
	
Sappy	2006:	OMFG	HELP!



OMFG	HELP!
When	I	try	to	play	a	certain	song,	I	get	a	generic	error	message.
What's	up	with	that?

The	EOT	command	is	not	fully	supported.	A	single	note	works	fine,	but
full	chords	fail.	The	actual	error	that's	supposed	to	appear	is
"Subscript	out	of	Range",	which	doesn't	help	much	either.

I'm	afraid	there's	little	to	be	done	here	but	to	avoid	playing	these
songs.

Developers,	if	you	have	a	song	with	passages	like	this:

.byte	EOT,	As2

.byte						Cs3

.byte						Fn3

...that	wouldn't	work.	TIEs	start	fine,	but	EOTs	spanning	more	than
one	note	break	things.

Lacking	.S	files,	Pokémon's	"Caves	and	Darkness"	song	is	a	bit
difficult	to	fix	but	you	could	look,	in	the	song	data,	for	0xCE	and	0xCF
which	are	EOT	and	TIE	respectively.

My	Sappy-enabled	homebrew	doesn't	work	in	Sappy.	The	header
pointers	are	all	wrong!

Since	Classic	VB	only	supports	signed	Longs/DWords,	certain
pointer	ranges	translate	to	a	negative	decimal	number.	I	had	this
problem	myself	while	working	on	the	Demo	Jukebox.	I	fixed	this	by
moving	all	SOUND_FILES	to	the	start	of	the	rom	until	the	pointer	was	in
a	correctly	interpreted	range:

$(TARGET_ELF):	$(SOUND_FILES)	$(.OFILES)	Makefile	$(DEPENDFILE)

	 @echo	>	$(MAPFILE)

	 $(CC)	-g	-o	$@	$(SOUND_FILES)	$(.OFILES)	-Wl,$(LDFLAGS)

This	is	caused	by	small	programs	and	the	music	data	being	put	at
the	end	of	the	rom	by	default.

When	using	the	MIDI	driver,	the	instruments	are	all	wrong!
That's	because	the	games	don't	need	to	adhere	to	the	General	MIDI
standard.	Any	given	instrument	or	"patch"	as	it's	often	called	can
have	any	sound.	It's	up	to	the	sound	and	music	artists	of	the	game	in



question	how	much	the	game	patches	match	up	to	the	General	MIDI
standard.	You	can	remap	the	patches	with	the	<midimap>	XML	tag.
Please	refer	to	the	Sappy.XML	documentation	for	details.

I	have	those	media	keys	on	my	keyboard,	but	some	don't	work	in
Sappy	like	"Eject"!

As	of	version	1.1,	Sappy	only	listens	to	Play/Pause	(which	doesn't
pause),	Stop,	Next,	Previous,	Volume	Up	and	Volume	Down.	It's
ignoring	of	Eject	is	quite	natural.	Each	key	must	be	coded	in
seperately.

I'm	running	on	a	Japanese	system,	and	the	text	is	all	garbled!
It's	not	easy	to	get	Japanese	text	rendered	properly.	We're	still
figuring	this	out.	In	the	meantime,	you	can	get	a	non-localized
version	where	you	got	this.

Built	on	Wednesday,	April	12th,	2006



	
Sappy	2006:	What's	New



What's	New
From	1.1	to	1.2

Super-fast	sample	loading	-	ask	for	details	if	you	dare!

Anti-earbleeding	system	to	disable	unneeded	but	ear-piercing
sounds	like	some	in	Final	Fantasy	4.

MIDI	support	like	in	the	old	Sappy.

MIDI	mapping	editor.

MIDI	export,	thanks	to	Drag	for	fixing	it.

Ability	to	choose	which	MIDIOUT	device	to	use.

Various	bugfixes.

From	1.0	to	1.1

Idiot-proof	exporters.	You'll	be	notified	when	you	misread	"file
pattern"	for	"file	name"	or	"path	name".

Non-braindead	assembler.	It	no	longer	fails	on	pointers.

Volume	control	slider.	Responds	to	keyboard	(if	it	has	focus)	and
mouse	wheel.

WM_APPCOMMAND	support.	If	you	have	dedicated	media
control	buttons	on	your	keyboard,	Sappy	will	listen	to	them.

Sound	loading	on	byte	arrays	instead	of	character	strings,	as
urged	by	Bouché.

Feedback	while	loading	a	song	to	play.

Rudimentary	Sappy	Classic-style	MIDI	support	with	equally
rudimentary	GameBoy	Classic	mode	and	instrument	remap.

Wishlist

Support	for	more	MIDI	controls.

Tempo	fix	for	exports.

GameBoy	Classic	mode	for	the	new	driver.



Full	sound	loading	fix.	As	of	1.1,	only	PCM	waves	are	properly
loaded.	Tone	generators	are	still	loaded	in	strings.

Built	on	Friday,	December	22nd,	2006



	
Sappy	2006:	XML	definition



XML	definition
	Root	element	SAPPY	→	one	or	more	ROM	elements.
	Element	ROM	→	one	or	more	PLAYLIST	elements,	one
optional	BLEEDINGEARS	element,	one	optional	MIDIMAP
element.

	Attribute	CODE,	required.
	Attribute	NAME,	required.
	Attribute	SONGTABLE,	pointer,	required.
	Attribute	SCREENSHOT,	file.
	Attribute	CREATOR.
	Attribute	TAGGER.
	Element	PLAYLIST	→	one	or	more	SONG	elements.
	Attribute	NAME,	required.
	Attribute	STEAL,	another	CODE.
	Element	SONG	→	the	song's	name.
	Attribute	TRACK,	required.

	Element	BLEEDINGEARS	→	one	or	more	INST
elements.

	Element	INST.
	Attribute	ID,	MIDI	patch	number,	or...
	Attributes	FROM	and	TO,	range	of	MIDI
patch	numbers.

	Element	MIDIMAP	→	one	or	more	INST	elements,
one	or	more	DRUM	elements.

	Element	INST.
	Attribute	FROM,	MIDI	patch	number,
required.
	Attribute	TO,	MIDI	patch	number,
required.
	Attribute	TRANSPOSE.
	Attribute	SECOND.	Not	used	in	this	version.
	Attribute	THIRD.	Not	used	in	this	version.

	Element	DRUM.
	Attribute	FROM,	note,	required.
	Attribute	TO,	note,	required.
	Attribute	KIT.	Not	used	in	this	version.



Built	on	Wednesday,	July	26th,	2006



	
Sappy	2006:	Hacker	Stuff



MID2AGB	and	the	Built-In	Assembler
If	you	have	the	MID2AGB	converter,	you	can	use	it	to	convert	most	MIDI
files	to	the	Sappy	engine's	native	format.	But	this	is	only	half	the
procedure.	The	resulting	.S	files	must	be	converted	to	binary	code.	This
can	be	done	with	most	standards-compliant	assemblers,	such	as	the	one
used	in	GCC.

Unfortunately,	when	using	an	assembler	the	pointers	are	all	off	and	the
Voice	Group	is	undefined.	We	used	to	hand-edit	the	.S	files	in	NotePad
or	whatever	and	add	the	intended	location	in	ROM	to	all	referenced
pointers.

Sappy	2006	packs	a	built-
in	assembler-like	tool	that's
custom-built	for	the	specific
purpose	of	converting
Sappy	.S	files.	It	doesn't
generate	a	single	byte	of
code,	only	song	data.	But	it
does	automatically	fix	the	pointers,	and	even	recognizes	the	header
bytes	when	it	sees	them	so	the	new	song	header	can	automatically	be
linked	into	the	Song	Table!

Usage

First,	you	must	copy	or	rename	the	file	musicplaydef.s	to	mplaydef.s.	For
some	reason,	Nintendo	gave	it	another	name	than	is	referenced	in	the
song	files,	and	copies	to	\src	with	the	proper	name.	Make	sure	that
mplaydef.s	is	in	the	same	folder	as	your	song	files.

After	converting	your	song,	picking	a	voicegroup	offset	from	another	song
and	determining	where	in	the	ROM	you	want	to	put	the	new	one,	open
the	assembler	and	fill	in	all	three	fields.	The	rest	should	be	pretty	much
automatic.

The	assembler	works	only	because	Sappy	song	files	have	certain
characteristics:

No	forward	jumps,	only	backwards.



Words	are	used	exclusively	in	jumps	and	the	header.

The	only	.global	is	also	the	song	name	and	therefore	header
label.

Built	on	Tuesday,	November	8th,	2005



	
Sappy	2006:	Hacker	Stuff



Song	Transplants
Any	game	that	uses	the	M4A	engine	to	play	back	its	music	and	sounds
can	be	used	in	a	song	transplantation.	This	used	to	be	a	very	big	task,
finding	a	song's	header	and	hand-dumping	each	track.	Then,	you'd	have
to	go	through	each	track	and	edit	every	single	pointer.	One	slip-up	and
the	song	wouldn't	work.

Now	all	you	have	to	do	between	exporting	and	importing	the	tracks	is	to
edit	the	tracks'	VOICE	commands	(most	tracks	having	only	one	of	those),
and	picking	a	nice	voice	group	that	more	or	less	suits	your	needs.

The	following	things	must	be	done	for	a	proper	song	transplant:

Export	tracks

Edit	voice	commands

Import	tracks

Built	on	Friday,	November	4th,	2005



	
Sappy	2006:	Hacker	Stuff



Export	Tracks
The	Export	Tracks	dialog	has	a	list	of	track	pointers	and	a	pattern-
sensitive	filename	textbox.

If	you	enter,	for	example.	"RCR	Intro	track	$T.bin",	you'll	get	track	files
called	"RCR	Intro	track	0.bin",	"RCR	Intro	track	1.bin"	etcetera.	Any
pointers	found	therein	will	be	automatically	recalculated.	Entering	"$P"
adds	the	tracks'	pointers	to	their	filenames.

Built	on	Monday,	November	28th,	2005



	
Sappy	2006:	Hacker	Stuff



Edit	voice	commands
Because	instruments	hardly	ever	match	up	between	games,	transplanted
songs	must	be	edited	to	use	the	target	game's	instruments.	There	are
two	steps	to	do	this:

Figure	out	which	instruments	to	use.

Edit	track	data.

To	do	step	1,	open	the	target	game	and	find	a	song	that	has	the	required
instruments,	or	something	close.	Then	press	Extract	Samples	and	make
sure	you	use	the	$I	file	name	pattern.	Identify	the	instruments	you	want
and	write	them	down	somewhere.	This	is	only	one	of	several	methods.

To	do	step	2,	open	each	track	file	in	a	hex	editor	and	find	the	BD	bytes.
They	can	often	be	found	near	the	beginning	of	each	file.	The	byte	that
follows	it	is	the	track's	instrument.	Replace	these	values	with	the	ones
you	wrote	down	in	step	1.

Built	on	Friday,	November	4th,	2005



	
Sappy	2006:	Hacker	Stuff



Import	Tracks
The	Import	Tracks	dialog	is	a	little	more	complex	than	the	Export	dialog.
Select	the	track	files	you	want	to	import	in	the	list	box,	and	enter	three
pointer	values.	Defaults	are	provided,	these	are	the	currently	selected
song's	pointers.

Tracks	are	handled	in	the	order	they	appear	in	the	list	box.	To	import	a
later-appearing	file	before	an	earlier-appearing	file,	rename	them	in
Explorer	to	change	their	sorting	order.	In-track	pointers	are	recalculated
when	needed.

When	importing	is	done,	Sappy	will	ask	for	confirmation	to	automatically
change	the	Master	Song	Table	to	reflect	your	changes.

Built	on	Friday,	November	28th,	2005



	
Sappy	2006:	Hacker	Stuff



Data	formats



Samples

Type Name Description
u16 type Not	used
u16 stat 0x0000	for	oneshot,	0x4000	for	forward	loop
u32 freq "Normal"	frequency	<<	10
u32 loop Loop	start	position	in	samples
u32 size Total	number	of	samples

s8 data[] Size+1	samples	in	total.	Last	byte	is	zero	for	one-shots,same	as	loop	pointer	for	looped	samples.



Music	headers

Type Name Description
u8 NumTrks Number	of	tracks	in	the	song
u8 NumBlks Number	of	blocks	(?)
u8 Priority
u8 Reverb
u32 Voicegroup Pointer	to	instrument	bank
u32... Track Pointers	to	tracks

Built	on	Monday,	March	7th,	2006



	
Sappy	2006:	Hacker	Stuff



MIDI	Reference
Note	that	no	single	GBA	game	has	to	conform	to	this	standard.



Drum	Keys

Nuff	said.



Patch	Assignments

Piano Chromatic	Percussion Organ
0	Acoustic	grand	piano 8	Celesta 16	Hammond	organ
1	Bright	acoustic	piano 9	Glockenspiel 17	Percussive	organ
2	Electric	grand	piano 10	Music	box 18	Rock	organ
3	Honky-tonk	piano 11	Vibraphone 19	Church	organ
4	Rhodes	piano 12	Marimba 20	Reed	organ
5	Chorused	piano 13	Xylophone 21	Accordion
6	Harpsichord 14	Tubular	bells 22	Harmonica
7	Clavinet 15	Dulcimer 23	Tango	accordion

Guitar Bass Strings
24	Acoustic	guitar	(nylon) 32	Acoustic	bass 40	Violin
25	Acoustic	guitar	(steel) 33	Electric	bass	(finger) 41	Viola
26	Electric	guitar	(jazz) 34	Electric	bass	(pick) 42	Cello
27	Electric	guitar	(clean) 35	Fretless	bass 43	Contrabass
28	Electric	guitar	(muted) 36	Slap	bass	1 44	Tremolo	strings
29	Overdriven	guitar 37	Slap	bass	2 45	Pizzicato	strings
30	Distortion	guitar 38	Synth	bass	1 46	Orchestral	harp
31	Guitar	harmonics 39	Synth	bass	2 47	Timpani

Ensemble Brass Reed
48	String	ensemble	1 56	Trumpet 64	Soprano	sax
49	String	ensemble	2 57	Trombone 65	Alto	sax
50	Synth.	strings	1 58	Tuba 66	Tenor	sax
51	Synth.	strings	2 59	Muted	trumpet 67	Baritone	sax
52	Choir	Aahs 60	French	horn 68	Oboe
53	Voice	Oohs 61	Brass	section 69	English	horn
54	Synth	voice 62	Synth.	brass	1 70	Bassoon
55	Orchestra	hit 63	Synth.	brass	2 71	Clarinet

Pipe Synth	Lead Synth	Pad
72	Piccolo 80	Lead	1	(square) 88	Pad	1	(new	age)
73	Flute 81	Lead	2	(sawtooth) 89	Pad	2	(warm)



74	Recorder 82	Lead	3	(calliope	lead) 90	Pad	3	(polysynth)
75	Pan	flute 83	Lead	4	(chiff	lead) 91	Pad	4	(choir)
76	Bottle	blow 84	Lead	5	(charang) 92	Pad	5	(bowed)
77	Shakuhachi 85	Lead	6	(voice) 93	Pad	6	(metallic)
78	Whistle 86	Lead	7	(fifths) 94	Pad	7	(halo)
79	Ocarina 87	Lead	8	(brass	+	lead) 95	Pad	8	(sweep)

Sound	Effects
120	Guitar	fret	noise
121	Breath	noise
122	Seashore
123	Bird	tweet
124	Telephone	ring
125	Helicopter
126	Applause

Built	on	Wednesday,	April	12th,	2006



	
Sappy	2006:	Jukebox



Jukebox	Demo	Rom
The	Jukebox	Demo	Rom	is	written	by	Kyoufu
Kawa,	based	on	code	from	Catnip	Dreams.
Even	though	it	demonstrates	simple	palette
rotation	and	less	simple	Variable	Width	Fonts,
it's	main	focus	is	to	play	songs	using	the	M4A
engine.

Controls
Left/Right	-	Select	song.	Your	selection	wraps	around	if	needed.
A	button	-	Play	the	currently	selected	song.
B	button	-	Stop	playing.
Shoulder	buttons	-	Play	sound	effects.

Miscellaneous	information
The	rom's	internal	name	and	gamecode	is	KAWAJUKE	2K6	-	KWJ6.	It	has	a
Maker	Code	of	0xFF.	It	was	made	with	the	official	Nintendo-brand	GBA
development	kit.	It	has	the	unique	quality	of	having	all	the	song	data	at
the	start	of	the	ROM.

Built	on	Thursday,	September	28th,	2006



	
Sappy	2006:	Jukebox



Jukebox	Song	Credits
Listed	in	track	order.	Instrumentation	has	been	altered	and	some	tracks
have	been	completely	removed.

Test	song	Hand-coded	by	Kyoufu	Kawa

Keitaro's	Theme	-	"Memories"
From	"Catnip	Dreams",	2005	The	Helmeted	Rodent.
Composed	by	Majin	Bluedragon.
The	game	was	never	released,	and	songs	may	return	in	later	games	from
the	same	authors.

Monkey	Island	2	Theme	Song
From	"Monkey	Island	2",	LucasArts.
Recorded	from	DOSBox.

GRNFINAL
From	"The	Incredible	Toon	Machine",	Sierra.
Game	used	MIDI	files.

Canon
By	Pachelbel.
Found	by	Google.

Grabbag
From	"Duke	Nukem	3D",	3D	Realms.
Game	uses	MIDI	files.

At	Doom's	Gate,	Kitchen	Ace	and	I	Sawed	the	Demons
From	"Doom",	iD	software.
Downloaded	from	DoomWorld.

Eyecatcher
From	"Azumanga	Daioh	-	The	Anime".

TIM1
From	"Lemmings",	Psychnosis.

???
From	"Ninja	Gaiden".

Kawa's	Comin'



Original	by	DJ	Bouché,	extended	version	by	Baro.

Zero	Wing	Medley
From	"Zero	Wing",	Toaplan.
Sequenced	and	arranged	by	Mars	Jenkar.
Downloaded	from	VGMusic.

Hu-Ha	Dschinghis	Kahn
By	Dschinghis	Kahn.
Downloaded	from	some	Russian	site.

500	Miles	(I'm	Gonna	Be)
By	The	Proclaimers.
Downloaded	from	a	karaoke	site.

Pallet	Town
Ported	from	Pokémon.

Thexder	theme
Sequenced	by	Jan	van	Valburg.
Downloaded	from	VGMusic.

Built	on	Friday,	December	22nd,	2006



	
Sappy	2006:	Registry	keys



Registry	keys
AutoAdvance

Doesn't	do	anything.

Bar	X	state
Collapsed/Expanded	state	of	the	ExplorerBar	bars.

Driver
Which	driver	to	use.

Force	Nice	Bar
Use	system	style	or	fake	it	out.	Non-XP	systems	are	faked	by
default.

FMOD	Volume
Volume	at	which	to	play	the	music	when	using	the	FMOD	driver.

Hide	Bar
Hide	the	ExplorerBar	completely.	Makes	the	player	look	like
Bouché's	original.	Tasks	can	be	selected	from	the	menu,	but	ROM
information	is	unavailable.

Incessant	Sound	Override
Don't	play	any	Incessant	Sounds	if	true.

Last	ROM
Full	file	name	of	the	last	ROM	you	opened.

MIDI	Device
Index	of	the	MIDIOUT	device	to	use.

MIDI	in	GB	Mode
Replaces	all	instruments	with	square	and	saw-waves	if	set.

mIRC	Now	Playing
Write	Now	Playing	information	to	sappy.stt.	Use	sappy.mrc	to	show
this	during	IRC	sessions.

MSN	Now	Playing
Send	Now	Playing	information	to	MSN	Messenger.

Nice	Menus
When	enabled,	use	Office	2003	style	white	menus.	When	disabled,



use	older	style	gray	menus.

Reload	ROM
Reload	the	file	specified	in	"Last	ROM"	when	starting	up.

Seek	by	Playlist
When	enabled,	the	Previous/Next	buttons	go	by	playlist	entries
instead	of	raw	song	numbers.

Settings	Page
The	index	of	the	current	page	on	the	Settings	window.	Quick	re-entry.

Skin
Skin	#	to	use.

Skin	Hue/Saturation
Colorizing	values	for	the	skin

Song	Repeats
Determines	the	number	of	times	to	repeat	playback.

Window	Height
Height	of	the	main	window	in	twips.

Window	Font	(Size)
Allows	you	to	change	the	font	used	in	the	windows.	Defaults	to
"Lucida	Sans	Unicode",	8	points.

XML	File
XML	file	to	use.

Built	on	Thursday,	September	28th,	2006



	
Sappy	2006:	Track	byte	code



Track	byte	code
Wxx	(0x80++)

Wait	for	the	specified	number	of	clock	ticks

FINE	(0xB1)
Musical	term.	Ends	the	track.

GOTO,	label	(0xB2)
Unconditional	jump.

PATT,	label	(0xB3)
Unconditional	jump,	but	remembers	where	to	return.	Can	be	nested
up	to	three	times.

PEND	(0xB4)
Ends	a	pattern	and	returns	to	it's	call	source.	Ignored	if	not	called
from	somewhere.

REPT,	xx,	label	(0xB5)
Jumps	to	the	specified	label	xx	times.	If	xx	is	zero,	it	repeats	ad
infinitum	like	a	GOTO.	REPT	commands	cannot	be	nested,	and
cannot	be	specified	in	a	MIDI	sequencer.

PRIO,	xx	(0xBA)
Sets	the	priority	of	the	track.	xx	is	from	0	to	255	when	directly	editing
the	.s	file,	0	to	127	in	a	MIDI	sequencer.

TEMPO,	xx/2	(0xBB)
This	sets	the	tempo	of	the	entire	song.	xx	is	from	22	to	510.

KEYSH,	xx	(0xBC)
This	modulates	the	key	of	the	track.	xx	is	from	-128	to	127.	This
command	cannot	be	specified	in	a	MIDI	sequencer.

The	following	commands	are	in	"Running	Status"	mode.	This	allows
operation	from	their	parameters	alone,	which	is	good	when	a	whole	lot
are	seen	in	sequence,	like	a	pitch	bend	or	volume	slide.

VOICE,	xx	(0xBD)
Selects	a	patch	for	this	track.	xx	is	from	0	to	127.

VOL,	xx	(0xBC)



Sets	the	track	volume.	xx	is	from	0	to	127.

PAN,	xx	(0xBF)
Sets	the	track's	stereo	pan	position.	xx	is	from	-64	to	63,	but	if	it's	a
CGB	instrument,	hardware	restrictions	limit	you	to	just	"left",	"center"
and	"right".

BEND,	cV	+	xx	(0xC0)

BENDR,	xx	(0xC1)

LFOS,	xx	(0xC2)

LFODL,	xx	(0xC3)

MOD,	xx	(0xC4)

MODT,	xx	(0xC5)

TUNE,	cV	+	xx	(0xC8)

These	are	note	commands.	They	can	be	used	seamlessly	with	Running
Status	commands	because	of	their	bytecodes.

Nxx	[,	key	[,	vel]]	(0xD0++)
Plays	a	note.	xx	is	the	note	length	from	00	to	96.	24	is	a	quarter	note,
96	a	whole.	Key	is	in	the	"Cn3"	format	where	the	first	character	is	the
name	of	the	note	("CDEFGAB"),	the	second	either	"n"	for	a	natural	or
"s"	for	a	sharp	and	the	third	the	octave.	There	are	also	"minus
octaves",	written	like	"CnM2"	and	stuff.	Octaves	effectively	range
from	M2	to	8.	From	CnM2	to	Gn8	covers	all	127	MIDI	key	numbers.
Velocity	ranges	from	0	to	127,	but	unlike	in	MIDI,	velocity	0	is	not
synonimous	to	"note	off".

EOT	[,	key]	(0xCE)
Stops	the	matching	TIE	note.

TIE	[,	key,	[,	vel]]	(0xCF)
This	note,	which	works	just	like	Nxx,	continues	to	sound	until	the	next
matching	EOT	command.

Built	on	Friday,	November	4th,	2005


	OMFG HELP!
	What's New
	XML definition
	Jukebox Demo Rom
	Song credits

	Registry keys

