
P/Invoke	Interop	Assistant	-	Overview

Tricky	marshaling	rules	make	Interop	an	advanced	feature	that	many	developers
struggle	with.	This	is	especially	true	for	Platform	Invocation	Services	which,
unlike	COM	Interop	that	uses	Tlbimp,	do	not	provide	any	automated	way	of
generating	managed	proxy	entry	points	based	on	some	formal	description	of	the
unmanaged	side.	Developers	end	up	declaring	the	entry	points	manually,	often
just	trying	to	guess	the	signatures	on	a	trial-and-error	basis	until	their	particular
scenario	seems	to	work.	As	often	as	not,	this	method	of	generating	PInvoke
signatures	results	in	insidious	bugs	such	as	memory	corruption	or	unexpected
product	behavior,	that	do	not	get	caught	until	late	into	the	product	cycle,	if	at	all.

The	P/Invoke	Interop	Assistant	provides	automatic	generation	of	managed	code
from	C	headers	as	well	as	the	reverse	generation	of	unmanaged	signatures	based
on	managed	inputs.	Users	can	take	advantage	of	the	tools	to	easily	generate
Windows	and	custom	managed	entry	points	and	verify	that	the	stack	layout
produced	by	the	marshaler	at	runtime	will	really	match	what	is	expected	by	the
unmanaged	side.	The	SigExp	is	also	capable	of	providing	additional	information
such	as	memory	allocation	and	marshaling	details.

The	Assistant	is	supported	on	Windows	XP	SP2,	Windows	Vista	and	above.	It
comprises	of	two	tools	that	complement	each	other:

SigImp:	Unmanaged	to	Managed	Signature	Converter	SigExp:	Managed	to
Unmanaged	Signature	Converter

If	you	have	any	suggestion	about	the	tool,	want	to	file	bugs	or	give	your
comments,	please	send	email	to	sigtool@microsoft.com.

mailto:sigtool@microsoft.com


SigImp:	Unmanaged	to	Managed	Signature	Converter

The	converter	generates	managed	signatures	and	definitions	in	either	C#	or
VB.NET	from	unmanaged:

Type
Procedure	(Function)
Constant
Snippet	of	manually-entered	unmanaged	function	signature

The	converter	can	be	invoked	using	the	P/Invoke	Interop	Assistant	application	or
as	a	command	line	tool.	In	the	Assistant,	switch	to	the	SigImp	Search	tab,	choose
the	kind	(Type,	Procedure,	Constant,	All),	the	target	language	(C#	or	VB.NET)
and	enter	the	name	of	the	unmanaged	entity.	You	can	also	enter	unmanaged
signature	manually	if	SigImp	Translate	Snippet	tab	is	selected.	The	C#	or
VB.NET	code	appears	in	the	box	located	at	the	right	side	of	the	window.

The	command	line	tool	can	be	used	to	process	entire	C++	header	files	in	the
same	fashion	as	the	Assistant	SigImp	Translate	Snippet	tab.	It	has	the	following
usage:

GUI	Usage	Command	line	usage
Unsupported	scenarios	and	other	special	cases



GUI	Usage

The	tabs	of	SigImp	Search	and	SigImp	Translate	Snippet	offer	two	ways	to
convert	unmanaged	signatures	to	the	managed	signatures.

SigImp	Search	allows	you	to	choose	the	managed	language	that	you	want	to
generate,	and	select	a	native	type,	procedure,	or	constant	to	do	the	generation.
The	UI	consists	of	the	following	elements:

Name:	The	keyword	used	to	search	the	unmanaged	signature	names.
Kind:	Select	one	item	in	the	Kind,	and	the	unmanaged	signature	list	will	be
filtered.
Language:	Choose	Csharp	or	VB.NET,	and	the	managed	code	will	be
generated	in	the	selected	language.
The	unmanaged	signature	list:	It’s	at	the	left-bottom,	which	displays	a	list
of	supported	types,	methods,	and/or	constants	collected	from	common
Windows	SDK	header	files.	You	can	select	one	or	more	items	to	generate
the	managed	signature(s).
Generated	managed	code	output:	It’s	on	the	right	of	the	UI,	which	shows
the	generated	results.
Generate	button:	Click	the	button	and	the	code	editor	on	the	right	will
display	the	generated	results.
Auto	Generate:	If	it	is	checked,	the	generated	results	will	be	generated
immediately	when	you	select	items	in	the	signature	list.
Limitation:	At	most	5	items	can	be	auto	generated	simultaneously	each
time.



Figure	1:	P/Invoke	Interop	Assistant	GUI	–	SigImp	Search

In	SigImp	Translate	Snippet,	you	can	write	your	native	code	snippet	to	generate
the	managed	code.	The	UI	description	and	usage	is	as	follows:

Language:	Choose	Csharp	or	VB.NET,	and	the	managed	code	will	be
generated	in	the	selected	language.
Native	Code	Snippet	editor:	You	can	write	your	native	code	snippet	here.
Errors	area:	It’s	at	the	left-bottom,	which	will	display	compile	errors	and
warnings	in	real	time.
Generated	managed	code	output:	It’s	on	the	right	of	the	UI,	which	shows
the	generated	results.
Generate	button:	Click	the	button	and	the	code	editor	on	the	right	will
display	the	generated	results.
Auto	Generate:	If	the	box	is	checked,	the	generated	results	will	be
generated	immediately	when	you	are	typing	in	the	Native	Code	Snippet
editor.



Figure	2:	P/Invoke	Interop	Assistant	GUI	–	SigImp	Translate	Snippet



Command	Line	Usage

The	command	line	tool	has	the	following	usage:

sigimp	[options]	[Header	File	Names]

				/genCode:[yes/no]											Whether	or	not	to	generate	a	code	file	(default	yes)

				/genPreProc:[yes/no]								Generate	the	preprocessor	code

				/lang[uage]:lang												Language	to	generate	into;	vb	(default)	or	cs

				/out:filename															Output	file	name	(default	NativeMethods.vb)

				/useSdk:[yes/no]												Whether	or	not	to	add	common	SDK	include	paths	(default	no)

				/lib:name,name														List	of	libraries	to	resolve	DLL's	against

				/includePath:path,...							Include	File	Path

				/nologo																					Prevent	logo	display

				/?																										Help	screen

Notice:	The	command	line	tools	have	a	special	interpretation	of	backslash
characters	when	they	are	followed	by	a	quotation	mark	character	("),	as	follows:

2n	backslashes	followed	by	a	quotation	mark	produce	n	backslashes
followed	by	a	quotation	mark.
(2n)	+	1	backslashes	followed	by	a	quotation	mark	again	produce	n
backslashes	followed	by	a	quotation	mark.
n	backslashes	not	followed	by	a	quotation	mark	simply	produce	n
backslashes.

For	example,	in	the	command	line,	you	may	need	to	specify	a	file	path	like	the
following:
"C:\Header	Files\Header	File.h"
"C:\Header	Files"
"C:\Header	Files\\"



Unsupported	Scenarios	and	Other	Special	Cases

In	the	current	version,	the	tool	doesn’t	support	converting	unmanaged	signatures
in	the	following	scenarios:

Const	value	types,	such	as	const	int	a	=	1
Explicit	cast	macro	definition,	such	as	#define	A	(char)1
Macro	functions,	such	as	#define	Min(a,b)?a:b
Macros	involving	expressions,	such	as	#define	A	(1+2-0.1)
Nested	macros	such	as	#define	A	TEXT("AA")
Typedefs	that	are	equivalent	to	primitive	types,	such	as	typedef	int	A
Functions	with	a	variable	number	of	arguments
C++	language	features,	such	as	classes,	templates,	and	namespaces
The	DLL	name	in	DllImportAttribute	might	be	unknown	if	the	functions
are	implemented	in	.lib	file,	the	functions	are	user	defined,	or	in	other	cases
that	the	DLL	name	cannot	be	determined.

Check	MSDN	for	help	in	manually	generating	signatures	for	the	above
scenarios.	Some	other	special	cases	are:

The	built-in	types	and	APIs	are	from	Visual	Studio	2005	with	Service	Pack
1.	For	the	types	and	APIs	from	other	versions,	you	may	need	to	copy	the
necessary	declarations	from	the	corresponding	header	files,	and	paste	it	into
the	SigImp	Translate	Snippet	tool	to	see	the	results.
When	no	calling	convention	is	specified	in	unmanaged	code,	it’s
recommended	that	you	review	the	generated	code	and	make	sure	that	the
calling	convention	is	correct.



SigExp:	Managed	to	Unmanaged	Signature	Converter

The	converter	consumes	managed	assemblies	which	it	reflects	on	to	find	all
P/Invoke	declarations,	types	imported	from	COM,	and	delegates.	It	can	be
invoked	using	the	P/Invoke	Interop	Assistant	application	or	as	a	command	line
tool.	In	the	Assistant,	switch	to	the	SigExp	tab,	open	an	assembly,	and	choose	the
method	or	type	to	convert.	The	corresponding	C	declarations	appear	in	the
Unmanaged	signature	box	and	tips	in	the	Additional	information	box.	The
Options	menu	contains	settings	that	influence	the	output	(refer	to	the	description
below).

GUI	Usage	Command	line	usage



GUI	Usage

The	UI	of	SigExp	is	split	into	three	areas:

The	left	area:	displays	the	signatures	in	the	user-loaded	assembly.
The	unmanaged	signature	area:	shows	the	unmanaged	signature
generated	from	the	selected	managed	signature	selected	in	the	left	area.
The	additional	information	area:	offers	additional	information	about	the
behavior	of	the	marshaler	for	the	particular	managed	signature,	including
hints	and	warnings	addressing	common	issues.

Figure	3:	P/Invoke	Interop	Assistant	GUI	–	SigExp

To	load	an	assembly,	you	can	either:

Choose	File	->	Open	from	the	menu,	and	select	a	particular	assembly,	or
Drag	the	assembly	file	and	drop	it	to	the	left	area.



Command	Line	Usage

The	command	line	tool	has	the	following	usage:

sigexp	[<options>]	/file	<path_to_assembly>	[<def_1>,<def_2>,	...]

				/32									-	generate	signatures	for	32-bit	target	platform	(Default)

				/64									-	generate	signatures	for	64-bit	target	platform

				/unicode				-	generate	signatures	for	Unicode	target	platform	(Default)

				/ansi							-	generate	signatures	for	ANSI	target	platform	-	Win9x

				/wintypes			-	use	standard	Windows	types	like	'LPCSTR'	(Default)

				/plaintypes	-	use	plain	C++	types	like	'const	char	*'

				/color						-	use	colorful	console	output	(Default)

				/bw									-	use	boring	B&W;	output

				/direction		-	annotate	ptr	parameters	with	marshal	direction	like	'/*in*/'

				/nologo					-	prevents	displaying	of	logo

				/nomsg						-	prevents	displaying	of	error,	warning,	and	info	messages

				/notypes				-	prevents	displaying	of	complex	types	definitions

																								(will	only	display	the	signature	itself)

				/?										-	This	help	screen.

<def_n>	are	designations	of	types	or	methods	in	the	assembly.	If	none	is	given,

signatures	of	all	interop	methods	and	delegates	will	be	displayed.

Example:

sigexp	/direction	/file	mscorlib	Microsoft.Win32.Win32Native::CreateFile


	Overview
	SigImp: Unmanaged to Managed Signature Converter
	GUI Usage
	Command line usage
	Unsupported scenarios and other special cases

	SigExp: Managed to Unmanaged Signature Converter
	GUI Usage
	Command line usage


