
						 	

Sandcastle	Tools

Welcome
See	Also	Send	Feedback

[This	is	preliminary	documentation	and	is	subject	to	change.]

Welcome	to	the	Sandcastle	Tools	help	file.	The	Sandcastle	tools	are	used	to
create	help	files	for	managed	class	libraries	containing	both	conceptual	and
API	reference	topics.	API	reference	topics	are	created	by	combining	the	XML
comments	that	are	embedded	in	your	source	code	with	the	syntax	and
structure	of	the	types	which	is	acquired	by	reflecting	against	the	associated
.NET	Framework	assembly.	Conceptual	topics	are	created	by	converting	XML
documents	that	you	author	containing	Microsoft	Assistance	Markup	Language
(MAML).

Sandcastle	was	originally	created	by	Microsoft	back	in	2006.	The	last	official
release	from	Microsoft	occurred	in	June	2010.	Until	October	2012,	it	was
hosted	at	the	Sandcastle	project	site	on	CodePlex.	In	October	2012,	Microsoft
officially	declared	that	they	were	ceasing	support	and	development	of
Sandcastle.	The	Sandcastle	tools	have	been	merged	into	the	Sandcastle	Help
File	Builder	project	and	all	future	development	and	support	for	them	will	be
handled	at	its	project	site.	The	Sandcastle	tools	themselves	remain	separate
from	and	have	no	dependency	on	the	help	file	builder.	As	such,	they	can	be
used	in	a	standalone	fashion	with	your	own	scripts	and	build	tools	if	that	is
your	preference.
	Tip

See	the	Installation	Instructions	for	information	about	the	required	set	of
additional	tools	that	need	to	be	installed,	where	to	get	them,	and	how	to
make	sure	everything	is	configured	correctly.	The	guided	installer	also
provides	information	on	the	necessary	tools	and	walks	you	through	the
installation	steps.

http://SHFB.CodePlex.com

See	Also

Other	Resources
Getting	Started
Installation	Instructions
Version	History
Making	a	Donation

Send	comments	on	this	topic	to	Eric@EWoodruff.us

[v2.7.3.0]	Sandcastle	Tools

mailto:Eric%40EWoodruff.us?Subject=Sandcastle Tools
http://SHFB.CodePlex.com

						 	

Sandcastle	Tools

License	Agreement
Send	Feedback

[This	is	preliminary	documentation	and	is	subject	to	change.]

This	topic	contains	the	following	sections.

Microsoft	Public	License	(Ms-PL)

Microsoft	Public	License	(Ms-PL)

This	license	governs	use	of	the	accompanying	software.	If	you	use	the
software,	you	accept	this	license.	If	you	do	not	accept	the	license,	do	not
use	the	software.

1.	 Definitions

The	terms	"reproduce,"	"reproduction,"	"derivative	works,"	and
"distribution"	have	the	same	meaning	here	as	under	U.S.
copyright	law.

A	"contribution"	is	the	original	software,	or	any	additions	or
changes	to	the	software.

A	"contributor"	is	any	person	that	distributes	its	contribution
under	this	license.

"Licensed	patents"	are	a	contributor's	patent	claims	that	read
directly	on	its	contribution.

2.	 Grant	of	Rights

(A)	Copyright	Grant	-	Subject	to	the	terms	of	this	license,
including	the	license	conditions	and	limitations	in	section	3,
each	contributor	grants	you	a	non-exclusive,	worldwide,	royalty-
free	copyright	license	to	reproduce	its	contribution,	prepare
derivative	works	of	its	contribution,	and	distribute	its
contribution	or	any	derivative	works	that	you	create.

(B)	Patent	Grant	-	Subject	to	the	terms	of	this	license,	including
the	license	conditions	and	limitations	in	section	3,	each
contributor	grants	you	a	non-exclusive,	worldwide,	royalty-free
license	under	its	licensed	patents	to	make,	have	made,	use,	sell,
offer	for	sale,	import,	and/or	otherwise	dispose	of	its
contribution	in	the	software	or	derivative	works	of	the
contribution	in	the	software.

3.	 Conditions	and	Limitations

(A)	No	Trademark	License	-	This	license	does	not	grant	you
rights	to	use	any	contributors'	name,	logo,	or	trademarks.

(B)	If	you	bring	a	patent	claim	against	any	contributor	over
patents	that	you	claim	are	infringed	by	the	software,	your	patent
license	from	such	contributor	to	the	software	ends	automatically.

(C)	If	you	distribute	any	portion	of	the	software,	you	must	retain
all	copyright,	patent,	trademark,	and	attribution	notices	that	are
present	in	the	software.

(D)	If	you	distribute	any	portion	of	the	software	in	source	code
form,	you	may	do	so	only	under	this	license	by	including	a
complete	copy	of	this	license	with	your	distribution.	If	you
distribute	any	portion	of	the	software	in	compiled	or	object	code
form,	you	may	only	do	so	under	a	license	that	complies	with	this
license.

(E)	The	software	is	licensed	"as-is."	You	bear	the	risk	of	using	it.
The	contributors	give	no	express	warranties,	guarantees	or
conditions.	You	may	have	additional	consumer	rights	under	your
local	laws	which	this	license	cannot	change.	To	the	extent
permitted	under	your	local	laws,	the	contributors	exclude	the
implied	warranties	of	merchantability,	fitness	for	a	particular
purpose	and	non-infringement.

Send	comments	on	this	topic	to	Eric@EWoodruff.us

[v2.7.3.0]	Sandcastle	Tools

mailto:Eric%40EWoodruff.us?Subject=Sandcastle Tools
http://SHFB.CodePlex.com

						 	

Sandcastle	Tools

Getting	Started
See	Also	Send	Feedback

[This	is	preliminary	documentation	and	is	subject	to	change.]

The	topics	in	this	section	will	help	you	install	all	of	the	required	tools,	become
familiar	with	the	Sandcastle	Help	File	Builder,	and	create	your	first	project.

Installation	Instructions

Walkthrough:	Enabling	and	Using	XML	Comments

Documenting	Web	Projects

The	following	article	is	outdated	now	but	does	contain	some	useful
information:	Taming	Sandcastle:	A	.NET	Programmer's	Guide	to
Documenting	Your	Code

Sandcastle	Wall	Chart

http://www.simple-talk.com/dotnet/.net-tools/taming-sandcastle-a-.net-programmers-guide-to-documenting-your-code
http://www.EWoodruff.us/Downloads/SandcastleWallchart.pdf

See	Also

Other	Resources
Welcome
Version	History
Frequently	Asked	Questions	(FAQ)

Send	comments	on	this	topic	to	Eric@EWoodruff.us

[v2.7.3.0]	Sandcastle	Tools

mailto:Eric%40EWoodruff.us?Subject=Sandcastle Tools
http://SHFB.CodePlex.com

						 	

Sandcastle	Tools

Installation	Instructions
See	Also	Send	Feedback

[This	is	preliminary	documentation	and	is	subject	to	change.]

This	topic	describes	the	additional	tools	that	are	required	to	use	the	Sandcastle
tools	along	with	some	general	configuration	information.

Guided	Installation

Requirements

Recommended	Additions

Optional	Items

See	Also

Guided	Installation

Due	to	the	number	of	products	that	need	to	be	installed	to	get	a	working
build	environment,	a	guided	installation	package	has	been	created	to
simplify	the	process.	The	guided	installer	contains	most	of	the	necessary
parts	and	various	optional	components.	For	those	parts	that	cannot	be
distributed	such	as	the	help	compilers,	it	contains	instructions	on	where	to
get	them	and	how	to	install	them	if	you	need	them.

Download	the	latest	Sandcastle	Help	File	Builder	Guided	Installer

When	using	the	guided	installation,	you	can	skip	the	Requirements	section
below	as	it	takes	care	of	all	of	the	required	steps.	See	the	Recommended
and	Optional	sections	for	additional	tools	not	included	in	the	guided
installation	that	you	may	find	useful.

http://shfb.codeplex.com/releases

Requirements

The	latest	version	of	the	Sandcastle	tools	can	always	be	found	at	the
Sandcastle	Help	File	Builder	CodePlex	project	site.	In	addition,	you	will
need	the	following:

The	.NET	Framework	4.0.

In	order	to	use	the	Sandcastle	tools,	the	following	additional	tools	are
required	based	on	the	types	of	help	files	that	you	want	to	produce.	Each
must	be	installed	prior	to	building	a	help	file	of	that	particular	type:

The	HTML	Help	Workshop	for	building	HTML	Help	1	(.chm)	help
files.

The	MS	Help	2	compiler	for	building	MS	Help	2	(.HxS)	help	files.
This	must	be	downloaded	and	installed	as	part	of	the	Visual	Studio
2005	SDK	v4.0	or	the	Visual	Studio	2008	SDK	v1.0.	Note	that	the
latest	version	of	the	Visual	Studio	2008	SDK	does	not	contain	the
Help	2	compiler	so	you	must	download	the	1.0	version.	The	latest
release	can	be	installed	after	it	if	you	need	it.

The	Help	Library	Manager	and	Help	Library	Agent	for	installing	and
viewing	MS	Help	Viewer	(.mshc)	help	files.	These	are	installed	as
part	of	Visual	Studio.

The	tools	can	be	installed	in	any	order.	However,	be	aware	that	if	installing
the	Visual	Studio	2005	or	2008	SDK	to	obtain	the	Help	2	compiler	that	both
contain	outdated	versions	of	Sandcastle.	This	can	cause	the	DXROOT
environment	variable	used	to	locate	the	Sandcastle	tools	to	be	incorrect.
After	installing	either	SDK,	do	the	following:

1.	 Check	the	user	environment	variables.	If	you	see	a	copy	of	the
DXROOT	environment	variable	there,	delete	it.

2.	 If	there	is	a	user	copy	of	the	PATH	environment	variable,	remove	any
path	to	the	SDK	version	of	Sandcastle	that	it	contains.	If	that	is	all	it
contains,	it	can	be	deleted.

http://SHFB.CodePlex.com
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=9CFB2D51-5FF4-4491-B0E5-B386F32C0992
http://msdn2.microsoft.com/en-us/library/ms669985.aspx
http://www.microsoft.com/downloads/details.aspx?familyid=51A5C65B-C020-4E08-8AC0-3EB9C06996F4&displaylang=en
http://www.microsoft.com/downloads/en/details.aspx?familyid=30402623-93ca-479a-867c-04dc45164f5b&displaylang=en

3.	 Check	the	system	environment	variables	to	ensure	that	a	DXROOT
environment	variable	does	exist	and	that	it	points	to	the	correct
location	of	the	Microsoft	Sandcastle	tools	(not	the	help	file	builder).
Usually	this	will	be	C:\Program	Files	(x86)\Sandcastle	unless	you
installed	it	in	an	alternate	location.

	Note

You	may	need	to	reboot	the	system	in	order	for	any	environment	variable
changes	to	take	effect.

Recommended	Additions

The	following	tools	are	optional	but	you	will	find	them	useful	and	it	is
highly	recommended	that	they	be	installed	as	well.

To	view	MS	Help	2	files	without	registering	them,	you	can	use	the	H2
Viewer	(free	for	personal	use).

To	view	MS	Help	Viewer	files	with	a	full	table	of	content	and	index
support	rather	than	in	the	default	browser,	you	can	use	the	H3	Viewer
(free	for	personal	use).

To	register	MS	Help	2	files	both	for	testing	and	as	part	of	your
product	installation,	download	the	shareware	tool	H2Reg.exe	from
The	Helpware	Group.

If	you	are	going	to	document	website	projects,	install	the	Custom	Web
Code	Providers	included	as	part	of	the	Sandcastle	tools	installer.
These	make	it	easy	to	document	website	projects	by	extracting	the
XML	comments	files	to	a	location	of	your	choosing	when	the	website
is	deployed.

http://www.helpware.net/mshelp2/h2viewer.htm
http://mshcmigrate.helpmvp.com/viewer
http://www.helpware.net/mshelp2/h2reg.htm
http://www.helpware.net

Optional	Items

The	following	items	are	not	required	to	use	Sandcastle	or	the	help	file
builder	but	you	may	find	them	useful.

If	you	are	documenting	.NET	1.1	applications	and	need	the	Help	2
compiler	tools,	you	can	download	the	Visual	Studio	.NET	Help
Integration	Kit	2003.

For	a	Visual	Studio	add-in	used	to	create	XML	comments
automatically,	check	out	SubMain's	GhostDoc.

If	you	need	to	convert	HTML	additional	content	topics	to	MAML,
you	can	use	the	HTML	to	MAML	Converter	utility	included	with
the	Sandcastle	tools	installer.

http://www.microsoft.com/downloads/en/details.aspx?familyid=ce1b26dc-d6af-42a1-a9a4-88c4eb456d87&displaylang=en
http://submain.com/products/ghostdoc.aspx

See	Also

Other	Resources
Getting	Started

Send	comments	on	this	topic	to	Eric@EWoodruff.us

[v2.7.3.0]	Sandcastle	Tools

mailto:Eric%40EWoodruff.us?Subject=Sandcastle Tools
http://SHFB.CodePlex.com

						 	

Sandcastle	Tools

Walkthrough:	Enabling	and	Using	XML
Comments
See	Also	Send	Feedback

[This	is	preliminary	documentation	and	is	subject	to	change.]

This	walkthrough	will	describe	the	steps	needed	to	enable	XML	comments
file	output	in	your	Visual	Studio	projects,	provides	information	on	where	to
get	more	information	on	using	XML	comments	to	decorate	your	code,	and
describes	how	to	open	help	file	builder	projects	from	within	Visual	Studio.

Enabling	XML	Comments	File	Generation

Decorating	Your	Code

See	Also

Enabling	XML	Comments	File	Generation

In	order	to	create	a	help	file	that	contains	reference	content	(API
documentation),	you	must	enable	XML	comments	in	your	Visual	Studio
projects	so	that	an	XML	file	is	generated	to	contain	them	when	the	project
is	built.
	Note

If	you	are	trying	to	document	a	website	project,	see	the	Documenting
Web	Projects	topic	for	some	necessary	information	as	they	are	unlike
other	Visual	Studio	projects	and	require	additional	steps	in	order	to
generate	XML	comments	files.

	Tip

If	not	using	the	Visual	Studio	IDE,	the	various	managed	language
compilers	support	a	/doc	command	line	option	that	will	produce	the
XML	comments	file.	See	your	language	compiler	command	line	option
documentation	for	details.

All	Projects	Except	Managed	C++	Projects

1.	 In	the	Solution	Explorer,	right	click	on	the	project	and	select
Properties.

2.	 Select	the	Build	property	page.

	Note

The	XML	comments	filename	is	a	configuration	option.	As	such,
you	can	either	select	the	All	Configurations	option	at	the	top	of	the
page	to	set	the	XML	comments	options	for	all	configurations	at	the
same	time	or	select	each	configuration	individually	and	repeat	the
next	steps	for	each	one.

3.	 In	the	Output	section,	check	the	checkbox	next	to	the	Xml
documentation	file	text	box	and	specify	a	name	for	the	XML	file.
Although	not	required,	a	common	convention	is	to	name	the	XML
comments	file	after	the	related	assembly	(except	with	a	.xml

extension).	The	assembly	name	can	be	found	on	the	Application
property	page.

4.	 If	you	have	a	solution	with	multiple	projects	that	need	to	be
documented,	repeat	the	above	steps	for	each	project	in	the	solution.	It
is	recommended	that	you	give	each	project's	XML	comments	file	a
unique	name.

If	documenting	a	managed	C++	project,	the	procedure	differs	and	you	need
to	follow	these	steps	instead.

Managed	C++	Projects

1.	 In	the	Solution	Explorer,	right	click	on	the	project	and	select
Properties.

2.	 Expand	the	Configuration	Properties	category	and	then	expand	the
C/C++	sub-category	and	select	the	Output	Files	option	below	it.

	Note

The	XML	comments	file	option	is	a	configuration	option.	As	such,
you	can	either	select	the	All	Configurations	option	at	the	top	of	the
dialog	box	to	set	the	XML	comments	options	for	all	configurations
at	the	same	time	or	select	each	configuration	individually	and
repeat	the	next	step	for	each	one.

3.	 In	the	Output	Files	options,	change	the	Generate	XML
Documentation	Files	option	to	Yes	(/doc).

4.	 By	default,	the	comments	file	is	named	after	the	project	target	with	a
.xml	extension	and	is	placed	in	the	target	folder.	If	you	want	to	change
the	name,	select	the	XML	Document	Generator	category	below	the
Configuration	Properties	category	and	change	the	filename	using	the
Output	Document	File	property.

5.	 If	you	have	a	solution	with	multiple	projects	that	need	to	be
documented,	repeat	the	above	steps	for	each	project	in	the	solution.	If
you	explicitly	specify	a	name	for	the	comments	file,	it	is
recommended	that	you	give	each	project's	XML	comments	file	a
unique	name.

Once	the	above	has	been	done,	Visual	Studio	will	create	the	XML
comments	file	each	time	the	project	is	built.

Decorating	Your	Code

In	addition	to	setting	the	project	option	to	create	the	file,	you	must	also	add
XML	comments	to	your	source	code.	At	a	minimum,	you	should	add	a
<summary>	tag	to	each	public	type	and	to	the	public	and	protected
members	of	those	types.	There	are	many	other	tags	available	that	will	help
improve	the	quality	of	your	documentation.

For	a	comprehensive	list	of	XML	documentation	elements	and	a	description
of	their	attributes	and	usage,	see	the	Sandcastle	XML	Comments	Guide
installed	as	part	of	the	Sandcastle	tools.	Basic	information	on	XML
comments	and	how	to	use	them	can	also	be	found	at	either	XML
Documentation	Comments	(C#	Programming	Guide)	or	Documenting	Your
Code	with	XML	(Visual	Basic).

Although	it	is	not	mentioned	in	the	XML	tag	documentation,	you	can	use
HTML	markup	within	your	XML	comments	to	provide	additional
formatting,	embed	images,	etc.

http://msdn.microsoft.com/en-us/library/b2s063f7.aspx?ppud=4
http://msdn.microsoft.com/en-us/library/ms172652.aspx

Next	Steps

Now	that	you	have	enabled	XML	comments	in	your	project	and	added
some	comments	to	your	code,	you	are	ready	to	use	the	Sandcastle	tools	to
generate	documentation.

See	Also

Other	Resources
Getting	Started
Documenting	Web	Projects
Taming	Sandcastle:	A	.NET	Programmer's	Guide	to	Documenting	Your
Code
Sandcastle	Wall	Chart

Send	comments	on	this	topic	to	Eric@EWoodruff.us

[v2.7.3.0]	Sandcastle	Tools

http://www.simple-talk.com/dotnet/.net-tools/taming-sandcastle-a-.net-programmers-guide-to-documenting-your-code
http://www.EWoodruff.us/Downloads/SandcastleWallchart.pdf
mailto:Eric%40EWoodruff.us?Subject=Sandcastle Tools
http://SHFB.CodePlex.com

						 	

Sandcastle	Tools

Documenting	Web	Projects
See	Also	Send	Feedback

[This	is	preliminary	documentation	and	is	subject	to	change.]

This	topic	contains	the	following	sections.

Documenting	Web	Application	and	Web	Service	Application	Projects

Documenting	Website	and	Web	Service	Website	Projects

Automating	the	Process

Usage	Notes	and	Known	Issues

How	The	Code	Providers	Work

Conclusion

See	Also

A	question	that	comes	up	with	some	regularity	is	how	to	produce	a	help	file
from	the	XML	comments	in	the	code	for	a	web	project	using	Sandcastle.
There	are	two	types	of	web	project:	a	web	application	project	and	a	website
project	(both	include	a	web	service	and	an	AJAX-enabled	variant	of	the
project	type).	A	web	application	project	is	the	simplest	to	document	as	it
generates	a	single	assembly	with	a	fixed	name	much	like	any	other	non-web
project.	A	website	project,	however,	requires	some	extra	effort	to	document
and	has	a	number	of	limitations:

It	does	not	necessarily	generate	a	single	assembly.

It	only	generates	assemblies	when	you	actually	publish	the	project.

The	assembly	names	may	vary	from	build	to	build	depending	on	the
options	you	use	when	publishing	the	website.

There	is	no	project-level	option	to	produce	XML	comments	files.
Instead,	you	have	to	add	a	section	to	the	Web.config	file	to	produce
them.

Even	after	adding	the	option	to	produce	XML	comments	files,	there	are
limitations:

If	you	specify	a	single	comments	filename,	only	the	comments
from	the	last	assembly	compiled	will	be	saved.	The	VB.NET
compiler	has	a	/doc+	option	to	work	around	this	issue.	However,
the	C#	compiler	does	not	so	this	makes	it	impossible	to	fully
document	a	C#	website	project.

The	comments	files	produced	using	the	VB.NET	/doc+	option
are	not	placed	in	the	folder	to	which	the	project	was	published.
Instead,	they	are	left	in	the	system's	temporary	ASP.NET	folder	for
the	related	.NET	version	(i.e.
C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Temporary
ASP.NET	files	so	you	must	locate	and	retrieve	them	after	each
build.

To	work	around	the	limitations	present	when	documenting	website	projects,
you	can	use	the	custom	code	providers	made	available	with	the	Sandcastle
tools	installer	(one	for	C#	and	one	for	VB.NET).	By	using	these	code
providers,	you	can	specify	a	folder	to	which	the	XML	comments	files	should
be	copied.	This	saves	you	from	having	to	locate	and	copy	them	manually	and
solves	the	issue	of	the	C#	compiler	not	being	able	to	output	one	comments	file
per	assembly.	Below	are	instructions	for	documenting	each	type	of	web
project	and	information	about	how	the	code	providers	work.

Documenting	Web	Application	and	Web	Service	Application
Projects

As	noted,	web	applications	are	the	easiest	to	document	and	do	not	require
the	use	of	the	custom	code	providers.	These	projects	are	created	in	Visual
Studio	by	selecting	File	|	New	|	Project	and	then	selecting	ASP.NET	Web
Application	or	ASP.NET	Web	Service	Application	from	the	Web
category	of	your	preferred	language.	Note	that	these	options	are	only
available	in	Visual	Studio	2005	after	you	install	Service	Pack	1.

You	must	enable	the	XML	comments	option	in	your	application	projects	so
that	an	XML	comments	file	is	produced	when	the	projects	are	built.	This	is
done	as	follows:

1.	 In	the	Solution	Explorer,	right	click	on	the	project	and	select
Properties.

2.	 Select	the	Build	property	page	(C#)	or	the	Compile	property	page
(VB.NET).

3.	 The	XML	comments	filename	is	a	per	configuration	option.	As	such,
you	can	either	select	the	All	Configurations	option	at	the	top	of	the
page	to	set	the	XML	comments	options	for	all	configurations	at	the
same	time	or	select	each	configuration	individually	and	repeat	the
next	step	for	each	one.

4.	 For	C#,	in	the	Output	section,	check	the	checkbox	next	to	the	XML
documentation	file	text	box	and	specify	a	name	for	the	XML
comments	file.	Although	not	required,	a	common	convention	is	to
name	the	XML	comments	file	after	the	related	assembly	except	with	a
.xml	extension.	The	assembly	name	can	be	found	on	the	Application
property	page.
For	VB.NET,	just	check	the	Generate	XML	documentation	file
checkbox.	It	names	the	file	after	the	assembly	automatically.

5.	 If	you	have	a	solution	with	multiple	web	application	or	web	service
application	projects	that	need	to	be	documented,	repeat	the	above
steps	for	each	project	in	the	solution.	If	using	the	Sandcastle	Help	File
Builder,	be	sure	to	give	each	project's	XML	comments	file	a	unique

name	as	they	are	copied	to	a	common	location	for	the	build.
Identically	named	files	would	overwrite	each	other	and	the
documentation	in	the	overwritten	files	would	not	appear	in	the	help
file.

Once	the	above	has	been	done,	Visual	Studio	will	create	the	XML
comments	file	each	time	the	project	is	built.	It	is	placed	in	the	.\bin	folder
along	with	the	assembly.	These	can	be	used	in	conjunction	with	your
preferred	documentation	tool	to	produce	a	help	file.

Documenting	Website	and	Web	Service	Website	Projects

These	projects	are	created	in	Visual	Studio	by	selecting	File	|	New	|	Web
Site	and	then	selecting	ASP.NET	Web	Site	or	ASP.NET	Web	Service
from	the	template	dialog	box.	In	order	to	create	XML	comments	files,	you
must	add	the	custom	code	providers	to	the	Web.config	file	and	publish	the
website.	This	is	done	as	follows:

1.	 If	your	project	does	not	yet	contain	one,	add	a	Web.config
configuration	file.

2.	 Add	the	following	<system.codedom>	section	to	the
<configuration>	section	as	shown	in	the	example	below.	You
only	need	to	add	the	<compiler>	element	for	the	language	that	you
are	using	but	it	will	not	hurt	anything	if	they	are	both	present.

Example	Code	Provider	Configurations	

<configuration>

		<system.codedom>

				<compilers>

						<!--	For	C#	-->

						<compiler	language="c#;cs;csharp"	extension

								compilerOptions="/docpath:C:\Publish\Docs"

								type="EWSoftware.CodeDom.CSharpCodeProviderWithDocs,

														EWSoftware.CodeDom,	Version=1.1.0.0,	Culture=neutral,

														PublicKeyToken=d633d7d5b41cbb65">

								<!--	NOTE:	Change	value	to	"v3.5"	for	.NET	3.5	projects	-->

								<providerOption	name="CompilerVersion"	value

						</compiler>

						<!--	For	VB.NET	-->

						<compiler	language="vb;vbs;visualbasic;vbscript"

								compilerOptions="/docpath:C:\Publish\Docs"

								type="EWSoftware.CodeDom.VBCodeProviderWithDocs,

														EWSoftware.CodeDom,	Version=1.1.0.0,	Culture=neutral,

														PublicKeyToken=d633d7d5b41cbb65">

								<!--	NOTE:	Change	value	to	"v3.5"	for	.NET	3.5	projects	-->

Copy

								<providerOption	name="CompilerVersion"	value

						</compiler>

				</compilers>

		</system.codedom>

</configuration>

Instead	of	a	/doc	option,	the	custom	code	providers	use	a	custom
/docpath	option	in	the	compilerOptions	attribute	that
specifies	the	fully	qualified	folder	name	into	which	the	XML
comments	files	are	placed.	The	folder	will	be	created	by	the	code
provider	if	it	does	not	exist.	Any	other	compiler	options	that	you
might	need	can	also	be	specified	in	the	attribute	value	separated	by	a
space.

3.	 In	order	to	use	the	code	providers,	the	ASP.NET	compiler	must	be
able	to	find	them.	You	can	either	copy	the
EWSoftware.CodeDom.dll	assembly	into	your	project's	.\bin	folder
or	you	can	register	it	in	the	Global	Assembly	Cache	(GAC)	so	that	it
is	available	to	any	project.	To	do	so,	use	the	gacutil	command	line
tool	as	follows	replacing	the	path	to	the	assembly	to	match	the
installed	location	on	your	system:

	

gacutil	-i	\DotNet\Web\WebCodeProviders\Bin\Release\EWSoftware.CodeDom.dll

To	remove	the	assembly	from	the	Global	Assembly	Cache,	use	the
gacutil	command	line	tool	as	follows:

	

gacutil	-u	EWSoftware.CodeDom

You	can	find	a	copy	of	the	tool	in	the	Visual	Studio	installation	folder
in	the	.\SDK\v2.0\bin	subfolder.

Once	the	above	has	been	done,	you	can	publish	your	website.	Right	click	on
the	project	in	the	Solution	Explorer,	select	Publish	Web	Site,	set	the
options,	and	click	OK	to	publish	it.	When	finished,	look	in	the	location	you

specified	in	the	/docpath	option	and	you	will	find	one	XML	comments
file	for	each	assembly	that	was	built	for	your	website.	These	can	be	used	in
conjunction	with	the	assemblies	and	your	preferred	documentation	tool	to
produce	a	help	file.

As	an	alternative	to	publishing	the	website,	you	can	use	a	web	deployment
project.	Add-ins	are	available	at	the	following	locations:

Visual	Studio	2005	Web	Deployment	Add-In

Visual	Studio	2008	Web	Deployment	Add-In

The	Sandcastle	Help	File	Builder	version	1.8.0.0	and	later	supports
wildcard	documentation	sources.	As	such,	just	add	one	entry	with	the	path
set	to	[appPath]\bin\App_*.dll	where	[appPath]	is	the	path	to	the	published
website	and	another	entry	with	the	path	set	to	[docPath]\App_*.xml	where
[docPath]	is	the	path	to	the	XML	comments	files.

Since	the	code	providers	are	not	needed	after	the	website	is	published,	you
can	delete	the	system.codedom	section	from	the	published	Web.Config
file	and	delete	the	assembly	from	the	.\bin	folder	if	you	added	it	to	the
project	for	publishing.

http://msdn.microsoft.com/en-us/asp.net/aa336619.aspx
http://www.microsoft.com/downloads/details.aspx?FamilyId=0AA30AE8-C73B-4BDD-BB1B-FE697256C459&displaylang=en
http://SHFB.CodePlex.com

Automating	the	Process

Using	the	aspnet_compiler	tool,	it	is	possible	to	automate	the	publishing	of
a	website	project.	The	tool	is	located	in	the	.NET	Framework	folder.	For
.NET	2.0	through	3.5,	this	is	usually
C:\Windows\Microsoft.NET\Framework\v2.0.50727.	To	run	it,	issue	a
command	similar	to	the	following	(lines	wrapped	for	display	purposes):

	

C:\Windows\Microsoft.NET\Framework\v2.0.50727\aspnet_compiler

				-f	-v	/MyWebSite

				-p	C:\Path\To\MyWebsite	C:\Publish\MyWebSite

The	-f	option	tells	it	to	delete	any	existing	content	in	the	target	folder
(C:\Publish\MyWebsite	in	the	example	above).	The	-v	[path]	option
tells	it	the	virtual	path	of	the	website	to	compile	(i.e.	the	path	you	use	to
load	it	in	the	web	browser).	The	-p	[path]	option	tells	it	the	physical
location	of	the	website	related	to	the	virtual	path	to	compile.	Using	a	script,
you	could	for	example	publish	the	website,	build	the	help	file,	replace	the
Web.config	in	the	published	website	with	one	that	has	had	the
system.codedom	section	removed,	and	delete	the	code	provider
assembly	if	it	was	copied	locally.	This	is	left	as	an	exercise	for	the	reader.
The	web	deployment	add-ins	noted	above	support	post-build	events	so	they
may	provide	better	support	for	such	tasks.

Usage	Notes	and	Known	Issues

The	following	are	some	known	issues	and	things	to	be	aware	of	when	using
the	custom	code	providers.

If	any	part	of	the	XML	comments	file	path	contains	spaces,	enclose	it
in	"	entities	(i.e.
compilerOptions="/docpath:"C:\My	Path	With

Spaces"").

Do	not	use	a	relative	path	in	the	/docpath	option.	Always	use	a
fully	qualified	path.	When	using	the	project's	publish	option,	the
ASP.NET	compiler	always	runs	in	the	.NET	Framework	folder	so
your	XML	comments	files	will	end	up	in	a	location	relative	to	it	rather
than	your	project's	folder	if	you	do.

You	can	specify	any	folder	except	one	that	is	under	the	location	to
which	you	publish	the	website.	The	act	of	publishing	the	website
clears	the	destination	folder	and,	since	the	comments	files	are
produced	first,	you	will	lose	them	if	you	place	them	under	it.

The	code	providers	will	delete	any	"App_*.xml"	files	from	the
specified	folder	on	the	first	use.	This	prevents	lots	of	files	from
accumulating	in	the	comments	file	folder	that	contain	duplicate
information	when	not	using	fixed	names.	It	also	means	that	you
should	publish	each	website's	comments	files	to	a	unique	folder	so
that	they	are	not	lost	if	you	are	publishing	and	documenting	multiple
projects.

Unless	you	are	using	fixed	names	when	publishing,	the	assembly	and
comments	filenames	will	change	each	time	you	publish	the	website.
As	such,	use	wildcards	(App_*.dll	and	App_*.xml)	to	specify	the	files
to	use	in	your	preferred	documentation	tool.

When	using	the	VB.NET	custom	code	provider,	the	commonly
imported	namespaces	such	as	System	and
Microsoft.VisualBasic	are	not	included	automatically	for
some	unknown	reason.	The	custom	code	provider	will	add	a
/imports	command	line	option	automatically	for	most	of	the

common	namespaces	to	work	around	the	problem.	If	publishing	fails
due	to	undefined	types	when	using	the	custom	code	providers,	simply
add	a	/imports:[Namespace]	option	to	the
compilerOptions	attribute	where	"[Namespace]"	is	the	missing
namespace.	You	can	generally	identify	namespaces	that	may	cause
problems	by	checking	Web.Config	for	<namespace>	elements	in
the	<pages>	configuration	section.	See	below	for	a	list	of	the
common	namespaces	added	automatically	by	the	VB.NET	custom
code	provider.	Another	workaround	to	this	issue	is	to	add	Imports
statements	to	the	code	for	each	of	the	required	namespaces	rather	than
relying	on	the	automatically	included	references.

Related	to	the	item	above,	when	the	custom	code	providers	are	active
in	the	Web.Config	file,	you	may	see	lots	of	errors	indicated	by	the	red
squiggly	underline	related	to	missing	types	while	viewing	VB.NET
code.	During	development,	you	can	comment	out	the	custom	code
providers	so	that	this	does	not	happen.	As	noted,	the	other	workaround
is	to	add	an	Imports	statement	to	the	code	that	includes	the	missing
namespace	that	contains	the	types.

How	The	Code	Providers	Work

The	custom	code	providers	are	actually	quite	simple.	Both	the	C#	and
VB.NET	custom	code	providers	are	identical	with	the	exception	of	their
base	class	and	an	extra	set	of	compiler	options	passed	by	the	VB.NET
version.	The	C#	version	is	shown	below.

Example	Code	Provider	

public	class	CSharpCodeProviderWithDocs	:	CSharpCodeProvider

{

				public	override	CompilerResults	CompileAssemblyFromDom(

						CompilerParameters	options,

						params	CodeCompileUnit[]	compilationUnits)

				{

								CodeProviderHelper.ReplaceDocPathOption(options,	

								return	base.CompileAssemblyFromDom(options,

												compilationUnits);

				}

				public	override	CompilerResults	CompileAssemblyFromFile(

						CompilerParameters	options,	params	string[]	fileNames)

				{

								CodeProviderHelper.ReplaceDocPathOption(options,	

								return	base.CompileAssemblyFromFile(options,	fileNames);

				}

				public	override	CompilerResults	CompileAssemblyFromSource(

						CompilerParameters	options,	params	string[]	sources)

				{

								CodeProviderHelper.ReplaceDocPathOption(options,	

								return	base.CompileAssemblyFromSource(options,	sources);

				}

}

The	derived	version	simply	overrides	three	key	methods	and,	prior	to
calling	the	base	implementation,	calls	the
CodeProviderHelper.ReplaceDocPathOption	method	which

takes	care	of	updating	the	compiler	options	to	produce	a	unique	XML
comments	file	for	the	assembly	in	the	specified	folder.	It	is	shown	below.

Replace	Doc	Path	Option	Method	

internal	static	void	ReplaceDocPathOption(

		CompilerParameters	options,

		string[]	additionalOptions)

{

				Match	m;

				string	docPath,	docFile;

				//	Replace	/docpath	with	/doc

				if(!String.IsNullOrEmpty(options.CompilerOptions))

				{

								m	=	reDocPathOpt.Match(options.CompilerOptions);

								if(m.Success)

								{

												docPath	=	m.Groups[1].Value.Replace("\""

																String.Empty);

												if(!Directory.Exists(docPath))

												{

																Directory.CreateDirectory(docPath);

																docFilesPurged	=	true;

												}

												else

																if(!docFilesPurged)

																{

																				//	Purge	the	comments	files	from	the	folder

																				//	on	the	first	call.

																				foreach(string	file	in	Directory.GetFiles(

																						docPath,	"App_*.xml"))

																								File.Delete(file);

																				docFilesPurged	=	true;

																}

												docFile	=	Path.Combine(docPath,	Path.GetFileName(

																Path.ChangeExtension(options.OutputAssembly,

																".xml")));

												options.CompilerOptions	=	String.Format(

																"{0}	/doc:\"{1}\"",	reDocPathOpt.Replace(

																options.CompilerOptions,	String.Empty),	docFile);

								}

				}

				//	Append	the	other	options

				if(additionalOptions	!=	null	&&	additionalOptions.Length	!=	

								options.CompilerOptions	=	String.Concat(

												options.CompilerOptions,	"	",	String.Join(

												additionalOptions));

}

A	regular	expression	is	used	to	locate	the	/docpath	option.	If	found,	it
extracts	the	folder	name	and	either	creates	it	if	it	does	not	exist	or	deletes	all
existing	App_*.xml	files	in	it	the	first	time	it	is	called.	It	then	combines	the
path	with	the	output	assembly's	name	and	a	.xml	extension	and	replaces	the
/docpath	option	with	a	/doc	command	line	option.	If	any	additional
options	are	passed	to	the	method,	they	are	also	appended	to	the	command
line	options.	The	VB.NET	code	provider	passes	in	an	extra	/imports
command	line	option	to	specify	the	following	default	import	namespaces	to
work	around	the	issue	noted	earlier:

System

System.Collections

System.Collections.Generic

System.Collections.ObjectModel

System.Configuration

System.Data

System.Web

System.Web.Configuration

System.Web.UI

System.Web.UI.HtmlControls

System.Web.UI.WebControls

System.Web.Util

System.Xml

Microsoft.VisualBasic

Conclusion

By	using	the	custom	code	providers	and	the	instructions	above,	you	can
now	easily	produce	XML	comments	files	for	website	projects	in	order	to
create	help	files	for	them.

See	Also

Other	Resources
Getting	Started
Walkthrough:	Enabling	and	Using	XML	Comments
Sandcastle	Help	File	Builder

Send	comments	on	this	topic	to	Eric@EWoodruff.us

[v2.7.3.0]	Sandcastle	Tools

http://SHFB.CodePlex.com
mailto:Eric%40EWoodruff.us?Subject=Sandcastle Tools
http://SHFB.CodePlex.com

						 	

Sandcastle	Tools

Sandcastle	Tools
See	Also	Send	Feedback

[This	is	preliminary	documentation	and	is	subject	to	change.]

Select	a	topic	below	to	learn	more	about	Sandcastle	and	its	various	parts.

Sandcastle	Tools

General	Information

Architecture

TODO:	More	information	will	be	added	as	time	permits.

	Note

Author	Credit:	The	information	and	images	in	the	General	Information
and	Architecture	topics	was	originally	created	by	Dave	Sexton	as	part	of
the	wiki	content	for	the	Sandcastle	Styles	project	on	CodePlex.

See	Also

Other	Resources
Getting	Started

Send	comments	on	this	topic	to	Eric@EWoodruff.us

[v2.7.3.0]	Sandcastle	Tools

mailto:Eric%40EWoodruff.us?Subject=Sandcastle Tools
http://SHFB.CodePlex.com

						 	

Sandcastle	Tools

General	Information
See	Also	Send	Feedback

[This	is	preliminary	documentation	and	is	subject	to	change.]

Sandcastle	is	not	a	single	executable	program	but	is	actually	a	set	of
command-line	programs	and	XSL	transformations	that	are	executed	in	a
specific	sequence	to	produce	a	set	of	files	that	can	be	used	to	create	a	help	file.
It	is	extremely	flexible	and	offers	many	configurable	features	and	the	build
process	can	be	changed	depending	upon	the	desired	output	format	and
presentation	style.

As	the	tools	are	command-line	based,	they	can	be	used	in	various	ways	such
as	in	batch	files,	MSBuild	projects,	and	PowerShell	scripts.	One	downside	to
its	command-line	based	nature	and	the	flexibility	it	offers	with	its	various
configuration	files	and	presentation	styles	is	a	steep	learning	curve.	Using	the
tools	in	their	native	form	can	be	a	daunting	process	so	a	good	front	end	that
hides	the	various	details	can	greatly	simplify	the	process	of	using	them.

An	example	GUI	and	some	command	line	scripts	are	provided	with	the
Sandcastle	tools	but	they	provide	limited	functionality	and	do	not	expose
enough	of	the	configuration	options	to	make	them	useful	beyond	a	few	simple
examples.	It	is	highly	recommended	that	you	use	an	open	source	front	end
such	as	the	Sandcastle	Help	File	Builder	that	provides	both	a	standalone	GUI
as	well	as	Visual	Studio	integration.	It	provides	the	usual	project	management
options	and	also	many	more	features	that	can	be	used	to	produce	better
looking	help	files	and	to	author	conceptual	help	topics.	It	also	hides	the
complexity	of	the	Sandcastle	tools	and	lets	you	focus	on	the	task	of	authoring
the	help	content.

Sandcastle	produces	two	types	of	help	topic,	each	using	a	different	build
process.	The	results	can	be	combined	into	a	single	help	file.

Conceptual	Content	-	This	topic	is	an	example	of	conceptual	content.	It
is	written	using	Microsoft	Assistance	Markup	Language	(MAML)	and	is
used	to	create	topics	for	general	conceptual	information,	walkthroughs,
how-tos,	etc.	For	more	information	about	MAML	and	how	to	use	it,	see

http://SHFB.CodePlex.com

the	Sandcastle	MAML	Guide	that	is	available	for	installation	along
with	the	Sandcastle	tools.

API	Reference	Content	-	Reference	content	is	generated	by	using
reflection	to	generate	information	about	one	or	more	managed
assemblies,	the	types	it	contains,	and	their	members	and	combining	that
information	with	the	related	XML	comments	extracted	from	the	source
code.	This	produces	topics	with	a	format	similar	to	those	you	see	on
MSDN.	For	more	information	about	XML	comments	and	how	to	use
them,	see	the	Sandcastle	XML	Comments	Guide	that	is	available	for
installation	along	with	the	Sandcastle	tools.

As	noted	above	with	regard	to	API	reference	content,	Sandcastle	is	primarily
for	use	in	documenting	managed	code	assemblies	that	utilize	the	standard
.NET	Framework,	Silverlight,	the	.NET	Portable	framework,	or	the	.NET	for
Windows	Store	Apps	framework.	However,	if	you	can	produce	a	reflection
information	file	for	other	API	types	such	as	a	JavaScript	library,	it	is	possible
to	document	them	as	well.	For	example,	plug-ins	exist	for	the	Sandcastle	Help
File	Builder	that	allow	you	to	document	JavaScript	libraries	and	XML
schemas.	Currently,	there	is	no	means	of	documenting	unmanaged	native	code
assemblies	with	Sandcastle.	However,	if	information	about	the	unmanaged
API	could	be	converted	to	a	reflection	information	file,	it	would	be	possible	to
produce	a	help	file.

It	is	important	to	note	that	Sandcastle	itself	does	not	generate	the	end	result,	a
compiled	help	file	such	as	a	Help	1	(CHM),	MS	Help	2	(HxS),	or	an	MS	Help
Viewer	(MSHC)	file.	Instead,	it	relies	on	third-party	tools	such	as	the	Help	1
compiler	in	the	HTML	Help	Workshop,	the	Help	2	compiler	in	the	Visual
Studio	SDK,	or	the	third-party	front	ends	to	compress	the	content	into	an	MS
Help	Viewer	archive.	The	HTML	output	by	Sandcastle	is	ready	to	use	for
website	output	but	it	lacks	a	front	end	to	display	the	table	of	content	in	any
meaningful	way	and	does	not	provide	for	searching	or	a	keyword	index.
Third-party	tools	such	as	the	Sandcastle	Help	File	Builder	can	fill	these	gaps
for	you.

http://SHFB.CodePlex.com

See	Also

Other	Resources
Sandcastle	Tools

Send	comments	on	this	topic	to	Eric@EWoodruff.us

[v2.7.3.0]	Sandcastle	Tools

mailto:Eric%40EWoodruff.us?Subject=Sandcastle Tools
http://SHFB.CodePlex.com

						 	

Sandcastle	Tools

Architecture
See	Also	Send	Feedback

[This	is	preliminary	documentation	and	is	subject	to	change.]

This	topic	gives	an	overview	of	the	Sandcastle	architecture.

Sandcastle	Layers

Modes	of	Operation

Reference	Mode

Conceptual	Mode

Presentation	Styles

Sandcastle	Layers

At	a	high	level,	Sandcastle	can	be	seen	as	a	set	of	tools	that	transforms	raw
input	into	documentation	output.

Inputs	of	various	types	are	supported	such	as	managed	assemblies	and	raw
XML	documentation	files,	which	are	typically	compiler-generated	along
with	the	assemblies,	as	well	as	MAML	topics	and	additional	content	such	as
images	and	code	snippets.	With	this	input,	Sandcastle	performs	a	highly
configurable	set	of	transformations	to	produce	web-ready	HTML	files	as
output.

Sandcastle's	output	can	be	used	as-is	by	hosting	the	generated	HTML	files

and	their	dependencies	(namely,	CSS	and	images)	on	a	web	server.
Alternatively,	and	more	common,	the	generated	HTML	files	can	be	passed
as	input	to	help	compilers	to	produce	compiled	help	in	various	forms.
Compilers	are	additional	tools	(downloaded	separately)	that	aggregate	all	of
the	HTML	files	produced	by	Sandcastle	to	create	compiled	help	files.	These
are	files	that	can	be	downloaded	and	viewed	in	a	special	desktop	application
such	as	the	HTML	Help	Viewer	or	Microsoft	Document	Explorer.
Typically,	compiled	help	files	are	distributed	with	the	products	being
documented,	or	at	least	made	available	as	a	separate	download.

Modes	of	Operation

There	are	two	modes	of	operation	supported	by	Sandcastle:	Reference	and
Conceptual.	The	differences	between	them	can	be	found	in	both	the	input
and	output	of	Sandcastle.	To	provide	a	quick	definition	of	each,	consider
reference	documentation	to	provide	information	about	the	physical
properties	of	a	managed	library	or	application,	such	as	the	actual
namespaces,	types,	members	and	method	arguments,	and	consider
conceptual	documentation	to	provide	instructional	information	about	the
overall	design	and	conceptual	properties	of	a	managed	library	or
application,	such	as	how	to	accomplish	specific	usage	scenarios	and
providing	an	in-depth	analysis	of	specifically	complex	APIs.	More
distinctions	between	the	two	modes	can	be	found	in	their	corresponding
sections	below.

	Note

Although	built	separately,	the	outputs	from	the	reference	and	conceptual
builds	are	compatible	and	are	typically	combined	into	a	single	help	file.

Reference	Mode
To	produce	reference	documentation,	Sandcastle	requires	managed
assemblies	as	input.	The	MRefBuilder	command-line	tool	is	used	to
analyze	the	physical	properties	of	the	assemblies,	as	well	as	their
dependencies,	ultimately	producing	an	XML	reflection	file	that	becomes
input	for	the	next	steps	of	the	process.	This	XML	reflection	file	contains	all
of	the	information	that	is	required	to	document	the	physical	properties	of

the	input	assemblies.

Sandcastle	also	accepts	XML	documentation	files	as	input.	XML
documentation	files	are	typically	generated	by	code	compilers	from	the
triple-slash	(C#)	or	triple-apostrophe	(VB)	comments	found	in	source	code
files,	at	the	same	time	that	their	corresponding	assemblies	are	compiled.
XML	documentation	files	contain	specific	identifiers	that	allow	Sandcastle
to	correlate	XML	documentation	for	each	API	to	the	same	API	in	the	XML
reflection	file	that	is	produced	by	MRefBuilder.	Additionally,	reference
mode	supports	shared	inputs	of	various	types	such	as	images	and	code
snippets	to	be	included	in	the	documentation.

The	output	of	Sandastle	in	reference	mode	is	created	by	the
BuildAssembler	tool	with	a	specific	configuration.	It	produces	a	set	of
HTML	files	that	document	the	physical	structure	of	the	XML	reflection	file
(generated	by	MRefBuilder)	passed	in	as	input.	XML	documentation
comments	that	are	discovered	during	the	process	are	also	injected	into	the
HTML	files	in	the	appropriate	places;	e.g.,	contents	of	the	<summary>
elements	appear	at	the	top	of	the	HTML	file,	while	<remarks>	contents
appear	after	the	syntax	section.

Sandcastle	also	automatically	generates	a	table	of	contents	(TOC)	and	a
keyword	index	based	on	the	XML	reflection	file.	Each	auto-generated	API
topic	also	includes	appropriate	hyperlinks.	Typically,	pseudo-topics	are
automatically	generated	as	well;	e.g.,	a	topic	containing	a	list	of	all	the
types	in	a	particular	namespace,	and	another	topic	containing	a	list	of	all
properties	in	a	particular	type,	etc.

Conceptual	Mode
To	produce	conceptual	documentation,	Sandcastle	depends	on	a	special
XML	schema	called	Microsoft	Assistance	Markup	Language	(MAML).	The
input	to	Sandcastle	in	conceptual	mode	must	be	a	set	of	XML
documentation	files	written	against	the	MAML	schema.	XML	companion
files	can	be	provided	as	input	to	specify	metadata	for	each	MAML	topic;
e.g.,	index	keywords.	Additionally,	conceptual	mode	supports	shared	inputs
of	various	types	such	as	images	and	code	snippets	to	be	included	in	the
documentation.

The	output	of	Sandcastle	in	conceptual	mode	is	created	by	the

BuildAssembler	tool	with	a	specific	configuration.	It	produces	a	set	of
HTML	files	that	are	created	by	transforming	the	individual	MAML	files,
where	one	HTML	file	is	created	per	MAML	file.	The	HTML	files	display
the	data	in	each	MAML	topic	according	to	the	document	type	of	that	topic;
e.g.,	all	How-To	topics	will	have	an	introduction	and	at	least	one	procedural
section	that	contains	an	ordered	list	of	steps	for	the	reader	to	follow.	Most,
but	not	all	MAML	topics	also	contain	a	See	Also	section	at	the	bottom.
Special	MAML	document	types,	such	as	Glossary,	use	a	very	different	type
of	transformation	from	the	other	document	types.

It	is	up	to	the	author	to	specify	a	table	of	contents	(TOC)	in	conceptual
mode.	Likewise,	a	keyword	index	is	not	automatically	generated,	so	it	is	the
author's	responsibility	to	specify	relevant	keywords	for	each	MAML	topic
using	an	XML	companion	file.

Presentation	Styles

The	presentation	styles	in	Sandcastle	contain	all	of	the	aesthetic	resources
that	are	required	to	build	HTML	documentation	in	different	styles.	Each
presentation	style	includes	a	set	of	XSLT	files,	XML	files,	CSS	files,	and
images.	The	set	of	XSLT	files	is	executed	once	for	each	topic	that
BuildAssembler	processes	to	produce	an	individual	HTML	file	as	output.
Each	presentation	style	can	have	a	different	set	of	XSLT	files	(although
usually	similar	in	many	ways);	therefore,	each	presentation	style	also	must
provide	a	custom	configuration	for	the	BuildAssembler	tool.	The	XML
files	contain	look-up	information,	such	as	localizable	textual	content.	The
CSS	files	and	images	are	referenced	by	the	HTML	files	that	are	generated,
so	technically	they	are	just	static	output.

See	Also

Other	Resources
Sandcastle	Tools

Send	comments	on	this	topic	to	Eric@EWoodruff.us

[v2.7.3.0]	Sandcastle	Tools

mailto:Eric%40EWoodruff.us?Subject=Sandcastle Tools
http://SHFB.CodePlex.com

						 	

Sandcastle	Tools

Frequently	Asked	Questions	(FAQ)
See	Also	Send	Feedback

[This	is	preliminary	documentation	and	is	subject	to	change.]

The	following	are	some	common	problems	and	solutions	along	with	some
known	issues	with	Sandcastle	and	help	files	that	you	may	encounter.

TODO:	This	will	be	filled	in	as	time	permits.

See	Also

Other	Resources
Getting	Started
Links	to	Resources

Send	comments	on	this	topic	to	Eric@EWoodruff.us

[v2.7.3.0]	Sandcastle	Tools

mailto:Eric%40EWoodruff.us?Subject=Sandcastle Tools
http://SHFB.CodePlex.com

						 	

Sandcastle	Tools

Links	to	Resources
See	Also	Send	Feedback

[This	is	preliminary	documentation	and	is	subject	to	change.]

This	topics	contains	links	to	various	resources	that	you	may	find	useful.

Information	and	Guides

Discussion	Groups,	Blogs,	Etc.

Build	and	Project	Management	Tools

Third-Party	Build	Components

See	Also

Information	and	Guides

The	most	recent	version	of	this	help	file	and	other	guides	on	MAML	and
XML	comments	can	be	download	from	the	Sandcastle	Help	File	Builder
project	on	CodePlex.

http://SHFB.CodePlex.com

Discussion	Groups,	Blogs,	Etc.

To	discuss	Microsoft's	Sandcastle,	suggest	new	features,	report	bugs
in	it,	and	request	help	using	it,	visit	the	Sandcastle	Help	File	Builder
CodePlex	project.

For	discussion	and	questions	about	help	systems	in	general,	visit	the
Visual	Studio	General	Questions	forum.

The	retired	Microsoft	Developer	Documentation	and	Help	System
forum	may	also	provide	information	on	older	help	systems.

The	Sandcastle	Blog	provides	news	about	Sandcastle	and	blog	entries
describing	how	its	various	features	work.	That	information	will
eventually	be	merged	into	this	help	file.

http://SHFB.CodePlex.com
http://social.msdn.microsoft.com/Forums/en-US/visualstudiogeneral/threads/
http://social.msdn.microsoft.com/forums/en-US/devdocs/threads/
http://blogs.msdn.com/sandcastle/default.aspx

Build	and	Project	Management	Tools

The	.NET	2.0	Framework.

The	.NET	3.5	Framework.

The	.NET	4.0	Framework.

The	latest	version	of	the	Sandcastle	tools	(currently	the	April	2013
v2.7.3.0	release	as	of	April	7,	2013).	These	are	distributed	along	with
the	Sandcastle	Help	File	Builder.

The	HTML	Help	Workshop	for	building	HTML	Help	1.x	(.CHM)	help
files.

The	HTML	Help	2.x	compiler	for	building	HTML	Help	2.x	(.HxS)
help	files.	This	must	be	downloaded	and	installed	as	part	of	the	Visual
Studio	2005	SDK	or	the	Visual	Studio	2008	SDK.

If	you	are	documenting	.NET	1.1	applications	and	need	the	Help	2
compiler	tools,	you	can	download	the	Visual	Studio	2003	Help
Integration	Toolkit.

http://www.microsoft.com/downloads/details.aspx?FamilyID=0856EACB-4362-4B0D-8EDD-AAB15C5E04F5&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=333325FD-AE52-4E35-B531-508D977D32A6&displaylang=en
http://www.microsoft.com/download/en/details.aspx?id=17851&WT.mc_id=MSCOM_EN_US_DLC_DETAILS_121LSUS007996
http://SHFB.CodePlex.com
http://msdn2.microsoft.com/en-us/library/ms669985.aspx
http://www.microsoft.com/downloads/details.aspx?familyid=51A5C65B-C020-4E08-8AC0-3EB9C06996F4&displaylang=en
http://www.microsoft.com/downloads/en/details.aspx?familyid=30402623-93ca-479a-867c-04dc45164f5b&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=ce1b26dc-d6af-42a1-a9a4-88c4eb456d87&displaylang=en

Third-Party	Build	Components

The	Sandcastle	Help	File	Builder	contains	the	following	custom	build
components:

The	Code	Block	Component	used	to	colorize	code	blocks	and
add	optional	line	numbering	and	collapsible	sections.

The	Help	Attributes	Component	used	to	insert	additional	HTML
Help	2	attributes	into	reference	topics.

The	IntelliSense	Component	used	to	generate	XML	comments
files	for	use	as	IntelliSense	in	Visual	Studio.

The	Show	Missing	Documentation	Component	used	to	add
"missing	documentation"	notes	to	reference	topics	and	to	auto-
document	constructors.

A	set	of	cached	build	data	components	that	cache	key
information	such	as	comment,	reflection	index	information,	and
MSDN	URLs	across	builds	in	order	to	speed	them	up.

http://SHFB.CodePlex.com

See	Also

Other	Resources
Welcome

Send	comments	on	this	topic	to	Eric@EWoodruff.us

[v2.7.3.0]	Sandcastle	Tools

mailto:Eric%40EWoodruff.us?Subject=Sandcastle Tools
http://SHFB.CodePlex.com

						 	

Sandcastle	Tools

Making	a	Donation
Send	Feedback

[This	is	preliminary	documentation	and	is	subject	to	change.]

Several	people	have	asked	how	to	make	a	donation	to	support	the	Sandcastle
Help	File	Builder	project.	If	you	would	like	to	do	so,	you	can	make	a	donation
of	any	amount	you	like	by	clicking	on	the	PayPal	donation	button	below.	If
you	would	prefer	to	donate	via	check	or	money	order	(USD),	please	send	me
an	e-mail	at	Eric@EWoodruff.us	and	I	will	reply	with	my	mailing	address.

The	above	method	of	donating	is	secure.	PayPal	guarantees	your	privacy	and
security.	I	never	receive	details	of	your	payment	other	than	the	amount,	your
name,	e-mail	address,	and	any	optionally	entered	information.

Thanks	to	those	of	you	that	have	made	a	donation.	It	is	much	appreciated!

Send	comments	on	this	topic	to	Eric@EWoodruff.us

[v2.7.3.0]	Sandcastle	Tools

mailto:Eric@EWoodruff.us?Subject=Sandcastle Help File Builder Donation
http://www.EWoodruff.us/SHFBDonate.html
mailto:Eric%40EWoodruff.us?Subject=Sandcastle Tools
http://SHFB.CodePlex.com

						 	

Sandcastle	Tools

Version	History
Send	Feedback

[This	is	preliminary	documentation	and	is	subject	to	change.]

The	topics	in	this	section	describe	the	various	changes	made	to	the	Sandcastle
tools	over	the	life	of	the	project.

Version	History

Select	a	version	below	to	see	a	description	of	its	changes.

Version	2.7.3.0,	April	2013

Version	2.7.2.0,	December	2012

Version	2.7.1.0,	October	2012

Version	2.7.0.0,	April	2012

Send	comments	on	this	topic	to	Eric@EWoodruff.us

[v2.7.3.0]	Sandcastle	Tools

mailto:Eric%40EWoodruff.us?Subject=Sandcastle Tools
http://SHFB.CodePlex.com

						 	

Sandcastle	Tools

Version	2.7.3.0,	April	2013
See	Also	Send	Feedback

[This	is	preliminary	documentation	and	is	subject	to	change.]

Version	2.7.3.0	was	released	on	April	7th,	2013.

MRefBuilder	Tools

BuildAssembler	Tools

Build	Components

Presentation	Styles

MRefBuilder	Tools

Added	the	Windows	Phone	8.0	framework	to	the	framework	definition	file.

BuildAssembler	Tools

Reworked	the	BuildAssembler	execution	process	to	allow	for	parallel
executon	of	component	code.	Components	are	still	initialized	and
topics	built	sequentially	for	the	time	being	but	parallelism	can	be
utilized	now	and	is	used	in	certain	components	when	they	are
initialized.

Reworked	the	BuildAssembler	message	logger	to	allow	for	parallel
executon	of	component	code	without	contention	for	the	console	when
logging	messages.

Added	a	warning	count	to	BuildAssembler	which	is	displayed	at	the
end	of	the	build.

Build	Components

	Note

A	number	of	these	are	breaking	changes.	However,	most	people	will	be
unaffected	unless	they	have	created	custom	build	components	or	syntax
generators.	These	changes	were	necessary	in	order	to	make	the	API	more
accessible	and	to	make	it	easier	to	derive	build	components	from	existing
ones	without	having	to	reimplement	a	lot	of	the	internal	supporting
classes.

Deleted	CodeReference,	LiveExampleComponent,	and
WdxResolveConceptualLinksComponent	as	they	appear	to
be	for	internal	Microsoft	use	and	do	not	appear	to	have	much	use	for
non-Microsoft	users.

Deleted	the	classes	in	the	BuildComponents	namespace	from	the
BuildComponents	project	as	they	were	unused.	These	were	replaced
by	the	like-named	classes	in	the	Microsoft.Ddue.Tools
namespace.

Deleted	IntellisenseComponent2	and	replaced
IntellisenseComponent	with	the	version	from	the	Sandcastle
Help	File	Builder.	Added	the	IntelliSenseComponent
configuration	dialog	which	can	be	used	by	front	end	tools	such	as	the
Sandcastle	Help	File	Builder	to	edit	the	component's	configuration.

Moved	InheritDocumentationComponent	into	the	main
BuildComponents	project	and	deleted	the	CopyComponents	assembly
as	it	was	the	only	one	in	it.

Moved	the	syntax	writer	classes	into	the	SyntaxComponents	assembly
with	their	related	classes.

Moved	all	of	the	snippet	related	classes	into	their	own	namespace.

Moved	all	of	the	target	related	classes	into	their	own	namespace.

The	reference	link	target	classes	were	moved	into	their	own	assembly
(BuildComponents.Targets.dll).	This	assembly	is	versioned
independently	of	the	other	Sandcastle	assemblies	so	that	reference

target	caches	do	not	have	to	be	rebuilt	with	each	new	release	of	the
Sandcastle	tools.

Moved	all	of	the	command	related	classes	into	their	own	namespace.

Made	all	of	the	supporting	classes	public.

Made	all	reference	link	target	classes	serializable.

Cleaned	up	and	refactored	the	code	where	necessary	in	almost	all	of
build	components.

Added	a	new	CopyCommand	abstract	base	class	in	BuildAssembler
to	make	creating	new	copy	commands	possible.

Added	a	new	IndexedCache	abstract	base	class	for	use	by	the
CopyFromIndexComponent	and	its	subcomponents	for	the	index
data.	This	also	allows	derived	components	to	implement	alternate
caching	mechanisms.

Made	TargetDictionary	an	abstract	base	class	and	added
InMemoryTargetDictionary	as	the	basic	implementation.	This
allows	alternate	implementations	that	use	a	different	storage
mechanism	for	the	target	data.

Reimplemented	how	reference	link	targets	are	loaded	and	stored.	This
allows	for	sharing	target	data	independent	of	link	type	across	multiple
instances	of	ResolveReferenceLinksComponent2	reducing
memory	requirements	and	initialization	time	when	building	multiple
output	formats.	The	new	implementation	also	allows	caching	of	the
information.

Reworked	the	target	dictionaries	to	allow	for	loading	of	target
information	in	parallel	to	speed	initialization	up	a	bit.

Renamed	the	IndexedDocumentCache	to
InMemoryIndexedCache	and	reworked	it	to	support	filtering	by
namespace	to	reduce	the	amount	of	reflection	data	that	it	needs	to	load
and	also	added	support	for	loading	the	index	files	in	parallel.

In	CopyFromIndexComponent,	added	a	virtual	method	to	create
the	index	caches,	added	code	to	dispose	of	them	when	done,	and
exposed	the	context	via	a	protected	property.

Added	a	Dispose	method	to	CloneComponent	to	properly
dispose	of	all	components	in	each	branch.

Simplified	the	FileCreatedEventArgs	and	updated	the
HxFGeneraterComponent	to	make	it	responsible	for	figuring	out
where	to	put	its	files.

Added	support	for	MSDN	content	ID	caching	to	the
ResolveReferenceLinksComponent2.	The	implementation
allows	derived	classes	to	utilize	backing	stores	other	than	the
serialized	binary	file	used	by	default	as	long	as	the	cache	type
implements	IDictionary<string,	string>.	It	also	allows
sharing	the	cache	across	multiple	instances	of	the	component.

Regenerated	the	MTPS	Content	Service	classes.	A	decision	was	made
to	stay	with	the	web	service	as	the	authentication	issues	have	well-
known	solutions	(see	BuildAssembler.exe.config).	Switching	to	a
service	type	may	introduce	other	authentication	issues	and	since	the
web	service	works	well	enough,	it	was	left	as-is.

Added	support	for	defining	which	namespace	targets	to	load	in
ResolveReferenceLinksComponent2.	This	prevents	loading
unnecessary	namespaces	saving	some	memory	and	initialization	time.

ReferenceLinkComponent2	and
CopyFromIndexComponent	now	report	cache	usage	at	the	end	of
the	build	with	diagnostic	messages.	These	can	be	used	to	help	tune	the
cache	sizes	if	necessary	especially	in	derived	caching	components.

Added	support	for	a	renderReferenceLinks	attribute	to	the
SyntaxComponent	configuration's	syntax	element.	By	default	the
syntax	component	will	not	render	links	to	types	in	the	syntax	section
(this	is	not	supported	anymore	by	MS	Help	Viewer	2.0).	By	adding
this	attribute	to	the	configuration	and	setting	it	to	true,	you	can	turn
them	back	on	again	if	wanted.

Added	a	condition	to	the	SyntaxComponent's	Apply	method	to
skip	group,	project,	and	namespace	pages	in	which	a	syntax	section	is
of	no	use.	This	allows	removal	of	the	IfThenComponent	wrapper
around	it	in	the	configuration	files	which	wasn't	using	an	up-to-date
condition	anyway.

Updated	the	Visual	Basic	and	Visual	Basic	Usage	syntax	generators	to
omit	the	line	continuation	character	by	default.	It	can	be	enabled	by
adding	the	includeLineContinuation	attribute	to	the
generator	element	and	setting	it	to	true.

Removed	the	use	of	RegexOptions.Compiled	in
ExampleComponent	which	greatly	improves	its	overall
performance.	The	significant	time	and	increased	memory	penalties
outweighed	any	performance	benefits	over	the	course	of	the	build.

Updated	DisplayComponent	to	output	the	content	as	a	diagnostic
message	using	the	WriteMessage	method	rather	than	just	dumping
it	to	the	console.

Updated	ValidateComponent	to	include	the	key	in	its	warning
messages.

Moved	the	MSHelpAttrComponent	and
ShowMissingComponent	from	the	Sandcastle	Help	File	Builder
into	the	Sandcastle	BuildComponents	project.

Fixed	up	various	issues	in	the	BuildAssembler	projects	found	by
FxCop	(too	many	to	list).

Presentation	Styles

Changed	the	title	element	in	the	presentation	styles	so	that	it	shows
the	qualified	member	name.	This	is	required	to	provide	unique	titles
for	index	entries.	This	does	have	the	side-effect	of	causing	member
titles	in	the	MS	Help	Viewer	TOC	to	be	qualified	with	the	class	name
as	Help	Viewer	no	longer	supports	a	TOCTitle	metadata	attribute
like	Help	2	did.	Help	for	base	framework	classes	exhibits	the	same
behavior	so	this	appears	to	be	by	design.

Fixed	the	VS2010	style	so	that	links	work	properly	in	Help	2.

Fixed	VS2010\Branding\ps-body.xslt	so	that	it	doesn't	add	a	"./"
relative	URL	prefix	to	non-relative	image	URLs.

Commented	out	the	templates	in	VS2010\Branding\ps-body.xslt	that
were	stripping	style	attributes.	These	appear	to	be	for	use	with	non-
self-branded	content	which	doesn't	apply	anymore.	Allowing	the	style
attributes	through	fixes	the	problem	of	the	"nobullet"	list	style	not
working.

Updated	all	presentation	styles	so	that	fields,	properties,	events,	and
methods	include	a	return	type	link	even	if	no	returns	or	value
XML	comments	element	is	present.	This	makes	it	consistent	with
MSDN	and	allows	for	the	removal	of	the	type	links	within	the	Syntax
section	itself	as	the	type	links	for	the	return	value	and	parameter
values	are	available	elsewhere	on	the	page.

Deleted	the	unused	reference	and	schema	build	configuration	and
XSL	transformation	files	from	all	presentation	styles.

Removed	the	duplicate	items	from	shared_content_mshc.xml	leaving
only	the	overridden	path	elements.	The	MS	Help	Viewer
configuration	files	where	updated	to	include	the	shared_content.xml
file	ahead	of	it.

Updated	the	example	and	presentation	style	configuration	files	to
reference	InheritDocumentationComponent	in	the
BuildComponents	assembly.

Added	the	ShowMissingComponent	resource	items	to	the
reference_content.xml	file	in	each	presentation	style.

Added	support	for	the	markup	element	in	main_sandcastle.xsl	in
each	presentation	style.	This	allows	a	block	of	HTML	or	other
elements	such	as	include	to	pass	through	as-is	to	the	topic.	This
allows	build	components	to	insert	content	before	the
TransformComponent	runs	and	prevents	it	being	removed	as
unrecognized	content	by	the	XSL	transformations.	The	conceptual
transformations	already	allow	this	so	this	makes	the	conceptual	and
reference	builds	consistent	in	supporting	a	markup	element.

See	Also

Other	Resources
Version	History

Send	comments	on	this	topic	to	Eric@EWoodruff.us

[v2.7.3.0]	Sandcastle	Tools

mailto:Eric%40EWoodruff.us?Subject=Sandcastle Tools
http://SHFB.CodePlex.com

						 	

Sandcastle	Tools

Version	2.7.2.0,	December	2012
See	Also	Send	Feedback

[This	is	preliminary	documentation	and	is	subject	to	change.]

Version	2.7.2.0	was	released	on	December	16th,	2012.

MRefBuilder	Tool

BuildAssembler	Tool	and	Components

Production	Transforms

Presentation	Styles

Extras

MRefBuilder	Tool

Fixed	MRefBuilder	so	that	it	does	not	exclude	System.Xml	and
System.Data	from	the	framework	assembly	cache.

Updated	the	Frameworks.xml	file	to	reference	the	December	2011
Silverlight	Toolkit	for	Silverlight	5	rather	than	the	older	April	2010
version	for	Silverlight	4.

Merged	changes	from	ComponentOne	that	prevent	additional	cases
that	cause	a	crash	when	documenting	obfuscated	assemblies.

BuildAssembler	Tool	and	Components

Added	support	for	topic	key	and	message	parameters	in	the	message
logging	methods	in	BuildAssembler.

Updated	all	build	components	to	include	the	topic	key	in	warning	and
error	messages	when	available.

Updated	TransformComponent	to	raise	a	ComponentEvent
with	a	TransformedTopicEventArgs	parameter	that	contains
the	topic	key	and	the	transformed	topic	document.	This	allows
components	that	ran	earlier	in	the	stack	to	perform	tasks	after	the	topic
has	been	converted	to	HTML.	This	eliminates	the	need	for	a	post-
transform	component	as	the	component	that	ran	earlier	can	handle	the
post-transform	processing	itself.

Production	Transforms

Updated	CreatePrototypeToc.xsl	with	a
rootNamespaceContainer	parameter	that	can	be	set	to	true	to
have	it	generate	a	root	namespace	container	node	like	the
transformation	for	the	other	presentation	styles.

Updated	ApplyVSDocModel.xsl	and
ApplyPrototypeDocModel.xsl	to	include	assembly	version
number	information	in	the	API	member	data.

Presentation	Styles

Fixed	up	the	casing	on	the	scripts\	and	styles\	folder	references	so	that
they	are	all	consistent	and	will	not	cause	casing	issues	on	UNIX	based
web	servers.

Fixed	VS2005	CommonUtilities.js	so	that	the	<see
langword="XXX"	/>	elements	work	properly.	The	prior	Help
Viewer	2.0	fix	broke	their	handling	in	the	other	help	formats.

Moved	Shared\Content\syntax_content.xml	and	the	files	in
Shared\Transforms\	into	each	of	the	presentation	styles	so	that	they
are	all	self-contained.	This	will	make	cloning	a	presentation	style	to
customize	it	easier.	There	was	already	a	significant	amount	of
duplication	anyway	so	merging	the	few	files	that	were	shared	does	not
make	much	difference	in	terms	of	maintenance.

Removed	the	unused	files	in	Shared\Scripts.

Updated	all	presentation	styles	to	include	assembly	version	number
information	in	the	API	topics.

Updated	all	presentation	styles	to	handle	the	title	attribute	on
code	elements.

Added	a	condition	to	hide	the	language	selector	in	the	Prototype
presentation	style	if	there	is	only	one	language.

Fixed	handling	of	the	preliminary	XML	comment	element	in	all
presentation	styles	so	that	it	renders	the	content	if	specified.

Added	a	transformation	template	in	all	presentation	styles	to	get	the
code	language	so	that	it	is	consistent	in	all	places	that	need	it	for	the
language	filter.

Added	logo	support	to	all	presentation	style	XSL	transformations.	The
VS2010	style	now	supports	all	of	the	logo	placement	options	to	match
the	other	styles.

Updated	the	XSL	transformations	so	that	they	do	not	output	an	empty
Abstract	Help	2	metadata	element	for	certain	cases	such	as	when	it
only	contains	a	non-breaking	space	character.

Merged	changes	from	ComponentOne	into	the	VS2005	style	to
prevent	the	unnecessary	borders	on	the	page	headers	in	MS	Help
Viewer	1.0.

Added	support	for	the	event	XML	comments	element	in	all
presentation	styles.	This	was	a	custom	element	implemented	by	NDoc
that	never	made	it	into	Sandcastle.	It	renders	a	section	called	Events
containing	a	table	listing	events	that	can	be	raised	by	the	method	and	a
description	for	how	the	event	can	be	raised.

Extras

Added	MAML	snippet	definitions	for	the	common	block	and	inline
elements	and	a	related	page	to	the	guided	installer	to	copy	them	to	the
local	snippets	cache	for	the	various	Visual	Studio	versions.

Updated	the	Sandcastle	MAML	guide	to	remove	references	to	the
Sandcastle	Help	File	Builder	components	and	features	that	have	been
moved	into	the	Sandcastle	build	components	and	presentation	style
XSL	transformations.

Started	to	document	the	Sandcastle	tools	by	adding	this	help	file.	The
content	and	images	in	the	general	information	and	architecture	topics
was	originally	created	by	Dave	Sexton	as	part	of	the	wiki	content	on
the	Sandcastle	Styles	project	site	on	CodePlex.
As	of	this	release,	it	is	still	a	work	in	progress.	More	information	on
the	various	tools	and	components	will	be	added	as	time	permits.

Added	the	Sandcastle	XML	Comments	Guide	help	file	to	provide	a
comprehensive	set	of	documentation	on	the	XML	comments	elements
and	how	they	are	used	with	Sandcastle.

See	Also

Other	Resources
Version	History

Send	comments	on	this	topic	to	Eric@EWoodruff.us

[v2.7.3.0]	Sandcastle	Tools

mailto:Eric%40EWoodruff.us?Subject=Sandcastle Tools
http://SHFB.CodePlex.com

						 	

Sandcastle	Tools

Version	2.7.1.0,	October	2012
See	Also	Send	Feedback

[This	is	preliminary	documentation	and	is	subject	to	change.]

Version	2.7.1.0	was	released	on	October	2nd,	2012.	This	was	the	first	official
release	after	merging	the	Sandcastle	tools	with	the	Sandcastle	Help	File
Builder	project.

General	Changes

MRefBuilder	Tool

XslTransform	Tool

Build	Components

Presentation	Styles

General	Changes

Added	/arg:project=Project	to	the	Generic.targets	file	in	the
Reflection	target	to	include	a	root	namespace	container	in	the
manifest.	This	works	around	an	issue	with	the	web	output	from	the
example	GUI	failing	if	there	is	more	than	one	namespace	in	the
documented	assemblies.

	Note

If	you	want	to	build	website	output,	using	the	Sandcastle	Help	File
Builder	is	recommended	as	it	has	better	support	for	website	output
than	the	example	GUI.

Merged	changes	from	Dany	R.	into	the	HTML	to	MAML	Converter	to
support	image	alignment,	topic	ID	and	revision	number	metadata,	and
optional	movement	of	leading	topic	text	into	the	introduction	element.

Thanks	to	Alex	Sherman	and	Sergey	Zhurikhin	for	the	Russian
translations	of	the	Sandcastle	resource	item	files	that	have	been	added
to	the	language	pack.

MRefBuilder	Tool

Added	code	to	Duplicator.VisitTypeReference()	so	that
it	doesn't	get	stuck	in	an	endless	loop	when	a	type	contains	a	nested
type	that	itself	implements	a	nested	type	from	within	the	containing
type	(still	with	me?).

Added	a	check	condition	in	RecordExtensionMethods()	to
prevent	a	crash	in	an	odd	case	where	a	potential	extension	method	has
no	parameters.

Added	support	for	defining	assemblies	to	ignore	if	unresolved.	This	is
useful	for	ignoring	assemblies	that	cannot	be	resolved	for	which	you
do	not	have	a	copy	such	as	the	Crystal	Reports
BusinessObjects.Licensing.KeycodeDecoder	assembly.
See	the	MRefBuilder.config	file	for	an	example	definition	(the
ignoreIfUnResolved	child	element	of	the	resolver	element).

Added	a	new	Frameworks.xml	file	for	MRefBuilder	to	use	in	loading
framework	assembly	information.	This	new	style	of	framework
definition	is	enabled	by	using	the	framework	and	version
attributes	on	the	platform	element	in	the	MRefBuilder.config	file.
This	ensures	that	the	reflection	information	is	accurate	for	the	selected
framework	type	and	version.
The	framework	and	version	attribute	values	correspond	to	one	of
the	framework	sets	defined	in	the	Frameworks.xml	file.	Using	this
method	allows	for	automatic	referencing	of	core	framework
assemblies	as	well	as	automatic	binding	redirection	from	older
versions	to	the	defined	version	for	all	assemblies	in	the	framework's
assembly	set	(i.e.	automatically	redirecting	the	RIA	SDK
dependencies	from	the	Silverlight	4	versions	to	the	Silverlight	5
versions	when	producing	information	for	a	Silverlight	5	project	that
uses	the	RIA	SDK).	In	other	words,	you	no	longer	need	to	specify	the
dependencies	or	define	binding	redirections	for	the	standard
framework	assemblies.

XslTransform	Tool

Added	an	UnauthorizedAccessException	check	to	ignore
temporary	files	that	may	be	locked	when	attempting	to	delete	them	(i.e.
virus	scanners	have	them	open).

Build	Components

Made	a	couple	of	fixes	to	BrandingComponent	that	allows	the
content	to	show	up	in	Help	Viewer	2.0	that	comes	with	Visual	Studio
2012.

In	the	MSHCComponent:

Removed	the	ContentType	metadata	as	it	is	output	by	the
XSL	transformations.

Changed	SelfBranded	to
Microsoft.Help.SelfBranded	for	Help	Viewer	2.0
support.	Help	Viewer	1.0	does	not	care	which	name	you	use	for
self-branded	content	but	Help	Viewer	2.0	requires	the	qualified
name	or	it	attempts	to	brand	the	content	which	causes	some	odd
display	issues.

Removed	the	VS2005	header	table	fix	code	as	it	was	not	needed
anymore.	It	is	already	handled	by	the	script	used	in	the
presentation	style	(see	below).

Added	an	extra	slash	to	the	ms-xhelp	links	generated	by
ResolveConceptualLinksComponent	and
ResolveReferenceLinksComponent2	so	that	they	work
properly	with	Help	Viewer	2.0.	Without	it,	Help	Viewer	2.0	renders
invalid	links	for	some	reason.

Presentation	Styles

Replaced	conceptualLink	elements	with	anchor	links	to	the
corresponding	MSDN	topics	in	the	VS2010	style's	resource	item	files.

Removed	the	style	attribute	from	VS2010\Branding\ps-
codesnippet.xslt	as	it	was	causing	issues	with	FireFox	and	Chrome
when	viewing	website	output.	The	attribute	appears	to	be	unnecessary
and	its	removal	does	not	appear	to	affect	the	results.

Added	a	case	for	using	the	currently	defined	target	attribute	value	on
an	external	link	in	VS2010\Branding\ps-instrumentedLink.xslt	so	that
it	honors	the	user-defined	link	target	rather	than	always	forcing	it	to
_blank.

Fixed	a	bug	in	Presentation\VS2010\Branding\ps-
instrumentedLink.xslt	that	caused	local	links	to	be	rendered	with	an
incorrect	URL	in	Help	Viewer	2.0.

Removed	the	background	attribute	from	the	nsrBottom	table
element	in	the	VS2005	style	as	it	was	breaking	the	language	filter
links	at	the	top	of	the	page	in	Help	Viewer	2.0.	The	script	sets	the
background	so	it	was	not	needed	anyway.

Fixed	various	other	issues	in	the	VS2005	and	VS2010	presentation
styles	to	get	them	to	work	properly	with	Help	Viewer	2.0.

Fixed	the	VS2005	and	VS2010	presentation	styles	so	that	F1
keywords	work	properly	when	looking	up	API	members	via	F1	in
Visual	Studio	with	MS	Help	Viewer.

Merged	the	collapsible	section	changes	for	MAML	content	from
Microsoft	into	the	Prototype	style	(Sandcastle	work	item	#2269).

The	dev10.mshc	file	from	Visual	Studio	2010	is	no	longer	required.
Due	to	differences	in	the	way	Help	Viewer	2.0	works	and	the	fact	that
the	file	is	not	part	of	Visual	Studio	2012,	a	temporary	file	of	the	same
name	has	been	included	with	a	set	of	transformations	necessary	to	get
the	content	built	with	Sandcastle.	A	future	release	will	probably	get
rid	of	it	altogether	in	favor	of	integrating	its	various	parts	directly	into

the	presentation	style.

See	Also

Other	Resources
Version	History

Send	comments	on	this	topic	to	Eric@EWoodruff.us

[v2.7.3.0]	Sandcastle	Tools

mailto:Eric%40EWoodruff.us?Subject=Sandcastle Tools
http://SHFB.CodePlex.com

						 	

Sandcastle	Tools

Version	2.7.0.0,	April	2012
See	Also	Send	Feedback

[This	is	preliminary	documentation	and	is	subject	to	change.]

Version	2.7.0.0	was	released	on	April	15th,	2012.	This	release	was	issued
before	officially	being	merged	with	the	Sandcastle	Help	File	Builder	project.
It	fixed	almost	all	of	the	known	tool	bugs	and	merged	all	changes	from	the
Sandcastle	Styles	patch	into	the	Sandcastle	XSL	transformations.

General	Changes

Schemas

Command	Line	Library

MRefBuilder	Tool

BuildAssember	Tools

Build	Components

DBCSFix	Tool

ChmBuilder	Tools

Presentation	Styles

General	Changes

Rearranged	the	source	project	folders	to	match	the	installed	folder
layout.	This	makes	testing	a	development	build	much	easier	as	you
can	point	DXROOT	at	the	.\Sandcastle\Main	folder	and	have	it	work
like	a	release	build.

Created	separate	solutions	for	each	tool	so	that	they	can	be	loaded,
built,	and	tested	individually.	Reflector	was	used	to	get	the	source
code	for	the	tools	that	were	missing	source	code	and	projects	were
added	for	them	too.

All	tools	are	now	built	using	.NET	4.0.	This	will	allow	taking
advantage	of	newer	features	in	the	runtime	added	since	.NET	2.0.	This
does	not	change	the	ability	to	run	the	tools	against	assemblies	built
with	prior	framework	versions.	That	is	still	supported.

Removed	all	GlobalSuppressions.cs	files	from	all	projects.	Many	of
us	do	not	have	a	version	of	Visual	Studio	that	supports	code	analysis
within	the	IDE.	Instead,	individual	FxCop	projects	have	been	created
for	each	project.	Some	clean	up	has	been	performed	based	on	the
initial	scans.	Warnings	still	exist	in	several	projects	and	have	been	left
for	review	until	later.

Signed	all	assemblies	with	a	new	key	file	and	standardized	the
assembly	attributes.

Added	Data\BuildReflectionData.bat	and
Data\BuildReflectionData.proj	to	properly	rebuild	the	reflection	data
files.

Updated	the	XSL	stylesheet	version	number	to	2.0	in	all	XSL
transformations.	A	bug	in	.NET	4.0	prevents	the	<xsl:sort>
function	from	working	when	using	XSL	version	1.1.

Merged	the	Sandcastle	Guided	Installer,	the	Language	Pack,
Sandcastle	MAML	Guide,	Web	Code	Providers,	and	the	HTML	to
MAML	Converter	projects	from	Sandcastle	Styles	into	the	Sandcastle
project.	These	are	located	under	the	.\Extras	folder.

The	Sandcastle	Guided	Installer	has	been	rewritten	as	a	WPF

application.	It	uses	flow	documents	rather	than	HTML	resources	for
the	pages	which	are	much	easier	to	extend	and	work	with	in	the	code.

Created	a	new	setup	project	to	install	Sandcastle.	This	version
includes	the	content	from	the	.\Extras	folder	as	additional	installable
options.	This	installer	also	gives	Sandcastle	a	presence	on	the	Program
Files	menu	with	links	to	the	included	help	files,	the	project	web	site,
and	the	example	GUI.	The	setup	project	is	located	in	the	.\Extras
folder	too	as	it	isn't	part	of	the	core	Sandcastle	code	and	uses	the	WiX
tools.

Schemas

Added	a	new	optional	attribute	to	the	reflection	data	schema	for
parameter	elements.	This	is	needed	to	properly	document	optional
parameters	that	use	OptionalAttribute	and	have	no	default
specified	using	assignment.

Updated	the	MAML	schemas	to	include	all	of	the	new	elements	and
attributes	added	by	the	Sandcastle	Styles	patch	and	adjusted	a	few
elements	to	reflect	how	Sandcastle	uses	them.	This	allows	for	proper
validation	of	MAML	topics	in	Visual	Studio.

Command	Line	Library

Reworked	the	command	line	option	classes	to	fix	various	FxCop
warnings	and	to	correctly	implement	support	for	required	options.

MRefBuilder	Tool

Moved	the	content	of	the	CCI\	and	Reflection\	folders	into	the
MRefBuilder	project	and	made	them	members	of	the	project	so	that
they	are	compiled	directly	into	MRefBuilder.exe	to	match	prior
releases	of	Sandcastle.

Fixed	ExtensionMethodAddIn.cs	so	that	it	doesn't	add	extension
methods	to	enumerations	and	static	classes	(Sandcastle	work	item
#8852).

Fixed	ExtensionMethodAddIn.cs	so	that	it	ignores	unexposed
namespaces	and	types.	This	prevents	it	from	scanning	unnecessary
namespaces	and	types	and	stops	a	crash	caused	by	it	scanning
compiler	generated	types	created	by	the	code	contracts	post-
processing	tool	(Sandcastle	work	item	#11066).

Fixed
Method.ImplicitlyImplementedInterfaceMethods	in
Nodes.cs	so	that	it	recognizes	interface	member	matches	when	the
return	type	is	generic	(Sandcastle	work	item	#22970).

Fixed	GetTemplateMember()	and	ParametersMatch()	to	properly
check	for	template	parameters	when	there	are	method	overloads	in
which	one	uses	a	generic	type	and	the	other	does	not	(i.e.
Contains(T)	and	Contains(Guid)).	This	was	Sandcastle	work
item	#1908	and	most	likely	fixed	work	item	#7803	too	as	it	looks
similar	and	the	test	case	works	as	expected	now.

Fixed	TypeNode.Attributes	so	that	it	will	not	get	stuck	in	an
endless	loop	if	a	type's	attribute	references	the	type	being	parsed
(Sandcastle	work	item	#2253).

Fixed	TypeNode.NestedTypes	so	that	it	will	not	get	stuck	in	an
endless	loop	when	a	type	contains	a	nested	type	that	itself	implements
a	nested	type	from	within	the	containing	type.

Fixed	IsExposedMember()	and	IsExposedType()	in
ApiFilter.cs	so	that	they	ignore	unrecognized	type	and	member
visibility	values	(Sandcastle	work	item	#2967	and	#2969).

Fixed	IsExposedMember()	so	that	it	compares	generic	members
using	the	Name<T>	and	Name{T}	syntax	so	that	it	gets	a	match
either	way	(Sandcastle	work	item	#5593).

Fixed	IsExposedExpression()	in	ApiFilter.cs	so	that	it	doesn't
exclude	a	type	in	an	attribute	expression	as	long	as	the	hidden	type	has
exposed	members	thus	exposing	the	type.

Fixed	IsExposedNamespace(),	IsExposedType(),	and
IsExposedMember()	in	ApFilter.cs	so	that	they	exclude	members
with	names	containing	characters	that	are	not	valid	in	XML	(i.e.
obfuscated	member	names).

Fixed	MemberDictionary.Contains()	so	that	when	checking	for
matching	members	it	compares	generic	template	parameters	by	name
to	match	members	with	generic	parameters	correctly.	This	fixes	an
issue	where	it	treats	overridden	members	as	overloads	when	they
contain	generic	template	parameters.	This	was	Sandcastle	work	item
#4553	and	most	likely	fixed	work	item	#11303	too	as	it	looks	similar
and	the	test	case	works	as	expected	now.

Fixed	OrcasNamer.WriteTemplate()	so	that	it	uses	the	correct
template	parameter	names	which	do	not	always	match	the	base	class's
template	parameter	names	(i.e.	Collection<TControl>	vs.
Collection<T>).	Sandcastle	work	item	#5594.

I	am	not	sure	if	one	of	the	other	changes	fixed	it	or	if	it	was	fixed
already	in	the	source	code,	but	Sandcastle	work	item	#2903	(Spurious
references	to	parameterized	class	with	inner	class)	is	fixed	as	the	test
cases	in	it	work	as	expected.

Added	a	check	for	exposed	members	in	unexposed	types	in
IsExposedType()	in	ApiFilter.cs.	Such	cases	effectively	expose
the	type	and	it	should	be	included	whenever	this	check	occurs	for	it.
Without	the	check,	it	was	incorrectly	excluding	types	in	several
locations.

Added	CompilerGeneratedAttribute	check	to
IsExposedType()	in	ExternalDocumentedFilter.cs	as	public
members	can	sometimes	be	compiler	generated	(i.e.	generated	types
for	public	fields	that	use	the	fixed	keyword).	This	was	a	new	issue	I

found	while	testing	the	fixed	keyword	syntax	issue.

Added	FixedBufferAttribute	to	the	default
MRefBuilder.config	API	filter	as	an	exposed	attribute	so	that	it	gets
passed	through.	This	is	needed	in	order	to	properly	document	fixed
members	in	the	syntax	section.

Added	OptionalAttribute	to	the	default	MRefBuilder.config
API	filter	as	an	exposed	attribute	so	that	it	gets	passed	through.	This	is
needed	in	order	to	properly	document	optional	parameters.

Added	code	to	write	out	the	new	optional	attribute	for	optional
parameters.	This	is	needed	to	properly	document	optional	parameters
that	use	OptionalAttribute	and	have	no	default	specified	using
assignment.	The	syntax	components	and	XSL	transformations	have
been	updated	to	make	use	of	it	to	document	optional	parameters	and
their	values	(Sandcastle	work	item	#9627).

Merged	my	changes	into	the	AssemblyResolver	class	to	provide
support	for	assembly	binding	redirection.	Added	example
configuration	info	for	it	to	MRefBuilder.config	(Sandcastle	work	item
#1014).

BuildAssember	Tools

Added	the	proxy	configuration	settings	that	work	around	the	HTTP
407	and	HTTP	417	errors	in	comments	to	the
BuildAssembler.exe.config	file.

Added	support	for	specifying	a	verbosity	level	on	the	configuration
element.	This	can	significantly	reduce	the	build	assembler	output	and
makes	it	easier	to	see	warnings	as	it	is	much	less	chatty.	The	default
verbosity	is	Info	so	that	its	default	behavior	matches	prior	releases.

Build	Components

	Important

Custom	build	components	that	override	Dispose()	will	need	to	be
updated	to	override	protected	void	Dispose(bool
disposing)	rather	than	public	void	Dispose()	as	the
Sandcastle	source	code	release	correctly	implements	the	IDisposable
pattern.

Fixed	ResolveReferenceLinksComponent2	so	that	it	does
not	write	out	unnecessary	parentheses	on	unresolved	property
elements	(Sandcastle	work	item	#1987).

Fixed	ResolveReferenceLinksComponent2	so	that
references	to	enumerated	field	types	are	redirected	to	the	containing
enumerated	type	so	as	to	produce	a	valid	link	target	(Sandcastle	work
item	#2221).

Fixed	the	C#,	C++,	VB.NET,	F#,	and	J#	syntax	generator	components
so	that	they	output	numeric	attribute	values.	In	the	event	that	an
unrecognized	attribute	parameter	type	is	encountered,	the	syntax
generators	write	out	the	value	as-is.	Array	parameters	are	also
supported	now	but	the	reflection	data	does	not	contain	the	values.	As
such,	it	writes	out	the	array	type	and	a	generic	"{	...	}"	placeholder
where	the	values	would	go.	The	information	is	probably	there	but	it
would	probably	require	changes	to	the	CCI	code	to	include	it
(Sandcastle	work	item	#6779)

Fixed	the
XamlUsageSyntaxGenerator.WritePropertySyntax()

so	that	it	generates	syntax	for	properties	with	abstract	return	types	as
long	as	there	is	a	type	converter	for	it	(i.e.	Brush)	Sandcastle	work
item	#5466.

Added	support	for	a	duplicateWarnings	attribute	that	can	be
added	to	the	data	elements	of	the	index	element	on	the
CopyFromIndexComponent.	When	set	to	false,	it	suppresses
duplicate	index	key	warnings.	This	is	useful	for	comments	files	where

there	can	be	duplicate	keys	but	it	isn't	an	issue.	The	default	is	true	if
not	specified	to	maintain	the	behavior	from	past	releases	and	report
the	warnings	(Sancastle	work	item	#11844).

Added	support	for	optional	arguments	to	the	C#,	C++,	VB.NET,	F#,
and	J#	syntax	generator	components.	I	did	not	enclose	them	in
brackets	as	it	looked	rather	odd	when	attributes	were	present	and	the
assignment	is	a	dead	giveaway	that	it	is	an	optional	parameter.	As
such,	it	uses	the	standard	syntax	but	I	did	update	the	XSL
transformations	to	include	"(Optional")	after	the	parameter	name	in
the	Parameters	section	of	the	topic	(Sancastle	work	item	#9627).

Added	support	for	attributes	on	property	getter/setter	methods	to	the
C#,	C++,	VB.NET,	F#,	and	J#	syntax	generator	components
(Sandcastle	work	item	#973).

Made	the	unsafe	code	checks	consistent	across	all	syntax	generators
and	added	a	check	for	the	FixedBufferAttribute	to	the
apiIsUnsafeExpression	XPath	expression.

Added	fixed	keyword	support	to	the	C#	and	C++	syntax	generators
(Sandcastle	work	item	#10107).

Added	interior_ptr<>	support	to	the	C++	syntax	generator.
Added	a	fixup	regular	expression	to	the	Sandcastle	help	file	builder
too	so	that	the	comments	are	included	in	the	member	page	(Sandcastle
work	item	#2299).

Merged	my	changes	and	bug	fixes	into	the	MSHCComponent.	The
changes	include:

Support	for	a	sortOrder	option	on	the	TOC	elements	to	allow
the	sort	order	of	the	elements	to	be	defined	to	set	the	proper
placement	of	the	TOC	entries	when	parented	to	an	entry	outside
of	the	help	file	and	to	parent	the	API	content	within	a	conceptual
content	folder.

Fixed	a	bug	that	caused	a	"duplicate	key"	error	under	certain
conditions.

Fixed	an	incorrect	XPath	expression	that	was	letting	duplicate
metadata	through.

Added	my	JavaScriptDeclarationSyntaxGenerator	to
the	SyntaxComponents	assembly.	Modified	FixScriptSharp.xsl	to
include	a	scriptSharp	element	to	indicate	to	the	syntax	generator
that	it	should	apply	the	casing	rules	to	member	names.	This	allows	the
added	syntax	generator	to	work	with	normal	JavaScript	and	Script#
projects	alike	(Sandcastle	work	item	#1999).

Merged	my	changes	and	bug	fixes	into	the
ResolveConceptualLinksComponent	(Sandcastle	work	item	#2193):

Broken	links	use	the	None	style	rather	than	the	Index	style	so
that	it	is	apparent	that	they	do	not	work.

The	inner	text	from	the	conceptual	link	is	used	if	specified.

On	broken	links,	when	the	showBrokenLinkText	option	is
true	and	there	is	no	inner	text,	the	target	value	is	displayed.

Conceptual	link	targets	can	include	an	optional	anchor	name
from	within	the	target	such	as	"#Name".

Unnecessary	whitespace	is	removed	from	the	link	text.

If	the	companion	file	contains	a	<linkText>	element	and	no
inner	text	is	specified,	its	value	will	be	used	for	the	link	text
rather	than	the	title.	This	allows	for	a	shorter	title	or	description
to	use	as	the	default	link	text.

DBCSFix	Tool

Updated	the	file	masks	to	use	*.htm?	to	find	both	.htm	and	.html	files
(Sandcastle	work	item	#1072).

Fixed	the	incorrect	check	for	LCID	value	(Sandcastle	work	item
#1072).

Fixed	SubstituteAsciiEquivalents()	so	that	it	actually
performs	the	substitutions	for	encodings	other	than	Windows-1252
(Sandcastle	work	item	#1072).

Switched	to	using	EnumerateFiles()	which	is	more	efficient	for
large	projects.

ChmBuilder	Tools

Switched	to	using	EnumerateDirectories()	and
EnumerateFiles()	which	is	more	efficient	for	large	projects.

Presentation	Styles

This	release	added	the	new	VS2010	presentation	style	developed	by	Don
Fehr.	Consider	this	a	beta	release	as	we	work	out	the	bugs.	The	following
fixes	and	feature	enhancements	from	the	Sandcastle	Styles	patch	and	some
unreported	bugs	from	the	discussion	pages	were	applied	to	the	presentation
style	files:

Sandcastle	work	item	#6858:	The	omitVersionInformation	parameter
is	missing	from	VS2005\transforms\main_sandcastle.xsl

Sandcastle	work	item	#1943:	ResolveArtLinksComponent	is	wrong	in
the	configs

Sandcastle	work	item	#6785:	Enumerated	type	members	no	longer
contain	a	description	in	VS2005	style

Sandcastle	work	item	#2268:	The	sub-section	toggles	do	not	work	in
Hana	and	VS2005	because	they	are	not	given	a	unique	ID

Sandcastle	work	item	#2603:	"this"	argument	modifier	not	shown	for
extension	methods

Sandcastle	work	item	#1965:	XAML	code	samples	cannot	be	hidden
(VS2005	style)

Sandcastle	work	item	#4476:	Cannot	link	to	overloads	page

Sandcastle	work	item	#938:	Hana	and	VS2005	styles	generate
unnecessary	Overloads	pages	and	TOC	entries

Sandcastle	Styles	work	item	#6572:	Unresolved	types	don't	show	up
in	overloaded	method	signatures	in	TOC	entries	and	topic	titles

Sandcastle	work	item	#2255:	Remaining	presentation	Style	Issues

Sandcastle	work	item	#1249:	Conceptual:	codeEntityReference	is
sensitive	to	whitespace

Sandcastle	work	item	#2034:	Conceptual:	XLinks	in	relatedTopics
section	requires	explicit	text

Sandcastle	work	item	#6788:	Support	for	definition	list	type	is
missing.

Sandcastle	work	item	#2258:	Conceptual:	ddue:copyright	processing
is	broken

Sandcastle	work	item	#2264:	ddue:list	should	support	the	"nobullet"
style

Sandcastle	work	item	#2949:	Sections	containing	nothing	but	an
image	or	a	list	of	link	elements	are	not	rendered

Sandcastle	work	item	#3652:	MAML	-	XSLT	Generates	Self-Closing
Tag	for	Bookmarks

Sandcastle	work	item	#8879:	Some	pre	elements	are	missing
xml:space="preserve"

Sandcastle	Styles	work	item	#11465:	FireFox	website	output	issues

Sandcastle	work	item	#2421	and	#2435:	Case	of	Presentation.css	is
not	consistent	in	transformations.	This	causes	case-sensitive	web
servers	to	miss	the	stylesheet.

Sandcastle	work	item	#2416:	vs2005:	summary	from	outer	class	ends
up	on	inner	class	member	page

Sandcastle	Styles	work	item	#5362:	Help	1	Sticky	Language	Filter

Sandcastle	work	item	#2274:	Conceptual:	Hana	style,	External	link	in
a	token	not	rendered	in	relatedTopics

Sandcastle	work	item	#2951:	JavaScript	syntax	section	is	not	shown
in	the	Hana	style

Sandcastle	work	item	#2260:	Anchor	tag	styles	need	to	be	fixed

Sandcastle	work	item	#2261:	Conceptual:	All	three	styles,	normalize
the	space	on	the	abstract

Sandcastle	work	item	#2265:	ddue:table	handling	needs	fixing

Sandcastle	work	item	#2266:	Rendering	of	ddue:definitionTable	isn't
consistent	in	presentation	styles

Sandcastle	work	item	#2950:	autoOutline	displays	"Related	Topics"
instead	of	"See	Also"

Sandcastle	work	item	#2275:	Conceptual:	ddue:math	should	apply

templates	to	its	inner	text

Sandcastle	work	item	#2060:	Conceptual:	Formatting	is	not	applied	to
some	in-line	MAML	elements

Sandcastle	work	item	#2273:	Support	linkAlternateText	and
linkTarget	in	externalLink

Sandcastle	work	item	#1854:	Conceptual:	Don't	Display	Summary	in
Topic

Sandcastle	work	item	#2282:	Prototype	syntax	sections	have
unnecessary	leading	whitespace

Sandcastle	work	item	#939:	Version	Builder	Issues

Sandcastle	Styles	work	item	#226453:	Version	Builder	is	broken	in
the	June	2010	release

Sandcastle	work	item	#2257:	Conceptual:	Hana	does	not	wrap	code
blocks	in	<div	class="code">

Sandcastle	work	item	#998:	Hana	and	Prototype	styles	need	to	add
CHARSET	attribute	to	topics

Sandcastle	work	item	#2259:	Conceptual:	Hana	and	Prototype	are
missing	some	namespace	declarations

Sandcastle	work	item	2267:	ddue:schemaHierarchy	and	indent
templates	are	missing	from	Prototype

Sandcastle	work	item	2272:	The	Prototype	See	Also	section	doesn't
have	a	#seeAlsoSection	anchor

Sandcastle	work	item	#1613:	seealso	tags	within	an	overloads	tag	not
listed

Sandcastle	work	item	#6787:	Add	missing	resource	items	to	Hana	and
Prototype	styles

Sandcastle	work	item	#1978:	APIName	Attributes	Incorrect	(Hana
and	Prototype)

Sandcastle	work	item	#974:	Support	External	Hyperlink	Target	with
Appropriate	Default

Sandcastle	work	item	#6803:	Support	term	element	in	bullet	and
number	list	types

Sandcastle	work	item	#6789:	Support	starting	number	on	numbered
lists

Sandcastle	work	item	#2948:	Add	address	attribute	support	to	several
elements

Sandcastle	work	item	#2270:	Conceptual:	Support	NamedUrlIndex
keywords	in	metadata

Sandcastle	work	item	#2174:	Conceptual:	Pass-through	HTML	(using
a	markup	element),	supersedes	Sandcastle	work	item	#933

Sandcastle	work	item	#6786:	Enumeration	topics	should	show	the
value	of	each	enumeration	member

Sandcastle	work	item	#1835:	Conceptual:	Glossary	Improvements

Sandcastle	work	item	#1795:	Better	implementation	of	the	<note>	tag

Sandcastle	work	item	#2256:	Better	implementation	of	the	ddue:alert
element

Sandcastle	work	item	#2189:	mediaLink	and	mediaLinkInline	should
be	handled	as	separate	templates

Sandcastle	work	item	#2142:	Conceptual:	autoOutline	Changes

Sandcastle	work	item	#2082:	Auto-generated	Bibliography	(No
dependency	on	build	components)

Sandcastle	work	item	#6790:	Add	code	contract	support	for	VS2005
style

Sandcastle	work	item	#2271:	List	formatting	doesn't	look	good	(all
three	styles)

Sandcastle	work	item	#2947:	Stylesheet	updates	needed	to	correct
spacing	and	alignment

Sandcastle	work	item	#1950:	Conceptual:	Glossary	term	requires
termClass	attribute

Sandcastle	work	item	#2021:	Conceptual:	codeSection	template

ignores	valid	code	languages

Ureported	feature	request:	Replace	conceptualLink	elements	in	the
reference	content	with	anchor	links	to	the	actual	MSDN	pages

Unreported	feature	request:	Support	conceptualLink	elements	in	code
XML	comments	to	allow	linking	to	conceptual	topics	from	API
member	docs

Unreported	bug:	VS2005	CommonUtilities.js	fails	under	MS	Help
Viewer	2

See	Also

Other	Resources
Version	History

Send	comments	on	this	topic	to	Eric@EWoodruff.us

[v2.7.3.0]	Sandcastle	Tools

mailto:Eric%40EWoodruff.us?Subject=Sandcastle Tools
http://SHFB.CodePlex.com

						 	

Sandcastle	Tools

Glossary
Send	Feedback

[This	is	preliminary	documentation	and	is	subject	to	change.]

A	|	B	|	C	|	D	|	E	|	F	|	G	|	H	|	I	|	J	|	K	|	L	|	M	|	N	|	O	|	P	|	Q	|	R	|	S	|	T	|	U	|	V	|	W	|	X	|	Y	|	Z

A
additional	content

An	extra	file	included	in	the	help	file	used	to	define	extra	content	or	used
as	a	supporting	file.	This	can	be	an	HTML	topic,	an	image,	script,
stylesheet,	etc.	In	earlier	releases	of	the	help	file	builder,	this	was	the	way
non-API	content	was	included	in	the	help	file.	The	preferred	method	of
including	such	content	now	is	to	use	conceptual	content.	Although	still
supported,	the	additional	content	features	of	the	help	file	builder	are	now
considered	deprecated.
See	Also:	

conceptual	content
B

BuildAssembler.exe
This	is	a	tool	supplied	with	Sandcastle	that	is	used	to	build	the	help
topics	for	conceptual	and	reference	builds.	It	is	passed	a	configuration
file	containing	a	list	of	build	components	to	use	in	transforming	the
topics	into	HTML	and	a	manifest	file	that	lists	the	topics	to	build.
See	Also:	

Sandcastle

C
Code	Block	Component

A	custom	build	component	that	can	be	used	to	colorize	code,	add	line
numbering	and/or	collapsible	section,	and	import	code	from	working	source
code	files.	It	can	be	used	in	both	conceptual	and	reference	builds.	The
component	is	integrated	with	the

Sandcastle	Help	File	Builder	and	is	also	available	as	a	standalone	component
from	the	same	project	site	for	use	in	other	tools	or	your	own	build	scripts.
See	Also:		Sandcastle,	Sandcastle	Help	File	Builder

code	snippets	file
A	file	used	to	store	commonly	used	code	snippets.	The	snippets	can	be
inserted	into	a	conceptual	topic	using	the	CodeEntityReference
element.

conceptual	build
A	build	that	uses	Sandcastle	to	produce	help	file	topics	using	information
extracted	from	conceptual	content	topics	and	their	related	files.
See	Also:		reference	build,	Sandcastle

conceptual	content
A	topic	file	that	contains	conceptual	content.	These	can	be	used	to	add
usage	notes,	walkthroughs,	tutorials,	etc.	to	a	help	file.	Conceptual	topics
use	MAML	rather	than	HTML	to	define	their	content.
See	Also:		additional	content,	MAML

D
dependency
See

reference.
documentation	source
An	individual	assembly	(executable	or	DLL),	an	individual	XML	comments
file,	a	Visual	Studio	project	file	(C#,	VB.NET,	or	J#),	a	Visual	Studio

http://SHFB.CodePlex.com

solution	file	containing	one	or	more	of	the	noted	project	types,	or	a
wildcard	item	that	results	in	a	list	of	one	or	more	of	the	previously
mentioned	file	types.	These	are	used	to	produce	API	documentation	in	a
help	project.	At	least	one	assembly	must	be	specified	as	a	documentation
source	in	order	to	produce	API	help	content.	Documentation	sources	are
managed	using	the	Documentation	Sources	project	node	in	the	Project
Explorer	window.

G
Globally	Unique	Identifier,	GUID
A	unique	value	that	is	associated	with	each	conceptual	topic	and	image	in	a
project.	When	inserting	links	to	topics	or	images,	the	ID	is	used	to	refer	to
them.	This	allows	you	to	alter	the	names	or	locations	of	the	topic	files
without	having	to	change	the	name	or	location	in	each	topic	that	references
them.

M
MAML

An	acronym	that	stands	for	Microsoft	Assistance	Markup	Language.
Conceptual	content	topics	are	composed	of	MAML	elements.
See	Also:	

conceptual	content

R
reference

Also	referred	to	as	a	dependency.	This	is	an
assembly	that	is	referenced	by	one	of	the
documented	assemblies	for	base	class	information
but	is	itself	not	documented	as	part	of	the	help
project.	They	are	managed	via	the	References

project	node	in	the	Project	Explorer	window.
References	can	be	GAC	entries,	assembly	files,
COM	objects,	or	Visual	Studio	project	files.

reference	build
A	build	that	uses	Sandcastle	to	produce	help	file
topics	using	information	extracted	from	managed
assemblies	and	their	associated	XML	comments
files.
See	Also:	

conceptual	build,	Sandcastle
S
Sandcastle

Sandcastle	is	a	set	of	tools	produced	by	Microsoft
that	can	be	used	to	build	help	files	for	.NET
managed	libraries,	conceptual	content,	or	a	mix	of
both.	Microsoft	officially	discontinued	development
in	October	2012.	The	Sandcastle	tools	have	been
merged	with	the

Sandcastle	Help	File	Builder	project	and	are	developed
and	supported	there	now	as	part	of	that	project.
See	Also:		Sandcastle	Help	File	Builder

http://SHFB.CodePlex.com

Sandcastle	Help	File	Builder,	SHFB
The	Sandcastle	Help	File	Builder	is	a	standalone
tool	used	to	automate	Sandcastle.	It	consists	of	a
GUI	front	end	that	helps	you	manage	and	build	help
file	projects.	It	uses	a	standard	MSBuild	format
project	file	which	can	also	be	built	from	the
command	line	using	MSBuild	or	integrated	into
Visual	Studio	builds	or	other	build	scripts	to	produce
a	help	file	when	your	application	projects	are	built.
In	addition,	it	provides	a	set	of	additional	features
beyond	those	supplied	with	Sandcastle	that	can
improve	your	help	file	and	make	it	easier	to	deploy.
A	Visual	Studio	integration	package	is	also	available
for	it	that	integrates	the	project	management	and
build	features	into	Visual	Studio	2010	or	later.
See	Also:		Sandcastle

T
token,	token	file
A	token	is	used	as	a	replaceable	tag	within	a	topic
and	is	represented	using	a	token	element.	The
inner	text	of	the	element	is	a	token	name.	The
tokens	are	defined	in	a	separate	token	file.	They	are
an	easy	way	to	represent	common	items	that	you	use
regularly	such	as	a	common	phrase	or	external	link.

http://SHFB.CodePlex.com

Send	comments	on	this	topic	to	Eric@EWoodruff.us

[v2.7.3.0]	Sandcastle	Tools

mailto:Eric%40EWoodruff.us?Subject=Sandcastle Tools
http://SHFB.CodePlex.com

	Welcome
	License Agreement
	Getting Started
	Installation Instructions
	Walkthrough: Enabling and Using XML Comments
	Documenting Web Projects
	Sandcastle Tools
	General Information
	Architecture
	Frequently Asked Questions (FAQ)
	Links to Resources
	Making a Donation
	Version History
	Version 2.7.3.0, April 2013
	Version 2.7.2.0, December 2012
	Version 2.7.1.0, October 2012
	Version 2.7.0.0, April 2012
	Glossary

