
Main	Page Related	Pages Modules Namespaces Classes Files

SFML	2.4.2

Deprecated	List

Class	sf::Event::MouseWheelEvent

This	event	is	deprecated	and	potentially	inaccurate.	Use	MouseWheelScrollEvent	instead.

Member	sf::LinesStrip

Use	LineStrip	instead

Member	sf::RenderWindow::capture	()	const

Use	a	sf::Texture	and	its	sf::Texture::update(const	Window&)	function	and	copy	its	contents	into	an
sf::Image	instead.
				1 	sf::Vector2u	windowSize	=	window.getSize();

				2 	sf::Texture	texture;

				3 	texture.create(windowSize.x,	windowSize.y);

				4 	texture.update(window);

				5 	sf::Image	screenshot	=	texture.copyToImage();

Member	sf::Shader::setParameter	(const	std::string	&name,	const	Vector2f	&vector)

Use	setUniform(const	std::string&,	const	Glsl::Vec2&)	instead.

Member	sf::Shader::setParameter	(const	std::string	&name,	float	x,	float	y)

Use	setUniform(const	std::string&,	const	Glsl::Vec2&)	instead.

Member	sf::Shader::setParameter	(const	std::string	&name,	const	Vector3f	&vector)

Use	setUniform(const	std::string&,	const	Glsl::Vec3&)	instead.

Member	sf::Shader::setParameter	(const	std::string	&name,	const	Color	&color)

Use	setUniform(const	std::string&,	const	Glsl::Vec4&)	instead.

Member	sf::Shader::setParameter	(const	std::string	&name,	const	Texture	&texture)

Use	setUniform(const	std::string&,	const	Texture&)	instead.

Member	sf::Shader::setParameter	(const	std::string	&name,	float	x,	float	y,	float	z)

Use	setUniform(const	std::string&,	const	Glsl::Vec3&)	instead.

Member	sf::Shader::setParameter	(const	std::string	&name,	const	Transform	&transform)

Use	setUniform(const	std::string&,	const	Glsl::Mat4&)	instead.

Member	sf::Shader::setParameter	(const	std::string	&name,	float	x,	float	y,	float	z,	float	w)

Use	setUniform(const	std::string&,	const	Glsl::Vec4&)	instead.

Member	sf::Shader::setParameter	(const	std::string	&name,	float	x)

Use	setUniform(const	std::string&,	float)	instead.

Member	sf::Shader::setParameter	(const	std::string	&name,	CurrentTextureType)

Use	setUniform(const	std::string&,	CurrentTextureType)	instead.

Member	sf::Text::getColor	()	const

There	is	now	fill	and	outline	colors	instead	of	a	single	global	color.	Use	getFillColor()	or	getOutlineColor()
instead.

Member	sf::Text::setColor	(const	Color	&color)

There	is	now	fill	and	outline	colors	instead	of	a	single	global	color.	Use	setFillColor()	or	setOutlineColor()
instead.

Member	sf::TrianglesFan

Use	TriangleFan	instead

Member	sf::TrianglesStrip

Use	TriangleStrip	instead

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

SFML	2.4.2

Modules

Here	is	a	list	of	all	modules:

	 Audio	module Sounds,	streaming	(musics	or	custom	sources),	recording,	spatialization

	 Graphics	module 2D	graphics	module:	sprites,	text,	shapes,	..

	 Network	module Socket-based	communication,	utilities	and	higher-level	network	protocols	(HTTP,	FTP)

	 System	module Base	module	of	SFML,	defining	various	utilities

	 Window	module Provides	OpenGL-based	windows,	and	abstractions	for	events	and	input	handling

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

SFML	2.4.2

Classes

Audio	module

Sounds,	streaming	(musics	or	custom	sources),	recording,	spatialization.	More...

Classes
class		 sf::AlResource
	 Base	class	for	classes	that	require	an	OpenAL	context.	More...
	
class		 sf::InputSoundFile
	 Provide	read	access	to	sound	files.	More...
	
class		 sf::Listener
	 The	audio	listener	is	the	point	in	the	scene	from	where	all	the	sounds	are	heard.	
	
class		 sf::Music
	 Streamed	music	played	from	an	audio	file.	More...
	
class		 sf::OutputSoundFile
	 Provide	write	access	to	sound	files.	More...
	
class		 sf::Sound
	 Regular	sound	that	can	be	played	in	the	audio	environment.	More...
	
class		 sf::SoundBuffer
	 Storage	for	audio	samples	defining	a	sound.	More...
	
class		 sf::SoundBufferRecorder
	 Specialized	SoundRecorder	which	stores	the	captured	audio	data	into	a	sound	buffer.	
	
class		 sf::SoundFileFactory
	 Manages	and	instantiates	sound	file	readers	and	writers.	More...
	
class		 sf::SoundFileReader
	 Abstract	base	class	for	sound	file	decoding.	More...
	
class		 sf::SoundFileWriter

	 Abstract	base	class	for	sound	file	encoding.	More...
	
class		 sf::SoundRecorder
	 Abstract	base	class	for	capturing	sound	data.	More...
	
class		 sf::SoundSource
	 Base	class	defining	a	sound's	properties.	More...
	
class		 sf::SoundStream
	 Abstract	base	class	for	streamed	audio	sources.	More...
	

Detailed	Description

Sounds,	streaming	(musics	or	custom	sources),	recording,	spatialization.

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Protected	Member	Functions	|	List	of	all	members

sf::AlResource	Class	Reference
Audio	module

Base	class	for	classes	that	require	an	OpenAL	context.	More...

#include	<AlResource.hpp>

Inheritance	diagram	for	sf::AlResource:

Protected	Member	Functions
	 AlResource	()
	 Default	constructor.	More...
	
	 ~AlResource	()
	 Destructor.	More...
	

Detailed	Description

Base	class	for	classes	that	require	an	OpenAL	context.

This	class	is	for	internal	use	only,	it	must	be	the	base	of	every	class	that	requires	a	valid	OpenAL	context	in
order	to	work.

Definition	at	line	40	of	file	AlResource.hpp.

Constructor	&	Destructor	Documentation

sf::AlResource::AlResource ()

Default	constructor.

sf::AlResource::~AlResource ()

Destructor.

The	documentation	for	this	class	was	generated	from	the	following	file:
AlResource.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Member	Functions	|	List	of	all	members

sf::InputSoundFile	Class	Reference
Audio	module

Provide	read	access	to	sound	files.	More...

#include	<InputSoundFile.hpp>

Inheritance	diagram	for	sf::InputSoundFile:

Public	Member	Functions
	 InputSoundFile	()

	 Default	constructor.	More...
	

	 ~InputSoundFile	()
	 Destructor.	More...
	

bool	 openFromFile	(const	std::string	&filename)
	 Open	a	sound	file	from	the	disk	for	reading.	More...
	

bool	 openFromMemory	(const	void	*data,	std::size_t	sizeInBytes)
	 Open	a	sound	file	in	memory	for	reading.	More...
	

bool	 openFromStream	(InputStream	&stream)
	 Open	a	sound	file	from	a	custom	stream	for	reading.	More...
	

bool	 openForWriting	(const	std::string	&filename,	unsigned	int	channelCount,	unsigned	int
sampleRate)

	 Open	the	sound	file	from	the	disk	for	writing.	More...
	

Uint64	 getSampleCount	()	const
	 Get	the	total	number	of	audio	samples	in	the	file.	More...
	
unsigned	int	 getChannelCount	()	const
	 Get	the	number	of	channels	used	by	the	sound.	More...
	
unsigned	int	 getSampleRate	()	const
	 Get	the	sample	rate	of	the	sound.	More...
	

Time	 getDuration	()	const
	 Get	the	total	duration	of	the	sound	file.	More...
	

void	 seek	(Uint64	sampleOffset)
	 Change	the	current	read	position	to	the	given	sample	offset.	
	

void	 seek	(Time	timeOffset)
	 Change	the	current	read	position	to	the	given	time	offset.	More...
	

Uint64	 read	(Int16	*samples,	Uint64	maxCount)
	 Read	audio	samples	from	the	open	file.	More...
	

Detailed	Description

Provide	read	access	to	sound	files.

This	class	decodes	audio	samples	from	a	sound	file.

It	is	used	internally	by	higher-level	classes	such	as	sf::SoundBuffer	and	sf::Music
you	want	 to	 process	 or	 analyze	 audio	 files	without	 playing	 them,	 or	 if	 you	want	 to	 implement	 your	 own
version	of	sf::Music	with	more	specific	features.

Usage	example:

//	Open	a	sound	file

sf::InputSoundFile	file;

if	(!file.openFromFile("music.ogg"))

	/*	error	*/;

//	Print	the	sound	attributes

std::cout	<<	"duration:	"	<<	file.getDuration().asSeconds()	<<	std::endl;

std::cout	<<	"channels:	"	<<	file.getChannelCount()	<<	std::endl;

std::cout	<<	"sample	rate:	"	<<	file.getSampleRate()	<<	std::endl;

std::cout	<<	"sample	count:	"	<<	file.getSampleCount()	<<	std::endl;

//	Read	and	process	batches	of	samples	until	the	end	of	file	is	reached

sf::Int16	samples[1024];

sf::Uint64	count;

do

{

				count	=	file.read(samples,	1024);

	//	process,	analyze,	play,	convert,	or	whatever

	//	you	want	to	do	with	the	samples...

}

while	(count	>	0);

See	also
sf::SoundFileReader,	sf::OutputSoundFile

Definition	at	line	46	of	file	InputSoundFile.hpp.

Constructor	&	Destructor	Documentation

sf::InputSoundFile::InputSoundFile ()

Default	constructor.

sf::InputSoundFile::~InputSoundFile ()

Destructor.

Member	Function	Documentation

unsigned	int	sf::InputSoundFile::getChannelCount () const

Get	the	number	of	channels	used	by	the	sound.

Returns
Number	of	channels	(1	=	mono,	2	=	stereo)

Time	sf::InputSoundFile::getDuration () const

Get	the	total	duration	of	the	sound	file.

This	function	is	provided	for	convenience,	the	duration	is	deduced	from	the	other	sound	file	attributes.

Returns
Duration	of	the	sound	file

Uint64	sf::InputSoundFile::getSampleCount () const

Get	the	total	number	of	audio	samples	in	the	file.

Returns
Number	of	samples

unsigned	int	sf::InputSoundFile::getSampleRate () const

Get	the	sample	rate	of	the	sound.

Returns
Sample	rate,	in	samples	per	second

bool	sf::InputSoundFile::openForWriting (const	std::string	&	 filename
unsigned	int	 channelCount
unsigned	int	 sampleRate
)

Open	the	sound	file	from	the	disk	for	writing.

Parameters
filename Path	of	the	sound	file	to	write
channelCount Number	of	channels	in	the	sound
sampleRate Sample	rate	of	the	sound

Returns
True	if	the	file	was	successfully	opened

bool	sf::InputSoundFile::openFromFile (const	std::string	&	 filename

Open	a	sound	file	from	the	disk	for	reading.

The	supported	audio	formats	are:	WAV	(PCM	only),	OGG/Vorbis,	FLAC.	The	supported	sample	sizes	for
FLAC	and	WAV	are	8,	16,	24	and	32	bit.

Parameters
filename Path	of	the	sound	file	to	load

Returns
True	if	the	file	was	successfully	opened

bool	sf::InputSoundFile::openFromMemory (const	void	*	 data,
std::size_t	 sizeInBytes
)

Open	a	sound	file	in	memory	for	reading.

The	supported	audio	formats	are:	WAV	(PCM	only),	OGG/Vorbis,	FLAC.	The	supported	sample	sizes	for
FLAC	and	WAV	are	8,	16,	24	and	32	bit.

Parameters
data Pointer	to	the	file	data	in	memory
sizeInBytes Size	of	the	data	to	load,	in	bytes

Returns
True	if	the	file	was	successfully	opened

bool	sf::InputSoundFile::openFromStream (InputStream	&	 stream)

Open	a	sound	file	from	a	custom	stream	for	reading.

The	supported	audio	formats	are:	WAV	(PCM	only),	OGG/Vorbis,	FLAC.	The	supported	sample	sizes	for
FLAC	and	WAV	are	8,	16,	24	and	32	bit.

Parameters
stream Source	stream	to	read	from

Returns

True	if	the	file	was	successfully	opened

Uint64	sf::InputSoundFile::read (Int16	*	 samples,
Uint64	 maxCount	
)

Read	audio	samples	from	the	open	file.

Parameters
samples Pointer	to	the	sample	array	to	fill
maxCountMaximum	number	of	samples	to	read

Returns
Number	of	samples	actually	read	(may	be	less	than	maxCount)

void	sf::InputSoundFile::seek (Uint64	 sampleOffset)

Change	the	current	read	position	to	the	given	sample	offset.

This	function	takes	a	sample	offset	to	provide	maximum	precision.	If	you	need	to	jump	to	a	given	time,
use	the	other	overload.

The	sample	offset	 takes	 the	channels	 into	account.	Offsets	 can	be	calculated	 like	 this:	
sampleRate	*	channelCount	If	the	given	offset	exceeds	to	total	number	of	samples,	this	function	jumps	to
the	end	of	the	sound	file.

Parameters
sampleOffset Index	of	the	sample	to	jump	to,	relative	to	the	beginning

void	sf::InputSoundFile::seek (Time	 timeOffset)

Change	the	current	read	position	to	the	given	time	offset.

Using	a	time	offset	is	handy	but	imprecise.	If	you	need	an	accurate	result,	consider	using	the	overload
which	takes	a	sample	offset.

If	the	given	time	exceeds	to	total	duration,	this	function	jumps	to	the	end	of	the	sound	file.

Parameters
timeOffset Time	to	jump	to,	relative	to	the	beginning

The	documentation	for	this	class	was	generated	from	the	following	file:
InputSoundFile.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Static	Public	Member	Functions	|	List	of	all	members

sf::Listener	Class	Reference
Audio	module

The	audio	listener	is	the	point	in	the	scene	from	where	all	the	sounds	are	heard.	

#include	<Listener.hpp>

Static	Public	Member	Functions
static	void	 setGlobalVolume	(float	volume)

	 Change	the	global	volume	of	all	the	sounds	and	musics.	
	

static	float	 getGlobalVolume	()
	 Get	the	current	value	of	the	global	volume.	More...
	

static	void	 setPosition	(float	x,	float	y,	float	z)
	 Set	the	position	of	the	listener	in	the	scene.	More...
	

static	void	 setPosition	(const	Vector3f	&position)
	 Set	the	position	of	the	listener	in	the	scene.	More...
	
static	Vector3f	 getPosition	()
	 Get	the	current	position	of	the	listener	in	the	scene.	More...
	

static	void	 setDirection	(float	x,	float	y,	float	z)
	 Set	the	forward	vector	of	the	listener	in	the	scene.	More...
	

static	void	 setDirection	(const	Vector3f	&direction)
	 Set	the	forward	vector	of	the	listener	in	the	scene.	More...
	
static	Vector3f	 getDirection	()
	 Get	the	current	forward	vector	of	the	listener	in	the	scene.	
	

static	void	 setUpVector	(float	x,	float	y,	float	z)
	 Set	the	upward	vector	of	the	listener	in	the	scene.	More...
	

static	void	 setUpVector	(const	Vector3f	&upVector)
	 Set	the	upward	vector	of	the	listener	in	the	scene.	More...
	
static	Vector3f	 getUpVector	()

	 Get	the	current	upward	vector	of	the	listener	in	the	scene.	
	

Detailed	Description

The	audio	listener	is	the	point	in	the	scene	from	where	all	the	sounds	are	heard.

The	audio	listener	defines	the	global	properties	of	the	audio	environment,	it	defines	where	and	how	sounds
and	musics	are	heard.

If	sf::View	is	the	eyes	of	the	user,	then	sf::Listener	is	his	ears	(by	the	way,	they	are	often	linked	together	–
same	position,	orientation,	etc.).

sf::Listener	is	a	simple	interface,	which	allows	to	setup	the	listener	in	the	3D	audio	environment	(position,
direction	and	up	vector),	and	to	adjust	the	global	volume.

Because	the	listener	is	unique	in	the	scene,	sf::Listener	only	contains	static	functions	and	doesn't	have	to
be	instantiated.

Usage	example:

//	Move	the	listener	to	the	position	(1,	0,	-5)

sf::Listener::setPosition(1,	0,	-5);

//	Make	it	face	the	right	axis	(1,	0,	0)

sf::Listener::setDirection(1,	0,	0);

//	Reduce	the	global	volume

sf::Listener::setGlobalVolume(50);

Definition	at	line	42	of	file	Listener.hpp.

Member	Function	Documentation

static	Vector3f	sf::Listener::getDirection ()

Get	the	current	forward	vector	of	the	listener	in	the	scene.

Returns
Listener's	forward	vector	(not	normalized)

See	also
setDirection

static	float	sf::Listener::getGlobalVolume ()

Get	the	current	value	of	the	global	volume.

Returns
Current	global	volume,	in	the	range	[0,	100]

See	also
setGlobalVolume

static	Vector3f	sf::Listener::getPosition ()

Get	the	current	position	of	the	listener	in	the	scene.

Returns
Listener's	position

See	also
setPosition

static	Vector3f	sf::Listener::getUpVector ()

Get	the	current	upward	vector	of	the	listener	in	the	scene.

Returns
Listener's	upward	vector	(not	normalized)

See	also
setUpVector

static	void	sf::Listener::setDirection (float	 x,
float	 y,
float	 z	
)

Set	the	forward	vector	of	the	listener	in	the	scene.

The	 direction	 (also	 called	 "at	 vector")	 is	 the	 vector	 pointing	 forward	 from	 the	 listener's	 perspective.
Together	with	the	up	vector,	it	defines	the	3D	orientation	of	the	listener	in	the	scene.	The	direction	vector
doesn't	have	to	be	normalized.	The	default	listener's	direction	is	(0,	0,	-1).

Parameters
x X	coordinate	of	the	listener's	direction
y Y	coordinate	of	the	listener's	direction
z Z	coordinate	of	the	listener's	direction

See	also
getDirection,	setUpVector,	setPosition

static	void	sf::Listener::setDirection (const	Vector3f	&	 direction)

Set	the	forward	vector	of	the	listener	in	the	scene.

The	 direction	 (also	 called	 "at	 vector")	 is	 the	 vector	 pointing	 forward	 from	 the	 listener's	 perspective.
Together	with	the	up	vector,	it	defines	the	3D	orientation	of	the	listener	in	the	scene.	The	direction	vector
doesn't	have	to	be	normalized.	The	default	listener's	direction	is	(0,	0,	-1).

Parameters
direction New	listener's	direction

See	also
getDirection,	setUpVector,	setPosition

static	void	sf::Listener::setGlobalVolume (float	 volume)

Change	the	global	volume	of	all	the	sounds	and	musics.

The	volume	is	a	number	between	0	and	100;	it	is	combined	with	the	individual	volume	of	each	sound	/
music.	The	default	value	for	the	volume	is	100	(maximum).

Parameters
volumeNew	global	volume,	in	the	range	[0,	100]

See	also
getGlobalVolume

static	void	sf::Listener::setPosition (float	 x,
float	 y,
float	 z	
)

Set	the	position	of	the	listener	in	the	scene.

The	default	listener's	position	is	(0,	0,	0).

Parameters
x X	coordinate	of	the	listener's	position
y Y	coordinate	of	the	listener's	position
z Z	coordinate	of	the	listener's	position

See	also
getPosition,	setDirection

static	void	sf::Listener::setPosition (const	Vector3f	&	 position)

Set	the	position	of	the	listener	in	the	scene.

The	default	listener's	position	is	(0,	0,	0).

Parameters
positionNew	listener's	position

See	also
getPosition,	setDirection

static	void	sf::Listener::setUpVector (float	 x,

float	 y,
float	 z	
)

Set	the	upward	vector	of	the	listener	in	the	scene.

The	up	vector	is	the	vector	that	points	upward	from	the	listener's	perspective.	Together	with	the	direction,
it	defines	the	3D	orientation	of	 the	 listener	 in	 the	scene.	The	up	vector	doesn't	have	to	be	normalized.
The	 default	 listener's	 up	 vector	 is	 (0,	 1,	 0).	 It	 is	 usually	 not	 necessary	 to	 change	 it,	 especially	 in	 2D
scenarios.

Parameters
x X	coordinate	of	the	listener's	up	vector
y Y	coordinate	of	the	listener's	up	vector
z Z	coordinate	of	the	listener's	up	vector

See	also
getUpVector,	setDirection,	setPosition

static	void	sf::Listener::setUpVector (const	Vector3f	&	 upVector)

Set	the	upward	vector	of	the	listener	in	the	scene.

The	up	vector	is	the	vector	that	points	upward	from	the	listener's	perspective.	Together	with	the	direction,
it	defines	the	3D	orientation	of	 the	 listener	 in	 the	scene.	The	up	vector	doesn't	have	to	be	normalized.
The	 default	 listener's	 up	 vector	 is	 (0,	 1,	 0).	 It	 is	 usually	 not	 necessary	 to	 change	 it,	 especially	 in	 2D
scenarios.

Parameters
upVector New	listener's	up	vector

See	also

getUpVector,	setDirection,	setPosition

The	documentation	for	this	class	was	generated	from	the	following	file:
Listener.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Types	|	Public	Member	Functions	|	Protected	Member	Functions	|	Protected	Attributes	|	List	of	all	members

sf::Music	Class	Reference
Audio	module

Streamed	music	played	from	an	audio	file.	More...

#include	<Music.hpp>

Inheritance	diagram	for	sf::Music:

Public	Types
enum		 Status	{	Stopped,	Paused,	Playing	}
	 Enumeration	of	the	sound	source	states.	More...
	

Public	Member	Functions
	 Music	()

	 Default	constructor.	More...
	

	 ~Music	()
	 Destructor.	More...
	

bool	 openFromFile	(const	std::string	&filename)
	 Open	a	music	from	an	audio	file.	More...
	

bool	 openFromMemory	(const	void	*data,	std::size_t	sizeInBytes)
	 Open	a	music	from	an	audio	file	in	memory.	More...
	

bool	 openFromStream	(InputStream	&stream)
	 Open	a	music	from	an	audio	file	in	a	custom	stream.	More...
	

Time	 getDuration	()	const
	 Get	the	total	duration	of	the	music.	More...
	

void	 play	()
	 Start	or	resume	playing	the	audio	stream.	More...
	

void	 pause	()
	 Pause	the	audio	stream.	More...
	

void	 stop	()
	 Stop	playing	the	audio	stream.	More...
	
unsigned	int	 getChannelCount	()	const
	 Return	the	number	of	channels	of	the	stream.	More...
	
unsigned	int	 getSampleRate	()	const

	 Get	the	stream	sample	rate	of	the	stream.	More...
	

Status	 getStatus	()	const
	 Get	the	current	status	of	the	stream	(stopped,	paused,	playing)	
	

void	 setPlayingOffset	(Time	timeOffset)
	 Change	the	current	playing	position	of	the	stream.	More...
	

Time	 getPlayingOffset	()	const
	 Get	the	current	playing	position	of	the	stream.	More...
	

void	 setLoop	(bool	loop)
	 Set	whether	or	not	the	stream	should	loop	after	reaching	the	end.	
	

bool	 getLoop	()	const
	 Tell	whether	or	not	the	stream	is	in	loop	mode.	More...
	

void	 setPitch	(float	pitch)
	 Set	the	pitch	of	the	sound.	More...
	

void	 setVolume	(float	volume)
	 Set	the	volume	of	the	sound.	More...
	

void	 setPosition	(float	x,	float	y,	float	z)
	 Set	the	3D	position	of	the	sound	in	the	audio	scene.	More...
	

void	 setPosition	(const	Vector3f	&position)
	 Set	the	3D	position	of	the	sound	in	the	audio	scene.	More...
	

void	 setRelativeToListener	(bool	relative)
	 Make	the	sound's	position	relative	to	the	listener	or	absolute.	
	

void	 setMinDistance	(float	distance)
	 Set	the	minimum	distance	of	the	sound.	More...
	

void	 setAttenuation	(float	attenuation)
	 Set	the	attenuation	factor	of	the	sound.	More...
	

float	 getPitch	()	const
	 Get	the	pitch	of	the	sound.	More...
	

float	 getVolume	()	const
	 Get	the	volume	of	the	sound.	More...
	

Vector3f	 getPosition	()	const
	 Get	the	3D	position	of	the	sound	in	the	audio	scene.	More...
	

bool	 isRelativeToListener	()	const
	 Tell	whether	the	sound's	position	is	relative	to	the	listener	or	is	absolute.	
	

float	 getMinDistance	()	const
	 Get	the	minimum	distance	of	the	sound.	More...
	

float	 getAttenuation	()	const
	 Get	the	attenuation	factor	of	the	sound.	More...
	

Protected	Member	Functions
virtual	bool	 onGetData	(Chunk	&data)
	 Request	a	new	chunk	of	audio	samples	from	the	stream	source.	
	
virtual	void	 onSeek	(Time	timeOffset)
	 Change	the	current	playing	position	in	the	stream	source.	More...
	

void	 initialize	(unsigned	int	channelCount,	unsigned	int	sampleRate)
	 Define	the	audio	stream	parameters.	More...
	

Protected	Attributes
unsigned	int	 m_source
	 OpenAL	source	identifier.	More...
	

Detailed	Description

Streamed	music	played	from	an	audio	file.

Musics	are	sounds	that	are	streamed	rather	than	completely	loaded	in	memory.

This	 is	 especially	 useful	 for	 compressed	 musics	 that	 usually	 take	 hundreds	 of	 MB	 when	 they	 are
uncompressed:	 by	 streaming	 it	 instead	of	 loading	 it	 entirely,	 you	avoid	 saturating	 the	memory	 and	have
almost	 no	 loading	 delay.	 This	 implies	 that	 the	 underlying	 resource	 (file,	 stream	 or	memory	 buffer)	must
remain	valid	for	the	lifetime	of	the	sf::Music	object.

Apart	from	that,	a	sf::Music	has	almost	the	same	features	as	the	sf::SoundBuffer
play/pause/stop	 it,	 request	 its	 parameters	 (channels,	 sample	 rate),	 change	 the	 way	 it	 is	 played	 (pitch,
volume,	3D	position,	...),	etc.

As	a	sound	stream,	a	music	is	played	in	its	own	thread	in	order	not	to	block	the	rest	of	the	program.	This
means	that	you	can	leave	the	music	alone	after	calling	play(),	it	will	manage	itself	very	well.

Usage	example:

//	Declare	a	new	music

sf::Music	music;

//	Open	it	from	an	audio	file

if	(!music.openFromFile("music.ogg"))

{

	//	error...

}

//	Change	some	parameters

music.setPosition(0,	1,	10);	//	change	its	3D	position

music.setPitch(2);											//	increase	the	pitch

music.setVolume(50);									//	reduce	the	volume

music.setLoop(true);									//	make	it	loop

//	Play	it

music.play();

See	also
sf::Sound,	sf::SoundStream

Definition	at	line	48	of	file	Music.hpp.

Member	Enumeration	Documentation

enum	sf::SoundSource::Status

Enumeration	of	the	sound	source	states.

Enumerator

Stopped	
Sound	is	not	playing.

Paused	
Sound	is	paused.

Playing	
Sound	is	playing.

Definition	at	line	50	of	file	SoundSource.hpp.

Constructor	&	Destructor	Documentation

sf::Music::Music ()

Default	constructor.

sf::Music::~Music ()

Destructor.

Member	Function	Documentation

float	sf::SoundSource::getAttenuation () const

Get	the	attenuation	factor	of	the	sound.

Returns
Attenuation	factor	of	the	sound

See	also
setAttenuation,	getMinDistance

unsigned	int	sf::SoundStream::getChannelCount () const

Return	the	number	of	channels	of	the	stream.

1	channel	means	a	mono	sound,	2	means	stereo,	etc.

Returns
Number	of	channels

Time	sf::Music::getDuration () const

Get	the	total	duration	of	the	music.

Returns

Music	duration

bool	sf::SoundStream::getLoop () const

Tell	whether	or	not	the	stream	is	in	loop	mode.

Returns
True	if	the	stream	is	looping,	false	otherwise

See	also
setLoop

float	sf::SoundSource::getMinDistance () const

Get	the	minimum	distance	of	the	sound.

Returns
Minimum	distance	of	the	sound

See	also
setMinDistance,	getAttenuation

float	sf::SoundSource::getPitch () const

Get	the	pitch	of	the	sound.

Returns
Pitch	of	the	sound

See	also

setPitch

Time	sf::SoundStream::getPlayingOffset () const

Get	the	current	playing	position	of	the	stream.

Returns
Current	playing	position,	from	the	beginning	of	the	stream

See	also
setPlayingOffset

Vector3f	sf::SoundSource::getPosition () const

Get	the	3D	position	of	the	sound	in	the	audio	scene.

Returns
Position	of	the	sound

See	also
setPosition

unsigned	int	sf::SoundStream::getSampleRate () const

Get	the	stream	sample	rate	of	the	stream.

The	sample	rate	is	the	number	of	audio	samples	played	per	second.	The	higher,	the	better	the	quality.

Returns
Sample	rate,	in	number	of	samples	per	second

Status	sf::SoundStream::getStatus () const

Get	the	current	status	of	the	stream	(stopped,	paused,	playing)

Returns
Current	status

float	sf::SoundSource::getVolume () const

Get	the	volume	of	the	sound.

Returns
Volume	of	the	sound,	in	the	range	[0,	100]

See	also
setVolume

void	sf::SoundStream::initialize (unsigned	int	 channelCount,
unsigned	int	 sampleRate	
)

Define	the	audio	stream	parameters.

This	function	must	be	called	by	derived	classes	as	soon	as	they	know	the	audio	settings	of	the	stream	to
play.	Any	attempt	to	manipulate	the	stream	(play(),	...)	before	calling	this	function	will	fail.	It	can	be	called
multiple	times	if	the	settings	of	the	audio	stream	change,	but	only	when	the	stream	is	stopped.

Parameters

channelCount Number	of	channels	of	the	stream
sampleRate Sample	rate,	in	samples	per	second

bool	sf::SoundSource::isRelativeToListener () const

Tell	whether	the	sound's	position	is	relative	to	the	listener	or	is	absolute.

Returns
True	if	the	position	is	relative,	false	if	it's	absolute

See	also
setRelativeToListener

virtual	bool	sf::Music::onGetData (Chunk	&	 data)

Request	a	new	chunk	of	audio	samples	from	the	stream	source.

This	function	fills	the	chunk	from	the	next	samples	to	read	from	the	audio	file.

Parameters
data Chunk	of	data	to	fill

Returns
True	to	continue	playback,	false	to	stop

Implements	sf::SoundStream.

virtual	void	sf::Music::onSeek (Time	 timeOffset)

Change	the	current	playing	position	in	the	stream	source.

Parameters
timeOffsetNew	playing	position,	from	the	beginning	of	the	music

Implements	sf::SoundStream.

bool	sf::Music::openFromFile (const	std::string	&	 filename)

Open	a	music	from	an	audio	file.

This	 function	 doesn't	 start	 playing	 the	 music	 (call	 play()	 to	 do	 so).	 See	 the	 documentation	 of
sf::InputSoundFile	for	the	list	of	supported	formats.

Warning
Since	the	music	is	not	loaded	at	once	but	rather	streamed	continuously,	the	file	must	remain
accessible	until	the	sf::Music	object	loads	a	new	music	or	is	destroyed.

Parameters
filename Path	of	the	music	file	to	open

Returns
True	if	loading	succeeded,	false	if	it	failed

See	also
openFromMemory,	openFromStream

bool	sf::Music::openFromMemory (const	void	*	 data,
std::size_t	 sizeInBytes	
)

Open	a	music	from	an	audio	file	in	memory.

This	 function	 doesn't	 start	 playing	 the	 music	 (call	 play()	 to	 do	 so).	 See	 the	 documentation	 of
sf::InputSoundFile	for	the	list	of	supported	formats.

Warning
Since	the	music	is	not	loaded	at	once	but	rather	streamed	continuously,	the	
accessible	until	the	sf::Music	object	loads	a	new	music	or	is	destroyed.	That	is,	you	can't	deallocate
the	buffer	right	after	calling	this	function.

Parameters
data Pointer	to	the	file	data	in	memory
sizeInBytes Size	of	the	data	to	load,	in	bytes

Returns
True	if	loading	succeeded,	false	if	it	failed

See	also
openFromFile,	openFromStream

bool	sf::Music::openFromStream (InputStream	&	 stream)

Open	a	music	from	an	audio	file	in	a	custom	stream.

This	 function	 doesn't	 start	 playing	 the	 music	 (call	 play()	 to	 do	 so).	 See	 the	 documentation	 of
sf::InputSoundFile	for	the	list	of	supported	formats.

Warning
Since	the	music	is	not	loaded	at	once	but	rather	streamed	continuously,	the	
accessible	until	the	sf::Music	object	loads	a	new	music	or	is	destroyed.

Parameters
stream Source	stream	to	read	from

Returns

True	if	loading	succeeded,	false	if	it	failed

See	also
openFromFile,	openFromMemory

void	sf::SoundStream::pause ()

Pause	the	audio	stream.

This	function	pauses	the	stream	if	it	was	playing,	otherwise	(stream	already	paused	or	stopped)	it	has	no
effect.

See	also
play,	stop

void	sf::SoundStream::play ()

Start	or	resume	playing	the	audio	stream.

This	 function	 starts	 the	 stream	 if	 it	was	 stopped,	 resumes	 it	 if	 it	was	paused,	 and	 restarts	 it	 from	 the
beginning	if	 it	was	already	playing.	This	function	uses	its	own	thread	so	that	it	doesn't	block	the	rest	of
the	program	while	the	stream	is	played.

See	also
pause,	stop

void	sf::SoundSource::setAttenuation (float	 attenuation)

Set	the	attenuation	factor	of	the	sound.

The	 attenuation	 is	 a	 multiplicative	 factor	 which	 makes	 the	 sound	 more	 or	 less	 loud	 according	 to	 its
distance	from	the	 listener.	An	attenuation	of	0	will	produce	a	non-attenuated	sound,	 i.e.	 its	volume	will
always	be	the	same	whether	it	 is	heard	from	near	or	from	far.	On	the	other	hand,	an	attenuation	value
such	as	100	will	make	 the	sound	 fade	out	very	quickly	as	 it	gets	 further	 from	 the	 listener.	The	default
value	of	the	attenuation	is	1.

Parameters
attenuationNew	attenuation	factor	of	the	sound

See	also
getAttenuation,	setMinDistance

void	sf::SoundStream::setLoop (bool	 loop)

Set	whether	or	not	the	stream	should	loop	after	reaching	the	end.

If	 set,	 the	 stream	 will	 restart	 from	 beginning	 after	 reaching	 the	 end	 and	 so	 on,	 until	 it	 is	 stopped	 or
setLoop(false)	is	called.	The	default	looping	state	for	streams	is	false.

Parameters
loop True	to	play	in	loop,	false	to	play	once

See	also
getLoop

void	sf::SoundSource::setMinDistance (float	 distance)

Set	the	minimum	distance	of	the	sound.

The	"minimum	distance"	of	a	sound	is	the	maximum	distance	at	which	it	is	heard	at	its	maximum	volume.
Further	than	the	minimum	distance,	it	will	start	to	fade	out	according	to	its	attenuation	factor.	A	value	of	0

("inside	the	head	of	the	listener")	is	an	invalid	value	and	is	forbidden.	The	default	value	of	the	minimum
distance	is	1.

Parameters
distance New	minimum	distance	of	the	sound

See	also
getMinDistance,	setAttenuation

void	sf::SoundSource::setPitch (float	 pitch)

Set	the	pitch	of	the	sound.

The	pitch	represents	the	perceived	fundamental	frequency	of	a	sound;	thus	you	can	make	a	sound	more
acute	or	grave	by	changing	its	pitch.	A	side	effect	of	changing	the	pitch	is	to	modify	the	playing	speed	of
the	sound	as	well.	The	default	value	for	the	pitch	is	1.

Parameters
pitchNew	pitch	to	apply	to	the	sound

See	also
getPitch

void	sf::SoundStream::setPlayingOffset (Time	 timeOffset)

Change	the	current	playing	position	of	the	stream.

The	playing	position	can	be	changed	when	the	stream	is	either	paused	or	playing.	Changing	the	playing
position	when	the	stream	is	stopped	has	no	effect,	since	playing	the	stream	would	reset	its	position.

Parameters

timeOffsetNew	playing	position,	from	the	beginning	of	the	stream

See	also
getPlayingOffset

void	sf::SoundSource::setPosition (float	 x,
float	 y,
float	 z	
)

Set	the	3D	position	of	the	sound	in	the	audio	scene.

Only	sounds	with	one	channel	(mono	sounds)	can	be	spatialized.	The	default	position	of	a	sound	is	(0,	0,
0).

Parameters
x X	coordinate	of	the	position	of	the	sound	in	the	scene
y Y	coordinate	of	the	position	of	the	sound	in	the	scene
z Z	coordinate	of	the	position	of	the	sound	in	the	scene

See	also
getPosition

void	sf::SoundSource::setPosition (const	Vector3f	&	 position)

Set	the	3D	position	of	the	sound	in	the	audio	scene.

Only	sounds	with	one	channel	(mono	sounds)	can	be	spatialized.	The	default	position	of	a	sound	is	(0,	0,
0).

Parameters

position Position	of	the	sound	in	the	scene

See	also
getPosition

void	sf::SoundSource::setRelativeToListener (bool	 relative)

Make	the	sound's	position	relative	to	the	listener	or	absolute.

Making	a	sound	relative	to	the	listener	will	ensure	that	it	will	always	be	played	the	same	way	regardless
of	the	position	of	the	listener.	This	can	be	useful	for	non-spatialized	sounds,	sounds	that	are	produced	by
the	listener,	or	sounds	attached	to	it.	The	default	value	is	false	(position	is	absolute).

Parameters
relative True	to	set	the	position	relative,	false	to	set	it	absolute

See	also
isRelativeToListener

void	sf::SoundSource::setVolume (float	 volume)

Set	the	volume	of	the	sound.

The	volume	is	a	value	between	0	(mute)	and	100	(full	volume).	The	default	value	for	the	volume	is	100.

Parameters
volume Volume	of	the	sound

See	also
getVolume

void	sf::SoundStream::stop ()

Stop	playing	the	audio	stream.

This	function	stops	the	stream	if	it	was	playing	or	paused,	and	does	nothing	if	it	was	already	stopped.	It
also	resets	the	playing	position	(unlike	pause()).

See	also
play,	pause

Member	Data	Documentation

unsigned	int	sf::SoundSource::m_source

OpenAL	source	identifier.

Definition	at	line	274	of	file	SoundSource.hpp.

The	documentation	for	this	class	was	generated	from	the	following	file:
Music.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Member	Functions	|	List	of	all	members

sf::OutputSoundFile	Class	Reference
Audio	module

Provide	write	access	to	sound	files.	More...

#include	<OutputSoundFile.hpp>

Inheritance	diagram	for	sf::OutputSoundFile:

Public	Member	Functions
	 OutputSoundFile	()

	 Default	constructor.	More...
	

	 ~OutputSoundFile	()
	 Destructor.	More...
	
bool	 openFromFile	(const	std::string	&filename,	unsigned	int	sampleRate,	unsigned	int	channelCount)
	 Open	the	sound	file	from	the	disk	for	writing.	More...
	
void	 write	(const	Int16	*samples,	Uint64	count)
	 Write	audio	samples	to	the	file.	More...
	

Detailed	Description

Provide	write	access	to	sound	files.

This	class	encodes	audio	samples	to	a	sound	file.

It	 is	used	internally	by	higher-level	classes	such	as	sf::SoundBuffer,	but	can	also	be	useful	if	you	want	to
create	audio	files	from	custom	data	sources,	like	generated	audio	samples.

Usage	example:

//	Create	a	sound	file,	ogg/vorbis	format,	44100	Hz,	stereo

sf::OutputSoundFile	file;

if	(!file.openFromFile("music.ogg",	44100,	2))

	/*	error	*/;

while	(...)

{

	//	Read	or	generate	audio	samples	from	your	custom	source

				std::vector<sf::Int16>	samples	=	...;

	//	Write	them	to	the	file

				file.write(samples.data(),	samples.size());

}

See	also
sf::SoundFileWriter,	sf::InputSoundFile

Definition	at	line	44	of	file	OutputSoundFile.hpp.

Constructor	&	Destructor	Documentation

sf::OutputSoundFile::OutputSoundFile ()

Default	constructor.

sf::OutputSoundFile::~OutputSoundFile ()

Destructor.

Closes	the	file	if	it	was	still	open.

Member	Function	Documentation

bool	sf::OutputSoundFile::openFromFile (const	std::string	&	 filename
unsigned	int	 sampleRate
unsigned	int	 channelCount
)

Open	the	sound	file	from	the	disk	for	writing.

The	supported	audio	formats	are:	WAV,	OGG/Vorbis,	FLAC.

Parameters
filename Path	of	the	sound	file	to	write
sampleRate Sample	rate	of	the	sound
channelCount Number	of	channels	in	the	sound

Returns
True	if	the	file	was	successfully	opened

void	sf::OutputSoundFile::write (const	Int16	*	 samples,
Uint64	 count	
)

Write	audio	samples	to	the	file.

Parameters
samples Pointer	to	the	sample	array	to	write
count Number	of	samples	to	write

The	documentation	for	this	class	was	generated	from	the	following	file:
OutputSoundFile.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Types	|	Public	Member	Functions	|	Protected	Attributes	|	List	of	all	members

sf::Sound	Class	Reference
Audio	module

Regular	sound	that	can	be	played	in	the	audio	environment.	More...

#include	<Sound.hpp>

Inheritance	diagram	for	sf::Sound:

Public	Types
enum		 Status	{	Stopped,	Paused,	Playing	}
	 Enumeration	of	the	sound	source	states.	More...
	

Public	Member	Functions
	 Sound	()

	 Default	constructor.	More...
	

	 Sound	(const	SoundBuffer	&buffer)
	 Construct	the	sound	with	a	buffer.	More...
	

	 Sound	(const	Sound	©)
	 Copy	constructor.	More...
	

	 ~Sound	()
	 Destructor.	More...
	

void	 play	()
	 Start	or	resume	playing	the	sound.	More...
	

void	 pause	()
	 Pause	the	sound.	More...
	

void	 stop	()
	 stop	playing	the	sound	More...
	

void	 setBuffer	(const	SoundBuffer	&buffer)
	 Set	the	source	buffer	containing	the	audio	data	to	play.	
	

void	 setLoop	(bool	loop)
	 Set	whether	or	not	the	sound	should	loop	after	reaching	the	end.	
	

void	 setPlayingOffset	(Time	timeOffset)
	 Change	the	current	playing	position	of	the	sound.	More...
	
const	SoundBuffer	*	 getBuffer	()	const

	 Get	the	audio	buffer	attached	to	the	sound.	More...
	

bool	 getLoop	()	const
	 Tell	whether	or	not	the	sound	is	in	loop	mode.	More...
	

Time	 getPlayingOffset	()	const
	 Get	the	current	playing	position	of	the	sound.	More...
	

Status	 getStatus	()	const
	 Get	the	current	status	of	the	sound	(stopped,	paused,	playing)	
	

Sound	&	 operator=	(const	Sound	&right)
	 Overload	of	assignment	operator.	More...
	

void	 resetBuffer	()
	 Reset	the	internal	buffer	of	the	sound.	More...
	

void	 setPitch	(float	pitch)
	 Set	the	pitch	of	the	sound.	More...
	

void	 setVolume	(float	volume)
	 Set	the	volume	of	the	sound.	More...
	

void	 setPosition	(float	x,	float	y,	float	z)
	 Set	the	3D	position	of	the	sound	in	the	audio	scene.	
	

void	 setPosition	(const	Vector3f	&position)
	 Set	the	3D	position	of	the	sound	in	the	audio	scene.	
	

void	 setRelativeToListener	(bool	relative)
	 Make	the	sound's	position	relative	to	the	listener	or	absolute.	
	

void	 setMinDistance	(float	distance)
	 Set	the	minimum	distance	of	the	sound.	More...
	

void	 setAttenuation	(float	attenuation)
	 Set	the	attenuation	factor	of	the	sound.	More...
	

float	 getPitch	()	const
	 Get	the	pitch	of	the	sound.	More...
	

float	 getVolume	()	const
	 Get	the	volume	of	the	sound.	More...
	

Vector3f	 getPosition	()	const
	 Get	the	3D	position	of	the	sound	in	the	audio	scene.	
	

bool	 isRelativeToListener	()	const
	 Tell	whether	the	sound's	position	is	relative	to	the	listener	or	is	absolute.	
	

float	 getMinDistance	()	const
	 Get	the	minimum	distance	of	the	sound.	More...
	

float	 getAttenuation	()	const
	 Get	the	attenuation	factor	of	the	sound.	More...
	

Protected	Attributes
unsigned	int	 m_source
	 OpenAL	source	identifier.	More...
	

Detailed	Description

Regular	sound	that	can	be	played	in	the	audio	environment.

sf::Sound	is	the	class	to	use	to	play	sounds.

It	provides:

Control	(play,	pause,	stop)

Ability	to	modify	output	parameters	in	real-time	(pitch,	volume,	...)

3D	spatial	features	(position,	attenuation,	...).

sf::Sound	is	perfect	for	playing	short	sounds	that	can	fit	in	memory	and	require	no	latency,	like	foot	steps	or
gun	 shots.	 For	 longer	 sounds,	 like	 background	musics	 or	 long	 speeches,	 rather	 see	
based	on	streaming).

In	order	 to	work,	a	sound	must	be	given	a	buffer	of	audio	data	to	play.	Audio	data	(samples)	 is	stored	 in
sf::SoundBuffer,	 and	 attached	 to	 a	 sound	 with	 the	 setBuffer()	 function.	 The	 buffer	 object	 attached	 to	 a
sound	must	remain	alive	as	long	as	the	sound	uses	it.	Note	that	multiple	sounds	can	use	the	same	sound
buffer	at	the	same	time.

Usage	example:

sf::SoundBuffer	buffer;

buffer.loadFromFile("sound.wav");

sf::Sound	sound;

sound.setBuffer(buffer);

sound.play();

See	also
sf::SoundBuffer,	sf::Music

Definition	at	line	45	of	file	Sound.hpp.

Member	Enumeration	Documentation

enum	sf::SoundSource::Status

Enumeration	of	the	sound	source	states.

Enumerator

Stopped	
Sound	is	not	playing.

Paused	
Sound	is	paused.

Playing	
Sound	is	playing.

Definition	at	line	50	of	file	SoundSource.hpp.

Constructor	&	Destructor	Documentation

sf::Sound::Sound ()

Default	constructor.

sf::Sound::Sound (const	SoundBuffer	&	 buffer)

Construct	the	sound	with	a	buffer.

Parameters
buffer Sound	buffer	containing	the	audio	data	to	play	with	the	sound

sf::Sound::Sound (const	Sound	&	 copy)

Copy	constructor.

Parameters
copy Instance	to	copy

sf::Sound::~Sound ()

Destructor.

Member	Function	Documentation

float	sf::SoundSource::getAttenuation () const

Get	the	attenuation	factor	of	the	sound.

Returns
Attenuation	factor	of	the	sound

See	also
setAttenuation,	getMinDistance

const	SoundBuffer*	sf::Sound::getBuffer () const

Get	the	audio	buffer	attached	to	the	sound.

Returns
Sound	buffer	attached	to	the	sound	(can	be	NULL)

bool	sf::Sound::getLoop () const

Tell	whether	or	not	the	sound	is	in	loop	mode.

Returns
True	if	the	sound	is	looping,	false	otherwise

See	also
setLoop

float	sf::SoundSource::getMinDistance () const

Get	the	minimum	distance	of	the	sound.

Returns
Minimum	distance	of	the	sound

See	also
setMinDistance,	getAttenuation

float	sf::SoundSource::getPitch () const

Get	the	pitch	of	the	sound.

Returns
Pitch	of	the	sound

See	also
setPitch

Time	sf::Sound::getPlayingOffset () const

Get	the	current	playing	position	of	the	sound.

Returns
Current	playing	position,	from	the	beginning	of	the	sound

See	also
setPlayingOffset

Vector3f	sf::SoundSource::getPosition () const

Get	the	3D	position	of	the	sound	in	the	audio	scene.

Returns
Position	of	the	sound

See	also
setPosition

Status	sf::Sound::getStatus () const

Get	the	current	status	of	the	sound	(stopped,	paused,	playing)

Returns
Current	status	of	the	sound

float	sf::SoundSource::getVolume () const

Get	the	volume	of	the	sound.

Returns
Volume	of	the	sound,	in	the	range	[0,	100]

See	also
setVolume

bool	sf::SoundSource::isRelativeToListener () const

Tell	whether	the	sound's	position	is	relative	to	the	listener	or	is	absolute.

Returns
True	if	the	position	is	relative,	false	if	it's	absolute

See	also
setRelativeToListener

Sound&	sf::Sound::operator= (const	Sound	&	 right)

Overload	of	assignment	operator.

Parameters
right Instance	to	assign

Returns
Reference	to	self

void	sf::Sound::pause ()

Pause	the	sound.

This	function	pauses	the	sound	if	it	was	playing,	otherwise	(sound	already	paused	or	stopped)	it	has	no
effect.

See	also
play,	stop

void	sf::Sound::play ()

Start	or	resume	playing	the	sound.

This	 function	 starts	 the	 stream	 if	 it	 was	 stopped,	 resumes	 it	 if	 it	 was	 paused,	 and	 restarts	 it	 from
beginning	if	it	was	it	already	playing.	This	function	uses	its	own	thread	so	that	it	doesn't	block	the	rest	of
the	program	while	the	sound	is	played.

See	also
pause,	stop

void	sf::Sound::resetBuffer ()

Reset	the	internal	buffer	of	the	sound.

This	function	is	for	internal	use	only,	you	don't	have	to	use	it.	It	is	called	by	the	
sound	uses,	when	it	is	destroyed	in	order	to	prevent	the	sound	from	using	a	dead	buffer.

void	sf::SoundSource::setAttenuation (float	 attenuation)

Set	the	attenuation	factor	of	the	sound.

The	 attenuation	 is	 a	 multiplicative	 factor	 which	 makes	 the	 sound	 more	 or	 less	 loud	 according	 to	 its
distance	from	the	 listener.	An	attenuation	of	0	will	produce	a	non-attenuated	sound,	 i.e.	 its	volume	will
always	be	the	same	whether	it	 is	heard	from	near	or	from	far.	On	the	other	hand,	an	attenuation	value
such	as	100	will	make	 the	sound	 fade	out	very	quickly	as	 it	gets	 further	 from	 the	 listener.	The	default
value	of	the	attenuation	is	1.

Parameters

attenuationNew	attenuation	factor	of	the	sound

See	also
getAttenuation,	setMinDistance

void	sf::Sound::setBuffer (const	SoundBuffer	&	 buffer)

Set	the	source	buffer	containing	the	audio	data	to	play.

It	is	important	to	note	that	the	sound	buffer	is	not	copied,	thus	the	sf::SoundBuffer
alive	as	long	as	it	is	attached	to	the	sound.

Parameters
buffer Sound	buffer	to	attach	to	the	sound

See	also
getBuffer

void	sf::Sound::setLoop (bool	 loop)

Set	whether	or	not	the	sound	should	loop	after	reaching	the	end.

If	 set,	 the	 sound	 will	 restart	 from	 beginning	 after	 reaching	 the	 end	 and	 so	 on,	 until	 it	 is	 stopped	 or
setLoop(false)	is	called.	The	default	looping	state	for	sound	is	false.

Parameters
loop True	to	play	in	loop,	false	to	play	once

See	also
getLoop

void	sf::SoundSource::setMinDistance (float	 distance)

Set	the	minimum	distance	of	the	sound.

The	"minimum	distance"	of	a	sound	is	the	maximum	distance	at	which	it	is	heard	at	its	maximum	volume.
Further	than	the	minimum	distance,	it	will	start	to	fade	out	according	to	its	attenuation	factor.	A	value	of	0
("inside	the	head	of	the	listener")	is	an	invalid	value	and	is	forbidden.	The	default	value	of	the	minimum
distance	is	1.

Parameters
distance New	minimum	distance	of	the	sound

See	also
getMinDistance,	setAttenuation

void	sf::SoundSource::setPitch (float	 pitch)

Set	the	pitch	of	the	sound.

The	pitch	represents	the	perceived	fundamental	frequency	of	a	sound;	thus	you	can	make	a	sound	more
acute	or	grave	by	changing	its	pitch.	A	side	effect	of	changing	the	pitch	is	to	modify	the	playing	speed	of
the	sound	as	well.	The	default	value	for	the	pitch	is	1.

Parameters
pitchNew	pitch	to	apply	to	the	sound

See	also
getPitch

void	sf::Sound::setPlayingOffset (Time	 timeOffset)

Change	the	current	playing	position	of	the	sound.

The	playing	position	can	be	changed	when	the	sound	is	either	paused	or	playing.	Changing	the	playing
position	when	the	sound	is	stopped	has	no	effect,	since	playing	the	sound	will	reset	its	position.

Parameters
timeOffsetNew	playing	position,	from	the	beginning	of	the	sound

See	also
getPlayingOffset

void	sf::SoundSource::setPosition (float	 x,
float	 y,
float	 z	
)

Set	the	3D	position	of	the	sound	in	the	audio	scene.

Only	sounds	with	one	channel	(mono	sounds)	can	be	spatialized.	The	default	position	of	a	sound	is	(0,	0,
0).

Parameters
x X	coordinate	of	the	position	of	the	sound	in	the	scene
y Y	coordinate	of	the	position	of	the	sound	in	the	scene
z Z	coordinate	of	the	position	of	the	sound	in	the	scene

See	also
getPosition

void	sf::SoundSource::setPosition (const	Vector3f	&	 position)

Set	the	3D	position	of	the	sound	in	the	audio	scene.

Only	sounds	with	one	channel	(mono	sounds)	can	be	spatialized.	The	default	position	of	a	sound	is	(0,	0,
0).

Parameters
position Position	of	the	sound	in	the	scene

See	also
getPosition

void	sf::SoundSource::setRelativeToListener (bool	 relative)

Make	the	sound's	position	relative	to	the	listener	or	absolute.

Making	a	sound	relative	to	the	listener	will	ensure	that	it	will	always	be	played	the	same	way	regardless
of	the	position	of	the	listener.	This	can	be	useful	for	non-spatialized	sounds,	sounds	that	are	produced	by
the	listener,	or	sounds	attached	to	it.	The	default	value	is	false	(position	is	absolute).

Parameters
relative True	to	set	the	position	relative,	false	to	set	it	absolute

See	also
isRelativeToListener

void	sf::SoundSource::setVolume (float	 volume)

Set	the	volume	of	the	sound.

The	volume	is	a	value	between	0	(mute)	and	100	(full	volume).	The	default	value	for	the	volume	is	100.

Parameters
volume Volume	of	the	sound

See	also
getVolume

void	sf::Sound::stop ()

stop	playing	the	sound

This	function	stops	the	sound	if	it	was	playing	or	paused,	and	does	nothing	if	it	was	already	stopped.	It
also	resets	the	playing	position	(unlike	pause()).

See	also
play,	pause

Member	Data	Documentation

unsigned	int	sf::SoundSource::m_source

OpenAL	source	identifier.

Definition	at	line	274	of	file	SoundSource.hpp.

The	documentation	for	this	class	was	generated	from	the	following	file:
Sound.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Member	Functions	|	Friends	|	List	of	all	members

sf::SoundBuffer	Class	Reference
Audio	module

Storage	for	audio	samples	defining	a	sound.	More...

#include	<SoundBuffer.hpp>

Inheritance	diagram	for	sf::SoundBuffer:

Public	Member	Functions
	 SoundBuffer	()

	 Default	constructor.	More...
	

	 SoundBuffer	(const	SoundBuffer	©)
	 Copy	constructor.	More...
	

	 ~SoundBuffer	()
	 Destructor.	More...
	

bool	 loadFromFile	(const	std::string	&filename)
	 Load	the	sound	buffer	from	a	file.	More...
	

bool	 loadFromMemory	(const	void	*data,	std::size_t	sizeInBytes)
	 Load	the	sound	buffer	from	a	file	in	memory.	More...
	

bool	 loadFromStream	(InputStream	&stream)
	 Load	the	sound	buffer	from	a	custom	stream.	More...
	

bool	 loadFromSamples	(const	Int16	*samples,	Uint64	sampleCount,	unsigned	intchannelCount,	unsigned	int	sampleRate)
	 Load	the	sound	buffer	from	an	array	of	audio	samples.	More...
	

bool	 saveToFile	(const	std::string	&filename)	const
	 Save	the	sound	buffer	to	an	audio	file.	More...
	

const	Int16	*	 getSamples	()	const
	 Get	the	array	of	audio	samples	stored	in	the	buffer.	More...
	

Uint64	 getSampleCount	()	const
	 Get	the	number	of	samples	stored	in	the	buffer.	More...
	

unsigned	int	 getSampleRate	()	const
	 Get	the	sample	rate	of	the	sound.	More...
	

unsigned	int	 getChannelCount	()	const
	 Get	the	number	of	channels	used	by	the	sound.	More...
	

Time	 getDuration	()	const
	 Get	the	total	duration	of	the	sound.	More...
	
SoundBuffer	&	 operator=	(const	SoundBuffer	&right)
	 Overload	of	assignment	operator.	More...
	

Friends
class	 Sound
	

Detailed	Description

Storage	for	audio	samples	defining	a	sound.

A	sound	buffer	holds	the	data	of	a	sound,	which	is	an	array	of	audio	samples.

A	sample	is	a	16	bits	signed	integer	that	defines	the	amplitude	of	the	sound	at	a	given	time.	The	sound	is
then	reconstituted	by	playing	these	samples	at	a	high	rate	(for	example,	44100	samples	per	second	is	the
standard	rate	used	for	playing	CDs).	In	short,	audio	samples	are	like	texture	pixels,	and	a	
is	similar	to	a	sf::Texture.

A	sound	buffer	can	be	 loaded	from	a	file	(see	 loadFromFile()	 for	 the	complete	 list	of	supported	 formats),
from	memory,	from	a	custom	stream	(see	sf::InputStream)	or	directly	from	an	array	of	samples.	It	can	also
be	saved	back	to	a	file.

Sound	buffers	alone	are	not	very	useful:	they	hold	the	audio	data	but	cannot	be	played.	To	do	so,	you	need
to	use	the	sf::Sound	class,	which	provides	functions	to	play/pause/stop	the	sound	as	well	as	changing	the
way	 it	 is	 outputted	 (volume,	 pitch,	 3D	 position,	 ...).	 This	 separation	 allows	 more	 flexibility	 and	 better
performances:	indeed	a	sf::SoundBuffer	is	a	heavy	resource,	and	any	operation	on	it	is	slow	(often	too	slow
for	real-time	applications).	On	the	other	side,	a	sf::Sound	is	a	lightweight	object,	which	can	use	the	audio
data	of	a	sound	buffer	and	change	the	way	it	is	played	without	actually	modifying	that	data.	Note	that	it	is
also	possible	to	bind	several	sf::Sound	instances	to	the	same	sf::SoundBuffer

It	 is	 important	 to	 note	 that	 the	 sf::Sound	 instance	 doesn't	 copy	 the	 buffer	 that	 it	 uses,	 it	 only	 keeps	 a
reference	to	it.	Thus,	a	 sf::SoundBuffer	must	not	be	destructed	while	it	 is	used	by	a	
write	a	function	that	uses	a	local	sf::SoundBuffer	instance	for	loading	a	sound).

Usage	example:

//	Declare	a	new	sound	buffer

sf::SoundBuffer	buffer;

//	Load	it	from	a	file

if	(!buffer.loadFromFile("sound.wav"))

{

	//	error...

}

//	Create	a	sound	source	and	bind	it	to	the	buffer

sf::Sound	sound1;

sound1.setBuffer(buffer);

//	Play	the	sound

sound1.play();

//	Create	another	sound	source	bound	to	the	same	buffer

sf::Sound	sound2;

sound2.setBuffer(buffer);

//	Play	it	with	a	higher	pitch	--	the	first	sound	remains	unchanged

sound2.setPitch(2);

sound2.play();

See	also
sf::Sound,	sf::SoundBufferRecorder

Definition	at	line	49	of	file	SoundBuffer.hpp.

Constructor	&	Destructor	Documentation

sf::SoundBuffer::SoundBuffer ()

Default	constructor.

sf::SoundBuffer::SoundBuffer (const	SoundBuffer	&	 copy)

Copy	constructor.

Parameters
copy Instance	to	copy

sf::SoundBuffer::~SoundBuffer ()

Destructor.

Member	Function	Documentation

unsigned	int	sf::SoundBuffer::getChannelCount () const

Get	the	number	of	channels	used	by	the	sound.

If	the	sound	is	mono	then	the	number	of	channels	will	be	1,	2	for	stereo,	etc.

Returns
Number	of	channels

See	also
getSampleRate,	getDuration

Time	sf::SoundBuffer::getDuration () const

Get	the	total	duration	of	the	sound.

Returns
Sound	duration

See	also
getSampleRate,	getChannelCount

Uint64	sf::SoundBuffer::getSampleCount () const

Get	the	number	of	samples	stored	in	the	buffer.

The	array	of	samples	can	be	accessed	with	the	getSamples()	function.

Returns
Number	of	samples

See	also
getSamples

unsigned	int	sf::SoundBuffer::getSampleRate () const

Get	the	sample	rate	of	the	sound.

The	 sample	 rate	 is	 the	 number	 of	 samples	 played	 per	 second.	 The	 higher,	 the	 better	 the	 quality	 (for
example,	44100	samples/s	is	CD	quality).

Returns
Sample	rate	(number	of	samples	per	second)

See	also
getChannelCount,	getDuration

const	Int16*	sf::SoundBuffer::getSamples () const

Get	the	array	of	audio	samples	stored	in	the	buffer.

The	format	of	the	returned	samples	is	16	bits	signed	integer	(sf::Int16).	The	total	number	of	samples	in
this	array	is	given	by	the	getSampleCount()	function.

Returns
Read-only	pointer	to	the	array	of	sound	samples

See	also
getSampleCount

bool	sf::SoundBuffer::loadFromFile (const	std::string	&	 filename)

Load	the	sound	buffer	from	a	file.

See	the	documentation	of	sf::InputSoundFile	for	the	list	of	supported	formats.

Parameters
filename Path	of	the	sound	file	to	load

Returns
True	if	loading	succeeded,	false	if	it	failed

See	also
loadFromMemory,	loadFromStream,	loadFromSamples,	saveToFile

bool	sf::SoundBuffer::loadFromMemory (const	void	*	 data,
std::size_t	 sizeInBytes	
)

Load	the	sound	buffer	from	a	file	in	memory.

See	the	documentation	of	sf::InputSoundFile	for	the	list	of	supported	formats.

Parameters
data Pointer	to	the	file	data	in	memory

sizeInBytes Size	of	the	data	to	load,	in	bytes

Returns
True	if	loading	succeeded,	false	if	it	failed

See	also
loadFromFile,	loadFromStream,	loadFromSamples

bool	sf::SoundBuffer::loadFromSamples (const	Int16	*	 samples,
Uint64	 sampleCount
unsigned	int	 channelCount
unsigned	int	 sampleRate
)

Load	the	sound	buffer	from	an	array	of	audio	samples.

The	assumed	format	of	the	audio	samples	is	16	bits	signed	integer	(sf::Int16).

Parameters
samples Pointer	to	the	array	of	samples	in	memory
sampleCount Number	of	samples	in	the	array
channelCount Number	of	channels	(1	=	mono,	2	=	stereo,	...)
sampleRate Sample	rate	(number	of	samples	to	play	per	second)

Returns
True	if	loading	succeeded,	false	if	it	failed

See	also
loadFromFile,	loadFromMemory,	saveToFile

bool	sf::SoundBuffer::loadFromStream (InputStream	&	 stream)

Load	the	sound	buffer	from	a	custom	stream.

See	the	documentation	of	sf::InputSoundFile	for	the	list	of	supported	formats.

Parameters
stream Source	stream	to	read	from

Returns
True	if	loading	succeeded,	false	if	it	failed

See	also
loadFromFile,	loadFromMemory,	loadFromSamples

SoundBuffer&	sf::SoundBuffer::operator= (const	SoundBuffer	&	 right

Overload	of	assignment	operator.

Parameters
right Instance	to	assign

Returns
Reference	to	self

bool	sf::SoundBuffer::saveToFile (const	std::string	&	 filename) const

Save	the	sound	buffer	to	an	audio	file.

See	the	documentation	of	sf::OutputSoundFile	for	the	list	of	supported	formats.

Parameters
filename Path	of	the	sound	file	to	write

Returns
True	if	saving	succeeded,	false	if	it	failed

See	also
loadFromFile,	loadFromMemory,	loadFromSamples

The	documentation	for	this	class	was	generated	from	the	following	file:
SoundBuffer.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Member	Functions	|	Static	Public	Member	Functions	|	Protected	Member	Functions	|	List	of	all	members

sf::SoundBufferRecorder	Class	Reference
Audio	module

Specialized	SoundRecorder	which	stores	the	captured	audio	data	into	a	sound	buffer.	

#include	<SoundBufferRecorder.hpp>

Inheritance	diagram	for	sf::SoundBufferRecorder:

Public	Member	Functions
	 ~SoundBufferRecorder	()

	 destructor	More...
	
const	SoundBuffer	&	 getBuffer	()	const
	 Get	the	sound	buffer	containing	the	captured	audio	data.	
	

bool	 start	(unsigned	int	sampleRate=44100)
	 Start	the	capture.	More...
	

void	 stop	()
	 Stop	the	capture.	More...
	

unsigned	int	 getSampleRate	()	const
	 Get	the	sample	rate.	More...
	

bool	 setDevice	(const	std::string	&name)
	 Set	the	audio	capture	device.	More...
	

const	std::string	&	 getDevice	()	const
	 Get	the	name	of	the	current	audio	capture	device.	
	

void	 setChannelCount	(unsigned	int	channelCount)
	 Set	the	channel	count	of	the	audio	capture	device.	
	

unsigned	int	 getChannelCount	()	const
	 Get	the	number	of	channels	used	by	this	recorder.	
	

Static	Public	Member	Functions
static	std::vector<	std::string	>	 getAvailableDevices	()
	 Get	a	list	of	the	names	of	all	available	audio	capture	devices.	
	

static	std::string	 getDefaultDevice	()
	 Get	the	name	of	the	default	audio	capture	device.	
	

static	bool	 isAvailable	()
	 Check	if	the	system	supports	audio	capture.	
	

Protected	Member	Functions
virtual	bool	 onStart	()
	 Start	capturing	audio	data.	More...
	
virtual	bool	 onProcessSamples	(const	Int16	*samples,	std::size_t	sampleCount)
	 Process	a	new	chunk	of	recorded	samples.	More...
	
virtual	void	 onStop	()
	 Stop	capturing	audio	data.	More...
	

void	 setProcessingInterval	(Time	interval)
	 Set	the	processing	interval.	More...
	

Detailed	Description

Specialized	SoundRecorder	which	stores	the	captured	audio	data	into	a	sound	buffer.

sf::SoundBufferRecorder	allows	to	access	a	recorded	sound	through	a	 sf::SoundBuffer
played,	saved	to	a	file,	etc.

It	 has	 the	 same	 simple	 interface	 as	 its	 base	 class	 (start(),	 stop())	 and	 adds	 a	 function	 to	 retrieve	 the
recorded	sound	buffer	(getBuffer()).

As	usual,	don't	 forget	 to	call	 the	 isAvailable()	 function	before	using	this	class	(see	
more	details	about	this).

Usage	example:

if	(sf::SoundBufferRecorder::isAvailable())

{

	//	Record	some	audio	data

	sf::SoundBufferRecorder	recorder;

				recorder.start();

				...

				recorder.stop();

	//	Get	the	buffer	containing	the	captured	audio	data

	const	sf::SoundBuffer&	buffer	=	recorder.getBuffer();

	//	Save	it	to	a	file	(for	example...)

				buffer.saveToFile("my_record.ogg");

}

See	also
sf::SoundRecorder

Definition	at	line	44	of	file	SoundBufferRecorder.hpp.

Constructor	&	Destructor	Documentation

sf::SoundBufferRecorder::~SoundBufferRecorder ()

destructor

Member	Function	Documentation

static	std::vector<std::string>	sf::SoundRecorder::getAvailableDevices

Get	a	list	of	the	names	of	all	available	audio	capture	devices.

This	function	returns	a	vector	of	strings,	containing	the	names	of	all	available	audio	capture	devices.

Returns
A	vector	of	strings	containing	the	names

const	SoundBuffer&	sf::SoundBufferRecorder::getBuffer () const

Get	the	sound	buffer	containing	the	captured	audio	data.

The	sound	buffer	is	valid	only	after	the	capture	has	ended.	This	function	provides	a	read-only	access	to
the	internal	sound	buffer,	but	it	can	be	copied	if	you	need	to	make	any	modification	to	it.

Returns
Read-only	access	to	the	sound	buffer

unsigned	int	sf::SoundRecorder::getChannelCount () const

Get	the	number	of	channels	used	by	this	recorder.

Currently	only	mono	and	stereo	are	supported,	so	the	value	is	either	1	(for	mono)	or	2	(for	stereo).

Returns
Number	of	channels

See	also
setChannelCount

static	std::string	sf::SoundRecorder::getDefaultDevice ()

Get	the	name	of	the	default	audio	capture	device.

This	function	returns	the	name	of	the	default	audio	capture	device.	If	none	is	available,	an	empty	string	is
returned.

Returns
The	name	of	the	default	audio	capture	device

const	std::string&	sf::SoundRecorder::getDevice () const

Get	the	name	of	the	current	audio	capture	device.

Returns
The	name	of	the	current	audio	capture	device

unsigned	int	sf::SoundRecorder::getSampleRate () const

Get	the	sample	rate.

The	sample	rate	defines	the	number	of	audio	samples	captured	per	second.	The	higher,	the	better	the
quality	(for	example,	44100	samples/sec	is	CD	quality).

Returns
Sample	rate,	in	samples	per	second

static	bool	sf::SoundRecorder::isAvailable ()

Check	if	the	system	supports	audio	capture.

This	function	should	always	be	called	before	using	the	audio	capture	features.	If	it	returns	false,	then	any
attempt	to	use	sf::SoundRecorder	or	one	of	its	derived	classes	will	fail.

Returns
True	if	audio	capture	is	supported,	false	otherwise

virtual	bool
sf::SoundBufferRecorder::onProcessSamples (const	Int16	*	

std::size_t	
)

Process	a	new	chunk	of	recorded	samples.

Parameters
samples Pointer	to	the	new	chunk	of	recorded	samples
sampleCount Number	of	samples	pointed	by	samples

Returns
True	to	continue	the	capture,	or	false	to	stop	it

Implements	sf::SoundRecorder.

virtual	bool	sf::SoundBufferRecorder::onStart ()

Start	capturing	audio	data.

Returns
True	to	start	the	capture,	or	false	to	abort	it

Reimplemented	from	sf::SoundRecorder.

virtual	void	sf::SoundBufferRecorder::onStop ()

Stop	capturing	audio	data.

Reimplemented	from	sf::SoundRecorder.

void	sf::SoundRecorder::setChannelCount (unsigned	int	 channelCount

Set	the	channel	count	of	the	audio	capture	device.

This	method	allows	you	to	specify	the	number	of	channels	used	for	recording.	Currently	only	16-bit	mono
and	16-bit	stereo	are	supported.

Parameters
channelCount Number	of	channels.	Currently	only	mono	(1)	and	stereo	(2)	are	supported.

See	also
getChannelCount

bool	sf::SoundRecorder::setDevice (const	std::string	&	 name)

Set	the	audio	capture	device.

This	function	sets	the	audio	capture	device	to	the	device	with	the	given	
(i.e:	while	recording).	If	you	do	so	while	recording	and	opening	the	device	fails,	it	stops	the	recording.

Parameters
name The	name	of	the	audio	capture	device

Returns
True,	if	it	was	able	to	set	the	requested	device

See	also
getAvailableDevices,	getDefaultDevice

void	sf::SoundRecorder::setProcessingInterval (Time	 interval)

Set	the	processing	interval.

The	processing	 interval	controls	 the	period	between	calls	 to	 the	onProcessSamples	 function.	You	may
want	to	use	a	small	interval	if	you	want	to	process	the	recorded	data	in	real	time,	for	example.

Note:	this	is	only	a	hint,	the	actual	period	may	vary.	So	don't	rely	on	this	parameter	to	implement	precise
timing.

The	default	processing	interval	is	100	ms.

Parameters
interval Processing	interval

bool	sf::SoundRecorder::start (unsigned	int	 sampleRate	=	44100)

Start	the	capture.

The	sampleRate	parameter	defines	the	number	of	audio	samples	captured	per	second.	The	higher,	the
better	the	quality	(for	example,	44100	samples/sec	is	CD	quality).	This	function	uses	its	own	thread	so
that	it	doesn't	block	the	rest	of	the	program	while	the	capture	runs.	Please	note	that	only	one	capture	can
happen	at	the	same	time.	You	can	select	which	capture	device	will	be	used,	by	passing	the	name	to	the
setDevice()	method.	If	none	was	selected	before,	the	default	capture	device	will	be	used.	You	can	get	a
list	of	the	names	of	all	available	capture	devices	by	calling	getAvailableDevices()

Parameters
sampleRate Desired	capture	rate,	in	number	of	samples	per	second

Returns
True,	if	start	of	capture	was	successful

See	also
stop,	getAvailableDevices

void	sf::SoundRecorder::stop ()

Stop	the	capture.

See	also
start

The	documentation	for	this	class	was	generated	from	the	following	file:
SoundBufferRecorder.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Classes	|	Static	Public	Member	Functions	|	List	of	all	members

sf::SoundFileFactory	Class	Reference
Audio	module

Manages	and	instantiates	sound	file	readers	and	writers.	More...

#include	<SoundFileFactory.hpp>

Static	Public	Member	Functions
template<typename	T	>

static	void	 registerReader	()
	 Register	a	new	reader.	More...
	
template<typename	T	>

static	void	 unregisterReader	()
	 Unregister	a	reader.	More...
	
template<typename	T	>

static	void	 registerWriter	()
	 Register	a	new	writer.	More...
	
template<typename	T	>

static	void	 unregisterWriter	()
	 Unregister	a	writer.	More...
	
static	SoundFileReader	*	 createReaderFromFilename	(const	std::string	&filename)
	 Instantiate	the	right	reader	for	the	given	file	on	disk.	
	
static	SoundFileReader	*	 createReaderFromMemory	(const	void	*data,	std::size_t	sizeInBytes)
	 Instantiate	the	right	codec	for	the	given	file	in	memory.	
	
static	SoundFileReader	*	 createReaderFromStream	(InputStream	&stream)
	 Instantiate	the	right	codec	for	the	given	file	in	stream.	
	
static	SoundFileWriter	*	 createWriterFromFilename	(const	std::string	&filename)

	 Instantiate	the	right	writer	for	the	given	file	on	disk.	
	

Detailed	Description

Manages	and	instantiates	sound	file	readers	and	writers.

This	class	is	where	all	the	sound	file	readers	and	writers	are	registered.

You	should	normally	only	need	to	use	its	registration	and	unregistration	functions;	readers/writers	creation
and	manipulation	are	wrapped	into	the	higher-level	classes	sf::InputSoundFile

To	 register	 a	 new	 reader	 (writer)	 use	 the	 sf::SoundFileFactory::registerReader
function.	 You	 don't	 have	 to	 call	 the	 unregisterReader	 (unregisterWriter)	 function,	 unless	 you	 want	 to
unregister	a	format	before	your	application	ends	(typically,	when	a	plugin	is	unloaded).

Usage	example:

sf::SoundFileFactory::registerReader<MySoundFileReader>();

sf::SoundFileFactory::registerWriter<MySoundFileWriter>();

See	also
sf::InputSoundFile,	sf::OutputSoundFile,	sf::SoundFileReader,	sf::SoundFileWriter

Definition	at	line	46	of	file	SoundFileFactory.hpp.

Member	Function	Documentation

static	SoundFileReader*
sf::SoundFileFactory::createReaderFromFilename (const	std::string	&	

Instantiate	the	right	reader	for	the	given	file	on	disk.

It's	up	to	the	caller	to	release	the	returned	reader

Parameters
filename Path	of	the	sound	file

Returns
A	new	sound	file	reader	that	can	read	the	given	file,	or	null	if	no	reader	can	handle	it

See	also
createReaderFromMemory,	createReaderFromStream

static	SoundFileReader*
sf::SoundFileFactory::createReaderFromMemory (

)

Instantiate	the	right	codec	for	the	given	file	in	memory.

It's	up	to	the	caller	to	release	the	returned	reader

Parameters

data Pointer	to	the	file	data	in	memory
sizeInBytes Total	size	of	the	file	data,	in	bytes

Returns
A	new	sound	file	codec	that	can	read	the	given	file,	or	null	if	no	codec	can	handle	it

See	also
createReaderFromFilename,	createReaderFromStream

static	SoundFileReader*
sf::SoundFileFactory::createReaderFromStream

Instantiate	the	right	codec	for	the	given	file	in	stream.

It's	up	to	the	caller	to	release	the	returned	reader

Parameters
stream Source	stream	to	read	from

Returns
A	new	sound	file	codec	that	can	read	the	given	file,	or	null	if	no	codec	can	handle	it

See	also
createReaderFromFilename,	createReaderFromMemory

static	SoundFileWriter*
sf::SoundFileFactory::createWriterFromFilename (const	std::string	&	

Instantiate	the	right	writer	for	the	given	file	on	disk.

It's	up	to	the	caller	to	release	the	returned	writer

Parameters
filename Path	of	the	sound	file

Returns
A	new	sound	file	writer	that	can	write	given	file,	or	null	if	no	writer	can	handle	it

template<typename	T	>

static	void	sf::SoundFileFactory::registerReader ()

Register	a	new	reader.

See	also
unregisterReader

template<typename	T	>

static	void	sf::SoundFileFactory::registerWriter ()

Register	a	new	writer.

See	also
unregisterWriter

template<typename	T	>

static	void	sf::SoundFileFactory::unregisterReader ()

Unregister	a	reader.

See	also
registerReader

template<typename	T	>

static	void	sf::SoundFileFactory::unregisterWriter ()

Unregister	a	writer.

See	also
registerWriter

The	documentation	for	this	class	was	generated	from	the	following	file:
SoundFileFactory.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Classes	|	Public	Member	Functions	|	List	of	all	members

sf::SoundFileReader	Class	Reference abstract

Audio	module

Abstract	base	class	for	sound	file	decoding.	More...

#include	<SoundFileReader.hpp>

Classes
struct		 Info
	 Structure	holding	the	audio	properties	of	a	sound	file.	More...
	

Public	Member	Functions
virtual	 ~SoundFileReader	()

	 Virtual	destructor.	More...
	

virtual	bool	 open	(InputStream	&stream,	Info	&info)=0
	 Open	a	sound	file	for	reading.	More...
	

virtual	void	 seek	(Uint64	sampleOffset)=0
	 Change	the	current	read	position	to	the	given	sample	offset.	
	
virtual	Uint64	 read	(Int16	*samples,	Uint64	maxCount)=0
	 Read	audio	samples	from	the	open	file.	More...
	

Detailed	Description

Abstract	base	class	for	sound	file	decoding.

This	class	allows	users	to	read	audio	file	formats	not	natively	supported	by	SFML,	and	thus	extend	the	set
of	supported	readable	audio	formats.

A	valid	 sound	 file	 reader	must	override	 the	open,	 seek	and	write	 functions,	as	well	 as	providing	a	static
check	function;	the	latter	is	used	by	SFML	to	find	a	suitable	writer	for	a	given	input	file.

To	register	a	new	reader,	use	the	sf::SoundFileFactory::registerReader	template	function.

Usage	example:

class	MySoundFileReader	:	public	sf::SoundFileReader

{

public:

	static	bool	check(sf::InputStream&	stream)

				{

	//	typically,	read	the	first	few	header	bytes	and	check	fields	that	identify	the	format

	//	return	true	if	the	reader	can	handle	the	format

				}

	virtual	bool	open(sf::InputStream&	stream,	Info&	info)

				{

	//	read	the	sound	file	header	and	fill	the	sound	attributes

	//	(channel	count,	sample	count	and	sample	rate)

	//	return	true	on	success

				}

	virtual	void	seek(sf::Uint64	sampleOffset)

				{

	//	advance	to	the	sampleOffset-th	sample	from	the	beginning	of	the	sound

				}

	virtual	sf::Uint64	read(sf::Int16*	samples,	sf::Uint64	maxCount)

				{

	//	read	up	to	'maxCount'	samples	into	the	'samples'	array,

	//	convert	them	(for	example	from	normalized	float)	if	they	are	not	stored

	//	as	16-bits	signed	integers	in	the	file

	//	return	the	actual	number	of	samples	read

				}

};

sf::SoundFileFactory::registerReader<MySoundFileReader>();

See	also
sf::InputSoundFile,	sf::SoundFileFactory,	sf::SoundFileWriter

Definition	at	line	43	of	file	SoundFileReader.hpp.

Constructor	&	Destructor	Documentation

virtual	sf::SoundFileReader::~SoundFileReader ()

Virtual	destructor.

Definition	at	line	62	of	file	SoundFileReader.hpp.

Member	Function	Documentation

virtual	bool	sf::SoundFileReader::open (InputStream	&	 stream,
Info	&	 info	

)

Open	a	sound	file	for	reading.

The	provided	stream	reference	is	valid	as	long	as	the	SoundFileReader	is	alive,	so	it	is	safe	to	use/store
it	during	the	whole	lifetime	of	the	reader.

Parameters
stream Source	stream	to	read	from
info Structure	to	fill	with	the	properties	of	the	loaded	sound

Returns
True	if	the	file	was	successfully	opened

virtual	Uint64	sf::SoundFileReader::read (Int16	*	 samples,
Uint64	 maxCount	
)

Read	audio	samples	from	the	open	file.

Parameters
samples Pointer	to	the	sample	array	to	fill
maxCountMaximum	number	of	samples	to	read

Returns
Number	of	samples	actually	read	(may	be	less	than	maxCount)

virtual	void	sf::SoundFileReader::seek (Uint64	 sampleOffset)

Change	the	current	read	position	to	the	given	sample	offset.

The	sample	offset	 takes	 the	channels	 into	account.	Offsets	 can	be	calculated	 like	 this:	
sampleRate	*	channelCount	If	the	given	offset	exceeds	to	total	number	of	samples,	this	function	must	jump
to	the	end	of	the	file.

Parameters
sampleOffset Index	of	the	sample	to	jump	to,	relative	to	the	beginning

The	documentation	for	this	class	was	generated	from	the	following	file:
SoundFileReader.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Attributes	|	List	of	all	members

sf::SoundFileReader::Info	Struct	Reference

Structure	holding	the	audio	properties	of	a	sound	file.	More...

#include	<SoundFileReader.hpp>

Public	Attributes
Uint64	 sampleCount

	 Total	number	of	samples	in	the	file.	More...
	
unsigned	int	 channelCount
	 Number	of	channels	of	the	sound.	More...
	
unsigned	int	 sampleRate
	 Samples	rate	of	the	sound,	in	samples	per	second.	More...
	

Detailed	Description

Structure	holding	the	audio	properties	of	a	sound	file.

Definition	at	line	51	of	file	SoundFileReader.hpp.

Member	Data	Documentation

unsigned	int	sf::SoundFileReader::Info::channelCount

Number	of	channels	of	the	sound.

Definition	at	line	54	of	file	SoundFileReader.hpp.

Uint64	sf::SoundFileReader::Info::sampleCount

Total	number	of	samples	in	the	file.

Definition	at	line	53	of	file	SoundFileReader.hpp.

unsigned	int	sf::SoundFileReader::Info::sampleRate

Samples	rate	of	the	sound,	in	samples	per	second.

Definition	at	line	55	of	file	SoundFileReader.hpp.

The	documentation	for	this	struct	was	generated	from	the	following	file:
SoundFileReader.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Member	Functions	|	List	of	all	members

sf::SoundFileWriter	Class	Reference abstract

Audio	module

Abstract	base	class	for	sound	file	encoding.	More...

#include	<SoundFileWriter.hpp>

Public	Member	Functions
virtual	 ~SoundFileWriter	()

	 Virtual	destructor.	More...
	
virtual	bool	 open	(const	std::string	&filename,	unsigned	int	sampleRate,	unsigned	int	channelCount)=0
	 Open	a	sound	file	for	writing.	More...
	
virtual	void	 write	(const	Int16	*samples,	Uint64	count)=0
	 Write	audio	samples	to	the	open	file.	More...
	

Detailed	Description

Abstract	base	class	for	sound	file	encoding.

This	class	allows	users	to	write	audio	file	formats	not	natively	supported	by	SFML,	and	thus	extend	the	set
of	supported	writable	audio	formats.

A	 valid	 sound	 file	writer	must	 override	 the	open	and	write	 functions,	 as	well	 as	 providing	a	 static	 check
function;	the	latter	is	used	by	SFML	to	find	a	suitable	writer	for	a	given	filename.

To	register	a	new	writer,	use	the	sf::SoundFileFactory::registerWriter	template	function.

Usage	example:

class	MySoundFileWriter	:	public	sf::SoundFileWriter

{

public:

	static	bool	check(const	std::string&	filename)

				{

	//	typically,	check	the	extension

	//	return	true	if	the	writer	can	handle	the	format

				}

	virtual	bool	open(const	std::string&	filename,	unsigned	int	sampleRate,	

				{

	//	open	the	file	'filename'	for	writing,

	//	write	the	given	sample	rate	and	channel	count	to	the	file	header

	//	return	true	on	success

				}

	virtual	void	write(const	sf::Int16*	samples,	sf::Uint64	count)

				{

	//	write	'count'	samples	stored	at	address	'samples',

	//	convert	them	(for	example	to	normalized	float)	if	the	format	requires	it

				}

};

sf::SoundFileFactory::registerWriter<MySoundFileWriter>();

See	also
sf::OutputSoundFile,	sf::SoundFileFactory,	sf::SoundFileReader

Definition	at	line	41	of	file	SoundFileWriter.hpp.

Constructor	&	Destructor	Documentation

virtual	sf::SoundFileWriter::~SoundFileWriter ()

Virtual	destructor.

Definition	at	line	49	of	file	SoundFileWriter.hpp.

Member	Function	Documentation

virtual	bool	sf::SoundFileWriter::open (const	std::string	&	 filename
unsigned	int	 sampleRate
unsigned	int	 channelCount
)

Open	a	sound	file	for	writing.

Parameters
filename Path	of	the	file	to	open
sampleRate Sample	rate	of	the	sound
channelCount Number	of	channels	of	the	sound

Returns
True	if	the	file	was	successfully	opened

virtual	void	sf::SoundFileWriter::write (const	Int16	*	 samples,
Uint64	 count	
)

Write	audio	samples	to	the	open	file.

Parameters
samples Pointer	to	the	sample	array	to	write
count Number	of	samples	to	write

The	documentation	for	this	class	was	generated	from	the	following	file:
SoundFileWriter.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Member	Functions	|	Static	Public	Member	Functions	|	Protected	Member	Functions	|	List	of	all	members

sf::SoundRecorder	Class	Reference abstract

Audio	module

Abstract	base	class	for	capturing	sound	data.	More...

#include	<SoundRecorder.hpp>

Inheritance	diagram	for	sf::SoundRecorder:

Public	Member	Functions
virtual	 ~SoundRecorder	()

	 destructor	More...
	

bool	 start	(unsigned	int	sampleRate=44100)
	 Start	the	capture.	More...
	

void	 stop	()
	 Stop	the	capture.	More...
	

unsigned	int	 getSampleRate	()	const
	 Get	the	sample	rate.	More...
	

bool	 setDevice	(const	std::string	&name)
	 Set	the	audio	capture	device.	More...
	
const	std::string	&	 getDevice	()	const
	 Get	the	name	of	the	current	audio	capture	device.	More...
	

void	 setChannelCount	(unsigned	int	channelCount)
	 Set	the	channel	count	of	the	audio	capture	device.	More...
	

unsigned	int	 getChannelCount	()	const
	 Get	the	number	of	channels	used	by	this	recorder.	More...
	

Static	Public	Member	Functions
static	std::vector<	std::string	>	 getAvailableDevices	()
	 Get	a	list	of	the	names	of	all	available	audio	capture	devices.	
	

static	std::string	 getDefaultDevice	()
	 Get	the	name	of	the	default	audio	capture	device.	
	

static	bool	 isAvailable	()
	 Check	if	the	system	supports	audio	capture.	
	

Protected	Member	Functions
	 SoundRecorder	()

	 Default	constructor.	More...
	

void	 setProcessingInterval	(Time	interval)
	 Set	the	processing	interval.	More...
	
virtual	bool	 onStart	()
	 Start	capturing	audio	data.	More...
	
virtual	bool	 onProcessSamples	(const	Int16	*samples,	std::size_t	sampleCount)=0
	 Process	a	new	chunk	of	recorded	samples.	More...
	
virtual	void	 onStop	()
	 Stop	capturing	audio	data.	More...
	

Detailed	Description

Abstract	base	class	for	capturing	sound	data.

sf::SoundBuffer	provides	a	simple	interface	to	access	the	audio	recording	capabilities	of	the	computer	(the
microphone).

As	 an	 abstract	 base	 class,	 it	 only	 cares	 about	 capturing	 sound	 samples,	 the	 task	 of	making	 something
useful	with	them	is	left	to	the	derived	class.	Note	that	SFML	provides	a	built-in	specialization	for	saving	the
captured	data	to	a	sound	buffer	(see	sf::SoundBufferRecorder).

A	derived	class	has	only	one	virtual	function	to	override:

onProcessSamples	provides	the	new	chunks	of	audio	samples	while	the	capture	happens

Moreover,	two	additional	virtual	functions	can	be	overridden	as	well	if	necessary:

onStart	is	called	before	the	capture	happens,	to	perform	custom	initializations

onStop	is	called	after	the	capture	ends,	to	perform	custom	cleanup

A	 derived	 class	 can	 also	 control	 the	 frequency	 of	 the	 onProcessSamples	 calls,	 with	 the
setProcessingInterval	 protected	 function.	 The	 default	 interval	 is	 chosen	 so	 that	 recording	 thread	 doesn't
consume	too	much	CPU,	but	it	can	be	changed	to	a	smaller	value	if	you	need	to	process	the	recorded	data
in	real	time,	for	example.

The	audio	capture	feature	may	not	be	supported	or	activated	on	every	platform,	thus	it	is	recommended	to
check	 its	 availability	with	 the	 isAvailable()	 function.	 If	 it	 returns	 false,	 then	 any	 attempt	 to	 use	 an	 audio
recorder	will	fail.

If	you	have	multiple	sound	 input	devices	connected	to	your	computer	(for	example:	microphone,	external
soundcard,	webcam	mic,	 ...)	you	can	get	a	 list	of	all	available	devices	 through	 the	

function.	You	can	 then	select	a	device	by	calling	 setDevice()	with	 the	appropriate	device.	Otherwise	 the
default	capturing	device	will	be	used.

By	default	the	recording	is	in	16-bit	mono.	Using	the	setChannelCount	method	you	can	change	the	number
of	channels	used	by	the	audio	capture	device	to	record.	Note	that	you	have	to	decide	whether	you	want	to
record	in	mono	or	stereo	before	starting	the	recording.

It	is	important	to	note	that	the	audio	capture	happens	in	a	separate	thread,	so	that	it	doesn't	block	the	rest
of	the	program.	In	particular,	the	onProcessSamples	virtual	function	(but	not	onStart	and	not	onStop)	will	be
called	from	this	separate	thread.	It	is	important	to	keep	this	in	mind,	because	you	may	have	to	take	care	of
synchronization	issues	if	you	share	data	between	threads.	Another	thing	to	bear	in	mind	is	that	you	must
call	stop()	in	the	destructor	of	your	derived	class,	so	that	the	recording	thread	finishes	before	your	object	is
destroyed.

Usage	example:

class	CustomRecorder	:	public	sf::SoundRecorder

{

				~CustomRecorder()

				{

	//	Make	sure	to	stop	the	recording	thread

	stop();

				}

	virtual	bool	onStart()	//	optional

				{

	//	Initialize	whatever	has	to	be	done	before	the	capture	starts

								...

	//	Return	true	to	start	playing

	return	true;

				}

	virtual	bool	onProcessSamples(const	Int16*	samples,	std::size_t	sampleCount)

				{

	//	Do	something	with	the	new	chunk	of	samples	(store	them,	send	them,	...)

								...

	//	Return	true	to	continue	playing

	return	true;

				}

	virtual	void	onStop()	//	optional

				{

	//	Clean	up	whatever	has	to	be	done	after	the	capture	ends

								...

				}

}

//	Usage

if	(CustomRecorder::isAvailable())

{

				CustomRecorder	recorder;

	if	(!recorder.start())

	return	-1;

				...

				recorder.stop();

}

See	also
sf::SoundBufferRecorder

Definition	at	line	45	of	file	SoundRecorder.hpp.

Constructor	&	Destructor	Documentation

virtual	sf::SoundRecorder::~SoundRecorder ()

destructor

sf::SoundRecorder::SoundRecorder ()

Default	constructor.

This	constructor	is	only	meant	to	be	called	by	derived	classes.

Member	Function	Documentation

static	std::vector<std::string>	sf::SoundRecorder::getAvailableDevices

Get	a	list	of	the	names	of	all	available	audio	capture	devices.

This	function	returns	a	vector	of	strings,	containing	the	names	of	all	available	audio	capture	devices.

Returns
A	vector	of	strings	containing	the	names

unsigned	int	sf::SoundRecorder::getChannelCount () const

Get	the	number	of	channels	used	by	this	recorder.

Currently	only	mono	and	stereo	are	supported,	so	the	value	is	either	1	(for	mono)	or	2	(for	stereo).

Returns
Number	of	channels

See	also
setChannelCount

static	std::string	sf::SoundRecorder::getDefaultDevice ()

Get	the	name	of	the	default	audio	capture	device.

This	function	returns	the	name	of	the	default	audio	capture	device.	If	none	is	available,	an	empty	string	is
returned.

Returns
The	name	of	the	default	audio	capture	device

const	std::string&	sf::SoundRecorder::getDevice () const

Get	the	name	of	the	current	audio	capture	device.

Returns
The	name	of	the	current	audio	capture	device

unsigned	int	sf::SoundRecorder::getSampleRate () const

Get	the	sample	rate.

The	sample	rate	defines	the	number	of	audio	samples	captured	per	second.	The	higher,	the	better	the
quality	(for	example,	44100	samples/sec	is	CD	quality).

Returns
Sample	rate,	in	samples	per	second

static	bool	sf::SoundRecorder::isAvailable ()

Check	if	the	system	supports	audio	capture.

This	function	should	always	be	called	before	using	the	audio	capture	features.	If	it	returns	false,	then	any
attempt	to	use	sf::SoundRecorder	or	one	of	its	derived	classes	will	fail.

Returns
True	if	audio	capture	is	supported,	false	otherwise

virtual	bool	sf::SoundRecorder::onProcessSamples (const	Int16	*	 samples
std::size_t	 sampleCount
)

Process	a	new	chunk	of	recorded	samples.

This	virtual	function	is	called	every	time	a	new	chunk	of	recorded	data	is	available.	The	derived	class	can
then	do	whatever	it	wants	with	it	(storing	it,	playing	it,	sending	it	over	the	network,	etc.).

Parameters
samples Pointer	to	the	new	chunk	of	recorded	samples
sampleCount Number	of	samples	pointed	by	samples

Returns
True	to	continue	the	capture,	or	false	to	stop	it

Implemented	in	sf::SoundBufferRecorder.

virtual	bool	sf::SoundRecorder::onStart ()

Start	capturing	audio	data.

This	virtual	function	may	be	overridden	by	a	derived	class	if	something	has	to	be	done	every	time	a	new
capture	starts.	If	not,	this	function	can	be	ignored;	the	default	implementation	does	nothing.

Returns
True	to	start	the	capture,	or	false	to	abort	it

Reimplemented	in	sf::SoundBufferRecorder.

virtual	void	sf::SoundRecorder::onStop ()

Stop	capturing	audio	data.

This	virtual	 function	may	be	overridden	by	a	derived	class	 if	something	has	 to	be	done	every	 time	the
capture	ends.	If	not,	this	function	can	be	ignored;	the	default	implementation	does	nothing.

Reimplemented	in	sf::SoundBufferRecorder.

void	sf::SoundRecorder::setChannelCount (unsigned	int	 channelCount

Set	the	channel	count	of	the	audio	capture	device.

This	method	allows	you	to	specify	the	number	of	channels	used	for	recording.	Currently	only	16-bit	mono
and	16-bit	stereo	are	supported.

Parameters
channelCount Number	of	channels.	Currently	only	mono	(1)	and	stereo	(2)	are	supported.

See	also
getChannelCount

bool	sf::SoundRecorder::setDevice (const	std::string	&	 name)

Set	the	audio	capture	device.

This	function	sets	the	audio	capture	device	to	the	device	with	the	given	

(i.e:	while	recording).	If	you	do	so	while	recording	and	opening	the	device	fails,	it	stops	the	recording.

Parameters
name The	name	of	the	audio	capture	device

Returns
True,	if	it	was	able	to	set	the	requested	device

See	also
getAvailableDevices,	getDefaultDevice

void	sf::SoundRecorder::setProcessingInterval (Time	 interval)

Set	the	processing	interval.

The	processing	 interval	controls	 the	period	between	calls	 to	 the	onProcessSamples	 function.	You	may
want	to	use	a	small	interval	if	you	want	to	process	the	recorded	data	in	real	time,	for	example.

Note:	this	is	only	a	hint,	the	actual	period	may	vary.	So	don't	rely	on	this	parameter	to	implement	precise
timing.

The	default	processing	interval	is	100	ms.

Parameters
interval Processing	interval

bool	sf::SoundRecorder::start (unsigned	int	 sampleRate	=	44100)

Start	the	capture.

The	sampleRate	parameter	defines	the	number	of	audio	samples	captured	per	second.	The	higher,	the

better	the	quality	(for	example,	44100	samples/sec	is	CD	quality).	This	function	uses	its	own	thread	so
that	it	doesn't	block	the	rest	of	the	program	while	the	capture	runs.	Please	note	that	only	one	capture	can
happen	at	the	same	time.	You	can	select	which	capture	device	will	be	used,	by	passing	the	name	to	the
setDevice()	method.	If	none	was	selected	before,	the	default	capture	device	will	be	used.	You	can	get	a
list	of	the	names	of	all	available	capture	devices	by	calling	getAvailableDevices()

Parameters
sampleRate Desired	capture	rate,	in	number	of	samples	per	second

Returns
True,	if	start	of	capture	was	successful

See	also
stop,	getAvailableDevices

void	sf::SoundRecorder::stop ()

Stop	the	capture.

See	also
start

The	documentation	for	this	class	was	generated	from	the	following	file:
SoundRecorder.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Types	|	Public	Member	Functions	|	Protected	Member	Functions	|	Protected	Attributes	|	List	of	all	members

sf::SoundSource	Class	Reference
Audio	module

Base	class	defining	a	sound's	properties.	More...

#include	<SoundSource.hpp>

Inheritance	diagram	for	sf::SoundSource:

Public	Types
enum		 Status	{	Stopped,	Paused,	Playing	}
	 Enumeration	of	the	sound	source	states.	More...
	

Public	Member	Functions
	 SoundSource	(const	SoundSource	©)

	 Copy	constructor.	More...
	

virtual	 ~SoundSource	()
	 Destructor.	More...
	

void	 setPitch	(float	pitch)
	 Set	the	pitch	of	the	sound.	More...
	

void	 setVolume	(float	volume)
	 Set	the	volume	of	the	sound.	More...
	

void	 setPosition	(float	x,	float	y,	float	z)
	 Set	the	3D	position	of	the	sound	in	the	audio	scene.	More...
	

void	 setPosition	(const	Vector3f	&position)
	 Set	the	3D	position	of	the	sound	in	the	audio	scene.	More...
	

void	 setRelativeToListener	(bool	relative)
	 Make	the	sound's	position	relative	to	the	listener	or	absolute.	
	

void	 setMinDistance	(float	distance)
	 Set	the	minimum	distance	of	the	sound.	More...
	

void	 setAttenuation	(float	attenuation)
	 Set	the	attenuation	factor	of	the	sound.	More...
	

float	 getPitch	()	const
	 Get	the	pitch	of	the	sound.	More...
	

float	 getVolume	()	const

	 Get	the	volume	of	the	sound.	More...
	

Vector3f	 getPosition	()	const
	 Get	the	3D	position	of	the	sound	in	the	audio	scene.	More...
	

bool	 isRelativeToListener	()	const
	 Tell	whether	the	sound's	position	is	relative	to	the	listener	or	is	absolute.	
	

float	 getMinDistance	()	const
	 Get	the	minimum	distance	of	the	sound.	More...
	

float	 getAttenuation	()	const
	 Get	the	attenuation	factor	of	the	sound.	More...
	
SoundSource	&	 operator=	(const	SoundSource	&right)
	 Overload	of	assignment	operator.	More...
	

Protected	Member	Functions
	 SoundSource	()

	 Default	constructor.	More...
	
Status	 getStatus	()	const
	 Get	the	current	status	of	the	sound	(stopped,	paused,	playing)	More...
	

Protected	Attributes
unsigned	int	 m_source
	 OpenAL	source	identifier.	More...
	

Detailed	Description

Base	class	defining	a	sound's	properties.

sf::SoundSource	is	not	meant	to	be	used	directly,	it	only	serves	as	a	common	base	for	all	audio	objects	that
can	live	in	the	audio	environment.

It	 defines	 several	 properties	 for	 the	 sound:	 pitch,	 volume,	 position,	 attenuation,	 etc.	 All	 of	 them	 can	 be
changed	at	any	time	with	no	impact	on	performances.

See	also
sf::Sound,	sf::SoundStream

Definition	at	line	42	of	file	SoundSource.hpp.

Member	Enumeration	Documentation

enum	sf::SoundSource::Status

Enumeration	of	the	sound	source	states.

Enumerator

Stopped	
Sound	is	not	playing.

Paused	
Sound	is	paused.

Playing	
Sound	is	playing.

Definition	at	line	50	of	file	SoundSource.hpp.

Constructor	&	Destructor	Documentation

sf::SoundSource::SoundSource (const	SoundSource	&	 copy)

Copy	constructor.

Parameters
copy Instance	to	copy

virtual	sf::SoundSource::~SoundSource ()

Destructor.

sf::SoundSource::SoundSource ()

Default	constructor.

This	constructor	is	meant	to	be	called	by	derived	classes	only.

Member	Function	Documentation

float	sf::SoundSource::getAttenuation () const

Get	the	attenuation	factor	of	the	sound.

Returns
Attenuation	factor	of	the	sound

See	also
setAttenuation,	getMinDistance

float	sf::SoundSource::getMinDistance () const

Get	the	minimum	distance	of	the	sound.

Returns
Minimum	distance	of	the	sound

See	also
setMinDistance,	getAttenuation

float	sf::SoundSource::getPitch () const

Get	the	pitch	of	the	sound.

Returns
Pitch	of	the	sound

See	also
setPitch

Vector3f	sf::SoundSource::getPosition () const

Get	the	3D	position	of	the	sound	in	the	audio	scene.

Returns
Position	of	the	sound

See	also
setPosition

Status	sf::SoundSource::getStatus () const

Get	the	current	status	of	the	sound	(stopped,	paused,	playing)

Returns
Current	status	of	the	sound

float	sf::SoundSource::getVolume () const

Get	the	volume	of	the	sound.

Returns
Volume	of	the	sound,	in	the	range	[0,	100]

See	also
setVolume

bool	sf::SoundSource::isRelativeToListener () const

Tell	whether	the	sound's	position	is	relative	to	the	listener	or	is	absolute.

Returns
True	if	the	position	is	relative,	false	if	it's	absolute

See	also
setRelativeToListener

SoundSource&	sf::SoundSource::operator= (const	SoundSource	&	

Overload	of	assignment	operator.

Parameters
right Instance	to	assign

Returns
Reference	to	self

void	sf::SoundSource::setAttenuation (float	 attenuation)

Set	the	attenuation	factor	of	the	sound.

The	 attenuation	 is	 a	 multiplicative	 factor	 which	 makes	 the	 sound	 more	 or	 less	 loud	 according	 to	 its
distance	from	the	 listener.	An	attenuation	of	0	will	produce	a	non-attenuated	sound,	 i.e.	 its	volume	will

always	be	the	same	whether	it	 is	heard	from	near	or	from	far.	On	the	other	hand,	an	attenuation	value
such	as	100	will	make	 the	sound	 fade	out	very	quickly	as	 it	gets	 further	 from	 the	 listener.	The	default
value	of	the	attenuation	is	1.

Parameters
attenuationNew	attenuation	factor	of	the	sound

See	also
getAttenuation,	setMinDistance

void	sf::SoundSource::setMinDistance (float	 distance)

Set	the	minimum	distance	of	the	sound.

The	"minimum	distance"	of	a	sound	is	the	maximum	distance	at	which	it	is	heard	at	its	maximum	volume.
Further	than	the	minimum	distance,	it	will	start	to	fade	out	according	to	its	attenuation	factor.	A	value	of	0
("inside	the	head	of	the	listener")	is	an	invalid	value	and	is	forbidden.	The	default	value	of	the	minimum
distance	is	1.

Parameters
distance New	minimum	distance	of	the	sound

See	also
getMinDistance,	setAttenuation

void	sf::SoundSource::setPitch (float	 pitch)

Set	the	pitch	of	the	sound.

The	pitch	represents	the	perceived	fundamental	frequency	of	a	sound;	thus	you	can	make	a	sound	more
acute	or	grave	by	changing	its	pitch.	A	side	effect	of	changing	the	pitch	is	to	modify	the	playing	speed	of

the	sound	as	well.	The	default	value	for	the	pitch	is	1.

Parameters
pitchNew	pitch	to	apply	to	the	sound

See	also
getPitch

void	sf::SoundSource::setPosition (float	 x,
float	 y,
float	 z	
)

Set	the	3D	position	of	the	sound	in	the	audio	scene.

Only	sounds	with	one	channel	(mono	sounds)	can	be	spatialized.	The	default	position	of	a	sound	is	(0,	0,
0).

Parameters
x X	coordinate	of	the	position	of	the	sound	in	the	scene
y Y	coordinate	of	the	position	of	the	sound	in	the	scene
z Z	coordinate	of	the	position	of	the	sound	in	the	scene

See	also
getPosition

void	sf::SoundSource::setPosition (const	Vector3f	&	 position)

Set	the	3D	position	of	the	sound	in	the	audio	scene.

Only	sounds	with	one	channel	(mono	sounds)	can	be	spatialized.	The	default	position	of	a	sound	is	(0,	0,

0).

Parameters
position Position	of	the	sound	in	the	scene

See	also
getPosition

void	sf::SoundSource::setRelativeToListener (bool	 relative)

Make	the	sound's	position	relative	to	the	listener	or	absolute.

Making	a	sound	relative	to	the	listener	will	ensure	that	it	will	always	be	played	the	same	way	regardless
of	the	position	of	the	listener.	This	can	be	useful	for	non-spatialized	sounds,	sounds	that	are	produced	by
the	listener,	or	sounds	attached	to	it.	The	default	value	is	false	(position	is	absolute).

Parameters
relative True	to	set	the	position	relative,	false	to	set	it	absolute

See	also
isRelativeToListener

void	sf::SoundSource::setVolume (float	 volume)

Set	the	volume	of	the	sound.

The	volume	is	a	value	between	0	(mute)	and	100	(full	volume).	The	default	value	for	the	volume	is	100.

Parameters
volume Volume	of	the	sound

See	also
getVolume

Member	Data	Documentation

unsigned	int	sf::SoundSource::m_source

OpenAL	source	identifier.

Definition	at	line	274	of	file	SoundSource.hpp.

The	documentation	for	this	class	was	generated	from	the	following	file:
SoundSource.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Classes	|	Public	Types	|	Public	Member	Functions	|	Protected	Member	Functions	|	Protected	Attributes	|	List	of	all	members

sf::SoundStream	Class	Reference abstract

Audio	module

Abstract	base	class	for	streamed	audio	sources.	More...

#include	<SoundStream.hpp>

Inheritance	diagram	for	sf::SoundStream:

Classes
struct		 Chunk
	 Structure	defining	a	chunk	of	audio	data	to	stream.	More...
	

Public	Types
enum		 Status	{	Stopped,	Paused,	Playing	}
	 Enumeration	of	the	sound	source	states.	More...
	

Public	Member	Functions
virtual	 ~SoundStream	()

	 Destructor.	More...
	

void	 play	()
	 Start	or	resume	playing	the	audio	stream.	More...
	

void	 pause	()
	 Pause	the	audio	stream.	More...
	

void	 stop	()
	 Stop	playing	the	audio	stream.	More...
	
unsigned	int	 getChannelCount	()	const
	 Return	the	number	of	channels	of	the	stream.	More...
	
unsigned	int	 getSampleRate	()	const
	 Get	the	stream	sample	rate	of	the	stream.	More...
	

Status	 getStatus	()	const
	 Get	the	current	status	of	the	stream	(stopped,	paused,	playing)	
	

void	 setPlayingOffset	(Time	timeOffset)
	 Change	the	current	playing	position	of	the	stream.	More...
	

Time	 getPlayingOffset	()	const
	 Get	the	current	playing	position	of	the	stream.	More...
	

void	 setLoop	(bool	loop)
	 Set	whether	or	not	the	stream	should	loop	after	reaching	the	end.	
	

bool	 getLoop	()	const

	 Tell	whether	or	not	the	stream	is	in	loop	mode.	More...
	

void	 setPitch	(float	pitch)
	 Set	the	pitch	of	the	sound.	More...
	

void	 setVolume	(float	volume)
	 Set	the	volume	of	the	sound.	More...
	

void	 setPosition	(float	x,	float	y,	float	z)
	 Set	the	3D	position	of	the	sound	in	the	audio	scene.	More...
	

void	 setPosition	(const	Vector3f	&position)
	 Set	the	3D	position	of	the	sound	in	the	audio	scene.	More...
	

void	 setRelativeToListener	(bool	relative)
	 Make	the	sound's	position	relative	to	the	listener	or	absolute.	
	

void	 setMinDistance	(float	distance)
	 Set	the	minimum	distance	of	the	sound.	More...
	

void	 setAttenuation	(float	attenuation)
	 Set	the	attenuation	factor	of	the	sound.	More...
	

float	 getPitch	()	const
	 Get	the	pitch	of	the	sound.	More...
	

float	 getVolume	()	const
	 Get	the	volume	of	the	sound.	More...
	

Vector3f	 getPosition	()	const
	 Get	the	3D	position	of	the	sound	in	the	audio	scene.	More...
	

bool	 isRelativeToListener	()	const
	 Tell	whether	the	sound's	position	is	relative	to	the	listener	or	is	absolute.	
	

float	 getMinDistance	()	const
	 Get	the	minimum	distance	of	the	sound.	More...
	

float	 getAttenuation	()	const
	 Get	the	attenuation	factor	of	the	sound.	More...
	

Protected	Member	Functions
	 SoundStream	()

	 Default	constructor.	More...
	

void	 initialize	(unsigned	int	channelCount,	unsigned	int	sampleRate)
	 Define	the	audio	stream	parameters.	More...
	
virtual	bool	 onGetData	(Chunk	&data)=0
	 Request	a	new	chunk	of	audio	samples	from	the	stream	source.	
	
virtual	void	 onSeek	(Time	timeOffset)=0
	 Change	the	current	playing	position	in	the	stream	source.	More...
	

Protected	Attributes
unsigned	int	 m_source
	 OpenAL	source	identifier.	More...
	

Detailed	Description

Abstract	base	class	for	streamed	audio	sources.

Unlike	audio	buffers	(see	sf::SoundBuffer),	audio	streams	are	never	completely	loaded	in	memory.

Instead,	the	audio	data	is	acquired	continuously	while	the	stream	is	playing.	This	behavior	allows	to	play	a
sound	with	no	loading	delay,	and	keeps	the	memory	consumption	very	low.

Sound	sources	 that	need	 to	be	streamed	are	usually	big	 files	 (compressed	audio	musics	 that	would	eat
hundreds	of	MB	in	memory)	or	 files	 that	would	 take	a	 lot	of	 time	to	be	received	(sounds	played	over	 the
network).

sf::SoundStream	 is	 a	 base	 class	 that	 doesn't	 care	 about	 the	 stream	source,	which	 is	 left	 to	 the	derived
class.	 SFML	 provides	 a	 built-in	 specialization	 for	 big	 files	 (see	 sf::Music
provided,	but	you	can	write	your	own	by	combining	this	class	with	the	network	module.

A	derived	class	has	to	override	two	virtual	functions:

onGetData	fills	a	new	chunk	of	audio	data	to	be	played

onSeek	changes	the	current	playing	position	in	the	source

It	is	important	to	note	that	each	SoundStream	is	played	in	its	own	separate	thread,	so	that	the	streaming
loop	doesn't	block	the	rest	of	the	program.	In	particular,	the	OnGetData	and	OnSeek	virtual	functions	may
sometimes	be	called	from	this	separate	thread.	It	is	important	to	keep	this	in	mind,	because	you	may	have
to	take	care	of	synchronization	issues	if	you	share	data	between	threads.

Usage	example:

class	CustomStream	:	public	sf::SoundStream

{

public:

	bool	open(const	std::string&	location)

				{

	//	Open	the	source	and	get	audio	settings

								...

	unsigned	int	channelCount	=	...;

	unsigned	int	sampleRate	=	...;

	//	Initialize	the	stream	--	important!

	initialize(channelCount,	sampleRate);

				}

private:

	virtual	bool	onGetData(Chunk&	data)

				{

	//	Fill	the	chunk	with	audio	data	from	the	stream	source

	//	(note:	must	not	be	empty	if	you	want	to	continue	playing)

								data.samples	=	...;

								data.sampleCount	=	...;

	//	Return	true	to	continue	playing

	return	true;

				}

	virtual	void	onSeek(Uint32	timeOffset)

				{

	//	Change	the	current	position	in	the	stream	source

								...

				}

}

//	Usage

CustomStream	stream;

stream.open("path/to/stream");

stream.play();

See	also
sf::Music

Definition	at	line	45	of	file	SoundStream.hpp.

Member	Enumeration	Documentation

enum	sf::SoundSource::Status

Enumeration	of	the	sound	source	states.

Enumerator

Stopped	
Sound	is	not	playing.

Paused	
Sound	is	paused.

Playing	
Sound	is	playing.

Definition	at	line	50	of	file	SoundSource.hpp.

Constructor	&	Destructor	Documentation

virtual	sf::SoundStream::~SoundStream ()

Destructor.

sf::SoundStream::SoundStream ()

Default	constructor.

This	constructor	is	only	meant	to	be	called	by	derived	classes.

Member	Function	Documentation

float	sf::SoundSource::getAttenuation () const

Get	the	attenuation	factor	of	the	sound.

Returns
Attenuation	factor	of	the	sound

See	also
setAttenuation,	getMinDistance

unsigned	int	sf::SoundStream::getChannelCount () const

Return	the	number	of	channels	of	the	stream.

1	channel	means	a	mono	sound,	2	means	stereo,	etc.

Returns
Number	of	channels

bool	sf::SoundStream::getLoop () const

Tell	whether	or	not	the	stream	is	in	loop	mode.

Returns

True	if	the	stream	is	looping,	false	otherwise

See	also
setLoop

float	sf::SoundSource::getMinDistance () const

Get	the	minimum	distance	of	the	sound.

Returns
Minimum	distance	of	the	sound

See	also
setMinDistance,	getAttenuation

float	sf::SoundSource::getPitch () const

Get	the	pitch	of	the	sound.

Returns
Pitch	of	the	sound

See	also
setPitch

Time	sf::SoundStream::getPlayingOffset () const

Get	the	current	playing	position	of	the	stream.

Returns

Current	playing	position,	from	the	beginning	of	the	stream

See	also
setPlayingOffset

Vector3f	sf::SoundSource::getPosition () const

Get	the	3D	position	of	the	sound	in	the	audio	scene.

Returns
Position	of	the	sound

See	also
setPosition

unsigned	int	sf::SoundStream::getSampleRate () const

Get	the	stream	sample	rate	of	the	stream.

The	sample	rate	is	the	number	of	audio	samples	played	per	second.	The	higher,	the	better	the	quality.

Returns
Sample	rate,	in	number	of	samples	per	second

Status	sf::SoundStream::getStatus () const

Get	the	current	status	of	the	stream	(stopped,	paused,	playing)

Returns
Current	status

float	sf::SoundSource::getVolume () const

Get	the	volume	of	the	sound.

Returns
Volume	of	the	sound,	in	the	range	[0,	100]

See	also
setVolume

void	sf::SoundStream::initialize (unsigned	int	 channelCount,
unsigned	int	 sampleRate	
)

Define	the	audio	stream	parameters.

This	function	must	be	called	by	derived	classes	as	soon	as	they	know	the	audio	settings	of	the	stream	to
play.	Any	attempt	to	manipulate	the	stream	(play(),	...)	before	calling	this	function	will	fail.	It	can	be	called
multiple	times	if	the	settings	of	the	audio	stream	change,	but	only	when	the	stream	is	stopped.

Parameters
channelCount Number	of	channels	of	the	stream
sampleRate Sample	rate,	in	samples	per	second

bool	sf::SoundSource::isRelativeToListener () const

Tell	whether	the	sound's	position	is	relative	to	the	listener	or	is	absolute.

Returns
True	if	the	position	is	relative,	false	if	it's	absolute

See	also
setRelativeToListener

virtual	bool	sf::SoundStream::onGetData (Chunk	&	 data)

Request	a	new	chunk	of	audio	samples	from	the	stream	source.

This	 function	must	be	overridden	by	derived	classes	 to	provide	 the	audio	samples	 to	play.	 It	 is	 called
continuously	by	the	streaming	loop,	in	a	separate	thread.	The	source	can	choose	to	stop	the	streaming
loop	at	any	time,	by	returning	false	to	the	caller.	If	you	return	true	(i.e.	continue	streaming)	it	is	important
that	the	returned	array	of	samples	is	not	empty;	this	would	stop	the	stream	due	to	an	internal	limitation.

Parameters
data Chunk	of	data	to	fill

Returns
True	to	continue	playback,	false	to	stop

Implemented	in	sf::Music.

virtual	void	sf::SoundStream::onSeek (Time	 timeOffset)

Change	the	current	playing	position	in	the	stream	source.

This	function	must	be	overridden	by	derived	classes	to	allow	random	seeking	into	the	stream	source.

Parameters
timeOffsetNew	playing	position,	relative	to	the	beginning	of	the	stream

Implemented	in	sf::Music.

void	sf::SoundStream::pause ()

Pause	the	audio	stream.

This	function	pauses	the	stream	if	it	was	playing,	otherwise	(stream	already	paused	or	stopped)	it	has	no
effect.

See	also
play,	stop

void	sf::SoundStream::play ()

Start	or	resume	playing	the	audio	stream.

This	 function	 starts	 the	 stream	 if	 it	was	 stopped,	 resumes	 it	 if	 it	was	paused,	 and	 restarts	 it	 from	 the
beginning	if	 it	was	already	playing.	This	function	uses	its	own	thread	so	that	it	doesn't	block	the	rest	of
the	program	while	the	stream	is	played.

See	also
pause,	stop

void	sf::SoundSource::setAttenuation (float	 attenuation)

Set	the	attenuation	factor	of	the	sound.

The	 attenuation	 is	 a	 multiplicative	 factor	 which	 makes	 the	 sound	 more	 or	 less	 loud	 according	 to	 its
distance	from	the	 listener.	An	attenuation	of	0	will	produce	a	non-attenuated	sound,	 i.e.	 its	volume	will

always	be	the	same	whether	it	 is	heard	from	near	or	from	far.	On	the	other	hand,	an	attenuation	value
such	as	100	will	make	 the	sound	 fade	out	very	quickly	as	 it	gets	 further	 from	 the	 listener.	The	default
value	of	the	attenuation	is	1.

Parameters
attenuationNew	attenuation	factor	of	the	sound

See	also
getAttenuation,	setMinDistance

void	sf::SoundStream::setLoop (bool	 loop)

Set	whether	or	not	the	stream	should	loop	after	reaching	the	end.

If	 set,	 the	 stream	 will	 restart	 from	 beginning	 after	 reaching	 the	 end	 and	 so	 on,	 until	 it	 is	 stopped	 or
setLoop(false)	is	called.	The	default	looping	state	for	streams	is	false.

Parameters
loop True	to	play	in	loop,	false	to	play	once

See	also
getLoop

void	sf::SoundSource::setMinDistance (float	 distance)

Set	the	minimum	distance	of	the	sound.

The	"minimum	distance"	of	a	sound	is	the	maximum	distance	at	which	it	is	heard	at	its	maximum	volume.
Further	than	the	minimum	distance,	it	will	start	to	fade	out	according	to	its	attenuation	factor.	A	value	of	0
("inside	the	head	of	the	listener")	is	an	invalid	value	and	is	forbidden.	The	default	value	of	the	minimum
distance	is	1.

Parameters
distance New	minimum	distance	of	the	sound

See	also
getMinDistance,	setAttenuation

void	sf::SoundSource::setPitch (float	 pitch)

Set	the	pitch	of	the	sound.

The	pitch	represents	the	perceived	fundamental	frequency	of	a	sound;	thus	you	can	make	a	sound	more
acute	or	grave	by	changing	its	pitch.	A	side	effect	of	changing	the	pitch	is	to	modify	the	playing	speed	of
the	sound	as	well.	The	default	value	for	the	pitch	is	1.

Parameters
pitchNew	pitch	to	apply	to	the	sound

See	also
getPitch

void	sf::SoundStream::setPlayingOffset (Time	 timeOffset)

Change	the	current	playing	position	of	the	stream.

The	playing	position	can	be	changed	when	the	stream	is	either	paused	or	playing.	Changing	the	playing
position	when	the	stream	is	stopped	has	no	effect,	since	playing	the	stream	would	reset	its	position.

Parameters
timeOffsetNew	playing	position,	from	the	beginning	of	the	stream

See	also
getPlayingOffset

void	sf::SoundSource::setPosition (float	 x,
float	 y,
float	 z	
)

Set	the	3D	position	of	the	sound	in	the	audio	scene.

Only	sounds	with	one	channel	(mono	sounds)	can	be	spatialized.	The	default	position	of	a	sound	is	(0,	0,
0).

Parameters
x X	coordinate	of	the	position	of	the	sound	in	the	scene
y Y	coordinate	of	the	position	of	the	sound	in	the	scene
z Z	coordinate	of	the	position	of	the	sound	in	the	scene

See	also
getPosition

void	sf::SoundSource::setPosition (const	Vector3f	&	 position)

Set	the	3D	position	of	the	sound	in	the	audio	scene.

Only	sounds	with	one	channel	(mono	sounds)	can	be	spatialized.	The	default	position	of	a	sound	is	(0,	0,
0).

Parameters
position Position	of	the	sound	in	the	scene

See	also
getPosition

void	sf::SoundSource::setRelativeToListener (bool	 relative)

Make	the	sound's	position	relative	to	the	listener	or	absolute.

Making	a	sound	relative	to	the	listener	will	ensure	that	it	will	always	be	played	the	same	way	regardless
of	the	position	of	the	listener.	This	can	be	useful	for	non-spatialized	sounds,	sounds	that	are	produced	by
the	listener,	or	sounds	attached	to	it.	The	default	value	is	false	(position	is	absolute).

Parameters
relative True	to	set	the	position	relative,	false	to	set	it	absolute

See	also
isRelativeToListener

void	sf::SoundSource::setVolume (float	 volume)

Set	the	volume	of	the	sound.

The	volume	is	a	value	between	0	(mute)	and	100	(full	volume).	The	default	value	for	the	volume	is	100.

Parameters
volume Volume	of	the	sound

See	also
getVolume

void	sf::SoundStream::stop ()

Stop	playing	the	audio	stream.

This	function	stops	the	stream	if	it	was	playing	or	paused,	and	does	nothing	if	it	was	already	stopped.	It
also	resets	the	playing	position	(unlike	pause()).

See	also
play,	pause

Member	Data	Documentation

unsigned	int	sf::SoundSource::m_source

OpenAL	source	identifier.

Definition	at	line	274	of	file	SoundSource.hpp.

The	documentation	for	this	class	was	generated	from	the	following	file:
SoundStream.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Attributes	|	List	of	all	members

sf::SoundStream::Chunk	Struct	Reference

Structure	defining	a	chunk	of	audio	data	to	stream.	More...

#include	<SoundStream.hpp>

Public	Attributes
const	Int16	*	 samples
	 Pointer	to	the	audio	samples.	More...
	

std::size_t	 sampleCount
	 Number	of	samples	pointed	by	Samples.	More...
	

Detailed	Description

Structure	defining	a	chunk	of	audio	data	to	stream.

Definition	at	line	53	of	file	SoundStream.hpp.

Member	Data	Documentation

std::size_t	sf::SoundStream::Chunk::sampleCount

Number	of	samples	pointed	by	Samples.

Definition	at	line	56	of	file	SoundStream.hpp.

const	Int16*	sf::SoundStream::Chunk::samples

Pointer	to	the	audio	samples.

Definition	at	line	55	of	file	SoundStream.hpp.

The	documentation	for	this	struct	was	generated	from	the	following	file:
SoundStream.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

SFML	2.4.2

Namespaces	|	Classes	|	Enumerations

Graphics	module

2D	graphics	module:	sprites,	text,	shapes,	...	More...

Namespaces
	 sf::Glsl
	 Namespace	with	GLSL	types.	
	

Classes
class		 sf::BlendMode
	 Blending	modes	for	drawing.	More...
	
class		 sf::CircleShape
	 Specialized	shape	representing	a	circle.	More...
	
class		 sf::Color
	 Utility	class	for	manipulating	RGBA	colors.	More...
	
class		 sf::ConvexShape
	 Specialized	shape	representing	a	convex	polygon.	More...
	
class		 sf::Drawable
	 Abstract	base	class	for	objects	that	can	be	drawn	to	a	render	target.	
	
class		 sf::Font
	 Class	for	loading	and	manipulating	character	fonts.	More...
	
class		 sf::Glyph
	 Structure	describing	a	glyph.	More...
	
class		 sf::Image
	 Class	for	loading,	manipulating	and	saving	images.	More...
	
class		 sf::Rect<	T	>
	 Utility	class	for	manipulating	2D	axis	aligned	rectangles.	More...
	
class		 sf::RectangleShape
	 Specialized	shape	representing	a	rectangle.	More...
	
class		 sf::RenderStates

	 Define	the	states	used	for	drawing	to	a	RenderTarget.	More...
	
class		 sf::RenderTarget
	 Base	class	for	all	render	targets	(window,	texture,	...)	More...
	
class		 sf::RenderTexture
	 Target	for	off-screen	2D	rendering	into	a	texture.	More...
	
class		 sf::RenderWindow
	 Window	that	can	serve	as	a	target	for	2D	drawing.	More...
	
class		 sf::Shader
	 Shader	class	(vertex,	geometry	and	fragment)	More...
	
class		 sf::Shape
	 Base	class	for	textured	shapes	with	outline.	More...
	
class		 sf::Sprite
	 Drawable	representation	of	a	texture,	with	its	own	transformations,	color,	etc.	
	
class		 sf::Text
	 Graphical	text	that	can	be	drawn	to	a	render	target.	More...
	
class		 sf::Texture
	 Image	living	on	the	graphics	card	that	can	be	used	for	drawing.	More...
	
class		 sf::Transform
	 Define	a	3x3	transform	matrix.	More...
	
class		 sf::Transformable
	 Decomposed	transform	defined	by	a	position,	a	rotation	and	a	scale.	
	
class		 sf::Vertex
	 Define	a	point	with	color	and	texture	coordinates.	More...
	

class		 sf::VertexArray
	 Define	a	set	of	one	or	more	2D	primitives.	More...
	
class		 sf::View
	 2D	camera	that	defines	what	region	is	shown	on	screen	More...
	

Enumerations

enum		

sf::PrimitiveType	{	
		sf::Points,	sf::Lines,	sf::LineStrip,	sf::Triangles,	
		sf::TriangleStrip,	sf::TriangleFan,	sf::Quads,	sf::LinesStrip	=	LineStrip,	
		sf::TrianglesStrip	=	TriangleStrip,	sf::TrianglesFan	=	TriangleFan	
}

	 Types	of	primitives	that	a	sf::VertexArray	can	render.	More...
	

Detailed	Description

2D	graphics	module:	sprites,	text,	shapes,	...

Enumeration	Type	Documentation

enum	sf::PrimitiveType

Types	of	primitives	that	a	sf::VertexArray	can	render.

Points	and	 lines	have	no	area,	 therefore	 their	 thickness	will	 always	be	1	pixel,	 regardless	 the	 current
transform	and	view.

Enumerator

Points	
List	of	individual	points.

Lines	
List	of	individual	lines.

LineStrip	
List	of	connected	lines,	a	point	uses	the	previous	point	to	form	a	line.

Triangles	
List	of	individual	triangles.

TriangleStrip	
List	of	connected	triangles,	a	point	uses	the	two	previous	points	to	form	a	triangle.

TriangleFan	
List	of	connected	triangles,	a	point	uses	the	common	center	and	the	previous	point	to
form	a	triangle.

Quads	
List	of	individual	quads	(deprecated,	don't	work	with	OpenGL	ES)

LinesStrip	 Deprecated:
Use	LineStrip	instead

TrianglesStrip	
Deprecated:

Use	TriangleStrip	instead

TrianglesFan	
Deprecated:

Use	TriangleFan	instead

Definition	at	line	39	of	file	PrimitiveType.hpp.

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Namespace	List Namespace	Members

SFML	2.4.2

Typedefs

sf::Glsl	Namespace	Reference
Graphics	module

Namespace	with	GLSL	types.	More...

Typedefs
typedef	Vector2<	float	>	 Vec2

	 2D	float	vector	(vec2	in	GLSL)	More...
	

typedef	Vector2<	int	>	 Ivec2
	 2D	int	vector	(ivec2	in	GLSL)	More...
	

typedef	Vector2<	bool	>	 Bvec2
	 2D	bool	vector	(bvec2	in	GLSL)	More...
	

typedef	Vector3<	float	>	 Vec3
	 3D	float	vector	(vec3	in	GLSL)	More...
	

typedef	Vector3<	int	>	 Ivec3
	 3D	int	vector	(ivec3	in	GLSL)	More...
	

typedef	Vector3<	bool	>	 Bvec3
	 3D	bool	vector	(bvec3	in	GLSL)	More...
	
typedef	implementation	defined	 Vec4
	 4D	float	vector	(vec4	in	GLSL)	More...
	
typedef	implementation	defined	 Ivec4
	 4D	int	vector	(ivec4	in	GLSL)	More...
	
typedef	implementation	defined	 Bvec4
	 4D	bool	vector	(bvec4	in	GLSL)	More...
	
typedef	implementation	defined	 Mat3
	 3x3	float	matrix	(mat3	in	GLSL)	More...
	
typedef	implementation	defined	 Mat4

	 4x4	float	matrix	(mat4	in	GLSL)	More...
	

Detailed	Description

Namespace	with	GLSL	types.

The	 sf::Glsl	 namespace	 contains	 types	 that	 match	 their	 equivalents	 in	 GLSL,	 the	 OpenGL	 shading
language.	These	types	are	exclusively	used	by	the	sf::Shader	class.

Types	that	already	exist	in	SFML,	such	as	sf::Vector2<T>	and	sf::Vector3<T>,	are	reused	as	typedefs,	so
you	can	use	the	types	in	this	namespace	as	well	as	the	original	ones.	Others	are	newly	defined,	such	as
Glsl::Vec4	or	Glsl::Mat3.	Their	actual	type	is	an	implementation	detail	and	should	not	be	used.

All	 vector	 types	 support	 a	 default	 constructor	 that	 initializes	 every	 component	 to	 zero,	 in	 addition	 to	 a
constructor	 with	 one	 parameter	 for	 each	 component.	 The	 components	 are	 stored	 in	 member	 variables
called	x,	y,	z,	and	w.

All	matrix	types	support	a	constructor	with	a	float*	parameter	that	points	to	a	float	array	of	the	appropriate
size	(that	is,	9	in	a	3x3	matrix,	16	in	a	4x4	matrix).	Furthermore,	they	can	be	converted	from	
objects.

See	also
sf::Shader

Typedef	Documentation

typedef	Vector2<bool>	sf::Glsl::Bvec2

2D	bool	vector	(bvec2	in	GLSL)

Definition	at	line	76	of	file	Glsl.hpp.

typedef	Vector3<bool>	sf::Glsl::Bvec3

3D	bool	vector	(bvec3	in	GLSL)

Definition	at	line	94	of	file	Glsl.hpp.

typedef	implementation	defined	sf::Glsl::Bvec4

4D	bool	vector	(bvec4	in	GLSL)

Definition	at	line	130	of	file	Glsl.hpp.

typedef	Vector2<int>	sf::Glsl::Ivec2

2D	int	vector	(ivec2	in	GLSL)

Definition	at	line	70	of	file	Glsl.hpp.

typedef	Vector3<int>	sf::Glsl::Ivec3

3D	int	vector	(ivec3	in	GLSL)

Definition	at	line	88	of	file	Glsl.hpp.

typedef	implementation	defined	sf::Glsl::Ivec4

4D	int	vector	(ivec4	in	GLSL)

4D	 int	 vectors	 can	 be	 implicitly	 converted	 from	 sf::Color	 instances.	 Each	 color	 channel	 remains
unchanged	inside	the	integer	interval	[0,	255].

sf::Glsl::Ivec4	zeroVector;

sf::Glsl::Ivec4	vector(1,	2,	3,	4);

sf::Glsl::Ivec4	color	=	sf::Color::Cyan;

Definition	at	line	124	of	file	Glsl.hpp.

typedef	implementation	defined	sf::Glsl::Mat3

3x3	float	matrix	(mat3	in	GLSL)

The	matrix	 can	 be	 constructed	 from	 an	 array	 with	 3x3	 elements,	 aligned	 in	 column-major	 order.	 For
example,	a	translation	by	(x,	y)	looks	as	follows:

float	array[9]	=

{

				1,	0,	0,

				0,	1,	0,

				x,	y,	1

};

sf::Glsl::Mat3	matrix(array);

Mat3	can	also	be	implicitly	converted	from	sf::Transform:

sf::Transform	transform;

sf::Glsl::Mat3	matrix	=	transform;

Definition	at	line	155	of	file	Glsl.hpp.

typedef	implementation	defined	sf::Glsl::Mat4

4x4	float	matrix	(mat4	in	GLSL)

The	matrix	 can	 be	 constructed	 from	 an	 array	 with	 4x4	 elements,	 aligned	 in	 column-major	 order.	 For
example,	a	translation	by	(x,	y,	z)	looks	as	follows:

float	array[16]	=

{

				1,	0,	0,	0,

				0,	1,	0,	0,

				0,	0,	1,	0,

				x,	y,	z,	1

};

sf::Glsl::Mat4	matrix(array);

Mat4	can	also	be	implicitly	converted	from	sf::Transform:

sf::Transform	transform;

sf::Glsl::Mat4	matrix	=	transform;

Definition	at	line	181	of	file	Glsl.hpp.

typedef	Vector2<float>	sf::Glsl::Vec2

2D	float	vector	(vec2	in	GLSL)

Definition	at	line	64	of	file	Glsl.hpp.

typedef	Vector3<float>	sf::Glsl::Vec3

3D	float	vector	(vec3	in	GLSL)

Definition	at	line	82	of	file	Glsl.hpp.

typedef	implementation	defined	sf::Glsl::Vec4

4D	float	vector	(vec4	in	GLSL)

4D	float	vectors	can	be	 implicitly	converted	from	sf::Color	 instances.	Each	color	channel	 is	normalized
from	integers	in	[0,	255]	to	floating	point	values	in	[0,	1].

sf::Glsl::Vec4	zeroVector;

sf::Glsl::Vec4	vector(1.f,	2.f,	3.f,	4.f);

sf::Glsl::Vec4	color	=	sf::Color::Cyan;

Definition	at	line	110	of	file	Glsl.hpp.

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Types	|	Public	Member	Functions	|	Public	Attributes	|	Related	Functions	|	List	of	all	members

sf::BlendMode	Class	Reference
Graphics	module

Blending	modes	for	drawing.	More...

#include	<BlendMode.hpp>

Public	Types

enum		

Factor	{	
		Zero,	One,	SrcColor,	OneMinusSrcColor,	
		DstColor,	OneMinusDstColor,	SrcAlpha,	OneMinusSrcAlpha,	
		DstAlpha,	OneMinusDstAlpha	
}

	 Enumeration	of	the	blending	factors.	More...
	
enum		 Equation	{	Add,	Subtract,	ReverseSubtract	}
	 Enumeration	of	the	blending	equations.	More...
	

Public	Member	Functions
	 BlendMode	()
	 Default	constructor.	More...
	
	 BlendMode	(Factor	sourceFactor,	Factor	destinationFactor,	Equation	blendEquation=
	 Construct	the	blend	mode	given	the	factors	and	equation.	More...
	

	 BlendMode	(Factor	colorSourceFactor,	Factor	colorDestinationFactor,	Factor	alphaSourceFactor,	Factor	alphaDestinationFactor,	Equation	alphaBlendEquation)
	 Construct	the	blend	mode	given	the	factors	and	equation.	More...
	

Public	Attributes
Factor	 colorSrcFactor

	 Source	blending	factor	for	the	color	channels.	More...
	

Factor	 colorDstFactor
	 Destination	blending	factor	for	the	color	channels.	More...
	
Equation	 colorEquation
	 Blending	equation	for	the	color	channels.	More...
	

Factor	 alphaSrcFactor
	 Source	blending	factor	for	the	alpha	channel.	More...
	

Factor	 alphaDstFactor
	 Destination	blending	factor	for	the	alpha	channel.	More...
	
Equation	 alphaEquation
	 Blending	equation	for	the	alpha	channel.	More...
	

Related	Functions

(Note	that	these	are	not	member	functions.)

bool	 operator==	(const	BlendMode	&left,	const	BlendMode	&right)
	 Overload	of	the	==	operator.	More...
	
bool	 operator!=	(const	BlendMode	&left,	const	BlendMode	&right)
	 Overload	of	the	!=	operator.	More...
	

Detailed	Description

Blending	modes	for	drawing.

sf::BlendMode	is	a	class	that	represents	a	blend	mode.

A	blend	mode	determines	how	the	colors	of	an	object	you	draw	are	mixed	with	the	colors	that	are	already	in
the	buffer.

The	class	is	composed	of	6	components,	each	of	which	has	its	own	public	member	variable:

Color	Source	Factor	(colorSrcFactor)

Color	Destination	Factor	(colorDstFactor)

Color	Blend	Equation	(colorEquation)

Alpha	Source	Factor	(alphaSrcFactor)

Alpha	Destination	Factor	(alphaDstFactor)

Alpha	Blend	Equation	(alphaEquation)

The	 source	 factor	 specifies	how	 the	pixel	 you	are	drawing	 contributes	 to	 the	 final	 color.	The	destination
factor	specifies	how	the	pixel	already	drawn	in	the	buffer	contributes	to	the	final	color.

The	color	channels	RGB	(red,	green,	blue;	simply	referred	to	as	color)	and	A	(alpha;	the	transparency)	can
be	 treated	separately.	This	 separation	 can	be	useful	 for	 specific	 blend	modes,	but	most	often	 you	won't
need	it	and	will	simply	treat	the	color	as	a	single	unit.

The	 blend	 factors	 and	 equations	 correspond	 to	 their	 OpenGL	 equivalents.	 In	 general,	 the	 color	 of	 the
resulting	pixel	is	calculated	according	to	the	following	formula	(src	 is	the	color	of	the	source	pixel,	
color	 of	 the	 destination	 pixel,	 the	 other	 variables	 correspond	 to	 the	 public	members,	with	 the	 equations
being	+	or	-	operators):

dst.rgb	=	colorSrcFactor	*	src.rgb	(colorEquation)	colorDstFactor	*	dst.rgb

dst.a			=	alphaSrcFactor	*	src.a			(alphaEquation)	alphaDstFactor	*	dst.a

All	 factors	and	colors	are	represented	as	floating	point	numbers	between	0	and	1.	Where	necessary,	 the
result	is	clamped	to	fit	in	that	range.

The	most	common	blending	modes	are	defined	as	constants	in	the	sf	namespace:

sf::BlendMode	alphaBlending										=	sf::BlendAlpha;

sf::BlendMode	additiveBlending							=	sf::BlendAdd;

sf::BlendMode	multiplicativeBlending	=	sf::BlendMultiply;

sf::BlendMode	noBlending													=	sf::BlendNone;

In	SFML,	a	blend	mode	can	be	specified	every	time	you	draw	a	sf::Drawable
part	of	the	sf::RenderStates	compound	that	is	passed	to	the	member	function	

See	also
sf::RenderStates,	sf::RenderTarget

Definition	at	line	41	of	file	BlendMode.hpp.

Member	Enumeration	Documentation

enum	sf::BlendMode::Equation

Enumeration	of	the	blending	equations.

The	 equations	 are	 mapped	 directly	 to	 their	 OpenGL	 equivalents,	 specified	 by	 glBlendEquation()	 or
glBlendEquationSeparate().

Enumerator

Add	
Pixel	=	Src	*	SrcFactor	+	Dst	*	DstFactor.

Subtract	
Pixel	=	Src	*	SrcFactor	-	Dst	*	DstFactor.

ReverseSubtract	
Pixel	=	Dst	*	DstFactor	-	Src	*	SrcFactor.

Definition	at	line	69	of	file	BlendMode.hpp.

enum	sf::BlendMode::Factor

Enumeration	of	the	blending	factors.

The	 factors	 are	 mapped	 directly	 to	 their	 OpenGL	 equivalents,	 specified	 by	 glBlendFunc()	 or
glBlendFuncSeparate().

Enumerator

Zero	
(0,	0,	0,	0)

One	
(1,	1,	1,	1)

SrcColor	
(src.r,	src.g,	src.b,	src.a)

OneMinusSrcColor	
(1,	1,	1,	1)	-	(src.r,	src.g,	src.b,	src.a)

DstColor	
(dst.r,	dst.g,	dst.b,	dst.a)

OneMinusDstColor	
(1,	1,	1,	1)	-	(dst.r,	dst.g,	dst.b,	dst.a)

SrcAlpha	
(src.a,	src.a,	src.a,	src.a)

OneMinusSrcAlpha	
(1,	1,	1,	1)	-	(src.a,	src.a,	src.a,	src.a)

DstAlpha	
(dst.a,	dst.a,	dst.a,	dst.a)

OneMinusDstAlpha	
(1,	1,	1,	1)	-	(dst.a,	dst.a,	dst.a,	dst.a)

Definition	at	line	49	of	file	BlendMode.hpp.

Constructor	&	Destructor	Documentation

sf::BlendMode::BlendMode ()

Default	constructor.

Constructs	a	blending	mode	that	does	alpha	blending.

sf::BlendMode::BlendMode (Factor	 sourceFactor,
Factor	 destinationFactor,
Equation	 blendEquation	=	Add	

)

Construct	the	blend	mode	given	the	factors	and	equation.

This	 constructor	 uses	 the	 same	 factors	 and	 equation	 for	 both	 color	 and	 alpha	 components.	 It	 also
defaults	to	the	Add	equation.

Parameters
sourceFactor Specifies	how	to	compute	the	source	factor	for	the	color	and	alpha	channels.
destinationFactor Specifies	how	to	compute	the	destination	factor	for	the	color	and	alpha

channels.
blendEquation Specifies	how	to	combine	the	source	and	destination	colors	and	alpha.

sf::BlendMode::BlendMode (Factor	 colorSourceFactor,
Factor	 colorDestinationFactor,

Equation	 colorBlendEquation,
Factor	 alphaSourceFactor,
Factor	 alphaDestinationFactor,
Equation	 alphaBlendEquation	

)

Construct	the	blend	mode	given	the	factors	and	equation.

Parameters
colorSourceFactor Specifies	how	to	compute	the	source	factor	for	the	color	channels.
colorDestinationFactor Specifies	how	to	compute	the	destination	factor	for	the	color	channels.
colorBlendEquation Specifies	how	to	combine	the	source	and	destination	colors.
alphaSourceFactor Specifies	how	to	compute	the	source	factor.
alphaDestinationFactor Specifies	how	to	compute	the	destination	factor.
alphaBlendEquation Specifies	how	to	combine	the	source	and	destination	alphas.

Friends	And	Related	Function	Documentation

bool	operator!= (const	BlendMode	&	 left,
const	BlendMode	&	 right	
)

Overload	of	the	!=	operator.

Parameters
left Left	operand
right Right	operand

Returns
True	if	blending	modes	are	different,	false	if	they	are	equal

bool	operator== (const	BlendMode	&	 left,
const	BlendMode	&	 right	
)

Overload	of	the	==	operator.

Parameters
left Left	operand
right Right	operand

Returns
True	if	blending	modes	are	equal,	false	if	they	are	different

Member	Data	Documentation

Factor	sf::BlendMode::alphaDstFactor

Destination	blending	factor	for	the	alpha	channel.

Definition	at	line	119	of	file	BlendMode.hpp.

Equation	sf::BlendMode::alphaEquation

Blending	equation	for	the	alpha	channel.

Definition	at	line	120	of	file	BlendMode.hpp.

Factor	sf::BlendMode::alphaSrcFactor

Source	blending	factor	for	the	alpha	channel.

Definition	at	line	118	of	file	BlendMode.hpp.

Factor	sf::BlendMode::colorDstFactor

Destination	blending	factor	for	the	color	channels.

Definition	at	line	116	of	file	BlendMode.hpp.

Equation	sf::BlendMode::colorEquation

Blending	equation	for	the	color	channels.

Definition	at	line	117	of	file	BlendMode.hpp.

Factor	sf::BlendMode::colorSrcFactor

Source	blending	factor	for	the	color	channels.

Definition	at	line	115	of	file	BlendMode.hpp.

The	documentation	for	this	class	was	generated	from	the	following	file:
BlendMode.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Member	Functions	|	Protected	Member	Functions	|	List	of	all	members

sf::CircleShape	Class	Reference
Graphics	module

Specialized	shape	representing	a	circle.	More...

#include	<CircleShape.hpp>

Inheritance	diagram	for	sf::CircleShape:

Public	Member	Functions
	 CircleShape	(float	radius=0,	std::size_t	pointCount=30)

	 Default	constructor.	More...
	

void	 setRadius	(float	radius)
	 Set	the	radius	of	the	circle.	More...
	

float	 getRadius	()	const
	 Get	the	radius	of	the	circle.	More...
	

void	 setPointCount	(std::size_t	count)
	 Set	the	number	of	points	of	the	circle.	More...
	

virtual	std::size_t	 getPointCount	()	const
	 Get	the	number	of	points	of	the	circle.	More...
	

virtual	Vector2f	 getPoint	(std::size_t	index)	const
	 Get	a	point	of	the	circle.	More...
	

void	 setTexture	(const	Texture	*texture,	bool	resetRect=false)
	 Change	the	source	texture	of	the	shape.	More...
	

void	 setTextureRect	(const	IntRect	&rect)
	 Set	the	sub-rectangle	of	the	texture	that	the	shape	will	display.	
	

void	 setFillColor	(const	Color	&color)
	 Set	the	fill	color	of	the	shape.	More...
	

void	 setOutlineColor	(const	Color	&color)
	 Set	the	outline	color	of	the	shape.	More...
	

void	 setOutlineThickness	(float	thickness)

	 Set	the	thickness	of	the	shape's	outline.	More...
	

const	Texture	*	 getTexture	()	const
	 Get	the	source	texture	of	the	shape.	More...
	

const	IntRect	&	 getTextureRect	()	const
	 Get	the	sub-rectangle	of	the	texture	displayed	by	the	shape.	
	

const	Color	&	 getFillColor	()	const
	 Get	the	fill	color	of	the	shape.	More...
	

const	Color	&	 getOutlineColor	()	const
	 Get	the	outline	color	of	the	shape.	More...
	

float	 getOutlineThickness	()	const
	 Get	the	outline	thickness	of	the	shape.	More...
	

FloatRect	 getLocalBounds	()	const
	 Get	the	local	bounding	rectangle	of	the	entity.	More...
	

FloatRect	 getGlobalBounds	()	const
	 Get	the	global	(non-minimal)	bounding	rectangle	of	the	entity.	
	

void	 setPosition	(float	x,	float	y)
	 set	the	position	of	the	object	More...
	

void	 setPosition	(const	Vector2f	&position)
	 set	the	position	of	the	object	More...
	

void	 setRotation	(float	angle)
	 set	the	orientation	of	the	object	More...
	

void	 setScale	(float	factorX,	float	factorY)
	 set	the	scale	factors	of	the	object	More...
	

void	 setScale	(const	Vector2f	&factors)
	 set	the	scale	factors	of	the	object	More...
	

void	 setOrigin	(float	x,	float	y)
	 set	the	local	origin	of	the	object	More...
	

void	 setOrigin	(const	Vector2f	&origin)
	 set	the	local	origin	of	the	object	More...
	

const	Vector2f	&	 getPosition	()	const
	 get	the	position	of	the	object	More...
	

float	 getRotation	()	const
	 get	the	orientation	of	the	object	More...
	

const	Vector2f	&	 getScale	()	const
	 get	the	current	scale	of	the	object	More...
	

const	Vector2f	&	 getOrigin	()	const
	 get	the	local	origin	of	the	object	More...
	

void	 move	(float	offsetX,	float	offsetY)
	 Move	the	object	by	a	given	offset.	More...
	

void	 move	(const	Vector2f	&offset)
	 Move	the	object	by	a	given	offset.	More...
	

void	 rotate	(float	angle)
	 Rotate	the	object.	More...
	

void	 scale	(float	factorX,	float	factorY)
	 Scale	the	object.	More...
	

void	 scale	(const	Vector2f	&factor)
	 Scale	the	object.	More...

	
const	Transform	&	 getTransform	()	const
	 get	the	combined	transform	of	the	object	More...
	
const	Transform	&	 getInverseTransform	()	const
	 get	the	inverse	of	the	combined	transform	of	the	object	
	

Protected	Member	Functions
void	 update	()
	 Recompute	the	internal	geometry	of	the	shape.	More...
	

Detailed	Description

Specialized	shape	representing	a	circle.

This	class	inherits	all	the	functions	of	sf::Transformable	(position,	rotation,	scale,	bounds,	...)	as	well	as	the
functions	of	sf::Shape	(outline,	color,	texture,	...).

Usage	example:

sf::CircleShape	circle;

circle.setRadius(150);

circle.setOutlineColor(sf::Color::Red);

circle.setOutlineThickness(5);

circle.setPosition(10,	20);

...

window.draw(circle);

Since	the	graphics	card	can't	draw	perfect	circles,	we	have	to	fake	them	with	multiple	triangles	connected
to	each	other.	The	"points	count"	property	of	 sf::CircleShape	defines	how	many	of	these	triangles	to	use,
and	therefore	defines	the	quality	of	the	circle.

The	number	of	points	can	also	be	used	for	another	purpose;	with	small	numbers	you	can	create	any	regular
polygon	shape:	equilateral	triangle,	square,	pentagon,	hexagon,	...

See	also
sf::Shape,	sf::RectangleShape,	sf::ConvexShape

Definition	at	line	41	of	file	CircleShape.hpp.

Constructor	&	Destructor	Documentation

sf::CircleShape::CircleShape (float	 radius	=	0,
std::size_t	 pointCount	=	30	
)

Default	constructor.

Parameters
radius Radius	of	the	circle
pointCount Number	of	points	composing	the	circle

Member	Function	Documentation

const	Color&	sf::Shape::getFillColor () const

Get	the	fill	color	of	the	shape.

Returns
Fill	color	of	the	shape

See	also
setFillColor

FloatRect	sf::Shape::getGlobalBounds () const

Get	the	global	(non-minimal)	bounding	rectangle	of	the	entity.

The	 returned	 rectangle	 is	 in	 global	 coordinates,	 which	 means	 that	 it	 takes	 into	 account	 the
transformations	(translation,	rotation,	scale,	...)	that	are	applied	to	the	entity.	In	other	words,	this	function
returns	the	bounds	of	the	shape	in	the	global	2D	world's	coordinate	system.

This	 function	 does	 not	 necessarily	 return	 the	minimal	 bounding	 rectangle.	 It	 merely	 ensures	 that	 the
returned	rectangle	covers	all	the	vertices	(but	possibly	more).	This	allows	for	a	fast	approximation	of	the
bounds	as	a	first	check;	you	may	want	to	use	more	precise	checks	on	top	of	that.

Returns
Global	bounding	rectangle	of	the	entity

const	Transform&	sf::Transformable::getInverseTransform () const

get	the	inverse	of	the	combined	transform	of	the	object

Returns
Inverse	of	the	combined	transformations	applied	to	the	object

See	also
getTransform

FloatRect	sf::Shape::getLocalBounds () const

Get	the	local	bounding	rectangle	of	the	entity.

The	 returned	 rectangle	 is	 in	 local	 coordinates,	 which	 means	 that	 it	 ignores	 the	 transformations
(translation,	 rotation,	 scale,	 ...)	 that	 are	 applied	 to	 the	 entity.	 In	 other	 words,	 this	 function	 returns	 the
bounds	of	the	entity	in	the	entity's	coordinate	system.

Returns
Local	bounding	rectangle	of	the	entity

const	Vector2f&	sf::Transformable::getOrigin () const

get	the	local	origin	of	the	object

Returns
Current	origin

See	also
setOrigin

const	Color&	sf::Shape::getOutlineColor () const

Get	the	outline	color	of	the	shape.

Returns
Outline	color	of	the	shape

See	also
setOutlineColor

float	sf::Shape::getOutlineThickness () const

Get	the	outline	thickness	of	the	shape.

Returns
Outline	thickness	of	the	shape

See	also
setOutlineThickness

virtual	Vector2f	sf::CircleShape::getPoint (std::size_t	 index) const

Get	a	point	of	the	circle.

The	returned	point	is	in	local	coordinates,	that	is,	the	shape's	transforms	(position,	rotation,	scale)	are	not
taken	into	account.	The	result	is	undefined	if	index	is	out	of	the	valid	range.

Parameters
index Index	of	the	point	to	get,	in	range	[0	..	getPointCount()	-	1]

Returns
index-th	point	of	the	shape

Implements	sf::Shape.

virtual	std::size_t	sf::CircleShape::getPointCount () const

Get	the	number	of	points	of	the	circle.

Returns
Number	of	points	of	the	circle

See	also
setPointCount

Implements	sf::Shape.

const	Vector2f&	sf::Transformable::getPosition () const

get	the	position	of	the	object

Returns
Current	position

See	also
setPosition

float	sf::CircleShape::getRadius () const

Get	the	radius	of	the	circle.

Returns
Radius	of	the	circle

See	also
setRadius

float	sf::Transformable::getRotation () const

get	the	orientation	of	the	object

The	rotation	is	always	in	the	range	[0,	360].

Returns
Current	rotation,	in	degrees

See	also
setRotation

const	Vector2f&	sf::Transformable::getScale () const

get	the	current	scale	of	the	object

Returns
Current	scale	factors

See	also
setScale

const	Texture*	sf::Shape::getTexture () const

Get	the	source	texture	of	the	shape.

If	 the	 shape	 has	 no	 source	 texture,	 a	NULL	 pointer	 is	 returned.	 The	 returned	 pointer	 is	 const,	 which
means	that	you	can't	modify	the	texture	when	you	retrieve	it	with	this	function.

Returns
Pointer	to	the	shape's	texture

See	also
setTexture

const	IntRect&	sf::Shape::getTextureRect () const

Get	the	sub-rectangle	of	the	texture	displayed	by	the	shape.

Returns
Texture	rectangle	of	the	shape

See	also
setTextureRect

const	Transform&	sf::Transformable::getTransform () const

get	the	combined	transform	of	the	object

Returns
Transform	combining	the	position/rotation/scale/origin	of	the	object

See	also
getInverseTransform

void	sf::Transformable::move (float	 offsetX,
float	 offsetY	
)

Move	the	object	by	a	given	offset.

This	function	adds	to	the	current	position	of	the	object,	unlike	setPosition	which	overwrites	it.	Thus,	it	is
equivalent	to	the	following	code:

sf::Vector2f	pos	=	object.getPosition();

object.setPosition(pos.x	+	offsetX,	pos.y	+	offsetY);

Parameters
offsetX X	offset
offsetY Y	offset

See	also
setPosition

void	sf::Transformable::move (const	Vector2f	&	 offset)

Move	the	object	by	a	given	offset.

This	function	adds	to	the	current	position	of	the	object,	unlike	setPosition	which	overwrites	it.	Thus,	it	is
equivalent	to	the	following	code:

object.setPosition(object.getPosition()	+	offset);

Parameters
offsetOffset

See	also
setPosition

void	sf::Transformable::rotate (float	 angle)

Rotate	the	object.

This	function	adds	to	the	current	rotation	of	the	object,	unlike	setRotation	which	overwrites	it.	Thus,	it	is
equivalent	to	the	following	code:

object.setRotation(object.getRotation()	+	angle);

Parameters
angle Angle	of	rotation,	in	degrees

void	sf::Transformable::scale (float	 factorX,
float	 factorY	
)

Scale	the	object.

This	 function	multiplies	 the	 current	 scale	 of	 the	 object,	 unlike	 setScale	which	 overwrites	 it.	 Thus,	 it	 is
equivalent	to	the	following	code:

sf::Vector2f	scale	=	object.getScale();

object.setScale(scale.x	*	factorX,	scale.y	*	factorY);

Parameters
factorXHorizontal	scale	factor
factorY Vertical	scale	factor

See	also
setScale

void	sf::Transformable::scale (const	Vector2f	&	 factor)

Scale	the	object.

This	 function	multiplies	 the	 current	 scale	 of	 the	 object,	 unlike	 setScale	which	 overwrites	 it.	 Thus,	 it	 is
equivalent	to	the	following	code:

sf::Vector2f	scale	=	object.getScale();

object.setScale(scale.x	*	factor.x,	scale.y	*	factor.y);

Parameters
factor Scale	factors

See	also
setScale

void	sf::Shape::setFillColor (const	Color	&	 color)

Set	the	fill	color	of	the	shape.

This	color	is	modulated	(multiplied)	with	the	shape's	texture	if	any.	It	can	be	used	to	colorize	the	shape,
or	 change	 its	 global	 opacity.	 You	 can	 use	 sf::Color::Transparent	 to	 make	 the	 inside	 of	 the	 shape
transparent,	and	have	the	outline	alone.	By	default,	the	shape's	fill	color	is	opaque	white.

Parameters
colorNew	color	of	the	shape

See	also

getFillColor,	setOutlineColor

void	sf::Transformable::setOrigin (float	 x,
float	 y	
)

set	the	local	origin	of	the	object

The	 origin	 of	 an	 object	 defines	 the	 center	 point	 for	 all	 transformations	 (position,	 scale,	 rotation).	 The
coordinates	 of	 this	 point	 must	 be	 relative	 to	 the	 top-left	 corner	 of	 the	 object,	 and	 ignore	 all
transformations	(position,	scale,	rotation).	The	default	origin	of	a	transformable	object	is	(0,	0).

Parameters
x X	coordinate	of	the	new	origin
y Y	coordinate	of	the	new	origin

See	also
getOrigin

void	sf::Transformable::setOrigin (const	Vector2f	&	 origin)

set	the	local	origin	of	the	object

The	 origin	 of	 an	 object	 defines	 the	 center	 point	 for	 all	 transformations	 (position,	 scale,	 rotation).	 The
coordinates	 of	 this	 point	 must	 be	 relative	 to	 the	 top-left	 corner	 of	 the	 object,	 and	 ignore	 all
transformations	(position,	scale,	rotation).	The	default	origin	of	a	transformable	object	is	(0,	0).

Parameters
origin New	origin

See	also

getOrigin

void	sf::Shape::setOutlineColor (const	Color	&	 color)

Set	the	outline	color	of	the	shape.

By	default,	the	shape's	outline	color	is	opaque	white.

Parameters
colorNew	outline	color	of	the	shape

See	also
getOutlineColor,	setFillColor

void	sf::Shape::setOutlineThickness (float	 thickness)

Set	the	thickness	of	the	shape's	outline.

Note	that	negative	values	are	allowed	(so	that	the	outline	expands	towards	the	center	of	the	shape),	and
using	zero	disables	the	outline.	By	default,	the	outline	thickness	is	0.

Parameters
thickness New	outline	thickness

See	also
getOutlineThickness

void	sf::CircleShape::setPointCount (std::size_t	 count)

Set	the	number	of	points	of	the	circle.

Parameters
count New	number	of	points	of	the	circle

See	also
getPointCount

void	sf::Transformable::setPosition (float	 x,
float	 y	
)

set	the	position	of	the	object

This	function	completely	overwrites	the	previous	position.	See	the	move	function	to	apply	an	offset	based
on	the	previous	position	instead.	The	default	position	of	a	transformable	object	is	(0,	0).

Parameters
x X	coordinate	of	the	new	position
y Y	coordinate	of	the	new	position

See	also
move,	getPosition

void	sf::Transformable::setPosition (const	Vector2f	&	 position)

set	the	position	of	the	object

This	function	completely	overwrites	the	previous	position.	See	the	move	function	to	apply	an	offset	based
on	the	previous	position	instead.	The	default	position	of	a	transformable	object	is	(0,	0).

Parameters
positionNew	position

See	also
move,	getPosition

void	sf::CircleShape::setRadius (float	 radius)

Set	the	radius	of	the	circle.

Parameters
radiusNew	radius	of	the	circle

See	also
getRadius

void	sf::Transformable::setRotation (float	 angle)

set	the	orientation	of	the	object

This	function	completely	overwrites	the	previous	rotation.	See	the	rotate	function	to	add	an	angle	based
on	the	previous	rotation	instead.	The	default	rotation	of	a	transformable	object	is	0.

Parameters
angle New	rotation,	in	degrees

See	also
rotate,	getRotation

void	sf::Transformable::setScale (float	 factorX,
float	 factorY	
)

set	the	scale	factors	of	the	object

This	function	completely	overwrites	the	previous	scale.	See	the	scale	function	to	add	a	factor	based	on
the	previous	scale	instead.	The	default	scale	of	a	transformable	object	is	(1,	1).

Parameters
factorXNew	horizontal	scale	factor
factorYNew	vertical	scale	factor

See	also
scale,	getScale

void	sf::Transformable::setScale (const	Vector2f	&	 factors)

set	the	scale	factors	of	the	object

This	function	completely	overwrites	the	previous	scale.	See	the	scale	function	to	add	a	factor	based	on
the	previous	scale	instead.	The	default	scale	of	a	transformable	object	is	(1,	1).

Parameters
factors New	scale	factors

See	also
scale,	getScale

void	sf::Shape::setTexture (const	Texture	*	 texture,
bool	 resetRect	=	false	

)

Change	the	source	texture	of	the	shape.

The	texture	argument	refers	to	a	texture	that	must	exist	as	long	as	the	shape	uses	it.	Indeed,	the	shape
doesn't	store	 its	own	copy	of	 the	texture,	but	rather	keeps	a	pointer	 to	the	one	that	you	passed	to	this
function.	 If	 the	 source	 texture	 is	 destroyed	 and	 the	 shape	 tries	 to	 use	 it,	 the	 behavior	 is	 undefined.
texture	can	be	NULL	to	disable	texturing.	 If	resetRect	 is	 true,	 the	TextureRect	property	of	 the	shape	 is
automatically	adjusted	to	the	size	of	the	new	texture.	If	it	is	false,	the	texture	rect	is	left	unchanged.

Parameters
texture New	texture
resetRect Should	the	texture	rect	be	reset	to	the	size	of	the	new	texture?

See	also
getTexture,	setTextureRect

void	sf::Shape::setTextureRect (const	IntRect	&	 rect)

Set	the	sub-rectangle	of	the	texture	that	the	shape	will	display.

The	 texture	 rect	 is	useful	when	you	don't	want	 to	display	 the	whole	 texture,	but	 rather	a	part	of	 it.	By
default,	the	texture	rect	covers	the	entire	texture.

Parameters
rect Rectangle	defining	the	region	of	the	texture	to	display

See	also
getTextureRect,	setTexture

void	sf::Shape::update ()

Recompute	the	internal	geometry	of	the	shape.

This	function	must	be	called	by	the	derived	class	everytime	the	shape's	points	change	(i.e.	the	result	of
either	getPointCount	or	getPoint	is	different).

The	documentation	for	this	class	was	generated	from	the	following	file:
CircleShape.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Member	Functions	|	Public	Attributes	|	Static	Public	Attributes	|	Related	Functions	|	List	of	all	members

sf::Color	Class	Reference
Graphics	module

Utility	class	for	manipulating	RGBA	colors.	More...

#include	<Color.hpp>

Public	Member	Functions
	 Color	()

	 Default	constructor.	More...
	

	 Color	(Uint8	red,	Uint8	green,	Uint8	blue,	Uint8	alpha=255)
	 Construct	the	color	from	its	4	RGBA	components.	More...
	

	 Color	(Uint32	color)
	 Construct	the	color	from	32-bit	unsigned	integer.	More...
	
Uint32	 toInteger	()	const
	 Retrieve	the	color	as	a	32-bit	unsigned	integer.	More...
	

Public	Attributes
Uint8	 r
	 Red	component.	More...
	
Uint8	 g
	 Green	component.	More...
	
Uint8	 b
	 Blue	component.	More...
	
Uint8	 a
	 Alpha	(opacity)	component.	More...
	

Static	Public	Attributes
static	const	Color	 Black
	 Black	predefined	color.	More...
	
static	const	Color	 White
	 White	predefined	color.	More...
	
static	const	Color	 Red
	 Red	predefined	color.	More...
	
static	const	Color	 Green
	 Green	predefined	color.	More...
	
static	const	Color	 Blue
	 Blue	predefined	color.	More...
	
static	const	Color	 Yellow
	 Yellow	predefined	color.	More...
	
static	const	Color	 Magenta
	 Magenta	predefined	color.	More...
	
static	const	Color	 Cyan
	 Cyan	predefined	color.	More...
	
static	const	Color	 Transparent
	 Transparent	(black)	predefined	color.	More...
	

Related	Functions

(Note	that	these	are	not	member	functions.)

bool	 operator==	(const	Color	&left,	const	Color	&right)
	 Overload	of	the	==	operator.	More...
	

bool	 operator!=	(const	Color	&left,	const	Color	&right)
	 Overload	of	the	!=	operator.	More...
	

Color	 operator+	(const	Color	&left,	const	Color	&right)
	 Overload	of	the	binary	+	operator.	More...
	

Color	 operator-	(const	Color	&left,	const	Color	&right)
	 Overload	of	the	binary	-	operator.	More...
	

Color	 operator*	(const	Color	&left,	const	Color	&right)
	 Overload	of	the	binary	*	operator.	More...
	
Color	&	 operator+=	(Color	&left,	const	Color	&right)
	 Overload	of	the	binary	+=	operator.	More...
	
Color	&	 operator-=	(Color	&left,	const	Color	&right)
	 Overload	of	the	binary	-=	operator.	More...
	
Color	&	 operator*=	(Color	&left,	const	Color	&right)
	 Overload	of	the	binary	*=	operator.	More...
	

Detailed	Description

Utility	class	for	manipulating	RGBA	colors.

sf::Color	is	a	simple	color	class	composed	of	4	components:

Red

Green

Blue

Alpha	(opacity)

Each	 component	 is	 a	 public	 member,	 an	 unsigned	 integer	 in	 the	 range	 [0,	 255].	 Thus,	 colors	 can	 be
constructed	and	manipulated	very	easily:

sf::Color	color(255,	0,	0);	//	red

color.r	=	0;																//	make	it	black

color.b	=	128;														//	make	it	dark	blue

The	fourth	component	of	colors,	named	"alpha",	represents	the	opacity	of	the	color.	A	color	with	an	alpha
value	of	255	will	be	fully	opaque,	while	an	alpha	value	of	0	will	make	a	color	fully	transparent,	whatever	the
value	of	the	other	components	is.

The	most	common	colors	are	already	defined	as	static	variables:

sf::Color	black							=	sf::Color::Black;

sf::Color	white							=	sf::Color::White;

sf::Color	red									=	sf::Color::Red;

sf::Color	green							=	sf::Color::Green;

sf::Color	blue								=	sf::Color::Blue;

sf::Color	yellow						=	sf::Color::Yellow;

sf::Color	magenta					=	sf::Color::Magenta;

sf::Color	cyan								=	sf::Color::Cyan;

sf::Color	transparent	=	sf::Color::Transparent;

Colors	can	also	be	added	and	modulated	(multiplied)	using	the	overloaded	operators	+	and	*.

Definition	at	line	40	of	file	Color.hpp.

Constructor	&	Destructor	Documentation

sf::Color::Color ()

Default	constructor.

Constructs	an	opaque	black	color.	It	is	equivalent	to	sf::Color(0,	0,	0,	255)

sf::Color::Color (Uint8	 red,
Uint8	 green,
Uint8	 blue,
Uint8	 alpha	=	255	
)

Construct	the	color	from	its	4	RGBA	components.

Parameters
red Red	component	(in	the	range	[0,	255])
greenGreen	component	(in	the	range	[0,	255])
blue Blue	component	(in	the	range	[0,	255])
alpha Alpha	(opacity)	component	(in	the	range	[0,	255])

sf::Color::Color (Uint32	 color)

Construct	the	color	from	32-bit	unsigned	integer.

Parameters
colorNumber	containing	the	RGBA	components	(in	that	order)

Member	Function	Documentation

Uint32	sf::Color::toInteger () const

Retrieve	the	color	as	a	32-bit	unsigned	integer.

Returns
Color	represented	as	a	32-bit	unsigned	integer

Friends	And	Related	Function	Documentation

bool	operator!= (const	Color	&	 left,
const	Color	&	 right	
)

Overload	of	the	!=	operator.

This	operator	compares	two	colors	and	check	if	they	are	different.

Parameters
left Left	operand
right Right	operand

Returns
True	if	colors	are	different,	false	if	they	are	equal

Color	operator* (const	Color	&	 left,
const	Color	&	 right	
)

Overload	of	the	binary	*	operator.

This	 operator	 returns	 the	 component-wise	 multiplication	 (also	 called	 "modulation")	 of	 two	 colors.
Components	are	then	divided	by	255	so	that	the	result	is	still	in	the	range	[0,	255].

Parameters
left Left	operand

right Right	operand

Returns
Result	of	left	*	right

Color	&	operator*= (Color	&	 left,
const	Color	&	 right	
)

Overload	of	the	binary	*=	operator.

This	 operator	 returns	 the	 component-wise	multiplication	 (also	 called	 "modulation")	 of	 two	 colors,	 and
assigns	the	result	to	the	left	operand.	Components	are	then	divided	by	255	so	that	the	result	is	still	in	the
range	[0,	255].

Parameters
left Left	operand
right Right	operand

Returns
Reference	to	left

Color	operator+ (const	Color	&	 left,
const	Color	&	 right	
)

Overload	of	the	binary	+	operator.

This	operator	returns	the	component-wise	sum	of	two	colors.	Components	that	exceed	255	are	clamped
to	255.

Parameters
left Left	operand
right Right	operand

Returns
Result	of	left	+	right

Color	&	operator+= (Color	&	 left,
const	Color	&	 right	
)

Overload	of	the	binary	+=	operator.

This	 operator	 computes	 the	 component-wise	 sum	 of	 two	 colors,	 and	 assigns	 the	 result	 to	 the	 left
operand.	Components	that	exceed	255	are	clamped	to	255.

Parameters
left Left	operand
right Right	operand

Returns
Reference	to	left

Color	operator- (const	Color	&	 left,
const	Color	&	 right	
)

Overload	of	the	binary	-	operator.

This	operator	returns	the	component-wise	subtraction	of	two	colors.	Components	below	0	are	clamped	to
0.

Parameters
left Left	operand
right Right	operand

Returns
Result	of	left	-	right

Color	&	operator-= (Color	&	 left,
const	Color	&	 right	
)

Overload	of	the	binary	-=	operator.

This	operator	computes	the	component-wise	subtraction	of	two	colors,	and	assigns	the	result	to	the	left
operand.	Components	below	0	are	clamped	to	0.

Parameters
left Left	operand
right Right	operand

Returns
Reference	to	left

bool	operator== (const	Color	&	 left,
const	Color	&	 right	
)

Overload	of	the	==	operator.

This	operator	compares	two	colors	and	check	if	they	are	equal.

Parameters
left Left	operand
right Right	operand

Returns
True	if	colors	are	equal,	false	if	they	are	different

Member	Data	Documentation

Uint8	sf::Color::a

Alpha	(opacity)	component.

Definition	at	line	99	of	file	Color.hpp.

Uint8	sf::Color::b

Blue	component.

Definition	at	line	98	of	file	Color.hpp.

const	Color	sf::Color::Black

Black	predefined	color.

Definition	at	line	83	of	file	Color.hpp.

const	Color	sf::Color::Blue

Blue	predefined	color.

Definition	at	line	87	of	file	Color.hpp.

const	Color	sf::Color::Cyan

Cyan	predefined	color.

Definition	at	line	90	of	file	Color.hpp.

Uint8	sf::Color::g

Green	component.

Definition	at	line	97	of	file	Color.hpp.

const	Color	sf::Color::Green

Green	predefined	color.

Definition	at	line	86	of	file	Color.hpp.

const	Color	sf::Color::Magenta

Magenta	predefined	color.

Definition	at	line	89	of	file	Color.hpp.

Uint8	sf::Color::r

Red	component.

Definition	at	line	96	of	file	Color.hpp.

const	Color	sf::Color::Red

Red	predefined	color.

Definition	at	line	85	of	file	Color.hpp.

const	Color	sf::Color::Transparent

Transparent	(black)	predefined	color.

Definition	at	line	91	of	file	Color.hpp.

const	Color	sf::Color::White

White	predefined	color.

Definition	at	line	84	of	file	Color.hpp.

const	Color	sf::Color::Yellow

Yellow	predefined	color.

Definition	at	line	88	of	file	Color.hpp.

The	documentation	for	this	class	was	generated	from	the	following	file:
Color.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Member	Functions	|	Protected	Member	Functions	|	List	of	all	members

sf::ConvexShape	Class	Reference
Graphics	module

Specialized	shape	representing	a	convex	polygon.	More...

#include	<ConvexShape.hpp>

Inheritance	diagram	for	sf::ConvexShape:

Public	Member	Functions
	 ConvexShape	(std::size_t	pointCount=0)

	 Default	constructor.	More...
	

void	 setPointCount	(std::size_t	count)
	 Set	the	number	of	points	of	the	polygon.	More...
	

virtual	std::size_t	 getPointCount	()	const
	 Get	the	number	of	points	of	the	polygon.	More...
	

void	 setPoint	(std::size_t	index,	const	Vector2f	&point)
	 Set	the	position	of	a	point.	More...
	

virtual	Vector2f	 getPoint	(std::size_t	index)	const
	 Get	the	position	of	a	point.	More...
	

void	 setTexture	(const	Texture	*texture,	bool	resetRect=false)
	 Change	the	source	texture	of	the	shape.	More...
	

void	 setTextureRect	(const	IntRect	&rect)
	 Set	the	sub-rectangle	of	the	texture	that	the	shape	will	display.	
	

void	 setFillColor	(const	Color	&color)
	 Set	the	fill	color	of	the	shape.	More...
	

void	 setOutlineColor	(const	Color	&color)
	 Set	the	outline	color	of	the	shape.	More...
	

void	 setOutlineThickness	(float	thickness)
	 Set	the	thickness	of	the	shape's	outline.	More...
	

const	Texture	*	 getTexture	()	const

	 Get	the	source	texture	of	the	shape.	More...
	

const	IntRect	&	 getTextureRect	()	const
	 Get	the	sub-rectangle	of	the	texture	displayed	by	the	shape.	
	

const	Color	&	 getFillColor	()	const
	 Get	the	fill	color	of	the	shape.	More...
	

const	Color	&	 getOutlineColor	()	const
	 Get	the	outline	color	of	the	shape.	More...
	

float	 getOutlineThickness	()	const
	 Get	the	outline	thickness	of	the	shape.	More...
	

FloatRect	 getLocalBounds	()	const
	 Get	the	local	bounding	rectangle	of	the	entity.	More...
	

FloatRect	 getGlobalBounds	()	const
	 Get	the	global	(non-minimal)	bounding	rectangle	of	the	entity.	
	

void	 setPosition	(float	x,	float	y)
	 set	the	position	of	the	object	More...
	

void	 setPosition	(const	Vector2f	&position)
	 set	the	position	of	the	object	More...
	

void	 setRotation	(float	angle)
	 set	the	orientation	of	the	object	More...
	

void	 setScale	(float	factorX,	float	factorY)
	 set	the	scale	factors	of	the	object	More...
	

void	 setScale	(const	Vector2f	&factors)
	 set	the	scale	factors	of	the	object	More...
	

void	 setOrigin	(float	x,	float	y)
	 set	the	local	origin	of	the	object	More...
	

void	 setOrigin	(const	Vector2f	&origin)
	 set	the	local	origin	of	the	object	More...
	

const	Vector2f	&	 getPosition	()	const
	 get	the	position	of	the	object	More...
	

float	 getRotation	()	const
	 get	the	orientation	of	the	object	More...
	

const	Vector2f	&	 getScale	()	const
	 get	the	current	scale	of	the	object	More...
	

const	Vector2f	&	 getOrigin	()	const
	 get	the	local	origin	of	the	object	More...
	

void	 move	(float	offsetX,	float	offsetY)
	 Move	the	object	by	a	given	offset.	More...
	

void	 move	(const	Vector2f	&offset)
	 Move	the	object	by	a	given	offset.	More...
	

void	 rotate	(float	angle)
	 Rotate	the	object.	More...
	

void	 scale	(float	factorX,	float	factorY)
	 Scale	the	object.	More...
	

void	 scale	(const	Vector2f	&factor)
	 Scale	the	object.	More...
	
const	Transform	&	 getTransform	()	const
	 get	the	combined	transform	of	the	object	More...

	
const	Transform	&	 getInverseTransform	()	const
	 get	the	inverse	of	the	combined	transform	of	the	object	
	

Protected	Member	Functions
void	 update	()
	 Recompute	the	internal	geometry	of	the	shape.	More...
	

Detailed	Description

Specialized	shape	representing	a	convex	polygon.

This	class	inherits	all	the	functions	of	sf::Transformable	(position,	rotation,	scale,	bounds,	...)	as	well	as	the
functions	of	sf::Shape	(outline,	color,	texture,	...).

It	 is	 important	 to	 keep	 in	mind	 that	 a	 convex	 shape	must	 always	 be...	 convex,	 otherwise	 it	may	 not	 be
drawn	correctly.	Moreover,	 the	points	must	be	defined	 in	order;	using	a	 random	order	would	 result	 in	an
incorrect	shape.

Usage	example:

sf::ConvexShape	polygon;

polygon.setPointCount(3);

polygon.setPoint(0,	sf::Vector2f(0,	0));

polygon.setPoint(1,	sf::Vector2f(0,	10));

polygon.setPoint(2,	sf::Vector2f(25,	5));

polygon.setOutlineColor(sf::Color::Red);

polygon.setOutlineThickness(5);

polygon.setPosition(10,	20);

...

window.draw(polygon);

See	also
sf::Shape,	sf::RectangleShape,	sf::CircleShape

Definition	at	line	42	of	file	ConvexShape.hpp.

Constructor	&	Destructor	Documentation

sf::ConvexShape::ConvexShape (std::size_t	 pointCount	=	0)

Default	constructor.

Parameters
pointCount Number	of	points	of	the	polygon

Member	Function	Documentation

const	Color&	sf::Shape::getFillColor () const

Get	the	fill	color	of	the	shape.

Returns
Fill	color	of	the	shape

See	also
setFillColor

FloatRect	sf::Shape::getGlobalBounds () const

Get	the	global	(non-minimal)	bounding	rectangle	of	the	entity.

The	 returned	 rectangle	 is	 in	 global	 coordinates,	 which	 means	 that	 it	 takes	 into	 account	 the
transformations	(translation,	rotation,	scale,	...)	that	are	applied	to	the	entity.	In	other	words,	this	function
returns	the	bounds	of	the	shape	in	the	global	2D	world's	coordinate	system.

This	 function	 does	 not	 necessarily	 return	 the	minimal	 bounding	 rectangle.	 It	 merely	 ensures	 that	 the
returned	rectangle	covers	all	the	vertices	(but	possibly	more).	This	allows	for	a	fast	approximation	of	the
bounds	as	a	first	check;	you	may	want	to	use	more	precise	checks	on	top	of	that.

Returns
Global	bounding	rectangle	of	the	entity

const	Transform&	sf::Transformable::getInverseTransform () const

get	the	inverse	of	the	combined	transform	of	the	object

Returns
Inverse	of	the	combined	transformations	applied	to	the	object

See	also
getTransform

FloatRect	sf::Shape::getLocalBounds () const

Get	the	local	bounding	rectangle	of	the	entity.

The	 returned	 rectangle	 is	 in	 local	 coordinates,	 which	 means	 that	 it	 ignores	 the	 transformations
(translation,	 rotation,	 scale,	 ...)	 that	 are	 applied	 to	 the	 entity.	 In	 other	 words,	 this	 function	 returns	 the
bounds	of	the	entity	in	the	entity's	coordinate	system.

Returns
Local	bounding	rectangle	of	the	entity

const	Vector2f&	sf::Transformable::getOrigin () const

get	the	local	origin	of	the	object

Returns
Current	origin

See	also
setOrigin

const	Color&	sf::Shape::getOutlineColor () const

Get	the	outline	color	of	the	shape.

Returns
Outline	color	of	the	shape

See	also
setOutlineColor

float	sf::Shape::getOutlineThickness () const

Get	the	outline	thickness	of	the	shape.

Returns
Outline	thickness	of	the	shape

See	also
setOutlineThickness

virtual	Vector2f	sf::ConvexShape::getPoint (std::size_t	 index) const

Get	the	position	of	a	point.

The	returned	point	is	in	local	coordinates,	that	is,	the	shape's	transforms	(position,	rotation,	scale)	are	not
taken	into	account.	The	result	is	undefined	if	index	is	out	of	the	valid	range.

Parameters
index Index	of	the	point	to	get,	in	range	[0	..	getPointCount()	-	1]

Returns
Position	of	the	index-th	point	of	the	polygon

See	also
setPoint

Implements	sf::Shape.

virtual	std::size_t	sf::ConvexShape::getPointCount () const

Get	the	number	of	points	of	the	polygon.

Returns
Number	of	points	of	the	polygon

See	also
setPointCount

Implements	sf::Shape.

const	Vector2f&	sf::Transformable::getPosition () const

get	the	position	of	the	object

Returns
Current	position

See	also
setPosition

float	sf::Transformable::getRotation () const

get	the	orientation	of	the	object

The	rotation	is	always	in	the	range	[0,	360].

Returns
Current	rotation,	in	degrees

See	also
setRotation

const	Vector2f&	sf::Transformable::getScale () const

get	the	current	scale	of	the	object

Returns
Current	scale	factors

See	also
setScale

const	Texture*	sf::Shape::getTexture () const

Get	the	source	texture	of	the	shape.

If	 the	 shape	 has	 no	 source	 texture,	 a	NULL	 pointer	 is	 returned.	 The	 returned	 pointer	 is	 const,	 which
means	that	you	can't	modify	the	texture	when	you	retrieve	it	with	this	function.

Returns
Pointer	to	the	shape's	texture

See	also
setTexture

const	IntRect&	sf::Shape::getTextureRect () const

Get	the	sub-rectangle	of	the	texture	displayed	by	the	shape.

Returns
Texture	rectangle	of	the	shape

See	also
setTextureRect

const	Transform&	sf::Transformable::getTransform () const

get	the	combined	transform	of	the	object

Returns
Transform	combining	the	position/rotation/scale/origin	of	the	object

See	also
getInverseTransform

void	sf::Transformable::move (float	 offsetX,
float	 offsetY	
)

Move	the	object	by	a	given	offset.

This	function	adds	to	the	current	position	of	the	object,	unlike	setPosition	which	overwrites	it.	Thus,	it	is
equivalent	to	the	following	code:

sf::Vector2f	pos	=	object.getPosition();

object.setPosition(pos.x	+	offsetX,	pos.y	+	offsetY);

Parameters
offsetX X	offset
offsetY Y	offset

See	also
setPosition

void	sf::Transformable::move (const	Vector2f	&	 offset)

Move	the	object	by	a	given	offset.

This	function	adds	to	the	current	position	of	the	object,	unlike	setPosition	which	overwrites	it.	Thus,	it	is
equivalent	to	the	following	code:

object.setPosition(object.getPosition()	+	offset);

Parameters
offsetOffset

See	also
setPosition

void	sf::Transformable::rotate (float	 angle)

Rotate	the	object.

This	function	adds	to	the	current	rotation	of	the	object,	unlike	setRotation	which	overwrites	it.	Thus,	it	is
equivalent	to	the	following	code:

object.setRotation(object.getRotation()	+	angle);

Parameters
angle Angle	of	rotation,	in	degrees

void	sf::Transformable::scale (float	 factorX,
float	 factorY	
)

Scale	the	object.

This	 function	multiplies	 the	 current	 scale	 of	 the	 object,	 unlike	 setScale	which	 overwrites	 it.	 Thus,	 it	 is
equivalent	to	the	following	code:

sf::Vector2f	scale	=	object.getScale();

object.setScale(scale.x	*	factorX,	scale.y	*	factorY);

Parameters
factorXHorizontal	scale	factor
factorY Vertical	scale	factor

See	also
setScale

void	sf::Transformable::scale (const	Vector2f	&	 factor)

Scale	the	object.

This	 function	multiplies	 the	 current	 scale	 of	 the	 object,	 unlike	 setScale	which	 overwrites	 it.	 Thus,	 it	 is
equivalent	to	the	following	code:

sf::Vector2f	scale	=	object.getScale();

object.setScale(scale.x	*	factor.x,	scale.y	*	factor.y);

Parameters
factor Scale	factors

See	also
setScale

void	sf::Shape::setFillColor (const	Color	&	 color)

Set	the	fill	color	of	the	shape.

This	color	is	modulated	(multiplied)	with	the	shape's	texture	if	any.	It	can	be	used	to	colorize	the	shape,
or	 change	 its	 global	 opacity.	 You	 can	 use	 sf::Color::Transparent	 to	 make	 the	 inside	 of	 the	 shape
transparent,	and	have	the	outline	alone.	By	default,	the	shape's	fill	color	is	opaque	white.

Parameters
colorNew	color	of	the	shape

See	also
getFillColor,	setOutlineColor

void	sf::Transformable::setOrigin (float	 x,
float	 y	
)

set	the	local	origin	of	the	object

The	 origin	 of	 an	 object	 defines	 the	 center	 point	 for	 all	 transformations	 (position,	 scale,	 rotation).	 The
coordinates	 of	 this	 point	 must	 be	 relative	 to	 the	 top-left	 corner	 of	 the	 object,	 and	 ignore	 all
transformations	(position,	scale,	rotation).	The	default	origin	of	a	transformable	object	is	(0,	0).

Parameters
x X	coordinate	of	the	new	origin
y Y	coordinate	of	the	new	origin

See	also
getOrigin

void	sf::Transformable::setOrigin (const	Vector2f	&	 origin)

set	the	local	origin	of	the	object

The	 origin	 of	 an	 object	 defines	 the	 center	 point	 for	 all	 transformations	 (position,	 scale,	 rotation).	 The
coordinates	 of	 this	 point	 must	 be	 relative	 to	 the	 top-left	 corner	 of	 the	 object,	 and	 ignore	 all
transformations	(position,	scale,	rotation).	The	default	origin	of	a	transformable	object	is	(0,	0).

Parameters
origin New	origin

See	also
getOrigin

void	sf::Shape::setOutlineColor (const	Color	&	 color)

Set	the	outline	color	of	the	shape.

By	default,	the	shape's	outline	color	is	opaque	white.

Parameters
colorNew	outline	color	of	the	shape

See	also
getOutlineColor,	setFillColor

void	sf::Shape::setOutlineThickness (float	 thickness)

Set	the	thickness	of	the	shape's	outline.

Note	that	negative	values	are	allowed	(so	that	the	outline	expands	towards	the	center	of	the	shape),	and
using	zero	disables	the	outline.	By	default,	the	outline	thickness	is	0.

Parameters
thickness New	outline	thickness

See	also
getOutlineThickness

void	sf::ConvexShape::setPoint (std::size_t	 index,
const	Vector2f	&	 point	
)

Set	the	position	of	a	point.

Don't	 forget	 that	 the	polygon	must	 remain	convex,	and	 the	points	need	to	stay	ordered!	setPointCount
must	be	called	first	in	order	to	set	the	total	number	of	points.	The	result	is	undefined	if	
valid	range.

Parameters
index Index	of	the	point	to	change,	in	range	[0	..	getPointCount()	-	1]

point New	position	of	the	point

See	also
getPoint

void	sf::ConvexShape::setPointCount (std::size_t	 count)

Set	the	number	of	points	of	the	polygon.

count	must	be	greater	than	2	to	define	a	valid	shape.

Parameters
count New	number	of	points	of	the	polygon

See	also
getPointCount

void	sf::Transformable::setPosition (float	 x,
float	 y	
)

set	the	position	of	the	object

This	function	completely	overwrites	the	previous	position.	See	the	move	function	to	apply	an	offset	based
on	the	previous	position	instead.	The	default	position	of	a	transformable	object	is	(0,	0).

Parameters
x X	coordinate	of	the	new	position
y Y	coordinate	of	the	new	position

See	also

move,	getPosition

void	sf::Transformable::setPosition (const	Vector2f	&	 position)

set	the	position	of	the	object

This	function	completely	overwrites	the	previous	position.	See	the	move	function	to	apply	an	offset	based
on	the	previous	position	instead.	The	default	position	of	a	transformable	object	is	(0,	0).

Parameters
positionNew	position

See	also
move,	getPosition

void	sf::Transformable::setRotation (float	 angle)

set	the	orientation	of	the	object

This	function	completely	overwrites	the	previous	rotation.	See	the	rotate	function	to	add	an	angle	based
on	the	previous	rotation	instead.	The	default	rotation	of	a	transformable	object	is	0.

Parameters
angle New	rotation,	in	degrees

See	also
rotate,	getRotation

void	sf::Transformable::setScale (float	 factorX,
float	 factorY	

)

set	the	scale	factors	of	the	object

This	function	completely	overwrites	the	previous	scale.	See	the	scale	function	to	add	a	factor	based	on
the	previous	scale	instead.	The	default	scale	of	a	transformable	object	is	(1,	1).

Parameters
factorXNew	horizontal	scale	factor
factorYNew	vertical	scale	factor

See	also
scale,	getScale

void	sf::Transformable::setScale (const	Vector2f	&	 factors)

set	the	scale	factors	of	the	object

This	function	completely	overwrites	the	previous	scale.	See	the	scale	function	to	add	a	factor	based	on
the	previous	scale	instead.	The	default	scale	of	a	transformable	object	is	(1,	1).

Parameters
factors New	scale	factors

See	also
scale,	getScale

void	sf::Shape::setTexture (const	Texture	*	 texture,
bool	 resetRect	=	false	
)

Change	the	source	texture	of	the	shape.

The	texture	argument	refers	to	a	texture	that	must	exist	as	long	as	the	shape	uses	it.	Indeed,	the	shape
doesn't	store	 its	own	copy	of	 the	texture,	but	rather	keeps	a	pointer	 to	the	one	that	you	passed	to	this
function.	 If	 the	 source	 texture	 is	 destroyed	 and	 the	 shape	 tries	 to	 use	 it,	 the	 behavior	 is	 undefined.
texture	can	be	NULL	to	disable	texturing.	 If	resetRect	 is	 true,	 the	TextureRect	property	of	 the	shape	 is
automatically	adjusted	to	the	size	of	the	new	texture.	If	it	is	false,	the	texture	rect	is	left	unchanged.

Parameters
texture New	texture
resetRect Should	the	texture	rect	be	reset	to	the	size	of	the	new	texture?

See	also
getTexture,	setTextureRect

void	sf::Shape::setTextureRect (const	IntRect	&	 rect)

Set	the	sub-rectangle	of	the	texture	that	the	shape	will	display.

The	 texture	 rect	 is	useful	when	you	don't	want	 to	display	 the	whole	 texture,	but	 rather	a	part	of	 it.	By
default,	the	texture	rect	covers	the	entire	texture.

Parameters
rect Rectangle	defining	the	region	of	the	texture	to	display

See	also
getTextureRect,	setTexture

void	sf::Shape::update ()

Recompute	the	internal	geometry	of	the	shape.

This	function	must	be	called	by	the	derived	class	everytime	the	shape's	points	change	(i.e.	the	result	of
either	getPointCount	or	getPoint	is	different).

The	documentation	for	this	class	was	generated	from	the	following	file:
ConvexShape.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Member	Functions	|	Protected	Member	Functions	|	Friends	|	List	of	all	members

sf::Drawable	Class	Reference abstract

Graphics	module

Abstract	base	class	for	objects	that	can	be	drawn	to	a	render	target.	More...

#include	<Drawable.hpp>

Inheritance	diagram	for	sf::Drawable:

Public	Member	Functions
virtual	 ~Drawable	()
	 Virtual	destructor.	More...
	

Protected	Member	Functions
virtual	void	 draw	(RenderTarget	&target,	RenderStates	states)	const	=0
	 Draw	the	object	to	a	render	target.	More...
	

Friends
class	 RenderTarget
	

Detailed	Description

Abstract	base	class	for	objects	that	can	be	drawn	to	a	render	target.

sf::Drawable	 is	 a	 very	 simple	 base	 class	 that	 allows	 objects	 of	 derived	 classes	 to	 be	 drawn	 to	 a
sf::RenderTarget.

All	you	have	to	do	in	your	derived	class	is	to	override	the	draw	virtual	function.

Note	that	inheriting	from	sf::Drawable	is	not	mandatory,	but	it	allows	this	nice	syntax	"window.draw(object)"
rather	than	"object.draw(window)",	which	is	more	consistent	with	other	SFML	classes.

Example:

class	MyDrawable	:	public	sf::Drawable

{

public:

			...

private:

	virtual	void	draw(sf::RenderTarget&	target,	sf::RenderStates	states)	const

	{

	//	You	can	draw	other	high-level	objects

								target.draw(m_sprite,	states);

	//	...	or	use	the	low-level	API

								states.texture	=	&m_texture;

								target.draw(m_vertices,	states);

	//	...	or	draw	with	OpenGL	directly

								glBegin(GL_QUADS);

								...

								glEnd();

				}

	sf::Sprite	m_sprite;

	sf::Texture	m_texture;

	sf::VertexArray	m_vertices;

};

See	also
sf::RenderTarget

Definition	at	line	44	of	file	Drawable.hpp.

Constructor	&	Destructor	Documentation

virtual	sf::Drawable::~Drawable ()

Virtual	destructor.

Definition	at	line	52	of	file	Drawable.hpp.

Member	Function	Documentation

virtual	void	sf::Drawable::draw (RenderTarget	&	 target,
RenderStates	 states	

) const

Draw	the	object	to	a	render	target.

This	is	a	pure	virtual	function	that	has	to	be	implemented	by	the	derived	class	to	define	how	the	drawable
should	be	drawn.

Parameters
target Render	target	to	draw	to
statesCurrent	render	states

The	documentation	for	this	class	was	generated	from	the	following	file:
Drawable.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Classes	|	Public	Member	Functions	|	List	of	all	members

sf::Font	Class	Reference
Graphics	module

Class	for	loading	and	manipulating	character	fonts.	More...

#include	<Font.hpp>

Classes
struct		 Info
	 Holds	various	information	about	a	font.	More...
	

Public	Member	Functions
	 Font	()

	 Default	constructor.	More...
	

	 Font	(const	Font	©)
	 Copy	constructor.	More...
	

	 ~Font	()
	 Destructor.	More...
	

bool	 loadFromFile	(const	std::string	&filename)
	 Load	the	font	from	a	file.	More...
	

bool	 loadFromMemory	(const	void	*data,	std::size_t	sizeInBytes)
	 Load	the	font	from	a	file	in	memory.	More...
	

bool	 loadFromStream	(InputStream	&stream)
	 Load	the	font	from	a	custom	stream.	More...
	

const	Info	&	 getInfo	()	const
	 Get	the	font	information.	More...
	

const	Glyph	&	 getGlyph	(Uint32	codePoint,	unsigned	int	characterSize,	bool	bold,	floatoutlineThickness=0)	const
	 Retrieve	a	glyph	of	the	font.	More...
	

float	 getKerning	(Uint32	first,	Uint32	second,	unsigned	int	characterSize)	const
	 Get	the	kerning	offset	of	two	glyphs.	More...
	

float	 getLineSpacing	(unsigned	int	characterSize)	const
	 Get	the	line	spacing.	More...
	

float	 getUnderlinePosition	(unsigned	int	characterSize)	const
	 Get	the	position	of	the	underline.	More...
	

float	 getUnderlineThickness	(unsigned	int	characterSize)	const
	 Get	the	thickness	of	the	underline.	More...
	
const	Texture	&	 getTexture	(unsigned	int	characterSize)	const
	 Retrieve	the	texture	containing	the	loaded	glyphs	of	a	certain	size.	
	

Font	&	 operator=	(const	Font	&right)
	 Overload	of	assignment	operator.	More...
	

Detailed	Description

Class	for	loading	and	manipulating	character	fonts.

Fonts	can	be	loaded	from	a	file,	 from	memory	or	from	a	custom	stream,	and	supports	the	most	common
types	of	fonts.

See	the	loadFromFile	function	for	the	complete	list	of	supported	formats.

Once	it	is	loaded,	a	sf::Font	instance	provides	three	types	of	information	about	the	font:

Global	metrics,	such	as	the	line	spacing

Per-glyph	metrics,	such	as	bounding	box	or	kerning

Pixel	representation	of	glyphs

Fonts	alone	are	not	very	useful:	they	hold	the	font	data	but	cannot	make	anything	useful	of	it.	To	do	so	you
need	to	use	the	sf::Text	class,	which	is	able	to	properly	output	text	with	several	options	such	as	character
size,	 style,	 color,	 position,	 rotation,	 etc.	 This	 separation	 allows	more	 flexibility	 and	 better	 performances:
indeed	 a	 sf::Font	 is	 a	 heavy	 resource,	 and	 any	 operation	 on	 it	 is	 slow	 (often	 too	 slow	 for	 real-time
applications).	On	the	other	side,	a	 sf::Text	 is	a	lightweight	object	which	can	combine	the	glyphs	data	and
metrics	of	 a	 sf::Font	 to	 display	 any	 text	 on	 a	 render	 target.	Note	 that	 it	 is	 also	 possible	 to	 bind	 several
sf::Text	instances	to	the	same	sf::Font.

It	is	important	to	note	that	the	sf::Text	instance	doesn't	copy	the	font	that	it	uses,	it	only	keeps	a	reference
to	it.	Thus,	a	sf::Font	must	not	be	destructed	while	it	 is	used	by	a	 sf::Text
uses	a	local	sf::Font	instance	for	creating	a	text).

Usage	example:

//	Declare	a	new	font

sf::Font	font;

//	Load	it	from	a	file

if	(!font.loadFromFile("arial.ttf"))

{

	//	error...

}

//	Create	a	text	which	uses	our	font

sf::Text	text1;

text1.setFont(font);

text1.setCharacterSize(30);

text1.setStyle(sf::Text::Regular);

//	Create	another	text	using	the	same	font,	but	with	different	parameters

sf::Text	text2;

text2.setFont(font);

text2.setCharacterSize(50);

text2.setStyle(sf::Text::Italic);

Apart	 from	 loading	 font	 files,	and	passing	 them	 to	 instances	of	 sf::Text,	you	should	normally	not	have	 to
deal	directly	with	this	class.	However,	 it	may	be	useful	 to	access	the	font	metrics	or	rasterized	glyphs	for
advanced	usage.

Note	that	if	the	font	is	a	bitmap	font,	it	is	not	scalable,	thus	not	all	requested	sizes	will	be	available	to	use.
This	needs	to	be	taken	into	consideration	when	using	sf::Text.	If	you	need	to	display	text	of	a	certain	size,
make	sure	the	corresponding	bitmap	font	that	supports	that	size	is	used.

See	also
sf::Text

Definition	at	line	50	of	file	Font.hpp.

Constructor	&	Destructor	Documentation

sf::Font::Font ()

Default	constructor.

This	constructor	defines	an	empty	font

sf::Font::Font (const	Font	&	 copy)

Copy	constructor.

Parameters
copy Instance	to	copy

sf::Font::~Font ()

Destructor.

Cleans	up	all	the	internal	resources	used	by	the	font

Member	Function	Documentation

const	Glyph&	sf::Font::getGlyph (Uint32	 codePoint,
unsigned	int	 characterSize,
bool	 bold,
float	 outlineThickness	=	0
) const

Retrieve	a	glyph	of	the	font.

If	the	font	is	a	bitmap	font,	not	all	character	sizes	might	be	available.	If	the	glyph	is	not	available	at	the
requested	size,	an	empty	glyph	is	returned.

Be	aware	that	using	a	negative	value	for	the	outline	thickness	will	cause	distorted	rendering.

Parameters
codePoint Unicode	code	point	of	the	character	to	get
characterSize Reference	character	size
bold Retrieve	the	bold	version	or	the	regular	one?
outlineThickness Thickness	of	outline	(when	!=	0	the	glyph	will	not	be	filled)

Returns
The	glyph	corresponding	to	codePoint	and	characterSize

const	Info&	sf::Font::getInfo () const

Get	the	font	information.

Returns
A	structure	that	holds	the	font	information

float	sf::Font::getKerning (Uint32	 first,
Uint32	 second,
unsigned	int	 characterSize	
) const

Get	the	kerning	offset	of	two	glyphs.

The	kerning	is	an	extra	offset	(negative)	to	apply	between	two	glyphs	when	rendering	them,	to	make	the
pair	 look	more	 "natural".	For	example,	 the	pair	 "AV"	have	a	special	kerning	 to	make	 them	closer	 than
other	characters.	Most	of	the	glyphs	pairs	have	a	kerning	offset	of	zero,	though.

Parameters
first Unicode	code	point	of	the	first	character
second Unicode	code	point	of	the	second	character
characterSizeReference	character	size

Returns
Kerning	value	for	first	and	second,	in	pixels

float	sf::Font::getLineSpacing (unsigned	int	 characterSize) const

Get	the	line	spacing.

Line	spacing	is	the	vertical	offset	to	apply	between	two	consecutive	lines	of	text.

Parameters
characterSizeReference	character	size

Returns
Line	spacing,	in	pixels

const	Texture&	sf::Font::getTexture (unsigned	int	 characterSize) const

Retrieve	the	texture	containing	the	loaded	glyphs	of	a	certain	size.

The	contents	of	the	returned	texture	changes	as	more	glyphs	are	requested,	thus	it	is	not	very	relevant.
It	is	mainly	used	internally	by	sf::Text.

Parameters
characterSizeReference	character	size

Returns
Texture	containing	the	glyphs	of	the	requested	size

float	sf::Font::getUnderlinePosition (unsigned	int	 characterSize) const

Get	the	position	of	the	underline.

Underline	position	is	the	vertical	offset	to	apply	between	the	baseline	and	the	underline.

Parameters
characterSizeReference	character	size

Returns
Underline	position,	in	pixels

See	also
getUnderlineThickness

float	sf::Font::getUnderlineThickness (unsigned	int	 characterSize)

Get	the	thickness	of	the	underline.

Underline	thickness	is	the	vertical	size	of	the	underline.

Parameters
characterSizeReference	character	size

Returns
Underline	thickness,	in	pixels

See	also
getUnderlinePosition

bool	sf::Font::loadFromFile (const	std::string	&	 filename)

Load	the	font	from	a	file.

The	 supported	 font	 formats	 are:	 TrueType,	 Type	 1,	 CFF,	OpenType,	 SFNT,	 X11	 PCF,	Windows	 FNT,
BDF,	PFR	and	Type	42.	Note	 that	 this	 function	know	nothing	about	 the	standard	 fonts	 installed	on	 the
user's	system,	thus	you	can't	load	them	directly.

Warning
SFML	cannot	preload	all	the	font	data	in	this	function,	so	the	file	has	to	remain	accessible	until	the
sf::Font	object	loads	a	new	font	or	is	destroyed.

Parameters
filename Path	of	the	font	file	to	load

Returns

True	if	loading	succeeded,	false	if	it	failed

See	also
loadFromMemory,	loadFromStream

bool	sf::Font::loadFromMemory (const	void	*	 data,
std::size_t	 sizeInBytes	
)

Load	the	font	from	a	file	in	memory.

The	 supported	 font	 formats	 are:	 TrueType,	 Type	 1,	 CFF,	OpenType,	 SFNT,	 X11	 PCF,	Windows	 FNT,
BDF,	PFR	and	Type	42.

Warning
SFML	cannot	preload	all	the	font	data	in	this	function,	so	the	buffer	pointed	by	
valid	until	the	sf::Font	object	loads	a	new	font	or	is	destroyed.

Parameters
data Pointer	to	the	file	data	in	memory
sizeInBytes Size	of	the	data	to	load,	in	bytes

Returns
True	if	loading	succeeded,	false	if	it	failed

See	also
loadFromFile,	loadFromStream

bool	sf::Font::loadFromStream (InputStream	&	 stream)

Load	the	font	from	a	custom	stream.

The	 supported	 font	 formats	 are:	 TrueType,	 Type	 1,	 CFF,	OpenType,	 SFNT,	 X11	 PCF,	Windows	 FNT,
BDF,	PFR	and	Type	42.	Warning:	SFML	cannot	preload	all	the	font	data	in	this	function,	so	the	contents
of	stream	have	to	remain	valid	as	long	as	the	font	is	used.

Warning
SFML	cannot	preload	all	the	font	data	in	this	function,	so	the	stream	has	to	remain	accessible	until
the	sf::Font	object	loads	a	new	font	or	is	destroyed.

Parameters
stream Source	stream	to	read	from

Returns
True	if	loading	succeeded,	false	if	it	failed

See	also
loadFromFile,	loadFromMemory

Font&	sf::Font::operator= (const	Font	&	 right)

Overload	of	assignment	operator.

Parameters
right Instance	to	assign

Returns
Reference	to	self

The	documentation	for	this	class	was	generated	from	the	following	file:
Font.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

http://www.sfml-dev.org/license.php

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Attributes	|	List	of	all	members

sf::Font::Info	Struct	Reference

Holds	various	information	about	a	font.	More...

#include	<Font.hpp>

Public	Attributes
std::string	 family
	 The	font	family.	More...
	

Detailed	Description

Holds	various	information	about	a	font.

Definition	at	line	58	of	file	Font.hpp.

Member	Data	Documentation

std::string	sf::Font::Info::family

The	font	family.

Definition	at	line	60	of	file	Font.hpp.

The	documentation	for	this	struct	was	generated	from	the	following	file:
Font.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Member	Functions	|	Public	Attributes	|	List	of	all	members

sf::Glyph	Class	Reference
Graphics	module

Structure	describing	a	glyph.	More...

#include	<Glyph.hpp>

Public	Member	Functions
	 Glyph	()
	 Default	constructor.	More...
	

Public	Attributes
float	 advance

	 Offset	to	move	horizontally	to	the	next	character.	More...
	
FloatRect	 bounds
	 Bounding	rectangle	of	the	glyph,	in	coordinates	relative	to	the	baseline.	
	

IntRect	 textureRect
	 Texture	coordinates	of	the	glyph	inside	the	font's	texture.	More...
	

Detailed	Description

Structure	describing	a	glyph.

A	glyph	is	the	visual	representation	of	a	character.

The	sf::Glyph	structure	provides	the	information	needed	to	handle	the	glyph:

its	coordinates	in	the	font's	texture

its	bounding	rectangle

the	offset	to	apply	to	get	the	starting	position	of	the	next	glyph

See	also
sf::Font

Definition	at	line	41	of	file	Glyph.hpp.

Constructor	&	Destructor	Documentation

sf::Glyph::Glyph ()

Default	constructor.

Definition	at	line	49	of	file	Glyph.hpp.

Member	Data	Documentation

float	sf::Glyph::advance

Offset	to	move	horizontally	to	the	next	character.

Definition	at	line	54	of	file	Glyph.hpp.

FloatRect	sf::Glyph::bounds

Bounding	rectangle	of	the	glyph,	in	coordinates	relative	to	the	baseline.

Definition	at	line	55	of	file	Glyph.hpp.

IntRect	sf::Glyph::textureRect

Texture	coordinates	of	the	glyph	inside	the	font's	texture.

Definition	at	line	56	of	file	Glyph.hpp.

The	documentation	for	this	class	was	generated	from	the	following	file:
Glyph.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Member	Functions	|	List	of	all	members

sf::Image	Class	Reference
Graphics	module

Class	for	loading,	manipulating	and	saving	images.	More...

#include	<Image.hpp>

Public	Member	Functions
	 Image	()

	 Default	constructor.	More...
	

	 ~Image	()
	 Destructor.	More...
	

void	 create	(unsigned	int	width,	unsigned	int	height,	const	Color
	 Create	the	image	and	fill	it	with	a	unique	color.	More...
	

void	 create	(unsigned	int	width,	unsigned	int	height,	const	Uint8	*pixels)
	 Create	the	image	from	an	array	of	pixels.	More...
	

bool	 loadFromFile	(const	std::string	&filename)
	 Load	the	image	from	a	file	on	disk.	More...
	

bool	 loadFromMemory	(const	void	*data,	std::size_t	size)
	 Load	the	image	from	a	file	in	memory.	More...
	

bool	 loadFromStream	(InputStream	&stream)
	 Load	the	image	from	a	custom	stream.	More...
	

bool	 saveToFile	(const	std::string	&filename)	const
	 Save	the	image	to	a	file	on	disk.	More...
	

Vector2u	 getSize	()	const
	 Return	the	size	(width	and	height)	of	the	image.	More...
	

void	 createMaskFromColor	(const	Color	&color,	Uint8	alpha=0)
	 Create	a	transparency	mask	from	a	specified	color-key.	More...
	

copy	(const	Image	&source,	unsigned	int	destX,	unsigned	int	destY,	const	

void	 &sourceRect=IntRect(0,	0,	0,	0),	bool	applyAlpha=false)

	 Copy	pixels	from	another	image	onto	this	one.	More...
	

void	 setPixel	(unsigned	int	x,	unsigned	int	y,	const	Color	&color)
	 Change	the	color	of	a	pixel.	More...
	

Color	 getPixel	(unsigned	int	x,	unsigned	int	y)	const
	 Get	the	color	of	a	pixel.	More...
	
const	Uint8	*	 getPixelsPtr	()	const
	 Get	a	read-only	pointer	to	the	array	of	pixels.	More...
	

void	 flipHorizontally	()
	 Flip	the	image	horizontally	(left	<->	right)	More...
	

void	 flipVertically	()
	 Flip	the	image	vertically	(top	<->	bottom)	More...
	

Detailed	Description

Class	for	loading,	manipulating	and	saving	images.

sf::Image	is	an	abstraction	to	manipulate	images	as	bidimensional	arrays	of	pixels.

The	class	provides	functions	to	load,	read,	write	and	save	pixels,	as	well	as	many	other	useful	functions.

sf::Image	can	handle	a	unique	internal	representation	of	pixels,	which	is	RGBA	32	bits.	This	means	that	a
pixel	 must	 be	 composed	 of	 8	 bits	 red,	 green,	 blue	 and	 alpha	 channels	 –	 just	 like	 a	
functions	 that	 return	 an	 array	 of	 pixels	 follow	 this	 rule,	 and	 all	 parameters	 that	 you	 pass	 to	
functions	(such	as	loadFromMemory)	must	use	this	representation	as	well.

A	 sf::Image	 can	 be	 copied,	 but	 it	 is	 a	 heavy	 resource	 and	 if	 possible	 you	 should	 always	 use	 [const]
references	to	pass	or	return	them	to	avoid	useless	copies.

Usage	example:

//	Load	an	image	file	from	a	file

sf::Image	background;

if	(!background.loadFromFile("background.jpg"))

	return	-1;

//	Create	a	20x20	image	filled	with	black	color

sf::Image	image;

image.create(20,	20,	sf::Color::Black);

//	Copy	image1	on	image2	at	position	(10,	10)

image.copy(background,	10,	10);

//	Make	the	top-left	pixel	transparent

sf::Color	color	=	image.getPixel(0,	0);

color.a	=	0;

image.setPixel(0,	0,	color);

//	Save	the	image	to	a	file

if	(!image.saveToFile("result.png"))

	return	-1;

See	also
sf::Texture

Definition	at	line	46	of	file	Image.hpp.

Constructor	&	Destructor	Documentation

sf::Image::Image ()

Default	constructor.

Creates	an	empty	image.

sf::Image::~Image ()

Destructor.

Member	Function	Documentation

void	sf::Image::copy (const	Image	&	 source,
unsigned	int	 destX,
unsigned	int	 destY,
const	IntRect	&	 sourceRect	=	IntRect(0,	0,	0,	0)
bool	 applyAlpha	=	false	
)

Copy	pixels	from	another	image	onto	this	one.

This	 function	does	a	slow	pixel	 copy	and	should	not	be	used	 intensively.	 It	 can	be	used	 to	prepare	a
complex	static	image	from	several	others,	but	if	you	need	this	kind	of	feature	in	real-time	you'd	better	use
sf::RenderTexture.

If	sourceRect	is	empty,	the	whole	image	is	copied.	If	applyAlpha	is	set	to	true,	the	transparency	of	source
pixels	is	applied.	If	it	is	false,	the	pixels	are	copied	unchanged	with	their	alpha	value.

Parameters
source Source	image	to	copy
destX X	coordinate	of	the	destination	position
destY Y	coordinate	of	the	destination	position
sourceRect Sub-rectangle	of	the	source	image	to	copy
applyAlpha Should	the	copy	take	into	account	the	source	transparency?

void	sf::Image::create (unsigned	int	 width,
unsigned	int	 height,
const	Color	&	 color	=	Color(0,	0,	0)	

)

Create	the	image	and	fill	it	with	a	unique	color.

Parameters
width Width	of	the	image
heightHeight	of	the	image
color Fill	color

void	sf::Image::create (unsigned	int	 width,
unsigned	int	 height,
const	Uint8	*	 pixels	
)

Create	the	image	from	an	array	of	pixels.

The	pixel	array	is	assumed	to	contain	32-bits	RGBA	pixels,	and	have	the	given	
this	is	an	undefined	behavior.	If	pixels	is	null,	an	empty	image	is	created.

Parameters
width Width	of	the	image
heightHeight	of	the	image
pixels Array	of	pixels	to	copy	to	the	image

void	sf::Image::createMaskFromColor (const	Color	&	 color,
Uint8	 alpha	=	0	
)

Create	a	transparency	mask	from	a	specified	color-key.

This	function	sets	the	alpha	value	of	every	pixel	matching	the	given	color	to	
they	become	transparent.

Parameters
color Color	to	make	transparent
alpha Alpha	value	to	assign	to	transparent	pixels

void	sf::Image::flipHorizontally ()

Flip	the	image	horizontally	(left	<->	right)

void	sf::Image::flipVertically ()

Flip	the	image	vertically	(top	<->	bottom)

Color	sf::Image::getPixel (unsigned	int	 x,
unsigned	int	 y	
) const

Get	the	color	of	a	pixel.

This	function	doesn't	check	the	validity	of	the	pixel	coordinates,	using	out-of-range	values	will	result	in	an
undefined	behavior.

Parameters
x X	coordinate	of	pixel	to	get
y Y	coordinate	of	pixel	to	get

Returns

Color	of	the	pixel	at	coordinates	(x,	y)

See	also
setPixel

const	Uint8*	sf::Image::getPixelsPtr () const

Get	a	read-only	pointer	to	the	array	of	pixels.

The	returned	value	points	to	an	array	of	RGBA	pixels	made	of	8	bits	integers	components.	The	size	of
the	array	is	width	*	height	*	4	(getSize().x	*	getSize().y	*	4).	Warning:	the	returned	pointer	may	become
invalid	 if	you	modify	 the	 image,	so	you	should	never	store	 it	 for	 too	 long.	 If	 the	 image	 is	empty,	a	null
pointer	is	returned.

Returns
Read-only	pointer	to	the	array	of	pixels

Vector2u	sf::Image::getSize () const

Return	the	size	(width	and	height)	of	the	image.

Returns
Size	of	the	image,	in	pixels

bool	sf::Image::loadFromFile (const	std::string	&	 filename)

Load	the	image	from	a	file	on	disk.

The	supported	image	formats	are	bmp,	png,	tga,	jpg,	gif,	psd,	hdr	and	pic.	Some	format	options	are	not

supported,	like	progressive	jpeg.	If	this	function	fails,	the	image	is	left	unchanged.

Parameters
filename Path	of	the	image	file	to	load

Returns
True	if	loading	was	successful

See	also
loadFromMemory,	loadFromStream,	saveToFile

bool	sf::Image::loadFromMemory (const	void	*	 data,
std::size_t	 size	
)

Load	the	image	from	a	file	in	memory.

The	supported	image	formats	are	bmp,	png,	tga,	jpg,	gif,	psd,	hdr	and	pic.	Some	format	options	are	not
supported,	like	progressive	jpeg.	If	this	function	fails,	the	image	is	left	unchanged.

Parameters
data Pointer	to	the	file	data	in	memory
size Size	of	the	data	to	load,	in	bytes

Returns
True	if	loading	was	successful

See	also
loadFromFile,	loadFromStream

bool	sf::Image::loadFromStream (InputStream	&	 stream)

Load	the	image	from	a	custom	stream.

The	supported	image	formats	are	bmp,	png,	tga,	jpg,	gif,	psd,	hdr	and	pic.	Some	format	options	are	not
supported,	like	progressive	jpeg.	If	this	function	fails,	the	image	is	left	unchanged.

Parameters
stream Source	stream	to	read	from

Returns
True	if	loading	was	successful

See	also
loadFromFile,	loadFromMemory

bool	sf::Image::saveToFile (const	std::string	&	 filename) const

Save	the	image	to	a	file	on	disk.

The	format	of	the	image	is	automatically	deduced	from	the	extension.	The	supported	image	formats	are
bmp,	 png,	 tga	 and	 jpg.	 The	 destination	 file	 is	 overwritten	 if	 it	 already	 exists.	 This	 function	 fails	 if	 the
image	is	empty.

Parameters
filename Path	of	the	file	to	save

Returns
True	if	saving	was	successful

See	also
create,	loadFromFile,	loadFromMemory

void	sf::Image::setPixel (unsigned	int	 x,
unsigned	int	 y,
const	Color	&	 color	
)

Change	the	color	of	a	pixel.

This	function	doesn't	check	the	validity	of	the	pixel	coordinates,	using	out-of-range	values	will	result	in	an
undefined	behavior.

Parameters
x X	coordinate	of	pixel	to	change
y Y	coordinate	of	pixel	to	change
colorNew	color	of	the	pixel

See	also
getPixel

The	documentation	for	this	class	was	generated	from	the	following	file:
Image.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Member	Functions	|	Public	Attributes	|	Related	Functions	|	List	of	all	members

sf::Rect<	T	>	Class	Template	Reference
Graphics	module

Utility	class	for	manipulating	2D	axis	aligned	rectangles.	More...

#include	<Rect.hpp>

Public	Member	Functions
	 Rect	()

	 Default	constructor.	More...
	

	 Rect	(T	rectLeft,	T	rectTop,	T	rectWidth,	T	rectHeight)
	 Construct	the	rectangle	from	its	coordinates.	More...
	

	 Rect	(const	Vector2<	T	>	&position,	const	Vector2<	T	>	&size)
	 Construct	the	rectangle	from	position	and	size.	More...
	
template<typename	U	>

	 Rect	(const	Rect<	U	>	&rectangle)
	 Construct	the	rectangle	from	another	type	of	rectangle.	More...
	
bool	 contains	(T	x,	T	y)	const
	 Check	if	a	point	is	inside	the	rectangle's	area.	More...
	
bool	 contains	(const	Vector2<	T	>	&point)	const
	 Check	if	a	point	is	inside	the	rectangle's	area.	More...
	
bool	 intersects	(const	Rect<	T	>	&rectangle)	const
	 Check	the	intersection	between	two	rectangles.	More...
	
bool	 intersects	(const	Rect<	T	>	&rectangle,	Rect<	T	>	&intersection)	const
	 Check	the	intersection	between	two	rectangles.	More...
	

Public	Attributes
T	 left
	 Left	coordinate	of	the	rectangle.	More...
	
T	 top
	 Top	coordinate	of	the	rectangle.	More...
	
T	 width
	 Width	of	the	rectangle.	More...
	
T	 height
	 Height	of	the	rectangle.	More...
	

Related	Functions

(Note	that	these	are	not	member	functions.)

template<typename	T	>
bool	 operator==	(const	Rect<	T	>	&left,	const	Rect<	T	>	&right)
	 Overload	of	binary	operator	==.	More...
	
template<typename	T	>
bool	 operator!=	(const	Rect<	T	>	&left,	const	Rect<	T	>	&right)
	 Overload	of	binary	operator	!=.	More...
	

Detailed	Description

template<typename	T>
class	sf::Rect<	T	>

Utility	class	for	manipulating	2D	axis	aligned	rectangles.

A	rectangle	is	defined	by	its	top-left	corner	and	its	size.

It	 is	a	very	simple	class	defined	for	convenience,	so	its	member	variables	(left,	top,	width	and	height)	are
public	and	can	be	accessed	directly,	just	like	the	vector	classes	(Vector2	and	

To	 keep	 things	 simple,	 sf::Rect	 doesn't	 define	 functions	 to	 emulate	 the	 properties	 that	 are	 not	 directly
members	(such	as	right,	bottom,	center,	etc.),	it	rather	only	provides	intersection	functions.

sf::Rect	uses	the	usual	rules	for	its	boundaries:

The	left	and	top	edges	are	included	in	the	rectangle's	area

The	right	(left	+	width)	and	bottom	(top	+	height)	edges	are	excluded	from	the	rectangle's	area

This	means	that	sf::IntRect(0,	0,	1,	1)	and	sf::IntRect(1,	1,	1,	1)	don't	intersect.

sf::Rect	is	a	template	and	may	be	used	with	any	numeric	type,	but	for	simplicity	the	instantiations	used	by
SFML	are	typedef'd:

sf::Rect<int>	is	sf::IntRect

sf::Rect<float>	is	sf::FloatRect

So	that	you	don't	have	to	care	about	the	template	syntax.

Usage	example:

//	Define	a	rectangle,	located	at	(0,	0)	with	a	size	of	20x5

sf::IntRect	r1(0,	0,	20,	5);

//	Define	another	rectangle,	located	at	(4,	2)	with	a	size	of	18x10

sf::Vector2i	position(4,	2);

sf::Vector2i	size(18,	10);

sf::IntRect	r2(position,	size);

//	Test	intersections	with	the	point	(3,	1)

bool	b1	=	r1.contains(3,	1);	//	true

bool	b2	=	r2.contains(3,	1);	//	false

//	Test	the	intersection	between	r1	and	r2

sf::IntRect	result;

bool	b3	=	r1.intersects(r2,	result);	//	true

//	result	==	(4,	2,	16,	3)

Definition	at	line	42	of	file	Rect.hpp.

Constructor	&	Destructor	Documentation

template<typename	T>

sf::Rect<	T	>::Rect ()

Default	constructor.

Creates	an	empty	rectangle	(it	is	equivalent	to	calling	Rect(0,	0,	0,	0)).

template<typename	T>

sf::Rect<	T	>::Rect (T	 rectLeft,
T	 rectTop,
T	 rectWidth,
T	 rectHeight	
)

Construct	the	rectangle	from	its	coordinates.

Be	careful,	the	last	two	parameters	are	the	width	and	height,	not	the	right	and	bottom	coordinates!

Parameters
rectLeft Left	coordinate	of	the	rectangle
rectTop Top	coordinate	of	the	rectangle
rectWidth Width	of	the	rectangle
rectHeightHeight	of	the	rectangle

template<typename	T>

sf::Rect<	T	>::Rect (const	Vector2<	T	>	&	 position,
const	Vector2<	T	>	&	 size	
)

Construct	the	rectangle	from	position	and	size.

Be	careful,	the	last	parameter	is	the	size,	not	the	bottom-right	corner!

Parameters
position Position	of	the	top-left	corner	of	the	rectangle
size Size	of	the	rectangle

template<typename	T>

template<typename	U	>

sf::Rect<	T	>::Rect (const	Rect<	U	>	&	 rectangle)

Construct	the	rectangle	from	another	type	of	rectangle.

This	 constructor	 doesn't	 replace	 the	 copy	 constructor,	 it's	 called	 only	 when	 U	 !=	 T.	 A	 call	 to	 this
constructor	will	fail	to	compile	if	U	is	not	convertible	to	T.

Parameters
rectangleRectangle	to	convert

Member	Function	Documentation

template<typename	T>

bool	sf::Rect<	T	>::contains (T	 x,
T	 y	
) const

Check	if	a	point	is	inside	the	rectangle's	area.

This	check	is	non-inclusive.	If	the	point	lies	on	the	edge	of	the	rectangle,	this	function	will	return	false.

Parameters
x X	coordinate	of	the	point	to	test
y Y	coordinate	of	the	point	to	test

Returns
True	if	the	point	is	inside,	false	otherwise

See	also
intersects

template<typename	T>

bool	sf::Rect<	T	>::contains (const	Vector2<	T	>	&	 point) const

Check	if	a	point	is	inside	the	rectangle's	area.

This	check	is	non-inclusive.	If	the	point	lies	on	the	edge	of	the	rectangle,	this	function	will	return	false.

Parameters
point Point	to	test

Returns
True	if	the	point	is	inside,	false	otherwise

See	also
intersects

template<typename	T>

bool	sf::Rect<	T	>::intersects (const	Rect<	T	>	&	 rectangle) const

Check	the	intersection	between	two	rectangles.

Parameters
rectangleRectangle	to	test

Returns
True	if	rectangles	overlap,	false	otherwise

See	also
contains

template<typename	T>

bool	sf::Rect<	T	>::intersects (const	Rect<	T	>	&	 rectangle,
Rect<	T	>	&	 intersection	

) const

Check	the	intersection	between	two	rectangles.

This	overload	returns	the	overlapped	rectangle	in	the	intersection	parameter.

Parameters
rectangle Rectangle	to	test
intersection Rectangle	to	be	filled	with	the	intersection

Returns
True	if	rectangles	overlap,	false	otherwise

See	also
contains

Friends	And	Related	Function	Documentation

template<typename	T	>

bool	operator!= (const	Rect<	T	>	&	 left,
const	Rect<	T	>	&	 right	
)

Overload	of	binary	operator	!=.

This	operator	compares	strict	difference	between	two	rectangles.

Parameters
left Left	operand	(a	rectangle)
right Right	operand	(a	rectangle)

Returns
True	if	left	is	not	equal	to	right

template<typename	T	>

bool	operator== (const	Rect<	T	>	&	 left,
const	Rect<	T	>	&	 right	
)

Overload	of	binary	operator	==.

This	operator	compares	strict	equality	between	two	rectangles.

Parameters

left Left	operand	(a	rectangle)
right Right	operand	(a	rectangle)

Returns
True	if	left	is	equal	to	right

Member	Data	Documentation

template<typename	T>

T	sf::Rect<	T	>::height

Height	of	the	rectangle.

Definition	at	line	160	of	file	Rect.hpp.

template<typename	T>

T	sf::Rect<	T	>::left

Left	coordinate	of	the	rectangle.

Definition	at	line	157	of	file	Rect.hpp.

template<typename	T>

T	sf::Rect<	T	>::top

Top	coordinate	of	the	rectangle.

Definition	at	line	158	of	file	Rect.hpp.

template<typename	T>

T	sf::Rect<	T	>::width

Width	of	the	rectangle.

Definition	at	line	159	of	file	Rect.hpp.

The	documentation	for	this	class	was	generated	from	the	following	file:
Rect.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Member	Functions	|	Protected	Member	Functions	|	List	of	all	members

sf::RectangleShape	Class	Reference
Graphics	module

Specialized	shape	representing	a	rectangle.	More...

#include	<RectangleShape.hpp>

Inheritance	diagram	for	sf::RectangleShape:

Public	Member	Functions
	 RectangleShape	(const	Vector2f	&size=Vector2f(0,	0))

	 Default	constructor.	More...
	

void	 setSize	(const	Vector2f	&size)
	 Set	the	size	of	the	rectangle.	More...
	

const	Vector2f	&	 getSize	()	const
	 Get	the	size	of	the	rectangle.	More...
	

virtual	std::size_t	 getPointCount	()	const
	 Get	the	number	of	points	defining	the	shape.	More...
	

virtual	Vector2f	 getPoint	(std::size_t	index)	const
	 Get	a	point	of	the	rectangle.	More...
	

void	 setTexture	(const	Texture	*texture,	bool	resetRect=false)
	 Change	the	source	texture	of	the	shape.	More...
	

void	 setTextureRect	(const	IntRect	&rect)
	 Set	the	sub-rectangle	of	the	texture	that	the	shape	will	display.	
	

void	 setFillColor	(const	Color	&color)
	 Set	the	fill	color	of	the	shape.	More...
	

void	 setOutlineColor	(const	Color	&color)
	 Set	the	outline	color	of	the	shape.	More...
	

void	 setOutlineThickness	(float	thickness)
	 Set	the	thickness	of	the	shape's	outline.	More...
	

const	Texture	*	 getTexture	()	const

	 Get	the	source	texture	of	the	shape.	More...
	

const	IntRect	&	 getTextureRect	()	const
	 Get	the	sub-rectangle	of	the	texture	displayed	by	the	shape.	
	

const	Color	&	 getFillColor	()	const
	 Get	the	fill	color	of	the	shape.	More...
	

const	Color	&	 getOutlineColor	()	const
	 Get	the	outline	color	of	the	shape.	More...
	

float	 getOutlineThickness	()	const
	 Get	the	outline	thickness	of	the	shape.	More...
	

FloatRect	 getLocalBounds	()	const
	 Get	the	local	bounding	rectangle	of	the	entity.	More...
	

FloatRect	 getGlobalBounds	()	const
	 Get	the	global	(non-minimal)	bounding	rectangle	of	the	entity.	
	

void	 setPosition	(float	x,	float	y)
	 set	the	position	of	the	object	More...
	

void	 setPosition	(const	Vector2f	&position)
	 set	the	position	of	the	object	More...
	

void	 setRotation	(float	angle)
	 set	the	orientation	of	the	object	More...
	

void	 setScale	(float	factorX,	float	factorY)
	 set	the	scale	factors	of	the	object	More...
	

void	 setScale	(const	Vector2f	&factors)
	 set	the	scale	factors	of	the	object	More...
	

void	 setOrigin	(float	x,	float	y)
	 set	the	local	origin	of	the	object	More...
	

void	 setOrigin	(const	Vector2f	&origin)
	 set	the	local	origin	of	the	object	More...
	

const	Vector2f	&	 getPosition	()	const
	 get	the	position	of	the	object	More...
	

float	 getRotation	()	const
	 get	the	orientation	of	the	object	More...
	

const	Vector2f	&	 getScale	()	const
	 get	the	current	scale	of	the	object	More...
	

const	Vector2f	&	 getOrigin	()	const
	 get	the	local	origin	of	the	object	More...
	

void	 move	(float	offsetX,	float	offsetY)
	 Move	the	object	by	a	given	offset.	More...
	

void	 move	(const	Vector2f	&offset)
	 Move	the	object	by	a	given	offset.	More...
	

void	 rotate	(float	angle)
	 Rotate	the	object.	More...
	

void	 scale	(float	factorX,	float	factorY)
	 Scale	the	object.	More...
	

void	 scale	(const	Vector2f	&factor)
	 Scale	the	object.	More...
	
const	Transform	&	 getTransform	()	const
	 get	the	combined	transform	of	the	object	More...

	
const	Transform	&	 getInverseTransform	()	const
	 get	the	inverse	of	the	combined	transform	of	the	object	
	

Protected	Member	Functions
void	 update	()
	 Recompute	the	internal	geometry	of	the	shape.	More...
	

Detailed	Description

Specialized	shape	representing	a	rectangle.

This	class	inherits	all	the	functions	of	sf::Transformable	(position,	rotation,	scale,	bounds,	...)	as	well	as	the
functions	of	sf::Shape	(outline,	color,	texture,	...).

Usage	example:

sf::RectangleShape	rectangle;

rectangle.setSize(sf::Vector2f(100,	50));

rectangle.setOutlineColor(sf::Color::Red);

rectangle.setOutlineThickness(5);

rectangle.setPosition(10,	20);

...

window.draw(rectangle);

See	also
sf::Shape,	sf::CircleShape,	sf::ConvexShape

Definition	at	line	41	of	file	RectangleShape.hpp.

Constructor	&	Destructor	Documentation

sf::RectangleShape::RectangleShape (const	Vector2f	&	 size	=	Vector2f

Default	constructor.

Parameters
size Size	of	the	rectangle

Member	Function	Documentation

const	Color&	sf::Shape::getFillColor () const

Get	the	fill	color	of	the	shape.

Returns
Fill	color	of	the	shape

See	also
setFillColor

FloatRect	sf::Shape::getGlobalBounds () const

Get	the	global	(non-minimal)	bounding	rectangle	of	the	entity.

The	 returned	 rectangle	 is	 in	 global	 coordinates,	 which	 means	 that	 it	 takes	 into	 account	 the
transformations	(translation,	rotation,	scale,	...)	that	are	applied	to	the	entity.	In	other	words,	this	function
returns	the	bounds	of	the	shape	in	the	global	2D	world's	coordinate	system.

This	 function	 does	 not	 necessarily	 return	 the	minimal	 bounding	 rectangle.	 It	 merely	 ensures	 that	 the
returned	rectangle	covers	all	the	vertices	(but	possibly	more).	This	allows	for	a	fast	approximation	of	the
bounds	as	a	first	check;	you	may	want	to	use	more	precise	checks	on	top	of	that.

Returns
Global	bounding	rectangle	of	the	entity

const	Transform&	sf::Transformable::getInverseTransform () const

get	the	inverse	of	the	combined	transform	of	the	object

Returns
Inverse	of	the	combined	transformations	applied	to	the	object

See	also
getTransform

FloatRect	sf::Shape::getLocalBounds () const

Get	the	local	bounding	rectangle	of	the	entity.

The	 returned	 rectangle	 is	 in	 local	 coordinates,	 which	 means	 that	 it	 ignores	 the	 transformations
(translation,	 rotation,	 scale,	 ...)	 that	 are	 applied	 to	 the	 entity.	 In	 other	 words,	 this	 function	 returns	 the
bounds	of	the	entity	in	the	entity's	coordinate	system.

Returns
Local	bounding	rectangle	of	the	entity

const	Vector2f&	sf::Transformable::getOrigin () const

get	the	local	origin	of	the	object

Returns
Current	origin

See	also
setOrigin

const	Color&	sf::Shape::getOutlineColor () const

Get	the	outline	color	of	the	shape.

Returns
Outline	color	of	the	shape

See	also
setOutlineColor

float	sf::Shape::getOutlineThickness () const

Get	the	outline	thickness	of	the	shape.

Returns
Outline	thickness	of	the	shape

See	also
setOutlineThickness

virtual	Vector2f	sf::RectangleShape::getPoint (std::size_t	 index) const

Get	a	point	of	the	rectangle.

The	returned	point	is	in	local	coordinates,	that	is,	the	shape's	transforms	(position,	rotation,	scale)	are	not
taken	into	account.	The	result	is	undefined	if	index	is	out	of	the	valid	range.

Parameters
index Index	of	the	point	to	get,	in	range	[0	..	3]

Returns
index-th	point	of	the	shape

Implements	sf::Shape.

virtual	std::size_t	sf::RectangleShape::getPointCount () const

Get	the	number	of	points	defining	the	shape.

Returns
Number	of	points	of	the	shape.	For	rectangle	shapes,	this	number	is	always	4.

Implements	sf::Shape.

const	Vector2f&	sf::Transformable::getPosition () const

get	the	position	of	the	object

Returns
Current	position

See	also
setPosition

float	sf::Transformable::getRotation () const

get	the	orientation	of	the	object

The	rotation	is	always	in	the	range	[0,	360].

Returns
Current	rotation,	in	degrees

See	also
setRotation

const	Vector2f&	sf::Transformable::getScale () const

get	the	current	scale	of	the	object

Returns
Current	scale	factors

See	also
setScale

const	Vector2f&	sf::RectangleShape::getSize () const

Get	the	size	of	the	rectangle.

Returns
Size	of	the	rectangle

See	also
setSize

const	Texture*	sf::Shape::getTexture () const

Get	the	source	texture	of	the	shape.

If	 the	 shape	 has	 no	 source	 texture,	 a	NULL	 pointer	 is	 returned.	 The	 returned	 pointer	 is	 const,	 which
means	that	you	can't	modify	the	texture	when	you	retrieve	it	with	this	function.

Returns
Pointer	to	the	shape's	texture

See	also
setTexture

const	IntRect&	sf::Shape::getTextureRect () const

Get	the	sub-rectangle	of	the	texture	displayed	by	the	shape.

Returns
Texture	rectangle	of	the	shape

See	also
setTextureRect

const	Transform&	sf::Transformable::getTransform () const

get	the	combined	transform	of	the	object

Returns
Transform	combining	the	position/rotation/scale/origin	of	the	object

See	also
getInverseTransform

void	sf::Transformable::move (float	 offsetX,

float	 offsetY	
)

Move	the	object	by	a	given	offset.

This	function	adds	to	the	current	position	of	the	object,	unlike	setPosition	which	overwrites	it.	Thus,	it	is
equivalent	to	the	following	code:

sf::Vector2f	pos	=	object.getPosition();

object.setPosition(pos.x	+	offsetX,	pos.y	+	offsetY);

Parameters
offsetX X	offset
offsetY Y	offset

See	also
setPosition

void	sf::Transformable::move (const	Vector2f	&	 offset)

Move	the	object	by	a	given	offset.

This	function	adds	to	the	current	position	of	the	object,	unlike	setPosition	which	overwrites	it.	Thus,	it	is
equivalent	to	the	following	code:

object.setPosition(object.getPosition()	+	offset);

Parameters
offsetOffset

See	also
setPosition

void	sf::Transformable::rotate (float	 angle)

Rotate	the	object.

This	function	adds	to	the	current	rotation	of	the	object,	unlike	setRotation	which	overwrites	it.	Thus,	it	is
equivalent	to	the	following	code:

object.setRotation(object.getRotation()	+	angle);

Parameters
angle Angle	of	rotation,	in	degrees

void	sf::Transformable::scale (float	 factorX,
float	 factorY	
)

Scale	the	object.

This	 function	multiplies	 the	 current	 scale	 of	 the	 object,	 unlike	 setScale	which	 overwrites	 it.	 Thus,	 it	 is
equivalent	to	the	following	code:

sf::Vector2f	scale	=	object.getScale();

object.setScale(scale.x	*	factorX,	scale.y	*	factorY);

Parameters
factorXHorizontal	scale	factor
factorY Vertical	scale	factor

See	also
setScale

void	sf::Transformable::scale (const	Vector2f	&	 factor)

Scale	the	object.

This	 function	multiplies	 the	 current	 scale	 of	 the	 object,	 unlike	 setScale	which	 overwrites	 it.	 Thus,	 it	 is
equivalent	to	the	following	code:

sf::Vector2f	scale	=	object.getScale();

object.setScale(scale.x	*	factor.x,	scale.y	*	factor.y);

Parameters
factor Scale	factors

See	also
setScale

void	sf::Shape::setFillColor (const	Color	&	 color)

Set	the	fill	color	of	the	shape.

This	color	is	modulated	(multiplied)	with	the	shape's	texture	if	any.	It	can	be	used	to	colorize	the	shape,
or	 change	 its	 global	 opacity.	 You	 can	 use	 sf::Color::Transparent	 to	 make	 the	 inside	 of	 the	 shape
transparent,	and	have	the	outline	alone.	By	default,	the	shape's	fill	color	is	opaque	white.

Parameters
colorNew	color	of	the	shape

See	also
getFillColor,	setOutlineColor

void	sf::Transformable::setOrigin (float	 x,
float	 y	
)

set	the	local	origin	of	the	object

The	 origin	 of	 an	 object	 defines	 the	 center	 point	 for	 all	 transformations	 (position,	 scale,	 rotation).	 The
coordinates	 of	 this	 point	 must	 be	 relative	 to	 the	 top-left	 corner	 of	 the	 object,	 and	 ignore	 all
transformations	(position,	scale,	rotation).	The	default	origin	of	a	transformable	object	is	(0,	0).

Parameters
x X	coordinate	of	the	new	origin
y Y	coordinate	of	the	new	origin

See	also
getOrigin

void	sf::Transformable::setOrigin (const	Vector2f	&	 origin)

set	the	local	origin	of	the	object

The	 origin	 of	 an	 object	 defines	 the	 center	 point	 for	 all	 transformations	 (position,	 scale,	 rotation).	 The
coordinates	 of	 this	 point	 must	 be	 relative	 to	 the	 top-left	 corner	 of	 the	 object,	 and	 ignore	 all
transformations	(position,	scale,	rotation).	The	default	origin	of	a	transformable	object	is	(0,	0).

Parameters
origin New	origin

See	also
getOrigin

void	sf::Shape::setOutlineColor (const	Color	&	 color)

Set	the	outline	color	of	the	shape.

By	default,	the	shape's	outline	color	is	opaque	white.

Parameters
colorNew	outline	color	of	the	shape

See	also
getOutlineColor,	setFillColor

void	sf::Shape::setOutlineThickness (float	 thickness)

Set	the	thickness	of	the	shape's	outline.

Note	that	negative	values	are	allowed	(so	that	the	outline	expands	towards	the	center	of	the	shape),	and
using	zero	disables	the	outline.	By	default,	the	outline	thickness	is	0.

Parameters
thickness New	outline	thickness

See	also
getOutlineThickness

void	sf::Transformable::setPosition (float	 x,
float	 y	
)

set	the	position	of	the	object

This	function	completely	overwrites	the	previous	position.	See	the	move	function	to	apply	an	offset	based
on	the	previous	position	instead.	The	default	position	of	a	transformable	object	is	(0,	0).

Parameters
x X	coordinate	of	the	new	position
y Y	coordinate	of	the	new	position

See	also
move,	getPosition

void	sf::Transformable::setPosition (const	Vector2f	&	 position)

set	the	position	of	the	object

This	function	completely	overwrites	the	previous	position.	See	the	move	function	to	apply	an	offset	based
on	the	previous	position	instead.	The	default	position	of	a	transformable	object	is	(0,	0).

Parameters
positionNew	position

See	also
move,	getPosition

void	sf::Transformable::setRotation (float	 angle)

set	the	orientation	of	the	object

This	function	completely	overwrites	the	previous	rotation.	See	the	rotate	function	to	add	an	angle	based
on	the	previous	rotation	instead.	The	default	rotation	of	a	transformable	object	is	0.

Parameters

angle New	rotation,	in	degrees

See	also
rotate,	getRotation

void	sf::Transformable::setScale (float	 factorX,
float	 factorY	
)

set	the	scale	factors	of	the	object

This	function	completely	overwrites	the	previous	scale.	See	the	scale	function	to	add	a	factor	based	on
the	previous	scale	instead.	The	default	scale	of	a	transformable	object	is	(1,	1).

Parameters
factorXNew	horizontal	scale	factor
factorYNew	vertical	scale	factor

See	also
scale,	getScale

void	sf::Transformable::setScale (const	Vector2f	&	 factors)

set	the	scale	factors	of	the	object

This	function	completely	overwrites	the	previous	scale.	See	the	scale	function	to	add	a	factor	based	on
the	previous	scale	instead.	The	default	scale	of	a	transformable	object	is	(1,	1).

Parameters
factors New	scale	factors

See	also
scale,	getScale

void	sf::RectangleShape::setSize (const	Vector2f	&	 size)

Set	the	size	of	the	rectangle.

Parameters
sizeNew	size	of	the	rectangle

See	also
getSize

void	sf::Shape::setTexture (const	Texture	*	 texture,
bool	 resetRect	=	false	
)

Change	the	source	texture	of	the	shape.

The	texture	argument	refers	to	a	texture	that	must	exist	as	long	as	the	shape	uses	it.	Indeed,	the	shape
doesn't	store	 its	own	copy	of	 the	texture,	but	rather	keeps	a	pointer	 to	the	one	that	you	passed	to	this
function.	 If	 the	 source	 texture	 is	 destroyed	 and	 the	 shape	 tries	 to	 use	 it,	 the	 behavior	 is	 undefined.
texture	can	be	NULL	to	disable	texturing.	 If	resetRect	 is	 true,	 the	TextureRect	property	of	 the	shape	 is
automatically	adjusted	to	the	size	of	the	new	texture.	If	it	is	false,	the	texture	rect	is	left	unchanged.

Parameters
texture New	texture
resetRect Should	the	texture	rect	be	reset	to	the	size	of	the	new	texture?

See	also
getTexture,	setTextureRect

void	sf::Shape::setTextureRect (const	IntRect	&	 rect)

Set	the	sub-rectangle	of	the	texture	that	the	shape	will	display.

The	 texture	 rect	 is	useful	when	you	don't	want	 to	display	 the	whole	 texture,	but	 rather	a	part	of	 it.	By
default,	the	texture	rect	covers	the	entire	texture.

Parameters
rect Rectangle	defining	the	region	of	the	texture	to	display

See	also
getTextureRect,	setTexture

void	sf::Shape::update ()

Recompute	the	internal	geometry	of	the	shape.

This	function	must	be	called	by	the	derived	class	everytime	the	shape's	points	change	(i.e.	the	result	of
either	getPointCount	or	getPoint	is	different).

The	documentation	for	this	class	was	generated	from	the	following	file:
RectangleShape.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Member	Functions	|	Public	Attributes	|	Static	Public	Attributes	|	List	of	all	members

sf::RenderStates	Class	Reference
Graphics	module

Define	the	states	used	for	drawing	to	a	RenderTarget.	More...

#include	<RenderStates.hpp>

Public	Member	Functions
	 RenderStates	()
	 Default	constructor.	More...
	
	 RenderStates	(const	BlendMode	&theBlendMode)
	 Construct	a	default	set	of	render	states	with	a	custom	blend	mode.	More...
	
	 RenderStates	(const	Transform	&theTransform)
	 Construct	a	default	set	of	render	states	with	a	custom	transform.	More...
	
	 RenderStates	(const	Texture	*theTexture)
	 Construct	a	default	set	of	render	states	with	a	custom	texture.	More...
	
	 RenderStates	(const	Shader	*theShader)
	 Construct	a	default	set	of	render	states	with	a	custom	shader.	More...
	

	 RenderStates	(const	BlendMode	&theBlendMode,	const	Transform	&theTransform,	const	
*theTexture,	const	Shader	*theShader)

	 Construct	a	set	of	render	states	with	all	its	attributes.	More...
	

Public	Attributes
BlendMode	 blendMode

	 Blending	mode.	More...
	

Transform	 transform
	 Transform.	More...
	
const	Texture	*	 texture
	 Texture.	More...
	
const	Shader	*	 shader
	 Shader.	More...
	

Static	Public	Attributes
static	const	RenderStates	 Default
	 Special	instance	holding	the	default	render	states.	
	

Detailed	Description

Define	the	states	used	for	drawing	to	a	RenderTarget.

There	are	four	global	states	that	can	be	applied	to	the	drawn	objects:

the	blend	mode:	how	pixels	of	the	object	are	blended	with	the	background

the	transform:	how	the	object	is	positioned/rotated/scaled

the	texture:	what	image	is	mapped	to	the	object

the	shader:	what	custom	effect	is	applied	to	the	object

High-level	objects	such	as	sprites	or	text	force	some	of	these	states	when	they	are	drawn.	For	example,	a
sprite	will	set	its	own	texture,	so	that	you	don't	have	to	care	about	it	when	drawing	the	sprite.

The	 transform	 is	 a	 special	 case:	 sprites,	 texts	 and	 shapes	 (and	 it's	 a	 good	 idea	 to	 do	 it	 with	 your	 own
drawable	classes	too)	combine	their	transform	with	the	one	that	 is	passed	in	the	
So	that	you	can	use	a	"global"	transform	on	top	of	each	object's	transform.

Most	objects,	especially	high-level	drawables,	can	be	drawn	directly	without	defining	render	states	explicitly
–	the	default	set	of	states	is	ok	in	most	cases.

window.draw(sprite);

If	you	want	to	use	a	single	specific	render	state,	for	example	a	shader,	you	can	pass	it	directly	to	the	Draw
function:	sf::RenderStates	has	an	implicit	one-argument	constructor	for	each	state.

window.draw(sprite,	shader);

When	you're	 inside	 the	Draw	 function	of	a	drawable	object	 (inherited	 from	
pass	 the	 render	 states	 unmodified,	 or	 change	 some	 of	 them.	 For	 example,	 a	 transformable	 object	 will

combine	the	current	transform	with	its	own	transform.	A	sprite	will	set	its	texture.	Etc.

See	also
sf::RenderTarget,	sf::Drawable

Definition	at	line	45	of	file	RenderStates.hpp.

Constructor	&	Destructor	Documentation

sf::RenderStates::RenderStates ()

Default	constructor.

Constructing	a	default	set	of	render	states	is	equivalent	to	using	 sf::RenderStates::Default
set	defines:

the	BlendAlpha	blend	mode

the	identity	transform

a	null	texture

a	null	shader

sf::RenderStates::RenderStates (const	BlendMode	&	 theBlendMode

Construct	a	default	set	of	render	states	with	a	custom	blend	mode.

Parameters
theBlendMode Blend	mode	to	use

sf::RenderStates::RenderStates (const	Transform	&	 theTransform)

Construct	a	default	set	of	render	states	with	a	custom	transform.

Parameters

theTransform Transform	to	use

sf::RenderStates::RenderStates (const	Texture	*	 theTexture)

Construct	a	default	set	of	render	states	with	a	custom	texture.

Parameters
theTexture Texture	to	use

sf::RenderStates::RenderStates (const	Shader	*	 theShader)

Construct	a	default	set	of	render	states	with	a	custom	shader.

Parameters
theShader Shader	to	use

sf::RenderStates::RenderStates (const	BlendMode	&	 theBlendMode
const	Transform	&	 theTransform
const	Texture	*	 theTexture,
const	Shader	*	 theShader	
)

Construct	a	set	of	render	states	with	all	its	attributes.

Parameters
theBlendMode Blend	mode	to	use
theTransform Transform	to	use
theTexture Texture	to	use
theShader Shader	to	use

Member	Data	Documentation

BlendMode	sf::RenderStates::blendMode

Blending	mode.

Definition	at	line	115	of	file	RenderStates.hpp.

const	RenderStates	sf::RenderStates::Default

Special	instance	holding	the	default	render	states.

Definition	at	line	110	of	file	RenderStates.hpp.

const	Shader*	sf::RenderStates::shader

Shader.

Definition	at	line	118	of	file	RenderStates.hpp.

const	Texture*	sf::RenderStates::texture

Texture.

Definition	at	line	117	of	file	RenderStates.hpp.

Transform	sf::RenderStates::transform

Transform.

Definition	at	line	116	of	file	RenderStates.hpp.

The	documentation	for	this	class	was	generated	from	the	following	file:
RenderStates.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Classes	|	Public	Member	Functions	|	Protected	Member	Functions	|	List	of	all	members

sf::RenderTarget	Class	Reference abstract

Graphics	module

Base	class	for	all	render	targets	(window,	texture,	...)	More...

#include	<RenderTarget.hpp>

Inheritance	diagram	for	sf::RenderTarget:

Public	Member	Functions
virtual	 ~RenderTarget	()

	 Destructor.	More...
	

void	 clear	(const	Color	&color=Color(0,	0,	0,	255))
	 Clear	the	entire	target	with	a	single	color.	More...
	

void	 setView	(const	View	&view)
	 Change	the	current	active	view.	More...
	

const	View	&	 getView	()	const
	 Get	the	view	currently	in	use	in	the	render	target.	More...
	

const	View	&	 getDefaultView	()	const
	 Get	the	default	view	of	the	render	target.	More...
	

IntRect	 getViewport	(const	View	&view)	const
	 Get	the	viewport	of	a	view,	applied	to	this	render	target.	
	

Vector2f	 mapPixelToCoords	(const	Vector2i	&point)	const

	 Convert	a	point	from	target	coordinates	to	world	coordinates,	using	the	current	view.
More...

	
Vector2f	 mapPixelToCoords	(const	Vector2i	&point,	const	View	&view)	const

	 Convert	a	point	from	target	coordinates	to	world	coordinates.	
	

Vector2i	 mapCoordsToPixel	(const	Vector2f	&point)	const

	 Convert	a	point	from	world	coordinates	to	target	coordinates,	using	the	current	view.
More...

	
Vector2i	 mapCoordsToPixel	(const	Vector2f	&point,	const	View	&view)	const

	 Convert	a	point	from	world	coordinates	to	target	coordinates.	

	
void	 draw	(const	Drawable	&drawable,	const	RenderStates	&states=

	 Draw	a	drawable	object	to	the	render	target.	More...
	

void	 draw	(const	Vertex	*vertices,	std::size_t	vertexCount,	PrimitiveTypeRenderStates	&states=RenderStates::Default)
	 Draw	primitives	defined	by	an	array	of	vertices.	More...
	
virtual	Vector2u	 getSize	()	const	=0
	 Return	the	size	of	the	rendering	region	of	the	target.	More...
	

void	 pushGLStates	()
	 Save	the	current	OpenGL	render	states	and	matrices.	More...
	

void	 popGLStates	()
	 Restore	the	previously	saved	OpenGL	render	states	and	matrices.	
	

void	 resetGLStates	()
	 Reset	the	internal	OpenGL	states	so	that	the	target	is	ready	for	drawing.	
	

Protected	Member	Functions
	 RenderTarget	()

	 Default	constructor.	More...
	
void	 initialize	()
	 Performs	the	common	initialization	step	after	creation.	More...
	

Detailed	Description

Base	class	for	all	render	targets	(window,	texture,	...)

sf::RenderTarget	defines	the	common	behavior	of	all	the	2D	render	targets	usable	in	the	graphics	module.

It	 makes	 it	 possible	 to	 draw	 2D	 entities	 like	 sprites,	 shapes,	 text	 without	 using	 any	OpenGL	 command
directly.

A	sf::RenderTarget	 is	also	able	 to	use	views	(sf::View),	which	are	a	kind	of	2D	cameras.	With	views	you
can	globally	scroll,	rotate	or	zoom	everything	that	is	drawn,	without	having	to	transform	every	single	entity.
See	the	documentation	of	sf::View	for	more	details	and	sample	pieces	of	code	about	this	class.

On	top	of	that,	render	targets	are	still	able	to	render	direct	OpenGL	stuff.	It	is	even	possible	to	mix	together
OpenGL	calls	and	regular	SFML	drawing	commands.	When	doing	so,	make	sure	that	OpenGL	states	are
not	messed	up	by	calling	the	pushGLStates/popGLStates	functions.

See	also
sf::RenderWindow,	sf::RenderTexture,	sf::View

Definition	at	line	51	of	file	RenderTarget.hpp.

Constructor	&	Destructor	Documentation

virtual	sf::RenderTarget::~RenderTarget ()

Destructor.

sf::RenderTarget::RenderTarget ()

Default	constructor.

Member	Function	Documentation

void	sf::RenderTarget::clear (const	Color	&	 color	=	Color(0,	0,	0,	255)

Clear	the	entire	target	with	a	single	color.

This	function	is	usually	called	once	every	frame,	to	clear	the	previous	contents	of	the	target.

Parameters
color Fill	color	to	use	to	clear	the	render	target

void	sf::RenderTarget::draw (const	Drawable	&	 drawable,
const	RenderStates	&	 states	=	RenderStates::Default
)

Draw	a	drawable	object	to	the	render	target.

Parameters
drawableObject	to	draw
states Render	states	to	use	for	drawing

void	sf::RenderTarget::draw (const	Vertex	*	 vertices,
std::size_t	 vertexCount,
PrimitiveType	 type,
const	RenderStates	&	 states	=	RenderStates::Default
)

Draw	primitives	defined	by	an	array	of	vertices.

Parameters
vertices Pointer	to	the	vertices
vertexCount Number	of	vertices	in	the	array
type Type	of	primitives	to	draw
states Render	states	to	use	for	drawing

const	View&	sf::RenderTarget::getDefaultView () const

Get	the	default	view	of	the	render	target.

The	default	view	has	 the	 initial	size	of	 the	 render	 target,	and	never	changes	after	 the	 target	has	been
created.

Returns
The	default	view	of	the	render	target

See	also
setView,	getView

virtual	Vector2u	sf::RenderTarget::getSize () const

Return	the	size	of	the	rendering	region	of	the	target.

Returns
Size	in	pixels

Implemented	in	sf::RenderTexture,	and	sf::RenderWindow.

const	View&	sf::RenderTarget::getView () const

Get	the	view	currently	in	use	in	the	render	target.

Returns
The	view	object	that	is	currently	used

See	also
setView,	getDefaultView

IntRect	sf::RenderTarget::getViewport (const	View	&	 view) const

Get	the	viewport	of	a	view,	applied	to	this	render	target.

The	 viewport	 is	 defined	 in	 the	 view	 as	 a	 ratio,	 this	 function	 simply	 applies	 this	 ratio	 to	 the	 current
dimensions	of	the	render	target	to	calculate	the	pixels	rectangle	that	the	viewport	actually	covers	in	the
target.

Parameters
view The	view	for	which	we	want	to	compute	the	viewport

Returns
Viewport	rectangle,	expressed	in	pixels

void	sf::RenderTarget::initialize ()

Performs	the	common	initialization	step	after	creation.

The	derived	classes	must	call	this	function	after	the	target	is	created	and	ready	for	drawing.

Vector2i	sf::RenderTarget::mapCoordsToPixel (const	Vector2f	&	 point

Convert	a	point	from	world	coordinates	to	target	coordinates,	using	the	current	view.

This	function	is	an	overload	of	the	mapCoordsToPixel	function	that	implicitly	uses	the	current	view.	It	 is
equivalent	to:

target.mapCoordsToPixel(point,	target.getView());

Parameters
point Point	to	convert

Returns
The	converted	point,	in	target	coordinates	(pixels)

See	also
mapPixelToCoords

Vector2i	sf::RenderTarget::mapCoordsToPixel (const	Vector2f	&	 point
const	View	&	 view
) const

Convert	a	point	from	world	coordinates	to	target	coordinates.

This	function	finds	the	pixel	of	the	render	target	that	matches	the	given	2D	point.	In	other	words,	it	goes
through	the	same	process	as	the	graphics	card,	to	compute	the	final	position	of	a	rendered	point.

Initially,	 both	 coordinate	 systems	 (world	 units	 and	 target	 pixels)	 match	 perfectly.	 But	 if	 you	 define	 a
custom	view	or	resize	your	render	target,	this	assertion	is	not	true	anymore,	i.e.	a	point	located	at	(150,
75)	 in	your	2D	world	may	map	 to	 the	pixel	 (10,	50)	of	your	 render	 target	–	 if	 the	view	 is	 translated	by
(140,	25).

This	version	uses	a	custom	view	for	calculations,	see	 the	other	overload	of	 the	 function	 if	you	want	 to
use	the	current	view	of	the	render	target.

Parameters
point Point	to	convert
view The	view	to	use	for	converting	the	point

Returns
The	converted	point,	in	target	coordinates	(pixels)

See	also
mapPixelToCoords

Vector2f	sf::RenderTarget::mapPixelToCoords (const	Vector2i	&	 point

Convert	a	point	from	target	coordinates	to	world	coordinates,	using	the	current	view.

This	function	is	an	overload	of	the	mapPixelToCoords	function	that	implicitly	uses	the	current	view.	It	 is
equivalent	to:

target.mapPixelToCoords(point,	target.getView());

Parameters
point Pixel	to	convert

Returns
The	converted	point,	in	"world"	coordinates

See	also
mapCoordsToPixel

Vector2f	sf::RenderTarget::mapPixelToCoords (const	Vector2i	&	 point
const	View	&	 view
) const

Convert	a	point	from	target	coordinates	to	world	coordinates.

This	 function	 finds	 the	2D	position	 that	matches	 the	given	pixel	of	 the	 render	 target.	 In	other	words,	 it
does	the	inverse	of	what	the	graphics	card	does,	to	find	the	initial	position	of	a	rendered	pixel.

Initially,	 both	 coordinate	 systems	 (world	 units	 and	 target	 pixels)	 match	 perfectly.	 But	 if	 you	 define	 a
custom	view	or	resize	your	render	target,	this	assertion	is	not	true	anymore,	i.e.	a	point	 located	at	(10,
50)	in	your	render	target	may	map	to	the	point	(150,	75)	in	your	2D	world	–	if	the	view	is	translated	by
(140,	25).

For	 render-windows,	 this	 function	 is	 typically	 used	 to	 find	which	 point	 (or	 object)	 is	 located	 below	 the
mouse	cursor.

This	version	uses	a	custom	view	for	calculations,	see	 the	other	overload	of	 the	 function	 if	you	want	 to
use	the	current	view	of	the	render	target.

Parameters
point Pixel	to	convert
view The	view	to	use	for	converting	the	point

Returns
The	converted	point,	in	"world"	units

See	also
mapCoordsToPixel

void	sf::RenderTarget::popGLStates ()

Restore	the	previously	saved	OpenGL	render	states	and	matrices.

See	the	description	of	pushGLStates	to	get	a	detailed	description	of	these	functions.

See	also
pushGLStates

void	sf::RenderTarget::pushGLStates ()

Save	the	current	OpenGL	render	states	and	matrices.

This	 function	can	be	used	when	you	mix	SFML	drawing	and	direct	OpenGL	rendering.	Combined	with
popGLStates,	it	ensures	that:

SFML's	internal	states	are	not	messed	up	by	your	OpenGL	code

your	OpenGL	states	are	not	modified	by	a	call	to	a	SFML	function

More	specifically,	it	must	be	used	around	code	that	calls	Draw	functions.	Example:

//	OpenGL	code	here...

window.pushGLStates();

window.draw(...);

window.draw(...);

window.popGLStates();

//	OpenGL	code	here...

Note	that	this	function	is	quite	expensive:	it	saves	all	the	possible	OpenGL	states	and	matrices,	even	the
ones	you	don't	 care	about.	Therefore	 it	 should	be	used	wisely.	 It	 is	provided	 for	convenience,	but	 the
best	results	will	be	achieved	if	you	handle	OpenGL	states	yourself	(because	you	know	which	states	have
really	changed,	and	need	to	be	saved	and	restored).	Take	a	look	at	the	resetGLStates	function	if	you	do
so.

See	also

popGLStates

void	sf::RenderTarget::resetGLStates ()

Reset	the	internal	OpenGL	states	so	that	the	target	is	ready	for	drawing.

This	function	can	be	used	when	you	mix	SFML	drawing	and	direct	OpenGL	rendering,	if	you	choose	not
to	use	pushGLStates/popGLStates.	 It	makes	sure	that	all	OpenGL	states	needed	by	SFML	are	set,	so
that	subsequent	draw()	calls	will	work	as	expected.

Example:

//	OpenGL	code	here...

glPushAttrib(...);

window.resetGLStates();

window.draw(...);

window.draw(...);

glPopAttrib(...);

//	OpenGL	code	here...

void	sf::RenderTarget::setView (const	View	&	 view)

Change	the	current	active	view.

The	view	is	like	a	2D	camera,	it	controls	which	part	of	the	2D	scene	is	visible,	and	how	it	is	viewed	in	the
render	 target.	 The	new	view	will	 affect	 everything	 that	 is	 drawn,	 until	 another	 view	 is	 set.	 The	 render
target	keeps	 its	own	copy	of	 the	view	object,	so	 it	 is	not	necessary	to	keep	the	original	one	alive	after
calling	this	function.	To	restore	the	original	view	of	the	target,	you	can	pass	the	result	of	
to	this	function.

Parameters
view New	view	to	use

See	also

getView,	getDefaultView

The	documentation	for	this	class	was	generated	from	the	following	file:
RenderTarget.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Member	Functions	|	Protected	Member	Functions	|	List	of	all	members

sf::RenderTexture	Class	Reference
Graphics	module

Target	for	off-screen	2D	rendering	into	a	texture.	More...

#include	<RenderTexture.hpp>

Inheritance	diagram	for	sf::RenderTexture:

Public	Member	Functions
	 RenderTexture	()

	 Default	constructor.	More...
	

virtual	 ~RenderTexture	()
	 Destructor.	More...
	

bool	 create	(unsigned	int	width,	unsigned	int	height,	bool	depthBuffer=false)
	 Create	the	render-texture.	More...
	

void	 setSmooth	(bool	smooth)
	 Enable	or	disable	texture	smoothing.	More...
	

bool	 isSmooth	()	const
	 Tell	whether	the	smooth	filtering	is	enabled	or	not.	More...
	

void	 setRepeated	(bool	repeated)
	 Enable	or	disable	texture	repeating.	More...
	

bool	 isRepeated	()	const
	 Tell	whether	the	texture	is	repeated	or	not.	More...
	

bool	 generateMipmap	()
	 Generate	a	mipmap	using	the	current	texture	data.	More...
	

bool	 setActive	(bool	active=true)
	 Activate	or	deactivate	the	render-texture	for	rendering.	More...
	

void	 display	()
	 Update	the	contents	of	the	target	texture.	More...
	
virtual	Vector2u	 getSize	()	const

	 Return	the	size	of	the	rendering	region	of	the	texture.	More...
	
const	Texture	&	 getTexture	()	const
	 Get	a	read-only	reference	to	the	target	texture.	More...
	

void	 clear	(const	Color	&color=Color(0,	0,	0,	255))
	 Clear	the	entire	target	with	a	single	color.	More...
	

void	 setView	(const	View	&view)
	 Change	the	current	active	view.	More...
	

const	View	&	 getView	()	const
	 Get	the	view	currently	in	use	in	the	render	target.	More...
	

const	View	&	 getDefaultView	()	const
	 Get	the	default	view	of	the	render	target.	More...
	

IntRect	 getViewport	(const	View	&view)	const
	 Get	the	viewport	of	a	view,	applied	to	this	render	target.	
	

Vector2f	 mapPixelToCoords	(const	Vector2i	&point)	const

	 Convert	a	point	from	target	coordinates	to	world	coordinates,	using	the	current	view.
More...

	
Vector2f	 mapPixelToCoords	(const	Vector2i	&point,	const	View	&view)	const

	 Convert	a	point	from	target	coordinates	to	world	coordinates.	
	

Vector2i	 mapCoordsToPixel	(const	Vector2f	&point)	const

	 Convert	a	point	from	world	coordinates	to	target	coordinates,	using	the	current	view.
More...

	
Vector2i	 mapCoordsToPixel	(const	Vector2f	&point,	const	View	&view)	const

	 Convert	a	point	from	world	coordinates	to	target	coordinates.	
	

void	 draw	(const	Drawable	&drawable,	const	RenderStates	&states=

	 Draw	a	drawable	object	to	the	render	target.	More...
	

void	 draw	(const	Vertex	*vertices,	std::size_t	vertexCount,	PrimitiveTypeRenderStates	&states=RenderStates::Default)
	 Draw	primitives	defined	by	an	array	of	vertices.	More...
	

void	 pushGLStates	()
	 Save	the	current	OpenGL	render	states	and	matrices.	More...
	

void	 popGLStates	()
	 Restore	the	previously	saved	OpenGL	render	states	and	matrices.	
	

void	 resetGLStates	()
	 Reset	the	internal	OpenGL	states	so	that	the	target	is	ready	for	drawing.	
	

Protected	Member	Functions
void	 initialize	()
	 Performs	the	common	initialization	step	after	creation.	More...
	

Detailed	Description

Target	for	off-screen	2D	rendering	into	a	texture.

sf::RenderTexture	is	the	little	brother	of	sf::RenderWindow.

It	implements	the	same	2D	drawing	and	OpenGL-related	functions	(see	their	base	class	
for	more	details),	the	difference	is	that	the	result	is	stored	in	an	off-screen	texture	rather	than	being	show	in
a	window.

Rendering	to	a	texture	can	be	useful	in	a	variety	of	situations:

precomputing	a	complex	static	texture	(like	a	level's	background	from	multiple	tiles)

applying	post-effects	to	the	whole	scene	with	shaders

creating	a	sprite	from	a	3D	object	rendered	with	OpenGL

etc.

Usage	example:

//	Create	a	new	render-window

sf::RenderWindow	window(sf::VideoMode(800,	600),	"SFML	window");

//	Create	a	new	render-texture

sf::RenderTexture	texture;

if	(!texture.create(500,	500))

	return	-1;

//	The	main	loop

while	(window.isOpen())

{

	//	Event	processing

	//	...

	//	Clear	the	whole	texture	with	red	color

			texture.clear(sf::Color::Red);

	//	Draw	stuff	to	the	texture

			texture.draw(sprite);		//	sprite	is	a	sf::Sprite

			texture.draw(shape);			//	shape	is	a	sf::Shape

			texture.draw(text);				//	text	is	a	sf::Text

	//	We're	done	drawing	to	the	texture

			texture.display();

	//	Now	we	start	rendering	to	the	window,	clear	it	first

			window.clear();

	//	Draw	the	texture

	sf::Sprite	sprite(texture.getTexture());

			window.draw(sprite);

	//	End	the	current	frame	and	display	its	contents	on	screen

			window.display();

}

Like	sf::RenderWindow,	sf::RenderTexture	is	still	able	to	render	direct	OpenGL	stuff.	It	is	even	possible	to
mix	 together	 OpenGL	 calls	 and	 regular	 SFML	 drawing	 commands.	 If	 you	 need	 a	 depth	 buffer	 for	 3D
rendering,	don't	forget	to	request	it	when	calling	RenderTexture::create.

See	also
sf::RenderTarget,	sf::RenderWindow,	sf::View,	sf::Texture

Definition	at	line	47	of	file	RenderTexture.hpp.

Constructor	&	Destructor	Documentation

sf::RenderTexture::RenderTexture ()

Default	constructor.

Constructs	an	empty,	invalid	render-texture.	You	must	call	create	to	have	a	valid	render-texture.

See	also
create

virtual	sf::RenderTexture::~RenderTexture ()

Destructor.

Member	Function	Documentation

void	sf::RenderTarget::clear (const	Color	&	 color	=	Color(0,	0,	0,	255)

Clear	the	entire	target	with	a	single	color.

This	function	is	usually	called	once	every	frame,	to	clear	the	previous	contents	of	the	target.

Parameters
color Fill	color	to	use	to	clear	the	render	target

bool	sf::RenderTexture::create (unsigned	int	 width,
unsigned	int	 height,
bool	 depthBuffer	=	false	
)

Create	the	render-texture.

Before	calling	this	function,	the	render-texture	is	in	an	invalid	state,	thus	it	is	mandatory	to	call	it	before
doing	anything	with	the	render-texture.	The	last	parameter,	depthBuffer,	is	useful	if	you	want	to	use	the
render-texture	 for	3D	OpenGL	rendering	 that	 requires	a	depth	buffer.	Otherwise	 it	 is	unnecessary,	and
you	should	leave	this	parameter	to	false	(which	is	its	default	value).

Parameters
width Width	of	the	render-texture
height Height	of	the	render-texture
depthBuffer Do	you	want	this	render-texture	to	have	a	depth	buffer?

Returns
True	if	creation	has	been	successful

void	sf::RenderTexture::display ()

Update	the	contents	of	the	target	texture.

This	function	updates	the	target	texture	with	what	has	been	drawn	so	far.	Like	for	windows,	calling	this
function	is	mandatory	at	the	end	of	rendering.	Not	calling	it	may	leave	the	texture	in	an	undefined	state.

void	sf::RenderTarget::draw (const	Drawable	&	 drawable,
const	RenderStates	&	 states	=	RenderStates::Default
)

Draw	a	drawable	object	to	the	render	target.

Parameters
drawableObject	to	draw
states Render	states	to	use	for	drawing

void	sf::RenderTarget::draw (const	Vertex	*	 vertices,
std::size_t	 vertexCount,
PrimitiveType	 type,
const	RenderStates	&	 states	=	RenderStates::Default
)

Draw	primitives	defined	by	an	array	of	vertices.

Parameters

vertices Pointer	to	the	vertices
vertexCount Number	of	vertices	in	the	array
type Type	of	primitives	to	draw
states Render	states	to	use	for	drawing

bool	sf::RenderTexture::generateMipmap ()

Generate	a	mipmap	using	the	current	texture	data.

This	 function	 is	similar	 to	 Texture::generateMipmap	and	operates	on	the	texture	used	as	the	target	 for
drawing.	 Be	 aware	 that	 any	 draw	 operation	may	modify	 the	 base	 level	 image	 data.	 For	 this	 reason,
calling	 this	 function	only	makes	sense	after	all	drawing	 is	completed	and	display	has	been	called.	Not
calling	display	after	subsequent	drawing	will	lead	to	undefined	behavior	if	a	mipmap	had	been	previously
generated.

Returns
True	if	mipmap	generation	was	successful,	false	if	unsuccessful

const	View&	sf::RenderTarget::getDefaultView () const

Get	the	default	view	of	the	render	target.

The	default	view	has	 the	 initial	size	of	 the	 render	 target,	and	never	changes	after	 the	 target	has	been
created.

Returns
The	default	view	of	the	render	target

See	also
setView,	getView

virtual	Vector2u	sf::RenderTexture::getSize () const

Return	the	size	of	the	rendering	region	of	the	texture.

The	returned	value	is	the	size	that	you	passed	to	the	create	function.

Returns
Size	in	pixels

Implements	sf::RenderTarget.

const	Texture&	sf::RenderTexture::getTexture () const

Get	a	read-only	reference	to	the	target	texture.

After	drawing	 to	 the	render-texture	and	calling	Display,	you	can	retrieve	 the	updated	 texture	using	 this
function,	and	draw	it	using	a	sprite	(for	example).	The	internal	 sf::Texture
the	same	 instance,	so	 that	 it	 is	possible	 to	call	 this	 function	once	and	keep	a	 reference	 to	 the	 texture
even	after	it	is	modified.

Returns
Const	reference	to	the	texture

const	View&	sf::RenderTarget::getView () const

Get	the	view	currently	in	use	in	the	render	target.

Returns
The	view	object	that	is	currently	used

See	also
setView,	getDefaultView

IntRect	sf::RenderTarget::getViewport (const	View	&	 view) const

Get	the	viewport	of	a	view,	applied	to	this	render	target.

The	 viewport	 is	 defined	 in	 the	 view	 as	 a	 ratio,	 this	 function	 simply	 applies	 this	 ratio	 to	 the	 current
dimensions	of	the	render	target	to	calculate	the	pixels	rectangle	that	the	viewport	actually	covers	in	the
target.

Parameters
view The	view	for	which	we	want	to	compute	the	viewport

Returns
Viewport	rectangle,	expressed	in	pixels

void	sf::RenderTarget::initialize ()

Performs	the	common	initialization	step	after	creation.

The	derived	classes	must	call	this	function	after	the	target	is	created	and	ready	for	drawing.

bool	sf::RenderTexture::isRepeated () const

Tell	whether	the	texture	is	repeated	or	not.

Returns
True	if	texture	is	repeated

See	also
setRepeated

bool	sf::RenderTexture::isSmooth () const

Tell	whether	the	smooth	filtering	is	enabled	or	not.

Returns
True	if	texture	smoothing	is	enabled

See	also
setSmooth

Vector2i	sf::RenderTarget::mapCoordsToPixel (const	Vector2f	&	 point

Convert	a	point	from	world	coordinates	to	target	coordinates,	using	the	current	view.

This	function	is	an	overload	of	the	mapCoordsToPixel	function	that	implicitly	uses	the	current	view.	It	 is
equivalent	to:

target.mapCoordsToPixel(point,	target.getView());

Parameters
point Point	to	convert

Returns
The	converted	point,	in	target	coordinates	(pixels)

See	also
mapPixelToCoords

Vector2i	sf::RenderTarget::mapCoordsToPixel (const	Vector2f	&	 point
const	View	&	 view
) const

Convert	a	point	from	world	coordinates	to	target	coordinates.

This	function	finds	the	pixel	of	the	render	target	that	matches	the	given	2D	point.	In	other	words,	it	goes
through	the	same	process	as	the	graphics	card,	to	compute	the	final	position	of	a	rendered	point.

Initially,	 both	 coordinate	 systems	 (world	 units	 and	 target	 pixels)	 match	 perfectly.	 But	 if	 you	 define	 a
custom	view	or	resize	your	render	target,	this	assertion	is	not	true	anymore,	i.e.	a	point	located	at	(150,
75)	 in	your	2D	world	may	map	 to	 the	pixel	 (10,	50)	of	your	 render	 target	–	 if	 the	view	 is	 translated	by
(140,	25).

This	version	uses	a	custom	view	for	calculations,	see	 the	other	overload	of	 the	 function	 if	you	want	 to
use	the	current	view	of	the	render	target.

Parameters
point Point	to	convert
view The	view	to	use	for	converting	the	point

Returns
The	converted	point,	in	target	coordinates	(pixels)

See	also
mapPixelToCoords

Vector2f	sf::RenderTarget::mapPixelToCoords (const	Vector2i	&	 point

Convert	a	point	from	target	coordinates	to	world	coordinates,	using	the	current	view.

This	function	is	an	overload	of	the	mapPixelToCoords	function	that	implicitly	uses	the	current	view.	It	 is
equivalent	to:

target.mapPixelToCoords(point,	target.getView());

Parameters
point Pixel	to	convert

Returns
The	converted	point,	in	"world"	coordinates

See	also
mapCoordsToPixel

Vector2f	sf::RenderTarget::mapPixelToCoords (const	Vector2i	&	 point
const	View	&	 view
) const

Convert	a	point	from	target	coordinates	to	world	coordinates.

This	 function	 finds	 the	2D	position	 that	matches	 the	given	pixel	of	 the	 render	 target.	 In	other	words,	 it
does	the	inverse	of	what	the	graphics	card	does,	to	find	the	initial	position	of	a	rendered	pixel.

Initially,	 both	 coordinate	 systems	 (world	 units	 and	 target	 pixels)	 match	 perfectly.	 But	 if	 you	 define	 a
custom	view	or	resize	your	render	target,	this	assertion	is	not	true	anymore,	i.e.	a	point	 located	at	(10,
50)	in	your	render	target	may	map	to	the	point	(150,	75)	in	your	2D	world	–	if	the	view	is	translated	by
(140,	25).

For	 render-windows,	 this	 function	 is	 typically	 used	 to	 find	which	 point	 (or	 object)	 is	 located	 below	 the
mouse	cursor.

This	version	uses	a	custom	view	for	calculations,	see	 the	other	overload	of	 the	 function	 if	you	want	 to

use	the	current	view	of	the	render	target.

Parameters
point Pixel	to	convert
view The	view	to	use	for	converting	the	point

Returns
The	converted	point,	in	"world"	units

See	also
mapCoordsToPixel

void	sf::RenderTarget::popGLStates ()

Restore	the	previously	saved	OpenGL	render	states	and	matrices.

See	the	description	of	pushGLStates	to	get	a	detailed	description	of	these	functions.

See	also
pushGLStates

void	sf::RenderTarget::pushGLStates ()

Save	the	current	OpenGL	render	states	and	matrices.

This	 function	can	be	used	when	you	mix	SFML	drawing	and	direct	OpenGL	rendering.	Combined	with
popGLStates,	it	ensures	that:

SFML's	internal	states	are	not	messed	up	by	your	OpenGL	code

your	OpenGL	states	are	not	modified	by	a	call	to	a	SFML	function

More	specifically,	it	must	be	used	around	code	that	calls	Draw	functions.	Example:

//	OpenGL	code	here...

window.pushGLStates();

window.draw(...);

window.draw(...);

window.popGLStates();

//	OpenGL	code	here...

Note	that	this	function	is	quite	expensive:	it	saves	all	the	possible	OpenGL	states	and	matrices,	even	the
ones	you	don't	 care	about.	Therefore	 it	 should	be	used	wisely.	 It	 is	provided	 for	convenience,	but	 the
best	results	will	be	achieved	if	you	handle	OpenGL	states	yourself	(because	you	know	which	states	have
really	changed,	and	need	to	be	saved	and	restored).	Take	a	look	at	the	resetGLStates	function	if	you	do
so.

See	also
popGLStates

void	sf::RenderTarget::resetGLStates ()

Reset	the	internal	OpenGL	states	so	that	the	target	is	ready	for	drawing.

This	function	can	be	used	when	you	mix	SFML	drawing	and	direct	OpenGL	rendering,	if	you	choose	not
to	use	pushGLStates/popGLStates.	 It	makes	sure	that	all	OpenGL	states	needed	by	SFML	are	set,	so
that	subsequent	draw()	calls	will	work	as	expected.

Example:

//	OpenGL	code	here...

glPushAttrib(...);

window.resetGLStates();

window.draw(...);

window.draw(...);

glPopAttrib(...);

//	OpenGL	code	here...

bool	sf::RenderTexture::setActive (bool	 active	=	true)

Activate	or	deactivate	the	render-texture	for	rendering.

This	function	makes	the	render-texture's	context	current	for	future	OpenGL	rendering	operations	(so	you
shouldn't	 care	 about	 it	 if	 you're	 not	 doing	 direct	OpenGL	 stuff).	Only	 one	 context	 can	 be	 current	 in	 a
thread,	so	if	you	want	to	draw	OpenGL	geometry	to	another	render	target	(like	a	
forget	to	activate	it	again.

Parameters
active True	to	activate,	false	to	deactivate

Returns
True	if	operation	was	successful,	false	otherwise

void	sf::RenderTexture::setRepeated (bool	 repeated)

Enable	or	disable	texture	repeating.

This	function	is	similar	to	Texture::setRepeated.	This	parameter	is	disabled	by	default.

Parameters
repeated True	to	enable	repeating,	false	to	disable	it

See	also
isRepeated

void	sf::RenderTexture::setSmooth (bool	 smooth)

Enable	or	disable	texture	smoothing.

This	function	is	similar	to	Texture::setSmooth.	This	parameter	is	disabled	by	default.

Parameters
smooth True	to	enable	smoothing,	false	to	disable	it

See	also
isSmooth

void	sf::RenderTarget::setView (const	View	&	 view)

Change	the	current	active	view.

The	view	is	like	a	2D	camera,	it	controls	which	part	of	the	2D	scene	is	visible,	and	how	it	is	viewed	in	the
render	 target.	 The	new	view	will	 affect	 everything	 that	 is	 drawn,	 until	 another	 view	 is	 set.	 The	 render
target	keeps	 its	own	copy	of	 the	view	object,	so	 it	 is	not	necessary	to	keep	the	original	one	alive	after
calling	this	function.	To	restore	the	original	view	of	the	target,	you	can	pass	the	result	of	
to	this	function.

Parameters
view New	view	to	use

See	also
getView,	getDefaultView

The	documentation	for	this	class	was	generated	from	the	following	file:
RenderTexture.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Member	Functions	|	Protected	Member	Functions	|	List	of	all	members

sf::RenderWindow	Class	Reference
Graphics	module

Window	that	can	serve	as	a	target	for	2D	drawing.	More...

#include	<RenderWindow.hpp>

Inheritance	diagram	for	sf::RenderWindow:

Public	Member	Functions
	 RenderWindow	()

	 Default	constructor.	More...
	

	 RenderWindow	(VideoMode	mode,	const	String
style=Style::Default,	const	ContextSettings	&settings=

	 Construct	a	new	window.	More...
	

	 RenderWindow	(WindowHandle	handle,	const	
&settings=ContextSettings())

	 Construct	the	window	from	an	existing	control.	
	

virtual	 ~RenderWindow	()
	 Destructor.	More...
	

virtual	Vector2u	 getSize	()	const
	 Get	the	size	of	the	rendering	region	of	the	window.	
	

Image	 capture	()	const
	 Copy	the	current	contents	of	the	window	to	an	image.	
	

void	 create	(VideoMode	mode,	const	String	&title,	Uint32	style=Style::Default,	constContextSettings	&settings=ContextSettings())
	 Create	(or	recreate)	the	window.	More...
	

void	 create	(WindowHandle	handle,	const	ContextSettings
&settings=ContextSettings())

	 Create	(or	recreate)	the	window	from	an	existing	control.	
	

void	 close	()
	 Close	the	window	and	destroy	all	the	attached	resources.	
	

bool	 isOpen	()	const
	 Tell	whether	or	not	the	window	is	open.	More...
	
const	ContextSettings	&	 getSettings	()	const
	 Get	the	settings	of	the	OpenGL	context	of	the	window.	
	

bool	 pollEvent	(Event	&event)
	 Pop	the	event	on	top	of	the	event	queue,	if	any,	and	return	it.	
	

bool	 waitEvent	(Event	&event)
	 Wait	for	an	event	and	return	it.	More...
	

Vector2i	 getPosition	()	const
	 Get	the	position	of	the	window.	More...
	

void	 setPosition	(const	Vector2i	&position)
	 Change	the	position	of	the	window	on	screen.	More...
	

void	 setSize	(const	Vector2u	&size)
	 Change	the	size	of	the	rendering	region	of	the	window.	
	

void	 setTitle	(const	String	&title)
	 Change	the	title	of	the	window.	More...
	

void	 setIcon	(unsigned	int	width,	unsigned	int	height,	const	Uint8	*pixels)
	 Change	the	window's	icon.	More...
	

void	 setVisible	(bool	visible)
	 Show	or	hide	the	window.	More...
	

void	 setVerticalSyncEnabled	(bool	enabled)
	 Enable	or	disable	vertical	synchronization.	More...
	

void	 setMouseCursorVisible	(bool	visible)
	 Show	or	hide	the	mouse	cursor.	More...

	
void	 setMouseCursorGrabbed	(bool	grabbed)

	 Grab	or	release	the	mouse	cursor.	More...
	

void	 setKeyRepeatEnabled	(bool	enabled)
	 Enable	or	disable	automatic	key-repeat.	More...
	

void	 setFramerateLimit	(unsigned	int	limit)
	 Limit	the	framerate	to	a	maximum	fixed	frequency.	
	

void	 setJoystickThreshold	(float	threshold)
	 Change	the	joystick	threshold.	More...
	

bool	 setActive	(bool	active=true)	const

	 Activate	or	deactivate	the	window	as	the	current	target	for	OpenGL	rendering.
More...

	
void	 requestFocus	()

	 Request	the	current	window	to	be	made	the	active	foreground	window.	
	

bool	 hasFocus	()	const
	 Check	whether	the	window	has	the	input	focus.	
	

void	 display	()
	 Display	on	screen	what	has	been	rendered	to	the	window	so	far.	
	

WindowHandle	 getSystemHandle	()	const
	 Get	the	OS-specific	handle	of	the	window.	More...
	

void	 clear	(const	Color	&color=Color(0,	0,	0,	255))
	 Clear	the	entire	target	with	a	single	color.	More...
	

void	 setView	(const	View	&view)
	 Change	the	current	active	view.	More...
	

const	View	&	 getView	()	const
	 Get	the	view	currently	in	use	in	the	render	target.	
	

const	View	&	 getDefaultView	()	const
	 Get	the	default	view	of	the	render	target.	More...
	

IntRect	 getViewport	(const	View	&view)	const
	 Get	the	viewport	of	a	view,	applied	to	this	render	target.	
	

Vector2f	 mapPixelToCoords	(const	Vector2i	&point)	const

	 Convert	a	point	from	target	coordinates	to	world	coordinates,	using	the	current
view.	More...

	
Vector2f	 mapPixelToCoords	(const	Vector2i	&point,	const	

	 Convert	a	point	from	target	coordinates	to	world	coordinates.	
	

Vector2i	 mapCoordsToPixel	(const	Vector2f	&point)	const

	 Convert	a	point	from	world	coordinates	to	target	coordinates,	using	the	current
view.	More...

	
Vector2i	 mapCoordsToPixel	(const	Vector2f	&point,	const	

	 Convert	a	point	from	world	coordinates	to	target	coordinates.	
	

void	 draw	(const	Drawable	&drawable,	const	RenderStates&states=RenderStates::Default)
	 Draw	a	drawable	object	to	the	render	target.	More...
	

void	 draw	(const	Vertex	*vertices,	std::size_t	vertexCount,	RenderStates	&states=RenderStates::Default)
	 Draw	primitives	defined	by	an	array	of	vertices.	
	

void	 pushGLStates	()
	 Save	the	current	OpenGL	render	states	and	matrices.	
	

void	 popGLStates	()
	 Restore	the	previously	saved	OpenGL	render	states	and	matrices.	

	
void	 resetGLStates	()

	 Reset	the	internal	OpenGL	states	so	that	the	target	is	ready	for	drawing.
More...

	

Protected	Member	Functions
virtual	void	 onCreate	()
	 Function	called	after	the	window	has	been	created.	More...
	
virtual	void	 onResize	()
	 Function	called	after	the	window	has	been	resized.	More...
	

void	 initialize	()
	 Performs	the	common	initialization	step	after	creation.	More...
	

Detailed	Description

Window	that	can	serve	as	a	target	for	2D	drawing.

sf::RenderWindow	is	the	main	class	of	the	Graphics	module.

It	defines	an	OS	window	that	can	be	painted	using	the	other	classes	of	the	graphics	module.

sf::RenderWindow	is	derived	from	sf::Window,	thus	it	inherits	all	its	features:	events,	window	management,
OpenGL	rendering,	etc.	See	the	documentation	of	sf::Window	for	a	more	complete	description	of	all	these
features,	as	well	as	code	examples.

On	top	of	that,	sf::RenderWindow	adds	more	features	related	to	2D	drawing	with	the	graphics	module	(see
its	 base	 class	 sf::RenderTarget	 for	 more	 details).	 Here	 is	 a	 typical	 rendering	 and	 event	 loop	 with	 a
sf::RenderWindow:

//	Declare	and	create	a	new	render-window

sf::RenderWindow	window(sf::VideoMode(800,	600),	"SFML	window");

//	Limit	the	framerate	to	60	frames	per	second	(this	step	is	optional)

window.setFramerateLimit(60);

//	The	main	loop	-	ends	as	soon	as	the	window	is	closed

while	(window.isOpen())

{

	//	Event	processing

	sf::Event	event;

	while	(window.pollEvent(event))

			{

	//	Request	for	closing	the	window

	if	(event.type	==	sf::Event::Closed)

											window.close();

			}

	//	Clear	the	whole	window	before	rendering	a	new	frame

			window.clear();

	//	Draw	some	graphical	entities

			window.draw(sprite);

			window.draw(circle);

			window.draw(text);

	//	End	the	current	frame	and	display	its	contents	on	screen

			window.display();

}

Like	 sf::Window,	 sf::RenderWindow	 is	 still	 able	 to	 render	direct	OpenGL	stuff.	 It	 is	 even	possible	 to	mix
together	OpenGL	calls	and	regular	SFML	drawing	commands.

//	Create	the	render	window

sf::RenderWindow	window(sf::VideoMode(800,	600),	"SFML	OpenGL");

//	Create	a	sprite	and	a	text	to	display

sf::Sprite	sprite;

sf::Text	text;

...

//	Perform	OpenGL	initializations

glMatrixMode(GL_PROJECTION);

...

//	Start	the	rendering	loop

while	(window.isOpen())

{

	//	Process	events

				...

	//	Draw	a	background	sprite

				window.pushGLStates();

				window.draw(sprite);

				window.popGLStates();

	//	Draw	a	3D	object	using	OpenGL

				glBegin(GL_QUADS);

								glVertex3f(...);

								...

				glEnd();

	//	Draw	text	on	top	of	the	3D	object

				window.pushGLStates();

				window.draw(text);

				window.popGLStates();

	//	Finally,	display	the	rendered	frame	on	screen

				window.display();

}

See	also
sf::Window,	sf::RenderTarget,	sf::RenderTexture,	sf::View

Definition	at	line	44	of	file	RenderWindow.hpp.

Constructor	&	Destructor	Documentation

sf::RenderWindow::RenderWindow ()

Default	constructor.

This	constructor	doesn't	actually	create	the	window,	use	the	other	constructors	or	call	

sf::RenderWindow::RenderWindow (VideoMode	 mode
const	String	&	 title,
Uint32	 style	=	
const	ContextSettings	&	 settings
)

Construct	a	new	window.

This	constructor	creates	the	window	with	the	size	and	pixel	depth	defined	in	
be	passed	to	customize	the	look	and	behavior	of	the	window	(borders,	title	bar,	resizable,	closable,	...).

The	 fourth	 parameter	 is	 an	 optional	 structure	 specifying	 advanced	 OpenGL	 context	 settings	 such	 as
antialiasing,	depth-buffer	bits,	etc.	You	shouldn't	care	about	these	parameters	for	a	regular	usage	of	the
graphics	module.

Parameters
mode Video	mode	to	use	(defines	the	width,	height	and	depth	of	the	rendering	area	of	the

window)
title Title	of	the	window
style Window	style,	a	bitwise	OR	combination	of	sf::Style	enumerators

settings Additional	settings	for	the	underlying	OpenGL	context

sf::RenderWindow::RenderWindow (WindowHandle	 handle
const	ContextSettings	&	 settings
)

Construct	the	window	from	an	existing	control.

Use	this	constructor	if	you	want	to	create	an	SFML	rendering	area	into	an	already	existing	control.

The	second	parameter	 is	an	optional	 structure	specifying	advanced	OpenGL	context	 settings	such	as
antialiasing,	depth-buffer	bits,	etc.	You	shouldn't	care	about	these	parameters	for	a	regular	usage	of	the
graphics	module.

Parameters
handle Platform-specific	handle	of	the	control	(HWND	on	Windows,	

NSWindow	on	OS	X)
settings Additional	settings	for	the	underlying	OpenGL	context

virtual	sf::RenderWindow::~RenderWindow ()

Destructor.

Closes	the	window	and	frees	all	the	resources	attached	to	it.

Member	Function	Documentation

Image	sf::RenderWindow::capture () const

Copy	the	current	contents	of	the	window	to	an	image.

Deprecated:
Use	a	sf::Texture	and	its	sf::Texture::update(const	Window&)	function	and	copy	its	contents	into	an
sf::Image	instead.
sf::Vector2u	windowSize	=	window.getSize();

sf::Texture	texture;

texture.create(windowSize.x,	windowSize.y);

texture.update(window);

sf::Image	screenshot	=	texture.copyToImage();

This	is	a	slow	operation,	whose	main	purpose	is	to	make	screenshots	of	the	application.	If	you	want	to
update	an	image	with	the	contents	of	 the	window	and	then	use	it	 for	drawing,	you	should	rather	use	a
sf::Texture	 and	 its	 update(Window&)	 function.	 You	 can	 also	 draw	 things	 directly	 to	 a	 texture	with	 the
sf::RenderTexture	class.

Returns
Image	containing	the	captured	contents

void	sf::RenderTarget::clear (const	Color	&	 color	=	Color(0,	0,	0,	255)

Clear	the	entire	target	with	a	single	color.

This	function	is	usually	called	once	every	frame,	to	clear	the	previous	contents	of	the	target.

Parameters
color Fill	color	to	use	to	clear	the	render	target

void	sf::Window::close ()

Close	the	window	and	destroy	all	the	attached	resources.

After	calling	this	function,	the	sf::Window	instance	remains	valid	and	you	can	call	
window.	 All	 other	 functions	 such	 as	 pollEvent()	 or	 display()	 will	 still	 work	 (i.e.	 you	 don't	 have	 to	 test
isOpen()	every	time),	and	will	have	no	effect	on	closed	windows.

void	sf::Window::create (VideoMode	 mode,
const	String	&	 title,
Uint32	 style	=	Style::Default
const	ContextSettings	&	 settings	=	ContextSettings
)

Create	(or	recreate)	the	window.

If	the	window	was	already	created,	it	closes	it	first.	If	style	contains	Style::Fullscreen,	then	
a	valid	video	mode.

The	 fourth	 parameter	 is	 an	 optional	 structure	 specifying	 advanced	 OpenGL	 context	 settings	 such	 as
antialiasing,	depth-buffer	bits,	etc.

Parameters
mode Video	mode	to	use	(defines	the	width,	height	and	depth	of	the	rendering	area	of	the

window)
title Title	of	the	window
style Window	style,	a	bitwise	OR	combination	of	sf::Style	enumerators
settings Additional	settings	for	the	underlying	OpenGL	context

void	sf::Window::create (WindowHandle	 handle,
const	ContextSettings	&	 settings	=	ContextSettings
)

Create	(or	recreate)	the	window	from	an	existing	control.

Use	this	function	if	you	want	to	create	an	OpenGL	rendering	area	into	an	already	existing	control.	If	the
window	was	already	created,	it	closes	it	first.

The	second	parameter	 is	an	optional	 structure	specifying	advanced	OpenGL	context	 settings	such	as
antialiasing,	depth-buffer	bits,	etc.

Parameters
handle Platform-specific	handle	of	the	control
settings Additional	settings	for	the	underlying	OpenGL	context

void	sf::Window::display ()

Display	on	screen	what	has	been	rendered	to	the	window	so	far.

This	function	is	typically	called	after	all	OpenGL	rendering	has	been	done	for	the	current	frame,	in	order
to	show	it	on	screen.

void	sf::RenderTarget::draw (const	Drawable	&	 drawable,
const	RenderStates	&	 states	=	RenderStates::Default
)

Draw	a	drawable	object	to	the	render	target.

Parameters
drawableObject	to	draw
states Render	states	to	use	for	drawing

void	sf::RenderTarget::draw (const	Vertex	*	 vertices,
std::size_t	 vertexCount,
PrimitiveType	 type,
const	RenderStates	&	 states	=	RenderStates::Default
)

Draw	primitives	defined	by	an	array	of	vertices.

Parameters
vertices Pointer	to	the	vertices
vertexCount Number	of	vertices	in	the	array
type Type	of	primitives	to	draw
states Render	states	to	use	for	drawing

const	View&	sf::RenderTarget::getDefaultView () const

Get	the	default	view	of	the	render	target.

The	default	view	has	 the	 initial	size	of	 the	 render	 target,	and	never	changes	after	 the	 target	has	been
created.

Returns
The	default	view	of	the	render	target

See	also
setView,	getView

Vector2i	sf::Window::getPosition () const

Get	the	position	of	the	window.

Returns
Position	of	the	window,	in	pixels

See	also
setPosition

const	ContextSettings&	sf::Window::getSettings () const

Get	the	settings	of	the	OpenGL	context	of	the	window.

Note	 that	 these	 settings	 may	 be	 different	 from	 what	 was	 passed	 to	 the	 constructor	 or	 the	
function,	if	one	or	more	settings	were	not	supported.	In	this	case,	SFML	chose	the	closest	match.

Returns
Structure	containing	the	OpenGL	context	settings

virtual	Vector2u	sf::RenderWindow::getSize () const

Get	the	size	of	the	rendering	region	of	the	window.

The	size	doesn't	include	the	titlebar	and	borders	of	the	window.

Returns
Size	in	pixels

Implements	sf::RenderTarget.

WindowHandle	sf::Window::getSystemHandle () const

Get	the	OS-specific	handle	of	the	window.

The	type	of	the	returned	handle	is	sf::WindowHandle,	which	is	a	typedef	to	the	handle	type	defined	by
the	OS.	You	shouldn't	need	 to	use	 this	 function,	unless	you	have	very	specific	stuff	 to	 implement	 that
SFML	doesn't	support,	or	implement	a	temporary	workaround	until	a	bug	is	fixed.

Returns
System	handle	of	the	window

const	View&	sf::RenderTarget::getView () const

Get	the	view	currently	in	use	in	the	render	target.

Returns
The	view	object	that	is	currently	used

See	also
setView,	getDefaultView

IntRect	sf::RenderTarget::getViewport (const	View	&	 view) const

Get	the	viewport	of	a	view,	applied	to	this	render	target.

The	 viewport	 is	 defined	 in	 the	 view	 as	 a	 ratio,	 this	 function	 simply	 applies	 this	 ratio	 to	 the	 current
dimensions	of	the	render	target	to	calculate	the	pixels	rectangle	that	the	viewport	actually	covers	in	the
target.

Parameters
view The	view	for	which	we	want	to	compute	the	viewport

Returns
Viewport	rectangle,	expressed	in	pixels

bool	sf::Window::hasFocus () const

Check	whether	the	window	has	the	input	focus.

At	any	given	time,	only	one	window	may	have	the	input	focus	to	receive	input	events	such	as	keystrokes
or	most	mouse	events.

Returns
True	if	window	has	focus,	false	otherwise

See	also
requestFocus

void	sf::RenderTarget::initialize ()

Performs	the	common	initialization	step	after	creation.

The	derived	classes	must	call	this	function	after	the	target	is	created	and	ready	for	drawing.

bool	sf::Window::isOpen () const

Tell	whether	or	not	the	window	is	open.

This	function	returns	whether	or	not	the	window	exists.	Note	that	a	hidden	window	(setVisible(false))	 is
open	(therefore	this	function	would	return	true).

Returns
True	if	the	window	is	open,	false	if	it	has	been	closed

Vector2i	sf::RenderTarget::mapCoordsToPixel (const	Vector2f	&	 point

Convert	a	point	from	world	coordinates	to	target	coordinates,	using	the	current	view.

This	function	is	an	overload	of	the	mapCoordsToPixel	function	that	implicitly	uses	the	current	view.	It	 is
equivalent	to:

target.mapCoordsToPixel(point,	target.getView());

Parameters
point Point	to	convert

Returns
The	converted	point,	in	target	coordinates	(pixels)

See	also
mapPixelToCoords

Vector2i	sf::RenderTarget::mapCoordsToPixel (const	Vector2f	&	 point
const	View	&	 view
) const

Convert	a	point	from	world	coordinates	to	target	coordinates.

This	function	finds	the	pixel	of	the	render	target	that	matches	the	given	2D	point.	In	other	words,	it	goes

through	the	same	process	as	the	graphics	card,	to	compute	the	final	position	of	a	rendered	point.

Initially,	 both	 coordinate	 systems	 (world	 units	 and	 target	 pixels)	 match	 perfectly.	 But	 if	 you	 define	 a
custom	view	or	resize	your	render	target,	this	assertion	is	not	true	anymore,	i.e.	a	point	located	at	(150,
75)	 in	your	2D	world	may	map	 to	 the	pixel	 (10,	50)	of	your	 render	 target	–	 if	 the	view	 is	 translated	by
(140,	25).

This	version	uses	a	custom	view	for	calculations,	see	 the	other	overload	of	 the	 function	 if	you	want	 to
use	the	current	view	of	the	render	target.

Parameters
point Point	to	convert
view The	view	to	use	for	converting	the	point

Returns
The	converted	point,	in	target	coordinates	(pixels)

See	also
mapPixelToCoords

Vector2f	sf::RenderTarget::mapPixelToCoords (const	Vector2i	&	 point

Convert	a	point	from	target	coordinates	to	world	coordinates,	using	the	current	view.

This	function	is	an	overload	of	the	mapPixelToCoords	function	that	implicitly	uses	the	current	view.	It	 is
equivalent	to:

target.mapPixelToCoords(point,	target.getView());

Parameters
point Pixel	to	convert

Returns

The	converted	point,	in	"world"	coordinates

See	also
mapCoordsToPixel

Vector2f	sf::RenderTarget::mapPixelToCoords (const	Vector2i	&	 point
const	View	&	 view
) const

Convert	a	point	from	target	coordinates	to	world	coordinates.

This	 function	 finds	 the	2D	position	 that	matches	 the	given	pixel	of	 the	 render	 target.	 In	other	words,	 it
does	the	inverse	of	what	the	graphics	card	does,	to	find	the	initial	position	of	a	rendered	pixel.

Initially,	 both	 coordinate	 systems	 (world	 units	 and	 target	 pixels)	 match	 perfectly.	 But	 if	 you	 define	 a
custom	view	or	resize	your	render	target,	this	assertion	is	not	true	anymore,	i.e.	a	point	 located	at	(10,
50)	in	your	render	target	may	map	to	the	point	(150,	75)	in	your	2D	world	–	if	the	view	is	translated	by
(140,	25).

For	 render-windows,	 this	 function	 is	 typically	 used	 to	 find	which	 point	 (or	 object)	 is	 located	 below	 the
mouse	cursor.

This	version	uses	a	custom	view	for	calculations,	see	 the	other	overload	of	 the	 function	 if	you	want	 to
use	the	current	view	of	the	render	target.

Parameters
point Pixel	to	convert
view The	view	to	use	for	converting	the	point

Returns
The	converted	point,	in	"world"	units

See	also

mapCoordsToPixel

virtual	void	sf::RenderWindow::onCreate ()

Function	called	after	the	window	has	been	created.

This	function	is	called	so	that	derived	classes	can	perform	their	own	specific	initialization	as	soon	as	the
window	is	created.

Reimplemented	from	sf::Window.

virtual	void	sf::RenderWindow::onResize ()

Function	called	after	the	window	has	been	resized.

This	function	is	called	so	that	derived	classes	can	perform	custom	actions	when	the	size	of	the	window
changes.

Reimplemented	from	sf::Window.

bool	sf::Window::pollEvent (Event	&	 event)

Pop	the	event	on	top	of	the	event	queue,	if	any,	and	return	it.

This	 function	 is	 not	 blocking:	 if	 there's	 no	 pending	 event	 then	 it	 will	 return	 false	 and	 leave	
unmodified.	Note	that	more	than	one	event	may	be	present	in	the	event	queue,	thus	you	should	always
call	this	function	in	a	loop	to	make	sure	that	you	process	every	pending	event.

sf::Event	event;

while	(window.pollEvent(event))

{

	//	process	event...

}

Parameters
event Event	to	be	returned

Returns
True	if	an	event	was	returned,	or	false	if	the	event	queue	was	empty

See	also
waitEvent

void	sf::RenderTarget::popGLStates ()

Restore	the	previously	saved	OpenGL	render	states	and	matrices.

See	the	description	of	pushGLStates	to	get	a	detailed	description	of	these	functions.

See	also
pushGLStates

void	sf::RenderTarget::pushGLStates ()

Save	the	current	OpenGL	render	states	and	matrices.

This	 function	can	be	used	when	you	mix	SFML	drawing	and	direct	OpenGL	rendering.	Combined	with
popGLStates,	it	ensures	that:

SFML's	internal	states	are	not	messed	up	by	your	OpenGL	code

your	OpenGL	states	are	not	modified	by	a	call	to	a	SFML	function

More	specifically,	it	must	be	used	around	code	that	calls	Draw	functions.	Example:

//	OpenGL	code	here...

window.pushGLStates();

window.draw(...);

window.draw(...);

window.popGLStates();

//	OpenGL	code	here...

Note	that	this	function	is	quite	expensive:	it	saves	all	the	possible	OpenGL	states	and	matrices,	even	the
ones	you	don't	 care	about.	Therefore	 it	 should	be	used	wisely.	 It	 is	provided	 for	convenience,	but	 the
best	results	will	be	achieved	if	you	handle	OpenGL	states	yourself	(because	you	know	which	states	have
really	changed,	and	need	to	be	saved	and	restored).	Take	a	look	at	the	resetGLStates	function	if	you	do
so.

See	also
popGLStates

void	sf::Window::requestFocus ()

Request	the	current	window	to	be	made	the	active	foreground	window.

At	any	given	time,	only	one	window	may	have	the	input	focus	to	receive	input	events	such	as	keystrokes
or	mouse	events.	If	a	window	requests	focus,	it	only	hints	to	the	operating	system,	that	it	would	like	to	be
focused.	The	operating	system	is	free	to	deny	the	request.	This	is	not	to	be	confused	with	

See	also
hasFocus

void	sf::RenderTarget::resetGLStates ()

Reset	the	internal	OpenGL	states	so	that	the	target	is	ready	for	drawing.

This	function	can	be	used	when	you	mix	SFML	drawing	and	direct	OpenGL	rendering,	if	you	choose	not
to	use	pushGLStates/popGLStates.	 It	makes	sure	that	all	OpenGL	states	needed	by	SFML	are	set,	so
that	subsequent	draw()	calls	will	work	as	expected.

Example:

//	OpenGL	code	here...

glPushAttrib(...);

window.resetGLStates();

window.draw(...);

window.draw(...);

glPopAttrib(...);

//	OpenGL	code	here...

bool	sf::Window::setActive (bool	 active	=	true) const

Activate	or	deactivate	the	window	as	the	current	target	for	OpenGL	rendering.

A	window	is	active	only	on	the	current	thread,	if	you	want	to	make	it	active	on	another	thread	you	have	to
deactivate	it	on	the	previous	thread	first	if	it	was	active.	Only	one	window	can	be	active	on	a	thread	at	a
time,	thus	the	window	previously	active	(if	any)	automatically	gets	deactivated.	This	is	not	to	be	confused
with	requestFocus().

Parameters
active True	to	activate,	false	to	deactivate

Returns
True	if	operation	was	successful,	false	otherwise

void	sf::Window::setFramerateLimit (unsigned	int	 limit)

Limit	the	framerate	to	a	maximum	fixed	frequency.

If	a	 limit	 is	set,	 the	window	will	use	a	small	delay	after	each	call	 to	 display()

frame	lasted	long	enough	to	match	the	framerate	limit.	SFML	will	try	to	match	the	given	limit	as	much	as
it	can,	but	since	it	 internally	uses	sf::sleep,	whose	precision	depends	on	the	underlying	OS,	the	results
may	be	a	little	unprecise	as	well	(for	example,	you	can	get	65	FPS	when	requesting	60).

Parameters
limit Framerate	limit,	in	frames	per	seconds	(use	0	to	disable	limit)

void	sf::Window::setIcon (unsigned	int	 width,
unsigned	int	 height,
const	Uint8	*	 pixels	
)

Change	the	window's	icon.

pixels	must	be	an	array	of	width	x	height	pixels	in	32-bits	RGBA	format.

The	OS	default	icon	is	used	by	default.

Parameters
width Icon's	width,	in	pixels
height Icon's	height,	in	pixels
pixels Pointer	to	the	array	of	pixels	in	memory.	The	pixels	are	copied,	so	you	need	not	keep	the

source	alive	after	calling	this	function.

See	also
setTitle

void	sf::Window::setJoystickThreshold (float	 threshold)

Change	the	joystick	threshold.

The	joystick	threshold	is	the	value	below	which	no	JoystickMoved	event	will	be	generated.

The	threshold	value	is	0.1	by	default.

Parameters
threshold New	threshold,	in	the	range	[0,	100]

void	sf::Window::setKeyRepeatEnabled (bool	 enabled)

Enable	or	disable	automatic	key-repeat.

If	key	repeat	is	enabled,	you	will	receive	repeated	KeyPressed	events	while	keeping	a	key	pressed.	If	it
is	disabled,	you	will	only	get	a	single	event	when	the	key	is	pressed.

Key	repeat	is	enabled	by	default.

Parameters
enabled True	to	enable,	false	to	disable

void	sf::Window::setMouseCursorGrabbed (bool	 grabbed)

Grab	or	release	the	mouse	cursor.

If	set,	grabs	the	mouse	cursor	inside	this	window's	client	area	so	it	may	no	longer	be	moved	outside	its
bounds.	Note	that	grabbing	is	only	active	while	the	window	has	focus.

Parameters
grabbed True	to	enable,	false	to	disable

void	sf::Window::setMouseCursorVisible (bool	 visible)

Show	or	hide	the	mouse	cursor.

The	mouse	cursor	is	visible	by	default.

Parameters
visible True	to	show	the	mouse	cursor,	false	to	hide	it

void	sf::Window::setPosition (const	Vector2i	&	 position)

Change	the	position	of	the	window	on	screen.

This	function	only	works	for	top-level	windows	(i.e.	it	will	be	ignored	for	windows	created	from	the	handle
of	a	child	window/control).

Parameters
positionNew	position,	in	pixels

See	also
getPosition

void	sf::Window::setSize (const	Vector2u	&	 size)

Change	the	size	of	the	rendering	region	of	the	window.

Parameters
sizeNew	size,	in	pixels

See	also
getSize

void	sf::Window::setTitle (const	String	&	 title)

Change	the	title	of	the	window.

Parameters
title New	title

See	also
setIcon

void	sf::Window::setVerticalSyncEnabled (bool	 enabled)

Enable	or	disable	vertical	synchronization.

Activating	 vertical	 synchronization	will	 limit	 the	 number	 of	 frames	 displayed	 to	 the	 refresh	 rate	 of	 the
monitor.	This	can	avoid	some	visual	artifacts,	and	limit	the	framerate	to	a	good	value	(but	not	constant
across	different	computers).

Vertical	synchronization	is	disabled	by	default.

Parameters
enabled True	to	enable	v-sync,	false	to	deactivate	it

void	sf::RenderTarget::setView (const	View	&	 view)

Change	the	current	active	view.

The	view	is	like	a	2D	camera,	it	controls	which	part	of	the	2D	scene	is	visible,	and	how	it	is	viewed	in	the
render	 target.	 The	new	view	will	 affect	 everything	 that	 is	 drawn,	 until	 another	 view	 is	 set.	 The	 render

target	keeps	 its	own	copy	of	 the	view	object,	so	 it	 is	not	necessary	to	keep	the	original	one	alive	after
calling	this	function.	To	restore	the	original	view	of	the	target,	you	can	pass	the	result	of	
to	this	function.

Parameters
view New	view	to	use

See	also
getView,	getDefaultView

void	sf::Window::setVisible (bool	 visible)

Show	or	hide	the	window.

The	window	is	shown	by	default.

Parameters
visible True	to	show	the	window,	false	to	hide	it

bool	sf::Window::waitEvent (Event	&	 event)

Wait	for	an	event	and	return	it.

This	function	is	blocking:	if	there's	no	pending	event	then	it	will	wait	until	an	event	is	received.	After	this
function	returns	(and	no	error	occurred),	the	event	object	is	always	valid	and	filled	properly.	This	function
is	 typically	used	when	you	have	a	 thread	 that	 is	dedicated	 to	events	handling:	 you	want	 to	make	 this
thread	sleep	as	long	as	no	new	event	is	received.

sf::Event	event;

if	(window.waitEvent(event))

{

	//	process	event...

}

Parameters
event Event	to	be	returned

Returns
False	if	any	error	occurred

See	also
pollEvent

The	documentation	for	this	class	was	generated	from	the	following	file:
RenderWindow.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Classes	|	Public	Types	|	Public	Member	Functions	|	Static	Public	Member	Functions	|	Static	Public	Attributes	|	Static	Private	Member	Functions

sf::Shader	Class	Reference
Graphics	module

Shader	class	(vertex,	geometry	and	fragment)	More...

#include	<Shader.hpp>

Inheritance	diagram	for	sf::Shader:

Classes
struct		 CurrentTextureType

	 Special	type	that	can	be	passed	to	setUniform(),	and	that	represents	the	texture	of	the	object
being	drawn.	More...

	

Public	Types
enum		 Type	{	Vertex,	Geometry,	Fragment	}
	 Types	of	shaders.	More...
	

Public	Member	Functions
	 Shader	()

	 Default	constructor.	More...
	

	 ~Shader	()
	 Destructor.	More...
	

bool	 loadFromFile	(const	std::string	&filename,	Type	type)
	 Load	the	vertex,	geometry	or	fragment	shader	from	a	file.	More...
	

bool	 loadFromFile	(const	std::string	&vertexShaderFilename,	const	std::string&fragmentShaderFilename)
	 Load	both	the	vertex	and	fragment	shaders	from	files.	More...
	

bool	 loadFromFile	(const	std::string	&vertexShaderFilename,	const	std::string&geometryShaderFilename,	const	std::string	&fragmentShaderFilename)
	 Load	the	vertex,	geometry	and	fragment	shaders	from	files.	
	

bool	 loadFromMemory	(const	std::string	&shader,	Type	type)
	 Load	the	vertex,	geometry	or	fragment	shader	from	a	source	code	in	memory.	
	

bool	 loadFromMemory	(const	std::string	&vertexShader,	const	std::string	&fragmentShader)
	 Load	both	the	vertex	and	fragment	shaders	from	source	codes	in	memory.	
	

bool	 loadFromMemory	(const	std::string	&vertexShader,	const	std::string	&geometryShader,const	std::string	&fragmentShader)
	 Load	the	vertex,	geometry	and	fragment	shaders	from	source	codes	in	memory.	
	

bool	 loadFromStream	(InputStream	&stream,	Type	type)
	 Load	the	vertex,	geometry	or	fragment	shader	from	a	custom	stream.	
	

bool	 loadFromStream	(InputStream	&vertexShaderStream,	InputStream

&fragmentShaderStream)
	 Load	both	the	vertex	and	fragment	shaders	from	custom	streams.	
	

bool	 loadFromStream	(InputStream	&vertexShaderStream,	InputStream
&geometryShaderStream,	InputStream	&fragmentShaderStream)

	 Load	the	vertex,	geometry	and	fragment	shaders	from	custom	streams.	
	

void	 setUniform	(const	std::string	&name,	float	x)
	 Specify	value	for	float	uniform.	More...
	

void	 setUniform	(const	std::string	&name,	const	Glsl::Vec2	&vector)
	 Specify	value	for	vec2	uniform.	More...
	

void	 setUniform	(const	std::string	&name,	const	Glsl::Vec3	&vector)
	 Specify	value	for	vec3	uniform.	More...
	

void	 setUniform	(const	std::string	&name,	const	Glsl::Vec4	&vector)
	 Specify	value	for	vec4	uniform.	More...
	

void	 setUniform	(const	std::string	&name,	int	x)
	 Specify	value	for	int	uniform.	More...
	

void	 setUniform	(const	std::string	&name,	const	Glsl::Ivec2	&vector)
	 Specify	value	for	ivec2	uniform.	More...
	

void	 setUniform	(const	std::string	&name,	const	Glsl::Ivec3	&vector)
	 Specify	value	for	ivec3	uniform.	More...
	

void	 setUniform	(const	std::string	&name,	const	Glsl::Ivec4	&vector)
	 Specify	value	for	ivec4	uniform.	More...
	

void	 setUniform	(const	std::string	&name,	bool	x)
	 Specify	value	for	bool	uniform.	More...
	

void	 setUniform	(const	std::string	&name,	const	Glsl::Bvec2	&vector)

	 Specify	value	for	bvec2	uniform.	More...
	

void	 setUniform	(const	std::string	&name,	const	Glsl::Bvec3	&vector)
	 Specify	value	for	bvec3	uniform.	More...
	

void	 setUniform	(const	std::string	&name,	const	Glsl::Bvec4	&vector)
	 Specify	value	for	bvec4	uniform.	More...
	

void	 setUniform	(const	std::string	&name,	const	Glsl::Mat3	&matrix)
	 Specify	value	for	mat3	matrix.	More...
	

void	 setUniform	(const	std::string	&name,	const	Glsl::Mat4	&matrix)
	 Specify	value	for	mat4	matrix.	More...
	

void	 setUniform	(const	std::string	&name,	const	Texture	&texture)
	 Specify	a	texture	as	sampler2D	uniform.	More...
	

void	 setUniform	(const	std::string	&name,	CurrentTextureType)
	 Specify	current	texture	as	sampler2D	uniform.	More...
	

void	 setUniformArray	(const	std::string	&name,	const	float	*scalarArray,	std::size_t	length)
	 Specify	values	for	float[]	array	uniform.	More...
	

void	 setUniformArray	(const	std::string	&name,	const	Glsl::Vec2
	 Specify	values	for	vec2[]	array	uniform.	More...
	

void	 setUniformArray	(const	std::string	&name,	const	Glsl::Vec3
	 Specify	values	for	vec3[]	array	uniform.	More...
	

void	 setUniformArray	(const	std::string	&name,	const	Glsl::Vec4
	 Specify	values	for	vec4[]	array	uniform.	More...
	

void	 setUniformArray	(const	std::string	&name,	const	Glsl::Mat3
	 Specify	values	for	mat3[]	array	uniform.	More...
	

void	 setUniformArray	(const	std::string	&name,	const	Glsl::Mat4
	 Specify	values	for	mat4[]	array	uniform.	More...
	

void	 setParameter	(const	std::string	&name,	float	x)
	 Change	a	float	parameter	of	the	shader.	More...
	

void	 setParameter	(const	std::string	&name,	float	x,	float	y)
	 Change	a	2-components	vector	parameter	of	the	shader.	More...
	

void	 setParameter	(const	std::string	&name,	float	x,	float	y,	float	z)
	 Change	a	3-components	vector	parameter	of	the	shader.	More...
	

void	 setParameter	(const	std::string	&name,	float	x,	float	y,	float	z,	float	w)
	 Change	a	4-components	vector	parameter	of	the	shader.	More...
	

void	 setParameter	(const	std::string	&name,	const	Vector2f	&vector)
	 Change	a	2-components	vector	parameter	of	the	shader.	More...
	

void	 setParameter	(const	std::string	&name,	const	Vector3f	&vector)
	 Change	a	3-components	vector	parameter	of	the	shader.	More...
	

void	 setParameter	(const	std::string	&name,	const	Color	&color)
	 Change	a	color	parameter	of	the	shader.	More...
	

void	 setParameter	(const	std::string	&name,	const	Transform	&transform)
	 Change	a	matrix	parameter	of	the	shader.	More...
	

void	 setParameter	(const	std::string	&name,	const	Texture	&texture)
	 Change	a	texture	parameter	of	the	shader.	More...
	

void	 setParameter	(const	std::string	&name,	CurrentTextureType
	 Change	a	texture	parameter	of	the	shader.	More...
	
unsigned	int	 getNativeHandle	()	const
	 Get	the	underlying	OpenGL	handle	of	the	shader.	More...

	

Static	Public	Member	Functions
static	void	 bind	(const	Shader	*shader)
	 Bind	a	shader	for	rendering.	More...
	
static	bool	 isAvailable	()
	 Tell	whether	or	not	the	system	supports	shaders.	More...
	
static	bool	 isGeometryAvailable	()
	 Tell	whether	or	not	the	system	supports	geometry	shaders.	More...
	

Static	Public	Attributes
static	CurrentTextureType	 CurrentTexture
	 Represents	the	texture	of	the	object	being	drawn.	
	

Static	Private	Member	Functions
static	void	 ensureGlContext	()
	 Empty	function	for	ABI	compatibility,	use	acquireTransientContext	instead.	
	

Detailed	Description

Shader	class	(vertex,	geometry	and	fragment)

Shaders	 are	 programs	 written	 using	 a	 specific	 language,	 executed	 directly	 by	 the	 graphics	 card	 and
allowing	to	apply	real-time	operations	to	the	rendered	entities.

There	are	three	kinds	of	shaders:

Vertex	shaders,	that	process	vertices

Geometry	shaders,	that	process	primitives

Fragment	(pixel)	shaders,	that	process	pixels

A	 sf::Shader	 can	 be	 composed	 of	 either	 a	 vertex	 shader	 alone,	 a	 geometry	 shader	 alone,	 a	 fragment
shader	alone,	or	any	combination	of	them.	(see	the	variants	of	the	load	functions).

Shaders	 are	written	 in	GLSL,	which	 is	 a	C-like	 language	 dedicated	 to	OpenGL	 shaders.	You'll	 probably
need	to	learn	its	basics	before	writing	your	own	shaders	for	SFML.

Like	any	C/C++	program,	a	GLSL	shader	has	its	own	variables	called	uniforms
C++	application.	sf::Shader	handles	different	types	of	uniforms:

scalars:	float,	int,	bool

vectors	(2,	3	or	4	components)

matrices	(3x3	or	4x4)

samplers	(textures)

Some	SFML-specific	types	can	be	converted:

sf::Color	as	a	4D	vector	(vec4)

sf::Transform	as	matrices	(mat3	or	mat4)

Every	 uniform	 variable	 in	 a	 shader	 can	 be	 set	 through	 one	 of	 the	 setUniform()
overloads.	For	example,	if	you	have	a	shader	with	the	following	uniforms:

uniform	float	offset;

uniform	vec3	point;

uniform	vec4	color;

uniform	mat4	matrix;

uniform	sampler2D	overlay;

uniform	sampler2D	current;

You	can	set	their	values	from	C++	code	as	follows,	using	the	types	defined	in	the	

shader.setUniform("offset",	2.f);

shader.setUniform("point",	sf::Vector3f(0.5f,	0.8f,	0.3f));

shader.setUniform("color",	sf::Glsl::Vec4(color));										//	color	is	a	sf::Color

shader.setUniform("matrix",	sf::Glsl::Mat4(transform));					//	transform	is	a	sf::Transform

shader.setUniform("overlay",	texture);																						//	texture	is	a	sf::Texture

shader.setUniform("current",	sf::Shader::CurrentTexture);

The	old	setParameter()	overloads	are	deprecated	and	will	be	removed	in	a	future	version.	You	should	use
their	setUniform()	equivalents	instead.

The	special	 Shader::CurrentTexture	argument	maps	 the	given	sampler2D
the	object	being	drawn	(which	cannot	be	known	in	advance).

To	apply	a	shader	to	a	drawable,	you	must	pass	it	as	an	additional	parameter	to	the	Window::draw()	draw()
function:

window.draw(sprite,	&shader);

...	which	is	in	fact	just	a	shortcut	for	this:

sf::RenderStates	states;

states.shader	=	&shader;

window.draw(sprite,	states);

In	the	code	above	we	pass	a	pointer	to	the	shader,	because	it	may	be	null	(which	means	"no	shader").

Shaders	can	be	used	on	any	drawable,	but	some	combinations	are	not	 interesting.	For	example,	using	a
vertex	 shader	 on	 a	 sf::Sprite	 is	 limited	 because	 there	 are	 only	 4	 vertices,	 the	 sprite	 would	 have	 to	 be
subdivided	 in	 order	 to	 apply	wave	 effects.	 Another	 bad	 example	 is	 a	 fragment	 shader	with	
texture	 of	 the	 text	 is	 not	 the	 actual	 text	 that	 you	 see	 on	 screen,	 it	 is	 a	 big	 texture	 containing	 all	 the
characters	of	the	font	in	an	arbitrary	order;	thus,	texture	lookups	on	pixels	other	than	the	current	one	may
not	give	you	the	expected	result.

Shaders	 can	also	 be	used	 to	 apply	 global	 post-effects	 to	 the	 current	 contents	 of	 the	 target	 (like	 the	old
sf::PostFx	class	in	SFML	1).	This	can	be	done	in	two	different	ways:

draw	everything	to	a	sf::RenderTexture,	then	draw	it	to	the	main	target	using	the	shader

draw	everything	directly	to	the	main	target,	then	use	sf::Texture::update(Window&)	to	copy	its	contents
to	a	texture	and	draw	it	to	the	main	target	using	the	shader

The	 first	 technique	 is	more	 optimized	 because	 it	 doesn't	 involve	 retrieving	 the	 target's	 pixels	 to	 system
memory,	but	 the	second	one	doesn't	 impact	 the	 rendering	process	and	can	be	easily	 inserted	anywhere
without	impacting	all	the	code.

Like	sf::Texture	that	can	be	used	as	a	raw	OpenGL	texture,	sf::Shader	can	also	be	used	directly	as	a	raw
shader	for	custom	OpenGL	geometry.

sf::Shader::bind(&shader);

...	render	OpenGL	geometry	...

sf::Shader::bind(NULL);

See	also
sf::Glsl

Definition	at	line	52	of	file	Shader.hpp.

Member	Enumeration	Documentation

enum	sf::Shader::Type

Types	of	shaders.

Enumerator

Vertex	
Vertex	shader

Geometry	
Geometry	shader.

Fragment	
Fragment	(pixel)	shader.

Definition	at	line	60	of	file	Shader.hpp.

Constructor	&	Destructor	Documentation

sf::Shader::Shader ()

Default	constructor.

This	constructor	creates	an	invalid	shader.

sf::Shader::~Shader ()

Destructor.

Member	Function	Documentation

static	void	sf::Shader::bind (const	Shader	*	 shader)

Bind	a	shader	for	rendering.

This	function	is	not	part	of	the	graphics	API,	it	mustn't	be	used	when	drawing	SFML	entities.	It	must	be
used	only	if	you	mix	sf::Shader	with	OpenGL	code.

sf::Shader	s1,	s2;

...

sf::Shader::bind(&s1);

//	draw	OpenGL	stuff	that	use	s1...

sf::Shader::bind(&s2);

//	draw	OpenGL	stuff	that	use	s2...

sf::Shader::bind(NULL);

//	draw	OpenGL	stuff	that	use	no	shader...

Parameters
shader Shader	to	bind,	can	be	null	to	use	no	shader

unsigned	int	sf::Shader::getNativeHandle () const

Get	the	underlying	OpenGL	handle	of	the	shader.

You	 shouldn't	 need	 to	 use	 this	 function,	 unless	 you	 have	 very	 specific	 stuff	 to	 implement	 that	 SFML
doesn't	support,	or	implement	a	temporary	workaround	until	a	bug	is	fixed.

Returns
OpenGL	handle	of	the	shader	or	0	if	not	yet	loaded

static	bool	sf::Shader::isAvailable ()

Tell	whether	or	not	the	system	supports	shaders.

This	 function	 should	 always	 be	 called	 before	 using	 the	 shader	 features.	 If	 it	 returns	 false,	 then	 any
attempt	to	use	sf::Shader	will	fail.

Returns
True	if	shaders	are	supported,	false	otherwise

static	bool	sf::Shader::isGeometryAvailable ()

Tell	whether	or	not	the	system	supports	geometry	shaders.

This	function	should	always	be	called	before	using	the	geometry	shader	features.	If	it	returns	false,	then
any	attempt	to	use	sf::Shader	geometry	shader	features	will	fail.

This	function	can	only	return	true	if	isAvailable()	would	also	return	true,	since	shaders	in	general	have	to
be	supported	in	order	for	geometry	shaders	to	be	supported	as	well.

Note:	The	first	call	to	this	function,	whether	by	your	code	or	SFML	will	result	in	a	context	switch.

Returns
True	if	geometry	shaders	are	supported,	false	otherwise

bool	sf::Shader::loadFromFile (const	std::string	&	 filename,
Type	 type	

)

Load	the	vertex,	geometry	or	fragment	shader	from	a	file.

This	 function	 loads	a	single	 shader,	 vertex,	geometry	or	 fragment,	 identified	by	 the	second	argument.
The	source	must	be	a	text	file	containing	a	valid	shader	 in	GLSL	language.	GLSL	is	a	C-like	language
dedicated	 to	OpenGL	shaders;	you'll	probably	need	 to	 read	a	good	documentation	 for	 it	before	writing
your	own	shaders.

Parameters
filename Path	of	the	vertex,	geometry	or	fragment	shader	file	to	load
type Type	of	shader	(vertex,	geometry	or	fragment)

Returns
True	if	loading	succeeded,	false	if	it	failed

See	also
loadFromMemory,	loadFromStream

bool	sf::Shader::loadFromFile (const	std::string	&	 vertexShaderFilename
const	std::string	&	 fragmentShaderFilename
)

Load	both	the	vertex	and	fragment	shaders	from	files.

This	function	loads	both	the	vertex	and	the	fragment	shaders.	If	one	of	them	fails	to	load,	the	shader	is
left	empty	(the	valid	shader	is	unloaded).	The	sources	must	be	text	files	containing	valid	shaders	in	GLSL
language.	GLSL	is	a	C-like	language	dedicated	to	OpenGL	shaders;	you'll	probably	need	to	read	a	good
documentation	for	it	before	writing	your	own	shaders.

Parameters
vertexShaderFilename Path	of	the	vertex	shader	file	to	load
fragmentShaderFilename Path	of	the	fragment	shader	file	to	load

Returns
True	if	loading	succeeded,	false	if	it	failed

See	also
loadFromMemory,	loadFromStream

bool	sf::Shader::loadFromFile (const	std::string	&	 vertexShaderFilename
const	std::string	&	 geometryShaderFilename
const	std::string	&	 fragmentShaderFilename
)

Load	the	vertex,	geometry	and	fragment	shaders	from	files.

This	function	loads	the	vertex,	geometry	and	fragment	shaders.	If	one	of	them	fails	to	load,	the	shader	is
left	empty	(the	valid	shader	is	unloaded).	The	sources	must	be	text	files	containing	valid	shaders	in	GLSL
language.	GLSL	is	a	C-like	language	dedicated	to	OpenGL	shaders;	you'll	probably	need	to	read	a	good
documentation	for	it	before	writing	your	own	shaders.

Parameters
vertexShaderFilename Path	of	the	vertex	shader	file	to	load
geometryShaderFilename Path	of	the	geometry	shader	file	to	load
fragmentShaderFilename Path	of	the	fragment	shader	file	to	load

Returns
True	if	loading	succeeded,	false	if	it	failed

See	also
loadFromMemory,	loadFromStream

bool	sf::Shader::loadFromMemory (const	std::string	&	 shader,
Type	 type	

)

Load	the	vertex,	geometry	or	fragment	shader	from	a	source	code	in	memory.

This	 function	 loads	a	single	 shader,	 vertex,	geometry	or	 fragment,	 identified	by	 the	second	argument.
The	 source	 code	must	 be	 a	 valid	 shader	 in	GLSL	 language.	GLSL	 is	 a	C-like	 language	 dedicated	 to
OpenGL	 shaders;	 you'll	 probably	 need	 to	 read	 a	 good	 documentation	 for	 it	 before	 writing	 your	 own
shaders.

Parameters
shader String	containing	the	source	code	of	the	shader
type Type	of	shader	(vertex,	geometry	or	fragment)

Returns
True	if	loading	succeeded,	false	if	it	failed

See	also
loadFromFile,	loadFromStream

bool	sf::Shader::loadFromMemory (const	std::string	&	 vertexShader
const	std::string	&	 fragmentShader
)

Load	both	the	vertex	and	fragment	shaders	from	source	codes	in	memory.

This	function	loads	both	the	vertex	and	the	fragment	shaders.	If	one	of	them	fails	to	load,	the	shader	is
left	empty	(the	valid	shader	is	unloaded).	The	sources	must	be	valid	shaders	in	GLSL	language.	GLSL	is
a	C-like	language	dedicated	to	OpenGL	shaders;	you'll	probably	need	to	read	a	good	documentation	for
it	before	writing	your	own	shaders.

Parameters
vertexShader String	containing	the	source	code	of	the	vertex	shader

fragmentShader String	containing	the	source	code	of	the	fragment	shader

Returns
True	if	loading	succeeded,	false	if	it	failed

See	also
loadFromFile,	loadFromStream

bool	sf::Shader::loadFromMemory (const	std::string	&	 vertexShader
const	std::string	&	 geometryShader
const	std::string	&	 fragmentShader
)

Load	the	vertex,	geometry	and	fragment	shaders	from	source	codes	in	memory.

This	function	loads	the	vertex,	geometry	and	fragment	shaders.	If	one	of	them	fails	to	load,	the	shader	is
left	empty	(the	valid	shader	is	unloaded).	The	sources	must	be	valid	shaders	in	GLSL	language.	GLSL	is
a	C-like	language	dedicated	to	OpenGL	shaders;	you'll	probably	need	to	read	a	good	documentation	for
it	before	writing	your	own	shaders.

Parameters
vertexShader String	containing	the	source	code	of	the	vertex	shader
geometryShader String	containing	the	source	code	of	the	geometry	shader
fragmentShader String	containing	the	source	code	of	the	fragment	shader

Returns
True	if	loading	succeeded,	false	if	it	failed

See	also
loadFromFile,	loadFromStream

bool	sf::Shader::loadFromStream (InputStream	&	 stream,
Type	 type	

)

Load	the	vertex,	geometry	or	fragment	shader	from	a	custom	stream.

This	 function	 loads	a	single	 shader,	 vertex,	geometry	or	 fragment,	 identified	by	 the	second	argument.
The	 source	 code	must	 be	 a	 valid	 shader	 in	GLSL	 language.	GLSL	 is	 a	C-like	 language	 dedicated	 to
OpenGL	 shaders;	 you'll	 probably	 need	 to	 read	 a	 good	 documentation	 for	 it	 before	 writing	 your	 own
shaders.

Parameters
stream Source	stream	to	read	from
type Type	of	shader	(vertex,	geometry	or	fragment)

Returns
True	if	loading	succeeded,	false	if	it	failed

See	also
loadFromFile,	loadFromMemory

bool	sf::Shader::loadFromStream (InputStream	&	 vertexShaderStream
InputStream	&	 fragmentShaderStream

)

Load	both	the	vertex	and	fragment	shaders	from	custom	streams.

This	function	loads	both	the	vertex	and	the	fragment	shaders.	If	one	of	them	fails	to	load,	the	shader	is
left	empty	(the	valid	shader	 is	unloaded).	The	source	codes	must	be	valid	shaders	 in	GLSL	 language.
GLSL	 is	 a	 C-like	 language	 dedicated	 to	 OpenGL	 shaders;	 you'll	 probably	 need	 to	 read	 a	 good
documentation	for	it	before	writing	your	own	shaders.

Parameters
vertexShaderStream Source	stream	to	read	the	vertex	shader	from
fragmentShaderStreamSource	stream	to	read	the	fragment	shader	from

Returns
True	if	loading	succeeded,	false	if	it	failed

See	also
loadFromFile,	loadFromMemory

bool	sf::Shader::loadFromStream (InputStream	&	 vertexShaderStream
InputStream	&	 geometryShaderStream
InputStream	&	 fragmentShaderStream

)

Load	the	vertex,	geometry	and	fragment	shaders	from	custom	streams.

This	function	loads	the	vertex,	geometry	and	fragment	shaders.	If	one	of	them	fails	to	load,	the	shader	is
left	empty	(the	valid	shader	 is	unloaded).	The	source	codes	must	be	valid	shaders	 in	GLSL	 language.
GLSL	 is	 a	 C-like	 language	 dedicated	 to	 OpenGL	 shaders;	 you'll	 probably	 need	 to	 read	 a	 good
documentation	for	it	before	writing	your	own	shaders.

Parameters
vertexShaderStream Source	stream	to	read	the	vertex	shader	from
geometryShaderStream Source	stream	to	read	the	geometry	shader	from
fragmentShaderStream Source	stream	to	read	the	fragment	shader	from

Returns
True	if	loading	succeeded,	false	if	it	failed

See	also
loadFromFile,	loadFromMemory

void	sf::Shader::setParameter (const	std::string	&	 name,
float	 x	
)

Change	a	float	parameter	of	the	shader.

Deprecated:
Use	setUniform(const	std::string&,	float)	instead.

void	sf::Shader::setParameter (const	std::string	&	 name,
float	 x,
float	 y	
)

Change	a	2-components	vector	parameter	of	the	shader.

Deprecated:
Use	setUniform(const	std::string&,	const	Glsl::Vec2&)	instead.

void	sf::Shader::setParameter (const	std::string	&	 name,
float	 x,
float	 y,
float	 z	
)

Change	a	3-components	vector	parameter	of	the	shader.

Deprecated:
Use	setUniform(const	std::string&,	const	Glsl::Vec3&)	instead.

void	sf::Shader::setParameter (const	std::string	&	 name,
float	 x,
float	 y,
float	 z,
float	 w	
)

Change	a	4-components	vector	parameter	of	the	shader.

Deprecated:
Use	setUniform(const	std::string&,	const	Glsl::Vec4&)	instead.

void	sf::Shader::setParameter (const	std::string	&	 name,
const	Vector2f	&	 vector	
)

Change	a	2-components	vector	parameter	of	the	shader.

Deprecated:
Use	setUniform(const	std::string&,	const	Glsl::Vec2&)	instead.

void	sf::Shader::setParameter (const	std::string	&	 name,
const	Vector3f	&	 vector	
)

Change	a	3-components	vector	parameter	of	the	shader.

Deprecated:

Use	setUniform(const	std::string&,	const	Glsl::Vec3&)	instead.

void	sf::Shader::setParameter (const	std::string	&	 name,
const	Color	&	 color	
)

Change	a	color	parameter	of	the	shader.

Deprecated:
Use	setUniform(const	std::string&,	const	Glsl::Vec4&)	instead.

void	sf::Shader::setParameter (const	std::string	&	 name,
const	Transform	&	 transform	
)

Change	a	matrix	parameter	of	the	shader.

Deprecated:
Use	setUniform(const	std::string&,	const	Glsl::Mat4&)	instead.

void	sf::Shader::setParameter (const	std::string	&	 name,
const	Texture	&	 texture	
)

Change	a	texture	parameter	of	the	shader.

Deprecated:
Use	setUniform(const	std::string&,	const	Texture&)	instead.

void	sf::Shader::setParameter (const	std::string	&	 name,
CurrentTextureType	 	

)

Change	a	texture	parameter	of	the	shader.

Deprecated:
Use	setUniform(const	std::string&,	CurrentTextureType)	instead.

void	sf::Shader::setUniform (const	std::string	&	 name,
float	 x	
)

Specify	value	for	float	uniform.

Parameters
name Name	of	the	uniform	variable	in	GLSL
x Value	of	the	float	scalar

void	sf::Shader::setUniform (const	std::string	&	 name,
const	Glsl::Vec2	&	 vector	
)

Specify	value	for	vec2	uniform.

Parameters
name Name	of	the	uniform	variable	in	GLSL
vector Value	of	the	vec2	vector

void	sf::Shader::setUniform (const	std::string	&	 name,
const	Glsl::Vec3	&	 vector	
)

Specify	value	for	vec3	uniform.

Parameters
name Name	of	the	uniform	variable	in	GLSL
vector Value	of	the	vec3	vector

void	sf::Shader::setUniform (const	std::string	&	 name,
const	Glsl::Vec4	&	 vector	
)

Specify	value	for	vec4	uniform.

This	overload	can	also	be	called	with	sf::Color	objects	that	are	converted	to	

It	 is	 important	 to	 note	 that	 the	 components	 of	 the	 color	 are	 normalized	 before	 being	 passed	 to	 the
shader.	 Therefore,	 they	 are	 converted	 from	 range	 [0	 ..	 255]	 to	 range	 [0	 ..	 1].	 For	 example,	 a
sf::Color(255,	127,	0,	255)	will	be	transformed	to	a	vec4(1.0,	0.5,	0.0,	1.0)	in	the	shader.

Parameters
name Name	of	the	uniform	variable	in	GLSL
vector Value	of	the	vec4	vector

void	sf::Shader::setUniform (const	std::string	&	 name,
int	 x	
)

Specify	value	for	int	uniform.

Parameters
name Name	of	the	uniform	variable	in	GLSL
x Value	of	the	int	scalar

void	sf::Shader::setUniform (const	std::string	&	 name,
const	Glsl::Ivec2	&	 vector	
)

Specify	value	for	ivec2	uniform.

Parameters
name Name	of	the	uniform	variable	in	GLSL
vector Value	of	the	ivec2	vector

void	sf::Shader::setUniform (const	std::string	&	 name,
const	Glsl::Ivec3	&	 vector	
)

Specify	value	for	ivec3	uniform.

Parameters
name Name	of	the	uniform	variable	in	GLSL
vector Value	of	the	ivec3	vector

void	sf::Shader::setUniform (const	std::string	&	 name,
const	Glsl::Ivec4	&	 vector	

)

Specify	value	for	ivec4	uniform.

This	overload	can	also	be	called	with	sf::Color	objects	that	are	converted	to	

If	 color	 conversions	 are	 used,	 the	 ivec4	 uniform	 in	 GLSL	 will	 hold	 the	 same	 values	 as	 the	 original
sf::Color	instance.	For	example,	sf::Color(255,	127,	0,	255)	is	mapped	to	ivec4(255,	127,	0,	255).

Parameters
name Name	of	the	uniform	variable	in	GLSL
vector Value	of	the	ivec4	vector

void	sf::Shader::setUniform (const	std::string	&	 name,
bool	 x	
)

Specify	value	for	bool	uniform.

Parameters
name Name	of	the	uniform	variable	in	GLSL
x Value	of	the	bool	scalar

void	sf::Shader::setUniform (const	std::string	&	 name,
const	Glsl::Bvec2	&	 vector	
)

Specify	value	for	bvec2	uniform.

Parameters

name Name	of	the	uniform	variable	in	GLSL
vector Value	of	the	bvec2	vector

void	sf::Shader::setUniform (const	std::string	&	 name,
const	Glsl::Bvec3	&	 vector	
)

Specify	value	for	bvec3	uniform.

Parameters
name Name	of	the	uniform	variable	in	GLSL
vector Value	of	the	bvec3	vector

void	sf::Shader::setUniform (const	std::string	&	 name,
const	Glsl::Bvec4	&	 vector	
)

Specify	value	for	bvec4	uniform.

Parameters
name Name	of	the	uniform	variable	in	GLSL
vector Value	of	the	bvec4	vector

void	sf::Shader::setUniform (const	std::string	&	 name,
const	Glsl::Mat3	&	 matrix	
)

Specify	value	for	mat3	matrix.

Parameters
name Name	of	the	uniform	variable	in	GLSL
matrix Value	of	the	mat3	matrix

void	sf::Shader::setUniform (const	std::string	&	 name,
const	Glsl::Mat4	&	 matrix	
)

Specify	value	for	mat4	matrix.

Parameters
name Name	of	the	uniform	variable	in	GLSL
matrix Value	of	the	mat4	matrix

void	sf::Shader::setUniform (const	std::string	&	 name,
const	Texture	&	 texture	
)

Specify	a	texture	as	sampler2D	uniform.

name	 is	the	name	of	the	variable	to	change	in	the	shader.	The	corresponding	parameter	in	the	shader
must	be	a	2D	texture	(sampler2D	GLSL	type).

Example:

uniform	sampler2D	the_texture;	//	this	is	the	variable	in	the	shader

sf::Texture	texture;

...

shader.setUniform("the_texture",	texture);

It	 is	 important	 to	 note	 that	 texture	must	 remain	 alive	 as	 long	as	 the	 shader	 uses	 it,	 no	 copy	 is	made

internally.

To	 use	 the	 texture	 of	 the	 object	 being	 drawn,	which	 cannot	 be	 known	 in	 advance,	 you	 can	 pass	 the
special	value	sf::Shader::CurrentTexture:

shader.setUniform("the_texture",	sf::Shader::CurrentTexture).

Parameters
name Name	of	the	texture	in	the	shader
texture Texture	to	assign

void	sf::Shader::setUniform (const	std::string	&	 name,
CurrentTextureType	 	

)

Specify	current	texture	as	sampler2D	uniform.

This	overload	maps	a	shader	texture	variable	to	the	texture	of	the	object	being	drawn,	which	cannot	be
known	 in	 advance.	 The	 second	 argument	 must	 be	 sf::Shader::CurrentTexture
parameter	in	the	shader	must	be	a	2D	texture	(sampler2D	GLSL	type).

Example:

uniform	sampler2D	current;	//	this	is	the	variable	in	the	shader

shader.setUniform("current",	sf::Shader::CurrentTexture);

Parameters
name Name	of	the	texture	in	the	shader

void	sf::Shader::setUniformArray (const	std::string	&	 name,
const	float	*	 scalarArray,

std::size_t	 length	
)

Specify	values	for	float[]	array	uniform.

Parameters
name Name	of	the	uniform	variable	in	GLSL
scalarArray pointer	to	array	of	float	values
length Number	of	elements	in	the	array

void	sf::Shader::setUniformArray (const	std::string	&	 name,
const	Glsl::Vec2	*	 vectorArray,
std::size_t	 length	
)

Specify	values	for	vec2[]	array	uniform.

Parameters
name Name	of	the	uniform	variable	in	GLSL
vectorArray pointer	to	array	of	vec2	values
length Number	of	elements	in	the	array

void	sf::Shader::setUniformArray (const	std::string	&	 name,
const	Glsl::Vec3	*	 vectorArray,
std::size_t	 length	
)

Specify	values	for	vec3[]	array	uniform.

Parameters

name Name	of	the	uniform	variable	in	GLSL
vectorArray pointer	to	array	of	vec3	values
length Number	of	elements	in	the	array

void	sf::Shader::setUniformArray (const	std::string	&	 name,
const	Glsl::Vec4	*	 vectorArray,
std::size_t	 length	
)

Specify	values	for	vec4[]	array	uniform.

Parameters
name Name	of	the	uniform	variable	in	GLSL
vectorArray pointer	to	array	of	vec4	values
length Number	of	elements	in	the	array

void	sf::Shader::setUniformArray (const	std::string	&	 name,
const	Glsl::Mat3	*	 matrixArray,
std::size_t	 length	
)

Specify	values	for	mat3[]	array	uniform.

Parameters
name Name	of	the	uniform	variable	in	GLSL
matrixArray pointer	to	array	of	mat3	values
length Number	of	elements	in	the	array

void	sf::Shader::setUniformArray (const	std::string	&	 name,

const	Glsl::Mat4	*	 matrixArray,
std::size_t	 length	
)

Specify	values	for	mat4[]	array	uniform.

Parameters
name Name	of	the	uniform	variable	in	GLSL
matrixArray pointer	to	array	of	mat4	values
length Number	of	elements	in	the	array

Member	Data	Documentation

CurrentTextureType	sf::Shader::CurrentTexture

Represents	the	texture	of	the	object	being	drawn.

See	also
setUniform(const	std::string&,	CurrentTextureType)

Definition	at	line	82	of	file	Shader.hpp.

The	documentation	for	this	class	was	generated	from	the	following	file:
Shader.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Shader::CurrentTextureType	Struct	Reference

Special	type	that	can	be	passed	to	setUniform(),	and	that	represents	the	texture	of	the	object	being	drawn.
More...

#include	<Shader.hpp>

Detailed	Description

Special	type	that	can	be	passed	to	setUniform(),	and	that	represents	the	texture	of	the	object	being	drawn.

See	also
setUniform(const	std::string&,	CurrentTextureType)

Definition	at	line	74	of	file	Shader.hpp.

The	documentation	for	this	struct	was	generated	from	the	following	file:
Shader.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Member	Functions	|	Protected	Member	Functions	|	List	of	all	members

sf::Shape	Class	Reference abstract

Graphics	module

Base	class	for	textured	shapes	with	outline.	More...

#include	<Shape.hpp>

Inheritance	diagram	for	sf::Shape:

Public	Member	Functions
virtual	 ~Shape	()

	 Virtual	destructor.	More...
	

void	 setTexture	(const	Texture	*texture,	bool	resetRect=false)
	 Change	the	source	texture	of	the	shape.	More...
	

void	 setTextureRect	(const	IntRect	&rect)
	 Set	the	sub-rectangle	of	the	texture	that	the	shape	will	display.	
	

void	 setFillColor	(const	Color	&color)
	 Set	the	fill	color	of	the	shape.	More...
	

void	 setOutlineColor	(const	Color	&color)
	 Set	the	outline	color	of	the	shape.	More...
	

void	 setOutlineThickness	(float	thickness)
	 Set	the	thickness	of	the	shape's	outline.	More...
	

const	Texture	*	 getTexture	()	const
	 Get	the	source	texture	of	the	shape.	More...
	

const	IntRect	&	 getTextureRect	()	const
	 Get	the	sub-rectangle	of	the	texture	displayed	by	the	shape.	
	

const	Color	&	 getFillColor	()	const
	 Get	the	fill	color	of	the	shape.	More...
	

const	Color	&	 getOutlineColor	()	const
	 Get	the	outline	color	of	the	shape.	More...
	

float	 getOutlineThickness	()	const

	 Get	the	outline	thickness	of	the	shape.	More...
	

virtual	std::size_t	 getPointCount	()	const	=0
	 Get	the	total	number	of	points	of	the	shape.	More...
	

virtual	Vector2f	 getPoint	(std::size_t	index)	const	=0
	 Get	a	point	of	the	shape.	More...
	

FloatRect	 getLocalBounds	()	const
	 Get	the	local	bounding	rectangle	of	the	entity.	More...
	

FloatRect	 getGlobalBounds	()	const
	 Get	the	global	(non-minimal)	bounding	rectangle	of	the	entity.	
	

void	 setPosition	(float	x,	float	y)
	 set	the	position	of	the	object	More...
	

void	 setPosition	(const	Vector2f	&position)
	 set	the	position	of	the	object	More...
	

void	 setRotation	(float	angle)
	 set	the	orientation	of	the	object	More...
	

void	 setScale	(float	factorX,	float	factorY)
	 set	the	scale	factors	of	the	object	More...
	

void	 setScale	(const	Vector2f	&factors)
	 set	the	scale	factors	of	the	object	More...
	

void	 setOrigin	(float	x,	float	y)
	 set	the	local	origin	of	the	object	More...
	

void	 setOrigin	(const	Vector2f	&origin)
	 set	the	local	origin	of	the	object	More...
	

const	Vector2f	&	 getPosition	()	const
	 get	the	position	of	the	object	More...
	

float	 getRotation	()	const
	 get	the	orientation	of	the	object	More...
	

const	Vector2f	&	 getScale	()	const
	 get	the	current	scale	of	the	object	More...
	

const	Vector2f	&	 getOrigin	()	const
	 get	the	local	origin	of	the	object	More...
	

void	 move	(float	offsetX,	float	offsetY)
	 Move	the	object	by	a	given	offset.	More...
	

void	 move	(const	Vector2f	&offset)
	 Move	the	object	by	a	given	offset.	More...
	

void	 rotate	(float	angle)
	 Rotate	the	object.	More...
	

void	 scale	(float	factorX,	float	factorY)
	 Scale	the	object.	More...
	

void	 scale	(const	Vector2f	&factor)
	 Scale	the	object.	More...
	
const	Transform	&	 getTransform	()	const
	 get	the	combined	transform	of	the	object	More...
	
const	Transform	&	 getInverseTransform	()	const
	 get	the	inverse	of	the	combined	transform	of	the	object	
	

Protected	Member	Functions
	 Shape	()

	 Default	constructor.	More...
	
void	 update	()
	 Recompute	the	internal	geometry	of	the	shape.	More...
	

Detailed	Description

Base	class	for	textured	shapes	with	outline.

sf::Shape	is	a	drawable	class	that	allows	to	define	and	display	a	custom	convex	shape	on	a	render	target.

It's	only	an	abstract	base,	it	needs	to	be	specialized	for	concrete	types	of	shapes	(circle,	rectangle,	convex
polygon,	star,	...).

In	addition	 to	 the	attributes	provided	by	 the	specialized	shape	classes,	a	shape	always	has	the	following
attributes:

a	texture

a	texture	rectangle

a	fill	color

an	outline	color

an	outline	thickness

Each	feature	is	optional,	and	can	be	disabled	easily:

the	texture	can	be	null

the	fill/outline	colors	can	be	sf::Color::Transparent

the	outline	thickness	can	be	zero

You	can	write	your	own	derived	shape	class,	there	are	only	two	virtual	functions	to	override:

getPointCount	must	return	the	number	of	points	of	the	shape

getPoint	must	return	the	points	of	the	shape

See	also

sf::RectangleShape,	sf::CircleShape,	sf::ConvexShape,	sf::Transformable

Definition	at	line	44	of	file	Shape.hpp.

Constructor	&	Destructor	Documentation

virtual	sf::Shape::~Shape ()

Virtual	destructor.

sf::Shape::Shape ()

Default	constructor.

Member	Function	Documentation

const	Color&	sf::Shape::getFillColor () const

Get	the	fill	color	of	the	shape.

Returns
Fill	color	of	the	shape

See	also
setFillColor

FloatRect	sf::Shape::getGlobalBounds () const

Get	the	global	(non-minimal)	bounding	rectangle	of	the	entity.

The	 returned	 rectangle	 is	 in	 global	 coordinates,	 which	 means	 that	 it	 takes	 into	 account	 the
transformations	(translation,	rotation,	scale,	...)	that	are	applied	to	the	entity.	In	other	words,	this	function
returns	the	bounds	of	the	shape	in	the	global	2D	world's	coordinate	system.

This	 function	 does	 not	 necessarily	 return	 the	minimal	 bounding	 rectangle.	 It	 merely	 ensures	 that	 the
returned	rectangle	covers	all	the	vertices	(but	possibly	more).	This	allows	for	a	fast	approximation	of	the
bounds	as	a	first	check;	you	may	want	to	use	more	precise	checks	on	top	of	that.

Returns
Global	bounding	rectangle	of	the	entity

const	Transform&	sf::Transformable::getInverseTransform () const

get	the	inverse	of	the	combined	transform	of	the	object

Returns
Inverse	of	the	combined	transformations	applied	to	the	object

See	also
getTransform

FloatRect	sf::Shape::getLocalBounds () const

Get	the	local	bounding	rectangle	of	the	entity.

The	 returned	 rectangle	 is	 in	 local	 coordinates,	 which	 means	 that	 it	 ignores	 the	 transformations
(translation,	 rotation,	 scale,	 ...)	 that	 are	 applied	 to	 the	 entity.	 In	 other	 words,	 this	 function	 returns	 the
bounds	of	the	entity	in	the	entity's	coordinate	system.

Returns
Local	bounding	rectangle	of	the	entity

const	Vector2f&	sf::Transformable::getOrigin () const

get	the	local	origin	of	the	object

Returns
Current	origin

See	also
setOrigin

const	Color&	sf::Shape::getOutlineColor () const

Get	the	outline	color	of	the	shape.

Returns
Outline	color	of	the	shape

See	also
setOutlineColor

float	sf::Shape::getOutlineThickness () const

Get	the	outline	thickness	of	the	shape.

Returns
Outline	thickness	of	the	shape

See	also
setOutlineThickness

virtual	Vector2f	sf::Shape::getPoint (std::size_t	 index) const

Get	a	point	of	the	shape.

The	returned	point	is	in	local	coordinates,	that	is,	the	shape's	transforms	(position,	rotation,	scale)	are	not
taken	into	account.	The	result	is	undefined	if	index	is	out	of	the	valid	range.

Parameters
index Index	of	the	point	to	get,	in	range	[0	..	getPointCount()	-	1]

Returns
index-th	point	of	the	shape

See	also
getPointCount

Implemented	in	sf::ConvexShape,	sf::CircleShape,	and	sf::RectangleShape

virtual	std::size_t	sf::Shape::getPointCount () const

Get	the	total	number	of	points	of	the	shape.

Returns
Number	of	points	of	the	shape

See	also
getPoint

Implemented	in	sf::CircleShape,	sf::RectangleShape,	and	sf::ConvexShape

const	Vector2f&	sf::Transformable::getPosition () const

get	the	position	of	the	object

Returns
Current	position

See	also
setPosition

float	sf::Transformable::getRotation () const

get	the	orientation	of	the	object

The	rotation	is	always	in	the	range	[0,	360].

Returns
Current	rotation,	in	degrees

See	also
setRotation

const	Vector2f&	sf::Transformable::getScale () const

get	the	current	scale	of	the	object

Returns
Current	scale	factors

See	also
setScale

const	Texture*	sf::Shape::getTexture () const

Get	the	source	texture	of	the	shape.

If	 the	 shape	 has	 no	 source	 texture,	 a	NULL	 pointer	 is	 returned.	 The	 returned	 pointer	 is	 const,	 which
means	that	you	can't	modify	the	texture	when	you	retrieve	it	with	this	function.

Returns
Pointer	to	the	shape's	texture

See	also
setTexture

const	IntRect&	sf::Shape::getTextureRect () const

Get	the	sub-rectangle	of	the	texture	displayed	by	the	shape.

Returns
Texture	rectangle	of	the	shape

See	also
setTextureRect

const	Transform&	sf::Transformable::getTransform () const

get	the	combined	transform	of	the	object

Returns
Transform	combining	the	position/rotation/scale/origin	of	the	object

See	also
getInverseTransform

void	sf::Transformable::move (float	 offsetX,
float	 offsetY	
)

Move	the	object	by	a	given	offset.

This	function	adds	to	the	current	position	of	the	object,	unlike	setPosition	which	overwrites	it.	Thus,	it	is
equivalent	to	the	following	code:

sf::Vector2f	pos	=	object.getPosition();

object.setPosition(pos.x	+	offsetX,	pos.y	+	offsetY);

Parameters
offsetX X	offset
offsetY Y	offset

See	also
setPosition

void	sf::Transformable::move (const	Vector2f	&	 offset)

Move	the	object	by	a	given	offset.

This	function	adds	to	the	current	position	of	the	object,	unlike	setPosition	which	overwrites	it.	Thus,	it	is
equivalent	to	the	following	code:

object.setPosition(object.getPosition()	+	offset);

Parameters
offsetOffset

See	also
setPosition

void	sf::Transformable::rotate (float	 angle)

Rotate	the	object.

This	function	adds	to	the	current	rotation	of	the	object,	unlike	setRotation	which	overwrites	it.	Thus,	it	is
equivalent	to	the	following	code:

object.setRotation(object.getRotation()	+	angle);

Parameters
angle Angle	of	rotation,	in	degrees

void	sf::Transformable::scale (float	 factorX,
float	 factorY	
)

Scale	the	object.

This	 function	multiplies	 the	 current	 scale	 of	 the	 object,	 unlike	 setScale	which	 overwrites	 it.	 Thus,	 it	 is
equivalent	to	the	following	code:

sf::Vector2f	scale	=	object.getScale();

object.setScale(scale.x	*	factorX,	scale.y	*	factorY);

Parameters
factorXHorizontal	scale	factor
factorY Vertical	scale	factor

See	also
setScale

void	sf::Transformable::scale (const	Vector2f	&	 factor)

Scale	the	object.

This	 function	multiplies	 the	 current	 scale	 of	 the	 object,	 unlike	 setScale	which	 overwrites	 it.	 Thus,	 it	 is
equivalent	to	the	following	code:

sf::Vector2f	scale	=	object.getScale();

object.setScale(scale.x	*	factor.x,	scale.y	*	factor.y);

Parameters
factor Scale	factors

See	also
setScale

void	sf::Shape::setFillColor (const	Color	&	 color)

Set	the	fill	color	of	the	shape.

This	color	is	modulated	(multiplied)	with	the	shape's	texture	if	any.	It	can	be	used	to	colorize	the	shape,
or	 change	 its	 global	 opacity.	 You	 can	 use	 sf::Color::Transparent	 to	 make	 the	 inside	 of	 the	 shape
transparent,	and	have	the	outline	alone.	By	default,	the	shape's	fill	color	is	opaque	white.

Parameters
colorNew	color	of	the	shape

See	also
getFillColor,	setOutlineColor

void	sf::Transformable::setOrigin (float	 x,
float	 y	
)

set	the	local	origin	of	the	object

The	 origin	 of	 an	 object	 defines	 the	 center	 point	 for	 all	 transformations	 (position,	 scale,	 rotation).	 The
coordinates	 of	 this	 point	 must	 be	 relative	 to	 the	 top-left	 corner	 of	 the	 object,	 and	 ignore	 all
transformations	(position,	scale,	rotation).	The	default	origin	of	a	transformable	object	is	(0,	0).

Parameters
x X	coordinate	of	the	new	origin
y Y	coordinate	of	the	new	origin

See	also
getOrigin

void	sf::Transformable::setOrigin (const	Vector2f	&	 origin)

set	the	local	origin	of	the	object

The	 origin	 of	 an	 object	 defines	 the	 center	 point	 for	 all	 transformations	 (position,	 scale,	 rotation).	 The
coordinates	 of	 this	 point	 must	 be	 relative	 to	 the	 top-left	 corner	 of	 the	 object,	 and	 ignore	 all
transformations	(position,	scale,	rotation).	The	default	origin	of	a	transformable	object	is	(0,	0).

Parameters
origin New	origin

See	also
getOrigin

void	sf::Shape::setOutlineColor (const	Color	&	 color)

Set	the	outline	color	of	the	shape.

By	default,	the	shape's	outline	color	is	opaque	white.

Parameters
colorNew	outline	color	of	the	shape

See	also
getOutlineColor,	setFillColor

void	sf::Shape::setOutlineThickness (float	 thickness)

Set	the	thickness	of	the	shape's	outline.

Note	that	negative	values	are	allowed	(so	that	the	outline	expands	towards	the	center	of	the	shape),	and
using	zero	disables	the	outline.	By	default,	the	outline	thickness	is	0.

Parameters
thickness New	outline	thickness

See	also
getOutlineThickness

void	sf::Transformable::setPosition (float	 x,
float	 y	
)

set	the	position	of	the	object

This	function	completely	overwrites	the	previous	position.	See	the	move	function	to	apply	an	offset	based
on	the	previous	position	instead.	The	default	position	of	a	transformable	object	is	(0,	0).

Parameters
x X	coordinate	of	the	new	position
y Y	coordinate	of	the	new	position

See	also
move,	getPosition

void	sf::Transformable::setPosition (const	Vector2f	&	 position)

set	the	position	of	the	object

This	function	completely	overwrites	the	previous	position.	See	the	move	function	to	apply	an	offset	based
on	the	previous	position	instead.	The	default	position	of	a	transformable	object	is	(0,	0).

Parameters
positionNew	position

See	also
move,	getPosition

void	sf::Transformable::setRotation (float	 angle)

set	the	orientation	of	the	object

This	function	completely	overwrites	the	previous	rotation.	See	the	rotate	function	to	add	an	angle	based
on	the	previous	rotation	instead.	The	default	rotation	of	a	transformable	object	is	0.

Parameters
angle New	rotation,	in	degrees

See	also
rotate,	getRotation

void	sf::Transformable::setScale (float	 factorX,
float	 factorY	
)

set	the	scale	factors	of	the	object

This	function	completely	overwrites	the	previous	scale.	See	the	scale	function	to	add	a	factor	based	on
the	previous	scale	instead.	The	default	scale	of	a	transformable	object	is	(1,	1).

Parameters
factorXNew	horizontal	scale	factor
factorYNew	vertical	scale	factor

See	also
scale,	getScale

void	sf::Transformable::setScale (const	Vector2f	&	 factors)

set	the	scale	factors	of	the	object

This	function	completely	overwrites	the	previous	scale.	See	the	scale	function	to	add	a	factor	based	on
the	previous	scale	instead.	The	default	scale	of	a	transformable	object	is	(1,	1).

Parameters
factors New	scale	factors

See	also
scale,	getScale

void	sf::Shape::setTexture (const	Texture	*	 texture,
bool	 resetRect	=	false	

)

Change	the	source	texture	of	the	shape.

The	texture	argument	refers	to	a	texture	that	must	exist	as	long	as	the	shape	uses	it.	Indeed,	the	shape
doesn't	store	 its	own	copy	of	 the	texture,	but	rather	keeps	a	pointer	 to	the	one	that	you	passed	to	this
function.	 If	 the	 source	 texture	 is	 destroyed	 and	 the	 shape	 tries	 to	 use	 it,	 the	 behavior	 is	 undefined.
texture	can	be	NULL	to	disable	texturing.	 If	resetRect	 is	 true,	 the	TextureRect	property	of	 the	shape	 is
automatically	adjusted	to	the	size	of	the	new	texture.	If	it	is	false,	the	texture	rect	is	left	unchanged.

Parameters
texture New	texture
resetRect Should	the	texture	rect	be	reset	to	the	size	of	the	new	texture?

See	also
getTexture,	setTextureRect

void	sf::Shape::setTextureRect (const	IntRect	&	 rect)

Set	the	sub-rectangle	of	the	texture	that	the	shape	will	display.

The	 texture	 rect	 is	useful	when	you	don't	want	 to	display	 the	whole	 texture,	but	 rather	a	part	of	 it.	By
default,	the	texture	rect	covers	the	entire	texture.

Parameters
rect Rectangle	defining	the	region	of	the	texture	to	display

See	also
getTextureRect,	setTexture

void	sf::Shape::update ()

Recompute	the	internal	geometry	of	the	shape.

This	function	must	be	called	by	the	derived	class	everytime	the	shape's	points	change	(i.e.	the	result	of
either	getPointCount	or	getPoint	is	different).

The	documentation	for	this	class	was	generated	from	the	following	file:
Shape.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Member	Functions	|	List	of	all	members

sf::Sprite	Class	Reference
Graphics	module

Drawable	representation	of	a	texture,	with	its	own	transformations,	color,	etc.	

#include	<Sprite.hpp>

Inheritance	diagram	for	sf::Sprite:

Public	Member	Functions
	 Sprite	()

	 Default	constructor.	More...
	

	 Sprite	(const	Texture	&texture)
	 Construct	the	sprite	from	a	source	texture.	More...
	

	 Sprite	(const	Texture	&texture,	const	IntRect	&rectangle)
	 Construct	the	sprite	from	a	sub-rectangle	of	a	source	texture.	
	

void	 setTexture	(const	Texture	&texture,	bool	resetRect=false)
	 Change	the	source	texture	of	the	sprite.	More...
	

void	 setTextureRect	(const	IntRect	&rectangle)
	 Set	the	sub-rectangle	of	the	texture	that	the	sprite	will	display.	
	

void	 setColor	(const	Color	&color)
	 Set	the	global	color	of	the	sprite.	More...
	

const	Texture	*	 getTexture	()	const
	 Get	the	source	texture	of	the	sprite.	More...
	

const	IntRect	&	 getTextureRect	()	const
	 Get	the	sub-rectangle	of	the	texture	displayed	by	the	sprite.	
	

const	Color	&	 getColor	()	const
	 Get	the	global	color	of	the	sprite.	More...
	

FloatRect	 getLocalBounds	()	const
	 Get	the	local	bounding	rectangle	of	the	entity.	More...
	

FloatRect	 getGlobalBounds	()	const

	 Get	the	global	bounding	rectangle	of	the	entity.	More...
	

void	 setPosition	(float	x,	float	y)
	 set	the	position	of	the	object	More...
	

void	 setPosition	(const	Vector2f	&position)
	 set	the	position	of	the	object	More...
	

void	 setRotation	(float	angle)
	 set	the	orientation	of	the	object	More...
	

void	 setScale	(float	factorX,	float	factorY)
	 set	the	scale	factors	of	the	object	More...
	

void	 setScale	(const	Vector2f	&factors)
	 set	the	scale	factors	of	the	object	More...
	

void	 setOrigin	(float	x,	float	y)
	 set	the	local	origin	of	the	object	More...
	

void	 setOrigin	(const	Vector2f	&origin)
	 set	the	local	origin	of	the	object	More...
	

const	Vector2f	&	 getPosition	()	const
	 get	the	position	of	the	object	More...
	

float	 getRotation	()	const
	 get	the	orientation	of	the	object	More...
	

const	Vector2f	&	 getScale	()	const
	 get	the	current	scale	of	the	object	More...
	

const	Vector2f	&	 getOrigin	()	const
	 get	the	local	origin	of	the	object	More...
	

void	 move	(float	offsetX,	float	offsetY)
	 Move	the	object	by	a	given	offset.	More...
	

void	 move	(const	Vector2f	&offset)
	 Move	the	object	by	a	given	offset.	More...
	

void	 rotate	(float	angle)
	 Rotate	the	object.	More...
	

void	 scale	(float	factorX,	float	factorY)
	 Scale	the	object.	More...
	

void	 scale	(const	Vector2f	&factor)
	 Scale	the	object.	More...
	
const	Transform	&	 getTransform	()	const
	 get	the	combined	transform	of	the	object	More...
	
const	Transform	&	 getInverseTransform	()	const
	 get	the	inverse	of	the	combined	transform	of	the	object	
	

Detailed	Description

Drawable	representation	of	a	texture,	with	its	own	transformations,	color,	etc.

sf::Sprite	is	a	drawable	class	that	allows	to	easily	display	a	texture	(or	a	part	of	it)	on	a	render	target.

It	inherits	all	the	functions	from	sf::Transformable:	position,	rotation,	scale,	origin.	It	also	adds	sprite-specific
properties	such	as	the	texture	to	use,	the	part	of	it	to	display,	and	some	convenience	functions	to	change
the	overall	color	of	the	sprite,	or	to	get	its	bounding	rectangle.

sf::Sprite	works	 in	 combination	with	 the	 sf::Texture	 class,	 which	 loads	 and	 provides	 the	 pixel	 data	 of	 a
given	texture.

The	 separation	 of	 sf::Sprite	 and	 sf::Texture	 allows	 more	 flexibility	 and	 better	 performances:	 indeed	 a
sf::Texture	is	a	heavy	resource,	and	any	operation	on	it	is	slow	(often	too	slow	for	real-time	applications).
On	the	other	side,	a	sf::Sprite	is	a	lightweight	object	which	can	use	the	pixel	data	of	a	
it	with	its	own	transformation/color/blending	attributes.

It	 is	 important	 to	 note	 that	 the	 sf::Sprite	 instance	 doesn't	 copy	 the	 texture	 that	 it	 uses,	 it	 only	 keeps	 a
reference	to	it.	Thus,	a	sf::Texture	must	not	be	destroyed	while	it	is	used	by	a	
function	that	uses	a	local	sf::Texture	instance	for	creating	a	sprite).

See	also	the	note	on	coordinates	and	undistorted	rendering	in	sf::Transformable

Usage	example:

//	Declare	and	load	a	texture

sf::Texture	texture;

texture.loadFromFile("texture.png");

//	Create	a	sprite

sf::Sprite	sprite;

sprite.setTexture(texture);

sprite.setTextureRect(sf::IntRect(10,	10,	50,	30));

sprite.setColor(sf::Color(255,	255,	255,	200));

sprite.setPosition(100,	25);

//	Draw	it

window.draw(sprite);

See	also
sf::Texture,	sf::Transformable

Definition	at	line	47	of	file	Sprite.hpp.

Constructor	&	Destructor	Documentation

sf::Sprite::Sprite ()

Default	constructor.

Creates	an	empty	sprite	with	no	source	texture.

sf::Sprite::Sprite (const	Texture	&	 texture)

Construct	the	sprite	from	a	source	texture.

Parameters
texture Source	texture

See	also
setTexture

sf::Sprite::Sprite (const	Texture	&	 texture,
const	IntRect	&	 rectangle	
)

Construct	the	sprite	from	a	sub-rectangle	of	a	source	texture.

Parameters
texture Source	texture

rectangle Sub-rectangle	of	the	texture	to	assign	to	the	sprite

See	also
setTexture,	setTextureRect

Member	Function	Documentation

const	Color&	sf::Sprite::getColor () const

Get	the	global	color	of	the	sprite.

Returns
Global	color	of	the	sprite

See	also
setColor

FloatRect	sf::Sprite::getGlobalBounds () const

Get	the	global	bounding	rectangle	of	the	entity.

The	 returned	 rectangle	 is	 in	 global	 coordinates,	 which	 means	 that	 it	 takes	 into	 account	 the
transformations	(translation,	rotation,	scale,	...)	that	are	applied	to	the	entity.	In	other	words,	this	function
returns	the	bounds	of	the	sprite	in	the	global	2D	world's	coordinate	system.

Returns
Global	bounding	rectangle	of	the	entity

const	Transform&	sf::Transformable::getInverseTransform () const

get	the	inverse	of	the	combined	transform	of	the	object

Returns
Inverse	of	the	combined	transformations	applied	to	the	object

See	also
getTransform

FloatRect	sf::Sprite::getLocalBounds () const

Get	the	local	bounding	rectangle	of	the	entity.

The	 returned	 rectangle	 is	 in	 local	 coordinates,	 which	 means	 that	 it	 ignores	 the	 transformations
(translation,	 rotation,	 scale,	 ...)	 that	 are	 applied	 to	 the	 entity.	 In	 other	 words,	 this	 function	 returns	 the
bounds	of	the	entity	in	the	entity's	coordinate	system.

Returns
Local	bounding	rectangle	of	the	entity

const	Vector2f&	sf::Transformable::getOrigin () const

get	the	local	origin	of	the	object

Returns
Current	origin

See	also
setOrigin

const	Vector2f&	sf::Transformable::getPosition () const

get	the	position	of	the	object

Returns
Current	position

See	also
setPosition

float	sf::Transformable::getRotation () const

get	the	orientation	of	the	object

The	rotation	is	always	in	the	range	[0,	360].

Returns
Current	rotation,	in	degrees

See	also
setRotation

const	Vector2f&	sf::Transformable::getScale () const

get	the	current	scale	of	the	object

Returns
Current	scale	factors

See	also
setScale

const	Texture*	sf::Sprite::getTexture () const

Get	the	source	texture	of	the	sprite.

If	 the	 sprite	 has	 no	 source	 texture,	 a	 NULL	 pointer	 is	 returned.	 The	 returned	 pointer	 is	 const,	 which
means	that	you	can't	modify	the	texture	when	you	retrieve	it	with	this	function.

Returns
Pointer	to	the	sprite's	texture

See	also
setTexture

const	IntRect&	sf::Sprite::getTextureRect () const

Get	the	sub-rectangle	of	the	texture	displayed	by	the	sprite.

Returns
Texture	rectangle	of	the	sprite

See	also
setTextureRect

const	Transform&	sf::Transformable::getTransform () const

get	the	combined	transform	of	the	object

Returns
Transform	combining	the	position/rotation/scale/origin	of	the	object

See	also
getInverseTransform

void	sf::Transformable::move (float	 offsetX,
float	 offsetY	
)

Move	the	object	by	a	given	offset.

This	function	adds	to	the	current	position	of	the	object,	unlike	setPosition	which	overwrites	it.	Thus,	it	is
equivalent	to	the	following	code:

sf::Vector2f	pos	=	object.getPosition();

object.setPosition(pos.x	+	offsetX,	pos.y	+	offsetY);

Parameters
offsetX X	offset
offsetY Y	offset

See	also
setPosition

void	sf::Transformable::move (const	Vector2f	&	 offset)

Move	the	object	by	a	given	offset.

This	function	adds	to	the	current	position	of	the	object,	unlike	setPosition	which	overwrites	it.	Thus,	it	is
equivalent	to	the	following	code:

object.setPosition(object.getPosition()	+	offset);

Parameters
offsetOffset

See	also
setPosition

void	sf::Transformable::rotate (float	 angle)

Rotate	the	object.

This	function	adds	to	the	current	rotation	of	the	object,	unlike	setRotation	which	overwrites	it.	Thus,	it	is
equivalent	to	the	following	code:

object.setRotation(object.getRotation()	+	angle);

Parameters
angle Angle	of	rotation,	in	degrees

void	sf::Transformable::scale (float	 factorX,
float	 factorY	
)

Scale	the	object.

This	 function	multiplies	 the	 current	 scale	 of	 the	 object,	 unlike	 setScale	which	 overwrites	 it.	 Thus,	 it	 is
equivalent	to	the	following	code:

sf::Vector2f	scale	=	object.getScale();

object.setScale(scale.x	*	factorX,	scale.y	*	factorY);

Parameters

factorXHorizontal	scale	factor
factorY Vertical	scale	factor

See	also
setScale

void	sf::Transformable::scale (const	Vector2f	&	 factor)

Scale	the	object.

This	 function	multiplies	 the	 current	 scale	 of	 the	 object,	 unlike	 setScale	which	 overwrites	 it.	 Thus,	 it	 is
equivalent	to	the	following	code:

sf::Vector2f	scale	=	object.getScale();

object.setScale(scale.x	*	factor.x,	scale.y	*	factor.y);

Parameters
factor Scale	factors

See	also
setScale

void	sf::Sprite::setColor (const	Color	&	 color)

Set	the	global	color	of	the	sprite.

This	 color	 is	 modulated	 (multiplied)	 with	 the	 sprite's	 texture.	 It	 can	 be	 used	 to	 colorize	 the	 sprite,	 or
change	its	global	opacity.	By	default,	the	sprite's	color	is	opaque	white.

Parameters
colorNew	color	of	the	sprite

See	also
getColor

void	sf::Transformable::setOrigin (float	 x,
float	 y	
)

set	the	local	origin	of	the	object

The	 origin	 of	 an	 object	 defines	 the	 center	 point	 for	 all	 transformations	 (position,	 scale,	 rotation).	 The
coordinates	 of	 this	 point	 must	 be	 relative	 to	 the	 top-left	 corner	 of	 the	 object,	 and	 ignore	 all
transformations	(position,	scale,	rotation).	The	default	origin	of	a	transformable	object	is	(0,	0).

Parameters
x X	coordinate	of	the	new	origin
y Y	coordinate	of	the	new	origin

See	also
getOrigin

void	sf::Transformable::setOrigin (const	Vector2f	&	 origin)

set	the	local	origin	of	the	object

The	 origin	 of	 an	 object	 defines	 the	 center	 point	 for	 all	 transformations	 (position,	 scale,	 rotation).	 The
coordinates	 of	 this	 point	 must	 be	 relative	 to	 the	 top-left	 corner	 of	 the	 object,	 and	 ignore	 all
transformations	(position,	scale,	rotation).	The	default	origin	of	a	transformable	object	is	(0,	0).

Parameters
origin New	origin

See	also
getOrigin

void	sf::Transformable::setPosition (float	 x,
float	 y	
)

set	the	position	of	the	object

This	function	completely	overwrites	the	previous	position.	See	the	move	function	to	apply	an	offset	based
on	the	previous	position	instead.	The	default	position	of	a	transformable	object	is	(0,	0).

Parameters
x X	coordinate	of	the	new	position
y Y	coordinate	of	the	new	position

See	also
move,	getPosition

void	sf::Transformable::setPosition (const	Vector2f	&	 position)

set	the	position	of	the	object

This	function	completely	overwrites	the	previous	position.	See	the	move	function	to	apply	an	offset	based
on	the	previous	position	instead.	The	default	position	of	a	transformable	object	is	(0,	0).

Parameters
positionNew	position

See	also
move,	getPosition

void	sf::Transformable::setRotation (float	 angle)

set	the	orientation	of	the	object

This	function	completely	overwrites	the	previous	rotation.	See	the	rotate	function	to	add	an	angle	based
on	the	previous	rotation	instead.	The	default	rotation	of	a	transformable	object	is	0.

Parameters
angle New	rotation,	in	degrees

See	also
rotate,	getRotation

void	sf::Transformable::setScale (float	 factorX,
float	 factorY	
)

set	the	scale	factors	of	the	object

This	function	completely	overwrites	the	previous	scale.	See	the	scale	function	to	add	a	factor	based	on
the	previous	scale	instead.	The	default	scale	of	a	transformable	object	is	(1,	1).

Parameters
factorXNew	horizontal	scale	factor
factorYNew	vertical	scale	factor

See	also
scale,	getScale

void	sf::Transformable::setScale (const	Vector2f	&	 factors)

set	the	scale	factors	of	the	object

This	function	completely	overwrites	the	previous	scale.	See	the	scale	function	to	add	a	factor	based	on
the	previous	scale	instead.	The	default	scale	of	a	transformable	object	is	(1,	1).

Parameters
factors New	scale	factors

See	also
scale,	getScale

void	sf::Sprite::setTexture (const	Texture	&	 texture,
bool	 resetRect	=	false	
)

Change	the	source	texture	of	the	sprite.

The	texture	argument	refers	to	a	texture	that	must	exist	as	long	as	the	sprite	uses	it.	Indeed,	the	sprite
doesn't	store	 its	own	copy	of	 the	texture,	but	rather	keeps	a	pointer	 to	the	one	that	you	passed	to	this
function.	 If	 the	 source	 texture	 is	 destroyed	 and	 the	 sprite	 tries	 to	 use	 it,	 the	 behavior	 is	 undefined.	 If
resetRect	is	true,	the	TextureRect	property	of	the	sprite	is	automatically	adjusted	to	the	size	of	the	new
texture.	If	it	is	false,	the	texture	rect	is	left	unchanged.

Parameters
texture New	texture
resetRect Should	the	texture	rect	be	reset	to	the	size	of	the	new	texture?

See	also
getTexture,	setTextureRect

void	sf::Sprite::setTextureRect (const	IntRect	&	 rectangle)

Set	the	sub-rectangle	of	the	texture	that	the	sprite	will	display.

The	 texture	 rect	 is	useful	when	you	don't	want	 to	display	 the	whole	 texture,	but	 rather	a	part	of	 it.	By
default,	the	texture	rect	covers	the	entire	texture.

Parameters
rectangleRectangle	defining	the	region	of	the	texture	to	display

See	also
getTextureRect,	setTexture

The	documentation	for	this	class	was	generated	from	the	following	file:
Sprite.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Types	|	Public	Member	Functions	|	List	of	all	members

sf::Text	Class	Reference
Graphics	module

Graphical	text	that	can	be	drawn	to	a	render	target.	More...

#include	<Text.hpp>

Inheritance	diagram	for	sf::Text:

Public	Types

enum		

Style	{	
		Regular	=	0,	Bold	=	1	<<	0,	Italic	=	1	<<	1,	Underlined	=	1	<<	2,	
		StrikeThrough	=	1	<<	3	
}

	 Enumeration	of	the	string	drawing	styles.	More...
	

Public	Member	Functions
	 Text	()

	 Default	constructor.	More...
	

	 Text	(const	String	&string,	const	Font	&font,	unsigned	int	characterSize=30)
	 Construct	the	text	from	a	string,	font	and	size.	More...
	

void	 setString	(const	String	&string)
	 Set	the	text's	string.	More...
	

void	 setFont	(const	Font	&font)
	 Set	the	text's	font.	More...
	

void	 setCharacterSize	(unsigned	int	size)
	 Set	the	character	size.	More...
	

void	 setStyle	(Uint32	style)
	 Set	the	text's	style.	More...
	

void	 setColor	(const	Color	&color)
	 Set	the	fill	color	of	the	text.	More...
	

void	 setFillColor	(const	Color	&color)
	 Set	the	fill	color	of	the	text.	More...
	

void	 setOutlineColor	(const	Color	&color)
	 Set	the	outline	color	of	the	text.	More...
	

void	 setOutlineThickness	(float	thickness)
	 Set	the	thickness	of	the	text's	outline.	More...
	

const	String	&	 getString	()	const

	 Get	the	text's	string.	More...
	

const	Font	*	 getFont	()	const
	 Get	the	text's	font.	More...
	

unsigned	int	 getCharacterSize	()	const
	 Get	the	character	size.	More...
	

Uint32	 getStyle	()	const
	 Get	the	text's	style.	More...
	

const	Color	&	 getColor	()	const
	 Get	the	fill	color	of	the	text.	More...
	

const	Color	&	 getFillColor	()	const
	 Get	the	fill	color	of	the	text.	More...
	

const	Color	&	 getOutlineColor	()	const
	 Get	the	outline	color	of	the	text.	More...
	

float	 getOutlineThickness	()	const
	 Get	the	outline	thickness	of	the	text.	More...
	

Vector2f	 findCharacterPos	(std::size_t	index)	const
	 Return	the	position	of	the	index-th	character.	More...
	

FloatRect	 getLocalBounds	()	const
	 Get	the	local	bounding	rectangle	of	the	entity.	More...
	

FloatRect	 getGlobalBounds	()	const
	 Get	the	global	bounding	rectangle	of	the	entity.	More...
	

void	 setPosition	(float	x,	float	y)
	 set	the	position	of	the	object	More...
	

void	 setPosition	(const	Vector2f	&position)
	 set	the	position	of	the	object	More...
	

void	 setRotation	(float	angle)
	 set	the	orientation	of	the	object	More...
	

void	 setScale	(float	factorX,	float	factorY)
	 set	the	scale	factors	of	the	object	More...
	

void	 setScale	(const	Vector2f	&factors)
	 set	the	scale	factors	of	the	object	More...
	

void	 setOrigin	(float	x,	float	y)
	 set	the	local	origin	of	the	object	More...
	

void	 setOrigin	(const	Vector2f	&origin)
	 set	the	local	origin	of	the	object	More...
	

const	Vector2f	&	 getPosition	()	const
	 get	the	position	of	the	object	More...
	

float	 getRotation	()	const
	 get	the	orientation	of	the	object	More...
	

const	Vector2f	&	 getScale	()	const
	 get	the	current	scale	of	the	object	More...
	

const	Vector2f	&	 getOrigin	()	const
	 get	the	local	origin	of	the	object	More...
	

void	 move	(float	offsetX,	float	offsetY)
	 Move	the	object	by	a	given	offset.	More...
	

void	 move	(const	Vector2f	&offset)
	 Move	the	object	by	a	given	offset.	More...

	
void	 rotate	(float	angle)

	 Rotate	the	object.	More...
	

void	 scale	(float	factorX,	float	factorY)
	 Scale	the	object.	More...
	

void	 scale	(const	Vector2f	&factor)
	 Scale	the	object.	More...
	
const	Transform	&	 getTransform	()	const
	 get	the	combined	transform	of	the	object	More...
	
const	Transform	&	 getInverseTransform	()	const
	 get	the	inverse	of	the	combined	transform	of	the	object	
	

Detailed	Description

Graphical	text	that	can	be	drawn	to	a	render	target.

sf::Text	is	a	drawable	class	that	allows	to	easily	display	some	text	with	custom	style	and	color	on	a	render
target.

It	inherits	all	the	functions	from	sf::Transformable:	position,	rotation,	scale,	origin.	It	also	adds	text-specific
properties	such	as	the	font	to	use,	the	character	size,	the	font	style	(bold,	italic,	underlined,	strike	through),
the	global	color	and	 the	 text	 to	display	of	course.	 It	also	provides	convenience	 functions	 to	calculate	 the
graphical	size	of	the	text,	or	to	get	the	global	position	of	a	given	character.

sf::Text	 works	 in	 combination	 with	 the	 sf::Font	 class,	 which	 loads	 and	 provides	 the	 glyphs	 (visual
characters)	of	a	given	font.

The	separation	of	sf::Font	and	sf::Text	allows	more	flexibility	and	better	performances:	indeed	a	
a	heavy	resource,	and	any	operation	on	it	 is	slow	(often	too	slow	for	real-time	applications).	On	the	other
side,	 a	 sf::Text	 is	 a	 lightweight	 object	 which	 can	 combine	 the	 glyphs	 data	 and	metrics	 of	 a	
display	any	text	on	a	render	target.

It	is	important	to	note	that	the	sf::Text	instance	doesn't	copy	the	font	that	it	uses,	it	only	keeps	a	reference
to	it.	Thus,	a	sf::Font	must	not	be	destructed	while	it	 is	used	by	a	 sf::Text
uses	a	local	sf::Font	instance	for	creating	a	text).

See	also	the	note	on	coordinates	and	undistorted	rendering	in	sf::Transformable

Usage	example:

//	Declare	and	load	a	font

sf::Font	font;

font.loadFromFile("arial.ttf");

//	Create	a	text

sf::Text	text("hello",	font);

text.setCharacterSize(30);

text.setStyle(sf::Text::Bold);

text.setColor(sf::Color::Red);

//	Draw	it

window.draw(text);

See	also
sf::Font,	sf::Transformable

Definition	at	line	48	of	file	Text.hpp.

Member	Enumeration	Documentation

enum	sf::Text::Style

Enumeration	of	the	string	drawing	styles.

Enumerator

Regular	
Regular	characters,	no	style.

Bold	
Bold	characters.

Italic	
Italic	characters.

Underlined	
Underlined	characters.

StrikeThrough	
Strike	through	characters.

Definition	at	line	56	of	file	Text.hpp.

Constructor	&	Destructor	Documentation

sf::Text::Text ()

Default	constructor.

Creates	an	empty	text.

sf::Text::Text (const	String	&	 string,
const	Font	&	 font,
unsigned	int	 characterSize	=	30	
)

Construct	the	text	from	a	string,	font	and	size.

Note	that	if	the	used	font	is	a	bitmap	font,	it	is	not	scalable,	thus	not	all	requested	sizes	will	be	available
to	use.	This	needs	to	be	taken	into	consideration	when	setting	the	character	size.	If	you	need	to	display
text	of	a	certain	size,	make	sure	the	corresponding	bitmap	font	that	supports	that	size	is	used.

Parameters
string Text	assigned	to	the	string
font Font	used	to	draw	the	string
characterSize Base	size	of	characters,	in	pixels

Member	Function	Documentation

Vector2f	sf::Text::findCharacterPos (std::size_t	 index) const

Return	the	position	of	the	index-th	character.

This	 function	 computes	 the	 visual	 position	 of	 a	 character	 from	 its	 index	 in	 the	 string.	 The	 returned
position	 is	 in	 global	 coordinates	 (translation,	 rotation,	 scale	 and	 origin	 are	 applied).	 If	
range,	the	position	of	the	end	of	the	string	is	returned.

Parameters
index Index	of	the	character

Returns
Position	of	the	character

unsigned	int	sf::Text::getCharacterSize () const

Get	the	character	size.

Returns
Size	of	the	characters,	in	pixels

See	also
setCharacterSize

const	Color&	sf::Text::getColor () const

Get	the	fill	color	of	the	text.

Returns
Fill	color	of	the	text

See	also
setFillColor

Deprecated:
There	is	now	fill	and	outline	colors	instead	of	a	single	global	color.	Use	
getOutlineColor()	instead.

const	Color&	sf::Text::getFillColor () const

Get	the	fill	color	of	the	text.

Returns
Fill	color	of	the	text

See	also
setFillColor

const	Font*	sf::Text::getFont () const

Get	the	text's	font.

If	the	text	has	no	font	attached,	a	NULL	pointer	is	returned.	The	returned	pointer	is	const,	which	means
that	you	cannot	modify	the	font	when	you	get	it	from	this	function.

Returns

Pointer	to	the	text's	font

See	also
setFont

FloatRect	sf::Text::getGlobalBounds () const

Get	the	global	bounding	rectangle	of	the	entity.

The	 returned	 rectangle	 is	 in	 global	 coordinates,	 which	 means	 that	 it	 takes	 into	 account	 the
transformations	(translation,	rotation,	scale,	...)	that	are	applied	to	the	entity.	In	other	words,	this	function
returns	the	bounds	of	the	text	in	the	global	2D	world's	coordinate	system.

Returns
Global	bounding	rectangle	of	the	entity

const	Transform&	sf::Transformable::getInverseTransform () const

get	the	inverse	of	the	combined	transform	of	the	object

Returns
Inverse	of	the	combined	transformations	applied	to	the	object

See	also
getTransform

FloatRect	sf::Text::getLocalBounds () const

Get	the	local	bounding	rectangle	of	the	entity.

The	 returned	 rectangle	 is	 in	 local	 coordinates,	 which	 means	 that	 it	 ignores	 the	 transformations
(translation,	 rotation,	 scale,	 ...)	 that	 are	 applied	 to	 the	 entity.	 In	 other	 words,	 this	 function	 returns	 the
bounds	of	the	entity	in	the	entity's	coordinate	system.

Returns
Local	bounding	rectangle	of	the	entity

const	Vector2f&	sf::Transformable::getOrigin () const

get	the	local	origin	of	the	object

Returns
Current	origin

See	also
setOrigin

const	Color&	sf::Text::getOutlineColor () const

Get	the	outline	color	of	the	text.

Returns
Outline	color	of	the	text

See	also
setOutlineColor

float	sf::Text::getOutlineThickness () const

Get	the	outline	thickness	of	the	text.

Returns
Outline	thickness	of	the	text,	in	pixels

See	also
setOutlineThickness

const	Vector2f&	sf::Transformable::getPosition () const

get	the	position	of	the	object

Returns
Current	position

See	also
setPosition

float	sf::Transformable::getRotation () const

get	the	orientation	of	the	object

The	rotation	is	always	in	the	range	[0,	360].

Returns
Current	rotation,	in	degrees

See	also
setRotation

const	Vector2f&	sf::Transformable::getScale () const

get	the	current	scale	of	the	object

Returns
Current	scale	factors

See	also
setScale

const	String&	sf::Text::getString () const

Get	the	text's	string.

The	returned	string	is	a	sf::String,	which	can	automatically	be	converted	to	standard	string	types.	So,	the
following	lines	of	code	are	all	valid:

sf::String			s1	=	text.getString();

std::string		s2	=	text.getString();

std::wstring	s3	=	text.getString();

Returns
Text's	string

See	also
setString

Uint32	sf::Text::getStyle () const

Get	the	text's	style.

Returns
Text's	style

See	also
setStyle

const	Transform&	sf::Transformable::getTransform () const

get	the	combined	transform	of	the	object

Returns
Transform	combining	the	position/rotation/scale/origin	of	the	object

See	also
getInverseTransform

void	sf::Transformable::move (float	 offsetX,
float	 offsetY	
)

Move	the	object	by	a	given	offset.

This	function	adds	to	the	current	position	of	the	object,	unlike	setPosition	which	overwrites	it.	Thus,	it	is
equivalent	to	the	following	code:

sf::Vector2f	pos	=	object.getPosition();

object.setPosition(pos.x	+	offsetX,	pos.y	+	offsetY);

Parameters
offsetX X	offset
offsetY Y	offset

See	also
setPosition

void	sf::Transformable::move (const	Vector2f	&	 offset)

Move	the	object	by	a	given	offset.

This	function	adds	to	the	current	position	of	the	object,	unlike	setPosition	which	overwrites	it.	Thus,	it	is
equivalent	to	the	following	code:

object.setPosition(object.getPosition()	+	offset);

Parameters
offsetOffset

See	also
setPosition

void	sf::Transformable::rotate (float	 angle)

Rotate	the	object.

This	function	adds	to	the	current	rotation	of	the	object,	unlike	setRotation	which	overwrites	it.	Thus,	it	is
equivalent	to	the	following	code:

object.setRotation(object.getRotation()	+	angle);

Parameters
angle Angle	of	rotation,	in	degrees

void	sf::Transformable::scale (float	 factorX,
float	 factorY	
)

Scale	the	object.

This	 function	multiplies	 the	 current	 scale	 of	 the	 object,	 unlike	 setScale	which	 overwrites	 it.	 Thus,	 it	 is
equivalent	to	the	following	code:

sf::Vector2f	scale	=	object.getScale();

object.setScale(scale.x	*	factorX,	scale.y	*	factorY);

Parameters
factorXHorizontal	scale	factor
factorY Vertical	scale	factor

See	also
setScale

void	sf::Transformable::scale (const	Vector2f	&	 factor)

Scale	the	object.

This	 function	multiplies	 the	 current	 scale	 of	 the	 object,	 unlike	 setScale	which	 overwrites	 it.	 Thus,	 it	 is
equivalent	to	the	following	code:

sf::Vector2f	scale	=	object.getScale();

object.setScale(scale.x	*	factor.x,	scale.y	*	factor.y);

Parameters
factor Scale	factors

See	also
setScale

void	sf::Text::setCharacterSize (unsigned	int	 size)

Set	the	character	size.

The	default	size	is	30.

Note	that	if	the	used	font	is	a	bitmap	font,	it	is	not	scalable,	thus	not	all	requested	sizes	will	be	available
to	use.	This	needs	to	be	taken	into	consideration	when	setting	the	character	size.	If	you	need	to	display
text	of	a	certain	size,	make	sure	the	corresponding	bitmap	font	that	supports	that	size	is	used.

Parameters
sizeNew	character	size,	in	pixels

See	also
getCharacterSize

void	sf::Text::setColor (const	Color	&	 color)

Set	the	fill	color	of	the	text.

By	default,	the	text's	fill	color	is	opaque	white.	Setting	the	fill	color	to	a	transparent	color	with	an	outline
will	cause	the	outline	to	be	displayed	in	the	fill	area	of	the	text.

Parameters
colorNew	fill	color	of	the	text

See	also
getFillColor

Deprecated:
There	is	now	fill	and	outline	colors	instead	of	a	single	global	color.	Use	
setOutlineColor()	instead.

void	sf::Text::setFillColor (const	Color	&	 color)

Set	the	fill	color	of	the	text.

By	default,	the	text's	fill	color	is	opaque	white.	Setting	the	fill	color	to	a	transparent	color	with	an	outline
will	cause	the	outline	to	be	displayed	in	the	fill	area	of	the	text.

Parameters
colorNew	fill	color	of	the	text

See	also
getFillColor

void	sf::Text::setFont (const	Font	&	 font)

Set	the	text's	font.

The	 font	argument	 refers	 to	a	 font	 that	must	exist	as	 long	as	 the	 text	uses	 it.	 Indeed,	 the	 text	doesn't
store	its	own	copy	of	the	font,	but	rather	keeps	a	pointer	to	the	one	that	you	passed	to	this	function.	If	the
font	is	destroyed	and	the	text	tries	to	use	it,	the	behavior	is	undefined.

Parameters
fontNew	font

See	also
getFont

void	sf::Transformable::setOrigin (float	 x,
float	 y	
)

set	the	local	origin	of	the	object

The	 origin	 of	 an	 object	 defines	 the	 center	 point	 for	 all	 transformations	 (position,	 scale,	 rotation).	 The
coordinates	 of	 this	 point	 must	 be	 relative	 to	 the	 top-left	 corner	 of	 the	 object,	 and	 ignore	 all
transformations	(position,	scale,	rotation).	The	default	origin	of	a	transformable	object	is	(0,	0).

Parameters
x X	coordinate	of	the	new	origin
y Y	coordinate	of	the	new	origin

See	also
getOrigin

void	sf::Transformable::setOrigin (const	Vector2f	&	 origin)

set	the	local	origin	of	the	object

The	 origin	 of	 an	 object	 defines	 the	 center	 point	 for	 all	 transformations	 (position,	 scale,	 rotation).	 The
coordinates	 of	 this	 point	 must	 be	 relative	 to	 the	 top-left	 corner	 of	 the	 object,	 and	 ignore	 all
transformations	(position,	scale,	rotation).	The	default	origin	of	a	transformable	object	is	(0,	0).

Parameters
origin New	origin

See	also
getOrigin

void	sf::Text::setOutlineColor (const	Color	&	 color)

Set	the	outline	color	of	the	text.

By	default,	the	text's	outline	color	is	opaque	black.

Parameters
colorNew	outline	color	of	the	text

See	also
getOutlineColor

void	sf::Text::setOutlineThickness (float	 thickness)

Set	the	thickness	of	the	text's	outline.

By	default,	the	outline	thickness	is	0.

Be	aware	that	using	a	negative	value	for	the	outline	thickness	will	cause	distorted	rendering.

Parameters
thickness New	outline	thickness,	in	pixels

See	also
getOutlineThickness

void	sf::Transformable::setPosition (float	 x,
float	 y	
)

set	the	position	of	the	object

This	function	completely	overwrites	the	previous	position.	See	the	move	function	to	apply	an	offset	based
on	the	previous	position	instead.	The	default	position	of	a	transformable	object	is	(0,	0).

Parameters
x X	coordinate	of	the	new	position
y Y	coordinate	of	the	new	position

See	also
move,	getPosition

void	sf::Transformable::setPosition (const	Vector2f	&	 position)

set	the	position	of	the	object

This	function	completely	overwrites	the	previous	position.	See	the	move	function	to	apply	an	offset	based
on	the	previous	position	instead.	The	default	position	of	a	transformable	object	is	(0,	0).

Parameters
positionNew	position

See	also
move,	getPosition

void	sf::Transformable::setRotation (float	 angle)

set	the	orientation	of	the	object

This	function	completely	overwrites	the	previous	rotation.	See	the	rotate	function	to	add	an	angle	based

on	the	previous	rotation	instead.	The	default	rotation	of	a	transformable	object	is	0.

Parameters
angle New	rotation,	in	degrees

See	also
rotate,	getRotation

void	sf::Transformable::setScale (float	 factorX,
float	 factorY	
)

set	the	scale	factors	of	the	object

This	function	completely	overwrites	the	previous	scale.	See	the	scale	function	to	add	a	factor	based	on
the	previous	scale	instead.	The	default	scale	of	a	transformable	object	is	(1,	1).

Parameters
factorXNew	horizontal	scale	factor
factorYNew	vertical	scale	factor

See	also
scale,	getScale

void	sf::Transformable::setScale (const	Vector2f	&	 factors)

set	the	scale	factors	of	the	object

This	function	completely	overwrites	the	previous	scale.	See	the	scale	function	to	add	a	factor	based	on
the	previous	scale	instead.	The	default	scale	of	a	transformable	object	is	(1,	1).

Parameters
factors New	scale	factors

See	also
scale,	getScale

void	sf::Text::setString (const	String	&	 string)

Set	the	text's	string.

The	string	argument	 is	a	 sf::String,	which	can	automatically	be	constructed	from	standard	string	types.
So,	the	following	calls	are	all	valid:

text.setString("hello");

text.setString(L"hello");

text.setString(std::string("hello"));

text.setString(std::wstring(L"hello"));

A	text's	string	is	empty	by	default.

Parameters
string New	string

See	also
getString

void	sf::Text::setStyle (Uint32	 style)

Set	the	text's	style.

You	can	pass	a	combination	of	one	or	more	styles,	for	example	sf::Text::Bold
style	is	sf::Text::Regular.

Parameters
style New	style

See	also
getStyle

The	documentation	for	this	class	was	generated	from	the	following	file:
Text.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Types	|	Public	Member	Functions	|	Static	Public	Member	Functions	|	Static	Private	Member	Functions	|	Friends	|	List	of	all	members

sf::Texture	Class	Reference
Graphics	module

Image	living	on	the	graphics	card	that	can	be	used	for	drawing.	More...

#include	<Texture.hpp>

Inheritance	diagram	for	sf::Texture:

Public	Types
enum		 CoordinateType	{	Normalized,	Pixels	}
	 Types	of	texture	coordinates	that	can	be	used	for	rendering.	More...
	

Public	Member	Functions
	 Texture	()

	 Default	constructor.	More...
	

	 Texture	(const	Texture	©)
	 Copy	constructor.	More...
	

	 ~Texture	()
	 Destructor.	More...
	

bool	 create	(unsigned	int	width,	unsigned	int	height)
	 Create	the	texture.	More...
	

bool	 loadFromFile	(const	std::string	&filename,	const	IntRect	&area=
	 Load	the	texture	from	a	file	on	disk.	More...
	

bool	 loadFromMemory	(const	void	*data,	std::size_t	size,	const	
	 Load	the	texture	from	a	file	in	memory.	More...
	

bool	 loadFromStream	(InputStream	&stream,	const	IntRect	&area=
	 Load	the	texture	from	a	custom	stream.	More...
	

bool	 loadFromImage	(const	Image	&image,	const	IntRect	&area=
	 Load	the	texture	from	an	image.	More...
	

Vector2u	 getSize	()	const
	 Return	the	size	of	the	texture.	More...
	

Image	 copyToImage	()	const
	 Copy	the	texture	pixels	to	an	image.	More...
	

void	 update	(const	Uint8	*pixels)

	 Update	the	whole	texture	from	an	array	of	pixels.	More...
	

void	 update	(const	Uint8	*pixels,	unsigned	int	width,	unsigned	int	height,	unsigned	int	x,	unsignedint	y)
	 Update	a	part	of	the	texture	from	an	array	of	pixels.	More...
	

void	 update	(const	Image	&image)
	 Update	the	texture	from	an	image.	More...
	

void	 update	(const	Image	&image,	unsigned	int	x,	unsigned	int	y)
	 Update	a	part	of	the	texture	from	an	image.	More...
	

void	 update	(const	Window	&window)
	 Update	the	texture	from	the	contents	of	a	window.	More...
	

void	 update	(const	Window	&window,	unsigned	int	x,	unsigned	int	y)
	 Update	a	part	of	the	texture	from	the	contents	of	a	window.	
	

void	 setSmooth	(bool	smooth)
	 Enable	or	disable	the	smooth	filter.	More...
	

bool	 isSmooth	()	const
	 Tell	whether	the	smooth	filter	is	enabled	or	not.	More...
	

void	 setSrgb	(bool	sRgb)
	 Enable	or	disable	conversion	from	sRGB.	More...
	

bool	 isSrgb	()	const
	 Tell	whether	the	texture	source	is	converted	from	sRGB	or	not.	
	

void	 setRepeated	(bool	repeated)
	 Enable	or	disable	repeating.	More...
	

bool	 isRepeated	()	const
	 Tell	whether	the	texture	is	repeated	or	not.	More...

	
bool	 generateMipmap	()

	 Generate	a	mipmap	using	the	current	texture	data.	More...
	

Texture	&	 operator=	(const	Texture	&right)
	 Overload	of	assignment	operator.	More...
	
unsigned	int	 getNativeHandle	()	const
	 Get	the	underlying	OpenGL	handle	of	the	texture.	More...
	

Static	Public	Member	Functions
static	void	 bind	(const	Texture	*texture,	CoordinateType	coordinateType=

	 Bind	a	texture	for	rendering.	More...
	
static	unsigned	int	 getMaximumSize	()
	 Get	the	maximum	texture	size	allowed.	More...
	

Static	Private	Member	Functions
static	void	 ensureGlContext	()
	 Empty	function	for	ABI	compatibility,	use	acquireTransientContext	instead.	
	

Friends
class	 RenderTexture
	
class	 RenderTarget
	

Detailed	Description

Image	living	on	the	graphics	card	that	can	be	used	for	drawing.

sf::Texture	stores	pixels	that	can	be	drawn,	with	a	sprite	for	example.

A	texture	lives	in	the	graphics	card	memory,	therefore	it	is	very	fast	to	draw	a	texture	to	a	render	target,	or
copy	a	render	target	to	a	texture	(the	graphics	card	can	access	both	directly).

Being	stored	in	the	graphics	card	memory	has	some	drawbacks.	A	texture	cannot	be	manipulated	as	freely
as	 a	 sf::Image,	 you	 need	 to	 prepare	 the	 pixels	 first	 and	 then	 upload	 them	 to	 the	 texture	 in	 a	 single
operation	(see	Texture::update).

sf::Texture	makes	it	easy	to	convert	 from/to	 sf::Image,	but	keep	in	mind	that	these	calls	require	transfers
between	the	graphics	card	and	the	central	memory,	therefore	they	are	slow	operations.

A	 texture	 can	 be	 loaded	 from	 an	 image,	 but	 also	 directly	 from	 a	 file/memory/stream.	 The	 necessary
shortcuts	are	defined	so	 that	you	don't	need	an	 image	first	 for	 the	most	common	cases.	However,	 if	you
want	to	perform	some	modifications	on	the	pixels	before	creating	the	final	texture,	you	can	load	your	file	to
a	sf::Image,	do	whatever	you	need	with	the	pixels,	and	then	call	Texture::loadFromImage

Since	they	live	in	the	graphics	card	memory,	the	pixels	of	a	texture	cannot	be	accessed	without	a	slow	copy
first.	And	they	cannot	be	accessed	individually.	Therefore,	if	you	need	to	read	the	texture's	pixels	(like	for
pixel-perfect	collisions),	 it	 is	recommended	to	store	the	collision	 information	separately,	 for	example	 in	an
array	of	booleans.

Like	 sf::Image,	 sf::Texture	can	handle	a	unique	 internal	 representation	of	pixels,	which	 is	RGBA	32	bits.
This	means	 that	 a	 pixel	must	 be	 composed	 of	 8	 bits	 red,	 green,	 blue	 and	 alpha	 channels	 –	 just	 like	 a
sf::Color.

Usage	example:

//	This	example	shows	the	most	common	use	of	sf::Texture:

//	drawing	a	sprite

//	Load	a	texture	from	a	file

sf::Texture	texture;

if	(!texture.loadFromFile("texture.png"))

	return	-1;

//	Assign	it	to	a	sprite

sf::Sprite	sprite;

sprite.setTexture(texture);

//	Draw	the	textured	sprite

window.draw(sprite);

//	This	example	shows	another	common	use	of	sf::Texture:

//	streaming	real-time	data,	like	video	frames

//	Create	an	empty	texture

sf::Texture	texture;

if	(!texture.create(640,	480))

	return	-1;

//	Create	a	sprite	that	will	display	the	texture

sf::Sprite	sprite(texture);

while	(...)	//	the	main	loop

{

				...

	//	update	the	texture

				sf::Uint8*	pixels	=	...;	//	get	a	fresh	chunk	of	pixels	(the	next	frame	of	a	movie,	for	example)

				texture.update(pixels);

	//	draw	it

				window.draw(sprite);

				...

}

Like	sf::Shader	that	can	be	used	as	a	raw	OpenGL	shader,	sf::Texture	can	also	be	used	directly	as	a	raw
texture	for	custom	OpenGL	geometry.

sf::Texture::bind(&texture);

...	render	OpenGL	geometry	...

sf::Texture::bind(NULL);

See	also
sf::Sprite,	sf::Image,	sf::RenderTexture

Definition	at	line	47	of	file	Texture.hpp.

Member	Enumeration	Documentation

enum	sf::Texture::CoordinateType

Types	of	texture	coordinates	that	can	be	used	for	rendering.

Enumerator

Normalized	
Texture	coordinates	in	range	[0	..	1].

Pixels	
Texture	coordinates	in	range	[0	..	size].

Definition	at	line	55	of	file	Texture.hpp.

Constructor	&	Destructor	Documentation

sf::Texture::Texture ()

Default	constructor.

Creates	an	empty	texture.

sf::Texture::Texture (const	Texture	&	 copy)

Copy	constructor.

Parameters
copy instance	to	copy

sf::Texture::~Texture ()

Destructor.

Member	Function	Documentation

static	void	sf::Texture::bind (const	Texture	*	 texture,
CoordinateType	 coordinateType	=	Normalized

)

Bind	a	texture	for	rendering.

This	function	is	not	part	of	the	graphics	API,	it	mustn't	be	used	when	drawing	SFML	entities.	It	must	be
used	only	if	you	mix	sf::Texture	with	OpenGL	code.

sf::Texture	t1,	t2;

...

sf::Texture::bind(&t1);

//	draw	OpenGL	stuff	that	use	t1...

sf::Texture::bind(&t2);

//	draw	OpenGL	stuff	that	use	t2...

sf::Texture::bind(NULL);

//	draw	OpenGL	stuff	that	use	no	texture...

The	coordinateType	 argument	 controls	 how	 texture	 coordinates	will	 be	 interpreted.	 If	 Normalized	 (the
default),	 they	must	 be	 in	 range	 [0	 ..	 1],	which	 is	 the	 default	way	 of	 handling	 texture	 coordinates	with
OpenGL.	 If	Pixels,	 they	must	be	given	 in	pixels	 (range	 [0	 ..	size]).	This	mode	 is	used	 internally	by	 the
graphics	classes	of	SFML,	it	makes	the	definition	of	texture	coordinates	more	intuitive	for	the	high-level
API,	users	don't	need	to	compute	normalized	values.

Parameters
texture Pointer	to	the	texture	to	bind,	can	be	null	to	use	no	texture
coordinateType Type	of	texture	coordinates	to	use

Image	sf::Texture::copyToImage () const

Copy	the	texture	pixels	to	an	image.

This	function	performs	a	slow	operation	that	downloads	the	texture's	pixels	from	the	graphics	card	and
copies	them	to	a	new	image,	potentially	applying	transformations	to	pixels	if	necessary	(texture	may	be
padded	or	flipped).

Returns
Image	containing	the	texture's	pixels

See	also
loadFromImage

bool	sf::Texture::create (unsigned	int	 width,
unsigned	int	 height	
)

Create	the	texture.

If	this	function	fails,	the	texture	is	left	unchanged.

Parameters
width Width	of	the	texture
heightHeight	of	the	texture

Returns
True	if	creation	was	successful

bool	sf::Texture::generateMipmap ()

Generate	a	mipmap	using	the	current	texture	data.

Mipmaps	are	pre-computed	chains	of	optimized	textures.	Each	level	of	texture	in	a	mipmap	is	generated
by	halving	each	of	the	previous	level's	dimensions.	This	is	done	until	the	final	level	has	the	size	of	1x1.
The	textures	generated	in	this	process	may	make	use	of	more	advanced	filters	which	might	improve	the
visual	quality	of	textures	when	they	are	applied	to	objects	much	smaller	than	they	are.	This	is	known	as
minification.	Because	 fewer	 texels	 (texture	elements)	have	 to	be	sampled	 from	when	heavily	minified,
usage	of	mipmaps	can	also	improve	rendering	performance	in	certain	scenarios.

Mipmap	 generation	 relies	 on	 the	 necessary	OpenGL	 extension	 being	 available.	 If	 it	 is	 unavailable	 or
generation	fails	due	to	another	reason,	this	function	will	return	false.	Mipmap	data	is	only	valid	from	the
time	it	is	generated	until	the	next	time	the	base	level	image	is	modified,	at	which	point	this	function	will
have	to	be	called	again	to	regenerate	it.

Returns
True	if	mipmap	generation	was	successful,	false	if	unsuccessful

static	unsigned	int	sf::Texture::getMaximumSize ()

Get	the	maximum	texture	size	allowed.

This	maximum	size	is	defined	by	the	graphics	driver.	You	can	expect	a	value	of	512	pixels	for	 low-end
graphics	card,	and	up	to	8192	pixels	or	more	for	newer	hardware.

Returns
Maximum	size	allowed	for	textures,	in	pixels

unsigned	int	sf::Texture::getNativeHandle () const

Get	the	underlying	OpenGL	handle	of	the	texture.

You	 shouldn't	 need	 to	 use	 this	 function,	 unless	 you	 have	 very	 specific	 stuff	 to	 implement	 that	 SFML
doesn't	support,	or	implement	a	temporary	workaround	until	a	bug	is	fixed.

Returns
OpenGL	handle	of	the	texture	or	0	if	not	yet	created

Vector2u	sf::Texture::getSize () const

Return	the	size	of	the	texture.

Returns
Size	in	pixels

bool	sf::Texture::isRepeated () const

Tell	whether	the	texture	is	repeated	or	not.

Returns
True	if	repeat	mode	is	enabled,	false	if	it	is	disabled

See	also
setRepeated

bool	sf::Texture::isSmooth () const

Tell	whether	the	smooth	filter	is	enabled	or	not.

Returns
True	if	smoothing	is	enabled,	false	if	it	is	disabled

See	also
setSmooth

bool	sf::Texture::isSrgb () const

Tell	whether	the	texture	source	is	converted	from	sRGB	or	not.

Returns
True	if	the	texture	source	is	converted	from	sRGB,	false	if	not

See	also
setSrgb

bool	sf::Texture::loadFromFile (const	std::string	&	 filename,
const	IntRect	&	 area	=	IntRect()	
)

Load	the	texture	from	a	file	on	disk.

This	function	is	a	shortcut	for	the	following	code:

sf::Image	image;

image.loadFromFile(filename);

texture.loadFromImage(image,	area);

The	area	argument	can	be	used	to	load	only	a	sub-rectangle	of	the	whole	image.	If	you	want	the	entire
image	then	leave	the	default	value	(which	is	an	empty	IntRect).	If	the	area
of	the	image,	it	is	adjusted	to	fit	the	image	size.

The	 maximum	 size	 for	 a	 texture	 depends	 on	 the	 graphics	 driver	 and	 can	 be	 retrieved	 with	 the
getMaximumSize	function.

If	this	function	fails,	the	texture	is	left	unchanged.

Parameters
filename Path	of	the	image	file	to	load
area Area	of	the	image	to	load

Returns
True	if	loading	was	successful

See	also
loadFromMemory,	loadFromStream,	loadFromImage

bool	sf::Texture::loadFromImage (const	Image	&	 image,
const	IntRect	&	 area	=	IntRect()	
)

Load	the	texture	from	an	image.

The	area	argument	can	be	used	to	load	only	a	sub-rectangle	of	the	whole	image.	If	you	want	the	entire
image	then	leave	the	default	value	(which	is	an	empty	IntRect).	If	the	area
of	the	image,	it	is	adjusted	to	fit	the	image	size.

The	 maximum	 size	 for	 a	 texture	 depends	 on	 the	 graphics	 driver	 and	 can	 be	 retrieved	 with	 the
getMaximumSize	function.

If	this	function	fails,	the	texture	is	left	unchanged.

Parameters
image Image	to	load	into	the	texture
area Area	of	the	image	to	load

Returns

True	if	loading	was	successful

See	also
loadFromFile,	loadFromMemory

bool	sf::Texture::loadFromMemory (const	void	*	 data,
std::size_t	 size,
const	IntRect	&	 area	=	IntRect()
)

Load	the	texture	from	a	file	in	memory.

This	function	is	a	shortcut	for	the	following	code:

sf::Image	image;

image.loadFromMemory(data,	size);

texture.loadFromImage(image,	area);

The	area	argument	can	be	used	to	load	only	a	sub-rectangle	of	the	whole	image.	If	you	want	the	entire
image	then	leave	the	default	value	(which	is	an	empty	IntRect).	If	the	area
of	the	image,	it	is	adjusted	to	fit	the	image	size.

The	 maximum	 size	 for	 a	 texture	 depends	 on	 the	 graphics	 driver	 and	 can	 be	 retrieved	 with	 the
getMaximumSize	function.

If	this	function	fails,	the	texture	is	left	unchanged.

Parameters
data Pointer	to	the	file	data	in	memory
size Size	of	the	data	to	load,	in	bytes
area Area	of	the	image	to	load

Returns

True	if	loading	was	successful

See	also
loadFromFile,	loadFromStream,	loadFromImage

bool	sf::Texture::loadFromStream (InputStream	&	 stream,
const	IntRect	&	 area	=	IntRect()
)

Load	the	texture	from	a	custom	stream.

This	function	is	a	shortcut	for	the	following	code:

sf::Image	image;

image.loadFromStream(stream);

texture.loadFromImage(image,	area);

The	area	argument	can	be	used	to	load	only	a	sub-rectangle	of	the	whole	image.	If	you	want	the	entire
image	then	leave	the	default	value	(which	is	an	empty	IntRect).	If	the	area
of	the	image,	it	is	adjusted	to	fit	the	image	size.

The	 maximum	 size	 for	 a	 texture	 depends	 on	 the	 graphics	 driver	 and	 can	 be	 retrieved	 with	 the
getMaximumSize	function.

If	this	function	fails,	the	texture	is	left	unchanged.

Parameters
stream Source	stream	to	read	from
area Area	of	the	image	to	load

Returns
True	if	loading	was	successful

See	also

loadFromFile,	loadFromMemory,	loadFromImage

Texture&	sf::Texture::operator= (const	Texture	&	 right)

Overload	of	assignment	operator.

Parameters
right Instance	to	assign

Returns
Reference	to	self

void	sf::Texture::setRepeated (bool	 repeated)

Enable	or	disable	repeating.

Repeating	is	involved	when	using	texture	coordinates	outside	the	texture	rectangle	[0,	0,	width,	height].
In	this	case,	if	repeat	mode	is	enabled,	the	whole	texture	will	be	repeated	as	many	times	as	needed	to
reach	the	coordinate	(for	example,	if	the	X	texture	coordinate	is	3	*	width,	the	texture	will	be	repeated	3
times).	If	repeat	mode	is	disabled,	the	"extra	space"	will	instead	be	filled	with	border	pixels.	Warning:	on
very	old	graphics	cards,	white	pixels	may	appear	when	the	texture	is	repeated.	With	such	cards,	repeat
mode	 can	 be	 used	 reliably	 only	 if	 the	 texture	 has	 power-of-two	 dimensions	 (such	 as	 256x128).
Repeating	is	disabled	by	default.

Parameters
repeated True	to	repeat	the	texture,	false	to	disable	repeating

See	also
isRepeated

void	sf::Texture::setSmooth (bool	 smooth)

Enable	or	disable	the	smooth	filter.

When	the	filter	is	activated,	the	texture	appears	smoother	so	that	pixels	are	less	noticeable.	However	if
you	want	the	texture	to	look	exactly	the	same	as	its	source	file,	you	should	leave	it	disabled.	The	smooth
filter	is	disabled	by	default.

Parameters
smooth True	to	enable	smoothing,	false	to	disable	it

See	also
isSmooth

void	sf::Texture::setSrgb (bool	 sRgb)

Enable	or	disable	conversion	from	sRGB.

When	providing	texture	data	from	an	image	file	or	memory,	it	can	either	be	stored	in	a	linear	color	space
or	an	sRGB	color	space.	Most	digital	images	account	for	gamma	correction	already,	so	they	would	need
to	be	"uncorrected"	back	to	 linear	color	space	before	being	processed	by	the	hardware.	The	hardware
can	automatically	convert	 it	 from	 the	sRGB	color	space	 to	a	 linear	color	space	when	 it	gets	sampled.
When	the	rendered	image	gets	output	to	the	final	framebuffer,	it	gets	converted	back	to	sRGB.

After	enabling	or	disabling	sRGB	conversion,	make	sure	to	reload	the	texture	data	in	order	for	the	setting
to	take	effect.

This	option	is	only	useful	in	conjunction	with	an	sRGB	capable	framebuffer.	This	can	be	requested	during
window	creation.

Parameters
sRgb True	to	enable	sRGB	conversion,	false	to	disable	it

See	also
isSrgb

void	sf::Texture::update (const	Uint8	*	 pixels)

Update	the	whole	texture	from	an	array	of	pixels.

The	pixel	array	is	assumed	to	have	the	same	size	as	the	area	rectangle,	and	to	contain	32-bits	RGBA
pixels.

No	additional	check	is	performed	on	the	size	of	the	pixel	array,	passing	invalid	arguments	will	lead	to	an
undefined	behavior.

This	function	does	nothing	if	pixels	is	null	or	if	the	texture	was	not	previously	created.

Parameters
pixels Array	of	pixels	to	copy	to	the	texture

void	sf::Texture::update (const	Uint8	*	 pixels,
unsigned	int	 width,
unsigned	int	 height,
unsigned	int	 x,
unsigned	int	 y	
)

Update	a	part	of	the	texture	from	an	array	of	pixels.

The	size	of	the	pixel	array	must	match	the	width	and	height	arguments,	and	it	must	contain	32-bits	RGBA
pixels.

No	 additional	 check	 is	 performed	 on	 the	 size	 of	 the	 pixel	 array	 or	 the	 bounds	 of	 the	 area	 to	 update,

passing	invalid	arguments	will	lead	to	an	undefined	behavior.

This	function	does	nothing	if	pixels	is	null	or	if	the	texture	was	not	previously	created.

Parameters
pixels Array	of	pixels	to	copy	to	the	texture
width Width	of	the	pixel	region	contained	in	pixels
heightHeight	of	the	pixel	region	contained	in	pixels
x X	offset	in	the	texture	where	to	copy	the	source	pixels
y Y	offset	in	the	texture	where	to	copy	the	source	pixels

void	sf::Texture::update (const	Image	&	 image)

Update	the	texture	from	an	image.

Although	the	source	image	can	be	smaller	than	the	texture,	this	function	is	usually	used	for	updating	the
whole	 texture.	 The	 other	 overload,	 which	 has	 (x,	 y)	 additional	 arguments,	 is	 more	 convenient	 for
updating	a	sub-area	of	the	texture.

No	additional	check	is	performed	on	the	size	of	the	image,	passing	an	image	bigger	than	the	texture	will
lead	to	an	undefined	behavior.

This	function	does	nothing	if	the	texture	was	not	previously	created.

Parameters
image Image	to	copy	to	the	texture

void	sf::Texture::update (const	Image	&	 image,
unsigned	int	 x,
unsigned	int	 y	
)

Update	a	part	of	the	texture	from	an	image.

No	additional	check	is	performed	on	the	size	of	the	image,	passing	an	invalid	combination	of	image	size
and	offset	will	lead	to	an	undefined	behavior.

This	function	does	nothing	if	the	texture	was	not	previously	created.

Parameters
image Image	to	copy	to	the	texture
x X	offset	in	the	texture	where	to	copy	the	source	image
y Y	offset	in	the	texture	where	to	copy	the	source	image

void	sf::Texture::update (const	Window	&	 window)

Update	the	texture	from	the	contents	of	a	window.

Although	the	source	window	can	be	smaller	 than	the	texture,	 this	 function	 is	usually	used	for	updating
the	whole	 texture.	 The	 other	 overload,	which	 has	 (x,	 y)	 additional	 arguments,	 is	more	 convenient	 for
updating	a	sub-area	of	the	texture.

No	additional	check	is	performed	on	the	size	of	the	window,	passing	a	window	bigger	than	the	texture	will
lead	to	an	undefined	behavior.

This	function	does	nothing	if	either	the	texture	or	the	window	was	not	previously	created.

Parameters
window Window	to	copy	to	the	texture

void	sf::Texture::update (const	Window	&	 window,
unsigned	int	 x,
unsigned	int	 y	

)

Update	a	part	of	the	texture	from	the	contents	of	a	window.

No	additional	check	 is	performed	on	the	size	of	 the	window,	passing	an	 invalid	combination	of	window
size	and	offset	will	lead	to	an	undefined	behavior.

This	function	does	nothing	if	either	the	texture	or	the	window	was	not	previously	created.

Parameters
window Window	to	copy	to	the	texture
x X	offset	in	the	texture	where	to	copy	the	source	window
y Y	offset	in	the	texture	where	to	copy	the	source	window

The	documentation	for	this	class	was	generated	from	the	following	file:
Texture.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Member	Functions	|	Static	Public	Attributes	|	Related	Functions	|	List	of	all	members

sf::Transform	Class	Reference
Graphics	module

Define	a	3x3	transform	matrix.	More...

#include	<Transform.hpp>

Public	Member	Functions
	 Transform	()

	 Default	constructor.	More...
	

	 Transform	(float	a00,	float	a01,	float	a02,	float	a10,	float	a11,	float	a12,	float	a20,	float	a21,
float	a22)

	 Construct	a	transform	from	a	3x3	matrix.	More...
	
const	float	*	 getMatrix	()	const
	 Return	the	transform	as	a	4x4	matrix.	More...
	

Transform	 getInverse	()	const
	 Return	the	inverse	of	the	transform.	More...
	

Vector2f	 transformPoint	(float	x,	float	y)	const
	 Transform	a	2D	point.	More...
	

Vector2f	 transformPoint	(const	Vector2f	&point)	const
	 Transform	a	2D	point.	More...
	

FloatRect	 transformRect	(const	FloatRect	&rectangle)	const
	 Transform	a	rectangle.	More...
	
Transform	&	 combine	(const	Transform	&transform)
	 Combine	the	current	transform	with	another	one.	More...
	
Transform	&	 translate	(float	x,	float	y)
	 Combine	the	current	transform	with	a	translation.	More...
	
Transform	&	 translate	(const	Vector2f	&offset)
	 Combine	the	current	transform	with	a	translation.	More...
	

Transform	&	 rotate	(float	angle)
	 Combine	the	current	transform	with	a	rotation.	More...
	
Transform	&	 rotate	(float	angle,	float	centerX,	float	centerY)
	 Combine	the	current	transform	with	a	rotation.	More...
	
Transform	&	 rotate	(float	angle,	const	Vector2f	¢er)
	 Combine	the	current	transform	with	a	rotation.	More...
	
Transform	&	 scale	(float	scaleX,	float	scaleY)
	 Combine	the	current	transform	with	a	scaling.	More...
	
Transform	&	 scale	(float	scaleX,	float	scaleY,	float	centerX,	float	centerY)
	 Combine	the	current	transform	with	a	scaling.	More...
	
Transform	&	 scale	(const	Vector2f	&factors)
	 Combine	the	current	transform	with	a	scaling.	More...
	
Transform	&	 scale	(const	Vector2f	&factors,	const	Vector2f	¢er)
	 Combine	the	current	transform	with	a	scaling.	More...
	

Static	Public	Attributes
static	const	Transform	 Identity
	 The	identity	transform	(does	nothing)	More...
	

Related	Functions

(Note	that	these	are	not	member	functions.)

Transform	 operator*	(const	Transform	&left,	const	Transform	&right)
	 Overload	of	binary	operator	*	to	combine	two	transforms.	More...
	
Transform	&	 operator*=	(Transform	&left,	const	Transform	&right)
	 Overload	of	binary	operator	*=	to	combine	two	transforms.	
	

Vector2f	 operator*	(const	Transform	&left,	const	Vector2f	&right)
	 Overload	of	binary	operator	*	to	transform	a	point.	More...
	

Detailed	Description

Define	a	3x3	transform	matrix.

A	sf::Transform	specifies	how	to	translate,	rotate,	scale,	shear,	project,	whatever	things.

In	mathematical	terms,	it	defines	how	to	transform	a	coordinate	system	into	another.

For	example,	 if	you	apply	a	rotation	transform	to	a	sprite,	the	result	will	be	a	rotated	sprite.	And	anything
that	is	transformed	by	this	rotation	transform	will	be	rotated	the	same	way,	according	to	its	initial	position.

Transforms	are	typically	used	for	drawing.	But	they	can	also	be	used	for	any	computation	that	requires	to
transform	points	between	the	local	and	global	coordinate	systems	of	an	entity	(like	collision	detection).

Example:

//	define	a	translation	transform

sf::Transform	translation;

translation.translate(20,	50);

//	define	a	rotation	transform

sf::Transform	rotation;

rotation.rotate(45);

//	combine	them

sf::Transform	transform	=	translation	*	rotation;

//	use	the	result	to	transform	stuff...

sf::Vector2f	point	=	transform.transformPoint(10,	20);

sf::FloatRect	rect	=	transform.transformRect(sf::FloatRect(0,	0,	10,	100));

See	also
sf::Transformable,	sf::RenderStates

Definition	at	line	42	of	file	Transform.hpp.

Constructor	&	Destructor	Documentation

sf::Transform::Transform ()

Default	constructor.

Creates	an	identity	transform	(a	transform	that	does	nothing).

sf::Transform::Transform (float	 a00,
float	 a01,
float	 a02,
float	 a10,
float	 a11,
float	 a12,
float	 a20,
float	 a21,
float	 a22	
)

Construct	a	transform	from	a	3x3	matrix.

Parameters
a00 Element	(0,	0)	of	the	matrix
a01 Element	(0,	1)	of	the	matrix
a02 Element	(0,	2)	of	the	matrix
a10 Element	(1,	0)	of	the	matrix
a11 Element	(1,	1)	of	the	matrix

a12 Element	(1,	2)	of	the	matrix
a20 Element	(2,	0)	of	the	matrix
a21 Element	(2,	1)	of	the	matrix
a22 Element	(2,	2)	of	the	matrix

Member	Function	Documentation

Transform&	sf::Transform::combine (const	Transform	&	 transform

Combine	the	current	transform	with	another	one.

The	result	 is	a	transform	that	 is	equivalent	 to	applying	*this	 followed	by	
equivalent	to	a	matrix	multiplication.

Parameters
transform Transform	to	combine	with	this	transform

Returns
Reference	to	*this

Transform	sf::Transform::getInverse () const

Return	the	inverse	of	the	transform.

If	the	inverse	cannot	be	computed,	an	identity	transform	is	returned.

Returns
A	new	transform	which	is	the	inverse	of	self

const	float*	sf::Transform::getMatrix () const

Return	the	transform	as	a	4x4	matrix.

This	function	returns	a	pointer	to	an	array	of	16	floats	containing	the	transform	elements	as	a	4x4	matrix,
which	is	directly	compatible	with	OpenGL	functions.

sf::Transform	transform	=	...;

glLoadMatrixf(transform.getMatrix());

Returns
Pointer	to	a	4x4	matrix

Transform&	sf::Transform::rotate (float	 angle)

Combine	the	current	transform	with	a	rotation.

This	function	returns	a	reference	to	*this,	so	that	calls	can	be	chained.

sf::Transform	transform;

transform.rotate(90).translate(50,	20);

Parameters
angle Rotation	angle,	in	degrees

Returns
Reference	to	*this

See	also
translate,	scale

Transform&	sf::Transform::rotate (float	 angle,
float	 centerX,

float	 centerY	
)

Combine	the	current	transform	with	a	rotation.

The	center	of	rotation	is	provided	for	convenience	as	a	second	argument,	so	that	you	can	build	rotations
around	 arbitrary	 points	 more	 easily	 (and	 efficiently)	 than	 the	 usual	 translate(-
center).rotate(angle).translate(center).

This	function	returns	a	reference	to	*this,	so	that	calls	can	be	chained.

sf::Transform	transform;

transform.rotate(90,	8,	3).translate(50,	20);

Parameters
angle Rotation	angle,	in	degrees
centerX X	coordinate	of	the	center	of	rotation
centerY Y	coordinate	of	the	center	of	rotation

Returns
Reference	to	*this

See	also
translate,	scale

Transform&	sf::Transform::rotate (float	 angle,
const	Vector2f	&	 center	
)

Combine	the	current	transform	with	a	rotation.

The	center	of	rotation	is	provided	for	convenience	as	a	second	argument,	so	that	you	can	build	rotations
around	 arbitrary	 points	 more	 easily	 (and	 efficiently)	 than	 the	 usual	 translate(-

center).rotate(angle).translate(center).

This	function	returns	a	reference	to	*this,	so	that	calls	can	be	chained.

sf::Transform	transform;

transform.rotate(90,	sf::Vector2f(8,	3)).translate(sf::Vector2f(50,	20));

Parameters
angle Rotation	angle,	in	degrees
centerCenter	of	rotation

Returns
Reference	to	*this

See	also
translate,	scale

Transform&	sf::Transform::scale (float	 scaleX,
float	 scaleY	
)

Combine	the	current	transform	with	a	scaling.

This	function	returns	a	reference	to	*this,	so	that	calls	can	be	chained.

sf::Transform	transform;

transform.scale(2,	1).rotate(45);

Parameters
scaleX Scaling	factor	on	the	X	axis
scaleY Scaling	factor	on	the	Y	axis

Returns

Reference	to	*this

See	also
translate,	rotate

Transform&	sf::Transform::scale (float	 scaleX,
float	 scaleY,
float	 centerX,
float	 centerY	
)

Combine	the	current	transform	with	a	scaling.

The	center	of	scaling	is	provided	for	convenience	as	a	second	argument,	so	that	you	can	build	scaling
around	 arbitrary	 points	 more	 easily	 (and	 efficiently)	 than	 the	 usual	 translate(-
center).scale(factors).translate(center).

This	function	returns	a	reference	to	*this,	so	that	calls	can	be	chained.

sf::Transform	transform;

transform.scale(2,	1,	8,	3).rotate(45);

Parameters
scaleX Scaling	factor	on	X	axis
scaleY Scaling	factor	on	Y	axis
centerX X	coordinate	of	the	center	of	scaling
centerY Y	coordinate	of	the	center	of	scaling

Returns
Reference	to	*this

See	also
translate,	rotate

Transform&	sf::Transform::scale (const	Vector2f	&	 factors)

Combine	the	current	transform	with	a	scaling.

This	function	returns	a	reference	to	*this,	so	that	calls	can	be	chained.

sf::Transform	transform;

transform.scale(sf::Vector2f(2,	1)).rotate(45);

Parameters
factors Scaling	factors

Returns
Reference	to	*this

See	also
translate,	rotate

Transform&	sf::Transform::scale (const	Vector2f	&	 factors,
const	Vector2f	&	 center	
)

Combine	the	current	transform	with	a	scaling.

The	center	of	scaling	is	provided	for	convenience	as	a	second	argument,	so	that	you	can	build	scaling
around	 arbitrary	 points	 more	 easily	 (and	 efficiently)	 than	 the	 usual	 translate(-
center).scale(factors).translate(center).

This	function	returns	a	reference	to	*this,	so	that	calls	can	be	chained.

sf::Transform	transform;

transform.scale(sf::Vector2f(2,	1),	sf::Vector2f(8,	3)).rotate(45);

Parameters
factors Scaling	factors
center Center	of	scaling

Returns
Reference	to	*this

See	also
translate,	rotate

Vector2f	sf::Transform::transformPoint (float	 x,
float	 y	
) const

Transform	a	2D	point.

Parameters
x X	coordinate	of	the	point	to	transform
y Y	coordinate	of	the	point	to	transform

Returns
Transformed	point

Vector2f	sf::Transform::transformPoint (const	Vector2f	&	 point) const

Transform	a	2D	point.

Parameters
point Point	to	transform

Returns
Transformed	point

FloatRect	sf::Transform::transformRect (const	FloatRect	&	 rectangle

Transform	a	rectangle.

Since	SFML	doesn't	provide	support	for	oriented	rectangles,	the	result	of	this	function	is	always	an	axis-
aligned	rectangle.	Which	means	that	 if	 the	transform	contains	a	rotation,	the	bounding	rectangle	of	the
transformed	rectangle	is	returned.

Parameters
rectangleRectangle	to	transform

Returns
Transformed	rectangle

Transform&	sf::Transform::translate (float	 x,
float	 y	
)

Combine	the	current	transform	with	a	translation.

This	function	returns	a	reference	to	*this,	so	that	calls	can	be	chained.

sf::Transform	transform;

transform.translate(100,	200).rotate(45);

Parameters
x Offset	to	apply	on	X	axis
y Offset	to	apply	on	Y	axis

Returns
Reference	to	*this

See	also
rotate,	scale

Transform&	sf::Transform::translate (const	Vector2f	&	 offset)

Combine	the	current	transform	with	a	translation.

This	function	returns	a	reference	to	*this,	so	that	calls	can	be	chained.

sf::Transform	transform;

transform.translate(sf::Vector2f(100,	200)).rotate(45);

Parameters
offset Translation	offset	to	apply

Returns
Reference	to	*this

See	also
rotate,	scale

Friends	And	Related	Function	Documentation

Transform	operator* (const	Transform	&	 left,
const	Transform	&	 right	
)

Overload	of	binary	operator	*	to	combine	two	transforms.

This	call	is	equivalent	to	calling	Transform(left).combine(right).

Parameters
left Left	operand	(the	first	transform)
right Right	operand	(the	second	transform)

Returns
New	combined	transform

Vector2f	operator* (const	Transform	&	 left,
const	Vector2f	&	 right	
)

Overload	of	binary	operator	*	to	transform	a	point.

This	call	is	equivalent	to	calling	left.transformPoint(right).

Parameters
left Left	operand	(the	transform)
right Right	operand	(the	point	to	transform)

Returns
New	transformed	point

Transform	&	operator*= (Transform	&	 left,
const	Transform	&	 right	
)

Overload	of	binary	operator	*=	to	combine	two	transforms.

This	call	is	equivalent	to	calling	left.combine(right).

Parameters
left Left	operand	(the	first	transform)
right Right	operand	(the	second	transform)

Returns
The	combined	transform

Member	Data	Documentation

const	Transform	sf::Transform::Identity

The	identity	transform	(does	nothing)

Definition	at	line	354	of	file	Transform.hpp.

The	documentation	for	this	class	was	generated	from	the	following	file:
Transform.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Member	Functions	|	List	of	all	members

sf::Transformable	Class	Reference
Graphics	module

Decomposed	transform	defined	by	a	position,	a	rotation	and	a	scale.	More...

#include	<Transformable.hpp>

Inheritance	diagram	for	sf::Transformable:

Public	Member	Functions
	 Transformable	()

	 Default	constructor.	More...
	

virtual	 ~Transformable	()
	 Virtual	destructor.	More...
	

void	 setPosition	(float	x,	float	y)
	 set	the	position	of	the	object	More...
	

void	 setPosition	(const	Vector2f	&position)
	 set	the	position	of	the	object	More...
	

void	 setRotation	(float	angle)
	 set	the	orientation	of	the	object	More...
	

void	 setScale	(float	factorX,	float	factorY)
	 set	the	scale	factors	of	the	object	More...
	

void	 setScale	(const	Vector2f	&factors)
	 set	the	scale	factors	of	the	object	More...
	

void	 setOrigin	(float	x,	float	y)
	 set	the	local	origin	of	the	object	More...
	

void	 setOrigin	(const	Vector2f	&origin)
	 set	the	local	origin	of	the	object	More...
	

const	Vector2f	&	 getPosition	()	const
	 get	the	position	of	the	object	More...
	

float	 getRotation	()	const

	 get	the	orientation	of	the	object	More...
	

const	Vector2f	&	 getScale	()	const
	 get	the	current	scale	of	the	object	More...
	

const	Vector2f	&	 getOrigin	()	const
	 get	the	local	origin	of	the	object	More...
	

void	 move	(float	offsetX,	float	offsetY)
	 Move	the	object	by	a	given	offset.	More...
	

void	 move	(const	Vector2f	&offset)
	 Move	the	object	by	a	given	offset.	More...
	

void	 rotate	(float	angle)
	 Rotate	the	object.	More...
	

void	 scale	(float	factorX,	float	factorY)
	 Scale	the	object.	More...
	

void	 scale	(const	Vector2f	&factor)
	 Scale	the	object.	More...
	
const	Transform	&	 getTransform	()	const
	 get	the	combined	transform	of	the	object	More...
	
const	Transform	&	 getInverseTransform	()	const
	 get	the	inverse	of	the	combined	transform	of	the	object	
	

Detailed	Description

Decomposed	transform	defined	by	a	position,	a	rotation	and	a	scale.

This	class	is	provided	for	convenience,	on	top	of	sf::Transform.

sf::Transform,	 as	 a	 low-level	 class,	 offers	 a	 great	 level	 of	 flexibility	 but	 it	 is	 not	 always	 convenient	 to
manage.	Indeed,	one	can	easily	combine	any	kind	of	operation,	such	as	a	translation	followed	by	a	rotation
followed	by	a	scaling,	but	once	the	result	transform	is	built,	 there's	no	way	to	go	backward	and,	let's	say,
change	 only	 the	 rotation	 without	 modifying	 the	 translation	 and	 scaling.	 The	 entire	 transform	 must	 be
recomputed,	which	means	 that	 you	need	 to	 retrieve	 the	 initial	 translation	 and	 scale	 factors	 as	well,	 and
combine	 them	 the	 same	 way	 you	 did	 before	 updating	 the	 rotation.	 This	 is	 a	 tedious	 operation,	 and	 it
requires	to	store	all	the	individual	components	of	the	final	transform.

That's	exactly	what	sf::Transformable	was	written	for:	it	hides	these	variables	and	the	composed	transform
behind	 an	 easy	 to	 use	 interface.	 You	 can	 set	 or	 get	 any	 of	 the	 individual	 components	without	worrying
about	the	others.	It	also	provides	the	composed	transform	(as	a	sf::Transform

In	 addition	 to	 the	 position,	 rotation	 and	 scale,	 sf::Transformable	 provides	 an	 "origin"	 component,	 which
represents	the	local	origin	of	the	three	other	components.	Let's	take	an	example	with	a	10x10	pixels	sprite.
By	default,	the	sprite	is	positioned/rotated/scaled	relatively	to	its	top-left	corner,	because	it	is	the	local	point
(0,	0).	But	if	we	change	the	origin	to	be	(5,	5),	the	sprite	will	be	positioned/rotated/scaled	around	its	center
instead.	And	if	we	set	the	origin	to	(10,	10),	it	will	be	transformed	around	its	bottom-right	corner.

To	 keep	 the	 sf::Transformable	 class	 simple,	 there's	 only	 one	 origin	 for	 all	 the	 components.	 You	 cannot
position	the	sprite	relatively	to	its	top-left	corner	while	rotating	it	around	its	center,	for	example.	To	do	such
things,	use	sf::Transform	directly.

sf::Transformable	can	be	used	as	a	base	class.	It	is	often	combined	with	sf::Drawable
sprites,	texts	and	shapes	do.

class	MyEntity	:	public	sf::Transformable,	public	sf::Drawable

{

	virtual	void	draw(sf::RenderTarget&	target,	sf::RenderStates	states)	const

	{

								states.transform	*=	getTransform();

								target.draw(...,	states);

				}

};

MyEntity	entity;

entity.setPosition(10,	20);

entity.setRotation(45);

window.draw(entity);

It	can	also	be	used	as	a	member,	 if	you	don't	want	to	use	its	API	directly	(because	you	don't	need	all	 its
functions,	or	you	have	different	naming	conventions	for	example).

class	MyEntity

{

public:

	void	SetPosition(const	MyVector&	v)

				{

								myTransform.setPosition(v.x(),	v.y());

				}

	void	Draw(sf::RenderTarget&	target)	const

	{

								target.draw(...,	myTransform.getTransform());

				}

private:

	sf::Transformable	myTransform;

};

A	note	on	coordinates	and	undistorted	rendering:	
By	 default,	 SFML	 (or	more	 exactly,	OpenGL)	may	 interpolate	 drawable	 objects	 such	 as	 sprites	 or	 texts
when	rendering.	While	this	allows	transitions	 like	slow	movements	or	rotations	to	appear	smoothly,	 it	can
lead	 to	 unwanted	 results	 in	 some	 cases,	 for	 example	 blurred	 or	 distorted	 objects.	 In	 order	 to	 render	 a
sf::Drawable	object	pixel-perfectly,	make	sure	the	involved	coordinates	allow	a	1:1	mapping	of	pixels	in	the
window	to	texels	(pixels	in	the	texture).	More	specifically,	this	means:

The	object's	position,	origin	and	scale	have	no	fractional	part

The	object's	and	the	view's	rotation	are	a	multiple	of	90	degrees

The	view's	center	and	size	have	no	fractional	part

See	also
sf::Transform

Definition	at	line	41	of	file	Transformable.hpp.

Constructor	&	Destructor	Documentation

sf::Transformable::Transformable ()

Default	constructor.

virtual	sf::Transformable::~Transformable ()

Virtual	destructor.

Member	Function	Documentation

const	Transform&	sf::Transformable::getInverseTransform () const

get	the	inverse	of	the	combined	transform	of	the	object

Returns
Inverse	of	the	combined	transformations	applied	to	the	object

See	also
getTransform

const	Vector2f&	sf::Transformable::getOrigin () const

get	the	local	origin	of	the	object

Returns
Current	origin

See	also
setOrigin

const	Vector2f&	sf::Transformable::getPosition () const

get	the	position	of	the	object

Returns
Current	position

See	also
setPosition

float	sf::Transformable::getRotation () const

get	the	orientation	of	the	object

The	rotation	is	always	in	the	range	[0,	360].

Returns
Current	rotation,	in	degrees

See	also
setRotation

const	Vector2f&	sf::Transformable::getScale () const

get	the	current	scale	of	the	object

Returns
Current	scale	factors

See	also
setScale

const	Transform&	sf::Transformable::getTransform () const

get	the	combined	transform	of	the	object

Returns
Transform	combining	the	position/rotation/scale/origin	of	the	object

See	also
getInverseTransform

void	sf::Transformable::move (float	 offsetX,
float	 offsetY	
)

Move	the	object	by	a	given	offset.

This	function	adds	to	the	current	position	of	the	object,	unlike	setPosition	which	overwrites	it.	Thus,	it	is
equivalent	to	the	following	code:

sf::Vector2f	pos	=	object.getPosition();

object.setPosition(pos.x	+	offsetX,	pos.y	+	offsetY);

Parameters
offsetX X	offset
offsetY Y	offset

See	also
setPosition

void	sf::Transformable::move (const	Vector2f	&	 offset)

Move	the	object	by	a	given	offset.

This	function	adds	to	the	current	position	of	the	object,	unlike	setPosition	which	overwrites	it.	Thus,	it	is
equivalent	to	the	following	code:

object.setPosition(object.getPosition()	+	offset);

Parameters
offsetOffset

See	also
setPosition

void	sf::Transformable::rotate (float	 angle)

Rotate	the	object.

This	function	adds	to	the	current	rotation	of	the	object,	unlike	setRotation	which	overwrites	it.	Thus,	it	is
equivalent	to	the	following	code:

object.setRotation(object.getRotation()	+	angle);

Parameters
angle Angle	of	rotation,	in	degrees

void	sf::Transformable::scale (float	 factorX,
float	 factorY	
)

Scale	the	object.

This	 function	multiplies	 the	 current	 scale	 of	 the	 object,	 unlike	 setScale	which	 overwrites	 it.	 Thus,	 it	 is
equivalent	to	the	following	code:

sf::Vector2f	scale	=	object.getScale();

object.setScale(scale.x	*	factorX,	scale.y	*	factorY);

Parameters
factorXHorizontal	scale	factor
factorY Vertical	scale	factor

See	also
setScale

void	sf::Transformable::scale (const	Vector2f	&	 factor)

Scale	the	object.

This	 function	multiplies	 the	 current	 scale	 of	 the	 object,	 unlike	 setScale	which	 overwrites	 it.	 Thus,	 it	 is
equivalent	to	the	following	code:

sf::Vector2f	scale	=	object.getScale();

object.setScale(scale.x	*	factor.x,	scale.y	*	factor.y);

Parameters
factor Scale	factors

See	also
setScale

void	sf::Transformable::setOrigin (float	 x,
float	 y	
)

set	the	local	origin	of	the	object

The	 origin	 of	 an	 object	 defines	 the	 center	 point	 for	 all	 transformations	 (position,	 scale,	 rotation).	 The
coordinates	 of	 this	 point	 must	 be	 relative	 to	 the	 top-left	 corner	 of	 the	 object,	 and	 ignore	 all
transformations	(position,	scale,	rotation).	The	default	origin	of	a	transformable	object	is	(0,	0).

Parameters
x X	coordinate	of	the	new	origin
y Y	coordinate	of	the	new	origin

See	also
getOrigin

void	sf::Transformable::setOrigin (const	Vector2f	&	 origin)

set	the	local	origin	of	the	object

The	 origin	 of	 an	 object	 defines	 the	 center	 point	 for	 all	 transformations	 (position,	 scale,	 rotation).	 The
coordinates	 of	 this	 point	 must	 be	 relative	 to	 the	 top-left	 corner	 of	 the	 object,	 and	 ignore	 all
transformations	(position,	scale,	rotation).	The	default	origin	of	a	transformable	object	is	(0,	0).

Parameters
origin New	origin

See	also
getOrigin

void	sf::Transformable::setPosition (float	 x,
float	 y	
)

set	the	position	of	the	object

This	function	completely	overwrites	the	previous	position.	See	the	move	function	to	apply	an	offset	based
on	the	previous	position	instead.	The	default	position	of	a	transformable	object	is	(0,	0).

Parameters
x X	coordinate	of	the	new	position
y Y	coordinate	of	the	new	position

See	also
move,	getPosition

void	sf::Transformable::setPosition (const	Vector2f	&	 position)

set	the	position	of	the	object

This	function	completely	overwrites	the	previous	position.	See	the	move	function	to	apply	an	offset	based
on	the	previous	position	instead.	The	default	position	of	a	transformable	object	is	(0,	0).

Parameters
positionNew	position

See	also
move,	getPosition

void	sf::Transformable::setRotation (float	 angle)

set	the	orientation	of	the	object

This	function	completely	overwrites	the	previous	rotation.	See	the	rotate	function	to	add	an	angle	based

on	the	previous	rotation	instead.	The	default	rotation	of	a	transformable	object	is	0.

Parameters
angle New	rotation,	in	degrees

See	also
rotate,	getRotation

void	sf::Transformable::setScale (float	 factorX,
float	 factorY	
)

set	the	scale	factors	of	the	object

This	function	completely	overwrites	the	previous	scale.	See	the	scale	function	to	add	a	factor	based	on
the	previous	scale	instead.	The	default	scale	of	a	transformable	object	is	(1,	1).

Parameters
factorXNew	horizontal	scale	factor
factorYNew	vertical	scale	factor

See	also
scale,	getScale

void	sf::Transformable::setScale (const	Vector2f	&	 factors)

set	the	scale	factors	of	the	object

This	function	completely	overwrites	the	previous	scale.	See	the	scale	function	to	add	a	factor	based	on
the	previous	scale	instead.	The	default	scale	of	a	transformable	object	is	(1,	1).

Parameters
factors New	scale	factors

See	also
scale,	getScale

The	documentation	for	this	class	was	generated	from	the	following	file:
Transformable.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Member	Functions	|	Public	Attributes	|	List	of	all	members

sf::Vertex	Class	Reference
Graphics	module

Define	a	point	with	color	and	texture	coordinates.	More...

#include	<Vertex.hpp>

Public	Member	Functions
	 Vertex	()
	 Default	constructor.	More...
	
	 Vertex	(const	Vector2f	&thePosition)
	 Construct	the	vertex	from	its	position.	More...
	
	 Vertex	(const	Vector2f	&thePosition,	const	Color	&theColor)
	 Construct	the	vertex	from	its	position	and	color.	More...
	
	 Vertex	(const	Vector2f	&thePosition,	const	Vector2f	&theTexCoords)
	 Construct	the	vertex	from	its	position	and	texture	coordinates.	More...
	
	 Vertex	(const	Vector2f	&thePosition,	const	Color	&theColor,	const	Vector2f
	 Construct	the	vertex	from	its	position,	color	and	texture	coordinates.	More...
	

Public	Attributes
Vector2f	 position
	 2D	position	of	the	vertex	More...
	

Color	 color
	 Color	of	the	vertex.	More...
	
Vector2f	 texCoords
	 Coordinates	of	the	texture's	pixel	to	map	to	the	vertex.	More...
	

Detailed	Description

Define	a	point	with	color	and	texture	coordinates.

A	vertex	is	an	improved	point.

It	has	a	position	and	other	extra	attributes	that	will	be	used	for	drawing:	in	SFML,	vertices	also	have	a	color
and	a	pair	of	texture	coordinates.

The	vertex	is	the	building	block	of	drawing.	Everything	which	is	visible	on	screen	is	made	of	vertices.	They
are	grouped	as	2D	primitives	(triangles,	quads,	...),	and	these	primitives	are	grouped	to	create	even	more
complex	2D	entities	such	as	sprites,	texts,	etc.

If	you	use	the	graphical	entities	of	SFML	(sprite,	text,	shape)	you	won't	have	to	deal	with	vertices	directly.
But	 if	you	want	to	define	your	own	2D	entities,	such	as	tiled	maps	or	particle	systems,	using	vertices	will
allow	you	to	get	maximum	performances.

Example:

//	define	a	100x100	square,	red,	with	a	10x10	texture	mapped	on	it

sf::Vertex	vertices[]	=

{

	sf::Vertex(sf::Vector2f(0,			0),	sf::Color::Red,	sf::Vector2f(0,		0)),

	sf::Vertex(sf::Vector2f(0,	100),	sf::Color::Red,	sf::Vector2f(0,	10)),

	sf::Vertex(sf::Vector2f(100,	100),	sf::Color::Red,	sf::Vector2f(10,	10)),

	sf::Vertex(sf::Vector2f(100,			0),	sf::Color::Red,	sf::Vector2f(10,		0))

};

//	draw	it

window.draw(vertices,	4,	sf::Quads);

Note:	 although	 texture	 coordinates	 are	 supposed	 to	 be	 an	 integer	 amount	 of	 pixels,	 their	 type	 is	 float
because	of	some	buggy	graphics	drivers	that	are	not	able	to	process	integer	coordinates	correctly.

See	also

sf::VertexArray

Definition	at	line	42	of	file	Vertex.hpp.

Constructor	&	Destructor	Documentation

sf::Vertex::Vertex ()

Default	constructor.

sf::Vertex::Vertex (const	Vector2f	&	 thePosition)

Construct	the	vertex	from	its	position.

The	vertex	color	is	white	and	texture	coordinates	are	(0,	0).

Parameters
thePosition Vertex	position

sf::Vertex::Vertex (const	Vector2f	&	 thePosition,
const	Color	&	 theColor	
)

Construct	the	vertex	from	its	position	and	color.

The	texture	coordinates	are	(0,	0).

Parameters
thePosition Vertex	position
theColor Vertex	color

sf::Vertex::Vertex (const	Vector2f	&	 thePosition,
const	Vector2f	&	 theTexCoords	
)

Construct	the	vertex	from	its	position	and	texture	coordinates.

The	vertex	color	is	white.

Parameters
thePosition Vertex	position
theTexCoords Vertex	texture	coordinates

sf::Vertex::Vertex (const	Vector2f	&	 thePosition,
const	Color	&	 theColor,
const	Vector2f	&	 theTexCoords	
)

Construct	the	vertex	from	its	position,	color	and	texture	coordinates.

Parameters
thePosition Vertex	position
theColor Vertex	color
theTexCoords Vertex	texture	coordinates

Member	Data	Documentation

Color	sf::Vertex::color

Color	of	the	vertex.

Definition	at	line	98	of	file	Vertex.hpp.

Vector2f	sf::Vertex::position

2D	position	of	the	vertex

Definition	at	line	97	of	file	Vertex.hpp.

Vector2f	sf::Vertex::texCoords

Coordinates	of	the	texture's	pixel	to	map	to	the	vertex.

Definition	at	line	99	of	file	Vertex.hpp.

The	documentation	for	this	class	was	generated	from	the	following	file:
Vertex.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Member	Functions	|	List	of	all	members

sf::VertexArray	Class	Reference
Graphics	module

Define	a	set	of	one	or	more	2D	primitives.	More...

#include	<VertexArray.hpp>

Inheritance	diagram	for	sf::VertexArray:

Public	Member	Functions
	 VertexArray	()

	 Default	constructor.	More...
	

	 VertexArray	(PrimitiveType	type,	std::size_t	vertexCount=0)
	 Construct	the	vertex	array	with	a	type	and	an	initial	number	of	vertices.	
	

std::size_t	 getVertexCount	()	const
	 Return	the	vertex	count.	More...
	

Vertex	&	 operator[]	(std::size_t	index)
	 Get	a	read-write	access	to	a	vertex	by	its	index.	More...
	
const	Vertex	&	 operator[]	(std::size_t	index)	const
	 Get	a	read-only	access	to	a	vertex	by	its	index.	More...
	

void	 clear	()
	 Clear	the	vertex	array.	More...
	

void	 resize	(std::size_t	vertexCount)
	 Resize	the	vertex	array.	More...
	

void	 append	(const	Vertex	&vertex)
	 Add	a	vertex	to	the	array.	More...
	

void	 setPrimitiveType	(PrimitiveType	type)
	 Set	the	type	of	primitives	to	draw.	More...
	
PrimitiveType	 getPrimitiveType	()	const
	 Get	the	type	of	primitives	drawn	by	the	vertex	array.	More...
	

FloatRect	 getBounds	()	const

	 Compute	the	bounding	rectangle	of	the	vertex	array.	More...
	

Detailed	Description

Define	a	set	of	one	or	more	2D	primitives.

sf::VertexArray	is	a	very	simple	wrapper	around	a	dynamic	array	of	vertices	and	a	primitives	type.

It	inherits	sf::Drawable,	but	unlike	other	drawables	it	is	not	transformable.

Example:

sf::VertexArray	lines(sf::LineStrip,	4);

lines[0].position	=	sf::Vector2f(10,	0);

lines[1].position	=	sf::Vector2f(20,	0);

lines[2].position	=	sf::Vector2f(30,	5);

lines[3].position	=	sf::Vector2f(40,	2);

window.draw(lines);

See	also
sf::Vertex

Definition	at	line	45	of	file	VertexArray.hpp.

Constructor	&	Destructor	Documentation

sf::VertexArray::VertexArray ()

Default	constructor.

Creates	an	empty	vertex	array.

sf::VertexArray::VertexArray (PrimitiveType	 type,
std::size_t	 vertexCount	=	0	
)

Construct	the	vertex	array	with	a	type	and	an	initial	number	of	vertices.

Parameters
type Type	of	primitives
vertexCount Initial	number	of	vertices	in	the	array

Member	Function	Documentation

void	sf::VertexArray::append (const	Vertex	&	 vertex)

Add	a	vertex	to	the	array.

Parameters
vertex Vertex	to	add

void	sf::VertexArray::clear ()

Clear	the	vertex	array.

This	function	removes	all	the	vertices	from	the	array.	It	doesn't	deallocate	the	corresponding	memory,	so
that	adding	new	vertices	after	clearing	doesn't	involve	reallocating	all	the	memory.

FloatRect	sf::VertexArray::getBounds () const

Compute	the	bounding	rectangle	of	the	vertex	array.

This	function	returns	the	minimal	axis-aligned	rectangle	that	contains	all	the	vertices	of	the	array.

Returns
Bounding	rectangle	of	the	vertex	array

PrimitiveType	sf::VertexArray::getPrimitiveType () const

Get	the	type	of	primitives	drawn	by	the	vertex	array.

Returns
Primitive	type

std::size_t	sf::VertexArray::getVertexCount () const

Return	the	vertex	count.

Returns
Number	of	vertices	in	the	array

Vertex&	sf::VertexArray::operator[] (std::size_t	 index)

Get	a	read-write	access	to	a	vertex	by	its	index.

This	 function	 doesn't	 check	 index,	 it	 must	 be	 in	 range	 [0,	 getVertexCount()
undefined	otherwise.

Parameters
index Index	of	the	vertex	to	get

Returns
Reference	to	the	index-th	vertex

See	also
getVertexCount

const	Vertex&	sf::VertexArray::operator[] (std::size_t	 index) const

Get	a	read-only	access	to	a	vertex	by	its	index.

This	 function	 doesn't	 check	 index,	 it	 must	 be	 in	 range	 [0,	 getVertexCount()
undefined	otherwise.

Parameters
index Index	of	the	vertex	to	get

Returns
Const	reference	to	the	index-th	vertex

See	also
getVertexCount

void	sf::VertexArray::resize (std::size_t	 vertexCount)

Resize	the	vertex	array.

If	 vertexCount	 is	 greater	 than	 the	 current	 size,	 the	 previous	 vertices	 are	 kept	 and	 new	 (default-
constructed)	 vertices	 are	 added.	 If	 vertexCount	 is	 less	 than	 the	 current	 size,	 existing	 vertices	 are
removed	from	the	array.

Parameters
vertexCount New	size	of	the	array	(number	of	vertices)

void	sf::VertexArray::setPrimitiveType (PrimitiveType	 type)

Set	the	type	of	primitives	to	draw.

This	function	defines	how	the	vertices	must	be	interpreted	when	it's	time	to	draw	them:

As	points

As	lines

As	triangles

As	quads	The	default	primitive	type	is	sf::Points.

Parameters
type Type	of	primitive

The	documentation	for	this	class	was	generated	from	the	following	file:
VertexArray.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Member	Functions	|	List	of	all	members

sf::View	Class	Reference
Graphics	module

2D	camera	that	defines	what	region	is	shown	on	screen	More...

#include	<View.hpp>

Public	Member	Functions
	 View	()

	 Default	constructor.	More...
	

	 View	(const	FloatRect	&rectangle)
	 Construct	the	view	from	a	rectangle.	More...
	

	 View	(const	Vector2f	¢er,	const	Vector2f	&size)
	 Construct	the	view	from	its	center	and	size.	More...
	

void	 setCenter	(float	x,	float	y)
	 Set	the	center	of	the	view.	More...
	

void	 setCenter	(const	Vector2f	¢er)
	 Set	the	center	of	the	view.	More...
	

void	 setSize	(float	width,	float	height)
	 Set	the	size	of	the	view.	More...
	

void	 setSize	(const	Vector2f	&size)
	 Set	the	size	of	the	view.	More...
	

void	 setRotation	(float	angle)
	 Set	the	orientation	of	the	view.	More...
	

void	 setViewport	(const	FloatRect	&viewport)
	 Set	the	target	viewport.	More...
	

void	 reset	(const	FloatRect	&rectangle)
	 Reset	the	view	to	the	given	rectangle.	More...
	

const	Vector2f	&	 getCenter	()	const

	 Get	the	center	of	the	view.	More...
	

const	Vector2f	&	 getSize	()	const
	 Get	the	size	of	the	view.	More...
	

float	 getRotation	()	const
	 Get	the	current	orientation	of	the	view.	More...
	
const	FloatRect	&	 getViewport	()	const
	 Get	the	target	viewport	rectangle	of	the	view.	More...
	

void	 move	(float	offsetX,	float	offsetY)
	 Move	the	view	relatively	to	its	current	position.	More...
	

void	 move	(const	Vector2f	&offset)
	 Move	the	view	relatively	to	its	current	position.	More...
	

void	 rotate	(float	angle)
	 Rotate	the	view	relatively	to	its	current	orientation.	More...
	

void	 zoom	(float	factor)
	 Resize	the	view	rectangle	relatively	to	its	current	size.	
	
const	Transform	&	 getTransform	()	const
	 Get	the	projection	transform	of	the	view.	More...
	
const	Transform	&	 getInverseTransform	()	const
	 Get	the	inverse	projection	transform	of	the	view.	More...
	

Detailed	Description

2D	camera	that	defines	what	region	is	shown	on	screen

sf::View	defines	a	camera	in	the	2D	scene.

This	is	a	very	powerful	concept:	you	can	scroll,	rotate	or	zoom	the	entire	scene	without	altering	the	way	that
your	drawable	objects	are	drawn.

A	view	is	composed	of	a	source	rectangle,	which	defines	what	part	of	the	2D	scene	is	shown,	and	a	target
viewport,	which	defines	where	the	contents	of	the	source	rectangle	will	be	displayed	on	the	render	target
(window	or	texture).

The	 viewport	 allows	 to	map	 the	 scene	 to	 a	 custom	part	 of	 the	 render	 target,	 and	 can	be	used	 for	 split-
screen	or	for	displaying	a	minimap,	for	example.	If	the	source	rectangle	doesn't	have	the	same	size	as	the
viewport,	its	contents	will	be	stretched	to	fit	in.

To	apply	a	view,	you	have	to	assign	it	to	the	render	target.	Then,	objects	drawn	in	this	render	target	will	be
affected	by	the	view	until	you	use	another	view.

Usage	example:

sf::RenderWindow	window;

sf::View	view;

//	Initialize	the	view	to	a	rectangle	located	at	(100,	100)	and	with	a	size	of	400x200

view.reset(sf::FloatRect(100,	100,	400,	200));

//	Rotate	it	by	45	degrees

view.rotate(45);

//	Set	its	target	viewport	to	be	half	of	the	window

view.setViewport(sf::FloatRect(0.f,	0.f,	0.5f,	1.f));

//	Apply	it

window.setView(view);

//	Render	stuff

window.draw(someSprite);

//	Set	the	default	view	back

window.setView(window.getDefaultView());

//	Render	stuff	not	affected	by	the	view

window.draw(someText);

See	also	the	note	on	coordinates	and	undistorted	rendering	in	sf::Transformable

See	also
sf::RenderWindow,	sf::RenderTexture

Definition	at	line	43	of	file	View.hpp.

Constructor	&	Destructor	Documentation

sf::View::View ()

Default	constructor.

This	constructor	creates	a	default	view	of	(0,	0,	1000,	1000)

sf::View::View (const	FloatRect	&	 rectangle)

Construct	the	view	from	a	rectangle.

Parameters
rectangleRectangle	defining	the	zone	to	display

sf::View::View (const	Vector2f	&	 center,
const	Vector2f	&	 size	
)

Construct	the	view	from	its	center	and	size.

Parameters
centerCenter	of	the	zone	to	display
size Size	of	zone	to	display

Member	Function	Documentation

const	Vector2f&	sf::View::getCenter () const

Get	the	center	of	the	view.

Returns
Center	of	the	view

See	also
getSize,	setCenter

const	Transform&	sf::View::getInverseTransform () const

Get	the	inverse	projection	transform	of	the	view.

This	function	is	meant	for	internal	use	only.

Returns
Inverse	of	the	projection	transform	defining	the	view

See	also
getTransform

float	sf::View::getRotation () const

Get	the	current	orientation	of	the	view.

Returns
Rotation	angle	of	the	view,	in	degrees

See	also
setRotation

const	Vector2f&	sf::View::getSize () const

Get	the	size	of	the	view.

Returns
Size	of	the	view

See	also
getCenter,	setSize

const	Transform&	sf::View::getTransform () const

Get	the	projection	transform	of	the	view.

This	function	is	meant	for	internal	use	only.

Returns
Projection	transform	defining	the	view

See	also
getInverseTransform

const	FloatRect&	sf::View::getViewport () const

Get	the	target	viewport	rectangle	of	the	view.

Returns
Viewport	rectangle,	expressed	as	a	factor	of	the	target	size

See	also
setViewport

void	sf::View::move (float	 offsetX,
float	 offsetY	
)

Move	the	view	relatively	to	its	current	position.

Parameters
offsetX X	coordinate	of	the	move	offset
offsetY Y	coordinate	of	the	move	offset

See	also
setCenter,	rotate,	zoom

void	sf::View::move (const	Vector2f	&	 offset)

Move	the	view	relatively	to	its	current	position.

Parameters
offsetMove	offset

See	also
setCenter,	rotate,	zoom

void	sf::View::reset (const	FloatRect	&	 rectangle)

Reset	the	view	to	the	given	rectangle.

Note	that	this	function	resets	the	rotation	angle	to	0.

Parameters
rectangleRectangle	defining	the	zone	to	display

See	also
setCenter,	setSize,	setRotation

void	sf::View::rotate (float	 angle)

Rotate	the	view	relatively	to	its	current	orientation.

Parameters
angle Angle	to	rotate,	in	degrees

See	also
setRotation,	move,	zoom

void	sf::View::setCenter (float	 x,
float	 y	
)

Set	the	center	of	the	view.

Parameters
x X	coordinate	of	the	new	center
y Y	coordinate	of	the	new	center

See	also
setSize,	getCenter

void	sf::View::setCenter (const	Vector2f	&	 center)

Set	the	center	of	the	view.

Parameters
centerNew	center

See	also
setSize,	getCenter

void	sf::View::setRotation (float	 angle)

Set	the	orientation	of	the	view.

The	default	rotation	of	a	view	is	0	degree.

Parameters
angle New	angle,	in	degrees

See	also
getRotation

void	sf::View::setSize (float	 width,
float	 height	
)

Set	the	size	of	the	view.

Parameters
width New	width	of	the	view
heightNew	height	of	the	view

See	also
setCenter,	getCenter

void	sf::View::setSize (const	Vector2f	&	 size)

Set	the	size	of	the	view.

Parameters
sizeNew	size

See	also
setCenter,	getCenter

void	sf::View::setViewport (const	FloatRect	&	 viewport)

Set	the	target	viewport.

The	viewport	 is	 the	rectangle	 into	which	 the	contents	of	 the	view	are	displayed,	expressed	as	a	 factor
(between	0	and	1)	of	 the	size	of	 the	 RenderTarget	 to	which	 the	view	 is	applied.	For	example,	a	view

which	takes	the	left	side	of	the	target	would	be	defined	with	View.setViewport
By	default,	a	view	has	a	viewport	which	covers	the	entire	target.

Parameters
viewport New	viewport	rectangle

See	also
getViewport

void	sf::View::zoom (float	 factor)

Resize	the	view	rectangle	relatively	to	its	current	size.

Resizing	 the	 view	 simulates	 a	 zoom,	 as	 the	 zone	 displayed	 on	 screen	 grows	 or	 shrinks.	
multiplier:

1	keeps	the	size	unchanged

>	1	makes	the	view	bigger	(objects	appear	smaller)

<	1	makes	the	view	smaller	(objects	appear	bigger)

Parameters
factor Zoom	factor	to	apply

See	also
setSize,	move,	rotate

The	documentation	for	this	class	was	generated	from	the	following	file:
View.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

SFML	2.4.2

Classes

Network	module

Socket-based	communication,	utilities	and	higher-level	network	protocols	(HTTP,	FTP).	

Classes
class		 sf::Ftp
	 A	FTP	client.	More...
	
class		 sf::Http
	 A	HTTP	client.	More...
	
class		 sf::IpAddress
	 Encapsulate	an	IPv4	network	address.	More...
	
class		 sf::Packet
	 Utility	class	to	build	blocks	of	data	to	transfer	over	the	network.	More...
	
class		 sf::Socket
	 Base	class	for	all	the	socket	types.	More...
	
class		 sf::SocketSelector
	 Multiplexer	that	allows	to	read	from	multiple	sockets.	More...
	
class		 sf::TcpListener
	 Socket	that	listens	to	new	TCP	connections.	More...
	
class		 sf::TcpSocket
	 Specialized	socket	using	the	TCP	protocol.	More...
	
class		 sf::UdpSocket
	 Specialized	socket	using	the	UDP	protocol.	More...
	

Detailed	Description

Socket-based	communication,	utilities	and	higher-level	network	protocols	(HTTP,	FTP).

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Classes	|	Public	Types	|	Public	Member	Functions	|	Friends	|	List	of	all	members

sf::Ftp	Class	Reference
Network	module

A	FTP	client.	More...

#include	<Ftp.hpp>

Inheritance	diagram	for	sf::Ftp:

Classes
class		 DirectoryResponse
	 Specialization	of	FTP	response	returning	a	directory.	More...
	
class		 ListingResponse
	 Specialization	of	FTP	response	returning	a	filename	listing.	More...
	
class		 Response
	 Define	a	FTP	response.	More...
	

Public	Types
enum		 TransferMode	{	Binary,	Ascii,	Ebcdic	}
	 Enumeration	of	transfer	modes.	More...
	

Public	Member	Functions
	 ~Ftp	()

	 Destructor.	More...
	

Response	 connect	(const	IpAddress	&server,	unsigned	short	port=21,	timeout=Time::Zero)
	 Connect	to	the	specified	FTP	server.	More...
	

Response	 disconnect	()
	 Close	the	connection	with	the	server.	More...
	

Response	 login	()
	 Log	in	using	an	anonymous	account.	More...
	

Response	 login	(const	std::string	&name,	const	std::string	&password)
	 Log	in	using	a	username	and	a	password.	More...
	

Response	 keepAlive	()
	 Send	a	null	command	to	keep	the	connection	alive.	
	
DirectoryResponse	 getWorkingDirectory	()
	 Get	the	current	working	directory.	More...
	

ListingResponse	 getDirectoryListing	(const	std::string	&directory="")
	 Get	the	contents	of	the	given	directory.	More...
	

Response	 changeDirectory	(const	std::string	&directory)
	 Change	the	current	working	directory.	More...
	

Response	 parentDirectory	()
	 Go	to	the	parent	directory	of	the	current	one.	More...
	

Response	 createDirectory	(const	std::string	&name)
	 Create	a	new	directory.	More...
	

Response	 deleteDirectory	(const	std::string	&name)
	 Remove	an	existing	directory.	More...
	

Response	 renameFile	(const	std::string	&file,	const	std::string	&newName)
	 Rename	an	existing	file.	More...
	

Response	 deleteFile	(const	std::string	&name)
	 Remove	an	existing	file.	More...
	

Response	 download	(const	std::string	&remoteFile,	const	std::string	&localPath,	mode=Binary)
	 Download	a	file	from	the	server.	More...
	

Response	 upload	(const	std::string	&localFile,	const	std::string	&remotePath,	mode=Binary)
	 Upload	a	file	to	the	server.	More...
	

Response	 sendCommand	(const	std::string	&command,	const	std::string	¶meter="")
	 Send	a	command	to	the	FTP	server.	More...
	

Friends
class	 DataChannel
	

Detailed	Description

A	FTP	client.

sf::Ftp	is	a	very	simple	FTP	client	that	allows	you	to	communicate	with	a	FTP	server.

The	 FTP	 protocol	 allows	 you	 to	 manipulate	 a	 remote	 file	 system	 (list	 files,	 upload,	 download,	 create,
remove,	...).

Using	the	FTP	client	consists	of	4	parts:

Connecting	to	the	FTP	server

Logging	in	(either	as	a	registered	user	or	anonymously)

Sending	commands	to	the	server

Disconnecting	(this	part	can	be	done	implicitly	by	the	destructor)

Every	command	returns	a	FTP	response,	which	contains	the	status	code	as	well	as	a	message	from	the
server.	Some	commands	 such	as	 getWorkingDirectory()	 and	 getDirectoryListing()
and	use	a	class	derived	from	sf::Ftp::Response	to	provide	this	data.	The	most	often	used	commands	are
directly	 provided	 as	 member	 functions,	 but	 it	 is	 also	 possible	 to	 use	 specific	 commands	 with	 the
sendCommand()	function.

Note	that	response	statuses	>=	1000	are	not	part	of	the	FTP	standard,	they	are	generated	by	SFML	when
an	internal	error	occurs.

All	 commands,	 especially	 upload	 and	 download,	may	 take	 some	 time	 to	 complete.	 This	 is	 important	 to
know	if	you	don't	want	to	block	your	application	while	the	server	is	completing	the	task.

Usage	example:

//	Create	a	new	FTP	client

sf::Ftp	ftp;

//	Connect	to	the	server

sf::Ftp::Response	response	=	ftp.connect("ftp://ftp.myserver.com");

if	(response.isOk())

				std::cout	<<	"Connected"	<<	std::endl;

//	Log	in

response	=	ftp.login("laurent",	"dF6Zm89D");

if	(response.isOk())

				std::cout	<<	"Logged	in"	<<	std::endl;

//	Print	the	working	directory

sf::Ftp::DirectoryResponse	directory	=	ftp.getWorkingDirectory();

if	(directory.isOk())

				std::cout	<<	"Working	directory:	"	<<	directory.getDirectory()	<<	std::endl;

//	Create	a	new	directory

response	=	ftp.createDirectory("files");

if	(response.isOk())

				std::cout	<<	"Created	new	directory"	<<	std::endl;

//	Upload	a	file	to	this	new	directory

response	=	ftp.upload("local-path/file.txt",	"files",	sf::Ftp::Ascii);

if	(response.isOk())

				std::cout	<<	"File	uploaded"	<<	std::endl;

//	Send	specific	commands	(here:	FEAT	to	list	supported	FTP	features)

response	=	ftp.sendCommand("FEAT");

if	(response.isOk())

				std::cout	<<	"Feature	list:\n"	<<	response.getMessage()	<<	std::endl;

//	Disconnect	from	the	server	(optional)

ftp.disconnect();

Definition	at	line	47	of	file	Ftp.hpp.

Member	Enumeration	Documentation

enum	sf::Ftp::TransferMode

Enumeration	of	transfer	modes.

Enumerator

Binary	
Binary	mode	(file	is	transfered	as	a	sequence	of	bytes)

Ascii	
Text	mode	using	ASCII	encoding.

Ebcdic	
Text	mode	using	EBCDIC	encoding.

Definition	at	line	55	of	file	Ftp.hpp.

Constructor	&	Destructor	Documentation

sf::Ftp::~Ftp ()

Destructor.

Automatically	closes	the	connection	with	the	server	if	it	is	still	opened.

Member	Function	Documentation

Response	sf::Ftp::changeDirectory (const	std::string	&	 directory)

Change	the	current	working	directory.

The	new	directory	must	be	relative	to	the	current	one.

Parameters
directory New	working	directory

Returns
Server	response	to	the	request

See	also
getWorkingDirectory,	getDirectoryListing,	parentDirectory

Response	sf::Ftp::connect (const	IpAddress	&	 server,
unsigned	short	 port	=	21,
Time	 timeout	=	Time::Zero

)

Connect	to	the	specified	FTP	server.

The	port	has	a	default	value	of	21,	which	is	the	standard	port	used	by	the	FTP	protocol.	You	shouldn't
use	a	different	value,	unless	you	really	know	what	you	do.	This	function	tries	to	connect	to	the	server	so
it	 may	 take	 a	 while	 to	 complete,	 especially	 if	 the	 server	 is	 not	 reachable.	 To	 avoid	 blocking	 your
application	 for	 too	 long,	you	can	use	a	 timeout.	The	default	value,	 Time::Zero

timeout	will	be	used	(which	is	usually	pretty	long).

Parameters
server Name	or	address	of	the	FTP	server	to	connect	to
port Port	used	for	the	connection
timeoutMaximum	time	to	wait

Returns
Server	response	to	the	request

See	also
disconnect

Response	sf::Ftp::createDirectory (const	std::string	&	 name)

Create	a	new	directory.

The	new	directory	is	created	as	a	child	of	the	current	working	directory.

Parameters
name Name	of	the	directory	to	create

Returns
Server	response	to	the	request

See	also
deleteDirectory

Response	sf::Ftp::deleteDirectory (const	std::string	&	 name)

Remove	an	existing	directory.

The	directory	to	remove	must	be	relative	to	the	current	working	directory.	Use	this	function	with	caution,
the	directory	will	be	removed	permanently!

Parameters
name Name	of	the	directory	to	remove

Returns
Server	response	to	the	request

See	also
createDirectory

Response	sf::Ftp::deleteFile (const	std::string	&	 name)

Remove	an	existing	file.

The	file	name	must	be	relative	to	the	current	working	directory.	Use	this	function	with	caution,	the	file	will
be	removed	permanently!

Parameters
name File	to	remove

Returns
Server	response	to	the	request

See	also
renameFile

Response	sf::Ftp::disconnect ()

Close	the	connection	with	the	server.

Returns
Server	response	to	the	request

See	also
connect

Response	sf::Ftp::download (const	std::string	&	 remoteFile,
const	std::string	&	 localPath,
TransferMode	 mode	=	Binary	

)

Download	a	file	from	the	server.

The	 filename	of	 the	 distant	 file	 is	 relative	 to	 the	 current	working	directory	 of	 the	 server,	 and	 the	 local
destination	path	is	relative	to	the	current	directory	of	your	application.	If	a	file	with	the	same	filename	as
the	distant	file	already	exists	in	the	local	destination	path,	it	will	be	overwritten.

Parameters
remoteFile Filename	of	the	distant	file	to	download
localPath The	directory	in	which	to	put	the	file	on	the	local	computer
mode Transfer	mode

Returns
Server	response	to	the	request

See	also
upload

ListingResponse	sf::Ftp::getDirectoryListing (const	std::string	&	 directory

Get	the	contents	of	the	given	directory.

This	 function	 retrieves	 the	sub-directories	and	 files	contained	 in	 the	given	directory.	 It	 is	not	 recursive.
The	directory	parameter	is	relative	to	the	current	working	directory.

Parameters
directory Directory	to	list

Returns
Server	response	to	the	request

See	also
getWorkingDirectory,	changeDirectory,	parentDirectory

DirectoryResponse	sf::Ftp::getWorkingDirectory ()

Get	the	current	working	directory.

The	working	directory	is	the	root	path	for	subsequent	operations	involving	directories	and/or	filenames.

Returns
Server	response	to	the	request

See	also
getDirectoryListing,	changeDirectory,	parentDirectory

Response	sf::Ftp::keepAlive ()

Send	a	null	command	to	keep	the	connection	alive.

This	command	 is	useful	because	 the	server	may	close	 the	connection	automatically	 if	no	command	 is
sent.

Returns
Server	response	to	the	request

Response	sf::Ftp::login ()

Log	in	using	an	anonymous	account.

Logging	in	is	mandatory	after	connecting	to	the	server.	Users	that	are	not	logged	in	cannot	perform	any
operation.

Returns
Server	response	to	the	request

Response	sf::Ftp::login (const	std::string	&	 name,
const	std::string	&	 password	
)

Log	in	using	a	username	and	a	password.

Logging	in	is	mandatory	after	connecting	to	the	server.	Users	that	are	not	logged	in	cannot	perform	any
operation.

Parameters
name User	name
password Password

Returns
Server	response	to	the	request

Response	sf::Ftp::parentDirectory ()

Go	to	the	parent	directory	of	the	current	one.

Returns
Server	response	to	the	request

See	also
getWorkingDirectory,	getDirectoryListing,	changeDirectory

Response	sf::Ftp::renameFile (const	std::string	&	 file,
const	std::string	&	 newName	
)

Rename	an	existing	file.

The	filenames	must	be	relative	to	the	current	working	directory.

Parameters
file File	to	rename
newName New	name	of	the	file

Returns
Server	response	to	the	request

See	also
deleteFile

Response	sf::Ftp::sendCommand (const	std::string	&	 command,

const	std::string	&	 parameter	=	
)

Send	a	command	to	the	FTP	server.

While	the	most	often	used	commands	are	provided	as	member	functions	in	the	
can	be	used	to	send	any	FTP	command	to	the	server.	If	the	command	requires	one	or	more	parameters,
they	can	be	specified	in	parameter.	If	the	server	returns	information,	you	can	extract	it	from	the	response
using	Response::getMessage().

Parameters
command Command	to	send
parameter Command	parameter

Returns
Server	response	to	the	request

Response	sf::Ftp::upload (const	std::string	&	 localFile,
const	std::string	&	 remotePath,
TransferMode	 mode	=	Binary	

)

Upload	a	file	to	the	server.

The	name	of	the	local	file	is	relative	to	the	current	working	directory	of	your	application,	and	the	remote
path	is	relative	to	the	current	directory	of	the	FTP	server.

Parameters
localFile Path	of	the	local	file	to	upload
remotePath The	directory	in	which	to	put	the	file	on	the	server
mode Transfer	mode

Returns
Server	response	to	the	request

See	also
download

The	documentation	for	this	class	was	generated	from	the	following	file:
Ftp.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Types	|	Public	Member	Functions	|	List	of	all	members

sf::Ftp::DirectoryResponse	Class	Reference

Specialization	of	FTP	response	returning	a	directory.	More...

#include	<Ftp.hpp>

Inheritance	diagram	for	sf::Ftp::DirectoryResponse:

Public	Types

enum		

Status	{	
		RestartMarkerReply	=	110,	ServiceReadySoon	=	120,	DataConnectionAlreadyOpened
OpeningDataConnection	=	150,	
		Ok	=	200,	PointlessCommand	=	202,	SystemStatus	=	211,	DirectoryStatus
		FileStatus	=	213,	HelpMessage	=	214,	SystemType	=	215,	ServiceReady
		ClosingConnection	=	221,	DataConnectionOpened	=	225,	ClosingDataConnection
EnteringPassiveMode	=	227,	
		LoggedIn	=	230,	FileActionOk	=	250,	DirectoryOk	=	257,	NeedPassword
		NeedAccountToLogIn	=	332,	NeedInformation	=	350,	ServiceUnavailable
DataConnectionUnavailable	=	425,	
		TransferAborted	=	426,	FileActionAborted	=	450,	LocalError	=	451,	
452,	
		CommandUnknown	=	500,	ParametersUnknown	=	501,	CommandNotImplemented
BadCommandSequence	=	503,	
		ParameterNotImplemented	=	504,	NotLoggedIn	=	530,	NeedAccountToStore
FileUnavailable	=	550,	
		PageTypeUnknown	=	551,	NotEnoughMemory	=	552,	FilenameNotAllowed
InvalidResponse	=	1000,	
		ConnectionFailed	=	1001,	ConnectionClosed	=	1002,	InvalidFile
}

	 Status	codes	possibly	returned	by	a	FTP	response.	More...
	

Public	Member	Functions
	 DirectoryResponse	(const	Response	&response)

	 Default	constructor.	More...
	
const	std::string	&	 getDirectory	()	const
	 Get	the	directory	returned	in	the	response.	More...
	

bool	 isOk	()	const
	 Check	if	the	status	code	means	a	success.	More...
	

Status	 getStatus	()	const
	 Get	the	status	code	of	the	response.	More...
	
const	std::string	&	 getMessage	()	const
	 Get	the	full	message	contained	in	the	response.	More...
	

Detailed	Description

Specialization	of	FTP	response	returning	a	directory.

Definition	at	line	188	of	file	Ftp.hpp.

Member	Enumeration	Documentation

enum	sf::Ftp::Response::Status

Status	codes	possibly	returned	by	a	FTP	response.

Enumerator

RestartMarkerReply	
Restart	marker	reply.

ServiceReadySoon	
Service	ready	in	N	minutes.

DataConnectionAlreadyOpened	
Data	connection	already	opened,	transfer	starting.

OpeningDataConnection	
File	status	ok,	about	to	open	data	connection.

Ok	
Command	ok.

PointlessCommand	
Command	not	implemented.

SystemStatus	
System	status,	or	system	help	reply.

DirectoryStatus	
Directory	status.

FileStatus	

File	status.

HelpMessage	
Help	message.

SystemType	
NAME	system	 type,	where	NAME	 is	 an	official	 system	name	 from
the	list	in	the	Assigned	Numbers	document.

ServiceReady	
Service	ready	for	new	user.

ClosingConnection	
Service	closing	control	connection.

DataConnectionOpened	
Data	connection	open,	no	transfer	in	progress.

ClosingDataConnection	
Closing	data	connection,	requested	file	action	successful.

EnteringPassiveMode	
Entering	passive	mode.

LoggedIn	
User	logged	in,	proceed.	Logged	out	if	appropriate.

FileActionOk	
Requested	file	action	ok.

DirectoryOk	
PATHNAME	created.

NeedPassword	
User	name	ok,	need	password.

NeedAccountToLogIn	
Need	account	for	login.

NeedInformation	 Requested	file	action	pending	further	information.

ServiceUnavailable	
Service	not	available,	closing	control	connection.

DataConnectionUnavailable	
Can't	open	data	connection.

TransferAborted	
Connection	closed,	transfer	aborted.

FileActionAborted	
Requested	file	action	not	taken.

LocalError	
Requested	action	aborted,	local	error	in	processing.

InsufficientStorageSpace	
Requested	action	not	taken;	insufficient	storage	space	in	system,	file
unavailable.

CommandUnknown	
Syntax	error,	command	unrecognized.

ParametersUnknown	
Syntax	error	in	parameters	or	arguments.

CommandNotImplemented	
Command	not	implemented.

BadCommandSequence	
Bad	sequence	of	commands.

ParameterNotImplemented	
Command	not	implemented	for	that	parameter.

NotLoggedIn	
Not	logged	in.

NeedAccountToStore	
Need	account	for	storing	files.

FileUnavailable	
Requested	action	not	taken,	file	unavailable.

PageTypeUnknown	
Requested	action	aborted,	page	type	unknown.

NotEnoughMemory	
Requested	file	action	aborted,	exceeded	storage	allocation.

FilenameNotAllowed	
Requested	action	not	taken,	file	name	not	allowed.

InvalidResponse	
Not	part	of	the	FTP	standard,	generated	by	SFML	when	a	received
response	cannot	be	parsed.

ConnectionFailed	
Not	 part	 of	 the	 FTP	 standard,	 generated	 by	 SFML	 when	 the	 low-
level	socket	connection	with	the	server	fails.

ConnectionClosed	
Not	 part	 of	 the	 FTP	 standard,	 generated	 by	 SFML	 when	 the	 low-
level	socket	connection	is	unexpectedly	closed.

InvalidFile	
Not	part	of	the	FTP	standard,	generated	by	SFML	when	a	local	file
cannot	be	read	or	written.

Definition	at	line	74	of	file	Ftp.hpp.

Constructor	&	Destructor	Documentation

sf::Ftp::DirectoryResponse::DirectoryResponse (const	Response	&	

Default	constructor.

Parameters
response Source	response

Member	Function	Documentation

const	std::string&	sf::Ftp::DirectoryResponse::getDirectory () const

Get	the	directory	returned	in	the	response.

Returns
Directory	name

const	std::string&	sf::Ftp::Response::getMessage () const

Get	the	full	message	contained	in	the	response.

Returns
The	response	message

Status	sf::Ftp::Response::getStatus () const

Get	the	status	code	of	the	response.

Returns
Status	code

bool	sf::Ftp::Response::isOk () const

Check	if	the	status	code	means	a	success.

This	function	is	defined	for	convenience,	it	is	equivalent	to	testing	if	the	status	code	is	<	400.

Returns
True	if	the	status	is	a	success,	false	if	it	is	a	failure

The	documentation	for	this	class	was	generated	from	the	following	file:
Ftp.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Types	|	Public	Member	Functions	|	List	of	all	members

sf::Ftp::ListingResponse	Class	Reference

Specialization	of	FTP	response	returning	a	filename	listing.	More...

#include	<Ftp.hpp>

Inheritance	diagram	for	sf::Ftp::ListingResponse:

Public	Types

enum		

Status	{	
		RestartMarkerReply	=	110,	ServiceReadySoon	=	120,	DataConnectionAlreadyOpened
OpeningDataConnection	=	150,	
		Ok	=	200,	PointlessCommand	=	202,	SystemStatus	=	211,	DirectoryStatus
		FileStatus	=	213,	HelpMessage	=	214,	SystemType	=	215,	ServiceReady
		ClosingConnection	=	221,	DataConnectionOpened	=	225,	ClosingDataConnection
EnteringPassiveMode	=	227,	
		LoggedIn	=	230,	FileActionOk	=	250,	DirectoryOk	=	257,	NeedPassword
		NeedAccountToLogIn	=	332,	NeedInformation	=	350,	ServiceUnavailable
DataConnectionUnavailable	=	425,	
		TransferAborted	=	426,	FileActionAborted	=	450,	LocalError	=	451,	
452,	
		CommandUnknown	=	500,	ParametersUnknown	=	501,	CommandNotImplemented
BadCommandSequence	=	503,	
		ParameterNotImplemented	=	504,	NotLoggedIn	=	530,	NeedAccountToStore
FileUnavailable	=	550,	
		PageTypeUnknown	=	551,	NotEnoughMemory	=	552,	FilenameNotAllowed
InvalidResponse	=	1000,	
		ConnectionFailed	=	1001,	ConnectionClosed	=	1002,	InvalidFile
}

	 Status	codes	possibly	returned	by	a	FTP	response.	More...
	

Public	Member	Functions
	 ListingResponse	(const	Response	&response,	const	std::string	&data)

	 Default	constructor.	More...
	
const	std::vector<	std::string	>	&	 getListing	()	const
	 Return	the	array	of	directory/file	names.	
	

bool	 isOk	()	const
	 Check	if	the	status	code	means	a	success.	
	

Status	 getStatus	()	const
	 Get	the	status	code	of	the	response.	More...
	

const	std::string	&	 getMessage	()	const
	 Get	the	full	message	contained	in	the	response.	
	

Detailed	Description

Specialization	of	FTP	response	returning	a	filename	listing.

Definition	at	line	221	of	file	Ftp.hpp.

Member	Enumeration	Documentation

enum	sf::Ftp::Response::Status

Status	codes	possibly	returned	by	a	FTP	response.

Enumerator

RestartMarkerReply	
Restart	marker	reply.

ServiceReadySoon	
Service	ready	in	N	minutes.

DataConnectionAlreadyOpened	
Data	connection	already	opened,	transfer	starting.

OpeningDataConnection	
File	status	ok,	about	to	open	data	connection.

Ok	
Command	ok.

PointlessCommand	
Command	not	implemented.

SystemStatus	
System	status,	or	system	help	reply.

DirectoryStatus	
Directory	status.

FileStatus	

File	status.

HelpMessage	
Help	message.

SystemType	
NAME	system	 type,	where	NAME	 is	 an	official	 system	name	 from
the	list	in	the	Assigned	Numbers	document.

ServiceReady	
Service	ready	for	new	user.

ClosingConnection	
Service	closing	control	connection.

DataConnectionOpened	
Data	connection	open,	no	transfer	in	progress.

ClosingDataConnection	
Closing	data	connection,	requested	file	action	successful.

EnteringPassiveMode	
Entering	passive	mode.

LoggedIn	
User	logged	in,	proceed.	Logged	out	if	appropriate.

FileActionOk	
Requested	file	action	ok.

DirectoryOk	
PATHNAME	created.

NeedPassword	
User	name	ok,	need	password.

NeedAccountToLogIn	
Need	account	for	login.

NeedInformation	 Requested	file	action	pending	further	information.

ServiceUnavailable	
Service	not	available,	closing	control	connection.

DataConnectionUnavailable	
Can't	open	data	connection.

TransferAborted	
Connection	closed,	transfer	aborted.

FileActionAborted	
Requested	file	action	not	taken.

LocalError	
Requested	action	aborted,	local	error	in	processing.

InsufficientStorageSpace	
Requested	action	not	taken;	insufficient	storage	space	in	system,	file
unavailable.

CommandUnknown	
Syntax	error,	command	unrecognized.

ParametersUnknown	
Syntax	error	in	parameters	or	arguments.

CommandNotImplemented	
Command	not	implemented.

BadCommandSequence	
Bad	sequence	of	commands.

ParameterNotImplemented	
Command	not	implemented	for	that	parameter.

NotLoggedIn	
Not	logged	in.

NeedAccountToStore	
Need	account	for	storing	files.

FileUnavailable	
Requested	action	not	taken,	file	unavailable.

PageTypeUnknown	
Requested	action	aborted,	page	type	unknown.

NotEnoughMemory	
Requested	file	action	aborted,	exceeded	storage	allocation.

FilenameNotAllowed	
Requested	action	not	taken,	file	name	not	allowed.

InvalidResponse	
Not	part	of	the	FTP	standard,	generated	by	SFML	when	a	received
response	cannot	be	parsed.

ConnectionFailed	
Not	 part	 of	 the	 FTP	 standard,	 generated	 by	 SFML	 when	 the	 low-
level	socket	connection	with	the	server	fails.

ConnectionClosed	
Not	 part	 of	 the	 FTP	 standard,	 generated	 by	 SFML	 when	 the	 low-
level	socket	connection	is	unexpectedly	closed.

InvalidFile	
Not	part	of	the	FTP	standard,	generated	by	SFML	when	a	local	file
cannot	be	read	or	written.

Definition	at	line	74	of	file	Ftp.hpp.

Constructor	&	Destructor	Documentation

sf::Ftp::ListingResponse::ListingResponse (const	Response	&	 response
const	std::string	&	 data
)

Default	constructor.

Parameters
response Source	response
data Data	containing	the	raw	listing

Member	Function	Documentation

const	std::vector<std::string>&	sf::Ftp::ListingResponse::getListing

Return	the	array	of	directory/file	names.

Returns
Array	containing	the	requested	listing

const	std::string&	sf::Ftp::Response::getMessage () const

Get	the	full	message	contained	in	the	response.

Returns
The	response	message

Status	sf::Ftp::Response::getStatus () const

Get	the	status	code	of	the	response.

Returns
Status	code

bool	sf::Ftp::Response::isOk () const

Check	if	the	status	code	means	a	success.

This	function	is	defined	for	convenience,	it	is	equivalent	to	testing	if	the	status	code	is	<	400.

Returns
True	if	the	status	is	a	success,	false	if	it	is	a	failure

The	documentation	for	this	class	was	generated	from	the	following	file:
Ftp.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Types	|	Public	Member	Functions	|	List	of	all	members

sf::Ftp::Response	Class	Reference

Define	a	FTP	response.	More...

#include	<Ftp.hpp>

Inheritance	diagram	for	sf::Ftp::Response:

Public	Types

enum		

Status	{	
		RestartMarkerReply	=	110,	ServiceReadySoon	=	120,	DataConnectionAlreadyOpened
OpeningDataConnection	=	150,	
		Ok	=	200,	PointlessCommand	=	202,	SystemStatus	=	211,	DirectoryStatus
		FileStatus	=	213,	HelpMessage	=	214,	SystemType	=	215,	ServiceReady
		ClosingConnection	=	221,	DataConnectionOpened	=	225,	ClosingDataConnection
EnteringPassiveMode	=	227,	
		LoggedIn	=	230,	FileActionOk	=	250,	DirectoryOk	=	257,	NeedPassword
		NeedAccountToLogIn	=	332,	NeedInformation	=	350,	ServiceUnavailable
DataConnectionUnavailable	=	425,	
		TransferAborted	=	426,	FileActionAborted	=	450,	LocalError	=	451,	
452,	
		CommandUnknown	=	500,	ParametersUnknown	=	501,	CommandNotImplemented
BadCommandSequence	=	503,	
		ParameterNotImplemented	=	504,	NotLoggedIn	=	530,	NeedAccountToStore
FileUnavailable	=	550,	
		PageTypeUnknown	=	551,	NotEnoughMemory	=	552,	FilenameNotAllowed
InvalidResponse	=	1000,	
		ConnectionFailed	=	1001,	ConnectionClosed	=	1002,	InvalidFile
}

	 Status	codes	possibly	returned	by	a	FTP	response.	More...
	

Public	Member	Functions
	 Response	(Status	code=InvalidResponse,	const	std::string	&message="")

	 Default	constructor.	More...
	

bool	 isOk	()	const
	 Check	if	the	status	code	means	a	success.	More...
	

Status	 getStatus	()	const
	 Get	the	status	code	of	the	response.	More...
	
const	std::string	&	 getMessage	()	const
	 Get	the	full	message	contained	in	the	response.	More...
	

Detailed	Description

Define	a	FTP	response.

Definition	at	line	66	of	file	Ftp.hpp.

Member	Enumeration	Documentation

enum	sf::Ftp::Response::Status

Status	codes	possibly	returned	by	a	FTP	response.

Enumerator

RestartMarkerReply	
Restart	marker	reply.

ServiceReadySoon	
Service	ready	in	N	minutes.

DataConnectionAlreadyOpened	
Data	connection	already	opened,	transfer	starting.

OpeningDataConnection	
File	status	ok,	about	to	open	data	connection.

Ok	
Command	ok.

PointlessCommand	
Command	not	implemented.

SystemStatus	
System	status,	or	system	help	reply.

DirectoryStatus	
Directory	status.

FileStatus	

File	status.

HelpMessage	
Help	message.

SystemType	
NAME	system	 type,	where	NAME	 is	 an	official	 system	name	 from
the	list	in	the	Assigned	Numbers	document.

ServiceReady	
Service	ready	for	new	user.

ClosingConnection	
Service	closing	control	connection.

DataConnectionOpened	
Data	connection	open,	no	transfer	in	progress.

ClosingDataConnection	
Closing	data	connection,	requested	file	action	successful.

EnteringPassiveMode	
Entering	passive	mode.

LoggedIn	
User	logged	in,	proceed.	Logged	out	if	appropriate.

FileActionOk	
Requested	file	action	ok.

DirectoryOk	
PATHNAME	created.

NeedPassword	
User	name	ok,	need	password.

NeedAccountToLogIn	
Need	account	for	login.

NeedInformation	 Requested	file	action	pending	further	information.

ServiceUnavailable	
Service	not	available,	closing	control	connection.

DataConnectionUnavailable	
Can't	open	data	connection.

TransferAborted	
Connection	closed,	transfer	aborted.

FileActionAborted	
Requested	file	action	not	taken.

LocalError	
Requested	action	aborted,	local	error	in	processing.

InsufficientStorageSpace	
Requested	action	not	taken;	insufficient	storage	space	in	system,	file
unavailable.

CommandUnknown	
Syntax	error,	command	unrecognized.

ParametersUnknown	
Syntax	error	in	parameters	or	arguments.

CommandNotImplemented	
Command	not	implemented.

BadCommandSequence	
Bad	sequence	of	commands.

ParameterNotImplemented	
Command	not	implemented	for	that	parameter.

NotLoggedIn	
Not	logged	in.

NeedAccountToStore	
Need	account	for	storing	files.

FileUnavailable	
Requested	action	not	taken,	file	unavailable.

PageTypeUnknown	
Requested	action	aborted,	page	type	unknown.

NotEnoughMemory	
Requested	file	action	aborted,	exceeded	storage	allocation.

FilenameNotAllowed	
Requested	action	not	taken,	file	name	not	allowed.

InvalidResponse	
Not	part	of	the	FTP	standard,	generated	by	SFML	when	a	received
response	cannot	be	parsed.

ConnectionFailed	
Not	 part	 of	 the	 FTP	 standard,	 generated	 by	 SFML	 when	 the	 low-
level	socket	connection	with	the	server	fails.

ConnectionClosed	
Not	 part	 of	 the	 FTP	 standard,	 generated	 by	 SFML	 when	 the	 low-
level	socket	connection	is	unexpectedly	closed.

InvalidFile	
Not	part	of	the	FTP	standard,	generated	by	SFML	when	a	local	file
cannot	be	read	or	written.

Definition	at	line	74	of	file	Ftp.hpp.

Constructor	&	Destructor	Documentation

sf::Ftp::Response::Response (Status	 code	=	InvalidResponse
const	std::string	&	 message	=	""	
)

Default	constructor.

This	constructor	is	used	by	the	FTP	client	to	build	the	response.

Parameters
code Response	status	code
message Response	message

Member	Function	Documentation

const	std::string&	sf::Ftp::Response::getMessage () const

Get	the	full	message	contained	in	the	response.

Returns
The	response	message

Status	sf::Ftp::Response::getStatus () const

Get	the	status	code	of	the	response.

Returns
Status	code

bool	sf::Ftp::Response::isOk () const

Check	if	the	status	code	means	a	success.

This	function	is	defined	for	convenience,	it	is	equivalent	to	testing	if	the	status	code	is	<	400.

Returns
True	if	the	status	is	a	success,	false	if	it	is	a	failure

The	documentation	for	this	class	was	generated	from	the	following	file:

Ftp.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Classes	|	Public	Member	Functions	|	List	of	all	members

sf::Http	Class	Reference
Network	module

A	HTTP	client.	More...

#include	<Http.hpp>

Inheritance	diagram	for	sf::Http:

Classes
class		 Request
	 Define	a	HTTP	request.	More...
	
class		 Response
	 Define	a	HTTP	response.	More...
	

Public	Member	Functions
	 Http	()

	 Default	constructor.	More...
	

	 Http	(const	std::string	&host,	unsigned	short	port=0)
	 Construct	the	HTTP	client	with	the	target	host.	More...
	

void	 setHost	(const	std::string	&host,	unsigned	short	port=0)
	 Set	the	target	host.	More...
	
Response	 sendRequest	(const	Request	&request,	Time	timeout=Time::Zero
	 Send	a	HTTP	request	and	return	the	server's	response.	More...
	

Detailed	Description

A	HTTP	client.

sf::Http	is	a	very	simple	HTTP	client	that	allows	you	to	communicate	with	a	web	server.

You	can	retrieve	web	pages,	send	data	to	an	interactive	resource,	download	a	remote	file,	etc.	The	HTTPS
protocol	is	not	supported.

The	HTTP	client	is	split	into	3	classes:

sf::Http::Request

sf::Http::Response

sf::Http

sf::Http::Request	builds	the	request	that	will	be	sent	to	the	server.	A	request	is	made	of:

a	method	(what	you	want	to	do)

a	target	URI	(usually	the	name	of	the	web	page	or	file)

one	or	more	header	fields	(options	that	you	can	pass	to	the	server)

an	optional	body	(for	POST	requests)

sf::Http::Response	 parse	 the	 response	 from	 the	 web	 server	 and	 provides	 getters	 to	 read	 them.	 The
response	contains:

a	status	code

header	fields	(that	may	be	answers	to	the	ones	that	you	requested)

a	body,	which	contains	the	contents	of	the	requested	resource

sf::Http	provides	a	simple	function,	SendRequest,	to	send	a	sf::Http::Request

sf::Http::Response	from	the	server.

Usage	example:

//	Create	a	new	HTTP	client

sf::Http	http;

//	We'll	work	on	http://www.sfml-dev.org

http.setHost("http://www.sfml-dev.org");

//	Prepare	a	request	to	get	the	'features.php'	page

sf::Http::Request	request("features.php");

//	Send	the	request

sf::Http::Response	response	=	http.sendRequest(request);

//	Check	the	status	code	and	display	the	result

sf::Http::Response::Status	status	=	response.getStatus();

if	(status	==	sf::Http::Response::Ok)

{

				std::cout	<<	response.getBody()	<<	std::endl;

}

else

{

				std::cout	<<	"Error	"	<<	status	<<	std::endl;

}

Definition	at	line	46	of	file	Http.hpp.

Constructor	&	Destructor	Documentation

sf::Http::Http ()

Default	constructor.

sf::Http::Http (const	std::string	&	 host,
unsigned	short	 port	=	0	
)

Construct	the	HTTP	client	with	the	target	host.

This	is	equivalent	to	calling	setHost(host,	port).	The	port	has	a	default	value	of	0,	which	means	that	the
HTTP	client	will	use	the	right	port	according	to	the	protocol	used	(80	for	HTTP).	You	should	leave	it	like
this	unless	you	really	need	a	port	other	than	the	standard	one,	or	use	an	unknown	protocol.

Parameters
hostWeb	server	to	connect	to
port Port	to	use	for	connection

Member	Function	Documentation

Response	sf::Http::sendRequest (const	Request	&	 request,
Time	 timeout	=	Time::Zero

)

Send	a	HTTP	request	and	return	the	server's	response.

You	must	have	a	valid	host	before	sending	a	request	(see	setHost).	Any	missing	mandatory	header	field
in	 the	 request	 will	 be	 added	 with	 an	 appropriate	 value.	 Warning:	 this	 function	 waits	 for	 the	 server's
response	and	may	not	return	instantly;	use	a	thread	if	you	don't	want	to	block	your	application,	or	use	a
timeout	to	limit	the	time	to	wait.	A	value	of	Time::Zero	means	that	the	client	will	use	the	system	default
timeout	(which	is	usually	pretty	long).

Parameters
request Request	to	send
timeoutMaximum	time	to	wait

Returns
Server's	response

void	sf::Http::setHost (const	std::string	&	 host,
unsigned	short	 port	=	0	
)

Set	the	target	host.

This	 function	 just	 stores	 the	 host	 address	 and	 port,	 it	 doesn't	 actually	 connect	 to	 it	 until	 you	 send	 a

request.	 The	 port	 has	 a	 default	 value	 of	 0,	 which	means	 that	 the	 HTTP	 client	 will	 use	 the	 right	 port
according	to	the	protocol	used	(80	for	HTTP).	You	should	leave	it	like	this	unless	you	really	need	a	port
other	than	the	standard	one,	or	use	an	unknown	protocol.

Parameters
hostWeb	server	to	connect	to
port Port	to	use	for	connection

The	documentation	for	this	class	was	generated	from	the	following	file:
Http.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Types	|	Public	Member	Functions	|	Friends	|	List	of	all	members

sf::Http::Request	Class	Reference

Define	a	HTTP	request.	More...

#include	<Http.hpp>

Public	Types

enum		

Method	{	
		Get,	Post,	Head,	Put,	
		Delete	
}

	 Enumerate	the	available	HTTP	methods	for	a	request.	More...
	

Public	Member	Functions
	 Request	(const	std::string	&uri="/",	Method	method=Get,	const	std::string	&body="")

	 Default	constructor.	More...
	
void	 setField	(const	std::string	&field,	const	std::string	&value)
	 Set	the	value	of	a	field.	More...
	
void	 setMethod	(Method	method)
	 Set	the	request	method.	More...
	
void	 setUri	(const	std::string	&uri)
	 Set	the	requested	URI.	More...
	
void	 setHttpVersion	(unsigned	int	major,	unsigned	int	minor)
	 Set	the	HTTP	version	for	the	request.	More...
	
void	 setBody	(const	std::string	&body)
	 Set	the	body	of	the	request.	More...
	

Friends
class	 Http

	

Detailed	Description

Define	a	HTTP	request.

Definition	at	line	54	of	file	Http.hpp.

Member	Enumeration	Documentation

enum	sf::Http::Request::Method

Enumerate	the	available	HTTP	methods	for	a	request.

Enumerator

Get	
Request	in	get	mode,	standard	method	to	retrieve	a	page.

Post	
Request	in	post	mode,	usually	to	send	data	to	a	page.

Head	
Request	a	page's	header	only.

Put	
Request	in	put	mode,	useful	for	a	REST	API.

Delete	
Request	in	delete	mode,	useful	for	a	REST	API.

Definition	at	line	62	of	file	Http.hpp.

Constructor	&	Destructor	Documentation

sf::Http::Request::Request (const	std::string	&	 uri	=	"/",
Method	 method	=	Get,
const	std::string	&	 body	=	""	
)

Default	constructor.

This	constructor	creates	a	GET	request,	with	the	root	URI	("/")	and	an	empty	body.

Parameters
uri Target	URI
methodMethod	to	use	for	the	request
body Content	of	the	request's	body

Member	Function	Documentation

void	sf::Http::Request::setBody (const	std::string	&	 body)

Set	the	body	of	the	request.

The	body	of	a	 request	 is	optional	and	only	makes	sense	 for	POST	requests.	 It	 is	 ignored	 for	all	other
methods.	The	body	is	empty	by	default.

Parameters
bodyContent	of	the	body

void	sf::Http::Request::setField (const	std::string	&	 field,
const	std::string	&	 value	
)

Set	the	value	of	a	field.

The	 field	 is	 created	 if	 it	 doesn't	 exist.	 The	name	of	 the	 field	 is	 case-insensitive.	By	default,	 a	 request
doesn't	contain	any	field	(but	the	mandatory	fields	are	added	later	by	the	HTTP	client	when	sending	the
request).

Parameters
field Name	of	the	field	to	set
value Value	of	the	field

void	sf::Http::Request::setHttpVersion (unsigned	int	 major,
unsigned	int	 minor	
)

Set	the	HTTP	version	for	the	request.

The	HTTP	version	is	1.0	by	default.

Parameters
major Major	HTTP	version	number
minorMinor	HTTP	version	number

void	sf::Http::Request::setMethod (Method	 method)

Set	the	request	method.

See	 the	 Method	 enumeration	 for	 a	 complete	 list	 of	 all	 the	 availale	 methods.	 The	 method	 is
Http::Request::Get	by	default.

Parameters
methodMethod	to	use	for	the	request

void	sf::Http::Request::setUri (const	std::string	&	 uri)

Set	the	requested	URI.

The	URI	is	the	resource	(usually	a	web	page	or	a	file)	that	you	want	to	get	or	post.	The	URI	is	"/"	(the
root	page)	by	default.

Parameters
uri URI	to	request,	relative	to	the	host

The	documentation	for	this	class	was	generated	from	the	following	file:
Http.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Types	|	Public	Member	Functions	|	Friends	|	List	of	all	members

sf::Http::Response	Class	Reference

Define	a	HTTP	response.	More...

#include	<Http.hpp>

Public	Types

enum		

Status	{	
		Ok	=	200,	Created	=	201,	Accepted	=	202,	NoContent	=	204,	
		ResetContent	=	205,	PartialContent	=	206,	MultipleChoices	=	300,	
		MovedTemporarily	=	302,	NotModified	=	304,	BadRequest	=	400,	
		Forbidden	=	403,	NotFound	=	404,	RangeNotSatisfiable	=	407,	
		NotImplemented	=	501,	BadGateway	=	502,	ServiceNotAvailable
504,	
		VersionNotSupported	=	505,	InvalidResponse	=	1000,	ConnectionFailed
}

	 Enumerate	all	the	valid	status	codes	for	a	response.	More...
	

Public	Member	Functions
	 Response	()

	 Default	constructor.	More...
	
const	std::string	&	 getField	(const	std::string	&field)	const
	 Get	the	value	of	a	field.	More...
	

Status	 getStatus	()	const
	 Get	the	response	status	code.	More...
	

unsigned	int	 getMajorHttpVersion	()	const
	 Get	the	major	HTTP	version	number	of	the	response.	
	

unsigned	int	 getMinorHttpVersion	()	const
	 Get	the	minor	HTTP	version	number	of	the	response.	
	
const	std::string	&	 getBody	()	const
	 Get	the	body	of	the	response.	More...
	

Friends
class	 Http

	

Detailed	Description

Define	a	HTTP	response.

Definition	at	line	193	of	file	Http.hpp.

Member	Enumeration	Documentation

enum	sf::Http::Response::Status

Enumerate	all	the	valid	status	codes	for	a	response.

Enumerator

Ok	
Most	common	code	returned	when	operation	was	successful.

Created	
The	resource	has	successfully	been	created.

Accepted	
The	request	has	been	accepted,	but	will	be	processed	later	by	the	server.

NoContent	
The	server	didn't	send	any	data	in	return.

ResetContent	
The	server	 informs	 the	client	 that	 it	 should	clear	 the	view	 (form)	 that	caused
the	request	to	be	sent.

PartialContent	
The	 server	 has	 sent	 a	 part	 of	 the	 resource,	 as	 a	 response	 to	 a	 partial	GET
request.

MultipleChoices	
The	requested	page	can	be	accessed	from	several	locations.

MovedPermanently	
The	requested	page	has	permanently	moved	to	a	new	location.

MovedTemporarily	
The	requested	page	has	temporarily	moved	to	a	new	location.

NotModified	
For	 conditional	 requests,	 means	 the	 requested	 page	 hasn't	 changed	 and
doesn't	need	to	be	refreshed.

BadRequest	
The	server	couldn't	understand	the	request	(syntax	error)

Unauthorized	
The	requested	page	needs	an	authentication	to	be	accessed.

Forbidden	
The	requested	page	cannot	be	accessed	at	all,	even	with	authentication.

NotFound	
The	requested	page	doesn't	exist.

RangeNotSatisfiable	
The	server	can't	satisfy	the	partial	GET	request	(with	a	"Range"	header	field)

InternalServerError	
The	server	encountered	an	unexpected	error.

NotImplemented	
The	server	doesn't	implement	a	requested	feature.

BadGateway	
The	gateway	server	has	received	an	error	from	the	source	server.

ServiceNotAvailable	
The	server	is	temporarily	unavailable	(overloaded,	in	maintenance,	...)

GatewayTimeout	
The	gateway	server	couldn't	receive	a	response	from	the	source	server.

VersionNotSupported	
The	server	doesn't	support	the	requested	HTTP	version.

InvalidResponse	
Response	is	not	a	valid	HTTP	one.

ConnectionFailed	
Connection	with	server	failed.

Definition	at	line	201	of	file	Http.hpp.

Constructor	&	Destructor	Documentation

sf::Http::Response::Response ()

Default	constructor.

Constructs	an	empty	response.

Member	Function	Documentation

const	std::string&	sf::Http::Response::getBody () const

Get	the	body	of	the	response.

The	body	of	a	response	may	contain:

the	requested	page	(for	GET	requests)

a	response	from	the	server	(for	POST	requests)

nothing	(for	HEAD	requests)

an	error	message	(in	case	of	an	error)

Returns
The	response	body

const	std::string&	sf::Http::Response::getField (const	std::string	&	

Get	the	value	of	a	field.

If	the	field	field	is	not	found	in	the	response	header,	the	empty	string	is	returned.	This	function	uses	case-
insensitive	comparisons.

Parameters
field Name	of	the	field	to	get

Returns

Value	of	the	field,	or	empty	string	if	not	found

unsigned	int	sf::Http::Response::getMajorHttpVersion () const

Get	the	major	HTTP	version	number	of	the	response.

Returns
Major	HTTP	version	number

See	also
getMinorHttpVersion

unsigned	int	sf::Http::Response::getMinorHttpVersion () const

Get	the	minor	HTTP	version	number	of	the	response.

Returns
Minor	HTTP	version	number

See	also
getMajorHttpVersion

Status	sf::Http::Response::getStatus () const

Get	the	response	status	code.

The	status	code	should	be	the	first	thing	to	be	checked	after	receiving	a	response,	it	defines	whether	it	is
a	success,	a	failure	or	anything	else	(see	the	Status	enumeration).

Returns

Status	code	of	the	response

The	documentation	for	this	class	was	generated	from	the	following	file:
Http.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Member	Functions	|	Static	Public	Member	Functions	|	Static	Public	Attributes	|	Friends	|	List	of	all	members

sf::IpAddress	Class	Reference
Network	module

Encapsulate	an	IPv4	network	address.	More...

#include	<IpAddress.hpp>

Public	Member	Functions
	 IpAddress	()

	 Default	constructor.	More...
	

	 IpAddress	(const	std::string	&address)
	 Construct	the	address	from	a	string.	More...
	

	 IpAddress	(const	char	*address)
	 Construct	the	address	from	a	string.	More...
	

	 IpAddress	(Uint8	byte0,	Uint8	byte1,	Uint8	byte2,	Uint8	byte3)
	 Construct	the	address	from	4	bytes.	More...
	

	 IpAddress	(Uint32	address)
	 Construct	the	address	from	a	32-bits	integer.	More...
	
std::string	 toString	()	const
	 Get	a	string	representation	of	the	address.	More...
	

Uint32	 toInteger	()	const
	 Get	an	integer	representation	of	the	address.	More...
	

Static	Public	Member	Functions
static	IpAddress	 getLocalAddress	()
	 Get	the	computer's	local	address.	More...
	
static	IpAddress	 getPublicAddress	(Time	timeout=Time::Zero)
	 Get	the	computer's	public	address.	More...
	

Static	Public	Attributes
static	const	IpAddress	 None
	 Value	representing	an	empty/invalid	address.	More...
	
static	const	IpAddress	 Any
	 Value	representing	any	address	(0.0.0.0)	More...
	
static	const	IpAddress	 LocalHost
	 The	"localhost"	address	(for	connecting	a	computer	to	itself	locally)	
	
static	const	IpAddress	 Broadcast

	 The	"broadcast"	address	(for	sending	UDP	messages	to	everyone	on	a	local
network)	More...

	

Friends
bool	 operator<	(const	IpAddress	&left,	const	IpAddress	&right)
	 Overload	of	<	operator	to	compare	two	IP	addresses.	More...
	

Detailed	Description

Encapsulate	an	IPv4	network	address.

sf::IpAddress	is	a	utility	class	for	manipulating	network	addresses.

It	provides	a	set	a	implicit	constructors	and	conversion	functions	to	easily	build	or	transform	an	IP	address
from/to	various	representations.

Usage	example:

sf::IpAddress	a0;																																					//	an	invalid	address

sf::IpAddress	a1	=	sf::IpAddress::None;															//	an	invalid	address	(same	as	a0)

sf::IpAddress	a2("127.0.0.1");																								//	the	local	host	address

sf::IpAddress	a3	=	sf::IpAddress::Broadcast;										//	the	broadcast	address

sf::IpAddress	a4(192,	168,	1,	56);																				//	a	local	address

sf::IpAddress	a5("my_computer");																						//	a	local	address	created	from	a	network	name

sf::IpAddress	a6("89.54.1.169");																						//	a	distant	address

sf::IpAddress	a7("www.google.com");																			//	a	distant	address	created	from	a	network

name

sf::IpAddress	a8	=	sf::IpAddress::getLocalAddress();		//	my	address	on	the	local	network

sf::IpAddress	a9	=	sf::IpAddress::getPublicAddress();	//	my	address	on	the	internet

Note	that	sf::IpAddress	currently	doesn't	support	IPv6	nor	other	types	of	network	addresses.

Definition	at	line	44	of	file	IpAddress.hpp.

Constructor	&	Destructor	Documentation

sf::IpAddress::IpAddress ()

Default	constructor.

This	constructor	creates	an	empty	(invalid)	address

sf::IpAddress::IpAddress (const	std::string	&	 address)

Construct	the	address	from	a	string.

Here	address	can	be	either	a	decimal	address	(ex:	"192.168.1.56")	or	a	network	name	(ex:	"localhost").

Parameters
address IP	address	or	network	name

sf::IpAddress::IpAddress (const	char	*	 address)

Construct	the	address	from	a	string.

Here	address	can	be	either	a	decimal	address	(ex:	"192.168.1.56")	or	a	network	name	(ex:	"localhost").
This	is	equivalent	to	the	constructor	taking	a	std::string	parameter,	 it	 is	defined	for	convenience	so	that
the	implicit	conversions	from	literal	strings	to	IpAddress	work.

Parameters

address IP	address	or	network	name

sf::IpAddress::IpAddress (Uint8	 byte0,
Uint8	 byte1,
Uint8	 byte2,
Uint8	 byte3	
)

Construct	the	address	from	4	bytes.

Calling	IpAddress(a,	b,	c,	d)	is	equivalent	to	calling	 IpAddress("a.b.c.d"),	but	safer	as	it	doesn't	have	to
parse	a	string	to	get	the	address	components.

Parameters
byte0 First	byte	of	the	address
byte1 Second	byte	of	the	address
byte2 Third	byte	of	the	address
byte3 Fourth	byte	of	the	address

sf::IpAddress::IpAddress (Uint32	 address)

Construct	the	address	from	a	32-bits	integer.

This	 constructor	 uses	 the	 internal	 representation	 of	 the	 address	 directly.	 It	 should	 be	 used	 for
optimization	purposes,	and	only	if	you	got	that	representation	from	IpAddress::toInteger()

Parameters
address 4	bytes	of	the	address	packed	into	a	32-bits	integer

See	also
toInteger

Member	Function	Documentation

static	IpAddress	sf::IpAddress::getLocalAddress ()

Get	the	computer's	local	address.

The	 local	 address	 is	 the	 address	 of	 the	 computer	 from	 the	 LAN	 point	 of	 view,	 i.e.	 something	 like
192.168.1.56.	It	is	meaningful	only	for	communications	over	the	local	network.	Unlike	getPublicAddress,
this	function	is	fast	and	may	be	used	safely	anywhere.

Returns
Local	IP	address	of	the	computer

See	also
getPublicAddress

static	IpAddress	sf::IpAddress::getPublicAddress (Time	 timeout	=	

Get	the	computer's	public	address.

The	public	 address	 is	 the	address	of	 the	 computer	 from	 the	 internet	 point	 of	 view,	 i.e.	 something	 like
89.54.1.169.	It	is	necessary	for	communications	over	the	world	wide	web.	The	only	way	to	get	a	public
address	is	to	ask	it	to	a	distant	website;	as	a	consequence,	this	function	depends	on	both	your	network
connection	and	 the	server,	and	may	be	very	slow.	You	should	use	 it	as	 few	as	possible.	Because	 this
function	depends	on	the	network	connection	and	on	a	distant	server,	you	may	use	a	time	limit	if	you	don't
want	your	program	 to	be	possibly	stuck	waiting	 in	case	 there	 is	a	problem;	 this	 limit	 is	deactivated	by
default.

Parameters
timeoutMaximum	time	to	wait

Returns
Public	IP	address	of	the	computer

See	also
getLocalAddress

Uint32	sf::IpAddress::toInteger () const

Get	an	integer	representation	of	the	address.

The	returned	number	is	the	internal	representation	of	the	address,	and	should	be	used	for	optimization
purposes	only	 (like	sending	 the	address	 through	a	socket).	The	 integer	produced	by	 this	 function	can
then	be	converted	back	to	a	sf::IpAddress	with	the	proper	constructor.

Returns
32-bits	unsigned	integer	representation	of	the	address

See	also
toString

std::string	sf::IpAddress::toString () const

Get	a	string	representation	of	the	address.

The	returned	string	 is	 the	decimal	representation	of	 the	IP	address	(like	"192.168.1.56"),	even	if	 it	was
constructed	from	a	host	name.

Returns

String	representation	of	the	address

See	also
toInteger

Friends	And	Related	Function	Documentation

bool	operator< (const	IpAddress	&	 left,
const	IpAddress	&	 right	
)

Overload	of	<	operator	to	compare	two	IP	addresses.

Parameters
left Left	operand	(a	IP	address)
right Right	operand	(a	IP	address)

Returns
True	if	left	is	lesser	than	right

Member	Data	Documentation

const	IpAddress	sf::IpAddress::Any

Value	representing	any	address	(0.0.0.0)

Definition	at	line	185	of	file	IpAddress.hpp.

const	IpAddress	sf::IpAddress::Broadcast

The	"broadcast"	address	(for	sending	UDP	messages	to	everyone	on	a	local	network)

Definition	at	line	187	of	file	IpAddress.hpp.

const	IpAddress	sf::IpAddress::LocalHost

The	"localhost"	address	(for	connecting	a	computer	to	itself	locally)

Definition	at	line	186	of	file	IpAddress.hpp.

const	IpAddress	sf::IpAddress::None

Value	representing	an	empty/invalid	address.

Definition	at	line	184	of	file	IpAddress.hpp.

The	documentation	for	this	class	was	generated	from	the	following	file:
IpAddress.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Member	Functions	|	Protected	Member	Functions	|	Friends	|	List	of	all	members

sf::Packet	Class	Reference
Network	module

Utility	class	to	build	blocks	of	data	to	transfer	over	the	network.	More...

#include	<Packet.hpp>

Public	Member	Functions
	 Packet	()

	 Default	constructor.	More...
	

virtual	 ~Packet	()
	 Virtual	destructor.	More...
	

void	 append	(const	void	*data,	std::size_t	sizeInBytes)
	 Append	data	to	the	end	of	the	packet.	More...
	

void	 clear	()
	 Clear	the	packet.	More...
	
const	void	*	 getData	()	const
	 Get	a	pointer	to	the	data	contained	in	the	packet.	More...
	
std::size_t	 getDataSize	()	const

	 Get	the	size	of	the	data	contained	in	the	packet.	More...
	

bool	 endOfPacket	()	const
	 Tell	if	the	reading	position	has	reached	the	end	of	the	packet.	
	

	 operator	BoolType	()	const
	 Test	the	validity	of	the	packet,	for	reading.	More...
	

Packet	&	 operator>>	(bool	&data)
	 Overloads	of	operator	>>	to	read	data	from	the	packet.	More...
	

Packet	&	 operator>>	(Int8	&data)
	

Packet	&	 operator>>	(Uint8	&data)
	

Packet	&	 operator>>	(Int16	&data)
	

Packet	&	 operator>>	(Uint16	&data)
	

Packet	&	 operator>>	(Int32	&data)
	

Packet	&	 operator>>	(Uint32	&data)
	

Packet	&	 operator>>	(Int64	&data)
	

Packet	&	 operator>>	(Uint64	&data)
	

Packet	&	 operator>>	(float	&data)
	

Packet	&	 operator>>	(double	&data)
	

Packet	&	 operator>>	(char	*data)
	

Packet	&	 operator>>	(std::string	&data)
	

Packet	&	 operator>>	(wchar_t	*data)
	

Packet	&	 operator>>	(std::wstring	&data)
	

Packet	&	 operator>>	(String	&data)
	

Packet	&	 operator<<	(bool	data)
	 Overloads	of	operator	<<	to	write	data	into	the	packet.	More...
	

Packet	&	 operator<<	(Int8	data)
	

Packet	&	 operator<<	(Uint8	data)
	

Packet	&	 operator<<	(Int16	data)
	

Packet	&	 operator<<	(Uint16	data)

	
Packet	&	 operator<<	(Int32	data)

	
Packet	&	 operator<<	(Uint32	data)

	
Packet	&	 operator<<	(Int64	data)

	
Packet	&	 operator<<	(Uint64	data)

	
Packet	&	 operator<<	(float	data)

	
Packet	&	 operator<<	(double	data)

	
Packet	&	 operator<<	(const	char	*data)

	
Packet	&	 operator<<	(const	std::string	&data)

	
Packet	&	 operator<<	(const	wchar_t	*data)

	
Packet	&	 operator<<	(const	std::wstring	&data)

	
Packet	&	 operator<<	(const	String	&data)

	

Protected	Member	Functions
virtual	const	void	*	 onSend	(std::size_t	&size)
	 Called	before	the	packet	is	sent	over	the	network.	More...
	

virtual	void	 onReceive	(const	void	*data,	std::size_t	size)
	 Called	after	the	packet	is	received	over	the	network.	
	

Friends
class	 TcpSocket
	
class	 UdpSocket
	

Detailed	Description

Utility	class	to	build	blocks	of	data	to	transfer	over	the	network.

Packets	provide	a	safe	and	easy	way	to	serialize	data,	in	order	to	send	it	over	the	network	using	sockets
(sf::TcpSocket,	sf::UdpSocket).

Packets	solve	2	fundamental	problems	that	arise	when	transferring	data	over	the	network:

data	is	interpreted	correctly	according	to	the	endianness

the	bounds	of	the	packet	are	preserved	(one	send	==	one	receive)

The	sf::Packet	class	provides	both	input	and	output	modes.	It	is	designed	to	follow	the	behavior	of	standard
C++	streams,	using	operators	>>	and	<<	to	extract	and	insert	data.

It	 is	recommended	to	use	only	fixed-size	types	(like	sf::Int32,	etc.),	 to	avoid	possible	differences	between
the	sender	and	the	receiver.	Indeed,	the	native	C++	types	may	have	different	sizes	on	two	platforms	and
your	data	may	be	corrupted	if	that	happens.

Usage	example:

sf::Uint32	x	=	24;

std::string	s	=	"hello";

double	d	=	5.89;

//	Group	the	variables	to	send	into	a	packet

sf::Packet	packet;

packet	<<	x	<<	s	<<	d;

//	Send	it	over	the	network	(socket	is	a	valid	sf::TcpSocket)

socket.send(packet);

//	Receive	the	packet	at	the	other	end

sf::Packet	packet;

socket.receive(packet);

//	Extract	the	variables	contained	in	the	packet

sf::Uint32	x;

std::string	s;

double	d;

if	(packet	>>	x	>>	s	>>	d)

{

	//	Data	extracted	successfully...

}

Packets	have	built-in	operator	>>	and	<<	overloads	for	standard	types:

bool

fixed-size	integer	types	(sf::Int8/16/32,	sf::Uint8/16/32)

floating	point	numbers	(float,	double)

string	types	(char*,	wchar_t*,	std::string,	std::wstring,	sf::String)

Like	standard	streams,	it	is	also	possible	to	define	your	own	overloads	of	operators	>>	and	<<	in	order	to
handle	your	custom	types.

struct	MyStruct

{

	float							number;

				sf::Int8				integer;

				std::string	str;

};

sf::Packet&	operator	<<(sf::Packet&	packet,	const	MyStruct&	m)

{

	return	packet	<<	m.number	<<	m.integer	<<	m.str;

}

sf::Packet&	operator	>>(sf::Packet&	packet,	MyStruct&	m)

{

	return	packet	>>	m.number	>>	m.integer	>>	m.str;

}

Packets	also	provide	an	extra	 feature	that	allows	to	apply	custom	transformations	to	 the	data	before	 it	 is
sent,	and	after	 it	 is	 received.	This	 is	 typically	used	 to	handle	automatic	compression	or	encryption	of	 the
data.	This	is	achieved	by	inheriting	from	sf::Packet,	and	overriding	the	onSend	and	onReceive	functions.

Here	is	an	example:

class	ZipPacket	:	public	sf::Packet

{

	virtual	const	void*	onSend(std::size_t&	size)

				{

	const	void*	srcData	=	getData();

								std::size_t	srcSize	=	getDataSize();

	return	MySuperZipFunction(srcData,	srcSize,	&size);

				}

	virtual	void	onReceive(const	void*	data,	std::size_t	size)

				{

								std::size_t	dstSize;

	const	void*	dstData	=	MySuperUnzipFunction(data,	size,	&dstSize);

	append(dstData,	dstSize);

				}

};

//	Use	like	regular	packets:

ZipPacket	packet;

packet	<<	x	<<	s	<<	d;

...

See	also
sf::TcpSocket,	sf::UdpSocket

Definition	at	line	47	of	file	Packet.hpp.

Constructor	&	Destructor	Documentation

sf::Packet::Packet ()

Default	constructor.

Creates	an	empty	packet.

virtual	sf::Packet::~Packet ()

Virtual	destructor.

Member	Function	Documentation

void	sf::Packet::append (const	void	*	 data,
std::size_t	 sizeInBytes	
)

Append	data	to	the	end	of	the	packet.

Parameters
data Pointer	to	the	sequence	of	bytes	to	append
sizeInBytesNumber	of	bytes	to	append

See	also
clear

void	sf::Packet::clear ()

Clear	the	packet.

After	calling	Clear,	the	packet	is	empty.

See	also
append

bool	sf::Packet::endOfPacket () const

Tell	if	the	reading	position	has	reached	the	end	of	the	packet.

This	function	is	useful	to	know	if	there	is	some	data	left	to	be	read,	without	actually	reading	it.

Returns
True	if	all	data	was	read,	false	otherwise

See	also
operator	bool

const	void*	sf::Packet::getData () const

Get	a	pointer	to	the	data	contained	in	the	packet.

Warning:	 the	 returned	 pointer	 may	 become	 invalid	 after	 you	 append	 data	 to	 the	 packet,	 therefore	 it
should	never	be	stored.	The	return	pointer	is	NULL	if	the	packet	is	empty.

Returns
Pointer	to	the	data

See	also
getDataSize

std::size_t	sf::Packet::getDataSize () const

Get	the	size	of	the	data	contained	in	the	packet.

This	function	returns	the	number	of	bytes	pointed	to	by	what	getData	returns.

Returns

Data	size,	in	bytes

See	also
getData

virtual	void	sf::Packet::onReceive (const	void	*	 data,
std::size_t	 size	
)

Called	after	the	packet	is	received	over	the	network.

This	 function	 can	be	defined	by	derived	classes	 to	 transform	 the	data	after	 it	 is	 received;	 this	 can	be
used	for	decompression,	decryption,	etc.	The	function	receives	a	pointer	to	the	received	data,	and	must
fill	 the	 packet	 with	 the	 transformed	 bytes.	 The	 default	 implementation	 fills	 the	 packet	 directly	 without
transforming	the	data.

Parameters
data Pointer	to	the	received	bytes
size Number	of	bytes

See	also
onSend

virtual	const	void*	sf::Packet::onSend (std::size_t	&	 size)

Called	before	the	packet	is	sent	over	the	network.

This	function	can	be	defined	by	derived	classes	to	transform	the	data	before	it	is	sent;	this	can	be	used
for	compression,	encryption,	etc.	The	function	must	return	a	pointer	to	the	modified	data,	as	well	as	the
number	of	bytes	pointed.	The	default	implementation	provides	the	packet's	data	without	transforming	it.

Parameters
size Variable	to	fill	with	the	size	of	data	to	send

Returns
Pointer	to	the	array	of	bytes	to	send

See	also
onReceive

sf::Packet::operator	BoolType () const

Test	the	validity	of	the	packet,	for	reading.

This	 operator	 allows	 to	 test	 the	 packet	 as	 a	 boolean	 variable,	 to	 check	 if	 a	 reading	 operation	 was
successful.

A	packet	will	be	in	an	invalid	state	if	it	has	no	more	data	to	read.

This	behavior	is	the	same	as	standard	C++	streams.

Usage	example:

float	x;

packet	>>	x;

if	(packet)

{

	//	ok,	x	was	extracted	successfully

}

//	--	or	--

float	x;

if	(packet	>>	x)

{

	//	ok,	x	was	extracted	successfully

}

Don't	 focus	on	 the	 return	 type,	 it's	equivalent	 to	bool	but	 it	disallows	unwanted	 implicit	 conversions	 to

integer	or	pointer	types.

Returns
True	if	last	data	extraction	from	packet	was	successful

See	also
endOfPacket

Packet&	sf::Packet::operator<< (bool	 data)

Overloads	of	operator	<<	to	write	data	into	the	packet.

Packet&	sf::Packet::operator>> (bool	&	 data)

Overloads	of	operator	>>	to	read	data	from	the	packet.

The	documentation	for	this	class	was	generated	from	the	following	file:
Packet.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Types	|	Public	Member	Functions	|	Protected	Types	|	Protected	Member	Functions	|	Friends	|	List	of	all	members

sf::Socket	Class	Reference
Network	module

Base	class	for	all	the	socket	types.	More...

#include	<Socket.hpp>

Inheritance	diagram	for	sf::Socket:

Public	Types

enum		

Status	{	
		Done,	NotReady,	Partial,	Disconnected,	
		Error	
}

	 Status	codes	that	may	be	returned	by	socket	functions.	More...
	
enum		 {	AnyPort	=	0	}
	 Some	special	values	used	by	sockets.	More...
	

Public	Member	Functions
virtual	 ~Socket	()
	 Destructor.	More...
	

void	 setBlocking	(bool	blocking)
	 Set	the	blocking	state	of	the	socket.	More...
	

bool	 isBlocking	()	const
	 Tell	whether	the	socket	is	in	blocking	or	non-blocking	mode.	More...
	

Protected	Types
enum		 Type	{	Tcp,	Udp	}
	 Types	of	protocols	that	the	socket	can	use.	More...
	

Protected	Member	Functions
	 Socket	(Type	type)

	 Default	constructor.	More...
	
SocketHandle	 getHandle	()	const
	 Return	the	internal	handle	of	the	socket.	More...
	

void	 create	()
	 Create	the	internal	representation	of	the	socket.	More...
	

void	 create	(SocketHandle	handle)
	 Create	the	internal	representation	of	the	socket	from	a	socket	handle.	
	

void	 close	()
	 Close	the	socket	gracefully.	More...
	

Friends
class	 SocketSelector
	

Detailed	Description

Base	class	for	all	the	socket	types.

This	class	mainly	defines	internal	stuff	to	be	used	by	derived	classes.

The	only	public	 features	 that	 it	 defines,	 and	which	 is	 therefore	 common	 to	all	 the	 socket	 classes,	 is	 the
blocking	state.	All	sockets	can	be	set	as	blocking	or	non-blocking.

In	 blocking	mode,	 socket	 functions	will	 hang	 until	 the	 operation	 completes,	which	means	 that	 the	 entire
program	 (well,	 in	 fact	 the	 current	 thread	 if	 you	 use	multiple	 ones)	 will	 be	 stuck	 waiting	 for	 your	 socket
operation	to	complete.

In	non-blocking	mode,	all	the	socket	functions	will	return	immediately.	If	the	socket	is	not	ready	to	complete
the	requested	operation,	the	function	simply	returns	the	proper	status	code	(

The	 default	 mode,	 which	 is	 blocking,	 is	 the	 one	 that	 is	 generally	 used,	 in	 combination	 with	 threads	 or
selectors.	The	non-blocking	mode	is	rather	used	in	real-time	applications	that	run	an	endless	loop	that	can
poll	the	socket	often	enough,	and	cannot	afford	blocking	this	loop.

See	also
sf::TcpListener,	sf::TcpSocket,	sf::UdpSocket

Definition	at	line	45	of	file	Socket.hpp.

Member	Enumeration	Documentation

anonymous	enum

Some	special	values	used	by	sockets.

Enumerator

AnyPort	
Special	value	that	tells	the	system	to	pick	any	available	port.

Definition	at	line	66	of	file	Socket.hpp.

enum	sf::Socket::Status

Status	codes	that	may	be	returned	by	socket	functions.

Enumerator

Done	
The	socket	has	sent	/	received	the	data.

NotReady	
The	socket	is	not	ready	to	send	/	receive	data	yet.

Partial	
The	socket	sent	a	part	of	the	data.

Disconnected	
The	TCP	socket	has	been	disconnected.

Error	 An	unexpected	error	happened.

Definition	at	line	53	of	file	Socket.hpp.

enum	sf::Socket::Type

Types	of	protocols	that	the	socket	can	use.

Enumerator

Tcp	
TCP	protocol.

Udp	
UDP	protocol.

Definition	at	line	114	of	file	Socket.hpp.

Constructor	&	Destructor	Documentation

virtual	sf::Socket::~Socket ()

Destructor.

sf::Socket::Socket (Type	 type)

Default	constructor.

This	constructor	can	only	be	accessed	by	derived	classes.

Parameters
type Type	of	the	socket	(TCP	or	UDP)

Member	Function	Documentation

void	sf::Socket::close ()

Close	the	socket	gracefully.

This	function	can	only	be	accessed	by	derived	classes.

void	sf::Socket::create ()

Create	the	internal	representation	of	the	socket.

This	function	can	only	be	accessed	by	derived	classes.

void	sf::Socket::create (SocketHandle	 handle)

Create	the	internal	representation	of	the	socket	from	a	socket	handle.

This	function	can	only	be	accessed	by	derived	classes.

Parameters
handleOS-specific	handle	of	the	socket	to	wrap

SocketHandle	sf::Socket::getHandle () const

Return	the	internal	handle	of	the	socket.

The	 returned	 handle	 may	 be	 invalid	 if	 the	 socket	 was	 not	 created	 yet	 (or	 already	 destroyed).	 This
function	can	only	be	accessed	by	derived	classes.

Returns
The	internal	(OS-specific)	handle	of	the	socket

bool	sf::Socket::isBlocking () const

Tell	whether	the	socket	is	in	blocking	or	non-blocking	mode.

Returns
True	if	the	socket	is	blocking,	false	otherwise

See	also
setBlocking

void	sf::Socket::setBlocking (bool	 blocking)

Set	the	blocking	state	of	the	socket.

In	blocking	mode,	calls	will	not	return	until	they	have	completed	their	task.	For	example,	a	call	to	Receive
in	 blocking	mode	won't	 return	 until	 some	data	was	 actually	 received.	 In	 non-blocking	mode,	 calls	will
always	return	 immediately,	using	the	return	code	to	signal	whether	 there	was	data	available	or	not.	By
default,	all	sockets	are	blocking.

Parameters
blocking True	to	set	the	socket	as	blocking,	false	for	non-blocking

See	also
isBlocking

The	documentation	for	this	class	was	generated	from	the	following	file:
Socket.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Member	Functions	|	List	of	all	members

sf::SocketSelector	Class	Reference
Network	module

Multiplexer	that	allows	to	read	from	multiple	sockets.	More...

#include	<SocketSelector.hpp>

Public	Member	Functions
	 SocketSelector	()

	 Default	constructor.	More...
	

	 SocketSelector	(const	SocketSelector	©)
	 Copy	constructor.	More...
	

	 ~SocketSelector	()
	 Destructor.	More...
	

void	 add	(Socket	&socket)
	 Add	a	new	socket	to	the	selector.	More...
	

void	 remove	(Socket	&socket)
	 Remove	a	socket	from	the	selector.	More...
	

void	 clear	()
	 Remove	all	the	sockets	stored	in	the	selector.	More...
	

bool	 wait	(Time	timeout=Time::Zero)
	 Wait	until	one	or	more	sockets	are	ready	to	receive.	More...
	

bool	 isReady	(Socket	&socket)	const
	 Test	a	socket	to	know	if	it	is	ready	to	receive	data.	More...
	
SocketSelector	&	 operator=	(const	SocketSelector	&right)
	 Overload	of	assignment	operator.	More...
	

Detailed	Description

Multiplexer	that	allows	to	read	from	multiple	sockets.

Socket	selectors	provide	a	way	to	wait	until	some	data	is	available	on	a	set	of	sockets,	instead	of	just	one.

This	 is	 convenient	when	 you	 have	multiple	 sockets	 that	may	 possibly	 receive	 data,	 but	 you	 don't	 know
which	one	will	be	ready	first.	In	particular,	it	avoids	to	use	a	thread	for	each	socket;	with	selectors,	a	single
thread	can	handle	all	the	sockets.

All	types	of	sockets	can	be	used	in	a	selector:

sf::TcpListener

sf::TcpSocket

sf::UdpSocket

A	selector	doesn't	store	its	own	copies	of	the	sockets	(socket	classes	are	not	copyable	anyway),	it	simply
keeps	a	reference	to	the	original	sockets	that	you	pass	to	the	"add"	function.	Therefore,	you	can't	use	the
selector	as	a	socket	container,	you	must	store	them	outside	and	make	sure	that	they	are	alive	as	long	as
they	are	used	in	the	selector.

Using	a	selector	is	simple:

populate	the	selector	with	all	the	sockets	that	you	want	to	observe

make	it	wait	until	there	is	data	available	on	any	of	the	sockets

test	each	socket	to	find	out	which	ones	are	ready

Usage	example:

//	Create	a	socket	to	listen	to	new	connections

sf::TcpListener	listener;

listener.listen(55001);

//	Create	a	list	to	store	the	future	clients

std::list<sf::TcpSocket*>	clients;

//	Create	a	selector

sf::SocketSelector	selector;

//	Add	the	listener	to	the	selector

selector.add(listener);

//	Endless	loop	that	waits	for	new	connections

while	(running)

{

	//	Make	the	selector	wait	for	data	on	any	socket

	if	(selector.wait())

				{

	//	Test	the	listener

	if	(selector.isReady(listener))

								{

	//	The	listener	is	ready:	there	is	a	pending	connection

	sf::TcpSocket*	client	=	new	sf::TcpSocket;

	if	(listener.accept(*client)	==	sf::Socket::Done)

												{

	//	Add	the	new	client	to	the	clients	list

																clients.push_back(client);

	//	Add	the	new	client	to	the	selector	so	that	we	will

	//	be	notified	when	he	sends	something

																selector.add(*client);

												}

	else

												{

	//	Error,	we	won't	get	a	new	connection,	delete	the	socket

	delete	client;

												}

								}

	else

								{

	//	The	listener	socket	is	not	ready,	test	all	other	sockets	(the	clients)

	for	(std::list<sf::TcpSocket*>::iterator	it	=	clients.begin();	it	!=	clients.end();	++it)

												{

	sf::TcpSocket&	client	=	**it;

	if	(selector.isReady(client))

																{

	//	The	client	has	sent	some	data,	we	can	receive	it

	sf::Packet	packet;

	if	(client.receive(packet)	==	sf::Socket::Done)

																				{

																								...

																				}

																}

												}

								}

				}

}

See	also
sf::Socket

Definition	at	line	43	of	file	SocketSelector.hpp.

Constructor	&	Destructor	Documentation

sf::SocketSelector::SocketSelector ()

Default	constructor.

sf::SocketSelector::SocketSelector (const	SocketSelector	&	 copy)

Copy	constructor.

Parameters
copy Instance	to	copy

sf::SocketSelector::~SocketSelector ()

Destructor.

Member	Function	Documentation

void	sf::SocketSelector::add (Socket	&	 socket)

Add	a	new	socket	to	the	selector.

This	 function	keeps	a	weak	 reference	 to	 the	socket,	 so	you	have	 to	make	sure	 that	 the	socket	 is	not
destroyed	while	it	is	stored	in	the	selector.	This	function	does	nothing	if	the	socket	is	not	valid.

Parameters
socket Reference	to	the	socket	to	add

See	also
remove,	clear

void	sf::SocketSelector::clear ()

Remove	all	the	sockets	stored	in	the	selector.

This	function	doesn't	destroy	any	instance,	it	simply	removes	all	the	references	that	the	selector	has	to
external	sockets.

See	also
add,	remove

bool	sf::SocketSelector::isReady (Socket	&	 socket) const

Test	a	socket	to	know	if	it	is	ready	to	receive	data.

This	 function	must	be	used	after	a	call	 to	Wait,	 to	know	which	sockets	are	 ready	 to	 receive	data.	 If	a
socket	is	ready,	a	call	to	receive	will	never	block	because	we	know	that	there	is	data	available	to	read.
Note	 that	 if	 this	 function	 returns	 true	 for	 a	 TcpListener,	 this	 means	 that	 it	 is	 ready	 to	 accept	 a	 new
connection.

Parameters
socket Socket	to	test

Returns
True	if	the	socket	is	ready	to	read,	false	otherwise

See	also
isReady

SocketSelector&	sf::SocketSelector::operator= (const	SocketSelector

Overload	of	assignment	operator.

Parameters
right Instance	to	assign

Returns
Reference	to	self

void	sf::SocketSelector::remove (Socket	&	 socket)

Remove	a	socket	from	the	selector.

This	function	doesn't	destroy	the	socket,	it	simply	removes	the	reference	that	the	selector	has	to	it.

Parameters
socket Reference	to	the	socket	to	remove

See	also
add,	clear

bool	sf::SocketSelector::wait (Time	 timeout	=	Time::Zero)

Wait	until	one	or	more	sockets	are	ready	to	receive.

This	 function	returns	as	soon	as	at	 least	one	socket	has	some	data	available	 to	be	received.	To	know
which	sockets	are	ready,	use	the	isReady	function.	If	you	use	a	timeout	and	no	socket	 is	ready	before
the	timeout	is	over,	the	function	returns	false.

Parameters
timeoutMaximum	time	to	wait,	(use	Time::Zero	for	infinity)

Returns
True	if	there	are	sockets	ready,	false	otherwise

See	also
isReady

The	documentation	for	this	class	was	generated	from	the	following	file:
SocketSelector.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Types	|	Public	Member	Functions	|	Protected	Types	|	Protected	Member	Functions	|	List	of	all	members

sf::TcpListener	Class	Reference
Network	module

Socket	that	listens	to	new	TCP	connections.	More...

#include	<TcpListener.hpp>

Inheritance	diagram	for	sf::TcpListener:

Public	Types

enum		

Status	{	
		Done,	NotReady,	Partial,	Disconnected,	
		Error	
}

	 Status	codes	that	may	be	returned	by	socket	functions.	More...
	
enum		 {	AnyPort	=	0	}
	 Some	special	values	used	by	sockets.	More...
	

Public	Member	Functions
	 TcpListener	()

	 Default	constructor.	More...
	
unsigned	short	 getLocalPort	()	const
	 Get	the	port	to	which	the	socket	is	bound	locally.	More...
	

Status	 listen	(unsigned	short	port,	const	IpAddress	&address=IpAddress::Any
	 Start	listening	for	connections.	More...
	

void	 close	()
	 Stop	listening	and	close	the	socket.	More...
	

Status	 accept	(TcpSocket	&socket)
	 Accept	a	new	connection.	More...
	

void	 setBlocking	(bool	blocking)
	 Set	the	blocking	state	of	the	socket.	More...
	

bool	 isBlocking	()	const
	 Tell	whether	the	socket	is	in	blocking	or	non-blocking	mode.	
	

Protected	Types
enum		 Type	{	Tcp,	Udp	}
	 Types	of	protocols	that	the	socket	can	use.	More...
	

Protected	Member	Functions
SocketHandle	 getHandle	()	const
	 Return	the	internal	handle	of	the	socket.	More...
	

void	 create	()
	 Create	the	internal	representation	of	the	socket.	More...
	

void	 create	(SocketHandle	handle)
	 Create	the	internal	representation	of	the	socket	from	a	socket	handle.	
	

Detailed	Description

Socket	that	listens	to	new	TCP	connections.

A	 listener	socket	 is	a	special	 type	of	socket	 that	 listens	to	a	given	port	and	waits	 for	connections	on	that
port.

This	is	all	it	can	do.

When	 a	 new	 connection	 is	 received,	 you	 must	 call	 accept	 and	 the	 listener	 returns	 a	 new	 instance	 of
sf::TcpSocket	that	is	properly	initialized	and	can	be	used	to	communicate	with	the	new	client.

Listener	 sockets	 are	 specific	 to	 the	 TCP	 protocol,	 UDP	 sockets	 are	 connectionless	 and	 can	 therefore
communicate	 directly.	 As	 a	 consequence,	 a	 listener	 socket	 will	 always	 return	 the	 new	 connections	 as
sf::TcpSocket	instances.

A	listener	is	automatically	closed	on	destruction,	like	all	other	types	of	socket.	However	if	you	want	to	stop
listening	before	the	socket	is	destroyed,	you	can	call	its	close()	function.

Usage	example:

//	Create	a	listener	socket	and	make	it	wait	for	new

//	connections	on	port	55001

sf::TcpListener	listener;

listener.listen(55001);

//	Endless	loop	that	waits	for	new	connections

while	(running)

{

	sf::TcpSocket	client;

	if	(listener.accept(client)	==	sf::Socket::Done)

				{

	//	A	new	client	just	connected!

								std::cout	<<	"New	connection	received	from	"	<<	client.getRemoteAddress

								doSomethingWith(client);

				}

}

See	also
sf::TcpSocket,	sf::Socket

Definition	at	line	44	of	file	TcpListener.hpp.

Member	Enumeration	Documentation

anonymous	enum

Some	special	values	used	by	sockets.

Enumerator

AnyPort	
Special	value	that	tells	the	system	to	pick	any	available	port.

Definition	at	line	66	of	file	Socket.hpp.

enum	sf::Socket::Status

Status	codes	that	may	be	returned	by	socket	functions.

Enumerator

Done	
The	socket	has	sent	/	received	the	data.

NotReady	
The	socket	is	not	ready	to	send	/	receive	data	yet.

Partial	
The	socket	sent	a	part	of	the	data.

Disconnected	
The	TCP	socket	has	been	disconnected.

Error	 An	unexpected	error	happened.

Definition	at	line	53	of	file	Socket.hpp.

enum	sf::Socket::Type

Types	of	protocols	that	the	socket	can	use.

Enumerator

Tcp	
TCP	protocol.

Udp	
UDP	protocol.

Definition	at	line	114	of	file	Socket.hpp.

Constructor	&	Destructor	Documentation

sf::TcpListener::TcpListener ()

Default	constructor.

Member	Function	Documentation

Status	sf::TcpListener::accept (TcpSocket	&	 socket)

Accept	a	new	connection.

If	the	socket	is	in	blocking	mode,	this	function	will	not	return	until	a	connection	is	actually	received.

Parameters
socket Socket	that	will	hold	the	new	connection

Returns
Status	code

See	also
listen

void	sf::TcpListener::close ()

Stop	listening	and	close	the	socket.

This	function	gracefully	stops	the	listener.	If	the	socket	is	not	listening,	this	function	has	no	effect.

See	also
listen

void	sf::Socket::create ()

Create	the	internal	representation	of	the	socket.

This	function	can	only	be	accessed	by	derived	classes.

void	sf::Socket::create (SocketHandle	 handle)

Create	the	internal	representation	of	the	socket	from	a	socket	handle.

This	function	can	only	be	accessed	by	derived	classes.

Parameters
handleOS-specific	handle	of	the	socket	to	wrap

SocketHandle	sf::Socket::getHandle () const

Return	the	internal	handle	of	the	socket.

The	 returned	 handle	 may	 be	 invalid	 if	 the	 socket	 was	 not	 created	 yet	 (or	 already	 destroyed).	 This
function	can	only	be	accessed	by	derived	classes.

Returns
The	internal	(OS-specific)	handle	of	the	socket

unsigned	short	sf::TcpListener::getLocalPort () const

Get	the	port	to	which	the	socket	is	bound	locally.

If	the	socket	is	not	listening	to	a	port,	this	function	returns	0.

Returns
Port	to	which	the	socket	is	bound

See	also
listen

bool	sf::Socket::isBlocking () const

Tell	whether	the	socket	is	in	blocking	or	non-blocking	mode.

Returns
True	if	the	socket	is	blocking,	false	otherwise

See	also
setBlocking

Status	sf::TcpListener::listen (unsigned	short	 port,
const	IpAddress	&	 address	=	IpAddress::Any
)

Start	listening	for	connections.

This	 functions	makes	 the	socket	 listen	 to	 the	specified	port,	waiting	 for	new	connections.	 If	 the	socket
was	previously	listening	to	another	port,	it	will	be	stopped	first	and	bound	to	the	new	port.

Parameters
port Port	to	listen	for	new	connections
address Address	of	the	interface	to	listen	on

Returns
Status	code

See	also
accept,	close

void	sf::Socket::setBlocking (bool	 blocking)

Set	the	blocking	state	of	the	socket.

In	blocking	mode,	calls	will	not	return	until	they	have	completed	their	task.	For	example,	a	call	to	Receive
in	 blocking	mode	won't	 return	 until	 some	data	was	 actually	 received.	 In	 non-blocking	mode,	 calls	will
always	return	 immediately,	using	the	return	code	to	signal	whether	 there	was	data	available	or	not.	By
default,	all	sockets	are	blocking.

Parameters
blocking True	to	set	the	socket	as	blocking,	false	for	non-blocking

See	also
isBlocking

The	documentation	for	this	class	was	generated	from	the	following	file:
TcpListener.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Classes	|	Public	Types	|	Public	Member	Functions	|	Protected	Types	|	Protected	Member	Functions	|	Friends	|	List	of	all	members

sf::TcpSocket	Class	Reference
Network	module

Specialized	socket	using	the	TCP	protocol.	More...

#include	<TcpSocket.hpp>

Inheritance	diagram	for	sf::TcpSocket:

Public	Types

enum		

Status	{	
		Done,	NotReady,	Partial,	Disconnected,	
		Error	
}

	 Status	codes	that	may	be	returned	by	socket	functions.	More...
	
enum		 {	AnyPort	=	0	}
	 Some	special	values	used	by	sockets.	More...
	

Public	Member	Functions
	 TcpSocket	()

	 Default	constructor.	More...
	
unsigned	short	 getLocalPort	()	const
	 Get	the	port	to	which	the	socket	is	bound	locally.	More...
	

IpAddress	 getRemoteAddress	()	const
	 Get	the	address	of	the	connected	peer.	More...
	
unsigned	short	 getRemotePort	()	const
	 Get	the	port	of	the	connected	peer	to	which	the	socket	is	connected.	
	

Status	 connect	(const	IpAddress	&remoteAddress,	unsigned	short	remotePort,	timeout=Time::Zero)
	 Connect	the	socket	to	a	remote	peer.	More...
	

void	 disconnect	()
	 Disconnect	the	socket	from	its	remote	peer.	More...
	

Status	 send	(const	void	*data,	std::size_t	size)
	 Send	raw	data	to	the	remote	peer.	More...
	

Status	 send	(const	void	*data,	std::size_t	size,	std::size_t	&sent)
	 Send	raw	data	to	the	remote	peer.	More...
	

Status	 receive	(void	*data,	std::size_t	size,	std::size_t	&received)
	 Receive	raw	data	from	the	remote	peer.	More...
	

Status	 send	(Packet	&packet)
	 Send	a	formatted	packet	of	data	to	the	remote	peer.	More...
	

Status	 receive	(Packet	&packet)
	 Receive	a	formatted	packet	of	data	from	the	remote	peer.	
	

void	 setBlocking	(bool	blocking)
	 Set	the	blocking	state	of	the	socket.	More...
	

bool	 isBlocking	()	const
	 Tell	whether	the	socket	is	in	blocking	or	non-blocking	mode.	
	

Protected	Types
enum		 Type	{	Tcp,	Udp	}
	 Types	of	protocols	that	the	socket	can	use.	More...
	

Protected	Member	Functions
SocketHandle	 getHandle	()	const
	 Return	the	internal	handle	of	the	socket.	More...
	

void	 create	()
	 Create	the	internal	representation	of	the	socket.	More...
	

void	 create	(SocketHandle	handle)
	 Create	the	internal	representation	of	the	socket	from	a	socket	handle.	
	

void	 close	()
	 Close	the	socket	gracefully.	More...
	

Friends
class	 TcpListener
	

Detailed	Description

Specialized	socket	using	the	TCP	protocol.

TCP	 is	 a	 connected	protocol,	which	means	 that	 a	TCP	socket	 can	only	 communicate	with	 the	host	 it	 is
connected	to.

It	can't	send	or	receive	anything	if	it	is	not	connected.

The	TCP	protocol	is	reliable	but	adds	a	slight	overhead.	It	ensures	that	your	data	will	always	be	received	in
order	and	without	errors	(no	data	corrupted,	lost	or	duplicated).

When	 a	 socket	 is	 connected	 to	 a	 remote	 host,	 you	 can	 retrieve	 informations	 about	 this	 host	 with	 the
getRemoteAddress	and	getRemotePort	 functions.	You	can	also	get	 the	 local	 port	 to	which	 the	 socket	 is
bound	(which	is	automatically	chosen	when	the	socket	is	connected),	with	the	getLocalPort	function.

Sending	and	receiving	data	can	use	either	the	low-level	or	the	high-level	functions.	The	low-level	functions
process	a	raw	sequence	of	bytes,	and	cannot	ensure	that	one	call	 to	Send	will	exactly	match	one	call	 to
Receive	at	the	other	end	of	the	socket.

The	high-level	 interface	uses	packets	 (see	 sf::Packet),	which	are	easier	 to	use	and	provide	more	safety
regarding	the	data	that	 is	exchanged.	You	can	look	at	the	 sf::Packet	class	to	get	more	details	about	how
they	work.

The	 socket	 is	 automatically	 disconnected	 when	 it	 is	 destroyed,	 but	 if	 you	 want	 to	 explicitly	 close	 the
connection	while	the	socket	instance	is	still	alive,	you	can	call	disconnect.

Usage	example:

//	-----	The	client	-----

//	Create	a	socket	and	connect	it	to	192.168.1.50	on	port	55001

sf::TcpSocket	socket;

socket.connect("192.168.1.50",	55001);

//	Send	a	message	to	the	connected	host

std::string	message	=	"Hi,	I	am	a	client";

socket.send(message.c_str(),	message.size()	+	1);

//	Receive	an	answer	from	the	server

char	buffer[1024];

std::size_t	received	=	0;

socket.receive(buffer,	sizeof(buffer),	received);

std::cout	<<	"The	server	said:	"	<<	buffer	<<	std::endl;

//	-----	The	server	-----

//	Create	a	listener	to	wait	for	incoming	connections	on	port	55001

sf::TcpListener	listener;

listener.listen(55001);

//	Wait	for	a	connection

sf::TcpSocket	socket;

listener.accept(socket);

std::cout	<<	"New	client	connected:	"	<<	socket.getRemoteAddress()	<<	std::endl;

//	Receive	a	message	from	the	client

char	buffer[1024];

std::size_t	received	=	0;

socket.receive(buffer,	sizeof(buffer),	received);

std::cout	<<	"The	client	said:	"	<<	buffer	<<	std::endl;

//	Send	an	answer

std::string	message	=	"Welcome,	client";

socket.send(message.c_str(),	message.size()	+	1);

See	also
sf::Socket,	sf::UdpSocket,	sf::Packet

Definition	at	line	46	of	file	TcpSocket.hpp.

Member	Enumeration	Documentation

anonymous	enum

Some	special	values	used	by	sockets.

Enumerator

AnyPort	
Special	value	that	tells	the	system	to	pick	any	available	port.

Definition	at	line	66	of	file	Socket.hpp.

enum	sf::Socket::Status

Status	codes	that	may	be	returned	by	socket	functions.

Enumerator

Done	
The	socket	has	sent	/	received	the	data.

NotReady	
The	socket	is	not	ready	to	send	/	receive	data	yet.

Partial	
The	socket	sent	a	part	of	the	data.

Disconnected	
The	TCP	socket	has	been	disconnected.

Error	 An	unexpected	error	happened.

Definition	at	line	53	of	file	Socket.hpp.

enum	sf::Socket::Type

Types	of	protocols	that	the	socket	can	use.

Enumerator

Tcp	
TCP	protocol.

Udp	
UDP	protocol.

Definition	at	line	114	of	file	Socket.hpp.

Constructor	&	Destructor	Documentation

sf::TcpSocket::TcpSocket ()

Default	constructor.

Member	Function	Documentation

void	sf::Socket::close ()

Close	the	socket	gracefully.

This	function	can	only	be	accessed	by	derived	classes.

Status	sf::TcpSocket::connect (const	IpAddress	&	 remoteAddress,
unsigned	short	 remotePort,
Time	 timeout	=	Time::Zero

)

Connect	the	socket	to	a	remote	peer.

In	blocking	mode,	this	function	may	take	a	while,	especially	if	the	remote	peer	is	not	reachable.	The	last
parameter	 allows	 you	 to	 stop	 trying	 to	 connect	 after	 a	 given	 timeout.	 If	 the	 socket	 was	 previously
connected,	it	is	first	disconnected.

Parameters
remoteAddress Address	of	the	remote	peer
remotePort Port	of	the	remote	peer
timeout Optional	maximum	time	to	wait

Returns
Status	code

See	also

disconnect

void	sf::Socket::create ()

Create	the	internal	representation	of	the	socket.

This	function	can	only	be	accessed	by	derived	classes.

void	sf::Socket::create (SocketHandle	 handle)

Create	the	internal	representation	of	the	socket	from	a	socket	handle.

This	function	can	only	be	accessed	by	derived	classes.

Parameters
handleOS-specific	handle	of	the	socket	to	wrap

void	sf::TcpSocket::disconnect ()

Disconnect	the	socket	from	its	remote	peer.

This	function	gracefully	closes	the	connection.	If	the	socket	is	not	connected,	this	function	has	no	effect.

See	also
connect

SocketHandle	sf::Socket::getHandle () const

Return	the	internal	handle	of	the	socket.

The	 returned	 handle	 may	 be	 invalid	 if	 the	 socket	 was	 not	 created	 yet	 (or	 already	 destroyed).	 This
function	can	only	be	accessed	by	derived	classes.

Returns
The	internal	(OS-specific)	handle	of	the	socket

unsigned	short	sf::TcpSocket::getLocalPort () const

Get	the	port	to	which	the	socket	is	bound	locally.

If	the	socket	is	not	connected,	this	function	returns	0.

Returns
Port	to	which	the	socket	is	bound

See	also
connect,	getRemotePort

IpAddress	sf::TcpSocket::getRemoteAddress () const

Get	the	address	of	the	connected	peer.

It	the	socket	is	not	connected,	this	function	returns	sf::IpAddress::None.

Returns
Address	of	the	remote	peer

See	also

getRemotePort

unsigned	short	sf::TcpSocket::getRemotePort () const

Get	the	port	of	the	connected	peer	to	which	the	socket	is	connected.

If	the	socket	is	not	connected,	this	function	returns	0.

Returns
Remote	port	to	which	the	socket	is	connected

See	also
getRemoteAddress

bool	sf::Socket::isBlocking () const

Tell	whether	the	socket	is	in	blocking	or	non-blocking	mode.

Returns
True	if	the	socket	is	blocking,	false	otherwise

See	also
setBlocking

Status	sf::TcpSocket::receive (void	*	 data,
std::size_t	 size,
std::size_t	&	 received	
)

Receive	raw	data	from	the	remote	peer.

In	blocking	mode,	this	function	will	wait	until	some	bytes	are	actually	received.	This	function	will	fail	if	the
socket	is	not	connected.

Parameters
data Pointer	to	the	array	to	fill	with	the	received	bytes
size Maximum	number	of	bytes	that	can	be	received
received This	variable	is	filled	with	the	actual	number	of	bytes	received

Returns
Status	code

See	also
send

Status	sf::TcpSocket::receive (Packet	&	 packet)

Receive	a	formatted	packet	of	data	from	the	remote	peer.

In	blocking	mode,	this	function	will	wait	until	the	whole	packet	has	been	received.	This	function	will	fail	if
the	socket	is	not	connected.

Parameters
packet Packet	to	fill	with	the	received	data

Returns
Status	code

See	also
send

Status	sf::TcpSocket::send (const	void	*	 data,
std::size_t	 size	
)

Send	raw	data	to	the	remote	peer.

To	 be	 able	 to	 handle	 partial	 sends	 over	 non-blocking	 sockets,	 use	 the	
std::size_t&)	overload	instead.	This	function	will	fail	if	the	socket	is	not	connected.

Parameters
data Pointer	to	the	sequence	of	bytes	to	send
size Number	of	bytes	to	send

Returns
Status	code

See	also
receive

Status	sf::TcpSocket::send (const	void	*	 data,
std::size_t	 size,
std::size_t	&	 sent	
)

Send	raw	data	to	the	remote	peer.

This	function	will	fail	if	the	socket	is	not	connected.

Parameters
data Pointer	to	the	sequence	of	bytes	to	send
size Number	of	bytes	to	send

sent The	number	of	bytes	sent	will	be	written	here

Returns
Status	code

See	also
receive

Status	sf::TcpSocket::send (Packet	&	 packet)

Send	a	formatted	packet	of	data	to	the	remote	peer.

In	 non-blocking	 mode,	 if	 this	 function	 returns	 sf::Socket::Partial,	 you	
unmodified	packet	before	sending	anything	else	in	order	to	guarantee	the	packet	arrives	at	the	remote
peer	uncorrupted.	This	function	will	fail	if	the	socket	is	not	connected.

Parameters
packet Packet	to	send

Returns
Status	code

See	also
receive

void	sf::Socket::setBlocking (bool	 blocking)

Set	the	blocking	state	of	the	socket.

In	blocking	mode,	calls	will	not	return	until	they	have	completed	their	task.	For	example,	a	call	to	Receive
in	 blocking	mode	won't	 return	 until	 some	data	was	 actually	 received.	 In	 non-blocking	mode,	 calls	will

always	return	 immediately,	using	the	return	code	to	signal	whether	 there	was	data	available	or	not.	By
default,	all	sockets	are	blocking.

Parameters
blocking True	to	set	the	socket	as	blocking,	false	for	non-blocking

See	also
isBlocking

The	documentation	for	this	class	was	generated	from	the	following	file:
TcpSocket.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Types	|	Public	Member	Functions	|	Protected	Types	|	Protected	Member	Functions	|	List	of	all	members

sf::UdpSocket	Class	Reference
Network	module

Specialized	socket	using	the	UDP	protocol.	More...

#include	<UdpSocket.hpp>

Inheritance	diagram	for	sf::UdpSocket:

Public	Types
enum		 {	MaxDatagramSize	=	65507	}
	

enum		

Status	{	
		Done,	NotReady,	Partial,	Disconnected,	
		Error	
}

	 Status	codes	that	may	be	returned	by	socket	functions.	More...
	
enum		 {	AnyPort	=	0	}
	 Some	special	values	used	by	sockets.	More...
	

Public	Member	Functions
	 UdpSocket	()

	 Default	constructor.	More...
	
unsigned	short	 getLocalPort	()	const
	 Get	the	port	to	which	the	socket	is	bound	locally.	More...
	

Status	 bind	(unsigned	short	port,	const	IpAddress	&address=IpAddress::Any
	 Bind	the	socket	to	a	specific	port.	More...
	

void	 unbind	()
	 Unbind	the	socket	from	the	local	port	to	which	it	is	bound.	
	

Status	 send	(const	void	*data,	std::size_t	size,	const	IpAddressremotePort)
	 Send	raw	data	to	a	remote	peer.	More...
	

Status	 receive	(void	*data,	std::size_t	size,	std::size_t	&received,	unsigned	short	&remotePort)
	 Receive	raw	data	from	a	remote	peer.	More...
	

Status	 send	(Packet	&packet,	const	IpAddress	&remoteAddress,	unsigned	short	remotePort)
	 Send	a	formatted	packet	of	data	to	a	remote	peer.	More...
	

Status	 receive	(Packet	&packet,	IpAddress	&remoteAddress,	unsigned	short	&remotePort)
	 Receive	a	formatted	packet	of	data	from	a	remote	peer.	More...
	

void	 setBlocking	(bool	blocking)
	 Set	the	blocking	state	of	the	socket.	More...
	

bool	 isBlocking	()	const
	 Tell	whether	the	socket	is	in	blocking	or	non-blocking	mode.	

	

Protected	Types
enum		 Type	{	Tcp,	Udp	}
	 Types	of	protocols	that	the	socket	can	use.	More...
	

Protected	Member	Functions
SocketHandle	 getHandle	()	const
	 Return	the	internal	handle	of	the	socket.	More...
	

void	 create	()
	 Create	the	internal	representation	of	the	socket.	More...
	

void	 create	(SocketHandle	handle)
	 Create	the	internal	representation	of	the	socket	from	a	socket	handle.	
	

void	 close	()
	 Close	the	socket	gracefully.	More...
	

Detailed	Description

Specialized	socket	using	the	UDP	protocol.

A	UDP	socket	is	a	connectionless	socket.

Instead	of	connecting	once	to	a	remote	host,	like	TCP	sockets,	it	can	send	to	and	receive	from	any	host	at
any	time.

It	is	a	datagram	protocol:	bounded	blocks	of	data	(datagrams)	are	transfered	over	the	network	rather	than	a
continuous	stream	of	data	(TCP).	Therefore,	one	call	to	send	will	always	match	one	call	to	receive	(if	the
datagram	is	not	lost),	with	the	same	data	that	was	sent.

The	UDP	protocol	is	lightweight	but	unreliable.	Unreliable	means	that	datagrams	may	be	duplicated,	be	lost
or	arrive	reordered.	However,	if	a	datagram	arrives,	its	data	is	guaranteed	to	be	valid.

UDP	is	generally	used	for	real-time	communication	(audio	or	video	streaming,	real-time	games,	etc.)	where
speed	is	crucial	and	lost	data	doesn't	matter	much.

Sending	and	receiving	data	can	use	either	the	low-level	or	the	high-level	functions.	The	low-level	functions
process	a	 raw	sequence	of	bytes,	whereas	 the	high-level	 interface	uses	packets	 (see	
are	 easier	 to	 use	 and	 provide	 more	 safety	 regarding	 the	 data	 that	 is	 exchanged.	 You	 can	 look	 at	 the
sf::Packet	class	to	get	more	details	about	how	they	work.

It	is	important	to	note	that	UdpSocket	is	unable	to	send	datagrams	bigger	than	MaxDatagramSize.	In	this
case,	 it	 returns	an	error	 and	doesn't	 send	anything.	This	 applies	 to	 both	 raw	data	and	packets.	 Indeed,
even	 packets	 are	 unable	 to	 split	 and	 recompose	 data,	 due	 to	 the	 unreliability	 of	 the	 protocol	 (dropped,
mixed	or	duplicated	datagrams	may	lead	to	a	big	mess	when	trying	to	recompose	a	packet).

If	the	socket	is	bound	to	a	port,	it	is	automatically	unbound	from	it	when	the	socket	is	destroyed.	However,
you	can	unbind	the	socket	explicitly	with	the	Unbind	function	 if	necessary,	 to	stop	receiving	messages	or

make	the	port	available	for	other	sockets.

Usage	example:

//	-----	The	client	-----

//	Create	a	socket	and	bind	it	to	the	port	55001

sf::UdpSocket	socket;

socket.bind(55001);

//	Send	a	message	to	192.168.1.50	on	port	55002

std::string	message	=	"Hi,	I	am	"	+	sf::IpAddress::getLocalAddress().toString

socket.send(message.c_str(),	message.size()	+	1,	"192.168.1.50",	55002);

//	Receive	an	answer	(most	likely	from	192.168.1.50,	but	could	be	anyone	else)

char	buffer[1024];

std::size_t	received	=	0;

sf::IpAddress	sender;

unsigned	short	port;

socket.receive(buffer,	sizeof(buffer),	received,	sender,	port);

std::cout	<<	sender.ToString()	<<	"	said:	"	<<	buffer	<<	std::endl;

//	-----	The	server	-----

//	Create	a	socket	and	bind	it	to	the	port	55002

sf::UdpSocket	socket;

socket.bind(55002);

//	Receive	a	message	from	anyone

char	buffer[1024];

std::size_t	received	=	0;

sf::IpAddress	sender;

unsigned	short	port;

socket.receive(buffer,	sizeof(buffer),	received,	sender,	port);

std::cout	<<	sender.ToString()	<<	"	said:	"	<<	buffer	<<	std::endl;

//	Send	an	answer

std::string	message	=	"Welcome	"	+	sender.toString();

socket.send(message.c_str(),	message.size()	+	1,	sender,	port);

See	also
sf::Socket,	sf::TcpSocket,	sf::Packet

Definition	at	line	45	of	file	UdpSocket.hpp.

Member	Enumeration	Documentation

anonymous	enum

Some	special	values	used	by	sockets.

Enumerator

AnyPort	
Special	value	that	tells	the	system	to	pick	any	available	port.

Definition	at	line	66	of	file	Socket.hpp.

anonymous	enum

Enumerator

MaxDatagramSize	
The	maximum	number	of	bytes	that	can	be	sent	in	a	single	UDP	datagram.

Definition	at	line	52	of	file	UdpSocket.hpp.

enum	sf::Socket::Status

Status	codes	that	may	be	returned	by	socket	functions.

Enumerator

Done	

The	socket	has	sent	/	received	the	data.

NotReady	
The	socket	is	not	ready	to	send	/	receive	data	yet.

Partial	
The	socket	sent	a	part	of	the	data.

Disconnected	
The	TCP	socket	has	been	disconnected.

Error	
An	unexpected	error	happened.

Definition	at	line	53	of	file	Socket.hpp.

enum	sf::Socket::Type

Types	of	protocols	that	the	socket	can	use.

Enumerator

Tcp	
TCP	protocol.

Udp	
UDP	protocol.

Definition	at	line	114	of	file	Socket.hpp.

Constructor	&	Destructor	Documentation

sf::UdpSocket::UdpSocket ()

Default	constructor.

Member	Function	Documentation

Status	sf::UdpSocket::bind (unsigned	short	 port,
const	IpAddress	&	 address	=	IpAddress::Any
)

Bind	the	socket	to	a	specific	port.

Binding	 the	socket	 to	a	port	 is	necessary	 for	being	able	 to	 receive	data	on	 that	port.	You	can	use	 the
special	 value	 Socket::AnyPort	 to	 tell	 the	 system	 to	 automatically	 pick	 an	 available	 port,	 and	 then	 call
getLocalPort	to	retrieve	the	chosen	port.

Parameters
port Port	to	bind	the	socket	to
address Address	of	the	interface	to	bind	to

Returns
Status	code

See	also
unbind,	getLocalPort

void	sf::Socket::close ()

Close	the	socket	gracefully.

This	function	can	only	be	accessed	by	derived	classes.

void	sf::Socket::create ()

Create	the	internal	representation	of	the	socket.

This	function	can	only	be	accessed	by	derived	classes.

void	sf::Socket::create (SocketHandle	 handle)

Create	the	internal	representation	of	the	socket	from	a	socket	handle.

This	function	can	only	be	accessed	by	derived	classes.

Parameters
handleOS-specific	handle	of	the	socket	to	wrap

SocketHandle	sf::Socket::getHandle () const

Return	the	internal	handle	of	the	socket.

The	 returned	 handle	 may	 be	 invalid	 if	 the	 socket	 was	 not	 created	 yet	 (or	 already	 destroyed).	 This
function	can	only	be	accessed	by	derived	classes.

Returns
The	internal	(OS-specific)	handle	of	the	socket

unsigned	short	sf::UdpSocket::getLocalPort () const

Get	the	port	to	which	the	socket	is	bound	locally.

If	the	socket	is	not	bound	to	a	port,	this	function	returns	0.

Returns
Port	to	which	the	socket	is	bound

See	also
bind

bool	sf::Socket::isBlocking () const

Tell	whether	the	socket	is	in	blocking	or	non-blocking	mode.

Returns
True	if	the	socket	is	blocking,	false	otherwise

See	also
setBlocking

Status	sf::UdpSocket::receive (void	*	 data,
std::size_t	 size,
std::size_t	&	 received,
IpAddress	&	 remoteAddress,
unsigned	short	&	 remotePort	
)

Receive	raw	data	from	a	remote	peer.

In	blocking	mode,	this	function	will	wait	until	some	bytes	are	actually	received.	Be	careful	to	use	a	buffer
which	 is	 large	 enough	 for	 the	 data	 that	 you	 intend	 to	 receive,	 if	 it	 is	 too	 small	 then	 an	 error	 will	 be
returned	and	all	the	data	will	be	lost.

Parameters
data Pointer	to	the	array	to	fill	with	the	received	bytes
size Maximum	number	of	bytes	that	can	be	received
received This	variable	is	filled	with	the	actual	number	of	bytes	received
remoteAddress Address	of	the	peer	that	sent	the	data
remotePort Port	of	the	peer	that	sent	the	data

Returns
Status	code

See	also
send

Status	sf::UdpSocket::receive (Packet	&	 packet,
IpAddress	&	 remoteAddress,
unsigned	short	&	 remotePort	
)

Receive	a	formatted	packet	of	data	from	a	remote	peer.

In	blocking	mode,	this	function	will	wait	until	the	whole	packet	has	been	received.

Parameters
packet Packet	to	fill	with	the	received	data
remoteAddress Address	of	the	peer	that	sent	the	data
remotePort Port	of	the	peer	that	sent	the	data

Returns
Status	code

See	also
send

Status	sf::UdpSocket::send (const	void	*	 data,
std::size_t	 size,
const	IpAddress	&	 remoteAddress,
unsigned	short	 remotePort	
)

Send	raw	data	to	a	remote	peer.

Make	sure	 that	size	 is	not	greater	 than	 UdpSocket::MaxDatagramSize
and	no	data	will	be	sent.

Parameters
data Pointer	to	the	sequence	of	bytes	to	send
size Number	of	bytes	to	send
remoteAddress Address	of	the	receiver
remotePort Port	of	the	receiver	to	send	the	data	to

Returns
Status	code

See	also
receive

Status	sf::UdpSocket::send (Packet	&	 packet,
const	IpAddress	&	 remoteAddress,
unsigned	short	 remotePort	
)

Send	a	formatted	packet	of	data	to	a	remote	peer.

Make	sure	that	the	packet	size	is	not	greater	than	UdpSocket::MaxDatagramSize

will	fail	and	no	data	will	be	sent.

Parameters
packet Packet	to	send
remoteAddress Address	of	the	receiver
remotePort Port	of	the	receiver	to	send	the	data	to

Returns
Status	code

See	also
receive

void	sf::Socket::setBlocking (bool	 blocking)

Set	the	blocking	state	of	the	socket.

In	blocking	mode,	calls	will	not	return	until	they	have	completed	their	task.	For	example,	a	call	to	Receive
in	 blocking	mode	won't	 return	 until	 some	data	was	 actually	 received.	 In	 non-blocking	mode,	 calls	will
always	return	 immediately,	using	the	return	code	to	signal	whether	 there	was	data	available	or	not.	By
default,	all	sockets	are	blocking.

Parameters
blocking True	to	set	the	socket	as	blocking,	false	for	non-blocking

See	also
isBlocking

void	sf::UdpSocket::unbind ()

Unbind	the	socket	from	the	local	port	to	which	it	is	bound.

The	port	that	the	socket	was	previously	bound	to	is	immediately	made	available	to	the	operating	system
after	this	function	is	called.	This	means	that	a	subsequent	call	to	bind()	will	be	able	to	re-bind	the	port	if
no	other	process	has	done	so	in	the	mean	time.	If	the	socket	is	not	bound	to	a	port,	this	function	has	no
effect.

See	also
bind

The	documentation	for	this	class	was	generated	from	the	following	file:
UdpSocket.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

SFML	2.4.2

Classes	|	Functions

System	module

Base	module	of	SFML,	defining	various	utilities.	More...

Classes
class		 sf::Clock
	 Utility	class	that	measures	the	elapsed	time.	More...
	
class		 sf::FileInputStream
	 Implementation	of	input	stream	based	on	a	file.	More...
	
class		 sf::InputStream
	 Abstract	class	for	custom	file	input	streams.	More...
	
class		 sf::Lock
	 Automatic	wrapper	for	locking	and	unlocking	mutexes.	More...
	
class		 sf::MemoryInputStream
	 Implementation	of	input	stream	based	on	a	memory	chunk.	More...
	
class		 sf::Mutex
	 Blocks	concurrent	access	to	shared	resources	from	multiple	threads.	
	
class		 sf::NonCopyable
	 Utility	class	that	makes	any	derived	class	non-copyable.	More...
	
class		 sf::String
	 Utility	string	class	that	automatically	handles	conversions	between	types	and	encodings.	
	
class		 sf::Thread
	 Utility	class	to	manipulate	threads.	More...
	
class		 sf::ThreadLocal
	 Defines	variables	with	thread-local	storage.	More...
	
class		 sf::ThreadLocalPtr<	T	>

	 Pointer	to	a	thread-local	variable.	More...
	
class		 sf::Time
	 Represents	a	time	value.	More...
	
class		 sf::Utf<	N	>
	 Utility	class	providing	generic	functions	for	UTF	conversions.	More...
	
class		 sf::Vector2<	T	>
	 Utility	template	class	for	manipulating	2-dimensional	vectors.	More...
	
class		 sf::Vector3<	T	>
	 Utility	template	class	for	manipulating	3-dimensional	vectors.	More...
	

Functions
ANativeActivity	*	 sf::getNativeActivity	()
	 Return	a	pointer	to	the	Android	native	activity.	More...
	

void	 sf::sleep	(Time	duration)
	 Make	the	current	thread	sleep	for	a	given	duration.	More...
	

std::ostream	&	 sf::err	()
	 Standard	stream	used	by	SFML	to	output	warnings	and	errors.	
	

Detailed	Description

Base	module	of	SFML,	defining	various	utilities.

It	provides	vector	classes,	Unicode	strings	and	conversion	functions,	threads	and	mutexes,	timing	classes.

Function	Documentation

sf::err ()

Standard	stream	used	by	SFML	to	output	warnings	and	errors.

By	 default,	 sf::err()	 outputs	 to	 the	 same	 location	 as	 std::cerr,	 (->	 the	 stderr	 descriptor)	 which	 is	 the
console	if	there's	one	available.

It	 is	 a	 standard	 std::ostream	 instance,	 so	 it	 supports	 all	 the	 insertion	 operations	 defined	 by	 the	 STL
(operator	<<,	manipulators,	etc.).

sf::err()	 can	 be	 redirected	 to	 write	 to	 another	 output,	 independently	 of	 std::cerr,	 by	 using	 the	 rdbuf()
function	provided	by	the	std::ostream	class.

Example:

//	Redirect	to	a	file

std::ofstream	file("sfml-log.txt");

std::streambuf*	previous	=	sf::err().rdbuf(file.rdbuf());

//	Redirect	to	nothing

sf::err().rdbuf(NULL);

//	Restore	the	original	output

sf::err().rdbuf(previous);

Returns
Reference	to	std::ostream	representing	the	SFML	error	stream

ANativeActivity*	sf::getNativeActivity ()

Return	a	pointer	to	the	Android	native	activity.

You	shouldn't	have	to	use	this	 function,	unless	you	want	 to	 implement	very	specific	details,	 that	SFML
doesn't	support,	or	to	use	a	workaround	for	a	known	issue.

Returns
Pointer	to	Android	native	activity	structure

Platform	Limitation
This	is	only	available	on	Android	and	to	use	it,	you'll	have	to	specifically	include
SFML/System/NativeActivity.hpp	in	your	code.

void	sf::sleep (Time	 duration)

Make	the	current	thread	sleep	for	a	given	duration.

sf::sleep	is	the	best	way	to	block	a	program	or	one	of	its	threads,	as	it	doesn't	consume	any	CPU	power.

Parameters
duration Time	to	sleep

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Member	Functions	|	List	of	all	members

sf::Clock	Class	Reference
System	module

Utility	class	that	measures	the	elapsed	time.	More...

#include	<Clock.hpp>

Public	Member	Functions
	 Clock	()

	 Default	constructor.	More...
	
Time	 getElapsedTime	()	const
	 Get	the	elapsed	time.	More...
	
Time	 restart	()
	 Restart	the	clock.	More...
	

Detailed	Description

Utility	class	that	measures	the	elapsed	time.

sf::Clock	is	a	lightweight	class	for	measuring	time.

Its	 provides	 the	 most	 precise	 time	 that	 the	 underlying	 OS	 can	 achieve	 (generally	 microseconds	 or
nanoseconds).	 It	also	ensures	monotonicity,	which	means	that	the	returned	time	can	never	go	backward,
even	if	the	system	time	is	changed.

Usage	example:

sf::Clock	clock;

...

Time	time1	=	clock.getElapsedTime();

...

Time	time2	=	clock.restart();

The	sf::Time	value	returned	by	the	clock	can	then	be	converted	to	a	number	of	seconds,	milliseconds	or
even	microseconds.

See	also
sf::Time

Definition	at	line	41	of	file	Clock.hpp.

Constructor	&	Destructor	Documentation

sf::Clock::Clock ()

Default	constructor.

The	clock	starts	automatically	after	being	constructed.

Member	Function	Documentation

Time	sf::Clock::getElapsedTime () const

Get	the	elapsed	time.

This	function	returns	the	time	elapsed	since	the	last	call	to	restart()	(or	the	construction	of	the	instance	if
restart()	has	not	been	called).

Returns
Time	elapsed

Time	sf::Clock::restart ()

Restart	the	clock.

This	 function	puts	 the	 time	counter	back	 to	zero.	 It	 also	 returns	 the	 time	elapsed	since	 the	clock	was
started.

Returns
Time	elapsed

The	documentation	for	this	class	was	generated	from	the	following	file:
Clock.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

http://www.sfml-dev.org/license.php

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Member	Functions	|	List	of	all	members

sf::FileInputStream	Class	Reference
System	module

Implementation	of	input	stream	based	on	a	file.	More...

#include	<FileInputStream.hpp>

Inheritance	diagram	for	sf::FileInputStream:

Public	Member	Functions
	 FileInputStream	()

	 Default	constructor.	More...
	

virtual	 ~FileInputStream	()
	 Default	destructor.	More...
	

bool	 open	(const	std::string	&filename)
	 Open	the	stream	from	a	file	path.	More...
	
virtual	Int64	 read	(void	*data,	Int64	size)
	 Read	data	from	the	stream.	More...
	
virtual	Int64	 seek	(Int64	position)
	 Change	the	current	reading	position.	More...
	
virtual	Int64	 tell	()
	 Get	the	current	reading	position	in	the	stream.	More...
	
virtual	Int64	 getSize	()
	 Return	the	size	of	the	stream.	More...
	

Detailed	Description

Implementation	of	input	stream	based	on	a	file.

This	class	is	a	specialization	of	InputStream	that	reads	from	a	file	on	disk.

It	 wraps	 a	 file	 in	 the	 common	 InputStream	 interface	 and	 therefore	 allows	 to	 use	 generic	 classes	 or
functions	that	accept	such	a	stream,	with	a	file	on	disk	as	the	data	source.

In	addition	 to	 the	virtual	 functions	 inherited	from	 InputStream,	 FileInputStream
the	file	to	open.

SFML	resource	classes	can	usually	be	loaded	directly	from	a	filename,	so	this	class	shouldn't	be	useful	to
you	unless	you	create	your	own	algorithms	that	operate	on	an	InputStream

Usage	example:

void	process(InputStream&	stream);

FileInputStream	stream;

if	(stream.open("some_file.dat"))

			process(stream);

InputStream,	MemoryInputStream

Definition	at	line	55	of	file	FileInputStream.hpp.

Constructor	&	Destructor	Documentation

sf::FileInputStream::FileInputStream ()

Default	constructor.

virtual	sf::FileInputStream::~FileInputStream ()

Default	destructor.

Member	Function	Documentation

virtual	Int64	sf::FileInputStream::getSize ()

Return	the	size	of	the	stream.

Returns
The	total	number	of	bytes	available	in	the	stream,	or	-1	on	error

Implements	sf::InputStream.

bool	sf::FileInputStream::open (const	std::string	&	 filename)

Open	the	stream	from	a	file	path.

Parameters
filename Name	of	the	file	to	open

Returns
True	on	success,	false	on	error

virtual	Int64	sf::FileInputStream::read (void	*	 data,
Int64	 size	
)

Read	data	from	the	stream.

After	reading,	the	stream's	reading	position	must	be	advanced	by	the	amount	of	bytes	read.

Parameters
data Buffer	where	to	copy	the	read	data
size Desired	number	of	bytes	to	read

Returns
The	number	of	bytes	actually	read,	or	-1	on	error

Implements	sf::InputStream.

virtual	Int64	sf::FileInputStream::seek (Int64	 position)

Change	the	current	reading	position.

Parameters
position The	position	to	seek	to,	from	the	beginning

Returns
The	position	actually	sought	to,	or	-1	on	error

Implements	sf::InputStream.

virtual	Int64	sf::FileInputStream::tell ()

Get	the	current	reading	position	in	the	stream.

Returns
The	current	position,	or	-1	on	error.

Implements	sf::InputStream.

The	documentation	for	this	class	was	generated	from	the	following	file:
FileInputStream.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Member	Functions	|	List	of	all	members

sf::InputStream	Class	Reference abstract

System	module

Abstract	class	for	custom	file	input	streams.	More...

#include	<InputStream.hpp>

Inheritance	diagram	for	sf::InputStream:

Public	Member	Functions
virtual	 ~InputStream	()

	 Virtual	destructor.	More...
	
virtual	Int64	 read	(void	*data,	Int64	size)=0
	 Read	data	from	the	stream.	More...
	
virtual	Int64	 seek	(Int64	position)=0
	 Change	the	current	reading	position.	More...
	
virtual	Int64	 tell	()=0
	 Get	the	current	reading	position	in	the	stream.	More...
	
virtual	Int64	 getSize	()=0
	 Return	the	size	of	the	stream.	More...
	

Detailed	Description

Abstract	class	for	custom	file	input	streams.

This	class	allows	users	to	define	their	own	file	input	sources	from	which	SFML	can	load	resources.

SFML	 resource	 classes	 like	 sf::Texture	and	 sf::SoundBuffer	 provide	 loadFromFile	 and	 loadFromMemory
functions,	which	read	data	from	conventional	sources.	However,	 if	you	have	data	coming	from	a	different
source	 (over	 a	 network,	 embedded,	 encrypted,	 compressed,	 etc)	 you	 can	 derive	 your	 own	 class	 from
sf::InputStream	and	load	SFML	resources	with	their	loadFromStream	function.

Usage	example:

//	custom	stream	class	that	reads	from	inside	a	zip	file

class	ZipStream	:	public	sf::InputStream

{

public:

				ZipStream(std::string	archive);

	bool	open(std::string	filename);

				Int64	read(void*	data,	Int64	size);

				Int64	seek(Int64	position);

				Int64	tell();

				Int64	getSize();

private:

				...

};

//	now	you	can	load	textures...

sf::Texture	texture;

ZipStream	stream("resources.zip");

stream.open("images/img.png");

texture.loadFromStream(stream);

//	musics...

sf::Music	music;

ZipStream	stream("resources.zip");

stream.open("musics/msc.ogg");

music.openFromStream(stream);

//	etc.

Definition	at	line	41	of	file	InputStream.hpp.

Constructor	&	Destructor	Documentation

virtual	sf::InputStream::~InputStream ()

Virtual	destructor.

Definition	at	line	49	of	file	InputStream.hpp.

Member	Function	Documentation

virtual	Int64	sf::InputStream::getSize ()

Return	the	size	of	the	stream.

Returns
The	total	number	of	bytes	available	in	the	stream,	or	-1	on	error

Implemented	in	sf::FileInputStream,	and	sf::MemoryInputStream.

virtual	Int64	sf::InputStream::read (void	*	 data,
Int64	 size	
)

Read	data	from	the	stream.

After	reading,	the	stream's	reading	position	must	be	advanced	by	the	amount	of	bytes	read.

Parameters
data Buffer	where	to	copy	the	read	data
size Desired	number	of	bytes	to	read

Returns
The	number	of	bytes	actually	read,	or	-1	on	error

Implemented	in	sf::FileInputStream,	and	sf::MemoryInputStream.

virtual	Int64	sf::InputStream::seek (Int64	 position)

Change	the	current	reading	position.

Parameters
position The	position	to	seek	to,	from	the	beginning

Returns
The	position	actually	sought	to,	or	-1	on	error

Implemented	in	sf::FileInputStream,	and	sf::MemoryInputStream.

virtual	Int64	sf::InputStream::tell ()

Get	the	current	reading	position	in	the	stream.

Returns
The	current	position,	or	-1	on	error.

Implemented	in	sf::FileInputStream,	and	sf::MemoryInputStream.

The	documentation	for	this	class	was	generated	from	the	following	file:
InputStream.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Member	Functions	|	List	of	all	members

sf::Lock	Class	Reference
System	module

Automatic	wrapper	for	locking	and	unlocking	mutexes.	More...

#include	<Lock.hpp>

Inheritance	diagram	for	sf::Lock:

Public	Member	Functions
	 Lock	(Mutex	&mutex)
	 Construct	the	lock	with	a	target	mutex.	More...
	
	 ~Lock	()
	 Destructor.	More...
	

Detailed	Description

Automatic	wrapper	for	locking	and	unlocking	mutexes.

sf::Lock	is	a	RAII	wrapper	for	sf::Mutex.

By	unlocking	it	 in	its	destructor,	it	ensures	that	the	mutex	will	always	be	released	when	the	current	scope
(most	likely	a	function)	ends.	This	is	even	more	important	when	an	exception	or	an	early	return	statement
can	interrupt	the	execution	flow	of	the	function.

For	maximum	robustness,	sf::Lock	should	always	be	used	to	lock/unlock	a	mutex.

Usage	example:

sf::Mutex	mutex;

void	function()

{

	sf::Lock	lock(mutex);	//	mutex	is	now	locked

				functionThatMayThrowAnException();	//	mutex	is	unlocked	if	this	function	throws

	if	(someCondition)

	return;	//	mutex	is	unlocked

}	//	mutex	is	unlocked

Because	the	mutex	is	not	explicitly	unlocked	in	the	code,	it	may	remain	locked	longer	than	needed.	If	the
region	of	the	code	that	needs	to	be	protected	by	the	mutex	is	not	the	entire	function,	a	good	practice	is	to
create	a	smaller,	inner	scope	so	that	the	lock	is	limited	to	this	part	of	the	code.

sf::Mutex	mutex;

void	function()

{

				{

	sf::Lock	lock(mutex);

						codeThatRequiresProtection();

				}	//	mutex	is	unlocked	here

				codeThatDoesntCareAboutTheMutex();

}

Having	a	mutex	locked	longer	than	required	is	a	bad	practice	which	can	lead	to	bad	performances.	Don't
forget	that	when	a	mutex	is	locked,	other	threads	may	be	waiting	doing	nothing	until	it	is	released.

See	also
sf::Mutex

Definition	at	line	43	of	file	Lock.hpp.

Constructor	&	Destructor	Documentation

sf::Lock::Lock (Mutex	&	 mutex)

Construct	the	lock	with	a	target	mutex.

The	mutex	passed	to	sf::Lock	is	automatically	locked.

Parameters
mutex Mutex	to	lock

sf::Lock::~Lock ()

Destructor.

The	destructor	of	sf::Lock	automatically	unlocks	its	mutex.

The	documentation	for	this	class	was	generated	from	the	following	file:
Lock.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Member	Functions	|	List	of	all	members

sf::MemoryInputStream	Class	Reference
System	module

Implementation	of	input	stream	based	on	a	memory	chunk.	More...

#include	<MemoryInputStream.hpp>

Inheritance	diagram	for	sf::MemoryInputStream:

Public	Member	Functions
	 MemoryInputStream	()

	 Default	constructor.	More...
	

void	 open	(const	void	*data,	std::size_t	sizeInBytes)
	 Open	the	stream	from	its	data.	More...
	
virtual	Int64	 read	(void	*data,	Int64	size)
	 Read	data	from	the	stream.	More...
	
virtual	Int64	 seek	(Int64	position)
	 Change	the	current	reading	position.	More...
	
virtual	Int64	 tell	()
	 Get	the	current	reading	position	in	the	stream.	More...
	
virtual	Int64	 getSize	()
	 Return	the	size	of	the	stream.	More...
	

Detailed	Description

Implementation	of	input	stream	based	on	a	memory	chunk.

This	class	is	a	specialization	of	InputStream	that	reads	from	data	in	memory.

It	wraps	a	memory	chunk	in	the	common	InputStream	interface	and	therefore	allows	to	use	generic	classes
or	functions	that	accept	such	a	stream,	with	content	already	loaded	in	memory.

In	 addition	 to	 the	 virtual	 functions	 inherited	 from	 InputStream,	 MemoryInputStream
specify	the	pointer	and	size	of	the	data	in	memory.

SFML	resource	classes	can	usually	be	loaded	directly	from	memory,	so	this	class	shouldn't	be	useful	to	you
unless	you	create	your	own	algorithms	that	operate	on	an	InputStream.

Usage	example:

void	process(InputStream&	stream);

MemoryInputStream	stream;

stream.open(thePtr,	theSize);

process(stream);

InputStream,	FileInputStream

Definition	at	line	43	of	file	MemoryInputStream.hpp.

Constructor	&	Destructor	Documentation

sf::MemoryInputStream::MemoryInputStream ()

Default	constructor.

Member	Function	Documentation

virtual	Int64	sf::MemoryInputStream::getSize ()

Return	the	size	of	the	stream.

Returns
The	total	number	of	bytes	available	in	the	stream,	or	-1	on	error

Implements	sf::InputStream.

void	sf::MemoryInputStream::open (const	void	*	 data,
std::size_t	 sizeInBytes	
)

Open	the	stream	from	its	data.

Parameters
data Pointer	to	the	data	in	memory
sizeInBytes Size	of	the	data,	in	bytes

virtual	Int64	sf::MemoryInputStream::read (void	*	 data,
Int64	 size	
)

Read	data	from	the	stream.

After	reading,	the	stream's	reading	position	must	be	advanced	by	the	amount	of	bytes	read.

Parameters
data Buffer	where	to	copy	the	read	data
size Desired	number	of	bytes	to	read

Returns
The	number	of	bytes	actually	read,	or	-1	on	error

Implements	sf::InputStream.

virtual	Int64	sf::MemoryInputStream::seek (Int64	 position)

Change	the	current	reading	position.

Parameters
position The	position	to	seek	to,	from	the	beginning

Returns
The	position	actually	sought	to,	or	-1	on	error

Implements	sf::InputStream.

virtual	Int64	sf::MemoryInputStream::tell ()

Get	the	current	reading	position	in	the	stream.

Returns
The	current	position,	or	-1	on	error.

Implements	sf::InputStream.

The	documentation	for	this	class	was	generated	from	the	following	file:
MemoryInputStream.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Member	Functions	|	List	of	all	members

sf::Mutex	Class	Reference
System	module

Blocks	concurrent	access	to	shared	resources	from	multiple	threads.	More...

#include	<Mutex.hpp>

Inheritance	diagram	for	sf::Mutex:

Public	Member	Functions
	 Mutex	()

	 Default	constructor.	More...
	

	 ~Mutex	()
	 Destructor.	More...
	
void	 lock	()
	 Lock	the	mutex.	More...
	
void	 unlock	()
	 Unlock	the	mutex.	More...
	

Detailed	Description

Blocks	concurrent	access	to	shared	resources	from	multiple	threads.

Mutex	stands	for	"MUTual	EXclusion".

A	mutex	is	a	synchronization	object,	used	when	multiple	threads	are	involved.

When	you	want	to	protect	a	part	of	the	code	from	being	accessed	simultaneously	by	multiple	threads,	you
typically	use	a	mutex.	When	a	thread	is	locked	by	a	mutex,	any	other	thread	trying	to	lock	it	will	be	blocked
until	the	mutex	is	released	by	the	thread	that	locked	it.	This	way,	you	can	allow	only	one	thread	at	a	time	to
access	a	critical	region	of	your	code.

Usage	example:

Database	database;	//	this	is	a	critical	resource	that	needs	some	protection

sf::Mutex	mutex;

void	thread1()

{

				mutex.lock();	//	this	call	will	block	the	thread	if	the	mutex	is	already	locked	by	thread2

				database.write(...);

				mutex.unlock();	//	if	thread2	was	waiting,	it	will	now	be	unblocked

}

void	thread2()

{

				mutex.lock();	//	this	call	will	block	the	thread	if	the	mutex	is	already	locked	by	thread1

				database.write(...);

				mutex.unlock();	//	if	thread1	was	waiting,	it	will	now	be	unblocked

}

Be	 very	 careful	 with	mutexes.	 A	 bad	 usage	 can	 lead	 to	 bad	 problems,	 like	 deadlocks	 (two	 threads	 are
waiting	for	each	other	and	the	application	is	globally	stuck).

To	make	the	usage	of	mutexes	more	robust,	particularly	in	environments	where	exceptions	can	be	thrown,
you	should	use	the	helper	class	sf::Lock	to	lock/unlock	mutexes.

SFML	mutexes	are	recursive,	which	means	 that	you	can	 lock	a	mutex	multiple	 times	 in	 the	same	thread
without	creating	a	deadlock.	In	this	case,	the	first	call	 to	 lock()	behaves	as	usual,	and	the	following	ones
have	no	effect.	However,	you	must	call	unlock()	exactly	as	many	times	as	you	called	
mutex	won't	be	released.

See	also
sf::Lock

Definition	at	line	47	of	file	Mutex.hpp.

Constructor	&	Destructor	Documentation

sf::Mutex::Mutex ()

Default	constructor.

sf::Mutex::~Mutex ()

Destructor.

Member	Function	Documentation

void	sf::Mutex::lock ()

Lock	the	mutex.

If	 the	 mutex	 is	 already	 locked	 in	 another	 thread,	 this	 call	 will	 block	 the	 execution	 until	 the	 mutex	 is
released.

See	also
unlock

void	sf::Mutex::unlock ()

Unlock	the	mutex.

See	also
lock

The	documentation	for	this	class	was	generated	from	the	following	file:
Mutex.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Protected	Member	Functions	|	List	of	all	members

sf::NonCopyable	Class	Reference
System	module

Utility	class	that	makes	any	derived	class	non-copyable.	More...

#include	<NonCopyable.hpp>

Inheritance	diagram	for	sf::NonCopyable:

Protected	Member	Functions
	 NonCopyable	()
	 Default	constructor.	More...
	

Detailed	Description

Utility	class	that	makes	any	derived	class	non-copyable.

This	class	makes	its	instances	non-copyable,	by	explicitly	disabling	its	copy	constructor	and	its	assignment
operator.

To	create	a	non-copyable	class,	simply	inherit	from	sf::NonCopyable.

The	type	of	inheritance	(public	or	private)	doesn't	matter,	the	copy	constructor	and	assignment	operator	are
declared	private	in	sf::NonCopyable	so	they	will	end	up	being	inaccessible	in	both	cases.	Thus	you	can	use
a	shorter	syntax	for	inheriting	from	it	(see	below).

Usage	example:

class	MyNonCopyableClass	:	sf::NonCopyable

{

				...

};

Deciding	whether	the	instances	of	a	class	can	be	copied	or	not	is	a	very	important	design	choice.	You	are
strongly	encouraged	to	think	about	it	before	writing	a	class,	and	to	use	sf::NonCopyable
prevent	many	potential	future	errors	when	using	it.	This	is	also	a	very	important	indication	to	users	of	your
class.

Definition	at	line	41	of	file	NonCopyable.hpp.

Constructor	&	Destructor	Documentation

sf::NonCopyable::NonCopyable ()

Default	constructor.

Because	 this	 class	 has	 a	 copy	 constructor,	 the	 compiler	 will	 not	 automatically	 generate	 the	 default
constructor.	That's	why	we	must	define	it	explicitly.

Definition	at	line	53	of	file	NonCopyable.hpp.

The	documentation	for	this	class	was	generated	from	the	following	file:
NonCopyable.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Types	|	Public	Member	Functions	|	Static	Public	Member	Functions	|	Static	Public	Attributes	|	Friends	|	Related	Functions

sf::String	Class	Reference
System	module

Utility	string	class	that	automatically	handles	conversions	between	types	and	encodings.	

#include	<String.hpp>

Public	Types
typedef	std::basic_string

<	Uint32	>::iterator	 Iterator

	 Iterator	type.	More...
	
typedef	std::basic_string

<	Uint32	>::const_iterator	 ConstIterator

	 Read-only	iterator	type.	More...
	

Public	Member	Functions
	 String	()

	 Default	constructor.	More...
	

	 String	(char	ansiChar,	const	std::locale	&locale=std::locale())
	 Construct	from	a	single	ANSI	character	and	a	locale.	
	

	 String	(wchar_t	wideChar)
	 Construct	from	single	wide	character.	More...
	

	 String	(Uint32	utf32Char)
	 Construct	from	single	UTF-32	character.	More...
	

	 String	(const	char	*ansiString,	const	std::locale	&locale=std::locale())
	 Construct	from	a	null-terminated	C-style	ANSI	string	and	a	locale.	
	

	 String	(const	std::string	&ansiString,	const	std::locale	&locale=std::locale())
	 Construct	from	an	ANSI	string	and	a	locale.	More...
	

	 String	(const	wchar_t	*wideString)
	 Construct	from	null-terminated	C-style	wide	string.	
	

	 String	(const	std::wstring	&wideString)
	 Construct	from	a	wide	string.	More...
	

	 String	(const	Uint32	*utf32String)
	 Construct	from	a	null-terminated	C-style	UTF-32	string.	
	

	 String	(const	std::basic_string<	Uint32	>	&utf32String)
	 Construct	from	an	UTF-32	string.	More...
	

	 String	(const	String	©)

	 Copy	constructor.	More...
	

	 operator	std::string	()	const
	 Implicit	conversion	operator	to	std::string	(ANSI	string)	
	

	 operator	std::wstring	()	const
	 Implicit	conversion	operator	to	std::wstring	(wide	string)	
	

std::string	 toAnsiString	(const	std::locale	&locale=std::locale())	const
	 Convert	the	Unicode	string	to	an	ANSI	string.	
	

std::wstring	 toWideString	()	const
	 Convert	the	Unicode	string	to	a	wide	string.	More...
	
std::basic_string<	Uint8	>	 toUtf8	()	const

	 Convert	the	Unicode	string	to	a	UTF-8	string.	
	
std::basic_string<	Uint16	>	 toUtf16	()	const
	 Convert	the	Unicode	string	to	a	UTF-16	string.	
	
std::basic_string<	Uint32	>	 toUtf32	()	const
	 Convert	the	Unicode	string	to	a	UTF-32	string.	
	

String	&	 operator=	(const	String	&right)
	 Overload	of	assignment	operator.	More...
	

String	&	 operator+=	(const	String	&right)
	 Overload	of	+=	operator	to	append	an	UTF-32	string.	
	

Uint32	 operator[]	(std::size_t	index)	const
	 Overload	of	[]	operator	to	access	a	character	by	its	position.	
	

Uint32	&	 operator[]	(std::size_t	index)
	 Overload	of	[]	operator	to	access	a	character	by	its	position.	
	

void	 clear	()
	 Clear	the	string.	More...
	

std::size_t	 getSize	()	const
	 Get	the	size	of	the	string.	More...
	

bool	 isEmpty	()	const
	 Check	whether	the	string	is	empty	or	not.	More...
	

void	 erase	(std::size_t	position,	std::size_t	count=1)
	 Erase	one	or	more	characters	from	the	string.	
	

void	 insert	(std::size_t	position,	const	String	&str)
	 Insert	one	or	more	characters	into	the	string.	
	

std::size_t	 find	(const	String	&str,	std::size_t	start=0)	const
	 Find	a	sequence	of	one	or	more	characters	in	the	string.	
	

void	 replace	(std::size_t	position,	std::size_t	length,	const	
	 Replace	a	substring	with	another	string.	More...
	

void	 replace	(const	String	&searchFor,	const	String
	 Replace	all	occurrences	of	a	substring	with	a	replacement	string.	
	

String	 substring	(std::size_t	position,	std::size_t	length=
	 Return	a	part	of	the	string.	More...
	

const	Uint32	*	 getData	()	const
	 Get	a	pointer	to	the	C-style	array	of	characters.	
	

Iterator	 begin	()
	 Return	an	iterator	to	the	beginning	of	the	string.	
	

ConstIterator	 begin	()	const
	 Return	an	iterator	to	the	beginning	of	the	string.	

	
Iterator	 end	()

	 Return	an	iterator	to	the	end	of	the	string.	More...
	

ConstIterator	 end	()	const
	 Return	an	iterator	to	the	end	of	the	string.	More...
	

Static	Public	Member	Functions
template<typename	T	>
static	String	 fromUtf8	(T	begin,	T	end)
	 Create	a	new	sf::String	from	a	UTF-8	encoded	string.	More...
	
template<typename	T	>
static	String	 fromUtf16	(T	begin,	T	end)
	 Create	a	new	sf::String	from	a	UTF-16	encoded	string.	More...
	
template<typename	T	>
static	String	 fromUtf32	(T	begin,	T	end)
	 Create	a	new	sf::String	from	a	UTF-32	encoded	string.	More...
	

Static	Public	Attributes
static	const	std::size_t	 InvalidPos
	 Represents	an	invalid	position	in	the	string.	More...
	

Friends
bool	 operator==	(const	String	&left,	const	String	&right)
	
bool	 operator<	(const	String	&left,	const	String	&right)
	

Related	Functions

(Note	that	these	are	not	member	functions.)

bool	 operator==	(const	String	&left,	const	String	&right)
	 Overload	of	==	operator	to	compare	two	UTF-32	strings.	More...
	

bool	 operator!=	(const	String	&left,	const	String	&right)
	 Overload	of	!=	operator	to	compare	two	UTF-32	strings.	More...
	

bool	 operator<	(const	String	&left,	const	String	&right)
	 Overload	of	<	operator	to	compare	two	UTF-32	strings.	More...
	

bool	 operator>	(const	String	&left,	const	String	&right)
	 Overload	of	>	operator	to	compare	two	UTF-32	strings.	More...
	

bool	 operator<=	(const	String	&left,	const	String	&right)
	 Overload	of	<=	operator	to	compare	two	UTF-32	strings.	More...
	

bool	 operator>=	(const	String	&left,	const	String	&right)
	 Overload	of	>=	operator	to	compare	two	UTF-32	strings.	More...
	
String	 operator+	(const	String	&left,	const	String	&right)
	 Overload	of	binary	+	operator	to	concatenate	two	strings.	More...
	

Detailed	Description

Utility	string	class	that	automatically	handles	conversions	between	types	and	encodings.

sf::String	is	a	utility	string	class	defined	mainly	for	convenience.

It	is	a	Unicode	string	(implemented	using	UTF-32),	thus	it	can	store	any	character	in	the	world	(European,
Chinese,	Arabic,	Hebrew,	etc.).

It	 automatically	handles	 conversions	 from/to	ANSI	and	wide	strings,	 so	 that	 you	can	work	with	 standard
string	classes	and	still	be	compatible	with	functions	taking	a	sf::String.

sf::String	s;

std::string	s1	=	s;		//	automatically	converted	to	ANSI	string

std::wstring	s2	=	s;	//	automatically	converted	to	wide	string

s	=	"hello";									//	automatically	converted	from	ANSI	string

s	=	L"hello";								//	automatically	converted	from	wide	string

s	+=	'a';												//	automatically	converted	from	ANSI	string

s	+=	L'a';											//	automatically	converted	from	wide	string

Conversions	 involving	ANSI	 strings	 use	 the	 default	 user	 locale.	However	 it	 is	 possible	 to	 use	 a	 custom
locale	if	necessary:

std::locale	locale;

sf::String	s;

...

std::string	s1	=	s.toAnsiString(locale);

s	=	sf::String("hello",	locale);

sf::String	defines	the	most	important	functions	of	the	standard	std::string	class:	removing,	random	access,
iterating,	appending,	comparing,	etc.	However	it	is	a	simple	class	provided	for	convenience,	and	you	may
have	 to	 consider	 using	 a	 more	 optimized	 class	 if	 your	 program	 requires	 complex	 string	 handling.	 The
automatic	conversion	 functions	will	 then	 take	care	of	converting	your	string	 to	
requires	it.

Please	 note	 that	 SFML	 also	 defines	 a	 low-level,	 generic	 interface	 for	 Unicode	 handling,	 see	 the	
classes.

Definition	at	line	45	of	file	String.hpp.

Member	Typedef	Documentation

typedef	std::basic_string<Uint32>::const_iterator	sf::String::ConstIterator

Read-only	iterator	type.

Definition	at	line	53	of	file	String.hpp.

typedef	std::basic_string<Uint32>::iterator	sf::String::Iterator

Iterator	type.

Definition	at	line	52	of	file	String.hpp.

Constructor	&	Destructor	Documentation

sf::String::String ()

Default	constructor.

This	constructor	creates	an	empty	string.

sf::String::String (char	 ansiChar,
const	std::locale	&	 locale	=	std::locale()	
)

Construct	from	a	single	ANSI	character	and	a	locale.

The	source	character	is	converted	to	UTF-32	according	to	the	given	locale.

Parameters
ansiChar ANSI	character	to	convert
locale Locale	to	use	for	conversion

sf::String::String (wchar_t	 wideChar)

Construct	from	single	wide	character.

Parameters
wideCharWide	character	to	convert

sf::String::String (Uint32	 utf32Char)

Construct	from	single	UTF-32	character.

Parameters
utf32Char UTF-32	character	to	convert

sf::String::String (const	char	*	 ansiString,
const	std::locale	&	 locale	=	std::locale()	
)

Construct	from	a	null-terminated	C-style	ANSI	string	and	a	locale.

The	source	string	is	converted	to	UTF-32	according	to	the	given	locale.

Parameters
ansiString ANSI	string	to	convert
locale Locale	to	use	for	conversion

sf::String::String (const	std::string	&	 ansiString,
const	std::locale	&	 locale	=	std::locale()	
)

Construct	from	an	ANSI	string	and	a	locale.

The	source	string	is	converted	to	UTF-32	according	to	the	given	locale.

Parameters
ansiString ANSI	string	to	convert

locale Locale	to	use	for	conversion

sf::String::String (const	wchar_t	*	 wideString)

Construct	from	null-terminated	C-style	wide	string.

Parameters
wideStringWide	string	to	convert

sf::String::String (const	std::wstring	&	 wideString)

Construct	from	a	wide	string.

Parameters
wideStringWide	string	to	convert

sf::String::String (const	Uint32	*	 utf32String)

Construct	from	a	null-terminated	C-style	UTF-32	string.

Parameters
utf32String UTF-32	string	to	assign

sf::String::String (const	std::basic_string<	Uint32	>	&	 utf32String)

Construct	from	an	UTF-32	string.

Parameters

utf32String UTF-32	string	to	assign

sf::String::String (const	String	&	 copy)

Copy	constructor.

Parameters
copy Instance	to	copy

Member	Function	Documentation

Iterator	sf::String::begin ()

Return	an	iterator	to	the	beginning	of	the	string.

Returns
Read-write	iterator	to	the	beginning	of	the	string	characters

See	also
end

ConstIterator	sf::String::begin () const

Return	an	iterator	to	the	beginning	of	the	string.

Returns
Read-only	iterator	to	the	beginning	of	the	string	characters

See	also
end

void	sf::String::clear ()

Clear	the	string.

This	function	removes	all	the	characters	from	the	string.

See	also
isEmpty,	erase

Iterator	sf::String::end ()

Return	an	iterator	to	the	end	of	the	string.

The	end	iterator	refers	to	1	position	past	 the	 last	character;	 thus	 it	 represents	an	 invalid	character	and
should	never	be	accessed.

Returns
Read-write	iterator	to	the	end	of	the	string	characters

See	also
begin

ConstIterator	sf::String::end () const

Return	an	iterator	to	the	end	of	the	string.

The	end	iterator	refers	to	1	position	past	 the	 last	character;	 thus	 it	 represents	an	 invalid	character	and
should	never	be	accessed.

Returns
Read-only	iterator	to	the	end	of	the	string	characters

See	also
begin

void	sf::String::erase (std::size_t	 position,
std::size_t	 count	=	1	
)

Erase	one	or	more	characters	from	the	string.

This	function	removes	a	sequence	of	count	characters	starting	from	position

Parameters
position Position	of	the	first	character	to	erase
count Number	of	characters	to	erase

std::size_t	sf::String::find (const	String	&	 str,
std::size_t	 start	=	0	
) const

Find	a	sequence	of	one	or	more	characters	in	the	string.

This	function	searches	for	the	characters	of	str	in	the	string,	starting	from	

Parameters
str Characters	to	find
startWhere	to	begin	searching

Returns
Position	of	str	in	the	string,	or	String::InvalidPos	if	not	found

template<typename	T	>

static	String	sf::String::fromUtf16 (T	 begin,

T	 end	
)

Create	a	new	sf::String	from	a	UTF-16	encoded	string.

Parameters
begin Forward	iterator	to	the	beginning	of	the	UTF-16	sequence
end Forward	iterator	to	the	end	of	the	UTF-16	sequence

Returns
A	sf::String	containing	the	source	string

See	also
fromUtf8,	fromUtf32

template<typename	T	>

static	String	sf::String::fromUtf32 (T	 begin,
T	 end	
)

Create	a	new	sf::String	from	a	UTF-32	encoded	string.

This	 function	 is	 provided	 for	 consistency,	 it	 is	 equivalent	 to	 using	 the	 constructors	 that	 takes	 a	 const
sf::Uint32*	or	a	std::basic_string<sf::Uint32>.

Parameters
begin Forward	iterator	to	the	beginning	of	the	UTF-32	sequence
end Forward	iterator	to	the	end	of	the	UTF-32	sequence

Returns
A	sf::String	containing	the	source	string

See	also
fromUtf8,	fromUtf16

template<typename	T	>

static	String	sf::String::fromUtf8 (T	 begin,
T	 end	
)

Create	a	new	sf::String	from	a	UTF-8	encoded	string.

Parameters
begin Forward	iterator	to	the	beginning	of	the	UTF-8	sequence
end Forward	iterator	to	the	end	of	the	UTF-8	sequence

Returns
A	sf::String	containing	the	source	string

See	also
fromUtf16,	fromUtf32

const	Uint32*	sf::String::getData () const

Get	a	pointer	to	the	C-style	array	of	characters.

This	functions	provides	a	read-only	access	to	a	null-terminated	C-style	representation	of	the	string.	The
returned	pointer	is	temporary	and	is	meant	only	for	immediate	use,	thus	it	is	not	recommended	to	store	it.

Returns
Read-only	pointer	to	the	array	of	characters

std::size_t	sf::String::getSize () const

Get	the	size	of	the	string.

Returns
Number	of	characters	in	the	string

See	also
isEmpty

void	sf::String::insert (std::size_t	 position,
const	String	&	 str	
)

Insert	one	or	more	characters	into	the	string.

This	function	inserts	the	characters	of	str	into	the	string,	starting	from	position

Parameters
position Position	of	insertion
str Characters	to	insert

bool	sf::String::isEmpty () const

Check	whether	the	string	is	empty	or	not.

Returns
True	if	the	string	is	empty	(i.e.	contains	no	character)

See	also
clear,	getSize

sf::String::operator	std::string () const

Implicit	conversion	operator	to	std::string	(ANSI	string)

The	 current	 global	 locale	 is	 used	 for	 conversion.	 If	 you	 want	 to	 explicitly	 specify	 a	 locale,	 see
toAnsiString.	Characters	that	do	not	fit	in	the	target	encoding	are	discarded	from	the	returned	string.	This
operator	is	defined	for	convenience,	and	is	equivalent	to	calling	toAnsiString()

Returns
Converted	ANSI	string

See	also
toAnsiString,	operator	std::wstring

sf::String::operator	std::wstring () const

Implicit	conversion	operator	to	std::wstring	(wide	string)

Characters	that	do	not	fit	in	the	target	encoding	are	discarded	from	the	returned	string.	This	operator	is
defined	for	convenience,	and	is	equivalent	to	calling	toWideString().

Returns
Converted	wide	string

See	also
toWideString,	operator	std::string

String&	sf::String::operator+= (const	String	&	 right)

Overload	of	+=	operator	to	append	an	UTF-32	string.

Parameters
right String	to	append

Returns
Reference	to	self

String&	sf::String::operator= (const	String	&	 right)

Overload	of	assignment	operator.

Parameters
right Instance	to	assign

Returns
Reference	to	self

Uint32	sf::String::operator[] (std::size_t	 index) const

Overload	of	[]	operator	to	access	a	character	by	its	position.

This	function	provides	read-only	access	to	characters.	Note:	the	behavior	is	undefined	if	
range.

Parameters
index Index	of	the	character	to	get

Returns
Character	at	position	index

Uint32&	sf::String::operator[] (std::size_t	 index)

Overload	of	[]	operator	to	access	a	character	by	its	position.

This	function	provides	read	and	write	access	to	characters.	Note:	the	behavior	is	undefined	if	
of	range.

Parameters
index Index	of	the	character	to	get

Returns
Reference	to	the	character	at	position	index

void	sf::String::replace (std::size_t	 position,
std::size_t	 length,
const	String	&	 replaceWith	
)

Replace	a	substring	with	another	string.

This	 function	 replaces	 the	substring	 that	 starts	at	 index	position	 and	spans	
string	replaceWith.

Parameters
position Index	of	the	first	character	to	be	replaced
length Number	of	characters	to	replace.	You	can	pass	InvalidPos	to	replace	all	characters

until	the	end	of	the	string.
replaceWith String	that	replaces	the	given	substring.

void	sf::String::replace (const	String	&	 searchFor,
const	String	&	 replaceWith	
)

Replace	all	occurrences	of	a	substring	with	a	replacement	string.

This	function	replaces	all	occurrences	of	searchFor	in	this	string	with	the	string	

Parameters
searchFor The	value	being	searched	for
replaceWith The	value	that	replaces	found	searchFor	values

String	sf::String::substring (std::size_t	 position,
std::size_t	 length	=	InvalidPos	
) const

Return	a	part	of	the	string.

This	function	returns	the	substring	that	starts	at	index	position	and	spans	

Parameters
position Index	of	the	first	character
length Number	of	characters	to	include	in	the	substring	(if	the	string	is	shorter,	as	many

characters	as	possible	are	included).	InvalidPos	can	be	used	to	include	all	characters	until
the	end	of	the	string.

Returns
String	object	containing	a	substring	of	this	object

std::string	sf::String::toAnsiString (const	std::locale	&	 locale	=	std::locale()

Convert	the	Unicode	string	to	an	ANSI	string.

The	UTF-32	string	is	converted	to	an	ANSI	string	in	the	encoding	defined	by	
not	fit	in	the	target	encoding	are	discarded	from	the	returned	string.

Parameters
locale Locale	to	use	for	conversion

Returns
Converted	ANSI	string

See	also
toWideString,	operator	std::string

std::basic_string<Uint16>	sf::String::toUtf16 () const

Convert	the	Unicode	string	to	a	UTF-16	string.

Returns
Converted	UTF-16	string

See	also
toUtf8,	toUtf32

std::basic_string<Uint32>	sf::String::toUtf32 () const

Convert	the	Unicode	string	to	a	UTF-32	string.

This	function	doesn't	perform	any	conversion,	since	the	string	is	already	stored	as	UTF-32	internally.

Returns
Converted	UTF-32	string

See	also
toUtf8,	toUtf16

std::basic_string<Uint8>	sf::String::toUtf8 () const

Convert	the	Unicode	string	to	a	UTF-8	string.

Returns
Converted	UTF-8	string

See	also
toUtf16,	toUtf32

std::wstring	sf::String::toWideString () const

Convert	the	Unicode	string	to	a	wide	string.

Characters	that	do	not	fit	in	the	target	encoding	are	discarded	from	the	returned	string.

Returns
Converted	wide	string

See	also
toAnsiString,	operator	std::wstring

Friends	And	Related	Function	Documentation

bool	operator!= (const	String	&	 left,
const	String	&	 right	
)

Overload	of	!=	operator	to	compare	two	UTF-32	strings.

Parameters
left Left	operand	(a	string)
right Right	operand	(a	string)

Returns
True	if	both	strings	are	different

String	operator+ (const	String	&	 left,
const	String	&	 right	
)

Overload	of	binary	+	operator	to	concatenate	two	strings.

Parameters
left Left	operand	(a	string)
right Right	operand	(a	string)

Returns
Concatenated	string

bool	operator< (const	String	&	 left,
const	String	&	 right	
)

Overload	of	<	operator	to	compare	two	UTF-32	strings.

Parameters
left Left	operand	(a	string)
right Right	operand	(a	string)

Returns
True	if	left	is	lexicographically	before	right

bool	operator<= (const	String	&	 left,
const	String	&	 right	
)

Overload	of	<=	operator	to	compare	two	UTF-32	strings.

Parameters
left Left	operand	(a	string)
right Right	operand	(a	string)

Returns
True	if	left	is	lexicographically	before	or	equivalent	to	right

bool	operator== (const	String	&	 left,
const	String	&	 right	
)

Overload	of	==	operator	to	compare	two	UTF-32	strings.

Parameters
left Left	operand	(a	string)
right Right	operand	(a	string)

Returns
True	if	both	strings	are	equal

bool	operator> (const	String	&	 left,
const	String	&	 right	
)

Overload	of	>	operator	to	compare	two	UTF-32	strings.

Parameters
left Left	operand	(a	string)
right Right	operand	(a	string)

Returns
True	if	left	is	lexicographically	after	right

bool	operator>= (const	String	&	 left,
const	String	&	 right	
)

Overload	of	>=	operator	to	compare	two	UTF-32	strings.

Parameters
left Left	operand	(a	string)

right Right	operand	(a	string)

Returns
True	if	left	is	lexicographically	after	or	equivalent	to	right

Member	Data	Documentation

const	std::size_t	sf::String::InvalidPos

Represents	an	invalid	position	in	the	string.

Definition	at	line	58	of	file	String.hpp.

The	documentation	for	this	class	was	generated	from	the	following	file:
String.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Member	Functions	|	List	of	all	members

sf::Thread	Class	Reference
System	module

Utility	class	to	manipulate	threads.	More...

#include	<Thread.hpp>

Inheritance	diagram	for	sf::Thread:

Public	Member	Functions
template<typename	F	>

	 Thread	(F	function)
	 Construct	the	thread	from	a	functor	with	no	argument.	More...
	
template<typename	F	,	typename	A	>

	 Thread	(F	function,	A	argument)
	 Construct	the	thread	from	a	functor	with	an	argument.	More...
	
template<typename	C	>

	 Thread	(void(C::*function)(),	C	*object)
	 Construct	the	thread	from	a	member	function	and	an	object.	More...
	

	 ~Thread	()
	 Destructor.	More...
	
void	 launch	()
	 Run	the	thread.	More...
	
void	 wait	()
	 Wait	until	the	thread	finishes.	More...
	
void	 terminate	()
	 Terminate	the	thread.	More...
	

Detailed	Description

Utility	class	to	manipulate	threads.

Threads	provide	a	way	to	run	multiple	parts	of	the	code	in	parallel.

When	you	launch	a	new	thread,	the	execution	is	split	and	both	the	new	thread	and	the	caller	run	in	parallel.

To	use	a	 sf::Thread,	you	construct	 it	directly	with	the	function	to	execute	as	the	entry	point	of	the	thread.
sf::Thread	has	multiple	template	constructors,	which	means	that	you	can	use	several	types	of	entry	points:

non-member	functions	with	no	argument

non-member	functions	with	one	argument	of	any	type

functors	with	no	argument	(this	one	is	particularly	useful	for	compatibility	with	boost/std::bind)

functors	with	one	argument	of	any	type

member	functions	from	any	class	with	no	argument

The	 function	 argument,	 if	 any,	 is	 copied	 in	 the	 sf::Thread	 instance,	 as	 well	 as	 the	 functor	 (if	 the
corresponding	constructor	 is	used).	Class	 instances,	however,	are	passed	by	pointer	so	you	must	make
sure	that	the	object	won't	be	destroyed	while	the	thread	is	still	using	it.

The	thread	ends	when	its	function	is	terminated.	If	 the	owner	 sf::Thread
thread	is	finished,	the	destructor	will	wait	(see	wait())

Usage	examples:

//	example	1:	non	member	function	with	one	argument

void	threadFunc(int	argument)

{

				...

}

sf::Thread	thread(&threadFunc,	5);

thread.launch();	//	start	the	thread	(internally	calls	threadFunc(5))

//	example	2:	member	function

class	Task

{

public:

	void	run()

				{

								...

				}

};

Task	task;

sf::Thread	thread(&Task::run,	&task);

thread.launch();	//	start	the	thread	(internally	calls	task.run())

//	example	3:	functor

struct	Task

{

	void	operator()()

				{

								...

				}

};

sf::Thread	thread(Task());

thread.launch();	//	start	the	thread	(internally	calls	operator()	on	the	Task	instance)

Creating	parallel	 threads	of	execution	can	be	dangerous:	all	 threads	 inside	 the	same	process	share	 the
same	memory	space,	which	means	that	you	may	end	up	accessing	the	same	variable	from	multiple	threads
at	the	same	time.	To	prevent	this	kind	of	situations,	you	can	use	mutexes	(see	

See	also
sf::Mutex

Definition	at	line	48	of	file	Thread.hpp.

Constructor	&	Destructor	Documentation

template<typename	F	>

sf::Thread::Thread (F	 function)

Construct	the	thread	from	a	functor	with	no	argument.

This	constructor	works	for	function	objects,	as	well	as	free	functions.

Use	this	constructor	for	this	kind	of	function:

void	function();

//	---	or	----

struct	Functor

{

	void	operator()();

};

Note:	this	does	not	run	the	thread,	use	launch().

Parameters
function Functor	or	free	function	to	use	as	the	entry	point	of	the	thread

template<typename	F	,	typename	A	>

sf::Thread::Thread (F	 function,
A	 argument	
)

Construct	the	thread	from	a	functor	with	an	argument.

This	constructor	works	for	function	objects,	as	well	as	free	functions.	It	is	a	template,	which	means	that
the	argument	can	have	any	type	(int,	std::string,	void*,	Toto,	...).

Use	this	constructor	for	this	kind	of	function:

void	function(int	arg);

//	---	or	----

struct	Functor

{

	void	operator()(std::string	arg);

};

Note:	this	does	not	run	the	thread,	use	launch().

Parameters
function Functor	or	free	function	to	use	as	the	entry	point	of	the	thread
argument argument	to	forward	to	the	function

template<typename	C	>

sf::Thread::Thread (void(C::*)()	 function,
C	*	 object	
)

Construct	the	thread	from	a	member	function	and	an	object.

This	constructor	is	a	template,	which	means	that	you	can	use	it	with	any	class.	Use	this	constructor	for
this	kind	of	function:

class	MyClass

{

public:

	void	function();

};

Note:	this	does	not	run	the	thread,	use	launch().

Parameters
function Entry	point	of	the	thread
object Pointer	to	the	object	to	use

sf::Thread::~Thread ()

Destructor.

This	 destructor	 calls	 wait(),	 so	 that	 the	 internal	 thread	 cannot	 survive	 after	 its	
destroyed.

Member	Function	Documentation

void	sf::Thread::launch ()

Run	the	thread.

This	function	starts	the	entry	point	passed	to	the	thread's	constructor,	and	returns	immediately.	After	this
function	returns,	the	thread's	function	is	running	in	parallel	to	the	calling	code.

void	sf::Thread::terminate ()

Terminate	the	thread.

This	function	immediately	stops	the	thread,	without	waiting	for	its	function	to	finish.	Terminating	a	thread
with	 this	 function	 is	 not	 safe,	 and	 can	 lead	 to	 local	 variables	 not	 being	 destroyed	 on	 some	operating
systems.	You	should	rather	try	to	make	the	thread	function	terminate	by	itself.

void	sf::Thread::wait ()

Wait	until	the	thread	finishes.

This	 function	 will	 block	 the	 execution	 until	 the	 thread's	 function	 ends.	Warning:	 if	 the	 thread	 function
never	ends,	the	calling	thread	will	block	forever.	If	this	function	is	called	from	its	owner	thread,	it	returns
without	doing	anything.

The	documentation	for	this	class	was	generated	from	the	following	file:

Thread.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Member	Functions	|	List	of	all	members

sf::ThreadLocal	Class	Reference
System	module

Defines	variables	with	thread-local	storage.	More...

#include	<ThreadLocal.hpp>

Inheritance	diagram	for	sf::ThreadLocal:

Public	Member	Functions
	 ThreadLocal	(void	*value=NULL)

	 Default	constructor.	More...
	

	 ~ThreadLocal	()
	 Destructor.	More...
	
void	 setValue	(void	*value)

	 Set	the	thread-specific	value	of	the	variable.	More...
	
void	*	 getValue	()	const
	 Retrieve	the	thread-specific	value	of	the	variable.	More...
	

Detailed	Description

Defines	variables	with	thread-local	storage.

This	class	manipulates	void*	parameters	and	thus	is	not	appropriate	for	strongly-typed	variables.

You	should	rather	use	the	sf::ThreadLocalPtr	template	class.

Definition	at	line	47	of	file	ThreadLocal.hpp.

Constructor	&	Destructor	Documentation

sf::ThreadLocal::ThreadLocal (void	*	 value	=	NULL)

Default	constructor.

Parameters
value Optional	value	to	initialize	the	variable

sf::ThreadLocal::~ThreadLocal ()

Destructor.

Member	Function	Documentation

void*	sf::ThreadLocal::getValue () const

Retrieve	the	thread-specific	value	of	the	variable.

Returns
Value	of	the	variable	for	the	current	thread

void	sf::ThreadLocal::setValue (void	*	 value)

Set	the	thread-specific	value	of	the	variable.

Parameters
value Value	of	the	variable	for	the	current	thread

The	documentation	for	this	class	was	generated	from	the	following	file:
ThreadLocal.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Member	Functions	|	Private	Member	Functions	|	List	of	all	members

sf::ThreadLocalPtr<	T	>	Class	Template	Reference
System	module

Pointer	to	a	thread-local	variable.	More...

#include	<ThreadLocalPtr.hpp>

Inheritance	diagram	for	sf::ThreadLocalPtr<	T	>:

Public	Member	Functions
	 ThreadLocalPtr	(T	*value=NULL)

	 Default	constructor.	More...
	

T	&	 operator*	()	const
	 Overload	of	unary	operator	*.	More...
	

T	*	 operator->	()	const
	 Overload	of	operator	->	More...
	

	 operator	T	*	()	const

	 Conversion	operator	to	implicitly	convert	the	pointer	to	its	raw	pointer	type	(T*)
More...

	
ThreadLocalPtr<	T	>	&	 operator=	(T	*value)
	 Assignment	operator	for	a	raw	pointer	parameter.	
	
ThreadLocalPtr<	T	>	&	 operator=	(const	ThreadLocalPtr<	T	>	&right)
	 Assignment	operator	for	a	ThreadLocalPtr	parameter.	
	

Private	Member	Functions
void	 setValue	(void	*value)

	 Set	the	thread-specific	value	of	the	variable.	More...
	
void	*	 getValue	()	const
	 Retrieve	the	thread-specific	value	of	the	variable.	More...
	

Detailed	Description

template<typename	T>
class	sf::ThreadLocalPtr<	T	>

Pointer	to	a	thread-local	variable.

sf::ThreadLocalPtr	is	a	type-safe	wrapper	for	storing	pointers	to	thread-local	variables.

A	 thread-local	 variable	 holds	 a	 different	 value	 for	 each	 different	 thread,	 unlike	 normal	 variables	 that	 are
shared.

Its	usage	 is	completely	 transparent,	 so	 that	 it	 is	 similar	 to	manipulating	 the	 raw	pointer	directly	 (like	any
smart	pointer).

Usage	example:

MyClass	object1;

MyClass	object2;

sf::ThreadLocalPtr<MyClass>	objectPtr;

void	thread1()

{

				objectPtr	=	&object1;	//	doesn't	impact	thread2

				...

}

void	thread2()

{

				objectPtr	=	&object2;	//	doesn't	impact	thread1

				...

}

int	main()

{

	//	Create	and	launch	the	two	threads

	sf::Thread	t1(&thread1);

	sf::Thread	t2(&thread2);

				t1.launch();

				t2.launch();

	return	0;

}

ThreadLocalPtr	 is	 designed	 for	 internal	 use;	 however	 you	 can	 use	 it	 if	 you	 feel	 like	 it	 fits	 well	 your
implementation.

Definition	at	line	41	of	file	ThreadLocalPtr.hpp.

Constructor	&	Destructor	Documentation

template<typename	T>

sf::ThreadLocalPtr<	T	>::ThreadLocalPtr (T	*	 value	=	NULL)

Default	constructor.

Parameters
value Optional	value	to	initialize	the	variable

Member	Function	Documentation

template<typename	T>

sf::ThreadLocalPtr<	T	>::operator	T	* () const

Conversion	operator	to	implicitly	convert	the	pointer	to	its	raw	pointer	type	(T*)

Returns
Pointer	to	the	actual	object

template<typename	T>

T&	sf::ThreadLocalPtr<	T	>::operator* () const

Overload	of	unary	operator	*.

Like	raw	pointers,	applying	the	*	operator	returns	a	reference	to	the	pointed-to	object.

Returns
Reference	to	the	thread-local	variable

template<typename	T>

T*	sf::ThreadLocalPtr<	T	>::operator-> () const

Overload	of	operator	->

Similarly	to	raw	pointers,	applying	the	->	operator	returns	the	pointed-to	object.

Returns
Pointer	to	the	thread-local	variable

template<typename	T>

ThreadLocalPtr<T>&	sf::ThreadLocalPtr<	T	>::operator= (T	*	 value

Assignment	operator	for	a	raw	pointer	parameter.

Parameters
value Pointer	to	assign

Returns
Reference	to	self

template<typename	T>

ThreadLocalPtr<T>&	sf::ThreadLocalPtr<	T	>::operator= (const	ThreadLocalPtr

Assignment	operator	for	a	ThreadLocalPtr	parameter.

Parameters
right ThreadLocalPtr	to	assign

Returns
Reference	to	self

The	documentation	for	this	class	was	generated	from	the	following	file:
ThreadLocalPtr.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

http://www.sfml-dev.org/license.php

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Member	Functions	|	Static	Public	Attributes	|	Friends	|	Related	Functions	|	List	of	all	members

sf::Time	Class	Reference
System	module

Represents	a	time	value.	More...

#include	<Time.hpp>

Public	Member	Functions
	 Time	()

	 Default	constructor.	More...
	
float	 asSeconds	()	const
	 Return	the	time	value	as	a	number	of	seconds.	More...
	
Int32	 asMilliseconds	()	const
	 Return	the	time	value	as	a	number	of	milliseconds.	More...
	
Int64	 asMicroseconds	()	const
	 Return	the	time	value	as	a	number	of	microseconds.	More...
	

Static	Public	Attributes
static	const	Time	 Zero
	 Predefined	"zero"	time	value.	More...
	

Friends
Time	 seconds	(float)

	
Time	 milliseconds	(Int32)

	
Time	 microseconds	(Int64)

	

Related	Functions

(Note	that	these	are	not	member	functions.)

Time	 seconds	(float	amount)
	 Construct	a	time	value	from	a	number	of	seconds.	More...
	

Time	 milliseconds	(Int32	amount)
	 Construct	a	time	value	from	a	number	of	milliseconds.	More...
	

Time	 microseconds	(Int64	amount)
	 Construct	a	time	value	from	a	number	of	microseconds.	More...
	

bool	 operator==	(Time	left,	Time	right)
	 Overload	of	==	operator	to	compare	two	time	values.	More...
	

bool	 operator!=	(Time	left,	Time	right)
	 Overload	of	!=	operator	to	compare	two	time	values.	More...
	

bool	 operator<	(Time	left,	Time	right)
	 Overload	of	<	operator	to	compare	two	time	values.	More...
	

bool	 operator>	(Time	left,	Time	right)
	 Overload	of	>	operator	to	compare	two	time	values.	More...
	

bool	 operator<=	(Time	left,	Time	right)
	 Overload	of	<=	operator	to	compare	two	time	values.	More...
	

bool	 operator>=	(Time	left,	Time	right)
	 Overload	of	>=	operator	to	compare	two	time	values.	More...
	

Time	 operator-	(Time	right)

	 Overload	of	unary	-	operator	to	negate	a	time	value.	More...
	

Time	 operator+	(Time	left,	Time	right)
	 Overload	of	binary	+	operator	to	add	two	time	values.	More...
	
Time	&	 operator+=	(Time	&left,	Time	right)
	 Overload	of	binary	+=	operator	to	add/assign	two	time	values.	More...
	

Time	 operator-	(Time	left,	Time	right)
	 Overload	of	binary	-	operator	to	subtract	two	time	values.	More...
	
Time	&	 operator-=	(Time	&left,	Time	right)
	 Overload	of	binary	-=	operator	to	subtract/assign	two	time	values.	
	

Time	 operator*	(Time	left,	float	right)
	 Overload	of	binary	*	operator	to	scale	a	time	value.	More...
	

Time	 operator*	(Time	left,	Int64	right)
	 Overload	of	binary	*	operator	to	scale	a	time	value.	More...
	

Time	 operator*	(float	left,	Time	right)
	 Overload	of	binary	*	operator	to	scale	a	time	value.	More...
	

Time	 operator*	(Int64	left,	Time	right)
	 Overload	of	binary	*	operator	to	scale	a	time	value.	More...
	
Time	&	 operator*=	(Time	&left,	float	right)
	 Overload	of	binary	*=	operator	to	scale/assign	a	time	value.	More...
	
Time	&	 operator*=	(Time	&left,	Int64	right)
	 Overload	of	binary	*=	operator	to	scale/assign	a	time	value.	More...
	

Time	 operator/	(Time	left,	float	right)
	 Overload	of	binary	/	operator	to	scale	a	time	value.	More...
	

Time	 operator/	(Time	left,	Int64	right)
	 Overload	of	binary	/	operator	to	scale	a	time	value.	More...
	
Time	&	 operator/=	(Time	&left,	float	right)
	 Overload	of	binary	/=	operator	to	scale/assign	a	time	value.	More...
	
Time	&	 operator/=	(Time	&left,	Int64	right)
	 Overload	of	binary	/=	operator	to	scale/assign	a	time	value.	More...
	

float	 operator/	(Time	left,	Time	right)
	 Overload	of	binary	/	operator	to	compute	the	ratio	of	two	time	values.	
	

Time	 operator%	(Time	left,	Time	right)
	 Overload	of	binary	%	operator	to	compute	remainder	of	a	time	value.	
	
Time	&	 operator%=	(Time	&left,	Time	right)
	 Overload	of	binary	%=	operator	to	compute/assign	remainder	of	a	time	value.	
	

Detailed	Description

Represents	a	time	value.

sf::Time	encapsulates	a	time	value	in	a	flexible	way.

It	allows	to	define	a	time	value	either	as	a	number	of	seconds,	milliseconds	or	microseconds.	It	also	works
the	 other	 way	 round:	 you	 can	 read	 a	 time	 value	 as	 either	 a	 number	 of	 seconds,	 milliseconds	 or
microseconds.

By	using	such	a	flexible	interface,	the	API	doesn't	impose	any	fixed	type	or	resolution	for	time	values,	and
let	the	user	choose	its	own	favorite	representation.

Time	 values	 support	 the	 usual	mathematical	 operations:	 you	 can	 add	 or	 subtract	 two	 times,	multiply	 or
divide	a	time	by	a	number,	compare	two	times,	etc.

Since	they	represent	a	time	span	and	not	an	absolute	time	value,	times	can	also	be	negative.

Usage	example:

sf::Time	t1	=	sf::seconds(0.1f);

Int32	milli	=	t1.asMilliseconds();	//	100

sf::Time	t2	=	sf::milliseconds(30);

Int64	micro	=	t2.asMicroseconds();	//	30000

sf::Time	t3	=	sf::microseconds(-800000);

float	sec	=	t3.asSeconds();	//	-0.8

void	update(sf::Time	elapsed)

{

			position	+=	speed	*	elapsed.asSeconds();

}

update(sf::milliseconds(100));

See	also

sf::Clock

Definition	at	line	40	of	file	Time.hpp.

Constructor	&	Destructor	Documentation

sf::Time::Time ()

Default	constructor.

Sets	the	time	value	to	zero.

Member	Function	Documentation

Int64	sf::Time::asMicroseconds () const

Return	the	time	value	as	a	number	of	microseconds.

Returns
Time	in	microseconds

See	also
asSeconds,	asMilliseconds

Int32	sf::Time::asMilliseconds () const

Return	the	time	value	as	a	number	of	milliseconds.

Returns
Time	in	milliseconds

See	also
asSeconds,	asMicroseconds

float	sf::Time::asSeconds () const

Return	the	time	value	as	a	number	of	seconds.

Returns
Time	in	seconds

See	also
asMilliseconds,	asMicroseconds

Friends	And	Related	Function	Documentation

Time	microseconds (Int64	 amount)

Construct	a	time	value	from	a	number	of	microseconds.

Parameters
amount Number	of	microseconds

Returns
Time	value	constructed	from	the	amount	of	microseconds

See	also
seconds,	milliseconds

Time	milliseconds (Int32	 amount)

Construct	a	time	value	from	a	number	of	milliseconds.

Parameters
amount Number	of	milliseconds

Returns
Time	value	constructed	from	the	amount	of	milliseconds

See	also
seconds,	microseconds

bool	operator!= (Time	 left,
Time	 right	

)

Overload	of	!=	operator	to	compare	two	time	values.

Parameters
left Left	operand	(a	time)
right Right	operand	(a	time)

Returns
True	if	both	time	values	are	different

Time	operator% (Time	 left,
Time	 right	

)

Overload	of	binary	%	operator	to	compute	remainder	of	a	time	value.

Parameters
left Left	operand	(a	time)
right Right	operand	(a	time)

Returns
left	modulo	right

Time	&	operator%= (Time	&	 left,
Time	 right	

)

Overload	of	binary	%=	operator	to	compute/assign	remainder	of	a	time	value.

Parameters
left Left	operand	(a	time)
right Right	operand	(a	time)

Returns
left	modulo	right

Time	operator* (Time	 left,
float	 right	
)

Overload	of	binary	*	operator	to	scale	a	time	value.

Parameters
left Left	operand	(a	time)
right Right	operand	(a	number)

Returns
left	multiplied	by	right

Time	operator* (Time	 left,
Int64	 right	
)

Overload	of	binary	*	operator	to	scale	a	time	value.

Parameters
left Left	operand	(a	time)

right Right	operand	(a	number)

Returns
left	multiplied	by	right

Time	operator* (float	 left,
Time	 right	

)

Overload	of	binary	*	operator	to	scale	a	time	value.

Parameters
left Left	operand	(a	number)
right Right	operand	(a	time)

Returns
left	multiplied	by	right

Time	operator* (Int64	 left,
Time	 right	

)

Overload	of	binary	*	operator	to	scale	a	time	value.

Parameters
left Left	operand	(a	number)
right Right	operand	(a	time)

Returns
left	multiplied	by	right

Time	&	operator*= (Time	&	 left,
float	 right	
)

Overload	of	binary	*=	operator	to	scale/assign	a	time	value.

Parameters
left Left	operand	(a	time)
right Right	operand	(a	number)

Returns
left	multiplied	by	right

Time	&	operator*= (Time	&	 left,
Int64	 right	
)

Overload	of	binary	*=	operator	to	scale/assign	a	time	value.

Parameters
left Left	operand	(a	time)
right Right	operand	(a	number)

Returns
left	multiplied	by	right

Time	operator+ (Time	 left,
Time	 right	

)

Overload	of	binary	+	operator	to	add	two	time	values.

Parameters
left Left	operand	(a	time)
right Right	operand	(a	time)

Returns
Sum	of	the	two	times	values

Time	&	operator+= (Time	&	 left,
Time	 right	

)

Overload	of	binary	+=	operator	to	add/assign	two	time	values.

Parameters
left Left	operand	(a	time)
right Right	operand	(a	time)

Returns
Sum	of	the	two	times	values

Time	operator- (Time	 right)

Overload	of	unary	-	operator	to	negate	a	time	value.

Parameters
right Right	operand	(a	time)

Returns

Opposite	of	the	time	value

Time	operator- (Time	 left,
Time	 right	

)

Overload	of	binary	-	operator	to	subtract	two	time	values.

Parameters
left Left	operand	(a	time)
right Right	operand	(a	time)

Returns
Difference	of	the	two	times	values

Time	&	operator-= (Time	&	 left,
Time	 right	

)

Overload	of	binary	-=	operator	to	subtract/assign	two	time	values.

Parameters
left Left	operand	(a	time)
right Right	operand	(a	time)

Returns
Difference	of	the	two	times	values

Time	operator/ (Time	 left,

float	 right	
)

Overload	of	binary	/	operator	to	scale	a	time	value.

Parameters
left Left	operand	(a	time)
right Right	operand	(a	number)

Returns
left	divided	by	right

Time	operator/ (Time	 left,
Int64	 right	
)

Overload	of	binary	/	operator	to	scale	a	time	value.

Parameters
left Left	operand	(a	time)
right Right	operand	(a	number)

Returns
left	divided	by	right

float	operator/ (Time	 left,
Time	 right	

)

Overload	of	binary	/	operator	to	compute	the	ratio	of	two	time	values.

Parameters
left Left	operand	(a	time)
right Right	operand	(a	time)

Returns
left	divided	by	right

Time	&	operator/= (Time	&	 left,
float	 right	
)

Overload	of	binary	/=	operator	to	scale/assign	a	time	value.

Parameters
left Left	operand	(a	time)
right Right	operand	(a	number)

Returns
left	divided	by	right

Time	&	operator/= (Time	&	 left,
Int64	 right	
)

Overload	of	binary	/=	operator	to	scale/assign	a	time	value.

Parameters
left Left	operand	(a	time)
right Right	operand	(a	number)

Returns

left	divided	by	right

bool	operator< (Time	 left,
Time	 right	

)

Overload	of	<	operator	to	compare	two	time	values.

Parameters
left Left	operand	(a	time)
right Right	operand	(a	time)

Returns
True	if	left	is	lesser	than	right

bool	operator<= (Time	 left,
Time	 right	

)

Overload	of	<=	operator	to	compare	two	time	values.

Parameters
left Left	operand	(a	time)
right Right	operand	(a	time)

Returns
True	if	left	is	lesser	or	equal	than	right

bool	operator== (Time	 left,

Time	 right	
)

Overload	of	==	operator	to	compare	two	time	values.

Parameters
left Left	operand	(a	time)
right Right	operand	(a	time)

Returns
True	if	both	time	values	are	equal

bool	operator> (Time	 left,
Time	 right	

)

Overload	of	>	operator	to	compare	two	time	values.

Parameters
left Left	operand	(a	time)
right Right	operand	(a	time)

Returns
True	if	left	is	greater	than	right

bool	operator>= (Time	 left,
Time	 right	

)

Overload	of	>=	operator	to	compare	two	time	values.

Parameters
left Left	operand	(a	time)
right Right	operand	(a	time)

Returns
True	if	left	is	greater	or	equal	than	right

Time	seconds (float	 amount)

Construct	a	time	value	from	a	number	of	seconds.

Parameters
amount Number	of	seconds

Returns
Time	value	constructed	from	the	amount	of	seconds

See	also
milliseconds,	microseconds

Member	Data	Documentation

const	Time	sf::Time::Zero

Predefined	"zero"	time	value.

Definition	at	line	85	of	file	Time.hpp.

The	documentation	for	this	class	was	generated	from	the	following	file:
Time.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Utf<	N	>	Class	Template	Reference
System	module

Utility	class	providing	generic	functions	for	UTF	conversions.	More...

#include	<Utf.hpp>

Detailed	Description

template<unsigned	int	N>
class	sf::Utf<	N	>

Utility	class	providing	generic	functions	for	UTF	conversions.

sf::Utf	 is	a	 low-level,	generic	 interface	 for	counting,	 iterating,	encoding	and	decoding	Unicode	characters
and	strings.	It	is	able	to	handle	ANSI,	wide,	latin-1,	UTF-8,	UTF-16	and	UTF-32	encodings.

sf::Utf<X>	 functions	 are	 all	 static,	 these	 classes	 are	 not	 meant	 to	 be	 instantiated.	 All	 the	 functions	 are
template,	so	that	you	can	use	any	character	/	string	type	for	a	given	encoding.

It	has	3	specializations:

sf::Utf<8>	(typedef'd	to	sf::Utf8)

sf::Utf<16>	(typedef'd	to	sf::Utf16)

sf::Utf<32>	(typedef'd	to	sf::Utf32)

Definition	at	line	41	of	file	Utf.hpp.

The	documentation	for	this	class	was	generated	from	the	following	file:
Utf.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Member	Functions	|	Public	Attributes	|	Related	Functions	|	List	of	all	members

sf::Vector2<	T	>	Class	Template	Reference
System	module

Utility	template	class	for	manipulating	2-dimensional	vectors.	More...

#include	<Vector2.hpp>

Public	Member	Functions
	 Vector2	()
	 Default	constructor.	More...
	
	 Vector2	(T	X,	T	Y)
	 Construct	the	vector	from	its	coordinates.	More...
	
template<typename	U	>
	 Vector2	(const	Vector2<	U	>	&vector)
	 Construct	the	vector	from	another	type	of	vector.	More...
	

Public	Attributes
T	 x
	 X	coordinate	of	the	vector.	More...
	
T	 y
	 Y	coordinate	of	the	vector.	More...
	

Related	Functions

(Note	that	these	are	not	member	functions.)

template<typename	T	>
Vector2<	T	>	 operator-	(const	Vector2<	T	>	&right)

	 Overload	of	unary	operator	-.	More...
	
template<typename	T	>
Vector2<	T	>	&	 operator+=	(Vector2<	T	>	&left,	const	Vector2<	T	>	&right)
	 Overload	of	binary	operator	+=.	More...
	
template<typename	T	>
Vector2<	T	>	&	 operator-=	(Vector2<	T	>	&left,	const	Vector2<	T	>	&right)
	 Overload	of	binary	operator	-=.	More...
	
template<typename	T	>
Vector2<	T	>	 operator+	(const	Vector2<	T	>	&left,	const	Vector2<	T	>	&right)

	 Overload	of	binary	operator	+.	More...
	
template<typename	T	>
Vector2<	T	>	 operator-	(const	Vector2<	T	>	&left,	const	Vector2<	T	>	&right)

	 Overload	of	binary	operator	-.	More...
	
template<typename	T	>
Vector2<	T	>	 operator*	(const	Vector2<	T	>	&left,	T	right)

	 Overload	of	binary	operator	*.	More...
	
template<typename	T	>
Vector2<	T	>	 operator*	(T	left,	const	Vector2<	T	>	&right)

	 Overload	of	binary	operator	*.	More...
	
template<typename	T	>
Vector2<	T	>	&	 operator*=	(Vector2<	T	>	&left,	T	right)
	 Overload	of	binary	operator	*=.	More...

	
template<typename	T	>
Vector2<	T	>	 operator/	(const	Vector2<	T	>	&left,	T	right)

	 Overload	of	binary	operator	/.	More...
	
template<typename	T	>
Vector2<	T	>	&	 operator/=	(Vector2<	T	>	&left,	T	right)
	 Overload	of	binary	operator	/=.	More...
	
template<typename	T	>

bool	 operator==	(const	Vector2<	T	>	&left,	const	Vector2<	T	>	&right)
	 Overload	of	binary	operator	==.	More...
	
template<typename	T	>

bool	 operator!=	(const	Vector2<	T	>	&left,	const	Vector2<	T	>	&right)
	 Overload	of	binary	operator	!=.	More...
	

Detailed	Description

template<typename	T>
class	sf::Vector2<	T	>

Utility	template	class	for	manipulating	2-dimensional	vectors.

sf::Vector2	is	a	simple	class	that	defines	a	mathematical	vector	with	two	coordinates	(x	and	y).

It	can	be	used	to	represent	anything	that	has	two	dimensions:	a	size,	a	point,	a	velocity,	etc.

The	 template	 parameter	 T	 is	 the	 type	 of	 the	 coordinates.	 It	 can	 be	 any	 type	 that	 supports	 arithmetic
operations	(+,	-,	/,	*)	and	comparisons	(==,	!=),	for	example	int	or	float.

You	 generally	 don't	 have	 to	 care	 about	 the	 templated	 form	 (sf::Vector2<T>),	 the	 most	 common
specializations	have	special	typedefs:

sf::Vector2<float>	is	sf::Vector2f

sf::Vector2<int>	is	sf::Vector2i

sf::Vector2<unsigned	int>	is	sf::Vector2u

The	 sf::Vector2	 class	 has	 a	 small	 and	 simple	 interface,	 its	 x	 and	 y	members	 can	 be	 accessed	 directly
(there	are	no	accessors	like	setX(),	getX())	and	it	contains	no	mathematical	function	like	dot	product,	cross
product,	length,	etc.

Usage	example:

sf::Vector2f	v1(16.5f,	24.f);

v1.x	=	18.2f;

float	y	=	v1.y;

sf::Vector2f	v2	=	v1	*	5.f;

sf::Vector2f	v3;

v3	=	v1	+	v2;

bool	different	=	(v2	!=	v3);

Note:	for	3-dimensional	vectors,	see	sf::Vector3.

Definition	at	line	37	of	file	Vector2.hpp.

Constructor	&	Destructor	Documentation

template<typename	T>

sf::Vector2<	T	>::Vector2 ()

Default	constructor.

Creates	a	Vector2(0,	0).

template<typename	T>

sf::Vector2<	T	>::Vector2 (T	 X,
T	 Y	
)

Construct	the	vector	from	its	coordinates.

Parameters
X X	coordinate
Y Y	coordinate

template<typename	T>

template<typename	U	>

sf::Vector2<	T	>::Vector2 (const	Vector2<	U	>	&	 vector)

Construct	the	vector	from	another	type	of	vector.

This	 constructor	 doesn't	 replace	 the	 copy	 constructor,	 it's	 called	 only	 when	 U	 !=	 T.	 A	 call	 to	 this
constructor	will	fail	to	compile	if	U	is	not	convertible	to	T.

Parameters
vector Vector	to	convert

Friends	And	Related	Function	Documentation

template<typename	T	>

bool	operator!= (const	Vector2<	T	>	&	 left,
const	Vector2<	T	>	&	 right	
)

Overload	of	binary	operator	!=.

This	operator	compares	strict	difference	between	two	vectors.

Parameters
left Left	operand	(a	vector)
right Right	operand	(a	vector)

Returns
True	if	left	is	not	equal	to	right

template<typename	T	>

Vector2<	T	>	operator* (const	Vector2<	T	>	&	 left,
T	 right	
)

Overload	of	binary	operator	*.

Parameters
left Left	operand	(a	vector)
right Right	operand	(a	scalar	value)

Returns
Memberwise	multiplication	by	right

template<typename	T	>

Vector2<	T	>	operator* (T	 left,
const	Vector2<	T	>	&	 right	
)

Overload	of	binary	operator	*.

Parameters
left Left	operand	(a	scalar	value)
right Right	operand	(a	vector)

Returns
Memberwise	multiplication	by	left

template<typename	T	>

Vector2<	T	>	&	operator*= (Vector2<	T	>	&	 left,
T	 right	
)

Overload	of	binary	operator	*=.

This	operator	performs	a	memberwise	multiplication	by	right,	and	assigns	the	result	to	

Parameters
left Left	operand	(a	vector)
right Right	operand	(a	scalar	value)

Returns
Reference	to	left

template<typename	T	>

Vector2<	T	>	operator+ (const	Vector2<	T	>	&	 left,
const	Vector2<	T	>	&	 right	
)

Overload	of	binary	operator	+.

Parameters
left Left	operand	(a	vector)
right Right	operand	(a	vector)

Returns
Memberwise	addition	of	both	vectors

template<typename	T	>

Vector2<	T	>	&	operator+= (Vector2<	T	>	&	 left,
const	Vector2<	T	>	&	 right	
)

Overload	of	binary	operator	+=.

This	operator	performs	a	memberwise	addition	of	both	vectors,	and	assigns	the	result	to	

Parameters
left Left	operand	(a	vector)
right Right	operand	(a	vector)

Returns

Reference	to	left

template<typename	T	>

Vector2<	T	>	operator- (const	Vector2<	T	>	&	 right)

Overload	of	unary	operator	-.

Parameters
right Vector	to	negate

Returns
Memberwise	opposite	of	the	vector

template<typename	T	>

Vector2<	T	>	operator- (const	Vector2<	T	>	&	 left,
const	Vector2<	T	>	&	 right	
)

Overload	of	binary	operator	-.

Parameters
left Left	operand	(a	vector)
right Right	operand	(a	vector)

Returns
Memberwise	subtraction	of	both	vectors

template<typename	T	>

Vector2<	T	>	&	operator-= (Vector2<	T	>	&	 left,

const	Vector2<	T	>	&	 right	
)

Overload	of	binary	operator	-=.

This	operator	performs	a	memberwise	subtraction	of	both	vectors,	and	assigns	the	result	to	

Parameters
left Left	operand	(a	vector)
right Right	operand	(a	vector)

Returns
Reference	to	left

template<typename	T	>

Vector2<	T	>	operator/ (const	Vector2<	T	>	&	 left,
T	 right	
)

Overload	of	binary	operator	/.

Parameters
left Left	operand	(a	vector)
right Right	operand	(a	scalar	value)

Returns
Memberwise	division	by	right

template<typename	T	>

Vector2<	T	>	&	operator/= (Vector2<	T	>	&	 left,
T	 right	

)

Overload	of	binary	operator	/=.

This	operator	performs	a	memberwise	division	by	right,	and	assigns	the	result	to	

Parameters
left Left	operand	(a	vector)
right Right	operand	(a	scalar	value)

Returns
Reference	to	left

template<typename	T	>

bool	operator== (const	Vector2<	T	>	&	 left,
const	Vector2<	T	>	&	 right	
)

Overload	of	binary	operator	==.

This	operator	compares	strict	equality	between	two	vectors.

Parameters
left Left	operand	(a	vector)
right Right	operand	(a	vector)

Returns
True	if	left	is	equal	to	right

Member	Data	Documentation

template<typename	T>

T	sf::Vector2<	T	>::x

X	coordinate	of	the	vector.

Definition	at	line	75	of	file	Vector2.hpp.

template<typename	T>

T	sf::Vector2<	T	>::y

Y	coordinate	of	the	vector.

Definition	at	line	76	of	file	Vector2.hpp.

The	documentation	for	this	class	was	generated	from	the	following	file:
Vector2.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Member	Functions	|	Public	Attributes	|	Related	Functions	|	List	of	all	members

sf::Vector3<	T	>	Class	Template	Reference
System	module

Utility	template	class	for	manipulating	3-dimensional	vectors.	More...

#include	<Vector3.hpp>

Public	Member	Functions
	 Vector3	()
	 Default	constructor.	More...
	
	 Vector3	(T	X,	T	Y,	T	Z)
	 Construct	the	vector	from	its	coordinates.	More...
	
template<typename	U	>
	 Vector3	(const	Vector3<	U	>	&vector)
	 Construct	the	vector	from	another	type	of	vector.	More...
	

Public	Attributes
T	 x
	 X	coordinate	of	the	vector.	More...
	
T	 y
	 Y	coordinate	of	the	vector.	More...
	
T	 z
	 Z	coordinate	of	the	vector.	More...
	

Related	Functions

(Note	that	these	are	not	member	functions.)

template<typename	T	>
Vector3<	T	>	 operator-	(const	Vector3<	T	>	&left)

	 Overload	of	unary	operator	-.	More...
	
template<typename	T	>
Vector3<	T	>	&	 operator+=	(Vector3<	T	>	&left,	const	Vector3<	T	>	&right)
	 Overload	of	binary	operator	+=.	More...
	
template<typename	T	>
Vector3<	T	>	&	 operator-=	(Vector3<	T	>	&left,	const	Vector3<	T	>	&right)
	 Overload	of	binary	operator	-=.	More...
	
template<typename	T	>
Vector3<	T	>	 operator+	(const	Vector3<	T	>	&left,	const	Vector3<	T	>	&right)

	 Overload	of	binary	operator	+.	More...
	
template<typename	T	>
Vector3<	T	>	 operator-	(const	Vector3<	T	>	&left,	const	Vector3<	T	>	&right)

	 Overload	of	binary	operator	-.	More...
	
template<typename	T	>
Vector3<	T	>	 operator*	(const	Vector3<	T	>	&left,	T	right)

	 Overload	of	binary	operator	*.	More...
	
template<typename	T	>
Vector3<	T	>	 operator*	(T	left,	const	Vector3<	T	>	&right)

	 Overload	of	binary	operator	*.	More...
	
template<typename	T	>
Vector3<	T	>	&	 operator*=	(Vector3<	T	>	&left,	T	right)
	 Overload	of	binary	operator	*=.	More...

	
template<typename	T	>
Vector3<	T	>	 operator/	(const	Vector3<	T	>	&left,	T	right)

	 Overload	of	binary	operator	/.	More...
	
template<typename	T	>
Vector3<	T	>	&	 operator/=	(Vector3<	T	>	&left,	T	right)
	 Overload	of	binary	operator	/=.	More...
	
template<typename	T	>

bool	 operator==	(const	Vector3<	T	>	&left,	const	Vector3<	T	>	&right)
	 Overload	of	binary	operator	==.	More...
	
template<typename	T	>

bool	 operator!=	(const	Vector3<	T	>	&left,	const	Vector3<	T	>	&right)
	 Overload	of	binary	operator	!=.	More...
	

Detailed	Description

template<typename	T>
class	sf::Vector3<	T	>

Utility	template	class	for	manipulating	3-dimensional	vectors.

sf::Vector3	is	a	simple	class	that	defines	a	mathematical	vector	with	three	coordinates	(x,	y	and	z).

It	can	be	used	to	represent	anything	that	has	three	dimensions:	a	size,	a	point,	a	velocity,	etc.

The	 template	 parameter	 T	 is	 the	 type	 of	 the	 coordinates.	 It	 can	 be	 any	 type	 that	 supports	 arithmetic
operations	(+,	-,	/,	*)	and	comparisons	(==,	!=),	for	example	int	or	float.

You	 generally	 don't	 have	 to	 care	 about	 the	 templated	 form	 (sf::Vector3<T>),	 the	 most	 common
specializations	have	special	typedefs:

sf::Vector3<float>	is	sf::Vector3f

sf::Vector3<int>	is	sf::Vector3i

The	 sf::Vector3	 class	 has	 a	 small	 and	 simple	 interface,	 its	 x	 and	 y	members	 can	 be	 accessed	 directly
(there	are	no	accessors	like	setX(),	getX())	and	it	contains	no	mathematical	function	like	dot	product,	cross
product,	length,	etc.

Usage	example:

sf::Vector3f	v1(16.5f,	24.f,	-8.2f);

v1.x	=	18.2f;

float	y	=	v1.y;

float	z	=	v1.z;

sf::Vector3f	v2	=	v1	*	5.f;

sf::Vector3f	v3;

v3	=	v1	+	v2;

bool	different	=	(v2	!=	v3);

Note:	for	2-dimensional	vectors,	see	sf::Vector2.

Definition	at	line	37	of	file	Vector3.hpp.

Constructor	&	Destructor	Documentation

template<typename	T>

sf::Vector3<	T	>::Vector3 ()

Default	constructor.

Creates	a	Vector3(0,	0,	0).

template<typename	T>

sf::Vector3<	T	>::Vector3 (T	 X,
T	 Y,
T	 Z	
)

Construct	the	vector	from	its	coordinates.

Parameters
X X	coordinate
Y Y	coordinate
Z Z	coordinate

template<typename	T>

template<typename	U	>

sf::Vector3<	T	>::Vector3 (const	Vector3<	U	>	&	 vector)

Construct	the	vector	from	another	type	of	vector.

This	 constructor	 doesn't	 replace	 the	 copy	 constructor,	 it's	 called	 only	 when	 U	 !=	 T.	 A	 call	 to	 this
constructor	will	fail	to	compile	if	U	is	not	convertible	to	T.

Parameters
vector Vector	to	convert

Friends	And	Related	Function	Documentation

template<typename	T	>

bool	operator!= (const	Vector3<	T	>	&	 left,
const	Vector3<	T	>	&	 right	
)

Overload	of	binary	operator	!=.

This	operator	compares	strict	difference	between	two	vectors.

Parameters
left Left	operand	(a	vector)
right Right	operand	(a	vector)

Returns
True	if	left	is	not	equal	to	right

template<typename	T	>

Vector3<	T	>	operator* (const	Vector3<	T	>	&	 left,
T	 right	
)

Overload	of	binary	operator	*.

Parameters
left Left	operand	(a	vector)
right Right	operand	(a	scalar	value)

Returns
Memberwise	multiplication	by	right

template<typename	T	>

Vector3<	T	>	operator* (T	 left,
const	Vector3<	T	>	&	 right	
)

Overload	of	binary	operator	*.

Parameters
left Left	operand	(a	scalar	value)
right Right	operand	(a	vector)

Returns
Memberwise	multiplication	by	left

template<typename	T	>

Vector3<	T	>	&	operator*= (Vector3<	T	>	&	 left,
T	 right	
)

Overload	of	binary	operator	*=.

This	operator	performs	a	memberwise	multiplication	by	right,	and	assigns	the	result	to	

Parameters
left Left	operand	(a	vector)
right Right	operand	(a	scalar	value)

Returns
Reference	to	left

template<typename	T	>

Vector3<	T	>	operator+ (const	Vector3<	T	>	&	 left,
const	Vector3<	T	>	&	 right	
)

Overload	of	binary	operator	+.

Parameters
left Left	operand	(a	vector)
right Right	operand	(a	vector)

Returns
Memberwise	addition	of	both	vectors

template<typename	T	>

Vector3<	T	>	&	operator+= (Vector3<	T	>	&	 left,
const	Vector3<	T	>	&	 right	
)

Overload	of	binary	operator	+=.

This	operator	performs	a	memberwise	addition	of	both	vectors,	and	assigns	the	result	to	

Parameters
left Left	operand	(a	vector)
right Right	operand	(a	vector)

Returns

Reference	to	left

template<typename	T	>

Vector3<	T	>	operator- (const	Vector3<	T	>	&	 left)

Overload	of	unary	operator	-.

Parameters
left Vector	to	negate

Returns
Memberwise	opposite	of	the	vector

template<typename	T	>

Vector3<	T	>	operator- (const	Vector3<	T	>	&	 left,
const	Vector3<	T	>	&	 right	
)

Overload	of	binary	operator	-.

Parameters
left Left	operand	(a	vector)
right Right	operand	(a	vector)

Returns
Memberwise	subtraction	of	both	vectors

template<typename	T	>

Vector3<	T	>	&	operator-= (Vector3<	T	>	&	 left,

const	Vector3<	T	>	&	 right	
)

Overload	of	binary	operator	-=.

This	operator	performs	a	memberwise	subtraction	of	both	vectors,	and	assigns	the	result	to	

Parameters
left Left	operand	(a	vector)
right Right	operand	(a	vector)

Returns
Reference	to	left

template<typename	T	>

Vector3<	T	>	operator/ (const	Vector3<	T	>	&	 left,
T	 right	
)

Overload	of	binary	operator	/.

Parameters
left Left	operand	(a	vector)
right Right	operand	(a	scalar	value)

Returns
Memberwise	division	by	right

template<typename	T	>

Vector3<	T	>	&	operator/= (Vector3<	T	>	&	 left,
T	 right	

)

Overload	of	binary	operator	/=.

This	operator	performs	a	memberwise	division	by	right,	and	assigns	the	result	to	

Parameters
left Left	operand	(a	vector)
right Right	operand	(a	scalar	value)

Returns
Reference	to	left

template<typename	T	>

bool	operator== (const	Vector3<	T	>	&	 left,
const	Vector3<	T	>	&	 right	
)

Overload	of	binary	operator	==.

This	operator	compares	strict	equality	between	two	vectors.

Parameters
left Left	operand	(a	vector)
right Right	operand	(a	vector)

Returns
True	if	left	is	equal	to	right

Member	Data	Documentation

template<typename	T>

T	sf::Vector3<	T	>::x

X	coordinate	of	the	vector.

Definition	at	line	76	of	file	Vector3.hpp.

template<typename	T>

T	sf::Vector3<	T	>::y

Y	coordinate	of	the	vector.

Definition	at	line	77	of	file	Vector3.hpp.

template<typename	T>

T	sf::Vector3<	T	>::z

Z	coordinate	of	the	vector.

Definition	at	line	78	of	file	Vector3.hpp.

The	documentation	for	this	class	was	generated	from	the	following	file:
Vector3.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

SFML	2.4.2

Classes	|	Typedefs	|	Enumerations

Window	module

Provides	OpenGL-based	windows,	and	abstractions	for	events	and	input	handling.	

Classes
class		 sf::Context
	 Class	holding	a	valid	drawing	context.	More...
	
class		 sf::ContextSettings
	 Structure	defining	the	settings	of	the	OpenGL	context	attached	to	a	window.	
	
class		 sf::Event
	 Defines	a	system	event	and	its	parameters.	More...
	
class		 sf::GlResource
	 Base	class	for	classes	that	require	an	OpenGL	context.	More...
	
class		 sf::Joystick
	 Give	access	to	the	real-time	state	of	the	joysticks.	More...
	
class		 sf::Keyboard
	 Give	access	to	the	real-time	state	of	the	keyboard.	More...
	
class		 sf::Mouse
	 Give	access	to	the	real-time	state	of	the	mouse.	More...
	
class		 sf::Sensor
	 Give	access	to	the	real-time	state	of	the	sensors.	More...
	
class		 sf::Touch
	 Give	access	to	the	real-time	state	of	the	touches.	More...
	
class		 sf::VideoMode
	 VideoMode	defines	a	video	mode	(width,	height,	bpp)	More...
	
class		 sf::Window

	 Window	that	serves	as	a	target	for	OpenGL	rendering.	More...
	

Typedefs
typedef	platform–specific	 sf::WindowHandle
	 Define	a	low-level	window	handle	type,	specific	to	each	platform.	
	

Enumerations

enum		

{	
		sf::Style::None	=	0,	sf::Style::Titlebar	=	1	<<	0,	sf::Style::Resize
2,	
		sf::Style::Fullscreen	=	1	<<	3,	sf::Style::Default	=	Titlebar	|	Resize	|	Close	
}

	 Enumeration	of	the	window	styles.	More...
	

Detailed	Description

Provides	OpenGL-based	windows,	and	abstractions	for	events	and	input	handling.

Typedef	Documentation

sf::WindowHandle

Define	a	low-level	window	handle	type,	specific	to	each	platform.

Platform Type
Windows HWND

Linux/FreeBSD Window

Mac	OS	X either	NSWindow*	or	NSView*,	disguised	as	void*
iOS UIWindow*

Android ANativeWindow*

Mac	OS	X	Specification

On	Mac	OS	X,	a	 sf::Window	can	be	created	either	from	an	existing	NSWindow*
window	 is	 created	 from	 a	 window,	 SFML	 will	 use	 its	 content	 view	 as	 the	 OpenGL	 area.
sf::Window::getSystemHandle()	will	 return	 the	 handle	 that	was	used	 to	 create	 the	window,	which	 is	 a
NSWindow*	by	default.

Definition	at	line	68	of	file	WindowHandle.hpp.

Enumeration	Type	Documentation

anonymous	enum

Enumeration	of	the	window	styles.

Enumerator

None	
No	border	/	title	bar	(this	flag	and	all	others	are	mutually	exclusive)

Titlebar	
Title	bar	+	fixed	border.

Resize	
Title	bar	+	resizable	border	+	maximize	button.

Close	
Title	bar	+	close	button.

Fullscreen	
Fullscreen	mode	(this	flag	and	all	others	are	mutually	exclusive)

Default	
Default	window	style.

Definition	at	line	38	of	file	WindowStyle.hpp.

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

http://www.sfml-dev.org/license.php

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Member	Functions	|	Static	Public	Member	Functions	|	Static	Private	Member	Functions	|	List	of	all	members

sf::Context	Class	Reference
Window	module

Class	holding	a	valid	drawing	context.	More...

#include	<Context.hpp>

Inheritance	diagram	for	sf::Context:

Public	Member	Functions
	 Context	()

	 Default	constructor.	More...
	

	 ~Context	()
	 Destructor.	More...
	

bool	 setActive	(bool	active)
	 Activate	or	deactivate	explicitly	the	context.	More...
	
const	ContextSettings	&	 getSettings	()	const
	 Get	the	settings	of	the	context.	More...
	

	 Context	(const	ContextSettings	&settings,	unsigned	int	width,	unsigned	intheight)
	 Construct	a	in-memory	context.	More...
	

Static	Public	Member	Functions
static	bool	 isExtensionAvailable	(const	char	*name)

	 Check	whether	a	given	OpenGL	extension	is	available.	
	
static	GlFunctionPointer	 getFunction	(const	char	*name)
	 Get	the	address	of	an	OpenGL	function.	More...
	

static	const	Context	*	 getActiveContext	()
	 Get	the	currently	active	context.	More...
	

Static	Private	Member	Functions
static	void	 ensureGlContext	()
	 Empty	function	for	ABI	compatibility,	use	acquireTransientContext	instead.	
	

Detailed	Description

Class	holding	a	valid	drawing	context.

If	 you	 need	 to	make	OpenGL	 calls	 without	 having	 an	 active	window	 (like	 in	 a	 thread),	 you	 can	 use	 an
instance	of	this	class	to	get	a	valid	context.

Having	a	valid	context	is	necessary	for	every	OpenGL	call.

Note	that	a	context	is	only	active	in	its	current	thread,	if	you	create	a	new	thread	it	will	have	no	valid	context
by	default.

To	use	a	sf::Context	instance,	just	construct	it	and	let	it	live	as	long	as	you	need	a	valid	context.	No	explicit
activation	is	needed,	all	it	has	to	do	is	to	exist.	Its	destructor	will	take	care	of	deactivating	and	freeing	all	the
attached	resources.

Usage	example:

void	threadFunction(void*)

{

	sf::Context	context;

	//	from	now	on,	you	have	a	valid	context

	//	you	can	make	OpenGL	calls

			glClear(GL_DEPTH_BUFFER_BIT);

}

//	the	context	is	automatically	deactivated	and	destroyed

//	by	the	sf::Context	destructor

Definition	at	line	50	of	file	Context.hpp.

Constructor	&	Destructor	Documentation

sf::Context::Context ()

Default	constructor.

The	constructor	creates	and	activates	the	context

sf::Context::~Context ()

Destructor.

The	destructor	deactivates	and	destroys	the	context

sf::Context::Context (const	ContextSettings	&	 settings,
unsigned	int	 width,
unsigned	int	 height	
)

Construct	a	in-memory	context.

This	constructor	is	for	internal	use,	you	don't	need	to	bother	with	it.

Parameters
settings Creation	parameters
width Back	buffer	width

height Back	buffer	height

Member	Function	Documentation

static	const	Context*	sf::Context::getActiveContext ()

Get	the	currently	active	context.

Returns
The	currently	active	context	or	NULL	if	none	is	active

static	GlFunctionPointer	sf::Context::getFunction (const	char	*	 name

Get	the	address	of	an	OpenGL	function.

Parameters
name Name	of	the	function	to	get	the	address	of

Returns
Address	of	the	OpenGL	function,	0	on	failure

const	ContextSettings&	sf::Context::getSettings () const

Get	the	settings	of	the	context.

Note	 that	 these	 settings	 may	 be	 different	 than	 the	 ones	 passed	 to	 the	 constructor;	 they	 are	 indeed
adjusted	if	the	original	settings	are	not	directly	supported	by	the	system.

Returns
Structure	containing	the	settings

static	bool	sf::Context::isExtensionAvailable (const	char	*	 name)

Check	whether	a	given	OpenGL	extension	is	available.

Parameters
name Name	of	the	extension	to	check	for

Returns
True	if	available,	false	if	unavailable

bool	sf::Context::setActive (bool	 active)

Activate	or	deactivate	explicitly	the	context.

Parameters
active True	to	activate,	false	to	deactivate

Returns
True	on	success,	false	on	failure

The	documentation	for	this	class	was	generated	from	the	following	file:
Context.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Types	|	Public	Member	Functions	|	Public	Attributes	|	List	of	all	members

sf::ContextSettings	Class	Reference
Window	module

Structure	defining	the	settings	of	the	OpenGL	context	attached	to	a	window.	

#include	<ContextSettings.hpp>

Public	Types
enum		 Attribute	{	Default	=	0,	Core	=	1	<<	0,	Debug	=	1	<<	2	}
	 Enumeration	of	the	context	attribute	flags.	More...
	

Public	Member	Functions

	 ContextSettings	(unsigned	int	depth=0,	unsigned	int	stencil=0,	unsigned	int	antialiasing=0,	unsigned	intmajor=1,	unsigned	int	minor=1,	unsigned	int	attributes=Default,	bool	sRgb=false)
	 Default	constructor.	More...
	

Public	Attributes
unsigned	int	 depthBits
	 Bits	of	the	depth	buffer.	More...
	
unsigned	int	 stencilBits
	 Bits	of	the	stencil	buffer.	More...
	
unsigned	int	 antialiasingLevel
	 Level	of	antialiasing.	More...
	
unsigned	int	 majorVersion
	 Major	number	of	the	context	version	to	create.	More...
	
unsigned	int	 minorVersion
	 Minor	number	of	the	context	version	to	create.	More...
	

Uint32	 attributeFlags
	 The	attribute	flags	to	create	the	context	with.	More...
	

bool	 sRgbCapable
	 Whether	the	context	framebuffer	is	sRGB	capable.	More...
	

Detailed	Description

Structure	defining	the	settings	of	the	OpenGL	context	attached	to	a	window.

ContextSettings	allows	to	define	several	advanced	settings	of	the	OpenGL	context	attached	to	a	window.

All	these	settings	with	the	exception	of	the	compatibility	flag	and	anti-aliasing	level	have	no	impact	on	the
regular	SFML	rendering	(graphics	module),	so	you	may	need	to	use	this	structure	only	if	you're	using	SFML
as	a	windowing	system	for	custom	OpenGL	rendering.

The	depthBits	and	stencilBits	members	define	the	number	of	bits	per	pixel	requested	for	the	(respectively)
depth	and	stencil	buffers.

antialiasingLevel	represents	the	requested	number	of	multisampling	levels	for	anti-aliasing.

majorVersion	 and	minorVersion	 define	 the	 version	 of	 the	OpenGL	 context	 that	 you	want.	Only	 versions
greater	or	equal	to	3.0	are	relevant;	versions	lesser	than	3.0	are	all	handled	the	same	way	(i.e.	you	can	use
any	version	<	3.0	if	you	don't	want	an	OpenGL	3	context).

When	requesting	a	context	with	a	version	greater	or	equal	to	3.2,	you	have	the	option	of	specifying	whether
the	context	should	follow	the	core	or	compatibility	profile	of	all	newer	(>=	3.2)	OpenGL	specifications.	For
versions	3.0	and	3.1	 there	 is	only	 the	core	profile.	By	default	a	compatibility	context	 is	created.	You	only
need	 to	specify	 the	core	 flag	 if	you	want	a	core	profile	context	 to	use	with	your	own	OpenGL	rendering.
Warning:	The	graphics	module	will	not	function	if	you	request	a	core	profile	context.	Make	sure	the
attributes	are	set	to	Default	if	you	want	to	use	the	graphics	module.

Setting	 the	 debug	 attribute	 flag	 will	 request	 a	 context	 with	 additional	 debugging	 features	 enabled.
Depending	on	the	system,	this	might	be	required	for	advanced	OpenGL	debugging.	OpenGL	debugging	is
disabled	by	default.

Special	Note	for	OS	X:	Apple	only	supports	choosing	between	either	a	legacy	context	(OpenGL	2.1)	or	a

core	context	(OpenGL	version	depends	on	the	operating	system	version	but	is	at	least	3.2).	Compatibility
contexts	are	not	supported.	Further	information	is	available	on	the	OpenGL	Capabilities	Tables
also	currently	does	not	support	debug	contexts.

Please	note	that	these	values	are	only	a	hint.	No	failure	will	be	reported	if	one	or	more	of	these	values	are
not	supported	by	the	system;	instead,	SFML	will	 try	to	find	the	closest	valid	match.	You	can	then	retrieve
the	settings	that	the	window	actually	used	to	create	its	context,	with	Window::getSettings()

Definition	at	line	36	of	file	ContextSettings.hpp.

https://developer.apple.com/opengl/capabilities/index.html

Member	Enumeration	Documentation

enum	sf::ContextSettings::Attribute

Enumeration	of	the	context	attribute	flags.

Enumerator

Default	
Non-debug,	compatibility	context	(this	and	the	core	attribute	are	mutually	exclusive)

Core	
Core	attribute.

Debug	
Debug	attribute.

Definition	at	line	42	of	file	ContextSettings.hpp.

Constructor	&	Destructor	Documentation

sf::ContextSettings::ContextSettings (unsigned	int	 depth	=	0,
unsigned	int	 stencil	=	0,
unsigned	int	 antialiasing	=	0,
unsigned	int	 major	=	1,
unsigned	int	 minor	=	1,
unsigned	int	 attributes	=	Default
bool	 sRgb	=	false	
)

Default	constructor.

Parameters
depth Depth	buffer	bits
stencil Stencil	buffer	bits
antialiasing Antialiasing	level
major Major	number	of	the	context	version
minor Minor	number	of	the	context	version
attributes Attribute	flags	of	the	context
sRgb sRGB	capable	framebuffer

Definition	at	line	61	of	file	ContextSettings.hpp.

Member	Data	Documentation

unsigned	int	sf::ContextSettings::antialiasingLevel

Level	of	antialiasing.

Definition	at	line	77	of	file	ContextSettings.hpp.

Uint32	sf::ContextSettings::attributeFlags

The	attribute	flags	to	create	the	context	with.

Definition	at	line	80	of	file	ContextSettings.hpp.

unsigned	int	sf::ContextSettings::depthBits

Bits	of	the	depth	buffer.

Definition	at	line	75	of	file	ContextSettings.hpp.

unsigned	int	sf::ContextSettings::majorVersion

Major	number	of	the	context	version	to	create.

Definition	at	line	78	of	file	ContextSettings.hpp.

unsigned	int	sf::ContextSettings::minorVersion

Minor	number	of	the	context	version	to	create.

Definition	at	line	79	of	file	ContextSettings.hpp.

bool	sf::ContextSettings::sRgbCapable

Whether	the	context	framebuffer	is	sRGB	capable.

Definition	at	line	81	of	file	ContextSettings.hpp.

unsigned	int	sf::ContextSettings::stencilBits

Bits	of	the	stencil	buffer.

Definition	at	line	76	of	file	ContextSettings.hpp.

The	documentation	for	this	class	was	generated	from	the	following	file:
ContextSettings.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Classes	|	Public	Types	|	Public	Attributes	|	List	of	all	members

sf::Event	Class	Reference
Window	module

Defines	a	system	event	and	its	parameters.	More...

#include	<Event.hpp>

Classes
struct		 JoystickButtonEvent
	 Joystick	buttons	events	parameters	(JoystickButtonPressed,	JoystickButtonReleased)	
	
struct		 JoystickConnectEvent
	 Joystick	connection	events	parameters	(JoystickConnected,	JoystickDisconnected)	
	
struct		 JoystickMoveEvent
	 Joystick	axis	move	event	parameters	(JoystickMoved)	More...
	
struct		 KeyEvent
	 Keyboard	event	parameters	(KeyPressed,	KeyReleased)	More...
	
struct		 MouseButtonEvent
	 Mouse	buttons	events	parameters	(MouseButtonPressed,	MouseButtonReleased)	
	
struct		 MouseMoveEvent
	 Mouse	move	event	parameters	(MouseMoved)	More...
	
struct		 MouseWheelEvent
	 Mouse	wheel	events	parameters	(MouseWheelMoved)	More...
	
struct		 MouseWheelScrollEvent
	 Mouse	wheel	events	parameters	(MouseWheelScrolled)	More...
	
struct		 SensorEvent
	 Sensor	event	parameters	(SensorChanged)	More...
	
struct		 SizeEvent
	 Size	events	parameters	(Resized)	More...
	
struct		 TextEvent

	 Text	event	parameters	(TextEntered)	More...
	
struct		 TouchEvent
	 Touch	events	parameters	(TouchBegan,	TouchMoved,	TouchEnded)	
	

Public	Types

enum		

EventType	{	
		Closed,	Resized,	LostFocus,	GainedFocus,	
		TextEntered,	KeyPressed,	KeyReleased,	MouseWheelMoved,	
		MouseWheelScrolled,	MouseButtonPressed,	MouseButtonReleased
		MouseEntered,	MouseLeft,	JoystickButtonPressed,	JoystickButtonReleased
		JoystickMoved,	JoystickConnected,	JoystickDisconnected,	TouchBegan
		TouchMoved,	TouchEnded,	SensorChanged,	Count	
}

	 Enumeration	of	the	different	types	of	events.	More...
	

Public	Attributes
EventType	 type

	 Type	of	the	event.	More...
	
union	{
			SizeEvent			size
	 Size	event	parameters	(
	
			KeyEvent			key

	 Key	event	parameters	(Event::KeyPressed
Event::KeyReleased)	More...

	
			TextEvent			text
	 Text	event	parameters	(
	
			MouseMoveEvent			mouseMove

	 Mouse	move	event	parameters	(
More...

	
			MouseButtonEvent			mouseButton

	
Mouse	button	event	parameters
(Event::MouseButtonPressed
Event::MouseButtonReleased

	
			MouseWheelEvent			mouseWheel

	 Mouse	wheel	event	parameters
(Event::MouseWheelMoved

	
			MouseWheelScrollEvent			mouseWheelScroll

	 Mouse	wheel	event	parameters
(Event::MouseWheelScrolled

	

			JoystickMoveEvent			joystickMove

	 Joystick	move	event	parameters	(
More...

	
			JoystickButtonEvent			joystickButton

	
Joystick	button	event	parameters
(Event::JoystickButtonPressed
Event::JoystickButtonReleased

	
			JoystickConnectEvent			joystickConnect

	
Joystick	(dis)connect	event	parameters
(Event::JoystickConnected
Event::JoystickDisconnected

	
			TouchEvent			touch

	 Touch	events	parameters	(
Event::TouchMoved,	Event::TouchEnded

	
			SensorEvent			sensor

	 Sensor	event	parameters	(
More...

	
};	
	

Detailed	Description

Defines	a	system	event	and	its	parameters.

sf::Event	holds	all	the	informations	about	a	system	event	that	just	happened.

Events	are	retrieved	using	the	sf::Window::pollEvent	and	sf::Window::waitEvent

A	sf::Event	instance	contains	the	type	of	the	event	(mouse	moved,	key	pressed,	window	closed,	...)	as	well
as	 the	details	about	 this	particular	event.	Please	note	 that	 the	event	parameters	are	defined	 in	a	union,
which	means	that	only	the	member	matching	the	type	of	the	event	will	be	properly	filled;	all	other	members
will	have	undefined	values	and	must	not	be	read	if	the	type	of	the	event	doesn't	match.	For	example,	if	you
received	 a	 KeyPressed	 event,	 then	 you	 must	 read	 the	 event.key	 member,	 all	 other	 members	 such	 as
event.MouseMove	or	event.text	will	have	undefined	values.

Usage	example:

sf::Event	event;

while	(window.pollEvent(event))

{

	//	Request	for	closing	the	window

	if	(event.type	==	sf::Event::Closed)

								window.close();

	//	The	escape	key	was	pressed

	if	((event.type	==	sf::Event::KeyPressed)	&&	(event.key.code	==	sf::Keyboard::Escape

								window.close();

	//	The	window	was	resized

	if	(event.type	==	sf::Event::Resized)

								doSomethingWithTheNewSize(event.size.width,	event.size.height);

	//	etc	...

}

Definition	at	line	44	of	file	Event.hpp.

Member	Enumeration	Documentation

enum	sf::Event::EventType

Enumeration	of	the	different	types	of	events.

Enumerator

Closed	
The	window	requested	to	be	closed	(no	data)

Resized	
The	window	was	resized	(data	in	event.size)

LostFocus	
The	window	lost	the	focus	(no	data)

GainedFocus	
The	window	gained	the	focus	(no	data)

TextEntered	
A	character	was	entered	(data	in	event.text)

KeyPressed	
A	key	was	pressed	(data	in	event.key)

KeyReleased	
A	key	was	released	(data	in	event.key)

MouseWheelMoved	
The	mouse	wheel	was	scrolled	(data	in	event.mouseWheel)	(deprecated)

MouseWheelScrolled	

The	mouse	wheel	was	scrolled	(data	in	event.mouseWheelScroll)

MouseButtonPressed	
A	mouse	button	was	pressed	(data	in	event.mouseButton)

MouseButtonReleased	
A	mouse	button	was	released	(data	in	event.mouseButton)

MouseMoved	
The	mouse	cursor	moved	(data	in	event.mouseMove)

MouseEntered	
The	mouse	cursor	entered	the	area	of	the	window	(no	data)

MouseLeft	
The	mouse	cursor	left	the	area	of	the	window	(no	data)

JoystickButtonPressed	
A	joystick	button	was	pressed	(data	in	event.joystickButton)

JoystickButtonReleased	
A	joystick	button	was	released	(data	in	event.joystickButton)

JoystickMoved	
The	joystick	moved	along	an	axis	(data	in	event.joystickMove)

JoystickConnected	
A	joystick	was	connected	(data	in	event.joystickConnect)

JoystickDisconnected	
A	joystick	was	disconnected	(data	in	event.joystickConnect)

TouchBegan	
A	touch	event	began	(data	in	event.touch)

TouchMoved	
A	touch	moved	(data	in	event.touch)

TouchEnded	

A	touch	event	ended	(data	in	event.touch)

SensorChanged	
A	sensor	value	changed	(data	in	event.sensor)

Count	
Keep	last	–	the	total	number	of	event	types.

Definition	at	line	187	of	file	Event.hpp.

Member	Data	Documentation

JoystickButtonEvent	sf::Event::joystickButton

Joystick	button	event	parameters	(Event::JoystickButtonPressed,	Event::JoystickButtonReleased

Definition	at	line	231	of	file	Event.hpp.

JoystickConnectEvent	sf::Event::joystickConnect

Joystick	(dis)connect	event	parameters	(Event::JoystickConnected,	Event::JoystickDisconnected

Definition	at	line	232	of	file	Event.hpp.

JoystickMoveEvent	sf::Event::joystickMove

Joystick	move	event	parameters	(Event::JoystickMoved)

Definition	at	line	230	of	file	Event.hpp.

KeyEvent	sf::Event::key

Key	event	parameters	(Event::KeyPressed,	Event::KeyReleased)

Definition	at	line	224	of	file	Event.hpp.

MouseButtonEvent	sf::Event::mouseButton

Mouse	button	event	parameters	(Event::MouseButtonPressed,	Event::MouseButtonReleased

Definition	at	line	227	of	file	Event.hpp.

MouseMoveEvent	sf::Event::mouseMove

Mouse	move	event	parameters	(Event::MouseMoved)

Definition	at	line	226	of	file	Event.hpp.

MouseWheelEvent	sf::Event::mouseWheel

Mouse	wheel	event	parameters	(Event::MouseWheelMoved)	(deprecated)

Definition	at	line	228	of	file	Event.hpp.

MouseWheelScrollEvent	sf::Event::mouseWheelScroll

Mouse	wheel	event	parameters	(Event::MouseWheelScrolled)

Definition	at	line	229	of	file	Event.hpp.

SensorEvent	sf::Event::sensor

Sensor	event	parameters	(Event::SensorChanged)

Definition	at	line	234	of	file	Event.hpp.

SizeEvent	sf::Event::size

Size	event	parameters	(Event::Resized)

Definition	at	line	223	of	file	Event.hpp.

TextEvent	sf::Event::text

Text	event	parameters	(Event::TextEntered)

Definition	at	line	225	of	file	Event.hpp.

TouchEvent	sf::Event::touch

Touch	events	parameters	(Event::TouchBegan,	Event::TouchMoved,	Event::TouchEnded

Definition	at	line	233	of	file	Event.hpp.

EventType	sf::Event::type

Type	of	the	event.

Definition	at	line	219	of	file	Event.hpp.

The	documentation	for	this	class	was	generated	from	the	following	file:
Event.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Attributes	|	List	of	all	members

sf::Event::JoystickButtonEvent	Struct	Reference

Joystick	buttons	events	parameters	(JoystickButtonPressed,	JoystickButtonReleased)	

#include	<Event.hpp>

Public	Attributes
unsigned	int	 joystickId
	 Index	of	the	joystick	(in	range	[0	..	Joystick::Count	-	1])	More...
	
unsigned	int	 button
	 Index	of	the	button	that	has	been	pressed	(in	range	[0	..	Joystick::ButtonCount
	

Detailed	Description

Joystick	buttons	events	parameters	(JoystickButtonPressed,	JoystickButtonReleased)

Definition	at	line	154	of	file	Event.hpp.

Member	Data	Documentation

unsigned	int	sf::Event::JoystickButtonEvent::button

Index	of	the	button	that	has	been	pressed	(in	range	[0	..	Joystick::ButtonCount

Definition	at	line	157	of	file	Event.hpp.

unsigned	int	sf::Event::JoystickButtonEvent::joystickId

Index	of	the	joystick	(in	range	[0	..	Joystick::Count	-	1])

Definition	at	line	156	of	file	Event.hpp.

The	documentation	for	this	struct	was	generated	from	the	following	file:
Event.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Attributes	|	List	of	all	members

sf::Event::JoystickConnectEvent	Struct	Reference

Joystick	connection	events	parameters	(JoystickConnected,	JoystickDisconnected)	

#include	<Event.hpp>

Public	Attributes
unsigned	int	 joystickId
	 Index	of	the	joystick	(in	range	[0	..	Joystick::Count	-	1])	More...
	

Detailed	Description

Joystick	connection	events	parameters	(JoystickConnected,	JoystickDisconnected)

Definition	at	line	133	of	file	Event.hpp.

Member	Data	Documentation

unsigned	int	sf::Event::JoystickConnectEvent::joystickId

Index	of	the	joystick	(in	range	[0	..	Joystick::Count	-	1])

Definition	at	line	135	of	file	Event.hpp.

The	documentation	for	this	struct	was	generated	from	the	following	file:
Event.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Attributes	|	List	of	all	members

sf::Event::JoystickMoveEvent	Struct	Reference

Joystick	axis	move	event	parameters	(JoystickMoved)	More...

#include	<Event.hpp>

Public	Attributes
unsigned	int	 joystickId

	 Index	of	the	joystick	(in	range	[0	..	Joystick::Count	-	1])	More...
	
Joystick::Axis	 axis
	 Axis	on	which	the	joystick	moved.	More...
	

float	 position
	 New	position	on	the	axis	(in	range	[-100	..	100])	More...
	

Detailed	Description

Joystick	axis	move	event	parameters	(JoystickMoved)

Definition	at	line	142	of	file	Event.hpp.

Member	Data	Documentation

Joystick::Axis	sf::Event::JoystickMoveEvent::axis

Axis	on	which	the	joystick	moved.

Definition	at	line	145	of	file	Event.hpp.

unsigned	int	sf::Event::JoystickMoveEvent::joystickId

Index	of	the	joystick	(in	range	[0	..	Joystick::Count	-	1])

Definition	at	line	144	of	file	Event.hpp.

float	sf::Event::JoystickMoveEvent::position

New	position	on	the	axis	(in	range	[-100	..	100])

Definition	at	line	146	of	file	Event.hpp.

The	documentation	for	this	struct	was	generated	from	the	following	file:
Event.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Attributes	|	List	of	all	members

sf::Event::KeyEvent	Struct	Reference

Keyboard	event	parameters	(KeyPressed,	KeyReleased)	More...

#include	<Event.hpp>

Public	Attributes
Keyboard::Key	 code
	 Code	of	the	key	that	has	been	pressed.	More...
	

bool	 alt
	 Is	the	Alt	key	pressed?	More...
	

bool	 control
	 Is	the	Control	key	pressed?	More...
	

bool	 shift
	 Is	the	Shift	key	pressed?	More...
	

bool	 system
	 Is	the	System	key	pressed?	More...
	

Detailed	Description

Keyboard	event	parameters	(KeyPressed,	KeyReleased)

Definition	at	line	62	of	file	Event.hpp.

Member	Data	Documentation

bool	sf::Event::KeyEvent::alt

Is	the	Alt	key	pressed?

Definition	at	line	65	of	file	Event.hpp.

Keyboard::Key	sf::Event::KeyEvent::code

Code	of	the	key	that	has	been	pressed.

Definition	at	line	64	of	file	Event.hpp.

bool	sf::Event::KeyEvent::control

Is	the	Control	key	pressed?

Definition	at	line	66	of	file	Event.hpp.

bool	sf::Event::KeyEvent::shift

Is	the	Shift	key	pressed?

Definition	at	line	67	of	file	Event.hpp.

bool	sf::Event::KeyEvent::system

Is	the	System	key	pressed?

Definition	at	line	68	of	file	Event.hpp.

The	documentation	for	this	struct	was	generated	from	the	following	file:
Event.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Attributes	|	List	of	all	members

sf::Event::MouseButtonEvent	Struct	Reference

Mouse	buttons	events	parameters	(MouseButtonPressed,	MouseButtonReleased)	

#include	<Event.hpp>

Public	Attributes
Mouse::Button	 button
	 Code	of	the	button	that	has	been	pressed.	More...
	

int	 x
	 X	position	of	the	mouse	pointer,	relative	to	the	left	of	the	owner	window.	
	

int	 y
	 Y	position	of	the	mouse	pointer,	relative	to	the	top	of	the	owner	window.	
	

Detailed	Description

Mouse	buttons	events	parameters	(MouseButtonPressed,	MouseButtonReleased)

Definition	at	line	95	of	file	Event.hpp.

Member	Data	Documentation

Mouse::Button	sf::Event::MouseButtonEvent::button

Code	of	the	button	that	has	been	pressed.

Definition	at	line	97	of	file	Event.hpp.

int	sf::Event::MouseButtonEvent::x

X	position	of	the	mouse	pointer,	relative	to	the	left	of	the	owner	window.

Definition	at	line	98	of	file	Event.hpp.

int	sf::Event::MouseButtonEvent::y

Y	position	of	the	mouse	pointer,	relative	to	the	top	of	the	owner	window.

Definition	at	line	99	of	file	Event.hpp.

The	documentation	for	this	struct	was	generated	from	the	following	file:
Event.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Attributes	|	List	of	all	members

sf::Event::MouseMoveEvent	Struct	Reference

Mouse	move	event	parameters	(MouseMoved)	More...

#include	<Event.hpp>

Public	Attributes
int	 x
	 X	position	of	the	mouse	pointer,	relative	to	the	left	of	the	owner	window.	
	
int	 y
	 Y	position	of	the	mouse	pointer,	relative	to	the	top	of	the	owner	window.	
	

Detailed	Description

Mouse	move	event	parameters	(MouseMoved)

Definition	at	line	84	of	file	Event.hpp.

Member	Data	Documentation

int	sf::Event::MouseMoveEvent::x

X	position	of	the	mouse	pointer,	relative	to	the	left	of	the	owner	window.

Definition	at	line	86	of	file	Event.hpp.

int	sf::Event::MouseMoveEvent::y

Y	position	of	the	mouse	pointer,	relative	to	the	top	of	the	owner	window.

Definition	at	line	87	of	file	Event.hpp.

The	documentation	for	this	struct	was	generated	from	the	following	file:
Event.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Attributes	|	List	of	all	members

sf::Event::MouseWheelEvent	Struct	Reference

Mouse	wheel	events	parameters	(MouseWheelMoved)	More...

#include	<Event.hpp>

Public	Attributes
int	 delta
	 Number	of	ticks	the	wheel	has	moved	(positive	is	up,	negative	is	down)	
	
int	 x
	 X	position	of	the	mouse	pointer,	relative	to	the	left	of	the	owner	window.	
	
int	 y
	 Y	position	of	the	mouse	pointer,	relative	to	the	top	of	the	owner	window.	
	

Detailed	Description

Mouse	wheel	events	parameters	(MouseWheelMoved)

Deprecated:
This	event	is	deprecated	and	potentially	inaccurate.	Use	MouseWheelScrollEvent

Definition	at	line	109	of	file	Event.hpp.

Member	Data	Documentation

int	sf::Event::MouseWheelEvent::delta

Number	of	ticks	the	wheel	has	moved	(positive	is	up,	negative	is	down)

Definition	at	line	111	of	file	Event.hpp.

int	sf::Event::MouseWheelEvent::x

X	position	of	the	mouse	pointer,	relative	to	the	left	of	the	owner	window.

Definition	at	line	112	of	file	Event.hpp.

int	sf::Event::MouseWheelEvent::y

Y	position	of	the	mouse	pointer,	relative	to	the	top	of	the	owner	window.

Definition	at	line	113	of	file	Event.hpp.

The	documentation	for	this	struct	was	generated	from	the	following	file:
Event.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Attributes	|	List	of	all	members

sf::Event::MouseWheelScrollEvent	Struct	Reference

Mouse	wheel	events	parameters	(MouseWheelScrolled)	More...

#include	<Event.hpp>

Public	Attributes
Mouse::Wheel	 wheel
	 Which	wheel	(for	mice	with	multiple	ones)	More...
	

float	 delta

	 Wheel	offset	(positive	is	up/left,	negative	is	down/right).	High-precision	mice	may	use
non-integral	offsets.	More...

	
int	 x

	 X	position	of	the	mouse	pointer,	relative	to	the	left	of	the	owner	window.	
	

int	 y
	 Y	position	of	the	mouse	pointer,	relative	to	the	top	of	the	owner	window.	
	

Detailed	Description

Mouse	wheel	events	parameters	(MouseWheelScrolled)

Definition	at	line	120	of	file	Event.hpp.

Member	Data	Documentation

float	sf::Event::MouseWheelScrollEvent::delta

Wheel	 offset	 (positive	 is	 up/left,	 negative	 is	 down/right).	 High-precision	 mice	 may	 use	 non-integral
offsets.

Definition	at	line	123	of	file	Event.hpp.

Mouse::Wheel	sf::Event::MouseWheelScrollEvent::wheel

Which	wheel	(for	mice	with	multiple	ones)

Definition	at	line	122	of	file	Event.hpp.

int	sf::Event::MouseWheelScrollEvent::x

X	position	of	the	mouse	pointer,	relative	to	the	left	of	the	owner	window.

Definition	at	line	124	of	file	Event.hpp.

int	sf::Event::MouseWheelScrollEvent::y

Y	position	of	the	mouse	pointer,	relative	to	the	top	of	the	owner	window.

Definition	at	line	125	of	file	Event.hpp.

The	documentation	for	this	struct	was	generated	from	the	following	file:
Event.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Attributes	|	List	of	all	members

sf::Event::SensorEvent	Struct	Reference

Sensor	event	parameters	(SensorChanged)	More...

#include	<Event.hpp>

Public	Attributes
Sensor::Type	 type
	 Type	of	the	sensor.	More...
	

float	 x
	 Current	value	of	the	sensor	on	X	axis.	More...
	

float	 y
	 Current	value	of	the	sensor	on	Y	axis.	More...
	

float	 z
	 Current	value	of	the	sensor	on	Z	axis.	More...
	

Detailed	Description

Sensor	event	parameters	(SensorChanged)

Definition	at	line	175	of	file	Event.hpp.

Member	Data	Documentation

Sensor::Type	sf::Event::SensorEvent::type

Type	of	the	sensor.

Definition	at	line	177	of	file	Event.hpp.

float	sf::Event::SensorEvent::x

Current	value	of	the	sensor	on	X	axis.

Definition	at	line	178	of	file	Event.hpp.

float	sf::Event::SensorEvent::y

Current	value	of	the	sensor	on	Y	axis.

Definition	at	line	179	of	file	Event.hpp.

float	sf::Event::SensorEvent::z

Current	value	of	the	sensor	on	Z	axis.

Definition	at	line	180	of	file	Event.hpp.

The	documentation	for	this	struct	was	generated	from	the	following	file:
Event.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Attributes	|	List	of	all	members

sf::Event::SizeEvent	Struct	Reference

Size	events	parameters	(Resized)	More...

#include	<Event.hpp>

Public	Attributes
unsigned	int	 width
	 New	width,	in	pixels.	More...
	
unsigned	int	 height
	 New	height,	in	pixels.	More...
	

Detailed	Description

Size	events	parameters	(Resized)

Definition	at	line	52	of	file	Event.hpp.

Member	Data	Documentation

unsigned	int	sf::Event::SizeEvent::height

New	height,	in	pixels.

Definition	at	line	55	of	file	Event.hpp.

unsigned	int	sf::Event::SizeEvent::width

New	width,	in	pixels.

Definition	at	line	54	of	file	Event.hpp.

The	documentation	for	this	struct	was	generated	from	the	following	file:
Event.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Attributes	|	List	of	all	members

sf::Event::TextEvent	Struct	Reference

Text	event	parameters	(TextEntered)	More...

#include	<Event.hpp>

Public	Attributes
Uint32	 unicode
	 UTF-32	Unicode	value	of	the	character.	More...
	

Detailed	Description

Text	event	parameters	(TextEntered)

Definition	at	line	75	of	file	Event.hpp.

Member	Data	Documentation

Uint32	sf::Event::TextEvent::unicode

UTF-32	Unicode	value	of	the	character.

Definition	at	line	77	of	file	Event.hpp.

The	documentation	for	this	struct	was	generated	from	the	following	file:
Event.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Attributes	|	List	of	all	members

sf::Event::TouchEvent	Struct	Reference

Touch	events	parameters	(TouchBegan,	TouchMoved,	TouchEnded)	More...

#include	<Event.hpp>

Public	Attributes
unsigned	int	 finger
	 Index	of	the	finger	in	case	of	multi-touch	events.	More...
	

int	 x
	 X	position	of	the	touch,	relative	to	the	left	of	the	owner	window.	
	

int	 y
	 Y	position	of	the	touch,	relative	to	the	top	of	the	owner	window.	
	

Detailed	Description

Touch	events	parameters	(TouchBegan,	TouchMoved,	TouchEnded)

Definition	at	line	164	of	file	Event.hpp.

Member	Data	Documentation

unsigned	int	sf::Event::TouchEvent::finger

Index	of	the	finger	in	case	of	multi-touch	events.

Definition	at	line	166	of	file	Event.hpp.

int	sf::Event::TouchEvent::x

X	position	of	the	touch,	relative	to	the	left	of	the	owner	window.

Definition	at	line	167	of	file	Event.hpp.

int	sf::Event::TouchEvent::y

Y	position	of	the	touch,	relative	to	the	top	of	the	owner	window.

Definition	at	line	168	of	file	Event.hpp.

The	documentation	for	this	struct	was	generated	from	the	following	file:
Event.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Classes	|	Protected	Member	Functions	|	Static	Protected	Member	Functions	|	List	of	all	members

sf::GlResource	Class	Reference
Window	module

Base	class	for	classes	that	require	an	OpenGL	context.	More...

#include	<GlResource.hpp>

Inheritance	diagram	for	sf::GlResource:

Classes
class		 TransientContextLock
	 RAII	helper	class	to	temporarily	lock	an	available	context	for	use.	
	

Protected	Member	Functions
	 GlResource	()
	 Default	constructor.	More...
	
	 ~GlResource	()
	 Destructor.	More...
	

Static	Protected	Member	Functions
static	void	 ensureGlContext	()
	 Empty	function	for	ABI	compatibility,	use	acquireTransientContext	instead.	
	

Detailed	Description

Base	class	for	classes	that	require	an	OpenGL	context.

This	class	is	for	internal	use	only,	it	must	be	the	base	of	every	class	that	requires	a	valid	OpenGL	context	in
order	to	work.

Definition	at	line	44	of	file	GlResource.hpp.

Constructor	&	Destructor	Documentation

sf::GlResource::GlResource ()

Default	constructor.

sf::GlResource::~GlResource ()

Destructor.

Member	Function	Documentation

static	void	sf::GlResource::ensureGlContext ()

Empty	function	for	ABI	compatibility,	use	acquireTransientContext	instead.

The	documentation	for	this	class	was	generated	from	the	following	file:
GlResource.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Member	Functions	|	List	of	all	members

sf::GlResource::TransientContextLock	Class	Reference

RAII	helper	class	to	temporarily	lock	an	available	context	for	use.	More...

#include	<GlResource.hpp>

Inheritance	diagram	for	sf::GlResource::TransientContextLock:

Public	Member	Functions
	 TransientContextLock	()
	 Default	constructor.	More...
	
	 ~TransientContextLock	()
	 Destructor.	More...
	

Detailed	Description

RAII	helper	class	to	temporarily	lock	an	available	context	for	use.

Definition	at	line	70	of	file	GlResource.hpp.

Constructor	&	Destructor	Documentation

sf::GlResource::TransientContextLock::TransientContextLock ()

Default	constructor.

sf::GlResource::TransientContextLock::~TransientContextLock ()

Destructor.

The	documentation	for	this	class	was	generated	from	the	following	file:
GlResource.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Classes	|	Public	Types	|	Static	Public	Member	Functions	|	List	of	all	members

sf::Joystick	Class	Reference
Window	module

Give	access	to	the	real-time	state	of	the	joysticks.	More...

#include	<Joystick.hpp>

Classes
struct		 Identification
	 Structure	holding	a	joystick's	identification.	More...
	

Public	Types
enum		 {	Count	=	8,	ButtonCount	=	32,	AxisCount	=	8	}
	 Constants	related	to	joysticks	capabilities.	More...
	

enum		

Axis	{	
		X,	Y,	Z,	R,	
		U,	V,	PovX,	PovY	
}

	 Axes	supported	by	SFML	joysticks.	More...
	

Static	Public	Member	Functions
static	bool	 isConnected	(unsigned	int	joystick)

	 Check	if	a	joystick	is	connected.	More...
	
static	unsigned	int	 getButtonCount	(unsigned	int	joystick)
	 Return	the	number	of	buttons	supported	by	a	joystick.	
	

static	bool	 hasAxis	(unsigned	int	joystick,	Axis	axis)
	 Check	if	a	joystick	supports	a	given	axis.	More...
	

static	bool	 isButtonPressed	(unsigned	int	joystick,	unsigned	int	button)
	 Check	if	a	joystick	button	is	pressed.	More...
	

static	float	 getAxisPosition	(unsigned	int	joystick,	Axis	axis)
	 Get	the	current	position	of	a	joystick	axis.	More...
	
static	Identification	 getIdentification	(unsigned	int	joystick)
	 Get	the	joystick	information.	More...
	

static	void	 update	()
	 Update	the	states	of	all	joysticks.	More...
	

Detailed	Description

Give	access	to	the	real-time	state	of	the	joysticks.

sf::Joystick	provides	an	interface	to	the	state	of	the	joysticks.

It	only	contains	static	functions,	so	it's	not	meant	to	be	instantiated.	Instead,	each	joystick	is	identified	by	an
index	that	is	passed	to	the	functions	of	this	class.

This	class	allows	users	to	query	the	state	of	joysticks	at	any	time	and	directly,	without	having	to	deal	with	a
window	 and	 its	 events.	 Compared	 to	 the	 JoystickMoved,	 JoystickButtonPressed	 and
JoystickButtonReleased	events,	 sf::Joystick	can	retrieve	the	state	of	axes	and	buttons	of	 joysticks	at	any
time	(you	don't	need	to	store	and	update	a	boolean	on	your	side	in	order	to	know	if	a	button	is	pressed	or
released),	and	you	always	get	the	real	state	of	joysticks,	even	if	they	are	moved,	pressed	or	released	when
your	window	is	out	of	focus	and	no	event	is	triggered.

SFML	supports:

8	joysticks	(sf::Joystick::Count)

32	buttons	per	joystick	(sf::Joystick::ButtonCount)

8	axes	per	joystick	(sf::Joystick::AxisCount)

Unlike	the	keyboard	or	mouse,	the	state	of	joysticks	is	sometimes	not	directly	available	(depending	on	the
OS),	therefore	an	update()	function	must	be	called	in	order	to	update	the	current	state	of	joysticks.	When
you	have	a	window	with	event	handling,	this	 is	done	automatically,	you	don't	need	to	call	anything.	But	 if
you	 have	 no	 window,	 or	 if	 you	 want	 to	 check	 joysticks	 state	 before	 creating	 one,	 you	 must	 call
sf::Joystick::update	explicitly.

Usage	example:

//	Is	joystick	#0	connected?

bool	connected	=	sf::Joystick::isConnected(0);

//	How	many	buttons	does	joystick	#0	support?

unsigned	int	buttons	=	sf::Joystick::getButtonCount(0);

//	Does	joystick	#0	define	a	X	axis?

bool	hasX	=	sf::Joystick::hasAxis(0,	sf::Joystick::X);

//	Is	button	#2	pressed	on	joystick	#0?

bool	pressed	=	sf::Joystick::isButtonPressed(0,	2);

//	What's	the	current	position	of	the	Y	axis	on	joystick	#0?

float	position	=	sf::Joystick::getAxisPosition(0,	sf::Joystick::Y);

See	also
sf::Keyboard,	sf::Mouse

Definition	at	line	41	of	file	Joystick.hpp.

Member	Enumeration	Documentation

anonymous	enum

Constants	related	to	joysticks	capabilities.

Enumerator

Count	
Maximum	number	of	supported	joysticks.

ButtonCount	
Maximum	number	of	supported	buttons.

AxisCount	
Maximum	number	of	supported	axes.

Definition	at	line	49	of	file	Joystick.hpp.

enum	sf::Joystick::Axis

Axes	supported	by	SFML	joysticks.

Enumerator

X	
The	X	axis.

Y	
The	Y	axis.

Z	 The	Z	axis.

R	
The	R	axis.

U	
The	U	axis.

V	
The	V	axis.

PovX	
The	X	axis	of	the	point-of-view	hat.

PovY	
The	Y	axis	of	the	point-of-view	hat.

Definition	at	line	60	of	file	Joystick.hpp.

Member	Function	Documentation

static	float	sf::Joystick::getAxisPosition (unsigned	int	 joystick,
Axis	 axis	

)

Get	the	current	position	of	a	joystick	axis.

If	the	joystick	is	not	connected,	this	function	returns	0.

Parameters
joystick Index	of	the	joystick
axis Axis	to	check

Returns
Current	position	of	the	axis,	in	range	[-100	..	100]

static	unsigned	int	sf::Joystick::getButtonCount (unsigned	int	 joystick

Return	the	number	of	buttons	supported	by	a	joystick.

If	the	joystick	is	not	connected,	this	function	returns	0.

Parameters
joystick Index	of	the	joystick

Returns
Number	of	buttons	supported	by	the	joystick

static	Identification	sf::Joystick::getIdentification (unsigned	int	 joystick

Get	the	joystick	information.

Parameters
joystick Index	of	the	joystick

Returns
Structure	containing	joystick	information.

static	bool	sf::Joystick::hasAxis (unsigned	int	 joystick,
Axis	 axis	

)

Check	if	a	joystick	supports	a	given	axis.

If	the	joystick	is	not	connected,	this	function	returns	false.

Parameters
joystick Index	of	the	joystick
axis Axis	to	check

Returns
True	if	the	joystick	supports	the	axis,	false	otherwise

static	bool	sf::Joystick::isButtonPressed (unsigned	int	 joystick,
unsigned	int	 button	
)

Check	if	a	joystick	button	is	pressed.

If	the	joystick	is	not	connected,	this	function	returns	false.

Parameters
joystick Index	of	the	joystick
button Button	to	check

Returns
True	if	the	button	is	pressed,	false	otherwise

static	bool	sf::Joystick::isConnected (unsigned	int	 joystick)

Check	if	a	joystick	is	connected.

Parameters
joystick Index	of	the	joystick	to	check

Returns
True	if	the	joystick	is	connected,	false	otherwise

static	void	sf::Joystick::update ()

Update	the	states	of	all	joysticks.

This	 function	 is	used	 internally	by	SFML,	so	you	normally	don't	have	 to	call	 it	explicitly.	However,	you
may	need	to	call	it	if	you	have	no	window	yet	(or	no	window	at	all):	in	this	case	the	joystick	states	are	not
updated	automatically.

The	documentation	for	this	class	was	generated	from	the	following	file:

Joystick.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Attributes	|	List	of	all	members

sf::Joystick::Identification	Struct	Reference

Structure	holding	a	joystick's	identification.	More...

#include	<Joystick.hpp>

Public	Attributes
String	 name

	 Name	of	the	joystick.	More...
	
unsigned	int	 vendorId
	 Manufacturer	identifier.	More...
	
unsigned	int	 productId
	 Product	identifier.	More...
	

Detailed	Description

Structure	holding	a	joystick's	identification.

Definition	at	line	76	of	file	Joystick.hpp.

Member	Data	Documentation

String	sf::Joystick::Identification::name

Name	of	the	joystick.

Definition	at	line	80	of	file	Joystick.hpp.

unsigned	int	sf::Joystick::Identification::productId

Product	identifier.

Definition	at	line	82	of	file	Joystick.hpp.

unsigned	int	sf::Joystick::Identification::vendorId

Manufacturer	identifier.

Definition	at	line	81	of	file	Joystick.hpp.

The	documentation	for	this	struct	was	generated	from	the	following	file:
Joystick.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Types	|	Static	Public	Member	Functions	|	List	of	all	members

sf::Keyboard	Class	Reference
Window	module

Give	access	to	the	real-time	state	of	the	keyboard.	More...

#include	<Keyboard.hpp>

Public	Types

enum		

Key	{	
		Unknown	=	-1,	A	=	0,	B,	C,	
		D,	E,	F,	G,	
		H,	I,	J,	K,	
		L,	M,	N,	O,	
		P,	Q,	R,	S,	
		T,	U,	V,	W,	
		X,	Y,	Z,	Num0,	
		Num1,	Num2,	Num3,	Num4,	
		Num5,	Num6,	Num7,	Num8,	
		Num9,	Escape,	LControl,	LShift,	
		LAlt,	LSystem,	RControl,	RShift,	
		RAlt,	RSystem,	Menu,	LBracket,	
		RBracket,	SemiColon,	Comma,	Period,	
		Quote,	Slash,	BackSlash,	Tilde,	
		Equal,	Dash,	Space,	Return,	
		BackSpace,	Tab,	PageUp,	PageDown,	
		End,	Home,	Insert,	Delete,	
		Add,	Subtract,	Multiply,	Divide,	
		Left,	Right,	Up,	Down,	
		Numpad0,	Numpad1,	Numpad2,	Numpad3,	
		Numpad4,	Numpad5,	Numpad6,	Numpad7,	
		Numpad8,	Numpad9,	F1,	F2,	
		F3,	F4,	F5,	F6,	
		F7,	F8,	F9,	F10,	
		F11,	F12,	F13,	F14,	
		F15,	Pause,	KeyCount	
}

	 Key	codes.	More...
	

Static	Public	Member	Functions
static	bool	 isKeyPressed	(Key	key)
	 Check	if	a	key	is	pressed.	More...
	
static	void	 setVirtualKeyboardVisible	(bool	visible)
	 Show	or	hide	the	virtual	keyboard.	More...
	

Detailed	Description

Give	access	to	the	real-time	state	of	the	keyboard.

sf::Keyboard	provides	an	interface	to	the	state	of	the	keyboard.

It	only	contains	static	functions	(a	single	keyboard	is	assumed),	so	it's	not	meant	to	be	instantiated.

This	class	allows	users	to	query	the	keyboard	state	at	any	time	and	directly,	without	having	to	deal	with	a
window	and	its	events.	Compared	to	the	KeyPressed	and	KeyReleased	events,	
the	state	of	a	key	at	any	time	(you	don't	need	to	store	and	update	a	boolean	on	your	side	in	order	to	know	if
a	key	is	pressed	or	released),	and	you	always	get	the	real	state	of	the	keyboard,	even	if	keys	are	pressed
or	released	when	your	window	is	out	of	focus	and	no	event	is	triggered.

Usage	example:

if	(sf::Keyboard::isKeyPressed(sf::Keyboard::Left))

{

	//	move	left...

}

else	if	(sf::Keyboard::isKeyPressed(sf::Keyboard::Right))

{

	//	move	right...

}

else	if	(sf::Keyboard::isKeyPressed(sf::Keyboard::Escape))

{

	//	quit...

}

See	also
sf::Joystick,	sf::Mouse,	sf::Touch

Definition	at	line	40	of	file	Keyboard.hpp.

Member	Enumeration	Documentation

enum	sf::Keyboard::Key

Key	codes.

Enumerator

Unknown	
Unhandled	key.

A	
The	A	key.

B	
The	B	key.

C	
The	C	key.

D	
The	D	key.

E	
The	E	key.

F	
The	F	key.

G	
The	G	key.

H	

The	H	key.

I	
The	I	key.

J	
The	J	key.

K	
The	K	key.

L	
The	L	key.

M	
The	M	key.

N	
The	N	key.

O	
The	O	key.

P	
The	P	key.

Q	
The	Q	key.

R	
The	R	key.

S	
The	S	key.

T	
The	T	key.

U	

The	U	key.

V	
The	V	key.

W	
The	W	key.

X	
The	X	key.

Y	
The	Y	key.

Z	
The	Z	key.

Num0	
The	0	key.

Num1	
The	1	key.

Num2	
The	2	key.

Num3	
The	3	key.

Num4	
The	4	key.

Num5	
The	5	key.

Num6	
The	6	key.

Num7	

The	7	key.

Num8	
The	8	key.

Num9	
The	9	key.

Escape	
The	Escape	key.

LControl	
The	left	Control	key.

LShift	
The	left	Shift	key.

LAlt	
The	left	Alt	key.

LSystem	
The	left	OS	specific	key:	window	(Windows	and	Linux),	apple	(MacOS	X),	...

RControl	
The	right	Control	key.

RShift	
The	right	Shift	key.

RAlt	
The	right	Alt	key.

RSystem	
The	right	OS	specific	key:	window	(Windows	and	Linux),	apple	(MacOS	X),	...

Menu	
The	Menu	key.

LBracket	

The	[key.

RBracket	
The]	key.

SemiColon	
The	;	key.

Comma	
The	,	key.

Period	
The	.	key.

Quote	
The	'	key.

Slash	
The	/	key.

BackSlash	
The	\	key.

Tilde	
The	~	key.

Equal	
The	=	key.

Dash	
The	-	key.

Space	
The	Space	key.

Return	
The	Return	key.

BackSpace	

The	Backspace	key.

Tab	
The	Tabulation	key.

PageUp	
The	Page	up	key.

PageDown	
The	Page	down	key.

End	
The	End	key.

Home	
The	Home	key.

Insert	
The	Insert	key.

Delete	
The	Delete	key.

Add	
The	+	key.

Subtract	
The	-	key.

Multiply	
The	*	key.

Divide	
The	/	key.

Left	
Left	arrow.

Right	

Right	arrow.

Up	
Up	arrow.

Down	
Down	arrow.

Numpad0	
The	numpad	0	key.

Numpad1	
The	numpad	1	key.

Numpad2	
The	numpad	2	key.

Numpad3	
The	numpad	3	key.

Numpad4	
The	numpad	4	key.

Numpad5	
The	numpad	5	key.

Numpad6	
The	numpad	6	key.

Numpad7	
The	numpad	7	key.

Numpad8	
The	numpad	8	key.

Numpad9	
The	numpad	9	key.

F1	

The	F1	key.

F2	
The	F2	key.

F3	
The	F3	key.

F4	
The	F4	key.

F5	
The	F5	key.

F6	
The	F6	key.

F7	
The	F7	key.

F8	
The	F8	key.

F9	
The	F9	key.

F10	
The	F10	key.

F11	
The	F11	key.

F12	
The	F12	key.

F13	
The	F13	key.

F14	

The	F14	key.

F15	
The	F15	key.

Pause	
The	Pause	key.

KeyCount	
Keep	last	–	the	total	number	of	keyboard	keys.

Definition	at	line	48	of	file	Keyboard.hpp.

Member	Function	Documentation

static	bool	sf::Keyboard::isKeyPressed (Key	 key)

Check	if	a	key	is	pressed.

Parameters
key Key	to	check

Returns
True	if	the	key	is	pressed,	false	otherwise

static	void	sf::Keyboard::setVirtualKeyboardVisible (bool	 visible)

Show	or	hide	the	virtual	keyboard.

Warning:	the	virtual	keyboard	is	not	supported	on	all	systems.	It	will	typically	be	implemented	on	mobile
OSes	(Android,	iOS)	but	not	on	desktop	OSes	(Windows,	Linux,	...).

If	the	virtual	keyboard	is	not	available,	this	function	does	nothing.

Parameters
visible True	to	show,	false	to	hide

The	documentation	for	this	class	was	generated	from	the	following	file:
Keyboard.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Types	|	Static	Public	Member	Functions	|	List	of	all	members

sf::Mouse	Class	Reference
Window	module

Give	access	to	the	real-time	state	of	the	mouse.	More...

#include	<Mouse.hpp>

Public	Types

enum		

Button	{	
		Left,	Right,	Middle,	XButton1,	
		XButton2,	ButtonCount	
}

	 Mouse	buttons.	More...
	
enum		 Wheel	{	VerticalWheel,	HorizontalWheel	}
	 Mouse	wheels.	More...
	

Static	Public	Member	Functions
static	bool	 isButtonPressed	(Button	button)

	 Check	if	a	mouse	button	is	pressed.	More...
	
static	Vector2i	 getPosition	()
	 Get	the	current	position	of	the	mouse	in	desktop	coordinates.	
	
static	Vector2i	 getPosition	(const	Window	&relativeTo)
	 Get	the	current	position	of	the	mouse	in	window	coordinates.	
	

static	void	 setPosition	(const	Vector2i	&position)
	 Set	the	current	position	of	the	mouse	in	desktop	coordinates.	
	

static	void	 setPosition	(const	Vector2i	&position,	const	Window	&relativeTo)
	 Set	the	current	position	of	the	mouse	in	window	coordinates.	
	

Detailed	Description

Give	access	to	the	real-time	state	of	the	mouse.

sf::Mouse	provides	an	interface	to	the	state	of	the	mouse.

It	only	contains	static	functions	(a	single	mouse	is	assumed),	so	it's	not	meant	to	be	instantiated.

This	class	allows	users	 to	query	 the	mouse	state	at	any	 time	and	directly,	without	having	 to	deal	with	a
window	and	 its	events.	Compared	to	 the	MouseMoved,	MouseButtonPressed	and	MouseButtonReleased
events,	sf::Mouse	can	retrieve	the	state	of	the	cursor	and	the	buttons	at	any	time	(you	don't	need	to	store
and	update	a	boolean	on	your	side	in	order	to	know	if	a	button	is	pressed	or	released),	and	you	always	get
the	real	state	of	the	mouse,	even	if	it	is	moved,	pressed	or	released	when	your	window	is	out	of	focus	and
no	event	is	triggered.

The	 setPosition	 and	 getPosition	 functions	 can	 be	 used	 to	 change	 or	 retrieve	 the	 current	 position	 of	 the
mouse	pointer.	There	are	two	versions:	one	that	operates	in	global	coordinates	(relative	to	the	desktop)	and
one	that	operates	in	window	coordinates	(relative	to	a	specific	window).

Usage	example:

if	(sf::Mouse::isButtonPressed(sf::Mouse::Left))

{

	//	left	click...

}

//	get	global	mouse	position

sf::Vector2i	position	=	sf::Mouse::getPosition();

//	set	mouse	position	relative	to	a	window

sf::Mouse::setPosition(sf::Vector2i(100,	200),	window);

See	also
sf::Joystick,	sf::Keyboard,	sf::Touch

Definition	at	line	43	of	file	Mouse.hpp.

Member	Enumeration	Documentation

enum	sf::Mouse::Button

Mouse	buttons.

Enumerator

Left	
The	left	mouse	button.

Right	
The	right	mouse	button.

Middle	
The	middle	(wheel)	mouse	button.

XButton1	
The	first	extra	mouse	button.

XButton2	
The	second	extra	mouse	button.

ButtonCount	
Keep	last	–	the	total	number	of	mouse	buttons.

Definition	at	line	51	of	file	Mouse.hpp.

enum	sf::Mouse::Wheel

Mouse	wheels.

Enumerator

VerticalWheel	
The	vertical	mouse	wheel.

HorizontalWheel	
The	horizontal	mouse	wheel.

Definition	at	line	66	of	file	Mouse.hpp.

Member	Function	Documentation

static	Vector2i	sf::Mouse::getPosition ()

Get	the	current	position	of	the	mouse	in	desktop	coordinates.

This	function	returns	the	global	position	of	the	mouse	cursor	on	the	desktop.

Returns
Current	position	of	the	mouse

static	Vector2i	sf::Mouse::getPosition (const	Window	&	 relativeTo)

Get	the	current	position	of	the	mouse	in	window	coordinates.

This	function	returns	the	current	position	of	the	mouse	cursor,	relative	to	the	given	window.

Parameters
relativeToReference	window

Returns
Current	position	of	the	mouse

static	bool	sf::Mouse::isButtonPressed (Button	 button)

Check	if	a	mouse	button	is	pressed.

Parameters
button Button	to	check

Returns
True	if	the	button	is	pressed,	false	otherwise

static	void	sf::Mouse::setPosition (const	Vector2i	&	 position)

Set	the	current	position	of	the	mouse	in	desktop	coordinates.

This	function	sets	the	global	position	of	the	mouse	cursor	on	the	desktop.

Parameters
positionNew	position	of	the	mouse

static	void	sf::Mouse::setPosition (const	Vector2i	&	 position,
const	Window	&	 relativeTo	
)

Set	the	current	position	of	the	mouse	in	window	coordinates.

This	function	sets	the	current	position	of	the	mouse	cursor,	relative	to	the	given	window.

Parameters
position New	position	of	the	mouse
relativeToReference	window

The	documentation	for	this	class	was	generated	from	the	following	file:
Mouse.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Types	|	Static	Public	Member	Functions	|	List	of	all	members

sf::Sensor	Class	Reference
Window	module

Give	access	to	the	real-time	state	of	the	sensors.	More...

#include	<Sensor.hpp>

Public	Types

enum		

Type	{	
		Accelerometer,	Gyroscope,	Magnetometer,	Gravity,	
		UserAcceleration,	Orientation,	Count	
}

	 Sensor	type.	More...
	

Static	Public	Member	Functions
static	bool	 isAvailable	(Type	sensor)

	 Check	if	a	sensor	is	available	on	the	underlying	platform.	
	

static	void	 setEnabled	(Type	sensor,	bool	enabled)
	 Enable	or	disable	a	sensor.	More...
	
static	Vector3f	 getValue	(Type	sensor)
	 Get	the	current	sensor	value.	More...
	

Detailed	Description

Give	access	to	the	real-time	state	of	the	sensors.

sf::Sensor	provides	an	interface	to	the	state	of	the	various	sensors	that	a	device	provides.

It	only	contains	static	functions,	so	it's	not	meant	to	be	instantiated.

This	class	allows	users	to	query	the	sensors	values	at	any	time	and	directly,	without	having	to	deal	with	a
window	 and	 its	 events.	 Compared	 to	 the	 SensorChanged	 event,	 sf::Sensor
sensor	at	any	time	(you	don't	need	to	store	and	update	its	current	value	on	your	side).

Depending	 on	 the	 OS	 and	 hardware	 of	 the	 device	 (phone,	 tablet,	 ...),	 some	 sensor	 types	 may	 not	 be
available.	 You	 should	 always	 check	 the	 availability	 of	 a	 sensor	 before	 trying	 to	 read	 it,	 with	 the
sf::Sensor::isAvailable	function.

You	 may	 wonder	 why	 some	 sensor	 types	 look	 so	 similar,	 for	 example	 Accelerometer	 and	 Gravity	 /
UserAcceleration.	The	 first	one	 is	 the	raw	measurement	of	 the	acceleration,	and	 takes	 into	account	both
the	earth	gravity	and	 the	user	movement.	The	others	are	more	precise:	 they	provide	 these	components
separately,	which	 is	usually	more	useful.	 In	fact	 they	are	not	direct	sensors,	 they	are	computed	internally
based	on	the	raw	acceleration	and	other	sensors.	This	is	exactly	the	same	for	Gyroscope	vs	Orientation.

Because	sensors	consume	a	non-negligible	amount	of	current,	they	are	all	disabled	by	default.	You	must
call	sf::Sensor::setEnabled	for	each	sensor	in	which	you	are	interested.

Usage	example:

if	(sf::Sensor::isAvailable(sf::Sensor::Gravity))

{

	//	gravity	sensor	is	available

}

//	enable	the	gravity	sensor

sf::Sensor::setEnabled(sf::Sensor::Gravity,	true);

//	get	the	current	value	of	gravity

sf::Vector3f	gravity	=	sf::Sensor::getValue(sf::Sensor::Gravity);

Definition	at	line	42	of	file	Sensor.hpp.

Member	Enumeration	Documentation

enum	sf::Sensor::Type

Sensor	type.

Enumerator

Accelerometer	
Measures	the	raw	acceleration	(m/s^2)

Gyroscope	
Measures	the	raw	rotation	rates	(degrees/s)

Magnetometer	
Measures	the	ambient	magnetic	field	(micro-teslas)

Gravity	
Measures	the	direction	and	intensity	of	gravity,	independent	of	device	acceleration
(m/s^2)

UserAcceleration	
Measures	 the	 direction	 and	 intensity	 of	 device	 acceleration,	 independent	 of	 the
gravity	(m/s^2)

Orientation	
Measures	the	absolute	3D	orientation	(degrees)

Count	
Keep	last	–	the	total	number	of	sensor	types.

Definition	at	line	50	of	file	Sensor.hpp.

Member	Function	Documentation

static	Vector3f	sf::Sensor::getValue (Type	 sensor)

Get	the	current	sensor	value.

Parameters
sensor Sensor	to	read

Returns
The	current	sensor	value

static	bool	sf::Sensor::isAvailable (Type	 sensor)

Check	if	a	sensor	is	available	on	the	underlying	platform.

Parameters
sensor Sensor	to	check

Returns
True	if	the	sensor	is	available,	false	otherwise

static	void	sf::Sensor::setEnabled (Type	 sensor,
bool	 enabled	
)

Enable	or	disable	a	sensor.

All	 sensors	 are	 disabled	 by	 default,	 to	 avoid	 consuming	 too	 much	 battery	 power.	 Once	 a	 sensor	 is
enabled,	it	starts	sending	events	of	the	corresponding	type.

This	function	does	nothing	if	the	sensor	is	unavailable.

Parameters
sensor Sensor	to	enable
enabled True	to	enable,	false	to	disable

The	documentation	for	this	class	was	generated	from	the	following	file:
Sensor.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Static	Public	Member	Functions	|	List	of	all	members

sf::Touch	Class	Reference
Window	module

Give	access	to	the	real-time	state	of	the	touches.	More...

#include	<Touch.hpp>

Static	Public	Member	Functions
static	bool	 isDown	(unsigned	int	finger)

	 Check	if	a	touch	event	is	currently	down.	More...
	
static	Vector2i	 getPosition	(unsigned	int	finger)
	 Get	the	current	position	of	a	touch	in	desktop	coordinates.	
	
static	Vector2i	 getPosition	(unsigned	int	finger,	const	Window	&relativeTo)
	 Get	the	current	position	of	a	touch	in	window	coordinates.	
	

Detailed	Description

Give	access	to	the	real-time	state	of	the	touches.

sf::Touch	provides	an	interface	to	the	state	of	the	touches.

It	only	contains	static	functions,	so	it's	not	meant	to	be	instantiated.

This	class	allows	users	 to	query	 the	touches	state	at	any	time	and	directly,	without	having	to	deal	with	a
window	and	its	events.	Compared	to	the	TouchBegan,	TouchMoved	and	TouchEnded	events,	
retrieve	the	state	of	the	touches	at	any	time	(you	don't	need	to	store	and	update	a	boolean	on	your	side	in
order	 to	know	if	a	 touch	 is	down),	and	you	always	get	 the	real	state	of	 the	touches,	even	 if	 they	happen
when	your	window	is	out	of	focus	and	no	event	is	triggered.

The	getPosition	 function	can	be	used	 to	 retrieve	 the	current	position	of	a	 touch.	There	are	 two	versions:
one	 that	 operates	 in	 global	 coordinates	 (relative	 to	 the	 desktop)	 and	 one	 that	 operates	 in	 window
coordinates	(relative	to	a	specific	window).

Touches	are	 identified	by	an	 index	 (the	 "finger"),	so	 that	 in	multi-touch	events,	 individual	 touches	can	be
tracked	correctly.	As	long	as	a	finger	touches	the	screen,	it	will	keep	the	same	index	even	if	other	fingers
start	or	stop	touching	the	screen	in	the	meantime.	As	a	consequence,	active	touch	indices	may	not	always
be	sequential	(i.e.	touch	number	0	may	be	released	while	touch	number	1	is	still	down).

Usage	example:

if	(sf::Touch::isDown(0))

{

	//	touch	0	is	down

}

//	get	global	position	of	touch	1

sf::Vector2i	globalPos	=	sf::Touch::getPosition(1);

//	get	position	of	touch	1	relative	to	a	window

sf::Vector2i	relativePos	=	sf::Touch::getPosition(1,	window);

See	also
sf::Joystick,	sf::Keyboard,	sf::Mouse

Definition	at	line	43	of	file	Touch.hpp.

Member	Function	Documentation

static	Vector2i	sf::Touch::getPosition (unsigned	int	 finger)

Get	the	current	position	of	a	touch	in	desktop	coordinates.

This	function	returns	the	current	touch	position	in	global	(desktop)	coordinates.

Parameters
finger Finger	index

Returns
Current	position	of	finger,	or	undefined	if	it's	not	down

static	Vector2i	sf::Touch::getPosition (unsigned	int	 finger,
const	Window	&	 relativeTo	
)

Get	the	current	position	of	a	touch	in	window	coordinates.

This	function	returns	the	current	touch	position	relative	to	the	given	window.

Parameters
finger Finger	index
relativeToReference	window

Returns
Current	position	of	finger,	or	undefined	if	it's	not	down

static	bool	sf::Touch::isDown (unsigned	int	 finger)

Check	if	a	touch	event	is	currently	down.

Parameters
finger Finger	index

Returns
True	if	finger	is	currently	touching	the	screen,	false	otherwise

The	documentation	for	this	class	was	generated	from	the	following	file:
Touch.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Member	Functions	|	Static	Public	Member	Functions	|	Public	Attributes	|	Related	Functions	|	List	of	all	members

sf::VideoMode	Class	Reference
Window	module

VideoMode	defines	a	video	mode	(width,	height,	bpp)	More...

#include	<VideoMode.hpp>

Public	Member	Functions
	 VideoMode	()

	 Default	constructor.	More...
	

	 VideoMode	(unsigned	int	modeWidth,	unsigned	int	modeHeight,	unsigned	int	modeBitsPerPixel=32)
	 Construct	the	video	mode	with	its	attributes.	More...
	
bool	 isValid	()	const
	 Tell	whether	or	not	the	video	mode	is	valid.	More...
	

Static	Public	Member	Functions
static	VideoMode	 getDesktopMode	()

	 Get	the	current	desktop	video	mode.	More...
	
static	const	std::vector

<	VideoMode	>	&	 getFullscreenModes	()

	 Retrieve	all	the	video	modes	supported	in	fullscreen	mode.	
	

Public	Attributes
unsigned	int	 width
	 Video	mode	width,	in	pixels.	More...
	
unsigned	int	 height
	 Video	mode	height,	in	pixels.	More...
	
unsigned	int	 bitsPerPixel
	 Video	mode	pixel	depth,	in	bits	per	pixels.	More...
	

Related	Functions

(Note	that	these	are	not	member	functions.)

bool	 operator==	(const	VideoMode	&left,	const	VideoMode	&right)
	 Overload	of	==	operator	to	compare	two	video	modes.	More...
	
bool	 operator!=	(const	VideoMode	&left,	const	VideoMode	&right)
	 Overload	of	!=	operator	to	compare	two	video	modes.	More...
	
bool	 operator<	(const	VideoMode	&left,	const	VideoMode	&right)
	 Overload	of	<	operator	to	compare	video	modes.	More...
	
bool	 operator>	(const	VideoMode	&left,	const	VideoMode	&right)
	 Overload	of	>	operator	to	compare	video	modes.	More...
	
bool	 operator<=	(const	VideoMode	&left,	const	VideoMode	&right)
	 Overload	of	<=	operator	to	compare	video	modes.	More...
	
bool	 operator>=	(const	VideoMode	&left,	const	VideoMode	&right)
	 Overload	of	>=	operator	to	compare	video	modes.	More...
	

Detailed	Description

VideoMode	defines	a	video	mode	(width,	height,	bpp)

A	video	mode	is	defined	by	a	width	and	a	height	(in	pixels)	and	a	depth	(in	bits	per	pixel).

Video	modes	are	used	to	setup	windows	(sf::Window)	at	creation	time.

The	main	usage	of	video	modes	is	for	fullscreen	mode:	indeed	you	must	use	one	of	the	valid	video	modes
allowed	by	the	OS	(which	are	defined	by	what	the	monitor	and	the	graphics	card	support),	otherwise	your
window	creation	will	just	fail.

sf::VideoMode	 provides	 a	 static	 function	 for	 retrieving	 the	 list	 of	 all	 the	 video	 modes	 supported	 by	 the
system:	getFullscreenModes().

A	custom	video	mode	can	also	be	checked	directly	for	fullscreen	compatibility	with	its	

Additionally,	 sf::VideoMode	 provides	 a	 static	 function	 to	 get	 the	 mode	 currently	 used	 by	 the	 desktop:
getDesktopMode().	This	allows	to	build	windows	with	the	same	size	or	pixel	depth	as	the	current	resolution.

Usage	example:

//	Display	the	list	of	all	the	video	modes	available	for	fullscreen

std::vector<sf::VideoMode>	modes	=	sf::VideoMode::getFullscreenModes();

for	(std::size_t	i	=	0;	i	<	modes.size();	++i)

{

	sf::VideoMode	mode	=	modes[i];

				std::cout	<<	"Mode	#"	<<	i	<<	":	"

														<<	mode.width	<<	"x"	<<	mode.height	<<	"	-	"

														<<	mode.bitsPerPixel	<<	"	bpp"	<<	std::endl;

}

//	Create	a	window	with	the	same	pixel	depth	as	the	desktop

sf::VideoMode	desktop	=	sf::VideoMode::getDesktopMode();

window.create(sf::VideoMode(1024,	768,	desktop.bitsPerPixel),	"SFML	window"

Definition	at	line	41	of	file	VideoMode.hpp.

Constructor	&	Destructor	Documentation

sf::VideoMode::VideoMode ()

Default	constructor.

This	constructors	initializes	all	members	to	0.

sf::VideoMode::VideoMode (unsigned	int	 modeWidth,
unsigned	int	 modeHeight,
unsigned	int	 modeBitsPerPixel	=	32	
)

Construct	the	video	mode	with	its	attributes.

Parameters
modeWidth Width	in	pixels
modeHeight Height	in	pixels
modeBitsPerPixel Pixel	depths	in	bits	per	pixel

Member	Function	Documentation

static	VideoMode	sf::VideoMode::getDesktopMode ()

Get	the	current	desktop	video	mode.

Returns
Current	desktop	video	mode

static	const	std::vector<VideoMode>&	sf::VideoMode::getFullscreenModes

Retrieve	all	the	video	modes	supported	in	fullscreen	mode.

When	creating	a	fullscreen	window,	the	video	mode	is	restricted	to	be	compatible	with	what	the	graphics
driver	and	monitor	support.	This	function	returns	the	complete	list	of	all	video	modes	that	can	be	used	in
fullscreen	mode.	The	returned	array	is	sorted	from	best	to	worst,	so	that	the	first	element	will	always	give
the	best	mode	(higher	width,	height	and	bits-per-pixel).

Returns
Array	containing	all	the	supported	fullscreen	modes

bool	sf::VideoMode::isValid () const

Tell	whether	or	not	the	video	mode	is	valid.

The	validity	of	video	modes	is	only	relevant	when	using	fullscreen	windows;	otherwise	any	video	mode

can	be	used	with	no	restriction.

Returns
True	if	the	video	mode	is	valid	for	fullscreen	mode

Friends	And	Related	Function	Documentation

bool	operator!= (const	VideoMode	&	 left,
const	VideoMode	&	 right	
)

Overload	of	!=	operator	to	compare	two	video	modes.

Parameters
left Left	operand	(a	video	mode)
right Right	operand	(a	video	mode)

Returns
True	if	modes	are	different

bool	operator< (const	VideoMode	&	 left,
const	VideoMode	&	 right	
)

Overload	of	<	operator	to	compare	video	modes.

Parameters
left Left	operand	(a	video	mode)
right Right	operand	(a	video	mode)

Returns
True	if	left	is	lesser	than	right

bool	operator<= (const	VideoMode	&	 left,
const	VideoMode	&	 right	
)

Overload	of	<=	operator	to	compare	video	modes.

Parameters
left Left	operand	(a	video	mode)
right Right	operand	(a	video	mode)

Returns
True	if	left	is	lesser	or	equal	than	right

bool	operator== (const	VideoMode	&	 left,
const	VideoMode	&	 right	
)

Overload	of	==	operator	to	compare	two	video	modes.

Parameters
left Left	operand	(a	video	mode)
right Right	operand	(a	video	mode)

Returns
True	if	modes	are	equal

bool	operator> (const	VideoMode	&	 left,
const	VideoMode	&	 right	
)

Overload	of	>	operator	to	compare	video	modes.

Parameters
left Left	operand	(a	video	mode)
right Right	operand	(a	video	mode)

Returns
True	if	left	is	greater	than	right

bool	operator>= (const	VideoMode	&	 left,
const	VideoMode	&	 right	
)

Overload	of	>=	operator	to	compare	video	modes.

Parameters
left Left	operand	(a	video	mode)
right Right	operand	(a	video	mode)

Returns
True	if	left	is	greater	or	equal	than	right

Member	Data	Documentation

unsigned	int	sf::VideoMode::bitsPerPixel

Video	mode	pixel	depth,	in	bits	per	pixels.

Definition	at	line	104	of	file	VideoMode.hpp.

unsigned	int	sf::VideoMode::height

Video	mode	height,	in	pixels.

Definition	at	line	103	of	file	VideoMode.hpp.

unsigned	int	sf::VideoMode::width

Video	mode	width,	in	pixels.

Definition	at	line	102	of	file	VideoMode.hpp.

The	documentation	for	this	class	was	generated	from	the	following	file:
VideoMode.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Public	Member	Functions	|	Protected	Member	Functions	|	Static	Private	Member	Functions	|	List	of	all	members

sf::Window	Class	Reference
Window	module

Window	that	serves	as	a	target	for	OpenGL	rendering.	More...

#include	<Window.hpp>

Inheritance	diagram	for	sf::Window:

Public	Member	Functions
	 Window	()

	 Default	constructor.	More...
	

	 Window	(VideoMode	mode,	const	String	&title,	Uint32	style=Style::Default,
const	ContextSettings	&settings=ContextSettings

	 Construct	a	new	window.	More...
	

	 Window	(WindowHandle	handle,	const	ContextSettings
&settings=ContextSettings())

	 Construct	the	window	from	an	existing	control.	
	

virtual	 ~Window	()
	 Destructor.	More...
	

void	 create	(VideoMode	mode,	const	String	&title,	Uint32	style=Style::Default,	constContextSettings	&settings=ContextSettings())
	 Create	(or	recreate)	the	window.	More...
	

void	 create	(WindowHandle	handle,	const	ContextSettings
&settings=ContextSettings())

	 Create	(or	recreate)	the	window	from	an	existing	control.	
	

void	 close	()
	 Close	the	window	and	destroy	all	the	attached	resources.	
	

bool	 isOpen	()	const
	 Tell	whether	or	not	the	window	is	open.	More...
	
const	ContextSettings	&	 getSettings	()	const
	 Get	the	settings	of	the	OpenGL	context	of	the	window.	
	

bool	 pollEvent	(Event	&event)
	 Pop	the	event	on	top	of	the	event	queue,	if	any,	and	return	it.	
	

bool	 waitEvent	(Event	&event)
	 Wait	for	an	event	and	return	it.	More...
	

Vector2i	 getPosition	()	const
	 Get	the	position	of	the	window.	More...
	

void	 setPosition	(const	Vector2i	&position)
	 Change	the	position	of	the	window	on	screen.	More...
	

Vector2u	 getSize	()	const
	 Get	the	size	of	the	rendering	region	of	the	window.	
	

void	 setSize	(const	Vector2u	&size)
	 Change	the	size	of	the	rendering	region	of	the	window.	
	

void	 setTitle	(const	String	&title)
	 Change	the	title	of	the	window.	More...
	

void	 setIcon	(unsigned	int	width,	unsigned	int	height,	const	Uint8	*pixels)
	 Change	the	window's	icon.	More...
	

void	 setVisible	(bool	visible)
	 Show	or	hide	the	window.	More...
	

void	 setVerticalSyncEnabled	(bool	enabled)
	 Enable	or	disable	vertical	synchronization.	More...
	

void	 setMouseCursorVisible	(bool	visible)
	 Show	or	hide	the	mouse	cursor.	More...
	

void	 setMouseCursorGrabbed	(bool	grabbed)
	 Grab	or	release	the	mouse	cursor.	More...

	
void	 setKeyRepeatEnabled	(bool	enabled)

	 Enable	or	disable	automatic	key-repeat.	More...
	

void	 setFramerateLimit	(unsigned	int	limit)
	 Limit	the	framerate	to	a	maximum	fixed	frequency.	
	

void	 setJoystickThreshold	(float	threshold)
	 Change	the	joystick	threshold.	More...
	

bool	 setActive	(bool	active=true)	const

	 Activate	or	deactivate	the	window	as	the	current	target	for	OpenGL	rendering.
More...

	
void	 requestFocus	()

	 Request	the	current	window	to	be	made	the	active	foreground	window.	
	

bool	 hasFocus	()	const
	 Check	whether	the	window	has	the	input	focus.	
	

void	 display	()
	 Display	on	screen	what	has	been	rendered	to	the	window	so	far.	
	

WindowHandle	 getSystemHandle	()	const
	 Get	the	OS-specific	handle	of	the	window.	More...
	

Protected	Member	Functions
virtual	void	 onCreate	()
	 Function	called	after	the	window	has	been	created.	More...
	
virtual	void	 onResize	()
	 Function	called	after	the	window	has	been	resized.	More...
	

Static	Private	Member	Functions
static	void	 ensureGlContext	()
	 Empty	function	for	ABI	compatibility,	use	acquireTransientContext	instead.	
	

Detailed	Description

Window	that	serves	as	a	target	for	OpenGL	rendering.

sf::Window	is	the	main	class	of	the	Window	module.

It	defines	an	OS	window	that	is	able	to	receive	an	OpenGL	rendering.

A	 sf::Window	can	create	 its	own	new	window,	or	be	embedded	 into	an	already	existing	control	using	the
create(handle)	function.	This	can	be	useful	for	embedding	an	OpenGL	rendering	area	into	a	view	which	is
part	 of	 a	 bigger	 GUI	 with	 existing	 windows,	 controls,	 etc.	 It	 can	 also	 serve	 as	 embedding	 an	 OpenGL
rendering	area	into	a	window	created	by	another	(probably	richer)	GUI	library	like	Qt	or	wxWidgets.

The	 sf::Window	class	provides	a	simple	 interface	 for	manipulating	 the	window:	move,	 resize,	show/hide,
control	mouse	cursor,	etc.	It	also	provides	event	handling	through	its	pollEvent()

Note	that	OpenGL	experts	can	pass	their	own	parameters	(antialiasing	level,	bits	for	the	depth	and	stencil
buffers,	etc.)	to	the	OpenGL	context	attached	to	the	window,	with	the	sf::ContextSettings
passed	as	an	optional	argument	when	creating	the	window.

Usage	example:

//	Declare	and	create	a	new	window

sf::Window	window(sf::VideoMode(800,	600),	"SFML	window");

//	Limit	the	framerate	to	60	frames	per	second	(this	step	is	optional)

window.setFramerateLimit(60);

//	The	main	loop	-	ends	as	soon	as	the	window	is	closed

while	(window.isOpen())

{

	//	Event	processing

	sf::Event	event;

	while	(window.pollEvent(event))

			{

	//	Request	for	closing	the	window

	if	(event.type	==	sf::Event::Closed)

											window.close();

			}

	//	Activate	the	window	for	OpenGL	rendering

			window.setActive();

	//	OpenGL	drawing	commands	go	here...

	//	End	the	current	frame	and	display	its	contents	on	screen

			window.display();

}

Definition	at	line	57	of	file	Window/Window.hpp.

Constructor	&	Destructor	Documentation

sf::Window::Window ()

Default	constructor.

This	constructor	doesn't	actually	create	the	window,	use	the	other	constructors	or	call	

sf::Window::Window (VideoMode	 mode,
const	String	&	 title,
Uint32	 style	=	Style::Default
const	ContextSettings	&	 settings	=	ContextSettings
)

Construct	a	new	window.

This	constructor	creates	the	window	with	the	size	and	pixel	depth	defined	in	
be	passed	to	customize	the	look	and	behavior	of	the	window	(borders,	title	bar,	resizable,	closable,	...).	If
style	contains	Style::Fullscreen,	then	mode	must	be	a	valid	video	mode.

The	 fourth	 parameter	 is	 an	 optional	 structure	 specifying	 advanced	 OpenGL	 context	 settings	 such	 as
antialiasing,	depth-buffer	bits,	etc.

Parameters
mode Video	mode	to	use	(defines	the	width,	height	and	depth	of	the	rendering	area	of	the

window)
title Title	of	the	window
style Window	style,	a	bitwise	OR	combination	of	sf::Style	enumerators

settings Additional	settings	for	the	underlying	OpenGL	context

sf::Window::Window (WindowHandle	 handle,
const	ContextSettings	&	 settings	=	ContextSettings
)

Construct	the	window	from	an	existing	control.

Use	this	constructor	if	you	want	to	create	an	OpenGL	rendering	area	into	an	already	existing	control.

The	second	parameter	 is	an	optional	 structure	specifying	advanced	OpenGL	context	 settings	such	as
antialiasing,	depth-buffer	bits,	etc.

Parameters
handle Platform-specific	handle	of	the	control
settings Additional	settings	for	the	underlying	OpenGL	context

virtual	sf::Window::~Window ()

Destructor.

Closes	the	window	and	frees	all	the	resources	attached	to	it.

Member	Function	Documentation

void	sf::Window::close ()

Close	the	window	and	destroy	all	the	attached	resources.

After	calling	this	function,	the	sf::Window	instance	remains	valid	and	you	can	call	
window.	 All	 other	 functions	 such	 as	 pollEvent()	 or	 display()	 will	 still	 work	 (i.e.	 you	 don't	 have	 to	 test
isOpen()	every	time),	and	will	have	no	effect	on	closed	windows.

void	sf::Window::create (VideoMode	 mode,
const	String	&	 title,
Uint32	 style	=	Style::Default
const	ContextSettings	&	 settings	=	ContextSettings
)

Create	(or	recreate)	the	window.

If	the	window	was	already	created,	it	closes	it	first.	If	style	contains	Style::Fullscreen,	then	
a	valid	video	mode.

The	 fourth	 parameter	 is	 an	 optional	 structure	 specifying	 advanced	 OpenGL	 context	 settings	 such	 as
antialiasing,	depth-buffer	bits,	etc.

Parameters
mode Video	mode	to	use	(defines	the	width,	height	and	depth	of	the	rendering	area	of	the

window)
title Title	of	the	window

style Window	style,	a	bitwise	OR	combination	of	sf::Style	enumerators
settings Additional	settings	for	the	underlying	OpenGL	context

void	sf::Window::create (WindowHandle	 handle,
const	ContextSettings	&	 settings	=	ContextSettings
)

Create	(or	recreate)	the	window	from	an	existing	control.

Use	this	function	if	you	want	to	create	an	OpenGL	rendering	area	into	an	already	existing	control.	If	the
window	was	already	created,	it	closes	it	first.

The	second	parameter	 is	an	optional	 structure	specifying	advanced	OpenGL	context	 settings	such	as
antialiasing,	depth-buffer	bits,	etc.

Parameters
handle Platform-specific	handle	of	the	control
settings Additional	settings	for	the	underlying	OpenGL	context

void	sf::Window::display ()

Display	on	screen	what	has	been	rendered	to	the	window	so	far.

This	function	is	typically	called	after	all	OpenGL	rendering	has	been	done	for	the	current	frame,	in	order
to	show	it	on	screen.

Vector2i	sf::Window::getPosition () const

Get	the	position	of	the	window.

Returns
Position	of	the	window,	in	pixels

See	also
setPosition

const	ContextSettings&	sf::Window::getSettings () const

Get	the	settings	of	the	OpenGL	context	of	the	window.

Note	 that	 these	 settings	 may	 be	 different	 from	 what	 was	 passed	 to	 the	 constructor	 or	 the	
function,	if	one	or	more	settings	were	not	supported.	In	this	case,	SFML	chose	the	closest	match.

Returns
Structure	containing	the	OpenGL	context	settings

Vector2u	sf::Window::getSize () const

Get	the	size	of	the	rendering	region	of	the	window.

The	size	doesn't	include	the	titlebar	and	borders	of	the	window.

Returns
Size	in	pixels

See	also
setSize

WindowHandle	sf::Window::getSystemHandle () const

Get	the	OS-specific	handle	of	the	window.

The	type	of	the	returned	handle	is	sf::WindowHandle,	which	is	a	typedef	to	the	handle	type	defined	by
the	OS.	You	shouldn't	need	 to	use	 this	 function,	unless	you	have	very	specific	stuff	 to	 implement	 that
SFML	doesn't	support,	or	implement	a	temporary	workaround	until	a	bug	is	fixed.

Returns
System	handle	of	the	window

bool	sf::Window::hasFocus () const

Check	whether	the	window	has	the	input	focus.

At	any	given	time,	only	one	window	may	have	the	input	focus	to	receive	input	events	such	as	keystrokes
or	most	mouse	events.

Returns
True	if	window	has	focus,	false	otherwise

See	also
requestFocus

bool	sf::Window::isOpen () const

Tell	whether	or	not	the	window	is	open.

This	function	returns	whether	or	not	the	window	exists.	Note	that	a	hidden	window	(setVisible(false))	 is
open	(therefore	this	function	would	return	true).

Returns
True	if	the	window	is	open,	false	if	it	has	been	closed

virtual	void	sf::Window::onCreate ()

Function	called	after	the	window	has	been	created.

This	function	is	called	so	that	derived	classes	can	perform	their	own	specific	initialization	as	soon	as	the
window	is	created.

Reimplemented	in	sf::RenderWindow.

virtual	void	sf::Window::onResize ()

Function	called	after	the	window	has	been	resized.

This	function	is	called	so	that	derived	classes	can	perform	custom	actions	when	the	size	of	the	window
changes.

Reimplemented	in	sf::RenderWindow.

bool	sf::Window::pollEvent (Event	&	 event)

Pop	the	event	on	top	of	the	event	queue,	if	any,	and	return	it.

This	 function	 is	 not	 blocking:	 if	 there's	 no	 pending	 event	 then	 it	 will	 return	 false	 and	 leave	
unmodified.	Note	that	more	than	one	event	may	be	present	in	the	event	queue,	thus	you	should	always
call	this	function	in	a	loop	to	make	sure	that	you	process	every	pending	event.

sf::Event	event;

while	(window.pollEvent(event))

{

	//	process	event...

}

Parameters
event Event	to	be	returned

Returns
True	if	an	event	was	returned,	or	false	if	the	event	queue	was	empty

See	also
waitEvent

void	sf::Window::requestFocus ()

Request	the	current	window	to	be	made	the	active	foreground	window.

At	any	given	time,	only	one	window	may	have	the	input	focus	to	receive	input	events	such	as	keystrokes
or	mouse	events.	If	a	window	requests	focus,	it	only	hints	to	the	operating	system,	that	it	would	like	to	be
focused.	The	operating	system	is	free	to	deny	the	request.	This	is	not	to	be	confused	with	

See	also
hasFocus

bool	sf::Window::setActive (bool	 active	=	true) const

Activate	or	deactivate	the	window	as	the	current	target	for	OpenGL	rendering.

A	window	is	active	only	on	the	current	thread,	if	you	want	to	make	it	active	on	another	thread	you	have	to
deactivate	it	on	the	previous	thread	first	if	it	was	active.	Only	one	window	can	be	active	on	a	thread	at	a
time,	thus	the	window	previously	active	(if	any)	automatically	gets	deactivated.	This	is	not	to	be	confused
with	requestFocus().

Parameters

active True	to	activate,	false	to	deactivate

Returns
True	if	operation	was	successful,	false	otherwise

void	sf::Window::setFramerateLimit (unsigned	int	 limit)

Limit	the	framerate	to	a	maximum	fixed	frequency.

If	a	 limit	 is	set,	 the	window	will	use	a	small	delay	after	each	call	 to	 display()
frame	lasted	long	enough	to	match	the	framerate	limit.	SFML	will	try	to	match	the	given	limit	as	much	as
it	can,	but	since	it	 internally	uses	sf::sleep,	whose	precision	depends	on	the	underlying	OS,	the	results
may	be	a	little	unprecise	as	well	(for	example,	you	can	get	65	FPS	when	requesting	60).

Parameters
limit Framerate	limit,	in	frames	per	seconds	(use	0	to	disable	limit)

void	sf::Window::setIcon (unsigned	int	 width,
unsigned	int	 height,
const	Uint8	*	 pixels	
)

Change	the	window's	icon.

pixels	must	be	an	array	of	width	x	height	pixels	in	32-bits	RGBA	format.

The	OS	default	icon	is	used	by	default.

Parameters
width Icon's	width,	in	pixels
height Icon's	height,	in	pixels

pixels Pointer	to	the	array	of	pixels	in	memory.	The	pixels	are	copied,	so	you	need	not	keep	the
source	alive	after	calling	this	function.

See	also
setTitle

void	sf::Window::setJoystickThreshold (float	 threshold)

Change	the	joystick	threshold.

The	joystick	threshold	is	the	value	below	which	no	JoystickMoved	event	will	be	generated.

The	threshold	value	is	0.1	by	default.

Parameters
threshold New	threshold,	in	the	range	[0,	100]

void	sf::Window::setKeyRepeatEnabled (bool	 enabled)

Enable	or	disable	automatic	key-repeat.

If	key	repeat	is	enabled,	you	will	receive	repeated	KeyPressed	events	while	keeping	a	key	pressed.	If	it
is	disabled,	you	will	only	get	a	single	event	when	the	key	is	pressed.

Key	repeat	is	enabled	by	default.

Parameters
enabled True	to	enable,	false	to	disable

void	sf::Window::setMouseCursorGrabbed (bool	 grabbed)

Grab	or	release	the	mouse	cursor.

If	set,	grabs	the	mouse	cursor	inside	this	window's	client	area	so	it	may	no	longer	be	moved	outside	its
bounds.	Note	that	grabbing	is	only	active	while	the	window	has	focus.

Parameters
grabbed True	to	enable,	false	to	disable

void	sf::Window::setMouseCursorVisible (bool	 visible)

Show	or	hide	the	mouse	cursor.

The	mouse	cursor	is	visible	by	default.

Parameters
visible True	to	show	the	mouse	cursor,	false	to	hide	it

void	sf::Window::setPosition (const	Vector2i	&	 position)

Change	the	position	of	the	window	on	screen.

This	function	only	works	for	top-level	windows	(i.e.	it	will	be	ignored	for	windows	created	from	the	handle
of	a	child	window/control).

Parameters
positionNew	position,	in	pixels

See	also
getPosition

void	sf::Window::setSize (const	Vector2u	&	 size)

Change	the	size	of	the	rendering	region	of	the	window.

Parameters
sizeNew	size,	in	pixels

See	also
getSize

void	sf::Window::setTitle (const	String	&	 title)

Change	the	title	of	the	window.

Parameters
title New	title

See	also
setIcon

void	sf::Window::setVerticalSyncEnabled (bool	 enabled)

Enable	or	disable	vertical	synchronization.

Activating	 vertical	 synchronization	will	 limit	 the	 number	 of	 frames	 displayed	 to	 the	 refresh	 rate	 of	 the
monitor.	This	can	avoid	some	visual	artifacts,	and	limit	the	framerate	to	a	good	value	(but	not	constant
across	different	computers).

Vertical	synchronization	is	disabled	by	default.

Parameters

enabled True	to	enable	v-sync,	false	to	deactivate	it

void	sf::Window::setVisible (bool	 visible)

Show	or	hide	the	window.

The	window	is	shown	by	default.

Parameters
visible True	to	show	the	window,	false	to	hide	it

bool	sf::Window::waitEvent (Event	&	 event)

Wait	for	an	event	and	return	it.

This	function	is	blocking:	if	there's	no	pending	event	then	it	will	wait	until	an	event	is	received.	After	this
function	returns	(and	no	error	occurred),	the	event	object	is	always	valid	and	filled	properly.	This	function
is	 typically	used	when	you	have	a	 thread	 that	 is	dedicated	 to	events	handling:	 you	want	 to	make	 this
thread	sleep	as	long	as	no	new	event	is	received.

sf::Event	event;

if	(window.waitEvent(event))

{

	//	process	event...

}

Parameters
event Event	to	be	returned

Returns
False	if	any	error	occurred

See	also
pollEvent

The	documentation	for	this	class	was	generated	from	the	following	file:
Window/Window.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Namespace	List Namespace	Members

SFML	2.4.2

Namespace	List

Here	is	a	list	of	all	documented	namespaces	with	brief	descriptions:

	▼ N sf

	 N Glsl Namespace	with	GLSL	types

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Namespace	List Namespace	Members

All Typedefs

SFML	2.4.2

Here	is	a	list	of	all	documented	namespace	members	with	links	to	the	namespaces	they	belong	to:
Bvec2	:	sf::Glsl

Bvec3	:	sf::Glsl

Bvec4	:	sf::Glsl

Ivec2	:	sf::Glsl

Ivec3	:	sf::Glsl

Ivec4	:	sf::Glsl

Mat3	:	sf::Glsl

Mat4	:	sf::Glsl

Vec2	:	sf::Glsl

Vec3	:	sf::Glsl

Vec4	:	sf::Glsl

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Namespace	List Namespace	Members

All Typedefs

SFML	2.4.2

	
Bvec2	:	sf::Glsl

Bvec3	:	sf::Glsl

Bvec4	:	sf::Glsl

Ivec2	:	sf::Glsl

Ivec3	:	sf::Glsl

Ivec4	:	sf::Glsl

Mat3	:	sf::Glsl

Mat4	:	sf::Glsl

Vec2	:	sf::Glsl

Vec3	:	sf::Glsl

Vec4	:	sf::Glsl

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Class	List

Here	are	the	classes,	structs,	unions	and	interfaces	with	brief	descriptions:

	▼ N sf

	 C AlResource Base	class	for	classes	that	require	an	OpenAL	context

	 C BlendMode Blending	modes	for	drawing

	 C CircleShape Specialized	shape	representing	a	circle

	 C Clock Utility	class	that	measures	the	elapsed	time

	 C Color Utility	class	for	manipulating	RGBA	colors

	 C Context Class	holding	a	valid	drawing	context

	 C ContextSettings Structure	defining	the	settings	of	the	OpenGL	context	attached	to	a
window

	 C ConvexShape Specialized	shape	representing	a	convex	polygon

	 C Drawable Abstract	base	class	for	objects	that	can	be	drawn	to	a	render	target

	 ▼ C Event Defines	a	system	event	and	its	parameters

	 C JoystickButtonEvent Joystick	buttons	events	parameters	(JoystickButtonPressed,
JoystickButtonReleased)

	 C JoystickConnectEvent Joystick	connection	events	parameters	(JoystickConnected,

JoystickDisconnected)
	 C JoystickMoveEvent Joystick	axis	move	event	parameters	(JoystickMoved)

	 C KeyEvent Keyboard	event	parameters	(KeyPressed,	KeyReleased)

	 C MouseButtonEvent Mouse	buttons	events	parameters	(MouseButtonPressed,
MouseButtonReleased)

	 C MouseMoveEvent Mouse	move	event	parameters	(MouseMoved)

	 C MouseWheelEvent Mouse	wheel	events	parameters	(MouseWheelMoved)

	 C MouseWheelScrollEvent Mouse	wheel	events	parameters	(MouseWheelScrolled)

	 C SensorEvent Sensor	event	parameters	(SensorChanged)

	 C SizeEvent Size	events	parameters	(Resized)

	 C TextEvent Text	event	parameters	(TextEntered)

	 C TouchEvent Touch	events	parameters	(TouchBegan,	TouchMoved,	TouchEnded)

	 C FileInputStream Implementation	of	input	stream	based	on	a	file

	 ▼ C Font Class	for	loading	and	manipulating	character	fonts

	 C Info Holds	various	information	about	a	font

	 ▼ C Ftp A	FTP	client

	 C DirectoryResponse Specialization	of	FTP	response	returning	a	directory

	 C ListingResponse Specialization	of	FTP	response	returning	a	filename	listing

	 C Response Define	a	FTP	response

	 ▼ C GlResource Base	class	for	classes	that	require	an	OpenGL	context

	 C TransientContextLock RAII	helper	class	to	temporarily	lock	an	available	context	for	use

	 C Glyph Structure	describing	a	glyph

	 ▼ C Http A	HTTP	client

	 C Request Define	a	HTTP	request

	 C Response Define	a	HTTP	response

	 C Image Class	for	loading,	manipulating	and	saving	images

	 C InputSoundFile Provide	read	access	to	sound	files

	 C InputStream Abstract	class	for	custom	file	input	streams

	 C IpAddress Encapsulate	an	IPv4	network	address

	 ▼ C Joystick Give	access	to	the	real-time	state	of	the	joysticks

	 C Identification Structure	holding	a	joystick's	identification

	 C Keyboard Give	access	to	the	real-time	state	of	the	keyboard

	 C Listener The	audio	listener	is	the	point	in	the	scene	from	where	all	the	sounds
are	heard

	 C Lock Automatic	wrapper	for	locking	and	unlocking	mutexes

	 C MemoryInputStream Implementation	of	input	stream	based	on	a	memory	chunk

	 C Mouse Give	access	to	the	real-time	state	of	the	mouse

	 C Music Streamed	music	played	from	an	audio	file

	 C Mutex Blocks	concurrent	access	to	shared	resources	from	multiple	threads

	 C NonCopyable Utility	class	that	makes	any	derived	class	non-copyable

	 C OutputSoundFile Provide	write	access	to	sound	files

	 C Packet Utility	class	to	build	blocks	of	data	to	transfer	over	the	network

	 C Rect Utility	class	for	manipulating	2D	axis	aligned	rectangles

	 C RectangleShape Specialized	shape	representing	a	rectangle

	 C RenderStates Define	the	states	used	for	drawing	to	a	

	 C RenderTarget Base	class	for	all	render	targets	(window,	texture,	...)

	 C RenderTexture Target	for	off-screen	2D	rendering	into	a	texture

	 C RenderWindow Window	that	can	serve	as	a	target	for	2D	drawing

	 C Sensor Give	access	to	the	real-time	state	of	the	sensors

	 ▼ C Shader Shader	class	(vertex,	geometry	and	fragment)

	 C CurrentTextureType Special	type	that	can	be	passed	to	setUniform()
texture	of	the	object	being	drawn

	 C Shape Base	class	for	textured	shapes	with	outline

	 C Socket Base	class	for	all	the	socket	types

	 C SocketSelector Multiplexer	that	allows	to	read	from	multiple	sockets

	 C Sound Regular	sound	that	can	be	played	in	the	audio	environment

	 C SoundBuffer Storage	for	audio	samples	defining	a	sound

	 C SoundBufferRecorder Specialized	SoundRecorder	which	stores	the	captured	audio	data	into	a
sound	buffer

	 C SoundFileFactory Manages	and	instantiates	sound	file	readers	and	writers

	 ▼ C SoundFileReader Abstract	base	class	for	sound	file	decoding

	 C Info Structure	holding	the	audio	properties	of	a	sound	file

	 C SoundFileWriter Abstract	base	class	for	sound	file	encoding

	 C SoundRecorder Abstract	base	class	for	capturing	sound	data

	 C SoundSource Base	class	defining	a	sound's	properties

	 ▼ C SoundStream Abstract	base	class	for	streamed	audio	sources

	 C Chunk Structure	defining	a	chunk	of	audio	data	to	stream

	 C Sprite Drawable	representation	of	a	texture,	with	its	own	transformations,
color,	etc

	 C String Utility	string	class	that	automatically	handles	conversions	between	types
and	encodings

	 C TcpListener Socket	that	listens	to	new	TCP	connections

	 C TcpSocket Specialized	socket	using	the	TCP	protocol

	 C Text Graphical	text	that	can	be	drawn	to	a	render	target

	 C Texture Image	living	on	the	graphics	card	that	can	be	used	for	drawing

	 C Thread Utility	class	to	manipulate	threads

	 C ThreadLocal Defines	variables	with	thread-local	storage

	 C ThreadLocalPtr Pointer	to	a	thread-local	variable

	 C Time Represents	a	time	value

	 C Touch Give	access	to	the	real-time	state	of	the	touches

	 C Transform Define	a	3x3	transform	matrix

	 C Transformable Decomposed	transform	defined	by	a	position,	a	rotation	and	a	scale

	 C UdpSocket Specialized	socket	using	the	UDP	protocol

	 C Utf Utility	class	providing	generic	functions	for	UTF	conversions

	 C Utf<	16	> Specialization	of	the	Utf	template	for	UTF-16

	 C Utf<	32	> Specialization	of	the	Utf	template	for	UTF-32

	 C Utf<	8	> Specialization	of	the	Utf	template	for	UTF-8

	 C Vector2 Utility	template	class	for	manipulating	2-dimensional	vectors

	 C Vector3 Utility	template	class	for	manipulating	3-dimensional	vectors

	 C Vertex Define	a	point	with	color	and	texture	coordinates

	 C VertexArray Define	a	set	of	one	or	more	2D	primitives

	 C VideoMode VideoMode	defines	a	video	mode	(width,	height,	bpp)

	 C View 2D	camera	that	defines	what	region	is	shown	on	screen

	 C Window Window	that	serves	as	a	target	for	OpenGL	rendering

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Static	Public	Member	Functions	|	List	of	all	members

sf::Utf<	16	>	Class	Template	Reference

Specialization	of	the	Utf	template	for	UTF-16.	More...

#include	<Utf.hpp>

Static	Public	Member	Functions
template<typename	In	>

static	In	 decode	(In	begin,	In	end,	Uint32	&output,	Uint32	replacement=0)
	 Decode	a	single	UTF-16	character.	More...
	
template<typename	Out	>

static	Out	 encode	(Uint32	input,	Out	output,	Uint16	replacement=0)
	 Encode	a	single	UTF-16	character.	More...
	
template<typename	In	>

static	In	 next	(In	begin,	In	end)
	 Advance	to	the	next	UTF-16	character.	More...
	
template<typename	In	>
static	std::size_t	 count	(In	begin,	In	end)
	 Count	the	number	of	characters	of	a	UTF-16	sequence.	
	
template<typename	In	,	typename	Out	>

static	Out	 fromAnsi	(In	begin,	In	end,	Out	output,	const	std::locale	&locale=std::locale())
	 Convert	an	ANSI	characters	range	to	UTF-16.	More...
	
template<typename	In	,	typename	Out	>

static	Out	 fromWide	(In	begin,	In	end,	Out	output)
	 Convert	a	wide	characters	range	to	UTF-16.	More...
	
template<typename	In	,	typename	Out	>

static	Out	 fromLatin1	(In	begin,	In	end,	Out	output)
	 Convert	a	latin-1	(ISO-5589-1)	characters	range	to	UTF-16.	
	
template<typename	In	,	typename	Out	>

static	Out	 toAnsi	(In	begin,	In	end,	Out	output,	char	replacement=0,	const	std::locale&locale=std::locale())
	 Convert	an	UTF-16	characters	range	to	ANSI	characters.	
	

template<typename	In	,	typename	Out	>
static	Out	 toWide	(In	begin,	In	end,	Out	output,	wchar_t	replacement=0)

	 Convert	an	UTF-16	characters	range	to	wide	characters.	
	
template<typename	In	,	typename	Out	>

static	Out	 toLatin1	(In	begin,	In	end,	Out	output,	char	replacement=0)
	 Convert	an	UTF-16	characters	range	to	latin-1	(ISO-5589-1)	characters.	
	
template<typename	In	,	typename	Out	>

static	Out	 toUtf8	(In	begin,	In	end,	Out	output)
	 Convert	a	UTF-16	characters	range	to	UTF-8.	More...
	
template<typename	In	,	typename	Out	>

static	Out	 toUtf16	(In	begin,	In	end,	Out	output)
	 Convert	a	UTF-16	characters	range	to	UTF-16.	More...
	
template<typename	In	,	typename	Out	>

static	Out	 toUtf32	(In	begin,	In	end,	Out	output)
	 Convert	a	UTF-16	characters	range	to	UTF-32.	More...
	

Detailed	Description

template<>
class	sf::Utf<	16	>

Specialization	of	the	Utf	template	for	UTF-16.

Definition	at	line	255	of	file	Utf.hpp.

Member	Function	Documentation

template<typename	In	>

static	std::size_t	sf::Utf<	16	>::count (In	 begin,
In	 end	
)

Count	the	number	of	characters	of	a	UTF-16	sequence.

This	 function	 is	 necessary	 for	multi-elements	 encodings,	 as	 a	 single	 character	may	 use	more	 than	 1
storage	element,	thus	the	total	size	can	be	different	from	(begin	-	end).

Parameters
begin Iterator	pointing	to	the	beginning	of	the	input	sequence
end Iterator	pointing	to	the	end	of	the	input	sequence

Returns
Iterator	pointing	to	one	past	the	last	read	element	of	the	input	sequence

template<typename	In	>

static	In	sf::Utf<	16	>::decode (In	 begin,
In	 end,
Uint32	&	 output,
Uint32	 replacement	=	0	
)

Decode	a	single	UTF-16	character.

Decoding	 a	 character	 means	 finding	 its	 unique	 32-bits	 code	 (called	 the	 codepoint)	 in	 the	 Unicode
standard.

Parameters
begin Iterator	pointing	to	the	beginning	of	the	input	sequence
end Iterator	pointing	to	the	end	of	the	input	sequence
output Codepoint	of	the	decoded	UTF-16	character
replacementReplacement	character	to	use	in	case	the	UTF-8	sequence	is	invalid

Returns
Iterator	pointing	to	one	past	the	last	read	element	of	the	input	sequence

template<typename	Out	>

static	Out	sf::Utf<	16	>::encode (Uint32	 input,
Out	 output,
Uint16	 replacement	=	0	
)

Encode	a	single	UTF-16	character.

Encoding	 a	 character	 means	 converting	 a	 unique	 32-bits	 code	 (called	 the	 codepoint)	 in	 the	 target
encoding,	UTF-16.

Parameters
input Codepoint	to	encode	as	UTF-16
output Iterator	pointing	to	the	beginning	of	the	output	sequence
replacementReplacement	for	characters	not	convertible	to	UTF-16	(use	0	to	skip	them)

Returns
Iterator	to	the	end	of	the	output	sequence	which	has	been	written

template<typename	In	,	typename	Out	>

static	Out	sf::Utf<	16	>::fromAnsi (In	 begin,
In	 end,
Out	 output,
const	std::locale	&	 locale	=	std::locale()
)

Convert	an	ANSI	characters	range	to	UTF-16.

The	current	global	locale	will	be	used	by	default,	unless	you	pass	a	custom	one	in	the	

Parameters
begin Iterator	pointing	to	the	beginning	of	the	input	sequence
end Iterator	pointing	to	the	end	of	the	input	sequence
output Iterator	pointing	to	the	beginning	of	the	output	sequence
locale Locale	to	use	for	conversion

Returns
Iterator	to	the	end	of	the	output	sequence	which	has	been	written

template<typename	In	,	typename	Out	>

static	Out	sf::Utf<	16	>::fromLatin1 (In	 begin,
In	 end,
Out	 output	
)

Convert	a	latin-1	(ISO-5589-1)	characters	range	to	UTF-16.

Parameters
begin Iterator	pointing	to	the	beginning	of	the	input	sequence
end Iterator	pointing	to	the	end	of	the	input	sequence
output Iterator	pointing	to	the	beginning	of	the	output	sequence

Returns
Iterator	to	the	end	of	the	output	sequence	which	has	been	written

template<typename	In	,	typename	Out	>

static	Out	sf::Utf<	16	>::fromWide (In	 begin,
In	 end,
Out	 output	
)

Convert	a	wide	characters	range	to	UTF-16.

Parameters
begin Iterator	pointing	to	the	beginning	of	the	input	sequence
end Iterator	pointing	to	the	end	of	the	input	sequence
output Iterator	pointing	to	the	beginning	of	the	output	sequence

Returns
Iterator	to	the	end	of	the	output	sequence	which	has	been	written

template<typename	In	>

static	In	sf::Utf<	16	>::next (In	 begin,
In	 end	
)

Advance	to	the	next	UTF-16	character.

This	 function	 is	 necessary	 for	multi-elements	 encodings,	 as	 a	 single	 character	may	 use	more	 than	 1
storage	element.

Parameters

begin Iterator	pointing	to	the	beginning	of	the	input	sequence
end Iterator	pointing	to	the	end	of	the	input	sequence

Returns
Iterator	pointing	to	one	past	the	last	read	element	of	the	input	sequence

template<typename	In	,	typename	Out	>

static	Out	sf::Utf<	16	>::toAnsi (In	 begin,
In	 end,
Out	 output,
char	 replacement	=	0
const	std::locale	&	 locale	=	std::locale()
)

Convert	an	UTF-16	characters	range	to	ANSI	characters.

The	current	global	locale	will	be	used	by	default,	unless	you	pass	a	custom	one	in	the	

Parameters
begin Iterator	pointing	to	the	beginning	of	the	input	sequence
end Iterator	pointing	to	the	end	of	the	input	sequence
output Iterator	pointing	to	the	beginning	of	the	output	sequence
replacementReplacement	for	characters	not	convertible	to	ANSI	(use	0	to	skip	them)
locale Locale	to	use	for	conversion

Returns
Iterator	to	the	end	of	the	output	sequence	which	has	been	written

template<typename	In	,	typename	Out	>

static	Out	sf::Utf<	16	>::toLatin1 (In	 begin,
In	 end,

Out	 output,
char	 replacement	=	0	
)

Convert	an	UTF-16	characters	range	to	latin-1	(ISO-5589-1)	characters.

Parameters
begin Iterator	pointing	to	the	beginning	of	the	input	sequence
end Iterator	pointing	to	the	end	of	the	input	sequence
output Iterator	pointing	to	the	beginning	of	the	output	sequence
replacementReplacement	for	characters	not	convertible	to	wide	(use	0	to	skip	them)

Returns
Iterator	to	the	end	of	the	output	sequence	which	has	been	written

template<typename	In	,	typename	Out	>

static	Out	sf::Utf<	16	>::toUtf16 (In	 begin,
In	 end,
Out	 output	
)

Convert	a	UTF-16	characters	range	to	UTF-16.

This	functions	does	nothing	more	than	a	direct	copy;	it	is	defined	only	to	provide	the	same	interface	as
other	specializations	of	the	sf::Utf<>	template,	and	allow	generic	code	to	be	written	on	top	of	it.

Parameters
begin Iterator	pointing	to	the	beginning	of	the	input	sequence
end Iterator	pointing	to	the	end	of	the	input	sequence
output Iterator	pointing	to	the	beginning	of	the	output	sequence

Returns

Iterator	to	the	end	of	the	output	sequence	which	has	been	written

template<typename	In	,	typename	Out	>

static	Out	sf::Utf<	16	>::toUtf32 (In	 begin,
In	 end,
Out	 output	
)

Convert	a	UTF-16	characters	range	to	UTF-32.

Parameters
begin Iterator	pointing	to	the	beginning	of	the	input	sequence
end Iterator	pointing	to	the	end	of	the	input	sequence
output Iterator	pointing	to	the	beginning	of	the	output	sequence

Returns
Iterator	to	the	end	of	the	output	sequence	which	has	been	written

template<typename	In	,	typename	Out	>

static	Out	sf::Utf<	16	>::toUtf8 (In	 begin,
In	 end,
Out	 output	
)

Convert	a	UTF-16	characters	range	to	UTF-8.

Parameters
begin Iterator	pointing	to	the	beginning	of	the	input	sequence
end Iterator	pointing	to	the	end	of	the	input	sequence
output Iterator	pointing	to	the	beginning	of	the	output	sequence

Returns
Iterator	to	the	end	of	the	output	sequence	which	has	been	written

template<typename	In	,	typename	Out	>

static	Out	sf::Utf<	16	>::toWide (In	 begin,
In	 end,
Out	 output,
wchar_t	 replacement	=	0	
)

Convert	an	UTF-16	characters	range	to	wide	characters.

Parameters
begin Iterator	pointing	to	the	beginning	of	the	input	sequence
end Iterator	pointing	to	the	end	of	the	input	sequence
output Iterator	pointing	to	the	beginning	of	the	output	sequence
replacementReplacement	for	characters	not	convertible	to	wide	(use	0	to	skip	them)

Returns
Iterator	to	the	end	of	the	output	sequence	which	has	been	written

The	documentation	for	this	class	was	generated	from	the	following	file:
Utf.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Static	Public	Member	Functions	|	List	of	all	members

sf::Utf<	32	>	Class	Template	Reference

Specialization	of	the	Utf	template	for	UTF-32.	More...

#include	<Utf.hpp>

Static	Public	Member	Functions
template<typename	In	>

static	In	 decode	(In	begin,	In	end,	Uint32	&output,	Uint32	replacement=0)
	 Decode	a	single	UTF-32	character.	More...
	
template<typename	Out	>

static	Out	 encode	(Uint32	input,	Out	output,	Uint32	replacement=0)
	 Encode	a	single	UTF-32	character.	More...
	
template<typename	In	>

static	In	 next	(In	begin,	In	end)
	 Advance	to	the	next	UTF-32	character.	More...
	
template<typename	In	>
static	std::size_t	 count	(In	begin,	In	end)
	 Count	the	number	of	characters	of	a	UTF-32	sequence.	
	
template<typename	In	,	typename	Out	>

static	Out	 fromAnsi	(In	begin,	In	end,	Out	output,	const	std::locale	&locale=std::locale())
	 Convert	an	ANSI	characters	range	to	UTF-32.	More...
	
template<typename	In	,	typename	Out	>

static	Out	 fromWide	(In	begin,	In	end,	Out	output)
	 Convert	a	wide	characters	range	to	UTF-32.	More...
	
template<typename	In	,	typename	Out	>

static	Out	 fromLatin1	(In	begin,	In	end,	Out	output)
	 Convert	a	latin-1	(ISO-5589-1)	characters	range	to	UTF-32.	
	
template<typename	In	,	typename	Out	>

static	Out	 toAnsi	(In	begin,	In	end,	Out	output,	char	replacement=0,	const	std::locale&locale=std::locale())
	 Convert	an	UTF-32	characters	range	to	ANSI	characters.	
	

template<typename	In	,	typename	Out	>
static	Out	 toWide	(In	begin,	In	end,	Out	output,	wchar_t	replacement=0)

	 Convert	an	UTF-32	characters	range	to	wide	characters.	
	
template<typename	In	,	typename	Out	>

static	Out	 toLatin1	(In	begin,	In	end,	Out	output,	char	replacement=0)
	 Convert	an	UTF-16	characters	range	to	latin-1	(ISO-5589-1)	characters.	
	
template<typename	In	,	typename	Out	>

static	Out	 toUtf8	(In	begin,	In	end,	Out	output)
	 Convert	a	UTF-32	characters	range	to	UTF-8.	More...
	
template<typename	In	,	typename	Out	>

static	Out	 toUtf16	(In	begin,	In	end,	Out	output)
	 Convert	a	UTF-32	characters	range	to	UTF-16.	More...
	
template<typename	In	,	typename	Out	>

static	Out	 toUtf32	(In	begin,	In	end,	Out	output)
	 Convert	a	UTF-32	characters	range	to	UTF-32.	More...
	
template<typename	In	>

static	Uint32	 decodeAnsi	(In	input,	const	std::locale	&locale=std::locale())
	 Decode	a	single	ANSI	character	to	UTF-32.	More...
	
template<typename	In	>

static	Uint32	 decodeWide	(In	input)
	 Decode	a	single	wide	character	to	UTF-32.	More...
	
template<typename	Out	>

static	Out	 encodeAnsi	(Uint32	codepoint,	Out	output,	char	replacement=0,	const	std::locale&locale=std::locale())
	 Encode	a	single	UTF-32	character	to	ANSI.	More...
	
template<typename	Out	>

static	Out	 encodeWide	(Uint32	codepoint,	Out	output,	wchar_t	replacement=0)
	 Encode	a	single	UTF-32	character	to	wide.	More...
	

Detailed	Description

template<>
class	sf::Utf<	32	>

Specialization	of	the	Utf	template	for	UTF-32.

Definition	at	line	462	of	file	Utf.hpp.

Member	Function	Documentation

template<typename	In	>

static	std::size_t	sf::Utf<	32	>::count (In	 begin,
In	 end	
)

Count	the	number	of	characters	of	a	UTF-32	sequence.

This	function	is	trivial	for	UTF-32,	which	can	store	every	character	in	a	single	storage	element.

Parameters
begin Iterator	pointing	to	the	beginning	of	the	input	sequence
end Iterator	pointing	to	the	end	of	the	input	sequence

Returns
Iterator	pointing	to	one	past	the	last	read	element	of	the	input	sequence

template<typename	In	>

static	In	sf::Utf<	32	>::decode (In	 begin,
In	 end,
Uint32	&	 output,
Uint32	 replacement	=	0	
)

Decode	a	single	UTF-32	character.

Decoding	 a	 character	 means	 finding	 its	 unique	 32-bits	 code	 (called	 the	 codepoint)	 in	 the	 Unicode

standard.	For	UTF-32,	the	character	value	is	the	same	as	the	codepoint.

Parameters
begin Iterator	pointing	to	the	beginning	of	the	input	sequence
end Iterator	pointing	to	the	end	of	the	input	sequence
output Codepoint	of	the	decoded	UTF-32	character
replacementReplacement	character	to	use	in	case	the	UTF-8	sequence	is	invalid

Returns
Iterator	pointing	to	one	past	the	last	read	element	of	the	input	sequence

template<typename	In	>

static	Uint32	sf::Utf<	32	>::decodeAnsi (In	 input,
const	std::locale	&	 locale	=	
)

Decode	a	single	ANSI	character	to	UTF-32.

This	function	does	not	exist	in	other	specializations	of	sf::Utf<>,	it	is	defined	for	convenience	(it	is	used
by	several	other	conversion	functions).

Parameters
input Input	ANSI	character
locale Locale	to	use	for	conversion

Returns
Converted	character

template<typename	In	>

static	Uint32	sf::Utf<	32	>::decodeWide (In	 input)

Decode	a	single	wide	character	to	UTF-32.

This	function	does	not	exist	in	other	specializations	of	sf::Utf<>,	it	is	defined	for	convenience	(it	is	used
by	several	other	conversion	functions).

Parameters
input Input	wide	character

Returns
Converted	character

template<typename	Out	>

static	Out	sf::Utf<	32	>::encode (Uint32	 input,
Out	 output,
Uint32	 replacement	=	0	
)

Encode	a	single	UTF-32	character.

Encoding	 a	 character	 means	 converting	 a	 unique	 32-bits	 code	 (called	 the	 codepoint)	 in	 the	 target
encoding,	UTF-32.	For	UTF-32,	the	codepoint	is	the	same	as	the	character	value.

Parameters
input Codepoint	to	encode	as	UTF-32
output Iterator	pointing	to	the	beginning	of	the	output	sequence
replacementReplacement	for	characters	not	convertible	to	UTF-32	(use	0	to	skip	them)

Returns
Iterator	to	the	end	of	the	output	sequence	which	has	been	written

template<typename	Out	>

static	Out	sf::Utf<	32	>::encodeAnsi (Uint32	 codepoint,
Out	 output,
char	 replacement
const	std::locale	&	 locale	=	std::locale()
)

Encode	a	single	UTF-32	character	to	ANSI.

This	function	does	not	exist	in	other	specializations	of	sf::Utf<>,	it	is	defined	for	convenience	(it	is	used
by	several	other	conversion	functions).

Parameters
codepoint Iterator	pointing	to	the	beginning	of	the	input	sequence
output Iterator	pointing	to	the	beginning	of	the	output	sequence
replacementReplacement	if	the	input	character	is	not	convertible	to	ANSI	(use	0	to	skip	it)
locale Locale	to	use	for	conversion

Returns
Iterator	to	the	end	of	the	output	sequence	which	has	been	written

template<typename	Out	>

static	Out	sf::Utf<	32	>::encodeWide (Uint32	 codepoint,
Out	 output,
wchar_t	 replacement	=	0	
)

Encode	a	single	UTF-32	character	to	wide.

This	function	does	not	exist	in	other	specializations	of	sf::Utf<>,	it	is	defined	for	convenience	(it	is	used
by	several	other	conversion	functions).

Parameters
codepoint Iterator	pointing	to	the	beginning	of	the	input	sequence
output Iterator	pointing	to	the	beginning	of	the	output	sequence
replacementReplacement	if	the	input	character	is	not	convertible	to	wide	(use	0	to	skip	it)

Returns
Iterator	to	the	end	of	the	output	sequence	which	has	been	written

template<typename	In	,	typename	Out	>

static	Out	sf::Utf<	32	>::fromAnsi (In	 begin,
In	 end,
Out	 output,
const	std::locale	&	 locale	=	std::locale()
)

Convert	an	ANSI	characters	range	to	UTF-32.

The	current	global	locale	will	be	used	by	default,	unless	you	pass	a	custom	one	in	the	

Parameters
begin Iterator	pointing	to	the	beginning	of	the	input	sequence
end Iterator	pointing	to	the	end	of	the	input	sequence
output Iterator	pointing	to	the	beginning	of	the	output	sequence
locale Locale	to	use	for	conversion

Returns
Iterator	to	the	end	of	the	output	sequence	which	has	been	written

template<typename	In	,	typename	Out	>

static	Out	sf::Utf<	32	>::fromLatin1 (In	 begin,
In	 end,

Out	 output	
)

Convert	a	latin-1	(ISO-5589-1)	characters	range	to	UTF-32.

Parameters
begin Iterator	pointing	to	the	beginning	of	the	input	sequence
end Iterator	pointing	to	the	end	of	the	input	sequence
output Iterator	pointing	to	the	beginning	of	the	output	sequence

Returns
Iterator	to	the	end	of	the	output	sequence	which	has	been	written

template<typename	In	,	typename	Out	>

static	Out	sf::Utf<	32	>::fromWide (In	 begin,
In	 end,
Out	 output	
)

Convert	a	wide	characters	range	to	UTF-32.

Parameters
begin Iterator	pointing	to	the	beginning	of	the	input	sequence
end Iterator	pointing	to	the	end	of	the	input	sequence
output Iterator	pointing	to	the	beginning	of	the	output	sequence

Returns
Iterator	to	the	end	of	the	output	sequence	which	has	been	written

template<typename	In	>

static	In	sf::Utf<	32	>::next (In	 begin,

In	 end	
)

Advance	to	the	next	UTF-32	character.

This	function	is	trivial	for	UTF-32,	which	can	store	every	character	in	a	single	storage	element.

Parameters
begin Iterator	pointing	to	the	beginning	of	the	input	sequence
end Iterator	pointing	to	the	end	of	the	input	sequence

Returns
Iterator	pointing	to	one	past	the	last	read	element	of	the	input	sequence

template<typename	In	,	typename	Out	>

static	Out	sf::Utf<	32	>::toAnsi (In	 begin,
In	 end,
Out	 output,
char	 replacement	=	0
const	std::locale	&	 locale	=	std::locale()
)

Convert	an	UTF-32	characters	range	to	ANSI	characters.

The	current	global	locale	will	be	used	by	default,	unless	you	pass	a	custom	one	in	the	

Parameters
begin Iterator	pointing	to	the	beginning	of	the	input	sequence
end Iterator	pointing	to	the	end	of	the	input	sequence
output Iterator	pointing	to	the	beginning	of	the	output	sequence
replacementReplacement	for	characters	not	convertible	to	ANSI	(use	0	to	skip	them)
locale Locale	to	use	for	conversion

Returns
Iterator	to	the	end	of	the	output	sequence	which	has	been	written

template<typename	In	,	typename	Out	>

static	Out	sf::Utf<	32	>::toLatin1 (In	 begin,
In	 end,
Out	 output,
char	 replacement	=	0	
)

Convert	an	UTF-16	characters	range	to	latin-1	(ISO-5589-1)	characters.

Parameters
begin Iterator	pointing	to	the	beginning	of	the	input	sequence
end Iterator	pointing	to	the	end	of	the	input	sequence
output Iterator	pointing	to	the	beginning	of	the	output	sequence
replacementReplacement	for	characters	not	convertible	to	wide	(use	0	to	skip	them)

Returns
Iterator	to	the	end	of	the	output	sequence	which	has	been	written

template<typename	In	,	typename	Out	>

static	Out	sf::Utf<	32	>::toUtf16 (In	 begin,
In	 end,
Out	 output	
)

Convert	a	UTF-32	characters	range	to	UTF-16.

Parameters

begin Iterator	pointing	to	the	beginning	of	the	input	sequence
end Iterator	pointing	to	the	end	of	the	input	sequence
output Iterator	pointing	to	the	beginning	of	the	output	sequence

Returns
Iterator	to	the	end	of	the	output	sequence	which	has	been	written

template<typename	In	,	typename	Out	>

static	Out	sf::Utf<	32	>::toUtf32 (In	 begin,
In	 end,
Out	 output	
)

Convert	a	UTF-32	characters	range	to	UTF-32.

This	functions	does	nothing	more	than	a	direct	copy;	it	is	defined	only	to	provide	the	same	interface	as
other	specializations	of	the	sf::Utf<>	template,	and	allow	generic	code	to	be	written	on	top	of	it.

Parameters
begin Iterator	pointing	to	the	beginning	of	the	input	sequence
end Iterator	pointing	to	the	end	of	the	input	sequence
output Iterator	pointing	to	the	beginning	of	the	output	sequence

Returns
Iterator	to	the	end	of	the	output	sequence	which	has	been	written

template<typename	In	,	typename	Out	>

static	Out	sf::Utf<	32	>::toUtf8 (In	 begin,
In	 end,
Out	 output	
)

Convert	a	UTF-32	characters	range	to	UTF-8.

Parameters
begin Iterator	pointing	to	the	beginning	of	the	input	sequence
end Iterator	pointing	to	the	end	of	the	input	sequence
output Iterator	pointing	to	the	beginning	of	the	output	sequence

Returns
Iterator	to	the	end	of	the	output	sequence	which	has	been	written

template<typename	In	,	typename	Out	>

static	Out	sf::Utf<	32	>::toWide (In	 begin,
In	 end,
Out	 output,
wchar_t	 replacement	=	0	
)

Convert	an	UTF-32	characters	range	to	wide	characters.

Parameters
begin Iterator	pointing	to	the	beginning	of	the	input	sequence
end Iterator	pointing	to	the	end	of	the	input	sequence
output Iterator	pointing	to	the	beginning	of	the	output	sequence
replacementReplacement	for	characters	not	convertible	to	wide	(use	0	to	skip	them)

Returns
Iterator	to	the	end	of	the	output	sequence	which	has	been	written

The	documentation	for	this	class	was	generated	from	the	following	file:
Utf.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Static	Public	Member	Functions	|	List	of	all	members

sf::Utf<	8	>	Class	Template	Reference

Specialization	of	the	Utf	template	for	UTF-8.	More...

#include	<Utf.hpp>

Static	Public	Member	Functions
template<typename	In	>

static	In	 decode	(In	begin,	In	end,	Uint32	&output,	Uint32	replacement=0)
	 Decode	a	single	UTF-8	character.	More...
	
template<typename	Out	>

static	Out	 encode	(Uint32	input,	Out	output,	Uint8	replacement=0)
	 Encode	a	single	UTF-8	character.	More...
	
template<typename	In	>

static	In	 next	(In	begin,	In	end)
	 Advance	to	the	next	UTF-8	character.	More...
	
template<typename	In	>
static	std::size_t	 count	(In	begin,	In	end)
	 Count	the	number	of	characters	of	a	UTF-8	sequence.	
	
template<typename	In	,	typename	Out	>

static	Out	 fromAnsi	(In	begin,	In	end,	Out	output,	const	std::locale	&locale=std::locale())
	 Convert	an	ANSI	characters	range	to	UTF-8.	More...
	
template<typename	In	,	typename	Out	>

static	Out	 fromWide	(In	begin,	In	end,	Out	output)
	 Convert	a	wide	characters	range	to	UTF-8.	More...
	
template<typename	In	,	typename	Out	>

static	Out	 fromLatin1	(In	begin,	In	end,	Out	output)
	 Convert	a	latin-1	(ISO-5589-1)	characters	range	to	UTF-8.	
	
template<typename	In	,	typename	Out	>

static	Out	 toAnsi	(In	begin,	In	end,	Out	output,	char	replacement=0,	const	std::locale&locale=std::locale())
	 Convert	an	UTF-8	characters	range	to	ANSI	characters.	
	

template<typename	In	,	typename	Out	>
static	Out	 toWide	(In	begin,	In	end,	Out	output,	wchar_t	replacement=0)

	 Convert	an	UTF-8	characters	range	to	wide	characters.	
	
template<typename	In	,	typename	Out	>

static	Out	 toLatin1	(In	begin,	In	end,	Out	output,	char	replacement=0)
	 Convert	an	UTF-8	characters	range	to	latin-1	(ISO-5589-1)	characters.	
	
template<typename	In	,	typename	Out	>

static	Out	 toUtf8	(In	begin,	In	end,	Out	output)
	 Convert	a	UTF-8	characters	range	to	UTF-8.	More...
	
template<typename	In	,	typename	Out	>

static	Out	 toUtf16	(In	begin,	In	end,	Out	output)
	 Convert	a	UTF-8	characters	range	to	UTF-16.	More...
	
template<typename	In	,	typename	Out	>

static	Out	 toUtf32	(In	begin,	In	end,	Out	output)
	 Convert	a	UTF-8	characters	range	to	UTF-32.	More...
	

Detailed	Description

template<>
class	sf::Utf<	8	>

Specialization	of	the	Utf	template	for	UTF-8.

Definition	at	line	48	of	file	Utf.hpp.

Member	Function	Documentation

template<typename	In	>

static	std::size_t	sf::Utf<	8	>::count (In	 begin,
In	 end	
)

Count	the	number	of	characters	of	a	UTF-8	sequence.

This	 function	 is	 necessary	 for	multi-elements	 encodings,	 as	 a	 single	 character	may	 use	more	 than	 1
storage	element,	thus	the	total	size	can	be	different	from	(begin	-	end).

Parameters
begin Iterator	pointing	to	the	beginning	of	the	input	sequence
end Iterator	pointing	to	the	end	of	the	input	sequence

Returns
Iterator	pointing	to	one	past	the	last	read	element	of	the	input	sequence

template<typename	In	>

static	In	sf::Utf<	8	>::decode (In	 begin,
In	 end,
Uint32	&	 output,
Uint32	 replacement	=	0	
)

Decode	a	single	UTF-8	character.

Decoding	 a	 character	 means	 finding	 its	 unique	 32-bits	 code	 (called	 the	 codepoint)	 in	 the	 Unicode
standard.

Parameters
begin Iterator	pointing	to	the	beginning	of	the	input	sequence
end Iterator	pointing	to	the	end	of	the	input	sequence
output Codepoint	of	the	decoded	UTF-8	character
replacementReplacement	character	to	use	in	case	the	UTF-8	sequence	is	invalid

Returns
Iterator	pointing	to	one	past	the	last	read	element	of	the	input	sequence

template<typename	Out	>

static	Out	sf::Utf<	8	>::encode (Uint32	 input,
Out	 output,
Uint8	 replacement	=	0	
)

Encode	a	single	UTF-8	character.

Encoding	 a	 character	 means	 converting	 a	 unique	 32-bits	 code	 (called	 the	 codepoint)	 in	 the	 target
encoding,	UTF-8.

Parameters
input Codepoint	to	encode	as	UTF-8
output Iterator	pointing	to	the	beginning	of	the	output	sequence
replacementReplacement	for	characters	not	convertible	to	UTF-8	(use	0	to	skip	them)

Returns
Iterator	to	the	end	of	the	output	sequence	which	has	been	written

template<typename	In	,	typename	Out	>

static	Out	sf::Utf<	8	>::fromAnsi (In	 begin,
In	 end,
Out	 output,
const	std::locale	&	 locale	=	std::locale()
)

Convert	an	ANSI	characters	range	to	UTF-8.

The	current	global	locale	will	be	used	by	default,	unless	you	pass	a	custom	one	in	the	

Parameters
begin Iterator	pointing	to	the	beginning	of	the	input	sequence
end Iterator	pointing	to	the	end	of	the	input	sequence
output Iterator	pointing	to	the	beginning	of	the	output	sequence
locale Locale	to	use	for	conversion

Returns
Iterator	to	the	end	of	the	output	sequence	which	has	been	written

template<typename	In	,	typename	Out	>

static	Out	sf::Utf<	8	>::fromLatin1 (In	 begin,
In	 end,
Out	 output	
)

Convert	a	latin-1	(ISO-5589-1)	characters	range	to	UTF-8.

Parameters
begin Iterator	pointing	to	the	beginning	of	the	input	sequence
end Iterator	pointing	to	the	end	of	the	input	sequence
output Iterator	pointing	to	the	beginning	of	the	output	sequence

Returns
Iterator	to	the	end	of	the	output	sequence	which	has	been	written

template<typename	In	,	typename	Out	>

static	Out	sf::Utf<	8	>::fromWide (In	 begin,
In	 end,
Out	 output	
)

Convert	a	wide	characters	range	to	UTF-8.

Parameters
begin Iterator	pointing	to	the	beginning	of	the	input	sequence
end Iterator	pointing	to	the	end	of	the	input	sequence
output Iterator	pointing	to	the	beginning	of	the	output	sequence

Returns
Iterator	to	the	end	of	the	output	sequence	which	has	been	written

template<typename	In	>

static	In	sf::Utf<	8	>::next (In	 begin,
In	 end	
)

Advance	to	the	next	UTF-8	character.

This	 function	 is	 necessary	 for	multi-elements	 encodings,	 as	 a	 single	 character	may	 use	more	 than	 1
storage	element.

Parameters

begin Iterator	pointing	to	the	beginning	of	the	input	sequence
end Iterator	pointing	to	the	end	of	the	input	sequence

Returns
Iterator	pointing	to	one	past	the	last	read	element	of	the	input	sequence

template<typename	In	,	typename	Out	>

static	Out	sf::Utf<	8	>::toAnsi (In	 begin,
In	 end,
Out	 output,
char	 replacement	=	0,
const	std::locale	&	 locale	=	std::locale()
)

Convert	an	UTF-8	characters	range	to	ANSI	characters.

The	current	global	locale	will	be	used	by	default,	unless	you	pass	a	custom	one	in	the	

Parameters
begin Iterator	pointing	to	the	beginning	of	the	input	sequence
end Iterator	pointing	to	the	end	of	the	input	sequence
output Iterator	pointing	to	the	beginning	of	the	output	sequence
replacementReplacement	for	characters	not	convertible	to	ANSI	(use	0	to	skip	them)
locale Locale	to	use	for	conversion

Returns
Iterator	to	the	end	of	the	output	sequence	which	has	been	written

template<typename	In	,	typename	Out	>

static	Out	sf::Utf<	8	>::toLatin1 (In	 begin,
In	 end,

Out	 output,
char	 replacement	=	0	
)

Convert	an	UTF-8	characters	range	to	latin-1	(ISO-5589-1)	characters.

Parameters
begin Iterator	pointing	to	the	beginning	of	the	input	sequence
end Iterator	pointing	to	the	end	of	the	input	sequence
output Iterator	pointing	to	the	beginning	of	the	output	sequence
replacementReplacement	for	characters	not	convertible	to	wide	(use	0	to	skip	them)

Returns
Iterator	to	the	end	of	the	output	sequence	which	has	been	written

template<typename	In	,	typename	Out	>

static	Out	sf::Utf<	8	>::toUtf16 (In	 begin,
In	 end,
Out	 output	
)

Convert	a	UTF-8	characters	range	to	UTF-16.

Parameters
begin Iterator	pointing	to	the	beginning	of	the	input	sequence
end Iterator	pointing	to	the	end	of	the	input	sequence
output Iterator	pointing	to	the	beginning	of	the	output	sequence

Returns
Iterator	to	the	end	of	the	output	sequence	which	has	been	written

template<typename	In	,	typename	Out	>

static	Out	sf::Utf<	8	>::toUtf32 (In	 begin,
In	 end,
Out	 output	
)

Convert	a	UTF-8	characters	range	to	UTF-32.

Parameters
begin Iterator	pointing	to	the	beginning	of	the	input	sequence
end Iterator	pointing	to	the	end	of	the	input	sequence
output Iterator	pointing	to	the	beginning	of	the	output	sequence

Returns
Iterator	to	the	end	of	the	output	sequence	which	has	been	written

template<typename	In	,	typename	Out	>

static	Out	sf::Utf<	8	>::toUtf8 (In	 begin,
In	 end,
Out	 output	
)

Convert	a	UTF-8	characters	range	to	UTF-8.

This	functions	does	nothing	more	than	a	direct	copy;	it	is	defined	only	to	provide	the	same	interface	as
other	specializations	of	the	sf::Utf<>	template,	and	allow	generic	code	to	be	written	on	top	of	it.

Parameters
begin Iterator	pointing	to	the	beginning	of	the	input	sequence
end Iterator	pointing	to	the	end	of	the	input	sequence
output Iterator	pointing	to	the	beginning	of	the	output	sequence

Returns
Iterator	to	the	end	of	the	output	sequence	which	has	been	written

template<typename	In	,	typename	Out	>

static	Out	sf::Utf<	8	>::toWide (In	 begin,
In	 end,
Out	 output,
wchar_t	 replacement	=	0	
)

Convert	an	UTF-8	characters	range	to	wide	characters.

Parameters
begin Iterator	pointing	to	the	beginning	of	the	input	sequence
end Iterator	pointing	to	the	end	of	the	input	sequence
output Iterator	pointing	to	the	beginning	of	the	output	sequence
replacementReplacement	for	characters	not	convertible	to	wide	(use	0	to	skip	them)

Returns
Iterator	to	the	end	of	the	output	sequence	which	has	been	written

The	documentation	for	this	class	was	generated	from	the	following	file:
Utf.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Class	Index

A	|	B	|	C	|	D	|	E	|	F	|	G	|	H	|	I	|	J	|	K	|	L	|	M	|	N	|	O	|	P	|	R

		A		
Glyph	(sf)			

		H		AlResource	(sf)			

		B		
Http	(sf)			

		I		
Event::MouseWheelScrollEvent

BlendMode	(sf)			

		C		
Joystick::Identification	(sf)			

Image	(sf)			
		N		SoundStream::Chunk	(sf)			 SoundFileReader::Info	(sf)			

CircleShape	(sf)			 Font::Info	(sf)			
Clock	(sf)			 InputSoundFile	(sf)			

		O		Color	(sf)			 InputStream	(sf)			
Context	(sf)			 IpAddress	(sf)			

ContextSettings	(sf)			
		J		 		P		ConvexShape	(sf)			

Shader::CurrentTextureType	(sf)			 Joystick	(sf)			
Event::JoystickButtonEvent	(sf)			

		D		 Event::JoystickConnectEvent	(sf)			 		R		
Ftp::DirectoryResponse	(sf)			 Event::JoystickMoveEvent	(sf)			

Drawable	(sf)			
		K		

		E		 Keyboard	(sf)			
Event	(sf)			 Event::KeyEvent	(sf)			

		F		 		L		
FileInputStream	(sf)			 Listener	(sf)			

Font	(sf)			 Ftp::ListingResponse	(sf)			
Ftp	(sf)			 Lock	(sf)			

		S		
		G		 		M		

GlResource	(sf)			 MemoryInputStream	(sf)			

A	|	B	|	C	|	D	|	E	|	F	|	G	|	H	|	I	|	J	|	K	|	L	|	M	|	N	|	O	|	P	|	R

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

Class	Hierarchy

This	inheritance	list	is	sorted	roughly,	but	not	completely,	alphabetically:

	▼ C sf::AlResource Base	class	for	classes	that	require	an	OpenAL	context

	 C sf::SoundBuffer Storage	for	audio	samples	defining	a	sound

	 ► C sf::SoundRecorder Abstract	base	class	for	capturing	sound	data

	 ► C sf::SoundSource Base	class	defining	a	sound's	properties

	 C sf::BlendMode Blending	modes	for	drawing

	 C sf::SoundStream::Chunk Structure	defining	a	chunk	of	audio	data	to	stream

	 C sf::Clock Utility	class	that	measures	the	elapsed	time

	 C sf::Color Utility	class	for	manipulating	RGBA	colors

	 C sf::ContextSettings Structure	defining	the	settings	of	the	OpenGL	context
attached	to	a	window

	 C sf::Shader::CurrentTextureType Special	type	that	can	be	passed	to	
represents	the	texture	of	the	object	being	drawn

	▼ C sf::Drawable Abstract	base	class	for	objects	that	can	be	drawn	to	a	render
target

	 ► C sf::Shape Base	class	for	textured	shapes	with	outline

	 C sf::Sprite Drawable	representation	of	a	texture,	with	its	own
transformations,	color,	etc

	 C sf::Text Graphical	text	that	can	be	drawn	to	a	render	target

	 C sf::VertexArray Define	a	set	of	one	or	more	2D	primitives

	 C sf::Event Defines	a	system	event	and	its	parameters

	 C sf::Font Class	for	loading	and	manipulating	character	fonts

	▼ C sf::GlResource Base	class	for	classes	that	require	an	OpenGL	context

	 C sf::Context Class	holding	a	valid	drawing	context

	 C sf::Shader Shader	class	(vertex,	geometry	and	fragment)

	 C sf::Texture Image	living	on	the	graphics	card	that	can	be	used	for
drawing

	 ► C sf::Window Window	that	serves	as	a	target	for	OpenGL	rendering

	 C sf::Glyph Structure	describing	a	glyph

	 C sf::Joystick::Identification Structure	holding	a	joystick's	identification

	 C sf::Image Class	for	loading,	manipulating	and	saving	images

	 C sf::SoundFileReader::Info Structure	holding	the	audio	properties	of	a	sound	file

	 C sf::Font::Info Holds	various	information	about	a	font

	▼ C sf::InputStream Abstract	class	for	custom	file	input	streams

	 C sf::FileInputStream Implementation	of	input	stream	based	on	a	file

	 C sf::MemoryInputStream Implementation	of	input	stream	based	on	a	memory	chunk

	 C sf::IpAddress Encapsulate	an	IPv4	network	address

	 C sf::Joystick Give	access	to	the	real-time	state	of	the	joysticks

	 C sf::Event::JoystickButtonEvent Joystick	buttons	events	parameters	(JoystickButtonPressed,
JoystickButtonReleased)

	 C sf::Event::JoystickConnectEvent Joystick	connection	events	parameters	(JoystickConnected,
JoystickDisconnected)

	 C sf::Event::JoystickMoveEvent Joystick	axis	move	event	parameters	(JoystickMoved)

	 C sf::Keyboard Give	access	to	the	real-time	state	of	the	keyboard

	 C sf::Event::KeyEvent Keyboard	event	parameters	(KeyPressed,	KeyReleased)

	 C sf::Listener The	audio	listener	is	the	point	in	the	scene	from	where	all
the	sounds	are	heard

	 C sf::Mouse Give	access	to	the	real-time	state	of	the	mouse

	 C sf::Event::MouseButtonEvent Mouse	buttons	events	parameters	(MouseButtonPressed,
MouseButtonReleased)

	 C sf::Event::MouseMoveEvent Mouse	move	event	parameters	(MouseMoved)

	 C sf::Event::MouseWheelEvent Mouse	wheel	events	parameters	(MouseWheelMoved)

	 C sf::Event::MouseWheelScrollEvent Mouse	wheel	events	parameters	(MouseWheelScrolled)

	▼ C sf::NonCopyable Utility	class	that	makes	any	derived	class	non-copyable

	 C sf::Context Class	holding	a	valid	drawing	context

	 C sf::FileInputStream Implementation	of	input	stream	based	on	a	file

	 C sf::Ftp A	FTP	client

	 C sf::GlResource::TransientContextLock RAII	helper	class	to	temporarily	lock	an	available	context	for
use

	 C sf::Http A	HTTP	client

	 C sf::InputSoundFile Provide	read	access	to	sound	files

	 C sf::Lock Automatic	wrapper	for	locking	and	unlocking	mutexes

	 C sf::Mutex Blocks	concurrent	access	to	shared	resources	from	multiple
threads

	 C sf::OutputSoundFile Provide	write	access	to	sound	files

	 ► C sf::RenderTarget Base	class	for	all	render	targets	(window,	texture,	...)

	 C sf::Shader Shader	class	(vertex,	geometry	and	fragment)

	 ► C sf::Socket Base	class	for	all	the	socket	types

	 C sf::Thread Utility	class	to	manipulate	threads

	 ► C sf::ThreadLocal Defines	variables	with	thread-local	storage

	 C sf::Window Window	that	serves	as	a	target	for	OpenGL	rendering

	 C sf::Packet Utility	class	to	build	blocks	of	data	to	transfer	over	the
network

	 C sf::Rect<	T	> Utility	class	for	manipulating	2D	axis	aligned	rectangles

	 C sf::Rect<	float	>

	 C sf::Rect<	int	>

	 C sf::RenderStates Define	the	states	used	for	drawing	to	a	

	 C sf::Http::Request Define	a	HTTP	request

	▼ C sf::Ftp::Response Define	a	FTP	response

	 C sf::Ftp::DirectoryResponse Specialization	of	FTP	response	returning	a	directory

	 C sf::Ftp::ListingResponse Specialization	of	FTP	response	returning	a	filename	listing

	 C sf::Http::Response Define	a	HTTP	response

	 C sf::Sensor Give	access	to	the	real-time	state	of	the	sensors

	 C sf::Event::SensorEvent Sensor	event	parameters	(SensorChanged)

	 C sf::Event::SizeEvent Size	events	parameters	(Resized)

	 C sf::SocketSelector Multiplexer	that	allows	to	read	from	multiple	sockets

	 C sf::SoundFileFactory Manages	and	instantiates	sound	file	readers	and	writers

	 C sf::SoundFileReader Abstract	base	class	for	sound	file	decoding

	 C sf::SoundFileWriter Abstract	base	class	for	sound	file	encoding

	 C sf::String Utility	string	class	that	automatically	handles	conversions
between	types	and	encodings

	 C sf::Event::TextEvent Text	event	parameters	(TextEntered)

	 C sf::Time Represents	a	time	value

	 C sf::Touch Give	access	to	the	real-time	state	of	the	touches

	 C sf::Event::TouchEvent Touch	events	parameters	(TouchBegan,	TouchMoved,
TouchEnded)

	 C sf::Transform Define	a	3x3	transform	matrix

	▼ C sf::Transformable Decomposed	transform	defined	by	a	position,	a	rotation	and
a	scale

	 C sf::Shape Base	class	for	textured	shapes	with	outline

	 C sf::Sprite Drawable	representation	of	a	texture,	with	its	own
transformations,	color,	etc

	 C sf::Text Graphical	text	that	can	be	drawn	to	a	render	target

	 C sf::Utf<	N	> Utility	class	providing	generic	functions	for	UTF	conversions

	 C sf::Utf<	16	> Specialization	of	the	Utf	template	for	UTF-16

	 C sf::Utf<	32	> Specialization	of	the	Utf	template	for	UTF-32

	 C sf::Utf<	8	> Specialization	of	the	Utf	template	for	UTF-8

	 C sf::Vector2<	T	> Utility	template	class	for	manipulating	2-dimensional	vectors

	 C sf::Vector2<	float	>

	 C sf::Vector2<	unsigned	int	>

	 C sf::Vector3<	T	> Utility	template	class	for	manipulating	3-dimensional	vectors

	 C sf::Vertex Define	a	point	with	color	and	texture	coordinates

	 C sf::VideoMode VideoMode	defines	a	video	mode	(width,	height,	bpp)

	 C sf::View 2D	camera	that	defines	what	region	is	shown	on	screen

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z ~

SFML	2.4.2

Here	is	a	list	of	all	documented	class	members	with	links	to	the	class	documentation	for	each	member:

-	a	-

a	:	sf::Color

A	:	sf::Keyboard

Accelerometer	:	sf::Sensor

accept()	:	sf::TcpListener

Accepted	:	sf::Http::Response

Add	:	sf::BlendMode	,	sf::Keyboard

add()	:	sf::SocketSelector

advance	:	sf::Glyph

alphaDstFactor	:	sf::BlendMode

alphaEquation	:	sf::BlendMode

alphaSrcFactor	:	sf::BlendMode

AlResource()	:	sf::AlResource

alt	:	sf::Event::KeyEvent

antialiasingLevel	:	sf::ContextSettings

Any	:	sf::IpAddress

AnyPort	:	sf::Socket

append()	:	sf::Packet	,	sf::VertexArray

Ascii	:	sf::Ftp

asMicroseconds()	:	sf::Time

asMilliseconds()	:	sf::Time

asSeconds()	:	sf::Time

Attribute	:	sf::ContextSettings

attributeFlags	:	sf::ContextSettings

axis	:	sf::Event::JoystickMoveEvent

Axis	:	sf::Joystick

AxisCount	:	sf::Joystick

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z ~

SFML	2.4.2

Here	is	a	list	of	all	documented	class	members	with	links	to	the	class	documentation	for	each	member:

-	b	-

b	:	sf::Color

B	:	sf::Keyboard

BackSlash	:	sf::Keyboard

BackSpace	:	sf::Keyboard

BadCommandSequence	:	sf::Ftp::Response

BadGateway	:	sf::Http::Response

BadRequest	:	sf::Http::Response

begin()	:	sf::String

Binary	:	sf::Ftp

bind()	:	sf::Shader	,	sf::Texture	,	sf::UdpSocket

bitsPerPixel	:	sf::VideoMode

Black	:	sf::Color

BlendMode()	:	sf::BlendMode

blendMode	:	sf::RenderStates

Blue	:	sf::Color

Bold	:	sf::Text

bounds	:	sf::Glyph

Broadcast	:	sf::IpAddress

button	:	sf::Event::JoystickButtonEvent	,	sf::Event::MouseButtonEvent

Button	:	sf::Mouse

ButtonCount	:	sf::Joystick	,	sf::Mouse

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z ~

SFML	2.4.2

Here	is	a	list	of	all	documented	class	members	with	links	to	the	class	documentation	for	each	member:

-	c	-

C	:	sf::Keyboard

capture()	:	sf::RenderWindow

changeDirectory()	:	sf::Ftp

channelCount	:	sf::SoundFileReader::Info

CircleShape()	:	sf::CircleShape

clear()	:	sf::Packet	,	sf::RenderTarget	,	sf::SocketSelector	,	sf::String	,	

Clock()	:	sf::Clock

close()	:	sf::Socket	,	sf::TcpListener	,	sf::Window

Closed	:	sf::Event

ClosingConnection	:	sf::Ftp::Response

ClosingDataConnection	:	sf::Ftp::Response

code	:	sf::Event::KeyEvent

Color()	:	sf::Color

color	:	sf::Vertex

colorDstFactor	:	sf::BlendMode

colorEquation	:	sf::BlendMode

colorSrcFactor	:	sf::BlendMode

combine()	:	sf::Transform

Comma	:	sf::Keyboard

CommandNotImplemented	:	sf::Ftp::Response

CommandUnknown	:	sf::Ftp::Response

connect()	:	sf::Ftp	,	sf::TcpSocket

ConnectionClosed	:	sf::Ftp::Response

ConnectionFailed	:	sf::Ftp::Response	,	sf::Http::Response

ConstIterator	:	sf::String

contains()	:	sf::Rect<	T	>

Context()	:	sf::Context

ContextSettings()	:	sf::ContextSettings

control	:	sf::Event::KeyEvent

ConvexShape()	:	sf::ConvexShape

CoordinateType	:	sf::Texture

copy()	:	sf::Image

copyToImage()	:	sf::Texture

Core	:	sf::ContextSettings

Count	:	sf::Event	,	sf::Joystick	,	sf::Sensor

count()	:	sf::Utf<	16	>	,	sf::Utf<	32	>	,	sf::Utf<	8	>

create()	:	sf::Image	,	sf::RenderTexture	,	sf::Socket	,	sf::Texture	,	sf::Window

Created	:	sf::Http::Response

createDirectory()	:	sf::Ftp

createMaskFromColor()	:	sf::Image

createReaderFromFilename()	:	sf::SoundFileFactory

createReaderFromMemory()	:	sf::SoundFileFactory

createReaderFromStream()	:	sf::SoundFileFactory

createWriterFromFilename()	:	sf::SoundFileFactory

CurrentTexture	:	sf::Shader

Cyan	:	sf::Color

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z ~

SFML	2.4.2

Here	is	a	list	of	all	documented	class	members	with	links	to	the	class	documentation	for	each	member:

-	d	-

D	:	sf::Keyboard

Dash	:	sf::Keyboard

DataConnectionAlreadyOpened	:	sf::Ftp::Response

DataConnectionOpened	:	sf::Ftp::Response

DataConnectionUnavailable	:	sf::Ftp::Response

Debug	:	sf::ContextSettings

decode()	:	sf::Utf<	16	>	,	sf::Utf<	32	>	,	sf::Utf<	8	>

decodeAnsi()	:	sf::Utf<	32	>

decodeWide()	:	sf::Utf<	32	>

Default	:	sf::ContextSettings	,	sf::RenderStates

Delete	:	sf::Http::Request	,	sf::Keyboard

deleteDirectory()	:	sf::Ftp

deleteFile()	:	sf::Ftp

delta	:	sf::Event::MouseWheelEvent	,	sf::Event::MouseWheelScrollEvent

depthBits	:	sf::ContextSettings

DirectoryOk	:	sf::Ftp::Response

DirectoryResponse()	:	sf::Ftp::DirectoryResponse

DirectoryStatus	:	sf::Ftp::Response

disconnect()	:	sf::Ftp	,	sf::TcpSocket

Disconnected	:	sf::Socket

display()	:	sf::RenderTexture	,	sf::Window

Divide	:	sf::Keyboard

Done	:	sf::Socket

Down	:	sf::Keyboard

download()	:	sf::Ftp

draw()	:	sf::Drawable	,	sf::RenderTarget

DstAlpha	:	sf::BlendMode

DstColor	:	sf::BlendMode

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z ~

SFML	2.4.2

Here	is	a	list	of	all	documented	class	members	with	links	to	the	class	documentation	for	each	member:

-	e	-

E	:	sf::Keyboard

Ebcdic	:	sf::Ftp

encode()	:	sf::Utf<	16	>	,	sf::Utf<	32	>	,	sf::Utf<	8	>

encodeAnsi()	:	sf::Utf<	32	>

encodeWide()	:	sf::Utf<	32	>

End	:	sf::Keyboard

end()	:	sf::String

endOfPacket()	:	sf::Packet

ensureGlContext()	:	sf::GlResource

EnteringPassiveMode	:	sf::Ftp::Response

Equal	:	sf::Keyboard

Equation	:	sf::BlendMode

erase()	:	sf::String

Error	:	sf::Socket

Escape	:	sf::Keyboard

EventType	:	sf::Event

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z ~

SFML	2.4.2

Here	is	a	list	of	all	documented	class	members	with	links	to	the	class	documentation	for	each	member:

-	f	-

F	:	sf::Keyboard

F1	:	sf::Keyboard

F10	:	sf::Keyboard

F11	:	sf::Keyboard

F12	:	sf::Keyboard

F13	:	sf::Keyboard

F14	:	sf::Keyboard

F15	:	sf::Keyboard

F2	:	sf::Keyboard

F3	:	sf::Keyboard

F4	:	sf::Keyboard

F5	:	sf::Keyboard

F6	:	sf::Keyboard

F7	:	sf::Keyboard

F8	:	sf::Keyboard

F9	:	sf::Keyboard

Factor	:	sf::BlendMode

family	:	sf::Font::Info

FileActionAborted	:	sf::Ftp::Response

FileActionOk	:	sf::Ftp::Response

FileInputStream()	:	sf::FileInputStream

FilenameNotAllowed	:	sf::Ftp::Response

FileStatus	:	sf::Ftp::Response

FileUnavailable	:	sf::Ftp::Response

find()	:	sf::String

findCharacterPos()	:	sf::Text

finger	:	sf::Event::TouchEvent

flipHorizontally()	:	sf::Image

flipVertically()	:	sf::Image

Font()	:	sf::Font

Forbidden	:	sf::Http::Response

Fragment	:	sf::Shader

fromAnsi()	:	sf::Utf<	16	>	,	sf::Utf<	32	>	,	sf::Utf<	8	>

fromLatin1()	:	sf::Utf<	16	>	,	sf::Utf<	32	>	,	sf::Utf<	8	>

fromUtf16()	:	sf::String

fromUtf32()	:	sf::String

fromUtf8()	:	sf::String

fromWide()	:	sf::Utf<	16	>	,	sf::Utf<	32	>	,	sf::Utf<	8	>

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

http://www.sfml-dev.org/license.php

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z ~

SFML	2.4.2

Here	is	a	list	of	all	documented	class	members	with	links	to	the	class	documentation	for	each	member:

-	g	-

g	:	sf::Color

G	:	sf::Keyboard

GainedFocus	:	sf::Event

GatewayTimeout	:	sf::Http::Response

generateMipmap()	:	sf::RenderTexture	,	sf::Texture

Geometry	:	sf::Shader

Get	:	sf::Http::Request

getActiveContext()	:	sf::Context

getAttenuation()	:	sf::SoundSource

getAvailableDevices()	:	sf::SoundRecorder

getAxisPosition()	:	sf::Joystick

getBody()	:	sf::Http::Response

getBounds()	:	sf::VertexArray

getBuffer()	:	sf::Sound	,	sf::SoundBufferRecorder

getButtonCount()	:	sf::Joystick

getCenter()	:	sf::View

getChannelCount()	:	sf::InputSoundFile	,	sf::SoundBuffer	,	sf::SoundRecorder

getCharacterSize()	:	sf::Text

getColor()	:	sf::Sprite	,	sf::Text

getData()	:	sf::Packet	,	sf::String

getDataSize()	:	sf::Packet

getDefaultDevice()	:	sf::SoundRecorder

getDefaultView()	:	sf::RenderTarget

getDesktopMode()	:	sf::VideoMode

getDevice()	:	sf::SoundRecorder

getDirection()	:	sf::Listener

getDirectory()	:	sf::Ftp::DirectoryResponse

getDirectoryListing()	:	sf::Ftp

getDuration()	:	sf::InputSoundFile	,	sf::Music	,	sf::SoundBuffer

getElapsedTime()	:	sf::Clock

getField()	:	sf::Http::Response

getFillColor()	:	sf::Shape	,	sf::Text

getFont()	:	sf::Text

getFullscreenModes()	:	sf::VideoMode

getFunction()	:	sf::Context

getGlobalBounds()	:	sf::Shape	,	sf::Sprite	,	sf::Text

getGlobalVolume()	:	sf::Listener

getGlyph()	:	sf::Font

getHandle()	:	sf::Socket

getIdentification()	:	sf::Joystick

getInfo()	:	sf::Font

getInverse()	:	sf::Transform

getInverseTransform()	:	sf::Transformable	,	sf::View

getKerning()	:	sf::Font

getLineSpacing()	:	sf::Font

getListing()	:	sf::Ftp::ListingResponse

getLocalAddress()	:	sf::IpAddress

getLocalBounds()	:	sf::Shape	,	sf::Sprite	,	sf::Text

getLocalPort()	:	sf::TcpListener	,	sf::TcpSocket	,	sf::UdpSocket

getLoop()	:	sf::Sound	,	sf::SoundStream

getMajorHttpVersion()	:	sf::Http::Response

getMatrix()	:	sf::Transform

getMaximumSize()	:	sf::Texture

getMessage()	:	sf::Ftp::Response

getMinDistance()	:	sf::SoundSource

getMinorHttpVersion()	:	sf::Http::Response

getNativeHandle()	:	sf::Shader	,	sf::Texture

getOrigin()	:	sf::Transformable

getOutlineColor()	:	sf::Shape	,	sf::Text

getOutlineThickness()	:	sf::Shape	,	sf::Text

getPitch()	:	sf::SoundSource

getPixel()	:	sf::Image

getPixelsPtr()	:	sf::Image

getPlayingOffset()	:	sf::Sound	,	sf::SoundStream

getPoint()	:	sf::CircleShape	,	sf::ConvexShape	,	sf::RectangleShape	,	

getPointCount()	:	sf::CircleShape	,	sf::ConvexShape	,	sf::RectangleShape

getPosition()	:	sf::Listener	,	sf::Mouse	,	sf::SoundSource	,	sf::Touch	,	sf::Transformable

getPrimitiveType()	:	sf::VertexArray

getPublicAddress()	:	sf::IpAddress

getRadius()	:	sf::CircleShape

getRemoteAddress()	:	sf::TcpSocket

getRemotePort()	:	sf::TcpSocket

getRotation()	:	sf::Transformable	,	sf::View

getSampleCount()	:	sf::InputSoundFile	,	sf::SoundBuffer

getSampleRate()	:	sf::InputSoundFile	,	sf::SoundBuffer	,	sf::SoundRecorder

getSamples()	:	sf::SoundBuffer

getScale()	:	sf::Transformable

getSettings()	:	sf::Context	,	sf::Window

getSize()	:	sf::FileInputStream	,	sf::Image	,	sf::InputStream	,	sf::MemoryInputStream
sf::RectangleShape	,	sf::RenderTarget	,	sf::RenderTexture	,	sf::RenderWindow
,	sf::View	,	sf::Window

getStatus()	:	sf::Ftp::Response	,	sf::Http::Response	,	sf::Sound	,	sf::SoundSource

getString()	:	sf::Text

getStyle()	:	sf::Text

getSystemHandle()	:	sf::Window

getTexture()	:	sf::Font	,	sf::RenderTexture	,	sf::Shape	,	sf::Sprite

getTextureRect()	:	sf::Shape	,	sf::Sprite

getTransform()	:	sf::Transformable	,	sf::View

getUnderlinePosition()	:	sf::Font

getUnderlineThickness()	:	sf::Font

getUpVector()	:	sf::Listener

getValue()	:	sf::Sensor	,	sf::ThreadLocal

getVertexCount()	:	sf::VertexArray

getView()	:	sf::RenderTarget

getViewport()	:	sf::RenderTarget	,	sf::View

getVolume()	:	sf::SoundSource

getWorkingDirectory()	:	sf::Ftp

GlResource()	:	sf::GlResource

Glyph()	:	sf::Glyph

Gravity	:	sf::Sensor

Green	:	sf::Color

Gyroscope	:	sf::Sensor

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z ~

SFML	2.4.2

Here	is	a	list	of	all	documented	class	members	with	links	to	the	class	documentation	for	each	member:

-	h	-

H	:	sf::Keyboard

hasAxis()	:	sf::Joystick

hasFocus()	:	sf::Window

Head	:	sf::Http::Request

height	:	sf::Event::SizeEvent	,	sf::Rect<	T	>	,	sf::VideoMode

HelpMessage	:	sf::Ftp::Response

Home	:	sf::Keyboard

HorizontalWheel	:	sf::Mouse

Http()	:	sf::Http

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z ~

SFML	2.4.2

Here	is	a	list	of	all	documented	class	members	with	links	to	the	class	documentation	for	each	member:

-	i	-

I	:	sf::Keyboard

Identity	:	sf::Transform

Image()	:	sf::Image

initialize()	:	sf::RenderTarget	,	sf::SoundStream

InputSoundFile()	:	sf::InputSoundFile

Insert	:	sf::Keyboard

insert()	:	sf::String

InsufficientStorageSpace	:	sf::Ftp::Response

InternalServerError	:	sf::Http::Response

intersects()	:	sf::Rect<	T	>

InvalidFile	:	sf::Ftp::Response

InvalidPos	:	sf::String

InvalidResponse	:	sf::Ftp::Response	,	sf::Http::Response

IpAddress()	:	sf::IpAddress

isAvailable()	:	sf::Sensor	,	sf::Shader	,	sf::SoundRecorder

isBlocking()	:	sf::Socket

isButtonPressed()	:	sf::Joystick	,	sf::Mouse

isConnected()	:	sf::Joystick

isDown()	:	sf::Touch

isEmpty()	:	sf::String

isExtensionAvailable()	:	sf::Context

isGeometryAvailable()	:	sf::Shader

isKeyPressed()	:	sf::Keyboard

isOk()	:	sf::Ftp::Response

isOpen()	:	sf::Window

isReady()	:	sf::SocketSelector

isRelativeToListener()	:	sf::SoundSource

isRepeated()	:	sf::RenderTexture	,	sf::Texture

isSmooth()	:	sf::RenderTexture	,	sf::Texture

isSrgb()	:	sf::Texture

isValid()	:	sf::VideoMode

Italic	:	sf::Text

Iterator	:	sf::String

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z ~

SFML	2.4.2

Here	is	a	list	of	all	documented	class	members	with	links	to	the	class	documentation	for	each	member:

-	j	-

J	:	sf::Keyboard

joystickButton	:	sf::Event

JoystickButtonPressed	:	sf::Event

JoystickButtonReleased	:	sf::Event

joystickConnect	:	sf::Event

JoystickConnected	:	sf::Event

JoystickDisconnected	:	sf::Event

joystickId	:	sf::Event::JoystickButtonEvent	,	sf::Event::JoystickConnectEvent
sf::Event::JoystickMoveEvent

joystickMove	:	sf::Event

JoystickMoved	:	sf::Event

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z ~

SFML	2.4.2

Here	is	a	list	of	all	documented	class	members	with	links	to	the	class	documentation	for	each	member:

-	k	-

K	:	sf::Keyboard

keepAlive()	:	sf::Ftp

key	:	sf::Event

Key	:	sf::Keyboard

KeyCount	:	sf::Keyboard

KeyPressed	:	sf::Event

KeyReleased	:	sf::Event

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z ~

SFML	2.4.2

Here	is	a	list	of	all	documented	class	members	with	links	to	the	class	documentation	for	each	member:

-	l	-

L	:	sf::Keyboard

LAlt	:	sf::Keyboard

launch()	:	sf::Thread

LBracket	:	sf::Keyboard

LControl	:	sf::Keyboard

Left	:	sf::Keyboard	,	sf::Mouse

left	:	sf::Rect<	T	>

listen()	:	sf::TcpListener

ListingResponse()	:	sf::Ftp::ListingResponse

loadFromFile()	:	sf::Font	,	sf::Image	,	sf::Shader	,	sf::SoundBuffer	,	sf::Texture

loadFromImage()	:	sf::Texture

loadFromMemory()	:	sf::Font	,	sf::Image	,	sf::Shader	,	sf::SoundBuffer

loadFromSamples()	:	sf::SoundBuffer

loadFromStream()	:	sf::Font	,	sf::Image	,	sf::Shader	,	sf::SoundBuffer	,	

LocalError	:	sf::Ftp::Response

LocalHost	:	sf::IpAddress

Lock()	:	sf::Lock

lock()	:	sf::Mutex

LoggedIn	:	sf::Ftp::Response

login()	:	sf::Ftp

LostFocus	:	sf::Event

LShift	:	sf::Keyboard

LSystem	:	sf::Keyboard

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z ~

SFML	2.4.2

Here	is	a	list	of	all	documented	class	members	with	links	to	the	class	documentation	for	each	member:

-	m	-

M	:	sf::Keyboard

m_source	:	sf::SoundSource

Magenta	:	sf::Color

Magnetometer	:	sf::Sensor

majorVersion	:	sf::ContextSettings

mapCoordsToPixel()	:	sf::RenderTarget

mapPixelToCoords()	:	sf::RenderTarget

MaxDatagramSize	:	sf::UdpSocket

MemoryInputStream()	:	sf::MemoryInputStream

Menu	:	sf::Keyboard

Method	:	sf::Http::Request

microseconds()	:	sf::Time

Middle	:	sf::Mouse

milliseconds()	:	sf::Time

minorVersion	:	sf::ContextSettings

mouseButton	:	sf::Event

MouseButtonPressed	:	sf::Event

MouseButtonReleased	:	sf::Event

MouseEntered	:	sf::Event

MouseLeft	:	sf::Event

mouseMove	:	sf::Event

MouseMoved	:	sf::Event

mouseWheel	:	sf::Event

MouseWheelMoved	:	sf::Event

mouseWheelScroll	:	sf::Event

MouseWheelScrolled	:	sf::Event

move()	:	sf::Transformable	,	sf::View

MovedPermanently	:	sf::Http::Response

MovedTemporarily	:	sf::Http::Response

MultipleChoices	:	sf::Http::Response

Multiply	:	sf::Keyboard

Music()	:	sf::Music

Mutex()	:	sf::Mutex

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z ~

SFML	2.4.2

Here	is	a	list	of	all	documented	class	members	with	links	to	the	class	documentation	for	each	member:

-	n	-

N	:	sf::Keyboard

name	:	sf::Joystick::Identification

NeedAccountToLogIn	:	sf::Ftp::Response

NeedAccountToStore	:	sf::Ftp::Response

NeedInformation	:	sf::Ftp::Response

NeedPassword	:	sf::Ftp::Response

next()	:	sf::Utf<	16	>	,	sf::Utf<	32	>	,	sf::Utf<	8	>

NoContent	:	sf::Http::Response

NonCopyable()	:	sf::NonCopyable

None	:	sf::IpAddress

Normalized	:	sf::Texture

NotEnoughMemory	:	sf::Ftp::Response

NotFound	:	sf::Http::Response

NotImplemented	:	sf::Http::Response

NotLoggedIn	:	sf::Ftp::Response

NotModified	:	sf::Http::Response

NotReady	:	sf::Socket

Num0	:	sf::Keyboard

Num1	:	sf::Keyboard

Num2	:	sf::Keyboard

Num3	:	sf::Keyboard

Num4	:	sf::Keyboard

Num5	:	sf::Keyboard

Num6	:	sf::Keyboard

Num7	:	sf::Keyboard

Num8	:	sf::Keyboard

Num9	:	sf::Keyboard

Numpad0	:	sf::Keyboard

Numpad1	:	sf::Keyboard

Numpad2	:	sf::Keyboard

Numpad3	:	sf::Keyboard

Numpad4	:	sf::Keyboard

Numpad5	:	sf::Keyboard

Numpad6	:	sf::Keyboard

Numpad7	:	sf::Keyboard

Numpad8	:	sf::Keyboard

Numpad9	:	sf::Keyboard

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z ~

SFML	2.4.2

Here	is	a	list	of	all	documented	class	members	with	links	to	the	class	documentation	for	each	member:

-	o	-

O	:	sf::Keyboard

Ok	:	sf::Ftp::Response	,	sf::Http::Response

onCreate()	:	sf::RenderWindow	,	sf::Window

One	:	sf::BlendMode

OneMinusDstAlpha	:	sf::BlendMode

OneMinusDstColor	:	sf::BlendMode

OneMinusSrcAlpha	:	sf::BlendMode

OneMinusSrcColor	:	sf::BlendMode

onGetData()	:	sf::Music	,	sf::SoundStream

onProcessSamples()	:	sf::SoundBufferRecorder	,	sf::SoundRecorder

onReceive()	:	sf::Packet

onResize()	:	sf::RenderWindow	,	sf::Window

onSeek()	:	sf::Music	,	sf::SoundStream

onSend()	:	sf::Packet

onStart()	:	sf::SoundBufferRecorder	,	sf::SoundRecorder

onStop()	:	sf::SoundBufferRecorder	,	sf::SoundRecorder

open()	:	sf::FileInputStream	,	sf::MemoryInputStream	,	sf::SoundFileReader

openForWriting()	:	sf::InputSoundFile

openFromFile()	:	sf::InputSoundFile	,	sf::Music	,	sf::OutputSoundFile

openFromMemory()	:	sf::InputSoundFile	,	sf::Music

openFromStream()	:	sf::InputSoundFile	,	sf::Music

OpeningDataConnection	:	sf::Ftp::Response

operator	BoolType()	:	sf::Packet

operator	std::string()	:	sf::String

operator	std::wstring()	:	sf::String

operator	T	*()	:	sf::ThreadLocalPtr<	T	>

operator!=()	:	sf::BlendMode	,	sf::Color	,	sf::Rect<	T	>	,	sf::String	,	sf::Time
sf::Vector3<	T	>	,	sf::VideoMode

operator%()	:	sf::Time

operator%=()	:	sf::Time

operator*()	:	sf::Color	,	sf::ThreadLocalPtr<	T	>	,	sf::Time	,	sf::Transform
sf::Vector3<	T	>

operator*=()	:	sf::Color	,	sf::Time	,	sf::Transform	,	sf::Vector2<	T	>	,	sf::Vector3<	T	>

operator+()	:	sf::Color	,	sf::String	,	sf::Time	,	sf::Vector2<	T	>	,	sf::Vector3<	T	>

operator+=()	:	sf::Color	,	sf::String	,	sf::Time	,	sf::Vector2<	T	>	,	sf::Vector3<	T	>

operator-()	:	sf::Color	,	sf::Time	,	sf::Vector2<	T	>	,	sf::Vector3<	T	>

operator-=()	:	sf::Color	,	sf::Time	,	sf::Vector2<	T	>	,	sf::Vector3<	T	>

operator->()	:	sf::ThreadLocalPtr<	T	>

operator/()	:	sf::Time	,	sf::Vector2<	T	>	,	sf::Vector3<	T	>

operator/=()	:	sf::Time	,	sf::Vector2<	T	>	,	sf::Vector3<	T	>

operator<	:	sf::IpAddress	,	sf::String	,	sf::Time	,	sf::VideoMode

operator<<()	:	sf::Packet

operator<=()	:	sf::String	,	sf::Time	,	sf::VideoMode

operator=()	:	sf::Font	,	sf::SocketSelector	,	sf::Sound	,	sf::SoundBuffer
sf::Texture	,	sf::ThreadLocalPtr<	T	>

operator==()	:	sf::BlendMode	,	sf::Color	,	sf::Rect<	T	>	,	sf::String	,	sf::Time
sf::Vector3<	T	>	,	sf::VideoMode

operator>()	:	sf::String	,	sf::Time	,	sf::VideoMode

operator>=()	:	sf::String	,	sf::Time	,	sf::VideoMode

operator>>()	:	sf::Packet

operator[]()	:	sf::String	,	sf::VertexArray

Orientation	:	sf::Sensor

OutputSoundFile()	:	sf::OutputSoundFile

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z ~

SFML	2.4.2

Here	is	a	list	of	all	documented	class	members	with	links	to	the	class	documentation	for	each	member:

-	p	-

P	:	sf::Keyboard

Packet()	:	sf::Packet

PageDown	:	sf::Keyboard

PageTypeUnknown	:	sf::Ftp::Response

PageUp	:	sf::Keyboard

ParameterNotImplemented	:	sf::Ftp::Response

ParametersUnknown	:	sf::Ftp::Response

parentDirectory()	:	sf::Ftp

Partial	:	sf::Socket

PartialContent	:	sf::Http::Response

Pause	:	sf::Keyboard

pause()	:	sf::Sound	,	sf::SoundStream

Paused	:	sf::SoundSource

Period	:	sf::Keyboard

Pixels	:	sf::Texture

play()	:	sf::Sound	,	sf::SoundStream

Playing	:	sf::SoundSource

PointlessCommand	:	sf::Ftp::Response

pollEvent()	:	sf::Window

popGLStates()	:	sf::RenderTarget

position	:	sf::Event::JoystickMoveEvent	,	sf::Vertex

Post	:	sf::Http::Request

PovX	:	sf::Joystick

PovY	:	sf::Joystick

productId	:	sf::Joystick::Identification

pushGLStates()	:	sf::RenderTarget

Put	:	sf::Http::Request

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z ~

SFML	2.4.2

Here	is	a	list	of	all	documented	class	members	with	links	to	the	class	documentation	for	each	member:

-	q	-

Q	:	sf::Keyboard

Quote	:	sf::Keyboard

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z ~

SFML	2.4.2

Here	is	a	list	of	all	documented	class	members	with	links	to	the	class	documentation	for	each	member:

-	r	-

r	:	sf::Color

R	:	sf::Joystick	,	sf::Keyboard

RAlt	:	sf::Keyboard

RangeNotSatisfiable	:	sf::Http::Response

RBracket	:	sf::Keyboard

RControl	:	sf::Keyboard

read()	:	sf::FileInputStream	,	sf::InputSoundFile	,	sf::InputStream	,	sf::MemoryInputStream
sf::SoundFileReader

receive()	:	sf::TcpSocket	,	sf::UdpSocket

Rect()	:	sf::Rect<	T	>

RectangleShape()	:	sf::RectangleShape

Red	:	sf::Color

registerReader()	:	sf::SoundFileFactory

registerWriter()	:	sf::SoundFileFactory

Regular	:	sf::Text

remove()	:	sf::SocketSelector

renameFile()	:	sf::Ftp

RenderStates()	:	sf::RenderStates

RenderTarget()	:	sf::RenderTarget

RenderTexture()	:	sf::RenderTexture

RenderWindow()	:	sf::RenderWindow

replace()	:	sf::String

Request()	:	sf::Http::Request

requestFocus()	:	sf::Window

reset()	:	sf::View

resetBuffer()	:	sf::Sound

ResetContent	:	sf::Http::Response

resetGLStates()	:	sf::RenderTarget

resize()	:	sf::VertexArray

Resized	:	sf::Event

Response()	:	sf::Ftp::Response	,	sf::Http::Response

restart()	:	sf::Clock

RestartMarkerReply	:	sf::Ftp::Response

Return	:	sf::Keyboard

ReverseSubtract	:	sf::BlendMode

Right	:	sf::Keyboard	,	sf::Mouse

rotate()	:	sf::Transform	,	sf::Transformable	,	sf::View

RShift	:	sf::Keyboard

RSystem	:	sf::Keyboard

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z ~

SFML	2.4.2

Here	is	a	list	of	all	documented	class	members	with	links	to	the	class	documentation	for	each	member:

-	s	-

S	:	sf::Keyboard

sampleCount	:	sf::SoundFileReader::Info	,	sf::SoundStream::Chunk

sampleRate	:	sf::SoundFileReader::Info

samples	:	sf::SoundStream::Chunk

saveToFile()	:	sf::Image	,	sf::SoundBuffer

scale()	:	sf::Transform	,	sf::Transformable

seconds()	:	sf::Time

seek()	:	sf::FileInputStream	,	sf::InputSoundFile	,	sf::InputStream	,	sf::MemoryInputStream
sf::SoundFileReader

SemiColon	:	sf::Keyboard

send()	:	sf::TcpSocket	,	sf::UdpSocket

sendCommand()	:	sf::Ftp

sendRequest()	:	sf::Http

sensor	:	sf::Event

SensorChanged	:	sf::Event

ServiceNotAvailable	:	sf::Http::Response

ServiceReady	:	sf::Ftp::Response

ServiceReadySoon	:	sf::Ftp::Response

ServiceUnavailable	:	sf::Ftp::Response

setActive()	:	sf::Context	,	sf::RenderTexture	,	sf::Window

setAttenuation()	:	sf::SoundSource

setBlocking()	:	sf::Socket

setBody()	:	sf::Http::Request

setBuffer()	:	sf::Sound

setCenter()	:	sf::View

setChannelCount()	:	sf::SoundRecorder

setCharacterSize()	:	sf::Text

setColor()	:	sf::Sprite	,	sf::Text

setDevice()	:	sf::SoundRecorder

setDirection()	:	sf::Listener

setEnabled()	:	sf::Sensor

setField()	:	sf::Http::Request

setFillColor()	:	sf::Shape	,	sf::Text

setFont()	:	sf::Text

setFramerateLimit()	:	sf::Window

setGlobalVolume()	:	sf::Listener

setHost()	:	sf::Http

setHttpVersion()	:	sf::Http::Request

setIcon()	:	sf::Window

setJoystickThreshold()	:	sf::Window

setKeyRepeatEnabled()	:	sf::Window

setLoop()	:	sf::Sound	,	sf::SoundStream

setMethod()	:	sf::Http::Request

setMinDistance()	:	sf::SoundSource

setMouseCursorGrabbed()	:	sf::Window

setMouseCursorVisible()	:	sf::Window

setOrigin()	:	sf::Transformable

setOutlineColor()	:	sf::Shape	,	sf::Text

setOutlineThickness()	:	sf::Shape	,	sf::Text

setParameter()	:	sf::Shader

setPitch()	:	sf::SoundSource

setPixel()	:	sf::Image

setPlayingOffset()	:	sf::Sound	,	sf::SoundStream

setPoint()	:	sf::ConvexShape

setPointCount()	:	sf::CircleShape	,	sf::ConvexShape

setPosition()	:	sf::Listener	,	sf::Mouse	,	sf::SoundSource	,	sf::Transformable

setPrimitiveType()	:	sf::VertexArray

setProcessingInterval()	:	sf::SoundRecorder

setRadius()	:	sf::CircleShape

setRelativeToListener()	:	sf::SoundSource

setRepeated()	:	sf::RenderTexture	,	sf::Texture

setRotation()	:	sf::Transformable	,	sf::View

setScale()	:	sf::Transformable

setSize()	:	sf::RectangleShape	,	sf::View	,	sf::Window

setSmooth()	:	sf::RenderTexture	,	sf::Texture

setSrgb()	:	sf::Texture

setString()	:	sf::Text

setStyle()	:	sf::Text

setTexture()	:	sf::Shape	,	sf::Sprite

setTextureRect()	:	sf::Shape	,	sf::Sprite

setTitle()	:	sf::Window

setUniform()	:	sf::Shader

setUniformArray()	:	sf::Shader

setUpVector()	:	sf::Listener

setUri()	:	sf::Http::Request

setValue()	:	sf::ThreadLocal

setVerticalSyncEnabled()	:	sf::Window

setView()	:	sf::RenderTarget

setViewport()	:	sf::View

setVirtualKeyboardVisible()	:	sf::Keyboard

setVisible()	:	sf::Window

setVolume()	:	sf::SoundSource

shader	:	sf::RenderStates

Shader()	:	sf::Shader

Shape()	:	sf::Shape

shift	:	sf::Event::KeyEvent

size	:	sf::Event

Slash	:	sf::Keyboard

Socket()	:	sf::Socket

SocketSelector()	:	sf::SocketSelector

Sound()	:	sf::Sound

SoundBuffer()	:	sf::SoundBuffer

SoundRecorder()	:	sf::SoundRecorder

SoundSource()	:	sf::SoundSource

SoundStream()	:	sf::SoundStream

Space	:	sf::Keyboard

Sprite()	:	sf::Sprite

SrcAlpha	:	sf::BlendMode

SrcColor	:	sf::BlendMode

sRgbCapable	:	sf::ContextSettings

start()	:	sf::SoundRecorder

Status	:	sf::Ftp::Response	,	sf::Http::Response	,	sf::Socket	,	sf::SoundSource

stencilBits	:	sf::ContextSettings

stop()	:	sf::Sound	,	sf::SoundRecorder	,	sf::SoundStream

Stopped	:	sf::SoundSource

StrikeThrough	:	sf::Text

String()	:	sf::String

Style	:	sf::Text

substring()	:	sf::String

Subtract	:	sf::BlendMode	,	sf::Keyboard

system	:	sf::Event::KeyEvent

SystemStatus	:	sf::Ftp::Response

SystemType	:	sf::Ftp::Response

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z ~

SFML	2.4.2

Here	is	a	list	of	all	documented	class	members	with	links	to	the	class	documentation	for	each	member:

-	t	-

T	:	sf::Keyboard

Tab	:	sf::Keyboard

Tcp	:	sf::Socket

TcpListener()	:	sf::TcpListener

TcpSocket()	:	sf::TcpSocket

tell()	:	sf::FileInputStream	,	sf::InputStream	,	sf::MemoryInputStream

terminate()	:	sf::Thread

texCoords	:	sf::Vertex

text	:	sf::Event

Text()	:	sf::Text

TextEntered	:	sf::Event

texture	:	sf::RenderStates

Texture()	:	sf::Texture

textureRect	:	sf::Glyph

Thread()	:	sf::Thread

ThreadLocal()	:	sf::ThreadLocal

ThreadLocalPtr()	:	sf::ThreadLocalPtr<	T	>

Tilde	:	sf::Keyboard

Time()	:	sf::Time

toAnsi()	:	sf::Utf<	16	>	,	sf::Utf<	32	>	,	sf::Utf<	8	>

toAnsiString()	:	sf::String

toInteger()	:	sf::Color	,	sf::IpAddress

toLatin1()	:	sf::Utf<	16	>	,	sf::Utf<	32	>	,	sf::Utf<	8	>

top	:	sf::Rect<	T	>

toString()	:	sf::IpAddress

touch	:	sf::Event

TouchBegan	:	sf::Event

TouchEnded	:	sf::Event

TouchMoved	:	sf::Event

toUtf16()	:	sf::String	,	sf::Utf<	16	>	,	sf::Utf<	32	>	,	sf::Utf<	8	>

toUtf32()	:	sf::String	,	sf::Utf<	16	>	,	sf::Utf<	32	>	,	sf::Utf<	8	>

toUtf8()	:	sf::String	,	sf::Utf<	16	>	,	sf::Utf<	32	>	,	sf::Utf<	8	>

toWide()	:	sf::Utf<	16	>	,	sf::Utf<	32	>	,	sf::Utf<	8	>

toWideString()	:	sf::String

TransferAborted	:	sf::Ftp::Response

TransferMode	:	sf::Ftp

transform	:	sf::RenderStates

Transform()	:	sf::Transform

Transformable()	:	sf::Transformable

transformPoint()	:	sf::Transform

transformRect()	:	sf::Transform

TransientContextLock()	:	sf::GlResource::TransientContextLock

translate()	:	sf::Transform

Transparent	:	sf::Color

type	:	sf::Event::SensorEvent	,	sf::Event

Type	:	sf::Sensor	,	sf::Shader	,	sf::Socket

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z ~

SFML	2.4.2

Here	is	a	list	of	all	documented	class	members	with	links	to	the	class	documentation	for	each	member:

-	u	-

U	:	sf::Joystick	,	sf::Keyboard

Udp	:	sf::Socket

UdpSocket()	:	sf::UdpSocket

Unauthorized	:	sf::Http::Response

unbind()	:	sf::UdpSocket

Underlined	:	sf::Text

unicode	:	sf::Event::TextEvent

Unknown	:	sf::Keyboard

unlock()	:	sf::Mutex

unregisterReader()	:	sf::SoundFileFactory

unregisterWriter()	:	sf::SoundFileFactory

Up	:	sf::Keyboard

update()	:	sf::Joystick	,	sf::Shape	,	sf::Texture

upload()	:	sf::Ftp

UserAcceleration	:	sf::Sensor

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z ~

SFML	2.4.2

Here	is	a	list	of	all	documented	class	members	with	links	to	the	class	documentation	for	each	member:

-	v	-

V	:	sf::Joystick	,	sf::Keyboard

Vector2()	:	sf::Vector2<	T	>

Vector3()	:	sf::Vector3<	T	>

vendorId	:	sf::Joystick::Identification

VersionNotSupported	:	sf::Http::Response

Vertex	:	sf::Shader	,	sf::Vertex

VertexArray()	:	sf::VertexArray

VerticalWheel	:	sf::Mouse

VideoMode()	:	sf::VideoMode

View()	:	sf::View

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z ~

SFML	2.4.2

Here	is	a	list	of	all	documented	class	members	with	links	to	the	class	documentation	for	each	member:

-	w	-

W	:	sf::Keyboard

wait()	:	sf::SocketSelector	,	sf::Thread

waitEvent()	:	sf::Window

wheel	:	sf::Event::MouseWheelScrollEvent

Wheel	:	sf::Mouse

White	:	sf::Color

width	:	sf::Event::SizeEvent	,	sf::Rect<	T	>	,	sf::VideoMode

Window()	:	sf::Window

write()	:	sf::OutputSoundFile	,	sf::SoundFileWriter

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z ~

SFML	2.4.2

Here	is	a	list	of	all	documented	class	members	with	links	to	the	class	documentation	for	each	member:

-	x	-

x	:	sf::Event::MouseButtonEvent	,	sf::Event::MouseMoveEvent	,	sf::Event::MouseWheelEvent
sf::Event::MouseWheelScrollEvent	,	sf::Event::SensorEvent	,	sf::Event::TouchEvent

X	:	sf::Joystick	,	sf::Keyboard

x	:	sf::Vector2<	T	>	,	sf::Vector3<	T	>

XButton1	:	sf::Mouse

XButton2	:	sf::Mouse

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z ~

SFML	2.4.2

Here	is	a	list	of	all	documented	class	members	with	links	to	the	class	documentation	for	each	member:

-	y	-

y	:	sf::Event::MouseButtonEvent	,	sf::Event::MouseMoveEvent	,	sf::Event::MouseWheelEvent
sf::Event::MouseWheelScrollEvent	,	sf::Event::SensorEvent	,	sf::Event::TouchEvent

Y	:	sf::Joystick	,	sf::Keyboard

y	:	sf::Vector2<	T	>	,	sf::Vector3<	T	>

Yellow	:	sf::Color

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z ~

SFML	2.4.2

Here	is	a	list	of	all	documented	class	members	with	links	to	the	class	documentation	for	each	member:

-	z	-

z	:	sf::Event::SensorEvent

Z	:	sf::Joystick	,	sf::Keyboard

z	:	sf::Vector3<	T	>

Zero	:	sf::BlendMode	,	sf::Time

zoom()	:	sf::View

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z ~

SFML	2.4.2

Here	is	a	list	of	all	documented	class	members	with	links	to	the	class	documentation	for	each	member:

-	~	-

~AlResource()	:	sf::AlResource

~Context()	:	sf::Context

~Drawable()	:	sf::Drawable

~FileInputStream()	:	sf::FileInputStream

~Font()	:	sf::Font

~Ftp()	:	sf::Ftp

~GlResource()	:	sf::GlResource

~Image()	:	sf::Image

~InputSoundFile()	:	sf::InputSoundFile

~InputStream()	:	sf::InputStream

~Lock()	:	sf::Lock

~Music()	:	sf::Music

~Mutex()	:	sf::Mutex

~OutputSoundFile()	:	sf::OutputSoundFile

~Packet()	:	sf::Packet

~RenderTarget()	:	sf::RenderTarget

~RenderTexture()	:	sf::RenderTexture

~RenderWindow()	:	sf::RenderWindow

~Shader()	:	sf::Shader

~Shape()	:	sf::Shape

~Socket()	:	sf::Socket

~SocketSelector()	:	sf::SocketSelector

~Sound()	:	sf::Sound

~SoundBuffer()	:	sf::SoundBuffer

~SoundBufferRecorder()	:	sf::SoundBufferRecorder

~SoundFileReader()	:	sf::SoundFileReader

~SoundFileWriter()	:	sf::SoundFileWriter

~SoundRecorder()	:	sf::SoundRecorder

~SoundSource()	:	sf::SoundSource

~SoundStream()	:	sf::SoundStream

~Texture()	:	sf::Texture

~Thread()	:	sf::Thread

~ThreadLocal()	:	sf::ThreadLocal

~Transformable()	:	sf::Transformable

~TransientContextLock()	:	sf::GlResource::TransientContextLock

~Window()	:	sf::Window

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i k l m n o p r s t u v w z ~

SFML	2.4.2

	

-	a	-

accept()	:	sf::TcpListener

add()	:	sf::SocketSelector

AlResource()	:	sf::AlResource

append()	:	sf::Packet	,	sf::VertexArray

asMicroseconds()	:	sf::Time

asMilliseconds()	:	sf::Time

asSeconds()	:	sf::Time

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i k l m n o p r s t u v w z ~

SFML	2.4.2

	

-	b	-

begin()	:	sf::String

bind()	:	sf::Shader	,	sf::Texture	,	sf::UdpSocket

BlendMode()	:	sf::BlendMode

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i k l m n o p r s t u v w z ~

SFML	2.4.2

	

-	c	-

capture()	:	sf::RenderWindow

changeDirectory()	:	sf::Ftp

CircleShape()	:	sf::CircleShape

clear()	:	sf::Packet	,	sf::RenderTarget	,	sf::SocketSelector	,	sf::String	,	

Clock()	:	sf::Clock

close()	:	sf::Socket	,	sf::TcpListener	,	sf::Window

Color()	:	sf::Color

combine()	:	sf::Transform

connect()	:	sf::Ftp	,	sf::TcpSocket

contains()	:	sf::Rect<	T	>

Context()	:	sf::Context

ContextSettings()	:	sf::ContextSettings

ConvexShape()	:	sf::ConvexShape

copy()	:	sf::Image

copyToImage()	:	sf::Texture

count()	:	sf::Utf<	16	>	,	sf::Utf<	32	>	,	sf::Utf<	8	>

create()	:	sf::Image	,	sf::RenderTexture	,	sf::Socket	,	sf::Texture	,	sf::Window

createDirectory()	:	sf::Ftp

createMaskFromColor()	:	sf::Image

createReaderFromFilename()	:	sf::SoundFileFactory

createReaderFromMemory()	:	sf::SoundFileFactory

createReaderFromStream()	:	sf::SoundFileFactory

createWriterFromFilename()	:	sf::SoundFileFactory

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i k l m n o p r s t u v w z ~

SFML	2.4.2

	

-	d	-

decode()	:	sf::Utf<	16	>	,	sf::Utf<	32	>	,	sf::Utf<	8	>

decodeAnsi()	:	sf::Utf<	32	>

decodeWide()	:	sf::Utf<	32	>

deleteDirectory()	:	sf::Ftp

deleteFile()	:	sf::Ftp

DirectoryResponse()	:	sf::Ftp::DirectoryResponse

disconnect()	:	sf::Ftp	,	sf::TcpSocket

display()	:	sf::RenderTexture	,	sf::Window

download()	:	sf::Ftp

draw()	:	sf::Drawable	,	sf::RenderTarget

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i k l m n o p r s t u v w z ~

SFML	2.4.2

	

-	e	-

encode()	:	sf::Utf<	16	>	,	sf::Utf<	32	>	,	sf::Utf<	8	>

encodeAnsi()	:	sf::Utf<	32	>

encodeWide()	:	sf::Utf<	32	>

end()	:	sf::String

endOfPacket()	:	sf::Packet

ensureGlContext()	:	sf::GlResource

erase()	:	sf::String

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i k l m n o p r s t u v w z ~

SFML	2.4.2

	

-	f	-

FileInputStream()	:	sf::FileInputStream

find()	:	sf::String

findCharacterPos()	:	sf::Text

flipHorizontally()	:	sf::Image

flipVertically()	:	sf::Image

Font()	:	sf::Font

fromAnsi()	:	sf::Utf<	16	>	,	sf::Utf<	32	>	,	sf::Utf<	8	>

fromLatin1()	:	sf::Utf<	16	>	,	sf::Utf<	32	>	,	sf::Utf<	8	>

fromUtf16()	:	sf::String

fromUtf32()	:	sf::String

fromUtf8()	:	sf::String

fromWide()	:	sf::Utf<	16	>	,	sf::Utf<	32	>	,	sf::Utf<	8	>

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i k l m n o p r s t u v w z ~

SFML	2.4.2

	

-	g	-

generateMipmap()	:	sf::RenderTexture	,	sf::Texture

getActiveContext()	:	sf::Context

getAttenuation()	:	sf::SoundSource

getAvailableDevices()	:	sf::SoundRecorder

getAxisPosition()	:	sf::Joystick

getBody()	:	sf::Http::Response

getBounds()	:	sf::VertexArray

getBuffer()	:	sf::Sound	,	sf::SoundBufferRecorder

getButtonCount()	:	sf::Joystick

getCenter()	:	sf::View

getChannelCount()	:	sf::InputSoundFile	,	sf::SoundBuffer	,	sf::SoundRecorder

getCharacterSize()	:	sf::Text

getColor()	:	sf::Sprite	,	sf::Text

getData()	:	sf::Packet	,	sf::String

getDataSize()	:	sf::Packet

getDefaultDevice()	:	sf::SoundRecorder

getDefaultView()	:	sf::RenderTarget

getDesktopMode()	:	sf::VideoMode

getDevice()	:	sf::SoundRecorder

getDirection()	:	sf::Listener

getDirectory()	:	sf::Ftp::DirectoryResponse

getDirectoryListing()	:	sf::Ftp

getDuration()	:	sf::InputSoundFile	,	sf::Music	,	sf::SoundBuffer

getElapsedTime()	:	sf::Clock

getField()	:	sf::Http::Response

getFillColor()	:	sf::Shape	,	sf::Text

getFont()	:	sf::Text

getFullscreenModes()	:	sf::VideoMode

getFunction()	:	sf::Context

getGlobalBounds()	:	sf::Shape	,	sf::Sprite	,	sf::Text

getGlobalVolume()	:	sf::Listener

getGlyph()	:	sf::Font

getHandle()	:	sf::Socket

getIdentification()	:	sf::Joystick

getInfo()	:	sf::Font

getInverse()	:	sf::Transform

getInverseTransform()	:	sf::Transformable	,	sf::View

getKerning()	:	sf::Font

getLineSpacing()	:	sf::Font

getListing()	:	sf::Ftp::ListingResponse

getLocalAddress()	:	sf::IpAddress

getLocalBounds()	:	sf::Shape	,	sf::Sprite	,	sf::Text

getLocalPort()	:	sf::TcpListener	,	sf::TcpSocket	,	sf::UdpSocket

getLoop()	:	sf::Sound	,	sf::SoundStream

getMajorHttpVersion()	:	sf::Http::Response

getMatrix()	:	sf::Transform

getMaximumSize()	:	sf::Texture

getMessage()	:	sf::Ftp::Response

getMinDistance()	:	sf::SoundSource

getMinorHttpVersion()	:	sf::Http::Response

getNativeHandle()	:	sf::Shader	,	sf::Texture

getOrigin()	:	sf::Transformable

getOutlineColor()	:	sf::Shape	,	sf::Text

getOutlineThickness()	:	sf::Shape	,	sf::Text

getPitch()	:	sf::SoundSource

getPixel()	:	sf::Image

getPixelsPtr()	:	sf::Image

getPlayingOffset()	:	sf::Sound	,	sf::SoundStream

getPoint()	:	sf::CircleShape	,	sf::ConvexShape	,	sf::RectangleShape	,	

getPointCount()	:	sf::CircleShape	,	sf::ConvexShape	,	sf::RectangleShape

getPosition()	:	sf::Listener	,	sf::Mouse	,	sf::SoundSource	,	sf::Touch	,	sf::Transformable

getPrimitiveType()	:	sf::VertexArray

getPublicAddress()	:	sf::IpAddress

getRadius()	:	sf::CircleShape

getRemoteAddress()	:	sf::TcpSocket

getRemotePort()	:	sf::TcpSocket

getRotation()	:	sf::Transformable	,	sf::View

getSampleCount()	:	sf::InputSoundFile	,	sf::SoundBuffer

getSampleRate()	:	sf::InputSoundFile	,	sf::SoundBuffer	,	sf::SoundRecorder

getSamples()	:	sf::SoundBuffer

getScale()	:	sf::Transformable

getSettings()	:	sf::Context	,	sf::Window

getSize()	:	sf::FileInputStream	,	sf::Image	,	sf::InputStream	,	sf::MemoryInputStream
sf::RectangleShape	,	sf::RenderTarget	,	sf::RenderTexture	,	sf::RenderWindow
,	sf::View	,	sf::Window

getStatus()	:	sf::Ftp::Response	,	sf::Http::Response	,	sf::Sound	,	sf::SoundSource

getString()	:	sf::Text

getStyle()	:	sf::Text

getSystemHandle()	:	sf::Window

getTexture()	:	sf::Font	,	sf::RenderTexture	,	sf::Shape	,	sf::Sprite

getTextureRect()	:	sf::Shape	,	sf::Sprite

getTransform()	:	sf::Transformable	,	sf::View

getUnderlinePosition()	:	sf::Font

getUnderlineThickness()	:	sf::Font

getUpVector()	:	sf::Listener

getValue()	:	sf::Sensor	,	sf::ThreadLocal

getVertexCount()	:	sf::VertexArray

getView()	:	sf::RenderTarget

getViewport()	:	sf::RenderTarget	,	sf::View

getVolume()	:	sf::SoundSource

getWorkingDirectory()	:	sf::Ftp

GlResource()	:	sf::GlResource

Glyph()	:	sf::Glyph

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i k l m n o p r s t u v w z ~

SFML	2.4.2

	

-	h	-

hasAxis()	:	sf::Joystick

hasFocus()	:	sf::Window

Http()	:	sf::Http

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i k l m n o p r s t u v w z ~

SFML	2.4.2

	

-	i	-

Image()	:	sf::Image

initialize()	:	sf::RenderTarget	,	sf::SoundStream

InputSoundFile()	:	sf::InputSoundFile

insert()	:	sf::String

intersects()	:	sf::Rect<	T	>

IpAddress()	:	sf::IpAddress

isAvailable()	:	sf::Sensor	,	sf::Shader	,	sf::SoundRecorder

isBlocking()	:	sf::Socket

isButtonPressed()	:	sf::Joystick	,	sf::Mouse

isConnected()	:	sf::Joystick

isDown()	:	sf::Touch

isEmpty()	:	sf::String

isExtensionAvailable()	:	sf::Context

isGeometryAvailable()	:	sf::Shader

isKeyPressed()	:	sf::Keyboard

isOk()	:	sf::Ftp::Response

isOpen()	:	sf::Window

isReady()	:	sf::SocketSelector

isRelativeToListener()	:	sf::SoundSource

isRepeated()	:	sf::RenderTexture	,	sf::Texture

isSmooth()	:	sf::RenderTexture	,	sf::Texture

isSrgb()	:	sf::Texture

isValid()	:	sf::VideoMode

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i k l m n o p r s t u v w z ~

SFML	2.4.2

	

-	k	-

keepAlive()	:	sf::Ftp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i k l m n o p r s t u v w z ~

SFML	2.4.2

	

-	l	-

launch()	:	sf::Thread

listen()	:	sf::TcpListener

ListingResponse()	:	sf::Ftp::ListingResponse

loadFromFile()	:	sf::Font	,	sf::Image	,	sf::Shader	,	sf::SoundBuffer	,	sf::Texture

loadFromImage()	:	sf::Texture

loadFromMemory()	:	sf::Font	,	sf::Image	,	sf::Shader	,	sf::SoundBuffer

loadFromSamples()	:	sf::SoundBuffer

loadFromStream()	:	sf::Font	,	sf::Image	,	sf::Shader	,	sf::SoundBuffer	,	

Lock()	:	sf::Lock

lock()	:	sf::Mutex

login()	:	sf::Ftp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

http://www.sfml-dev.org/license.php

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i k l m n o p r s t u v w z ~

SFML	2.4.2

	

-	m	-

mapCoordsToPixel()	:	sf::RenderTarget

mapPixelToCoords()	:	sf::RenderTarget

MemoryInputStream()	:	sf::MemoryInputStream

microseconds()	:	sf::Time

milliseconds()	:	sf::Time

move()	:	sf::Transformable	,	sf::View

Music()	:	sf::Music

Mutex()	:	sf::Mutex

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i k l m n o p r s t u v w z ~

SFML	2.4.2

	

-	n	-

next()	:	sf::Utf<	16	>	,	sf::Utf<	32	>	,	sf::Utf<	8	>

NonCopyable()	:	sf::NonCopyable

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i k l m n o p r s t u v w z ~

SFML	2.4.2

	

-	o	-

onCreate()	:	sf::RenderWindow	,	sf::Window

onGetData()	:	sf::Music	,	sf::SoundStream

onProcessSamples()	:	sf::SoundBufferRecorder	,	sf::SoundRecorder

onReceive()	:	sf::Packet

onResize()	:	sf::RenderWindow	,	sf::Window

onSeek()	:	sf::Music	,	sf::SoundStream

onSend()	:	sf::Packet

onStart()	:	sf::SoundBufferRecorder	,	sf::SoundRecorder

onStop()	:	sf::SoundBufferRecorder	,	sf::SoundRecorder

open()	:	sf::FileInputStream	,	sf::MemoryInputStream	,	sf::SoundFileReader

openForWriting()	:	sf::InputSoundFile

openFromFile()	:	sf::InputSoundFile	,	sf::Music	,	sf::OutputSoundFile

openFromMemory()	:	sf::InputSoundFile	,	sf::Music

openFromStream()	:	sf::InputSoundFile	,	sf::Music

operator	BoolType()	:	sf::Packet

operator	std::string()	:	sf::String

operator	std::wstring()	:	sf::String

operator	T	*()	:	sf::ThreadLocalPtr<	T	>

operator!=()	:	sf::BlendMode	,	sf::Color	,	sf::Rect<	T	>	,	sf::String	,	sf::Time
sf::Vector3<	T	>	,	sf::VideoMode

operator%()	:	sf::Time

operator%=()	:	sf::Time

operator*()	:	sf::Color	,	sf::ThreadLocalPtr<	T	>	,	sf::Time	,	sf::Transform
sf::Vector3<	T	>

operator*=()	:	sf::Color	,	sf::Time	,	sf::Transform	,	sf::Vector2<	T	>	,	sf::Vector3<	T	>

operator+()	:	sf::Color	,	sf::String	,	sf::Time	,	sf::Vector2<	T	>	,	sf::Vector3<	T	>

operator+=()	:	sf::Color	,	sf::String	,	sf::Time	,	sf::Vector2<	T	>	,	sf::Vector3<	T	>

operator-()	:	sf::Color	,	sf::Time	,	sf::Vector2<	T	>	,	sf::Vector3<	T	>

operator-=()	:	sf::Color	,	sf::Time	,	sf::Vector2<	T	>	,	sf::Vector3<	T	>

operator->()	:	sf::ThreadLocalPtr<	T	>

operator/()	:	sf::Time	,	sf::Vector2<	T	>	,	sf::Vector3<	T	>

operator/=()	:	sf::Time	,	sf::Vector2<	T	>	,	sf::Vector3<	T	>

operator<()	:	sf::String	,	sf::Time	,	sf::VideoMode

operator<<()	:	sf::Packet

operator<=()	:	sf::String	,	sf::Time	,	sf::VideoMode

operator=()	:	sf::Font	,	sf::SocketSelector	,	sf::Sound	,	sf::SoundBuffer
sf::Texture	,	sf::ThreadLocalPtr<	T	>

operator==()	:	sf::BlendMode	,	sf::Color	,	sf::Rect<	T	>	,	sf::String	,	sf::Time
sf::Vector3<	T	>	,	sf::VideoMode

operator>()	:	sf::String	,	sf::Time	,	sf::VideoMode

operator>=()	:	sf::String	,	sf::Time	,	sf::VideoMode

operator>>()	:	sf::Packet

operator[]()	:	sf::String	,	sf::VertexArray

OutputSoundFile()	:	sf::OutputSoundFile

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i k l m n o p r s t u v w z ~

SFML	2.4.2

	

-	p	-

Packet()	:	sf::Packet

parentDirectory()	:	sf::Ftp

pause()	:	sf::Sound	,	sf::SoundStream

play()	:	sf::Sound	,	sf::SoundStream

pollEvent()	:	sf::Window

popGLStates()	:	sf::RenderTarget

pushGLStates()	:	sf::RenderTarget

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i k l m n o p r s t u v w z ~

SFML	2.4.2

	

-	r	-

read()	:	sf::FileInputStream	,	sf::InputSoundFile	,	sf::InputStream	,	sf::MemoryInputStream
sf::SoundFileReader

receive()	:	sf::TcpSocket	,	sf::UdpSocket

Rect()	:	sf::Rect<	T	>

RectangleShape()	:	sf::RectangleShape

registerReader()	:	sf::SoundFileFactory

registerWriter()	:	sf::SoundFileFactory

remove()	:	sf::SocketSelector

renameFile()	:	sf::Ftp

RenderStates()	:	sf::RenderStates

RenderTarget()	:	sf::RenderTarget

RenderTexture()	:	sf::RenderTexture

RenderWindow()	:	sf::RenderWindow

replace()	:	sf::String

Request()	:	sf::Http::Request

requestFocus()	:	sf::Window

reset()	:	sf::View

resetBuffer()	:	sf::Sound

resetGLStates()	:	sf::RenderTarget

resize()	:	sf::VertexArray

Response()	:	sf::Ftp::Response	,	sf::Http::Response

restart()	:	sf::Clock

rotate()	:	sf::Transform	,	sf::Transformable	,	sf::View

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i k l m n o p r s t u v w z ~

SFML	2.4.2

	

-	s	-

saveToFile()	:	sf::Image	,	sf::SoundBuffer

scale()	:	sf::Transform	,	sf::Transformable

seconds()	:	sf::Time

seek()	:	sf::FileInputStream	,	sf::InputSoundFile	,	sf::InputStream	,	sf::MemoryInputStream
sf::SoundFileReader

send()	:	sf::TcpSocket	,	sf::UdpSocket

sendCommand()	:	sf::Ftp

sendRequest()	:	sf::Http

setActive()	:	sf::Context	,	sf::RenderTexture	,	sf::Window

setAttenuation()	:	sf::SoundSource

setBlocking()	:	sf::Socket

setBody()	:	sf::Http::Request

setBuffer()	:	sf::Sound

setCenter()	:	sf::View

setChannelCount()	:	sf::SoundRecorder

setCharacterSize()	:	sf::Text

setColor()	:	sf::Sprite	,	sf::Text

setDevice()	:	sf::SoundRecorder

setDirection()	:	sf::Listener

setEnabled()	:	sf::Sensor

setField()	:	sf::Http::Request

setFillColor()	:	sf::Shape	,	sf::Text

setFont()	:	sf::Text

setFramerateLimit()	:	sf::Window

setGlobalVolume()	:	sf::Listener

setHost()	:	sf::Http

setHttpVersion()	:	sf::Http::Request

setIcon()	:	sf::Window

setJoystickThreshold()	:	sf::Window

setKeyRepeatEnabled()	:	sf::Window

setLoop()	:	sf::Sound	,	sf::SoundStream

setMethod()	:	sf::Http::Request

setMinDistance()	:	sf::SoundSource

setMouseCursorGrabbed()	:	sf::Window

setMouseCursorVisible()	:	sf::Window

setOrigin()	:	sf::Transformable

setOutlineColor()	:	sf::Shape	,	sf::Text

setOutlineThickness()	:	sf::Shape	,	sf::Text

setParameter()	:	sf::Shader

setPitch()	:	sf::SoundSource

setPixel()	:	sf::Image

setPlayingOffset()	:	sf::Sound	,	sf::SoundStream

setPoint()	:	sf::ConvexShape

setPointCount()	:	sf::CircleShape	,	sf::ConvexShape

setPosition()	:	sf::Listener	,	sf::Mouse	,	sf::SoundSource	,	sf::Transformable

setPrimitiveType()	:	sf::VertexArray

setProcessingInterval()	:	sf::SoundRecorder

setRadius()	:	sf::CircleShape

setRelativeToListener()	:	sf::SoundSource

setRepeated()	:	sf::RenderTexture	,	sf::Texture

setRotation()	:	sf::Transformable	,	sf::View

setScale()	:	sf::Transformable

setSize()	:	sf::RectangleShape	,	sf::View	,	sf::Window

setSmooth()	:	sf::RenderTexture	,	sf::Texture

setSrgb()	:	sf::Texture

setString()	:	sf::Text

setStyle()	:	sf::Text

setTexture()	:	sf::Shape	,	sf::Sprite

setTextureRect()	:	sf::Shape	,	sf::Sprite

setTitle()	:	sf::Window

setUniform()	:	sf::Shader

setUniformArray()	:	sf::Shader

setUpVector()	:	sf::Listener

setUri()	:	sf::Http::Request

setValue()	:	sf::ThreadLocal

setVerticalSyncEnabled()	:	sf::Window

setView()	:	sf::RenderTarget

setViewport()	:	sf::View

setVirtualKeyboardVisible()	:	sf::Keyboard

setVisible()	:	sf::Window

setVolume()	:	sf::SoundSource

Shader()	:	sf::Shader

Shape()	:	sf::Shape

Socket()	:	sf::Socket

SocketSelector()	:	sf::SocketSelector

Sound()	:	sf::Sound

SoundBuffer()	:	sf::SoundBuffer

SoundRecorder()	:	sf::SoundRecorder

SoundSource()	:	sf::SoundSource

SoundStream()	:	sf::SoundStream

Sprite()	:	sf::Sprite

start()	:	sf::SoundRecorder

stop()	:	sf::Sound	,	sf::SoundRecorder	,	sf::SoundStream

String()	:	sf::String

substring()	:	sf::String

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i k l m n o p r s t u v w z ~

SFML	2.4.2

	

-	t	-

TcpListener()	:	sf::TcpListener

TcpSocket()	:	sf::TcpSocket

tell()	:	sf::FileInputStream	,	sf::InputStream	,	sf::MemoryInputStream

terminate()	:	sf::Thread

Text()	:	sf::Text

Texture()	:	sf::Texture

Thread()	:	sf::Thread

ThreadLocal()	:	sf::ThreadLocal

ThreadLocalPtr()	:	sf::ThreadLocalPtr<	T	>

Time()	:	sf::Time

toAnsi()	:	sf::Utf<	16	>	,	sf::Utf<	32	>	,	sf::Utf<	8	>

toAnsiString()	:	sf::String

toInteger()	:	sf::Color	,	sf::IpAddress

toLatin1()	:	sf::Utf<	16	>	,	sf::Utf<	32	>	,	sf::Utf<	8	>

toString()	:	sf::IpAddress

toUtf16()	:	sf::String	,	sf::Utf<	16	>	,	sf::Utf<	32	>	,	sf::Utf<	8	>

toUtf32()	:	sf::String	,	sf::Utf<	16	>	,	sf::Utf<	32	>	,	sf::Utf<	8	>

toUtf8()	:	sf::String	,	sf::Utf<	16	>	,	sf::Utf<	32	>	,	sf::Utf<	8	>

toWide()	:	sf::Utf<	16	>	,	sf::Utf<	32	>	,	sf::Utf<	8	>

toWideString()	:	sf::String

Transform()	:	sf::Transform

Transformable()	:	sf::Transformable

transformPoint()	:	sf::Transform

transformRect()	:	sf::Transform

TransientContextLock()	:	sf::GlResource::TransientContextLock

translate()	:	sf::Transform

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i k l m n o p r s t u v w z ~

SFML	2.4.2

	

-	u	-

UdpSocket()	:	sf::UdpSocket

unbind()	:	sf::UdpSocket

unlock()	:	sf::Mutex

unregisterReader()	:	sf::SoundFileFactory

unregisterWriter()	:	sf::SoundFileFactory

update()	:	sf::Joystick	,	sf::Shape	,	sf::Texture

upload()	:	sf::Ftp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i k l m n o p r s t u v w z ~

SFML	2.4.2

	

-	v	-

Vector2()	:	sf::Vector2<	T	>

Vector3()	:	sf::Vector3<	T	>

Vertex()	:	sf::Vertex

VertexArray()	:	sf::VertexArray

VideoMode()	:	sf::VideoMode

View()	:	sf::View

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i k l m n o p r s t u v w z ~

SFML	2.4.2

	

-	w	-

wait()	:	sf::SocketSelector	,	sf::Thread

waitEvent()	:	sf::Window

Window()	:	sf::Window

write()	:	sf::OutputSoundFile	,	sf::SoundFileWriter

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i k l m n o p r s t u v w z ~

SFML	2.4.2

	

-	z	-

zoom()	:	sf::View

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i k l m n o p r s t u v w z ~

SFML	2.4.2

	

-	~	-

~AlResource()	:	sf::AlResource

~Context()	:	sf::Context

~Drawable()	:	sf::Drawable

~FileInputStream()	:	sf::FileInputStream

~Font()	:	sf::Font

~Ftp()	:	sf::Ftp

~GlResource()	:	sf::GlResource

~Image()	:	sf::Image

~InputSoundFile()	:	sf::InputSoundFile

~InputStream()	:	sf::InputStream

~Lock()	:	sf::Lock

~Music()	:	sf::Music

~Mutex()	:	sf::Mutex

~OutputSoundFile()	:	sf::OutputSoundFile

~Packet()	:	sf::Packet

~RenderTarget()	:	sf::RenderTarget

~RenderTexture()	:	sf::RenderTexture

~RenderWindow()	:	sf::RenderWindow

~Shader()	:	sf::Shader

~Shape()	:	sf::Shape

~Socket()	:	sf::Socket

~SocketSelector()	:	sf::SocketSelector

~Sound()	:	sf::Sound

~SoundBuffer()	:	sf::SoundBuffer

~SoundBufferRecorder()	:	sf::SoundBufferRecorder

~SoundFileReader()	:	sf::SoundFileReader

~SoundFileWriter()	:	sf::SoundFileWriter

~SoundRecorder()	:	sf::SoundRecorder

~SoundSource()	:	sf::SoundSource

~SoundStream()	:	sf::SoundStream

~Texture()	:	sf::Texture

~Thread()	:	sf::Thread

~ThreadLocal()	:	sf::ThreadLocal

~Transformable()	:	sf::Transformable

~TransientContextLock()	:	sf::GlResource::TransientContextLock

~Window()	:	sf::Window

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d f g h i j k l m n p r s t u v w x y z

SFML	2.4.2

	

-	a	-

a	:	sf::Color

advance	:	sf::Glyph

alphaDstFactor	:	sf::BlendMode

alphaEquation	:	sf::BlendMode

alphaSrcFactor	:	sf::BlendMode

alt	:	sf::Event::KeyEvent

antialiasingLevel	:	sf::ContextSettings

Any	:	sf::IpAddress

attributeFlags	:	sf::ContextSettings

axis	:	sf::Event::JoystickMoveEvent

-	b	-

b	:	sf::Color

bitsPerPixel	:	sf::VideoMode

Black	:	sf::Color

blendMode	:	sf::RenderStates

Blue	:	sf::Color

bounds	:	sf::Glyph

Broadcast	:	sf::IpAddress

button	:	sf::Event::JoystickButtonEvent	,	sf::Event::MouseButtonEvent

-	c	-

channelCount	:	sf::SoundFileReader::Info

code	:	sf::Event::KeyEvent

color	:	sf::Vertex

colorDstFactor	:	sf::BlendMode

colorEquation	:	sf::BlendMode

colorSrcFactor	:	sf::BlendMode

control	:	sf::Event::KeyEvent

CurrentTexture	:	sf::Shader

Cyan	:	sf::Color

-	d	-

Default	:	sf::RenderStates

delta	:	sf::Event::MouseWheelEvent	,	sf::Event::MouseWheelScrollEvent

depthBits	:	sf::ContextSettings

-	f	-

family	:	sf::Font::Info

finger	:	sf::Event::TouchEvent

-	g	-

g	:	sf::Color

Green	:	sf::Color

-	h	-

height	:	sf::Event::SizeEvent	,	sf::Rect<	T	>	,	sf::VideoMode

-	i	-

Identity	:	sf::Transform

InvalidPos	:	sf::String

-	j	-

joystickButton	:	sf::Event

joystickConnect	:	sf::Event

joystickId	:	sf::Event::JoystickButtonEvent	,	sf::Event::JoystickConnectEvent
sf::Event::JoystickMoveEvent

joystickMove	:	sf::Event

-	k	-

key	:	sf::Event

-	l	-

left	:	sf::Rect<	T	>

LocalHost	:	sf::IpAddress

-	m	-

m_source	:	sf::SoundSource

Magenta	:	sf::Color

majorVersion	:	sf::ContextSettings

minorVersion	:	sf::ContextSettings

mouseButton	:	sf::Event

mouseMove	:	sf::Event

mouseWheel	:	sf::Event

mouseWheelScroll	:	sf::Event

-	n	-

name	:	sf::Joystick::Identification

None	:	sf::IpAddress

-	p	-

position	:	sf::Event::JoystickMoveEvent	,	sf::Vertex

productId	:	sf::Joystick::Identification

-	r	-

r	:	sf::Color

Red	:	sf::Color

-	s	-

sampleCount	:	sf::SoundFileReader::Info	,	sf::SoundStream::Chunk

sampleRate	:	sf::SoundFileReader::Info

samples	:	sf::SoundStream::Chunk

sensor	:	sf::Event

shader	:	sf::RenderStates

shift	:	sf::Event::KeyEvent

size	:	sf::Event

sRgbCapable	:	sf::ContextSettings

stencilBits	:	sf::ContextSettings

system	:	sf::Event::KeyEvent

-	t	-

texCoords	:	sf::Vertex

text	:	sf::Event

texture	:	sf::RenderStates

textureRect	:	sf::Glyph

top	:	sf::Rect<	T	>

touch	:	sf::Event

transform	:	sf::RenderStates

Transparent	:	sf::Color

type	:	sf::Event::SensorEvent	,	sf::Event

-	u	-

unicode	:	sf::Event::TextEvent

-	v	-

vendorId	:	sf::Joystick::Identification

-	w	-

wheel	:	sf::Event::MouseWheelScrollEvent

White	:	sf::Color

width	:	sf::Event::SizeEvent	,	sf::Rect<	T	>	,	sf::VideoMode

-	x	-

x	:	sf::Event::MouseButtonEvent	,	sf::Event::MouseMoveEvent	,	sf::Event::MouseWheelEvent
sf::Event::MouseWheelScrollEvent	,	sf::Event::SensorEvent	,	sf::Event::TouchEvent
sf::Vector3<	T	>

-	y	-

y	:	sf::Event::MouseButtonEvent	,	sf::Event::MouseMoveEvent	,	sf::Event::MouseWheelEvent
sf::Event::MouseWheelScrollEvent	,	sf::Event::SensorEvent	,	sf::Event::TouchEvent
sf::Vector3<	T	>

Yellow	:	sf::Color

-	z	-

z	:	sf::Event::SensorEvent	,	sf::Vector3<	T	>

Zero	:	sf::Time

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

SFML	2.4.2

	
ConstIterator	:	sf::String

Iterator	:	sf::String

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

SFML	2.4.2

	
Attribute	:	sf::ContextSettings

Axis	:	sf::Joystick

Button	:	sf::Mouse

CoordinateType	:	sf::Texture

Equation	:	sf::BlendMode

EventType	:	sf::Event

Factor	:	sf::BlendMode

Key	:	sf::Keyboard

Method	:	sf::Http::Request

Status	:	sf::Ftp::Response	,	sf::Http::Response	,	sf::Socket	,	sf::SoundSource

Style	:	sf::Text

TransferMode	:	sf::Ftp

Type	:	sf::Sensor	,	sf::Shader	,	sf::Socket

Wheel	:	sf::Mouse

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z

SFML	2.4.2

	

-	a	-

A	:	sf::Keyboard

Accelerometer	:	sf::Sensor

Accepted	:	sf::Http::Response

Add	:	sf::BlendMode	,	sf::Keyboard

AnyPort	:	sf::Socket

Ascii	:	sf::Ftp

AxisCount	:	sf::Joystick

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z

SFML	2.4.2

	

-	b	-

B	:	sf::Keyboard

BackSlash	:	sf::Keyboard

BackSpace	:	sf::Keyboard

BadCommandSequence	:	sf::Ftp::Response

BadGateway	:	sf::Http::Response

BadRequest	:	sf::Http::Response

Binary	:	sf::Ftp

Bold	:	sf::Text

ButtonCount	:	sf::Joystick	,	sf::Mouse

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z

SFML	2.4.2

	

-	c	-

C	:	sf::Keyboard

Closed	:	sf::Event

ClosingConnection	:	sf::Ftp::Response

ClosingDataConnection	:	sf::Ftp::Response

Comma	:	sf::Keyboard

CommandNotImplemented	:	sf::Ftp::Response

CommandUnknown	:	sf::Ftp::Response

ConnectionClosed	:	sf::Ftp::Response

ConnectionFailed	:	sf::Ftp::Response	,	sf::Http::Response

Core	:	sf::ContextSettings

Count	:	sf::Event	,	sf::Joystick	,	sf::Sensor

Created	:	sf::Http::Response

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z

SFML	2.4.2

	

-	d	-

D	:	sf::Keyboard

Dash	:	sf::Keyboard

DataConnectionAlreadyOpened	:	sf::Ftp::Response

DataConnectionOpened	:	sf::Ftp::Response

DataConnectionUnavailable	:	sf::Ftp::Response

Debug	:	sf::ContextSettings

Default	:	sf::ContextSettings

Delete	:	sf::Http::Request	,	sf::Keyboard

DirectoryOk	:	sf::Ftp::Response

DirectoryStatus	:	sf::Ftp::Response

Disconnected	:	sf::Socket

Divide	:	sf::Keyboard

Done	:	sf::Socket

Down	:	sf::Keyboard

DstAlpha	:	sf::BlendMode

DstColor	:	sf::BlendMode

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z

SFML	2.4.2

	

-	e	-

E	:	sf::Keyboard

Ebcdic	:	sf::Ftp

End	:	sf::Keyboard

EnteringPassiveMode	:	sf::Ftp::Response

Equal	:	sf::Keyboard

Error	:	sf::Socket

Escape	:	sf::Keyboard

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z

SFML	2.4.2

	

-	f	-

F	:	sf::Keyboard

F1	:	sf::Keyboard

F10	:	sf::Keyboard

F11	:	sf::Keyboard

F12	:	sf::Keyboard

F13	:	sf::Keyboard

F14	:	sf::Keyboard

F15	:	sf::Keyboard

F2	:	sf::Keyboard

F3	:	sf::Keyboard

F4	:	sf::Keyboard

F5	:	sf::Keyboard

F6	:	sf::Keyboard

F7	:	sf::Keyboard

F8	:	sf::Keyboard

F9	:	sf::Keyboard

FileActionAborted	:	sf::Ftp::Response

FileActionOk	:	sf::Ftp::Response

FilenameNotAllowed	:	sf::Ftp::Response

FileStatus	:	sf::Ftp::Response

FileUnavailable	:	sf::Ftp::Response

Forbidden	:	sf::Http::Response

Fragment	:	sf::Shader

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z

SFML	2.4.2

	

-	g	-

G	:	sf::Keyboard

GainedFocus	:	sf::Event

GatewayTimeout	:	sf::Http::Response

Geometry	:	sf::Shader

Get	:	sf::Http::Request

Gravity	:	sf::Sensor

Gyroscope	:	sf::Sensor

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z

SFML	2.4.2

	

-	h	-

H	:	sf::Keyboard

Head	:	sf::Http::Request

HelpMessage	:	sf::Ftp::Response

Home	:	sf::Keyboard

HorizontalWheel	:	sf::Mouse

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z

SFML	2.4.2

	

-	i	-

I	:	sf::Keyboard

Insert	:	sf::Keyboard

InsufficientStorageSpace	:	sf::Ftp::Response

InternalServerError	:	sf::Http::Response

InvalidFile	:	sf::Ftp::Response

InvalidResponse	:	sf::Ftp::Response	,	sf::Http::Response

Italic	:	sf::Text

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z

SFML	2.4.2

	

-	j	-

J	:	sf::Keyboard

JoystickButtonPressed	:	sf::Event

JoystickButtonReleased	:	sf::Event

JoystickConnected	:	sf::Event

JoystickDisconnected	:	sf::Event

JoystickMoved	:	sf::Event

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z

SFML	2.4.2

	

-	k	-

K	:	sf::Keyboard

KeyCount	:	sf::Keyboard

KeyPressed	:	sf::Event

KeyReleased	:	sf::Event

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z

SFML	2.4.2

	

-	l	-

L	:	sf::Keyboard

LAlt	:	sf::Keyboard

LBracket	:	sf::Keyboard

LControl	:	sf::Keyboard

Left	:	sf::Keyboard	,	sf::Mouse

LocalError	:	sf::Ftp::Response

LoggedIn	:	sf::Ftp::Response

LostFocus	:	sf::Event

LShift	:	sf::Keyboard

LSystem	:	sf::Keyboard

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z

SFML	2.4.2

	

-	m	-

M	:	sf::Keyboard

Magnetometer	:	sf::Sensor

MaxDatagramSize	:	sf::UdpSocket

Menu	:	sf::Keyboard

Middle	:	sf::Mouse

MouseButtonPressed	:	sf::Event

MouseButtonReleased	:	sf::Event

MouseEntered	:	sf::Event

MouseLeft	:	sf::Event

MouseMoved	:	sf::Event

MouseWheelMoved	:	sf::Event

MouseWheelScrolled	:	sf::Event

MovedPermanently	:	sf::Http::Response

MovedTemporarily	:	sf::Http::Response

MultipleChoices	:	sf::Http::Response

Multiply	:	sf::Keyboard

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z

SFML	2.4.2

	

-	n	-

N	:	sf::Keyboard

NeedAccountToLogIn	:	sf::Ftp::Response

NeedAccountToStore	:	sf::Ftp::Response

NeedInformation	:	sf::Ftp::Response

NeedPassword	:	sf::Ftp::Response

NoContent	:	sf::Http::Response

Normalized	:	sf::Texture

NotEnoughMemory	:	sf::Ftp::Response

NotFound	:	sf::Http::Response

NotImplemented	:	sf::Http::Response

NotLoggedIn	:	sf::Ftp::Response

NotModified	:	sf::Http::Response

NotReady	:	sf::Socket

Num0	:	sf::Keyboard

Num1	:	sf::Keyboard

Num2	:	sf::Keyboard

Num3	:	sf::Keyboard

Num4	:	sf::Keyboard

Num5	:	sf::Keyboard

Num6	:	sf::Keyboard

Num7	:	sf::Keyboard

Num8	:	sf::Keyboard

Num9	:	sf::Keyboard

Numpad0	:	sf::Keyboard

Numpad1	:	sf::Keyboard

Numpad2	:	sf::Keyboard

Numpad3	:	sf::Keyboard

Numpad4	:	sf::Keyboard

Numpad5	:	sf::Keyboard

Numpad6	:	sf::Keyboard

Numpad7	:	sf::Keyboard

Numpad8	:	sf::Keyboard

Numpad9	:	sf::Keyboard

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z

SFML	2.4.2

	

-	o	-

O	:	sf::Keyboard

Ok	:	sf::Ftp::Response	,	sf::Http::Response

One	:	sf::BlendMode

OneMinusDstAlpha	:	sf::BlendMode

OneMinusDstColor	:	sf::BlendMode

OneMinusSrcAlpha	:	sf::BlendMode

OneMinusSrcColor	:	sf::BlendMode

OpeningDataConnection	:	sf::Ftp::Response

Orientation	:	sf::Sensor

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z

SFML	2.4.2

	

-	p	-

P	:	sf::Keyboard

PageDown	:	sf::Keyboard

PageTypeUnknown	:	sf::Ftp::Response

PageUp	:	sf::Keyboard

ParameterNotImplemented	:	sf::Ftp::Response

ParametersUnknown	:	sf::Ftp::Response

Partial	:	sf::Socket

PartialContent	:	sf::Http::Response

Pause	:	sf::Keyboard

Paused	:	sf::SoundSource

Period	:	sf::Keyboard

Pixels	:	sf::Texture

Playing	:	sf::SoundSource

PointlessCommand	:	sf::Ftp::Response

Post	:	sf::Http::Request

PovX	:	sf::Joystick

PovY	:	sf::Joystick

Put	:	sf::Http::Request

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z

SFML	2.4.2

	

-	q	-

Q	:	sf::Keyboard

Quote	:	sf::Keyboard

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z

SFML	2.4.2

	

-	r	-

R	:	sf::Joystick	,	sf::Keyboard

RAlt	:	sf::Keyboard

RangeNotSatisfiable	:	sf::Http::Response

RBracket	:	sf::Keyboard

RControl	:	sf::Keyboard

Regular	:	sf::Text

ResetContent	:	sf::Http::Response

Resized	:	sf::Event

RestartMarkerReply	:	sf::Ftp::Response

Return	:	sf::Keyboard

ReverseSubtract	:	sf::BlendMode

Right	:	sf::Keyboard	,	sf::Mouse

RShift	:	sf::Keyboard

RSystem	:	sf::Keyboard

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z

SFML	2.4.2

	

-	s	-

S	:	sf::Keyboard

SemiColon	:	sf::Keyboard

SensorChanged	:	sf::Event

ServiceNotAvailable	:	sf::Http::Response

ServiceReady	:	sf::Ftp::Response

ServiceReadySoon	:	sf::Ftp::Response

ServiceUnavailable	:	sf::Ftp::Response

Slash	:	sf::Keyboard

Space	:	sf::Keyboard

SrcAlpha	:	sf::BlendMode

SrcColor	:	sf::BlendMode

Stopped	:	sf::SoundSource

StrikeThrough	:	sf::Text

Subtract	:	sf::BlendMode	,	sf::Keyboard

SystemStatus	:	sf::Ftp::Response

SystemType	:	sf::Ftp::Response

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z

SFML	2.4.2

	

-	t	-

T	:	sf::Keyboard

Tab	:	sf::Keyboard

Tcp	:	sf::Socket

TextEntered	:	sf::Event

Tilde	:	sf::Keyboard

TouchBegan	:	sf::Event

TouchEnded	:	sf::Event

TouchMoved	:	sf::Event

TransferAborted	:	sf::Ftp::Response

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z

SFML	2.4.2

	

-	u	-

U	:	sf::Joystick	,	sf::Keyboard

Udp	:	sf::Socket

Unauthorized	:	sf::Http::Response

Underlined	:	sf::Text

Unknown	:	sf::Keyboard

Up	:	sf::Keyboard

UserAcceleration	:	sf::Sensor

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z

SFML	2.4.2

	

-	v	-

V	:	sf::Joystick	,	sf::Keyboard

VersionNotSupported	:	sf::Http::Response

Vertex	:	sf::Shader

VerticalWheel	:	sf::Mouse

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z

SFML	2.4.2

	

-	w	-

W	:	sf::Keyboard

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z

SFML	2.4.2

	

-	x	-

X	:	sf::Joystick	,	sf::Keyboard

XButton1	:	sf::Mouse

XButton2	:	sf::Mouse

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z

SFML	2.4.2

	

-	y	-

Y	:	sf::Joystick	,	sf::Keyboard

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

a b c d e f g h i j k l m n o p q r s t u v w x y z

SFML	2.4.2

	

-	z	-

Z	:	sf::Joystick	,	sf::Keyboard

Zero	:	sf::BlendMode

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

All Functions Variables Typedefs Enumerations Enumerator Related	Functions

SFML	2.4.2

	
operator<	:	sf::IpAddress

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

File	List

Here	is	a	list	of	all	documented	files	with	brief	descriptions:

	 AlResource.hpp
	 Audio.hpp
	 BlendMode.hpp
	 CircleShape.hpp
	 Clock.hpp
	 Color.hpp
	 Config.hpp
	 Context.hpp
	 ContextSettings.hpp
	 ConvexShape.hpp
	 Drawable.hpp
	 Err.hpp
	 Event.hpp
	 Audio/Export.hpp
	 Graphics/Export.hpp

	 Network/Export.hpp
	 System/Export.hpp
	 Window/Export.hpp
	 FileInputStream.hpp
	 Font.hpp
	 Ftp.hpp
	 GlResource.hpp
	 Glsl.hpp
	 Glyph.hpp
	 Graphics.hpp
	 Http.hpp
	 Image.hpp
	 InputSoundFile.hpp
	 InputStream.hpp
	 IpAddress.hpp
	 Joystick.hpp
	 Keyboard.hpp
	 Listener.hpp
	 Lock.hpp
	 Main.hpp
	 mainpage.hpp
	 MemoryInputStream.hpp
	 Mouse.hpp
	 Music.hpp
	 Mutex.hpp
	 NativeActivity.hpp
	 Network.hpp

	 NonCopyable.hpp
	 OpenGL.hpp
	 OutputSoundFile.hpp
	 Packet.hpp
	 PrimitiveType.hpp
	 Rect.hpp
	 RectangleShape.hpp
	 RenderStates.hpp
	 RenderTarget.hpp
	 RenderTexture.hpp
	 RenderWindow.hpp
	 Sensor.hpp
	 Shader.hpp
	 Shape.hpp
	 Sleep.hpp
	 Socket.hpp
	 SocketHandle.hpp
	 SocketSelector.hpp
	 Sound.hpp
	 SoundBuffer.hpp
	 SoundBufferRecorder.hpp
	 SoundFileFactory.hpp
	 SoundFileReader.hpp
	 SoundFileWriter.hpp
	 SoundRecorder.hpp
	 SoundSource.hpp
	 SoundStream.hpp

	 Sprite.hpp
	 String.hpp
	 System.hpp
	 TcpListener.hpp
	 TcpSocket.hpp
	 Text.hpp
	 Texture.hpp
	 Thread.hpp
	 ThreadLocal.hpp
	 ThreadLocalPtr.hpp
	 Time.hpp
	 Touch.hpp
	 Transform.hpp
	 Transformable.hpp
	 UdpSocket.hpp
	 Utf.hpp
	 Vector2.hpp
	 Vector3.hpp
	 Vertex.hpp
	 VertexArray.hpp
	 VideoMode.hpp
	 View.hpp
	 Window/Window.hpp
	 Window.hpp
	 WindowHandle.hpp
	 WindowStyle.hpp

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

AlResource.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_ALRESOURCE_HPP

			26 	#define	SFML_ALRESOURCE_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Audio/Export.hpp>

			32 	

			33 	

			34 	namespace	sf

			35 	{

			40 	class	SFML_AUDIO_API	AlResource

			41 	{

			42 	protected:

			43 	

			48 					AlResource();

			49 	

			54 					~AlResource();

			55 	};

			56 	

			57 	}	//	namespace	sf

			58 	

			59 	

			60 	#endif	//	SFML_ALRESOURCE_HPP

			61 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

Audio.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_AUDIO_HPP

			26 	#define	SFML_AUDIO_HPP

			27 	

			29 	//	Headers

			31 	

			32 	#include	<SFML/System.hpp>

			33 	#include	<SFML/Audio/InputSoundFile.hpp>

			34 	#include	<SFML/Audio/Listener.hpp>

			35 	#include	<SFML/Audio/Music.hpp>

			36 	#include	<SFML/Audio/OutputSoundFile.hpp>

			37 	#include	<SFML/Audio/Sound.hpp>

			38 	#include	<SFML/Audio/SoundBuffer.hpp>

			39 	#include	<SFML/Audio/SoundBufferRecorder.hpp>

			40 	#include	<SFML/Audio/SoundFileFactory.hpp>

			41 	#include	<SFML/Audio/SoundFileReader.hpp>

			42 	#include	<SFML/Audio/SoundFileWriter.hpp>

			43 	#include	<SFML/Audio/SoundRecorder.hpp>

			44 	#include	<SFML/Audio/SoundSource.hpp>

			45 	#include	<SFML/Audio/SoundStream.hpp>

			46 	

			47 	

			48 	#endif	//	SFML_AUDIO_HPP

			49 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

BlendMode.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_BLENDMODE_HPP

			26 	#define	SFML_BLENDMODE_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Graphics/Export.hpp>

			32 	

			33 	

			34 	namespace	sf

			35 	{

			36 	

			41 	struct	SFML_GRAPHICS_API	BlendMode

			42 	{

			49 					enum	Factor

			50 					{

			51 									Zero,													

			52 									One,														

			53 									SrcColor,									

			54 									OneMinusSrcColor,	

			55 									DstColor,									

			56 									OneMinusDstColor,	

			57 									SrcAlpha,									

			58 									OneMinusSrcAlpha,	

			59 									DstAlpha,									

			60 									OneMinusDstAlpha		

			61 					};

			62 	

			69 					enum	Equation

			70 					{

			71 									Add,												

			72 									Subtract,							

			73 									ReverseSubtract	

			74 					};

			75 	

			82 					BlendMode();

			83 	

			95 					BlendMode(Factor	sourceFactor,	Factor	destinationFactor,	Equation	blendEquation	=	Add);

			96 	

		108 					BlendMode(Factor	colorSourceFactor,	Factor	colorDestinationFactor,

		109 															Equation	colorBlendEquation,	Factor	alphaSourceFactor,

		110 															Factor	alphaDestinationFactor,	Equation	alphaBlendEquation);

		111 	

		113 					//	Member	Data

		115 		Factor	colorSrcFactor;	

		116 					Factor	colorDstFactor;	

		117 					Equation	colorEquation;		

		118 					Factor	alphaSrcFactor;	

		119 					Factor	alphaDstFactor;	

		120 					Equation	alphaEquation;		

		121 	};

		122 	

		133 	SFML_GRAPHICS_API	bool	operator	==(const	BlendMode&	left,	const	

		134 	

		145 	SFML_GRAPHICS_API	bool	operator	!=(const	BlendMode&	left,	const	

		146 	

		148 	//	Commonly	used	blending	modes

		150 	SFML_GRAPHICS_API	extern	const	BlendMode	BlendAlpha;				

		151 	SFML_GRAPHICS_API	extern	const	BlendMode	BlendAdd;						

		152 	SFML_GRAPHICS_API	extern	const	BlendMode	BlendMultiply;	

		153 	SFML_GRAPHICS_API	extern	const	BlendMode	BlendNone;					

		154 	

		155 	}	//	namespace	sf

		156 	

		157 	

		158 	#endif	//	SFML_BLENDMODE_HPP

		159 	

		160 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

CircleShape.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_CIRCLESHAPE_HPP

			26 	#define	SFML_CIRCLESHAPE_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Graphics/Export.hpp>

			32 	#include	<SFML/Graphics/Shape.hpp>

			33 	

			34 	

			35 	namespace	sf

			36 	{

			41 	class	SFML_GRAPHICS_API	CircleShape	:	public	Shape

			42 	{

			43 	public:

			44 	

			52 					explicit	CircleShape(float	radius	=	0,	std::size_t	pointCount	=	30);

			53 	

			62 					void	setRadius(float	radius);

			63 	

			72 					float	getRadius()	const;

			73 	

			82 					void	setPointCount(std::size_t	count);

			83 	

			92 					virtual	std::size_t	getPointCount()	const;

			93 	

		107 					virtual	Vector2f	getPoint(std::size_t	index)	const;

		108 	

		109 	private:

		110 	

		112 					//	Member	data

		114 		float							m_radius;					

		115 					std::size_t	m_pointCount;	

		116 	};

		117 	

		118 	}	//	namespace	sf

		119 	

		120 	

		121 	#endif	//	SFML_CIRCLESHAPE_HPP

		122 	

		123 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

Clock.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_CLOCK_HPP

			26 	#define	SFML_CLOCK_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/System/Export.hpp>

			32 	#include	<SFML/System/Time.hpp>

			33 	

			34 	

			35 	namespace	sf

			36 	{

			41 	class	SFML_SYSTEM_API	Clock

			42 	{

			43 	public:

			44 	

			51 					Clock();

			52 	

			63 					Time	getElapsedTime()	const;

			64 	

			74 					Time	restart();

			75 	

			76 	private:

			77 	

			79 					//	Member	data

			81 		Time	m_startTime;	

			82 	};

			83 	

			84 	}	//	namespace	sf

			85 	

			86 	

			87 	#endif	//	SFML_CLOCK_HPP

			88 	

			89 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

Color.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_COLOR_HPP

			26 	#define	SFML_COLOR_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Graphics/Export.hpp>

			32 	

			33 	

			34 	namespace	sf

			35 	{

			40 	class	SFML_GRAPHICS_API	Color

			41 	{

			42 	public:

			43 	

			51 					Color();

			52 	

			62 					Color(Uint8	red,	Uint8	green,	Uint8	blue,	Uint8	alpha	=	255);

			63 	

			70 					explicit	Color(Uint32	color);

			71 	

			78 					Uint32	toInteger()	const;

			79 	

			81 					//	Static	member	data

			83 		static	const	Color	Black;							

			84 					static	const	Color	White;							

			85 					static	const	Color	Red;									

			86 					static	const	Color	Green;							

			87 					static	const	Color	Blue;								

			88 					static	const	Color	Yellow;						

			89 					static	const	Color	Magenta;					

			90 					static	const	Color	Cyan;								

			91 					static	const	Color	Transparent;	

			92 	

			94 					//	Member	data

			96 					Uint8	r;	

			97 					Uint8	g;	

			98 					Uint8	b;	

			99 					Uint8	a;	

		100 	};

		101 	

		114 	SFML_GRAPHICS_API	bool	operator	==(const	Color&	left,	const	Color

		115 	

		128 	SFML_GRAPHICS_API	bool	operator	!=(const	Color&	left,	const	Color

		129 	

		143 	SFML_GRAPHICS_API	Color	operator	+(const	Color&	left,	const	Color

		144 	

		158 	SFML_GRAPHICS_API	Color	operator	-(const	Color&	left,	const	Color

		159 	

		175 	SFML_GRAPHICS_API	Color	operator	*(const	Color&	left,	const	Color

		176 	

		191 	SFML_GRAPHICS_API	Color&	operator	+=(Color&	left,	const	Color&	right);

		192 	

		207 	SFML_GRAPHICS_API	Color&	operator	-=(Color&	left,	const	Color&	right);

		208 	

		225 	SFML_GRAPHICS_API	Color&	operator	*=(Color&	left,	const	Color&	right);

		226 	

		227 	}	//	namespace	sf

		228 	

		229 	

		230 	#endif	//	SFML_COLOR_HPP

		231 	

		232 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

Config.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_CONFIG_HPP

			26 	#define	SFML_CONFIG_HPP

			27 	

			28 	

			30 	//	Define	the	SFML	version

			32 	#define	SFML_VERSION_MAJOR	2

			33 	#define	SFML_VERSION_MINOR	4

			34 	#define	SFML_VERSION_PATCH	2

			35 	

			36 	

			38 	//	Identify	the	operating	system

			39 	//	see	

http://nadeausoftware.com/articles/2012/01/c_c_tip_how_use_compiler_predefined_macros_detect_ope

rating_system

			41 	#if	defined(_WIN32)

			42 	

			43 					//	Windows

			44 					#define	SFML_SYSTEM_WINDOWS

			45 					#ifndef	NOMINMAX

			46 									#define	NOMINMAX

			47 					#endif

			48 	

			49 	#elif	defined(__APPLE__)	&&	defined(__MACH__)

			50 	

			51 					//	Apple	platform,	see	which	one	it	is

			52 					#include	"TargetConditionals.h"

			53 	

			54 					#if	TARGET_OS_IPHONE	||	TARGET_IPHONE_SIMULATOR

			55 	

			56 									//	iOS

			57 									#define	SFML_SYSTEM_IOS

			58 	

			59 					#elif	TARGET_OS_MAC

			60 	

			61 									//	MacOS

			62 									#define	SFML_SYSTEM_MACOS

			63 	

			64 					#else

			65 	

			66 									//	Unsupported	Apple	system

			67 									#error	This	Apple	operating	system	is	not	supported	by	SFML	library

			68 	

			69 					#endif

			70 	

			71 	#elif	defined(__unix__)

			72 	

			73 					//	UNIX	system,	see	which	one	it	is

			74 					#if	defined(__ANDROID__)

			75 	

			76 									//	Android

			77 									#define	SFML_SYSTEM_ANDROID

			78 	

			79 					#elif	defined(__linux__)

			80 	

			81 										//	Linux

			82 									#define	SFML_SYSTEM_LINUX

			83 	

			84 					#elif	defined(__FreeBSD__)	||	defined(__FreeBSD_kernel__)

			85 	

			86 									//	FreeBSD

			87 									#define	SFML_SYSTEM_FREEBSD

			88 	

			89 					#else

			90 	

			91 									//	Unsupported	UNIX	system

			92 									#error	This	UNIX	operating	system	is	not	supported	by	SFML	library

			93 	

			94 					#endif

			95 	

			96 	#else

			97 	

			98 					//	Unsupported	system

			99 					#error	This	operating	system	is	not	supported	by	SFML	library

		100 	

		101 	#endif

		102 	

		103 	

		105 	//	Define	a	portable	debug	macro

		107 	#if	!defined(NDEBUG)

		108 	

		109 					#define	SFML_DEBUG

		110 	

		111 	#endif

		112 	

		113 	

		115 	//	Define	helpers	to	create	portable	import	/	export	macros	for	each	module

		117 	#if	!defined(SFML_STATIC)

		118 	

		119 					#if	defined(SFML_SYSTEM_WINDOWS)

		120 	

		121 									//	Windows	compilers	need	specific	(and	different)	keywords	for	export	and	import

		122 									#define	SFML_API_EXPORT	__declspec(dllexport)

		123 									#define	SFML_API_IMPORT	__declspec(dllimport)

		124 	

		125 									//	For	Visual	C++	compilers,	we	also	need	to	turn	off	this	annoying	C4251	warning

		126 									#ifdef	_MSC_VER

		127 	

		128 													#pragma	warning(disable:	4251)

		129 	

		130 									#endif

		131 	

		132 					#else	//	Linux,	FreeBSD,	Mac	OS	X

		133 	

		134 									#if	__GNUC__	>=	4

		135 	

		136 													//	GCC	4	has	special	keywords	for	showing/hidding	symbols,

		137 													//	the	same	keyword	is	used	for	both	importing	and	exporting

		138 													#define	SFML_API_EXPORT	__attribute__	((__visibility__	("default")))

		139 													#define	SFML_API_IMPORT	__attribute__	((__visibility__	("default")))

		140 	

		141 									#else

		142 	

		143 													//	GCC	<	4	has	no	mechanism	to	explicitely	hide	symbols,	everything's	exported

		144 													#define	SFML_API_EXPORT

		145 													#define	SFML_API_IMPORT

		146 	

		147 									#endif

		148 	

		149 					#endif

		150 	

		151 	#else

		152 	

		153 					//	Static	build	doesn't	need	import/export	macros

		154 					#define	SFML_API_EXPORT

		155 					#define	SFML_API_IMPORT

		156 	

		157 	#endif

		158 	

		159 	

		161 	//	Cross-platform	warning	for	deprecated	functions	and	classes

		162 	//

		163 	//	Usage:

		164 	//	class	SFML_DEPRECATED	MyClass

		165 	//	{

		166 	//					SFML_DEPRECATED	void	memberFunc();

		167 	//	};

		168 	//

		169 	//	SFML_DEPRECATED	void	globalFunc();

		171 	#if	defined(SFML_NO_DEPRECATED_WARNINGS)

		172 	

		173 					//	User	explicitly	requests	to	disable	deprecation	warnings

		174 					#define	SFML_DEPRECATED

		175 	

		176 	#elif	defined(_MSC_VER)

		177 	

		178 					//	Microsoft	C++	compiler

		179 					//	Note:	On	newer	MSVC	versions,	using	deprecated	functions	causes	a	compiler	error.	In

order	to

		180 					//	trigger	a	warning	instead	of	an	error,	the	compiler	flag	/sdl-	(instead	of	/sdl)	must	be

specified.

		181 					#define	SFML_DEPRECATED	__declspec(deprecated)

		182 	

		183 	#elif	defined(__GNUC__)

		184 	

		185 					//	g++	and	Clang

		186 					#define	SFML_DEPRECATED	__attribute__	((deprecated))

		187 	

		188 	#else

		189 	

		190 					//	Other	compilers	are	not	supported,	leave	class	or	function	as-is.

		191 					//	With	a	bit	of	luck,	the	#pragma	directive	works,	otherwise	users	get	a	warning	(no

error!)	for	unrecognized	#pragma.

		192 					#pragma	message("SFML_DEPRECATED	is	not	supported	for	your	compiler,	please	contact	the

SFML	team")

		193 					#define	SFML_DEPRECATED

		194 	

		195 	#endif

		196 	

		197 	

		199 	//	Define	portable	fixed-size	types

		201 	namespace	sf

		202 	{

		203 					//	All	"common"	platforms	use	the	same	size	for	char,	short	and	int

		204 					//	(basically	there	are	3	types	for	3	sizes,	so	no	other	match	is	possible),

		205 					//	we	can	use	them	without	doing	any	kind	of	check

		206 	

		207 					//	8	bits	integer	types

		208 					typedef	signed	char	Int8;

		209 					typedef	unsigned	char	Uint8;

		210 	

		211 					//	16	bits	integer	types

		212 					typedef	signed	short	Int16;

		213 					typedef	unsigned	short	Uint16;

		214 	

		215 					//	32	bits	integer	types

		216 					typedef	signed	int	Int32;

		217 					typedef	unsigned	int	Uint32;

		218 	

		219 					//	64	bits	integer	types

		220 					#if	defined(_MSC_VER)

		221 									typedef	signed			__int64	Int64;

		222 									typedef	unsigned	__int64	Uint64;

		223 					#else

		224 									typedef	signed	long	long	Int64;

		225 									typedef	unsigned	long	long	Uint64;

		226 					#endif

		227 	

		228 	}	//	namespace	sf

		229 	

		230 	

		231 	#endif	//	SFML_CONFIG_HPP

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

Context.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_CONTEXT_HPP

			26 	#define	SFML_CONTEXT_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Window/Export.hpp>

			32 	#include	<SFML/Window/GlResource.hpp>

			33 	#include	<SFML/Window/ContextSettings.hpp>

			34 	#include	<SFML/System/NonCopyable.hpp>

			35 	

			36 	

			37 	namespace	sf

			38 	{

			39 	namespace	priv

			40 	{

			41 					class	GlContext;

			42 	}

			43 	

			44 	typedef	void	(*GlFunctionPointer)();

			45 	

			50 	class	SFML_WINDOW_API	Context	:	GlResource,	NonCopyable

			51 	{

			52 	public:

			53 	

			60 					Context();

			61 	

			68 					~Context();

			69 	

			78 					bool	setActive(bool	active);

			79 	

			90 					const	ContextSettings&	getSettings()	const;

			91 	

		100 					static	bool	isExtensionAvailable(const	char*	name);

		101 	

		110 					static	GlFunctionPointer	getFunction(const	char*	name);

		111 	

		118 					static	const	Context*	getActiveContext();

		119 	

		131 					Context(const	ContextSettings&	settings,	unsigned	int	width,	

		132 	

		133 	private:

		134 	

		136 					//	Member	data

		138 					priv::GlContext*	m_context;	

		139 	};

		140 	

		141 	}	//	namespace	sf

		142 	

		143 	

		144 	#endif	//	SFML_CONTEXT_HPP

		145 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

ContextSettings.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_CONTEXTSETTINGS_HPP

			26 	#define	SFML_CONTEXTSETTINGS_HPP

			27 	

			28 	

			29 	namespace	sf

			30 	{

			36 	struct	ContextSettings

			37 	{

			42 					enum	Attribute

			43 					{

			44 									Default	=	0,						

			45 									Core				=	1	<<	0,	

			46 									Debug			=	1	<<	2		

			47 					};

			48 	

			61 					explicit	ContextSettings(unsigned	int	depth	=	0,	unsigned	int

antialiasing	=	0,	unsigned	int	major	=	1,	unsigned	int	minor	=	1,	

Default,	bool	sRgb	=	false)	:

			62 					depthBits								(depth),

			63 					stencilBits						(stencil),

			64 					antialiasingLevel(antialiasing),

			65 					majorVersion					(major),

			66 					minorVersion					(minor),

			67 					attributeFlags			(attributes),

			68 					sRgbCapable						(sRgb)

			69 					{

			70 					}

			71 	

			73 					//	Member	data

			75 		unsigned	int	depthBits;									

			76 					unsigned	int	stencilBits;							

			77 					unsigned	int	antialiasingLevel;	

			78 					unsigned	int	majorVersion;						

			79 					unsigned	int	minorVersion;						

			80 					Uint32							attributeFlags;				

			81 					bool	sRgbCapable;							

			82 	};

			83 	

			84 	}	//	namespace	sf

			85 	

			86 	

			87 	#endif	//	SFML_CONTEXTSETTINGS_HPP

			88 	

			89 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

ConvexShape.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_CONVEXSHAPE_HPP

			26 	#define	SFML_CONVEXSHAPE_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Graphics/Export.hpp>

			32 	#include	<SFML/Graphics/Shape.hpp>

			33 	#include	<vector>

			34 	

			35 	

			36 	namespace	sf

			37 	{

			42 	class	SFML_GRAPHICS_API	ConvexShape	:	public	Shape

			43 	{

			44 	public:

			45 	

			52 					explicit	ConvexShape(std::size_t	pointCount	=	0);

			53 	

			64 					void	setPointCount(std::size_t	count);

			65 	

			74 					virtual	std::size_t	getPointCount()	const;

			75 	

			91 					void	setPoint(std::size_t	index,	const	Vector2f&	point);

			92 	

		108 					virtual	Vector2f	getPoint(std::size_t	index)	const;

		109 	

		110 	private:

		111 	

		113 					//	Member	data

		115 					std::vector<Vector2f>	m_points;	

		116 	};

		117 	

		118 	}	//	namespace	sf

		119 	

		120 	

		121 	#endif	//	SFML_CONVEXSHAPE_HPP

		122 	

		123 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

Drawable.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_DRAWABLE_HPP

			26 	#define	SFML_DRAWABLE_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Graphics/Export.hpp>

			32 	#include	<SFML/Graphics/RenderStates.hpp>

			33 	

			34 	

			35 	namespace	sf

			36 	{

			37 	class	RenderTarget;

			38 	

			44 	class	SFML_GRAPHICS_API	Drawable

			45 	{

			46 	public:

			47 	

			52 					virtual	~Drawable()	{}

			53 	

			54 	protected:

			55 	

			56 					friend	class	RenderTarget;

			57 	

			69 					virtual	void	draw(RenderTarget&	target,	RenderStates	states)	

			70 	};

			71 	

			72 	}	//	namespace	sf

			73 	

			74 	

			75 	#endif	//	SFML_DRAWABLE_HPP

			76 	

			77 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

Err.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_ERR_HPP

			26 	#define	SFML_ERR_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/System/Export.hpp>

			32 	#include	<ostream>

			33 	

			34 	

			35 	namespace	sf

			36 	{

			41 	SFML_SYSTEM_API	std::ostream&	err();

			42 	

			43 	}	//	namespace	sf

			44 	

			45 	

			46 	#endif	//	SFML_ERR_HPP

			47 	

			48 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

Event.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_EVENT_HPP

			26 	#define	SFML_EVENT_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Config.hpp>

			32 	#include	<SFML/Window/Joystick.hpp>

			33 	#include	<SFML/Window/Keyboard.hpp>

			34 	#include	<SFML/Window/Mouse.hpp>

			35 	#include	<SFML/Window/Sensor.hpp>

			36 	

			37 	

			38 	namespace	sf

			39 	{

			44 	class	Event

			45 	{

			46 	public:

			47 	

			52 					struct	SizeEvent

			53 					{

			54 									unsigned	int	width;		

			55 									unsigned	int	height;	

			56 					};

			57 	

			62 					struct	KeyEvent

			63 					{

			64 									Keyboard::Key	code;				

			65 									bool	alt;					

			66 									bool	control;	

			67 									bool	shift;			

			68 									bool	system;		

			69 					};

			70 	

			75 					struct	TextEvent

			76 					{

			77 									Uint32	unicode;	

			78 					};

			79 	

			84 					struct	MouseMoveEvent

			85 					{

			86 									int	x;	

			87 									int	y;	

			88 					};

			89 	

			95 					struct	MouseButtonEvent

			96 					{

			97 									Mouse::Button	button;	

			98 									int	x;						

			99 									int	y;						

		100 					};

		101 	

		109 					struct	MouseWheelEvent

		110 					{

		111 									int	delta;	

		112 									int	x;					

		113 									int	y;					

		114 					};

		115 	

		120 					struct	MouseWheelScrollEvent

		121 					{

		122 									Mouse::Wheel	wheel;	

		123 									float	delta;	

		124 									int	x;					

		125 									int	y;					

		126 					};

		127 	

		133 					struct	JoystickConnectEvent

		134 					{

		135 									unsigned	int	joystickId;	

		136 					};

		137 	

		142 					struct	JoystickMoveEvent

		143 					{

		144 									unsigned	int	joystickId;	

		145 									Joystick::Axis	axis;							

		146 									float	position;			

		147 					};

		148 	

		154 					struct	JoystickButtonEvent

		155 					{

		156 									unsigned	int	joystickId;	

		157 									unsigned	int	button;					

		158 					};

		159 	

		164 					struct	TouchEvent

		165 					{

		166 									unsigned	int	finger;	

		167 									int	x;															

		168 									int	y;															

		169 					};

		170 	

		175 					struct	SensorEvent

		176 					{

		177 									Sensor::Type	type;	

		178 									float	x;											

		179 									float	y;											

		180 									float	z;											

		181 					};

		182 	

		187 					enum	EventType

		188 					{

		189 									Closed,																	

		190 									Resized,																

		191 									LostFocus,														

		192 									GainedFocus,												

		193 									TextEntered,												

		194 									KeyPressed,													

		195 									KeyReleased,												

		196 									MouseWheelMoved,								

		197 									MouseWheelScrolled,					

		198 									MouseButtonPressed,					

		199 									MouseButtonReleased,				

		200 									MouseMoved,													

		201 									MouseEntered,											

		202 									MouseLeft,														

		203 									JoystickButtonPressed,		

		204 									JoystickButtonReleased,	

		205 									JoystickMoved,										

		206 									JoystickConnected,						

		207 									JoystickDisconnected,			

		208 									TouchBegan,													

		209 									TouchMoved,													

		210 									TouchEnded,													

		211 									SensorChanged,										

		212 	

		213 									Count	

		214 					};

		215 	

		217 					//	Member	data

		219 		EventType	type;	

		220 	

		221 					union

		222 					{

		223 									SizeEvent	size;														

		224 									KeyEvent	key;															

		225 									TextEvent	text;														

		226 									MouseMoveEvent	mouseMove;									

		227 									MouseButtonEvent	mouseButton;							

		228 									MouseWheelEvent	mouseWheel;								

		229 									MouseWheelScrollEvent	mouseWheelScroll;		

		230 									JoystickMoveEvent	joystickMove;						

		231 									JoystickButtonEvent	joystickButton;				

		232 									JoystickConnectEvent	joystickConnect;			

		233 									TouchEvent	touch;													

		234 									SensorEvent	sensor;												

		235 					};

		236 	};

		237 	

		238 	}	//	namespace	sf

		239 	

		240 	

		241 	#endif	//	SFML_EVENT_HPP

		242 	

		243 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

Audio/Export.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_AUDIO_EXPORT_HPP

			26 	#define	SFML_AUDIO_EXPORT_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Config.hpp>

			32 	

			33 	

			35 	//	Define	portable	import	/	export	macros

			37 	#if	defined(SFML_AUDIO_EXPORTS)

			38 	

			39 					#define	SFML_AUDIO_API	SFML_API_EXPORT

			40 	

			41 	#else

			42 	

			43 					#define	SFML_AUDIO_API	SFML_API_IMPORT

			44 	

			45 	#endif

			46 	

			47 	

			48 	#endif	//	SFML_AUDIO_EXPORT_HPP

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

Graphics/Export.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_GRAPHICS_EXPORT_HPP

			26 	#define	SFML_GRAPHICS_EXPORT_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Config.hpp>

			32 	

			33 	

			35 	//	Define	portable	import	/	export	macros

			37 	#if	defined(SFML_GRAPHICS_EXPORTS)

			38 	

			39 					#define	SFML_GRAPHICS_API	SFML_API_EXPORT

			40 	

			41 	#else

			42 	

			43 					#define	SFML_GRAPHICS_API	SFML_API_IMPORT

			44 	

			45 	#endif

			46 	

			47 	

			48 	#endif	//	SFML_GRAPHICS_EXPORT_HPP

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

Network/Export.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_NETWORK_EXPORT_HPP

			26 	#define	SFML_NETWORK_EXPORT_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Config.hpp>

			32 	

			33 	

			35 	//	Define	portable	import	/	export	macros

			37 	#if	defined(SFML_NETWORK_EXPORTS)

			38 	

			39 					#define	SFML_NETWORK_API	SFML_API_EXPORT

			40 	

			41 	#else

			42 	

			43 					#define	SFML_NETWORK_API	SFML_API_IMPORT

			44 	

			45 	#endif

			46 	

			47 	

			48 	#endif	//	SFML_NETWORK_EXPORT_HPP

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

System/Export.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_SYSTEM_EXPORT_HPP

			26 	#define	SFML_SYSTEM_EXPORT_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Config.hpp>

			32 	

			33 	

			35 	//	Define	portable	import	/	export	macros

			37 	#if	defined(SFML_SYSTEM_EXPORTS)

			38 	

			39 					#define	SFML_SYSTEM_API	SFML_API_EXPORT

			40 	

			41 	#else

			42 	

			43 					#define	SFML_SYSTEM_API	SFML_API_IMPORT

			44 	

			45 	#endif

			46 	

			47 	

			48 	#endif	//	SFML_SYSTEM_EXPORT_HPP

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

Window/Export.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_WINDOW_EXPORT_HPP

			26 	#define	SFML_WINDOW_EXPORT_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Config.hpp>

			32 	

			33 	

			35 	//	Define	portable	import	/	export	macros

			37 	#if	defined(SFML_WINDOW_EXPORTS)

			38 	

			39 					#define	SFML_WINDOW_API	SFML_API_EXPORT

			40 	

			41 	#else

			42 	

			43 					#define	SFML_WINDOW_API	SFML_API_IMPORT

			44 	

			45 	#endif

			46 	

			47 	

			48 	#endif	//	SFML_WINDOW_EXPORT_HPP

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

FileInputStream.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_FILEINPUTSTREAM_HPP

			26 	#define	SFML_FILEINPUTSTREAM_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Config.hpp>

			32 	#include	<SFML/System/Export.hpp>

			33 	#include	<SFML/System/InputStream.hpp>

			34 	#include	<SFML/System/NonCopyable.hpp>

			35 	#include	<cstdio>

			36 	#include	<string>

			37 	

			38 	#ifdef	ANDROID

			39 	namespace	sf

			40 	{

			41 	namespace	priv

			42 	{

			43 	class	SFML_SYSTEM_API	ResourceStream;

			44 	}

			45 	}

			46 	#endif

			47 	

			48 	

			49 	namespace	sf

			50 	{

			55 	class	SFML_SYSTEM_API	FileInputStream	:	public	InputStream,	NonCopyable

			56 	{

			57 	public:

			62 					FileInputStream();

			63 	

			68 					virtual	~FileInputStream();

			69 	

			78 					bool	open(const	std::string&	filename);

			79 	

			92 					virtual	Int64	read(void*	data,	Int64	size);

			93 	

		102 					virtual	Int64	seek(Int64	position);

		103 	

		110 					virtual	Int64	tell();

		111 	

		118 					virtual	Int64	getSize();

		119 	

		120 	private:

		121 	

		123 					//	Member	data

		125 	#ifdef	ANDROID

		126 					priv::ResourceStream*	m_file;

		127 	#else

		128 					std::FILE*	m_file;	

		129 	#endif

		130 	};

		131 	

		132 	}	//	namespace	sf

		133 	

		134 	

		135 	#endif	//	SFML_FILEINPUTSTREAM_HPP

		136 	

		137 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

Font.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_FONT_HPP

			26 	#define	SFML_FONT_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Graphics/Export.hpp>

			32 	#include	<SFML/Graphics/Glyph.hpp>

			33 	#include	<SFML/Graphics/Texture.hpp>

			34 	#include	<SFML/Graphics/Rect.hpp>

			35 	#include	<SFML/System/Vector2.hpp>

			36 	#include	<SFML/System/String.hpp>

			37 	#include	<map>

			38 	#include	<string>

			39 	#include	<vector>

			40 	

			41 	

			42 	namespace	sf

			43 	{

			44 	class	InputStream;

			45 	

			50 	class	SFML_GRAPHICS_API	Font

			51 	{

			52 	public:

			53 	

			58 					struct	Info

			59 					{

			60 									std::string	family;	

			61 					};

			62 	

			63 	public:

			64 	

			71 					Font();

			72 	

			79 					Font(const	Font&	copy);

			80 	

			87 					~Font();

			88 	

		109 					bool	loadFromFile(const	std::string&	filename);

		110 	

		130 					bool	loadFromMemory(const	void*	data,	std::size_t	sizeInBytes);

		131 	

		152 					bool	loadFromStream(InputStream&	stream);

		153 	

		160 					const	Info&	getInfo()	const;

		161 	

		180 					const	Glyph&	getGlyph(Uint32	codePoint,	unsigned	int	characterSize,	

outlineThickness	=	0)	const;

		181 	

		198 					float	getKerning(Uint32	first,	Uint32	second,	unsigned	int	characterSize)	

		199 	

		211 					float	getLineSpacing(unsigned	int	characterSize)	const;

		212 	

		226 					float	getUnderlinePosition(unsigned	int	characterSize)	const

		227 	

		240 					float	getUnderlineThickness(unsigned	int	characterSize)	const

		241 	

		254 					const	Texture&	getTexture(unsigned	int	characterSize)	const;

		255 	

		264 					Font&	operator	=(const	Font&	right);

		265 	

		266 	private:

		267 	

		272 					struct	Row

		273 					{

		274 									Row(unsigned	int	rowTop,	unsigned	int	rowHeight)	:	width(0),	top(rowTop),

height(rowHeight)	{}

		275 	

		276 									unsigned	int	width;		

		277 									unsigned	int	top;				

		278 									unsigned	int	height;	

		279 					};

		280 	

		282 					//	Types

		284 		typedef	std::map<Uint64,	Glyph>	GlyphTable;	

		285 	

		290 					struct	Page

		291 					{

		292 									Page();

		293 	

		294 									GlyphTable							glyphs;		

		295 									Texture										texture;	

		296 									unsigned	int					nextRow;	

		297 									std::vector<Row>	rows;				

		298 					};

		299 	

		304 					void	cleanup();

		305 	

		317 					Glyph	loadGlyph(Uint32	codePoint,	unsigned	int	characterSize,	

outlineThickness)	const;

		318 	

		329 					IntRect	findGlyphRect(Page&	page,	unsigned	int	width,	unsigned

		330 	

		339 					bool	setCurrentSize(unsigned	int	characterSize)	const;

		340 	

		342 					//	Types

		344 		typedef	std::map<unsigned	int,	Page>	PageTable;	

		345 	

		347 					//	Member	data

		349 		void*																						m_library;					

		350 					void*																						m_face;								

		351 					void*																						m_streamRec;			

		352 					void*																						m_stroker;					

		353 					int*																							m_refCount;				

		354 					Info																							m_info;								

		355 					mutable	PageTable										m_pages;							

		356 					mutable	std::vector<Uint8>	m_pixelBuffer;	

		357 					#ifdef	SFML_SYSTEM_ANDROID

		358 					void*																						m_stream;	

		359 					#endif

		360 	};

		361 	

		362 	}	//	namespace	sf

		363 	

		364 	

		365 	#endif	//	SFML_FONT_HPP

		366 	

		367 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

Ftp.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_FTP_HPP

			26 	#define	SFML_FTP_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Network/Export.hpp>

			32 	#include	<SFML/Network/TcpSocket.hpp>

			33 	#include	<SFML/System/NonCopyable.hpp>

			34 	#include	<SFML/System/Time.hpp>

			35 	#include	<string>

			36 	#include	<vector>

			37 	

			38 	

			39 	namespace	sf

			40 	{

			41 	class	IpAddress;

			42 	

			47 	class	SFML_NETWORK_API	Ftp	:	NonCopyable

			48 	{

			49 	public:

			50 	

			55 					enum	TransferMode

			56 					{

			57 									Binary,	

			58 									Ascii,		

			59 									Ebcdic		

			60 					};

			61 	

			66 					class	SFML_NETWORK_API	Response

			67 					{

			68 					public:

			69 	

			74 									enum	Status

			75 									{

			76 													//	1xx:	the	requested	action	is	being	initiated,

			77 													//	expect	another	reply	before	proceeding	with	a	new	command

			78 													RestartMarkerReply										=	110,	

			79 													ServiceReadySoon												=	120,	

			80 													DataConnectionAlreadyOpened	=	125,	

			81 													OpeningDataConnection							=	150,	

			82 	

			83 													//	2xx:	the	requested	action	has	been	successfully	completed

			84 													Ok																				=	200,	

			85 													PointlessCommand						=	202,	

			86 													SystemStatus										=	211,	

			87 													DirectoryStatus							=	212,	

			88 													FileStatus												=	213,	

			89 													HelpMessage											=	214,	

			90 													SystemType												=	215,	

			91 													ServiceReady										=	220,	

			92 													ClosingConnection					=	221,	

			93 													DataConnectionOpened		=	225,	

			94 													ClosingDataConnection	=	226,	

			95 													EnteringPassiveMode			=	227,	

			96 													LoggedIn														=	230,	

			97 													FileActionOk										=	250,	

			98 													DirectoryOk											=	257,	

			99 	

		100 													//	3xx:	the	command	has	been	accepted,	but	the	requested	action

		101 													//	is	dormant,	pending	receipt	of	further	information

		102 													NeedPassword							=	331,	

		103 													NeedAccountToLogIn	=	332,	

		104 													NeedInformation				=	350,	

		105 	

		106 													//	4xx:	the	command	was	not	accepted	and	the	requested	action	did	not	take	place,

		107 													//	but	the	error	condition	is	temporary	and	the	action	may	be	requested	again

		108 													ServiceUnavailable								=	421,	

		109 													DataConnectionUnavailable	=	425,	

		110 													TransferAborted											=	426,	

		111 													FileActionAborted									=	450,	

		112 													LocalError																=	451,	

		113 													InsufficientStorageSpace		=	452,	

		114 	

		115 													//	5xx:	the	command	was	not	accepted	and

		116 													//	the	requested	action	did	not	take	place

		117 													CommandUnknown										=	500,	

		118 													ParametersUnknown							=	501,	

		119 													CommandNotImplemented			=	502,	

		120 													BadCommandSequence						=	503,	

		121 													ParameterNotImplemented	=	504,	

		122 													NotLoggedIn													=	530,	

		123 													NeedAccountToStore						=	532,	

		124 													FileUnavailable									=	550,	

		125 													PageTypeUnknown									=	551,	

		126 													NotEnoughMemory									=	552,	

		127 													FilenameNotAllowed						=	553,	

		128 	

		129 													//	10xx:	SFML	custom	codes

		130 													InvalidResponse		=	1000,	

		131 													ConnectionFailed	=	1001,	

		132 													ConnectionClosed	=	1002,	

		133 													InvalidFile						=	1003		

		134 									};

		135 	

		146 									explicit	Response(Status	code	=	InvalidResponse,	const	std::string&	message	=	

		147 	

		157 									bool	isOk()	const;

		158 	

		165 									Status	getStatus()	const;

		166 	

		173 									const	std::string&	getMessage()	const;

		174 	

		175 					private:

		176 	

		178 									//	Member	data

		180 									Status						m_status;		

		181 									std::string	m_message;	

		182 					};

		183 	

		188 					class	SFML_NETWORK_API	DirectoryResponse	:	public	Response

		189 					{

		190 					public:

		191 	

		198 									DirectoryResponse(const	Response&	response);

		199 	

		206 									const	std::string&	getDirectory()	const;

		207 	

		208 					private:

		209 	

		211 									//	Member	data

		213 									std::string	m_directory;	

		214 					};

		215 	

		216 	

		221 					class	SFML_NETWORK_API	ListingResponse	:	public	Response

		222 					{

		223 					public:

		224 	

		232 									ListingResponse(const	Response&	response,	const	std::string&	data);

		233 	

		240 									const	std::vector<std::string>&	getListing()	const;

		241 	

		242 					private:

		243 	

		245 									//	Member	data

		247 									std::vector<std::string>	m_listing;	

		248 					};

		249 	

		250 	

		258 					~Ftp();

		259 	

		281 					Response	connect(const	IpAddress&	server,	unsigned	short	port	=	21,	

Time::Zero);

		282 	

		291 					Response	disconnect();

		292 	

		302 					Response	login();

		303 	

		316 					Response	login(const	std::string&	name,	const	std::string&	password);

		317 	

		327 					Response	keepAlive();

		328 	

		340 					DirectoryResponse	getWorkingDirectory();

		341 	

		357 					ListingResponse	getDirectoryListing(const	std::string&	directory	=	

		358 	

		371 					Response	changeDirectory(const	std::string&	directory);

		372 	

		381 					Response	parentDirectory();

		382 	

		396 					Response	createDirectory(const	std::string&	name);

		397 	

		413 					Response	deleteDirectory(const	std::string&	name);

		414 	

		429 					Response	renameFile(const	std::string&	file,	const	std::string&	newName);

		430 	

		446 					Response	deleteFile(const	std::string&	name);

		447 	

		468 					Response	download(const	std::string&	remoteFile,	const	std::string&	localPath,

TransferMode	mode	=	Binary);

		469 	

		487 					Response	upload(const	std::string&	localFile,	const	std::string&	remotePath,	

mode	=	Binary);

		488 	

		505 					Response	sendCommand(const	std::string&	command,	const	std::string&	parameter	=	

		506 	

		507 	private:

		508 	

		518 					Response	getResponse();

		519 	

		525 					class	DataChannel;

		526 	

		527 					friend	class	DataChannel;

		528 	

		530 					//	Member	data

		532 		TcpSocket			m_commandSocket;	

		533 					std::string	m_receiveBuffer;	

		534 	};

		535 	

		536 	}	//	namespace	sf

		537 	

		538 	

		539 	#endif	//	SFML_FTP_HPP

		540 	

		541 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

GlResource.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_GLRESOURCE_HPP

			26 	#define	SFML_GLRESOURCE_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Window/Export.hpp>

			32 	#include	<SFML/System/NonCopyable.hpp>

			33 	

			34 	

			35 	namespace	sf

			36 	{

			37 	

			38 	class	Context;

			39 	

			44 	class	SFML_WINDOW_API	GlResource

			45 	{

			46 	protected:

			47 	

			52 					GlResource();

			53 	

			58 					~GlResource();

			59 	

			64 					static	void	ensureGlContext();

			65 	

			70 					class	SFML_WINDOW_API	TransientContextLock	:	NonCopyable

			71 					{

			72 					public:

			77 									TransientContextLock();

			78 	

			83 									~TransientContextLock();

			84 	

			85 					private:

			86 									Context*	m_context;	

			87 					};

			88 	};

			89 	

			90 	}	//	namespace	sf

			91 	

			92 	

			93 	#endif	//	SFML_GLRESOURCE_HPP

			94 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

Glsl.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_GLSL_HPP

			26 	#define	SFML_GLSL_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Graphics/Transform.hpp>

			32 	#include	<SFML/Graphics/Color.hpp>

			33 	#include	<SFML/System/Vector2.hpp>

			34 	#include	<SFML/System/Vector3.hpp>

			35 	

			36 	

			37 	namespace	sf

			38 	{

			39 	namespace	priv

			40 	{

			41 					//	Forward	declarations

			42 					template	<std::size_t	Columns,	std::size_t	Rows>

			43 					struct	Matrix;

			44 	

			45 					template	<typename	T>

			46 					struct	Vector4;

			47 	

			48 	#include	<SFML/Graphics/Glsl.inl>

			49 	

			50 	}	//	namespace	priv

			51 	

			52 	

			57 	namespace	Glsl

			58 	{

			59 	

			64 					typedef	Vector2<float>	Vec2;

			65 	

			70 					typedef	Vector2<int>	Ivec2;

			71 	

			76 					typedef	Vector2<bool>	Bvec2;

			77 	

			82 					typedef	Vector3<float>	Vec3;

			83 	

			88 					typedef	Vector3<int>	Ivec3;

			89 	

			94 					typedef	Vector3<bool>	Bvec3;

			95 	

			96 	#ifdef	SFML_DOXYGEN

			97 	

		110 					typedef	implementation-defined	Vec4;

		111 	

		124 					typedef	implementation-defined	Ivec4;

		125 	

		130 					typedef	implementation-defined	Bvec4;

		131 	

		155 					typedef	implementation-defined	Mat3;

		156 	

		181 					typedef	implementation-defined	Mat4;

		182 	

		183 	#else	//	SFML_DOXYGEN

		184 	

		185 					typedef	priv::Vector4<float>	Vec4;

		186 					typedef	priv::Vector4<int>	Ivec4;

		187 					typedef	priv::Vector4<bool>	Bvec4;

		188 					typedef	priv::Matrix<3,	3>	Mat3;

		189 					typedef	priv::Matrix<4,	4>	Mat4;

		190 	

		191 	#endif	//	SFML_DOXYGEN

		192 	

		193 	}	//	namespace	Glsl

		194 	}	//	namespace	sf

		195 	

		196 	#endif	//	SFML_GLSL_HPP

		197 	

		198 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

Glyph.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_GLYPH_HPP

			26 	#define	SFML_GLYPH_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Graphics/Export.hpp>

			32 	#include	<SFML/Graphics/Rect.hpp>

			33 	

			34 	

			35 	namespace	sf

			36 	{

			41 	class	SFML_GRAPHICS_API	Glyph

			42 	{

			43 	public:

			44 	

			49 					Glyph()	:	advance(0)	{}

			50 	

			52 					//	Member	data

			54 		float	advance;					

			55 					FloatRect	bounds;						

			56 					IntRect	textureRect;	

			57 	};

			58 	

			59 	}	//	namespace	sf

			60 	

			61 	

			62 	#endif	//	SFML_GLYPH_HPP

			63 	

			64 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

Graphics.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_GRAPHICS_HPP

			26 	#define	SFML_GRAPHICS_HPP

			27 	

			29 	//	Headers

			31 	

			32 	#include	<SFML/Window.hpp>

			33 	#include	<SFML/Graphics/BlendMode.hpp>

			34 	#include	<SFML/Graphics/CircleShape.hpp>

			35 	#include	<SFML/Graphics/Color.hpp>

			36 	#include	<SFML/Graphics/ConvexShape.hpp>

			37 	#include	<SFML/Graphics/Drawable.hpp>

			38 	#include	<SFML/Graphics/Font.hpp>

			39 	#include	<SFML/Graphics/Glyph.hpp>

			40 	#include	<SFML/Graphics/Image.hpp>

			41 	#include	<SFML/Graphics/PrimitiveType.hpp>

			42 	#include	<SFML/Graphics/Rect.hpp>

			43 	#include	<SFML/Graphics/RectangleShape.hpp>

			44 	#include	<SFML/Graphics/RenderStates.hpp>

			45 	#include	<SFML/Graphics/RenderTarget.hpp>

			46 	#include	<SFML/Graphics/RenderTexture.hpp>

			47 	#include	<SFML/Graphics/RenderWindow.hpp>

			48 	#include	<SFML/Graphics/Shader.hpp>

			49 	#include	<SFML/Graphics/Shape.hpp>

			50 	#include	<SFML/Graphics/Sprite.hpp>

			51 	#include	<SFML/Graphics/Text.hpp>

			52 	#include	<SFML/Graphics/Texture.hpp>

			53 	#include	<SFML/Graphics/Transform.hpp>

			54 	#include	<SFML/Graphics/Transformable.hpp>

			55 	#include	<SFML/Graphics/Vertex.hpp>

			56 	#include	<SFML/Graphics/VertexArray.hpp>

			57 	#include	<SFML/Graphics/View.hpp>

			58 	

			59 	

			60 	#endif	//	SFML_GRAPHICS_HPP

			61 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

Http.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_HTTP_HPP

			26 	#define	SFML_HTTP_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Network/Export.hpp>

			32 	#include	<SFML/Network/IpAddress.hpp>

			33 	#include	<SFML/Network/TcpSocket.hpp>

			34 	#include	<SFML/System/NonCopyable.hpp>

			35 	#include	<SFML/System/Time.hpp>

			36 	#include	<map>

			37 	#include	<string>

			38 	

			39 	

			40 	namespace	sf

			41 	{

			46 	class	SFML_NETWORK_API	Http	:	NonCopyable

			47 	{

			48 	public:

			49 	

			54 					class	SFML_NETWORK_API	Request

			55 					{

			56 					public:

			57 	

			62 									enum	Method

			63 									{

			64 													Get,			

			65 													Post,		

			66 													Head,		

			67 													Put,			

			68 													Delete	

			69 									};

			70 	

			82 									Request(const	std::string&	uri	=	"/",	Method	method	=	Get,	

"");

			83 	

			97 									void	setField(const	std::string&	field,	const	std::string&	value);

			98 	

		109 									void	setMethod(Method	method);

		110 	

		121 									void	setUri(const	std::string&	uri);

		122 	

		132 									void	setHttpVersion(unsigned	int	major,	unsigned	int	minor);

		133 	

		144 									void	setBody(const	std::string&	body);

		145 	

		146 					private:

		147 	

		148 									friend	class	Http;

		149 	

		159 									std::string	prepare()	const;

		160 	

		171 									bool	hasField(const	std::string&	field)	const;

		172 	

		174 									//	Types

		176 		typedef	std::map<std::string,	std::string>	FieldTable;

		177 	

		179 									//	Member	data

		181 									FieldTable			m_fields;							

		182 									Method							m_method;							

		183 									std::string		m_uri;										

		184 									unsigned	int	m_majorVersion;	

		185 									unsigned	int	m_minorVersion;	

		186 									std::string		m_body;									

		187 					};

		188 	

		193 					class	SFML_NETWORK_API	Response

		194 					{

		195 					public:

		196 	

		201 									enum	Status

		202 									{

		203 													//	2xx:	success

		204 													Ok													=	200,	

		205 													Created								=	201,	

		206 													Accepted							=	202,	

		207 													NoContent						=	204,	

		208 													ResetContent			=	205,	

		209 													PartialContent	=	206,	

		210 	

		211 													//	3xx:	redirection

		212 													MultipleChoices		=	300,	

		213 													MovedPermanently	=	301,	

		214 													MovedTemporarily	=	302,	

		215 													NotModified						=	304,	

		216 	

		217 													//	4xx:	client	error

		218 													BadRequest										=	400,	

		219 													Unauthorized								=	401,	

		220 													Forbidden											=	403,	

		221 													NotFound												=	404,	

		222 													RangeNotSatisfiable	=	407,	

		223 	

		224 													//	5xx:	server	error

		225 													InternalServerError	=	500,	

		226 													NotImplemented						=	501,	

		227 													BadGateway										=	502,	

		228 													ServiceNotAvailable	=	503,	

		229 													GatewayTimeout						=	504,	

		230 													VersionNotSupported	=	505,	

		231 	

		232 													//	10xx:	SFML	custom	codes

		233 													InvalidResponse		=	1000,	

		234 													ConnectionFailed	=	1001		

		235 									};

		236 	

		243 									Response();

		244 	

		257 									const	std::string&	getField(const	std::string&	field)	const

		258 	

		270 									Status	getStatus()	const;

		271 	

		280 									unsigned	int	getMajorHttpVersion()	const;

		281 	

		290 									unsigned	int	getMinorHttpVersion()	const;

		291 	

		304 									const	std::string&	getBody()	const;

		305 	

		306 					private:

		307 	

		308 									friend	class	Http;

		309 	

		319 									void	parse(const	std::string&	data);

		320 	

		321 	

		331 									void	parseFields(std::istream	&in);

		332 	

		334 									//	Types

		336 		typedef	std::map<std::string,	std::string>	FieldTable;

		337 	

		339 									//	Member	data

		341 									FieldTable			m_fields;							

		342 									Status							m_status;							

		343 									unsigned	int	m_majorVersion;	

		344 									unsigned	int	m_minorVersion;	

		345 									std::string		m_body;									

		346 					};

		347 	

		352 					Http();

		353 	

		368 					Http(const	std::string&	host,	unsigned	short	port	=	0);

		369 	

		385 					void	setHost(const	std::string&	host,	unsigned	short	port	=	0);

		386 	

		405 					Response	sendRequest(const	Request&	request,	Time	timeout	=	

		406 	

		407 	private:

		408 	

		410 					//	Member	data

		412 		TcpSocket						m_connection;	

		413 					IpAddress						m_host;							

		414 					std::string				m_hostName;			

		415 					unsigned	short	m_port;							

		416 	};

		417 	

		418 	}	//	namespace	sf

		419 	

		420 	

		421 	#endif	//	SFML_HTTP_HPP

		422 	

		423 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

http://www.sfml-dev.org/license.php

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

Image.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_IMAGE_HPP

			26 	#define	SFML_IMAGE_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Graphics/Export.hpp>

			32 	#include	<SFML/Graphics/Color.hpp>

			33 	#include	<SFML/Graphics/Rect.hpp>

			34 	#include	<string>

			35 	#include	<vector>

			36 	

			37 	

			38 	namespace	sf

			39 	{

			40 	class	InputStream;

			41 	

			46 	class	SFML_GRAPHICS_API	Image

			47 	{

			48 	public:

			49 	

			56 					Image();

			57 	

			62 					~Image();

			63 	

			72 					void	create(unsigned	int	width,	unsigned	int	height,	const	Color

			73 	

			87 					void	create(unsigned	int	width,	unsigned	int	height,	const	Uint8*	pixels);

			88 	

		104 					bool	loadFromFile(const	std::string&	filename);

		105 	

		122 					bool	loadFromMemory(const	void*	data,	std::size_t	size);

		123 	

		139 					bool	loadFromStream(InputStream&	stream);

		140 	

		156 					bool	saveToFile(const	std::string&	filename)	const;

		157 	

		164 					Vector2u	getSize()	const;

		165 	

		177 					void	createMaskFromColor(const	Color&	color,	Uint8	alpha	=	0);

		178 	

		199 					void	copy(const	Image&	source,	unsigned	int	destX,	unsigned	

sourceRect	=	IntRect(0,	0,	0,	0),	bool	applyAlpha	=	false);

		200 	

		215 					void	setPixel(unsigned	int	x,	unsigned	int	y,	const	Color&	color);

		216 	

		232 					Color	getPixel(unsigned	int	x,	unsigned	int	y)	const;

		233 	

		247 					const	Uint8*	getPixelsPtr()	const;

		248 	

		253 					void	flipHorizontally();

		254 	

		259 					void	flipVertically();

		260 	

		261 	private:

		262 	

		264 					//	Member	data

		266 		Vector2u											m_size;			

		267 					std::vector<Uint8>	m_pixels;	

		268 					#ifdef	SFML_SYSTEM_ANDROID

		269 					void*														m_stream;	

		270 					#endif

		271 	};

		272 	

		273 	}	//	namespace	sf

		274 	

		275 	

		276 	#endif	//	SFML_IMAGE_HPP

		277 	

		278 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

InputSoundFile.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_INPUTSOUNDFILE_HPP

			26 	#define	SFML_INPUTSOUNDFILE_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Audio/Export.hpp>

			32 	#include	<SFML/System/NonCopyable.hpp>

			33 	#include	<SFML/System/Time.hpp>

			34 	#include	<string>

			35 	

			36 	

			37 	namespace	sf

			38 	{

			39 	class	InputStream;

			40 	class	SoundFileReader;

			41 	

			46 	class	SFML_AUDIO_API	InputSoundFile	:	NonCopyable

			47 	{

			48 	public:

			49 	

			54 					InputSoundFile();

			55 	

			60 					~InputSoundFile();

			61 	

			73 					bool	openFromFile(const	std::string&	filename);

			74 	

			87 					bool	openFromMemory(const	void*	data,	std::size_t	sizeInBytes);

			88 	

		100 					bool	openFromStream(InputStream&	stream);

		101 	

		112 					bool	openForWriting(const	std::string&	filename,	unsigned	int

sampleRate);

		113 	

		120 					Uint64	getSampleCount()	const;

		121 	

		128 					unsigned	int	getChannelCount()	const;

		129 	

		136 					unsigned	int	getSampleRate()	const;

		137 	

		147 					Time	getDuration()	const;

		148 	

		165 					void	seek(Uint64	sampleOffset);

		166 	

		179 					void	seek(Time	timeOffset);

		180 	

		190 					Uint64	read(Int16*	samples,	Uint64	maxCount);

		191 	

		192 	private:

		193 	

		198 					void	close();

		199 	

		201 					//	Member	data

		203 		SoundFileReader*	m_reader;							

		204 					InputStream*					m_stream;							

		205 					bool													m_streamOwned;		

		206 					Uint64											m_sampleCount;		

		207 					unsigned	int					m_channelCount;	

		208 					unsigned	int					m_sampleRate;			

		209 	};

		210 	

		211 	}	//	namespace	sf

		212 	

		213 	

		214 	#endif	//	SFML_INPUTSOUNDFILE_HPP

		215 	

		216 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

InputStream.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_INPUTSTREAM_HPP

			26 	#define	SFML_INPUTSTREAM_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Config.hpp>

			32 	#include	<SFML/System/Export.hpp>

			33 	

			34 	

			35 	namespace	sf

			36 	{

			41 	class	SFML_SYSTEM_API	InputStream

			42 	{

			43 	public:

			44 	

			49 					virtual	~InputStream()	{}

			50 	

			63 					virtual	Int64	read(void*	data,	Int64	size)	=	0;

			64 	

			73 					virtual	Int64	seek(Int64	position)	=	0;

			74 	

			81 					virtual	Int64	tell()	=	0;

			82 	

			89 					virtual	Int64	getSize()	=	0;

			90 	};

			91 	

			92 	}	//	namespace	sf

			93 	

			94 	

			95 	#endif	//	SFML_INPUTSTREAM_HPP

			96 	

			97 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

IpAddress.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_IPADDRESS_HPP

			26 	#define	SFML_IPADDRESS_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Network/Export.hpp>

			32 	#include	<SFML/System/Time.hpp>

			33 	#include	<istream>

			34 	#include	<ostream>

			35 	#include	<string>

			36 	

			37 	

			38 	namespace	sf

			39 	{

			44 	class	SFML_NETWORK_API	IpAddress

			45 	{

			46 	public:

			47 	

			54 					IpAddress();

			55 	

			65 					IpAddress(const	std::string&	address);

			66 	

			79 					IpAddress(const	char*	address);

			80 	

			94 					IpAddress(Uint8	byte0,	Uint8	byte1,	Uint8	byte2,	Uint8	byte3);

			95 	

		109 					explicit	IpAddress(Uint32	address);

		110 	

		123 					std::string	toString()	const;

		124 	

		139 					Uint32	toInteger()	const;

		140 	

		155 					static	IpAddress	getLocalAddress();

		156 	

		179 					static	IpAddress	getPublicAddress(Time	timeout	=	Time::Zero);

		180 	

		182 					//	Static	member	data

		184 		static	const	IpAddress	None;						

		185 					static	const	IpAddress	Any;							

		186 					static	const	IpAddress	LocalHost;	

		187 					static	const	IpAddress	Broadcast;	

		188 	

		189 	private:

		190 	

		191 					friend	SFML_NETWORK_API	bool	operator	<(const	IpAddress&	left,	

		192 	

		199 					void	resolve(const	std::string&	address);

		200 	

		202 					//	Member	data

		204 					Uint32	m_address;	

		205 					bool			m_valid;			

		206 	};

		207 	

		217 	SFML_NETWORK_API	bool	operator	==(const	IpAddress&	left,	const	IpAddress

		218 	

		228 	SFML_NETWORK_API	bool	operator	!=(const	IpAddress&	left,	const	IpAddress

		229 	

		239 	SFML_NETWORK_API	bool	operator	<(const	IpAddress&	left,	const	IpAddress

		240 	

		250 	SFML_NETWORK_API	bool	operator	>(const	IpAddress&	left,	const	IpAddress

		251 	

		261 	SFML_NETWORK_API	bool	operator	<=(const	IpAddress&	left,	const	IpAddress

		262 	

		272 	SFML_NETWORK_API	bool	operator	>=(const	IpAddress&	left,	const	IpAddress

		273 	

		283 	SFML_NETWORK_API	std::istream&	operator	>>(std::istream&	stream,	

		284 	

		294 	SFML_NETWORK_API	std::ostream&	operator	<<(std::ostream&	stream,	

		295 	

		296 	}	//	namespace	sf

		297 	

		298 	

		299 	#endif	//	SFML_IPADDRESS_HPP

		300 	

		301 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

Joystick.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_JOYSTICK_HPP

			26 	#define	SFML_JOYSTICK_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Window/Export.hpp>

			32 	#include	<SFML/System/String.hpp>

			33 	

			34 	

			35 	namespace	sf

			36 	{

			41 	class	SFML_WINDOW_API	Joystick

			42 	{

			43 	public:

			44 	

			49 					enum

			50 					{

			51 									Count							=	8,		

			52 									ButtonCount	=	32,	

			53 									AxisCount			=	8			

			54 					};

			55 	

			60 					enum	Axis

			61 					{

			62 									X,				

			63 									Y,				

			64 									Z,				

			65 									R,				

			66 									U,				

			67 									V,				

			68 									PovX,	

			69 									PovY		

			70 					};

			71 	

			76 					struct	SFML_WINDOW_API	Identification

			77 					{

			78 									Identification();

			79 	

			80 									String	name;						

			81 									unsigned	int	vendorId;		

			82 									unsigned	int	productId;	

			83 					};

			84 	

			93 					static	bool	isConnected(unsigned	int	joystick);

			94 	

		105 					static	unsigned	int	getButtonCount(unsigned	int	joystick);

		106 	

		118 					static	bool	hasAxis(unsigned	int	joystick,	Axis	axis);

		119 	

		131 					static	bool	isButtonPressed(unsigned	int	joystick,	unsigned	

		132 	

		144 					static	float	getAxisPosition(unsigned	int	joystick,	Axis	axis);

		145 	

		154 					static	Identification	getIdentification(unsigned	int	joystick);

		155 	

		165 					static	void	update();

		166 	};

		167 	

		168 	}	//	namespace	sf

		169 	

		170 	

		171 	#endif	//	SFML_JOYSTICK_HPP

		172 	

		173 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

Keyboard.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_KEYBOARD_HPP

			26 	#define	SFML_KEYBOARD_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Window/Export.hpp>

			32 	

			33 	

			34 	namespace	sf

			35 	{

			40 	class	SFML_WINDOW_API	Keyboard

			41 	{

			42 	public:

			43 	

			48 					enum	Key

			49 					{

			50 									Unknown	=	-1,	

			51 									A	=	0,								

			52 									B,												

			53 									C,												

			54 									D,												

			55 									E,												

			56 									F,												

			57 									G,												

			58 									H,												

			59 									I,												

			60 									J,												

			61 									K,												

			62 									L,												

			63 									M,												

			64 									N,												

			65 									O,												

			66 									P,												

			67 									Q,												

			68 									R,												

			69 									S,												

			70 									T,												

			71 									U,												

			72 									V,												

			73 									W,												

			74 									X,												

			75 									Y,												

			76 									Z,												

			77 									Num0,									

			78 									Num1,									

			79 									Num2,									

			80 									Num3,									

			81 									Num4,									

			82 									Num5,									

			83 									Num6,									

			84 									Num7,									

			85 									Num8,									

			86 									Num9,									

			87 									Escape,							

			88 									LControl,					

			89 									LShift,							

			90 									LAlt,									

			91 									LSystem,						

			92 									RControl,					

			93 									RShift,							

			94 									RAlt,									

			95 									RSystem,						

			96 									Menu,									

			97 									LBracket,					

			98 									RBracket,					

			99 									SemiColon,				

		100 									Comma,								

		101 									Period,							

		102 									Quote,								

		103 									Slash,								

		104 									BackSlash,				

		105 									Tilde,								

		106 									Equal,								

		107 									Dash,									

		108 									Space,								

		109 									Return,							

		110 									BackSpace,				

		111 									Tab,										

		112 									PageUp,							

		113 									PageDown,					

		114 									End,										

		115 									Home,									

		116 									Insert,							

		117 									Delete,							

		118 									Add,										

		119 									Subtract,					

		120 									Multiply,					

		121 									Divide,							

		122 									Left,									

		123 									Right,								

		124 									Up,											

		125 									Down,									

		126 									Numpad0,						

		127 									Numpad1,						

		128 									Numpad2,						

		129 									Numpad3,						

		130 									Numpad4,						

		131 									Numpad5,						

		132 									Numpad6,						

		133 									Numpad7,						

		134 									Numpad8,						

		135 									Numpad9,						

		136 									F1,											

		137 									F2,											

		138 									F3,											

		139 									F4,											

		140 									F5,											

		141 									F6,											

		142 									F7,											

		143 									F8,											

		144 									F9,											

		145 									F10,										

		146 									F11,										

		147 									F12,										

		148 									F13,										

		149 									F14,										

		150 									F15,										

		151 									Pause,								

		152 	

		153 									KeyCount						

		154 					};

		155 	

		164 					static	bool	isKeyPressed(Key	key);

		165 	

		179 					static	void	setVirtualKeyboardVisible(bool	visible);

		180 	};

		181 	

		182 	}	//	namespace	sf

		183 	

		184 	

		185 	#endif	//	SFML_KEYBOARD_HPP

		186 	

		187 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

Listener.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_LISTENER_HPP

			26 	#define	SFML_LISTENER_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Audio/Export.hpp>

			32 	#include	<SFML/System/Vector3.hpp>

			33 	

			34 	

			35 	namespace	sf

			36 	{

			42 	class	SFML_AUDIO_API	Listener

			43 	{

			44 	public:

			45 	

			58 					static	void	setGlobalVolume(float	volume);

			59 	

			68 					static	float	getGlobalVolume();

			69 	

			82 					static	void	setPosition(float	x,	float	y,	float	z);

			83 	

			94 					static	void	setPosition(const	Vector3f&	position);

			95 	

		104 					static	Vector3f	getPosition();

		105 	

		123 					static	void	setDirection(float	x,	float	y,	float	z);

		124 	

		140 					static	void	setDirection(const	Vector3f&	direction);

		141 	

		150 					static	Vector3f	getDirection();

		151 	

		169 					static	void	setUpVector(float	x,	float	y,	float	z);

		170 	

		186 					static	void	setUpVector(const	Vector3f&	upVector);

		187 	

		196 					static	Vector3f	getUpVector();

		197 	};

		198 	

		199 	}	//	namespace	sf

		200 	

		201 	

		202 	#endif	//	SFML_LISTENER_HPP

		203 	

		204 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

Lock.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_LOCK_HPP

			26 	#define	SFML_LOCK_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/System/Export.hpp>

			32 	#include	<SFML/System/NonCopyable.hpp>

			33 	

			34 	

			35 	namespace	sf

			36 	{

			37 	class	Mutex;

			38 	

			43 	class	SFML_SYSTEM_API	Lock	:	NonCopyable

			44 	{

			45 	public:

			46 	

			55 					explicit	Lock(Mutex&	mutex);

			56 	

			63 					~Lock();

			64 	

			65 	private:

			66 	

			68 					//	Member	data

			70 		Mutex&	m_mutex;	

			71 	};

			72 	

			73 	}	//	namespace	sf

			74 	

			75 	

			76 	#endif	//	SFML_LOCK_HPP

			77 	

			78 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

Main.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_MAIN_HPP

			26 	#define	SFML_MAIN_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Config.hpp>

			32 	

			33 	

			34 	#if	defined(SFML_SYSTEM_IOS)

			35 	

			36 					//	On	iOS,	we	have	no	choice	but	to	have	our	own	main,

			37 					//	so	we	need	to	rename	the	user	one	and	call	it	later

			38 					#define	main	sfmlMain

			39 	

			40 	#endif

			41 	

			42 	

			43 	#endif	//	SFML_MAIN_HPP

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

mainpage.hpp

				1 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

MemoryInputStream.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_MEMORYINPUTSTREAM_HPP

			26 	#define	SFML_MEMORYINPUTSTREAM_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Config.hpp>

			32 	#include	<SFML/System/InputStream.hpp>

			33 	#include	<SFML/System/Export.hpp>

			34 	#include	<cstdlib>

			35 	

			36 	

			37 	namespace	sf

			38 	{

			43 	class	SFML_SYSTEM_API	MemoryInputStream	:	public	InputStream

			44 	{

			45 	public:

			46 	

			51 					MemoryInputStream();

			52 	

			60 					void	open(const	void*	data,	std::size_t	sizeInBytes);

			61 	

			74 					virtual	Int64	read(void*	data,	Int64	size);

			75 	

			84 					virtual	Int64	seek(Int64	position);

			85 	

			92 					virtual	Int64	tell();

			93 	

		100 					virtual	Int64	getSize();

		101 	

		102 	private:

		103 	

		105 					//	Member	data

		107 		const	char*	m_data;			

		108 					Int64							m_size;			

		109 					Int64							m_offset;	

		110 	};

		111 	

		112 	}	//	namespace	sf

		113 	

		114 	

		115 	#endif	//	SFML_MEMORYINPUTSTREAM_HPP

		116 	

		117 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

Mouse.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_MOUSE_HPP

			26 	#define	SFML_MOUSE_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Window/Export.hpp>

			32 	#include	<SFML/System/Vector2.hpp>

			33 	

			34 	

			35 	namespace	sf

			36 	{

			37 	class	Window;

			38 	

			43 	class	SFML_WINDOW_API	Mouse

			44 	{

			45 	public:

			46 	

			51 					enum	Button

			52 					{

			53 									Left,							

			54 									Right,						

			55 									Middle,					

			56 									XButton1,			

			57 									XButton2,			

			58 	

			59 									ButtonCount	

			60 					};

			61 	

			66 					enum	Wheel

			67 					{

			68 									VerticalWheel,		

			69 									HorizontalWheel	

			70 					};

			71 	

			80 					static	bool	isButtonPressed(Button	button);

			81 	

			91 					static	Vector2i	getPosition();

			92 	

		104 					static	Vector2i	getPosition(const	Window&	relativeTo);

		105 	

		115 					static	void	setPosition(const	Vector2i&	position);

		116 	

		127 					static	void	setPosition(const	Vector2i&	position,	const	Window

		128 	};

		129 	

		130 	}	//	namespace	sf

		131 	

		132 	

		133 	#endif	//	SFML_MOUSE_HPP

		134 	

		135 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

Music.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_MUSIC_HPP

			26 	#define	SFML_MUSIC_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Audio/Export.hpp>

			32 	#include	<SFML/Audio/SoundStream.hpp>

			33 	#include	<SFML/Audio/InputSoundFile.hpp>

			34 	#include	<SFML/System/Mutex.hpp>

			35 	#include	<SFML/System/Time.hpp>

			36 	#include	<string>

			37 	#include	<vector>

			38 	

			39 	

			40 	namespace	sf

			41 	{

			42 	class	InputStream;

			43 	

			48 	class	SFML_AUDIO_API	Music	:	public	SoundStream

			49 	{

			50 	public:

			51 	

			56 					Music();

			57 	

			62 					~Music();

			63 	

			83 					bool	openFromFile(const	std::string&	filename);

			84 	

		106 					bool	openFromMemory(const	void*	data,	std::size_t	sizeInBytes);

		107 	

		127 					bool	openFromStream(InputStream&	stream);

		128 	

		135 					Time	getDuration()	const;

		136 	

		137 	protected:

		138 	

		150 					virtual	bool	onGetData(Chunk&	data);

		151 	

		158 					virtual	void	onSeek(Time	timeOffset);

		159 	

		160 	private:

		161 	

		166 					void	initialize();

		167 	

		169 					//	Member	data

		171 		InputSoundFile					m_file;					

		172 					Time															m_duration;	

		173 					std::vector<Int16>	m_samples;		

		174 					Mutex														m_mutex;				

		175 	};

		176 	

		177 	}	//	namespace	sf

		178 	

		179 	

		180 	#endif	//	SFML_MUSIC_HPP

		181 	

		182 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

http://www.sfml-dev.org/license.php

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

Mutex.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_MUTEX_HPP

			26 	#define	SFML_MUTEX_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/System/Export.hpp>

			32 	#include	<SFML/System/NonCopyable.hpp>

			33 	

			34 	

			35 	namespace	sf

			36 	{

			37 	namespace	priv

			38 	{

			39 					class	MutexImpl;

			40 	}

			41 	

			47 	class	SFML_SYSTEM_API	Mutex	:	NonCopyable

			48 	{

			49 	public:

			50 	

			55 					Mutex();

			56 	

			61 					~Mutex();

			62 	

			73 					void	lock();

			74 	

			81 					void	unlock();

			82 	

			83 	private:

			84 	

			86 					//	Member	data

			88 					priv::MutexImpl*	m_mutexImpl;	

			89 	};

			90 	

			91 	}	//	namespace	sf

			92 	

			93 	

			94 	#endif	//	SFML_MUTEX_HPP

			95 	

			96 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

NativeActivity.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_NATIVEACTIVITY_HPP

			26 	#define	SFML_NATIVEACTIVITY_HPP

			27 	

			28 	

			30 	//	Headers

			32 	#include	<SFML/System/Export.hpp>

			33 	

			34 	

			35 	#if	!defined(SFML_SYSTEM_ANDROID)

			36 	#error	NativeActivity.hpp:	This	header	is	Android	only.

			37 	#endif

			38 	

			39 	

			40 	struct	ANativeActivity;

			41 	

			42 	namespace	sf

			43 	{

			57 	SFML_SYSTEM_API	ANativeActivity*	getNativeActivity();

			58 	

			59 	}	//	namespace	sf

			60 	

			61 	

			62 	#endif	//	SFML_NATIVEACTIVITY_HPP

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

Network.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_NETWORK_HPP

			26 	#define	SFML_NETWORK_HPP

			27 	

			29 	//	Headers

			31 	

			32 	#include	<SFML/System.hpp>

			33 	#include	<SFML/Network/Ftp.hpp>

			34 	#include	<SFML/Network/Http.hpp>

			35 	#include	<SFML/Network/IpAddress.hpp>

			36 	#include	<SFML/Network/Packet.hpp>

			37 	#include	<SFML/Network/Socket.hpp>

			38 	#include	<SFML/Network/SocketHandle.hpp>

			39 	#include	<SFML/Network/SocketSelector.hpp>

			40 	#include	<SFML/Network/TcpListener.hpp>

			41 	#include	<SFML/Network/TcpSocket.hpp>

			42 	#include	<SFML/Network/UdpSocket.hpp>

			43 	

			44 	

			45 	#endif	//	SFML_NETWORK_HPP

			46 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

NonCopyable.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_NONCOPYABLE_HPP

			26 	#define	SFML_NONCOPYABLE_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/System/Export.hpp>

			32 	

			33 	

			34 	namespace	sf

			35 	{

			41 	class	SFML_SYSTEM_API	NonCopyable

			42 	{

			43 	protected:

			44 	

			53 					NonCopyable()	{}

			54 	

			55 	private:

			56 	

			67 					NonCopyable(const	NonCopyable&);

			68 	

			79 					NonCopyable&	operator	=(const	NonCopyable&);

			80 	};

			81 	

			82 	}	//	namespace	sf

			83 	

			84 	

			85 	#endif	//	SFML_NONCOPYABLE_HPP

			86 	

			87 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

OpenGL.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_OPENGL_HPP

			26 	#define	SFML_OPENGL_HPP

			27 	

			28 	

			32 	#include	<SFML/Config.hpp>

			33 	

			34 	

			39 	#if	defined(SFML_SYSTEM_WINDOWS)

			40 	

			41 					//	The	Visual	C++	version	of	gl.h	uses	WINGDIAPI	and	APIENTRY	but	doesn't	define	them

			42 					#ifdef	_MSC_VER

			43 									#include	<windows.h>

			44 					#endif

			45 	

			46 					#include	<GL/gl.h>

			47 	

			48 	#elif	defined(SFML_SYSTEM_LINUX)	||	defined(SFML_SYSTEM_FREEBSD)

			49 	

			50 					#if	defined(SFML_OPENGL_ES)

			51 									#include	<GLES/gl.h>

			52 									#include	<GLES/glext.h>

			53 					#else

			54 									#include	<GL/gl.h>

			55 					#endif

			56 	

			57 	#elif	defined(SFML_SYSTEM_MACOS)

			58 	

			59 					#include	<OpenGL/gl.h>

			60 	

			61 	#elif	defined	(SFML_SYSTEM_IOS)

			62 	

			63 					#include	<OpenGLES/ES1/gl.h>

			64 					#include	<OpenGLES/ES1/glext.h>

			65 	

			66 	#elif	defined	(SFML_SYSTEM_ANDROID)

			67 	

			68 					#include	<GLES/gl.h>

			69 					#include	<GLES/glext.h>

			70 					

			71 					//	We're	not	using	OpenGL	ES	2+	yet,	but	we	can	use	the	sRGB	extension

			72 					#include	<GLES2/gl2ext.h>

			73 	

			74 	#endif

			75 	

			76 	

			77 	#endif	//	SFML_OPENGL_HPP

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

OutputSoundFile.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_OUTPUTSOUNDFILE_HPP

			26 	#define	SFML_OUTPUTSOUNDFILE_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Audio/Export.hpp>

			32 	#include	<SFML/System/NonCopyable.hpp>

			33 	#include	<string>

			34 	

			35 	

			36 	namespace	sf

			37 	{

			38 	class	SoundFileWriter;

			39 	

			44 	class	SFML_AUDIO_API	OutputSoundFile	:	NonCopyable

			45 	{

			46 	public:

			47 	

			52 					OutputSoundFile();

			53 	

			60 					~OutputSoundFile();

			61 	

			74 					bool	openFromFile(const	std::string&	filename,	unsigned	int	sampleRate,	

channelCount);

			75 	

			83 					void	write(const	Int16*	samples,	Uint64	count);

			84 	

			85 	private:

			86 	

			91 					void	close();

			92 	

			94 					//	Member	data

			96 		SoundFileWriter*	m_writer;	

			97 	};

			98 	

			99 	}	//	namespace	sf

		100 	

		101 	

		102 	#endif	//	SFML_OUTPUTSOUNDFILE_HPP

		103 	

		104 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

Packet.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_PACKET_HPP

			26 	#define	SFML_PACKET_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Network/Export.hpp>

			32 	#include	<string>

			33 	#include	<vector>

			34 	

			35 	

			36 	namespace	sf

			37 	{

			38 	class	String;

			39 	class	TcpSocket;

			40 	class	UdpSocket;

			41 	

			47 	class	SFML_NETWORK_API	Packet

			48 	{

			49 					//	A	bool-like	type	that	cannot	be	converted	to	integer	or	pointer	types

			50 					typedef	bool	(Packet::*BoolType)(std::size_t);

			51 	

			52 	public:

			53 	

			60 					Packet();

			61 	

			66 					virtual	~Packet();

			67 	

			77 					void	append(const	void*	data,	std::size_t	sizeInBytes);

			78 	

			87 					void	clear();

			88 	

		102 					const	void*	getData()	const;

		103 	

		115 					std::size_t	getDataSize()	const;

		116 	

		129 					bool	endOfPacket()	const;

		130 	

		131 	public:

		132 	

		171 					operator	BoolType()	const;

		172 	

		177 					Packet&	operator	>>(bool&									data);

		178 					Packet&	operator	>>(Int8&									data);

		179 					Packet&	operator	>>(Uint8&								data);

		180 					Packet&	operator	>>(Int16&								data);

		181 					Packet&	operator	>>(Uint16&							data);

		182 					Packet&	operator	>>(Int32&								data);

		183 					Packet&	operator	>>(Uint32&							data);

		184 					Packet&	operator	>>(Int64&								data);

		185 					Packet&	operator	>>(Uint64&							data);

		186 					Packet&	operator	>>(float&								data);

		187 					Packet&	operator	>>(double&							data);

		188 					Packet&	operator	>>(char*									data);

		189 					Packet&	operator	>>(std::string&		data);

		190 					Packet&	operator	>>(wchar_t*						data);

		191 					Packet&	operator	>>(std::wstring&	data);

		192 					Packet&	operator	>>(String&							data);

		193 	

		198 					Packet&	operator	<<(bool																data);

		199 					Packet&	operator	<<(Int8																data);

		200 					Packet&	operator	<<(Uint8															data);

		201 					Packet&	operator	<<(Int16															data);

		202 					Packet&	operator	<<(Uint16														data);

		203 					Packet&	operator	<<(Int32															data);

		204 					Packet&	operator	<<(Uint32														data);

		205 					Packet&	operator	<<(Int64															data);

		206 					Packet&	operator	<<(Uint64														data);

		207 					Packet&	operator	<<(float															data);

		208 					Packet&	operator	<<(double														data);

		209 					Packet&	operator	<<(const	char*									data);

		210 					Packet&	operator	<<(const	std::string&		data);

		211 					Packet&	operator	<<(const	wchar_t*						data);

		212 					Packet&	operator	<<(const	std::wstring&	data);

		213 					Packet&	operator	<<(const	String&							data);

		214 	

		215 	protected:

		216 	

		217 					friend	class	TcpSocket;

		218 					friend	class	UdpSocket;

		219 	

		238 					virtual	const	void*	onSend(std::size_t&	size);

		239 	

		257 					virtual	void	onReceive(const	void*	data,	std::size_t	size);

		258 	

		259 	private:

		260 	

		265 					bool	operator	==(const	Packet&	right)	const;

		266 					bool	operator	!=(const	Packet&	right)	const;

		267 	

		278 					bool	checkSize(std::size_t	size);

		279 	

		281 					//	Member	data

		283 					std::vector<char>	m_data;				

		284 					std::size_t							m_readPos;	

		285 					std::size_t							m_sendPos;	

		286 					bool														m_isValid;	

		287 	};

		288 	

		289 	}	//	namespace	sf

		290 	

		291 	

		292 	#endif	//	SFML_PACKET_HPP

		293 	

		294 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

PrimitiveType.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_PRIMITIVETYPE_HPP

			26 	#define	SFML_PRIMITIVETYPE_HPP

			27 	

			28 	namespace	sf

			29 	{

			39 	enum	PrimitiveType

			40 	{

			41 					Points,								

			42 					Lines,									

			43 					LineStrip,					

			44 					Triangles,					

			45 					TriangleStrip,	

			46 					TriangleFan,			

			47 					Quads,									

			48 	

			49 					//	Deprecated	names

			50 					LinesStrip					=	LineStrip,					

			51 					TrianglesStrip	=	TriangleStrip,	

			52 					TrianglesFan			=	TriangleFan	

			53 	};

			54 	

			55 	}	//	namespace	sf

			56 	

			57 	

			58 	#endif	//	SFML_PRIMITIVETYPE_HPP

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

Rect.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_RECT_HPP

			26 	#define	SFML_RECT_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/System/Vector2.hpp>

			32 	#include	<algorithm>

			33 	

			34 	

			35 	namespace	sf

			36 	{

			41 	template	<typename	T>

			42 	class	Rect

			43 	{

			44 	public:

			45 	

			53 					Rect();

			54 	

			67 					Rect(T	rectLeft,	T	rectTop,	T	rectWidth,	T	rectHeight);

			68 	

			79 					Rect(const	Vector2<T>&	position,	const	Vector2<T>&	size);

			80 	

			92 					template	<typename	U>

			93 					explicit	Rect(const	Rect<U>&	rectangle);

			94 	

		109 					bool	contains(T	x,	T	y)	const;

		110 	

		124 					bool	contains(const	Vector2<T>&	point)	const;

		125 	

		136 					bool	intersects(const	Rect<T>&	rectangle)	const;

		137 	

		152 					bool	intersects(const	Rect<T>&	rectangle,	Rect<T>&	intersection)	

		153 	

		155 					//	Member	data

		157 					T	left;			

		158 					T	top;				

		159 					T	width;		

		160 					T	height;	

		161 	};

		162 	

		175 	template	<typename	T>

		176 	bool	operator	==(const	Rect<T>&	left,	const	Rect<T>&	right);

		177 	

		190 	template	<typename	T>

		191 	bool	operator	!=(const	Rect<T>&	left,	const	Rect<T>&	right);

		192 	

		193 	#include	<SFML/Graphics/Rect.inl>

		194 	

		195 	//	Create	typedefs	for	the	most	common	types

		196 	typedef	Rect<int>	IntRect;

		197 	typedef	Rect<float>	FloatRect;

		198 	

		199 	}	//	namespace	sf

		200 	

		201 	

		202 	#endif	//	SFML_RECT_HPP

		203 	

		204 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

RectangleShape.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_RECTANGLESHAPE_HPP

			26 	#define	SFML_RECTANGLESHAPE_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Graphics/Export.hpp>

			32 	#include	<SFML/Graphics/Shape.hpp>

			33 	

			34 	

			35 	namespace	sf

			36 	{

			41 	class	SFML_GRAPHICS_API	RectangleShape	:	public	Shape

			42 	{

			43 	public:

			44 	

			51 					explicit	RectangleShape(const	Vector2f&	size	=	Vector2f(0,	0));

			52 	

			61 					void	setSize(const	Vector2f&	size);

			62 	

			71 					const	Vector2f&	getSize()	const;

			72 	

			80 					virtual	std::size_t	getPointCount()	const;

			81 	

			95 					virtual	Vector2f	getPoint(std::size_t	index)	const;

			96 	

			97 	private:

			98 	

		100 					//	Member	data

		102 		Vector2f	m_size;	

		103 	};

		104 	

		105 	}	//	namespace	sf

		106 	

		107 	

		108 	#endif	//	SFML_RECTANGLESHAPE_HPP

		109 	

		110 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

RenderStates.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_RENDERSTATES_HPP

			26 	#define	SFML_RENDERSTATES_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Graphics/Export.hpp>

			32 	#include	<SFML/Graphics/BlendMode.hpp>

			33 	#include	<SFML/Graphics/Transform.hpp>

			34 	

			35 	

			36 	namespace	sf

			37 	{

			38 	class	Shader;

			39 	class	Texture;

			40 	

			45 	class	SFML_GRAPHICS_API	RenderStates

			46 	{

			47 	public:

			48 	

			61 					RenderStates();

			62 	

			69 					RenderStates(const	BlendMode&	theBlendMode);

			70 	

			77 					RenderStates(const	Transform&	theTransform);

			78 	

			85 					RenderStates(const	Texture*	theTexture);

			86 	

			93 					RenderStates(const	Shader*	theShader);

			94 	

		104 					RenderStates(const	BlendMode&	theBlendMode,	const	Transform&	theTransform,

		105 																		const	Texture*	theTexture,	const	Shader*	theShader);

		106 	

		108 					//	Static	member	data

		110 		static	const	RenderStates	Default;	

		111 	

		113 					//	Member	data

		115 		BlendMode	blendMode;	

		116 					Transform	transform;	

		117 					const	Texture*	texture;			

		118 					const	Shader*		shader;				

		119 	};

		120 	

		121 	}	//	namespace	sf

		122 	

		123 	

		124 	#endif	//	SFML_RENDERSTATES_HPP

		125 	

		126 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

RenderTarget.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_RENDERTARGET_HPP

			26 	#define	SFML_RENDERTARGET_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Graphics/Export.hpp>

			32 	#include	<SFML/Graphics/Color.hpp>

			33 	#include	<SFML/Graphics/Rect.hpp>

			34 	#include	<SFML/Graphics/View.hpp>

			35 	#include	<SFML/Graphics/Transform.hpp>

			36 	#include	<SFML/Graphics/BlendMode.hpp>

			37 	#include	<SFML/Graphics/RenderStates.hpp>

			38 	#include	<SFML/Graphics/PrimitiveType.hpp>

			39 	#include	<SFML/Graphics/Vertex.hpp>

			40 	#include	<SFML/System/NonCopyable.hpp>

			41 	

			42 	

			43 	namespace	sf

			44 	{

			45 	class	Drawable;

			46 	

			51 	class	SFML_GRAPHICS_API	RenderTarget	:	NonCopyable

			52 	{

			53 	public:

			54 	

			59 					virtual	~RenderTarget();

			60 	

			70 					void	clear(const	Color&	color	=	Color(0,	0,	0,	255));

			71 	

			91 					void	setView(const	View&	view);

			92 	

		101 					const	View&	getView()	const;

		102 	

		114 					const	View&	getDefaultView()	const;

		115 	

		129 					IntRect	getViewport(const	View&	view)	const;

		130 	

		149 					Vector2f	mapPixelToCoords(const	Vector2i&	point)	const;

		150 	

		180 					Vector2f	mapPixelToCoords(const	Vector2i&	point,	const	View&	view)	

		181 	

		200 					Vector2i	mapCoordsToPixel(const	Vector2f&	point)	const;

		201 	

		227 					Vector2i	mapCoordsToPixel(const	Vector2f&	point,	const	View&	view)	

		228 	

		236 					void	draw(const	Drawable&	drawable,	const	RenderStates&	states	=	

		237 	

		247 					void	draw(const	Vertex*	vertices,	std::size_t	vertexCount,

		248 															PrimitiveType	type,	const	RenderStates&	states	=	RenderStates::Default

		249 	

		256 					virtual	Vector2u	getSize()	const	=	0;

		257 	

		290 					void	pushGLStates();

		291 	

		301 					void	popGLStates();

		302 	

		324 					void	resetGLStates();

		325 	

		326 	protected:

		327 	

		332 					RenderTarget();

		333 	

		341 					void	initialize();

		342 	

		343 	private:

		344 	

		349 					void	applyCurrentView();

		350 	

		357 					void	applyBlendMode(const	BlendMode&	mode);

		358 	

		365 					void	applyTransform(const	Transform&	transform);

		366 	

		373 					void	applyTexture(const	Texture*	texture);

		374 	

		381 					void	applyShader(const	Shader*	shader);

		382 	

		395 					virtual	bool	activate(bool	active)	=	0;

		396 	

		401 					struct	StatesCache

		402 					{

		403 									enum	{VertexCacheSize	=	4};

		404 	

		405 									bool						glStatesSet;				

		406 									bool						viewChanged;				

		407 									BlendMode	lastBlendMode;		

		408 									Uint64				lastTextureId;		

		409 									bool						useVertexCache;	

		410 									Vertex				vertexCache[VertexCacheSize];	

		411 					};

		412 	

		414 					//	Member	data

		416 		View								m_defaultView;	

		417 					View								m_view;								

		418 					StatesCache	m_cache;							

		419 	};

		420 	

		421 	}	//	namespace	sf

		422 	

		423 	

		424 	#endif	//	SFML_RENDERTARGET_HPP

		425 	

		426 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

RenderTexture.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_RENDERTEXTURE_HPP

			26 	#define	SFML_RENDERTEXTURE_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Graphics/Export.hpp>

			32 	#include	<SFML/Graphics/Texture.hpp>

			33 	#include	<SFML/Graphics/RenderTarget.hpp>

			34 	

			35 	

			36 	namespace	sf

			37 	{

			38 	namespace	priv

			39 	{

			40 					class	RenderTextureImpl;

			41 	}

			42 	

			47 	class	SFML_GRAPHICS_API	RenderTexture	:	public	RenderTarget

			48 	{

			49 	public:

			50 	

			60 					RenderTexture();

			61 	

			66 					virtual	~RenderTexture();

			67 	

			86 					bool	create(unsigned	int	width,	unsigned	int	height,	bool	depthBuffer	=	

			87 	

			99 					void	setSmooth(bool	smooth);

		100 	

		109 					bool	isSmooth()	const;

		110 	

		122 					void	setRepeated(bool	repeated);

		123 	

		132 					bool	isRepeated()	const;

		133 	

		148 					bool	generateMipmap();

		149 	

		165 					bool	setActive(bool	active	=	true);

		166 	

		176 					void	display();

		177 	

		187 					virtual	Vector2u	getSize()	const;

		188 	

		203 					const	Texture&	getTexture()	const;

		204 	

		205 	private:

		206 	

		218 					virtual	bool	activate(bool	active);

		219 	

		221 					//	Member	data

		223 					priv::RenderTextureImpl*	m_impl;				

		224 					Texture																		m_texture;	

		225 	};

		226 	

		227 	}	//	namespace	sf

		228 	

		229 	

		230 	#endif	//	SFML_RENDERTEXTURE_HPP

		231 	

		232 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

RenderWindow.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_RENDERWINDOW_HPP

			26 	#define	SFML_RENDERWINDOW_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Graphics/Export.hpp>

			32 	#include	<SFML/Graphics/RenderTarget.hpp>

			33 	#include	<SFML/Graphics/Image.hpp>

			34 	#include	<SFML/Window/Window.hpp>

			35 	#include	<string>

			36 	

			37 	

			38 	namespace	sf

			39 	{

			44 	class	SFML_GRAPHICS_API	RenderWindow	:	public	Window,	public	RenderTarget

			45 	{

			46 	public:

			47 	

			55 					RenderWindow();

			56 	

			76 					RenderWindow(VideoMode	mode,	const	String&	title,	Uint32	style	=	

ContextSettings&	settings	=	ContextSettings());

			77 	

			94 					explicit	RenderWindow(WindowHandle	handle,	const	ContextSettings

ContextSettings());

			95 	

		102 					virtual	~RenderWindow();

		103 	

		113 					virtual	Vector2u	getSize()	const;

		114 	

		140 					SFML_DEPRECATED	Image	capture()	const;

		141 	

		142 	protected:

		143 	

		152 					virtual	void	onCreate();

		153 	

		161 					virtual	void	onResize();

		162 	

		163 	private:

		164 	

		173 					virtual	bool	activate(bool	active);

		174 	};

		175 	

		176 	}	//	namespace	sf

		177 	

		178 	

		179 	#endif	//	SFML_RENDERWINDOW_HPP

		180 	

		181 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

Sensor.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_SENSOR_HPP

			26 	#define	SFML_SENSOR_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Window/Export.hpp>

			32 	#include	<SFML/System/Vector3.hpp>

			33 	#include	<SFML/System/Time.hpp>

			34 	

			35 	

			36 	namespace	sf

			37 	{

			42 	class	SFML_WINDOW_API	Sensor

			43 	{

			44 	public:

			45 	

			50 					enum	Type

			51 					{

			52 									Accelerometer,				

			53 									Gyroscope,								

			54 									Magnetometer,					

			55 									Gravity,										

			56 									UserAcceleration,	

			57 									Orientation,						

			58 	

			59 									Count													

			60 					};

			61 	

			70 					static	bool	isAvailable(Type	sensor);

			71 	

			85 					static	void	setEnabled(Type	sensor,	bool	enabled);

			86 	

			95 					static	Vector3f	getValue(Type	sensor);

			96 	};

			97 	

			98 	}	//	namespace	sf

			99 	

		100 	

		101 	#endif	//	SFML_SENSOR_HPP

		102 	

		103 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

Shader.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_SHADER_HPP

			26 	#define	SFML_SHADER_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Graphics/Export.hpp>

			32 	#include	<SFML/Graphics/Glsl.hpp>

			33 	#include	<SFML/Window/GlResource.hpp>

			34 	#include	<SFML/System/NonCopyable.hpp>

			35 	#include	<SFML/System/Vector2.hpp>

			36 	#include	<SFML/System/Vector3.hpp>

			37 	#include	<map>

			38 	#include	<string>

			39 	

			40 	

			41 	namespace	sf

			42 	{

			43 	class	Color;

			44 	class	InputStream;

			45 	class	Texture;

			46 	class	Transform;

			47 	

			52 	class	SFML_GRAPHICS_API	Shader	:	GlResource,	NonCopyable

			53 	{

			54 	public:

			55 	

			60 					enum	Type

			61 					{

			62 									Vertex,			

			63 									Geometry,	

			64 									Fragment		

			65 					};

			66 	

			74 					struct	CurrentTextureType	{};

			75 	

			82 					static	CurrentTextureType	CurrentTexture;

			83 	

			84 	public:

			85 	

			92 					Shader();

			93 	

			98 					~Shader();

			99 	

		119 					bool	loadFromFile(const	std::string&	filename,	Type	type);

		120 	

		140 					bool	loadFromFile(const	std::string&	vertexShaderFilename,	const

fragmentShaderFilename);

		141 	

		162 					bool	loadFromFile(const	std::string&	vertexShaderFilename,	const

geometryShaderFilename,	const	std::string&	fragmentShaderFilename);

		163 	

		182 					bool	loadFromMemory(const	std::string&	shader,	Type	type);

		183 	

		203 					bool	loadFromMemory(const	std::string&	vertexShader,	const	std::string&	fragmentShader);

		204 	

		225 					bool	loadFromMemory(const	std::string&	vertexShader,	const	std::string&	geometryShader,

const	std::string&	fragmentShader);

		226 	

		245 					bool	loadFromStream(InputStream&	stream,	Type	type);

		246 	

		266 					bool	loadFromStream(InputStream&	vertexShaderStream,	InputStream

		267 	

		288 					bool	loadFromStream(InputStream&	vertexShaderStream,	InputStream

InputStream&	fragmentShaderStream);

		289 	

		297 					void	setUniform(const	std::string&	name,	float	x);

		298 	

		306 					void	setUniform(const	std::string&	name,	const	Glsl::Vec2&	vector);

		307 	

		315 					void	setUniform(const	std::string&	name,	const	Glsl::Vec3&	vector);

		316 	

		333 					void	setUniform(const	std::string&	name,	const	Glsl::Vec4&	vector);

		334 	

		342 					void	setUniform(const	std::string&	name,	int	x);

		343 	

		351 					void	setUniform(const	std::string&	name,	const	Glsl::Ivec2&	vector);

		352 	

		360 					void	setUniform(const	std::string&	name,	const	Glsl::Ivec3&	vector);

		361 	

		377 					void	setUniform(const	std::string&	name,	const	Glsl::Ivec4&	vector);

		378 	

		386 					void	setUniform(const	std::string&	name,	bool	x);

		387 	

		395 					void	setUniform(const	std::string&	name,	const	Glsl::Bvec2&	vector);

		396 	

		404 					void	setUniform(const	std::string&	name,	const	Glsl::Bvec3&	vector);

		405 	

		413 					void	setUniform(const	std::string&	name,	const	Glsl::Bvec4&	vector);

		414 	

		422 					void	setUniform(const	std::string&	name,	const	Glsl::Mat3&	matrix);

		423 	

		431 					void	setUniform(const	std::string&	name,	const	Glsl::Mat4&	matrix);

		432 	

		463 					void	setUniform(const	std::string&	name,	const	Texture&	texture);

		464 	

		486 					void	setUniform(const	std::string&	name,	CurrentTextureType);

		487 	

		496 					void	setUniformArray(const	std::string&	name,	const	float*	scalarArray,	std::size_t

length);

		497 	

		506 					void	setUniformArray(const	std::string&	name,	const	Glsl::Vec2

length);

		507 	

		516 					void	setUniformArray(const	std::string&	name,	const	Glsl::Vec3

length);

		517 	

		526 					void	setUniformArray(const	std::string&	name,	const	Glsl::Vec4

length);

		527 	

		536 					void	setUniformArray(const	std::string&	name,	const	Glsl::Mat3

length);

		537 	

		546 					void	setUniformArray(const	std::string&	name,	const	Glsl::Mat4

length);

		547 	

		554 					SFML_DEPRECATED	void	setParameter(const	std::string&	name,	float

		555 	

		562 					SFML_DEPRECATED	void	setParameter(const	std::string&	name,	float

		563 	

		570 					SFML_DEPRECATED	void	setParameter(const	std::string&	name,	float

		571 	

		578 					SFML_DEPRECATED	void	setParameter(const	std::string&	name,	float

w);

		579 	

		586 					SFML_DEPRECATED	void	setParameter(const	std::string&	name,	const

		587 	

		594 					SFML_DEPRECATED	void	setParameter(const	std::string&	name,	const

		595 	

		602 					SFML_DEPRECATED	void	setParameter(const	std::string&	name,	const

		603 	

		610 					SFML_DEPRECATED	void	setParameter(const	std::string&	name,	const

		611 	

		618 					SFML_DEPRECATED	void	setParameter(const	std::string&	name,	const

		619 	

		626 					SFML_DEPRECATED	void	setParameter(const	std::string&	name,	CurrentTextureType

		627 	

		638 					unsigned	int	getNativeHandle()	const;

		639 	

		661 					static	void	bind(const	Shader*	shader);

		662 	

		673 					static	bool	isAvailable();

		674 	

		692 					static	bool	isGeometryAvailable();

		693 	

		694 	private:

		695 	

		709 					bool	compile(const	char*	vertexShaderCode,	const	char*	geometryShaderCode,	

fragmentShaderCode);

		710 	

		718 					void	bindTextures()	const;

		719 	

		728 					int	getUniformLocation(const	std::string&	name);

		729 	

		737 					struct	UniformBinder;

		738 	

		740 					//	Types

		742 		typedef	std::map<int,	const	Texture*>	TextureTable;

		743 					typedef	std::map<std::string,	int>	UniformTable;

		744 	

		746 					//	Member	data

		748 		unsigned	int	m_shaderProgram;		

		749 					int										m_currentTexture;	

		750 					TextureTable	m_textures;							

		751 					UniformTable	m_uniforms;							

		752 	};

		753 	

		754 	}	//	namespace	sf

		755 	

		756 	

		757 	#endif	//	SFML_SHADER_HPP

		758 	

		759 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

Shape.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_SHAPE_HPP

			26 	#define	SFML_SHAPE_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Graphics/Export.hpp>

			32 	#include	<SFML/Graphics/Drawable.hpp>

			33 	#include	<SFML/Graphics/Transformable.hpp>

			34 	#include	<SFML/Graphics/VertexArray.hpp>

			35 	#include	<SFML/System/Vector2.hpp>

			36 	

			37 	

			38 	namespace	sf

			39 	{

			44 	class	SFML_GRAPHICS_API	Shape	:	public	Drawable,	public	Transformable

			45 	{

			46 	public:

			47 	

			52 					virtual	~Shape();

			53 	

			74 					void	setTexture(const	Texture*	texture,	bool	resetRect	=	false

			75 	

			88 					void	setTextureRect(const	IntRect&	rect);

			89 	

		105 					void	setFillColor(const	Color&	color);

		106 	

		117 					void	setOutlineColor(const	Color&	color);

		118 	

		132 					void	setOutlineThickness(float	thickness);

		133 	

		146 					const	Texture*	getTexture()	const;

		147 	

		156 					const	IntRect&	getTextureRect()	const;

		157 	

		166 					const	Color&	getFillColor()	const;

		167 	

		176 					const	Color&	getOutlineColor()	const;

		177 	

		186 					float	getOutlineThickness()	const;

		187 	

		196 					virtual	std::size_t	getPointCount()	const	=	0;

		197 	

		213 					virtual	Vector2f	getPoint(std::size_t	index)	const	=	0;

		214 	

		227 					FloatRect	getLocalBounds()	const;

		228 	

		248 					FloatRect	getGlobalBounds()	const;

		249 	

		250 	protected:

		251 	

		256 					Shape();

		257 	

		266 					void	update();

		267 	

		268 	private:

		269 	

		277 					virtual	void	draw(RenderTarget&	target,	RenderStates	states)	

		278 	

		283 					void	updateFillColors();

		284 	

		289 					void	updateTexCoords();

		290 	

		295 					void	updateOutline();

		296 	

		301 					void	updateOutlineColors();

		302 	

		303 	private:

		304 	

		306 					//	Member	data

		308 		const	Texture*	m_texture;										

		309 					IntRect								m_textureRect;						

		310 					Color										m_fillColor;								

		311 					Color										m_outlineColor;					

		312 					float										m_outlineThickness;	

		313 					VertexArray				m_vertices;									

		314 					VertexArray				m_outlineVertices;		

		315 					FloatRect						m_insideBounds;					

		316 					FloatRect						m_bounds;											

		317 	};

		318 	

		319 	}	//	namespace	sf

		320 	

		321 	

		322 	#endif	//	SFML_SHAPE_HPP

		323 	

		324 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

Sleep.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_SLEEP_HPP

			26 	#define	SFML_SLEEP_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/System/Export.hpp>

			32 	#include	<SFML/System/Time.hpp>

			33 	

			34 	

			35 	namespace	sf

			36 	{

			47 	void	SFML_SYSTEM_API	sleep(Time	duration);

			48 	

			49 	}	//	namespace	sf

			50 	

			51 	

			52 	#endif	//	SFML_SLEEP_HPP

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

Socket.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_SOCKET_HPP

			26 	#define	SFML_SOCKET_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Network/Export.hpp>

			32 	#include	<SFML/Network/SocketHandle.hpp>

			33 	#include	<SFML/System/NonCopyable.hpp>

			34 	#include	<vector>

			35 	

			36 	

			37 	namespace	sf

			38 	{

			39 	class	SocketSelector;

			40 	

			45 	class	SFML_NETWORK_API	Socket	:	NonCopyable

			46 	{

			47 	public:

			48 	

			53 					enum	Status

			54 					{

			55 									Done,									

			56 									NotReady,					

			57 									Partial,						

			58 									Disconnected,	

			59 									Error									

			60 					};

			61 	

			66 					enum

			67 					{

			68 									AnyPort	=	0	

			69 					};

			70 	

			71 	public:

			72 	

			77 					virtual	~Socket();

			78 	

			96 					void	setBlocking(bool	blocking);

			97 	

		106 					bool	isBlocking()	const;

		107 	

		108 	protected:

		109 	

		114 					enum	Type

		115 					{

		116 									Tcp,	

		117 									Udp		

		118 					};

		119 	

		128 					Socket(Type	type);

		129 	

		140 					SocketHandle	getHandle()	const;

		141 	

		148 					void	create();

		149 	

		159 					void	create(SocketHandle	handle);

		160 	

		167 					void	close();

		168 	

		169 	private:

		170 	

		171 					friend	class	SocketSelector;

		172 	

		174 					//	Member	data

		176 					Type									m_type;							

		177 					SocketHandle	m_socket;					

		178 					bool									m_isBlocking;	

		179 	};

		180 	

		181 	}	//	namespace	sf

		182 	

		183 	

		184 	#endif	//	SFML_SOCKET_HPP

		185 	

		186 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

SocketHandle.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_SOCKETHANDLE_HPP

			26 	#define	SFML_SOCKETHANDLE_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Config.hpp>

			32 	

			33 	#if	defined(SFML_SYSTEM_WINDOWS)

			34 					#include	<basetsd.h>

			35 	#endif

			36 	

			37 	

			38 	namespace	sf

			39 	{

			41 	//	Define	the	low-level	socket	handle	type,	specific	to

			42 	//	each	platform

			44 	#if	defined(SFML_SYSTEM_WINDOWS)

			45 	

			46 					typedef	UINT_PTR	SocketHandle;

			47 	

			48 	#else

			49 	

			50 					typedef	int	SocketHandle;

			51 	

			52 	#endif

			53 	

			54 	}	//	namespace	sf

			55 	

			56 	

			57 	#endif	//	SFML_SOCKETHANDLE_HPP

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

SocketSelector.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_SOCKETSELECTOR_HPP

			26 	#define	SFML_SOCKETSELECTOR_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Network/Export.hpp>

			32 	#include	<SFML/System/Time.hpp>

			33 	

			34 	

			35 	namespace	sf

			36 	{

			37 	class	Socket;

			38 	

			43 	class	SFML_NETWORK_API	SocketSelector

			44 	{

			45 	public:

			46 	

			51 					SocketSelector();

			52 	

			59 					SocketSelector(const	SocketSelector&	copy);

			60 	

			65 					~SocketSelector();

			66 	

			80 					void	add(Socket&	socket);

			81 	

			93 					void	remove(Socket&	socket);

			94 	

		105 					void	clear();

		106 	

		123 					bool	wait(Time	timeout	=	Time::Zero);

		124 	

		142 					bool	isReady(Socket&	socket)	const;

		143 	

		152 					SocketSelector&	operator	=(const	SocketSelector&	right);

		153 	

		154 	private:

		155 	

		156 					struct	SocketSelectorImpl;

		157 	

		159 					//	Member	data

		161 					SocketSelectorImpl*	m_impl;	

		162 	};

		163 	

		164 	}	//	namespace	sf

		165 	

		166 	

		167 	#endif	//	SFML_SOCKETSELECTOR_HPP

		168 	

		169 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

Sound.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_SOUND_HPP

			26 	#define	SFML_SOUND_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Audio/Export.hpp>

			32 	#include	<SFML/Audio/SoundSource.hpp>

			33 	#include	<SFML/System/Time.hpp>

			34 	#include	<cstdlib>

			35 	

			36 	

			37 	namespace	sf

			38 	{

			39 	class	SoundBuffer;

			40 	

			45 	class	SFML_AUDIO_API	Sound	:	public	SoundSource

			46 	{

			47 	public:

			48 	

			53 					Sound();

			54 	

			61 					explicit	Sound(const	SoundBuffer&	buffer);

			62 	

			69 					Sound(const	Sound&	copy);

			70 	

			75 					~Sound();

			76 	

			89 					void	play();

			90 	

		100 					void	pause();

		101 	

		112 					void	stop();

		113 	

		126 					void	setBuffer(const	SoundBuffer&	buffer);

		127 	

		141 					void	setLoop(bool	loop);

		142 	

		156 					void	setPlayingOffset(Time	timeOffset);

		157 	

		164 					const	SoundBuffer*	getBuffer()	const;

		165 	

		174 					bool	getLoop()	const;

		175 	

		184 					Time	getPlayingOffset()	const;

		185 	

		192 					Status	getStatus()	const;

		193 	

		202 					Sound&	operator	=(const	Sound&	right);

		203 	

		213 					void	resetBuffer();

		214 	

		215 	private:

		216 	

		218 					//	Member	data

		220 		const	SoundBuffer*	m_buffer;	

		221 	};

		222 	

		223 	}	//	namespace	sf

		224 	

		225 	

		226 	#endif	//	SFML_SOUND_HPP

		227 	

		228 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

SoundBuffer.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_SOUNDBUFFER_HPP

			26 	#define	SFML_SOUNDBUFFER_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Audio/Export.hpp>

			32 	#include	<SFML/Audio/AlResource.hpp>

			33 	#include	<SFML/System/Time.hpp>

			34 	#include	<string>

			35 	#include	<vector>

			36 	#include	<set>

			37 	

			38 	

			39 	namespace	sf

			40 	{

			41 	class	Sound;

			42 	class	InputSoundFile;

			43 	class	InputStream;

			44 	

			49 	class	SFML_AUDIO_API	SoundBuffer	:	AlResource

			50 	{

			51 	public:

			52 	

			57 					SoundBuffer();

			58 	

			65 					SoundBuffer(const	SoundBuffer&	copy);

			66 	

			71 					~SoundBuffer();

			72 	

			86 					bool	loadFromFile(const	std::string&	filename);

			87 	

		102 					bool	loadFromMemory(const	void*	data,	std::size_t	sizeInBytes);

		103 	

		117 					bool	loadFromStream(InputStream&	stream);

		118 	

		135 					bool	loadFromSamples(const	Int16*	samples,	Uint64	sampleCount,	

unsigned	int	sampleRate);

		136 	

		150 					bool	saveToFile(const	std::string&	filename)	const;

		151 	

		164 					const	Int16*	getSamples()	const;

		165 	

		177 					Uint64	getSampleCount()	const;

		178 	

		191 					unsigned	int	getSampleRate()	const;

		192 	

		204 					unsigned	int	getChannelCount()	const;

		205 	

		214 					Time	getDuration()	const;

		215 	

		224 					SoundBuffer&	operator	=(const	SoundBuffer&	right);

		225 	

		226 	private:

		227 	

		228 					friend	class	Sound;

		229 	

		238 					bool	initialize(InputSoundFile&	file);

		239 	

		249 					bool	update(unsigned	int	channelCount,	unsigned	int	sampleRate);

		250 	

		257 					void	attachSound(Sound*	sound)	const;

		258 	

		265 					void	detachSound(Sound*	sound)	const;

		266 	

		268 					//	Types

		270 		typedef	std::set<Sound*>	SoundList;	

		271 	

		273 					//	Member	data

		275 		unsigned	int							m_buffer;			

		276 					std::vector<Int16>	m_samples;		

		277 					Time															m_duration;	

		278 					mutable	SoundList		m_sounds;			

		279 	};

		280 	

		281 	}	//	namespace	sf

		282 	

		283 	

		284 	#endif	//	SFML_SOUNDBUFFER_HPP

		285 	

		286 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

SoundBufferRecorder.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_SOUNDBUFFERRECORDER_HPP

			26 	#define	SFML_SOUNDBUFFERRECORDER_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Audio/Export.hpp>

			32 	#include	<SFML/Audio/SoundBuffer.hpp>

			33 	#include	<SFML/Audio/SoundRecorder.hpp>

			34 	#include	<vector>

			35 	

			36 	

			37 	namespace	sf

			38 	{

			44 	class	SFML_AUDIO_API	SoundBufferRecorder	:	public	SoundRecorder

			45 	{

			46 	public:

			47 	

			52 					~SoundBufferRecorder();

			53 	

			65 					const	SoundBuffer&	getBuffer()	const;

			66 	

			67 	protected:

			68 	

			75 					virtual	bool	onStart();

			76 	

			86 					virtual	bool	onProcessSamples(const	Int16*	samples,	std::size_t	sampleCount);

			87 	

			92 					virtual	void	onStop();

			93 	

			94 	private:

			95 	

			97 					//	Member	data

			99 					std::vector<Int16>	m_samples;	

		100 					SoundBuffer								m_buffer;		

		101 	};

		102 	

		103 	}	//	namespace	sf

		104 	

		105 	#endif	//	SFML_SOUNDBUFFERRECORDER_HPP

		106 	

		107 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

SoundFileFactory.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_SOUNDFILEFACTORY_HPP

			26 	#define	SFML_SOUNDFILEFACTORY_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Audio/Export.hpp>

			32 	#include	<string>

			33 	#include	<vector>

			34 	

			35 	

			36 	namespace	sf

			37 	{

			38 	class	InputStream;

			39 	class	SoundFileReader;

			40 	class	SoundFileWriter;

			41 	

			46 	class	SFML_AUDIO_API	SoundFileFactory

			47 	{

			48 	public:

			49 	

			56 					template	<typename	T>

			57 					static	void	registerReader();

			58 	

			65 					template	<typename	T>

			66 					static	void	unregisterReader();

			67 	

			74 					template	<typename	T>

			75 					static	void	registerWriter();

			76 	

			83 					template	<typename	T>

			84 					static	void	unregisterWriter();

			85 	

			98 					static	SoundFileReader*	createReaderFromFilename(const	std::string&	filename);

			99 	

		113 					static	SoundFileReader*	createReaderFromMemory(const	void*	data,	std::size_t	sizeInBytes);

		114 	

		127 					static	SoundFileReader*	createReaderFromStream(InputStream&	stream);

		128 	

		139 					static	SoundFileWriter*	createWriterFromFilename(const	std::string&	filename);

		140 	

		141 	private:

		142 	

		144 					//	Types

		146 		struct	ReaderFactory

		147 					{

		148 									bool	(*check)(InputStream&);

		149 									SoundFileReader*	(*create)();

		150 					};

		151 					typedef	std::vector<ReaderFactory>	ReaderFactoryArray;

		152 	

		153 					struct	WriterFactory

		154 					{

		155 									bool	(*check)(const	std::string&);

		156 									SoundFileWriter*	(*create)();

		157 					};

		158 					typedef	std::vector<WriterFactory>	WriterFactoryArray;

		159 	

		161 					//	Static	member	data

		163 		static	ReaderFactoryArray	s_readers;	

		164 					static	WriterFactoryArray	s_writers;	

		165 	};

		166 	

		167 	}	//	namespace	sf

		168 	

		169 	#include	<SFML/Audio/SoundFileFactory.inl>

		170 	

		171 	#endif	//	SFML_SOUNDFILEFACTORY_HPP

		172 	

		173 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

SoundFileReader.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_SOUNDFILEREADER_HPP

			26 	#define	SFML_SOUNDFILEREADER_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Audio/Export.hpp>

			32 	#include	<string>

			33 	

			34 	

			35 	namespace	sf

			36 	{

			37 	class	InputStream;

			38 	

			43 	class	SFML_AUDIO_API	SoundFileReader

			44 	{

			45 	public:

			46 	

			51 					struct	Info

			52 					{

			53 									Uint64							sampleCount;		

			54 									unsigned	int	channelCount;	

			55 									unsigned	int	sampleRate;			

			56 					};

			57 	

			62 					virtual	~SoundFileReader()	{}

			63 	

			77 					virtual	bool	open(InputStream&	stream,	Info&	info)	=	0;

			78 	

			91 					virtual	void	seek(Uint64	sampleOffset)	=	0;

			92 	

		102 					virtual	Uint64	read(Int16*	samples,	Uint64	maxCount)	=	0;

		103 	};

		104 	

		105 	}	//	namespace	sf

		106 	

		107 	

		108 	#endif	//	SFML_SOUNDFILEREADER_HPP

		109 	

		110 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

SoundFileWriter.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_SOUNDFILEWRITER_HPP

			26 	#define	SFML_SOUNDFILEWRITER_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Audio/Export.hpp>

			32 	#include	<string>

			33 	

			34 	

			35 	namespace	sf

			36 	{

			41 	class	SFML_AUDIO_API	SoundFileWriter

			42 	{

			43 	public:

			44 	

			49 					virtual	~SoundFileWriter()	{}

			50 	

			61 					virtual	bool	open(const	std::string&	filename,	unsigned	int	sampleRate,	

channelCount)	=	0;

			62 	

			70 					virtual	void	write(const	Int16*	samples,	Uint64	count)	=	0;

			71 	};

			72 	

			73 	}	//	namespace	sf

			74 	

			75 	

			76 	#endif	//	SFML_SOUNDFILEWRITER_HPP

			77 	

			78 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

SoundRecorder.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_SOUNDRECORDER_HPP

			26 	#define	SFML_SOUNDRECORDER_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Audio/Export.hpp>

			32 	#include	<SFML/Audio/AlResource.hpp>

			33 	#include	<SFML/System/Thread.hpp>

			34 	#include	<SFML/System/Time.hpp>

			35 	#include	<vector>

			36 	#include	<string>

			37 	

			38 	

			39 	namespace	sf

			40 	{

			45 	class	SFML_AUDIO_API	SoundRecorder	:	AlResource

			46 	{

			47 	public:

			48 	

			53 					virtual	~SoundRecorder();

			54 	

			77 					bool	start(unsigned	int	sampleRate	=	44100);

			78 	

			85 					void	stop();

			86 	

			97 					unsigned	int	getSampleRate()	const;

			98 	

		108 					static	std::vector<std::string>	getAvailableDevices();

		109 	

		120 					static	std::string	getDefaultDevice();

		121 	

		137 					bool	setDevice(const	std::string&	name);

		138 	

		145 					const	std::string&	getDevice()	const;

		146 	

		160 					void	setChannelCount(unsigned	int	channelCount);

		161 	

		173 					unsigned	int	getChannelCount()	const;

		174 	

		186 					static	bool	isAvailable();

		187 	

		188 	protected:

		189 	

		196 					SoundRecorder();

		197 	

		214 					void	setProcessingInterval(Time	interval);

		215 	

		227 					virtual	bool	onStart();

		228 	

		243 					virtual	bool	onProcessSamples(const	Int16*	samples,	std::size_t	sampleCount)	=	0;

		244 	

		254 					virtual	void	onStop();

		255 	

		256 	private:

		257 	

		265 					void	record();

		266 	

		275 					void	processCapturedSamples();

		276 	

		283 					void	cleanup();

		284 	

		286 					//	Member	data

		288 		Thread													m_thread;													

		289 					std::vector<Int16>	m_samples;												

		290 					unsigned	int							m_sampleRate;									

		291 					Time															m_processingInterval;	

		292 					bool															m_isCapturing;								

		293 					std::string								m_deviceName;									

		294 					unsigned	int							m_channelCount;							

		295 	};

		296 	

		297 	}	//	namespace	sf

		298 	

		299 	

		300 	#endif	//	SFML_SOUNDRECORDER_HPP

		301 	

		302 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

SoundSource.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_SOUNDSOURCE_HPP

			26 	#define	SFML_SOUNDSOURCE_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Audio/Export.hpp>

			32 	#include	<SFML/Audio/AlResource.hpp>

			33 	#include	<SFML/System/Vector3.hpp>

			34 	

			35 	

			36 	namespace	sf

			37 	{

			42 	class	SFML_AUDIO_API	SoundSource	:	AlResource

			43 	{

			44 	public:

			45 	

			50 					enum	Status

			51 					{

			52 									Stopped,	

			53 									Paused,		

			54 									Playing		

			55 					};

			56 	

			63 					SoundSource(const	SoundSource&	copy);

			64 	

			69 					virtual	~SoundSource();

			70 	

			85 					void	setPitch(float	pitch);

			86 	

			98 					void	setVolume(float	volume);

			99 	

		114 					void	setPosition(float	x,	float	y,	float	z);

		115 	

		128 					void	setPosition(const	Vector3f&	position);

		129 	

		144 					void	setRelativeToListener(bool	relative);

		145 	

		161 					void	setMinDistance(float	distance);

		162 	

		180 					void	setAttenuation(float	attenuation);

		181 	

		190 					float	getPitch()	const;

		191 	

		200 					float	getVolume()	const;

		201 	

		210 					Vector3f	getPosition()	const;

		211 	

		221 					bool	isRelativeToListener()	const;

		222 	

		231 					float	getMinDistance()	const;

		232 	

		241 					float	getAttenuation()	const;

		242 	

		251 					SoundSource&	operator	=(const	SoundSource&	right);

		252 	

		253 	protected:

		254 	

		261 					SoundSource();

		262 	

		269 					Status	getStatus()	const;

		270 	

		272 					//	Member	data

		274 		unsigned	int	m_source;	

		275 	};

		276 	

		277 	}	//	namespace	sf

		278 	

		279 	

		280 	#endif	//	SFML_SOUNDSOURCE_HPP

		281 	

		282 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

SoundStream.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_SOUNDSTREAM_HPP

			26 	#define	SFML_SOUNDSTREAM_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Audio/Export.hpp>

			32 	#include	<SFML/Audio/SoundSource.hpp>

			33 	#include	<SFML/System/Thread.hpp>

			34 	#include	<SFML/System/Time.hpp>

			35 	#include	<SFML/System/Mutex.hpp>

			36 	#include	<cstdlib>

			37 	

			38 	

			39 	namespace	sf

			40 	{

			45 	class	SFML_AUDIO_API	SoundStream	:	public	SoundSource

			46 	{

			47 	public:

			48 	

			53 					struct	Chunk

			54 					{

			55 									const	Int16*	samples;					

			56 									std::size_t		sampleCount;	

			57 					};

			58 	

			63 					virtual	~SoundStream();

			64 	

			77 					void	play();

			78 	

			88 					void	pause();

			89 	

		100 					void	stop();

		101 	

		110 					unsigned	int	getChannelCount()	const;

		111 	

		121 					unsigned	int	getSampleRate()	const;

		122 	

		129 					Status	getStatus()	const;

		130 	

		144 					void	setPlayingOffset(Time	timeOffset);

		145 	

		154 					Time	getPlayingOffset()	const;

		155 	

		169 					void	setLoop(bool	loop);

		170 	

		179 					bool	getLoop()	const;

		180 	

		181 	protected:

		182 	

		189 					SoundStream();

		190 	

		205 					void	initialize(unsigned	int	channelCount,	unsigned	int	sampleRate);

		206 	

		224 					virtual	bool	onGetData(Chunk&	data)	=	0;

		225 	

		235 					virtual	void	onSeek(Time	timeOffset)	=	0;

		236 	

		237 	private:

		238 	

		246 					void	streamData();

		247 	

		261 					bool	fillAndPushBuffer(unsigned	int	bufferNum);

		262 	

		272 					bool	fillQueue();

		273 	

		280 					void	clearQueue();

		281 	

		282 					enum

		283 					{

		284 									BufferCount	=	3	

		285 					};

		286 	

		288 					//	Member	data

		290 		Thread								m_thread;																		

		291 					mutable	Mutex	m_threadMutex;													

		292 					Status								m_threadStartState;								

		293 					bool										m_isStreaming;													

		294 					unsigned	int		m_buffers[BufferCount];				

		295 					unsigned	int		m_channelCount;												

		296 					unsigned	int		m_sampleRate;														

		297 					Uint32								m_format;																		

		298 					bool										m_loop;																				

		299 					Uint64								m_samplesProcessed;								

		300 					bool										m_endBuffers[BufferCount];	

		301 	};

		302 	

		303 	}	//	namespace	sf

		304 	

		305 	

		306 	#endif	//	SFML_SOUNDSTREAM_HPP

		307 	

		308 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

Sprite.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_SPRITE_HPP

			26 	#define	SFML_SPRITE_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Graphics/Export.hpp>

			32 	#include	<SFML/Graphics/Drawable.hpp>

			33 	#include	<SFML/Graphics/Transformable.hpp>

			34 	#include	<SFML/Graphics/Vertex.hpp>

			35 	#include	<SFML/Graphics/Rect.hpp>

			36 	

			37 	

			38 	namespace	sf

			39 	{

			40 	class	Texture;

			41 	

			47 	class	SFML_GRAPHICS_API	Sprite	:	public	Drawable,	public	Transformable

			48 	{

			49 	public:

			50 	

			57 					Sprite();

			58 	

			67 					explicit	Sprite(const	Texture&	texture);

			68 	

			78 					Sprite(const	Texture&	texture,	const	IntRect&	rectangle);

			79 	

			99 					void	setTexture(const	Texture&	texture,	bool	resetRect	=	false

		100 	

		113 					void	setTextureRect(const	IntRect&	rectangle);

		114 	

		128 					void	setColor(const	Color&	color);

		129 	

		142 					const	Texture*	getTexture()	const;

		143 	

		152 					const	IntRect&	getTextureRect()	const;

		153 	

		162 					const	Color&	getColor()	const;

		163 	

		176 					FloatRect	getLocalBounds()	const;

		177 	

		190 					FloatRect	getGlobalBounds()	const;

		191 	

		192 	private:

		193 	

		201 					virtual	void	draw(RenderTarget&	target,	RenderStates	states)	

		202 	

		207 					void	updatePositions();

		208 	

		213 					void	updateTexCoords();

		214 	

		216 					//	Member	data

		218 		Vertex									m_vertices[4];	

		219 					const	Texture*	m_texture;					

		220 					IntRect								m_textureRect;	

		221 	};

		222 	

		223 	}	//	namespace	sf

		224 	

		225 	

		226 	#endif	//	SFML_SPRITE_HPP

		227 	

		228 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

String.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_STRING_HPP

			26 	#define	SFML_STRING_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/System/Export.hpp>

			32 	#include	<SFML/System/Utf.hpp>

			33 	#include	<iterator>

			34 	#include	<locale>

			35 	#include	<string>

			36 	

			37 	

			38 	namespace	sf

			39 	{

			45 	class	SFML_SYSTEM_API	String

			46 	{

			47 	public:

			48 	

			50 					//	Types

			52 		typedef	std::basic_string<Uint32>::iterator							Iterator;						

			53 					typedef	std::basic_string<Uint32>::const_iterator	ConstIterator

			54 	

			56 					//	Static	member	data

			58 		static	const	std::size_t	InvalidPos;	

			59 	

			66 					String();

			67 	

			78 					String(char	ansiChar,	const	std::locale&	locale	=	std::locale());

			79 	

			86 					String(wchar_t	wideChar);

			87 	

			94 					String(Uint32	utf32Char);

			95 	

		106 					String(const	char*	ansiString,	const	std::locale&	locale	=	std::locale());

		107 	

		118 					String(const	std::string&	ansiString,	const	std::locale&	locale	=	std::locale());

		119 	

		126 					String(const	wchar_t*	wideString);

		127 	

		134 					String(const	std::wstring&	wideString);

		135 	

		142 					String(const	Uint32*	utf32String);

		143 	

		150 					String(const	std::basic_string<Uint32>&	utf32String);

		151 	

		158 					String(const	String&	copy);

		159 	

		171 					template	<typename	T>

		172 					static	String	fromUtf8(T	begin,	T	end);

		173 	

		185 					template	<typename	T>

		186 					static	String	fromUtf16(T	begin,	T	end);

		187 	

		203 					template	<typename	T>

		204 					static	String	fromUtf32(T	begin,	T	end);

		205 	

		221 					operator	std::string()	const;

		222 	

		236 					operator	std::wstring()	const;

		237 	

		253 					std::string	toAnsiString(const	std::locale&	locale	=	std::locale())	

		254 	

		266 					std::wstring	toWideString()	const;

		267 	

		276 					std::basic_string<Uint8>	toUtf8()	const;

		277 	

		286 					std::basic_string<Uint16>	toUtf16()	const;

		287 	

		299 					std::basic_string<Uint32>	toUtf32()	const;

		300 	

		309 					String&	operator	=(const	String&	right);

		310 	

		319 					String&	operator	+=(const	String&	right);

		320 	

		332 					Uint32	operator	[](std::size_t	index)	const;

		333 	

		345 					Uint32&	operator	[](std::size_t	index);

		346 	

		355 					void	clear();

		356 	

		365 					std::size_t	getSize()	const;

		366 	

		375 					bool	isEmpty()	const;

		376 	

		387 					void	erase(std::size_t	position,	std::size_t	count	=	1);

		388 	

		399 					void	insert(std::size_t	position,	const	String&	str);

		400 	

		413 					std::size_t	find(const	String&	str,	std::size_t	start	=	0)	const

		414 	

		427 					void	replace(std::size_t	position,	std::size_t	length,	const

		428 	

		439 					void	replace(const	String&	searchFor,	const	String&	replaceWith);

		440 	

		456 					String	substring(std::size_t	position,	std::size_t	length	=	InvalidPos)	

		457 	

		469 					const	Uint32*	getData()	const;

		470 	

		479 					Iterator	begin();

		480 	

		489 					ConstIterator	begin()	const;

		490 	

		503 					Iterator	end();

		504 	

		517 					ConstIterator	end()	const;

		518 	

		519 	private:

		520 	

		521 					friend	SFML_SYSTEM_API	bool	operator	==(const	String&	left,	

		522 					friend	SFML_SYSTEM_API	bool	operator	<(const	String&	left,	const

		523 	

		525 					//	Member	data

		527 					std::basic_string<Uint32>	m_string;	

		528 	};

		529 	

		540 	SFML_SYSTEM_API	bool	operator	==(const	String&	left,	const	String

		541 	

		552 	SFML_SYSTEM_API	bool	operator	!=(const	String&	left,	const	String

		553 	

		564 	SFML_SYSTEM_API	bool	operator	<(const	String&	left,	const	String

		565 	

		576 	SFML_SYSTEM_API	bool	operator	>(const	String&	left,	const	String

		577 	

		588 	SFML_SYSTEM_API	bool	operator	<=(const	String&	left,	const	String

		589 	

		600 	SFML_SYSTEM_API	bool	operator	>=(const	String&	left,	const	String

		601 	

		612 	SFML_SYSTEM_API	String	operator	+(const	String&	left,	const	String

		613 	

		614 	#include	<SFML/System/String.inl>

		615 	

		616 	}	//	namespace	sf

		617 	

		618 	

		619 	#endif	//	SFML_STRING_HPP

		620 	

		621 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

System.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_SYSTEM_HPP

			26 	#define	SFML_SYSTEM_HPP

			27 	

			29 	//	Headers

			31 	

			32 	#include	<SFML/Config.hpp>

			33 	#include	<SFML/System/Clock.hpp>

			34 	#include	<SFML/System/Err.hpp>

			35 	#include	<SFML/System/FileInputStream.hpp>

			36 	#include	<SFML/System/InputStream.hpp>

			37 	#include	<SFML/System/Lock.hpp>

			38 	#include	<SFML/System/MemoryInputStream.hpp>

			39 	#include	<SFML/System/Mutex.hpp>

			40 	#include	<SFML/System/NonCopyable.hpp>

			41 	#include	<SFML/System/Sleep.hpp>

			42 	#include	<SFML/System/String.hpp>

			43 	#include	<SFML/System/Thread.hpp>

			44 	#include	<SFML/System/ThreadLocal.hpp>

			45 	#include	<SFML/System/ThreadLocalPtr.hpp>

			46 	#include	<SFML/System/Time.hpp>

			47 	#include	<SFML/System/Utf.hpp>

			48 	#include	<SFML/System/Vector2.hpp>

			49 	#include	<SFML/System/Vector3.hpp>

			50 	

			51 	#endif	//	SFML_SYSTEM_HPP

			52 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

TcpListener.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_TCPLISTENER_HPP

			26 	#define	SFML_TCPLISTENER_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Network/Export.hpp>

			32 	#include	<SFML/Network/Socket.hpp>

			33 	#include	<SFML/Network/IpAddress.hpp>

			34 	

			35 	

			36 	namespace	sf

			37 	{

			38 	class	TcpSocket;

			39 	

			44 	class	SFML_NETWORK_API	TcpListener	:	public	Socket

			45 	{

			46 	public:

			47 	

			52 					TcpListener();

			53 	

			65 					unsigned	short	getLocalPort()	const;

			66 	

			83 					Status	listen(unsigned	short	port,	const	IpAddress&	address	=	

			84 	

			94 					void	close();

			95 	

		109 					Status	accept(TcpSocket&	socket);

		110 	};

		111 	

		112 	

		113 	}	//	namespace	sf

		114 	

		115 	

		116 	#endif	//	SFML_TCPLISTENER_HPP

		117 	

		118 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

TcpSocket.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_TCPSOCKET_HPP

			26 	#define	SFML_TCPSOCKET_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Network/Export.hpp>

			32 	#include	<SFML/Network/Socket.hpp>

			33 	#include	<SFML/System/Time.hpp>

			34 	

			35 	

			36 	namespace	sf

			37 	{

			38 	class	TcpListener;

			39 	class	IpAddress;

			40 	class	Packet;

			41 	

			46 	class	SFML_NETWORK_API	TcpSocket	:	public	Socket

			47 	{

			48 	public:

			49 	

			54 					TcpSocket();

			55 	

			66 					unsigned	short	getLocalPort()	const;

			67 	

			79 					IpAddress	getRemoteAddress()	const;

			80 	

			92 					unsigned	short	getRemotePort()	const;

			93 	

		111 					Status	connect(const	IpAddress&	remoteAddress,	unsigned	short

Time::Zero);

		112 	

		122 					void	disconnect();

		123 	

		140 					Status	send(const	void*	data,	std::size_t	size);

		141 	

		156 					Status	send(const	void*	data,	std::size_t	size,	std::size_t&	sent);

		157 	

		174 					Status	receive(void*	data,	std::size_t	size,	std::size_t&	received);

		175 	

		192 					Status	send(Packet&	packet);

		193 	

		208 					Status	receive(Packet&	packet);

		209 	

		210 	private:

		211 	

		212 					friend	class	TcpListener;

		213 	

		218 					struct	PendingPacket

		219 					{

		220 									PendingPacket();

		221 	

		222 									Uint32												Size;									

		223 									std::size_t							SizeReceived;	

		224 									std::vector<char>	Data;									

		225 					};

		226 	

		228 					//	Member	data

		230 					PendingPacket	m_pendingPacket;	

		231 	};

		232 	

		233 	}	//	namespace	sf

		234 	

		235 	

		236 	#endif	//	SFML_TCPSOCKET_HPP

		237 	

		238 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

Text.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_TEXT_HPP

			26 	#define	SFML_TEXT_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Graphics/Export.hpp>

			32 	#include	<SFML/Graphics/Drawable.hpp>

			33 	#include	<SFML/Graphics/Transformable.hpp>

			34 	#include	<SFML/Graphics/Font.hpp>

			35 	#include	<SFML/Graphics/Rect.hpp>

			36 	#include	<SFML/Graphics/VertexArray.hpp>

			37 	#include	<SFML/System/String.hpp>

			38 	#include	<string>

			39 	#include	<vector>

			40 	

			41 	

			42 	namespace	sf

			43 	{

			48 	class	SFML_GRAPHICS_API	Text	:	public	Drawable,	public	Transformable

			49 	{

			50 	public:

			51 	

			56 					enum	Style

			57 					{

			58 									Regular							=	0,						

			59 									Bold										=	1	<<	0,	

			60 									Italic								=	1	<<	1,	

			61 									Underlined				=	1	<<	2,	

			62 									StrikeThrough	=	1	<<	3		

			63 					};

			64 	

			71 					Text();

			72 	

			88 					Text(const	String&	string,	const	Font&	font,	unsigned	int	characterSize	=	30);

			89 	

		109 					void	setString(const	String&	string);

		110 	

		126 					void	setFont(const	Font&	font);

		127 	

		145 					void	setCharacterSize(unsigned	int	size);

		146 	

		159 					void	setStyle(Uint32	style);

		160 	

		177 					SFML_DEPRECATED	void	setColor(const	Color&	color);

		178 	

		191 					void	setFillColor(const	Color&	color);

		192 	

		203 					void	setOutlineColor(const	Color&	color);

		204 	

		218 					void	setOutlineThickness(float	thickness);

		219 	

		237 					const	String&	getString()	const;

		238 	

		251 					const	Font*	getFont()	const;

		252 	

		261 					unsigned	int	getCharacterSize()	const;

		262 	

		271 					Uint32	getStyle()	const;

		272 	

		285 					SFML_DEPRECATED	const	Color&	getColor()	const;

		286 	

		295 					const	Color&	getFillColor()	const;

		296 	

		305 					const	Color&	getOutlineColor()	const;

		306 	

		315 					float	getOutlineThickness()	const;

		316 	

		332 					Vector2f	findCharacterPos(std::size_t	index)	const;

		333 	

		346 					FloatRect	getLocalBounds()	const;

		347 	

		360 					FloatRect	getGlobalBounds()	const;

		361 	

		362 	private:

		363 	

		371 					virtual	void	draw(RenderTarget&	target,	RenderStates	states)	

		372 	

		380 					void	ensureGeometryUpdate()	const;

		381 	

		383 					//	Member	data

		385 		String														m_string;													

		386 					const	Font*									m_font;															

		387 					unsigned	int								m_characterSize;						

		388 					Uint32														m_style;														

		389 					Color															m_fillColor;										

		390 					Color															m_outlineColor;							

		391 					float															m_outlineThickness;			

		392 					mutable	VertexArray	m_vertices;											

		393 					mutable	VertexArray	m_outlineVertices;				

		394 					mutable	FloatRect			m_bounds;													

		395 					mutable	bool								m_geometryNeedUpdate;	

		396 	};

		397 	

		398 	}	//	namespace	sf

		399 	

		400 	

		401 	#endif	//	SFML_TEXT_HPP

		402 	

		403 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

Texture.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_TEXTURE_HPP

			26 	#define	SFML_TEXTURE_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Graphics/Export.hpp>

			32 	#include	<SFML/Graphics/Image.hpp>

			33 	#include	<SFML/Window/GlResource.hpp>

			34 	

			35 	

			36 	namespace	sf

			37 	{

			38 	class	Window;

			39 	class	RenderTarget;

			40 	class	RenderTexture;

			41 	class	InputStream;

			42 	

			47 	class	SFML_GRAPHICS_API	Texture	:	GlResource

			48 	{

			49 	public:

			50 	

			55 					enum	CoordinateType

			56 					{

			57 									Normalized,	

			58 									Pixels						

			59 					};

			60 	

			61 	public:

			62 	

			69 					Texture();

			70 	

			77 					Texture(const	Texture&	copy);

			78 	

			83 					~Texture();

			84 	

			96 					bool	create(unsigned	int	width,	unsigned	int	height);

			97 	

		127 					bool	loadFromFile(const	std::string&	filename,	const	IntRect

		128 	

		159 					bool	loadFromMemory(const	void*	data,	std::size_t	size,	const

		160 	

		190 					bool	loadFromStream(InputStream&	stream,	const	IntRect&	area	=	

		191 	

		214 					bool	loadFromImage(const	Image&	image,	const	IntRect&	area	=	

		215 	

		222 					Vector2u	getSize()	const;

		223 	

		237 					Image	copyToImage()	const;

		238 	

		255 					void	update(const	Uint8*	pixels);

		256 	

		277 					void	update(const	Uint8*	pixels,	unsigned	int	width,	unsigned

unsigned	int	y);

		278 	

		297 					void	update(const	Image&	image);

		298 	

		314 					void	update(const	Image&	image,	unsigned	int	x,	unsigned	int

		315 	

		334 					void	update(const	Window&	window);

		335 	

		351 					void	update(const	Window&	window,	unsigned	int	x,	unsigned	int

		352 	

		367 					void	setSmooth(bool	smooth);

		368 	

		377 					bool	isSmooth()	const;

		378 	

		402 					void	setSrgb(bool	sRgb);

		403 	

		412 					bool	isSrgb()	const;

		413 	

		436 					void	setRepeated(bool	repeated);

		437 	

		446 					bool	isRepeated()	const;

		447 	

		471 					bool	generateMipmap();

		472 	

		481 					Texture&	operator	=(const	Texture&	right);

		482 	

		493 					unsigned	int	getNativeHandle()	const;

		494 	

		526 					static	void	bind(const	Texture*	texture,	CoordinateType	coordinateType	=	Normalized);

		527 	

		538 					static	unsigned	int	getMaximumSize();

		539 	

		540 	private:

		541 	

		542 					friend	class	RenderTexture;

		543 					friend	class	RenderTarget;

		544 	

		558 					static	unsigned	int	getValidSize(unsigned	int	size);

		559 	

		567 					void	invalidateMipmap();

		568 	

		570 					//	Member	data

		572 		Vector2u					m_size;										

		573 					Vector2u					m_actualSize;				

		574 					unsigned	int	m_texture;							

		575 					bool									m_isSmooth;						

		576 					bool									m_sRgb;										

		577 					bool									m_isRepeated;				

		578 					mutable	bool	m_pixelsFlipped;	

		579 					bool									m_fboAttachment;	

		580 					bool									m_hasMipmap;					

		581 					Uint64							m_cacheId;							

		582 	};

		583 	

		584 	}	//	namespace	sf

		585 	

		586 	

		587 	#endif	//	SFML_TEXTURE_HPP

		588 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

Thread.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_THREAD_HPP

			26 	#define	SFML_THREAD_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/System/Export.hpp>

			32 	#include	<SFML/System/NonCopyable.hpp>

			33 	#include	<cstdlib>

			34 	

			35 	

			36 	namespace	sf

			37 	{

			38 	namespace	priv

			39 	{

			40 					class	ThreadImpl;

			41 					struct	ThreadFunc;

			42 	}

			43 	

			48 	class	SFML_SYSTEM_API	Thread	:	NonCopyable

			49 	{

			50 	public:

			51 	

			74 					template	<typename	F>

			75 					Thread(F	function);

			76 	

		102 					template	<typename	F,	typename	A>

		103 					Thread(F	function,	A	argument);

		104 	

		125 					template	<typename	C>

		126 					Thread(void(C::*function)(),	C*	object);

		127 	

		135 					~Thread();

		136 	

		146 					void	launch();

		147 	

		159 					void	wait();

		160 	

		172 					void	terminate();

		173 	

		174 	private:

		175 	

		176 					friend	class	priv::ThreadImpl;

		177 	

		184 					void	run();

		185 	

		187 					//	Member	data

		189 					priv::ThreadImpl*	m_impl;							

		190 					priv::ThreadFunc*	m_entryPoint;	

		191 	};

		192 	

		193 	#include	<SFML/System/Thread.inl>

		194 	

		195 	}	//	namespace	sf

		196 	

		197 	#endif	//	SFML_THREAD_HPP

		198 	

		199 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

http://www.sfml-dev.org/license.php

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

ThreadLocal.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_THREADLOCAL_HPP

			26 	#define	SFML_THREADLOCAL_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/System/Export.hpp>

			32 	#include	<SFML/System/NonCopyable.hpp>

			33 	#include	<cstdlib>

			34 	

			35 	

			36 	namespace	sf

			37 	{

			38 	namespace	priv

			39 	{

			40 					class	ThreadLocalImpl;

			41 	}

			42 	

			47 	class	SFML_SYSTEM_API	ThreadLocal	:	NonCopyable

			48 	{

			49 	public:

			50 	

			57 					ThreadLocal(void*	value	=	NULL);

			58 	

			63 					~ThreadLocal();

			64 	

			71 					void	setValue(void*	value);

			72 	

			79 					void*	getValue()	const;

			80 	

			81 	private:

			82 	

			84 					//	Member	data

			86 					priv::ThreadLocalImpl*	m_impl;	

			87 	};

			88 	

			89 	}	//	namespace	sf

			90 	

			91 	

			92 	#endif	//	SFML_THREADLOCAL_HPP

			93 	

			94 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

ThreadLocalPtr.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_THREADLOCALPTR_HPP

			26 	#define	SFML_THREADLOCALPTR_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/System/ThreadLocal.hpp>

			32 	

			33 	

			34 	namespace	sf

			35 	{

			40 	template	<typename	T>

			41 	class	ThreadLocalPtr	:	private	ThreadLocal

			42 	{

			43 	public:

			44 	

			51 					ThreadLocalPtr(T*	value	=	NULL);

			52 	

			62 					T&	operator	*()	const;

			63 	

			73 					T*	operator	->()	const;

			74 	

			82 					operator	T*()	const;

			83 	

			92 					ThreadLocalPtr<T>&	operator	=(T*	value);

			93 	

		102 					ThreadLocalPtr<T>&	operator	=(const	ThreadLocalPtr<T>&	right);

		103 	};

		104 	

		105 	}	//	namespace	sf

		106 	

		107 	#include	<SFML/System/ThreadLocalPtr.inl>

		108 	

		109 	

		110 	#endif	//	SFML_THREADLOCALPTR_HPP

		111 	

		112 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

Time.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_TIME_HPP

			26 	#define	SFML_TIME_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/System/Export.hpp>

			32 	

			33 	

			34 	namespace	sf

			35 	{

			40 	class	SFML_SYSTEM_API	Time

			41 	{

			42 	public:

			43 	

			50 					Time();

			51 	

			60 					float	asSeconds()	const;

			61 	

			70 					Int32	asMilliseconds()	const;

			71 	

			80 					Int64	asMicroseconds()	const;

			81 	

			83 					//	Static	member	data

			85 		static	const	Time	Zero;	

			86 	

			87 	private:

			88 	

			89 					friend	SFML_SYSTEM_API	Time	seconds(float);

			90 					friend	SFML_SYSTEM_API	Time	milliseconds(Int32);

			91 					friend	SFML_SYSTEM_API	Time	microseconds(Int64);

			92 	

		102 					explicit	Time(Int64	microseconds);

		103 	

		104 	private:

		105 	

		107 					//	Member	data

		109 					Int64	m_microseconds;	

		110 	};

		111 	

		123 	SFML_SYSTEM_API	Time	seconds(float	amount);

		124 	

		136 	SFML_SYSTEM_API	Time	milliseconds(Int32	amount);

		137 	

		149 	SFML_SYSTEM_API	Time	microseconds(Int64	amount);

		150 	

		161 	SFML_SYSTEM_API	bool	operator	==(Time	left,	Time	right);

		162 	

		173 	SFML_SYSTEM_API	bool	operator	!=(Time	left,	Time	right);

		174 	

		185 	SFML_SYSTEM_API	bool	operator	<(Time	left,	Time	right);

		186 	

		197 	SFML_SYSTEM_API	bool	operator	>(Time	left,	Time	right);

		198 	

		209 	SFML_SYSTEM_API	bool	operator	<=(Time	left,	Time	right);

		210 	

		221 	SFML_SYSTEM_API	bool	operator	>=(Time	left,	Time	right);

		222 	

		232 	SFML_SYSTEM_API	Time	operator	-(Time	right);

		233 	

		244 	SFML_SYSTEM_API	Time	operator	+(Time	left,	Time	right);

		245 	

		256 	SFML_SYSTEM_API	Time&	operator	+=(Time&	left,	Time	right);

		257 	

		268 	SFML_SYSTEM_API	Time	operator	-(Time	left,	Time	right);

		269 	

		280 	SFML_SYSTEM_API	Time&	operator	-=(Time&	left,	Time	right);

		281 	

		292 	SFML_SYSTEM_API	Time	operator	*(Time	left,	float	right);

		293 	

		304 	SFML_SYSTEM_API	Time	operator	*(Time	left,	Int64	right);

		305 	

		316 	SFML_SYSTEM_API	Time	operator	*(float	left,	Time	right);

		317 	

		328 	SFML_SYSTEM_API	Time	operator	*(Int64	left,	Time	right);

		329 	

		340 	SFML_SYSTEM_API	Time&	operator	*=(Time&	left,	float	right);

		341 	

		352 	SFML_SYSTEM_API	Time&	operator	*=(Time&	left,	Int64	right);

		353 	

		364 	SFML_SYSTEM_API	Time	operator	/(Time	left,	float	right);

		365 	

		376 	SFML_SYSTEM_API	Time	operator	/(Time	left,	Int64	right);

		377 	

		388 	SFML_SYSTEM_API	Time&	operator	/=(Time&	left,	float	right);

		389 	

		400 	SFML_SYSTEM_API	Time&	operator	/=(Time&	left,	Int64	right);

		401 	

		412 	SFML_SYSTEM_API	float	operator	/(Time	left,	Time	right);

		413 	

		424 	SFML_SYSTEM_API	Time	operator	%(Time	left,	Time	right);

		425 	

		436 	SFML_SYSTEM_API	Time&	operator	%=(Time&	left,	Time	right);

		437 	

		438 	}	//	namespace	sf

		439 	

		440 	

		441 	#endif	//	SFML_TIME_HPP

		442 	

		443 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

Touch.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_TOUCH_HPP

			26 	#define	SFML_TOUCH_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Window/Export.hpp>

			32 	#include	<SFML/System/Vector2.hpp>

			33 	

			34 	

			35 	namespace	sf

			36 	{

			37 	class	Window;

			38 	

			43 	class	SFML_WINDOW_API	Touch

			44 	{

			45 	public:

			46 	

			55 					static	bool	isDown(unsigned	int	finger);

			56 	

			68 					static	Vector2i	getPosition(unsigned	int	finger);

			69 	

			82 					static	Vector2i	getPosition(unsigned	int	finger,	const	Window

			83 	};

			84 	

			85 	}	//	namespace	sf

			86 	

			87 	

			88 	#endif	//	SFML_TOUCH_HPP

			89 	

			90 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

Transform.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_TRANSFORM_HPP

			26 	#define	SFML_TRANSFORM_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Graphics/Export.hpp>

			32 	#include	<SFML/Graphics/Rect.hpp>

			33 	#include	<SFML/System/Vector2.hpp>

			34 	

			35 	

			36 	namespace	sf

			37 	{

			42 	class	SFML_GRAPHICS_API	Transform

			43 	{

			44 	public:

			45 	

			52 					Transform();

			53 	

			68 					Transform(float	a00,	float	a01,	float	a02,

			69 															float	a10,	float	a11,	float	a12,

			70 															float	a20,	float	a21,	float	a22);

			71 	

			87 					const	float*	getMatrix()	const;

			88 	

			98 					Transform	getInverse()	const;

			99 	

		109 					Vector2f	transformPoint(float	x,	float	y)	const;

		110 	

		119 					Vector2f	transformPoint(const	Vector2f&	point)	const;

		120 	

		135 					FloatRect	transformRect(const	FloatRect&	rectangle)	const;

		136 	

		149 					Transform&	combine(const	Transform&	transform);

		150 	

		169 					Transform&	translate(float	x,	float	y);

		170 	

		188 					Transform&	translate(const	Vector2f&	offset);

		189 	

		207 					Transform&	rotate(float	angle);

		208 	

		233 					Transform&	rotate(float	angle,	float	centerX,	float	centerY);

		234 	

		258 					Transform&	rotate(float	angle,	const	Vector2f&	center);

		259 	

		278 					Transform&	scale(float	scaleX,	float	scaleY);

		279 	

		305 					Transform&	scale(float	scaleX,	float	scaleY,	float	centerX,	

		306 	

		324 					Transform&	scale(const	Vector2f&	factors);

		325 	

		349 					Transform&	scale(const	Vector2f&	factors,	const	Vector2f&	center);

		350 	

		352 					//	Static	member	data

		354 		static	const	Transform	Identity;	

		355 	

		356 	private:

		357 	

		359 					//	Member	data

		361 		float	m_matrix[16];	

		362 	};

		363 	

		376 	SFML_GRAPHICS_API	Transform	operator	*(const	Transform&	left,	const

		377 	

		390 	SFML_GRAPHICS_API	Transform&	operator	*=(Transform&	left,	const	

		391 	

		404 	SFML_GRAPHICS_API	Vector2f	operator	*(const	Transform&	left,	const

		405 	

		406 	}	//	namespace	sf

		407 	

		408 	

		409 	#endif	//	SFML_TRANSFORM_HPP

		410 	

		411 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

Transformable.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_TRANSFORMABLE_HPP

			26 	#define	SFML_TRANSFORMABLE_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Graphics/Export.hpp>

			32 	#include	<SFML/Graphics/Transform.hpp>

			33 	

			34 	

			35 	namespace	sf

			36 	{

			41 	class	SFML_GRAPHICS_API	Transformable

			42 	{

			43 	public:

			44 	

			49 					Transformable();

			50 	

			55 					virtual	~Transformable();

			56 	

			70 					void	setPosition(float	x,	float	y);

			71 	

			84 					void	setPosition(const	Vector2f&	position);

			85 	

			98 					void	setRotation(float	angle);

			99 	

		113 					void	setScale(float	factorX,	float	factorY);

		114 	

		127 					void	setScale(const	Vector2f&	factors);

		128 	

		145 					void	setOrigin(float	x,	float	y);

		146 	

		162 					void	setOrigin(const	Vector2f&	origin);

		163 	

		172 					const	Vector2f&	getPosition()	const;

		173 	

		184 					float	getRotation()	const;

		185 	

		194 					const	Vector2f&	getScale()	const;

		195 	

		204 					const	Vector2f&	getOrigin()	const;

		205 	

		223 					void	move(float	offsetX,	float	offsetY);

		224 	

		240 					void	move(const	Vector2f&	offset);

		241 	

		255 					void	rotate(float	angle);

		256 	

		274 					void	scale(float	factorX,	float	factorY);

		275 	

		292 					void	scale(const	Vector2f&	factor);

		293 	

		302 					const	Transform&	getTransform()	const;

		303 	

		312 					const	Transform&	getInverseTransform()	const;

		313 	

		314 	private:

		315 	

		317 					//	Member	data

		319 		Vector2f										m_origin;																					

		320 					Vector2f										m_position;																			

		321 					float													m_rotation;																			

		322 					Vector2f										m_scale;																						

		323 					mutable	Transform	m_transform;																		

		324 					mutable	bool						m_transformNeedUpdate;								

		325 					mutable	Transform	m_inverseTransform;											

		326 					mutable	bool						m_inverseTransformNeedUpdate;	

		327 	};

		328 	

		329 	}	//	namespace	sf

		330 	

		331 	

		332 	#endif	//	SFML_TRANSFORMABLE_HPP

		333 	

		334 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

UdpSocket.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_UDPSOCKET_HPP

			26 	#define	SFML_UDPSOCKET_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Network/Export.hpp>

			32 	#include	<SFML/Network/Socket.hpp>

			33 	#include	<SFML/Network/IpAddress.hpp>

			34 	#include	<vector>

			35 	

			36 	

			37 	namespace	sf

			38 	{

			39 	class	Packet;

			40 	

			45 	class	SFML_NETWORK_API	UdpSocket	:	public	Socket

			46 	{

			47 	public:

			48 	

			50 					//	Constants

			52 		enum

			53 					{

			54 									MaxDatagramSize	=	65507	

			55 					};

			56 	

			61 					UdpSocket();

			62 	

			74 					unsigned	short	getLocalPort()	const;

			75 	

			93 					Status	bind(unsigned	short	port,	const	IpAddress&	address	=	

			94 	

		107 					void	unbind();

		108 	

		126 					Status	send(const	void*	data,	std::size_t	size,	const	IpAddress

short	remotePort);

		127 	

		149 					Status	receive(void*	data,	std::size_t	size,	std::size_t&	received,	

remoteAddress,	unsigned	short&	remotePort);

		150 	

		167 					Status	send(Packet&	packet,	const	IpAddress&	remoteAddress,	

		168 	

		184 					Status	receive(Packet&	packet,	IpAddress&	remoteAddress,	unsigned

		185 	

		186 	private:

		187 	

		189 					//	Member	data

		191 					std::vector<char>	m_buffer;	

		192 	};

		193 	

		194 	}	//	namespace	sf

		195 	

		196 	

		197 	#endif	//	SFML_UDPSOCKET_HPP

		198 	

		199 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

Utf.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_UTF_HPP

			26 	#define	SFML_UTF_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Config.hpp>

			32 	#include	<algorithm>

			33 	#include	<locale>

			34 	#include	<string>

			35 	#include	<cstdlib>

			36 	

			37 	

			38 	namespace	sf

			39 	{

			40 	template	<unsigned	int	N>

			41 	class	Utf;

			42 	

			47 	template	<>

			48 	class	Utf<8>

			49 	{

			50 	public:

			51 	

			66 					template	<typename	In>

			67 					static	In	decode(In	begin,	In	end,	Uint32&	output,	Uint32	replacement	=	0);

			68 	

			82 					template	<typename	Out>

			83 					static	Out	encode(Uint32	input,	Out	output,	Uint8	replacement	=	0);

			84 	

			97 					template	<typename	In>

			98 					static	In	next(In	begin,	In	end);

			99 	

		113 					template	<typename	In>

		114 					static	std::size_t	count(In	begin,	In	end);

		115 	

		130 					template	<typename	In,	typename	Out>

		131 					static	Out	fromAnsi(In	begin,	In	end,	Out	output,	const	std::locale&	locale	=

std::locale());

		132 	

		143 					template	<typename	In,	typename	Out>

		144 					static	Out	fromWide(In	begin,	In	end,	Out	output);

		145 	

		156 					template	<typename	In,	typename	Out>

		157 					static	Out	fromLatin1(In	begin,	In	end,	Out	output);

		158 	

		174 					template	<typename	In,	typename	Out>

		175 					static	Out	toAnsi(In	begin,	In	end,	Out	output,	char	replacement	=	0,	

locale	=	std::locale());

		176 	

		188 					template	<typename	In,	typename	Out>

		189 					static	Out	toWide(In	begin,	In	end,	Out	output,	wchar_t	replacement	=	0);

		190 	

		202 					template	<typename	In,	typename	Out>

		203 					static	Out	toLatin1(In	begin,	In	end,	Out	output,	char	replacement	=	0);

		204 	

		220 					template	<typename	In,	typename	Out>

		221 					static	Out	toUtf8(In	begin,	In	end,	Out	output);

		222 	

		233 					template	<typename	In,	typename	Out>

		234 					static	Out	toUtf16(In	begin,	In	end,	Out	output);

		235 	

		246 					template	<typename	In,	typename	Out>

		247 					static	Out	toUtf32(In	begin,	In	end,	Out	output);

		248 	};

		249 	

		254 	template	<>

		255 	class	Utf<16>

		256 	{

		257 	public:

		258 	

		273 					template	<typename	In>

		274 					static	In	decode(In	begin,	In	end,	Uint32&	output,	Uint32	replacement	=	0);

		275 	

		289 					template	<typename	Out>

		290 					static	Out	encode(Uint32	input,	Out	output,	Uint16	replacement	=	0);

		291 	

		304 					template	<typename	In>

		305 					static	In	next(In	begin,	In	end);

		306 	

		320 					template	<typename	In>

		321 					static	std::size_t	count(In	begin,	In	end);

		322 	

		337 					template	<typename	In,	typename	Out>

		338 					static	Out	fromAnsi(In	begin,	In	end,	Out	output,	const	std::locale&	locale	=

std::locale());

		339 	

		350 					template	<typename	In,	typename	Out>

		351 					static	Out	fromWide(In	begin,	In	end,	Out	output);

		352 	

		363 					template	<typename	In,	typename	Out>

		364 					static	Out	fromLatin1(In	begin,	In	end,	Out	output);

		365 	

		381 					template	<typename	In,	typename	Out>

		382 					static	Out	toAnsi(In	begin,	In	end,	Out	output,	char	replacement	=	0,	

locale	=	std::locale());

		383 	

		395 					template	<typename	In,	typename	Out>

		396 					static	Out	toWide(In	begin,	In	end,	Out	output,	wchar_t	replacement	=	0);

		397 	

		409 					template	<typename	In,	typename	Out>

		410 					static	Out	toLatin1(In	begin,	In	end,	Out	output,	char	replacement	=	0);

		411 	

		422 					template	<typename	In,	typename	Out>

		423 					static	Out	toUtf8(In	begin,	In	end,	Out	output);

		424 	

		440 					template	<typename	In,	typename	Out>

		441 					static	Out	toUtf16(In	begin,	In	end,	Out	output);

		442 	

		453 					template	<typename	In,	typename	Out>

		454 					static	Out	toUtf32(In	begin,	In	end,	Out	output);

		455 	};

		456 	

		461 	template	<>

		462 	class	Utf<32>

		463 	{

		464 	public:

		465 	

		481 					template	<typename	In>

		482 					static	In	decode(In	begin,	In	end,	Uint32&	output,	Uint32	replacement	=	0);

		483 	

		498 					template	<typename	Out>

		499 					static	Out	encode(Uint32	input,	Out	output,	Uint32	replacement	=	0);

		500 	

		513 					template	<typename	In>

		514 					static	In	next(In	begin,	In	end);

		515 	

		528 					template	<typename	In>

		529 					static	std::size_t	count(In	begin,	In	end);

		530 	

		545 					template	<typename	In,	typename	Out>

		546 					static	Out	fromAnsi(In	begin,	In	end,	Out	output,	const	std::locale&	locale	=

std::locale());

		547 	

		558 					template	<typename	In,	typename	Out>

		559 					static	Out	fromWide(In	begin,	In	end,	Out	output);

		560 	

		571 					template	<typename	In,	typename	Out>

		572 					static	Out	fromLatin1(In	begin,	In	end,	Out	output);

		573 	

		589 					template	<typename	In,	typename	Out>

		590 					static	Out	toAnsi(In	begin,	In	end,	Out	output,	char	replacement	=	0,	

locale	=	std::locale());

		591 	

		603 					template	<typename	In,	typename	Out>

		604 					static	Out	toWide(In	begin,	In	end,	Out	output,	wchar_t	replacement	=	0);

		605 	

		617 					template	<typename	In,	typename	Out>

		618 					static	Out	toLatin1(In	begin,	In	end,	Out	output,	char	replacement	=	0);

		619 	

		630 					template	<typename	In,	typename	Out>

		631 					static	Out	toUtf8(In	begin,	In	end,	Out	output);

		632 	

		643 					template	<typename	In,	typename	Out>

		644 					static	Out	toUtf16(In	begin,	In	end,	Out	output);

		645 	

		661 					template	<typename	In,	typename	Out>

		662 					static	Out	toUtf32(In	begin,	In	end,	Out	output);

		663 	

		677 					template	<typename	In>

		678 					static	Uint32	decodeAnsi(In	input,	const	std::locale&	locale	=	std::locale());

		679 	

		692 					template	<typename	In>

		693 					static	Uint32	decodeWide(In	input);

		694 	

		710 					template	<typename	Out>

		711 					static	Out	encodeAnsi(Uint32	codepoint,	Out	output,	char	replacement	=	0,	

std::locale&	locale	=	std::locale());

		712 	

		727 					template	<typename	Out>

		728 					static	Out	encodeWide(Uint32	codepoint,	Out	output,	wchar_t	replacement	=	0);

		729 	};

		730 	

		731 	#include	<SFML/System/Utf.inl>

		732 	

		733 	//	Make	typedefs	to	get	rid	of	the	template	syntax

		734 	typedef	Utf<8>	Utf8;

		735 	typedef	Utf<16>	Utf16;

		736 	typedef	Utf<32>	Utf32;

		737 	

		738 	}	//	namespace	sf

		739 	

		740 	

		741 	#endif	//	SFML_UTF_HPP

		742 	

		743 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

Vector2.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_VECTOR2_HPP

			26 	#define	SFML_VECTOR2_HPP

			27 	

			28 	

			29 	namespace	sf

			30 	{

			36 	template	<typename	T>

			37 	class	Vector2

			38 	{

			39 	public:

			40 	

			47 					Vector2();

			48 	

			56 					Vector2(T	X,	T	Y);

			57 	

			69 					template	<typename	U>

			70 					explicit	Vector2(const	Vector2<U>&	vector);

			71 	

			73 					//	Member	data

			75 					T	x;	

			76 					T	y;	

			77 	};

			78 	

			88 	template	<typename	T>

			89 	Vector2<T>	operator	-(const	Vector2<T>&	right);

			90 	

		104 	template	<typename	T>

		105 	Vector2<T>&	operator	+=(Vector2<T>&	left,	const	Vector2<T>&	right);

		106 	

		120 	template	<typename	T>

		121 	Vector2<T>&	operator	-=(Vector2<T>&	left,	const	Vector2<T>&	right);

		122 	

		133 	template	<typename	T>

		134 	Vector2<T>	operator	+(const	Vector2<T>&	left,	const	Vector2<T>&	right);

		135 	

		146 	template	<typename	T>

		147 	Vector2<T>	operator	-(const	Vector2<T>&	left,	const	Vector2<T>&	right);

		148 	

		159 	template	<typename	T>

		160 	Vector2<T>	operator	*(const	Vector2<T>&	left,	T	right);

		161 	

		172 	template	<typename	T>

		173 	Vector2<T>	operator	*(T	left,	const	Vector2<T>&	right);

		174 	

		188 	template	<typename	T>

		189 	Vector2<T>&	operator	*=(Vector2<T>&	left,	T	right);

		190 	

		201 	template	<typename	T>

		202 	Vector2<T>	operator	/(const	Vector2<T>&	left,	T	right);

		203 	

		217 	template	<typename	T>

		218 	Vector2<T>&	operator	/=(Vector2<T>&	left,	T	right);

		219 	

		232 	template	<typename	T>

		233 	bool	operator	==(const	Vector2<T>&	left,	const	Vector2<T>&	right);

		234 	

		247 	template	<typename	T>

		248 	bool	operator	!=(const	Vector2<T>&	left,	const	Vector2<T>&	right);

		249 	

		250 	#include	<SFML/System/Vector2.inl>

		251 	

		252 	//	Define	the	most	common	types

		253 	typedef	Vector2<int>	Vector2i;

		254 	typedef	Vector2<unsigned	int>	Vector2u;

		255 	typedef	Vector2<float>	Vector2f;

		256 	

		257 	}	//	namespace	sf

		258 	

		259 	

		260 	#endif	//	SFML_VECTOR2_HPP

		261 	

		262 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

Vector3.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_VECTOR3_HPP

			26 	#define	SFML_VECTOR3_HPP

			27 	

			28 	

			29 	namespace	sf

			30 	{

			36 	template	<typename	T>

			37 	class	Vector3

			38 	{

			39 	public:

			40 	

			47 					Vector3();

			48 	

			57 					Vector3(T	X,	T	Y,	T	Z);

			58 	

			70 					template	<typename	U>

			71 					explicit	Vector3(const	Vector3<U>&	vector);

			72 	

			74 					//	Member	data

			76 					T	x;	

			77 					T	y;	

			78 					T	z;	

			79 	};

			80 	

			90 	template	<typename	T>

			91 	Vector3<T>	operator	-(const	Vector3<T>&	left);

			92 	

		106 	template	<typename	T>

		107 	Vector3<T>&	operator	+=(Vector3<T>&	left,	const	Vector3<T>&	right);

		108 	

		122 	template	<typename	T>

		123 	Vector3<T>&	operator	-=(Vector3<T>&	left,	const	Vector3<T>&	right);

		124 	

		135 	template	<typename	T>

		136 	Vector3<T>	operator	+(const	Vector3<T>&	left,	const	Vector3<T>&	right);

		137 	

		148 	template	<typename	T>

		149 	Vector3<T>	operator	-(const	Vector3<T>&	left,	const	Vector3<T>&	right);

		150 	

		161 	template	<typename	T>

		162 	Vector3<T>	operator	*(const	Vector3<T>&	left,	T	right);

		163 	

		174 	template	<typename	T>

		175 	Vector3<T>	operator	*(T	left,	const	Vector3<T>&	right);

		176 	

		190 	template	<typename	T>

		191 	Vector3<T>&	operator	*=(Vector3<T>&	left,	T	right);

		192 	

		203 	template	<typename	T>

		204 	Vector3<T>	operator	/(const	Vector3<T>&	left,	T	right);

		205 	

		219 	template	<typename	T>

		220 	Vector3<T>&	operator	/=(Vector3<T>&	left,	T	right);

		221 	

		234 	template	<typename	T>

		235 	bool	operator	==(const	Vector3<T>&	left,	const	Vector3<T>&	right);

		236 	

		249 	template	<typename	T>

		250 	bool	operator	!=(const	Vector3<T>&	left,	const	Vector3<T>&	right);

		251 	

		252 	#include	<SFML/System/Vector3.inl>

		253 	

		254 	//	Define	the	most	common	types

		255 	typedef	Vector3<int>	Vector3i;

		256 	typedef	Vector3<float>	Vector3f;

		257 	

		258 	}	//	namespace	sf

		259 	

		260 	

		261 	#endif	//	SFML_VECTOR3_HPP

		262 	

		263 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

Vertex.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_VERTEX_HPP

			26 	#define	SFML_VERTEX_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Graphics/Export.hpp>

			32 	#include	<SFML/Graphics/Color.hpp>

			33 	#include	<SFML/System/Vector2.hpp>

			34 	

			35 	

			36 	namespace	sf

			37 	{

			42 	class	SFML_GRAPHICS_API	Vertex

			43 	{

			44 	public:

			45 	

			50 					Vertex();

			51 	

			60 					Vertex(const	Vector2f&	thePosition);

			61 	

			71 					Vertex(const	Vector2f&	thePosition,	const	Color&	theColor);

			72 	

			82 					Vertex(const	Vector2f&	thePosition,	const	Vector2f&	theTexCoords);

			83 	

			92 					Vertex(const	Vector2f&	thePosition,	const	Color&	theColor,	const

			93 	

			95 					//	Member	data

			97 		Vector2f	position;		

			98 					Color	color;					

			99 					Vector2f	texCoords;	

		100 	};

		101 	

		102 	}	//	namespace	sf

		103 	

		104 	

		105 	#endif	//	SFML_VERTEX_HPP

		106 	

		107 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

VertexArray.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_VERTEXARRAY_HPP

			26 	#define	SFML_VERTEXARRAY_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Graphics/Export.hpp>

			32 	#include	<SFML/Graphics/Vertex.hpp>

			33 	#include	<SFML/Graphics/PrimitiveType.hpp>

			34 	#include	<SFML/Graphics/Rect.hpp>

			35 	#include	<SFML/Graphics/Drawable.hpp>

			36 	#include	<vector>

			37 	

			38 	

			39 	namespace	sf

			40 	{

			45 	class	SFML_GRAPHICS_API	VertexArray	:	public	Drawable

			46 	{

			47 	public:

			48 	

			55 					VertexArray();

			56 	

			64 					explicit	VertexArray(PrimitiveType	type,	std::size_t	vertexCount	=	0);

			65 	

			72 					std::size_t	getVertexCount()	const;

			73 	

			88 					Vertex&	operator	[](std::size_t	index);

			89 	

		104 					const	Vertex&	operator	[](std::size_t	index)	const;

		105 	

		115 					void	clear();

		116 	

		129 					void	resize(std::size_t	vertexCount);

		130 	

		137 					void	append(const	Vertex&	vertex);

		138 	

		153 					void	setPrimitiveType(PrimitiveType	type);

		154 	

		161 					PrimitiveType	getPrimitiveType()	const;

		162 	

		172 					FloatRect	getBounds()	const;

		173 	

		174 	private:

		175 	

		183 					virtual	void	draw(RenderTarget&	target,	RenderStates	states)	

		184 	

		185 	private:

		186 	

		188 					//	Member	data

		190 					std::vector<Vertex>	m_vertices;						

		191 					PrimitiveType							m_primitiveType;	

		192 	};

		193 	

		194 	}	//	namespace	sf

		195 	

		196 	

		197 	#endif	//	SFML_VERTEXARRAY_HPP

		198 	

		199 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

VideoMode.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_VIDEOMODE_HPP

			26 	#define	SFML_VIDEOMODE_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Window/Export.hpp>

			32 	#include	<vector>

			33 	

			34 	

			35 	namespace	sf

			36 	{

			41 	class	SFML_WINDOW_API	VideoMode

			42 	{

			43 	public:

			44 	

			51 					VideoMode();

			52 	

			61 					VideoMode(unsigned	int	modeWidth,	unsigned	int	modeHeight,	unsigned

32);

			62 	

			69 					static	VideoMode	getDesktopMode();

			70 	

			85 					static	const	std::vector<VideoMode>&	getFullscreenModes();

			86 	

			97 					bool	isValid()	const;

			98 	

		100 					//	Member	data

		102 		unsigned	int	width;								

		103 					unsigned	int	height;							

		104 					unsigned	int	bitsPerPixel;	

		105 	};

		106 	

		117 	SFML_WINDOW_API	bool	operator	==(const	VideoMode&	left,	const	VideoMode

		118 	

		129 	SFML_WINDOW_API	bool	operator	!=(const	VideoMode&	left,	const	VideoMode

		130 	

		141 	SFML_WINDOW_API	bool	operator	<(const	VideoMode&	left,	const	VideoMode

		142 	

		153 	SFML_WINDOW_API	bool	operator	>(const	VideoMode&	left,	const	VideoMode

		154 	

		165 	SFML_WINDOW_API	bool	operator	<=(const	VideoMode&	left,	const	VideoMode

		166 	

		177 	SFML_WINDOW_API	bool	operator	>=(const	VideoMode&	left,	const	VideoMode

		178 	

		179 	}	//	namespace	sf

		180 	

		181 	

		182 	#endif	//	SFML_VIDEOMODE_HPP

		183 	

		184 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

View.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_VIEW_HPP

			26 	#define	SFML_VIEW_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Graphics/Export.hpp>

			32 	#include	<SFML/Graphics/Rect.hpp>

			33 	#include	<SFML/Graphics/Transform.hpp>

			34 	#include	<SFML/System/Vector2.hpp>

			35 	

			36 	

			37 	namespace	sf

			38 	{

			43 	class	SFML_GRAPHICS_API	View

			44 	{

			45 	public:

			46 	

			53 					View();

			54 	

			61 					explicit	View(const	FloatRect&	rectangle);

			62 	

			70 					View(const	Vector2f&	center,	const	Vector2f&	size);

			71 	

			81 					void	setCenter(float	x,	float	y);

			82 	

			91 					void	setCenter(const	Vector2f&	center);

			92 	

		102 					void	setSize(float	width,	float	height);

		103 	

		112 					void	setSize(const	Vector2f&	size);

		113 	

		124 					void	setRotation(float	angle);

		125 	

		141 					void	setViewport(const	FloatRect&	viewport);

		142 	

		153 					void	reset(const	FloatRect&	rectangle);

		154 	

		163 					const	Vector2f&	getCenter()	const;

		164 	

		173 					const	Vector2f&	getSize()	const;

		174 	

		183 					float	getRotation()	const;

		184 	

		193 					const	FloatRect&	getViewport()	const;

		194 	

		204 					void	move(float	offsetX,	float	offsetY);

		205 	

		214 					void	move(const	Vector2f&	offset);

		215 	

		224 					void	rotate(float	angle);

		225 	

		241 					void	zoom(float	factor);

		242 	

		253 					const	Transform&	getTransform()	const;

		254 	

		265 					const	Transform&	getInverseTransform()	const;

		266 	

		267 	private:

		268 	

		270 					//	Member	data

		272 		Vector2f										m_center;														

		273 					Vector2f										m_size;																

		274 					float													m_rotation;												

		275 					FloatRect									m_viewport;												

		276 					mutable	Transform	m_transform;											

		277 					mutable	Transform	m_inverseTransform;				

		278 					mutable	bool						m_transformUpdated;				

		279 					mutable	bool						m_invTransformUpdated;	

		280 	};

		281 	

		282 	}	//	namespace	sf

		283 	

		284 	

		285 	#endif	//	SFML_VIEW_HPP

		286 	

		287 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

Window/Window.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_WINDOW_HPP

			26 	#define	SFML_WINDOW_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Window/Export.hpp>

			32 	#include	<SFML/Window/ContextSettings.hpp>

			33 	#include	<SFML/Window/VideoMode.hpp>

			34 	#include	<SFML/Window/WindowHandle.hpp>

			35 	#include	<SFML/Window/WindowStyle.hpp>

			36 	#include	<SFML/Window/GlResource.hpp>

			37 	#include	<SFML/System/Clock.hpp>

			38 	#include	<SFML/System/Vector2.hpp>

			39 	#include	<SFML/System/NonCopyable.hpp>

			40 	#include	<SFML/System/String.hpp>

			41 	

			42 	

			43 	namespace	sf

			44 	{

			45 	namespace	priv

			46 	{

			47 					class	GlContext;

			48 					class	WindowImpl;

			49 	}

			50 	

			51 	class	Event;

			52 	

			57 	class	SFML_WINDOW_API	Window	:	GlResource,	NonCopyable

			58 	{

			59 	public:

			60 	

			68 					Window();

			69 	

			89 					Window(VideoMode	mode,	const	String&	title,	Uint32	style	=	

ContextSettings&	settings	=	ContextSettings());

			90 	

		105 					explicit	Window(WindowHandle	handle,	const	ContextSettings&	settings	=	

		106 	

		113 					virtual	~Window();

		114 	

		132 					void	create(VideoMode	mode,	const	String&	title,	Uint32	style	=	

ContextSettings&	settings	=	ContextSettings());

		133 	

		149 					void	create(WindowHandle	handle,	const	ContextSettings&	settings	=	

		150 	

		161 					void	close();

		162 	

		173 					bool	isOpen()	const;

		174 	

		186 					const	ContextSettings&	getSettings()	const;

		187 	

		211 					bool	pollEvent(Event&	event);

		212 	

		238 					bool	waitEvent(Event&	event);

		239 	

		248 					Vector2i	getPosition()	const;

		249 	

		262 					void	setPosition(const	Vector2i&	position);

		263 	

		275 					Vector2u	getSize()	const;

		276 	

		285 					void	setSize(const	Vector2u&	size);

		286 	

		295 					void	setTitle(const	String&	title);

		296 	

		314 					void	setIcon(unsigned	int	width,	unsigned	int	height,	const	Uint8*	pixels);

		315 	

		324 					void	setVisible(bool	visible);

		325 	

		339 					void	setVerticalSyncEnabled(bool	enabled);

		340 	

		349 					void	setMouseCursorVisible(bool	visible);

		350 	

		362 					void	setMouseCursorGrabbed(bool	grabbed);

		363 	

		376 					void	setKeyRepeatEnabled(bool	enabled);

		377 	

		393 					void	setFramerateLimit(unsigned	int	limit);

		394 	

		406 					void	setJoystickThreshold(float	threshold);

		407 	

		424 					bool	setActive(bool	active	=	true)	const;

		425 	

		440 					void	requestFocus();

		441 	

		453 					bool	hasFocus()	const;

		454 	

		463 					void	display();

		464 	

		477 					WindowHandle	getSystemHandle()	const;

		478 	

		479 	protected:

		480 	

		489 					virtual	void	onCreate();

		490 	

		498 					virtual	void	onResize();

		499 	

		500 	private:

		501 	

		514 					bool	filterEvent(const	Event&	event);

		515 	

		520 					void	initialize();

		521 	

		523 					//	Member	data

		525 					priv::WindowImpl*	m_impl;											

		526 					priv::GlContext*		m_context;								

		527 					Clock													m_clock;										

		528 					Time														m_frameTimeLimit;	

		529 					Vector2u										m_size;											

		530 	};

		531 	

		532 	}	//	namespace	sf

		533 	

		534 	

		535 	#endif	//	SFML_WINDOW_HPP

		536 	

		537 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

Window.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_SFML_WINDOW_HPP

			26 	#define	SFML_SFML_WINDOW_HPP

			27 	

			29 	//	Headers

			31 	

			32 	#include	<SFML/System.hpp>

			33 	#include	<SFML/Window/Context.hpp>

			34 	#include	<SFML/Window/ContextSettings.hpp>

			35 	#include	<SFML/Window/Event.hpp>

			36 	#include	<SFML/Window/Joystick.hpp>

			37 	#include	<SFML/Window/Keyboard.hpp>

			38 	#include	<SFML/Window/Mouse.hpp>

			39 	#include	<SFML/Window/Sensor.hpp>

			40 	#include	<SFML/Window/Touch.hpp>

			41 	#include	<SFML/Window/VideoMode.hpp>

			42 	#include	<SFML/Window/Window.hpp>

			43 	#include	<SFML/Window/WindowHandle.hpp>

			44 	#include	<SFML/Window/WindowStyle.hpp>

			45 	

			46 	

			47 	

			48 	#endif	//	SFML_SFML_WINDOW_HPP

			49 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

WindowHandle.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_WINDOWHANDLE_HPP

			26 	#define	SFML_WINDOWHANDLE_HPP

			27 	

			29 	//	Headers

			31 	#include	<SFML/Config.hpp>

			32 	

			33 	//	Windows'	HWND	is	a	typedef	on	struct	HWND__*

			34 	#if	defined(SFML_SYSTEM_WINDOWS)

			35 					struct	HWND__;

			36 	#endif

			37 	

			38 	namespace	sf

			39 	{

			40 	#if	defined(SFML_SYSTEM_WINDOWS)

			41 	

			42 					//	Window	handle	is	HWND	(HWND__*)	on	Windows

			43 					typedef	HWND__*	WindowHandle;

			44 	

			45 	#elif	defined(SFML_SYSTEM_LINUX)	||	defined(SFML_SYSTEM_FREEBSD)

			46 	

			47 					//	Window	handle	is	Window	(unsigned	long)	on	Unix	-	X11

			48 					typedef	unsigned	long	WindowHandle;

			49 	

			50 	#elif	defined(SFML_SYSTEM_MACOS)

			51 	

			52 					//	Window	handle	is	NSWindow	or	NSView	(void*)	on	Mac	OS	X	-	Cocoa

			53 					typedef	void*	WindowHandle;

			54 	

			55 	#elif	defined(SFML_SYSTEM_IOS)

			56 	

			57 					//	Window	handle	is	UIWindow	(void*)	on	iOS	-	UIKit

			58 					typedef	void*	WindowHandle;

			59 	

			60 	#elif	defined(SFML_SYSTEM_ANDROID)

			61 	

			62 					//	Window	handle	is	ANativeWindow*	(void*)	on	Android

			63 					typedef	void*	WindowHandle;

			64 	

			65 	#elif	defined(SFML_DOXYGEN)

			66 	

			67 					//	Define	typedef	symbol	so	that	Doxygen	can	attach	some	documentation	to	it

			68 					typedef	"platform–specific"	WindowHandle;

			69 	

			70 	#endif

			71 	

			72 	}	//	namespace	sf

			73 	

			74 	

			75 	#endif	//	SFML_WINDOWHANDLE_HPP

			76 	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

File	List

SFML	2.4.2

WindowStyle.hpp

				1 	//

				3 	//	SFML	-	Simple	and	Fast	Multimedia	Library

				4 	//	Copyright	(C)	2007-2017	Laurent	Gomila	(laurent@sfml-dev.org)

				5 	//

				6 	//	This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.

				7 	//	In	no	event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this

software.

				8 	//

				9 	//	Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

			10 	//	including	commercial	applications,	and	to	alter	it	and	redistribute	it	freely,

			11 	//	subject	to	the	following	restrictions:

			12 	//

			13 	//	1.	The	origin	of	this	software	must	not	be	misrepresented;

			14 	//				you	must	not	claim	that	you	wrote	the	original	software.

			15 	//				If	you	use	this	software	in	a	product,	an	acknowledgment

			16 	//				in	the	product	documentation	would	be	appreciated	but	is	not	required.

			17 	//

			18 	//	2.	Altered	source	versions	must	be	plainly	marked	as	such,

			19 	//				and	must	not	be	misrepresented	as	being	the	original	software.

			20 	//

			21 	//	3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

			22 	//

			24 	

			25 	#ifndef	SFML_WINDOWSTYLE_HPP

			26 	#define	SFML_WINDOWSTYLE_HPP

			27 	

			28 	

			29 	namespace	sf

			30 	{

			31 	namespace	Style

			32 	{

			38 					enum

			39 					{

			40 									None							=	0,						

			41 									Titlebar			=	1	<<	0,	

			42 									Resize					=	1	<<	1,	

			43 									Close						=	1	<<	2,	

			44 									Fullscreen	=	1	<<	3,	

			45 	

			46 									Default	=	Titlebar	|	Resize	|	Close	

			47 					};

			48 	}

			49 	

			50 	}	//	namespace	sf

			51 	

			52 	

			53 	#endif	//	SFML_WINDOWSTYLE_HPP

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

SFML	2.4.2

Related	Pages

Here	is	a	list	of	all	related	documentation	pages:

	 Deprecated	List

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::AlResource	Member	List

This	is	the	complete	list	of	members	for	sf::AlResource,	including	all	inherited	members.

AlResource() sf::AlResource protected

~AlResource() sf::AlResource protected

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::InputSoundFile	Member	List

This	is	the	complete	list	of	members	for	sf::InputSoundFile,	including	all	inherited	members.

getChannelCount()	const

getDuration()	const

getSampleCount()	const

getSampleRate()	const

InputSoundFile()

NonCopyable()

openForWriting(const	std::string	&filename,	unsigned	int	channelCount,	unsigned	int	sampleRate)

openFromFile(const	std::string	&filename)

openFromMemory(const	void	*data,	std::size_t	sizeInBytes)

openFromStream(InputStream	&stream)

read(Int16	*samples,	Uint64	maxCount)

seek(Uint64	sampleOffset)

seek(Time	timeOffset)

~InputSoundFile()

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Listener	Member	List

This	is	the	complete	list	of	members	for	sf::Listener,	including	all	inherited	members.

getDirection() sf::Listener static

getGlobalVolume() sf::Listener static

getPosition() sf::Listener static

getUpVector() sf::Listener static

setDirection(float	x,	float	y,	float	z) sf::Listener static

setDirection(const	Vector3f	&direction) sf::Listener static

setGlobalVolume(float	volume) sf::Listener static

setPosition(float	x,	float	y,	float	z) sf::Listener static

setPosition(const	Vector3f	&position) sf::Listener static

setUpVector(float	x,	float	y,	float	z) sf::Listener static

setUpVector(const	Vector3f	&upVector) sf::Listener static

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Music	Member	List

This	is	the	complete	list	of	members	for	sf::Music,	including	all	inherited	members.

getAttenuation()	const

getChannelCount()	const

getDuration()	const

getLoop()	const

getMinDistance()	const

getPitch()	const

getPlayingOffset()	const

getPosition()	const

getSampleRate()	const

getStatus()	const

getVolume()	const

sf::SoundStream::initialize(unsigned	int	channelCount,	unsigned	int	sampleRate)

isRelativeToListener()	const

m_source

Music()

onGetData(Chunk	&data)

onSeek(Time	timeOffset)

openFromFile(const	std::string	&filename)

openFromMemory(const	void	*data,	std::size_t	sizeInBytes)

openFromStream(InputStream	&stream)

operator=(const	SoundSource	&right)

pause()

Paused	enum	value

play()

Playing	enum	value

setAttenuation(float	attenuation)

setLoop(bool	loop)

setMinDistance(float	distance)

setPitch(float	pitch)

setPlayingOffset(Time	timeOffset)

setPosition(float	x,	float	y,	float	z)

setPosition(const	Vector3f	&position)

setRelativeToListener(bool	relative)

setVolume(float	volume)

SoundSource(const	SoundSource	©)

SoundSource()

SoundStream()

Status	enum	name

stop()

Stopped	enum	value

~Music()

~SoundSource()

~SoundStream()

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::OutputSoundFile	Member	List

This	is	the	complete	list	of	members	for	sf::OutputSoundFile,	including	all	inherited	members.

NonCopyable()

openFromFile(const	std::string	&filename,	unsigned	int	sampleRate,	unsigned	int	channelCount)

OutputSoundFile()

write(const	Int16	*samples,	Uint64	count)

~OutputSoundFile()

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Sound	Member	List

This	is	the	complete	list	of	members	for	sf::Sound,	including	all	inherited	members.

getAttenuation()	const sf::SoundSource

getBuffer()	const sf::Sound

getLoop()	const sf::Sound

getMinDistance()	const sf::SoundSource

getPitch()	const sf::SoundSource

getPlayingOffset()	const sf::Sound

getPosition()	const sf::SoundSource

getStatus()	const sf::Sound

getVolume()	const sf::SoundSource

isRelativeToListener()	const sf::SoundSource

m_source sf::SoundSource

operator=(const	Sound	&right) sf::Sound

sf::SoundSource::operator=(const	SoundSource	&right) sf::SoundSource

pause() sf::Sound

Paused	enum	value sf::SoundSource

play() sf::Sound

Playing	enum	value sf::SoundSource

resetBuffer() sf::Sound

setAttenuation(float	attenuation) sf::SoundSource

setBuffer(const	SoundBuffer	&buffer) sf::Sound

setLoop(bool	loop) sf::Sound

setMinDistance(float	distance) sf::SoundSource

setPitch(float	pitch) sf::SoundSource

setPlayingOffset(Time	timeOffset) sf::Sound

setPosition(float	x,	float	y,	float	z) sf::SoundSource

setPosition(const	Vector3f	&position) sf::SoundSource

setRelativeToListener(bool	relative) sf::SoundSource

setVolume(float	volume) sf::SoundSource

Sound() sf::Sound

Sound(const	SoundBuffer	&buffer) sf::Sound

Sound(const	Sound	©) sf::Sound

SoundSource(const	SoundSource	©) sf::SoundSource

SoundSource() sf::SoundSource

Status	enum	name sf::SoundSource

stop() sf::Sound

Stopped	enum	value sf::SoundSource

~Sound() sf::Sound

~SoundSource() sf::SoundSource

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::SoundBuffer	Member	List

This	is	the	complete	list	of	members	for	sf::SoundBuffer,	including	all	inherited	members.

AlResource()

getChannelCount()	const

getDuration()	const

getSampleCount()	const

getSampleRate()	const

getSamples()	const

loadFromFile(const	std::string	&filename)

loadFromMemory(const	void	*data,	std::size_t	sizeInBytes)

loadFromSamples(const	Int16	*samples,	Uint64	sampleCount,	unsigned	int	channelCount,	unsigned	int	sampleRate)

loadFromStream(InputStream	&stream)

operator=(const	SoundBuffer	&right)

saveToFile(const	std::string	&filename)	const

Sound	(defined	in	sf::SoundBuffer)

SoundBuffer()

SoundBuffer(const	SoundBuffer	©)

~AlResource()

~SoundBuffer()

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::SoundBufferRecorder	Member	List

This	is	the	complete	list	of	members	for	sf::SoundBufferRecorder,	including	all	inherited	members.

getAvailableDevices() sf::SoundRecorder

getBuffer()	const sf::SoundBufferRecorder

getChannelCount()	const sf::SoundRecorder

getDefaultDevice() sf::SoundRecorder

getDevice()	const sf::SoundRecorder

getSampleRate()	const sf::SoundRecorder

isAvailable() sf::SoundRecorder

onProcessSamples(const	Int16	*samples,	std::size_t	sampleCount) sf::SoundBufferRecorder

onStart() sf::SoundBufferRecorder

onStop() sf::SoundBufferRecorder

setChannelCount(unsigned	int	channelCount) sf::SoundRecorder

setDevice(const	std::string	&name) sf::SoundRecorder

setProcessingInterval(Time	interval) sf::SoundRecorder

SoundRecorder() sf::SoundRecorder

start(unsigned	int	sampleRate=44100) sf::SoundRecorder

stop() sf::SoundRecorder

~SoundBufferRecorder() sf::SoundBufferRecorder

~SoundRecorder() sf::SoundRecorder

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::SoundFileFactory	Member	List

This	is	the	complete	list	of	members	for	sf::SoundFileFactory,	including	all	inherited	members.

createReaderFromFilename(const	std::string	&filename) sf::SoundFileFactory

createReaderFromMemory(const	void	*data,	std::size_t	sizeInBytes) sf::SoundFileFactory

createReaderFromStream(InputStream	&stream) sf::SoundFileFactory

createWriterFromFilename(const	std::string	&filename) sf::SoundFileFactory

registerReader() sf::SoundFileFactory

registerWriter() sf::SoundFileFactory

unregisterReader() sf::SoundFileFactory

unregisterWriter() sf::SoundFileFactory

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::SoundFileReader	Member	List

This	is	the	complete	list	of	members	for	sf::SoundFileReader,	including	all	inherited	members.

open(InputStream	&stream,	Info	&info)=0 sf::SoundFileReader pure	virtual

read(Int16	*samples,	Uint64	maxCount)=0 sf::SoundFileReader pure	virtual

seek(Uint64	sampleOffset)=0 sf::SoundFileReader pure	virtual

~SoundFileReader() sf::SoundFileReader inline virtual

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::SoundFileReader::Info	Member	List

This	is	the	complete	list	of	members	for	sf::SoundFileReader::Info,	including	all	inherited	members.

channelCount sf::SoundFileReader::Info

sampleCount sf::SoundFileReader::Info

sampleRate sf::SoundFileReader::Info

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::SoundFileWriter	Member	List

This	is	the	complete	list	of	members	for	sf::SoundFileWriter,	including	all	inherited	members.

open(const	std::string	&filename,	unsigned	int	sampleRate,	unsigned	int	channelCount)=0

write(const	Int16	*samples,	Uint64	count)=0

~SoundFileWriter()

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::SoundRecorder	Member	List

This	is	the	complete	list	of	members	for	sf::SoundRecorder,	including	all	inherited	members.

AlResource() sf::AlResource

getAvailableDevices() sf::SoundRecorder

getChannelCount()	const sf::SoundRecorder

getDefaultDevice() sf::SoundRecorder

getDevice()	const sf::SoundRecorder

getSampleRate()	const sf::SoundRecorder

isAvailable() sf::SoundRecorder

onProcessSamples(const	Int16	*samples,	std::size_t	sampleCount)=0 sf::SoundRecorder

onStart() sf::SoundRecorder

onStop() sf::SoundRecorder

setChannelCount(unsigned	int	channelCount) sf::SoundRecorder

setDevice(const	std::string	&name) sf::SoundRecorder

setProcessingInterval(Time	interval) sf::SoundRecorder

SoundRecorder() sf::SoundRecorder

start(unsigned	int	sampleRate=44100) sf::SoundRecorder

stop() sf::SoundRecorder

~AlResource() sf::AlResource

~SoundRecorder() sf::SoundRecorder

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::SoundSource	Member	List

This	is	the	complete	list	of	members	for	sf::SoundSource,	including	all	inherited	members.

AlResource() sf::AlResource private

getAttenuation()	const sf::SoundSource

getMinDistance()	const sf::SoundSource

getPitch()	const sf::SoundSource

getPosition()	const sf::SoundSource

getStatus()	const sf::SoundSource protected

getVolume()	const sf::SoundSource

isRelativeToListener()	const sf::SoundSource

m_source sf::SoundSource protected

operator=(const	SoundSource	&right) sf::SoundSource

Paused	enum	value sf::SoundSource

Playing	enum	value sf::SoundSource

setAttenuation(float	attenuation) sf::SoundSource

setMinDistance(float	distance) sf::SoundSource

setPitch(float	pitch) sf::SoundSource

setPosition(float	x,	float	y,	float	z) sf::SoundSource

setPosition(const	Vector3f	&position) sf::SoundSource

setRelativeToListener(bool	relative) sf::SoundSource

setVolume(float	volume) sf::SoundSource

SoundSource(const	SoundSource	©) sf::SoundSource

SoundSource() sf::SoundSource protected

Status	enum	name sf::SoundSource

Stopped	enum	value sf::SoundSource

~AlResource() sf::AlResource private

~SoundSource() sf::SoundSource virtual

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::SoundStream	Member	List

This	is	the	complete	list	of	members	for	sf::SoundStream,	including	all	inherited	members.

getAttenuation()	const sf::SoundSource

getChannelCount()	const sf::SoundStream

getLoop()	const sf::SoundStream

getMinDistance()	const sf::SoundSource

getPitch()	const sf::SoundSource

getPlayingOffset()	const sf::SoundStream

getPosition()	const sf::SoundSource

getSampleRate()	const sf::SoundStream

getStatus()	const sf::SoundStream

getVolume()	const sf::SoundSource

initialize(unsigned	int	channelCount,	unsigned	int	sampleRate) sf::SoundStream

isRelativeToListener()	const sf::SoundSource

m_source sf::SoundSource

onGetData(Chunk	&data)=0 sf::SoundStream

onSeek(Time	timeOffset)=0 sf::SoundStream

operator=(const	SoundSource	&right) sf::SoundSource

pause() sf::SoundStream

Paused	enum	value sf::SoundSource

play() sf::SoundStream

Playing	enum	value sf::SoundSource

setAttenuation(float	attenuation) sf::SoundSource

setLoop(bool	loop) sf::SoundStream

setMinDistance(float	distance) sf::SoundSource

setPitch(float	pitch) sf::SoundSource

setPlayingOffset(Time	timeOffset) sf::SoundStream

setPosition(float	x,	float	y,	float	z) sf::SoundSource

setPosition(const	Vector3f	&position) sf::SoundSource

setRelativeToListener(bool	relative) sf::SoundSource

setVolume(float	volume) sf::SoundSource

SoundSource(const	SoundSource	©) sf::SoundSource

SoundSource() sf::SoundSource

SoundStream() sf::SoundStream

Status	enum	name sf::SoundSource

stop() sf::SoundStream

Stopped	enum	value sf::SoundSource

~SoundSource() sf::SoundSource

~SoundStream() sf::SoundStream

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

http://www.sfml-dev.org/license.php

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::SoundStream::Chunk	Member	List

This	is	the	complete	list	of	members	for	sf::SoundStream::Chunk,	including	all	inherited	members.

sampleCount sf::SoundStream::Chunk

samples sf::SoundStream::Chunk

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::BlendMode	Member	List

This	is	the	complete	list	of	members	for	sf::BlendMode,	including	all	inherited	members.

Add	enum	value

alphaDstFactor

alphaEquation

alphaSrcFactor

BlendMode()

BlendMode(Factor	sourceFactor,	Factor	destinationFactor,	Equation	blendEquation=Add)

BlendMode(Factor	colorSourceFactor,	Factor	colorDestinationFactor,	Equation	colorBlendEquation,	Factor	alphaSourceFactor,	Factor	alphaDestinationFactor,	Equation	alphaBlendEquation)

colorDstFactor

colorEquation

colorSrcFactor

DstAlpha	enum	value

DstColor	enum	value

Equation	enum	name

Factor	enum	name

One	enum	value

OneMinusDstAlpha	enum	value

OneMinusDstColor	enum	value

OneMinusSrcAlpha	enum	value

OneMinusSrcColor	enum	value

operator!=(const	BlendMode	&left,	const	BlendMode	&right)

operator==(const	BlendMode	&left,	const	BlendMode	&right)

ReverseSubtract	enum	value

SrcAlpha	enum	value

SrcColor	enum	value

Subtract	enum	value

Zero	enum	value

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::CircleShape	Member	List

This	is	the	complete	list	of	members	for	sf::CircleShape,	including	all	inherited	members.

CircleShape(float	radius=0,	std::size_t	pointCount=30) sf::CircleShape

getFillColor()	const sf::Shape

getGlobalBounds()	const sf::Shape

getInverseTransform()	const sf::Transformable

getLocalBounds()	const sf::Shape

getOrigin()	const sf::Transformable

getOutlineColor()	const sf::Shape

getOutlineThickness()	const sf::Shape

getPoint(std::size_t	index)	const sf::CircleShape

getPointCount()	const sf::CircleShape

getPosition()	const sf::Transformable

getRadius()	const sf::CircleShape

getRotation()	const sf::Transformable

getScale()	const sf::Transformable

getTexture()	const sf::Shape

getTextureRect()	const sf::Shape

getTransform()	const sf::Transformable

move(float	offsetX,	float	offsetY) sf::Transformable

move(const	Vector2f	&offset) sf::Transformable

rotate(float	angle) sf::Transformable

scale(float	factorX,	float	factorY) sf::Transformable

scale(const	Vector2f	&factor) sf::Transformable

setFillColor(const	Color	&color) sf::Shape

setOrigin(float	x,	float	y) sf::Transformable

setOrigin(const	Vector2f	&origin) sf::Transformable

setOutlineColor(const	Color	&color) sf::Shape

setOutlineThickness(float	thickness) sf::Shape

setPointCount(std::size_t	count) sf::CircleShape

setPosition(float	x,	float	y) sf::Transformable

setPosition(const	Vector2f	&position) sf::Transformable

setRadius(float	radius) sf::CircleShape

setRotation(float	angle) sf::Transformable

setScale(float	factorX,	float	factorY) sf::Transformable

setScale(const	Vector2f	&factors) sf::Transformable

setTexture(const	Texture	*texture,	bool	resetRect=false) sf::Shape

setTextureRect(const	IntRect	&rect) sf::Shape

Shape() sf::Shape

Transformable() sf::Transformable

update() sf::Shape

~Drawable() sf::Drawable

~Shape() sf::Shape

~Transformable() sf::Transformable

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Color	Member	List

This	is	the	complete	list	of	members	for	sf::Color,	including	all	inherited	members.

a sf::Color

b sf::Color

Black sf::Color static

Blue sf::Color static

Color() sf::Color

Color(Uint8	red,	Uint8	green,	Uint8	blue,	Uint8	alpha=255) sf::Color

Color(Uint32	color) sf::Color explicit

Cyan sf::Color static

g sf::Color

Green sf::Color static

Magenta sf::Color static

operator!=(const	Color	&left,	const	Color	&right) sf::Color related

operator*(const	Color	&left,	const	Color	&right) sf::Color related

operator*=(Color	&left,	const	Color	&right) sf::Color related

operator+(const	Color	&left,	const	Color	&right) sf::Color related

operator+=(Color	&left,	const	Color	&right) sf::Color related

operator-(const	Color	&left,	const	Color	&right) sf::Color related

operator-=(Color	&left,	const	Color	&right) sf::Color related

operator==(const	Color	&left,	const	Color	&right) sf::Color related

r sf::Color

Red sf::Color static

toInteger()	const sf::Color

Transparent sf::Color static

White sf::Color static

Yellow sf::Color static

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::ConvexShape	Member	List

This	is	the	complete	list	of	members	for	sf::ConvexShape,	including	all	inherited	members.

ConvexShape(std::size_t	pointCount=0) sf::ConvexShape

getFillColor()	const sf::Shape

getGlobalBounds()	const sf::Shape

getInverseTransform()	const sf::Transformable

getLocalBounds()	const sf::Shape

getOrigin()	const sf::Transformable

getOutlineColor()	const sf::Shape

getOutlineThickness()	const sf::Shape

getPoint(std::size_t	index)	const sf::ConvexShape

getPointCount()	const sf::ConvexShape

getPosition()	const sf::Transformable

getRotation()	const sf::Transformable

getScale()	const sf::Transformable

getTexture()	const sf::Shape

getTextureRect()	const sf::Shape

getTransform()	const sf::Transformable

move(float	offsetX,	float	offsetY) sf::Transformable

move(const	Vector2f	&offset) sf::Transformable

rotate(float	angle) sf::Transformable

scale(float	factorX,	float	factorY) sf::Transformable

scale(const	Vector2f	&factor) sf::Transformable

setFillColor(const	Color	&color) sf::Shape

setOrigin(float	x,	float	y) sf::Transformable

setOrigin(const	Vector2f	&origin) sf::Transformable

setOutlineColor(const	Color	&color) sf::Shape

setOutlineThickness(float	thickness) sf::Shape

setPoint(std::size_t	index,	const	Vector2f	&point) sf::ConvexShape

setPointCount(std::size_t	count) sf::ConvexShape

setPosition(float	x,	float	y) sf::Transformable

setPosition(const	Vector2f	&position) sf::Transformable

setRotation(float	angle) sf::Transformable

setScale(float	factorX,	float	factorY) sf::Transformable

setScale(const	Vector2f	&factors) sf::Transformable

setTexture(const	Texture	*texture,	bool	resetRect=false) sf::Shape

setTextureRect(const	IntRect	&rect) sf::Shape

Shape() sf::Shape

Transformable() sf::Transformable

update() sf::Shape

~Drawable() sf::Drawable

~Shape() sf::Shape

~Transformable() sf::Transformable

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Drawable	Member	List

This	is	the	complete	list	of	members	for	sf::Drawable,	including	all	inherited	members.

draw(RenderTarget	&target,	RenderStates	states)	const	=0 sf::Drawable

RenderTarget	(defined	in	sf::Drawable) sf::Drawable

~Drawable() sf::Drawable

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Font	Member	List

This	is	the	complete	list	of	members	for	sf::Font,	including	all	inherited	members.

Font()

Font(const	Font	©)

getGlyph(Uint32	codePoint,	unsigned	int	characterSize,	bool	bold,	float	outlineThickness=0)	const

getInfo()	const

getKerning(Uint32	first,	Uint32	second,	unsigned	int	characterSize)	const

getLineSpacing(unsigned	int	characterSize)	const

getTexture(unsigned	int	characterSize)	const

getUnderlinePosition(unsigned	int	characterSize)	const

getUnderlineThickness(unsigned	int	characterSize)	const

loadFromFile(const	std::string	&filename)

loadFromMemory(const	void	*data,	std::size_t	sizeInBytes)

loadFromStream(InputStream	&stream)

operator=(const	Font	&right)

~Font()

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Font::Info	Member	List

This	is	the	complete	list	of	members	for	sf::Font::Info,	including	all	inherited	members.

family sf::Font::Info

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Glyph	Member	List

This	is	the	complete	list	of	members	for	sf::Glyph,	including	all	inherited	members.

advance sf::Glyph

bounds sf::Glyph

Glyph() sf::Glyph inline

textureRect sf::Glyph

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Image	Member	List

This	is	the	complete	list	of	members	for	sf::Image,	including	all	inherited	members.

copy(const	Image	&source,	unsigned	int	destX,	unsigned	int	destY,	const	IntRect	&sourceRect=IntRect(0,	0,	0,	0),	bool	applyAlpha=false)

create(unsigned	int	width,	unsigned	int	height,	const	Color	&color=Color(0,	0,	0))

create(unsigned	int	width,	unsigned	int	height,	const	Uint8	*pixels)

createMaskFromColor(const	Color	&color,	Uint8	alpha=0)

flipHorizontally()

flipVertically()

getPixel(unsigned	int	x,	unsigned	int	y)	const

getPixelsPtr()	const

getSize()	const

Image()

loadFromFile(const	std::string	&filename)

loadFromMemory(const	void	*data,	std::size_t	size)

loadFromStream(InputStream	&stream)

saveToFile(const	std::string	&filename)	const

setPixel(unsigned	int	x,	unsigned	int	y,	const	Color	&color)

~Image()

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Rect<	T	>	Member	List

This	is	the	complete	list	of	members	for	sf::Rect<	T	>,	including	all	inherited	members.

contains(T	x,	T	y)	const sf::Rect<	T	>

contains(const	Vector2<	T	>	&point)	const sf::Rect<	T	>

height sf::Rect<	T	>

intersects(const	Rect<	T	>	&rectangle)	const sf::Rect<	T	>

intersects(const	Rect<	T	>	&rectangle,	Rect<	T	>	&intersection)	const sf::Rect<	T	>

left sf::Rect<	T	>

operator!=(const	Rect<	T	>	&left,	const	Rect<	T	>	&right) sf::Rect<	T	>

operator==(const	Rect<	T	>	&left,	const	Rect<	T	>	&right) sf::Rect<	T	>

Rect() sf::Rect<	T	>

Rect(T	rectLeft,	T	rectTop,	T	rectWidth,	T	rectHeight) sf::Rect<	T	>

Rect(const	Vector2<	T	>	&position,	const	Vector2<	T	>	&size) sf::Rect<	T	>

Rect(const	Rect<	U	>	&rectangle) sf::Rect<	T	>

top sf::Rect<	T	>

width sf::Rect<	T	>

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::RectangleShape	Member	List

This	is	the	complete	list	of	members	for	sf::RectangleShape,	including	all	inherited	members.

getFillColor()	const sf::Shape

getGlobalBounds()	const sf::Shape

getInverseTransform()	const sf::Transformable

getLocalBounds()	const sf::Shape

getOrigin()	const sf::Transformable

getOutlineColor()	const sf::Shape

getOutlineThickness()	const sf::Shape

getPoint(std::size_t	index)	const sf::RectangleShape

getPointCount()	const sf::RectangleShape

getPosition()	const sf::Transformable

getRotation()	const sf::Transformable

getScale()	const sf::Transformable

getSize()	const sf::RectangleShape

getTexture()	const sf::Shape

getTextureRect()	const sf::Shape

getTransform()	const sf::Transformable

move(float	offsetX,	float	offsetY) sf::Transformable

move(const	Vector2f	&offset) sf::Transformable

RectangleShape(const	Vector2f	&size=Vector2f(0,	0)) sf::RectangleShape

rotate(float	angle) sf::Transformable

scale(float	factorX,	float	factorY) sf::Transformable

scale(const	Vector2f	&factor) sf::Transformable

setFillColor(const	Color	&color) sf::Shape

setOrigin(float	x,	float	y) sf::Transformable

setOrigin(const	Vector2f	&origin) sf::Transformable

setOutlineColor(const	Color	&color) sf::Shape

setOutlineThickness(float	thickness) sf::Shape

setPosition(float	x,	float	y) sf::Transformable

setPosition(const	Vector2f	&position) sf::Transformable

setRotation(float	angle) sf::Transformable

setScale(float	factorX,	float	factorY) sf::Transformable

setScale(const	Vector2f	&factors) sf::Transformable

setSize(const	Vector2f	&size) sf::RectangleShape

setTexture(const	Texture	*texture,	bool	resetRect=false) sf::Shape

setTextureRect(const	IntRect	&rect) sf::Shape

Shape() sf::Shape

Transformable() sf::Transformable

update() sf::Shape

~Drawable() sf::Drawable

~Shape() sf::Shape

~Transformable() sf::Transformable

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::RenderStates	Member	List

This	is	the	complete	list	of	members	for	sf::RenderStates,	including	all	inherited	members.

blendMode

Default

RenderStates()

RenderStates(const	BlendMode	&theBlendMode)

RenderStates(const	Transform	&theTransform)

RenderStates(const	Texture	*theTexture)

RenderStates(const	Shader	*theShader)

RenderStates(const	BlendMode	&theBlendMode,	const	Transform	&theTransform,	const	Texture	*theTexture,	const	Shader	*theShader)

shader

texture

transform

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::RenderTarget	Member	List

This	is	the	complete	list	of	members	for	sf::RenderTarget,	including	all	inherited	members.

clear(const	Color	&color=Color(0,	0,	0,	255))

draw(const	Drawable	&drawable,	const	RenderStates	&states=RenderStates::Default)

draw(const	Vertex	*vertices,	std::size_t	vertexCount,	PrimitiveType	type,	const	RenderStates	&states=RenderStates::Default)

getDefaultView()	const

getSize()	const	=0

getView()	const

getViewport(const	View	&view)	const

initialize()

mapCoordsToPixel(const	Vector2f	&point)	const

mapCoordsToPixel(const	Vector2f	&point,	const	View	&view)	const

mapPixelToCoords(const	Vector2i	&point)	const

mapPixelToCoords(const	Vector2i	&point,	const	View	&view)	const

NonCopyable()

popGLStates()

pushGLStates()

RenderTarget()

resetGLStates()

setView(const	View	&view)

~RenderTarget()

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::RenderTexture	Member	List

This	is	the	complete	list	of	members	for	sf::RenderTexture,	including	all	inherited	members.

clear(const	Color	&color=Color(0,	0,	0,	255))

create(unsigned	int	width,	unsigned	int	height,	bool	depthBuffer=false)

display()

draw(const	Drawable	&drawable,	const	RenderStates	&states=RenderStates::Default)

draw(const	Vertex	*vertices,	std::size_t	vertexCount,	PrimitiveType	type,	const	RenderStates	&states=RenderStates::Default)

generateMipmap()

getDefaultView()	const

getSize()	const

getTexture()	const

getView()	const

getViewport(const	View	&view)	const

initialize()

isRepeated()	const

isSmooth()	const

mapCoordsToPixel(const	Vector2f	&point)	const

mapCoordsToPixel(const	Vector2f	&point,	const	View	&view)	const

mapPixelToCoords(const	Vector2i	&point)	const

mapPixelToCoords(const	Vector2i	&point,	const	View	&view)	const

popGLStates()

pushGLStates()

RenderTarget()

RenderTexture()

resetGLStates()

setActive(bool	active=true)

setRepeated(bool	repeated)

setSmooth(bool	smooth)

setView(const	View	&view)

~RenderTarget()

~RenderTexture()

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::RenderWindow	Member	List

This	is	the	complete	list	of	members	for	sf::RenderWindow,	including	all	inherited	members.

capture()	const

clear(const	Color	&color=Color(0,	0,	0,	255))

close()

create(VideoMode	mode,	const	String	&title,	Uint32	style=Style::Default,	const	ContextSettings	&settings=ContextSettings())

create(WindowHandle	handle,	const	ContextSettings	&settings=ContextSettings())

display()

draw(const	Drawable	&drawable,	const	RenderStates	&states=RenderStates::Default)

draw(const	Vertex	*vertices,	std::size_t	vertexCount,	PrimitiveType	type,	const	RenderStates	&states=RenderStates::Default)

getDefaultView()	const

getPosition()	const

getSettings()	const

getSize()	const

getSystemHandle()	const

getView()	const

getViewport(const	View	&view)	const

hasFocus()	const

initialize()

isOpen()	const

mapCoordsToPixel(const	Vector2f	&point)	const

mapCoordsToPixel(const	Vector2f	&point,	const	View	&view)	const

mapPixelToCoords(const	Vector2i	&point)	const

mapPixelToCoords(const	Vector2i	&point,	const	View	&view)	const

NonCopyable()

onCreate()

onResize()

pollEvent(Event	&event)

popGLStates()

pushGLStates()

RenderTarget()

RenderWindow()

RenderWindow(VideoMode	mode,	const	String	&title,	Uint32	style=Style::Default,	const	ContextSettings	&settings=ContextSettings())

RenderWindow(WindowHandle	handle,	const	ContextSettings	&settings=ContextSettings())

requestFocus()

resetGLStates()

setActive(bool	active=true)	const

setFramerateLimit(unsigned	int	limit)

setIcon(unsigned	int	width,	unsigned	int	height,	const	Uint8	*pixels)

setJoystickThreshold(float	threshold)

setKeyRepeatEnabled(bool	enabled)

setMouseCursorGrabbed(bool	grabbed)

setMouseCursorVisible(bool	visible)

setPosition(const	Vector2i	&position)

setSize(const	Vector2u	&size)

setTitle(const	String	&title)

setVerticalSyncEnabled(bool	enabled)

setView(const	View	&view)

setVisible(bool	visible)

waitEvent(Event	&event)

Window()

Window(VideoMode	mode,	const	String	&title,	Uint32	style=Style::Default,	const	ContextSettings	&settings=ContextSettings())

Window(WindowHandle	handle,	const	ContextSettings	&settings=ContextSettings())

~RenderTarget()

~RenderWindow()

~Window()

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Shader	Member	List

This	is	the	complete	list	of	members	for	sf::Shader,	including	all	inherited	members.

bind(const	Shader	*shader)

CurrentTexture

ensureGlContext()

Fragment	enum	value

Geometry	enum	value

getNativeHandle()	const

GlResource()

isAvailable()

isGeometryAvailable()

loadFromFile(const	std::string	&filename,	Type	type)

loadFromFile(const	std::string	&vertexShaderFilename,	const	std::string	&fragmentShaderFilename)

loadFromFile(const	std::string	&vertexShaderFilename,	const	std::string	&geometryShaderFilename,	const	std::string	&fragmentShaderFilename)

loadFromMemory(const	std::string	&shader,	Type	type)

loadFromMemory(const	std::string	&vertexShader,	const	std::string	&fragmentShader)

loadFromMemory(const	std::string	&vertexShader,	const	std::string	&geometryShader,	const	std::string	&fragmentShader)

loadFromStream(InputStream	&stream,	Type	type)

loadFromStream(InputStream	&vertexShaderStream,	InputStream	&fragmentShaderStream)

loadFromStream(InputStream	&vertexShaderStream,	InputStream	&geometryShaderStream,	InputStream	&fragmentShaderStream)

NonCopyable()

setParameter(const	std::string	&name,	float	x)

setParameter(const	std::string	&name,	float	x,	float	y)

setParameter(const	std::string	&name,	float	x,	float	y,	float	z)

setParameter(const	std::string	&name,	float	x,	float	y,	float	z,	float	w)

setParameter(const	std::string	&name,	const	Vector2f	&vector)

setParameter(const	std::string	&name,	const	Vector3f	&vector)

setParameter(const	std::string	&name,	const	Color	&color)

setParameter(const	std::string	&name,	const	Transform	&transform)

setParameter(const	std::string	&name,	const	Texture	&texture)

setParameter(const	std::string	&name,	CurrentTextureType)

setUniform(const	std::string	&name,	float	x)

setUniform(const	std::string	&name,	const	Glsl::Vec2	&vector)

setUniform(const	std::string	&name,	const	Glsl::Vec3	&vector)

setUniform(const	std::string	&name,	const	Glsl::Vec4	&vector)

setUniform(const	std::string	&name,	int	x)

setUniform(const	std::string	&name,	const	Glsl::Ivec2	&vector)

setUniform(const	std::string	&name,	const	Glsl::Ivec3	&vector)

setUniform(const	std::string	&name,	const	Glsl::Ivec4	&vector)

setUniform(const	std::string	&name,	bool	x)

setUniform(const	std::string	&name,	const	Glsl::Bvec2	&vector)

setUniform(const	std::string	&name,	const	Glsl::Bvec3	&vector)

setUniform(const	std::string	&name,	const	Glsl::Bvec4	&vector)

setUniform(const	std::string	&name,	const	Glsl::Mat3	&matrix)

setUniform(const	std::string	&name,	const	Glsl::Mat4	&matrix)

setUniform(const	std::string	&name,	const	Texture	&texture)

setUniform(const	std::string	&name,	CurrentTextureType)

setUniformArray(const	std::string	&name,	const	float	*scalarArray,	std::size_t	length)

setUniformArray(const	std::string	&name,	const	Glsl::Vec2	*vectorArray,	std::size_t	length)

setUniformArray(const	std::string	&name,	const	Glsl::Vec3	*vectorArray,	std::size_t	length)

setUniformArray(const	std::string	&name,	const	Glsl::Vec4	*vectorArray,	std::size_t	length)

setUniformArray(const	std::string	&name,	const	Glsl::Mat3	*matrixArray,	std::size_t	length)

setUniformArray(const	std::string	&name,	const	Glsl::Mat4	*matrixArray,	std::size_t	length)

Shader()

Type	enum	name

Vertex	enum	value

~GlResource()

~Shader()

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Shape	Member	List

This	is	the	complete	list	of	members	for	sf::Shape,	including	all	inherited	members.

getFillColor()	const sf::Shape

getGlobalBounds()	const sf::Shape

getInverseTransform()	const sf::Transformable

getLocalBounds()	const sf::Shape

getOrigin()	const sf::Transformable

getOutlineColor()	const sf::Shape

getOutlineThickness()	const sf::Shape

getPoint(std::size_t	index)	const	=0 sf::Shape

getPointCount()	const	=0 sf::Shape

getPosition()	const sf::Transformable

getRotation()	const sf::Transformable

getScale()	const sf::Transformable

getTexture()	const sf::Shape

getTextureRect()	const sf::Shape

getTransform()	const sf::Transformable

move(float	offsetX,	float	offsetY) sf::Transformable

move(const	Vector2f	&offset) sf::Transformable

rotate(float	angle) sf::Transformable

scale(float	factorX,	float	factorY) sf::Transformable

scale(const	Vector2f	&factor) sf::Transformable

setFillColor(const	Color	&color) sf::Shape

setOrigin(float	x,	float	y) sf::Transformable

setOrigin(const	Vector2f	&origin) sf::Transformable

setOutlineColor(const	Color	&color) sf::Shape

setOutlineThickness(float	thickness) sf::Shape

setPosition(float	x,	float	y) sf::Transformable

setPosition(const	Vector2f	&position) sf::Transformable

setRotation(float	angle) sf::Transformable

setScale(float	factorX,	float	factorY) sf::Transformable

setScale(const	Vector2f	&factors) sf::Transformable

setTexture(const	Texture	*texture,	bool	resetRect=false) sf::Shape

setTextureRect(const	IntRect	&rect) sf::Shape

Shape() sf::Shape

Transformable() sf::Transformable

update() sf::Shape

~Drawable() sf::Drawable

~Shape() sf::Shape

~Transformable() sf::Transformable

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Sprite	Member	List

This	is	the	complete	list	of	members	for	sf::Sprite,	including	all	inherited	members.

getColor()	const sf::Sprite

getGlobalBounds()	const sf::Sprite

getInverseTransform()	const sf::Transformable

getLocalBounds()	const sf::Sprite

getOrigin()	const sf::Transformable

getPosition()	const sf::Transformable

getRotation()	const sf::Transformable

getScale()	const sf::Transformable

getTexture()	const sf::Sprite

getTextureRect()	const sf::Sprite

getTransform()	const sf::Transformable

move(float	offsetX,	float	offsetY) sf::Transformable

move(const	Vector2f	&offset) sf::Transformable

rotate(float	angle) sf::Transformable

scale(float	factorX,	float	factorY) sf::Transformable

scale(const	Vector2f	&factor) sf::Transformable

setColor(const	Color	&color) sf::Sprite

setOrigin(float	x,	float	y) sf::Transformable

setOrigin(const	Vector2f	&origin) sf::Transformable

setPosition(float	x,	float	y) sf::Transformable

setPosition(const	Vector2f	&position) sf::Transformable

setRotation(float	angle) sf::Transformable

setScale(float	factorX,	float	factorY) sf::Transformable

setScale(const	Vector2f	&factors) sf::Transformable

setTexture(const	Texture	&texture,	bool	resetRect=false) sf::Sprite

setTextureRect(const	IntRect	&rectangle) sf::Sprite

Sprite() sf::Sprite

Sprite(const	Texture	&texture) sf::Sprite

Sprite(const	Texture	&texture,	const	IntRect	&rectangle) sf::Sprite

Transformable() sf::Transformable

~Drawable() sf::Drawable

~Transformable() sf::Transformable

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Text	Member	List

This	is	the	complete	list	of	members	for	sf::Text,	including	all	inherited	members.

Bold	enum	value

findCharacterPos(std::size_t	index)	const

getCharacterSize()	const

getColor()	const

getFillColor()	const

getFont()	const

getGlobalBounds()	const

getInverseTransform()	const

getLocalBounds()	const

getOrigin()	const

getOutlineColor()	const

getOutlineThickness()	const

getPosition()	const

getRotation()	const

getScale()	const

getString()	const

getStyle()	const

getTransform()	const

Italic	enum	value

move(float	offsetX,	float	offsetY)

move(const	Vector2f	&offset)

Regular	enum	value

rotate(float	angle)

scale(float	factorX,	float	factorY)

scale(const	Vector2f	&factor)

setCharacterSize(unsigned	int	size)

setColor(const	Color	&color)

setFillColor(const	Color	&color)

setFont(const	Font	&font)

setOrigin(float	x,	float	y)

setOrigin(const	Vector2f	&origin)

setOutlineColor(const	Color	&color)

setOutlineThickness(float	thickness)

setPosition(float	x,	float	y)

setPosition(const	Vector2f	&position)

setRotation(float	angle)

setScale(float	factorX,	float	factorY)

setScale(const	Vector2f	&factors)

setString(const	String	&string)

setStyle(Uint32	style)

StrikeThrough	enum	value

Style	enum	name

Text()

Text(const	String	&string,	const	Font	&font,	unsigned	int	characterSize=30)

Transformable()

Underlined	enum	value

~Drawable()

~Transformable()

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Texture	Member	List

This	is	the	complete	list	of	members	for	sf::Texture,	including	all	inherited	members.

bind(const	Texture	*texture,	CoordinateType	coordinateType=Normalized)

CoordinateType	enum	name

copyToImage()	const

create(unsigned	int	width,	unsigned	int	height)

ensureGlContext()

generateMipmap()

getMaximumSize()

getNativeHandle()	const

getSize()	const

GlResource()

isRepeated()	const

isSmooth()	const

isSrgb()	const

loadFromFile(const	std::string	&filename,	const	IntRect	&area=IntRect())

loadFromImage(const	Image	&image,	const	IntRect	&area=IntRect())

loadFromMemory(const	void	*data,	std::size_t	size,	const	IntRect	&area=IntRect())

loadFromStream(InputStream	&stream,	const	IntRect	&area=IntRect())

Normalized	enum	value

operator=(const	Texture	&right)

Pixels	enum	value

RenderTarget	(defined	in	sf::Texture)

RenderTexture	(defined	in	sf::Texture)

setRepeated(bool	repeated)

setSmooth(bool	smooth)

setSrgb(bool	sRgb)

Texture()

Texture(const	Texture	©)

update(const	Uint8	*pixels)

update(const	Uint8	*pixels,	unsigned	int	width,	unsigned	int	height,	unsigned	int	x,	unsigned	int	y)

update(const	Image	&image)

update(const	Image	&image,	unsigned	int	x,	unsigned	int	y)

update(const	Window	&window)

update(const	Window	&window,	unsigned	int	x,	unsigned	int	y)

~GlResource()

~Texture()

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Transform	Member	List

This	is	the	complete	list	of	members	for	sf::Transform,	including	all	inherited	members.

combine(const	Transform	&transform)

getInverse()	const

getMatrix()	const

Identity

operator*(const	Transform	&left,	const	Transform	&right)

operator*(const	Transform	&left,	const	Vector2f	&right)

operator*=(Transform	&left,	const	Transform	&right)

rotate(float	angle)

rotate(float	angle,	float	centerX,	float	centerY)

rotate(float	angle,	const	Vector2f	¢er)

scale(float	scaleX,	float	scaleY)

scale(float	scaleX,	float	scaleY,	float	centerX,	float	centerY)

scale(const	Vector2f	&factors)

scale(const	Vector2f	&factors,	const	Vector2f	¢er)

Transform()

Transform(float	a00,	float	a01,	float	a02,	float	a10,	float	a11,	float	a12,	float	a20,	float	a21,	float	a22)

transformPoint(float	x,	float	y)	const

transformPoint(const	Vector2f	&point)	const

transformRect(const	FloatRect	&rectangle)	const

translate(float	x,	float	y)

translate(const	Vector2f	&offset)

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Transformable	Member	List

This	is	the	complete	list	of	members	for	sf::Transformable,	including	all	inherited	members.

getInverseTransform()	const sf::Transformable

getOrigin()	const sf::Transformable

getPosition()	const sf::Transformable

getRotation()	const sf::Transformable

getScale()	const sf::Transformable

getTransform()	const sf::Transformable

move(float	offsetX,	float	offsetY) sf::Transformable

move(const	Vector2f	&offset) sf::Transformable

rotate(float	angle) sf::Transformable

scale(float	factorX,	float	factorY) sf::Transformable

scale(const	Vector2f	&factor) sf::Transformable

setOrigin(float	x,	float	y) sf::Transformable

setOrigin(const	Vector2f	&origin) sf::Transformable

setPosition(float	x,	float	y) sf::Transformable

setPosition(const	Vector2f	&position) sf::Transformable

setRotation(float	angle) sf::Transformable

setScale(float	factorX,	float	factorY) sf::Transformable

setScale(const	Vector2f	&factors) sf::Transformable

Transformable() sf::Transformable

~Transformable() sf::Transformable virtual

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Vertex	Member	List

This	is	the	complete	list	of	members	for	sf::Vertex,	including	all	inherited	members.

color

position

texCoords

Vertex()

Vertex(const	Vector2f	&thePosition)

Vertex(const	Vector2f	&thePosition,	const	Color	&theColor)

Vertex(const	Vector2f	&thePosition,	const	Vector2f	&theTexCoords)

Vertex(const	Vector2f	&thePosition,	const	Color	&theColor,	const	Vector2f	&theTexCoords)

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::VertexArray	Member	List

This	is	the	complete	list	of	members	for	sf::VertexArray,	including	all	inherited	members.

append(const	Vertex	&vertex) sf::VertexArray

clear() sf::VertexArray

getBounds()	const sf::VertexArray

getPrimitiveType()	const sf::VertexArray

getVertexCount()	const sf::VertexArray

operator[](std::size_t	index) sf::VertexArray

operator[](std::size_t	index)	const sf::VertexArray

resize(std::size_t	vertexCount) sf::VertexArray

setPrimitiveType(PrimitiveType	type) sf::VertexArray

VertexArray() sf::VertexArray

VertexArray(PrimitiveType	type,	std::size_t	vertexCount=0) sf::VertexArray

~Drawable() sf::Drawable

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

http://www.sfml-dev.org/license.php

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::View	Member	List

This	is	the	complete	list	of	members	for	sf::View,	including	all	inherited	members.

getCenter()	const sf::View

getInverseTransform()	const sf::View

getRotation()	const sf::View

getSize()	const sf::View

getTransform()	const sf::View

getViewport()	const sf::View

move(float	offsetX,	float	offsetY) sf::View

move(const	Vector2f	&offset) sf::View

reset(const	FloatRect	&rectangle) sf::View

rotate(float	angle) sf::View

setCenter(float	x,	float	y) sf::View

setCenter(const	Vector2f	¢er) sf::View

setRotation(float	angle) sf::View

setSize(float	width,	float	height) sf::View

setSize(const	Vector2f	&size) sf::View

setViewport(const	FloatRect	&viewport) sf::View

View() sf::View

View(const	FloatRect	&rectangle) sf::View explicit

View(const	Vector2f	¢er,	const	Vector2f	&size) sf::View

zoom(float	factor) sf::View

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Ftp	Member	List

This	is	the	complete	list	of	members	for	sf::Ftp,	including	all	inherited	members.

Ascii	enum	value

Binary	enum	value

changeDirectory(const	std::string	&directory)

connect(const	IpAddress	&server,	unsigned	short	port=21,	Time	timeout=Time::Zero)

createDirectory(const	std::string	&name)

DataChannel	(defined	in	sf::Ftp)

deleteDirectory(const	std::string	&name)

deleteFile(const	std::string	&name)

disconnect()

download(const	std::string	&remoteFile,	const	std::string	&localPath,	TransferMode	mode=Binary)

Ebcdic	enum	value

getDirectoryListing(const	std::string	&directory="")

getWorkingDirectory()

keepAlive()

login()

login(const	std::string	&name,	const	std::string	&password)

NonCopyable()

parentDirectory()

renameFile(const	std::string	&file,	const	std::string	&newName)

sendCommand(const	std::string	&command,	const	std::string	¶meter="")

TransferMode	enum	name

upload(const	std::string	&localFile,	const	std::string	&remotePath,	TransferMode	mode=Binary)

~Ftp()

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Ftp::DirectoryResponse	Member	List

This	is	the	complete	list	of	members	for	sf::Ftp::DirectoryResponse,	including	all	inherited	members.

BadCommandSequence	enum	value

ClosingConnection	enum	value

ClosingDataConnection	enum	value

CommandNotImplemented	enum	value

CommandUnknown	enum	value

ConnectionClosed	enum	value

ConnectionFailed	enum	value

DataConnectionAlreadyOpened	enum	value

DataConnectionOpened	enum	value

DataConnectionUnavailable	enum	value

DirectoryOk	enum	value

DirectoryResponse(const	Response	&response)

DirectoryStatus	enum	value

EnteringPassiveMode	enum	value

FileActionAborted	enum	value

FileActionOk	enum	value

FilenameNotAllowed	enum	value

FileStatus	enum	value

FileUnavailable	enum	value

getDirectory()	const

getMessage()	const

getStatus()	const

HelpMessage	enum	value

InsufficientStorageSpace	enum	value

InvalidFile	enum	value

InvalidResponse	enum	value

isOk()	const

LocalError	enum	value

LoggedIn	enum	value

NeedAccountToLogIn	enum	value

NeedAccountToStore	enum	value

NeedInformation	enum	value

NeedPassword	enum	value

NotEnoughMemory	enum	value

NotLoggedIn	enum	value

Ok	enum	value

OpeningDataConnection	enum	value

PageTypeUnknown	enum	value

ParameterNotImplemented	enum	value

ParametersUnknown	enum	value

PointlessCommand	enum	value

Response(Status	code=InvalidResponse,	const	std::string	&message="")

RestartMarkerReply	enum	value

ServiceReady	enum	value

ServiceReadySoon	enum	value

ServiceUnavailable	enum	value

Status	enum	name

SystemStatus	enum	value

SystemType	enum	value

TransferAborted	enum	value

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Ftp::ListingResponse	Member	List

This	is	the	complete	list	of	members	for	sf::Ftp::ListingResponse,	including	all	inherited	members.

BadCommandSequence	enum	value

ClosingConnection	enum	value

ClosingDataConnection	enum	value

CommandNotImplemented	enum	value

CommandUnknown	enum	value

ConnectionClosed	enum	value

ConnectionFailed	enum	value

DataConnectionAlreadyOpened	enum	value

DataConnectionOpened	enum	value

DataConnectionUnavailable	enum	value

DirectoryOk	enum	value

DirectoryStatus	enum	value

EnteringPassiveMode	enum	value

FileActionAborted	enum	value

FileActionOk	enum	value

FilenameNotAllowed	enum	value

FileStatus	enum	value

FileUnavailable	enum	value

getListing()	const

getMessage()	const

getStatus()	const

HelpMessage	enum	value

InsufficientStorageSpace	enum	value

InvalidFile	enum	value

InvalidResponse	enum	value

isOk()	const

ListingResponse(const	Response	&response,	const	std::string	&data)

LocalError	enum	value

LoggedIn	enum	value

NeedAccountToLogIn	enum	value

NeedAccountToStore	enum	value

NeedInformation	enum	value

NeedPassword	enum	value

NotEnoughMemory	enum	value

NotLoggedIn	enum	value

Ok	enum	value

OpeningDataConnection	enum	value

PageTypeUnknown	enum	value

ParameterNotImplemented	enum	value

ParametersUnknown	enum	value

PointlessCommand	enum	value

Response(Status	code=InvalidResponse,	const	std::string	&message="")

RestartMarkerReply	enum	value

ServiceReady	enum	value

ServiceReadySoon	enum	value

ServiceUnavailable	enum	value

Status	enum	name

SystemStatus	enum	value

SystemType	enum	value

TransferAborted	enum	value

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Ftp::Response	Member	List

This	is	the	complete	list	of	members	for	sf::Ftp::Response,	including	all	inherited	members.

BadCommandSequence	enum	value

ClosingConnection	enum	value

ClosingDataConnection	enum	value

CommandNotImplemented	enum	value

CommandUnknown	enum	value

ConnectionClosed	enum	value

ConnectionFailed	enum	value

DataConnectionAlreadyOpened	enum	value

DataConnectionOpened	enum	value

DataConnectionUnavailable	enum	value

DirectoryOk	enum	value

DirectoryStatus	enum	value

EnteringPassiveMode	enum	value

FileActionAborted	enum	value

FileActionOk	enum	value

FilenameNotAllowed	enum	value

FileStatus	enum	value

FileUnavailable	enum	value

getMessage()	const

getStatus()	const

HelpMessage	enum	value

InsufficientStorageSpace	enum	value

InvalidFile	enum	value

InvalidResponse	enum	value

isOk()	const

LocalError	enum	value

LoggedIn	enum	value

NeedAccountToLogIn	enum	value

NeedAccountToStore	enum	value

NeedInformation	enum	value

NeedPassword	enum	value

NotEnoughMemory	enum	value

NotLoggedIn	enum	value

Ok	enum	value

OpeningDataConnection	enum	value

PageTypeUnknown	enum	value

ParameterNotImplemented	enum	value

ParametersUnknown	enum	value

PointlessCommand	enum	value

Response(Status	code=InvalidResponse,	const	std::string	&message="")

RestartMarkerReply	enum	value

ServiceReady	enum	value

ServiceReadySoon	enum	value

ServiceUnavailable	enum	value

Status	enum	name

SystemStatus	enum	value

SystemType	enum	value

TransferAborted	enum	value

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Http	Member	List

This	is	the	complete	list	of	members	for	sf::Http,	including	all	inherited	members.

Http() sf::Http

Http(const	std::string	&host,	unsigned	short	port=0) sf::Http

NonCopyable() sf::NonCopyable

sendRequest(const	Request	&request,	Time	timeout=Time::Zero) sf::Http

setHost(const	std::string	&host,	unsigned	short	port=0) sf::Http

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Http::Request	Member	List

This	is	the	complete	list	of	members	for	sf::Http::Request,	including	all	inherited	members.

Delete	enum	value

Get	enum	value

Head	enum	value

Http	(defined	in	sf::Http::Request)

Method	enum	name

Post	enum	value

Put	enum	value

Request(const	std::string	&uri="/",	Method	method=Get,	const	std::string	&body="")

setBody(const	std::string	&body)

setField(const	std::string	&field,	const	std::string	&value)

setHttpVersion(unsigned	int	major,	unsigned	int	minor)

setMethod(Method	method)

setUri(const	std::string	&uri)

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Http::Response	Member	List

This	is	the	complete	list	of	members	for	sf::Http::Response,	including	all	inherited	members.

Accepted	enum	value sf::Http::Response

BadGateway	enum	value sf::Http::Response

BadRequest	enum	value sf::Http::Response

ConnectionFailed	enum	value sf::Http::Response

Created	enum	value sf::Http::Response

Forbidden	enum	value sf::Http::Response

GatewayTimeout	enum	value sf::Http::Response

getBody()	const sf::Http::Response

getField(const	std::string	&field)	const sf::Http::Response

getMajorHttpVersion()	const sf::Http::Response

getMinorHttpVersion()	const sf::Http::Response

getStatus()	const sf::Http::Response

Http	(defined	in	sf::Http::Response) sf::Http::Response friend

InternalServerError	enum	value sf::Http::Response

InvalidResponse	enum	value sf::Http::Response

MovedPermanently	enum	value sf::Http::Response

MovedTemporarily	enum	value sf::Http::Response

MultipleChoices	enum	value sf::Http::Response

NoContent	enum	value sf::Http::Response

NotFound	enum	value sf::Http::Response

NotImplemented	enum	value sf::Http::Response

NotModified	enum	value sf::Http::Response

Ok	enum	value sf::Http::Response

PartialContent	enum	value sf::Http::Response

RangeNotSatisfiable	enum	value sf::Http::Response

ResetContent	enum	value sf::Http::Response

Response() sf::Http::Response

ServiceNotAvailable	enum	value sf::Http::Response

Status	enum	name sf::Http::Response

Unauthorized	enum	value sf::Http::Response

VersionNotSupported	enum	value sf::Http::Response

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::IpAddress	Member	List

This	is	the	complete	list	of	members	for	sf::IpAddress,	including	all	inherited	members.

Any sf::IpAddress

Broadcast sf::IpAddress

getLocalAddress() sf::IpAddress

getPublicAddress(Time	timeout=Time::Zero) sf::IpAddress

IpAddress() sf::IpAddress

IpAddress(const	std::string	&address) sf::IpAddress

IpAddress(const	char	*address) sf::IpAddress

IpAddress(Uint8	byte0,	Uint8	byte1,	Uint8	byte2,	Uint8	byte3) sf::IpAddress

IpAddress(Uint32	address) sf::IpAddress

LocalHost sf::IpAddress

None sf::IpAddress

operator<(const	IpAddress	&left,	const	IpAddress	&right) sf::IpAddress

toInteger()	const sf::IpAddress

toString()	const sf::IpAddress

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Packet	Member	List

This	is	the	complete	list	of	members	for	sf::Packet,	including	all	inherited	members.

append(const	void	*data,	std::size_t	sizeInBytes) sf::Packet

clear() sf::Packet

endOfPacket()	const sf::Packet

getData()	const sf::Packet

getDataSize()	const sf::Packet

onReceive(const	void	*data,	std::size_t	size) sf::Packet protected

onSend(std::size_t	&size) sf::Packet protected

operator	BoolType()	const sf::Packet

operator<<(bool	data) sf::Packet

operator<<(Int8	data)	(defined	in	sf::Packet) sf::Packet

operator<<(Uint8	data)	(defined	in	sf::Packet) sf::Packet

operator<<(Int16	data)	(defined	in	sf::Packet) sf::Packet

operator<<(Uint16	data)	(defined	in	sf::Packet) sf::Packet

operator<<(Int32	data)	(defined	in	sf::Packet) sf::Packet

operator<<(Uint32	data)	(defined	in	sf::Packet) sf::Packet

operator<<(Int64	data)	(defined	in	sf::Packet) sf::Packet

operator<<(Uint64	data)	(defined	in	sf::Packet) sf::Packet

operator<<(float	data)	(defined	in	sf::Packet) sf::Packet

operator<<(double	data)	(defined	in	sf::Packet) sf::Packet

operator<<(const	char	*data)	(defined	in	sf::Packet) sf::Packet

operator<<(const	std::string	&data)	(defined	in	sf::Packet) sf::Packet

operator<<(const	wchar_t	*data)	(defined	in	sf::Packet) sf::Packet

operator<<(const	std::wstring	&data)	(defined	in	sf::Packet) sf::Packet

operator<<(const	String	&data)	(defined	in	sf::Packet) sf::Packet

operator>>(bool	&data) sf::Packet

operator>>(Int8	&data)	(defined	in	sf::Packet) sf::Packet

operator>>(Uint8	&data)	(defined	in	sf::Packet) sf::Packet

operator>>(Int16	&data)	(defined	in	sf::Packet) sf::Packet

operator>>(Uint16	&data)	(defined	in	sf::Packet) sf::Packet

operator>>(Int32	&data)	(defined	in	sf::Packet) sf::Packet

operator>>(Uint32	&data)	(defined	in	sf::Packet) sf::Packet

operator>>(Int64	&data)	(defined	in	sf::Packet) sf::Packet

operator>>(Uint64	&data)	(defined	in	sf::Packet) sf::Packet

operator>>(float	&data)	(defined	in	sf::Packet) sf::Packet

operator>>(double	&data)	(defined	in	sf::Packet) sf::Packet

operator>>(char	*data)	(defined	in	sf::Packet) sf::Packet

operator>>(std::string	&data)	(defined	in	sf::Packet) sf::Packet

operator>>(wchar_t	*data)	(defined	in	sf::Packet) sf::Packet

operator>>(std::wstring	&data)	(defined	in	sf::Packet) sf::Packet

operator>>(String	&data)	(defined	in	sf::Packet) sf::Packet

Packet() sf::Packet

TcpSocket	(defined	in	sf::Packet) sf::Packet friend

UdpSocket	(defined	in	sf::Packet) sf::Packet friend

~Packet() sf::Packet virtual

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Socket	Member	List

This	is	the	complete	list	of	members	for	sf::Socket,	including	all	inherited	members.

AnyPort	enum	value sf::Socket

close() sf::Socket protected

create() sf::Socket protected

create(SocketHandle	handle) sf::Socket protected

Disconnected	enum	value sf::Socket

Done	enum	value sf::Socket

Error	enum	value sf::Socket

getHandle()	const sf::Socket protected

isBlocking()	const sf::Socket

NonCopyable() sf::NonCopyable inline private

NotReady	enum	value sf::Socket

Partial	enum	value sf::Socket

setBlocking(bool	blocking) sf::Socket

Socket(Type	type) sf::Socket protected

SocketSelector	(defined	in	sf::Socket) sf::Socket friend

Status	enum	name sf::Socket

Tcp	enum	value sf::Socket protected

Type	enum	name sf::Socket protected

Udp	enum	value sf::Socket protected

~Socket() sf::Socket virtual

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::SocketSelector	Member	List

This	is	the	complete	list	of	members	for	sf::SocketSelector,	including	all	inherited	members.

add(Socket	&socket) sf::SocketSelector

clear() sf::SocketSelector

isReady(Socket	&socket)	const sf::SocketSelector

operator=(const	SocketSelector	&right) sf::SocketSelector

remove(Socket	&socket) sf::SocketSelector

SocketSelector() sf::SocketSelector

SocketSelector(const	SocketSelector	©) sf::SocketSelector

wait(Time	timeout=Time::Zero) sf::SocketSelector

~SocketSelector() sf::SocketSelector

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::TcpListener	Member	List

This	is	the	complete	list	of	members	for	sf::TcpListener,	including	all	inherited	members.

accept(TcpSocket	&socket) sf::TcpListener

AnyPort	enum	value sf::Socket

close() sf::TcpListener

create() sf::Socket

create(SocketHandle	handle) sf::Socket

Disconnected	enum	value sf::Socket

Done	enum	value sf::Socket

Error	enum	value sf::Socket

getHandle()	const sf::Socket

getLocalPort()	const sf::TcpListener

isBlocking()	const sf::Socket

listen(unsigned	short	port,	const	IpAddress	&address=IpAddress::Any) sf::TcpListener

NotReady	enum	value sf::Socket

Partial	enum	value sf::Socket

setBlocking(bool	blocking) sf::Socket

Socket(Type	type) sf::Socket

Status	enum	name sf::Socket

Tcp	enum	value sf::Socket

TcpListener() sf::TcpListener

Type	enum	name sf::Socket

Udp	enum	value sf::Socket

~Socket() sf::Socket

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::TcpSocket	Member	List

This	is	the	complete	list	of	members	for	sf::TcpSocket,	including	all	inherited	members.

AnyPort	enum	value

close()

connect(const	IpAddress	&remoteAddress,	unsigned	short	remotePort,	Time	timeout=Time::Zero)

create()

create(SocketHandle	handle)

disconnect()

Disconnected	enum	value

Done	enum	value

Error	enum	value

getHandle()	const

getLocalPort()	const

getRemoteAddress()	const

getRemotePort()	const

isBlocking()	const

NotReady	enum	value

Partial	enum	value

receive(void	*data,	std::size_t	size,	std::size_t	&received)

receive(Packet	&packet)

send(const	void	*data,	std::size_t	size)

send(const	void	*data,	std::size_t	size,	std::size_t	&sent)

send(Packet	&packet)

setBlocking(bool	blocking)

Socket(Type	type)

Status	enum	name

Tcp	enum	value

TcpListener	(defined	in	sf::TcpSocket)

TcpSocket()

Type	enum	name

Udp	enum	value

~Socket()

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::UdpSocket	Member	List

This	is	the	complete	list	of	members	for	sf::UdpSocket,	including	all	inherited	members.

AnyPort	enum	value

bind(unsigned	short	port,	const	IpAddress	&address=IpAddress::Any)

close()

create()

create(SocketHandle	handle)

Disconnected	enum	value

Done	enum	value

Error	enum	value

getHandle()	const

getLocalPort()	const

isBlocking()	const

MaxDatagramSize	enum	value

NotReady	enum	value

Partial	enum	value

receive(void	*data,	std::size_t	size,	std::size_t	&received,	IpAddress	&remoteAddress,	unsigned	short	&remotePort)

receive(Packet	&packet,	IpAddress	&remoteAddress,	unsigned	short	&remotePort)

send(const	void	*data,	std::size_t	size,	const	IpAddress	&remoteAddress,	unsigned	short	remotePort)

send(Packet	&packet,	const	IpAddress	&remoteAddress,	unsigned	short	remotePort)

setBlocking(bool	blocking)

Socket(Type	type)

Status	enum	name

Tcp	enum	value

Type	enum	name

Udp	enum	value

UdpSocket()

unbind()

~Socket()

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Clock	Member	List

This	is	the	complete	list	of	members	for	sf::Clock,	including	all	inherited	members.

Clock() sf::Clock

getElapsedTime()	const sf::Clock

restart() sf::Clock

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::FileInputStream	Member	List

This	is	the	complete	list	of	members	for	sf::FileInputStream,	including	all	inherited	members.

FileInputStream() sf::FileInputStream

getSize() sf::FileInputStream virtual

NonCopyable() sf::NonCopyable inline private

open(const	std::string	&filename) sf::FileInputStream

read(void	*data,	Int64	size) sf::FileInputStream virtual

seek(Int64	position) sf::FileInputStream virtual

tell() sf::FileInputStream virtual

~FileInputStream() sf::FileInputStream virtual

~InputStream() sf::InputStream inline virtual

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::InputStream	Member	List

This	is	the	complete	list	of	members	for	sf::InputStream,	including	all	inherited	members.

getSize()=0 sf::InputStream pure	virtual

read(void	*data,	Int64	size)=0 sf::InputStream pure	virtual

seek(Int64	position)=0 sf::InputStream pure	virtual

tell()=0 sf::InputStream pure	virtual

~InputStream() sf::InputStream inline virtual

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Lock	Member	List

This	is	the	complete	list	of	members	for	sf::Lock,	including	all	inherited	members.

Lock(Mutex	&mutex) sf::Lock explicit

NonCopyable() sf::NonCopyable inline private

~Lock() sf::Lock

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::MemoryInputStream	Member	List

This	is	the	complete	list	of	members	for	sf::MemoryInputStream,	including	all	inherited	members.

getSize() sf::MemoryInputStream virtual

MemoryInputStream() sf::MemoryInputStream

open(const	void	*data,	std::size_t	sizeInBytes) sf::MemoryInputStream

read(void	*data,	Int64	size) sf::MemoryInputStream virtual

seek(Int64	position) sf::MemoryInputStream virtual

tell() sf::MemoryInputStream virtual

~InputStream() sf::InputStream inline

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Mutex	Member	List

This	is	the	complete	list	of	members	for	sf::Mutex,	including	all	inherited	members.

lock() sf::Mutex

Mutex() sf::Mutex

NonCopyable() sf::NonCopyable inline private

unlock() sf::Mutex

~Mutex() sf::Mutex

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::NonCopyable	Member	List

This	is	the	complete	list	of	members	for	sf::NonCopyable,	including	all	inherited	members.

NonCopyable() sf::NonCopyable inline protected

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::String	Member	List

This	is	the	complete	list	of	members	for	sf::String,	including	all	inherited	members.

begin()

begin()	const

clear()

ConstIterator	typedef

end()

end()	const

erase(std::size_t	position,	std::size_t	count=1)

find(const	String	&str,	std::size_t	start=0)	const

fromUtf16(T	begin,	T	end)

fromUtf32(T	begin,	T	end)

fromUtf8(T	begin,	T	end)

getData()	const

getSize()	const

insert(std::size_t	position,	const	String	&str)

InvalidPos

isEmpty()	const

Iterator	typedef

operator	std::string()	const

operator	std::wstring()	const

operator!=(const	String	&left,	const	String	&right)

operator+(const	String	&left,	const	String	&right)

operator+=(const	String	&right)

operator<	(defined	in	sf::String)

operator<(const	String	&left,	const	String	&right)

operator<=(const	String	&left,	const	String	&right)

operator=(const	String	&right)

operator==	(defined	in	sf::String)

operator==(const	String	&left,	const	String	&right)

operator>(const	String	&left,	const	String	&right)

operator>=(const	String	&left,	const	String	&right)

operator[](std::size_t	index)	const

operator[](std::size_t	index)

replace(std::size_t	position,	std::size_t	length,	const	String	&replaceWith)

replace(const	String	&searchFor,	const	String	&replaceWith)

String()

String(char	ansiChar,	const	std::locale	&locale=std::locale())

String(wchar_t	wideChar)

String(Uint32	utf32Char)

String(const	char	*ansiString,	const	std::locale	&locale=std::locale())

String(const	std::string	&ansiString,	const	std::locale	&locale=std::locale())

String(const	wchar_t	*wideString)

String(const	std::wstring	&wideString)

String(const	Uint32	*utf32String)

String(const	std::basic_string<	Uint32	>	&utf32String)

String(const	String	©)

substring(std::size_t	position,	std::size_t	length=InvalidPos)	const

toAnsiString(const	std::locale	&locale=std::locale())	const

toUtf16()	const

toUtf32()	const

toUtf8()	const

toWideString()	const

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Thread	Member	List

This	is	the	complete	list	of	members	for	sf::Thread,	including	all	inherited	members.

launch() sf::Thread

NonCopyable() sf::NonCopyable inline private

terminate() sf::Thread

Thread(F	function) sf::Thread

Thread(F	function,	A	argument) sf::Thread

Thread(void(C::*function)(),	C	*object) sf::Thread

wait() sf::Thread

~Thread() sf::Thread

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::ThreadLocal	Member	List

This	is	the	complete	list	of	members	for	sf::ThreadLocal,	including	all	inherited	members.

getValue()	const sf::ThreadLocal

NonCopyable() sf::NonCopyable inline private

setValue(void	*value) sf::ThreadLocal

ThreadLocal(void	*value=NULL) sf::ThreadLocal

~ThreadLocal() sf::ThreadLocal

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::ThreadLocalPtr<	T	>	Member	List

This	is	the	complete	list	of	members	for	sf::ThreadLocalPtr<	T	>,	including	all	inherited	members.

getValue()	const sf::ThreadLocal private

operator	T	*()	const sf::ThreadLocalPtr<	T	>

operator*()	const sf::ThreadLocalPtr<	T	>

operator->()	const sf::ThreadLocalPtr<	T	>

operator=(T	*value) sf::ThreadLocalPtr<	T	>

operator=(const	ThreadLocalPtr<	T	>	&right) sf::ThreadLocalPtr<	T	>

setValue(void	*value) sf::ThreadLocal private

ThreadLocal(void	*value=NULL) sf::ThreadLocal private

ThreadLocalPtr(T	*value=NULL) sf::ThreadLocalPtr<	T	>

~ThreadLocal() sf::ThreadLocal private

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Time	Member	List

This	is	the	complete	list	of	members	for	sf::Time,	including	all	inherited	members.

asMicroseconds()	const sf::Time

asMilliseconds()	const sf::Time

asSeconds()	const sf::Time

microseconds	(defined	in	sf::Time) sf::Time friend

microseconds(Int64	amount) sf::Time related

milliseconds	(defined	in	sf::Time) sf::Time friend

milliseconds(Int32	amount) sf::Time related

operator!=(Time	left,	Time	right) sf::Time related

operator%(Time	left,	Time	right) sf::Time related

operator%=(Time	&left,	Time	right) sf::Time related

operator*(Time	left,	float	right) sf::Time related

operator*(Time	left,	Int64	right) sf::Time related

operator*(float	left,	Time	right) sf::Time related

operator*(Int64	left,	Time	right) sf::Time related

operator*=(Time	&left,	float	right) sf::Time related

operator*=(Time	&left,	Int64	right) sf::Time related

operator+(Time	left,	Time	right) sf::Time related

operator+=(Time	&left,	Time	right) sf::Time related

operator-(Time	right) sf::Time related

operator-(Time	left,	Time	right) sf::Time related

operator-=(Time	&left,	Time	right) sf::Time related

operator/(Time	left,	float	right) sf::Time related

operator/(Time	left,	Int64	right) sf::Time related

operator/(Time	left,	Time	right) sf::Time related

operator/=(Time	&left,	float	right) sf::Time related

operator/=(Time	&left,	Int64	right) sf::Time related

operator<(Time	left,	Time	right) sf::Time related

operator<=(Time	left,	Time	right) sf::Time related

operator==(Time	left,	Time	right) sf::Time related

operator>(Time	left,	Time	right) sf::Time related

operator>=(Time	left,	Time	right) sf::Time related

seconds	(defined	in	sf::Time) sf::Time friend

seconds(float	amount) sf::Time related

Time() sf::Time

Zero sf::Time static

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Vector2<	T	>	Member	List

This	is	the	complete	list	of	members	for	sf::Vector2<	T	>,	including	all	inherited	members.

operator!=(const	Vector2<	T	>	&left,	const	Vector2<	T	>	&right) sf::Vector2<	T	>

operator*(const	Vector2<	T	>	&left,	T	right) sf::Vector2<	T	>

operator*(T	left,	const	Vector2<	T	>	&right) sf::Vector2<	T	>

operator*=(Vector2<	T	>	&left,	T	right) sf::Vector2<	T	>

operator+(const	Vector2<	T	>	&left,	const	Vector2<	T	>	&right) sf::Vector2<	T	>

operator+=(Vector2<	T	>	&left,	const	Vector2<	T	>	&right) sf::Vector2<	T	>

operator-(const	Vector2<	T	>	&right) sf::Vector2<	T	>

operator-(const	Vector2<	T	>	&left,	const	Vector2<	T	>	&right) sf::Vector2<	T	>

operator-=(Vector2<	T	>	&left,	const	Vector2<	T	>	&right) sf::Vector2<	T	>

operator/(const	Vector2<	T	>	&left,	T	right) sf::Vector2<	T	>

operator/=(Vector2<	T	>	&left,	T	right) sf::Vector2<	T	>

operator==(const	Vector2<	T	>	&left,	const	Vector2<	T	>	&right) sf::Vector2<	T	>

Vector2() sf::Vector2<	T	>

Vector2(T	X,	T	Y) sf::Vector2<	T	>

Vector2(const	Vector2<	U	>	&vector) sf::Vector2<	T	>

x sf::Vector2<	T	>

y sf::Vector2<	T	>

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Vector3<	T	>	Member	List

This	is	the	complete	list	of	members	for	sf::Vector3<	T	>,	including	all	inherited	members.

operator!=(const	Vector3<	T	>	&left,	const	Vector3<	T	>	&right) sf::Vector3<	T	>

operator*(const	Vector3<	T	>	&left,	T	right) sf::Vector3<	T	>

operator*(T	left,	const	Vector3<	T	>	&right) sf::Vector3<	T	>

operator*=(Vector3<	T	>	&left,	T	right) sf::Vector3<	T	>

operator+(const	Vector3<	T	>	&left,	const	Vector3<	T	>	&right) sf::Vector3<	T	>

operator+=(Vector3<	T	>	&left,	const	Vector3<	T	>	&right) sf::Vector3<	T	>

operator-(const	Vector3<	T	>	&left) sf::Vector3<	T	>

operator-(const	Vector3<	T	>	&left,	const	Vector3<	T	>	&right) sf::Vector3<	T	>

operator-=(Vector3<	T	>	&left,	const	Vector3<	T	>	&right) sf::Vector3<	T	>

operator/(const	Vector3<	T	>	&left,	T	right) sf::Vector3<	T	>

operator/=(Vector3<	T	>	&left,	T	right) sf::Vector3<	T	>

operator==(const	Vector3<	T	>	&left,	const	Vector3<	T	>	&right) sf::Vector3<	T	>

Vector3() sf::Vector3<	T	>

Vector3(T	X,	T	Y,	T	Z) sf::Vector3<	T	>

Vector3(const	Vector3<	U	>	&vector) sf::Vector3<	T	>

x sf::Vector3<	T	>

y sf::Vector3<	T	>

z sf::Vector3<	T	>

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Context	Member	List

This	is	the	complete	list	of	members	for	sf::Context,	including	all	inherited	members.

Context()

Context(const	ContextSettings	&settings,	unsigned	int	width,	unsigned	int	height)

ensureGlContext()

getActiveContext()

getFunction(const	char	*name)

getSettings()	const

GlResource()

isExtensionAvailable(const	char	*name)

NonCopyable()

setActive(bool	active)

~Context()

~GlResource()

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

http://www.sfml-dev.org/license.php

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::ContextSettings	Member	List

This	is	the	complete	list	of	members	for	sf::ContextSettings,	including	all	inherited	members.

antialiasingLevel

Attribute	enum	name

attributeFlags

ContextSettings(unsigned	int	depth=0,	unsigned	int	stencil=0,	unsigned	int	antialiasing=0,	unsigned	int	major=1,	unsigned	int	minor=1,	unsigned	int	attributes=Default,	bool	sRgb=false)

Core	enum	value

Debug	enum	value

Default	enum	value

depthBits

majorVersion

minorVersion

sRgbCapable

stencilBits

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

http://www.sfml-dev.org/license.php

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Event	Member	List

This	is	the	complete	list	of	members	for	sf::Event,	including	all	inherited	members.

Closed	enum	value sf::Event

Count	enum	value sf::Event

EventType	enum	name sf::Event

GainedFocus	enum	value sf::Event

joystickButton sf::Event

JoystickButtonPressed	enum	value sf::Event

JoystickButtonReleased	enum	value sf::Event

joystickConnect sf::Event

JoystickConnected	enum	value sf::Event

JoystickDisconnected	enum	value sf::Event

joystickMove sf::Event

JoystickMoved	enum	value sf::Event

key sf::Event

KeyPressed	enum	value sf::Event

KeyReleased	enum	value sf::Event

LostFocus	enum	value sf::Event

mouseButton sf::Event

MouseButtonPressed	enum	value sf::Event

MouseButtonReleased	enum	value sf::Event

MouseEntered	enum	value sf::Event

MouseLeft	enum	value sf::Event

mouseMove sf::Event

MouseMoved	enum	value sf::Event

mouseWheel sf::Event

MouseWheelMoved	enum	value sf::Event

mouseWheelScroll sf::Event

MouseWheelScrolled	enum	value sf::Event

Resized	enum	value sf::Event

sensor sf::Event

SensorChanged	enum	value sf::Event

size sf::Event

text sf::Event

TextEntered	enum	value sf::Event

touch sf::Event

TouchBegan	enum	value sf::Event

TouchEnded	enum	value sf::Event

TouchMoved	enum	value sf::Event

type sf::Event

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Event::JoystickButtonEvent	Member	List

This	is	the	complete	list	of	members	for	sf::Event::JoystickButtonEvent,	including	all	inherited	members.

button sf::Event::JoystickButtonEvent

joystickId sf::Event::JoystickButtonEvent

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Event::JoystickConnectEvent	Member	List

This	is	the	complete	list	of	members	for	sf::Event::JoystickConnectEvent,	including	all	inherited	members.

joystickId sf::Event::JoystickConnectEvent

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Event::JoystickMoveEvent	Member	List

This	is	the	complete	list	of	members	for	sf::Event::JoystickMoveEvent,	including	all	inherited	members.

axis sf::Event::JoystickMoveEvent

joystickId sf::Event::JoystickMoveEvent

position sf::Event::JoystickMoveEvent

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Event::KeyEvent	Member	List

This	is	the	complete	list	of	members	for	sf::Event::KeyEvent,	including	all	inherited	members.

alt sf::Event::KeyEvent

code sf::Event::KeyEvent

control sf::Event::KeyEvent

shift sf::Event::KeyEvent

system sf::Event::KeyEvent

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Event::MouseButtonEvent	Member	List

This	is	the	complete	list	of	members	for	sf::Event::MouseButtonEvent,	including	all	inherited	members.

button sf::Event::MouseButtonEvent

x sf::Event::MouseButtonEvent

y sf::Event::MouseButtonEvent

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Event::MouseMoveEvent	Member	List

This	is	the	complete	list	of	members	for	sf::Event::MouseMoveEvent,	including	all	inherited	members.

x sf::Event::MouseMoveEvent

y sf::Event::MouseMoveEvent

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Event::MouseWheelEvent	Member	List

This	is	the	complete	list	of	members	for	sf::Event::MouseWheelEvent,	including	all	inherited	members.

delta sf::Event::MouseWheelEvent

x sf::Event::MouseWheelEvent

y sf::Event::MouseWheelEvent

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Event::MouseWheelScrollEvent	Member	List

This	 is	 the	 complete	 list	 of	 members	 for	 sf::Event::MouseWheelScrollEvent
members.

delta sf::Event::MouseWheelScrollEvent

wheel sf::Event::MouseWheelScrollEvent

x sf::Event::MouseWheelScrollEvent

y sf::Event::MouseWheelScrollEvent

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Event::SensorEvent	Member	List

This	is	the	complete	list	of	members	for	sf::Event::SensorEvent,	including	all	inherited	members.

type sf::Event::SensorEvent

x sf::Event::SensorEvent

y sf::Event::SensorEvent

z sf::Event::SensorEvent

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Event::SizeEvent	Member	List

This	is	the	complete	list	of	members	for	sf::Event::SizeEvent,	including	all	inherited	members.

height sf::Event::SizeEvent

width sf::Event::SizeEvent

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Event::TextEvent	Member	List

This	is	the	complete	list	of	members	for	sf::Event::TextEvent,	including	all	inherited	members.

unicode sf::Event::TextEvent

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Event::TouchEvent	Member	List

This	is	the	complete	list	of	members	for	sf::Event::TouchEvent,	including	all	inherited	members.

finger sf::Event::TouchEvent

x sf::Event::TouchEvent

y sf::Event::TouchEvent

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::GlResource	Member	List

This	is	the	complete	list	of	members	for	sf::GlResource,	including	all	inherited	members.

ensureGlContext() sf::GlResource protected static

GlResource() sf::GlResource protected

~GlResource() sf::GlResource protected

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::GlResource::TransientContextLock	Member	List

This	 is	 the	 complete	 list	 of	 members	 for	 sf::GlResource::TransientContextLock
members.

NonCopyable() sf::NonCopyable inline private

TransientContextLock() sf::GlResource::TransientContextLock

~TransientContextLock() sf::GlResource::TransientContextLock

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Joystick	Member	List

This	is	the	complete	list	of	members	for	sf::Joystick,	including	all	inherited	members.

Axis	enum	name sf::Joystick

AxisCount	enum	value sf::Joystick

ButtonCount	enum	value sf::Joystick

Count	enum	value sf::Joystick

getAxisPosition(unsigned	int	joystick,	Axis	axis) sf::Joystick static

getButtonCount(unsigned	int	joystick) sf::Joystick static

getIdentification(unsigned	int	joystick) sf::Joystick static

hasAxis(unsigned	int	joystick,	Axis	axis) sf::Joystick static

isButtonPressed(unsigned	int	joystick,	unsigned	int	button) sf::Joystick static

isConnected(unsigned	int	joystick) sf::Joystick static

PovX	enum	value sf::Joystick

PovY	enum	value sf::Joystick

R	enum	value sf::Joystick

U	enum	value sf::Joystick

update() sf::Joystick static

V	enum	value sf::Joystick

X	enum	value sf::Joystick

Y	enum	value sf::Joystick

Z	enum	value sf::Joystick

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Joystick::Identification	Member	List

This	is	the	complete	list	of	members	for	sf::Joystick::Identification,	including	all	inherited	members.

Identification()	(defined	in	sf::Joystick::Identification) sf::Joystick::Identification

name sf::Joystick::Identification

productId sf::Joystick::Identification

vendorId sf::Joystick::Identification

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Keyboard	Member	List

This	is	the	complete	list	of	members	for	sf::Keyboard,	including	all	inherited	members.

A	enum	value sf::Keyboard

Add	enum	value sf::Keyboard

B	enum	value sf::Keyboard

BackSlash	enum	value sf::Keyboard

BackSpace	enum	value sf::Keyboard

C	enum	value sf::Keyboard

Comma	enum	value sf::Keyboard

D	enum	value sf::Keyboard

Dash	enum	value sf::Keyboard

Delete	enum	value sf::Keyboard

Divide	enum	value sf::Keyboard

Down	enum	value sf::Keyboard

E	enum	value sf::Keyboard

End	enum	value sf::Keyboard

Equal	enum	value sf::Keyboard

Escape	enum	value sf::Keyboard

F	enum	value sf::Keyboard

F1	enum	value sf::Keyboard

F10	enum	value sf::Keyboard

F11	enum	value sf::Keyboard

F12	enum	value sf::Keyboard

F13	enum	value sf::Keyboard

F14	enum	value sf::Keyboard

F15	enum	value sf::Keyboard

F2	enum	value sf::Keyboard

F3	enum	value sf::Keyboard

F4	enum	value sf::Keyboard

F5	enum	value sf::Keyboard

F6	enum	value sf::Keyboard

F7	enum	value sf::Keyboard

F8	enum	value sf::Keyboard

F9	enum	value sf::Keyboard

G	enum	value sf::Keyboard

H	enum	value sf::Keyboard

Home	enum	value sf::Keyboard

I	enum	value sf::Keyboard

Insert	enum	value sf::Keyboard

isKeyPressed(Key	key) sf::Keyboard static

J	enum	value sf::Keyboard

K	enum	value sf::Keyboard

Key	enum	name sf::Keyboard

KeyCount	enum	value sf::Keyboard

L	enum	value sf::Keyboard

LAlt	enum	value sf::Keyboard

LBracket	enum	value sf::Keyboard

LControl	enum	value sf::Keyboard

Left	enum	value sf::Keyboard

LShift	enum	value sf::Keyboard

LSystem	enum	value sf::Keyboard

M	enum	value sf::Keyboard

Menu	enum	value sf::Keyboard

Multiply	enum	value sf::Keyboard

N	enum	value sf::Keyboard

Num0	enum	value sf::Keyboard

Num1	enum	value sf::Keyboard

Num2	enum	value sf::Keyboard

Num3	enum	value sf::Keyboard

Num4	enum	value sf::Keyboard

Num5	enum	value sf::Keyboard

Num6	enum	value sf::Keyboard

Num7	enum	value sf::Keyboard

Num8	enum	value sf::Keyboard

Num9	enum	value sf::Keyboard

Numpad0	enum	value sf::Keyboard

Numpad1	enum	value sf::Keyboard

Numpad2	enum	value sf::Keyboard

Numpad3	enum	value sf::Keyboard

Numpad4	enum	value sf::Keyboard

Numpad5	enum	value sf::Keyboard

Numpad6	enum	value sf::Keyboard

Numpad7	enum	value sf::Keyboard

Numpad8	enum	value sf::Keyboard

Numpad9	enum	value sf::Keyboard

O	enum	value sf::Keyboard

P	enum	value sf::Keyboard

PageDown	enum	value sf::Keyboard

PageUp	enum	value sf::Keyboard

Pause	enum	value sf::Keyboard

Period	enum	value sf::Keyboard

Q	enum	value sf::Keyboard

Quote	enum	value sf::Keyboard

R	enum	value sf::Keyboard

RAlt	enum	value sf::Keyboard

RBracket	enum	value sf::Keyboard

RControl	enum	value sf::Keyboard

Return	enum	value sf::Keyboard

Right	enum	value sf::Keyboard

RShift	enum	value sf::Keyboard

RSystem	enum	value sf::Keyboard

S	enum	value sf::Keyboard

SemiColon	enum	value sf::Keyboard

setVirtualKeyboardVisible(bool	visible) sf::Keyboard static

Slash	enum	value sf::Keyboard

Space	enum	value sf::Keyboard

Subtract	enum	value sf::Keyboard

T	enum	value sf::Keyboard

Tab	enum	value sf::Keyboard

Tilde	enum	value sf::Keyboard

U	enum	value sf::Keyboard

Unknown	enum	value sf::Keyboard

Up	enum	value sf::Keyboard

V	enum	value sf::Keyboard

W	enum	value sf::Keyboard

X	enum	value sf::Keyboard

Y	enum	value sf::Keyboard

Z	enum	value sf::Keyboard

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Mouse	Member	List

This	is	the	complete	list	of	members	for	sf::Mouse,	including	all	inherited	members.

Button	enum	name sf::Mouse

ButtonCount	enum	value sf::Mouse

getPosition() sf::Mouse

getPosition(const	Window	&relativeTo) sf::Mouse

HorizontalWheel	enum	value sf::Mouse

isButtonPressed(Button	button) sf::Mouse

Left	enum	value sf::Mouse

Middle	enum	value sf::Mouse

Right	enum	value sf::Mouse

setPosition(const	Vector2i	&position) sf::Mouse

setPosition(const	Vector2i	&position,	const	Window	&relativeTo) sf::Mouse

VerticalWheel	enum	value sf::Mouse

Wheel	enum	name sf::Mouse

XButton1	enum	value sf::Mouse

XButton2	enum	value sf::Mouse

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Sensor	Member	List

This	is	the	complete	list	of	members	for	sf::Sensor,	including	all	inherited	members.

Accelerometer	enum	value sf::Sensor

Count	enum	value sf::Sensor

getValue(Type	sensor) sf::Sensor static

Gravity	enum	value sf::Sensor

Gyroscope	enum	value sf::Sensor

isAvailable(Type	sensor) sf::Sensor static

Magnetometer	enum	value sf::Sensor

Orientation	enum	value sf::Sensor

setEnabled(Type	sensor,	bool	enabled) sf::Sensor static

Type	enum	name sf::Sensor

UserAcceleration	enum	value sf::Sensor

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Touch	Member	List

This	is	the	complete	list	of	members	for	sf::Touch,	including	all	inherited	members.

getPosition(unsigned	int	finger) sf::Touch static

getPosition(unsigned	int	finger,	const	Window	&relativeTo) sf::Touch static

isDown(unsigned	int	finger) sf::Touch static

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::VideoMode	Member	List

This	is	the	complete	list	of	members	for	sf::VideoMode,	including	all	inherited	members.

bitsPerPixel

getDesktopMode()

getFullscreenModes()

height

isValid()	const

operator!=(const	VideoMode	&left,	const	VideoMode	&right)

operator<(const	VideoMode	&left,	const	VideoMode	&right)

operator<=(const	VideoMode	&left,	const	VideoMode	&right)

operator==(const	VideoMode	&left,	const	VideoMode	&right)

operator>(const	VideoMode	&left,	const	VideoMode	&right)

operator>=(const	VideoMode	&left,	const	VideoMode	&right)

VideoMode()

VideoMode(unsigned	int	modeWidth,	unsigned	int	modeHeight,	unsigned	int	modeBitsPerPixel=32)

width

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Window	Member	List

This	is	the	complete	list	of	members	for	sf::Window,	including	all	inherited	members.

close()

create(VideoMode	mode,	const	String	&title,	Uint32	style=Style::Default,	const	ContextSettings	&settings=ContextSettings())

create(WindowHandle	handle,	const	ContextSettings	&settings=ContextSettings())

display()

ensureGlContext()

getPosition()	const

getSettings()	const

getSize()	const

getSystemHandle()	const

GlResource()

hasFocus()	const

isOpen()	const

NonCopyable()

onCreate()

onResize()

pollEvent(Event	&event)

requestFocus()

setActive(bool	active=true)	const

setFramerateLimit(unsigned	int	limit)

setIcon(unsigned	int	width,	unsigned	int	height,	const	Uint8	*pixels)

setJoystickThreshold(float	threshold)

setKeyRepeatEnabled(bool	enabled)

setMouseCursorGrabbed(bool	grabbed)

setMouseCursorVisible(bool	visible)

setPosition(const	Vector2i	&position)

setSize(const	Vector2u	&size)

setTitle(const	String	&title)

setVerticalSyncEnabled(bool	enabled)

setVisible(bool	visible)

waitEvent(Event	&event)

Window()

Window(VideoMode	mode,	const	String	&title,	Uint32	style=Style::Default,	const	ContextSettings	&settings=ContextSettings())

Window(WindowHandle	handle,	const	ContextSettings	&settings=ContextSettings())

~GlResource()

~Window()

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Utf<	16	>	Member	List

This	is	the	complete	list	of	members	for	sf::Utf<	16	>,	including	all	inherited	members.

count(In	begin,	In	end)

decode(In	begin,	In	end,	Uint32	&output,	Uint32	replacement=0)

encode(Uint32	input,	Out	output,	Uint16	replacement=0)

fromAnsi(In	begin,	In	end,	Out	output,	const	std::locale	&locale=std::locale())

fromLatin1(In	begin,	In	end,	Out	output)

fromWide(In	begin,	In	end,	Out	output)

next(In	begin,	In	end)

toAnsi(In	begin,	In	end,	Out	output,	char	replacement=0,	const	std::locale	&locale=std::locale())

toLatin1(In	begin,	In	end,	Out	output,	char	replacement=0)

toUtf16(In	begin,	In	end,	Out	output)

toUtf32(In	begin,	In	end,	Out	output)

toUtf8(In	begin,	In	end,	Out	output)

toWide(In	begin,	In	end,	Out	output,	wchar_t	replacement=0)

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Utf<	32	>	Member	List

This	is	the	complete	list	of	members	for	sf::Utf<	32	>,	including	all	inherited	members.

count(In	begin,	In	end)

decode(In	begin,	In	end,	Uint32	&output,	Uint32	replacement=0)

decodeAnsi(In	input,	const	std::locale	&locale=std::locale())

decodeWide(In	input)

encode(Uint32	input,	Out	output,	Uint32	replacement=0)

encodeAnsi(Uint32	codepoint,	Out	output,	char	replacement=0,	const	std::locale	&locale=std::locale())

encodeWide(Uint32	codepoint,	Out	output,	wchar_t	replacement=0)

fromAnsi(In	begin,	In	end,	Out	output,	const	std::locale	&locale=std::locale())

fromLatin1(In	begin,	In	end,	Out	output)

fromWide(In	begin,	In	end,	Out	output)

next(In	begin,	In	end)

toAnsi(In	begin,	In	end,	Out	output,	char	replacement=0,	const	std::locale	&locale=std::locale())

toLatin1(In	begin,	In	end,	Out	output,	char	replacement=0)

toUtf16(In	begin,	In	end,	Out	output)

toUtf32(In	begin,	In	end,	Out	output)

toUtf8(In	begin,	In	end,	Out	output)

toWide(In	begin,	In	end,	Out	output,	wchar_t	replacement=0)

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

Class	List Class	Index Class	Hierarchy Class	Members

SFML	2.4.2

sf::Utf<	8	>	Member	List

This	is	the	complete	list	of	members	for	sf::Utf<	8	>,	including	all	inherited	members.

count(In	begin,	In	end)

decode(In	begin,	In	end,	Uint32	&output,	Uint32	replacement=0)

encode(Uint32	input,	Out	output,	Uint8	replacement=0)

fromAnsi(In	begin,	In	end,	Out	output,	const	std::locale	&locale=std::locale())

fromLatin1(In	begin,	In	end,	Out	output)

fromWide(In	begin,	In	end,	Out	output)

next(In	begin,	In	end)

toAnsi(In	begin,	In	end,	Out	output,	char	replacement=0,	const	std::locale	&locale=std::locale())

toLatin1(In	begin,	In	end,	Out	output,	char	replacement=0)

toUtf16(In	begin,	In	end,	Out	output)

toUtf32(In	begin,	In	end,	Out	output)

toUtf8(In	begin,	In	end,	Out	output)

toWide(In	begin,	In	end,	Out	output,	wchar_t	replacement=0)

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

SFML	2.4.2

include	Directory	Reference

Directories
directory		 SFML
	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

SFML	2.4.2

SFML	Directory	Reference

Directories
directory		 Audio
	
directory		 Graphics
	
directory		 Network
	
directory		 System
	
directory		 Window
	

Files
file		 Audio.hpp	[code]
	
file		 Config.hpp	[code]
	
file		 Graphics.hpp	[code]
	
file		 Main.hpp	[code]
	
file		 Network.hpp	[code]
	
file		 OpenGL.hpp	[code]
	
file		 System.hpp	[code]
	
file		 Window.hpp	[code]
	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

SFML	2.4.2

Audio	Directory	Reference

Files
file		 AlResource.hpp	[code]
	
file		 Audio/Export.hpp	[code]
	
file		 InputSoundFile.hpp	[code]
	
file		 Listener.hpp	[code]
	
file		 Music.hpp	[code]
	
file		 OutputSoundFile.hpp	[code]
	
file		 Sound.hpp	[code]
	
file		 SoundBuffer.hpp	[code]
	
file		 SoundBufferRecorder.hpp	[code]
	
file		 SoundFileFactory.hpp	[code]
	
file		 SoundFileReader.hpp	[code]
	
file		 SoundFileWriter.hpp	[code]
	
file		 SoundRecorder.hpp	[code]
	
file		 SoundSource.hpp	[code]
	
file		 SoundStream.hpp	[code]
	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

SFML	2.4.2

Graphics	Directory	Reference

Files
file		 BlendMode.hpp	[code]
	
file		 CircleShape.hpp	[code]
	
file		 Color.hpp	[code]
	
file		 ConvexShape.hpp	[code]
	
file		 Drawable.hpp	[code]
	
file		 Graphics/Export.hpp	[code]
	
file		 Font.hpp	[code]
	
file		 Glsl.hpp	[code]
	
file		 Glyph.hpp	[code]
	
file		 Image.hpp	[code]
	
file		 PrimitiveType.hpp	[code]
	
file		 Rect.hpp	[code]
	
file		 RectangleShape.hpp	[code]
	
file		 RenderStates.hpp	[code]
	
file		 RenderTarget.hpp	[code]
	
file		 RenderTexture.hpp	[code]
	

file		 RenderWindow.hpp	[code]
	
file		 Shader.hpp	[code]
	
file		 Shape.hpp	[code]
	
file		 Sprite.hpp	[code]
	
file		 Text.hpp	[code]
	
file		 Texture.hpp	[code]
	
file		 Transform.hpp	[code]
	
file		 Transformable.hpp	[code]
	
file		 Vertex.hpp	[code]
	
file		 VertexArray.hpp	[code]
	
file		 View.hpp	[code]
	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

SFML	2.4.2

System	Directory	Reference

Files
file		 Clock.hpp	[code]
	
file		 Err.hpp	[code]
	
file		 System/Export.hpp	[code]
	
file		 FileInputStream.hpp	[code]
	
file		 InputStream.hpp	[code]
	
file		 Lock.hpp	[code]
	
file		 MemoryInputStream.hpp	[code]
	
file		 Mutex.hpp	[code]
	
file		 NativeActivity.hpp	[code]
	
file		 NonCopyable.hpp	[code]
	
file		 Sleep.hpp	[code]
	
file		 String.hpp	[code]
	
file		 Thread.hpp	[code]
	
file		 ThreadLocal.hpp	[code]
	
file		 ThreadLocalPtr.hpp	[code]
	
file		 Time.hpp	[code]
	

file		 Utf.hpp	[code]
	
file		 Vector2.hpp	[code]
	
file		 Vector3.hpp	[code]
	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

SFML	2.4.2

Window	Directory	Reference

Files
file		 Context.hpp	[code]
	
file		 ContextSettings.hpp	[code]
	
file		 Event.hpp	[code]
	
file		 Window/Export.hpp	[code]
	
file		 GlResource.hpp	[code]
	
file		 Joystick.hpp	[code]
	
file		 Keyboard.hpp	[code]
	
file		 Mouse.hpp	[code]
	
file		 Sensor.hpp	[code]
	
file		 Touch.hpp	[code]
	
file		 VideoMode.hpp	[code]
	
file		 Window/Window.hpp	[code]
	
file		 WindowHandle.hpp	[code]
	
file		 WindowStyle.hpp	[code]
	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

http://www.sfml-dev.org/license.php

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

SFML	2.4.2

Network	Directory	Reference

Files
file		 Network/Export.hpp	[code]
	
file		 Ftp.hpp	[code]
	
file		 Http.hpp	[code]
	
file		 IpAddress.hpp	[code]
	
file		 Packet.hpp	[code]
	
file		 Socket.hpp	[code]
	
file		 SocketHandle.hpp	[code]
	
file		 SocketSelector.hpp	[code]
	
file		 TcpListener.hpp	[code]
	
file		 TcpSocket.hpp	[code]
	
file		 UdpSocket.hpp	[code]
	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

Main	Page Related	Pages Modules Namespaces Classes Files

SFML	2.4.2

doc	Directory	Reference

Files
file		 mainpage.hpp	[code]
	

SFML	is	licensed	under	the	terms	and	conditions	of	the	zlib/png	license

Copyright	©	Laurent	Gomila		::		Documentation	generated	by	doxygen

http://www.sfml-dev.org/license.php
http://www.doxygen.org/

	Deprecated List
	Modules
	Audio module
	AlResource
	InputSoundFile
	Listener
	Music
	OutputSoundFile
	Sound
	SoundBuffer
	SoundBufferRecorder
	SoundFileFactory
	SoundFileReader
	Info

	SoundFileWriter
	SoundRecorder
	SoundSource
	SoundStream
	Chunk

	Graphics module
	Glsl
	BlendMode
	CircleShape
	Color
	ConvexShape
	Drawable
	Font
	Info

	Glyph
	Image
	Rect
	RectangleShape
	RenderStates
	RenderTarget
	RenderTexture
	RenderWindow
	Shader
	CurrentTextureType

	Shape
	Sprite
	Text
	Texture
	Transform
	Transformable
	Vertex
	VertexArray
	View

	Network module
	Ftp
	DirectoryResponse
	ListingResponse
	Response

	Http
	Request
	Response

	IpAddress
	Packet
	Socket
	SocketSelector
	TcpListener
	TcpSocket
	UdpSocket

	System module
	Clock
	FileInputStream
	InputStream
	Lock
	MemoryInputStream
	Mutex
	NonCopyable
	String
	Thread
	ThreadLocal
	ThreadLocalPtr
	Time
	Utf
	Vector2
	Vector3

	Window module
	Context
	ContextSettings
	Event
	JoystickButtonEvent
	JoystickConnectEvent
	JoystickMoveEvent
	KeyEvent
	MouseButtonEvent
	MouseMoveEvent
	MouseWheelEvent
	MouseWheelScrollEvent
	SensorEvent
	SizeEvent
	TextEvent
	TouchEvent

	GlResource
	TransientContextLock

	Joystick
	Identification

	Keyboard
	Mouse
	Sensor
	Touch
	VideoMode
	Window

