	method	to
validate	properties	of	the	target	UI	control.	For	this	example,	you	will
verify	whether	the	error	message	is	displayed	after	the	Save	button	is
clicked	by	following	these	steps:

a.	 Add	an	assertion	to	a	UI	control.	To	do	this,	drag	the
crosshairs	onto	the	UI	control	in	your	application	that	you
want	to	test.	When	the	box	outlines	your	control,	release	the
mouse.	For	this	example,	drag	the	crosshairs	to	the
UINameisrequiredPane	UI	element,	which	displays	the
validation	message	"Name	is	required,"	and	release	the	mouse.

b.	 The	properties	for	this	control	are	now	listed	in	the	Coded	UI
Test	Builder	-	Add	Assertions	dialog	box.

a.	
c.	 Right-click	the	Display	Text	property,	and	select	the	Add

Assertion	command.	Keep	the	other	default	values	and	click
OK.

d.	 Click	the	Generate	Code	button.	Name	the	method
VerifyErrorMessage.	The	VerifyErrorMessage	method	will
be	auto-generated	and	added	to	the	test	method	in	the
NegativeCodedUITest.cs	file.
C#

[CodedUITest]

	public	class	NegativeCodedUITest

	{

			public	NegativeCodedUITest()

			{

			}

			[TestMethod]

			public	void	CodedUITestMethod1()

			{

			//	To	generate	code	for	this	test,	select	"Generate	Code	for				//	Coded	UI	Test"	from	the	shortcut	menu	and	select	one	of				//	the	menu	items.

			//	For	more	information	on	generated	code,	see				//	http://go.microsoft.com/fwlink/?LinkId=179463

						this.UIMap.AddVehiclewithNullData();

						this.UIMap.VerifyErrorMessage();

			}

....

....

	}

8.	 Modify	the	generated	code	as	follows:
a.	 Copy	the	code	in	UIMap.Designer.cs	and	paste	it	into

UIMap.cs.
b.	 In	UIMap.cs,	if	not	already	present,	add	the	following	using

statement:
C#

using	Microsoft.VisualStudio.TestTools.UITesting.HtmlControls;

c.	 If	you	want	to	close	the	browser	window	automatically	after
each	test	case	runs,	add	a	CloseBrowserWindow	function	in
the	UIMap.cs	partial	class	as	follows:
C#

public	partial	class	UIMap

	{

								

				...

				public	void	CloseBrowserWindow()

				{

					#region	Variable	Declarations

						BrowserWindow	currentBrowserWindow	=	this.mUIBlankPageWindowsInteWindow;

					#endregion

						currentBrowserWindow.Close();

				}

						...

	}

d.	 Add	the	following	code	snippet	to	the	NegativeCodedUITest
class	in	NegativeCodedUITest.cs.	The	TestCleanup	attribute
in	this	method	marks	this	method	to	be	executed	every	time	a
test	method	completes	its	run.
C#

//	Use	TestCleanup	to	run	code	after	each	test	has	run

	[TestCleanup()]

		public	void	MyTestCleanup()

		{

		//	To	generate	code	for	this	test,	select	"Generate	Code	for			//	Coded	UI	Test"	from	the	shortcut	menu	and	select	one	of	the			//	menu	items.

		//	For	more	information	on	generated	code,	see		

		//	http://go.microsoft.com/fwlink/?LinkId=179463

					this.UIMap.CloseBrowserWindow();

		}

9.	 9.	Run	the	test	method	as	follows:
a.	 Close	all	browser	windows.	Right-click	inside	the

NegativeCodedUITest.cs	file	and	click	Run	Tests.	The	coded
UI	test	begins	to	execute;	this	will	open	a	browser	and	will	run
the	application	programmatically	based	on	the	recorded	steps
and	will	assert	if	the	conditions	are	met.	If	they	are	met,	the
test	will	pass.	Otherwise,	they	will	fail.	In	the	test	below,	it
passes.

b.	 Once	the	test	completes,	the	results	are	shown	in	the	Test
Results	window.

Outcome
Here	we	created	the	Automation	test	project,	which	can	be	used	to	automate	UI
testing	of	your	web	application	for	negative	test	cases.

|	Community

To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com

Copyright	©	2011	by	Microsoft	Corporation.	All	rights	reserved.

Further	Reading
Testing	the	User	Interface	with	Automated	UI	Tests	on	MSDN
How	to:	Create	a	Coded	UI	Test	on	MSDN

http://msdn.microsoft.com/en-us/library/dd286726.aspx
http://msdn.microsoft.com/en-us/library/dd286681.aspx
http://www.codeplex.com/silk
mailto:pagdoc@microsoft.com?subject=Feedback about How to: Create Automation Negative Case with Coded UI Test

Silk	1.0	-	June	2011

How	to:	Create	Web	Client	UI	Test	using	Coded	UI	Test

Overview

The	following	How-to	topic	will	walk	you	through	the	creation	of	an	automated
test	for	your	web	application	by	creating	a	coded	UI	test	using	Visual	Studio
Premium	or	Visual	Studio	Ultimate.	The	coded	UI	test	performs	actions	on	the
user	interface	(UI)	controls	and	verifies	that	the	correct	controls	are	displayed
with	the	correct	values.	For	this	topic,	a	default	ASP.NET	MVC	3	web
application	will	be	the	targeted	application	used	for	testing.

Prerequisites
This	topic	requires	you	to	have	the	following	prerequisites:

1.	 Microsoft	Visual	Studio	2010	Premium	or	Ultimate	edition
2.	 Microsoft	Visual	Studio	2010	SP1
3.	 Internet	Explorer	9
4.	 ASP.NET	MVC	3

http://www.microsoft.com/downloads/en/details.aspx?FamilyID=75568aa6-8107-475d-948a-ef22627e57a5&displaylang=en
http://windows.microsoft.com/en-US/windows/downloads/internet-explorer
http://www.asp.net/mvc/mvc3

Steps
1.	 In	Visual	Studio,	create	a	new	project.	To	do	this,	point	to	New	on	the

File	menu,	and	then	click	Project.	In	the	New	Project	dialog,	select
Visual	C#	under	Installed	Templates,	and	then	select	ASP.NET	MVC
3	Web	Application.	You	can	create	applications	using	either	Visual
Basic	or	Visual	C#.	Name	your	project	MVC3SampleApp,	then	click
OK.

a.	 In	the	New	ASP.NET	MVC	3	Project	dialog	box,	select
Internet	Application.	Select	Razor	as	the	view	engine.	Click
OK.

b.	
c.	 Select	Start	Debugging	from	the	Debug	menu.	Visual	Studio

will	launch	a	browser	and	open	the	application's	home	page.
Notice	that	the	address	bar	of	the	browser	says	localhost.
That's	because	localhost	points	to	your	own	local	computer,
which	is	running	the	application	you	just	built.	When	Visual
Studio	runs	a	web	project,	a	random	port	is	used	for	the	web
server.	In	the	image	below,	the	random	port	number	is	25857.
When	you	run	the	application,	you'll	probably	see	a	different
port	number.

d.	 Click	the	Log	On	link	on	the	Home	page.
e.	 Click	the	Register	link	and	register	an	account	by	entering	a

User	name	and	Password.	Click	the	Register	button.

2.	 Add	a	test	project	to	the	solution	using	the	Test	Project	template.	Right-
click	the	MVC3SampleApp	solution	in	Solution	Explorer,	point	to
Add,	and	select	New	Project.	In	the	New	Project	dialog,	select	Test
Documents	under	Test	Projects.	Set	the	project's	name	to	TestProject,
specify	a	valid	location,	and	then	click	OK.

3.	 Add	a	coded	UI	test.	To	do	this,	in	Solution	Explorer,	right-click	the
TestProject	project,	point	to	Add,	and	select	New	Test.	In	the	Add
New	Test	dialog,	select	the	Coded	UI	Test.	Name	the	coded	UI	test
MyCodedUITest	and	click	OK.

4.	 In	the	Generate	Code	for	Coded	UI	Test	dialog,	select	Record
actions,	edit	UI	map	or	add	assertions,	and	click	OK.

The	Coded	UI	Test	Builder	dialog	box	appears.	You	can	use	the
Coded	UI	Test	Builder	to	add	a	UI	control	to	the	UIMap	for	your	test,
or	to	generate	code	for	a	validation	method	that	uses	an	assertion	for	a
UI	control.	Click	the	red	button	to	start	recording	steps.

5.	 Record	the	UI	Test	as	follows:
a.	 Navigate	to	the	home	page
b.	 Click	the	Log	on	link	on	the	top-right	corner.
c.	 Enter	the	user	name	and	password.
d.	 Click	the	Log	on	button.

6.	 Click	the	record	button	to	stop	recording.	Click	the	Show	Recorded
Steps	button	to	check	if	the	steps	are	recorded	correctly.	The	result
should	look	like	the	screenshot	below:

7.	 Click	the	Generate	Code	button	in	UIMap	-	Coded	UI	Test	Builder.	In
the	Coded	UI	Test	Builder-Generate	Code	dialog	box,	change	the

http://msdn.microsoft.com/en-us/library/microsoft.visualstudio.testtools.uitest.common.uimap.uimap.aspx

method	name	to	LogOn	and	click	the	Add	and	Generate	button.
8.	 The	code,	which	will	be	generated	to	the	UIMap.Designer.cs	file,	is

shown	in	the	following	code	snippet.
Note:

If	you	record	a	new	method,	the	generated	code	will	override	the
code	in	UIMap.Designer.cs.

C#

[GeneratedCode("Coded	UITest	Builder",	"10.0.40219.1")]

public	partial	class	UIMap

{

								

	///	<summary>

	///	LogOn	-	Use	'LogOnParams'	to	pass	parameters	into	this	method.

	///	</summary>

	public	void	LogOn()

	{

		#region	Variable	Declarations

			HtmlHyperlink	uILogOnHyperlink	=	this.UIBingWindowsInternetEWindow.UIHomePageDocument.UILogOnPane.UILogOnHyperlink;

			HtmlEdit	uIUsernameEdit	=	this.UIBingWindowsInternetEWindow.UILogOnDocument.UIUsernameEdit;

			HtmlEdit	uIPasswordEdit	=	this.UIBingWindowsInternetEWindow.UILogOnDocument.UIPasswordEdit;

			HtmlInputButton	uILogOnButton	=	this.UIBingWindowsInternetEWindow.UILogOnDocument.UIMainPane.UILogOnButton;

		#endregion

		//	Go	to	web	page	'http://localhost:9926/'	using	new	browser	instance

		this.UIBingWindowsInternetEWindow.LaunchUrl(new	System.Uri(this.LogOnParams.UIBingWindowsInternetEWindowUrl));

		//	Click	'Log	On'	link

		Mouse.Click(uILogOnHyperlink,	new	Point(8,	11));

		//	Type	'Test	Account'	in	'User	name'	text	box

		uIUsernameEdit.Text	=	this.LogOnParams.UIUsernameEditText;

		//	Type	'{Tab}'	in	'User	name'	text	box

		Keyboard.SendKeys(uIUsernameEdit,	this.LogOnParams.UIUsernameEditSendKeys,	ModifierKeys.None);

		//	Type	'********'	in	'Password'	text	box

		uIPasswordEdit.Password	=	this.LogOnParams.UIPasswordEditPassword;

		//	Click	'Log	On'	button

		Mouse.Click(uILogOnButton,	new	Point(17,	16));

	}

...			

...

		

}

9.	 Use	the	UIMap	-Coded	UI	Test	Builder	to	create	an	assert	method	to
validate	properties	of	the	UI	control.	In	this	case,	you	will	verify	if
logging	on	to	the	default	site	was	successful	by	following	these	steps:

a.	 Add	an	assertion	to	the	UI	control.	To	do	this,	drag	the
crosshairs	onto	the	UI	control	in	your	application	that	you
want	to	test.	When	the	box	outlines	your	control,	release	the
mouse.	In	this	case,	draw	a	box	around	the	Logon	portion	of
the	home	page.

The	properties	for	this	control	are	now	listed	in	the	Coded	UI
Test	Builder	-	Add	Assertions	dialog	box.

b.	 Right-click	the	Display	Text	property	and	select	Add
Assertion.	Keep	all	values	as	default	and	click	OK.

c.	 Click	the	Generate	Code	button	in	the	Coded	UI	Test	Builder.
Name	the	assertion	method	VerifyLogOn.	This	method	will
be	auto	generated	and	added	to	the	CodedUITestMethod1	in
the	MyCodedUITest.cs	file,	as	shown	below:

C#

[TestMethod]

public	void	CodedUITestMethod1()

	{

	//	To	generate	code	for	this	test,	select	"Generate	Code	for	Coded	UI		//	Test"	from	the	shortcut	menu	and	select	one	of	the	menu	items.

	//	For	more	information	on	generated	code,	see			//	http://go.microsoft.com/fwlink/?LinkId=179463

				this.UIMap.LogOn();

				this.UIMap.VerifyLogOn();

	}			

10.	 Modify	the	generated	code	as	follows:
a.	 Copy	the	code	in	UIMap.Designer.cs	and	paste	it	into

UIMap.cs.
b.	 In	UIMap.cs,	if	it	is	not	already	present,	add	the	following

using	statement:
C#

using	Microsoft.VisualStudio.TestTools.UITesting.HtmlControls;

c.	 If	you	want	to	close	the	browser	window	automatically	after
each	test	case	runs,	add	a	CloseBrowserWindow	function	in
the	UIMap.cs	partial	class,	as	follows:
C#

public	partial	class	UIMap

	{

								

				...

				...

				public	void	CloseBrowserWindow()

				{

					#region	Variable	Declarations

						BrowserWindow	currentBrowserWindow	=	this.mUIBlankPageWindowsInteWindow;

					#endregion

						currentBrowserWindow.Close();

				}

	

					...

				

	}

d.	 Add	the	following	code	snippet	to	the	MyCodedUITest	Class
in	MyCodedUITest.cs	file.	The	TestCleanup	attribute	in	this
method	marks	this	method	to	be	executed	every	time	a	test
method	completes	its	run.
C#

//Use	TestCleanup	to	run	code	after	each	test	has	run

	[TestCleanup()]

		public	void	MyTestCleanup()

		{

		//	To	generate	code	for	this	test,	select	"Generate	Code	for	Coded	UI	Test"	from	the	shortcut	menu	and	select	one	of	the	menu	items.

		//	For	more	information	on	generated	code,	see	http://go.microsoft.com/fwlink/?LinkId=179463

					this.UIMap.CloseBrowserWindow();

		}

11.	 To	run	the	test,	close	all	browser	windows.	Right-click	inside	the
MyCodedUITest.cs	file	and	click	Run	Tests.	The	coded	UI	test	will
begin	to	execute;	this	will	open	a	browser,	will	run	the	application
programmatically	based	on	the	recorded	steps,	and	will	assert	if	the
conditions	are	met.	Once	the	test	completes,	the	results	will	be	shown
in	the	Test	Results	window.

Outcome
The	Automation	test	project	is	created	and	can	be	used	to	automate	UI	testing	of
your	web	application.

|	Community

To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com

Copyright	©	2011	by	Microsoft	Corporation.	All	rights	reserved.

Further	Reading
Testing	the	User	Interface	with	Automated	UI	Test	on	MSDN.
How	to:	Create	a	Coded	UI	Test	on	MSDN.

http://msdn.microsoft.com/en-us/library/dd286726.aspx
http://msdn.microsoft.com/en-us/library/dd286681.aspx
http://www.codeplex.com/silk
mailto:pagdoc@microsoft.com?subject=Feedback about How to: Create Web Client UI Test using Coded UI Test

|	Community

To	report	documentation	errors	or	provide	feedback	on	this	documentation,	please	send	email	to
pagdoc@microsoft.com

Copyright	©	2011	by	Microsoft	Corporation.	All	rights	reserved.

Silk	1.0	-	June	2011

Copyright

This	document	is	provided	"as-is".	Information	and	views	expressed	in	this
document,	including	URL	and	other	Internet	Web	site	references,	may	change
without	notice.	You	bear	the	risk	of	using	it.	Some	examples	depicted	herein	are
provided	for	illustration	only	and	are	fictitious.No	real	association	or	connection
is	intended	or	should	be	inferred.

©	2011	Microsoft.	All	rights	reserved.

Microsoft,	Windows,	Windows	Server,	Windows	Vista,	Silverlight,	Expression
Blend,	MSDN,	IntelliSense,	Visual	C#,	Visual	C++,	and	Visual	Studio	are
trademarks	of	the	Microsoft	group	of	companies.

All	other	trademarks	are	the	property	of	their	respective	owners.

http://www.codeplex.com/silk
mailto:pagdoc@microsoft.com?subject=Feedback about Copyright

	Project Silk: Web Guidance Table of Contents
	Introduction
	Architecture
	jQuery UI Widgets
	Application Notifications
	Modularity
	Client Data Management and Caching
	Server-Side Implementation
	Security
	Unit Testing Web Applications
	Widget QuickStart
	How to: Check UIElement Properties with Coded UI Test
	How to: Create Automation Negative Case with Coded UI Test
	How to: Create Web Client UI Test using Coded UI Test
	Copyright

