
1.			Overview

1.1																Scope

This	document	describes	how	to	use.	NET	Micro	Framework	(NETMF)	with
SH7619	EVB	board.	This	document	mainly	describes	how	to	setup,	build	and
run	SH7619_EVB	solution	available	in	the	porting	kit.	This	document	also
describes	how	to	create,	build,	deploy	and	run	NETMF	based	applications	on
SH7619	EVB	board	using	Microsoft	visual	studio.

1.2																Required	Target	System

-									SH7619	EVB
	

Please	go	through	the	document	of	the	SH7619	EVB	before	power
ON	and	working	with	the	board.

1.3																Supported	Driver

-									Serial
-									On	chip	Ethernet
-									Timer	&	Power
-									Nor	Flash
	
Following	drivers	are	just	sample.	In	the	SH7619	EVB	there	is	no	LCD	panel
and	no	Key	Input.
If	you	do	some	wire	arrangement,	following	sample	drivers	might	help	you	to
create	driver.
-									Display	(LCD	:	132	x	176	TFT	LCD	Display	(HD66773R)	with	262,144

colors)
-									Key	input	using	GPIO.
	

1.4																Supported	Projects

Following	projects	are	supported.

-									NativeSample
-									TinyCLR
	

Following	projects	are	not	supported.

-									Portbooter
-									Tinybooter
	
However,	these	projects	can	be	build	properly	so	if	needed	you	can	customize
them.

1.5																Requirements

-									Host	system	(Windows	XP	in	this	documentation)
-									Target	System	(SH7619	EVB)
-									Microsoft	Visual	Studio	2010
-									E10A-USB	Emulator	for	SH2	and	installation	setup.
-									C/C++	Compiler	Package	for	SuperH	RISC	engine	family
-									.NET	Micro	framework	porting	kit	(MicroFrameworkPK.msi)
-									.NET	Micro	framework	development	kit	(MicroFrameworkSDK.MSI)
-									.NETMF	Solution	“SH7619_EVB”	(included	in	the	porting	kit)
-									NULL	modem	cable	(Serial	cable)
-									Tera	Term	Pro	or	another	serial	program.
		

2.				Setup

2.1																Preparation

Before	setting	up	Porting	Kit,	below	software	have	to	be	installed.

-									Visual	Studio	2010
-									Renesas	C/C++	Compiler	Package	for	SuperH	RISC	engine	family	V.9.02

Release	00	or	later
	

For	these	instructions,	we	will	assume	it	is	installed	in

c:\Program	Files\Renesas\Hew\Tools\Renesas\Sh\x_y_z*

2.2																Install	.NET	Micro	Framework	Porting	Kit

				Install	porting	Kit	by	executing	MicroFrameworkPK.msi.

2.3																Set	Path

1)			Open	a	command-line	prompt
2)			Change	the	current	directory	to
								C:\MicroFrameworkPK_v4_1
3)			Enter	below,
								setenv_shc	"c:\Program	Files\Renesas\Hew\Tools\Renesas\Sh\x_y_z*"
	

*x_y_z	is	the	version	of	the	compiler	being	used	for	example	9_2_0.

	

	

	

3.				Memory	Map

The	memory	map	of	SH7619	EVB	.NETMF	Porting	kit	is	shown	below.

	

	

	

	

	

	

	

	

	

	

																																																																								

	

	

	

	

	

Figure	3.1			The	memory	map	of	SH7619	EVB	.NETMF	Porting	Kit

	

	

4.				How	to	build	and	execute

In	this	section,	we	shall	describe	the	way	to	build,	download	and	execute
SH7619	EVB	solution	available	in	the	porting	kit	with	NOR	Flash	Memory	and
SDRAM.

4.1																How	to	Build

1)	Using	Command-line	prompt,	change	the	directory	to
“Solutions\SH7619_EVB”

				C:\MicroFrameworkPK_v4_1>cd	solutions\SH7619_EVB

2)	Run

				Msbuild	dotnetmf.proj	/t:build
/p:flavor=debug;EnableTcpIp=true;TCP_IP_STACK=LWIP

						Flavor:	<debug|release|rtm>
						EnableTCPIP	:	<ture|false>	
						TCP_IP_STACK	:	LWIP						If	you	want	to	use	RTIP,	don’t	need	to	add
TCP_IP_STACK.

						If	you	want	to	debug	your	program	using	E10A-USB	Emulator,	please
specify	“debug”	for	“flavor”	option.

	

					

	

4.2																Board	switch	settings

		Set	SW1	of	the	SH7619	EVB	board	as	below	to	startup	from	NOR	Flash.
SW Setting Function

1 ON	(Low) MD0
2 OFF	(High) MD1
3 ON	(Low) MD2
4 ON	(Low) MD3
5 ON	(Low) MD5

	

		The	meaning	of	above	setting	is	below,

-									Clock	mode
Clock	Mode	is	MODE2.
Each	frequency	is	below,
-	Crystal	15.36MHz
-	CPU	15.36MHz
		FRQCR	register	is	set	by	software	as	0x1103	so	CPU	frequency	will	be

122.88MHz.
-	BUS	61.44MHz
-	Peripheral	30.72MHz
	

-									CS0	Memory	bus	width
16	Bit
	

-									Endian
Big	endian
	

	
	

	

	

4.3																Download	using	E10A-USB

1)	Setup	the	E10A-USB	Emulator

					Install	the	E10A-USB	Emulator	software	into	your	PC.

During	install,	you	should	select	the	device	group	for	E10A-USB	then	specify
“Super	H	RISC	engine	family	SH-2	device	group”

	

2)	How	to	start	downloading	using	E10A-USB

Extract	the	HEW	workspace	for	SH7619	EVB	Porting	Kit	from	file
SH7619board.zip	at	any	place	in	your	PC.				

In	the	following	instructions,	we	will	assume	it	is	installed	in	“c:\workspace”

Start	the	Hew	with	choosing	below	menu

Figure	4.1			Hew	menu

Then	Hew	will	be	show	up	and	you	can	see	below	dialog	box.

Specify	the	workspace	as	below,	and	press	OK	button.

Figure	4.2			Welcome	dialog	box

	

	

In	below	dialog	box,	choose	“SH7619”.

Figure	4.3			CPU	Select	dialog	box

When	below	message	shows	up,	power	ON	the	target	board	and	then	press	OK
button.

Figure	4.4			heu7618	dialog	box

Then	Hew/E10A-USB	will	finish	connection	with	SH7619.

Figure	4.5			Hew	window

3)	How	to	download	the	program	to	the	flash	memory

i)	Prepare	the	download	module.

		Select	the	[Debug]	->	[Debug	Settings…]	from	the	menu	bar	of	Hew	then
below	dialog	box	will	show	up.

Figure	4.6			Debug	Settings	dialog	box

Here	is	the	definition	of	download	modules.	Please	change	the	Path	setting	for
each	download	module	by	clicking	“Modify”	button.

	

ii)	Prepare	for	downloading	to	Flash	Memory.

		Select	the	[Setup]	->	[Emulator]	->	[System…]	from	the	menu	bar	of	Hew	then
“Configuration”	dialog	box	will	show	up.

		Select	“Loading	flash	memory”	tab.	Then,	specify	as	same	as	below	figure.

For	“File	name”,	please	specify

<Workspace	folder>\SH7619board\Tools\4MB\fmtool.mot.

	

Figure	4.7			Configuration	dialog	box

	

ii)	CPU	and	memory	initialization

	In	order	to	download	data	to	flash	properly,	CPU	and	memory	should	be
initialized	as	following.

		-CPU	:	Cache	must	be	disabled.
			-Memory	:	SDRAM	must	be	initialized.

In	order	to	initialize	them,	run	the	batch	file	as	below,

			-Specify	the	batch	file

Figure	4.8			Set	Batch	File

	

	

On	the	command	line	window,	do	the	right	clicking	so	that	the	popup	menu
shows	up.

		Select	“Set	Batch	file…”	and	specify	the	batch	file	name	like	below,

Figure	4.9			Set	Batch	File

	

	

			-Run	the	batch	file

							After	specify	the	batch	file,	please	press	“Play”	button	so	that	batch	file
starts	to	run.

	

iii)	Download	module	to	Flash

	

Figure	4.10			Hew	window

	

	

In	order	to	download,	double	click	on	the	name	of	the	download	module	which
you	want	to	download	to	flash.	It	takes	more	than	30	seconds.

In	the	case	of	downloading	TinyCLR,	please	select	tinyclr.abs	instead	of
nativesample.abs.

	

	

	

5.			Running	TinyCLR

Hit	“Stop”	button	in	the	toolbar	or	Select	“Halt	Program”	option	from	Debug
menu.	Disconnect	E10A-USB	from	HEW,	power	OFF	the	board	and	disconnect
E10A	connection	from	board.

To	verify	that	TinyCLR	is	up	and	running	connect	the	serial	port	of	the	target
with	PC	and	start	the	terminal	program	Tera	Term	Pro	with	following	settings:

Figure	5.1			Serial	port	setup

	
Power	ON	the	board	and	you	should	see	following	messages	in	the	serial
terminal:

	

Figure	5.2			Serial	terminal

If	you	can	see	above	like	above,	congratulations!	Your	TinyCLR	is	up	and
running.	This	example	is	the	case	of	using	TinyCLR.abs	by	debug	build.

Please	note	that	don’t	forget	to	close	Tera	Term	Pro	before	proceeding	forward.

6.				How	to	set	the	MAC	address

The	initial	value	of	MAC	address	is	FF.FF.FF.FF.FF.FF.

There	are	two	ways	for	changing	MAC	address.

6.1																Using	Serial	Terminal

Using	Serial	Terminal,	you	can	change	the	MAC	address	without	modifying	any
source	code.

1)							Open	the	Serial	terminal	and	connect	the	serial	port	of	the	SH7619	EVB
with	PC	via	Serial	cross	cable.

2)							Press	Enter	key

3)							Power	on	the	SH7619	EVB	with	pressing	Enter	key.

Please	don’t	release	the	Enter	key	until	you	can	find	following	message	in
terminal	window.

4)							Enter	new	MAC	address.

If	MAC	address	is	expected	1a.e.f.f8.6.f3,	type	below,

			1a.0e.0f.f8.06.f3

6.2																Modifying	source	file

You	can	change	the	MAC	address	modifying	source	code.

1)	Change	the	sequence	for	getting	MAC	address.

	Open
C:\MicroFrameworkPK_v4_1\DeviceCode\Targets\Native\sh2\DeviceCode\sh7619\Ethernet\SH7619_EDMAC.cpp
So	that	you	can	find	RTP_BOOL	SH7619_EDMAC_open(PIFACE	pi).
	

Please	remove	all	of	following	codes.

	
int	addr	=	MAC_address_area;
for(i=0;	i<macLen;	i++)
g_NetworkConfig.NetworkInterfaces[NETWORK_INTERFACE_INDEX_SH7619EMAC].macAddressBuffer[i]
=	*(volatile	char	*)(addr+i);
																	
debug_printf("MAC	Address:	%x.%x.%x.%x.%x.%x¥r¥n",

(UINT8)g_NetworkConfig.NetworkInterfaces[NETWORK_INTERFACE_INDEX_SH7619EMAC].macAddressBuffer[0],
(UINT8)g_NetworkConfig.NetworkInterfaces[NETWORK_INTERFACE_INDEX_SH7619EMAC].macAddressBuffer[1],
(UINT8)g_NetworkConfig.NetworkInterfaces[NETWORK_INTERFACE_INDEX_SH7619EMAC].macAddressBuffer[2],
(UINT8)g_NetworkConfig.NetworkInterfaces[NETWORK_INTERFACE_INDEX_SH7619EMAC].macAddressBuffer[3],
(UINT8)g_NetworkConfig.NetworkInterfaces[NETWORK_INTERFACE_INDEX_SH7619EMAC].macAddressBuffer[4],
(UINT8)g_NetworkConfig.NetworkInterfaces[NETWORK_INTERFACE_INDEX_SH7619EMAC].macAddressBuffer[5]);

debug_printf("Do	you	need	to	change	MAC	Address?	If	yes,	press	'Enter'	key¥r¥n");
c[0]	=	0x0;
for	(i=0;	i<0xff;	i++){
DebuggerPort_Read(HalSystemConfig.DebugTextPort,	c,	1);
if	(c[0]	==	0x0d){
				hal_printf("new	MAC	Address	:");

while(c[0]	==	0x0d)	DebuggerPort_Read(HalSystemConfig.DebugTextPort,	c,	1);
for(i=0;	i<17;){
Events	=	Events_WaitForEvents(SYSTEM_EVENT_FLAG_COM_IN,	100);

				if(Events	&	SYSTEM_EVENT_FLAG_COM_IN){
Events_Clear(SYSTEM_EVENT_FLAG_COM_IN);

																			DebuggerPort_Read(HalSystemConfig.DebugTextPort,	c,	1);
																			Buffer[i]	=	c[0];
																			i++;

}
}
for	(i=0;	i<17;	i++)	hal_printf("%c",Buffer[i]);
hal_printf("¥r¥n");

	
for(i=0;	i<macLen;	i++)	{

Buff[i]=SH7619_EDMAC_AtoH(Buffer[i*3])*0x10;
Buff[i]+=SH7619_EDMAC_AtoH(Buffer[i*3+1]);

}
	

for(i=0;	i<macLen;	i++)	{
																																																				

	g_NetworkConfig.NetworkInterfaces[NETWORK_INTERFACE_INDEX_SH7619EMAC].macAddressBuffer[i]=Buff[i];
}

	
	

debug_printf("Updating...¥r¥n");
g_AM29DL_16_BS_DeviceTable.InitializeDevice(pBLOCK_CONFIG);
g_AM29DL_16_BS_DeviceTable.EraseBlock(pBLOCK_CONFIG,MAC_address_area);
g_AM29DL_16_BS_DeviceTable.Write(pBLOCK_CONFIG,MAC_address_area,macLen,Buff,0x0);
debug_printf("Done¥r¥n");

	
i=0x100;
}

}
	

2)	Set	MAC	address

	Open
MicroFrameworkPK_v4_1\Solutions\SH7619_EVB\DeviceCode\Network\Network_config_SH7619_EVB.cpp
So	that	you	can	find	g_NetworkConfig.

	
NETWORK_CONFIG	g_NetworkConfig	=
{
				{	TRUE	},
				1,						//	interface	count
				{						
								{																																						
																																																						//0,
													//SOCK_MAKE_IP_ADDR(192,168,	84,	84),	/*ip	address	*/	
													//SOCK_MAKE_IP_ADDR(255,255,255,		0),	/*subnet	mask*/	
													//SOCK_MAKE_IP_ADDR(192,168,	84,251),	/*gateway				*/	
													//SOCK_MAKE_IP_ADDR(192,168,	84,200),	/*dns1							*/	
													//SOCK_MAKE_IP_ADDR(192,168,	84,202),	/*dns2							*/	
																																																				
																																																					SOCK_NETWORKCONFIGURATION_FLAGS_DHCP,
												SOCK_MAKE_IP_ADDR(0,		0,		0,		0),	/*ip	address	*/	
												SOCK_MAKE_IP_ADDR(255,255,255,		0),	/*subnet	mask*/	
												SOCK_MAKE_IP_ADDR(0,		0,		0,		0),	/*gateway				*/	
												SOCK_MAKE_IP_ADDR(0,		0,		0,		0),	/*dns1							*/	
												SOCK_MAKE_IP_ADDR(0,		0,		0,		0),	/*dns2							*/	
																																																				
												//	SOCK_NETWORKCONFIGURATION_FLAGS_DHCP	|
SOCK_NETWORKCONFIGURATION_FLAGS_DYNAMIC_DNS	|
SOCK_NETWORKCONFIGURATION_FLAGS_TYPE__set(SOCK_NETWORKCONFIGURATION_FLAGS_WIRELESS),
												//	SOCK_MAKE_IP_ADDR_LITTLEEND(192,168,		84,	9),	/*ip	address	*/	
												//	SOCK_MAKE_IP_ADDR_LITTLEEND(255,255,255,		0),	/*subnet	mask*/	
												//	SOCK_MAKE_IP_ADDR_LITTLEEND(192,168,		84,	251),	/*gateway				*/	
												//	SOCK_MAKE_IP_ADDR_LITTLEEND(192,168,		84,	200),	/*dns1							*/	
												//	SOCK_MAKE_IP_ADDR_LITTLEEND(192,168,		84,	202),	/*dns2							*/	
												SOCK_NETWORKCONFIGURATION_INTERFACETYPE_ETHERNET,							
												6,														/*mac	address	length*/																	
												{															/*mac	address*/																								
																0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,
0xFF,
																0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,
0xFF,
																0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,
0xFF,
																0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,	0xFF,
0xFF,

												}																																																							
								},																																																									
				},
};
	

Put	the	MAC	address	into	above	red	portion.

	

	7.				How	to	deploy	application

.NET	Micro	Framework	has	the	feature	of	developing	Application	using	Visual
Studio2010.

	In	this	section,	the	way	to	deploy	application	is	explained	by	using	Sample
application.

7.1																Install	.NET	Micro	Framework	SDK

In	order	to	use	.NET	Micro	Framework	with	Visual	Studio,	you	need	to	install
.NET	Micro	Framework	SDK	(MicroFrameworkSDK.msi)	into	your	PC.

	

7.2																Prepare	Sample	application

At	first,	you	need	to	create	the	application.	Please	open	Visual	Studio.

						i)	Create	new	project

				Select	File	menu	->	New	->	Project.

Figure	7.1			Microsoft	Visual	Studio

	Please	note,	these	screens	are	captured	from	Visual	Studio2010	professional.
You	will	see	difference	screens	and	menus	in	the	case	of	Visual	Studio	2010
Express	Edition.	But,	you	will	find	similar	features	in	the	menus	of	Visual
Studio	2010	Express	Edition.

					ii)	Select	the	Project	type,	Template	and	project	name

					Select	below,

					Project	Type:	Micro	Framework

					Template:	Console	Application

					Name:	HelloWorld

	

					And	press	OK	button.

		Figure	7.2			New	Project

Note	depending	upon	your	application	please	select	the	appropriate	options.	If
you	are	creating	a	GUI	based	application	it	is	advised	to	select	“Window
Application”	option.

			iii)	Copy	the	source	file	of	Sample	program	into	this	project

						Right	click	on	“HelloWorld”	in	the	Solution	Explorer	and	select	Add	->
Existing	Item….

Figure	7.3			Microsoft	Visual	Studio

	

	

	

	

	

	

	

	Select	the	below	file,

						C:\MicroFrameworkPK_v4_1\Product\Sample\HelloWorld\Main.cs

	And	press	Add	button.

Figure	7.4			Add	Existing	Item	dialog	box

			iv)	Remove	unnecessary	file

Remove	Program.cs	file	from	the	HelloWorld	project.

Figure	7.5			Microsoft	Visual	Studio

	

		

	v)	Build	solution

Build	Solution	by	selecting	Build	Solution	menu,

Figure	7.6			Microsoft	Visual	Studio

Then	build	shall	be	completed	successfully.

	

	

7.3																Deployment	and	run	the	application

In	order	to	communicate	with	visual	studio	and	your	board,	you	need	to
download	TinyCLR	into	the	flash	memory	on	the	board.

It	is	assumed	that	you	have	build	and	downloaded	TinyCLR	into	the	flash
memory	on	the	board.	If	not,	please	build	your	Porting	kit	and	downloading
tinyclr.abs	into	the	flash	memory	referring	to	section	4.

i)	Change	properties	for	current	project.

Select	Project	menu	->	HelloWorld	Properties…	so	that	you	can	modify
properties.

Figure	7.7			Microsoft	Visual	Studio

Select	“.NET	Micro	Framework”	sheet	and	change	deployment	option	to	serial
as	shown	below,	save	and	close	this	window.

Figure	7.8			Properties…

ii)	Re-Build

	In	order	to	affect	these	changing,	Re-build	is	required.

	

iii)	Turn	on	the	board

First,	connected	the	serial	terminal	of	board	with	that	of	PC	using	serial	cable
and	then	turn	on	the	board.

	

iv)	Deploying	application

Select	Build	menu	->	Deploy	Solution.

Figure	7.9			Microsoft	Visual	Studio

Below	message	is	shown	up	in	the	output	window	at	the	start	of	deployment
process.

“Incrementally	deploying	assemblies	to	device”

When	deployment	gets	finished	without	problem,	you	can	see	below	message.

“Assemblies	successfully	deployed	to	device.”

If	you	have	any	trouble	please	make	sure	if	you	use	correct	flash	memory
configuration	file.

	

v)	Run	the	application

Select	Debug	menu	->	Start	Debugging	so	that	you	can	see	the	application
running	and	use	break	point	via	Visual	Studio.

	

If	the	deployment	fails,	it	might	be	caused	by	the	unexpected	data	in	the
Deployment	area	in	Flash	memory.	One	of	the	way	to	avoid	this	is	to	erase	all
data	in	the	deployment	area	using	MFDeploy.exe.	How	to	use	MFDeploy.exe	is
described	in	Section	9.3.

	

7.4																Big-endian	support

Normally,	in	the	initial	setting,	the	reference	dlls	are	supporting	Little-Endian.
So	it	is	recommended	to	change	the	reference	dlls	to	for	Big-Endian.

		i)	Remove	the	Reference	for	Little-Endian

					Right	Click	the	Reference	which	you	want	to	remove	as	shown	below
(Microsoft.SPOT.Native)	and	select	“Remove”	option	from	the	popup	menu.

Figure	7.10			Solution	Explorer

				ii)	Add	the	Reference	for	Big-Endian

					Right	Click	on	the	“References”	as	shown	below	and	select	“Add
reference…”	option	form	the	popup	menu.

Figure	7.11			Solution	Explorer

	

Then,	“Add	reference”	window	shall	show	up.

	Select	“Browse”	tab	and	change	“Look	in”	path	to	below	mentioned	path:

					C:\Program	Files\Microsoft	.NET	Micro	Framework\v4.1\Assemblies\be

Figure	7.12			Add	Reference

					Then,	select	the	dll	which	you	want	to	add.	(In	this	case,	select
Microsoft.SPOT.Native.dll.)

	

	

		iii)	Make	sure	that	selected	reference	dll	is	correct.

					Double	Click	the	Reference	which	you	want	to	see	information.

Figure	7.13			Solution	Explorer

An	object	browser	tab	/	window	shall	be	displayed.	Verify	that	you	see	the
correct	path	information	for	dll	(Microsoft.SPOT.Native)	as	shown	below.

Figure	7.14			Object	Browser

	

8.				How	to	include	application	in	TinyCLR

			The	application	can	be	included	into	tinyclr.abs.	The	simplest	thing	to	do	is
just	to	add	the	PE	files	to	your	TinyCLR.proj	file.

			1)	Build	generic	application	in	the	Porting	Kit

						Change	current	folder	to	“C:\MicroFrameworkPK_v4_1’	and	execute	below
command,

										MSBUILD.EXE	build.dirproj

			2)	Build	an	application	without	Visual	Studio	2010.

						Build	your	application	by	following	command,

										MSBUILD.EXE	build.dirproj

						For	example,	if	you	want	to	build	HelloWorld	Sample	application,	use
following	commands,

												Change	current	folder	to	“C:\MicroFrameworkPK_v4_1\Product\Sample’

												and	execute	below	command,

															MSBUILD.EXE	build.dirproj

				3)	How	to	include	application	into	tinyclr.abs

						Please	add	the	following	red	lines	after	the	property	section	of	the
TinyCLR.proj	file.	You	will	have	to	make	sure	the	.pe	files	have	been	built.	

…

		<Import	Condition=""	Project="$(SPOCLIENT)\Framework\Features\Diagnostics.featureproj"	/>
		<Import	Condition=""	Project="$(SPOCLIENT)\Framework\Features\Core.featureproj"	/>
		<Import	Condition=""	Project="$(SPOCLIENT)\Framework\Features\Serialization.featureproj"	/>
	
		<ItemGroup>
				<MMP_DAT_CreateDatabase
Include="$(BUILD_TREE_CLIENT)\pe\$(ENDIANNESS)\mscorlib.pe"/>
				<MMP_DAT_CreateDatabase
Include="$(BUILD_TREE_CLIENT)\pe\$(ENDIANNESS)\Microsoft.SPOT.Native.pe"/>
				<MMP_DAT_CreateDatabase
Include="$(BUILD_TREE_CLIENT)\pe\$(ENDIANNESS)\Microsoft.SPOT.Net.pe"/>
				<MMP_DAT_CreateDatabase

	 Change	below	red
lines	appropriate	for
your	application

Include="$(BUILD_TREE_CLIENT)\pe\$(ENDIANNESS)\Microsoft.SPOT.HelloWorld.pe"/>
				<MMP_DAT_CreateDatabase	Include="$(BUILD_TREE_CLIENT)\pe\$(ENDIANNESS)\System.pe"/>
				<MMP_DAT_CreateDatabase
Include="$(BUILD_TREE_CLIENT)\pe\$(ENDIANNESS)\Microsoft.SPOT.Graphics.pe"/>
				<MMP_DAT_CreateDatabase
Include="$(BUILD_TREE_CLIENT)\pe\$(ENDIANNESS)\Microsoft.SPOT.TinyCore.pe"/>
				<MMP_DAT_CreateDatabase
Include="$(BUILD_TREE_CLIENT)\pe\$(ENDIANNESS)\Microsoft.SPOT.Hardware.pe"/>
		</ItemGroup>
	
<Import	Project="$(SPOCLIENT)\tools\targets\Microsoft.SPOT.System.Interop.Settings"	/>
	

9.				MFDeploy	Tool
In	Porting	Kit,	there	is	a	useful	Tool,	MFDeploy.exe.	Using	this	tool,	you	can
make	sure	if	TinyCLR	works	fine,	see	the	Flash	memory	mapping	information,
and	erase	the	data	in	Deployment	area.

9.1																How	to	build	and	run	MFDeploy.exe

Following	is	the	way	to	build	and	run	MFDeploy.exe.

1)	Make	sure	the	Timer	driver,	Power	driver	and	the	Serial	driver	work	fine

Before	using	MFDeploy.exe,	please	make	sure	the	Timer	driver,	Power	driver
and	the	Serial	driver	works	fine	using	NativeSample.

2)	Build	MFDeply.exe

You	can	build	MFDeploy.exe	with	the	command	“MSBUILD.EXE
build.dirproj”	under	the	C:\MicroFrameworkPK_v4_1	folder.

Using	this	command,	you	can	build	not	only	MDFelpoy.exe	but	also	all	the
managed	tests	in	the	PK	as	well.

MFdeploy	is	located	in

						\BuildOutput\public\Debug\Server\dll\MFDeploy.exe.

3)	Run	the	MFDeply.exe

	i)	Connect	COM	Port	to	the	board

Before	run	the	MFDeploy.exe,	please	make	sure	the	COM	port	in	your	PC	is	not
used	by	another	application	like	Tera	Term.

Then	connect	the	COM	port	in	your	PC	to	the	Serial	connector	on	the	board	by
Serial	Cross	Cable.

	ii)	Run	the	MFDeply.exe

					Run	the	MFDeploy.exe	by	double-clicking	it.

	iii)	Select	the	COM	Port

					Select	the	COM	Port	which	you	want	to	use	for	MFDeploy	as	shown	below
(List	Box).

Figure	9.1			.NET	Micro	Framework	Deployment	Tool

iii)	Connect	COM	Port

Connect	MFdeoply.exe	to	COM	Port	by	selecting	Target	menu	->	Connect
option	as	shown	below.

Figure	9.2			.NET	Micro	Framework	Deployment	Tool

9.2																How	to	make	sure	if	TinyCLR	works	fine

If	you	can	not	deploy	the	application	properly,	“MFDeloy.exe”	is	a	good	tool	to
make	sure	if	the	TinyCLR	works	fine.

Turn	on	the	board	so	that	you	can	see	like	below	log	output.
	

Connecting	to	COM1...Connected
	
TinyCLR	(Build	4.0.2037.0)
Starting...
Created	EE.
Started	Hardware.
No	debugger!
Create	TS.
	Loading	start	at	95000,	end	b5f88
Attaching	file.
Assembly:	mscorlib	(4.0.2037.0)	(3572	RAM	-	29944	ROM	-	17631	METADATA)
			AssemblyRef				=								0	bytes	(0	elements)
			TypeRef								=								0	bytes	(0	elements)
			FieldRef							=								0	bytes	(0	elements)
			MethodRef						=								0	bytes	(0	elements)
			TypeDef								=					1032	bytes	(129	elements)
			FieldDef							=						232	bytes	(115	elements)
			MethodDef						=					1448	bytes	(724	elements)
	
			Attributes						=								0	bytes	(0	elements)
			TypeSpec								=							16	bytes	(4	elements)
			Resources							=						232	bytes	(29	elements)
			Resources	Files	=							16	bytes	(2	elements)
			Resources	Data		=						437	bytes
			Strings									=						967	bytes
			Signatures						=					2015	bytes
			ByteCode								=				10500	bytes
Attaching	file.
Assembly:	Microsoft.SPOT.Native	(4.0.2037.0)	(1064	RAM	-	5752	ROM	-	4159	METADATA)
	
			AssemblyRef				=								4	bytes	(1	elements)
			TypeRef								=							80	bytes	(20	elements)
			FieldRef							=								0	bytes	(0	elements)
			MethodRef						=							60	bytes	(15	elements)
			TypeDef								=						328	bytes	(41	elements)
			FieldDef							=						132	bytes	(65	elements)
			MethodDef						=						216	bytes	(108	elements)
	
			Attributes						=							48	bytes	(6	elements)
			TypeSpec								=								0	bytes	(0	elements)

			Resources							=							72	bytes	(9	elements)
			Resources	Files	=								8	bytes	(1	elements)
			Resources	Data		=						747	bytes
			Strings									=						207	bytes
			Signatures						=						587	bytes
			ByteCode								=						413	bytes
	
Attaching	file.
Assembly:	Microsoft.SPOT.Hardware	(4.0.2037.0)	(1752	RAM	-	11404	ROM	-	7365	METADATA)
			AssemblyRef				=								8	bytes	(2	elements)
			TypeRef								=						124	bytes	(31	elements)
			FieldRef							=							24	bytes	(6	elements)
			MethodRef						=						120	bytes	(30	elements)
			TypeDef								=						496	bytes	(62	elements)
			FieldDef							=						176	bytes	(88	elements)
			MethodDef						=						444	bytes	(222	elements)
	
			Attributes						=								0	bytes	(0	elements)
			TypeSpec								=								0	bytes	(0	elements)
			Resources							=								0	bytes	(0	elements)
			Resources	Files	=								0	bytes	(0	elements)
			Resources	Data		=								0	bytes
			Strings									=					1329	bytes
			Signatures						=					1061	bytes
			ByteCode								=					2579	bytes
	
Attaching	file.
Assembly:	Microsoft.SPOT.Hardware.SerialPort	(4.0.2037.0)	(508	RAM	-	3440	ROM	-	1527
METADATA)
			AssemblyRef				=								8	bytes	(2	elements)
			TypeRef								=							96	bytes	(24	elements)
			FieldRef							=								0	bytes	(0	elements)
			MethodRef						=							80	bytes	(20	elements)
			TypeDef								=							16	bytes	(2	elements)
			FieldDef							=							32	bytes	(16	elements)
			MethodDef						=							92	bytes	(46	elements)
	
			Attributes						=								0	bytes	(0	elements)
			TypeSpec								=								0	bytes	(0	elements)
			Resources							=								0	bytes	(0	elements)
			Resources	Files	=								0	bytes	(0	elements)
			Resources	Data		=								0	bytes
			Strings									=						667	bytes
			Signatures						=						239	bytes
			ByteCode								=					1118	bytes
	
Attaching	file.
Assembly:	Microsoft.SPOT.IO	(4.0.2037.0)	(716	RAM	-	4432	ROM	-	2459	METADATA)
			AssemblyRef				=							12	bytes	(3	elements)
			TypeRef								=							72	bytes	(18	elements)

			FieldRef							=								0	bytes	(0	elements)
			MethodRef						=							96	bytes	(24	elements)
			TypeDef								=						120	bytes	(15	elements)
			FieldDef							=							68	bytes	(34	elements)
			MethodDef						=						140	bytes	(70	elements)
	
			Attributes						=								0	bytes	(0	elements)
			TypeSpec								=								0	bytes	(0	elements)
			Resources							=								0	bytes	(0	elements)
			Resources	Files	=								0	bytes	(0	elements)
			Resources	Data		=								0	bytes
			Strings									=						646	bytes
			Signatures						=						335	bytes
			ByteCode								=					1199	bytes
Attaching	file.
Assembly:	System.IO	(4.0.2037.0)	(1548	RAM	-	13264	ROM	-	5862	METADATA)
			AssemblyRef				=								8	bytes	(2	elements)
			TypeRef								=						168	bytes	(42	elements)
			FieldRef							=							36	bytes	(9	elements)
			MethodRef						=						392	bytes	(98	elements)
			TypeDef								=						144	bytes	(18	elements)
			FieldDef							=							76	bytes	(37	elements)
			MethodDef						=						392	bytes	(195	elements)
	
			Attributes						=								0	bytes	(0	elements)
			TypeSpec								=								8	bytes	(2	elements)
			Resources							=								0	bytes	(0	elements)
			Resources	Files	=								0	bytes	(0	elements)
			Resources	Data		=								0	bytes
			Strings									=						356	bytes
			Signatures						=						790	bytes
			ByteCode								=					6919	bytes
Attaching	file.
Assembly:	Microsoft.SPOT.Graphics	(4.0.2037.0)	(388	RAM	-	2268	ROM	-	1357	METADATA)
			AssemblyRef				=								8	bytes	(2	elements)
			TypeRef								=							24	bytes	(6	elements)
			FieldRef							=								0	bytes	(0	elements)
			MethodRef						=							20	bytes	(5	elements)
			TypeDef								=							40	bytes	(5	elements)
			FieldDef							=							16	bytes	(8	elements)
			MethodDef						=							96	bytes	(48	elements)
	
			Attributes						=								0	bytes	(0	elements)
			TypeSpec								=								0	bytes	(0	elements)
			Resources							=								0	bytes	(0	elements)
			Resources	Files	=								0	bytes	(0	elements)
			Resources	Data		=								0	bytes
			Strings									=						537	bytes
			Signatures						=						293	bytes
			ByteCode								=						242	bytes

	
Attaching	file.
Assembly:	Microsoft.SPOT.TinyCore	(4.0.2037.0)	(5080	RAM	-	61564	ROM	-	23446	METADATA)
			AssemblyRef				=							16	bytes	(4	elements)
			TypeRef								=						224	bytes	(56	elements)
			FieldRef							=							52	bytes	(13	elements)
			MethodRef						=						456	bytes	(114	elements)
			TypeDef								=					1104	bytes	(138	elements)
			FieldDef							=						728	bytes	(363	elements)
			MethodDef						=					1576	bytes	(787	elements)
	
			Attributes						=								0	bytes	(0	elements)
			TypeSpec								=								4	bytes	(1	elements)
			Resources							=								0	bytes	(0	elements)
			Resources	Files	=								0	bytes	(0	elements)
			Resources	Data		=								0	bytes
			Strings									=				12916	bytes
			Signatures						=					3122	bytes
			ByteCode								=				25075	bytes
	
Attaching	file.
Assembly:	Microsoft.SPOT.Time	(4.0.2037.0)	(508	RAM	-	2976	ROM	-	1552	METADATA)
			AssemblyRef				=							12	bytes	(3	elements)
			TypeRef								=							60	bytes	(15	elements)
			FieldRef							=								0	bytes	(0	elements)
			MethodRef						=							36	bytes	(9	elements)
			TypeDef								=							96	bytes	(12	elements)
			FieldDef							=							40	bytes	(20	elements)
			MethodDef						=							84	bytes	(41	elements)
	
			Attributes						=								0	bytes	(0	elements)
			TypeSpec								=								0	bytes	(0	elements)
			Resources							=								0	bytes	(0	elements)
			Resources	Files	=								0	bytes	(0	elements)
			Resources	Data		=								0	bytes
			Strings									=						895	bytes
			Signatures						=						220	bytes
			ByteCode								=						403	bytes
	
Loading	Deployment	Assemblies.
Resolving.
	
Total:	(12884	RAM	-	135044	ROM	-	65358	METADATA)
			AssemblyRef				=							76	bytes	(19	elements)
			TypeRef								=						848	bytes	(212	elements)
			FieldRef							=						112	bytes	(28	elements)
			MethodRef						=					1260	bytes	(315	elements)
			TypeDef								=					3376	bytes	(422	elements)
			FieldDef							=					1500	bytes	(746	elements)
			MethodDef						=					4488	bytes	(2241	elements)

	
			DebuggingInfo		=					2252	bytes
	
			Attributes						=							48	bytes	(6	elements)
			TypeSpec								=							28	bytes	(7	elements)
			Resources	Files	=							72	bytes	(3	elements)
			Resources							=						304	bytes	(38	elements)
			Resources	Data		=					1184	bytes
			Strings									=				18520	bytes
			Signatures						=					8662	bytes
			ByteCode								=				48448	bytes
	
GC:	1msec	15276	bytes	used,	4178820	bytes	available
Type	0F	(STRING):					24	bytes
Type	15	(FREEBLOCK):	4178820	bytes
Type	17	(ASSEMBLY):		15180	bytes
Type	34	(APPDOMAIN_HEAD):					72	bytes
	
Total:	(12884	RAM	-	135044	ROM	-	65358	METADATA)
			AssemblyRef				=							76	bytes	(19	elements)
			TypeRef								=						848	bytes	(212	elements)
			FieldRef							=						112	bytes	(28	elements)
			MethodRef						=					1260	bytes	(315	elements)
			TypeDef								=					3376	bytes	(422	elements)
			FieldDef							=					1500	bytes	(746	elements)
			MethodDef						=					4488	bytes	(2241	elements)
	
			DebuggingInfo		=					2252	bytes
	
			Attributes						=							48	bytes	(6	elements)
			TypeSpec								=							28	bytes	(7	elements)
			Resources	Files	=							72	bytes	(3	elements)
			Resources							=						304	bytes	(38	elements)
			Resources	Data		=					1184	bytes
			Strings									=				18520	bytes
			Signatures						=					8662	bytes
			ByteCode								=				48448	bytes
	
Ready.
Cannot	find	any	entrypoint!
Done.
Waiting	for	debug	commands...
	

After	the	above	messages,	you	should	try	and	connect	from	MFdeploy	by
clicking	“Ping”	button	from	MFdeploy.		If	you	see	that	the	TinyCLR	responds,
then	it	means	that	the	TinyCLR	is	up	and	running.

Pinging...	TinyCLR

	

9.3																Erase	data	in	the	deployment	area

Following	is	the	way	to	erase	data	in	the	deployment	area.

1)	Connect	the	Terget	Plarform	referring	section	9.1.

2)	Press	Erase	button	so	that	erasing	starts.

Figure	9.3			.NET	Micro	Framework	Deployment	Tool

3)	If	below	error	shows	up,	don’t	mind.

Figure	9.4			Error	message

4)	Following	message	shows	up	when	the	data	in	deployment	area	has	erased.

Figure	9.5			.NET	Micro	Framework	Deployment	Tool

10.			Wiring	arrangement
In	this	section,	the	wiring	arrangement	for	hardware	for	existing	LCD	driver	and
Keypad	driver	is	described.

1)	Wiring	arrangement	for	LDC	panel

The	132	x	176	TFT	LCD	Display	(HD66773R)	is	interfaced	to	area	CS6B	of	the
SH7619	Bus	State	Controller	(BSC).		3.3V	power	is	provided	by	the	SH7619
board,	while	5V	power	is	provided	by	separate	DC	power	supply	connected	to
the	LCD	Expansion	board.			A	40-pin	header	connector	is	used	for	the	LCD
module	interface;	the	pin	assignment	for	the	40-pin	header	is	shown	below.

Figure	10.1			LCD	header	pin	assignment

Figure	10.2			Schematic	of	LCD	interface

2)	Wiring	arrangement	for	GPIO	for	Button	Keypad

In	this	Porting	Kit,	it	is	assumed	that	a	25-button	keypad	matrix	is	connected	to
ten	GPIOs	of	the	SH7619.		Five	GPIOs	(PC08,	PC10,	PC09,	PC11,	and	PC13)
should	be	configured	for	output.		The	other	five	GPIOs	(PC00,	PC01,	PC02,
PC03,	and	PC17)	should	be	configured	for	input	and	they	have	pull-up	resistors
meaning	the	buttons	are	active	low.

Figure	10.3			GPIO	button	configuration	and	perspective	orientation

	

	

	

	

	

	

	

	

3)	Wiring	arrangement	for	secondary	Serial	Interface

Figure	10.4			Schematic	of	Secondary	Serial	Interface

	

	1. Overview
	2. Setup
	3. Memory Map
	4. How to build and execute
	5. Running TinyCLR
	6. How to set theMAC address
	7. How to deploy application
	8. How to include application in TinyCLR
	9. MFDeploy Tool
	10. Wiring arrangement

