
Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Welcome	to	the	Microsoft	Speech	SDK,
version	5.1
The	Microsoft®	Speech	SDK	5.1	is	the	developer	kit	for	the
Microsoft®	Windows	environment.	Tools,	information,	and
sample	engines	and	applications	are	provided	to	help	you
integrate	and	optimize	your	speech	recognition	and	speech
synthesis	engines	with	the	new	Microsoft	Speech	API	5	(SAPI	5).
The	Speech	SDK	also	includes	updated	releases	of	the	Microsoft
advanced	speech	recognition	engine	and	Microsoft
concatenated	speech	synthesis	engine.

End-User	License	Agreement
Please	read	and	understand	the	End-User	License	Agreement
before	using	the	Microsoft	Speech	SDK.

Redistribution	Code	Rights
Please	read	and	understand	the	Redistributable	Code	Rights
before	building	applications	or	engines.	This	document
outlines	which	files	may	be	redistributed	with	our	own
products.	It	also	describes	limitations	for	modifing	the
Speech	SDK	5.1	files	and	samples.

System	Requirements
This	section	lists	the	software	required	including	supported
operating	systems	and	the	compiler	environment.	Hardware
requirements	are	also	listed	and	include	recommended
computer	speeds,	available	RAM	and	audio	equipment.

Developer	Support
This	section	provides	information	on	the	developer	support
choices	available	to	you.	For	additional	support	options,	see
support	phone	numbers	and	options.

Getting	Started	for	First-Time	Users
Getting	Started	introduces	the	Microsoft®	Speech	SDK	to
first-time	users	and	explains	its	contents,	system
requirements,	and	features.

Release	Notes
Release	Notes	describes	new	information	at	the	time	of
release,	documents	known	issues,	and	identifies	any	new
redistribution	file	updates.	Release	notes	may	be	found	on
the	installation	disk	or,	if	not	using	a	disk,	at	the	installation
source.

Microsoft	Speech	Technologies	Web	Site
This	site	provides	product	news	updates,	technical	articles,
and	links	to	useful	resources.

Is	the	documentation	helpful?
We'd	like	to	know.	Please	send	any	comments	and
suggestions	you	have	to:	sapi5@microsoft.com.

http://go.microsoft.com/fwlink?linkid=288
mailto:sapi5@microsoft.com

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Getting	Started	for	First-Time	Users
The	following	topics	introduce	the	Microsoft	Speech	SDK	(SDK)
to	first-time	users	and	explain	its	contents	and	features:

What	is	the	SDK?
What	can	I	do	with	the	SDK?
What	is	covered	in	the	SDK	documentation?
Programmer's	Guide

What	is	not	covered	by	the	SDK?

How	can	I	start	using	the	SDK?

Removing	the	SDK
What	special	things	do	I	need	to	know?

What	is	the	SDK?
Microsoft	Speech	SDK	is	a	software	development	kit	for	building
speech	engines	and	applications	for	Microsoft	Windows.
Designed	primarily	for	the	desktop	speech	developer,	the	SDK
contains	the	Microsoft®	Win32®-compatible	speech	application
programming	interface	(SAPI),	the	Microsoft	continuous	speech
recognition	engine	and	Microsoft	concatenated	speech	synthesis
(or	text-to-speech)	engine,	a	collection	of	speech-oriented
development	tools	for	compiling	source	code	and	executing
commands,	sample	application	and	tutorials	that	demonstrate
the	use	of	Speech	with	other	engine	technologies,	sample
speech	recognition	and	speech	synthesis	engines	for	testing
with	speech-enabled	applications,	and	documentation	on	the
most	important	SDK	features.

What	can	I	do	with	the	SDK?
You	can	use	the	SDK	components	and	redistributable

SAPI/engine	run-time	to	build	applications	that	incorporate
speech	recognition	and	speech	synthesis.

Automation	Support
SAPI	5.1	supports	OLE	automation.	That	means	languages
other	than	C/C++	may	now	use	SAPI	for	application
development.	The	languages	themselves	need	to	support
OLE	automation.	Common	languages	which	may	be	used
includes	Visual	Basic,	C#,	and	JScript.	See	Automation
Interfaces	and	Objects	for	additional	information.	Overviews
for	automation	and	understanding	the	API	suite	for	SAPI	is
found	at	Automation	Overview.	This	is	also	a	good	starting
point	for	programmers	new	to	OLE	automation	programming.

Speech	Components	and	Services
Included	in	the	Speech	API	architecture	is	a	collection	of
speech	components	for	directly	managing	the	audio,	training
wizard,	events,	grammar	compiler,	resources,	speech
recognition	manager,	and	TTS	manager	for	low-level	control
and	greater	flexibility.	The	Speech	API	also	enables	support
and	manages	shared	recognition	events	for	running	multiple
speech-enabled	applications.

SDK	Tools
The	tools	in	the	Tools	directory	assist	with	the	verification
and	testing	of	SAPI	development.	This	directory	contains
source	code	and	project	for	compliance	testing	and	may	be
modified	to	fit	your	needs.

SDK	Samples
The	Microsoft	Speech	SDK	includes	samples	that	can	be	used
as	a	reference	for	creating	speech-enabled	applications.	The
compiled	samples	and	demonstration	applications	are
available	on	the	Start->Programs->Microsoft	Speech

SDK	5.1	menu.	The	binary	and	source	files,	projects,	are
available	in	the	Samples	folder	of	the	Microsoft	Speech	SDK
5.1	folder.	A	description	of	each	sample,	installation,	and	set
of	usage	instructions	is	provided.

Coexistence	and	Third	Party	Support
Microsoft	Speech	API	5.1	has	been	designed	to	coexist	on	the
same	device	with	prior	versions	of	the	Microsoft	Speech	API
(versions	3.0,	4.0,	4.0a,	and	5.0).	Microsoft	is	also	working
with	many	of	the	top	speech	recognition	engine	vendors	on
providing	SAPI	5	support.	Visit	the	Third	Party	Products	page
for	more	the	latest	list	on	SAPI	5-compatible	engines.

For	more	information	on	setup,	see	the	Microsoft	Speech	SDK
Setup	5.1.

What	is	covered	in	the	SDK	Documentation?
The	Microsoft	Speech	SDK	documentation	provides	information
for	both	the	experienced	speech	developer	and	the	beginner.	It
is	located	in	the	Start->Programs->Microsoft	Speech	SDK
5.1	menu.

Programmer's	Guide
The	Programmer's	Guide	provides	information	on	the	following
Microsoft	Speech	API	topics:

C/C++
Application	level	interfaces
Engine	level	interfaces
Structures

Enumerations
Helper	functions

http://go.microsoft.com/fwlink?linkid=230&clcid=0x409

Automation
Interfaces	and	Objects

Enumerations

SDK	Samples,	Tools,	and	Tutorials
This	section	includes	descriptions	and	references	for	the
samples,	tools,	and	tutorials	for	the	SAPI	5	SDK.

Engine	Compliance	Testing	Reference
The	Testing	Reference	describes	the	compliance	testing
requirements	for	engine	vendors	porting	their	speech	engine
to	SAPI	5.

White	Papers
The	White	Papers	include	technical	background	articles	on
the	technology.	They	also	include	sample	code	that
addresses	more	specific	programming	solutions.

What	is	not	covered	by	the	Speech	SDK?
The	Microsoft	Speech	SDK	is	not	an	enduser	application,	GUI,	or
voice-user	interface	(VUI)	development	environment	with
menus,	buttons,	toolbars.	It	is	a	development	kit	which	allows
programmers	to	write	applications	incorporating	speech	into
them.	Tools	are	provided	in	the	SDK	which	may	be	run	from	the
MS-DOS®	command	line	(e.g.,	gc.exe)	or	with	executable
applications.	The	Microsoft	Speech	SDK	assumes	knowledge	of
programming	for	C,	C++,	or	a	language	which	supports	OLE
automation	such	as	Visual	Basic,	or	C#.	SAPI	has	a	strong
reliance	on	COM.	Although	direct	experience	with	COM	or	COM
programming	is	not	required,	understanding	COM	principles	will
make	programming	and	application	design	easier.

How	can	I	start	using	the	SDK?
The	organization	of	the	Speech	SDK	documentation	is	similar	to
other	traditional	Microsoft	SDKs.	The	Finding	Information	section
of	the	Microsoft	Speech	SDK	documentation	contains	important
information	on	how	to	use	the	documentation's	Help	Viewer,
including	use	of	the	toolbar	buttons	and	full	text	search,	and
finding	a	Help	topic,	and	much	more.
Visit	the	Microsoft®	Speech.NET	Technologies	home	page
frequently.	Here	you	can	find	the	latest	news	and	updates	to	the
SDK	and	the	Microsoft	speech	engines.
If	for	some	reason	you	cannot	locate	a	particular	type	of
documentation	in	the	help	system,	please	e-mail
sapi5@microsoft.com	to	fill	a	request.

Removing	the	SDK
If	you	want	to	remove	the	SAPI	SDK	from	the	computer,	use
Add/Remove	Programs	properties	from	Control	Panel	(Start-
>Settings->Control	Panel).	It	is	not	advised	to	delete	individual
files.	However,	only	one	version	of	the	SDK	may	be	installed	at	a
time.	Attempts	to	install	a	newer	version	of	SAPI	with	a	previous
edition	already	loaded	will	prompt	the	installation	package	to
remove	SAPI	first.	After	removing	SAPI	in	this	manner,	the
installer	may	be	run	again	and	the	new	version	will	be	loaded.

What	special	things	do	I	need	to	know?
If	you	are	developing	an	application	that	intends	to	use	the
Microsoft	speech	setup	files,	your	Setup.exe	needs	to	install	the
Microsoft	Windows	Installer	if	it	is	not	already	present.	Please	go
to	Windows	Installer	1.5	download	page,	or	Platform	SDK	Start
Page	to	download	the	Windows	Installer	SDK	and	search	for
"Windows	Installer".

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409
mailto:sapi5@microsoft.com
http://go.microsoft.com/fwlink/?linkid=735&clcid=0x409
http://go.microsoft.com/fwlink/?LinkId=3199&clcid=0x409

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

System	Requirements
Operating	Systems
Supported	operating	systems	are:

Windows	XP	Professional	or	Home	editions;	all	language
versions.
Windows.NET	Server	editions;	all	language	versions.
Microsoft	Windows	2000	Professional	Workstation	or
Server;	all	language	versions.
Microsoft	Windows	Millennium	edition.

Microsoft	Windows	98	all	editions.
Microsoft	Windows	®	NT	Workstation	or	Server	4.0,
service	pack	6a,	English,	Japanese,	or	Simplified	Chinese
edition.

Windows	95	or	earlier	is	not	supported.

Software	Requirements
Microsoft	Internet	Explorer	5.0	or	later	version.	Users	of
Windows	NT	4	with	any	version	of	the	service	packs
require	Microsoft	Internet	Explorer	5.5	or	later.	Download
the	latest	version	of	Microsoft	Internet	Explorer.
Microsoft	Visual	C++	6.0,	service	pack	3	or	later	version
is	needed	to	run	the	SAPI	5	SDK	samples.	In	general,	any
32-bit	C	compiler	will	work	for	writing	SAPI	applications.
Microsoft	Visual	Basic	is	needed	to	write	applications
incorporating	SAPI	automation,	or	for	compiling	the
Visual	Basic	sample	code.	Since	SAPI	supports	COM
automation,	other	languages	and	compilers	may	be	used
with	SAPI	automation	provided	it	supports	OLE
automation.	Microsoft	Visual	Studio	7,	also	called	Visual

http://go.microsoft.com/fwlink/?LinkId=361&clcid=0x409

Studio.NET,	is	needed	to	compile	the	C#	examples.
Platform	SDK	is	generally	not	needed	although	some
samples	and	functionality	may	require	it.	See	the	specific
samples	for	confirmation.	If	required,	see	Microsoft
Platform	SDK	for	loading	information.

Hardware	Requirements
A	PentiumII\PentiumII-equivalent	or	later	processor	at
233	MHz	with	128	megabytes	(MB)	of	RAM	is
recommended.
SAPI	5	can	now	take	advantage	of	a	computer	and
operating	system	that	supports	multiple	processors,
including	all	those	mentioned	above.	Additionally,	you
can	use	SAPI	5	in	a	distributed	application	environment.
A	microphone	or	some	other	sound	input	device	to
receive	the	sound	is	required	for	speech	recognition.	In
general,	the	microphone	should	be	a	high	quality	device
with	noise	filters	built	in.	The	speech	recognition	rate	is
directly	related	to	the	quality	of	the	input.	The
recognition	rate	will	be	significantly	lower	or	perhaps
even	unacceptable	with	a	poor	microphone.

Not	all	sound	cards	or	sound	devices	are	supported	by
SAPI	5,	even	if	the	operating	system	supports	them
otherwise.
The	following	table	outlines	the	RAM	usage:

ComponentMinimum	RAM
Recommended
RAM

TTS	Engine 14.5	MB 32	MB
SR
Command
and	Control

16	MB 32	MB

SR	Dictation 25.5	MB 128	MB

SR	Both 26.5	MB 128	MB

The	following	table	outlines	the	disk	usage:

File	Name
Approximate	File
Size

Setup	Merge
Names

Sapi.dll	and
Sapisvr.exe

0.5	MB Sp5.msm

Sapi.cpl 36	KB Sp5Intl.msm
SR	Engine 1.7	MB Sp5Sr.msm
Command	and
Control	Datafiles

13.4	MB Sp5CCInt.msm

TTS	Engine	and
voices

7.8	MB Sp5TTInt.msm

Files	common	to
both	Microsoft	SAPI
5.1	TTS	and	SR.

92	KB SpCommon.Msm

Language-specific
SAPI	5.1	inverse	text
normalization	(ITN)
components.

108	KB Sp5itn.Msm

For	more	information	on	setup,	see	the	Microsoft	Speech	SDK
Setup	5.1.

Microsoft	Speech	Software	Development	Kit,	Version	5.1

Microsoft	Speech	Software	Development
Kit,	Version	5.1
END-USER	LICENSE	AGREEMENT	FOR	MICROSOFT	SOFTWARE
IMPORTANT-READ	CAREFULLY:	This	Microsoft	End-User	License
Agreement	("EULA")	is	a	legal	agreement	between	you	(either
an	individual	or	a	single	entity)	and	Microsoft	Corporation	for	the
Microsoft	software	product	identified	above,	which	includes
DEVICE	software	(including	SAPI	5.1,	Microsoft	continuous
speech	recognition	engine	and	Microsoft	concatenative	speech
synthesis	engine),	and	may	include	associated	media,	printed
materials,	and	"online"	or	electronic	documentation
("SOFTWARE	PRODUCT").	The	SOFTWARE	PRODUCT	also
includes	any	updates	and	supplements	to	the	original
SOFTWARE	PRODUCT	provided	to	you	by	Microsoft.	Any	software
that	may	be	provided	along	with	the	SOFTWARE	PRODUCT	that
is	associated	with	a	separate	end-user	license	agreement	is
licensed	to	you	under	the	terms	of	that	license	agreement.	By
installing,	copying,	downloading,	accessing	or	otherwise	using
the	SOFTWARE	PRODUCT,	you	agree	to	be	bound	by	the	terms
of	this	EULA.	If	you	do	not	agree	to	the	terms	of	this	EULA,	do
not	install	or	use	the	SOFTWARE	PRODUCT.

SOFTWARE	PRODUCT	LICENSE
The	SOFTWARE	PRODUCT	is	protected	by	copyright	laws	and
international	copyright	treaties,	as	well	as	other	intellectual
property	laws	and	treaties.	The	SOFTWARE	PRODUCT	is
licensed,	not	sold.

1.	GRANT	OF	LICENSE.	This	EULA	grants	you	the	following
rights:
-	SOFTWARE	PRODUCT.	You	may	install	copies	of	the
SOFTWARE	PRODUCT	on	up	to	ten	(10)	digital	electronic
devices,	including	computers,	workstations,	terminals,	handheld
PCs,	pagers,	"smart	phones,"	or	other	digital	electronic	devices
(each	a	"DEVICE")	to	design,	develop,	and	test	software
programs	that	use	the	Microsoft	Speech	Application
Programming	Interface	("SAPI	5.1")	and	run	on	one	or	more
Microsoft	Windows	operating	system	products	that	support	SAPI
5.1	("Windows	Platforms"),	provided	that	you	are	the	only
individual	using	the	SOFTWARE	PRODUCT	on	each	such	DEVICE.
If	you	are	a	single	entity,	you	may	designate	one	individual
within	your	organization	to	have	the	right	to	use	the	SOFTWARE
PRODUCT	in	the	manner	described	herein.
-	Sample	Code.	Solely	with	respect	to	those	portions	of	the
SOFTWARE	PRODUCT	identified	as	sample	code	("Sample
Code"),	Microsoft	also	grants	you	the	right	to	modify	the	source
code	version	of	the	Sample	Code	for	the	sole	purposes	of
designing,	developing,	and	testing	software	programs	that	use
SAPI	5.1	(each,	"a	SAPI	Application")	and	to	reproduce	and
distribute	the	Sample	Code	along	with	any	modifications
thereof,	in	object	code	form	only,	provided	that	you	comply	with
the	Distribution	Requirements	described	below.	For	purposes	of
this	section,	"modifications"	shall	mean	enhancements	to	the
functionality	of	the	Sample	Code.

-	Redistributable	Code.	Portions	of	the	SOFTWARE	PRODUCT
are	designated	as	"Redistributable	Code"	file	located	in
REDISTRIB.CHM.	Your	distribution	rights	associated	with	each
file	of	the	Redistributable	Code	are	subject	to	the	distribution
requirements	described	below.
-	Distribution	Requirements.	You	may	copy	and	redistribute
the	Sample	Code	and/or	Redistributable	Code	(collectively
"REDISTRIBUTABLE	COMPONENTS")	as	described	above,
provided	that	(a)	you	distribute	the	REDISTRIBUTABLE
COMPONENTS	only	in	conjunction	with,	and	as	a	part	of,	your
SAPI	Application;	(b)	your	SAPI	Application	adds	significant	and
primary	functionality	to	the	REDISTRIBUTABLE	COMPONENTS;
(c)	the	REDISTRIBUTABLE	COMPONENTS	only	operate	in
conjunction	with	the	Windows	Platforms;	(d)	you	do	not	permit
further	redistribution	of	the	REDISTRIBUTABLE	COMPONENTS	by
your	end-user	customers;	(e)	you	do	not	use	Microsoft's	name,
logo,	or	trademarks	to	market	your	SAPI	Application;	(f)	you
include	a	valid	copyright	notice	on	your	SAPI	Application;	(g)
you	include	the	entire	text	located	in	REDISTRIB.CHM	in	your
SAPI	Application	End	User	License	Agreement;	and	(h)	you	agree
to	indemnify,	hold	harmless,	and	defend	Microsoft	from	and
against	any	claims	or	lawsuits,	including	attorneys'	fees,	that
arise	or	result	from	the	use	or	distribution	of	your	SAPI
Application.	Contact	Microsoft	for	the	applicable	royalties	due
and	other	licensing	terms	for	all	other	uses	and/or	distribution	of
the	REDISTRIBUTABLE	COMPONENTS.
-	Reservation	of	Rights.	All	rights	not	expressly	granted	are
reserved	by	Microsoft.

2.	DESCRIPTION	OF	OTHER	RIGHTS	AND	LIMITATIONS.
-	Limitations	on	Reverse	Engineering,	Decompilation,	and
Disassembly.	You	may	not	reverse	engineer,	decompile,	or
disassemble	the	SOFTWARE	PRODUCT,	except	and	only	to	the
extent	that	such	activity	is	expressly	permitted	by	applicable
law	notwithstanding	this	limitation.

-	Separation	of	Components.	The	SOFTWARE	PRODUCT	is
licensed	as	a	single	product.	Its	component	parts	may	not	be
separated	for	use	on	more	than	one	DEVICE.
-	Trademarks.	This	EULA	does	not	grant	you	any	rights	in
connection	with	any	trademarks	or	service	marks	of	Microsoft.
-	Rental.	You	may	not	rent,	lease,	or	lend	the	SOFTWARE
PRODUCT.
-	Support	Services.	No	technical	support	will	be	provided	for
the	SOFTWARE	PRODUCT.
-	Termination.	Without	prejudice	to	any	other	rights,	Microsoft
may	terminate	this	EULA	if	you	fail	to	comply	with	the	terms	and
conditions	of	this	EULA.	In	such	event,	you	must	destroy	all
copies	of	the	SOFTWARE	PRODUCT	and	all	of	its	component
parts.

3.	COPYRIGHT.
All	title	and	copyrights	in	and	to	the	SOFTWARE	PRODUCT
(including	but	not	limited	to	any	images,	photographs,
animations,	video,	audio,	music,	text,	and	"applets"
incorporated	into	the	SOFTWARE	PRODUCT),	the	accompanying
printed	materials,	and	any	copies	of	the	SOFTWARE	PRODUCT
are	owned	by	Microsoft	or	its	suppliers.	All	title	and	intellectual
property	rights	in	and	to	the	content	that	may	be	accessed
through	use	of	the	SOFTWARE	PRODUCT	is	the	property	of	the
respective	content	owner	and	may	be	protected	by	applicable
copyright	or	other	intellectual	property	laws	and	treaties.	This
EULA	grants	you	no	rights	to	use	such	content.	If	this
SOFTWARE	PRODUCT	contains	documentation	that	is	provided
only	in	electronic	form,	you	may	print	one	copy	of	such
electronic	documentation.	You	may	not	copy	the	printed
materials	accompanying	the	SOFTWARE	PRODUCT.

4.	DUAL-MEDIA	SOFTWARE.
You	may	receive	the	SOFTWARE	PRODUCT	in	more	than	one
medium.	Regardless	of	the	type	or	size	of	medium	you	receive,
you	may	use	only	one	medium	that	is	appropriate	for	your
single	DEVICE.	You	may	not	install,	copy	or	use	the	other
medium	on	another	DEVICE.	You	may	not	loan,	rent,	lease,	or
otherwise	transfer	the	other	medium	to	another	user,	except	as
part	of	the	permanent	transfer	(as	provided	above)	of	the
SOFTWARE	PRODUCT.

5.	U.S.	GOVERNMENT	RESTRICTED	RIGHTS.
All	SOFTWARE	PRODUCTS	provided	to	the	U.S.	Government
pursuant	to	solicitations	issued	on	or	after	December	1,	1995	is
provided	with	the	commercial	license	rights	and	restrictions
described	elsewhere	herein.	All	SOFTWARE	PRODUCTS	provided
to	the	U.S.	Government	pursuant	to	solicitations	issued	prior	to
December	1,	1995	is	provided	with	"Restricted	Rights"	as
provided	for	in	FAR,	48	CFR	52.227-14	(JUNE	1987)	or	DFAR,	48
CFR	252.227-7013	(OCT	1988),	as	applicable.	The	reseller	is
responsible	for	ensuring	that	the	SOFTWARE	PRODUCT	is
marked	with	the	"Restricted	Rights	Notice"	or	"Restricted	Rights
Legend,"	as	required.	All	rights	not	expressly	granted	are
reserved.

6.	EXPORT	RESTRICTIONS.
You	acknowledge	that	the	SOFTWARE	PRODUCT	is	of	U.S.	origin.
You	agree	to	comply	with	all	applicable	international	and
national	laws	that	apply	to	the	SOFTWARE	PRODUCT,	including
the	U.S.	Export	Administration	Regulations,	as	well	as	end-user,
end-use	and	country/region	destination	restrictions	issued	by
U.S.	and	other	governments.	For	additional	information	on
exporting	Microsoft	products,	see
http://www.microsoft.com/exporting/.

MISCELLANEOUS.
If	you	acquired	this	SOFTWARE	PRODUCT	in	the	United	States,
this	EULA	is	governed	by	the	laws	of	the	State	of	Washington.	If
you	acquired	this	SOFTWARE	PRODUCT	in	Canada,	unless
expressly	prohibited	by	local	law,	this	EULA	is	governed	by	the
laws	in	force	in	the	Province	of	Ontario,	Canada;	and,	in	respect
of	any	dispute	which	may	arise	hereunder,	you	consent	to	the
jurisdiction	of	the	federal	and	provincial	courts	sitting	in	Toronto,
Ontario.	If	this	SOFTWARE	PRODUCT	was	acquired	outside	the
United	States,	then	local	law	may	apply.
Should	you	have	any	questions	concerning	this	EULA,	or	if	you
desire	to	contact	Microsoft	for	any	reason,	please	contact	the
Microsoft	subsidiary	serving	your	country/region,	or	e-mail:
sapi5@microsoft.com

NO	WARRANTIES.	MICROSOFT	EXPRESSLY	DISCLAIMS	ANY
WARRANTY	FOR	THE	SOFTWARE	PRODUCT.	THE	SOFTWARE
PRODUCT	AND	ANY	RELATED	DOCUMENTATION	IS	PROVIDED
"AS	IS"	WITHOUT	WARRANTY	OF	ANY	KIND,	EITHER	EXPRESS	OR
IMPLIED,	INCLUDING,	WITHOUT	LIMITATION,	THE	IMPLIED
WARRANTIES	OR	MERCHANTABILITY,	FITNESS	FOR	A
PARTICULAR	PURPOSE,	OR	NONINFRINGEMENT.	THE	ENTIRE	RISK
ARISING	OUT	OF	USE	OR	PERFORMANCE	OF	THE	SOFTWARE
PRODUCT	REMAINS	WITH	YOU.
LIMITATION	OF	LIABILITY.	TO	THE	MAXIMUM	EXTENT	PERMITTED
BY	APPLICABLE	LAW,	IN	NO	EVENT	SHALL	MICROSOFT	OR	ITS
SUPPLIERS	BE	LIABLE	FOR	ANY	SPECIAL,	INCIDENTAL,	INDIRECT,
OR	CONSEQUENTIAL	DAMAGES	WHATSOEVER	(INCLUDING,
WITHOUT	LIMITATION,	DAMAGES	FOR	LOSS	OF	BUSINESS
PROFITS,	BUSINESS	INTERRUPTION,	LOSS	OF	BUSINESS
INFORMATION,	OR	ANY	OTHER	PECUNIARY	LOSS)	ARISING	OUT
OF	THE	USE	OF	OR	INABILITY	TO	USE	THE	SOFTWARE	PRODUCT
OR	THE	PROVISION	OF	OR	FAILURE	TO	PROVIDE	SUPPORT

SERVICES,	EVEN	IF	MICROSOFT	HAS	BEEN	ADVISED	OF	THE
POSSIBILITY	OF	SUCH	DAMAGES.	BECAUSE	SOME	STATES	AND
JURISDICTIONS	DO	NOT	ALLOW	THE	EXCLUSION	OR	LIMITATION
OF	LIABILITY,	THE	ABOVE	LIMITATION	MAY	NOT	APPLY	TO	YOU.

EXCLUSION	DE	GARANTIE.	MICROSOFT	EXCLUT	EXPRESSÉMENT
TOUTE	GARANTIE	RELATIVE	AU	PRODUIT	LOGICIEL.	LE	PRODUIT
LOGICIEL	ET	LA	DOCUMENTATION	Y	AFFÉRENTE	SONT	FOURNIS
"EN	L'ÉTAT",	SANS	GARANTIE	D'AUCUNE	SORTE,	EXPRESSE	OU
IMPLICITE,	NOTAMMENT	SANS	AUCUNE	GARANTIE	IMPLICITE	DE
QUALITÉ,	D'ADÉQUATION	À	UN	USAGE	PARTICULIER	OU
D'ABSENCE	DE	CONTREFAÇON.	VOUS	ASSUMEZ	L'ENSEMBLE
DES	RISQUES	DÉCOULANT	DE	L'UTILISATION	OU	DES
PERFORMANCES	DU	PRODUIT	LOGICIEL.	LE	PRÉSENT	ARTICLE
EST	SANS	PRÉJUDICE	DE	LA	GARANTIE	LÉGALE	CONTRE	LES
VICES	CACHÉS	DONT	VOUS	POURRIEZ	BÉNÉFICIER,	LE	CAS
ÉCHÉANT.
LIMITATION	DE	RESPONSABILITÉ.	DANS	TOUTE	LA	MESURE
PERMISE	PAR	LA	RÉGLEMENTATION	EN	VIGUEUR,	MICROSOFT
OU	SES	FOURNISSEURS	NE	POURRONT	EN	AUCUN	CAS	ÊTRE
TENUS	POUR	RESPONSABLES	DE	TOUT	DOMMAGE,	DE	QUELQUE
NATURE	QUE	CE	SOIT,	(NOTAMMENT	ET	DE	MANIÈRE	NON
LIMITATIVE,	TOUTE	PERTE	DE	BÉNÉFICES,	INTERRUPTION
D'ACTIVITÉ,	PERTE	D'INFORMATIONS	COMMERCIALES	OU	TOUTE
AUTRE	PERTE	PÉCUNIAIRE)	RÉSULTANT	DE	L'UTILISATION	OU	DE
L'IMPOSSIBILITÉ	D'UTILISER	LE	PRODUIT	LOGICIEL	OU	DE	LA
FOURNITURE	OU	DU	DÉFAUT	DE	FOURNITURE	DES	SERVICES
D'ASSISTANCE,	MÊME	SI	MICROSOFT	A	ÉTÉ	PRÉVENU	DE
L'ÉVENTUALITÉ	DE	TELS	DOMMAGES.	CERTAINS	PAYS	ET
CERTAINES	JURIDICTIONS	N'AUTORISENT	PAS	LES	EXCLUSIONS
OU	LIMITATIONS	DE	RESPONSABILITÉ,	DE	SORTE	QUE	LA
LIMITATION	CI-DESSUS	PEUT	NE	PAS	VOUS	ÊTRE	APPLICABLE.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

About	the	SDK
The	Microsoft	Speech	SDK	is	designed	to	work	with	the	industry-
leading	Speech	Application	Programming	Interface	(SAPI)	and
Microsoft	continuous	speech	recognition	engine	and	Microsoft
concatenated	speech	synthesis	engine	(or	text-to-speech).
Microsoft	SDK	includes	tools,	samples,	and	documentation	for
building	speech	applications.

Microsoft	Visual	Basic	Support
A	set	of	COM-supported	speech	Automation	interfaces	is
included	in	this	release	of	Microsoft	Speech	SDK.	That	means
languages	other	than	C/C++	may	now	use	SAPI	for	application
development.	The	languages	themselves	need	to	support	OLE
automation.	Common	languages	which	may	be	used	includes
Visual	Basic,	C#,	and	JScript.	See	Automation	Interfaces	and
Objects	for	additional	information.

This	section	includes	the	following	topics:
Legal	Information
Redistributable	Code	Rights

Who	Should	Use	This	SDK
How	to	Read	Newsgroups

Developer	Support
Platform	SDK	Requirements

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Legal	Information	for	Microsoft	Speech	SDK
Information	in	this	document	is	subject	to	change	without	notice
and	does	not	represent	a	commitment	on	the	part	of	Microsoft
Corporation.	Companies,	names,	and	data	used	in	examples
herein	are	fictitious	unless	otherwise	noted.	No	part	of	this
document	may	be	reproduced	or	transmitted	in	any	form	or	by
any	means,	electronic	or	mechanical,	for	any	purpose,	unless
expressly	permitted	by	Microsoft	Corporation.
Microsoft	may	have	patents	or	pending	patent	applications,
trademarks,	copyrights,	or	other	intellectual	property	rights
covering	subject	matter	in	this	document.	The	furnishing	of	this
document	does	not	give	you	any	license	to	these	patents,
trademarks,	copyrights,	or	other	intellectual	property	rights.

©	1995-2000	Microsoft	Corporation.	All	rights	reserved.

Microsoft	Speech	Software	Development	Kit,	Version	5.1

Redistributable	Code
The	Redistributable	Code	is	the	property	of	Microsoft
Corporation	and	its	suppliers	and	is	protected	by	copyright	law
and	international	treaty	provisions.	You	are	authorized	to	make
and	use	copies	of	the	Redistributable	Code	either	as	part	of	the
application	in	which	you	received	the	Redistributable	Code,	or	in
conjunction	with	the	application	for	which	its	use	is
intended.Except	as	expressly	provided	in	the	foregoing
sentence,	you	are	not	authorized	to	reproduce	and	distribute
the	Redistributable	Code.	Microsoft	reserves	all	rights	not
expressly	granted.You	may	not	reverse	engineer,	decompile,	or
disassemble	the	Redistributable	Code,	except	and	only	to	the
extent	that	such	activity	is	expressly	permitted	by	applicable
law	notwithstanding	this	limitation.
	
THE	REDISTRIBUTABLE	CODE	IS	PROVIDED	TO	YOU	"AS	IS"
WITHOUT	WARRANTY	OF	ANY	KIND,	EITHER	EXPRESS	OR
IMPLIED,	INCLUDING	BUT	NOT	LIMITED	TO	THE	IMPLIED
WARRANTIES	OF	MERCHANTABILITY	AND/OR	FITNESS	FOR	A
PARTICULAR	PURPOSE.YOU	ASSUME	THE	ENTIRE	RISK	AS	TO
THE	ACCURACY	AND	THE	USE	OF	THE	REDISTRIBUTABLE
CODE.MICROSOFT	SHALL	NOT	BE	LIABLE	FOR	ANY	DAMAGES
WHATSOEVER	ARISING	OUT	OF	THE	USE	OF	OR	INABILITY	TO
USE	THE	REDISTRIBUTABLE	CODE,	EVEN	IF	MICROSOFT	HAS
BEEN	ADVISED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.
	

Redistributable	Code
Redistributable	Code	is	identified	as	the	following	files	and	all	of
the	files	can	be	found	at	the	following	location:

Licensing	Microsoft	Speech	Technology

http://go.microsoft.com/fwlink?linkid=296&clcid=0x409

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Who	Should	Use	This	SDK
To	get	the	most	out	of	this	SDK,	you	should	be	familiar	with	the
following:

C/C++	programming	concepts.
Visual	Basic	programming	concepts.	SAPI	5.1	supports
OLE	automation	so	that	any	language	capable	of
accessing	automation	objects	may	be	used.	Visual	Basic
is	a	widespread	and	popular	application	that	supports
OLE	automation.	As	a	result	many	of	SAPI	SDK's	samples
and	API	references	follow	Visual	Basic	syntax.	There	is,
however,	no	requirement	to	use	Visual	Basic	for	OLE
automation.

Component	Object	Model	(COM).	Developers	should
understand	COM	programming	concepts,	obtaining
pointers	to	interfaces,	and	calling	methods.

All	developers	should	understand	the	Win32	application
programming	interface	(API).

For	more	information	about	Windows	programming,	see	the
documentation	included	in	the	Microsoft	Win32	Software
Development	Kit.
For	more	information	about	C/C++	programming,	see	the
documentation	for	the	Microsoft®	Visual	C++™	development
system	for	Windows.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Microsoft	Speech	Recognition
Newsgroups

How	to	Read	Newsgroups
You	can	use	any	newsreader	software	to	access	the	Microsoft
newsgroups.	Microsoft	Outlook	Express	is	installed	as	part	of
Microsoft	Internet	Explorer	for	your	convenience.	Visit	the
Microsoft	Internet	Explorer	Home	page	for	information	on	how	to
download	and	install	this	product.
With	Outlook	Express	installed,	after	you	click	a	newsgroup	link,
you	will	be	prompted	for	configuration	information.	When
prompted	for	News	Server,	specify	newsvr.	You	do	not	need	to
enter	an	account	name	or	password;	make	sure	that	the	option
This	Server	Requires	Me	To	Log	On	is	not	checked	on	the	Server
tab	of	the	News	Reader	properties	window.
If	you	are	using	an	NNTP	newsreader	(sometimes	called	a	news
client)	other	than	Outlook	Express,	be	sure	to	configure	it	to
read	the	Microsoft	newsgroups.	You	can	access	the	Microsoft
news	server	at	the	same	address	above	with	newsvr.
Before	posting	to	the	newsgroups,	please	review	the	Microsoft
Newsgroup	Rules	of	Conduct.

http://go.microsoft.com/fwlink/?linkid=361&clcid=0x409
http://go.microsoft.com/fwlink/?LinkId=2889

Available	Newsgroups
Microsoft	Newsgroups	lists	available	newsgroups	from	Microsoft.

http://go.microsoft.com/fwlink/?LinkId=2890

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Developer	Support
Microsoft	Support	Center
The	Microsoft	Support	Center	site	maintains	a	wealth	of
resources	to	help	you	get	the	most	from	your	product.	Here	you
can	search	the	entire	Knowledge	Base,	view	all	the
troubleshooting	wizards,	and	access	all	the	downloadable	files.
You	can	also	view	the	extensive	online	glossary	of	computer
terms,	and	find	phone	numbers	and	support	options	for	all
Microsoft	products.

Speech	newsgroups
For	assistance	with	specific	problems,	check	first	with	the
following	newsgroup.	For	advice	on	configuring	a	newsreader,
see	How	to	Read	Newsgroups.

microsoft.public.speech_tech.sdk

Microsoft	Speech.NET	Technologies	Feedback
If	you	have	feedback	on	the	Microsoft	Speech	API	(SAPI)	or	other
Microsoft	Speech-related	questions,	please	send	an	e-mail
message	to	the	following	address.	This	e-mail	address	is
monitored	regularly,	but	questions	will	receive	only	limited
response.	Please	use	the	newsgroup	forum	above	for	most
questions	and	inquiries.

sapi5@microsoft.com

Known	Issues
Information	on	known	issues	in	SAPI	5	can	be	found	in	the
Knowledge	Base	articles	in	the	Microsoft	Speech.NET
Technologies	support	home	page.

http://go.microsoft.com/fwlink/?LinkId=2891
mailto:sapi5@microsoft.com
http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Microsoft	Platform	SDK
The	Microsoft	Platform	SDK	(PSDK)	is	not	a	requirement	in
general	for	using	SAPI.	However,	at	least	one	SDK	sample	does
require	it.	Other	manufactures	products	may	also	require	it	for
their	products.	Check	with	the	specific	SDK	sample	or
manufacturer's	product	for	complete	details.
SAPI	5.1	SDK	Samples	Requiring	PSDK

Simple	Telephony
Sample	Speech	Recognition	Engine

Download	PSDK
If	the	PSDK	is	needed,	it	may	downloaded	from	the	Microsoft
Platform	SDK	site.

http://go.microsoft.com/fwlink/?LinkId=633

Requirements
Platform	SDK	(PSDK)	April	2000	or	later	edition.	Compiling	SDK
projects	requires	components	of	the	PSDK.	Within	Microsoft
Visual	C++	6.0,	the	PSDK	include	directories	must	be	listed
before	the	Visual	C++.	Use	the	Directories	tab	to	change	the
order	in	the	Tools->Options	menu.	Move	PSDK	directories	above
all	Visual	C++	directories,	if	needed.

To	save	disk	space,	you	can
load	a	minimal
configuration.	This	includes
enabling	only	the	following
two	options:

1.	 Configuration
Options

2.	 Build	Environment

These	options	may	require
13	MB	on	the	system	drive
and	another	80	MB	on	any
other	drive.	No	other	options
are	needed.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SAPI	5	Introduction
This	section	provides	a	SAPI	5	introduction.	The	following	topic
is	available:

SAPI5	Overview

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SAPI	5	Overview
The	SAPI	application	programming	interface	(API)	dramatically
reduces	the	code	overhead	required	for	an	application	to	use
speech	recognition	and	text-to-speech,	making	speech
technology	more	accessible	and	robust	for	a	wide	range	of
applications.
This	section	covers	the	following	topics:
API	Overview
API	for	Text-to-Speech
API	for	Speech	Recognition

API	Overview
The	SAPI	API	provides	a	high-level	interface	between	an
application	and	speech	engines.	SAPI	implements	all	the	low-
level	details	needed	to	control	and	manage	the	real-time
operations	of	various	speech	engines.
The	two	basic	types	of	SAPI	engines	are	text-to-speech	(TTS)
systems	and	speech	recognizers.	TTS	systems	synthesize	text
strings	and	files	into	spoken	audio	using	synthetic	voices.
Speech	recognizers	convert	human	spoken	audio	into	readable
text	strings	and	files.

API	for	Text-to-Speech
Applications	can	control	text-to-speech	(TTS)	using	the	ISpVoice
Component	Object	Model	(COM)	interface.	Once	an	application
has	created	an	ISpVoice	object	(see	Text-to-Speech	Tutorial),	the
application	only	needs	to	call	ISpVoice::Speak	to	generate
speech	output	from	some	text	data.	In	addition,	the	IspVoice
interface	also	provides	several	methods	for	changing	voice	and
synthesis	properties	such	as	speaking	rate	ISpVoice::SetRate,
output	volume	ISpVoice::SetVolume	and	changing	the	current
speaking	voice	ISpVoice::SetVoice
Special	SAPI	controls	can	also	be	inserted	along	with	the	input
text	to	change	real-time	synthesis	properties	like	voice,	pitch,
word	emphasis,	speaking	rate	and	volume.	This	synthesis
markup	sapi.xsd,	using	standard	XML	format,	is	a	simple	but
powerful	way	to	customize	the	TTS	speech,	independent	of	the
specific	engine	or	voice	currently	in	use.
The	IspVoice::Speak	method	can	operate	either	synchronously
(return	only	when	completely	finished	speaking)	or
asynchronously	(return	immediately	and	speak	as	a	background
process).	When	speaking	asynchronously	(SPF_ASYNC),	real-
time	status	information	such	as	speaking	state	and	current	text
location	can	polled	using	ISpVoice::GetStatus.	Also	while
speaking	asynchronously,	new	text	can	be	spoken	by	either
immediately	interrupting	the	current	output
(SPF_PURGEBEFORESPEAK),	or	by	automatically	appending	the
new	text	to	the	end	of	the	current	output.
In	addition	to	the	ISpVoice	interface,	SAPI	also	provides	many
utility	COM	interfaces	for	the	more	advanced	TTS	applications.

Events
SAPI	communicates	with	applications	by	sending	events	using
standard	callback	mechanisms	(Window	Message,	callback	proc
or	Win32	Event).	For	TTS,	events	are	mostly	used	for

synchronizing	to	the	output	speech.	Applications	can	sync	to
real-time	actions	as	they	occur	such	as	word	boundaries,
phoneme	or	viseme	(mouth	animation)	boundaries	or
application	custom	bookmarks.	Applications	can	initialize	and
handle	these	real-time	events	using	ISpNotifySource,
ISpNotifySink,	ISpNotifyTranslator,	ISpEventSink,
ISpEventSource,	and	ISpNotifyCallback.

Lexicons
Applications	can	provide	custom	word	pronunciations	for	speech
synthesis	engines	using	methods	provided	by
ISpContainerLexicon,	ISpLexicon	and	ISpPhoneConverter.

Resources
Finding	and	selecting	SAPI	speech	data	such	as	voice	files	and
pronunciation	lexicons	can	be	handled	by	the	following	COM
interfaces:	ISpDataKey,	ISpRegDataKey,	ISpObjectTokenInit,
ISpObjectTokenCategory,	ISpObjectToken,
IEnumSpObjectTokens,	ISpObjectWithToken,
ISpResourceManager	and	ISpTask.

Audio
Finally,	there’s	an	interface	for	customizing	the	audio	output	to
some	special	destination	such	as	telephony	and	custom
hardware	(ISpAudio,	ISpMMSysAudio,	ISpStream,
ISpStreamFormat,	ISpStreamFormatConverter).
Back	to	top

API	for	Speech	Recognition
Just	as	ISpVoice	is	the	main	interface	for	speech	synthesis,
ISpRecoContext	is	the	main	interface	for	speech	recognition.
Like	the	ISpVoice,	it	is	an	ISpEventSource,	which	means	that	it	is
the	speech	application's	vehicle	for	receiving	notifications	for
the	requested	speech	recognition	events.
An	application	has	the	choice	of	two	different	types	of	speech
recognition	engines	(ISpRecognizer).	A	shared	recognizer	that
could	possibly	be	shared	with	other	speech	recognition
applications	is	recommended	for	most	speech	applications.	To
create	an	ISpRecoContext	for	a	shared	ISpRecognizer,	an
application	need	only	call	COM's	CoCreateInstance	on	the
component	CLSID_SpSharedRecoContext.	In	this	case,	SAPI	will
set	up	the	audio	input	stream,	setting	it	to	SAPI's	default	audio
input	stream.	For	large	server	applications	that	would	run	alone
on	a	system,	and	for	which	performance	is	key,	an	InProc
speech	recognition	engine	is	more	appropriate.	In	order	to
create	an	ISpRecoContext	for	an	InProc	ISpRecognizer,	the
application	must	first	call	CoCreateInstance	on	the	component
CLSID_SpInprocRecoInstance	to	create	its	own	InProc
ISpRecognizer.	Then	the	application	must	make	a	call	to
ISpRecognizer::SetInput	(see	also	ISpObjectToken)	in	order	to
set	up	the	audio	input.	Finally,	the	application	can	call
ISpRecognizer::CreateRecoContext	to	obtain	an	ISpRecoContext.
The	next	step	is	to	set	up	notifications	for	events	the	application
is	interested	in.	As	the	ISpRecognizer	is	also	an	ISpEventSource,
which	in	turn	is	an	ISpNotifySource,	the	application	can	call	one
of	the	ISpNotifySource	methods	from	its	ISpRecoContext	to
indicate	where	the	events	for	that	ISpRecoContext	should	be
reported.	Then	it	should	call	ISpEventSource::SetInterest	to
indicate	which	events	it	needs	to	be	notified	of.	The	most
important	event	is	the	SPEI_RECOGNITION,	which	indicates	that
the	ISpRecognizer	has	recognized	some	speech	for	this
ISpRecoContext.	See	SPEVENTENUM	for	details	on	the	other

available	speech	recognition	events.
Finally,	a	speech	application	must	create,	load,	and	activate	an
ISpRecoGrammar,	which	essentially	indicates	what	type	of
utterances	to	recognize,	i.e.,	dictation	or	a	command	and
control	grammar.	First,	the	application	creates	an
ISpRecoGrammar	using	ISpRecoContext::CreateGrammar.	Then,
the	application	loads	the	appropriate	grammar,	either	by	calling
ISpRecoGrammar::LoadDictation	for	dictation	or	one	of	the
ISpRecoGrammar::LoadCmdxxx	methods	for	command	and
control.	Finally,	in	order	to	activate	these	grammars	so	that
recognition	can	start,	the	application	calls
ISpRecoGrammar::SetDictationState	for	dictation	or
ISpRecoGrammar::SetRuleState	or
ISpRecoGrammar::SetRuleIdState	for	command	and	control.
When	recognitions	come	back	to	the	application	by	means	of
the	requested	notification	mechanism,	the	lParam	member	of
the	SPEVENT	structure	will	be	an	ISpRecoResult	by	which	the
application	can	determine	what	was	recognized	and	for	which
ISpRecoGrammar	of	the	ISpRecoContext.
An	ISpRecognizer,	whether	shared	or	InProc,	can	have	multiple
ISpRecoContexts	associated	with	it,	and	each	one	can	be
notified	in	its	own	way	of	events	pertaining	to	it.	An
ISpRecoContext	can	have	multiple	ISpRecoGrammars	created
from	it,	each	one	for	recognizing	different	types	of	utterances.
Back	to	top

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Application-Level	Interfaces
This	section	describes	the	interfaces	and	methods	for
incorporating	speech	into	applications.	They	are	intended	for
use	at	the	API	or	application	level.	Some	managers	or	interfaces
may	have	entries	also	in	Engine-Level	Interfaces	section.
However,	entries	listed	here	apply	only	to	the	application	level.

Audio	interfaces
Eventing	interfaces

Grammar	Compiler	interfaces
Lexicon	interfaces

Resource	interfaces
Speech	Recognition	interfaces

Text-to-Speech	interfaces

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Audio	interfaces
This	section	provides	SAPI	5	audio	interfaces.
Audio	inherits	from	the	standard	COM	IStream	interface.	See	the
MSDN	documentation	for	a	complete	discussion	of	IStream	and
associated	methods.	However,	since	the	audio	devices
represent	hardware,	::Clone	may	be	not	be	used	and	will	return
E_NOTIMPL.

ISpAudio
ISpMMSysAudio
ISpStream

ISpStreamFormat
ISpStreamFormatConverter

The	following	interface	does	not	inherit	from	IStream:
ISpTranscript

Development	Helpers

Helper	Enumerations,
Functions	and	Classes Description
SPSTREAMFORMAT SAPI	supported	stream	formats.
CSpEvent Class	for	decoding	event	structures.
CSpDynamicString Class	for	managing	dynamically

sized	WCHAR	strings.
SpBindToFile Function	converts	the	specified

stream	format	into	a	wave	format
structure.	

CSpStreamFormat Class	for	managing	SAPI	supported
stream	formats	and	WAVEFORMATEX
structures.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpAudio
Objects	implementing	this	interface	are	real-time	audio	streams,
such	as	those	connected	to	a	live	microphone	or	telephone	line.
ISpAudio	methods	support	of	control	of	real-time	audio	streams.
IStream	Read	and	Write	methods	transfer	data	to	or	from	an
object.

When	to	Implement
This	interface	should	be	implemented	when	the	audio	input	or
output	source	is	not	a	standard	windows	Multimedia	device.	It	is
expected	to	supply	an	infinite	amount	of	data	and	hence	its
state	should	not	change	externally	to	SAPI.	For	the	majority	of
users,	it	will	not	be	necessary	to	implement	an	object	providing
this	interface.	An	example	of	where	this	might	be	needed	would
be	to	provide	a	telephony	audio	device	or	to	perform	echo
cancellation	of	audio	output	on	the	input.
Telephone	application	programming	interface	(TAPI)	provides	a
mechanism	to	treat	a	telephony	device	as	a	Windows
multimedia	device	allowing	the	use	of	the	SAPI	provided
multimedia	audio	objects.
If	this	implements	a	real	time	audio	input	or	output	object	and
runs	in	a	desktop	or	graphical	environment,	support	may	be
needed	for	volume	(see	SPDUI_AudioVolume)	and	audio
properties	(see	SPDUI_AudioProperties)	UI.	The	preferred
method	for	SAPI	to	implement	the	UI	is	to	have	the	object
inherit	from	ISpTokenUI.	This	will	enable	applications	(including
Speech	properties	in	Control	Panel)	to	display	the	UI	in	a	simple
and	consistent	manner.
In	order	to	prevent	multiple	TTS	voices	or	engines	from
speaking	simultaneously,	SAPI	serializes	output	to	objects	which
implement	the	ISpAudio	interface.	To	disable	serialization	of
outputs	to	an	ISpAudio	object,	place	an	attribute	called
"NoSerializeAccess"	in	the	Attributes	folder	of	its	object	token.

Implemented	By
SpMMAudioIn

SpMMAudioOut

Methods	in	Vtable	Order

Value Description
ISpStreamFormat
interface

Inherits	from	ISpStreamFormat	and
all	those	methods	are	accessible	from
an	ISpAudio	object.

SetState Sets	the	state	of	the	audio	device.
SetFormat Sets	the	format	of	the	audio	device.
GetStatus Passes	back	the	status	of	the	audio

device.
SetBufferInfo Sets	the	audio	stream	buffer

information.
GetBufferInfo Passes	back	the	audio	stream	buffer

information.
GetDefaultFormat Passes	back	the	default	audio	format.
EventHandle Returns	a	Win32	event	handle	that

applications	can	use	to	wait	for	status
changes	in	the	I/O	stream.

GetVolumeLevel Passes	back	the	current	volume	level.
SetVolumeLevel Sets	the	current	volume	level.
GetBufferNotifySize Retrieves	the	audio	stream	buffer

size	information.
SetBufferNotifySize Sets	the	audio	stream	buffer	size

information.

Development	Helpers

Helper	Enumerations,
Functions	and	Classes

Description

SPSTREAMFORMAT SAPI	supported	stream	formats.
CSpStreamFormat Class	for	managing	SAPI	supported

stream	formats	and	WAVEFORMATEX
structures.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpAudio::SetState
ISpAudio::SetState	sets	the	state	of	the	audio	device.
HRESULT	SetState(

			SPAUDIOSTATE			NewState,

			ULONGLONG						ullReserved

);

Parameters

NewState
[in]	The	flag	of	type	SPAUDIOSTATE	for	the	new	state	of	the
audio	device.

ullReserved
[in]	Reserved,	do	not	use.	This	value	must	be	zero.

Return	values

Value Description
S_OK Function	completed

successfully.
E_INVALIDARG ullReserved	is	not	zero	or

NewState	is	not	one	of	the
allowed	values.

SPERR_DEVICE_BUSY Hardware	device	is	in	use	by
another	thread	or	process.

SPERR_UNSUPPORTED_FORMAT Current	format	set	by
ISpAudio::SetFormat	is	not
supported	by	the	hardware
device.

Remarks

When	transitioning	from	the	SPAS_CLOSED	state	to	any	other
state,	the	caller	should	be	ready	to	handle	various	error
conditions,	specifically,	SPERR_UNSUPPORTED_FORMAT	and
SPERR_DEVICE_BUSY.	Many	multi-media	devices	do	not	correctly
report	their	capabilities	for	handling	different	audio	formats	and
fail	only	when	an	attempt	is	made	to	open	the	device.
Also,	in	many	older	systems,	audio	output	devices	can	be
opened	only	by	a	single	process.	In	all	current	versions	of
Windows,	only	a	single	process	can	open	an	audio	input	device.
Therefore,	SPERR_DEVICE_BUSY	will	return	if	an	attempt	is
made	to	open	a	device	that	is	being	used	by	a	different	process
or	thread.
On	some	older	sound	cards,	recording	and	playback	are	not
possible	simultaneously	or	only	possible	at	the	same	frequency.
An	application	making	use	of	the	input	and	output	audio	should
be	aware	of	this	and	in	particular	attempt	to	gracefully	degrade
from	higher	quality	frequencies	to	the	same	frequency	for	both
if	the	sound	card	makes	this	necessary.
In	general,	applications	need	not	change	the	state	of	the	audio
device	directly.	With	the	shared	recognizer	in	particular,	this	will
often	cause	unexpected	results.	SAPI	will	automatically	manage
the	state	of	the	audio	device	based	on	the	state	of	all	the
grammars,	recognition	contexts	and	the	recognizer	instance.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpAudio::SetFormat
ISpAudio::SetFormat	sets	the	format	of	the	audio	device.
HRESULT	SetFormat(

			REFGUID																rguidFmtId,

			const		WAVEFORMATEX			*pWaveFormatEx

);

Parameters

rguidFmtId
[in]	The	REFGUID	for	the	format	to	set.	Typically	this	will	be
SPDFID_WaveFormatEx.	This	is	required	for	the	SAPI
multimedia	objects.

pWaveFormatEx
[in]	Address	of	the	WAVEFORMATEX	structure	containing	the
wave	file	format	information.

Return	values

Value Description
S_OK Function	completed

successfully.	See	note	about
supported	formats.

E_INVALIDARG pWaveFormatEx	is	invalid	or
bad.

SPERR_DEVICE_BUSY Device	is	not	in	the
SPAS_CLOSED	state.

SPERR_UNINITIALIZED Audio	stream	not	initialized.
SPERR_UNSUPPORTED_FORMAT Specified	format	is	not

supported.
FAILED(hr) Appropriate	error	message.

Remarks
This	method	can	be	called	only	when	the	audio	device	is	in	the
SPAS_CLOSED	state.	Note	that	successfully	setting	the	format
on	an	audio	device	does	not	necessarily	mean	that	the	format	is
supported.	An	attempt	must	be	made	to	place	the	device	into	a
non-closed	state	(SPAS_STOP,	SPAS_PAUSE	or	SPAS_RUN)	to	be
sure	that	the	device	can	handle	the	format.
The	format	can	be	retrieved	by	calling	the
ISpStreamFormat::GetFormat	method.
The	helper	class	CSpStreamFormat	and	the	SPSTREAMFORMAT
enumeration	can	be	used	to	avoid	the	possibility	of	typos	or
mistakes	when	filling	in	the	WAVEFORMATEX	structure.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpAudio::GetStatus
ISpAudio::GetStatus	passes	back	the	status	of	the	audio
device.
This	method	determines	whether	the	device	is	running,	stopped,
closed,	or	paused.	It	also	determines	the	size	of	any	buffered
data.
HRESULT	GetStatus(

		SPAUDIOSTATUS		*pStatus

);

Parameters

pStatus
[out]	Pointer	to	an	SPAUDIOSTATUS	buffer	to	be	filled	with	the
status	details.

Return	values

Value Description
S_OK Function	completed

successfully.
E_POINTER pStatus	is	invalid.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpAudio::SetBufferInfo
ISpAudio::SetBufferInfo	sets	the	audio	stream	buffer
information.
HRESULT	SetBufferInfo(

			const	SPAUDIOBUFFERINFO		*pBuffInfo

);

Parameters

pBuffInfo
[in]	Pointer	to	the	SPAUDIOBUFFERINFO	buffer	providing	the
requested	settings.

Return	values

Value Description
S_OK Function	completed	successfully.
SPERR_UNINITIALIZED Audio	stream	not	initialized.
E_INVALIDARG pBuffInfo	is	invalid	or	the	parameters

do	not	meet	the	criteria	described
above.

SPERR_DEVICE_BUSY Audio	device	is	not	in	the
SPAS_CLOSED	state.

FAILED(hr) Appropriate	error	message.

Remarks
This	method	can	be	called	only	when	the	audio	device	is	in	the
SPAS_CLOSED	state.	The	SPAUDIOBUFFERINFO	members	must
conform	to	the	following	restrictions:

SPAudioBufferInfo.ulMsMinNotification	cannot	be	larger	than
one	quarter	the	size	of	SPAudioBufferInfo.ulMsBufferSize	and

must	not	be	zero.
SPAudioBufferInfo.ulMsEventBias	cannot	be	larger	than
SPAudioBufferInfo.ulMsBufferSize.
SPAudioBufferInfo.ulMsBufferSize	must	be	greater	than	or
equal	to	200	milliseconds.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpAudio::GetBufferInfo
ISpAudio::GetBufferInfo	passes	back	the	audio	stream	buffer
information.
HRESULT	GetBufferInfo(

		SPAUDIOBUFFERINFO			*pBuffInfo

);

Parameters

pBuffInfo
[out]	Pointer	to	the	SPAUDIOBUFFERINFO	buffer.

Return	values

Value Description
S_OK Function	completed

successfully.
E_POINTER pBuffInfo	is	invalid.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpAudio::GetDefaultFormat
ISpAudio::GetDefaultFormat	passes	back	the	default	audio
format.
HRESULT	GetDefaultFormat(

			GUID												*pFormatId,

			WAVEFORMATEX			**ppCoMemWaveFormatEx

);

Parameters

pFormatId
[out]	Pointer	to	the	GUID	of	the	default	format.

ppCoMemWaveFormatEx
[out]	Address	of	a	pointer	to	the	WAVEFORMATEX	structure
that	receives	the	wave	file	format	information.	SAPI	allocates
the	memory	for	the	WAVEFORMATEX	data	structure	using
CoTaskMemAlloc,	but	it	is	the	caller's	responsibility	to	call
CoTaskMemFree	on	the	returned	WAVEFORMATEX	pointer.

Return	values

Value Description
S_OK Function	completed	successfully.
SPERR_UNINITIALIZED Stream	is	uninitialized.
E_POINTER pFormatId	is	invalid.

Remarks
Other	formats	may	be	supported	by	the	audio	device;	however,
this	format	is	guaranteed	to	work.	Older	sound	cards	can
potentially	fail	when	attempting	to	use	this	format	if	they	are
not	fully	duplex	or	do	not	support	full	duplex	operation	at

different	frequencies.	An	application	should	attempt	to	degrade
gracefully	when	this	occurs.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpAudio::EventHandle
ISpAudio::EventHandle	returns	a	Win32	event	handle	that
applications	can	use	to	wait	for	status	changes	in	the	I/O
stream.
HANDLE		EventHandle(void);

Parameters
None

Return	values

Value Description
HANDLE Returns	valid	event

handle.

Remarks
The	handle	may	use	one	of	the	various	Win32	wait	functions,
such	as	WaitForSingleObject	or	WaitForMultipleObjects.
For	read	streams,	set	the	event	when	there	is	data	available	to
read	and	reset	it	whenever	there	is	no	available	data.	For	write
streams,	set	the	event	when	all	of	the	data	has	been	written	to
the	device,	and	reset	it	at	any	time	when	there	is	still	data
available	to	be	played.
The	caller	should	not	close	the	returned	handle,	nor	should	the
caller	ever	use	the	event	handle	after	calling	Release()	on	the
audio	object.	The	audio	device	will	close	the	handle	on	the	final
release	of	the	object.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpAudio::GetVolumeLevel
ISpAudio::GetVolumeLevel	passes	back	the	current	volume
level.
The	volume	level	is	on	a	linear	scale	from	zero	to	10000.
HRESULT	GetVolumeLevel(

			ULONG			*pLevel

);

Parameters

pLevel
[out]	Pointer	to	the	returned	volume	level.

Return	values

Value Description
S_OK Function	completed

successfully.
SPERR_UNINITIALIZED Audio	interface	is	not

initialized.
SPERR_DEVICE_NOT_SUPPORTED The	device	is	not	valid	or

does	not	support	volumes.
E_POINTER pLevel	is	invalid	or	bad.
FAILED(hr) Appropriate	error	message.

Remarks
For	input	devices	with	a	boost	control	for	the	microphone,	SAPI
will	split	the	volume	range	into	two	to	allow	automated	use	of
the	boost.	The	boost	will	be	off	from	zero	to	4999	and	on	from
5000	to	10,000.	In	each	range,	the	full	volume	range	of	the
device	will	be	used	independently.	This	can	lead	to	discontinuity
in	the	input	energy	level	for	a	constant	volume	sound	source.

On	some	sound	cards,	the	boost	is	applied	to	the	input	volume,
but	on	others,	the	boost	is	applied	to	the	playback	volume
resulting	in	the	two	ranges	behaving	identically	because	the
input	level	is	unaffected.
Microphone	wizards	determining	the	best	volume	input	level
should	take	into	consideration	the	potential	discontinuity	and
ensure	that	the	algorithm	used	to	adjust	the	input	volume	level
can	handle	the	various	possible	forms	of	discontinuity	at	5,000
For	devices	without	a	boost,	there	is	no	discontinuity	at	5000.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpAudio::SetVolumeLevel
ISpAudio::SetVolumeLevel	sets	the	current	volume	level.	It	is
on	a	linear	scale	from	zero	to	10000.	
HRESULT	SetVolumeLevel(

			ULONG			Level

);

Parameters

Level
[in]	The	new	volume	level.

Return	values

Value Description
S_OK Function	completed

successfully.
E_INVALIDARG Level	is	greater	than	10,000.
SPERR_DEVICE_NOT_SUPPORTED The	device	is	not	valid	or

does	not	support	volumes.
FAILED(hr) Appropriate	error	message.

Remarks
For	input	devices	with	a	boost	control	for	the	microphone,	SAPI
will	split	the	volume	range	into	two	to	allow	automated	use	of
the	boost.	The	boost	will	be	off	from	zero	to	4,999	and	on	from
5,000	to	10,000.	In	each	range,	the	full	volume	range	of	the
device	will	be	used	independently.	This	can	lead	to	discontinuity
in	the	input	energy	level	for	a	constant	volume	sound	source.
On	some	sound	cards,	the	boost	is	applied	to	the	input	volume,
but	on	others,	the	boost	is	applied	to	the	playback	volume
resulting	in	the	two	ranges	performing	identically	because	the

input	level	is	unaffected.
Microphone	wizards	determining	the	best	volume	input	level
should	take	into	consideration	the	potential	discontinuity	and
ensure	that	the	algorithm	used	to	adjust	the	input	volume	level
can	handle	the	various	possible	forms	of	discontinuity	at	5,000
For	devices	without	a	boost,	there	is	no	discontinuity	at	5,000.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpAudio::GetBufferNotifySize
ISpAudio::GetBufferNotifySize	retrieves	the	audio	stream
buffer	size	information.	This	information	is	used	to	determine
when	the	event	returned	by	ISpAudio::EventHandle	is	set	or
reset.
HRESULT	GetBufferNotifySize(

			ULONG			*pcbSize

);

Parameters

pcbSize
[out]	Address	of	the	size	information,	specified	in	bytes,	that
is	associated	with	the	audio	stream	buffer.

Return	values

Value Description
S_OK Function	completed

successfully.
E_POINTER Invalid	pointer.

Remarks
For	read	streams,	the	event	is	set	if	the	audio	buffered	is	greater
than	or	equal	to	the	value	set	in	pcbSize,	otherwise	the	event
information	is	reset.
For	write	streams,	the	event	is	set	if	the	audio	buffered	is	less
than	the	value	set	in	pcbSize,	otherwise	the	event	information	is
reset.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpAudio::SetBufferNotifySize
ISpAudio::SetBufferNotifySize	sets	the	audio	stream	buffer
size	information.	This	information	is	used	to	determine	when	the
event	returned	by	ISpAudio::EventHandle	is	set	or	reset.
HRESULT	SetBufferNotifySize(

			ULONG			cbSize

);

Parameters

cbSize
[in]	The	size,	specified	in	bytes,	of	the	information	associated
with	the	audio	stream	buffer.

Return	values

Value Description
S_OK Function	completed

successfully.
FAILED(hr) Appropriate	error	message.

Remarks
For	read	streams,	the	event	is	set	if	the	audio	buffered	is	greater
than	or	equal	to	the	value	set	in	cbSize,	otherwise	the	event
information	is	reset.
For	write	streams,	the	event	is	set	if	the	audio	buffered	is	less
than	the	value	set	in	cbSize,	otherwise	the	event	information	is
reset.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpMMSysAudio
This	is	the	interface	to	the	audio	implementation	for	the
standard	Windows	multimedia	layer	(wave	in	and	wave	out).
Audio	objects	created	through	an	object	token	do	not	allow
ISpMMSysAudio::SetDeviceId	to	work	because	the	token
specifies	which	audio	device	ID	to	use.	If	an	application	wants	to
associate	an	audio	object	with	a	specific	multimedia	wave	in	or
wave	out	device	ID,	it	should	use	CoCreateInstance	with
CLSID_SpMMAudioOut	or	CLSID_SpMMAudioIn	and	then	use	the
ISpMMSysAudio::SetDeviceId	method	to	select	the	device.	In
normal	application	development,	this	will	not	be	necessary	for
two	reasons:	

Desktop	applications	will	generally	use	the	shared
recognizer	instance	which	automatically	uses	the	default
audio	device.	This	cannot	be	changed.	

For	the	InProc	recognizer	instance,	tokens	exist	for	the
quick	creation	of	the	correct	SpMMAudioIn	or
SpMMAudioOut	for	all	of	the	multimedia	devices	on	the
system.

For	input	devices,	SAPI	will	attempt	to	automatically	identify	the
microphone	line	on	the	input	device.	On	non-English	versions	of
Windows	and	on	a	small	number	of	English	systems,	it	may	not
be	possible	for	SAPI	to	automatically	detect	the	correct
microphone	line.	In	this	case,	no	error	will	be	detected	or
returned.	In	such	cases,	if	speech	input	is	not	correctly
detected,	the	user	must	set	the	microphone	input	line	directly
using	Speech	properties	in	Control	Panel-->Speech	Recognition
tab-->Audio	Input	Settings-->Properties.	In	particular,	it	may	be
necessary	to	adjust	the	microphone	input	line	used	on	devices
with	multiple	microphone	inputs	such	as	the	SoundBlaster	Live
Platinum	because	the	default	input	line	may	not	be	the	input
preferred	by	the	user.

Implemented	By

SpMMAudioIn
SpMMAudioOut

Methods	in	Vtable	Order

ISpMMSysAudio
Methods Description
ISpStreamFormat
interface

Inherits	from	ISpStreamFormat	and
all	methods	are	accessible	from	an
ISpMMSysAudio	object.

ISpAudio	interface Inherits	from	ISpAudio	and	all
methods	are	accessible	from	an
ISpMMSysAudio	object.

GetDeviceId Passes	back	the	multimedia	device
ID	being	used	by	the	audio	object.

SetDeviceId Sets	the	multimedia	device	ID.
GetMMHandle Passes	back	a	multimedia	audio

stream	handle.
GetLineId Retrieves	the	line	identifier

associated	with	the	multimedia
device.

SetLineId Sets	the	line	identifier	associated
with	the	multimedia	device.

IStream	functions	as	inherited	from	ISpAudio

Please	see	the	Microsoft®	Platform	Software	Development	Kit
(PSDK)	for	a	complete	description	of	the	IStream	interface.

IStream	Methods Description
Read Reads	data	from	the	multimedia

audio	device.
Write Writes	data	to	the	multimedia	audio

device.
Seek Retrieves	only	the	current	device

http://go.microsoft.com/fwlink/?linkid=400&clcid=0x409

position	because	multimedia	devices
represent	hardware.

SetSize Not	used	because	multimedia
devices	represent	hardware.

CopyTo Copies	a	specified	number	of	bytes
from	the	current	seek	pointer	in	the
stream	to	the	current	seek	pointer	in
another	stream.

Commit Updates	device	state	and	commit
buffered	data.	SAPI	will
automatically	manage	device	state
and	buffered	data,	so	that	the
developer	is	not	expected	to	call	this
method.

Revert Returns	E_NOTIMPL	because
multimedia	devices	represent
hardware.

LockRegion Returns	E_NOTIMPL	because
multimedia	devices	represent
hardware.

UnlockRegion Returns	E_NOTIMPL	because
multimedia	devices	represent
hardware.

Stat Retrieves	the	current	device
position.

Clone Returns	E_NOTIMPL	because
multimedia	devices	represent
hardware.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpMMSysAudio::Read
ISpMMSysAudio::Read	reads	the	data	from	the	multimedia
audio	device.
The	audio	device	should	not	be	directly	manipulated	when
performing	speech	recognition	(see	ISpRecognizer).

HRESULT	Read(

			void				*pv,

			ULONG				cb,

			ULONG			*pcbRead	

);

Parameters

pv
[in]	Pointer	to	the	buffer	into	which	the	stream	data	is	read.	If
an	error	occurs,	this	value	is	NULL.

cb
[in]	Specifies	the	number	of	bytes	of	data	to	attempt	to	read
from	the	audio	device.

pcbRead
[out]	Pointer	to	a	ULONG	variable	that	receives	the	actual
number	of	bytes	read	from	the	stream	object.	If	set	to	NULL,
no	byte	value	is	passed	back.

Return	values

Value Description
S_OK Function	completed

successfully.

SPERR_AUDIO_BUFFER_OVERFLOW SAPI's	internal	audio
buffer	has	filled,	and	the
device	has	been	closed.
See	Remarks	section.

SPERR_AUDIO_BUFFER_UNDERFLOW The	multimedia	object	has
not	received	audio	data
from	the	device	quickly
enough,	and	the	device
has	been	closed.	See
Remarks	section.

SPERR_AUDIO_STOPPED Multimedia	device	state
has	been	set	to	stopped.

E_OUTOFMEMORY Exceeded	available
memory

E_POINTER At	least	one	of	pcbRead	or
pv	are	invalid	or	bad.

STG_E_ACCESSDENIED Multimedia	device	is	read-
only	and	no	bytes	will	be
read.	Error	will	occur	when
reading	from	an	output
device.

FAILED	(hr) Appropriate	error
message.

Remarks	about	audio	buffer	overflows	and
underflows
SAPI	automatically	stores	data	in	a	buffer	before	it	is	read	from
the	device.	Buffering	the	audio	data	ensures	that	applications
and	SAPI-compliant	speech	recognition	engines	will	not	lose
real-time	audio	data.
An	errant	application	or	speech	recognition	engine	that	does	not
call	Read	often	enough	could	frequently	fill	the	audio	buffer.	To
ensure	that	large	amounts	of	system	memory	are	not	filled,
SAPI	limits	the	buffer	size	to	30	times	the	average	bytes	per

second	(WAVEFORMATEX->nAvgBytesPerSec)-	approximately	30
seconds.	If	the	audio	buffer	is	filled,	SAPI	will	automatically	set
the	device	state	to	SPAS_CLOSED	(see	SPAUDIOSTATE)	and
return	a	buffer	overflow	error	(i.e.,
SPERR_AUDIO_BUFFER_OVERFLOW)	when	ISpMMSysAudio::Read
is	called.
An	errant	multimedia	device	(and/or	driver)	that	does	not	return
audio	data	quickly	enough	could	greatly	reduce	the	speed	of	a
speech	application	or	SR	engine.	To	prevent	the	degradation	of
application	or	SR	engine	performance,	SAPI	requires	that	the
multimedia	device	return	data	at	least	once	every	five	seconds.
If	the	audio	is	not	returned	before	five	seconds,	SAPI	will
automatically	set	the	device	state	to	SPAS_CLOSED	(see
SPAUDIOSTATE)	and	return	a	buffer	underflow	error	(i.e.,
SPERR_AUDIO_BUFFER_UNDERFLOW)	when
ISpMMSysAudio::Read	is	called.
Applications	should	manually	reopen	the	audio	device	(see
ISpAudio::SetState)	to	prevent	losing	input	data	that	could
impact	the	user.
For	SR	engines,	SAPI	automatically	attempts	to	restart	the
multimedia	device	after	the	SR	engine	exits
ISpSREngine::RecognizeStream.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpMMSysAudio::Write
ISpMMSysAudio::Write	writes	data	to	the	multimedia	audio
device.
The	audio	device	should	not	be	directly	manipulated	when
performing	speech	recognition	(see	ISpRecognizer).

HRESULT	Write(

			const	void		*pv,

			ULONG								cb,

			ULONG							*pcbWritten	

);

Parameters

pv
[in]	Pointer	to	the	buffer	containing	the	data	that	is	to	be
written	to	the	audio	device.	A	valid	pointer	must	be	provided
for	this	parameter	even	when	cb	is	zero.

cb
[in]	The	number	of	bytes	of	data	to	attempt	to	write	to	the
audio	device.	This	value	may	be	zero.

pcbWritten
[out]	Pointer	to	a	ULONG	variable	where	this	method	writes
the	actual	number	of	bytes	written	to	the	audio	device.	If	set
to	NULL,	no	byte	value	is	passed	back.

Return	values

Value Description
S_OK Function	completed	successfully.

SPERR_AUDIO_STOPPED Multimedia	device	has	been	stopped.
E_OUTOFMEMORY Exceeded	available	memory.
E_POINTER At	least	one	of	pcbWritten	or	pv	are

invalid	or	bad.
STG_E_ACCESSDENIED Multimedia	device	is	write-only	and

no	bytes	will	be	written.	Error	will
occur	when	writing	to	an	input
device.

FAILED	(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpMMSysAudio::GetDeviceId
ISpMMSysAudio::GetDeviceId	passes	back	the	multimedia
device	ID	being	used	by	the	audio	object.
HRESULT	GetDeviceId(

			UINT		*puDeviceId

);

Parameters

puDeviceId
[out]	Pointer	receiving	the	device	ID.

Return	values

Value Description
S_OK Function	completed

successfully.
E_POINTER puDeviceId	is	a	bad	pointer.

Remarks
The	default	device	ID	for	SpMMSysAudio	objects	that	are
created	using	CoCreateInstance	is	the	WAVE_MAPPER.	For	audio
objects	created	using	an	object	token,	the	ID	will	always	be	a
specific	wave	in	or	wave	out	device	ID.

Example
The	following	code	snippet	illustrates	the	use	of
ISpMMSysAudio::GetDeviceId	using	CoCreateInstance.
				HRESULT	hr	=	S_OK;

				//	create	the	multimedia	input	object

				hr	=	cpMMSysAudio.CoCreateInstance(CLSID_SpMMAudioIn);

				//	Check	hr

				//	get	the	default	device	id

				UINT	uiDeviceId;

				hr	=	cpMMSysAudio->GetDeviceId(&uiDeviceId);

				//	Check	hr

				//	uiDeviceId	==	WAVE_MAPPER

The	following	code	snippet	illustrates	the	use	of
ISpMMSysAudio::GetDeviceId	using	an	ISpObjectToken
				HRESULT	hr	=	S_OK;

				//	get	the	current	multimedia	object's	object	token

				hr	=	cpMMSysAudio.QueryInterface(&cpObjectWithToken);

				//	Check	hr

				//	Find	the	preferred	multimedia	object	token

				hr	=	SpFindBestToken(SPCAT_AUDIOIN,	L"Technology=MMSys",	NULL,	&cpObjectToken);

				//	Check	hr

				//	set	the	current	multimedia	object	to	the	preferred	multimedia	object	token

				hr	=	cpObjectWithToken->SetObjectToken(cpObjectToken);

				//	Check	hr

				//	get	the	device	id	for	the	object	

				UINT	uiDeviceId;

				hr	=	cpMMSysAudio->GetDeviceId(&uiDeviceId);

				//	Check	hr

				//	uiDeviceId	!=	WAVE_MAPPER

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpMMSysAudio::SetDeviceId
ISpMMSysAudio::SetDeviceId	sets	the	multimedia	device	ID.
HRESULT	SetDeviceId(

			UINT			uDeviceId

);

Parameters

uDeviceId
[in]	The	device	ID	of	the	device	to	set.

Return	values

Value Description
S_OK Function	completed	successfully.
SPERR_DEVICE_BUSY Object	is	not	in	the	SPAS_CLOSED

state.
SPERR_ALREADY_INITIALIZEDObject	was	created	using	an

object	token.
E_INVALIDARG uDeviceId	is	invalid.	It	is	not	set

to	WAVE_MAPPER	or	device	does
not	exist.

Remarks
This	method	works	only	on	audio	objects	that	were	not	created
using	an	object	token,	and	only	when	the	object	is	in	the
SPAS_CLOSED	state.	This	method	should	not	be	used	in	normal
application	development.	SAPI	provides	tokens	for	all	the
available	sound	devices	in	a	computer	and	these	can	be	used	to
create	an	initialized	SpMMSysAudio	object.	This	method	is
available	for	non-standard	multimedia	audio	devices.	See	the
Simple	Telephony	sample	for	an	example	of	when	this	method	is

useful.

Example
The	following	code	snippet	illustrates	the	use	of
ISpMMSysAudio::SetDeviceId.
				HRESULT	hr	=	S_OK;

				//	create	the	multimedia	output	object

				hr	=	cpMMSysAudio.CoCreateInstance(CLSID_SpMMAudioOut);

				//	Check	hr

				//	set	the	output	device	to	an	alternate	multimedia	device	(e.g.	modem)

				hr	=	cpMMSysAudio->SetDeviceId(ALTERNATE_MM_DEVICE);

				//	Check	hr

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpMMSysAudio::GetMMHandle
ISpMMSysAudio::GetMMHandle	passes	back	a	multimedia
audio	device	stream	handle.
HRESULT	GetMMHandle(

			void			**pHandle

);

Parameters

pHandle
The	wave	in	or	wave	out	device	handle.

Return	values

Value Description
S_OK Function	completed	successfully.
E_POINTER pHandle	is	invalid.
SPERR_UNINITIALIZED Audio	object	is	in	the	SPAS_CLOSED

state.

Remarks
The	audio	object	must	not	be	in	the	SPAS_CLOSED	state	or	this
call	will	fail	because	the	multimedia	device	will	not	have	been
opened	yet.	The	caller	must	not	close	the	passed	back	handle.
The	caller	must	not	use	the	handle	either	after	changing	the
state	of	the	audio	object	to	SPAS_CLOSED	or	after	releasing	the
object.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpMMSysAudio::GetLineId
ISpMMSysAudio::GetLineId	retrieves	the	current	line
identifier	associated	with	the	multimedia	device.	Mixer	lines	are
not	supported	for	output	devices.
HRESULT	GetLineId(

			UINT			*puLineId

);

Parameters

puLineId
[out]	Address	of	the	structure	that	receives	the	line	identifier
information.

Return	values

Value Description
S_OK Function	completed	successfully.
E_NOTIMPL Not	implemented	for	output	devices.
E_POINTER puLineId	is	invalid.
SPERR_NOT_FOUND The	audio	device	must	have	been

created	from	a	token.
FAILED(hr) Appropriate	error	message.

Remarks
For	more	information	on	the	uses	of	device	lines,	please	see	the
Win32	multimedia	mixer	API	(e.g.,	mixerOpen,	mixerGetId,
mixerGetLineInfo,	etc.)
For	input	devices,	SAPI	will	attempt	to	automatically	identify	the
microphone	line	on	the	input	device.	On	non-English	versions	of
Windows	and	on	a	small	number	of	English	systems,	it	may	not

be	possible	for	SAPI	to	automatically	detect	the	correct
microphone	line.	In	this	case,	no	error	will	be	detected	or
returned.	In	such	cases,	if	speech	input	is	not	correctly
detected,	the	user	must	set	the	microphone	input	line	directly
using	Control	Panel-->Speech	properties-->Speech	Recognition
tab-->Audio	Settings-->Properties.	In	particular,	this	may	be
necessary	to	adjust	the	microphone	input	line	used	on	devices
with	multiple	microphone	inputs	such	as	the	SoundBlaster	Live
Platinum	as	the	automatically	chosen	line	may	not	be	the	input
preferred	by	the	user.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpMMSysAudio::SetLineId
ISpMMSysAudio::SetLineId	sets	the	line	identifier	associated
with	the	multimedia	device.	Mixer	lines	are	not	supported	for
output	devices.
HRESULT	SetLineId(

			UINT			uLineId

);

Parameters

uLineId
[in]	Value	specifying	the	line	identifier	information.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG The	specified	uLineId	is	not	supported

on	the	current	device.
SPERR_NOT_FOUND The	audio	device	must	have	been

created	from	a	token.
E_NOTIMPL Not	implemented	for	output	devices.
FAILED(hr) Appropriate	error	message.

Remarks
For	more	information	on	the	uses	of	device	lines,	please	see	the
Win32	multimedia	mixer	API	(e.g.,	mixerOpen,	mixerGetId,
mixerGetLineInfo,	etc.)
For	input	devices,	SAPI	attempts	to	automatically	identify	the
microphone	line	on	the	input	device.	On	non-English	versions	of
Windows	and	on	a	few	English	systems,	it	may	not	be	possible

for	SAPI	to	automatically	detect	the	correct	microphone	line.	In
this	case,	no	error	will	be	detected	or	returned.	If	speech	input	is
not	correctly	detected,	the	user	must	set	the	microphone	input
line	directly	using	Control	Panel-->Speech	properties-->Speech
Recognition	tab-->Audio	Settings-->Properties.	It	may	be
necessary	to	adjust	the	microphone	input	line	used	on	devices
with	multiple	microphone	inputs	such	as	the	SoundBlaster	Live
Platinum.	In	these	cases,	the	automatically	chosen	line	may	not
be	the	input	preferred	by	the	user.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpStream
This	interface	provides	two	distinct	functions:

The	application	developer	can	wrap	an	existing	stream
up	by	providing	both	an	IStream	and	its	format	so	that
the	underlying	ISpStreamFormat	can	provide	this	data	to
SAPI	when	required.	The	new	ISpStream	object	can	be
used	as	an	input	for	SAPI	wherever	SAPI	requires	an
ISpStreamFormat.
ISpStream	creates	an	object	from	a	file	suitable	for	SAPI
usage	using	BindToFile.	The	helper	function	SPBindToFile
may	also	be	used	to	simplify	this	process	even	further.

Implemented	By
SpStream

Methods	in	Vtable	Order

ISpStream	Methods Description
SetBaseStream Sets	the	base	address	of	the	audio

stream.
GetBaseStream Retrieves	the	base	address	of	the

audio	stream.
BindToFile Binds	the	audio	stream	to	the	file

that	it	identifies.
Close Closes	the	audio	stream.

Development	Helpers

Helper	Enumerations,
Functions	and	Classes Description
SPSTREAMFORMAT SAPI	supported	stream	formats
CSpStreamFormat Class	for	managing	SAPI	supported

stream	formats	and	WAVEFORMATEX
structures

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpStream::SetBaseStream
ISpStream::SetBaseStream	initializes	the	ISpStream	object
with	the	format	of	the	IStream	and	an	object	to	encapsulate.
HRESULT	SetBaseStream(

				IStream																*pStream,

				REFGUID																	rguidFormat,

				const	WAVEFORMATEX					*pWaveFormatEx

);

Parameters

pStream
Address	of	the	IStream	containing	the	base	stream	data.

rguidFormat
The	data	format	identifier	associated	with	the	stream.

pWaveFormatEx
Address	of	the	WAVEFORMATEX	structure	that	contains	the
wave	file	format	information.	If	guidFormatId	is
SPDFID_WaveFormatEx,	this	must	point	to	a	valid
WAVEFORMATEX	structure.	For	other	formats,	it	should	be
NULL.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG One	or	more	parameters	are

invalid.
SPERR_ALREADY_INITIALIZED The	object	has	already	been

initialized.

FAILED	(hr) Appropriate	error	message.

Remarks

The	helper	class	CSpStreamFormat	and	the
SPSTREAMFORMAT	enumeration	can	be	used	to	avoid	the
possibility	of	typos	or	mistakes	when	filling	in	the
WAVEFORMATEX	structure.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpStream::GetBaseStream
ISpStream::GetBaseStream	retrieves	the	encapsulated
IStream	object	for	an	instance	of	the	ISpStream	object.
HRESULT	GetBaseStream(

			IStream			**ppStream

);

Parameters

ppStream
Address	of	a	pointer	to	the	encapsulated	IStream	that
contains	an	audio	stream	or	text	stream.

Return	values

Value Description
S_OK Function	completed	successfully.
E_POINTER The	ppStream	pointer	is	invalid	or

bad.
SPERR_STREAM_CLOSED The	stream	is	closed	or	unavailable.
S_FALSE The	ISpStream	instance	has	not	been

initialized	with	an	IStream.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpStream::BindToFile
ISpStream::BindToFile	binds	the	input	stream	to	the	file	that
it	identifies.
HRESULT	BindToFile(

			const	WCHAR										*pszFileName,

			SPFILEMODE												eMode,

			const	GUID											*pguidFormatId,

			const	WAVEFORMATEX	 *pWaveFormatEx,	

			ULONGLONG													ullEventInterest

);					

Parameters

pszFileName
Address	of	a	null-terminated	string	containing	the	file	name
of	the	file	to	bind	the	stream	to.

eMode
Flag	of	the	type	SPFILEMODE	to	define	the	file	opening	mode.
When	opening	an	audio	wave	file,	eMode	must	be
SPFM_OPEN_READONLY	or	SPFM_CREATE_ALWAYS,	otherwise
the	call	will	fail.

pguidFormatId
The	data	format	identifier	associated	with	the	stream.	This
can	be	NULL	and	the	format	will	be	determined	from	the
supplied	wave	file,	if	the	file	has	the	wav	extension.	If	it	does
not,	the	file	is	assumed	to	be	a	text	file.

pWaveFormatEx
Address	of	the	WAVEFORMATEX	structure	that	contains	the
wave	file	format	information.	If	guidFormatId	is

SPDFID_WaveFormatEx,	this	must	point	to	a	valid
WAVEFORMATEX	structure.	For	other	formats,	it	should	be
NULL.

ullEventInterest
Flags	of	type	SPEVENTENUM	for	the	format	converter	to
watch.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG At	least	one	of	the	following	was

encountered.	pszFileName	or
pguidFormatId	is	invalid	or	bad;
eMode	exceeds
SPFM_CREATE_ALWAYS;	an
operation	could	not	be
completed.

E_OUTOFMEMORY Exceeded	available	memory.
STG_E_FILENOTFOUND File	pszFileName	does	not	exist.
SPERR_ALREADY_INITIALIZED The	object	has	already	been

initialized.
FAILED	(hr) Appropriate	error	message.

Remarks
In	speech	recognition,	::BindToFile	supports	only	wave	audio
files.	It	passes	SAPI	an	audio	file	to	pass	to	the	engine.	In	text-
to-speech,	::BindToFile	supports	both	audio	and	text	files.	See
ISpVoice::SpeakStream	for	more	information.
The	helper	class	CSpStreamFormat	and	the	SPSTREAMFORMAT
enumeration	can	be	used	to	avoid	the	possibility	of	typos	or
mistakes	when	filling	in	the	WAVEFORMATEX	structure.

Example
The	following	code	snippet	illustrates	the	use	of
ISpStream::BindToFile	for	creating	a	writable	wave	file
				HRESULT	hr	=	S_OK;

				//	create	the	stream	object

				hr	=	cpSpStream.CoCreateInstance(CLSID_SpStream);

				//	Check	hr

				//	create	a	stream	format	helper	for	22khzm	16-bit,	mono	wave	stream

				CSpStreamFormat	Fmt(SPSF_22kHz16BitMono,	&hr);

				//	Check	hr

	

				//	create	the	new	stream	and	its	corresponding	file	on	the	hard	disk

				//	NOTE:	Specify	the	file	format	when	creating	the	file	

				hr	=	cpSpStream->BindToFile(WAVE_FILENAME,	SPFM_CREATE_ALWAYS,	&Fmt.FormatId(),	Fmt.WaveFormatExPtr(),	NULL);

				//	Check	hr

				//	write	some	data	to	the	stream

				hr	=	cpSpStream->Write(WAVE_DATA_CHUNK,	SIZEOF_WAVE_DATA_CHUNK,	&cbWritten);

				//	Check	hr

The	following	code	snippet	illustrates	the	use	of
ISpStream::BindToFile	for	creating	a	read-only	wave	file
				HRESULT	hr	=	S_OK;

				//	create	the	stream	object

				hr	=	cpSpStream.CoCreateInstance(CLSID_SpStream);

				//	Check	hr

	

				//	create	a	new	stream,	by	opening	a	wave	file	from	the	hard	disk

				//	NOTE:	Since	an	existing	file	is	being	read,	SAPI	will	read	the	wave	stream	format	automatically

				hr	=	cpSpStream->BindToFile(WAVE_FILENAME,	SPFM_OPEN_READONLY,	NULL,	NULL,	NULL);

				//	Check	hr

				//	read	some	data	from	the	stream

				hr	=	cpSpStream->Read(&bData,	SIZEOF_WAVE_DATA_CHUNK,	&cbWritten);

				//	Check	hr

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpStream::Close
ISpStream::Close	closes	the	audio	stream	and	validates	the
close	operation.
HRESULT		Close		(void);

Parameters
None.

Return	values

Value Description
S_OK Function	completed	successfully.
SPERR_STREAM_CLOSED The	stream	is	closed	or	unavailable.
FAILED	(hr) Appropriate	error	message.

Remarks
Releasing	the	ISpStream	object	will	automatically	call	this
method.	However,	any	errors	encountered	will	not	be	sent	as
notifications	to	the	application.	Hence	the	application	can
explicitly	call	this	method	first	to	check	that	no	errors	occurred
during	the	close	operation.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpStreamFormat
ISpStreamFormat	inherits	from	IStream.
This	is	the	minimum	extra	interface	required	by	SAPI	in	addition
to	the	IStream	interface.	Using	this	interface,	SAPI	can	query	the
stream	to	determine	the	format	of	the	stream	data.	Almost	all
SAPI	functions	requiring	or	returning	a	stream	will	require	or
return	an	ISpStreamFormat.

When	to	Implement
This	interface	should	be	implemented	when	implementing	a
stream	from	scratch.	If	an	IStream	already	exists,	SAPI	can	use
it	with	the	provided	ISpStream	object.	In	normal	usage,	this
interface	does	not	need	to	be	implemented.

Implemented	By
SpMMAudioIn

SpMMAudioOut
SpStreamFormatConverter

SpStream

Methods	in	Vtable	Order

ISpStreamFormat
Methods Description
GetFormat Passes	back	the	cached	format	of

the	stream.

Development	Helpers

Helper	Enumerations,
Functions	and	Classes Description

SPSTREAMFORMAT SAPI	supported	stream	formats
CSpStreamFormat Class	for	managing	SAPI	supported

stream	formats	and	WAVEFORMATEX
structures

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpStreamFormat::GetFormat
ISpStreamFormat::GetFormat	passes	back	the	cached
format	of	the	stream.
SAPI	uses	this	data	to	determine	how	to	handle	the	stream	data
present	in	the	underlying	IStream.
HRESULT	GetFormat(

			GUID											*pguidFormatId,

			WAVEFORMATEX		**ppCoMemWaveFormatEx

);

Parameters

pguidFormatId
Address	of	a	pointer	to	GUID	data	object	that	receives	the
format	of	the	stream	being	used.	This	is	typically	either
SPDFID_Text	or	SPDFID_WaveFormatEx.

ppCoMemWaveFormatEx
Address	of	a	pointer	to	a	WAVEFORMATEX	data	structure	that
receives	the	wave	file	format	information.	This	is	only
applicable	when	the	return	GUID	is	SPDFID_WaveFormatEx.
SAPI	allocates	the	memory	for	the	WAVEFORMATEX	data
structure	using	CoTaskMemAlloc,	but	it	is	the	caller's
responsibility	to	call	CoTaskMemFree	on	the	returned
WAVEFORMATEX	pointer.

Return	values

Value Description
S_OK Function	completed	successfully.
E_POINTER Pointer	is	locating	a	memory	block

that	is	NULL	or	either	too	small	or	is

not	writable.
SPERR_UNINITIALIZED The	object	has	not	been	properly

initialized.
SPERR_STREAM_CLOSED The	stream	is	closed	or	unavailable.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpStreamFormatConverter
ISpStreamFormatConverter	is	the	primary	interface
implemented	by	the	SAPI	audio	data	format	converter.	SAPI
uses	the	format	converter	to	compensate	for	differences
between	supported	SR	and	TTS	engine	formats,	and	the	I/O
formats	requested	by	the	application.	Typically	applications	and
engines	do	not	use	this	object	directly.	The	format	converter	is	a
wrapper	object	that	encapsulates	the	specified	base	stream.	It
performs	conversion	on	the	fly	during	read/write	operations.	The
Windows	ACM	(Audio	Compression	Manager)	layer	performs	the
conversion.
Several	methods	are	included	in	addition	to	the
ISpStreamFormat	interface	to	allow	data	conversion.

Implemented	By
SpStreamFormatConverter

Remarks
SAPI	utilizes	the	host	system's	installed	audio	codecs	to	perform
the	conversion.	SAPI	currently	supports	1-stage	and	2-stage
stream	conversions,	but	does	not	support	3-or-more-stage
conversions.
An	example	of	a	1-stage	stream	format	conversion	is	the
conversion	of	a	PCM	format	to	another	PCM	format	(e.g.,	8kHz
16-bit	Stereo	PCM	[SPSF_8kHz16BitStereo]	->	44kHz	8-bit	Mono
[SPSF_44kHz8BitMono]).	This	requires	only	one	codec	(e.g.,
"Microsoft	PCM	Converter").
An	example	of	a	2-stage	stream	conversion	is	the	conversion	of
a	compressed	format	to	a	PCM	format	(e.g.,	TrueSpeech	8kHz	1-
Bit	Mono	[SPSF_TrueSpeech_8kHz1BitMono]	->	8kHz	8-bit	Mono
PCM	[SPSF_8kHz8BitMono]	->	44kHz	16-bit	Stereo
[SPSF_44kHz16BitStereo]).	This	requires	two	codecs	(e.g.,	"DSP

Group	TrueSpeech(TM)	Audio"	and	"Microsoft	PCM	Converter").
Note	that	one	of	the	formats	must	be	a	PCM	format.
An	example	of	an	unsupported	3-stage	stream	conversion	is	the
conversion	of	a	compressed	format	to	another	compressed
format	(e.g.,	TrueSpeech	8kHz	1-Bit	Mono
[SPSF_TrueSpeech_8kHz1BitMono]	->	8kHz	8-bit	Mono	PCM
[SPSF_8kHz8BitMono]	->	8kHz	8-bit	Stereo	PCM
[SPSF_8kHz8BitStereo]	->	ALaw	8kHz	Stereo
[SPSF_CCITT_ALaw_8kHzStereo]).	This	would	require	three
codecs	(e.g.,	"DSP	Group	TrueSpeech(TM)	Audio",	"Microsoft
PCM	Converter",	and	"Microsoft	CCITT	G.771	Audio").	Note	that
SAPI	is	capable	of	converting	between	two	compressed	non-PCM
formats	if	a	single	codec	can	do	the	entire	conversion.

Methods	in	Vtable	Order

ISpStreamFormatConverter
Methods Description
ISpStreamFormat	interface Inherits	from	ISpStreamFormat

and	all	those	methods	are
accessible	from	an
ISpStreamFormatConverter
object.

SetBaseStream Sets	audio	stream	to	be
wrapped	by	the	format
converter.

GetBaseStream Gets	the	base	audio	stream
that	is	being	wrapped.

SetFormat Sets	the	conversion	(output)
format.

ResetSeekPosition Resets	the	format	converter's
stream	seek	position	to	the
start	of	the	stream.

ScaleConvertedToBaseOffsetMaps	an	offset	in	the
converted	stream	into	an

offset	in	the	base	stream.
ScaleBaseToConvertedOffsetMaps	an	offset	in	the	base

stream	into	an	offset	in	the
converted	stream.

Development	Helpers

Helper	Enumerations,
Functions	and	Classes Description
SPSTREAMFORMAT SAPI	supported	stream	formats
CSpStreamFormat Class	for	managing	SAPI	supported

stream	formats	and	WAVEFORMATEX
structures

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpStreamFormatConverter::SetBaseStream
ISpStreamFormatConverter::SetBaseStream	sets	an	audio
stream	to	be	wrapped	by	the	format	converter.	The	format
converter	is	a	stream	object	that	encapsulates	the	base	stream
and	performs	format	conversion	on	the	fly	during	read/write
operations.
HRESULT	SetBaseStream(

			ISpStreamFormat			*pStream,

			BOOL															fSetFormatToBaseStreamFormat,

			BOOL															fWriteToBaseStream	

);

Parameters

pStream
[in]	The	stream	to	be	wrapped.	If	NULL,	the	current	base
stream	is	released	and	any	associated	resources	are
released.

fSetFormatToBaseStreamFormat
[in]	Flag	specifies	that	the	converter's	stream	format	will	be
set	to	the	same	format	as	the	base	stream	(set	up	as	a	pass
through).
If	pStream	==	NULL	and	this	is	set	to	TRUE,	the	format
converter's	stream	format	is	reset	to	be	undefined.

fWriteToBaseStream
[in]	If	TRUE,	data	will	be	written	to	the	base	stream.	If	FALSE,
data	will	be	read	from	the	base	stream.	The	format	converter
can	only	be	in	one	I/O	mode	or	the	other	at	a	time.

Return	values

Value Description
S_OK Function	completed

successfully.
E_INVALIDARG pStream	was	invalid.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpStreamFormatConverter::GetBaseStream
ISpStreamFormatConverter::GetBaseStream	gets	the	base
audio	stream	that	is	being	wrapped.
HRESULT	GetBaseStream(

			ISpStreamFormat		**ppStream

);

Parameters

ppStream
[out]	This	parameter	can	be	NULL	to	simply	test	if	there	is	an
associated	base	stream.

Return	values

Value Description
S_OK Function	completed

successfully.
S_FALSE No	base	stream	is	present.
E_POINTER Pointer	is	bad	or	invalid.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpStreamFormatConverter::SetFormat
ISpStreamFormatConverter::SetFormat	sets	the	output
format	of	the	converter.	
The	ISpStreamFormat::GetFormat	method	returns	the
format	of	the	output	(converted)	stream.
HRESULT	SetFormat(

			REFGUID															rguidFormatIdOfConvertedStream,

			const	WAVEFORMATEX			*pWaveFormatExOfConvertedStream

);

Parameters

rguidFormatIdOfConvertedStream
[in]	Address	of	the	data	format	identifier	associated	with	the
requested	output	stream.	Can	be	GUID_NULL	or
SPDFID_WaveFormatEx.

pWaveFormatExOfConvertedStream
[in]	Address	of	the	WAVEFORMATEX	structure	containing	the
wave	file	format	information	of	the	converted	stream.	Must
be	NULL	with	GUID_NULL.	Must	be	a	valid	WAVEFORMATEX
with	SPDFID_WaveFormatEx.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG One	of	the	following	was

encountered:
rguidFormatIdOfConvertedStream	is
neither	GUID_NULL	or
SPDFID_WaveFormatEx;

pWaveFormatExOfConvertedStream
is	not	valid	for	the	supplied	REFGUID.

Remarks

The	helper	class	CSpStreamFormat	and	the
SPSTREAMFORMAT	enumeration	can	be	used	to	avoid	the
possibility	of	typos	or	mistakes	when	filling	in	the
WAVEFORMATEX	structure.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpStreamFormatConverter::ResetSeekPosition
ISpStreamFormatConverter::ResetSeekPosition	resets	the
format	converter's	stream	seek	position	to	the	start	of	the
stream.	This	method	changes	the	seek	position	of	the	base
stream	to	zero.
HRESULT	ResetSeekPosition(void);

Parameters

None.

Return	values

Value Description
S_OK Function	completed	successfully.
SPERR_UNINITIALIZED Current	stream	base	is

uninitialized.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpStreamFormatConverter::ScaleConvertedToBaseOffset
ISpStreamFormatConverter::ScaleConvertedToBaseOffset
maps	a	stream	offset	from	the	converted	stream	to	the
equivalent	offset	in	the	base	stream.

HRESULT	ScaleConvertedToBaseOffset(

			ULONGLONG				ullOffsetConvertedStream,	

			ULONGLONG			*pullOffsetBaseStream

);

Parameters

ullOffsetConvertedStream
The	offset	of	the	output	(converted)	stream.

pullOffsetBaseStream
The	equivalent	offset	in	the	base	(unconverted)	stream.

Return	values

Value Description
S_OK Function	completed	successfully.
E_POINTER pullOffsetBaseStream	is	invalid.
SPERR_UNINITIALIZED The	base	stream	has	not	been

initialized.

Remarks
When	performing	a	mapping	with	a	compressed	format,	it	is
possible	to	introduce	small	rounding	errors,	since	the	content	of
the	audio	is	not	used	to	perform	the	conversion.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpStreamFormatConverter::ScaleBaseToConvertedOffset
ISpStreamFormatConverter::ScaleBaseToConvertedOffset
converts	an	offset	in	the	base	stream	into	the	equivalent	offset
in	the	converted	stream.	This	method	is	primarily	used
internally	to	map	event	offsets.
HRESULT	ScaleBaseToConvertedOffset(

			ULONGLONG			ullOffsetBaseStream,

			ULONGLONG		*pullOffsetConvertedStream

);

Parameters

ullOffsetBaseStream
The	current	offset	in	the	base	(unconverted)	stream.

pullOffsetConvertedStream
The	new	offset	in	the	output	(converted)	stream.

Return	values

Value Description
S_OK Function	completed	successfully.
E_POINTER pullOffsetConvertedStream	is	bad	or

invalid.
SPERR_UNINITIALIZED The	base	stream	is	not	initialized.
E_INVALIDARG ullOffsetBaseStream	is	less	than	the

initial	seek	position	of	the	current
steam.	
*pullOffsetConvertedStream	is	set	to
0xFFFFFFFFFFFFFFFF.

Remarks
When	performing	a	mapping	with	a	compressed	format,	it	is
possible	to	introduce	small	rounding	errors,	since	the	content	of
the	audio	is	not	used	to	perform	the	conversion.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpTranscript
A	transcript	is	a	text	string	associated	with	a	piece	of	audio
data.	The	SAPI	SpStream	object	supports	the	ISpTranscript
interface	for	wav	audio	files.

Associated	Class	IDs
The	following	class	IDs	(CLSID)	may	be	used	with	this	interface.
A	complete	CLSID	listing	for	all	interfaces	is	in	the	Class	IDs
section.

CLSID_SpStream

Methods	in	Vtable	Order

ISpTranscript	Methods Description
GetTranscript Gets	the	current	transcript.
AppendTranscript Adds	the	current	text	to	the

transcript.

Development	Helpers

Helper	Enumerations,
Functions	and	Classes Description
CSpDynamicString Class	for	managing	dynamically

sized	Unicode	strings

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpTranscript::GetTranscript
ISpTranscript::GetTranscript	gets	the	current	transcript.	The
string	returned	will	be	allocated	by	CoTaskMemAlloc	and
applications	implementing	this	method	must	call
CoTaskMemFree()	to	free	memory	associated	with	this	string.
HRESULT	GetTranscript(

			WCHAR			**ppszTranscript

);

Parameters

ppszTranscript
[out,	string]	A	pointer	to	the	null-terminated	transcription
string.

Return	values

Value Description
S_OK Function	completed	successfully.

ppszTranscript	contains	a
CoTaskMemAllocated	string.

E_OUTOFMEMORY Exceeded	available	memory.
SPERR_UNINITIALIZED Object	has	not	been	initialized.
E_POINTER ppszTranscript	is	bad	or	invalid.
S_FALSE No	transcript	is	present	and

ppszTranscript	will	be	NULL.
FAILED	(hr) Appropriate	error	message.

Example
The	following	code	snippet	illustrates	the	use	of
ISpTranscript::GetTranscript.
				HRESULT	hr	=	S_OK;

				//	Bind	a	stream	to	an	existing	wavefile

				hr	=	SPBindToFile(FILENAME,	SPFM_READ_ONLY,	&cpStream);

				//	Check	hr

		

				hr	=	cpStream.QueryInterface(&cpTranscript);

				//	Check	hr

	

				PWCHAR	pwszTranscript;

				hr	=	cpTranscript->GetTranscript(&pwszTranscript);

				//	Check	hr

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpTranscript::AppendTranscript
ISpTranscript::AppendTranscript	adds	the	current	text	to	the
transcript.
HRESULT	AppendTranscript(

			const	WCHAR			*pszTranscript

);

Parameters

pszTranscript
[in,	string]	The	text	of	the	transcript.	If	pszTranscript	is	NULL,
the	current	transcript	is	deleted.	Otherwise,	the	text	is
appended	to	the	current	transcript.

Return	values

Value Description
S_OK Function	completed

successfully.
E_INVALIDARG pszTranscript	is	bad	or	invalid.
E_OUTOFMEMORY Exceeded	available	memory.
FAILED	(hr) Appropriate	error	message.

Example
The	following	code	snippet	illustrates	the	use	of
ISpTranscript::AppendTranscript.
				HRESULT	hr	=	S_OK;

				//	Bind	a	stream	to	an	existing	wavefile

				hr	=	SPBindToFile(FILENAME,	SPFM_CREATE_ALWAYS,	&cpStream);

				//	Check	hr

		

				hr	=	cpStream.QueryInterface(&cpTranscript);

				//	Check	hr

	

				hr	=	cpTranscript->AppendTranscript(L"this	is	a	test");

				//	Check	hr

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Eventing	interfaces
This	section	provides	SAPI	5	event	information.

ISpNotifySource
ISpNotifySink

ISpNotifyTranslator
ISpEventSink
ISpEventSource

ISpNotifyCallback

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpNotifySource
In	both	speech	synthesis	and	speech	recognition,	applications
receive	notifications	when	words	have	been	spoken	or	when
phrases	have	been	recognized.	SAPI	components	that	generate
notifications	implement	an	ISpNotifySource.
The	ISpNotifySource	and	ISpNotifySink	interfaces	alone	only
provide	a	mechanism	for	a	notification	but	no	information	on	the
events	that	caused	the	notification.	With	an	ISpEventSource
object,	an	application	can	retrieve	information	about	the	events
that	caused	the	notification.
Applications	will	not	typically	use	the	free-threaded
ISpNotifySink	mechanism	for	receiving	SAPI	event	notifications.
They	will	use	one	of	the	simplified	methods	of	either	a	window
message,	callback	or	Win32	event.
Note	that	both	variations	of	callbacks	as	well	as	the	window
message	notification	require	a	window	message	pump	to	run	on
the	thread	that	initialized	the	notification	source.	Callback	will
only	be	called	as	the	result	of	window	message	processing,	and
will	always	be	called	on	the	same	thread	that	initialized	the
notify	source.	However,	using	Win32	events	for	SAPI	event
notification	does	not	require	a	window	message	pump.

Implemented	By
SpRecoContext
SpSharedRecoContext
SpVoice
SpMMAudioIn

SpMMAudioOut
SpRecPlayAudio
SpStreamFormatConverter

Methods	in	Vtable	Order

ISpNotifySource	Methods Description
SetNotifySink Sets	up	the	instance	to	make

free-threaded	calls	through
ISpNotifySink::Notify.		This
method	can	also	be	used	to
unregister	an	existing
notification.

SetNotifyWindowMessage Sets	a	window	handle	to	receive
notifications	as	window
messages.

SetNotifyCallbackFunction Sets	a	callback	function	to
receive	notifications.

SetNotifyCallbackInterface Sets	an	object	derived	from
ISpTask	to	receive	notifications.

SetNotifyWin32Event Sets	up	a	Win32	event	object	to
be	used	by	this	instance	for
notifications.

WaitForNotifyEvent A	blocking	call	which	waits	for	a
notification.

GetNotifyEventHandle Retrieves	Win32	event	handle
associated	with	this	notify
source.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpNotifySource::SetNotifySink
ISpNotifySource::SetNotifySink	sets	up	the	instance	to	make
free-threaded	notification	calls	through	ISpNotifySink::Notify.
HRESULT	SetNotifySink(

			ISpNotifySink		*pNotifySink

);

Parameters

pNotifySink
[in]	Pointer	to	the	notification	interface.	If	pNotifySink	is
NULL,	any	current	notification	mechanism	(notify	sink,
window	message,	callback,	or	Win32	event)	is	removed.

Return	values

Value Description
S_OK Function	completed

successfully.
E_INVALIDARG Interface	pointer	is	invalid.
FAILED	(hr) Appropriate	error	message.

Remarks
If	pNotifySink	is	NULL,	any	notification	mechanism	currently
associated	with	this	notify	source	is	removed.
Because	free-threaded	notifications	can	occur	on	any	thread,	at
any	point	during	execution,	they	are	extremely	prone	to
deadlocks	and	re-entrance	problems.	See	the	documentation	for
ISpNotifySink	for	more	details.	Most	applications	will	find	one	of
the	other	notification	mechanisms	much	easier	to	use.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpNotifySource::SetNotifyWindowMessage
ISpNotifySource::SetNotifyWindowMessage	sets	up	the
instance	to	send	window	messages	to	a	specified	window.
HRESULT	SetNotifyWindowMessage(

			HWND					hWnd,	

			UINT					Msg,	

			WPARAM			wParam,	

			LPARAM			lParam

);

Parameters

hWnd
[in]	Handle	to	the	window	whose	message	handler	function
will	receive	SAPI	notifications.

Msg
[in]	Message	number	which	will	be	passed	into	the	message
handler	function	of	the	window	hWnd.

wParam
[in]	wParam	that	will	be	passed	into	the	message	handler
function	of	the	window	hWnd.

lParam
[in]	lParam	that	will	be	passed	into	the	message	handler
function	of	the	window	hWnd.

Return	values

Value Description
S_OK Function	completed	successfully.

E_INVALIDARG hWnd	is	an	invalid	window
handle.

FAILED	(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpNotifySource::SetNotifyCallbackFunction
ISpNotifySource::SetNotifyCallbackFunction	sets	up	this
instance	to	send	notifications	using	a	standard	C-style	callback
function.
HRESULT	SetNotifyCallbackFunction(

			SPNOTIFYCALLBACK			*pfnCallback,

			WPARAM														wParam,	

			LPARAM														lParam

);

Parameters

pfnCallback
[in]	The	notification	callback	function	to	be	used.

wParam
[in]	Constant	WPARAM	value	that	will	be	passed	to	the
pfnCallback	function	when	it	is	called.

lParam
[in]	Constant	LPARAM	value	that	will	be	passed	to	the
pfnCallback	function	when	it	is	called.

Return	values

Value Description
S_OK Function	completed

successfully.
E_INVALIDARG Callback	function	is	invalid.
FAILED	(hr) Appropriate	error	message.

Remarks

It	is	the	responsibility	of	the	client	code	to	control	the	lifetime	of
a	notification.	To	remove	an	installed	notify	callback,	call
ISpEventSource::SetNotifySink	(NULL).	The	final	release	of	an
object	that	supports	ISpEventSource	will	automatically	remove
an	installed	notify	callback.
The	SAPI	implementation	uses	a	hidden	window	to	call	back	the
client	on	the	same	thread	that	was	used	to	initialize	the	event
source.	Notification	callbacks	are	the	result	of	processing	a
window	message.	When	this	notification	mechanism	is	used:

1.	 The	SPNOTIFYCALLBACK	method	will	always	be	called	on
the	thread	that	initialized	the	event	source	or	notify
translator	object.

2.	 The	thread	must	have	a	window	message	pump.
The	SPNOTIFYCALLBACK	function	is	declared	as	follows:
				typedef	void	__stdcall	SPNOTIFYCALLBACK(WPARAM	wParam,
LPARAM	lParam);

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpNotifySource::SetNotifyCallbackInterface
ISpNotifySource::SetNotifyCallbackInterface	sets	up	this
instance	to	call	the	virtual	method
ISpNotifyCallback::NotifyCallback	for	notifications.
HRESULT	SetNotifyCallbackInterface(

			ISpNotifyCallback			*pSpCallback,	

			WPARAM															wParam,	

			LPARAM															lParam

);

Parameters

pSpCallback
[in]	A	pointer	to	an	application-defined	implementation	of	the
ISpNotifyCallback	interface.

wParam
[in]	Constant	WPARAM	value	that	will	be	passed	to	the
ISpNotifyCallback::NotifyCallback	method	when	it	is	called.

lParam
[in]	Constant	LPARAM	value	that	will	be	passed	to	the
ISpNotifyCallback::NotifyCallback	method	when	it	is	called.

Return	values

Value Description
S_OK Function	completed

successfully.
E_INVALIDARG pSpCallback	is	invalid.
FAILED	(hr) Appropriate	error	message.

Remarks
The	application	will	be	called	back	on	the	same	thread	that	calls
this	method.	The	callback	will	be	called	as	a	result	of	window
message	processing,	so	the	thread	must	have	a	message	pump.
For	more	details,	see	the	documentation	for	ISpNotifyCallback.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpNotifySource::SetNotifyWin32Event
ISpNotifySource::SetNotifyWin32Event	sets	up	a	Win32
event	object	to	be	used	by	this	instance	for	notifications.	The
event	handle	can	be	retrieved	through	GetNotifyEventHandle.
HRESULT			SetNotifyWin32Event		(void);

Parameters
None

Return	values

Value Description
S_OK Function	completed

successfully.
FAILED	(hr) Appropriate	error	message.

Remarks
For	an	explanation	of	Win32	event	objects,	see	the	Win32
Platform	SDK	documentation.	Once	an	event	object	has	been
initialized	for	this	instance,	use	either	WaitForNotifyEvent	or	use
GetNotfyEventHandle	and	wait	using	one	of	the	various	Win32
synchronization	functions.	Note	that	Win32	event	objects	and
SAPI	events	are	different	objects.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpNotifySource::WaitForNotifyEvent
ISpNotifySource::WaitForNotifyEvent	is	a	blocking	call	that
waits	on	a	Win32	event	handle	for	a	SAPI	notification.
HRESULT	WaitForNotifyEvent(

			DWORD			dwMilliseconds

);

Parameters

dwMilliseconds
[in]	Number	of	milliseconds	for	the	timeout	on	a	blocking
call.	If	set	to	INFINITE,	there	is	no	timeout.

Return	values

Value Description
S_OK Function	completed	successfully.
S_FALSE The	operation	timed-out.
SPERR_ALREADY_INITIALIZED This	event	source	has	been

initialized	to	use	a	notification
mechanism	other	than	a	Win32
event.		It	was	unable	to	re-
initialize	the	notification.

FAILED	(hr) Appropriate	error	message.

Remarks
A	blocking	call	returns	when	a	SAPI	notification	has	fired,	a
timeout	has	passed,	or	the	initialized	Win32	event	object	has
signaled.	Calling	this	method	will	automatically	initialize	the
event	source	to	use	an	event	handle	if	no	other	notification
mechanism	has	been	initialized.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpNotifySource::GetNotifyEventHandle
ISpNotifySource::GetNotifyEventHandle	retrieves	the
Win32	event	object	handle.	This	event	can	be	used	in	any	of	the
Win32	WaitForxxx	methods.
HANDLE			GetNotifyEventHandle		(void);

Parameters
None

Return	values

Value Description
Win32	event	handle Initialized	by	SetNotifyWin32Event	on

this	instance.
INVALID_HANDLE_VALUE Interface	not	initialized.

Remarks
Do	not	close	the	returned	handle,	as	it	is	owned	by	the	event
source	object.	Calling	this	method	will	automatically	initialize
the	event	source	to	use	an	event	handle	if	no	other	notification
mechanism	has	been	initialized.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpNotifySink
In	both	speech	synthesis	and	speech	recognition,	applications
receive	notifications	when	words	have	been	spoken	or	when
phrases	have	been	recognized.	SAPI	components	that	generate
notifications	implement	an	ISpNotifySource.
The	ISpNotifySource	and	ISpNotifySink	interfaces	alone	only
provide	a	mechanism	for	a	notification	but	no	information	on	the
events	that	caused	the	notification.	With	an	ISpEventSource
object,	an	application	can	retrieve	information	about	the	events
that	caused	the	notification.	An	ISpEventSource	also	provides
the	mechanism	to	filter	and	queue	events.	By	default,	an
application	(really	an	ISpNotifySink)	receives	no	notifications
from	ISpEventSource	until	SetInterests	has	been	called	to
specify	on	which	events	to	notify	or	queue.
When	an	application	is	notified	of	an	event	that	is	not	queued,
an	application	will	take	measures	based	on	which	event	sink	is
receiving	the	notification.	From	context	an	application	might
know	exactly	what	it	needs	to	do,	or	it	may	need	to	interact	with
the	components	which	sent	the	notifications.	If	an	application	is
notified	of	an	event	that	is	queued,	the	application	will	call
ISpEventSource::GetEvents	to	retrieve	the	actual	events	that
caused	a	notification.

When	to	Implement
Implement	this	interface	only	if	the	application	can	take
advantage	of	the	slightly	reduced	latency	of	a	free-threaded
notification.		Most	applications	should	use	one	of	the	simplified
notification	mechanisms	in	ISpEventSource	instead	of
implementing	this	interface	directly.	Free-threaded	notifications
are	difficult	to	implement	without	deadlocking	the	system.
Furthermore,	other	notification	mechanisms	require	less	code	on
the	part	of	the	developer.	The	application	needs	to	handle	free-
threaded	notifications	and	implement	the	ISpNotifySink
interface	when	an	ISpNotifySink	object	is	to	be	notified.

Because	free-threaded	notifications	can	occur	on	any	thread,	at
any	point	during	execution,	they	are	extremely	prone	to
deadlocks	and	re-entrance	problems.	The	only	interface	that
can	be	called	on	an	event	source	object	is
ISpEventSource::GetEvents.	If	the	ISpNotifySink	interface	is
implemented	directly,	the	code	should	only	use	some
mechanism	to	signal	another	thread	to	process	the	notification
(for	example,	a	Win32	event	or	an	I/O	completion	port),	and,	if
needed,	call	ISpEventSource::GetEvents.	Do	not	call	any	other
methods.

Methods	in	Vtable	Order

ISpNotifySink	Methods Description
Notify Called	by	an	ISpNotifySource	object

to	notify	the	sink	when	the	state	of
the	notify	source	has	changed.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpNotifySink::Notify
ISpNotifySink::Notify	is	called	by	an	ISpNotifySource	object	to
notify	the	sink	when	the	state	of	the	notify	source	has	changed.
HRESULT			Notify		(void);

Parameters
None

Return	values

Value Description
S_OK Function	completed

successfully.
FAILED(hr) Object	failed	notification.

Remarks
The	only	interface	that	can	be	called	on	an	event	source	object
is	ISpEventSource::GetEvents.	The	Notify()	method	should	only
signal	another	thread	to	process	the	notification	(for	example,	a
Win32	event	or	an	I/O	completion	port),	and	if	needed,	call
ISpEventSource::GetEvents.	Do	not	call	any	other	methods.	

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpNotifyTranslator
Once	the	SpNotifyTranslator	object	has	been	initialized,	the
ISpNotifySource::SetNotifySink	method	can	be	called,	passing
the	translator	object	interface	as	the	parameter.	The	translator
will	then	convert	the	call	to	ISpNotifySink::Notify	into	the
appropriate	notification.
Because	ISpNotifySource	supports	most	of	the	functionality	of
this	interface,	application	writers	will	not	normally	use	either
this	interface	or	the	SpNotifyTranslator	object.	In	fact,	SAPI	uses
this	object	to	implement	the	various	methods	of
ISpNotifySource.	The	method	InitWin32Event	supports	the
ability	to	initialize	the	translator	with	a	specific	event	object,
and	so	could	be	used	for	that	purpose.

Implemented	By
SpNotifyTranslator

Methods	in	Vtable	Order

ISpNotifyTranslator
Methods Description
ISpNotifySink	interface Inherits	from	ISpNotifySink	and	those

methods	are	accessible	from	an
ISpNotifyTranslator	object.

InitWindowMessage Sets	up	the	instance	to	send	window
messages	to	a	specified	window.

InitCallback Sets	up	this	instance	to	send
notifications	using	a	standard	C-style
callback	function.

InitSpNotifyCallback Enables	an	object	derived	from
ISpNotifyCallback	to	receive
notifications.

InitWin32Event Sets	up	a	Win32	event	object	to	be

used	by	this	instance.
Wait A	blocking	call	that	returns	when	a

SAPI	notification	has	fired	and	the
associated	Win32	event	object	has
been	signaled	or	a	timeout	has
passed.

GetEventHandle Returns	the	Win32	event	handle
associated	with	the	translator.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpNotifyTranslator::InitWindowMessage
ISpNotifyTranslator::InitWindowMessage	sets	up	the
instance	to	send	window	messages	to	a	specified	window.

HRESULT	InitWindowMessage(

			HWND						hWnd,

			UINT						Msg,

			WPARAM				wParam,

			LPARAM				lParam

);

Parameters

hWnd
[in]	Handle	to	the	window	whose	message	handler	function
will	receive	SAPI	notifications.

Msg
[in]	Message	number	which	will	be	passed	into	the	message
handler	function	of	the	window	hWnd.

wParam
[in]	wParam	that	will	be	passed	into	the	message	handler
function	of	the	window	hWnd.

lParam
[in]	lParam	that	will	be	passed	into	the	message	handler
function	of	the	window	hWnd

Return	values

Value Description

S_OK Function	completed	successfully.
SPERR_ALREADY_INITIALIZED SpTranslator	object	already

initialized.
E_INVALIDARG hWnd	is	invalid	or	bad.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpNotifyTranslator::InitCallback
ISpNotifyTranslator::InitCallback	sets	up	this	instance	to
send	notifications	using	a	standard	C-style	callback	function.
HRESULT	InitCallback(

			SPNOTIFYCALLBACK			*pfnCallback,

			WPARAM														wParam,	

			LPARAM														lParam

);

Parameters

pfnCallback
[in]	The	notification	callback	function	to	be	used.

wParam
[in]	Constant	WPARAM	value	that	will	be	passed	to	the
pfnCallback	function	when	it	is	called.

lParam
[in]	Constant	LPARAM	value	that	will	be	passed	to	the
pfnCallback	function	when	it	is	called.

Return	values

Value Description
S_OK Function	completed	successfully.
SPERR_ALREADY_INITIALIZED SpTranslator	object	is	already

initialized.
E_INVALIDARG pfnCallback	is	invalid	or	bad.
FAILED(hr) Appropriate	error	message.

Remarks

The	translator	implementation	uses	a	hidden	window	to	call
back	the	client	on	the	same	thread	that	was	used	to	initialize
the	event	source.	Notify	callbacks	are	the	result	of	processing	a
window	message.	When	this	notification	mechanism	is	used:

1.	 The	SPNOTIFYCALLBACK	method	will	always	be	called	on
the	thread	that	initialized	the	event	source	or	notify
translator	object.

2.	 The	thread	must	have	a	window	message	pump.

The	SPNOTIFYCALLBACK	function	is	declared	as	follows:
				typedef	void	__stdcall	SPNOTIFYCALLBACK(WPARAM	wParam,
LPARAM	lParam);

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpNotifyTranslator::InitSpNotifyCallback
ISpNotifyTranslator::InitSpNotifyCallback	sets	up	this
instance	to	call	the	virtual	method
ISpNotifyCallback::NotifyCallback	for	notifications.
HRESULT	InitSpNotifyCallback(

			ISpNotifyCallback			*pSpCallback,

			WPARAM															wParam,

			LPARAM															lParam

);

Parameters

pSpCallback
[in]	A	pointer	to	an	application-defined	implementation	of	the
ISpNotifyCallback	interface.

wParam
[in]	Constant	WPARAM	value	that	will	be	passed	to	the
ISpNotifyCallback::NotifyCallback	method	when	it	is	called.

lParam
[in]	Constant	LPARAM	value	that	will	be	passed	to	the
ISpNotifyCallback::NotifyCallback	method	when	it	is	called.

Return	values

Value Description
S_OK Function	completed	successfully.
SPERR_ALREADY_INITIALIZED Translator	object	is	already

initialized.
E_INVALIDARG pSpNotifyCallback	is	invalid	or

bad.

FAILED(hr) Appropriate	error	message.

Remarks
The	application	will	be	called	back	on	the	same	thread	that	calls
this	method.	The	callback	will	be	called	as	a	result	of	window
message	processing,	so	the	thread	must	have	a	message
pump.		For	more	details,	see	the	documentation	for
ISpNotifyCallback.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpNotifyTranslator::InitWin32Event
ISpNotifyTranslator::InitWin32Event	sets	up	a	Win32	event
object	to	be	used	by	this	instance.	
HRESULT	InitWin32Event(

				HANDLE			hEvent,

				BOOL					fCloseHandleOnRelease

);

Parameters

hEvent
Handle	of	an	existing	Win32	event	object	for	the	application
to	use	with	ISpNotifyTranslator.	If	this	parameter	is	NULL,	a
new	event	will	be	created.

fCloseHandleOnRelease
Specifies	whether	the	hEvent	handle	should	be	closed	when
the	object	is	released.	If	hEvent	is	NULL,	this	parameter	is
ignored	and	the	handle	will	always	be	closed	upon	release	of
the	object.

Return	values

Value Description
S_OK Function	completed	successfully.
SPERR_ALREADY_INITIALIZED Interface	is	already	initialized.
FAILED(hr) Appropriate	error	message.

Remarks

For	an	explanation	of	Win32	event	objects,	see	the	Win32
Platform	SDK	documentation.	The	translator	will	call	the	Win32

method	::SetEvent()	whenever	the	translator's	Notify()	method
is	called.
Initialize	an	event	object	for	this	instance,	and	then	use	either
the	WaitForNotifyEvent	or	GetNotfyEventHandle	method.	Win32
event	objects	and	SAPI	events	are	different.	This	method	is
similar	to	ISpNotifySource::SetNotifyWin32Event.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpNotifyTranslator::Wait
ISpNotifyTranslator::Wait	is	a	blocking	call	that	returns	when
a	SAPI	notification	has	fired	and	the	associated	Win32	event
object	has	been	signaled	or	a	timeout	has	passed.	This	method
is	applicable	only	with	objects	using	Win32	events.

HRESULT	Wait(

			DWORD			dwMilliseconds

);

Parameters

dwMilliseconds
[in]	Number	of	milliseconds	for	the	timeout	on	a	blocking
call.	If	set	to	INFINITE,	there	is	no	timeout.

Return	values

Value Description
S_OK Function	completed	successfully.
S_FALSE The	event	was	not	set	and	the	call

was	timed	out.
SPERR_UNINITIALIZED InitWin32Event	did	not	return

successfully	or	has	not	been	called.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpNotifyTranslator::GetEventHandle
ISpNotifyTranslator::GetEventHandle	returns	the	Win32
event	handle	associated	with	the	translator.	
Returns	the	Win32	event	object	handle	initialized	by
InitWin32Event	on	this	ISpNotifyTranslator	instance.	This	method
is	applicable	only	with	objects	using	Win32	events.
The	handle	is	not	a	duplicated	handle	and	should	not	be	closed
by	the	caller.

HANDLE			GetEventHandle			(void);

Parameters
None

Return	values

Value Description
handle The	handle	to	the	event
INVALID_HANDLE_VALUE Translator	has	not	been	properly

initialized	by	calling
InitWin32Event().

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpEventSink
This	interface	allows	event	sources	to	send	events	directly	to	an
event	sink	through	a	free-threaded	call.

Associated	Class	IDs
The	following	class	IDs	(CLSID)	may	be	used	with	this	interface.
A	complete	CLSID	listing	for	all	interfaces	is	in	the	Class	IDs
section.

CLSID_SpStreamFormatConverter
CLSID_SpStream

Methods	in	Vtable	Order

ISpEventSink	Methods Description
AddEvents Adds	events	directly	to	an	event

sink.
GetEventInterest Passes	back	the	event	interest	for

the	voice.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpEventSink::AddEvents
ISpEventSink::AddEvents	adds	events	directly	to	an	event
sink.
HRESULT	AddEvents(

			const	SPEVENT				*pEventArray,	

			ULONG													ulCount

);

Parameters

pEventArray
Pointer	to	an	array	of	SPEVENT	event	structures.

ulCount
Number	of	event	structures	being	passed	in.

Return	values

Value Description
S_OK Function	completed

successfully.
E_INVALIDARG pEventArray	is	bad	or	invalid
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpEventSink::GetEventInterest
ISpEventSink::GetEventInterest	passes	back	the	event
interest	for	the	voice.
HRESULT	GetEventInterest(

			ULONGLONG			*pullEventInterest

);

Parameters

pullEventInterest
[out]	Set	of	flags	of	type	SPEVENTENUM	defining	the	event
interest.

Return	values

Value Description
S_OK Function	completed

successfully.
E_POINTER Pointer	bad	or	invalid.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpEventSource
The	ISpEventSource	inherits	from	the	ISpNotifySource	interface.	
Using	the	methods	on	ISpNotifySource	an	application	can
specify	the	mechanism	by	which	they	receive	notifications.	
Applications	can	configure	which	events	should	trigger
notifications	and	which	events	retrieve	queued	events.
An	ISpEventSource	provides	the	mechanism	to	filter	and	queue
events.	By	default,	an	application	(really	an	ISpNotifySink)
receives	no	notifications	from	the	SpVoice	object,	until
SetInterest	has	been	called	to	specify	on	which	events	to	notify
or	queue.		For	the	SpRecoContext	object,	the	default	event
interest	is	set	to	queue	only	recognition	events.
When	an	application	is	notified	of	an	event	that	is	not	queued,	it
will	proceed	based	on	which	event	sink	receives	the	notification.
From	context,	an	application	might	know	exactly	what	it	needs
to	do,	or	it	may	need	to	interact	with	the	components	that	sent
the	notifications.	If	an	application	is	notified	of	a	queued	event,
the	application	will	call	ISpEventSource::GetEvents	to	retrieve
the	actual	events	that	caused	a	notification.

Implemented	By
SpRecoContext
SpSharedRecoContext
SpVoice

SpMMAudioIn
SpMMAudioOut
SpRecPlayAudio
SpStreamFormatConverter

Methods	in	Vtable	Order

ISpEventSource
Methods Description
ISpNotifySource
inherited	methods

All	methods	of	ISpNotifySource	are
accessible	from	this	interface

SetInterest Sets	the	type	of	events	the	client	is
interested	in.

GetEvents Retrieves	and	removes	the	queued
events.

GetInfo Retrieves	information	about	the
event	queue.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpEventSource::SetInterest
ISpEventSource::SetInterest	sets	the	type	of	events	the
client	is	interested	in.
Sets	the	type	of	events	which	will	invoke	a	notification	and
become	queued.
HRESULT	SetInterest(

			ULONGLONG			ullEventInterest,

			ULONGLONG			ullQueuedInterest

);

Parameters

ullEventInterest
[in]	Event	ID	flags	indicating	which	events	should	invoke	a
notification	to	the	event	sink	that	this	event	source	uses.
Must	be	of	type	SPEVENTENUM.

ullQueuedInterest
[in]	Event	ID	flags	indicating	which	events	should	be	queued.
The	event	flags	set	here	must	also	be	set	in	dwEventInterest.
Must	be	of	type	SPEVENTENUM.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG Invalid	flags	passed	in	one	or	more

fields.
FAILED(hr) Appropriate	error	message.

Remarks

If	SetInterest	is	never	called,	the	SR	engine	defaults	to
SPEI_RECOGNITION	as	the	only	event	and	queued	interest.	A
TTS	engine	defaults	to	zero	for	both	event	and	queued	interest.
With	either	engine,	no	events	will	be	passed	through	if	both
parameters	are	set	to	zero.

Note	that	the	SPFEI()	macro	will	be	used	to	convert	an	event
enumeration	into	the	appropriate	flags	to	pass	to	this	method.
For	example,	to	receive	the	SPEI_RECOGNITION	and
SPEI_HYPOTHESIS	events,	call	this	function	as	follows:

ULONGLONG	ullMyEvents	=	SPFEI(SPEI_RECOGNITION)	|	SPFEI(SPEI_HYPOTHESIS);

				hr	=	pEventSource->SetInterest(ullMyEvents,	ullMyEvents);

Events	specified	in	ullEventInterest	must	be	a	superset	of	those
specified	in	the	ullQueuedInterest.	Therefore	it	is	possible	to
have	notifications	of	events	but	not	actually	queue	them.	This
can	be	useful	for	polling	the	GetStatus	method,	especially	for
TTS.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpEventSource::GetEvents
ISpEventSource::GetEvents	retrieves	and	removes	the
queued	events.	Clients	will	want	to	use	the	helper	class
CSpEvent	to	retrieve	and	manipulate	these	events.

HRESULT	GetEvents(

			ULONG					ulCount,	

			SPEVENT		*pEventArray,

			ULONG				*pulFetched

);

Parameters

ulCount
[in]	Maximum	number	of	events	that	SPEVENT	structures	can
return.

pEventArray
[out]	Pointer	to	array	of	SPEVENT	structures.	Each	returned
event	is	written	to	one	of	these	SPEVENT	structures.

pulFetched
[out]	Pointer	to	the	number	of	events	returned.	If	ulCount	is
one,	this	parameter	is	not	required.
The	events	are	then	removed	from	the	queue.	The	events	not
returned	are	left	for	a	future	call	to	GetEvents.	It	is	possible
that	by	the	time	an	application	calls	GetEvents,	another
thread	has	processed	the	events	and	there	are	no	events	to
be	returned.	This	may	be	the	result	of	subsequent	Notify
calls.

Return	values

Value Description
S_OK Function	completed	successfully	and

all	requested	events	were	returned.
S_FALSE Success,	but	less	than	the	requested

amount	of	events	were	returned.
E_POINTER pEventArray	is	invalid.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpEventSource::GetInfo
ISpEventSource::GetInfo	retrieves	information	about	the
event	queue.

HRESULT	GetInfo(

		SPEVENTSOURCEINFO		*pInfo

);

Parameters

pInfo
[out]	Pointer	to	an	SPEVENTSOURCEINFO	structure	about	the
event.

Return	values

Value Description
S_OK Function	completed

successfully.
E_POINTER pInfo	is	invalid.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpNotifyCallback
This	is	not	a	COM	interface.	This	is	a	C++	virtual	interface	that
can	be	implemented	by	a	SAPI	client	application	to	receive
notifications.	Since	it	is	not	a	COM	interface,	the	application
does	not	need	to	implement	QueryInterface,	AddRef,	or	Release.
It	is	the	responsibility	of	the	client	code	to	control	the	lifetime	of
an	ISpNotifyCallback-style	notification.	To	remove	an	installed
notify	callback,	call	ISpEventSource::SetNotifySink(NULL).		The
final	release	of	an	object	that	supports	ISpEventSource	will
automatically	remove	an	installed	notify	callback.
The	SAPI	implementation	uses	a	hidden	window	to	call	the	client
back	on	the	same	thread	that	was	used	to	initialize	the	event
source.	Notification	callbacks	are	the	result	of	processing	a
window	message.	This	means	that	when	the	notification
mechanism	is	used:

1.	 The	NoitifyCallback	method	will	always	be	called	on	the
thread	that	initialized	the	event	source	or	notify
translator	object.

2.	 The	thread	must	have	a	window	message	pump.

Methods	in	Vtable	Order

ISpNotifySource
Methods Description
NotifyCallback Client	implemented	method	is	called

by	an	object	that	supports
ISpEventSource	when	an	event
occurs.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpNotifyCallback::NotifyCallback
ISpNotifyCallback::NotifyCallback	is	implemented	by	the
client	of	the	SpEventSource	object.	When	this	method	is	called,
the	wParam	and	lParam	parameters	are	set	to	the	values
specified	by	the	client	when	it	called
ISpNotifySource::SetNotifyCallbackInterface.	The	client	should
examine	the	appropriate	event	source	object	for	events.
HRESULT	NotifyCallback(

			WPARAM			wParam,

			LPARAM			lParam

);

Parameters

wParam
[in]	wParam	parameter	is	specified	by	the	client	when	it
called	the	ISpEventSource::SetNotifyCallback	interface.

lParam
[in]	lParam	parameter	is	specified	by	the	client	when	it	called
the	ISpEventSource::SetNotifyCallback	interface.

Return	values
Clients	should	return	S_OK.	Other	values	may	be	used	for
debugging	purposes,	but	will	be	ignored	by	SpEventSource
objects.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Grammar	Compiler	Interfaces	(API-level)
Many	speech	recognition	applications	are	built	on	voice
commands,	or	command	and	control	(C	and	C).	For	example,
users	playing	Solitaire	using	a	graphical	application,	may	want
to	add	C	and	C.	This	enables	the	user	to	speak	"new	game"	or
"play	the	ace	of	spades"	into	their	computer	microphone	instead
of	using	menu	options	or	keyboard	accelerators.	Microsoft	Office
XP	has	a	C	and	C	mode,	which	enables	user	to	speak	voice
commands	mapped	to	virtually	every	menu	command	and
many	parts	of	the	user	interface	(e.g.,	"File	New",	"Tools
Options",	"Outlook	Today",	etc.).
Applications	can	use	SAPI	5's	C	and	C	features	to	implement
functionality	similar	to	a	voice-command	enabled	Solitaire,
Office	XP,	and	other	innovative	applications.	The	C	and	C
features	of	SAPI	5	are	implemented	as	context-free	grammars
(CFGs).	A	CFG	is	a	structure	that	defines	a	specific	set	of	words,
and	the	combinations	of	these	words	that	can	be	used.	In	basic
terms,	a	CFG	defines	the	sentences	that	are	valid,	and	in	SAPI	5,
defines	the	sentences	that	are	valid	for	recognition	by	a	speech
recognition	(SR)	engine.
The	CFG	format	in	SAPI	5	defines	the	structure	of	grammars	and
grammar	rules	using	Extensible	Markup	Language	(XML).	The
CFG/Grammar	compiler	transforms	the	XML	tags	defining	the
grammar	elements	into	a	binary	format	used	by	SAPI	5-
compliant	SR	engines.	This	compiling	process	can	be	performed
either	before	or	during	application	run	time.
The	Speech	SDK	includes	a	grammar	compiler,	which	can	be
used	to	author	text	grammars,	compile	text	grammars	into	the
SAPI	5	binary	format,	and	perform	basic	testing	before
integration	into	an	application.	Also	see	the	SDK	Sample:
Grammar	Compiler.
SAPI	5	also	enables	applications	to	create	CFG	structures
programmatically	using	the	ISpGrammarBuilder	interface,	which

is	inherited	by	ISpRecoGrammar.	The	application	can	use	the
ISpGrammarBuilder	API	to	dynamically	update	an	already
loaded	SAPI	5	XML	grammar,	create	an	in-memory	SAPI	5
grammar,	and/or	save	an	in-memory	SAPI	5	grammar	to	a
memory	stream	(e.g.,	for	saving	grammars	to	the	hard	disk).
The	following	section	covers:

Text	Grammar	Format:	SAPI	5-defined	XML	grammar
format	for	defining	a	CFG	with	plain	text.
ISpGrammarBuilder:	SAPI	5	API	for	programmatically
creating,	editing,	or	saving	in-memory	and	binary	CFGs.

Applications	that	do	not	need	to	modify	a	grammar	at	run	time,
or	applications	that	want	to	increase	performance	of	their	CFG-
based	application	should	load	the	compiled	binary	form
statically	(not	dynamically).	If	loading	the	backend	grammar
compiler	at	application	run	time,	note	that	SAPI	must	allow	for
modification	and	validation	of	complicated	state/transition
graphs.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Text	Grammar	Format
The	context-free	grammar	(CFG)	format	in	SAPI	5	defines	the
structure	of	grammars	and	grammar	rules	using	the	Extensible
Markup	Language	(XML)	tagging	language.	The	CFG	compiler
transforms	the	XML	tags	defining	the	grammar	elements	into	a
binary	format	used	by	speech	engines.	This	compiling	process
can	be	performed	either	before	or	during	application	run	time.
Speech	recognition	engines	use	CFGs	to	constrain	the	user's
words	to	words	that	it	will	recognize.

Text	Grammar	Format	Section	Topics:

Name Description
Text	Grammar	Format
Overview

Describes	grammar	terminology	and
basic	structure.

Grammar	Rules	and
State	Graphs

Describes	rule	state	graphs	with
examples.

Designing	Grammar
Rules

General	and	advanced	guidelines	for
command	&	control	grammars.

Grammar	Format	Tags Describes	the	entire	set	of	XML
Grammar	tags	with	examples.

Grammar	Format	Tags:
Special	Characters

Describes	tags	which	use	special
characters.

SAPI	Grammar	Example:
Solitaire

Sample	XML	grammar	covering	basic
grammar	structure.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Text	Grammar	Format	Overview
The	Extensible	Markup	Language	(XML)	format	inside	a
GRAMMAR	XML	element	(block),	is	an	"expert–only–readable"
declaration	of	a	grammar	that	a	speech	application	uses	to
accomplish	the	following:

Improve	recognition	accuracy	by	restricting	and
indicating	to	an	engine	what	words	it	should	expect.
Improve	maintainability	of	textual	grammars,	by
providing	constructs	for	reusable	text	components
(internal	and	external	rule	references),	phrase	lists,	and
string	and	numeric	identifiers.

Improve	translation	of	recognized	speech	into	application
actions.	This	is	made	easier	by	providing	"semantic
tags,"	(property	name,	and	value	associations)	to
words/phrases	declared	inside	the	grammar.

A	GRAMMAR	XML	element	(block)	appears	in	a	XML	source
code	file.	The	XML	source	is	compiled	into	a	binary	grammar
format	and	is	the	format	used	by	SAPI	during	application	run
time.

The	following	section	covers:
Extensible	Markup	Language	(XML)
Attributes
Contents

Comments
How	SAPI	utilizes	XML	information
Frequently	used	definitions
Non–empty	concatenated	recognition	contents

Extensible	Markup	Language
The	textual	grammar	format	is	an	application	of	the	XML.	Every
XML	element	consists	of	a	start	tag	(<SOME_TAG>)	and	an	end
tag	(</SOME_TAG>)	with	a	case-insensitive	tag	name	and
contents	between	these	tags.	The	start	tag	and	the	end	tag	are
the	same	if	the	element	is	empty.	For	example,	the	tag
(<SOME_TAG/>).	For	more	information	on	the	use	of	XML
grammars,	please	see	the	Grammar	XML	Schema	section.
Additionally,	more	information	about	XML	and	the	XML
specification	is	available	at:	http://www.w3.org/TR/REC-xml.
For	example,	all	grammars	contain	the	opening	tag
<GRAMMAR>	as	follows:
<GRAMMAR>

...	grammar	content

</GRAMMAR>

Note	that	the	contents	of	the	grammar	is	contained	between	an
opening	tag	and	a	trailing,	closing	tag.
Back	to	top

http://www.w3.org/TR/REC-xml

Attributes
Attributes	of	an	XML	element	appear	inside	the	start	tag.	Each
attribute	is	in	the	form	of	a	name	followed	by	an	equal	sign
followed	by	a	string	which	must	be	surrounded	by	either	single
or	double	quotation	marks.	An	attribute	of	a	given	name	may
only	appear	once	in	a	start	tag.
In	summary,	the	literal	string	cannot	contain	either	<	or	',	if	the
string	is	surrounded	by	single	quotation	marks.	It	may	not
contain	",	if	the	string	is	surrounded	by	double	quotation	marks.
Furthermore,	use	all	ampersand	(&)	characters	only	in	an	entity
reference	such	as	&	and	>.	When	a	literal	string	is
parsed,	the	resulting	replacement	text	will	resolve	all	entity
references	such	as	>	into	its	corresponding	text,	such	as	>.	In
this	specification,	only	the	resulting	replacement	text	needs	to
be	defined	for	attribute	value	strings.	More	information	about
XML	and	the	XML	specification	is	available	at:
http://www.w3.org/TR/REC-xml.
For	example,	the	grammar	author	can	specify	the	language	(id)
of	the	grammar	as	follows.
<GRAMMAR	LANGID="409">

...	grammar	content

</GRAMMAR>

The	grammar	element	(<GRAMMAR>)	has	an	attribute,	called
LANGID	which	must	be	a	numeric	value.	The	grammar	author
specifies	the	language	attribute	by	placing	the	attribute	inside
the	brackets	of	the	opening	tag,	and	enclosing	the	attribute
value	(e.g.	409)	in	quotation	marks.

Back	to	top

http://www.w3.org/TR/REC-xml

Contents
The	contents	of	an	element	consists	of	text	or	subelements.
Formal	definitions	of	valid	contents	in	this	specification	are
provided	as	regular	and	"multi-set"	expressions.	The	pseudo-
element	name	"Text"	indicates	untagged	text.	With	these
definitions,	the	XML	specification	defines	the	exact	file	syntax
details.
For	example,	the	grammar	author	can	place	either	text	or	sub-
elements	inside	a	phrase	tag	as	follows.
<PHRASE>

			hello

</PHRASE>

<PHRASE>

			<OPT>world</OPT>

</PHRASE>

The	grammar	author	should	review	the	SAPI	5	Grammar	XML
Schema	to	determine	the	type	of	content	support	in	each	tag
(e.g.	text	and	sub-elements,	only	text,	only	sub-elements,	etc.).
Back	to	top

Comments
The	SAPI	5	XML	parser	treats	HTML	comment	tags	as	unknown
XML	tag	elements.	The	engine	should	provide	support	for
comments	and	other	unknown	XML	elements.
It	is	recommended	that	grammar	authors	place	comments	in
their	XML	files	(e.g.	mygrammar.xml),	similar	to	commenting
source	code,	since	the	XML	parser	will	safely	parse	the
comments	without	affecting	the	grammar	itself.	Similarly,	there
is	increase	in	size	of	the	binary	form	of	the	grammar	(e.g.
mygrammar.cfg)	since	the	SAPI	5	grammar	compiler	strips	out
the	comments.
An	example	of	a	comment	in	an	XML	grammar	is	as	follows.
			<!--	the	'travel'	rule	is	the	main	voice	command	for	our	app,	so	it	active	by	default	-->

			<RULE	ID="RID_Travel"	TOPLEVEL="ACTIVE">

						<PHRASE>travel	from</PHRASE>

						<!--	include	location	grammar	component,	so	we	can	change	the	location	list	at	runtime	-->

						<RULEREF	REFID="RID_Location"	PROPID="PID_FromDestination"/>

						<PHRASE>to</PHRASE>

						<!--	include	location	grammar	component,	so	we	can	change	the	location	list	at	runtime	-->

						<RULEREF	REFID="RID_Location"	PROPID="PID_ToDestination"/>

			</RULE>

Note	that	the	comment	blocks	always	begin	with	<!--	and	end
with	-->.
Back	to	top

How	SAPI	utilizes	XML	information
SAPI	uses	XML	content	in	the	following	two	methods.

1.	 The	SAPI	context-free	grammar	compiler,	compiles	the
XML	grammar	into	a	binary	grammar	format.	The
compiled	binary	grammar	is	loaded	into	the	SAPI	run-
time	environment	from	a	file,	memory,	or	object	(.DLL)
resource.

2.	 The	speech	recognition	(SR)	engine	queries	the	run-time
environment	for	available	grammar	information.

Back	to	top

Frequently	used	definitions
Untagged	text	declaring	a	sequence	of	words	that	the
recognition	engine	will	recognize.	Tentatively	this	text	is	only	the
not-necessarily-phonetic	representation	of	words	used	for
reading	words	whose	pronunciation	is	unknown	to	the	user	(for
example,	for	Japanese,	kana,	not	kanji);	this	form	will	be	called
the	spelling	form.	In	further	definitions	in	this	section,	Text	will
be	referenced	as	though	it	were	a	pseudo-element.
Back	to	top

Non–empty	concatenated	recognition	contents
The	contents	of	a	number	of	XML	elements	in	this	specification
such	as,	the	P	element,	contain	a	sequence	of	grammar
constructs	which	are	concatenated	together	(one	grammar
construct	after	another).	These	grammar	elements	must	be
recognized	in	order	for	the	contents	defined	to	be	recognized.
The	contents	must	be	one	of	the	following	(and	not	both):
Text	and	any	number	of	L,	P,	O,	or	RULEREF	elements	in	any
order	with	at	least	one	L,	P,	or	RULEREF.
For	more	information	on	the	use	of	XML	grammars,	please	see
the	Grammar	XML	Schema	section.
Back	to	top

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Grammar	Rules	and	State	Graphs
Grammar	rules	are	elements	that	SAPI	5-compliant	speech
recognition	(SR)	engines	use	to	restrict	the	possible	word	or
sentence	choices	during	the	SR	process.	SR	engines	employ
grammar	rules	to	control	the	elements	of	sentence	construction
using	the	predetermined	list	of	recognized	word	or	phrase
choices.	This	list	of	recognized	words	or	phrase	choices
contained	in	the	grammar	rules	forms	the	basis	of	the	SR	engine
vocabulary.
The	phrase	or	sentence	uses	each	grammar	rule	element	to
determine	the	recognition	path.	For	example,	examine	the
phrase	describing	travel	plans,	"I	would	like	to	drive	from
Seattle	to	New	York,"	and	note	that	there	are	elements	that
determine	the	resulting	information.	In	this	example,	a	person	is
planning	to	drive	to	New	York	from	Seattle.	This	is	a	very	simple
illustration	of	what	could	be	a	very	complex	problem.
Determining	the	same	travel	plans	without	limiting	the	method,
direction,	and	travel	destination	would	result	in	an	infinite
number	of	travel	options.
The	resulting	information	can	be	determined	by	restricting	the
available	choices	for	a	given	sentence.	Using	this	method,	the
resulting	information	can	be	composed	only	from	certain
choices,	thus	eliminating	the	possibility	of	an	infinite	number	of
travel	plan	combinations.
	I	would	like	to	drive	from	Seattle	to	New	York.
																		|						|					|					|					|
															[Method]		|					|					|					|
															/				\				|					|					|					|
												Fly			Drive		|					|					|					|
																									|					|					|					|
																		[Direction]		|					|					|
																				/					\				|					|					|
																		From				To			|					|					|

																															|					|					|
																												[City]			|					|
																											Seattle			|					|
																										New	York			|					|
																							Los	Angeles			|					|
																							Albuquerque			|					|
																																					|					|
																														[Direction]		|
																																	/				\				|
																																To			From		|
																																											|
																																								[City]
																																								Seattle
																																								New	York
																																								Los	Angeles
																																								Albuquerque

The	elements	of	interest	in	the	example	phrase	are	as	follows:

Method	of	travel	(fly	or	drive),	specifically	"drive"

Travel	direction	(from	or	to),	specifically	"from"
The	city	of	origin	for	the	travel	plan	(from),
specifically	"Seattle"

Travel	direction	compliment	(from	or	to),	specifically
"to"
The	city	of	destination	for	the	travel	plan	(to),
specifically	"New	York"

The	information	can	also	be	displayed	as	a	graph	of	states	and
arcs,	where	each	arc	can	have	text	(or	semantic	tags/properties)
attached.	The	valid	phrases	are	the	unique	paths	through	the
graph,	starting	at	the	root	and	ending	at	a	terminal	state.	Each
state	is	denoted	by	the	term	(root	node,	interim	node,	and	null)

for	the	terminal	node.	The	spoken	text	is	denoted	by	words
surrounded	by	quotation	marks.	The	semantic	property	names
are	denoted	by	bold,	block	quoted	words.
													(root	node)
																		|
																		|"I	would	like	to"
																		|
																		|
											(interim	node)
																		/\
																	/		\
									"drive"/				\"fly"	[METHOD]
																\				/
																	\		/
																		\/
											(interim	node)
																		/\
											"from"/		\"to"			[DIRECTION]
																	\		/
																		\/
											(interim	node)
																		/\
												_____/		_____
											/			\							/		\
										/					\					/				\		[CITY_1]
									/							|			/						\
									|							|		|								\
"Seattle"|			"New|		|"Los					|"Albuquerque"
									|		York"|		|Angeles"	|		
									|							|		|									/
									|							|		|								/
										\						/		\							/
											\				/				\					/

												___\					___/
																	\				/
																		\		/
																			\/
											(interim	node)
																			/\
												"from"/		\"to"			[DIRECTION]
																		\		/
																			\/
											(interim	node)
																			/\
													_____/		_____
												/			\							/		\
											/					\					/				\
										/							|			/						\
										|							|		|								\
	"Seattle"|			"New|		|"Los					|"Albuquerque"
										|		York"|		|Angeles"	|		
										|							|		|									/
										|							|		|								/		[CITY_2]
											\						/		\							/
												\				/				\					/
													___\					___/
																		\				/
																			\		/
																				\/
																		(NULL)

If	the	user	speaks	the	following	phrase:
I	would	like	to	travel	from	Seattle	to	New	York.
Grammar	rules	become	concatenated	phrase	elements.	These
phrase	elements	are	limited	to	the	defined	set	of	grammars.
Control	can	be	significantly	improved	over	the	resulting

information	by	restricting	the	input	choice	to	a	limited	set	of
possibilities.	Otherwise,	obtaining	the	travel	plan	information
from	the	same	sample	phrase,	"I	would	like	to	travel	from
Seattle	to	New	York,"	would	be	considerably	more	ambiguous.
The	complexity	of	parsing	the	same	sentence	increases
exponentially	without	using	a	defined	set	of	choices.	Imagine
the	possible	number	of	combinations	in	a	sentence	that	is	not
restricted	to	a	finite	list	of	combinations.	For	example,	examine
the	possible	choice	combinations	by	moving	the	mouse	over	the
following	sentence.
To	display	the	available	choice	selections	in	the	example	phrase,
move	the	mouse	over	the	underlined	text	below:
"I	want	to—(unknown	travel	method)
—(unknown	travel	direction)—(unknown	city)
—(unknown	travel	direction)	(unknown	city)."	The	amount	of
predictable	information	is	significantly	reduced	without	the
ability	to	constrain	the	available	choices	within	a	sentence.
The	semantic	structure	(using	name/value	pairs)	is:
[METHOD="drive"],	[DIRECTION="from"],
[CITY_1="Seattle"],	[DIRECTION="to"],	[CITY_2="New
York"]
By	parsing	the	semantic	structure,	the	application	can	easily
and	accurately	analyze	the	content	of	the	original	phrase,
without	parsing	or	analyzing	individual	words.	The	application
developer	can	then	write	application	logic	to	perform	specific
actions	based	on	the	previously	mentioned	semantic	names,
and	specialize	the	action	based	on	the	values	of	each	semantic
property.	The	grammar	author	can	add	to	or	delete	from	the
lists	of	words,	without	breaking	the	application	logic.
Grammar	rules	apply	to	the	following:

TOPLEVEL	versus	non-TOPLEVEL
A	grammar	tagged	as	TOPLEVEL	can	be	in	an	active	or

inactive	state.	The	rules	that	import	a	grammar	can	override
the	activation	state	of	a	rule.	This	conditional	state	can	be
configured	dynamically	at	run	time.	If	an	inactive	grammar	is
included	in	another	grammar	or	grammar	rule,	ignore	the
inactive	state.	When	a	rule	is	activated,	an	SR	engine	will
accept	only	speech	satisfying	at	least	one	of	the	active	rules
contained	in	the	loaded	grammar.	If	a	rule	is	not	marked
TOPLEVEL,	then	it	is	a	component	rule,	and	not	directly
accessible	(i.e.,	the	user	can	only	speak	TOPLEVEL	rules	for
valid	recognition).

Non-terminal
A	grammar	node	is	considered	to	be	non-terminal	if	it	is	the
beginning	of	a	choice	selection	or	a	group	of	choice
selections.	For	example,	the	grammar	node	Dog	is	non-
terminal	when	the	subsequent	choice	selections	are	types	of
dogs.	This	type	of	grammar	node	is	defined	as	non-terminal
because	of	its	choice	selections.

Terminal
A	grammar	node	is	considered	to	be	terminal	if	it's	the	only
word	in	the	recognized	vocabulary	which	can	be	spoken.
Using	the	Dog	example	above,	terminal	grammar	nodes	are
the	type	of	dogs.

																						--------------------+
															Animal																					+---	Non-terminal	node
																	|				--------------------+
																	|			
														/--+--\										-----------+
		Cat--------/							\------Dog											+---	Non-terminal	node
			|																							|			-----------+
			|																							|
			|																							|			-----------+
			+--	Burmese													+--	Airedale			|

			+--	Himalayan											+--	Poodle					+---	Terminal	nodes
			+--	Persian													+--	Schnauzer		|
			+--	Siamese													+--	Whippet				|
																															-----------+

The	text	format	grammar	XML	tags	follow	block	scope	methods
that	are	similar	to	HTML	tags.	That	is,	each	tag	has	an	opening
tag	and	a	corresponding	closing	tag.	There	is	more	information
about	XML	syntax	in	the	Grammar	XML	Schema	section.

XML	tag	syntax Contents
<sometag	NAME="some_name"
VAL="some_value">

Start	of	"sometag"	tag
scope	which	includes	the
name	and	value
information.

</sometag> End	of	the	"sometag"	scope.

Back	to	top

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Designing	Grammar	Rules
Speech	applications	often	use	context-free	grammars	(CFG)	to
parse	the	recognizer	output	and	in	some	instances,	to	act	as	the
recognizer's	language	model.	Speech	recognition	engines	use
CFGs	to	constrain	the	user's	words	to	words	that	it	will
recognize.	If	the	CFG	is	augmented	with	semantic	information
(property	names	and	property	values	as	explained	below),	a
SAPI	component	converts	the	recognized	word	string	into	a
name/value-meaning	representation.	The	application	then	uses
the	meaning	representation	to	control	its	part	of	the
conversation	with	the	user.
The	following	section	covers:

Semantic	Properties	or	Tags
Separation	of	Dynamic	and	Static	Content

Use	Dynamic	Rules	for	Language	Flexibility
Retrieving	Semantic	Tags	or	Properties	from	Recognition
Results

Using	Semantic	Properties,	Hypotheses,	and	"Property
Pushing"

Semantic	properties	or	tags
For	example,	the	phrase	"Please	schedule	a	meeting	with	Amy
Anderson,"	could	be	annotated	as	follows:
Phrase	element													Grammar	element												Contents

"schedule	a	meeting"						"request:	meeting"							//	attribute	and	value

"with"																				"participants:"										//	only	attribute

"Amy	Anderson"												"<e-mail	alias>"										//	value	type

Defining	the	different	grammar	element	components	could
result	in	the	following:
Please	schedule	a	meeting	with	Amy	Anderson.

									|									|							|							|

									|									|							|							|

									|									|							|							|

					request:	meeting						|							|

																											|							|

																			participants:	AmyAnd

The	example	sentence	"Please	schedule	a	meeting	with	Amy
Anderson,"	generates	the	following	SAPI	5	grammar:
<RULE	TOPLEVEL=ACTIVE>

								<P	PROPNAME="request"	VAL="meeting">schedule	a	meeting</P>

								<P>with</P>

								<L	PROPNAME="participants">

												<P	VAL="AmyAnd">Amy	Anderson</P>

												<P	VAL="tbremer">Ted	Bremer</P>

												<P	VAL="fralee">Frank	Lee</P>

												<P	VAL="crandall">Cynthia	Randall</P>

												<P	VAL="swhite">Suki	White</P>

												<P	VAL="kyoshida">Kim	Yoshida</P>

								</L>

			</RULE>

The	result	of	saying	the	example	sentence	"Please	schedule	a

meeting	with	Amy	Anderson,"	would	be	as	follows:
request:meeting
participants:AmyAnd

Back	to	top

Separation	of	dynamic	and	static	content
Applications	should	separate	dynamic	rule	content	from	static
rule	content	to	implement	good	grammar	design	and	to	improve
initial	SAPI	grammar	compiler	performance.	For	example,	using
the	above	grammar	that	uses	a	list	of	names,	the	application
could	create	a	separate	rule	(isolated	in	its	own	grammar)	that
contained	only	the	names.	The	list	of	names,	based	on	an
address	book	or	past	user	data,	can	be	updated	at	run	time.	The
static	grammar	would	then	contain	a	rule	reference	(e.g.,
RULEREF)	to	the	dynamic	content.	When	the	application	starts
up,	it	can	quickly	load	the	static	content,	without	loading	the
SAPI	grammar	compiler,	to	prevent	delay	in	the	startup
sequence.	Then,	the	application	could	load	the	dynamic
content,	which	requires	SAPI	to	initialize	the	backend	grammar
compiler.
Back	to	top

Use	dynamic	rules	for	language	flexibility
Suppose	an	application	needs	to	support	a	phrase	such	as	"send
new	e-mail	to	NAME."	The	phrase	"send	new	e-mail	to"	is	static,
and	known	by	the	application	at	design	time,	well	before	run
time.	The	application	could	use	the	following	static	XML
grammar	to	support	these	phrases.
<GRAMMAR	LANGID="409"><!--	american	english	grammar	-->

			<RULE	NAME="E-MAIL"	TOPLEVEL="INACTIVE"><!--	inactive	by	default,	to	prevent	premature	recognitions	-->

						<PHRASE>send	new	e-mail	to</P>

						<RULEREF	NAME="ADDRESS_BOOK"	PROPNAME="NAME"/><!--	add	TRACK_PROP	semantic	property	tag	for	easy	information	retrieval	-->

			</RULE>

			<RULE	NAME="ADDRESS_BOOK"	DYNAMIC="TRUE">

						<PHRASE>placeholder</PHRASE><!--	we'll	stick	placeholder	text	here	that	we'll	replace	immediately	at	runtime	-->

			</RULE>

</GRAMMAR>

The	source	code	to	manipulate	the	dynamic	rule,
"ADDRESS_BOOK"	follows:
					HRESULT	hr	=	S_OK;

				//	create	a	new	grammar	object

				hr	=	cpRecoContext->CreateGrammar(GRAM_ID,	&cpRecoGrammar);

				//	Check	hr

				//	deactivate	the	grammar	to	prevent	premature	recognitions	to	an	"under-construction"	grammar

				hr	=	cpRecoGrammar->SetGrammarState(SPGS_DISABLED);

				//	Check	hr

				//	load	the	email	grammar	dynamically,	so	changes	can	be	made	at	runtime

				hr	=	cpRecoGrammar->LoadCmdFromFile(L"email.xml",	SPLO_DYNAMIC);

				//	Check	hr

				SPSTATEHANDLE	hRule;

				//	first	retrieve	the	dynamic	rule	ADDRESS_BOOK

				hr	=	cpRecoGrammar->GetRule(L"ADDRESS_BOOK",	NULL,	SPRAF_Dynamic,	FALSE,	&hRule);

				//	Check	hr

				//	clear	the	placeholder	text,	and	everything	else	in	the	dynamic	ADDRESS_BOOK	rule

				hr	=	cpRecoGrammar->ClearRule(hRule);

				//	Check	hr

				//	add	the	real	address	book	(e.g.	"Frank	Lee",	"self",	"SAPI	beta",	etc.).

				//	Note	that	ISpRecoGrammar	inherits	from	ISpGrammarBuilder,

				//	so	application	gets	the	grammar	compiler	and	::AddWordTransition	for	free!

				hr	=	cpRecoGrammar->AddWordTransition(hRule,	NULL,	L"Frank	Lee",	NULL,	SPWT_LEXICAL,	1,	NULL);

				//	Check	hr

				hr	=	cpRecoGrammar->AddWordTransition(hRule,	NULL,	L"self",	NULL,	SPWT_LEXICAL,	1,	NULL);

				//	Check	hr

				hr	=	cpRecoGrammar->AddWordTransition(hRule,	NULL,	L"SAPI	beta",	NULL,	SPWT_LEXICAL,	1,	NULL);

				//	Check	hr

				//	...	add	rest	of	address	book

				//	commit	the	grammar	changes,	which	updates	the	grammar	inside	SAPI,

				//				and	notifies	the	SR	Engine	about	the	rule	change	(i.e.	"ADDRESS_BOOK"

				hr	=	cpRecoGrammar->Commit(NULL);

				//	Check	hr

				//	activate	the	grammar	since	"construction"	is	finished,

				//				and	ready	for	receiving	recognitions

				hr	=	cpRecoGrammar->SetGrammarState(SPGS_ENABLED);

				//	Check	hr

Back	to	top

Retrieving	semantic	tags	or	properties	from
recognition	results
Note	the	XML	grammar	used	a	semantic	property	tag,	NAME,	in
the	static	grammar.	The	property	will	enable	the	application	to
retrieve	the	dynamic	phrase	very	easily	at	run	time.	Whenever
recognition	is	received	with	rule	name,	"E-MAIL,"	search	the
property	tree	(see	SPPHRASE.pProperties)	for	the	property
named	"NAME."	Then	call	ISpRecoResult::GetPhrase	with
(SPPHRASEPROPERTY)pNameProp.ulFirstElement	and
(SPPHRASEPROPERTY)pNameProp.ulFirstElement,	and	the
application	can	retrieve	the	exact	text	that	the	user	spoke	into
the	dynamic	rule	(e.g.,	user	says	"send	new	e-mail	to	Frank
Lee,"	and	you	retrieve	"Frank	Lee,"	user	says	"send	new	e-mail
to	self,"	and	you	retrieve	"self,"	etc.).
				//	activate	the	e-mail	rule	to	begin	receiving	recognitions

				hr	=	cpRecoGrammar->SetRuleState(L"EMAIL",	NULL,	SPRS_ACTIVE);

				//	Check	hr

				PWCHAR	pwszEmailName	=	NULL;

				//	default	event	interest	is	recognition,	so	wait	for	recognition	event

				//	NOTE:	this	could	be	placed	in	a	loop	to	process	multiple	recognitions

				hr	=	cpRecoContext->WaitForNotifyEvent(MY_REASONABLE_TIMEOUT);

				//	Check	hr

				//	event	notification	fired

				if	(S_OK	==	hr)	{

		 CSpEvent	spEvent;

									//	if	event	retrieved	and	it	is	a	recognition

	 if	(S_OK	==	spEvent.GetFrom(cpRecoContext)	&&	SPEI_RECOGNITION	==	spEvent.eEventId)	{

													//	get	the	recognition	result

	 				CComPtr<ISpRecoResult>	cpRecoResult	=	spEvent.RecoResult();

													if	(cpRecoResult)	{

																	SPPHRASE*	pPhrase	=	NULL;

																	//	get	the	phrase	object	from	the	recognition	result

																	hr	=	cpRecoResult->GetPhrase(&pPhrase);

																	if	(SUCCEEDED(hr)	&&	pPhrase)	{

																					//	if	"EMAIL"	rule	was	recognized	...

																					if	(0	==	wcscmp(L"EMAIL",	pPhrase->Rule.pszName)	{

																									//	...	ensure	that	first	property	is	"NAME"

																									if	(0	==	wcscmp(L"NAME",	pPhrase->pProperties->pszName))	{

																													//	store	the	user's	spoken	"send-to"	name

																													//				in	a	variable	for	later	processing

																													hr	=	pPhrase->GetText(pPhrase->pProperties->ulFirstElement,

																																																			pPhrase->pProperties->ulCountOfElements,

																																																			FALSE,

																																																			&pwszEmailName,

																																																			NULL);

																													//	Check	hr

																										}

																					}

																					//	free	the	phrase	object

																					if	(pPhrase)	::CoTaskMemFree(pPhrase);

																	}

													}

	 }

			}

Back	to	top

Using	semantic	properties,	hypotheses,	and
"property	pushing"
SAPI	supports	a	feature	called	"semantic	property	pushing"
which	enables	applications	to	detect	the	semantic	property
structure	more	accurately	at	recognition	time.	"Property
pushing"	is	done	by	SAPI	at	compile	time,	whereby	the	compiler
moves	semantic	properties	to	the	last	terminal	node	within	a
rule	that	remains	unambiguous.
For	example,	the	phrases	"a	b	c	d"	and	"a	b	e	f	g"	both	have
prefixes	of	"a	b".	The	compiler	will	automatically	split	the
phrases	into	three	separate	phrases,	"a	b",	"c	d",	and	"e	f	g",
where	the	first	phrase	is	the	common	prefix	to	both
recognizable	phrases.
The	purpose	of	this	feature	is	to	enable	applications	that	place
properties	on	the	phrases	to	detect	which	branch	is	being
hypothesized	as	soon	as	the	first	unambiguous	(non-common)
portion	of	the	phrase	is	spoken.	When	the	user	speaks	"a	b"	it	is
not	clear	if	the	user	will	say	"a	b	c	d"	or	"a	b	e	f	g".	If	the	user
then	says	"e",	the	application	can	obviously	eliminate	the	"a	b	c
d"	option.	If	the	grammar	author	attached	properties	to	the	end
of	both	phrases,	the	semantic	property	would	be	returned	as
soon	as	the	user	spoke	the	first	unambiguous	portion	of	the	text
(e.g.,	"c"	or	"e").
Note	that	the	compiler	will	report	an	error	("Ambiguous
Semantic	Property")	if	multiple	properties	are	pushed	to	the
same	node	and	two	phrases	are	not	unique.	For	example,	the
following	grammar	will	fail	with	"ambiguous	semantic	property"
because	both	phrases	are	the	same	and	the	compiler	cannot
determine	which	property	to	assign	to	phrases.
				<RULE	NAME="AmbiguousProperty"	TOPLEVEL="ACTIVE">

								<L>

												<P	PROPID="42">this	is	a	test</P>

												<P	PROPID="3">different	sentence</P>

												<P	PROPID="75">this	is	a	test</P>

								</L>

				</RULE>

The	first	and	third	phrases	are	the	same.	Note	that	these	results
are	by	design	and	are	meant	to	prevent	creating	grammars	that
have	multiple	phrases	with	conflicting	semantic	properties.
There	are	a	number	of	scenarios	where	property	pushing	can	be
helpful	for	an	application.
One	possibility	is	an	application	that	wants	to	detect	failures
more	intelligently.	When	a	false	recognition	occurs,	the
application	can	detect	the	last	semantic	property	returned	and
display	an	error	message	relevant	to	the	attempted	voice
command.
Another	scenario	might	be	that	of	high-performance
applications	that	wish	to	increase	responsiveness	of	the	user
interface	when	a	long	voice	command	is	spoken.	The	application
can	wait	for	the	first	unambiguous	semantic	property	to	be
received	(using	hypothesis)	and	then	fire	the	response	action
without	waiting	for	the	voice	command	to	complete.	This	has
the	added	benefit	of	allowing	users	to	speak	partial	voice
commands	(e.g.,	instead	of	"go	to	website	w	w	w	Microsoft	com"
the	user	can	say	the	slightly	shorter	"go	to	website	w	w	w
Microsoft").	The	drawback	is	that	the	application	must	guard
against	performing	critical,	unrecoverable	actions	before
completing	the	phrase	(e.g.,	"delete	hard	drive"	might	fire	after
only	"delete"	if	there	are	no	other	"delete"	commands).	Careful
application	design	should	enable	the	application	to	appear
quicker	and	easier	to	use,	without	sacrificing	robustness.	By
performing	user	studies,	the	application	designer	can	decide
which	commands	are	capable	of	short	circuiting	and	which	are
more	critical.
Back	to	top

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Grammar	Format	Tags
The	SAPI	text	grammar	format	is	composed	of	XML	tags,	which
can	be	structured	to	define	the	phrases	that	the	speech
recognition	engine	recognizes.	The	formal	XML	schema	for	the
text	grammar	format	is	defined	in	a	separate	document,	called
XML	Schema:	Grammar.	The	following	document	explains	each
tag	in	more	detail,	including	sample	source	code,	sample	XML
grammar	snippets,	and	relevant	application	scenarios.
The	XML	tags	descriptions	are	organized	by	XML	element,	where
each	element	description	contains	information	for	relevant
attributes.

XML	Tags:	Elements

<DEFINE>
Summary:	The	DEFINE	tag	is	used	for	declaring	a	set	of	string	identifiers	for	numeric	values.

XML	Attributes:
	 None

XML	Parent	Elements:
	 GRAMMAR:	The	container	for	the	entire	XML	grammar.	

XML	Child	Elements:
	 ID	(1	or	more	required):	The	DEFINE	tag	can	contain	one	or	more	
	 	 	 of	which	defines	one	string	identifier.

Detailed	Description:
	 None

XML	Grammar	Sample(s):

	 <GRAMMAR>
	 	 <DEFINE>
	 	 	 <ID	NAME="TheNumberFive"	VAL="5"/>
	 	 </DEFINE>

	 	 <!--	Note	that	the	ID	takes	a	number,	which	is	actually	"5"	-->
	 	 <RULE	ID="TheNumberFive"	TOPLEVEL="ACTIVE">
	 	 	 <P>five</P>
	 	 </RULE>
	 </GRAMMAR>

Programmatic	Equivalent:
	 See	the	ID	tag.

Back	to	top

<DICTATION>

Summary:	The	DICTATION	tag	is	used	in	rules	or	phrases	that	need	basic	dictation	support.

XML	Attributes:
	 MAX	(optional,	type=VT_I4,	default=MIN):	Specifies	the	maximum	number	of	dictation
	 	 words	that	can	be	recognized.
	 	 The	application	must	specify	a	MAX	value	that	is	greater	than	or	equal	to
	 	 	 the	MIN	value.	The	application	can	specify	a	pseudo-infinite	maximum
	 	 	 by	specifying	INF	as	the	MAX.	The	pseudo-infinite	is	actually	255
	 	 	 dictation	words.
	 	 An	application	that	needs	free-form	dictation,	such	as	the	subject	line	of
	 	 	 an	email	should	use	a	large	MAX.	Alternatively,	an	application	that
	 	 	 needs	to	recognize	a	person's	name	may	want	a	much	smaller	value,
	 	 	 such	as	5	words.
	 MIN	(optional,	type=VT_I4,	default=1):	Specifies	the	minimum	number	of	dictation
	 	 	 words	that	must	be	recognized.

	 	 If	the	grammar	author	specifies	the	MIN	value,	and	the	recognizer	does	not
	 	 	 meet	the	minimum,	the	rule	will	fail	to	be	recognized.
	 	 A	Scenario	where	it	may	make	sense	to	set	a	value	greater	than	one	would	be
	 	 	 an	application	that	is	asking	for	a	first	and	last	name.
	 PROPID	(optional,	type=VT_I4):	Specifies	the	semantic	property's	numeric	identifier.
	 PROPNAME	(optional):	Specifies	the	semantic	property's	string	identifier.

XML	Parent	Elements:
	 LIST,	L:	List	of	phrases	which	can	be	recognized.
	 PHRASE,	P:	Phrase	that	must	be	recognized	for	the	containing	rule	to	be	recognized.
	 OPT,	O:	Optional	phrase	that	may	be	recognized.
	 RULE:	Rule	that	contains	phrases	or	text	to	be	recognized.

XML	Element	Children:
	 None.

Detailed	Description:
	 The	DICTATION	tag	is	designed	for	applications	that	need	to	integrate	command	&
	 	 control	and	dictation	support	into	a	CFG.	For	example,	an	application	may
	 	 allow	the	user	to	speak	free-form	dictation	into	a	command	(e.g.	"save	document
	 	 as	our	family's	budget"	where	"our	family's	budget	is	free-form	dictation).
	 The	application	may	also	create	a	CFG	which	supports	a	set	of	specific	phrases	or	words,
	 	 and	also	includes	a	single	DICTATION	tag	in	case	of	an	unexpected	user-phrase.
	 	 For	example,	a	CFG	may	include	a	set	of	address	book	names	which	are	known,	and
	 	 if	the	user	speaks	another	name,	then	the	application	prompts	the	user	for
	 	 validation	of	the	dictated	result.	Note	that	the	SR	engine's	accuracy	may
	 	 suffer	by	mixing	dictation	and	CFG	phrases	together,	since	many	words	sound
	 	 similar,	and	a	CFG	is	generally	preferred	for	application	development	with	known
	 	 words.
	 The	grammar	author	can	also	use	a	special	character,	asterisk	(*)	instead	of	the	entire
	 	 XML	tag.	See	XML	Grammar	Format:	Special	Dictation	Tag
	 By	using	semantic	properties,	the	application	can	easily	retrieve	the	exact	text	that

	 	 was	dictated	by	the	speaker.	To	specify	a	semantic	property	for	the	
	 	 the	grammar	author	should	specify	the	PROPID	and/or	
	 	 SAPI	run	time	will	automatically	set	the	semantic	tag's	starting	phrase	element,
	 	 allowing	the	application	to	search	for	the	specific	semantic	property	in	the
	 	 properties	hierarchy	(see	SPPHRASEPROPERTY.ulFirstElement).	If	multiple	dictation
	 	 words	are	recognized	by	the	SR	engine	(e.g.	DICTATION
	 	 run	time	will	generate	multiple	semantic	properties,	one	for	each	word,	where
	 	 all	of	the	properties	will	have	the	same	numeric	ID	and/or	string	NAME.
	 If	the	speech	recognition	engine	supports	multiple	dictation	topics	(e.g.	spelling,
	 	 general,	legal,	medical,	etc.),	the	DICTATION	tag	in	the	grammar	will	refer	to
	 	 topic	that	was	selected	when	ISpRecoGrammar::LoadDictation
	 	 topic	was	not	explicitly	selected,	then	the	default	SR	engine	dictation	topic
	 	 will	be	loaded.	Currently,	it	is	not	possible	to	load	multiple	dictation	topics
	 	 inside	of	a	single	command	&	control	grammars.	Application	should	create	multiple
	 	 grammar	objects	to	implement	the	latter	scenario.
	 If	there	is	ambiguity	between	a	dictation	phrase	and	a	CFG	phrase,	the	speech
	 	 recognition	engine	will	typically	choose	the	CFG	phrase.	Preferring	CFGs	over
	 	 dictation	prevents	dictation	from	automatically	consuming	all	CFG	phrases.
	 The	speech	recognition	engine	must	support	dictation	inside	of	a	CFG	for	the	grammar
	 	 to	load	and	activate	successfully.	The	application	can	determine	if	an	engine
	 	 supports	the	DICTATION	tag	by	retrieving	the	SR	engine's	object	token	(see
	 	 ISpRecognizer::GetRecognizer),	and	then	checking	for	the	existence	of	the
	 	 engine	attribute	"DictationInCFG"	(see	ISpObjectToken::MatchesAttributes
	 	 The	engine	can	specify	support	for	the	DICTATION
	 	 CFG	phrase	(attribute	value="Anywhere"),	or	only	at	the	end	(attribute
	 	 value="Trailing").

XML	Grammar	Sample(s):
	 <GRAMMAR>
	 	 <!--	basic	command	to	create	a	self-note	for	the	user	with	free-form	text	-->
	 	 <RULE	ID="SelfNote"	TOPLEVEL="ACTIVE">
	 	 	 <P>note	to	self</P>
	 	 	 <DICTATION	MAX="INF"/>

	 	 </RULE>

	 	 <!--	command	to	query	a	name	from	an	address	book	-->
	 	 <RULE	ID="QueryName"	TOPLEVEL="ACTIVE">
	 	 	 <P>list	first	names	of	all	persons	with	last	name</P>
	 	 	 <!--	Store	only	one	word	for	the	last	name,	more	will	fail	command	-->
	 	 	 <DICTATION	MAX="1">
	 	 </RULE>

	 	 <!--	command	to	handle	first	and	last	names	with	semantic	properties	-->
	 	 <!--	By	using	semantic	properties,	the	application	can	ignore	all	of
	 	 	 the	text	returned,	except	for	the	text	associated	with	the	dictation
	 	 	 tags'	semantic	properties	"PID_FirstName"	and	"PID_LastName"	-->
	 	 <RULE	ID="SubmitName"	TOPLEVEL="ACTIVE">
	 	 	 <P>
	 	 	 	 my	first	name	is
	 	 	 	 <!--	Note	the	implicit	maximum	is	only	one	word	-->
	 	 	 	 <DICTATION	PROPID="PID_FirstName"/>
	 	 	 	 and	my	last	name	is
	 	 	 	 <!--	Note	the	implicit	maximum	is	two	words	-->
	 	 	 	 <DICTATION	PROPID="PID_LastName"	MAX="2"/>
	 	 	 </P>
	 	 </RULE>
	 </GRAMMAR>

Programmatic	Equivalent:
	 To	programmatically	create	a	dictation	transition	(i.e.	DICTATION
	 	 can	use	the	ISpGrammarBuilder::AddRuleTransition	with	a	special	rule	handle,
	 	 called	SPRULETRANS_DICTATION.	For	example,	the	following	code	creates	a	simple
	 	 command	called	"SendMail"	which	recognizes	the	command	"send	mail	to	

	 	 	 SPSTATEHANDLE	hsSendMail;

	 	 	 //	Create	new	top-level	rule	called	"SendMail"
	 	 	 hr	=	cpRecoGrammar->GetRule(L"SendMail",	NULL,
	 	 	 	 	 	 	 SPRAF_TopLevel	|	SPRAF_Active,	TRUE,
	 	 	 	 	 	 	 &hsSendMail);
	 	 	 //	Check	hr

	 	 	 //	Create	an	interim	state	before	the	dictation	transition
	 	 	 SPSTATEHANDLE	hsBeforeDictation;
	 	 	 hr	=	cpRecoGrammar->CreateNewState(hsSendMail,	&hsBeforeDictation);
	 	 	 //	Check	hr

	 	 	 //	Add	the	command	words	"send	mail	to"
	 	 	 hr	=	cpRecoGrammar->AddWordTransition(hsSendMail,	hsBeforeDictation,
	 	 	 	 	 L"send	mail	to",	L"	",	SPWT_LEXICAL,	NULL,	NULL);
	 	 	 //	Check	hr

	 	 	 //	Add	trailing	dictation	transition
	 	 	 hr	=	cpRecoGrammar->AddRuleTransition(hsBeforeDictation,	NULL,
	 	 	 	 	 	 	 	 SPRULETRANS_DICTATION,	NULL,	NULL);
	 	 	 //	Check	hr

	 	 	 //	save/commit	changes
	 	 	 hr	=	cpRecoGrammar->Commit(NULL);
	 	 	 //	Check	hr

	 Note	that	the	previous	sample	code	only	supports	one	dictation	word.	To	support
	 	 more	than	one	word,	the	code	would	need	to	build	more	dictation	transition
	 	 states,	each	of	which	begins	at	the	previous	dictation	state	-	effectively,
	 	 a	series	of	consecutive	single-word	dictation	transitions.

Back	to	top

<GRAMMAR>

Summary:	The	GRAMMAR	tag	is	the	outermost	container	for	the	XML	grammar	definition.

XML	Attributes:
	 LANGID	(optional,	type=numeric):	The	language	identifier	of	the	grammar.
	 	 The	identifier	will	be	compared	against	the
	 	 				the	supported	languages	of	the	Speech	Recognition	engine.	If	the	language	is
	 	 				not	supported,	the	grammar	load	call	will	fail	(e.g.	ISpRecoGrammar::LoadCmdFromFile)
	 	 It	is	recommended	that	all	XML	grammars	include	the	
	 	 				where	the	SR	engine	tries	to	load	a	grammar	with	an	unspecified	language	ID,	and	fails	due
																				to	confusing	words.
																SAPI	supports	fuzzy	language	ID	matching,	in	that	the	SR	engine	can
																				report	that	is	supports	the	major	portion	of	the	Language	ID	(e.g.	0x009	in	0x409)
																				which	means	the	SR	engine	will	try	to	load	and	recognize	any	grammar
																				major	portion	of	the	language	ID.	
	 LEXDELIMITER	(optional):	The	LEXDELIMITER	attribute	specifies	the	delimiter	for	explicit
	 	 				lexicon	entries	specified	in	the	grammar.
	 	 Grammar	authors	are	able	to	specify	the	lexicon	information	by	using	a	special
	 	 				sequence	of	characters.	The	sequence	of	characters	is:
	 	 	 LEXDELIMITERDisplayFormLEXDELIMITER
	 	 The	default	delimiter	is	the	backslash	character	"/".
	 	 See	also	PHRASE.
	 WORDTYPE	(optional):	The	WORDTYPE	attribute	specifies	the	type	of	the	word(s)	when	they	are	added	to	the
																				grammar.
	 	 The	default	value	is	"LEXICAL".
	 	 The	value	must	be	"LEXICAL".

XML	Parent	Elements:
	 None

XML	Child	Elements:
	 DEFINE	(optional):	Specifies	the	constant	definitions	for	the	grammar.
	 RULE	(1	or	more	required):	Specifies	the	rules,	including	top-level	and	non-top-level.

Detailed	Description:
	 Every	XML	grammar	must	have	the	container	tag,	GRAMMAR

XML	Grammar	Sample(s):
	 <!--	Language	ID	=	British	English	-->
	 <GRAMMAR	LANGID="413"	LEXDELIMITER="|"	WORDTYPE="LEXICAL">
	 	 <RULE	NAME="HelloWorld"	TOPLEVEL="ACTIVE">
																								<!--	when	the	user	says	the	following	pronunciation,	"Hiya"	will	be	displayed	-->
	 	 	 <P>|Hiya|Hello|h	eh	l	ow;</P>
	 	 </RULE>
	 </GRAMMAR>

Programmatic	Equivalent:
	 To	programmatically	set	the	language	ID	of	a	new	grammar,	the	application	developer	should
													call	ISpGrammarBuilder::ResetGrammar.
	 The	application	developer	does	not	need	to	change	the	LEXDELIMITER
	 					interface	can	be	used	to	modify	the	lexicon.

Back	to	top

<ID>
Summary:	The	ID	tag	is	used	for	declaring	a	string	identifier	for	numeric
values.

XML	Attributes:
	 NAME	(required):	The	NAME	attribute	defines	the	string	identifier	that	will	be	associated
																													with	the	constant	value.
	 VAL	(required,	type=VT_UI4,VT_I4,VT_R4,VT_R8):	
	 	 	 	 value	that	will	be	associated	with	the	string	identifier.

XML	Parent	Elements:

	 DEFINE:	The	container	for	the	constant	definitions.

XML	Child	Elements:
	 None

Detailed	Description:
	 The	ID	tag	should	be	used	by	grammar	author	to	make	the	grammar	easier	to	read	and
													maintain.	The	grammar	author	can	use	string	identifiers	which	succinctly	explain
													the	use	of	the	identifier	(e.g.	RID_FileNew,	PVAL_MAIN_WINDOW,	etc.).	The	grammar
													compiler	stores	the	identifiers	in	the	binary	format,	and	string	identifiers	are
													typically	much	larger	than	numeric	identifiers.	Also,	the	application	developer
													can	use	a	simple	numeric	comparison	to	handle	rule	and	semantic	property	logic,
													rather	than	performing	a	more	complex	string	comparison.

XML	Grammar	Sample(s):

	 <GRAMMAR>
	 	 <DEFINE>
	 	 	 <ID	NAME="RuleId_A"	VAL="1"/>
	 	 	 <ID	NAME="PropId_B"	VAL="2"/>
	 	 	 <ID	NAME="PropVal_AB"	VAL="3"/>
	 	 </DEFINE>

	 	 <!--	Note	that	Rule	ID,	Phrase	PROPID	and	VAL	take	a	numeric	values.	-->
	 	 <RULE	ID="RuleId_A"	TOPLEVEL="ACTIVE">
	 	 	 <P	PROPID="PropId_B"	VAL="PropVal_AB">five</P>
	 	 </RULE>
	 </GRAMMAR>

Programmatic	Equivalent:
	 The	Grammar	Compiler	that	ships	in	the	Microsoft	Speech	SDK	includes	a	command	line
														argument	to	generate	a	C-style	header	(see	"-h"),	which	includes	the	programmatic

														constant	definitions	for	all	of	the	IDs	defined	in	the	XML	grammar.	The	application
														developer	can	include	the	header	file	and	easily	use	the	same	identifiers	inside
														the	application	logic,	without	needing	to	redefine	and	maintain	the	numeric	values.
	 The	XML	Grammar	Sample	above	would	create	the	following	C-style	header	file:
	 	 #define	RuleId_A	1
	 	 #define	PropId_B	2
	 	 #define	PropVal_AB	3

Back	to	top

<LIST>,	<L>
Summary:	The	LIST	tag	is	used	for	specifying	a	list	of	phrases	or	transitions.

XML	Attributes:
	 PROPID	(optional,	type=VT_I4):	The	numeric	identifier	that	will	be	inherited	by	all
	 	 	 semantic	properties	in	the	child	elements	(e.g.	phrases).
	 PROPNAME	(optional):	The	string	identifier	that	will	be	inherited	by	all	semantic
	 	 	 properties	in	the	child	elements	(e.g.	phrases).

XML	Parent	Elements:
	 LIST,	L:	List	of	phrases	or	rules	which	can	be	recognized.
	 PHRASE,	P:	Phrase	that	must	be	recognized	for	the	containing	rule	to	be	recognized.
	 OPT,	O:	Optional	phrase	causing	the	rule	reference	to	be	implicitly	optional.
	 RULE:	Rule	that	contains	phrases	or	text	to	be	recognized.

XML	Child	Elements:
	 RULEREF:	Import,	or	reference,	another	rules	contents
	 PHRASE,	P:	Specifies	text	or	leaf	nodes.
	 LIST,	L:	Specifies	a	list	of	phrases	or	transitions	for	recognition.
	 TEXTBUFFER:	Specifies	a	reference	to	the	run-time	application	maintained
	 	 text-buffer.
	 WILDCARD:	Specifies	a	garbage	word;	one	or	more	non-silence,	ignorable	words

	 DICTATION:	Specifies	a	piece	of	text	recognized	by	the	loaded	dictation	topic.

Detailed	Description:
	 The	LIST	tag	is	a	quick	and	efficient	way	to	support	lists	of	phrases	or	text.	Instead
	 	 of	creating	separate	rules	for	each	piece	of	text,	the	LIST
	 	 where	its	children	are	the	phrase,	rule	reference,	or	other	tags.
	 The	grammar	author	can	use	the	shorthand	version	of	the	LIST
	 The	LIST	tag	is	more	of	a	virtual	tag,	since	it	does	not	affect	the	semantic	property
	 	 hierarchy	(LIST	children	are	not	child	properties).	While	it	allows	the	grammar
	 	 author	to	specify	a	string	or	numeric	identifier,	the	identifier	is	only	used
	 	 to	pass	on	to	the	child	element	as	a	default	property	identifier.

XML	Grammar	Sample(s):
	 <GRAMMAR>
	 	 <!--	Note	that	rule	is	not	top-level	and	is	only	used	as	a	reusable	component	rule	-->
	 	 <RULE	NAME="Numbers">
	 	 	 <!--	The	list	tag	includes	a	semantic	property	Id,	"PID_Value"	which
	 	 	 	 is	inherited	by	all	child	phrase	elements	-->
	 	 	 <LIST	PROPID="PID_Value">
	 	 	 	 <!--	If	the	user	says	"one"	then	the	semantic	property	returned	will
	 	 	 	 	 be	the	name/value	pair	"PID_Value"/"1"	-->
	 	 	 	 <P	VAL="1">one</P>
	 	 	 	 <P	VAL="2">two</P>
	 	 	 	 <P	VAL="3">three</P>
	 	 	 	 <P	VAL="4">four</P>
	 	 	 	 <P	VAL="5">five</P>
	 	 	 </LIST>
	 	 </RULE>

	 	 <!--	The	rule	contains	a	list	of	various	types	of	transitions	-->
	 	 <RULE	NAME="Sampler"	TOPLEVEL="ACTIVE">
	 	 	 <!--	the	list	property	specifies	a	default	property	name	of	"TYPE_NUMBER",

	 	 	 	 which	will	overridden	by	specific	list	children	-->
	 	 	 <LIST	PROPNAME="TYPE_NUMBER">
	 	 	 	 <P	VAL="1">one</P>
	 	 	 	 <P	VAL="2">two</P>
	 	 	 	 <P	VAL="3">three</P>
	 	 	 	 <P	PROPNAME="TYPE_STRING"	VALSTR="FOUR">four</P>
	 	 	 	 <P	PROPNAME="TYPE_NONE">five</P>
	 	 	 	 <RULEREF	NAME="Numbers"	PROPNAME="TYPE_RULEREF"/>
	 	 	 	 <TEXTBUFFER	PROPNAME="TYPE_TEXTBUFFER"/>
	 	 	 	 <DICTATION	PROPNAME="TYPE_DICTATION"/>
	 	 	 </LIST>
	 	 </RULE>
	 </GRAMMAR>

Programmatic	Equivalent:
	 To	programmatically	create	a	list,	or	a	set	of	sibling/parallel	transitions,	the	application
	 	 needs	to	create	a	start	state,	then	create	multiple	transitions	out	of	the	state.	For
	 	 example,	the	following	sample	code	shows	how	to	make	a	list	of	phrases	(e.g.	"one",
	 	 "two",	"three").

	 	 	 SPSTATEHANDLE	hsList;
	 	 	 //	Create	new	top-level	rule	called	"List"
	 	 	 hr	=	cpRecoGrammar->GetRule(L"List",	NULL,
	 	 	 	 	 	 	 SPRAF_TopLevel	|	SPRAF_Active,	TRUE,
	 	 	 	 	 	 	 &hsList);
	 	 	 //	Check	hr

	 	 	 //	Add	the	word	"one"	to	the	list
	 	 	 hr	=	cpRecoGrammar->AddWordTransition(hsList,	NULL,
	 	 	 	 	 L"one",	L"	",
	 	 	 	 	 SPWT_LEXICAL,	NULL,	NULL);
	 	 	 //	Check	hr

	 	 	 //	Add	the	word	"two"	to	the	list
	 	 	 hr	=	cpRecoGrammar->AddWordTransition(hsList,	NULL,
	 	 	 	 	 L"two",	L"	",
	 	 	 	 	 SPWT_LEXICAL,	NULL,	NULL);
	 	 	 //	Check	hr

	 	 	 //	Add	the	word	"three"	to	the	list
	 	 	 hr	=	cpRecoGrammar->AddWordTransition(hsList,	NULL,
	 	 	 	 	 L"three",	L"	",
	 	 	 	 	 SPWT_LEXICAL,	NULL,	NULL);
	 	 	 //	Check	hr

	 	 	 //	save/commit	changes
	 	 	 hr	=	cpRecoGrammar->Commit(NULL);
	 	 	 //	Check	hr

	 	 The	application	developer	can	use	similar	code	to	create	a	list	of	rule	references,
	 	 	 dictation,	or	text	buffer	transitions.	To	change	the	type	of	list	item,	change
	 	 	 the	::AddWordTransition	call	to	::AddRuleTransition.

Back	to	top

<OPT>,	<O>
Summary:	The	OPT	tag	is	used	for	specifying	optional	text	in	a	command	phrase.

XML	Attributes:
	 DISP	(optional):	Specifies	the	display	form	of	the	phrase	text.
	 MAX	(optional,	type=VT_I4,	default=MIN):	Specifies	the	maximum	number	of	times	the	user
	 	 can	repeat	the	phrase	and	still	be	successfully	recognized.
	 MIN	(optional,	type=VT_I4,	default=1):	Specifies	the	minimum	number	of	times	the	user
	 	 must	repeat	the	phrase	and	still	be	successfully	recognized.
	 PRON	(optional):	Specifies	the	pronunciation	to	be	used	by	the	recognizer	when	listening

	 	 for	the	text.
	 PROPID	(optional,	type=VT_I4):	Specifies	the	numeric	identifier	to	associate	with	the	phrase
	 	 tag's	semantic	property.
	 PROPNAME	(optional):	Specifies	the	string	identifier	to	associate	with	the	phrase	tag's
	 	 semantic	property.
	 VAL	(optional,	type=VT_I4):	Specifies	the	semantic	property's	numeric	value.
	 VALSTR	(optional):	Specifies	the	semantic	property's	string	value.
	 WEIGHT	(type=VT_UI4,VT_I4,VT_R4,VT_R8,	default=1/n_sibling_transitions)
	 	 	 that	the	user	will	speak	the	contents	of	the	PHRASE	tag,	versus	another
	 	 	 sibling	transition	or	phrase.

XML	Parent	Elements:
	 RULEREF:	Import,	or	reference,	another	rules	contents
	 PHRASE,	P:	Specifies	text	or	leaf	nodes.
	 OPT,	O:	Optional	phrase	causing	the	rule	reference	to	be	implicitly	optional.
	 LIST,	L:	Specifies	a	list	of	phrases	or	transitions	for	recognition.
	 TEXTBUFFER:	Specifies	a	reference	to	the	run-time	application	maintained
	 	 text-buffer.
	 WILDCARD:	Specifies	a	garbage	word;	one	or	more	non-silence,	ignorable	words
	 DICTATION:	Specifies	a	piece	of	text	recognized	by	the	loaded	dictation	topic.	

XML	Child	Elements:
	 RULEREF:	Import,	or	reference,	another	rules	contents
	 PHRASE,	P:	Specifies	text	or	leaf	nodes.
	 OPT,	O:	Optional	phrase	causing	the	rule	reference	to	be	implicitly	optional.
	 LIST,	L:	Specifies	a	list	of	phrases	or	transitions	for	recognition.
	 TEXTBUFFER:	Specifies	a	reference	to	the	run-time	application	maintained
	 	 text-buffer.
	 WILDCARD:	Specifies	a	garbage	word;	one	or	more	non-silence,	ignorable	words
	 DICTATION:	Specifies	a	piece	of	text	recognized	by	the	loaded	dictation	topic.	

Detailed	Description:

	 The	OPT	tag	along	with	the	OPT	tag	are	the	only	tags	that	can	directly
	 	 contain	recognizable	text.
	 The	grammar	author	can	use	the	shorthand	version	of	the	OPT
	 The	grammar	author	can	also	specify	custom	word	pronunciations	and	display
	 	 text	by	using	the	PRON	and	DISP	attributes.	For	example,	a	grammar
	 	 might	contain	application	or	domain	specific	text,	which	has	a	custom
	 	 pronunciation.	The	author	can	specify	the	pronunciation	on	a	specific
	 	 OPT	tag	to	avoid	the	need	for	updating	the	user	or	application
	 	 lexicon	(especially	if	the	pronunciation	is	command	specific).
	 The	grammar	author	can	also	use	special	shorthand	characters	inside	of	the
	 	 content	section	of	the	PHRASE	tag	(e.g.	dictation,	wildcard,	etc.).	See
	 	 the	XML	Special	Characters.

XML	Grammar	Sample(s):
	 <GRAMMAR>
	 	 <!--	Create	a	simple	"hello	world"	rule	-->
	 	 <!--	the	second	word	is	optional	-->
	 	 <RULE	NAME="HelloWorld"	TOPLEVEL="ACTIVE">
	 	 	 <P>hello</P>
	 	 	 <OPT>world</OPT>
	 	 </RULE>

	 	 <!--	Create	a	rule	that	changes	the	pronunciation	and	the	display
	 	 	 form	of	the	phrase.	When	the	user	says	"eh"	the	display
	 	 	 text	will	be	"I	don't	understand?".	Note	the	user	didn't
	 	 	 say	"huh".	The	pronunciation	for	"what"	is	specific	to	this
	 	 	 phrase	tag	and	is	not	changed	for	the	user	or	application
	 	 	 lexicon,	or	even	other	instances	of	"what"	in	the	grammar	-->
	 	 <RULE	NAME="Question_Pron"	TOPLEVEL="ACTIVE">
	 	 	 <P	DISP="I	don't	understand"	PRON="eh">what</P>
	 	 </RULE>

	 	 <!--	Create	a	phrase	with	an	attached	semantic	property	-->

	 	 <!--	Speaking	"one	two	three"	will	return	three	different	unique
	 	 	 semantic	properties,	with	different	names,	and	different
	 	 	 values	-->
	 	 <!--	Speaking	"one	three"	will	return	two	different	unique
	 	 	 semantic	properties,	with	different	names,	and	different
	 	 	 values	-->
	 	 <!--	Speaking	"one	two"	will	return	two	different	unique
	 	 	 semantic	properties,	with	different	names,	and	different
	 	 	 values	-->
	 	 <!--	Speaking	"one"	will	return	two	different	unique
	 	 	 semantic	properties,	with	different	names,	and	different
	 	 	 values	-->
	 	 <!--	Note	that	the	number	of	semantic	properties	returned	is
	 	 	 variable,	and	that	the	application	should	be	designed	to
	 	 	 handle	all	of	the	variations	-->
	 	 <RULE	NAME="UseProps"	TOPLEVEL="ACTIVE">
	 	 	 <!--	named	property,	without	value	-->
	 	 	 <P	PROPNAME="NOVALUE">one</P>

	 	 	 <!--	named	property,	with	numeric	value	-->
	 	 	 <O	PROPNAME="NUMBER"	VAL="2">two</O>

	 	 	 <!--	named	property,	with	string	value	-->
	 	 	 <O	PROPNAME="STRING"	VALSTR="three">three</O>
	 	 </RULE>

	 	 <!--	Create	a	rule	for	optional	command	prefix	-->
	 	 <!--	Note	that	entire	rule	reference	is	optional.	In	cases	where
	 	 	 there	are	properties	associated	with	the	rule	reference,	the
	 	 	 semantic	property	tree	may	change	-->
	 	 <!--	the	rule	supports	the	phrases	"play	cards",	"please	play	cards",	and
	 	 	 "please	play	cards"	-->
	 	 <RULE	NAME="PlayCard"	TOPLEVEL="ACTIVE">

	 	 	 <O><RULEREF	NAME="PLEASE"/></O>
	 	 	 <P>play	cards</P>
	 	 </RULE>

	 	 <!--	The	first	word	"pretty"	is	optional,	while	the	second	is	required	-->
	 	 <RULE	NAME="PLEASE">
	 	 	 <O>pretty</O>
	 	 	 <P>please</P>
	 	 </RULE>
	 </GRAMMAR>

Programmatic	Equivalent:
	 To	add	an	optional	phrase	to	a	rule,	SAPI	provides	an	API	called
	 	 ISpGrammarBuilder::AddWordTransition.	The	application	developer	can	add
	 	 the	optional	structure	as	follows:

	 	 	 SPSTATEHANDLE	hsHelloWorld;
	 	 	 //	Create	new	top-level	rule	called	"HelloWorld"
	 	 	 hr	=	cpRecoGrammar->GetRule(L"HelloWorld",	NULL,
	 	 	 	 	 	 	 SPRAF_TopLevel	|	SPRAF_Active,	TRUE,
	 	 	 	 	 	 	 &hsHelloWorld);
	 	 	 //	Check	hr

	 	 	 //	create	an	interim	state
	 	 	 SPSTATEHANDLE	hInterim;
	 	 	 hr	=	cpRecoGrammar->CreateNewState(hsHelloWorld,	&hInterim);
	 	 	 //	Check	hr

	 	 	 //	Add	the	command	word	"hello"	which	terminates	at	the	interim
	 	 	 //	 state
	 	 	 hr	=	cpRecoGrammar->AddWordTransition(hsHelloWorld,	hInterim,
	 	 	 	 	 L"hello",	NULL,
	 	 	 	 	 SPWT_LEXICAL,	NULL,	NULL);

	 	 	 //	Check	hr

	 	 	 //	Add	the	optional	command	word	"world"
	 	 	 hr	=	cpRecoGrammar->AddWordTransition(hInterim,	NULL,
	 	 	 	 	 L"hello",	NULL,
	 	 	 	 	 SPWT_LEXICAL,	NULL,	NULL);
	 	 	 //	Check	hr

	 	 	 //	Add	the	epsilon	transition,	which	means	no	word	need	be	spoken
	 	 	 hr	=	cpRecoGrammar->AddWordTransition(hInterim,	NULL,
	 	 	 	 	 NULL,	NULL,
	 	 	 	 	 SPWT_LEXICAL,	NULL,	NULL);
	 	 	 //	Check	hr

	 	 	 //	save/commit	changes
	 	 	 hr	=	cpRecoGrammar->Commit(NULL);
	 	 	 //	Check	hr

Back	to	top

<PHRASE>,	<P>

Summary:	The	PHRASE	tag	and	the	OPT	tags	are	the	sole	methods	of	explicitly	specifying	text	to	be
	 	 recognized	by	the	speech	recognition	engine.

XML	Attributes:
	 DISP	(optional):	Specifies	the	display	form	of	the	phrase	text.
	 MAX	(optional,	type=VT_I4,	default=MIN):	Specifies	the	maximum	number	of	times	the	user
	 	 can	repeat	the	phrase	and	still	be	successfully	recognized.
	 MIN	(optional,	type=VT_I4,	default=1):	Specifies	the	minimum	number	of	times	the	user
	 	 must	repeat	the	phrase	and	still	be	successfully	recognized.
	 PRON	(optional):	Specifies	the	pronunciation	to	be	used	by	the	recognizer	when	listening
	 	 for	the	text.

	 PROPID	(optional,	type=VT_I4):	Specifies	the	numeric	identifier	to	associate	with	the	phrase
	 	 tag's	semantic	property.
	 PROPNAME	(optional):	Specifies	the	string	identifier	to	associate	with	the	phrase	tag's
	 	 semantic	property.
	 VAL	(optional,	type=VT_I4):	Specifies	the	semantic	property's	numeric	value.
	 VALSTR	(optional):	Specifies	the	semantic	property's	string	value.
	 WEIGHT	(type=VT_UI4,VT_I4,VT_R4,VT_R8,	default=1/n_sibling_transitions)
	 	 	 that	the	user	will	speak	the	contents	of	the	PHRASE	tag,	versus	another
	 	 	 sibling	transition	or	phrase.

XML	Parent	Elements:
	 RULEREF:	Import,	or	reference,	another	rules	contents
	 PHRASE,	P:	Specifies	text	or	leaf	nodes.
	 OPT,	O:	Optional	phrase	causing	the	rule	reference	to	be	implicitly	optional.
	 LIST,	L:	Specifies	a	list	of	phrases	or	transitions	for	recognition.
	 TEXTBUFFER:	Specifies	a	reference	to	the	run-time	application	maintained
	 	 text-buffer.
	 WILDCARD:	Specifies	a	garbage	word;	one	or	more	non-silence,	ignorable	words
	 DICTATION:	Specifies	a	piece	of	text	recognized	by	the	loaded	dictation	topic.	

XML	Child	Elements:
	 RULEREF:	Import,	or	reference,	another	rules	contents
	 PHRASE,	P:	Specifies	text	or	leaf	nodes.
	 OPT,	O:	Optional	phrase	causing	the	rule	reference	to	be	implicitly	optional.
	 LIST,	L:	Specifies	a	list	of	phrases	or	transitions	for	recognition.
	 TEXTBUFFER:	Specifies	a	reference	to	the	run-time	application	maintained
	 	 text-buffer.
	 WILDCARD:	Specifies	a	garbage	word;	one	or	more	non-silence,	ignorable	words
	 DICTATION:	Specifies	a	piece	of	text	recognized	by	the	loaded	dictation	topic.	

Detailed	Description:
	 The	PHRASE	tag	along	with	the	OPT	tag	are	the	only	tags	that	can	directly

	 	 contain	recognizable	text.	Except	for	grammars	that	contain	rule
	 	 references,	every	grammar	must	have	at	least	one	PHRASE
	 The	grammar	author	can	use	the	shorthand	version	of	the	PHRASE
	 The	grammar	author	can	also	specify	custom	word	pronunciations	and	display
	 	 text	by	using	the	PRON	and	DISP	attributes.	For	example,	a	grammar
	 	 might	contain	application	or	domain	specific	text,	which	has	a	custom
	 	 pronunciation.	The	author	can	specify	the	pronunciation	on	a	specific
	 	 PHRASE	tag	to	avoid	the	need	for	updating	the	user	or	application
	 	 lexicon	(especially	if	the	pronunciation	is	command	specific).
	 The	grammar	author	can	also	use	special	shorthand	characters	inside	of	the
	 	 content	section	of	the	PHRASE	tag	(e.g.	dictation,	wildcard,	etc.).	See
	 	 the	XML	Special	Characters.

XML	Grammar	Sample(s):
	 <GRAMMAR>
	 	 <!--	Create	a	simple	"hello	world"	rule	-->
	 	 <RULE	NAME="HelloWorld"	TOPLEVEL="ACTIVE">
	 	 	 <P>hello	world</P>
	 	 </RULE>

	 	 <!--	Create	a	more	advanced	"hello	world"	rule	that	changes	the
	 	 	 display	form.	When	the	user	says	"hello	world"	the	display
	 	 	 text	will	be	"Hiya	there!"	-->
	 	 <RULE	NAME="HelloWorld_Disp"	TOPLEVEL="ACTIVE">
	 	 	 <P	DISP="Hiya	there!">hello	world</P>
	 	 </RULE>

	 	 <!--	Create	a	rule	that	changes	the	pronunciation	and	the	display
	 	 	 form	of	the	phrase.	When	the	user	says	"eh"	the	display
	 	 	 text	will	be	"I	don't	understand?".	Note	the	user	didn't
	 	 	 say	"huh".	The	pronunciation	for	"what"	is	specific	to	this
	 	 	 phrase	tag	and	is	not	changed	for	the	user	or	application
	 	 	 lexicon,	or	even	other	instances	of	"what"	in	the	grammar	-->

	 	 <RULE	NAME="Question_Pron"	TOPLEVEL="ACTIVE">
	 	 	 <P	DISP="I	don't	understand"	PRON="eh">what</P>
	 	 </RULE>

	 	 <!--	Create	a	rule	demonstrating	repetition	-->
	 	 <!--	the	rule	will	only	be	recognized	if	the	user	says	"hey	diddle
	 	 	 diddle"	-->
	 	 <RULE	NAME="NurseryRhyme"	TOPLEVEL="ACTIVE">
	 	 	 <P>hey</P>
	 	 	 <P	MIN="2"	MAX="2">diddle</P>
	 	 </RULE>

	 	 <!--	Create	a	list	with	variable	phrase	weights	-->
	 	 <!--	If	the	user	says	similar	phrases,	the	recognizer	will	use
	 	 	 the	weights	to	pick	a	match	-->
	 	 <RULE	NAME="UseWeights"	TOPLEVEL="ACTIVE">
	 	 	 <LIST>
	 	 	 	 <!--	Note	the	higher	likelihood	that	the	user	is
	 	 	 	 	 expected	to	say	"recognizer	speech"	-->
	 	 	 	 <P	WEIGHT=".95">recognize	speech</P>
	 	 	 	 <P	WEIGHT=".05">wreck	a	nice	beach</P>
	 	 	 </LIST>
	 	 </RULE>

	 	 <!--	Create	a	phrase	with	an	attached	semantic	property	-->
	 	 <!--	Speaking	"one	two	three"	will	return	three	different	unique
	 	 	 semantic	properties,	with	different	names,	and	different
	 	 	 values	-->
	 	 <RULE	NAME="UseProps"	TOPLEVEL="ACTIVE">
	 	 	 <!--	named	property,	without	value	-->
	 	 	 <P	PROPNAME="NOVALUE">one</P>

	 	 	 <!--	named	property,	with	numeric	value	-->

	 	 	 <P	PROPNAME="NUMBER"	VAL="2">two</P>

	 	 	 <!--	named	property,	with	string	value	-->
	 	 	 <P	PROPNAME="STRING"	VALSTR="three">three</P>
	 	 </RULE>
	 </GRAMMAR>

Programmatic	Equivalent:
	 To	add	a	phrase	to	a	rule,	SAPI	provides	an	API	called
	 	 ISpGrammarBuilder::AddWordTransition.	The	application	developer	can	add
	 	 the	sentences	as	follows:

	 	 	 SPSTATEHANDLE	hsHelloWorld;
	 	 	 //	Create	new	top-level	rule	called	"HelloWorld"
	 	 	 hr	=	cpRecoGrammar->GetRule(L"HelloWorld",	NULL,
	 	 	 	 	 	 	 SPRAF_TopLevel	|	SPRAF_Active,	TRUE,
	 	 	 	 	 	 	 &hsHelloWorld);
	 	 	 //	Check	hr

	 	 	 //	Add	the	command	words	"hello	world"
	 	 	 //	Note	that	the	lexical	delimiter	is	"	",	a	space	character.
	 	 	 //	 By	using	a	space	delimiter,	the	entire	phrase	can	be	added
	 	 	 //		 in	one	method	call
	 	 	 hr	=	cpRecoGrammar->AddWordTransition(hsHelloWorld,	NULL,
	 	 	 	 	 L"hello	world",	L"	",
	 	 	 	 	 SPWT_LEXICAL,	NULL,	NULL);
	 	 	 //	Check	hr

	 	 	 //	Add	the	command	words	"hiya	there"
	 	 	 //	Note	that	the	lexical	delimiter	is	"|",	a	pipe	character.
	 	 	 //	 By	using	a	pipe	delimiter,	the	entire	phrase	can	be	added
	 	 	 //		 in	one	method	call
	 	 	 hr	=	cpRecoGrammar->AddWordTransition(hsHelloWorld,	NULL,

	 	 	 	 	 L"hiya|there",	L"|",
	 	 	 	 	 SPWT_LEXICAL,	NULL,	NULL);
	 	 	 //	Check	hr

	 	 	 //	save/commit	changes
	 	 	 hr	=	cpRecoGrammar->Commit(NULL);
	 	 	 //	Check	hr

Back	to	top

<RESOURCE>
Summary:	The	RESOURCE	tag	is	used	by	grammar	authors	who	want	to	store	arbitrary	string
	 data	on	rules	(e.g.	for	use	by	a	CFG	Interpreter,	or	an	SR	engine	aware	of	the
	 the	resources).

XML	Attributes:
	 NAME:	specifies	the	name	of	the	resource	to	attach	to	the	rule.

XML	Parent	Elements:
	 RULE:	The	rule	that	contains	the	resource	reference.	

XML	Child	Elements:
	 [CDATA]	(required):	The	resource	value	is	specified	by	a	CDATA	section.
	 For	example,
	 	 <![CDATA[This	is	a	test	string]]>
	 The	RESOURCE	tag	contains	the	CDATA	element,	which	itself	contains	the	string.	

Detailed	Description:
	 The	RESOURCE	tag	is	a	facility	allowing	the	grammar	author	to	communicate
	 	 information	[attached	to	rules]	to	a	CFG	Interpreter	(see
	 	 ISpCFGInterpreter	and	ISpCFGInterpreterSite::GetResourceValue

	 	 speech	recognition	engine	that	is	aware	of	the	resource	information
	 	 (see	ISpSREngineSite::GetResource).

XML	Grammar	Sample(s):
	 <GRAMMAR>
	 	 <!--	Note	resource	value	can	be	any	string	-->
	 	 <RULE	ID="RID_TestResource"	TOPLEVEL="ACTIVE">
	 	 	 <RESOURCE	NAME="AResource">
	 	 	 	 <![CDATA[AResource's	Value:	String]]>
	 	 	 </RESOURCE>
	 	 	 <P>test	an	embedded	resource</P>
	 	 </RULE>
	 </GRAMMAR>

Programmatic	Equivalent:
	 To	add	a	resource	to	a	rule,	SAPI	provides	an	API	called
	 	 ISpGrammarBuilder::AddResource.	The	application	developer	can	add
	 	 the	aforementioned	resource	(see	XML	Grammar	Sample)	with	the	following
	 	 code:

	 	 	 SPSTATEHANDLE	hsTestResource;
	 	 	 //	Create	new	top-level	rule	called	"TestResource"
	 	 	 hr	=	cpRecoGrammar->GetRule(NULL,	RID_TestResource,
	 	 	 	 	 	 	 SPRAF_TopLevel	|	SPRAF_Active,	TRUE,
	 	 	 	 	 	 	 &hsTestResource);
	 	 	 //	Check	hr

	 	 	 //	Add	the	command	words	"test	an	embedded	resource"
	 	 	 hr	=	cpRecoGrammar->AddWordTransition(hsTestResource,	NULL,
	 	 	 	 	 L"test	an	embedded	resource",	L"	",
	 	 	 	 	 SPWT_LEXICAL,	NULL,	NULL);
	 	 	 //	Check	hr

	 	 	 //	Add	the	resource	named	"AResource"
	 	 	 hr	=	cpRecoGrammar->AddResource(hsTestResource,
	 	 	 	 	 	 	 L"AResource",
	 	 	 	 	 	 	 L"AResource's	Value:	String");
	 	 	 //	Check	hr

	 	 	 //	save/commit	changes
	 	 	 hr	=	cpRecoGrammar->Commit(NULL);
	 	 	 //	Check	hr

	 	 Then,	the	SR-Engine	can	retrieve	the	resource	value	when	it	is	processing
	 	 	 the	rule	updates	or	CFG-recognition	by	making	the	following	call:

	 	 	 	 //	set	hRule	to	handle	with	resource

	 	 	 	 hr	=	cpSREngineSite->GetResource(hRule,
	 	 	 	 	 L"AResource",
	 	 	 	 	 &pwszResValue);
	 	 	 	 if	(S_OK	==	hr)
	 	 	 	 {
	 	 	 	 	 //	pwszResValue	contains	the	value
	 	 	 	 	 //	perform	value-sensitive	processing

	 	 	 	 	 //	release	value	memory
	 	 	 	 	 ::CoTaskMemFree(pwszResValue);
	 	 	 	 }

Back	to	top

<RULE>
Summary:	The	RULE	tag	is	the	core	tag	for	defining	which	commands	are	available	for

	 	 recognition.	Every	grammar	must	have	at	least	one	top-level	rule,	and
	 	 every	rule	must	have	at	least	one	rule	reference	or	recognizable	text.

XML	Attributes:
	 DYNAMIC	(optional,	default	is	FALSE):	Specifies	whether	the	rule	supports	dynamic
	 	 modifications	at	run	time.	By	default,	an	application	cannot	modify	rules
	 	 in	an	XML	grammar.	To	modify	a	rule,	the	rule	must	be	marked	DYNAMIC,	and
	 	 the	grammar	must	be	loaded	with	the	dynamic	flag	(see	
	 	 SPLOADOPTIONS).	Dynamic	rules	cannot	be	marked	
	 EXPORT	(optional,	default	is	FALSE):	Specifies	whether	the	rule	allows	external
	 	 grammar	to	reference	it.	For	example,	a	grammar	author	that	wants	to	allow
	 	 other	grammar	author's	to	reuse	her	rules	must	mark	each	of	the	reusable
	 	 rules	with	EXPORT="TRUE").	Exported	rules	cannot	be	marked	
	 ID	(required,	type=VT_I4):	Specifies	the	numeric	identifier	of	the	rule.	The	
	 	 or	the	NAME	must	be	specified,	or	both.	The	identifier	must	be	unique	in
	 	 the	rule	namespace,	which	is	the	entire	grammar	(see	
	 INTERPRETER	(optional,	default	is	FALSE):	Specifies	if	the	rule	should	use	the
	 	 CFG	interpreter	(see	ISpCFGInterpreter)	when	it	is	recognized.	For	example,
	 	 a	rule	might	contain	semantic	properties	or	text	that	should	be	modified
	 	 at	run	time	(e.g.	replace	value	of	the	semantic	property	named	"TODAY"	with
	 	 the	system's	current	date	and	time).
	 NAME	(required):	Specifies	the	string	identifier	of	the	rule.	The	
	 	 or	the	ID	must	be	specified,	or	both.	The	identifier	must	be	unique	in
	 	 the	rule	namespace,	which	is	the	entire	grammar	(see	
	 TOPLEVEL	(optional):	Specifies	that	the	rule	is	directly	recognizable	by	a	user.
	 	 If	the	TOPLEVEL	tag	is	not	specified,	then	the	rule	is	not	recognizable
	 	 unless	it	is	referenced	by	another	top-level	rule	structure.	For	example,
	 	 component	rules	(see	RULEREF)	do	not	need	to	specify	the	
	 	 When	a	grammar	author	specifies	a	rule	as	TOPLEVEL
	 	 if	the	rule	is	to	be	enabled	by	default.	If	the	rule	is	enabled	by	default
	 	 (e.g.	TOPLEVEL="ACTIVE"),	then	when	the	application	activates	the	default
	 	 set	of	rules	(e.g.	ISpRecoGrammar::SetRuleState(NULL,	NULL,	SPRS_ACTIVE)
	 	 then	the	rule	will	be	activated.	If	a	rule	is	specified	as

	 	 TOPLEVEL="INACTIVE",	then	it	will	only	be	activated	when	explicitly	set	to
	 	 active	(see	ISpRecoGrammar::SetRuleState	and
	 	 ISpRecoGrammar::SetRuleIdState).

XML	Parent	Elements:
	 GRAMMAR:	The	container	for	the	entire	XML	grammar.	

XML	Child	Elements:
	 RULEREF:	Import,	or	reference,	another	rules	contents
	 PHRASE,	P:	Specifies	text	or	leaf	nodes.
	 LIST,	L:	Specifies	a	list	of	phrases	for	recognition.
	 OPT,	O:	Specifies	an	optional	piece	of	text	that	can	be	spoken.	
	 TEXTBUFFER:	Specifies	a	reference	to	the	run-time	application	maintained
	 	 text-buffer.
	 WILDCARD:	Specifies	a	garbage	word;	one	or	more	non-silence,	ignorable	words
	 DICTATION:	Specifies	a	piece	of	text	recognized	by	the	loaded	dictation	topic.
	 RESOURCE:	Specifies	a	labeled	piece	of	arbitrary	string	data	which	can	be
	 	 accessed	by	a	special	SR	engine,	or	a	CFG	interpreter.

Detailed	Description:
	 The	RULE	tag	is	the	core	of	the	XML	grammar	text	format.	The	purpose	of	creating
	 	 a	CFG	is	to	define	a	specific	set	of	words	and	phrases	that	can	be
	 	 spoken	by	the	user	and	recognized	by	the	speech	recognition	engine.	The
	 	 rules	can	be	written	by	the	grammar	author	in	a	way	that	makes	them
	 	 reusable,	textually	maintainable,	and	conducive	to	application	logic
	 	 that	is	based	on	semantic	properties	or	actions	(not	on	phrase	text).
	 Each	rule	must	contain	at	least	one	piece	of	text,	or	a	rule	reference	(which
	 	 has	the	same	requirements).	Effectively,	every	rule	will	eventually	end
	 	 with	a	piece	of	text	(i.e.	leaf	or	terminal	node).
	 The	rule	can	be	identified	by	either	a	numeric	identifier	(ID
	 	 (NAME).	The	grammar	author	can	use	the	DEFINE	tag	to	define	constant	string
	 	 identifiers	for	numeric	values.	By	using	the	constant	string	identifiers,

	 	 the	grammar	author	can	avoid	magic	numbers	(i.e.	hard-coded	numbers	that	can
	 	 cause	maintenance	problems	when	updating	code/grammar).	See	the	
	 	 more	information	on	constant	identifiers.
	 By	using	rule	importing	(references)	and	rule	exporting,	grammar	authors	can
	 	 leverage	reusable	grammar	components	(e.g.	numbers	or	date	grammars).
	 	 Similarly,	grammar	authors	can	abstract	certain	portions	of	the	grammar
	 	 text	away	from	the	semantic	content	by	using	semantic	properties,	or
	 	 tags.	Semantic	properties	are	name/value	pairs	which	are	associated
	 	 with	rule	nodes	in	the	rule	hierarchy,	and	can	even	contain	relevant
	 	 information	from	the	recognized	text	(see	SPPHRASEPROPERTY.ulStartingElement
	 	 and	SPPHRASEPROPERTY.ulCountOfElements).
	 The	grammar	author	can	also	use	a	CFG	interpreter,	which	is	a	COM	object	that	can
	 	 re-process	the	semantic	property	tree	and	phrase	text	to	modify	the	content
	 	 at	run	time.	For	example,	an	application	may	load	a	grammar	which	includes
	 	 a	"days	of	the	week"	rule.	By	integrating	a	CFG	interpreter	with	the	grammar,
	 	 the	interpreter	could	replace	the	"days	of	the	week"	properties	(e.g.	Sunday,
	 	 Monday,	Tuesday,	etc.)	with	the	actual	calendar	dates	relative	to	the
	 	 application's	host	system	(e.g.	GetSystemTime).	See	ISpCFGInterpreter
	 SAPI	supports	a	feature	called	"semantic	property	pushing"	which	enables
	 	 applications	to	detect	the	semantic	property	structure	more	accurately	at
	 	 recognition	time.	"Property	pushing"	is	done	by	SAPI	at	compile-
	 	 time,	whereby	the	compiler	moves	semantic	properties	to	the	last	terminal
	 	 node	within	a	rule	which	remains	unambiguous.	For	example,	the	phrases	"a	b
	 	 c	d"	and	"a	b	e	f	g"	both	have	prefixes	of	"a	b".	The	compiler	will
	 	 automatically	split	the	phrases	into	three	separate	phrases,	"a	b",	"c	d",
	 	 and	"e	f	g",	where	the	first	phrase	is	the	common	prefix	to	both	recognizable
	 	 phrases.	The	purpose	of	this	feature	is	to	enable	applications	that	place
	 	 properties	on	the	phrases,	will	be	able	to	detect	which	branch	is	being
	 	 hypothesized	as	soon	as	the	first	unambiguous	(non-common)	portion	of	the
	 	 phrase	is	spoken.	When	the	user	speaks	"a	b"	it	is	not	clear	if	the	user	will
	 	 say	"a	b	c	d"	or	"a	b	e	f	g".	If	the	user	then	says	"e",	the	application
	 	 can	obviously	eliminate	the	"a	b	c	d"	option.	If	the	grammar	author	attached
	 	 properties	to	the	end	of	both	phrases,	the	semantic	property	would	be

	 	 returned	as	soon	as	the	user	spoke	the	first	unambiguous	portion	of	the	text
	 	 (e.g.	"c"	or	"e").	See	Semantic	Properties,	Hypotheses,	and	"Property	Pushing."

XML	Grammar	Sample(s):
	 <GRAMMAR>
	 	 <DEFINE>
	 	 	 <ID	NAME="RID_Hello"	VAL="1"/>
	 	 	 <ID	NAME="RID_World"	VAL="2"/>
	 	 	 <ID	NAME="RID_AddNumbers"	VAL="3"/>
	 	 	 <ID	NAME="RID_Numbers"	VAL="4"/>
	 	 	 <ID	NAME="RID_Numbers_Exportable"	VAL="5"/>
	 	 	 <ID	NAME="RID_Names"	VAL="6"/>
	 	 </DEFINE>
	 	 <!--	create	a	simple	top-level	rule	that	uses	a	constant	defined	identifier	-->
	 	 <RULE	ID="RID_Hello"	TOPLEVEL="ACTIVE">
	 	 	 <P>hello</P>
	 	 </RULE>

	 	 <!--	Create	a	simple	top-level	rule	that	is	inactive	by	default	-->
	 	 <RULE	NAME="Hiya"	TOPLEVEL="INACTIVE">
	 	 	 <P>hiya</P>
	 	 </RULE>

	 	 <!--	Create	a	rule,	which	a	CFG-interpreter	can	re-process	to	modify	the	semantic
	 	 	 properties	-->
	 	 <RULE	NAME="InterpretedRule"	TOPLEVEL="ACTIVE"	INTERPRETER="TRUE">
	 	 	 <P	PROPNAME="TODAY">what	is	today's	date</P>
	 	 </RULE>
	 	
	 	 <!--	Create	a	simple	top-level	rule	that	references	another	non	top-level	rule	-->
	 	 <RULE	ID="RID_AddNumbers"	TOPLEVEL="ACTIVE">
	 	 	 <P>add</P>
	 	 	 <RULEREF	REFID="RID_Numbers"/>

	 	 	 <P>to</P>
	 	 	 <RULEREF	REFID="RID_Numbers"/>
	 	 </RULE>

	 	 <!--	Note	that	rule	is	not	top-level	and	is	only	used	as	a	reusable	component	rule	-->
	 	 <RULE	ID="RID_Numbers">
	 	 	 <LIST	PROPID="PID_Value">
	 	 	 	 <P	VAL="1">one</P>
	 	 	 	 <P	VAL="2">two</P>
	 	 	 	 <P	VAL="3">three</P>
	 	 	 	 <P	VAL="4">four</P>
	 	 	 	 <P	VAL="5">five</P>
	 	 	 </LIST>
	 	 </RULE>

	 	 <!--	mark	the	rule	as	dynamic	so	the	application	can	update	the	list	of	names
	 	 	 at	runtime	-->
	 	 <RULE	ID="RID_Names"	DYNAMIC="TRUE">
	 	 	 <LIST>
	 	 	 	 <P>bob</P>
	 	 	 	 <P>jane</P>
	 	 	 	 <P>kate</P>
	 	 	 	 <P>tom</P>
	 	 	 </LIST>
	 	 </RULE>

	 	 <!--	Mark	the	rule	as	exportable,	so	other	external	grammars	can	access	it	-->
	 	 <RULE	ID="RID_Numbers_Exportable"	EXPORT="TRUE">
	 	 	 <LIST	PROPID="PID_Value">
	 	 	 	 <P	VAL="6">six</P>
	 	 	 	 <P	VAL="7">seven</P>
	 	 	 	 <P	VAL="8">eight</P>
	 	 	 	 <P	VAL="9">nine</P>

	 	 	 	 <P	VAL="10">ten</P>
	 	 	 </LIST>
	 	 </RULE>
	 </GRAMMAR>

Programmatic	Equivalent:
	 Application	developers	can	programmatically	add	rules	to	a	grammar	by	using	the
	 	 ISpGrammarBuilder	interface	inherited	by	ISpRecoGrammar
	 	 shows	how	to	add	a	rule	to	a	grammar.	To	choose	the	rule	attributes,	see	the
	 	 ISpGrammarBuilder::GetRule	method	and	SPCFGRULEATTRIBUTES

	 	 SPSTATEHANDLE	hHelloWorld;
	 	 //	Create	new	rule	called	"HelloWorld"
	 	 //	Note	that	the	second	parameter	is	the	ID,	which	can	also	be	specified
	 	 //	Note	also	that	the	rule	is	marked	as	top-level	and	active
	 	 hr	=	cpRecoGrammar->GetRule(L"SpeakNumber",	NULL,	SPRAF_TopLevel	|	SPRAF_Active,
	 	 	 	 	 	 	 	 TRUE,	&hHelloWorld);
	 	 //	Check	hr

	 	 //	add	the	text	"hello	world"
	 	 hr	=	cpRecoGrammar->AddWordTransition(hHelloWorld,	NULL,	L"hello	world",
	 	 	 	 	 	 	 L"	",	SPWT_LEXICAL,	1,	NULL);
	 	 //	Check	hr

	 	 //	save	the	grammar	changes
	 	 hr	=	cpRecoGrammar->Commit(NULL);
	 	 //	Check	hr

	 The	following	sample	code	shows	how	to	modify	a	rule	in	an	existing	grammar.	Specifically,
	 	 the	code	will	update	the	list	of	names	rule	shown	in	the	XML	Sample	Grammar
	 	 section.	By	updating	the	names	rule,	all	rules	that	reference	the	names	will
	 	 automatically	be	able	to	recognize	the	updated	names	(after	calling	::Commit).

	 	 SPSTATEHANDLE	hNames;

	 	 //	Get	a	handle	to	the	existing	rule
	 	 //	Note	the	use	of	the	constant	identifier	RID_Names,	which	was	defined	in	the
	 	 //	 XML	sample.	See	the	ID	tag	for	information	on	generating	a	C-style	header
	 	 hr	=	cpRecoGrammar->GetRule(NULL,	RID_Names,	NULL,	TRUE,	&hNames);
	 	 //	Check	hr

	 	 //	clear	the	rule	to	update	the	entire	list
	 	 hr	=	cpRecoGrammar->ClearRule(hNames);
	 	 //	Check	hr

	 	 //	add	name	"sally"
	 	 hr	=	cpRecoGrammar->AddWordTransition(hNames,	NULL,	L"sally",	NULL,
	 	 	 	 	 	 	 SPWT_LEXICAL,	NULL,	NULL);
	 	 //	Check	hr

	 	 //	add	name	"jim"
	 	 hr	=	cpRecoGrammar->AddWordTransition(hNames,	NULL,	L"jim",	NULL,
	 	 	 	 	 	 	 SPWT_LEXICAL,	NULL,	NULL);
	 	 //	Check	hr
	 	 //	add	name	"diane"
	 	 hr	=	cpRecoGrammar->AddWordTransition(hNames,	NULL,	L"diane",	NULL,
	 	 	 	 	 	 	 SPWT_LEXICAL,	NULL,	NULL);
	 	 //	Check	hr

	 	 //	save	grammar	changes
	 	 hr	=	cpRecoGrammar->Commit(NULL);	
	 	 //	Check	hr

Back	to	top

<RULEREF>

Summary:	The	RULEREF	tag	is	used	for	importing	rules	from	the	same	grammar,	or	another
	 	 grammar.	The	RULEREF	tag	is	especially	useful	for	reusing	component	or
	 	 off-the-shelf	rules	and	grammars.

XML	Attributes:
	 NAME	(required):	Specifies	the	string	identifier	of	the	rule	to	reference.	The	
	 	 or	the	REFID	must	be	specified.	If	both	are	specified,	they	must	refer	to	the
	 	 same	rule.
	 OBJECT	(optional):	Specifies	the	programmatic	identifier	(ProgId)	of	the	COM
	 	 object	which	contains	the	compiled	grammar	(see	ISpCFGInterpreter
	 	 ISpCFGInterpreter::InitGrammar).
	 PROPID	(optional,	type=VT_I4):	Specifies	the	numeric	identifier	of	the	semantic	property
	 	 attached	to	the	rule	reference.
	 PROPNAME	(optional):	Specifies	the	string	identifier	of	the	semantic	property	attached
	 	 to	the	rule	reference.
	 REFID	(required,	type=VT_I4):	Specifies	the	numeric	identifier	of	the	rule	to	reference.
	 	 The	NAME	or	the	REFID	must	be	specified.	If	both	are	specified,	they	must	refer
	 	 to	the	same	rule.
	 URL	(optional):	Specifies	the	uniform	resource	locator	(URL)	of	the	rule	to	reference.
	 	 The	URL	can	be	prefixed	by	"http://",	"file://",	or	no	prefix	for	a	relative
	 	 address.	The	URL	can	reference	either	a	compiled	grammar	(e.g.	
	 	 uncompiled	XML	grammar	(e.g.	*.xml)	which	will	be	compiled	by	SAPI	on	demand.
	 VAL	(optional):	Specifies	the	numeric	value	that	will	be	associated	with	the	semantic
	 	 property	attached	to	the	rule	reference.
	 VALSTR	(optional):	Specifies	the	string	value	that	will	be	associated	with	the	semantic
	 	 property	attached	to	the	rule	reference.
	 WEIGHT	(optional,	type=VT_UI4,VT_I4,VT_R4,VT_R8,	default=1/n_sibling_transitions)
	 	 probability	of	the	contents	of	the	rule	(which	is	referenced)	being	spoken	by
	 	 the	user.

XML	Parent	Elements:
	 LIST,	L:	List	of	phrases	or	rules	which	can	be	recognized.

	 PHRASE,	P:	Phrase	that	must	be	recognized	for	the	containing	rule	to	be	recognized.
	 OPT,	O:	Optional	phrase	causing	the	rule	reference	to	be	implicitly	optional.
	 RULE:	Rule	that	contains	phrases	or	text	to	be	recognized.	

XML	Child	Elements:
	 None

Detailed	Description:
	 The	RULEREF	tag	is	provided	to	grammar	authors	to	allow	for	grammar	reusability,	and	for
	 	 structuring	semantic	properties	into	a	hierarchy.
	 Grammar	reusability	is	provided	by	allowing	rules	to	reference	other	rules.	For	example,
	 	 an	independent	software	vendor	(ISV)	could	developer	a	series	of	grammars	that
	 	 supported	mathematic	operations	and	easy	to	speak	numbers.	They	could	redistribute
	 	 their	grammars	via	either	a	web	site	(URL,	http),	a	COM	object	(ProgId),	or	a
	 	 compiled	grammar.	Grammar	authors	who	want	to	use	the	ISV's	grammars	would	only
	 	 need	to	add	a	RULEREF	tag	into	their	grammar	which	referenced	the	appropriate
	 	 file	or	resource	location.	Similarly,	grammar	authors	can	build	basic	rule
	 	 components	into	their	grammars	(e.g.	spelling,	numbers,	or	proper	names),	then
	 	 build	complex	commands	by	reusing	the	basic	rule	components	(local	rule	reference).
	 Structured,	hierarchal	semantic	properties	are	built	on	top	of	
	 	 the	semantic	properties	specified	inside	of	a	rule	are	siblings	(ordered	by
	 	 order	of	declaration	in	the	recognized	transition	path).	The	semantic	properties
	 	 that	are	in	rules	referenced	by	another	rule	are	child	properties	of	the
	 	 rule	that	made	the	reference.	For	example,	examine	the	following	grammar:
	 	 	 <RULE	NAME="A"	TOPLEVEL="ACTIVE">
	 	 	 	 <P	PROPNAME="ROOT">
	 	 	 	 	 <RULEREF	NAME="B"	PROPNAME="ROOT_SIBLING"/>
	 	 	 	 </P>
	 	 	 </RULE>
	 	 	 <RULE	NAME="B">
	 	 	 	 <P	PROPNAME="CHILD">hello</P>
	 	 	 	 <P	PROPNAME="LEAF">world</P>

	 	 	 </RULE>
	 	 The	grammar	contains	two	rules,	one	top-level	rule	which	references	another	rule.
	 	 The	top-level	rule	contains	two	semantic	properties,	one	attached	to	a	phrase	tag
	 	 (e.g.	"ROOT"),	and	the	other	attached	to	the	rule	reference	tag	(e.g.	
	 	 "ROOT_SIBLING").	The	second	rule	also	contains	two	semantic	properties,	one
	 	 attached	to	a	phrase	tag	(e.g.	"CHILD),	and	the	other	attached	to	the	phrase	tag
	 	 (e.g.	"LEAF").	If	the	recognized	phrase	is	"hello	world",	the	semantic	property
	 	 structure	is	as	follows:
	 	 	 SPPHRASE->pProperties.pszName	==	"ROOT"
	 	 	 SPPHRASE->pProperties->pNextSibling.pszName	==	"ROOT_SIBLING"
	 	 	 SPPHRASE->pProperties->pFirstChild.pszName	==	"CHILD"
	 	 	 SPPHRASE->pProperties->pFirstChild->pNextSibling.pszName	==	"LEAF"
	 	 Note	that	no	matter	how	many	phrases	or	semantic	properties	are	contained	in	a
	 	 single	RULE,	all	of	the	properties	are	siblings.	Child	semantic	properties	are	only
	 	 created	by	using	rule	references.	See	also	the	Whitepaper,	Designing	Grammar	Rules:
	 	 Retrieving	Semantic	Properties.

XML	Grammar	Sample(s):
	 <GRAMMAR>
	 	 <DEFINE>
	 	 	 <ID	NAME="RID_Numbers"	VAL="1"/>
	 	 	 <ID	NAME="RID_AddNumbers"	VAL="2"/>
	 	 	 <ID	NAME="PID_Value"	VAL="1"/>
	 	 </DEFINE>
	 	 <!--	create	a	simple	rule	that	reuses	the	local	numbers	rule	component	-->
	 	 <RULE	ID="RID_AddNumbers"	TOPLEVEL="ACTIVE">
	 	 	 <P>add</P>
	 	 	 <!--	the	first	operand	will	be	a	number	from	the	numbers	rule-->
	 	 	 <!--	the	application	can	retrieve	the	child	property	of	this	property	"operand_1"
	 	 	 	 which	has	a	value	of	1-5	-->
	 	 	 <RULEREF	REFID="RID_Numbers"	PROPNAME="operand_1"/>
	 	 	 <P>to</P>
	 	 	 <!--	the	second	operand	will	be	a	number	from	the	numbers	rule-->

	 	 	 <!--	the	application	can	retrieve	the	child	property	of	this	property	"operand_2"
	 	 	 	 which	has	a	value	of	1-5	-->
	 	 	 <RULEREF	REFID="RID_Numbers"	PROPNAME="operand_2"/>
	 	 </RULE>

	 	 <!--	Note	that	rule	is	not	top-level	and	is	only	used	as	a	reusable	component	rule	-->
	 	 <RULE	ID="RID_Numbers">
	 	 	 <LIST	PROPID="PID_Value">
	 	 	 	 <P	VAL="1">one</P>
	 	 	 	 <P	VAL="2">two</P>
	 	 	 	 <P	VAL="3">three</P>
	 	 	 	 <P	VAL="4">four</P>
	 	 	 	 <P	VAL="5">five</P>
	 	 	 </LIST>
	 	 </RULE>

	 	 <RULE	NAME="SearchWeb"	TOPLEVEL="ACTIVE">
	 	 	 <P>search	web	for	site	named</P>
	 	 	 <!--	Reference	a	fictitious	rule	located	on	the	web	which	contains	a	daily	updated
	 	 	 	 list	of	SR-friendly	web	site	names	-->
	 	 	 <RULEREF	NAME="SiteNames"	URL="http://www.msn.com/WebServices/SpeechObjects.cfg"/>
	 	 </RULE>

	 	 <RULE	NAME="SearchAddressBook"	TOPLEVEL="ACTIVE">
	 	 	 <P>find	address	of</P>
	 	 	 <!--	Reference	a	fictitious	rule	located	in	a	registered	COM	object,	which	contains
	 	 	 	 a	dynamic	list	of	Exchange	server	address	book	names	-->
	 	 	 <RULEREF	NAME="FullNames"	OBJECT="Exchange.SpeechGrammars"/>
	 	 </RULE>
	 </GRAMMAR>

Programmatic	Equivalent:
	 Application	developers	can	programmatically	import	rules	from	URLs	by	using	the	following	format:

	 	 Rule	Name	=	"URL:"	+	FILENAME	+	"\\"	RULENAME
	 For	example,	to	import	a	rule	called	"Numbers"	from	the	file	"A.cfg",	use	the	following	sample	code:

	 	 SPSTATEHANDLE	hSpeakNumber;
	 	 SPSTATEHANDLE	hsBeforeImport;
	 	 SPSTATEHANDLE	hsRuleImport;
	 	 //	Create	new	rule	called	"SpeakNumber"
	 	 hr	=	cpRecoGrammar->GetRule(L"SpeakNumber",	NULL,	NULL,	TRUE,	&hSpeakNumber);
	 	 //	Check	hr

	 	 //	Create	new	state	for	the	beginning	text
	 	 hr	=	cpRecoGrammar->CreateNewState(hSpeakNumber,	&hsBeforeImport);
	 	 //	Check	hr

	 	 //	add	the	beginning	text	"speak	the	number"
	 	 hr	=	cpRecoGrammar->AddWordTransition(hSpeakNumber,	hsBeforeImport,	L"speak	the	number",
	 	 	 	 	 	 	 L"	",	SPWT_LEXICAL,	1,	NULL);
	 	 //	Check	hr

	 	 //	Import	the	rule	"Numbers"	from	A.cfg
	 	 hr	=	cpRecoGrammar->GetRule(L"URL:file://A.cfg\\Numbers",	0,	SPRAF_Import,	TRUE,	&hsRuleImport);
	 	 //	Check	hr

	 	 //	reference	the	"Numbers"	rule	after	the	beginning	text
	 	 hr	=	cpRecoGrammar->AddRuleTransition(hsBeforeImport,	NULL,	hsRuleImport,	1,	NULL);
	 	 //	Check	hr

	 	 hr	=	cpRecoGrammar->Commit(NULL);
	 	 //	Check	hr

Back	to	top

<TEXTBUFFER>

Summary:	The	TEXTBUFFER	tag	is	used	for	applications	needing	to	integrate	a	dynamic
text	box	or	text	selection	with	a	voice	command.

XML	Attributes:
	 PROPID	(optional,	type=VT_I4):	Specifies	the	semantic	property's	numeric	identifier.
	 PROPNAME	(optional):	Specifies	the	semantic	property's	string	identifier.
	 WEIGHT	(optional,	type=VT_UI4,VT_I4,VT_R4,VT_R8,	default=1/n_sibling_transitions)
	 	 the	probability	of	the	TEXTBUFFER-based	phrase	being	spoken	by	the	user.

XML	Parent	Elements:
	 LIST,	L:	List	of	phrases	which	can	be	recognized.
	 PHRASE,	P:	Phrase	that	must	be	recognized	for	the	containing	rule	to	be	recognized.
	 OPT,	O:	Optional	phrase	that	may	be	recognized.
	 RULE:	Rule	that	contains	phrases	or	text	to	be	recognized.

XML	Child	Elements:
	 None

Detailed	Description:
	 The	TEXTBUFFER	tag	is	useful	for	applications	that	have	a	dynamic	buffer	of	text,
	 	 and	want	to	allow	the	user	to	speak	portions	of	the	text.	The	most	obvious
	 	 example	is	likely	the	text	selection	user	interface.	The	application	offers
	 	 a	buffer	of	text,	and	allows	the	user	to	select	any	contiguous	subset	of
	 	 the	buffer.	For	example,	when	the	text	is	"a	b	c	d	e",	the	user	can	select
	 	 "a	b	c"	and	"c	d	e",	but	not	"b	e"	since	it	is	not	a	contiguous	subset	of
	 	 the	text	buffer.
	 The	TEXTBUFFER	tag	allows	the	grammar	author	to	define	a	command,	and	reference	the
	 	 dynamic	text	buffer	which	will	be	set	and	maintained	at	application	run	time.
	 	 For	example,	the	grammar	might	contain	the	command	"select	
	 	 which,	when	using	the	previous	text	sample,	would	allow	the	phrases	"select	a
	 	 b	c",	"select	"c	d	e",	but	not	"select	b	e".	The	grammar	author	should	focus
	 	 her	efforts	on	building	commands	to	operate	on	the	text	buffer,	while	the

	 	 application	developer	need	only	focus	on	maintaining	the	text	buffer	(see
	 	 ISpRecoGrammar::SetWordSequenceData	and	ISpRecoGrammar::SetTextSelection
	 	 responding	to	the	TEXTBUFFER-based	commands.
	 The	TEXTBUFFER	has	three	main	components,	the	complete	text	buffer,	the	text	allowed
	 	 text	subsets	in	the	buffer,	and	the	active	selection.	The	complete	text	buffer
	 	 is	a	string	of	text	characters,	which	is	double-NULL	terminated.	The	reason
	 	 for	using	a	double-NULL	to	allow	for	multiple	exclusive	subsets	of	the	buffer
	 	 to	be	active	(e.g.	each	subset	is	a	paragraph).	The	recognition	engine	will
	 	 not	recognize	phrases	which	span	the	exclusive	subsets	(delimited	by	a	single
	 	 NULL	character).	The	third	component	is	the	active	selection,	or	current
	 	 portion	of	the	buffer	that	should	be	recognizable	(e.g.	the	application	can
	 	 update	the	selection	to	include	on	the	text	visible	on	the	screen,	or	only
	 	 the	text	selected	by	the	user).	Note	that	any	portion	of	the	buffer	that	is
	 	 not	included	in	the	TEXTBUFFER's	active	selection	is	not	recognizable.
	 The	TEXTBUFFER	tag	is	shared	across	all	of	the	commands	associated	with	a	single
	 	 grammar	object.	For	applications	that	need	to	support	multiple	text	buffers,
	 	 the	application	has	three	options.	If	the	text	buffers	use	the	same	commands,
	 	 but	do	not	need	to	be	active	simultaneously,	the	application	can	use	the	active
	 	 selection	feature	(of	the	TEXTBUFFER)	to	switch	between	buffers.	If	the	text
	 	 buffers	are	unique,	but	the	buffers	need	to	be	active	simultaneously,	the
	 	 application	can	use	the	single-NULL	terminated	subsets	of	the	
	 	 (noting	that	each	set	is	exclusive	and	non-contiguous).	Finally,	if	the
	 	 application	has	multiple	text	buffers,	requires	the	buffers	to	be	active
	 	 simultaneously,	and	uses	different	commands	for	each	buffer,	the	application
	 	 can	use	a	single	grammar	object	for	each	buffer.
	 The	application	should	use	semantic	properties	(see	attributes	
	 	 to	quickly	and	easily	parse	the	TEXTBUFFER-related	text	out	of	the	command.
	 	 SAPI	will	automatically	set	the	semantic	property's	phrase
	 	 element	range	to	match	the	elements	taken	from	the	TEXTBUFFER.
	 The	speech	recognition	engine	must	support	text-buffers	inside	of	a	CFG	for	the
	 	 grammar	to	load	and	activate	successfully.	The	application	can	determine	if
	 	 an	engine	supports	the	TEXTBUFFER	tag	by	retrieving	the	SR	engine's	object
	 	 token	(see	ISpRecognizer::GetRecognizer),	and	then	checking	for	the	existence

	 	 of	the	engine	attribute	"WordSequences"	(see	ISpObjectToken::MatchesAttributes

XML	Grammar	Sample(s):
	 <GRAMMAR>
	 	 <!--	basic	command	to	perform	text	selection	-->
	 	 <RULE	ID="SelectText"	TOPLEVEL="ACTIVE">
	 	 	 <P>select	the	words</P>
	 	 	 <TEXTBUFFER	PROPID="PID_SelectedText"/>
	 	 </RULE>
	 </GRAMMAR>

Programmatic	Equivalent:
	 To	programmatically	create	a	text-buffer	transition	in	a	CFG,	the	application	developer
	 	 can	use	the	ISpGrammarBuilder::AddRuleTransition	with	a	special	rule	handle,
	 	 called	SPRULETRANS_TEXTBUFFER.	For	example,	the	following	code	creates	a	simple
	 	 command	called	"SelectText"	which	recognizes	the	command	"select	

	 	 	 SPSTATEHANDLE	hsSelectText;
	 	 	 //	Create	new	top-level	rule	called	"SelectText"
	 	 	 hr	=	cpRecoGrammar->GetRule(L"SelectText",	NULL,
	 	 	 	 	 	 	 SPRAF_TopLevel	|	SPRAF_Active,	TRUE,
	 	 	 	 	 	 	 &hsSelectText);
	 	 	 //	Check	hr

	 	 	 //	Create	an	interim	state	before	the	text-buffer	transition
	 	 	 SPSTATEHANDLE	hsBeforeTextBuffer;
	 	 	 hr	=	cpRecoGrammar->CreateNewState(hsPlayCard,	&hsBeforeTextBuffer);
	 	 	 //	Check	hr

	 	 	 //	Add	the	command	word	"select"
	 	 	 hr	=	cpRecoGrammar->AddWordTransition(hsSelectText,	hsBeforeTextBuffer,
	 	 	 	 	 L"select",	L"	",	SPWT_LEXICAL,	NULL,	NULL);

	 	 	 //	Check	hr

	 	 	 //	Add	text-buffer	transition
	 	 	 hr	=	cpRecoGrammar->AddRuleTransition(hsBeforeTextBuffer,	NULL,
	 	 	 	 	 	 	 	 SPRULETRANS_TEXTBUFFER,	NULL,	NULL);
	 	 	 //	Check	hr

	 	 	 //	save/commit	changes
	 	 	 hr	=	cpRecoGrammar->Commit(NULL);
	 	 	 //	Check	hr

	 	 	 //	...	perform	other	processing/setup

	 	 	 //	Setup	text-buffer

	 	 	 //	Place	the	contents	of	text	buffer	into	pwszCoMem
	 	 	 //	 the	length	of	the	text	in	cch
	 	 	 SPTEXTSELECTIONINFO	tsi;
	 	 	 tsi.ulStartActiveOffset	=	0;
	 	 	 tsi.cchActiveChars	=	cch;
	 	 	 tsi.ulStartSelection	=	0;
	 	 	 tsi.cchSelection	=	cch;
	 	 	 pwszCoMem2	=	(WCHAR	*)CoTaskMemAlloc(sizeof(WCHAR)	*	(cch	+	2));
	 	 	 if	(pwszCoMem2)
	 	 	 {
	 	 	 	 //	SetWordSequenceData	requires	double	NULL	terminator.
	 	 	 	 memcpy(pwszCoMem2,	pwszCoMem,	sizeof(WCHAR)	*	cch);
	 	 	 	 pwszCoMem2[cch]	=	L'\0';
	 	 	 	 pwszCoMem2[cch+1]	=	L'\0';

	 	 	 	 //	set	the	text	buffer	data
	 	 	 	 hr	=	cpRecoGrammar->SetWordSequenceData(pwszCoMem2,	cch	+	2,	NULL);
	 	 	 	 //	Check	hr

	 	 	 	 //	set	the	text	selection	information	independently
	 	 	 	 hr	=	cpRecoGrammar->SetTextSelection(&tsi);
	 	 	 	 //	Check	hr
	 	 	 	 CoTaskMemFree(pwszCoMem2);
	 	 	 }
	 	 	 CoTaskMemFree(pwszCoMem);

	 	 	 //	the	SR	engine	is	now	capable	of	recognizing	the	contents	of	the	text	buffer

	
Back	to	top

<WILDCARD>

Summary:	The	WILDCARD	tag	is	used	in	rules	or	phrases	that	need	added	robustness	and
	 flexibility	for	the	speaker's	phrasing.

XML	Attributes:
	 None

XML	Parent	Elements:
	 LIST,	L:	List	of	phrases	which	can	be	recognized.
	 PHRASE,	P:	Phrase	that	must	be	recognized	for	the	containing	rule	to	be	recognized.
	 OPT,	O:	Optional	phrase	that	may	be	recognized.
	 RULE:	Rule	that	contains	phrases	or	text	to	be	recognized.

XML	Element	Children:
	 None.

Detailed	Description:
	 The	WILDCARD	tag	is	designed	for	applications	that	would	like	to	recognize

	 	 some	phrases	without	failing	due	to	irrelevant,	or	ignorable	words.	For
	 	 example,	an	application	may	have	a	command	with	the	phrase	"save	document".
	 	 Many	users	may	trivially	modify	the	phrase	by	saying	"save	my	document",
	 	 "save	the	document",	"save	this	document",	etc..	With	a	pure	CFG,	the	latter
	 	 phrases	would	all	fail	to	be	recognized	due	to	the	extra	words.	The	grammar
	 	 author	can	add	a	wildcard,	or	garbage	field,	which	will	consume	the	extra
	 	 words,	and	allow	the	application	to	successfully	handle	all	of	the	phrases.
	 	 In	the	aforementioned	case,	the	grammar	would	need	a	wildcard	before	the	word
	 	 "document".
	 The	WILDCARD	is	different	from	DICTATION	in	that	the	application	will	never	see	the
	 	 recognized	garbage	words,	even	though	they	were	recognized.	Consequently,	the
	 	 application	and	grammar	author	should	not	place	wildcards	in	places	which	may
	 	 affect	the	intended	user	action	(e.g.	"cancel	save"	is	not	the	same	as	"please
	 	 save".
	 The	grammar	author	can	also	use	a	special	character,	ellipsis	(...)	instead	of	the	entire
	 	 XML	tag.	See	XML	Grammar	Format:	Special	Wildcard	Tag
	 The	speech	recognition	engine	must	support	wildcards	inside	of	a	CFG	for	the	grammar
	 	 to	load	and	activate	successfully.	The	application	can	determine	if	an	engine
	 	 supports	the	WILDCARD	tag	by	retrieving	the	SR	engine's	object	token	(see
	 	 ISpRecognizer::GetRecognizer),	and	then	checking	for	the	existence	of	the
	 	 engine	attribute	"WildcardInCFG"	(see	ISpObjectToken::MatchesAttributes
	 	 The	engine	can	specify	support	for	the	WILDCARD
	 	 CFG	phrase	(attribute	value="Anywhere"),	or	only	at	the	end	(attribute
	 	 value="Trailing").

XML	Grammar	Sample(s):
	 <GRAMMAR>
	 	 <!--	basic	command	to	play	the	queen	of	hearts	-->
	 	 <RULE	ID="PlayCard"	TOPLEVEL="ACTIVE">
	 	 	 <P>play	<WILDCARD/>	queen	of	hearts</P>
	 	 </RULE>

	 	 <!--	basic	command	to	play	the	queen	of	hearts,	using	special	ellipsis	-->

	 	 <RULE	ID="PlayCard_Ellipsis"	TOPLEVEL="ACTIVE">
	 	 	 <P>play	...	queen	of	hearts</P>
	 	 </RULE>
	 </GRAMMAR>

Programmatic	Equivalent:
	 To	programmatically	create	a	wildcard	transition	in	a	CFG,	the	application	developer
	 	 can	use	the	ISpGrammarBuilder::AddRuleTransition	with	a	special	rule	handle,
	 	 called	SPRULETRANS_WILDCARD.	For	example,	the	following	code	creates	a	simple
	 	 command	called	"PlayCard"	which	recognizes	the	command	"play	

	 	 	 SPSTATEHANDLE	hsPlayCard;
	 	 	 //	Create	new	top-level	rule	called	"PlayCard"
	 	 	 hr	=	cpRecoGrammar->GetRule(L"PlayCard",	NULL,
	 	 	 	 	 	 	 SPRAF_TopLevel	|	SPRAF_Active,	TRUE,
	 	 	 	 	 	 	 &hsPlayCard);
	 	 	 //	Check	hr

	 	 	 //	Create	an	interim	state	before	the	wildcard	transition
	 	 	 SPSTATEHANDLE	hsBeforeWildcard;
	 	 	 hr	=	cpRecoGrammar->CreateNewState(hsPlayCard,	&hsBeforeWildcard);
	 	 	 //	Check	hr

	 	 	 //	Add	the	command	word	"play"
	 	 	 hr	=	cpRecoGrammar->AddWordTransition(hsSendMail,	hsBeforeWildcard,
	 	 	 	 	 L"play",	L"	",	SPWT_LEXICAL,	NULL,	NULL);
	 	 	 //	Check	hr

	 	 	 //	Create	an	interim	state	after	the	wildcard	transition
	 	 	 SPSTATEHANDLE	hsAfterWildcard;
	 	 	 hr	=	cpRecoGrammar->CreateNewState(hsPlayCard,	&hsAfterWildcard);
	 	 	 //	Check	hr

	 	 	 //	Add	interim	wildcard	transition
	 	 	 hr	=	cpRecoGrammar->AddRuleTransition(hsBeforeWildcard,	hsAfterWildcard,
	 	 	 	 	 	 	 	 SPRULETRANS_WILDCARD,	NULL,	NULL);
	 	 	 //	Check	hr

	 	 	 //	Add	the	command	words	"queen	of	hearts"
	 	 	 hr	=	cpRecoGrammar->AddWordTransition(hsAfterWildcard,	NULL,
	 	 	 	 	 L"queen	of	hearts",	L"	",	SPWT_LEXICAL,	NULL,	NULL);
	 	 	 //	Check	hr

	 	 	 //	save/commit	changes
	 	 	 hr	=	cpRecoGrammar->Commit(NULL);
	 	 	 //	Check	hr

	 The	previous	sample	code	will	support	any	of	the	following	phrases:
	 	 "play	the	queen	of	hearts"
	 	 "play	a	queen	of	hearts"
	 	 "play	the	left	queen	of	hearts"
	 	 etc.
	 Note	that	the	italicized	words	will	be	recognized	by	the	speech	recognition	engine,
	 	 but	will	not	be	returned	to	the	application.	The	application	should	not	put
	 	 any	application-logic	sensitive	inside	of	a	wildcard,	since	the	text	is	not
	 	 returned.

Back	to	top

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Grammar	Format	Tags:	Special
Characters
The	following	Grammar	Format	tags	have	associated	special
characters	which	can	be	used	as	shorthand	to	modify	words
within	a	rule	or	used	to	modify	the	rule	itself.	These	tags	allow
greater	flexibility	of	a	rule	by	accepting	a	wider	range	of	words
for	a	given	position.
The	following	tags	are	available:

Optional	word	(OPT,O):	?
Wildcard	(WILDCARD):	...
Dictation	(DICTATION):	*
Confidence	increase	(No	associated	XML	tag):	+
Confidence	decrease	(No	associated	XML	tag):	-

Also	see	the	CoffeeS6	Tutorial	for	more	about	embedded
dictation	and	grammar	modifiers.

Tags

Optional	word:	?
The	question	before	a	word	marks	that	word	as	optional.
The	word	may	or	may	not	be	used	in	the	position	and
have	no	effect	on	possible	rule	activation.	Using	optional
words	allows	for	a	more	natural	speaking	manner.	For
example,
<P>?Please	play	the	card<P>

The	equivalent	complete	form	of	the	phrase	would	be:
<P><O>Please</O>play	the	card<P>

This	rule	permits	the	user	to	eliminate	the	word	"please"
and	still	fire	a	valid	rule.	If	it	were	required,	the	user
would	have	to	say	"please"	in	order	for	the	speech
recognition	(SR)	engine	to	recognize	the	rule.
Back	to	top

Wildcard:	...
An	ellipsis	is	used	to	accept	words	not	critical	to	the
rule's	intent	and	allow	any	word	or	words	to	be	spoken
for	that	position.	Unlike	other	words	in	a	rule	that	are
explicitly	listed,	the	speaker	may	use	any	word	or	words
in	this	position.	The	SR	engine	will	attempt	to	recognize
the	words,	and	if	successful,	will	accept	them	as	valid
elements	for	activating	the	rule.	However,	the	words	are
not	returned	in	the	subsequent	phrase	list.	Regardless	of
the	number	of	words	spoken,	the	phrase	element	will
contain	only	one	representation	for	all	the	words.	Using
wildcards	allows	for	a	more	natural	speaking	manner	and
is	meant	for	words	that	are	unimportant	to	the	intent	of
the	rule.	Wildcards	extend	the	optional	(question	mark
tag)	by	not	requiring	an	explicit	list	of	all	the	words.	For
example,

<P>I	would	like	a	hamburger<P>

<P>...	hamburger<P>

The	equivalent	complete	form	of	the	phrase	would	be:
<P><WILDCARD/>hamburger<P>

Both	phrases	attempt	the	same	action,	that	of	ordering	a
hamburger.	In	the	first	instance,	the	user	would	have	to
use	the	exact	syntax	stated.	Even	optional	words	would
have	to	be	listed	and	the	rule	could	be	cumbersome.	The
second	instance	the	user	can	say	virtually	anything
preceding	the	word	"hamburger."

However,	listing	other	words	is	not	redundant	to	using
just	the	wildcard.	Explicitly	listing	alternative	phrases
increases	the	confidence	of	the	statement.	It	also
increases	the	SR	engine's	recognition	process	because
more	is	known	about	the	possible	spoken	content.
"Please	get	me	a	hamburger,"	is	a	much	more	common
phrase,	and	hence	is	easier	to	recognize	than	a	non
sequitur	word	allowed	by	a	wildcard.	As	an	example,
"aardvark	hamburger,"	is	a	valid	statement	according	to
the	rules	above,	but	would	be	harder	for	the	SR	engine	to
recognize.
Back	to	top

Dictation:	*
The	dictation	asterisk	allows	any	word	or	words	to	be
spoken	for	that	position	and	each	word	is	returned	by	the
SR	engine	in	the	phrase	element	list.	Unlike	the	wildcard,
the	word	or	words	are	considered	important	to	the	rule.
Using	the	dictation	asterisk,	a	user	can	say	any	word
without	the	engine	expecting	or	anticipating	its	context.
For	example,	using	the	following	rule,	users	can	speak
their	first	name:
<P>My	first	name	is	*<P>

The	equivalent	complete	form	of	the	previous	phrase
would	be:
<P>My	first	name	is	<DICTATION/><P>

If	additional	words	are	needed,	use	the	plus	sign	after
dictation	to	indicate	multiple	words	(up	to	a	pseudo-
infinite	number,	255):
<P>My	full	name	and	address	is	*+<P>

The	equivalent	complete	form	of	the	previous	phrase

would	be:
<P>My	full	name	and	address	is	<DICTATION	MAX="INF"/><P>

Back	to	top

Confidence	increase:	+

Confidence	decrease:	-
One	of	these	two	signs	placed	in	front	of	words
respectively	increases	or	decreases	the	required
confidence	for	a	successful	recognition.	Increasing	the
required	confidence	means	that	the	SR	engine	will	have
to	be	much	more	certain	that	the	word	it	recognizes
really	is	the	expected	word.	For	example,	if	the	user	is
responding	to	an	important	question	such	as	"Reform
hard	disk?,"	increasing	the	required	confidence	is
additional	confirmation	a	"yes"	really	is	"yes."	To	be
certain,	the	rule	would	be	noted	as	"+yes".
Likewise,	the	minus	sign	decreases	the	required
confidence	for	the	word.	This	de-emphasizes	words.
Although	the	word	is	required	for	the	rule,	it	is	not
important	to	verify	that	the	user	actually	said	it.
For	example,	in	the	following	rule	the	user	makes	a
request.	However,	while	the	command	is	required,	it	is
more	important	that	"name"	is	properly	recognized
rather	than	"enter."
<P>-enter	+name<P>

NOTE:	There	is	no	XML	Grammar	tag	equivalent	for	the
confidence	special	characters,	"-"	and	"+".
The	exact	numerical	measurement	of	low	confidence,
normal	confidence,	and	high	confidence	as	mapped	to
the	recognition	process	is	defined	by	the	SR	engine

vendor.	See	also	the	SR	Properties	White	Paper	for	more
information	on	manipulating	the	confidence	thresh	holds
by	the	SR	engine.
Back	to	top

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SAPI	Grammar	Example:	Solitaire
Grammar	rules	define	sentence	contents	and	phrase	elements.
Each	grammar	and	grammar	element	determines	the	speech
recognition	(SR)	engine's	ability	to	effectively	construct	phrase
elements.	Phrases	and	sub–expressions	are	commonly
represented	by	a	separate	rule	and	combined	into	larger
phrases	and	sentences	with	higher	level	rules.	For	more
information,	see	the	Grammar	rules	section.
The	card	game	called	Solitaire,	uses	semantic	objects	such	as
cards,	suits,	and	ranks,	and	semantic	actions,	such	as	"move
SomeCard	to	AnotherCard",	and	"new	game."	The	following
example	illustrates	how	to	implement	a	grammar	for	a	game	of
solitaire,	which	supports	the	previously	mentioned	semantic
objects	and	actions.	The	example	also	specifies	the	exact	voice
command	phrases	(in	American	English)	that	must	be	spoken	in
order	to	play	the	game.
<!--	The	grammar	tag	surrounds	the	entire	CFG	description

							Specify	the	language	of	the	grammar	as

							English-American	('409')	-->

<GRAMMAR	LANGID="409">

				<!--	Specify	a	set	of	easy-to-read	strings	to

												represent	specific	values.	Similar	to

												constants	or	#define	in	Visual	Basic	or

												C/++	programming	languages	-->

				<DEFINE>

								<ID	NAME="FROM"	VAL="1"/>

								<ID	NAME="TO"	VAL="2"/>

								<ID	NAME="SUIT"	VAL="3"/>

								<ID	NAME="COLOR"	VAL="4"/>

								<ID	NAME="RANK"	VAL="5"/>

								<ID	NAME="ColorRed"	VAL="11101"/>

								<ID	NAME="ColorBlack"	VAL="10011"/>

				</DEFINE>

			<!--	Define	a	top-level	rule	for	the	new	game

											command,	called	'newgame'	-->

			<!--	Make	the	rule	'active',	by	default,	so

											the	rule	is	available	as	soon	is	speech

											is	activated	in	the	application	-->

			<RULE	NAME="newgame"	TOPLEVEL="ACTIVE">

						<!--	Require	high	confidence	for	the	word,

														game,	to	avoid	accidental	recognition

														of	this	important	rule	-->

						<!--	Make	the	last	word,	please,	optional,

														only	require	low-confidence	to

														make	the	command	phrasing	more

														flexible	-->

						<P>new	+game</P><O>-please</O>

			</RULE>

			<!--	Define	another	active	top-level	rule,

										called	'playcard'	which	enables	the	user

										to	use	voice	commanding	to	play	cards	-->

			<!--	Define	the	'playcard'	rule	as	exportable,	so

										we	can	create	other	solitaire	or	card	game

										grammars	which	can	re-use	the	'playcard'

										rule	functionality.	-->

			<RULE	NAME="playcard"	TOPLEVEL="ACTIVE"	EXPORT="1">

						<O>please</O>

						<P>play	the</P>

									<!--	Allow	for	extraneous	garbage	words

														from	the	user.	The	user	could	say

														"play	the	little	ace	of	spades"	without

														breaking	the	voice	command	-->

						<O>...</O>

									<!--	Use	a	rule	reference	to	a	card	grammar

																	which	is	defined	elsewhere	in	the

																	overall	solitaire	grammar.	Using

																	rule	references	is	similar	to

																	reusable	components	in	an	object-

																	oriented	programming	language	or

																	component	model	-->

						<RULEREF	NAME="card"/>

						<O>please</O>

			</RULE>

			<!--	Define	another	top-level	voice	command	for

										moving	one	card	to	another	location	-->

			<!--	Note	that	phrase	structure	allows	for	two

											types	of	move-commands	by	making	to_card

											section	optional.	The	grammar	supports

											both	'move	from_card	to	to_card'	and

											simply	'move	from_card'.	The	application

											can	select	the	from_card	when	the	latter

											voice	command	is	recognized,	or	the

											application	can	perform	the	full	move

											with	the	former	voice	command.	-->

			<RULE	NAME="movecard"	TOPLEVEL="ACTIVE">

						<O>please</O>

						<P>

									<L>

												<P>move</P>

												<P>put</P>

									</L>

									<P>the</P>

						</P>	

						

						<!--	Use	a	semantic	tag/property,	called	'FROM'

														which	represents	the	from_card,	and

														will	contain	the	phrase	structure

														recognized	in	the	rule	reference.	By

														using	semantic	properties,	the	application

														can	abstract	away	the	exact	phrase	text

														and	build	application	logic	based	on

														the	action	(i.e.,	Action=move	

														FromCard=(Rank=Ace,	Suit=Hearts)	-->

						<RULEREF	PROPNAME="from"	PROPID="FROM"	NAME="card"/>

						<O>

									<L>

												<P>on</P>

												<P>to</P>

									</L>

									<P>the</P>

									<!--	Use	another	semantic	property	for	the

																	ToCard	information	-->

									<RULEREF	PROPNAME="to"	PROPID="TO"	NAME="card"/>

						</O>

						<O>please</O>

			</RULE>

			<!--	Create	a	reusable	card	grammar,	which	contains

											the	structure	of	a	card's	descriptor	(e.g.,

											"red	ace",	"ace	of	hearts",	or	"heart").

											Note:	It	is	not	a	top-level	rule,	since

														it	is	only	used	by	other	top-level

														rules	and	is	not	directly	recognizable	-->

			<RULE	NAME="card">

						<!--	Use	a	phrase	list	to	allow	the	descriptor
											to	be	one	of	three	forms,	including
											a	color	and	rank,	or	a	rank	and
											suit,	or	only	a	suit.	-->
					<!--	The	application	can	decode	the
													card	by	analyzing	the	semantic
													property	structure.	For	example,
													the	color	and	rank	form	will
													include	a	property	called	'color'
													with	a	value	either	ColorRed	or
													ColorBlack	(note	that	these	values
													are	actually	numeric	defines).-->
						<L>

									<P><!--	color	and	rank	form	-->

												<L	PROPNAME="color"	PROPID="COLOR">

															<P	VAL="ColorRed">red</P>

															<P	VAL="ColorBlack">black</P>

												</L>

												<RULEREF	NAME="rank"/>

									</P>

									<P><!--	rank	and	suit	form	-->

												<RULEREF	NAME="rank"/>

												<O>

															<P>of</P>

															<L	PROPNAME="suit"	PROPID="SUIT">

																		<P	VAL="0">clubs</P>

																		<P	VAL="1">hearts</P>

																		<P	VAL="2">diamonds</P>

																		<P	VAL="3">spades</P>

															</L>

												</O>

									</P>

									<!--	suit	only	form	-->

									<L	PROPNAME="suit"	PROPID="SUIT">

												<P	VAL="0">club</P>

												<P	VAL="1">heart</P>

												<P	VAL="2">diamond</P>

												<P	VAL="3">spade</P>

									</L>

						</L>

			</RULE>

			<!--	Create	a	reusable	grammar	component,	called

											'rank'	which	represents	the	numeric	rank

											of	the	various	cards.	Note	that	each	card

											has	an	associated	value.

								The	application	can	use	the	semantic	property

											called	'rank'	(specified	by	PROPNAME),	and

											the	value	(specified	by	VAL)	to	abstract

											itself	from	the	phrasing,	and	use	only	the

											numeric	rank	values.	Note	that	the	words

											'king'	and	'emperor'	both	refer	to	the

											value	13.	The	grammar	author	can	change

											or	update	the	text	without	breaking	the

											application's	semantically-dependent

											logic	-->

			<RULE	NAME="rank">

						<!--	Specify	the	property	name/id	in	the	LIST

														tag,	which	will	be	inherited	by	all

														of	the	list	tag's	child	phrase	tags.

											Specifying	the	name/id	in	the	LIST	tag	avoids

														having	to	specify	it	multiple	times,	once

														for	each	P	tag	-->

						<L	PROPNAME="rank"	PROPID="RANK">

									<P	VAL="1">ace</P>

									<P	VAL="2">two</P>

									<P	VAL="3">three</P>

									<P	VAL="4">four</P>

									<P	VAL="5">five</P>

									<P	VAL="6">six</P>

									<P	VAL="7">seven</P>

									<P	VAL="8">eight</P>

									<P	VAL="9">nine</P>

									<P	VAL="10">ten</P>

									<P	VAL="11">jack</P>

									<P	VAL="12">queen</P>

									<P	VAL="13">king</P>

									<P	VAL="12">lady</P>

									<P	VAL="13">emperor</P>

						</L>

			</RULE>

<!--	End	of	Grammar	definition	-->

</GRAMMAR>

Back	to	top

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpGrammarBuilder
This	interface	details	the	SAPI	context-free	grammar	(CFG)
backend	compiler.	These	methods	can	be	used	to
programmatically	construct	and	modify	grammars.

When	To	Use
Applications	should	use	the	ISpGrammarBuilder	interface	to
change	and	save	dynamically	loaded	grammars	(see
ISpRecoGrammar)	and	to	change	and	save	previously	compiled
binary	grammars	(see	ISpGramCompBackend).

Methods	in	Vtable	Order

ISpGrammarBuilder
Methods Description
ResetGrammar Clears	all	grammar	rules	(un-defines

them)	and	resets	the	grammar's
language	to	NewLanguage.

GetRule Retrieves	a	grammar	rule's	initial
state	information	(and	defines	the
rule	if	requested).

ClearRule Removes	all	of	the	grammar	rule
information	except	for	the	rule's
initial	state	handle.

CreateNewState Creates	a	new	state	in	the	same
grammar	rule	as	hState.

AddWordTransition Adds	a	word	or	a	sequence	of	words
to	the	grammar.

AddRuleTransition Adds	a	rule	(reference)	transition
from	one	grammar	rule	to	another.

AddResource Adds	a	resource	(name	and	string
value)	to	the	grammar	rule	specified
in	hRuleState.

Commit Performs	consistency	checks	of	the
grammar	structure,	creates	the
serialized	format,	saves	the
grammar	structure,	or	reloads	the
grammar	structure	to	the	stream
provided	by	SetSaveObjects,	or
reloads	it	into	the	SR	engine.

Additionally,	a	sample	code	is	provided	to	demonstrate
ISpGrammarBuilder.

Example	application	of	ISpGrammarBuilder

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Example	application	of
ISpGrammarBuilder
The	code	example	below	illustrates	an	implementation	of	a
travel	grammar,	using	the	ISpGrammarBuilder	interface.
An	approximation	of	the	XML	form	is	included	for	each	of	the
following	three	grammar	authoring	approaches.
				//	HRESULT	checking	code	omitted	for	brevity

				SPSTATEHANDLE	hStateTravel;

				//	create	(if	rule	does	not	already	exist)	top-level	Rule,	defaulting	to	Active

				hr	=	pGrammarBuilder->GetRule(L"Travel",	0,	SPRAF_TopLevel	|	SPRAF_Active,	TRUE,	&hStateTravel);

				{	//	Approach	1:	list	all	possible	phrases

							//	This	is	the	most	intuitive	approach,	and	it	does	not	sacrifice	efficiency

							//				because	the	grammar	builder	will	merge	shared	sub-phrases	when	possible.

							//				Internally,	SAPI	may	break	the	transitions	into	separate	transitions	if

							//				there	are	common	roots	(e.g.	"fly	to	Seattle"	and	"fly	to	New	York").

							//	There	is	only	one	root	state,	hStateTravel,	and	the	terminal	NULL	state,	and	there	are	6	unique

							//					transitions	between	the	root	state	and	the	NULL	state.

							/*	XML	Approximation:

												<RULE	NAME="Travel"	TOPLEVEL="ACTIVE">

																<PHRASE>fly	to	Seattle</PHRASE>

																<PHRASE>fly	to	New	York</PHRASE>

																<PHRASE>fly	to	Washington	DC</PHRASE>

																<PHRASE>drive	to	Seattle</PHRASE>

																<PHRASE>drive	to	New	York</PHRASE>

																<PHRASE>drive	to	Washington	DC</PHRASE>

												</RULE>

							*/

							//	create	set	of	peer	phrases,	each	containing	complete	phrase

							//	Note:	the	word	delimiter	is	set	as	"	",	so	that	the	text	we	attach	to	the	transition	can	be

							//											multiple	words	(e.g.	"fly	to	Seattle"	is	implicitly	"fly"	+	"to"	+	"Seattle")

							hr	=	pGrammarBuilder->AddWordTransition(hStateTravel,	NULL,	L"fly	to	Seattle",	L"	",	SPWT_LEXICAL,	1,	NULL);

							hr	=	pGrammarBuilder->AddWordTransition(hStateTravel,	NULL,	L"fly	to	New	York",	L"	",	SPWT_LEXICAL,	1,	NULL);

							hr	=	pGrammarBuilder->AddWordTransition(hStateTravel,	NULL,	L"fly	to	Washington	DC",	L"	",	SPWT_LEXICAL,	1,	NULL);

							hr	=	pGrammarBuilder->AddWordTransition(hStateTravel,	NULL,	L"drive	to	Washington	DC",	L"	",	SPWT_LEXICAL,	1,	NULL);

							hr	=	pGrammarBuilder->AddWordTransition(hStateTravel,	NULL,	L"drive	to	New	York",	L"	",	SPWT_LEXICAL,	1,	NULL);

							hr	=	pGrammarBuilder->AddWordTransition(hStateTravel,	NULL,	L"drive	to	Washington	DC",	L"	",	SPWT_LEXICAL,	1,	NULL);

				}

				{	//	Approach	2:	construct	the	directed-graph	using	intermediate	states

							//	This	approach	gives	you	more	control	of	the	grammar	layout,	and	may	be

							//				easier	to	implement	when	you	have	some	combinations.

							//	Using	this	approach,	there	is	one	root	state	(hStateTravel),	one	interim	state

							//			(hStateTravel_Second),	and	the	final	terminal	NULL	state.	There	are	three

							//			unique	transitions	between	the	root	state	and	the	interim	state.	And	there	are

							//			three	more	unique	transitions	between	the	interim	state,	and	the	final	NULL	state.

							//	Note	that	graph	includes	only	2-transition	paths.	The	user	is	not	capable	of	saying

							//			only	the	first	transition	or	the	second	transition	(e.g.	"fly	to"	is	an	invalid

							//			phrase	as	is	"Seattle",	but	"fly	to	Seattle"	is	valid.)

							/*	XML	Approximation:

												<RULE	NAME="Travel"	TOPLEVEL="ACTIVE">

																<LIST>

																				<PHRASE>fly	to</PHRASE>

																				<PHRASE>drive	to</PHRASE>

																				<PHRASE>take	train	to</PHRASE>

																</LIST>

																<LIST>

																				<PHRASE>Seattle</PHRASE>

																				<PHRASE>New	York</PHRASE>

																				<PHRASE>Washington	DC</PHRASE>

																</LIST>

												</RULE>

							*/

							SPSTATEHANDLE	hStateTravel_Second;

							//	create	a	new	transition	which	starts	at	the	root	state	and	ends	at	a	second	state

							hr	=	pGrammarBuilder->CreateNewState(hStateTravel,	&hStateTravel_Second);

							//	attach	the	first	part	of	the	phrase	to	to	first	transition

							hr	=	pGrammarBuilder->AddWordTransition(hStateTravel,	hStateTravel_Second,	L"fly	to",	L"	",	SPWT_LEXICAL,	1,	NULL);

							hr	=	pGrammarBuilder->AddWordTransition(hStateTravel,	hStateTravel_Second,	L"drive	to",	L"	",	SPWT_LEXICAL,	1,	NULL);

							hr	=	pGrammarBuilder->AddWordTransition(hStateTravel,	hStateTravel_Second,	L"take	train	to",	L"	",	SPWT_LEXICAL,	1,	NULL);

							//	attach	the	second	and	final	part	of	the	phrase	to	the	last	transition	(ending	with	the	NULL	state)

							hr	=	pGrammarBuilder->AddWordTransition(hStateTravel_Second,	NULL,	L"Seattle",	L"	",	SPWT_LEXICAL,	1,	NULL);

							hr	=	pGrammarBuilder->AddWordTransition(hStateTravel_Second,	NULL,	L"New	York",	L"	",	SPWT_LEXICAL,	1,	NULL);

							hr	=	pGrammarBuilder->AddWordTransition(hStateTravel_Second,	NULL,	L"Washington	DC",	L"	",	SPWT_LEXICAL,	1,	NULL);

				}

				{	//	Approach	3:	using	sub	rules

							//	This	approach	let	you	structure	the	grammars	and	is	useful	when	building	large	grammars,

							//				since	it	allows	for	reusable	component	rules	(see	also	the	XML	Grammar	tag,	RULEREF).

							//	Note	that	forward-declarations	are	allowed,	since	the	grammar	validation	is	not	performed

							//				until	the	XML	is	compiled	or	the	GrammarBuilder	instance	is	'Commit'ted.

							//	The	main	difference	between	Approach	2	and	Approach	3	is	the	use	of	component	rules,	which

							//				are	combined	into	one	top-level	rule.	This	facilitates	the	reuse	of	the	component	rules

							//				in	other	rules	(e.g.	create	a	second	rule	called	"Geography"	which	combines	the	phrase

							//				"where	is"	with	the	"Dest"	rule,	allowing	the	user	to	say	"where	is	New	York",	without

							//				requiring	the	grammar	author/designer	to	place	the	same	phrase	text	in	multiple	places

							//				of	the	grammar	leading	to	grammar	maintenance	problems.

							/*	XML	Approximation:

												<RULE	NAME="Travel"	TOPLEVEL="ACTIVE">

																<RULEREF	NAME="Method"/>

																<RULEREF	NAME="Dest"/>

												</RULE>

												<RULE	NAME="Method">

																<LIST>

																				<PHRASE>fly	to</PHRASE>

																				<PHRASE>drive	to</PHRASE>

																				<PHRASE>take	train	to</PHRASE>

																</LIST>

												</RULE>

												<RULE	NAME="Dest"	DYNAMIC="TRUE">

																<LIST>

																				<PHRASE>Seattle</PHRASE>

																				<PHRASE>New	York</PHRASE>

																				<PHRASE>Washington	DC</PHRASE>

																</LIST>

												</RULE>

												</RULE>

							*/

							SPSTATEHANDLE	hStateMethod;

							SPSTATEHANDLE	hStateDest;

							//	Note	the	two	new	rules	("Method"	&	"Dest")	are	NOT	marked	Top-level,	since	they	are

							//				reused	by	other	top-level	rules,	and	are	not	by	themselves	recognizable	phrases.

							hr	=	pGrammarBuilder->GetRule(L"Method",	0,	0,	TRUE,	&hStateMethod);

							//	Marking	the	"Dest"	rules	as	Dynamic	allows	the	programmatic	grammar	author	to

							//				update	only	the	"Dest"	rule	after	the	initial	::Commit	(e.g.	to	add	more	travel

							//				destinations	depending	on	user	history,	preferences,	or	geographic	data).

							hr	=	pGrammarBuilder->GetRule(L"Dest",	0,	SPRAF_Dynamic,	TRUE,	&hStateDest);

							SPSTATEHANDLE	hStateTravel_Second;

							//	Create	an	interim	state	(same	as	Approach	2)...

							hr	=	pGrammarBuilder->CreateNewState(hStateTravel,	&hStateTravel_Second);

							//	...	then	attach	rules	to	the	transitions	from	Root->Interim	and	Interim->NULL	state

							hr	=	pGrammarBuilder->AddRuleTransition(hStateTravel,	hStateTravel_Second,	hStateMethod,	1,	NULL);

							hr	=	pGrammarBuilder->AddRuleTransition(hStateTravel_Second,	NULL,	hStateDest,	1,	NULL);

							//	Add	the	set	of	sibling	transitions	for	travel	"method"

							hr	=	pGrammarBuilder->AddWordTransition(hStateMethod,	NULL,	L"fly	to",	L"	",	SPWT_LEXICAL,	1,	NULL);

							hr	=	pGrammarBuilder->AddWordTransition(hStateMethod,	NULL,	L"drive	to",	L"	",	SPWT_LEXICAL,	1,	NULL);

							hr	=	pGrammarBuilder->AddWordTransition(hStateMethod,	NULL,	L"take	train	to",	L"	",	SPWT_LEXICAL,	1,	NULL);

							//	Add	the	set	of	sibling	transitions	for	travel	"destinations"

							hr	=	pGrammarBuilder->AddWordTransition(hStateDest,	NULL,	L"Seattle",	L"	",	SPWT_LEXICAL,	1,	NULL);

							hr	=	pGrammarBuilder->AddWordTransition(hStateDest,	NULL,	L"New	York",	L"	",	SPWT_LEXICAL,	1,	NULL);

							hr	=	pGrammarBuilder->AddWordTransition(hStateDest,	NULL,	L"Washington	DC",	L"	",	SPWT_LEXICAL,	1,	NULL);

				}

				//	Must	Commit	before	the	grammar	changes	before	using	the	grammar.

				//	Note:	grammar	changes	are	only	given	to	the	engine	at	synchronize	points	(see	

				hr	=	pGrammarBuilder->Commit(0);

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpGrammarBuilder::ResetGrammar
ISpGrammarBuilder::ResetGrammar	clears	all	grammar
rules	(un-defines	them)	and	resets	the	grammar's	language	to
NewLanguage.	The	state	handles	for	this	grammar	are	no	longer
valid	after	this	point.
HRESULT	ResetGrammar(

			LANGID			NewLanguage

);

Parameters

NewLanguage
[in]	Language	identifier	associated	with	the	grammar	rule.

Return	values

Value Description
S_OK Function	completed

successfully.
FAILED(hr) Appropriate	error	message.

Example
The	following	code	snippet	illustrates	the	use	of	ResetGrammar.
				HRESULT	hr	=	S_OK;

				//	ResetGrammar	when	no	rules

				hr	=	pGrammarBuilder->ResetGrammar(409);

				//	Check	hr

				//	Set	language	to	default	user	language

				hr	=	pGrammarBuilder->ResetGrammar(SpGetUserDefaultUILanguage());

				//	Check	hr

				//	Set	language	to	non-english

				hr	=	pGrammarBuilder->ResetGrammar(MAKELANGID(LANG_CHINESE,	SUBLANG_CHINESE_SIMPLIFIED));

				//	Check	hr

	

				hr	=	pGrammarBuilder->ResetGrammar(MAKELANGID(LANG_JAPANESE,	SUBLANG_DEFAULT));

				//	Check	hr

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpGrammarBuilder::GetRule
ISpGrammarBuilder::GetRule	retrieves	grammar	rule's	initial
state.
HRESULT	GetRule(

			const	WCHAR				*pszRuleName,

			DWORD											dwRuleId,

			DWORD											dwAttributes,

			BOOL												fCreateIfNotExist,

			SPSTATEHANDLE			*phInitialState

);

Parameters

pszRuleName
[in]	Address	of	the	null-terminated	string	containing	the
grammar	rule	name.	If	NULL,	no	search	is	made	for	the
name.

dwRuleId
[in]	Grammar	rule	identifier.	If	zero,	no	search	is	made	for	the
rule	ID.

dwAttributes
[in]	Grammar	rule	attributes	for	the	new	rule	created.	
Ignored	if	the	rule	already	exists.		Must	be	of	type
SPCFGRULEATTRIBUTES.	Values	may	be	combined	to	allow
for	multiple	attributes.

fCreateIfNotExist
[in]	Boolean	indicating	that	the	grammar	rule	is	to	be	created
if	one	does	not	currently	exist.	TRUE	allows	the	creation;
FALSE	does	not.

phInitialState
[out]	The	initial	state	of	the	rule.	May	be	NULL.

Return	values

Value Description
S_OK Function	completed

successfully.
SPERR_RULE_NOT_FOUND No	rule	matching	the

specified	criteria	can	be
found	and	a	new	rule	is	not
created.

SPERR_RULE_NAME_ID_CONFLICT One	of	the	name	and	ID
matches	an	existing	rule	but
the	other	does	not	match	the
same	rule.

E_INVALIDARG At	least	one	parameter	is
invalid.	Also	returned	when
both	pszRuleName	and
dwRuleId	are	NULL.

E_OUTOFMEMORY Not	enough	memory	to
complete	operation.

Remarks
Either	the	rule	name	or	ID	must	be	provided	(the	other	unused
parameter	can	either	be	NULL	or	zero).	If	both	a	grammar	rule
name	and	identifier	are	provided,	they	both	must	match	in	order
for	this	call	to	succeed.	If	the	grammar	rule	does	not	already
exist	and	fCreateIfNotExists	is	true,	the	grammar	rule	is	defined.
Otherwise	this	call	will	return	an	error.

Example
The	following	code	snippet	illustrates	the	use	of	GetRule.

				HRESULT	hr	=	S_OK;

				SPSTATEHANDLE	hState;

//==

//		Create	a	rule	with	name	and	ID

				hr	=	pGrammarBuilder->GetRule(L"rule1",	1,	SPRAF_Dynamic,	TRUE,	&hState);

				//Check	return	value

//==

//		Create	a	rule	with	name	only

				hr	=	pGrammarBuilder->GetRule(L"rule",	0,	SPRAF_Dynamic,	TRUE,	&hState);

				//Check	return	value

//==

//		Create	a	rule	with	ID	only

				hr	=	pGrammarBuilder->GetRule(NULL,	2,	SPRAF_Dynamic,	TRUE,	&hState);

				//Check	return	value

//==

//		Get	an	existing	rule	by	ID

				hr	=	pGrammarBuilder->GetRule(L"rule1",	1,	SPRAF_Dynamic,	FALSE,	&hState);

				//Check	return	value

				hr	=	pGrammarBuilder->GetRule(NULL,	1,	SPRAF_Dynamic,	FALSE,	&hState);

				//Check	return	value

//==

//		Get	an	existing	rule	by	name

				hr	=	pGrammarBuilder->GetRule(L"rule1",	0,	SPRAF_Dynamic,	FALSE,	&hState);

				//Check	return	value

	

//==

//		Get	rule	references	to	other	grammars

//		Compose	the	name	of	the	rule	as	follows

//		Please	note	the	double	back-slash	before	the	rule	name.

//		OBJECT	-->	pszRuleName	=	L"SAPI5OBJECT:MyApp.ClassId\\\\RuleName"

//		URL	-->	pszRuleName	=	L"URL:http://myserver.com\\\\RuleName"

				hr	=	pBackend->GetRule(pszRuleName,	0	,	SPRAF_Import,	TRUE,	phTarget)	

				//Check	return	value

		

//	phTarget	contains	a	valid	rule	handle	that	can	be	used	to	reference	the	rule.	

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpGrammarBuilder::ClearRule
ISpGrammarBuilder::ClearRule	removes	all	of	the	grammar
rule	information	except	for	the	rule's	initial	state	handle.

HRESULT	ClearRule(

			SPSTATEHANDLE			hState

);

Parameters

hState
[in]	Handle	to	the	any	of	the	states	in	the	grammar	rule	to	be
cleared.	Only	the	rule's	initial	state	handle	is	still	valid.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG Value	specified	in	hState	is	not

valid.

Example
The	following	code	snippet	illustrates	the	use	of	ClearRule.

				HRESULT	hr	=	S_OK;

				SPSTATEHANDLE	hInit;

				SPSTATEHANDLE	hState;

				hr	=	pGrammarBuilder->GetRule(L"rule1",	1,	0,	TRUE,	&hInit);

				//	ClearRule	using	hInitState

				hr	=	pGrammarBuilder->CreateNewState(hInit,	&hState);

				hr	=	pGrammarBuilder->AddWordTransition(hInit,	hState,	L"word",	NULL,	SPWT_LEXICAL,	1,	NULL);

				hr	=	pGrammarBuilder->ClearRule(hInit);

				//	Check	hr

				hr	=	pGrammarBuilder->AddWordTransition(hInit,	hState,	L"word",	NULL,	SPWT_LEXICAL,	1,	NULL);

				//	E_INVALIDARG	because	hState	in	no	longer	valid

				//	ClearRule	using	hState	!=	hInit

				hr	=	pGrammarBuilder->CreateNewState(hInit,	&hState);

				hr	=	pGrammarBuilder->AddWordTransition(hInit,	hState,	L"word",	NULL,	SPWT_LEXICAL,	1,	NULL);

				hr	=	pGrammarBuilder->ClearRule(hState);

				//	Check	hr

	

				hr	=	pGrammarBuilder->AddWordTransition(hInit,	hState,	L"word",	NULL,	SPWT_LEXICAL,	1,	NULL);

				//	E_INVALIDARG	because	hState	in	no	longer	valid

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpGrammarBuilder::CreateNewState
ISpGrammarBuilder::CreateNewState	creates	a	new	state	in
the	same	grammar	rule	as	hState.

HRESULT	CreateNewState(

			SPSTATEHANDLE			hState,			

			SPSTATEHANDLE		*phState

);

Parameters

hState
[in]	Handle	to	any	existing	state	in	the	grammar	rule.

phState
[out]	Address	of	the	state	handle	for	a	new	state	in	the	same
grammar	rule.

Return	values

Value Description
S_OK Function	completed

successfully.
E_INVALIDARG The	hState	is	not	a	valid

state	handle.
E_POINTER The	phState	pointer	is

invalid.
E_OUTOFMEMORY Exceeded	available

memory.

Example
The	following	code	snippet	illustrates	the	use	of
CreateNewState.

				HRESULT	hr	=	S_OK;

				SPSTATEHANDLE	hInit;

				hr	=	pGrammarBuilder->GetRule(L"rule1",	1,	0,	TRUE,	&hInit);

				//	CreateNewState	using	the	hInitState

				SPSTATEHANDLE	hState;

				hr	=	pGrammarBuilder->CreateNewState(hInit,	&hState);

				//	Check	hr

				//	CreateNewState	using	hState	!=	hInit

				SPSTATEHANDLE	hState2;

				hr	=	pGrammarBuilder->CreateNewState(hState,	&hState2);

				//	Check	hr

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpGrammarBuilder::AddWordTransition
ISpGrammarBuilder::AddWordTransition	adds	a	word	or	a
sequence	of	words	to	the	grammar.

HRESULT	AddWordTransition(

			SPSTATEHANDLE										hFromState,

			SPSTATEHANDLE										hToState,

			const	WCHAR											*psz,

			const	WCHAR											*pszSeperators,

			SPGRAMMARWORDTYPE						eWordType,

			float																		Weight,

			const	SPPROPERTYINFO		*pPropInfo

);

Parameters

hFromState
[in]	Handle	of	the	state	from	which	the	arc	(or	sequence	of
arcs	in	the	case	of	multiple	words)	should	originate.

hToState
[in]	Handle	of	the	state	where	the	arc	(or	sequence	of	arcs)
should	terminate.	If	NULL,	the	final	arc	will	be	to	the	(implicit)
terminal	node	of	this	grammar	rule.

psz
[in]	Address	of	a	null-terminated	string	containing	the	word
or	words	to	be	added.	If	psz	is	NULL,	an	epsilon	arc	will	be
added.

pszSeperators
[in]	Address	of	a	null-terminated	string	containing	the
transition	word	separation	characters.	

psz	points	to	a	single	word	if	pszSeperators	is	NULL,	or	else
pszSeperators	specifies	the	valid	separator	characters.	This
parameter	may	not	contain	a	forward	slash	("/")	as	that	is
used	for	the	complex	word	format.

eWordType
[in]	The	SPGRAMMARWORDTYPE	enumeration	that	specifies
the	word	type.	Currently,	only	SPWT_LEXICAL	is	supported.

Weight
[in]	Value	specifying	the	arc's	relative	weight	in	case	there
are	multiple	arcs	originating	from	hFromState.

pPropInfo
[in]	The	SPPROPERTYINFO	structure	containing	property
name	and	value	information	that	is	associated	with	this	arc
or	sequence	of	arcs.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG At	least	one	of	psz,

pszSeparators,	or	pPropInfo	is
invalid	or	bad;	eWordType	is	a
value	other	than	SPWT_LEXICAL;
flWeight	is	less	than	0.0;	a	slash
("/")	is	used	as	a	separators.

SPERR_WORDFORMAT_ERROR Invalid	word	format.
E_OUTOFMEMORY Exceeded	available	memory.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpGrammarBuilder::AddRuleTransition
ISpGrammarBuilder::AddRuleTransition	adds	a	rule
(reference)	transition	from	one	grammar	rule	to	another.

HRESULT	AddRuleTransition(

			SPSTATEHANDLE											hFromState,

			SPSTATEHANDLE											hToState,

			SPSTATEHANDLE											hRule,

			float																			Weight,

			const	SPPROPERTYINFO			*pPropInfo

);

Parameters

hFromState
[in]	Handle	of	the	state	from	which	the	arc	should	originate.

hToState
[in]	Handle	of	the	state	where	the	arc	should	terminate.	If
NULL,	the	final	arc	will	be	to	the	(implicit)	terminal	node	of
this	grammar	rule.

hRule
[in]	Handle	of	any	state	of	the	rule	to	be	called	with	this
transition.	Get	the	hRule	using	the
ISpGrammarBuilder::GetRule()	call.	To	refer	to	a	rule	in
another	grammar,	and	"import"	that	rule	by	calling
ISpGrammarBuilder::GetRule(...	,	SPRAF_Import,	TRUE
/*fCreatIfNotExist*/,	...).
hRule	can	also	be	one	of	the	following	special	transition
handles:

Transition	handle Description

SPRULETRANS_WILDCARD <WILDCARD>	transition
SPRULETRANS_DICTATION <DICTATION>	single	word	from

dictation
SPRULETRANS_TEXTBUFFER<TEXTBUFFER>	transition

Weight
[in]	Value	specifying	the	arc's	relative	weight	in	case	there
are	multiple	arcs	originating	from	hFromState.

pPropInfo
[in]	The	SPPROPERTYINFO	structure	containing	property
name	and	value	information	that	is	associated	with	this	arc.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG At	least	one	parameter	is	invalid.
E_OUTOFMEMORY Not	enough	memory	to	complete

operation.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpGrammarBuilder::AddResource
ISpGrammarBuilder::AddResource	adds	a	resource	(name
and	string	value)	to	the	grammar	rule	specified	in	hRuleState.
The	resource	can	be	queried	by	a	rule	interpreter	using
ISpCFGInterpreterSite::GetResourceValue().
HRESULT	AddResource(

			SPSTATEHANDLE			hRuleState,

			const	WCHAR				*pszResourceName,

			const	WCHAR				*pszResourceValue

);

Parameters

hRuleState
[in]	Handle	of	a	state	in	the	rule	to	which	the	resource	is	to
be	added.

pszResourceName
[in]	Address	of	a	null-terminated	string	specifying	the
resource	name.

pszResourceValue
[in]	Address	of	a	null-terminated	string	specifying	the
resource	value.

Return	values

Value Description
S_OK Function	completed

successfully.
E_INVALIDARG At	least	one	of	the

parameters	is	invalid.

SPERR_DUPLICATE_RESOURCE_NAME The	resource	already
exists.

E_OUTOFMEMORY Exceeded	available
memory.

FAILED(hr) Appropriate	error
message.

Example
The	following	code	snippet	illustrates	the	use	of	AddResource.
				HRESULT	hr	=	S_OK;

				SPSTATEHANDLE	hInit;

				hr	=	pGrammarBuilder->GetRule(L"rule1",	1,	0,	TRUE,	&hInit);

	

				SPSTATEHANDLE	hState;

				hr	=	pGrammarBuilder->CreateNewState(hInit,	&hState);

				//	Check	hr

				//	AddResource	using	the	hInitState

				hr	=	pGrammarBuilder->AddResource(hInit,	L"ResName1",	L"ResValue1");

				//	Check	hr

				//	AddResource	using	hState	!=	hInit

				hr	=	pGrammarBuilder->AddResource(hState,	L"ResName2",	L"ResValue2");

				//	Check	hr

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpGrammarBuilder::Commit
ISpGrammarBuilder::Commit	performs	consistency	checks	of
the	grammar	structure,	creates	the	serialized	format,	saves	the
grammar	structure,	or	reloads	the	grammar	structure.
The	grammar	structure	may	be	saved	it	to	the	stream	provided
by	SetSaveObjects,	or	reloaded	into	the	SR	engine.	Commit
must	be	called	before	any	changes	to	the	grammar	can	take
effect.

HRESULT	Commit(

			DWORD			dwReserved

);

Parameters

dwReserved
Reserved.	Must	be	zero.

Return	values

Value Description
S_OK Function	completed

successfully.
E_INVALIDARG dwReserved	is	not	zero.
SPERR_UNINITIALIZED Stream	not	initialized.	

Call	SetSaveObjects
before	Commit.

SPERR_NO_RULES A	grammar	must	have	at
least	one	rule	and	one
word.

SPERR_NO_TERMINATING_RULE_PATH At	least	one	rule	is	not
empty	but	has	no

terminating	path	(path	of
transitions	from	the	initial
state	to	a	NULL	state).

SPERR_CIRCULAR_RULE_REF At	least	one	rule	has	left
recursion	(a	direct	or
indirect	rule	reference	to
itself	originated	from	the
initial	state).

SPERR_STATE_WITH_NO_ARCS At	least	one	rule	has	a
node	with	no	outgoing
transitions.

SPERR_EXPORT_DYNAMIC_RULE Dynamic	rules	or	rules
referencing	dynamic
rules	(directly	or
indirectly)	cannot	be
exported.

	

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Lexicon	interfaces
The	following	section	covers:

Lexicon	Interfaces	Overview
ISpContainerLexicon

ISpLexicon
ISpPhoneConverter

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Lexicon	Interfaces	Overview
The	ISpLexicon	interface	provides	a	uniform	way	for	applications
and	engines	to	access	the	user	lexicon,	application	lexicon,	and
engine	private	lexicons.
	
The	following	topics	are	covered	in	this	section:

ISpLexicon	information	for	application	developers
ISpLexicon	information	for	engine	developers

	

ISpLexicon	information	for	application	developers
SpLexicon	is	the	SAPI	standard	lexicon	object	which	implements
the	ISpLexicon	interface.	It	contains	the	user	lexicon	and	all
application	lexicons	registered	in	the	system	when	the
SpLexicon	object	was	CoCreated.	Engines	can	add	their	private
lexicons	through	ISpContainerLexicon	interface.	However,	if	an
application	uses	ISpContainerLexicon	to	add	a	lexicon	to	an
instance	of	SpLexicon,	the	engine	will	not	use	the	lexicon.
You	can	get	pronunciations	from	both	the	user	and	application
lexicons:
		hr	=	cpLexicon->GetPronunciation(...	eLEXTYPE_USER	...);

		hr	=	cpLexicon->GetPronunciation(...	eLEXTYPE_APP	...);	

		hr	=	cpLexicon->GetPronunciation(...	eLEXTYPE_USER	|	eLEXTYPE_APP	...);

You	can	also	add	or	remove	an	application	lexicon.	To	do	so,	let
your	COM	object	implement	the	ISpLexicon	and
ISpObjectWithToken	interfaces,	and	register	it	as	illustrated	in
the	following	example:
		hr	=	SpCreateNewTokenEx(SPCAT_APPLEXICONS,	pszLangIndependentName,	&CLSID_YourLexicon,	pszLangIndependentName,	langid,	pszLangDependentName,	&cpToken,	&cpDataKeyAttribs);

		//	hr	=	cpDataKeyAttribs->SetStringValue(name1,	value1);	//	optional.		Can	be	used	to	find	your	lexicon	later

		//	hr	=	cpDataKeyAttribs->SetStringValue(name2,	value2);	//	optional

		//	...

You	can	also	use	the	SAPI-provided
CLSID_SpUnCompressedLexicon	to	implement	your	application
lexicon	as	follows	(the	CLSID_SpCompressedLexicon	is	intended
for	engine	vendors):
		hr	=	SpCreateNewTokenEx(SPCAT_APPLEXICONS,	pszLangIndependentName,	&CLSID_SpUnCompressedLexicon,	pszLangIndependentName,	langid,	pszLangDependentName,	&cpToken,	&cpDataKeyAttribs);

		//	hr	=	cpDataKeyAttribs->SetStringValue(name1,	value1);	//	optional.		Can	be	used	to	find	your	lexicon	later

		//	hr	=	cpDataKeyAttribs->SetStringValue(name2,	value2);	//	optional

		//	...

		

		hr	=	SpCreateObjectFromToken(cpToken,	&cpAppLexicon);

		cpAppLexicon->AddPronunciation(...);

		cpAppLexicon->AddPronunciation(...);

		cpAppLexicon.Release();		//	the	CLSID_SpUnCompressedLexicon	object	will	be	read-only	after	this	point

To	remove	an	application	lexicon	from	the	system:
1.	 Locate	your	lexicon	with	the	SpFindBestToken(...,
&cpToken)	function.

2.	 Call	cpToken->Remove	(NULL)	to	remove	the	lexicon
from	the	system.

When	an	application	lexicon	is	added	to	the	system,	it	is	shared
by	all	applications.	Any	SpLexicon	object	created	afterward	will
automatically	load	the	application	lexicon.	Application	lexicons
will	override	engine	private	lexicons.
Back	to	top

ISpLexicon	information	for	engine	developers
ISpLexicon	provides	a	uniform	format	to	access	user,
application,	and	engine	private	lexicons.	CLSID_SpLexicon
implements	ISpContainerLexicon,	which	is	derived	from
ISpLexicon	and	has	one	more	method,	AddLexicon.
CComPtr<ISpContainerLexicon>	cpLexicon;

		//	load	user	lexicon	and	all	application	lexicons	registered	in	the	system	automatically

					hr	=	cpLexicon.CoCreateInstance(CLSID_SpLexicon);		

	 	

		//	create	your	private	lexicons	implementing	ISpLexicon,	e.g.	pMyLex1,	pMyLex2

					hr	=	cpLexicon->AddLexicon(pMyLex1,	eLEXTYPE_PRIVATE1);

					hr	=	cpLexicon->AddLexicon(pMyLex2,	eLEXTYPE_PRIVATE2);

					...

Engines	can	can	access	lexicons	in	the	following	manner:
hr	=	cpLexicon->GetPronunciations(...	eLEXTYPE_USER	...);

hr	=	cpLexicon->GetPronunciations(...	eLEXTYPE_APP	...);	

hr	=	cpLexicon->GetPronunciations(...	eLEXTYPE_USER	|	eLEXTYPE_APP	|	eLEXTYPE_PRIVATE1	|	eLEXTYPE_PRIVATE2	...);

GetPronunciations	will	return	a	SPWORDPRONUNCIATIONLIST
structure	consisting	of	pronunciations	found	in	all	the	specified
lexicons.
The	lexicon	pronunciation	information	is	returned	from
GetPronunciations	in	the	following	order:

1.	 Pronunciation	from	user	lexicon	(could	have	multiple
pronunciations)

2.	 Pronunciation	from	application	lexicon(s)	(could	have
multiple	pronunciations)

3.	 Pronunciation	from	the	added	lexicons	in	the	same	order
the	lexicons	were	added.

The	expected	order	of	priority	is	the	same	as	what	is	returned
from	GetPronunciations	in	the	above	list.
The	ISpLexicon	interface	can	be	used	to	add	or	remove	words
from	the	user	lexicon.	However,	engine	developers	will	not
typically	use	ISpLexicon::AddPronunciation	and
ISpLexicon::RemovePronunciation	to	add	or	remove	words	from
user	lexicons.
When	private	lexicons	are	implemented	through	the	ISpLexicon
interface,	SAPI	will	only	call	GetPronunciations	and	GetWords	on

the	private	lexicon.	Implementing	the	AddPronunciation	or
RemovePronunciation	methods	to	populate	lexicons	can	modify
private	lexicons.
If	you	cache	the	pronunciations	from	user	or	application
lexicons,	you	need	to	call	GetGeneration	periodically	to
determine	if	the	pronunciation	has	been	modified.	For	optimum
efficiency,	an	engine	should	maintain	synchronization	with	the
user	and	application	lexicons.	The	SAPI	5	compliance	test	can
verify	an	engine's	ability	to	detect	changes	in	the	user	or
application	lexicons.	For	more	information,	please	see	the
Compliance	Tests	White	Paper.
When	the	call	to	GetGeneration	returns	a	larger	generation
number	than	the	previous	call,	the	engine	should	call
GetGenerationChange	or	GetWords	to	update	the	cache.
Private	lexicons	can	be	added	to	the	ISpContainerLexicon
interface,	or	engine	developers	can	elect	to	create	their	own
method	of	implementing	a	private	lexicon.	However,	to	ensure
consistent	performance	among	all	applications,	engines	should
always	use	the	pronunciations	from	the	user	and	application
lexicons.
Back	to	top

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpContainerLexicon
The	container	lexicon	object	automatically	loads	the	user
lexicon	and	all	available	application	lexicons	when	created.	This
allows	an	application	and	the	engine	to	quickly	access	all	the
additional	lexicon	information	present	on	the	system.
ISpContainerLexicon	inherits	from	ISpLexicon.

Implemented	By
SpLexicon

Methods	in	Vtable	Order

ISpContainerLexicon
Methods Description
AddLexicon Adds	a	lexicon	and	its	type	to	the

lexicon	stack.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpContainerLexicon::AddLexicon
ISpContainerLexicon::AddLexicon	adds	a	lexicon	and	its
type	to	the	lexicon	stack.	Mainly	used	by	engines	to	add	private
lexicons	to	their	instance	of	the	container	lexicon	for
consistency	of	lexicon	access.
HRESULT	AddLexicon(

			ISpLexicon			*pAddLexicon,

			DWORD									dwFlags

);

Parameters

pAddLexicon
[in]	Pointer	to	the	lexicon	to	be	added.

dwFlags
[in]	flags	of	type	SPLEXICONTYPE	indicating	the	lexicon	type.
Should	use	exactly	one	of	the	types	from
eLEXTYPE_PRIVATE1	through	eLEXTYPE_PRIVATE20.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG Either	dwFlag	is	invalid	or	bad,	or

the	lexicon	could	not	be	added.
SPERR_ALREADY_INITIALIZED Attempted	to	add	either	the	user

or	application.
E_POINTER pAddLexicon	is	invalid	or	bad.
E_OUTOFMEMORY Exceeded	available	memory.
FAILED(hr) Appropriate	error	message.

Remarks
For	an	application	to	create	a	new	application	lexicon,	calling
AddLexicon	for	the	new	lexicon	on	the	application's	instance	of
the	container	lexicon	will	not	update	the	engine's	instance	of
the	container	lexicon.	The	correct	way	to	update	an	instance	of
the	container	lexicon	is	to	release	it	and	recreate	the	object.	At
this	point	it	will	re-enumerate	all	available	application	lexicons.
To	guarantee	an	update	of	the	engine's	instance	of	the
container	lexicon,	the	engine	must	be	released	and	recreated,
at	which	point	it	will	recreate	its	instance	of	the	container
lexicon.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpLexicon
The	ISpLexicon	interface	is	used	to	access	the	lexicons,	which
contain	information	about	words	that	can	be	recognized	or
spoken.	For	more	information,	please	see	the	ISpLexicon
Overview.

Implemented	By
SpLexicon
SpCompressedLexicon

SpUncompressedLexicon

Methods	in	Vtable	Order

ISpLexicon	Methods Description
GetPronunciations Gets	pronunciations	and	parts	of

speech	for	a	word.
AddPronunciation Adds	pronunciation	and	parts	of

speech	of	a	word	to	the	user	lexicon.
RemovePronunciation Removes	a	word	from	the	user

lexicon.
GetGeneration Passes	back	the	generation	ID	for	a

word.
GetGenerationChange Passes	back	a	list	of	words	which

have	changed	between	the	current
and	a	specified	generation.

GetWords Gets	a	list	of	all	words	in	the	lexicon.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpLexicon::GetPronunciations
ISpLexicon::GetPronunciations	gets	pronunciations	and
parts	of	speech	for	a	word.
HRESULT	GetPronunciations(

			const	WCHAR														*pszWord,

			LANGID																				LangID,

			DWORD																					dwFlags,

			SPWORDPRONUNCIATIONLIST		*pWordPronunciationList

);

Parameters

pszWord
[in]	Pointer	to	a	null-terminated	text	string	as	a	search
keyword.	Length	must	be	equal	to	less	than
SP_MAX_WORD_LENGTH.

LangID
[in]	The	language	ID	of	the	word.	May	be	zero	to	indicate	that
the	word	can	be	of	any	LANGID.

dwFlags
[in]	Bitwise	flags	of	type	SPLEXICONTYPE	indicating	that	the
lexicons	searched	for	this	word.

pWordPronunciationList
[in,	out]	Pointer	to	SPWORDPRONUNCIATIONLIST	structure	in
which	the	pronunciations	and	parts	of	speech	are	returned.

Return	values

Value Description

S_OK Function	completed
successfully.

SP_WORD_EXISTS_WITHOUT_PRONUNCIATION The	word	exists	but
does	not	have	a
pronunciation.

E_POINTER pWordPronunciationList
is	not	a	valid	write
pointer.

E_INVALIDARG At	least	one	of	the
parameters	is	invalid	or
bad.

E_OUTOFMEMORY Exceeded	available
memory.

SPERR_UNINITIALIZED The	interface	has	not
been	initialized.

SPERR_NOT_IN_LEX Word	is	not	found	in
the	lexicon.

FAILED(hr) Appropriate	error
message.

Example
The	following	example	is	a	code	fragment	demonstrating	the
use	of	GetPronunciations.
								SPWORDPRONUNCIATIONLIST	spwordpronlist;	

								memset(&spwordpronlist,	0,	sizeof(spwordpronlist));	

								

								hr	=	pISpLexicon->GetPronunciations(L"resume",	409,	eLEXTYPE_USER	|	eLEXTYPE_APP,	&spwordpronlist);

								//test	for	results

								if(!SUCCEEDED(hr))	return;

								

								for	(

													SPWORDPRONUNCIATION	pwordpron	=	pwordpronlist->pFirstWordPron;

													wordpron	!=	NULL;

													wordpron	=	pwordpron->pNextWordPron

)

								{

												DoSomethingWith(pwordpron->ePartOfSpeech,	pwordpron->szPronunciation);

								}

								

								//free	all	the	buffers

								CoTaskMemFree(spwordpronlist.pvBuffer);

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpLexicon::AddPronunciation
ISpLexicon::AddPronunciation	adds	word	pronunciations	and
parts	of	speech	(POS)	to	the	user	lexicon.	.
HRESULT	AddPronunciation(

			const	WCHAR						*pszWord,

			LANGID												LangID,

			SPPARTOFSPEECH				ePartOfSpeech,

			const	SPPHONEID		*pszPronunciation

);

Parameters

pszWord
[in]	The	word	to	add.

LangID
[in]	The	language	ID	of	the	word.	The	speech	user	default	will
be	used	if	LANGID	is	omitted.	Length	must	be	equal	to	or	less
than	SP_MAX_WORD_LENGTH.

ePartOfSpeech
[in]	The	part	of	speech	of	type	SPPARTOFSPEECH.

pszPronunciation
[in]	Null-terminated	pronunciation	of	the	word	in	the	NUM
phone	set.	Multiple	pronunciations	may	be	added	for	a	single
word.		The	length	must	be	equal	to	or	less	than
SP_MAX_PRON_LENGTH.		pszPronunciation	may	be	NULL.

Return	values

Value Description

S_OK Function	completed	successfully.
E_INVALIDARG At	least	one	of	the	parameters	is

not	valid.
SP_ALREADY_IN_LEX The	same	pronunciation	of	the

word	already	exists	in	the	user
lexicon.

SPERR_APPLEX_READ_ONLY Cannot	add	a	word	to	application
lexicon.

SPERR_UNINITIALIZED The	interface	has	not	been
initialized.

E_OUTOFMEMORY Exceeded	available	memory.
FAILED(hr) Appropriate	error	message.

Remarks
See	the	documentation	on	ISpPhoneConverter	for	more
information	on	phone	sets.
SAPI	will	not	modify	the	word	if	spelling,	pronunciation,	and	POS
are	the	same	as	an	existing	entry	in	the	user	lexicon.	A	word
can	be	added	without	pronunciation	by	passing	in	NULL	as	the
pszPronunciation

Example
The	following	is	an	example	of	AddPronunciation.

				HRESULT	hr;

				CComPtr<ISpLexicon>	cpLexicon;

				hr	=	cpLexicon.CoCreateInstance(CLSID_SpLexicon);

				//	0x409	for	English

				LANGID	langidUS	=	MAKELANGID(LANG_ENGLISH,	SUBLANG_ENGLISH_US);

				CComPtr	cpPhoneConv;

				SPPHONEID	wszId[SP_MAX_PRON_LENGTH];

				if(SUCCEEDED(hr))

				{

								hr	=	SpCreatePhoneConverter(langidUS,	NULL,	NULL,	&cpPhoneConv);

				}

				if(SUCCEEDED(hr))

				{

								hr	=	cpPhoneConv->PhoneToId(L"r	eh	d",	wszId);

				}

				if(SUCCEEDED(hr))

				{

								hr	=	cpLexicon->AddPronunciation(L"red",	langidUS,	SPPS_Noun,	wszId);

				}

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpLexicon::RemovePronunciation
ISpLexicon::RemovePronunciation	removes	a	word	and	all
its	pronunciations	from	a	user	lexicon.

HRESULT	RemovePronunciation(

			const	WCHAR					*pszWord,

			LANGID											LangID,

			SPPARTOFSPEECH			ePartOfSpeech,

			void												*pvReserved

);

Parameters

pszWord
[in]	The	word	to	remove.

LangID
[in]	The	language	ID	of	the	word.	The	speech	user	default	will
be	used	if	LangID	is	omitted.

ePartOfSpeech
[in]	The	part	of	speech	of	type	SPPARTOFSPEECH.

pvReserved
[in]	Reserved	variable.	This	is	required	to	be	NULL.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG One	of	the	parameters	is	not	valid.
E_OUTOFMEMORY Exceeded	available	memory.

SPERR_NOT_IN_LEX Word	is	not	found	in	the	lexicon.
SPERR_APPLEX_READ_ONLY Cannot	remove	a	word	from

application	lexicon.
SPERR_UNINITIALIZED Interface	not	initialized.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpLexicon::GetGeneration
ISpLexicon::GetGeneration	passes	back	the	generation	ID	for
a	word.
Passes	back	the	current	generation	ID	of	the	user	lexicon.	It	is
used	to	detect	the	changes	in	the	user	lexicon	because	each
change	in	the	user	lexicon	(add/remove	a	word	or
install/uninstall	an	application	lexicon)	will	increment	the
generation	ID.
HRESULT	GetGeneration(

			DWORD			*pdwGeneration

);

Parameters

pdwGeneration
The	generation	ID.	This	is	a	relative	count	of	how	many	times
the	custom	lexicons	have	changed.

Return	values

Value Description
S_OK Function	completed	successfully.
E_POINTER pdwGeneration	is	not	a	valid

write	pointer.
SPERR_UNINITIALIZED Interface	is	not	initialized.
FAILED(hr) Appropriate	error	message.

Remarks
ISpLexicon::GetGenerationChange	and
ISpLexicon::GetGeneration	can	be	used	when	an	application
wants	to	determine	what	it	has	been	done	to	the	lexicon	over	a
given	period	of	time.	That	is,	it	can	back	out	of	changes	it	has

made	due	to	a	user	cancel.	To	do	this	before	it	begins	modifying
the	lexicon,	the	application	would	call
ISpLexicon::GetGeneration	and	store	the	generation	ID.	Later,
when	the	application	wants	to	see	what	words	in	the	lexicon	it
has	modified,	it	would	call	ISpLexicon::GetGenerationChanges
with	the	stored	ID.	This	can	only	be	done	for	small	changes,	as
SPERR_LEX_VERY_OUT_OF_SYNC	will	be	returned	once	sufficient
changes	have	been	made.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpLexicon::GetGenerationChange
ISpLexicon::GetGenerationChange	passes	back	a	list	of
words	which	have	changed	between	the	current	and	a	specified
generation.
HRESULT	GetGenerationChange(

			DWORD									dwFlags,

			DWORD								*pdwGeneration,

			SPWORDLIST			*pWordList

);

Parameters

dwFlags
[in]	The	lexicon	category	of	type	SPLEXICONTYPE.	Currently	it
must	be	zero	for	the	SpLexicon	(container	lexicon)	object,
and	must	be	the	correct	flag	for	the	type	of
SpUnCompressedLexicon	object	(either	eLEXTYPE_USER	or
eLEXTYPE_APP).

pdwGeneration
[in,	out]	The	generation	ID	of	client	when	passed	in.	The
current	generation	ID	is	passed	back	on	successful
completion	of	the	call.

pWordList
[in,	out]	The	buffer	containing	the	word	list	and	its	related
information.	This	must	be	initialized	(memset	to	zero)	before
first	use.	If	pWordList	is	successfully	returned,
CoTaskMemFree	must	be	used	to	free	the	list	(pWordList-
>pvBuffer)	when	no	longer	needed.

Return	values

Value Description
S_OK Function	completed

successfully.
SP_LEX_NOTHING_TO_SYNC Nothing	changed	since	the

passed	in	generation	ID.
SPERR_LEX_VERY_OUT_OF_SYNC There	are	too	many	changes

since	the	passed	in	generation
ID,	so	that	a	change	history	is
not	available.	It	could	also	be
returned	after
installation/uninstallation	of	an
application	lexicon.	Use
ISpLexicon::GetWords	if
GetGenerationChange	returns
SPERR_LEX_VERY_OUT_OF_SYNC
to	regenerate	an	entire	list	of
words	based	on	the	current
generation.

E_POINTER pdwGeneration	or	pWordList	is
not	a	valid	write	pointer.

E_INVALIDARG dwFlags	is	invalid.
SPERR_UNINITIALIZED Interface	has	not	been

initialized.
E_OUTOFMEMORY Exceeded	available	memory.
FAILED(hr) Appropriate	error	message.

Remarks
An	application	can	determine	what	has	been	done	to	a	lexicon
over	a	given	period	of	time	using
ISpLexicon::GetGenerationChange	and
ISpLexicon::GetGeneration.	That	is,	it	can	back	out	of	changes	it
has	made	due	to	a	user	cancel.	To	do	this,	before	it	starts
modifying	the	lexicon,	the	application	would	call
ISpLexicon::GetGeneration	and	store	the	generation	ID.	Later,
when	the	application	wants	to	see	what	words	in	the	lexicon	it

has	modified,	it	would	call	ISpLexicon::GetGenerationChanges
with	the	stored	ID.	This	can	only	be	done	for	small	changes
because,	past	a	certain	point,	SPERR_LEX_VERY_OUT_OF_SYNC
will	be	returned	and	the	change	history	will	not	be	available
from	the	original	generation.

Example
The	following	is	an	example	of	GetGenerationChange.

				for	(;;)

				{

								hr	=	pISpLexicon->GetGenerationChange(eLEXTYPE_USER,	&m_dwGeneration,	&spwordlist);

								//	If,	for	example,	a	new	application	lexicon	was	added,	we'll	have

								//	to	rebuild	from	scratch.

								if	(hr	==	SPERR_LEX_VERY_OUT_OF_SYNC)

								{

												Rebuild();	 //	Call	GetWords

								}

								else	if	(FAILED(hr))

								{

												DealWithOtherErrors();

								}

								else

								{

												//	Loop	thru	the	changed	words,	and	their	new	pronunciations

												for	(SPWORD	*pword	=	spwordlist.pFirstWord;

																pword	!=	NULL;

																pword	=	pword->pNextWord)

												{

																for	(SPWORDPRON	pwordpron	=	pword->pFirstWordPron;

																				pwordpron	!=	NULL;

																				pwordpron	=	pwordpron->pNextWordPron)

																{

																				if(pword->eWordType	==	eWORDTYPE_ADDED)

																				{

																								AddPronunciationToEngineDataStructures(

																												pword->pszWord,

																												pwordpron->ePartOfSpeech,

																												pwordpron->pszPronIPA);

																				}

																				else	//	pword->eWordType	==	eWORDTYPE_DELETED

																				{

																								RemovePronunciationFromEngineDataStructures(

																												pword->pszWord,

																												pwordpron->ePartOfSpeech,

																												pwordpron->pszPronIPA);

																				}

																}

												}

								}

				}

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpLexicon::GetWords
ISpLexicon::GetWords	gets	a	list	of	all	words	in	the	lexicon.
HRESULT	GetWords(

			DWORD									dwFlags,

			DWORD								*pdwGeneration,

			DWORD								*pdwCookie,

			SPWORDLIST			*pWordList

);

Parameters

dwFlags
[in]	Bitwise	flags	of	type	SPLEXICONTYPE	from	which	words
are	to	be	retrieved.

pdwGeneration
[out]	The	current	generation	ID	of	the	custom	lexicon.

pdwCookie
[in,	out]	Cookie	passed	back	by	this	call.	It	should
subsequently	be	passed	back	in	to	get	more	data.	If	the	call
returns	S_FALSE,	data	is	remaining	and	GetWords	should	be
called	again.	The	initial	value	of	the	cookie	passed	in	must	be
zero	or	pdwCookie	will	be	a	NULL	pointer.	NULL	pdwCookie
indicates	the	method	should	return	all	words	contained	in	the
lexicon	at	once.	If	it	cannot,	SP_LEX_REQUIRES_COOKIE	is
returned	instead.

pWordList
[in,	out]	The	buffer	containing	the	word	list	and	its	related
information.	If	pWordList	is	successfully	returned,
CoTaskMemFree	must	be	used	to	free	the	list	(pWordList-

>pvBuffer)	when	no	longer	needed.

Return	values

Value Description
S_OK Function	completed

successfully.
S_FALSE Additional	words	are	left	in	the

lexicon(s)	to	process.
SPERR_LEX_REQUIRES_COOKIE A	complete	list	of	words	cannot

be	returned	at	once	from	the
container	lexicon.	pdwCookie
must	not	be	NULL.

E_POINTER At	least	one	of	pdwGeneration,
pdwCookie,	pWordList	is	not
valid.	Alternatively,	the	block	of
memory	is	too	small	or	is	not
writable.

E_INVALIDARG At	least	one	of	the	parameters
is	not	valid.

E_OUTOFMEMORY Exceeded	available	memory.
SPERR_UNINITIALIZED Interface	not	initialized.
FAILED(hr) Appropriate	error	message.

Remarks
This	method	is	called	repeatedly	with	the	cookie	(set	to	zero
before	the	first	time)	until	S_OK	is	returned.	S_FALSE	is	returned
indicating	additional	information	is	left.	Optionally,	the	cookie
pointer	passed	in	may	be	NULL,	which	specifies	the	application
wants	all	of	the	words	at	once.	However,	the	lexicon	is	not
required	to	support	this	and	may	return	the	error
SP_LEX_REQUIRES_COOKIE.	The	SpLexicon	object	(container
lexicon)	requires	a	cookie	currently.

Example
The	following	is	an	example	of	using	GetWords.

				SPWORDLIST	spwordlist;

				memset(&spwordlist,	0,	sizeof(spwordlist));

				dwCookie	=	0;

				

				while	(SUCCEEDED(hr	=	pISpLexicon->GetWords(eLEXTYPE_USER	|	eLEXTYPE_APP,	&dwGeneration,	&dwCookie,	&spwordlist)))

				{

								for	(SPWORD	*pword	=	spwordlist.pFirstWord;

												pword	!=	NULL;

												pword	=	pword->pNextWord)

								{

												for	(SPWORDPRONUNCIATION	*pwordpron	=	pword->pFirstWordPronunciation;

																pwordpron	!=	NULL;

																pwordpron	=	pwordpron->pNextWordPronunciation)

												{

																DoSomethingWith(pwordpron->ePartOfSpeech,	pwordpron->pszPronIPA);

												}

								}

	

								if	(hr	==	S_OK)

															break;		//	nothing	more	to	retrieve

				}

						

				//free	all	the	buffers

				CoTaskMemFree(spwordlist.pvBuffer);

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpPhoneConverter
The	ISpPhoneConverter	interface	enables	the	client	to	convert
from	the	SAPI	character	phoneset	to	the	Id	phoneset.

When	to	Use
Call	methods	of	the	ISpPhoneConverter	interface	to	convert
between	character	and	NUM	phonesets.

Implemented	By
SpPhoneConverter

Methods	in	Vtable	Order

ISpPhoneConverter
Methods Description
ISpObjectWithToken
interface

Inherits	from	ISpObjectWithToken
and	those	methods	are	accessible
from	an	ISpPhoneConverter	object.

PhoneToId Converts	a	character	phoneme	string
to	an	ID	code	string.

IdToPhone Converts	a	null-terminated	ID	code
array	to	the	SAPI	character	format.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpPhoneConverter::PhoneToId
ISpPhoneConverter::PhoneToId	converts	a	character
phoneme	string	to	an	ID	code	string.
The	English	and	Chinese	phoneme	sets	require	the	phonemes	to
be	space	separated.	The	Japanese	phoneme	set	requires	the
phoneme	character	form	to	be	continuous.	See	the	individual
entries	for	more	details	about	the	character	sets.
HRESULT	PhoneToId(

			const	WCHAR		*pszPhone,

			SPPHONEID				*pId

);

Parameters

pszPhone
[in]	Address	of	a	null-terminated	string	that	contains	the
phoneme	string	information.

pId
[out]	Address	of	the	SPPHONEID	array	that	receives	the
phoneme	identifiers.	On	return	the	array	will	be	a	null--
terminated	list	of	SPPHONEIDs.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG One	or	more	parameters	are	invalid,

or	phoneme	not	found.
SPERR_UNINITIALIZED Interface	not	initialized.
E_FAIL pId	is	invalid	or	bad.
E_FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpPhoneConverter::IdToPhone
ISpPhoneConverter::IdToPhone	converts	a	null-terminated
ID	code	array	to	the	SAPI	character	format.
The	English	and	Chinese	phoneme	character	sets	require	the
phonemes	to	be	space	separated.	The	Japanese	phoneme	set
requires	the	phoneme	character	form	to	be	continuous.	See	the
individual	entries	for	more	details	about	the	character	sets.
HRESULT	IdToPhone(

			const	SPPHONEID		*pId,

			WCHAR												*pszPhone

);

Parameters

pId
[in]	Address	of	the	null-terminated	array	of	SPPHONEIDs	that
contains	the	phoneme	identifiers.

pszPhone
[out]	Address	of	a	null-terminated	string	that	receives	the
phoneme	string	information.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG One	or	more	parameters	are	invalid.

Alternatively,	pId	exceeds
SP_MAX_PRON_LENGTH.

E_POINTER pszPhone	or	pId	is	invalid	or	bad.
SPERR_UNINITIALIZED Interface	not	initialized.
E_FAIL Member	exceeds	available	size.

FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Resource	interfaces
The	following	section	covers:

Object	Tokens	Overview
ISpDataKey

ISpRegDataKey
ISpObjectTokenInit
ISpObjectTokenCategory

ISpObjectToken
IEnumSpObjectTokens

ISpObjectWithToken
ISpResourceManager

ISpTask

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Object	Tokens	Overview
This	document	is	a	high	level	summary	of	Object	Tokens,
Categories	and	Registries	used	in	SAPI.	It	is	intended	to	assist
developers	of	speech-enabled	applications	in	understanding	the
concepts	of	tokens	and	categories	and	using	them.

Token
A	token	is	an	object	representing	a	resource.	It	provides	an
application	an	easy	mechanism	with	which	to	inspect	the
various	attributes	of	a	resource	without	instantiating	it.	SAPI
stores	information	about	tokens	in	the	registry.	A	token	is
represented	in	the	registry	by	a	key,	and	the	key's	underlying
keys	and	values.	For	example,	MSMary	is	a	token,	it	represents
the	Microsoft	Mary	Voice,	and	its	TokenId	is
HKEY_LOCAL_MACHINE\Software\Microsoft\Speech\Voices\Tokens\MSMary
Generally,	a	token	contains	a	language-independent	name,	a
CLSID	used	to	instantiate	the	object	from	token,	and	a	set	of
attributes.	It	may	also	contain	a	CLSID	for	certain	types	of	user
interfaces	(UIs),	and	a	set	of	files	from	which	SAPI	returns	the
paths	to	all	the	associated	files	for	the	token.

Categories
An	Object	Token	Category	is	a	class	of	tokens.	It	is	represented
in	the	registry	by	a	key	containing	one	or	more	token	keys	under
it.	Categories	contain	a	single	key	called	Tokens,	and	the	keys
for	the	tokens	that	belong	to	that	category	under	it,	or	keys	for
token	enumerators.	See	Object	Tokens	and	Registry	Settings	for
detailed	descriptions	of	token	enumerators.	For	example,	Voice
is	a	Category,	and	it	contains	the	Microsoft	Mary,	Microsoft	Sam,
Microsoft	Mike	voices.	Its	CategoryId	is
HKEY_LOCAL_MACHINE\Software\Microsoft\Speech\Voices.
SAPI	categories	that	are	located	under
HKEY_LOCAL_MACHINE\Software\Microsoft\Speech	are
Voices,	Recognizers,	AppLexicons,	AudioInput,	AudioOutput	and
PhoneConverter.	Another	category,	Recoprofiles,	is	located
under	HKEY_CURRENT_USER\Software\Microsoft\Speech.

Using	Tokens	and	Categories
To	enumerate	tokens,	the	application	can	use	either	the	helper
function	SpEnumTokens	or	call
ISpObjectTokenCategory::EnumTokens.	Following	is	an	example
of	a	call	to	EnumTokens.
CComPtr<ISpObjectTokenCategory>	cpCategory;

CComPtr<IEnumSpObjectTokens>	cpEnum;

HRESULT	hr	=	cpCategory.CoCreateInstance(CLSID_SpObjectTokenCategory);

//check	hr

hr	=	cpCategory->SetId(SPCAT_VOICES,	false);

//check	hr

hr	=	cpCategory->EnumTokens(SPCAT_VOICES,	L"Gender=Female",	L"Age=Adult",	&cpEnum;);

//check	hr

This	sample	code	requests	all	female	voices.	Adult	voices	will	be
listed	at	the	beginning	of	the	enumerator.	Using	the	helper
function,	the	code	is	equal	to	the	following.
CComPtr<IEnumSpObjectTokens>	cpEnum;

hr	=	SpEnumTokens(SPCAT_VOICES,	L"Gender=Female",	L"Age=Adult",	&cpEnum;);

After	getting	enumerator,	use	methods	in	IEnumSpObjectTokens	to	get	the	tokens.

CComPtr<ISpObjectToken>	cpToken;

hr	=	cpEnum->Next(1,	&cpToken;,	NULL);

Other	helper	functions	that	can	simplify	the	steps,	for	example:
SpGetDefaultTokenFromCategoryId,	SpFindBestToken.	Please	see
the	Helper	Functions	document	for	more	detail	descriptions.
Engine	developers	also	need	to	associate	files	with	tokens	and
be	able	to	create	new	tokens.	A	token	can	query	for	all	the	files
under	the	Files	key	using	ISpObjectToken::GetStorageFileName.
SAPI	does	not	store	full	paths,	for	example:

%1c%\Microsoft\Speech\Files\MSASR\SP_63EB435D95104977BDB68E3BE3469803.dat

Use	ISpObjectToken::RemoveStorageFileName	to	remove	the
files.
Keys	under	a	token	can	be	inspected.	Following	is	a	sample
code	to	add	a	Special	attribute	to	the	default	Voices	token:
CComPtr<ISpObjectToken>	cpToken;

CComPtr<ISpDataKey>	cpKey;

hr	=	SpGetDefaultTokenFromCategoryId(SPCAT_VOICES,	&cpToken;);

//check	hr

hr	=	cpToken->OpenKey(L"Attributes",	&cpKey;);

//check	hr

hr	=	cpKey->SetStringValue(L"Special",	L"fun");

//check	hr

WCHAR	*psz	=	NULL;

hr	=	cpKey->GetStringValue(L"Special",	&psz;);

//check	hr

::CoTaskMemFree(psz);

To	create	a	key	under	default	voice	token,	call	CreateKey	from
the	Token:
CComPtr<ISpObjectToken>	cpToken;

CComPtr<ISpDataKey>	cpKey;

hr	=	SpGetDefaultTokenFromCategoryId(SPCAT_VOICES,	&cpToken;);

//check	hr

hr	=	cpToken->CreateKey(L"CreatedKey",	&cpKey;);

//check	hr

hr	=	cpKey->SetStringValue(L"Attri",	L"data");

//check	hr

Detailed	information	can	be	found	in	Object	Tokens	and	Registry
Settings	and	individual	API	documents.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpDataKey
The	ISpDataKey	interface	provides	a	mechanism	for	storing	and
retrieving	string	and	other	data.	ISpDataKey	is	used	in
conjunction	with	object	tokens,	which	implement
ISpObjectToken,	which	inherits	from	ISpDataKey.	For	example,
data	can	be	stored	in	an	object	token	representing	a	recognizer
or	TTS	engine	using	this	interface.

Implemented	By
SpObjectToken	object.	This	is	the	standard	class	used	for
all	existing	SAPI	object	tokens.	The	data	for	each	object
token	is	stored	in	the	registry.
SpDataKey	object.	This	class	stores	the	data	associated
with	the	data	key	in	the	registry.
Applications	or	engines	can	implement	this	interface
directly	if	they	wish	to	provide	a	custom	data	key
implementation.

Methods	in	Vtable	Order

ISpDataKey	Methods Description
SetData Sets	the	binary	data	for	a	token.
GetData Retrieves	the	binary	data	for	a	token.
SetStringValue Sets	the	string	value	information	for

a	specified	token.
GetStringValue Retrieves	the	string	value

information	from	a	specified	token.
SetDWORD Sets	the	value	information	for	a

specified	token.
GetDWORD Retrieves	the	value	information	from

a	specified	token.
OpenKey Opens	a	specified	token	subkey.

CreateKey Creates	a	new	token	subkey.
DeleteKey Deletes	a	specified	token	key	and	all

its	descendants.
DeleteValue Deletes	a	named	value	from	the

specified	token.
EnumKeys Enumerates	the	subkeys	of	the

specified	token.
EnumValues Enumerates	the	values	of	the

specified	token.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpDataKey::SetData
ISpDataKey::SetData	sets	the	binary	data	for	a	token.

HRESULT	SetData(

			const	WCHAR			*pszValueName,	

			ULONG										cbData,	

			const	BYTE				*pData

);

Parameters

pszValueName
[in]	Address	of	a	null-terminated	string	that	contains	the
registry	key	value	name.

cbData
[in]	Size	of	the	pData	parameter.

pData
[out]	Pointer	to	the	buffer	containing	the	information.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG Either	pszValueName	or	pData	is	an

invalid	or	bad	pointer.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpDataKey::GetData
ISpDataKey::GetData	retrieves	the	binary	data	for	a	token.

HRESULT	GetData(

			const	WCHAR			*pszValueName,	

			ULONG									*pcbData,	

			BYTE										*pData

);

Parameters

pszValueName
Address	of	a	null-terminated	string	containing	the	name	of
the	registry	key	from	which	to	retrieve	the	registry	key	value.

pcbData
[in]	Size	of	the	pData	parameter.

pData
[out]	Pointer	to	the	buffer	receiving	the	information.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG pszValueName	is	invalid	or	bad.
E_POINTER Either	pcbData	or	pData	is	an	invalid

or	bad	pointer.
SPERR_NOT_FOUND Token	key	not	found.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpDataKey::SetStringValue
ISpDataKey::SetStringValue	sets	the	string	value	information
for	a	specified	token.

HRESULT	SetStringValue(

			const	WCHAR			*pszValueName,	

			const	WCHAR			*pszValue

);

Parameters

pszValueName
Address	of	the	null-terminated	string	specifying	the	name	of
the	string	value.	If	NULL,	the	default	value	of	the	token	is
used.

pszValue
Address	of	a	null-terminated	string	that	contains	the	string
value	to	be	set	for	the	specified	key.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG Either	pszValueName	or	pszValue	is

invalid	or	bad.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpDataKey::GetStringValue
ISpDataKey::GetStringValue	retrieves	the	string	value
information	from	a	specified	token.

HRESULT	GetStringValue(

			const	WCHAR			*pszValueName,	

			WCHAR								**ppszValue

);

Parameters

pszValueName
Address	of	a	null-terminated	string	that	specifies	the	name	of
the	registry	key.	If	NULL,	the	default	value	of	the	token	is
read.

ppszValue
Address	of	a	pointer	to	a	null-terminated	string	that	receives
the	string	value	for	the	specified	key.

Return	values

Value Description
S_OK Function	completed

successfully.
E_INVALIDARG pszValueName	is	invalid	or	bad.
E_POINTER ppszValue	is	invalid	or	bad.
SPERR_NOT_FOUND Registry	file	not	found.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpDataKey::SetDWORD
ISpDataKey::SetDWORD	sets	the	value	information	for	a
specified	token.

HRESULT	SetDWORD(

			const	WCHAR			*pszKeyName,

			DWORD										dwValue

);

Parameters

pszKeyName
Address	of	a	null-terminated	string	that	contains	the	attribute
name.

dwValue
The	data	buffer	containing	the	attribute	key	value.

Return	values

Value Description
S_OK Function	completed

successfully.
E_INVALIDARG pszKeyName	is	invalid	or	bad.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpDataKey::GetDWORD
ISpDataKey::GetDWORD	retrieves	the	value	information	from
a	specified	token.

HRESULT	GetDWORD(

			const	WCHAR			*pszKeyName,

			DWORD									*pdwValue

);

Parameters

pszKeyName
[in]	Address	of	a	null-terminated	string	containing	the	token
name.

pdwValue
[out]	Address	of	the	destination	data	buffer	receiving	the
token	key	value.

Return	values

Value Description
S_OK Function	completed

successfully.
E_INVALIDARG pszKeyName	is	invalid	or	bad.
E_POINTER pdwValue	is	invalid	or	bad.
SPERR_NOT_FOUND Registry	key	not	found.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpDataKey::OpenKey
ISpDataKey::OpenKey	opens	a	specified	token	subkey.	Passes
back	a	new	object	that	supports	ISpDataKey	for	the	specified
subkey.

HRESULT	OpenKey(

			const	WCHAR			*pszSubKeyName,	

			ISpDataKey			**ppSubKey

);

Parameters

pszSubKeyName
Address	of	a	null-terminated	string	specifying	the	name	of
the	key	to	open.

ppSubKey
Address	of	a	pointer	to	an	ISpDataKey	interface.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG pszSubKeyName	is	invalid	or

bad.
E_POINTER ppSubKey	is	invalid	or	bad.
SPERR_NOT_FOUND Registry	key	not	found.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpDataKey::CreateKey
ISpDataKey::CreateKey	creates	a	new	token	subkey.	Returns
a	new	object	which	supports	ISpDataKey	for	the	specified
subkey.	If	the	key	already	exists,	the	function	will	open	the
existing	key	instead	of	overwriting	it.

HRESULT	CreateKey(

			const	WCHAR			*pszSubKeyName,	

			ISpDataKey			**ppSubKey

);

Parameters

pszSubKeyName
Address	of	a	null-terminated	string	specifying	the	name	of
the	key	to	create.

ppSubKey
Address	of	a	pointer	to	an	ISpDataKey	interface.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG Either	pszSubKeyName	or	ppKey	is

invalid	or	bad.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpDataKey::DeleteKey
ISpDataKey::DeleteKey	deletes	a	specified	token	key	and	all
its	descendants.

HRESULT	DeleteKey(

		const	WCHAR			*pszSubKeyName

);

Parameters

pszSubKeyName
Address	of	a	null-terminated	string	specifying	the	name	of
the	key	or	subkey	to	delete.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG pszSubKeyName	is	invalid	or

bad.
SPERR_NOT_FOUND Token	key	not	found.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpDataKey::DeleteValue
ISpDataKey::DeleteValue	deletes	a	named	value	from	the
specified	token.

HRESULT	DeleteValue(

			const	WCHAR			*pszValueName

);

Parameters

pszValueName
Address	of	a	null-terminated	string	specifying	the	value	name
to	be	deleted.

Return	values

Value Description
S_OK Function	completed

successfully.
E_INVALIDARG pszValueName	is	invalid	or	bad.
SPERR_NOT_FOUND Registry	key	not	found.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpDataKey::EnumKeys
ISpDataKey::EnumKeys	enumerates	the	subkeys	of	the
specified	token.

HRESULT	EnumKeys(

			ULONG					Index,	

			WCHAR			**ppszSubKeyName

);

Parameters

Index
[in]	Value	indicating	which	token	in	the	enumeration
sequence	to	locate.

ppszSubKeyName
[out]	Address	of	a	pointer	to	a	null-terminated	string	that
receives	the	enumerated	key	name.	This	must	be	freed	with
CoMemTaskFree()	when	no	longer	required.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG ppszSubKeyName	is	invalid	or	bad.
SPERR_NOT_FOUND Registry	key	not	found.
E_OUTOFMEMORY Not	enough	memory	to	allocate

string.
SPERR_NO_MORE_ITEMS No	items	could	be	accessed.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpDataKey::EnumValues
ISpDataKey::EnumValues	enumerates	the	values	of	the
specified	token.

HRESULT	EnumValues(

			ULONG					Index,	

			WCHAR			**ppszValueName

);

Parameters

Index
[in]	Value	indicating	which	token	in	the	enumeration
sequence	to	locate.

ppszValueName
Address	of	a	pointer	to	a	null-terminated	string	that	receives
the	enumerated	registry	key	values.	This	must	be	freed	with
CoMemTaskFree()	when	no	longer	required.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG ppszValueName	is	invalid	or	bad.
SPERR_NOT_FOUND Registry	key	not	found.
E_OUTOFMEMORY Not	enough	memory	to	allocate

string.
SPERR_NO_MORE_ITEMS No	items	could	be	accessed.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRegDataKey
This	interface	is	used	to	create	a	new	data	key	using	a	specific
key	in	the	registry	for	storage.	The	ISpRegDataKey	inherits	from
ISpDataKey.
The	ISpRegDataKey	inherits	from	ISpDataKey.
Applications	will	not	normally	need	to	use	or	implement	this
interface.

Implemented	By
SpDataKey.	This	class	stores	all	the	data	for	a	data	key	in	the

registry.

	

Methods	in	Vtable	Order

ISpRegDataKey
Methods Description
SetKey Sets	the	hive	registry	key	(HKEY)	to

use	for	subsequent	token	operations.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRegDataKey::SetKey
ISpRegDataKey::SetKey	sets	the	hive	registry	key	(HKEY)	to
use	for	subsequent	token	operations.

HRESULT	SetKey(

			HKEY			hkey,	

			BOOL			fReadOnly

);

Parameters

hkey
[in]	The	registry	key	to	use.

fReadOnly
[in]	Boolean	flag	setting	the	keys	to	read/write	status.	If
TRUE,	the	registry	is	read	only;	FALSE	sets	it	to	read	and
write.

Return	values

Value Description
S_OK Function	completed	successfully.
SPERR_ALREADY_INITIALIZED Interface	is	already	initialized.

Example
The	following	code	snippet	adds,	tests	and	deletes	a	superfluous
key	from	the	speech	registry.
HRESULT	hr;

CComPtr<ISpRegDataKey>	cpSpRegDataKey;

CComPtr<ISpDataKey>	cpSpCreatedDataKey;

CComPtr<ISpDataKey>	cpSpDataKey;

CComPtr<ISpObjectTokenCategory>	cpSpCategory;

HKEY	hkey;

//create	a	bogus	key	under	Voices

hr	=	g_Unicode.RegCreateKeyEx(HKEY_LOCAL_MACHINE,	L"SOFTWARE\\Microsoft\\Speech\\Voices\\bogus",	0,	NULL,	0,	KEY_READ	|	KEY_WRITE,	NULL,	&hkey,	NULL);

//Check	error

hr	=	cpSpRegDataKey.CoCreateInstance(CLSID_SpDataKey);

//Check	error

hr	=	cpSpRegDataKey->SetKey(hkey,	false);

//Check	error

hkey	=	NULL;

//Do	not	need	to	do	RegCloseKey	on	this	hkey,	the	handle	gets	released	inside	SetKey().

hr	=	cpSpRegDataKey->QueryInterface(&cpSpCreatedDataKey);

//Check	error

	

//delete	this	bogus	key

hr	=	SpGetCategoryFromId(SPCAT_VOICES,	&cpSpCategory);

//Check	error

hr	=	cpSpCategory->GetDataKey(SPDKL_LocalMachine,	&cpSpDataKey);

//Check	error

hr	=	cpSpDataKey->DeleteKey(L"bogus");

//Check	error

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpObjectTokenInit
This	interface	inherits	from	ISpObjectToken.

Associated	Class	IDs
The	following	class	IDs	(CLSID)	may	be	used	with	this	interface.
A	complete	CLSID	listing	for	all	interfaces	is	in	the	Class	IDs
section.

CLSID_SpObjectToken

Methods	in	Vtable	Order

ISpObjectTokenInit
Methods Description
InitFromDataKey Initializes	a	token	to	use	a	specified

datakey.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpObjectTokenInit::InitFromDataKey
ISpObjectTokenInit::SetObjectToken	initializes	a	token	to
use	a	specified	datakey.
HRESULT	InitFromDataKey(

			const	WCHAR			*pszCategoryId,

			const	WCHAR			*pszTokenId,

			ISpDataKey				*pDataKey

);

Parameters

pszCategoryId
[in]	The	null-terminated	string	name	of	the	categoryId	from
which	to	create	the	token.

pszTokenId
[in]	The	null-terminated	string	name	of	the	TokenId.

pDataKey
[in]	Address	of	an	ISpDataKey	interface	that	specifies	the
system	registry	key	from	which	to	create	the	token.

Return	values

Value Description
S_OK Function	completed	successfully.
E_POINTER At	least	one	of	the	parameters	is

invalid	or	bad.
SPERR_ALREADY_INITIALIZED Token	is	already	initialized.
SPERR_TOKEN_DELETED Key	has	been	deleted.
E_OUTOFMEMORY Exceeded	available	memory.

Remarks

Dynamic	token	enumerators	can	use	this	to	create	tokens	under
their	token	enumerator's	token.	Once	created,	this	enables
ISpDataKey::CreateKey	to	make	a	new	data	key,	create	a	new
object	token,	and	then	use	InitFromDataKey.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpObjectTokenCategory
Each	object	token	category	represents	a	collection	of	similar
tokens,	such	as	voices,	recognizers,	and	audio	input	devices.
Categories	may	be	created	or	manipulated	with	helper	functions
or	methods	from	this	interface.	
Each	category	has	a	Category	ID	that	is	unique	and	identifies
only	one	type	of	object	token.	The	set	of	available	categories
are	listed	in	Token	Category	IDs.	Category	IDs	are	always	null-
terminated	strings.
An	application	can	create	an	SpObjectTokenCategory	object,
which	implements	this	interface.	Then	it	calls	SetId	in	order	to
set	the	Category	ID	that	this	object	is	using.	The	application	can
then	enumerate	the	object	tokens	associated	with	this	category
using	EnumTokens.	Applications	can	also	locate	and	change	the
default	object	token	for	a	category	with	the	methods
SetDefaultTokenId	and	GetDefaultTokenId.
ISpObjectTokenCategory	inherits	from	ISpDataKey.

Implemented	By
SpObjectTokenCategory	object.	This	is	the	standard	class
used	for	categories	in	SAPI.	The	category	and	the	list	of
associated	tokens	are	stored	in	the	registry.

How	Created
Applications	will	normally	create	object	token	categories
by	directly	creating	the	SpObjectTokenCategory	class.

If	the	application	is	using	the	category	to	find	an
associated	token	that	matches	certain	attributes,	it	is
often	easier	to	use	the	helper	functions	SpEnumTokens	or
SpFindBestToken.

	

Methods	in	Vtable	Order

ISpObjectToken
Methods Description
SetId Sets	the	category	ID.
GetId Retrieves	the	token	ID.
GetDataKey Gets	the	data	key	associated	with	a

specific	location.
EnumTokens Enumerates	the	tokens	for	the

category.
SetDefaultTokenId Sets	a	specific	TokenId	as	the	default

for	the	category.
GetDefaultTokenId Retrieves	the	default	TokenId	for	the

category.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpObjectTokenCategory::SetId
ISpObjectTokenCategory::SetId	sets	the	category	ID.
This	method	may	be	called	only	once.	If	called	more	than	once,
SPERR_ALREADY_INITIALIZED	will	return.

HRESULT	SetId(

			const	WCHAR			*pszCategoryId,

			BOOL											fCreateIfNotExist

);

Parameters

pszCategoryId
[in]	The	null-terminated	string	name	of	category	to	set.	SAPI-
defined	categories	are	listed	in	Token	Category	IDs.

fCreateIfNotExist
[in]	Indicates	creating	the	category	if	one	is	not	already
present.	TRUE	creates	the	entry.	FALSE	does	not.

Return	values

Value Description
S_OK Function	completed	successfully.
SPERR_ALREADY_INITIALIZEDCategory	interface	is	already

initialized.
E_INVALIDARG pszCategoryId	is	invalid	or	bad.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpObjectTokenCategory::GetId
ISpObjectTokenCategory::GetId	retrieves	the	category	ID.

HRESULT	GetId(

			WCHAR			**ppszCoMemCategoryId

);

Parameters

ppszCoMemCategoryId
[in]	The	null-terminated	string	name	of	the	current	category.
ppszCoMemCategoryId	must	be	freed	with	CoMemTaskFree
when	no	longer	required.

Return	values

Value Description
S_OK Function	completed	successfully.
SPERR_UNINITIALIZED Category	interface	is	not	initialized.
E_POINTER ppszCoMemCategoryId	is	invalid	or

bad.
FAILED(hr) Appropriate	error	message.

Example
The	following	code	snippet	retrieves	CategoryId	for
SPCAT_VOICES.
HRESULT	hr;

CComPtr<ISpObjectTokenCategory>	cpSpCategory;
CSpCoTaskMemPtr<WCHAR>	cpwszOldID;

hr	=	SpGetCategoryFromId(SPCAT_VOICES,	&cpSpCategory;);
//Check	return	code

hr	=	cpSpCategory->GetId(&cpwszOldID;);
//Check	return	code

CoMemTaskFree(cpwszOldID);

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpObjectTokenCategory::GetDataKey
ISpObjectTokenCategory::GetDataKey	gets	the	data	key
associated	with	a	specific	location.

HRESULT	GetDataKey(

			SPDATAKEYLOCATION			spdkl,

			ISpDataKey								**ppDataKey

);

Parameters

spdkl
[in]	The	registry's	top-level	node	to	be	searched.

ppDataKey
[out]	The	data	key	interface	associated	with	the	location
spdkl.

Return	values

Value Description
S_OK Function	completed	successfully.
SPERR_UNINITIALIZED Data	key	interface	is	not	initialized.
E_POINTER ppDataKey	is	invalid	or	bad.
FAILED(hr) Appropriate	error	message.

Example
The	following	code	snippet	retrieves	the	data	key	associated
with	the	local	computer	registry	for	SPCAT_VOICES.
HRESULT	hr;

CComPtr<ISpObjectTokenCategory>	cpSpCategory;
CComPtr<ISpDataKey>	cpSpDataKey;

hr	=	SpGetCategoryFromId(SPCAT_VOICES,	&cpSpCategory;);
//Check	return	code

hr	=	cpSpCategory->GetDataKey(SPDKL_LocalMachine,	&cpSpDataKey;);
//Check	return	code

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpObjectTokenCategory::EnumTokens
ISpObjectTokenCategory::EnumTokens	enumerates	the
tokens	for	the	category	by	attempting	to	match	specified
requirements.	Attributes,	enumerations,	and	searches	are
discussed	in	Object	Tokens	and	Registry	Settings	White	Paper.

HRESULT	EnumTokens(

			const	WCHAR											*pszReqAttribs,

			const	WCHAR											*pszOptAttribs,

			IEnumSpObjectTokens		**ppEnum

);

Parameters

pszReqAttribs
[in]	The	null	terminated	string	of	required	attributes	for	the
token.

pszOptAttribs
[in]	The	null	terminated	string	of	optional	attributes	for	the
token.	The	order	in	which	the	tokens	are	listed	in	ppEnum	is
based	on	the	order	they	match	pszOptAttribs.

ppEnum
[out]	The	enumerated	list	of	tokens	found.

Return	values

Value Description
S_OK Function	completed	successfully.
SPERR_UNINITIALIZED Data	key	interface	is	not	initialized.
E_POINTER At	least	one	of	the	parameters	is

invalid	or	bad.
FAILED(hr) Appropriate	error	message.

Example
The	following	code	snippet	demonstrates	getting	a	complete
enumerated	token	list.	Since	no	specific	requirement	is	given
(pszReqAttribs	and	pszOptAttribs	are	NULL),	all	values	are
returned	for	SPCAT_VOICES.

	 CComPtr<ISpObjectTokenCategory>	cpSpCategory;

	 CComPtr<IEnumSpObjectTokens>	cpSpEnumTokens;

	 HRESULT	hr;

	 hr	=	SpGetCategoryFromId(SPCAT_VOICES,	&cpSpCategory;);

	 //Check	hr

	 hr	=	cpSpCategory->EnumTokens(NULL,	NULL,	&cpSpEnumTokens;);

	 //Check	hr

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpObjectTokenCategory::SetDefaultTokenId
ISpObjectTokenCategory::SetDefaultTokenId	sets	a	specific
token	ID	as	the	default	for	the	category.
HRESULT	SetDefaultTokenId(

			const	WCHAR			*pszTokenId

);

Parameters

pszTokenId
[in]	The	null-terminated	string	name	of	the	token	ID	to	be
used	as	the	default.

Return	values

Value Description
S_OK Function	completed	successfully.
SPERR_UNINITIALIZED Data	key	interface	is	not	initialized.
E_INVALIDARG pszTokenId	is	invalid	or	bad.
FAILED(hr) Appropriate	error	message.

Remarks
The	defaults	are	stored	either	directly	in	the	category	by	setting
the	DefaultTokenID	value	in	the	category	data	key,	or	indirectly
by	the	DefaultTokenIDLocation.	Default	tokens	are	discussed	in
Object	Tokens	and	Registry	Settings	White	Paper.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpObjectTokenCategory::GetDefaultTokenId
ISpObjectTokenCategory::GetDefaultTokenId	retrieves	the
default	token	ID	for	the	category.
HRESULT	GetDefaultTokenId(

			const	WCHAR			**ppszCoMemTokenId

);

Parameters

ppszCoMemTokenId
[in]	The	null-terminated	string	name	of	the	token	ID	used	as
the	default.	Must	be	released	with	CoMemTaskFree	()	when
no	longer	needed.

Return	values

Value Description
S_OK Function	completed	successfully.
SPERR_UNINITIALIZED Data	key	interface	is	not	initialized.
E_POINTER ppszCoMemTokenId	is	invalid	or

bad.
FAILED(hr) Appropriate	error	message.

Remarks
There	is	a	hierarchy	for	returning	a	default	token	ID	value.	A
default	token	has	an	attribute	marked	as	DefaultTokenID.	When
a	token	is	not	explicitly	marked	as	such,	SAPI	attempts	to	return
the	default	from	the	user	profile.	If	none	exists	there,	SAPI
returns	a	specially	named	token	called	DefaultdefaultTokenID	for
the	category	ID.	Default	tokens	are	discussed	in	Object	Tokens
and	Registry	Settings	White	Paper.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpObjectToken
The	ISpObjectToken	interface	handles	object	token	entries.
An	object	token	is	an	object	representing	a	resource	that	is
available	on	a	computer,	such	as	a	voice,	recognizer,	or	an
audio	input	device.	A	token	provides	an	application	a	simple
way	to	inspect	the	various	attributes	of	a	resource	without
having	to	instantiate	it.	The	Vendor	of	a	Recognizer,	and	Gender
of	a	Voice	are	examples	of	attributes	of	resources.	An
application	can	enumerate	the	various	tokens	that	exist	on	the
computer	by	using	the	SpEnumTokens	helper	function,	or	by
using	the	ISpObjectTokenCategory::EnumTokens	method	to
enumerate	the	tokens	of	a	particular	category.	Applications	can
find	the	best	token	that	matches	certain	attributes	by	using	the
SpFindBestToken	function.
Conceptually,	a	token	contains	the	following	information:

An	identifier	that	uniquely	identifies	the	object	token.

The	language-independent	name	is	the	name	that	should
be	displayed	wherever	the	name	of	the	token	is
displayed.	The	implementer	of	the	token	may	also
choose	to	provide	a	set	of	language-dependent	names	in
several	languages.
The	CLSID	used	to	instantiate	the	object	from	the	token.

A	set	of	Attributes,	which	are	the	set	of	queriable	values
in	a	token.	SAPI	provides	a	mechanism	to	query	for
tokens	whose	attributes	match	certain	values.

A	token	may	also	contain	the	following:
If	a	token	has	user	interfaces	(UIs),	such	as	the	properties
of	a	Recognizer	or	a	wizard	to	customize	a	Voice	to
display,	the	token	will	also	contain	the	CLSID	for	the	COM
object	used	to	instantiate	each	type	of	UI.

The	set	of	Files	from	which	SAPI	returns	the	paths	to	all
the	associated	files	for	the	token.	

	
Attributes	are	null-terminated	strings	forming	a	series	of	key-
pair	entries.	This	is	usually	in	the	form	of	definition
relationships.	For	example,	a	token	may	be	defined	as:
"vendor=microsoft;language=409;someflag"
In	this	instance:

"vendor=microsoft"	means	a	string	exists	under
TokenID\attributes	with	name	vendor	and	value
"microsoft";
"language=409"	means	a	string	exists	under
TokenID\attributes	with	name	language	and	value	"409"
(representing	US	English);

"someflag"	means	a	string	exists	under
TokenID\attributes	with	name	someflag	but	has	no
additional	information.	Sometimes	the	presence	or
absence	of	the	attribute	name	itself	is	indicative.

	

Implemented	By
SpObjectToken	object.	This	is	the	standard	class	used	for
all	existing	SAPI	object	tokens.	The	data	for	each	object
token	is	stored	in	the	registry.
Applications	or	engines	can	implement	this	interface
directly	to	provide	a	custom	object	token
implementation.	For	instance,	this	could	be	used	to	avoid
storing	object	token	data	in	the	registry,	or	to	provide	the
ability	for	object	tokens	to	be	downloaded	from	a	server.
In	this	case	IEnumSpObjectTokens	would	also	need	to	be
implemented	so	that	the	new	object	tokens	to	be
enumerated.

How	Created
Applications	will	normally	create	object	tokens	from	an
object	token	enumerator	or	helper	function,	rather	than
by	directly	creating	them.
Various	API	methods	also	return	an	object	token	referring
to	a	specific	type	of	resource,	e.g.,
ISpRecognizer::GetRecognizer	returns	the	object	token
associated	with	the	current	recognition	engine;
ISpRecognizer::GetRecoProfile	returns	the	object	token
referring	to	the	current	recognition	profile;	and
ISpVoice::GetVoice	returns	the	object	token	referring	to
the	current	TTS	engine.

	
ISpObjectToken	inherits	from	ISpDataKey.
Object	tokens	are	discussed	in	more	detail	in	the	Object	Tokens
and	Registry	Settings	White	Paper.

	

Methods	in	Vtable	Order

ISpObjectToken	Methods Description
SetId Sets	the	category	identifier	for

object	token.
GetId Retrieves	the	object	identifier	for

an	object	token.
GetCategory Retrieves	the	category	for	a

specified	token	if	one	is	available.
CreateInstance Creates	an	instance	of	an	object.
GetStorageFileName Retrieves	the	object	token	file

name.
RemoveStorageFileName Removes	the	object	token	file

name.

Remove Removes	an	object	token.
IsUISupported Determines	if	the	UI	associated

with	the	object	is	supported.
DisplayUI Displays	the	UI	associated	with

the	object.
MatchesAttributes Determines	if	an	object	token

supports	a	specified	attribute.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpObjectToken::SetId
ISpObjectToken::SetId	sets	the	CategoryId	for	object	token.
This	may	be	called	only	once.

HRESULT	SetId(

			const	WCHAR			*pszCategoryId,

			const	WCHAR			*pszTokenId,

			BOOL											fCreateIfNotExist

);

Parameters

pszCategoryId
[in]	The	null-terminated	string	name	of	category	to	set.

pszTokenId
[in]	The	null-terminated	string	name	of	token	to	set.

fCreateIfNotExist
[in]	A	Boolean	indicating	the	object	is	to	be	created	if	not
currently	existing.	TRUE	allows	the	creation;	FALSE	does	not.

Return	values

Value Description
S_OK Function	completed	successfully.
SPERR_ALREADY_INITIALIZEDCategory	interface	is	already

initialized.
SPERR_TOKEN_DELETED Key	has	been	deleted.
E_INVALIDARG Either	pszCategoryId	and/or

pszTokenId	is	invalid	or	bad.

FAILED(hr) Appropriate	error	message.

Notes
CategoryIds	appear	in	the	fully	qualified	form	as:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Speech\Recognizers

The	only	acceptable	HKEYs	are:
HKEY_CLASSES_ROOT,
HKEY_CURRENT_USER,
HKEY_LOCAL_MACHINE,
HKEY_CURRENT_CONFIG

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpObjectToken::GetId
ISpObjectToken::GetId	retrieves	the	object	identifier	for	an
object	token.	This	identifier	can	be	used	later	to	recreate	a
token	instance.

HRESULT	GetId(

			WCHAR			**ppszCoMemTokenId

);

Parameters

ppszCoMemTokenId
Address	of	a	pointer	to	a	null-terminated	string	that	receives
the	identifier	for	the	token	object.	The	caller	must	call
CoTaskMemFree()	to	free	the	string	pointer.

Return	values

Value Description
S_OK Function	completed	successfully.
E_POINTER ppszCoMemTokenId	is	invalid	or

bad.
E_OUTOFMEMORY Exceeded	available	memory.
SPERR_UNINITIALIZED TokenId	interface	is	not	initialized.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpObjectToken::GetCategory
ISpObjectToken::GetCategory	retrieves	the	category	for	a
specified	token	if	one	is	available.

HRESULT	GetCategory(

			ISpObjectTokenCategory			**ppTokenCategory

);

Parameters

ppTokenCategory
[out]	The	category	interface	for	the	token.	ppTokenCategory
must	be	freed	when	no	longer	required.

Return	values

Value Description
S_OK Function	completed	successfully.
E_POINTER ppTokenCategory	is	invalid	or

bad.
SPERR_UNINITIALIZED Token	does	not	have	a	category.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpObjectToken::CreateInstance
ISpObjectToken::CreateInstance	creates	an	instance	of	an
object.
HRESULT	CreateInstance(

			IUnknown			*pUnkOuter,

			DWORD							dwClsContext,

			REFIID						riid,

			void						**ppvObject

);

Parameters

pUnkOuter
[in]	If	the	object	is	being	created	as	part	of	an	aggregate,	this
is	a	pointer	to	the	controlling	IUnknown	interface	of	the
aggregate.	Otherwise,	pUnkOuter	must	be	NULL.

dwClsContext
[in]	Context	in	which	the	code	that	manages	the	newly
created	object	will	run.	It	should	be	one	of	the	following
values:

CLSCTX_INPROC_SERVER
CLSCTX_INPROC_HANDLER

CLSCTX_LOCAL_SERVER
CLSCTX_REMOTE_SERVER

riid
[in]	Reference	to	the	identifier	of	the	interface	used	to
communicate	with	the	newly	created	object.	If	pUnkOuter	is
NULL,	this	parameter	is	frequently	the	IID	of	the	initializing
interface;	if	pUnkOuter	is	non-NULL,	riid	must	be

IID_IUnknown.

ppvObject
[out,	iid_is(riid)]	Address	of	pointer	variable	that	receives	the
interface	pointer	requested	in	riid.	Upon	successful	return,
ppvObject	contains	the	requested	interface	pointer.	If	the
object	does	not	support	the	interface	specified	in	riid,	the
implementation	must	set	ppvObject	to	NULL.

Return	values

Value Description
S_OK Function	completed	successfully.
E_POINTER ppvObject	is	invalid	or	bad.
E_INVALIDARG pUnkOuter	is	invalid	or	bad.
SPERR_UNINITIALIZED Either	the	data	key	or	the	token

delegator	interface	is	not	initialized.
SPERR_TOKEN_DELETED Key	has	been	deleted.
FAILED(hr) Appropriate	error	message.

Remarks
This	method	is	used	to	create	the	underlying	object	that	the
object	token	represents.	This	method	looks	at	the	CLSID	value
stored	in	the	object	token	and	creates	a	COM	object	from	this
CLSID.
For	example,	when	this	method	is	called	on	an	object	token
from	the	audio	input	category,	an	audio	object	that	implements
ISpStreamFormat	will	be	created	and	returned.
This	method	is	not	used	to	create	speech	recognition	or	text-to-
speech	engines.	Instead,	an	SpRecognizer	or	SpVoice	object	is
created	and	the	engine	is	then	created	by	passing	an	object
token	to	the	ISpRecognizer::SetRecognizer	or	ISpVoice::SetVoice
methods.

Example
The	following	code	snippet	creates	an	InProc	server	instance.
HRESULT	hr;

CComPtr<ISpObjectToken>	cpSpObjectToken;

CComPtr<ISpObjectWithToken>	cpSpObjectWithToken;

hr	=	SpGetDefaultTokenFromCategoryId(SPCAT_VOICES,	&cpSpObjectToken);

//Check	return	value

hr	=	cpSpObjectToken->CreateInstance(NULL,	CLSCTX_INPROC_SERVER,	IID_ISpObjectWithToken,	(void	**)&cpSpObjectWithToken);

//Check	return	value

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpObjectToken::GetStorageFileName
ISpObjectToken::GetStorageFileName	retrieves	the	object
token	file	name	from	the	registry.

HRESULT	GetStorageFileName(

				REFCLSID						clsidCaller,

				const	WCHAR		*pszValueName,

				const	WCHAR		*pszFileNameSpecifier,

				ULONG									nFolder,

				WCHAR							**ppszFilePath

);

Parameters

clsidCaller
[in]	Globally	unique	identifier	(GUID)	of	the	calling	object.	The
registry	is	searched	for	an	entry	key	name	of	clsidCaller,	and
then	a	corresponding	"Files"	subkey.	If	the	registry	entry	is
not	present,	one	is	created.

pszValueName
[in]	The	name	of	the	attribute	file	for	the	registry	entry	of
clsidCaller.	This	attribute	stores	the	location	of	the	resource
file.

pszFileNameSpecifier
[in]	The	specifier	that	is	either	NULL	or	a	path/file	name	for
storage	file.

If	this	starts	with	"X:\"	or	"\\"	it	is	assumed	to	be	a	full
path.
Otherwise	it	is	assumed	to	be	relative	to	special
folders	given	in	the	nFolder	parameter.

If	it	ends	with	a	'\',	or	is	NULL	a	unique	file	name	will
be	created.	The	file	name	will	be	something	like:
"SP_7454901D23334AAF87707147726EC235.dat".
"SP_"	and	".dat"	are	the	default	prefix	name	and	file
extension	name.	The	numbers	in	between	are
generated	guid	number	to	make	sure	the	file	name	is
unique.
If	the	name	contains	a	%d	the	%d	is	replaced	by	a
number	to	give	a	unique	file	name.	The	default	file
extension	is	.dat,	the	user	can	specify	anything	else.
Intermediate	directories	are	created.
If	a	relative	file	is	being	used	the	value	stored	in	the
registry	includes	the	nFolder	value	as	%nFolder%
before	the	rest	of	the	path.

nFolder
[in]	A	CSIDL	value	that	identifies	the	folder	whose	path	is	to
be	retrieved.	The	user	can	force	the	creation	of	a	folder	by
combining	the	folder's	CSIDL	with	CSIDL_FLAG_CREATE.	If
pszFileNameSpecifier	is	NULL	or	"\",	nFolder	must	have	a
specified	CSIDL	folder	combined	with	CSIDL_FLAG_CREATE	if
the	user	wants	to	force	to	create	the	file.

ppszFilePath
[out]	Address	of	a	pointer	to	the	null-terminated	string	that
receives	the	file	path	information.	Must	be	freed	when	no
longer	required.

Return	values

Value Description
S_OK Function	completed	successfully.
E_POINTER ppszFilePath	is	invalid	or	bad.
E_OUTOFMEMORY Exceeded	available	memory.

S_FALSE A	new	file	was	created.
E_INVALIDARG pszValueName	is	invalid	or	bad.
SPERR_UNINITIALIZED Either	the	data	key	or	the	token

delegate	interface	is	uninitialized.
SPERR_TOKEN_DELETED Key	has	been	deleted.
FAILED(hr) Appropriate	error	message.

Example
The	following	code	snippet	creates	and	removes	a	token	object
for	a	test	file.
HRESULT	hr;

GUID	guid0;

GUID	guid1;

CComPtr<ISpObjectToken>	cpSpObjectToken;

CSpCoTaskMemPtr<WCHAR>	cpFileName;

CSpCoTaskMemPtr<WCHAR>	cpFileName2;

hr	=	SpGetDefaultTokenFromCategoryId(SPCAT_VOICES,	&cpSpObjectToken);

//Check	return	value

ZeroStruct(guid0);

hr	=	CoCreateGuid(&guid1);

//Check	return	value

hr	=	cpSpObjectToken->GetStorageFileName(guid0,	L"TestFile",	NULL,	CSIDL_FLAG_CREATE|CSIDL_APPDATA,	&cpFileName);

//The	created	file	will	have	default	format,	and	will	be	stored	under	file	system	directory	that		

//serves	as	a	common	repository	for	application-specific	data.

//Check	return	value

hr	=	cpSpObjectToken->Remove(&guid0);

//Check	return	value

hr	=	cpSpObjectToken->GetStorageFileName(guid1,	L"TestFile2",	L"c:\\Program	Files\\MyData%d.dump",	CSIDL_FLAG_CREATE,	&cpFileName2);

//The	created	file	will	be	stored	under	C:\Program	Files,	and	will	have	a	name	like	MyData	"7412341D23334A7321707145534EC235.dump"

//Check	return	value

	

hr	=	cpSpObjectToken->Remove(&guid1);

//Check	return	value

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpObjectToken::RemoveStorageFileName
ISpObjectToken::RemoveStorageFileName	removes	the
object	token	file	name.

HRESULT	RemoveStorageFileName(

			REFCLSID							clsidCaller,

			const	WCHAR			*pszKeyName,

			BOOL											fDeleteFile

);

Parameters

clsidCaller
[in]	Globally	unique	identifier	(GUID)	of	the	calling	object.

pszKeyName
[in]	Address	of	a	null-terminated	string	containing	the
registry	key	name.

fDeleteFile
[in]	Value	specifying	if	the	file	should	be	deleted.	TRUE
deletes	the	file	afterward;	FALSE	does	not.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG pszKeyName	is	invalid	or	bad.
SPERR_UNINITIALIZED Either	the	data	key	or	token	delegate

interface	is	not	initialized.
SPERR_TOKEN_DELETED Key	has	been	deleted.
FAILED(hr) Appropriate	error	message.

Example
The	following	code	snippet	creates	a	test	file,	removes	it	and
manually	deletes	it.	It	may	also	have	been	deleted
automatically	by	setting	fDeleteFile	to	TRUE.
HRESULT	hr;

GUID	guid0;

CComPtr<ISpObjectToken>	cpSpObjectToken;

CComPtr<ISpObjectWithToken>	cpSpObjectWithToken;

CSpCoTaskMemPtr<WCHAR>	cpFileName;

hr	=	SpGetDefaultTokenFromCategoryId(SPCAT_VOICES,	&cpSpObjectToken);

//Check	return	value

ZeroStruct(guid0);

//	Create	subkeys	and	value	item	to	be	deleted

hr	=	cpSpObjectToken->GetStorageFileName(guid0,	L"test	file",	NULL,	CSIDL_FLAG_CREATE|CSIDL_APPDATA,	&cpFileName);

if	(SUCCEEDED(hr))

{

			hr	=	cpSpObjectToken->RemoveStorageFileName(guid0,	L"test	file",	false);

			//Check	return	value

	 	

			cpFileName.Clear();

}

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpObjectToken::Remove
ISpObjectToken::Remove	removes	an	object	token.

HRESULT	Remove(

			const	CLSID		*pclsidCaller

);

Parameters

pclsidCaller
[in]	Address	of	the	identifier	associated	with	the	object	token
to	remove.	If	pclsidCaller	is	NULL,	the	entire	token	is
removed;	otherwise,	only	the	specified	section	is	removed.

Return	values

Value Description
S_OK Function	completed	successfully.
E_POINTER pclsidCaller	is	invalid	or	bad.
SPERR_UNINITIALIZED The	token	ID	interface	is	uninitialized.
SPERR_TOKEN_DELETED Key	has	been	deleted.
FAILED(hr) Appropriate	error	message.

Example
The	following	code	snippet	creates	and	removes	a	token	object
for	a	test	file.
HRESULT	hr;

GUID	guid0;

CComPtr<ISpObjectToken>	cpSpObjectToken;

CSpCoTaskMemPtr<WCHAR>	cpFileName;

hr	=	SpGetDefaultTokenFromCategoryId(SPCAT_VOICES,	&cpSpObjectToken);

//Check	return	value

ZeroStruct(guid0);

hr	=	cpSpObjectToken->GetStorageFileName(guid0,	L"TestFile",	NULL,	CSIDL_FLAG_CREATE|CSIDL_APPDATA,	&cpFileName);

//Check	return	value

hr	=	cpSpObjectToken->Remove(&guid0);

//Check	return	value

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpObjectToken::IsUISupported
ISpObjectToken::IsUISupported	determines	if	the	user
interface	(UI)	associated	with	the	object	is	supported.
Ultimately,	ISpObjectToken::IsUISupported	is	similar	to	creating
an	ISpTokenUI	object	and	calling	ISpTokenUI::ISpIsUISupported.

[local]	HRESULT	IsUISupported(

				const	WCHAR		*pszTypeOfUI,

				void									*pvExtraData,

				ULONG									cbExtraData,

				IUnknown					*punkObject,

				BOOL									*pfSupported

);

Parameters

pszTypeOfUI
[in]	Address	of	the	null-terminated	string	containing	the	UI
type	that	is	being	queried.	Must	be	a	SPDUI_xxx	type.

pvExtraData
[in]	Pointer	to	additional	information	needed	for	the	object.
The	ISp	TokenUI	object	implementer	dictates	the	format	and
usage	of	the	data	provided.	See	Remarks	section.

cbExtraData
[in]	Size,	in	bytes,	of	the	ExtraData.	The	ISpTokenUI	object
implementer	dictates	the	format	and	usage	of	the	data
provided.

punkObject
[in]	Address	of	the	IUnknown	interface	pointer.	See	Remarks

section.

pfSupported
[out]	Address	of	a	variable	that	receives	the	value	indicating
support	for	the	interface.	This	value	is	set	to	TRUE	when	this
interface	is	supported,	and	FALSE	when	it	is	not.	If	this	value
is	TRUE,	but	the	return	code	is	S_FALSE,	the	UI	type
(guidTypeOfUI)	is	supported,	but	not	with	the	current
parameters	or	run-time	environment.	Check	with	the
implementer	of	the	UI	object	to	verify	run-time	requirements.

Return	values

Value Description
S_OK Function	completed	successfully.
S_FALSE The	UI	is	supported	but	not	with	the

current	run-time	environment	or
parameters.

E_INVALIDARG One	of	the	parameters	is	invalid	or
bad.

SPERR_UNINITIALIZED Either	the	data	key	or	token	delegate
interface	is	not	initialized.

SPERR_TOKEN_DELETED Key	has	been	deleted.
FAILED(hr) Appropriate	error	message.

Remarks
pvExtraData	and	punkObject	Parameters:	When	asking	an
ISpObjectToken	to	display	a	particular	piece	of	UI,	the	UI	object
may	require	extra	functionality	that	only	it	understands.
Common	implementation	practice	for	accessing	this
functionality	is	to	QueryInterface	off	of	a	known	IUnknown
interface.	The	caller	of	ISpTokenUI::IsUISupported	can	set	the
punkObject	parameter	with	the	necessary	IUnknown	interface.
For	example,	to	display	a	Speech	Recognition	Training	UI	(see

SPDUI_UserTraining)	requires	a	specific	SR	engine.

Example
The	following	code	snippet	illustrates	the	use	of
ISpObjectToken::IsUISupported	using	SPGUID_EngineProperties.
				HRESULT	hr	=	S_OK;

				//	get	the	default	text-to-speech	engine	object	token

				hr	=	SpGetDefaultTokenFromCategoryId(SPCAT_VOICES,	&cpObjectToken);

				//	Check	hr

				//	create	the	engine	object	based	on	the	object	token

				hr	=	SpCreateObjectFromToken(cpObjectToken,	&cpVoice);

				//	Check	hr

				//	create	a	data	key	for	the	voice's	UI	objects

				hr	=	cpObjectToken->OpenKey(L"UI",	&cpUIDataKey);

				//	Check	hr

				//	create	a	data	key	for	the	specific	Engine	Properties	UI

				hr	=	cpUIDataKey->OpenKey(SPDUI_EngineProperties,	&cpEngPropsDataKey);

				//	Check	hr

				//	get	the	GUID	for	the	voice's	engine	properties	UI

				hr	=	cpEngPropsDataKey->GetStringValue(L"CLSID",	&pwszEngPropsCLSID);

				//	Check	hr

				//	convert	GUID	string	to	pure	GUID

				hr	=	CLSIDFromString(pwszEngPropsCLSID,	&clsidEngProps);

				//	Check	hr

				//	check	if	the	default	voice	object	has	UI	for	Properties

				hr	=	cpObjectToken->IsUISupported(&clsidEngProps,	NULL,	NULL,	cpVoice,	&fSupported);

				//	Check	hr

				//	if	fSupported	==	TRUE,	then	default	voice	object	has	UI	for	Engine	Properties	

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpObjectToken::DisplayUI
ISpObjectToken::DisplayUI	displays	the	user	interface	(UI)
associated	with	the	object.
[local]	HRESULT	DisplayUI(

			HWND											hwndParent,

			const	WCHAR			*pszTitle,

			const	WCHAR				pszTypeOfUI,

			void										*pvExtraData,

			ULONG										cbExtraData,

			IUnknown						*punkObject

);

Parameters

hwndParent
[in]	Specifies	the	handle	of	the	parent	window.

pszTitle
[in]	Address	of	a	null-terminated	string	containing	the
window	title.	Set	this	value	to	NULL	to	indicate	that	the
ISpTokenUI	object	should	use	its	default	window	title.

pszTypeOfUI
[in]	Address	of	the	null-terminated	string	containing	the	UI
type	that	is	being	queried.	Must	be	a	SPDUI_xxx	type.

pvExtraData
[in]	Pointer	to	additional	information	needed	for	the	object.
The	ISp	TokenUI	object	implementer	dictates	the	format	and
usage	of	the	data	provided.

cbExtraData

[in]	Size,	in	bytes,	of	the	ExtraData.	See	Remarks	section.

punkObject
[in]	Address	of	the	IUnknown	interface	pointer.	See	Remarks
section.

Return	values

Value Description
S_OK Function	completed	successfully.
S_FALSE The	UI	is	supported	but	not	with	the

current	run-time	environment	or
parameters.

E_INVALIDARG One	of	the	parameters	is	invalid	or
bad.

SPERR_UNINITIALIZED Either	the	data	key	or	token	delegate
interface	is	not	initialized.

SPERR_TOKEN_DELETED Key	has	been	deleted.
FAILED(hr) Appropriate	error	message.

Remarks
pvExtraData	and	punkObject	Parameters:	When	requesting	an
ISpObjectToken	to	display	a	particular	piece	of	UI,	the	UI	object
may	require	extra	functionality.	Common	implementation
practice	for	accessing	this	functionality	is	to	QueryInterface
from	a	known	IUnknown	interface.	The	caller	of
ISpTokenUI::DisplayUI	can	set	the	punkObject	parameter	with
the	necessary	IUnknown	interface.	For	example,	asking	to
display	Speech	Recognition	Training	UI	(see	SPDUI_UserTraining)
requires	the	use	of	a	specific	SR	engine.
The	best	practice	for	using	ISpObjectToken::DisplayUI	is	to	call
ISpObjectToken::IsUISupported	with	a	specific	UI	type	before
calling	DisplayUI.	Ultimately,	ISpObjectToken::DisplayUI	is
similar	to	creating	an	ISpTokenUI	object	and	calling

ISpTokenUI::DisplayUI
The	call	to	DisplayUI	is	synchronous	and	the	call	will	not	return
until	the	UI	has	been	closed.

Example
The	following	code	snippet	illustrates	the	use	of
ISpObjectToken::DisplayUI	using	SPGUID_EngineProperties.
				HRESULT	hr	=	S_OK;

				//	get	the	default	text-to-speech	engine	object	token

				hr	=	SpGetDefaultTokenFromCategoryId(SPCAT_VOICES,	&cpObjectToken);

				//	Check	hr

				//	create	the	engine	object	based	on	the	object	token

				hr	=	SpCreateObjectFromToken(cpObjectToken,	&cpVoice);

				//	Check	hr

				//	create	a	data	key	for	the	voice's	UI	objects

				hr	=	cpObjectToken->OpenKey(L"UI",	&cpUIDataKey);

				//	Check	hr

				//	create	a	data	key	for	the	specific	Engine	Properties	UI

				hr	=	cpUIDataKey->OpenKey(SPDUI_EngineProperties,	&cpEngPropsDataKey);

				//	Check	hr

				//	get	the	GUID	for	the	voice's	engine	properties	UI

				hr	=	cpEngPropsDataKey->GetStringValue(L"CLSID",	&pwszEngPropsCLSID);

				//	Check	hr

				//	convert	GUID	string	to	pure	GUID

				hr	=	CLSIDFromString(pwszEngPropsCLSID,	&clsidEngProps);

				//	Check	hr

				//	check	if	the	default	voice	object	has	UI	for	Properties

				hr	=	cpObjectToken->DisplayUI(MY_HWND,	MY_APP_VOICE_PROPERTIES,	&clsidEngProps,	NULL,	NULL,	cpVoice);

				//	Check	hr

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpObjectToken::MatchesAttributes
ISpObjectToken::MatchesAttributes	determines	if	an	object
token	supports	a	specified	attribute.
HRESULT	MatchesAttributes(

			const	WCHAR			*pszAttributes,	

			BOOL										*pfMatches

);

Parameters

pszAttributes
[in]	Address	of	the	null-terminated	string	specifying	the
object	token	attribute	to	match.

pfMatches
[out]	Address	of	a	variable	that	receives	the	value	indicating
a	match	of	the	object	token	attribute	specified	in
pszAttributes.	This	value	is	set	to	TRUE	when	the	object
token	attribute	matches,	and	FALSE	when	it	does	not	match.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG One	or	more	parameters	are	invalid.
SPERR_UNINITIALIZED The	object	has	not	been	properly

initialized.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

IEnumSpObjectTokens
The	IEnumSpObjectTokens	interface	is	used	to	enumerate
speech	object	tokens.

Associated	Class	IDs
The	following	class	IDs	(CLSID)	may	be	used	with	this	interface.
A	complete	CLSID	listing	for	all	interfaces	is	in	the	Class	IDs
section.

CLSID_SpMMAudioEnum

Methods	in	Vtable	Order

IEnumSpObjectTokens
Methods Description
Next Retrieves	the	next	object	token	in

the	enumeration	sequence.
Skip Skips	a	specified	number	of	object

tokens	in	the	enumeration	sequence.
Reset Resets	the	enumeration	sequence	to

the	beginning.
Clone Creates	a	new	enumerator	object

with	the	same	items.
Item Locates	a	specific	token	in	the

enumeration.
GetCount Retrieves	the	number	of	object

tokens	contained	in	the	enumeration
sequence.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

IEnumSpObjectTokens::Next
IEnumSpObjectTokens::Next	retrieves	the	next	object	token
in	the	enumeration	sequence.
If	there	are	fewer	than	the	requested	number	of	elements	left	in
the	sequence,	the	remaining	elements	are	retrieved.
HRESULT	Next(

			ULONG														celt,

			ISpObjectToken			**pelt,

			ULONG													*pceltFetched

);

Parameters

celt
[in]	The	number	of	object	tokens	to	retrieve.

pelt
[out]	Address	of	an	array	that	receives	ISpObjectToken
pointers.	If	an	error	value	is	returned,	no	entries	in	the	array
are	valid.

pceltFetched
[out]	Address	of	a	variable	that	receives	the	number	of
ISpObjectToken	pointers	actually	copied	to	the	array.	This
parameter	cannot	be	NULL	if	celt	is	greater	than	one.	If	this
parameter	is	NULL,	celt	must	be	one.

Return	values

Value Description
S_OK Function	completed	successfully.
E_POINTER One	of	the	following	errors	was

encountered:

pelt	is	bad	or	invalid,
pceltFetched	is	bad	or	invalid,
pceltFetched	is	bad	and	celt	is
greater	than	one.

E_INVALIDARG celt	is	zero.
SPERR_UNINITIALIZED Attribute	parser	interface	is	not

initialized.
S_FALSE celt	is	greater	than	the	number	of

objects	available.
FAILED	(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

IEnumSpObjectTokens::Skip
IEnumSpObjectTokens::Skip	skips	a	specified	number	of
object	tokens	in	the	enumeration	sequence.
HRESULT	Skip(

			ULONG			celt

);

Parameters

celt
[in]	Number	of	object	tokens	to	skip	in	the	enumeration
sequence.

Return	values

Value Description
S_OK Number	of	elements	skipped	was

celt.
S_FALSE Number	of	elements	skipped	was	less

than	celt.
SPERR_UNINITIALIZED Attribute	parser	interface	is	not

initialized.
FAILED	(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

IEnumSpObjectTokens::Reset
IEnumSpObjectTokens::Reset	resets	the	enumeration
sequence	to	the	beginning.
HRESULT	Reset	(void);

Parameters
None

Return	values

Value Description
S_OK Method	completed	successfully.
SPERR_UNINITIALIZED Attribute	parser	interface	is	not

initialized.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

IEnumSpObjectTokens::Clone
IEnumSpObjectTokens::Clone	creates	a	new	enumerator
object	with	the	same	items.
Returns	a	new	enumerator	object	with	the	same	items	but	an
independent	index.	The	items	in	the	clone	are	not	guaranteed	to
be	in	the	same	order	as	the	original	enumerator.
HRESULT	Clone(

			IEnumSpObjectTokens			**ppEnum

);

Parameters

ppEnum
[out]	Address	of	the	IEnumSpObjectTokens	pointer	variable
that	receives	the	interface	pointer	to	the	cloned	enumerator.
Using	Clone,	it	is	possible	to	record	a	particular	point	in	the
enumeration	sequence	and	then	return	to	that	point	at	a
later	time.	The	enumerator	returned	is	of	the	same	interface
type	as	the	one	being	cloned.

Return	values

Value Description
S_OK Function	completed	successfully.
SPERR_UNINITIALIZED Attribute	parser	interface	is	not

initialized.
FAILED	(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

IEnumSpObjectTokens::Item
IEnumSpObjectTokens::Item	locates	a	specific	token	in	the
enumeration.
HRESULT	Item(

			ULONG													Index,	

			ISpObjectToken		**ppToken

);

Parameters

Index
[in]	Value	indicating	which	token	in	the	enumeration
sequence	to	locate.

ppToken
[out]	Address	of	an	ISpObjectToken	interface	pointer.

Return	values

Value Description
S_OK Function	completed	successfully.
SPERR_NO_MORE_ITEMS Index	is	greater	than	the	amount	of

items	available.
E_POINTER ppToken	is	bad	or	invalid.
SPERR_UNINITIALIZED Attribute	parser	interface	is	not

initialized.
FAILED	(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

IEnumSpObjectTokens::GetCount
IEnumSpObjectTokens::GetCount	retrieves	the	number	of
object	tokens	contained	in	the	enumeration	sequence.

HRESULT	GetCount(

			ULONG			*pulCount

);

Parameters

pulCount
[out]	The	number	of	object	token	items	contained	in	the
enumeration	sequence.

Return	values

Value Description
S_OK Function	completed	successfully.
E_POINTER pulCount	is	bad	or	invalid.
SPERR_UNINITIALIZED Attribute	parser	interface	is	not

initialized.
FAILED	(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpObjectWithToken
Any	object	associated	with	an	object	token	implements	the
ISpObjectWithToken	interface.	When	the	method
ISpObjectToken::CreateInstance	is	called	on	the	object	token,
SAPI	creates	the	associated	object.	If	this	object	implements
ISpObjectWithToken,	the	SetObjectToken	method	will	be	called,
passing	in	a	reference	to	the	object	token.
After	SAPI	calls	ISpObjectWithToken::SetObjectToken,	a	token
object	is	created	and	its	data	may	be	accessed.
Applications	do	not	need	to	implement	this	interface,	but
engine,	lexicon,	or	custom	audio	developers	may	implement	it
in	order	to	access	their	object	token	data.

Implemented	By
SpMMAudioEnum

SpRecPlayAudio
SpUnCompressedLexicon

SpCompressedLexicon

Methods	in	Vtable	Order

ISpObjectWithToken
Methods Description
SetObjectToken Binds	the	instance	object	to	the

specified	token.
GetObjectToken Retrieves	an	object	token.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpObjectWithToken::SetObjectToken
ISpObjectWithToken::SetObjectToken	binds	the	instance
object	to	the	specified	token.

HRESULT	SetObjectToken(

			ISpObjectToken		*pToken

);

Parameters

pToken
[in]	The	token	interface	pointer	this	instance	object	is	to
combine	with.

Return	values

Value Description
S_OK Function	completed

successfully.
E_POINTER pToken	is	invalid	or	bad.
E_OUTOFMEMORY Exceeded	available	memory.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpObjectWithToken::GetObjectToken
ISpObjectWithToken::GetObjectToken	retrieves	an	object
token.

HRESULT	GetObjectToken(

			ISpObjectToken			**ppToken

);

Parameters

ppToken
[out]	Address	of	an	ISpObjectToken	interface	that	receives
the	object	token.

Return	values

Value Description
S_OK Function	completed

successfully.
E_POINTER ppToken	is	invalid	or	bad.
E_OUTOFMEMORY Exceeded	available	memory.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpResourceManager
The	ISpResourceManager	interface	provides	access	to	the
shared	resources	between	different	speech	components	in	the
same	process.	The	object	CLSID_SpResourecManager	is	a	COM
singleton.	That	is,	the	same	resource	manager	will	be	shared	by
all	clients	in	a	single	process	that	uses	CoCreateInstance	to
create	the	object	with	CLSID_SpResourceManager.	This	allows
for	a	common	point	of	control	for	sharing	other	COM	objects.
Applications	and	engines	do	not	need	to	use	or	implement	this
interface.
This	interface	inherits	from	IServiceProvider.	The
IServiceProvider	interface	supports	a	single	method,
QueryService,	which	provides	access	to	objects	in	the	resource
manager.

Associated	Class	IDs
The	following	class	IDs	(CLSID)	may	be	used	with	this	interface.
A	complete	CLSID	listing	for	all	interfaces	is	in	the	Class	IDs
section.

CLSID_SpResourceManager

Methods	in	Vtable	Order

ISpResourceManager
Methods Description
SetObject Adds	a	service	object	to	the	current

service	list.
GetObject Retrieves	a	service	object	from	the

current	service	list,	or	creates	one	if
it	does	not	exist.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpResourceManager::SetObject
ISpResourceManager::SetObject	adds	a	COM	object	to	the
current	service	list.	If	an	object	is	already	set	for	the	specified
service,	the	ISpResourceManager::SetObject	method	will	replace
the	current	object	with	the	new	one.	If	pUnkObject	is	NULL,	the
current	service	object	is	removed.
HRESULT	SetObject(

			REFGUID					guidServiceId,	

			IUnknown			*pUnkObject

);

Parameters

guidServiceId
[in]	The	unique	identifier	of	the	service.

pUnkObject
[in]	Address	of	the	IUnknown	interface	of	the	object	that	is
setting	the	service.	Any	existing	service	object	is	removed	if
this	parameter	is	NULL.

Return	values

Value Description
S_OK Function	completed

successfully.
E_INVALIDARG pUnkObject	is	bad	or	invalid.
E_OUTOFMEMORY Exceeded	available	memory.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpResourceManager::GetObject
ISpResourceManager::GetObject	retrieves	a	service	object
from	the	current	service	list,	or	creates	one	if	it	does	not	exist.
HRESULT	GetObject(

			REFGUID				guidServiceId,

			REFCLSID			ObjectCLSID,

			REFIID					ObjectIID,

			BOOL							fReleaseWhenNoRefs,

			void					**ppObject

);

Parameters

guidServiceId
[in]	The	unique	identifier	of	the	service.

ObjectCLSID
[in]	Class	identifier	of	the	object.

ObjectIID
[in]	Identifier	of	interface	to	return	in	ppObject

fReleaseWhenNoRefs
[in]	Boolean	indicating	whether	the	object	should	be	freed
when	the	last	client	outside	of	the	resource	manager
releases	the	object.	If	this	flag	is	set,	the	object	specified	by
ObjectCLSID	must	support	aggregation.

ppObject
[out]	Address	of	a	pointer	that	receives	the	interface	pointer
of	the	service.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG One	or	more	parameters	are	invalid.
E_POINTER ppObject	is	bad	or	invalid.
REGDB_E_CLASSNOTREG Class	is	not	registered.
E_OUTOFMEMORY Exceeded	available	memory.
FAILED(hr) Appropriate	error	message.

Remarks
If	the	object	does	not	exist,	the	ObjectCLSID	parameter	will	be
used	to	CoCreateInstance	the	object.	This	functionality	allows
multiple	threads	to	ensure	that	a	single	shared	object	is	created
atomically	by	the	resource	manager.	If	the	fReleaseWhenNoRefs
flag	is	set	to	TRUE,	the	final	release	of	the	object	will	remove	it
from	the	service	list.	If	fReleaseWhenNoRefs	is	FALSE,	the
service	will	remain	in	the	service	list	until	the	resource	manager
is	released	or	the	service	is	explicitly	removed	through	a
SetObject	call.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpTask
The	ISpTask	interface	is	a	C++	pure	virtual	interface,	and	not	a
COM	interface.	It	is	used	by	objects	to	perform	atomic
operations,	which	have	been	optimized	for	a	multiprocessor
computer.	The	ISpTaskManager	can	be	used	to	create	task
objects	that	support	the	ISpNotifySink	interface.	When	the
Notify	is	called	on	these	objects,	a	thread	will	be	allocated	from
a	thread	pool,	and	ISpTask::Execute	will	be	called	on	that
thread.	The	client	code	then	performs	the	necessary	operation
on	that	thread	and	returns	from	Execute	when	finished.
Applications	should	avoid	blocking	on	I/O	operations	because
they	are	consuming	a	thread	from	the	shared	thread	pool.
When	to	Implement
ISpTask	is	most	useful	with	multiprocessor	computers.	IspTask
allocates	tasks	efficiently	based	on	the	current	availability	of
processor	time.	Implement	ISpTask	on	objects	that	perform
tasks	that	can	be	broken	into	smaller	tasks.
This	is	not	a	COM	interface.

Methods	in	Vtable	Order

ISpTask	Methods Description
Execute Calls	on	a	worker	thread	to	allow	the

client	to	perform	necessary	task
operations.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpTask::Execute
ISpTask::Execute	calls	on	a	worker	thread	to	allow	the	client	to
perform	necessary	task	operations.
Implements	the	work	unit	for	an	object.	This	will	be	application
specific.
virtual	HRESULT	STDMETHODCALLTYPE	Execute(

			void																		*pvTaskData,

			volatile	const	BOOL			*pfContinueProcessing

);

Parameters

pvTaskData
[in]	The	pointer	passed	to
ISpTaskManager::CreateReoccurringTask	pvTaskData
parameter.

pfContinueProcessing
[in]	Boolean	indicating	if	the	process	should	continue.	TRUE
continues	the	process;	otherwise	FALSE.	Clients	should
examine	this	variable	during	processing	and	exit	if	this	flag
set	to	FALSE,	as	it	indicates	that	another	thread	has	released
the	reoccurring	task	object.

Return	values
The	return	value	is	ignored	by	the	SAPI	task	manager.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Speech	Recognition	interfaces
The	following	section	covers:

ISpRecoContext
ISpRecoGrammar

ISpRecoResult
ISpRecognizer
ISpPhrase

ISpPhraseAlt
ISpProperties

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecoContext
The	ISpRecoContext	interface	enables	applications	to	create
different	functional	views	or	contexts	of	the	SR	engine.	Each
ISpRecoContext	object	can	take	interest	in	different	SR	events
(see	also	ISpEventSource	and	SPEVENTENUM)	and	use	different
recognition	grammars	(see	also	ISpRecoGrammar).	Applications
must	have	at	least	one	ISpRecoContext	instance	to	receive
recognitions.	Applications	can	also	create	multiple
ISpRecoContext	instances	to	separate	different	types	of
recognition	with	their	application.	For	example,	a	multiple-
document-interface	(MDI)	application	could	associate	a	different
ISpRecoContext	instance	with	each	document	pane	to	localize
the	grammar	and	support	and	event	processing.
A	new	ISpRecoContext	object	can	be	created	by	calling
ISpRecognizer::CreateRecoContext.
To	use	a	shared	recognizer	(see	description	of	ISpRecognizer),
an	application	can	easily	create	a	shared	ISpRecoContext	by
calling	::CoCreateInstance	with	CLSID_SpSharedRecoContext.

Associated	Class	IDs
The	following	class	IDs	(CLSID)	may	be	used	with	this	interface.
A	complete	CLSID	listing	for	all	interfaces	is	in	the	Class	IDs
section.

CLSID_SpSharedRecoContext

Methods	in	Vtable	Order

ISpRecoContext
Methods Description
ISpEventSource Inherits	from	ISpEventSource	and

those	methods	are	accessible	from
ISpRecoContext.

GetRecognizer Returns	a	reference	to	the	current

recognizer	object	associated	with
this	context.

CreateGrammar Creates	an	SpGrammar	object.
GetStatus Retrieves	current	state	information

associated	with	a	context.
GetMaxAlternates Retrieves	the	maximum	number	of

alternates	that	will	be	generated	for
command	and	control	grammars.

SetMaxAlternates Sets	the	maximum	number	of
alternates	returned	for	command
and	control	grammars.

SetAudioOptions Sets	the	audio	options	for	results
from	this	recognition	context.

GetAudioOptions Retrieves	the	audio	options	for	the
context.

DeserializeResult Creates	a	new	result	object	from	a
serialized	result.

Bookmark Sets	a	bookmark	within	the	current
recognition	stream.

SetAdaptationData Passes	a	block	of	text	to	the	SR
engine	which	can	be	used	to	adapt
the	active	language	models.

Pause Pauses	the	engine	object	to
synchronize	with	the	SR	engine.

Resume Resumes	the	SR	engine	from	the
paused	state	and	restarts	the
recognition	process.

SetVoice Sets	the	associated	ISpVoice	to	this
context.

GetVoice Retrieves	a	reference	to	the
associated	ISpVoice	object.

SetVoicePurgeEvent Sets	the	SR	engine	events	that	stop
audio	output,	and	purges	the	current
speaking	queue.

GetVoicePurgeEvent Retrieves	the	set	of	SR	engine

events	that	stop	audio	output,	and
purges	the	current	speaking	queue.

SetContextState Sets	the	state	of	the	recognition
context.

GetContextState Retrieves	the	state	of	the	recognition
context.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecoContext::GetRecognizer
ISpRecoContext::GetRecognizer	returns	a	reference	to	the
current	recognizer	object	associated	with	this	context.
HRESULT	GetRecognizer(

			ISpRecognizer			**ppRecognizer

);

Parameters

ppRecognizer
[out]	Address	of	a	pointer	that	receives	the	ISpRecognizer
interface.	The	application	must	call	IUnknown::Release	when
finished	with	the	interface.

Return	values

Value Description
S_OK Function	completed

successfully.
E_POINTER Invalid	pointer.
FAILED	(hr) Appropriate	error	message.

Example
The	following	code	snippet	illustrates	the	use	of
ISpRecoContext::GetRecognizer	with	a	shared	context
				HRESULT	hr	=	S_OK;

				//	create	a	shared	recognition	context

				hr	=	cpRecoContext.CoCreateInstance(CLSID_SpSharedRecoContext);

				//	Check	hr

				//	get	a	reference	to	the	associated	recognizer

				hr	=	cpRecoContext->GetRecognizer(&cpRecognizer);

				//	Check	hr

				//	assert	that	our	shared	context	has	a	shared	recognizer

				hr	=	cpRecognizer->IsSharedInstance();

				//	Check	that	hr	==	S_OK

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecoContext::CreateGrammar
ISpRecoContext::CreateGrammar	creates	an
SpRecoGrammar	object.
HRESULT	CreateGrammar(

			ULONGLONG										ullGrammarId,

			ISpRecoGrammar			**ppGrammar

);

Parameters

ullGrammarId
[in]	Specifies	the	grammar	identifier.	The	identifier	is	used	by
the	application	and	is	not	required.	This	identifier	is
associated	with	all	result	objects	from	the	grammar	(see
SPPHRASE.ullGrammarID).

ppGrammar
[out]	Address	of	a	pointer	which	receives	the
ISpRecoGrammar	object.	The	application	must	call
IUnknown::Release	on	the	object	when	finished	using	it.

Return	values

Value Description
S_OK Function	completed

successfully.
E_POINTER ppGrammar	is	invalid.
E_OUTOFMEMORY Not	enough	system	memory	to

create	a	grammar	object.
SPERR_SR_ENGINE_EXCEPTION An	exception	was	thrown	by	the

SR	engine	during
OnCreateGrammar.

FAILED(hr) Appropriate	error	message.

Example
The	following	code	snippet	illustrates	the	use	of
ISpRecoContext::CreateGrammar.
				HRESULT	hr	=	S_OK;

				hr	=	cpRecoContext->CreateGrammar(GRAM_ID,	&cpRecoGrammar);

				//	Check	hr

				//	load	a	cfg	from	a	file

				hr	=	cpRecoGrammar->LoadCmdFromFile(MY_CFG_FILENAME,	SPLO_STATIC);

				//	Check	hr

				//	activate	the	top-level	rules

				hr	=	cpRecoGrammar->SetRuleState(NULL,	NULL,	SPRS_ACTIVE);

				//	Check	hr

				//	get	a	recognition

				//	...

				//	get	the	recognized	phrase	from	the	recognition	result	object

				hr	=	cpRecoResult->GetPhrase(&pPhrase);

				//	Check	hr

				//	check	the	grammar	id	of	the	recognition	result

				SPDBG_ASSERT(GRAM_ID	==	pPhrase->ullGrammarID);

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecoContext::GetStatus
ISpRecoContext::GetStatus	retrieves	current	state
information	associated	with	a	context	(e.g.,	last	SR	engine
requested	UI,	audio	signal	status,	etc.).
HRESULT	GetStatus(

			SPRECOCONTEXTSTATUS			*pStatus

);

Parameters

pStatus
[out]	Address	of	the	SPRECOCONTEXTSTATUS	structure	that
receives	the	context	state	information.

Return	values

Value Description
S_OK Function	completed

successfully.
E_POINTER pStatus	is	invalid	or	bad.
FAILED	(hr) Appropriate	error	message.

Remarks
A	graphical	application	that	is	interested	in	SPEI_REQUEST_UI
events	from	the	SR	engine	can	call	ISpRecoContext::GetStatus,
and	check	the	szRequestTypeOfUI	field	to	check	the	last
requested	UI-type.	After	the	application	has	called
ISpRecognizer::DisplayUI,	the	SR	engine	can	clear	the
szRequestTypeOfUI	field	by	calling	ISpSREngineSite::AddEvent
with	a	NULL	UI-type.
An	application	can	also	periodically	query	the	recognition
context	status	to	check	the	audio	signal	quality	(see	also

SPINTERFERENCE)	and	respond	appropriately.	An	application
can	prompt	the	user	to	access	the	SR	engine's	microphone
training	UI	to	improve	the	audio	signal	quality	(see
SPDUI_MicTraining),	or	prompt	the	user	to	modify	the	audio
settings	using	Speech	properties	in	Control	Panel	(see
SPDUI_AudioProperties	and	SPDUI_AudioVolume).

Example
The	following	code	snippet	illustrates	the	use	of
ISpRecoContext::GetStatus	for	responding	to	SR	engine	UI
requests.
				HRESULT	hr	=	S_OK;

				//	assume	UI	request	[SPEI_REQUEST_UI]	has	been	received

				//	check	what	kind	of	UI	the	SR	Engine	wants

				hr	=	cpRecoContext->GetStatus(&contextStatus);

				//	Check	hr

				//	get	a	reference	to	the	SR	Engine

				hr	=	cpRecoContext->GetRecognizer(&cpRecognizer);

				//	Check	hr

				//	sanity	check	that	the	UI	type	is	supported

				hr	=	cpRecognizer->IsUISupported(contextStatus.szRequestTypeOfUI,	NULL,	NULL,	&fSupported);

				//	Check	hr

				//	ask	the	SR	engine	to	display	the	UI,	and	use	the	default	window	title

				hr	=	cpRecognizer->DisplayUI(MY_HWND,	NULL,	contextStatus.szRequestTypeOfUI,	NULL,	NULL);

				//	Check	hr

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecoContext::GetMaxAlternates
ISpRecoContext::GetMaxAlternates	retrieves	the	maximum
number	of	alternates	that	the	SR	engine	will	return	for
command	and	control	or	proprietary	grammars	associated	with
this	context.	See	Remarks	section.
HRESULT	GetMaxAlternates(

			ULONG			*pcMaxAlternates

);

Parameters

pcMaxAlternates
[out]	The	maximum	number	of	alternates.	The	default	value
is	zero,	unless	the	application	specifies	it	by
ISpRecoContext::SetMaxAlternates.

Return	values

Value Description
S_OK Function	completed	successfully.
E_POINTER pcMaxAlternates	is	invalid	or	bad.
FAILED(hr) Appropriate	error	message.

Remarks
The	value	is	the	maximum	number	of	alternates	that	will	be
returned	to	the	application.	For	SR	engine's	that	do	not	support
command	and	control	(or	proprietary	grammar)	alternates,	this
method	will	succeed,	but	the	alternates	returned	will	always	be
zero.
For	applications	and	SR	engines	that	are	using	proprietary
grammars	and	proprietary	alternates,
ISpRecoContext::GetMaxAlternates	and

ISpRecoContext::SetMaxAlternates	is	the	recommended	method
of	coordinating	maximum	alternate	values	between	the
application	and	SR	engine.
The	SR	engine	can	query	each	context's	maximum	requested
alternates	value	by	calling
ISpSREngineSite::GetContextMaxAlternates	with	the	context
handle.	When	using	SAPI	command	and	control	grammars,	the
SR	engine	can	call	ISpSREngineSite::GetMaxAlternates	with	the
rule	handle.
This	method	has	no	effect	on	dictation	alternates.	See
ISpRecoResult::GetAlternates	for	information	regarding	dictation
alternates.
The	current	version	of	the	Microsoft	SR	engine	does	not	support
command	and	control	alternates.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecoContext::SetMaxAlternates
ISpRecoContext::SetMaxAlternates	sets	the	maximum
number	of	alternates	that	the	SR	engine	will	return	for
command	and	control	or	proprietary	grammars	associated	with
this	context.	See	Remarks	section.
HRESULT	SetMaxAlternates(

			ULONG			cAlternates

);

Parameters

cAlternates
[in]	Specifies	the	maximum	number	of	alternates	the	engine
will	return.

Return	values

Value Description
S_OK Function	completed

successfully.
FAILED(hr) Appropriate	error	message.

Remarks
By	default,	the	maximum	alternates	value	is	zero,	so	an
application	must	call	::SetMaxAlternates	to	retrieve	alternates.
The	value	is	the	maximum	number	of	alternates	that	will	be
returned	to	the	application.	For	SR	engine's	that	do	not	support
command	and	control	(or	proprietary	grammar)	alternates,	this
method	will	succeed,	but	the	alternates	returned	will	always	be
zero.
For	applications	and	SR	engines	using	proprietary	grammars

and	proprietary	alternates,	ISpRecoContext::GetMaxAlternates
and	ISpRecoContext::SetMaxAlternates	are	the	recommended
methods	of	coordinating	maximum	alternate	values	between
the	application	and	the	SR	engine.
The	SR	engine	can	query	each	context's	maximum	requested
alternates	value	by	calling
ISpSREngineSite::GetContextMaxAlternates	with	the	context
handle.	When	using	SAPI	command	and	control	grammars,	the
SR	engine	can	call	ISpSREngineSite::GetMaxAlternates	with	the
rule	handle.
This	method	has	no	effect	on	dictation	alternates.	See
ISpRecoResult::GetAlternates	for	information	regarding	dictation
alternates.
The	current	version	of	the	Microsoft	speech	recognition	engine
does	not	support	command	and	control	alternates.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecoContext::SetAudioOptions
ISpRecoContext::SetAudioOptions	sets	the	audio	options	for
result	objects	from	this	recognition	context.	This	method	also
enables	or	disables	the	retention	of	audio	with	result	objects
and	can	change	the	retained	audio	format.
HRESULT	SetAudioOptions(

			SPAUDIOOPTIONS								Options,

			const	GUID											*pAudioFormatId,

			const	WAVEFORMATEX			*pWaveFormatEx

);

Parameters

Options
[in]	Flag	of	type	SPAUDIOOPTIONS	indicating	the	option.	It
must	be	one	of	the	following:

Value
SPAO_NONE Do	not

retain
audio
for
results.

SPAO_RETAIN_AUDIO Retain
audio
for	all
future
results.

pAudioFormatId
[in]	The	audio	stream	format	id	[of	type	GUID].	Usually	this
value	is	SPDFID_WaveFormatEx.	If	this	value	is	NULL,	the
retained	audio	format	will	not	be	changed.	Reset	the	retained

audio	format	to	the	SR	engine's	recognition	format	by	setting
this	value	to	GUID_NULL	and	pWaveFormatEx	to	NULL.	

pWaveFormatEx
[in]	The	audio	stream	wave	format	[of	type	WAVEFORMATEX].
This	is	only	valid	if	*pAudioFormatId	==
SPFID_WaveFormatEx.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARGOptions	is	not	one	of	the	correct	types,	or	the	specified	audio

format	is	not	valid.
FAILED(hr) Appropriate	error	message.

Remarks
If	a	WAVEFORMATEX-based	retained	audio	format	is	specified,
but	the	SR	engine	and	the	audio	input	stream	agree	on	a	non-
WAVEFORMATEX-based	audio	input	format	(e.g.,	custom	audio
object/format),	ISpRecoContext::SetAudioOptions	will	return
successfully,	but	will	not	retain	the	audio.
By	default,	SAPI	does	not	retain	recognition	audio.
By	default,	when	an	audio	format	is	not	specified,	the	audio	will
be	retained	in	the	same	format	that	the	SR	engine	used	to
perform	the	recognition.

Example
The	following	code	snippet	illustrates	the	use	of
ISpRecoContext::SetAudioOptions.
				HRESULT	hr	=	S_OK;

				//	activate	retained	audio	settings	with	default	format	(i.e.	SR	engine	recognition	format)

				hr	=	cpRecoContext->SetAudioOptions(SPAO_RETAIN_AUDIO,	&GUID;_NULL,	NULL);

				//	Check	hr

				//	deactivate	retained	audio	settings

				hr	=	cpRecoContext->SetAudioOptions(SPAO_NONE,	NULL,	NULL);

				//	Check	hr

				//	change	the	retained	audio	format	to	11	kHz,	16-bit	Stereo

				//	use	the	stream	format	helper	to	fill	in	the	WAVEFORMATEX	structure

				CSpStreamFormat	sfRetained(SPSF_24kHz16BitStereo,	&hr);

				//	Check	hr

				//	change	the	settings	to	the	selected	stream	format

				hr	=	cpRecoContext->SetAudioOptions(SPAO_RETAIN_AUDIO,	&sfRetained.FormatId(),	sfRetained.WaveFormatExPtr());

				//	Check	hr

Development	Helpers

Helper	Enumerations
and	Functions Description
SPSTREAMFORMAT SAPI	supported	stream	formats
CSpStreamFormat Class	for	managing	SAPI	supported

stream	formats	and	WAVEFORMATEX
structures

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecoContext::GetAudioOptions
ISpRecoContext::GetAudioOptions	retrieves	the	audio
options	for	the	context.
HRESULT	GetAudioOptions(

			SPAUDIOOPTIONS		*Options,

			GUID												*pAudioFormatId,

			WAVEFORMATEX			**ppCoMemWFE

);

Parameters

Options
[out]	Address	that	will	receive	pointer	to	SPAUDIOOPTIONS
flag,	indicating	the	options	set	for	this	context.	If	this	value	is
not	to	be	retrieved,	specify	NULL.	The	flag	can	be	one	of	the
following	values:

Value Meaning
SPAO_NONE Do	not	retain

audio	for	results.
SPAO_RETAIN_AUDIO Retain	audio	for

all	future	results.

pAudioFormatId
[in]	Address	that	will	receive	the	audio	stream	format	type
(i.e.,	GUID).	If	the	application	is	not	interested	in	the	retained
audio	format,	NULL	is	specified	(i.e.,	ignore	both
pAudioFormatId	and	pWaveFormatEx	parameters).

ppCoMemWFE
[in]	Address	that	will	receive	a	pointer	to	the	audio	stream
wave	format	structure	(i.e.,	WAVEFORMATEX).	This	can	be

NULL	if	the	application	is	not	interested	in	the	retained	audio
format.	If	WAVEFORMATEX	data	is	retrieved,	it	must	be	freed
using	::CoTaskMemFree().

Return	values

Value Description
S_OK Function	completed	successfully.
E_POINTER One	of	the	pointers	is	invalid	or

bad.
FAILED(hr) Appropriate	error	message.

Remarks
The	default	audio	options	are	none	(i.e.,	SPAO_NONE).	The
default	retained	audio	format	is	the	speech	recognition	engine's
recognition	format	(see	ISpRecognizer::GetFormat	with
SPWF_SRENGINE).
See	also	ISpRecoContext::SetAudioOptions.

Example
The	following	code	snippet	illustrates	the	use	of
ISpRecoContext::GetAudioOptions	and	querying	the	different
retained	audio	settings.

				HRESULT	hr	=	S_OK;

				//	check	if	audio	is	being	retained	(default	is	NO)

				hr	=	cpRecoContext->GetAudioOptions(&pAudioOptions,	NULL,	NULL);

				//	Check	hr

	

				//	check	what	audio	format	would	be	retained	

				hr	=	cpRecoContext->GetAudioOptions(NULL,	&guidFormat,	&pWaveFormatEx);

				//	Check	hr

				//	...	do	stuff

				//	free	the	wave	format	memory

				::CoTaskMemFree(pWaveFormatEx);

				//	check	if	audio	is	being	retained,	and	if	so	what	the	format	is

				hr	=	cpRecoContext->GetAudioOptions(&guid,	&guidFormat,	&pWaveFormatEx);

				//	Check	hr

				//	...	do	stuff

				//	free	the	wave	format	memory

				::CoTaskMemFree(pWaveFormatEx);

Development	Helpers

Helper	Enumerations
and	Functions Description
SPSTREAMFORMAT SAPI	supported	stream	formats
CSpStreamFormat Class	for	managing	SAPI	supported

stream	formats	and	WAVEFORMATEX
structures

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecoContext::DeserializeResult
ISpRecoContext::DeserializeResult	creates	a	new	result
object	from	a	serialized	result.	
HRESULT	DeserializeResult(

			const	SPSERIALIZEDRESULT		*pSerializedResult,

			ISpRecoResult												**ppResult

);

Parameters

pSerializedResult
[in]	Pointer	to	a	serialized	result.	See	also
SPSERIALIZEDRESULT

ppResult
[out]	The	unserialized	result	object.	The	application	must	call
IUnknown::Release	when	finished	using	the	ISpRecoResult
reference.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG pSerializedResult	is	invalid	or

bad.
E_POINTER ppResult	is	invalid	or	bad.
E_OUTOFMEMORY Exceeded	available	memory.
FAILED(hr) Appropriate	error	message.

Remarks
After	deserializing	the	ISpRecoResult	object,	the	application	can

retrieve	alternates	for	the	RecoResult,	retrieve	the	retained
audio,	or	examine	the	recognition.
The	same	SR	engine	that	was	originally	used	to	generate	the
ISpRecoResult	object	(or	recognition)	must	be	the	same	SR
engine	that	is	associated	with	the	ISpRecoContext	that	called
::DeserializeResult	(see	SPPHRASE.SREngineID).	The	SR	engine
requirement	ensures	that	the	SR	engine	is	capable	of
recognizing	the	original	phrase,	and	that	it	understands	any	SR
engine	private	result	data	(see
SPPHRASE.ulSREnginePrivateDataSize).

Example
The	following	code	snippet	illustrates	the	use
ISpRecoContext::Deserialize	a	previously	serialized	result	object.

				HRESULT	hr	=	S_OK;

				//	...	obtain	a	recognition	result	object	from	the	recognizer...

				SPSERIALIZEDRESULT*	pSerializedResult	=	NULL;
				ULONG	cbWritten	=	0;
				ULONG	ulSerializedSize	=	0;
				LARGE_INTEGER	liseek;
				LARGE_INTEGER	li;
				CComPtr<IStream>	cpStreamWithResult;

				hr	=	CreateStreamOnHGlobal(NULL,	true,	&cpStreamWithResult);
				//	Check	hr

				//	Serialize	result	to	memory
				hr	=	cpRecoResult->Serialize(&pSerializedResult);
				//	Check	hr

				//serialized	to	a	stream	pointer

				hr	=	cpStreamWithResult->Write(pSerializedResult,	pSerializedResult->ulSerializedSize,	&cbWritten);
				//	Check	hr

				//	free	the	serialized	result
				if	(pSerializedResult)	::CoTaskMemFree(pSerializedResult);

				//	commit	the	stream	changes
				hr	=	cpStreamWithResult->Commit(STGC_DEFAULT);
				//	Check	hr

				//	...	persist	stream	to	disk,	network	share,	etc...
				//	...	shutdown	application	

				//	...	restart	application	and	get	the	persisted	stream

				//	reset	the	stream	seek	pointer	to	the	start	before	deserialization
				li.QuadPart	=	0;
				hr	=	cpStreamWithResult->Seek(li,	STREAM_SEEK_SET,	NULL);
				//	Check	hr

				//	find	the	size	of	the	stream
				hr	=	cpStreamWithResult->Read(&ulSerializedSize,	sizeof(ULONG),	NULL);
				//	Check	hr

				//	reset	the	seek	pointer
				liseek.QuadPart	=	0	-	sizeof(ULONG);
				hr	=	cpStreamWithResult->Seek(liseek,	STREAM_SEEK_CUR,	NULL);
				//	Check	hr

				//	allocate	the	memory	for	the	result
				pSerializedResult	=	(SPSERIALIZEDRESULT*)::CoTaskMemAlloc(ulSerializedSize);
				//	Check	pSerializedResult	in	case	out	"out-of-memory"

				//	copy	the	stream	into	a	serialized	result	object
				hr	=	cpStreamWithResult->Read(pSerializedResult,	ulSerializedSize,	NULL);
				//	Check	hr

				//	Deserialize	result	from	memory
				hr	=	cpRecoContext->DeserializeResult(pSerializedResult,	&cpRecoResultNew);
				//	Check	hr

				//	free	the	pSerializedResult	memory
				if	(pSerializedResult)	{
								CoTaskMemFree(pSerializedResult);
				}

				//	As	long	as	the	same	engine	was	used	to	generate
				//	the	original	result	object,	as	is	now	being	used,
				//	applications	can	now	get	alternates	for	the	cpRecoResultNew's	phrase

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecoContext::Bookmark
ISpRecoContext::Bookmark	sets	a	bookmark	within	the
current	recognition	stream.	When	the	engine	reaches	the
specified	stream	position,	a	bookmark	event	is	added	to	the
event	queue.

HRESULT	Bookmark(

			SPBOOKMARKOPTIONS			Options,

			ULONGLONG											ullStreamPosition,

			LPARAM														lParamEvent

);																

Parameters

Options
[in]	Indicates	the	option	associated	with	the	bookmark.	Must
be	one	of	type	SPBOOKMARKOPTIONS.

ullStreamPosition
[in]	Specifies	the	stream	position.	This	value	may	be
anywhere	in	the	stream	and	will	send	a	Bookmark	event
when	that	position	is	reached.	Additionally	it	may	be	any	one
of	two	special	values:	SP_STREAMPOS_ASAP	or
SP_STREAMPOS_REALTIME.	See	Remarks	section	for
additional	information.

lParamEvent
[in]	The	lparam	for	the	SAPI	bookmark	event,	and	can	be	any
value	the	application	wants	returned	with	the	bookmark
event	(e.g.,	unique	identifier,	data	pointer,	NULL,	etc.).

Return	values

Value Description
S_OK Function	completed

successfully.
E_INVALIDARG Options	has	a	bad	value.
FAILED(hr) Appropriate	error	message.

Remarks
If	Options	is	set	to	SPBO_PAUSE,	the	SPEVENT	wParam	variable
will	be	set	to	SPREF_AutoPause.
An	application	that	wants	to	implement	display	a	recognition
progress/latency	meter	could	use	ISpRecoContext::Bookmark
with	SP_STREAMPOS_REALTIME,	and	update	the	UI	when	each
bookmark	is	received.	See	also	ISpRecognizer::GetStatus
An	application	that	wants	to	pause	the	SR	engine	to	perform
specific	processing	could	use	ISpRecoContext::Bookmark	with
SPBO_PAUSE	SP_STREAMPOS_ASAP,	which	will	pause	the	SR
engine	automatically,	and	asynchronously	for	the	application.
The	application	should	call	ISpRecoContext::Resume	to	resume
the	recognition	process.	See	also
ISpRecoGrammar::SetRuleState	regarding	"auto-pause"	rules.
It	is	possible	to	bookmark	a	stream	position	before	starting	a
stream.	If	there	is	currently	no	stream	and	the	caller	specifies	an
offset	of	zero	(or	as	soon	as	possible)	or
SP_STREAMPOS_REALTIME	(indicating	immediately"	for	a	live
audio	device)	the	bookmark	fires	immediately.	In	both	cases	the
application	gets	the	bookmark	as	soon	as	the	stream	is	created.
Otherwise,	the	bookmark	is	delayed	until	the	next	stream
reaches	the	specified	offset.

Example
The	following	code	snippet	illustrates	the	use	of
ISpRecoContext::Bookmark	with	an	"auto-pause"	bookmark.
				HRESULT	hr	=	S_OK;

				//	setup	the	recognition	context	and	grammar

				//	...

				//	start	listening	for	recognitions

				hr	=	cpRecoGrammar->SetRuleState(MY_RULE,	NULL,	SPRS_ACTIVE);

				//	Check	hr

				hr	=	cpRecoContext->Bookmark(SPBO_PAUSE,	SP_STREAMPOS_ASAP,	NULL);

				//	get	the	bookmark	event	in	a	CSpEvent	object

				//	...

				//	assert	that	the	recognition	context	paused	after	the	"auto-pause"	bookmark	was	sent

				SPDBG_ASSERT(spEvent.IsPaused());

				//	Since	the	context	was	paused	from	the	"auto-pause"	rule,	it	must	now	be	reactivated	to	recognize	the	second	rule

				hr	=	cpRecoContext->Resume(NULL);

				//	Check	hr

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecoContext::SetAdaptationData
ISpRecoContext::SetAdaptationData	passes	a	block	of	text
to	the	SR	engine	which	can	be	used	to	adapt	the	active
language	models.
HRESULT	SetAdaptationData(

			const	WCHAR			*pAdaptationData,

			const	ULONG				cch

);

Parameters

pAdaptationData
[in]	The	string	to	adapt.

cch
[in]	The	number	of	characters	in	pAdaptationData.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG pAdaptationData	is	invalid	or	cch

equals	zero.
E_OUTOFMEMORY Exceeded	available	memory.
SPERR_SR_ENGINE_EXCEPTION An	exception	was	thrown	by	the

SR	engine	during
ISpSREngine::SetAdaptationData.

FAILED(hr) Appropriate	error	message.

Remarks
An	application	can	improve	recognition	accuracy	for	dictating

uncommon	words,	or	uncommon	word	groupings,	by	training
the	SR	engine	for	the	new	words,	or	word	groupings,	by	creating
or	obtaining	typical	text	and	send	the	results	to	the	engine
using	::SetAdaptationData.
For	example,	a	word	processing	application	train	the	engine	on
previously	created	text	documents.	Similarly,	an	e-mail	or
collaboration	application	could	train	the	SR	engine	on	previously
sent	e-mail	or	collaborated	documents.	After	training,	the	SR
engine	could	perform	better	within	specific	domains	of
information,	and	improve	the	application's	and	SAPI's
personalization	experience.
The	SAPI	middleware	component	(and	Microsoft)	do	not	store
this	information	-	instead	it	is	passed	directly	to	the	SR	engine
using	ISpSREngine::SetAdaptationData.	The	SR	engine	(vendor)
determines	what	to	do	with	the	string	data,	including	how	the
data	is	persisted	and	for	how	long.	Some	SR	engines	may
require	a	significant	amount	of	time	to	process	the	string	data,
so	the	application	may	want	to	break	up	the	data	in	smaller
chunks	to	send	individually.
Applications	that	use	SetAdaptationData	should	break	the	data
into	small	(1K	or	less)	blocks,	call	SetAdaptationData,	and	then
wait	for	an	SPEI_ADAPTATION	event	before	sending	the	next
small	block	of	data.	This	method	should	not	be	used	with	large
buffers,	because	calling	SetAdapataionData	with	buffers	larger
than	32K	can	cause	unpredictable	results.
When	the	SR	engine	is	ready	to	receive	more	string	data	to
adapt	its	language	model,	it	can	fire	the	SPEI_ADAPTATION
event	to	the	application.

Example
The	following	code	snippet	illustrates	the	use	of
ISpRecoContext::SetAdaptationData
				HRESULT	hr	=	S_OK;

				//	get	the	"training"	data,	and	break	it	into	manageable	chunks	[e.g.	an	array	of	strings]

				//	...

				//	set	interest	in	the	adaptation	event

				hr	=	cpRecoContext->SetInterest(SPFEI(SPEI_ADAPTATION),	SPFEI(SPEI_ADAPTATION));

				//	Check	hr

				//	adapt	to	each	chunk	of	data

				for	(int	i	=	0;	i	<	iCountOfDataChunk;	i	++)

				{

							//	send	each	chunk	of	data	the	engine

							hr	=	cpRecoContext->SetAdaptationData(ppwszAdaptationData[i],	wcslen(ppwszAdaptationData[i]));

							//	Check	hr

							//	wait	for	the	engine	to	ask	for	more	data

							hr	=	cpRecoContext->WaitForNotifyEvent(PROCESSING_WAIT_TIME);

							//	Check	hr

				}

				//	SR	Engine	has	adapted	its	language	model	to	data

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecoContext::Pause
ISpRecoContext::Pause	pauses	the	engine	object	to
synchronize	with	the	SR	engine.
The	SR	engine	pauses	at	its	synchronization	point	to	allow
grammars	and	rule	states	to	be	changed	freely.	The	engine
remains	paused	until	the	Resume	method	is	called.
The	caller	must	call	Resume	once	for	every	call	that	is	made	to
Pause.
HRESULT	Pause(

			DWORD			dwFlags

);

Parameters

dwFlags
[in]	Reserved,	must	be	zero.

Return	values

Value Description
S_OK Function	completed

successfully.
E_INVALIDARG dwFlags	is	not	set	to	zero.

Remarks	(when	using	ISpMMSysAudio	as	audio
input)
Pausing	the	SR	engine	will	stop	recognition,	but	input	audio	will
continue	to	be	collected	and	stored	by	SAPI	in	an	audio	buffer.
After	the	application	is	done	with	the	state	change,	it	should	call
ISpRecoContext::Resume.	SAPI	will	automatically	feed	the
buffered	audio	data	into	the	SR	engine,	ensuring	that	no	real-

time	audio	data	is	lost	and	that	the	user	experience	is	not
interrupted.
However,	the	SAPI	audio	buffer	has	a	static	limit	(see
ISpMMSysAudio::Read)	to	prevent	large	amounts	of	system
memory	from	being	consumed	by	SAPI	applications	or	SR
engines.	Therefore,	Pause	should	be	used	by	the	SR	engine	for
very	short	periods	of	time	for	state	changes	(e.g.,	updating
grammar,	or	rule	states).	Pausing	the	SR	engine	will	affect	all
recognition	contexts	connected	to	that	SR	engine	including
other	Speech	applications	currently	running.
If	the	SR	engine	is	paused	too	long,	and	the	audio	buffer	is
filled,	a	buffer	overflow	will	occur.	The	application	can	detect
this	error	by	setting	an	event	interest	in	SPEI_END_SR_STREAM
(see	SPEVENTENUM),	and	checking	the	LPARAM	of	the	SPEVENT
structure	(see	CSpEvent::EndStreamResult).
SAPI	will	automatically	attempt	to	restart	the	SR	Engine's
recognition	thread	once	the	final	Resume	has	been	called.
Consequently,	the	audio	data	collected	between	the	point	when
the	buffer	overflow	occurred,	and	when	the	stream	was
reactivated,	will	be	completely	lost.	This	would	result	in	a	less
than	optimal	user	experience,	and	have	a	negative	effect	on	all
running	speech	applications,	the	SR	engine,	and	SAPI.
The	following	code	snippet	illustrates	the	use	of
ISpRecoContext::Pause
				HRESULT	hr	=	S_OK;

				//	setup	the	recognition	context

				//	...

				//	pause	the	context	so	that	event	notifications	are	not	received

				hr	=	cpRecoContext->Pause(NULL);

				//	Check	hr

				//	[quickly]	perform	the	processing	-	see	ISpRecoContext::Pause	Remarks	section

				//	...

				hr	=	cpRecoContext->Resume(NULL);

				//	Check	hr

				//	applications	will	start	receiving	event	notifications	again

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecoContext::Resume
ISpRecoContext::Resume	releases	the	SR	engine	from	the
paused	state	and	restarts	the	recognition	process.
HRESULT		Resume	(

		DWORD	dwReserved

);

Parameters

dwReserved
[in]	Reserved,	must	be	zero.

Return	values

Value Description
S_OK Function	completed

successfully.
E_INVALIDARG dwFlags	is	not	set	to	zero.

Remarks
This	method	must	be	called	after	a	call	to
ISpRecoContext::Pause,	a	bookmark	event	occurs	that	pauses
the	recognition	engine,	or	an	auto-pause	rule	is	recognized	(see
ISpRecoGrammar::SetRuleState).
The	caller	must	call	Resume	once	for	every	call	that	is	made	to
ISpRecoContext::Pause.

Example
The	following	code	snippet	illustrates	the	use	of
ISpRecoContext::Resume	after	a	call	to	ISpRecoContext::Pause
				HRESULT	hr	=	S_OK;

				//	setup	the	recognition	context

				//	...

				//	pause	the	context	so	that	event	notifications	are	not	received

				hr	=	cpRecoContext->Pause(NULL);

				//	Check	hr

				//	[quickly]	perform	the	processing	-	see	ISpRecoContext::Pause	Remarks	section

				//	...

				hr	=	cpRecoContext->Resume(NULL);

				//	Check	hr

				//	applications	will	start	receiving	event	notifications	again

The	following	code	snippet	illustrates	the	use	of
ISpRecoContext::Resume	with	an	"auto-pause"	rule.
				HRESULT	hr	=	S_OK;

				//	setup	the	recognition	context	and	grammar

				//	...

				//	activate	a	top-level	rule	as	an	"auto-pause"	rule

				hr	=	cpRecoGrammar->SetRuleState(MY_AUTOPAUSE_RULE,	NULL,	SPRS_ACTIVE_WITH_AUTO_PAUSE);

				//	Check	hr

				//	get	the	recognition	event	for	MY_AUTOPAUSE_RULE	in	a	CSpEvent	object

				//	...

				//	assert	that	the	recognition	context	paused	after	the	"auto-pause"	rule	was	recognized

				SPDBG_ASSERT(spEvent.IsPaused());

				//	deactivate	the	"auto-pause"	rule

				hr	=	cpRecoGrammar->SetRuleState(MY_AUTOPAUSE_RULE,	NULL,	SPRS_INACTIVE);

				//	Check	hr

				//	activate	the	second	rule

				hr	=	cpRecoGrammar->SetRuleState(MY_SECOND_RULE,	NULL,	SPRS_ACTIVE);

				//	Check	hr

				//	Since	the	context	was	paused	from	the	"auto-pause"	rule,	it	must	now	be	reactivated	to	recognize	the	second	rule

				hr	=	cpRecoContext->Resume(NULL);

				//	Check	hr

				//	get	the	second	recognition...	

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecoContext::SetVoice
ISpRecoContext::SetVoice	sets	the	associated	ISpVoice	to	an
object.	
HRESULT	SetVoice(

			ISpVoice			*pVoice,

			BOOL								fAllowFormatChanges

);

Parameters

pVoice
[in]	The	voice	interface	to	be	associated.	If	NULL,	the
currently	associated	Voice	is	Released.

fAllowFormatChanges
[in]	Boolean	allowing	the	voice	format	alteration	by	the
engine.	See	Remarks	section.

Return	values

Value Description
S_OK Function	completed

successfully.
E_POINTER pVoice	is	invalid	or	bad.
FAILED(hr) Appropriate	error	message.

Remarks
If	fAllowFormatChanges	is	TRUE,	the	Voice's	output	format	will
be	changed	to	be	the	same	format	as	the	associated	SR
engine's	audio	input	format	(see	ISpRecognizer	and
ISpSREngine::GetInputAudioFormat).	However,	if	this	voice
object	has	already	been	bound	to	a	stream	which	has	specific

format,	the	voice's	format	will	not	be	changed	to	the	SR
engine's	audio	input	format	even	if	fAllowFormatChanges	is
true.
Using	the	same	audio	format	for	input	and	output	source	is
useful	for	sound	cards	that	do	not	support	full-duplex	audio	(i.e.,
input	format	must	match	output	format).	If	the	input	format
quality	is	lower	than	the	output	format	quality,	the	output
format	quality	will	be	reduced	to	equal	the	input	quality.
After	calling	ISpRecoContext::SetVoice,	an	application	that	calls
ISpRecoContext::GetVoice	will	retrieve	the	originally	"set"
ISpVoice	interface	pointer.

Example
The	following	code	snippet	illustrates	the	use	of
ISpRecoContext::SetVoice	and	"barge-in"	setup.
				HRESULT	hr	=	S_OK;

				//	create	a	shared	recognition	context

				hr	=	cpRecoContext.CoCreateInstance(CLSID_SpSharedRecoContext);

				//	Check	hr

				//	create	a	voice

				hr	=	cpVoice.CoCreateInstance(CLSID_SpVoice);

				//	Check	hr

				//	associate	the	voice	with	the	context	(with	same	audio	format	as	context)

				hr	=	cpRecoContext->SetVoice(cpVoice,	TRUE);

				//	Check	hr

				//	tell	the	associated	Voice	to	stop	speaking	when	the	SR	Engine	hears	a	recognizable	sound

				hr	=	cpRecoContext->SetVoicePurgeEvent(SPFEI(SPEI_SOUND_START));

				//	Check	hr

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecoContext::GetVoice
ISpRecoContext::GetVoice	retrieves	a	reference	to	an
ISpVoice	object	that	is	associated	with	the	ISpRecoContext
object.
HRESULT	GetVoice(

			ISpVoice			**ppVoice

);

Parameters

ppVoice
[in]	Address	of	the	ISpVoice	interface.	IUnknown::Release
must	be	called	on	the	ISpVoice	interface	when	finished.

Return	values

Value Description
S_OK Function	completed

successfully.
E_POINTER Invalid	pointer.
FAILED(hr) Appropriate	error	message.

Remarks
If	an	application	previously	called	ISpRecoContext::SetVoice	on
the	same	ISpRecoContext	object,	the	Voice	interface	retrieved
from	GetVoice	will	match	that	of	the	SetVoice	call.	Release	must
still	call	the	ISpVoice	reference	for	each	GetVoice	call,	even
though	the	interface	pointer	is	the	same.
The	output	format	of	the	ISpVoice	will	be	the	same	format	as	the
associated	audio	input	format	of	the	SR	engine	(see
ISpRecognizer	and	ISpSREngine::GetInputAudioFormat).	Using
the	same	audio	format	for	input	and	output	source	is	useful	for

sound	cards	that	do	not	support	full-duplex	audio	(i.e.,	input
format	must	match	output	format).	If	the	input	format	quality	is
lower	than	the	output	format	quality,	the	output	format	quality
will	be	down-sampled	to	the	lower	quality.
Applications	implementing	a	"barge-in"	type	functionality	will
need	to	tie	the	Voice	object	to	the	SR	object.	Applications	can
also	use	ISpRecoContext::GetVoice	(see
ISpRecoContext::SetVoicePurgeEvent).

Related	Samples
The	CoffeeS3	Sample	application	uses
ISpRecoContext::GetVoice	and	the	"barge-in"	functionality.	

Example
The	following	code	snippet	illustrates	the	use	of
ISpRecoContext::GetVoice	and	"barge-in"	setup
				HRESULT	hr	=	S_OK;

				//	create	a	shared	recognition	context

				hr	=	cpRecoContext.CoCreateInstance(CLSID_SpSharedRecoContext);

				//	Check	hr

				//	create	a	voice	from	the	context	(with	same	audio	format	as	context)

				hr	=	cpRecoContext->GetVoice(&cpVoice);

				//	Check	hr

				//	tell	the	associated	Voice	to	stop	speaking	when	the	SR	Engine	hears	a	recognizable	sound

				hr	=	cpRecoContext->SetVoicePurgeEvent(SPFEI(SPEI_SOUND_START));

				//	Check	hr

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecoContext::SetVoicePurgeEvent
ISpRecoContext::SetVoicePurgeEvent	sets	the	SR	engine
events	that	stop	audio	output,	and	purges	the	current	speaking
queue.
HRESULT	SetVoicePurgeEvent(

			ULONGLONG			ullEventInterest

);

Parameters

ullEventInterest
[in]	The	set	of	flags	indicating	the	event	interest(s).	The
event	interest(s)	must	be	in	the	set	of	speech	recognition
events	(i.e.,	between	SPEI_MIN_SR	and	SPEI_MAX_SR)	(see
SPEVENTENUM	and	SPFEI_ALL_SR_EVENTS)

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARGOne	or	more	of	the	event	interests

set	is	not	allowed.
FAILED(hr) Appropriate	error	message.

Remarks
The	ISpRecoContext	event	interest	will	be	updated	to	include
the	Voice	Purge	Events	(see	ISpEventSource::SetInterest).
To	find	the	current	Voice	Purge	Event(s),	use
ISpRecoContext::GetVoicePurgeEvent
Applications	can	call	SetVoicePurgeEvent	when	implementing
"barge-in"	type	functionality.	For	example,	when	a	user	calls	a

telephony	server,	and	the	server	uses	TTS	Voice	prompts,	the
Voice	should	stop	speaking	when	the	user	is	speaking.	The
application	would	want	the	associated	Voice	object	of	the
ISpRecoContext	(see	ISpRecoContext::GetVoice)	to	stop	and
purge	when	the	SR	engine	hears	a	sound	(see
SPEI_SOUND_START).

Example
The	following	code	snippet	illustrates	the	use	of
ISpRecoContext::SetVoicePurgeEvent	and	"barge-in"	setup
				HRESULT	hr	=	S_OK;

				//	create	a	shared	recognition	context

				hr	=	cpRecoContext.CoCreateInstance(CLSID_SpSharedRecoContext);

				//	Check	hr

				//	create	a	voice	from	the	context	(with	same	audio	format	as	context)

				hr	=	cpRecoContext->GetVoice(&cpVoice);

				//	Check	hr

				//	tell	the	associated	Voice	to	stop	speaking	when	the	SR	Engine	hears	a	recognizable	sound

				hr	=	cpRecoContext->SetVoicePurgeEvent(SPFEI(SPEI_SOUND_START));

				//	Check	hr

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecoContext::GetVoicePurgeEvent
ISpRecoContext::GetVoicePurgeEvent	retrieves	the	set	of
SR	engine	events	that	stop	audio	output,	and	purges	the	current
speaking	queue.	The	events	are	set	by
ISpRecoContext::SetVoicePurgeEvent.
	
HRESULT	GetVoicePurgeEvent(

			ULONGLONG			*pullEventInterest

);

Parameters

pullEventInterest
[out]	The	set	of	flags	indicating	the	event	interests.	The
event	interests	will	be	a	member	of	the	SR	event	set	(see
SPFEI_ALL_SR_EVENTS).

Return	values

Value Description
S_OK Function	completed	successfully.
E_POINTER pullEventInterest	is	invalid	or	bad.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecoContext::SetContextState
ISpRecoContext::SetContextState	sets	the	state	of	the
recognition	context.
HRESULT	SetContextState(

			SPCONTEXTSTATE			eContextState

);

Parameters

eContextState
[in]	The	SPCONTEXTSTATE	enumeration	sequence	specifying
the	recognition	context	state.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG eContextState	is	not	one	of	the

correct	types.
FAILED(hr) Appropriate	error	message.

Remarks
The	default	recognition	context	state	for	an	ISpRecoContext
object	is	SPCS_ENABLED.
Applications	can	use	ISpRecoContext::SetContextState	to	toggle
sets	of	grammars.	For	example,	a	multi-document	interface
application	that	uses	a	different	ISpRecoContext	object	for	each
document	could	toggle	the	context	states	as	each	document
gained	and	lost	the	focus.		
Applications	can	use	ISpRecoContext::GetContextState	to	query
the	context	state.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecoContext::GetContextState
ISpRecoContext::GetContextState	retrieves	the	state	of	the
recognition	context.
HRESULT	GetContextState(

			SPCONTEXTSTATE			*peContextState

);

Parameters

peContextState
[out]	Address	of	the	SPCONTEXTSTATE	enumeration	that
receives	the	context	state	information.

Return	values

Value Description
S_OK Function	completed	successfully.
E_POINTER One	of	the	pointers	is	invalid	or

bad.
FAILED(hr) Appropriate	error	message.

Remarks
The	default	recognition	context	state	for	an	ISpRecoContext
object	is	SPCS_ENABLED.
Applications	can	use	ISpRecoContext::SetContextState	to	set
the	context	state.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecoGrammar
The	ISpRecoGrammar	interface	enables	applications	to	manage
the	words	and	phrases	that	the	SR	engine	will	recognize.
A	single	SpRecognizer	object	can	have	multiple	SpRecoContext
objects	associated	with	it.	And	similarly,	a	single	SpRecoContext
object	can	have	multiple	SpRecoGrammar	objects	associated
with	it.	Using	a	one-to-many	relationship	with	SpRecoContext
objects	and	SpRecoGrammar	objects	allows	applications	to
separate	types	of	recognizable	phrases	and	content	into
separate	objects	for	clearer	application	logic.	Each
SpRecoGrammar	object	can	also	have	a	context-free	grammar
(CFG)	and	a	dictation	grammar	loaded	simultaneously	(e.g.,	use
the	CFG	if	possible,	but	back	off	to	dictation	if	CFG	fails	to
parse).
See	Designing	Grammar	Rules	for	examples	of	how	to	create
context-free	grammars.

Methods	in	Vtable	Order

ISpRecoGrammar	Methods Description
ISpGrammarBuilder	interface Inherits	from

ISpGrammarBuilder
and	all	those	methods
are	accessible	from	an
ISpRecoGrammar
object.

GetGrammarId Retrieves	the	grammar
identifier	associated
with	the	application.

GetRecoContext Retrieves	the	context
object	that	created	this
grammar.

LoadCmdFromFile Loads	a	command	and

control	grammar	from	a
file.

LoadCmdFromObject Loads	a	command	and
control	grammar	from	a
COM	object.

LoadCmdFromResource Loads	a	command	and
control	grammar	from	a
Win32	resource.

LoadCmdFromMemory Loads	a	command	and
control	grammar	from
memory.

LoadCmdFromProprietaryGrammar Loads	an	engine
proprietary	format
command	and	control
grammar.

SetRuleState Activates	or
deactivates	a	rule	by	its
rule	name.

SetRuleIdState Activates	or
deactivates	a	rule	by	its
rule	ID.

LoadDictation Loads	and	initializes	a
dictation	topic.

UnloadDictation Unloads	the	active
dictation	topic	from	the
grammar.

SetDictationState Sets	a	dictation	state	to
active	or	inactive.

SetWordSequenceData Sets	a	word	sequence
buffer	in	the	SR	engine.

SetTextSelection Sets	the	current	text
selection	and	insertion
point	information.

IsPronounceable Determines	if	the	word
has	a	pronunciation.

SetGrammarState Sets	the	grammar
state.

SaveCmd Allows	applications
using	dynamic
grammars	to	save	the
current	grammar	state
to	a	stream.

GetGrammarState Retrieves	recognition
grammar	state
information.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecoGrammar::GetGrammarId
ISpRecoGrammar::GetGrammarId	retrieves	the	identifier
associated	with	the	grammar	when	the	grammar	was	created.
The	grammar	ID	is	set	by	the	application	by	calling
ISpRecoContext::CreateGrammar.
HRESULT	GetGrammarId(

			ULONGLONG			*pullGrammarId

);

Parameters

pullGrammarId
[out]	Address	of	a	ULONGLONG	variable	to	receive	the
grammar	ID.

Return	values

Value Description
S_OK Function	completed

successfully.
E_POINTER pullGrammarId	is	invalid	or	bad.

Remarks
The	grammar	ID	will	be	set	in	the	SPPHRASE	object	when	a
recognition	is	sent	to	the	application	(see
ISpPhrase::GetPhrase).

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecoGrammar::GetRecoContext
ISpRecoGrammar::GetRecoContext	retrieves	the
ISpRecoContext	object	that	created	this	grammar.	If	this	method
succeeds,	the	application	using	this	method	must	call	Release()
on	the	SpRecoContext	object	returned.
HRESULT	GetRecoContext(

			ISpRecoContext			**ppRecoCtxt

);

Parameters

ppRecoCtxt
[out]	Address	of	a	pointer	to	an	ISpRecoContext	interface
that	receives	the	recognition	context	object	pointer.

Return	values

Value Description
S_OK Function	completed

successfully.
E_POINTER ppRecoCtxt	is	invalid	or	bad.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecoGrammar::LoadCmdFromFile
ISpRecoGrammar::LoadCmdFromFile	loads	a	SAPI	5
command	and	control	grammar	from	a	file.	The	file	can	either
be	a	compiled	or	uncompiled	grammar	file.	To	modify	the	rules
of	the	grammar	after	it	has	been	loaded,	specify	SPLO_DYNAMIC
for	the	Options	parameter,	otherwise	specify	the	SPLO_STATIC
flag.
HRESULT	LoadCmdFromFile(

				const	WCHAR				*pszFileName,

				SPLOADOPTIONS			Options

);

Parameters

pszFileName
[in,	string]	The	name	of	the	file	containing	the	command	and
control	grammar.	SAPI	5	support	loading	of	compiled	and
static	grammars	using	URL.

Options
[in]	Flag	of	type	SPLOADOPTIONS	indicating	whether	the
grammar	will	be	modified	dynamically.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG pszFileName	is	invalid	or	bad.

Alternatively,	Options	is	neither
SPLO_STATIC	nor	SPLO_DYNAMIC.

FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecoGrammar::LoadCmdFromObject
ISpRecoGrammar::LoadCmdFromObject	loads	a	CFG	from	a
COM	object.	The	COM	object	must	be	located	inside	of	a
Windows	DLL.
HRESULT	LoadCmdFromObject(

			REFCLSID								rcid,

			const	WCHAR				*pszGrammarName,

			SPLOADOPTIONS			Options

);

Parameters

rcid
[in]	The	reference	class	ID	of	the	object	containing	the
command.

pszGrammarName
[in,	string]	The	grammar	name	of	the	object	containing	the
command.

Options
[in]	Flag	of	type	SPLOADOPTIONS	indicating	whether	the	file
should	be	loaded	statically	or	dynamically.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG pszGrammarName	is	invalid	or	bad.

Alternatively,	Options	is	neither
SPLO_STATIC	nor	SPLO_DYNAMIC.

FAILED(hr) Appropriate	error	message.

Remarks
When	an	application	calls	::LoadCmdFromObject,	the	currently
loaded	CFG	or	proprietary	grammar	will	be	unloaded.
See	also	ISpCFGInterpreter::InitGrammar.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecoGrammar::LoadCmdFromResource
ISpRecoGrammar::LoadCmdFromResource	loads	a
command	and	control	grammar	from	a	Win32	resource.

HRESULT	LoadCmdFromResource(

			HMODULE									hModule,

			const	WCHAR				*pszResourceName,

			const	WCHAR				*pszResourceType,

			WORD												wLanguage,

			SPLOADOPTIONS			Options

);

Parameters

hModule
[in]	Handle	to	the	module	whose	file	name	is	being
requested.	If	this	parameter	is	NULL,	it	passes	back	the	path
for	the	file	containing	the	current	process.

pszResourceName
[in,	string]	The	name	of	the	resource.

pszResourceType
[in,	string]	The	type	of	the	resource.

wLanguage
[in]	The	language	ID.

Options
[in]	Flag	of	type	SPLOADOPTIONS	indicating	whether	the	file
should	be	loaded	statically	or	dynamically.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG Either	pszResourceName	or

pszResourceType	is	invalid	or	bad.	It
may	also	indicate	hModule	could	not
be	found.	Alternatively,	Options	is
neither	SPLO_STATIC	nor
SPLO_DYNAMIC.

FAILED(hr) Appropriate	error	message.

Remarks
When	an	application	calls	::LoadCmdFromResource,	the
currently	loaded	context-free	grammar	or	proprietary	grammar
will	be	unloaded.
The	CFG	resource	must	be	a	compiled	SAPI	5	binary	version	of	a
context-free	grammar	(see
ISpGrammarCompiler::CompileStream).

Example
				HRESULT	hr	=	S_OK;

				//	create	a	new	grammar	object
				hr	=	cpRecoContext->CreateGrammar(GRAM_ID,	&cpRecoGrammar);
				//	Check	hr
	
				//	load	a	CFG	resource	from	the	current	module,	named	SRGRAMMAR
				hr	=	cpRecoGrammar->LoadCmdFromResource(hModule,
																																												(const	WCHAR*)MAKEINTRESOURCE(IDR_GRAMMAR),
																																												L"SRGRAMMAR",
																																												::SpGetUserDefaultUILanguage()
																																												,	SPLO_STATIC);

				//	Check	hr

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecoGrammar::LoadCmdFromMemory
ISpRecoGrammar::LoadCmdFromMemory	loads	a	compiled
CFG	binary	from	memory.
HRESULT	LoadCmdFromMemory(

			const	SPBINARYGRAMMAR			*pBinaryData,

			SPLOADOPTIONS												Options

);

Parameters

pBinaryData
[in]	The	serialized	header	buffer	of	type	SPBINARYGRAMMAR.

Options
[in]	Flag	of	type	SPLOADOPTIONS	indicating	whether	the	file
should	be	loaded	statically	or	dynamically.

Remarks
When	an	application	calls	::LoadCmdFromMemory,	the	currently
loaded	CFG	or	proprietary	grammar	will	be	unloaded.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG Either	pBinaryData	or	one	of	its

members	is	invalid	or	bad.	It	may
also	indicate	pBinaryData->FormatId
is	not	SPGDF_ContextFree.
Alternatively,	Options	is	neither
SPLO_STATIC	nor	SPLO_DYNAMIC.

FAILED(hr) Appropriate	error	message.

Example
The	following	code	snippet	illustrates	how	to	use
ISpRecoGrammar::LoadCmdFromMemory	to	serialize	the	CFG
from	one	SpRecoGrammar	object	and	deserialize	it	into	another
SpRecoGrammar	object.

				HRESULT	hr	=	S_OK;

				//	...	build	and	use	a	SpRecoGrammar	object

				//	create	a	Win32	global	stream
				hr	=	::CreateStreamOnHGlobal(NULL,	true,	&cpHStream);
				//	Check	hr

				//	save	the	current	grammar	to	the	global	stream
				hr	=	cpRecoGrammar->SaveCmd(cpHStream,	NULL);
				//	Check	hr

				//	create	the	second	grammar	to	deserialize	into
				hr	=	cpRecoContext->CreateGrammar(0,	&cpReloadedGrammar);
				//	Check	hr

				//	get	a	handle	to	the	stream	with	the	serialized	grammar
				::GetHGlobalFromStream(cpHStream,	&hGrammar);
				//	Check	hr

				//	deserialize	the	CFG	into	a	new	grammar	object
				hr	=	cpReloadedGrammar->LoadCmdFromMemory((SPBINARYGRAMMAR	*)::GlobalLock(hGrammar),	SPLO_DYNAMIC);
				//	Check	hr

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecoGrammar::LoadCmdFromProprietaryGrammar
ISpRecoGrammar::LoadCmdFromProprietaryGrammar
loads	a	proprietary	grammar.
HRESULT	LoadCmdFromProprietaryGrammar(

			REFGUID									rguidParam,

			const	WCHAR				*pszStringParam,

			const	void					*pvDataParam,

			ULONG											cbDataSize,

			SPLOADOPTIONS			Options

);

Parameters

rguidParam
[in]	Unique	identifier	of	the	grammar.	The	GUID	will	be	used
by	the	application	and	the	SR	engine	to	uniquely	identify	the
SR	engine	for	verifying	support.

pszStringParam
[in,	string]	The	null-terminated	string	command.	The	string
can	be	used	by	the	application	and	the	SR	engine	to	specify
which	part	of	a	grammar	to	utilize.

pvDataParam
[in]	Additional	information	for	the	process.	SAPI	will	handle
the	marshaling	of	the	data	to	the	SR	engine.

cbDataSize
[in]	The	size,	in	bytes,	of	pvDataParam.	SAPI	will	handle	the
marshaling	of	the	data	to	the	SR	engine.

Options

[in]	Flag	of	type	SPLOADOPTIONS	indicating	whether	the	file
should	be	loaded	statically	or	dynamically.	This	value	must
be	SPLO_STATIC.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG pszStringParam	or	pvDataParam	is

invalid	or	bad.	Alternatively,	Options
is	not	SPLO_STATIC.

FAILED(hr) Appropriate	error	message.

Remarks
When	an	application	calls	::LoadCmdFromProprietaryGrammar,
the	currently	loaded	CFG	or	proprietary	will	be	unloaded.
Applications	should	use	::LoadCmdFromProprietaryGrammar
when	using	a	proprietary	grammar	format	that	the	SR	engine
supports	(see	ISpSREngine::LoadProprietaryGrammar).	If	the
current	SR	engine	does	not	support	the	proprietary	grammar
format	(specified	using	rguidParam	and	pszStringParam),	the	SR
engine	may	return	E_NOTIMPL.

Example
				HRESULT	hr	=	S_OK;

				//	create	a	new	grammar	object
				hr	=	cpRecoContext->CreateGrammar(GRAM_ID,	&cpRecoGrammar);
				//	Check	hr

				//	load	our	proprietary	grammar
				hr	=	cpRecoGrammar->LoadCmdFromProprietaryGrammar(GUID_MyProprietaryGrammarType,	NULL,	bGrammarData,	ulSizeOfGrammarData,	SPLO_STATIC);
				//	Check	hr

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecoGrammar::SetRuleState
ISpRecoGrammar::SetRuleState	activates	or	deactivates	a
rule	by	its	rule	name.
HRESULT	SetRuleState(

			const	WCHAR			*pszName,

			void										*pReserved,

			SPRULESTATE				NewState

);

Parameters

pszName
[in,	string]	Address	of	a	null-terminated	string	containing	the
rule	name.	If	NULL,	all	rules	with	attribute	SPRAF_TopLevel
and	SPRAF_Active	and	set	(at	rule	creation	time)	are	affected.

pReserved
Reserved.	Do	not	use;	must	be	NULL.

NewState
[in]	Flag	of	type	SPRULESTATE	indicating	the	new	rule	state.
See	Remarks	section.

Return	values

Value Description
S_OK Function	completed

successfully.
E_INVALIDARG pszName	is	invalid	or	bad.

Alternatively,	pReserved	is
non-NULL.

SP_STREAM_UNINITIALIZED ISpRecognizer::SetInput	has

not	been	called	with	the	InProc
recognizer

SPERR_UNINITIALIZED The	object	has	not	been
properly	initialized.

SPERR_UNSUPPORTED_FORMAT Audio	format	is	bad	or	is	not
recognized.	Alternatively,	the
device	driver	may	be	busy	by
another	application	and	cannot
be	accessed.

SPERR_NOT_TOPLEVEL_RULE The	rule	pszName	exists,	but	is
not	a	top-level	rule.

FAILED(hr) Appropriate	error	message.

Remarks
The	rule	name	is	specified	in	the	XML	grammar	(using	the	rule
NAME	tag),	or	when	ISpGrammarBuilder::GetRule	is	called.
See	also	ISpSREngine::RuleNotify	for	information	on	the	how
SAPI	notifies	the	SR	engine.
An	application	can	use	the	SPRS_ACTIVE_WITH_AUTO_PAUSE
state	to	pause	the	engine	after	each	CFG	recognition	is	sent.
The	application	must	reactivate	the	SR	engine	(see
ISpRecoContext::Resume)	to	prevent	the	loss	of	input	audio
data	(see	ISpSREngineSite::Read	and
SPERR_AUDIO_BUFFER_OVERFLOW).
By	default,	the	recognizer	state	(SPRECOSTATE)	is
SPRST_ACTIVE,	and	the	recognition	will	begin	as	soon	as	one	or
more	rule	are	activated.	Consequently,	an	application	should
not	activate	the	rule	state	until	it	is	prepared	to	receive
recognitions.	An	application	can	also	disable	the	SpRecoContext
object	(see	ISpRecoContext::SetContextState)	or
SpRecoGrammar	objects	(see
ISpRecoGrammar::SetGrammarState)	to	prevent	recognitions
from	being	fired	for	active	rules.	

If	the	recognizer	state	is	SPRST_ACTIVE,	SAPI	will	first	attempt	to
open	the	audio	input	stream	when	dictation	(or	a	rule)	is
activated.	Consequently,	if	the	audio	device	is	already	in	use	by
another	application,	or	the	stream	fails	to	open,	the	failure	code
will	be	returned	using	::SetRuleState.	The	application	should
handle	this	failure	gracefully.
If	an	application	uses	an	InProc	recognizer,	it	must	call
ISpRecognizer::SetInput	with	a	non-NULL	setting	before	the
recognizer	will	return	recognitions,	regardless	of	how	many	rules
are	active.

Example
The	following	snippet	loads	a	grammar,	activate	a	single	rule
("playcard")	and	then	immediately	deactivates	it.
	 HRESULT	hr;

									//	create	a	grammar	object
									hr	=	cpRecoContext->CreateGrammar(GRAM_ID,	&cpRecoGrammar);
	 //Check	return	value

									//	activate	the	rule
	 hr	=	cpRecoGrammar->SetRuleState(L"playcard",	NULL,	SPRS_ACTIVE);
	 //Check	return	value
	
	 //Deactivate	the	rule
	 hr	=	cpRecoGrammar->SetRuleState(L"playcard",	NULL,	SPRS_INACTIVE);
	 //Check	return	value

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecoGrammar::SetRuleIdState
ISpRecoGrammar::SetRuleIdState	activates	or	deactivates	a
rule	by	its	rule	ID.
HRESULT	SetRuleIdState(

			ULONG									ulRuleId,

			SPRULESTATE			NewState

);

Parameters

ulRuleId
[in]	Value	specifying	the	grammar	rule	identifier.	If	zero,	all
rules	with	attribute	SPRAF_TopLevel	and	SPRAF_Active	and
set	(at	rule	creation	time)	are	affected.

NewState
[in]	Flag	of	type	SPRULESTATE	indicating	the	new	rule	state.

Return	values

Value Description
S_OK Function	completed

successfully.
E_INVALIDARG dwRuleId	is	invalid.
SP_STREAM_UNINITIALIZED ISpRecognizer::SetInput	has

not	been	called	with	the	InProc
recognizer.

SPERR_UNINITIALIZED The	object	has	not	been
properly	initialized.

SPERR_UNSUPPORTED_FORMAT Audio	format	is	bad	or	is	not
recognized.	Alternatively,	the
device	driver	may	be	busy	by

another	application	and	cannot
be	accessed.

SPERR_DEVICE_BUSY The	audio
SPERR_NOT_TOPLEVEL_RULE The	rule	ID	ulRuleId	exists,	but

is	not	a	top-level	rule.
FAILED(hr) Appropriate	error	message.

Remarks
An	application	can	use	the	SPRS_ACTIVE_WITH_AUTO_PAUSE
state	to	pause	the	engine	after	each	dictation	recognition	is
sent.	The	application	must	reactivate	the	SR	engine	(see
ISpRecoContext::Resume)	to	prevent	the	loss	of	input	audio
data	(see	ISpSREngineSite::Read	and
SPERR_AUDIO_BUFFER_OVERFLOW).
The	rule	ID	is	specified	in	the	XML	grammar	(using	the	rule	ID
tag),	or	when	ISpGrammarBuilder::GetRule	is	called.
See	also	ISpSREngine::RuleNotify	for	information	on	the	how
SAPI	notifies	the	SR	engine.
By	default,	the	recognizer	state	(SPRECOSTATE)	is
SPRST_ACTIVE,	which	means	that	recognition	will	begin	as	soon
as	dictation	is	activated.	Consequently,	an	application	should
not	activate	the	dictation	state	until	it	is	prepared	to	receive
recognitions.	An	application	can	also	disable	the	SpRecoContext
object	(see	ISpRecoContext::SetContextState)	or
SpRecoGrammar	objects	(see
ISpRecoGrammar::SetGrammarState)	to	prevent	recognitions
from	being	fired	for	active	dictation	topics.
If	the	recognizer	state	is	SPRST_ACTIVE,	SAPI	will	first	attempt	to
open	the	audio	input	stream	when	a	rule	(or	dictation)	is
activated.	Consequently,	if	the	audio	device	is	already	in	use	by
another	application,	or	the	stream	fails	to	open,	the	failure	code
will	be	returned	using	::SetRuleIdState.	The	application	should
handle	this	failure	gracefully.

If	an	application	uses	an	InProc	recognizer,	it	must	call
ISpRecognizer::SetInput	with	a	non-NULL	setting	before	the
recognizer	will	return	recognitions,	regardless	of	the	dictation
topic	state.

Example
The	following	code	snippet	illustrates	the	use	of
ISpRecoGrammar::SetRuleIdState	by	programmatically	creating
a	rule	and	activating	it
				HRESULT	hr	=	S_OK;

				//	create	a	new	rule
				SPSTATEHANDLE	hStateTravel;
				hr	=	cpRecoGrammar->GetRule(MYRULENAME,	MY_RULE_ID,	SPRAF_TopLevel	|	SPRAF_Active,	TRUE,	&hState);
				//	Check	hr

				//	..	add	word	transitions...

				//	activate	the	rule	by	its	id
				hr	=	cpRecoGrammar->SetRuleIdState(MY_RULE_ID,	SPRS_ACTIVE);
				//	Check	hr

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecoGrammar::LoadDictation
ISpRecoGrammar::LoadDictation	loads	a	dictation	topic	into
the	SpRecoGrammar	object	and	the	SR	engine.
See	also	ISpSREngine::OnCreateGrammar.
HRESULT	LoadDictation(

			const	WCHAR			*pszTopicName,

			SPLOADOPTIONS		Options

);

Parameters

pszTopicName
[in,	optional,	string]	The	null-terminated	string	containing	the
topic	name.	If	NULL,	the	general	dictation	is	loaded.	See
Remarks	section.

Options
[in]	Flag	of	type	SPLOADOPTIONS	indicating	whether	the	file
should	be	loaded	statically	or	dynamically.	This	value	must
be	SPLO_STATIC.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG pszTopicName	is	invalid	or	bad.

Alternatively,	Options	is	not
SPLO_STATIC.

FAILED(hr) Appropriate	error	message.

Remarks

SAPI	currently	defines	one	specialized	dictation	topic:
SPTOPIC_SPELLING.	SR	engines	are	not	required	to	support
specialized	dictation	topic	(including	spelling).
See	the	SR	engine	vendor	for	information	on	what	specialized
dictation	topics	if	any	are	supported.

Example
The	following	code	snippet	illustrates	the	use	of
ISpRecoGrammar::LoadDictation	to	load	a	spelling	topic	and
activate	it.
				HRESULT	hr	=	S_OK;

				//	create	a	grammar	object
				hr	=	cpRecoContext->CreateGrammar(GRAM_ID,	&cpRecoGrammar);
				//	Check	hr

				//	load	the	general	dictation	topic
				hr	=	cpRecoGrammar->LoadDictation(NULL,	SPLO_STATIC);
				//	Check	hr

				//	activate	the	dictation	topic	to	receive	recognitions
				hr	=	cpRecoGrammar->SetDictationState(SPRS_ACTIVE);
				//	check	hr

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecoGrammar::UnloadDictation
ISpRecoGrammar::UnloadDictation	unloads	the	active
dictation	topic	from	the	grammar.
HRESULT		UnloadDictation		(void);

Parameters
None.

Return	values

Value Description
S_OK Function	completed

successfully.
FAILED(hr) Appropriate	error	message.

Remarks
If	an	application	uses	a	CFG	with	dictation	tags,	and	then
unloads	the	dictation	grammar	component,	the	dictation	tags
will	default	to	the	generic	dictation	topic	(see
ISpRecoGrammar::LoadDictation).

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecoGrammar::SetDictationState
ISpRecoGrammar::SetDictationState	sets	the	dictation	topic
state.
The	dictation	topic	is	specified	by	calling
ISpRecoGrammar::LoadDictation.
See	also	ISpSREngine::SetSLMState	for	information	on	how	SAPI
notifies	the	SR	engine.
HRESULT	SetDictationState(

			SPRULESTATE			NewState

);

Parameters

NewState
[in]	Flag	of	type	SPRULESTATE	indicating	the	new	state	of
dictation.	See	Remarks	section

Return	values

Value Description
S_OK Function	completed

successfully.
E_INVALIDARG NewState	is	not	an	acceptable

value.
SP_STREAM_UNINITIALIZED ISpRecognizer::SetInput	has

not	been	called	with		the	InProc
SR	engine

SPERR_UNINITIALIZED A	dictation	is	not	currently
loaded.

SPERR_UNSUPPORTED_FORMAT Audio	format	is	bad	or	is	not
recognized.	Alternatively,	the
device	driver	may	be	busy	by

another	application	and	cannot
be	accessed.

FAILED(hr) Appropriate	error	message.

Remarks
An	application	can	use	the	SPRS_ACTIVE_WITH_AUTO_PAUSE
state	to	pause	the	engine	after	each	dictation	recognition	is
sent.	The	application	must	reactivate	the	SR	engine	(see
ISpRecoContext::Resume)	to	prevent	the	loss	of	input	audio
data	(see	ISpSREngineSite::Read	and
SPERR_AUDIO_BUFFER_OVERFLOW).
By	default,	the	recognizer	state	(SPRECOSTATE)	is
SPRST_ACTIVE,	which	means	that	recognition	will	begin	as	soon
as	dictation	is	activated.	Consequently,	an	application	should
not	activate	the	dictation	state	until	it	is	prepared	to	receive
recognitions.	An	application	can	also	disable	the	SpRecoContext
object	(see	ISpRecoContext::SetContextState)	or
SpRecoGrammar	objects	(see
ISpRecoGrammar::SetGrammarState)	to	prevent	recognitions
from	being	fired	for	active	dictation	topics.
If	the	recognizer	state	is	SPRST_ACTIVE,	SAPI	will	first	attempt	to
open	the	audio	input	stream	when	dictation	(or	a	rule)	is
activated.	Consequently,	if	the	audio	device	is	already	in	use	by
another	application,	or	the	stream	fails	to	open,	the	failure	code
will	be	returned	using	::SetDictationState.	The	application
should	handle	this	failure	gracefully.
If	an	application	uses	an	InProc	recognizer,	it	must	call
ISpRecognizer::SetInput	with	a	non-NULL	setting	before	the
recognizer	will	return	recognitions,	regardless	of	the	dictation
topic	state.

Example
The	following	code	snippet	illustrates	the	use	of
ISpRecoGrammar::SetDictationState	to	load	a	spelling	topic	and

activate	it.

				HRESULT	hr	=	S_OK;

				//	create	a	grammar	object
				hr	=	cpRecoContext->CreateGrammar(GRAM_ID,	&cpRecoGrammar);
				//	Check	hr

				//	load	the	general	dictation	topic
				hr	=	cpRecoGrammar->LoadDictation(NULL,	SPLO_STATIC);
				//	Check	hr

				//	activate	the	dictation	topic	to	receive	recognitions
				hr	=	cpRecoGrammar->SetDictationState(SPRS_ACTIVE);
				//	check	hr

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecoGrammar::SetWordSequenceData
ISpRecoGrammar::SetWordSequenceData	sets	a	word
sequence	buffer	in	the	SR	engine.	
The	command	and	control	grammar	can	refer	to	any
subsequence	of	words	in	this	buffer	using	the	<TEXTBUFFER>
tag,	or		the	SPRULETRANS_TEXTBUFFER	special	transition	type
in	ISpGrammarBuilder::AddRuleTransition().
HRESULT	SetWordSequenceData(

			const	WCHAR			*pText,

			ULONG										cchText,

			const		SPTEXTSELECTIONINFO		*pInfo

);

Parameters

pText
[in]	Buffer	containing	the	text	to	search	for	possible	word
sequences.	The	buffer	is	double-NULL	terminated.	The	whole
buffer	could	be	separated	into	different	groups	by	'\0'.	Any
sub-sequence	of	words	in	the	same	group	is	recognizable,
any	sub-sequence	of	words	across	different	groups	is	not
recognizable.	The	word	could	be	in	simple	format	or	complex
format:	/disp/lex/pron.	The	SR	engines	determine	where	to
break	words	and	when	to	normalize	text	for	better
performance.	For	example,	if	the	buffer	displays:	"please
play\0this	new	game\0\0",	"please	play"	is	recognizable,
while	"this	new	game"	is	not	recognizable.

cchText
[in]	The	number	of	characters	(WCHAR)	in	pText.

pInfo

[optional,	in]	Address	of	the	SPTEXTSELECTIONINFO	structure
that	contains	the	selection	information.	If	NULL,	the	SR
engine	will	use	the	entire	contents	of	pText.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG One	or	more	parameters	are

invalid.
FAILED(hr) Appropriate	error	message.

Remarks
An	application	that	has	a	text	box	could	enable	the	user	to
speak	commands	into	the	text	box	to	edit	the	text.	One	way	to
design	this	functionality	would	be	to	create	a	CFG	which
supports	such	commands	as	"cut	the	text	*",	"bold	the	text	*",
or	"italicize	the	words	*".	The	grammar	would	then	use	a
TEXTBUFFER	tag	in	place	of	the	*	which	would	enable	the	SR
engine	to	recognize	the	text	buffer	information.	At	run	time,	the
application	would	update	the	SR	engine's	view	of	the	text	buffer
using	::SetWordSequenceData.	So	if	a	user	had	the	text	"hello
world"	in	the	text	box,	the	SR	engine	could	recognize	"bold	the
text	world".	
See	also	ISpRecoGrammar::SetTextSelection	for	information	on
how	to	update	the	text	selection	information	independent	of	the
word	sequence	data.
See	also	ISpSREngine::SetWordSequenceData	for	information	on
how	SAPI	passes	the	word	sequence	data	to	the	SR	engine.
The	SR	engine	must	support	text	buffer	features.	Check	for	the
presence	of	the	TextBuffer	attribute	for	the	SR	engine.	Microsoft
SR	ASR	engines	support	these	features	although	there	is	no
requirement	that	other	manufacturers	engines	need	to.	See
Recognizers	in	Object	Tokens	and	Registry	Settings	for	more

information.

Example
The	following	code	snippet	illustrates	how	an	application	could
send	a	text	buffer	to	the	SR	engine	using
ISpRecoGrammar::SetWordSequenceData.
								HRESULT	hr	=	S_OK;

								//	place	the	contents	of	text	buffer	into	pwszCoMem	and	the	length	of	the	text	in	

								SPTEXTSELECTIONINFO	tsi;
								tsi.ulStartActiveOffset	=	0;
								tsi.cchActiveChars	=	cch;
								tsi.ulStartSelection	=	0;
								tsi.cchSelection	=	cch;

								pwszCoMem2	=	(WCHAR	*)CoTaskMemAlloc(sizeof(WCHAR)	*	(cch	+	2));

								if	(SUCCEEDED(hr)	&&	pwszCoMem2)
								{
												//	SetWordSequenceData	requires	double	NULL	terminator.
												memcpy(pwszCoMem2,	pwszCoMem,	sizeof(WCHAR)	*	cch);
												pwszCoMem2[cch]	=	L'\0';
												pwszCoMem2[cch+1]	=	L'\0';

												//	set	the	text	buffer	data
												hr	=	cpRecoGrammar->SetWordSequenceData(pwszCoMem2,	cch	+	2,	&tsi);
												//	Check	hr

												CoTaskMemFree(pwszCoMem2);
								}
								CoTaskMemFree(pwszCoMem);

								//	the	SR	engine	is	now	capable	of	recognizing	the	contents	of	the	text	buffer	

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecoGrammar::SetTextSelection
ISpRecoGrammar::SetTextSelection	sets	the	current	text
selection	and	insertion	point	information.
HRESULT	SetTextSelection(

			const			SPTEXTSELECTIONINFO		*pInfo

);

Parameters

pInfo
[in]	Address	of	the	SPTEXTSELECTIONINFO	structure	that
contains	the	text	selection	and	insertion	point	information.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG One	or	more	parameters	are

invalid.
FAILED(hr) Appropriate	error	message.

Remarks
An	application	that	has	a	text	box	could	enable	the	user	to
speak	commands	into	the	text	box	to	edit	the	text.	One	way	to
design	this	functionality	would	be	to	create	a	CFG	which
supports	such	commands	as	"cut	the	text	*",	"bold	the	text	*",
or	"italicize	the	words	*".	The	grammar	would	then	use	a
TEXTBUFFER	tag	in	place	of	the	*	which	would	enable	the	SR
engine	to	recognize	the	text	buffer	information.	At	run	time,	the
application	would	update	the	SR	engine's	view	of	the	text	buffer
using	ISpRecoGrammar::SetWordSequenceData.	When	the	user
highlights	a	selection	of	text	and	the	text	selection	using
::SetTextSelection.

If	a	user	had	the	text	"hello	world"	in	the	text	box	and	no	text
highlighted,	the	SR	engine	could	recognize	"bold	the	text
world".	If	the	user	highlighted	"hello",	and	the	application
changed	the	active	text	selection	only	contain	"hello",	"bold	the
text	world"	would	fail	to	recognize.
The	application	should	change	the	active	text	selection	when
the	text	highlight	changes,	rather	than	the	entire	word
sequence	data,	to	ensure	the	SR	engine	has	a	textual	context	to
help	the	recognition	language	model.
See	also	ISpRecoGrammar::SetWordSequenceData	for
information	on	how	to	set	the	text	data.
See	also	ISpSREngine::SetTextSelection	for	information	on	how
SAPI	passes	the	text	selection	information	to	the	SR	engine.
The	SR	engine	must	support	text	buffer	features.	Check	for	the
presence	of	the	TextBuffer	attribute	in	the	SR	engine.	Microsoft
SR	ASR	engines	support	these	features	although	there	is	no
requirement	that	other	manufacturers	engines	need	to.	See
Recognizers	in	Object	Tokens	and	Registry	Settings	for	more
information.

Example
The	following	code	snippet	illustrates	how	to	use
ISpRecoGrammar::SetTextSelection	after	sending	a	text	buffer	to
the	SR	engine	using	ISpRecoGrammar::SetWordSequenceData.
								HRESULT	hr	=	S_OK;

								//	place	the	contents	of	text	buffer	into	pwszCoMem	and	the	length	of	the	text	in	

								SPTEXTSELECTIONINFO	tsi;
								tsi.ulStartActiveOffset	=	0;
								tsi.cchActiveChars	=	cch;
								tsi.ulStartSelection	=	0;
								tsi.cchSelection	=	cch;

								pwszCoMem2	=	(WCHAR	*)CoTaskMemAlloc(sizeof(WCHAR)	*	(cch	+	2));

								if	(SUCCEEDED(hr)	&&	pwszCoMem2)
								{
												//	SetWordSequenceData	requires	double	NULL	terminator.
												memcpy(pwszCoMem2,	pwszCoMem,	sizeof(WCHAR)	*	cch);
												pwszCoMem2[cch]	=	L'\0';
												pwszCoMem2[cch+1]	=	L'\0';

												//	set	the	text	buffer	data
												hr	=	cpRecoGrammar->SetWordSequenceData(pwszCoMem2,	cch	+	2,	NULL);
												//	Check	hr

												//	set	the	text	selection	information
												hr	=	cpRecoGrammar->SetTextSelection(&tsi);
												//	Check	hr

												CoTaskMemFree(pwszCoMem2);
								}
								CoTaskMemFree(pwszCoMem);

								//	the	SR	engine	is	now	capable	of	recognizing	the	contents	of	the	text	buffer	

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecoGrammar::IsPronounceable
ISpRecoGrammar::IsPronounceable	calls	the	SR	engine
object	to	determine	if	the	word	has	a	pronunciation.
HRESULT	IsPronounceable(

			const	WCHAR									*pszWord,

			SPWORDPRONOUNCEABLE	*pfPronounceable

);

Parameters

pszWord
[in,	string]	The	word	to	test.	Length	must	be	equal	to	or	less
than	SP_MAX_WORD_LENGTH.

pfPronounceable
[out]	Flag,	from	among	the	following	list,	indicating	the	if	the
word	is	pronounceable	by	the	SR	engine.	See	Remarks
section.

Value
SPWP_UNKNOWN_WORD_UNPRONOUNCEABLE The	word	is

not
pronounceable
by	the	SR
engine,	and	is
not	located	in
the	lexicon
and/or	the
engine's
dictionary.

SPWP_UNKNOWN_WORD_PRONOUNCEABLE The	word	is
pronounceable
by	the	SR

engine,	but	is
not	located	in
the	lexicon
and/or	the
engine's
dictionary.	

SPWP_KNOWN_WORD_PRONOUNCEABLE The	word	is
pronounceable
by	the	SR
engine,	and	is
located	in	the
lexicon	and/or
the	engine's
dictionary.

Return	values

Value Description
S_OK Function	completed	successfully.
E_POINTER Either	pszWord	or	pfPronounceable	is

invalid	or	bad.
FAILED	(hr) Appropriate	error	message.

Remarks
The	exact	implementation	and	usage	for	the	SR	engine's
dictionary	and	pronounceable	words	may	vary	between	engines.
For	example,	an	SR	engine	may	attempt	to	pronounce	all	words
passed	using	::IsPronounceable,	even	if	it	is	not	located	in	the
lexicon	or	the	dictionary,	it	would	rarely	or	never,	return
SPWP_UNKNOWN_WORD_UNPRONOUNCEABLE.
Typically,	there	are	two	scenarios	when	an	application	might	use
the	method	::IsPronounceable.
If	an	application	is	using	a	number	of	specialized	or	uncommon
words	(e.g.,	legal,	medical,	or	scientific	terms),	the	application

may	want	to	verify	that	the	words	are	contained	in	either	the
lexicon	(see	also	ISpLexicon)	or	the	SR	engine's	dictionary.	If	the
words	are	not	contained	in	the	lexicon	or	the	dictionary	(even	if
they	are	pronounceable),	the	application	can	add	them	to	the
lexicon	to	improve	the	chances	of	a	successful	recognition.
An	application	may	also	want	to	verify	that	the	SR	engine	will
actually	recognize	the	words	in	a	CFG	(even	though	loading	the
CFG	succeeded).	If	the	SR	engine	returns
SPWP_UNKNOWN_WORD_UNPRONOUNCEABLE,	the	application
can	update	the	lexicon	pronunciation	entry	(see	ISpLexicon).

See	also	ISpSREngine::IsPronounceable	for	more	information	on
the	SR	engine's	role.

Example
The	following	code	snippet	illustrates	the	use	of
ISpRecoGrammar:IsPronounceable.	The	words	used	are
examples	only,	as	the	pronounceability	by	different	SR	engines
may	vary.	See	Remarks	section.

				HRESULT	hr	=	S_OK;

				//	check	if	a	common	word	is	pronounceable

				hr	=	cpRecoGrammar->IsPronounceable(L"hello",	&wordPronounceable);

				//	Check	hr

				//	wordPronounceable	is	probably	equal	to	SPWP_KNOWN_WORD_PRONOUNCEABLE

				//	check	if	an	uncommon,	or	imaginary,	word	is	pronounceable

				hr	=	cpRecoGrammar->IsPronounceable(L"snork",	&wordPronounceable);

				//	Check	hr

				//	wordPronounceable	is	probably	equal	to	SPWP_UNKNOWN_WORD_PRONOUNCEABLE

				//	check	if	a	non-word,	or	imaginary,	word	is	unpronounceable

				hr	=	cpRecoGrammar->IsPronounceable(L"lpdzsd",	&wordPronounceable);

				//	Check	hr

				//	wordPronounceable	is	probably	equal	to	SPWP_UNKNOWN_WORD_UNPRONOUNCEABLE

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecoGrammar::SetGrammarState
ISpRecoGrammar::SetGrammarState	sets	the	grammar
state.
HRESULT	SetGrammarState(

			SPGRAMMARSTATE			eGrammarState

);

Parameters

eGrammarState
[in]	Flag	of	type	SPGRAMMARSTATE	indicating	the	new	state
of	the	grammar.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG eGrammarState	is	not	a	valid

state.
FAILED(hr) Appropriate	error	message.

Remarks

If	eGrammarState	is	SPGM_DISABLED,	SAPI	will	retain	the
current	rule	activation	state,	so	that	when	the	grammar	state	is
set	to	SPGM_ENABLED,	it	restores	the	grammar	rules	back	to
each	of	the	original	activation	states.	While	the	grammar	is	set
to	SPGM_DISABLED,	the	application	can	still	activate	and
deactivate	rule.	The	effect	is	not	communicated	to	the	SR
engine	(but	retained	by	SAPI)	until	the	grammar	is	enabled
again.
If	eGrammarState	is	SPGM_EXCLUSIVE,	SAPI	will	disable	all	other

grammars	in	the	system,	unless	another	grammar	is	already
exclusive.	Activation	and	deactivation	commands	are	buffered
for	all	other	grammars	until	the	exclusive	grammar	is	set	to
SPGM_ENABLED	again.
The	default	grammar	state	is	SPGS_ENABLED,	meaning	the
grammar	can	receive	recognitions.
Applications	can	use	the	grammar	state	to	control	whether	it
will	receive	recognitions	for	rules	in	that	SpRecoGrammar
object.	For	example,	an	application	create	a	new
SpRecoGrammar	object,	set	the	grammar	state	to
SPGS_DISABLED,	dynamically	generate	the	rules,	and	finally	set
the	grammar	state	to	SPFS_ENABLED	when	grammar
construction	is	completed.
See	also	ISpRecoGrammar::GetGrammarState.

Example
The	following	code	snippet	illustrates	the	use	of
ISpRecoGrammar::SetGrammarState	to	set		the	state	of	an
grammar

				HRESULT	hr	=	S_OK;

				//	create	a	new	grammar	object
				hr	=	cpRecoContext->CreateGrammar(GRAM_ID,	&cpRecoGrammar);
				//	Check	hr

				//	disable	the	grammar,	so	that	recognitions	are	not	received
				hr	=	cpRecoGrammar->SetGrammarState(SPGS_DISABLED);
				//	Check	hr

				//	...	build	the	grammar	...

				//	activate	the	grammar,	so	applications	start	receiving	recognitions
				hr	=	cpRecoGrammar->SetGrammarState(SPGS_ENABLED);

				//	Check	hr

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecoGrammar::SaveCmd
ISpRecoGrammar::SaveCmd	allows	applications	using
dynamic	grammars	to	save	the	current	grammar	state	to	a
stream.
HRESULT	SaveCmd(

			IStream			*pSaveStream,

			WCHAR				**ppCoMemErrorText

);

Parameters

pSaveStream
[in]	The	stream	to	save	the	compiler	binary	grammar	into.

ppCoMemErrorText
[out]	Optional	parameter	of	a	null-terminated	string
containing	error	messages	that	occurred	during	the	save
operation.

Return	values

Value Description
S_OK Function	completed

successfully.
E_INVALIDARG pSaveStream	is	invalid	or

bad.
SPERR_NOT_DYNAMIC_GRAMMAR Command	was	loaded	but

compiler	is	not	available.
SPERR_UNINITIALIZED Compiler	is	not	available.
E_POINTER ppCoMemErrorText	is	invalid

or	bad.
FAILED	(hr) Appropriate	error	message.

Remarks
Applications	can	use	::SaveCmd	to	serialize	grammar	changes
that	were	made	at	run	time	for	use	at	a	later	time.	See	also
ISpRecoGrammar::LoadCmdFromMemory.

Example
The	following	code	snippet	illustrates	how	to	use
ISpRecoGrammar::SaveCmd	to	serialize	the	CFG	from	one
SpRecoGrammar	object	and	deserialize	it	into	another
SpRecoGrammar	object.
				HRESULT	hr	=	S_OK;

				//	...	build	and	use	a	SpRecoGrammar	object

				//	create	a	Win32	global	stream
				hr	=	::CreateStreamOnHGlobal(NULL,	true,	&cpHStream);
				//	Check	hr

				//	save	the	current	grammar	to	the	global	stream
				hr	=	cpRecoGrammar->SaveCmd(cpHStream,	NULL);
				//	Check	hr

				//	create	the	second	grammar	to	deserialize	into
				hr	=	cpRecoContext->CreateGrammar(0,	&cpReloadedGrammar);
				//	Check	hr

				//	get	a	handle	to	the	stream	with	the	serialized	grammar
				::GetHGlobalFromStream(cpHStream,	&hGrammar);
				//	Check	hr

				//	deserialize	the	CFG	into	a	new	grammar	object
				hr	=	cpReloadedGrammar->LoadCmdFromMemory((SPBINARYGRAMMAR	*)::GlobalLock(hGrammar),	SPLO_DYNAMIC);

				//	Check	hr
	

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecoGrammar::GetGrammarState
ISpRecoGrammar::GetGrammarState	retrieves	the	current
state	of	the	recognition	grammar.
The	default	grammar	state	is	SPGS_ENABLED.
See	also	ISpRecoGrammar::SetGrammarState
HRESULT	GetGrammarState(

		SPGRAMMARSTATE			*peGrammarState

);

Parameters

peGrammarState
[out]	Address	of	the	SPGRAMMARSTATE	enumeration	that
receives	the	grammar	state	information.

Return	values

Value Description
S_OK Function	completed	successfully.
E_POINTER One	of	the	pointers	is	invalid	or

bad.
FAILED(hr) Appropriate	error	message.

Example
The	following	code	snippet	illustrates	the	use	of
ISpRecoGrammar::GetGrammarState	to	query	the	default	state
of	an	SpRecoGrammar	object.

				HRESULT	hr	=	S_OK;

				//	create	a	new	grammar	object

				hr	=	cpRecoContext->CreateGrammar(GRAM_ID,	&cpRecoGrammar);
				//	Check	hr

				//	query	the	default	grammar	state
				hr	=	cpRecoGrammar->GetGrammarState(&grammarState);
				//	Check	hr

				//	ASSERT	that	grammarState	==	SPGS_ENABLED

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecoResult
The	ISpRecoResult	interface	is	used	by	an	application	to	retrieve
information	about	the	SR	engine's	hypotheses,	recognitions,	and
false	recognitions.
The	most	common	use	of	the	ISpRecoResult	interface	is	retrieval
of	text	recognized	by	the	SR	engine	(see	ISpPhrase::GetText).
The	ISpRecoResult	interface	also	supports	the	retrieval	of	the
original	audio	that	the	SR	engine	recognized.	SAPI	can
automatically	retain	the	audio	for	an	application	using
ISpRecoContext::SetAudioOptions.
An	application	can	set	interest	in	SR	engine	hypotheses	by
calling	ISpEventSource::SetInterest	with	SPEI_HYPOTHESIS.	As
each	hypothesis	event	is	received,	the	application	can	examine
the	proposed	text	and	update	its	UI	to	display	dynamic	run-time
recognition	status.
An	application	can	set	interest	in	the	SR	engine's	failed
recognitions	by	calling	ISpEventSource::SetInterest	with
SPEI_FALSE_RECOGNITION.	If	a	false	recognition	occurs,	the
application	can	examine	the	audio	(or	even	a	partial	recognition
result)	to	reprocess	the	recognition	or	attempt	to	process	the
partially	recognized	text.	SAPI	does	not	require	that	an	SR
engine	send	a	phrase	with	the	false	recognition	event.

ISpRecoResult
Methods Description
ISpPhrase Inherits	from	ISpPhrase	and	those

methods	are	accessible	from	an
ISpRecoResult	object.

GetResultTimes Retrieves	the	time	information
associated	with	the	result.

GetAlternates Retrieves	an	array	containing
alternate	phrases.

GetAudio Creates	an	audio	stream	for	a	given

number	of	elements.
SpeakAudio Retrieves	and	speaks	the	specified

audio.
Serialize Creates	a	serialized	copy	of	the

recognition	result	object.
ScaleAudio Converts	the	format	of	the	retained

audio	to	a	different	audio	format.
GetRecoContext Returns	the	recognition	context

object	that	is	associated	with	this
result.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecoResult::GetResultTimes
ISpRecoResult::GetResultTimes	retrieves	the	time
information	associated	with	the	result.
HRESULT	GetResultTimes(

			SPRECORESULTTIMES			*pTimes

);

Parameters

pTimes
[out]	Address	of	the	SPRECORESULTTIMES	data	structure
containing	the	time	information	associated	with	the	result.

Return	values

Value Description
S_OK Function	completed

successfully.
E_POINTER pTimes	is	invalid	or	bad.
SPERR_NOT_FOUND Interface	not	found.

Remarks
An	application	can	use	::GetResultTimes	to	determine	the
system	time	that	a	recognition	occurred,	the	length	in	seconds
of	the	recognized	phrase,	and	the	length	of	time	between	when
the	SR	engine	began	listening	and	when	the	recognition
occurred.

Examples	Using	This	Method
SDK:	CoffeeS2;	CoffeeS3;	CoffeeS4.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecoResult::GetAlternates
ISpRecoResult::GetAlternates	retrieves	an	array	of	pointers
to	ISpPhraseAlt	objects	containing	alternate	phrases.
HRESULT	GetAlternates(

			ULONG											ulStartElement,

			ULONG											cElements,

			ULONG											ulRequestCount,

			ISpPhraseAlt		**ppPhrases,

			ULONG										*pcPhrasesReturned

);

Parameters

ulStartElement
[in]	The	starting	element	to	consider	for	the	alternates.	This
is	a	zero-based	value.

cElements
[in]	The	number	of	elements	to	consider.	All	elements	can	be
requested	using	the	enumeration	value	SPPR_ALL_ELEMENTS
of	type	SPPHRASERNG.

ulRequestCount
[in]	The	number	of	requested	alternate	phrase	elements.

ppPhrases
[out]	Address	of	an	array	of	ISpPhraseAlt	interface	pointers
that	contain	the	alternate	phrases.	The	elements	between
the	start	of	the	ulStartElement	element	and	the	end	of	the
ulStartElement	and	cElements	element	combined	is	the
portion	that	will	change.	The	rest	of	the	elements	will	be
included	in	each	alternate	phrase.

pcPhrasesReturned
[out]	Pointer	to	a	ULONG	that	receives	the	actual	number	of
alternate	phrases	retrieved.

Return	values

Value Description
S_OK Function	completed	successfully.
E_POINTER pcPhrasesReturned	is	an	invalid

pointer.	However,	ppPhrases	does	not
contain	ulRequestCount	allocations.

E_OUTOFMEMORY Exceeded	available	memory.
E_INVALIDARG ulStartElement	is	not	less	than	the

number	of	elements	in	the	owning
interface.	However,	the	number	of
expected	elements	exceeds	the
number	of	available	elements	in	the
owning	interface.

S_FALSE No	analyzer	is	present	or	there	is	no
driver	data.

FAILED(hr) Appropriate	error	message.

Example
The	following	code	snippet	illustrates	the	use
ISpRecoResult::GetAlternates	to	retrieve	and	commit	an
alternate	phrase.

				HRESULT	hr	=	S_OK;

				//	...	obtain	a	recognition	result	object	from	the	recognizer...

				//	get	the	recognized	phrase	object
				hr	=	cpRecoResult->GetPhrase(&pPhrase);
				//	Check	hr

				//	get	the	phrase's	text
				hr	=	pPhrase->GetText(SP_GETWHOLEPHRASE,	SP_GETWHOLEPHRASE,	TRUE,	&pwszText,	NULL);
				//	Check	hr

				//	...	check	the	phrase's	text...	assume	the	phrase	isn't	a	correct	recognition

				//	setup	MY_MAX_ALTERNATES	phrase	alternate	objects	
				CComPtr<ISpPhraseAlt>			pcpPhrase[MY_MAX_ALTERNATES];
				ULONG	ulCount;

				//	get	the	top	MY_MAX_ALTERNATES	alternates	to	the	entire	recognized	phrase
				hr	=	cpRecoResult->GetAlternates(pPhrase->Rule.ulFirstElement,
																																					pPhrase->Rule.ulCountOfElements,	
																																					MY_MAX_ALTERNATES,
																																					pcpPhraseAlt,
																																					&ulCount);
				//	Check	hr

				//	check	each	alternate	in	order	of	highest	likelihood
				for	(int	i	=	0;	i	<	ulCount;	i++)	{
									hr	=	pcpPhraseAlt[i]->GetText(SP_GETWHOLEPHRASE,	SP_GETWHOLEPHRASE,	TRUE,	&pwszAlternate,	NULL);
									//	Check	hr

									//	...	check	if	this	alternate	is	more	appropriate	...

									//	if	it	is	more	appropriate,	then	commit	the	alternate
									if	(fMoreAppropriate)	{
													hr	=	pcpPhraseAlt[i]->Commit();
													//	Check	hr
									}

									//	free	the	alternate	text

									if	(pwszAlternate)	::CoTaskMemFree(pwszAlternate);
									
				}

				//	free	the	initial	phrase	object
				if	(pPhrase)	::CoTaskMemFree(pPhrase);

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecoResult::GetAudio
ISpRecoResult::GetAudio	creates	an	audio	stream	of	the
requested	words	from	the	audio	data	in	the	result	object.
HRESULT	GetAudio(

			ULONG														ulStartElement,

			ULONG														cElements,

			ISpStreamFormat		**ppStream

);	

Parameters

ulStartElement
[in]	Value	specifying	from	which	element	in	the	result	data	to
start	the	audio	stream.

cElements
[in]	Value	specifying	the	total	number	of	words.

ppStream
[out]	Address	that	will	receive	a	pointer	to	an
ISpStreamFormat	object	containing	the	audio	data	requested.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG cElements	is	zero	or	the	expected

number	of	elements	to	count	exceeds
the	number	available.

E_POINTER ppStream	is	an	invalid	pointer.
SPERR_NO_AUDIO_DATA This	result	object	does	not	have	any

audio	data.

FAILED(hr) Appropriate	error	message.

Remarks
Even	if	there	are	no	elements,	that	is,	ulStartElement	=	0	and
cElements	=	0,	the	audio	will	still	be	played.	There	are
"unrecognized"	results	that	have	no	elements	but	have	audio.
An	application	can	find	the	time	offsets	for	each	element	by
examining	the	SPPHRASE	object	retrieved	using
ISpRecoResult::GetPhrase.

Example
The	following	code	snippet	illustrates	the	use
ISpRecoResult::GetAudio	to	retrieve	the	retained	audio.

				HRESULT	hr	=	S_OK;

				//	...	obtain	a	recognition	result	object	from	the	recognizer...

				hr	=	cpRecoResult->GetAudio(0,	0,	&cpStreamFormat);
				//	Check	hr

				//	check	the	format	of	the	stream	for	fun...
				hr	=	cpStreamFormat->GetFormat(&formatId,	&pWaveFormatEx);
				//	Check	hr

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecoResult::SpeakAudio
ISpRecoResult::SpeakAudio	retrieves	and	speaks	the
specified	audio.	This	combines	two	other	methods;	first	calling
ISpRecoResult::GetAudio	and	then	calling
ISpVoice::SpeakStream	on	the	parent	recognition	context.
HRESULT	SpeakAudio(

			ULONG				ulStartElement,

			ULONG				cElements,

			DWORD				dwFlags,	

			ULONG			*pulStreamNumber

);

Parameters

ulStartElement
[in]	Value	specifying	with	which	element	to	start.

cElements
[in]	Value	specifying	the	number	of	elements	contained	in
the	stream.	A	value	of	zero	speaks	all	elements.

dwFlags
[in]	Value	indicating	the	attributes	of	the	text	stream.	These
values	are	contained	in	the	SPEAKFLAGS	enumeration.

pulStreamNumber
[optional,	out]	Address	of	a	variable	containing	the	stream
number	information.	If	NULL,	the	stream	number	will	not	be
retrieved.

Return	values

Value Description
S_OK Function	completed	successfully.
SPERR_NO_AUDIO_DATA Result	does	not	contain	audio	data.
E_POINTER pulStreamNumber	is	a	non-NULL,	bad

pointer.
FAILED(hr) Appropriate	error	message.

Return	values	may	also	be	those	from	ISpVoice::SpeakStream.

Remarks
Even	if	there	are	no	elements,	that	is,	ulStartElement	=	0	and
cElements	=	0,	the	audio	will	still	be	spoken.	These	are
unrecognized	results	that	have	no	elements,	but	do	have	audio.
If	the	application	did	not	activate	retained	audio	(see
ISpRecoContext::SetAudioOptions),	or	make	a	previous	call	to
ISpPhrase::Discard	and	eliminate	the	retained	audio,
::SpeakAudio	will	fail	with	SPERR_NO_AUDIO_DATA.

Example
The	following	code	snippet	illustrates	the	use	of
ISpObjectToken::IsUISupported	using	SPGUID_EngineProperties.
				HRESULT	hr	=	S_OK;

				//	...	get	a	recognition	result	object	from	the	SR	engine

				//	replay	the	user's	spoken	audio	to	the	user

				hr	=	cpRecoResult->SpeakAudio(0,	0,	0,	&ulStreamNum);

				//	Check	hr

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecoResult::Serialize
ISpRecoResult::Serialize	creates	a	serialized	copy	of	the
recognition	result	object.	The	serialized	copy	can	be	saved	and
later	restored	using	ISpRecoContext::DeserializeResult.	
HRESULT	Serialize(

			SPSERIALIZEDRESULT			**ppCoMemSerializedResult

);

Parameters

ppCoMemSerializedResult
[out]	Address	of	a	pointer	to	the	SPSERIALIZEDRESULT
structure	that	receives	the	serialized	result	information.	Call
CoTaskMemFree()	to	free	the	memory	associated	with	the
serialized	result	object.

Return	values

Value Description
S_OK Function	completed	successfully.
E_POINTER ppCoMemSerializedResult	is	an

invalid	pointer.
E_OUTOFMEMORY Exceeded	available	memory.
FAILED(hr) Appropriate	error	message.

Example
The	following	code	snippet	illustrates	the	use
ISpRecoResult::Serialize	to	serialize	a	result	and	deserialize	it
back	into	an	ISpRecoContext	object.
				HRESULT	hr	=	S_OK;

				//	...	obtain	a	recognition	result	object	from	the	recognizer...

				SPSERIALIZEDRESULT*	pSerializedResult	=	NULL;
				ULONG	cbWritten	=	0;
				ULONG	ulSerializedSize	=	0;
				LARGE_INTEGER	liseek;
				LARGE_INTEGER	li;
				CComPtr<IStream>	cpStreamWithResult;

				hr	=	CreateStreamOnHGlobal(NULL,	true,	&cpStreamWithResult);
				//	Check	hr

				//	Serialize	result	to	memory
				hr	=	cpRecoResult->Serialize(&pSerializedResult);
				//	Check	hr

				//serialized	to	a	stream	pointer
				hr	=	cpStreamWithResult->Write(pSerializedResult,	pSerializedResult->ulSerializedSize,	&cbWritten);
				//	Check	hr

				//	free	the	serialized	result
				if	(pSerializedResult)	::CoTaskMemFree(pSerializedResult);

				//	commit	the	stream	changes
				hr	=	cpStreamWithResult->Commit(STGC_DEFAULT);
				//	Check	hr

				//	...	persist	stream	to	disk,	network	share,	etc...
				//	...	shutdown	application	

				//	...	restart	application	and	get	the	persisted	stream

				//	reset	the	stream	seek	pointer	to	the	start	before	deserialization

				li.QuadPart	=	0;
				hr	=	cpStreamWithResult->Seek(li,	STREAM_SEEK_SET,	NULL);
				//	Check	hr

				//	find	the	size	of	the	stream
				hr	=	cpStreamWithResult->Read(&ulSerializedSize,	sizeof(ULONG),	NULL);
				//	Check	hr

				//	reset	the	seek	pointer
				liseek.QuadPart	=	0	-	sizeof(ULONG);
				hr	=	cpStreamWithResult->Seek(liseek,	STREAM_SEEK_CUR,	NULL);
				//	Check	hr

				//	allocate	the	memory	for	the	result
				pSerializedResult	=	(SPSERIALIZEDRESULT*)::CoTaskMemAlloc(ulSerializedSize);
				//	Check	pSerializedResult	in	case	out	"out-of-memory"

				//	copy	the	stream	into	a	serialized	result	object
				hr	=	cpStreamWithResult->Read(pSerializedResult,	ulSerializedSize,	NULL);
				//	Check	hr

				//	Deserialize	result	from	memory
				hr	=	cpRecoContext->DeserializeResult(pSerializedResult,	&cpRecoResultNew);
				//	Check	hr

				//	free	the	pSerializedResult	memory
				if	(pSerializedResult)	{
								CoTaskMemFree(pSerializedResult);
				}

				//	As	long	as	the	same	engine	was	used	to	generate
				//	the	original	result	object,	as	is	now	being	used,
				//	applications	can	now	get	alternates	for	the	cpRecoResultNew's	phrase

				

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecoResult::ScaleAudio
ISpRecoResult::ScaleAudio	converts	an	existing	audio	stream
into	a	different	audio	format.
HRESULT	ScaleAudio(

		const	GUID											*pAudioFormatId,

		const	WAVEFORMATEX			*pWaveFormatEx

);

Parameters

pAudioFormatId
[in]	Address	of	the	data	format	identifier.	Typically,	this	value
is	SPDFID_WaveFormatEx.

pWaveFormatEx
[in]	Address	of	the	WAVEFORMATEX	structure	that	contains
the	audio	format	to	convert	to.	This	value	must	be	NULL	if
pAudioFormatId	is	not	specified	as	SPDFID_WaveForamtEx.

Return	values

Value Description
S_OK Function	completed

successfully.
E_INVALIDARG Either	pAudioFormatId	or

pWaveFormatEx	is	invalid	or
bad.

SPERR_NO_AUDIO_DATA Audio	stream	is	unavailable.
SPERR_UNSUPPORTED_FORMAT The	engine	format	is	non-

waveformatex	and	the	retained
format	the	same	format.

E_OUTOFMEMORY Exceeded	available	memory.

FAILED(hr) Appropriate	error	message.

Remarks

Use	the	ISpPhrase::Discard	method	to	completely	discard	audio
data	associated	with	a	result	object.
The	application	can	also	set	the	default	retained	audio	format
for	the	ISpRecoResult	object	by	calling
ISpRecoContext::SetAudioOptions.	Calling	::SetAudioOptions	will
only	apply	to	all	subsequent	recognitions,	not	the	current
ISpRecoResult	object.
When	performing	a	scaling	with	a	compressed	format,	it	is
possible	to	introduce	small	rounding	errors,	since	the	content	of
the	audio	is	not	used	to	perform	the	conversion.
Scaling	between	certain	compressed	formats	is	not	supported
by	the	SAPI	format	converter	(See	the	Remarks	section	for
ISpStreamFormatConverter).

Example
The	following	code	snippet	illustrates	the	use
ISpRecoResult::ScaleAudio	to	scale	the	audio	to	a	low	quality
format	before	serialization	to	the	disk	(to	save	space).

				HRESULT	hr	=	S_OK;

				//	...	obtain	a	recognition	result	object	from	the	recognizer...

				//	create	a	format	helper	with	a	very	low	quality	format	
				CSpStreamFormat	ScaleFormat(SPSF_8kHz8BitMono,	&hr);
				//	Check	hr

				hr	=	cpRecoResult->ScaleAudio(&(ScaleFormat.FormatId()),	ScaleFormat.WaveFormatExPtr());
				//	Check	hr

				//	get	a	result	serialization	pointer
				SPSERIALIZEDRESULT*	pSerializedResult;

				//	serialize	the	result
				hr	=	cpRecoResult->Serialize(&pSerializedResult);
				//	Check	hr

				//	...	write	pSerializedResult	to	the	disk

Development	Helpers

Helper	Enumerations,

Functions	and	Classes Description

SPSTREAMFORMAT SAPI	supported	stream	formats

CSpStreamFormat Class	for	managing	SAPI	supported

stream	formats	and	WAVEFORMATEX

structures

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecoResult::GetRecoContext
ISpRecoResult::GetRecoContext	returns	the	recognition
context	object	that	is	associated	with	this	result.
HRESULT	GetRecoContext(

			ISpRecoContext			**ppRecoContext

);

Parameters

ppRecoContext
[out]	A	pointer	that	receives	the	recognition	context	interface
pointer.	The	caller	must	call	::Release	on	the	ISpRecoContext
references	when	it	is	finished.

Return	values

Value Description
S_OK Function	completed

successfully.
E_POINTER ppRecoContext	is	invalid	or	bad.
FAILED(hr) Appropriate	error	message.

Example
The	following	code	snippet	illustrates	the	use	of
ISpRecoResult::GetRecoContext	to	retrieve	a	reference	to	the
ISpRecoContext	instance	that	is	associated	with	a	recognized
phrase	and	determine	the	maximum	number	of	CFG	alternates
that	can	be	generated	for	it.
				HRESULT	hr	=	S_OK;

				DWORD	dwMaxAlternates;

			//	...	obtain	a	recognition	result	object	from	the	recognizer...

			//	get	the	associated	ISpRecoContext
			hr	=	cpRecoResult->GetRecoContext(&cpRecoContext);
			//	Check	hr

			hr	=	cpRecoContext->GetMaxAlternates(&dwMaxAlternates);
			//	Check	hr

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecognizer
The	ISpRecognizer	interface	enables	applications	to	control
aspects	of	the	speech	recognition	(SR)	engine.	Each
ISpRecognizer	interface	represents	a	single	SR	engine.	The
application	can	connect	to	each	recognizer	object	one	or	more
recognition	contexts,	from	which	the	application	can	control	the
recognition	grammars	to	be	used,	start	and	stop	recognition,
and	receive	events	and	recognition	results.	The	ISpRecognizer
interface	allows	some	additional	control	of	the	SR	engine	and	its
audio	input.	A	standard	application	may	not	need	to	call	many
of	the	methods	on	this	interface	as	SAPI	tries	to	set	the	engine
up	sensibly	by	default.
There	are	two	implementations	of	the	ISpRecognizer	and
ISpRecoContext	in	SAPI.	One	is	for	recognition	"in-process"
(InProc),	where	the	SR	engine	is	created	in	the	same	process	as
the	application.	Only	this	application	can	connect	to	this
recognizer.	The	other	implementation	is	the	"shared-
recognizer,"	where	the	SR	engine	is	created	in	a	separate
process.	There	will	only	be	one	shared	engine	running	on	a
system,	and	all	applications	using	the	shared	engine	connect	to
the	same	recognizer.	This	allows	several	speech	applications	to
work	simultaneously,	and	allows	the	user	to	speak	to	any
application,	as	recognition	is	done	from	the	grammars	of	all
applications.	For	desktop-based	speech	applications	it	is
recommended	to	use	the	shared	recognizer	because	of	the	way
it	allows	multiple	SAPI	applications	to	work	at	once.	For	other
types	of	application,	such	as	recognizing	from	wave	files	or	a
telephony	server	application	where	multiple	SR	engines	will	be
required,	the	InProc	recognizer	should	be	used.

When	to	Use
Call	methods	of	the	ISpRecognizer	interface	to	configure	or
retrieve	the	attributes	of	the	SR	engine.

Implemented	By
This	interface	is	implemented	by	SAPI.	Application
developers	use	this	interface	but	do	not	implement	it.

How	Created
There	are	two	objects	that	implement	this	interface.	These	are
created	by	applications	by	creating	a	COM	object	with	either	of
the	following	CLSIDs:

SpInprocRecognizer	(CLSID_SpInprocRecognizer)
SpSharedRecognizer	(CLSID_SpSharedRecognizer)

Alternatively,	the	shared	recognizer	can	be	created	by	creating
a	SpSharedRecoContext	(CLSID_SpSharedRecoContext),	and
then	calling	ISpRecoContext::GetRecognizer	on	this	object	to	get
a	reference	to	the	SpSharedRecognizer	object.

Methods	in	Vtable	Order

ISpRecognizer
Methods Description
ISpProperties Inherits	from	ISpProperties	and	all

those	methods	are	accessible	from
ISpRecognizer.

SetRecognizer Specifies	the	SR	engine	to	be	used.
GetRecognizer Retrieves	which	SR	engine	is

currently	being	used.
SetInput Specifies	which	input	stream	the	SR

engine	should	use.
GetInputObjectToken Retrieves	the	input	token	object	for

the	stream.
GetInputStream Retrieves	the	input	stream.
CreateRecoContext Creates	a	recognition	context	for	this

instance	of	an	SR	engine.
GetRecoProfile Retrieves	the	current	recognition

profile	token.
SetRecoProfile Sets	the	recognition	profile	to	be

used	by	the	recognizer.
IsSharedInstance Determines	if	the	recognizer	is	the

shared	or	InProc	implementation.
GetRecoState Retrieves	the	state	of	the	recognition

engine.
SetRecoState Sets	the	state	of	the	recognition

engine.
GetStatus Retrieves	current	status	information

for	the	engine.
GetFormat Retrieves	the	format	of	the	current

audio	input.
IsUISupported Checks	if	the	SR	engine	supports	a

particular	user	interface	component.
DisplayUI Displays	a	user	interface	component.
EmulateRecognition Emulates	a	recognition	from	a	text

phrase	rather	than	from	spoken
audio.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecognizer::SetRecognizer
ISpRecognizer::SetRecognizer	specifies	the	particular
speech	recognition	engine	to	be	used.
HRESULT	SetRecognizer(

			ISpObjectToken			*pEngineToken

);

Parameters

pEngineToken
[in]	The	object	token	referring	to	the	speech	recognition
engine	to	be	used.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG pEngineToken	is	invalid	or	bad.
SPERR_ENGINE_BUSY Recognition	is	currently	running	or

other	applications	are	connected	to
the	shared	recognizer.

FAILED(hr) Appropriate	error	message.

Remarks
This	method	allows	the	application	to	select	a	particular	engine
object	token	to	be	used	(For	example,	the	method
SpFindBestToken	could	be	used	to	find	an	engine	supporting
certain	attributes,	and	the	resulting	token	could	be	passed	to
this	method).
If	this	method	is	not	called,	SAPI	will	use	the	current	default	SR

engine.
If	this	method	is	passed	NULL,	SAPI	will	switch	to	the	current
default	SR	engine.
This	method	cannot	be	called	when	the	current	SR	engine	is
already	running	and	processing	audio.	In	addition,	when	using
the	shared	recognizer,	it	cannot	be	called	if	another	application
is	also	using	the	shared	recognizer.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecognizer::GetRecognizer
ISpRecognizer::GetRecognizer	retrieves	the	current	speech
recognition	engine	being	used	with	this	ISpRecognizer.
HRESULT	GetRecognizer(

			ISpObjectToken			**ppEngineToken

);

Parameters

ppEngineToken
[out]	The	object	token	representing	the	current	speech
recognition	engine.

Return	values

Value Description
S_OK Function	completed

successfully.
E_POINTER ppEngineToken	is

invalid	or	bad.
FAILED(hr) Appropriate	error

message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecognizer::SetInput
ISpRecognizer::SetInput	specifies	which	input	stream	the	SR
engine	should	use.
HRESULT	SetInput(

			IUnknown		*pUnkInput,

			BOOL							fAllowFormatChanges

);

Parameters

pUnkInput
[in]	The	stream	object	token.	See	Remarks	section.

fAllowFormatChanges
[in]	Boolean	indicating	whether	SAPI	should	try	to	change	the
input	stream	format	to	the	engine's	preferred	format.	This
method	can	normally	be	set	to	TRUE;	however,	when
performing	both	speech	recognition	and	speech	output	at	the
simultaneously,	some	soundcards	may	require	that	both
input	and	output	are	in	the	same	audio	format.	Setting	this	to
FALSE	prevents	the	audio	format	on	the	input	device	from
being	changed.	Instead,	SAPI	will	try	to	convert	the	audio
format	itself	to	something	the	SR	engine	can	use.	

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG pUnkInput	is	invalid	or	not	a	stream.
SPERR_ENGINE_BUSY The	current	method	cannot	be

performed	while	the	engine	is
currently	processing	audio.

FAILED(hr) Appropriate	error	message.

Remarks
This	method	can	be	used	to	switch	the	input	for	the	recognizer
to	a	wave	input	stream,	a	different	soundcard	device,	or	to	a
custom	audio	object.	The	pUnkInput	parameter	can	be	a	pointer
to	an	object	token	representing	an	audio	input	device	or	a
pointer	to	an	actual	object	implementing	ISpStreamFormat.
The	input	stream	object	will	implement	IStream,
ISpStreamFormat,	and	ISpAudio	for	real-time	streams.
Applications	should	not	use	methods	on	these	interfaces	that
actually	change	the	state	of	the	audio	device	or	read	data	from
it	at	the	same	time	that	the	stream	is	being	used	by	SAPI.	For
example,	reading	data	from	the	application	with	IStream::Read
will	prevent	the	correct	data	from	being	passed	to	the	SR
engine.	Altering	the	state	of	the	audio	using	ISpAudio::SetState
will	put	the	audio	device	into	an	unexpected	state	and	may
cause	errors.	All	control	of	the	audio	is	done	by	SAPI.
When	using	the	InProc	recognizer,	SAPI	does	not	automatically
setup	the	audio	input.	ISpRecognizer::SetInput	must	be	called
with	a	non-NULL	pUnkInput	to	setup	and	start	the	audio	input
stream.	Until	ISpRecognizer::SetInput	is	called,	methods	such	as
ISpRecoGrammar::SetRuleState	will	return	success	code
SP_STREAM_UNITIALIZED,	but	actual	recognition	will	not	start.
When	using	the	shared	recognizer,	SAPI	automatically	sets	up
the	audio	input.	However,	ISpRecognizer::SetInput	may	be
called	with	NULL	as	the	pUnkInput	parameter	to	force	the
recognizer	to	re-check	the	default	audio	input	and	re-set	up	the
audio	input	(e.g.,	the	default	audio	input	object	changes	while
recognizing,	and	the	new	audio	input	is	to	be	used).
If	the	engine	is	currently	processing	audio,	this	call	will	fail	with
SPERR_ENGINE_BUSY.

Example

The	following	code	snippet	illustrates	the	use	of
ISpRecognizer::SetInput.
				//	setup	the	inproc	recognizer	audio	input	with	an	audio	input	object	token

				//	get	the	default	audio	input	token

				hr	=	SpGetDefaultTokenFromCategoryId(SPCAT_AUDIOIN,	&cpObjectToken);

				//	Check	hr

				//	set	the	audio	input	to	our	token

				hr	=	cpRecognizer->SetInput(cpObjectToken,	TRUE);

				//	Check	hr

				//	setup	the	inproc	recognizer	audio	input	with	an	audio	input	object

				//	create	the	default	audio	input	object

				hr	=	SpCreateDefaultObjectFromCategoryId(SPCAT_AUDIOIN,	&cpAudio);

				//	Check	hr

				//	set	the	audio	input	to	our	object

				hr	=	cpRecognizer->SetInput(cpAudio,	TRUE);

				//	Check	hr

				//	ask	the	shared	recognizer	to	re-check	the	default	audio	input	token

				hr	=	cpRecognizer->SetInput(NULL,	TRUE);

				//	Check	hr	-	if	SPERR_ENGINE_BUSY,	then	retry	later

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecognizer::GetInputObjectToken
ISpRecognizer::GetInputObjectToken	retrieves	the	input
token	object	for	the	stream	currently	being	used.
GetInputObjectToken	will	always	return	the	default	audio	input
object	token	when	using	a	shared	recognizer.		
HRESULT	GetInputObjectToken(

			ISpObjectToken			**ppToken

);

Parameters

ppToken
[out]	Gets	filled	in	with	the	current	input	object	token	pointer.

Return	values

Value Description
S_OK Function	completed	successfully.
S_FALSE Function	completed	successfully,	but

the	input	stream	object	has	no	object
token	associated	with	it.

E_POINTER ppToken	is	invalid	or	bad.
SPERR_UNINITIALIZED No	audio	input	has	yet	been	set	with

SetInput	(InProc	engine	only).
FAILED(hr) Appropriate	error	message.

Remarks
Applications	will	not	normally	need	to	use	this	method,	but	it
can	be	used	to	find	out	specific	details	of	the	object	token	that
was	used	to	create	the	audio	input	stream.
If	an	application	receives	feedback	from	the	SR	engine	that

recognition	quality	is	low,	(e.g.,	poor	audio	signal	quality	(see
SPEI_INTERFERENCE,	or	that	the	microphone	needs	adjustment
(see	SPEI_REQUEST_UI	for	SPDUI_MicTraining),	etc.),	it	may	be
helpful	to	reconfigure	the	audio	input	settings.	SAPI	defines	two
specific	types	of	audio	UI	that	an	audio	object	token	can
provide:	volume	(SPDUI_AudioVolume)	and	properties
(SPDUI_AudioProperties).	An	application	can	use
::GetInputObjectToken,	ISpObjectToken::IsUISupported,	and
ISpObjectToken::DisplayUI	to	display	audio	UI	in	an	effort	to
improve	speech	recognition.

Example
The	following	code	snippet	illustrates	the	use	of
ISpRecognizer::GetInputObjectToken	when	displaying	audio	UI.
				HRESULT	hr	=	S_OK;

				//	check	if	the	current	recognizer	has	an	object	token

				hr	=	cpRecognizer->GetInputObjectToken(&cpObjectToken);

				//	Check	hr	==	S_OK

				//	get	the	object	token's	UI

				hr	=	cpObjectToken->QueryInterface(&cpTokenUI);

				//	Check	hr

				//	check	if	the	default	audio	input	object	has	UI	for	Volume	

				hr	=	cpTokenUI->IsUISupported(SPDUI_AudioVolume,	NULL,	NULL,	NULL,	&fSupported);

				//	Check	hr

				//	if	fSupported	==	TRUE,	then	audio	input	object	has	UI	for	Volume

				//	Display	the	default	audio	input	object's	Volume	UI	

				hr	=	cpTokenUI->DisplayUI(MY_HWND,	MY_AUDIO_DIALOG_TITLE,	SPDUI_AudioVolume,	NULL,	NULL,	cpObjectToken,	NULL);

				//	Check	hr

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecognizer::GetInputStream
ISpRecognizer::GetInputStream	retrieves	the	input	stream
that	is	currently	being	used.
	
HRESULT	GetInputStream(

			ISpStreamFormat			**ppStream

);

Parameters

ppStream
[out]	Address	of	a	pointer	to	the	ISpStreamFormat	object	that
receives	the	input	stream	information.

Return	values

Value Description
S_OK Function

completed
successfully.

E_POINTER ppStream	is
invalid	or
bad.

SPERR_NOT_SUPPORTED_FOR_SHARED_RECOGNIZERMethod	is
not	available
when	using
the	shared
recognizer.

FAILED(hr) Appropriate
error
message.

Remarks
Applications	will	not	normally	need	to	use	this	method,	but	it
can	be	used	to	find	the	specific	audio	input	stream	that	is	being
used.	This	method	can	be	used	only	on	InProc	recognizers,	not
on	the	shared	recognizer.
The	returned	object	will	implement	IStream,	ISpStreamFormat,
and	ISpAudio	for	real-time	streams.	Applications	should	not	use
methods	on	these	interfaces	that	actually	change	the	state	of
the	audio	device	or	read	data	from	it.	For	example,	reading	data
from	the	application	with	IStream::Read	will	prevent	the	correct
data	from	being	passed	to	the	SR	engine.	Altering	the	state	of
the	audio	using	ISpAudio::SetState	will	put	the	audio	device	into
an	unexpected	state	and	may	cause	errors.	All	control	of	the
audio	is	done	by	SAPI.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecognizer::CreateRecoContext
ISpRecognizer::CreateRecoContext	creates	a	recognition
context	for	this	instance	of	an	SR	engine.	The	recognition
context	is	used	to	load	recognition	grammars,	start	and	stop
recognition,	and	receive	events	and	recognition	results.	
Each	application	can	have	one	or	more	recognition	contexts,
although	normally	each	application	will	have	only	one.	
HRESULT	CreateRecoContext(

			ISpRecoContext			**ppNewContext

);

Parameters

ppNewContext
[out]	Address	of	a	pointer	to	an	ISpRecoContext	interface
receiving	the	recognition	context.

Return	values

Value Description
S_OK Function	completed

successfully.
E_POINTER ppNewContext	is	invalid	or	bad.
FAILED(hr) Appropriate	error	message.

Examples	Using	This	Method
SDK:	CoffeeS0;	CoffeeS1;	CoffeeS2.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecognizer::GetRecoProfile
ISpRecognizer::GetRecoProfile	retrieves	the	current
recognition	profile	token.
HRESULT	GetRecoProfile(

			ISpObjectToken			**ppToken

);

Parameters

ppToken
[out]	Address	of	a	pointer	of	an	ISpObjectToken	that	receives
the	profile	information.

Return	values

Value Description
S_OK Function	completed

successfully.
E_POINTER The	ppToken	is	a	bad	or

invalid	pointer.
FAILED(hr) Appropriate	error

message.

Remarks
A	recognition	profile	represents	a	single	user	and	training
sessions	on	the	system.	The	user	can	create,	delete,	and	set	the
current	profile	using	Speech	properties	in	Control	Panel.	SAPI
will	always	create	the	engine	using	the	current	default	profile.
This	method	can	be	used	to	find	which	profile	is	currently	being
used.
If	an	application	needs	to	store	information	in	a	specific
recognition	profile,	it	can	use	the

ISpObjectToken::GetStorageFilename	method.

Example
The	following	code	snippet	illustrates	the	use	of
ISpRecognizer::GetRecoProfile	to	determine	the	profile	name
				HRESULT	hr	=	S_OK;

				//	get	the	current	recognizer's	recognition	profile	token
				hr	=	cpRecognizer->GetRecoProfile(&cpObjectToken);
				//	Check	hr

				//	get	the	reco	profile	name	(i.e.	the	default	value	of	the	token)
				hr	=	cpObjectToken->GetStringValue(NULL,	&pwszRecoProfileName);
				//	Check	hr

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecognizer::SetRecoProfile
ISpRecognizer::SetRecoProfile	sets	the	recognition	profile	to
be	used	by	the	recognizer.
HRESULT	SetRecoProfile(

			ISpObjectToken			*pToken

);

Parameters

pToken
[in]	Address	of	an	ISpObjectToken	object	that	contains	the
profile	information.

Return	values

Value Description
S_OK Function	completed

successfully.
E_INVALIDARG One	or	more	parameters

are	invalid.
FAILED(hr) Appropriate	error

message.

Remarks
A	recognition	profile	represents	a	single	user	and	training
sessions	on	the	system.	The	user	can	create,	delete,	and	set	the
current	profile	using	Speech	properties	in	Control	Panel.	SAPI
will	always	create	the	engine	using	the	current	default	profile.
This	method	can	be	used	to	set	the	SR	engine	to	use	a	profile
other	than	the	default.
This	method	should	not	be	called	when	the	engine	is	currently
processing	audio.	Calling	::SetRecoProfile	with	an	active

recognition	engine	can	cause	unexpected	results,	depending	on
how	and	when	the	SR	engine	reads	the	profile	information.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecognizer::IsSharedInstance
ISpRecognizer::IsSharedInstance	determines	the	recognizer
is	the	shared	or	InProc	implementation.
HRESULT		IsSharedInstance		(void);

Parameters
None.

Return	values

Value Description
S_OK Indicates	that	this	instance	of	the

recognition	engine	is	being	shared.
S_FALSE Indicates	that	this	instance	of	the

recognition	engine	is	not	being
shared.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecognizer::GetRecoState
ISpRecognizer::GetRecoState	retrieves	the	current	state	of
the	recognition	engine.
HRESULT	GetRecoState(

			SPRECOSTATE			*pState

);

Parameters

pState
[out]	One	of	the	input	state	flags	contained	in	the
SPRECOSTATE	enumeration.

Return	values

Value Description
S_OK Function	completed

successfully.
E_INVALIDARG Invalid	pointer.
FAILED(hr) Appropriate	error

message.

Remarks
This	method	determines	whether	audio	is	currently	being	read
from	the	audio	input	stream	and	passed	to	the	SR	engine.
See	also	ISpRecognizer::SetRecoState
The	default	recognizer	state	is	SPRST_ACTIVE,	which	means
SAPI	will	activate	the	audio	input	stream	only	when	at	least	one
top-level	rule	is	active.
To	be	notified	when	the	recognizer	state	changes	(e.g.	another
application	changes	the	shared	SR	engine's	recognizer	state),

rather	than	polling	the	state	with	::GetRecoState,	call
ISpEventSource::SetInterest	with	SPEI_RECO_STATE.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecognizer::SetRecoState
ISpRecognizer::SetRecoState	sets	the	state	of	the
recognition	engine.
HRESULT	SetRecoState(

			SPRECOSTATE			NewState

);

Parameters

NewState
[in]	One	of	the	flags	contained	in	the	SPRECOSTATE
enumeration.

Return	values

Value Description
S_OK Function	completed	successfully.
FAILED(hr) Appropriate	error	message.
E_INVALIDARG One	or	more	parameters	are

invalid.

Remarks
This	method	should	not	be	called	when	the	engine	is	currently
processing	audio.	Calling	::SetRecoProfile	with	an	active
recognition	engine	can	cause	unexpected	results,	depending	on
how	and	when	the	SR	engine	reads	the	profile	information.
A	recognition	profile	represents	a	single	user	and	training
sessions	on	the	system.	The	user	can	create,	delete,	and	set	the
current	profile	using	Speech	properties	in	Control	Panel.	SAPI
will	always	create	the	engine	using	the	current	default	profile.
This	method	can	be	used	to	set	the	SR	engine	to	use	a	profile
other	than	the	default.

When	using	the	shared	recognizer,	the	recognizer	state	is	a
global	setting.	If	one	application	changes	the	recognizer	state,	it
will	affect	all	other	applications	connected	to	the	shared
recognizer.	For	this	reason,	applications	using	a	shared
recognizer	should	take	great	caution	before	calling
SetRecoState.
Changing	the	recognition	state	leads	to	a
SPEI_RECO_STATE_CHANGE	event	for	all	interested	recognition
contexts.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecognizer::GetStatus
ISpRecognizer::GetStatus	retrieves	current	status
information	for	the	engine.
HRESULT	GetStatus(

			SPRECOGNIZERSTATUS			*pStatus

);

Parameters

pStatus
[out]	The	current	status	of	the	engine.

Return	values

Value Description
S_OK Function	completed

successfully.
E_POINTER pStatus	is	invalid	or	bad.

Remarks

This	method	provides	static	information	about	the	SR	engine
such	as	the	languages	it	supports.	It	also	provides	dynamic
information	such	as	current	stream	position	the	engine	has
recognized	up	to,	and	if	the	stream	is	actively	being	sent	to	the
engine.
See	SPRECOGNIZERSTATUS	for	further	explanation	of	the	status
information	that	can	be	retrieved.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecognizer::GetFormat
ISpRecognizer::GetFormat	retrieves	the	current	input	audio
format.
HRESULT	GetFormat(

			SPSTREAMFORMATTYPE			WaveFormatType,

			GUID																*pFormatId,

			WAVEFORMATEX							**ppCoMemWFEX

);

Parameters

WaveFormatType
[in]	One	of	the	wave	file	format	types	specified	in
SPSTREAMFORMATTYPE.

pFormatId
[out]	The	address	of	the	unique	identifier	associated	with	the
format	type.

ppCoMemWFEX
[out]	Address	of	a	pointer	to	a	WAVEFORMATEX	structure	that
receives	the	format	information.	This	is	set	only	if	the	input	is
of	a	wave	format	type.	The	application	must	free	this	data
with	CoTaskMemFree	after	use.

Return	values

Value Description
S_OK Function	completed

successfully.
E_POINTER Invalid	pointer.
SPERR_UNINITIALIZEDAudio	input	not	yet	set.

FAILED(hr) Appropriate	error	message.

Remarks
This	method	can	return	either	the	input	format	or	the	engine
format.	Normally	these	two	values	will	be	the	same,	but	if	SAPI
is	using	a	format	converter	to	convert	the	input	data	from	the
audio	input	to	the	engine	format	these	will	be	different.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecognizer::IsUISupported
ISpRecognizer::IsUISupported	checks	if	the	underlying
speech	engine	implements	a	certain	type	of	user-interface
component.
See	the	SR	Engine	Guide	for	further	information	on	how	an	SR
engine	implements	UI.
[local]	HRESULT	IsUISupported(

			const	WCHAR			*pszTypeOfUI,

			void										*pvExtraData,

			ULONG										cbExtraData,

			BOOL										*pfSupported

);

Parameters

pszTypeOfUI
[in]	Address	of	a	pointer	to	a	null-terminated	string
containing	the	UI	type	information.

pvExtraData
[in]	Additional	information	for	the	call.	The	SR	engine
implementer	dictates	the	format	and	usage	of	the	data
provided.

cbExtraData
[in]	Size,	in	bytes,	of	pvExtraData.	The	SR	engine
implementer	dictates	the	format	and	usage	of	the	data
provided.

pfSupported
[out]	Address	of	a	variable	that	receives	the	value	indicating
support	for	the	interface.	This	value	is	set	to	TRUE	when	this

interface	is	supported;	otherwise	set	to	FALSE.	If	this	value	is
TRUE,	but	the	return	code	is	S_FALSE,	the	UI	type
(pszTypeOfUI)	is	supported,	but	not	with	the	current
parameters	or	run-time	environment.	Check	with	the	engine
implementer	to	verify	run-time	requirements.

Return	values

Value Description
S_OK Function	completed	successfully.
S_FALSE The	UI	is	supported	but	not	with	the

current	run-time	environment	or
parameters.

E_INVALIDARG pfSupported	is	invalid	or	bad.
FAILED(hr) Appropriate	error	message.

Example
The	following	code	snippet	illustrates	the	use	of
ISpRecognizer::IsUISupported	using	SPDUI_UserTraining.
				HRESULT	hr	=	S_OK;

				//	ask	current	recognizer	if	it	supports	user	training

				hr	=	cpRecognizer->IsUISupported(SPDUI_UserTraining,	NULL,	NULL,	&fSupported);

				//	Check	hr

				//	if	fSupported	==	TRUE,	then	current	speech	recognizer	supports	user	training

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecognizer::DisplayUI
ISpRecognizer::DisplayUI	displays	the	requested	UI
component	from	the	underlying	SR	engine.
[local]	HRESULT	DisplayUI(

			HWND											hwndParent,

			const	WCHAR			*pszTitle,

			const	WCHAR			*pszTypeOfUI,

			void										*pvExtraData,

			ULONG										cbExtraData

);

Parameters

hwndParent
[in]	Specifies	the	handle	of	the	parent	window.

pszTitle
[in]	Address	of	a	null-terminated	string	containing	the
window	title.	Set	this	value	to	NULL	to	indicate	that	the	SR
engine	should	use	its	default	window	title	for	this	UI	type.	

pszTypeOfUI
[in]	Address	of	a	null-terminated	string	containing	the	UI	type
information.

pvExtraData
[in]	Additional	information	for	the	call.	The	SR	engine
implementer	dictates	the	format	and	use	of	the	data
provided.

cbExtraData
[in]	Size,	in	bytes,	of	the	contents	of	pvExtraData.	The	SR

engine	implementer	dictates	the	format	and	usage	of	the
data	provided.

Return	values

Value Description
S_OK Function	completed	successfully.
S_FALSE The	UI	is	supported	but	not	with	the

current	run-time	environment	or
parameters.

FAILED(hr) Appropriate	error	message.

Remarks
SAPI	5	speech	recognition	engines	are	capable	of	sending	UI
requests	back	to	the	application	using	SPEI_REQUEST_UI.	For
example,	if	the	SR	engine	is	receiving	a	poor	audio	input	signal,
it	may	request	the	user	to	perform	Microphone	Training	(see
SPDUI_MicTraining).	The	application	can	receive	these	requests
by	calling	ISpRecognizer::SetInterest	with	SPEI_REQUEST_UI.
When	the	UI	request	is	received,	it	can	call
ISpRecognizer::DisplayUI	at	an	appropriate	point.	The	typical	SR
engine	UI	requests	could	be	User	Training	(see
SPDUI_UserTraining),	Microphone	Training	(see
SPDUI_MicTraining),	and	Lexicon	Updates	(see
SPDUI_AddRemoveWord).	An	application	can	call	DisplayUI	at
any	time,	and	does	not	necessarily	have	to	wait	for	a	UI	request
from	the	SR	engine.
To	best	apply	ISpRecognizer::DisplayUI,	call
ISpRecognizer::IsUISupported	with	a	specific	UI	type	before
calling	DisplayUI.	(see	the	SR	Engine	Guide	for	further
information	on	how	an	SR	engine	should	implement	UI.
The	call	to	DisplayUI	is	synchronous,	so	the	call	will	not	return
until	the	UI	has	been	closed.

Example
The	following	code	snippet	illustrates	the	use	of
ISpRecognizer::DisplayUI	using	SPDUI_UserTraining.
				HRESULT	hr	=	S_OK;

				//	display	user	training	UI	for	the	current	recognizer

				hr	=	cpRecognizer->DisplayUI(MY_HWND,	MY_APP_USER_TRAINING,	SPDUI_UserTraining,	NULL,	NULL);

				//	Check	hr

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpRecognizer::EmulateRecognition
ISpRecognizer::EmulateRecognition	emulates	a	recognition
from	a	specified	phrase	rather	than	from	spoken	content.	
HRESULT	EmulateRecognition(

			ISpPhrase			*pPhrase

);

Parameters

pPhrase
[in]	The	phrase	to	emulate.

Return	values

Value Description
S_OK Function	completed

successfully.
SP_NO_PARSE_FOUND Function	completed

successfully	but	the	phrase
does	not	parse	through	any
active	rule.

SP_NO_RULES_ACTIVE Function	completed
successfully	but	there	are
no	active	rules	to	parse.

E_POINTER ppCoMemPhrase	is	invalid
or	bad.

SPERR_UNINITIALIZED Phrase	is	uninitialized.
E_OUTOFMEMORY Exceeded	available

memory.
FAILED(hr) Appropriate	error	message.

Remarks

In	the	case	of	ambiguous	rules	or	CFG	paths,	the
::EmulateRecognition	method	will	return	an	arbitrary	rule	or
path.	For	example,	if	a	grammar	has	two	ambiguous	rules,	the
first	containing	the	phrase	"a	b	c",	and	the	second	containing
only	a	dictation	tag	(i.e.,	<DICTATION/>),	the	rule	recognized	at
run	time	may	not	be	consistent.
This	method	can	be	used	for	testing	applications	that	use
speech	recognition	by	simulating	user	speech.	It	can	also	be
used	by	applications	where	users	have	the	option	to	type	or
speak	a	command.	The	phrase	can	be	generated	by	creating	a
phrase	builder	object	and	then	adding	elements	representing
the	text	to	it.	See	the	SDK	Sample	Simple	Recognition
(Reco.exe)	for	the	function	CreatePhraseFromText	as	an	example
of	using	ISpPhraseBuilder.
All	the	events	will	be	fired	back	to	the	application	exactly	as	if	a
normal	recognition	had	taken	place.	The	result	phrase	will	have
the	semantic	properties	set	in	the	same	way	a	real	result	would.
A	recognition	event	will	be	produced	only	if	the	text	actually
parses	through	the	active	rules	(if	dictation	is	active,	any	text
will	parse).	Another	application	or	ISpRecoContext	containing	an
active	rule	that	can	parse	the	text	can	receive	the	emulated
recognition.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpPhrase
This	is	the	main	interface	used	to	access	information	contained
in	a	phrase.	Using	this	interface,	applications	can	retrieve
recognition	information	such	as	the	recognized	(or
hypothesized)	text,	the	recognized	rule,	and	semantic	tag	or
property	information.	An	application	can	also	serialize	the
phrase	data	to	a	stream	to	enable	persisting	of	recognitions	to
the	disk,	the	network,	or	memory.

Methods	in	Vtable	Order

ISpPhrase	Methods Description
GetPhrase Retrieves	data	elements	associated

with	a	phrase.
GetSerializedPhrase Returns	the	phrase	information	in

serialized	form.
GetText Retrieves	elements	from	a	text

phrase.
Discard Discards	the	requested	data	from

the	phrase	object.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpPhrase::GetPhrase
ISpPhrase::GetPhrase	retrieves	data	elements	associated
with	a	phrase.

HRESULT	GetPhrase(

			SPPHRASE			**ppCoMemPhrase

);

Parameters

ppCoMemPhrase
[out]	Address	of	a	pointer	to	an	SPPHRASE	data	structure
receiving	the	phrase	information.	May	be	NULL	if	no	phrase	is
recognized.	If	NULL,	no	memory	is	allocated	for	the	structure.
It	is	the	caller's	responsibility	to	call	CoTaskMemFree	to	free
the	object;	however,	the	caller	does	not	need	to	call
CoTaskMemFree	on	each	of	the	elements	in	SPPHRASE.

Return	values

Value Description
S_OK Function	completed

successfully.
E_POINTER Invalid	pointer.
E_OUTOFMEMORY Exceeded	available	memory.

Returned	data	includes	all	elements	associated	with	this	phrase.

Example
The	following	code	snippet	illustrates	the	use	of
ISpRecoResult::GetPhrase	as	inherited	from	ISpPhrase	to
retrieve	the	recognized	text,	and	display	the	rule	recognized
and	the	phrase.

				HRESULT	hr	=	S_OK;

				//	...	obtain	a	recognition	result	object	from	the	recognizer...

				//	get	the	recognized	phrase	object
				hr	=	cpRecoResult->GetPhrase(&pPhrase);
				//	Check	hr

				//	get	the	phrase's	text
				hr	=	pPhrase->GetText(SP_GETWHOLEPHRASE,	SP_GETWHOLEPHRASE,	TRUE,	&pwszText,	NULL);
				//	Check	hr

				//	display	the	recognized	text	and	the	rule	name	in	a	message	box
				MessageBoxW(MY_HWND,	pwszText,	pPhrase->Rule.pszName,	MB_OK);

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpPhrase::GetSerializedPhrase
ISpPhrase::GetSerializedPhrase	returns	the	phrase
information	in	serialized	form.

HRESULT	GetSerializedPhrase(

			SPSERIALIZEDPHRASE			**ppCoMemPhrase

;)

Parameters

ppCoMemPhrase
[out]	Address	of	a	pointer	which	will	be	initialized	to	point	to
the	serialized	phrase	data.	The	block	of	memory	is	created
by	CoTaskMemAlloc	and	must	be	manually	freed	with
CoTaskMemFree	when	no	longer	needed.

Return	values

Value Description
S_OK Function	completed	successfully.
E_POINTER ppCoMemPhrase	is	invalid	or

bad.
SPERR_UNINITIALIZED Phrase	is	uninitialized.
E_OUTOFMEMORY Exceeded	available	memory.

Remarks
The	caller	passes	in	the	address	of	a	pointer	which	is	initialized
to	point	to	a	block	of	memory	which	is	allocated	using
CoTaskMemAlloc.	It	is	the	caller's	responsibility	to	call
CoTaskMemFree	to	free	this	object.	The	structure	returned	is
defined	to	be	a	SPSERIALIZEDPHRASE.	However,	the	actual	size
of	the	block	is	contained	in	(*ppCoMemPhrase)-

>ulSerializedSize.	This	size	includes	the	size	of	the
SPSERIALIZEDPHRASE	structure.	The	phrase	structure	can	be
saved	to	a	file,	and	later	restored	by	calling
ISpPhraseBuilder::InitFromSerializedPhrase.
An	application	that	will	not	need	recognition	alternates	or
retained	audio	and	needs	to	save	space,	can	serialize	only	the
phrase	information	(e.g.,	phrase	text,	rule	name,	SR	engine	ID,
etc.).

Example
The	following	code	snippet	illustrates	the	use
ISpRecoResult::GetSerializedPhrase	as	inherited	from	ISpPhrase
to	serialize	only	the	phrase	portion	of	a	result	object.
				HRESULT	hr	=	S_OK;

				//	...	obtain	a	recognition	result	object	from	the	recognizer...

				SPSERIALIZEDPHRASE*	pSerializedPhrase	=	NULL;

				//	get	the	recognized	phrase	object
				hr	=	cpRecoResult->GetSerializdPhrase(&pSerializedPhrase);
				//	Check	hr

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpPhrase::GetText
ISpPhrase::GetText	retrieves	elements	from	a	text	phrase.

HRESULT	GetText(

			ULONG					ulStart,

			ULONG					ulCount,

			BOOL						fUseTextReplacements,

			WCHAR			**ppszCoMemText,

			BYTE					*pbDisplayAttributes

);

Parameters

ulStart
[in]	Specifies	the	first	element	in	the	text	phrase	to	retrieve.

ulCount
[in]	Specifies	the	number	of	elements	to	retrieve	from	the
text	phrase.

fUseTextReplacements
[in]	Boolean	value	that	indicates	if	replacement	text	should
be	used.	An	example	of	a	text	replacement	is	saying	"write
new	check	for	twenty	dollars"	and	retrieving	the	replaced
text	as	"write	new	check	for	$20".	For	more	information	on
replacements,	see	the	SR	Engine	White	Paper.

ppszCoMemText
[out]	Address	of	a	pointer	to	the	data	structure	that	contains
the	display	text	information.	It	is	the	caller's	responsibility	to
call	::CoTaskMemFree	to	free	the	memory.

pbDisplayAttributes
[out]	Address	of	the	SPDISPLAYATTRIBUTES	enumeration	that
contains	the	text	display	attribute	information.	Text	display
attribute	information	can	be	used	by	the	application	to
display	the	text	to	the	user	in	a	reasonable	manner.	For
example,	speaking	"hello	comma	world	period"	includes	a
trailing	period,	so	the	recognition	might	include
SPAF_TWO_TRAILING_SPACES	to	inform	the	application
without	requiring	extra	text	processing	logic	for	the
application.

Return	values

Value Description
S_OK Function	completed	successfully.
S_FALSE A	phrase	that	does	not	contain	text	or

ppszCoMemText	is	NULL.
E_INVALIDARG One	or	more	parameters	are	invalid.
E_POINTER Invalid	pointer.
E_OUTOFMEMORY Exceeded	available	memory.

Remarks
The	text	is	the	display	text	of	the	elements	for	the	phrase	and
constructs	a	text	string	created	by	CoTaskMemAlloc	by	applying
the	pbDisplayAttributes	of	each	SPPHRASEELEMENT.

Example
The	following	code	snippet	illustrates	the	use	ISpPhrase::GetText
to	retrieve	parts	of	the	recognized	phrase.
				HRESULT	hr	=	S_OK;

				//	...	obtain	a	recognition	result	object	from	the	recognizer...

				//	get	the	recognized	phrase	object
				hr	=	cpRecoResult->GetPhrase(&pPhrase);
				//	Check	hr

				//	get	the	phrase's	entire	text	string,	including	replacements
				hr	=	pPhrase->GetText(SP_GETWHOLEPHRASE,	SP_GETWHOLEPHRASE,	TRUE,	&pwszText,	NULL);
				//	Check	hr

				//	get	the	phrase's	first	2	words,	excluding	replacements
				hr	=	pPhrase->GetText(pPhrase->Rule.ulFirstElement,	2,	FALSE,	&pwszText,	NULL);

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpPhrase::Discard
ISpPhrase::Discard	discards	the	requested	data	from	a	phrase
object.

HRESULT	Discard(

			DWORD			dwValueTypes

;)

Parameters

dwValueTypes
[in]	Flags	of	type	SPVALUETYPE	indicating	elements	to
discard.	Multiple	values	may	be	combined.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG dwValueTypes	is	not	a	valid	value

type	flag.
FAILED(hr) Appropriate	error	message.

Remarks
Applications	that	have	no	use	for	certain	types	of	retained	data,
and	will	be	persisting	or	serializing	the	phrase	or	result	objects,
may	discard	the	unnecessary	data.	For	example,	an	application
performing	offline	transcription	may	need	to	retain	only	the
audio	and	the	final	result.	It	can	call	::Discard	with
SPDF_ALTERNATES	to	eliminate	the	alternate	data	(possibly
including	a	large	amount	of	private	engine	data).
Note	that	once	retained	audio	is	discarded,	a	call	to
ISpRecoResult::GetAudio	will	fail.

Example
The	following	code	snippet	illustrates	the	use	of
ISpRecoResult::Discard	as	inherited	from	ISpPhrase	to	discard
the	retained	audio.
				HRESULT	hr	=	S_OK;

				//	..	get	a	recognition	result	object	from	the	SR	engine

				//	discard	audio

				hr	=	cpRecoResult->Discard(SPDF_AUDIO);

				//	Check	hr

				//	..	serialize	the	"shrunken"	result	to	the	disk	...

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpPhraseAlt
The	ISpPhraseAlt	interface	is	implemented	on	a	phrase	alternate
object	that	can	be	obtained	by	calling
ISpRecoResult::GetAlternates.	The	ISpPhraseAlt	object	is	the
interface	that	enables	applications	to	retrieve	alternate	phrase
information	from	an	SR	engine,	and	to	update	the	SR	engine's
language	model	to	reflect	committed	alternate	changes.

Methods	in	Vtable	Order

ISpPhraseAlt	Methods Description
ISpPhrase Inherits	from	ISpPhrase	and	those

methods	are	accessible	from	an
ISpPhraseAlt	object.

GetAltInfo Retrieves	data	elements	associated
with	an	alternate	phrase.

Commit Replaces	a	section	of	the	parent
phrase	to	which	this	alternate
corresponds.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpPhraseAlt::GetAltInfo
ISpPhraseAlt::GetAltInfo	retrieves	data	elements	associated
with	an	alternate	phrase.

HRESULT	GetAltInfo(

			ISpPhrase			**ppParent,

			ULONG								*pulStartElementInParent,

			ULONG								*pcElementsInParent,

			ULONG								*pcElementsInAlt

);

Parameters

ppParent
[out]	Address	to	store	the	pointer	to	the	parent	SpPhrase
object.

pulStartElementInParent
[out]	Address	to	store	the	starting	element	position	within
the	parent	phrase	that	this	alternate	applies	to.

pcElementsInParent
[out]	Address	to	store	the	number	of	elements	within	the
parent	that	this	alternate	replaces.

pcElementsInAlt
[out]	Address	to	store	the	number	of	elements	that	the
alternate	contains.

Return	values

Value Description

S_OK Function	completed	successfully.
E_INVALIDARG At	least	one	of	the	parameters	is

invalid	or	bad.
SPERR_NOT_FOUND The	alternate	is	not	associated	with	a

valid	parent	phrase	object.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpPhraseAlt::Commit
ISpPhraseAlt::Commit	replaces	a	section	of	the	parent	phrase
to	which	the	alternate	corresponds.
HRESULT		Commit		(void);

Parameters
None

Return	values

Value Description
S_OK Function	completed	successfully.
SPERR_NOT_FOUND The	alternate	object	is	not	related	to

a	valid	parent	phrase	object.

Remarks
After	an	alternate	has	been	committed,	the	parent	phrase	will
be	modified	to	reflect	the	substitution.
Upon	committing	the	alternate	phrase,	the	SR	engine	also	has
the	ability	to	update	its	language	model	to	improve	future
recognitions	of	the	same	or	similar	phrases	(see
ISpSRAlternates::Commit).

Example
The	following	code	snippet	illustrates	the	use
ISpPhraseAlt::Commit	to	commit	an	alternate	phrase.
				HRESULT	hr	=	S_OK;

				//	...	obtain	a	recognition	result	object	from	the	recognizer...

				//	get	the	recognized	phrase	object
				hr	=	cpRecoResult->GetPhrase(&pPhrase);
				//	Check	hr

				//	get	the	phrase's	text
				hr	=	pPhrase->GetText(SP_GETWHOLEPHRASE,	SP_GETWHOLEPHRASE,	TRUE,	&pwszText,	NULL);
				//	Check	hr

				//	...	check	the	phrase's	text...	assume	the	phrase	isn't	a	correct	recognition

				//	setup	MY_MAX_ALTERNATES	phrase	alternate	objects	
				CComPtr<ISpPhraseAlt>			pcpPhrase[MY_MAX_ALTERNATES];
				ULONG	ulCount;

				//	get	the	top	MY_MAX_ALTERNATES	alternates	to	the	entire	recognized	phrase
				hr	=	cpRecoResult->GetAlternates(pPhrase->Rule.ulFirstElement,
																																					pPhrase->Rule.ulCountOfElements,	
																																					MY_MAX_ALTERNATES,
																																					pcpPhraseAlt,
																																					&ulCount);
				//	Check	hr

				//	check	each	alternate	in	order	of	highest	likelihood
				for	(int	i	=	0;	i	<	ulCount;	i++)	{
									hr	=	pcpPhraseAlt[i]->GetText(SP_GETWHOLEPHRASE,	SP_GETWHOLEPHRASE,	TRUE,	&pwszAlternate,	NULL);
									//	Check	hr

									//	...	check	if	this	alternate	is	more	appropriate	...

									//	if	it	is	more	appropriate,	then	commit	the	alternate
									if	(fMoreAppropriate)	{
													hr	=	pcpPhraseAlt[i]->Commit();
													//	Check	hr

									}

									//	free	the	alternate	text
									if	(pwszAlternate)	::CoTaskMemFree(pwszAlternate);
									
				}

				//	free	the	initial	phrase	object
				if	(pPhrase)	::CoTaskMemFree(pPhrase);

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpProperties
ISpProperties	sets	and	retrieves	property	attribute	information.
This	interface	is	currently	implemented	only	by	the	SR	engine
(ISpRecognizer),	and	can	be	used	for	setting	SR	engine
properties	(see	SAPI	5.0	SR	Properties	White	Paper).

Methods	in	Vtable	Order

ISpProperties	Methods Description
SetPropertyNum Sets	a	numeric	property

corresponding	to	the	specified	name.
GetPropertyNum Retrieves	a	numeric	value	specified

by	the	named	key.
SetPropertyString Sets	a	text	property	corresponding

to	the	specified	name.
GetPropertyString Retrieves	the	string	value

corresponding	to	the	specified	key
name.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpProperties::SetPropertyNum
ISpProperties::SetPropertyNum	sets	a	numeric	property
corresponding	to	the	specified	name.
HRESULT	SetPropertyNum(

			const	WCHAR			*pName,

			LONG											lValue

);

Parameters

pName
[in]	Null-terminated	string	containing	the	property	name.
Valid	values	are	listed	in	the	SR	Properties	section	of	the	SAPI
5.0	SR	Properties	White	Paper.

lValue
[in]	The	property	value	to	set.

Return	values

Value Description
S_OK Function	completed	successfully.
S_FALSE SR	engine	does	not	support	specified

property	name.
E_INVALIDARG One	or	more	parameters	are	invalid.
FAILED(hr) SR	engine	returned	specific	error.

Remarks
If	the	SR	engine	supports	the	property,	SAPI	will	fire	a	property-
changed	event	(see	SPEI_PROPERTY_NUM_CHANGE)	to	all
interested	recognizer	contexts	(ISpRecoContext).	Broadcasting
the	corresponding	event	notifies	any	recognizer	contexts	that

had	interests	in	the	property	(see	CSpEvent::PropertyName	and
CSpEvent::PropertyNumValue).

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpProperties::GetPropertyNum
ISpProperties::GetPropertyNum	retrieves	a	numeric	value
specified	by	the	named	key.
HRESULT	GetPropertyNum(

			const	WCHAR			*pName,

			LONG										*plValue

);

Parameters

pName
[in]	String	containing	the	property	name.	Valid	values	are
listed	in	the	SR	Properties	section	of	the	SAPI	5.0	SR
Properties	White	Paper.

plValue
[out]	Address	to	store	the	property	value.

Return	values

Value Description
S_OK Function	completed	successfully.
S_FALSE SR	engine	does	not	support	specified

property	name.
E_INVALIDARG One	or	more	parameters	are	invalid.
E_POINTER Value	pointer	is	invalid.
FAILED(hr) SR	engine	returned	specific	error.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpProperties::SetPropertyString
ISpProperties::SetPropertyString	sets	a	text	property
corresponding	to	the	specified	name.
HRESULT	SetPropertyString(

			const	WCHAR			*pName,

			const	WCHAR			*pValue

);

Parameters

pName
[in,	string]	Null-terminated	string	containing	the	property
name.

pValue
[in,	string]	Null-terminated	string	containing	the	property
value.

Return	values

Value Description
S_OK Function	completed	successfully.
S_FALSE SR	engine	does	not	support	specified

property	name.
E_INVALIDARG One	or	more	parameters	are	invalid.
FAILED(hr) SR	engine	returned	specific	error.

Remarks
If	the	SR	engine	supports	the	property,	SAPI	will	fire	a	property-
changed	event	(see	SPEI_PROPERTY_STRING_CHANGE)	to	all
interested	recognizer	contexts	(ISpRecoContext).	Broadcasting
the	corresponding	event	notifies	any	recognizer	contexts	that

had	interests	in	the	property	(see	CSpEvent::PropertyName	and
CSpEvent::PropertyStringValue).

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpProperties::GetPropertyString
ISpProperties::GetPropertyString	retrieves	the	string	value
corresponding	to	the	specified	key	name.
HRESULT	GetPropertyString(

			const	WCHAR			*pName,

			WCHAR								**ppCoMemValue

);

Parameters

pName
[in]	Null-terminated	string	containing	the	property	name.
Valid	values	are	listed	in	the	SR	Properties	section	of	the	SAPI
5.0	SR	Properties	White	Paper.

ppCoMemValue
[out]	Address	to	store	the	pointer	to	the	string	value.	
The	caller	must	call	CoTaskMemFree()	to	free	the	string
pointer.

Return	values

Value Description
S_OK Function	completed	successfully.
S_FALSE SR	engine	does	not	support	specified

property	name.
E_INVALIDARG One	or	more	parameters	are	invalid.
E_POINTER Value	pointer	is	invalid.
FAILED(hr) SR	engine	returned	specific	error.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Text-to-speech	engine	interfaces	(API-
level)
The	following	section	covers:

TTS	Overview
TTS	Engine	Characteristics
Text	Synthesis

ISpVoice

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Text-to-Speech	Overview

ISpVoice	Introduction
The	central	SAPI	API	for	text-to-speech	(TTS)	is	ISpVoice.	Using
this	interface,	applications	can	add	TTS	support	such	as
speaking	text,	modifying	speech	characteristics,	changing
voices,	as	well	as	responding	to	real-time	events	while	speaking.
In	fact,	most	applications	should	need	only	this	single	interface
to	accomplish	everything	that	is	needed	for	basic	TTS	support.
Applications	obtain	access	to	ISpVoice	interface	methods	by
creating	a	COM	object.	As	the	name	implies,	an	ISpVoice	object
is	simply	a	single	instance	of	a	specific	TTS	voice.	Every
ISpVoice	object	is	an	individual	voice.	Even	if	two	different
ISpVoice	objects	select	the	same	base	voice	(for	example
"Mike"),	each	of	the	two	voices	can	be	changed	and	modified
independently	of	the	other.
	
Speaking
When	an	application	first	creates	an	ISpVoice	object,	the	object
initializes	to	the	default	voice	(set	in	Speech	properties	of
Control	Panel).	This	means	that	the	new	object	is	immediately
ready	to	speak	text,	no	special	initialization	is	needed.	At	this
point,	applications	can	use	Speak	or	SpeakStream	to	speak	any
Unicode	text	data.
	
Synchronous	vs.	Asynchronous	Speaking
The	two	speaking	functions	can	generate	speech	either
synchronously	(function	does	not	return	until	text	has
completely	spoken)	or	asynchronously	(function	returns
immediately	but	continues	speaking	as	a	background	process).
Asynchronous	operation	is	chosen	if	the	application	needs	to	do
something	else	(highlight	text,	paint	animation,	monitor

controls,	etc.)	while	speaking.	Otherwise,	the	simplest	case	is	to
speak	synchronously.
	
Getting	Status	Information
During	asynchronous	speech,	applications	can	get	current
status	information	(text	position,	speech	done	state,	bookmarks,
etc.)	in	one	of	two	ways.	The	simplest	way	is	to	periodically	poll
the	ISpVoice	object	using	the	GetStatus	method.	The	other	way
is	to	initialize	the	ISpVoice	object	so	that	it	sends	real-time
events	to	the	application	as	they	happen.
	
Flow	Control
As	a	convenience,	most	TTS	applications	allow	users	to
temporarily	suspend	speech	output.	The	Pause	and	Resume
methods	are	typically	called	in	response	to	a	user	initiated
action.
	
Modifying	Voice	Attributes
Often	with	TTS,	voice	output	needs	to	be	modified	from	its
default	setting.	There	are	two	ways	to	do	this	is;	either	by
calling	certain	ISpVoice	API	methods,	or	by	embedding	special
Extended	Markup	Language	(XML)	tags	within	the	spoken	text.
Typically,	the	API	functions	are	used	as	global	settings	that
affect	the	speech	independent	of	current	selected	voice	or
document	that	is	spoken.	While	the	XML	tags	are	usually	used	in
much	narrower	scope,	affecting	only	the	spoken	style	in	a	single
document.
	
Audio	Output
Although	usually	the	default	for	desktop	applications,	audio
output	for	TTS	is	not	restricted	to	hardware	sound	card

destinations.	SAPI	TTS	supports,	either	directly	or	indirectly,	just
about	any	audio	configuration	an	application	may	require.
Whether	the	destination	is	a	PC	sound	card,	buffer	in	memory,
or	a	special	telephony	hardware,	ISpVoice	has	several	audio
control	methods	to	change	the	audio	path	from	its	default
configuration.
	
	

ISpVoice	Methods

Speaking	Text

Speak Speaks	a	text	string	or	file.
SpeakStream Speaks	a	text	stream	or	plays	an

audio	(WAV)	stream.

	

Real-time	Status

GetStatus Returns	current	speech	and	event
status	information.

WaitUntilDone Delays	until	either	the	voice	has
completed	speaking	or	the	specified
time	interval	has	elapsed.

SpeakCompleteEvent Returns	an	event	handle	that	will	be
signaled	when	speech	is	done.

	

Flow	Control

Pause Pauses	the	output	speech	at	the
nearest	alert	boundary.

Resume Resumes	speaking.
Skip Skips	ahead	or	backward	to	a	new

input	text	position	while	speaking.

	

Changing	Voice	Attributes

SetRate Sets	the	speaking	rate	in	real	time.
GetRate Returns	the	current	speaking	rate.
SetVolume Sets	the	speech	volume	level	in	real

time.
GetVolume Returns	the	current	speech	volume

level.
SetVoice Sets	the	identity	of	the	voice	used	for

synthesis.
GetVoice Retrieves	the	object	token	that

identifies	the	current	voice.

	

Real-time	Event	Management	(inherited	from
ISpEventSource)

SetInterest Sets	the	type	of	events	to
queue.

GetEvents Returns	the	queued	events.
GetInfo Returns	information	about	the

event	queue.
SetNotifySink Sets	up	the	instance	to	make

free-threaded	calls	through
ISpNotifySink::Notify.

SetNotifyWindowMessage Sets	a	window	handle	to	receive
notifications	as	window
messages.

SetNotifyCallbackFunction Sets	a	callback	function	to
receive	notifications.

SetNotifyCallbackInterface Sets	an	object	derived	from
ISpTask	to	receive	notifications.

SetNotifyWin32Event Sets	up	a	Win32	event	object	to
be	used	by	this	instance	for
notifications.

WaitForNotifyEvent A	blocking	call	which	waits	for	a
notification.

GetNotifyEventHandle Retrieves	Win32	event	handle
associated	with	this	notify
source.

	

Audio	Output	Control

SetOutput Sets	the	current	output	object.	A
value	of	NULL	may	be	used	to
select	the	default	audio	device.

GetOutputStream Retrieves	a	pointer	to	the	current
output	stream.

GetOutputObjectToken Retrieves	the	object	token	for	the
current	output	object.

	

Miscellaneous

SetPriority Sets	the	priority	for	the	voice.
GetPriority Retrieves	the	current	voice	priority

level.
SetAlertBoundary Specifies	which	event	should	be	used

as	the	insertion	point	for	alerts.
GetAlertBoundary Retrieves	the	event	that	is	currently

being	used	as	the	insertion	point	for

alerts.
IsUISupported Determines	if	the	specified	type	of	UI

is	supported.
DisplayUI Displays	the	requested	UI.
SetSyncSpeakTimeout Sets	the	timeout	interval	in

milliseconds	after	which,	synchronous
Speak	and	SpeakStream	calls	to	this
instance	of	the	voice	will	timeout.

GetSyncSpeakTimeout Retrieves	the	timeout	interval	for
synchronous	speech	operations	for
this	ISpVoice	instance.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

TTS	Engine	Characteristics
Engines	use	the	three	characteristics	of	Volume,	Pitch,	and	Rate
to	partially	define	speech	traits.	At	the	application	level,	setting
these	values	is	simple;	you	need	only	set	them	to	a	given
number.	However,	implementation	of	these	traits	is	more
complex	for	the	engine.

Volume
At	the	application	level,	volume	is	a	number	from	zero	to	100
where	100	is	the	maximum	value	for	a	voice.	It	is	a	linear
progression	and	a	value	of	50	represents	half	of	the	loudest
permitted.	The	increments	should	be	the	range	divided	by	100.

Pitch	adjustment
The	value	can	range	from	-10	to	+10.	A	value	of	zero	sets	a
voice	to	speak	at	its	default	pitch.	A	value	of	-10	sets	a	voice	to
speak	at	three-fourths	of	its	default	pitch.	A	value	of	+10	sets	a
voice	to	speak	at	four-thirds	of	its	default	pitch.	Each	increment
between	-10	and	+10	is	logarithmically	distributed	such	that
incrementing	or	decrementing	by	1	is	multiplying	or	dividing	the
pitch	by	the	24th	root	of	2	(about	1.03).	Values	outside	of	the
-10	and	+10	range	will	be	passed	to	an	engine.	However,	SAPI
5-compliant	engines	may	not	support	such	extremes	and	may
clip	the	pitch	to	the	maximum	or	minimum	the	engine	supports.
Values	of	-24	and	+24	must	lower	and	raise	pitch	by	1	octave
respectively.	All	incrementing	or	decrementing	by	1	must
multiply	or	divide	the	pitch	by	the	24th	root	of	2.

Rate	adjustment
The	value	can	range	from	-10	to	+10.	A	value	of	zero	sets	a
voice	to	speak	at	its	default	rate.	A	value	of	-10	sets	a	voice	to
speak	at	one-third	of	its	default	rate.	A	value	of	+10	sets	a	voice
to	speak	at	three	times	its	default	rate.	Each	increment	between
-10	and	+10	is	logarithmically	distributed	such	that
incrementing	or	decrementing	by	1	is	multiplying	or	dividing	the
rate	by	the	10th	root	of	3	(about	1.1).	Values	more	extreme	than
-10	and	+10	will	be	passed	to	an	engine.	However,	SAPI	5-
compliant	engines	may	not	support	such	extremes	and	may	clip
the	rate	to	the	maximum	or	minimum	rate	the	engine	supports.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Text	synthesis
SAPI	5	uses	the	Extensible	Markup	Language	(XML)	to	define
text	synthesis	characteristics	and	application	configuration
settings.
A	text-to-speech	(TTS)	engine	that	uses	synthesis	generates
sounds	similar	to	those	created	by	the	human	voice	and	applies
various	filters	to	simulate	throat	length,	mouth	cavity,	lip	shape,
and	tongue	position.	Although	the	voice	produced	through	text
synthesis	often	sounds	less	human	than	a	voice	produced	by
diphone	concatenation,	it	is	possible	to	obtain	different	qualities
of	voice	through	modifying	TTS	configuration	settings.	SAPI	5-
compliant	TTS	engines	can	achieve	improved	synthesized	text-
to-speech	voice	qualities	using	XML	to	control	the	configuration
settings	for	text	synthesis.
The	following	section	covers:

Synthesis	markup

English	Context	tag	definitions
Chinese	Context	tag	definitions

Japanese	Context	tag	definitions

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Synthesis	Markup
SAPI	5	synthesis	markup	is	the	collection	of	XML	tags	inserted
into	text	to	modify	the	speech	synthesis	of	that	text.	These	XML
tags,	which	provide	functionality	such	as	volume	control	and
word	emphasis,	are	inserted	into	text	passed	into
ISpVoice::Speak	and	text	streams	of	format	SPDFID_XML	which
are	then	passed	into	ISpVoice::SpeakStream.	By	default,	the
SAPI	XML	parser	auto-detects	XML.	In	the	case	of	an	invalid	XML
structure,	a	speak	error	may	be	returned	to	the	application.	SAPI
is	not	intended	to	be	used	to	validate	the	XML	structure,	as	it	is
the	responisbility	of	the	developer	to	validate	the	XML	with	an
XML	validation	tool.	Please	see	ISpVoice	for	more	information.
SAPI	5	synthesis	markup	is	an	application	of	XML.	Every	XML
element	consists	of	a	start	tag	<Some_tag>	and	an	end	tag
</Some_tag>	with	a	case-insensitive	tag	name	and	contents
between	these	tags.	If	the	element	is	empty,	it	has	no	contents
<Some_tag></Some_tag>	and	the	start	tag	and	the	end	tag
might	be	the	same	<Some_tag/>.	More	information	about	XML
and	the	XML	specification	is	available
at:	http://www.w3.org/TR/1998/REC-xml-19980210.html.
The	following	section	covers:

SAPI	5	XML	tags
Attributes
Contents

Relationship	to	HTML	web	pages	and	SABLE

http://www.w3.org/TR/1998/REC-xml-19980210.html

SAPI	5	XML	tags
XML	tags	in	SAPI	5	follow	a	defined	structure	program	scope	and
implementation.	SAPI	5	XML	tags	have	a	specific	purpose	and
affect	the	input	text	in	a	predetermined	manner.
The	SAPI	5	XML	tags	are	divided	into	four	different	scope
categories.

1.	 Non-scoped
2.	 Scoped
3.	 Global
4.	 Scoped/Global

The	modification	and	properties	can	be	controlled	through	the
use	of	XML	tags.	Additional	information	on	SAPI	5	XML	elements
is	available	at:	SAPI	XML	Schema.

Attributes
Attributes	of	an	XML	element	appear	inside	the	start	tag.
Each	attribute	is	in	the	form	of	a	name,	followed	by	an	equal
character,	followed	by	a	quoted	string	value.	An	attribute	of	a
given	name	may	only	appear	once	in	a	start	tag.	Exact
details	on	what	characters	may	appear	between	quotes	can
be	found	at	http://www.w3.org/TR/REC-xml#NT-AttValue.
Briefly,	the	literal	string	cannot	contain	a	less	than	character
"<"	if	the	string	is	surrounded	by	single	quotation	marks,	it
cannot	contain	a	single	quotation	mark.	If	the	string	is
surrounded	by	double	quotation	marks	it	cannot	contain	a
double	quotation	mark.	Furthermore,	all	ampersands	(&)	can
be	used	only	in	an	entity	reference	such	as	&	and
">".	When	a	literal	string	is	parsed,	the	resulting
replacement	text	will	resolve	all	entity	references	such	as
">"	into	its	corresponding	text,	such	as	">".

In	this	specification,	only	the	resulting	replacement	text
needs	to	be	defined	for	attribute	value	strings.	The	XML
specification	defines	the	exact	file	syntax	details.	Character
references	allow	entity	references	in	ASCII	characters	to
specify	replacement	text	which	has	unprintable	characters
such	as	extended	Unicode	characters.	The	entity	reference
"ə"	specifies	the	single	Unicode	character	for	the
International	Phonetic	Alphabet	symbol	for	a	mid-central
unrounded	vowel.	See	http://www.w3.org/TR/1998/REC-xml-
19980210#sec-references	for	details.

The	<LANG>	and	<VOICE>	XML	tags	are	specific	to	the
Microsoft	engines	and	provide	support	for	language	and	dialect
attributes	for	a	given	voice.
The	following	is	an	example	of	what	409;9	refers	to	and	how	to
correctly	use	it	in	XML	tags:
<LANG	LANGID="409">This	is	the	US	English	language</LANG>

<LANG	LANGID="9">This	is	the	English	Language</LANG>

<VOICE	REQUIRED="language=409">This	is	the	required	voice	for	the	US	English	language</VOICE>

<VOICE	REQUIRED="language=9">This	is	the	required	voice	that	speaks	in	any	dialect	of	the	English	language</VOICE>

A	speak	error	will	occur	when	entering	voice	attribute
information	as	it	appears	in	the	Windows	Registry:
For	example:
<LANG	LANGID="409;9">Speak	this	text	with	the	US	English	language</LANG>

<VOICE	REQUIRED="language=409;9">Require	a	voice	be	used	that	speaks	the	US	English	language</VOICE>

In	the	Windows	Registry,	the	language	attribute	for	the
Microsoft	SAPI	5	English	voices	is	labeled	as	'409;9'	The	'409'
attribute	information	indicates	the	voice	is	specifically	US
English,	and	'9'	refers	to	the	English	language.	This	language
labeling	convention	for	voices	may	not	be	followed	by	all	engine
manufacturers.	For	example,	the	LH	voices	may	use	'409'	to
indicate	an	English	voice,	while	Microsoft	uses	'409;9'	to	specify
the	voice	is	specifically	US	English.

For	example:
409;9	=	US	English

809;9	=	British	English

Start	RegEdit	and	expand	the	tree	view	pane	to	the	following
registry	key	location:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Speech\Voices\Tokens
Select	one	of	the	available	voices	and	view	the	corresponding
attribute	information.
The	following	is	an	example	of	the	MSMary	voice	attributes:	

Contents
The	contents	of	an	element	consist	of	text	or	sub-elements.
With	these	definitions,	the	XML	specification	defines	the
exact	file	syntax	details.

Relationship	to	HTML	web	pages	and	SABLE
The	XML	format	that	SAPI	5	uses	is	NOT	placed	inside	web
pages.	Web	page	authors	who	want	to	mark	up	sections	of
HTML	text	so	that	it	is	synthesized	correctly,	should	use	the
W3C	Aural	Cascading	Style	Sheets	(ACSS).	More	information	is
available	at:	http://www.w3.org/TR/WD-acss
SAPI	applications	that	are	synthesizing	text	from	a	web	page	will
"render"	HTML+ACSS	into	SAPI's	synthesis	markup	format.
Programs	apply	a	default	ACSS	file	when	synthesizing	web
pages	that	do	not	have	an	associated	ACSS	file.
SAPI	5	synthesis	markup	format	is	similar	to	the	format
published	by	the	SABLE	Consortium.	However,	this	format	and
SABLE	version	1.0	are	not	interoperable.	At	this	time,	it's	not
determined	if	they	will	become	partially	interoperable	in	the
future.	More	information	about	the	SABLE	specification	is
available	at:	http://www.bell-labs.com/project/tts/sable.html.
Back	to	top

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

English	Context	tag	definitions
The	CONTEXT	tag	specifies	the	normalization	of	a	block	of	text.
This	specification	defines	the	SAPI	predefined	attributes	(ID)	for
the	CONTEXT	tag.	These	IDs	are	strings.	SAPI	does	not	perform
any	parameter	validation	on	the	string	passed	to	the	engine,
hence,	the	application	can	specify	engine-specific	normalization
IDs	to	the	engine.	Engine-specific	strings	begin	with	the	engine
vendor's	name	to	avoid	confusion	between	engines.
For	example:

<CONTEXT	ID	=	"MS_My_Context">	text	</CONTEXT>

The	exact	implementation	of	some	of	these	values	is	dependent
on	the	engine	used	in	SAPI	5.	In	order	to	force	a	certain
normalization,	application	developers	can	choose	to	normalize
the	text,	or	use	another	SAPI	tag	or	engine-specific	ID.	Each
context	tag	can	contain	more	than	one	string.
For	example:

<CONTEXT	ID	=	"date_mdy">	12/21/99	11/21/99	10/21/99
</CONTEXT>	would	be	normalized	to	"December	twenty
first	nineteen	ninety	nine	November	twenty	first	nineteen
ninety	nine	October	twenty	first	nineteen	ninety	nine."

The	following	predefined	context	types	are	covered	in	this
section:

Date
Time
Number
Phone_Number

Currency
Web

E-mail
Address

Date
This	context	specifies	that	the	number	passed	to	the	engine
is	a	date.	Dates	will	generally	have	the	format	of	number
[delimiter]	number	[delimiter]	number	or	number	[delimiter]
number	where	the	delimiter	can	be	a	'.',	'/'	or	'-',	and
numbers	are	typically	between	01	and	12	for	months,	01
and	31	for	days.	A	year	is	generally	a	two	or	four-digit
number.	
The	following	are	valid	string	types:

date_mdy
This	will	normalize	the	date	so	that	the	first	group	of
numbers	is	the	month,	the	second	group	is	the	day,	and	the
third	group	is	the	year.	In	the	case	where	the	year	is	a	two-
digit	number,	the	engine	reads	it	as	a	two-digit	number	or	a
four-digit	number.
For	example:

<context	ID	=	"date_mdy">12/21/99</context>	
will	be	normalized	to	"December	twenty	first	ninety	nine"
or	"December	twenty	first	nineteen	ninety	nine"
<context	ID	=	"date_mdy">12/21/1999</context>	
will	be	normalized	to	"December	twenty	first	nineteen
ninety	nine"

Back	to	top

date_dmy
This	will	normalize	the	date	so	that	the	first	group	of
numbers	is	the	day,	the	second	group	is	the	month,	and	the
third	group	is	the	year.	In	the	case	where	the	year	is	a	two-

digit	number,	the	engine	reads	it	as	a	two-digit	number.	If	the
year	is	represented	as	a	four-digit	number,	it	is	represented
as	a	four-digit	year.
For	example:

<context	ID	=	"date_dmy">21.12.99</context>	
will	be	normalized	to	"December	twenty	first	ninety	nine"
or	"December	twenty	first	nineteen	ninety	nine"

<context	ID	=	"date_	dmy">21-12-1999</context>	
will	be	normalized	to	"December	twenty	first	nineteen
ninety	nine"

Back	to	top

date_ymd
This	will	normalize	the	date	so	that	the	first	group	of
numbers	is	the	year,	the	second	group	is	the	month,	and	the
third	group	is	the	day.	In	the	case	where	the	year	is	a	two-
digit	number,	the	engine	reads	it	as	a	two-digit	number.	If	the
year	is	represented	as	a	four-digit	number,	it	is	represented
as	a	four-digit	year.
For	example:

<context	ID	=	"date_ymd">99-12-21</context>	
will	be	normalized	to	"December	twenty	first	ninety	nine"
or	"December	twenty	first	nineteen	ninety	nine"

<context	ID	=	"date_	ymd">1999.12.21</context>	
will	be	normalized	to	"December	twenty	first	nineteen
ninety	nine"

Back	to	top

date_ym
This	will	normalize	the	date	so	that	the	first	group	of
numbers	is	the	year,	and	the	second	group	is	the	month.	In

the	case	where	the	year	is	a	two-digit	number,	the	engine
reads	it	as	a	two-digit	number.	If	the	year	is	represented	as	a
four-digit	number,	it	is	represented	as	a	four-digit	year.
For	example:

<context	ID	=	"date_ym">99-12</context>	
will	be	normalized	to	"December	ninety	nine"	
or	"December	nineteen	ninety	nine"	
<context	ID	=	"date_	ym">1999.12</context>	
will	be	normalized	to	"December	nineteen	ninety	nine"

Back	to	top

date_my
This	will	normalize	the	date	so	that	the	first	group	of
numbers	is	the	month,	and	the	second	group	is	the	year.	In
the	case	where	the	year	is	a	two-digit	number,	the	engine
reads	it	as	a	two-digit	number.	If	the	year	is	represented	as	a
four-digit	number,	it	is	represented	as	a	four-digit	year.
For	example:

<context	ID	=	"date_my">12/99</context>	
will	be	normalized	to	"December	ninety	nine"	
or	"December	nineteen	ninety	nine"

<context	ID	=	"date_my">12/1999</context>	
will	be	normalized	to	"December	nineteen	ninety	nine"

Back	to	top

date_dm
This	will	normalize	the	date	so	that	the	first	group	of
numbers	is	the	day	and	the	second	group	is	the	month.
For	example:

<context	ID	=	"date_dm">21.12</context>	
will	be	normalized	to	"December	twenty	first"

Back	to	top

date_md
This	will	normalize	the	date	so	that	the	first	group	of
numbers	is	the	month	and	the	second	group	is	the	day.
For	example:

<context	ID	=	"date_md">12/21</context>	
will	be	normalized	to	"December	twenty	first"

Back	to	top

date_year
This	will	normalize	the	date	so	that	the	number	is	read	as	a
year.
For	example:

<context	ID	=	"date_year">1999</context>	
will	be	normalized	to	"nineteen	ninety	nine"

<context	ID	=	"date_year">2001</context>	
will	be	normalized	to	"Two	thousand	one"

Back	to	top

Time
This	context	specifies	that	the	number	passed	to	the	engine
is	a	time.	Times	will	generally	have	the	format	of	number
[delimiter]	number	[delimiter]	number	or	number	[delimiter]
number	where	the	delimiter	is	':'	or	'	'	'	or	'	"	'	and	numbers
are	typically	between	01	and	24	for	hours,	01	and	59	for
minutes	and	seconds.
When	a	zero	is	present	in	numbers	between	01	and	09,	the
engine	can	ignore	this,	or	normalize	it	as	"oh".	The	engine
can	place	an	"and"	in	the	normalized	time.	The	valid	string
types	are:

For	example:
<context	ID	=	"time">12:30</context>	
will	be	normalized	to	"twelve	thirty"
<context	ID	=	"time">01:21</context>	
is	normalized	as	"one	twenty	one"	
or	"oh	one	twenty	one"

<context	ID	=	"time">1'21"</context>	
is	normalized	as	"one	minute	twenty	one	seconds"	
or	"one	minute	and	twenty	one	seconds"

Back	to	top

Number

number_cardinal
The	text	is	normalized	as	a	number	using	the	regular	format
of	ones,	tens,	etc.	The	engine	can	place	"and"	in	the
normalized	text.
For	example:

<context	ID	=	"number_cardinal">3432</context>	
will	be	normalized	to	"three	thousand	four	hundred	thirty
two"

<context	ID	=	"number_cardinal">3432</context>	
will	be	normalized	to	"three	thousand	four	hundred	and
thirty	two"

Back	to	top

number_digit
The	text	is	normalized	digit	by	digit.
For	example:

<context	ID	=	"number_digit">3432</context>	

will	be	normalized	to	"three	four	three	two"
Back	to	top

number_fraction
The	text	is	normalized	as	a	fraction.
For	example:

<context	ID	=	"number_fraction">3/15</context>	
will	be	normalized	to	"three	fifteenths"	or	"three	over
fifteen"

Back	to	top

number_decimal
The	text	is	normalized	as	a	decimal	value.
For	example:

<context	ID	=	"number_decimal">423.1243</context>	
will	be	normalized	to	"four	hundred	and	twenty	three
point	one	two	four	three"

Back	to	top

Phone_Number
The	text	is	normalized	as	a	phone	number.	The	exact
implementation	of	this	is	left	to	the	engine	developer	and
may	be	defined	in	a	future	release	of	SAPI.
Back	to	top

Currency
The	text	is	normalized	as	a	currency.	The	exact
implementation	of	this	is	left	to	the	engine	developer	and
may	be	defined	in	a	future	release	of	SAPI.
For	example:

<context	ID	=	"currency">$34.90</context>	
will	be	normalized	to	"thirty	four	dollars	and	ninety
cents"

Back	to	top

Web
The	text	is	normalized	as	a	URL.	The	exact	implementation	of
this	is	left	to	the	engine	developer	and	may	be	defined	in	a
future	release	of	SAPI.

web_url
For	example:

<context	ID	=	"web_url">www.Microsoft.com</context>	
will	be	normalized	to	"is	normalized	to	"w	w	w	dot
Microsoft	dot	com"

Back	to	top

E-mail
The	text	is	normalized	as	e-mail.	The	exact	implementation	of
this	is	left	to	the	engine	developer	and	may	be	defined	in	a
future	release	of	SAPI.

E-mail_address
The	text	is	normalized	as	an	e-mail	address.	The	exact
implementation	of	this	is	left	to	the	engine	developer	and
may	be	defined	in	a	future	release	of	SAPI.
For	example:

<context	ID	=	"E-
mail_Address">someone@microsoft.com</context>	
is	normalized	to	"Someone	at	Microsoft	dot	com"

Back	to	top

Address

The	text	is	normalized	as	an	address.	The	exact
implementation	of	this	is	left	to	the	engine	developer	and
may	be	defined	in	a	future	release	of	SAPI.
For	example:

<context	ID	=	"address">One	Microsoft	Way,	Redmond,	WA,
98052</context>	
will	be	normalized	to	"One	Microsoft	Way	Redmond
Washington	nine	eight	zero	five	two"

address_postal
The	text	is	normalized	as	a	postal	address.	The	exact
implementation	of	this	is	left	to	the	engine	developer	and
may	be	defined	in	a	future	release	of	SAPI.
For	example:

<context	ID	=	"address_postal">A2C	4X5</context>	
will	be	normalized	to	"A	2	C	4	X	5"

Back	to	top

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Chinese	Context	tag	definitions
The	CONTEXT	tag	specifies	the	normalization	of	a	block	of	text.
The	context	tag	ID	attribute	contains	the	text	string	specifying
the	type	of	normalization	to	apply	to	the	text	block.	The	ID
attribute	of	the	Chinese	engine	specific	context	tags	begin	with
"CHS_".	CONTEXT	tag	ID	attribute	strings	that	do	not	begin	with
quot;CHS_"	use	English	context	text	normalization.
For	example:	
<CONTEXT	ID	=	"CHS_My_Context">	12/21/99	</CONTEXT>

Each	context	tag	can	contain	more	than	one	string.
For	example:	
<CONTEXT	ID	=	"date_mdy">	12/21/99	11/21/99	10/21/99
</CONTEXT>
is	normalized	to	"Nine	nine	Nian	twelve	Yue	twenty-one	Ri	nine
nine	Nian	eleven	Yue	twenty-one	Ri	nine	nine	Nian	ten	Yue
twenty-one	Ri"
The	following	topics	are	covered	in	this	section:

Date

Time
Number
Phone	Number	and	Postal	Address

Date
This	context	specifies	that	the	number	passed	to	the	engine	is	a
date.	Dates	generally	have	the	format	of	number	[delimiter]
number	[delimiter]	number	or	number	[delimiter]	number	where
the	delimiter	may	be	a	'.',	'/'	or	'-',	and	numbers	are	typically
between	01	and	12	for	months,	01	and	31	for	days.	A	year	is	a
two-	or	four-digit	number.
If	a	date	format	does	not	fall	within	the	range	shown	below,	the
application	cannot	expect	a	consistent	result	and	the	engine
may	interpret	it	freely.	The	valid	string	types	are:

Date_mdy

Date_dmy
Date_ymd

CHS_Date_ymdhm
Date_ym

Date_md
Date_dm

Date_year

	
Back	to	top

Date_mdy
The	text	specifying	the	date	is	normalized	so	that	the	first	group
of	numbers	is	the	month,	the	second	group	is	the	day	and	the
third	group	is	the	year.	In	the	case	where	the	year	is	a	two-digit
number,	the	engine	reads	it	as	a	two-digit	number.	In	the	case
where	the	year	is	a	four-digit	number,	the	engine	reads	it	as	a
four-digit	number.

This	a	common	tag	with	the	English	engine.

Back	to	top

Date_dmy
The	text	specifying	the	date	is	normalized	so	that	the	first	group
of	numbers	is	the	day,	the	second	group	is	the	month	and	the
third	group	is	the	year.	In	the	case	where	the	year	is	a	two-digit
number,	the	engine	reads	it	as	a	two-digit	number.	If	the	year	is
represented	as	a	four-digit	number,	it	is	represented	as	a	four-
digit	year.

This	a	common	tag	with	the	English	engine.

Back	to	top

Date_ymd
The	text	specifying	the	date	is	normalized	so	that	the	first	group
of	numbers	is	the	year,	the	second	group	is	the	month	and	the
third	group	is	the	day.	In	the	case	where	the	year	is	a	two-digit
number,	the	engine	reads	it	as	a	two-digit	number.	If	the	year	is
represented	as	a	four-digit	number,	it	is	represented	as	a	four-
digit	year.

This	a	common	tag	with	the	English	engine.

Back	to	top

CHS_Date_ymdhm
The	text	specifying	the	date	is	normalized	so	that	the	first	group
of	numbers	is	the	year,	the	second	group	is	the	month,	the	third
group	is	the	day,	the	fourth	group	is	the	hour	and	the	fifth	group
is	the	minute.	In	the	case	where	the	year	is	a	two-digit	number,
the	engine	reads	it	as	a	two-digit	number.	If	the	year	is
represented	as	a	four-digit	number,	it	is	represented	as	a	four-
digit	year.	The	text	format	for	time	needs	to	specify	the	hour	as
a	number	between	00	and	23	(in	case	of	with	PM/AM	before,
between	01	and	12),	and	the	minute	as	a	number	between	01
and	59.

		This	is	a	Chinese	specific	context	tag.

Back	to	top

Date_ym
The	text	specifying	the	date	is	normalized	so	that	the	first	group
of	numbers	is	the	year	and	the	second	group	is	the	month.	In
the	case	where	the	year	is	a	two-digit	number,	the	engine	reads
it	as	a	two-digit	number.	If	the	year	is	represented	as	a	four-digit
number,	it	is	represented	as	a	four-digit	year.

This	a	common	tag	with	the	English	engine

Back	to	top

Date_my
The	text	specifying	the	date	is	normalized	so	that	the	first	group
of	numbers	is	the	month	and	the	second	group	is	the	year.	In
the	case	where	the	year	is	a	two-digit	number,	the	engine	reads
it	as	a	two-digit	number.	If	the	year	is	represented	as	a	four-digit
number,	it	is	represented	as	a	four-digit	year.

This	a	common	tag	with	the	English	engine.

Back	to	top

Date_md
The	text	specifying	the	date	is	normalized	so	that	the	first	group
of	numbers	is	the	month	and	the	second	group	is	the	day.

This	a	common	tag	with	the	English	engine.

Back	to	top

Date_dm
The	text	specifying	the	date	is	normalized	so	that	the	first	group
of	numbers	is	the	day	and	the	second	group	is	the	month.

This	a	common	tag	with	the	English	engine.

Back	to	top

Date_year
The	text	specifying	the	date	is	normalized	so	that	the	number	is
read	as	a	year.	This	year	should	be	a	four-digit	number.

This	a	common	tag	with	the	English	engine.

Back	to	top

Time
This	context	specifies	that	the	number	passed	to	the	engine	is	a
time.	Times	generally	have	the	format	of	number	[delimiter]
number	[delimiter]	number	or	number	[delimiter]	number	where
the	delimiter	is	':'	and	numbers	are	typically	between	00	and	23
for	hours	(in	case	of	with	PM/AM	before,	it	needs	to	be	between
01	and	12),	00	and	59	for	minutes	and	seconds.

CHS_time_hms

CHS_time_hm
When	a	zero	is	present	in	numbers	between	01	and	09,	the
engine	ignores	it.

		This	is	a	Chinese	engine	specific	context	tag.

Back	to	top

CHS_time_hms
The	text	specifying	the	time	is	normalized	so	that	the	first	group
of	numbers	is	the	hour,	the	second	group	is	the	minute	and	the
third	group	is	the	second.

		This	is	a	Chinese	engine	specific	context	tag.

Back	to	top

CHS_time_hm
The	text	specifying	the	time	is	normalized	so	that	the	first	group
of	numbers	is	the	hour	and	the	second	group	is	the	minute.

		This	is	a	Chinese	engine	specific	context	tag.

Back	to	top

Number
This	context	specifies	how	to	read	the	number	passed	to	the
engine.

number_cardinal
number_digit

number_fraction
number_decimal
CHS_number_percentage

CHS_number_scientific

number_cardinal
The	text	is	normalized	as	a	number	using	the	regular	format	of
ones,	tens,	etc.

This	a	common	tag	with	the	English	engine.

Back	to	top

number_digit
The	text	is	normalized	digit	by	digit.

This	a	common	tag	with	the	English	engine.

Back	to	top

number_fraction
The	text	is	normalized	as	a	fraction

This	a	common	tag	with	the	English	engine.

Back	to	top

number_decimal
The	text	is	normalized	as	a	decimal	value.

This	a	common	tag	with	the	English	engine.

Back	to	top

CHS_number_percentage
The	text	is	normalized	as	a	percentage	value.

		This	is	a	Chinese	engine	specific	context	tag.

Back	to	top

CHS_number_scientific
The	text	is	normalized	as	a	scientific	value.

		This	is	a	Chinese	engine	specific	context	tag.

Back	to	top

Phone_Number/address_postal
The	text	is	normalized	as	a	phone	number	or	address	postal.

CHS_phone_postal

CHS_phone_postal
The	phone	number	and	address	postal	is	almost	the	same	as
that	of	number_cardinal--the	only	difference	is	that	"1"	is	read
as	"yao1"

		This	is	a	Chinese	engine	specific	context	tag.

Back	to	top

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Japanese	Context	tag	definitions
The	CONTEXT	tag	specifies	the	normalization	of	a	block	of	text.
This	specification	defines	the	SAPI	predefined	attributes	(ID)	for
the	CONTEXT	tag.	These	IDs	are	strings.	SAPI	does	not	validate
any	parameters	on	the	string	passed	to	the	engine,	and	hence,
the	application	can	specify	engine-specific	normalization	IDs	to
the	engine.	Engine-specific	strings	begin	with	the	engine
vendor's	name	to	avoid	confusion	between	engines.

For	example:	
<CONTEXT	ID	=	"MS_My_Context">	text	</CONTEXT>

The	exact	implementation	of	some	of	these	values	is	dependent
on	the	engine	in	SAPI	5.	In	order	to	force	a	certain
normalization,	application	developers	can	choose	to	normalize
the	text,	or	use	another	SAPI	tag	or	engine-specific	ID.	Each
context	tag	can	contain	more	than	one	string.

For	example:	
<CONTEXT	ID	=	"MS_My_Context">	text1	text2	text3
</CONTEXT>

A	clearer	example	is	shown	in	the	following:
		example:

The	following	topics	are	covered	in	this	section:
Date
Time
Number
Phone_Number

Currency
Web

Address
	

Date
This	context	specifies	that	the	number	passed	to	the	engine	is	a
date.	Dates	generally	have	the	format	of	number	[delimiter]
number	[delimiter]	number	or	number	[delimiter]	number	where
the	delimiter	may	be	a	'.',	'/'	or	'-',	and	numbers	are	typically
between	01	and	12	for	months,	01	and	31	for	days.	A	year	is
generally	a	two-	or	four-digit	number.	If	a	date	format	does	not
fall	within	the	range	shown	below,	the	application	cannot	expect
a	consistent	result	and	the	engine	may	interpret	it	freely.	The
valid	string	types	are:

date_mdy
date_dmy

date_ymd
date_ym

date_my
date_dm

date_md
date_year

	
Back	to	top

date_mdy
The	text	specifying	the	date	is	normalized	so	that	the	first	group
of	numbers	is	the	month,	the	second	group	is	the	day	and	the
third	group	is	the	year.	In	the	case	where	the	year	is	a	two-digit
number,	the	engine	reads	it	as	a	two-digit	number	or	a	four-digit
number.

Back	to	top

date_dmy
The	text	specifying	the	date	is	normalized	so	that	the	first	group
of	numbers	is	the	day,	the	second	group	is	the	month	and	the
third	group	is	the	year.	In	the	case	where	the	year	is	a	two-digit
number,	the	engine	reads	it	as	a	two-digit	number.	If	the	year	is
represented	as	a	four-digit	number,	it	is	be	represented	as	a
four-digit	year.

Back	to	top

date_ymd
The	text	specifying	the	date	is	normalized	so	that	the	first	group
of	numbers	is	the	year,	the	second	group	is	the	month	and	the
third	group	is	the	day.	In	the	case	where	the	year	is	a	two-digit
number,	the	engine	reads	it	as	a	two-digit	number.	If	the	year	is
represented	as	a	four-digit	number,	it	is	be	represented	as	a
four-digit	year.

Back	to	top

date_ym
The	text	specifying	the	date	is	normalized	so	that	the	first	group
of	numbers	is	the	year	and	the	second	group	is	the	month.	In
the	case	where	the	year	is	a	two-digit	number,	the	engine	reads
it	as	a	two-digit	number.	If	the	year	is	represented	as	a	four-digit
number,	it	is	be	represented	as	a	four-digit	year.

Back	to	top

date_my
The	text	specifying	the	date	is	normalized	so	that	the	first	group
of	numbers	is	the	month	and	the	second	group	is	the	year.	In
the	case	where	the	year	is	a	two-digit	number,	the	engine	reads
it	as	a	two-digit	number.	If	the	year	is	represented	as	a	four-digit
number,	it	is	be	represented	as	a	four-digit	year.

Back	to	top

date_dm
The	text	specifying	the	date	is	normalized	so	that	the	first	group
of	numbers	is	the	day	and	the	second	group	is	the	month.

Back	to	top

date_md
The	text	specifying	the	date	is	normalized	so	that	the	first	group
of	numbers	is	the	month	and	the	second	group	is	the	day.

Back	to	top

date_year
The	text	specifying	the	date	is	normalized	so	that	the	number	is
read	as	a	year.

Back	to	top

Time
This	context	specifies	that	the	number	passed	to	the	engine	is	a
time.	Times	generally	have	the	format	of	number	[delimiter]
number	[delimiter]	number	or	number	[delimiter]	number	where
the	delimiter	is	':'	or	'''	or	'	"	'and	numbers	are	typically	between
01	and	24	for	hours,	01	and	59	for	minutes	and	seconds.
When	a	zero	is	present	in	numbers	between	01	and	09,	the
engine	can	ignore	this,	or	normalize	it	as	"oh".	The	engine	can
also	place	an	"and"	in	the	normalized	time.	The	valid	string
types	are:

Back	to	top

Number
number_cardinal
number_digit

number_fraction
number_decimal

	
Back	to	top

number_cardinal
The	text	is	normalized	as	a	number	using	the	regular	format	of
ones,	tens,	etc.	The	engine	can	place	"and"	in	the	normalized
text.

Back	to	top

number_digit
The	text	is	normalized	digit	by	digit.

Back	to	top

number_fraction
The	text	is	normalized	as	a	fraction.

Back	to	top

number_decimal
The	text	is	normalized	as	a	decimal	value.

Back	to	top

Phone_Number
The	text	is	normalized	as	a	phone	number.	The	exact
implementation	of	this	is	left	to	the	engine	developer	and	may
be	defined	in	a	future	release	of	SAPI.	An	example	is	provided
below:

Back	to	top

Currency
The	text	is	normalized	as	a	currency.	The	exact	implementation
of	this	is	left	to	the	engine	developer	and	may	be	defined	in	a
future	release	of	SAPI.	An	example	is	provided	below:

Back	to	top

Web

web_url
The	text	is	normalized	as	a	URL.	The	exact	implementation	of
this	is	left	to	the	engine	developer	and	may	be	defined	in	a
future	release	of	SAPI.	An	example	is	provided	below:

Back	to	top

E-mail

E-mail_address
The	text	is	normalized	as	e-mail.	The	exact	implementation	of
this	is	left	to	the	engine	developer	and	may	be	defined	in	a
future	release	of	SAPI.

Back	to	top

Address
The	text	is	normalized	as	an	address.	The	exact	implementation
of	this	is	left	to	the	engine	developer	and	may	be	defined	in	a
future	release	of	SAPI.	An	example	is	provided	below:

Back	to	top
	

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpVoice
The	ISpVoice	interface	enables	an	application	to	perform	text
synthesis	operations.	Applications	can	speak	text	strings	and
text	files,	or	play	audio	files	through	this	interface.	All	of	these
can	be	done	synchronously	or	asynchronously.
Applications	can	choose	a	specific	TTS	voice	using
ISpVoice::SetVoice.	The	state	of	the	voice	(for	example,	rate,
pitch,	and	volume),	can	be	modified	using	SAPI	XML	tags	that
are	embedded	into	the	spoken	text.	Some	attributes,	like	rate
and	volume,	can	be	changed	in	real	time	using
ISpVoice::SetRate	and	ISpVoice::SetVolume.	Voices	can	be	set	to
different	priorities	using	ISpVoice::SetPriority.
ISpVoice	inherits	from	the	ISpEventSource	interface.	An	ISpVoice
object	forwards	events	back	to	the	application	when	the
corresponding	audio	data	has	been	rendered	to	the	output
device.
Associated	Class	IDs
The	following	class	IDs	(CLSID)	may	be	used	with	this	interface.
A	complete	CLSID	listing	for	all	interfaces	is	in	the	Class	IDs
section.

CLSID_SpVoice

Methods	in	Vtable	Order

ISpVoice	Methods Description
ISpEventSource
inherited	methods

All	methods	of	ISpEventSource	are
accessible	from	this	interface

SetOutput Sets	the	current	output	object.	A
value	of	NULL	may	be	used	to	select
the	default	audio	device.

GetOutputObjectToken Retrieves	the	object	token	for	the

current	audio	output	object.
GetOutputStream Retrieves	a	pointer	to	the	current

output	stream.
Pause Pauses	the	voice	at	the	nearest	alert

boundary	and	closes	the	output
device.

Resume Sets	the	output	device	to	the	RUN
state	and	resumes	rendering.

SetVoice Sets	the	identity	of	the	voice	used
for	text	synthesis.	By	default,
ISpVoice	will	use	the	voice
information	set	in	Speech	properties
in	Control	Panel.

GetVoice Retrieves	the	object	token	that
identifies	the	voice	used	in	text
synthesis.

Speak Speaks	the	contents	of	a	text	string
or	file.

SpeakStream Speaks	the	contents	of	a	stream.
GetStatus Retrieves	the	current	rendering	and

event	status	associated	with	this
ISpVoice	instance.

Skip Causes	the	voice	to	skip	forward	or
backward	the	specified	number	of
items	within	the	text	of	the	current
speak	call.

SetPriority Sets	the	priority	for	the	voice.
Normal,	Alert,	Over.

GetPriority Retrieves	the	current	voice	priority
level.

SetAlertBoundary Specifies	which	event	should	be
used	as	the	insertion	point	for	alerts.

GetAlertBoundary Retrieves	the	event	that	is	currently
being	used	as	the	insertion	point	for
alerts.

SetRate Sets	the	text	rendering	rate
adjustment	in	real	time.

GetRate Retrieves	the	current	text	rendering
rate	adjustment.

SetVolume Sets	the	synthesizer	output	volume
level	in	real	time.

GetVolume Retrieves	the	current	output	volume
level	of	the	synthesizer.

WaitUntilDone Blocks	the	caller	until	either	the
voice	has	completed	speaking	or	the
specified	time	interval	has	elapsed.

SetSyncSpeakTimeout Sets	the	timeout	interval	in
milliseconds	after	which,
synchronous	Speak	and
SpeakStream	calls	to	this	instance	of
the	voice	will	timeout.

GetSyncSpeakTimeout Retrieves	the	timeout	interval	for
synchronous	speech	operations	for
this	ISpVoice	instance.

SpeakCompleteEvent Returns	an	event	handle	that	will	be
signaled	when	the	voice	has
completed	speaking	all	pending
requests.

IsUISupported Determines	if	the	specified	type	of	UI
is	supported.

DisplayUI Displays	the	requested	UI.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpVoice::SetOutput
ISpVoice::SetOutput	sets	the	current	output	object.		The
object	may	either	be	a	stream,	audio	device,	or	an	object	token
for	an	output	audio	device.		If	pUnkOutput	is	NULL	the	default
audio	device	will	be	used.
HRESULT	SetOutput(

			IUnknown			*pUnkOutput,

			BOOL								fAllowFormatChanges

);

Parameters

pUnkOutput
[in]	IUnknown	pointer	to	output	object.	The	pointer	must
point	to	an	object	that	implements	ISpStreamFormat	(a
stream	or	audio	device),	or	an	object	that	implements
ISpObjectToken.	If	a	token	is	provided,	this	method	will	create
the	object	described	by	the	token	and	use	it.	If	pUnkOutput	is
NULL,	the	default	audio	out	device	will	be	used.

fAllowFormatChanges
[in]	Flag	specifying	whether	the	voice	is	allowed	to	change
the	format	of	the	audio	output	object	to	match	that	of	the
engine,	or	a	wav	stream	being	spoken.	If	FALSE,	the	voice	will
use	the	SAPI	format	converter	to	translate	between	the	data
being	rendered	and	the	format	of	the	output	object.	This
should	be	set	to	TRUE	if	using	the	default	audio	device	and
the	output	format	is	of	no	consequence.	If	pUnkOutput	is	an
ISpStreamFormat	object,	fAllowFormatChanges	is	ignored.	In
this	case,	the	voice	instance	will	render	the	output	audio
data	in	the	format	of	the	specified	stream	to	the	application.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG One	or	more	parameters	are	invalid.
SPERR_UNINITIALIZED pUnkOutput	is	an	uninitialized

ISpStream	object.
E_OUTOFMEMORY Exceeded	available	memory.

Example:
The	following	is	an	example	of	how	to	enumerate	all	the
available	audio	output	devices	registered	under
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Speech\AudioOutput.
HRESULT																		hr	=	S_OK;

CComPtr<ISpObjectToken>								cpAudioOutToken;

CComPtr<IEnumSpObjectTokens>								cpEnum;

CComPtr<ISpVoice>								cpVoice;

ULONG										ulCount	=	0;

//	Create	the	SAPI	voice

if(SUCCEEDED(hr))

				hr	=	cpVoice.CoCreateInstance(CLSID_SpVoice);	

//Enumerate	the	available	audio	output	devices	

if(SUCCEEDED(hr))

				hr	=	SpEnumTokens(SPCAT_AUDIOOUT,	NULL,	NULL,	&cpEnum;);

//Get	the	number	of	audio	output	devices

if(SUCCEEDED(hr))

				hr	=	cpEnum->GetCount(&ulCount;);

//	Obtain	a	list	of	available	audio	output	tokens,	set	the	output	to	the	token,	and	call	Speak

while	(SUCCEEDED(hr)	&&	ulCount--)

{

				if(SUCCEEDED(hr))

								hr	=	cpEnum->Next(1,	&cpAudioOutToken;,	NULL);

				if(SUCCEEDED(hr))

								hr	=	cpVoice->SetOutput(cpAudioOutToken,	TRUE);

				if(SUCCEEDED(hr))

								hr	=	cpVoice->Speak(L"How	are	you?",	SPF_DEFAULT,	NULL);	

}

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpVoice::GetOutputObjectToken
ISpVoice::GetOutputObjectToken	retrieves	the	object	token
for	the	current	audio	output	object.
HRESULT	GetOutputObjectToken(

			ISpObjectToken			**ppObjectToken

);

Parameters

ppObjectToken
[out]	Address	of	an	ISpObjectToken	pointer	that	receives	the
audio	output	object	token.	If	the	current	output	is	set	to	an
ISpStream	object,	GetOutputObjectToken	will	return	S_FALSE
and	ppObjectToken	will	be	NULL.

Return	values

Value Description
S_OK Function	completed	successfully.
E_POINTER ppObjectToken	is	invalid.
S_FALSE The	current	output	stream	does	not

have	an	object	token

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpVoice::GetOutputStream
ISpVoice::GetOutputStream	retrieves	a	pointer	to	the	current
output	stream.
HRESULT	GetOutputStream(

			ISpStreamFormat			**ppStream

);

Parameters

ppStream
[out]	Address	of	a	pointer	to	an	ISpStreamFormat	object	that
receives	the	output	stream.

Return	values

Value Description
S_OK Function	completed

successfully.
E_POINTER ppstream	is	invalid.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpVoice::Pause
ISpVoice::Pause	pauses	the	voice	at	the	nearest	alert
boundary	and	closes	the	output	device,	allowing	access	to
pending	speak	requests	from	other	voices.
HRESULT		Pause		(void);

Parameters
None.

Return	values

Value Description
S_OK Function

completed
successfully.

FAILED(hr) Appropriate	error
message

Remarks:
Calling	ISpVoice::Pause	while	the	voice	is	not	speaking
increments	the	pause	count	and	will	put	the	voice	into	a	paused
state	until	ISpVoice::Resume	is	called	the	same	number	of
times.
The	voice	maintains	a	pause	count,	so	each	call	to	pause	must
be	balanced	with	a	corresponding	call	to	ISpVoice::Resume.
The	default	alert	boundary	is	at	the	beginning	of	each	word.	See
ISpVoice::SetAlertBoundary	for	details.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpVoice::Resume
ISpVoice::Resume	sets	the	output	device	to	the	RUN	state	and
resumes	rendering.	
Decrements	the	pause	count	(which	is	incremented	by
ISpVoice::Pause)	if	the	voice	is	currently	paused.	If	the	pause
count	hits	zero,	Resume	attempts	to	reclaim	the	output	device
and	resumes	rendering.	This	method	has	no	effect	if	the	voice
was	not	in	a	paused	state.
HRESULT		Resume		(void);

Parameters
None.

Return	values

Value Description
S_OK Function	completed

successfully.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpVoice::SetVoice
ISpVoice::SetVoice	sets	the	identity	of	the	voice	used	for	text
synthesis.	ISpVoice	normally	uses	the	default	voice,	which	is	set
through	Speech	properties	in	Control	Panel.
	
HRESULT	SetVoice(

			ISpObjectToken			*pToken

);

Parameters

pToken
[in]	Pointer	to	token	that	describes	the	requested	voice.	If
pToken	is	NULL,	the	system	default	voice	is	used.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG One	or	more	parameters	are

invalid.

Remarks

Changing	the	voice	selection	will	preserve	the	same	volume	and
rate	levels	for	an	ISpVoice	object.

Example
The	following	is	an	example	to	enumerate	all	the	available
voices	registered	under
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Speech\Voices.

HRESULT																													hr	=	S_OK;
CComPtr<ISpObjectToken>													cpVoiceToken;
CComPtr<IEnumSpObjectTokens>								cpEnum;
CComPtr<ISpVoice>																			cpVoice;
ULONG																															ulCount	=	0;

//	Create	the	SAPI	voice
if(SUCCEEDED(hr))
				hr	=	cpVoice.CoCreateInstance(CLSID_SpVoice);	

//Enumerate	the	available	voices	
if(SUCCEEDED(hr))
				hr	=	SpEnumTokens(SPCAT_VOICES,	NULL,	NULL,	&cpEnum);

//Get	the	number	of	voices
if(SUCCEEDED(hr))
				hr	=	cpEnum->GetCount(&ulCount);

//	Obtain	a	list	of	available	voice	tokens,	set	the	voice	to	the	token,	and	call	Speak
while	(SUCCEEDED(hr)	&&	ulCount	--)
{
				cpVoiceToken.Release();
				if(SUCCEEDED(hr))
								hr	=	cpEnum->Next(1,	&cpVoiceToken,	NULL);

				if(SUCCEEDED(hr))
								hr	=	cpVoice->SetVoice(cpVoiceToken);

				if(SUCCEEDED(hr))
								hr	=	cpVoice->Speak(L"How	are	you?",	SPF_DEFAULT,	NULL);	
}

	

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpVoice::GetVoice
ISpVoice::GetVoice	retrieves	the	object	token	that	identifies
the	voice	currently	in	use.	If	there	is	not	a	voice	currently	in	use,
this	method	will	return	the	token	for	the	default	voice.
HRESULT	GetVoice(

			ISpObjectToken			**ppToken

);

Parameters

ppToken
[out]	Pointer	which	will	be	set	to	point	to	the	current	voice's
object	token.	

Return	values

Value Description
S_OK Function	completed

successfully.
E_POINTER ppToken	is	invalid.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpVoice::Speak
ISpVoice::Speak	speaks	the	contents	of	a	text	string	or	file.
HRESULT	Speak(

			const	WCHAR			*pwcs,

			DWORD										dwFlags,

			ULONG									*pulStreamNumber

);

Parameters

pwcs
[in,	string]	Pointer	to	the	null-terminated	text	string	(possibly
containing	XML	markup)	to	be	synthesized.	This	value	can	be
NULL	when	dwFlags	is	set	to	SPF_PURGEBEFORESPEAK
indicating	that	any	remaining	data	to	be	synthesized	should
be	discarded.	If	dwFlags	is	set	to	SPF_IS_FILENAME,	this	value
should	point	to	a	null-terminated,	fully	qualified	path	to	a	file.

dwFlags
[in]	Flags	used	to	control	the	rendering	process	for	this	call.
The	flag	values	are	contained	in	the	SPEAKFLAGS
enumeration.

pulStreamNumber
[out]	Pointer	to	a	ULONG	which	receives	the	current	input
stream	number	associated	with	this	Speak	request.	Each
time	a	string	is	spoken,	an	associated	stream	number	is
returned.	Events	queued	back	to	the	application	related	to
this	string	will	contain	this	number.	If	NULL,	no	value	is
passed	back.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG One	or	more	parameters	are	invalid.
E_POINTER Invalid	pointer.
E_OUTOFMEMORY Exceeded	available	memory.
SPERR_INVALID_FLAGS Invalid	flags	specified	for	this

operation.
SPERR_DEVICE_BUSY Timeout	occurred	on	synchronous

call.

Remarks
Normally,	pulStreamNumber	will	just	be	1.	If,	however,	several
asynchronous	Speak	(or	SpeakStream)	calls	are	received	and
must	be	queued,	the	stream	number	will	be	incremented	for
each	call.	

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpVoice::SpeakStream
ISpVoice::SpeakStream	speaks	the	contents	of	a	stream.
HRESULT	SpeakStream(

			IStream			*pStream,	

			DWORD						dwFlags,	

			ULONG					*pulStreamNumber

);

Parameters

pStream
[in]	Address	of	an	IStream	interface	containing	the	input
stream.	If	the	ISpStreamFormat	interface	is	not	implemented
by	the	input	stream,	the	format	type	is	assumed	to	be
SPDFID_Text.

dwFlags
[in]	Flags	used	to	control	the	rendering	process	for	this	call.
The	flag	values	are	contained	in	the	SPEAKFLAGS
enumeration,	however	the	SPF_IS_FILENAME	flag	is	not	used
for	SpeakStream.

pulStreamNumber
[out]	Pointer	to	a	ULONG	which	receives	the	current	input
stream	number	associated	with	this	SpeakStream	request.
Each	time	a	string	is	spoken,	an	associated	stream	number	is
returned.	Events	queued	back	to	the	application	related	to
this	string	will	contain	this	number.

Return	values

Value Description
S_OK Function	completed	successfully.

E_INVALIDARG One	or	more	parameters	are	invalid.
E_POINTER Invalid	pointer.
E_OUTOFMEMORY Exceeded	available	memory.
SPERR_INVALID_FLAGS Invalid	flags	specified	for	this

operation.
SPERR_DEVICE_BUSY Timeout	on	synchronous	call.

Remarks
If	the	input	stream	is	wave	data,	it	is	sent	directly	to	the
output	object.	For	more	information	about	connecting	an
input	stream	to	a	voice,	see	ISpStream::BindToFile.
If	the	input	stream	is	text	data,	it	is	processed	by	the
text-to-speech	engine.
Normally,	pulStreamNumber	will	just	be	1.	If,	however,
several	asynchronous	SpeakStream	(or	Speak)	calls	are
received	and	must	be	queued,	the	stream	number	will	be
incremented	for	each	call.	

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpVoice::GetStatus
ISpVoice::GetStatus	retrieves	the	current	rendering	and	event
status	associated	with	this	voice.
HRESULT	GetStatus(

			SPVOICESTATUS		*pStatus,	

			WCHAR									**ppszLastBookmark

);

Parameters

pStatus
[out]	Pointer	to	an	SPVOICESTATUS	structure	which	receives
the	status	information.	This	pointer	can	be	NULL	if	the	caller
does	not	want	this	information.

ppszLastBookmark
[out,	string]	Pointer	to	a	pointer	which	receives	a
CoTaskMemAlloc	allocated	null-terminated	string	containing
the	text	of	the	last	bookmark	reached.	If	there	is	no	last
bookmark,	NULL	will	be	returned.	Applications	calling	this
method	must	call	CoTaskMemFree()	to	free	the	returned
string.	This	pointer	can	be	NULL	if	the	caller	does	not	want
this	information.

Return	values

Value Description
S_OK Function	completed

successfully.
E_POINTER Invalid	pointer.
E_OUTOFMEMORY Exceeded	available	memory.

Remarks
Because	the	SPVOICESTATUS	structure	is	closely	associated	with
audio	device	status,	GetStatus	will	not	return	an	active	status
for	a	voice	speaking	to	an	audio	output	stream.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpVoice::Skip
ISpVoice::Skip	causes	the	voice	to	skip	forward	or	backward
the	specified	number	of	items	within	the	text	of	the	current
speak	call.
HRESULT	Skip(

			WCHAR			*pItemType,

			long					lNumItems,

			ULONG			*pulNumSkipped

);

Parameters

pItemType
[in,string]	Specifies	the	type	of	item	to	skip.	Currently
"SENTENCE"	is	the	only	type	supported.

lNumItems
[in]	Specifies	the	number	of	items	to	skip	in	the	current
speak	request.	If	lNumItems	is	a	positive	number,	the	voice
will	skip	forward,	and	if	it	is	negative,	the	voice	will	skip
backward.		If	lNumItems	is	0,	the	voice	will	skip	back	to	the
beginning	of	the	current	item.

pulNumSkipped
[out]	Pointer	to	a	ULONG	which	will	be	set	to	the	actual
number	of	items	skipped.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG pItemType	is	invalid	or	bad.

E_POINTER pulNumSkipped	is	invalid	or	bad.
SPERR_VOICE_PAUSED Voice	is	in	a	paused	state	and	may

not	be	skipped.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpVoice::SetPriority
ISpVoice::SetPriority	sets	the	priority	for	the	voice.	The
default	priority	is	SPVPRI_NORMAL.	
HRESULT	SetPriority(

			SPVPRIORITY			ePriority

);

Parameters

ePriority
[in]	Priority	of	type	SPVPRIORITY	associated	with	the	current
voice.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG ePriority	is	not	an	acceptable	priority

value.

Remarks
Assuming	an	output	object	which	implements	ISpAudio,	speak
requests	of	similar	priority	voices	are	queued,	and	are	spoken
one	at	a	time	in	the	order	they	are	issued.	That	is,	speak
requests	from	normal	priority	voices	are	put	in	one	queue,	while
speak	requests	from	alert	priority	voices	(with	priority
SPVPRI_ALERT)	are	put	in	another	queue.	
Alert	priority	voices	take	priority	over	normal	voices.	If	one	or
more	speak	requests	from	alert	priority	voices	are	pending,	a
normal	voice	that	is	speaking	will	be	interrupted	on	the	next
alert	boundary	(see	ISpVoice::SetAlertBoundary).	When	all	the
queued	alert	priority	voice	speak	requests	have	been	processed,

the	normal	voice	will	continue.	
Voices	with	the	SPVPRI_OVER	priority	speak	over	(mix	with)	all
other	audio	in	the	system	with	no	synchronization.	SPVPRI_OVER
priority	voices	only	mix	on	Windows	2000.
If	the	output	object	does	not	implement	ISpAudio,	no
serialization	will	occur,	and	all	voices	will	be	treated	as	if	their
priority	is	SPVPRI_OVER.
	

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpVoice::GetPriority
ISpVoice::GetPriority	retrieves	the	current	voice	priority
level.		See	ISpVoice::SetPriority	for	more	information	on	voice
priorities.
HRESULT	GetPriority(

			SPVPRIORITY			*pePriority

);

Parameters

pePriority
[out]	Pointer	to	priority	information	of	type	SPVPRIORITY.

Return	values

Value Description
S_OK Function	completed

successfully.
E_POINTER Invalid	pointer.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpVoice::SetAlertBoundary
ISpVoice::SetAlertBoundary	specifies	which	event	should	be
used	as	the	insertion	point	for	alert	priority	voice	interruptions
and	ISpVoice::Pause	calls.		
HRESULT	SetAlertBoundary(

			SPEVENTENUM			eBoundary

);

Parameters

eBoundary
[in]	SPEVENTENUM	enumeration	value	that	specifies	which
event	to	use	for	the	alert	insertion	point.	Appropriate	events
to	use	for	this	purpose	include	SPEI_WORD_BOUNDARY,
SPEI_SENTENCE_BOUNDARY,	SPEI_PHONEME,	SPEI_VISEME,
and	possibly	SPEI_VOICE_CHANGE	or	SPEI_TTS_BOOKMARK.	

Return	values

Value Description
S_OK Function	completed

successfully.
E_INVALIDARG eBoundary	is	invalid.

Remarks
Events,	such	as	word	and	sentence	boundaries,	are	queued	by
the	TTS	engine	during	text	rendering.	Alert	priority	voices	will
only	be	able	to	interrupt	normal	priority	voices,	and	pauses	will
only	be	able	to	occur	on	the	specified	event	boundaries.
The	default	alert	boundary	event	is	SPEI_WORD_BOUNDARY.
See	ISpVoice::SetPriority	for	more	details	on	voice	priorities.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpVoice::GetAlertBoundary
ISpVoice::GetAlertBoundary	retrieves	the	event	that	is
currently	being	used	as	the	insertion	point	for	alerts.	For	more
information	on	alert	boundaries,	see
ISpVoice::SetAlertBoundary.
HRESULT	GetAlertBoundary(

			SPEVENTENUM			*peBoundary

);

Parameters

peBoundary
[out]	Address	of	an	SPEVENTENUM	that	receives	the	event
type	of	the	alert	boundary.

Return	values

Value Description
S_OK Function	completed

successfully.
E_POINTER Invalid	pointer.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpVoice::SetRate
ISpVoice::SetRate	retrieves	the	current	text	rendering	rate
adjustment.	The	default	rate	for	a	voice	is	set	through	Speech
properties	in	Control	Panel.
HRESULT	SetRate(

			long			RateAdjust

);

Parameters

RateAdjust
[in]	Value	specifying	the	speaking	rate	of	the	voice.
Supported	values	range	from	-10	to	10	-	values	outside	this
range	may	be	truncated.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG One	or	more	parameters	are

invalid.

Remarks
Voices	do	not	all	have	the	same	default	rate.
The	granularity	of	the	rate	is	engine	dependent.
Applications	can	adjust	the	rate	of	a	voice	either	through	this
function	call,	or	through	XML	passed	to	the	voice	with	the	input
text	of	a	speak	call	(see	the	XML	Schema	:	SAPI	white
paper).	The	voice	should	combine	rate	adjustments	made	in
these	two	ways	to	arrive	at	a	final	rate.		

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpVoice::GetRate
ISpVoice::GetRate	retrieves	the	current	base	rate	(either	the
default	rate	or	the	last	value	set	by	ISpVoice::SetRate).
HRESULT	GetRate(

			long			*pRateAdjust

);

Parameters

pRateAdjust
[out]	Pointer	to	a	long	which	receives	the	base	rate.

Return	values

Value Description
S_OK Function	completed

successfully.
E_POINTER pRateAdjust	is	invalid.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpVoice::SetVolume
ISpVoice::SetVolume	sets	the	synthesizer	output	volume	level
of	the	voice	in	real	time.	The	default	base	volume	for	all	voices
is	100.
HRESULT	SetVolume(

			USHORT		 usVolume

);

Parameters

usVolume
[in]	Value	containing	the	requested	volume	level.	Volume
levels	are	specified	in	percentage	values	ranging	from	zero	to
100	-	values	outside	this	range	may	be	truncated.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG One	or	more	parameters	are

invalid.

Remarks
Volume	is	specified	as	a	percentage	of	the	maximum	volume	of
the	current	voice.	Different	voices	may	have	different	maximum
volume	levels.
Applications	can	adjust	the	volume	of	a	voice	either	through	this
function	call,	or	through	XML	grammar	passed	to	the	voice	with
the	input	text	of	a	speak	call	(see	the	XML	Schema	:	SAPI	white
paper).	The	voice	should	combine	volume	adjustments	made	in
these	two	ways	to	arrive	at	a	final	volume.		

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpVoice::GetVolume
ISpVoice::GetVolume	retrieves	the	current	output	volume
level	(either	the	default	volume	level	or	the	last	level	set	by
ISpVoice::SetVolume).
HRESULT	GetVolume(

			USHORT			*pusVolume

);

Parameters

pusVolume
[out]	Address	to	receive	the	current	base	volume	level.

Return	values

Value Description
S_OK Function	completed

successfully.
E_POINTER pusVolume	is	invalid.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpVoice::WaitUntilDone
ISpVoice::WaitUntilDone	blocks	the	caller	until	either	the
voice	has	completed	speaking	or	the	specified	time	interval	has
elapsed.
HRESULT	WaitUntilDone(

			ULONG			msTimeout

);

Parameters

msTimeout
[in]	Timeout	period	in	milliseconds.	INFINITE	may	be	used	to
prevent	this	method	from	timing	out.

Return	values

Value Description
S_OK Function	completed	successfully.
S_FALSE Wait	time	interval	was

exceeded.

Remarks
This	call	may	be	used	after	a	single	asynchronous	Speak	(or
SpeakStream)	call,	or	after	several	calls	have	been	queued.	In
either	case	it	will	return	only	after	all	pending	calls	have	been
completed	(or	after	the	specified	time	interval	has	elapsed).

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpVoice::SetSyncSpeakTimeout
ISpVoice::SetSyncSpeakTimeout	sets	the	timeout	interval	in
milliseconds	after	which	synchronous	Speak	and	SpeakStream
calls	to	this	voice	will	timeout.
HRESULT	SetSyncSpeakTimeout(

			ULONG			msTimeout

);

Parameters

msTimeout
[in]	Value	specifying	the	timeout	interval	in	milliseconds.	The
default	is	10	seconds.	INFINITE	may	also	be	used	to	prevent
timeouts.

Return	values

Value Description
S_OK Function	completed

successfully.

Remarks:
Timeouts	occur	when	waiting	for	access	to	the	output	object.	
This	means	that	for	a	normal	priority	voice	(see
ISpVoice::SetPriority	for	more	information	on	priorities)	and	an
output	device	which	implements	ISpAudio,	a	timeout	may	occur
while	waiting	to	reacquire	the	output	object	after	an	interruption
by	an	alert	priority	voice.		For	voices	of	both	normal	and	alert
priorities,	a	timeout	may	also	occur	while	waiting	to	reacquire
the	output	object	after	the	voice	has	been	paused	and	resumed
(see	ISpVoice::Pause	and	ISpVoice::Resume).
Wait	times	are	not	accumulated	-	that	is,	if	a	voice	waits	for	n
milliseconds	to	initially	acquire	the	output	object,	and	is	then

paused	and	resumed,	it	will	again	wait	for	up	to	msTimeout
milliseconds	to	reacquire	the	output	object,	not	msTimeout	-	n
milliseconds.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpVoice::GetSyncSpeakTimeout
ISpVoice::GetSyncSpeakTimeout	retrieves	the	timeout
interval	for	synchronous	speech	operations	for	this	voice.		For
more	information	on	timeouts,	see
ISpVoice::SetSyncSpeakTimeout.
HRESULT	GetSyncSpeakTimeout(

			ULONG			*pmsTimeout

);

Parameters

pmsTimeout
[out]	Pointer	to	a	ULONG	which	receives	the	timeout	interval
in	milliseconds	for	synchronous	speech	operations.

Return	values

Value Description
S_OK Function	completed

successfully.
E_POINTER pmsTimeout	is	invalid.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpVoice::SpeakCompleteEvent
ISpVoice::SpeakCompleteEvent	returns	an	event	handle	that
will	be	signaled	when	the	voice	has	completed	speaking	all
pending	requests.	This	is	similar	to	the	functionality	provided	by
ISpVoice::WaitUntilDone,	but	allows	the	caller	to	wait	on	the
event	handle.	
[local]	HANDLE		SpeakCompleteEvent		(void);

Parameters
None.

Return	values

Value Description
Event	Handle For	WAIT	operation.

Remarks:
The	caller	should	not	call	CloseHandle(),	nor	should	the	caller
ever	use	the	handle	after	releasing	the	COM	reference	to	this
voice.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpVoice::IsUISupported
ISpVoice::IsUISupported	checks	if	the	underlying	text-to-
speech	engine's	object	token	supports	the	requested	UI.
[local]	HRESULT	IsUISupported(

				const	WCHAR			*pszTypeOfUI,

				void										*pvExtraData,

				ULONG										cbExtraData,

				BOOL										*pfSupported

);

Parameters

pszTypeOfUI
[in]	Address	of	the	null-terminated	string	containing	the	UI
type	that	is	being	queried.

pvExtraData
[in]	Pointer	to	additional	information	needed	for	the	object.
The	TTS	Engine	implementer	dictates	the	format	and	usage
of	the	data	provided.

cbExtraData
[in]	Size,	in	bytes,	of	the	ExtraData.	The	TTS	Engine
implementer	dictates	the	format	and	usage	of	the	data
provided.

pfSupported
[out]	Flag	specifying	whether	the	specified	UI	is	supported.
TRUE	indicates	the	UI	is	supported,	and	FALSE	indicates	the
UI	is	not	supported.	If	this	value	is	TRUE,	but	the	return	code
is	S_FALSE,	the	UI	type	(pszTypeOfUI)	is	supported,	but	not
with	the	current	parameters	or	run-time	environment.	Check

with	the	engine	implementer	to	verify	run-time	requirements.

Return	values

Value Description
S_OK Function	completed	successfully.
S_FALSE The	UI	is	supported	but	not	with	the

current	run-time	environment	or
parameters.

E_INVALIDARG One	or	more	parameters	are	invalid.
FAILED(hr) Appropriate	error	message.

Remarks
See	the	TTS	Engine	White	Paper	for	further	information	on	how
a	TTS	Engine	should	implement	UI.

Example
The	following	code	snippet	illustrates	the	use	of
ISpVoice::IsUISupported	using	SPDUI_EngineProperties.
				HRESULT	hr	=	S_OK;

				//	display	properties	UI	for	the	current	TTS	engine

				hr	=	cpVoice->IsUISupported(SPDUI_EngineProperties,	NULL,	NULL,	&fSupported);

				//	Check	hr

				//	if	fSupported	==	TRUE,	then	current	TTS	engine	supports	properties	UI

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpVoice::DisplayUI
ISpVoice::DisplayUI	displays	the	UI	from	the	underlying	text-
to-speech	engine's	object	token.
[local]	HRESULT	DisplayUI(

				HWND											hwndParent,

				const	WCHAR			*pszTitle,

				const	WCHAR			*pszTypeOfUI,

				void										*pvExtraData,

				ULONG										cbExtraData

);

Parameters

hwndParent
[in]	Specifies	the	parent	window	handle	information.

pszTitle
[in]	Address	of	a	null-terminated	string	containing	the
window	title	information.	Set	this	value	to	NULL	to	indicate
that	the	TTS	engine	should	use	its	default	window	title	for
this	UI	type.

pszTypeOfUI
[in]	Address	of	the	null-terminated	string	containing	the
requested	UI	type	to	display.

pvExtraData
[in]	Pointer	to	additional	information	needed	for	the	object.
The	TTS	Engine	implementer	dictates	the	format	and	usage
of	the	data	provided.

cbExtraData

[in]	Size,	in	bytes,	of	the	ExtraData.	The	TTS	Engine
implementer	dictates	the	format	and	usage	of	the	data
provided.

Return	values

Value Description
S_OK Function	completed	successfully.
S_FALSE The	UI	is	supported	but	not	with	the

current	run-time	environment	or
parameters.

E_INVALIDARG One	or	more	parameters	are	invalid.
FAILED(hr) Appropriate	error	message.

Remarks
The	best	practice	for	using	ISpVoice::DisplayUI	is	to	call
ISpVoice::IsUISupported	with	a	specific	UI	type	before	calling
DisplayUI.
See	the	TTS	Engine	White	Paper	for	further	information	on	how
a	TTS	Engine	should	implement	UI.
The	call	to	DisplayUI	is	synchronous,	so	the	call	will	not	return
until	the	UI	has	been	closed.

Example
The	following	code	snippet	illustrates	the	use	of
ISpVoice::DisplayUI	using	SPDUI_EngineProperties.
				HRESULT	hr	=	S_OK;

				//	display	properties	UI	for	the	current	TTS	engine

				hr	=	cpVoice->DisplayUI(MY_HWND,	MY_APP_VOICE_PROPERTIES,	SPDUI_EngineProperties,	NULL,	NULL);

				//	Check	hr

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Engine-Level	Interfaces
This	section	describes	the	interfaces	and	methods	for
incorporating	speech	engines	into	applications.	They	are
intended	for	use	at	the	DDI	or	device	driver	interface	level.
Some	managers	or	interfaces	may	have	entries	also	in	the
Application-Level	Interfaces	section.	However,	entries	listed
here	apply	only	to	the	device	driver	or	engine	level.

Grammar	Compiler	interfaces
Resource	interfaces

Speech	Recognition	interfaces
Speech	Recognition	Engine	interfaces

Text-to-Speech	Engine	interfaces

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Grammar	compiler	interfaces	(DDI-level)
The	following	section	covers:

ISpErrorLog
ISpGramCompBackend

ISpGrammarCompiler
ISpITNProcessor
ISpCFGInterpreter

ISpCFGInterpreterSite

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpErrorLog
An	object	implementing	this	interface	can	be	supplied	to
ISpGrammarCompiler::CompileStream()	to	receive	compilation
error	messages.

Methods	in	Vtable	Order

ISpErrorLog	Methods Description
AddError Writes	an	error	to	the	log	file.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpErrorLog::AddError
ISpErrorLog::AddError	writes	an	error	to	the	log	file.
Applications	can	implement	this	method	to	process	the
compilation	error	messages.
HRESULT	AddError(

			const	long					lLineNumber,

			HRESULT								hr,

			const	WCHAR			*pszDescription,

			const	WCHAR			*pszHelpFile,

			DWORD										dwHelpContext

);

Parameters

lLineNumber
The	line	number	of	the	error	in	the	XML	grammar	file.

hr
The	error	code	being	logged.

pszDescription
A	textual	description	of	the	error.

pszHelpFile
The	file	being	written	to.

dwHelpContext
Flags	providing	additional	information	for	the	log.

Return	values

Value Description

S_OK Function	completed	successfully.
FAILED	(hr) Appropriate	error	message.		Currently

any	hr	returned	from	AddError	will	be
ignored	by	SAPI.

Because	this	method	is	application	defined,	the	return	value
may	change.	See	specific	vendor	documentation	for	details.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpGramCompBackend
ISpGramCompBackend	inherits	from	the	ISpGrammarBuilder
interface.

Methods	in	Vtable	Order

ISpGramCompBackend
Methods Description
SetSaveObjects Sets	the	storage	location	of	the

binary	grammar.
InitFromBinaryGrammar Initializes	a	grammar	from	binary

data.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpGramCompBackend::SetSaveObjects
ISpGramCompBackend::SetSaveObjects	sets	the	storage
location	of	the	binary	grammar.
HRESULT	SetSaveObjects(

			IStream						*pStream,

			ISpErrorLog		*pErrorLog

);

Parameters

pStream
Address	of	the	IStream	that	receives	the	binary	grammar.

pErrorLog
Address	of	the	ISpErrorLog	interface	that	receives	the	error
information.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG Either	pStream	or	pErrorLog	is	bad	or

invalid.
FAILED(hr) Appropriate	error	message.

Remarks
When	ISpGrammarBuilder::Commit	is	called,	the	grammar
compiler	back	end	writes	the	binary	grammar	to	the	location	of
pStream.	When	calling	the	SetSaveObjects	method	multiple
times,	the	last	call	made	before	calling	Commit,	receives	the
binary	grammar.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpGramCompBackend::InitFromBinaryGrammar
ISpGramCompBackend::InitFromBinaryGrammar	initializes
a	grammar	from	binary	data.
HRESULT	InitFromBinaryGrammar(

			const			SPBINARYGRAMMAR		*pBinaryData

);

Parameters

pBinaryData
Pointer	to	the	grammar	list.

Return	values

Value Description
S_OK Function	completed

successfully.
E_POINTER pBinaryData	is	invalid	or	bad.
E_OUTOFMEMORY Exceeded	available	memory.
FAILED	(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpGrammarCompiler
SAPI	5	Text	Grammar	compiler.

Methods	in	Vtable	Order

ISpGrammarCompiler
Methods Description
CompileStream Loads	the	XML	grammar	and

produces	the	binary	grammar
format.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpGrammarCompiler::CompileStream
ISpGrammarCompiler::CompileStream	loads	the	XML
grammar	and	produces	the	binary	grammar	format.
Compiles	the	SAPI	5	Speech	Text	Grammar	pointed	to	by
pSource	stream	and	writes	the	output	to	the	pDest	stream.	It
can	optionally	generate	C/C++	header	information	from	the
<DEFINE>	<ID>	tags.
HRESULT	CompileStream(

			IStream							*pSource,	

			IStream							*pDest,	

			IStream							*pHeader,	

			IUnknown						*pReserved,	

			ISpErrorLog			*pErrorLog,	

			DWORD										dwFlags

);

Parameters

pSource
Pointer	to	the	source	of	the	XML	grammar	text.

pDest
Pointer	to	the	destination	stream	for	the	binary	grammar.

pHeader
Pointer	to	the	stream	to	write	the	C/C++	header	information
(from	the	<DEFINE>	tags)	to	(e.g.,	#define	myterm	3).

pReserved
Reserved.	Do	not	use.

pErrorLog
Pointer	to	the	error	log	receiving	the	messages.

dwFlags
[in]	Not	currently	used.	Must	be	zero.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG One	of	the	parameters	is	bad	or

invalid.
FAILED	(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpITNProcessor
SAPI	implements	the	ISpITNProcessor	interface	to	perform
Inverse	Text	Normalization	(ITN).

Methods	in	Vtable	Order

ISpITNProcessor
Methods Description
LoadITNGrammar Loads	an	inverse	text	normalization

grammar.
ITNPhrase Parses	an	inverse	text	normalization

phrase.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpITNProcessor::LoadITNGrammar
ISpITNProcessor::LoadITNGrammar	loads	an	inverse	text
normalization	(ITN)	grammar.	The	loaded	grammar	can	be	used
by	either	SAPI	or	the	speech	recognition	(SR)	engine.
HRESULT	LoadITNGrammar(

			WCHAR			*pszCLSID

);

Parameters

pszCLSID
Address	of	the	null-terminated	string	containing	the	CLSID	of
the	ITN	grammar	object	implementing	ISpCFGInterpreter.

Return	values

Value Description
S_OK Function	completed

successfully.
E_POINTER pszCLSID	is	invalid	or	bad.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpITNProcessor::ITNPhrase
ISpITNProcessor::ITNPhrase	parses	an	inverse	text
normalization	(ITN)	on	a	previously	loaded	grammar.
HRESULT	ITNPhrase(

			ISpPhraseBuilder			*pPhrase

);

Parameters

pPhrase
Address	of	the	phrase	to	parse.

Return	values

Value Description
S_OK Function	completed	successfully.
S_FALSE No	grammar	is	loaded.
E_INVALIDARG No	words	are	available.
SP_NO_RULE_ACTIVE No	rule	is	active	by	default	in	ITN

grammar.
E_OUTOFMEMORY Not	enough	memory	to	complete

operation.
FAILED(hr) Appropriate	error	message.

Remarks
The	ITNPhrase	will	attempt	to	parse	the	pPhrase	passed	in	using
the	ITN	grammar	loaded	by	ISpITNProcessor::LoadITNGrammar.
If	a	parse	is	found,	the	ITN	grammar	will	add	the	display	text
replacement.	For	example,	AddReplacement	"$100"	for	"one
hundred	dollars".

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpCFGInterpreter
ISpCFGInterpreter	interface	supports	loading	compiled
grammars	and	modifying	semantic	properties	and	text
replacements.

When	to	use
The	ISpCFGInterpreter	interface	does	not	need	to	be	directly
called	by	applications	or	speech	recognition	(SR)	engines.	SAPI
will	create	the	interpreter	and	call	the	appropriate	methods	as
needed.	See	the	individual	methods	for	scenarios	when	the
methods	will	be	called.

When	to	implement
The	ISpCFGInterpreter	interface	should	be	implemented	by
applications	and	SR	engine	vendors	who	need	to	either	load
compiled	grammars	from	COM	objects	(e.g.,	distributed	COM
objects	on	a	server),	or	when	an	application	scenario	requires
that	the	semantic	properties	or	display	text	be	replaced	with
dynamic	information.
For	example,	the	context-free	grammar	(CFG)	interpreter	could
be	written	to	dynamically	run	code	depending	on	the	order	and
structure	of	the	semantic	properties	in	a	recognized	phrase,	or	it
could	replace	the	text	"today"	with	the	actual	day	of	the	week.

Methods	in	Vtable	Order

ISpCFGInterpreter
Methods Description
InitGrammar Initializes	a	grammar	that	is	loaded

from	an	object	or	DLL.
Interpret Examines	a	grammar	and	generates

new	properties	and	text
replacements.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpCFGInterpreter::InitGrammar
ISpCFGInterpreter_InitGrammar	initializes	a	grammar	that	is
loaded	from	an	object	or	DLL.

When	to	call
InitGrammar	is	typically	called	by	SAPI	only	when	a	grammar
includes	a	rule	reference	(e.g.,	ProgId).	The	following	grammar
includes	XML:
<RULEREF	NAME="MyRule"	OBJECT="MyObject"/>

SAPI	will	internally	call	::CoCreateInstance	on	the	COM	object
registered	under	the	programmatic	identifier	(ProgId),
"MyObject",	and	query	for	the	ISpCFGInterpreter	interface.	SAPI
will	call	ISpCFGInterpreter::InitGrammar	and	pass	in	the	string
identifier	"MyRule"	so	that	the	COM	object's	implementation	can
return	a	pointer	to	the	compiled	grammar	binary	(typically
stored	in	a	resource).

When	to	implement
Application	writers	and	engine	vendors	can	use	the
ISpCFGInterpreter	interface	to	create	COM	objects	that	contain
compiled	grammars.	For	example,	the	Microsoft	Speech
Recognition	engine	(that	ships	in	the	Microsoft	Speech	SDK)
implements	inverse	text	normalization	(INT)	as	a	compiled	SAPI
context-free	grammar	(CFG),	which	is	retrievable	using	the
ISpCFGInterpreter::InitGrammar	method	call.
HRESULT	InitGrammar(

			const	WCHAR			*pszGrammarName,

			const	void			**pvGrammarData

);

Parameters

pszGrammarName
[in]	Address	of	a	null-terminated	string	of	the	grammar	to	be
loaded.

pvGrammarData
[in]	Address	of	a	pointer	to	the	serialized	binary	grammar.

Return	values

Value Description
S_OK Function	completed

successfully.
FAILED(hr) Appropriate	error	message.

Example
The	following	code	snippet	illustrates	how	an	application	writer
or	engine	vendor	might	implement	the	InitGrammar	method.
STDMETHODIMP	CMyCFGInterpreter::InitGrammar(const	WCHAR	*	pszGrammarName,	const	void	**	pvGrammarData)
{
	 HRESULT	hr	=	S_OK;

	 //	find	the	resource	data	of	type	COMPILED_CFG,	which	has	the	caller's	specified	name
	 HRSRC	hResInfo	=	::FindResource(_Module.GetModuleInstance(),	pszGrammarName,	_T("COMPILED_CFG"));
	 if	(hResInfo)
	 {
	 	 //	Load	the	resource	into	a	global	handle
	 	 HGLOBAL	hData	=	::LoadResource(_Module.GetModuleInstance(),	hResInfo);
	 	 if	(hData)
	 	 {
	 	 	 //	return/store	a	pointer	to	the	compiled	grammar
	 	 	 *pvGrammarData	=	::LockResource(hData);
	 	 	 if	(*pvGrammarData	==	NULL)
	 	 	 {
	 	 	 	 hr	=	HRESULT_FROM_WIN32(::GetLastError());
	 	 	 }
	 	 }
	 	 else
	 	 {
	 	 	 hr	=	HRESULT_FROM_WIN32(::GetLastError());
	 	 }
	 }
	 else
	 {
	 	 hr	=	HRESULT_FROM_WIN32(::GetLastError());
	 }

	 return	hr;
}

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpCFGInterpreter::Interpret
ISpCFGInterpreter::Interpret	examines	a	grammar	and
generates	new	properties	and	text	replacements.
Interpret	is	typically	called	by	SAPI	only	when	a	grammar
includes	a	reference	to	a	context-free	grammar	(CFG)
interpreter.
<RULE	NAME="MyRule"	INTERPRETER="TRUE"/>

SAPI	will	internally	call	ISpCFGInterpreter_Interpret	whenever
the	speech	recognition	engine	calls
ISpSREngineSite_ParseFromTransitions	with	a	rule	handle
matching	"MyRule".
Application	writers	and	engine	vendors	can	use	the
ISpCFGInterpreter	interface	to	manipulate	the	semantic
properties	returned	to	the	application.	For	example,	the	CFG
interpreter	could	detect	whenever	the	grammar	contained	a
semantic	property	called	"Today"	and	replace	the	semantic
property	value	with	the	actual	system	date	and	time.
HRESULT	Interpret(

			ISpPhraseBuilder								*pPhrase,

			const	ULONG														ulFirstElement,

			const	ULONG														ulCountOfElements,

			ISpCFGInterpreterSite			*pSite

);

Parameters

pPhrase
[in]	Address	of	the	ISpPhraseBuilder	interface	containing	the
phrase	information.

ulFirstElement

[in]	Value	specifying	the	location	of	the	first	element	in
pPhrase.

ulCountOfElements
[in]	Value	specifying	the	number	of	phrase	elements	in
pPhrase.

pSite
[in]	Address	of	the	ISpCFGInterpreterSite	interface	containing
methods	that	can	be	used	to	attach	semantic	properties	or
text	replacements	to	the	parent	phrase.

Return	values

Value Description
S_OK Function	completed

successfully.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpCFGInterpreterSite
This	interface	is	used	by	rule	interpreters	to	set	properties	and
text	replacements	in	the	parent	phrase.

When	To	Use
The	ISpCFGInterpreterSite	interface	allows	context-free
grammar	(CFG)	interpreters	(see	ISpCFGInterpreter)	to	access
the	semantic	property	tree	and	the	phrase	element	structure,	so
that	it	can	modify	and	update	the	properties	or	text
replacements.

When	To	Implement
The	ISpCFGInterpreterSite	interface	is	implemented	by	SAPI,
and	is	sent	to	the	CFG	interpreter	(see	ISpCFGInterpreter)	when
the	speech	recognition	engine	recognizes	a	rule	that	uses	the
interpreter	(see	ISpSREngineSite::ParseFromTransitions).

Methods	in	Vtable	Order

ISpCFGInterpreterSite
Methods Description
AddTextReplacement Adds	one	text	replacement	to	the

phrase.
AddProperty Adds	a	property	entry	to	the	phrase

object.
GetResourceValue Retrieves	the	resource	information

for	a	grammar.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpCFGInterpreterSite::AddTextReplacement
ISpCFGInterpreterSite::AddTextReplacement	adds	one	text
replacement	to	the	phrase.	The	object	must	have	been
initialized	by	calling	SetPhrase	prior	to	calling	this	method.

HRESULT	AddTextReplacement(

			SPPHRASEREPLACEMENT			*pReplace

);

Parameters

pReplace
[in]	Address	of	the	SPPHRASEREPLACEMENT	that	contains	the
replacement	text.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG pReplace	is	invalid	or	bad.
SPERR_UNINITIALIZED The	object	is	uninitialized.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpCFGInterpreterSite::AddProperty
ISpCFGInterpreterSite::AddProperty	adds	a	property	entry
to	the	phrase	object.
HRESULT	AddProperty(

		const		SPPHRASEPROPERTY			*pProperty

);

Parameters

pProperty
[in]	Address	of	the	SPPHRASEPROPERTY	structure	that
contains	the	property	information.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG pProperty	is	bad	or	invalid.
SPERR_UNINITIALIZED The	object	is	uninitialized.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpCFGInterpreterSite::GetResourceValue
ISpCFGInterpreterSite::GetResourceValue	retrieves	the
resource	information	for	a	grammar.
HRESULT	GetResourceValue(

			const	WCHAR					*pszResourceName,

			WCHAR										**ppCoMemResource

);

Parameters

pszResourceName
[in]	The	name	of	the	resource	from	which	to	retrieve	the
grammar	information.

ppCoMemResource
[out]	Pointer	containing	the	passed	back	resource	value.	
Applications	implementing	this	method	must	call
CoTaskMemFree()	to	free	memory	associated	with	this
resource.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG One	of	the	parameters	is	bad	or

invalid.
E_OUTOFMEMORY Exceeded	available	memory.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Resource	Manager	interfaces	(DDI-level)
The	following	section	covers:

ISpObjectTokenEnumBuilder
ISpTokenUI

ISpTaskManager
ISpThreadControl
ISpThreadTask

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpObjectTokenEnumBuilder
This	interface	inherits	from	IEnumSpObjectTokens.

Methods	in	Vtable	Order

ISpObjectTokenEnumBuilder
Methods Description
SetAttribs Sets	the	required	and	optional

token	enumerator	attribute
information.

AddTokens Adds	tokens	to	the	object
token	enumerator.

AddTokensFromDataKey Adds	a	new	token	using
specified	subkey	and
CategoryId	information.

AddTokensFromTokenEnum Adds	a	new	token	from	an
enumerated	list	of	object
tokens.

Sort Sorts	the	list	of	enumerated
object	tokens.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpObjectTokenEnumBuilder::SetAttribs
ISpObjectTokenEnumBuilder::SetAttribs	sets	the	required
and	optional	token	enumerator	attribute	information.	This
function	can	be	called	only	once	for	the	same	object.
HRESULT	SetAttribs(

			const	WCHAR			*pszReqAttribs,

			const	WCHAR			*pszOptAttribs

);

Parameters

pszReqAttribs
Address	of	a	null-terminated	string	containing	the	required
attribute	information.

pszOptAttribs
Address	of	a	null-terminated	string	containing	the	optional
attribute	information.

Return	values

Value Description
S_OK Function	completed	successfully.
SPERR_ALREADY_INITIALIZED The	object	has	already	been

initialized.
E_OUTOFMEMORY Exceeded	available	memory.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpObjectTokenEnumBuilder::AddTokens
ISpObjectTokenEnumBuilder::AddTokens	adds	tokens	to	the
object	token	enumerator.
HRESULT	AddTokens(

			ULONG														cTokens,

			ISpObjectToken			**pToken

);

Parameters

cTokens
The	number	of	object	tokens	being	added	to	the	sequence.

pToken
Address	of	a	pointer	to	an	ISpObjectToken	object	containing
the	information	associated	with	the	tokens	being	added.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG One	or	more	parameters	are	invalid.
E_POINTER Invalid	pointer.
E_OUTOFMEMORY Exceeded	available	memory.
SPERR_UNINITIALIZED The	object	has	not	been	properly

initialized.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpObjectTokenEnumBuilder::AddTokensFromDataKey
ISpObjectTokenEnumBuilder::AddTokensFromDataKey
adds	a	new	token	using	specified	subkey	and	CategoryId
information.
HRESULT	AddTokensFromDataKey(

			ISpDataKey				*pDataKey,

			const	WCHAR			*pszSubKey,

			const	WCHAR			*pszCategoryId

);

Parameters

pDataKey
Address	of	an	ISpDataKey	interface	that	specifies	the	system
registry	key	from	which	to	create	the	token.

pszSubKey
Address	of	a	null-terminated	string	containing	the	system
registry	subkey	name.

pszCategoryId
Address	of	a	null-terminated	string	containing	the	category
identifier	information	for	the	system	registry	subkey.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG One	or	more	parameters	are	invalid.
SPERR_UNINITIALIZED The	object	has	not	been	properly

initialized.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpObjectTokenEnumBuilder::AddTokensFromTokenEnum
ISpObjectTokenEnumBuilder::AddTokensFromTokenEnum
adds	new	tokens	from	an	enumerated	list	of	object	tokens.
HRESULT	AddTokensFromTokenEnum(

			IEnumSpObjectTokens			*pTokenEnum

);

Parameters

pTokenEnum
Address	of	an	IEnumSpObjectTokens	interface	containing	the
list	of	enumerated	object	tokens	to	add.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG One	or	more	parameters	are	invalid.
SPERR_UNINITIALIZED The	object	has	not	been	properly

initialized.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpObjectTokenEnumBuilder::Sort
ISpObjectTokenEnumBuilder::Sort	sorts	the	list	of
enumerated	object	tokens.
HRESULT	Sort(

			const	WCHAR			*pszTokenIdToListFirst

);

Parameters

pszTokenIdToListFirst
Address	of	a	null-terminated	string	of	tokenId	for	the	first
token	in	the	sorted	list.

Return	values

Value Description
S_OK Function	completed	successfully.
E_POINTER Invalid	pointer.
SPERR_UNINITIALIZED The	object	has	not	been	properly

initialized.
FAILED(hr) Appropriate	error	message.

If	the	optional	attributes	of	the	EnumBuilder	have	been	set,	the
first	token	in	the	EnumBuilder	after	the	Sort	call	will	be	the
token	that	matches	the	optional	attributes	best,	not	the	token
that	pszTokenIdToListFirst	refers	to.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpTokenUI
Provides	developers	with	a	means	to	programmatically	manage
user-interface	associated	with	an	ISpObjectToken.

When	To	Implement

The	ISpTokenUI	interface	should	be	implemented	so	that	the
object	can	allow	other	applications	to	display	the	UI.	For
example,	an	SR	engine	(see	ISpRecognizer)	has	a	UI	for	Training
(see	SPDUI_UserTraining),	and	it	would	be	helpful	for	an
application	to	be	able	to	display	the	Training	UI	as	appropriate.

Example
The	following	code	snippet	illustrates	the	use	of	ISpTokenUI
using	QueryInterface.
				HRESULT	hr	=	S_OK;

				//	find	the	preferred	multimedia	input	object	token

				hr	=	SpFindBestToken(SPCAT_AUDIOIN,	L"Technology=MMSys",	NULL,	&cpObjectToken);

				//	Check	hr

				//	get	the	multimedia	object	token's	UI

				hr	=	cpObjectToken->QueryInterface(&cpTokenUI);

				//	Check	hr

The	following	code	snippet	illustrates	the	use	of	ISpTokenUI
using	CoCreateInstance.	The	user	must	know	the	exact	CLSID	of
the	intended	UI	object.
				HRESULT	hr	=	S_OK;

				//	create	the	Token	UI	for	the	UI	object	CLSID_MY_TOKEN_UI

				hr	=	cpTokenUI.CoCreateInstance(CLSID_MY_TOKEN_UI);

				//	Check	hr

Methods	in	Vtable	Order

ISpTokenUI	Methods Description
IsUISupported Determines	if	the	specified	UI	type	is

supported	by	the	token.
DisplayUI Displays	the	UI	associated	with	the

object	token.

Development	Helpers

Helper	Functions Description
SpCreateBestObject Creates	the	most

appropriate	object
based	on	specific
criteria.

SpFindBestToken Finds	the	most
appropriate
IspObjectToken
based	on	specific
criteria.

SpCreateObjectFromToken Creates	an	object
based	on	a
specified
ISpObjectToken.

SpCreateDefaultObjectFromCategoryId Creates	the	default
object	from	a
specific	category.

SpGetTokenFromId Creates	an
ISpObjectToken
based	on	a	token
id.

SpGetDefaultTokenFromCategoryId Creates	the	default
ISpObjectToken
from	a	specific
category.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpTokenUI::IsUISupported
ISpTokenUI::IsUISupported	determines	if	the	specified	UI
type	is	supported	by	the	token.
[local]	HRESULT	IsUISupported(

			const	WCHAR			*pszTypeOfUI,

			void										*pvExtraData,

			ULONG										cbExtraData,

			IUnknown						*punkObject,

			BOOL										*pfSupported

);

Parameters

pszTypeOfUI
[in]	Address	of	a	null-terminated	string	containing	the
object's	UI	type.

pvExtraData
[in]	Pointer	to	additional	information	needed	for	the	object.
The	ISpTokenUI	object	implementer	dictates	the	format	and
usage	of	the	data	provided.

cbExtraData
[in]	Size,	in	bytes,	of	the	ExtraData.	The	ISpTokenUI	object
implementer	dictates	the	format	and	usage	of	the	data
provided.

punkObject
[in]	Address	of	the	object's	IUnknown	interface.	See	Remarks
section.

pfSupported

[out]	Address	of	a	variable	that	receives	the	value	indicating
support	for	the	interface.	This	value	is	set	to	TRUE	when	this
interface	is	supported	and	FALSE	otherwise.	If	this	value	is
TRUE,	but	the	return	code	is	S_FALSE,	the	UI	type
(pszTypeOfUI)	is	supported,	but	not	with	the	current
parameters	or	run-time	environment.	Check	with	the
implementer	of	the	UI	object	to	verify	run-time	requirements.

Return	values

Value Description
S_OK Function	completed	successfully.
S_FALSE The	UI	is	supported	but	not	with	the

current	run-time	environment	or
parameters.

E_INVALIDARG One	or	more	parameters	are	invalid.
E_POINTER Invalid	or	bad	pointer.
FAILED(hr) Error	returned	by	UI	object.

Remarks
When	asking	a	token	to	display	a	particular	piece	of	UI,	the
token	may	require	extra	functionality	that	only	it	understands.
Common	implementation	practice	for	accessing	this
functionality	is	to	QueryInterface	off	of	a	known	IUnknown
interface.	The	caller	of	ISpTokenUI::IsUISupported	can	set	the
punkObject	parameter	with	the	necessary	IUnknown	interface.
For	example,	asking	to	display	Speech	Recognition	Training	UI
requires	that	a	specific	SR	engine	be	used.

Example
The	following	code	snippet	illustrates	the	use	of
ISpTokenUI::IsUISupported	using	SPDUI_AudioProperties.
				HRESULT	hr	=	S_OK;

				//	get	the	default	input	audio	object	token

				hr	=	SpGetDefaultTokenFromCategoryId(SPCAT_AUDIOIN,	&cpObjectToken);

				//	Check	hr

				//	get	the	object	token's	UI

				hr	=	cpObjectToken->QueryInterface(&cpTokenUI);

				//	Check	hr

				//	check	if	the	default	audio	input	object	has	UI	for	Properties	

				hr	=	cpTokenUI->IsUISupported(SPDUI_AudioProperties,	NULL,	NULL,	NULL,	&fSupported);

				//	Check	hr

				//	if	fSupported	==	TRUE,	then	default	audio	input	object	has	UI	for	Properties	

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpTokenUI::DisplayUI
ISpTokenUI::DisplayUI	displays	the	UI	associated	with	the
object	token.
[local]	HRESULT	DisplayUI(

				HWND														hwndParent,

				const	WCHAR						*pszTitle,

				const	WCHAR						*pszTypeOfUI,

				void													*pvExtraData,

				ULONG													cbExtraData,

				ISpObjectToken			*pToken,

				IUnknown									*punkObject

);

Parameters

hwndParent
[in]	Specifies	the	handle	of	the	parent	window.

pszTitle
[in]	Address	of	a	null-terminated	string	containing	the
window	title	to	display	on	the	UI.	This	value	can	be	set	to
NULL	to	indicate	that	the	TokenUI	object	should	use	its
default	window	title.

pszTypeOfUI
[in]	Address	of	a	null-terminated	string	containing	the	UI	type
to	display.

pvExtraData
[in]	Pointer	to	additional	information	needed	for	the	object.
The	ISp	TokenUI	object	implementer	dictates	the	format	and
usage	of	the	data	provided.

cbExtraData
[in]	Size,	in	bytes,	of	the	ExtraData.	The	ISp	TokenUI	object
implementer	dictates	the	format	and	usage	of	the	data
provided.

pToken
[in]	Address	of	the	ISpObjectToken	containing	the	object
token	identifier.	See	Remarks	section.

punkObject
[in]	Address	of	the	IUnknown	interface	pointer.	See	Remarks
section.

Return	values

Value Description
S_OK Function	completed	successfully.
S_FALSE The	UI	is	supported	but	not	with	the

current	run-time	environment	or
parameters.

E_INVALIDARG One	or	more	parameters	are	invalid.
E_POINTER Invalid	or	bad	pointer.
FAILED(hr) Error	returned	by	UI	object.

Remarks
The	best-practice	for	using	ISpTokenUI	is	to	call
ISpTokenUI::IsUISupported	with	a	specific	UI	type	before	calling
DisplayUI.
The	call	to	DisplayUI	is	synchronous,	so	the	call	will	not	return
until	the	UI	has	been	closed.
The	token	may	require	extra	functionality	that	only	it
understands	in	order	to	display	a	particular	piece	of	UI.	Common
implementation	practice	for	accessing	this	functionality	is	to	use

QueryInterface	of	a	known	IUnknown	interface	or	create	the
object	associated	a	known	ISpObjectToken	instance.	The	caller
of	ISpTokenUI::DisplayUI	can	set	punkObject	with	the	necessary
IUnknown	interface	or	set	pToken	with	the	necessary
ISpObjectToken	interface.	For	example,	asking	to	display	Speech
Recognition	Training	UI	requires	that	a	specific	SR	engine	be
used.

Example
The	following	code	snippet	illustrates	the	use	of
ISpTokenUI::DisplayUI	using	SPDUI_AudioVolume.
				HRESULT	hr	=	S_OK;

				//	get	the	default	input	audio	object	token

				hr	=	SpGetDefaultTokenFromCategoryId(SPCAT_AUDIOIN,	&cpObjectToken);

				//	Check	hr

				//	get	the	object	token's	UI

				hr	=	cpObjectToken->QueryInterface(&cpTokenUI);

				//	Check	hr

				//	Check	if	default	audio	input	object	has	UI	for	volume

				hr	=	cpTokenUI->IsUISupported(SPDUI_AudioVolume,	NULL,	NULL,	NULL,	&fSupported);

				//	Check	hr

				//	if	fSupported	==	TRUE,	then	default	audio	input	object	has	UI	for	Volume

				//	Display	the	default	audio	input	object's	Volume	UI	

				hr	=	cpTokenUI->DisplayUI(MY_HWND,	MY_AUDIO_DIALOG_TITLE,	SPDUI_AudioVolume,	NULL,	NULL,	cpObjectToken,	NULL);

				//	Check	hr

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpTaskManager
When	to	Implement
This	interface	is	used	to	implement	a	task	management	service
provider	to	optimize	thread	usage.

Associated	Class	IDs
The	following	class	IDs	(CLSID)	may	be	used	with	this	interface.
A	complete	CLSID	listing	for	all	interfaces	is	in	the	Class	IDs
section.

CLSID_SpResourceManager

Methods	in	Vtable	Order

ISpTaskManager
Methods Description
SetThreadPoolInfo Sets	the	attributes	for	thread	pool

management.
GetThreadPoolInfo Retrieves	the	current	thread	pool

management	attributes.
QueueTask Adds	a	task	to	the	queue	for

asynchronous	task	processing.
CreateReoccurringTask Creates	a	task	entry	that	will	be

processed	on	a	high	priority	thread.
CreateThreadControl Creates	a	thread	control	object.
TerminateTask Interrupts	a	specified	task.
TerminateTaskGroup Terminates	a	group	of	tasks	that

match	a	specific	group	identifier.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpTaskManager::SetThreadPoolInfo
ISpTaskManager::SetThreadPoolInfo	sets	the	attributes	for
thread	pool	management.
HRESULT	SetThreadPoolInfo(

			const			SPTMTHREADINFO			*pPoolInfo

);

Parameters

pPoolInfo
[in]	Address	of	an	SPTMTHREADINFO	structure	that	receives
the	thread	management	information.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG pPoolInfo	is	invalid	or	pPoolInfo-

>lPoolSize	size	is	less	than	-1.
FAILED	(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpTaskManager::GetThreadPoolInfo
ISpTaskManager::GetThreadPoolInfo	retrieves	the	current
thread	pool	management	attributes.
HRESULT	GetThreadPoolInfo(

			SPTMTHREADINFO			*pPoolInfo

);

Parameters

pPoolInfo
[out]	Address	of	an	SPTMTHREADINFO	structure	that	contains
the	current	thread	management	information.

Return	values

Value Description
S_OK Function	completed

successfully.
E_POINTER pPoolInfo	is	invalid	or	bad.
FAILED	(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpTaskManager::QueueTask
ISpTaskManager::QueueTask	adds	a	task	to	the	queue	for
asynchronous	task	processing.
HRESULT	QueueTask(

			ISpTask			pTask,	

			void					*pvTaskData,	

			HANDLE				hCompEvent,	

			DWORD*			*pdwGroupId,	

			DWORD*			*pTaskID

);

Parameters

pTask
[in]	Address	of	an	ISpTask	interface	containing	the	task.

pvTaskData
[in]	Address	of	the	task	data	that	will	be	passed	to	the
ISpTask::Execute	method.

hCompEvent
[in]	Handle	of	the	task	completion	event.	This	event	will	be
set	when	the	Execute	method	returns.	This	parameter	can	be
NULL.

pdwGroupId
[in,	out]	Value	specifying	the	identifier	for	the	task	group.
This	value	may	be	NULL.	This	can	be	used	to	cancel	a	group
of	pending	tasks.

pTaskID
[out]	Value	specifying	the	task	identifier.	This	parameter	can

be	NULL	if	this	information	is	not	needed.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG pTask	is	invalid	or	bad.
E_POINTER pTaskId	or	pdwGroupId	is	invalid	or

bad.
FAILED	(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpTaskManager::CreateReoccurringTask
ISpTaskManager::CreateReoccurringTask	creates	a	task
entry	that	will	be	processed	on	a	thread	when	the
ISpNotifySink::Notify	method	is	called	on	the	task	control	object.
HRESULT	CreateReoccurringTask(

			ISpTask										*pTask,	

			void													*pvTaskData,	

			HANDLE												hCompEvent,	

			ISpNotifySink			**ppTaskCtrl

);

Parameters

pTask
[in]	Address	of	an	ISpTask	interface	containing	the	task.

pvTaskData
[in]	Pointer	that	will	be	passed	to	the	ISpTask::Execute
method.

hCompEvent
[in]	Handle	of	the	task	completion	event.	This	is	optional	and
can	be	NULL.	If	non-NULL,	this	event	handle	will	be	signaled
when	the	Execute	method	returns

ppTaskCtrl
[out]	Address	of	a	pointer	to	an	ISpNotifySink	interface.	Call
the	Notify()	method	on	this	object	to	cause	the	task	to	be
scheduled.

Return	values

Value Description
S_OK Function	completed

successfully.
E_INVALIDARG pTask	is	invalid	or	bad.
E_POINTER ppTaskCtrl	is	invalid	or	bad.
FAILED	(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpTaskManager::CreateThreadControl
ISpTaskManager::CreateThreadControl	allocates	a	thread
control	object	and	does	not	allocate	a	thread.

HRESULT	CreateThreadControl(

			ISpThreadTask							*pTask,	

			void																*pvTaskData,	

			long																	nPriority,	

			ISpThreadControl			**ppThreadCtrl

);

Parameters

pTask
[in]	Address	of	the	ISpThreadTask	interface	that	is	used	to
initialize	and	execute	the	task	thread.

pvTaskData
[in]	Data	passed	to	all	ISpThreadTask	member	functions.	This
value	can	be	NULL.

nPriority
[in]	The	Win32	priority	for	the	allocated	thread.

ppThreadCtrl
[out]	Address	of	a	pointer	to	an	ISpThreadControl	interface
that	receives	the	thread	control.

Return	values

Value Description
S_OK Function	completed

successfully.
E_INVALIDARG pTask	is	invalid	or	bad.
E_POINTER ppThreadCtrl	is	invalid	or	bad.
E_OUTOFMEMORY Exceeded	available	memory.
FAILED	(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpTaskManager::TerminateTask
ISpTaskManager::TerminateTask	interrupts	the	specified
task.
HRESULT	TerminateTask(

			DWORD			dwTaskId,

			ULONG			ulWaitPeriod

);

Parameters

dwTaskId
[in]	Value	specifying	the	identifier	of	the	task	to	interrupt.

ulWaitPeriod
[in]	Number	of	milliseconds	to	wait	before	interrupting	the
task.

Return	values

Value Description
S_OK Function	completed

successfully.
S_FALSE Method	timed	out.
FAILED	(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpTaskManager::TerminateTaskGroup
ISpTaskManager::TerminateTaskGroup	terminates	a	group
of	tasks	that	match	a	specific	group	identifier.
HRESULT	TerminateTaskGroup(

			DWORD			dwGroupId,

			ULONG			ulWaitPeriod

);

Parameters

dwGroupId
[in]	Value	specifying	the	identifier	for	the	task	group	to
interrupt.

ulWaitPeriod
[in]	Number	of	milliseconds	to	wait	before	interrupting	the
task	group.

Return	values

Value Description
S_OK Function	completed

successfully.
FAILED	(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpThreadControl
The	ISpThreadControl	interface	inherits	from	the	ISpNotifySink
interface.

Methods	in	Vtable	Order

ISpThreadControl
Methods Description
StartThread Initializes	a	thread	and	returns	a

window	handle.
WaitForThreadDone Specifies	the	time	interval	to	wait

before	ending	thread	processing.
TerminateThread Forces	immediate	termination	of	the

thread.
ThreadHandle Returns	the	thread	handle	of	the

allocated	thread.
ThreadId Returns	the	thread	ID	of	the

allocated	thread.
NotifyEvent Returns	the	Win32	event	handle	that

will	be	set	when	the	Notify()	method
is	called.

WindowHandle Returns	the	window	handle
associated	with	the	thread.

ThreadCompleteEvent Returns	an	event	that	the	client	can
use	to	wait	until	the	thread
processing	has	completed.

ExitThreadEvent Returns	the	event	passed	to	the
ISpThreadTask::ThreadProc	method.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpThreadControl::StartThread
ISpThreadControl::StartThread	initializes	a	thread	and
optionally	returns	a	window	handle.
HRESULT	StartThread(

			DWORD			dwFlags,

			HWND			*phwnd

);

Parameters

dwFlags
Reserved.	Must	be	zero.

phwnd
Optional	address	of	an	handle	to	a	window.	The	handle	of	the
new	window	will	be	returned	to	phwnd	if	this	parameter	is	non-
NULL.	A	window	will	not	be	created	if	this	parameter	is	NULL.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG One	or	more	parameters	are

invalid.
E_POINTER Invalid	pointer.
E_OUTOFMEMORY Exceeded	available	memory.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpThreadControl::WaitForThreadDone
ISpThreadControl::WaitForThreadDone	specifies	the	time
interval	to	wait	before	ending	thread	processing.
A	thread	can	be	forced	to	stop	running	or	can	wait	until	the
thread	stops	running.
HRESULT	WaitForThreadDone(

			BOOL							fForceStop,	

			HRESULT			*phrThreadResult,	

			ULONG						msTimeOut

);

Parameters

fForceStop
Flag	specifies	to	stop	thread	processing.	If	this	is	TRUE,
ISpThreadTask::ThreadProc	will	be	called	on	the	thread	proc
of	the	worker	thread.	The	ThreadProc	parameters	of
hExitThreadEvent	handle	will	be	filled	out	and
pfContinueProcessing	flag	set	to	FALSE.

phrThreadResult
If	this	function	returns	S_OK,	this	address	will	contain	the
value	returned	from	the	thread	proc.

msTimeOut
Time-out	interval	in	milliseconds	to	wait	before	timing	out	the
wait	operation.

Return	values

Value Description
S_OK Function	completed	successfully.

E_INVALIDARG One	or	more	parameters	are
invalid.

Remarks
Specifying	fForceStop=TRUE	with	a	timeout	of	zero	will	simply
request	that	the	thread	exit	and	this	method	will	return
immediately.	The	caller	could	then	wait	for	the
ThreadCompleteEvent	using	a	Win32	wait	function.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpThreadControl::TerminateThread
ISpThreadControl::TerminateThread	forces	immediate
termination	of	the	thread.
HRESULT		TerminateThread	(void);

Parameters
None.

Return	values

Value Description
S_OK Function	completed

successfully.

Remarks
This	function	should	be	used	with	caution,	as	unintended	results
can	occur.	It	should	only	be	used	to	force	a	thread	to	stop	when
all	other	attempts	to	stop	the	thread	have	been	unsuccessful.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpThreadControl::ThreadHandle
ISpThreadControl::ThreadHandle	returns	the	thread	handle
of	the	allocated	thread.	This	handle	should	not	be	used	to	wait
for	the	completion	of	the	thread	procedure.	Use
ISpThreadControl::ThreadCompleteEvent,	or
ISpThreadControl::WaitForThreadDone.

HANDLE	ThreadHandle	(void);

Parameters
None.

Return	values
Returns	the	thread	handle,	or	NULL	if
ISpThreadControl::StartThread	has	not	been	called	for	this
thread	control	object.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpThreadControl::ThreadId
ISpThreadControl::ThreadId	returns	the	thread	ID	of	the
allocated	thread.
Returns	the	Win32	thread	ID	of	the	thread	associated	with	this
thread	control	object.	If	StartThread	has	not	been	called,	this
returns	zero.
DWORD			ThreadId		(void);

Parameters
None.

Return	values
The	ID	of	the	thread.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpThreadControl::NotifyEvent
ISpThreadControl::NotifyEvent	returns	the	Win32	event
handle	that	will	be	set	when	Notify()	is	called.
The	event	may	be	passed	to	ISpThreadTask::ThreadProc.

HANDLE		NotifyEvent	(void);

Parameters
None.

Return	values
Returns	the	event	handle.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpThreadControl::WindowHandle
ISpThreadControl::WindowHandle	returns	the	window
handle	associated	with	this	ISpThreadControl	object.	This	will	be
NULL	unless	the	caller	of	ISpThreadControl::StartThread
specified	a	non-NULL	HWND	pointer.

HWND		WindowHandle	(void);

Parameters
None.

Return	values
Returns	the	window	handle.	NULL	if	no	handle	is	associated	with
this	object.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpThreadControl::ThreadCompleteEvent
ISpThreadControl::ThreadCompleteEvent	returns	a	Win32
event	handle	that	can	be	used	to	wait	for	the	completion	of	the
thread.

HANDLE		ThreadCompleteEvent	(void);

Parameters
None.

Return	values
Returns	the	Win32	event	handle.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpThreadControl::ExitThreadEvent
ISpThreadControl::ExitThreadEvent	returns	the	event
handle	passed	to	the	ISpThreadTask::ThreadProc.	This	should
never	be	set	manually.	Use	WaitForThreadDone	to	force	a	thread
to	exit.
HANDLE			ExitThreadEvent(void);

Parameters
none.

Return	values
Win32	event	handle.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpThreadTask
The	ISpThreadTask	interface	simplifies	thread-based	operations.
Clients	can	implement	this	virtual	C++	interface	to	simplify	the
management	of	threads.	SAPI	provides	coordination	methods	for
starting,	initializing,	and	stopping	the	thread.	See	the
ISpThreadControl	documentation	for	more	information.	Clients
simply	implement	three	methods	which	will	be	called	on	the
allocated	thread.

When	to	Implement
Use	SpThreadControl	objects	to	allocate	threads	for	an	object.
This	is	not	a	COM	interface.

Methods	in	Vtable	Order

ISpThreadTask
Methods Description
InitThread Method	called	on	the	allocated

thread.	If	the	method	returns	an
error,	the
ISpThreadControl::StartThread
method	will	fail.

ThreadProc Implements	the	processing	of	the
thread.

WindowMessage Implements	the	processing	of
window	messages.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpThreadTask::InitThread
ISpThreadTask::InitThread	is	called	on	the	allocated	thread.
If	the	method	returns	an	error,	the
ISpThreadControl::StartThread	method	will	fail.	
This	method	is	called	on	the	newly	allocated	thread	when
ISpThreadControl::StartThread	is	called.
virtual	HRESULT	STDMETHODCALLTYPE	InitThread(

			void			*pvTaskData,

			HWND				hwnd

)	=	0;

Parameters

pvTaskData
[in]	The	same	pointer	is	passed	to
ISpTaskManager::CreateThreadControl.

hwnd
[in]	A	window	handle	if,	and	only	if,	the	caller	to
ISpTaskManager::CreateThreadControl	specified	that	a
window	handle	be	created	by	passing	a	non-NULL	HWND
pointer	to	CreateThreadControl.	Otherwise	this	parameter	is
NULL.

Return	values

S_OK Function	completed	successfully.
Other	success Success	code	will	be	returned	to

caller	of	the	StartThread	method	and
the	thread	will	continue.

Failure	code Function	failed.	Failure	code	will	be
returned	to	caller	of	the	StartThread

method	and	the	thread	will	not
continue.

Remarks
The	caller	of	StartThread	method	will	be	blocked	until	the
InitThread	method	completes,	and	the	HRESULT	returned	from
this	method	will	be	returned	from	StartThread.	If	the	return	code
from	this	method	indicates	failure,	the	thread	will	be
terminated,	and	ThreadProc	and	WindowMessage	will	never	be
called.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpThreadTask::ThreadProc
ISpThreadTask::ThreadProc	implements	the	main	processing
loop	of	the	thread.	This	method	will	be	application	specific.
virtual	HRESULT	STDMETHODCALLTYPE	ThreadProc(

			void																	*pvTaskData,

			HANDLE																hExitThreadEvent,

			HANDLE																hNotifyEvent,

			HWND																		hwndWorker,

			volatile	const	BOOL		*pfContinueProcessing

)	=	0;

Parameters

pvTaskData
[in]	Pointer	passed	to	ISpTaskManager::CreateThreadControl.

hExitThreadEvent
[in,	out]	An	event	handle	which	when	signaled	indicates	that
the	thread	process	should	exit.

hNotifyEvent
[in]	A	handle	to	an	auto-reset	event	object	that	will	be	set	if
the	ISpThreadControl::Notify	method	is	called.	This
functionality	is	provided	for	any	notification	event	the	client
determines,	or	it	can	optionally	be	ignored	if	it	is	not	needed.

hwndWorker
[in]	A	window	handle.	This	parameter	will	be	NULL	if	the
caller	of	ISpThreadControl::StartThread	passed	a	NULL	HWND
pointer	to	StartThread.

pfContinueProcessing

[in]	Boolean	flag	indicating	whether	to	continue	processing.
TRUE	indicates	the	process	should	continue;	FALSE
otherwise.	This	mirrors	the	functionality	of	the
hExitThreadEvent,	but	provides	a	lightweight	mechanism	for
checking	for	a	request	to	exit	without	calling	a	Win32
WaitForxxx	object	function.

Return	values

S_OK Function	completed
successfully.

S_FAILED Function	failed.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpThreadTask::WindowMessage
ISpThreadTask::WindowMessage	implements	the	processing
of	window	messages.
virtual	LRESULT	STDMETHODCALLTYPE	WindowMessage(

			void				*pvTaskData,

			HWND					hWnd,

			UINT					Msg,

			WPARAM			wParam,

			LPARAM			lParam

)	=	0;

Parameters

pvTaskData
[in]	Pointer	passed	to	ISpTaskManager::CreateThreadControl.

hWnd
[in]	A	window	handle.

Msg
[in]	The	type	of	window	message.

wParam
Message-specific	information.	This	will	change	based	on	the
Msg	value.

lParam
Message-specific	information.	This	will	change	based	on	the
Msg	value.

Return	values

The	return	value	is	message	specific.

Remarks
Not	all	applications	will	need	a	window	and	this	method	may	be
left	unimplemented.	If	the	caller	of
ISpThreadControl::StartThread	passes	a	non-NULL	HWND
pointer,	the	client	must	implement	this	function	and	must	also
use	a	MessageWaitForMultipleObjects()	loop	in	the	ThreadProc.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Speech	Recognition	interfaces	(DDI-
level)
The	following	section	covers:

ISpPhraseBuilder

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpPhraseBuilder
The	ISpPhraseBuilder	interface	inherits	from	ISpPhrase.

Methods	in	Vtable	Order

ISpPhraseBuilder
Methods Description
InitFromPhrase Initializes	from	a	phrase.
InitFromSerializedPhrase Initializes	a	phrase	from	a

serialized	phrase.
AddElements Adds	a	copy	of	the	given	element

to	the	end	of	this	object's	element
list.

AddRules Adds	phrase	rules	to	the	phrase
object.

AddProperties Adds	property	entries	to	the
phrase	object.

AddReplacements Adds	one	or	more	text
replacements	to	the	phrase.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpPhraseBuilder::InitFromPhrase
ISpPhraseBuilder::InitFromPhrase	initializes	from	a	phrase.
HRESULT	InitFromPhrase(

			const			SPPHRASE			*pSrcPhrase

);

Parameters

pSrcPhrase
Address	of	a	SPPHRASE	data	structure	containing	the	phrase
information.	If	pSrcPhrase	is	NULL,	the	object	is	reset	to	its
initial	state.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG pSrcPhrase	or	pSrcPhrase-

>Rule.pNextSibling	is	invalid	or	bad.
Alternatively,	pSrcPhrase->LangID
may	be	zero	or	pSrcPhrase->cbSize
does	not	indicate	the	same	size	as
pSrcPhrase.

FAILED(hr) Appropriate	error	message.

Example
The	following	code	snippet	demonstrates	creating	and
initializing	from	a	phrase.

HRESULT	hr;

CComPtr<ISpPhraseBuilder>	cpPhraseBuilder;

CComPtr<ISpPhrase>								cpPhrase;

SPPHRASE				Phrase;

hr	=	cpPhraseBuilder.CoCreateInstance(CLSID_SpPhraseBuilder);

if	(SUCCEEDED(hr))

{

				//We	initialize	the	Phrase	data	structure	

}

if	(SUCCEEDED(hr))

{

				hr	=	cpPhraseBuilder->InitFromPhrase(&Phrase;);

}

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpPhraseBuilder::InitFromSerializedPhrase
ISpPhraseBuilder::InitFromSerializedPhrase	initializes	a
phrase	from	a	serialized	phrase.
HRESULT	InitFromSerializedPhrase(

			const			SPSERIALIZEDPHRASE			*pPhrase

);

Parameters

pPhrase
Address	of	the	SPSERIALIZEDPHRASE	structure	that	contains
the	phrase	information.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG pSrcPhrase	or	pSrcPhrase-

>cbSerializedSize	is	invalid	or	bad.
FAILED(hr) Appropriate	error	message.

Example
The	following	code	fragment	demonstrates
InitFromSerializedPhrase.
HRESULT	hr;

CComPtr<ISpRecoResult>							RecoResult;

CComPtr<ISpPhraseBuilder>				pPhraseBuilder;

SPSERIALIZEDPHRASE											*pSerializedPhrase=NULL;

CComPtr<ISpStream>											cpStream;

LARGE_INTEGER			liZero	=	{0,0};

hr	=	SPBindToFile(L"SerializedPhrase.sp",	SPFM_OPEN_READONLY,	&cpStream;,	NULL,	NULL,	SPFEI_ALL_EVENTS);

if	(hr	==	S_OK)

{

			hr	=	cpStream->Seek(liZero,	STREAM_SEEK_SET,	NULL);

			ULONG	ulSerializedSize	=	0;

			hr	=	cpStream->Read(&ulSerializedSize;,	sizeof(ULONG),	NULL);

			if	(SUCCEEDED(hr))

			{

	 //We	need	to	seek	back	and	read	the	whole	chunk	of	data	in.

	 LARGE_INTEGER	liseek;

	 liseek.QuadPart		-=	sizeof(ULONG);

	 hr	=	cpStream->Seek(liseek,	STREAM_SEEK_CUR,	NULL);

	 pSerializedPhrase	=	(SPSERIALIZEDPHRASE*)::CoTaskMemAlloc(ulSerializedSize);

	 if	(SUCCEEDED(hr)	&&	pSerializedPhrase)

	 {

	 	 hr	=	cpStream->Read(pSerializedPhrase,	ulSerializedSize,	NULL);

	 }

	 if	(SUCCEEDED(hr))

	 {

	 	 CComPtr<ISpPhraseBuilder>	cpPhraseBuilder;

																hr	=	cpPhraseBuilder.CoCreateInstance(CLSID_SpPhraseBuilder);

																if	(SUCCEEDED(hr))

																{

				 												hr	=	cpPhraseBuilder->InitFromSerializedPhrase(pSerializedPhrase);

																}

	 }

	 ::CoTaskMemFree(pSerializedPhrase);

				}

}

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpPhraseBuilder::AddElements
ISpPhraseBuilder::AddElements	adds	a	copy	of	the	given
element	to	the	end	of	this	object's	element	list.
HRESULT	AddElements(

			ULONG																				cElements,

			const	SPPHRASEELEMENT			*pElement

);

Parameters

cElements
Specifies	the	number	of	phrase	elements	to	add.

pElement
Address	of	the	SPPHRASEELEMENT	data	structure	containing
the	phrase	element	to	add.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG One	or	more	parameters	are	invalid.
SPERR_UNINITIALIZED The	object	has	not	been	properly

initialized.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpPhraseBuilder::AddRules
ISpPhraseBuilder::AddRules	adds	phrase	rules	to	the	phrase
object.
HRESULT	AddRules(

		const	SPPHRASERULEHANDLE			hParent,

		const	SPPHRASERULE								*pRule,

		SPPHRASERULEHANDLE								*phNewRule

);

Parameters

hParent
[in]	Handle	to	the	parent	phrase	rule.

pRule
[in]	Address	of	the	SPPHRASERULE	structure	that	contains
the	phrase	rule	information.

phNewRule
[out]	Address	of	the	handle	of	SPPHRASERULEHANDLE	that
contains	the	new	phrase	rule	information.

Return	values

Value Description
S_OK Function	completed	successfully.
E_POINTER Invalid	pointer.
SPERR_UNINITIALIZED The	object	has	not	been	properly

initialized.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpPhraseBuilder::AddProperties
ISpPhraseBuilder::AddProperties	adds	property	entries	to
the	phrase	object.
HRESULT	AddProperties(

			const	SPPHRASEPROPERTYHANDLE	hParent,	

			const	SPPHRASEPROPERTY						*pProperty,

			SPPHRASEPROPERTYHANDLE						*phNewProperty

);

Parameters

hParent
[in]	Handle	to	the	parent	phrase	element.

pProperty
[in]	Address	of	the	SPPHRASEPROPERTY	structure	that
contains	the	property	information.

phNewProperty
[out]	Address	of	the	handle	of	SPPHRASEPROPERTY	that
contains	the	new	property	information.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG One	or	more	parameters	are

invalid.
E_POINTER Invalid	pointer.
SPERR_UNINITIALIZED The	object	has	not	been	properly

initialized.
SPERR_ALREADY_INITIALIZED The	object	has	already	been

initialized.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpPhraseBuilder::AddReplacements
ISpPhraseBuilder::AddReplacements	adds	one	or	more	text
replacements	to	the	phrase.
HRESULT	AddReplacements(

			ULONG																								cReplacements,

			const	SPPHRASEREPLACEMENT			*pReplacements

);

Parameters

cReplacements
The	number	of	replacement	phrase	elements.

pReplacements
Address	of	the	SPPHRASEREPLACEMENT	structure	that
contains	the	phrase	element	replacement	information.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG One	or	more	parameters	are	invalid.
SPERR_UNINITIALIZED The	object	has	not	been	properly

initialized.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Speech	Recognition	Engine	interfaces
(DDI-level)
The	following	section	covers:

ISpPrivateEngineCall
ISpSREngine
ISpSREngineSite

ISpSRAlternates

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

_ISpPrivateEngineCall
This	interface	is	obtained	by	calling	the	QueryInterface	method
of	the	ISpRecoContext	interface.	However,	applications	should
not	directly	use	_ISpPrivateEngineCall	interface.
Applications	should	call	the	QueryInterface	method	of	the
recognition	context	for	a	particular	engine	extension	interface
that	is	implemented	by	their	engine.	SAPI	will	create	the	engine
extension	class	identified	in	ExtensionCLSID	attribute	of	the
engine	object	token.	This	interface	should	call	the
QueryInterface	method	for	_ISpPrivateEngineCall,	where	it	can
then	call	CallEngine	to	make	a	private	call	to	the	engine.	The
data	passed	into	the	CallEngine	method	is	passed	to	the
engine's	PrivateCall	method.

When	to	Implement
Implemented	by	SAPI	and	inherits	from	ISpRecoContext.

Associated	Class	IDs
The	following	class	IDs	(CLSID)	may	be	used	with	this	interface.
A	complete	CLSID	listing	for	all	interfaces	is	in	the	Class	IDs
section.

CLSID_SpSharedRecoContext

Methods	in	Vtable	Order

_ISpPrivateEngineCall
Methods Description
CallEngine Allows	an	engine-specific	call.
CallEngineEx Returns	the	non-fixed	size	data	block

response	information	associated	with
the	SR	engine.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpPrivateEngineCall::CallEngine
ISpPrivateEngineCall::CallEngine	allows	an	engine-specific
call.
It	is	called	from	the	engine	extension	object	to	the	engine
object.	Data	passed	into	this	call	is	given	to	the	main	SR	engine
through	the	ISpSREngine::PrivateCall	method.
HRESULT	CallEngine(

			VOID			*pCallFrame,

			ULONG			ulCallFrameSize

);

Parameters

pCallFrame
[in,	out]	The	engine-specific	structured	block	of	memory
parameters.	This	block	will	be	marshaled	in	the	shared
engine	case	and	must	not	contain	pointers	to	other	memory
allocations.	It	must	be	fully	self–contained	and	relative	only
to	itself.

ulCallFrameSize
[in]	Size,	in	bytes,	of	the	pCallFrame	structure.

Return	values

Value Description
S_OK Function	completed

successfully.
E_FAILED No	engine	could	be	found.
FAILED	(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpPrivateEngineCall::CallEngineEx
ISpPrivateEngineCall::CallEngineEx	returns	the	non-fixed
size	data	block	response	information	associated	with	the	SR
engine.
Applications	implementing	this	method	must	call
CoTaskMemFree()	to	free	memory	associated	with	the	returned
response.
HRESULT	CallEngineEx(

			const	void		*pInFrame,

			ULONG								ulInFrameSize,

			void							**ppCoMemOutFrame,

			ULONG							*pulOutFrameSize

);

Parameters

pInFrame
[in]	Address	of	the	recognition	engine	data.

ulInFrameSize
[in]	Size,	in	bytes,	of	the	pInCallFrame	structure.

ppCoMemOutFrame
[out]	Address	of	a	pointer	to	the	data	block	information
associated	with	the	SR	engine.

pulOutFrameSize
[out]	Size,	in	bytes,	of	the	ppCoMemOutFrame	structure.

Return	values

Value Description

S_OK Function	completed	successfully.
E_INVALIDARG One	or	more	parameters	are

invalid.
E_POINTER Invalid	pointer.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpSREngine
This	is	the	main	interface	that	engine	developers	must
implement	to	have	a	working	SAPI	SR	engine.	Engine	vendors
need	to	implement	this	interface	in	an	InProc	COM	object	with
the	threading	model	“Both”.	This	object	can	also	implement	the
ISpObjectWithToken	interface.	SR	engines	may	also	have
additional	objects	implementing	ISpTokenUI,	ISpSRAlternates,
and	a	custom	engine-extension	object.
The	SR	Engine	Guide	describes	in	detail	how	an	SR	engine
interacts	with	SAPI	and	how	the	methods	of	this	interface	are
implemented.
Applications	do	not	directly	call	the	methods	on	this	interface,
all	calls	are	made	by	SAPI.

Implemented	By
SR	engine	developers	as	the	main	interface	between
their	SR	engine	and	SAPI.

How	Created
Only	SAPI	will	directly	create	this	object.	When	an
application	creates	a	RecoContext	object,	either	shared
or	InProc,	then	SAPI	will	find	the	appropriate	recognizer
object	token	and	create	the	object	implementing	this
interface	from	the	CLSID	in	the	object	token.

Methods	in	Vtable	Order

ISpSREngine	Methods Description
SetSite Sets	the	ISpSREngineSite

interface	for	the	engine	to	use.
GetInputAudioFormat Gets	the	audio	format	that	the

SR	engine	supports.
RecognizeStream Begins	recognition	processing

on	a	stream.
SetRecoProfile Passes	the	current	active	user

profile	to	the	engine.
OnCreateGrammar Creates	a	new	recognition

grammar.
OnDeleteGrammar Informs	the	engine	of	the

deletion	of	a	grammar.
LoadProprietaryGrammar Instructs	the	engine	to	load	a

grammar	in	an	engine-specific
format.

UnloadProprietaryGrammar Unloads	an	engine-specific
grammar.

SetProprietaryRuleState Sets	the	proprietary	grammar
rule	state.

SetProprietaryRuleIdState Sets	the	proprietary	grammar
rule	ID	state.

LoadSLM Instructs	the	engine	to	load	a
dictation	statistical	language
model	(SLM).

UnloadSLM Instructs	the	engine	to	unload
an	SLM.

SetSLMState Sets	the	recognition	state	of	the
SLM	to	active	or	inactive.

SetWordSequenceData Sets	the	text	buffer	information.
SetTextSelection Informs	the	engine	of	the

displayed	and	selected	areas	of
the	text	buffer.

IsPronounceable Determines	if	a	word	can	be
recognized	by	the	engine.

OnCreateRecoContext Informs	the	engine	of	the
creation	of	a	recognition
context.

OnDeleteRecoContext Notifies	the	engine	that	a
recognition	context	is	being
destroyed.

PrivateCall Engine-specific	call	to	the
engine.

SetAdaptationData Provides	text	data	for	language
model	adaptation	to	the
engine.

SetPropertyNum Sets	a	numerical	property
attribute	on	the	SR	engine.

GetPropertyNum Retrieves	a	numerical	property
attribute	from	the	SR	engine.

SetPropertyString Sets	a	text	property	attribute
on	the	SR	engine.

GetPropertyString Retrieves	a	text	property
attribute	from	the	SR	engine.

SetGrammarState Informs	the	engine	if	a
grammar	has	been	activated	or
deactivated.

WordNotify Notifies	the	SR	engine	of	the
words	in	CFG	grammars.

RuleNotify Notifies	the	SR	engine	of	the
rule	information	in	CFG
grammars.

PrivateCallEx Calls	the	engine	which	allows	a
variable	sized	data	block	can	be
returned	from	the	engine	to	the
engine	extension	object..

SetContextState Indicates	that	a	recognition
context	has	been	deactivated
or	activated.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpSREngine::SetSite
ISpSREngine::SetSite	sets	the	ISpSREngineSite	interface	for
the	engine	to	use.	The	SR	engine	can	call	back	to	SAPI	using	the
methods	in	the	ISpSREngineSite.
HRESULT	SetSite(

			ISpSREngineSite			*pSite

);

Parameters

pSite
Pointer	to	the	ISpEngineSite	interface	for	the	engine	to	use	to
call	back	to	SAPI.

Return	values

Value Description
S_OK Function	completed	successfully.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpSREngine::GetInputAudioFormat
ISpSREngine::GetInputAudioFormat	gets	the	audio	format
that	the	SR	engine	supports.	
	
HRESULT	GetInputAudioFormat(

			const	GUID											*pguidSourceFormatId,

			const	WAVEFORMATEX			*pSourceWaveFormatEx,

			GUID																	*pguidDesiredFormatId,

			WAVEFORMATEX								**ppCoMemDesiredWaveFormatEx,

);													

Parameters

pguidSourceFormatId
[in]	The	GUID	of	the	audio	format.	SAPI	determines	if	the
engine	can	support	this.	It	will	either	be	NULL,	indicating	that
the	engine	should	select	its	preferred	audio	format,	or	it	will
be	set	to	a	given	format	that	the	engine	determines	if	it	can
support.

pSourceWFEX
[in]	Address	of	the	WAVEFORMATEX	structure	containing
information	about	the	audio	format	SAPI	is	querying	the
engine	about.	This	will	only	be	set	if	pSourceFormatId	is
equal	to	SPDFID_WaveFormatEx.

pguidDesiredFormatId
[out]	The	GUID	of	the	format	that	the	engine	can	support.

ppCoMemDesiredWFEX
[out]	The	engine	should	call	a	WAVEFORMATEX	structure	with
CoTaskMemAlloc	to	determine	the	format	the	engine

supports.	The	address	of	the	structure	should	be	placed	in
this	parameter.	For	non-wave	formats,	this	parameter	should
be	NULL.

Return	values

Value Description
S_OK Function	completed

successfully.
FAILED	(hr) Appropriate	error	message.

Remarks
Audio	formats	in	SAPI	are	described	by	two	parameters:	a	GUID,
and	for	wave	formats,	a	WAVEFORMATEX	structure.
The	first	two	parameters	in	this	method	define	the	audio	format
that	SAPI	queries	the	engine	about.	If	these	parameters	are	set
to	a	specific	format,	the	engine	determines	if	it	can	support	this
format,	and	returns	that	format	or	the	nearest	format	that	the
engine	can	support	using	the	second	pair	of	parameters	to	this
function.	Alternatively,	if	the	first	two	parameters	are	NULL,	the
engine	should	return	its	preferred	audio	format	in	the	second
pair	of	parameters.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpSREngine::RecognizeStream
ISpSREngine::RecognizeStream	begins	recognition
processing	on	a	stream.	From	this	point	on,	the	engine	can	read
data,	perform	recognition,	and	send	results	and	events	back	to
SAPI.	When	all	the	data	has	been	recognized	and	read,	or	the
application	has	deactivated	recognition,	the	engine	finishes
processing	and	returns	from	this	method.
HRESULT	RecognizeStream(

			REFGUID															rguidFmtId,

			const	WAVEFORMATEX			*pWaveFormatEx,

			HANDLE																hRequestSync,

			HANDLE																hDataAvailable,

			HANDLE																hExit,

			BOOL																		fNewAudioStream,

			BOOL																		fRealTimeAudio,

			ISpObjectToken							*pAudioObjectToken

);			

Parameters

rguidFmtId
[in]	The	REFGUID	of	the	input	audio	format	to	recognize.	This
will	be	SPDFID_WaveFormatEx	for	wave	format	files.

pWaveFormatEx
[in]	The	WAVEFORMATEX	structure	describing	the	input
format	(if	it	is	a	wave	format).	Only	a	format	that	the	engine
has	already	indicated	it	can	process	(by	returning	the	format
from	ISpSREngine::GetInputAudioFormat)	will	be	used.

hRequestSync
[in]	This	is	a	Win32	event	handle	that	is	set	whenever	there
are	tasks	(such	as	grammar	changes	etc.)	waiting	for	the

engine	to	respond	to.	The	tasks	get	processed	whenever	the
engine	calls	Synchronize.	The	engine	can	call	Synchronize
regularly	or	do	so	only	when	this	event	is	set.

hDataAvailable
[in]	This	is	a	Win32	event	handle	that	is	set	when	data	is
available	for	reading.	The	amount	of	data	to	be	available
before	this	event	is	set	can	be	controlled	by	calling
ISpSREngineSite::SetBufferNotifySize.	By	default,	this	event
will	be	set	whenever	any	amount	of	data	is	available.	This
event	can	be	used	as	an	alternative	to
ISpSREngineSite::DataAvailable.

hExit
[in]	This	is	a	Win32	event	handle	indicating	when	the	engine
should	exit.	The	engine	on	one	of	two	conditions:

When	there	is	no	more	data	in	the	stream	and	it	has
finished	processing,	or
If	this	event	is	set.	Recognition	or	Synchronize	calls
returning	S_FALSE	indicate	that	this	event	has	been
set.

fNewAudioStream
[in]	Indicates	whether	the	input	is	a	new	stream.	TRUE
indicates	it	is	a	newly	created	stream;	FALSE	otherwise.	For
example,	if	an	application	deactivates	the	rules,
RecognizeStream	returns,	and	later	the	application	activates
some	rules,	the	RecognizeStream	call	will	have	this
parameter	set	as	FALSE	because	the	stream	had	exited
previously.	Only	if	the	application	calls
ISpRecognizer::SetInput	to	create	a	new	stream,	will	this
return	TRUE.	Some	engines	will	find	this	information	useful	if
resetting	channel	adaptation,	for	example,	a	new	telephone
call.

fRealTimeAudio
[in]	Indicates	whether	the	input	is	real	time	audio.	TRUE
means	it	is	real	time	audio;	FALSE	otherwise.	Real-time	inputs
in	SAPI	are	those	that	implement	the	ISpAudio	interface	–	for
example	the	standard	multi-media	microphone	input.	Non-
real	time	streams	are	those	that	only	implement
ISpStreamFormat	-	for	example	input	from	wave	files	using
the	ISpStream	object.	With	non	real-time	streams	all	the	data
is	available	for	reading	immediately.	The	hDataAvailable
event	is	always	set	and	the	DataAvailable	method	will	always
return	INFINITE.

pAudioObjectToken
[in]	The	object	token	interface	for	the	audio	object	that	the
stream	was	created	from.	Engines	do	not	need	to	do
anything	with	this	parameter,	but	it	may	be	useful	in	some
circumstances.

Return	values

Value Description
S_OK Function	completed	successfully.	This

should	be	returned	if	the	engine	is
exiting	because	the	stream	has
ended,	or	because	it	was	signaled	to
exit	by	SAPI.

FAILED	(hr) Appropriate	error	message	if	the
engine	is	terminating	for	an
unexpected	reason.

Remarks
The	engine	can	read	audio	data	using	ISpSREngineSite::Read.
The	engine	determines	how	much	data	is	available	for	reading
with	ISpSREngineSite::DataAvailable,	or	the	hDataAvailable
event	handle.	The	engine	does	not	have	direct	access	to	the

input	audio	device	and	will	perform	in	a	consistent	way
regardless	of	whether	input	is	from	desktop	audio,	wave	files,	or
a	custom	audio	device.	The	audio	format	is	given	by	the
rguidFmtId	and	pWaveFormatEx	parameters,	and	additional
details	of	the	audio	device	can	be	found	from	the
fNewAudioStream,	fRealTimeAudio,	and	pAudioObjectToken
parameters.	When	a	Read	call	indicates	that	there	is	no	more
data	available,	the	engine	should	complete	processing	on	the
data	it	has	and	return	from	the	RecognizeStream	method.
The	engine	recognizes	from	all	rules	and/or	dictation	grammars
that	have	been	activated.	If	there	are	multiple	active	rules
and/or	dictations,	the	engine	is	expected	to	recognize	from	all
things	"in	parallel."	That	is,	the	user	is	able	to	say	something
from	any	rule	that	is	active.	It	is	possible	for	this	method	to	be
called	with	nothing	active.	In	this	case,	the	engine	can	just	read
data	and	then	discard	it,	or	use	it	to	gather	environmental	noise
information.
Because	the	engine	remains	in	the	RecognizeStream	method	all
the	time	that	it	is	recognizing,	SAPI	has	effectively	given	the
engine	one	thread	on	which	to	perform	recognition.	It	is	possible
to	write	an	engine	which	processes	everything	on	this	one
thread	and	thus	does	not	require	any	additional	threads,	critical
sections,	or	other	thread-locking.
It	is	also	possible	to	have	alternative	arrangements	with
additional	threads.	For	example,	one	thread	could	read	data,
while	another	thread	could	do	the	actual	recognition	processing.
SAPI	makes	no	restrictions	about	which	threads	call	which
methods	or	whether	they	are	called	simultaneously.
The	engine	uses	ISpSREngineSite::Synchronize	to	be	notified	of
any	grammar	or	other	changes	that	are	pending,	and	uses
ISpSREngineSite::UpdateRecoPos	to	keep	SAPI	informed	of	how
much	of	the	stream	has	been	recognized.	The	engine	passes
details	of	events	and	recognition	results	back	to	SAPI	with
ISpSREngineSite::AddEvent	and	ISpSREngineSite::Recognition.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpSREngine::SetRecoProfile
ISpSREngine::SetRecoProfile	passes	the	current	active	user
profile	to	the	engine.	
HRESULT	SetRecoProfile(

			ISpObjectToken			*pProfile

);

Parameters

pProfile
Address	of	an	ISpObjectToken	object	that	contains	the
recognition	profile	token	information.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG The	pProfile	parameter	is	not	a

valid	ISpObjectToken	interface
pointer.

FAILED(hr) Appropriate	error	message.

Remarks
RecoProfiles	are	added	or	removed	using	Speech	properties	in
Control	Panel.
Engines	can	query	the	token	and	include	any	information
needed	about	this	profile,	for	example,	enrollment	or	training
information.	Engine	specific	information	should	be	stored	in	a
subkey	of	the	recognition	profile	token	named	with	the	engine
class	ID.	This	is	to	avoid	conflicts	with	other	engines	using	the
same	profile.

In	order	to	provide	user	enrollment	the	engine	can	implement	a
UI	component	with	the	name	"UserTraining."	To	instantiate,	click
Control	Panel->Speech	properties->SR	tab->Train	Profile.
SAPI	does	not	restrict	applications	from	calling
ISpRecognizer::SetRecoProfile	during	the	middle	of	recognition
(see	ISpSREngine::RecognizeStream).	If	an	SR	engine	does	not
allow	recognition	profile	changes	during	recognition,	it	should
fail	the	::SetRecoProfile	call	gracefully	(e.g.,	return
SPERR_ENGINE_BUSY).

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpSREngine::OnCreateGrammar
ISpSREngine::OnCreateGrammar	creates	a	new	recognition
grammar.	Each	grammar	belongs	to	a	recognition	context	and
can	contain	dictation,	CFG,	or	proprietary	grammar	information.
The	engine	can	associate	a	pointer	with	each	grammar	that	is
then	passed	back	to	the	engine	in	other	methods	using	this
grammar.
HRESULT	OnCreateGrammar(

			void													*pvEngineRecoContext,

			SPGRAMMARHANDLE			hSAPIGrammar,

			void												**ppvEngineGrammar

);

Parameters

pvEngineRecoContext
[in]	The	engine's	recognition	context	pointer	indicating	the
context	this	grammar	belongs	to.	This	is	the	value	that	the
engine	passes	back	to	SAPI	in	the	OnCreateRecoContext
method.

hSAPIGrammar
[in]	Unique	handle	to	the	grammar.

ppvEngineGrammar
[out]	The	engine	should	set	the	contents	of	this	to	an
arbitrary	pointer	containing	any	information	the	engine	has
associated	with	this	grammar.	

Return	values

Value Description
S_OK Function	completed

successfully.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpSREngine::OnDeleteGrammar
ISpSREngine::OnDeleteGrammar	notifies	the	engine	that	a
recognition	grammar	is	deleted.	By	the	time	this	method	is
called,	any	rules	or	a	loaded	SLM	in	this	grammar	will	already
have	been	deleted.
HRESULT	OnDeleteGrammar(

			void			*pvEngineGrammar

);

Parameters

pvEngineGrammar
[in]	The	engine's	grammar	pointer	for	this	grammar,	as
returned	from	a	previous	call	to	the	OnCreateGrammar
method.

Return	values

Value Description
S_OK Function	completed

successfully.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpSREngine::LoadProprietaryGrammar
ISpSREngine::LoadProprietaryGrammar	instructs	the
engine	to	load	a	grammar	in	an	engine-specific	format.	This	is
used	to	load	grammars	that	are	not	in	the	standard	SAPI	CFG
format.
HRESULT	LoadProprietaryGrammar(

			void										*pvEngineGrammar,

			REFGUID								rguidParam,

			const	WCHAR			*pszStringParam,

			const	void				*pvDataParam,

			ULONG										ulDataSize.

			SPLOADOPTIONS		Options

);

Parameters

pvEngineGrammar
[in]	The	engine's	grammar	pointer,	as	returned	from	the
OnCreateGrammar	method.

rguidParam
[in]	Unique	identifier	for	the	grammar.

pszStringParam
[in,	string]	Null-terminated	string	containing	proprietary
grammar	string	data.

pvDataParam
[in]	Pointer	to	grammar	image	data.

ulDataSize
[in]	Size,	in	bytes,	of	the	grammar	image	data.

Options
[in]	One	of	the	grammar	loading	options	specified	in	the
SPLOADOPTIONS	enumeration	sequence.

Return	values

Value Description
S_OK Function	completed	successfully.
FAILED	(hr) Appropriate	error	message.

Remarks
The	application	can	supply	the	engine	with	either	a	GUID,	string
data,	or	binary	data	or	some	combination	of	these,	in	order	to
describe	the	grammar.	SAPI	does	nothing	with	this	data	apart
from	correctly	marshaling	it	to	the	SR	engine.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpSREngine::UnloadProprietaryGrammar
ISpSREngine::UnloadProprietaryGrammar	unloads	an
engine-specific	grammar.
HRESULT	UnloadProprietaryGrammar(

			void			*pvEngineGrammar

);

Parameters

pvEngineGrammar
[in]	Address	of	the	engine's	grammar	pointer.

Return	values

Value Description
S_OK Function	completed	successfully.
FAILED	(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpSREngine::SetProprietaryRuleState
ISpSREngine::SetProprietaryRuleState	sets	the	proprietary
grammar	rule	state.	This	is	used	to	activate	or	deactivate	rules
in	non-standard	proprietary	grammars,	where	each	rule	is
identified	by	a	string	name.
HRESULT	SetProprietaryRuleState(

			void										*pvEngineGrammar,	

			const	WCHAR			*pszName,

			const	WCHAR			*pszValue,

			SPRULESTATE				NewState,

			ULONG									*pcRulesChanged

);

Parameters

pvEngineGrammar
[in]	The	engine's	grammar	pointer	for	this	grammar,	as
returned	from	a	previous	call	to	the	OnCreateGrammar
method.

pszName
[in,	string]	Null-terminated	string	that	contains	the	grammar
rule	name,	or	NULL	to	indicate	all	top-level	rules	should	be
activated	in	this	grammar.

pszValue
[in,	string]	Null-terminated	string	that	contains	rule	value
information	(Currently	always	NULL).

NewState
[in]	One	of	the	grammar	rule	states	specified	in	the
SPRULESTATE	enumeration	sequence.

pcRulesChanged
[out]	The	number	of	rules	whose	state	has	been	changed.
This	should	be	set	to	1	if	a	specific	rule	name	was	supplied.

Return	values

Value Description
S_OK Function	completed

successfully.
FAILED(hr) Appropriate	error	message.

Remarks
If	::SetProprietaryRuleState	is	called	with	the	rule	name	set	to
NULL,	the	engine	should	activate	or	deactivate	all	top-level	rules
in	this	grammar.	The	pcRulesChanged	parameter	must	be	set	to
the	number	of	rules	whose	state	has	changed.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpSREngine::SetProprietaryRuleIdState
ISpSREngine::SetProprietaryRuleIdState	sets	the
proprietary	grammar	rule	ID	state.	This	is	used	to	activate	or
deactivate	rules	in	non-standard	proprietary	grammars	where
each	rule	is	identified	by	an	ID.	
HRESULT	SetProprietaryRuleIdState(

			void									*pvEngineGrammar,	

			DWORD									dwRuleId,

			SPRULESTATE			NewState

);

Parameters

pvEngineGrammar
[in]	The	engine's	grammar	pointer	for	this	grammar,	as
returned	from	a	previous	call	to	the	OnCreateGrammar
method.

dwRuleId
[in]	The	engine	proprietary	grammar	rule	identifier.

NewState
[in]	One	of	the	grammar	rule	states	specified	in	the
SPRULESTATE	enumeration	sequence.

Return	values

Value Description
S_OK Function	completed	successfully.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpSREngine::LoadSLM
ISpSREngine::LoadSLM	instructs	the	engine	to	load	a
statistical	language	model	(SLM)	for	dictation.
HRESULT	LoadSLM(

			void										*pvEngineGrammar,

			const	WCHAR			*pszTopicName

);

Parameters

pvEngineGrammar
[in]	The	engine's	grammar	pointer,	as	returned	from	the
OnCreateGrammar	method.

pszTopicName
[in,	string]	Null-terminated	string	that	specifies	a	topic	name.
The	default	SLM	should	be	loaded	if	the	value	of
pszTopicName	is	NULL.

Return	values

Value Description
S_OK Function	completed

successfully.
FAILED(hr) Appropriate	error

message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpSREngine::UnloadSLM
ISpSREngine::UnloadSLM	instructs	the	engine	to	unload	an
SLM.
HRESULT	UnloadSLM(

			void			*pvEngineGrammar

);

Parameters

pvEngineGrammar
[in]	The	engine's	grammar	pointer,	as	returned	from	the
OnCreateGrammar	method.

Return	values

Value Description
S_OK Function	completed

successfully.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpSREngine::SetSLMState
ISpSREngine::SetSLMState	activates	or	deactivates	dictation
on	this	grammar.
HRESULT	SetSLMState(

			void									*pvEngineGrammar,

			SPRULESTATE			NewState

);

Parameters

pvEngineGrammar
[in]	The	engine's	grammar	pointer	for	this	grammar,	as
returned	from	a	previous	call	to	the	OnCreateGrammar
method.

NewState
[in]	One	of	the	grammar	rule	states	specified	in	the
SPRULESTATE	enumeration	sequence.	This	can	be
SPRS_ACTIVE	to	indicate	that	dictation	is	being	activated;
SPRS_INACTIVE	to	indicate	dictation	is	being	deactivated,	and
SPRS_ACTIVE_WITH_AUTO_PAUSE	to	indicate	dictation	is
being	activated	with	auto-pause	This	means	that	the	engine
will	be	put	into	the	paused	state	each	time	it	returns	a	final
recognition	result	on	this	grammar.	This	is	just	for
information	and	can	be	handled	in	the	same	way	as
SPRS_ACTIVE.

Return	values

Value Description
S_OK Function	completed	successfully.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpSREngine::SetWordSequenceData
ISpSREngine::SetWordSequenceData	sets	a	text	buffer	that
the	engine	can	use	for	recognition.

HRESULT	SetWordSequenceData(

			void																									*pvEngineGrammar,

			const	WCHAR																		*pText,

			ULONG																									cchText,

			const		SPTEXTSELECTIONINFO			*pInfo		

);

Parameters

pvEngineGrammar
[in]	The	engine's	grammar	pointer	for	this	grammar,	as
returned	from	a	previous	call	to	the	OnCreateGrammar
method.

pText
[in]	The	text	buffer.

cchText
[in]	The	length,	in	characters,	of	the	text	buffer.

pInfo
[in]	Address	of	the	SPTEXTSELECTIONINFO	structure	that
contains	information	of	which	parts	of	the	buffer	are	active
and	currently	selected.

Return	values

Value Description

S_OK Function	completed
successfully.

E_NOTIMPL Engine	does	not	support
text-buffer	functionality

FAILED(hr) Other	appropriate	error
message.

Remarks
Whenever	a	text-buffer	transition	is	reached	in	a	CFG,	the
engine	should	attempt	to	recognize	a	sub-string	of	words	from
the	current	text	buffer.	This	provides	a	very	simple	way	for
applications	to	select	from	a	set	of	text.
This	method	is	called	when	an	application	calls
ISpRecoGrammar::SetWordSequenceData.	The	format	of	the
buffer	is	a	sequence	of	one	or	more	null-terminated	strings,	with
a	double	null-termination	at	the	end.	The	engine	recognizes	any
sub-string	of	words	from	any	of	the	strings	in	the	buffer.	It	is	up
to	the	SR	engines	to	perform	word	breaking	and	text
normalization	for	better	performance.
It	is	also	possible	for	the	application	to	alter	the	areas	of	the
buffer	that	are	used	for	recognition.	The	initial	range	can	be	set
with	the	structure	SPTEXTSELECTIONINFO,	and	later	calls	to
ISpSREngine::SetTextSelection	can	alter	this	without	changing
the	actual	buffer.	The	ulStartActiveOffset	and	cchActiveChars
indicate	which	area	of	the	buffer	should	be	active	for
recognition.
The	other	two	fields	of	the	SPTEXTSELECTIONINFO,
ulStartSelection	and	cchSelection	can	be	used	with	dictation.
These	could	indicate,	on	screen	for	example,	which	area	of	the
buffer	is	currently	selected.	If	cchSelection	is	zero,	this	could
display	the	current	location	of	the	insertion	point.	The	engine
can	use	SPTEXTSELECTIONINFO	to	get	extra	language	model
context	from	the	preceding	words	in	the	dictated	text.
This	text	buffer	feature	is	optional	for	engines,	and	support	for	it

is	determined	using	the	TextBuffer	attribute	in	the	engine	object
token.	If	this	method	is	called	on	an	engine	that	does	not
support	this	feature,	the	engine	should	return	E_NOTIMPL.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpSREngine::SetTextSelection
ISpSREngine::SetTextSelection	informs	the	engine	of	the
displayed	and	selected	areas	of	the	text	buffer.(See
ISpSREngine::SetWordSequenceData).	Once	a	text	buffer	has
been	supplied	to	the	engine,	this	method	can	be	used	to	control
which	parts	of	the	buffer	are	active	for	recognition	using	a	text-
buffer	transition	in	a	CFG.	This	method	can	communicate	to	the
engine	the	location	of	the	current	text	insertion	point	for
dictation.

HRESULT	SetTextSelection(

			void																									*pvEngineGrammar,

			const		SPTEXTSELECTIONINFO			*pInfo

);

Parameters

pvEngineGrammar
[in]	The	engine's	grammar	pointer	for	this	grammar,	as
returned	from	a	previous	call	to	the	OnCreateGrammar
method.

pInfo
[in]	Pointer	to	the	text	selection	information	structure.

Return	values

Value Description
S_OK Function	completed	successfully.
E_NOTIMPL Engine	does	not	support	text-

buffer	functionality
FAILED(hr) Other	appropriate	error	message.

Remarks
The	first	two	fields	of	the	SPTEXTSELECTIONINFO	structure,
ulStartActiveOffset	and	cchActiveChars	indicate	the	area	of	the
buffer	that	should	be	active	for	recognition	when	using	a	text-
buffer	transition	in	a	CFG.
The	other	two	fields	of	the	SPTEXTSELECTIONINFO,
ulStartSelection	and	cchSelection	can	be	used	with	dictation.
These	could	indicate,	for	example,	which	area	of	the	buffer	is
currently	selected	on	the	screen.	If	cchSelection	is	zero,	this
could	display	the	current	location	of	the	insertion	point.	This	can
be	used	by	the	engine	to	get	extra	language	model	context
from	preceding	words	in	the	dictated	text.
This	text	buffer	feature	is	optional	for	engines,	and	support	for	it
is	indicated	using	the	TextBuffer	attribute.	If	this	method	is
called	on	an	engine	that	does	not	support	this	feature,	the
engine	should	return	E_NOTIMPL.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpSREngine::IsPronounceable
ISpSREngine::IsPronounceable	determines	if	a	word	can	be
recognized	by	the	engine.
This	method	is	called	by	SAPI	after	an	application	calls
ISpRecoGrammar::IsPronounceable.
	
HRESULT	IsPronounceable(

			void																				*pvDrvGrammar,

			const	WCHAR													*pszWord,

			SPWORDPRONOUNCEABLE					*pfPronounceable

);

Parameters

pvDrvGrammar
[in]	The	engine's	grammar	pointer,	as	returned	from	the
OnCreateGrammar	method.

pszWord
[in]	The	word	to	test.

pfPronounceable
[out]	Address	of	the	SPWORDPRONOUNCEABLE	enumeration
indicating	the	results	of	the	test.	If	the	SR	engine	can
generate	a	reasonable	pronunciation	for	the	given	word,	it
should	return	TRUE	in	the	pfPronounceable	pointer;
otherwise	FALSE.

Value
SPWP_UNKNOWN_WORD_UNPRONOUNCEABLE The	word	is

not
pronounceable

by	the	SR
engine,	and	is
not	located	in
the	lexicon
and/or	the
engine's
dictionary.

SPWP_UNKNOWN_WORD_PRONOUNCEABLE The	word	is
pronounceable
by	the	SR
engine,	but	is
not	located	in
the	lexicon
and/or	the
engine's
dictionary.	

SPWP_KNOWN_WORD_PRONOUNCEABLE The	word	is
pronounceable
by	the	SR
engine,	and	is
located	in	the
lexicon	and/or
the	engine's
dictionary.

Return	values

Value Description
S_OK Method	completed

successfully.
FAILED(hr) Appropriate	error	message.

See	Also
ISpRecoGrammar::IsPronounceable

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpSREngine::OnCreateRecoContext
ISpSREngine::OnCreateRecoContext	notifies	the	engine	that
a	recognition	context	is	being	created.	
HRESULT	OnCreateRecoContext(

			SPRECOCONTEXTHANDLE			hSAPIRecoContext,	

			void																**ppvEngineContext

);

Parameters

hSAPIRecoContext
[in]	Unique	handle	to	the	recognition	context.

ppvEngineContext
[out]	The	engine	should	set	the	contents	of	this	to	a	pointer
to	any	engine-specific	information	it	wishes	to	associate	with
this	context.

Return	values

Value Description
NOERROR No	error	is	possible	with	this

function.

Each	application	connected	with	the	SR	engine	can	have	one	or
more	recognition	contexts.	The	engine	can	associate	a	pointer
with	each	recognition	context	that	is	then	passed	back	to	the
engine	in	other	methods	using	this	context.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpSREngine::OnDeleteRecoContext
ISpSREngine::OnDeleteRecoContext	notifies	the	engine	that
a	recognition	context	is	being	destroyed.	By	the	time	this	call	is
made,	all	grammars	associated	with	this	context	will	have	been
deleted.
HRESULT	OnDeleteRecoContext(

			void			*pvEngineContext

);

Parameters

pvEngineContext
[in]	Pointer	to	the	engine's	data	for	this	context,	as	returned
from	a	previous	call	to	OnCreateRecoContext.

Return	values

Value Description
S_OK Function	completed

successfully.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpSREngine::PrivateCall
ISpSREngine::PrivateCall	makes	an	engine-specific	extension
call	to	the	SR	engine.	This	method	is	called	when	the	engine
extension	COM	object	calls	_ISpPrivateEngineCall::CallEngine.
SAPI	marshals	the	data	to	the	main	engine	object	and	calls	this
method.
HRESULT	PrivateCall(

			void				*pvEngineContext,	

			PVOID			*pCallFrame,

			ULONG				ulCallFrameSize,

);

Parameters

pvEngineContext
[in]	Pointer	to	the	engine's	pointer	for	this	context,	as
returned	from	a	previous	call	to	OnCreateRecoContext.

pCallFrame
[in]	Pointer	to	the	engine-specific	data.	This	can	be	used	both
to	pass	in	and	return	data	from	the	engine.	The	returned	data
must	be	the	same	size	as	the	passed	in	data.

ulCallFrameSize
[in]	Size,	in	bytes,	of	the	engine-specific	data.

Return	values

Value Description
S_OK Function	completed	successfully.
FAILED	(hr) Appropriate	error	message.

Remarks
The	engine	must	implement	an	engine-extension	COM	object
and	implement	whatever	interfaces	the	engine	wants.	Then	an
application	can	call	QueryInterface	for	these	interfaces	on	the
recognition	context	object.	The	engine	extension	object	can
query	for	the	_ISpPrivateEngineCall	interface	from	the
recognition	context.	If	the	engine	must	directly	communicate
with	the	main	engine	object,	it	can	call	the	CallEngine	method,
which	passes	the	data	to	this	method.	See	the	SR	Engine	Guide
for	more	details	on	this	process.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpSREngine::SetAdaptationData
ISpSREngine::SetAdaptationData	provides	the	SR	engine
with	text	data	from	the	application	for	language-model
adaptation	purposes.	This	method	is	called	when	an	application
calls	ISpRecoContext::SetAdaptationData.	If	the	engine	does	not
support	this	type	of	adaptation,	it	should	do	nothing	in	this
function	and	return	S_OK.
HRESULT	SetAdaptationData(

			void										*pvEngineContext,

			const	WCHAR			*pAdaptationData,

			const	ULONG				cch

);

Parameters

pvEngineContext
[in]	Engine's	recognition	context	pointer	for	the	context	that
is	sending	the	data.

pAdaptationData
[in]	Buffer	containing	the	adaptation	data.	Applications
should	copy	this	data	before	returning	from	this	function	if
they	are	going	to	use	this	data.

cch
[in]	The	size,	in	WCHARs,	of	the	adaptation	data	in
pAdaptationData.

Return	values

Value Description
S_OK Function	completed	successfully.

FAILED(hr) Appropriate	error	message.

Remarks
Some	engines	may	take	considerable	processing	time	to
perform	language	model	adaptation.	Thus,	applications	should
submit	adaptation	data	in	chunks	to	the	engine.	The	engine	can
then	fire	an	event	SPEI_ADAPTATION	to	indicate	that	it	can
receive	more	adaptation	data.
Engines	can	either	persist	the	adaptation	in	the	current
RecoProfile	or	reset	it	every	session.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpSREngine::SetPropertyNum
ISpSREngine::SetPropertyNum	sets	a	numerical	property
value	on	the	SR	engine.	
HRESULT	SetPropertyNum(

			SPPROPSRC									eSrc,

			void													*pvSrcObj,

			const	WCHAR						*pName,

			LONG														lValue

);

Parameters

eSrc
[in]	One	of	the	types	specified	in	the	SPPROPSRC
enumeration	sequence.	(This	will	currently	always	be
SPPROPSRC_RECO_INST).

pvSrcObj
[in]	Pointer	to	additional	information.	(Currently	always
NULL).

pName
[in]	String	containing	the	property	name.

lValue
[in]	Value	that	the	property	should	be	set	to.

Return	values

Value Description
S_OK Function	completed	successfully.

Engine	supports	this	property

attribute	and	has	set	it	to	the
requested	value.

S_FALSE Function	completed	successfully
but	engine	does	not	support	this
property.

FAILED(hr) Appropriate	error	message.

Remarks
Applications	can	use	properties	to	control	run-time	results	of	the
SR	engine.	The	application	can	set	and	get	values	for	specific
attributes	on	the	engine.	Some	values	are	predefined	by	SAPI
and	others	may	be	added	by	an	engine.	See	SAPI	5.0	SR
Properties	White	Paper	for	more	details.
This	method	is	called	on	the	engine	by	SAPI	when	the
application	calls	ISpProperties::SetPropertyNum	on	its
recognition	context	object.	If	the	engine	returns	S_OK	from	this
method,	indicating	that	it	supports	this	property	and	has
changed	the	value	for	it,	SAPI	will	send	an
SPEI_PROPERTY_NUM_CHANGE	event	to	all	contexts	to	inform
them	of	this	change.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpSREngine::GetPropertyNum
ISpSREngine::GetPropertyNum	retrieves	a	numerical
property	value	from	the	SR	engine.	
	
HRESULT	GetPropertyNum(

			SPPROPSRC						eSrc,

			void										*pvSrcObj,

			const	WCHAR			*pName,

			LONG										*lValue

);

Parameters

eSrc
[in]	One	of	the	types	specified	in	the	SPPROPSRC
enumeration	sequence.	(This	will	currently	always	be
SPPROPSRC_RECO_INST).

pvSrcObj
[in]	Pointer	to	additional	information.	(Currently	always
NULL).

pName
[in]	String	containing	the	property	name.

lValue
[out]	Pointer	that	the	SR	engine	supplies	with	the	property
value	information.	If	the	engine	does	not	support	this
property	attribute,	it	should	set	the	contents	of	this	pointer	to
zero.

Return	values

Value Description
S_OK Function	completed	successfully.

Engine	supports	this	property
attribute	and	has	returned	a	value
for	it.

S_FALSE Function	completed	successfully
but	engine	does	not	support	this
property.

FAILED(hr) Appropriate	error	message.

Remarks
Applications	can	use	properties	to	control	run-time	results	of	the
SR	engine.	The	application	can	set	and	retrieve	values	for
specific	attributes	on	the	engine.	Some	values	are	predefined	by
SAPI	and	others	may	be	added	by	an	engine.	See	SAPI	5.0	SR
Properties	White	Paper	for	more	details.
This	method	is	called	on	the	engine	by	SAPI	when	the
application	calls	ISpProperties::GetPropertyNum	on	its
recognition	context	object.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpSREngine::SetPropertyString
ISpSREngine::SetPropertyString	sets	a	string	property	value
on	the	SR	engine.	
HRESULT	SetPropertyString(

			SPPROPSRC						eSrc,

			void										*pvSrcObj,

			const	WCHAR			*pName,

			const	WCHAR			*pValue

);

Parameters

eSrc
[in]	One	of	the	types	specified	in	the	SPPROPSRC
enumeration	sequence.	(This	will	currently	always	be
SPPROPSRC_RECO_INST).

pvSrcObj
[in]	Pointer	to	additional	information.	(Currently	always
NULL).

pName
[in]	String	containing	the	property	name.

pValue
[in]	String	value	that	the	property	should	be	set	to.

Return	values

Value Description
S_OK Function	completed	successfully.

Engine	supports	this	property

attribute	and	has	set	it	to	the
requested	value.

S_FALSE Function	completed	successfully
but	engine	does	not	support	this
property.

FAILED(hr) Appropriate	error	message.

Remarks
Applications	can	use	properties	to	control	run-time	results	of	the
SR	engine.	The	application	can	set	and	get	values	for	specific
attributes	on	the	engine.	Some	values	are	predefined	by	SAPI
and	others	may	be	added	by	an	engine.	See	SAPI	5.0	SR
Properties	White	Paper	for	more	details.
This	method	is	called	on	the	engine	by	SAPI	when	the
application	calls	ISpProperties::SetPropertyString	on	its
recognition	context	object.	If	the	engine	returns	S_OK	from	this
method,	indicating	that	it	supports	this	property	and	has
changed	the	value	for	it,	SAPI	will	send	an
SPEI_PROPERTY_STRING_CHANGE	event	to	all	contexts	to	inform
them	of	this	change.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpSREngine::GetPropertyString
ISpSREngine::GetPropertyString	retrieves	a	string	property
value	from	the	SR	engine.	
HRESULT	GetPropertyString(

			SPPROPSRC								eSrc,

			void												*pvSrcObj,

			const			WCHAR			*pName,

			WCHAR										**ppCoMemValue

);

Parameters

eSrc
[in]	One	of	the	types	specified	in	the	SPPROPSRC
enumeration	sequence.	(This	will	currently	always	be
SPPROPSRC_RECO_INST).

pvSrcObj
[in]	Pointer	to	additional	information.	(Currently	always
NULL).

pName
[in]	String	containing	the	property	name.

ppCoMemValue
[out]	Pointer	to	a	string	that	the	SR	engine	should	supply
with	the	property	value	string.	The	string	should	be	allocated
with	CoTaskMemAlloc;	SAPI	will	delete	the	allocated	memory
after	return	from	this	function.	If	the	engine	does	not	support
this	property	attribute,	the	parameter	should	be	NULL.

Return	values

Value Description
S_OK Function	completed	successfully.

Engine	supports	this	property
attribute	and	has	returned	a	value
for	it.

S_FALSE Function	completed	successfully
but	engine	does	not	support	this
property.

FAILED(hr) Appropriate	error	message.

Remarks
Applications	can	use	properties	to	control	run-time	results	of	the
SR	engine.	The	application	can	set	and	retrieve	values	for
specific	attributes	on	the	engine.	Some	values	are	predefined	by
SAPI	and	others	may	be	added	by	an	engine.	See	SAPI	5.0	SR
Properties	White	Paper	for	more	details.
SAPI	calls	this	method	on	an	engine	when	the	application	calls
ISpProperties::GetPropertyString	using	its	recognition	context
object.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpSREngine::SetGrammarState
ISpSREngine::SetGrammarState	indicates	that	a	grammar
has	been	activated	or	deactivated	by	the	application	calling
ISpRecoGrammar::SetGrammarState.
	
HRESULT	SetGrammarState(

			void													*pvEngineGrammar,

			SPGRAMMARSTATE			*eGrammarState

);

Parameters

pvEngineGrammar
[in]	The	engine's	grammar	pointer	for	this	grammar,	as
returned	from	a	previous	call	to	the	OnCreateGrammar
method.

eGrammarState
[in]	Flag	of	type	SPGRAMMARSTATE	indicating	the	new	state
of	the	grammar.	This	will	either	be	SPGS_DISABLED	or
SPGS_ENABLED	to	indicate	the	grammar	is	being	disabled	or
enabled;	or	SPGS_EXCLUSIVE	to	indicate	this	grammar	has
been	enabled	exclusively	and	other	non-exclusive	grammars
will	be	disabled.

Return	values

Value Description
S_OK Function	completed

successfully.
FAILED(hr) Appropriate	error	message.

Remarks
When	using	standard	CFG	and	dictation	grammars,	the	engine
may	not	need	to	be	informed	of	the	grammar	state,	as	SAPI	will
automatically	activate	and	deactivate	the	grammars	as
necessary.	However,	when	using	proprietary	grammars,	it	may
be	necessary	to	look	at	this	information.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpSREngine::WordNotify
ISpSREngine::WordNotify	notifies	the	SR	engine	when	words
in	command	and	control	grammars	are	being	added	or
removed.
HRESULT	WordNotify(

		SPCFGNOTIFY										Action,

		ULONG																cWords,

		const	SPWORDENTRY		*	pWords

);

Parameters

Action
The	SPCFGNOTIFY	enumeration	value	specifying	which
action,	add	or	delete,	is	occurring.	This	will	either	be
SPCFGN_ADD	when	words	are	added,	or	SPCFGN_REMOVE
when	they	are	deleted.

cWords
The	number	of	words	contained	in	pWords.

pWords
Array	of	SPWORDENTRY	structures	containing	information	on
each	word.

Return	values

Value Description
S_OK Function	completed

successfully.
SPERR_NO_WORD_PRONUNCIATION The	engine	could	not

generate	a	pronunciation

for	some	of	the	words
added.

FAILED(hr) Other	appropriate	error
message.

Remarks
This	method	is	called	by	SAPI	when	words	are	added	or	removed
when	the	application	loads,	unloads,	or	modifies	grammars.
SAPI	internally	keeps	a	reference	count	and	each	word	will	be
added	only	if	it	is	not	already	present	in	any	existing	grammar.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpSREngine::RuleNotify
ISpSREngine::RuleNotify	notifies	the	SR	engine	when	CFG
rules	are	added,	changed,	or	removed.

HRESULT	RuleNotify(

		SPCFGNOTIFY										Action,

		ULONG																cRules,

		const	SPRULEENTRY			*pRules

);

Parameters

Action
The	SPCFGNOTIFY	enumeration	value	specifying	the	action
that	is	occurring.

cRules
The	number	of	rules	contained	in	pRules.

pRules
Array	of	SPRULEENTRY	structures	containing	information	on
each	rule.

Return	values

Value Description
S_OK Function	completed

successfully.
FAILED(hr) Appropriate	error

message.

Remarks

The	engine	recognizes	each	CFG	grammar	as	containing	one	or
more	rules.	Rules	can	be	top-level,	indicating	that	they	can	be
activated	for	recognition.	Each	rule	has	an	initial	state	and
additional	states,	connected	by	transitions.	Each	transition	can
be	one	of	several	types:	a	word	transition	indicating	a	word	to
be	recognized,	a	rule	transition	indicating	a	reference	to	a	sub-
rule,	an	epsilon	(null)	transition,	and	some	special	transitions	for
such	features	as	embedding	dictation	within	a	CFG.
References	to	sub-rules	can	be	recursive	–	i.e.,	rules	can
reference	themselves,	either	directly	or	indirectly.	Left	recursion
is	not	supported	and	SAPI	will	reject	such	grammars	upon
loading.	Inside	a	grammar,	transitions	can	have	semantic
properties,	although	the	engine	does	not	normally	need	to
identify	these.
SAPI	takes	full	control	of	loading	of	a	grammar	when	an
application	asks	it	to.	The	loading	can	be	from	a	file,	a	URL,	a
resource,	or	from	memory,	and	can	involve	loading	either	binary
or	XML	forms	of	the	grammar,	and	resolving	imports.	SAPI	then
notifies	the	SR	engine	about	the	contents	of	the	grammar
through	various	DDI	methods.
There	are	five	actions	that	are	performed	on	rules:
-	New	rules	can	be	added	(SPCFGN_ADD)	or	existing	rules
removed	(SPCFGN_REMOVE).
-	Rules	can	be	activated	(SPCFGN_ACTIVATE)	or	deactivated
(SPCFGN_DEATIVATE)	for	recognition.
-	Rule	can	be	invalidated	(SPCFGN_INVALIDATE),	which	means
the	rule	has	been	edited	by	the	application	and	thus	the	engine
needs	to	reread	the	contents	of	the	rule.
Each	rule	is	represented	by	an	SPRULEENTRY	structure.	This
contains	an	hRule,	which	gives	a	unique	handle	identifying	the
rule.	The	pvClientRuleContext	is	a	pointer	that	the	engine	can
set	using	ISpSREngineSite::SetRuleClientContext.	Then,
subsequent	calls	to	the	ISpSREngineSite::GetRuleInfo	method
will	return	the	same	structure	but	with	the	pvClientRuleContext
field	filled	in.	The	pvClientGrammarContext	is	the	pointer	that

the	engine	set	in	the	ISpSREngine::OnCreateGrammar	method.
This	indicates	which	grammar	the	rule	belongs	to.	The
Attributes	field,	of	type	SPCFGRULEATTRIBUTES,	contains	some
flags	giving	extra	information	about	the	rule:
SPRAF_TopLevel	if	the	rule	is	top	level	and	thus	can	be	activated
for	recognition.
SPRAF_Active	if	the	rule	is	currently	activated.
SPRAF_Interpreter	if	the	rule	is	associated	with	an	Interpreter
object	for	semantic	processing.
SPRAF_AutoPause	if	the	rule	is	autopause.
The	hInitialState	gives	the	initial	state	of	the	rule.
In	order	for	the	SR	engine	to	find	out	the	full	contents	of	the	rule
(either	immediately,	or	later	during	recognition),	it	can	use	the
ISpSREngineSite::GetStateInfo	method.	This	gives	information
about	all	the	subsequent	transitions	and	states	following	on
from	any	given	state	(starting	with	the	initial	state	of	the	rule).

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpSREngine::PrivateCallEx
ISpSREngine::PrivateCallEx	performs	the	same	task	as
ISpSREngine::PrivateCall,	except	that	a	variable	sized	data	block
can	be	returned	from	the	engine	to	the	engine	extension	object.
HRESULT	PrivateCallEx(

			void								*pvEngineContext,

			const	void		*pInCallFrame,

			ULONG								ulInCallFrameSize,

			void							**ppvCoMemResponse,

			ULONG							*pulResponseSize

);

Parameters

pvEngineContext
[in]	The	engine's	pointer	for	this	context,	as	returned	from	a
previous	call	to	OnCreateRecoContext.

pInCallFrame
[in]	Address	of	the	engine-specific	input	data.

ulInCallFrameSize
[in]	Size,	in	bytes,	of	the	engine-specific	data	contained	in
pInCallFrame.

ppvCoMemResponse
[out]	Address	of	a	pointer	to	the	response	block	information
from	the	SR	engine.	This	must	be	allocated	with
CoTaskMemAlloc.

pulResponseSize
[out]	Size,	in	bytes,	of	the	ppvCoMemResponse	data.

Return	values

Value Description
S_OK Function	completed	successfully.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpSREngine::SetContextState
ISpSREngine::SetContextState	indicates	that	a	recognition
context	has	been	activated	or	deactivated	by	the	application
calling	ISpRecoContext::SetContextState.
HRESULT	SetContextState(

		void										*	pvEngineContext,

		SPCONTEXTSTATE		eContextState

);

Parameters

pvEngineContext
[in]	Pointer	to	the	engine's	data	for	this	context,	as	returned
from	a	previous	call	to	OnCreateRecoContext.

eContextState
[in]	The	SPCONTEXTSTATE	enumeration	value	specifying	the
new	recognition	context	state.

Return	values

Value Description
S_OK Function	completed

successfully.
FAILED(hr) Appropriate	error

message.

Remarks
When	using	standard	CFG	and	dictation	grammars,	the	engine
may	not	need	to	be	informed	of	the	context	state,	as	SAPI	will
automatically	activate	and	deactivate	the	grammars	as
necessary.	However,	when	using	proprietary	grammars,	it	may

be	necessary	to	look	at	this	information.

Microsoft	Speech	SDK
SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpSREngineSite
The	interface	ISpEngineSite	is	implemented	by	SAPI	and	is
called	by	the	SR	engine.	It	is	used	by	the	SR	engine	to	get	audio
data,	retrieve	grammar	information,	send	event	events,	and
return	recognition	information	to	SAPI.
Full	details	on	how	an	SR	engine	interacts	with	SAPI	and	how	it
should	call	the	methods	on	this	interface	are	given	in	the	"SR
Engine	Guide"	in	the	white	papers	section	of	the	Help	files.

Implemented	By
SAPI.	Applications	or	engines	do	not	implement	this
method.

Created	By
SAPI.	The	SR	engine	obtains	a	pointer	to	this	interface
when	the	ISpSREngine::SetSite	is	called,	after	SAPI
creates	the	SR	engine.

	

Methods	in	Vtable	Order

ISpSREngineSite	Methods Description
Read Reads	audio	data	from	the	input

stream.
DataAvailable Retrieves	the	amount	of	data	that

can	be	read	using
ISpSREngineSite::Read	without
blocking.

SetBufferNotifySize Sets	the	amount	of	data	to	be
available	before	data	available
event	is	set.

ParseFromTransitions Produces	an	ISpPhraseBuilder

result	from	a	list	of	transitions.
Recognition Returns	a	recognition	result	(final,

partial,	or	false)	to	SAPI.
AddEvent Sends	an	event	back	from	the

engine	to	applications.
Synchronize Informs	SAPI	that	the	engine	is

ready	to	process	changes	in	its
grammars.

GetWordInfo Retrieves	information	about	a
word	in	a	CFG	grammar.

SetWordClientContext Sets	an	engine-defined	pointer	on
a	CFG	word.

GetRuleInfo Retrieves	information	about	a
CFG	rule.

SetRuleClientContext Sets	an	engine-defined	pointer	on
a	CFG	rule.

GetStateInfo Retrieves	information	on	the
transitions	from	a	CFG	state.

GetResource Retrieves	a	named	resource	from
a	grammar.

GetTransitionProperty Retrieves	semantic	property
information	for	a	transition	in	a
grammar.

IsAlternate Determines	whether	one	rule	is	a
valid	alternate	of	another.

GetMaxAlternates Returns	the	maximum	number	of
alternates	that	should	be
generated	for	the	specified	rule.

GetContextMaxAlternatesReturns	the	maximum	number	of
alternates	that	should	be
generated	for	the	specified
recognition	context.

UpdateRecoPos Informs	SAPI	of	the	current
position	of	the	recognizer	in	the
stream	to	SAPI.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpSREngineSite::Read
ISpSREngineSite::Read	retrieves	a	chunk	of	audio	data	for
the	SR	engine	to	convert	to	text.
HRESULT	Read(

			void				*pv,

			ULONG				cb,

			ULONG			*pcbRead

);

Parameters

pv
[in]	Pointer	to	the	buffer	into	which	the	audio	input	stream
data	is	read.

cb
[in]	Specifies	the	number	of	bytes	of	data	to	attempt	to	read
from	the	audio	input	stream.

pcbRead
[out]	Pointer	to	a	ULONG	variable	that	receives	the	actual
number	of	bytes	read	from	the	audio	input	stream.	

Return	values

Value Description
S_OK Function	completed

successfully.
SPERR_AUDIO_BUFFER_OVERFLOW SAPI's	internal	audio

buffer	has	filled,	and	the
device	has	been	closed.
See	Remarks	section.

SPERR_AUDIO_BUFFER_UNDERFLOW The	audio	object	has	not
received	audio	data	from
the	device	quickly
enough,	and	the	device
has	been	closed.	See
Remarks	section.

SPERR_AUDIO_STOPPED Audio	device	state	has
been	set	to	stop.

SPERR_STREAM_NOT_ACTIVE Method	called	when
engine	is	not	inside
RecognizeStream	call.

E_OUTOFMEMORY Exceeded	available
memory

E_POINTER At	least	one	of	pcbRead	or
pv	are	invalid	or	bad.

FAILED	(hr) Other	appropriate	error
message.

Remarks
The	engine	requests	a	certain	amount	of	data	to	read	and
supplies	a	buffer	of	this	size.	SAPI	will	read	this	amount	of	data
from	the	audio	input.	If	the	amount	of	data	that	is	requested	is
not	available	immediately,	SAPI	will	block	this	call	until	the
requested	amount	is	available.	
If	this	call	returns	with	a	failure	code	or	if	the	amount	that	was
read	is	less	than	the	amount	requested,	this	indicates	that	the
stream	has	ended.	The	engine	should	return	from	the
RecognizeStream	method	after	it	has	finished	processing	all
data.
This	method	can	only	be	called	while	the	SR	engine	is	inside	a
ISpSREngine::RecognizeStream	call,	although	it	can	be	called	on
any	thread.
When	the	SR	engine	calls	ISpSREngineSite::Read,	SAPI	will
ultimately	call	ISpAudio::Read	and	pass	the	return	code	back	to

the	SR	engine	using	ISpSREngineSite::Read.	If	an	error	code	is
returned	and	the	error	is	recoverable,	SAPI	will	automatically
detect	that	an	audio	error	occurred	and	attempt	to	reactivate
the	audio	device.	The	SR	engine	will	then	receive	a	new	call,
ISpSREngine::RecognizeStream,	that	will	enable	it	to	continue
recognizing	with	minimal	audio	data	loss.
When	using	a	real-time	audio	device	as	input,	it	is	important	for
an	SR	engine	to	call	Read	as	often	as	it	is	able	to	avoid	an	audio
buffer	overflow	(for	example	see	ISpMMSysAudio::Read).
In	all	cases,	if	the	Read	call	returns	a	failure	code,	the	engine
should	not	return	this	as	the	return	value	of	the
RecognizeStream	method.	This	failure	code	can	occur	for	normal
conditions	indicating	the	audio	has	finished.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpSREngineSite::DataAvailable
ISpSREngineSite::DataAvailable	retrieves	the	amount	of
data	that	can	be	read	using	ISpSREngineSite::Read	without
blocking.
This	method	can	only	be	called	while	the	SR	engine	is	inside	a
ISpSREngine::RecognizeStream	call,	although	it	can	be	called	on
any	thread.
HRESULT	DataAvailable(

			ULONG			*pcb

);

Parameters

pcb
[out]	The	amount,	in	bytes,	of	data	available.	For	real-time
audio	streams	this	is	the	actual	amount	of	data	currently
available.	For	non	real-time	streams	this	method	will	always
return	the	value	INFINITE.	Using	the	fRealTimeAudio
parameter	on	the	RecognizeStream	method,	engines	can
determine	whether	this	is	a	real-time	stream.

Return	values

Value Description
S_OK Function	completed	successfully.
E_POINTER pcb	is	a	bad	write	pointer.
SPERR_STREAM_NOT_ACTIVE Method	called	when	engine	is	not

inside	RecognizeStream	call.
FAILED(hr) Other	appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpSREngineSite::SetBufferNotifySize
ISpSREngineSite::SetBufferNotifySize
controls	how	much	data	will	be	available	to	read	before	this
event	gets	set.	This	method	is	used	in	conjunction	with	the
hDataAvailable	Win32	event	that	is	passed	as	a	parameter	in
ISpSREngine::RecognizeStream.
HRESULT	SetBufferNotifySize(

			ULONG			cbSize

);

Parameters

cbSize
[in]	The	minimum	amount	of	data	that	should	be	available
before	the	data	available	event	is	set.

Return	values

Value Description
S_OK Function	completed

successfully.
SP_UNSUPPORTED_ON_STREAM_INPUT Function	call	has	no

effect	as	this	is	a	non-
real	time	audio	stream.

FAILED(hr) Other	appropriate	error
message.

Remarks
This	can	be	used	if	an	engine	calls	Read	only	when	at	least	a
certain	amount	of	data	is	available.	
On	non-real	time	streams,	for	example	when	reading	from	a
wave	file,	this	event	will	always	be	set,	as	all	the	data	in	the	file

is	always	available	for	reading.	This	method	will	return
SP_UNSUPPORTED_ON_STREAM_INPUT	in	this	case.
This	method	can	only	be	called	while	the	SR	engine	is	inside	a
ISpSREngine::RecognizeStream	call,	although	it	can	be	called	on
any	thread.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpSREngineSite::ParseFromTransitions
ISpSREngineSite::ParseFromTransitions	parses	an
ISpPhraseBuilder	result	from	a	list	of	CFG	transitions.
HRESULT	ParseFromTransitions(

			const			SPPARSEINFO			*pParseInfo,

			ISpPhraseBuilder					**ppPhrase

);

Parameters

pParseInfo
[in]	Address	of	the	SPPARSEINFO	structure	containing	phrase
information.

ppPhrase
[out]	Address	of	a	pointer	to	an	ISpPhraseBuilder	interface
that	receives	the	phrase	information.

Return	values

Value Description
S_OK Function	completed

successfully.
FAILED	(hr) Appropriate	error	message.

Remarks

This	method	is	called	to	produce	a	phrase	which	can	be	used	to
send	CFG	results	back	to	SAPI.	For	more	details	on	this	method,
see	the	SR	Engine	Guide.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpSREngineSite::Recognition
ISpSREngineSite::Recognition	returns	a	recognition	result	to
SAPI.
HRESULT	Recognition(

			SPRECORESULTINFO			*pResultInfo

);

Parameters

pResultInfo
[in]	Pointer	to	type	SPRECORESULTINFO	indicating	the
results.

Return	values

Value Description
S_OK Function	completed	successfully	and

to	continue	recognition.
S_FALSE Function	completed	successfully	and

the	engine	can	terminate	recognition
without	reading	the	rest	of	the
stream.

FAILED	(hr) Appropriate	error	message.

Remarks
The	phrase	can	be	either	a	hypothesis	or	a	final	result.	If	it	is	a
hypothesis,	a	hypothesis	event	is	issued	to	all	interested
recognition	contexts.	A	final	result	event	is	issued	to	the	target
grammar	that	the	result	refers	to.	An	engine	can	also	send	a
false	recognition	with	this	method,	indicating	it	has	low
confidence	in	the	result.
If	the	return	value	from	this	call	is	S_FALSE,	there	are	no	more

active	rules	and	the	engine	is	free	to	exit	the	RecognizeStream
call	without	reading	or	processing	any	more	data.	Otherwise,
the	engine	should	continue	reading	data	and	continue
recognition.
An	ISpSREngineSite::AddEvent	call	with	an	SPEI_PHRASE_START
parameter	as	the	event	type	must	precede	the	call	to
Recognition.	For	more	details	on	this	method,	see	the	SR	Engine
Guide.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpSREngineSite::AddEvent
ISpSREngineSite::AddEvent	sends	an	event	back	from	the
engine	to	applications.
For	more	details	on	this	method	and	the	different	events	that
can	be	fired,	see	the	SR	Engine	Guide.
HRESULT	AddEvent(

			const			SPEVENT							*pEvent,

			SPRECOCONTEXTHANDLE				hContext

);

Parameters

pEvent
[in]	Address	of	the	SPEVENT	structure	containing	the	event
information.

hContext
[in]	The	RecoContext	is	the	event	handle	passed	to	SR
engine	from	SAPI	through
ISpSREngine::OnCreateRecoContext.	This	value	should
normally	be	set	to	NULL	indicating	the	event	is	a	global	one.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG At	least	one	of	pEvent	or

hContext	is	invalid	or	bad.
Alternatively,	it	indicates	that	an
event	is	being	added	to	an
inappropriate	mode.

E_POINTER Invalid	pointer.

SPERR_STREAM_POS_INVALID The	current	audio	stream	offset
is	greater	than	either	the	current
seek	position	or	the	last	sync
position.	Alternatively,	if	the
event	stream	is	not	initialized,
the	stream	position	is	not	zero.

FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpSREngineSite::Synchronize
ISpSREngineSite::Synchronize	informs	SAPI	that	the	engine
is	ready	to	process	changes	in	its	grammars.
HRESULT	Synchronize(

			ULONGLONG			ullStreamPos

);

Parameters

ullStreamPos
[in]	The	position	within	the	audio	stream	that	the	engine	has
completed	recognizing.	SAPI	discards	its	stored	audio	up	to
this	point.	The	engine	cannot	fire	more	events	prior	to	this
position.	However,	the	engine	will	still	be	informed	of	current
grammar	changes	regardless	of	the	value	of	the	parameter.

Return	values

Value Description
S_OK Function	completed	successfully;

recognition	should	continue.
S_FALSE Function	completed	successfully

and	the	engine	can	terminate
recognition	without	reading	the
rest	of	the	stream.

SPERR_STREAM_NOT_ACTIVE Stream	is	not	initialized.
SPERR_STREAM_POS_INVALID Stream	position	is	either	greater

than	the	current	seek	position	or
less	than	the	last	synchronized
position.

FAILED	(hr) Appropriate	error	message.

Remarks
If	there	are	any	changes	pending,	SAPI	will	call	back	to	the
engine	to	inform	it	of	any	changes	using	WordNotify	or
RuleNotify.	When	the	engine	returns	from	these	methods,	SAPI
will	return	back	from	the	Synchronize	call.	If	the	return	value
from	this	call	is	S_FALSE,	and	there	are	no	more	active	rules,	the
engine	is	free	to	exit	the	RecognizeStream	call	without	reading
or	processing	more	data.
The	engine	can	choose	when	to	call	Synchronize.	Often	an
engine	will	respond	to	state	changes	when	no	speech	is
detected,	but	it	will	not	respond	when	the	user	is	speaking.	It	is
important,	however,	to	periodically,	if	not	routinely,	call
Synchronize.	Specifically,	if	an	application	attempts	to	release
its	final	reference	to	SAPI,	and	no	other	applications	are
connected,	SAPI	will	attempt	to	shutdown	the	SR	engine.
However,	the	shutdown	process	will	wait	indefinitely	for	the	SR
engine	to	reach	its	next	synchronization	point	(e.g.,	the	speech
recognition	engine	calls	ISpSREngineSite::Synchronize).
This	method	can	only	be	called	while	the	SR	engine	is	inside	a
ISpSREngine::RecognizeStream	call,	although	it	can	be	called	on
any	thread.	For	more	details	on	this	method,	see	the	SR	Engine
Guide.
An	example	of	the	synchronization	for	the	user	would	be
starting	dictation	mode,	and	activating	a	non-silence	noise
source	in	the	background	that	will	generate	a	single	continuous
recognition.	When	the	user	attempts	to	exit	the	application,	the
exit	will	be	blocked	until	the	SR	engine	finishes	recognizing	the
audio	stream.	For	this	reason,	the	SR	engine	should	call
ISpSREngineSite::Synchronize	periodically	to	prevent	extended
delays	in	state	changes	(e.g.,	application	shutdown,	grammar
changes,	etc.),	even	when	performing	a	long	recognition.	This
ensures	that	the	SR	engine	is	able	to	properly	clean	up	and	exit
its	ISpSREngine::RecognizeStream	method.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpSREngineSite::GetWordInfo
ISpSREngineSite::GetWordInfo	retrieves	information	about	a
word	in	a	CFG	grammar.
HRESULT	GetWordInfo(

			SPWORDENTRY				*pWordEntry,		

			SPWORDINFOOPT			Options

);

Parameters

pWordEntry
[in,	out]	Address	of	the	SPWORDENTRY	structure	that
contains	the	grammar	word	entry	information.	This	can	be
called	with	only	the	pWordEntry->hWord	word	handle	set.
The	following	members	may	be	allocated	with
CoTaskMemAlloc()	and	if	so,	each	must	be	freed	by	the
engine	with	CoTaskMemTaskFree()	when	no	longer	required.

pWordEntry->pszDisplayText
pWordEntry->pszLexicalForm
pWordEntry->aPhoneId

Options
[in]	One	of	the	grammar	word	options	specified	in	the
SPWORDINFOOPT	enumeration.	If	SPWIO_NONE,	the	LangID
and	pvClientContext	are	filled	in.	If	SPWIO_WANT_TEXT,	the
display	and	lexical	text	and	pronunciation	are	also	filled	in.

Return	values

Value Description
S_OK Function	completed	successfully.
E_POINTER pWordEntry	points	to	invalid	memory.

E_INVALIDARG Either	invalid	pWordEntry->hWord
word	handle	or	Options	contains
invalid	flags.

E_OUTOFMEMORY Not	enough	memory	to	complete	the
operation.

FAILED	(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpSREngineSite::SetWordClientContext
ISpSREngineSite::SetWordClientContext	sets	an	engine-
defined	context	pointer	on	a	CFG	word.
This	allows	an	engine	to	associate	a	pointer	to	its	own	data	with
each	word.	This	can	be	quickly	recovered	with	the
ISpSREngineSite::GetWordInfo	method.
HRESULT	SetWordClientContext(

			SPWORDHANDLE			hWord,	

			void										*pvClientContext

);

Parameters

hWord
[in]	The	handle	for	a	word.

pvClientContext
[in]	Pointer	to	the	engine's	data	it	wishes	to	associate	with
this	word.

Return	values

Value Description
S_OK Function	completed	successfully.
SPERR_INVALID_HANDLE Invalid	word	handle	parameter.
FAILED	(hr) Other	appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpSREngineSite::GetRuleInfo
ISpSREngineSite::GetRuleInfo	retrieves	information	about	a
CFG	rule.
HRESULT	GetRuleInfo(

			SPRULEENTRY				*pRuleEntry,

			SPRULEINFOOPT			Options

);

Parameters

pRuleEntry
[in,	out]	Address	of	the	SPRULEENTRY	structure	that	contains
the	grammar	rule	entry	information.

Options
[in]	One	of	the	grammar	rule	options	specified	in	the
SPRULEINFOOPT	enumeration	sequence.	(This	should	always
be	set	to	SPRIO_NONE).

Return	values

Value Description
S_OK Function	completed	successfully.
E_POINTER pRuleEntry	points	to	invalid	memory.
E_INVALIDARG Either	invalid	hRule	rule	handle	or

Options	contains	invalid	flags.
FAILED	(hr) Appropriate	error	message.

Remarks
This	method	can	be	called	after	the	engine	has	been	informed
of	a	rule	with	the	ISpSREngine::RuleNotify	method.	This	method
can	be	used	to	recover	rule	information	from	the	rule	handle.

Only	the	hRule	rule	handle	field	in	the	SPRULEENTRY	needs	to
be	filled	in	by	the	engine	when	calling	this	method.	The	engine
will	fill	in:

The	pvClientRuleContext,	which	is	a	pointer	that	the
engine	can	set	using
ISpSREngineSite::SetRuleClientContext.

The	pvClientGrammarContext,	which	is	the	pointer	that
the	engine	set	in	the	ISpSREngine::OnCreateGrammar
method.	This	indicates	which	grammar	the	rule	belongs
to.
The	Attributes	field,	of	type	SPCFGRULEATTRIBUTES,
which	contains	some	flags	giving	extra	information	about
the	rule:

SPAudioBufferInfo.ulMsMinNotification	cannot	be	larger	than
one	quarter	the	size	of	SPAudioBufferInfo.ulMsBufferSize	and
must	not	be	zero.
SPRAF_TopLevel	if	the	rule	is	top-level	and	thus	can	be
activated	for	recognition.
SPRAF_Interpreter	if	the	rule	is	associated	with	an	Interpreter
object	for	semantic	processing.
SPRAF_AutoPause	if	the	rule	is	auto-pause.

The	hInitialState	field,	which	gives	the	initial	state	of	the
rule.	Information	on	this	and	subsequent	states	can	be
obtained	by	calling	the	ISpSREngineSite::GetStateInfo
method.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpSREngineSite::SetRuleClientContext
ISpSREngineSite::SetRuleClientContext	sets	an	engine-
defined	pointer	on	a	CFG	rule.
This	allows	an	engine	to	associate	a	pointer	to	its	own	data	with
each	rule.	This	can	be	quickly	recovered	with
ISpSREngineSite::GetRuleInfo.
HRESULT	SetRuleClientContext(

			SPRULEHANDLE			hRule,

			void										*pvClientContext

);

Parameters

hRule
[in]	Handle	of	a	rule.

pvClientContext
[in]	Pointer	to	the	engine's	data	it	wishes	to	associate	with
this	rule.

Return	values

Value Description
S_OK Function	completed	successfully.
SPERR_INVALID_HANDLE Invalid	rule	handle	parameter.
FAILED	(hr) Other	appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpSREngineSite::GetStateInfo
ISpSREngineSite::GetStateInfo	retrieves	information	on	the
transitions	from	a	CFG	state.
HRESULT	GetStateInfo(

			SPSTATEHANDLE			hState,	

			SPSTATEINFO				*pStateInfo

);

Parameters

hState
[in]	Handle	to	the	current	state.

pStateInfo
[out]	The	state	information.

Return	values

Value Description
S_OK Function	completed	successfully.
E_POINTER Either	pStateInfo	or	pTransitions	in

pStateInfo	points	to	invalid	memory.
E_OUTOFMEMORY Not	enough	memory	to	complete	the

operation.
SPERR_INVALID_HANDLE Invalid	state	handle	parameter.
FAILED	(hr) Appropriate	error	message.

Remarks
This	method	is	called	so	that	the	SR	engine	can	discern	the	full
contents	of	the	rule.	GetStateInfo	can	be	called	immediately
upon	receiving	a	ISpSREngine::RuleNotify	call	about	a	rule,	or

later	during	recognition.	This	method	supplies	information	about
all	the	subsequent	states	from	any	given	state.
The	engine	passes	this	method	a	state	handle	(starting	with	the
hInitialState	of	the	rule),	and	a	pointer	to	an	SPSTATEINFO
structure	with	all	its	fields	initially	zeroed.	This	structure	is	filled
out	with	information	on	all	of	the	transitions	out	of	that	state	in
the	pTransitions	array.	SAPI	uses	CoTaskMemAlloc	to	allocate
this	array.	The	engine	can	call	this	method	again	on	each	of	the
states	following	the	current	state,	and	so	on,	in	order	to	get
information	about	all	of	the	states	in	the	rule.	Loop-back
transitions	are	possible	in	a	rule	and	the	engine	may	need	to
confirm	that	it	has	not	visited	the	state	before.
When	the	engine	calls	GetStateInfo	subsequent	times,	it	can	call
it	with	the	cAllocatedEntries	and	pTransitions	fields	unchanged
from	the	last	call.	If	possible,	SAPI	will	then	re-use	the	memory
from	the	transition	array	rather	that	re-allocating	it.
Alternatively,	the	engine	can	use	CoTaskMemFree	to	free	the
pTransitions	memory,	set	these	fields	to	NULL	and	SAPI	will	re-
allocate	the	memory	every	time.
Each	transition	represents	a	link	from	one	state	to	another
state.	Each	transition	is	represented	by	an	SPTRANSITIONENTRY
structure.	This	structure	contains	an	ID	field	that	uniquely
identifies	the	transition,	an	hNextState	handle	that	indicates	the
state	the	transition	is	connected	to,	and	a	Type	field	that
indicates	the	type	of	transition.
There	are	three	common	types	of	transition,	which	all	engines
should	support:

Word	transitions	(SPTRANSWORD).	These	represent
single	words	that	the	recognizer	will	recognize	before
advancing	to	the	next	state.	The	handle	to	the	word	and
the	engine’s	word	pointer	are	supplied	inside	the
SPTRANSITIONENTRY	structure.	To	produce	recognition
results,	the	engine	needs	to	keep	track	of	the	transition
IDs	of	word	transitions	as	they	are	used	in	the
ParseFromTransitions	method.

Rule	transitions	(SPTRANSRULE).	These	represent
transitions	into	sub-rules.	This	transition	is	only	passed
when	a	path	through	the	sub-rule	has	been	recognized.
The	rule	handle,	engine’s	rule	pointer	and	initial	state	of
the	sub-rule	are	supplied.	Rules	can	be	recursive	(not	left
recursive).
Epsilon	transitions	(SPTRANSEPSILON).	These	are	NULL
transitions	that	can	be	traversed	without	recognizing
anything.

A	state	that	has	a	transition	to	a	null	state	handle	indicates	the
end	of	a	rule.	There	can	also	be	‘void’	states,	which	block	and
indicate	that	there	is	no	recognition	path	from	this	state.	A	void
state	has	zero	transitions	out	of	it.
There	are	also	a	number	of	special	transitions,	which	may	not
be	supported	by	all	engines.
See	the	SR	Engine	Guide	document	for	more	information	on	CFG
grammars.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpSREngineSite::GetResource
ISpSREngineSite::GetResource	retrieves	a	named	resource
from	a	grammar.
HRESULT	GetResource(

			SPRULEHANDLE			hRule,

			WCHAR									*pszResourceName,

			WCHAR								**ppCoMemResource

);

Parameters

hRule
[in]	The	rule	handle.

pszResourceName
[in]	Null-terminated	string	containing	the	name	of	the
resource	to	recover.

ppCoMemResource
[out]	The	resource	associated	with	the	rule.	Applications
calling	this	method	must	call	CoTaskMemFree()	to	free
memory	associated	with	this	resource.

Return	values

Value Description
S_OK Function	completed	successfully	and

the	rule	contained	a	resource	of	the
correct	name.

S_FALSE Function	completed	successfully	but
no	resource	was	found.

E_INVALIDARG pszResourceName	points	to	invalid

string.
E_POINTER ppCoMemResource	invalid	or	bad.
E_NOTIMPL Method	is	not	implemented.
SPERR_INVALID_HANDLE Invalid	hRule	handle.
FAILED	(hr) Appropriate	error	message.

Remarks
Within	a	CFG,	each	rule	can	contain	one	or	more	named	strings
containing	arbitrary	string	data.	The	engine	can	recover	this
data	using	::GetResource	and	passing	in	the	rule	handle	and
resource	name.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpSREngineSite::GetTransitionProperty
ISpSREngineSite::GetTransitionProperty	retrieves	semantic
property	information	for	a	transition	in	a	grammar.
HRESULT	GetTransitionProperty(

			SPTRANSITIONID											ID,

			SPTRANSITIONPROPERTY			**ppCoMemProperty

);

Parameters

ID
[in]	The	transition	identifier.

ppCoMemProperty
[out]	Address	of	a	pointer	to	a	SPTRANSITIONPROPERTY	that
receives	the	property	information.	Applications	calling	this
method	must	call	CoTaskMemFree()	to	free	memory	returned.
If	the	transition	does	not	have	a	semantic	property,	this	will
be	set	to	point	to	NULL,	and	S_FALSE	will	be	returned.

Return	values

Value Description
S_OK Function	completed	successfully	and

transition	has	a	property.
S_FALSE Function	completed	successfully	but

transition	does	not	have	a	property.
E_INVALIDARG One	or	more	parameters	are	invalid.
E_OUTOFMEMORY Exceeded	available	memory.
FAILED(hr) Appropriate	error	message.

Remarks

CFG	grammars	can	contain	properties	(also	known	as	‘semantic
tags’)	within	a	grammar.	This	provides	a	means	for	semantic
information	to	be	embedded	inside	a	grammar.
By	default,	the	engine	does	not	recognize	these	properties.
Typically,	an	engine	will	recognize	only	the	speech	from	the
words	in	the	grammar,	and	SAPI	will	parse	and	add	the	property
information	in	the	ISpSREngineSite::ParseFromTransitions	call.
However,	it	is	possible	for	an	engine	to	recognize	this
information	by	calling	this	method	on	any	transition.	If	there	is	a
property	on	this	transition,	the	property	name	or	ID	and	value	is
returned	in	the	SPTRANSITIONPROPERTY	structure,	which	must
be	freed	after	each	use	using	CoTaskMemFree.
An	engine	can	find	out	if	a	transition	has	a	semantic	property
attached	before	calling	this	method	by	looking	at	the
fHasProperty	flag	in	the	SPTRANSITIONENTRY	structure
associated	with	this	transition.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpSREngineSite::IsAlternate
ISpSREngineSite::IsAlternate	determines	whether	one	rule	is
an	alternate	of	another.
HRESULT	IsAlternate(

			SPRULEHANDLE			hPriRule,

			SPRULEHANDLE			hAltRule

);

Parameters

hPriRule
[in]	The	primary	rule.

hAltRule
[in]	The	alternate	rule	to	be	checked.

Return	values

Value Description
S_OK hAltRule	is	an	alternate	of

hPriRule.
S_FALSE hAltRule	is	not	an	alternate	of

hPriRule.
FAILED	(hr) Appropriate	error	message.

Remarks
This	method	is	used	because	it	is	not	possible	to	return
alternates	for	CFG	rules	from	different	recognition	contexts.	This
method	provides	an	easy	way	for	engines	to	determine	whether
two	rules	belong	to	the	same	context.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpSREngineSite::GetMaxAlternates
ISpSREngineSite::GetMaxAlternates	passes	back	the
maximum	number	of	alternates	that	should	be	generated	for
the	specified	CFG	rule.
HRESULT	GetMaxAlternates(

			SPRULEHANDLE			hRule,

			ULONG									*pulNumAlts

);

Parameters

hRule
[in]	The	rule	to	check.

pulNumAlts
[out]	The	maximum	number	of	alternates	for	the	rule.

Return	values

Value Description
S_OK Function	completed

successfully.
E_POINTER pulNumAlts	is	invalid	or

bad.
FAILED	(hr) Appropriate	error

message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpSREngineSite::GetContextMaxAlternates
ISpSREngineSite::GetContextMaxAlternates	passes	back
the	maximum	number	of	alternates	that	should	be	generated
for	the	specified	recognition	context.
HRESULT	GetContextMaxAlternates(

			SPRECOCONTEXTHANDLE			hContext,

			ULONG																*pulNumAlts

);

Parameters

hContext
[in]	Handle	to	the	context.

pulNumAlts
[out]	The	maximum	number	of	alternates	to	generate.

Return	values

Value Description
S_OK Function	completed

successfully.
E_POINTER pulNumAlts	is	invalid	or	bad.
FAILED	(hr) Appropriate	error	message.

Remarks
For	SAPI	command	and	control	grammars,	it	is	usually	easier	to
use	the	ISpSREngineSite::GetMaxAlternates	method.
This	method	currently	applies	to	command	and	control	and
proprietary	grammars,	but	not	to	dictation	grammars.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpSREngineSite::UpdateRecoPos
ISpSREngineSite::UpdateRecoPos	returns	the	current
position	of	the	recognizer	in	the	stream	to	SAPI.	An	engine
should	call	this	regularly,	up	to	several	times	a	second,
regardless	of	whether	it	is	recognizing	speech	or	silence.
This	method	can	only	be	called	while	the	SR	engine	is	inside	a
ISpSREngine::RecognizeStream	call,	although	it	can	be	called	on
any	thread.
HRESULT	UpdateRecoPos(

			ULONGLONG			ullStreamPos

);

Parameters

ullStreamPos
[out]	The	current	stream	position	of	the	recognizer.

Return	values

Value Description
S_OK Function	completed

successfully.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpSRAlternates
ISpSRAlternates	defines	the	engine-level	interface	by	which
SAPI	communicates	with	a	speech	recognition	engine's	alternate
analyzer.	The	two	main	features	of	an	alternate	analyzer	are	the
ability	to	generate	alternate	phrases	for	a	recognized	phrase
(see	GetAlternates)	and	the	ability	to	update	the	speech
recognition	engine's	acoustic	and/or	language	models	based	on
alternate	selection	(see	Commit).

When	to	Use
The	ISpSRAlternates	interface	is	an	engine-level	interface,	called
by	SAPI	when	an	SR	application	calls	the	respective	application-
level	interface	(e.g.,	ISpRecoResult::GetAlternates	for
ISpSRAlternates::GetAlternates,	ISpPhraseAlt::Commit	for
ISpSRAlternates::Commit.	The	application	should	not	call	the
ISpSRAlternates	interface	directly.

When	to	Implement
The	ISpSRAlternates	interface	should	be	implemented	as	a	COM
object	by	the	speech	recognition	engine	vendor.	The	object	will
be	used	by	SAPI	to	generate	alternates	of	phrases	recognized	by
the	vendor's	engine	and	to	commit	updates	to	the	engine's
acoustic	and/or	language	model.
See	the	Speech	Recognition	Engine	Porting	Guide	for	more
information	on	how	to	implement	the	alternate	analyzer	object.

Methods	in	Vtable	Order

ISpSRAlternates
Methods Description
GetAlternates Retrieves	a	list	of	alternate	phrases.
Commit Instructs	the	alternate	analyzer	to

update	the	speech	recognition	(SR)
engine's	acoustic	and/or	language

model	based	on	the	selected
alternative	phrase,	versus	the
original	phrase.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpSRAlternates::GetAlternates
GetAlternates	retrieves	a	list	of	alternate	phrases.
SAPI	calls	GetAlternates	when	an	application	calls
ISpRecoResult::GetAlternates.	The	alternate	analyzer	uses	the
SPPHRASEALTREQUEST	information	to	generate	at	most,	the
requested	number	of	alternate	phrases,	returned	using	the
SPPHRASEALT	pointer.
If	the	alternate	analyze	needs	information	that	is	not	included	in
the	phrase	structure	(see	SPPHRASE),	the	speech	recognition
(SR)	engine	can	store	a	custom,	private	block	of	data	that	is
sent	to	the	alternate	analyze	in	the
SPPHRASEALTREQUEST.pvResultExtra	field.	See	also
SPPARSEINFO.pSREnginePrivateData	and
SPPHRASE.pSREnginePrivateData.
The	alternate	analyzer	communicates	with	the	SR	engine	by
retrieving	the	ISpRecoContext	interface	from	the
SPPHRASEALTREQUEST.pRecoContext	field,	and	querying	(see
IUnknown::QueryInterface)	for	the	SR	engine's	private	extension
(see	ISpPrivateEngineCall).
HRESULT	GetAlternates(

			SPPHRASEALTREQUEST			*pAltRequest,

			SPPHRASEALT									**ppAlts,

			ULONG																*pcAlts

);

Parameters

pAltRequest
[in]	Pointer	to	a	structure	of	type,	SPPHRASEALTREQUEST,
which	points	to	information	about	the	alternate	request	(e.g.,
original	phrase,	number	of	alternates	requested,	private	SR
engine	data,	etc.).

ppAlts
[out]	Pointer	to	a	list	of	structures	of	type	SPPHRASEALT	for
alternate	phrases.	The	alternate	analyzer	uses	the
ISpPhraseBuilder	interface	to	create	the	alternate	phrases
and	return	pointers	to	the	alternates	in	the
SPPHRASEALT.pPhrase	field.

pcAlts
[out]	The	actual	number	of	alternates	in	ppAltslist.	The
alternate	analyzer	returns	the	number	of	alternates	it
actually	generated.	If	it	cannot	generate	alternates	for	the
original	phrase,	it	should	return	zero.	The	number	should	be
less	than	or	equal	to	the	number	requested	by	the
application	(see	SPPHRASEALTREQUEST.ulRequestAltCount).

Return	values

Value Description
S_OK Function	completed

successfully.
FAILED	(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpSRAlternates::Commit
ISpSRAlternates::Commit	instructs	the	alternate	analyzer	to
update	the	speech	recognition	(SR)	engine's	acoustic	and/or
language	model	based	on	the	selected	alternate	phrase,	versus
the	original	phrase.
SAPI	calls	Commit	when	an	application	calls
ISpPhraseAlt::Commit.	The	alternate	analyzer	compares	the
original	phrase	(see	SPPHRASEALTREQUEST.pPhrase)	and	the
new	alternate	phrase	(see	SPPHRASEALT)	to	improve	recognition
accuracy.
Depending	on	the	manufacturer,	the	SR	engine	might	provide	a
custom	related	data	block	(see
SPPHRASEALTREQUEST.pvResultExtra)	so	that	the	analyzer	can
synchronize	the	data	block	with	the	new	alternate	phrase.	If	the
user	wants	to	re-analyze	the	new	phrase	(after	being	serialized
and	deserialized),	or	if	the	user	chooses	a	different	alternate,
SAPI	provides	the	revised	data	block	to	the	analyzer.
The	alternate	analyzer	communicates	with	the	SR	engine	by
retrieving	the	ISpRecoContext	interface	from	the
SPPHRASEALTREQUEST.pRecoContext	field,	and	querying	(see
IUnknown::QueryInterface)	for	the	SR	engine's	private	extension
(see	ISpPrivateEngineCall).
HRESULT	Commit(

			SPPHRASEALTREQUEST		*pAltRequest,

			SPPHRASEALT									*pAlt,

			void															**ppvResultExtra,

			ULONG															*pcbResultExtra

);

Parameters

pAltRequest
[in]	A	pointer	to	the	structure	of	type	SPPHRASEALTREQUEST

that	specifies	the	original	alternate	request	and	phrase
information.

pAlt
[in]	A	pointer	to	the	structure	of	type	SPPHRASEALT	that
specifies	the	application-chosen	alternate	phrase.

ppvResultExtra
[out]	Additional	engine-defined	information	that	should	be
included	with	recognition	result.

pcbResultExtra
[out]	Size,	in	bytes,	of	ppvResultExtra.

Return	values

Value Description
S_OK Function	completed

successfully.
FAILED	(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Text-to-speech	engine	interfaces	(DDI-
level)
The	following	section	covers:

ISpTTSEngine
ISpTTSEngineSite

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpTTSEngine
The	SAPI	speech	synthesis	(text-to-speech,	or	TTS)	engine
implements	the	ISpTTSEngine	interface.
ISpTTSEngine::Speak	is	the	primary	method	called	by	SAPI	to
perform	speech	rendering.	SAPI,	rather	than	the	engine,
performs	XML	parsing	of	the	input	text	stream.	The	Speak
method	receives	a	linked	list	of	text	fragments	with	their
associated	XML	attribute	states.	The	Speak	method	also
receives	a	pointer	to	the	ISpVoice	ISpTTSEngineSite	interface.
The	TTS	engine	uses	this	interface	to	queue	events	and	to	write
the	output	audio	data.
Even	though	SAPI	5	is	a	free–threaded	architecture,	TTS	engine
instances	will	always	be	called	by	SAPI	on	a	single	thread.	TTS
engines	are	never	directly	accessed	by	applications.	SAPI
ensures	that	all	parameter	validation	and	thread
synchronization	has	been	performed	properly	before	calling	the
TTS	engine.	All	calls	to	the	TTS	engine	in	the	release	build	of
SAPI	are	within	a	try	or	except	block	to	protect	applications	from
faulting.

Methods	in	Vtable	Order

ISpTTSEngine	Methods Description
Speak Renders	the	specified	text	fragment

list	in	the	specified	output	format.
GetOutputFormat Queries	the	engine	about	a	specific

output	format.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpTTSEngine::Speak
ISpTTSEngine::Speak	renders	the	specified	text	fragment	list
in	the	specified	output	format.
HRESULT	Speak(

			DWORD																	dwSpeakFlags,

			REFGUID															rguidFormatId,

			const	WaveFormatEx			*pWaveFormatEx,

			const	SPVTEXTFRAG				*pTextFragList,

			ISpTTSEngineSite					*pOutputSite

);

Parameters

dwSpeakFlags
[in]	Possible	values	are	contained	in	the	SPEAKFLAGS
enumeration,	but	all	values	other	than	SPF_NLP_SPEAK_PUNC
will	be	masked	off.	If	SPF_NLP_SPEAK_PUNC	is	set,	the	engine
should	speak	all	punctuation	(e.g.,	"This	is	a	sentence."
should	be	expanded	to	"This	is	a	sentence	period").

rguidFormatId
[in]	The	stream	format	identifier	describing	the	required
output	format.	This	format	is	guaranteed	to	be	one	that	the
engine	specified	as	supported	in	a	previous	GetOutputFormat
call.

SPDFID_Text Engines	are	not
required	to	support
this	format,	nor	are
they	required	to	do
anything	specific	with
this	format	if	they	do
support	it.		It	is
provided	merely	for

debugging	purposes.
SPDFID_WaveFormatEx pWaveFormatEx	will

be	a	WAVEFORMATEX
structure	describing
an	output	format
specified	by	the
engine	in	a	previous
GetOutputFormat
call.

pWaveFormatEx
[in]	Pointer	to	a	WAVEFORMATEX	structure	describing	the
output	format.	Will	be	NULL	if	rguidFormatID	is	SPDFID_Text.

pTextFragList
[in]	A	linked	list	of	SPVTEXTFRAGs	to	synthesize.		See	the	TTS
Engine	Vendor	Porting	Guide	for	more	information.

pOutputSite
[in]	Pointer	to	an	ISpTTSEngineSite	where	audio	data	and
events	should	be	written.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpTTSEngine::GetOutputFormat
ISpTTSEngine::GetOutputFormat	queries	the	engine	about	a
specific	output	format.	The	engine	should	examine	the
requested	output	format,	and	return	the	closest	format	that	it
supports.
HRESULT	GetOutputFormat(

			const	GUID										*pTargetFmtId,

			const	WAVEFORMATEX		*pTargetWaveFormatEx,

			GUID																*pOutputFormatId,

			WAVEFORMATEX							**ppCoMemOutputWaveFormatEx

);

Parameters

pTargetFmtId
[in]	Address	of	the	GUID	describing	the	requested	output
format.

SPDFID_Text Engines	are	not
required	to	support
this	format,	nor	are
they	required	to	do
anything	specific	with
this	format	if	they	do
support	it.		It	is
provided	merely	for
debugging	purposes.

SPDFID_WaveFormatEx pWaveFormatEx	will
be	a	WAVEFORMATEX
structure.

pTargetWaveFormatEx
[in]	Pointer	to	the	WAVEFORMATEX	structure	describing	the

requested	output	format.	
Will	be	NULL	if	pTargetFmtId	is	SPDFID_Text.

pOutputFormatId
[out]	Address	of	a	GUID	to	receive	the	engine's	supported
output	format	identifier.

SPDFID_Text If	the	engine	does	support
SPDFID_Text,	SPDFID_Text
should	be	used,	and
ppCoMemOutputWaveFormatEx
should	be	set	to	NULL.

SPDFID_WaveFormatExOutput	format	will	be	described
by	a	WAVEFORMATEX	structure.

ppCoMemOutputWaveFormatEx
[out]	The	engine	allocates	space	for	a	WAVEFORMATEX
structure	using	CoTaskMemAlloc.		This	structure	describes
the	supported	output	format.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpTTSEngineSite
The	ISpTTSEngineSite	interface	is	implemented	by	the	SAPI
SpVoice	object.	It	is	used	to	write	audio	data	and	events.	See
the	TTS	Engine	Vendor	Porting	Guide	for	more	information.
The	ISpTTSEngineSite	interface	inherits	from	ISpEventSink.
AddEvents	and	GetEventInterest	are	included	in	this	interface.

Methods	in	Vtable	Order

ISpTTSEngineSite
Methods Description
ISpEventSink	inherited
methods.

All	the	methods	of	ISpEventSink	are
accessible	from	this	interface.

GetActions Queries	the	ISpVoice	to	determine
what	action(s)	to	perform.

Write Sends	output	data	(normally	audio)
to	SAPI.

GetRate Retrieves	the	current	TTS	rendering
rate	adjustment	that	should	be	used
by	the	engine.

GetVolume Retrieves	the	base	output	volume
level	the	engine	should	use	during
synthesis.

GetSkipInfo Retrieves	the	number	and	type	of
items	to	be	skipped	in	the	text
stream.

CompleteSkip Notifies	the	SpVoice	object	that	the
last	skip	request	has	been
completed	and	to	pass	it	the	results.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpTTSEngineSite::GetActions
ISpTTSEngineSite::GetActions	queries	the	SpVoice	object	to
determine	which	real-time	action(s)	to	perform.	An	engine
should	call	this	method	frequently	during	the	rendering	process
to	be	as	responsive	as	possible.	SAPI	returns	a	DWORD
indicating	which	action(s)	contained	in	the	SPVESACTIONS
enumeration	should	be	performed.	See	GetRate,	GetVolume,
and	GetSkipInfo	for	more	information.
DWORD	GetActions	(void);

Parameters
None.

Return	values
DWORD	containing	one	or	more	values	from	SPVESACTIONS
specifying	the	action(s)	to	perform.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpTTSEngineSite::Write
ISpTTSEngineSite::Write	sends	output	data	(normally	audio)
to	SAPI.
HRESULT	Write(

			const	void			*pBuff,	

			ULONG									cb,	

			ULONG								*pcbWritten

);

Parameters

pBuff
Pointer	to	synthesized	speech	audio	data.	The	output	format
is	specified	by	SAPI	as	a	parameter	to	the
ISpTTSEngine::Speak	call.

cb
The	buffer	size,	in	bytes	(not	samples),	of	pBuff.

pcbWritten
Pointer	to	a	ULONG	which	receives	the	number	of	bytes
actually	copied.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG pBuff	is	bad	or	invalid.
E_POINTER pcbWritten	is	bad	or	invalid.
SPERR_UNINITIALIZED Output	stream	cannot	be	initialized.

Remarks

SAPI	handles	sending	the	audio	data	to	the	correct	output
destination.	It	is	important	that	any	events	associated	with	the
audio	data	are	queued	by	calling	ISpEventSink::AddEvents	prior
to	calling	this	method.	This	ensures	proper	synchronization	of
event	firing	and	audio	rendering.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpTTSEngineSite::GetRate
ISpTTSEngineSite::GetRate	retrieves	the	current	TTS
rendering	rate	adjustment	that	should	be	used	by	the	engine.
HRESULT	GetRate(

			long			*pRateAdjust

);

Parameters

pRateAdjust
[out]	Pointer	to	a	long	which	specifies	the	baseline	rate.

Return	values

Value Description
E_POINTER pRateAdjust	is	invalid
S_OK Function	completed

successfully.

Remarks
This	function	should	be	called	when	a	call	to	GetActions	returns
SPVES_RATE.	The	retrieved	value	establishes	a	baseline	rate.
Additional	rate	adjustments	in	the	XML	state	should	be
combined	with	this	value	to	determine	the	actual	absolute	rate
adjustment.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpTTSEngineSite::GetVolume
ISpTTSEngineSite::GetVolume	retrieves	the	base	output
volume	level	the	engine	should	use	during	synthesis.
HRESULT	GetVolume(

		USHORT*	pusVolume

);

Parameters

pusVolume
[out]	Pointer	to	a	USHORT	which	specifies	the	baseline
volume	level.

Return	values

Value Description
S_OK Function	completed

successfully.
E	POINTER pusVolume	is	invalid.

Remarks
This	function	should	be	called	when	a	call	to	GetActions	returns
SPVES_VOLUME.	The	retrieved	value	establishes	a	baseline
volume.	Additional	volume	adjustments	in	the	XML	state	should
be	combined	with	this	value	to	determine	the	actual	absolute
volume	level.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpTTSEngineSite::GetSkipInfo
ISpTTSEngineSite::GetSkipInfo	retrieves	the	number	and
type	of	items	to	be	skipped	in	the	text	stream.
HRESULT	GetSkipInfo(

			SPVSKIPTYPE			*peType,

			long										*plNumItems

);

Parameters

peType
[out]	Pointer	to	an	SPVSKIPTYPE	which	specifies	the	type	of
item	to	skip.		Currently	only	sentences.

plNumItems
[out]	Pointer	to	a	long	that	specifies	the	number	of	items	to
skip.

Return	values

Value Description
S_OK Function	completed	successfully.
E	POINTER One	of	the	return	addresses	is	invalid.

Remarks
This	function	should	be	called	when	a	call	to	GetActions	returns
SPVES_SKIP.	plNumItems	can	be	positive,	signifying	a	forward
skip,	or	negative,	signifying	a	backward	skip,	or	zero,	signifying
a	skip	to	the	beginning	of	the	current	item.
After	the	engine	has	skipped	as	many	items	as	possible,	it	must
call	ISpTTSEngineSite::CompleteSkip	to	inform	SAPI	of	how

many	items	were	successfully	skipped.	If	the	engine	was	unable
to	skip	the	requested	number	of	items,	it	should	end	its	current
Speak	call	immediately.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpTTSEngineSite::CompleteSkip
ISpTTSEngineSite::CompleteSkip	notifies	the	SpVoice	object
that	the	last	skip	request	has	been	completed	and	to	pass	it	the
results.
HRESULT	CompleteSkip(

			long			lNumSkipped

);

Parameters

lNumSkipped
[in]	Specifies	the	number	of	items	that	actually	were	skipped.
It	is	invalid	to	skip	more	items	than	were	requested.

Return	values

Value Description
E_INVALIDARG Engine	skipped	more	items	than

requested.
S_OK Function	completed	successfully.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Structures
The	following	structures	are	used	with	SAPI	5.

SPAUDIOBUFFERINFO
SPAUDIOSTATUS

SPBINARYGRAMMAR
SPEVENT
SPEVENTSOURCEINFO

SPPARSEINFO
SPPATHENTRY

SPPHRASE
SPPHRASEALT

SPPHRASEALTREQUEST

SPPHRASEELEMENT
SPPHRASEPROPERTY

SPPHRASEREPLACEMENT

SPPHRASERULE
SPPROPERTYINFO
SPRECOCONTEXTSTATUS
SPRECOGNIZERSTATUS

SPRECORESULTINFO
SPRECORESULTTIMES
SPRULEENTRY
SPSERIALIZEDEVENT

SPSERIALIZEDEVENT64
SPSERIALIZEDPHRASE

SPSERIALIZEDRESULT
SPSTATEINFO
SPTEXTSELECTIONINFO
SPTMTHREADINFO

SPTRANSITIONENTRY
SPTRANSITIONPROPERTY
SPVCONTEXT

SPVOICESTATUS

SPVPITCH
SPVSTATE

SPVTEXTFRAG
SPWORD

SPWORDENTRY
SPWORDLIST
SPWORDPRONUNCIATION

SPWORDPRONUNCIATIONLIST
WAVEFORMATEX

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPAUDIOBUFFERINFO
SPAUDIOBUFFERINFO	contains	the	audio	stream	buffer
information.
Real-time	audio	objects	(e.g.,	ISpMMSysAudio	or	a	custom
ISpAudio-based	audio	object)	should	use	a	buffer	to	allow	for
latency	in	the	audio	stream,	either	during	reads	or	writes.	The
SPAUDIOBUFFERINFO	structure	contains	elements	that	define
how	the	buffer	should	be	used	at	run	time	(e.g.,	buffer	size,
event	latency,	etc.)
typedef	struct	SPAUDIOBUFFERINFO

{

				ULONG								ulMsMinNotification;

				ULONG								ulMsBufferSize;

				ULONG								ulMsEventBias;

}	SPAUDIOBUFFERINFO;

Members

ulMsMinNotification
The	minimum	preferred	time,	in	milliseconds,	between	the
actual	time	an	event	notification	occurs	and	the	ideal	time.
More	CPU	resources	are	needed	when	the	amount	of	time	is
shorter;	however,	the	event	notifications	are	more	timely.
This	value	must	be	greater	than	zero	and	no	more	than	one
quarter	the	size	of	the	ulMsBuffersize.
A	reasonable	default	is	50ms.

ulMsBufferSize
The	size	of	the	audio	object’s	buffer,	in	milliseconds.	For
readable	audio	objects,	this	is	simply	a	preferred	size;
readable	objects	will	automatically	expand	their	buffers	to
accommodate	data.	For	writable	audio	objects,	this	is	the
amount	of	audio	data	that	will	be	buffered	before	a	call	to

Write	will	block.	This	value	must	be	greater	than	or	equal	to
200	milliseconds.
A	reasonable	default	is	500ms.

ulMsEventBias
The	amount	of	time,	in	milliseconds,	by	which	event
notifications	precede	the	actual	occurrence	of	the	events.	For
example,	setting	a	value	of	100	for	the	event	bias	would
cause	all	events	to	be	notified	100	milliseconds	prior	to	the
audio	data	being	played.	This	can	be	useful	for	applications
needing	time	to	animate	mouths	for	TTS	voices.	This	value
cannot	be	larger	than	ulMsBufferSize.
A	reasonable	default	is	0ms;	applications	should	set
ulMsEventBias	based	on	specific	circumstances.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPAUDIOSTATUS
typedef	struct	SPAUDIOSTATUS

{

				long												cbFreeBuffSpace;

				ULONG											cbNonBlockingIO;

				SPAUDIOSTATE				State;

				ULONGLONG							CurSeekPos;

				ULONGLONG							CurDevicePos;

				DWORD											dwReserved1;

				DWORD											dwReserved2;			

}	SPAUDIOSTATUS;

Members

cbFreeBuffSpace
Size,	in	bytes,	of	free	space	for	reading	and/or	writing	in	the
audio	object.

cbNonBlockingIO
The	amount	of	data	which	can	be	read	from	or	written	to	a
device	without	blocking.

State
The	state	(of	type	SPAUDIOSTATE)	of	the	audio	device.

CurSeekPos
The	current	seek	position,	in	bytes,	within	the	audio	stream.
This	is	the	position	in	the	stream	where	the	next	read	or
write	will	be	performed.

CurDevicePos
The	current	read	position,	in	bytes,	of	the	device.	This	is	the
position	in	the	stream	where	the	device	is	currently	reading

or	writing.	For	readable	streams,	this	value	will	always	be
greater	than	or	equal	to	CurSeekPos.	For	writable	streams,
this	value	will	always	be	less	than	or	equal	to	CurSeekPos.

dwReserved1
Reserved	for	future	expansion.

dwReserved2
Reserved	for	future	expansion.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPBINARYGRAMMAR
SPBINARYGRAMMAR	contains	the	grammar	size	information.
A	binary	grammar	is	the	resulting	data	after	calling	either
ISpGrammarBuilder::Commit()	or
ISpGrammarCompiler::CompileStream().
typedef	struct	SPBINARYGRAMMAR

{

				ULONG					ulTotalSerializedSize;

}	SPBINARYGRAMMAR;

Members

ulTotalSerializedSize
Total	size,	in	bytes,	of	the	serialized	grammar.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPEVENT
SPEVENT	contains	information	about	an	event.	Events	are
passed	from	the	TTS	or	SR	engines	or	audio	devices	back	to
applications.
typedef	struct	SPEVENT

{

				WORD									eEventId;

				WORD									elParamType;

				ULONG								ulStreamNum;

				ULONGLONG				ullAudioStreamOffset;

				WPARAM							wParam;

				LPARAM							lParam;

}	SPEVENT;

Members

eEventId
The	event	ID	of	type	SPEVENTENUM.	

elParamType
The	signature	of	the	associated	data	in	the	lParam	parameter
The	user	may	need	to	release	associated	data	after	using	the
event.	See	SPEVENTLPARAMTYPE	for	more	information	about
associated	data.

ulStreamNum
The	stream	number	associated	with	the	event.
For	text-to-speech	(i.e.,	output	streams),	the	stream	number
is	incremented	each	time	a	new	speak	call	(e.g.
ISpVoice::SpeakStream,	ISpVoice::Speak)	is	made.
For	speech	recognition	(i.e.,	input	streams),	the	stream	is
incremented	each	time	an	audio	stream	is	opened	(i.e.,
ISpSREngine::RecognizeStream).	Note	that	a	single	audio

input	object	can	be	opened	multiple	times	(e.g.,	buffer
overflow,	device	error,	recognition	state	change).

ullAudioStreamOffset
The	byte	offset	into	the	audio	stream	associated	with	the
event	at	which	the	event	was	fired.	For	synthesis,	the	output
stream	is	the	synthesized	data.	For	recognition,	this	indicates
the	position	in	the	input	audio	stream.

wParam
The	generic	word	field.	For	event	IDs	with	the
SPFEI_LPARAM_IS_POINTER	set,	this	is	the	size,	in	bytes,	for
the	data	pointed	to	by	lParam.	In	some	cases,	the	type	of
event	will	change	the	function	of	this	parameter.	See
SPEVENTENUM	for	information	about	specific	events.
See	the	helper	SpClearEvent	for	more	information	about
releasing	objects	or	memory	attached	to	an	event.

lParam
The	generic	event	field.	For	event	IDs	with	the
SPFEI_LPARAM_IS_POINTER	set,	this	points	to	the	data
allocated	by	CoTaskMemAlloc.	The	caller	is	responsible	for
freeing	this	memory	using	CoTaskMemFree().	In	some	cases,
the	type	of	event	will	change	the	function	of	this	parameter.
See	SPEVENTENUM	for	information	about	specific	events.
See	the	helper	SpClearEvent	for	more	information	about
releasing	objects	or	memory	attached	to	an	event.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPEVENTSOURCEINFO
SPEVENTSOURCEINFO	is	used	by	ISpEventSource::GetInfo	to
pass	back	information	about	the	event	source.
Event	sources	contain	a	queue,	which	hold	events	until	a	caller
retrieves	the	events	using	::GetEvents.
typedef	struct	SPEVENTSOURCEINFO

{

				ULONGLONG			ullEventInterest;

				ULONGLONG			ullQueuedInterest;

				ULONG							ulCount;

}	SPEVENTSOURCEINFO;

Members

ullEventInterest
Set	of	event	Id	flags	of	type	SPEVENTENUM	defining	which
events	should	trigger	a	notification	(e.g.	callback,	signaled
event,	window	message,	etc.).

ullQueuedInterest
Set	of	event	Id	flags	of	type	SPEVENTENUM	defining	which
events	should	be	stored	in	the	source's	event	queue	until	the
caller	uses	ISpEventSource::GetEvents	to	remove	them.

ulCount
Number	of	events	currently	waiting	in	the	event	queue.

Remarks
Note	that	event	interest	(ullEventInterest)	only	specifies	which
events	should	cause	a	notification.	The	queued	interest
(ullQueuedInterest)	specifies	which	events	should	be	stored	in
the	event	queue.

For	example,	due	to	graphics	performance	issues,	it	might	not
be	optimal	for	an	application	to	redraw	every	viseme	that
occurs.	Instead,	it	would	draw	the	current	viseme	whenever	a
viseme	event	occurs.	Instead	of	storing	viseme	events	in	the
event	queue,	the	application	would	set	only	the	event	interest
to	include	SPEI_VISEME	and	not	the	queued	interest.	Whenever
the	TTS	engine	fires	a	viseme	event,	the	application	would
receive	a	notification,	and	would	then	check	the	current	viseme
by	calling	ISpVoice::GetStatus	to	check	the	VisemeId.
The	queued	interest	(ullQueuedInterest)	always	includes	the
event	interest	(ullEventInterest)	to	ensure	that	a	notification	is
sent	whenever	an	event	is	queued.

See	Also
Helper	macro	SPFEI	for	combining	SPEVENTENUM	flags.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPPARSEINFO
SPPARSEINFO	is	filled	in	by	the	speech	recognition	(SR)	engine
and	sent	to	SAPI.	SAPI	uses	the	information	to	build	a	phrase
object	that	can	be	sent	in	a	hypothesis	or	recognition	(see
ISpSREngineSite::ParseFromTransitions).
typedef	struct	SPPARSEINFO

{

			ULONG										cbSize;

			SPRULEHANDLE			hRule;

			ULONGLONG						ullAudioStreamPosition;

			ULONG										ulAudioSize;

			ULONG										cTransitions;

			SPPATHENTRY			*pPath;

			BOOL											fHypothesis;

			GUID											SREngineID;

			ULONG										ulSREnginePrivateDataSize;

			const	BYTE				*pSREnginePrivateData;

}	SPPARSEINFO;

Members

cbSize
The	size	of	the	SPPARSEINFO	structure,	as	set	by	the	SR
engine.

hRule
The	handle	of	the	top-level	rule	for	the	recognition	or
hypothesis.

ullAudioStreamPosition
The	position	in	the	stream	where	the	recognition	started.	If
downsampling	an	audio	stream,	ullAudioStreamPosition	will
be	the	byte	position	within	the	original	stream.

ulAudioSize
The	size	in	bytes	of	the	portion	of	the	stream	that	is
recognized.

cTransitions
The	number	of	word	transitions	in	the	pPath	array.

pPath
The	transition	path	through	the	CFG	that	is	recognized.

fHypothesis
TRUE	if	a	hypothesis,	false	if	a	final	recognition.

SREngineID
The	unique	identifier	of	the	SR	engine.	Can	be	NULL.

ulSREnginePrivateDataSize
The	size	of	private	SR	engine	data	that	will	be	sent	to	the	SR
engine	alternates	analyzer.	Can	be	zero.

pSREnginePrivateData
A	pointer	the	private	SR	engine	data	(memory)	that	will	be
sent	to	the	SR	engine	alternates	analyzer.	Can	be	NULL.	SAPI
will	handle	the	serialization	and	marshaling	of	the	data	for
the	SR	engine.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPPATHENTRY
SPPATHENTRY	array	is	passed	by	the	SR	engine	to
ISpSREngineSite::ParseFromTransitions	as	part	of	SPPARSEINFO
typedef	struct	SPPATHENTRY

{

				union

				{

								SPTRANSITIONID						hTransition;

								SPPHRASEELEMENT					elem;

				};

}	SPPATHENTRY;

Members

hTransition
Handle	of	the	transition	that	was	recognized	at	this	point.

elem
Element	information--can	be	left	blank.	In	this	case,	SAPI	will
fill	in	the	information	from	the	grammar.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPPHRASE
SPPHRASE
contains	information	about	speech	recognition	information,
including	hypotheses,	false	recognitions,	recognitions,	and
alternate	recognitions.	The	information	in	the	phrase	includes,
language,	audio	and	event	timing,	text	(display	and	lexicon),
inverse	text	replacements,	semantic	tags	(i.e.,	properties),	and
depending	on	the	engine,	an	optional	block	of	engine-specific
phrase	data.
SAPI	typically	provides	the	application	with	a	pointer	to	a	block
of	memory	that	has	been	allocated	by	CoTaskMemAlloc,	which
the	application	must	free	using	CoTaskMemFree	when	it	is
finished	with	the	phrase	information.
typedef	struct	SPPHRASE

{

				ULONG																							cbSize;

				LANGID																						LangID;

				WORD																								wReserved;

				ULONGLONG																			ullGrammarID;

				ULONGLONG																			ftStartTime;

				ULONGLONG																			ullAudioStreamPosition;

				ULONG																							ulAudioSizeBytes;

				ULONG																							ulRetainedSizeBytes;

				ULONG																							ulAudioSizeTime;

				SPPHRASERULE																Rule;

				const	SPPHRASEPROPERTY					*pProperties;

				const	SPPHRASEELEMENT						*pElements;

				ULONG																							cReplacements;

				const	SPPHRASEREPLACEMENT		*pReplacements;

				GUID																								SREngineID;								

				ULONG																							ulSREnginePrivateDataSize;

				const	BYTE																	*pSREnginePrivateData;

}	SPPHRASE;

Members

cbSize
The	size	of	this	structure	in	bytes.

LangID
The	language	ID	of	the	phrase	elements.

wReserved
Reserved	for	future	use.

ullGrammarID
ID	of	the	grammar	that	contains	the	top-level	rule	used	to
recognize	this	phrase.

ftStartTime
Absolute	time	for	start	of	phrase	audio	as	a	64-bit	value
based	on	the	Win32	APIs,	SystemTimeToFileTime	and
GetSystemTime.	When	an	application	uses	wav	file	input,
SAPI	sets	the	stream	position	and	start	time	information	to
zero.

ullAudioStreamPosition
The	starting	offset	of	the	phrase	in	bytes	relative	to	the	start
of	the	audio	stream.	If	downsampling	an	audio	stream,
ullAudioStreamPosition	will	be	the	byte	position	within	the
original	stream.

ulAudioSizeBytes
Size	of	audio	data,	in	bytes,	for	this	phrase.

ulRetainedSizeBytes
Size,	in	bytes,	of	the	retained	audio	data	(in	the	user-
specified	retained-audio	format).

See	also	ISpRecoContext::SetAudioOptions	for	more
information	about	specifying	the	retained	audio	format

ulAudioSizeTime
Length	of	phrase	audio	in	100-nanosecond	units.

Rule

Information	about	the	top-level	rule	(and	rule-reference
hierarchy)	used	to	recognize	this	phrase.

pProperties
Pointer	to	the	root	of	the	semantic-tag	property	tree.

pElements
Pointer	to	the	array	of	phrase	elements	(the	number	of
elements	is	contained	in	Rule).	Each	phrase	element	includes
position	and	text	information,	including	lexical	and	display
forms.

cReplacements
Number	of	text	replacements.	Text	replacements	are
generally	based	on	engine-defined	Inverse	Text
Normalization	rules	(e.g.	recognize	"five	dollars"	as	"$5").

pReplacements
Pointer	to	the	array	of	text	replacements.

SREngineID

GUID	that	identifies	the	particular	speech	recognition	(SR)
engine	that	recognized	this	phrase.

ulSREnginePrivateDataSize
Size	of	the	engine's	private	data,	in	bytes.

pSREnginePrivateData
Pointer	to	the	engine's	private	data.
Engine	private	data	is	specific	to	each	SR	engine,	and	the
format	and	structure	of	the	data	is	not	defined	by	SAPI.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPPHRASEALT
SPPHRASEALT	is	used	by	SAPI	and	the	speech	recognition	(SR)
engine's	alternate	analyzer	to	exchange	alternate	information.
When	a	speech	recognition	application	requests	phrase
alternates	from	the	SR	engine	(see
ISpRecoResult::GetAlternates),	SAPI	passes	an	empty
SPPHRASEALT	structure	to	the	alternate	analyzer	(see
ISpSRAlternates::GetAlternates).	If	it	can	generate	alternate
phrases	based	on	the	application's	request	(see
SPPHRASEALTREQUEST),	the	alternate	analyzer	must	fill	in	the
SPPHRASEALT	structure	and	return	it	to	SAPI.	SAPI	will	return	the
alternate	phrases	to	the	application	as	an	array	of	pointers	to
ISpPhraseAlt	interfaces.
If	the	application	selects	an	alternate	as	the	preferred	phrase
(see	ISpPhraseAlt::Commit),	then	SAPI	will	pass	the	respective
SPPHRASEALT	structure	back	to	the	alternate	analyzer	to	update
the	language	or	acoustic	models	(see	ISpSRAlternates::Commit).
typedef	struct	tagSPPHRASEALT

{

			ISpPhraseBuilder			*pPhrase;

			ULONG															ulStartElementInParent;

			ULONG															cElementsInParent;

			ULONG															cElementsInAlternate;

			void															*pvAltExtra;

			ULONG															cbAltExtra;

}	SPPHRASEALT;

Members

pPhrase
The	alternate	phrase.

ulStartElementInParent

The	index	of	the	starting	element	for	the	change	in	the
original	phrase.

cElementsInParent
The	number	of	elements	in	the	original	recognition.

cElementsInAlternate
The	number	of	elements	that	are	changed	in	the	alternate.

pvAltExtra
A	pointer	to	the	private	SR	engine	alternate	analyzer	data.
Can	be	NULL	if	no	data	is	provided.

cbAltExtra
The	size	of	the	private	SR	engine	alternate	analyzer	data.
Can	be	zero	if	no	data	is	provided.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPPHRASEALTREQUEST
SPPHRASEALTREQUEST	contains	information	relevant	to	an
application	calling	ISpRecoResult::GetAlternates	(e.g.,	number	of
alternates	requested,	original	phrase	information,	private
engine	data,	etc.).
typedef	struct	tagSPPHRASEALTREQUEST

{

				ULONG												ulStartElement;

				ULONG												cElements;

				ULONG												ulRequestAltCount;

				void												*pvResultExtra;

				ULONG												cbResultExtra;

				ISpPhrase							*pPhrase;

				ISpRecoContext		*pRecoContext;

}	SPPHRASEALTREQUEST;

Members

ulStartElement
Based	on	the	original	phrase,	the	starting	element	of	the
span	from	which	to	retrieve	alternates.

cElements
Based	on	the	original	phrase,	the	number	of	elements	in	the
span	from	which	to	retrieve	alternates.

ulRequestAltCount
The	maximum	number	of	alternates	that	an	application
requests.

pvResultExtra
Pointer	to	the	private	SR	engine	data	as	sent	from	the	SR
engine.	Can	be	NULL	of	no	data	was	supplied.

cbResultExtra
The	size	of	the	private	SR	engine	data	as	sent	from	the	SR
engine.	Can	be	zero	of	no	data	was	supplied.

pPhrase
The	original	recognition	as	sent	from	the	SR	engine.

pRecoContext
Pointer	to	an	ISpRecoContext	interface	that	allows	the
alternate	analyzer	to	communicate	with	itself	and	the	SR
engine.	The	alternate	analyzer	can	use
IUnknown::QueryInterface	to	query	the	context	for	the
private	SR	engine	extension	(see	ISpPrivateEngineCall	for
more	information	about	private	engine	extensions.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPPHRASEELEMENT
SPPHRASEELEMENT	contains	the	information	for	a	spoken
word.
typedef	struct	SPPHRASEELEMENT

{

				ULONG												ulAudioTimeOffset;

				ULONG												ulAudioSizeTime;

				ULONG												ulAudioStreamOffset;

				ULONG												ulAudioSizeBytes;

				ULONG												ulRetainedStreamOffset;

				ULONG												ulRetainedSizeBytes;

				const	WCHAR					*pszDisplayText;

				const	WCHAR					*pszLexicalForm;

				const	SPPHONEID	*pszPronunciation;

				BYTE													bDisplayAttributes;

				char													RequiredConfidence;

				char													ActualConfidence;

				BYTE													Reserved;

				float												SREngineConfidence;

}	SPPHRASEELEMENT;

Members

ulAudioTimeOffset
This	is	the	starting	offset	of	the	element	in	100-nanosecond
units	of	time	relative	to	the	start	of	the	phrase.

ulAudioSizeTime
This	is	the	length	of	the	element	in	100-nanosecond	units	of
time.

ulAudioStreamOffset
This	is	the	starting	offset	of	the	element	in	bytes	relative	to
the	start	of	the	phrase	in	the	original	input	stream.

ulAudioSizeBytes
This	is	the	size	of	the	element	in	bytes	in	the	original	input
stream.

ulRetainedStreamOffset
This	is	the	starting	offset	of	the	element	in	bytes	relative	to
the	start	of	the	phrase	in	the	retained	audio	stream

ulRetainedSizeBytes
This	is	the	size	of	the	element	in	bytes	in	the	retained	audio
stream.

pszDisplayText
The	display	text	for	this	element	(e.g.,	",").

pszLexicalForm
The	lexical	form	of	this	element	(e.g.,	"comma"	for	",").

pszPronunciation
The	pronunciation	for	this	element	as	a	null-terminated	array
of	SPPHONEID.

bDisplayAttributes
A	bit	field	of	SPDISPLAYATTRIBUTES	defining	extra	display
information	which	the	application	should	honor	when
displaying	this	word.

RequiredConfidence
The	required	confidence	for	this	element	(either
SP_LOW_CONFIDENCE,	SP_NORMAL_CONFIDENCE,	or
SP_HIGH_CONFIDENCE).	If	a	word	is	prefixed	with	a	'-'
(minus),	the	RequiredConfidence	is	SP_LOW_CONFIDENCE,

and	'+'	(plus)	will	set	this	field	to	SP_HIGH_CONFIDENCE
(e.g.,	"This	-is	-a	+test").	See	Confidence	Scoring	and
Rejection	in	SAPI	Speech	Recognition	Engine	Guide	for
additional	details.

ActualConfidence
The	actual	confidence	for	this	element	(either
SP_LOW_CONFIDENCE,	SP_NORMAL_CONFIDENCE,	or
SP_HIGH_CONFIDENCE).	This	is	always	at	least	the
RequiredConfidence.	See	Confidence	Scoring	and	Rejection	in
SAPI	Speech	Recognition	Engine	Guide	for	additional	details.

Reserved
Reserved	for	future	use.

SREngineConfidence
The	confidence	score	computed	by	the	SR	engine.	The	value
range	is	engine	dependent.	It	can	be	used	to	optimize	an
application's	performance	with	a	specific	engine.	Using	this
value	will	improve	the	application	with	a	particular	speech
engine	but	more	than	likely	will	make	it	worse	with	other
engines	and	should	be	used	with	care.	This	value	is	more
useful	with	speaker-independent	engines	because	it	allows	a
large	corpus	of	recorded	usage	to	correctly	optimize	the
overall	accuracy	of	the	application.	See	Confidence	Scoring
and	Rejection	in	SAPI	Speech	Recognition	Engine	Guide	for
additional	details.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPPHRASEPROPERTY
SPPHRASEPROPERTY	stores	the	information	for	one	semantic
property.	It	can	be	used	to	construct	a	semantic	property	tree.
See	also	Designing	Grammar	Rules	for	more	information	about
semantic	properties.
struct	SPPHRASEPROPERTY

{

				const			WCHAR														*pszName;

				ULONG																							ulId;

				const			WCHAR														*pszValue;

				VARIANT																					vValue;

				ULONG																							ulFirstElement;

				ULONG																							ulCountOfElements;

				const			SPPHRASEPROPERTY			*pNextSibling;

				const			SPPHRASEPROPERTY			*pFirstChild;

				float																							SREngineConfidence;

				signed	char																	Confidence;

};

Members

pszName
Name	of	the	null-terminated	string	of	the	semantic	property
(in	the	Speech	Text	Grammar	Format	set	using	the
PROPNAME	attribute).

ulId
ID	of	the	semantic	property	(in	the	Speech	Text	Grammar
Format	set	using	the	PROPID	attribute).

pszValue
Null-terminated	string	value	of	the	semantic	property	(in	the
Speech	Text	Grammar	Format	set	using	the	VALSTR

attribute).

vValue
VARIANT	value	of	a	semantic	property.	The	type	has	to	be	on
of	the	following:	VT_BOOL,	VT_I4,	VT_R4,	VT_R8,	or	VT_BYREF
(only	for	dynamic	grammars).	This	is	set	using	the	VAL
attribute	in	the	Speech	Text	Grammar	Format.

ulFirstElement
The	first	spoken	element	spanned	by	this	property.

ulCountOfElements
The	number	of	spoken	elements	spanned	by	this	property.

pNextSibling
Pointer	to	next	sibling	in	property	tree.

pFirstChild
Pointer	to	the	first	child	of	this	semantic	property.

SREngineConfidence
Confidence	value	for	this	semantic	property	computed	by	the
SR	engine.	The	value	range	is	specific	to	each	SR	engine.	See
Confidence	Scoring	and	Rejection	in	SAPI	Speech	Recognition
Engine	Guide	for	additional	details.

Confidence
Confidence	value	for	this	semantic	property	computed	by
SAPI.	The	value	is	either	SP_LOW_CONFIDENCE,
SP_NORMAL_CONFIDENCE,	or	SP_HIGH_CONFIDENCE.	See
Confidence	Scoring	and	Rejection	in	SAPI	Speech	Recognition
Engine	Guide	for	additional	details.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPPHRASEREPLACEMENT
SPPHRASEREPLACEMENT	replaces	the	display	text	of	one	or
more	of	the	spoken	words.	This	is	used	by	speech	recognition
engines	to	perform	Inverse	Text	Normalization	(ITN).	For
example	the	spoken	words	"twenty"	and	"three"	are	replaced	by
the	replacement	text	"23."
typedef	struct	tagSPPHRASEREPLACEMENT

{

				BYTE													bDisplayAttributes;

				const			WCHAR			*pszReplacementText;

				ULONG												ulFirstElement;

				ULONG												ulCountOfElements;

}	SPPHRASEREPLACEMENT;

Members

bDisplayAttributes
One	or	more	SPDISPLAYATTRIBUTES	for	the	replacement	text.

pszReplacementText
Text	for	the	replacement.

ulFirstElement
Offset	of	the	first	spoken	element	to	be	replaced.

ulCountOfElements
Number	of	spoken	elements	to	replace.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPPHRASERULE
SPPHRASERULE	contains	the	information	for	a	rule	in	a
grammar	result.	SAPI	uses	the	pFirstChild	and	pNextSibling
pointers	to	represent	the	parse	tree.	SPPHRASE.Rule	is	the	root
node	of	the	parse	tree.
struct	tagSPPHRASERULE

{

				const			WCHAR										*pszName;

				ULONG																			ulId;

				ULONG																			ulFirstElement;

				ULONG																			ulCountOfElements;

				const			SPPHRASERULE			*pNextSibling;

				const			SPPHRASERULE			*pFirstChild;

				float																			SREngineConfidence;

				signed	char													Confidence;

	};

Members

pszName
Name	of	this	rule	(in	Speech	Text	Grammar	Format	set	using
<RULE	NAME="MyName">).

ulId
ID	of	this	rule	(set	using	<RULE	ID="123">).

ulFirstElement
The	index	of	the	first	spoken	element	(word)	of	this	rule.

ulCountOfElements
Number	of	spoken	elements	(words)	spanned	by	this	rule.

pNextSibling
Pointer	to	the	next	sibling	in	the	parse	tree.

pFirstChild
Pointer	to	the	first	child	node	in	the	parse	tree.

SREngineConfidence
Confidence	for	this	rule	computed	by	the	SR	engine.	The
value	is	engine	dependent	and	not	standardized	across
multiple	SR	engines.	See	Confidence	Scoring	and	Rejection	in
SAPI	Speech	Recognition	Engine	Guide	for	additional	details.

Confidence
Confidence	for	this	rule	computed	by	SAPI.	The	value	is
either	SP_LOW_CONFIDENCE,	SP_NORMAL_CONFIDENCE,	or
SP_HIGH_CONFIDENCE.	See	Confidence	Scoring	and
Rejection	in	SAPI	Speech	Recognition	Engine	Guide	for
additional	details.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPPROPERTYINFO
SPPROPERTYINFO	contains	the	information	for	a	semantic
property.
typedef	struct	tagSPPROPERTYINFO

{

				const			WCHAR				*pszName;					

				ULONG													ulId;

				const			WCHAR				*pszValue;

				VARIANT											vValue;				

}	SPPROPERTYINFO;

Members

pszName
Pointer	to	the	null-terminated	string	that	contains	the	name
information	of	the	property.	This	is	set	using	the	PROPNAME
attribute	in	the	Speech	Text	Grammar	Format.

ulId
Identifier	associated	with	the	property.	This	is	set	using	the
PROPID	attribute	in	the	Speech	Text	Grammar	Format.

pszValue
Pointer	to	the	null-terminated	string	that	contains	the	value
information	of	the	property.	This	is	set	using	the	VALSTR
attribute	in	the	Speech	Text	Grammar	Format.

vValue
Must	be	one	of	the	following:	VT_BOOL,	VT_I4,	VT_R4,	VT_R8,
or	VT_BYREF	(for	dynamic	grammars	only.)	This	is	set	using
the	VAL	attribute	in	the	Speech	Text	Grammar	Format.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPRECOCONTEXTSTATUS
typedef	struct	SPRECOCONTEXTSTATUS

{

				SPINTERFERENCE		eInterference;

				WCHAR											szRequestTypeOfUI[255];

				DWORD											dwReserved1;

				DWORD											dwReserved2;

}	SPRECOCONTEXTSTATUS;

Members

eInterference
One	of	the	interference	types	contained	in	the
SPINTERFERENCE	enumeration.	An	application	can	check	this
value	for	the	input	audio	signal	quality.

szRequestTypeOfUI[255]
Specifies	the	type	of	UI	requested.	If	the	first	byte	is	NULL,	no
UI	is	requested.	See	ISpRecognizer::DisplayUI	and	SPDUI_*
for	a	list	of	the	SAPI-defined	UI	types.

dwReserved1
Reserved	for	future	expansion.

dwReserved2
Reserved	for	future	expansion.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPRECOGNIZERSTATUS
typedef	struct	SPRECOGNIZERSTATUS

{

				SPAUDIOSTATUS			AudioStatus;

				ULONGLONG							ullRecognitionStreamPos;

				ULONG											ulStreamNumber;

				ULONG											ulNumActive;				

				CLSID											clsidEngine;

				ULONG											cLangIDs;

				LANGID										aLangID[SP_MAX_LANGIDS];

				DWORD											dwReserved1;

				DWORD											dwReserved2;

}	SPRECOGNIZERSTATUS;

Members

AudioStatus
The	SPAUDIOSTATUS	structure	containing	the	current	audio
device	information.

ullRecognitionStreamPos
The	current	stream	position	the	engine	has	recognized	to.
Stream	positions	are	measured	in	bytes.	This	value	can	be
used	to	check	the	engine's	progress	using	the	audio	data.

ulStreamNumber
This	value	is	incremented	every	time	SAPI	starts	or	stops
recognition	on	an	engine	(see	SPEI_START_SR_STREAM	and
SPEI_END_SR_STREAM).	Each	time	this	happens	the
ullRecognitionStreamPos	gets	reset	to	zero.	Events	fired	from
the	engine	have	equivalent	stream	number	and	position
information	also.

ulNumActive

The	current	engine's	number	of	active	rules.

clsidEngine
The	unique	identifier	associated	with	the	current	engine.

cLangIDs
The	number	of	languages	that	the	current	engine	supports.

aLangID
Array	containing	the	languages	that	the	current	engine
supports.

dwReserved1
Reserved	for	future	expansion.

dwReserved2
Reserved	for	future	expansion.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPRECORESULTINFO
SPRECORESULTINFO	is	the	result	structure	passed	from	the
engine	to	SAPI.
typedef	struct	SPRECORESULTINFO

{

				ULONG														cbSize;

				SPRESULTTYPE							eResultType;

				BOOL															fHypothesis;

				BOOL															fProprietaryAutoPause;

				ULONGLONG										ullStreamPosStart;		

				ULONGLONG										ullStreamPosEnd;

				SPGRAMMARHANDLE				hGrammar;

				ULONG														ulSizeEngineData;

				void														*pvEngineData;

				ISpPhraseBuilder		*pPhrase;

				SPPHRASEALT							*aPhraseAlts;

				ULONG														ulNumAlts;	

}	SPRECORESULTINFO;

Members

cbSize
Total	size,	in	bytes,	of	this	structure.

eResultType
Type	of	result	object	(CFG,	SLM,	or	Proprietary).
For	example,	the	result	type	can	be	SPRT_SLM	|
SPRT_FALSE_RECOGNITION	if	the	speech	recognition	engine
fails	to	recognize	a	dictation	phrase.

fHypothesis
If	TRUE,	this	recognition	is	a	hypothesis.

fProprietaryAutoPause
This	field	is	only	used	for	SPRT_PROPRIETARY	grammars.	If
TRUE,	the	recognition	will	pause.

ullStreamPosStart
Starting	position	within	the	input	stream.	If	downsampling	an
audio	stream,	ullStreamPosStart	will	be	the	byte	position
within	the	original	stream.

ullStreamPosEnd
Ending	position	within	the	input	stream.	If	downsampling	an
audio	stream,	ullStreamPosEnd	will	be	the	byte	position
within	the	original	stream.

hGrammar
Required	for	SPRT_SLM	and	SPRT_PROPRIETARY,	otherwise
this	value	is	NULL.

ulSizeEngineData
Specifies	the	size	of	pvEngineData.

pvEngineData
Pointer	to	the	engine	data.

pPhrase
Pointer	to	phrase	object.

aPhraseAlts
An	array	containing	the	alternate	phrases.

ulNumAlts
The	number	of	alternate	phrases	contained	in	aPhraseAlts.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPRECORESULTTIMES
SPRECORESULTTIMES	contains	the	time	information	for
speech	recognition.	This	data	structure	is	used	by	the
ISpRecoResult::GetResultTimes	method.
typedef	struct	SPRECORESULTTIMES

{

				FILETIME				ftStreamTime;

				ULONGLONG			ullLength;

				DWORD							dwTickCount;

				ULONGLONG			ullStart;

}	SPRECORESULTTIMES;

Members

ftStreamTime
Absolute	time	for	start	of	phrase	audio	as	a	64-bit	value
based	on	the	Win32	APIs,	SystemTimeToFileTime	and
GetSystemTime.	When	an	application	uses	wav	file	input,
SAPI	sets	the	stream	position	and	start	time	information	to
zero.

ullLength
Value	containing	the	length	of	the	phrase	specified	in	100
nanosecond	units.

dwTickCount
Number	of	milliseconds	elapsed	from	the	start	of	the	system
to	the	start	of	the	current	result.	This	variable	is	set	to	zero	if
the	wave	file	input	is	used.

ullStart
Value	containing	the	total	100	nanosecond	units	from	the

start	of	the	stream	to	the	start	of	the	phrase.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPRULEENTRY
SPRULEENTRY	contains	information	about	a	rule.
typedef	struct	SPRULEENTRY

{

				SPRULEHANDLE				hRule;

				SPSTATEHANDLE			hInitialState;

				DWORD											Attributes;					

				void											*pvClientContext;

				void											*pvClientGrammarContext;

}	SPRULEENTRY;

Members

hRule
Handle	to	the	rule.

hInitialState
Handle	to	the	rule's	initial	state.

Attributes
The	rule's	attribute.

pvClientContext
The	client	context	pointer	passed	using
ISpSREngineSite::SetRuleClientContext

pvClientGrammarContext
The	client's	grammar	context	pointer.

	

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPSERIALIZEDEVENT
SPSERIALIZEDEVENT	serializes	a	SAPI	event.
See	SPSERIALIZEDEVENT64	for	a	64-bit	version	of	the	serialized
event	structure.
See	also	SPEVENT	for	further	information	on	the	related	event
variable	fields.
typedef	struct	SPSERIALIZEDEVENT

{

				WORD								eEventId;

				WORD								elParamType;

				ULONG							ulStreamNum;

				ULONGLONG			ullAudioStreamOffset;

				ULONG							SerializedwParam;

				LONG								SerializedlParam;

}	SPSERIALIZEDEVENT;

Members

eEventId
The	event	ID	of	type	SPEVENTENUM.	

elParamType
The	signature	of	the	lParam	parameter	of	type
SPEVENTLPARAMTYPE.

ulStreamNum
The	stream	number	associated	with	the	event.
For	text-to-speech	(i.e.,	output	streams),	the	stream	number
is	incremented	each	time	a	new	speak	call	(e.g.,
ISpVoice::SpeakStream,	ISpVoice::Speak)	is	made.
For	speech	recognition	(i.e.,	input	streams),	the	stream	is
incremented	each	time	an	audio	stream	is	opened	(i.e.,

ISpSREngine::RecognizeStream).	Note	that	a	single	audio
input	object	can	be	opened	multiple	times	(e.g.,	buffer
overflow,	device	error,	recognition	state	change).

ullAudioStreamOffset
The	byte	offset	into	the	audio	stream	associated	with	the
event	at	which	the	event	was	fired.	For	synthesis,	the	output
stream	is	the	synthesized	data.	For	recognition,	this	indicates
the	position	in	the	input	audio	stream.

SerializedwParam
The	wParam	value	that	was	included	in	the	event.	See
SPEVENTENUM	for	further	information	on	possible	wParam
values.

SerializedlParam
The	lParam	value	that	was	included	in	the	event.	See
SPEVENTENUM	for	further	information	on	possible	lParam
values.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPSERIALIZEDEVENT64
SPSERIALIZEDEVENT64	serializes	a	SAPI	event.
typedef	struct	SPSERIALIZEDEVENT64

{

				WORD												eEventId;

				WORD												elParamType;

				ULONG											ulStreamNum;

				ULONGLONG							ullAudioStreamOffset;

				ULONGLONG							SerializedwParam;

				LONGLONG								SerializedlParam;

}	SPSERIALIZEDEVENT64;

Members

eEventId
The	event	ID	of	type	SPEVENTENUM.	

elParamType
The	signature	of	the	lParam	parameter	of	type
SPEVENTLPARAMTYPE.

ulStreamNum
The	stream	number	associated	with	the	event.
For	text-to-speech	(i.e.,	output	streams),	the	stream	number
is	incremented	each	time	a	new	speak	call	(e.g.,
ISpVoice::SpeakStream,	ISpVoice::Speak)	is	made.
For	speech	recognition	(i.e.,	input	streams),	the	stream	is
incremented	each	time	an	audio	stream	is	opened	(i.e.,
ISpSREngine::RecognizeStream).	Note	that	a	single	audio
input	object	can	be	opened	multiple	times	(e.g.,	buffer
overflow,	device	error,	recognition	state	change).

ullAudioStreamOffset

The	byte	offset	into	the	audio	stream	associated	with	the
event	at	which	the	event	was	fired.	For	synthesis,	the	output
stream	is	the	synthesized	data.	For	recognition,	this	indicates
the	position	in	the	input	audio	stream.

SerializedwParam
The	wParam	value	that	was	included	in	the	event.	The
variable	uses	a	64-bit	data	type	for	large	addresses	and
values.	See	SPEVENTENUM	for	further	information	on
possible	wParam	values.

SerializedlParam
The	lParam	value	that	was	included	in	the	event.	The
variable	uses	a	64-bit	data	type	for	large	addresses	and
values.	See	SPEVENTENUM	for	further	information	on
possible	lParam	values.

Remarks
The	64	label	signifies	the	use	of	64-bit	values	for	the	wParam
and	lParam	variables.	Normally	applications	will	not	need	to	use
64-bit	values,	unless	large	pointers	or	sizes	were	stored	in	the
original	event	structure.	See	also	SPSERIALIZEDEVENT	for	the
non-64-bit	version.
See	also	SPEVENT	for	further	information	on	the	related	event
variable	fields.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPSERIALIZEDPHRASE
typedef	struct	tagSPSERIALIZEDPHRASE

{

				ULONG						ulSerializedSize;		

}	SPSERIALIZEDPHRASE;

Members

ulSerializedSize
Value	specifying	the	size	of	the	serialized	phrase	in	bytes.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPSERIALIZEDRESULT
SPSERIALIZEDRESULT	contains	the	phrase	size	information.
typedef	struct	SPSERIALIZEDRESULT

{

				ULONG				ulSerializedSize;

}	SPSERIALIZEDRESULT;

Members

ulSerializedSize
The	size	of	the	entire	phrase	in	bytes,	including	this	ULONG.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPSTATEINFO
SPSTATEINFO	contains	information	about	the	transitions	from
a	single	state	in	a	context-free	grammar.
SAPI	provides	information	when	the	speech	recognition	engine
requests	grammar	state	information	(see
ISpSREngineSite::GetStateInfo).
typedef	struct	SPSTATEINFO

{

				ULONG															cAllocatedEntries;

				SPTRANSITIONENTRY		*pTransitions;

				ULONG															cEpsilons;

				ULONG															cRules;

				ULONG															cWords;

				ULONG															cSpecialTransitions;

}	SPSTATEINFO;

Members

cAllocatedEntries
Total	number	of	entries	in	pTransitions

pTransitions
Pointer	to	a	SPTRANSITIONENTRY	structure.

cEpsilons
Number	of	SPTRANSEPSILON	transitions	in	pTransitions.

cRules
Number	of	SPTRANSRULE	transitions	in	pTransitions.

cWords
Number	of	SPTRANSWORD	transitions	in	pTransitions.

cSpecialTransitions
Number	of	special	transitions	(SPTRANSTEXTBUF,
SPTRANSWILDCARD,	or	SPTRANSDICTATION)	in	pTransitions.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPTEXTSELECTIONINFO
SPTEXTSELECTIONINFO	combines	test	selection	information
that	the	SR	engine	can	use	to	improve	the	recognition	accuracy
(using	ISpRecoGrammar::SetWordSequenceData()	and
ISpRecoGrammar::SetTextSelection()).
typedef	struct	tagSPTEXTSELECTIONINFO

{

				ULONG							ulStartActiveOffset;

				ULONG							cchActiveChars;

				ULONG							ulStartSelection;

				ULONG							cchSelection;

}	SPTEXTSELECTIONINFO;

Members

ulStartActiveOffset
Count	of	characters	from	the	start	of	the	WordSequenceData
buffer.	The	word	containing	the	character	pointed	to	is	the
first	word	of	the	active	text	selection	buffer.

cchActiveChars
Count	of	characters	for	the	active	range	of	the	text	selection
buffer.

ulStartSelection
Start	of	the	selected	text	(e.g.,	the	user	is	selecting	part	of
the	previously	dictated	text	that	he/she	is	going	to	edit	or
correct).

cchSelection
Count	of	characters	of	the	user	selection.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPTMTHREADINFO
SPTMTHREADINFO	contains	thread	management	information
implemented	by	the	ISpTaskManager	interface.
typedef	struct	SPTMTHREADINFO

{

				long				lPoolSize;

				long				lPriority;

				ULONG			ulConcurrencyLimit;

				ULONG			ulMaxQuickAllocThreads;

}	SPTMTHREADINFO;

Members

lPoolSize
Number	of	threads	in	pool	(-1	default).

lPriority
Priority	of	threads	in	pool.

ulConcurrencyLimit
Number	of	threads	allowed	to	concurrently	execute	(0
default).

ulMaxQuickAllocThreads
Maximum	number	of	dedicated	threads	retained.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPTRANSITIONENTRY
typedef	struct	SPTRANSITIONENTRY

{

				SPTRANSITIONID										ID;

				SPSTATEHANDLE											hNextState;

				BYTE																				Type;							//	SPTRANSITIONTYPE

				char																				RequiredConfidence;

				struct

								{

								DWORD															fHasProperty;

								};

				float																			Weight;

				union

								{

								struct

												{

												SPSTATEHANDLE			hRuleInitialState;		//	Only	if	Type	==	SPTRANSRULE

												SPRULEHANDLE				hRule;

												void											*pvClientRuleContext;

												};

								struct

												{

												SPWORDHANDLE				hWord;														//	Only	if	Type	==	SPTRANSWORD

												void											*pvClientWordContext;

												};

								struct

												{

												void											*pvGrammarCookie;				//	Only	if	Type	==	SPTRANSTEXTBUF	or	SPTRANSWILDCARD

												};

								};

}	SPTRANSITIONENTRY;

Members

ID
ID	of	this	transition.

hNextState
Handle	to	the	end	state	of	this	transition

Type
Type	of	this	transition.

RequiredConfidence
Required	confidence	for	this	transition.

fHasProperty
Flag	to	indicate	if	this	transition	has	a	semantic	property
associated	with	it.

Weight
The	relative	weight	of	this	transition	(relative	to	other
transitions	out	of	the	same	state).

hRuleInitialState
If	this	is	an	SPRULETRANS,	it	points	to	the	rule's	initial	state.

hRule
If	this	is	an	SPRULETRANS,	it	contains	the	rule's	handle.

pvClientRuleContext
Client	context	set	using
ISpSREngineSite::SetRuleClientContext.htm

hWord
If	this	is	an	SPWORDTRANS,	it	contains	the	word	handle.

pvClientWordContext

Client	context	set	using
ISpSREngineSite::SetWordClientContext.htm

pvGrammarCookie
Grammar	cookie	needed	to	associate	a	text	buffer	with	this
transition.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPTRANSITIONPROPERTY
SPTRANSITIONPROPERTY	contains	transition	property
information.
typedef	struct		SPTRANSITIONPROPERTY

{

				const	WCHAR			*pszName;					

				ULONG										ulId;

				const	WCHAR			*pszValue;			

				VARIANT								vValue;

}	SPTRANSITIONPROPERTY;

Members

pszName
Address	of	a	null-terminated	string	containing	the	name
information.

ulId
Identifier	associated	with	the	transition	property.

pszValue
Address	of	a	null-terminated	string	containing	the	value
information.

vValue
For	dynamic	grammars	this	value	will	be	VT_BOOL,	VT_I4,
VT_R4,	VT_R8,	or	VT_BYREF.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPVCONTEXT
SPVCONTEXT	contains	strings	passed	into	an	ISpVoice::Speak
call	using	a	<Context>	XML	tag.		See	the	XML	Schema	:	SAPI
white	paper	for	more	details.
typedef	struct	SPVCONTEXT

{

				LPCWSTR			pCategory;

				LPCWSTR			pBefore;

				LPCWSTR			pAfter;

}	SPVCONTEXT;

Members

pCategory
String	passed	in	with	the	ID	attribute.

pBefore
String	passed	in	with	the	Before	attribute.

pAfter
String	passed	in	with	the	After	attribute.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPVOICESTATUS
SPVOICESTATUS	contains	voice	status	information.	This
structure	is	returned	by	ISpVoice::GetStatus.
typedef	struct	SPVOICESTATUS

{

				ULONG							ulCurrentStream;

				ULONG							ulLastStreamQueued;

				HRESULT					hrLastResult;

				DWORD							dwRunningState;

				ULONG							ulInputWordPos;

				ULONG							ulInputWordLen;

				ULONG							ulInputSentPos;

				ULONG							ulInputSentLen;

				LONG								lBookmarkId;

				SPPHONEID			PhonemeId;

				SPVISEMES			VisemeId;

				DWORD							dwReserved1;

				DWORD							dwReserved2;

}	SPVOICESTATUS;

Members

ulCurrentStream
The	number	of	the	current	stream	being	synthesized	or
receiving	output	(see	ISpVoice::Speak	for	more	information
on	stream	numbers).

ulLastStreamQueued
The	number	of	the	last	stream	queued.

hrLastResult
Result	of	the	last	Speak	or	Speakstream	call.

dwRunningState

Indicates	the	status	of	the	voice..	That	is,	whether	it	is
currently	speaking,	is	done	with	all	pending	speak	requests,
or	is	currently	waiting	to	speak.	The	possible	flag	values	are
contained	in	the	SPRUNSTATE	enumeration.	A	value	of		zero
indicates	that	the	voice	is	currently	waiting	to	speak.

ulInputWordPos
Character	position	within	the	input	text	of	the	word	currently
being	processed.

ulInputWordLen
Length	of	the	word	currently	being	processed.

ulInputSentPos
Character	position	within	the	input	text	of	the	sentence
currently	being	processed.

ulInputSentLen
Length	of	the	sentence	currently	being	processed.

lBookmarkId
Current	bookmark	string	(in	base	10)	converted	to	a	long
integer.	If	the	string	of	the	current	bookmark	does	not	begin
with	an	integer,	lBookmarkId	will	be	zero.	For	example,	if	the
bookmark	name	is	"123Bookmark",	the	lBookmarkId	is	"123";
and	if	the	bookmark	name	is	"hello",	the	lBookmarkId	is	zero.

PhonemeId
Current	phoneme	ID	-	see	SAPI	Phoneme	set

VisemeId
Current	viseme	ID	-	see	SAPI	Viseme	set

dwReserved1
Reserved	for	future	expansion.

dwReserved2
Reserved	for	future	expansion.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPVPITCH
SPVPITCH	contains	a	long	value	passed	into	an
ISpVoice::Speak	call	using	a	<Pitch>	XML	tag.		See	the	XML
Schema	:	SAPI	white	paper	for	more	details.
typedef	struct	SPVPITCH

{

				long			MiddleAdj;

				long			RangeAdj;

}	SPVPITCH;

MiddleAdj
Value	passed	in	with	the	Middle	or	AbsMiddle	attributes.
Supported	values	are	-10	to	10	with	a	value	of	zero	being	the
default	pitch.	Values	outside	of	this	range	may	be	truncated.

RangeAdj
Reserved	for	future	use.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPVSTATE
SPVSTATE	is	a	member	of	SPVTEXTFRAG,	and	contains
information	about	the	XML	state	associated	with	a	text	string.	A
linked	list	of	SPVTEXTFRAGs	is	passed	into	every
ISpTTSEngine::Speak.
typedef	struct	SPVSTATE

{

				//---	Action

				SPVACTIONS						eAction;

				//---	Running	state	values

				LANGID										LangID;

				WORD												wReserved;

				long												EmphAdj;

				long												RateAdj;

				ULONG											Volume;

				SPVPITCH								PitchAdj;

				ULONG											SilenceMSecs;

				SPPHONEID*						pPhoneIds;

				SPPARTOFSPEECH		ePartOfSpeech;

				SPVCONTEXT						Context;

}	SPVSTATE;

Members

eAction
Describes	the	action	to	be	performed	with	the	associated
text	fragment.	The	normal	action	is	to	Speak	(SPVA_Speak)
the	fragment.

LangID
The	language	ID	associated	with	this	text.	Set	using	the
<Lang>	XML	tag.

wReserved

Reserved	for	future	use.

EmphAdj
Specifies	whether	the	text	should	be	emphasized	-	zero
indicates	no	emphasis,	one	indicates	emphasis.	Set	using	the
<Emph>	XML	tag.

RateAdj
The	rate	associated	with	this	text.	Set	using	the	<Rate>	XML
tag.	This	value	should	be	combined	with	the	baseline	rate
(either	the	default,	or	a	value	set	by	ISpVoice::SetRate)	to
yield	the	final	rate	value.

Volume
The	volume	associated	with	this	text.		Set	using	the
<Volume>	XML	tag.	This	value	should	be	combined	with	the
baseline	volume	(either	the	default,	or	a	value	set	by
ISpVoice::SetVolume)	to	yield	the	final	volume	value.

PitchAdj
The	pitch	associated	with	this	text.	Set	using	the	<Pitch>
XML	tag.

SilenceMSecs
The	length	of	a	silence,	in	milliseconds,	to	be	inserted	into
the	audio	output.	SilenceMSecs	is	always	zero	unless	eAction
is	SPVA_Silence.	Set	using	the	<Silence>	XML	tag.

pPhoneIds
A	pronunciation	(possibly	associated	with	text)	to	be	inserted
into	the	audio	output.	This	value	is	a	pointer	to	a	null-
terminated	array	of	SPPHONEIDs.		Set	using	the	<Pron>	XML
tag.

ePartOfSpeech
An	SPPARTOFSPEECH	value	to	be	associated	with	this	text.	
Set	using	the	<PartOfSp>	XML	tag.

Context
An	SPVCONTEXT	to	be	associated	with	this	text.		Set	using
the	<Context>	XML	tag.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPVTEXTFRAG
SPVTEXTFRAG	is	the	structure	through	which	input	text	is
passed	to	the	TTS	engine.		The	text	passed	to	an
ISpVoice::Speak	call	will	normally	be	parsed	for	SAPI	5	XML,	and
the	resulting	list	of	SPVTEXTFRAGs	will	be	passed	to	an
ISpTTSEngine::Speak	call.
typedef	struct	SPVTEXTFRAG

{

				struct	SPVTEXTFRAG			*pNext;

				SPVSTATE														State;

				LPCWSTR															pTextStart;

				ULONG																	ulTextLen;

				ULONG																	ulTextSrcOffset;

}	SPVTEXTFRAG;

Members

pNext
Pointer	to	the	next	text	fragment	in	list.	A	NULL	value
indicates	the	end	of	the	list.

State
The	current	XML	attribute	state.

pTextStart
Pointer	to	the	beginning	of	the	text	string	associated	with
this	fragment.

ulTextLen
The	length,	in	characters,	of	the	text	string	associated	with
this	fragment.

ulTextSrcOffset
Original	character	offset	of	pTextStart	within	the	text	string
passed	to	ISpVoice::Speak.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPWORD
SPWORD	defines	changes	to	the	words	in	a	lexicon	and	is	used
with	IspLexicon.	It	is	used	in	connection	with	SPWORDLIST	which
in	turn	is	used	by	ISpLexicon::GetWords	and
ISpLexicon::GetGenerationChange.
typedef	struct	SPWORD

{

				struct	SPWORD										*pNextWord;

				LANGID																		LangID;

				WORD																				wReserved;

				SPWORDTYPE														eWordType;

				WCHAR																		*pszWord;

				SPWORDPRONUNCIATION				*pFirstWordPronunciation;

}	SPWORD;

Members

pNextWord
Pointer	to	the	next	word	in	the	list.

LangID
The	language	ID	of	the	word.

wReserved
Reserved	for	future	use.

eWordType
Flag	of	type	SPWORDTYPE	indicating	whether	the	word	has
been	added	or	deleted.

pszWord
Pointer	to	the	null-terminated	word.

pFirstWordPronunciation
Pointer	to	the	first	possible	pronunciation	of	the	word.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPWORDENTRY
SPWORDENTRY	is	used	by	SAPI	and	the	speech	recognition
(SR)	engine	to	exchange	information	about	a	word	that	can	be
recognized.
When	new	words	are	added	to	a	grammar	by	the	application,
SAPI	informs	the	SR	engine	by	calling	ISpSREngine::WordNotify
for	each	word,	with	an	associated	SPWORDENTRY	structure
which	the	SR	engine	can	examine.
When	the	SR	engine	needs	to	query	information	from	SAPI
about	a	particular	word	in	the	application	grammar,	the	engine
can	call	ISpSREngineSite::GetWordInfo.
typedef	struct	SPWORDENTRY

{

				SPWORDHANDLE				hWord;

				LANGID										LangID;

				const	WCHAR				*pszDisplayText;

				const	WCHAR				*pszLexicalForm;

				SPPHONEID						*aPhoneId;

				void											*pvClientContext;

}	SPWORDENTRY;

Members

hWord
Handle	to	the	current	word.

LangID
Language	identifier.

pszDisplayText
Pointer	to	a	null-terminated	string	containing	the	display	text
information.

pszLexicalForm
Pointer	to	a	null-terminated	string	containing	the	lexical	text
information.

aPhoneId
Pointer	to	a	null-terminated	array	containing	the	phoneme
identifier.

pvClientContext
Pointer	to	a	string	representing	the	client	context	data.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPWORDLIST
SPWORDLIST	receives	words	currently	in	the	lexicon	or	that
have	changed	since	the	last	time	an	engine	was	checked.	It	is
used	in	conjunction	with	ISpLexicon.
typedef	struct	SPWORDLIST

{

				ULONG						ulSize;

				BYTE						*pvBuffer;

				SPWORD				*pFirstWord;

}	SPWORDLIST;

Members

ulSize
The	size	of	the	buffer	for	all	of	the	words,	in	bytes.

pvBuffer
Pointer	to	the	buffer	for	all	word	information	or	changes.

pFirstWord
Pointer	to	the	first	word	in	the	list.

Remarks
This	structure	is	the	beginning	of	a	linked	list	of	SPWORD
structures	and	contains	the	size	and	actual	buffer	of	all
subsequent	word	operations.	It	is	used	with
ISpLexicon::GetWords	and	ISpLexicon::GetGenerationChange.
Call	ZeroMemory	before	using	SPWORDLIST	to	initialize	it,	and
call	CoTaskMemFree(spWordList.pvBuffer)	to	free	the	buffer
allocated	during	the	calls.		The	pvBuffer	need	not	(and	should
not)	be	freed	between	the	calls.		ISpLexicon::GetWords	and
ISpLexicon::GetGenerationChange	will	reuse	the	buffer	for

efficiency	and	reallocate	when	necessary.

Examples
The	following	example	is	a	code	fragment	demonstrating	the
use	and	creation	of	SPWORDLIST.	The	code	initializes	the
structure	prior	to	use.	Note	that	the	returned	SPWORDLIST	has	a
CoTaskMemAllocate	buffer	attached	to	it.	This	should	be	freed
after	all	operations	using	the	list.	If	not	all	words	are	returned
from	ISpLexicon::GetWords,	the	structure	should	not	be	wiped
and	can	be	passed	into	subsequent	calls	to	efficiently	reuse	the
allocated	memory	block.
SPWORDLIST	SPWordList;

hr	=	ZeroMemory(&SPWordList,	sizeof(SPWordList));

//	Check	return	value	here.	Handle	error.

hr	=	S_FALSE;

while	(hr	==	S_FALSE)

{

			hr	=	pLex->GetWords(eLEXTYPE_USER,	&dwGen,	&dwCookie,	&SPWordList);

			//	Do	something	with	the	received	words.

			//	S_FALSE	is	returned	if	there	are	still	words	remaining	to	be	got	and	the	cookie	is	updated.

}

//	Have	finished	with	the	list.	Free	the	enclosed	buffer.

::CoTaskMemFree(SPWordList.pvBuffer);

The	following	helper	class	will	ensure	the	correct	usage	of
SPWORDLIST.
class	CSpWordList	:	public	SPWORDLIST

{

public:

				CSpWordList()

				{

								ZeroMemory(static_cast<SPWORDLIST*>(this),	sizeof(SPWORDLIST));

				}

				~CSpWordList()

				{

								CoTaskMemFree(pvBuffer);

				}

};

Using	the	helper	class,	the	above	sample	becomes:
CSpWordList	SPWordList;

hr	=	S_FALSE;

while	(hr	==	S_FALSE)

{

			hr	=	pLex->GetWords(eLEXTYPE_USER,	&dwGen,	&dwCookie,	&SPWordList);

			//	Do	something	with	the	received	words.

			//	S_FALSE	is	returned	if	there	are	still	words	remaining	to	be	got	and	the	cookie	is	updated.

}

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPWORDPRONUNCIATION
SPWORDPRONUNCIATION	is	used	by	ISpLexicon	for	words
with	possible	variations	in	pronunciation.
SPWORDPRONUNCIATION	contains	a	single	pronunciation	for	a
word.
typedef	struct	SPWORDPRONUNCIATION

{

				struct	SPWORDPRONUNCIATION			*pNextWordPronunciation;

				SPLEXICONTYPE																	eLexiconType;

				LANGID																								LangID;

				WORD																										wReserved;

				SPPARTOFSPEECH																ePartOfSpeech;

				SPPHONEID																					szPronunciation[1];

}	SPWORDPRONUNCIATION;

Members

pNextWordPronunciation
Pointer	to	the	next	possible	pronunciation.	May	be	NULL.

eLexiconType
Flag	of	type	SPLEXICONTYPE	indicating	which	lexicon	this
pronunciation	and	part	of	speech	was	obtained	from.

LangID
The	language	identifier.

wReserved
Reserved	for	future	use.

ePartOfSpeech
The	part	of	speech	used	by	this	particular	variation.

szPronunciation[1]
This	is	a	null-terminated	array	of	SPPHONID	elements
defining	the	pronunciation.	It	runs	off	the	end	of	the
SPWORDPRONUNCIATION	structure	and	is	part	of	data	buffer
in	the	containing	SPWORDPRONUNCIATIONLIST	structure.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPWORDPRONUNCIATIONLIST
SPWORDPRONUNCIATIONLIST	is	used	with
ISpLexicon::GetPronunciations	to	list	possible	variations	in
pronunciation	for	a	given	word.
typedef	struct	SPWORDPRONUNCIATIONLIST

{

				ULONG																			ulSize;

				BYTE																			*pvBuffer;

				SPWORDPRONUNCIATION				*pFirstWordPronunciation;

}	SPWORDPRONUNCIATIONLIST;

Members

ulSize
Size	of	the	pronunciation	buffer,	in	bytes.

pvBuffer
Pointer	to	the	buffer	for	all	pronunciations.

pFirstWordPronunciation
Pointer	to	the	first	in	a	linked	list	of	SPWORDPRONUNCIATION
structures	within	pvBuffer.

Remarks
This	structure	is	the	start	of	a	linked	list	of
SPWORDPRONUNCIATION	structures	and	contains	the	size	and
actual	buffer	of	all	subsequent	pronunciations.
Call	ZeroMemory	before	using	SPWORDPRONUNCIATIONLIST	to
initialize	it,	and	call	CoTaskMemFree(spwordpronlist.pvBuffer)	to
free	the	buffer	allocated	during	the	calls.	The	pvBuffer	need	not
(and	should	not)	be	freed	between	the	calls.	
ISpLexicon::GetPronunciations	will	reuse	the	buffer	for	efficiency

and	reallocate	when	necessary.

Example
The	following	example	is	a	code	fragment	demonstrating	the
use	and	creation	of	SPWORDPRONUNCIATIONLIST.
				SPWORDPRONUNCIATIONLIST	spwordpronlist;

				memset(spwordpronlist,	0,	sizeof(spwordpronlist));

				pISpLexicon->GetPronunciations(L"resume",	0,	0,	&spwordpronlist);

				for	(SPWORDPRONUNCIATION	*pwordpron	=	spwordpronlist.pFirstWordPronunciation;

									wordpron	!=	NULL;

									wordpron	=	pwordpron->pNextWordPronunciation)

				{

								DoSomethingWith(pwordpron->ePartOfSpeech,	pwordpron->szPronunciation);

				}

				pISpLexicon->GetPronunciations(L"record",	0,	0,	&spwordpronlist);

				//	repeat	the	for	loop	above	to	process	the	pronunciations

				CoTaskMemFree(spwordpronlist.pvBuffer);

The	following	helper	class	will	ensure	the	correct	usage	of
SPWORDPRONUNCIATIONLIST.
class	CSpPronList	:	public	SPWORDPRONUNCIATIONLIST

{

public:

				CSpPronList()

				{

								ZeroMemory(static_cast<SPWORDPRONUNCIATIONLIST*>(this),	sizeof(SPWORDPRONUNCIATIONLIST));

				}

				~CSpPronList()

				{

								CoTaskMemFree(pvBuffer);

				}

};

Using	the	helper	class,	the	above	sample	becomes:

				CSpPronList	spwordpronlist;

				pISpLexicon->GetPronunciations(L"resume",	0,	0,	&spwordpronlist);

				for	(SPWORDPRONUNCIATION	*pwordpron	=	spwordpronlist.pFirstWordPronunciation;

									wordpron	!=	NULL;

									wordpron	=	pwordpron->pNextWordPronunciation)

				{

								DoSomethingWith(pwordpron->ePartOfSpeech,	pwordpron->szPronunciation);

				}

				pISpLexicon->GetPronunciations(L"record",	0,	0,	&spwordpronlist);

				//	repeat	the	for	loop	above	to	process	the	pronunciations

	

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

WAVEFORMATEX
WAVEFORMATEX	defines	the	format	of	waveform-audio	data.
Only	format	information	common	to	all	waveform-audio	data
formats	is	included	in	this	structure.	For	formats	requiring
additional	information,	this	structure	is	included	as	the	first
member	in	another	structure,	along	with	the	additional
information.
typedef	struct	WAVEFORMATEX

{

				WORD				wFormatTag;

				WORD				nChannels;

				DWORD			nSamplesPerSec;

				DWORD			nAvgBytesPerSec;

				WORD				nBlockAlign;

				WORD				wBitsPerSample;

				WORD				cbSize;

}	WAVEFORMATEX;

Members

wFormatTag
Waveform-audio	format	type.	Format	tags	are	registered	with
Microsoft	Corporation	for	many	compression	algorithms.	A
complete	list	of	format	tags	is	located	in	the	Mmsystem.h
header	file.

nChannels
Number	of	channels	in	the	waveform-audio	data.	Monaural
data	uses	one	channel	and	stereo	data	uses	two	channels.

nSamplesPerSec
Sample	rate,	in	samples	per	second	(hertz)	at	which	each
channel	should	be	played	or	recorded.	If	wFormatTag	is

WAVE_FORMAT_PCM,	common	values	for	nSamplesPerSec	are
8.0	kHz,	11.025	kHz,	22.05	kHz,	and	44.1	kHz.	For	non-PCM
formats,	this	member	must	be	computed	according	to	the
manufacturer's	specification	of	the	format	tag.

nAvgBytesPerSec
Required	average	data-transfer	rate,	in	bytes	per	second,	for
the	format	tag.	If	wFormatTag	is	WAVE_FORMAT_PCM,
nAvgBytesPerSec	should	be	equal	to	the	product	of
nSamplesPerSec	and	nBlockAlign.	For	non-PCM	formats,	this
member	must	be	computed	according	to	the	manufacturer's
specification	of	the	format	tag.
Playback	and	record	software	can	estimate	buffer	sizes	using
the	nAvgBytesPerSec	member.

nBlockAlign
Block	alignment,	in	bytes.	The	block	alignment	is	the
minimum	atomic	unit	of	data	for	the	wFormatTag	format
type.	If	wFormatTag	is	WAVE_FORMAT_PCM,	nBlockAlign
should	be	equal	to	the	product	of	nChannels	and
wBitsPerSample	divided	by	8	(bits	per	byte).	For	non-PCM
formats,	this	member	must	be	computed	according	to	the
manufacturer's	specification	of	the	format	tag.
Playback	and	record	software	must	process	a	multiple	of
nBlockAlign	bytes	of	data	at	a	time.	Data	written	and	read
from	a	device	must	always	start	at	the	beginning	of	a	block.
For	example,	it	is	illegal	to	start	playback	of	PCM	data	in	the
middle	of	a	sample	(that	is,	on	a	non-block-aligned
boundary).

wBitsPerSample
Bits	per	sample	for	the	wFormatTag	format	type.	If
wFormatTag	is	WAVE_FORMAT_PCM,	wBitsPerSample	should
be	equal	to	8	or	16.	For	non-PCM	formats,	this	member	must

be	set	according	to	the	manufacturer's	specification	of	the
format	tag.	Note	that	some	compression	schemes	cannot
define	a	value	for	wBitsPerSample,	so	this	member	can	be
zero.

cbSize
Size,	in	bytes,	of	extra	format	information	appended	to	the
end	of	the	WAVEFORMATEX	structure.	This	information	can
be	used	by	non-PCM	formats	to	store	extra	attributes	for	the
wFormatTag.	If	no	extra	information	is	required	by	the
wFormatTag,	this	member	must	be	set	to	zero.	For
WAVE_FORMAT_PCM	formats	only,	this	member	is	ignored.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Enumerations
The	following	enumerations	are	used	with	SAPI	5.

SPAUDIOOPTIONS
SPAUDIOSTATE

SPBOOKMARKOPTIONS
SPCFGNOTIFY
SPCFGRULEATTRIBUTES

SPCONTEXTSTATE
SPDATAKEYLOCATION

SPDISPLAYATTRIBUTES
SPEAKFLAGS

SPENDSRSTREAMFLAGS

SPEVENTENUM
SPEVENTLPARAMTYPE

SPFILEMODE

SPGRAMMARSTATE
SPGRAMMARWORDTYPE
SPINTERFERENCE
SPLEXICONTYPE

SPLOADOPTIONS
SPPARTOFSPEECH
SPPHRASERNG
SPPROPSRC

SPRECOEVENTFLAGS
SPRECOSTATE

SPRESULTTYPE
SPRULEINFOOPT
SPRULESTATE
SPRUNSTATE

SPSTREAMFORMAT
SPTRANSITIONTYPE
SPVACTIONS

SPVALUETYPE

SPVESACTIONS
SPVFEATURE

SPVISEMES
SPVLIMITS

SPVPRIORITY
SPVSKIPTYPE
SPWAVEFORMATTYPE

SPWORDINFOOPT
SPWORDPRONOUNCEABLE
SPWORDTYPE

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPAUDIOOPTIONS
SPAUDIOOPTIONS	lists	the	options	for	an	audio	stream.
See	also	the	ISpRecoContext::SetAudioOptions	and
ISpRecoContext::GetAudioOptions	methods.
typedef	enum	SPAUDIOOPTIONS

{

				SPAO_NONE,											

				SPAO_RETAIN_AUDIO			

}	SPAUDIOOPTIONS;

Elements

SPAO_NONE
Flag	indicating	no	options	for	the	audio	stream	should	be
used.

SPAO_RETAIN_AUDIO
Flag	indicating	the	audio	stream	should	be	retained	(e.g.
serialization	of	recognition	object,	playback	of	recognized
audio,	etc.).	See	also	ISpRecoResult::SpeakAudio	and
ISpRecoResult::GetAudio.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPAUDIOSTATE
SPAUDIOSTATE	sets	the	audio	input	or	output	state	to	one	of
four	possible	states.	
Used	directly	by	the	ISpAudio::SetState	method	and	as	a
member	of	the	SPAUDIOSTATUS	structure.
typedef	enum	_SPAUDIOSTATE

{

				SPAS_CLOSED,

				SPAS_STOP,

				SPAS_PAUSE,

				SPAS_RUN

}	SPAUDIOSTATE;

Elements

SPAS_CLOSED
Audio	is	stopped	and	closed.	For	multimedia	audio	input
devices	(sound	cards	etc.),	the	device	will	be	released.	It	can
be	opened	by	other	processes	and	potentially	made
unavailable	to	SAPI.

SPAS_STOP
Audio	is	stopped.	For	multimedia	audio	input	devices	(sound
cards	etc.),	the	audio	device	will	not	be	closed.	This
guarantees	that	it	can	be	restarted	by	SAPI	without	an
intervening	process	opening	it.

SPAS_PAUSE
Audio	is	paused.	Staying	in	this	state	for	too	long	a	period
will	cause	audio	loss.

SPAS_RUN

Audio	is	enabled.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPBOOKMARKOPTIONS
SPBOOKMARKOPTIONS	is	used	at	the	creation	of	a	bookmark
to	specify	whether	the	bookmark	will	pause	a	recognition
context.

typedef	enum	SPBOOKMARKOPTIONS

{

				SPBO_NONE,		

				SPBO_PAUSE	

}	SPBOOKMARKOPTIONS;

Members

SPBO_NONE
The	recognition	context	will	not	be	paused	when	the
associated	bookmark	event	occurs.

SPBO_PAUSE
The	recognition	context	will	be	paused	when	the	associated
bookmark	event	occurs.	See	also	ISpRecoContext::Pause.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPCFGNOTIFY
SPCFGNOTIFY	lists	event	notification	information	related	to	the
addition,	deletion,	invalidation,	activation,	or	deactivation	of
words	and	rules	in	the	loaded	grammars.
typedef	enum	SPCFGNOTIFY

{

				SPCFGN_ADD,

				SPCFGN_REMOVE,

				SPCFGN_INVALIDATE,

				SPCFGN_ACTIVATE,

				SPCFGN_DEACTIVATE

}	SPCFGNOTIFY;

Elements

SPCFGN_ADD
Flag	indicating	that	the	grammar	rule	should	be	added.

SPCFGN_REMOVE
Flag	indicating	that	the	grammar	rule	should	be	removed.

SPCFGN_INVALIDATE
Flag	indicating	that	the	grammar	rule	should	be	invalidated.

SPCFGN_ACTIVATE
Flag	indicating	that	the	grammar	rule	should	be	activated.

SPCFGN_DEACTIVATE
Flag	indicating	that	the	grammar	rule	should	be	deactivated.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPCFGRULEATTRIBUTES
SPCFGRULEATTRIBUTES	lists	the	attribute	information	of
grammar	rules.
typedef	enum	SPCFGRULEATTRIBUTES

{

				SPRAF_TopLevel,						

				SPRAF_Active,								

				SPRAF_Export,								

				SPRAF_Import,								

				SPRAF_Interpreter,			

				SPRAF_Dynamic,							

				SPRAF_AutoPause					

}	SPCFGRULEATTRIBUTES;

Elements

SPRAF_TopLevel
Flag	specifying	that	the	rule	is	defined	as	a	top-level	rule.
Top-level	rules	are	the	entry	points	into	the	grammar	and	can
be	de-/activated	programmatically.	This	can	be	set	using	the
TOPELVEL	attribute	in	the	Speech	Text	Grammar	Format.

SPRAF_Active
Flag	specifying	that	the	rule	is	defined	as	a	top-level	rule	that
is	activated	by	default.	These	rules	can	be	de-/activated	by
calling	De-/ActivateRule(NULL,	0,	...).	This	can	be	set	using
the	TOPLEVEL="ACTIVE"	attribute-value	pair	in	the	Speech
Text	Grammar	Format.

SPRAF_Export
Flag	specifying	that	the	rule	is	exported	and	hence	can	be
referred	to	by	a	rule	in	another	grammar.	This	can	be	set
using	the	EXPORT="YES"	attribute-value	pair	in	the	Speech

Text	Grammar	Format.

SPRAF_Import
Flag	specifying	that	the	rule	is	imported	from	another
grammar	and	is	therefore	not	defined	in	this	grammar.

SPRAF_Interpreter
Flag	specifying	that	the	rule	has	an	interpreter	(custom
C/C++	code	implementing	the	ISpCFGInterpreter	interface)
associated	with	it.

SPRAF_Dynamic
Flag	specifying	that	the	rule	is	dynamic	(can	be	changed
programmatically	through	the	ISpGrammarBuilder	interface).
Note	that	the	CFG	must	be	loaded	with	the	SPLO_DYNAMIC
flag	to	enable	changes	at	run	time.

SPRAF_AutoPause
Flag	specifying	the	grammar	attributes	as	AutoPause.	This
flag	is	only	valid	at	run	time	as	part	of	a	rule	state	and	is	not
valid	to	pass	as	part	of	a	rule	definition.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPCONTEXTSTATE
SPCONTEXTSTATE	lists	controls	for	setting	and	restoring
recognition	states	on	a	per-context	basis.
typedef	enum	SPCONTEXTSTATE

{

				SPCS_DISABLED,

				SPCS_ENABLED

}			SPCONTEXTSTATE;

Elements

SPCS_DISABLED
Specifies	that	grammars	associated	with	this	recognition
context	are	disabled.	When	an	application	sets	the	context
state	to	SPCS_DISABLED,	all	rules	in	all	grammars	owned	by
that	context	are	disabled,	even	if	the	grammar	state	is	set	to
exclusive.

SPCS_ENABLED
Specifies	that	grammars	associated	with	this	recognition
context	are	enabled.	By	default	recognition	contexts	are
created	with	SPCS_ENABLED.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPDATAKEYLOCATION
SPDATAKEYLOCATION	lists	top-level	registry	keys.	It	is	used
for	data	key	locations	with	ISpObjectTokenCategory::GetDataKey
typedef	enum	SPDATAKEYLOCATION

{

				SPDKL_DefaultLocation,	

				SPDKL_CurrentUser,	

				SPDKL_LocalMachine,	

				SPDKL_CurrentConfig	

}	SPDATAKEYLOCATION;

Elements

SPDKL_DefaultLocation
The	default	location	set	by	ISpObjectTokenCategory.

SPDKL_CurrentUser
The	registry	key	HKEY_CURRENT_USER.

SPDKL_LocalMachine
The	registry	key	HKEY_LOCAL_MACHINE.

SPDKL_CurrentConfig
The	registry	key	HKEY_CURRENT_CONFIG.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPDISPLAYATTRIBUTES
SPDISPLAYATTRIBUTES	lists	the	display	text	of	phrase
elements.
typedef	enum	tagSPDISPLYATTRIBUTES

{

				SPAF_ONE_TRAILING_SPACE,

				SPAF_TWO_TRAILING_SPACES,

				SPAF_CONSUME_LEADING_SPACES,

				SPAF_ALL	

}	SPDISPLAYATTRIBUTES;

Elements

SPAF_ONE_TRAILING_SPACE
Inserts	one	trailing	space,	used	for	most	words.

SPAF_TWO_TRAILING_SPACES
Insert	two	trailing	spaces,	often	used	after	a	sentence	final
period.

SPAF_CONSUME_LEADING_SPACES
Consume	leading	space,	often	used	for	periods.	If	this	is
absent,	the	word	should	have	a	leading	space	by	default.

SPAF_ALL
A	combination	of	all	of	the	above	flags.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPEAKFLAGS
SPEAKFLAGS	lists	the	ISpVoice::Speak	call	also	the
ISpTTSEngine::Speak	call.	
typedef	enum	SPEAKFLAGS

{

				//---	SpVoice	flags

				SPF_DEFAULT,										

				SPF_ASYNC,												

				SPF_PURGEBEFORESPEAK,	

				SPF_IS_FILENAME,						

				SPF_IS_XML,											

				SPF_IS_NOT_XML,							

				SPF_PERSIST_XML,						

				//---	Normalizer	flags

				SPF_NLP_SPEAK_PUNC,			

				//---	Masks

				SPF_NLP_MASK,								

				SPF_VOICE_MASK,						

				SPF_UNUSED_FLAGS					

}	SPEAKFLAGS;

Elements

SPF_DEFAULT
Specifies	that	the	default	settings	should	be	used.		The
defaults	are:

Speak	the	given	text	string	synchronously
Not	purge	pending	speak	requests

Parse	the	text	as	XML	only	if	the	first	character	is	a
left-angle-bracket	(<)
Not	persist	global	XML	state	changes	across	speak

calls
Not	expand	punctuation	characters	into	words.

To	override	this	default,	use	the	other	flag	values	given
below.

SPF_ASYNC
Specifies	that	the	Speak	call	should	be	asynchronous.	That	is,
it	will	return	immediately	after	the	speak	request	is	queued.

SPF_PURGEBEFORESPEAK
Purges	all	pending	speak	requests	prior	to	this	speak	call.

SPF_IS_FILENAME
The	string	passed	to	ISpVoice::Speak	is	a	file	name,	and	the
file	text	should	be	spoken.

SPF_IS_XML
The	input	text	will	be	parsed	for	XML	markup.

SPF_IS_NOT_XML
The	input	text	will	not	be	parsed	for	XML	markup.

SPF_PERSIST_XML
Global	state	changes	in	the	XML	markup	will	persist	across
speak	calls.

SPF_NLP_SPEAK_PUNC
Punctuation	characters	should	be	expanded	into	words	(e.g.
"This	is	a	sentence."	would	become	"This	is	a	sentence
period").

SPF_NLP_MASK
This	mask	is	used	to	remove	the	SAPI	handled	flags	before
ISpTTSEngine::Speak	is	called.	The	only	flag	which	the	TTS
engine	must	handle	is	SPF_NLP_SPEAK_PUNC.

SPF_VOICE_MASK
This	mask	has	every	flag	bit	set.

SPF_UNUSED_FLAGS
This	mask	has	every	unused	bit	set.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPENDSRSTREAMFLAGS
SPENDSRSTREAMFLAGS	enables	an	application	to	query	for
state	changes	when	the	end	of	a	speech	recognition	(SR)	stream
is	encountered.
typedef	enum	SPENDSRSTREAMFLAGS

{

				SPESF_NONE,														

				SPESF_STREAM_RELEASED			

}			SPENDSRSTREAMFLAGS;

Elements

SPESF_NONE
No	flags	are	associated	with	the	end	of	stream	event.

SPESF_STREAM_RELEASED
The	input	stream	object	was	released	upon	reaching	the	end
of	the	current	stream.	For	example,	a	wave	file	is	a	finite
stream	of	data,	and	once	the	end	of	the	stream,	and	file,	is
reached,	the	stream	object	is	released.	See	also
CSpEvent::InputStreamReleased.

Microsoft	Speech	SDK
SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPEVENTENUM
SPEVENTENUM	lists	the	events	possible	from	SAPI.
It	is	recommended	that	developers	use	the	helper	class
CSpEvent	to	easily	and	clearly	decode	events.
typedef	enum	SPEVENTENUM

{

				SPEI_UNDEFINED,

		

				//---	TTS	engine

				SPEI_START_INPUT_STREAM,

				SPEI_END_INPUT_STREAM,

				SPEI_VOICE_CHANGE,

				SPEI_TTS_BOOKMARK,

				SPEI_WORD_BOUNDARY,

				SPEI_PHONEME,

				SPEI_SENTENCE_BOUNDARY,

				SPEI_VISEME,

				SPEI_TTS_AUDIO_LEVEL,

				//---	Engine	vendors	use	these	reserved	bits

				SPEI_TTS_PRIVATE,

				SPEI_MIN_TTS,

				SPEI_MAX_TTS,

				//---	Speech	Recognition

				SPEI_END_SR_STREAM,

				SPEI_SOUND_START,

				SPEI_SOUND_END,

				SPEI_PHRASE_START,

				SPEI_RECOGNITION,

				SPEI_HYPOTHESIS,

				SPEI_SR_BOOKMARK,

				SPEI_PROPERTY_NUM_CHANGE,

				SPEI_PROPERTY_STRING_CHANGE,

				SPEI_FALSE_RECOGNITION,

				SPEI_INTERFERENCE,

				SPEI_REQUEST_UI,

				SPEI_RECO_STATE_CHANGE,

				SPEI_ADAPTATION,

				SPEI_START_SR_STREAM,

				SPEI_RECO_OTHER_CONTEXT,

				SPEI_SR_AUDIO_LEVEL,

				//---	Engine	vendors	use	these	reserved	bits

				SPEI_SR_PRIVATE,

				SPEI_MIN_SR,

				SPEI_MAX_SR,

				SPEI_RESERVED1,

				SPEI_RESERVED2,

				SPEI_RESERVED3

}	SPEVENTENUM;

Elements

SPEI_START_INPUT_STREAM
The	input	stream	(text	or	audio)	from	a	Speak	or
SpeakStream	call	has	begun	synthesizing	to	the	output.	The
event	is	fired	by	SAPI.

SPEI_END_INPUT_STREAM
The	input	stream	(text	or	audio)	from	a	Speak	or
SpeakStream	call	has	finished	synthesizing	to	the	output.
The	event	is	fired	by	SAPI.

SPEI_VOICE_CHANGE
SAPI	fires	this	event	for	voice	changes	within	a	single	input
stream	of	a	Speak	call.	wParam	is	either	zero	or	the
SPF_PERSIST_XML.	If	the	current	speak	call	takes
SPF_PERSIST_XML,	wparam	is	SPF_PERSIST_XML.	Otherwise,
zero.	lParam	is	the	current	voice	object	token.	elParamType
has	to	be	SPET_LPARAM_IS_TOKEN.

SPEI_TTS_BOOKMARK
The	bookmark	element	is	used	to	insert	a	bookmark	into	the
input	stream.	If	an	application	specifies	interest	in	bookmark
events,	it	will	receive	the	bookmark	events	during	synthesis.
wParam	is	the	current	bookmark	name	(in	base	10)
converted	to	a	long	integer.	If	name	of	current	bookmark	is
not	an	integer,	wParam	will	be	zero.	lParam	is	the	bookmark
string.	elParamType	has	to	be	SPET_LPARAM_IS_STRING.

SPEI_WORD_BOUNDARY
A	word	is	beginning	to	synthesize.	Markup	language	(XML)
markers	are	counted	in	the	boundaries	and	offsets.	wParam
is	the	character	length	of	the	word	in	the	current	input
stream	being	synthesized.	lParam	is	the	character	position
within	the	current	text	input	stream	of	the	word	being
synthesized.

SPEI_PHONEME
Phoneme	was	returned	by	the	TTS	engine.	The	high	word	of
wParam	is	the	duration,	in	milliseconds,	of	the	current
phoneme	element.	The	low	word	is	the	id	of	the	next
phoneme	element.	The	high	word	of	lparam	is	the	phoneme
element	feature	defined	in	SPVFEATURE.	This	value	will	be
zero	if	the	current	phoneme	element	is	not	a	primary	stress
or	emphasis.	The	low	word	of	lParam	is	the	id	for	the	current
phoneme	element	being	synthesized.	

When	the	engine	synthesizes	a	phoneme	comprised	of	more
than	one	phoneme	element,	it	raises	an	event	for	each
element.	For	example,	when	a	Japanese	TTS	engine	speaks
the	phoneme	"KYA,"	which	is	comprised	of	the	phoneme
elements	"KI"	and	"XYA,"	it	raises	an	SPEI_PHONEME	event
for	each	element.	Because	the	element	"KI"	in	this	case
modifies	the	sound	of	the	element	following	it,	rather	than
initiating	a	sound,	the	duration	of	its	SPEI_PHONEME	event	is
zero.

SPEI_SENTENCE_BOUNDARY
A	sentence	is	beginning	to	synthesize.	wParam	is	the
character	length	of	the	sentence	including	punctuation	in	the
current	input	stream	being	synthesized.	lParam	is	the
character	position	within	the	current	text	input	stream	of	the
sentence	being	synthesized.

SPEI_VISEME
Viseme	was	determined	by	synthesis	engine.	The	high	word
of	wParam	is	the	duration,	in	milliseconds,	of	the	current
viseme.	The	low	word	is	for	the	next	viseme	of	type
SPVISEMES.	The	high	word	of	lParam	is	the	viseme	feature
defined	in	SPVFEATURE.	This	value	will	be	zero	if	the	current
viseme	is	not	primary	stress	or	emphasis.	The	low	word	of
lParam	is	the	current	viseme	being	synthesized.

SPEI_TTS_AUDIO_LEVEL
This	event	is	fired	by	SAPI.	lParam	is	0,	and	wParam	is	the
current	audio	level	from	zero	to	100.

SPEI_TTS_PRIVATE
Reserved	for	private/internal	use	by	the	TTS	Engine.

SPEI_MIN_TTS
Minimum	event	enumeration	value	for	TTS	events.

SPEI_MAX_TTS
Maximum	event	enumeration	value	for	TTS	events.

SPEI_END_SR_STREAM
The	SR	engine	has	finished	receiving	an	audio	input	stream.
LPARAM	points	to	the	SR	engine's	final	HRESULT	code	(see
CSpEvent::EndStreamResult).	WPARAM	points	to	a	Boolean

value	signifying	whether	the	audio	input	stream	object	was
released	(see	CSpEvent::InputStreamReleased).

SPEI_SOUND_START
The	SR	engine	determined	that	audible	sound	is	available
through	the	input	stream.

SPEI_SOUND_END
The	SR	engine	has	determined	that	audible	sound	is	no
longer	available	through	the	input	stream,	or	that	the	sound
stream	has	been	inactive	for	a	period.

SPEI_PHRASE_START
The	SR	engine	is	starting	to	recognize	a	phrase.	Note	that
this	MUST	be	followed	by	either	an	SPEI_FALSE_RECOGNITION
or	SPEI_RECOGNITION	event.

SPEI_RECOGNITION
The	SR	engine	is	returning	a	full	recognition	-	its	best	guess
at	a	text	representation	of	the	audio	data.	LParam	is	a
pointer	to	an	ISpRecoResult	object	(see
CSpEvent::RecoResult).

SPEI_HYPOTHESIS
The	SR	engine	is	returning	a	partial	phrase	recognition	-
effectively	its	best	guess	up	to	that	point	in	the	stream.
LParam	is	a	pointer	to	an	ISpRecoResult	object	(see
CSpEvent::RecoResult).

SPEI_SR_BOOKMARK
A	Bookmark	event	is	returned	when	the	SR	engine	has
processed	to	the	stream	position	of	a	bookmark.	lParam	is	an
application	specified	value	set	using

ISpRecoContext::Bookmark.	wParam	is	SPREF_AutoPause	if
ISpRecoContext::Bookmark	was	called	with	SPBO_PAUSE,	and
NULL	otherwise.

SPEI_PROPERTY_NUM_CHANGE
An	SR	engine	supported	property	was	changed.	LPARAM	is	a
string	pointer	to	the	property	name	that	changed	(see
CSpEvent::PropertyName].	WPARAM	contains	the	new	value
(see	CSpEvent::PropertyNumValue).

SPEI_PROPERTY_STRING_CHANGE
LPARAM	is	a	string	pointer	to	the	property	name	that
changed	(see	CSpEvent::PropertyName).	Immediately
following	the	NULL-termination	of	the	property	name	is	the
new	property	value	(see	CSpEvent::PropertyStringValue).

SPEI_FALSE_RECOGNITION
Apparent	speech	without	valid	recognition.	An	SR	engine	can
optionally	return	a	result	object,	which	will	be	referenced	by
the	LPARAM	member	(see	CSpEvent::RecoResult).

SPEI_INTERFERENCE
The	SR	engine	determined	that	the	sound	stream	has	a
hindrance	and	is	preventing	a	successful	recognition.	lParam
is	any	combination	of	SPINTERFERENCE	flags	(See
CSpEvent::Interference).

SPEI_REQUEST_UI
The	SR	engine's	request	to	display	a	specific	user	interface.
LPARAM	is	a	null-terminated	string	(see
CSpEvent::RequestTypeOfUI).

SPEI_RECO_STATE_CHANGE

The	recognizer	state	has	changed.	WPARAM	is	the	new
recognizer	state	(see	SPRECOSTATE	and
CSpEvent::RecoState).

SPEI_ADAPTATION
The	SR	engine	is	ready	to	process	the	adaptation	buffer.

SPEI_START_SR_STREAM
The	SR	engine	has	reached	the	start	of	a	new	audio	stream.

SPEI_SR_AUDIO_LEVEL
The	audio	input	stream	object	fires	this	event.	wParam	is	the
current	audio	level	from	zero	to	100.

SPEI_RECO_OTHER_CONTEXT
A	recognition	was	sent	to	another	context.

SPEI_SR_PRIVATE
Reserved	for	private/internal	use	by	the	SR	engine.

SPEI_MIN_SR
Minimum	event	enumeration	value	for	speech	recognition
events.

SPEI_MAX_SR
Maximum	event	enumeration	value	for	speech	recognition
events.

SPEI_RESERVED1
Reserved	for	SAPI	internal	use.	See	SPFEI	Remarks	section.

SPEI_RESERVED2
Reserved	for	SAPI	internal	use.	See	SPFEI	Remarks	section.

SPEI_RESERVED3
Reserved	for	future	use,	do	not	use.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPEVENTLPARAMTYPE
SPEVENTLPARAMTYPE	lists	objects	and	data	pointers
attached	to	events.	SPEVENTLPARAMTYPE	specifies	the	type	of
the	attached	data,	enabling	the	user	to	determine	how	to
access	the	data,	and	how	to	release	the	data	when	finished	with
the	event.	
See	the	helper	CSpEvent	for	more	information	about	C++	class
that	has	properties	for	accessing	event-specific	data,	and	a
destructor	to	automatically	cleanup	attached	data.
See	the	helper	SpClearEvent	for	more	information	about
releasing	objects	or	memory	attached	to	an	event.
typedef	enum	SPEVENTLPARAMTYPE

{

				SPET_LPARAM_IS_UNDEFINED,	

				SPET_LPARAM_IS_TOKEN,

				SPET_LPARAM_IS_OBJECT,

				SPET_LPARAM_IS_POINTER,

				SPET_LPARAM_IS_STRING

}	SPEVENTLPARAMTYPE;

Elements

SPET_LPARAM_IS_UNDEFINED
The	SPEVENT.lParam	value	represents	an	undefined	value.
For	example,	all	TTS	events,	except	SPEI_VOICE_CHANGE	and
SPEI_TTS_BOOKMARK,	do	not	have	attached	data,	so	the
event	type	is	SPET_LPARAM_IS_UNDEFINED.
The	user	does	not	need	to	release	associated	data,	since
there	is	no	associated	data.

SPET_LPARAM_IS_TOKEN
The	SPEVENT.lParam	value	represents	a	pointer	to	an
ISpObjectToken	object.

For	example,	the	TTS	voice	change	event	(i.e.,
SPEI_VOICE_CHANGE)	includes	a	pointer	to	the	new	voice's
object	token,	so	the	lParam	type	is	SPET_LPARAM_IS_TOKEN.
The	user	must	call	IUnknown::Release	on	the	lParam
member	(as	pointer)	to	release	the	associated	object	token.

SPET_LPARAM_IS_OBJECT
The	SPEVENT.lParam	value	represents	a	pointer	to	an	object.
For	example,	the	speech	recognition	event	(i.e.,
SPEI_RECOGNITION)	includes	a	pointer	to	the	recognition
result	(e.g.	ISpRecoResult),	so	the	lParam	type	is
SPET_LPARAM_IS_OBJECT.
The	user	must	call	IUnknown::Release	on	the	lParam
member	(as	pointer)	to	release	the	associated	object	token.

SPET_LPARAM_IS_POINTER
The	SPEVENT.lParam	value	represents	a	memory	pointer.
For	example,	the	property	string	change	event	(i.e.,
SPEI_PROPERTY_STRING_CHANGE)	includes	a	pointer	to	a
block	of	memory	that	contains	a	string	(e.g.	WCHAR*),	so	the
lParam	type	is	SPET_LPARAM_IS_POINTER.
The	user	must	call	CoTaskMemFree	on	the	lParam	member
(as	pointer)	to	release	the	associated	memory.

SPET_LPARAM_IS_STRING
The	SPEVENT.lParam	value	represents	a	pointer	to	a	string.
For	example,	the	TTS	bookmark	event	(i.e.,
SPEI_TTS_BOOKMARK)	includes	a	pointer	the	bookmark
name,	so	the	lParam	type	is	SPET_LPARAM_IS_STRING.
The	user	must	call	CoTaskMemFree	on	the	lParam	member
(as	pointer)	to	release	the	associated	memory.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPFILEMODE
SPFILEMODE	lists	the	file	opening	state	used	by
ISpStream::BindToFile	and	the	helper	function	SPBindToFile.
typedef	enum	SPFILEMODE

{

				SPFM_OPEN_READONLY,

				SPFM_OPEN_READWRITE,

				SPFM_CREATE,

				SPFM_CREATE_ALWAYS,

				SPFM_NUM_MODES

}	SPFILEMODE;

Elements

SPFM_OPEN_READONLY
Opens	the	existing	file	in	read-only	mode.	This	will	fail	if	the
file	does	not	exist.

SPFM_OPEN_READWRITE
Opens	the	existing	file	in	read-write	mode.	This	will	fail	if	the
file	does	not	exist.

SPFM_CREATE
Opens	the	file	if	one	exists,	or	creates	the	file	if	one	does	not
exist.	This	flag	indicates	that	the	file	will	be	opened	in	read-
write	mode.

SPFM_CREATE_ALWAYS
Creates	the	file,	even	if	the	file	already	exists	and	deletes	the
previous	file.	This	flag	indicates	that	the	file	will	be	opened	in
read-write	mode.

SPFM_NUM_MODES
This	flag	is	used	for	limit	checking.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPGRAMMARSTATE
SPGRAMMARSTATE	lists	controls	for	setting	and	restoring
grammar	states.
typedef	enum	SPGRAMMARSTATE

{

				SPGS_ENABLED	=	0,

				SPGS_DISABLED	=	1,

				SPGS_EXCLUSIVE	=	3,

}	SPGRAMMARSTATE;

Elements

SPGS_ENABLED
Activates	all	the	top-level	rules	in	the	grammar	for	the	SR
engine.
Note	that	a	rule	must	have	an	active	recognition	context,
active	grammar,	and	active	top-level	rule	in	order	to	be
recognized.

SPGS_DISABLED
Deactivates	all	the	top-level	rules	in	the	grammar	for	the	SR
engine.

SPGS_EXCLUSIVE
Turns	off	all	top-level	rules	that	are	not	part	of	this	grammar.
For	example,	an	application	that	needs	modal-like	input
exclusivity	can	change	the	grammar	to	exclusive,	which
disables	all	other	non-exclusive	grammars.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPGRAMMARWORDTYPE
SPGRAMMARWORDTYPE	lists	the	type	of	the	word(s)	to	be
added	to	a	grammar.	This	type	is	either	specified	in	the	Speech
Text	Grammar	Format	as	<GRAMMAR	WORDTYPE="LEXICAL">
or	as	a	parameter	toISpGrammarBuilder::AddWordTransition().
SAPI	currently	allows	only	SPWT_LEXICAL.
	
typedef	enum	SPGRAMMARWORDTYPE

{

				SPWT_DISPLAY,

				SPWT_LEXICAL,

				SPWT_PRONUNCIATION

}	SPGRAMMARWORDTYPE;

Elements

SPWT_DISPLAY
Each	word	to	be	added	is	in	display	form.	That	is,	it	possibly
will	have	to	be	converted	into	lexical	form(s).	For	example,
the	word	"23"	(display	form)	would	have	to	converted	into
"twenty	three"	(lexical	form).	This	is	currently	not
implemented	in	SAPI.

SPWT_LEXICAL
Each	word	to	be	added	is	in	lexical	form	and	can	be	used	to
access	the	lexicon.

SPWT_PRONUNCIATION
Each	word	is	specified	solely	by	its	pronunciation.	This	is
currently	not	implemented.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPINTERFERENCE
SPINTERFERENCE	lists	possible	causes	of	interference	or	poor
recognition	with	the	input	stream.

typedef	enum	SPINTERFERENCE

{

				SPINTERFERENCE_NONE,				

				SPINTERFERENCE_NOISE,

				SPINTERFERENCE_NOSIGNAL,

				SPINTERFERENCE_TOOLOUD,

				SPINTERFERENCE_TOOQUIET,

				SPINTERFERENCE_TOOFAST,

				SPINTERFERENCE_TOOSLOW

}	SPINTERFERENCE;

Elements

SPINTERFERENCE_NONE
Private	event.	Do	not	use.

SPINTERFERENCE_NOISE
The	sound	received	is	interpreted	by	the	speech	recognition
engine	as	noise.	This	event	is	generated	when	there	is	a
SOUND_START	followed	by	a	SOUND_END	without	an
intervening	PHRASE_START.	The	event	will	be	also	generated
during	dictation	if,	after	a	series	of	hypotheses,	it	is
determined	that	the	signal	is	noise.

SPINTERFERENCE_NOSIGNAL
A	sound	is	received	but	it	is	of	a	constant	intensity.	This	also
includes	the	microphone	being	unplugged	or	muted.

SPINTERFERENCE_TOOLOUD

A	sound	is	received	but	the	stream	intensity	is	too	high	for
discrete	recognition.

SPINTERFERENCE_TOOQUIET
A	sound	is	received	but	the	stream	intensity	is	too	low	for
discrete	recognition.

SPINTERFERENCE_TOOFAST
The	words	are	spoken	too	quickly	for	discrete	recognition.

SPINTERFERENCE_TOOSLOW
The	words	are	spoken	too	slowly	and	indicates	excessive
time	between	words.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPLEXICONTYPE
SPLEXICONTYPE	lists	the	allowed	lexicon	types.	Currently
there	are	only	two	types	in	use--user	and	application	lexicons.
There	are	ample	reserved	types	for	future	expansion	and	ample
private	types	for	potential	private	use	by	applications	and
engines.
typedef	enum	SPLEXICONTYPE

{

			eLEXTYPE_USER,								

			eLEXTYPE_APP,									

			eLEXTYPE_RESERVED1,			

			eLEXTYPE_RESERVED2,			

			eLEXTYPE_RESERVED3,			

			eLEXTYPE_RESERVED4,			

			eLEXTYPE_RESERVED5,			

			eLEXTYPE_RESERVED6,			

			eLEXTYPE_RESERVED7,			

			eLEXTYPE_RESERVED8,			

			eLEXTYPE_RESERVED9,			

			eLEXTYPE_RESERVED10,		

			eLEXTYPE_PRIVATE1,				

			eLEXTYPE_PRIVATE2,				

			eLEXTYPE_PRIVATE3,				

			eLEXTYPE_PRIVATE4,				

			eLEXTYPE_PRIVATE5,				

			eLEXTYPE_PRIVATE6,				

			eLEXTYPE_PRIVATE7,				

			eLEXTYPE_PRIVATE8,				

			eLEXTYPE_PRIVATE9,				

			eLEXTYPE_PRIVATE10,			

			eLEXTYPE_PRIVATE11,			

			eLEXTYPE_PRIVATE12,			

			eLEXTYPE_PRIVATE13,			

			eLEXTYPE_PRIVATE14,			

			eLEXTYPE_PRIVATE15,			

			eLEXTYPE_PRIVATE16,			

			eLEXTYPE_PRIVATE17,			

			eLEXTYPE_PRIVATE18,			

			eLEXTYPE_PRIVATE19,			

			eLEXTYPE_PRIVATE20			

}	SPLEXICONTYPE;

Elements

eLEXTYPE_USER
Indicates	the	user	lexicon.		Each	Windows	user	has	a	unique
user	lexicon.

eLEXTYPE_APP
Indicates	the	application	lexicons.		Application	lexicon	is
shared	by	all	users.

eLEXTYPE_RESERVED1	through	eLEXTYPE_RESERVED10
Reserved	for	future	use.

eLEXTYPE_PRIVATE1	through	eLEXTYPE_PRIVATE20
Indicates	the	private	lexicons.		Engines	can	call
ISpContainerLexicon::AddLexicon	with	one	of	these	flags	to
add	its	private	lexicons	to	the	container	lexicon	for	consistent
access.	If	these	lexicon	types	are	used	the	lexicons	must	fully
comply	with	the	ISpLexicon	interface.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPLOADOPTIONS
SPLOADOPTIONS	indicates	how	a	grammar	is	loaded.	This	is
used	by	the	ISpRecoGrammar	interface.
typedef	enum	SPLOADOPTIONS

{

				SPLO_STATIC,					

				SPLO_DYNAMIC								

}	SPLOADOPTIONS;

Elements

SPLO_STATIC
Flag	specifying	that	the	grammar	is	loaded	statically.

SPLO_DYNAMIC
Flag	specifying	that	the	grammar	is	loaded	dynamically,
meaning	that	rules	can	be	modified	and	committed	at	run-
time.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPPARTOFSPEECH
SPPARTOFSPEECH	lists	the	parts-of-speech	categories	used	in
SAPI	5.	This	list	of	known	parts-of-speech	types	is	intentionally
small	and	broad	and	will	be	expanded	and	refined	in	future
releases.	SPPARTOFSPEECH	in	its	minimal	form	is	required	to
support	look	ups	from	the	standard	SAPI	lexicon.	This
information	is	useful	to	TTS	engines	to	determine	the	correct
pronunciation	for	ambiguous	words	based	on	their	context.
typedef	enum	SPPARTOFSPEECH

{

				//---	SAPI5	public	POS	category	values	(bits	28-31)

				SPPS_NotOverriden,		

				SPPS_Unknown,							

				SPPS_Noun,										

				SPPS_Verb,										

				SPPS_Modifier,						

				SPPS_Function,						

				SPPS_Interjection		

}	SPPARTOFSPEECH;

Elements

SPPS_NotOverriden
Flag	indicating	that	the	part	of	speech	already	present	in	the
lexicon	should	not	be	overridden.

SPPS_Unknown
Flag	indicating	that	the	part	of	speech	is	unknown	and	is
probably	from	the	user	lexicon.

SPPS_Noun
Flag	indicating	that	the	part	of	speech	is	a	noun.

SPPS_Verb
Flag	indicating	that	the	part	of	speech	is	a	verb.

SPPS_Modifier
Flag	indicating	that	the	part	of	speech	is	a	modifier.

SPPS_Function
Flag	indicating	that	the	part	of	speech	is	a	function.

SPPS_Interjection
Flag	indicating	that	the	part	of	speech	is	an	interjection.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPPHRASERNG
typedef	enum	SPPHRASERNG

{

			SPPR_ALL_ELEMENTS	

}	SPPHRASERNG;

Elements

SPPR_ALL_ELEMENTS
Indicates	all	elements	of	an	alternate	phrase	may	be	used.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPPROPSRC
SPPROPSRC	lists	the	source	object	type	of	a	property	change
method	call.
typedef	enum	SPPROPSRC

{

				SPPROPSRC_RECO_INST,

				SPPROPSRC_RECO_CTX,

				SPPROPSRC_RECO_GRAMMAR

}	SPPROPSRC;

Elements

SPPROPSRC_RECO_INST
The	source	of	the	property	change	call	was	an	ISpRecognizer
or	ISpeechRecognizer-based	object.

SPPROPSRC_RECO_CTX
The	source	of	the	property	change	call	was	an
ISpRecoContext	or	ISpeechRecoContext-based	object.
Currently,	not	used	by	SAPI.

SPPROPSRC_RECO_GRAMMAR
The	source	of	the	property	change	call	was	an
ISpRecoGrammar	or	ISpeechRecoGrammar-based	object.
Currently,	not	used	by	SAPI.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPRECOEVENTFLAGS
SPRECOEVENTFLAGS	lists	the	states	of	the	SR	engine.
typedef	enum	SPRECOEVENTFLAGS

{

				SPREF_AutoPause,				

				SPREF_Emulated					

}	SPRECOECOEVENTFLAGS;

Elements

SPREF_AutoPause
Indicates	that	the	engine	is	in	the	auto-paused	state.

SPREF_Emulated
Indicates	that	the	engine	is	in	emulation.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPRECOSTATE
SPRECOSTATE	lists	the	various	states	of	the	recognition
engine.
typedef	enum	SPRECOSTATE

{

				SPRST_INACTIVE,

				SPRST_ACTIVE,

				SPRST_ACTIVE_ALWAYS,

				SPRST_INACTIVE_WITH_PURGE,

				SPRST_NUM_STATES

}	SPRECOSTATE;

Elements

SPRST_INACTIVE
The	engine	and	audio	input	are	inactive	and	no	audio	is
being	read,	even	if	there	rules	active.	The	audio	device	will
be	closed	in	this	state.	Normally	an	application	should	not	set
the	state	to	SPRST_INACTIVE	because	when	using	the	shared
engine,	recognition	will	be	stopped	for	all	applications,	not
just	this	one.	An	application	can	easily	disable	recognition	on
its	contexts	by	calling	ISpRecoContext::SetContextState.

SPRST_ACTIVE
This	state	is	the	default	and	indicates	that	recognition	will
take	place	if	there	are	any	active	rules.	If	a	rule	is	active,
audio	will	be	read	and	passed	to	the	SR	engine	and
recognition	will	happen.

SPRST_ACTIVE_ALWAYS
Indicates	the	audio	is	running	regardless	of	the	rule	state.
Even	if	there	are	no	active	rules,	audio	will	still	be	read	and
passed	to	the	engine.	This	state	can	be	useful	for

applications	if	they	want	to	receive	volume	level	events
(SPEI_SR_AUDIO_LEVEL),	in	order	to	display	a	VU-meter	or
similar.

SPRST_INACTIVE_WITH_PURGE
Indicates	the	engine	state	will	be	set	to	inactive,	but	all
active	audio	data	is	purged.	This	state	is	used	when	an
application	wishes	to	shut	an	engine	down	as	quickly	as
possible,	without	waiting	for	it	to	finish	processing	any	audio
data	that	is	currently	buffered.	This	state	should	be	used	with
care	because	it	will	affect	all	applications	in	the	shared	case.

SPRST_NUM_STATES
To	be	provided	in	a	future	release.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPRESULTTYPE
SPRESULTTYPE	lists	the	result	object	type	information.
typedef	enum	SPRESULTTYPE	

{

				SPRT_CFG,	

				SPRT_SLM,	

				SPRT_PROPRIETARY,	

				SPRT_FALSE_RECOGNITION	

}	SPRESULTTYPE;

Elements

SPRT_CFG
Flag	specifying	that	the	result	object	is	a	context-free
grammar	type	(e.g.	command	and	control	grammar).

SPRT_SLM
Flag	specifying	that	the	result	object	is	a	statistical-language
model	type	(e.g.	dictation).

SPRT_PROPRIETARY
Flag	specifying	that	the	result	object	is	a	proprietary
grammar	type.

SPRT_FALSE_RECOGNITION
Flag	specifying	that	the	result	object	is	a	false	recognition
type.	The	speech	recognition	engine	can	combine	the	other
values	with	false	recognition	to	inform	applications	that	it
failed	to	recognize	specific	type	of	grammar.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPRULEINFOOPT
SPRULEINFOOPT	lists	grammar	rule	options.
typedef	enum	SPRULEINFOOPT

{

				SPRIO_NONE			

}	SPRULEINFOOPT;

Elements

SPRIO_NONE
Flag	specifying	the	SPRIO_NONE	option.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPRULESTATE
SPRULESTATE	lists	the	states	of	a	grammar	rule.
typedef	enum	SPRULESTATE

{

				SPRS_INACTIVE,																	

				SPRS_ACTIVE,																			

				SPRS_ACTIVE_WITH_AUTO_PAUSE			

}	SPRULESTATE;

Elements

SPRS_INACTIVE
Grammar	rule	is	inactive.

SPRS_ACTIVE
Grammar	rule	is	active.

SPRS_ACTIVE_WITH_AUTO_PAUSE
SR	engine	will	be	placed	in	a	paused	state	when	the
grammar	rule	is	recognized.	Also	known	as	an	"auto-pause"
rule.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPRUNSTATE	
SPRUNSTATE	lists	the	voice	running	states.
typedef	enum	SPRUNSTATE

{

				SPRS_DONE,												

				SPRS_IS_SPEAKING					

}	SPRUNSTATE;

Elements

SPRS_DONE
The	voice	has	completed	processing	all	queued	streams.

SPRS_IS_SPEAKING
The	voice	instance	currently	has	the	audio	claimed.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPSTREAMFORMAT
SPSTREAMFORMAT	lists	the	supported	stream	formats.
These	enumeration	elements	are	all	common	audio	formats
ranging	from	the	uncompressed	PCM	formats	to	highly
compressed	formats.	They	are	available	as	standard	formats	on
the	Windows	operating	systems	and	are	supported	by	SAPI	5.

typedef	enum	SPSTREAMFORMAT

{

				SPSF_Default,

				SPSF_NoAssignedFormat,

				SPSF_Text,

				SPSF_NonStandardFormat,

				SPSF_ExtendedAudioFormat,

				//	Standard	PCM	wave	formats

				SPSF_8kHz8BitMono,

				SPSF_8kHz8BitStereo,

				SPSF_8kHz16BitMono,

				SPSF_8kHz16BitStereo,

				SPSF_11kHz8BitMono,

				SPSF_11kHz8BitStereo,

				SPSF_11kHz16BitMono,

				SPSF_11kHz16BitStereo,

				SPSF_12kHz8BitMono,

				SPSF_12kHz8BitStereo,

				SPSF_12kHz16BitMono,

				SPSF_12kHz16BitStereo,

				SPSF_16kHz8BitMono,

				SPSF_16kHz8BitStereo,

				SPSF_16kHz16BitMono,

				SPSF_16kHz16BitStereo,

				SPSF_22kHz8BitMono,

				SPSF_22kHz8BitStereo,

				SPSF_22kHz16BitMono,

				SPSF_22kHz16BitStereo,

				SPSF_24kHz8BitMono,

				SPSF_24kHz8BitStereo,

				SPSF_24kHz16BitMono,

				SPSF_24kHz16BitStereo,

				SPSF_32kHz8BitMono,

				SPSF_32kHz8BitStereo,

				SPSF_32kHz16BitMono,

				SPSF_32kHz16BitStereo,

				SPSF_44kHz8BitMono,

				SPSF_44kHz8BitStereo,

				SPSF_44kHz16BitMono,

				SPSF_44kHz16BitStereo,

				SPSF_48kHz8BitMono,

				SPSF_48kHz8BitStereo,

				SPSF_48kHz16BitMono,

				SPSF_48kHz16BitStereo,

				//	TrueSpeech	format

				SPSF_TrueSpeech_8kHz1BitMono,

				//	A-Law	formats

				SPSF_CCITT_ALaw_8kHzMono,

				SPSF_CCITT_ALaw_8kHzStereo,

				SPSF_CCITT_ALaw_11kHzMono,

				SPSF_CCITT_ALaw_11kHzStereo,

				SPSF_CCITT_ALaw_22kHzMono,

				SPSF_CCITT_ALaw_22kHzStereo,

				SPSF_CCITT_ALaw_44kHzMono,

				SPSF_CCITT_ALaw_44kHzStereo,

				//	u-Law	formats

				SPSF_CCITT_uLaw_8kHzMono,

				SPSF_CCITT_uLaw_8kHzStereo,

				SPSF_CCITT_uLaw_11kHzMono,

				SPSF_CCITT_uLaw_11kHzStereo,

				SPSF_CCITT_uLaw_22kHzMono,

				SPSF_CCITT_uLaw_22kHzStereo,

				SPSF_CCITT_uLaw_44kHzMono,

				SPSF_CCITT_uLaw_44kHzStereo,

				//	ADPCM	formats

				SPSF_ADPCM_8kHzMono,

				SPSF_ADPCM_8kHzStereo,

				SPSF_ADPCM_11kHzMono,

				SPSF_ADPCM_11kHzStereo,

				SPSF_ADPCM_22kHzMono,

				SPSF_ADPCM_22kHzStereo,

				SPSF_ADPCM_44kHzMono,

				SPSF_ADPCM_44kHzStereo,

				//	GSM	6.10	formats

				SPSF_GSM610_8kHzMono,

				SPSF_GSM610_11kHzMono,

				SPSF_GSM610_22kHzMono,

				SPSF_GSM610_44kHzMono,

				SPSF_NUM_FORMATS

}	SPSTREAMFORMAT;

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPTRANSITIONTYPE
SPTRANSITIONTYPE	lists	grammar	rule	transition	information.
typedef	enum	SPTRANSITIONTYPE

{

				SPTRANSEPSILON,

				SPTRANSWORD,

				SPTRANSRULE,

				SPTRANSTEXTBUF,

				SPTRANSWILDCARD,

				SPTRANSDICTATION

}	SPTRANSITIONTYPE;

Elements

SPTRANSEPSILON
Flag	specifying	that	the	grammar	rule	is	an	SPTRANSEPSILON
type.

SPTRANSWORD
Flag	specifying	that	the	grammar	rule	is	an	SPTRANSWORD
type.

SPTRANSRULE
Flag	specifying	that	the	grammar	rule	is	an	SPTRANSRULE
type.

SPTRANSTEXTBUF
Flag	specifying	that	the	grammar	rule	is	an
SPTRANSTEXTBUF	type.

SPTRANSWILDCARD
Flag	specifying	that	the	grammar	rule	is	an

SPTRANSWILDCARD	type.

SPTRANSDICTATION
Flag	specifying	that	the	grammar	rule	is	an
SPTRANSDICTATION	type.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPVACTIONS
SPVACTIONS	is	a	member	of	SPVSTATE,	which	is	a	member	of
SPVTEXTFRAG.	This	enumeration	specifies	the	action	that
should	be	taken	for	the	text	fragment	with	which	it	is
associated.
typedef	enum	SPVACTIONS

{

				SPVA_Speak,							

				SPVA_Silence,

				SPVA_Pronounce,

				SPVA_Bookmark,

				SPVA_SpellOut,

				SPVA_Section,

				SPVA_ParseUnknownTag

}	SPVACTIONS;

Elements

SPVA_Speak
The	default	value	-	the	associated	text	fragment	should	be
processed	and	spoken.

SPVA_Silence
There	is	no	associated	text	string	-	the	associated	fragment
was	the	result	of	a	<Silence>	XML	tag,	and	a	silence	(of
length	specified	in	the	associated	SPVSTATE)	should	be
inserted	into	the	output	stream.

SPVA_Pronounce
The	associated	text	(possibly	empty)	is	associated	with	a
<Pron>	XML	tag,	and	should	be	pronounced	as	specified	in
the	associated	SPVSTATE.

SPVA_Bookmark
The	associated	text	fragment	is	the	contents	of	a	bookmark.

SPVA_SpellOut
Each	character,	other	than	white	space,	of	the	associated
text	fragment	should	be	expanded	as	a	word	(e.g.,	"word!"
would	become	"w	o	r	d	exclamation	point").		

SPVA_Section
Reserved	for	future	use.

SPVA_ParseUnknownTag
The	associated	text	fragment	is	an	unknown	XML	tag	that
may	be	interpreted	(or	ignored)	by	the	engine.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPVALUETYPE
SPVALUETYPE	lists	flags	indicating	portions	of	a	recognition
result	to	be	removed	or	eliminated	once	they	are	no	longer
needed.

typedef	enum	tagSPDISCARDTYPES

{

				SPDF_PROPERTY,

				SPDF_REPLACEMENT,

				SPDF_RULE,

				SPDF_DISPLAYTEXT,

				SPDF_LEXICALFORM,

				SPDF_PRONUNCIATION,

				SPDF_AUDIO,

				SPDF_ALTERNATES,

				SPDF_ALL

}	SPVALUETYPE;

Elements

SPDF_PROPERTY
Removes	the	property	tree.

SPDF_REPLACEMENT
Removes	the	phrase	replacement	text	for	inverse	text
normalization.

SPDF_RULE
Removes	the	non-top	level	rule	tree	information	for	a	phrase.

SPDF_DISPLAYTEXT
Removes	the	display	text.

SPDF_LEXICALFORM
Removes	the	lexicon	from	text.

SPDF_PRONUNCIATION
Removes	the	pronunciation	text.

SPDF_AUDIO
Removes	the	audio	data	that	is	attached	to	a	phrase.
However,	the	audio	had	to	be	both	set	and	retained.

SPDF_ALTERNATES
Removes	the	alternate	data	that	is	attached	to	a	phrase.
Discarding	alternates	loses	the	words	permanently	and	may
not	be	retrieved	even	with	ISpSRAlternates::GetAlternates	or
ISpRecoResult::GetAlternates.

SPDF_ALL
Removes	all	the	elements	above.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPVESACTIONS
SPVESACTIONS	lists	values	returned	by	the
ISpTTSEngineSite::GetActions	call.	From	these	values,	the	TTS
engine	receives	the	real-time	action	requests	that	have	been
made	by	an	application.
typedef	enum	SPVESACTIONS

{

				SPVES_CONTINUE,			

				SPVES_ABORT,						

				SPVES_SKIP,							

				SPVES_RATE,							

				SPVES_VOLUME					

}	SPVESACTIONS;

Elements

SPVES_CONTINUE
Default	value	-	indicates	SAPI	has	not	received	any	new
information	for	the	engine,	and	it	should	continue	the
synthesis	process.

SPVES_ABORT
Flag	indicating	the	engine	should	stop	the	synthesis	process,
and	return	from	the	current	speak	call	immediately.

SPVES_SKIP
Flag	indicating	the	application	has	requested	a	real-time	skip.
The	engine	should	call	ISpTTSEngineSite::GetSkipInfo.

SPVES_RATE
Flag	indicating	the	application	has	requested	a	real-time	rate
change.	The	engine	should	call	ISpTTSEngineSite::GetRate.

SPVES_VOLUME
Flag	indicating	the	application	has	requested	a	real-time
volume	change.	The	engine	should	call
ISpTTSEngineSite::GetVolume.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPVFEATURE
SPVFEATURE	lists	information	about	the	features	of	the
phonemes	and	visemes.
typedef	enum	SPVFEATURE

{

				SPVFEATURE_STRESSED,	

				SPVFEATURE_EMPHASIS	

}	SPVFEATURE;

Elements

SPVFEATURE_STRESSED
This	flag	indicates	that	the	phoneme	is	stressed	relative	to
the	other	phonemes	within	a	word.

SPVFEATURE_EMPHASIS
This	flag	indicates	that	the	word	(of	which	the	phoneme	is	a
part)	is	emphasized	relative	to	the	other	words	within	a
sentence.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPVISEMES
SPVISEMES	lists	the	SAPI	5	Viseme	set.		This	set	is	based	on
the	Disney	13	Visemes.		Examples	given	are	for	the	SAPI	5
English	Phoneme	set.
typedef	enum	SPVISEMES

{

																								//	English	examples

																								//------------------

				SP_VISEME_0,									//	silence

				SP_VISEME_1,								//	ae,	ax,	ah

				SP_VISEME_2,								//	aa

				SP_VISEME_3,								//	ao

				SP_VISEME_4,								//	ey,	eh,	uh

				SP_VISEME_5,								//	er

				SP_VISEME_6,								//	y,	iy,	ih,	ix

				SP_VISEME_7,								//	w,	uw

				SP_VISEME_8,								//	ow

				SP_VISEME_9,								//	aw

				SP_VISEME_10,							//	oy

				SP_VISEME_11,							//	ay

				SP_VISEME_12,							//	h

				SP_VISEME_13,							//	r

				SP_VISEME_14,							//	l

				SP_VISEME_15,							//	s,	z

				SP_VISEME_16,							//	sh,	ch,	jh,	zh

				SP_VISEME_17,							//	th,	dh

				SP_VISEME_18,							//	f,	v

				SP_VISEME_19,							//	d,	t,	n

				SP_VISEME_20,							//	k,	g,	ng

				SP_VISEME_21							//	p,	b,	m

}	SPVISEMES;

Elements

SP_VISEME_0
Silence

SP_VISEME_1
ae,	ax,	ah

SP_VISEME_2
aa

SP_VISEME_3
ao

SP_VISEME_4
ey,	eh,	uh

SP_VISEME_5
er

SP_VISEME_6
y,	iy,	ih,	ix

SP_VISEME_7
w,	uw

SP_VISEME_8
ow

SP_VISEME_9
aw

SP_VISEME_10
oy

SP_VISEME_11
ay

SP_VISEME_12
h

SP_VISEME_13
r

SP_VISEME_14
l

SP_VISEME_15
s,	z

SP_VISEME_16
sh,	ch,	jh,	zh

SP_VISEME_17
th,	dh

SP_VISEME_18
f,	v

SP_VISEME_19
d,	t,	n

SP_VISEME_20
k,	g,	ng

SP_VISEME_21
p,	b,	m

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPVLIMITS
SPVLIMITS	lists	the	minimum	and	maximum	values	that	SAPI	5
TTS	engines	are	required	to	support	for	rate	and	volume
adjustments.
typedef	enum	SPVLIMITS

{

				SPMIN_VOLUME,			

				SPMAX_VOLUME,			

				SPMIN_RATE,					

				SPMAX_RATE					

}	SPVLIMITS;

Elements

SPMIN_VOLUME
Value	specifying	the	minimum	volume	level.

SPMAX_VOLUME
Value	specifying	the	maximum	volume	level.

SPMIN_RATE
Value	specifying	the	minimum	rate	level.

SPMAX_RATE
Value	specifying	the	maximum	rate	level.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPVPRIORITY
SPVPRIORITY	lists	the	priorities	that	voices	can	have.		See
ISpVoice::SetPriority	and	ISpVoice::GetPriority	for	more
information.
typedef	enum	SPVPRIORITY

{

				SPVPRI_NORMAL,	

				SPVPRI_ALERT,		

				SPVPRI_OVER			

}	SPVPRIORITY;

Elements

SPVPRI_NORMAL
Normal	priority.

SPVPRI_ALERT
Alert	priority.

SPVPRI_OVER
Over	priority	-	the	voice	should	mix	its	audio	with	all	other
audio	on	the	system	with	no	synchronization.		SPVPRI_OVER
voices	only	mix	their	audio	on	Windows	2000.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPVSKIPTYPE
SPVSKIPTYPE	lists	the	type	of	item	to	skip	in	an	ISpVoice::Skip
call.
typedef	enum	SPVSKIPTYPE

{

				SPVST_SENTENCE		

}	SPVSKIPTYPE;

Elements

SPVST_SENTENCE
Specifies	that	the	structure	to	be	skipped	is	a	sentence.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPWAVEFORMATTYPE
SPWAVEFORMATTYPE	is	used	in	the
ISpRecognizer::GetFormat	method	(as	SPSTREAMFORMATTYPE)
to	request	either	the	input	format	for	the	original	audio	source
or,	the	format	actually	arriving	at	the	speech	engine.	SAPI	may
be	performing	on	the	fly	conversion	using	an
SpStreamFormatConverter	in-between	which	will	cause	the	two
formats	to	differ.
typedef	enum	SPWAVEFORMATTYPE

{

				SPWF_INPUT,

				SPWF_SRENGINE

}	SPSTREAMFORMATTYPE;

Elements

SPWF_INPUT
Request	for	the	original	audio	input	source	information.

SPWF_SRENGINE
Request	for	the	SR	engine	input	source	information.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPWORDINFOOPT
SPWORDINFOOPT	lists	the	options	for	a	grammar	word.
typedef	enum	SPWORDINFOOPT

{

				SPWIO_NONE,						

				SPWIO_WANT_TEXT	

}	SPWORDINFOOPT;

Elements

SPWIO_NONE
Flag	specifying	the	SPWIO_NONE	option.

SPWIO_WANT_TEXT
Flag	specifying	the	SPWIO_WANT_TEXT	option.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPWORDPRONOUNCEABLE
See	also	ISpRecoGrammar::IsPronounceable	and
ISpSREngine::IsPronounceable.
typedef	enum	SPWORDPRONOUNCEABLE

{

				SPWP_UNKNOWN_WORD_UNPRONOUNCEABLE,			

				SPWP_UNKNOWN_WORD_PRONOUNCEABLE,					

				SPWP_KNOWN_WORD_PRONOUNCEABLE							

}	SPWORDPRONOUNCEABLE;

Elements

SPWP_UNKNOWN_WORD_UNPRONOUNCEABLE
Specifies	an	unrecognized	word	that	does	not	have	an
available	pronunciation.

SPWP_UNKNOWN_WORD_PRONOUNCEABLE
Specifies	an	unrecognized	word	that	has	an	available
pronunciation.

SPWP_KNOWN_WORD_PRONOUNCEABLE
Specifies	a	recognized	word	that	has	an	available
pronunciation.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPWORDTYPE
SPWORDTYPE	lists	the	change	state	of	a	word/pronunciation
combination	in	a	lexicon.	Using	this	enumeration,	an	engine	can
determine	what	word	pronunciation	changes	have	occurred
since	it	last	checked	using	the
ISpLexicon::GetGenerationChange	method.
typedef	enum	SPWORDTYPE

{

			eWORDTYPE_ADDED,			

			eWORDTYPE_DELETED	

}	SPWORDTYPE;

Elements

eWORDTYPE_ADDED
The	word	has	been	added	to	the	lexicon.

eWORDTYPE_DELETED
The	word	has	been	deleted	from	the	lexicon.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Helper	Functions
Helper	functions	are	available	as	a	convenience	to
programming.	Since	many	of	the	procedures	use	the	same	few
methods	or	calls	in	the	same	sequence	each	time,	these
functions	are	available	to	consolidate	those	standard
sequences.	In	all	cases,	the	functions	represent	nothing	more
than	the	individual	steps	combined	into	one	call;	no	additional
features	have	been	added	or	removed.	Programmers	are	free	to
either	use	these	functions	or	include	the	original	lines	of	code.
The	function	name	attempts	to	clearly	identify	the	purpose	of
the	function	itself.
The	following	helper	functions	are	used	with	SAPI	5.

Token	Helpers
SpCreateBestObject
SpCreateDefaultObjectFromCategoryId

SpCreateNewToken	(by	category	ID)
SpCreateNewToken	(by	token	ID)
SpCreateNewTokenEx	(by	category	ID)

SpCreateNewTokenEx	(by	token	ID)
SpCreateObjectFromSubToken
SpCreateObjectFromToken

SpCreateObjectFromTokenId
SpCreatePhoneConverter

SpEnumTokens
SpFindBestToken

SpGetCategoryFromId
SpGetDefaultTokenFromCategoryId

SpGetDefaultTokenIdFromCategoryId
SpGetDescription
SpGetSubTokenFromToken

SpGetTokenFromId
SpGetUserDefaultUILanguage
SpSetCommonTokenData
SpSetDefaultTokenForCategoryId

SpSetDefaultTokenIdForCategoryId

SpSetDescription

Other	Helpers
SPFEI
SPBindToFile

SpClearEvent
SpConvertStreamFormatEnum
SpEventSerializeSize

SpInitEvent

Helper	Classes
CSpDynamicString
CSpStreamFormat

CSpEvent

UI	Helper	Functions
UI	Helper	Functions

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpStreamFormat
CSpStreamFormat	Methods Description
CSpStreamFormat The	class	constructors.
~CSpStreamFormat The	class	destructor.
AssignFormat Assigns	(or	copies)	the

instance's	current	format	to	a
new	format	(or	a	new	stream).

Clear Clears	values	from	an	instance.
CopyTo Copies	the	instance's	wave

format	to	a	new	stream.
Deserialize Deserializes	a	stream	and

passes	back	a	new	stream.
DetachTo Makes	a	copy	of	the	instance's

stream	and	frees	(or	detaches)
the	instance's	stream.

FormatId Returns	the	instance's	format
ID.

IsEqual Compares	a	specified	stream
format	and	format	ID	to	the
instance's	format	and	format
ID.

ParamValidateAssignFormat Validates	the	format	ID	and
wave	format	and	creates	the
stream.

ParamValidateCopyTo Validates	the	pointers	for	the
format	ID	and	wave	format
parameters.

Serialize Serializes	the	stream.
SerializeSize Determines	the	serialized	size

of	the	instance's	stream.
WaveFormatExPtr Returns	the	instance's	wave

format.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpStreamFormat::Constructor
The	following	methods	may	be	used	to	construct	the	instance.

Initializes	the	class	members	to	null	values
CSpStreamFormat(void);

Parameters
None.

Formats	the	instance	into	a	wave	format	structure.	The	new
format	and	format	ID	are	passed	back	from	the	class'	public
members,	m_pCoMemWaveFormatEx	and	m_guidFormatId
respectively.
CSpStreamFormat(

			SPSTREAMFORMAT			eFormat,

			HRESULT									*phr

);

Parameters

eFormat
[in]	The	requested	stream	format.	Must	be	a	valid
SPSTREAMFORMAT	value	of	SPSF_8kHz8BitMono	or	greater.

phr
The	return	value	for	the	method.

Return	values

Value Description
S_OK Function	completed	successfully.
E_OUTOFMEMORY Exceeded	available	memory.
E_INVALIDARG Either	class	member	m_guidFormatId

or	m_pCoMemWaveFormatEx	is
invalid	or	bad.	Alternatively,	the
current	format	is	not	recognized.

FAILED(hr) Appropriate	error	message.

Formats	the	instance	according	to	the	format	structure
specified.
CSpStreamFormat(

			const	WAVEFORMATEX	*pWaveFormatEx,

			HRESULT												*phr

);

Parameters

pWaveFormatEx
[in]	Address	of	the	WAVEFORMATEX	structure	containing	the
wave	file	format	information.

phr
The	return	value	for	the	method.

Return	values

Value Description
S_OK Function	completed

successfully.
E_OUTOFMEMORY Exceeded	available	memory.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpStreamFormat::Destructor
CSpStreamFormat::Destructor	is	the	class	destructor.
CoMemTaskFree()	is	used	to	deallocate	the	instance.

~CSpStreamFormat(void);

Parameters

None.

Return	values
No	value	is	returned.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpStreamFormat::AssignFormat
CSpStreamFormat::AssignFormat	assigns	(or	copies)	the
instance's	current	format	to	a	new	format	(or	a	new	stream).

Converts	the	instance's	stream	format	into	a	wave	format
structure.

HRESULT	AssignFormat(

			SPSTREAMFORMAT			eFormat

);

Parameters

eFormat
[in]	The	requested	stream	format.	Must	be	a	valid
SPSTREAMFORMAT	value	of	SPSF_8kHz8BitMono	or	greater.

Return	values

Value Description
S_OK Function	completed	successfully.
E_OUTOFMEMORY Exceeded	available	memory.
E_INVALIDARG Either	class	member	m_guidFormatId

or	m_pCoMemWaveFormatEx	is
invalid	or	bad.	Alternatively,	the
current	format	is	not	recognized.

FAILED(hr) Appropriate	error	message.

Converts	instance's	stream	format	into	a	cached	format.	Class

member	m_pCoMemWaveFormatEx	will	be	NULL	if	an	error
occurred.

HRESULT	AssignFormat(

			ISpStreamFormat		*pStream

);

Parameters

pStream
[in]	An	ISpStreamFormat	object.

Return	values

Value Description
S_OK Function	completed	successfully.
E_POINTER Either	class	member	m_guidFormatId

or	m_pCoMemWaveFormatEx	is
invalid	or	bad.

Converts	instance's	stream	format	into	the	specified	wave
format.	Class	member	m_guidFormatId	will	be	GUID_NULL	if	an
error	occurred.

HRESULT	AssignFormat(

			const			WAVEFORMATEX			*pWaveFormatEx

);

Parameters

pWaveFormatEx
[in]	Address	of	the	WAVEFORMATEX	structure	containing	the

wave	file	format	information.

Return	values

Value Description
S_OK Function	completed

successfully.
E_OUTOFMEMORY Exceeded	available	memory.

Assigns	the	instance's	format	according	to	a	reference	GUID	and
a	wave	format.
HRESULT	AssignFormat(

			REFGUID																	rguidFormatId,

			const			WAVEFORMATEX			*pWaveFormatEx

);

Parameters

rguidFormatId
[in]	The	reference	ID.	If	specified	as	SPDFID_WaveFormatEx,
pWaveFormatEx	is	a	WAVEFORMATEX	data	structure.
Otherwise	this	is	set	to	GUID_NULL.

pWaveFormatEx
[in]	If	rguidFormatId	is	not	set	to	SPDFID_WaveFormatEx,	this
is	passed	back	as	NULL.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG pWaveFormatEx	is	invalid	or

bad.

E_OUTOFMEMORY Exceeded	available	memory.

Assigns	(or	copies)	the	instance's	stream	to	a	specific	stream.
HRESULT	AssignFormat(

			const			CSpStreamFormat	&	Src

);

Parameters

Src
[out]	The	stream	to	copy	to.

Return	values

Value Description
S_OK Function	completed

successfully.
E_OUTOFMEMORY Exceeded	available	memory.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpStreamFormat::Clear
CSpStreamFormat::Clear	clears	values	from	an	instance.

void	Clear(void);

Parameters
None.

Return	values
No	value	is	returned.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpStreamFormat::CopyTo
CSpStreamFormat::CopyTo	copies	the	instance's	wave
format	to	a	new	stream.

HRESULT	CopyTo(

			GUID												*pFormatId,

			WAVEFORMATEX			**ppCoMemWFEX

);	

Parameters

pFormatId
The	new	format	ID	based	on	the	class	member
m_guidFormatId's	ID.	If	class	member
m_pCoMemWaveFormatEx	is	invalid,	pFormatId	is	set	to
NULL.

ppCoMemWFEX
The	new	wave	format.	If	ppCoMemWFEX	could	not	be
successfully	created,	pFormatId	is	set	to	zero.

This	method	copies	the	instance's	stream	to	an	existing	stream.
HRESULT	CopyTo(

			wCSpStreamFormat	&Other

);

Parameters

Other
The	existing	stream	to	copy	to.	The	stream	is	freed	using
CoTaskMemFree()	first	and	the	instance	is	then	copied	to	it.

Return	values
The	return	values	are	the	same	for	both	methods.

Value Description
S_OK Function	completed

successfully.
E_OUTOFMEMORY Exceeded	available	memory.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpStreamFormat::Deserialize
CSpStreamFormat::Deserialize	deserializes	a	stream	and
passes	back	a	new	stream.

HRESULT	Deserialize(

			const			BYTE			*pBuffer,

			ULONG										*pcbUsed

);

Parameters

pBuffer
[in	out]	Buffer	containing	the	serialized	stream.	After
successfully	completing	the	methods,	pBuffer	will	also	be	set
to	class	member	m_pCoMemWaveFormatEx.	If	unsuccessful,
class	member	m_guidFormatId	is	set	to	GUID_NULL.

pcbUsed
The	number	of	bytes	used	for	the	stream.

Return	values

Value Description
S_OK Function	completed

successfully.
E_OUTOFMEMORY Exceeded	available	memory.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpStreamFormat::DetachTo
CSpStreamFormat::DetachTo	copies	the	instance's	stream
and	frees	(or	detaches)	the	instance's	stream.	The	instance's
stream	is	set	to	NULL	and	the	format	ID	is	set	to	zero.

Copies	the	instance's	stream	to	another	existing	stream.

void	DetachTo(

			CSpStreamFormat			&Other

);

Parameters

Other
The	existing	stream	to	copy	to.	The	stream	is	freed	using
CoTaskMemFree()	first	and	the	instance	is	then	copied	to	it.

Makes	a	copy	of	the	instance's	stream	with	the	specified	format
ID	and	wave	format.

void	DetachTo(

			GUID												*pFormatId,

			WAVEFORMATEX			**ppCoMemWaveFormatEx

)

Parameters

pFormatId
The	new	format	ID	based	on	the	class	member

m_guidFormatId.

ppCoMemWaveFormatEx
The	new	wave	format	based	on	the	class	member
m_pCoMemWaveFormatEx.

Return	values
Neither	method	returns	a	value.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpStreamFormat::FormatId
CSpStreamFormat::FormatId	returns	the	instance's	format
ID.

const	GUID&	FormatId(void);

Parameters
None.

Return	values
The	format	ID	of	the	current	instance	is	returned	by	the	class
member	m_guidFormatId.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpStreamFormat::IsEqual
CSpStreamFormat::IsEqual	compares	a	specified	stream
format	and	format	ID	to	the	instance's	format	and	format	ID.

BOOL	IsEqual(

			REFGUID																	rguidFormatId,

			const			WAVEFORMATEX			*pwfex

)

Parameters

rguidFormatId
The	format	ID	of	the	stream	to	compare	with.

pwfex
The	wave	format	of	the	stream	to	compare	with.

Return	values

Value Description
TRUE The	two	streams	are	identical.
FALSE The	reference	IDs	of	the	streams	are

not	the	same,	or	the	streams	have
different	contents.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpStreamFormat::ParamValidateAssignFormat
CSpStreamFormat::ParamValidateAssignFormat	validates
the	format	ID	and	wave	format.	If	successful,	creates	the	stream
using	AssignFormat.

HRESULT	ParamValidateAssignFormat(

			REFGUID															rguidFormatId,

			const	WAVEFORMATEX			*pWaveFormatEx,

			BOOL																		fRequireWaveFormat	=	FALSE

)

Parameters

rguidFormatId
The	reference	format	ID	of	the	requesting	stream.

pWaveFormatEx
The	wave	format	of	the	requesting	stream.

fRequireWaveFormat
Optional	Boolean	indicating	to	create	the	stream	only	if	the
wave	format	is	of	a	standard	type.	It	is	FALSE	by	default	and
may	be	omitted.	TRUE,	allows	the	creation	of	custom
formats.

Return	values

Value Description
E_INVALIDARG At	least	one	of	pWaveFormatEx	is

NULL,	pWaveFormatEx	is	bad	or
invalid,	rguidFormatId	is	not
SPDFID_WaveFormatEx,	or
pWaveFormatEx	is	a	non-standard

format	and	is	disallowed	by
fRequireWaveFormat.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpStreamFormat::ParamValidateCopyTo
CSpStreamFormat::ParamValidateCopyTo	validates	the
pointers	for	the	format	ID	and	wave	format	parameters.	If
successful,	copies	the	stream	using	CopyTo.

HRESULT	ParamValidateCopyTo(

			GUID												*pFormatId,

			WAVEFORMATEX			**ppCoMemWFEX

);

Parameters

pFormatId
The	proposed	pointer	for	the	format	ID.

ppCoMemWFEX
The	proposed	pointer	for	the	stream.

Return	values

Value Description
S_OK Function	completed	successfully.
E_OUTOFMEMORY Exceeded	available	memory.
E_POINTER Either	pFormatId	or	ppCoMemWFEX	is

invalid	or	bad.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpStreamFormat::Serialize
CSpStreamFormat::Serialize	serializes	the	stream.

ULONG	Serialize(

			BYTE			*pBuffer

);

Parameters

pBuffer
The	buffer	accepting	the	serialized	results.

Return	values
The	length,	in	bytes,	of	the	serialized	stream	and	stream
contents.	Class	member	m_pCoMemWaveFormatEx	may	be
NULL	and	therefore	contributes	zero	bytes	to	the	total	length.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpStreamFormat::SerializeSize
CSpStreamFormat::SerializeSize	determines	the	serialized
size	of	the	instance's	stream.

ULONG	SerializeSize(void);

Parameters
None.

Return	values
Returns	the	serialized	size	of	the	stream,	in	bytes.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpStreamFormat::WaveFormatExPtr
CSpStreamFormat::WaveFormatExPtr	returns	the	instance's
wave	format.

const	WAVEFORMATEX*	WaveFormatExPtr(void);

Parameters
None.

Return	values
The	wave	format	of	instance	is	returned	by	the	class	member
m_pCoMemWaveFormatEx.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpDynamicString

The	following	methods	are	available.

ISpDataKey	Methods Description
CSpDynamicString The	class	constructors.
~CSpDynamicString The	class	destructor.
Append Appends	a	string	or	strings	to	the

current	instance.
Attach Attaches	or	assigns	a	string	to	the

instance.
Clear Clears	the	text	from	an	instance.
ClearAndGrowTo Clears	the	instance	and	reallocates

it.
Compact Compacts	the	instance	by

reallocating	it.
Copy Makes	a	copy	of	the	instance.
CopyToBSTR Allocates	a	system	BSTR.
Detach Detaches	a	string	from	the	instance.
Length Returns	the	length	of	the	instance.
LTrim Trims	the	white	space	starting	from

the	left.
RTrim Trims	the	white	space	starting	from

the	right.
TrimBoth Trims	the	white	space	starting	from

both	the	right	and	left	sides.
TrimToSize Truncates	the	instance	to	a	specific

size.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpDynamicString::Constructor
The	following	methods	may	be	used	to	construct	the	instance.

Creates	and	sets	the	instance	to	NULL.
void	CSpDynamicString(void)

Parameters

None.	Initializes	string	to	NULL.

Creates	and	allocates	an	instance	of	the	specified	number	of
WCHARs.
void	CSpDynamicString(

			ULONG			cchReserve

);

Parameters

cchReserve
[in]	The	length	of	the	string	to	allocate.

Creates	and	initializes	and	copies	the	source	string	into	it.
void	CSpDynamicString(

			const	WCHAR		*pSrc

)

Parameters

cchReserve
[in]	Initializes	the	string	to	pSrc.

Creates	and	initializes	and	copies	the	source	string	into	it.
void	CSpDynamicString(

			const	char		*pSrc

)

Parameters

pSrc
[in]	Initializes	the	string	to	pSrc.

Makes	a	copy	of	the	CSpDynamicString	class	string.	The	current
instance	is	CoMemtaskFree()	first,	if	needed.
void	CSpDynamicString(

			const	CSpDynamicString		&src

)

Parameters

src
[in]	Initializes	the	string	by	copying	the	string	of	src.

Allocates	an	instance	and	copies	the	reference	GUID	into	it.
void	CSpDynamicString(

			REFGUID			rguid

)

Parameters

rguid
[in]	Initializes	the	string	from	the	CLSID	of	rguid.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpDynamicString::Destructor
CSpDynamicString::Destructor	is	the	class	destructor.
CoMemTaskFree()	is	used	to	deallocate	the	instance.

~CSpDynamicString(void)

Parameters

None

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpDynamicString::Append
The	following	methods	append	null-terminated	strings	together.

Appends	the	null-terminated	source	string	to	the	end	of	the
instance	and	returns	the	resulting	string.
WCHAR*	Append(

			const	WCHAR		*pszSrc

)

Parameters

pszSrc
[in]	The	null-terminated	source	string	to	append.

Appends	the	null-terminated	source	string	to	the	end	of	the
instance	and	returns	the	resulting	string.	The	size	to	append	is
specified.

WCHAR*	Append(

			const	WCHAR		*pszSrc,

			const	ULONG			lenSrc

)

Parameters

pszSrc
[in]	The	null-terminated	source	string	to	append.

lenSrc
[in]	Size,	in	WCHARs,	to	append.

Appends	up	to	two	null-terminated	source	strings	to	the	end	of
the	instance	and	returns	the	resulting	string.	At	least	one	of	the
to	strings	must	be	non-NULL.

WCHAR*	Append2(

			const	WCHAR		*pszSrc1,

			const	WCHAR		*pszSrc2

)

Parameters

pszSrc1
[in]	The	first	source	string	to	append.

pszSrc2
[in]	The	second	source	string	to	append.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpDynamicString::Attach
CSpDynamicString::Attach	attaches	or	assigns	a	string	to	the
instance.

void	Attach

			WCHAR		*pszSrc

)

Parameters

pszSrc
[in]	The	source	string	to	attach	or	assign.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpDynamicString::Clear
CSpDynamicString::Clear	clears	the	text	from	an	instance.
The	instance	is	set	to	NULL.

void	Clear(void);

Parameters

None

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpDynamicString::ClearAndGrowTo
CSpDynamicString::ClearAndGrowTo	clears	the	existing
instance	and	reallocates	it	to	the	specified	size.	The	subsequent
instance	is	returned.

WCHAR*	ClearAndGrowTo(

			ULONG			cch

)

Parameters

cch
[in]	The	new	size	of	the	instance.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpDynamicString::Compact
CSpDynamicString::Compact	compacts	the	instance	by
reallocating	it	to	the	actual	number	of	characters	it	currently
contains.	The	subsequent	instance	is	returned.

WCHAR*	Compact(void)

Parameters

None

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpDynamicString::Copy
CSpDynamicString::Copy	copies	the	instance.

WCHAR*	Copy(void);

Parameters

None

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpDynamicString::CopyToBSTR
CSpDynamicString::CopyToBSTR	allocates	a	system	BSTR.

HRESULT	CopyToBSTR(

			BSTR		*pbstr

)

Parameters

pbstr
[in]	The	source	string	to	allocate.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpDynamicString::Detach
CSpDynamicString::Detach	detaches	and	returns	a	string
from	the	instance.	The	instance	is	set	to	NULL.

WCHAR*	Detach(void);

Parameters

None

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpDynamicString::Length
CSpDynamicString::Length	returns	the	length	of	the	string
instance.	If	the	instance	is	NULL,	zero	is	returned.

Length(void)

Parameters

None

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpDynamicString::LTrim
CSpDynamicString::LTrim	trims	the	white	space	starting	from
the	left.	The	subsequent	instance	is	returned.

WCHAR*	LTrim(void);

Parameters

None

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpDynamicString::RTrim
CSpDynamicString::RTrim	trims	the	white	space	starting	from
the	right.	The	subsequent	instance	is	returned.

WCHAR*	RTrim(void);

Parameters

None

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpDynamicString::TrimBoth
CSpDynamicString::TrimBoth	trims	the	white	space	starting
from	both	the	right	and	left	sides.	The	subsequent	instance	is
returned.

WCHAR*	TrimBoth(void);

Parameters

None

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpDynamicString::TrimToSize
CSpDynamicString::TrimToSize	truncates	the	instance	to	a
specific	size.

void	TrimToSize(

			ULONG		*ulNumChars

)

Parameters

ulNumChars
[in]	The	new	size	of	the	instance.	The	value	must	be	less
than	less	than	or	equal	to	the	current	size.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpEvent
CSpEvent	Methods Description
CSpEvent The	class	constructor.
~CSpEvent The	class	destructor.
Clear Clears	an	event	instance.
AddrOf Returns	the	address	of	the	event

instance.
CopyTo Copies	the	event	instance	and	sets

the	lparam	accordingly.
GetFrom Clears	the	current	instance	and

retrieves	the	next	event	from	the
event	queue.

CopyFrom Clears	the	current	instance	and
copies	the	next	event	in	the	event
queue	to	this	instance.

Detach Clears	the	current	instance	and
optionally	makes	a	copy.

SerializeSize Calculates	the	required	size	of	a
buffer	to	serialize	an	event.

Serialize Copies	event	instance	and	then
serializes	the	new	instance.

Deserialize Sets	the	current	instance	to	the
deserialized	version	of	the	specified
event.

Phoneme Returns	the	event	as	a	cast	type	of
SPPHONEID.

Viseme Returns	the	event	as	a	cast	type	of
SPEI_VISEME.

InputWordPos Returns	the	event	as	a	cast	type	of
ULONG.

InputWordLen Returns	the	event	as	a	cast	type	of
ULONG.

InputSentPos Returns	the	event	as	a	cast	type	of
ULONG.

InputSentLen Returns	the	event	as	a	cast	type	of
ULONG.

ObjectToken Returns	the	event	as	a	cast	type	of
ISpObjectToken	pointer.

VoiceToken Returns	the	event	as	a	cast	type	of
SpObjectToken	pointer.

PersistVoiceChange Returns	the	state	of	the	voice
change.

Object Returns	the	event	as	a	cast	type	of
an	IUnknown	pointer.

RecoResult Returns	the	event	as	a	cast	type	of
an	ISpRecoResult	pointer.

IsPaused Returns	the	pause	state.
IsEmulated Returns	the	emulation	state.
String Returns	the	string	from	the	event's

lParam.
BookmarkName Returns	the	bookmark	string	from

the	event's	lParam.
RequestTypeOfUI Returns	the	IU	type	string	from	the

event's	lParam.
RecoState Returns	the	event's	recognition	state

as	a	cast	type	of	SPRECOSTATE.
PropertyName Returns	the	property	name	string

from	the	event's	lParam.
PropertyNumValue Returns	the	property	number	value

as	cast	to	LONG.
PropertyStringValue Returns	the	property	string	value

from	the	event's	lParam.
Interference Returns	the	event's	interference

value	from	lParam	and	cast
SPINTERFERENCE.

EndStreamResult Returns	the	event's	end	stream

result	from	the	event's	lParam.
InputStreamReleased Returns	the	state	from	releasing	the

stream.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpEvent::Constructor
CSpEvent::Constructor	is	used	to	construct	the	instance.	The
SPEVENT	instance	is	cleared	to	zero.

CSpEvent(void);

Parameters
None.

Return	values
None.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpEvent::Destructor
CSpEvent::Destructor	is	the	class	destructor	and	is	used	to
clear	an	event	instance.	This	method	is	identical	to	CSpEvent
Clear.

~CSpEvent(void);

Parameters
None.

Return	values
None.

See	Also
SpClearEvent

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpEvent::AddrOf
CSpEvent::AddrOf	returns	the	address	of	the	event	instance.
No	ASSERT	is	made	in	the	case	of	an	error.	For	additional
validation,	call	GetFrom.

CSpEvent*			AddrOf	(void)

Parameters
None.

Return	values
Returns	the	address	of	the	event	instance.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpEvent::BookmarkName
CSpEvent::BookmarkName	returns	the	bookmark	string	from
the	event's	lParam.	The	caller	must	make	sure	the	event	ID	is
SPEI_TTS_BOOKMARK.

const	WCHAR*	BookmarkName(void)	const;

Parameters
None.

Return	values
Returns	the	bookmark	string	from	the	event's	lParam.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpEvent::Clear
CSpEvent::Clear	clears	an	event	instance.	This	method	is
identical	to	CSpEvent	~CSpEvent.

void	Clear(void);

Parameters
None.

Return	values
None.

See	Also
SpClearEvent

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpEvent::CopyFrom
CSpEvent::CopyFrom	clears	the	current	instance	and	copies
the	next	event	in	the	event	queue	to	this	instance.

HRESULT	CopyFrom(

			const	SPEVENT			*pSrcEvent

)

Parameters

pSrcEvent
[in]	The	event	of	which	to	copy	from.

Return	values

Value Description
S_OK Function	completed

successfully.
E_OUTOFMEMORY Exceeded	available	memory.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpEvent::CopyTo
CSpEvent::CopyTo	copies	the	event	instance	and	sets	the
lparam	accordingly.
HRESULT	CopyTo(

			SPEVENT			*pDestEvent

);

Parameters

pDestEvent
The	event	to	copy	to.	The	member	elParamType	is	copied
according	to	the	follow	parameter	value:

SPET_LPARAM_IS_POINTER	copies	wparam	into	lparam	if
lparam	is	currently	valid.	On	error,	pDestEvent->eEventId	is
set	to	SPEI_UNDEFINED.
SPET_LPARAM_IS_STRING	copies	lparam	into	lparam	if	it	is
currently	valid.	On	error,	pDestEvent->eEventId	is	set	to
SPEI_UNDEFINED.
SPET_LPARAM_IS_TOKEN	or	SPET_LPARAM_IS_OBJECT	calls
AddRef()	for	lparam.

Return	values

Value Description
S_OK Function	completed

successfully.
E_OUTOFMEMORY Exceeded	available	memory.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpEvent::Deserialize
CSpEvent::Deserialize	sets	the	current	instance	to	the
deserialized	version	of	the	specified	event.
The	current	instance	is	cleared	first.	The	original	event	is	not
modified.

template	<class	T>

HRESULT	Deserialize(

			const			T			*pSerEvent,

			ULONG							*pcbUsed	=	NULL

);

Parameters

pSerEvent
The	serialized	event.

pcbUsed
Optional	parameter	passing	back	the	number	of	bytes	of	the
instance.	The	default	NULL	does	not	pass	back	any	value;
TRUE,	does.

Return	values

Value Description
S_OK Function	completed

successfully.
E_OUTOFMEMORY Exceeded	available	memory.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpEvent::Detach
CSpEvent::Detach	clears	the	current	instance	and	optionally
makes	a	copy.

void		Detach(

			SPEVENT			*pDestEvent	=	NULL

);

Parameters

pDestEvent
The	event	structure	to	copy	to.	If	NULL,	no	copy	is	made
before	clearing	the	instance.

Return	values
None.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpEvent::EndStreamResult
CSpEvent::EndStreamResult	returns	the	end	stream	result
from	the	event's	lParam.	The	caller	must	make	sure	the	event	ID
is	SPEI_END_SR_STREAM.

HRESULT	EndStreamResult(void)	const;

Parameters
None.

Return	values
Returns	the	end	stream	result	from	the	event's	lParam.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpEvent::GetFrom
CSpEvent::GetFrom	clears	the	current	instance	and	retrieves
the	next	event	from	the	event	queue.

HRESULT	GetFrom(

			ISpEventSource			*pEventSrc

)

Parameters

pEventSrc
The	event	object	from	which	to	get	the	next	event.

Return	values

Value Description
S_OK Function	completed	successfully	and

all	requested	events	were	returned.
S_FALSE Success,	but	less	than	the	requested

amount	of	events	were	returned.
E_POINTER pEventArray	is	invalid.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpEvent::InputSentLen
CSpEvent::InputSentLen	returns	the	event	as	a	cast	type	of
ULONG.	The	caller	must	make	sure	the	event	ID	is
SPEI_SENTENCE_BOUNDARY.

ULONG			InputSentLen(void)	const;

Parameters
None.

Return	values
The	event	cast	type	of	ULONG.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpEvent::InputSentPos
CSpEvent::InputSentPos	returns	the	event	as	a	cast	type	of
ULONG.	The	caller	must	make	sure	the	event	ID	is
SPEI_SENTENCE_BOUNDARY.

ULONG			InputSentPos(void)	const;

Parameters
None.

Return	values
The	event	cast	type	of	ULONG.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpEvent::InputStreamReleased
CSpEvent::InputStreamReleased	returns	the	state	from
releasing	the	stream.	The	caller	must	make	sure	the	event	ID	is
SPEI_END_SR_STREAM.
See	also	SPENDSRSTREAMFLAGS	for	more	information.
	
BOOL	InputStreamReleased(void)	const;

Parameters
None.

Return	values
Returns	the	state	from	releasing	the	stream.	TRUE	indicates	the
stream	was	successfully	released;	FALSE	otherwise.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpEvent::InputWordLen
CSpEvent::InputWordLen	returns	the	event	as	a	cast	type	of
ULONG.	The	caller	must	make	sure	the	event	ID	is
SPEI_WORD_BOUNDARY.

ULONG	InputWordLen(void)	const;

Parameters
None.

Return	values
The	event	cast	type	of	ULONG.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpEvent::InputWordPos
CSpEvent::InputWordPos	returns	the	event	as	a	cast	type	of
ULONG.	The	caller	must	make	sure	the	event	ID	is
SPEI_WORD_BOUNDARY.

ULONG			InputWordPos(void)	const;

Parameters
None.

Return	values
The	event	cast	type	of	ULONG.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpEvent::Interference
CSpEvent::Interference	returns	the	event's	interference	value
from	lParam	and	cast	SPINTERFERENCE.	The	caller	must	make
sure	the	event	ID	is	SPEI_INTERFERENCE.

SPINTERFERENCE	Interference(void)	const;

Parameters
None.

Return	values
Returns	the	interference	value	as	cast	SPINTERFERENCE.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpEvent::IsEmulated
CSpEvent::IsEmulated	returns	the	emulation	state.	The	caller
must	make	sure	the	event	ID	is	SPEI_RECOGNITION.

BOOL	IsEmulated(void);

Parameters
None.

Return	values
The	event	cast	type	of	SPPHONEID.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpEvent::IsPaused
CSpEvent::IsPaused	returns	the	pause	state.	The	caller	must
make	sure	the	event	ID	is	either	SPEI_RECOGNITION	or
SPEI_SR_BOOKMARK.

BOOL	IsPaused(void)

Parameters
None.

Return	values
Returns	the	pause	state.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpEvent::Object
CSpEvent::Object	returns	the	event	as	a	cast	type	of	an
IUnknown	pointer.	The	caller	must	make	sure	the	event	ID	is
SPET_LPARAM_IS_OBJECT.

IUnknown*	Object(void)	const;

Parameters
None.

Return	values
The	event	cast	type	of	an	IUnknown	pointer.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpEvent::ObjectToken
CSpEvent::ObjectToken	returns	the	event	as	a	cast	type	of
ISpObjectToken	pointer.	The	caller	must	make	sure	the	event
type	is	SPET_LPARAM_IS_TOKEN.

ISpObjectToken*			ObjectToken(void)	const;

Parameters
None.

Return	values
The	event	cast	type	of	ISpObjectToken	pointer.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpEvent::PersistVoiceChange
CSpEvent::PersistVoiceChange	returns	the	state	of	the	voice
change.	The	caller	must	make	sure	the	event	ID	is
SPEI_VOICE_CHANGE.

BOOL	PersistVoiceChange(void)	const;

Parameters
None.

Return	values
The	event	cast	type	of	BOOL.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpEvent::Phoneme
CSpEvent::Phoneme	returns	the	event	as	a	cast	type	of
SPPHONEID.	The	caller	must	make	sure	the	event	ID	is
SPEI_PHONEME.

SPPHONEID			Phoneme(void)	const;

Parameters
None.

Return	values
The	event	cast	type	of	SPPHONEID.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpEvent::PropertyName
CSpEvent::PropertyName	returns	the	property	name	string
from	the	event's	lParam.	The	caller	must	make	sure	the	event	ID
is	either	SPEI_PROPERTY_NUM_CHANGE	and	event	type	is
SPET_LPARAM_IS_STRING,	or	event	ID	is
SPEI_PROPERTY_STRING_CHANGE	and	event	type	is
SPET_LPARAM_IS_POINTER.

const	WCHAR*	PropertyName(void)	const;

Parameters
None.

Return	values
Returns	the	property	name	string	from	the	event's	lParam.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpEvent::PropertyNumValue
CSpEvent::PropertyNumValue	returns	the	property	number
value	as	cast	to	LONG.	The	caller	must	make	sure	the	event	ID
is	SPEI_PROPERTY_NUM_CHANGE.

const	LONG	PropertyNumValue(void)	const;

Parameters
None.

Return	values
Returns	the	property	number	value	as	cast	to	LONG.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpEvent::PropertyStringValue
CSpEvent::PropertyStringValue	returns	the	property	string
value	from	the	event's	lParam.	The	caller	must	make	sure	the
event	ID	is	SPEI_PROPERTY_STRING_CHANGE.

const	WCHAR*	PropertyStringValue(void)	const;

Parameters
None.

Return	values
Returns	the	property	string	value	from	the	event's	lParam.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpEvent::RecoResult
CSpEvent::RecoResult	returns	the	event	as	a	cast	type	of	an
ISpRecoResult	pointer.	The	caller	must	make	sure	the	event	ID	is
SPEI_RECOGNITION,	SPEI_FALSE_RECOGNITION,	or
SPEI_HYPOTHESIS.

ISpRecoResult*	RecoResult(void)	const;

Parameters
None.

Return	values
The	event	cast	type	of	an	ISpRecoResult	pointer.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpEvent::RecoState
CSpEvent::RecoState	returns	the	event's	recognition	state	as
a	cast	type	of	SPRECOSTATE.	The	caller	must	make	sure	the
event	ID	is	SPEI_RECO_STATE_CHANGE.

SPRECOSTATE	RecoState(void)	const;

Parameters
None.

Return	values
Returns	the	event's	recognition	state	as	a	cast	type	of
SPRECOSTATE.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpEvent::RequestTypeOfUI
CSpEvent::RequestTypeOfUI	returns	the	UI	type	string	from
the	event's	lParam.	The	caller	must	make	sure	the	event	ID	is
SPEI_REQUEST_UI.

const	WCHAR*	RequestTypeOfUI(void)	const;

Parameters
None.

Return	values
Returns	the	UI	type	string	from	the	event's	lParam.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpEvent::Serialize
CSpEvent::Serialize	copies	an	event	instance	and	then
serializes	the	new	instance.	The	new	instance	must	be	based	on
SPSERIALIZEDEVENT	or	SPSERIALIZEDEVENT64

void	Serialize(

				T				*pSerEvent

);

Parameters

pSerEvent
[out]	The	event	for	the	passed	back	serialization.	Member
elParamType	must	not	be	SPET_LPARAM_IS_OBJECT.

Return	values
None,	however	member	SerializedlParam	is	set	to	the	size	of	the
serialized	structure.

Copies	an	existing	event	instance	and	then	serializes	the	new
instance.

HRESULT	Serialize(

			T						**ppCoMemSerEvent,

			ULONG			*pcbSerEvent

);

Parameters

ppCoMemSerEvent

[out]	The	event	for	the	passed	back	serialization.	It	is
allocated	and	serialized.	When	no	longer	required,	it	must	be
manually	freed	with	CoMemTaskFree().

pcbSerEvent
[out]	The	number	of	bytes	allocated	for	the	serialization.	On
an	error,	it	will	be	zero.

Return	values

Value Description
S_OK Serialization	completed	successfully.
E_OUTOFMEMORY Exceeded	available	memory.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpEvent::SerializeSize
CSpEvent::SerializeSize	calculates	the	required	size	of	a
buffer	to	serialize	an	event.	The	instance	must	be	either
SPSERIALIZEDEVENT	or	SPSERIALIZEDEVENT64.

ULONG	SerializeSize(void);

Parameters
None.

Return	values
Size,	in	bytes,	required	to	serialize	the	event.

Remarks
Due	to	a	compiler	issue,	CSpEvent::SerializeSize	may	not	be
used	with	Visual	Studio	6.	Use	SpEventSerializeSize	instead.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpEvent::String
CSpEvent::String	returns	the	string	from	the	event's	lParam.
The	caller	must	make	sure	the	event	type	is
SPET_LPARAM_IS_STRING.

const	WCHAR*	String(void)	const;

Parameters
None.

Return	values
Returns	the	string	from	the	event's	lParam.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpEvent::Viseme
CSpEvent::Viseme	returns	the	event	as	a	cast	type	of
SPEI_VISEME.	The	caller	must	make	sure	the	event	ID	is
SPEI_VISEME.

SPVISEMES			Viseme(void)	const;

Parameters
None.

Return	values
The	event	cast	type	of	SPVISEMES.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CSpEvent::VoiceToken
CSpEvent::VoiceToken	returns	the	event	as	a	cast	type	of
ISpObjectToken	pointer.	The	caller	must	make	sure	the	event	ID
is	SPEI_VOICE_CHANGE.	This	is	an	additional	check	for	the
helper	ObjectToken.

ISpObjectToken*			VoiceToken(void)	const;

Parameters
None.

Return	values
The	event	cast	type	of	ISpObjectToken	pointer.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

UI	Helper	Functions
UI	Helper	Function	Name Description
SpAddTokenToComboBox Adds	the	description	of	a

token	to	a	combo	box.
SpAddTokenToListBox Adds	the	description	of	a

token	to	a	list	box.
SpDeleteCurSelComboBoxToken Deletes	a	token	as

specified	by	the	index	of
the	currently	selected
item	in	a	combo	box

SpDeleteCurSelListBoxToken Deletes	a	token	as
specified	by	the	index	of
the	currently	selected
item	in	a	list	box.

SpDestroyTokenComboBox Destroys	the	tokens	in	a
combo	box.

SpDestroyTokenListBox Destroys	the	tokens	in	a
list	box.

SpGetComboBoxToken Returns	a	pointer	to	a
token	as	specified	by	the
index	in	a	combo	box.

SpGetCurSelComboBoxToken Returns	a	pointer	to	a
token	as	specified	by	the
index	of	the	currently
selected	item	in	a	combo
box.

SpGetCurSelListBoxToken Returns	a	pointer	to	a
token	as	specified	by	the
index	of	the	currently
selected	item	in	a	list	box.

SpGetListBoxToken Returns	a	pointer	to	a
token	as	specified	by	the
index	in	a	list	box.

SpInitTokenComboBox Initializes	a	combo	box
with	the	description	of
tokens	from	a	specified
category.

SpInitTokenListBox Initializes	a	list	box	with
the	description	of	tokens
from	a	specified	category.

SpUpdateCurSelComboBoxToken Updates	the
corresponding	token	of
the	item	as	specified	by
the	index	of	the	currently
selected	item	in	a	combo
box.

SpUpdateCurSelListBoxToken Updates	the
corresponding	token	of
the	item	as	specified	by
the	index	of	the	currently
selected	item	in	a	list	box.

Microsoft	Speech	SDK
SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpAddTokenToComboBox
SpAddTokenToComboBox	adds	the	description	of	a	token	to	a
combo	box.
Found	in:	spuihelp.h	
HRESULT	SpAddTokenToComboBox(

			HWND	hwnd

			ISpObjectToken*	pToken

);

Parameters

hwnd
[in]	The	handle	to	the	combo	box.

pToken
[in]	Pointer	to	the	token	to	be	added.

Return	values

Value Description
S_OK Function	completed

successfully.
FAILED	(hr) Appropriate	error	message.

Microsoft	Speech	SDK
SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpAddTokenToListBox
SpAddTokenToListBox	adds	the	description	of	a	token	to	a	list
box.
Found	in:	spuihelp.h	
HRESULT	SpAddTokenToListBox(

			HWND	hwnd

			ISpObjectToken*	pToken

);

Parameters

hwnd
[in]	The	handle	to	the	list	box.

pToken
[in]	Pointer	to	the	token	to	be	added.

Return	values

Value Description
S_OK Function	completed

successfully.
FAILED	(hr) Appropriate	error	message.

Microsoft	Speech	SDK
SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpDeleteCurSelComboBoxToken
SpDeleteCurSelComboBoxToken	deletes	a	token	specified	by
the	index	of	the	currently	selected	item	in	a	combo	box.
Found	in:	spuihelp.h	
HRESULT	SpDeleteCurSelComboBoxToken(

			HWND	hwnd

);

Parameters

hwnd
[in]	The	handle	to	the	combo	box.

Return	values

Value Description
S_OK Function	completed

successfully.
FAILED	(hr) Appropriate	error	message.

Microsoft	Speech	SDK
SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpDeleteCurSelListBoxToken
SpDeleteCurSelListBoxToken	deletes	a	token	specified	by
the	index	of	the	currently	selected	item	in	a	list	box.
Found	in:	spuihelp.h	
HRESULT	SpDeleteCurSelListBoxToken(

			HWND	hwnd

);

Parameters

hwnd
[in]	The	handle	to	the	list	box.

Return	values

Value Description
S_OK Function	completed

successfully.
FAILED	(hr) Appropriate	error	message.

Microsoft	Speech	SDK
SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpDestroyTokenComboBox
SpDestroyTokenComboBox	destroys	the	tokens	in	a	combo
box.
Found	in:	spuihelp.h	
void	SpDestroyTokenComboBox(

			HWND	hwnd

);

Parameters

hwnd
[in]	The	handle	to	the	combo	box	that	contains	the	tokens	to
be	destroyed.

Return	values

None

Microsoft	Speech	SDK
SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpDestroyTokenListBox
SpDestroyTokenListBox	destroys	the	tokens	in	a	list	box.
Found	in:	spuihelp.h	
void	SpDestroyTokenListBox(

			HWND	hwnd

);

Parameters

hwnd
[in]	The	handle	to	the	list	box	that	contains	the	tokens	to	be
destroyed.

Return	values

None

Microsoft	Speech	SDK
SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpGetComboBoxToken
SpGetComboBoxToken	returns	a	pointer	to	a	token	specified
by	the	index	in	a	combo	box.
Found	in:	spuihelp.h	
ISpObjectToken*	SpGetComboBoxToken(

			HWND		 hwnd,

			WPARAM	 index

);

Parameters

hwnd
[in]	The	handle	to	the	combo	box.

index
[in]	Specifies	the	index	of	the	member	to	be	returned.

Return	values
Returns	a	pointer	to	an	ISpObjectToken	type.

Microsoft	Speech	SDK
SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpGetCurSelComboBoxToken
SpGetCurSelComboBoxToken	returns	a	pointer	to	a	token
specified	by	the	index	of	the	currently	selected	item	in	a	combo
box.
Found	in:	spuihelp.h	
ISpObjectToken*	SpGetCurSelComboBoxToken(

			HWND	hwnd

);

Parameters

hwnd
[in]	The	handle	to	the	combo	box.

Return	values
Returns	a	pointer	to	an	ISpObjectToken	type.

Microsoft	Speech	SDK
SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpGetCurSelListBoxToken
SpGetCurSelListBoxToken	returns	a	pointer	to	a	token
specified	by	the	index	of	the	currently	selected	item	in	a	list
box.
Found	in:	spuihelp.h	
ISpObjectToken*	SpGetCurSelListBoxToken(

			HWND	hwnd

);

Parameters

hwnd
[in]	The	handle	to	the	list	box.

Return	values
Returns	a	pointer	to	an	ISpObjectToken	type.

Microsoft	Speech	SDK
SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpGetListBoxToken
SpGetListBoxToken	returns	a	pointer	to	a	token	as	specified
by	the	index	in	a	list	box.
Found	in:	spuihelp.h	
ISpObjectToken*	SpGetListBoxToken(

			HWND		 hwnd,

			WPARAM		 index

);

Parameters

hwnd
[in]	The	handle	to	the	list	box.

index
[in]	Specifies	the	index	of	the	member	to	be	returned.

Return	values
Returns	a	pointer	to	an	ISpObjectToken	type.

Microsoft	Speech	SDK
SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpInitTokenComboBox
SpInitTokenComboBox	initializes	a	combo	box	with	the
description	of	tokens	from	a	specified	category.
Found	in:	spuihelp.h	
HRESULT	SpInitTokenComboBox(

			HWND		 hwnd,

			const	WCHAR*	pszCatName,

			const	WCHAR*	pszRequiredAttrib	=	NULL,

			const	WCHAR*	pszOptionalAttrib	=	NULL

);

Parameters

hwnd
[in]	The	handle	of	the	combo	box	that	is	to	be	initialized	with
tokens.

pszCatName
[in]	The	category	of	the	tokens	to	initialize	the	combo	box.

pszRequiredAttrib
[in]	Required	attributes.

pszOptionalAttrib
[in]	Optional	attributes.

Return	values

Value Description
S_OK Function	completed

successfully.

FAILED	(hr) Appropriate	error	message.

Microsoft	Speech	SDK
SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpInitTokenListBox
SpInitTokenListBox	initializes	a	list	box	with	the	description	of
tokens	from	a	specified	category.
Found	in:	spuihelp.h	
HRESULT	SpInitTokenListBox(

			HWND		 hwnd,

			const	WCHAR*	pszCatName,

			const	WCHAR*	pszRequiredAttrib	=	NULL,

			const	WCHAR*	pszOptionalAttrib	=	NULL

);

Parameters

hwnd
[in]	The	handle	of	the	list	box	that	is	to	be	initialized	with
tokens.

pszCatName
[in]	The	category	of	the	tokens	to	initialize	the	list	box.

pszRequiredAttrib
[in]	Required	attributes.

pszOptionalAttrib
[in]	Optional	attributes.

Return	values

Value Description
S_OK Function	completed

successfully.

FAILED	(hr) Appropriate	error	message.

Microsoft	Speech	SDK
SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpUpdateCurSelComboBoxToken
SpUpdateCurSelComboBoxToken	updates	the	corresponding
token	of	the	item	specified	by	the	index	of	the	currently
selected	item	in	a	combo	box.
Found	in:	spuihelp.h	
HRESULT	SpUpdateCurSelComboBoxToken(

			HWND	hwnd

);

Parameters

hwnd
[in]	The	handle	to	the	combo	box.

Return	values

Value Description
S_OK Function	completed

successfully.
FAILED	(hr) Appropriate	error	message.

Microsoft	Speech	SDK
SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpUpdateCurSelListBoxToken
SpUpdateCurSelListBoxToken	updates	the	corresponding
token	of	the	item	specified	by	the	index	of	the	currently
selected	item	in	a	list	box.
Found	in:	spuihelp.h	
HRESULT	SpUpdateCurSelListBoxToken(

			HWND	hwnd

);

Parameters

hwnd
[in]	The	handle	to	the	list	box.

Return	values

Value Description
S_OK Function	completed

successfully.
FAILED	(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpCreateBestObject
SpCreateBestObject	creates	an	object	from	tokens	that	best
match	a	set	of	criteria	from	required	and	optional	attributes.
Found	in:	sphelper.h
SpCreateBestObject(

			const	WCHAR			*pszCategoryId,

			const	WCHAR			*pszReqAttribs,

			const	WCHAR			*pszOptAttribs,

			T												**ppObject,

			IUnknown						*IUnknown	=	NULL,

			DWORD										dwClsCtxt	=	CLSCTX_ALL,

);

Parameters

pszCategoryId
[in]	The	null-terminated	string	category	ID	on	which	to	base
the	new	token.

pszReqAttribs
[in]	The	null-terminated	string	of	required	attributes	for	the
token.

pszOptAttribs
[in]	The	null-terminated	string	of	optional	attributes	for	the
token.

ppObject
[out,	iid_is(riid)]	Address	of	pointer	variable	that	receives	the
interface	pointer	requested	in	riid.	Upon	successful	return,
ppObject	contains	the	requested	interface	pointer.	If	the
object	does	not	support	the	interface	specified	in	riid,	the

implementation	must	set	ppObject	to	NULL.

IUnknown
[in]	Optional	parameter	used	for	creating	aggregate	objects.
pUnkOuter	is	the	data	for	the	object.	If	not	specified,	the
value	defaults	to	NULL.

dwClsCtxt
[in]	Context	in	which	the	code	that	manages	the	newly
created	object	will	run.	It	should	be	one	of	the	following
values.	If	not	specified,	the	value	defaults	to	CLSCTX_ALL.

CLSCTX_INPROC_SERVER

CLSCTX_INPROC_HANDLER
CLSCTX_LOCAL_SERVER

CLSCTX_REMOTE_SERVER

Return	values

Value Description
S_OK Function	completed

successfully.
FAILED	(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpCreateDefaultObjectFromCategoryId
SpCreateDefaultObjectFromCategoryId	creates	the	object
instance	from	the	default	object	token	of	a	specified	category.
Found	in:	sphelper.h	
SpCreateDefaultObjectFromCategoryId(

			const	WCHAR			*pszCategoryId,

			T												**ppObject,

			IUnknown						*pUnkOuter	=	NULL,

			DWORD										dwClsCtxt	=	CLSCTX_ALL

);

Parameters

pszCategoryId
[in]	The	type	of	object	token	to	create.

ppObject
[out]	The	object	being	created.

pUnkOuter
[in]	Optional	parameter	used	for	creating	aggregate	objects.
pUnkOuter	is	the	data	for	the	object.	If	not	specified,	the
value	defaults	to	NULL.

dwClsCtxt
[in]	The	type	of	aggregate	object	being	created.	If	pUnkOuter
is	not	NULL,	this	must	be	supplied.	If	not	specified	otherwise,
the	value	defaults	to	all	object	types.

Return	values

Value Description

S_OK Function	completed
successfully.

FAILED	(hr) Appropriate	error	message.

Example
CComPtr<ISpAudio>	cpAudio;

	

hr	=	SpCreateDefaultObjectFromCategoryId(SPCAT_AUDIOIN,	&cpAudio;);

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpCreateNewToken	(by	CategoryId)
SpCreateNewToken	creates	a	token	coercively.	The	token	is
created	with	the	specified	name,	if	provided.	Otherwise	it	will
automatically	generate	both	a	key	name	and	name.
Found	in:	sphelper.h	
SpCreateNewToken(

			const	WCHAR							*pszCategoryId,

			const	WCHAR							*pszTokenKeyName,

			ISpObjectToken			**ppToken

);

Parameters

pszCategoryId
[in]	The	null-terminated	string	indicating	the	category	ID.

pszTokenKeyName
[in	out]	The	token	name	being	created.	If	NULL,	a	unique
token	key	name	will	be	generated.	If	a	name	is	provided	it
will	append	Tokens	before	it.

ppToken
[out]	The	newly	created	token.	The	token	will	be	created,	if
one	does	not	currently	exist.

Return	values

Value Description
S_OK Function	completed

successfully.
FAILED	(hr) Appropriate	error	message.

Example

The	following	code	snippet	illustrates	the	use	of
SpCreateNewToken	(by	Category	Id)	with	the
SPCAT_RECOPROFILE	category.
				HRESULT	hr	=	S_OK;

				//	create	a	new	recognition	profile

				hr	=	SpCreateNewToken(SPCAT_RECOPROFILES,	NULL,	&cpObjectToken);

				//	Check	hr

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpCreateNewToken	(by	TokenId)
SpCreateNewToken	creates	a	token	forcefully.
Found	in:	sphelper.h	
inline	HRESULT	SpCreateNewToken(

			const	WCHAR							*pszTokenId,

			ISpObjectToken			**ppToken

);

Parameters

pszTokenId
[in]	The	null-terminated	string	indicating	the	token	IDw.

ppToken
[out]	The	token	being	created.	It	is	created	with
CoCreateInstance	and	must	be	manually	freed	when	no
longer	required.

Return	values

Value Description
S_OK Function	completed

successfully.
FAILED	(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpCreateNewTokenEx	(by	CategoryId)
SpCreateNewTokenEx	creates	a	new	token	using	the	category
ID	and	a	token	name.	It	subsequently	completes	the	information
with	the	helper	function	SpSetCommonTokenData.
Found	in:	sphelper.h
SpCreateNewTokenEx(

			const	WCHAR					*pszCategoryId,

			const	WCHAR					*pszTokenKeyName,

			const	CLSID					*pclsid,

			const	WCHAR					*pszLangIndependentName,

			LANGID											langid,

			const	WCHAR					*pszLangDependentName,

			ISpObjectToken	**ppToken,

			ISpDataKey					**ppDataKeyAttribs

);

Parameters

pszCategoryId
[in]	The	null-terminated	string	indicating	the	category	ID.

pszTokenKeyName
[in	out]	The	token	name	being	created.	If	NULL,	a	unique
token	key	name	will	be	generated.	If	a	name	is	provided	it
will	append	"Tokens"	before	it.

pclsid
[in]	Sets	the	token's	CLSID,	if	specified.

pszLangIndependentName
[in]	Sets	the	null-terminated	token	language	dependent
name.

langid
[in]	The	language	ID	of	the	word.	May	be	zero	to	indicate	the
word	can	be	of	any	LANGID.

pszLangDependentName
[in]	Sets	the	null-terminated	token	language	dependent
name.

ppToken
[out]	The	newly	created	token.	The	token	is	created	if	it
currently	does	not	exist.

ppDataKeyAttribs
[in]	Opens	the	attributes	key.	The	key	is	created	if	it	does	not
currently	exist.	May	be	NULL	if	not	needed.

Return	values

Value Description
S_OK Function	completed

successfully.
FAILED	(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpCreateNewTokenEx	(by	TokenId)
SpCreateNewTokenEx	creates	a	new	token	using	the	category
ID	and	a	token	name.	It	subsequently	completes	the	information
with	the	helper	function	SpSetCommonTokenData.
Found	in:	sphelper.h
SpCreateNewTokenEx(

			const	WCHAR					*pszTokenId,

			const	CLSID					*pclsid,

			const	WCHAR					*pszLangIndependentName,

			LANGID											langid,

			const	WCHAR					*pszLangDependentName,

			ISpObjectToken	**ppToken,

			ISpDataKey					**ppDataKeyAttribs

);

Parameters

pszTokenId
[in]	The	null-terminated	string	indicating	the	token	ID.

pclsid
[in]	Sets	the	token's	CLSID,	if	specified.

pszLangIndependentName
[in]	Sets	the	null-terminated	token	language	dependent
name.

langid
[in]	The	language	ID	of	the	word.	May	be	zero	to	indicate	that
the	word	can	be	of	any	LANGID.

pszLangDependentName

[in]	Sets	the	null-terminated	token	language	dependent
name.

ppToken
[out]	The	newly	created	token.	The	token	is	created	if	it	does
not	currently	exist.

ppDataKeyAttribs
[in]	Opens	the	attributes	key.	The	key	is	created	if	it	does	not
currently	exist.	May	be	NULL	if	not	needed.

Return	values

Value Description
S_OK Function	completed

successfully.
FAILED	(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpCreateObjectFromSubToken
SpCreateObjectFromSubToken	creates	an	object	from	a
specified	subtoken.
Found	in:	spddkhlp.h
SpCreateObjectFromSubToken(

			ISpObjectToken			*pToken,

			const	WCHAR						*pszSubKeyName,

			T															**ppObject,

			IUnknown										pUnkOuter	=	NULL,

			DWORD												*dwClsCtxt	=	CLSCTX_ALL

);

Parameters

pToken
[in]	Address	of	a	pointer	to	an	ISpObjectToken	object
containing	the	information	associated	with	the	tokens	being
added.

pszSubKeyName
[in]	Address	of	a	null-terminated	string	specifying	the	name
of	the	subkey	of	the	pToken's	corresponding	datakey	to	open.

ppObject
[out,	iid_is(riid)]	Address	of	pointer	variable	that	receives	the
interface	pointer	requested	in	riid.	Upon	successful	return,
ppObject	contains	the	requested	interface	pointer.	If	the
object	does	not	support	the	interface	specified	in	riid,	the
implementation	must	set	ppObject	to	NULL.

IUnknown
[in]	Optional	parameter	used	for	creating	aggregate	objects.

pUnkOuter	is	the	data	for	the	object.	If	not	specified,	the
value	defaults	to	NULL.

dwClsCtxt
[in]	Context	in	which	the	code	that	manages	the	newly
created	object	will	run.	It	should	be	one	of	the	following
values.	If	not	specified,	the	value	defaults	to	CLSCTX_ALL.

CLSCTX_INPROC_SERVER

CLSCTX_INPROC_HANDLER
CLSCTX_LOCAL_SERVER
CLSCTX_REMOTE_SERVER

Return	values

Value Description
S_OK Function	completed

successfully.
FAILED	(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpCreateObjectFromToken
SpCreateObjectFromToken	creates	an	object	instance	from	a
specified	object	token.
Found	in:	sphelper.h	
SpCreateObjectFromToken(

			ISpObjectToken		*pToken,

			T														**ppObject,

			IUnknown								*pUnkOuter	=	NULL,

			DWORD												dwClsCtxt	=	CLSCTX_ALL

);

Parameters

pToken
[in]	The	type	of	object	token	to	create.

ppObject
[out]	the	object	instance	being	created.

pUnkOuter
[in]	Optional	parameter	used	for	creating	aggregate	objects.
pUnkOuter	is	the	data	for	the	object.	If	not	specified,	the
value	defaults	to	NULL.

dwClsCtxt
[in]	The	type	of	aggregate	object	being	created.	If	pUnkOuter
is	not	NULL,	this	must	be	supplied.	If	not	specified	otherwise,
the	value	defaults	to	all	object	types.

Return	values

Value Description

S_OK Function	completed
successfully.

FAILED	(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpCreateObjectFromTokenId
SpCreateObjectFromTokenId	creates	an	object	instance	from
a	specified	object	token	ID.
Found	in:	sphelper.h	
SpCreateObjectFromTokenId(

			const	WCHAR			*pszTokenId,

			T												**ppObject,

			IUnknown						*pUnkOuter	=	NULL,

			DWORD										dwClsCtxt	=	CLSCTX_ALL

);

Parameters

pszTokenId
[in]	The	type	of	object	token	to	create.

ppObject
[out]	The	object	being	created.

pUnkOuter
[in]	Optional	parameter	used	for	creating	aggregate	objects.
pUnkOuter	is	the	data	for	the	object.	If	not	specified,	the
value	defaults	to	NULL.

dwClsCtxt
[in]	The	type	of	aggregate	object	being	created.	If	pUnkOuter
is	not	NULL,	this	must	be	supplied.	If	not	specified	otherwise,
the	value	defaults	to	all	object	types.

Return	values

Value Description

S_OK Function	completed
successfully.

FAILED	(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpCreatePhoneConverter
SpCreatePhoneConverter	creates	a	directly	converted	phone.
Calls	the	helper	function	SpCreateBestObject	with	the	category
of	SPCAT_PHONECONVERTERS.
Found	in:	sphelper.h
SpCreatePhoneConverter(

			LANGID												*langid,

			const	WCHAR							*pszReqAttribs,

			const	WCHAR							*pszOptAttribs,

			ISpPhoneConverter		ppPhoneConverter

);

Parameters

langid
[in]	The	language	ID	of	the	word.	May	not	be	NULL	or	zero.

pszReqAttribs
[in]	The	null-terminated	string	of	required	attributes	for	the
token.

pszOptAttribs
[in]	The	null-terminated	string	of	optional	attributes	for	the
token.

ppPhoneConverter
[out]	The	converted	phone	interface.

Return	values

Value Description
S_OK Function	completed

successfully.
E_INVALIDARG langid	equals	zero.
FAILED	(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpEnumTokens
SpEnumTokens	enumerates	the	tokens	for	the	specified
category.
Found	in:	sphelper.h	

inline	HRESULT	SpEnumTokens(

			const	WCHAR												*pszCategoryId,

			const	WCHAR												*pszReqAttribs,

			const	WCHAR												*pszOptAttribs,

			IEnumSpObjectTokens			**ppEnum

);

Parameters

pszCategoryId
[in]	The	null-terminated	string	category	ID	on	which	to	base
the	enumerations.

pszReqAttribs
[in]	The	null-terminated	string	of	the	required	attributes	for
the	token.

pszOptAttribs
[in]	The	null-terminated	string	of	the	optional	attributes	for
the	token.	The	order	in	which	the	tokens	are	listed	in	ppEnum
is	based	on	the	order	that	they	match	pszOptAttribs.

ppEnum
[out]	The	enumerated	list	of	tokens	found.

Return	values

Value Description
S_OK Function	completed

successfully.
FAILED	(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpFindBestToken
SpFindBestToken	enumerates	the	token	category	and	finds
the	single	best	match	(if	any)	based	on	the	required	and
optional	attributes.
Found	in:	sphelper.h	
SpFindBestToken(

			const	WCHAR							*pszCategoryId,	

			const	WCHAR							*pszReqAttribs,	

			const	WCHAR							*pszOptAttribs,	

			ISpObjectToken			**ppObjectToken

);

Parameters

pszCategoryId
[in]	The	null-terminated	string	category	ID	on	which	to	base
the	enumerations.

pszReqAttribs
[in]	The	null-terminated	string	of	the	required	attributes	for
the	token.

pszOptAttribs
[in]	The	null-terminated	string	of	the	optional	attributes	for
the	token.	The	order	in	which	the	tokens	are	listed	in
ppObjectToken	is	based	on	the	order	they	match
pszOptAttribs.

ppObjectToken
[out]	The	single	best	matched	token	found.

Return	values

Value Description
S_OK Function	completed	successfully.
SPERR_NOT_FOUND No	items	match	the	given	attributes.
FAILED	(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpGetCategoryFromId
SpGetCategoryFromId	creates	an	object	of
CLSID_SpObjectTokenCategory.	This	function	assists	in	locating
and	creating	an	object	token	category	without	having	to	search
or	change	the	registry	directly.
Found	in:	sphelper.h	
SpGetCategoryFromId(

			const	WCHAR							*pszCategoryId,

			ISpObjectToken			**ppCategory,

			BOOL														*fCreateIfNotExist	=	FALSE

);

Parameters

pszCategoryId
[in]	The	string	indicating	the	CategoryId.

ppCategory
[out]	The	token	being	created.	It	is	created	with
CoCreateInstance	and	must	be	manually	freed	when	no
longer	required.

fCreateIfNotExist
[in]	An	optional	parameter	allowing	the	object	to	be	created
if	one	does	not	currently	exist.	The	default	is	FALSE	unless
otherwise	specified.

Return	values

Value Description
S_OK Function	completed

successfully.

FAILED	(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpGetDefaultTokenFromCategoryId
SpGetDefaultTokenFromCategoryId	gets	the	default	token
for	the	specified	category	ID.
Found	in:	sphelper.h	
inline	HRESULT	SpGetDefaultTokenFromCategoryId(

			const	WCHAR							*pszCategoryId,

			ISpObjectToken			**ppToken,

			BOOL														*fCreateCategoryIfNotExist	=	TRUE

);

Parameters

pszCategoryId
[in]	The	null-terminated	string	for	the	category	ID.

ppToken
[out]	The	default	token	for	the	category	ID.

fCreateCategoryIfNotExist
[in]	An	optional	parameter	allowing	the	category	to	be
created	if	one	does	not	currently	exist.	By	default,	the	value
is	TRUE	unless	otherwise	indicated.

Return	values

Value Description
S_OK Function	completed

successfully.
FAILED	(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpGetDefaultTokenIdFromCategoryId
SpGetDefaultTokenIdFromCategoryId	gets	the	default	token
ID	for	the	specified	category.
Found	in:	sphelper.h	

inline	HRESULT	SpGetDefaultTokenIdFromCategoryId(

			const	WCHAR			*pszCategoryId,

			WCHAR								**ppszTokenId

);

Parameters

pszCategoryId
[in]	The	null-terminated	string	indicating	the	category	ID.

ppszTokenId
[out]	The	null-terminated	string	ID	of	the	owning	default
token.

Return	values

Value Description
S_OK Function	completed

successfully.
FAILED	(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpGetDescription
SpGetDescription	passes	back	the	textual	description
associated	with	the	specified	token.
Found	in:	sphelper.h	
SpGetDescription(

			ISpObjectToken			*pObjToken,

			WCHAR											**ppszDescription,

			LANGID											*Language	=	SpGetUserDefaultUILanguage()

);

Parameters

pObjToken
[in]	The	object	token	of	the	target	resource.

ppszDescription
[out]	A	null-terminated	string	containing	the	resource
description.

Language
[in]	The	language	ID	for	the	resource.	Language	is	optional
and	if	omitted	the	default	language	will	be	used.

Return	values
This	helper	function	calls	ISpDataKey::GetStringValue.	See	those
return	values.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpGetSubTokenFromToken
SpGetSubTokenFromToken	creates	a	subtoken	from	a	token.
Found	in:	spddkhlp.h
SpGetSubTokenFromToken(

			ISpObjectToken			*pToken,

			const	WCHAR						*pszSubKeyName,

			ISpObjectToken		**ppToken,

			BOOL														fCreateIfNotExist	=	FALSE

);

Parameters

pToken
[in]	The	object	token	from	which	to	create	the	subtoken.	If
not	present,	this	token	will	be	created	if	fCreateIfNotExist	is
TRUE.

pszSubKeyName
[out]	The	name	of	the	subtoken	to	use.

ppToken
[in]	The	newly	created	subtoken.

fCreateIfNotExist
[in]	Optional	Boolean	indicating	that	the	token	is	to	be
created	if	one	does	not	currently	exist.	TRUE	allows	the
creation.	The	default	value	FALSE	does	not.

Return	values

Value Description
S_OK Function	completed	successfully.

E_POINTER At	least	one	of	the	pointers	pToken,
pszSubKeyName,	or	ppToken	is
invalid	or	bad.

FAILED	(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpGetTokenFromId
SpGetTokenFromId	creates	an	object	token	of
CLSID_SpObjectToken.	This	function	assists	in	locating	and
creating	an	object	token	without	having	to	search	or	change	the
registry	directly.
Found	in:	sphelper.h	
inline	HRESULT	SpGetTokenFromId(

			const	WCHAR							*pszTokenId,

			ISpObjectToken			**ppToken,

			BOOL														*fCreateIfNotExist	=	FALSE

);

Parameters

pszTokenId
[in]	The	null-terminated	string	indicating	the	token	ID.

ppToken
[out]	The	token	being	created.	It	is	created	with
CoCreateInstance	and	must	be	manually	freed	when	no
longer	required.

fCreateIfNotExist
[in]	An	optional	parameter	allowing	the	object	to	be	created
if	one	does	not	currently	exist.	The	default	is	FALSE	unless
otherwise	specified.

Return	values

Value Description
S_OK Function	completed

successfully.

FAILED	(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpGetUserDefaultUILanguage
SpGetUserDefaultUILanguage	returns	the	default	user
interface	language.
Found	in:	sphelper.h	
inline	LANGID	SpGetUserDefaultUILanguage	(void);

Parameters

None.

Return	values
Returns	the	default	language.	If	the	attempt	fails	to	find	the
default	language	from	the	specific	operating	system,	the	default
language	from	SAPI	is	returned	instead.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpSetCommonTokenData
SpSetCommonTokenData	fills	in	the	token	data	with	the
information	provided	by	the	parameters.	Unused	parameters
must	be	NULL.
Found	in:	sphelper.h
SpSetCommonTokenData(

			ISpObjectToken			*pToken,

			const	CLSID						*pclsid,

			const	WCHAR						*pszLangIndependentName,

			LANGID												langid,

			const	WCHAR						*pszLangDependentName,

			ISpDataKey						**ppDataKeyAttribs

);

Parameters

pToken
[in]	Address	of	a	pointer	to	an	ISpObjectToken	object
containing	the	information	associated	with	the	tokens	being
added.

pclsid
[in]	Sets	the	token's	CLSID,	if	specified.

pszLangIndependentName
[in]	Sets	the	token's	language	independent	name.

langid
[in]	The	language	ID	of	the	word.	May	be	zero	to	indicate	the
word	can	be	of	any	LANGID.

pszLangDependentName
[in]	Sets	the	token's	language	dependent	name.

ppDataKeyAttribs
[in]	Opens	the	attributes	key.	The	key	is	created	if	it	does	not
currently	exist.	May	be	NULL	if	not	needed.

Return	values

Value Description
S_OK Function	completed

successfully.
FAILED	(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpSetDefaultTokenForCategoryId
SpSetDefaultTokenForCategoryId	sets	the	default	token	for
the	specified	category	ID.
Found	in:	sphelper.h	
inline	HRESULT	SpSetDefaultTokenForCategoryId(

			const	WCHAR						*pszCategoryId,

			ISpObjectToken			*pToken

);

Parameters

pszCategoryId
[in]	The	null-terminated	string	for	the	category	ID.

pToken
[in]	The	token	to	be	set	as	the	default	for	the	category	ID.

Return	values

Value Description
S_OK Function	completed

successfully.
FAILED	(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpSetDefaultTokenIdForCategoryId
SpSetDefaultTokenIdForCategoryId	sets	a	specific	token	ID
as	the	default	for	the	specified	category	ID.
Found	in:	sphelper.h	

inline	HRESULT	SpSetDefaultTokenIdForCategoryId(

			const	WCHAR				*pszCategoryId,

			const	WCHAR				*pszTokenId

);

Parameters

pszCategoryId
[in]	The	null-terminated	token	ID	string.

pszTokenId
[in]	The	null-terminated	token	ID	that	will	be	set	as	default
token	ID	for	this	specific	category.

Return	values

Value Description
S_OK Function	completed

successfully.
FAILED	(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPFEI
SPFEI	casts	a	specified	value	into	a	64-bit	type.
For	a	list	of	the	supported	SPEI_ord	event	types,	see
SPEVENTENUM
Found	in:	sapi.idl
SPFEI(

			void			*SPEI_ord

);

Parameters

SPEI_ord
[in,	out]	The	value	to	re-cast.	The	new	value	is	passed	back.

Return	values
No	error	code	is	returned.

Related	Helper	Macros

Macro Description
SPFEI_FLAGCHECK Retrieves	reserved	flags	for	the	event

interest	enum.	
SPEI_ALL_EVENTS Retrieves	all	possible	events	flags.
SPFEI_ALL_TTS_EVENTS Retrieves	all	possible	TTS	event	flags.
SPFEI_ALL_SR_EVENTS Retrieves	all	possible	SR	event	flags.

Remarks

The	SPFEI_FLAGCHECK	macro	retrieves	the	flags	that	must
always	be	included	in	any	event	interest.	SAPI	uses	the
SPFEI_FLAGCHECK	macro	to	help	developers	avoid	mistakes	by

using	event	interest	related	methods	(see
ISpEventSource::SetInterest	and
ISpRecoContext::SetVoicePurgeEvent)	with	the	actual
enumeration	instead	of	the	SPFEI()	macro.

Example
Here	is	an	example	of	the	SPFEI	macro	used	to	set	SR	event
interest

hr	=	g_cpRecoCtxt->SetInterest(SPFEI(SPEI_RECOGNITION),	SPFEI(SPEI_RECOGNITION));

Here	is	an	example	of	the	SPFEI_ALL_SR_EVENTS	macro	used	to
set	SR	event	interest	in	all	events.	Note	this	is	an	example	and
not	recommended	practice.

hr	=	g_cpRecoCtxt->SetInterest(SPFEI_ALL_SR_EVENTS,	SPFEI_ALL_SR_EVENTS);

	

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPBindToFile
SPBindToFile	binds	the	audio	stream	to	the	specified	file.
Found	in:	sphelper.h	
SPBindToFile(

			LPCWSTR															pFileName,

			SPFILEMODE												eMode,

			ISpStream											**ppStream,

			const	GUID											*pFormatId	=	NULL,

			const	WAVEFORMATEX			*pWaveFormatEx	=	NULL,

			ULONGLONG												*ullEventInterest	=	SPFEI_ALL_EVENTS

);

Parameters

pFileName
[in]	Address	of	a	null-terminated	string	containing	the	file
name	of	the	file	to	bind	the	stream	to.

eMode
[in]	Flag	of	the	type	SPFILEMODE	to	define	the	file	opening
mode.	When	opening	an	audio	wave	file,	this	must	be
SPFM_OPEN_READONLY	or	SPFM_CREATE_ALWAYS,	otherwise
the	call	will	fail.

ppStream
[in,	out]	The	address	of	an	ISpStream	pointer.	If	the	function
succeeds,	this	value	is	filled	in	with	the	newly	created
ISpStream	interface.

pFormatId
[in]	The	data	format	identifier	associated	with	the	stream.
This	can	be	NULL	(default)	and	the	format	will	be	determined

from	the	supplied	wave	file,	if	the	file	has	the	'.wav'
extension.	If	it	doesn't,	the	file	is	assumed	to	be	a	text	file.

pWaveFormatEx
[in]	Address	of	the	WAVEFORMATEX	structure	that	contains
the	wave	file	format	information.	If	guidFormatId	is
SPDFID_WaveFormatEx,	this	must	point	to	a	valid
WAVEFORMATEX	structure.	For	other	formats,	it	should	be
NULL.

ullEventInterest
[in]	Flags	of	type	SPEVENTENUM	for	the	events	wanted.

Return	values

Value Description
S_OK Function	completed	successfully.
E_INVALIDARG One	or	more	parameters	are

invalid.
SPERR_ALREADY_INITIALIZED The	object	has	already	been

initialized.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpClearEvent
SpClearEvent	clears	an	event	structure.	May	be	used	by
clients	not	using	CSpEvent	class.
Found	in:	sphelper.h	
inline	void	SpClearEvent(

			SPEVENT			*pe

);

Parameters

pe
[in]	The	event	to	clear.	Events	of	types
SPET_LPARAM_IS_POINTER,	SPET_LPARAM_IS_STRING,
SPET_LPARAM_IS_TOKEN,	or	SPET_LPARAM_IS_OBJECT	have
the	associated	data	in	pe->lParam	deallocated	first.

Return	values
No	error	code	is	returned.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpConvertStreamFormatEnum
SpConvertStreamFormatEnum	converts	the	specified	stream
format	into	a	fully	populated	wave	format	structure.
Found	in:	sphelper.h	
SpConvertStreamFormatEnum(

			SPSTREAMFORMAT			eFormat,

			GUID												*pFormatId,

			WAVEFORMATEX			**ppCoMemWaveFormatEx

);

Parameters

eFormat
[in]	The	requested	stream	format.	Must	be	a	valid
SPSTREAMFORMAT	value	of	SPSF_8kHz8BitMono	or	greater.

pFormatId
[in,	out]	The	GUID	of	the	new	format.	May	be	GUID_NULL	if
an	error	occurred.

ppCoMemWaveFormatEx
[out]	The	populated	WAVEFORMATEX	structure	specified	by
the	supplied	SPSTREAMFORMAT.

Return	values

Value Description
S_OK Function	completed	successfully.
E_OUTOFMEMORY Exceeded	available	memory.
E_INVALIDARG Either	pFormatId	or

ppCoMemWaveFormatEx	is	invalid	or
bad.	Alternatively,	the	specified

format	is	not	recognized.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpEventSerializeSize
SpEventSerializeSize	calculates	the	required	size	of	a	buffer
to	serialize	an	event.	The	call	must	specify	which	type	of
serialized	event.
Found	in:	sphelper.h	
template	<class	T>

inline	ULONG	SpEventSerializeSize(

			const	SPEVENT			*pEvent

);

Parameters

pEvent
[in]	The	event	structure	to	calculate	the	size	of.	pEvent	must
be	either	SPSERIALIZEDEVENT	or	SPSERIALIZEDEVENT64.

Return	values

Size,	in	bytes,	required	to	serialize	the	event.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpInitEvent
SpInitEvent	clears	the	event	structure.
Found	in:	sphelper.h	
inline	void	SpInitEvent(

			SPEVENT			*pe

);

Parameters

pe
[in]	The	event	to	clear.

Return	values
No	error	code	is	returned.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpSetDescription
SpSetDescription	sets	the	string	value	for	the	specified	token.
Found	in:	sphelper.h	
inline	HRESULT	SpSetDescription(

			ISpObjectToken		*pObjToken,

			const	WCHAR					*pszDescription,

			LANGID											Language	=	SpGetUserDefaultUILanguage(),

			BOOL													fSetLangIndependentId	=	TRUE

);

Parameters

pObjToken
[in]	The	object	token	of	the	target	resource.

pszDescription
[in]	A	null-terminated	string	containing	the	resource
description.

Language
[in]	The	language	ID	for	the	resource.	Language	is	optional
and	if	omitted	the	default	language	will	be	used.

fSetLangIndependentId
[in]	Boolean	indicating	whether	the	language	independent	ID
is	also	changed.	TRUE,	changes	it;	FALSE	does	not.	If
fSetLangIndependentId	omitted	the	default	TRUE	will	be
used.

Return	values

Value Description

S_OK Function	completed	successfully.
E_INVALIDARG Either	pszDescription	or	the	language

description	is	invalid	or	bad.
FAILED(hr) Appropriate	error	message.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SAPI	Object	classes
This	section	covers	the	following	topics:

SAPI	Application	Object	Classes
SAPI	DDK	Object	Classes

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SAPI	Application	Object	Classes
Object	class Related	interfaces
SpNotifyTranslator ISpNotifySink		ISpNotifyTranslator
SpObjectTokenCategory ISpObjectTokenCategory
SpObjectTokenEnum IEnumSpObjectTokens
SpObjectToken ISpObjectToken		ISpDataKey
SpDataKey ISpDataKey
SpResourceManager IServiceProvider		ISpResourceManager
SpStreamFormatConverter IStream		ISpStreamFormat			ISpAudio
SpMMAudioEnum IEnumSpObjectTokens
SpMMAudioIn ISpAudio		IStream		ISpStreamFormat

ISpEventSink		ISpObjectWithToken
SpMMAudioOut ISpAudio		IStream		ISpStreamFormat

ISpEventSink		ISpObjectWithToken
SpRecPlayAudio ISpAudio		IStream		ISpStreamFormat

ISpEventSink		ISpObjectWithToken
SpStream IStream		ISpStreamFormat			IStream
SpVoice ISpVoice		ISpEventSource			ISpNotifySource
SpSharedRecognizer ISpRecognizer
SpInprocRecognizer ISpRecognizer
SpRecoContext ISpRecoContext		ISpEventSource
SpSharedRecoContext ISpRecoContext		ISpEventSource
SpRecoGrammar ISpRecoGrammar		ISpGrammarBuilder
SpRecoResult ISpRecoResult		ISpPhrase
SpPhraseAlt ISpPhraseAlt		ISpPhrase
SpLexicon ISpLexicon
SpUnCompressedLexicon ISpLexicon		ISpObjectWithToken
SpCompressedLexicon ISpLexicon		ISpObjectWithToken
SpPhoneConverter ISpPhoneConverter		ISpObjectWithToken

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPNotifyTranslator
SPNotifyTranslator

ISpNotifySink
ISpNotifyTranslator

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpObjectTokenCategory
SpObjectTokenCategory

ISpDataKey
ISpObjectTokenCategory

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpObjectTokenEnum
SpObjectTokenEnum

IEnumSpObjectTokens

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpObjectToken
SpObjectToken

ISpObjectToken
ISpDataKey

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpDataKey
SpDataKey

ISpDataKey

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpResourceManager
SpResourceManager

IServiceProvider
ISpResourceManager
ISpTaskManager

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpStreamFormatConverter
SpStreamFormatConverter

IStream
ISpStreamFormat
ISpAudio

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpMMAudioEnum
SpMMAudioEnum

IEnumSpObjectTokens

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpMMAudioIn
The	SAPI	implementation	of	the	SpMMAudioIn	object	supports
the	following	UI	through	the	ISpTokenUI	interface	if	the	object
has	a	Windows	mixer	associated	with	it:

SPDUI_AudioProperties	-	Displays	advanced	UI	allowing
user	selection	of	the	input	line.
SPDUI_AudioVolume	-	Displays	the	Windows	mixer
allowing	user	adjustment	of	audio	volume.

SpMMAudioIn
IStream
ISpStreamFormat
ISpEventSource
ISpObjectWithToken
ISpMMSysAudio

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpMMAudioOut
The	SAPI	implementation	of	the	SpMMAudioOut	object	supports
the	following	UI	through	the	ISpTokenUI	interface	if	the	object
has	a	Windows	mixer	associated	with	it:

SPDUI_AudioVolume	-	Displays	the	Windows	mixer
allowing	user	adjustment	of	audio	volume.

SpMMAudioOut
IStream
ISpStreamFormat
ISpEventSource
ISpObjectWithToken
ISpMMSysAudio

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpRecPlayAudio
SpRecPlayAudio

ISpAudio
IStream
ISpStreamFormat
ISpEventSink
ISpObjectWithToken

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpStream
SpStream

ISpStream
ISpStreamFormat
IStream

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpVoice
SpVoice

ISpVoice
ISpEventSource
ISpNotifySource

	
An	application	creates	the	SpVoice	object	and	uses	the	ISpVoice
interface	to	submit	and	control	speech	synthesis.		Applications
can	speak	text	strings,	text	files,	and	audio	files.		Although	this
object	is	named	the	"SpVoice,"	it	is	actually	a	much	higher-level
object	than	a	single	voice.		Conceptually,	it	is	an	object	which
accepts	input	data	streams	that	are	then	rendered	to	the
specified	output,	potentially	using	multiple	speech	synthesis
voices	in	the	process.		Each	SpVoice	instance	contains	its	own
queue	of	input	streams	(usually	just	text)	and	its	own	output
stream	(usually	an	audio	device).		When	an	application	calls
ISpVoice::Speak,	another	item	is	added	to	the	end	of	the
SpVoice	queue.	

Basic	Synthesis
The	main	speech	synthesis	method	is	ISpVoice::Speak.		Almost
everything	having	to	do	with	controlling	synthesis	(for	example,
rate,	pitch,	and	volume)	is	performed	by	this	single	function.	
This	function	can	speak	plain	text,	or	the	application	can	mark
up	the	text	using	synthesis	markup	tags.			The	speak	method
enables	the	application	to	specify	whether	the	call	should	be
synchronous	or	asynchronous.		If	the	call	is	synchronous,	the
Speak	method	will	not	return	until	all	of	the	text	has	been
rendered.		Speak	returns	immediately	for	asynchronous	Speak
calls,	and	the	text	is	rendered	on	a	background	thread.
ISpVoice::SpeakStream	is	similar	to	the	Speak	method,	but	by
using	SpeakStream,	streams	of	text	or	audio	data	can	be	added
to	the	rendering	queue.

Overriding	Defaults
SAPI	will	automatically	use	the	default	voice	and	default	audio
output	device	if	the	application	does	not	specify	otherwise.		The
output	can	be	controlled	by	the	application	through
ISpVoice::SetOutput.		The	default	voice	can	be	overridden	in	one
of	two	ways:		The	application	can	call	ISpVoice::SetVoice	or	it
could	speak	a	<VOICE>	synthesis	markup	tag.

Audio	Device	Sharing
When	an	SpVoice	object	is	rendering	to	an	audio	device	(as
opposed	to	a	stream),	it	will	attempt	to	cooperate	with	other
SpVoice	objects	that	are	sharing	the	same	device	based	on	the
priority	of	the	SpVoice.		By	default,	a	voice	is	set	to
SPVPRI_NORMAL	which	means	that	it	will	wait	until	other	voices
in	the	system	have	completed	before	it	will	begin	rendering	its
input	queue.		A	voice	set	to	SPVPRI_ALERT	will	interrupt	a
normal	priority	voice	by	stopping	the	normal	voice,	rendering	its
own	queue,	and	then	restarting	the	normal	priority	voice.		An
SpVoice	with	a	priority	of	SPVPRI_OVER	will	simply	render	its
data	immediately	even	if	another	voice	is	currently	speaking
(they	would	both	speak	at	the	same	time).
Applications	can	control	the	priority	of	a	voice	by	calling
ISpVoice::SetPriority.

Rendering	to	Streams
The	SpVoice	can	render	data	to	any	object	that	implements
ISpStreamFormat,	which	is	a	simple	derivative	of	the	COM
standard	IStream.		The	SpStream	object	is	provided	to	allow
easy	conversion	of	existing	IStreams	to	support
ISpStreamFormat	or	to	read	or	write	wav	or	other	files.	
Applications	can	ISpVoice::SetOutput	to	force	the	SpVoice	to
render	to	a	stream.		When	rendering	to	a	stream,	the	voice	will
render	the	data	as	quickly	as	possible.

Synthesis	Events
The	SpVoice	implements	the	ISpEventSource	interface.	It
forwards	events	back	to	the	application	when	the	corresponding
audio	data	has	been	rendered	to	the	output	device.		Examples
of	events	are	reaching	a	word	boundary,	speaking	a	phoneme,
reaching	a	bookmark,	etc.		Some	applications	can	simply	be
notified	when	events	occur	and	then	call	ISpVoice::GetStatus	to
determine	the	current	stat	of	the	SpVoice	object.		More	complex
applications	may	need	to	queue	events.		See	the	documentation
for	ISpEventSource	for	information	on	setting	interest	in	events.

How	Created
Create	the	SpVoice	object	by	calling	::CoCreateInstance	with
CLSID_SpVoice.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpSharedRecognizer
SpSharedRecognizer

ISpRecognizer

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpInprocRecognizer
SpInprocRecognizer

ISpRecognizer

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpRecoContext
SpRecoContext

ISpRecoContext
ISpEventSource
ISpNotifySource

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpSharedRecoContext
SpSharedRecoContext

ISpRecoContext
ISpEventSource
ISpNotifySource

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpRecoGrammar
SpRecoGrammar

ISpRecoGrammar
ISpGrammarBuilder

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpRecoResult
SpRecoResult

ISpRecoResult
ISpPhrase

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpPhraseAlt
SpPhraseAlt

ISpPhraseAlt
ISpPhrase

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpLexicon
SpLexicon

ISpLexicon

The	Lexicon	database	is	a	repository	of	words	and	word-related
information	such	as	pronunciations	and	parts	of	speech.	The
SAPI	lexicon	interface	provides	application,	CSR	engine,	and	TTS
engine	developers	a	standard	method	with	which	to	create,
access,	modify,	and	synchronize	with	lexicons.

Types	of	Lexicons
There	are	two	types	of	custom	lexicons	supported	by	lexicon
interface:	user	and	application.	The	user	lexicon	stores	words
specific	to	a	user.	It	is	a	read/write	lexicon	and	is	shared	among
all	applications.	The	application	lexicon	is	supplied	by	the
application	and	stores	words	specific	to	the	application.	The
application	supplied	lexicons	are	read-only.	Application	lexicons
ensure	that	the	vocabulary	used	by	the	application	is	well
represented	in	the	lexicon.
Apart	from	custom	lexicons,	the	lexicon	interface	provides
access	to	vendor,	morph,	and	letter-to-sound	lexicons	that
Microsoft	ships	with	SAPI.	Vendor	lexicons	are	large	vocabulary
lexicons	holding	words	and	their	pronunciations	and	parts	of
speech.	The	morph	lexicons	derive	pronunciations	using	the
data	in	the	vendor	lexicon.	The	letter-to-sound	lexicon	computes
the	pronunciation	of	a	word	from	its	spelling.
User	lexicons	override	application	lexicons	and	engine	private
lexicons.	You	cannot	change	application	lexicons	from	the
SpLexicon	object.

Modifying	and	Viewing	the	Contents	of	a	Lexicon
An	application	can	modify	the	user	lexicon	using	the	calls
ISpLexicon::AddPronunciation	and
ISpLexicon::RemovePronunciation.	The	function
ISpLexicon::GetWords	enables	the	caller	to	see	what	words	are
in	the	user	or	application	lexicon.	To	obtain	the	pronunciation	of
a	given	word,	the	client	would	call
ISpLexicon::GetPronunciations.	There	is	not	a	standard	method
for	applications	to	access	the	lexicons	that	are	supplied	by	the
engine.

Synchronizing	Changes	to	a	Lexicon
The	lexicon	interface	provides	methods	to	synchronize	changes
in	lexicons	using	a	lexicon	generation	ID,	which	is	a	sort	of	time-
stamp	on	the	lexicon.	These	changes	in	the	lexicon	are	a	result
of	modifications	to	user	lexicons	or	for	the	installation	or
uninstallation	of	application	lexicons.	The	client	can	get	the
current	generation	by	calling	ISpLexicon::GetGeneration	and	can
see	the	change	history	since	a	given	generation	by	calling
ISpLexicon::GetGenerationChange.	A	speech	recognition	engine
might	want	to	use	the	synchronization	to	update	its	private
stores	with	the	changes	made	to	the	custom	lexicons	while	the
client	has	been	offline.	For	example,	SR	engines	can	update
their	language	models	with	changes	made	to	the	custom
lexicons	while	the	SR	engine	had	been	offline.

How	Created
An	SpLexicon	can	be	created	by	calling	::CoCreateInstance	with
CLSID_SpLexicon.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpUnCompressedLexicon
SpUnCompressedLexicon

ISpLexicon
ISpObjectWithToken

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpCompressedLexicon
SpCompressedLexicon

ISpLexicon
ISpObjectWithToken

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpPhoneConverter
SpPhoneConverter

ISpPhoneConverter
ISpObjectWithToken

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SAPI	DDK	Object	classes
Object	class Related	interfaces
SpDataKey ISpDataKey		ISpRegDataKey
SpObjectTokenEnum ISpObjectTokenEnumBuilder		IEnumSpObjectTokens
SpPhraseBuilder ISpPhraseBuilder		ISpPhrase
SpITNProcessor ISpITNProcessor
SpGrammarComplier ISpGrammarCompiler
SpGramCompBackend ISpGramCompBackend		ISpGrammarBuilder
SpSREngineSite ISpSREngineSite
SpTTSEngineSite ISpTTSEngineSite

Abstract	objects	for	engine	developers

Object	class Related	interfaces
SpSREngine ISpSREngine		ISpObjectWithToken
SpTTSEngine ISpTTSEngine		ISpObjectWithToken
SpSRAlternates ISpSRAlternates
SpRecoExtension _ISpPrivateEngineCall	Implements

extended	interface(s)
SpTokenUI ISpTokenUI

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpDataKey	(DDK)
SpDataKey

ISpDataKey
ISpRegDataKey

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpObjectTokenEnum	(DDK)
SpObjectTokenEnum

ISpObjectTokenEnumBuilder
IEnumSpObjectTokens

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpPhraseBuilder	(DDK)
SpPhraseBuilder

ISpPhraseBuilder
ISpPhrase

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpITNProcessor	(DDK)
SpITNProcessor

ISpITNProcessor

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpGrammarComplier	(DDK)
SpGrammarComplier

ISpGrammarCompiler

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpGramCompBackend	(DDK)
SpGramCompBackend

ISpGramCompBackend
ISpGrammarBuilder

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpSREngineSite	(DDK)
SpSREngineSite

ISpSREngineSite

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpTTSEngineSite	(DDK)
SpTTSEngineSite

ISpTTSEngineSite

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpSREngine	(DDK)
SpSREngine

ISpSREngine
ISpObjectWithToken

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpTTSEngine	(DDK)
SpTTSEngine

ISpTTSEngine
ISpObjectWithToken

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpSRAlternates	(DDK)
SpSRAlternates

ISpSRAlternates

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpRecoExtension	(DDK)
SpRecoExtension

ISpPrivateEngineCall

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpTokenUI	(DDK)
SpTokenUI

ISpTokenUI

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Error	Codes	Introduction
The	following	section	includes:

Complete	List	of	Error	Codes
Error	codes	listed	here	include	the	symbolic	error	name,	and	the
numeric	equivalent	displayed	as	both	decimal	and	hexadecimal.
The	following	list	may	be	searched	using	Ctrl+F.

Microsoft	Speech	SDK	Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Error	Codes
The	following	table	lists	error	codes	returned	by	SAPI.

Error	Name Hexadecimal Decimal
Description

SPERR_UNINITIALIZED 0x80045001 -2147201023
The	object	has	not	been	properly	initialized.

SPERR_ALREADY_INITIALIZED 0x80045002 -2147201022
The	object	has	already	been	initialized.

SPERR_UNSUPPORTED_FORMAT 0x80045003 -2147201021
The	caller	has	specified	an	unsupported	format.

SPERR_INVALID_FLAGS 0x80045004 -2147201020
The	caller	has	specified	invalid	flags	for	this	operation.

SP_END_OF_STREAM 0x00045005 282629
The	operation	has	reached	the	end	of	stream.

SPERR_DEVICE_BUSY 0x80045006 -2147201018
The	wave	device	is	busy.

SPERR_DEVICE_NOT_SUPPORTED 0x80045007 -2147201017
The	wave	device	is	not	supported.

SPERR_DEVICE_NOT_ENABLED 0x80045008 -2147201016
The	wave	device	is	not	enabled.

SPERR_NO_DRIVER 0x80045009 -2147201015

There	is	no	wave	driver	installed.

SPERR_FILEMUSTBEUNICODE 0x8004500a -2147201014
The	file	must	be	Unicode.

SP_INSUFFICIENTDATA 0x0004500b 282635

SPERR_INVALID_PHRASE_ID 0x8004500c -2147201012
The	phrase	ID	specified	does	not	exist	or	is	out	of	range.

SPERR_BUFFER_TOO_SMALL 0x8004500d -2147201011
The	caller	provided	a	buffer	too	small	to	return	a	result.

SPERR_FORMAT_NOT_SPECIFIED 0x8004500e -2147201010
Caller	did	not	specify	a	format	prior	to	opening	a	stream.

SPERR_AUDIO_STOPPED 0x8004500f -2147201009
The	stream	I/O	was	stopped	by	setting	the	audio	object	to	the
stopped	state.	This	will	be	returned	for	both	read	and	write
streams.

SP_AUDIO_PAUSED 0x00045010 282640
This	will	be	returned	only	on	input	(read)	streams	when	the
stream	is	paused.	Reads	on	paused	streams	will	not	block,	and
this	return	code	indicates	that	all	of	the	data	has	been
removed	from	the	stream.

SPERR_RULE_NOT_FOUND 0x80045011 -2147201007
Invalid	rule	name	passed	to	ActivateGrammar.

SPERR_TTS_ENGINE_EXCEPTION 0x80045012 -2147201006
An	exception	was	raised	during	a	call	to	the	current	TTS	driver.

SPERR_TTS_NLP_EXCEPTION 0x80045013 -2147201005
An	exception	was	raised	during	a	call	to	an	application
sentence	filter.

SPERR_ENGINE_BUSY 0x80045014 -2147201004
In	speech	recognition,	the	current	method	cannot	be
performed	while	a	grammar	rule	is	active.

SP_AUDIO_CONVERSION_ENABLED 0x00045015 282645
The	operation	was	successful,	but	only	with	automatic	stream
format	conversion.

SP_NO_HYPOTHESIS_AVAILABLE 0x00045016 282646
There	is	currently	no	hypothesis	recognition	available.

SPERR_CANT_CREATE 0x80045017 -2147201001
Cannot	create	a	new	object	instance	for	the	specified	object
category.

SP_ALREADY_IN_LEX 0x00045018 282648
The	word,	pronunciation,	or	POS	pair	being	added	is	already	in
lexicon.

SPERR_NOT_IN_LEX 0x80045019 -2147200999
The	word	does	not	exist	in	the	lexicon.

SP_LEX_NOTHING_TO_SYNC 0x0004501a 282650
The	client	is	currently	synced	with	the	lexicon.

SPERR_LEX_VERY_OUT_OF_SYNC 0x8004501b -2147200997
The	client	is	excessively	out	of	sync	with	the	lexicon.
Mismatches	may	not	sync	incrementally.

SPERR_UNDEFINED_FORWARD_RULE_REF 0x8004501c -2147200996
A	rule	reference	in	a	grammar	was	made	to	a	named	rule	that	was
never	defined.

SPERR_EMPTY_RULE 0x8004501d -2147200995
A	non-dynamic	grammar	rule	that	has	no	body.

SPERR_GRAMMAR_COMPILER_INTERNAL_ERROR 0x8004501e -2147200994
The	grammar	compiler	failed	due	to	an	internal	state	error.

SPERR_RULE_NOT_DYNAMIC 0x8004501f -2147200993
An	attempt	was	made	to	modify	a	non-dynamic	rule.

SPERR_DUPLICATE_RULE_NAME 0x80045020 -2147200992
A	rule	name	was	duplicated.

SPERR_DUPLICATE_RESOURCE_NAME 0x80045021 -2147200991
A	resource	name	was	duplicated	for	a	given	rule.

SPERR_TOO_MANY_GRAMMARS 0x80045022 -2147200990
Too	many	grammars	have	been	loaded.

SPERR_CIRCULAR_REFERENCE 0x80045023 -2147200989
Circular	reference	in	import	rules	of	grammars.

SPERR_INVALID_IMPORT 0x80045024 -2147200988
A	rule	reference	to	an	imported	grammar	that	could	not	be
resolved.

SPERR_INVALID_WAV_FILE 0x80045025 -2147200987
The	format	of	the	WAV	file	is	not	supported.

SP_REQUEST_PENDING 0x00045026 282662
This	success	code	indicates	that	an	SR	method	called	with	the
SPRIF_ASYNC	flag	is	being	processed.	When	it	has	finished
processing,	an	SPFEI_ASYNC_COMPLETED	event	will	be
generated.

SPERR_ALL_WORDS_OPTIONAL 0x80045027 -2147200985
A	grammar	rule	was	defined	with	a	null	path	through	the	rule.
That	is,	it	is	possible	to	satisfy	the	rule	conditions	with	no
words.

SPERR_INSTANCE_CHANGE_INVALID 0x80045028 -2147200984
It	is	not	possible	to	change	the	current	engine	or	input.	This
occurs	in	the	following	cases:	1)	SelectEngine	called	while	a
recognition	context	exists,	or	2)	SetInput	called	in	the	shared
instance	case.

SPERR_RULE_NAME_ID_CONFLICT 0x80045029 -2147200983
A	rule	exists	with	matching	IDs	(names)	but	different	names
(IDs).

SPERR_NO_RULES 0x8004502a -2147200982
A	grammar	contains	no	top-level,	dynamic,	or	exported	rules.
There	is	no	possible	way	to	activate	or	otherwise	use	any	rule
in	this	grammar.

SPERR_CIRCULAR_RULE_REF 0x8004502b -2147200981
Rule	'A'	refers	to	a	second	rule	'B'	which,	in	turn,	refers	to	rule
'A'.

SP_NO_PARSE_FOUND 0x0004502c 282668
Parse	path	cannot	be	parsed	given	the	currently	active	rules.

SPERR_NO_PARSE_FOUND 0x8004502d -2147200979
Parse	path	cannot	be	parsed	given	the	currently	active	rules.

SPERR_REMOTE_CALL_TIMED_OUT 0x8004502e -2147200978
A	marshaled	remote	call	failed	to	respond.

SPERR_AUDIO_BUFFER_OVERFLOW 0x8004502f -2147200977
This	will	only	be	returned	on	input	(read)	streams	when	the
stream	is	paused	because	the	SR	driver	has	not	retrieved	data
recently.

SPERR_NO_AUDIO_DATA 0x80045030 -2147200976
The	result	does	not	contain	any	audio,	nor	does	the	portion	of
the	element	chain	of	the	result	contain	any	audio.

SPERR_DEAD_ALTERNATE 0x80045031 -2147200975
This	alternate	is	no	longer	a	valid	alternate	to	the	result	it	was
obtained	from.	Returned	from	ISpPhraseAlt	methods.

SPERR_HIGH_LOW_CONFIDENCE 0x80045032 -2147200974
The	result	does	not	contain	any	audio,	nor	does	the	portion	of
the	element	chain	of	the	result	contain	any	audio.	Returned
from	ISpResult::GetAudio	and	ISpResult::SpeakAudio.

SPERR_INVALID_FORMAT_STRING 0x80045033 -2147200973
The	XML	format	string	for	this	RULEREF	is	invalid,	e.g.	not	a
GUID	or	REFCLSID.

SP_UNSUPPORTED_ON_STREAM_INPUT 0x00045034 282676
The	operation	is	not	supported	for	stream	input.

SPERR_APPLEX_READ_ONLY 0x80045035 -2147200971
The	operation	is	invalid	for	all	but	newly	created	application

lexicons.

SPERR_NO_TERMINATING_RULE_PATH 0x80045036 -2147200970

SP_WORD_EXISTS_WITHOUT_PRONUNCIATION 0x00045037 282679
The	word	exists	but	without	pronunciation.

SPERR_STREAM_CLOSED 0x80045038 -2147200968
An	operation	was	attempted	on	a	stream	object	that	has	been
closed.

SPERR_NO_MORE_ITEMS 0x80045039 -2147200967
When	enumerating	items,	the	requested	index	is	greater	than
the	count	of	items.

SPERR_NOT_FOUND 0x8004503a -2147200966
The	requested	data	item	(data	key,	value,	etc.)	was	not	found.

SPERR_INVALID_AUDIO_STATE 0x8004503b -2147200965
Audio	state	passed	to	SetState()	is	invalid.

SPERR_GENERIC_MMSYS_ERROR 0x8004503c -2147200964
A	generic	MMSYS	error	not	caught	by
_MMRESULT_TO_HRESULT.

SPERR_MARSHALER_EXCEPTION 0x8004503d -2147200963
An	exception	was	raised	during	a	call	to	the	marshaling	code.

SPERR_NOT_DYNAMIC_GRAMMAR 0x8004503e -2147200962
Attempt	was	made	to	manipulate	a	non-dynamic	grammar.

SPERR_AMBIGUOUS_PROPERTY 0x8004503f -2147200961

Cannot	add	ambiguous	property.

SPERR_INVALID_REGISTRY_KEY 0x80045040 -2147200960
The	key	specified	is	invalid.

SPERR_INVALID_TOKEN_ID 0x80045041 -2147200959
The	token	specified	is	invalid.

SPERR_XML_BAD_SYNTAX 0x80045042 -2147200958
The	xml	parser	failed	due	to	bad	syntax.

SPERR_XML_RESOURCE_NOT_FOUND 0x80045043 -2147200957
The	xml	parser	failed	to	load	a	required	resource	(e.g.,	voice,
phoneconverter,	etc.).

SPERR_TOKEN_IN_USE 0x80045044 -2147200956
Attempted	to	remove	registry	data	from	a	token	that	is	already
in	use	elsewhere.

SPERR_TOKEN_DELETED 0x80045045 -2147200955
Attempted	to	perform	an	action	on	an	object	token	that	has
had	associated	registry	key	deleted.

SPERR_MULTI_LINGUAL_NOT_SUPPORTED 0x80045046 -2147200954
The	selected	voice	was	registered	as	multi-lingual.	SAPI	does	not
support	multi-lingual	registration.

SPERR_EXPORT_DYNAMIC_RULE 0x80045047 -2147200953
Exported	rules	cannot	refer	directly	or	indirectly	to	a	dynamic
rule.

SPERR_STGF_ERROR 0x80045048 -2147200952

Error	parsing	the	SAPI	Text	Grammar	Format	(XML	grammar).

SPERR_WORDFORMAT_ERROR 0x80045049 -2147200951
Incorrect	word	format,	probably	due	to	incorrect	pronunciation
string.

SPERR_STREAM_NOT_ACTIVE 0x8004504a -2147200950
Methods	associated	with	active	audio	stream	cannot	be	called
unless	stream	is	active.

SPERR_ENGINE_RESPONSE_INVALID 0x8004504b -2147200949
Arguments	or	data	supplied	by	the	engine	are	in	an	invalid
format	or	are	inconsistent.

SPERR_SR_ENGINE_EXCEPTION 0x8004504c -2147200948
An	exception	was	raised	during	a	call	to	the	current	SR	engine.

SPERR_STREAM_POS_INVALID 0x8004504d -2147200947
Stream	position	information	supplied	from	engine	is
inconsistent.

SP_RECOGNIZER_INACTIVE 0x0004504e 282702
Operation	could	not	be	completed	because	the	recognizer	is
inactive.	It	is	inactive	either	because	the	recognition	state	is
currently	inactive	or	because	no	rules	are	active.

SPERR_REMOTE_CALL_ON_WRONG_THREAD 0x8004504f -2147200945
When	making	a	remote	call	to	the	server,	the	call	was	made	on	the
wrong	thread.

SPERR_REMOTE_PROCESS_TERMINATED 0x80045050 -2147200944
The	remote	process	terminated	unexpectedly.

SPERR_REMOTE_PROCESS_ALREADY_RUNNING 0x80045051 -2147200943
The	remote	process	is	already	running;	it	cannot	be	started	a	second
time.

SPERR_LANGID_MISMATCH 0x80045052 -2147200942
An	attempt	to	load	a	CFG	grammar	with	a	LANGID	different
than	other	loaded	grammars.

SP_PARTIAL_PARSE_FOUND 0x00045053 282707
A	grammar-ending	parse	has	been	found	that	does	not	use	all
available	words.

SPERR_NOT_TOPLEVEL_RULE 0x80045054 -2147200940
An	attempt	to	deactivate	or	activate	a	non	top-level	rule.

SP_NO_RULE_ACTIVE 0x00045055 282709
An	attempt	to	parse	when	no	rule	was	active.

SPERR_LEX_REQUIRES_COOKIE 0x80045056 -2147200938
An	attempt	to	ask	a	container	lexicon	for	all	words	at	once.

SP_STREAM_UNINITIALIZED 0x00045057 282711
An	attempt	to	activate	a	rule/dictation/etc	without	calling
SetInput	first	in	the	InProc	case.

SPERR_UNSUPPORTED_LANG 0x80045059 -2147200935
The	requested	language	is	not	supported.

SPERR_VOICE_PAUSED 0x8004505a -2147200934
The	operation	cannot	be	performed	because	the	voice	is
currently	paused.

SPERR_AUDIO_BUFFER_UNDERFLOW 0x8004505b -2147200933
This	will	only	be	returned	on	input	(read)	streams	when	the	real
time	audio	device	stops	returning	data	for	a	long	period	of
time.

SPERR_AUDIO_STOPPED_UNEXPECTEDLY 0x8004505c -2147200932
An	audio	device	stopped	returning	data	from	the	Read()	method
even	though	it	was	in	the	run	state.	This	error	is	only	returned	in
the	END_SR_STREAM	event.

SPERR_NO_WORD_PRONUNCIATION 0x8004505d -2147200931
The	SR	engine	is	unable	to	add	this	word	to	a	grammar.	The
application	may	need	to	supply	an	explicit	pronunciation	for
this	word.

SPERR_ALTERNATES_WOULD_BE_INCONSISTENT 0x8004505e -2147200930
An	attempt	to	call	ScaleAudio	on	a	recognition	result	having	previously
called	GetAlternates.	Allowing	the	call	to	succeed	would	result	in	the
previously	created	alternates	located	in	incorrect	audio	stream	positions.

SPERR_NOT_SUPPORTED_FOR_SHARED_RECOGNIZER 0x8004505f
The	method	called	is	not	supported	for	the	shared	recognizer	For	example,
ISpRecognizer::GetInputStream().

SPERR_TIMEOUT 0x80045060 -2147200928
A	task	could	not	complete	because	the	SR	engine	had	timed
out.

SPERR_REENTER_SYNCHRONIZE 0x80045061 -2147200927
An	SR	engine	called	synchronize	while	inside	of	a	synchronize
call.

SPERR_STATE_WITH_NO_ARCS 0x80045062 -2147200926

The	grammar	contains	a	node	no	arcs.

SPERR_NOT_ACTIVE_SESSION 0x80045063 -2147200925
Neither	audio	output	nor	input	is	supported	for	non-active
console	sessions.

SPERR_ALREADY_DELETED 0x80045064 -2147200924
The	object	is	a	stale	reference	and	is	invalid	to	use.	For
example,	having	an	ISpeechGrammarRule	object	reference
and	then	calling	ISpeechRecoGrammar::Reset()	will	cause	the
rule	object	to	be	invalidated.	Calling	any	methods	after	this	will
result	in	this	error.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Miscellanea
The	follow	sections	cover	supporting	speech	functions:

Global	Constants
User	Interfaces

COM	Class	ID	List
Token	Category	IDs
COM	Interface	IUnknown

American	English	Phoneme	Representation
International	Phoneme	Representation

Further	Reading

Microsoft	Speech	SDK	SAPI	5.1
The	following	constants	are	used	in	SAPI.	They	are	provided	with
the	C/C++	name	and	Automation	name	although	each	pair	uses
the	same	numeric	value.

C/C++	Name
Automation
Name Value

Description

SP_MAX_WORD_LENGTH Speech_Max_Word_Length 128
The	maximum	length	of	a	word.	Functions	with	input	word
strings	matching	or	exceeding	this	limit	will	return
E_INVALIDARG.

SP_MAX_PRON_LENGTH Speech_Max_Pron_Length 384
The	maximum	length	of	a	phoneme	pronunciation.	This	limit
applies	to	zero-terminated	lists	of	SPPHONEID	elements.
Functions	with	SPPHONEID	parameters	matching	or	exceeding
this	limit	will	return	E_INVALIDARG.

SP_STREAMPOS_ASAP Speech_StreamPos_Asap 0
Indicates	the	Bookmark	event	will	be	fired	as	soon	as	possible
after	the	speech	recognition	(SR)	engine	reaches	a
synchronization	point.	This	allows	the	Bookmark	to	be	sent	at
the	first	available	opportunity.

SP_STREAMPOS_REALTIME Speech_StreamPos_RealTime -1
Speech_StreamPos_RealTime	indicates	Bookmark	event	will
occur	when	the	SR	engine	reaches	the	current	audio	device
position.

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

User	Interface
The	following	user	interfaces	(UI)	are	available.	Each	UI	listed
provides	the	C/C++	and	Automation	symbols	although	each	pair
refers	to	the	same	UI.	The	UI	provided	is	for	SAPI	5	speech
recognition	(SR)	or	text-to-speech	engines	(TTS).
Though	not	required,	engines	may	employ	a	process
improvement	procedure	and	request	additional	information	from
the	user.	For	example,	if	the	recognition	attempts	are
consistently	poor	or	if	the	engine	detects	a	consistent	and
interfering	background	noise,	the	SR	engine	could	request	that
the	user	run	the	training	or	microphone	wizard.	This	event	is	a
suggestion	by	the	SR	engine	to	run	the	particular	UI.	The
application	may	choose	to	initiate	the	UI	or	may	ignore	the
suggestion.
Each	manufacturer's	engine	may	provide	a	different	set	of	UI,	so
check	documentation	with	that	particular	engine	for	additional
details.

C/C++	Name UI	description.
Automation	Name

SPDUI_AddRemoveWord Displays	the	Add/Remove	word
dialog	box.SpeechAddRemoveWord

SPDUI_UserTraining Displays	the	training	wizard.
Also	available	using	Speech
properties	in	Control	Panel.

SpeechUserTraining

SPDUI_MicTraining Displays	the	microphone
wizard.	Also	available	using
Speech	properties	in	Control
Panel.

SpeechMicTraining

SPDUI_RecoProfileProperties Displays	the	user	profile
wizard.	Also	available	using
Speech	properties	in	Control
Panel.

SpeechRecoProfileProperties

SPDUI_AudioProperties Displays	the	SR	engine's	audio
properties.SpeechAudioProperties

SPDUI_AudioVolume Displays	the	SR	engine's	audio
level.SpeechAudioVolume

SPDUI_EngineProperties Displays	the	engine's
properties.	This	UI	is	available
only	in	SAPI	5.0	engines;	not	in
SAPI	5.1	or	later	versions.

SpeechEngineProperties

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPDUI_EngineProperties	(C/C++)
SpeechEngineProperties	(Automation)

SPDUI_EngineProperties	defines	the	string	for	displaying	the
UI	for	changing	text-to-speech	(TTS)	or	speech	recognition	(SR)
engine	properties	on	a	per-user	basis.
It	is	not	a	SAPI	5	compliance	requirement	for	a	speech	engine	to
implement	this	UI	for	SPDUI_EngineProperties.
The	Microsoft	SR	engine	that	ships	in	the	SAPI	5	SDK	does	not
support	SPDUI_EngineProperties.

When	to	Implement
When	writing	a	speech	engine	for	the	desktop	or	a	graphical
environment,	users	can	change	settings	that	should	affect	all	of
their	recognition	profiles,	but	be	specific	to	each	user.	For
example,	the	Microsoft	TTS	engine	exposes	some	inverse-text-
normalization	(ITN)	rules	(e.g.,	comma	versus	period	number
delimiter,	date	format)	in	their	engine	properties.
Use	Speech	properties	in	Control	Panel	to	change	settings	for	all
installed	SAPI	5-compliant	TTS	and	SR	engines.	Click	Settings
to	change	settings	on	a	per-user/per-engine	basis.	Use	Settings
to	directly	accesses	each	Engine's	Settings	UI	using
SPDUI_EngineProperties.	If	the	engine	does	not	support	the
Engine	Properties	UI	(see	ISpTokenUI::IsUISupported),	Settings
will	be	unavailable.

When	to	Access
For	advanced	engine	properties,	the	application	could	display	a
button	or	menu	item	that	accessed	SPDUI_EngineProperties	(see
ISpVoice::DisplayUI).	Changes	made	within	the	engine
properties	UI	will	affect	only	one	engine,	and	will	not	affect

other	users.

#define	SPDUI_EngineProperties								L"EngineProperties"

Example
The	following	code	snippet	illustrates	the	use	of
ISpTokenUI::IsUISupported	using	SPDUI_EngineProperties.
				HRESULT	hr	=	S_OK;

				//	get	the	default	text-to-speech	engine	token

				hr	=	SpGetDefaultTokenFromCategoryId(SPCAT_VOICES,	&cpObjectToken);

				//	Check	hr

				//	get	the	object	token's	UI

				hr	=	cpObjectToken->QueryInterface(&cpTokenUI);

				//	Check	hr

				//	check	if	the	default	text-to-speech	engine	has	UI	for	its	properties	

				hr	=	cpTokenUI->IsUISupported(SPDUI_EngineProperties,	NULL,	NULL,	NULL,	&fSupported);

				//	Check	hr

				//	if	fSupported	==	TRUE,	then	default	speech	text-to-speech	engine	has	UI	for	its	properties	

The	following	code	snippet	illustrates	the	use	of
ISpVoice::DisplayUI	using	SPDUI_EngineProperties.
				HRESULT	hr	=	S_OK;

				//	display	engine	properties	UI	for	the	current	TTS	engine

				hr	=	cpVoice->DisplayUI(MY_HWND,	MY_APP_VOICE_PROPERTIES,	SPDUI_EngineProperties,	NULL,	NULL);

				//	Check	hr

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPDUI_AddRemoveWord	(C/C++)
SpeechAddRemoveWord	(Automation)

SPDUI_AddRemoveWord	defines	the	string	for	displaying	UI
to	modify	the	lexicon.
It	is	not	a	SAPI	5	compliance	requirement	for	a	speech
recognition	engine	to	implement	this	UI	for
SPDUI_AddRemoveWord.
If	a	speech	engine	is	being	written	for	the	desktop	or	a	graphical
environment,	users	can	modify	the	set	of	words	that	will	be
recognized	or	synthesized	(see	ISpLexicon).
Using	the	SDK	sample	application	Dictation	Pad,	the	user	can
modify	the	lexicon	using	the	Voice	menu-->Add/Delete	Words.
When	the	user	selects	this	menu	item,	Dictation	Pad	directly
accesses	the	default	SR	engine's	graphical	lexicon	editor
through	SPDUI_AddRemoveWord.	If	the	speech	recognition	(SR)
engine	does	not	support	the	Training	UI	(see
ISpTokenUI::IsUISupported),	the	menu	item	will	be	unavailable.

When	to	Access
The	application	could	monitor	the	user's	speech	experience
(correction	type	and	frequency).	If	the	user	corrects	a
recognition	by	typing	a	word	that	is	missing	from	the	lexicon
(see	ISpLexicon),	the	application	could	prompt	the	user	to	add	it
to	the	lexicon	using	ISpRecognizer::DisplayUI	and
SPDUI_AddRemoveWord.

#define	SPDUI_AddRemoveWord								L"AddRemoveWord"

Example

The	following	code	snippet	illustrates	the	use	of
ISpTokenUI::IsUISupported	using	SPDUI_AddRemoveWord.
				HRESULT	hr	=	S_OK;

				//	get	the	default	speech	recognizer	token

				hr	=	SpGetDefaultTokenFromCategoryId(SPCAT_RECOGNIZERS,	&cpObjectToken);

				//	Check	hr

				//	get	the	object	token's	UI

				hr	=	cpObjectToken->QueryInterface(&cpTokenUI);

				//	Check	hr

				//	check	if	the	default	speech	recognizer	has	UI	for	editing	the	lexicon	

				hr	=	cpTokenUI->IsUISupported(SPDUI_AddRemoveWord,	NULL,	NULL,	NULL,	&fSupported);

				//	Check	hr

				//	if	fSupported	==	TRUE,	then	default	speech	recognizer	has	UI	for	modifying	the	lexicon	

The	following	code	snippet	illustrates	the	use	of
ISpRecognizer::DisplayUI	using	SPDUI_AddRemoveWord.
				HRESULT	hr	=	S_OK;

				//	display	lexicon	editing	UI	for	the	current	recognizer

				hr	=	cpRecognizer->DisplayUI(MY_HWND,	MY_APP_MIC_TRAINING,	SPDUI_AddRemoveWord,	NULL,	NULL);

				//	Check	hr

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPDUI_UserTraining	(C/C++)
SpeechUserTraining	(Automation)

SPDUI_UserTraining	defines	the	string	for	displaying	a	speech
recognition	(SR)	engine's	User	Training	UI.
It	is	not	a	SAPI	5	compliance	requirement	for	an	SR	engine	to
implement	this	UI	for	SPDUI_UserTraining.

When	to	Implement
When	writing	a	speech	engine	for	the	desktop	or	a	graphical
environment,	users	can	train	the	engine	either	before	the	first
use,	or	when	recognition	accuracy	is	poor.
Use	the	SR	tab	of	Speech	properties	in	Control	Panel	to	change
settings	for	all	installed	SAPI	5-compliant	SR	engines.	Click
Train	Profile	to	change	settings	on	a	per-user/per-engine	basis.
Use	Train	Profile	to	directly	accesses	each	engine's	Settings	UI
using	SPDUI_UserTraining.	If	the	SR	engine	does	not	support	the
training	UI	(see	ISpTokenUI::IsUISupported),	Train	Profile	will	be
unavailable.

When	to	Access
The	application	could	monitor	the	user's	speech	experience	by
recognition	accuracy.	If	a	user	encounters	too	many	false
recognitions	or	recognition	corrections,	the	application	could
recommend	that	the	user	perform	more	recognizer	training.
Also,	an	SR	engine	can	send	a	SPEI_REQUEST_UI	event	to	the
application	if	it	determines	that	the	user	needs	to	perform
additional	recognizer	training.	(see	also
ISpRecognizer::IsUISupported	and	ISpRecognizer::DisplayUI)

#define	SPDUI_UserTraining								L"UserTraining"

Example
The	following	code	snippet	illustrates	the	use	of
ISpTokenUI::IsUISupported	using	SPDUI_UserTraining.
				HRESULT	hr	=	S_OK;

				//	get	the	default	speech	recognizer	token

				hr	=	SpGetDefaultTokenFromCategoryId(SPCAT_RECOGNIZERS,	&cpObjectToken);

				//	Check	hr

				//	get	the	object	token's	UI

				hr	=	cpObjectToken->QueryInterface(&cpTokenUI);

				//	Check	hr

				//	check	if	the	default	speech	recognizer	has	UI	for	performing	User	Training	

				hr	=	cpTokenUI->IsUISupported(SPDUI_UserTraining,	NULL,	NULL,	NULL,	&fSupported);

				//	Check	hr

				//	if	fSupported	==	TRUE,	then	default	speech	recognizer	has	UI	for	User	Training	

The	following	code	snippet	illustrates	the	use	of
ISpRecognizer::DisplayUI	using	SPDUI_UserTraining.
				HRESULT	hr	=	S_OK;

				//	display	user	training	UI	for	the	current	recognizer

				hr	=	cpRecognizer->DisplayUI(MY_HWND,	MY_APP_USER_TRAINING,	SPDUI_UserTraining,	NULL,	NULL);

				//	Check	hr

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPDUI_MicTraining	(C/C++)
SpeechMicTraining	(Automation)

SPDUI_MicTraining	defines	the	string	for	displaying	a	speech
recognition	(SR)engine's	microphone	training	UI.
It	is	not	a	SAPI	5	compliance	requirement	for	an	SR	engine	to
implement	this	UI	for	SPDUI_MicTraining.

When	to	Implement
When	writing	an	SR	engine	for	the	desktop	or	a	graphical
environment,	users	might	want	to	adapt	the	engine	either
before	the	first	use,	or	when	recognition	accuracy	is	poor.
Microphone	quality	can	greatly	benefit	recognition	accuracy,
even	for	a	speaker-independent	engine.
Use	Speech	properties	in	Control	Panel	to	change	settings	for	all
installed	SAPI	5-compliant	SR	engines.	Click	Configure
Microphone	on	the	SR	tab	to	adapt	the	microphone	and
directly	access	each	SR	engine's	Microphone	Training	UI	using
SPDUI_MicTraining.	If	the	SR	engine	does	not	support
Microphone	Training	UI	(see	ISpTokenUI::IsUISupported),
Configure	Microphone	will	be	unavailable.

When	to	Access
The	application	could	monitor	the	user's	speech	experience	by
recognition	accuracy.	If	a	user	encounters	too	many	false
recognitions	or	recognition	corrections,	the	application	could
recommend	that	the	user	re-adapt	the	SR	engine	to	their
microphone	(see	ISpRecognizer::DisplayUI).
Also,	an	SR	engine	can	send	a	SPEI_REQUEST_UI	event	to	the
application	if	it	determines	that	the	user	needs	to	perform
additional	recognizer	training.	For	example,	if	the	input	is	too

quiet	or	too	loud.	Typically	the	UI	type	will	be	SPDUI_MicTraining
to	ensure	that	the	SR	engine	is	adapted	to	the	current	input
audio	settings.

#define	SPDUI_MicTraining								L"MicTraining"

Example
The	following	code	snippet	illustrates	the	use	of
ISpTokenUI::IsUISupported	using	SPDUI_MicTraining.
				HRESULT	hr	=	S_OK;

				//	get	the	default	speech	recognizer	token

				hr	=	SpGetDefaultTokenFromCategoryId(SPCAT_RECOGNIZERS,	&cpObjectToken);

				//	Check	hr

				//	get	the	object	token's	UI

				hr	=	cpObjectToken->QueryInterface(&cpTokenUI);

				//	Check	hr

				//	check	if	the	default	speech	recognizer	has	UI	for	performing	Microphone	Training	

				hr	=	cpTokenUI->IsUISupported(SPDUI_MicTraining,	NULL,	NULL,	NULL,	&fSupported);

				//	Check	hr

				//	if	fSupported	==	TRUE,	then	default	speech	recognizer	has	UI	for	Microphone	Training	

The	following	code	snippet	illustrates	the	use	of
ISpRecognizer::DisplayUI	using	SPDUI_MicTraining.
				HRESULT	hr	=	S_OK;

				//	display	microphone	training	UI	for	the	current	recognizer

				hr	=	cpRecognizer->DisplayUI(MY_HWND,	MY_APP_MIC_TRAINING,	SPDUI_MicTraining,	NULL,	NULL);

				//	Check	hr

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPDUI_RecoProfileProperties	(C/C++)
SpeechRecoProfileProperties
(Automation)

SPDUI_RecoProfileProperties	defines	the	string	for
displaying	the	properties	associated	with	a	specific	recognition
profile.
It	is	not	a	SAPI	5	compliance	requirement	for	a	speech
recognition	(SR)	engine	to	implement	this	UI	for
SPDUI_RecoProfileProperties.
For	more	information	about	Recognition	Profiles,	see	the	Object
Tokens	and	Registry	Settings	White	Paper.

When	to	Implement
When	writing	a	speech	engine	for	the	desktop	or	a	graphical
environment,	users	can	modify	settings	for	specific	run-time
environments	(e.g.,	mobile	versus	desktop,	noisy	versus	quiet,
fast	versus	slow	computer,	etc.).
Use	Speech	properties	in	Control	Panel	to	change	settings	for	all
installed	SAPI	5-compliant	text-to-speech	(TTS)	and	SR	engines.
Click	Settings	to	change	settings	on	a	per-user/per-engine
basis.	Use	SPDUI_RecoProfileProperties	to	directly	access	each
Engine's	Recognition	Profile	Settings	UI.	If	the	engine	does	not
support	the	Recognition	Profile	Properties	UI	(see
ISpTokenUI::IsUISupported),	Settings	will	be	unavailable.

When	to	Access
The	application	could	display	a	button	or	menu	item	for
environment	profile	settings	that	accessed
SPDUI_RecoProfileProperties.	If	the	application	can	be	used	in

either	noisy	or	quiet	environments,	the	user	could	be	prompted
to	update	the	current	recognition	profile	to	reflect	their	specific
environment	(see	ISpRecognizer::DisplayUI.	Changes	made
within	the	engine	properties	UI	will	affect	only	one	engine,	and
will	not	affect	other	users.
For	information	on	creating	new	recognition	profiles,	see	the
helper	function	SpCreateNewToken	(by	Category	Id).

#define	SPDUI_RecoProfileProperties								L"RecoProfileProperties"

Example
The	following	code	snippet	illustrates	the	use	of
ISpTokenUI::IsUISupported	using	SPDUI_RecoProfileProperties.
				HRESULT	hr	=	S_OK;

				//	get	the	default	speech	recognizer	token

				hr	=	SpGetDefaultTokenFromCategoryId(SPCAT_RECOGNIZERS,	&cpObjectToken);

				//	Check	hr

				//	get	the	object	token's	UI

				hr	=	cpObjectToken->QueryInterface(&cpTokenUI);

				//	Check	hr

				//	check	if	the	default	speech	recognizer	has	UI	for	its	portion	of	the	recognition	profile

				hr	=	cpTokenUI->IsUISupported(SPDUI_RecoProfileProperties,	NULL,	NULL,	NULL,	&fSupported);

				//	Check	hr

				//	if	fSupported	==	TRUE,	then	the	default	speech	recognizer	has	UI	for	its	portion	of	the	recognition	profile

The	following	code	snippet	illustrates	the	use	of
ISpRecognizer::DisplayUI	using	SPDUI_RecoProfileProperties.
				HRESULT	hr	=	S_OK;

				//	display	recognition	profile	properties	UI	for	the	current	recognizer

				hr	=	cpRecognizer->DisplayUI(MY_HWND,	MY_APP_RECO_PROFILE_PROPERTIES,	SPDUI_RecoProfileProperties,	NULL,	NULL);

				//	Check	hr

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPDUI_AudioProperties	(C/C++)
SpeechAudioProperties	(Automation)

SPDUI_AudioProperties	defines	the	string	for	displaying	an
audio	object's	properties	user	interface	(UI).

#define	SPDUI_AudioProperties								L"AudioProperties"

When	to	Implement
An	application	can	modify	the	object's	implementation-specific
properties	for	a	custom	audio	object.	For	example,	the	SAPI
implementation	of	the	multimedia	audio	object	has	a	UI	so	that
the	user	can	select	the	multimedia	device	line	(e.g.,	microphone
input,	line	input,	etc.).
A	custom	audio	object	that	performed	noise	reduction	on	the
input	stream	could	have	a	UI	for	selecting	the	audio	input	object
to	read	data	from	initially.	It	could	also	display	a	UI	that	allows
the	user	to	adjust	how	much	noise	reduction	is	performed.
Speech	properties	in	Control	Panel	allows	the	user	to	select	the
default	audio	input	and	output	objects.	Click	Properties	to
directly	access	each	audio	object's	properties	UI	using
SPDUI_AudioProperties.	If	the	audio	object	does	not	support	the
Properties	UI	(see	ISpTokenUI::IsUISupported),	Properties	will	be
unavailable.

Example
The	following	code	snippet	illustrates	the	use	of
ISpTokenUI::IsUISupported	using	SPDUI_AudioProperties.
				HRESULT	hr	=	S_OK;

				//	get	the	default	input	audio	object	token

				hr	=	SpGetDefaultTokenFromCategoryId(SPCAT_AUDIOIN,	&cpObjectToken);

				//	Check	hr

				//	get	the	object	token's	UI

				hr	=	cpObjectToken->QueryInterface(&cpTokenUI);

				//	Check	hr

				//	check	if	the	default	audio	input	object	has	UI	for	Properties	

				hr	=	cpTokenUI->IsUISupported(SPDUI_AudioProperties,	NULL,	NULL,	NULL,	&fSupported);

				//	Check	hr

				//	if	fSupported	==	TRUE,	then	default	audio	input	object	has	UI	for	Properties	

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SPDUI_AudioVolume	(C/C++)
SpeechAudioVolume	(Automation)

SPDUI_AudioVolume	defines	the	string	for	displaying	an	audio
object's	volume	UI.

When	to	Implement
An	application	can	modify	the	object's	volume	settings	for	a
custom	audio	object.	For	example,	the	SAPI	implementation	in
the	multimedia	audio	object	displays	the	Windows	Mixer
associated	with	the	audio	device.
Using	Speech	properties	in	Control	Panel,	select	the	default
audio	input	and	output	objects.	Click	Volume	to	directly	access
each	audio	object's	volume	UI	using	SPDUI_AudioVolume.	If	the
audio	object	does	not	support	the	Volume	UI	(see
ISpTokenUI::IsUISupported),	Volume	will	be	unavailable.

When	to	Access
The	application	accesses	the	audio	object's	volume	UI	if	the
output	is	too	loud,	or	the	input	is	too	quiet.
Also,	an	SR	engine	can	send	an	SPEI_REQUEST_UI	event	to	the
application	if	it	determines	that	the	user	should	perform
microphone	training.	Typically	the	UI	type	will	be
SPDUI_MicTraining	to	ensure	that	the	SR	engine	is	adapted	to
the	current	input	audio	settings.	For	example,	if	the	audio	input
volume	is	very	low,	it	is	preferable	to	raise	the	audio	input
volume,	rather	than	request	the	SR	engine	to	amplify	a	poor
audio	input	signal.
SAPI	will	generally	not	recognize	changes	to	the	Windows	Mixer
settings.	This	Mixer	is	made	available	solely	as	a	last	resort	in
adjusting	the	sound	system	if	the	Microphone	Training	wizard

fails	to	set	the	volume	suitably.

#define	SPDUI_AudioVolume								L"AudioVolume"

Example
The	following	code	snippet	illustrates	the	use	of
ISpTokenUI::IsUISupported	using	SPDUI_AudioVolume.
				HRESULT	hr	=	S_OK;

				//	get	the	default	input	audio	object	token

				hr	=	SpGetDefaultTokenFromCategoryId(SPCAT_AUDIOIN,	&cpObjectToken);

				//	Check	hr

				//	get	the	object	token's	UI

				hr	=	cpObjectToken->QueryInterface(&cpTokenUI);

				//	Check	hr

				//	check	if	the	default	audio	input	object	has	UI	for	Volume	

				hr	=	cpTokenUI->IsUISupported(SPDUI_AudioVolume,	NULL,	NULL,	NULL,	&fSupported);

				//	Check	hr

				//	if	fSupported	==	TRUE,	then	default	audio	input	object	has	UI	for	Properties	

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

COM	Class	ID	List
The	following	Class	IDs	are	used	with	SAPI	5.

CLSID
Interface	on	which	CLSID
can	be	co-created

CLSID_SpNotifyTranslator ISpNotifyTranslator
CLSID_SpObjectTokenCategory ISpObjectTokenCategory
CLSID_SpObjectToken ISpObjectTokenInit
CLSID_SpResourceManager ISpResourceManager
CLSID_SpStreamFormatConverter ISpStreamFormatConverter
CLSID_SpStreamFormatConverter ISpEventSource
CLSID_SpStreamFormatConverter ISpEventSink
CLSID_SpStreamFormatConverter ISpAudio
CLSID_SpMMAudioEnum ISpObjectWithToken
CLSID_SpMMAudioEnum IEnumSpObjectTokens
CLSID_SpMMAudioIn ISpMMSysAudio
CLSID_SpMMAudioOut ISpMMSysAudio
CLSID_SpRecPlayAudio ISpAudio
CLSID_SpRecPlayAudio ISpObjectWithToken
CLSID_SpStream ISpStream
CLSID_SpStream ISpEventSource
CLSID_SpStream ISpEventSink
CLSID_SpStream ISpTranscript
CLSID_SpVoice ISpVoice
CLSID_SpVoice ISpThreadTask
CLSID_SpSharedRecoContext ISpRecoContext
CLSID_SpSharedRecoContext _ISpPrivateEngineCall
CLSID_SpInprocRecognizer ISpRecognizer
CLSID_SpSharedRecognizer ISpRecognizer
CLSID_SpLexicon ISpContainerLexicon
CLSID_SpUnCompressedLexicon ISpLexicon

CLSID_SpUnCompressedLexicon ISpObjectWithToken
CLSID_SpCompressedLexicon ISpLexicon
CLSID_SpCompressedLexicon ISpObjectWithToken
CLSID_SpPhoneConverter ISpPhoneConverter
CLSID_SpNullPhoneConverter ISpPhoneConverter
CLSID_SpResourceManager ISpTaskManager

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Token	Category	IDs
The	following	token	category	IDs	are	used	with	SAPI	5.

Category	ID Purpose
SPCAT_AUDIOOUT Available	audio	output	devices.
SPCAT_AUDIOIN Available	audio	input	devices.
SPCAT_VOICES Available	voices.
SPCAT_RECOGNIZERS Available	recognizers.
SPCAT_APPLEXICONS Available	application	lexicons.
SPCAT_PHONECONVERTERS Available	phoneme	converters
SPCAT_RECOPROFILES Available	recognition	profiles.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

COM	Interface	IUnknown
The	IUnknown	interface	is	a	common	interface	supported	by	all
COM	objects	and,	therefore,	by	all	speech	objects.	The
IUnknown	interface	has	the	following	member	functions:

QueryInterface

AddRef
Release

An	application	uses	IUnknown	to	obtain	pointers	to	other
interfaces	supported	by	an	object	and	to	manage	the	interface
pointers	after	obtaining	them.

QueryInterface
HRESULT	QueryInterface(

			REFIID	riid,		 	 //Identifier	of	the	requested	interface

			LPVOID	FAR			*ppvObj		 //Address	of	output	variable	that	receives	the

																			 	 //interface	pointer	requested	in	iid

);

Retrieves	the	address	of	a	specified	interface	on	a	particular
object	so	that	an	application	can	query	an	object	to
determine	what	interfaces	it	supports.
Returns	NOERROR,	if	successful,	or	one	of	these	error
values:

CO_E_OBJNOTCONNECTED

E_NOINTERFACE
E_OUTOFMEMORY

E_INVALIDARG
E_UNEXPECTED

REGDB_E_IIDNOTREG

Parameter Description
riid [in]	Interface	identifier	of	the	interface

to	be	retrieved.
ppvObj [out]	Address	of	a	variable	that

receives	the	address	of	the	specified
interface	on	the	object.	If	the	interface
specified	in	riid	is	not	supported	by	the
object,	the	function	returns
E_NOINTERFACE.	All	errors	set	*ppvObj
to	NULL.

AddRef
ULONG	AddRef(void);

Increments	a	reference	count	for	every	new	copy	of
an	interface	pointer	to	a	specified	interface	on	a
particular	object.
Returns	the	value	of	the	reference	count.

When	an	interface	is	fully	released,	the	reference	count	is
zero.	This	information	should	be	used	only	for	diagnostics
and	testing.

Release
ULONG	Release(void);

Decrements	the	reference	count	for	the	specified
interface	on	a	particular	object.
Returns	the	value	of	the	reference	count.

When	an	interface	is	fully	released,	the	reference	count	is
zero.	This	information	should	be	used	only	for	diagnostics
and	testing.
If	the	object	reference	count	goes	to	zero	as	a	result	of
calling	Release,	the	object	is	freed	from	memory.
If	the	AddRef	member	function	has	been	called	on	this
object's	interface	n	times	and	this	is	the	n+1th	call	to
Release,	the	interface	pointer	frees	itself.	An	object	frees
itself	if	the	released	pointer	is	the	only	pointer	and	if	the
object	supports	multiple	interfaces	through	the
QueryInterface	member	function.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

American	English	Phoneme
Representation
This	is	a	brief	introduction	to	the	use	and	implementation	of	the
SAPI	phoneme	representations.

Symbolic	and	Numerical	Representation
Application	developers	can	create	pronunciations	for	words	that
are	not	currently	in	the	lexicon	by	using	the	English	phonemes
represented	in	the	following	table.	The	phoneme	set	is
composed	of	a	symbolic	phonetic	representation	(SYM).
The	application	developer	will	be	able	to	enter	the	SYM
representation	to	create	the	pronunciation	using	the	XML	PRON
tag,	or	by	creating	a	new	lexicon	entry.	Each	phoneme	entry
should	be	space	delimited.

Tag Description
PRON	SYM Tag	used	to	insert	a

pronunciation	using
symbolic
representation.

Example:	pronunciation	for	"hello":
<PRON	SYM	=	"h	eh	l	ow"/>

For	improved	accuracy,	the	primary	(1),	secondary	(2)	stress
markers,	and	the	syllabic	markers	(-)	can	be	added	to	the
pronunciation.
Example:	pronunciation	for	"hello"	using	the	primary	stress	(1)
and	syllabic	(-)	markers:
<PRON	SYM	=	"h	eh	-	l	ow	1"/>

American	English	Phoneme	Table

SYM Example PhoneID
- syllable	boundary

(hyphen)
1

! Sentence	terminator
(exclamation	mark)

2

& word	boundary 3
, Sentence	terminator

(comma)
4

. Sentence	terminator
(period)

5

? Sentence	terminator
(question	mark)

6

_ Silence	(underscore) 7
1 Primary	stress 8
2 Secondary	stress 9
aa father 10
ae cat 11
ah cut 12
ao dog 13
aw foul 14
ax ago 15
ay bite 16
b big 17
ch chin 18
d dig 19
dh then 20
eh pet 21
er fur 22
ey ate 23
f fork 24

g gut 25
h help 26
ih fill 27
iy feel 28
jh joy 29
k cut 30
l lid 31
m mat 32
n no 33
ng sing 34
ow go 35
oy toy 36
p put 37
r red 38
s sit 39
sh she 40
t talk 41
th thin 42
uh book 43
uw too 44
v vat 45
w with 46
y yard 47
z zap 48
zh pleasure 49

Please	see	International	Phonemes	for	information	on	other
phoneme	sets.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

International	Phoneme	Representation
You	can	create	pronunciations	for	words	that	are	not	currently	in
the	lexicon	using	the	phonemes	represented	in	the	attached
appendices.	The	proposed	phoneme	set	is	composed	of	a
symbolic	phonetic	representation	(SYM).
You	can	enter	the	SYM	representation	to	create	the
pronunciation	by	using	the	XML	PRON	tag,	or	by	creating	a	new
lexicon	entry.	Each	phoneme	should	be	space	delimited.
The	engine	is	passed	a	USHORT	structure	called	SPPHONEID	(a
number	between	1	and	n	where	n	is	the	total	number	of
phonemes	for	that	language).	The	conversion	from	the	SYM	to
SPPHONEID	occurs	in	the	SAPI	PhoneConverter.

Mark	Up
Tag Description
PRON	SYM Tag	used	to	insert	a

pronunciation	using
symbolic	representation

Example:	pronunciation	for	"hello"
<PRON	SYM	=	"h	eh	l	ow"/>

For	improved	accuracy,	the	primary	(1),	secondary	(2)	stress
markers,	and	the	syllabic	markers	(-)	can	be	added	to	the
pronunciation.
Example:	pronunciation	for	"hello"	using	the	primary	stress	(1)
and	syllabic	(-)	markers:
<PRON	SYM	=	"h	eh	-	l	ow	1"/>

SAPI-compliant	engines	are	required	to	accept	the	PHONEID
representation,	and	produce	an	articulation.	The	specific
allophonic	articulation	is	defined	by	the	engine.	There	is	no

provision	for	support	of	phonemes	outside	the	SAPI	phoneme
set.

Main	goals	for	defining	the	language	dependent
phoneme	set:

Provide	an	engine-independent	architecture	for
application	developers	to	create	user	and	application
lexicons.

Make	the	English	phonetic	table	simple	enough	to	be
used	and	understood	by	non-linguists	who	use	the
American	English	phoneme	set.

International	phoneme	use
Using	the	international	phoneme	schema,	you	can	create	a
phoneme	set	which	can	be	used	for	each	language
independently.	Using	the	numeric	representation	as	opposed	to
the	International	Phonetic	Alphabet	(IPA)	code	will	eliminate
some	of	the	problems	regarding	the	possible	differences	in	the
IPA	values	for	the	same	phonemes.	Hence,	an	'r'	in	English	will
correspond	to	a	certain	number	(38)	and	an	'r'	in	French	may
correspond	to	a	different	number.	It	is	up	to	the	individual
engine	to	provide	the	exact	IPA	value	for	the	two	'r's.
Each	language	will	be	associated	with	a	set	of	phonemes
numbered	from	1	to	X.	You	can	use	either	the	symbolic
representation	or	the	number	representation	to	enter	the
pronunciation.	Since	you	are	probably	not	a	linguist,	the	IPA
code	will	probably	have	little	meaning.
Please	note	that	consistent	pronunciation	is	NOT	a	goal,	while
predictable	pronunciation	is.	Using	the	phoneme	set,	an
application	developer	can	guarantee	a	minimal	pronunciation,
but	not	the	exact	allophonic	expression.	So,	the	word	"first"	will
always	be	pronounced	as	"first",	never	as	"fist"	or	"feast",	etc,
but	the	accent	of	the	engine	may	be	slightly	different	due	to	the
fact	that	the	internal	allophone	values	may	differ
For	more	information	and	definitions	for	international	phoneme
sets,	please	see:

Chinese	Phonemes
Japanese	Phonemes

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Chinese	Phonemes
The	following	table	defines	the	Chinese	language	phoneme
set.

Symbol PhoneID Example
- 1 Syllable	boundary

(hyphen)
! 2 Sentence	terminator

(exclamation	mark)
& 3 word	boundary
, 4 Sentence	terminator

(comma)
. 5 Sentence	terminator

(period)
? 6 Sentence	terminator

(question	mark)
_ 7 Silence	(underscore)
+ 8 primary	stress
* 9 secondary	stress
1 10 Tone	1
2 11 Tone	2
3 12 Tone	3
4 13 Tone	4
5 14 Tone	5
a 15 a	1	fei	1	(rogue)
ai 16 ai	4	ren	2	(lover)
an 17 an	1	quan	2	(safe)
ang 18 ang	1	zang	1	(dirty)
ao 19 jiao	1	ao	4	(proud)
ba 20 ba	4	ba	5	(dad)
bai 21 bai	2	se	4	(white)
ban 22 mu	4	ban	3	(board)

bang 23 bang	3	jia	4	(kidnap)
bao 24 yong	1	bao	4

(embrace)
bei 25 bei	3	fang	1	(north)
ben 26 ben	4	dan	4	(fool)
beng 27 beng	4	tiao	4	(jump)
bi 28 bi	2	zi	5	(nose)
bian 29 bian	4	hua	5

(change)
biao 30 biao	3	ge	2	(table)
bie 31 li	2	bie	2	(part	with)
bin 32 bin	1	ke	4	(guest)
bing 33 shi	4	bing	1	(soldier)
bo 34 bo	2	dou	4	(wrestle)
bu 35 bu	4	xing	2	(walk)
ca 36 ca	1	gan	1	(wipe)
cai 37 cai	1	ce	4	(guess)
can 38 can	1	jia	1	(join)
cang 39 cang	1	ying	5	(fly)
cao 40 cao	1	chang	3

(playground)
ce 41 ce	4	liang	2

(measure)
cen 42 cen	1	ci	1	(uneven)
ceng 43 ceng	2	jing	1	(once)
cha 44 jian	3	cha	2	(check)
chai 45 chai	1	hui	3

(demolish)
chan 46 chan	3	ye	4

(industry)
chang 47 jing	1	chang	2

(often)
chao 48 chao	1	yue	4

(exceed)
che 49 qi	4	che	1

(automobile)
chen 50 chen	2	jiu	4	(old)
cheng 51 cheng	2	che	1	(ride)
chi 52 chi	2	dao	4	(late	for)
chong 53 chong	1	man	3	(full

of)
chou 54 chou	2	hen	4

(hatred)
chu 55 chu	2	fa	3	(division)
chuai 56 chuai	3	ce	4	(guess)
chuan 57 lun	2	chuan	2	(ship)
chuang 58 chuang	4	ye	4	(carve

out)
chui 59 tie	3	chui	2

(hammer)
chun 60 chun	1	tian	1

(spring)
chuo 61 wo	4	chuo	4	(dirty)
ci 62 ci	2	qi	4	(porcelain)
cong 63 cong	2	lin	2	(thicket)
cou 64 jin	3	cou	4	(compact)
cu 65 cu	4	xiao	1	(sales

promotion)
cuan 66 tao	2	cuan	4	(run

away)
cui 67 cui	1	cu	4	(press)
cun 68 xiang	1	cun	1

(country)
cuo 69 cuo	4	wu	4	(error)
da 70 da	4	(big)
dai 71 dai	4	biao	3

(delegate)
dan 72 dan	4	shi	4	(but)
dang 73 dang	1	ran	2	(sure)
dao 74 dao	1	(knife)
de 75 de	5	(function	word)
dei 76 dei	3	(must)
den 77 den	4	(yank)
deng 78 ban	3	deng	4

(wooden	stool)
di 79 di	2	que	4	(certainly)
dia 80 dia	3	(coquetry

voice)
dian 81 dian	3	(dot)
diao 82 diao	4	(hang)
die 83 die	1	dao	3	(tumble)
ding 84 jue	2	ding	4	(decide)
diu 85 diu	1	qi	4	(discard)
dong 86 dong	1	fang	1	(east)
dou 87 zhan	4	dou	4

(struggle)
du 88 du	4	jue	2	(stop)
duan 89 duan	3	(short)
dui 90 dui	4	(right)
dun 91 ting	2	dun	4	(halt)
duo 92 duo	1	yu	2

(unnecessary)
e 93 e	4	(hungry)
ei 94 ei	4	(yes)
en 95 en	1	hui	4	(favor)
er 96 er	3	(ear)
fa 97 fa	1	zhan	3

(development)
fan 98 fan	4	(rice)

fang 99 fang	2	jian	1	(room)
fei 100 fei	1	(fly)
fen 101 fen	1	bie	2

(separate)
feng 102 feng	1	(wind)
fo 103 fo	2	(buddha)
fou 104 fou	3	ding	4	(denial)
fu 105 fu	4	qin	1	(father)
ga 106 gan	1	ga	4

(awkward)
gai 107 ying	1	gai	1	(should)
gan 108 gan	1	jing	4

(neatness)
gang 109 gang	1	cai	2	(just)
gao 110 gao	1	(tall)
ge 111 pin	3	ge	2

(character)
gei 112 gei	3	yu	3	(give)
gen 113 gen	1	(root)
geng 114 geng	4	jia	1	(much

more)
gong 115 gong	1	ren	2

(worker)
gou 116 zu	2	gou	4	(enough)
gu 117 gu	4	xiang	1

(hometown)
gua 118 xi	1	gua	1

(watermelon)
guai 119 qi	2	guai	4	(oddness)
guan 120 guan	1	bi	4	(close)
guang 121 guang	1	(light)
gui 122 gui	3	(ghost)
gun 123 gun	4	(stick)

guo 124 guo	4	qu	4	(past)
ha 125 ha	1	(sound	of

laugh)
hai 126 hai	2	zi	5	(child)
han 127 chu	1	han	4	(sweat)
hang 128 hang	2	xing	2	(sail)
hao 129 hao	3	(good)
he 130 he	2	(river)
hei 131 hei	1	(black)
hen 132 hen	3	(very)
heng 133 heng	2	xiang	4

(landscape
orientation)

hong 134 hong	2	(red)
hou 135 hou	2	zi	5	(monkey)
hu 136 hu	2	xu	1	(beard)
hua 137 hua	4	(picture)
huai 138 huai	4	(bad)
huan 139 huan	2	jing	4

(environment)
huang 140 huang	2	se	4

(yellow)
hui 141 hui	1	huang	2

(refulgence)
hun 142 hun	2	zhuo	2

(muddy)
huo 143 huo	3	(fire)
ji 144 ji	2	shi	2	(in	time)
jia 145 jia	4	qi	1	(holiday)
jian 146 jian	3	dan	1	(simple)
jiang 147 jiang	1	(river)
jiao 148 jiao	1	tong	1	(traffic)
jie 149 jie	2	ri	4	(feast)

jin 150 jin	3	zhang	1	(strain)
jing 151 gan	1	jing	4

(neatness)
jiong 152 jiong	3	po	4

(embarrassed)
jiu 153 jiu	3	(nine)
ju 154 ju	4	zi	5	(sentence)
juan 155 juan	3	qu	1	(curl)
jue 156 jue	2	ding	4	(decide)
jun 157 jun	1	dui	4	(army)
ka 158 ka	3	che	1	(truck)
kai 159 kai	3	xuan	2

(triumph)
kan 160 kan	4	(see)
kang 161 di	3	kang	4	(resist)
kao 162 kao	3	shi	4	(test)
ke 163 ke	3	(thirsty)
kei 164 kei	1	(scold)
ken 165 ken	3	ding	4	(affirm)
keng 166 keng	1	hai	4	(entrap)
kong 167 kong	1	qi	4	(air)
kou 168 kou	3	(mouth)
ku 169 jian	1	ku	3	(trial)
kua 170 kua	1	jiang	3	(praise)
kuai 171 kuai	4	(fast)
kuan 172 kuan	1	kuo	4

(openness)
kuang 173 kong	1	kuang	4

(void)
kui 174 kui	1	qian	4	(owe)
kun 175 kun	4	nan	2	(hard)
kuo 176 kuo	4	da	4	(enlarge)
la 177 la	4	jiao	1	(hot

pepper)
lai 178 lai	2	(come)
lan 179 lan	2	se	4	(blue)
lang 180 lang	2	(wolf)
lao 181 lao	3	(old)
le 182 kuai	4	le	4	(happy)
lei 183 lei	2	(thunder)
leng 184 leng	3	ku	4

(steeliness)
li 185 li	2	(pear)
lia 186 lia	2	(two)
lian 187 lian	3	(face)
liang 188 li	4	liang	4	(power)
liao 189 zuo	2	liao	4

(seasoning)
lie 190 lin	3	lie	4	(severe)
lin 191 lin	3	lie	4	(severe)
ling 192 ling	2	mu	4

(mausoleum)
liu 193 liu	2	dong	4	(flow)
lo 194 lo	5	(function	word)
long 195 long	2	(dragon)
lou 196 lou	4	(leak)
lu 197 lu	4	di	4	(land)
luan 198 hun	4	luan	4	(chaos)
lue 199 ce	4	lue	4	(tactic)
lun 200 yi	4	lun	4	(discuss)
luo 201 xia	4	luo	4

(whereabouts)
lv 202 lv	4	se	4	(green)
ma 203 ma	3	(horse)
mai 204 mai	2	zang	4	(bury)

man 205 man	3	zu	2	(satisfy)
mang 206 cong	1	mang	2

(hurry)
mao 207 mao	1	(cat)
me 208 shen	2	me	5	(what)
mei 209 mei	2	you	3	(no)
men 210 wo	3	men	2	(we)
meng 211 meng	4	(dream)
mi 212 hun	1	mi	2	(coma)
mian 213 mian	4	ji	5	(area)
miao 214 miao	4	(temple)
mie 215 mie	4	jue	2

(annihilation)
min 216 ren	2	min	2	(people)
ming 217 ming	2	bai	2

(clearness)
miu 218 huang	1	miu	4

(absurd)
mo 219 mo	4	shui	3	(ink)
mou 220 mou	2	lue	4	(trick)
mu 221 mu	4	biao	1	(target)
na 222 na	4	li	3	(there)
nai 223 nai	3	nai	5

(grandmother)
nan 224 nan	2	fang	1	(south)
nang 225 nang	2	kuo	4

(include)
nao 226 re	4	nao	4

(liveliness)
ne 227 mu	4	ne	4	(numb)
nei 228 nei	4	bu	4	(inside)
nen 229 nen	4	lv	4	(light

green)

neng 230 neng	2	gou	4	(be
capable	of)

ni 231 ni	3	(you)
nian 232 nian	2	(year)
niang 233 gu	1	niang	5	(girl)
niao 234 niao	3	(bird)
nie 235 nie	4	(bite)
nin 236 nin	2	(you)
ning 237 an	1	ning	2	(peace)
niu 238 niu	2	(bull)
nong 239 nong	2	min	2

(farmer)
nou 240 nou	4	(weeding)
nu 241 nu	3	li	4	(try	hard)
nuan 242 wen	1	nuan	3

(warm)
nue 243 nue	4	dai	4	(abuse)
nuo 244 nuo	4	yan	2

(promise)
nv 245 nv	3	zi	3	(woman)
o 246 o	5	(function	word)
ou 247 ou	1	yang	2	(Chinese

first	name)
pa 248 hai	4	pa	4	(scare)
pai 249 pai	4	qian	3	(send)
pan 250 pan	4	tu	2	(betrayer)
pang 251 pang	2	da	4	(huge)
pao 252 pao	3	(run)
pei 253 pei	2	ban	4

(accompany)
pen 254 pen	2	di	4	(pan)
peng 255 peng	2	pai	4	(surge)
pi 256 pi	2	fu	1	(skin)

pian 257 qi	1	pian	4	(cheat)
piao 258 piao	4	liang	4

(pretty)
pie 259 pie	1	kai	1	(put

aside)
pin 260 pin	2	fan	2

(frequency)
ping 261 ping	2	zi	5	(bottle)
po 262 po	4	huai	4

(damage)
pou 263 pou	2	(hold

something	with
cupped	hand)

pu 264 pu	2	tao	5	(grape)
qi 265 qi	3	qiu	2	(beg)
qia 266 qia	4	dang	4

(proper)
qian 267 qian	1	xu	1

(humility)
qiang 268 qiang	2	da	4

(powerful)
qiao 269 qiao	3	miao	4

(artifice)
qie 270 xiu	1	qie	4	(shyness)
qin 271 qin	1	zi	4	(oneself)
qing 272 qing	1	song	1	(easy)
qiong 273 qiong	2	(poverty)
qiu 274 qiu	2	fan	4	(prisoner)
qu 275 qu	1	dong	4	(drive)
quan 276 quan	2	bu	4	(all)
que 277 que	4	ding	4

(ensure)
qun 278 qun	2	zhong	4

(crowd)

ran 279 ran	2	hou	4	(then)
rang 280 tu	3	rang	3	(soil)
rao 281 wei	2	rao	4

(surround)
re 282 re	4	(hot)
ren 283 ren	2	lei	4	(human

being)
reng 284 reng	2	ran	2	(all	the

same)
ri 285 ri	4	chu	1	(sunrise)
rong 286 rong	2	yao	4	(glory)
rou 287 niu	2	rou	4	(beef)
ru 288 ru	2	guo	3	(if)
ruan 289 rou	2	ruan	3	(soft)
rui 290 rui	4	zhi	4	(smart)
run 291 shi	1	run	4	(wetness)
ruo 292 ruo	4	xiao	3

(puniness)
sa 293 sa	1	(three)
sai 294 bi	3	sai	4	(compete)
san 295 fen	1	san	4

(disperse)
sang 296 sang	4	(die)
sao 297 da	3	sao	3	(sweep)
se 298 yan	2	se	4	(color)
sen 299 sen	1	lin	2	(forest)
seng 300 seng	1	lv	3	(monk)
sha 301 sha	1	chang	3

(battlefield)
shai 302 ri	4	shai	4	(be

exposed	to	the	sun)
shan 303 shan	4	liang	2

(goodness)

shang 304 shang	4	mian	4	(top)
shao 305 shao	4	nian	2

(youth)
she 306 she	2	(snake)
shei 307 shei	2	(who)
shen 308 shen	2	me	5	(what)
sheng 309 sheng	1	yin	1	(voice)
shi 310 shi	4	fei	1	(dispute)
shou 311 shou	3	(hand)
shu 312 shu	4	mu	4	(tree)
shua 313 shua	1	zi	5	(brush)
shuai 314 shuai	1	da	3	(beat)
shuan 315 men	2	shuan	1

(latch)
shuang 316 shuang	1	(pair)
shui 317 shui	3	(water)
shun 318 shun	4	li	4	(all	right)
shuo 319 shuo	1	(say)
si 320 si	4	(four)
song 321 song	4	bie	2	(send-

off)
sou 322 sou	1	cha	2	(search)
su 323 su	4	du	4	(speed)
suan 324 suan	4	fa	3

(arithmetic)
sui 325 sui	1	ran	2	(though)
sun 326 sun	3	shi	1	(loss)
suo 327 suo	3	yi	3	(so)
ta 328 ta	1	men	2	(they)
tai 329 tai	4	(too)
tan 330 tan	2	hua	4	(talk)
tang 331 tang	2	(sugar)

tao 332 tao	2	pao	3	(flee)
te 333 te	4	bie	2	(special)
tei 334 tei	1	(very)
teng 335 ben	1	teng	2	(riot)
ti 336 ti	1	zi	5	(ladder)
tian 337 tian	1	(sky)
tiao 338 tiao	4	yue	4	(jump)
tie 339 tie	3	(iron)
ting 340 ting	1	(listen)
tong 341 tong	3	yi	1	(unify)
tou 342 tou	2	(head)
tu 343 tu	3	di	4	(earth)
tuan 344 tuan	2	jie	2	(solidify)
tui 345 tui	1	dong	4	(push)
tun 346 tun	2	ji	1	(store	up)
tuo 347 tuo	1	yi	1	(undress)
wa 348 qing	1	wa	1	(frog)
wai 349 wai	4	mian	4

(outside)
wan 350 wan	4	(ten

thousands)
wang 351 si	3	wang	2	(death)
wei 352 wei	3	da	4	(great)
wen 353 wen	2	hua	4

(culture)
weng 354 lao	3	weng	1

(oldman)
wo 355 wo	3	(I)
wu 356 wu	2	lun	4	(no

matter	what)
xi 357 xi	1	fang	1	(west)
xia 358 xia	4	mian	4

(bottom)

xian 359 xian	4	zai	4	(now)
xiang 360 xiang	4	(like)
xiao 361 xiao	3	(small)
xie 362 xie	3	(write)
xin 363 xin	1	(new)
xing 364 xing	2	dong	4	(act)
xiong 365 xiong	2	(bear)
xiu 366 xiu	1	xi	5	(break)
xu 367 xu	1	yao	4	(need)
xuan 368 xuan	1	bu	4

(declare)
xue 369 xue	3	(snow)
xun 370 xun	2	wen	4	(ask	for)
ya 371 ya	4	zhou	1	(Asia)
yan 372 yan	4	zi	5	(swallow)
yang 373 tai	4	yang	2	(sun)
yao 374 yao	1	qiu	2	(require)
ye 375 ye	2	ye	5

(grandfather)
yi 376 yi	1	(one)
yin 377 yin	1	yue	4	(music)
ying 378 ying	1	gai	1	(should)
yo 379 yo	5	(function	word)
yong 380 yong	3	yuan	3

(forever)
you 381 you	2	yu	2	(due	to)
yu 382 yu	2	(fish)
yuan 383 yuan	2	lai	2

(formerly)
yue 384 yue	4	(month)
yun 385 yun	2	(cloud)
za 386 za	2	luan	4

(disorder)

zai 387 zai	4	jian	4	(farewell)
zan 388 zan	2	men	5	(our)
zang 389 ang	1	zang	1	(dirty)
zao 390 zao	3	chen	2

(morning)
ze 391 ze	2	ren	4	(response)
zei 392 zei	2	(thief)
zen 393 zan	4	yang	2	(praise)
zeng 394 zeng	1	jia	1	(add)
zha 395 zha	4	dan	4	(bomb)
zhai 396 qian	4	zhai	4	(owe)
zhan 397 zhan	4	li	4	(stand)
zhang 398 zhang	1	kai	1	(open)
zhao 399 zhao	1	huan	4

(summon)
zhe 400 zhe	4	li	3	(here)
zhei 401 zhei	5	(this)
zhen 402 zhen	1	zheng	4

(real)
zheng 403 zheng	4	yi	4	(justice)
zhi 404 yi	4	zhi	4	(restrain)
zhong 405 zhong	1	guo	2

(China)
zhou 406 si	4	zhou	1	(around)
zhu 407 zhu	1	(pig)
zhua 408 zhua	1	(grab)
zhuai 409 zhuai	4	(pull)
zhuan 410 zhuan	1	(brick)
zhuang 411 zhuang	1	(pretend)
zhui 412 zhui	1	(chase)
zhun 413 zhun	3	(precise)
zhuo 414 zhuo	1	(table)

zi 415 zi	4	(character)
zong 416 zong	3	(total)
zou 417 zou	3	(walk)
zu 418 zu	1	(rent)
zuan 419 zuan	4	(diamond)
zui 420 zui	4	(most)
zun 421 zun	1	(respect)
zuo 422 zuo	4	(sit)

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Japanese	Phonemes
SAPI	Supported	Japanese	Phonemes	(Katakana)

Symbol Phonetic
Unicode
Value 	Remarks

' 0027 Accent
position

+ 002B Accent
boundary

| 007C Phrase
boundary

. 002E Sentence	end
(standard)

? 003F Sentence	end
(interrogative)

! 0021 Sentence	end
(exclamation)

_ 005F One	mora
pause

309C Semi-voiced
sound

a 30A1 Modifier
a 30A2
i 30A3 Modifier
i 30A4
u 30A5
u 30A6

e 30A7 Modifier
e 30A8
o 30A9 Modifier
o 30AA
ka 30AB
ga 30AC
ki 30AD
gi 30AE
ku 30AF
gu 30B0
ke 30B1
ge 30B2
ko 30B3
go 30B4
sa 30B5
za 30B6
shi 30B7
ji 30B8
su 30B9
zu 30BA
se 30BB

ze 30BC
so 30BD
zo 30BE
ta 30BF
da 30C0
chi 30C1
di 30C2 Deprecated	-

use	30B8
q 30C3
tsu 30C4
du 30C5 Deprecated	-

use	30BA
te 30C6
de 30C7
to 30C8
do 30C9
na 30CA
ni 30CB
nu 30CC
ne 30CD
no 30CE
ha 30CF

ba 30D0
pa 30D1
hi 30D2
bi 30D3
pi 30D4
hu 30D5
bu 30D6
pu 30D7
he 30D8
be 30D9
pe 30DA
ho 30DB
bo 30DC
po 30DD
ma 30DE
mi 30DF
mu 30E0
me 30E1
mo 30E2
ya 30E3 Modifier
ya 30E4

yu 30E5 Modifier
yu 30E6
yo 30E7 Modifier
yo 30E8
ra 30E9
ri 30EA
ru 30EB
re 30EC
ro 30ED
wa 30EE Modifier
wa 30EF
wi 30F0 Deprecated	-

use	30A4
we 30F1 Deprecated	-

use	30A8
wo 30F2
nn 30F3
vu 30F4
ka 30F5
ke 30F6
va 30F7
vi 30F8

ve 30F9
vo 30FA

30FB Middle	dot
30FC Prolonged

sound
30FD Iteration
30FE Voiced

iteration

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Further	Reading
The	descriptions	for	the	following	items	are	contained	in	the
Microsoft®Platform	Software	Development	Kit	(SDK).	

IStream
IServiceProvider

http://go.microsoft.com/fwlink/?LinkId=633

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SDK	Samples,	Tools,	and	Tutorials
The	SDK	provides	examples	of	applications	using	SAPI	5	within	a
representative	range	of	uses.	These	examples	may	contain	only
the	executable	files	and	are	provided	for	illustrative	purposes
only.	Most	however,	contain	source	code.	You	are	free	to	model
applications	on	these	samples.
Since	SDK	samples	are	meant	to	demonstrate	basic	speech
technologies,	not	all	options	or	contingencies	are	checked.	For
instance,	some	examples	the	words	may	display	incorrectly	if
the	engine	language	is	not	the	same	as	the	system	language.	In
such	cases,	this	is	the	expected	result	and	it	is	not	an	error	of
the	speech	system.	Additionally,	error	conditions	may	not
always	be	checked	as	thoroughly	as	robust	applications	should.
The	following	sections	cover	tools,	samples,	and	tutorials
supporting	speech	functions:

SDK	Samples	(C/C++)

SDK	Samples	(Automation).	Includes	Visual	Basic,	JScript
and	C#	examples
SDK	Samples	(Utilities)

SDK	Tutorials

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SDK	Samples	for	C/C++
The	following	topics	are	available:

Demonstration	only	(no	source	code)
Age	of	Empires	II	Speech	Interface
Reco	(a	recognition	test	tool)

Samples	with	source	code
CoffeeS0	Sample	Application
CoffeeS1	Sample	Application

CoffeeS2	Sample	Application
CoffeeS3	Sample	Application
CoffeeS4	Sample	Application

CoffeeS5	Sample	Application
CoffeeS6	Sample	Application
Dictation	Pad

Simple	Dictation
TTS	Application

Talkback
Simple	Telephony

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Age	of	Empires	Speech

Introduction
Age	of	Empires®	Speech	is	an	application	adding	a	speech
interface	to	Microsoft's	Age	of	Empires	II:	The	Age	of	Kings	(AOE
II).	You	do	not	need	a	special	version	of	AOE	II;	it	is	run	normally.
The	speech	interface	passes	keyboard	commands	to	the	game.
That	is,	you	can	replace	most	keyboard	tasks	with	speech
commands.	Some	commands,	such	as	scrolling	and	changing
game	speeds,	are	not	currently	supported	by	the	speech
interface.	Also,	you	cannot	implement	certain	mouse	operations
such	as	selecting	and	moving	units,	or	placing	buildings	with
speech	commands.
Start	Age	of	Empires	Speech	to	enable	speech	operations.	In	the
main	Age	of	Empires	Speech	dialog	window,	select	Listening	to
enable	recognition,	and	then	open	AOE	II.	After	selecting	the
options	and	a	scenario,	the	game	will	begin.	At	that	point,	you
may	speak	commands	for	game	play.	No	action	will	take	place	if
commands	not	recognized.	You	will	not	need	additional	speech
and	command	training	to	play;	however,	speak	the	commands
clearly,	slowly,	and	deliberately.	Your	familiarity	at	playing	the
game	using	speech	commands	will	increase	over	time	and	your
proficiency	will	improve.
You	will	find	that	a	complete	list	of	commands	and	their	syntax
is	available	in	Commands.	Use	speech	in	the	same	manner	as
the	keyboard	for	issuing	commands.	Some	commands	are
global	and	you	may	issue	them	at	any	time.	These	include	chat
commands	and	pause	game,	or	menu	items	such	as	diplomacy,
objectives,	or	display	game	time.	Other	commands	are	specific
to	units	or	buildings.	With	the	target	selected,	issue	a	command.
If	the	command	is	appropriate,	it	will	be	carried	out.	For
example,	select	a	barrack;	you	may	then	set	a	gather	point,
train	specific	units,	or	delete	the	barrack	altogether.	However,	if
you	attempt	to	train	a	cavalry	unit	there,	this	command	is

inappropriate	and	no	action	will	be	taken.

Options

Several	options	are	presented	in	the	dialog	window.	By	default,
all	options	are	initially	on	except	for	Listening.	Selecting	various
options	will	enable	or	disable	entire	categories	of	commands.
Check	each	option	for	complete	access	to	all	commands.

Activate	game	commands

Activates	a	series	of	administrative	commands	and	menus.
These	include	diplomacy,	chat	and	objective	windows	as	well	as
game	pause.	It	also	displays	the	technology	tree.	You	can
initiate,	forward,	and	send	chat	by	speech	commands,	but	you
must	still	type	the	actual	content.

Activate	unit	commands

Activates	commands	for	villager	units.	You	must	activate	the
unit	with	the	mouse,	but	once	selected,	you	can	issue	speech
commands.	If	a	command	is	not	applicable	for	the	unit	or	the
group	of	units,	no	action	will	be	taken.	Examples	include	setting
gather	points;	attempting	to	select	economic	or	military
buildings;	or	the	villager	unit	attempting	to	pack.

Military	unit	commands

Activates	commands	for	military	units.	You	must	activate	the
unit	with	the	mouse,	but	once	selected,	you	can	issue	speech
commands.	If	a	command	is	not	applicable	for	the	unit	or	the
group	of	units,	no	action	will	be	taken.	Examples	include	the
military	unit	to	take	an	aggressive,	defensive,	or	stand	ground
posture,	form	a	line,	patrol	an	area,	or	guard	a	building.

Activate	training	commands

Activates	the	build,	create	and	train	commands.	This	command
allows	the	creation	of	many	items	including	types	of	buildings,
villagers,	and	different	military	units	such	as	swordsmen,
knights,	and	archers.	You	can	also	use	this	command	to	activate
weapons	including	fire	ships,	trebuchets,	and	battering	rams.

Activate	view	commands

Activates	the	Go	to	and	View	commands.	The	commands	may
be	simple	such	as	"go	to	barracks,"	or	"go	to	last	notification."
They	may	also	be	more	complex	such	as	"go	to	next	idle	villager
unit"	although	you	may	omit	the	final	"unit."

Activate	idle	commands

Activates	the	idle	command	for	villagers	or	military	units.

Activate	villager	build	commands

Activates	a	series	of	villager/ship	build	commands.	You	must
activate	the	unit	with	the	mouse,	but	once	selected,	you	can
issue	speech	commands.	You	can	issue	the	build	order	directly
without	selecting	it	from	the	build	list.	For	example,	a	selected
villager	may	be	told	to	"build	house."	An	image	of	the	dimmed
house	will	appear	on	the	screen,	then	use	the	mouse	to	place	it.
Other	examples	of	villager	build	commands	include	building	the
market,	blacksmith,	farm,	fish	trap,	and	military	objects	such	as
archery	range,	barracks	and	stone	wall.

Automatically	view	before	training

Displays	the	building	prior	to	issuing	the	build	or	train
command.	This	allows	you	to	view	the	building	centered	on	the
screen.	Unlike	the	other	categories,	there	are	no	subsequent
commands	available.

Listening

Enables	speech	recognition.	Once	activated,	Age	of	Empires
Speech	attempts	to	issue	keystrokes	if	a	command	is
recognized.	AOE	II	is	intended	to	be	the	recipient	of	the
commands.	However,	if	another	active	application	capable	of
accepting	keyboard	input	is	in	the	Windows	foreground,	it	is
possible	that	the	keystrokes	will	be	passed	along	to	that	window
instead.	Take	care	to	avoid	unintended	input	to	the	foreground
application.	As	mentioned	above,	open	AOE	II	immediately	after
Age	of	Empires	Speech.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Reco

Introduction
Reco	is	a	speech	tool	that	you	can	use	to	examine	and	test	the
speech	process.	You	may	speak	using	a	microphone	for	either
dictation	or	command	and	control.	Alternatively,	you	may
directly	type	a	command	and	control	order	in	an	edit	box	and
submit	it	to	the	speech	recognition	engine.
During	the	recognition	process,	events	will	be	displayed	in	the
top	window	as	they	occur.	An	event	log	is	kept	and	to	examine
the	details	of	each	one,	double-click	the	item.	You	may	use	this
log	to	trace	the	sequence	and	number	of	events.	You	may	also
examine	speech	results.	Double-click	the	text	or	phrase	to
display	more	detailed	information	about	the	text	in	the	bottom
window.

Options

The	dialog	box	presents	several	options.	By	default,	all	options
are	initially	on.	The	following	options	display	detailed
information	suited	for	speech	testing.

Create	Recognition	Context
Creates	the	recognition	context	for	the	selected	engine.	This
must	be	off	before	selecting	a	different	engine.	Select	this	to
activate	the	engine.	You	must	select	it	before	any	speech	is
recognized.

Retain	Reco	Audio
Keeps	the	recorded	sound	of	the	actual	spoken	content	in
memory.	Select	this	option	and	double-click	the	text	in	the
display	area	of	either	the	Events	or	Properties	window	to	play
back	the	spoken	text.	If	it	is	not	selected,	the	playback	will	be	in

a	synthesized	text-to-speech	voice.

Activate	Microphone
Controls	the	microphone's	input.	Select	this	option	to	enable	the
microphone	to	accept	sound	input.	If	it	is	not	selected,	the
microphone	will	be	blocked	and	no	sound	will	be	registered.

Load	Dictation
Controls	loading	of	dictation	grammar.	Select	it	to	load	the
grammar	for	dictation	and	enable	the	speech	recognition	engine
to	process	free-formed	speech.	You	must	load	this	grammar
before	selecting	Activate	Speech.	If	you	do	not	select	Load
Dictation,	the	grammar	will	be	unloaded.

Activate	Dictation
Controls	the	activation	status	of	dictation	features.	If	you	have
loaded	the	dictation	grammar	(see	Load	Dictation),	select	this	to
allow	speech	attempts	to	be	recognized	as	free-formed
dictation.

Load	Command	and	Control
Controls	loading	of	command	and	control	grammar.	Select	this
to	load	the	grammar	for	dictation	and	enable	the	speech
recognition	engine	to	process	command-oriented	speech.	You
must	load	this	grammar	before	selecting	Activate	command	and
control.	If	you	do	not	select	Load	Command	and	Control,	the
grammar	will	be	unloaded.

Activate	Command	and	Control
Controls	the	activation	status	of	command	and	control	features.
If	you	have	loaded	the	command	and	control	grammar,	(see
Load	Command	and	Control),	select	this	to	allow	speech
attempts	to	be	recognized	as	commands	according	to	the	rules

defined	the	in	current	grammar.	By	default,	the	Solitaire
grammar	is	installed.	However,	you	may	change	the	grammar
using	the	Command	and	Control->Load	Grammar	menu	item.

Load	Spelling
Enables	or	disables	the	letter-by-letter	spelling	feature.	You
must	enable	spelling	before	you	select	Activate	Spelling.	If	Load
Spelling	is	not	selected,	it	will	disable	spelling.

Activate	Spelling
Controls	the	activation	status	of	the	letter-by-letter	spelling
function.	If	you	have	loaded	the	spelling	grammar,	(see	Load
Spelling),	select	this	to	activate	the	spelling	capability	of	the
speech	recognition	engine.	Using	Activate	Spelling,	you	can
spell	words	in	a	letter-by-letter	fashion	while	in	dictation	mode.
For	example,	you	can	say,	"Let's	take	the	dogs	on	a	w-a-l-k,"
and	the	engine	will	attempt	to	recognize	the	sentence	as	"Let's
take	the	dogs	on	a	walk."

Shared	Recognizer
Selects	the	engine	as	a	shared	engine.	Using	Shared
Recognizer,	other	speech-enabled	applications	running	at	the
same	time	can	use	the	microphone.	To	do	this:

1.	 In	Control	Panel,	double-click	the	Speech	icon.
2.	 On	the	Speech	Recognition	tab,	in	the	Speech	Engine
window,	select	an	engine.

InProc
Selects	an	engine	as	an	in-process	(InProc)	or	non-shared
engine.	InProc	restricts	speech-enabled	applications	running	at
the	same	time	from	using	the	microphone.	Because	the	engine
will	not	be	shared	among	other	applications,	using	this	option
you	can	select	different	engines	from	the	drop-down	menu

rather	than	using	the	Speech	icon.	Selecting	an	InProc	engine
will	not	change	the	engine	used	by	shared	applications	or	the
one	selected	in	the	Speech	Engine	window.

Event	Window
Displays	events	and	any	associated	results.	The	name	of	the
event	is	displayed	inside	brackets.	Certain	events	such	as
recognition	or	a	hypothesis,	have	text	associated	with	them	and
that	text	is	displayed	immediately	under	the	event.	Double-click
the	text	to	hear	it	spoken.	If	Retain	Reco	Audio	is	currently
selected,	the	playback	will	be	in	your	voice,	recorded	when	it
was	spoken;	otherwise,	the	text-to-speech	voice	will	be	played
back.	You	may	change	the	synthesized	voice	using	the	TTS	tab
in	Speech	properties.	Double-click	the	event	to	display
additional	information	about	it.	The	Results	window	will	update
to	the	new	information.

Results	Window
Displays	details	of	the	properties	and	values	associated	with	the
recognition	result.	This	information	includes	the	applicable	rule,
the	text	of	the	recognition,	the	parsing	of	information,	and	the
individual	elements	of	each	word.

Alternates

Command	and	Control	Edit	Box
Enables	you	to	directly	enter	a	command	and	control	phrase.	If
any	text	appears	in	the	box,	Submit	activates	it.	Click	Submit
to	enter	a	command,	bypassing	the	microphone.	In	this	way,	the
microphone	does	not	need	to	be	active	or	even	present	to	test
or	watch	the	recognition	process.

Submit
Submits	any	text	in	the	command	and	control	edit	box,	see

Command	and	Control	Edit	Box.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CoffeeS0

Introduction
CoffeeS0	is	the	first	sample	application	in	a	series	called	Coffee.
It	uses	a	consistent	coffee	shop	motif.	You	will	eventually	be
able	to	enter	the	shop,	go	to	the	order	counter	to	order	drinks,
go	to	the	gift	store,	or	speak	to	management.	The	samples	are
intended	to	demonstrate	adding	speech	recognition	to	an
application.	They	are	designed	for	the	application-level	(API)
programmer	and	for	those	not	familiar	with	speech	technology.
Writing	engines	such	as	speech	recognition	or	text-to-speech,
also	called	device	driver	programming,	will	be	covered
separately.	Each	sample	will	progressively	add	new	features	and
increase	in	complexity.	The	tutorial	chapters	explain	in	detail	the
particulars	of	the	code.	You	are	encouraged	to	read	each
chapter.
As	the	introductory	sample,	CoffeeS0	is	a	simple	application.
There	is	one	window	and	a	limited	vocabulary	from	which	to
speak.	After	opening	CoffeeS0,	you	may	speak	any	of	the
commands.	If	successfully	recognized,	the	window	displays	the
response,	"Please	order	when	ready!"	To	keep	the	application
simple	at	this	point,	no	other	commands	may	be	used.	If	the
command	was	not	successfully	recognized,	no	action	will	take
place.	Due	to	the	speed	and	processing	capabilities	of	some
computers,	there	might	be	a	slight	delay	before	the	CoffeeS0
responds.	If	after	a	moment	nothing	happens,	try	the	command
again.
Commands	may	not	be	recognized	for	two	reasons.	First,	the
speech	may	not	have	been	clear.	Perhaps	the	words	were	not
spoken	clearly	enough	or	distinctively	enough.	Speak	the
command	again	more	slowly	and	clearly.	Second,	the	words
spoken	may	not	have	been	in	the	command	list.	Look	at	the
available	commands	and	speak	again.	CoffeeS0	has	a	limited
command	list.	If	a	word	used	is	not	in	the	list,	the	command	will

not	be	recognized.
To	quit	CoffeeS0,	click	the	Close	button	in	the	upper	right	of	the
window	frame.

Commands

Choosing	one	word	from	each	line	of	a	category	forms	the
command.	Commands	in	parenthesis	are	optional	and	do	need
to	be	included.	Words	or	phrases	separated	by	slashes	indicate
that	any	of	the	choices	listed	may	be	used	although	only	one
may	be	selected.	Sections	marked	RULEREF	indicate	words	or
phrases	may	be	chosen	from	the	corresponding	rule	ID.	Rule
names	are	the	same	as	listed	in	the	corresponding	XML
configuration	file.
For	example,	you	can	say,	"enter	counter,"	"please	enter
counter,"	or	"please	enter	the	counter."	All	three	are
recognizable	commands.	Since	CoffeeS0	can	only	take	you	to
the	ordering	counter,	"please	enter	the	shop,"	and	"please	enter
the	store,"	will	have	the	same	effect.	Partial	phrases	or	words
not	listed	below	may	not	be	used.	"Please	enter	the	restaurant,"
or	simply	"counter"	will	not	be	recognized.	The	following
commands	are	available:

Command	List

XML	rule	ID:	VID_Navigation
(please)
enter/go	to

RULEREF:	VID_Place
	

XML	rule	ID:	VID_Place
(the)

counter/shop/store

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CoffeeS1

Introduction
CoffeeS1	is	the	second	sample	application	in	a	tutorial	series
named	Coffee.	It	uses	a	consistent	coffee	shop	motif.	You	will
eventually	be	able	to	enter	the	shop,	go	to	the	order	counter	to
order	drinks,	go	to	the	gift	store,	or	speak	to	management.	The
samples	are	intended	to	demonstrate	speech	recognition
capabilities	within	an	application.	They	are	designed	for	the
application-level	(API)	programmer	and	for	those	not	familiar
with	speech	technology.	Writing	engines	such	as	speech
recognition	or	text-to-speech,	also	called	device	driver
programming,	will	be	covered	separately.	Each	sample	will
progressively	add	new	features	and	increase	in	complexity.	The
tutorial	chapters	explain	in	detail	the	particulars	of	the	code.
You	are	encouraged	to	read	each	chapter.
As	the	second	example,	CoffeeS1	builds	on	the	framework	of
CoffeeS0.	There	is	one	window	and	although	there	is	a	limited
vocabulary	from	which	to	speak,	it	is	expanded	from	CoffeeS0.
CoffeeS0	restricted	you	to	moving	to	the	counter	only.	In
contrast,	CoffeeS1	now	lets	you	order	one	of	a	variety	of	coffee
drinks.	After	opening	CoffeeS1,	you	may	speak	any	of	the
commands.	If	successfully	recognized,	the	window	displays	the
response,	"Please	order	when	ready!"	If	the	command	was	not
successfully	recognized,	no	action	will	take	place.	Due	to	the
speed	and	processing	capabilities	of	some	computers,	there
might	be	a	slight	delay	before	CoffeeS1	responds.	If	after	a
moment	nothing	happens,	try	the	command	again.
Commands	may	not	be	recognized	for	two	reasons.	First,	the
speech	may	not	have	been	clear.	Perhaps	the	words	were	not
spoken	clearly	enough	or	distinctively	enough.	Speak	the
command	again	more	slowly	and	clearly.	Second,	the	words
spoken	may	not	have	been	in	the	command	list.	Look	at	the
available	commands	and	speak	again.	CoffeeS0	has	a	limited

command	list.	If	a	word	used	is	not	in	the	list,	the	command	will
not	be	recognized.
To	quit	CoffeeS1,	click	the	Close	button	in	the	upper	right	of	the
window	frame.

Commands
Command	sequences	are	built	using	at	least	one	word	from
among	the	various	categories.	Commands	are	grouped	into	two
major	(or	top-level)	categories:	navigation	and	drink	ordering.
Navigation	allows	you	to	move	around	the	coffee	shop	to	places
such	as	the	counter,	shop,	or	store.	In	CoffeeS1,	the	effects	of
going	to	any	location	are	minimal	and	any	navigation	command
takes	you	to	the	counter.	The	distinction	allows	the	code	sample
to	demonstrate	additional	SR	features.	Subsequent	Coffee
examples	will	expand	on	this.	Drink	ordering	allows	you	to	place
drink	requests.
In	either	case,	words	or	phrases	may	be	selected	from	each
category.	Some	are	marked	as	Required	and	others	are	marked
as	Optional.	You	must	use	at	least	one	word	or	phrase	from	the
list	marked	Required	to	successfully	initiate	the	command.
Optional	words,	though	not	required,	provide	a	more	natural
speech.	As	a	special	case,	the	drink	orders	may	include	words
from	up	to	seven	of	the	categories	and	may	be	spoken	in	any
order.	However,	at	least	one	category	is	required	to	successfully
match	command	requirements.
For	example,	at	the	minimum	you	can	say,	“get	me	mocha.”
This	satisfies	the	command	rules	of	the	required	phrase	(“get
me”)	from	the	VID_EspressoDrinks	required	list	and	at	least	one
of	the	seven	other	drink	categories,	in	this	case	VID_DrinkType.
Likewise,	you	could	also	say,	“I	would	like	a	tall	hazelnut	two
percent	latte.”	Words	not	appearing	in	the	list	may	not	be	used.
“Give	me	a	latte,”	would	fail	since	“give	me”	is	not	on	the	list.
“Please	get	me	a”	will	also	fail.	Although	the	required	top-level
phrase	is	correctly	used,	a	subsequent	drink	was	not	ordered.
The	following	commands	are	available:

Command	List
Choosing	one	word	from	each	line	of	a	category	forms	the
command.	Commands	in	parenthesis	are	optional	and	do	need
to	be	included.	Words	or	phrases	separated	by	slashes	indicate
any	of	the	listed	choices	may	be	used	although	only	one	may	be
selected.	Sections	marked	RULEREF	indicate	words	or	phrases
may	be	chosen	from	the	corresponding	rule	ID.	Rule	names	are
the	same	as	listed	in	the	corresponding	XML	configuration	file.
	

Navigation
Requires	a	match	from	each	VID_Navigation	and	VID_Place.
	
XML	rule	ID:	VID_Navigation

·								Optional:	Please

·								Enter

·								Go	to

	

XML	rule	ID:	VID_Place

·								Optional:	The

·								Counter

·								Shop

·								Store
	

Drink	Ordering
Requires	a	match	from	VID_EspressoDrinks	and	at	least	one	(but

no	more	than	seven)	of	the	subsequent	categories.
	
XML	rule	ID:	VID_EspressoDrinks

·										May	I	have
·										Can	I	have
·										Can	I	get
·										Please	get	me
·										Get	me
·										I'd	like
·										I	would	like
·										Optional:	a

	
XML	rule	ID:	VID_Iced

·										Iced
	
XML	rule	ID:	VID_Decaf

·										Decaf
·										Decaffeinated

	
XML	rule	ID:	VID_Shots

·										Single
·										Double
·										Triple
·										Quad

	

XML	rule	ID:	VID_Size
·										Short
·										Tall
·										Grande

	
XML	rule	ID:	VID_Syrup

·										Hazelnut
·										Irish	cream
·										Almond
·										Peppermint

	
XML	rule	ID:	VID_Milk

·										Nonfat
·										Two	percent
·										Whole

	
XML	rule	ID:	VID_DrinkType

Latte/Mocha/Espresso/Americana/Cappuccino

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CoffeeS2

Introduction
CoffeeS2	is	the	third	sample	application	in	a	tutorial	series
named	Coffee.	It	uses	a	consistent	coffee	shop	motif.	Customers
enter	the	shop,	go	to	the	service	counter,	speak	to	order	drinks
or	to	enter	the	front	office.
The	samples	are	intended	to	demonstrate	speech	recognition
capabilities	within	an	application.	They	are	designed	for	the
application-level	(API)	programmer	and	for	those	not	familiar
with	speech	technology.	Each	sample	will	progressively	add	new
features	and	increase	in	complexity.	The	tutorial	chapters
explain	in	detail	particulars	of	the	code.	You	are	encouraged	to
read	each	chapter.	Writing	engines	such	as	speech	recognition
or	text-to-speech,	also	called	device	driver	programming,	will	be
covered	separately.	The	samples	can	use	engines	provided	by
the	SAPI	SDK	or	third	party	SAPI-compliant	engines.

Using	CoffeeS2
As	the	third	example,	CoffeeS2	builds	on	the	framework	of	its
predecessors.	There	is	one	window	and	an	expanded	vocabulary
from	which	to	order	drinks	and	move	around	the	business.	In
addition	to	placing	an	order,	you	can	move	to	both	the	counter
and	the	office.	However,	drinks	may	not	be	requested	while	in
the	office.
CoffeeS2	allows	you	to	speak	any	of	the	CoffeeS1	commands.	If
successful,	the	window	displays	the	action	such	as	"please	order
when	ready!"	If	the	command	was	not	successfully	recognized,
no	action	will	take	place.
Due	to	the	speed	and	processing	capabilities	of	some
computers,	there	might	be	a	slight	delay	before	CoffeeS1
responds.	If	after	a	moment	nothing	happens,	try	the	command
again.	Commands	may	not	be	recognized	for	two	common
reasons.	One,	the	speech	may	not	have	been	clear.	Perhaps	the
words	were	not	spoken	clearly	enough	or	distinctively	enough.
Speak	the	command	again	more	slowly	and	clearly.	Second,	the
words	spoken	may	not	have	been	in	the	command	list.	Look	at
the	commands	available	and	speak	again.	The	Coffee	examples
have	a	limited	command	list	and	if	a	word	is	used	but	is	not
from	those	commands,	it	will	not	be	recognized.
To	quit	CoffeeS2,	click	the	Close	button	in	the	upper	right	of	the
window	frame.

New	Features
See	CoffeeS1	users	note	for	a	detailed	description	about	using
the	application.
A	new	navigation	command	has	been	added	allowing	you	to
visit	the	office.	You	may	request	"go	to	the	office."	The	screen
will	change	to	"Welcome	to	the	SAPI	coffee	shop	office."	Drinks
may	not	be	ordered	while	in	the	office.	As	a	result,	drink
commands	are	unavailable	while	in	the	office.	To	leave,	navigate
to	another	part	of	the	business.	Like	CoffeeS1,	navigation
commands	involving	the	counter,	store,	and	shop	take	you	to
the	same	place.
A	second	new	feature	asks	you	to	repeat	the	order	if	it	is	not
understood.	If	a	recognition	takes	place	but	the	word	or	phrase
is	not	in	the	command	list,	CoffeeS2	will	display	"Sorry,	I	didn't
get	that	order.	Please	try	again."

New	Commands

Choosing	one	word	from	each	line	of	a	category	forms	the
command.	Commands	in	parenthesis	are	optional	and	do	need
to	be	included.	Words	or	phrases	separated	by	slashes	indicate
any	of	the	listed	choices	may	be	used	although	only	one	may	be
selected.	Sections	marked	RULEREF	indicate	words	or	phrases
may	be	chosen	from	the	corresponding	rule	ID.	Rule	names	are
the	same	as	listed	in	the	corresponding	XML	configuration	file.
XML	rule	ID:	VID_Place

office

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CoffeeS3

Introduction
CoffeeS3	is	the	fourth	sample	application	in	a	tutorial	series
named	Coffee.	It	uses	a	consistent	coffee	shop	motif.	Customers
enter	the	shop,	go	to	the	service	counter,	speak	to	order	drinks
or	to	enter	the	front	office.
The	samples	are	intended	to	demonstrate	speech	recognition
capabilities	within	an	application.	They	are	designed	for	the
application-level	(API)	programmer	and	for	those	not	familiar
with	speech	technology.	Each	sample	will	progressively	add	new
features	and	increase	in	complexity.	The	tutorial	chapters
explain	in	detail	particulars	of	the	code.	You	are	encouraged	to
read	each	chapter.	Writing	engines	such	as	speech	recognition
or	text-to-speech,	also	called	device	driver	programming,	will	be
covered	separately.	The	samples	can	use	engines	provided	by
the	SAPI	SDK	or	third	party	SAPI-compliant	engines.

Using	CoffeeS3
CoffeeS3	is	identical	to	the	previous	CoffeeS2	sample.	See	the
CoffeeS2	guide	for	detailed	instructions	for	using	this.
However,	a	synthesized	voice	has	been	used	for	this	module.	At
certain	times,	the	text-to-speech	engine	will	speak	the
command,	an	order,	or	a	greeting.	For	example,	the	initial
screen	will	not	only	display	the	greeting,	but	will	also	say,
"Welcome	to	the	SAPI	coffee	shop.	Speak	for	service."

New	Commands	List

There	are	no	new	commands	for	CoffeeS3.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CoffeeS4

Introduction
CoffeeS4	is	the	fifth	sample	application	in	a	tutorial	series
named	Coffee.	It	uses	a	consistent	coffee	shop	motif.	Customers
enter	the	shop,	go	to	the	service	counter,	speak	to	order	drinks
or	to	enter	the	front	office.
The	samples	are	intended	to	demonstrate	speech	recognition
capabilities	within	an	application.	They	are	designed	for	the
application-level	(API)	programmer	and	for	those	not	familiar
with	speech	technology.	Each	sample	will	progressively	add	new
features	and	increase	in	complexity.	The	tutorial	chapters
explain	in	detail	particulars	of	the	code.	You	are	encouraged	to
read	each	chapter.	Writing	engines	such	as	speech	recognition
or	text-to-speech,	also	called	device	driver	programming,	will	be
covered	separately.	The	samples	can	use	engines	provided	by
the	SAPI	SDK	or	third	party	SAPI-compliant	engines.

Using	CoffeeS4
CoffeeS4	introduces	the	concepts	of	resources	and	resource
management.	SAPI	stores	information	in	the	form	of	tokens.
These	tokens	are	used	later	to	instantiate	features	such	as
voices	and	recognizers.	However,	programmers	can	query	SAPI
for	the	presence	of	tokens	to	learn	more	about	available
features.	For	example,	each	available	voice	is	kept	as	a	token.
CoffeeS4	displays	available	voices	and	may	even	speak	using
the	currently	active	voice.	Three	new	commands	are	used.	To	do
so,	enter	the	office	by	saying,	“go	to	the	office”	or	“enter
office.”	Once	there,	display	the	voice	list	by	saying,	“manage
the	employees.”	A	list	of	available	voices	will	display	on	the
right	side	of	the	screen.	The	active	voice	will	be	indicated	in	red.
To	have	the	employee	speak,	say,	“hear	them	speak.”	The
statement	“I	will	be	the	best	employee	you've	ever	had.	Let	me
work.”	will	be	spoken	in	the	current	voice.	The	voice	may	be
changed	using	Speech	properties	in	Control	Panel.

New	Commands	List
Choosing	one	word	from	each	line	of	a	category	forms	the
command.	Commands	in	parenthesis	are	optional	and	do	need
to	be	included.	Words	or	phrases	separated	by	slashes	indicate
any	of	the	listed	choices	may	be	used	although	only	one	may	be
selected.	Sections	marked	RULEREF	indicate	words	or	phrases
may	be	chosen	from	the	corresponding	rule	ID.	Rule	names	are
the	same	as	listed	in	the	corresponding	XML	configuration	file.
	
XML	rule	ID:	VID_Manage

(please)
manage

(the)
RULEREF:	VID_ThingsToManage

	

XML	rule	ID:	VID_ThingsToManage
employees

	

XML	rule	ID:	VID_HearTheVoice
hear	them	speak

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CoffeeS5

Introduction
CoffeeS5	is	the	sixth	sample	application	in	a	tutorial	series
named	Coffee.	It	uses	a	consistent	coffee	shop	motif.	Customers
enter	the	shop,	go	to	the	service	counter,	speak	to	order	drinks
or	to	enter	the	front	office.
The	samples	are	intended	to	demonstrate	speech	recognition
capabilities	within	an	application.	They	are	designed	for	the
application-level	(API)	programmer	and	for	those	not	familiar
with	speech	technology.	Each	sample	will	progressively	add	new
features	and	increase	in	complexity.	The	tutorial	chapters
explain	in	detail	particulars	of	the	code.	You	are	encouraged	to
read	each	chapter.	Writing	engines	such	as	speech	recognition
or	text-to-speech,	also	called	device	driver	programming,	will	be
covered	separately.	The	samples	can	use	engines	provided	by
the	SAPI	SDK	or	third	party	SAPI-compliant	engines.

Using	CoffeeS5
CoffeeS5	expands	the	concepts	of	resources	and	resource
management	introduced	in	CoffeeS4.	Using	information	that
was	learned	by	polling	tokens	about	available	voices,	CoffeeS5
allows	users	to	change	the	active	voice.	In	doing	so,	a	dynamic
grammar	is	used.	In	the	previous	Coffee	samples,	all	the	speech
commands	were	determined	ahead	of	time	and	could	not	be
changed.	For	example,	the	drinks	were	limited	to	five	basic
types	and	a	new	one	could	not	be	added.	A	dynamic	grammar
allows	adding	or	removing	commands	during	the	program
execution.
To	change	the	voices,	enter	the	office	by	saying,	“go	to	the
office”	or	“enter	office.”	Once	there,	display	the	voice	list	by
saying,	“manage	the	employees.”	A	list	of	available	voices	will
display	on	the	right	side	of	the	screen.	The	active	voice	will	be
indicated	in	red.	To	hear	the	employee	speak,	say,	“hear	them
speak.”	The	statement	“I	will	be	the	best	employee	you've	ever
had.	Let	me	work.”	will	be	spoken	in	the	current	voice.
To	change	the	voice,	say	the	voice	name	as	it	appears	on	the
screen.	For	example,	if	"Microsoft	Mary"	is	displayed,	say,
"Microsoft	Mary."	The	highlighting	will	change	to	the	selected
voice.	Having	the	employee	speak	will	do	so	in	the	voice.
Additionally,	the	list	of	available	voices	may	be	filtered	by
gender.	The	left	side	of	the	screen	displays	available	commands
for	this.	For	example,	"Show	males	only,"	will	display	only	the
male	voices.
Some	voices	may	not	be	applicable	to	this	example.	For
instance,	Sample	TTS	Voice	is	a	composite	voice	for	use	with	the
SDK	application	MkVoice.	The	voice	contains	only	seven	words
with	an	eighth	word	being	the	default	for	all	other	words.	As	a
result,	it	will	say	"blah"	most	of	the	time.	In	the	same	way,	the
MS	Simplifying	Chinese	Voice	will	spell	the	content	rather	than
speak	it.

New	Commands	List
Choose	one	word	from	each	line	of	a	category	forms	the
command.	Commands	in	parenthesis	are	optional	and	do	need
to	be	included.	Words	or	phrases	separated	by	slashes	indicate
any	of	the	listed	choices	may	be	used	although	only	one	may	be
selected.	Sections	marked	RULEREF	indicate	words	or	phrases
may	be	chosen	from	the	corresponding	rule	ID.	Rule	names	are
the	same	as	listed	in	the	corresponding	XML	configuration	file.
XML	rule	ID:	VID_OtherRules

(show)	males	only	/	(show)	females	only	/	(show)	both
genders

	
Rule	ID:	DYN_TTSVOICERULE
This	is	dynamic	rule	generated	during	run	time.	No	XML	code	is
present.	After	generation,	it	displays	the	names	for	all	the
available	voices.	The	contents	of	the	rule	is	displayed	on	the
right	side	of	the	screen	in	the	CoffeeS5	office	after	issuing	the
"manage	the	employees"	command.	The	rule	is	generated	at
the	time	that	command	is	issued	and	is	destroyed	after	leaving
the	office	afterward.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CoffeeS6

Introduction
CoffeeS6	is	the	seventh	and	final	sample	application	in	a	tutorial
series	named	Coffee.	It	uses	a	consistent	coffee	shop	motif.
Customers	enter	the	shop,	go	to	the	service	counter,	speak	to
order	drinks	or	to	enter	the	front	office.
The	samples	are	intended	to	demonstrate	speech	recognition
capabilities	within	an	application.	They	are	designed	for	the
application-level	(API)	programmer	and	for	those	not	familiar
with	speech	technology.	Each	sample	will	progressively	add	new
features	and	increase	in	complexity.	The	tutorial	chapters
explain	in	detail	particulars	of	the	code.	You	are	encouraged	to
read	each	chapter.	Writing	engines	such	as	speech	recognition
or	text-to-speech,	also	called	device	driver	programming,	will	be
covered	separately.	The	samples	can	use	engines	provided	by
the	SAPI	SDK	or	third	party	SAPI-compliant	engines.

Using	CoffeeS6
CoffeeS6	expands	the	concepts	of	grammars	and	dictations	as
they	have	been	presented	in	the	previous	examples.	The	early
Coffee	examples	used	a	fixed	grammar	to	include	a	select	set	of
words.	CoffeeS5	introduced	dynamic	grammars	so	you	could
add	new	words	to	an	existing	word	list.	CoffeeS6	goes	one
additional	step	and	uses	dictation.	For	dictation,	you	are	no
longer	limited	to	an	explicit	list	but	may	now	use	almost	any
word	or	words.	However,	instead	of	demonstrating	this	as	a
free-formed	dictation	application,	CoffeeS6	uses	it	in	association
with	existing	grammars.
To	showcase	this	ability,	CoffeeS6	enables	you	to	rename	the
coffee	shop.	From	the	office,	a	new	option	is	presented:	Manage
Store	Name.	Speak	this	command	and	the	screen	changes
again.	A	new	order	is	displayed	on	the	screen	allowing	you	to
rename	the	shop.	Say	"Rename	the	coffee	shop	to"	and	speak	a
name.	CoffeeS6	then	speaks	the	new	name	of	the	store.	For
example,	by	saying,	"Rename	the	coffee	shop	to	My	Coffee
Emporium,"	the	new	name	will	be	"My	Coffee	Emporium."	The
name	will	also	be	displayed	throughout	CoffeeS6.	After	saying
the	command,	you	may	then	navigate	to	another	location	or
continue	to	rename	the	store	any	number	of	times.

New	Commands	List
Choosing	one	word	from	each	line	of	a	category	forms	the
command.	Commands	in	parenthesis	are	optional	and	do	need
to	be	included.	Words	or	phrases	separated	by	slashes	indicate
any	of	the	choices	listed	may	be	used	although	only	one	may	be
selected.	Sections	marked	RULEREF	indicate	words	or	phrases
may	be	chosen	from	the	corresponding	rule	ID.	Rule	names	are
the	same	as	those	listed	in	the	corresponding	XML	configuration
file.

The	following	rule	is	used	to	rename	the	coffee	shop.	However,
because	the	shop	name	is	not	limited	to	a	particular	element
from	list,	the	asterisk	acts	as	a	wildcard.	Any	word	or	words	are
permitted.	Additionally,	the	plus	sign	forces	a	greater	level	of
confidence.	See	VID_ThingsToManage	for	a	more	detailed
explanation	of	the	sign.	Requiring	greater	confidence	forces	the
speech	recognition	engine	to	spend	additional	time	processing
the	word.	Greater	confidence	results	in	either	better	recognition
of	the	word,	or	a	higher	confidence	of	the	word	returned	by	the
speech	recognition	engine.
XML	rule	ID:	VID_Rename

Rename	the	coffee	shop	to	*+

The	last	two	items	of	the	next	rule	are	new	to	CoffeeS6.	As
expected,	you	can	say	"shop"	and	"store."	However,	the
command	allows	for	a	change	of	emphasis	on	words.	The	plus	or
minus	sign	changes	the	required	confidences	of	the	word
recognition.	By	increasing	the	required	confidence	level,	the
speech	recognizer	demands	a	higher	quality	of	the	word	being
recognized.	In	a	similar	way,	decreasing	the	confidence	allows
for	greater	latitude	of	the	word's	recognized	quality.	This	way,
certain	words	can	be	emphasized.	For	instance,	the	following

rule	ensures	that	the	word	"name"	is	recognized.	Because
regional	accents	or	background	noise	may	detract	from	the
quality	of	the	word,	the	new	emphasis	makes	certain	that	the
sound	heard	was	actually	"name."	In	turn,	the	rule	places	less
emphasis	on	the	word	"shop"	or	"store."	Although	these	words
are	still	required,	it	is	not	as	important	to	be	certain.
XML	rule	ID:	VID_ThingsToManage

employees
-shop	+name
-store	+name

Additionally,	two	existing	rules	have	new	list	elements.	The
ellipsis	disregards	any	words	spoken	for	the	current	element.	For
example,	using	VID_EspressoDrinks	you	can	say	"May	I	have	a
coffee,"	or	"Get	me	coffee,"	as	expected.	However,	by	including
the	ellipsis	in	the	rule,	you	may	also	say	"I	dunno,	how	about	a
coffee."	The	statement	will	be	recognized	since	everything
before	the	drink	name	can	essentially	be	ignored.	Including	the
ellipsis	as	a	list	element	significantly	reduces	the	constraint	of
listing	all	words	individually.
XML	rule	ID:	VID_EspressoDrinks
XML	rule	ID:	VID_OrderList

...

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Dictation	Pad
	
Dictation	Pad	is	an	example	of	a	speech-enabled	word
processor.	This	sample	application	is	intended	to	demonstrate
many	of	the	features	for	SAPI	5	in	a	single	coherent	application.
It	is	not	a	full	featured	speech-enabled	application,	although	the
foundations	of	many	of	options	are	present.
Using	Dictation	Pad	you	can	speak	into	a	microphone	and,
following	successful	speech	recognition	(SR),	Dictation	Pad	will
display	the	sentence	on	the	screen	as	text.	The	words	can	also
be	spoken	back	in	a	text-to-speech	(TTS)	voice,	highlighting
words	as	they	are	spoken.	Features	include	the	following:

Dictation	-	Recognizes	words	in	any	context.
Command	and	control	-	Recognizes	a	limited	selection	of
words	and	applies	them	to	control	the	flow	of	Dictation	Pad.
This	includes	using	speech	to	select	items	from	menus	and
changing	the	SR	mode	from	dictation	to	command	and
control.
Playback	-	Plays	back	words	appearing	on	the	screen	in	a
TTS	voice.
Speakback	-	Keeps	an	audio	record	of	the	actual	spoken
content.	You	can	play	it	back	to	confirm	or	verify	speech
recognition.

Phrase	tracking	-	Maintains	a	list	of	phrase	element
information.	This	can	locate	the	parts	of	an	SR	phrase	even
if	the	dictation	becomes	broken	or	disjointed.	It	also
demonstrates	text	replacement	such	as	inverse	text
normalization.	This	is	the	process	of	converting	text	to
numbers	such	as	"one	two	three"	into	"1-2-3"	or	"first"	into
"1st."

Word	Alternates	-	Displays	a	list	of	alternates	for	the
recognized	text.	From	this	list	you	can	select	a	replacement
for	the	original	text.
Adding	words	to	a	grammar	-	Demonstrates	the	SR	engine's
capability	to	add	words	or	phrases	to	an	existing	grammar
or	word	database.	Adding	a	word	allows	it	to	be	recognized
on	subsequent	occurrences.
Document	management	-	Saves	documents	and	opens	them
retaining	the	data	associated	with	the	recognized	SR	results.

	
The	complete	code	base	for	Dictation	Pad	is	included	with	the
SDK	and	you	are	encouraged	to	look	at	and	examine	the	code.	It
is	intended	to	be	a	training	aid	and	to	demonstrate	as	many
features	as	possible.

Note	About	SR/TTS	Engines
Dictation	Pad	supports	common	SAPI	features	such	as	various
user	interface	calls.	However,	SR	or	TTS	engines	are	not
required	to	provide	all	the	features.	The	current	engine	will	be
queried	for	features	that	Dictation	Pad	supports.	If	available,
Dictation	Pad	will	use	a	feature;	otherwise,	the	feature	will	not
be	available	or	the	menu	item	will	be	inactive.
For	example,	Dictation	Pad	uses	the	SAPI	feature	of	the
Add/Remove	Words	interface.	The	Microsoft	ASR	Version	5
engine	supports	this	feature	and	it	is	available	to	Dictation	Pad.
The	SAPI	5	Sample	Engine	from	the	SAPI	SDK	does	not	support
it;	hence,	Dictation	Pad	deactivates	the	Add/Remove	dialog
menu	item.
	

Dictation	Pad	Menu/Toolbar
	
The	main	window	of	the	Dictation	Pad	contains	both	a	toolbar
and	a	menu	bar	you	can	use	to	control	all	the	application's
functions.	The	toolbar	is	a	convenience	feature	and	you	may
access	many	of	its	functions	through	the	menu.
	

	
	

File	Menu
	

File	menu	items	control	the	documents	that	are	used	in	the
application.

New
Creates	a	new	document.	Multiple	documents	cannot	be
open	at	the	same	time	so	the	existing	document	must	be
saved	and	closed,	or	discarded	before	creating	the	new	one.

Open
Opens	a	previously	saved	document.	Similar	to	creating	a
new	document,	any	current	one	must	be	saved	first.

Save
Saves	the	current	file.	Files	are	saved	as	a	proprietary	*.dpd
format.

Save	As
Saves	the	current	file	under	a	new	or	different	name.

Exit
Quits	Dictation	Pad.	Unsaved	files	may	be	saved	before
exiting.

	
	

Edit	Menu
	

Edit	menu	items	control	the	copy	and	pasting	of	text	for	the
current	document.

Cut
Copies	the	text	to	the	clipboard	and	removes	the	selected
text	from	the	document.

Copy
Copies	the	text	to	the	clipboard.

Paste
Copies	the	text	from	the	clipboard	to	the	document.	The	text
is	either	placed	starting	with	the	cursor	insertion	point	or,	if
text	is	selected,	replaces	the	selection	with	the	new	text.

	
	

Voice	Menu
	

Voice	menu	items	control	the	speech	enabling	aspect	of	the
application.
	

Listen	for	Dictation

Enables	Dictation	Pad	to	receive	speech	in
dictation	form	rather	than	for	command	and
control.	This	means	you	can	speak	any
words	or	combination	of	words	and	they	will

be	recognized.	This	option	is	mutually
exclusive	from	Listen	for	Commands.

Listen	for	Commands

Enables	Dictation	Pad	to	receive	speech	in
command	and	control	form	rather	than	as
dictation.	You	are	limited	to	words	defined
for	application	control	only.	This	includes	a
word	equivalent	for	most	menu	items	or
buttons.	This	option	is	mutually	exclusive
from	Listen	for	Dictation.

Playback

Reads	back	the	text.	To	have	a	portion	of
the	text	read	back,	select	the	text	you	want.
If	you	do	not	select	any	text,	reading	begins
at	the	cursor	insertion	point.	If	the	insertion
point	is	at	the	end	of	the	document,	the
entire	document	will	be	read.
If	the	text	was	originally	dictated,	the
playback	will	be	the	recorded	audio	of	your
voice.	If	you	did	not	dictate	the	text,	but
rather	typed	or	pasted	it	into	the	document,
the	TTS	voice	will	read	the	text.

Grammar	Activation

Turns	grammars	on	or	off.	Words	or
phrases	added	through	the	Add/Delete
Word(s)	option	are	neither	available	nor
recognized	if	the	grammar	is	turned	off.
By	default,	this	option	is	turned	off.

Add/Delete	Word(s)
Brings	up	the	SR	engine-specific	user	interface	so	you	can
add	words	to	or	delete	words	from	the	lexicon	(or	dictionary).

Select	Whole	Words
Sets	the	selection	state	for	word	highlighting.	If	selected,	the
entire	word	will	be	automatically	highlighted	during	the
selection	process.	Otherwise,	only	the	words	and	letters
actually	selected	will	remain	selected.

Shared	recognition	engine
Sets	resource	sharing.	By	default,	Dictation	Pad	uses	the	"In
process"	(also	referred	to	in	SAPI	5	as	InProc)	resource	model
that	causes	the	SR	engine	to	exist	in	the	same	process	as
Dictation	Pad	and	restricts	other	applications	from	using
resources	required	by	this	application.	Other	resources
include	the	microphone,	so	that	all	audio	input	is	given	to
Dictation	Pad	rather	than	another	application	currently
running.	If	selected,	the	SR	engine	may	reside	in	a	separate
process.

Voice	Training
This	brings	up	Speech	Training	Recognition	Wizard	for
training	or	additional	training.	This	wizard	is	accessed
through	Speech	properties	in	Control	Panel.	On	the	SR	tab,
click	Train	Profile	to	bring	up	the	voice	training	wizard.

Microphone	Setup
This	brings	up	the	Microphone	Wizard	for	adjusting	the
microphone	set	up.	This	wizard	is	accessed	through	Speech
properties	in	Control	Panel.	On	the	SR	tab,	click	Configure
Microphone	to	bring	up	the	microphone	wizard.

	
	

Using	Dictation	Pad

Speech	Recognition
By	default,	Dictation	Pad	starts	in	dictation	mode	with	the
microphone	off.	To	start	speech	recognition,	click	Microphone,
select	the	Voice->Microphone	menu	item	or	use	control-m.
Begin	speaking.	To	indicate	processing,	ellipses	("...")	display	in
the	window.	During	the	recognition	process	as	SAPI	starts
returning	words	or	phrases,	the	text	appears	dimmed	until	a
final	recognition	is	made.	When	a	final	recognition	is
determined,	the	text	will	darken	and	the	insertion	point	will
advance.
	
Below	the	insertion	point	is	a	small	box.	Click	this	box	to	display
a	list	of	alternate	words.	SAPI	5	places	the	final	result	of	its	word
search	on	the	screen,	but	you	can	choose	another	word	by
selecting	it	from	the	alternate	list.	This	new	choice	replaces	the
existing	word.
	

Text-to-Speech
Text	may	be	read	back	using	the	TTS	voice.	Select	Voice-
>Playback	or	click	Play	to	hear	the	text.
If	no	text	is	selected,	Dictation	Pad	will	begin	reading	from	the
insertion	point	to	the	end	of	the	document.	If	you	select	specific
text,	only	the	highlighted	portion	will	be	read.	In	either	case,	the
word	currently	being	read	will	be	highlighted.	The	words	will
continue	to	be	highlighted	until	the	selection	or	portion	is	read.
Any	text	selected	prior	to	being	read	will	remain	selected
afterward.	If	the	insertion	point	is	at	the	end	of	the	document,
the	entire	document	will	be	read.

To	stop	or	interrupt	playback,	click	Play	again	from	either	the
toolbar,	menu,	or	use	control-p.	You	may	also	click	anywhere	in
the	edit	window	or	press	Esc	to	stop	playback.
You	may	change	voices	characteristics	from	the	TTS	tab	of
Speech	properties.	For	example,	you	may	change	voices	or
change	the	speaking	rate	of	the	voice.	The	newly	selected	voice
will	automatically	be	previewed	so	you	can	confirm	the	choice.
You	can	change	the	speaking	rate	with	the	Speed	slider	bar.
	

Command	and	Control
You	may	use	speech	to	control	program	flow	rather	than	using	it
as	dictation.	In	this	way,	the	menus,	menu	items,	and	the	cursor
may	be	controlled	by	speech	and	are	collectively	referred	to	as
command	and	control.	This	is	fundamentally	different	from
dictation	both	programmatically	and	functionally.	One	difference
is	that	the	word	selection	is	severely	limited.	Words	are
restricted	to	essentially	coincide	with	the	menu	items,	buttons,
or	serve	as	logical	cursor	commands.	Other	words	will	not	be
recognized.
	
You	can	switch	to	command	mode	in	one	of	three	ways.	The	first
is	through	the	Voice->Listen	for	Commands	menu	item.	The
second	is	to	click	Command	on	the	toolbar.	The	third	way	to
switch	is	during	dictation	by	saying	"command."	Regardless,
Command	on	the	toolbar	will	automatically	depress	as	visual
confirmation	of	the	current	mode.
	
Once	in	command	mode,	you	can	speak	the	commands.	If	it	is
recognized	successfully,	the	action	takes	place.	A	menu
command	will	drop	down	the	appropriate	menu.	The	action	for	a
menu	item	will	be	directly	applied.	A	cursor	command	will	move
the	cursor.	If	the	command	was	not	understood,	no	action	will

take	place.	A	command	may	not	be	recognized	for	several
reasons.	The	word	itself	may	not	be	on	the	command	list,	or	the
word	may	not	have	been	spoken	clearly,	or	background	noise
may	have	obscured	it.	Similarly,	the	menu	item	may	not	be
applicable	to	the	situation.	If	the	reason	is	unclear,	you	should
repeat	the	command	clearly	and	perhaps	more	slowly.	There
might	also	be	a	slight	lag	time	in	response	depending	on	the
computer	system's	capability.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Simple	Dictation

Introduction
Simple	Dictation	is	a	rudimentary	application	showcasing
speech	recognition	dictation	processes.

Using	Simple	Dictation
As	the	name	implies	it	is	a	simple	application	that	only	displays
the	text	of	speech	recognition.	To	use	Simple	Dictation,	begin
speaking	into	the	microphone	after	the	application	launches.
The	results	of	the	speech	recognition	display	in	the	text	box.
There	are	no	other	controls	for	Simple	Dictation.	Dictation
cannot	be	turned	off	through	the	application	and	different
grammars	may	not	be	used.	In	addition,	text	normalization	is
not	supported	so	that	saying	"five	dollars"	will	produce	the
phrase	"five	dollars"	rather	than	"$5."	Other	substitutions	are
not	supported	either	such	as	new	line	or	paragraph.
Speak	at	a	normal	rate	and	volume	for	best	results.	Do	not
pause	unnecessarily	or	excessively	between	words.	Speech
recognition	yields	the	best	results	from	natural	speech	patterns.

Options

Exit
Quits	Simple	Dictation.	Simple	Dictation	may	also	be	exited	by
clicking	on	the	close	button	in	the	title	bar.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

TTSApp
TTSApp	is	an	example	of	a	text-to-speech	(TTS)	enabled
application.	This	sample	application	is	intended	to	demonstrate
many	of	the	features	for	SAPI	5	in	a	single	coherent	application.
It	is	not	a	full	featured	TTS-enabled	application	although	the
foundations	of	many	of	the	options	are	present.
TTSApp	allows	you	to	hear	the	resulting	audio	output	from	the
TTS	process	for	text	entered	in	the	main	window.	Alternatively,
you	can	open	a	file	and	TTSApp	will	speak	the	contents	of	that
file.
Each	word	is	highlighted	in	the	text	window	to	indicate	the
current	TTS	processing	position.	Features	include:

SAPI5
TTSApp

The	main	display	window	of	the	TTSApp
sample	application.

Text
window

TTSApp	speaks	the	text	contained	in	this
window	using	TTS.

Speak Initiates	the	TTS	process.
Voices Selects	the	voice	for	the	audio	output.
Rate Selects	the	rate	of	speech.
Volume Selects	the	volume	level	of	the	audio

output	stream.
Open
File

Enables	TTSApp	to	open	and	speak	the
contents	of	a	stored	text	file.

Pause Pauses	the	TTSApp	text	phrase	speaking
process.

Resume Resumes	the	TTSApp	text	phrase
speaking	process.

Stop Stops	the	TTSApp	text	phrase	speaking
process.

About Displays	the	About	TTSApp	information
dialog	box.

Format Selects	the	audio	format.

Skip Specifies	the	number	of	sentences	to	skip
in	the	phrase	speaking	process.

Speak
wav

Speaks	the	contents	of	a	stored	wav	file.

Reset Resets	TTSApp	to	its	original
configuration	setting.

Save	to
wav

Saves	the	contents	of	the	TTSApp	audio
output	stream	to	a	wav	file.

Show
all
events

Displays	all	TTSApp	SAPI	events.

Process
XML

Specifies	that	the	TTS	voice	will	speak	the
XML	tags	and	their	contents	in	the	TTS
process.

Mouth
Position

Displays	mouth	shapes	for	phrase
elements	as	they	are	spoken.

SAPI5
TTSApp	main	window.
Use	the	main	TTSApp	window	to	select	the	configuration

settings	that	affect	the	TTS	process.	The	elements	of	TTSApp
are	listed	above.	Click	the	text	in	the	left	column	for
additional	information.

Text	window
The	text	content	of	this	window	is	spoken	by	TTSApp.	All	text
entered	in	this	window	is	processed	and	spoken	by	TTSApp
voice.	
By	default,	the	text	content	of	this	window	is,	"Enter	the	text
you	wish	spoken	here."

Speak
Click	Speak	to	initiate	the	text-to-speech	process.

Voices
Select	a	voice	using	the	drop-down	list.	TTSApp	uses	the
selected	voice	when	speaking	a	wav	file	or	the	contents	of
the	text	window.

Rate
Move	the	slide	control	to	the	right	to	increase	the	speech
rate,	and	to	the	left	to	decrease	the	speech	rate.	The	Rate
level	determines	the	number	of	text	units	spoken	per	minute.

Volume
Move	the	slide	control	to	the	right	to	increase	the	volume
level,	and	to	the	left	to	decrease	the	volume	level.

Open	File
Click	Open	File	to	access	the	Windows	Open	dialog	box.
Select	the	file,	and	then	click	Open.

Pause
Click	Pause	to	interrupt	the	TTS	process.

Resume
Click	Resume	to	continue	the	TTS	process.

Stop
Click	Stop	to	stop	the	TTS	process.

About
The	About	window	displays	information	related	to	TTSApp.

Click	OK	to	close	the	About	window.

Format
Use	the	drop-down	list	in	Format	to	select	one	of	the
following	format	rates.

Selectable	format	rates
8kHz 8	Bit	Mono 8	Bit	Stereo 16	Bit	Mono 16	Bit	Stereo
11kHz 8	Bit	Mono 8	Bit	Stereo 16	Bit	Mono 16	Bit	Stereo
12kHz 8	Bit	Mono 8	Bit	Stereo 16	Bit	Mono 16	Bit	Stereo
16kHz 8	Bit	Mono 8	Bit	Stereo 16	Bit	Mono 16	Bit	Stereo
22kHz 8	Bit	Mono 8	Bit	Stereo 16	Bit	Mono 16	Bit	Stereo
24kHz 8	Bit	Mono 8	Bit	Stereo 16	Bit	Mono 16	Bit	Stereo
32kHz 8	Bit	Mono 8	Bit	Stereo 16	Bit	Mono 16	Bit	Stereo
44kHz 8	Bit	Mono 8	Bit	Stereo 16	Bit	Mono 16	Bit	Stereo
48kHz 8	Bit	Mono 8	Bit	Stereo 16	Bit	Mono 16	Bit	Stereo

Skip
Use	the	spin	box	to	select	the	number	of	skipped	sentences.
Skip	functions	only	while	text	is	being	spoken.

Speak	wav
Speak	wav	enables	TTSApp	to	speak	the	contents	of	a	wav
file.	Click	Speak	wav	to	access	the	Windows	Open	dialog
box.	Select	a	wav	file	from	the	dialog	box,	and	then	click

Open.

Reset
Click	Reset	to	reset	TTSApp	to	its	original	configuration
state.

Save	to	wav
Click	Save	to	wav	to	save	the	TTSApp	audio	output	stream
to	a	wav	file.

Show	all	events
Select	Show	all	events	to	display	SAPI	related	events	in	the
event	display	window	as	the	input	text	is	processed	by
TTSApp.

Process	XML
Select	Process	XML	to	include	the	XML	tags	and	their
contents	in	the	audio	output	stream	from	TTSApp.	When	this
option	is	selected,	the	application	will	parse	and	interpret	the
XML	tags	literally.
For	example,	if	the	Process	XML	option	is	selected,	the
application	could	be	paused	for	the	specified	number	of
milliseconds	in	the	SILENCE	tag.

Process
XML 		XML	tag 		Result

<SILENCE	MSEC	=
"3000"/>

The	application	would	speak
3000	milliseconds	of
silence.

<SILENCE	MSEC	= The	application	will	speak

"3000"/> the	phrase,	"less	than
silence	msec	equals	quote
three	thousand	quote	slash
greater	than."

Mouth	Position
The	mouth	position	displays	the	various	mouth	shapes	and
positions	as	TTSApp	processes	the	input	text	stream.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Talkback

Introduction
TalkBack	demonstrates	speech	recognition	(SR)	and	text-to-
speech	(TTS)	capabilities.	You	can	speak	any	word	or	phrase	and
TalkBack	will	attempt	to	recognize	it,	display	it	on	the	screen
and	even	play	back	the	actual	spoken	phrase,	allowing	you	to
confirm	the	transcription.
Its	unsophisticated	interface	belies	the	richness	of	the
underlying	tool	suite.	Talkback	does	everything	that	a	major	SR
application	needs	to	do	and	does	it	in	only	a	few	lines.	It
initializes	the	SR	and	TTS	engines,	accepts	input	from	the
microphone,	and	provides	audio	playback	through	speakers.	It
also	recognizes	words,	displays	them	on	the	screen,	and	speaks
them	back	with	the	computer's	TTS	voice.
You	are	encouraged	to	look	at	the	code.	To	keep	it	simple,	a	DOS
interface	is	used.	Therefore,	it	needs	very	little	code	for
maintaining	the	user	interface.	The	few	messages	that	exist	are
posted	to	the	screen	using	the	printf()	command.	The	Coffee
Tutorial	samples	provide	a	more	detailed	explanation	for	writing
speech-enabled	applications.

Using	TalkBack

TalkBack	is	a	console	application	but	may	be	treated	as	a
Windows	one.	Double-clicking	its	application	icon	opens	it	and	it
will	be	run	in	a	new	console	window.	You	may	also	open	it	from
within	a	console	window	by	typing	"Talkback"	along	with	any
command	line	parameters.	The	application	will	then	run	in	the
current	console	window.
TalkBack	accepts	up	to	two	optional	parameters:
Talkback	-noTTS	-noReplay

-noTTS	disables	the	TTS	voice	from	speaking	the	recognized
result.
-noReplay	disables	the	playback	of	your	actual	spoken	word.	By
default,	neither	function	is	disabled.
Once	started,	you	will	be	prompted	on	the	screen	with:
I	will	repeat	everything	you	say.

Say	"Stop"	to	exit.

You	may	talk	into	the	microphone.	Any	word	or	words	may	be
spoken,	although	it	works	best	with	only	a	few	words	at	a	time.
This	recognition	may	take	a	few	moments	depending	the
system's	capabilities.	The	SR	engine	processes	the	phrase	and
displays	it	on	the	screen:
I	heard:		though

If	replay	is	not	disabled,	it	plays	back	the	recorded	word	by
speaking	"…when	you	said:"	and	the	actual	word.	This	may	be
repeated	any	number	of	times.	As	part	of	the	demonstration,
the	SR	engine	will	force	a	match	for	the	word	even	if	the	match
is	an	unlikely	one.	For	example,	a	nonsense	word	will	return	a
match.	A	more	robust	application	would	likely	question	or	mark

the	word	to	warn	you	that	no	reasonable	match	was	found.
To	exit	the	application,	you	may	say,	"stop."	Upon	a	successful
recognition,	TalkBack	will	quit.	You	may	also	use	the	close	box
on	the	window	or,	if	running	from	the	command	line,	use
CTRL+C.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Simple	Telephony

Introduction
Simple	Telephony	is	a	speech	recognition	(SR)	and	text-to-
speech	(TTS)	engine	that	uses	telephony	(TAPI)	interfaces.	It	is
intended	for	use	with	a	phone	system,	allowing	you	to	dial	in
and	talk	to	Simple	Telephony.

Using	Simple	Telephony
The	functionality	of	Simple	Telephony	is	very	similar	to	the	SDK
sample,	TalkBack.	When	prompted,	you	may	speak	a	word,
phrase,	or	a	short	sentence	and	Simple	Telephony	will	attempt
recognition.	It	then	speaks	the	result	using	a	synthesized	voice.
It	will	also	play	back	your	recorded	voice	so	that	you	can
confirm	the	accuracy	of	the	recognition.	Please	see	the	TalkBack
User's	Guide	for	more	information.

Setting	up	Simple	Telephony
Simple	Telephony	has	two	requirements.	First,	it	runs	only	on
the	Windows	2000	operating	system.	Second,	you	must	have	a
modem,	since	it	is	a	telephony	application.	There	is	no
restriction	on	the	type	or	speed	of	modem,	although	it	must	be
properly	connected	and	able	to	process	data.	Follow	the
instructions	provided	by	the	modem	manufacturer	for	specific
loading	and	installation	details.

Using	Simple	Telephony

The	application's	interface	is	simple.	The	phone	line	or
connection	displays	the	status.	Commonly	it	will	display
"Waiting	for	a	call..."	or	"Answering..."	or	"Connected."	Several
error	messages	may	also	be	displayed.
Simple	Telephony	will	not	automatically	open	if	a	phone	call	is
made	to	it.	It	must	be	already	running	prior	to	answering	calls.	If
Auto	Answer	is	selected,	Simple	Telephony	will	pick	up	the	call;
otherwise,	you	must	click	the	Answer	button.	Simple	Telephony
will	greet	you	and	ask	you	to	speak	something.	After	the
recognition	and	subsequent	playbacks,	the	call	will
automatically	terminate.	Only	one	recognition	is	allowed	per
session.

Options

Auto	Answer
Directs	Simple	Telephony	to	automatically	answer	incoming
calls.	Select	this	to	have	calls	picked	up	on	the	second	ring.	If
Auto	Answer	is	not	selected,	you	must	click	Answer	to	answer
all	calls	manually.

Answer
Answers	incoming	calls	manually.	If	the	Auto	Answer	feature	is
not	selected,	you	must	click	Answer	to	answer	all	calls
manually.

Exit
Quits	Simple	Telephony.	Any	current	call	is	disconnected	and	the
application	exits	cleanly.

Compiling	Simple	Telephony
The	Platform	SDK	is	required	to	compile	Simple	Telephony.	See
Microsoft	Platform	SDK	section	in	this	SDK	for	those
requirements	and	the	download	location.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SDK	Samples	for	Automation
The	SDK	provides	examples	of	applications	using	automation.
Each	sample	is	marked	according	to	the	language	in	which	it	is
written.	All	samples	contain	source	code.	You	are	free	to	model
applications	on	these	samples.	Notes	inside	each	sample
provide	information	compilation	environment	setup	and
settings,	and	additional	information	needed	to	run	the	sample.
Since	SDK	samples	are	meant	to	demonstrate	basic	speech
technologies,	not	all	options	or	contingencies	are	addressed.
The	samples	are	not	intended	to	be	complete	or	robust
applications.	In	many	situations,	the	samples	do	not	provide
return	codes	or	extensive	error	checking.
The	following	topics	are	available:

Visual	Basic	Samples
Speech	List	Box	for	Visual	Basic
Simple	Dictation	for	Visual	Basic

Simple	TTS	for	Visual	Basic
RecoVB	for	Visual	Basic
AudioApp	for	Visual	Basic

TTSApp	for	Visual	Basic
VB	Outgoing	Call
VB	TAPI	With	Internet

JScript	Sample
Simple	TTS	for	JScript

C-Sharp	(C#)	Samples
Speech	List	Box	for	C#
SimpleTTS	for	C#

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Speech	List	Box	for	Visual	Basic

Introduction
Speech	List	Box	for	Visual	Basic	is	an	elementary	application
showcasing	speech	recognition	(SR)	and	dynamic	grammars.
In	general,	a	grammar	is	the	set	of	words	that	the	engine	can
recognize.	In	the	case	of	dictation,	all	words	are	in	the	grammar
and	no	limitation	is	imposed	on	the	user.	In	the	case	of
command	and	control	applications,	the	list	of	words	is	much
more	restricted.	For	example,	a	grammar	containing	commands
to	operate	a	menu	system,	might	include	less	than	a	dozen
words,	each	word	corresponding	to	a	menu	or	menu	item.	Often,
this	list	of	words	is	generated	ahead	of	time	and	represents	a
static	or	fixed	grammar.	However,	dynamic	grammars	allow
users	to	add	words	while	running	the	application.	This	permits
users	to	customize	the	grammar	according	to	their	needs.	The
list	box	sample	demonstrated	making	and	maintaining	a
dynamic	grammar.

Using	Speech	List	Box	for	Visual	Basic
Speech	List	Box	for	Visual	Basic	opens	with	no	words	in	the
dynamic	grammar.	You	can	add	words	or	phrases	by	typing	the
text	in	the	edit	box	and	clicking	Add.	After	adding	at	least	one
item,	individual	items	may	be	highlighted	by	saying,	"select"
followed	by	the	text	of	the	item.	For	example,	if	one	of	the	items
a	list	of	cities	were	Seattle,	saying	"Select	Seattle"	will	choose
the	Seattle	item.

Add
Use	Add	to	move	the	text	in	the	edit	box	to	the	display	area.
The	text	can	be	either	a	single	word	or	a	phrase.

Remove
Use	Remove	to	remove	the	selected	item	in	the	display	area
from	the	dynamic	grammar.	Highlight	the	item	to	be	removed.

Speech	Enabled
Use	Speech	Enabled	to	enable	the	speech	recognizer.	By	default
it	is	on	and	the	speech	engine	will	attempt	to	recognize	voice
commands.	Disabling	this	option	prohibits	recognition	attempts.
Regardless	of	the	recognizer	state,	if	no	items	have	been	added
to	the	display	area,	no	recognition	will	occur.

Exit
Click	the	close	box	in	the	title	bar	to	exit	Speech	List	Box	for
Visual	Basic.

Compile
Speech	List	Box	for	Visual	Basic	is	actually	two	projects	running
at	the	same	time.	To	compile	them,	open	ListboxSample.vbg

instead	of	a	vbp	file.	One	project	is	the	application	itself.
However,	the	display	area	is	actually	a	control	component.	By
running	ListboxSample.vbg,	the	control	component	is	actually
loaded	and	registered	for	the	computer.
Speech	List	Box	for	Visual	Basic	is	a	standard	Visual	Basic
application	and	does	not	require	additional	special	support.
However,	Visual	Basic	6	Professional,	Enterprise	or	later	must	be
used	to	compile	this	example.	Visual	Basic	6	Learning	Edition
does	not	supply	all	the	needed	ActiveX	Controls	for	the	sample.
To	compile	correctly,	the	Speech	reference	must	be	active;	see
Creating	a	Speech-Enabled	Visual	Basic	Project	in	Using	the
Visual	Basic	Code	Examples	for	details	to	speech	enable	Visual
Basic	applications.	Additionally,	the	samples	are	installed	as
Locked	files.	To	modify	them,	they	must	be	unlocked.	To	unlock,
right-click	the	file	or	files,	select	Properties,	and	clear	the	Read-
Only	check	box.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Simple	Dictation	for	Visual	Basic

Introduction
Simple	Dictation	is	an	elementary	application	showcasing
speech	recognition	(SR).	Specifically,	it	uses	a	dictation	model,
so	you	can	speak	anything	and	Simple	Dictation	attempts	to
recognize	it.	Using	Simple	Dictation,	speak	into	a	microphone
and	following	successful	speech	recognition,	the	text	appears	on
the	screen.

Options
Simple	Dictation	has	two	controls:	Start	and	Stop.

Start
Click	Start	to	start	dictation.	Once	the	SR	engine	is	on,	any
recognized	speech	is	displayed	on	the	screen.

Stop
Click	Stop	to	end	dictation.	The	SR	engine	will	stop	and	no
further	speech	recognition	takes	place.

Exit
Click	the	close	box	in	the	title	bar	to	exit	Simple	Dictation.

Compile
Simple	Dictation	is	a	standard	Visual	Basic	application	and	does
not	require	special	support.	However,	the	Speech	reference
must	be	active;	see	Creating	a	Speech-Enabled	Visual	Basic
Project	in	Using	the	Visual	Basic	Code	Examples	for	details	on
how	to	speech	enable	Visual	Basic	applications.	Additionally,	the
samples	are	installed	as	Locked	files.	To	modify	them,	they	must

be	unlocked.	To	unlock,	right-click	the	file	or	files,	select
Properties,	and	clear	the	Read-Only	check	box.

Programming	Notes
If	Simple	Dictation	is	run	from	the	Visual	Basic	development
environment,	the	debugger's	Immediate	window	displays
information	not	available	from	the	executable	version.	See	the
code	for	exact	details.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Simple	TTS	for	Visual	Basic

Introduction
Simple	TTS	is	an	elementary	application	showcasing	text-to-
speech	(TTS).	The	application	speaks	the	text	in	the	text	box
using	a	default	voice.	Simple	TTS	can	also	save	the	speech	to	a
wav	file.

Options
Simple	TTS	has	two	options:	Speak	the	text	(Speak	It)	or	save
the	speech	to	a	file	(Save	to	wav).

Speak	It
Click	Speak	It	to	hear	the	text	in	the	text	box	spoken.	You	can
change	the	voice	using	Speech	properties	in	Control	Panel.	You
can	change	or	edit	the	text	allowing	different	words	or	phrases
to	be	spoken,	although	the	text	reverts	to	a	default	phrase	each
time	you	open	the	application.

Save	to	wav
Select	Save	to	wav	to	save	the	output	to	a	wav	file.	This	way,
the	text	will	not	be	spoken	audibly.	After	selecting	Speak	It,	a
dialog	box	appears	requesting	a	file	name	and	location	to	save
the	file.	Double-click	the	wav	file	to	play	it	back.	As	a	wav	file,	it
may	also	be	used	for	other	speech	purposes	such	as	an	input
source	for	either	off-line	dictation	or	custom	engine	voices.

Exit
Click	the	close	box	in	the	title	bar	to	exit	Simple	TTS.

Compile

Simple	TTS	is	a	standard	Visual	Basic	application	and	does	not
require	special	support.	However,	the	Speech	reference	must	be
active;	see	Creating	a	Speech-Enabled	Visual	Basic	Project	in
Using	the	Visual	Basic	Code	Examples	for	details	to	speech
enable	Visual	Basic	applications.	Additionally,	the	samples	are
installed	as	Locked	files.	To	modify	them,	they	must	be
unlocked.	To	unlock,	right-click	the	file	or	files,	select	Properties,
and	clear	the	Read-Only	check	box.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

RecoVB	for	Visual	Basic

Introduction
RecoVB	is	an	application	demonstrating	basic	speech
recognition	(SR)	techniques.	It	displays	the	following	information
associated	with	the	SR	process:
Text	of	the	recognition
Associated	phrase	elements	and	information
Events	for	the	recognition	recorded	as	they	are	initiated	and

processed

Event	interests	for	the	SR	attempt
Grammars	to	be	used

Control	of	SR	engine
You	can	use	RecoVB	to	test	SR	processes	and	see	the	results	of
the	attempts.
To	use	RecoVB,	select	the	characteristics	of	the	recognition
context.	This	includes	the	recognition	type	(command	and
control	or	dictation),	the	engine	type	to	create	(shared	or
InProc).	By	default,	this	configuration	is	set	to	command	and
control	(C	and	C)	in	a	shared	environment.	The	default	grammar
is	sol.xml.	Once	these	parameters	are	set,	click	Start
Recognition	and	speak	into	the	microphone.	The	text	appears	on
the	screen	as	the	speech	is	processed.	If	you	selected	any
events	or	stream	information,	these	will	appear	in	the	events
display	at	the	bottom	of	the	main	window.	Once	a	recognition
occurs,	the	larger	Recognition	window	displays	the	results.	Each
recognition	will	be	a	new	line	in	a	tree	structure.	The	result	will
display	as	Recognition	and	the	actual	word	or	phrase
recognition.
To	see	information	associated	with	a	specific	recognition,	open

the	tree	view	for	that	item	by	clicking	on	the	line	of	the
recognition	or	the	small	box	to	the	left	of	the	recognition.	Like
other	tree	view	displays,	if	the	box	has	a	small	plus	sign	("+")	in
it,	there	is	additional	information	to	display.	The	expanded
display	lists	the	recognition	result	of	that	recognition.

Options
There	are	numerous	options	for	RecoVB.

Start	Recognition
Starts	the	SR	process.	Use	Activate	Mic	to	turn	on	the
microphone,	then	you	may	speak	into	it.	After	starting	SR,	the
button	label	will	change	to	Stop	Recognition.	While	active,	the
Recognition	Type	and	Engine	Creation	radio	buttons	will	be
inactive	since	they	cannot	change	during	an	SR	session.

Activate	Mic
Controls	the	microphone	status.	If	selected,	the	microphone	is
active	and	receives	sound	for	processing.	If	not	selected,	no
sound	will	be	processed	through	the	microphone.	While	an
inactive	microphone	does	not	process	sound	for	SR,	this	is	not
the	preferred	method	to	turn	SR	on	or	off.	Activate	mic	will	be
active	only	during	speech	recognition.	The	microphone	may	be
turned	off	for	brief	periods	but	the	SAPI	engine	is	still	active	and
consumes	computer	resources.	To	turn	SR	off,	click	Stop
Recognition.

Show	Stream	Info
Displays	the	stream	information	associated	with	the	SR	session
in	the	events	list	window.

Recognition	Type
Controls	the	type	of	the	recognition	grammar.	Select	one	of	the
following	two	types.

C&C;
A	command	and	control	(C	and	C)	grammar	recognizes	specific

words.	By	default,	the	sol.xml	grammar	is	used	as	an	example,
although	a	different	grammar	may	be	selected	using	the
Recognition	menu->Load	Grammar.	A	C	and	C	grammar	is
intended	to	restrict	the	user	to	a	set	of	words	often	associated
with	specific	tasks	such	as	selecting	menu	items	or,	in	the	case
of	the	default	grammar,	playing	a	game	of	solitaire.	The	limited
grammar	results	in	a	better	quality	of	recognition	for	the	words
that	the	application	needs	to	process.	It	also	filters	out
unnecessary	words.

Dictation
A	dictation	grammar	imposes	no	restrictions	on	the	words	that
may	be	recognized.	Unlike	a	C	and	C	grammar,	you	can	say	any
word	or	phrase	and	the	SR	process	will	attempt	to	recognize	it.
This	enables	you	to	dictate	a	letter	or	memo,	for	instance.

Engine	Creation
Controls	how	the	engine	is	instantiated	for	the	session.	Select
one	of	the	following	two	types,	shared	or	InProc.

Shared
A	shared	environment	(also	called	context)	allows	the	SR	engine
to	be	used	by	other	applications	concurrently.	This	is	the	more
common	of	the	two	environments.	See	ISpeechRecognizer	for
additional	details.

Inproc
An	in-process	or	InProc	environment	restricts	the	SR	engine	to
only	one	application.	No	other	application	may	use	that	engine
concurrently.	See	ISpeechRecognizer	for	additional	details.

Engine
This	drop-down	box	lists	the	engines	available.	Only	one	engine

may	used	at	a	time	and	all	SR	instances	must	be	of	the	same
engine	type.

Emulate	Recognition
This	option	allows	typed	text	to	be	processed	by	the	SR	engine.
There	are	instances	when	users	may	wish	to	see	the	results	and
events	associated	with	an	SR	attempt	and	will	need	method	to
replicate	the	speech	attempt	each	time.	Enter	the	text	in	the
edit	box	and	click	Emulate	to	start	the	process.

Emulate
Click	Emulate	to	start	the	emulated	speech	process.	See
Emulate	Recognition	for	more	details.

Current	C&C;	Grammar
Displays	the	current	C	and	C	grammar.	The	grammar	may	be
changed	through	the	Recognition	menu	Load	Grammar	item.

Event	Interests
Use	Event	Interests	to	set	which	event	interests	to	display	and
process.	An	event	interest	is	a	flag	allowing	SAPI	or	the	SR
engine	to	return	information	back	to	the	application.	When	an
event	occurs	(such	as	a	recognition	or	the	start	of	a	new	stream,
for	example),	the	SR	engine	can	send	a	message	back	to	the
application.	For	example,	for	an	application	to	display	the	text	of
a	successful	recognition,	the	application	must	receive	the
Recognition	event	interest.	The	application	uses	that	message
as	a	key	before	extracting	the	contents	of	the	recognition.
However,	not	all	events	are	useful	to	the	application	at	any	one
time.	It	is	possible	to	prevent	the	application	from	receiving
these	events	interests	by	turning	off	Event	Interests.	Likewise,
they	may	be	reactivated	at	anytime.
To	receive	certain	event	interests,	select	the	ones	you	want	from
the	list	box.	By	default,	all	are	active	except	for	Audio	Level.	To

suppress	receiving	an	event	interest,	clear	the	check	box.	See
ISpeechRecoContextEvents	for	details	about	shared	or	InProc
event	interests.

Clear	Event	List
Clears	the	event	interest	window.

Clear	Tree	View
Clears	the	recognition	results	window.

Play	Audio
Plays	back	the	audio	portion	of	the	last	recognition.	This	audio	is
the	actual	audio	spoken	by	the	user	and	is	the	sound	sent	to	the
SR	engine.	This	is	helpful	in	attempting	to	understand	the
results	of	a	particular	recognition.	You	must	select	Retain	Audio
in	order	to	use	this	option.

Retain	Audio
Keeps,	or	retains,	the	audio	from	the	recognition	attempt.	See
Play	Audio	for	complete	details.

Exit
Exits	RecoVB.	The	application	may	also	be	exited	by	clicking	the
close	box	in	the	title	bar	or	by	the	File	menu	Exit	item.

File	Menu:	Exit
Exits	RecoVB.	The	application	may	also	be	exited	by	clicking	the
close	box	in	the	title	bar	or	by	the	File	menu	Exit	item.

Help	Menu:	About
Displays	the	About	box	for	the	RecoVB.

Compile
RecoVB	is	a	standard	Visual	Basic	application	and	does	not
require	special	support.	However,	the	Speech	reference	must	be
active;	see	Creating	a	Speech-Enabled	Visual	Basic	Project	in
Using	the	Visual	Basic	Code	Examples	for	details	to	speech
enable	Visual	Basic	applications.	Additionally,	the	samples	are
installed	as	Locked	files.	To	modify	them,	they	must	be
unlocked.	To	unlock,	right-click	the	file	or	files,	select	Properties,
and	clear	the	Read-Only	check	box.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

AudioApp	for	Visual	Basic

Introduction
AudioApp	is	a	rudimentary	application	showcasing	custom	audio
objects.
A	custom	audio	object	uses	audio	in	a	non-standard	way,	and	is
designed	to	handle	specialized	audio	needs.	Most	applications
or	programmers,	however,	will	be	able	to	use	the	standard
audio	devices	or	the	default	devices	connected	to	the	computer.
AudioApp	performs	speech	recognition	using	a	text-to-speech
(TTS)	voice.	However,	conventional	output	devices	(speakers)
are	not	used.	A	custom	audio	device	is	used	instead.	The
computer	does	not	need	to	have	speakers	installed	since	the
speaking	functions	are	essentially	emulated.

Using	AudioApp
To	run	AudioApp,	enter	the	text	to	be	spoken	in	the	first	text
box.	Click	the	Reco	From	TTS	button	to	initiate	the	recognition
attempt.	The	status	bar	at	the	bottom	of	the	dialog	box	displays
the	process	that	is	currently	performing.	The	results	of	a
successful	recognition	display	in	the	second	text	box.
The	custom	audio	device	does	not	play	the	spoken	text	audibly
so	there	will	be	no	voice	to	hear.	The	recognition	attempt	is
based	on	the	TTS	voice	speaking	the	text.	The	quality	of	the
spoken	text	changes	slightly	each	time	the	application	is	run.	As
a	result,	the	recognized	text	may	also	be	different	each	time.
This	is	unlike	ISpeechRecognizer.EmulateRecognition	in	which
the	recognitions	will	always	be	the	same	for	all	attempts.	Final
recognition	is	identical	to	the	original	text.

Options
AudioApp	has	one	control:	Reco	From	TTS.

Reco	From	TTS
Starts	the	recognition	attempt.	See	Using	AudioApp	for
complete	details.

Exit
Click	the	close	box	in	the	title	bar	to	exit	AudioApp.

Compiling
AudioApp	is	a	standard	Visual	Basic	application	and	does	not
require	special	support.	However,	the	Speech	reference	must	be
active;	see	Creating	a	Speech-Enabled	Visual	Basic	Project	in
Using	the	Visual	Basic	Code	Examples	for	details	to	speech
enable	Visual	Basic	applications.	Additionally,	the	samples	are
installed	as	Locked	files.	To	modify	them,	they	must	be
unlocked.	To	unlock,	right-click	the	file	or	files,	select	Properties,
and	clear	the	Read-Only	check	box.

Programming	Notes
If	AudioApp	is	run	from	the	Visual	Basic	development
environment,	the	debugger's	Immediate	window	displays
information	not	available	from	the	executable	version.	See	the
code	for	exact	details.
See	Using	a	Custom	Audio	Object	for	details	writing	and
implementing	them.	The	custom	audio	object	in	this	sample	is
of	type	SpAudioPlug,	which	is	specific	and	unique	to	the
application.	It	is	a	DLL	(simpleaudio.dll)	loaded	during	the	SAPI
install	and	the	Reference	object	is	named	SimpleAudio	1.0	Type
Lib	and	display	in	Visual	Basic's	Object	Browser	as
SimpleAudioLib.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

TTSApp	for	Visual	Basic
TTSApp	is	an	example	of	a	text-to-speech	(TTS)	enabled
application.	This	sample	application	is	intended	to	demonstrate
many	of	the	features	for	SAPI	5	in	a	single	coherent	application.
It	is	not	a	full	featured	TTS-enabled	application	although	the
foundations	of	many	of	the	options	are	present.
Using	TTSApp	you	can	hear	the	resulting	audio	output	from	the
TTS	process	for	text	entered	in	the	main	window.	Alternatively,
you	can	open	a	file	and	TTSApp	will	speak	the	contents	of	that
file.
Each	word	is	highlighted	in	the	text	window	to	indicate	the
current	TTS	processing	position.	Features	include:

SAPI5	TTSApp The	main	display	window	of	the
TTSApp	sample	application.

Text	window TTSApp	speaks	the	text
contained	in	this	window	using
TTS.

Speak Initiates	the	TTS	process.
Voices Selects	the	voice	for	the	audio

output.
Rate Selects	the	rate	of	speech.
Volume Selects	the	volume	level	of	the

audio	output	stream.
Pause Pauses	the	TTSApp	text	phrase

speaking	process.
Stop Stops	the	TTSApp	text	phrase

speaking	process.
Format Selects	the	audio	format.
Audio	Output Selects	the	output	device.
Skip Specifies	the	number	of

sentences	to	skip	in	the	phrase
speaking	process.

Reset Resets	TTSApp	to	its	original
configuration	setting.

Show	Events Displays	all	TTSApp	SAPI
events.

IsXML Specifies	that	the	TTS	voice	will
speak	the	XML	tags	and	their
contents	in	the	TTS	process.

PersistXML Retains	XML	changes	from	one
speaking	attempt	to	another.

IsFileName Interprets	the	text	as	a	file
name	or	file	path	rather	than	as
text.

FlagsAsync Speaks	the	text
asynchronously.	Asynchronous
speaking	allows	SAPI	to	process
other	events	at	the	same	time
of	the	speak.

PurgeBeforeSpeak Deletes	a	voice	before	it	is
completed	speaking.	This
allows	a	new	voice	to	be
created	and	used	by	the	same
object.

NLPSpeakPunc Speak	punctuation	as	text
rather	than	as	grammatical
entities.

Mouth	Position Displays	mouth	shapes	for
phrase	elements	as	they	are
spoken.

Open	Text	File Opens	a	text	file	for	display	in
the	text	box.

Speak	Wave	File Opens	a	wav	file	to	speak.
Save	To	Wave	File Saves	the	spoken	content	to	a

wave	file.

SAPI5
TTSApp	main	window.
Use	the	main	TTSApp	window	to	select	the	configuration
settings	that	affect	the	TTS	process.	The	elements	of	TTSApp
are	listed	above.	Click	the	text	in	the	left	column	for
additional	information.

Text	window
TTSApp	speaks	the	text	content	of	this	window	is	spoken.	All
text	entered	in	this	window	is	processed	and	spoken	by	a
TTSApp	voice.	By	default,	the	text	content	of	this	window	is,
"Enter	the	text	you	wish	spoken	here."

Speak
Click	Speak	to	initiate	the	text-to-speech	process.

Voice
Select	a	voice	using	the	drop-down	list.	TTSApp	uses	the
selected	voice	when	speaking	a	wav	file	or	the	contents	of
the	text	window.

Rate
Move	the	slide	control	to	the	right	to	increase	the	speech
rate,	and	to	the	left	to	decrease	the	speech	rate.	The	Rate
level	determines	the	number	of	text	units	spoken	per	minute.

Volume
Move	the	slide	control	to	the	right	to	increase	the	volume
level,	and	to	the	left	to	decrease	the	volume	level.

Pause
Click	Pause	to	interrupt	the	TTS	process.

Stop
Click	Stop	to	stop	the	TTS	process.

Format
Use	the	drop-down	list	to	select	one	of	the	following	format
rates.

Selectable	format	rates
8kHz 8	Bit	Mono 8	Bit	Stereo 16	Bit	Mono 16	Bit	Stereo
11kHz 8	Bit	Mono 8	Bit	Stereo 16	Bit	Mono 16	Bit	Stereo
12kHz 8	Bit	Mono 8	Bit	Stereo 16	Bit	Mono 16	Bit	Stereo
16kHz 8	Bit	Mono 8	Bit	Stereo 16	Bit	Mono 16	Bit	Stereo
22kHz 8	Bit	Mono 8	Bit	Stereo 16	Bit	Mono 16	Bit	Stereo
24kHz 8	Bit	Mono 8	Bit	Stereo 16	Bit	Mono 16	Bit	Stereo
32kHz 8	Bit	Mono 8	Bit	Stereo 16	Bit	Mono 16	Bit	Stereo
44kHz 8	Bit	Mono 8	Bit	Stereo 16	Bit	Mono 16	Bit	Stereo
48kHz 8	Bit	Mono 8	Bit	Stereo 16	Bit	Mono 16	Bit	Stereo

Audio	Output
Use	the	drop-down	list	to	select	the	output	device.	In	most
cases,	only	one	device	will	be	available	and	represents	the
sound	card	for	the	computer.

Skip
Use	the	spin	box	to	select	the	number	of	skipped	sentences.
Skip	functions	only	while	text	is	being	spoken.

Reset
Click	Reset	to	reset	TTSApp	to	its	original	configuration
state.

Show	Events
Select	Show	Events	to	display	SAPI	related	events	in	the
event	display	window	as	the	input	text	is	processed	by
TTSApp.

IsXML
Select	IsXML	to	include	the	XML	tags	and	their	contents	in
the	audio	output	stream	from	TTSApp.	When	this	option	is
selected,	the	application	will	parse	and	interpret	the	XML
tags	literally.
For	example,	if	the	IsXML	option	is	selected,	the	application
could	be	paused	for	the	specified	number	of	milliseconds	in
the	SILENCE	tag.

IsXML
selected? XML	tag Result
Yes <SILENCE	MSEC	=

"3000"/>
The	application	would
speak	3000	milliseconds	of
silence.

No <SILENCE	MSEC	=
"3000"/>

The	application	will	speak
the	phrase,	"less	than
silence	msec	equals	quote
three	thousand	quote	slash
greater	than."

PersistXML
Select	PersistXML	to	retain	XML	changes	from	one	speaking
attempt	to	another.	By	default,	this	option	is	not	selected.

This	means	that	XML	changes	are	not	retained	and	each
speaking	attempt	will	begin	using	the	default	values	for	the
engine.	However,	insert	the	following	line	in	the	text	box:
"Enter	text	<rate	speed	=	"7"/>	you	wish	spoken	here"	and
select	the	PersistXML	and	IsXML	boxes.	The	first	speaking
attempt	will	be	as	predicted	in	that	the	last	part	of	the
sentence	will	be	read	more	quickly	than	the	first	part.	The
difference	is	that	the	second	speaking	attempt	will	begin	at
the	same	rate	of	the	previous	sentence	ended.	In	addition,
the	sentence	will	get	progressively	faster	each	time	the	XML
rate	tag	is	encountered.	Clearing	the	box	after	the	second
speaking	attempt	will	not	revert	the	rate	back	the	default
since	the	engine	has	already	been	changed	for	that	session.

IsFileName
Select	IsFileName	to	interpret	the	text	as	a	file	name	or	file
path	rather	than	as	text.	For	example,	in	the	case	of	a
standard	SAPI	install,	select	IsFileName	and	paste	the
following	line	into	the	text	box:	C:\Program	Files\Microsoft
Speech	SDK
5.1\Samples\CPP\Engines\TTS\MkVoice\enter.wav.	Click	Speak
and	the	content	of	wav	file	is	played.	In	this	example,	the
wav	file	speaks	"enter.	If	IsFileName	is	clear,	the	application
will	speak	the	contents	of	the	edit	box	as	"c	colon	backslash
program	files..."

FlagsAsync
Select	FlagsAsync	to	speak	the	text	asynchronously.
Asynchronous	speaking	allows	SAPI	to	process	other	events
at	the	same	time	as	speech.	In	contrast,	synchronous
speaking	does	not.	For	example,	with	FlagsAsync	selected,
the	speaking	attempt	displays	each	word	as	it	is	being
spoken.	If	the	FlagsAsync	is	not	selected,	the	text	will	still	be
spoken;	however,	the	words	will	not	highlight	until	the	text

has	been	spoken.	At	that	time,	each	word	will	highlight	in
turn.	Highlighting	may	occur	quickly	due	to	the	fact	that
events	were	being	queued	but	not	processed	until	the
speech	had	finished.

PurgeBeforeSpeak
Select	PurgeBeforeSpeak	to	interrupt	the	speech	attempt.
With	FlagsAsync	selected,	PurgeBeforeSpeak	releases	the
current	voice	and	speech,	and	allows	a	new	voice	to	be
queued.	For	instance,	select	both	PurgeBeforeSpeak	and
FlagsAsync	and	speak	the	text.	However	before	the	sentence
is	complete,	click	Speak	again.	The	voice	stops	and	the
sentence	is	restarted	from	the	beginning.	The	previous	voice
has	been	deleted	and	a	new	one	created.

NLPSpeakPunc
Select	NLPSpeakPunc	to	speak	punctuation	as	text	rather
than	as	grammatical	entities.	Paste	the	following	sentence
into	the	text	box:	I	like	coffee!	With	NLPSpeakPunc	selected,
speak	the	sentence.	Rather	than	ending	after	the	word
coffee,	the	exclamation	point	is	read	as	the	phrase
"exclamation	point."

Mouth	Position
The	mouth	position	displays	the	various	mouth	shapes	and
positions	as	TTSApp	processes	the	input	text	stream.

Open	Text	File
From	the	File	menu,	select	Open	Text	File	to	open	a	text	file
to	display	in	the	text	box	rather	than	typing	or	pasting	the
content	in	manually.	XML	files	may	also	be	opened	and
displayed.	Other	file	types	can	be	opened,	but	since	the	text
box	only	supports	plain	text,	the	contents	may	not	display	or
speak	in	a	predictably.

Speak	Wave	File
From	the	File	menu,	select	Speak	Wave	File	to	speak	the
contents	of	a	wav	file.	Use	the	standard	file	dialog	box	to
select	the	wav	file.	Once	chosen,	the	file	speaks
automatically.

Save	To	Wave	File
From	the	File	menu,	select	Save	To	Wave	File	to	save	the
output	of	the	spoken	content	to	a	wave	file.	Use	the	standard
file	dialog	box	to	select	the	file.	Once	chosen,	the	contents	of
the	text	box	is	spoken	automatically	and	the	file	is	saved.
The	spoken	portion	is	sent	directly	to	the	file	and	no	audible
speech	will	be	heard.	Of	course,	the	file	may	be	played	back
using	Speak	Wave	File.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

VB	Outgoing	Call

Introduction
You	can	use	SAPI	one	of	two	ways:	on	the	desktop	or	with
communication	devices,	such	as	a	modem	or	the	Internet.	On
the	desktop,	SAPI	is	restricted	to	running	on	one	computer	and
applications	must	use	that	particular	device.	Using	SAPI	on	the
Internet,	speech	or	voice	information	may	be	transmitted	over
the	lines	of	communication.
Two	sample	applications	are	provided	to	demonstrate	these
different	means	of	communication:	VB	TAPI	with	Internet	and	VB
Outgoing	Call.	VB	TAPI	with	Internet	allows	a	computer	to	call
another	computer	using	a	simple	answering	machine	format.
You	can	leave	or	retrieve	messages	using	voice	navigation.	VB
Outgoing	Call	also	calls	another	computer	but	is	restricted	to
sending	a	text-to-speech	(TTS)	voice	message.

Using	VB	Outgoing	Call
VB	Outgoing	Call	is	an	example	of	a	one-way	telephony
message.	It	is	intended	to	represent	an	automatic	reminder	or
notification	system.
After	a	connection	has	been	successfully	made	from	VB
Outgoing	Call,	your	computer	should	notify	you	of	an	in-coming
call.	This	notification	is	usually	a	series	of	beeps.	Click	Take	Call
to	accept	the	call.	You	will	hear	the	text-to-speech	voice	of	the
intended	message.

Setting	Up	VB	Outgoing	Call
Two	computers	are	required	to	use	VB	TAPI	with	Internet.	The
first,	or	source	computer,	will	be	the	one	you	talk	from.	The
second,	or	target	computer,	acts	in	the	role	of	a	server	and
operates	VB	TAPI	with	Internet.	To	use	this	application	you	need
the	following	operating	systems	and	programs:
Both	computers	must	have	Windows	2000	or	a	later	version,

although	the	operating	systems	do	not	need	to	be	the	same.

Both	computers	must	be	connected	to	each	other	using	the
Internet.	Part	of	this	connection	can	use	a	conventional
telephone	line	as	long	as	there	is	a	valid	Internet	connection.

The	source	computer	(the	one	initiating	the	call)	must	have
SAPI	5.1	loaded.	The	target	computer	does	not	require	SAPI.
Now	that	both	computers	are	set	up	with	the	necessary
programs	and	connections,	you	can	begin	sending	and	receiving
messages.

1.	 On	the	target	computer,	run	Windows	Phone	Dialer.
Click	Start->Programs->Accessories->Communications-
>Phone	Dialer.

2.	 To	find	the	computer	name,	right-click	the	My	Computer
icon	on	the	target	computer's	desktop	and	select	the
Network	Identification.	The	name	appears	in	the	Full
computer	name	line,	although	often	only	the	first	part	of
the	name	is	needed.

3.	 On	the	source	computer,	start	VB	Outgoing	Call	and
enter	the	name	of	the	computer	in	the	Internet	Call
combo	box.

4.	 In	the	text	box,	enter	the	text	that	you	wish	spoken	to
the	target	computer,	and	then	click	Dial.

5.	 On	the	target	computer,	you	will	receive	notification	of

an	incoming	call.	Click	Take	Call	to	accept	the	call.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

VB	TAPI	with	Internet

Introduction
You	can	use	SAPI	one	of	two	ways:	on	the	desktop	or	with
communication	devices,	such	as	a	modem	or	the	Internet.	On
the	desktop,	SAPI	is	restricted	to	running	on	one	computer	and
applications	must	use	that	particular	device.	Using	SAPI	on	the
Internet,	speech	or	voice	information	may	be	transmitted	over
the	lines	of	communication.
Two	sample	applications	are	provided	to	demonstrate	these
different	means	of	communication:	VB	TAPI	with	Internet	and	VB
Outgoing	Call.	VB	TAPI	with	Internet	allows	a	computer	to	call
another	computer	using	a	simple	answering	machine	format.
You	can	leave	or	retrieve	messages	using	voice	navigation.	VB
Outgoing	Call	also	calls	another	computer	but	is	restricted	to
sending	a	text-to-speech	(TTS)	voice	message.

Using	VB	TAPI	with	Internet
Upon	connecting	to	the	Internet,	VB	TAPI	with	Internet	will	speak
an	introduction	and	present	two	options:	Leave	Message	or
Check	Message.	For	example,	to	leave	a	message,	simply	say,
"leave	message"	when	prompted.

Leave	message
You	may	leave	a	brief	message.	After	speaking	the	message,	the
application	will	wait	a	few	seconds	and	then	play	back	the
message.	When	the	message	has	finished	playing,	the	call	will
be	disconnected.	Although	VB	TAPI	with	Internet	may	be	used
many	times	to	leave	a	message,	only	the	last	message	will	be
retained.

Check	message
You	may	retrieve	a	message.	The	last	message	recorded	will	be
played	back.	When	the	message	has	finished	playing	back,	the
call	will	be	disconnected.	Only	the	most	recent	message	will	be
played	back.

Setting	up	VB	TAPI	with	Internet
Two	computers	are	required	to	use	VB	TAPI	with	Internet.	The
first,	or	source	computer,	will	be	the	one	you	talk	from.	The
second,	or	target	computer,	acts	in	the	role	of	a	server	and
operates	VB	TAPI	with	Internet.	To	use	this	application	you	need
the	following	operating	systems	and	programs:
Both	computers	must	have	Windows	2000	or	a	later	version,

although	the	operating	systems	do	not	need	to	be	the	same.

Both	computers	must	be	connected	to	each	other	using	the
Internet.	Part	of	this	connection	can	use	a	conventional
telephone	line	as	long	as	there	is	a	valid	Internet	connection.

The	target	computer	must	have	SAPI	5.1	loaded.	The	source
computer	(the	one	initiating	the	call)	does	not	require	SAPI.
Now	that	both	computers	are	set	up	with	the	necessary
programs	and	connections,	you	can	begin	sending	and	receiving
messages.

1.	 On	the	target	computer,	start	VB	TAPI	with	Internet.	The
Answer	button	will	be	disabled	since	no	incoming	call
can	be	answered.

2.	 On	the	source	computer,	run	Windows	Phone	Dialer.
Click	Start->Programs->Accessories->Communications-
>Phone	Dialer.

3.	 To	find	the	computer	name,	right-click	the	My	Computer
icon	on	the	target	computer's	desktop	and	select	the
Network	Identification.	The	name	appears	in	the	Full
computer	name	line,	although	often	only	the	first	part	of
the	name	is	needed.

4.	 Click	the	Dial	icon	on	tool	bar	and	enter	the	name	of	the
target	computer	in	the	Dial	dialog	box.	Or,	from	the
Phone	menu,	click	Dial	and	enter	the	name	of	the

computer.	Make	sure	the	Internet	Call	option	is	selected.
5.	 Click	Place	Call	to	initiate	the	connection.

6.	 On	the	target	computer,	the	Answer	button	becomes
active	when	the	connection	is	made.	Click	Answer	to
accept	the	call.

The	source	computer	is	ready	to	use.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Simple	TTS	for	JScript

Introduction
Simple	TTS	for	JScript®	is	a	fundamental	text-to-speech
application	using	dynamic	HTML	(DHTML).	DHTML	allows	the
use	of	SAPI	automation	directly	from	a	web	page.	To	use	Simple
TTS	for	JScript,	click	Speak	Text	to	synthesize	the	text	in	the	text
edit	box.	You	may	change	the	text	anytime	that	the	application
is	not	speaking.

Requirements
Microsoft	Internet	Explorer	5.0	or	later	is	required.	If	needed,
download	the	latest	version	of	Microsoft	Internet	Explorer.
An	ActiveX®	control	is	used	for	SAPI	automation	and	some
browsers	may	display	a	warning	about	possible	interactions
between	the	SAPI	control	and	standard	systems.	For	the	sample
to	run	properly	this	interaction	is	required.	Click	Yes	to	allow	this
interaction.

http://go.microsoft.com/fwlink/?LinkId=361&clcid=0x409

Options
There	are	several	options	for	Simple	TTS	for	JScript.

Text	Edit	Box
Enter	the	text	to	be	spoken	in	this	box.	Click	Speak	Text	to	hear
the	text	spoken.	Although	the	text	may	be	changed	while	the
web	page	is	open,	Simple	TTS	for	JScript	defaults	to	the
standard	phrase	upon	initial	opening.

Speak	Text
Speaks	the	text	in	the	text	edit	box.

Rate
Controls	the	rate	of	the	voice.	Click	the	plus	sign	("+")	to	speed
up	the	spoken	rate,	or	click	the	subtraction	sign	("-")	to	slow
down	the	rate.	The	rate	will	be	changed	for	the	next	speak
attempt.	The	changes	in	rate	apply	only	for	the	current	session
and	are	not	saved	as	the	current	speaking	rate	for	other
applications	using	SAPI.

Volume
Controls	the	volume	of	the	voice.	Click	the	plus	sign	("+")	to
increase	the	volume,	or	click	the	subtraction	sign	("-")	to	reduce
the	volume.	The	volume	will	be	changed	for	the	next	speak
attempt.	The	changes	in	volume	apply	only	for	the	current
session	and	are	not	saved	as	the	current	speaking	rate	for	other
applications	using	SAPI.

Voice
Selects	the	voice	to	use.	Select	a	voice	from	the	drop-down	list
of	available	voices.	The	next	speech	attempt	will	use	that	voice.

Audio	Output
Selects	the	audio	output	device	to	use.	This	device	contains	the
hardware	sound	card	that	processes	the	output.	Select	a	device
from	the	drop-down	list	of	available	devices;	in	many	cases,
there	will	only	be	one	device	to	select	from.	The	next	speech
attempt	will	use	that	output	device.

Compile
Simple	TTS	for	JScript	and	HTML	application	requires	no
compiling	to	run	it.	Instead,	the	code	may	be	modified	by	any
text	editor	or	application	capable	of	editing	HTML	or	plain	text.
The	sample	may	be	installed	as	Locked	files.	To	modify	them,
they	must	be	unlocked.	To	unlock,	right-click	the	file	or	files,
select	Properties,	and	clear	the	Read-Only	check	box.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Speech	List	Box	for	C#

Introduction
Speech	List	Box	for	C#	is	an	elementary	application	showcasing
speech	recognition	(SR)	and	dynamic	grammars.
In	general,	a	grammar	is	the	set	of	words	that	the	engine	can
recognize.	In	the	case	of	dictation,	all	words	are	in	the	grammar
and	no	limitation	is	imposed	on	the	user.	In	the	case	of
command	and	control	applications,	the	list	of	words	is	much
more	restricted.	For	example,	a	grammar	containing	commands
to	operate	a	menu	system,	might	include	less	than	a	dozen
words,	each	word	corresponding	to	a	menu	or	menu	item.	Often,
this	list	of	words	is	generated	ahead	of	time	and	represents	a
static	or	fixed	grammar.	However,	dynamic	grammars	allow
users	to	add	words	while	running	the	application.	This	permits
users	to	customize	the	grammar	according	to	their	needs.	The
list	box	sample	demonstrated	making	and	maintaining	a
dynamic	grammar.

Compile
To	compile	Speech	List	Box	for	C#,	Visual	Studio.NET	and
specifically	Visual	Studio	C#.NET	is	required.	Speech	List	Box	for
C#	is	actually	two	projects	compiled	at	the	same	time.	The	one
file	is	the	application	itself	and	the	other	is	a	control	component
for	the	display	area.	By	running	ListboxSample.sln,	the	control
component	is	actually	loaded	and	registered	in	the	computer	as
one	step.
The	easiest	way	to	compile	them	is	a	batch	build.	Open
ListboxSample.sln.	For	a	standard	SAPI	SDK	5.1	installation	this
C:\Program	Files\Microsoft	Speech	SDK
5.1\Samples\CSharp\Listbox\ListBoxCSharp.sln.	Once	loaded,
compile	the	the	solution	by	selecting	Build->Batch	Build.	In	the
subsequent	dialog	select	the	Build	checkbox	for	Debug	if	you
need	the	debugging	symbols	in	the	project	or	the	Release
checkbox	if	not.	Then	click	build	to	compile.	Both	projects	build
together	and	then	display	the	list	box	dialog.
The	samples	are	installed	as	Locked	files.	To	modify	them,	they
must	be	unlocked.	To	unlock,	right-click	the	file	or	files,	select
Properties,	and	clear	the	Read-Only	check	box.

Using	Speech	List	Box	for	C#
Speech	List	Box	for	C#	opens	with	no	words	in	the	dynamic
grammar.	You	can	add	words	or	phrases	by	typing	the	text	in
the	edit	box	and	clicking	Add.	After	adding	at	least	one	item,
individual	items	may	be	highlighted	by	saying,	"select"	followed
by	the	text	of	the	item.	For	example,	if	one	of	the	items	a	list	of
cities	were	"Seattle,"	saying	"Select	Seattle"	will	choose	the
Seattle	item.

Add
Use	Add	to	move	the	text	in	the	edit	box	to	the	display	area.
The	text	can	be	either	a	single	word	or	a	phrase.

Remove
Use	Remove	to	remove	the	selected	item(s)	in	the	display	area
from	the	dynamic	grammar.	Highlight	the	item	to	be	removed.

Speech	Enabled
Use	Speech	Enabled	to	enable	the	speech	recognizer.	By	default
it	is	on	and	the	speech	engine	will	attempt	to	recognize	voice
commands.	Disabling	this	option	prohibits	recognition	attempts.
Regardless	of	the	recognizer	state,	if	no	items	have	been	added
to	the	display	area,	no	recognition	will	occur.

Exit
Click	the	close	box	in	the	title	bar	to	exit	Speech	List	Box	for	C#.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SimpleTTS	for	C#

Introduction
SimpleTTS	for	C#	is	an	elementary	application	showcasing	text-
to-speech	(TTS).	The	application	speaks	the	text	in	the	text	box
using	a	default	voice.	SimpleTTS	for	C#	can	also	save	the
speech	to	a	wav	file.

Compile
To	compile	SimpleTTS	for	C#,	Visual	Studio.NET	and	specifically
Visual	Studio	C#.NET	is	required.
To	run	the	application	open	ListboxSample.sln.	For	a	standard
SAPI	SDK	5.1	installation	this	C:\Program	Files\Microsoft	Speech
SDK	5.1\Samples\CSharp\SimpleTTS\SimpleTTS.sln.	Once
loaded,	compile	and	run	SimpleTTS	by	selection	Debug>Run.
The	application	displays	the	main	dialog.
The	samples	are	installed	as	Locked	files.	To	modify	them,	they
must	be	unlocked.	To	unlock,	right-click	the	file	or	files,	select
Properties,	and	clear	the	Read-Only	check	box.

Using	Speech	List	Box
Simple	TTS	has	two	options:	Speak	the	text	(Speak)	or	save	the
speech	to	a	file	(Save	to	.wav).

Speak
Click	Speak	to	hear	the	text	in	the	text	box	spoken.	You	can
change	or	edit	the	text	allowing	different	words	or	phrases	to	be
spoken,	although	the	text	reverts	to	a	default	phrase	each	time
you	open	the	application.	You	can	change	the	voice	using
Speech	properties	in	Control	Panel.

Save	to	.wav
Select	Save	to	.wav	to	save	the	output	to	a	wav	file.	This	way,
the	text	will	not	be	spoken	audibly.	After	selecting	Speak,	a
dialog	box	appears	requesting	a	file	name	and	location	to	save
the	file.	Double-click	the	wav	file	to	play	it	back.	As	a	wav	file,	it
may	also	be	used	for	other	speech	purposes	such	as	an	input
source	for	either	off-line	dictation	or	custom	engine	voices.

Exit
Click	the	close	box	in	the	title	bar	to	exit	Simple	TTS.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SDK	Utilities
The	SDK	provides	utilities.	These	tools	assist	with	the	testing	or
development	of	speech-enabled	applications.
The	following	topics	are	available:

Tools
MKVoice
GC	(gc.exe)	grammar	compiler	for	SAPI	5	XML	conversion

Engine	Samples	with	source	code
Speech	Recognition	Engine
Text-to-Speech	Engine

Compliance	Testing	Tool

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

MkVoice

Introduction
MkVoice	creates	text-to-speech	(TTS)	voice	fonts	for	sample	use.
It	combines	a	series	of	individually	spoken	words	into	a	single
file.	The	resulting	file	is	automatically	loaded	and	you	may	use	it
in	any	TTS	application	recognizing	SAPI	5	voices.
MkVoice	is	intended	to	demonstrate	making	sample	voice	fonts.
The	limited	scope	is	not	ideal	to	create	larger,	more	robust	voice
samples.	Additionally,	extensive	error	checking	or	error
prevention	routines	are	not	included	so	that	the	resulting	file
may	contain	conditions	not	optimal	to	superior	performance.

Running	MkVoice
MkVoice	is	command	line	application	that	accepts	three
parameters:

mkvoice	WordListFile	VoiceFile	VoiceName

WordListFile

This	is	a	document	list	of	words	to	concatenate	and	form	the
output	file.	The	file	needs	to	be	saved	as	text	only	or	created
using	a	simple	editor	such	as	NotePad.	No	character	formatting
is	allowed.	The	list	requires	only	one	word	per	line	and	that	the
line	terminate	with	a	carriage	return.
The	list	can	be	of	any	size	but	each	word	must	have	a
corresponding	wav	file	with	the	same	name.	That	is,	if	you	use
the	word	"enter,"	you	need	a	file	named	enter.wav.	The	first
entry	in	the	list	is	used	as	the	default	word.	If	a	word	is
encountered	that	is	not	otherwise	in	the	list,	use	this	default
word	instead.
For	example,	if	using	the	SDK	example	TTSApp	with	the	"Sample
TTS	Voice,"	the	text	initially	displayed	will	be	spoken:	enter	text
to	be	spoken	here.	If	you	change	the	text	by	adding	a	word	not
in	the	file	list	such	as	"enter	text	now,"	it	will	be	spoken	as
"enter	text	blah."	"Now"	is	not	a	part	of	word	list.txt.	However,
since	"blah"	is	the	first	entry,	it	will	be	used	for	all	unknown
words.
VoiceFile
This	is	the	resulting	output	file.	By	SAPI	5	convention,	the	vce
name	is	the	recommended	suffix,	although	it	is	not	required.	If
successfully	generated,	MkVoice	automatically	loads	the
sample.	The	new	voice	will	be	displayed	with	the	name	"Sample
TTS	Voice."	This	replaces	any	previous	voice	fonts.	The	voice	will
be	defined	as	an	English-speaking	male.

Finally,	to	run	MkVoice,	the	application	must	be	in	the	same
folder	as	the	wav	files	and	word	list.	If	run	successfully,	the
application	creates	an	output	file;	otherwise,	it	will	display
appropriate	error	messages.
VoiceName
This	is	the	name	associated	with	the	voice	by	the	object	token.
Creating	voice	fonts

Creating	Voice	Fonts
Voice	fonts	are	a	collection	of	words	spoken	by	a	person	and
assembled	into	a	phonetic	dictionary.	When	SAPI	encounters	a
word,	this	database	looks	it	up.	A	successful	match	plays	a
portion	of	the	sound	file	of	the	word.	By	contrast,	a	synthesized
voice	uses	mathematical	algorithms	to	produce	the	word.	The
voice	fonts	produce	what	is	often	considered	better	and	more
natural	prosody--the	way	the	word	sounds.

Voice	fonts	require	two	components.	First,	a	word	list	must	be
generated.	This	is	the	same	list	as	the	first	parameter	described
above.	In	the	SDK,	the	MkVoice	example	uses	wordlist.txt.
Second,	individual	wav	files	are	needed	for	each	word.	The	first
part	of	the	file	name	must	correspond	to	an	entry	in	the	word
list.	The	name	suffix	must	be	wav.	Additionally,	the	wav	file
must	contain	the	following	characteristics:

Value Description
Audio	format PCM
Sample	rate 11.25	kHz
Audio	sample	size 16	bit
Channels 1	(mono)

Files	should	contain	only	one	word	each.	Silence	leading	or
trailing	a	word	should	be	minimal	to	provide	the	best	playback.
You	may	not	use	punctuation	marks.	Replace	any	marks	with
underscores	("_")	in	both	the	file	name	and	word	list.	For
instance,	MkVoice	provides	a	file	named	computer_s.wav	and
this	matches	the	corresponding	entry	in	wordlist.txt.	A	simple
way	to	generate	the	wav	files	is	to	use	Sound	Recorder	provided
by	the	Windows	operating	system.	The	file	characteristics	may
have	to	be	changed	to	the	above	requirements.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Grammar	Compiler
The	SAPI	grammar	compiler	(gc.exe)	creates	binary	grammars
from	extensible	markup	language	(XML)	defined	grammars.
The	following	topics	are	discussed	in	this	section:

Introduction
Using	the	Grammar	Compiler

Grammar	compiler	custom	build	settings

Introduction
The	SAPI	grammar	compiler	is	divided	into	two	parts,	the	front-
end	section	and	the	back-end	section.	The	front	end	parses	the
grammars	described	in	XML	and	optimizes	the	XML	text
formatted	grammar	if	requested	by	the	application.	For
example,	the	front	end	can	remove	the	left	recursion.	The	front
end	then	calls	the	back-end	compiler	to	convert	the	internal
representation	into	the	SAPI	binary	format.

Back	to	top

Using	the	grammar	compiler
The	SAPI	5	grammar	compiler	(gc.exe)	can	be	used	from	the
command	line,	or	added	to	the	Microsoft	Visual	C++	custom
build	environment.

Using	GC	from	the	command	line
When	compiling	XML	grammars	from	the	command	line,	the
following	options	are	available:

Command
line
argument Definition
/O The	file	name	and	path	information

associated	with	the	compiled	grammar
output	file.	(CFG)
For	example:	My_CFG_Grammar.cfg

/H The	file	name	and	path	information
associated	with	the	header	file	that
receives	the	#	define	information.	
For	example:	My_Header.h	
See	specifying	the	grammar	compiler	/h
option	for	more	information.

file_name.xml The	file	name	and	path	information
associated	with	the	grammar	file.	(XML)
For	example:	My_XML_Grammar.xml

Back	to	top

Specifying	the	grammar	compiler	/h	option
The	SAPI	grammar	compiler	can	add	the	XML	ID	tag	NAME	and
VAL	contents	to	a	specified	header	file.	By	choosing	the	/h
compile	option,	the	contents	of	the	XML	ID	tags	are	added	to
the	specified	header	file	in	the	standard	C-style	#define	format.

The	following	illustration	shows	the	result	of	the	/h	command
line	argument	while	compiling	the	dictmode.xml	file.	
Notice	the	contents	of	the	XML	ID	tags	NAME	and	VAL	are	added
to	the	dictmode.h	file	as	c-style	#define	statements.

Back	to	top

Grammar	compiler	custom	build	settings
The	SAPI	5	grammar	compiler	(gc.exe)	can	be	added	to	the
Microsoft	Visual	C++	custom	build	environment.	The	XML
grammar	compile	settings	can	be	pre-configured	in	the	project
custom	build	settings.	Each	time	the	XML	grammar	is	compiled,
the	grammar	compiler	uses	the	settings	that	are	specified	in	the
custom	build	settings.
The	Speech	SDK	5.1	sample	application	Dictation	Pad	illustrates
the	use	of	the	grammar	compiler	in	the	project	custom	build
settings.	Compile	the	dictpad.dsp	project	and	review	the
Dictation	Pad	sample	application	project	settings	to	learn	more
about	how	the	grammar	compiler	can	be	added	to	the	Microsoft
Visual	C++	custom	build	environment.	
The	Dictation	Pad	SDK	sample	application	can	be	found	in	the
following	location:	C:\Program	Files\Microsoft	Speech
SDK5.0\Samples\CPP\DictPad\dictpad.dsp.

Custom	build	settings

Back	to	top

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Compliance	Testing	Tool

Introduction
The	Compliance	Testing	Tool	allows	engine	vendors	to	test	their
speech	engines	for	SAPI	compliance	and	port	these	speech
engines	to	SAPI	5.	The	tests	also	help	vendors	to	support
various	SAPI	features	that	are	not	required	for	compliance.
These	tests	do	not	evaluate	the	speech	or	performance	quality
of	the	engines.	All	compliance	tests	assume	that	SAPI	will
validate	parameters;	hence,	venders	do	not	check	the	engine’s
ability	to	handle	invalid	parameters	such	as	null,	bad	pointers,
or	values	out	of	range.

Compliance	Testing	Tool
For	a	complete	discussion	of	the	Compliance	Testing	Tool	see
Using	the	compliance	testing	tool.
For	a	complete	discussion	of	Compliance	testing	in	general	see
the	Compliance	Tests	white	paper.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Sample	Speech	Recognition	Engine

Introduction
The	sample	speech	recognition	(SR)	engine	demonstrates	the
design,	compilation,	installation,	and	testing	for	engines.	The
following	is	basic	information	you	should	know	about	the	SR
sample	engine:

1.	 It	is	not	necessary	to	compile	the	sample	SR	engine
project	(sreng.dsp)	to	install	the	sample	SR	engine
(sreng.dll).	It	is	installed	with	the	Speech	SDK	5.1.

2.	 The	path	name	is:	C:\Program	Files\Microsoft	Speech
SDK	5.1\bin\sreng.dll	(if	you	install	the	SDK	under
C:\Program	Files).

3.	 The	C++	project	file	C:\Program	Files\Microsoft	Speech
SDK	5.1\Samples\CPP\Engines\SR\sreng.dsp.	To	compile
this	project,	the	Platform	SDK	needs	to	be	also	installed.
See	Microsoft	Platform	SDK	for	additional	information.

How	to	Register	the	Sample	Engine	dll	from	the
Command	Line:

Although	applicable	to	different	engines,	this	demonstration
uses	the	sample	sreng.dll.	You	will	need	to	register	the	engine
with	the	operating	system.	At	the	command	line	type:

	regsvr32	C:\Program	Files\Microsoft	Speech	SDK5.0\bin\sreng.dll

After	the	.dll	registration	process,	the	sample	SR	engine	is
available	on	the	current	computer.

How	to	Set	the	Sample	Engine	to	the	Default
Engine

1.	 In	Control	Panel,	double-click	the	Speech	icon.
2.	 On	the	Speech	Recognition	tab,	select	the	SAPI
Developer	Sample	Engine	from	the	list	of	available
engines.

3.	 Click	OK.

Sample	Engine	Expected	Results
The	sample	engine	randomly	generates	context-free	grammar
(CFG)	recognition	results	based	on	the	CFG	grammar	you	select.
The	sample	engine	will	also	generate	other	events,	such	as
interference	and	requestui	etc.

Sample	SR	engine	notes
1.	 The	engine	does	not	perform	the	recognition	based	on
an	acoustic	or	language	model.	Instead,	it	retrieves	the
CFG	information	from	SAPI	and	constructs	random
results.

2.	 The	sample	engine	provides	a	basic	idea	about	how	to
develop	an	SR	engine	to	interact	with	SAPI.

3.	 The	sample	engine	does	not	pass	the	compliance	tests.
4.	 If	you	experience	unexpected	results	for	the	real	SR
activity,	make	sure	that	the	sample	engine	is	not	in	use
and	that	the	sample	engine	has	not	been	set	as	the
default	engine.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Sample	Engines

Introduction
Sample	text-to-speech	(TTS)	engines	are	provided	to
demonstrate	the	design,	compilation,	installation,	and	testing	of
engines.

Installing	TTS	Engines
There	are	two	ways	to	install	the	engines:	command	line	and
compiler.

Command	Line	Installation
Although	applicable	to	different	engines,	this	demonstration
uses	the	sample	ttseng.dll.	You	will	need	to	register	the	engine
with	the	operating	system.	At	the	command	line	type:

regsvr32	ttseng.dll
mkvoice	wordlist.txt	voiceFile	voicename

The	second	command	registers	the	accompanying	voice	file
samplevoice.	The	voice	must	be	compiled	in	the	same
directory	as	the	sample	engine.	From	the	SAPI5SDK	directory:

Copy	bin\mkvoice.exe	samples\CPP\Engines\TTS\MkVoice
cd	samples\cpp\engines\tts\mkvoice
mkvoice	wordlist.txt	samplevoice.vce	samplevoice

The	SDK	tool	MkVoice	creates	this	voice	file	(these	are	also
called	voice	fonts)	and	it	is	documented	separately.	Speech	SDK
5.0	provides	the	sample	file	samplevoice	although	you	may
create	your	own	by	following	the	MkVoice	directions.

Compiler	Installation
Engines	will	automatically	be	registered	after	compiling	if	you
use	the	SDK's	project	workspace.	Installation	occurs	as	part	of
the	post-build	commands.	Likewise,	the	associated	voice	fonts
will	also	be	registered	at	the	same	time.	To	verify	installation,
you	may	examine	the	registry	at:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Speech\Voices\Tokens

If	successfully	loaded,	you	will	see	an	entry	with	the	file	name
such	as	SampleVoice.	Please	note	it	is	important	that	you	do	not
manually	change	or	edit	any	of	these	registry	entries.	Only	SAPI
may	modify	speech	registries	and	improperly	changed	ones
could	irrevocably	damage	the	system.	This	is	provided	only	for
verification	reasons.

Setting	a	Default	Engine
Once	installed,	you	can	set	the	TTS	engine	as	the	default
engine.

1.	 In	Control	Panel,	double-click	the	Speech	icon.
2.	 On	the	Text-to-Speech	tab,	from	the	list	box,	select	the
engine	you	want.	In	this	case,	select	the	Sample	TTS
Voice.

3.	 A	green	check	mark	will	appear	in	the	check	box,
indicating	that	the	Sample	TTS	Voice	has	been	selected
as	the	voice	for	the	default	engine.

All	speech	applications	will	now	use	this	voice.	As	a	confirmation
of	the	selection,	you	will	hear	the	voice	speak,	"You	have
selected	the	Sample	TTS	voice	as	the	computer's	default	voice."

Confirming	the	Default	Engine
To	test	the	TTS,	select	any	application	that	uses	a	voice.	SDK
provides	a	convenient	application--TTSApp.exe.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SDK	Tutorials
This	section	provides	an	SDK	Tutorial	overview.	Two	topics	are
available.	The	Coffee	series	a	complete	example	with
documentation.	Code	projects	are	available	for	each	Coffee
topic	and	are	installed	in	the	SDK.	The	TTS	section	has	a	two
brief	tutorial	overviews	for	using	TTS.	While	code	examples	are
listed	directly	in	the	documentation,	no	separate	project	is
available.
The	following	topics	are	available:

Coffee	Examples
Setting	Up	SAPI	5

CoffeeS0	Tutorial
CoffeeS1	Tutorial

CoffeeS2	Tutorial

CoffeeS3	Tutorial
CoffeeS4	Tutorial

CoffeeS5	Tutorial

CoffeeS6	Tutorial

TTS	Examples
TTS	Tutorial	Example
Using	Events	with	TTS
TTS	Events	Explanation

Microsoft	Speech	SDK	SAPI	5.1

Chapter	1

Setting	Up	SAPI	5
Introduction
The	SAPI	5	Reference	API	is	an	excellent	guide	for	programming
speech	applications.	With	the	large	number	of	methods,
interfaces,	structures,	and	enumerations	SAPI	5	offers,	the
reference	API	is	a	required	document.	However,	those	who	are
new	to	speech	applications	may	be	a	little	lost	at	first,	as	the
reference	API	makes	little	attempt	to	weave	all	the	parts
together.

The	goal	of	this	book	is	to	help	you	write	properly	structured
SAPI	5	applications	using	a	series	of	examples	called	Coffee.
The	application	uses	a	coffee	shop	motif	designed	so	that	you
may	place	orders,	talk	to	management,	or	buy	items	at	the
store.	Since	each	application	builds	upon	the	previous	one,	you
need	to	understand	each	step	before	moving	on	to	the	next	one.

What	you	need	to	know

There	are	two	prerequisites	for	using	these	examples.	First,	that
you	generally	understand	graphical	interface	programming	and
specifically	understand	native	Windows	programming.	Although
you	will	concentrate	on	SAPI	5	topics,	the	Coffee	examples	are
Windows	applications.	The	majority	of	the	code	in	the	samples
is	a	framework	and	is	used	only	for	running	the	application.	It
handles	keyboard,	mouse,	screen	updates,	and	other	processing
messages.	Unless	there	is	a	relevance	to	SAPI	5,	much	of	the
code	is	will	not	be	discussed.

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Second,	you	should	have	some	experience	with	C/C++
programming.	The	intent	is	to	keep	programming	simple	and
consistent.	There	are	other	models	and	languages	for
programming	Windows	including	Visual	Basic,	JAVA	and
Microsoft	Foundation	Class	(MFC).	MFC	adds	a	layer	of
complexity	that	you	do	not	need	at	the	moment.	After	you	gain
proficiency	with	SAPI	5	code,	theory,	and	implementation,	feel
free	to	change	approaches.

Additionally,	SAPI	5	is	component	object	model	(COM)	based.
Although	COM	proficiency	is	not	required,	some	understanding
of	it	is.	To	further	simplify	COM,	SAPI	5	uses	active	template
library	(ATL)	functions	to	complement	COM.	You	need	a	basic
understanding	of	COM	smart	pointer	CComPtr.	Additional
information	about	these	topics	may	be	found	in	MSDN	or	in	the
myriad	of	books	available	through	popular	bookstores.

Using	this	book

Each	chapter	describes	the	important	concepts	introduced.	The
discussion	follows	the	code	and	provides	examples	from	the
Coffee	code	itself.	The	first	Coffee	example	is	the	foundation	of
the	entire	process	and	is	slightly	longer	than	other	chapters.
The	narrative	is	a	brief	overview	and	presents	enough	material
to	complete	the	example,	though	not	enough	to	exhaust	the
subject.

Each	Coffee	chapter	builds	on	the	previous	examples.	Since	no
code	is	ever	removed,	changes	from	chapter	to	chapter	may	be
found	by	comparing	files	or	entire	folders	using	a	difference
engine.	However,	in	general,	any	application	may	be	used.

What	you	need	to	get	started

You	will	need	a	copy	of	Visual	C	6.0	with	Service	Pack	3	or	later
version.	In	general,	any	32-bit	C	compiler	will	work.	However,
the	samples	assume	Microsoft	Visual	Studio	6.0	SP3	or	later.

SAPI	5	Installation	source.	This	may	be	a	SAPI	developer’s	CD	or
the	installer	through	another	source	(if	available)	such	as	the
Microsoft	Web	site.	Regardless,	you	are	encouraged	to	install
SAPI	5	only	through	an	installation	package.	The	SAPI	CD	installs
all	the	required	components	including	the	required	dynamic	link
libraries	(DLL),	headers,	registry	entries,	and	other	resources.

SAPI	5.1	SDK

In	addition	to	having	up-to-date	source	files	and	examples,	you
need	the	reference	API	to	look	up	interfaces	and	methods.	Even
though	the	examples	are	well	commented	and	the	tutorials
contain	narratives	about	the	calls	and	approaches,	the	reference
API	explains	each	call	in	detail	and	to	a	greater	extent	than	is
possible	in	other	sources.

Setting	up

To	configure	your	system	for	speech	recognition,	go	to	Speech
properties	in	Control	Panel	and	click	the	Speech	Recognition	tab.
Speak	into	your	microphone	and	observe	the	volume	meter	in
the	microphone	window;	if	the	meter	registers	the	volume	level
the	microphone	works.	Then	click	the	Text-to-Speech	tab.	To	test
the	audio	output,	click	Preview	Voice.	The	text	in	this	section	will
be	spoken,	highlighting	the	words	as	they	are	spoken.	If	this	is
the	case,	then	audio	output	also	works.	If	neither	works,	see	the
Troubleshooting	section.

It	is	also	recommended	that	you	use	the	microphone	training
wizard.	From	the	Speech	Recognition	tab,	click	Train	Profile.	The
training	wizard	instructs	you	in	microphone	placement	and	input
level	adjustment	so	that	SAPI	is	able	to	recognize	your
commands.	For	the	Coffee	examples,	the	list	of	commands	is
quite	limited	and	this	training	is	not	required.	Speak	clearly	and
deliberately	into	the	microphone	and	Coffee	should	be	able	to
recognize	your	words.

Microsoft	Speech	SDK	SAPI	5.1

Chapter	2

CoffeeS0
Introduction
This	first	example	represents	a	basic	speech	recognition	(SR)
application.	The	foundation	is	presented	and	over	the	next
series	of	examples,	progressively	complex	features	will	be
added.

The	example	will	focus	on	setting	the	foundation	of	speech-
enabled	applications	in	general.	The	following	topics	will	be
discussed:

Initialization:	Setting	up	engines	and	grammars

Events:	Definition	of	events,	notifications,	interests,	expanding
events

Phrases:	Definition	of	phrases,	grammar	rules,	accepting
phrases

Running	the	Example

Run	the	application	by	executing	CoffeeS0.exe.	A	window
appears	and	along	the	top	you	are	greeted:	Welcome	to	the
SAPI	coffee	shop.	Speak	for	service!	Since	this	is	a	simple
example,	your	only	option	is	to	say,	“Please	go	to	the	counter.”
Variations	are	also	accepted	such	as,	“Please	go	to	counter,”	or
“enter	counter.”	For	this	example,	even	“go	to	shop”	and	“enter
the	store”	are	recognized	for	reasons	examined	later.	Speak
clearly	to	activate	the	voice	recognizer	and	the	screen	will

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

change	to	“Please	order	when	ready!”

Perhaps	limited	in	functionality	(you	cannot	actually	order	coffee
in	this	coffee	shop)	it	does	represent	the	fundamentals	of
speech	recognition.	That	is,	commands	are	spoken,	recognized,
and	executed.	Look	at	the	Coffee	code	in	Coffee.cpp.	It	looks
very	much	like	a	simple	Windows	application,	because,	in	fact,
that	is	what	it	is.	The	application	brings	up	one	window,	and
draws	two	strings	to	it.	To	keep	the	code	to	a	minimum,	it	does
not	support	keyboard	operations,	a	mouse,	or	a	menu.	To	exit
the	application,	click	the	Close	button	in	the	upper	right	of	the
screen.

The	speech	API	commands	are	interspersed	with	the	Windows
API.	Chances	are,	if	you	do	not	recognize	a	command	as
belonging	to	the	Windows	API,	it	does	not.	It	belongs	either	to
SAPI	5	or	it	is	part	of	the	structure	needed	to	process	speech.
For	instance,	there	is	a	new	message,	WM_RECOEVENT,	which
defines	the	application.	It	is	not	a	part	of	SAPI	but	the
application	structure	needs	this	message	to	process	speech.	In
the	same	manner,	several	routines	are	also	defined	by	the
application	(InitSAPI(),	CleanupSAPI(),	ProcessRecoEvent(),	and
ExecuteCommand()).	Inside	these	Coffee-defined	functions	are
the	SAPI	5	method	calls.	There	are	also	a	few	#defines	at	the
top	of	the	file	for	including	SAPI	5-specific	headers.

Header	Files

Before	starting	out	with	any	coding,	the	proper	headers	need	to
be	introduced.
//	Contains	definitions	of	SAPI	functions

#include	<sphelper.h>

//	Contains	common	defines

#include	"common.h"

//	Forward	declarations	and	constants

#include	"coffee.h"

//	This	header	is	created	by	our	grammar	compiler	and	has	the	rule	ids

#include	"cofgram.h"

Of	the	five	headers,	two	are	application-specific	to	the	Coffee
series.	Coffee.h	contains	the	function	prototypes	and	global
variables	for	the	application	and	common.h	lists	#defines	for
the	application’s	windows	and	other	features.	As	the	samples
change	and	expand,	these	two	files	are	updated.	However,	this
has	no	effect	on	the	speech	aspects	of	the	program.	A	third	file,
stdafx.h,	is	related	to	COM	programming	and	it	is	maintained	by
the	compiler.	This	file	can	also	change	and	have	no	impact	on
speech-related	issues.

The	other	two	files	are	speech	related.	Sphelper.h	is	provided	by
SAPI	5	and	is	the	header	file	for	the	helper	functions.	For	the
programmer’s	convenience,	there	is	a	list	of	functions
consolidating	a	series	of	SAPI	API	methods	into	a	single	call.	You
are	not	required	to	use	helper	functions	for	SAPI	programming,
although	doing	so	may	simplify	programming.	The	Coffee
samples	use	helper	functions	whenever	possible.	Finally,	the
grammar	compiler	uses	cofgram.h.	A	grammar	is	a	list	of	words
available	to	the	application.	The	topics	of	grammars	and	the
compiler	in	general	will	be	discussed	in	later	chapters.

For	SAPI	5	to	work,	it	needs	to	be	initialized.	This	is	done	in	four
basic	steps	with	each	step	depending	on	the	success	of	the
previous	one.	You	should	always	check	the	return	values	just	as
in	Windows	programming.

Initialization

Step	one:	COM
First,	initialize	COM	making	sure	it	is	present	and	active.	Use	the
COM	command	CoInitialize()	and	later	CoUninitialize().	To	ensure
COM	is	active	throughout	the	application’s	session,	these
commands	are	usually	nested	around	the	main	message	loop.

//	Only	continue	is	COM	is	successfully	initialized

if	(SUCCEEDED(CoInitialize(NULL)))

{

	 //	Main	message	loop:

	 while	(GetMessage(&msg,	NULL,	0,	0))

	 {

	 	 //Code	here

	 }

	 CoUninitialize();

}

Step	two:	Recognizer	Object
Second,	create	the	recognizer	object.	This	object	provides
access	to	the	recognition	engine.
//Global	Definition

CComPtr<ISpRecognizer>	g_cpEngine;

//	create	a	recognition	engine

hr	=	g_cpEngine.CoCreateInstance(CLSID_SpSharedRecognizer);

if	(FAILED(hr))	//	Leave	application

A	single	instance	of	a	recognizer	object	is	created.	There	are	two
options	for	setting	up	this	object:	shared	and	in-process	(InProc).
Use	the	following	class	identifiers	(CLSIDs)	to	set	up	the
instance:

CLSID_SpSharedRecoContext Creates	a	shared	resource
instance

CLSID_SpInprocRecognizer Creates	an	InProc	or	non-
shared	resource	instance.

Shared	Instance

Shared	instances	allow	resources	such	as	recognition	engines,
audio	input	(microphones),	and	output	devices	to	be	used	by
several	applications	at	the	same	time.	This	is	the	preferred
option	for	most	desktop	applications.	It	is	common	for	a	desktop

system	to	have	only	one	microphone	and	by	using	shared
instances,	different	applications	such	as	a	browser,	word
processor,	and	a	game	can	use	the	microphone.	Any	application
using	a	shared	instance	will	start	the	SAPI	server	process.	This	is
an	executable	program	running	in	the	background.	It	delivers
events	to	the	owning	application.

InProc	Instance

InProc	instances,	however,	allow	one	and	only	one	application	to
control	the	resources.	This	includes	the	microphone	and	speech
recognition	engine.	Using	an	InProc	procedure	is	very	restrictive
and	you	should	use	it	only	in	special	circumstances.	For
example,	you	would	use	InProc	if	you	wanted	the	entire
microphone	input	to	be	channeled	through	one	application.
Telephony	applications	are	a	good	example	of	the	need	to
restrict	use	to	one	microphone	or	audio	input	source.

Step	three:	Recognition	Context
Third,	create	a	recognition	context	for	the	engine.

//Global	Definition

CComPtr<ISpRecoContext>	g_cpRecoCtxt;

//	create	the	command	recognition	context

hr	=	g_cpEngine->CreateRecoContext(&g_cpRecoCtxt);

if	(FAILED(hr))	//Leave	application

A	context	is	any	single	area	of	the	application	needing	to
process	speech.	A	simple	case	(like	CoffeeS0)	assigns	the	entire
application	to	only	one	recognition	context.	No	matter	where
you	are	in	the	application,	all	speech	events	and	messages	are
handled	by	the	same	procedure.	Alternatively,	each	part	of	the
application	may	have	a	different	context.	Individual	windows,
dialog	boxes,	menu	bars,	or	even	menu	items	(such	as	the	Open
or	Print	menu	items)	may	have	their	own	context.	Events	or
messages	generated	from	these	areas	are	processed	by	their

own	procedures.	This	is	similar	to	the	way	individual	windows
process	events	and	messages	in	standard	Win32	applications.
That	is,	each	window	is	assigned	a	window	procedure	that
handles	all	the	events	and	messages.	In	the	same	way,	each
recognition	context	is	assigned	a	procedure	as	well.	This	way,
you	have	greater	control	over	the	program	and	the	handling	of
speech	events.	Contexts	are	created	dynamically	the	moment
they	are	needed	and	destroyed	afterward.	Alternatively,	you
may	create	them	once	and	retain	them	throughout	the
application’s	life.	However,	Coffee	is	a	simple	example	and	uses
only	one	context.

IspRecoContext	is	an	important	interface	and	will	be	the	primary
means	for	recognition.	From	the	interface,	the	application	can
load	and	unload	grammars	as	well	as	get	and	respond	to
events.

Step	four:	Loading	Grammars	and	Rules

The	last	major	part	of	the	startup	sequence	is	loading	the
grammar.	A	grammar	specifies	what	the	speech	recognizer	will
recognize.

//	Load	our	grammar

//	user	defined

("SRGRAMMAR")	resource	type.

hr	=

g_cpRecoCtxt->CreateGrammar(GRAMMARID1,	&g_cpCmdGrammar);

if	(FAILED(hr))	//Leave	application

hr	=	g_cpCmdGrammar->LoadCmdFromResource(

	 NULL,

	 MAKEINTRESOURCEW(IDR_CMD_CFG),

	 L"SRGRAMMAR",

	 MAKELANGID(LANG_NEUTRAL,	SUBLANG_NEUTRAL),	TRUE);

if	(FAILED(hr))	//Leave	application

Essentially	there	are	two	types	of	grammars.	One	is	for	dictation

and	the	other	is	command	and	control.	The	dictation	grammar	is
a	more	free-formed	approach	to	speech.	You	are	able	to	draw	on
a	very	large	portion	of	the	body	of	words	for	the	language.
Command	and	control	is	a	much	more	limited	list	of	words.	For
Coffee	examples,	you	only	need	certain	words	and	only	then	to
move	around	the	store	and	to	order	drinks.	It	makes	no	sense
for	Coffee	to	know	about	the	word	“opisthognathous”	so	why
even	attempt	to	find	it?	Besides,	you	are	going	to	sip	your
coffee	anyway.

The	Coffee	list	is	a	pregenerated	set	of	commands	stored	as	a
resource	internal	to	the	application.	Coffee.xml	saves	this	in	a
human-readable	format.	Extensible	Markup	Language	(XML)	is
the	markup	language	used	to	generate	the	grammar	and	the
format	that	the	file	uses	as	defined	by	SAPI.	You	need	to	compile
this	file	into	a	binary	version	so	SAPI	5	can	use	it.	You	can	do
this	ahead	of	time	or	on	the	fly.	Here	it	has	been	precompiled	it
so	that	the	grammar	is	delivered	inside	the	application.	The
SAPI	5.1	SDK	has	a	grammar	compiler	called	GramComp,
delivered	in	the	tool	suite.	Grammars	are	covered	in	more	detail
in	the	CoffeeS1	example.

IspRecoContext,	as	mentioned	in	Step	3,	creates	the	grammar.
Once	made,	you	populate	the	grammar	with	words	from
command	list.	Use	::LoadCmdFromResource,	since	it	is	stored	as
an	application	resource.	Another	way	you	could	load	it	is	from
other	sources,	including	an	external	file,	memory,	or	an	existing
object.	After	you	have	retrieved	the	grammar,	you	need	to	set
the	rules.	As	a	convenience,	the	XML	itself	activates	the	initial
set	of	rules.	Specifically	the	TOPLEVEL=”ACTIVE”	tag	in
coffee.xml	does	this.	The	following	is	an	example	of	an	explicit
application	setting:
//	Set	rules	to

active,	we	are	now	listening	for	commands

hr	=	g_cpCmdGrammar->SetRuleState(NULL,	NULL,	SPRS_ACTIVE);

The	method	explicitly	sets	any	rules	it	encounters	to	become

active.	Because	the	two	NULL	parameters	values	did	not
exclude	any	rules,	all	of	them	were	activated.	You	can	also
deactivate	rules	using	this	method.	If	the	call	fails,	the
application	posts	a	message	giving	the	most	likely	reason.

Events

CoffeeS0	is	now	an	application	that	can	take	speech	input.	It	is
processing	speech	in	the	background.	When	SAPI	has
information,	it	returns	it	back	to	the	application.	SAPI	will	notify
you	when	an	event	happens.	In	short,	an	event	is	a	condition	of
special	interest	to	SAPI.	Examples	of	events	include,	when	a
sound	is	first	detected	on	the	microphone	(SPEI_SOUND_START),
when	it	ends	(SPEI_SOUND_END),	or	when	it	successfully
completes	a	word	recognition	(SPEI_RECOGNITION).	SAPI
maintains	several	types	of	events,	of	which	the	enumerated
type	SPEVENTENUM,	maintains	a	complete	list.	Two	important
concepts	tie	events	into	the	application:	Notifications	and
Interests.

Notifications

A	notification	indicates	that	a	SAPI	event	has	occurred	and	the
application	might	want	to	react.	It	does	not	relay	exactly	what
happened	–	for	that	you	will	have	to	dig	a	little	deeper.

To	react	to	notifications,	the	application	has	to	associate	them
with	specific	procedures.	There	are	several	ways	to	do	this.	The
ISpNotifySource	interface	has	four	methods:
SetNotifyCallbackFunction,	SetNotifyCallbackInterface,
SetNotifyWin32Event,	and	SetNotifyWindowMessage.	An
additional	one,	ISpNotifySink::Notify,	provides	a	generic	method
allowing	for	special	or	unusual	conditions.	You	can	use	any	or	all
of	these	methods	depending	on	your	needs.	For	instance,	it
might	be	easier	for	an	application	to	handle	a	notification	by
directly	calling	a	function	(::SetNotifyCallbackFunction)	such	as
bringing	up	a	new	dialog	box	or	automatically	logging	the

activity	in	a	file.	Three	of	the	methods,
::SetNotifyCallbackFunction,	::SetNotifyCallbackInterface,
::SetNotifyWindowMessage,	require	a	message	loop	and
therefore	may	only	be	used	by	Windows	applications.	You	can
use	the	other	two,	::SetNotifyWin32Event	and
::ISpNotifySink::Notify,	without	a	message	loop	to	provide
additional	flexibility.

CoffeeS0	sends	the	notification	through	a	Window	procedure.
Since	SAPI	messages	are	not	system	level	messages,	you	have
to	tell	the	application	explicitly	about	them.

hr	=	g_cpRecoCtxt->SetNotifyWindowMessage(hWnd,	WM_RECOEVENT,	0,	0);

if	(FAILED(hr))	//Leave	application

This	method	associates	a	message	to	a	specific	window.
Afterward,	any	events	SAPI	passes	back	will	be	received	by	the
application	in	the	singular	form	of	a	WM_RECOEVENT	message,
and	then	sent	to	the	window	pointed	to	by	hWnd.	You	have	the
option	of	directing	the	wParam	and	lParam	window	parameters
as	well.	Because	CoffeeS0	is	not	concerned	about	them	here,
the	application	has	set	them	to	zero	or	NULL.

Interests

An	interest	is	a	flag	allowing	or	restricting	the	kind	of	events
SAPI	passes	back.	By	default,	SAPI	sends	all	events	back	to	the
application.	So	far	that	is	more	than	30	different	kinds	of	events.
You	cannot	be	concerned	about	all	of	them.	In	reality,	CoffeeS0
truly	cares	about	one	type:	the	successful	word	recognition	or
SPEI_RECOGNITION	event.	You	can	tell	SAPI	to	pass	back	only
this	one	event.	To	filter	these	events,	use	::SetInterest.
hr	=

g_cpRecoCtxt->SetInterest(SPFEI(SPEI_RECOGNITION),	SPFEI(SPEI_RECOGNITION));

if	(FAILED(hr))	//Leave	application

This	sets	the	interest	to	just	one	message,	SPEI_RECOGNITION.

That	is,	only	a	successful	recognition	event	generates	a
notification.	SAPI	will	not	notify	the	application	on	any	other
event.

You	can	define	multiple	interests	using	the	exclusive	OR
operator.	Two	values	are	set.	The	first	parameter	lists	the
interests	in	general.	That	is,	it	defines	all	the	events	you	are,	or
could	be,	concerned	with	for	the	time	being.	The	second
parameter	lists	the	events	to	be	queued	so	that	the	application
can	handle	them	in	due	time.	In	this	tutorial,	you	are	interested
in	every	occurrence	of	SPEI_RECOGNITION,	even	if	they	come	so
quickly	that	the	application	cannot	handle	them	at	one	time.
Often,	these	two	parameters	will	be	identical	but,	obviously,
they	don’t	have	to	be.	SPFEI()	is	a	helper	function	used	to
reformat	the	enumerated	events	into	a	ULONGLONG	number.

Is	the	application	now	fully	functional?	Again,	almost.	It	is	true,
the	application	can	initialize	SAPI,	accept	speech	from	a
microphone,	attempt	to	recognize	it,	and	send	back	an	event	to
the	application	if	a	word	is	matched.	You	still	need	to	put	the
message	in	the	event	loop	in	order	for	the	application	to	handle
the	event.	Because	it	is	already	defined	and	known	by
application,	WM_RECOEVENT	can	be	put	in	like	any	other
message.	The	following	code	fragment	is	from	main	window
procedure	WndProc:
//	This	is	our	application	defined	window	message	to	let	us	know	that	a

//	speech	recognition	event	has	occurred.

case	WM_RECOEVENT:

	 ProcessRecoEvent(hWnd);

	 break;

Each	time	SAPI	is	ready	to	return	a	word,	it	sends	out	an	event.
The	application	receives	this	message	as	WM_RECOEVENT.	The
main	message	loop	picks	it	up	and,	in	this	case,	sends	it	to	the
ProcessRecoEvent()	for	routine	processing.

For	speech	recognition,	this	event	is	handled	in	a	slightly

different	manner	than	the	way	Windows	approaches	it.
Normally,	Windows	sends	the	exact	message	based	on	the
event.	In	this	way	you	do	not	have	to	determine	if	it	were	a
mouse	or	keyboard	event;	the	message	provides	this
information.	SAPI,	on	the	other	hand,	does	not.	You	still	need	to
know	the	exact	nature	of	the	event	as	well	as	the	number	of
events	waiting	in	the	queue.

For	this	reason,	SAPI	introduces	its	own	event	description
system.	See	the	following	code	for	an	example:

void	ProcessRecoEvent(HWND	hWnd)

{

//	Event	helper	class

CSpEvent	event;	

//	Loop	processing	events	while	there	are	any	in	the	queue

while	(event.GetFrom(g_cpRecoCtxt)	==	S_OK)

	 {

	 	 //	Look	at	recognition	event	only

	 	

	 	 switch	(event.eEventId)

	 	 {

	 	 	 case	SPEI_RECOGNITION:

	 	 	 	 ExecuteCommand(event.RecoResult(),	hWnd);

	 	 	 	 break;

	 	 }

	 }

}

Three	items	are	needed	to	fully	describe	the	event.	The	first
item	is	CspEvent.	This	is	a	helper	class	function	that	contains
several	useful	functions	and	is	an	SPEVENT	structure.	One
method,	::GetFrom,	does	two	things	at	the	same	time.	It
retrieves	the	next	event	from	the	queue	and	loads	the
corresponding	information	into	the	SPEVENT	structure	making	it
ready	for	your	inspection.

The	second	item	is	to	determine	which	SAPI	event	actually	took
place.	At	this	point	you	only	have	to	look	at	the	member
eEventId.	If	it	is	an	event	you	are	not	interested	in,	skip	it	and

keeping	looking	or	waiting	for	other	events.

The	last	item	is	to	match	the	event	with	your	needs.	In	this
example	you	are	interested	only	in	SPEI_RECOGNITION.	If	there
is	a	match,	you	are	closer	to	your	goal	of	finding	out	which	word
was	spoken.	The	switch	statement	handles	that	for	you.

Phrases
Determining	the	actual	phrase	is	the	last	part	of	the	process.
Having	initialized	SAPI,	received	a	notice	that	SAPI	has	identified
a	word,	and	had	the	application	process	the	message,	you	now
need	to	isolate	the	word.

SAPI	returns	the	word	information	in	a	list	or	a	series	of	lists.
These	lists	contain	not	only	the	word,	but	also	additional
information	about	the	word,	words	or	the	entire	phrase.
Examine	the	following	code:

void	ExecuteCommand(ISpPhrase	*pPhrase,	HWND	hWnd)

{

	 SPPHRASE	*pElements;

	 //	Get	the	phrase	elements,	one	of	which	is	the	rule	id	we	specified	in

	 //	the	grammar.	Switch	on	it	to	figure	out	which	command	was	recognized.

	 if	(SUCCEEDED(pPhrase->GetPhrase(&pElements)))

	 {	

	 	 switch	(pElements->Rule.ulId)

	 	 {

	 	 	 case	VID_Navigation:

	 	 	 {

	 	 	 	 switch(pElements->pProperties->vValue.ulVal)

	 	 	 	 {

	 	 	 	 	 case	VID_Counter:

	 	 	 	 	 	 PostMessage(hWnd,	WM_GOTOCOUNTER,	NULL,	NULL);

	 	 	 	 	 	 break;

	 	 	 	 }

	 	 	 }

	 	 	 break;

	 	 }

	 //	Free	the	pElements	memory	which	was	allocated	for	us

	 ::CoTaskMemFree(pElements);

	 }

}

Without	knowing	too	much	about	phrase	structures,	it	is	obvious
that	the	code	drills	down	into	it.	This	function	takes	an	IspPhrase
interface,	extracts	an	exact	phrase	element	(in	the	form	of
pElements)	and	determines	which	rule	has	been	invoked.	Other
examples	will	go	one	step	further	and	get	the	exact	words
spoken.	Phrases	and	rules	will	be	discussed	in	languishing	detail
[CoffeeS2].

To	understand	rules	better,	look	at	coffee.xml.	Notice	that	there
are	two	rules	defined.	RULE	ID	tags	delineate	both.	The	main
rule	is	VID_Navigation.	The	second	one	is	VID_Place,	but	this	is
of	lesser	importance	because	it	is	subservient	to
VID_Navigation.	In	essence,	coffee.xml	defines	two	sets	of
phrases.	The	first	set	uses	the	commands	“Enter”	and	“Go	To,”
and	the	second	set	uses	the	words	“counter,”	“shop,”	and
“store.”	The	recognizer	mixes	and	matches	words,	selecting	one
from	the	first	set	and	one	from	the	second	set.	Therefore,
sentences	such	as	“enter	store”	and	“go	to	counter”	invoke	a
SAPI	rule.	There	are	also	optional	words	that	may	be	used	or	not
used.	“Please	enter	the	store”	is	not	only	more	polite	but	it	is
also	a	valid	match.	However,	the	recognizer	ignores	“please”
and	“the.”	This	way,	you	can	speak	more	naturally	and	at	the
same	time	not	encumber	SAPI.

However,	this	example	does	not	go	quite	that	far.	The	code
stops	at	the	rule	level	in	the	switch	statement	with	“case
VID_Counter.”	Once	you	have	said,	“Please	enter	the	store,”
SAPI	invokes	the	appropriate	rule	(VID_Navigation).	That	is	why
you	could	have	said	“counter”	or	“shop”	and	still	have	gone	to
the	same	place.	In	contrast,	had	you	said,	“Please	enter	the
restaurant,”	no	rule	would	have	been	invoked	because	no
definition	includes	“restaurant.”	In	later	examples,	the	exact
word	will	be	of	more	interest.

At	this	point,	a	rule	has	been	invoked	and	caught	by	the

application.	Now	you	can	process	it	as	you	see	fit.	CoffeeS0	is
interested	only	in	providing	you	with	textual	feedback	and	so	it
passes	a	PostMessage()	back	to	the	owning	window	with
instructions	to	change	the	text.	“Please	order	when	ready!”
appears	on	the	screen.

Conclusions
Hopefully	you	are	not	overwhelmed	at	this	point.	SAPI	5,	like	all
other	systems,	requires	a	certain	amount	of	overhead
programming.	The	intent	was	to	minimize	this	overhead	so	that
you	can	concentrate	on	the	function	of	the	application	rather
than	working	with	the	SAPI	code.	Most	of	the	code	introduced
here	is	initialization	and	should	only	happen	once	during	the
application	launch.	With	that	done,	you	are	free	to	add
additional	features.

Microsoft	Speech	SDK	SAPI	5.1

Chapter	3

CoffeeS1
Introduction
With	the	basic	structure	for	speech	recognition	firmly	in	place,
CoffeeS1	expands	word	recognition	capabilities.	You	navigate
around	the	coffee	shop,	and	you	can	place	orders	for	different
kinds	of	coffee	drinks.

The	example	will	focus	on	grammars	generally	and,	on
command	and	control	grammar	specifically.	The	following	topics
will	be	discussed

·									Grammars:	Command	and	Control,	dictation.

·									Phrase:	Phrase	structure,	word	recognition.

·									Grammar	Files:	XML	tagging.

Grammar	Types

Command	and	Control

The	last	example	(CoffeeS0)	was	not	robust.	You	were	limited	to
about	five	words.	However,	they	are	five	words	of	special
interest	and	using	them,	you	could	move	around	the
application.	Using	grammar	in	the	command	and	control
function	limits	the	use	of	words	and	bestows	upon	them
specialized	meanings.	This	is	convenient	for	some	uses	in
applications.	In	the	last	chapter,	you	learned	that	grammars
could	have	limited	recognition	contexts	such	as	for	menus.	As
an	example,	you	would	want	the	application	to	respond,	or	even

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

to	attempt	to	respond,	to	certain	words	relating	to	menu	items
or	to	the	menu	bar	such	as	“file,”	“open,”	or	“print.”

These	words	are	provided	in	an	exclusive	list.	If	the	word	is	not
found,	it	is	not	recognized.	Also,	word	order	matters	in	some
cases.	In	CoffeeS0,	“Go	to	counter”	was	understood	and
“Counter	go	to”	was	not.	Using	a	list	approach	is	also	called
rule-based	or	context-free	grammar.	Words	are	evaluated
according	to	a	fixed	set	of	rules.	In	short,	the	word	is	either	in
the	list	or	it	is	not.	There	is	no	attempt	to	figure	out	the	intent	of
the	word	based	on	the	words	that	came	before	or	after	it.	That
is,	there	is	no	context	for	the	words.

SAPI	5	uses	extensible	markup	language	(XML)	to	create	this
list.	The	file	may	be	generated	ahead	of	time	or	compiled	during
program	execution.	Because	command	and	control	deals	mostly
with	lists,	words	can	be	added	dynamically	and	can
accommodate	new	situations	easily.

CoffeeS1	addresses	word	order	and	the	ability	to	sequence
words.

Dictation

Command	and	control	has	obvious	shortcomings.	As	mentioned,
it	is	limited	in	the	words	used.	Someone	has	to	spend	the	time
to	manually	define	the	command	set.	Often,	you	will	want	to
speak	any	word	and	have	it	recognized.	This	is	what	a
traditional	speech	recognition	(SR)	program	does.	That	is,	you
can	dictate	any	word,	no	matter	how	esoteric,	into	a	word
processor	and	have	that	word	translated	into	text.	For	this	use
of	a	speech	recognition	engine,	you	must	move	from	command
and	control	to	a	dictation	grammar.	Instead	of	an	XML-based
vocabulary,	dictation	grammar	uses	a	much	more	extensive
range	of	words	and	determines	each	word	based	on	context.
The	words	immediately	before	and	after	it	are	studied	and
dictation	grammar	chooses	the	most	likely	outcome.	For	this
reason,	this	is	also	called	a	statistical	language	model	(SLM).

SR	engines	have	wide	latitude	of	vocabularies.	The	Microsoft	SR
engine	that	SAPI	5	includes	60,000	English	words	and	provides
an	adequate	engine	for	most	people.	Other	engines	are
specialized	for	the	legal	and	medical	professions,	for	example.
These	can	be	massive	databases	generated	by	commercial
firms.	In	addition,	different	languages	including	Japanese,
Chinese,	German,	and	Russian	are	also	available.

For	as	widely	disparate	as	these	languages	and	usages	seem,
SAPI	5	handles	them	in	the	same	way.	The	programming
approach	is	very	similar.	Two	other	samples	provide	a	dictation
approach	to	speech	recognition:	Simple	Dictation	and	Dictation
Pad.	These	may	be	found	on	the	SAPI	5.1	SDK	and	are
documented	separately.	Coffee	on	the	other	hand,	limits	itself
solely	to	command	and	control	usage.

Phrases

SAPI	returns	the	actual	recognized	words	through	a	series	of
structures	collectively	called	phrases.	You	have	seen	evidence	of
this	with	SPEI_PHRASE_START	event	indicating	the	start	of	the
recognition	process.	For	command	and	control	uses,	it	is	a	two-
step	process:	Determine	the	activated	rule,	and	then	inspect	the
elements	(or	words)	within	that	phrase.

CoffeeS0	briefly	introduced	the	first	step.	While	processing	a
recognition	event,	you	discovered	which	rule	was	activated	but
stopped	there.	CoffeeS1	takes	the	next	logical	step	to	recognize
the	exact	words	used	so	patrons	can	get	their	drinks.

This	examination	takes	place	in	the	ExecuteCommand()	routine.
As	in	CoffeeS0,	one	of	the	parameters	is	the	phrase.	Remember,
this	phrase	is	the	final	result,	rather	than	a	hypothesis,	so
assume	SAPI	is	savvy	enough	to	translate	exactly	what	you	said.
You	will	be	depending	on	this	phrase	for	navigation.	At	this
point,	you	are	only	interested	in	which	grammar	rule	was
activated.	That	means	the	patrons	still	cannot	go	to	different

places	in	the	shop	even	though	they	might	request	to	do	so.	All
navigation	statements	always	lead	to	the	counter.

However,	CoffeeS1	introduces	a	new	grammar	rule:
VID_EspressoDrinks.	Defined	in	coffee.xml,	this	rule	lists	all
drinks	available	to	the	customers.	Actually,	it	is	several	rules
bound	together	that	will	be	discussed	later.	Again,	you	are	only
concerned	in	the	top-level	rule	of	VID_EspressoDrinks.	If	you
place	an	order	that	matches	this	rule,	the	rule	activates	and	the
result	is	passed	back	from	SAPI.	In	typical	demanding	coffee
shop	fashion,	this	could	be	“Get	me	an	iced	decaf	single	tall
peppermint	whole	espresso.”	Orders	could	even	include	“single
triple	short	tall	grande,”	and	still	be	valid	SAPI	grammar
although	it	might	raise	an	eyebrow	(if	that	were	possible).

With	the	order	placed	and	recognition	successful,	CoffeeS1	now
gets	to	the	task	of	dissecting	the	phrase.	From	the	original
phrase,	an	IspPhrase	interface	contains	the	method
GetPhrase()to	construct	the	elements	(or	word)	list.
SPPHRASE	*pElements;

if	(SUCCEEDED(pPhrase->GetPhrase(&pElements)))

If	successful,	pElements	contains	all	the	information	required	to
construct	the	sentence.	To	determine	which	rule	activated	and
then	to	learn	more	about	it,	look	at	the	Member	Rule.	This	is	a
structure	(SPPHRASERULE)	but	one	that	fully	describes	the	rule.
The	rule	ID	is	found	in	its	member	ulId.	CoffeeS1	numerically
defines	the	rule	VID_EspressoDrinks	in	the	XML	file,	so	that
matching	becomes	easy.	Use	a	simple	switch	statement	in	the
code	to	determine	the	more	specific	handling	routines.

Two	things	need	to	be	pointed	out	about	the	upcoming	word	list.
First,	the	words	are	represented	numerically	rather	than	by	a
string.	Associating	the	value	of	the	word	to	the	string	itself	uses
a	look-up	table.	In	this	case,	CoffeeS1	stores	the	words	as	a
resource	in	the	application.

Second,	the	actual	words	are	formed	by	a	link	list	with	each

word	represented	by	a	member	in	the	sequence.	The	first
element	is	a	structure	(of	type	SPPHRASEPROPERTY)	pointed	to
by	pElements->pProperties	and	each	subsequent	structure	uses
the	SPPHRASEPROPERTY’s	pNextSibling	member.	Traveling	this
chain	is	standard	link	list	operation.

case	VID_EspressoDrinks:

	 //	This	memory	will	be	freed	when	the	WM_ESPRESSOORDER

	 ULONG	*pulIds	=	new	ULONG[MAX_ID_ARRAY];

	 const	SPPHRASEPROPERTY	*pProp	=	NULL;

	 int	iCnt	=	0;

	 if	(pulIds)

	 {

	 	 ZeroMemory(pulIds,	MAX_ID_ARRAY	*	sizeof(ULONG));

	 	 pProp	=	pElements->pProperties;

	 	 //	Fill	in	an	array	with	the	drink	properties	received

	 	 while	(pProp	&&	iCnt	<	MAX_ID_ARRAY)

	 	 {

	 	 	 pulIds[iCnt]	=	static_cast<	ULONG	>(pProp->vValue.ulVal);

	 	 	 pProp	=pProp->pNextSibling;

	 	 	 iCnt++;

	 }

	 PostMessage(hWnd,	WM_ESPRESSOORDER,	NULL,	(LPARAM)	pulIds);

To	inspect	the	elements,	the	code	steps	through	the	links	one
node	at	a	time	until	the	next	node	is	NULL	(meaning	there	are
no	more	nodes	to	transverse)	or	it	has	already	visited	at	least
MAX_ID_ARRAY	number	of	nodes.	CoffeeS1	imposes	this
MAX_ID_ARRAY	limitation.

Besides	stepping	through	the	link	list,	this	code	also	stores	the
words	in	an	internal	array	for	later	processing.	This	not	only
keeps	a	record	of	the	words	but	also	helps	with	sorting.
Remember,	don’t	worry	about	word	order.	Customers	can	say
“get	me	a	mocha	two	percent	tall,”	and	still	end	up	with	a	tall
two	percent	mocha.	However,	if	you	do	change	the	word	order
then	you	need	the	ability	to	sort	internally.	To	indicate	empty
array	elements,	flag	them	with	a	zero,	hence	the	Win32
ZeroMemory()call.	You	can	use	other	methods;	this	one	was	just
convenient	for	this	example.

After	going	through	the	list,	CoffeeS1	is	ready	to	display	the
newly	derived	information.	A	message	is	passed	to	the	owning
window	(WM_ESPRESSOORDER)	indicating	the	application	has
additional	processing.	At	this	point,	SAPI	is	no	longer	involved.
SAPI	will	even	free	the	objects	it	created	although	CoffeeS1
must	manually	free	pElements	since	it	manually	created	it.	Even
so,	COM	is	smart	enough	to	delete	any	nodes	in	the	link	list
associated	with	the	list.	The	rest	of	the	processing	is	on
CoffeeS1’s	part	and	mostly	to	update	the	screen.	When	you
speak	again,	the	whole	process	above	is	repeated.

Grammar	Files

As	mentioned,	the	Coffee	examples	use	command	and	control
grammar.	This	is	a	discrete	list	of	words	associated	with	certain
rules.	Coffee	keeps	this	list	in	two	forms.	An	XML-based	file
allows	you	to	maintain	this	list.	Ultimately,	SAPI	can	only	read	a
binary	or	compiled	version	of	that	file.	This	is	a	grammar
configuration	that	is	saved	with	the	.cfg	file	suffix.	It	was	by
clever	design	that	CFG	not	only	means	“configuration,”	but	also
“context-free	grammar.”	Approbation	aside,	grammar	files	may
be	generated	dynamically	during	the	application’s	run	time.	If	it
is	provided	with	only	an	xml	file,	SAPI	will	compile	the	file
automatically	and	use	the	resulting	grammar.	On	the	other
hand,	the	grammar	may	also	be	compiled	ahead	of	time	by	the
programming	team.	This	restricts	access	to	the	vocabulary	so
users	cannot	change	grammars	unexpectedly.	This	method	is
also	faster	for	applications	since	no	compiling	time	is	required
during	operation.	The	SAPI	SDK	application	provides	a	compiler
called	GramComp.	Grammar	compilation	using	this	tool	is
documented	separately.

SAPI	defines	the	XML	tags	and	their	uses	and	lists	them	in
Reference	API.	For	a	more	complete	discussion,	see	Text
grammar	format.	As	a	brief	overview	of	the	structure,	look	at
coffee.xml	in	the	CoffeeS1	project.	There	are	several	rules
defined	but	only	two	are	considered	top	level:

VID_EspressoDrinks	and	VID_Navigation.	These	are	the
significant	rules	for	SAPI.	When	a	rule	match	is	made,	it	is	one	of
these	IDs	that	is	passed	back	to	the	application.	Also,	look	at
ExecuteCommand().	The	two	case	statements	coincide	with	the
top-level	rule	names.

The	TOPLEVEL	tag	within	the	RULE	statement	gives	these	rules
their	special	status.	Not	only	does	this	identify	the	rule	as	being
top	level,	but	it	also	sets	the	activation	state.	Only	top-level
rules	may	be	activated	or	deactivated.	SAPI	recognizes	active
rules	and	conversely	does	not	recognize	deactivated	ones.	The
application	may	change	the	state	of	the	rules	during	execution.
If	a	rule	is	no	longer	needed,	it	may	be	deactivated.	This	allows
you	to	turn	rules	on	and	off	based	on	the	current	recognition
context.	For	example,	if	you	have	a	menu	or	menu	item
deactivated,	SAPI	will	not	need	to	attempt	to	recognize	the
words	associated	with	it.	When	the	menu	is	active	again,	the
rule	will	likewise	be	activated.

The	words	or	phrases	are	listed	inside	the	rule.	The	words	or
phrases	may	be	optional	or	required.	As	the	name	implies,
optional	words	are	not	required	for	a	successful	rules	match.
SAPI	adds	them	as	a	convenience	to	the	speaker.	“Please	enter
the	shop”	is	natural	and	pleasant	sounding	as	opposed	the
demanding	version	of	the	statement.	Required	words	are,	of
course,	required.	However,	you	can	present	an	alternative	word
list	from	which	any	one	word	can	be	used	to	complete	the
match.	In	the	case	of	VID_Navigation,	you	can	say	either
“enter,”	or	“go	to,”	but	not	both.

In	the	same	manner,	you	may	reference	other	rules	but	not
other	top-level	rules.	Continuing	the	VID_Navigation	example,
the	last	portion	of	the	requirement	is	that	the	rule	VID_Place
must	be	successfully	matched.	The	three	alternatives,
“counter,”	“shop,”	and	“store”	are	defined	as	VID_Place.	If	you
say	one	of	these	three	words,	the	rule	is	successfully	matched.
Upon	successful	completion	of	all	the	requirements,	the	top-
level	rule,	VID_Navigation	matches,	and	an	SPEI_RECOGNITION

event	passes	back	to	the	application.

Additional	study	of	coffee.xml	helps	you	understand	how
complex	rules	are	constructed.	The	other	rules	are	basically	the
same	format	and	follow	the	same	structure.	Look	up	unfamiliar
tags	in	the	“Text	grammar	format”	section	of	the	reference	API.
Curiously	enough,	the	program	is	case	sensitive.	“The”	and
“the”	may	be	duplicated	as	entries.	They	may	even	have	the
same	ID	such	as	<ID	NAME=”The”	VAL=”1”	/>	and	<ID
NAME=”the”	VAL=”1”	/>.	While	this	case	has	the	same
pronunciation,	consider	other	words	such	as	“Polish”	and
“polish.”	This	applies	equally	to	rule	names.	There	is	no
requirement	for	engines	to	recognize	the	words	as	different;
however,	engine	vendors	may	want	to	do	so.	By	making	the
word	case	sensitive,	newer	engines	can	take	advantage	of	these
differences.

The	first	portion	of	the	file	assigned	numeric	values	to	the
individual	elements.	SAPI	does	not	require	this,	although	in	the
CoffeeS1	example,	you	can	sort	the	words.	The	sorting	is	based
on	the	“VAL=”	tag.	Remember	to	keep	the	words	actually	found
in	the	array	pulIds	for	this	purpose.

Activating	the	rules	is	the	same	as	in	CoffeeS0.

Microsoft	Speech	SDK	SAPI	5.1

Chapter	4

CoffeeS2
Introduction
This	chapter	introduces	two	new	concepts:	navigation	and
politeness.	Not	only	will	you	be	able	to	go	to	the	counter	(this	is
the	same	as	in	CoffeeS1)	but	the	manager	will	also	open	the
office	to	you.	However,	you	will	not	be	able	to	order	drinks	from
the	office.	The	second	feature	will	ask	the	patron	to	repeat	the
order	if	it	was	not	clearly	understood.

The	following	topics	will	be	discussed:

									Grammars:	Rules	activation	and	deactivation.

									Events:	Expanding	events,	SPEI_FALSE_RECOGNITION.

Grammar	Rule	Activation

CoffeeS0	and	CoffeeS1	introduced	the	concept	of	rule
activation/deactivation	in	only	the	broadest	sense.	In	fact,	those
rules	made	two	assumptions.	The	first	is	that	the	grammar	rule
itself	wanted	the	rules	on	by	default	and	the	second	assumption
was	that	the	application	wanted	them	on	by	default.

The	command	and	control	grammar	sets	the	initial	(or	default)
state	of	a	particular	rule	to	either	active	or	inactive.	In	the	XML
file,	the	top-level	rule	is	defined	as:

<RULE	ID="VID_Navigation"	TOPLEVEL="ACTIVE">

If	nothing	changes	this	status,	it	remains	in	that	state	for	the

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

duration	of	the	application’s	lifespan.	Setting	“INACTIVE”	will	set
the	state	to	“off”	by	default.

However,	you	will	need	to	react	to	the	changes	made	by	the
users.	In	some	situations,	the	grammar	rule	may	no	longer	be
appropriate.	In	CoffeeS1,	you	ordered	drinks	from	any	location.
That	is,	from	the	counter,	store	or	office.	CoffeeS2	is	more
discriminating	and	limits	drink	order	placement	to	the	counter.
As	another	example	(and	perhaps	a	more	practical	one),	if	you
dictated	to	a	speech-enabled	word	processor,	the	command	and
control	words	would	no	longer	require	special	actions.	If	you
spoke	the	word	“menu,”	it	would	confuse	you	to	suddenly	see	a
menu	drop	down.

In	either	case,	you	need	a	way	to	disable	the	grammar.	A	drastic
method	would	be	to	simply	unload	the	entire	grammar	when	it
was	no	longer	required.	However,	in	CoffeeS2’s	instance,	both
the	navigation	and	drink	order	rules	are	in	the	same	file.	If	you
unloaded	the	file,	you	would	lose	both	rules	altogether.	Rather,
selectively	activate	or	deactivate	individual	top-level	rules.

In	the	past,	Coffee	has	simply	accepted	the	rules	as	they	were.

hr	=	g_cpCmdGrammar->SetRuleState(NULL,	NULL,	SPRS_ACTIVE);

Passing	NULL	for	both	the	rule	name	and	rule	value,	you	accept
all	the	rules	in	the	file	as	they	stand.	CoffeeS2	initially	places
caffeine-seeking	patrons	outside	the	shop.	Their	first	command
has	to	be	a	navigational	one.	Because	drinks	cannot	be	ordered
at	any	place	other	than	the	counter,	you	must	deactivate	the
rule.	From	InitSAPI()	after	LoadCmdFromResource():
hr	=	g_cpCmdGrammar->SetRuleIdState(VID_EspressoDrinks,	SPRS_INACTIVE);

hr	=	g_cpCmdGrammar->SetRuleIdState(VID_Navigation,	SPRS_ACTIVE);

The	second	line	is	included	for	completeness.	If	not	included,
the	state	would	still	be	activated	since	that	particular	top-level
rule	is	active.	In	the	same	vein,	you	could	use	the	CoffeeS1
method	and	activate	all	the	rules	at	one	time	and	then

selectively	change	rule	states.	CoffeeS2	has	only	two	rules	so
either	way	you	have	the	same	number	of	lines	of	code.

If	you	activate	a	rule,	you	can	also	deactivate	it.	Deactivation	is
set	in	the	CounterPaneProc()	procedure,	WM_INITPANE	message.
The	placement	of	the	call	will	be	discussed	in	a	moment.	When
the	time	comes,	the	rule	deactivates	with:

g_cpCmdGrammar->SetRuleIdState(VID_EspressoDrinks,	SPRS_INACTIVE);

In	order	to	choose	which	of	the	two	locations	(the	counter	or
office),	CoffeeS2	has	to	check	its	ExecuteCommand().	The
matched	grammar	rule	holds	this	information.	By	contrast,
CoffeeS1	only	wants	to	know	if	any	navigation	rule	was	invoked,
not	necessarily	which	one.	For	this	new	information,	you	can
determine	the	rule	almost	identically	to	the	way	in	which	the
case	statement	VID_EspressoDrinks	determines	drink	orders.
Given	an	IspPhrase	interface	with	ExecuteCommand(),	use
GetPhrase()	to	retrieve	the	phrase	returned	by	SAPI.

The	next	step	between	CoffeeS1	and	CoffeeS2	appears	to	be
different	but	fundamentally	it	is	the	same.	Look	at	the	same
value	structure	that	CoffeeS1	used	to	determine	the	rule	:
switch(pElements->pProperties->vValue.ulVal)

Remember	that	in	the	XML	grammar	file	(coffee.xml),	you	not
only	numerically	defined	each	drink	characteristic	individually,
but	you	also	defined	each	rule	and	sub-expression.	That	is,
although	“Decaffeinated”	is	defined	(VID_Decaf)	as	a	drink
characteristic.	You	also	have	the	OrderList	rule	(VID_OrderList)
allowing	you	to	use	multiple	characteristics	and	a	top-level
navigation	rule	(VID_Navigation).	This	convenience	allows	you	to
look	in	one	location	rather	than	drilling	down	into	structures.
The	difference	in	the	two	switch	statements	for
ExecuteCommand()	is	that	case	VID_EspressoDrinks	goes	one
step	further	and	moves	along	a	possible	link	list	where	case
VID_Navigation	needs	to	look	at	this	information	only	once.

Expanding	Events

Up	until	now	you	have	been	interested	in	only	one	event:
SPEI_RECOGNITION.	SAPI	currently	handles	more	than	30
different	kinds	of	events.	To	better	understand	the	process,
suppose	you	wanted	to	add	two	new	events	to	your	repertoire,	a
sound	start	(SPEI_SOUND_START)	and	a	sound	end
(SPEI_SOUND_END).	The	speech	recognition	engine	triggers
these	events	when	the	microphone	detects	or	stops	detecting
sound.	In	the	best	case	scenario,	it	is	your	voice	triggering	this
event.	However,	it	may	be	another	sound	such	as	a	phone,	a
cough,	or	any	one	of	a	myriad	of	cacophonous	noises.

It	is	the	event	SPEI_SOUND_START	that	initiates	SAPI’s
recognition	attempts.	Once	detected,	SAPI	will	start	processing
on	the	audio	stream.	It	will	listen	to	and	process	the	stream
concurrently.	That	is,	you	don’t	have	to	stop	speaking	before	it
attempts	to	recognize	your	voice.	After	SAPI	detects	a	sound
start,	it	begins	processing	and	sends	an	SPEI_PHRASE_START
event.	During	the	recognition	process,	interim	SPEI_HYPOTHESIS
events	indicate	attempts	are	being	made.	In	brief,	a	hypothesis
is	the	current	best	guess	about	what	you	have	spoken	up	to	that
moment.	Having	spoken	“Please	go	to	the	counter,”	SAPI	might
return	with	five	SPEI_HYPOTHESIS	events	(one	for	each	new
word	spoken	added)	along	with	a	phrase	structure	with	the
actual	words	in	it.

An	SPEI_SOUND_END	occurs	after	a	pre-determined	amount	of
time	passes	during	which	SAPI	detects	no	useful	sounds.	After
enough	silence,	SAPI	assumes	you	have	stopped,	or	paused
between	phrases	or	sentences.	SAPI	then	finishes	the
recognition	process	and	returns	the	final	decision	about	what
was	spoken.	Rather	than	sending	back	one	last
SPEI_HYPOTHESIS,	it	returns	one	(and	only	one)	of	three	values.

An	SPEI_RECOGNITION	event	indicates	a	word	match	(from	one
of	the	available	grammars)	and	with	a	sufficiently	high

confidence	value	to	consider	recognition	successful.	As	an
example,	in	the	CoffeeS0	application	you	might	have	said,
“Please	go	to	the	counter.”	This	matches	a	grammar	rule	and
SAPI	returns	SPEI_RECOGNITION.

An	SPEI_FALSERECOGNITION	indicates	that	you	probably	spoke
words	(as	opposed	to	a	sound	of	coughing)	but	SAPI	could	not
find	a	close	enough	match	to	either	existing	words	or	grammar
rules.	For	a	CoffeeS2	example,	you	could	have	said,	“please	go
to	the	veranda,”	or	have	mumbled	inaudibly	as	morning	coffee
drinkers	are	prone	to	do.	Since	the	former	case	does	not	match
an	existing	rule	and	the	latter	case	implies	no	word	could	be
recognized,	SAPI	returns	SPEI_FALSERECOGNITION.

An	SPEI_RECO_OTHER_CONTEXT	indicates	a	successful
recognition	was	made	but	that	another	other	application
currently	running	claims	it.	This	is	a	useful	event	if	there	are
multiple	shared	instances	running	at	the	same	time.	For
example,	if	you	had	said,	“please	go	to	the	veranda.”	CoffeeS2
does	not	have	a	rule	covering	this	but	suppose	another
application	did.	The	second	application,	even	if	not	currently	the
active	one,	receives	an	SPEI_RECOGNITION	event	and	CoffeeS2
gets	SPEI_RECO_OTHER_CONTEXT.	In	a	way	it	offers	closure	for
CoffeeS2.

Since	there	is	a	range	of	events	possible	and	not	all	of	them	are
relevant	to	all	applications	at	all	times,	SAPI	can	filter	them.
Using	ISpEventSource::SetInterest,	you	can	determine	which
events	you	want	to	see.	Those	events	not	included	in	the	call
will	not	get	generated.	By	default,	that	is	if	you	never	even	call
::SetInterest,	only	SPEI_RECOGNITION	events	are	generated.	To
allow	other	events,	you	would	have	to	modify	the	::SetInterest
call	and	explicitly	include	them	for	SAPI.	For	instance,	in
InitSAPI():
hr	=	g_cpRecoCtxt->SetInterest(

	 SPFEI(SPEI_RECOGNITION)|SPFEI(SPEI_SOUND_START)|SPFEI(SPEI_SOUND_END),

	 SPFEI(SPEI_RECOGNITION)|SPFEI(SPEI_SOUND_START)|SPFEI(SPEI_SOUND_END)

);

//Check	return	value

As	expected,	SPEI_SOUND_START	and	SPEI_SOUND_END	are
added.	Notice	if	::SetInterest	is	called,	you	have	to	explicitly	add
SPEI_RECOGNITION	along	with	any	other	events.	The	second
parameter	is	the	list	of	events	you	want	queued.	Events	can
happen	faster	than	even	the	processor	can	handle.	If	this	is	the
case,	rather	than	losing	the	events,	they	are	put	in	a	queue
where	they	wait	until	they	can	be	processed.	Most	of	the	time,
you	would	want	the	two	parameters	to	be	identical.	If	you	were
interested	in	an	event	in	the	first	place,	you	would	also	be
interested	in	doing	something	with	it.	However,	this	is	not
always	the	case	and	SAPI	lets	you	decide.

If	you	see	the	events,	you	will	also	want	to	handle	them.	You	can
add	the	two	events	to	the	recognition	event	loop	in
ProcessRecoEvent().

case	SPEI_SOUND_START:				

	 PostMessage(hWnd,	WM_STARTEDTALKING,	0,	0);			

	 break;

case	SPEI_SOUND_END:				

	 PostMessage(hWnd,	WM_STOPPEDTALKING,	0,	0);		

	 break;

These	post	messages	back	to	the	hWnd	window.	CoffeeS1	does
not	handle	these	messages	past	this	point	but	it	does
demonstrate	how	it	could	be	done.

Event	SPEI_FALSE_RECOGNITION

Moving	from	the	hypothetical	to	the	practical,	CoffeeS2
introduces	a	new	event,	SPEI_FALSE_RECOGNITION.	As
explained	earlier,	the	event	indicates	that	you	spoke	a	word	but
that	word	was	not	found	in	the	command	and	control	list.	If	you
simply	made	a	noise	or	if	the	microphone	picked	up	spurious
noises,	SPEI_FALSE_RECOGNITION	will	not	be	returned.	In	fact,	in
those	two	cases,	no	recognition	takes	place	because	SAPI	is

smart	enough	to	tell	the	difference	between	words	and	noises.
Only	sounds	close	enough	to	real	or	acceptable	words	will
trigger	an	SPEI_RECOGNITION	or	SPEI_FALSE_RECOGNITION
event.	At	least	that’s	the	intent.	It	is	the	responsibility	of	the
speech	recognition	engine	to	attempt	to	detect	the	difference.
However,	due	to	the	wide	latitude	of	sounds	possible	and
differences	among	vendors,	an	occasional
SPEI_FALSE_RECOGNITION	may	be	returned	instead.

In	addition	to	SPEI_FALSE_RECOGNITION,	CoffeeS2	also
introduces	a	time	element.	You	can	determine	if	the	patron	had
spoken	a	legitimate	command	and	also	if	that	command	was
spoken	over	a	predetermined	amount	of	time.	You	can	also
determine	if	the	utterance	was	intentional.	The	temperamental
barristas	that	CoffeeS2	employs	ignore	a	false	recognition	if
spoken	too	quickly.	Otherwise,	they	will	politely	ask	for	the	order
to	be	repeated.

First	you	need	to	set	the	interest.	In	CounterPaneProc(),	the
WM_INITPANE	message	actually	controls	this.
hr	=	g_cpRecoCtxt->SetInterest(

	 SPFEI(SPEI_RECOGNITION)|SPFEI(SPEI_FALSE_RECOGNITION),

	 SPFEI(SPEI_RECOGNITION)|SPFEI(SPEI_FALSE_RECOGNITION)

);

Notice	that	the	interests	are	chained	together	with	bitwise
(rather	than	logical)	OR	statements.	This	way	you	can	add
multiple	events	at	the	same	time.	However,	the	method	is	in	an
odd	place	located	in	CounterPaneProc()	instead	of	the
initialization	routine	of	InitSAPI().	Remember,	you	can	order
drinks	only	in	the	counter	area.	Therefore,	you	want	this	event
available	only	after	the	patron	has	entered	the	counter	area.
Although	there	are	several	ways	to	approach	the	programming
logic	of	this	problem,	CoffeeS2	sets	the	events	as	the	patron
enters	different	areas.	In	contrast,	the	WM_GOTOOFFICE	of	the
same	CounterPaneProc()	routine	sets	the	interests	again.
hr	=	g_cpRecoCtxt->SetInterest(SPFEI(SPEI_RECOGNITION),SPFEI(SPEI_RECOGNITION));

The	same	logic	is	used	for	rule	activation	and	deactivation
described	above.

When	you	set	the	interests	at	the	time	of	entry	to	a	room,	you
can	now	have	one	message	handling	routine	for	all	speech
events.	This	is	the	same	process	as	in	the	previous	Coffee
examples,	that	is,	ProcessRecoEvent()	handles	the	messages	at
that	point,	and	each	event	is	assigned	to	an	action	in	the
subsequent	switch	statement.

Use	HandleFalseReco()	in	the	case	of	SPEI_FALSE_RECOGNITION.
You	may	use	IspRecoResult::GetResultTimes	to	determine	the
time	element.	This	passes	back	an	SPRECORESULTTIMES
structure	containing	different	timing	information	for	the	event.
Specifically,	dwTickCount	keeps	the	time	from	the	start	of	the
event.	Subtracting	this	from	the	system’s	time	yields	the
duration	of	the	recognition.	If	the	false	recognition	took	longer
than	the	arbitrarily	determined	value	of	MIN_ORDER_INTERVAL,
the	patron	is	asked	to	repeat	the	request.

Microsoft	Speech	SDK	SAPI	5.1

Chapter	5

CoffeeS3
Introduction
TTS!	You’re	finally	going	to	use	text-to-speech.	Up	until	now,	the
Coffee	examples	have	limited	themselves	to	simply	accepting
speech.	You	could	talk	to	your	CoffeeS3	minions	and	expect	to
get	drinks.	Now	you	can	add	the	second	of	the	two	major
components	of	SAPI	–	that	of	text-to-speech.

With	all	the	excitement	from	the	first	two	examples,	CoffeeS3
slows	the	pace	down	for	the	moment.	You	will	be	pleasantly
surprised	at	how	easy	it	is	to	add	this	feature.	The	design	stage
placed	emphasis	on	making	things	simple.	In	contrast,	SAPI	4
required	200	lines	to	make	a	so-called	simple	“hello	world”
speak.	SAPI	5	requires	as	few	as	two.	This	remarkable	reduction
in	code	was	possible	due	to	consolidation	of	overhead.	SAPI
marshals	the	required	elements	for	you	so	your	programs	have
less	material	to	access	directly.	Also,	SAPI	uses	intelligent
defaults	whenever	possible.	You	may	set	many	of	the	elements
using	existing	defaults.	The	Speech	Recognition	tab	in	Speech
properties	accesses	most	of	these	elements,	such	as	voice	and
speaking	rate.	Therefore,	at	the	simplest,	it	is	very	simple.
Naturally,	you	may	override	any	of	these	assumptions	or
defaults.	However,	for	CoffeeS3,	you	will	start	with	simple	tasks.
Don’t	worry;	additional	features	will	be	addressed	in	the	next
few	chapters.

The	following	topic	will	be	discussed

·									Text-to-speech:	Initialization,	implementation	and	speaking

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

text

Initialization

The	initialization	routine	is	almost	anticlimactic.	It	is	essentially
two	lines.	This	is	very	similar	to	setting	up	a	speech	recognition
(SR)	engine	as	you	did	in	CoffeeS0:	declare	the	interface	and
create	the	instance	from	the	class	ID.
CComPtr<ISpVoice>	cpVoice;

hr	=	cpVoice.CoCreateInstance(CLSID_SpVoice);

To	actually	speak	something	takes	one	more	line	of	code.

hr	=	cpVoice->Speak(L"	Hello,	world	",	0,	NULL);

Any	application	may	initialize	TTS	this	way	and	this	is	often	the
preferred	method.	However,	CoffeeS3	takes	a	slightly	different
approach.	SAPI	realizes	that	because	SR	and	TTS	are	commonly
used	together,	the	initialization	routine	takes	a	short	cut.
Basically,	the	SR	engine	provides	this	capability	for	you.	The
following	is	in	CoffeeS3’s	InitSAPI():

CComPtr<IspVoice>	g_cpVoice;

hr	=	g_cpRecoCtxt->GetVoice(&g_cpVoice);

Although	it	takes	the	same	number	of	lines	of	code,	TTS	is
available	through	the	IspRecoContext	interface.	In	fact,	this
makes	the	same	call	to	CoCreateInstance(CLSID_SpVoice).	The
difference	is	that	this	method	automatically	provides	the	ability
to	interrupt	TTS	whenever	you	start	speaking	again.	This	is
appropriately	known	as	“barge	in.”	Without	this	capability,	the
TTS	voice	would	continue	to	speak	in	the	background	even	if
you	were	talking.	This	might	cause	audio	feedback.	Of	course,
you	can	still	write	your	own	TTS	interrupt	routine,	but	the	barge
in	service	is	provided	as	a	convenience.

Defaults	are	usually	found	in	Speech	properties.	That	is,	when
SAPI	is	properly	installed,	Speech	properties	will	have	defaults

for	all	parameters	and	will	use	those	defaults.	These	defaults
include	the	voice,	speaking	rate,	and	the	language	used.	This	is
how	TTS	can	get	away	with	using	only	two	lines	of	code.
However,	it	is	possible	that	the	defaults	may	not	be	available	or
valid,	and	the	application	must	always	check	the	return	value.

That’s	about	it	for	TTS.	You	have	seen	how	to	initiate	a	voice
and	how	to	speak	something.	The	rest	of	the	code	implements
these	instances.	For	example,	CoffeeS3	talks	on	five	occasions
and	you	need	::Speak	at	those	times.

Microsoft	Speech	SDK	SAPI	5.1

Chapter	6

CoffeeS4

Introduction
With	the	completion	of	the	first	four	Coffee	samples,	you
covered	the	basics.	You	were	shown	how	to	place	orders	by
speaking	and	you	were	able	to	hear	the	request	spoken	back.	In
both	cases,	SAPI	used	its	defaults.	Specifically,	the	barrista
talked	back	to	you	with	the	voice	set	using	Speech	properties	in
Control	Panel.	In	truth,	SAPI	usually	offers	much	more	than	a
single	voice.	Other	voices	may	be	available	as	well	as	different
languages,	engines,	or	other	resources.	Many	of	these	can	be
changed	either	dynamically	(always	through	Speech	properties
and	sometimes	by	the	application	itself)	and	programmatically
(through	the	application’s	code).

CoffeeS4	introduces	the	fundamentals	of	resource	management.
As	in	CoffeeS3,	you	can	enter	the	manager’s	office.	In	the	next
two	tutorials,	you	are	going	to	manage	employees.	CoffeeS4
displays	the	voices	available.	Like	any	good	coffeehouse	help,
you	will	not	be	able	to	manage	them	too	much,	but	you	will	able
to	hear	one	of	them	speak	in	the	currently	selected	voice.
CoffeeS5	lets	you	change	the	voice.	In	doing	this	simple	task,
you	prepare	for	bigger	things.

The	following	topic	will	be	discussed

·									Resources

·									Managing	Resources

Resources

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

To	provide	the	robust	range	of	options,	such	as	many	different
voices,	recognizers,	languages,	and	user	interface	dialog	boxes,
SAPI	needs	to	store	this	information	for	later	use.	This	stored
information	is	collectively	referred	as	resources.	Resource
management,	therefore,	is	the	ability	to	query	SAPI	for	the
availability	of	resources,	gather	information	about	the	resource,
initiate,	instantiate,	or	remove	resources	as	needed.	CoffeeS4
finds	and	displays	voices	stored	as	resources,	and	determines
which	one	is	active.	Using	the	same	techniques,	you	can	filter
the	voices	for	language,	gender,	age,	or	some	other	criterion
and	display	only	those.

SAPI	relies	on	two	closely	associated	terms	and	concepts:
objects	and	tokens.	COM	and	object	oriented	programmers	will
recognize	objects.	They	are	the	functional	implementation	of	a
class.	That	is,	an	implemented	object	will	have	memory
allocated	to	it	and	have	its	members	and	methods	initialized.
Once	implemented	or	instantiated,	the	object	may	be	used	by
the	application.

However,	SAPI	only	instantiates	objects	when	they	are	needed.
It	is	a	waste	of	the	computer’s	memory	to	have	unneeded
objects	allocated.	Therefore,	SAPI	stores	the	information	needed
to	create	those	objects	including	the	voice’s	name,	language,
and	GUID.	This	stored	information	is	referred	to	as	a	token.	A
token	is	the	textual	representation	of	the	parameters	needed	to
fully	implement	that	resource.	Stated	another	way,	tokens	are
the	parameters	for	the	object.	SAPI	needs	only	to	read	a	token
at	the	right	time	and	instantiate	an	object	based	on	that
information.

In	addition,	there	can	be	many	tokens	and	SAPI	organizes	them
into	related	groups	called	categories.	Currently	SAPI	maintains
about	eight	general	categories.	Of	particular	interest	to
CoffeeS4	is	SPCAT_VOICES.	This	category	contains	all	the	voice-
related	tokens.

Each	type	of	token	is	different	and	is	documented	separately.

That	is,	a	voice	token	will	have	different	values	and	key	entries
from	a	recognizer	token	because	each	has	different	functions.
Tokens	of	the	same	type	(such	as	voice	tokens)	will	contain	the
same	required	entries	(such	as	language,	gender,	age)	although
vendors	may	provide	additional	and	non-standard	information
for	their	resource.

The	following	is	a	sample	representation	of	a	voice	token.	Not	all
entries	are	listed.

Token ValueName Sample	Value Comments
MSMary Required

entry.	This	is
the	token
name.

(Default) MS	Mary Required
entry.	This	is
the	language
independent
name.

409 MS	Mary There	may	be
multiple
entries;	one
for	each
language	the
voice
supports.	At
least	one
entry	is
required.	The
numeric	value
is	the
standard
Windows
language
code	and	is	in
hexadecimal

809 MS	Mari

with	no
leading
notation	such
as	“0x.”

CLSID {65DBDDEF-
0725-11D3-
B50C-
00C04F797396}

Required
entry.	This	is
the	class	ID
(CLSID)	for
the	object.

MSMary/Attributes Required
entry.
Additional
information	is
available
through	the
attributes
although	not
all	attributes
are	required.

Language 409;809 Required.	This
is	the
language	the
voice
supports.

Age Adult Required.	This
is	the	age	for
the	voice.

Gender Female Required.	This
is	the	gender
for	the	voice.

	

Methods

Resources	alone	would	be	only	marginally	useful	if	you	could	not
work	with	them.	Often	you	will	need	to	know	what	resources	are

available.	CoffeeS4,	for	instance,	searches	for	all	the	voices	it
can	use.	Once	found,	you	may	need	to	use	that	resource	either
to	instantiate	an	object	or	to	know	more	about	the	resource.
There	is	a	rich	set	of	interfaces	and	helper	functions	available	to
do	just	that.	Many	of	these	interfaces	are	found	in	the	Resource
Manager	set	in	Application	Level	Interfaces	of	the	reference	API
document.	In	the	same	manner,	the	helper	functions	provide
convenient	ways	to	perform	a	task	without	having	to	know	all
the	underlying	details	at	this	point.

For	instance,	the	heart	of	the	matter	for	CoffeeS4	is	getting	a
list	of	all	the	available	voices.	This	task	can	be	done	by	one
helper	function	SpEnumTokens.	At	the	simplest,	the	call	would
look	like	this:

//Pointer	to	token	enumerator

CComPtr<IEnumSpObjectTokens>	cpEnum;

//	Get	a	token	enumerator	for	tts	voices	available

HRESULT	hr	=	SpEnumTokens(SPCAT_VOICES,	NULL,	NULL,	&cpEnum);

//	check	hr	result

SPCAT_VOICES	restricts	the	search	to	the	voice	category.	You
can	filter	the	resources	using	the	middle	two	parameters	(both
of	which	are	set	to	NULL.	In	this	case,	you	want	all	voice
resources	so	no	criteria	were	set.	Just	as	easily,	you	could	have
searched	for	female	voices	or	narrowed	it	down	even	more	with
just	the	adult,	English-speaking	female	voices.

cpEnum	is	an	interface	pointer	to	IEnumSpObjectTokens.
SpEnumTokens	does	all	the	initialization	work	and	returns	a
complete	list	for	you.	In	this	case,	the	list	is	a	complete	set	of
tokens	in	SPCAT_VOICES.	You	can	think	of	IEnumSpObjectTokens
as	a	link	list	with	built-in	support	functions.	Using
IenumSpObjectTokens,	you	can	find	the	next	item	in	the	list,
skip	several	items,	make	a	copy	of	the	list,	or	go	back	to	the
beginning	of	it,	among	other	things.	Although	some	of	the
methods	will	be	described	here,	see	the	reference	API	section
for	additional	methods	and	details.

You	are	on	your	way	to	finding	and	listing	all	voices.	CoffeeS4
uses	the	following	algorithm	in	the	code:

Finds	the	voices.
Searches	the	list	one	by	one	and	retrieves	the	name	of	each

voice.
Stores	the	display	names	of	the	voices.	CoffeeS4	needs	this

indexed	array	to	refresh	the	screen	during	updates.
Makes	one	extra	step	and	displays	the	current	voice	in	red.

Like	the	display	name,	CoffeeS4	stores	the	token	name	in	an
indexed	array	for	later	use.	In	both	cases,	storing	the	names	is
not	a	requirement,	rather	a	convenience.	For	screen	updates,
CoffeeS4	could	also	poll	resources	again	but	that	seems	like	a
waste	of	time.	For	both	steps	3	and	4,	this	involves	looping
through	the	list,	extracting	the	appropriate	name	and	assigning
it	to	the	array.

All	the	work	is	done	in	the	CoffeeS4
ManageEmployeesPaneProc()	procedure	and	specifically	the
WM_INITPANE	case.	This	initialization	is	logically	placed	here
because	the	information	must	be	present	at	the	time	the
window	is	rendered.

In	one	sense,	the	hard	part	is	done	for	you.	Finding	the	available
voices	is	accomplished	in	the	one-line	SpEnumTokens	that
passes	back	a	list	of	all	the	voices	and	even	provides	the	means
to	navigate	that	list.	It	also	provides	a	method	to	determine	how
many	items	were	found	using	::GetCount.

static	ULONG	ulNumTokens;

hr	=	cpEnum->GetCount(&ulNumTokens);

Knowing	the	total	number	of	items,	CoffeeS4	now	allocates	the
two	indexed	arrays.
static	CSpDynamicString*	

ppcDesciptionString;

ppcDesciptionString	=	new	CSpDynamicString	[ulNumTokens];

//Check	hr	result

static	WCHAR**		ppszTokenIds;

ppszTokenIds	=	new	WCHAR*	[ulNumTokens];

//Check	hr	result

ZeroMemory(ppszTokenIds,	ulNumTokens*sizeof(WCHAR*));

CspDynamicString	is	a	helper	function	for	handling	string	arrays
It	is	a	string	class	similar	to	other	object	oriented	string	classes.
The	subsequent	allocation	and	release	of	each	of	its	elements	is
automatic.	You	do	not	have	to	remember	to	do	it	manually.	On
the	other	hand,	ppszTokenIds	is	simpler	array	of	pointers	for
storing	GUIDs	of	the	token.	CoffeeS4	manually	allocates	it
because	it	is	needed	throughout	the	application.	As	a	result,	it
must	also	be	manually	freed	when	no	longer	required.	This	is
done	in	ManageEmployeesPaneCleanup().	The	ZeroMemory()
confirms	all	the	values	are	initialized	to	zero.	No	valid	GUID	will
be	zero.

The	next	step	of	looping	through	the	array	is	equally	easy.
CoffeeS4	navigates	the	list	item	by	item	to	find	the	voice’s
name.	As	mentioned	earlier,	IEnumSpObjectTokens	has	such	a
method	named	::Next.

IspObjectToken		*pToken	=	NULL

while	(cpEnum->Next(1,	&pToken,	NULL)	==	S_OK)

{

	 //Code	here

}

The	list	represented	by	cpEnum	is	traversed	one	item	at	a	time
as	the	first	parameter	indicates.	The	information	is	passed	back
in	pToken,	which	is	an	interface	to	IspObjectToken.	You	might
correctly	guess	that	you	will	be	looking	at	this	interface	in	a
moment.	The	last	parameter	is	the	number	of	items	actually
read.	Since	it	is	possible	to	read	more	than	one	at	a	time,	it	is
also	possible	that	not	many	items	are	left	to	read.	If	that	were
the	case,	it	would	return	the	number	of	items	it	could	read.	If
this	parameter	simply	cannot	read	any	more	items,	it	returns	an
error.	In	this	case,	CoffeeS4	stops	looping	through	the	“while”

statement.

As	CoffeeS4	steps	through	the	list	one	at	a	time,	it	retrieves	the
names	of	the	resources.	There	are	two	names	for	the	particular
token:	the	token	name	(also	called	the	token	ID)	and	the	display
name.	The	two	could	be	the	same	but	not	necessarily.	Also	the
display	name	can	vary	by	language.	It	is	the	display	name
CoffeeS4	shows	in	the	management	window.	Again,	a	helper
function	is	available	to	simplify	this	task.	SpGetDescription
retrieves	the	display	name	and	assumes	the	current	language.
In	the	case	of	the	sample	token,	that	name	would	be
MSMary/409	value	of	“MS	Mary.”

At	the	same	time,	the	token	ID	is	also	retrieved.	This	token	Id	is
needed	since	CoffeeS4	also	determines	which	voice	is	currently
in	use	and	it	will	need	it	shortly.	No	helper	function	is	provided,
as	this	is	a	straightforward	call	to	get	token	ID.	In	the	sample
token,	this	would	be	“MSMary.”	In	both	cases,	the	information	is
stored	in	indexed	arrays	for	later	use.
while	(cpEnum->Next(1,	&pToken,	NULL)	==	S_OK)

{

	 //	Get	a	string	which	describes	the	token,	in	our	case,	the	voice	name	

	 hr	=	SpGetDescription(pToken,	&ppcDesciptionString[ulIndex]);

	 //	Get	the	token	id,	for	a	low	overhead	way	to	retrieve	the	token	later		

	 //	without	holding	on	to	the	object	itself

	 hr	=	pToken->GetId(&ppszTokenIds[ulIndex]);

	 ulIndex++;			

	

	 //	Release	the	token	itself		

	 pToken->Release();		

	 pToken	=	NULL;

}

When	no	longer	needed,	the	token	must	be	explicitly	released.
CoffeeS4	resets	the	pointer	to	NULL	and	is	ready	for	the	next
loop.	With	all	the	information	stored,	the	last	task	is	to
determine	which	is	the	currently	active	voice.	This	too,	is	a
simple	task.	CoffeeS4	loops	through	the	token	ID	array
(ppszTokenIds)	and	compares	each	location	of	the	array	with	the

system	voice.	If	there	is	a	match,	it	breaks	out	of	the	loop	and
stores	the	index	position	in	ulCurToken.
//	Get	the	token	representing	the	current	voice

HRESULT	hr	=	g_cpVoice->GetVoice(&pToken);

if	(SUCCEEDED(hr))

{				

	 //	Get	the	current	token	ID,	and	compare	it	against	others	to	figure	out

	 //	which	desciption	string	is	the	one	currently	selected.			

	 hr	=	pToken->GetId(&pszCurTokenId);			

	 if	(SUCCEEDED(hr))				

	 {

	 	 ulIndex	=	0;

	 	 while	(ulIndex	<	ulNumTokens	&&	0	!=	_wcsicmp(pszCurTokenId,	ppszTokenIds[ulIndex])

	 	 {	

		 	 	 ulIndex++;									

		 	 }

	 	 //	We	found	it,	so	set	the	current	index	to	that	of	the	current	token								

	 	 if	(ulIndex	<	ulNumTokens)											

	 	 {

	 	 	 ulCurToken	=	ulIndex;

	 	 }

								

	 	 CoTaskMemFree(pszCurTokenId);				

	 }

	 pToken->Release();

}

The	key	to	this	is	the	::GetVoice	call.	This	passes	back	the
current	voice.	Compare	this	value	against	the	current	voice.	The
current	voice,	stored	in	UlCurToken,	is	used	in
ManageEmployeesPanePaint()	to	highlight	the	active	voice	in	a
different	color.

The	rest	of	the	codes	for	CoffeeS4	are	relatively	simple	and	are
basically	modifications	of	previously	discussed	techniques.	Two
new	rules	have	been	added:	Please	Manage	the	Employees	and
Hear	Them	Speak.	The	former	displays	the	list	of	voices	once
you	are	in	the	office	and	the	latter	speaks	the	current	voice.
Arrogant	perhaps,	but	the	employee	states	confidently	“I	will	be
the	best	employee	you've	ever	had.	Let	me	work.”	In	order	to
hear	those	words	every	employer	loves,	a	new	case	must	be

added	to	ProcessRecoEvent(),	that	of	VID_Manage.

The	rest	of	the	new	code	essentially	handles	events	to	the
screen.	OfficePaneProc(),	ManageEmployeesPaneProc()	and
ManageEmployeesPaneCleanup()	do	the	rest	of	the	work.

Microsoft	Speech	SDK	SAPI	5.1

Chapter	7

CoffeeS5
Introduction
The	concepts	of	resource	management	were	introduced	in
CoffeeS4.	There,	the	sources	of	information	that	SAPI	needed
(such	as	voices	and	recognizers)	were	stored	as	tokens	waiting
to	be	used.	When	needed,	the	tokens	were	read	and	used	as
parameters	to	create	objects.	In	turn,	the	objects	were	the
actual	implementation	of	those	resources	in	working	form.	As
objects,	they	have	methods,	validated	data	and	communication
paths	to	other	parts	of	the	speech	system.

CoffeeS4	displayed	the	names	of	the	available	voices.	It	could
even	speak	something	in	the	current	voice.	However,	as	far	as
managing	employees,	there	was	little	else	it	could	do.	CoffeeS5
addresses	managing	employees	a	little	bit	further.	In	addition	to
displaying	voice	names,	you	can	pick	a	different	voice	for	each
employee.	You	can	also	choose	the	type	of	voice	you	want
displayed	and	spoken.	You	can	choose	feminine,	masculine,	or
all	voices.

The	following	topic	will	be	discussed

·									Dynamic	Grammars

Dynamic	Grammars

Up	until	now	Coffee	has	only	worked	with	static	grammars.	That
is,	for	command	and	control	issues,	the	word	list	has	been	both
explicit	and	static.	Explicit	in	that	a	list	of	exact	words	has	been

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

defined	and	therefore	no	words	outside	of	this	list	are
recognized.	For	instance,	the	grammar	rule	VID_DrinkType	lists
five	types	of	drinks.	Latte	is	included	and	may	be	ordered,	but
cola	is	not	included	and	therefore	cannot	be	ordered.	Any	order
including	cola	would	not	be	recognized.	Static	means	this	list	is
defined	ahead	of	time	and	is	not	subject	to	change.	Although
the	.xml	file	may	be	edited	independently	of	the	application,	it
may	not	be	changed	during	execution.

As	the	name	implies,	a	dynamic	grammar	is	the	opposite	of	a
static	one.	First,	words	may	be	added	and	deleted	during	run
time	and	the	list	does	not	need	to	be	predetermined.	This	gives
applications	much	greater	latitude.	CoffeeS5	demonstrates	this
by	dynamically	adding	voices.	Because	the	list	of	available
voices	may	change	not	only	from	one	computer	to	another,	but
also	by	user	profile,	there	is	no	way	to	predetermine	the
available	voices.	CoffeeS4	started	the	process	by	polling	the
system	for	voice	tokens--	the	definitive	list	of	available	voices.
CoffeeS5	expands	now	to	construct	and	use	a	grammar.

The	logic	to	initializing	the	grammar	is	straightforward	although
there	are	a	few	subtleties.	First,	the	rule	is	retrieved	or	created.
CoffeeS5	creates	a	new	rule	but	other	applications	could	modify
existing	ones.	Second,	unwanted	words	are	removed.	Since
CoffeeS5	adds	all	the	words	itself,	for	simplicity,	the	entire
existing	rule	is	erased.	Again,	another	application	could
examine	each	word	first	before	removing	it.	Regardless,	SAPI
needs	to	know	explicitly	to	make	the	changes.	As	a	last	step,
the	new	commands	are	added	and	the	changes	committed.

The	magic	happens	in	the	ManageEmployeesPaneProc()
WM_InitPane	case.	Specifically,	because	of	the	::GetRule	call.
SPSTATEHANDLE		hDynamicRuleHandle;

hr	=	g_cpCmdGrammar->GetRule(NULL,	DYN_TTSVOICERULE,	SPRAF_TopLevel	|	SPRAF_Active	|	SPRAF_Dynamic,	TRUE,	&hDynamicRuleHandle);

Words	may	be	added	and	deleted	freely	now.	That	is,	up	to	the
point	of	removing	all	words	from	a	grammar.	Conversely,	and	in

this	case,	a	completely	empty	grammar	may	be	used	and	words
added	in;	there	is	nothing	wrong	with	an	empty	grammar.	As	an
example,	CoffeeS5	can	actually	add	a	cola	drink	to	the	order	list
or	remove	latte	if	the	milk	runs	out.	However,	CoffeeS5	starts
the	rule	from	scratch.	::GetRule	not	only	retrieves	existing	rules
but	also	creates	new	ones.	The	fCreateIfNotExist	member	(TRUE
in	this	case)	creates	the	rule.

The	first	two	parameters	are	often	mutually	exclusive.	The	first
one,	requests	a	rule	by	name	and	the	second	one	searches	by
ID.	In	practice,	knowing	either	the	name	or	the	ID	is	enough	and
you	can	leave	the	unneeded	one	NULL	or	zero	respectively.
Since	you	are	creating	a	new	rule,	it	will	not	have	an	ID	to
search	for	(hence	the	NULL	value)	and	you	must	specify	the
name	(DYN_TTSVOICERULE).	The	attributes	may	also	be	set
here.	Some	attributes	may	(and	will	be)	set	later.	This	includes
activating	and	deactivating	grammars.	Other	attributes	must	be
set	at	the	time	of	creation.	The	rule	is	being	made	to	be	top-
level,	dynamic	and	active.	The	values	may	be	strung	together
with	logical	operators	to	get	the	exact	nuance	you	want.	And
last,	a	handle		(hDynamicRuleHandle)	is	passed	back.

It	is	possible	that	there	was	already	a	rule	existing	for
DYN_TTSVOICERULE.	It	might	not	have	been	properly	destroyed
before	or	you	just	forgot	to	remove	it.	::ClearRule	removes	the
state	information	for	the	rule.	In	essence,	all	the	words	are
removed	and	it	effectively	guarantees	a	clean	start.
//	Clear	the	rule	first

hr	=	g_cpCmdGrammar->ClearRule(hDynamicRuleHandle);

//	Commit	the	changes

hr	=	g_cpCmdGrammar->Commit(0);

After	making	any	changes	to	the	grammar,	SAPI	must	be
notified	explicitly.	::Commit	submits	the	changes	to	SAPI	and
thereafter	the	grammar	is	considered	in	the	new	state,	with	the
new	words.	The	parameter	must	be	set	to	zero	or	it	returns	an
error.	In	the	example	above,	CoffeeS5	simply	clears	out	the

words	and	commits	the	changes.	The	grammar	is	now	in	a
pristine	state.

Words	are	added	to	the	grammar	using	::AddWordTransition.

Microsoft	Speech	SDK	SAPI	5.1

Chapter	8

CoffeeS6
Introduction
In	CoffeeS6,	the	last	of	the	tutorial	chapters,	no	new
programming	code	is	introduced,	per	se.	Rather,	CoffeeS6
makes	a	variation	on	an	existing	theme.	The	past	several	Coffee
tutorials	demonstrated	working	with	context-free	grammars,
also	called	grammar	rules.	In	short,	they	were	predetermined
lists	of	words	that	needed	to	be	matched	exactly.	Even	dynamic
grammars,	though	more	flexible,	still	had	to	match	exact	words
once	the	word	list	was	determined.	For	all	the	promise	of	speech
recognition,	using	the	models	presented	so	far,	you	have	not
been	able	to	dictate	or	use	free-formed	speech.	With	CoffeeS6,
you	can	use	unrestrained	speech	in	your	applications.	It	uses
the	simple	case	of	renaming	the	coffee	shop	to	anything	you
want.

The	following	topics	will	be	discussed:

Embedded	Dictation
Grammar	Modifiers

Also	see	Grammar	Format	Tags:	Special	Characters	for	more
about	grammar	modifiers.

Embedded	Dictation

As	mentioned	in	the	introduction,	it	would	be	limiting	if	you
could	not	speak	anything;	that	is,	dictate	to	your	application.
Remember,	the	Coffee	samples	showcase	a	command	and

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

control	model.	As	users,	you	are	ordering	the	application	to
perform	the	following:	get	coffee,	hire	and	fire	employees,	and
make	them	talk	to	you.	There	is	little	room	to	get	chatty	with
the	other	,	customers	or	employees.	In	fact,	the	Dictation	model
is	better	covered	in	both	width	and	depth	in	the	SDK	sample
applications	Dictation	Pad	and	Simple	Dictation.	By	the	same
token,	CoffeeS6	would	be	remiss	in	omitting	this	entirely.	For
that	reason,	the	coffee	shop	manager	now	allows	the	user	to
change	the	name	of	the	shop.

For	instance,	go	to	office	and	give	the	order	“manage	store
name.”	A	new	screen	displays	and	if	you	follow	the	instructions,
you	can	say,	“Rename	the	coffee	shop	to”	and	provide	any
name	you	want.	CoffeeS6	will	echo	back	the	new	name	as
“Welcome	to	the	X	coffee	shop,”	X,	of	course,	being	the
moniker.	The	name	will	even	display	in	all	in	the	subsequent
windows.

This	is	called	embedded	dictation	because	it	combines	the	two
forms.	CoffeeS6	is	still	in	command	and	control	mode	and	using
the	same	grammar	rules	as	before.	The	advantages	are	that
Coffee	users	can	easily	expand	their	drink	offerings	with	only	a
minor	change	to	the	grammar	file.	Embedded	dictation	is	not
dynamic	grammar.	A	rule	is	not	created	right	before	use	and
seeded	with	the	words	you	want.	In	fact,	embedded	dictation
would	not	handle	this	case	appropriately.	In	renaming	the	coffee
shop,	you	as	the	programmer,	will	have	no	idea	what	the	user
may	choose	for	a	name.	The	only	real	limitation	is	if	the	new
name	is	in	the	dictation	or	not.	Even	this	can	be	worked	around.

Keep	in	mind,	embedded	dictation	does	not	create	new	rules.
CoffeeS6	has	explicit	support	for	renaming	the	store	because	a
rule	provides	for	that	case.	Instead,	embedded	dictation	lessens
restrictions	on	existing	grammars,	whether	they	are	static	or
dynamic.	You	need	not	even	change	the	code.	Your	application
might	want	to	handle	the	words	elements	differently,	but	that
change	is	not	really	SAPI-related.

Grammar	Modifiers

Programmatically,	there	is	no	new	code	to	support	modification.
CoffeeS6	simply	modifies	existing	grammar	rules.	Technically,
these	modifiers	are	not	XML	tags	in	the	same	way	that	<P>	and
<l>	are,	for	example.	They	appear	inside	the	rule	and	are
associates	to	other	text	or	the	modifier	appear	as	the	element
itself.	Each	is	explained	below.

Wildcard:	…

The	ellipsis	is	a	wildcard	symbol	indicating	that	any	word	or
words	may	be	accepted	in	this	position.	Informally	it	is	also
known	as	a	garbage	collector	because	it	is	used	to	accept	words
that	the	application	may	not	explicitly	care	about.	In	this	role,
four	things	happen.	First,	the	user	may	say	anything,	including	a
series	of	words.	As	expected,	the	engine	attempts	to	recognize
the	words,	although	not	much	is	done	with	the	words	afterward.
Coffee	needs	to	know	that	a	word	was	actually	spoken	and	that
the	user	was	not	just	coughing	or	sneezing.	Second,	the	rule	will
still	be	matched	and	activated.	If	the	rule	uses	several	parts
(such	as	VID_EspressoDrinks),	the	wildcard	words	successfully
match	the	rule	requirements.	Third,	the	parsed	phrase	returns
only	one	element	for	the	ellipsis	regardless	of	the	number	of
words	actually	spoken.	For	the	most	part,	Coffee’s	only	interest
is	that	legitimate	words	were	spoken	but	not	what	the	words
actually	were.	And	fourth,	the	element	in	the	returned	phrase
itself	will	be	the	ellipsis	rather	than	any	useful	word.	Again,
since	Coffee	is	interested	only	that	something	was	spoken,	it
makes	sense	not	to	return	the	actual	word.	If	you	are	interested
in	the	word,	then	the	wildcard	marker	is	not	the	right	one	for	the
rule;	see	Dictation	below.	In	short,	it	really	is	a	wildcard	because
any	word	may	be	used	and	still	activate	the	rule.

The	Coffee.xml	(for	CoffeeS6)	snippet	uses	it	in	the	following
role	in	VID_EspressoDrinks:

<L>	

	 <P>May	I	have</P>

	 <P>Can	I	have</P>

	 <P>Can	I	get</P>

	 <P>Please	get	me</P>

	 <P>Get	me</P>

	 <P>I'd	like</P>

	 <P>I	would	like</P>

	 <P>...</P>

</L>

In	previous	Coffee	examples,	the	wording	of	the	request	was
limited	to	one	of	the	first	seven	requests.	That	is,	the	user	had
to	begin	by	saying,	“please	get	me,”	or	“can	I	get,”	a	drink.
Because	of	the	wildcard,	the	CoffeeS6	user	may	say	almost
anything	and	still	get	the	drink.	“Gimme	a	mocha,”	will	work
(mimicking	real	life	to	boot).	Even	“gee-I-dunno-I-suppose-I’d-
like	a	mocha”	will	also	work	provided	the	customer	slurs	the
words	together	enough.	Remember,	the	rules	are	phrased-
based	and	a	sufficiently	long	pause	between	words	never
activates	rules	in	the	same	way	that	the	indecisive	customer	will
never	gets	drinks	by	saying	“may	(pause)	I	(pause)	have
(pause)	a	(pause)	mocha.”

So	why	even	have	the	other	phrases	if	the	ellipsis	is	present?
There	are	some	subtleties	to	that	answer.	First,	astute
programmers	may	notice	that	they	do	not	care	what	is	spoken
here.	In	the	code,	nothing	is	ever	actually	dependent	on	the	fact
that	the	customer	said	“please”	or	not.	Yet,	a	rule	consisting	of
only	“coffee”	may	fire	inappropriately.	For	example,	a	customer
simply	saying,	“coffee	is	good,”	might	fire	a	too-simple	rule.	In
this	case,	some	sort	of	introductory	clause	is	needed.	Second,
the	additional	words	speed	up	the	recognition	process.	The
engine	is	much	more	likely	to	recognize	“please”	or	“may”
because	it	is	described	exactly	in	the	rule.	It	also	increases	the
confidence	rating	for	the	rule	overall.	Though	both	of	the
following	phrases	would	activate	the	drink	rule,	“please	get	me
a	mocha,”	returns	a	much	higher	confidence	rating	than	would
“aardvark	a	mocha.”

Dictation:	*

The	asterisk	is	a	dictation	indictor.	Like	the	wildcard	ellipsis,	any
word	(or	possibly	words,	see	next	entry)	will	validate	the	rule.	In
the	same	manner,	the	engine	will	attempt	to	recognize	the
word.	The	difference	is	that	the	actual	word	is	returned	back	to
the	user	in	the	phrase	element.	This	is	the	key	to	renaming	the
coffee	store.

The	new	rule	VID_Rename	is	defined:

<RULE	ID="VID_Rename"	TOPLEVEL="ACTIVE">

	 <P	PROPNAME="Named	SAPI	Coffee	Shop	to">	Rename	the	coffee	shop	to	*+	</P>

</RULE>

Ignoring	the	plus	sign	for	the	moment,	VID_Rename	is	activated
on	upon	successfully	matching	“rename	the	coffee	shop	to,”
followed	by	any	word	in	the	engine’s	dictionary.	The	parsed
phrase	returns	an	element	containing	the	actual	word.	With	the
actual	word	available,	CoffeeS6	can	use	it	to	display	the	new
name	as	it	would	with	any	stored	variable.

Multiple	dictation:	+

The	dictation	entry	in	VID_Rename	has	a	plus	sign	after	the
asterisk.	This	indicates	that	multiple	words	may	be	accepted	in
the	rule.	This	way	you	can	dictate	longer	phrases.	Over-zealous
customers	may	now	rename	the	coffee	store	to	virtually	any
name	they	want.	By	saying,	“rename	the	coffee	shop	to	Billy
Bob	Joe’s	and	Sally	Jean	Ann’s	Coffee	Emporium	on	the
Highway,”	they	have	successfully	changed	the	name.

Confidence	Increase:	+

Confidence	Decrease:	–

One	of	these	two	signs	placed	in	front	of	words	respectively
increases	or	decreases	the	required	confidence	for	a	successful

recognition.	Obviously	increasing	the	required	confidence
means	that	the	speech	recognition	engine	will	have	to	be	much
more	certain	that	the	word	it	hears	really	is	the	expected	word.
For	example,	if	the	user	is	responding	to	an	important	question
such	as	“Reformat	hard	disk?”	you	want	to	make	an	extra	effort
that	what	is	recognized	as	“yes”	really	is	“yes.”	To	make	sure,
the	rule	is	noted	as	“+yes”.

Likewise,	the	minus	sign	decreases	the	required	confidence	for
the	word.	That	is,	you	can	de-emphasize	some	words.	Although
the	word	is	required	for	the	rule,	it	is	not	important	to	verify	that
the	user	actually	said	it.	It	is	a	case	of	“close	enough	is	good
enough.”

In	CoffeeS6	this	is	seen	in	the	VID_ThingsToManage	rule:
<RULE	ID="VID_ThingsToManage"	>

	 <L	PROPID="VID_ThingsToManage">

	 <P	VAL="VID_Employees">employees</P>

	 <P	VAL="VID_ShopName">-shop	+name</P>

	 <P	VAL="VID_ShopName">-store	+name</P>

	 </L>

</RULE>

The	last	two	phrase	elements	allow	the	store	name	to	be
changed.	However,	Coffee	is	de-emphasizing	the	words	“shop”
and	“store.”	It	is	not	important	that	users	speak	this	word
precisely;	it	just	needs	to	be	reasonably	close.	However,	“name”
has	to	be	recognized	clearly.

Code	Modifications

In	terms	of	code	support	for	embedded	dictation,	there	are	very
few	changes.	The	case	of	handling	a	new	rule	is	added,	of
course.	The	real	work	of	CoffeeS6	is	in	the	case	of	VID_Rename
of	ExecuteCommand().	Notice	there	is	no	extra	effort	required	to
implement	the	dictation	itself.

if	(5	<=	pElements->Rule.ulCountOfElements)

{				

	 if	(SUCCEEDED(pPhrase->GetText(5,	pElements->Rule.ulCountOfElements	-	5,	FALSE,	&wszCoMemNameText,	NULL)))				

	 {							

	 	 int	ilen	=	wcslen(

	 	 pElements->pProperties->pszName);					

	 	 ilen	=	(ilen	+	wcslen(wszCoMemNameText)	+	2)	*	sizeof(WCHAR);							

	 	 wszCoMemValueText	=	(WCHAR	*)CoTaskMemAlloc(ilen);		

	 	 							

	 	 if	(wszCoMemValueText)							

	 	 {													

	 	 	 wcscpy(wszCoMemValueText,pElements->pProperties->pszName);													

	 	 	 wcscat(wszCoMemValueText,	L"	");														

	 	 	 wcscat(wszCoMemValueText,	wszCoMemNameText);											

	 	 	 //	Copy	new	shop	name	to	global	shop	name

	 	 	 _tcsncpy(g_szShopName,	W2T(wszCoMemNameText),	NORMAL_LOADSTRING	-	1);												

	 	 	 PostMessage(hWnd,	WM_RENAMEWINDOW,	0,	(LPARAM)	wszCoMemValueText);

	 	 	 CoTaskMemFree(wszCoMemNameText);						

	 	 }		

	 }

}

This	code	filters	through	the	phrase	elements	to	retrieve	the
dictated	text.	The	phrase	elements	are	examined	and	retrieved.
In	practice,	it	is	usually	better	not	to	assume	that	the	sixth
element	is	always	the	one	you	want	but,	in	this	case,	CoffeeS6
does.	Since	the	rename	rule	allows	multiple	words,	CoffeeS6
starts	at	the	sixth	element	(since	it	knows	the	first	five	elements
have	to	be	“rename	the	coffee	shop	to”)	and	strings	together
the	rest	of	the	words	for	the	new	name.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Text-to-Speech	Tutorial
This	tutorial	covers	a	very	basic	text-to-speech	(TTS)	example.
The	console	application	is	one	of	the	simplest	demonstrations	of
speech.	It	is	the	"Hello	World"	equivalent	for	TTS.	An	equivalent
sample	for	a	Windows	application	using	a	graphical	interface
(and	event	pump)	is	available	in	Using	Events	with	TTS.
The	sample	builds	up	from	the	simplest	(though	nonfunctional)
COM	framework	to	speaking	a	sentence.	Steps	are	provided	for
each	new	function.	The	sample	even	goes	one	step	beyond
demonstrating	the	use	XML	tags	to	modify	speech.	The
Complete	Sample	Application	is	at	the	bottom	of	the	page.
Step	1:	Setting	Up	The	Project
Step	2:	Initialize	COM
Step	3:	Setting	Up	Voices
Step	4:	Speak!
Step	5:	Modifying	Speech

Step	1:	Setting	up	the	project
While	it	is	possible	to	write	an	application	from	scratch,	it	is
easier	to	start	from	an	existing	project.	In	this	case,	use	Visual
Studio's	application	wizard	to	create	a	Win32	console
application.	Choose	"Hello,	world"	as	the	sample	when	asked
during	the	wizard	set	up.	After	generating	it,	open	the	STDAfx.h
file	and	paste	the	following	code	after	"#include	<stdio.h>"	but
before	the	"#endif"	statement.	This	sets	up	the	additional
dependencies	SAPI	requires.
#define	_ATL_APARTMENT_THREADED

#include	<atlbase.h>
//You	may	derive	a	class	from	CComModule	and	use	it	if	you	want	to	override	something,	
//but	do	not	change	the	name	of	_Module
extern	CComModule	_Module;
#include	<atlcom.h>

Code	Listing	1
Next	add	the	paths	to	SAPI.h	and	SAPI.lib	files.	The	paths	shown
are	for	a	standard	SAPI	SDK	install.	If	the	compiler	is	unable	to
locate	either	file,	or	if	a	nonstandard	install	was	performed,	use
the	new	path	to	the	files.	Change	the	project	settings	to	reflect
the	paths.	Using	the	Project->Settings.	menu	item,	set	the
SAPI.h	path.	Click	the	C/C++	tab	and	select	Preprocessor	from
the	Category	drop-down	list.	Enter	the	following	in	the
"Additional	include	directories":	C:\Program	Files\Microsoft
Speech	SDK	5.1\Include.
To	set	the	SAPI.lib	path:

1.	 Select	the	Link	tab	from	the	Same	Settings	dialog	box.
2.	 Choose	Input	from	the	Category	drop-down	list.
3.	 Add	the	following	path	to	the	"Additional	library	path":	

C:\Program	Files\Microsoft	Speech	SDK	5.1\Lib\i386.
4.	 Also	add	"sapi.lib"	to	the	"Object/library	modules"	line.
Be	sure	that	the	name	is	separated	by	a	space.

Step	2:	Initialize	COM
SAPI	is	a	COM-based	application,	and	COM	must	be	initialized
both	before	use	and	during	the	time	SAPI	is	active.	In	most
cases,	this	is	for	the	lifetime	of	the	host	application.	The
following	code	(from	Listing	2)	initializes	COM.	Of	course,	the
application	does	not	do	anything	beyond	initialization,	but	it
does	ensure	that	COM	is	successfully	started.
#include	<stdafx.h>
#include	<sapi.h>

int	main(int	argc,	char*	argv[])
{
				if	(FAILED(::CoInitialize(NULL)))
								return	FALSE;

				::CoUninitialize();
				return	TRUE;
}

Code	Listing	2

Step	3:	Setting	up	voices
Once	COM	is	running,	the	next	step	is	to	create	the	voice.	A
voice	is	simply	a	COM	object.	Additionally,	SAPI	uses	intelligent
defaults.	During	initialization	of	the	object,	SAPI	assigns	most
values	automatically	so	that	the	object	may	be	used
immediately	afterward.	This	represents	an	important
improvement	from	earlier	versions.	The	defaults	are	retrieved
from	Speech	properties	in	Control	Panel	and	include	such
information	as	the	voice	(if	more	than	one	is	available	on	your
system),	and	the	language	(English,	Japanese,	etc.).	While	some
defaults	are	obvious,	others	are	not	(speaking	rate,	pitch,	etc.).
Nevertheless,	all	defaults	may	be	changed	either
programmatically	or	in	Speech	properties	in	Control	Panel.
Setting	the	pVoice	pointer	to	NULL	is	not	required	but	is	useful
for	checking	errors;	this	ensures	an	invalid	pointer	is	not	reused,
or	as	a	reminder	that	the	pointer	has	already	been	allocated	or
deallocated
#include	<stdafx.h>
#include	<sapi.h>

int	main(int	argc,	char*	argv[])
{
				ISpVoice	*	pVoice	=	NULL;

				if	(FAILED(::CoInitialize(NULL)))
								return	FALSE;

				HRESULT	hr	=	CoCreateInstance(CLSID_SpVoice,	NULL,	CLSCTX_ALL,	IID_ISpVoice,	(void	**)&pVoice;);
				if(SUCCEEDED(hr))
				{
								pVoice->Release();
								pVoice	=	NULL;

				}

				::CoUninitialize();
				return	TRUE;
}

Code	Listing	3.	Bold	text	represents	new	code	for	this	example.

Step	4:	Speak!
The	actual	speaking	of	the	phrase	is	an	equally	simple	task:	one
line	calling	the	Speak	function.	When	the	instance	of	the	voice	is
no	longer	needed,	you	can	release	the	object.

#include	<stdafx.h>
#include	<sapi.h>

int	main(int	argc,	char*	argv[])
{
				ISpVoice	*	pVoice	=	NULL;

				if	(FAILED(::CoInitialize(NULL)))
								return	FALSE;

				HRESULT	hr	=	CoCreateInstance(CLSID_SpVoice,	NULL,	CLSCTX_ALL,	IID_ISpVoice,	(void	**)&pVoice;);
				if(SUCCEEDED(hr))
				{
								hr	=	pVoice->Speak(L"Hello	world",	0,	NULL);
								pVoice->Release();
								pVoice	=	NULL;
				}

				::CoUninitialize();
				return	TRUE;
}

Code	Listing	4.	Bold	text	represents	new	code	for	this	example.

Step	5:	Modifying	Speech
Voices	may	be	modified	using	a	variety	of	methods.	The	most
direct	way	is	to	apply	XML	commands	directly	to	the	stream.
The	commands	are	outlined	in	XML	Schema.	In	this	case,	a
relative	rating	of	10	will	lower	the	pitch	of	the	voice.
#include	<stdafx.h>
#include	<sapi.h>

int	main(int	argc,	char*	argv[])
{
				ISpVoice	*	pVoice	=	NULL;

				if	(FAILED(::CoInitialize(NULL)))
								return	FALSE;

				HRESULT	hr	=	CoCreateInstance(CLSID_SpVoice,	NULL,	CLSCTX_ALL,	IID_ISpVoice,	(void	**)&pVoice;);
				if(SUCCEEDED(hr))
				{
								hr	=	pVoice->Speak(L"Hello	world",	0,	NULL);

								//	Change	pitch
								hr	=	pVoice->Speak(L"This	sounds	normal	<pitch	middle	=	'-10'/>	but	the	pitch	drops	half	way	through",	SPF_IS_XML,	NULL);
								pVoice->Release();
								pVoice	=	NULL;
				}
				::CoUninitialize();
				return	TRUE;
}

Code	Listing	5.	Bold	text	represents	new	code	for	this	example.

This	is	the	complete	code	sample.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Using	Events	with	TTS
This	tutorial	covers	a	basic	text-to-speech	example	but	uses	a
Windows	application	with	a	graphical	interface.

Setting	up	the	project

Create	the	project
The	code	is	generated	from	Visual	C++	6.0	and	uses	the	"Hello,
World"	example.	To	make	the	sample	base,	create	a	new	project
as	a	Windows	32	application	and	call	it	"Test."	In	the	subsequent
wizard,	select	"a	typical	'Hello	World!'	application."	The	resulting
project	is	lengthier	than	the	command	line	version.	Most	of	the
new	complexity	has	little	to	do	with	SAPI	however,	since
graphical	interfaces	require	more	code	to	function.

Set	SAPI	paths
The	SAPI	paths	need	to	be	declared.	Add	Sapi.h	to	the	path:

1.	 On	the	File	menu,	select	Tools,	and	then	click	Options.
2.	 Click	the	Directories	tab.

3.	 Select	the	Include	Files	drop-down	menu.
4.	 Add	the	path	by	clicking	in	the	first	unused	line	in	the
paths	list	and	enter	
"C:\Program	Files\Microsoft	Speech	SDK	5.1\Include".

5.	 Add	a	path	to	the	SAPI	library	file	by	selecting	the
Library	Files	drop-down	menu	and	adding	"C:\Program
Files\Microsoft	Speech	SDK	5.1\Lib\i386".	Click	OK.

Create	speak	menu	item
To	be	able	to	speak	on	demand,	one	modification	is	required;
this	is	a	mechanism	to	initiate	speech.	To	use	the	current
example	in	Visual	C++,	the	user	should	add	a	File	menu	item
called	Speak	with	a	resource	ID	of	IDM_SPEAK.	The	code
handling	the	event	from	this	menu	item	will	be	addressed	later
in	this	example.	Compile	and	run	the	application	to	make	sure

everything	works.	The	application	does	not	display	anything
other	than	"Hello,	World"	along	the	top	of	the	screen.	Even	so,
it's	a	good	start.

Using	the	sample
This	sample	is	not	a	practical	one	since	it	speaks	only	one
sentence.	The	sentence	is	hard	coded,	something	few
applications	would	do	in	a	practical	situation.	A	more	complete
or	robust	application	would	retrieve	the	text	from	a	dialog	box,
resource,	or	file.	However,	the	sample	does	represent	the
foundation	of	text-to-speech	and	showcases	many	of	those
mechanisms.
More	importantly,	it	demonstrates	the	interaction	between	SAPI
and	the	application.	Text-to-speech	would	be	marginally	useful	if
that	is	all	it	did.	However,	using	this	interaction,	the	application
determines	words	being	spoken.	In	two	separate	examples
using	this	information,	the	application	displays	the	words	on	the
screen	and	highlights	them	in	real	time.	In	doing	so,	the
application	also	demonstrates	the	eventing	model	for	SAPI.	This
includes	a	brief	explanation	about	speech	messages	and	a
related	feature,	interests.	Interests	are	unique	to	SAPI.
Furthermore,	the	interaction	is	not	limited	to	determining	words
spoken.	A	multitude	of	activities	involving	SAPI	or	speech
engines	could	interest	the	application.	SPEVENTENUM	lists	these
possible	activities.	For	instance,	if	your	application	is	animating
a	character	for	speech,	you	would	be	interested	each	time	a
new	viseme	is	encountered.	The	viseme	essentially	represents	a
change	in	the	mouth	position	during	speech.	Accordingly,	the
character's	mouth	would	move,	or	even	close.	In	the	same	way,
starting	and	stopping	of	the	speech	audio	stream	could	interest
the	application.	In	general,	these	activities	are	called	interests.
Step	1:	Initialize	COM
Step	2:	Setting	up	voices
Step	3:	Speak!
Step	4:	Setting	events

Step	5:	Determining	events
Step	6:	Reacting	to	events

Step	1:	Initialize	COM
As	with	any	SAPI	application,	COM	must	be	successfully
initialized.	This	is	done	in	a	simple	manner	illustrated	below	in	a
snippet	from	WinMain().	The	only	restriction	is	that	COM	must
be	available	before	any	SAPI-specific	code	is	implemented	and	it
must	be	active	during	the	time	SAPI	is	used.	Since	SAPI	is
implemented	in	InitInstance(),	the	COM	statements	come	before
InitInstance()	and	after	the	event	loop,	essentially	enclosing	the
entire	initialization	and	message	loop.
			if(FAILED(CoInitialize(NULL)))
			{
						return	FALSE;
			}

			//	Perform	application	initialization:
			if	(!InitInstance	(hInstance,	nCmdShow))	
			{
						return	FALSE;
			}

			hAccelTable	=	LoadAccelerators(hInstance,	(LPCTSTR)IDC_GUIAPP);

			//	Main	message	loop:
			while	(GetMessage(&msg;,	NULL,	0,	0))	
			{
						if	(!TranslateAccelerator(msg.hwnd,	hAccelTable,	&msg;))	
						{
									TranslateMessage(&msg;);
									DispatchMessage(&msg;);
						}
			}

			CoUninitialize();

Code	Listing	1.	Bold	text	represents	new	code	for	this	example.

Step	2:	Setting	up	voices
Once	COM	is	running,	the	next	step	is	to	create	the	voice.
Simply	declare	the	instance	and	use	CoCreateInstance().	As
mentioned	in	the	command	line	example,	SAPI	uses	intelligent
defaults.	This	requires	a	minimal	amount	of	initialization	and
you	can	use	the	voice	immediately.	The	defaults	are	located	in
Speech	properties	in	Control	Panel	and	include	a	selection	of
voices	(if	more	than	one	is	available	on	your	system),	and
languages	(English,	Japanese,	etc.).	While	some	defaults	are
obvious,	others	are	not	(speaking	rate,	pitch,	etc.).
Nevertheless,	you	can	change	all	defaults	either	through	Speech
properties	or	programmatically.
This	example	makes	several	exceptions	for	the	sake	of	brevity
and	convenience.	First,	it	uses	InitInstance()	to	initialize	the
voice.	InitInstance()	is	the	least	intrusive	call	to	be	placed	for
this	demonstration.	Applications,	especially	those	using	speech
recognition	(SR)	instances,	may	have	their	own	procedures
explicitly	for	this	so	that	the	speech	code	is	more	isolated.
Second,	the	voice	is	defined	globally.	Depending	on	your
application's	design	and	requirements,	you	may	not	need	a
global	declaration.	Third,	the	instance	is	immediately	released
and	the	memory	freed.	Obviously,	if	the	voice	is	to	be	used,	it
cannot	be	released	beforehand.	In	fact,	even	this	application	is
not	going	to	keep	those	statements	for	long.	And	last,	if	the
initialization	fails,	this	application	stops.	A	more	robust
application	would	check	errors	more	extensively	and	report
more	detailed	information.

ISpVoice	*pVoice;			//SAPI	voice
.
.
.

BOOL	InitInstance(HINSTANCE	hInstance,	int	nCmdShow)

{
			HWND	hWnd;

			hInst	=	hInstance;	//	Store	instance	handle	in	our	global	variable

			hWnd	=	CreateWindow(szWindowClass,	szTitle,	WS_OVERLAPPEDWINDOW,
						CW_USEDEFAULT,	0,	CW_USEDEFAULT,	0,	NULL,	NULL,	hInstance,	NULL);

			if	(!hWnd)
			{
						return	FALSE;
			}

			ShowWindow(hWnd,	nCmdShow);
			UpdateWindow(hWnd);

			//Initialize	SAPI
			HRESULT	hr	=	CoCreateInstance(CLSID_SpVoice,	NULL,	CLSCTX_ALL,	IID_ISpVoice,	(void	**)&pVoice;);
			if(SUCCEEDED(hr))
			{
						pVoice->Release();
						pVoice	=	NULL;
			}
			else
						return	FALSE;

			return	TRUE;
}

Code	Listing	2.	Bold	text	represents	new	code	for	this	example.

Step	3:	Speak!
Fortunately,	the	most	interesting	part	of	the	task	is	also	the
simplest.	Speaking	a	sentence	involves	calling	one	line.	The	text
to	be	spoken	is	provided	as	a	parameter.	The	source	of	that	text
depends	on	the	application.	As	mentioned	previously,	the	string
is	usually	from	a	dialog	box	or	a	file.	Alternatively,	the	string	can
also	be	from	a	stream	but	that	is	handled	by	another	call,
ISpVoice::SpeakStream.	This	example	uses	a	simple,	hard-coded
sentence.	While	::Speak	could	have	used	an	inline	string	such
as:

Speak(L"I	am	glad	to	speak.",	SPF_ASYNC,	NULL);

The	string	will	be	used	several	times	during	the	application.	The
application	retrieves	each	word	and	parses	it	accordingly.	For
that	reason,	it	is	copied	to	a	global	string	before	being	used.
The	code	is	placed	inside	the	window	messaging	area	within
WndProc().	Selecting	the	Speak	from	the	File	menu	will	produce
the	following	message:	"I	am	glad	to	speak."

WCHAR	theString[30];
.
.
.
												case	IDM_SPEAK:
															wcscpy(theString,	L"I	am	glad	to	speak.");
															pVoice->Speak(theString,	SPF_ASYNC,	NULL);
															break;

Code	Listing	3.	Bold	text	represents	new	code	for	this	example.

Step	4:	Setting	events
Like	most	Windows	applications,	there	are	interactions	among
the	components	and	messages	are	sent	to	indicate	these.	SAPI
is	no	different.	As	information	is	processed	by	either	the	TTS	or
SR	engine,	certain	activities	are	initiated	or	completed.	Many
times	these	activities	by	SAPI	or	SAPI	engines	are	of	interest	to
the	application.	For	example,	the	application	could	be	informed
when	a	recognition	process	is	started,	so	that	the	user	can
subsequently	be	informed.	Likewise,	the	application	may	be
interested	in	knowing	when	there	is	no	more	information	to
process,	perhaps	to	inform	the	user	of	this	condition,	or	even	to
shut	down	either	the	engine	or	application	itself	when	it	is	safe
to	do	so.
An	application	processes	the	information	of	these	activities	in	a
two	step	operation.	First,	it	receives	a	general	message	from
SAPI	or	a	SAPI	engine.	This	message	is	similar	to	other
messages,	such	window	events,	mouse	clicks	or	a	myriad	of
other	messages	used	by	the	operating	system.	Since	the
message	is	not	defined	by	the	operating	system,	the	application
must	define	it.	However,	all	activities	from	SAPI	use	the	same
message.	To	determine	the	exact	activity	taking	place,
additional	information	is	provided	by	SAPI	and	is	called	an
interest.	A	complete	list	of	interests	is	found	in	SPEVENTENUM.
The	second	step	comes	after	trapping	the	message.	The
application	examines	an	event	structure	completed	by	SAPI	and
retrieves	the	relevant	information.

Setting	interests
During	initialization,	SAPI	can	be	informed	of	which	interests	to
pass	back	to	the	application.	This	is	done	using
iISpEventSource::SetInterest.	By	default,	TTS	does	not	set	any
interests	and	SR	uses	only	recognition	(SPEI_RECOGNITION).
That	is,	if	the	SetInterest	call	were	omitted	entirely,	TTS	would

not	pass	back	any	interest	information	to	the	application	and	SR
would	report	only	successful	recognitions.	Values	can	be
combined	with	logical	OR	statements.	Using	this	combination,
two	or	more	interests	can	be	specifically	set,	while	excluding
others	at	the	same	time.	Using	the	first	parameter,	the
application	can	be	notified	when	a	specific	interest	occurs.	The
second	parameter	queues	the	interest	for	later	retrieval.	For	the
moment,	keep	the	two	parameters	of	SetInterest	identical	since
the	application	will	need	to	store	information	later.	Interests	can
be	changed	at	anytime	in	the	application	as	the	user's
requirements	change.

Setting	messages
Regardless	of	the	interests	set,	the	application	has	to	associate
a	message	to	SAPI.	This	is	done	with
ISpNotifySource::SetNotifyWindowMessage.	If	this	call	is	not
included,	no	message	could	be	sent	back	to	the	application.
There	are	three	types	of	message	notifications	and	at	least	one
must	be	included	to	receive	messages.	A	fourth	type	is	for
multithreaded	applications	and	is	not	used	here.	All	four	are
explained	in	the	ISpNotifySource	interface	section.	The	actual
message	name	and	ID	is	determined	by	the	application.	This
example	uses	the	standard	WM_USER	for	private	messages.

			//Initialize	SAPI
			HRESULT	hr	=	CoCreateInstance(CLSID_SpVoice,	NULL,	CLSCTX_ALL,	IID_ISpVoice,	(void	**)&pVoice;);
			if(SUCCEEDED(hr))
			{
						pVoice->SetInterest(SPFEI(SPEI_WORD_BOUNDARY),SPFEI(SPEI_WORD_BOUNDARY));
						pVoice->SetNotifyWindowMessage(hWnd,	WM_USER,	0,	0);
			}
						else
						return	FALSE;

Code	Listing	4.	Bold	text	represents	new	code	for	this	example.

Step	5:	Determining	events
As	mentioned	previously,	working	with	events	is	a	two	step
process.	The	first	is	a	simple	and	standard	approach	to	Windows
events.	A	message	(however	generated)	is	sent	back	to	the
application	and	the	message	loop	dispatches	it	accordingly.	In
this	example,	WndProc()	receives	the	WM_USER	message.	Once
the	message	is	trapped,	the	rest	relies	on	SAPI.
The	second	step	is	to	determine	which	interest	occurred.	Since
the	SetInterest	method	responds	only	to
SPEI_WORD_BOUNDARY,	it	is	likely	that	it	is	an
SPEI_WORD_BOUNDARY	interest.	However,	in	larger	applications
or	if	several	interests	were	set,	the	application	must	be	able	to
determine	the	exact	one.	SAPI	determines	this	using	the	event
structure,	SPEVENT	and	the	GetEvents	method.	Used	together,
you	can	retrieve	specific	information	about	the	SAPI	event,
including	the	type	of	interest.	This	value	in	member	eEventId
coincides	with	parameters	used	by	SetInterest.	The	SPEVENT
structure	must	be	initialized	before	first	use	and	cleared	before
reuse.	It	is	possible	for	information	to	persist	from	call	to	call.
The	helper	function	SpClearEvent	clears	the	event.
It	is	possible	for	events	and	interests	to	occur	faster	than	the
application	can	process	them.	This	is	a	common	situation
especially	if	a	viseme	interest	is	set,	because	it	generates	an
event	for	each	sound	encountered.	GetEvents	can	retrieve	more
than	one	event	at	time.	This	allows	for	batch	processing	of
events	should	a	more	specialized	application	need	to	do	so.
Another	way	to	handle	this	situation	is	to	use	a	while	loop.	This
retrieves	each	event	one	at	a	time.	Regardless	of	the	design,
once	a	valid	SPEVENT	is	available,	the	application	has	only	to
compare	the	interest	type	from	eEventId	with	an	action.	Again
for	simplicity,	a	switch	statement	filters	interests	and
subsequent	code	completes	the	action.
						case	WM_USER:

									SPEVENT	eventItem;
									memset(&eventItem;,	0,sizeof(SPEVENT));
									while(pVoice->GetEvents(1,	&eventItem;,	NULL)	==	S_OK)
									{
											switch(eventItem.eEventId)
											{
														case	SPEI_WORD_BOUNDARY	:
																	.
																	.
																	.
																	break;

														default:
																	break;
											}

									SpClearEvent(eventItem);

Code	Listing	5.	Bold	text	represents	new	code	for	this	example.

Step	6:	Reacting	to	events
Once	the	event	and	interest	is	determined,	the	programming
becomes	more	standard.	How	an	actual	interest	is	handled	is
the	application's	own	design	and	implementation.	In	this
example,	the	application	identifies	individual	words	using	the
SPEI_WORD_BOUNDARY	interest.	Whenever	this	interest	is
returned,	the	SAPI	engine	has	found	a	distinct	word,	usually
offset	by	white	spaces	or	certain	punctuation.	Also	in	this	case,
relevant	information	is	passed	back	from	a	Voice::GetStatus	call
using	SPVOICESTATUS	structure.
The	individual	words	are	noted	as	offsets	from	the	complete
string,	marking	the	positions	of	the	first	letter	and	last	letters	of
the	sequence.	For	demonstration,	the	words	are	then	displayed
in	a	Win32	message	box	on	the	screen.	One	subtlety	to	notice	is
that	each	word	is	displayed	as	soon	as	possible.	That	is,	the
screen	is	updated	during	the	actual	speaking	of	the	text.	This
characteristic	is	controlled	during	by	the	SPF_ASYNC	flag	of	the
Voice::Speak	method:

	 pVoice->Speak(theString,	SPF_ASYNC,	NULL);

The	alternative	is	to	wait	until	all	the	speech	is	complete	and
then	process	the	events	and	interests.	For	example,	if	the
second	parameter	was	replaced	with	NULL,	the	message	boxes
would	still	display	but	would	wait	until	the	speaking	is	complete.
The	difference	in	timing	may	be	important	to	applications
depending	on	needs.
														case	SPEI_WORD_BOUNDARY	:
																	SPVOICESTATUS	eventStatus;
																	pVoice->GetStatus(&eventStatus;,	NULL);

																	ULONG	start,	end;
																	start	=	eventStatus.ulInputWordPos;

																	end	=	eventStatus.ulInputWordLen;
																	wcsncpy(tempString,	theString	+	start	,	end);
																	tempString[end]	=	'\0';

																	MessageBoxW(hWnd,	tempString,	L"GUIApp",	MB_OK|MB_ICONWARNING);
																	break;

Code	Listing	6.	Bold	text	represents	new	code	for	this	example.

Complete	code	listing
//	GUIApp.cpp	:	Defines	the	entry	point	for	the	application.
#include	"stdafx.h"
#include	<sapi.h<
#include	"string.h"
#include	"resource.h"

#include	"sphelper.h"

#define	MAX_LOADSTRING	100

//	Global	Variables:
HINSTANCE	hInst;																							//	current	instance
TCHAR	szTitle[MAX_LOADSTRING]	=	_T	("Speak	Hello	world	App");									//	The	title	bar	text
TCHAR	szWindowClass[MAX_LOADSTRING]	=	_T	("SpeakWinClass");			//	The	title	bar	text

//For	SAPI
WCHAR	theString[30];
ISpVoice	*pVoice;																						//SAPI	voice

//	Forward	declarations	of	functions	included	in	this	code	module:
ATOM												MyRegisterClass(HINSTANCE	hInstance);
BOOL												InitInstance(HINSTANCE,	int);
LRESULT	CALLBACK			WndProc(HWND,	UINT,	WPARAM,	LPARAM);
LRESULT	CALLBACK			About(HWND,	UINT,	WPARAM,	LPARAM);

int	APIENTRY	WinMain(HINSTANCE	hInstance,
																					HINSTANCE	hPrevInstance,
																					LPSTR					lpCmdLine,
																					int							nCmdShow)
{

				//	TODO:	Place	code	here.
			MSG	msg;
//			HACCEL	hAccelTable;

			//	Initialize	global	strings
		//	LoadString(hInstance,	IDS_APP_TITLE,	szTitle,	MAX_LOADSTRING);
			//LoadString(hInstance,	IDC_GUIAPP,	szWindowClass,	MAX_LOADSTRING);
			MyRegisterClass(hInstance);

			if(FAILED(CoInitialize(NULL)))
			{
						return	FALSE;
			}

			//	Perform	application	initialization:
			if	(!InitInstance	(hInstance,	nCmdShow))	
			{
						return	FALSE;
			}

			//hAccelTable	=	LoadAccelerators(hInstance,	(LPCTSTR)IDC_GUIAPP);

			//	Main	message	loop:
			while	(GetMessage(&msg;,	NULL,	0,	0))	
			{
						//if	(!TranslateAccelerator(msg.hwnd,	hAccelTable,	&msg;))	
						{
								TranslateMessage(&msg;);
									DispatchMessage(&msg;);
						}
			}

			CoUninitialize();

			return	msg.wParam;
}

//
//		FUNCTION:	MyRegisterClass()
//
//		PURPOSE:	Registers	the	window	class.
//
//		COMMENTS:
//
//				This	function	and	its	usage	is	only	necessary	if	you	want	this	code
//				to	be	compatible	with	Win32	systems	prior	to	the	'RegisterClassEx'
//				function	that	was	added	to	Windows	95.	It	is	important	to	call	this	function
//				so	that	the	application	will	get	'well	formed'	small	icons	associated
//				with	it.
//
ATOM	MyRegisterClass(HINSTANCE	hInstance)
{
			WNDCLASSEX	wcex;

			wcex.cbSize	=	sizeof(WNDCLASSEX);	

			wcex.style									=	CS_HREDRAW	|	CS_VREDRAW;
			wcex.lpfnWndProc			=	(WNDPROC)WndProc;
			wcex.cbClsExtra						=	0;
			wcex.cbWndExtra						=	0;
			wcex.hInstance						=	hInstance;
			wcex.hIcon									=	NULL;	//LoadIcon(hInstance,	(LPCTSTR)IDI_GUIAPP);
			wcex.hCursor						=	NULL;	//LoadCursor(NULL,	IDC_ARROW);
			wcex.hbrBackground			=	(HBRUSH)(COLOR_WINDOW+1);

			wcex.lpszMenuName			=	NULL;	//MAKEINTRESOURCE(IDC_TEST);	//(LPCSTR)IDC_GUIAPP;
			wcex.lpszClassName			=	szWindowClass;
			wcex.hIconSm						=	NULL;	//LoadIcon(wcex.hInstance,	(LPCTSTR)IDI_SMALL);

			return	RegisterClassEx(&wcex;);
}

//
//			FUNCTION:	InitInstance(HANDLE,	int)
//
//			PURPOSE:	Saves	instance	handle	and	creates	main	window
//
//			COMMENTS:
//
//								In	this	function,	we	save	the	instance	handle	in	a	global	variable	and
//								create	and	display	the	main	program	window.
//
BOOL	InitInstance(HINSTANCE	hInstance,	int	nCmdShow)
{
			HWND	hWnd;

			hInst	=	hInstance;	//	Store	instance	handle	in	our	global	variable

			hWnd	=	CreateWindow(szWindowClass,	szTitle,	WS_OVERLAPPEDWINDOW,
						CW_USEDEFAULT,	0,	CW_USEDEFAULT,	0,	NULL,	NULL,	hInstance,	NULL);

			if	(!hWnd)
			{
						return	FALSE;
			}

			//	Instead	of	using	IDC_TEST,	use	the	identifier	of	menu	resource
			//	of	the	current	application.

			SetMenu(hWnd,	LoadMenu(hInstance,	MAKEINTRESOURCE(IDC_TEST)));

			ShowWindow(hWnd,	nCmdShow);
			UpdateWindow(hWnd);

			//Initialize	SAPI
			HRESULT	hr	=	CoCreateInstance(CLSID_SpVoice,	NULL,	CLSCTX_ALL,	IID_ISpVoice,	(void	**)&pVoice;);
			if(SUCCEEDED(hr))
			{
						pVoice->SetInterest(SPFEI(SPEI_WORD_BOUNDARY),SPFEI(SPEI_WORD_BOUNDARY));
						pVoice->SetNotifyWindowMessage(hWnd,	WM_USER,	0,	0);
			}
						else
						return	FALSE;

			return	TRUE;
}

//
//		FUNCTION:	WndProc(HWND,	unsigned,	WORD,	LONG)
//
//		PURPOSE:		Processes	messages	for	the	main	window.
//
//		WM_COMMAND			-	process	the	application	menu
//		WM_PAINT			-	Paint	the	main	window
//		WM_DESTROY			-	post	a	quit	message	and	return
//
//
LRESULT	CALLBACK	WndProc(HWND	hWnd,	UINT	message,	WPARAM	wParam,	LPARAM	lParam)
{
			int	wmId,	wmEvent;
			PAINTSTRUCT	ps;
			HDC	hdc;

			TCHAR	szHello[MAX_LOADSTRING];
			LoadString(hInst,	IDS_HELLO,	szHello,	MAX_LOADSTRING);
			WCHAR	tempString[30];
			
			switch	(message)	
			{
						case	WM_COMMAND:
									wmId				=	LOWORD(wParam);	
									wmEvent	=	HIWORD(wParam);	
									//	Parse	the	menu	selections:
									switch	(wmId)
									{
												case	IDM_ABOUT:
															DialogBox(hInst,	(LPCTSTR)IDD_ABOUTBOX,	hWnd,	(DLGPROC)About);
															break;

												case	IDM_EXIT:
															DestroyWindow(hWnd);
															break;

												case	IDM_SPEAK:
															wcscpy(theString,	L"I	am	glad	to	speak.");
															pVoice->Speak(theString,	SPF_ASYNC,	NULL);
															break;

												default:
															return	DefWindowProc(hWnd,	message,	wParam,	lParam);
									}
									break;

						case	WM_USER:
									SPEVENT	eventItem;
									memset(&eventItem;,	0,sizeof(SPEVENT));

									while(pVoice->GetEvents(1,	&eventItem;,	NULL)	==	S_OK)
									{
											switch(eventItem.eEventId)
											{
														case	SPEI_WORD_BOUNDARY	:
																	SPVOICESTATUS	eventStatus;
																	pVoice->GetStatus(&eventStatus;,	NULL);

																	ULONG	start,	end;
																	start	=	eventStatus.ulInputWordPos;
																	end	=	eventStatus.ulInputWordLen;
																	wcsncpy(tempString,	theString	+	start	,	end);
																	tempString[end]	=	'\0';

																	MessageBoxW(hWnd,	tempString,	L"GUIApp",	MB_OK|MB_ICONWARNING);
																	break;

														default:
																	break;
											}

									SpClearEvent(&eventItem;);
									}
									break;

						case	WM_PAINT:
									hdc	=	BeginPaint(hWnd,	&ps;);
									//	TODO:	Add	any	drawing	code	here...
									RECT	rt;
									GetClientRect(hWnd,	&rt;);
									DrawText(hdc,	szHello,	strlen(szHello),	&rt;,	DT_CENTER);
									EndPaint(hWnd,	&ps;);
									break;

						case	WM_DESTROY:
									if	(pVoice)
									{
													pVoice->Release();
													pVoice	=	NULL;
									}
									PostQuitMessage(0);
									break;
	 	 	
						default:
									return	DefWindowProc(hWnd,	message,	wParam,	lParam);
			}

			return	0;
}

//	Message	handler	for	about	box.
LRESULT	CALLBACK	About(HWND	hDlg,	UINT	message,	WPARAM	wParam,	LPARAM	lParam)
{
			switch	(message)
			{
						case	WM_INITDIALOG:
												return	TRUE;

						case	WM_COMMAND:
									if	(LOWORD(wParam)	==	IDOK	||	LOWORD(wParam)	==	IDCANCEL)
									{
												EndDialog(hDlg,	LOWORD(wParam));
												return	TRUE;
									}
									break;
			}

			return	FALSE;
}

}

Complete	code	listing.	Lines	in	bold	are	SAPI-related.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

TTS	Events	Explanation
Events	are	structures	that	pass	information	from	the	TTS	engine
back	to	the	application.	When	the	audio	data	is	output,	SAPI
fires	corresponding	events.	Applications	react	to	audio	output	as
it	occurs.	Examples	of	reactions	include	animating	a	face
appropriately	as	viseme	events	are	received,	or	highlighting	text
as	it	is	spoken.	See	the	sample	application,	TTSApp,	for	an
example	of	each.
Applications	call	ISpEventSource::SetInterest	to	inform	SAPI
about	the	types	of	events	that	they	are	interested	in	receiving.
Applications	can	also	call	this	through	ISpVoice,	because	it
inherits	from	ISpEventSource.	Applications	can	then	call
ISpEventSource::GetEvents	to	retrieve	fired	events	from	SAPI.
The	following	is	a	set	of	event	types	generated	by	TTS	engines
(this	is	a	subset	of	the	SPEVENTENUM	enumeration):

typedef	enum	SPEVENTENUM

{

				//---	TTS	engine

				SPEI_START_INPUT_STREAM					=	1,

				SPEI_END_INPUT_STREAM							=	2,

				SPEI_VOICE_CHANGE											=	3,			//	LPARAM_IS_TOKEN

				SPEI_TTS_BOOKMARK											=	4,			//	LPARAM_IS_STRING

				SPEI_WORD_BOUNDARY										=	5,

				SPEI_PHONEME																=	6,

				SPEI_SENTENCE_BOUNDARY						=	7,

				SPEI_VISEME																	=	8,

				SPEI_TTS_AUDIO_LEVEL								=	9

}	SPEVENTENUM;

The	SPEVENT	structure	contains	varying	information	depending
on	which	of	these	event	types	it	represents.

typedef	struct	SPEVENT

{

				WORD									eEventId;

				WORD									elParamType;

				ULONG								ulStreamNum;

				ULONGLONG				ullAudioStreamOffset;

				WPARAM							wParam;

				LPARAM							lParam;

}	SPEVENT;

You	can	analyze	the	various	fields	of	the	SPEVENT	structure	for
the	event	types	they	correspond	to.	For	all	event	types,
ulStreamNum	corresponds	to	the	stream	number	returned	using
ISpVoice::Speak	or	ISpVoice::SpeakStream.
The	SPEI_START_INPUT_STREAM	event	indicates	that	the	output
object	has	begun	receiving	output	for	a	specific	stream	number.
The	rest	of	the	fields	are	not	of	interest	to	this	event	type.
The	SPEI_END_INPUT_STREAM	event	indicates	that	the	output
object	has	finished	receiving	output	for	a	specific	stream
number.	The	rest	of	the	fields	are	not	of	interest	to	this	event
type.
The	SPEI_VOICE_CHANGE	event	indicates	that	the	voice
responsible	for	speaking	the	input	text	(or	stream)	has	changed
because	of	a	<Voice>	XML	tag.	It	is	fired	at	the	beginning	of
each	Speak	call.	For	more	information	on	using	object	tokens,
see	the	Object	Tokens	and	Registry	Settings	white	paper.

SPEVENT
Field

Voice	Change	event

eEventId SPEI_VOICE_CHANGE

elParamType SPET_LPARAM_IS_TOKEN

wParam

lParam Object	token	of	the	new
voice.

The	SPEI_TTS_BOOKMARK	event	indicates	that	the	speak	stream
has	reached	a	bookmark.	Bookmarks	can	be	inserted	into	the
input	text	using	the	<Bookmark>	XML	tag.

SPEVENT
Field

Bookmark	event

eEventId SPEI_TTS_BOOKMARK

elParamType SPET_LPARAM_IS_STRING

wParam Value	of	the	bookmark
string	when	converted	to
a	long	(_wtol(...)	can	be
used).

lParam Null-terminated	copy	of
the	bookmark	string.

The	SPEI_WORD_BOUNDARY	event	indicates	that	it	has	reached
the	beginning	of	a	word.

SPEVENT
Field

Word	Boundary	event

eEventId SPEI_WORD_BOUNDARY

elParamType SPET_LPARAM_IS_UNKNOWN

wParam Character	offset	at	the
beginning	of	the	word	being
synthesized.

lParam Character	length	of	the
word	in	the	current	input
stream	being	synthesized.

The	SPEI_SENTENCE_BOUNDARY	event	indicates	that	the	speak
stream	has	reached	the	beginning	of	a	sentence.

SPEVENT
Field

Sentence	Boundary
event

eEventId SPEI_SENTENCE_BOUNDARY

elParamType SPET_LPARAM_IS_UNKNOWN

wParam Character	offset	at	the
beginning	of	the	sentence
being	synthesized.

lParam Character	length	of	the
sentence	in	the	current
input	stream	being
synthesized.

The	SPEI_PHONEME	event	indicates	that	the	speak	stream	has
reached	the	phoneme.

SPEVENT
Field

Phoneme	event

eEventId SPEI_PHONEME

elParamType SPET_LPARAM_IS_UNKNOWN

wParam The	high	word	is	the
duration,	in	milliseconds,	of
the	current	phoneme.	The
low	word	is	the	PhoneID	of
the	next	phoneme.

lParam The	low	word	is	the	PhoneID
of	the	current	phoneme.

The	high	word	is	the
SPVFEATURE	value
associated	with	the	current
phoneme.

The	SAPI	5	American	English	phoneme	set	can	be	found	here.
The	SAPI	5	Chinese	phoneme	set	can	be	found	here.	The	SAPI	5
Japanese	phoneme	set	can	be	found	here.
SPVFEATURE	contains	two	flags:	SPVFEATURE_STRESSED	and
SPVFEATURE_EMPHASIS.	SPVFEATURE_STRESSED	means	that
the	phoneme	is	stressed	relative	to	the	other	phonemes	of	a
word	(stress	is	usually	associated	with	the	vowel	of	a	stressed
syllable).	SPVFEATURE_EMPHASIS	means	that	the	phoneme	is
part	of	an	emphasized	word.	That	is,	stress	is	a	syllabic
phenomenon	within	a	word,	and	emphasis	is	a	word-level
phenomenon	within	a	sentence.
The	SPEI_VISEME	event	indicates	that	it	has	reached	the
viseme.

SPEVENT
Field

Viseme	event

eEventId SPEI_VISEME

elParamType SPET_LPARAM_IS_UNKNOWN

wParam The	high	word	is	the
duration,	in	milliseconds,	of
the	current	viseme.	The	low
word	is	the	code	for	the
next	viseme.

lParam The	low	word	is	the	code	of
the	current	viseme.	The
high	word	is	the
SPVFEATURE	value

associated	with	the	current
viseme	(and	phoneme).

See	SPVISEMES	for	a	listing	of	the	SAPI	5	viseme	set.
The	SPEI_TTS_AUDIO_LEVEL	event	indicates	the	audio	has
reached	the	level	of	the	synthesis	at	any	given	point.

SPEVENT
Field

Audio	Level	event

eEventId SPEI_TTS_AUDIO_LEVEL

elParamType SPET_LPARAM_IS_UNDEFINED

wParam TTS	audio	level	(ULONG).

lParam NULL

For	an	example	of	how	to	use	TTS	events	in	an	application,	see
the	Text-to-Speech	Tutorial.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

White	Papers
The	following	items	are	covered	in	this	section:

SR	Properties	White	Paper
TTS	Engine	Vendor	Porting	Guide	White	Paper

SR	Engine	Vendor	Porting	Guide	White	Paper
Object	Tokens	and	Registry	Settings	White	Paper
VendorPreferred	Attribute

Simple	TTS	Guide	–	Speak	to	a	File	and	Speak	a	File
SAPI	5.1	64-bit	Issues

Speech	Telephony	Application	Guide
Using	Sample	Audio	Object	(SpAudioPlug)

Audio	Object

Compliance	Tests	White	Paper
Microsoft	Speech	SDK	Setup	5.1

XML	Schema	:	Grammar

XML	Schema	:	SAPI
XML	TTS	Tutorial
Text	Normalization
Using	Microsoft	Foundation	Class	(MFC)	to	Automate	SAPI

Persisting	Recognized	Wav	Audio	from	the	Speech
Recognition	Engine
Using	Wav	File	Input	with	the	Speech	Recognition	Engine

Microsoft	Speech	SDK	SAPI	5.1

SAPI	5.0	SR	Properties	White	Paper
	
	

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Introduction
This	document	describes	the	ISpProperties	elements	for	SAPI	5
compliant	SR	engines.	This	spec	will	serve	to	define	these	attributes
only	for	SR	engines.	Application	developers	hoping	to	build	a	SAPI	5
compliant	engine	should	reference	this	document.	For	more
information,	developers	should	refer	to	the	SAPI	SDK	help
documents.

ISpProperties
ISpProperties	is	an	interface	that	enables	the	SR	and	TTS	engines	to
get	or	set	various	attributes	for	an	object.	The	attributes	are	passed	to
the	engine	via	the	ISpProperties	interface.	ISpProperties	are	identified
by	a	unique	LONG	value.	SAPI	defines	certain	attributes	known	as
system	attributes.	The	range	of	these	attributes	is	from	0x0001	to
0xffff.	Vendor	ISpProperties	attributes	are	defined	by	a	unique	high
word	value	(two	ANSI	Characters	that	identify	the	engine	vendor).

Attributes	may	be	LONGs,	strings,	or	memory	addresses.

SR	Properties
The	following	table	lists	the	SR	properties	that	are	set	by	the
application	and	passed	to	the	SR	engine	via	SAPI.	These	attributes	are
not	required	for	SAPI	compliance.	However,	the	ranges	accompanied
by	the	attributes	are	required	values	and	the	exact	interpretation	of	the
values	is	left	to	the	SR	engine.	The	different	implementation	is
defined	by	each	property.	The	SAPI	ranges	and	defaults	for	each
property	are	also	shown.

NOTE:	The	attributes	are	associated	with	a	user	profile	and	written	in
the	registry	by	SAPI.	SAPI	detects	the	correct	settings.	The
application	should	not	write	attribute	changes	to	the	registry.	
dwAttrib	Value WCHAR	Value Meaning

SPPROP_RESOURCE_USAGE ResourceUsage

The	ResourceUsage
specifies	the	engine	CPU
consumption.	As	the
resource	usage	increases,	so
does	the	required	CPU
power.

SPPROP_HIGH_CONFIDENCE_THRESHOLD

SPPROP_NORMAL_CONFIDENCE_THRESHOLD

SPPROP_LOW_CONFIDENCE_THRESHOLD

HighConfidenceThreshold

NormalConfidenceThreshold

LowConfidenceThreshold

The	threshold	values	are
used	to	divide	a	confidence
scale	into	four	portions:
rejected,	low,	medium,	and
high.	The	location	of	the	low
confidence,	normal
confidence,	and	high
confidence	markers	control
how	the	confidence	of	a
word	is	labeled.	The
HighConfidenceThreshold
(HCT)	separates	the	high
and	medium	confidence
range.	The
NormalConfidenceThreshold
(NCT)	separates	the	medium
and	the	low	confidence
thresholds.	The
LowConfidenceThreshold
(LCT)	separates	the	low	and
rejected	confidence	range.	

If	the	all	three	confidences
are	equal	to	0,	then	all	words

will	have	high	confidence.	If
all	three	confidences	are
equal	to	100,	then	all	words
will	have	low	confidence.

SPPROP_RESPONSE_SPEED ResponseSpeed

This	indicates	the	amount	of
silence	the	engine	looks	for
before	completing	a
recognition.	This	attribute	is
used	when	the	recognition	is
not	ambiguous.	For	example,
in	the	case	of	a	context-free
grammar	(CFG)	which	has
two	sentences:	1)	new	game
please	and	2)	new	game,	a
non-ambiguous	recognition
would	be	“new	game
please.”

SPPROP_COMPLEX_RESPONSE_SPEED ComplexResponseSpeed

This	indicates	the	amount	of
silence	that	the	engine	will
look	for	before	completing	a
recognition.	This	attribute	is
used	when	the	recognition	is
ambiguous.	For	example,	in
the	case	of	a	CFG	which	has
two	sentences:	1)	new	game
please	and	2)	new	game,	an
ambiguous	recognition
would	be	“new	game.”	This
property’s	value	must	be
greater	than	the
ResponseSpeed	value.

SPPROP_ADAPTATION_ON AdaptationOn
Indicates	whether	the
recognition	engine	should
adapt	the	acoustic	model.

	
	

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

TTS	Engine	Vendor	Porting	Guide
	

Table	of	Contents
	
Overview	of	SAPI	5.0	Architecture
SAPI	Objects	and	Interfaces
Creating	and	Initializing	the	Engine	-	ISpObjectWithToken
Receiving	Calls	from	SAPI	-	ISpTTSEngine
				GetOutputFormat
				Speak
				Fragment	List	Example
Writing	Data	Back	to	SAPI	-	ISpTTSEngineSite
				Getting	Real-Time	Action	Requests
								Volume
								Rate
								Skip
				Queuing	Events
								Bookmarks
								Word	Boundaries
								Sentence	Boundaries
								Phonemes
								Visemes
				Queuing	Audio	Data
Creating	an	Engine	Properties	UI	-	ISpTokenUI
Using	SAPI	Lexicons
Appendix	A	-	SAPI	5	Phonemes

Appendix	B	-	SAPI	5	Visemes

Overview	of	SAPI	5.0	Architecture
	
The	Microsoft	Speech	API	(SAPI)	is	a	layer	of	software	which	sits
between	applications	and	speech	engines,	allowing	them	to
communicate	in	a	standardized	way.		One	of	its	main	goals	is
enabling	application	developers	to	use	speech	technology	in	a
simple	and	straightforward	way.		Another	goal	is	solving	some	of
the	more	basic	complications	of	developing	speech	engines,
such	as	audio	device	manipulation	and	threading	issues,	thus
allowing	engine	developers	to	focus	on	speech.
	
From	an	engine	vendor’s	point	of	view,	there	are	a	number	of
technical	advantages	to	using	SAPI	5	over	SAPI	4:
				§									The	SAPI	5	DDI	has	been	greatly	simplified.
				§									SAPI	5	can	handle	all	audio	format	conversion	for	the	TTS

engine.
				§									SAPI	5	parses	SAPI	5	XML	for	the	TTS	engine.	Engine

proprietary	tags	are	passed	to	the	engine	untouched,
allowing	the	engine	to	interpret	them.		

				§									SAPI	5	performs	parameter	validation	for	the	engine.
				§									SAPI	5	has	lexicon	management	features.

SAPI	Objects	and	Interfaces
	
There	are	two	main	objects	of	interest	to	a	TTS	Engine
developer:	the	SpVoice	object	(SAPI)	and	the	TTS	Engine	object
(refer	to	figure	2).		The	third	object	in	the	figure	is	a	UI
component	which	an	engine	may	or	may	not	implement.	
	
The	SpVoice	object	implements	two	interfaces	which	we	will	be
concerned	with	–	ISpVoice,	which	is	the	interface	which	the
application	uses	to	access	TTS	functionality,	and
ISpTTSEngineSite,	which	the	engine	uses	to	write	audio	data
and	queue	events.		The	TTS	Engine	must	implement	two
interfaces	as	well	–	ISpTTSEngine,	which	is	the	interface	through
which	SAPI	will	call	the	engine,	and	ISpObjectWithToken,	which
is	the	interface	through	which	SAPI	will	create	and	initialize	the
engine.		The	UI	object,	if	it	exists,	must	implement	ISpTokenUI,
through	which	it	will	be	accessed	by	the	SAPI	control	panel	(or,
potentially,	other	applications).	
	
For	the	most	part	this	document	is	not	concerned	with	ISpVoice,
and	so	it	won’t	be	covered	in	any	detail.		Each	of	the	other
interfaces,	however,	will	be	discussed	in	depth.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Creating	and	Initializing	the	Engine	-
ISpObjectWithToken
	
One	important	thing	to	realize	about	the	SAPI	5	architecture	is
that	while	SAPI	knows	about	TTS	Engines,	applications	only
know	about	TTS	voices.		The	difference	between	these	two	is
fairly	obvious	-	one	engine	implementation	can	potentially
support	any	number	of	different	voices,	with	the	only
differences	being	data	files,	parameters,	etc.		What	this	means
at	the	engine	level	is	that	an	engine	will	be	created	by	one	of	its
voices,	in	a	certain	sense.			
	
SAPI	5	uses	tokens	to	represent	resources	available	on	a
computer	(see	the	Object	Tokens	and	Registry	Settings	White
Paper	for	more	details),	including	TTS	voices.		These	tokens
contain	the	CLSID	of	the	objects	they	represent,	as	well	as
various	attributes	of	those	objects.		When	an	application	wishes
to	use	a	TTS	voice,	SAPI	will	get	that	voice's	token	from	the
registry.		Through	the	voice	token,	an	engine	will	be	cocreated
using	its	CLSID.			The	SpVoice	object	then	queries	the	engine	for
the	ISpObjectWithToken	interface,	through	which	it	calls
SetObjectToken.
	
	
Here	is	an	example	of	what	a	voice	token	might	look	like	in	the
registry	(voices	are	located	under
HKEY_LOCAL_MACHINE\SOFTWARE\MICROSOFT\Speech\Voices\Tokens):

	
	
	

	
	
The	SetObjectToken	call	gives	the	TTS	Engine	a	pointer	to	the
token	(and	thus	the	voice)	from	which	it	was	created,	which
gives	the	Engine	a	chance	to	initialize	itself	based	on
information	stored	in	the	token.		In	the	example	token	above,
the	VoiceData	and	VoiceDef	keys	in	the	token	allow	the	TTS
engine	to	load	the	appropriate	voice	data,	once	it	has	a	pointer
to	the	token.		Similarly,	the	Lex	and	LTS	subkeys	allow	the	TTS
engine	to	load	the	appropriate	lexicon	and	letter-to-sound	rules.	
	
	
Again,	for	more	details	on	registering	a	TTS	engine,	see	the
Object	Tokens	and	Registry	Settings	White	Paper.	

Receiving	Calls	from	SAPI	-	ISpTTSEngine
	
Once	an	engine	has	been	created	SAPI	will	begin	calling	the
engine	using	ISpTTSEngine.		ISpTTSEngine	has	only	two
methods	–	GetOutputFormat	and	Speak.	
	
GetOutputFormat	is	used	to	query	the	engine	about	a	specific
output	format	–	the	engine	should	examine	the	desired	output
format	and	return	to	the	SpVoice	object	the	closest	format	which
it	supports.		This	function	may	potentially	be	called	many	times
during	the	life	of	the	engine.
	

HRESULT	GetOutputFormat(
[in]	const	GUID	*	pTargetFmtId,
[in]	const	WAVEFORMATEX	*	pTargetWaveFormatEx,
[out]	GUID	*	pOutputFormatId,
[out]	WAVEFORMATEX	**

ppCoMemOutputWaveFormatEx
);

	
In	the	normal	case,	pTargetFmtId	will	be	SPDFID_WaveFormatEx,
and	pTargetWaveFormatEx	will	be	a	pointer	to	a
WAVEFORMATEX	structure	describing	the	desired	output
format.		In	this	case,	the	engine	should	set	pOutputFormatId	to
SPDFID_WaveFormatEx,	allocate	space	(using
ppCoMemOutputWaveFormatEx)	for	a	WAVEFORMATEX
structure,	and	set	it	to	the	closest	format	to
pTargetWaveFormatEx	it	supports.

	
If	pTargetFmtId	is	NULL,	the	engine	should	simply	return	to	SAPI
its	default	format.
	
NOTE:	If	pTargetFmtId	is	SPDFID_Text,	engines	can	do	whatever
they	please.		Essentially,	this	format	type	if	provided	for
debugging	purposes	–	it	is	not	required	that	any	engine	support
this	for	SAPI	5.0	compliance,	nor	is	it	required	that	engines	to	do
anything	specific	with	this	format	if	they	do	support	it.
	
See	the	Sample	TTS	Engine's	GetOutputFormat	implementation
for	more	details.
	
Speak	is	the	main	function	of	the	interface	–	it	passes	the
engine	the	text	to	be	rendered,	an	output	format	to	render	it	in,
and	an	output	site	to	which	the	engine	should	write	audio	data
and	events.		A	Speak	call	should	return	when	either	all	of	the
input	text	has	been	rendered,	or	the	engine	has	been	told	to
abort	the	call	by	the	SpVoice	object.		Let’s	look	at	the
parameters	in	more	detail.
	

HRESULT	Speak(
[in]DWORD	dwSpeakFlags,

						[in]REFGUID	rguidFormatId,
[in]const	WAVEFORMATEX	*	pWaveFormatEx,
[in]const	SPVTEXTFRAG*	pTextFragList,

						[in]ISpTTSEngineSite*	pOutputSite,
);

	

The	first	parameter	of	the	Speak	call,	dwSpeakFlags,	is	a
DWORD	which	will	have	one	of	two	values	–	0,	or
SPF_NLP_SPEAK_PUNC	(all	other	flags	in	the	SPEAKFLAGS
enumeration	are	masked	out,	since	they	are	handled	by	SAPI).	
If	the	value	is	SPF_NLP_SPEAK_PUNC,	the	engine	should	speak
all	punctuation	(e.g.	“This	is	a	sentence.”	should	be	expanded
to	“This	is	a	sentence	period”).
	
The	second	and	third	parameters	of	the	Speak	call	will	specify
the	output	format	which	the	engine	should	use	for	rendering	the
text	passed	in	for	this	call.		This	format	is	guaranteed	to	be	one
which	the	engine	told	SAPI	it	supports	using	a	previous
GetOutputFormat	call.		Again,	if	this	rguidFormatId	is
SPDFID_Text,	it	is	not	required	that	engines	support	this	format,
nor	is	it	required	that	engines	do	anything	specific	with	this
format	if	it	is	supported.
	
The	fourth	parameter	is	the	text	to	be	rendered	in	the	form	of	a
linked	list	of	SPVTEXTFRAGs.		Let’s	look	at	this	structure	in	more
detail.
	

typedef	struct	SPVTEXTFRAG
{
				struct	SPVTEXTFRAG	*pNext;
				SPVSTATE	State;
				LPCWSTR	pTextStart;
				ULONG	ulTextLen;
				ULONG	ulTextSrcOffset;
}	SPVTEXTFRAG;

pTextStart	is	a	pointer	to	the	beginning	of	the	text	associated

with	the	fragment.		ulTextLen	is	the	length	of	this	text,	in
WCHARs.		ulTextSrcOffset	is	the	offset	of	the	first	character	of
the	text	associated	with	the	fragment.		Finally,	State	is	the	SAPI
5.0	XML	state	associated	with	this	fragment	(see	the	XML
Schema	:	SAPI	white	paper	for	more	details	on	SAPI	5	XML
markup).
	

typedef	[restricted]	struct	SPVSTATE
{
				SPVACTIONS	eAction;
				LANGID	LangID;
				WORD	wReserved;
				long	EmphAdj;
				long	RateAdj;
				ULONG	Volume;
				SPVPITCH	PitchAdj;
				ULONG	SilenceMSecs;
				SPPHONEID	*pPhoneIds;
				SPPARTOFSPEECH	ePartOfSpeech;
				SPVCONTEXT	Context;
}	SPVSTATE;

	
eActions	is	an	enumerated	value	which	tells	the	engine	what	it
should	do	with	this	fragment.
	

typedef	enum	SPVACTIONS
{

				SPVA_Speak	=	0,
				SPVA_Silence,
				SPVA_Pronounce,
				SPVA_Bookmark,
				SPVA_SpellOut,
				SPVA_Section,
				SPVA_ParseUnknownTag
}	SPVACTIONS;

	
SPVA_Speak	(the	default	value)	means	that	the	engine	should
process	the	text	associated	with	the	fragment	and	render	it	in
the	proper	output	format.		SPVA_Silence	means	that	SAPI	was
passed	a	<Silence>	SAPI	5.0	XML	tag,	and	that	the	engine
should	write	SilenceMSecs	(see	structure	SPVSTATE)
milliseconds	of	silence.		SPVA_Pronounce	means	that	SAPI	was
passed	a	<Pron>	SAPI	5.0	XML	tag,	and	that	the	engine	should
use	pPhoneIds	(see	structure	SPVSTATE)	as	the	pronunciation	of
the	associated	text,	or	just	insert	the	pronunciation	if	there	is	no
associated	text.		SPVA_Bookmark	means	that	SAPI	was	passed	a
<Bookmark>	SAPI	5.0	XML	tag,	and	that	the	engine	should
write	a	Bookmark	event	(see	below	for	information	on	writing
events).		SPVA_SpellOut	means	that	the	engine	should	spell	out
the	associated	text	letter	by	letter,	including	punctuation	and
miscellaneous	characters	(and	render	this	expanded	version	of
the	text	in	the	proper	output	format).		SPVA_Section	is	currently
unused.			SPVA_ParseUnknownTag	means	that	a	non-SAPI	5.0
XML	tag	was	passed	to	SAPI	–	if	the	engine	supports	additional
tags,	it	should	attempt	to	parse	this	tag.		Otherwise,	it	should
just	ignore	it.
LANGID	will	be	zero,	unless	a	language	was	specified	to	SAPI
using	a	<Lang>	SAPI	5.0	XML	tag.
	

EmphAdj	will	be	zero,	unless	SAPI	was	passed	an	<Emph>	SAPI
5.0	XML	tag.
	
RateAdj	will	be	0,	unless	SAPI	was	passed	a	<Rate>	SAPI	5.0
XML	tag.		This	gives	the	absolute	rate	which	the	engine	should
use	to	render	the	text	associated	with	this	fragment.		NOTE:
the	engine	should	combine	these	values	with	values	obtained
through	ISpTTSEngineSite::GetRate	calls	to	arrive	at	a	final
value.
	
Volume	will	be	100,	unless	SAPI	was	passed	a	<Volume>	SAPI
5.0	XML	tag.		This	gives	the	absolute	volume	which	the	engine
should	use	to	render	the	text	associated	with	this	fragment.	
NOTE:	the	engine	should	combine	these	values	with	values
obtained	through	ISpTTSEngineSite::GetVolume	calls	to	arrive	at
a	final	value.
	
PitchAdj	will	have	a	MiddleAdj	of	zero	and	a	RangeAdj	of	zero,
unless	SAPI	was	passed	a	<Pitch>	SAPI	5.0	XML	tag.		This	gives
the	absolute	pitch	middle	and	range	which	the	engine	should
use	to	render	the	text	associated	with	this	fragment	(the	pitch
middle	is	used	to	raise	or	lower	the	overall	pitch	of	the	voice,
the	pitch	range	is	used	to	expand	or	contract	the	pitch	range	of
the	voice,	making	it	more	or	less	monotone).
	

typedef	struct	SPVPITCH
{
				long	MiddleAdj;
				long	RangeAdj;
}	SPVPITCH;

		
ePartOfSpeech	will	be	SPPS_Unknown	(see	SPPARTOFSPEECH)
unless	SAPI	was	passed	a	<PartOfSp>	SAPI	5.0	XML	tag.		This
part	of	speech	should	be	used	for	the	text	associated	with	this
fragment	(e.g.	to	disambiguate	a	word	with	multiple
pronunciations).
	
Finally,	the	pointers	within	Context	will	be	NULL	unless	SAPI	was
passed	a	<Context>	SAPI	5.0	XML	tag.
	

typedef	[restricted]	struct	SPVCONTEXT
{
				LPCWSTR	pCategory;
				LPCWSTR	pBefore;
				LPCWSTR	pAfter;
}	SPVCONTEXT;

	
This	field	can	be	used	to	disambiguate	items	in	the	text
associated	with	this	fragment	(e.g.	ambiguous	date	formats).
	
Let’s	look	at	an	example	of	a	fragment	list.
		Imagine	this	text	is	passed	to	SAPI:
	
"This	is	a	<PITCH	MIDDLE	=	'6'>	sample	piece	of	<PARTOFSP
PART	=	'Noun'>	text	</PARTOFSP>	which	will	<BOOKMARK
MARK	=	'1'/>	demonstrate	<VOLUME	LEVEL	=	'30'>	what	a
<VOLUME	LEVEL	=	'90'>	fragment	</VOLUME>	list	</VOLUME>
looks	like	</PITCH>	conceptually."

	
This	will	be	the	resulting	linked	list	of	SPVTEXTFRAGs	passed	to
the	TTS	Engine:
	

SPVTEXTFRAGs Element	1 Element	2

pNext Element	2 Element	3

State eAction SPVA_Speak SPVA_Speak

LangId 0 0

EmphAdj 0 0

RateAdj 0 0

Volume 100 100

PitchAdj MiddleAdj 0 6

RangeAdj 0 0

SilenceMSecs 0 0

pPhoneIds NULL NULL

ePartOfSpeech SPPS_Unknown SPPS_Unknown

Context pCategory NULL NULL

pBefore NULL NULL

pAfter NULL NULL

pTextStart “This	is	a
<PITCH	…“

“sample	piece
of		<PART…”

ulTextLen 10 16

ulTextSrcOffset 0 31

	

SPVTEXTFRAGs Element
3

Element	4 Element	5

pNext Element	4 Element	5 Element	6

State eAction SPVA_Speak SPVA_Speak SPVA_Bookmark

LangId 0 0 0

EmphAdj 0 0 0

RateAdj 0 0 0

Volume 100 100 100

PitchAdj MiddleAdj 6 6 6

RangeAdj 0 0 0

SilenceMSecs 0 0 0

pPhoneIds NULL NULL NULL

ePartOfSpeech SPPS_Noun SPPS_Unknown SPPS_Unknown

Context pCategory NULL NULL NULL

pBefore NULL NULL NULL

pAfter NULL NULL NULL

pTextStart “text
</PART…”

“which	will
<B…”

“1’/>
demonstrate…”

ulTextLen 5 11 1

ulTextSrcOffset 72 89 100

	

SPVTEXTFRAGs Element	6 Element	7 Element	8

pNext Element	7 Element	8 Element	9

State eAction SPVA_Speak SPVA_Speak SPVA_Speak

LangId 0 0 0

EmphAdj 0 0 0

RateAdj 0 0 0

Volume 100 30 90

PitchAdj MiddleAdj 6 6 6

RangeAdj 0 0 0

SilenceMSecs 0 0 0

pPhoneIds NULL NULL NULL

ePartOfSpeech SPPS_Unknown SPPS_Unknown SPPS_Unknown

Context pCategory NULL NULL NULL

pBefore NULL NULL NULL

pAfter NULL NULL NULL

pTextStart “demonstrate
<V…”

“what	a
<VOL…”

“fragment
</VOL…”

ulTextLen 12 7 9

ulTextSrcOffset 123 157 186

	

SPVTEXTFRAGs Element	9 Element	10 Element	11

pNext Element	10 Element	11 Element	12

State eAction SPVA_Speak SPVA_Speak SPVA_Speak

LangId 0 0 0

EmphAdj 0 0 0

RateAdj 0 0 0

Volume 30 100 100

PitchAdj MiddleAdj 6 6 0

RangeAdj 0 0 0

SilenceMSecs 0 0 0

pPhoneIds NULL NULL NULL

ePartOfSpeech SPPS_Unknown SPPS_Unknown SPPS_Unknown

Context pCategory NULL NULL NULL

pBefore NULL NULL NULL

pAfter NULL NULL NULL

pTextStart “list	</VOL…” “looks	like
</PIT…”

“conceptually.”

ulTextLen 5 11 14

ulTextSrcOffset 205 220 240

	
The	last	parameter	of	the	Speak	call	is	an	ISpTTSEngineSite
pointer	–	pOutputSite.		This	pointer	should	be	stored	by	the
engine,	as	it	will	be	used	to	write	audio	data	and	events	back	to
the	SpVoice	object,	as	well	as	to	poll	the	SpVoice	object	for	real-
time	action	requests.

Writing	Data	Back	to	SAPI	-	ISpTTSEngineSite

Getting	Real-Time	Action	Requests
	
Within	a	Speak	call,	an	Engine	should	call
ISpTTSEngineSite::GetActions	as	often	as	possible	to	ensure
near	real-time	processing	of	SAPI	actions.		This	is	an
inexpensive	call	–	it	simply	returns	a	DWORD	which	will	contain
one	or	more	values	from	the	SPVESACTIONS	enumeration.	
	

DWORD			GetActions(void);
	

typedef	enum	SPVESACTIONS
{
				SPVES_CONTINUE	=	0,
				SPVES_ABORT	=	(1L	<<	0),
				SPVES_SKIP	=	(1L	<<	1),
				SPVES_RATE	=	(1L	<<	2),
				SPVES_VOLUME	=	(1L	<<	3)
}	SPVESACTIONS;

SPVES_CONTINUE	is	the	default	case	(no	actions)	–	it	means	to
continue	processing	normally.		SPVES_ABORT	means	that	the
engine	should	abort	the	Speak	call	and	return	immediately.		The
other	three	cases	require	a	bit	more	explanation.
	
SPVES_VOLUME	–	the	engine	should	call
ISpTTSEngineSite::GetVolume,	which	will	return	a	new	volume

level.		The	engine	should	adjust	its	volume	level	accordingly.	
Note	that	when	no	XML	volume	has	been	specified,	the	level
returned	by	GetVolume	should	be	exactly	the	level	used	by	the
engine,	but	if	the	volume	is	already	affected	by	an	XML	tag,	the
final	volume	should	be	a	combination	of	the	two.	
	

HRESULT	GetVolume(
				[out]	USHORT	*pusVolume	
);

	
SPVES_RATE	–	the	engine	should	call
ISpTTSEngineSite::GetRate,	which	will	return	a	new	rate	level.	
The	engine	should	adjust	its	rate	level	accordingly.		Note	that,
similarly	to	volume,	XML	rate	levels	and	GetRate	rate	levels
should	be	combined	to	produce	the	final	rate.
	

HRESULT	GetRate(
				[out]	long	*pRateAdjust	
);

	
SPVES_SKIP	–	the	engine	should	call
ISpTTSEngineSite::GetSkipInfo,	which	will	return	a	type	of	unit	to
skip	(currently	only	sentences	are	supported)	and	the	number	of
such	units	to	skip.		This	number	can	be	positive	(skip	forward	in
the	text),	negative	(skip	backward	in	the	text),	or	zero	(skip	to
the	beginning	of	the	current	item).		The	engine	should	stop
writing	data	to	SAPI,	skip	the	appropriate	number	of	units	(or	as
many	as	it	can)	and	then	call	ISpTTSEngineSite::CompleteSkip
to	tell	SAPI	how	many	units	it	was	able	to	successfully	skip.		If	it
was	able	to	successfully	skip	the	entire	number	returned	by
GetSkipInfo,	the	engine	should	then	continue	rendering	text	at

the	appropriate	point.		Otherwise,	it	should	abort	the	current
Speak	call	and	return	immediately.		
	

HRESULT	GetSkipInfo(
				[out]	SPVSKIPTYPE	*peType,
				[out]	long	*plNumItems
);

	
HRESULT	CompleteSkip(
				[in]	long	ulNumSkipped
);

As	an	example,	imagine	an	engine	was	passed	this	text:
	

	“This	is	sentence	one.		This	is	sentence	two.		This	is
sentence	three.”
	
Now	suppose	that	the	engine	was	currently	rendering	the
second	sentence	when	it	discovered,	using	GetActions	and
GetSkipInfo,	that	it	was	being	asked	to	skip	+1	sentence.		The
engine	should	stop	rendering	the	second	sentence,	skip	forward
to	the	third	sentence,	call	CompleteSkip	with	a	parameter	of	+1,
and	begin	rendering	the	third	sentence.		Now	imagine	that	the
engine	was	asked	to	skip	–2	sentences.		The	engine	should
again	stop	rendering	the	second	sentence,	and	then	skip
backward	until	it	discovers	that	it	cannot	skip	the	appropriate
number.		It	would	then	call	CompleteSkip	with	a	parameter	of	–1
and	abort	its	Speak	call.

Queuing	Events

	
Events	are	structures	which	are	used	to	pass	information	from
the	engine	back	to	the	application.		The	engine	is	responsible
for	generating	certain	types	of	events,	and	then	handing	them
to	SAPI	through	the	function	ISpTTSEngineSite::AddEvents.		SAPI
will	then	take	care	of	firing	the	events	at	the	appropriate	times.
	

HRESULT	AddEvents(
[in]	const	SPEVENT*	pEventArray,
[in]	ULONG	ulCount

);
	
Engines	should	call	the	function
ISpTTSEngineSite::GetEventInterest,	which	will	tell	them	which
events	the	application	(and/or	SAPI)	is	interested	in	receiving.	

	
HRESULT	GetEventInterest(

[out]	ULONGLONG	*	pullEventInterest
);

	
This	function	will	return	(using	pullEventInterest)	a	ULONGLONG
which	will	contain	one	or	more	values	from	the	TTS	subset	of
the	SPEVENTENUM	enumeration:

§									SPEI_TTS_BOOKMARK
§									SPEI_WORD_BOUNDARY
§									SPEI_SENTENCE_BOUNDARY
§									SPEI_PHONEME
§									SPEI_VISEME

	
The	engine	must	then	generate	the	appropriate	types	of
events.		Here	is	the	structure	of	an	SPEVENT:
	
	

typedef	[restricted]	struct	SPEVENT
{
				WORD	eEventId;
				WORD	elParamType;
				ULONG	ulStreamNum;
				ULONGLONG	ullAudioStreamOffset;
				WPARAM	wParam;
				LPARAM	lParam;
}	SPEVENT;

	
Note	that	SAPI	is	responsible	for	setting	ulStreamNum	–	the
engine	need	not	worry	about	this	field.		ullAudioStreamOffset
should	in	each	case	be	the	byte	(not	sample)	offset	in	the	audio
stream	at	which	the	event	should	be	fired.		NOTE:	this	offset
should	correspond	to	a	sample	boundary.
	
Let’s	go	through	what	the	various	fields	of	the	SPEVENT
structure	correspond	to	for	each	event	type.
	
The	SPEI_TTS_BOOKMARK	event	indicates	that	the	TTS	engine
has	reached	a	bookmark.	Here	is	the	format	for	the	fields	of	the
Bookmark	event:

	

SPEVENT
Field

Bookmark	event

eEventId SPEI_TTS_BOOKMARK

elParamType SPET_LPARAM_IS_STRING

wParam Value	of	the	bookmark
string	when	converted	to
a	long	(_wtol(...)	can	be
used)

lParam Null	terminated	copy	of	
the	bookmark	string

For	example,	if	an	engine	was	passed	a	bookmark
corresponding	to	this	XML	marked	up	text:
	
																“<BOOKMARK	MARK=”this	is	a	bookmark”/>”
	
The	engine	would	need	to	generate	an	event	whose	lParam	was
“this	is	a	bookmark”.		If	the	engine	was	passed	a	bookmark
corresponding	to	this	XML	marked	up	text:
	
																“<BOOKMARK	MARK='1'/>”
	
The	engine	would	need	to	generate	an	event	whose	wParam
was	equal	to	the	integer,	one.
	
The	SPEI_WORD_BOUNDARY	event	indicates	that	the	TTS	engine

has	started	synthesizing	a	word.		Here	is	the	format	for	the
fields	of	the	word	boundary	event:
	

SPEVENT
Field

Word	Boundary	event

eEventId SPEI_WORD_BOUNDARY

elParamType SPET_LPARAM_IS_UNKNOWN

wParam Character	offset	of	the
beginning	of	the	word	being
synthesized.

lParam Character	length	of	the
word	in	the	current	input
stream	being	synthesized

	
The	SPEI_SENTENCE_BOUNDARY	event	indicates	that	the	TTS
engine	has	started	synthesizing	a	sentence.		Here	is	the	format
for	the	fields	of	the	sentence	boundary	event:
	

SPEVENT
Field

Sentence	Boundary
event

eEventId SPEI_SENTENCE_BOUNDARY

elParamType SPET_LPARAM_IS_UNKNOWN

wParam Character	offset	of	the
beginning	of	the	sentence
being	synthesized.

lParam Character	length	of	the
sentence	in	the	current
input	stream	being
synthesized

	
The	SPEI_PHONEME	event	indicates	that	the	TTS	engine	has
synthesized	a	phoneme.		Here	is	the	format	for	the	fields	of	the
phoneme	event:
	

SPEVENT
Field

Phoneme	event

eEventId SPEI_PHONEME

elParamType SPET_LPARAM_IS_UNKNOWN

wParam The	high	word	is	the
duration	in	milliseconds	of
the	current	phoneme.	The
low	word	is	the	PhoneID	of
the	next	phoneme.

lParam The	low	word	is	the	PhoneID
of	the	current	phoneme.
The	high	word	is	the
SPVFEATURE	value
associated	with	the	current
phoneme.

	
See	Appendix	A	for	the	SAPI	5.0	phoneme	set.	
	

SPVFEATURE	contains	two	flags	–	SPVFEATURE_STRESSED,
which	means	that	the	phoneme	is	stressed	relative	to	the	other
phonemes	of	a	word	(stress	is	usually	associated	with	the	vowel
of	a	stressed	syllable),	while	SPVFEATURE_EMPHASIS	means
that	the	phoneme	is	part	of	an	emphasized	word.		That	is,	stress
is	a	syllabic	phenomenon	within	a	word,	while	emphasis	is	a
word-level	phenomenon	within	a	sentence.
	
The	SPEI_VISEME	event	indicates	that	the	TTS	engine	has
synthesized	a	viseme.		Here	is	the	format	for	the	fields	of	the
viseme	event:
	

SPEVENT
Field

Viseme	event

eEventId SPEI_VISEME

elParamType SPET_LPARAM_IS_UNKNOWN

wParam The	high	word	is	the
duration	in	milliseconds	of
the	current	viseme.	The	low
word	is	the	code	for	the
next	viseme

lParam The	low	word	is	the	code	of
the	current	viseme.	The
high	word	is	the
SPVFEATURE	value
associated	with	the	current
viseme	(and	phoneme).

	
The	SAPI	visemes	are	based	off	the	Disney	13	Visemes	and	are

described	in	Appendix	B	for	the	SAPI	American	English	phoneme
set.	

Queuing	Audio	Data
	
After	an	engine	has	queued	events,	it	should	write	audio	data	to
the	output	site	in	the	appropriate	format.		NOTE:		the	order	of
these	two	events	is	important	–	events	should	not	be	queued
after	their	associated	audio	data	has	already	been	written	or
they	cannot	be	fired	at	the	proper	times.		The	function
ISpTTSEngineSite::Write	is	used	to	write	audio	data.
	

HRESULT	Write(
						const	void*	pBuff,

ULONG	cb,
ULONG	*pcbWritten

);
	
This	function	is	straightforward	–	pBuff	points	to	a	buffer	of
audio	data	to	be	written	to	the	output	site,	cb	is	the	number	of
bytes	(not	samples)	to	be	written,	and	pcbWritten	will	return	the
number	of	bytes	actually	written	(which	should	be	the	same	as
cb,	assuming	nothing	has	gone	wrong).		NOTE:		only	complete
samples	should	be	written.		If	the	Write	function	returns
SP_AUDIO_STOPPED	the	audio	device	has	been	stopped	and	the
Speak	call	should	abort	immediately.
	
It	should	be	noted	that	if	an	engine	(from	the	application's
perspective,	a	voice)	is	paused	(using	ISpVoice::Pause),	SAPI	will
block	an	ISpTTSEngineSite::Write	call	until	the	engine	is	to
resume.		The	same	thing	will	happen	if	an	alert	priority	voice

interrupts	a	normal	priority	voice	(see	ISpVoice::SetPriority	for
more	information	on	voice	priorities).		

Creating	an	Engine	Properties	UI	-	ISpTokenUI
	
TTS	Engines	may	wish	to	supply	various	UI	components	-	one
example	is	an	Engine	Properties	component	which	users	can
access	through	the	SAPI	5.0	control	panel.		SAPI	provides
mechanisms	for	engines	to	describe	what	UI	components	they
have,	and	for	applications	to	request	the	display	of	these
components.		
	
The	UI	components	that	an	engine	supports	should	be	contained
within	the	engine	voice's	object	tokens	(refer	to	the	Object
Tokens	and	Registry	Settings	White	Paper	for	more	discussion	of
tokens)	within	a	UI	subkey.		Within	this	key	should	be	subkeys
for	each	UI	component	the	engine	implements.		For	example,	an
engine	properties	component	would	be	in
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Speech\Voices\Tokens\
{Voice	Name}\UI\EngineProperties.		The	EngineProperties	key
would	then	contain	the	CLSID	of	the	class	to	be	created	when
this	UI	component	is	displayed.		The	engine	setup	should	install
and	register	this	class,	and	the	class	must	implement	the
interface	ISpTokenUI.
	
An	application	can	then	see	if	a	particular	UI	component	is
supported	by	an	engine	by	calling	ISpTokenUI::IsSupportedUI	on
the	engine's	object	token.
	

[local]	HRESULT	IsUISupported(
				[in]	const	WCHAR	*pszTypeOfUI,
				[in]	void	*pvExtraData,
				[in]	ULONG	cbExtraData,

				[in]	IUnknown	*punkObject,
				[out]	BOOL	*pfSupported
);

	
Here	is	an	example	implementation	of	IsUISupported:
	

STDMETHODIMP	EnginePropertiesUI::IsUISupported(
				const	WCHAR*	pszTypeOfUI,	
				void	*	/*pvExtraData*/,
				ULONG	/*cbExtraData*/,
				IUnknown	*	/*punkObject*/,
				BOOL	*pfSupported)
{
				*pfSupported	=	false;
	
				if	(wcscmp(pszTypeOfUI,	SPDUI_EngineProperties)	==
0)
				{
								*pfSupported	=	true;
				}
	
				return	S_OK;
}

	
SPDUI_EngineProperties	is	just	the	string,	"EngineProperties"	-
this	is	the	string	which	the	SAPI	5.0	control	panel	uses	to	query

engines	for	UI	components	to	be	displayed	when	the	user	clicks
the	"Settings"	button.		If	this	function	call	returns	true	(using
pfSupported),	the	application	can	then	call
ISpTokenUI::DisplayUI	to	display	the	UI	component.
	

[local]	HRESULT	DisplayUI(
				[in]	HWND	hwndParent,
				[in]	const	WCHAR	*	pszTitle,
				[in]	const	WCHAR	*	pszTypeOfUI,
				[in]	void	*	pvExtraData,
				[in]	ULONG	cbExtraData,
				[in]	ISpObjectToken	*	pToken,
				[in]	IUnknown	*	punkObject
);

	
Here	is	an	example	implementation	of	DisplayUI:
	

STDMETHODIMP	SpTtsEngUI::DisplayUI(
				HWND	hwndParent,	
				const	WCHAR	*	pszTitle,	
				const	WCHAR	*	pszTypeOfUI,	
				void	*	/*	pvExtraData	*/,
				ULONG	/*	cbExtraData	*/,
				ISpObjectToken	*	pToken,	
				IUnknown	*	/*	punkObject	*/)
{
				HRESULT	hr	=	S_OK;

				if	(SUCCEEDED(hr))
				{
								if	(wcscmp(pszTypeOfUI,	SPDUI_EngineProperties)
==	0)
								{

												EnginePropertiesDialog	dlg;
												dlg.hInstance	=	g_hInstance;
												dlg.hwndParent	=	hwndParent;
												hr	=	dlg.Run();	
								}
				}

				return	hr;
}

Using	SAPI	Lexicons
	
SAPI	provides	lexicons	so	that	users	and	applications	may
specify	pronunciation	and	part	of	speech	information	for	words
important	to	them.		As	such,	all	SAPI	compliant	TTS	engines
should	use	these	lexicons	to	guarantee	uniformity	of
pronunciation	and	part	of	speech	information.		
	
There	are	two	types	of	lexicons	in	SAPI:
				§									User	Lexicons:		Each	user	who	logs	onto	a	computer	will
have	a	User	Lexicon.		These	are	initially	empty,	but	can	have
words	added	to	them	either	programmatically,	or	using	an
engine's	add/remove	words	UI	component	(for	example,	the
sample	application	Dictation	Pad	provides	an	Add/Remove
Words	dialog).
				§									Application	Lexicons:		Applications	can	create	and	ship
their	own	lexicons	of	specialized	words	-	these	are	read	only.
	
Each	of	these	lexicon	types	implements	the	ISpLexicon	interface
and	can	be	created	directly,	but	SAPI	provides	a	Container
Lexicon	class	which	combines	the	user	lexicon	and	all
application	lexicons	into	a	single	entity,	making	manipulating
the	lexicon	information	much	simpler.		Here	is	an	example	of
how	to	create	a	Container	Lexicon	(which	will	contain	the	user
lexicon	and	all	the	application	lexicons):
	

CComPtr<ISpContainerLexicon>	cpContainerLexicon;
	
cpContainerLexicon.CoCreateInstance(CLSID_SpLexicon);

	
The	main	lexicon	function	engines	will	want	to	use	is
ISpLexicon::GetPronunciations:
	

HRESULT	GetPronunciations(
				[in]	const	WCHAR	*pszWord,
				[in]	LANGID	LangId,
				[in]	DWORD	dwFlags,
				[out][in]	SPWORDPRONUNCIATIONLIST
*pWordPronunciationList
);

	
Here	is	an	example	of	how	to	get	pronunciations	out	of	a
Container	Lexicon:
	

HRESULT	hr	=	S_OK;
DWORD	dwLexFlags	=	eLEXTYPE_USER	|	eLEXTYPE_APP;
SPWORDPRONUNCIATIONLIST	SPList;
	
ZeroMemory(&SPList,	sizeof(SPWORDPRONUNCIATIONLIST
));
	
hr	=	cpContainerLexicon->GetPronunciations(pszWord,
1033,	dwLexFlags,	&SPList);
	
if	(SUCCEEDED(hr))
{

				for	(SPWORDPRONUNCIATION	*pWordPron	=
SPList.pFirstWordPronunciation;	pWordPron;	
										pWordPron	=	pWordPron->pNextWordPronunciation)
				{
								//---	Do	something	with	each	pronunciation
				}
}
	
if	(SPList.pvBuffer)
{
				::CoTaskMemFree(SPList.pvBuffer);
}

	
SPWORDPRONUNCIATIONLIST	is	the	structure	SAPI	uses	to
return	a	list	of	pronunciations	for	a	word:
	

typedef	struct	SPWORDPRONUNCIATIONLIST
{
				ULONG	ulSize;
				BYTE	*pvBuffer;
				SPWORDPRONUNCIATION	*pFirstWordPronunciation;
}	SPWORDPRONUNCIATIONLIST;

	
This	structure	should	be	initialized	to	zeroes	before
GetPronunciations	is	called	(see	the	ZeroMemory	call	in	the
sample	code,	above).		Furthermore,	the	memory	allocated	for

the	pronunciations	which	are	returned	in	this	structure	must	be
freed	by	the	engine	after	GetPronunciations	is	called	-	this
memory	is	all	pointed	to	by	pvBuffer,	hence	a	single
::CoTaskMemFree	call	will	free	all	of	the	allocated	memory	(see
the	sample	code,	above).		SPWORDPRONUNCIATIONLIST	is	just	a
linked	list	of	SPWORDPRONUNCIATIONs:
	

typedef	[restricted]	struct	SPWORDPRONUNCIATION
{
				struct	SPWORDPRONUNCIATION
*pNextWordPronunciation;
				SPLEXICONTYPE	eLexiconType;
				LANGID	LangID;
				WORD	wReserved;
				SPPARTOFSPEECH	ePartOfSpeech;
				SPPHONEID	szPronunciation[1];
}	SPWORDPRONUNCIATION;

	
eLexiconType	indicates	which	type	of	lexicon	this	pronunciation
came	from	-	in	the	above	sample	code,	eLexiconType	will	be
either	eLEXTYPE_USER	or	eLEXTYPE_APP	for	each	returned
SPWORDPRONUNICATION.		szPronunciation	is	a	NULL-terminated
array	of	SPPHONEIDs	which	runs	of	the	end	of	the
SPWORDPRONUNCIATION	structure	into	the	pvBuffer	member	of
SPWORDPRONUNCIATIONLIST;
	
If	a	word	has	a	pronunciation	in	the	User	Lexicon,	that
pronunciation	should	take	precedence	over	pronunciations	in
engine	internal	lexicons	and	pronunciations	in	Application
Lexicons.		Application	Lexicon	pronunciations	should	similarly

take	precedence	over	pronunciations	in	engine	internal
lexicons.		
	
For	more	information	on	SAPI	Lexicons,	including	adding	and
removing	words	from	the	User	Lexicon,	or	using	the	basic	SAPI
Lexicon	classes	(SpCompressedLexicon,
SpUncompressedLexicon)	for	an	engines	internal	lexicons,	see
the	Lexicon	Manager	section).		

Appendix	A	-	SAPI	5	Phonemes
	

SYM Example PhoneID

- syllable	boundary
(hyphen)

1

! Sentence	terminator
(exclamation	mark)

2

& word	boundary 3

, Sentence	terminator
(comma)

4

. Sentence	terminator
(period)

5

? Sentence	terminator
(question	mark)

6

_ Silence	(underscore) 7

1 primary	stress 8

2 secondary	stress 9

aa father 10

ae cat 11

ah cut 12

ao dog 13

aw foul 14

ax ago 15

ay bite 16

b big 17

ch chin 18

d dig 19

dh then 20

eh pet 21

er fur 22

ey ate 23

f fork 24

g gut 25

h help 26

ih fill 27

iy feel 28

jh joy 29

k cut 30

l lid 31

m mat 32

n no 33

ng sing 34

ow go 35

oy toy 36

p put 37

r red 38

s sit 39

sh she 40

t talk 41

th thin 42

uh book 43

uw too 44

v vat 45

w with 46

y yard 47

z zap 48

zh pleasure 49

	

Appendix	B	-	SAPI	5	Visemes
	

VISEME Described
SAPI
Phonemes

SP_VISEME_0			 Silence

SP_VISEME_1 ae,	ax,	ah

SP_VISEME_2 aa

SP_VISEME_3 ao

SP_VISEME_4 ey,	eh,	uh

SP_VISEME_5							 er

SP_VISEME_6							 y,	iy,	ih,	ix

SP_VISEME_7							 w,	uw

SP_VISEME_8							 ow

SP_VISEME_9 aw

SP_VISEME_10 oy

SP_VISEME_11 ay

SP_VISEME_12 h

SP_VISEME_13 r

SP_VISEME_14						 l

SP_VISEME_15 s,	z

SP_VISEME_16 sh,	ch,	jh,
zh

SP_VISEME_17 th,	dh

SP_VISEME_18 f,	v

SP_VISEME_19						 d,	t,	n

SP_VISEME_20						 k,	g,	ng

SP_VISEME_21 p,	b,	m

	
	

	

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SAPI	Speech	Recognition	Engine	Guide
	
	

1									Contents
SAPI	Speech	Recognition	Engine	Guide
1								Contents
2								Summary
3								Introduction
3.1												SAPI	SR	OBJECTS	AND	INTERFACES
3.2												SAMPLE	SR	ENGINE
4						Engine	Initialization	and	Setup
4.1												ENGINE	CREATION
4.2												OBJECT	TOKEN	LAYOUT
4.3												SETOBJECTTOKEN
4.4												RECOPROFILES
4.5												RECOCONTEXTS
4.6												RECOGNIZER	PROPERTIES
5								Grammar	handling
5.1												GRAMMAR	CREATION	AND	DELETION
5.2							CFG	GRAMMARS
5.2.1																Introduction	and	terminology
5.2.2																Grammar	Notifications
5.2.3																Word	Notifications
5.2.4																Rule	Notifications
5.2.5																States
5.2.6																Transitions
5.2.7																Special	Transitions

5.2.8																Semantic	Properties
5.2.9																Additional	topics
5.3												DICTATION	GRAMMARS
5.3.1																Language	model	adaptation
5.4												PROPRIETARY	GRAMMARS
5.4.1																Porting	other	grammar	formats
6								Lexicon	handling
6.1												USING	LEXICONS
6.2												PHONE	CONVERTERS
7								Recognition	and	audio
7.1												RECOGNIZESTREAM
7.1.1																Active	always	state
7.2												READING	AUDIO
7.2.1																How	audio	formats	are	represented	in	SAPI
7.2.2																Setting	the	audio	format
7.2.3																Reading	data
7.2.4																Information	about	the	audio	input
7.2.5																Setting	the	input	gain
7.3												THREADING	MODEL
7.4												SYNCHRONIZATION
7.4.1																Pause	and	auto-pause
7.5												EVENTS	AND	RECOGNITIONS
7.5.1																Standard	events
7.5.2																Event	ordering
7.5.3																Other	events

7.6												COMPLETION	OF	PROCESSING
8								Recognition	Results
8.1												RECOGNITION	CALL
8.2												DICTATION	PHRASES
8.3							CFG	PHRASES
8.4												CONFIDENCE	SCORING	AND	REJECTION
8.4.1																Word	Confidence
8.4.2																Property	and	Rule	Confidence
8.4.3																Required	Confidence	and	Rejection
8.4.4																Ambiguous	Results
8.5												INVERSE	TEXT	NORMALIZATION	(ITN)
8.6												INTERPRETERS
9								Alternates
9.1												RETURNING	ALTERNATES	IN	A	RECOGNITION
9.2												ALTERNATES	ANALYZER
10								User-Interface
11												Engine	extensions
11.1												IMPORTANT	NOTES	ABOUT	COM	INTERFACE	POINTER
HANDLING	BY	THE	SR	EXTENSION	AGGREGATES
	
	

2									Summary
	
This	document	describes	fully	the	Speech	Recognition	engine
interface	in	SAPI	5.0.	Speech	Recognition	engines	and
applications	use	this	interface	to	connect	to	SAPI.	This
document	is	aimed	at	engine	vendors	wishing	to	port	their	SR
engine	using	SAPI	5.0,	and	at	general	developers	who	are
interested	in	understanding	more	about	SAPI.	This	document
explains	which	interfaces	and	objects	SAPI	implements,	and
which	interfaces	an	SR	engine	should	implement.	It	describes
how	engines	are	registered	and	initialized;	how	grammar	and
lexicon	information	is	communicated	to	the	engine;	how	engines
read	data	and	perform	recognition;	and	how	engines	return
events	and	results	back	to	the	application.
	

3									Introduction
The	Microsoft	Speech	API	(SAPI)	is	a	software	layer	used	by
speech-enabled	applications	to	communicate	with	Speech
Recognition	(SR)	engines	and	Text-to-Speech	(TTS)	engines.
SAPI	includes	an	Application	Programming	Interface	(API)	and	a
Device	Driver	Interface	(DDI).	Applications	communicate	with
SAPI	using	the	API	layer	and	speech	engines	communicate	with
SAPI	using	the	DDI	layer.	
	
A	speech-enabled	application	and	an	SR	engine	do	not	directly
communicate	with	each	other	–	all	communication	is	done	using
SAPI.	SAPI	controls	a	number	of	aspects	of	a	speech	system,
such	as:
	

·								Controlling	audio	input,	whether	from	a	microphone,	files,
or	a	custom	audio	source;	and	converting	audio	data	to	a
valid	engine	format.

·								Loading	grammar	files,	whether	dynamically	created	or
created	from	memory,	URL	or	file;	and	resolving	grammar
imports	and	grammar	editing.

·								Compiling	standard	SAPI	XML	grammar	format,	and
conversion	of	custom	grammar	formats,	and	parsing
semantic	tags	in	results.

·								Sharing	of	recognition	across	multiple	applications	using
the	shared	engine,	as	well	as	all	marshaling	between
engine	and	applications.

·								Returning	results	and	other	information	back	to	the
application	and	interacting	with	its	message	loop	or	other
notification	method.	Using	these	methods,	an	engine	can
have	a	much	simpler	threading	model	than	in	SAPI	4,
because	SAPI	5	does	much	of	the	thread	handling.

·								Storing	audio	and	serializing	results	for	later	analysis.
·								Ensuring	that	applications	do	not	cause	errors	–
preventing	applications	from	calling	the	engine	with	invalid
parameters,	and	dealing	with	applications	hanging	or
crashing.

	
The	SR	engine	performs	the	following	tasks:
	

·								Uses	SAPI	grammar	interfaces	and	loads	dictation.
·								Performs	recognition.
·								Polls	SAPI	for	information	about	grammar	and	state
changes.

·								Generates	recognitions	and	other	events	to	provide
information	to	the	application.

	

3.1							SAPI	SR	Objects	and	Interfaces
	
In	order	for	an	SR	engine	to	be	a	SAPI	5	engine,	it	must
implement	at	least	one	COM	object.	Each	instance	of	this	object
represents	one	SR	engine	instance.	The	main	interface	this
object	must	implement	is	the	ISpSREngine	interface.	SAPI	calls
the	engine	using	the	methods	of	this	interface	to	pass	details	of
recognition	grammars.	It	also	uses	these	methods	to	inform	the
engine	when	to	start	and	stop	recognition.	SAPI	itself
implements	the	interface	ISpSREngineSite.	A	pointer	to	this	is
passed	to	the	engine	and	the	engine	calls	SAPI	using	this
interface	to	read	audio,	and	return	recognition	results.
	
ISpSREngine	is	the	main	interface	to	be	implemented,	but	there
are	other	interfaces	that	an	engine	may	implement.	The	SR
engine	can	implement	the	ISpObjectWithToken	interface.	This
provides	a	mechanism	for	the	engine	to	query	and	edit
information	about	the	object	token	in	the	registry	used	to	create
the	engine.	Information	about	object	tokens	is	provided	in	the
Object	Tokens	and	Registry	Settings	White	Paper	and	in
SetObjectToken.
	
There	are	two	other	interfaces	that	the	engine	can	also
implement.	Each	needs	to	be	implemented	in	a	separate	COM
object,	because	SAPI	needs	to	create	and	delete	them
independently	of	the	main	engine.	These	interfaces	are:
	

·								ISpSRAlternates,	which	can	be	used	by	the	SR	engine	to
generate	alternates	for	dictation	results.	It	is	possible	to
generate	alternates	without	this	interface,	but	this
interface	generates	alternates	off-line,	after	the	result	has

been	serialized.	(See	Alternates).
·								ISpTokenUI	implements	UI	components	that	can	be
initialized	from	an	application.	These	can	be	used	to
perform	user	training,	add	and	remove	user	words,	and
calibrate	the	microphone.	(See	User-Interface)

	
The	engine	can	also	implement	another	COM	object	enabling
engine-specific	calls	between	the	application	and	the	engine.
This	object	can	implement	any	interface,	which	the	application
is	able	to	use	QueryInterface	for.	(See	Engine	extensions)

	

3.2							Sample	SR	Engine
	
The	SAPI	5.0	SDK	contains	working	Microsoft	speech	recognition
engines	for	US	English,	Japanese	and	Chinese.	These	engines
are	not	shipped	with	source.	The	SDK	also	contains	a	Sample	SR
Engine,	which	is	shipped	with	source	(In	directory	Microsoft
Speech	SDK5.0\Samples\CPP\Engines\SR).	This	is	a	sample
engine	–	it	implements	all	the	functionality	of	an	SR	engine	and
can	be	created	and	used	in	applications,	but	it	does	not	actually
perform	any	recognition	–	instead	it	generates	valid,	but
random,	results.	This	is	very	useful	example	code	for
understanding	how	a	real	SR	engine	might	be	implemented.
	

4									Engine	Initialization	and	Setup
	

4.1							Engine	Creation
	
When	an	application	wants	to	perform	recognition,	it	can	create
a	recognizer	in	one	of	two	ways.	The	application	can	create	an
in-process	(InProc)	ISpRecognizer	object.	In	this	case,	SAPI
creates	the	SR	engine	COM	object	from	the	object	token
representing	an	engine.	Alternatively,	an	application	can	create
the	shared	recognizer.	In	this	case,	SAPI	will	create	the	SR
engine	in	a	separate	process	(named	sapisvr.exe)	and	all
applications	will	share	this	recognizer.	This	process	is
completely	invisible	to	the	SR	engine	and	all	marshaling	is
handled	by	SAPI.
	
In	order	to	create	the	SR	engine,	SAPI	uses	the	SetRecognizer
call	to	look	at	the	object	token	of	the	default	recognizer	or	the
object	token	that	the	application	has	specified.	The	object	token
contains	the	class	ID	(CLSID)	of	the	main	SR	engine	and	this
class	is	created.	The	SR	engine	COM	classes	must	register
themselves	with	“ThreadingModel	=	Both”	or	they	may	not	be
successfully	created.
	
SetSite	on	the	ISpSREngine	interface	is	then	called	to	give	the
engine	a	reference	to	the	ISpSREngineSite	interface	it	will	use	to
call	back	to	SAPI.	Like	all	COM	interfaces,	the	engine	should	use
AddRef	to	maintain	the	correct	reference	count.
	

4.2							Object	token	layout
	
As	part	of	the	SR	engine	installation	process,	an	object	token	is
added	that	represents	the	engine	into	the	user’s	system.
Otherwise,	SAPI	will	have	no	information	about	the	SR	engine.
To	add	an	object	token,	add	a	key	to	this	point	in	the	registry:
					
HKEY_LOCAL_MACHINE\Software\Microsoft\Speech\Recognizers\Tokens
	
On	a	computer	with	SAPI	5	installed,	there	are	several	registry
keys	here	for	the	Microsoft	English,	Chinese,	Japanese	and
Sample	SR	Engine.
	
Inside	this	key	there	must	be	the	value	CLSID	containing	the
CLSID	of	the	main	SR	engine	class.	Using	this	key	SAPI
determines	how	to	create	the	engine.	There	are	values	for	the
other	CLSIDs	that	the	engine	can	implement	–	AlternatesCLSID
for	the	class	implementing	the	ISpSRAlternates	alternates
analyzer,	and	RecoExtension	for	the	class	implementing	any
engine-specific	private	call	interfaces.	The	key	should	also
contain	a	{Default}	value	set	with	the	name	of	the	engine	so
that	the	Speech	properties	in	Control	Panel	can	display	it.
	
In	this	key,	there	can	also	be	a	subkey	Attributes,	used	by
applications	to	query	for	engines	matching	certain	attributes.
Typically,	the	engine	sets	a	value	Language	to	indicate	which
languages	the	engine	supports;	Dictation	to	indicate	the	engine
supports	dictation;	CommandAndControl	to	indicate	the	engine
supports	command	and	control,	and	so	on.	(See	the	Object
Tokens	and	Registry	Settings	White	Paper	for	more	information
on	object	tokens).

	
There	can	also	be	a	key	UI	indicating	the	types	of	user-interface
components	the	engine	supports	(See	User-Interface).
	

4.3							SetObjectToken
	
Once	SAPI	creates	the	SR	engine	COM	object,	it	determines	if
the	engine	supports	the	ISpObjectWithToken	interface.	If	it	does,
SetObjectToken	is	called.	This	passes	a	pointer	to	the	object
token	this	engine	was	created	from.	This	is	useful	for	two
reasons:

·								The	engine	can	use	the	token	to	store	information.	It	can
store	information	directly	in	the	object	token	using	the
ISpDataKey	methods,	or	it	can	store	file	paths	to	other
engine	data.	The	ISpObjectToken	interface	method,
GetStorageFileName,	provides	an	easy	way	for	an	engine	to
find	a	file	path	to	store	data.	This	path	is	stored	in	the	Files
subkey	of	the	engine	object	token.

·								The	engine	can	also	read	information	from	the	token,	such
as	file	paths	set	during	install,	or	user	options	set	using	an
engine	properties	UI	component.	It	is	also	possible	for
several	object	tokens	to	share	the	same	engine	CLSID.	For
example,	they	can	share	the	CLSID	for	different	language
engines,	telephony,	or	desktop	variants	of	the	engine.	In
this	case,	the	engine	needs	to	know	from	which	object
token	it	is	being	created.

	

4.4							RecoProfiles
	
SetRecoProfile	is	called	next	to	give	the	engine	an
ISpObjectToken	pointer	referring	to	the	current	user	profile.
RecoProfiles	are	added	or	removed	by	the	user	inside	Speech
properties	in	Control	Panel.	The	engine	can	create	a	subkey
under	the	profile	object	token	and	use	it	to	store	any	data.	The
engine	must	store	the	data	in	a	subkey	named	after	its	CLSID.
This	prevents	other	engines	on	the	system	recognizing	the
same	profile.
	
To	provide	user	enrollment,	the	engine	implements	a	UI
component	User	Training	(See	User-Interface)
(SPDUI_UserTraining	is	defined	as	this	in	sapi.idl).	This	is
instantiated	using	Control	Panel->Speech	properties->SR	tab-
>Train	Profile.	Engines	can	also	request	that	an	application
display	the	UI	using	AddEvent	(See	Events	and	Recognitions)	to
request	UI.
	
The	user-training	UI	might	produce	some	adapted	model	files.
These	can	be	saved	and	their	location	stored	in	the	RecoProfile
object	token.	The	engine	can	read	the	location	of	these	files
from	the	object	token	later.
	

4.5							RecoContexts
	
Each	application	using	speech	has	at	least	one	RecoContext
object	implementing	ISpRecoContext.	It	is	from	this	interface
that	the	application	creates	and	loads	grammars	and	activates
recognition.	SAPI	informs	the	SR	engine	of	each	RecoContext
associated	with	it	using	OnCreateRecoContext	and
OnDeleteRecoContext.	The	SR	engine	returns	a	pointer	to	SAPI
from	the	OnCreateRecoContext	function,	which	is	then	passed
to	the	engine	in	any	future	calls	that	need	to	refer	to	the
RecoContext.	It	is	not	essential	for	an	engine	to	keep	track	of
each	RecoContext	unless	it	is	using	private	calls	or	proprietary
grammars.
	

4.6							Recognizer	Properties
	
SAPI	provides	a	means	for	applications	to	set	certain	settings
and	configurations	on	the	SR	engine.	This	is	done	using	the
application	calling	methods	on	the	ISpProperties	interface,
implemented	on	the	RecoContext	objects.	There	are	four
methods	on	this	interface	to	get	and	set	string	and	integer
values.	When	these	methods	are	called,	SAPI	calls	equivalent
methods	on	the	SR	engine:	GetPropertyString,
SetPropertyString,	GetPropertyNum,	SetPropertyNum.
	
In	SAPI	5.0,	each	method	has	a	SPPROPSRC	parameter,	which	is
always	set	to	SPPROPSRC_RECO_INST,	and	a	pointer	pvSrcObj,
which	is	always	set	to	NULL.
	
A	number	of	these	properties	are	already	defined	by	SAPI	(See
SAPI	5.0	SR	Properties	White	Paper).	Ideally,	the	engine	should
implement	these	if	they	have	equivalent	parameters	that	can	be
controlled.

	
When	an	application	sets	one	of	these	values,	and	calls	the	SR
engine,	it	returns	S_OK	if	it	supports	this	property	and	the	value
is	updated,	and	S_FALSE	if	it	doesn't.
	
Note	that	these	properties	exist	to	alter	run-time	settings	for
this	instance	of	the	engine,	and	are	reset	every	time	the	engine
is	deleted.	For	permanent	changes	to	engine	results,	use	an
engine	properties	UI	component,	or	include	additional	values	in
its	object	token	that	applications	can	read	and	set.
	

5									Grammar	handling
	
Each	speech	application	can	have	one	or	more
ISpRecoGrammar	objects	associated	with	it.	Within	each
grammar	object	there	are	several	types	of	grammar:
	

·								Command	and	Control	grammars.	These	are	context-free
grammars	(CFG)	created	from	either	a	SAPI	XML	grammar,
or	dynamically	from	the	application,	or	from	some	other
grammar	format	using	the	SpGramCompBackend	object.	In
all	cases,	SAPI	reports	the	contents	of	the	grammars	to	the
engine	using	the	SpGramCompBackend	object.

·								Dictation	grammars.	Here	the	engine	loads	and	unloads
its	own	dictation	language	model.

·								Proprietary	grammars.	There	are	various	calls	in	SAPI	to
support	engine-specific	grammar	formats.

	
Each	grammar	object	can	contain	a	dictation	grammar	and
either	a	CFG	or	proprietary	grammar.
	
Each	application	can	have	several	grammars.	In	the	shared
recognizer	case,	multiple	applications	can	be	connected	to	one
recognizer.	Thus,	grammars	can	be	loaded,	unloaded,	modified,
activated,	and	deactivated	independently	of	each	other.
However,	the	SR	engine	controls	when	it	is	informed	of	these
grammar	state	changes	during	recognition	(See
Synchronization).
	

5.1							Grammar	Creation	and	Deletion
	
When	an	application	creates	a	grammar	object,	this	is	reported
to	the	engine	using	OnCreateGrammar.	This	passes	the	engine	a
grammar	handle,	as	well	as	the	pointer	the	SR	engine	returned
from	the	call	to	OnCreateRecoContext.	From	this	method	the
engine	must	also	return	a	pointer,	which	is	used	to	identify	the
grammar	in	later	calls	from	SAPI.	OnDeleteGrammar	is	called	to
delete	grammars.
	

5.2							CFG	Grammars
	

5.2.1								Introduction	and	terminology
Each	CFG	grammar	contains	one	or	more	rules.	Rules	can	be
top-level,	indicating	that	they	can	be	activated	for	recognition.
Each	rule	has	an	initial	state	and	additional	states,	which	are
connected	by	transitions.	Each	transition	can	be	one	of	several
types:

·								A	word	transition	indicating	a	word	to	be	recognized
·								A	rule	transition	indicating	a	reference	to	a	sub-rule
·								An	epsilon	(null)	transition
·								Some	special	transitions	for	such	features	as	embedding
dictation	within	a	CFG.

	
References	to	sub-rules	can	be	recursive,	i.e.,	rules	can
reference	themselves,	either	directly	or	indirectly.	Left	recursion
is	not	supported	and	SAPI	will	reject	these	grammars	upon
loading.	Inside	a	grammar,	transitions	can	have	semantic
properties,	although	the	engine	does	not	normally	need	to
recognize	these.
	
SAPI	takes	full	control	of	loading	a	grammar	when	an	application
requests	it.	SAPI	can	load	from	a	file,	URL,	resource,	or	from
memory,	and	can	load	either	binary	or	XML	forms	of	the
grammar,	and	resolve	imports.	SAPI	then	notifies	the	SR	engine
about	the	contents	of	the	grammar	through	various	DDI
methods.
	

5.2.2								Grammar	Notifications
WordNotify	and	RuleNotify	notify	the	engine	about	CFG
grammar	information.	SAPI	calls	both	methods	before
recognition	begins,	when	a	grammar	is	first	loaded,	and	during
recognition	within	a	Synchronize	call	if	grammars	change	(See
Synchronization).
	

5.2.3								Word	Notifications
The	WordNotify	call	informs	the	engine	about	the	words	in	the
grammar.	A	single	call	is	made	to	either	add	or	remove	words.
SAPI	keeps	a	reference	count	internally	so	that	each	word	will	be
added	only	if	it	is	not	present	in	any	existing	grammar.	Each
word	is	represented	by	an	SPWORDENTRY	structure:
	
typedef	struct	SPWORDENTRY
{
				SPWORDHANDLE				hWord;
				LANGID										LangID;
				WCHAR										*pszDisplayText;
				WCHAR										*pszLexicalForm;
				SPPHONEID						*aPhoneId;
				void											*pvClientContext;
}	SPWORDENTRY;
	
The	hWord	is	a	unique	handle	identifying	the	word.	The
pvClientContext	is	an	arbitrary	pointer	that	the	SR	engine	sets
with	a	call	to	SetWordClientContext.	Subsequent	calls	to
GetWordInfo	will	return	the	same	structure	with	this	field	filled

in.	The	LangID	field	represents	the	language	of	the	word.
Currently	this	will	be	the	same	for	all	words	in	a	grammar,	but	in
the	future	SAPI	may	support	multi-lingual	grammars.
	
The	pszDisplayText	and	pszLexicalForm	fields	give	the	text	of
the	word.	Words	can	be	defined	in	a	grammar	to	have	a
different	textual	display	form	to	the	actual	spoken	lexical	form
used	to	look	up	the	words	in	a	lexicon.	The	grammar	can	also
specify	the	pronunciation	of	the	word.	This	is	given	as	an	array
of	SPHONEIDs.	See	Phone	Converters	for	more	detail	on	phones
and	phone	converters.
	

5.2.4								Rule	Notifications
The	RuleNotify	call	informs	the	engines	when	rules	are	added,
changed	or	removed.	There	are	five	actions	that	are	performed
on	rules:

·								New	rules	can	be	added.
Existing	rules	can	be	removed.

·								Rules	can	be	activated.
Rules	can	be	deactivated	for	recognition.

·								Rules	can	be	invalidated,	which	means	the	rule	has	been
edited	by	the	application	and	thus	the	engine	needs	to
reread	the	contents	of	the	rule.

	
Each	rule	is	represented	by	an	SPRULEENTRY	structure:
	
typedef	struct	SPRULEENTRY
{

				SPRULEHANDLE				hRule;
				SPSTATEHANDLE			hInitialState;
				DWORD											Attributes;				
				void	*										pvClientRuleContext;
				void	*										pvClientGrammarContext;
}	SPRULEENTRY;
	
The	hRule	is	a	unique	handle	identifying	the	rule.	The
pvClientRuleContext	is	a	pointer	that	the	engine	sets	using
SetRuleClientContext.	Subsequent	calls	to	GetRuleInfo	return
the	same	structure	but	with	the	pvClientRuleContext	field	filled
in.	The	pvClientGrammarContext	is	the	pointer	that	the	engine
set	in	OnCreateGrammar.	This	indicates	which	grammar	the	rule
belongs	to.	The	Attributes	field,	of	type	SPCFGRULEATTRIBUTES,
contains	flags	with	extra	information	about	the	rule:

SPRAF_TopLevel	if	the	rule	is	top-level	and	thus	can	be
activated	for	recognition.
SPRAF_Active	if	the	rule	is	currently	activated.

SPRAF_Interpreter	if	the	rule	is	associated	with	an
Interpreter	object	for	semantic	processing	(See
Interpreters).

SPRAF_AutoPause	if	the	rule	is	auto-pause	(See	Pause
and	auto-pause).

	
The	hInitialState	gives	the	initial	state	of	the	rule.
	

5.2.5								States
The	SR	engine	determines	the	full	contents	of	the	rule	(either

immediately,	or	later	during	recognition),	using	GetStateInfo.
This	method	passes	information	about	all	the	subsequent	states
following	from	any	given	state.	The	engine	passes	a	state
handle	into	this	method	(starting	with	the	hInitialState	of	the
rule),	and	a	pointer	to	an	SPSTATEINFO	structure	(with	all	its
fields	initially	set	to	zero).	This	structure	is	filled	out	with
information	on	all	of	the	transitions	out	of	that	state	in	the
pTransitions	array.	SAPI	uses	CoTaskMemAlloc	to	create	this
array.	The	engine	can	call	this	method	again	on	each	of	the
states	following	the	current	state	in	order	to	get	information
about	all	of	the	states	in	the	rule.	Loop-back	transitions	are
possible	in	a	rule	and	the	engine	needs	to	check	that	it	has	not
visited	the	current	state	before.
	
When	the	engine	calls	GetStateInfo	subsequent	times,	it	can	call
it	with	the	cAllocatedEntries	and	pTransitions	fields	unchanged.
SAPI	re-uses	the	memory	from	the	transition	array,	if	possible,
rather	that	re-allocating	it.	Alternatively,	the	engine	can	use
CoTaskMemFree	to	free	the	pTransitions	memory,	and	set	these
fields	to	NULL.	SAPI	will	then	re-allocate	the	memory	every	time.
	

5.2.6								Transitions
Each	transition	represents	a	link	from	one	state	to	another	state
and	is	represented	by	an	SPTRANSITIONENTRY	structure.	This
structure	contains	an	ID	field	that	uniquely	identifies	the
transition,	an	hNextState	handle	that	indicates	the	state	the
transition	is	connected	to,	and	a	Type	field	that	indicates	what
type	of	transition	this	is.
	
There	are	three	common	types	of	transition	that	all	engines
need	to	support:
	

·								Word	transitions	(SPTRANSWORD).	These	represent	single
words	that	the	recognizer	recognizes	before	advancing	to
the	next	state.	The	handle	to	the	word	and	the	word
pointer	are	supplied	inside	the	SPTRANSITIONENTRY
structure,	which	the	engine	uses	to	find	the	full	text	of	the
word	with	GetWordInfo.	To	produce	recognition	results,	the
engine	needs	to	keep	track	of	the	transition	IDs	of	word
transitions	as	they	are	used	in	ParseFromTransitions.

·								Rule	transitions	(SPTRANSRULE).	These	represent
transitions	into	sub-rules.	This	transition	is	only	passed
when	a	path	through	the	sub-rule	has	been	recognized.	The
rule	handle,	engine’s	rule	pointer,	and	initial	state	of	the
sub-rule	are	supplied.	Rules	can	be	recursive,	but	not	left
recursive.

·								Epsilon	transitions	(SPTRANSEPSILON).	These	are	null	or
transitions	that	can	be	traversed	without	recognizing
anything.

	
A	state	with	a	transition	to	a	null	state	handle	indicates	the	end
of	a	rule.	There	can	also	be	void	states,	which	are	blocking	and
indicate	that	there	is	no	recognition	path	from	this	state.	These
void	paths	are	indicated	by	a	state	having	zero	transitions	out	of
it.
	

5.2.7								Special	Transitions
There	are	a	number	of	special	transitions	that	may	not	be
supported	by	all	engines.	Attributes	in	the	engine	object	token
indicate	whether	these	are	supported:
	

·								Wildcard	transition	(SPTRANSWILDCARD).	This	indicates	a
transition	that	matches	any	word	or	words	(sometimes
called	a	“garbage”	model).	The	engine	does	not	try	and

recognize	the	spoken	words.	The	engine	includes	the	string
value	WildcardInCFG	as	an	attribute	in	its	object	token	to
inform	the	application	that	it	is	capable	of	supporting	this.

·								Dictation	transition	(SPTRANSDICTATION).	This	is	used	to
embed	dictation	within	a	CFG.	Each	transition	means	one
word	should	be	recognized.	The	attribute	DictationInCFG	in
the	engine	object	token	indicates	support	for	this	feature.

·								Text	buffer	transition	(SPTRANSTEXTBUF).	This	indicates
that	the	engine	is	to	recognize	a	sub-string	of	words	from
the	text-buffer,	if	it	has	been	set.	(See	Text-buffers).

	

5.2.8								Semantic	Properties
Application	developers	are	able	to	put	properties	(also	known	as
semantic	tags)	within	a	grammar.	This	provides	a	powerful
means	for	semantic	information	to	be	easily	embedded	inside	a
grammar.
	
By	default,	the	engine	does	not	recognize	these	properties.
Typically,	an	engine	simply	recognizes	the	speech	from	the
words	in	the	grammar,	and	SAPI	parses	and	adds	the	property
information	in	the	ParseFromTransitions	call.	However,	it	is
possible	for	an	engine	to	receive	this	information	by	calling
GetTransitionProperty	on	any	transition.	If	there	is	a	property	on
this	transition,	the	property	name	or	ID,	and	value	are	returned
in	the	SPTRANSITIONPROPERTY	structure.	When	finished,
SPTRANSITIONPROPERTY	must	be	freed	using	CoTaskMemFree.
	

5.2.9								Additional	topics
	

5.2.9.1							Ordering	of	actions
SAPI	notifies	engines	about	the	contents	of	CFGs	in	a	logical
order.	When	a	grammar	is	loaded,	all	new	words	are	notified
first	with	a	WordNotify	call,	then	all	rules	with	a	RuleNotify	call.
After	that,	rules	are	activated	and	deactivated.	When	a
grammar	is	deleted,	all	rules	are	removed	first	and	then	all
words.
	
All	the	rules	and	words	for	each	grammar	are	added	with	single
calls	to	RuleNotify	and	WordNotify.	If	a	number	of	grammars	are
being	loaded	and	rules	are	being	activated,	separate	calls	are
made	for	each	grammar.	For	engines	that	have	a	time-
consuming	internal	grammar	compilation	to	do	before	starting
recognition,	try	to	avoid	unnecessary	recompilations.	Where
possible,	applications	should	try	and	combine	separate	CFG
grammars	into	one	to	minimize	compilations.
	

5.2.9.2							Grammar	Weights
Grammar	designers	use	a	Weight	field	during	each	transition	to
change	the	likelihood	of	certain	paths	being	taken.	This	Weight
field	is	a	probability	–	the	range	of	values	is	0.0	to	1.0,	and	the
values	of	the	transitions	out	of	any	state	sum	to	1.0.	A	value	of
0.0	should	always	be	interpreted	as	making	this	transition
impossible	to	pass	during	recognition.	Engines	may	or	may	not
incorporate	the	other	weight	values	into	their	recognition
search.	By	default,	grammars	do	not	have	weights	set,	so	each
transition	weight	will	by	1.0	divided	by	the	number	of	transitions
out	of	the	preceding	state.
	

5.2.9.3							Required	Confidence
Each	transition	also	contains	a	RequiredConfidence	field.

Grammar	designers	use	this	field	to	set	how	easily	recognitions
are	to	be	accepted	or	rejected.	For	example,	this	field	is	used	to
avoid	false	positives	on	critical	actions,	such	as	delete	file,	while
less	critical	actions,	such	as	scroll	down,	remain	unaffected.	See
Required	Confidence	and	Rejection	for	more	information	on	how
this	field	can	be	used	for	rejection.
	

5.2.9.4							Text-buffers
Using	this	feature,	an	application	can	define	a	text	buffer.	When
a	text-buffer	transition	is	reached	in	a	CFG,	the	engine	attempts
to	recognize	a	sub-string	of	words	from	the	text	buffer.
	
The	text	buffer	is	set	by	the	application	using
ISpRecoGrammar::SetWordSequenceData,	and	reported	to	the
engine	by	ISpSREngine::SetWordSequenceData.	The	format	of
the	buffer	is	a	sequence	of	one	or	more	null-terminated	strings,
with	a	double	null-termination	at	the	end.	The	engine	recognizes
any	sub-string	of	words	from	any	of	the	strings	in	the	buffer.
This	provides	a	very	simple	way	for	applications	to	select	from	a
set	of	text.
	
It	is	also	possible	for	the	application	to	alter	the	areas	of	the
buffer	to	be	used	for	recognition.	This	is	done	using
SetTextSelection	with	the	structure	SPTEXTSELECTIONINFO.	The
ulStartActiveOffset	and	cchActiveChars	indicate	which	area	of
the	buffer	should	be	active	for	recognition.
	
The	other	two	fields	of	the	SPTEXTSELECTIONINFO,
ulStartSelection	and	cchSelection,	are	used	with	dictation	to
indicate	which	area	of	the	buffer	is	currently	selected	on	screen.
If	cchSelection	is	zero,	this	indicates	where	the	insertion	point
currently	is.	The	engine	could	use	this	insertion	point	to	get

extra	language	model	context	from	the	preceding	words	in	the
dictated	text.
	
This	text	buffer	feature	is	optional	for	engines,	and	support	for	it
is	defined	in	the	WordSequences	attribute.	See	Object	Tokens
and	Registry	Settings	for	more	information.
	

5.2.9.5							Rule	invalidations
When	a	rule	is	invalidated	with	a	RuleNotify	call	with
SPCFGN_INVALIDATE	action,	the	engine	needs	to	discard	any
cached	information	it	has	regarding	this	rule	and	parse	the	rule
again	from	the	new	initial	state.	If	a	sub-rule	is	edited	in	a
grammar,	only	that	rule	is	invalidated,	and	not	other	rules
referring	to	this	rule.
	

5.2.9.6							Grammar	Resources
It	is	possible	for	resource	data	to	be	included	in	a	grammar.
Each	rule	can	contain	one	or	more	named	strings	containing
arbitrary	data.	The	engine	recovers	this	data	using	GetResource,
and	passing	in	the	rule	handle	and	resource	name.
	

5.3							Dictation	Grammars
	
The	mechanism	used	for	handling	dictation	grammars	is
considerably	simpler	than	for	CFG	grammars.	SAPI	instructs	the
engine	to	load	a	dictation	grammar	(or	Statistical	Language
Model)	with	the	LoadSLM	method.	LoadSLM	supplies	the
engine’s	pointer	to	the	grammar	and	a	topic	name.	The	topic
name	is	by	default	NULL,	and	uses	the	standard	dictation
language	model,	but	an	application	can	request	a	specific	topic.
Currently,	the	only	topic	SAPI	defines	is	Spelling	for	a	spelling-
mode	grammar,	although	engines	are	free	to	define	others.
Dictation	is	unloaded	with	UnloadSLM	and	activated	or
deactivated	for	recognition	with	SetDictationState.
	

5.3.1								Language	model	adaptation
An	application	supplies	text	data	to	the	engine	for	language
model	adaptation	with	SetAdaptationData.	The	engine	is	free	to
do	nothing	or	anything	with	this	data,	and	to	either	persist	the
adaptation	in	the	current	RecoProfile	or	reset	every	session.
Because	some	engines	take	considerable	processing	to	do
adaptation,	it	is	recommended	that	applications	submit
adaptation	data	in	chunks.	When	the	engine	is	ready	to	receive
more	data,	it	fires	an	event	SPEI_ADAPTATION.	If	an	engine	does
not	have	this	performance	issue,	it	can	send	the	event
immediately.
	

5.4							Proprietary	grammars
	
If	an	engine	and	application	wish	to	use	a	grammar	format
different	from	the	standard	SAPI	binary	or	XML	formats,	this	is
possible.	LoadProprietaryGrammar	and
UnloadProprietaryGrammar	are	used	to	load	and	unload	such
grammars.	LoadProprietaryGrammar	is	called	when	the
application	calls	ISpRecoGrammar::	LoadProprietaryGrammar.
The	application	can	supply	the	engine	with	string	data,	binary
data,	or	a	GUID,	or	some	combination	of	these.	SAPI	does	not
touch	this	data	in	any	way	apart	from	marshaling	it	between	the
application	and	shared	engine.
	
To	activate	rules	in	a	proprietary	grammar,	call
SetProprietaryRuleState	or	SetProprietaryRuleIdState.	The	first
of	these	methods	takes	an	optional	string	pointer,	where	NULL	is
interpreted	to	mean	activate	all	top-level	rules.	These	methods
are	used	so	that	ISpRecoGrammar::SetRuleState	works
consistently	on	SAPI	CFGs	and	Proprietary	grammars.	The
engine	must	set	the	pcRulesChanged	value	to	inform	SAPI	how
many	rules	have	been	activated	or	deactivated.
	
There	are	some	extra	methods	that	an	SR	engine	needs	to
recognize	if	it	is	using	proprietary	grammars.	When	a	grammar
is	activated	or	deactivated,	it	calls	SetGrammarState.
SetContextState	activates	or	deactivates	a	context	(with	CFG
grammars	SAPI	will	automatically	deactivate	or	activate	all
relevant	rules	so	these	methods	are	not	needed).
	

5.4.1								Porting	other	grammar	formats

A	disadvantage	of	proprietary	grammar	formats	is	that	they	are
not	engine	or	application	independent.	It	is	possible	to	write
code	that	will	convert	any	finite-state	or	CFG-based	grammar
format	into	the	compiled	SAPI	binary	format.	For	example,	SAPI
XML	grammars	are	compiled	using	the	object
CLSID_SpGrammarCompiler.	This	object	uses	the
CLSID_SpGramCompBackend	object	to	add	the	correct	rules,
states,	and	transitions	into	the	grammar,	and	then	saves	the
grammar	to	an	IStream	using	SetSaveObjects	and	Commit.
	
Exactly	the	same	approach	can	be	used	for	other	formats.	A
new	COM	object	could	be	created	using	the	compiler	back-end
methods	to	add	the	correct	information	and	save	the	grammar
(See	the	ISpGrammarBuilder	interface	documentation	for	more
info).	The	grammar	produced	is	a	standard	SAPI	compiled
grammar	and	can	be	used	by	any	SAPI	engine	or	application,
without	having	to	use	the	proprietary	grammar	support.
	

6									Lexicon	handling
	
SAPI	provides	a	means	for	users	or	applications	to	specify	new
words	and	their	pronunciations	in	lexicons.	An	engine	should
look	at	these	words	and	pronunciations	and	use	them	during
recognition.
	
There	are	two	types	of	lexicons	in	SAPI:

·								User	Lexicon.	There	is	a	User	Lexicon	for	the	current	user
logged	onto	the	computer.	It	is	initially	empty	but	the	user
can	add	to	it,	either	programmatically,	or	using	an	engine’s
add/remove	words	UI	component.	For	example,	running	the
Dictation	Pad	sample	application	and	choosing	Add/Remove
Words	will	access	the	Microsoft	engine	UI	where	the	user
can	add	new	words	to	the	user	lexicon.

·								Application	lexicons.	Applications	can	create	and	ship
their	own	lexicons	of	specialized	words.	These	are	read-
only.

	
Both	types	of	lexicon	are	represented	by	object	tokens.
(Application	Lexicons	are	stored	in
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Speech\AppLexicons\
and	the	current	user	lexicon	in
HKEY_CURRENT_USER\SOFTWARE\Microsoft\Speech\CurrentUserLexicon
	
Each	lexicon	object	implements	the	ISpLexicon	interface.
Lexicons	can	be	individually	created	from	their	object	tokens.
However,	SAPI	provides	a	Container	Lexicon	that	combines	the
user	and	application	lexicons	into	one	single	entity,	making
manipulating	the	lexicon	information	simpler.	This	class	is

SpLexicon	(CLSID_SpLexicon).
	

6.1							Using	lexicons
	
Typically,	when	an	engine	runs	dictation,	it	will	use	CoCreate	to
create	the	SpLexicon	object	and	determine	which	words	and
pronunciations	are	in	it.	The	engine	adds	these	to	its	dictation
vocabulary	and	language	model	if	it	supports	this	feature.	If	the
lexicon	contains	words	with	no	pronunciation,	the	engine	should
try	and	generate	pronunciations	for	them	if	it	supports	this
feature.	Similarly,	if	a	CFG	grammar	is	loaded	containing	words
that	are	in	the	lexicon,	the	engine	acknowledges	these
pronunciations.
	
Applications	can	call	IsPronounceable	on	the	RecoContext
objects	to	determine	if	the	engine	can	generate	a	pronunciation
for	a	word.	Engines	set	the	BOOL	pointer	passed	in	to	TRUE,	if	a
pronunciation	was	found,	otherwise,	FALSE.
	
An	engine	can	also	add	words	into	the	user	lexicon	using
AddPronunciations	on	the	SpLexicon.	(Lexicon	interfaces	for
more	information).
	
As	an	option,	an	engine	also	uses	the	basic	SAPI	lexicon	classes
(CLSID_SpCompressedLexicon	for	read-only	lexicons	and
CLSID_SpUncompressedLexicon	for	read-write	lexicons)	for	its
own	internal	lexicons.
	

6.2							Phone	Converters
	
For	each	language,	SAPI	defines	a	phone	set	describing	which
phones	can	be	used	in	defining	the	pronunciation	of	a	word.
Currently,	phone	sets	are	defined	for	US	English,	Japanese	and
Chinese,	and	more	will	be	added	in	later	updates.	Phone
converters	are	represented	as	object	tokens	in	the	registry.	Each
phone	converter	object	implements	the	interface
ISpPhoneConverter.	This	has	two	methods,	PhoneToId	and
IdToPhone,	to	convert	between	phone	strings	and	phone	IDs.
	
The	pronunciations	returned	from	a	lexicon	are	returned	as	null-
terminated	arrays	of	SPPHONEID.	All	the	methods	the	engine
sees	which	use	pronunciations	also	use	these	arrays	of	phone
IDs,	so	the	engine	may	never	need	to	use	a	phone	converter
directly.	However,	to	create	a	phone	converter	for	a	specific
language,	an	engine	uses	SpCreatePhoneConverter	in
sphelper.h:
	
						ISpPhoneConverter	*pPhoneCon;

HRESULT	hr	=	SpCreatePhoneConverter(409,	NULL,	NULL,
&pPhoneCon);
	
If	a	vendor	wishes	to	implement	an	engine	in	a	language	for
which	Microsoft	does	not	currently	define	a	phone	converter,	it
will	not	be	possible	to	use	lexicons	or	grammars	with
pronunciations	in	them;	otherwise,	the	engine	vendor	will	need
to	define	its	own	engine-specific	phone	converter.
	

7									Recognition	and	audio
	
SAPI	indicates	that	the	engine	should	start	recognition	by	calling
RecognizeStream	on	the	SR	engine.	From	that	point	on,	the
engine	can	read	data,	perform	recognition,	and	send	results	and
events	back	to	SAPI.	When	all	the	data	has	been	recognized	or
the	application	has	deactivated	recognition,	the	engine	finishes
processing	and	returns	from	the	RecognizeStream	call.
	
Thus	the	basic	actions	that	take	place	are	as	follows:

·								SAPI	calls	RecognizeStream	on	the	engine.
·								The	engine	starts	reading	data	and	doing	recognition.
·								The	engine	calls	Synchronize	and	UpdateRecoPos	to	be
informed	of	grammar	changes.

·								The	engine	returns	events,	hypotheses,	and	recognitions
to	SAPI.

·								Recognition	continues	until	the	stream	is	terminated	and
the	engine	returns	from	RecognizeStream.

	

7.1							RecognizeStream
	
RecognizeStream	is	normally	called	after	grammars	have	been
loaded	and	activated.	The	engine	recognizes	from	the	rules	that
are	active.	If	multiple	rules	or	dictations	are	active,	the	engine
recognizes	from	all	things	in	parallel,	i.e.,	the	user	is	able	to	say
a	word	from	any	available	rule	or	dictation	that	is	active.
	

7.1.1									Active	always	state
In	only	one	case,	RecognizeStream	can	be	called	when	there	are
no	active	rules.	That	is,	when	the	application	has	set	the
RecoState	to	SPRST_ACTIVE_ALWAYS	(with
ISpRecognizer::SetRecoState).	This	is	done	by	an	application
when	it	wants	audio	running	to	display	a	VU-meter	(by	listening
to	SPEI_SR_AUDIO_LEVEL	events).	In	this	case,	RecognizeStream
is	called	regardless	of	whether	there	are	any	active	rules.	The
engine	is	free	to	throw	the	data	away;	although,	engines	can
use	this	data	to	perform	environmental	adaptation	or	noise	level
estimation.
	

7.2							Reading	audio
	

7.2.1								How	audio	formats	are	represented	in
SAPI
Two	fields	are	used	to	define	audio	formats	in	SAPI:	A	GUID
defining	the	class	of	format;	and	for	wav	format	types,	a
WAVEFORMATEX	structure	that	contains	type,	sample	rate,	bits
per	sample	etc.	All	wav	format	types	have	the	GUID
SPDFID_WaveFormatEx.	Engines	can	use	other	GUIDs	for	any
engine-specific	formats	they	have.	There	is	a	helper	class
CSpStreamFormat	in	sphelper.h	that	converts	to	and	from	this
format.	Also,	the	SPSTREAMFORMAT	enumeration	lists
commonly	used	formats.
	
The	WAVEFORMATEX	structure	has	the	following	definition:
	
typedef	struct	WAVEFORMATEX
{
				WORD				wFormatTag;
				WORD				nChannels;
				DWORD			nSamplesPerSec;
				DWORD			nAvgBytesPerSec;
				WORD				nBlockAlign;
				WORD				wBitsPerSample;
				WORD				cbSize;
}	WAVEFORMATEX;

	
For	example,	the	format	for	mono,	PCM	linear,	16-bit,	16kHz
audio	would	be	indicated	by:

GUID	guid	=	SPDFID_WaveFormatEx	and
WAVEFORMATEX	wfx	=	{	WAVE_FORMAT_PCM,	1,	16000,

32000,	2,	16,	0	}
	

7.2.2								Setting	the	audio	format
To	determine	what	audio	formats	the	engine	supports,	SAPI	calls
GetInputAudioFormat	on	the	SR	engine.	The	first	pair	of
parameters	of	this	method	indicates	the	format	SAPI	is
determining	if	the	engine	supports;	the	engine	fills	in	the	second
pair	of	parameters	to	indicate	which	format	it	supports.
Alternatively,	SAPI	calls	this	method	with	the	first	format	set	to
NULL,	in	which	case	the	engine	sets	the	second	pair	of
parameters	to	its	preferred	format.
	
When	GetInputAudioFormat	finishes,	the	RecognizeStream	call
specifies	the	current	audio	format	in	the	rguidFmtId	and
pWavFormatEx	parameters.	This	will	not	change	during	the
RecognizeStream.
	

7.2.3								Reading	data
Read	is	used	to	read	data	from	the	audio	source.	The	SR	engine
requests	the	amount	of	data	to	be	read.	SAPI	returns	this	data
immediately	if	it	is	available,	or	will	block	until	that	amount	of
data	is	available.	If	the	Read	call	returns	a	failure	code	or	it
reports	that	less	data	has	been	read	than	requested,	the	stream
has	ended	and	the	engine	can	return	from	the	RecognizeStream
call	once	it	has	processed	any	data	it	has	buffered.

	
It	is	possible	to	see	how	much	data	is	available	for	reading
immediately	using	the	DataAvailable	call.	This	call	is	used	to
read	only	the	data	that	is	already	available	without	blocking.	A
Win32	event	parameter,	hDataAvailable	on	RecognizeStream,	is
set	when	a	certain	amount	of	data	is	available.
SetBufferNotifySize	sets	the	amount	of	data	to	trigger	this
parameter.
	
The	engine	tries	to	read	data	as	close	to	real-time	as	possible.
SAPI	has	only	a	finite	buffer	of	audio	data,	and	if	the	engine’s
reading	lags	by	more	than	a	certain	amount	of	time	(approx.	30
seconds	currently),	SAPI	terminates	the	stream.	The	engine	has
the	option	of	keeping	its	own	buffer	of	data	that	has	been	read
but	has	not	yet	processed.
	
The	amount	of	data	requested	in	the	Read	call	is	in	bytes.	All
stream	positions	used	in	sending	events,	recognition
information	etc.	back	to	SAPI	are	in	bytes	also.
	

7.2.4								Information	about	the	audio	input
The	SR	engine	does	not	directly	have	access	to	the	audio	input
device.	SAPI	handles	this	so	that	the	SR	engine	is	consistent
regardless	of	the	type	of	input.	However,	there	is	some
information	about	the	stream	that	the	engine	receives	from
parameters	in	the	RecognizeStream	call:
	

·								The	rguidFmtId	and	pWavFormatEx	parameters	indicate
the	format	of	the	stream.

·								pAudioObjectToken	points	to	the	object	token	that
represents	the	audio	input	device.

·								The	fRealTimeAudio	Boolean	indicates	whether	the	input
is	real-time.	Real-time	inputs	in	SAPI	are	those	that
implement	the	ISpAudio	interface.		An	example	of	this	is
the	standard	multi-media	microphone	input.	Non-real	time
streams	are	those	that	only	implement	ISpStreamFormat.
An	example	of	this	is	inputting	wav	files	using	the
ISpStream	object.	With	non	real-time	streams,	all	the	data
is	available	for	reading	immediately.	The	hDataAvailable
event	is	always	set	and	DataAvailable	always	returns
INFINITE.

·								fNewAudioStream	specifies	whether	this	call	to
RecognizeStream	is	a	restarting	of	an	existing	stream	or	a
new	stream.	For	example,	if	an	application	deactivates	the
active	rules	and	the	RecognizeStream	returns.	If	later	the
application	activates	some	rules,	the	RecognizeStream	call
will	have	this	parameter	set	as	FALSE.	Only	if	the
application	activates	a	new	SetInput	will	this	return	TRUE.
Some	engines	might	find	this	useful	because	they	could
preserve	environmental	information	between	calls	to
RecognizeStream	and	only	reset	this	when	the	input	is
really	changed.

	

7.2.5								Setting	the	input	gain
The	engine	can	alter	the	gain	of	the	input,	if	the	input	is	from	an
audio	device	passing	through	the	Windows	Mixer.	The	engine
can	store	a	value	in	the	RecoProfile	for	each	device	indicating
what	the	gain	should	be,	and	SAPI	sets	the	gain	on	this	device	in
the	mixer	every	time	the	audio	is	opened.	The	engine	can	set
this	value	in	the	RecoProfile	either	when	calibrating	a
microphone	within	its	Microphone	Training	UI	component,	or	at
any	other	point.
	
The	value	stored	in	the	profile	must	be	in	a	subkey	with	the

same	name	as	the	CLSID	of	the	main	engine	object.	The	value
name	should	have	the	token	ID	of	the	audio	input	object
currently	being	used	(found	by	calling	GetId	on	the	audio	input
object	token).	The	value	should	be	a	DWORD	value	between	0
and	10000	indicating	the	mixer	level	to	set.
	

7.3							Threading	model
	
With	SAPI,	engines	use	a	very	simple	threading	model.	When
recognition	does	not	occur	(i.e.,	when	RecognizeStream	is	not
being	called	on	the	engine),	SAPI	calls	the	engine	on	only	one
thread.	During	the	RecognizeStream,	SAPI	only	calls	the	engine
when	the	engine	itself	calls	Synchronize.	Thus,	the	engine	can
control	when	it	is	called	back.	These	call	backs	also	occur	only
on	one	thread.
	
Because	the	engine	does	not	return	from	RecognizeStream	until
all	recognition	is	complete,	SAPI	has	effectively	given	the	engine
one	thread	on	which	to	operate.	It	is	possible	to	write	an	engine
to	do	all	its	work	on	this	one	thread	and	thus	require	no
additional	threads,	critical	sections	or	other	thread-locking.	This
one	thread	system	works	best	if	the	engine	is	not	blocked
unnecessarily	during	Read	calls	when	it	could	be	performing
recognition.	Use	the	DataAvailable	to	achieve	this.
	
An	alternative	would	be	to	have	one	additional	thread.	In	this
case,	one	thread	could	read	the	data,	and	possibly	perform
feature	extraction,	while	another	thread	could	do	the	actual
recognition	processing.	Other	threading	arrangements	are
possible,	and	SAPI	makes	no	restrictions	about	which	threads
call	which	methods	or	whether	the	methods	are	called
simultaneously.
	

7.4							Synchronization
	
Synchronize	informs	SAPI	that	the	engine	is	ready	to	receive	any
pending	actions,	such	as	grammar	changes,	rule
activations/deactivations,	or	private	calls.	When	the	engine	calls
Synchronize,	the	engine	is	called	from	SAPI	to	perform	these
actions.	For	example,	if	the	application	has	changed	a	grammar
and	called	Commit,	the	next	time	the	engine	calls	Synchronize,
SAPI	will	call	the	engine	back	on	RuleNotify	and	WordNotify	with
details	of	the	modified	grammar.	When	the	engine	returns	from
these	methods,	SAPI	returns	back	from	Synchronize	as	long	as
the	engine	is	not	in	a	paused	state.	When	the	engine	sends	a
final	recognition,	(See	Events	and	Recognitions)	Synchronize	is
also	called	internally	by	SAPI.
	
The	engine	has	complete	control	over	when	Synchronize	is
called.	For	example,	engines	may	want	to	handle	grammar
changes	only	when	the	user	is	not	speaking;	and	not	handle
changes	when	they	are	actually	performing	recognition.	Also,	a
Win32	event	fRequestSync	is	passed	as	a	parameter	in	the
RecognizeStream	call.	This	event	is	set	when	an	action	is
queued	for	the	engine	to	respond	to	when	it	calls	Synchronize.
An	engine	can	call	Synchronize	regularly,	or	only	when	this
event	is	set.
	
The	more	quickly	the	engine	responds	to	queued	tasks,	the
more	responsive	it	will	seem	to	a	user.	An	engine	should	not
wait	too	long	before	calling	Synchronize	because	in	some	cases
an	application	will	hang	until	the	engine	does	so.	For	example,
the	sample	SR	Sample	engine	does	not	normally	call
Synchronize	when	it	has	detected	speech.	However,	if	speech
has	been	detected	for	a	long	time	and	the	hRequestSync	event

is	set,	the	engine	will	always	call	Synchronize	to	prevent
hanging.
	
The	stream	position	given	as	a	parameter	to	Synchronize
indicates	the	point	before	which	the	engine	will	fire	any	events.
SAPI	discards	its	stored	audio	before	this	point	and	thus	the
engine	cannot	fire	any	events	or	report	recognitions	before	this
point.	This	position	does	not	need	to	be	exactly	where	the
engine	is	currently	recognizing;	it	can	be	a	point	in	the	stream
before	the	engine	fires	any	events.
	
UpdateRecoPos	is	another	method	that	an	engine	should	call
regularly	during	recognition.	It	informs	SAPI	of	the	engine’s
position	in	recognizing	the	stream.	This	is	currently	used	to
ensure	that	Bookmarks	are	fired	correctly,	and	to	keep	the
application	informed	of	the	recognizer	position	(using	the
ullRecognitionStreamPos	field	returned	from
ISpRecognizer::GetStatus).
	

7.4.1								Pause	and	auto-pause
It	is	possible	to	put	an	engine	into	a	paused	state.	This	happens
for	one	of	three	reasons:

·								The	application	called	ISpRecoContext::Pause.
·								A	rule,	which	the	application	activated	as
SPRS_ACTIVE_WITH_AUTO_PAUSE,	was	recognized.

·								A	bookmark	event	of	type	SPBO_PAUSE	has	been	reached.
	
When	in	the	paused	state,	SAPI	does	not	return	to	the	engine
from	a	call	to	Synchronize	or	a	final	recognition.	Instead,	control
is	kept	by	SAPI	and	it	calls	back	into	the	engine	to	inform	it	of

any	grammar	changes.	that	may	occur.	In	fact,	these	are	the
results	of	a	normal	call	to	Synchronize	or	final	recognition,
except	that	SAPI	waits	inside	the	call	until	the	application
resumes	the	engine.	While	in	the	paused	state,	the	engine	is
still	able	to	Read	data	if	it	has	another	thread	running.	If	the
engine	also	performs	sound	start/end	detection	in	this	thread,	it
could	fire	those	events	to	the	application.
	
In	the	paused	state,	an	application	can	make	grammar	and
state	changes	at	specific	points.	Normally	grammar	changes
only	occur	the	next	time	an	engine	calls	Synchronize.	Thus,	if	an
application	wanted	to	make	a	number	of	changes,	some	might
occur	during	one	Synchronize	call	and	some	in	another,	which
might	not	produce	the	best	results.	Using	pause,	the	application
makes	changes:	after	each	recognition	using	Auto-Pause;	at	a
specific	point	in	the	stream	using	Bookmarks;	or	just	as	soon	as
possible	using	Pause.	The	application	can	make	as	many
grammar	changes	as	needed.	When	the	application	calls
Resume,	the	engine	continues	recognizing,	without	having	lost
any	data,	but	with	all	the	grammar	changes	having	been
reported.
	

7.5							Events	and	Recognitions
	

7.5.1								Standard	events
In	order	to	report	to	the	application	information	about	what	is
being	recognized,	there	are	several	events	the	engine	can
report.	These	indicate	for	example,	that	the	engine	has	detected
the	start	or	end	of	speech,	or	that	it	has	a	hypothesis	or	a
completed	recognition	result.	The	main	events	used	to	report
the	progress	of	recognition	are	as	follows:
	

·								Sound	Start.	Used	to	indicate	that	the	start	of	some
speech-like	sound	has	been	detected.	Reported	by	calling
AddEvent	with	event	type	SPEI_SOUND_START.

·								Sound	End.	Used	to	indicate	that	the	end	of	some	speech-
like	sound	has	been	detected.	Reported	by	calling
AddEvent	with	event	type	SPEI_SOUND_END.

·								Phrase	Start.	Used	to	report	the	start	of	some	speech	that
the	engine	recognizes	as	an	utterance	matching	the
currently	active	grammar.	Reported	by	calling	AddEvent
with	event	type	SPEI_PHRASE_START.

·								Final	recognition.	Used	to	return	results	of	the	recognition
of	an	utterance.	Reported	by	calling	Recognition.

·								False	recognition.	Used	to	indicate	that	the	engine
attempted	recognition	of	the	utterance	but	rejected	it	on
the	basis	of	low	confidence	scores,	inability	to	find	a	valid
path,	etc.	Indicated	by	calling	Recognition	with	the
eResultType	having	the	SPRT_FALSE_RECOGNITION	flag	set.

·								Hypothesis.	Used	to	report	a	partial	recognition	of	the
utterance.	Indicated	by	calling	Recognition	with	the
fHypothesis	flag	set.

	
AddEvent	takes	as	parameters	an	SPEVENT	structure,	and	an
SPRECOCONTEXTHANDLE	which	should	be	set	to	NULL.	The
SPEVENT	has	the	following	fields:
	
SPEVENTENUM								eEventId;

SPEVENTLPARAMTYPE		elParamType;

ULONG							ulStreamNum;

ULONGLONG			ullAudioStreamOffset;

WPARAM						wParam;

LPARAM						lParam;

	
The	elParamType	should	be	set	to	SPET_LPARAM_IS_UNDEFINED
and	the	lParam	and	wParam	are	set	to	NULL	to	display	no	extra
information	is	returned	with	these	events.	The	ulStreamNumber
can	also	be	set	to	0	as	SAPI	fills	this	field	in	before	returning	the
event	to	the	application.	The	eEventId	indicates	the	type	of
event	(SPEI_SOUND_START,	SPEI_SOUND_END,	or
SPEI_PHRASE_START).	The	stream	position	indicates	the	position
in	the	audio	stream	where	the	engine	decides	this	event	has
happened.
	
Recognition	is	used	to	send	hypotheses	and	final	or	false
recognitions.
	

7.5.2								Event	ordering
There	are	various	requirements	for	the	chronological	ordering
and	stream	positions	of	how	these	events	are	reported:

	
·								Sound	start	and	sound	end	events	form	a	pair.	Every
sound	start	call	must	later	have	a	sound	end	call	with	a
later	stream	position.

·								Each	phrase	start	event	forms	a	pair	with	either	a	final	or
false	recognition.	The	recognition	must	be	fired	later	and
have	stream	positions	later	than	the	phrase	start	event.
Between	the	phrase	start	and	recognition	some	hypotheses
can	optionally	be	located.

·								Each	phrase	start/recognition	pair	must	have	stream
positions	inside	a	sound	start/sound	end	pair,	i.e.,	if	part	of
the	stream	has	been	determined	to	be	a	phrase	it	must
also	be	speech.	Zero,	one,	or	more	than	one	phrase
start/recognition	pairs	can	sit	between	a	sound	start/end.
Different	phrase	start/recognition	pairs	cannot	overlap.	If
part	of	the	stream	is	determined	to	be	in	one	utterance,	it
cannot	belong	to	other	utterances.

·								Although	the	phrase	starts	and	recognitions	must	have
stream	positions	within	sound	start/end	events,	the	actual
time	sequence	of	the	firing	of	these	events	can	vary.	For
example,	if	an	engine	has	an	independent	speech	detector,
which	can	determine	the	end	of	speech	before	the
recognition	has	completed,	it	can	fire	the	sound	end	event
before	a	recognition	event.

	

7.5.3								Other	events
There	are	several	other	event	types	the	engine	can	fire	to
indicate	other	information	to	SAPI	and	applications:

SPEI_ADAPTATION	is	used	to	indicate	that	the	engine	is
ready	to	receive	more	text	adaptation	data	(See
Language	model	adaptation).
SPEI_REQUEST_UI	is	used	to	request	a	display	of	one	of

the	engine's	UI	components.	Both	these	events	are	called
with	a	stream	position	that	is	either	valid	or	zero	(See
User-Interface).
SPEI_INTERFERENCE	is	used	to	indicate	to	applications
that	there	is	a	problem	with	the	audio	stream	or	user
speech.	This	event	is	called	with	the	LPARAM	set	to	one
of	the	SPINTERFERENCE	values	to	indicate	the	nature	of
the	problem	(no	signal,	clipping,	user	speaking	too	fast
etc).	Applications	can	choose	whether	to	respond	to
these	events.
SPEI_SR_PRIVATE	is	an	event	type	that	engines	use	for
engine-specific	communication	with	applications.	Engines
should	include	some	unique	identifier	in	the	data	sent
with	the	event	to	distinguish	the	use	of	this	event	from
another	engine's.	The	SPRECOCONTEXTHANDLE
parameter	in	the	AddEvent	call	can	also	be	used	to	send
this	event	to	a	particular	RecoContext,	rather	than	to	all
contexts.

	

7.6							Completion	of	processing
	
An	engine	should	continue	recognizing	as	long	as	data	is
available	and	it	is	not	signaled	to	stop.	Typically,	after	an	engine
reports	a	recognition,	it	checks	for	grammar	changes	and
continues	reading	data	and	recognizing.
	
The	Read	call	indicates	that	the	engine	should	finish	recognition
when	there	is	no	more	data	to	read	from	the	stream.	The	engine
should	finish	processing	the	data	it	has,	sending	events	and
recognitions	as	necessary,	and	return	from	RecognizeStream.	A
Win32	event,	passed	as	the	hExit	parameter	to
RecognizeStream,	which	is	set	to	indicate	that	the	recognizer
should	exit	immediately,	without	necessarily	reading	all	the
data.	This	condition	is	also	indicated	by	Recognition	or
Synchronize	returning	S_FALSE	rather	than	S_OK.
	
Recognition	is	complete	for	one	of	several	reasons:

All	active	rules	in	the	applications	connected	to	the
engine	were	deactivated.

An	application	set	the	recognition	state	(with
SetRecoState)	to	inactive	or	inactive	with	purge.
No	data	left	in	the	stream	(e.g.,	for	wav	file	streams).

An	error	or	buffer	overflow	in	the	stream	reading.
	
Note	that	the	default	model	in	SAPI	is	for	an	engine	to	continue
recognizing	unless	it	is	explicitly	informed	to	stop.	An	example
of	this	would	be	a	desktop	application	where	everything	the
user	says	is	being	listened	to	and	acted	upon.	For	some	systems

an	utterance-by-utterance	method	is	required,	where
recognition	stops	after	each	thing	the	user	says.	This	is	best
implemented	by	the	application	using	the	auto-pause	feature
when	it	activates	rules.	Then	the	engine	pauses	after	each
recognition	and	the	application	can	process	information	and
terminate	recognition	by	deactivating	all	active	rules.
	

8									Recognition	Results
	
In	this	chapter,	the	process	of	returning	results	is	explained	in
more	detail.
	

8.1							Recognition	Call
	
The	Recognition	call	itself	takes	a	pointer	to	the	following
structure	as	a	parameter:
	

typedef	struct	SPRECORESULTINFO

{

				ULONG													cbSize;
				SPRESULTTYPE						eResultType;

				BOOL														fHypothesis;

				BOOL														fProprietaryAutoPause;

				ULONGLONG									ullStreamPosStart;	

				ULONGLONG									ullStreamPosEnd;

				SPGRAMMARHANDLE			hGrammar;

				ULONG													ulSizeEngineData;

				void													*pvEngineData;

				IspPhraseBuilder	*pPhrase;

				SPPHRASEALT						*aPhraseAlts;

				ULONG													ulNumAlts;

}	SPRECORESULTINFO;

	
These	fields	are	set	as	follows:
	

cbSize	is	simply	size	of	(SPRECORESULTINFO).
eResultType	is	either	SPRT_CFG,	SPRT_SLM,	or
SPRT_PROPRIETARY.	The	SPRT_FALSE_RECOGNITION	flag
is	set	to	indicate	a	false	recognition

fHypothesis	indicates	whether	the	result	is	a	hypothesis
or	final	recognition.
fProprietaryAutoPause	is	set	to	FALSE	unless	using	auto-
pause	with	proprietary	grammars.
ullStreamPosStart/End	provides	the	start	and	end
positions	of	the	result.	This	informs	the	application	of	the
position	of	the	result,	and	controls	what	audio	data	is
retained	in	the	result.	The	start	position	must	be	equal	or
later	than	the	stream	position	reported	for	the	phrase
start	corresponding	to	this	recognition,	and	later	than	the
stream	positions	reported	in	previous	Synchronize	calls.

hGrammar	is	set	to	the	grammar	handle	for	dictation	or
proprietary	results,	and	NULL	for	CFG	results.
pvEngineData	returns	arbitrary	data	of	size
ulSizeEngineData	with	the	result.	This	data	is	used	for
generating	alternates	if	an	alternates	analyzer	object	is
being	used.
pPhrase	contains	the	main	information	about	the	result.
This	is	created	in	differently	for	CFG,	dictation,	or
proprietary	results.	This	can	also	be	NULL	for	false
recognitions	if	the	engine	has	no	phrase	to	report.	See
below	for	details	on	how	to	create.
aPhraseAlts	is	an	array	containing	ulNumAlts	alternates
for	this	recognition.	These	are	optional	(See	Returning
alternates	in	a	Recognition).

	

8.2							Dictation	Phrases
	
The	standard	method	used	to	construct	a	phrase	builder	object
to	hold	a	dictation	result	is	as	follows:

1.	 The	engine	creates	an	SPPHRASE	structure	using	the
needed	information.

2.	 Then	the	engine	uses	CoCreate	to	create	an
SpPhraseBuilder	object	(CLSID_SpPhraseBuilder).

3.	 The	SPHRASE	information	is	added	with
IspPhraseBuilder::InitFromPhrase.

	
The	SPPHRASE	has	the	following	fields:
	

cbSize.	This	is	the	size	of	(SPPHRASE).

LangID.	The	LANGID	of	the	result.ullGrammarID,
wReserved,	ftStartTime,	ulRetainedSizeBytes,
ulAudioSizeTime.	Set	by	SAPI	and	can	be	left	as	0.
ullAudioStreamPosition	and	ulAudioSizeBytes.	Indicate
the	position	of	the	result	in	the	audio	stream.	The
position	is	in	bytes,	relative	to	the	start	of	the	stream.
The	part	of	the	stream	spanned	by	this	phrase	must	be
the	same	as	or	less	than	the	range	in	the
ullStreamPosStart/End	fields	in	the	SPRECORESULTINFO.
Rule.	Set	to	zero	for	dictation	results	apart	from	the
ulCountOfElements,	which	must	be	filled	in	with	the
number	of	words	in	the	result.
pProperties.	The	array	of	semantic	properties,	which	will
be	NULL	for	a	dictation	result.

pElements.	The	array	of	actual	words	in	the	result.
pReplacements.	This	holds	an	array	of	size
cReplacements	of	ITN	text	replacements	the	may	fill	in
(See	Inverse	Text	Normalization	(ITN)).

SREngineID.	An	arbitrary	GUID	that	could	be	the	CLSID	of
the	engine,	for	example.
pSREnginePrivateData.	This	enables	arbitrary	engine-
specific	data	to	be	returned	with	the	phrase	object,	of
size	ulSREnginePrivateDataSize.

	
The	words	of	the	result	are	represented	by	an	array	of
SPPHRASEELEMENT	structures	in	the	pElements	field.	The	rule
ulCountOfElements	field	indicates	the	number	of	words.	The
elements	are	filled	in	either	directly	before	the	InitFromPhrase
call,	or	afterward	with	an	AddElements	call.
	
Each	SPPHRASEELEMENT	contains	the	following	information:

Result	times:	ulAudioTimeOffset	and	ulAudioSizeTime
and	retained	audio	format	details,
ulRetainedStreamOffset	and	ulRetainedSizeBytes.	These
are	all	filled	in	by	SAPI	and	are	set	to	0.
Audio	stream	start	position	and	size	for	this	word:	These
are	relative	to	the	start	stream	position	of	the	parent
phrase.	These	can	be	left	0,	although	the	application
then	cannot	obtain	word	position	information.
Display	text,	lexical	form,	and	pronunciation	information
for	the	word.	The	display	text	must	be	set	so	that	the
application	displays	the	result.	Optionally,	the	lexical
form	and	pronunciation	can	also	be	set.

Display	attributes	information.	This	is	of	type
SPDISPLAYATTRIBUTES	and	provides	information	to	SAPI

about	how	to	format	the	result.	For	European	languages,
this	would	usually	be	set	to	SPAF_ONE_TRAILING_SPACE
so	that	each	word	is	printed	with	a	space	between	it.
RequiredConfidence.	This	is	filled	in	by	SAPI.

Actual	and	SR	confidence.	(See	Confidence	Scoring	and
Rejection)

	
Once	the	PhraseBuilder	has	been	filled	in,	it	passes	to	SAPI	as
the	pPhrase	field	in	the	Recognition	call.
	
Results	for	proprietary	grammars	are	completed	in	the	same
way	as	dictation	results.
	

8.3							CFG	Phrases
	
The	engine	does	not	directly	create	a	phrase	object	for	a	CFG
result,	but	a	calls	ParseFromTransitions.	The	engine	provides	to
this	method	information	about	the	words	in	the	result,	and	SAPI
parses	the	active	rules	to	fill	in	semantic	property	and	other
information	correctly.	The	engine	then	passes	the	returned
phrase	builder	object	to	SAPI	as	the	pPhrase	pointer	in
Recognition.

ParseFromTransitions	uses	the	SPPARSEINFO	structure	as
a	parameter	containing	the	following	information	cbSize.
Set	to	size	of	(SPPARSEINFO).

hRule.	The	handle	of	the	top-level	rule	this	result	refers
to.
ullAudioStreamPosition	and	ulAudioSize	indicate	the
position	of	the	result	in	the	audio	stream.	The	position	is
in	bytes,	relative	to	the	start	of	the	stream.	The	part	of
the	stream	spanned	by	this	phrase	must	be	the	same	as
or	less	than	the	range	given	in	the	ullStreamPosStart/End
fields	in	the	SPRECORESULTINFO.
pPath.	An	array,	of	size	cTransitions,	of	SPPATHENTRY
structures.
An	SREngineID	GUID	that	can	be	used	by	the	application
to	identify	the	engine.

Optional	private	engine	data	pSREnginePrivateData	of
size	ulSREnginePrivateDataSize.
A	flag	fHypothesis	indicating	whether	the	result	is	to	be
used	for	a	hypothesis	or	final	recognition.

	

The	SPPATHENTRY	array	contains	information	about	the	words	in
the	result.	Each	word	transition	needs	an	entry	in	the	result.	The
engine	does	not	include	rule	or	epsilon	transitions;
ParseFromTransitions	is	able	to	process	the	result	without	these.
Each	SPPATHENTRY	contains	a	transition	ID	for	the	word
transition,	and	an	SPPHRASEELEMENT	structure,	which	is	filled
in	the	same	way	as	dictation	results	Neither	the	display	text,
lexical	form	nor	pronunciation	needs	to	be	filled	in	for	word
transitions.	ParseFromTransitions	will	automatically	do	this.
	
There	should	also	be	entries	for	any	special	transitions:

For	a	wildcard	transition,	the	engine	sets	the	transition	ID
to	the	value	it	received	for	the	wildcard	transition,	and
fills	in	the	phrase	element	information	as	it	would	for	a
normal	word.
For	a	dictation	or	text-buffer	transition	the	engine
includes	an	SPPATHENTRY	for	each	word	recognized	in
the	dictation	or	text-buffer.	The	display	text	needs	to	be
set	to	the	text	for	each	word.	Optionally,	the	lexical	form
and	pronunciation	can	be	set	also.

	

8.4							Confidence	Scoring	and	Rejection
	

8.4.1								Word	Confidence
It	is	possible	for	confidence	score	information	to	be	included	in
recognition	results.	On	each	phrase	element	there	are	two
confidence	fields	that	the	engine	can	set.	These	have	both	a
Confidence	(three-level)	field	and	an	SREngineConfidence
(floating-point)	field.	If	the	engine	does	not	explicitly	set	any	of
these	values,	SAPI	will	try	and	produce	reasonable	default
values	for	them.	It	will	produce	the	Confidence	values	by
averaging	the	levels	for	each	of	the	words	in	the	phrase	or
property,	and	it	will	set	the	SREngineConfidence	values	to	–1.0.
The	first,	ActualConfidence,	is	a	three	level	value	to	indicate
low,	medium	or	high	confidence	(SP_LOW_CONFIDENCE,
SP_NORMAL_CONFIDENCE,	SP_HIGH_CONFIDENCE	for	C/C++,	or
of	type	SpeechEngineConfidence	for	OLE	automation).	This	is
designed	to	give	applications	a	simple,	and	engine-independent,
confidence	value.
The	second	value,	SREngineConfidence	is	a	positive	floating-
point	value.	This	can	be	used	by	engines	to	give	more	detailed
confidence	information,	but	is	not	necessarily	engine-
independent.	SAPI	defines	that	this	value	should	be	positive,
with	zero	indicating	the	lowest	confidence.	It	can	be	used	to
optimize	an	application's	performance	with	a	specific	engine.
Using	this	value	will	improve	the	application	with	a	particular
speech	engine	but	more	than	likely	will	make	it	worse	with	other
engines	and	should	be	used	with	care.	This	value	is	more	useful
with	speaker-independent	engines	because	it	allows	a	large
corpus	of	recorded	usage	to	correctly	optimize	the	overall
accuracy	of	the	application.	See	Confidence	Scoring	and
Rejection	in	SAPI	Speech	Recognition	Engine	Guide	for
additional	details.	If	this	field	is	not	being	used,	the	engine	sets

this	confidence	to	–1.0.
	

8.4.2								Property	and	Rule	Confidence
It	is	also	possible	for	confidences	to	be	associated	with	rules
and	semantic	properties	in	CFG	results.	This	application	looks	at
confidence	on	individual	words	rather	than	at	confidence	on
groups	of	words.	The	confidence	for	a	rule	is	the	overall
confidence	for	all	the	words	in	the	phrase	contained	within	that
rule.	Thus,	for	the	top-level	rule,	this	gives	an	overall	confidence
for	the	whole	phrase.	The	confidence	for	a	semantic	property	is
the	confidence	for	all	the	words	within	the	rule,	if	the	property	is
on	a	rule	or	rule	reference;	or	the	confidence	for	the	word,	if	the
property	is	on	a	word	transition.
	
It	is	possible	for	the	engine	to	override	these	settings	if	it	has	an
alternative	method	of	estimating	phrase	confidences.	Since
these	fields	cannot	be	directly	manipulated	on	the
ISpPhraseBuilder	interface,	it	is	necessary	to	convert	them	back
to	an	SPPHRASE	structure	first.	This	is	done	using	the	following
sequence	of	actions:
	

·								Calling	GetPhrase	on	the	SpPhraseBuilder	object	to	get	an
SPPHRASE.

·								Modifying	the	chosen	fields	in	the	SPPHRASE	(Note	this
may	require	casting	the	fields	away	from	const	to	do	this).

·								Calling	InitFromPhrase	on	the	original	SpPhraseBuilder	to
set	the	modified	phrase	information	in	the	object.

·								The	engine	can	then	use	the	SpPhraseBuilder	in
Recognition	calls.

	

This	method	can	also	be	used	to	override	other	information	in	a
CFG	result	phrase	after	ParseFromTransitions	has	been	called.
	

8.4.3								Required	Confidence	and	Rejection
Each	transition	on	a	CFG	contains	a	RequiredConfidence	field.
This	is	set	to	one	of	three	values	like	the	ActualConfidence	field.
This	field	is	set	to	SP_NORMAL_CONFIDENCE	by	default,	and	is
changed	in	the	XML	grammar	by	preceding	words	with	“+”	or
“-”.	The	purpose	of	this	field	is	to	indicate	how	much	confidence
in	the	recognition	an	application	requires	for	the	result	to	be
returned.	In	principle,	if	the	engine	has	a	result	and	the
confidence	of	any	of	the	words	in	the	phrase	is	lower	than	the
required	confidence,	the	engine	should	reject	the	result.	Note
that	the	engine	may	have	a	different	mechanism	for	rejecting
phrases	so	SAPI	does	not	enforce	this	particular	confidence.	The
engine	should,	however,	acknowledge	the	required	confidence
fields	if	possible.
	
Most	applications	will	listen	for	and	act	only	upon	final
recognitions	(SPEI_RECOGNITION	events),	and	probably	do	not
analyze	the	confidence	scores	of	these	results.	Engines	send
these	events	only	after	they	have	determined	that	the
confidence	is	high	enough	to	accept	the	result.
	
When	a	result	is	rejected,	the	engine	sends	a	false	recognition
rather	than	a	final	recognition.	A	false	recognition	can	include
exactly	the	same	phrase	information	as	a	final	recognition,	or	it
can	have	a	NULL	phrase.	Returning	a	phrase	with	a	false
recognition	could	be	useful	to	applications	so	that	they	can
analyze	why	the	phrase	was	rejected,	and	recover	the	audio
from	the	phrase.	Advanced	applications	can	perform	their	own
rejection,	and	thus	could	look	at	both	final	and	false	recognition
events	and	analyze	the	confidence	scores	returned	in	each

result.
	

8.4.4								Ambiguous	Results
Sometimes	the	words	that	have	been	recognized	may	match
more	than	one	possible	path,	either	with	dictation	or	CFG
grammars.	SAPI	does	not	currently	provide	a	means	to	resolve
ambiguity	or	send	the	result	to	multiple	contexts,	so	the	engine
must	select	one	path	to	return	the	result	as.	The	guidelines	for
this	are	as	follows:

·								If	several	CFG	paths	match	the	recognized	words,	set	the
result	for	the	most	recently	activated	rule.	This	should
mean	that	applications	with	focus	should	receive	the	rule
over	those	in	the	background.

·								If	the	rule	matches	both	a	dictation	and	a	CFG,	pick	the
CFG	(unless	the	path	has	a	very	low	CFG	weight	score
indicating	that	the	dictation	path	should	be	chosen).

·								If	several	dictations	are	active,	pick	the	most	recently
activated	dictation.

	
Neither	engines	nor	SAPI	can	determine	what	the	user	meat	to
say.	Applications	are	encouraged	to	try	and	avoid	potentially
ambiguous	grammars.
	

8.5							Inverse	Text	Normalization	(ITN)
	
For	dictation	results,	it	is	possible	for	the	SR	engine	to	specify	a
normalized	form	as	well	as	the	raw	text	of	the	recognized	words.
To	accomplish	this,	add	one	or	more	SPPHRASEREPLACEMENT
structures	into	the	result	phrase	and	use	either	
AddReplacements	or	directly	set	the	pReplacements	and
cReplacements	fields	in	the	SPPHRASE.	It	is	possible	to	have
more	than	one	replacement	because	each	can	refer	to	a	sub-set
of	the	full	text.
	
SAPI	does	not	provide	an	automatic	inverse-normalization	(ITN)
facility.	However,	it	does	provide	a	mechanism	for	engine
vendors	to	write	a	grammar	describing	their	ITN	rules	which	can
be	automatically	parsed.
	
SAPI	provides	an	object	SpITNProcessor	that	implements
ISpITNProcessor.	The	engine	can	use	CoCreate	to	create	this
(CLSID_SpITNProcessor),	and	then	call	LoadITNGrammar	on	this
object.	The	engine	must	pass	in	the	CLSID	of	an	object	that
implements	the	ISpCFGInterpreter	interface.	Engine	vendors
must	implement	this	object,	which	has	two	methods.
InitGrammar	is	called	by	SAPI	when	the	LoadITNGrammar	is
called.	This	method	should	load	a	SAPI	binary	grammar
containing	the	ITN	information	and	return	it	as	serialized	data.
	
The	ITN	grammar	that	the	engine	implements	should	have	rules
for	each	of	the	phrase	fragments	that	need	to	be	normalized.
These	rules	need	to	have	the	attributes	“TOPLEVEL=ACTIVE”	so
that	SAPI	will	activate	them	for	parsing,	and	“INTERPRETER=1”
so	that	SAPI	calls	the	engine’s	ISpCFGInterpreter	object	when

the	rule	is	fired.
	
When	the	engine	has	a	result	phrase	to	normalize,	ITNPhrase	is
called	on	the	SpITNProcessor	object.	This	will	parse	the
grammar,	and	if	a	fragment	of	text	matches	any	of	the	rules	in
the	grammar,	ISpCFGInterpreter::Interpret	will	be	called.	This
method	will	be	passed	in	a	phrase	containing	the	result	text	and
matching	rule	information,	and	an	ISpInterpreterSite	pointer.
The	engine’s	implementation	of	this	should	look	at	the	reported
text	and	call	ISpInterpreterSite::AddTextReplacement	to	add	the
normalized	text.
	
Because	the	ITN	grammar	is	a	standard	SAPI	grammar,	it	is
possible	to	use	all	the	features	of	such	a	grammar.	For	example,
it	may	be	useful	to	include	the	normalized	text	as	a	semantic
property.	This	will	be	included	in	the	phrase	passed	to	Interpret
so	that	this	method	could	just	set	the	replacement	text	to	be
the	property	string.	For	example,	the	following	is	a	simple
grammar	rule	to	convert	dollar	and	pound	signs	to	their
respective	symbols:
	
<RULE	NAME="currency_type"	INTERPRETER="1"
TOPLEVEL="ACTIVE">
						<L	PROPNAME="CURRENCY_TYPE"
PROPID="CURRENCY_TYPE">
																		<P	VALSTR="$">dollar</P>
																		<P	VALSTR="$">dollars</P>
																		<P	VALSTR="£">pound</P>
																		<P	VALSTR="£">pounds</P>
						</L>
</RULE>

	
When	trying	to	reorder	symbols	(e.g.,	so	that	the	dollar	sign
comes	before	the	currency	amount),	more	sophisticated
processing	would	have	to	be	done	in	Interpret.
	

8.6							Interpreters
	
Sometimes	an	application	will	want	extract	semantic
information	from	CFG	results	after	processing.	Using	this
process,	it	is	possible	for	a	grammar	to	be	associated	with	an
object.	The	object	would	implement	ISpCFGInterpreter,	and
would	be	called	each	time	a	result	matching	a	rule	in	the
grammar	was	passed	into	ParseFromTransitions.	Then,	rather
than	filling	in	the	property	information	statically	from	the
grammar,	this	object	would	do	so	with
ISpInterpreterSite::AddProperty.
	
This	process	is	basically	invisible	to	the	SR	engine.	It	recognizes
the	words	in	the	grammar	and	calls	ParseFromTransitions	and
then	Recognition.	The	one	difference	is	that
GetTransitionProperty	may	report	that	there	are	no	properties	on
a	transition,	which	are	later	added	into	the	result	in	the
ParseFromTransitions	calls.	Rules	with	an	associated	interpreter
have	the	SPRAF_Interpreter	flag	set	in	the	SPRULEENTRY
Attributes	field.
	

9									Alternates
	
There	are	two	ways	the	engine	can	supply	alternates	back	to
the	application.	It	either	supplies	the	alternates	directly	in	the
Recognition	call,	or	produces	alternates	using	an	alternates
analyzer	object.
	

9.1							Returning	alternates	in	a	Recognition
	
The	field	aPhraseAltsin	the	SPRECORESULTINFO	structure	can
contain	an	array	of	alternates.	The	size	of	the	array	is	given	by
ulNumAlts.	Each	entry	in	the	array	is	a	SPPHRASEALT	structure.
This	contains	an	ISpPhraseBuilder	structure	generated	directly
or	from	ParseFromTransitions,	depending	on	whether	the
alternate	is	for	a	CFG	or	dictation	result.	This	entry	contains	the
full	phrase	of	the	alternate,	not	just	the	words	that	are	different
from	the	main	result.

ulStartElementInParent	and	cElementsInParent	indicate
which	words	in	the	main	phrase	are	different	in	this
alternate.

cElementsInAlternate	indicate	which	words	these	are
being	replaced	within	this	alternate.
ulStartElementInAlternate	is	not	needed	because	it	would
be	the	same	as	ulStartElementInParent.

pvAltExtra	and	cbAltExtra	fields	can	be	used	to	add
engine-specific	extra	data	to	the	alternate.

	
The	number	of	alternates	that	an	application	requires	is
obtained	with	either	GetMaxAlternates	or
GetContextMaxAlternates.	The	first	gives	the	maximum	number
of	alternates	for	any	rule,	and	the	latter,	the	maximum	for	any
RecoContext.
	
Sometimes	when	multiple	applications	are	using	the	shared
recognizer	and	all	have	rules	active,	the	engine	may	generate
alternates	from	different	applications.	Currently,	SAPI	cannot
process	such	alternate	lists	and	it	is	not	possible	for	the	engine

to	send	alternates	referring	to	different	RecoContexts	in	the
main	result.	To	simplify	detecting	which	context	an	alternate
belongs	to,	the	engine	can	use	IsAlternate,	using	the	handle	of
the	main	and	alternate	top-level	rule.	SAPI	returns	S_OK	if	the
alternate	is	valid	and	S_FALSE	otherwise.
	

9.2							Alternates	Analyzer
	
The	engine	can	also	implement	a	separate	alternates	analyzer
COM	object.	This	must	implement	the	interface	ISpSRAlternates.
The	CLSID	for	this	object	is	stored	in	the	engine’s	object	token	in
the	AlternatesCLSID	string	value.	This	type	of	analyzer	can	only
be	used	for	dictation	alternates,	not	for	CFG	alternates.
	
When	an	application	asks	for	alternates	with
ISpRecoResult::GetAlternates,	and	if	the	engine	has	already
supplied	alternates	within	the	Recognition	call,	SAPI	supplies
these	to	the	application.	Otherwise,	if	the	engine	has	an
alternates	analyzer	object,	SAPI	creates	this	and	requests	the
alternates	from	it,	using	GetAlternates.
	
As	well	as	passing	in	the	main	ISpPhrase	result	and	the	number
of	alternates	requested,	the	alternates	analyzer	is	also	receives
any	extra	data	the	engine	supplied	in	the	pvEngineData	field	of
the	SPRECORESULTINFO	structure	in	the	Recognition	call.	The
engines	stores	serialized	lattice	information	or	similar
information	here,	which	the	alternates	analyzer	uses	to
generate	the	alternates.
	
The	analyzer	is	also	passed	a	pointer	to	the	IspRecoContext,
requesting	the	alternates.	The	analyzer	can	use	this	to	query	for
an	engine-specific	extension	interface	(See	Engine	extensions)
to	make	a	private	call	to	the	main	engine	object.	These	objects
may	be	in	different	processes.	Because	the	result	object	can	be
serialized	and	then	re-created	later,	it	may	not	be	possible	to
provide	a	RecoContext	referring	to	the	SR	engine.	In	this	case
NULL	is	passed	in.

	
If	a	user	makes	a	correction	after	looking	at	the	alternates,	the
application	can	commit	that	alternate	with
ISpRecoResult::Commit.	Commit	is	called	on	the	analyzer,	giving
the	engine	the	SPPHRASEALT	that	the	application	selected.	The
engine	can	use	this	to	perform	adaptation	to	improve
subsequent	recognition	performance.
	

10			User-Interface
	
There	are	a	variety	of	user-interface	components	an	engine
supplies	along	with	the	main	engine	object	itself.	Examples	of
these	are	user	enrollment,	microphone	set-up,	adding	and
removing	user	exception	words	and	engine	properties.	Engines
should	not	create	UIs	directly.	Instead,	SAPI	provides
mechanisms	for	engines	to	describe	what	UI	components	they
have	and	to	request	the	display	of	these	components.
	
The	engine’s	object	token	contains	the	details	of	the	UI	that	an
engine	supports.	The	token	can	contain	a	UI	subkey.	Within	this
key	can	be	subkeys	for	each	component	type	the	engine
implements.	For	example	the	Sample	SR	engine	(Token:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Speech\Recognizers\Tokens\SAPI5SampleEngine
has	a	key	UI\AddRemoveWord.	This	contains	a	value	CLSID,
which	holds	the	CLSID	of	the	class	to	be	created	when	this	UI
component	is	displayed.	The	engine	setup	installs	and	registers
this	class.	This	class	must	implement	the	interface	ISpTokenUI.
	
An	SR	engine	can	display	a	certain	UI	by	calling	AddEvent	with
an	eEventId	of	SPEI_REQUEST_UI.	The	name	of	the	UI
component	requested	is	in	the	lParam	field,	with	the
elParamType	set	to	SPET_LPARAM_IS_STRING.	To	cancel	the	UI
request,	the	engine	calls	this	method	again	with	a	NULL	lParam.
	
This	event	is	sent	to	all	applications	connected	to	the	engine
that	are	waiting	for	the	event.	An	application	can	either	ignore
the	engine’s	request,	or	respond	to	it.	An	application	can	ask	to
create	an	engine	UI	at	any	time,	not	just	after	it	has	received	a
request.

	
An	application	determines	if	an	engine	object	token	supports	a
particular	UI	component	by	calling	IsUISupported,	either	on	the
ISpObjectToken	itself,	or	on	the	ISpRecognizer.	If	the	object
token	has	a	CLSID	for	this	type	of	UI,	SAPI	will	create	the	object
and	call	ISpTokenUI::IsUISupported	on	the	engine’s	UI	class.	To
actually	display	the	UI,	the	application	calls	DisplayUI,	which
leads	to	a	call	to	ISpTokenUI::DisplayUI	on	the	engine’s	class.
	
Both	DisplayUI	and	IsUISupported	on	ISpTokenUI	take	an
IUnknown	parameter	punkObject.	If	an	application	calls	these
methods	on	the	IspRecognizer,	this	parameter	will	point	to	this
ISpRecognizer	object.	The	UI	component	finds	the	RecoContext
and	makes	a	private	call	to	the	main	SR	engine	object.	If	the
methods	are	called	by	the	application	directly	from	the	object
token,	this	parameter	may	be	NULL	or	point	to	a	different
object.	If	the	engine	requires	its	parent	SR	engine	to	be	created
in	order	to	run	the	UI,	it	may	not	be	able	to	display	the	UI.
	

11			Engine	extensions
	
SAPI	5	aims	to	provide	interfaces	for	all	the	main	objectives	on
the	SR	engine.	However,	there	are	often	additional	features	that
SR	engines	can	implement	when	connected	to	certain
applications.	For	example,	there	are	a	number	of	places	where
engine-specific	data	can	be	passed	to	an	application.	And,	there
are	engine-specific	data	fields	on	results	phrases,	the
SPEI_SR_PRIVATE	event,	methods	to	support	proprietary
grammars,	new	object	token	attributes	and	properties	etc.
There	is	also	a	mechanism	for	an	engine	to	implement
additional	interfaces	for	an	application	to	use	if	it	wants	to	be
specifically	connected	to	a	particular	engine.	To	do	this,	the
engine	implements	a	new	COM	object.	The	CLSID	for	this	object
is	stored	in	the	engine	object	token,	in	the	string	value
RecoExtension.	This	object	can	implement	any	interfaces	that
the	engine	vendor	wants	to	implement.	To	use	this	object,	an
application	must	use	QueryInterface	on	the	RecoContext	for	an
interface	that	it	supports.	SAPI	then	creates	the	engine
extension	object	as	an	aggregate,	and	queries	it	for	the
interface.	The	application	is	then	free	to	call	any	methods	on
this	interface	and	the	methods	will	be	passed	to	the	extension
object.	For	example,	the	Sample	SR	Engine	implements	the
interface	ISampleSREngine,	with	which	an	application	can	use
QueryInterface	to	call	RecoContext.
	
The	extension	object	can	make	calls	to	its	main	SR	engine	class.
It	does	this	by	querying	on	the	RecoContext	for	the
_ISpPrivateEngineCall	interface.	The	RecoContext	is	the	outer
unknown	of	the	extension	object.	The	sample	engine	does	this
(in	srengext.h)	by:
								hr	=	OuterQueryInterface(IID__ISpPrivateEngineCall,	(void
**)&m_pEngineCall);

	
This	query	for	_ISpPrivateEngineCall	must	be	done	in	the
constructor	or	ATL	FinalConstruct	of	the	engine	extension	object.
It	cannot	be	done	later.
	
This	gives	a	pointer	to	an	_ISpPrivateEngineCall	interface.	See
11.1	Important	notes	regarding	handling	interface	pointers	in	an
SR	engine	extension.	Both	methods	send	a	serialized	chunk	of
data	to	the	engine.	The	difference	between	these	two	methods
is	that	CallEngineEx	can	return	a	chunk	of	data	back	from	the
engine	that	is	larger	than	the	data	passed	in.
	
It	is	possible	for	applications	to	know	what	engine	they	are
connected	to.	If	the	engine	is	not	one	that	supports	the
extension	interface,	the	QueryInterface	will	fail.	Alternatively,
the	application	can	look	at	the	CLSID	of	the	engine	using
ISpRecognizer::GetStatus.	Thus,	applications	that	plan	to	use
special	features	of	a	particular	engine	will	be	able	to	detect	if
they	do	not	have	this	interface	and	either	perform	with	limited
functionality	or	fail	gracefully.	This	provides	maximum
interoperability	between	engines	and	still	enables	applications
to	take	advantage	of	engine-specific	information.
	

11.1		Important	notes	about	COM	interface
pointer	handling	by	the	SR	extension	aggregates
	
An	SR	engine	extension	can	only	query	for	the
IID_ISpPrivateEngineCall	during	creation	of	the	object	(for
example,	in	the	FinalConstruct	call	of	an	ATL	object).	
RecoContext	makes	the	interface	visible	only	during	this	time.	
This	interface	does	not	use	AddRef	for	the	QueryInterface	call,
so	the	extension	should	never	call	Release	on	this	interface.
	
Because	the	SR	engine	extension	is	created	as	a	COM
aggregate,	if	it	were	to	hold	a	reference	to	its	outer	IUnknown
interface	(the	IUnknown	of	the	ISpRecoContext	interface),	it
would	prevent	the	context	from	ever	being	released.		If	the
extension	object	calls	QueryInterface	on	the	ISpRecoContext
interface	for	any	interface	except	for	_ISpPrivateEngineCall,
Release()	must	be	called	immediately	on	the	outer	unknown
object	to	prevent	a	self-reference.		Continue	to	use	this	interface
even	though	Release	has	already	been	called.		This	is	because
the	lifetime	of	the	ISpRrecoContext	interface	and	the	extension
object	are	guaranteed	to	be	the	same.
	
The	sample	SR	engine	extension	shows	an	example	of	how	to
handle	these	cases	in	FinalConstruct.
	
	
	
	
	

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Object	Tokens	and	Registry	Settings
	
	

1										Contents
1						Contents
2						Summary
3						Overview:	Tokens,	Categories	and	the	Registry
3.1							TOKENS
3.2							CATEGORIES
3.3							TOKENIDS	AND	CATEGORYIDS
3.4							USER	DEFAULTS
3.5							TOKEN	ENUMERATORS
4						Using	Tokens	and	Categories
4.1							HELPER	FUNCTION	EXAMPLES
4.2							ENUMERATING	TOKENS
4.3							INSTANTIATING	AN	OBJECT	FROM	A	TOKEN
5						Tokens	and	Categories	For	Engine	Developers
5.1							MAKING	RESOURCES	AVAILABLE	THROUGH	SAPI
5.2							ASSOCIATING	FILES	WITH	TOKENS
5.3							INSPECTING	UUNDERLYING	KEYS	OF	A	TOKEN
5.4							CREATING	NEW	KEYS	IN	THE	REGISTRY
6						Registry	Settings
6.1							CATEGORY:	VOICES
6.2							CATEGORY:	RECOGNIZERS
6.3							CATEGORY:	RECOPROFILES
6.4							CATEGORY:	AUDIOINPUT
6.5							CATEGORY:	AUDIOOUTPUT

6.6							CATEGORY:	APPLEXICONS
6.7							CATEGORY:	PHONECONVERTERS
6.8							USERLEXICONS
7						Index	of	Tables
	
	

2									Summary

This	document	is	intended	to	help	developers	of	speech-enabled
applications	discover	and	use	resources	(Voices/Recognizers)	on	a
computer	that	has	SAPI	installed.	A	speech-enabled	application	is	one
that	attempts	to	either	recognize	or	synthesize	speech.Developers	of
speech	recognition	(SR)	and	speech	synthesis	(Text	to	Speech	or	TTS)
engines	make	their	resources	available	to	applications.

This	spec	answers	the	following	questions:

·									What	are	Tokens	and	Categories	in	SAPI?

·									Where	is	information	about	tokens	stored	in	the	Registry?

·	 	 	 	 	 	 	 	How	does	an	application	find	tokens	and	initialize	resources
(i.e.,	Voices	or	Recognizers)	from	them?	

·	 	 	 	 	 	 	 	 	What	 are	 the	 SAPI-defined	 attributes	 that	 engines	 should
document	in	the	registry?

·									How	are	files	associated	with	tokens?

Note:

The	Speech	SDK	documentation	section	on	Object	Tokens,
which	provides	a	complete	description	of	the	ISpObjectToken
and	ISpObjectTokenCategory	and	their	methods,	complements
this	document.

3									Overview:	Tokens,	Categories	and
the	Registry

3.1							Tokens
	

A	token	is	an	object	representing	a	resource	that	is	available	on	a	computer,	such
as	a	voice,	recognizer,	or	an	audio	input	device.	A	token	provides	an	application
an	easy	way	to	inspect	the	various	attributes	of	a	resource	without	having	to
instantiate	it.	The	Vendor	of	a	Recognizer,	and	Gender	of	a	Voice	are	examples
of	attributes	of	resources.	In	many	cases,	applications	should	use	SAPI-provided
helper	functions	for	common	scenarios.	For	example,	an	application	can	use	the
SpCreateBestObject	helper	function	to	rapidly	create	the	object,	given	a	certain
type	of	resource.	The	application	can	also	query	for	tokens	meeting	certain
criteria	without	using	the	helper	function.	To	do	this,	the	application	calls	the
EnumTokens	method	on	the	ISpObjectTokenCategory	interface	to	get	an
enumerator,	and	inspect	the	tokens	in	the	enumerator	further	if	it	chooses	to.
Finally,	the	application	selects	one	of	the	tokens	in	the	enumerator	to	instantiate
a	resource.	Once	the	resource	(such	as	SR	Engine)	is	instantiated,	if	it
implements	the	ISpObjectWithToken	interface,	then	it	is	handed	a	pointer	to
the	token	that	was	used	to	create	it.	This	way,	the	resource	contains	a	handle	to
more	information	about	itself.

	

Conceptually,	a	token	contains	the	following	information:

·									The	language-independent	name.	This	is	the	name	that	should	be
displayed	wherever	the	name	of	the	token	is	displayed.	It	is	marked	as
(Default)	in	the	registry.	The	implementer	of	the	token	may	also	choose	to
provide	a	set	of	language-dependent	names	in	several	languages.

·									The	CLSID	used	to	instantiate	the	object	from	the	token.

·									A	set	of	Attributes,	which	are	the	only	set	of	queriable	values	in	a	token.
This	means	SAPI	provides	a	mechanism	to	query	for	tokens	whose
attributes	match	certain	values.	Details	on	how	to	query	for	tokens	that
match	a	set	of	attributes	are	in	Sections	4.1	and	4.2.

	

	

A	token	may	also	contain	the	following:

·									If	a	token	has	user	interfaces	(UIs),	such	as	the	properties	of	a
Recognizer	or	a	wizard	to	customize	a	Voice	to	display,	then	the	token	will
also	contain	the	CLSID	for	the	COM	object	used	to	instantiate	each	type
of	UI.

·									The	set	of	Files	from	which	SAPI	returns	the	paths	to	all	the	associated
files	for	the	token.	

	

SAPI	stores	information	about	tokens	in	the	registry.	A	token	is	represented	in
the	registry	by	a	key	and	the	key’s	underlying	keys	and	values.	When	an
application	queries	SAPI	for	tokens	of	all	the	female	voices	on	the	computer,
SAPI	will	look	at	the
HKEY_LOCAL_MACHINE\Software\Microsoft\Speech\Voices	area.	This
corresponds	to	a	Category	and	categories	are	discussed	in	the	Section	3.2.	SAPI
searches	for	tokens	that	match	the	criteria	(in	this	case,	a	voice	with	the	Gender
attribute	set	to	female)	and	uses	one	of	these	matching	tokens	to	initialize	the
voice.	The	application	may	also	specify	a	different	fully	qualified	registry	path	to
specify	any	non-standard	(from	a	SAPI)	location	in	the	registry	for	SAPI	to
search	for	a	token.	In	addition	to	the	keys	SAPI	recommends,	the	entry	for	the
token	may	contain	any	other	bits	of	information	that	the	implementer	of	the
token	can	store	here.	In	the	registry,	a	token	looks	like	this:

Table	1	Parts	of	a	Token	in	the	Registry

RegKey ValueName Sample	Value Comments

SampleTokenKey 	 	 Required	-
This	is	the
RegKey	for
the	Token.

	 (Default) Joe Required	-
Language
Independent
Name.

	
409 Joe Name	in

Hex	LangID

409,	which
is	English.
There	may
be	several	of
these	rows,
one	for	each
LangID	in
which	the
Token	has	a
name.	Note,
no	leading
0x	before	the
LangID.

	
809 Joe

	 CLSID {8021D50E-
D93C-4075-
8504-
FC4E124D64E9}

Required	-
Sample
CLSID	for
object	which
instantiates
the	token.

SampleTokenKey/Attributes 	 	 Attributes
for	the	token
are	under
this	key.

	 Language 409;809 There	may
be	several	of
these	rows,
one	for	each
attribute	that
is	queriable.
See	Section
4	for	an
explanation
of	each	of
the
attributes.

	 Vendor VoiceVendor

	

In	the	registry,	this	looks	like:

Figure	1	A	Token	Key	in	the	Registry

The	Attributes	key	contains	all	the	queriable	values	for	the	token.	Section	4.2
discusses	in	detail	how	an	application	queries	a	token.

	
Figure	2	Attributes	of	a	Token

	

If	the	token	is	capable	of	displaying	UI,	then	each	UI	has	its	own	key	under	the
token.	Fig	3	shows	the	token	for	a	Recognizer	that	supports	four	types	of	UI:
AddWord,	EngineProperties,	MicTraining	and	UserTraining,	as	well	as	the
CLSID	underlying	each	UI	type.

	

Figure	3	A	Token	that	supports	UI	has	a	token	for	each	UI	type

	
SAPI	provides	a	comprehensive	set	of	helper	functions	for	the	common
scenarios	using	tokens.	Section	4.1	provides	a	number	of	examples.	SAPI	also
provides	a	way	for	engines	and	applications	to	implement	tokens	in	their	own
proprietary	manner.	See	Section	3.4	on	token	enumerators,	for	further
discussion.	Sections	4	and	5	explore	common	scenarios	using	these	interfaces
from	application	and	engine	coding	perspectives.
	

3.2							Categories
A	ObjectTokenCategory	(hereafter	referred	to	as	category)	is	the
highest	level	of	grouping	of	registry	entries	in	SAPI.	A	category	is	a
class	of	tokens	(or	of	resources,	since	each	token	represents	an	actual
resource	on	the	computer).	Intuitively,	a	category	is	a	type	of	SAPI
resource.	It	is	represented	in	the	registry	by	a	key	containing	one	or
more	token	keys	under	it.	It	is	created	and	manipulated	using	helper
functions	such	as	SpCreateDefaultObjectFromCategoryIDor
methods	on	the	ISpObjectTokenCategory	interface.	Please	refer	to
the	SAPI	documentation	for	details	on	either	of	these.	Examples	of
categories	are	Recognizers	and	Voices.	Figure	4	shows	the	default
SAPI	categories,	with	the	category	Voices	selected.

Figure	4	The	Category	Voices

SAPI	organizes	tokens	in	the	Registry	under	seven	categories.
	

By	default,	the	following	tokens	for	six	of	the	SAPI	categories	are	located	under
HKEY_LOCAL_MACHINE\Software\Microsoft\Speech	(HKLMS).	This	is
where	all	system-specific	SAPI	keys	and	values	should	be	stored	as
recommended	by	Windows	Application	guidelines.	Examples	include	settings

and	files	for	Voices	and	the	Recognizers	(also	known	as	Speech	Recognition
engines)	installed	on	a	computer,	as	shown	in	Figure	1.

	

1.	Voices

2.	Recognizers
3.	AppLexicons

4.	AudioInput

5.	AudioOutput
6.	PhoneConverter

	

The	tokens	for	the	other	category,	Recoprofiles,	are	located	under
HKEY_CURRENT_USER\Software\Microsoft\Speech
(HKCUS).HKCUS	also	contains	all	other	user-specific	keys	and
values	in	the	registry,	such	as	user	defaults	for	Voices,	Recognizers,	as
well	the	location	of	the	user	lexicon	file.
	

Categories	contain	the	following	items:

	

·									A	single	key	called	Tokens,	and	the	keys	for	the	tokens	that
belong	to	that	category	under	it.	For	example,	the	Voices
category	has	a	key	for	the	voice	called	Manuel.	All	the	keys	and
values	for	Manuel	are	located	under	HKLMS/Tokens/Manuel.

·									Keys	for	token	enumerators.	A	token	enumerator	is	a	special
type	of	token	that	generates	other	tokens	for	the	same	category.
This	token	provides	a	way	for	Vendors	to	generate	tokens	that
are	generated	in	non-standard	way,	such	as,	reading	data	from	a
stored	file	stored.	Those	engine	vendors	following	SAPI
guidelines	for	registering	resources	(Sections	4	and	5)	can	safely

ignore	these	and	regard	them	as	generators	for	another	set	of
tokens.	Section	3.4	explains	token	enumerators	in	more	detail.

	

	

3.3							TokenIDs	and	CategoryIDs
	
A	CategoryID	uniquely	identifies	a	category	in	the	registry.	For	SAPI	defined
categories	they	take	the	form	of
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Speech\
{CategoryName}.	For	example,
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Speech\Recognizers\
for	the	Recognizers	category.	All	SAPI	CategoryIDs	should	be	referenced	using
the	constants	defined	in	sapi.idl	file:

	

1.							SPCAT_AUDIOOUT

2.							SPCAT_AUDIOIN

3.							SPCAT_VOICES

4.							SPCAT_RECOGNIZERS

5.							SPCAT_APPLEXICONS

6.							SPCAT_PHONECONVERTERS

7.							SPCAT_RECOPROFILES

	
Similarly,	TokenIDs	uniquely	identify	tokens	in	the	registry.	For	tokens	located
in	SAPI	defined	categories,	they	take	the	form	of:

	

·													CATID\Tokens\TokenKeyName	-	a	static	token	from	the
registry.	For	example,
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Speech\Recognizers\MSASREnglish

·													CATID\TokenEnums\TokenEnumKeyName	-	a	static	token
from	the	registry	that	represents	a	token	enumerator.	This	token
instantiates	a	token	enumerator	used	to	enumerate	dynamic
tokens.	SAPI	uses	this	for	its	own	implementation	of	audio	input

and	output	to	list	just	the	channels	available	on	the	computer	at
runtime.	Token	enumerators	can	also	read	tokens	from	other
areas	of	the	registry,	or	from	remote	computers.	For	example,
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Speech\AudioOutput\DSoundAudioIn

·													CATID\TokenEnums\TokenEnumKeyName\	-	a	dynamic
token	representing	the	default	token	that	the	specified	token
enumerator	generates.	For	example,
SPDSOUND_AUDIO_IN_TOKEN_ID	creates	the	default
Dsound	audio	in	an	object.		For	example:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Speech\AudioOutput\DSoundAudioIn\

·													CATID\TokenEnums\TokenEnumKeyNameEnumExtra…
-	a	specific	dynamic	token	from	the	specified	token	enumerator.
For	example:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Speech\AudioOutput\DSoundAudioIn\Direct
Sound	Crystal	WDM	Audio,	which	generates	the	Direct	Sound
Crystal	WDM	audio	object.

	

3.4							User	Defaults
In	addition	to	the	category	defaults	mentioned	in	Section	3.2,	the	categories
Voices,	Recognizers,	AudioInput,	AudioOutput	and	RecoProfile,	also	have	user
defaults	and	settings.	As	shown	in	Figure	5,	these	are	located	in	the	HKCUS
area,	under	their	respective	category	keys.	Section	6	explains	each	category	of
tokens.	This	section	also	lists	out	the	user-specific	entries	in	the	HKCUS	and	the
system-wide	entries	in	HKLMS.

	

Figure	5	The	User	category	for	Recognizers

	

3.5							Token	Enumerators
	

Note:	This	section	is	relevant	only	forEngine	or	Application
developers	who	need	to	store	tokens	in	a	separate	part	of	the	registry
or	even	on	the	file	system,	and	dynamically	enumerate	them.

	
SAPI	provides	a	way	for	third	parties	to	store	their	registry	settings	without
following	any	of	the	SAPI-recommended	guidelines.	SAPI	can	find	these	tokens
as	long	as	the	parties	have	implemented	token	enumerators.	Token	enumerators
are	COM	objects	that	enumerate	the	necessary	entries	for	the	tokens	under	it.	All
token	enumerators	are	stored	under	CategoryName/TokenEnums.	Each	token
enumerator	listed	under	a	category	needs	to	have	the	CLSID	of	the	COM	object
that	implements	it	under	the	token	enumerator.

	

The	token	enumerator
·									Must	implement	the	methods	Next,	Skip,	Reset,	Clone,	Item,

GetCount	on	the	IEnumSpObjectToken	interface.
·									May	choose	to	implement	methods	SetObjectToken	and

GetObjectToken	on	ISpObjectWithToken	interface.	As	mentioned	in
the	end	of	Section	3.1,	these	give	a	resource	a	handle	to	the	token	that
was	used	to	instantiate	it.

	
These	tokens	can	be	located	in	a	separate	part	of	the	registry	or	somewhere	else
(possibly	on	the	flusters).	It	is	the	responsibility	of	the	token	enumerator	to
return	correctly	on	the	above	methods	so	an	application	does	not	know	the
difference	between	tokens	coming	from	the	token	enumerator	and	tokens	coming
from	the	SAPI-specific	part	of	the	registry.

	

SAPI	itself	uses	token	enumerators	only	for	the	AudioInput	and
AudioOutput	categories.	Refer	to	Sections	6.4	and	6.5	for	more

details.	Note	that	the	token	enumerator	for	the	MMSYS	audio	object
creates	its	tokens	from	keys	that	are	under	it.
	

The	following	is	an	example	of	what	a	TokenID	for	a	token	located
under	a	token	enumerator	looks	like:
CategoryName/TokenEnums/TE1/XXX	where	(i)	TE1	is	a	sample
token	enumerator	and	(ii)	XXX	is	a	reference	to	one	of	the	tokens
generated	by	TE1.	On	a	call	to	the	helper	function
SpCreateCreateNewToken	giventhe	TokenID	above,	the
IEnumSpObjectToken	returned	by	the	token	enumerator	TE1	to	SAPI
includes	all	tokens.	SAPI	then	goes	through	each	token	(those
returned	by	token	enumerators	and	those	under	the	tokens	key)	to	find
the	one	that	has	a	Token	name	matching	XXX.

	

Table	2	Parts	of	the	AudioInput	token	enumerator					

RegKey

HKEY_LOCAL_MACHINE\SOFTWARE\MICROSOFT\Speech\AudioInput\

	

HKEY_LOCAL_MACHINE\SOFTWARE\MICROSOFT\Speech\AudioInput\TokenEnums

HKEY_LOCAL_MACHINE\SOFTWARE\MICROSOFT\Speech\AudioInput\TokenEnums\MMSys

	

	

Figure	6	AudioInput	token	enumerator	in	the
registry
Figure	6	illustrates	how	the	AudioInput	token	enumerator	looks	in	the	registry.

	

	

4									Using	Tokens	and	Categories	

4.1							Helper	Function	Examples
A	SAPI	5	application	needs	to	find	tokens	and	instantiate	objects	that
meet	certain	criteria	from	the	resources	available	on	a	computer.
Helper	functions	distributed	in	the	sphelper.h	file	are	the
recommended	way	for	applications	to	interact	with	tokens	and
categories	whenever	possible.	Table	3	provides	a	list	of	helper
functions	and	the	scenarios	they	address.	The	helper	functions	have
been	broken	up	into	Common	Helper	Functions	and	Engine
Developer	Helper	Functions	based	on	likelihood	of	use.		If	the
specific	helper	function	is	not	found	in	either	section,	refer	to	the
SAPI	documentation	for	the	comprehensive	listing.
	

Table	3	Common	Helper	Functions

Helper	Function Action Example	Helper	Function	Call	

SpGetDefaultTokenFromCategoryID Creates	the
default
token	from
a
CategoryID.
The	last
argument
tells	SAPI
to	create	the
token	if	it
does	not
currently
exist.

CcomPtr<ISpObjectToken>	
hr	=
SpGetDefaultTokenFromCategoryId(SPCAT_RECOGNIZERS,
&m_cpEngineToken);

SpFindBestToken Finds	the CComPtr<ISpObjectToken>	cpTokenEng;

most
appropriate
token	given
a	set	of
required
and	optional
criteria.	For
details	on
attribute
matching
see	Section
4.2

hr	=	SpFindBestToken(SPCAT_RECOGNIZERS,
L"Language=409",	L"VendorPreferred",	&cpTokenEng);

							

SpEnumTokens Returns	a
token
enumerator
containing
all	tokens
meeting	a
set	of
required
and	optional
attributes.
Tokens	in
the
enumerator
are	sorted	in
the	order
specified	in
the	Section
4.2.

CcomPtr<IEnumSpObjectTokens>		cpIEnum;
hr	=	SpEnumTokens(SPCAT_VOICES,
L"Gender=Female;Language=409",
L"Vendor=VoiceVendor1;Age=Child”
,	&pEnum);

SpCreateDefaultObjectFromCategoryID Creates	the CComPtr<ISpVoice>	

	

	
default
object	in	a
category,
such	as
AudioInput
or
Recognizer

SpCreateDefaultObjectFromCategoryID(SPCAT_VOICES,
&cpVoice);

SpCreateBestObject Instantiates	a
resource	that
best	matches
a	set	of
required	and
optional
criteria.	For
details	on
attribute
matching	see
Section	4.2

CComPtr<ISpVoice>	

SpCreateBestObject(
L"Vendor=VoiceVendor1;Age=Child",	L”Gender=Female”,
&cpVoice);

	

SpCreateObjectFromToken Creates	an
object	from
a	token.

CComPtr<ISpVoice>	

CComPtr<ISpObjectToken>	cpVoiceToken;

//--like	last	step

SpFindBestToken(SPCAT_VOICES,	
L"VendorPreferred",	&cpVoiceToken);

/--now	create	object

SpCreateObjectFromToken(cpVoiceToken,	&cpVoice);

		}

	

	

Table	4	Engine	Developer	Helper	Functions

Helper	Function Action Example	Helper	Function	Call	

SpCreateNewToken Creates	a	new
object	token
in	the	registry
with
CategoryID,
but	without
specifying	a
keyname.
This	creates	a
token	with	a
GUID	as	its
registry	key.

CComPtr<ISpObjectToken>	
hr	=	SpCreateNewToken(SPCAT_RECOPROFILES,	L"",
&cpUserToken);

																																																																																														
																																																																																														
																																																																																														
																																																																																														
cpUserToken;

SpGetTokenFromID Creates	a
token	from	a
TokenID	of	an
enumerator	or
a	new	token	if
the	token	does
not	already
exist.	The	last
argument	of
FALSE	tells
SAPI	not	to
create	the
token	if	it
does	not
already	exist.

CComPtr<ISpObjectToken>						cpAudioInTok;
hr	=	SpGetTokenFromID(SPCAT_AUDIOIN,
&cpAudioInTok,	FALSE)))

SpCreateObjectFromSubToken Creates	an
object	from	a
subtoken	of	a
token.	In	this
case,	the
engine	token
pEngineToken
has	the	Lts
key	under	it,
which	in	turn
has	a	CLSID
value	under	it.
This	CLSID	is
used	to
instantiate	the
object.

CComPtr<ISpObjectToken>	

hr	=
SpGetDefaultTokenFromCategoryId(SPCAT_RECOGNIZERS,
&m_cpEngineToken);

ISpLexicon	*								m_pLtsLex;

HRESULT	hr	=	SpCreateObjectFromSubToken(pEngineToken,
L"Lts",	&m_pLtsLex);

SpGetSubTokenFromToken Creates	a
subtoken
under	a	token.
This	is	useful,
for	example,
when	an
Engine
vendor	would
like	to	create
a	subtoken	for
custom	data
under	its
Recognizer
token.

CComPtr<ISpObjectToken>	
hr	=	SpGetSubTokenFromToken(
L"EngineProperties",	&cpSubSubToken,	

	

4.2							Enumerating	tokens
The	principal	tasks	related	to	tokens	and	categories	that	an	application	needs	to
accomplish	are:
·									Enumerating	tokens

·									Inspecting	and	instantiating	tokens
	

The	two	primary	ways	to	enumerate	tokens	are	by	the	helper	function
SpEnumTokens,	or	by	the	methodISpObjectTokenCategory::EnumTokens.
Both	methods	allow	the	caller	to	specify	a	category	and	a	set	of	required	and
optional	attributes.	The	call	then	returns	a	token	enumerator	containing	all	the
tokens	matching	those	criteria.	The	method	is	defined	as:

	

HRESULT	EnumTokens(
								[in]	const	WCHAR	*pszCatName,

								[in,	string]	const	WCHAR	*pReqAttrs,

								[in,	string]	const	WCHAR	*pOptAttrs,

								[out]	IEnumSpObjectTokens	**ppEnum);

	
When	identifying	matching	tokens	under	in	a	category,	an	application	needs	to
specify	a	fully	qualified	category	identifier	(FQCID).	An	FQCID	is	the	full
registry	path	to	a	category,	such	as
HKEY_CURRENT_USER\Software\Microsoft\Speech\Voices.	It	is
recommended	that	these	categories	be	referenced	using	the	constants	defined	in
the	sapi.idl	file	below,	and	not	using	the	full	string	to	minimize	typos	in
commonly	used	registry	paths.	SAPI	maps	the	constant	to	the	correct	hive	in	the
registry	and	returns	matching	tokens	from	the	category.	For	instance,	the	SAPI
defined	AudioInput	constant	(from	the	sapi.idl	file)	is:

	

//---	Categories	for	speech	resource	management

const	WCHAR	SPCAT_AUDIOOUT[]				=
L"HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\Speech\\AudioOutput";

	

Similarly,	there	are	constants	for	the	AudioInput,	Voices,	Recognizer,
Applexicon,	PhoneConverter,	and	RecoProfile	categories.

	

An	application	may	also	specify	a	non-standard	registry	location	by	simply
providing	its	FQCID,	such	as
HKEY_CURRENT_USER\Software\TTSVendor1\Speech\Voices

	

In	both	SpEnumTokens	and
ISpObjectTokenCategory::EnumTokens	the	following	clauses	are
permitted	in	the	ReqAttrs	and	OptAttrs	strings,	separated	by
semicolons.

	Table	5	Query	Operators

Condition Example Explanation

Exists Telephony;Dictation The	valuenames	Name
and	Dictation	exist	in
the	list	of	attributes	for
this	token.

One	of Language=409 At	least	one	of	the
values	of	the
Valuename	Language	is
409.	There	may	be
other	values,	like	809,
512	as	well.
Values	of	Age	that	are

Not
Equals

Age!=Child;Age!=Teen neither	“Child”	nor
“Teen”.

	

The	tokens	are	sorted	“best	matches”	first	using	the	following
intuitive	rules:

	

1.							Only	tokens	matching	the	required	attributes	are	returned.

2.							Those	tokens	matching	the	optional	attributes	as	well	will
be	before	those	that	just	match	the	required	attributes.

3.							If	there	are	no	required	or	optional	attributes	(i.e.,	both	are
set	to	NULL),	the	first	token	is	the	default	token	for	that
category.	If	there	is	a	valid	DefaultTokenID	in
HKLMS/Category,	that	is	returned	as	the	default	tokenID.	If
not,	if	there	is	a	default	tokenID	in	HKCUS/Category,	that	is
returned.	If	none	of	these	exist,	SAPI	searches	for	a
DefaultdefaultTokenID	in	HKLMS/CategoryName,	and	that	is
returned.

4.							Matching	Rules:	If	a	token	matches	an	optional	attribute,	it
gets	a	score	of	1,	otherwise,	0	for	that	attribute.	The	optional
attributes	mentioned	earlier	in	the	query	string	are	more
significant.	These	scores	are	concatenated	as	shown	in	Table
7.	The	tokens	are	then	placed	in	descending	order.	This	is
illustrated	in	Tables	6	and	7.

5.								Tokens	having	the	same	score	are	returned	in	random	order
in	the	enumerator.

	

A	call	to	EnumTokens	could	look	like:

	

CComPtr<IEnumSpObjectTokens>		cpEnum;
CComPtr<ISpObjectTokenCategory>	cpVoiceCat;

											

HRESULT	hr	=
cpTokenCategory.CoCreateInstance(CLSID_SpObjectTokenCategory);

const	WCHAR	Req_Attrs[]=L"LanguagesSupported=409";

const	WCHAR
Opt_Attrs[]=L"Vendor=VoiceVendor1;Age=Child;Gender=Female”;

	

HRESULT	hr	=	cpVoiceCat->EnumTokens(SPCAT_VOICES,
ReqAttrs	,	OptAttrs	,	&cpEnum);

//	SPCAT_VOICES	is	defined	in	sapi.idl

	
If	the	following	voices	are	installed	on	a	computer	as	shown	in	Table	6:

Table	6	Voices	installed	on	a	computer

Voice Vendor Age LanguagesSupported Gender

Michelle VoiceVendor1 Child 409;	411 Female

Mary VoiceVendor1 Adult 409 Female

Jane VoiceVendor2 Child 409 Female

Frank VoiceVendor2 Adult 411 Male

Anna VoiceVendor2 Adult 411 Female

	

Then	the	order	of	the	Voices	returned	in	cpEnum	will	be	as	shown	in	Table	7:

Table	7	Scoring	of	tokens	matching	optional	criteria

Optional	Criteria
->

Vendor Age Gender Net	Score

Michelle 1 1 1 111

Mary 1 0 1 101

Jane 0 1 1 011

	

The	final	order	is:

1.							Michelle	(meets	all	required	criteria,	scored	111	on	optional
criteria)

2.							Mary	(meets	all	required	criteria,	scores	101	on	optional
criteria)

3.							Jane	(meets	only	required	criteria,	score	11	optional	criteria)

	

If	the	call	to	EnumTokens	is	changed	to:
	

HRESULT	hr	=	cpVoiceCat->EnumTokens(SPCAT_VOICES,	NULL,	NULL,
&cpEnum);

	
and	the	users	default	token	in	HKCUS\Voices\DefaultTokenID	is	set
to:
HKEY_LOCAL_MACHINE\Software\Microsoft\Speech\Voices\Tokens\Jane

then	the	enumerator	cpEnum	will	contain	all	the	tokens,	with	Jane	being	the	first
token.

	

What	does	SAPI	do	when	ISpObjectTokenCategory::EnumTokensis	called?

	

Consider	a	fictitious	category	that	has	both	tokens	and	token
enumerators	under	it.	When	an	application	calls	the	SAPI
ISpObjectTokenCategory::EnumTokens,	the	following	things
happen:

	

1.							SAPI	creates	an	enumerator	called	IEnumSpObjectTokens	that
can	enumerate	all	the	matching	tokens	from	these	keys	under
HKLMS/Voices/Tokens.

2.							Token	enumerators	Step	(skip	this	step	if	not	using	token
enumerators).

a.							SAPI	searches	for	a	CategoryName/TokenEnums	key.	If
found,	it	instantiates	a	token	enumerator	from	each	of	the
tokens	under	this	key,	one	by	one.

b.							Each	of	the	token	enumerators	return	an
IEnumSpObjectToken	containing	matching	tokens	under	it
that	is	merged	with	the	IEnumSpObjectToken	created	in	(i).

3.							SAPI	applies	the	required	attributes	so	that	the	IEnumSpObject
enumerator	contains	only	those	tokens	that	match	these
Attributes,	then	it	sorts	them	according	to	how	well	they	match
the	optional	attributes	(exact	rules	earlier	in	Section	4.2).

4.							The	application	searches	for	an	appropriate	token	and	until	one
is	found,	it	steps	through	each	token,	and	further	checks
attributes	and	strings	of	each	token	with	ISpObjectToken
methods	GetData,	GetStringValue,	and	GetDWORD	(inherited

from	ISpDataKey).

5.							The	application	identifies	the	token	it	is	interested	in	and	calls
ISpObjectToken::CreateInstance	and	QIs	the	newly	created
object	to	see	if	the	newly	created	object	supports	the
ISpObjectWithToken	interface.	If	it	does,	SAPI	calls
ISpObjectWithToken::SetDataKey	to	give	the	newly	instantiated
object	a	pointer	to	the	token	it	was	instantiated	from.

	

4.3										Instantiating	an	Object	from	a	Token
Continuing	with	this	example,	the	application	now	has	a	pointer	to	the
enumerator	IEnumSpObjectTokens.	An	application	may	choose	to	step	through
the	enumerator	with	the	methods	Next,	Skip	or	Reset	to	find	an	ISpObjectToken
that	best	meets	its	needs.	Assume	that	the	application	is	searching	for	a	voice
that	sounds	clear	over	a	telephone.	Also	assume	that	such	voices	typically	have	a
ValueName	called	SupportsTelephony,	which	is	set	to	1.	There	is	no	such
protocol	in	SAPI;	this	is	for	illustration	only.	Because	this	is	not	a	value	under
Attributes,	it	cannot	be	picked	up	by	the	standard	query	mechanism	of	required
attributes.	The	variable	pCurVoiceToken	represents	a	token	for	that	category.	In
the	example	below,	the	category	is	populated	with	tokens	in	cpEnum	until	a
voice	is	found	that	also	supports	Telephony.	

	

	
ISpObjectToken									*pCurVoiceToken;

	

bool													fFeature	=	false;

	

while	(cpEnum->Next(1,	&pToken,	NULL)	=	S_OK)

				{
//	At	this	point,	all	we	know	is	that	pToken	is	a	pointer	to	a	Voice
token.

	

						hr	=	pToken->GetData(L"SupportsTelephony",	fFeature);

//	Note,	ISpObjectToken	inherits	from	ISpDataKey

	

						if	((SUCCEEDED(hr))	&&	fFeature)

						{
								//	this	is	the	token	for	the	Voice	we	want

								pCurVoiceToken	=pToken;	

								break;																																																																				

						}
				}

	
At	this	point,	store	the	selected	Voice	token	in	pCurVoiceToken.	Now
create	the	voice	object	from	this	token,	so	that	Speak	and	other
methods	on	it	may	be	called.	To	create	a	voice	object,	ISpVoice	must
be	created.

	

EXTERN_C	const	CLSID	CLSID_SpVoice;

	

CComPtr<ISpVoice>						cpVoice;

	
//	The	Application	may	want	to	check	to	see	if	the	token	has	any
associated	UI	that	it	needs	to	display

hr	=	pCurVoiceToken-
>IsUISupported(SPDUI_EngineProperties,	NULL,	0,	NULL,
&fSupported);

			

//	The	Application	calls	the	UI,	or	maybe	enables	a	button	in
its	own	UI	so	the	user	can	call	the	UI

	

//	Next,	CoCreate	an	instance	of	SpVoice	called	cpVoice

hr	=	cpVoice.CoCreateInstance(CLSID_SpVoice);

	

				if(SUCCEEDED(hr))

				{

						//	set	cpVoice	to	our	selected	voice	token
						hr	=	cpVoice->SetVoice(pCurVoiceToken);

				}

	

	
At	this	point	the	cpVoice	object	(of	type	ISpVoice)	has	been	instantiated	and	is
ready	to	speak,	with	a	call	such	as:

	

hr	=	cpVoice->Speak(L"This	audio	file	was	created	using	SAPI	five	text
to	speech.",	0,	NULL);

5									Tokens	and	Categories	For	Engine
Developers

In	addition	to	the	enumerating	and	instantiating	tokens,	an	engine
vendor	also	needs	to	be	able	to:

·									Create	new	tokens
·									Associate	files	with	tokens

	

5.1							Making	Resources	Available	Through	SAPI
There	are	several	straightforward	steps	for	an	SR	or	TTS	engine	to	be
discoverable	by	SAPI:

	
1.							Make	an	appropriate	entry	under	the	correct	CategoryID/Tokens	in

the	registry	(details	in	Section	6).
2.							Make	an	entry	under	CategoryID/TokenEnums	if	the	vendor	prefers

dynamic	tokens	(i.e.,	the	engine	registry	information	is	already	stored	in
some	other	registry	location	or	file).	The	enumerator	should	implement
the	interfaces	outlined	in	Section	3.4.

3.							Look	at	the	standard	attributes	for	a	category	in	SAPI	and	identify	the
characteristics	of	the	engines	so	that	applications	can	query	the	engine
for	these	properties.

4.							Hand	the	SR	engine	a	pointer	to	the	recognition	profile	token	once
the	RecoInstance	has	been	created.

	

5.2							Associating	Files	with	Tokens
One	of	the	key	issues	for	an	engine	vendor	is	to	associate	files	with	tokens	in	the
registry,	such	as	the	language	model	files	for	a	Recognizer	or	a	RecoProfile
token.	A	token	can	query	for	all	the	files	under	its	Files	key	using	the
ISpObjectToken::GetStorageFileName	method.	SAPI	searches	for	the	file	in	a
number	of	known	locations.	Because	of	the	possibility	of	roaming,	SAPI	does
not	store	fully	qualified	file	paths	in	the	registry	(such	as	C:/Documents	and
Settings/JoeUser/Local	Settings/Application	Data),	but	stores	paths	such	as
%1c%\Microsoft\Speech\Files\MSASR\SP_81738BE4B81F42F0BFC4BB98B72EB81A.spz
instead.	SAPI	queries	the	ShGetFolderPath	.dll	for	the	user’s	non-roaming
directory	on	the	individual	computers.	The	calling	application	can	specify	(i)	the
specific	name	of	the	file	if	any,	and	(ii)	the	subdirectory	to	put	the	file	in.	Refer
to	the	GetStorageFileName	documentation	for	the	exact	interfaces.	The	engine
may	append	any	additional	vendor-identifying	directory	names	to	indicate
engine-specific	data.	Deleting	the	tokens	with	which	the	files	are	associated	by
calling	ISpObjectToken::RemoveStorageFileName,	will	remove	files	from	the
file	system	as	well.

Caveat:	If	roaming	is	enabled,	the	user’s	RecoProfiles	in	the	HKCUS	hive	of
the	registry	will	roam	(because	the	entire	HKCUS	hive	roams);	the	associated
files,	situated	in	a	non-roaming	directory	will	not.	This	causes	two	unexpected
effects:

	
1.							When	the	Recognizer	is	initiated	on	the	second	computer,	the

Recoprofiles	are	likely	to	be	missing.	The	Recognizer	needs	to	be	able	to
handle	this	and	copy	the	necessary	new-profile	files.	Known	issue:	Upon
roaming	the	Microsoft	SR	Engine	currently	creates	a	new	set	of	files,	but
these	have	entirely	different	names	from	the	names	on	the	original
computer.	As	a	result,	when	the	registry	is	roamed	back	to	the	original
computer,	the	original	profile	files	become	orphaned.

2.							Subsequently,	upon	deleting	the	Recoprofiles	from	one	computer,	all	the
associated	files	and	registry	entries	on	that	computer	will	be	deleted.	The
rest	will	become	orphans,	that	is,	files	without	pointers	to	them.

	

5.3							Inspecting	Underlying	Keys	of	a	Token
	
Besides	helper	functions,	keys	under	a	token	can	be	inspected	using	a	recognizer
token,	and	opening	the	attributes	key	under	it	as	a	DataKey.	Then	all	the
ISpDataKey	methods	are	available	to	inspect	the	values	under	the	Attributes	key.
The	sample	below	goes	from	the	Recognizer	token,	to	the	attributes	key	under	it,
and	finally	to	the	“Desktop”	and	“Telephony”	strings	under	that.

	

hr	=	SpGenericSetObjectToken(pToken,
m_cpEngineObjectToken);

		if(FAILED(hr))

		{

				return	hr;

		}

	

		//	Read	attribute	information

		CComPtr<ISpDataKey>	cpAttribKey;

		hr	=	pToken->OpenKey(L"Attributes",	&cpAttribKey);

	

		if(SUCCEEDED(hr))

		{

				WCHAR	*psz	=	NULL;

				hr	=	cpAttribKey->GetStringValue(L"Desktop",	&psz);

				::CoTaskMemFree(psz);

				if(SUCCEEDED(hr))

				{

						//	This	instance	of	the	engine	is	for	doing	desktop
recognition

				}

				else	if(hr	=	SPERR_NOT_FOUND)

				{

						hr	=	cpAttribKey->GetStringValue(L"Telephony",	&psz);

						::CoTaskMemFree(psz);

						if(SUCCEEDED(hr))

						{

								//	This	instance	of	the	engine	is	for	doing	telephony
recognition

						}

				}
		}

	
	

5.4							Creating	New	Keys	in	the	Registry
	
Below	is	another	snippet	of	code	where	the	Microsoft	Sample	Engine	creates	a
new	entry	under	a	recognition	profile.	If	the	Recognition	Profile	does	not	exist
for	the	engine	(pszCLSID	contains	a	pointer	to	the	Engine	GUID),	it	needs	to	be
created	it	as	well	as	the	Gender	and	Age	values	under	it.

	

	

		//	Read	attribute	information	from	Engine	key;pProfile	is	the	RecoProfile	token
we	obtain	by	calling	GetRecoProfile	on	the	Recognition	Instance.

	

hr	=	pProfile->OpenKey(pszCLSID,	&dataKey);

		if(hr	=	SPERR_NOT_FOUND)

		{

				//	This	user	profile	has	not	been	seen	before,	so	create	a	new	registry	key	to
hold	info	for	it

				hr	=	pProfile->CreateKey(pszCLSID,	&dataKey);

	

				//	Now	set	some	default	values

				if(SUCCEEDED(hr))

				{

						hr	=	dataKey->SetStringValue(L"GENDER",	L"UNKNOWN");			

				}

				if(SUCCEEDED(hr))

				{

						hr	=	dataKey->SetStringValue(L"AGE",	L"UNKNOWN");			

				}

	

				//	Now	create	some	temporary	file	storage	for	trained	models

				//	this	will	create	a	valuename	called	SampleEngTrainingFiles	and
value	C:\Documents	and	Settings\username\application	data\microsoft

speech\files\MSASR\LM7454901D23334AAF87707147726EC235.dat
	

				if(SUCCEEDED(hr))

				{						hr	=	pProfile->GetStorageFileName(CLSID_SampleSREngine,
L"SampleEngTrainingFile",	"MSASR\LM%d.dat",	CSIDL_FLAG_CREATE,
&pszPath);

				}

	

	

				//	and	request	a	UI	for	user	training	or	properties	-
SPDUI_RecoProfileProperties

				hr	=	AddEventString(SPEI_REQUEST_UI,	0,	SPDUI_UserTraining);

	

6									Registry	Settings
This	section	documents	in	some	detail,	the	registry	settings	of	each	category	of
tokens	in	both	the	HKCUS	and	the	HKLMS	hives.	Each	token	entry	needs	to
have	the	required	keys	and	values	for	a	token	as	outlined	in	Table	1.	To	find	the
most	suitable	token	on	the	computer	for	the	Recognizers,	Voices,	and	Phone
Converters	categories	of	tokens,	an	application	needs	to	define	a	standard	set	of
attributes	that	applications	can	query	for.	It	is	important	for	engine	vendors	to
implement	these	keys	exactly	as	specified	because	the	engines/voices	must	be
discoverable	through	SAPI	to	applications.

	

It	is	important	to	note	that	in	addition	to	the	specified	keys	and	values,	a	vendor
may	create	any	keys	and	values	necessary	to	use	as	a	resource	in	the	registry.
SAPI	will	ignore	these	values	and	not	disturb	them	in	any	way,	unless	SAPI	is
uninstalled	from	the	computer.

	

6.1							Category:	Voices
	
The	Voices	category	enumerates	every	voice	installed	on	the	computer	by	all
TTS	engines.	The	voice	tokens	should	be	located	under	the	key:

HKEY_LOCAL_MACHINE\SOFTWARE\MICROSOFT\Speech\Voices\Tokens

	

The	requirements	for	a	voice	token	are	listed	below,	with	some	sample	values.
·									Each	voice	token	should	meet	the	requirements	for	a	standard	token.
·									Voices	should	document	the	SAPI-specific	attributes	that	describe	them

so	applications	can	search	for	them.	Table	8	contains	a	full	listing	of
Voices	attributes	and	their	locations.	All	Voice	attributes	are	required.
Section	3.1	and	Section	4.2	have	more	information	about	attributes	and
querying	them.

·									Voices	may	have	their	own	Vendor-specific	UI	implemented	by	the	TTS
Engine	rendering	the	voice.	If	such	UI	is	present,	then	the	UI	needs	a
separate	token	in	the	location	described	in	Table	8.	The	minimum
requirement	is	that	the	token	contain	the	CLSID	of	the	COM	object
implementing	the	UI.	Click	Properties	on	the	Text-to-Speech	tab	of	the
Speech	Control	Panel	to	access	the	Vendor-specific	UI.	The	Properties
button	will	be	unavailable	if	the	EngineProperties	token	for	the	current
default	Voice	is	not	supported

	
Table	8	provides	a	detailed	listing	of	the	registry	entries	that	constitute	a
sample	voice	token	called	VoiceToken1	under
HKEY_LOCAL_MACHINE\SOFTWARE\MICROSOFT\Speech\Voices\Tokens

	

Table	8	Voice	Registry	and	Attributes

RegKey ValueName Comments

VoiceToken1 	 Required	-	This
is	the	RegKey	for
the	Token.

	 (Default) Required	-
language
independent
name.

	
409 Name	in

Hex_LangID
409,	which	is
English.	There
may	be	several	of
these	rows,	one
for	each	LangID
in	which	the
token	has	a
name.	Note,	no
leading	0x	before
the	LangID

	
809

	 CLSID Required	-
Sample	CLSID
for	object	which
instantiates	the
voice.

VoiceToken1/Attributes 	 Attributes	for	the
Token	are	under
this	key.

	 Age
Required	-	Value
should	be
“Child,”	“Teen,”
“Adult,”	or
“Senior”
depending	on
Age	of	TTS
Voice.	Senior
indicates	an
elderly	voice.

Vendors	may
choose	to	classify
some	voices	as
both	“Senior”
and	“Adult”.

	 Vendor Required	–	TTS
engine	Vendor
name.

	 Language Required	-	The
LCID	in	hex	of
language	this
engine	speaks.		

	 Gender Required	-	Value
should	be	“Male”
if	Male	voice,
“Female”	if
female.

	 VendorPreferred Required	-	If	this
is	the	Default
voice	for	the
vendor	named	in
vendor.

	 Name Required	-	String
representing
language
independent
name

VoiceToken1\UI 	 Required,	if	the
Voice	has	UI	-	UI
tokens	for	the
voice	token	will
be	stored	under

this	key.

VoiceToken1\UI\EngineProperties 	 The	only	SAPI-
specific	UI	token
is
EngineProperties.
Called	when	the
user	clicks
Properties	on	the
Text-to-speech
tab.

	 CLSID Required	-
Sample	CLSID
for	object	which
instantiates
engine-specific
UI	from	Speech
properties	in
Control	Panel.

Note:	Please	refer	to	the	registry	entries	of	the	Microsoft	recognizer	and	the
Sample	Engine,	which	ship	in	the	SAPI	5	SDK,	as	an	example	of	how	the	are
entries	are	created.	

There	is	also	a	Voices	category	in	the	HKCUS	hive	that	stores	the
following:

·									The	default	TTS	rate	selected	by	the	user	using	Speech
properties	in	Control	Panel.

·									The	default	voice	selected	by	the	user.

	

	

Table	9	provides	a	listing	of	the	user	registry	entries	that	constitute	a
voice	token	in

HKEY_CURRENT_USER\SOFTWARE\MICROSOFT\Speech\Voices\

	
Table	9	Voices	-	User	Registry	Settings

	 ValueName Value

VoiceToken1 DefaultTokenID
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Speech\Voices\Tokens\MSMary

	 TTSRate 5

	

Note:	The	TTS	engine	does	not	need	to	store	any	of	these	values,	SAPI	takes
care	of	that.

	

Vendors	may	choose	to	store	any	additional	keys	and	values	in	the	same	areas	of
the	registry.	Following	is	additional	information	relating	to	voice	tokens:

·									User	specific	entries	for	the	voice	(such	as	volume,	pitch,	rate,	and	any
other	information)	should	be	stored	in	keys	and	values	under	
HKEY_CURRENT_USER\SOFTWARE\MICROSOFT\Speech\Voices\Tokens\VoiceToken1
This	creates	a	structure	in	the	HKCUS	hive	parallel	to	the	one	in	the
HKLMS	hive.

·									Entries	applying	to	all	the	voices	using	an	engine	should	be	stored
underHKEY_CURRENT_USER\SOFTWARE\MICROSOFT\Speech\Voices\Tokens\EngineGUID1

·									Non-user	entries	(pertaining	to	all	users	on	the	computer)	for	a	voice
should	be	stored	in	keys	and	values	under	the
categoryHKEY_LOCAL_MACHINE\SOFTWARE\MICROSOFT\Speech\Voices\Tokens

	
	

6.2							Category:	Recognizers
	

SAPI	enumerates	all	the	SR	Engines	installed	on	the	computer	from	the	tokens
and	token	enumerators	under

HKEY_LOCAL_MACHINE\SOFTWARE\MICROSOFT\Speech\Recognizers
Below	are	the	guidelines	for	registering	recognizer	tokens:

	

·									Each	recognizer	token	should	meet	the	requirements	for	a	standard	token
(Table	1).

·									Each	speech	recognition	engine	installed	on	the	computer	should	have	a
recognizer	token.	If	vendors	use	a	single	recognizer	for	recognition	in
multiple	languages	(with	different	acoustic	models),	or	a	discrete	and	a
continuous	recognizer,	they	may	choose	to	store	the	relevant	data	files	and
other	initialization	information	under	separate	tokens,	but	use	the	same
value	for	the	CLSID.	For	example,	a	vendor	may	use	the	same	recognition
engine	to	recognize	both	Japanese	and	English.	In	this	case,	there	are	two
tokens,	both	containing	the	CLSID	of	the	same	recognizer,	but	associated
with	different	language	and	acoustic	model	files	stored	with	the	token.

·									Recognizers	should	document	the	SAPI-specific	attributes	shown	in
Table	10	so	that	applications	can	search	for	them.	Required	attributes	are
also	indicated	Table	10.

·									Most	speech	applications	written	with	SAPI	will	be	tested	for	a	specific
engine,	or	a	few	specific	engines,	if	the	application	has	a	clear	need	for
multiple	engines.	Typically	applications	will	query	for	and	use	this	engine
by	default.	Use	attributes	when	the	application	cannot	find	its	preferred
engine	(or	doesn’t	have	one),	and	needs	to	locate	the	most	suitable	engine
installed	on	the	computer	for	its	needs.

·									Recognizer	tokens	may	have	an	Alternate	CLSID	if	they
implement	alternates.

·									Recognizer	tokens	may	have	a	RecoExtension	CLSID	for
objects	that	extend	SAPI's	recognition	context.

·									The	Recognizer	may	also	have	a	number	of	engine-specific
UIs	that	it	exposes	to	SAPI.	There	should	be	a	separate	key
under	{Recognizer	TokenID}/UI/	for	each	such	UI	supported.
The	keys	are	listed	and	documented	in	Table	10	below.

	

Table	10	provides	a	detailed	listing	of	the	registry	entries	that
constitute	a	sample	voice	token	called	VoiceToken1	under
HKEY_LOCAL_MACHINE\SOFTWARE\MICROSOFT\Speech\Recognizers\Tokens
	
Table	10	Sample	Entries	of	a	Recognizer	token

RegKey ValueName

RecognizerToken1 	

	 (Default)

	
409

	 AlternatesCLSID

	 RecoExtension

RecognizerToken1\Attributes 	

	 Vendor

	 Language

	 SpeakingStyle

	 Dictation

	 CommandAnd
Control

	 Desktop

	 Telephony

	 VendorPreferred

	 Alternates

	 Hypotheses

	 WordSequences

	 DictationInCFG

	 	WildcardInCFG

RecognizerToken1\UI 	

RecognizerToken1\UI\EngineProperties
	

	

	 CLSID

RecognizerToken1\UI\	AddRemoveWord 	

	 CLSID

RecognizerToken1\UI\MicTraining 	

	 CLSID

RecognizerToken1\UI\UserTraining 	

	 CLSID

RecognizerToken1\UI\RecoProfileProperties 	

	 CLSID

	
There	is	also	a	Recognizers	category	in	the	HKCUS	hive	that	stores	the	selected
default	Recognizer.	This	is	done	exactly	as	for	Voices,	as	shown	in	Table	8.	The
CategoryID	is:

HKEY_CURRENT_USER\SOFTWARE\MICROSOFT\Speech\Recognizers\
	

6.3							Category:	RecoProfiles
RecoProfiles	(RP)	is	a	user-specific,	engine-specific	data	file	in	which
an	SR	Engine	stores	the	user-specific	acoustic	and	language	data.	The
RP	can	be	thought	of	as	a	bag	of	information	that	only	the	engine
knows	about.	The	RP	also	stores	the	attributes	in	a	few	keys	under	the
RP’s	key	in	the	registry	(this	is	current	Speech	Recognition	tab	of
Speech	properties	in	Control	Panel).

There	are	two	key	reasons	for	a	user	to	have	multiple	acoustic
profiles:

1.			In	a	shared	login	case	(for	example,	with	a	Win98	or
Millennium	home	computer	where	the	users	typically	press
cancel	to	the	login	dialog	box	to	enter	the	computer),	multiple
files	allow	two	or	more	users	to	keep	languages	and	acoustic	data
separate.	In	this	case,	the	user	will	need	to	manually	change	the
profile	to	the	correct	one	in	Speech	properties	in	Control	Panel
before	starting	recognition	(or	an	application	may	provide	its
own	UI	to	do	this).

2.			On	a	laptop,	to	offer	the	user	the	choice	of	having	different
acoustic	profiles	for	different	acoustic	settings,	such	as	home	and
office.

A	typical	RP	token	is	located	in	the	user	hive	in	the	following	location
in	the	registry

HKEY_CURRENT_USER\SOFTWARE\MICROSOFT\Speech\RecoProfiles\Tokens\
{ProfileGUID	1}

Initially,	SAPI	creates	only	one	GUID,	called	Default	User,	for	the
RecoProfile.	When	the	Recognizer	is	used	for	the	first	time,	it	should
create	a	key	under	this	GUID	token	of	the	Recognizer.	For	instance,	if
the	default	recognizer	has	the	GUID	XXX,	the	token

HKEY_CURRENT_USER\SOFTWARE\MICROSOFT\Speech\RecoProfiles\Tokens\
{ProfileGUID	1}\XXXis	created.	RecoProfile	stores	all	the	files	and
settings	under	this	key.	These	settings	may	include	paths	to	the
acoustic	and	language	model	files	for	the	profile	that	are	modified
during	speaker	enrollment	and	subsequently	during	recognition.	It
may	also	contain	additional	data	about	the	profile	that	may	improve
the	recognizer	accuracy,	such	as	age,	gender,	microphone	gain	setting
and	so	on.

Under	the	Recoprofile	token,	there	is	a	key	for	the	GUID	of	each
engine	that	has	a	profile.	When	keeping	the	profile	the	same,	a	user
switches	the	default	engine	(say	to	YYY)	in	Speech	properties	in
Control	Panel.	The	new	engine,	on	instantiation	(or	termination	of	the
session)	should	create	thekey
HKEY_CURRENT_USER\SOFTWARE\MICROSOFT\Speech\RecoProfiles\Tokens\
{ProfileGUID	1}\YYY																																						
																																																																																																																																																																																																																																																								
FullPathToFil	A
All	engine-specific	(YYY-specific	for	instance)	settings	for	its
RecoProfile	should	be	stored	under	this	key.

	

6.4							Category:	AudioInput
	
The
HKEY_LOCAL_MACHINE/SOFTWARE/MICROSOFT/Speech/AudioInput
category	contains	token	enumerators	that	enumerate	all	the	AudioInput	devices
present	on	the	computer.	There	is	a	token	enumerator	for	each	class	of
AudioInput	Device.	By	default,	SAPI	5	will	have	only	a	single	token	enumerator
for	the	MMSys	technology.	This	token	enumerator	will	create	an	audio	token	for
each	AudioInput	device	(microphone)	on	the	computer	and	return	it	when	an
application	or	engine	calls	SpEnumTokens	or	IenumSpObjectTokens.

	

The	AudioInput	category	does	not	have	standard	attributes,	and	if	multiple
technologies	are	installed,	an	application	needs	to	inspect	each	token	to	find	the
most	suitable	one.

	

Any	additional	AudioIn	token	enumerators	must	meet	the	requirements	for	a
token	enumerator	laid	out	in	Table	2.	Example	of	the	AudioInput	category	at:

HKEY_LOCAL_MACHINE\SOFTWARE\MICROSOFT\Speech\Recognizers\

	

Table	11	AudioInput	Category

RegKey ValueName Comments

TokenEnums\MMSys 	 This	is	the
category.

	 DefaultTokenID This	Default
can	point	to
a	token
enumerator
or	token.

AudioInput1 	 This	is	the
key	for	the
audio	input
device.

AudioInput1\Attributes 	 Attributes
for	the
Token	are
under	this
key.

	 Technology This	is	the
technology,
for	example,
"MMSys"

	 Vendor This	is	the
vendor
name.

	

6.5								Category:	AudioOutput
	
The
HKEY_LOCAL_MACHINE\SOFTWARE\MICROSOFT\Speech\AudioOutput
category	contains	token	enumerators	that	enumerate	all	the	audio	output	devices
present	on	the	computer.	As	in	the	AudioInput	category,	there	is	a	token
enumerator	for	each	technology	of	audio	output	Devices.	By	default,	there	will
be	a	single	token	enumerator	for	MMsys.	Under	this,	there	will	be	entries	for
each	audio	output	device	installed	on	the	computer.

RegKey ValueName Comments

TokenEnums\MMSys 	 This	is	the
category.

	 DefaultTokenID This	Default
can	point	to
a	token
enumerator
or	token.

AudioOutput1 	 This	is	the
key	for	the
audio	output
device.

AudioOutput1\Attributes 	 Attributes
for	the
Token	are
under	this
key.

	 NoSerializeAccess Optional:
Override
serialization

of	multiple
voices.

	 Technology This	is	the
technology,
for	example,
"MMSys"

	 Vendor This	is	the
vendor
name.

	

6.6							Category:	AppLexicons
The	AppLexicons	category	stores	all	the	application	lexicons	SAPI	knows	about.
As	in	other	categories,	the	lexicons	are	located	under
HKEY_LOCAL_MACHINE\SOFTWARE\MICROSOFT\Speech\Applexicons\Tokens
When	called,	the	SpLexicon	interface	enumerates	all	the	applexicons.
Applexicons	have	no	attributes,	and	therefore,	there	is	no	way	to	load	only
specific	Applexicons.	These	keys	will	be	created	by	applications	to	make	their
own	lexicons	available	through	SAPI.

	

6.7							Category:	PhoneConverters
The	ISpPhoneConverter	interface	enables	the	application	to	convert
from	the	SAPI	character	phoneset	to	the	ID	phoneset.	Phone
Converter	keys	should	go	under
HKEY_LOCAL_MACHINE\SOFTWARE\MICROSOFT\Speech\PhoneConverters
SAPI	has	a	single	phoneconverter	for	each	language.	An	engine	can
query	for	the	phoneconverter	whose	language	attribute	matches	the
application’s	language	of	interest.

	

6.8							UserLexicons
SAPI	stores	the	user	lexicon	keys	under	the
HKEY_CURRENT_USER\SOFTWARE\MICROSOFT\Speech\UserLexicon
key.	UserLexicon	is	not	a	category	by	itself.	There	is	no	interaction	between	an
application	or	engine	with	the	UserLexicon	token.	It	is	mentioned	here	only	for
the	sake	of	completeness	of	the	registry	documentation.

	

	

7									Index	of	Tables
Table	1:	Parts	of	a	Token	in	the	Registry
Table	2	Parts	of	the	AudioInput	token	enumerator
Table	3	Common	Helper	Functions
Table	4	Engine	Developer	Helper	Functions
Table	5	Query	Operators
Table	6	Voices	installed	on	a	computer
Table	7	Scoring	of	tokens	matching	optional	criteria
Table	8	Voice	Registry	and	Attributes
Table	9:	Voices	-	User	Registry	Settings
Table	10	Sample	Entries	of	a	Recognizer	token
Table	11:	AudioInput	Category
	
	

	

	

	

	
	

Microsoft	Speech	SDK	Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Simple	TTS	Guide	–	Speak	to	a	File	and
Speak	a	File

Overview
This	document	is	intended	to	help	developers	of	text-to-speech
(TTS)	applications	use	SAPI	TTS	functionality	to	speak	text	into	a
wav	file	and	to	speak	a	text	file.	The	example	illustrates	how	to
use	the	Speak	and	SpeakStream	methods,	how	to	select	a
specific	voice,	and	how	to	set	the	output	audio	stream	to	a	wav
file.	The	examples	are	written	in	both	C++	and	Visual	Basic.

Speak	to	a	wav	file	in	C++
The	following	is	an	example	that	speaks	a	text	string,	“Hello
World”,	to	a	wav	file,	“ttstemp.wav”	in	C++/ATL	COM.	The	SAPI
helper	class,	CSpStreamFormat,	and	helper	method,
SPBindToFile,	which	are	defined	in	sphelper.h,	are	used	in	this
example	to	set	the	audio	wav	format	and	bind	the	audio	stream
to	the	specific	file.	Since	SPSF_22kHz16BitMono	is	the	preferred
wav	format	of	the	Microsoft	English	TTS	engine,	it	is	selected	as
the	output	audio	format	for	the	better	audio	effect.	In	the
following	example,	the	ISpVoice::SetOutput()	method	must	be
called	to	set	the	audio	outputs	to	the	right	stream.	This	is
because,	by	default,	the	output	is	set	to	the	default	audio
device.	For	the	simplification,	ISpVoice::Speak()	is	called
synchronously.	If	you	want	to	speak	asynchronously,	change	the
speak	flag	to	SPF_ASYNC	and	call	ISpVoice::WaitUntilDone()
after	the	ISpVoice::Speak()	waiting	for	the	completion	of	the
speak	process.

	 HRESULT		 	 	 hr	=	S_OK;

	 CComPtr	<ISpVoice>	 	 cpVoice;

	 CComPtr	<ISpStream>	 	 cpStream;

	 CSpStreamFormat		 	 cAudioFmt;

	 //Create	a	SAPI	Voice

	 hr	=	cpVoice.CoCreateInstance(CLSID_SpVoice);

	 //Set	the	audio	format

								if(SUCCEEDED(hr))

	 {

	 	 hr	=	cAudioFmt.AssignFormat(SPSF_22kHz16BitMono);

	 }

	

	 //Call	SPBindToFile,	a	SAPI	helper	method,		to	bind	the	audio	stream	to	the	file

	 if(SUCCEEDED(hr))

	 {

	 	 hr	=	SPBindToFile(L”c:\\ttstemp.wav”,		SPFM_CREATE_ALWAYS,	

	 	 	 &cpStream;,	&	cAudioFmt.FormatId(),cAudioFmt.WaveFormatExPtr());

	 }

	

	 //set	the	output	to	cpStream	so	that	the	output	audio	data	will	be	stored	in	cpStream

								if(SUCCEEDED(hr))

	 {

	 	 hr	=	cpVoice->SetOutput(cpStream,	TRUE);

	 }

		 //Speak	the	text	“hello	world”	synchronously

								if(SUCCEEDED(hr))

	 {

	 	 hr	=	cpVoice->Speak(L"Hello	World",		SPF_DEFAULT,	NULL);

	 }

	

	 //close	the	stream

	 if(SUCCEEDED(hr))

	 {

	 	 hr	=	cpStream->Close();

	 }

	 //Release	the	stream	and	voice	object

	 cpStream.Release	();

	 cpVoice.Release();

Speak	to	a	wav	file	in	automation
The	following	example	is	written	in	Visual	Basic.	It	has	the	same
functionality	as	the	above	in	C++.	After	the	creation	of	an
SpFileStream	object,	a	default	format,	SAFT22kHz16BitMono,	is
assigned	to	the	object	so	that	user	does	not	need	to	explicitly
assign	a	wav	format	to	it	unless	a	specific	wav	format	is	needed.
In	this	example,	ISpeechFileStream.Open	creates	a	wav	file,
ttstemp.wav,	and	binds	the	FileStream	to	the	file.	The	third
parameter	of	ISpeechFileStream.Open	is	the	Boolean,	DoEvents.
The	default	of	this	parameter	is	set	to	False.	However,	the	user
should	always	set	it	to	True	to	display	SAPI	events	while	playing
back	the	wav	file.	If	the	parameter	is	set	to	False,	no	engine
events	will	be	stored	in	the	file,	resulting	in	that	no	engine
events	will	be	fired	during	the	wav	file	play	back.

Dim	FileName	As	String

Dim	FileStream	As	New	SpFileStream

Dim	Voice	As		SpVoice

'Create	a		SAPI	voice

Set	Voice	=	New	SpVoice

	

'The	output	audio	data	will	be	saved	to	ttstemp.wav	file

FileName	=	“c:\ttstemp.wav"

	

'Create	a	file;	set	DoEvents=True	so	TTS	events	will	be	saved	to	the	file

FileStream.Open	FileName,	SSFMCreateForWrite,	True

'Set	the	output	to	the	FileStream

Set	Voice.AudioOutputStream	=	FileStream

	

'Speak	the	text

Voice.Speak	“hello	world”

'Close	the	Stream

FileStream.Close

'Release	the	objects

Set	FileStream	=	Nothing

Set	Voice	=	Nothing

Speak	a	Text	File	in	C++
The	following	code	snippet	demonstrates	how	to	speak	a	text
file	with	a	specific	voice.	In	the	example,	SpEnumTokens,	a	SAPI
helper	method,	is	used	to	enumerate	available	voice	tokens
under	the	key:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Speech\Voices\Tokens.
SpEnumTokens	returns	a	token	enumerator	containing	all	tokens
meeting	a	set	of	required	and	optional	attributes.	Tokens	in	the
enumerator	are	sorted	in	the	order	of	“best	matches”	rule.	In
the	following	example,	the	required	voice	attribute	is
“Name=Microsoft	Sam”	and	there	are	no	optional	attributes.
SpEnumTokens	here	will	return	all	of	the	voice	tokens	with
“Name=Microsoft	Sam”	voice	attribute.	Through
IEnumSpObjectTokens	::Next()	method,	you	can	find	the	best
voice	token	and	then	set	it	as	a	current	voice	by	calling
ISpVoice::SetVoice()	method.	Now	the	“Microsoft	Sam”	voice	has
been	chosen	as	a	current	voice.
Since	the	voice	is	speaking	text	from	a	file,	the	ISpVoice::Speak
call,	a	speech	flag,	SPF_IS_FILENAME,	must	be	set.	Please	note,
you	may	choose	to	use	ISpVoice::	SpeakStream	to	speak	a	file.
In	that	case,	you	need	to	call	SPBindToFile,	a	helper	function,	to
bind	the	text	file	to	an	ISpStream	object,	and	then	call
ISpVoice::SpeakStream.

	 HRESULT		 	 	 hr	=	S_OK;

	 CComPtr	<ISpVoice>	 	 cpVoice;

	 CComPtr	<ISpObjectToken>	 cpToken;

	 CComPtr	<IEnumSpObjectTokens>	 cpEnum;

	 //Create	a	SAPI	voice

	 hr	=	cpVoice.CoCreateInstance(CLSID_SpVoice);

	

	 //Enumerate	voice	tokens	with	attribute	"Name=Microsoft	Sam”	

	 if(SUCCEEDED(hr))

	 {

	 	 hr	=	SpEnumTokens(SPCAT_VOICES,	L"Name=Microsoft	Sam",	NULL,	&cpEnum;);

	 }

				

	 //Get	the	closest	token

	 if(SUCCEEDED(hr))

	 {

	 	 hr	=	cpEnum	->Next(1,	&cpToken;,	NULL);

	 }

	

	 //set	the	voice	

	 if(SUCCEEDED(hr))

	 {

	 	 hr	=	cpVoice->SetVoice(cpToken);

	 }

	 //set	the	output	to	the	default	audio	device

	 if(SUCCEEDED(hr))

	 {

	 	 hr	=	cpVoice->SetOutput(NULL,	TRUE);

	 }

	 //Speak	the	text	file	(assumed	to	exist)

	 if(SUCCEEDED(hr))

	 {

	 	 hr	=	cpVoice->Speak(L”c:\\ttstemp.txt”,		SPF_IS_FILENAME,	NULL);

	 }	

	 //Release	objects

	 cpVoice.Release	();

	 cpEnum.Release();

	 cpToken.Release();

Speak	a	Text	File	in	Automation
The	following	code	illustrates	how	to	speak	a	text	file	in	a
specific	voice	in	Visual	Basic.	This	example	assumes	a	text	file
(ttstemp.txt)	containing	the	text	to	be	spoken	already	exists.
ISpeechVoice.SpeakStream	is	used	here	to	speak	an
SpFileStream	that	has	been	bound	to	the	file.

Dim	FileName	As	String

Dim	FileStream	As	New	SpFileStream

Dim	Voice	As		SpVoice

'Create	SAPI	voice

Set	Voice	=	New	SpVoice

	

'Assume	that	ttstemp.txt	exists

FileName	=	"c:\ttstemp.txt"

	

'Open	the	text	file

FileStream.Open	FileName,	SSFMOpenForRead,	True

'Select	Microsoft	Sam	voice

Set	Voice.voice	=	voice.GetVoices("Name=Microsoft	Sam",	"Language=409").Item(0)

'Speak	the	file	stream

Voice.SpeakStream	FileStream

'Close	the	Stream

FileStream.Close

'Release	the	objects

Set	FileStream	=	Nothing

Set	Voice	=	Nothing

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SAPI	5.1	64-bit	Issues
Overview
This	document	is	intended	to	help	application	developers
understand	and	use	SAPI	functionality	on	a	64-bit	platform.	All
the	discussions	below	are	based	on	native	Win64	programming.

64-bit	Programming

Data	types:
Win64	supports	large	memory	requirements	with	64-bit
addressing.	All	pointers	(including	handles)	are	64	bits	long.
LONG,	INT,	BOOL,	etc.	are	still	32	bits	long.	WPARAM,	LPARAM,
and	LRESULT	are	pointer	based,	thus	are	64	bits	long.	Some	new
data	types	are	defined.	For	example,	fixed-precision	data	types
such	as	INT32	and	INT64;	polymorphic	data	types	such	as
LONG_PTR;	specific	pointer-precision	data	types	like
POINTER_32.

API	changes:
There	are	some	API	changes	in	Win64.	The	constants	GWL_xxx,
GCL_xxx	and	DWL_xxx	have	been	undefined.	This	allows	the
Win64	compiler	to	catch	errors	using	the	old
Get/SetWindowLong	APIs.	Change	your	API	calls	to	the	new
Get/SetWindowLongPtr,	and	use	the	newly	defined	GWLP_xxx,
GCLP_xxx,	and	DWLP_xxx	constants.	For	example,	use
SetWindowLong(hWnd,	GWL_WNDPROC,	(LONG)MyWndProc);	in
Win64	you	will	receive	an	error	that	GWL_WNDPROC	is
undefined.	It	should	be	changed	to:SetWindowLongPtr(hWnd,
GWLP_WNDPROC,	(LONG_PTR)MyWndProc);	To	write	code	that	is
compatible	with	both	32-bit	and	64-bit	versions	of	Windows,	use
SetWindowLongPtr.
The	following	functions	have	been	added	to	basetsd.h:
PtrToLong()	and	PtrToUlong(),	IntToPtr()	and	UIntToPtr(),
HandleToLong()	and	LongToHandle(),	etc.	These	can	help
convert	values	of	one	type	to	another.	However,	IntToPtr	sign-
extends	the	INT	value,	UIntToPtr	zero-extends	the	unsigned	int
value,	LongToPtr	sign-extends	the	long	value,	and	ULongToPtr
zero-extends	the	unsigned	long	value.	Also	note	that	PtrToLong
and	HandleToLong	will	truncate	the	pointer	to	a	32bit	value.

These	values	should	not	be	used	as	pointers	again.

Compiling	the	code:
Set	/W3	compiler	option,	and	clean	up	all	Win64	related
compiler	warnings,	particularly	the	following	codes:

C4305:	Truncation	warning.	For	example,	"return":
truncation	from	"unsigned	int64"	to	"long."
C4311:	Truncation	warning.	For	example,	"type	cast":
pointer	truncation	from	"int*_ptr64"	to	"int."

C4312:	Conversion	to	bigger-size	warning.	For	example,
"type	cast":	conversion	from	"int"	to	"int*_ptr64"	of
greater	size.
C4318:	Passing	zero	length.	For	example,	passing
constant	zero	as	the	length	to	memset.

C4319:	Not	operator.	For	example,	"~":	zero	extending
"unsigned	long"	to	"unsigned	_int64"	of	greater	size.
C4313:	Calling	the	printf()	family	of	routines	with
conflicting	conversion	type	specifiers	and	arguments.	For
example,	"printf":	"%p"	in	format	string	conflicts	with
argument	2	of	type	"_int64."	Another	example	is	calling
printf("%x",	pointer_value);	This	causes	a	truncation	of
the	upper	32	bits.	The	correct	method	is	to	call
printf("%p",	pointer_value).
C4242	and	C4244:	return	conversion.	For	example,
"return":	conversion	from	"_int64"	to	"unsigned	int,"
possible	loss	of	data.

Fix	all	Win64	related	Compiler	Errors,	particularly	--GWL_xxx	and
GCL_xxx	not	defined	as	discussed	above.
For	additional	information	on	64-bit	Windows	programming
issues,	check	the	Platform	SDK	documentation.	Select	"Windows
Development,"	then	choose	"Whistler	64-bit	Edition."

http://go.microsoft.com/fwlink/?LinkId=1783

SAPI	issues
SAPI	speech	recognition	(SR)	interfaces	are	disabled	in	a	64-bit
SAPI	5.1.	SR	related	objects	like	Recognizer	(both	Inproc	and
Shared)	cannot	use	CoCreateInstance	on	a	64-bit	platform.
Following	is	a	list	of	the	disabled	interfaces:	IspRecognizer,
IspRecoContext,	IspPhraseBuilder,	ISpCFGEngine,
IspGrammarCompiler,	IspGramCompBackend,	and
ISpITNProcessor.
However,	SAPI	still	supports	TTS	functionalities	on	a	64-bit
platform.	Because	there	is	not	a	64-bit	version	of	sapi.lib,	you
cannot	get	the	CLSIDs	directly.	But	you	can	use
CLSIDFromProgID()	to	get	them.	Here	are	the	available	SAPI
ProgIDs	on	a	64-bit	Windows:

CLSIDs ProgIDs
CLSID_SpVoice SAPI.SpVoice
CLSID_SpLexicon SAPI.SpLexicon
CLSID_SpUnCompressedLexicon SAPI.SpUnCompressedLexicon
CLSID_SpCompressedLexicon SAPI.SpCompressedLexicon
CLSID_SpPhoneConverter SAPI.SpPhoneConverter
CLSID_SpNullPhoneConverter SAPI.SpNullPhoneConverter
CLSID_SpObjectTokenCategory SAPI.SpObjectTokenCategory
CLSID_SpObjectTokenEnum SAPI.SpObjectTokenEnum
CLSID_SpObjectToken SAPI.SpObjectToken<
CLSID_SpDataKey SAPI.SpDataKey
CLSID_SpMMAudioEnum SAPI.SpMMAudioEnum
CLSID_SpMMAudioIn SAPI.SpMMAudioIn
CLSID_SpMMAudioOut SAPI.SpMMAudioOut
CLSID_SpStreamFormatConverter SAPI.SpStreamFormatConverter
CLSID_SpRecPlayAudio SAPI.SpRecPlayAudio
CLSID_SpStream SAPI.SpStream
CLSID_SpResourceManager SAPI.SpResourceManager

CLSID_SpNotifyTranslator SAPI.SpNotifyTranslator<

The	following	are	used	in	Automation:

CLSIDs ProgIDs
CLSID_SpTextSelectionInformation SAPI.SpTextSelectionInformation
CLSID_SpAudioFormat SAPI.SpAudioFormat
CLSID_SpWaveFormatEx SAPI.SpWaveFormatEx
CLSID_SpCustomStream SAPI.SpCustomStream
CLSID_SpFileStream SAPI.SpFileStream
CLSID_SpMemoryStream SAPI.SpMemoryStream

Here	is	a	simple	example	of	how	to	use	the	ProgIDs	on	64-bit
applications:
LPCOLESTR	pProgID;

CLSID	clsid	=	GUID_NULL;

CComPtr<ISpVoice>	cpVoice;

pProgID	=	L"SAPI.SpVoice";

hr	=	CLSIDFromProgID(pProgID,	&clsid;);

if(SUCCEEDED(hr))

{

	 hr	=	cpVoice.CoCreateInstance(clsid);

	 if(SUCCEEDED(hr))

	 	 hr	=	cpVoice->Speak(L"This	is	a	64	bit	test.",	SPF_DEFAULT,	0);

	 //do	some	more	stuff	here.

}

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Compliance	Tests
	
	

									Contents
1						Contents
2						Table	of	Tables
3						Compliance	Testing	Overview
3.1							SAPI	Compliance	Required	Tests
3.2							SAPI	Compliance	Feature	List	Tests
3.3							Minimum	Requirements
4						Using	the	compliance	testing	tool
5						Compliance	Tests
5.1							Test	Result	Log:
6						Compliance	Testing	Configuration	Options
6.1							SAPI	5.0	Compliance	Testing	Application	Toolbar
6.2							SAPI	5.0	Compliance	Testing	Application	Menu	Choices
6.3							SAPI	5.0	Compliance	Testing	Logging	Options
6.4							SAPI	5.0	Compliance	Testing	Run	Options
6.5							SAPI	5.0	Compliance	Test	Selection	Options
7						SAPI	Compliance:	SR
7.1							Required	Tests
7.2							Feature	Tests
7.3							SR	Sample	Engine
7.4							Compliance	Test	Customization
7.5							Multilingual	Support
7.6							OS	Language	Incompatibility
8						SAPI	Compliance:	TTS

8.1							Required	Tests
8.2							Feature	Tests
8.3							TTS	Sample	Engine
8.4							Multilingual	Support
8.5							OS	Language	Incompatibility
	

									Table	of	Tables
Table	1:	Events	Compliance	Test
Table	2:	Lexicon	Compliance	Test
Table	3:	Command	and	Control	Compliance	Test
Table	4:	Required	Compliance	Tests
Table	5:	Events	Feature	Compliance	Test
Table	6:	Grammar	Feature	Compliance	Test
Table	7:	Feature	Compliance	Tests
Table	8:	Sample	Engine	Required	Compliance	Test	results
Table	9:	Sample	Engine	Feature	Compliance	Test	results
Table	10:	Strings	to	be	localized
Table	12:	Speak	Flag	Tests
Table	13:	Speak	Tests
Table	14:	Lexicon	Tests
Table	15:	SAPI	XML	tests
Table	16:	Events	Tests
Table	17:	Sample	Engine	Required	Test	Results
Table	18:	Sample	Engine	Feature	List	Test	Results
Table	19:	Strings	to	be	localized	for	compliance	tests
Table	21:	Required	Compliance	Tests	Failed
Table	22:	Feature	Compliance	Tests	Not	Supported
	
	

									Compliance	Testing	Overview

This	 paper,	 directed	 toward	 engine	 vendors,	 describes	 the	 SAPI	 5.0
compliance	testing	tool	by	answering	the	following	questions:

·									What	does	SAPI	compliance	for	SAPI	5.0	imply?

·									What	are	the	SAPI	compliance	tests?

·									What	does	each	test	look	for?		
The	goals	of	the	compliance	tool	are	to	help	engine	vendors	test	their	speech
engines	for	SAPI	compliance	and	port	these	speech	engines	to	SAPI	5.0.	The
tests	also	help	vendors	to	support	various	SAPI	features	that	are	not	required	for
compliance.	These	tests	do	not	test	the	speech	or	performance	quality	of	the
engines.		All	compliance	tests	assume	that	SAPI	will	do	parameter	validation,
and	as	such,	they	do	not	check	the	engine’s	ability	to	handle	invalid	parameters
such	as	null,	bad	pointers,	or	values	out	of	range.

	

To	run	the	compliance	tests,	the	SPcomp.exe	tool	is	used	and	either	the	Text-to-
Speech	(TTS)	or	the	Speech	Recognition	(SR)	test	suite	is	selected.	This	tool
generates	a	log	report	indicating	the	results	of	the	compliance	tests.

	

There	are	two	types	of	SAPI	5	compliance	tests:

1)						required	tests

2)						feature	list	tests

	

The	compliance	tests	do	not	necessarily	test	the	DDI	directly,	instead,	the	use	the
SAPI	API	function	calls	to	test	the	engine’s	response	to	the	DDI.	The	default
engine	is	always	used	as	the	engine	in	the	compliance	test.	Currently,	the
supported	languages	for	the	compliance	tests	are	English,	Japanese	and
Simplified	Chinese[1].	Please	check	Microsoft®	Speech.NET	Technologies	for
language	pack	updates	and	information.	

	

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

3.1							SAPI	Compliance	Required	Tests
The	results	of	the	required	tests	are	of	a	pass/fail	nature.	These	tests	were
designed	to	help	an	engine	reach	a	minimal	amount	of	functionality	with	the
SAPI	DDI	layer.	In	order	to	be	SAPI	compliant,	the	engine	must	pass	all
required	SAPI	tests.

	

3.2							SAPI	Compliance	Feature	List	Tests
The	results	of	the	feature	list	tests	are	either	“Supported”	or
“Unsupported”.	Feature	list	tests	were	designed	to	help	engine
vendors	port	advanced	features	to	SAPI	5.0.	To	be	SAPI
compliant,	the	engine	does	not	need	to	pass	any	feature	list
test,	although	it	is	recommended	that	all	features	be
implemented	if	possible.
	

3.3							Minimum	Requirements
The	minimum	requirements	for	speech	recognition	for	dictation
are	a	200	mhz	Pentium	with	64	MB	for	win	95/98	or	96	MB	for
NT.	The	recommended	computer	is	a	300	Mhz	Pentium	II	with
128	megs	of	RAM	or	better.
	

									Using	the	compliance	testing	tool
The	SAPI	5.0	compliance	test	tool,	SPcomp.exe,	enables	you	to
load	compliance	test	suites	and	determine	the	test	result
logging	options.	Please	see	Compliance	Tests	for	more	options.
The	SPcomp.exe	test	tool	creates	the	.pro	file	for	a	given	test
suite.	Perform	compliance	tests	by	starting	the	SPcomp.exe
application	and	loading	a	test	suite	from	a	.pro	file.	The	.pro	file
loads	the	associated	dynamic	link	library	(.dll),	which	contains
the	SR	or	TTS	compliance	tests.
To	start	the	SAPI	5.0	compliance	test	tool	SPcomp.exe	from
Windows	Explorer,	double-click	the	compliance	tool	icon.
Alternatively,	you	can	perform	each	compliance	test	from	the
command	line	by	running	the	compliance	test	tool	and
command	line	syntax.
For	example,	the	command	line	syntax	for	running	the	SRcomp
compliance	test	in	the	srcompreq.pro	test	suite	is	as	follows:
C:>	SPcomp.exe	srcompreq.pro

SPcomp.exe	srcompreq.pro
Starts	the	compliance	test	tool	and	loads	the	speech
recognition	(SR)	required	tests	from	the	SRcomp.dll.

SPcomp.exe	srcompopt.pro
Starts	the	compliance	test	tool	and	loads	the	speech
recognition	(SR)	feature	list	tests	from	the	SRcomp.dll.

SPcomp.exe	ttscompreq.pro
Starts	the	compliance	test	tool	and	loads	the	text-to-
speech	(TTS)	required	tests	from	the	TTScomp.dll.

SPcomp.exe	ttscompopt.pro
Starts	the	compliance	test	tool	and	loads	the	text-to-

speech	(TTS)	feature	list	tests	from	the	TTScomp.dll.
	

									Compliance	Tests
The	SAPI	5.0	compliance	tests	verify	that	you	have	successfully
implemented	the	required	features	to	be	considered	compatible
with	SAPI	5.0.	Your	engine	must	successfully	complete	each	of
the	following	four	compliance	tests	with	100	percent	pass	rate
to	be	compliant	with	SAPI	5.0.
1.						srcompreq.bat	

		—Speech	Recognition	(SR)	required	test	batch	file.
2.						srcompopt.bat	

		—Speech	Recognition	(SR)	feature	list	test	batch	file.
2.						ttscompreq.bat	

		—Text-to-speech	(TTS)	required	test	batch	file.
4.						ttscompopt.bat	

		—Text-to-speech	(TTS)	feature	list	test	batch	file.

5.1							Test	Result	Log:
The	SAPI	5.0	compliance	tool	generates	a	result	log	and	you	can
configure	it	to	display	the	result	log	information	or	you	can	save
it	to	a	file.	The	test	result	log	contains	pass	or	fail	state
information	for	each	segment	of	the	test	suite.	If	a	compliance
test	fails,	you	can	review	the	result	log	to	determine	the	origin
of	the	failure.
Example	result	log	with	a	100%	pass	rate	for	all	tests.
Total:

===

					PASS				FAIL				SUPPORTED				UNSUPPORTED				ABORTED				SKIPPED

					1							0							0												0														0										0

===

Status:	PASS

	
	

									Compliance	Testing	Configuration
Options
The	SAPI	5.0	compliance	test	application	user	interface	(UI)
enables	you	to	configure	the	testing	options.	The	following
section	provides	additional	compliance	test	configuration
information.
·									SAPI	5.0	Compliance	Testing	Application	Toolbar

·									SAPI	5.0	Compliance	Testing	Application	Menu	Choices

·									SAPI	5.0	Compliance	Testing	Logging	Options

·									SAPI	5.0	Compliance	Testing	Run	Options

·									SAPI	5.0	Compliance	Test	Selection	Options

6.1							SAPI	5.0	Compliance	Testing	Application
Toolbar
The	main	window	of	the	SAPI	5.0	compliance	testing	application
contains	a	toolbar	from	which	you	can	access	the	configuration
options.	Additionally,	the	configuration	options	are	also
available	from	the	menu	bar	located	at	the	top	of	the
compliance	testing	application	window.

Pause	on	an	icon	to	display	tooltip	text.	Click	an	icon	to	view	the
information	associated	with	the	feature.
Load	the	test	DLL

Loads	a	test	dynamic-link	library	(DLL).
You	can	run	compliance	tests	using	one	of	the	following
methods:

1.						From	the	SAPI	Engine	Compliance	Tool,	click	File,	and	then
click	Load	Test	DLL.

2.						Load	the	test	DLL	into	SPcomp.exe	from	the	command	line.
For	more	information,	see	Using	the	compliance
testing	tool.

Note:	loading	a	compliance	test	with	either	method	results
in	automatically	unloading	any	previously	loaded
compliance	tests.

Load	the	test	settings
Loads	one	of	the	pre-configured	test	suites.
You	can	run	compliance	tests	using	one	of	the	following
methods:

1.						From	the	SAPI	Engine	Compliance	Tool,	click	File,	and	then
click	Load	Settings.

2.						Load	the	test	DLL	into	SPcomp.exe	from	the	command	line.
For	more	information,	see	Using	the	compliance
testing	tool.

Note:	loading	a	compliance	test	with	either	method	results
in	automatically	unloading	any	previously	loaded
compliance	tests.

Save	settings
Saves	the	configuration	settings	for	the	compliance	test
application.

Copy
Selects	and	copies	content	from	the	display	log.

Clear	Window
Clears	the	display	contents	of	the	result	log.

Find
Searches	for	a	specific	word	or	phrase	within	the	result	log.

Find	Next
Searches	for	the	next	occurrence	of	a	specific	word	or
phrase	within	the	result	log.

Run	Test
Begins	the	compliance	test.

Stop	Test
Stops	the	compliance	test.

Set	Run	Options
Configures	the	compliance	test	options.

Select	Tests

Chooses	which	compliance	test	contained	in	the	test	suite
to.

Set	Logging
Determines	location	of	the	compliance	test	log	information.

	

6.2							SAPI	5.0	Compliance	Testing	Application	Menu
Choices
The	SAPI	5.0	compliance	testing	application	configuration
choices	are	accessible	through	the	menu	system.	The	following
items	are	covered	in	this	section:
·									File	menu

·									Edit	menu

·									Test	menu

·									Options	menu

·									Help	menu
	

6.2.1								File	menu
Click	File	to	set	configuration	options	to	load	settings,	save
settings,	or	load	the	appropriate	test	DLL.	Use	the	arrow	keys	to
view	various	menu	choices.	Press	ENTER	to	select	a	menu
choice.

6.2.2								Edit	menu
Click	Edit	to	copy	text	from	the	result	log	and	search	for	text
within	the	result	log.	Use	the	arrow	keys	to	view	various	menu

choices.	Press	ENTER	to	select	a	menu	choice.

6.2.3								Test	menu
Click	Test	to	run	the	test	or	select	a	test.	Use	the	arrow	keys	to
view	various	menu	choices.	Press	ENTER	to	select	a	menu
choice.

6.2.4								Options	menu
Click	Options	to	view	the	various	configuration	settings.	Use
the	arrow	keys	to	view	various	menu	choices.	Press	ENTER	to
select	a	menu	choice.

6.2.5								Help	menu
Click	Help	and	then	click	About	to	display	the	SAPI	5.0	Engine

Compliance	Tool	Version	dialog	box.	Use	the	arrow	keys	to	view
the	various	menu	choices.	Press	ENTER	to	select	a	menu	choice.

6.3							SAPI	5.0	Compliance	Testing	Logging	Options
From	the	Options	menu,	choose	Logging	Settings	to	set	SAPI
5.0	compliance	test	result	log	configuration	options.

Window
Displays	the	test	result	information	in	the	main	window	of
the	compliance	testing	application.

Log	File
Saves	the	test	result	information	as	text	in	a	log	file.
The	log	file	is	located	at	the	same	directory	as	SPcomp.exe
tool	and	the	file	name	will	be	the	following	style:
spcomp@442.log

The	numbers	"442"	in	the	file	name	are	generated	by	the
SPcomp.exe	tool	and	will	be	incremented	by	one	each	time
you	restart	SPcomp.exe	tool	and	run	the	test.	A	new	log	file
is	generated	each	time	you	start	SPcomp.exe	tool	and	run
a	compliance	test.

Detailed
Specifies	detailed	result	log	information.

Summary
Specifies	summary	result	log	information.

	

6.4							SAPI	5.0	Compliance	Testing	Run	Options
From	the	Options	menu,	click	Run	Options	to	configure	SAPI
5.0	compliance	testing	run	options.

Random
Randomizes	the	test	order.

Close	after	execution
Closes	the	compliance	testing	application	after	the	test
sequence.

Stress
This	option	should	not	be	selected	for	compliance	tests.

Run	count
Specifies	the	number	of	interactions	the	selected	test
should	run.

Disable	screen	saver
Disable	the	screen	saver.

Quiet

Runs	the	selected	test	in	quiet	mode.
Random	Seed

The	random	seed	value	set	here	is	used	for	the	next	time
you	run	the	compliance	test.
Note:	When	troubleshooting	a	failed	compliance	test,	you
need	to	enter	the	same	seed	value	information	that	was
used	for	the	failed	compliance	test	before	you	repeat	the
compliance	test	procedure.
You	can	obtain	the	compliance	test	seed	value	from	the
"Random	Seed"	field	information	in	the	SPcomp@xxx.log
file	that	was	generated	during	the	unsuccessful	compliance
test.

	

6.5							SAPI	5.0	Compliance	Test	Selection	Options
From	the	Test	menu,	click	Select	Test	to	configure	SAPI	5.0
compliance	test	choices.

Test	Cases
Displays	the	current	test	suite.

Selected	Test	Cases
Displays	the	current	selected	tests.

Add	Case(s)
Adds	test	items	to	the	list	of	selected	test	cases.	
Alternatively,	to	add	test	cases,	right-click	the	test	case	in
the	test	case	display	window	and	click	Add	Item.

Remove	Case
Removes	the	selected	test	case	from	the	current	test.
However,	removing	the	selected	test	does	not	affect	the
need	to	successfully	pass	this	test	case	to	satisfy	SAPI
compliancy.
Alternatively,	to	remove	test	cases,	right-click	the	test
cases	in	the	selected	test	case	display	window	and	click
Remove	Case.

Remove	All
Removes	all	test	cases.

									SAPI	Compliance:	SR
SAPI	compliant	SR	engines	must	be	able	to	perform	the	following[2]:

§									Generate	certain	SR	events

§									Interact	with	the	SAPI	lexicon

§									Handle	Command	and	Control	(C&C)	grammars

§									Generate	Phrase	Elements

§									Support	auto	pause	on	recognition

§									Support	rule	synchronization

§									Support	multiple	instances	of	the	engine

§									Support	multiple	application	contexts

	

7.1							Required	Tests

7.1.1								Events
Events	will	be	checked	for	with	.wav	files.	The	test	will	feed	the	wav	file	to	the
engine	and	expect	a	specific	event	notification	to	occur.	Please	note	that	whether
or	not	the	engine	can	fire	a	specific	event	depends	on	the	confidence	threshold	of
the	engine.	Engine	vendors	could	change	the	.wav	quality	to	meet	their
requirement.

	

For	English:

	

Test Description Resource	IDs

SoundStart Test	will	check	if	a
sound	start	event
occurs.

IDS_WAV_SOUNDSTART

IDR_L_GRAMMAR

SoundEnd Test	will	check	if	a
sound	end	event
occurs.

IDS_WAV_SOUNDEND

IDR_L_GRAMMAR

PhraseStart A	.wav	file	with
audio	the	engine
can	do	recognition
on.	Test	insures	that
a	phrase	start

IDS_WAV_PHRASESTART
IDR_L_GRAMMAR

event	occurs

Recognition A	.wav	with	audio
that	the	engine	can
do	recognition	on.
Test	insures	that	a
recognition	event
occurs.

IDS_WAV_RECOGNITION_1
IDR_L_GRAMMAR

False
Recognition

A	wav	file	and	a
mismatching	C&C
grammar	are
loaded.	Test	insures
that	false
recognition	event
occurs.

IDS_WAV_RECOGNITION_1
IDR_RULE_GRAMMAR

SoundStart/
SoundEnd

Test	will	check	that
the	sound	start
event	occurs	before
the	sound	end
event.

IDS_WAV_SOUNDSTARTEND
IDR_L_GRAMMAR

PhraseStart/
Recognition

Test	will	check	that
the	phrasestart
event	occurs	before
the	recognition
event.

IDS_WAV_RECOGNITION_1
IDR_L_GRAMMAR

SoundStart/
PhraseStart/
Recognition/
SoundEnd/

A	wav	file	with
audio	that	the
engine	can	do
recognition	on.	Test
insures	that	the
audiooffsets	of
these	events	are

IDS_WAV_RECOGNITION_1
IDR_L_GRAMMAR

correct	in	terms	of
value	comparison.

Table	1:	Events	Compliance	Test
	

7.1.2								Lexicon
It	is	expected	that	changes	in	the	user	and	application	lexicon	will	be
synchronized	with	the	engine	both	when	the	engine	starts	up	and	after	it	has
loaded	a	command	and	control	grammar.

	

	

Test Description Resource	IDs

User
Lexicon
Before
C&C
Grammar
Loaded

A	made-up
word	with	its
customized
pronunciation
is	added	to	the
user	lexicon.
After	command
and	control
grammar	is
loaded,	audio
will	be	sent
with	the	word
added	and	the
expected
result	is
checked	for.

IDS_WAV_SYNCH_BEFORE_LOAD
IDR_SNORK_GRAMMAR
IDS_RECO_SYNCH_BEFORE_LOAD
IDS_RECO_NEWWORD_PRON

User
Lexicon
After	C&C
Grammar
Loaded

After	command
and	control
grammar	is
loaded,	a
made-up	word
with	its
customized
pronunciation
is	added	to	the
user	lexicon.
Audio	will	be
sent	with	the
word	added

IDS_WAV_SYNCH_AFTER_GRAM
IDR_SNORK_GRAMMAR
IDS_RECO_SYNCH_AFTER_GRAM
IDS_RECO_NEWWORD_PRON

and	the
expected
result	is
checked	for.

Application
Lexicon
and	C&C
Grammar

A	made-up
word	with	its
customized
pronunciation
is	added	to	the
application
lexicon.	After
command	and
control
grammar	is
loaded,	audio
will	be	sent
with	the	word
added	and	the
expected
result	is
checked	for.

IDS_WAV_APPLEX
IDR_SNORK_GRAMMAR
IDS_APPLEX_WORD
IDS_APPLEX_PROP
	

User
lexicon
before
application
lexicon

A	made-up
word	is	added
to	both	user
lexicon	and
application
lexicon	using
the	different
customized
pronunciations.
After	command
and	control
grammar	is
loaded,	audio
will	be	sent

IDS_WAV_USERLEXBEFOREAPPLEX
IDR_SNORK_GRAMMAR
IDS_USERLEXBEFOREAPPLEX_WORD
IDS_USERLEXBEFOREAPPLEX_USERPROP
IDS_USERLEXBEFOREAPPLEX_APPPROP

with	the	word’s
pronunciation
in	user	lexicon
and	the
expected
result	is
checked	for.

Table	2:	Lexicon	Compliance	Test

	

7.1.3								Command	and	Control	Grammar
Testing	the	engine	for	grammar	compliance	is	perhaps	the	most	complex	set	of
tests.	The	engine	must	process	a	grammar	correctly.		Each	test	will	use	a
grammar	specifically	tailored	for	the	particular	feature.

	

	

Test Description Resource	IDs

L	Tag A	three-
element	list
grammar	is
loaded.	Audio
with	the
middle	item
to	be
recognized
with	the	sent
to	the	engine
and	the
result
checked	for
this	item.

IDS_RECO_L_TAG
IDS_WAV_L_TAG
IDR_L_GRAMMAR

Expected
Rule

A	grammar
with	two
identical
rules	is
loaded.	The
first	rule	will
be	activated.
Audio	that
triggers	this
rule	is	sent
and	test
verifies	that
the	engine
uses	the	first
rule.	The	first

IDS_RECO_EXPRULE_FIRSTRULE
IDS_RECO_EXPRULE_SECONDRULE
IDS_WAV_EXPRULE_TAG
IDR_EXPRULE_GRAMMAR

rule	is	then
de-activated
and	the
second	rule
is	activated.
The	same
audio	is	sent
and	the	test
verifies	that
the	engine
uses	the
second	rule.

P	Tag A	simple
grammar
with	a	single
phrase.
Audio	is	sent
and
recognition	is
expected.
Audio	that
does	not
contain	the
phrase	is
sent	and	no
recognition	is
expected.

IDS_RECO_P_TAG
IDS_WAV_P_TAG
IDR_P1_GRAMMAR

O	Tag A	grammar
will	be
defined	with
a	phrase	and
an	optional
phrase
preceding
and	following

IDS_RECO_O_TAG_1
IDS_RECO_O_TAG_2
IDS_RECO_O_TAG_3
IDS_WAV_O_TAG_1
IDS_WAV_O_TAG_2
IDS_WAV_O_TAG_3

it.	Three
audio
streams	will
be	sent.	One
with	the	first
optional
phrase,	one
for	the
second,	and
the	third	that
does	not
contain	any
optional
phrases.	The
appropriate
recognition
result	is
checked	for
in	each	case.

RULEREF	Tag A	grammar
with	a	phrase
with	a	rule
reference
and	a	rule
defined	will
be	loaded.
Audio	that
triggers	the
rule	will	be
sent	and	the
result
checked.

IDS_RECO_RULE_TAG
IDS_WAV_RULE_TAG
IDR_RULE_GRAMMAR

/Disp/lex/pron
format

Test	ensures
engine	can
support

IDS_CUSTOMPROP_NEWWORD_PRON
IDS_CUSTOMPROP_NEWWORD_DISP

customized
pronunciation
provided	in
the
command
and	control
grammar	file.

IDS_CUSTOMPROP_NEWWORD_LEX
IDS_CUSTOMPROP_RULE
IDS_WAV_CUSTOMPROP

Table	3:	Command	and	Control	Compliance	Test
	

7.1.4								Phrase	Elements,	Auto	Pause,	Rule
invalidation,	multiple	instances	and	contexts.
	

	
	

Test Description Resource	IDs

Phrase
Elements

The	audio	offsets	of
SPPHRASEELEMENTs
in	one	SPPHRASE
are	correctly	filled
in,	which	means
that	the	audio	offset
of	the	first
SPPHRASEELEMENT
is	less	than	the
audio	offset	of	the
second
SPPHRASEELEMENT,
the	audio	offset	of
the	second
SPPHRASEELEMENT
is	less	than	the	third
one,	etc.

IDS_WAV_RULE_TAG
IDR_RULE_GRAMMAR

Auto	Pause The	test	makes	sure
engine	can	support
auto	pause	feature
provided	by	SAPI.

IDS_AUTOPAUSE_DYNAMICWORD1
IDS_AUTOPAUSE_DYNAMICWORD2
IDS_AUTOPAUSE_DYNAMICRULE1
IDS_AUTOPAUSE_DYNAMICRULE2
IDS_WAV_AUTOPAUSE

Top-level
rule
invalidation

Test	verifies	that
engine	can
synchronize	the	rule
information	after
SAPI	notifies	engine
of	top-level	rule
invalidation.

IDS_INVALIDATETOPLEVEL_DYNAMICWORDS
IDS_INVALIDATETOPLEVEL_DYNAMICRULE
IDS_WAV_INVALIDATETOPLEVEL_OLD
IDS_INVALIDATETOPLEVEL_DYNAMICNEWWORDS
IDS_WAV_INVALIDATETOPLEVEL_NEW

None-top-
level	rule
invalidation

Test	verifies	that
engine	can
synchronize	the	rule
information	after
SAPI	notifies	engine
of	non-top-level	rule
invalidation.

IDS_INVALIDATENONTOPLEVEL_RULE1
IDS_INVALIDATENONTOPLEVEL_RULE2
IDS_INVALIDATENONTOPLEVEL_TOPLEVELRULE
IDS_INVALIDATENONTOPLEVEL_OLDWORD1
IDS_INVALIDATENONTOPLEVEL_OLDWORD2
IDS_WAV_INVALIDATENONTOPLEVEL_OLD
IDS_INVALIDATENONTOPLEVEL_NEWWORD1
IDS_INVALIDATENONTOPLEVEL_NEWWORD2
IDS_WAV_INVALIDATENONTOPLEVEL_NEW

Multiple
recognition
contexts

Multiple	recognition
contexts	will	be
created	with
different	grammars.
The	test	will	verify
that	the	recognition
event	is	generated
by	the	correct
recognition
contexts.

IDS_RECO_P_TAG
IDS_WAV_MULT_RECO
IDR_P1_GRAMMAR
IDR_P2_GRAMMAR

Multiple
recognition
engine

Basic	tests	are	run
separately	on
different	threads	to

NA

instances see	if	engine	can
support	multi
instances.

Table	4:	Required	Compliance	Tests

7.2							Feature	Tests
Some	of	the	features	exposed	through	SAPI	are	useful	from	a	competitive
advantage	point	of	view.	Features	are	not	required	by	SAPI	compliance,	but	may
be	an	attractive	function	for	engine	vendors	to	implement.	SAPI	features	are:

§									Interference	and	hypothesis	events

§									Dictation	functionalities

§									Advanced	command	and	control	features

§									Command	and	control	alternate

§									Engine	properties

§									Inversed	text	normalization

	

	

	

7.2.1								Events
Events	will	be	checked	for	with	.wav.	The	test	will	feed	the	.wav	to	the	engine
and	expect	a	specific	event	notification	to	occur.	Please	note	that	whether	or	not
the	engine	can	fire	a	specific	event	depends	on	the	confidence	threshold	of	the
engine.	Engine	vendors	may	change	the	.wav	files	if	it	is	felt	that	the	.wav
quality	does	not	meet	their	requirements	(Refer	to	Section	7.4).

	

Test Description Resource	IDs Descriptions

Interference A	wav	file	with
noises.	Test	will
check	that	an
interference
event	occurs.

IDS_WAV_INTERFERENCE
IDR_L_GRAMMAR

Input	.wav	file,
tag_l.wav
Input	CFG
grammar

Hypothesis A	.wav	file	with
audio	that
engine	can	do
recognition	on.
Test	insures	a
hypothesis
event	occurs.

IDS_WAV_HYPOTHESIS
IDR_EXPRULE_GRAMMAR

Input	.wav	file,
tag_exprule.wav
Input	CFG
grammar

Table	5:	Events	Feature	Compliance	Test
	

7.2.2								Dictation	functionalities
This	the	required	features	if	Engine	wants	to	support	dictation
grammar.	This	include	some	basic	functionalities	for	dictation
grammar.	This	includes	lexicon,	dictation	tag,	dictation
alternates.
	

Test Description Resource	IDs Descriptions

User
Lexicon
Before
dictation
Grammar
Loaded

A	made-up
word	with	its
customized
pronunciation
is	added	to
the	user
lexicon.	After
dictation
grammar	is
loaded,	audio
will	be	sent
with	the	word
added	and
the	expected
result	is

IDS_WAV_SYNCH_BEFORE_LOAD
IDS_RECO_SYNCH_BEFORE_LOAD
IDS_RECO_NEWWORD_PRON

Input	.wav	file,
lexicon.wav
The	lexicon
form	of	
word
The
pronunciation	of
the	new	word	in
user	lexicon

checked	for.

User
Lexicon
After
dictation
Grammar
Loaded

After
dictation
grammar	is
loaded,	a
made-up
word	with	its
customized
pronunciation
is	added	to
the	user
lexicon.
Audio	will	be
sent	with	the
word	added
and	the
expected
result	is
checked	for.

IDS_WAV_SYNCH_AFTER_DICT
IDS_RECO_SYNCH_AFTER_DICT
IDS_RECO_NEWWORD_PRON

Input	.wav	file,
lexicon.wav
The	lexicon
form	of	
word
The
pronunciation	of
the	new	word	in
user	lexicon

Dictation
Tag

A	rule	with
dictation	tag
is	loaded.
Audio	is	feed
and	the	test
verifies	the
recognition
event	is
generated.

IDS_DICTATIONTAG_WORDS
IDS_DICTATIONTAG_RULE
IDS_WAV_DICTATIONTAG

The	word	before
the	
tag
The	dynamic
grammar	
name
Input	.wav	file,
tag_exprule.wav

Dictation
alternates

Test	ensures
that	engine
can	generate
alternate
results	for
dictation

IDS_WAV_EXPRULE_TAG Input	.wav	file,
tag_exprule.wav

grammar.
The	test
makes	sure
that	engine
has	its	own
alternate
object	and
the	object
can	generate
some
alternate
results.

	
Table	5:	Dictation	Compliance	Test
	

7.2.3								Grammar
Each	test	will	use	a	grammar	specifically	tailored	for	the	particular	feature.	Some
tests	would	use	dynamic	grammar	instead	of	the	static	grammar.

	

	

Test Description Resource	IDs

WildCard
Tag

A	rule	with
wildcard	tag	is
loaded.	Audio	is
feed	and	the
test	verifies	the
recognition
event	is
generated.

IDS_WILDCARD_WORDS
IDS_WILDCARD_RULE
IDS_WAV_WILDCARD
	

TextBuffer
Tag

A	grammar	with
<TextBuffer>
tag	will	be
loaded.	Test	fills
in	the	content	of
TextBuffer	on
the	fly.	Audio
with	both	static
part	and
dynamic	part	of
the	grammar
would	be	feed
and	the	result
would	be
checked.

IDS_CFGTEXTBUFFER_WORDS
IDS_CFGTEXTBUFFER_BUFFERWORD
IDS_CFGTEXTBUFFER_RULE
IDS_WAV_CFGTEXTBUFFER

Use	the
correct
grammar

Two
unambiguous
grammars	are
loaded	to	test	if
engine	can	use

IDS_RECO_RULE_TAG
IDS_WAV_RULE_TAG
IDR_L_GRAMMAR

the	correct
grammar	to	do
recognition.

IDR_RULE_GRAMMAR

Use	the
most
recently
activated
grammar

Two	ambiguous
grammars	are
loaded	to	test	if
engine	can	use
the	most
recently
activated
grammar	to	do
the	recognition.

IDS_WAV_RULE_TAG
IDR_RULE_GRAMMAR
	

Table	6:	Grammar	Feature	Compliance	Test
	

7.2.4								Alternates,	engine	properties,	inversed	text
normalization
	

	

Test Description Resource	IDs

Command
and	Control
alternates

Test	ensures
that	the
engine	can
generate
alternate
results	for
command	and
control
grammar

IDS_ALTERNATESCFG_BESTWORD
IDS_ALTERNATESCFG_ALTERNATE1
IDS_ALTERNATESCFG_ALTERNATE2
IDS_ALTERNATESCFG_WORDS
IDS_WAV_ALTERMATESCFG

Engine
numeric
properties

If	engine
supports	the
numeric
properties
specified	by
SAPI

NA

Engine	text
properties

If	engine	can
return	S_FALSE
on	the	text
properties	that
are	not
supported.

NA

Inversed	Text
Normalization

The	test	uses	a
wav	file	and
expects	engine
to	pass	back	a
result

IDS_RECO_GETITNRESULT
IDS_WAV_GETITNRESULT
IDR_RULE_GRAMMAR

containing
digits	together
with	the
normal	result.
Please	note
that	this	is	a
very	specific
ITN	test	and	is
not	coverage
of	ITN	related
issues.

Table	7:	Feature	Compliance	Tests

7.3							SR	Sample	Engine
The	sample	engine	is	not	fully	SAPI	compliant	due	to	the	fact	that	it	does	not
have	the	full	range	of	functionality	that	a	true	SR	engine	would	have.	Table	8
indicates	which	compliance	tests	will	pass.	Table	9	indicates	which	features	are
supported.

	

	

Test Result Description

Events 	 	

SoundStart Pass 	

SoundEnd Pass 	

PhraseStart Pass 	

FalseRecognition Fail The	sample	engine	doesn’t
generate	this	event	based	on
the	real	SR	job.

Recognition Pass 	

SoundStart/SoundEnd
order

Pass 	

PhraseStart/Recognition
order

Pass 	

Event	offset Pass 	

Lexicon 	 	

User	Lexicon	Before
C&C	Grammar	Loaded

Fail The	sample	engine	doesn’t
use	user	lexicon.

User	Lexicon	After
C&C	Grammar	Loaded

Fail The	sample	engine	doesn’t
use	user	lexicon.

App	Lexicon Fail The	sample	engine	doesn’t
use	application	lexicon.

Use	user	lexicon	before
application	lexicon

Fail The	sample	engine	does	not
use	either	a	user	lexicon	or
an	application	lexicon.

Grammar 	 	

L	Tag Fail The	result	might	be
sometimes	fail	and
sometimes	pass.	The	sample
engine	randomly	generates
results	based	on	the	given
grammar.	It	doesn’t	do	any
real	recognition.

Expected	Rule Pass 	

P	Tag Fail The	result	might	be
sometimes	fail	and
sometimes	pass.	The	sample
engine	randomly	generates
results	based	on	the	given
grammar.	It	doesn’t	do	any
real	recognition.

O	Tag Fail The	result	might	be
sometimes	fail	and
sometimes	pass.	The	sample
engine	randomly	generates
results	based	on	the	given

grammar.	It	doesn’t	do	any
real	recognition.

Ruleref	Tag Fail The	result	might	be
sometimes	fail	and
sometimes	pass.	The	sample
engine	randomly	generates
results	based	on	the	given
grammar.	It	doesn’t	do	any
real	recognition.

/Disp/lex/pron	format Fail The	result	might	be
sometimes	fail	and
sometimes	pass.	The	sample
engine	randomly	generates
results	based	on	the	given
grammar.	It	doesn’t	do	any
real	recognition.

Other 	 	

Phrase	Elements Pass 	

Auto	Pause Pass 	

Top-level	rule
invalidation

Fail The	sample	engine	randomly
generates	results	based	on
the	given	grammar.	It
doesn’t	do	any	real
recognition.

Non-top-level	rule
invalidation

Fail The	sample	engine	randomly
generates	results	based	on
the	given	grammar.	It
doesn’t	do	any	real
recognition.

Multiple	recognition Pass 	

contexts

Multiple	recognition
engine	instances

	 The	sample	engine	randomly
generates	a	cfg	result	based
on	the	given	grammar.	It
doesn’t	do	any	real
recognition.

Table	8:	Sample	Engine	Required	Compliance	Test	results
	

	

Test Result Description

Events 	 	

Hypothesis SUPPORTED 	

Interference UNSUPPORTED The	sample	engine	doesn’t	generate
the	event	correctly.

Dictation 	 	

User	lexicon
synchronize
before
dictation
grammar
loaded

UNSUPPORTED The	sample	engine	doesn’t	use	user
lexicon.

User	lexicon
synchronize
after	dictation
grammar
loaded

UNSUPPORTED The	sample	engine	doesn’t	use	user
lexicon.

Dictation	Tag SUPPORTED 	

Dictation
alternates

SUPPORTED 	

Grammar 	 	

Wildcard	Tag SUPPORTED 	

TextBuffer	Tag SUPPORTED 	

Use	the
correct
grammar

UNSUPPORTED The	sample	engine	randomly
generates	results	based	on	the	given
grammar.	It	doesn’t	do	any	real
recognition.

Use	the
most
recently
activated
grammar

UNSUPPORTED The	sample	engine	randomly
generates	results	based	on	the	given
grammar.	It	doesn’t	do	any	real
recognition.

Other 	 	

Command	and
Control
alternates

UNSUPPORTED The	compliance	test	only	uses	one
rule	while	the	sample	engine	needs
at	least	two	rules.

Engine
numeric
properties

SUPPORTED 	

Engine	text
properties

SUPPORTED 	

Inversed	Text
Normalization

UNSUPPORTED The	sample	engine	doesn’t	have	this
functionality.

Table	9:	Sample	Engine	Feature	Compliance	Test	results

7.4							Compliance	Test	Customization
	
Many	of	the	tests	do	require	that	a	specific	recognition	result	be
returned	to	verify	proper	handing	of	such	things	as	the	grammar
format.	To	accommodate	different	engines	variability	with
recognition	of	different	voices	and	to	support	non-English
engines,	these	tests	will	enable	the	engine	vendor	to	supply	a
sound	file	that	passes	the	test	(Refer	to	Section	7.5).	Since
some	tests	might	share	the	same	.wav	file,	it	is	recommended
to	supply	a	.wav	file	with	different	name.	Additionally	the
grammars	can	be	changed	to	accommodate	words	that	the
engine	is	able	to	recognize	better	(Refer	to	Section	7.6).	
	

7.5							Multilingual	Support
	
The	compliance	tests	will	tests	engines	for	the	supported
languages[3].	To	test	an	SR	engine	that	uses	another	language,
one	must:
§									Ensure	that	the	correct	language	pack	is	installed.	For

Windows	2000	and	Millennium	Edition,	this	may	be	done	by
installing	the	language	pack	from	the	Windows	2000	or
Windows	Millennium	CD.	For	Windows	98	and	Windows	NT
4.0,	install	the	language	pack	from	the	Windows	Update
web	site.

§									Select	the	engine	as	the	default	engine	using	Speech
Recognition	tab	in	Speech	properties.

§									Create	and	insert	a	string	table	in	the
sapi5sdk\tools\comp\sr\srcomp.rc	that	is	localized	for	the
language.	(Refer	to	Table	10)

§									Create	the	.wav	files[4]	according	to	the	new	string	table
and	place	this		under	the	specified	directory	(according	to
the	search	path	precedence	(Refer	to	Section	7.5.2)).

§									Create	and	compile	the	appropriate	XML	files	using	a
grammar	editor	and	complier.

§									Include	the	CFG	binaries	into	the	.dll	by	importing	the	CFG
file	names	into	srcomp.rc[5].

§									Recompile	the	sr.dsp.
§									Run	the	compliance	tests.
	
	

7.5.1								Example:

http://go.microsoft.com/fwlink/?LinkId=3289

	
If		you	want	to	add	resource	for	test	SoundStart	for	language
888:
1.						create	and	insert	copy	a	string	table	in	srcomp.rc	for

language	888.
2.						Change	the	string	“IDS_WAV_SOUNDSTART”	to	the	new	.wav

file	you	want	to	use.
3.						Insert	the	xml	grammar	file	you	want	to	use	into	the	project.

Modify	the	IDR_L_GRAMMAR	reference	to	your	cfg
binary.

	
NOTE:	If	the	default	engine	supports	multiple	languages,	then
the	compliance	test	will	only	run	on	the	first	language	specified
in	string	“Language”	under	key
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Speech\Recognizers\Tokens\MSASREnglish\Attributes.
In	other	words	you	need	to	change	the	order	of	the	languages	in
the	attributes	key	under	your	speech	recognizer	token	for	each
language	you	wish	to	test.	(Refer	to	Section	7.6)
	
The	strings	that	need	to	be	localized	are	shown	in	Table	10.
	

String	Number English
Text

	

IDS_RECO_L_TAG put Translate
string

IDS_RECO_EXPRULE_TAG_1 play Translate
string

IDS_RECO_EXPRULE_TAG_2 the Translate

string

IDS_RECO_P_TAG white Translate
string

IDS_RECO_O_TAG_1 please Translate
string

IDS_RECO_O_TAG_2 walk Translate
string

IDS_RECO_O_TAG_3 slowly Translate
string

IDS_RECO_RULE_TAG seven Translate
string

IDS_RECO_LN_TAG red Translate
string

IDS_RECO_NEWWORD_PRON s	n	ao
1	r	k

Translate
phonemes

IDS_AUTOPAUSE_DYNAMICWORD1 put Translate
string

IDS_AUTOPAUSE_DYNAMICWORD2 red Translate
string

IDS_AUTOPAUSE_DYNAMICRULE1 Action Translate
string

IDS_AUTOPAUSE_DYNAMICRULE2 color Translate
string

IDS_INVALIDATETOPLEVEL_DYNAMICWORDS play
the

Translate
string

oboe

IDS_INVALIDATETOPLEVEL_DYNAMICRULE Play Translate
string

IDS_INVALIDATETOPLEVEL_DYNAMICNEWWORDS please
play
the
seven

Translate
string

IDS_INVALIDATENONTOPLEVEL_RULE1 option Translate
string

IDS_INVALIDATENONTOPLEVEL_RULE2 Thing Translate
string

IDS_INVALIDATENONTOPLEVEL_TOPLEVELRULE play Translate
string

IDS_INVALIDATENONTOPLEVEL_OLDWORD1 empty Translate
string

IDS_INVALIDATENONTOPLEVEL_OLDWORD2 Oboe Translate
string

IDS_INVALIDATENONTOPLEVEL_NEWWORD2 Seven Translate
string

IDS_INVALIDATENONTOPLEVEL_TOPLEVELWORDS Play
the

Translate
string

IDS_CFGTEXTBUFFER_WORDS Play
the

Translate
string

IDS_CFGTEXTBUFFER_BUFFERWORD oboe Translate
string

IDS_CFGTEXTBUFFER_RULE play Translate
string

IDS_ALTERNATESCFG_BESTWORD play Translate
string

IDS_ALTERNATESCFG_ALTERNATE1 played Translate
string

IDS_ALTERNATESCFG_ALTERNATE2 pay Translate
string

IDS_ALTERNATESCFG_WORDS The
oboe

Translate
string

IDS_ALTERNATESCFG_RULE play Translate
string

IDS_RECO_GETITNRESULT please
play
the	7

Translate
string

IDS_CUSTOMPROP_NEWWORD_PRON s	n	ao
1	r	k

Translate
phonemes

IDS_CUSTOMPROP_RULE play Translate
string

IDS_CUSTOMPROP_NEWWORD_DISP abc Translate
string

IDS_CUSTOMPROP_NEWWORD_LEX play Translate
string

IDS_DICTATIONTAG_WORDS Play
the

Translate
string

IDS_DICTATIONTAG_RULE play Translate
string

IDS_WILDCARD_WORDS Please
play

Translate
string

IDS_WILDCARD_RULE play Translate
string

IDS_APPLEX_PROP s	n	ao
1	r	k

Translate
phonemes

IDS_USERLEXBEFOREAPPLEX_USERPROP s	n	ao
1	r	k

Translate
phonemes

IDS_USERLEXBEFOREAPPLEX_APPPROP P	l	ey Translate
phonemes

IDS_INVALIDATENONTOPLEVEL_NEWWORD1 Please Translate
string

Table	10:	Strings	to	be	localized
	

7.5.2								Search	Path	Precedence
The	compliance	tests	use	a	search	path	precedence	to	find	the
various	.wav	files	needed	for	the	compliance	tests.	The	order	of
search	is:
§									current	directory
§									‘..\resources’,
§									‘..\..\..\resources’
§									‘..\..\resources’
	

If	the	compliance	tests	cannot	find	the	.wav	files	in	these
directories,	the	test	will	pop	up	a	dialog	asking	the	user	to	enter
the	customized	dir	to	open	the	file.	The	new	directory	will	be
added	to	the	search	order	and	the	new	search	order	will	persist
for	the	life	of	SpComp.

	
It	is	important	to	note	that	for	languages	that	do	not	have	a
SAPI	standard	phoneme	set	(i.e.	languages	which	are	not
supported	in	this	version	of	SAPI),	the	engine	will	fail	the
following	required	compliance	tests:
	

Test Result

Lexicon 	

User	Lexicon
Before	C&C
Grammar
Loaded

Fail

User	Lexicon
After	C&C
Grammar
Loaded

Fail

App	Lexicon Fail

Use	user
lexicon	before
application
lexicon

Fail

User	lexicon
synchronize
before
dictation
grammar
loaded

Fail

User	lexicon
synchronize
after	dictation
grammar
loaded

Fail

/Disp/lex/pron
format

Fail

	
	

7.6							OS	Language	Incompatibility
The	compliance	tests	are	not	based	on	the	language	of	the	OS.
They	are	based	on	the	first	language	in	the	token	of	the	default
engine.	In	other	words,	a	Japanese	engine	on	an	English	OS	will
cause	the	compliance	tests	to	load	the	Japanese	resources	and
run	the	compliance	tests	expecting	a	Japanese	engine.	In	order
to	run	the	compliance	test	for	an	engine	that	has	a	different
language	than	the	OS,	you	will	need	to	set	the	default	engine	on
the	Speech	Recognition	tab	in	Speech	properties.
	
NOTE:	If	the	default	engine	supports	multiple	languages,	then
the	compliance	test	will	only	run	the	first	language.	In	other
words	you	need	to	change	the	order	of	the	languages	in	the
attributes	key	under	your	speech	recognizer	token	for	each
language	you	wish	to	test.	For	example,	if	your	engine	token
supports	both	Japanese	and	English,	to	test	English,	,	the	string
“Language”	must	be	like	“409;	411”	under
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Speech\Recognizers\Tokens\MSASREnglish\Attributes
To	test	Japanese,	the	string	“Language”	must	be	like	“411;	409”
under	the	same	key.
	

									SAPI	Compliance:	TTS
SAPI	compliant	TTS	engines	must	be	able	to	perform	the
following:

§									Speak	with	SAPI	defined	speak	flags
§									Return	the	supported	audio	output	formats
§									Interact	with	the	SAPI	lexicon
§									Interpret	SAPI	XML	tags
§									React	to	programmatic	volume	changes

§									React	to	programmatic	rate	changes
§									Synthesize	certain	SAPI	events
§									Skip	forward	and	backward	through	a	segment	of	text
§									Support	multiple	instances
	

8.1							Required	Tests

8.1.1								Speak
The	speak	tests	test	the	engine	ability	to	interact	with	ISpTTSEngine::Speak	as
well	as	process	and	react	to	actions.	Before	SAPI	passes	a	speak	call	to	the
engine,	it	Query	Interfaces	(QIs)	the	engine	object	for	ISpTTSEngine	and
ISpObjectWithToken	interfaces.	If	either	of	these	are	not	implemented	correctly,
the	speak	call	will	fail.	If	both	of	the	QIs	pass,	then	SAPI	will	pass	the	speak	call
to	the	engine.	The	speak	call	contains	a	number	of	speak	flags.	Table	1	describes
the	individual	tests.

	

	

	

Test Description

SPF_DEFAULT This	is	the	normal,	default	speak	flag.
The	engine	should	be	able	to	render	text
to	the	output	site	under	normal
conditions.	The	engine	should	also	be
able	to	continue	rendering	when	passed
the	continue	action	from	SAPI

SPF_PURGEBEFORESPEAK The	engine	should	be	able	to	stop
rendering	when	passed	to	abort	action

SPF_IS_XML The	engine	should	be	able	to	interpret
the	SAPI	XML	when	passed	to	it	by
SAPI.

SPF_ASYNC The	engine	should	be	able	to	render	text
to	the	output	site.	The	asynchronous
environment	should	not	affect	the
engine	since	SAPI	handles	the

multithreading	issues.

SPF_SPEAK_NLP_PUNC the	engine	should	be	able	to	speak
punctuation.

Table	12:	Speak	Flag	Tests
	

The	compliance	tests	also	test	a	number	of	combination	scenarios	to	help	ensure
that	the	engine	is	able	to	stop	speaking	and	start	speaking	in	various
combinations	that	are	shown	in	table	2.

	

Test Description

Speak	Destroy SAPI	sends	the	engine	a	speak	call	followed	by	an
abort	action.

Speak	Stop SAPI	sends	the	engine	a	speak	call	followed	by	a
purge	call.	This	is	to	ensure	that	the	engine	is	able
to	stop	speaking	and	clear	memory.

Table	13:	Speak	Tests
	

8.1.2								Output	Format
The	output	format	test	checks	to	ensure	that	the	engine	is	capable	of	passing	its
supported	output	format	to	SAPI.	This	is	testing	the
ISpTTSEngine::GetOutputFormat	function.

	

8.1.3								Lexicon
The	lexicon	tests	check	the	interaction	of	the	engine	and	SAPI.	These	tests	add	a
word	to	the	user	and	application	lexicons	and	check	to	ensure	that	the	engine	is
able	to	detect	the	words	in	the	lexicon	and	is	using	the	word	pronunciation	from

the	user	lexicon	first,	and	then	the	application	lexicon	second	if	the	word	is
present	in	both	lexicons.	There	are	two	separate	tests	as	shown:

Test Description

User	lexicon A	word	is	added	to	the	user	lexicon	and	the	engine
is	requested	to	pronounce	this	word.	The	engine
should	be	aware	of	the	case	sensitivity.	The	engine
must	support	the	SAPI	phoneme,	SAPI	part	of
speech,	as	well	the	lexicon	APIs.

Application	lexicon A	word	is	added	to	the	application	lexicon	and	the
engine	is	requested	to	pronounce	this	word.	The
engine	must	support	the	SAPI	phoneme,	SAPI	part
of	speech,	as	well	the	lexicon	APIs.

Table	14:	Lexicon	Tests
	

8.1.4								XML	Tags
The	SAPI	XML	tags	are	required	for	compliance.	The	tags	tests	shown	are
required:

	

Test Description

Bookmark Tests	if	the	engine	is	able	to	process	the	bookmark
tag	and	write	the	appropriate	bookmark	event.

Silence Tests	if	the	engine	outputs	the	correct	amount	of
silence	as	indicated	by	the	silence	tag.

Volume Tests	if	the	engine	can	change	the	volume	by	the
correct	amount.

Spell	 Tests	if	the	engine	can	handle	the	tag	and	spell	out

the	text.

Pron Tests	if	the	engine	can	handle	the	SAPI	defined
phoneme	set.

Rate Tests	if	the	engine	can	change	the	rate	by	the
correct	amount.

Pitch Tests	if	the	engine	can	change	the	pitch	by	the
correct	amount.

Context Tests	if	the	engine	can	handle	the	SAPI	defined
context	tag.

Engine	proprietary
SAPI	tags

Test	if	the	engine	can	handle	non-SAPI	tags.

Table	15:	SAPI	XML	tests
	

8.1.5								SetVolume
This	test	checks	to	see	if	the	engine	is	capable	of	processing	the	volume	change
action.	When	the	engine	received	this	action,	it	should	call	the	GetVolume
function	from	SAPI	to	get	the	new	volume,	and	reflect	the	change	in	the	audio
output.

	

8.1.6								SetRate
This	test	checks	to	see	if	the	engine	is	capable	of	processing	the	rate	change
action.	When	the	engine	received	this	action,	it	should	call	the	GetRate	function
from	SAPI	to	get	the	new	volume,	and	reflect	the	change	in	the	audio	output.

	

				Events

The	events	test	checks	to	ensure	that	the	engine	is	writing	the	correct	data,
especially	wParam	and	lParam,	to	the	event	structure.	For	the	sentence	boundary
event,	wParam	is	the	character	length	of	the	sentence	including	punctuation	in
the	current	input	stream	being	synthesized.	lParam	is	the	character	position
within	the	current	text	input	stream	of	the	sentence	being	synthesized.	For	the
word	boundary	event,	wParam	is	the	character	length	of	the	word	in	the	current
input	stream	being	synthesized.	lParam	is	the	character	position	within	the
current	text	input	stream	of	the	word	being	synthesized.	Any	leading	and	ending
spaces	will	not	be	included	in	the	length	of	the	word	or	the	sentence.	There	are
three	events	which	are	required	for	SAPI	compliance:

	

Test Description

SPEI_TTS_BOOKMARK Checks	the	engine’s	ability	to
properly	fire	bookmarks	embedded
in	the	text.

SPEI_WORD_BOUNDARY Checks	the	engine’s	ability	to
generate	word	boundaries	given	a
segment	of	text.

SPEI_SENTENCE_BOUNDARY Checks	the	engine’s	ability	to	detect
and	generate	sentence	boundaries.

Table	16:	Events	Tests
	

8.1.8								Skip
This	test	examines	the	engine’s	ability	to	interact	with	the	skip	action.	Once	the
engine	receives	this	action,	it	should	call	the	ISpTTSEngineSite::GetSkipInfo
function.	After	it	has	completed	the	skip,	it	should	call	the
ISpTTSEngineSite::CompleteSkip	function.

	

				Multi-Instance
The	multiple	instances	test	checks	to	ensure	that	the	engine	can	handle	multiple
calls	at	the	same	time	from	SAPI.	The	tests	contains	a	total	of	4	threads	and	each
thread	has	its	own	ISpVoice	object	and	the	test	runs	a	random	combination	of	the
following	tests	20	times	consecutively:

	

§									Speak

§									Skip

§									GetOutPutFormat

§									SetRate

§									SetVolume

§									Check	SAPI	required	Event

§									XML	Bookmark

§									XML	Silence

§									XML	Spell

§									XML	Pron

§									XML	Rate

§									XML	Volume

§									XML	Pitch

§									Real	time	Rate	changes

§									Real	time	Volume	changes

§									Speak	Stop

§									Lexicon

§									XML	context

§									Engine	proprietary	SAPI	tags	and	other	combination	of	XML	tags

	

8.2							Feature	Tests
Some	of	the	features	exposed	through	SAPI	are	useful	from	a	competitive
advantage	point	of	view.	Features	are	not	required	by	SAPI	compliance,	but	may
be	an	attractive	function	for	engine	vendors	to	implement.	SAPI	features	are:

§									Generation	of	phoneme	events	(determines	if	the	engine	can	generate	a
phoneme	event	for	a	given	string	of	text.	The	phonemes	must	correspond
to	the	SAPI	defined	phonemes).

§									Generation	of	viseme	events	(determines	if	the	engine	can	generate	a
viseme	for	a	given	string	of	text.	The	viseme	must	correspond	with	the
SAPI	defined	visemes).

§									XML	emphasis	tag	(the	engine	should	change	the	volume,	rate,	or	pitch	of
the	audio	rendered).

§									XML	PartOfSp	tag	(the	engine	should	handle	the	SAPI	defined	part	of
speech	–	the	engine	will	need	to	implement	this	for	the	lexicon
compatibility	tests)

	

	

8.3							TTS	Sample	Engine
The	sample	engine	is	not	fully	SAPI	compliant	due	to	the	fact	that	it	does	not
have	the	full	range	of	functionality	that	a	true	TTS	engine	would	have.	Table	6
indicates	which	compliance	tests	will	pass.	Table	7	indicates	which	features	are
supported.

	

Test Result Description

Speak 	 	

SPF_DEFAULT Pass 	

SPF_PURGEBEFORESPEAK Pass 	

SPF_IS_XML Pass 	

SPF_ASYNC Pass 	

SPF_SPEAK_NLP_PUNC Pass 	

Speak	Destroy Pass 	

Speak	Stop Pass 	

GetOutput	Format Pass 	

Lexicon 	 	

User	Lexicon Fail The	sample	engine
does	not	use	a
lexicon.

App	Lexicon Fail The	sample	engine
does	not	use	an

application	lexicon.

XML	Tags 	 	

Bookmark Pass 	

Silence Pass 	

Volume Fail The	sample	engine
uses	pre-recoded
.wav	files	and
cannot	adjust	the
volume	of	the	.wav
files.

Spell Fail The	sample	engine
uses	pre-recorded
.wav	files	and
cannot	spell	each
word.

Pron Fail The	sample	engine
uses	pre-recorded
.wav	files	and
cannot	interpret	the
SAPI	phonemes.

Rate Fail The	sample	engine
uses	pre-recoded
.wav	files	and
cannot	adjust	the
rate	of	the	.wav
files.

Pitch Fail The	sample	engine
uses	pre-recoded
.wav	files	and
cannot	adjust	the

pitch	of	the	.wav
files.

Context Pass 	

Engine	proprietary	SAPI	tags Pass 	

SetVolume Fail The	sample	engine
uses	pre-recoded
.wav	files	and
cannot	adjust	the
rate	of	the	.wav
files.

SetRate Fail The	sample	engine
uses	pre-recoded
.wav	files	and
cannot	adjust	the
volume	of	the	.wav
files.

Events 	 	

SPEI_TTS_BOOKMARK Pass 	

SPEI_WORD_BOUNDARY Pass 	

SPEI_SENTENCE_BOUNDARY Pass 	

Skip Fail The	sample	engine
uses	pre-recoded
.wav	files	and
cannot	skip
sentences	since	it
does	not	have	a
sentence	breaker.	

Multiple	Instances	Test Fail The	sample	engine

uses	pre-recoded
.wav	files	and
cannot	skip
sentences,	change
rate,	pitch,	and
volume,	or	use
lexicons.

Table	17:	Sample	Engine	Required	Test	Results
	

	

Test Result Description

Phoneme
events

UNSUPPORTED The	sample	engine	uses	pre-recoded
.wav	files	and	cannot	synthesize	the
phoneme	events.

Viseme
events

UNSUPPORTED The	sample	engine	uses	pre-recoded
.wav	files	and	cannot	synthesize	the
viseme	events.

XML	Emph
Tag

UNSUPPORTED The	sample	engine	uses	pre-recoded
.wav	files	and	cannot	adjust	the
emphasis	of	the	.wav	files.

XML
PartOfSp

UNSUPPORTED The	sample	engine	uses	pre-recoded
.wav	files	and	cannot	adjust	the	part
of	speech	of	the	.wav	files.

Table	18:	Sample	Engine	Feature	List	Test	Results
	

8.4							Multilingual	Support

	
To	test	an	engine	that	uses	language	aside	for	the	supported
languages,	one	must:
	
§									Ensure	that	the	correct	language	pack	is	installed.	For

Windows	2000	and	Millennium	Edition,	this	may	be	done	by
installing	the	language	pack	from	the	Windows	2000	or
Windows	Millennium	CD.	For	Windows	98	and	Windows	NT
4.0,	install	the	language	pack	from	the	Windows	Update
web	site.

§									Select	the	engine	as	the	default	engine	using	the	TTS	tab
in	Speech	properties.

§									Create	a	string	table	in	the
\sapi5sdk\tools\comp\tts\ttscomp.rc	which	is	localized	for
the	language.	(Refer	to	Table	19)	

o							Go	to	ResourceView	in	the	ttscomp	workspace,	right	click
the	mouse	on	“String	Table”,	and	select	“Insert	Copy”.
The	following	window	will	appear.	From	the	window,
select	the	language	that	the	engine	supports,	and
then	click	OK.

	
	

http://go.microsoft.com/fwlink/?LinkId=3289

	
	

o							Open	\sapi5sdk\tools\comp\tts\ttscomp.rc	to	your	editor	and
edit	your	language	resources	(Refer	to	Table	19),	and
then	save	ttscomp.rc

o							The	following	is	an	example	how	to	support
GetOutputFormat	test	in	Korean	using	Microsoft
FrontPage	editor:

	
§									Open	ttscomp.dsw	and	create	a	string	table	in	Korean,	save

ttscomp.rc
§									Go	to	below	table	19	and	find	strings	used	in

GetOutputFormat	test.		Only	one	string,
IDS_STRING65,	is	found	corresponding	to	the	test.

§									Open	ttscomp.rc	in	Notepad	and	find	IDS_STRING65	under
Korean	resources

§									Launch	Microsoft	FrontPage	and	select	File	|	New	and
Normal	tab

§									Translate	“This	is	the	TTS	Compliance	Test”	to	Korean.
§									Select	Preview	tab,	right	click	your	mouse,	select	Encoding	|

Western	European	(Windows),	and	then	cut/paste
the	string	from	MS	FrontPage	to	IDS_STRING65
under	Korean	resources	in	your	notepad

§									Save	ttscomp.rc
	
§									Recompile	the	tts.dsp.

§									Run	the	compliance	tests.

	
The	strings	that	need	to	be	localized	are:

Test	Name String	Number English	Text

Speak	Destroy IDS_STRING6 This	is	a	long	string	of	text	that	will	not
complete	because	it	will	be	released	
next	line	of	code.	The	engine	is	expected	to
clean-up	correctly	and	not	fault.

Speak
	

IDS_STRING8 Hello	<BOOKMARK	MARK=	“12”>World

IDS_STRING10 This	is	a	test.

IDS_STRING11 Blah	blah	…

Phoneme	&
Viseme	Events

IDS_STRING10 	

SetVolume
	

IDS_STRING10 	

SetRate IDS_STRING10 	

Check	SAPI
required	Events
	

IDS_STRING20 Bookmark	<BOOKMARK	MARK=	“123”/>test

XML	Bookmark IDS_STRING20 	

XML	Silence
	

IDS_STRING23 Hello	World

IDS_STRING24 Hello	<SILENCE	MSEC	=	“8000”/>	World

XML	Spell
	
	

IDS_STRING26 <SAPI>	ENGLISH	LANGUAGE</SAPI>

IDS_STRING27 <SPELL>	ENGLISH	LANGUAGE	</SPELL>

XML	Rate
	

IDS_STRING30 <RATE	SPEED=	‘-5’>	hello	world	</RATE>

IDS_STRING31 <RATE	SPEED=	‘5’>	hello	world	</RATE>

XML	Volume
	

IDS_STRING33 <VOLUME	LEVEL	=	‘100’>	hello	</VOLUME>

IDS_STRING34 <VOLUME	LEVEL	=	‘1’>	hello	</VOLUME>

XML	Pitch IDS_STRING37 <PITCH	MIDDLE	=’-10’>	a	</PITCH>

	
IDS_STRING38 <PITCH	MIDDLE	=’+10’>	a	</PITCH>

XML	PartOfSp
	
	
	
	

IDS_STRING48 H	l	ow

IDS_STRING52 N	ow	n	p	r	ow	n	ow	aa	aa	ah	ao	aw	b	ch	eh
er

IDS_STRING76 test

Real	time	volume
change
	

IDS_STRING53 This	<BOOKMARK	MARK=’1234’/>string	is
used	in	the	real	time	rate	and	volume	tests.
It’s	rate	and	volume	are	adjusted	mid
stream.	Engines	should	pick	these	changes
up.

Real	time	rate
change

IDS_STRING53 	

XML	Pronounce
	

IDS_STRING56 A

IDS_STRING57 <PRON	SYM=”aa	n	th	ow	p	ow	l	ow	jh	iy	aa	n
th	ow	p	ow	l	ow	jh	iy	aa	n	th	ow	p	ow	l	ow	jh
iy”>a</PRON>

Skip IDS_STRING63 <SAPI>one.		Two.		Three.	Four.	Five.	Six.	
Seven.	Eight.	Nine.	Ten.	<BOOKMARK
MARK=”123”/>bookmark	event.		
Three.	Four.	Five.	Six.		Seven.	Eight.	Nine.
Ten.	</SAPI>

User	Lexicon	Test
	

IDS_STRING64 Computer

IDS_STRING71 dh	aa	n	th	ow	p	ow	l	ow	jh	iy	aa	n	th	ow	p	ow
l	ow	jh	iy	aa	n	th	ow	p	ow	l	ow	jh	ch	ow	ao	ah
ow	ow	p	ow	l	ow	jh	ch	ow	ao	ah	ow

IDS_STRING76 	

IDS_STRING94 h	eh	l	ow	w	er	l	d	h	eh	l	ow	w	er	l	d	h	eh	l	ow
w	er	l	d	h	eh	l	ow	w	er	l	d

GetOutputFormat IDS_STRING65 This	is	the	TTS	Compliance	Test

	
XML	Non-SAPI
tags

IDS_STRING67 <SOMEBOGUSTAGS>	Non-SAPI	tags	test
</SOMEBOGUSTAGS>

XML	Emph
	

IDS_STRING68 <SAPI>Do	you	hear	me?</SAPI>

IDS_STRING69 <SAPI><EMPH>Do	you	hear</EMPH>me?
</SAPI>

App	Lexicon	Test IDS_STRING76 	

IDS_STRING94 	

XML	Context
	

IDS_STRING99 <context
id=’date_mdy’>12/21/99</context>
<context
id=’date_mdy’>12.21.00</context>
<context	id=’date_mdy’>12-21-
9999</context>

IDS_STRING100 <context
id=’date_dmy’>21/12/00</context>
<context
id=’date_dmy’>21.12.33</context>
<context	id=’date_dmy’>21-12-
1999</context>

IDS_STRING101 <context
id=’date_ymd’>99/12/21</context>
<context
id=’date_ymd’>99.12.21</context>
<context	id=’date_ymd’>1999-12-
21</context>

IDS_STRING102 <context	id=’date_ym’>99-12</context>
<context	id=’date_ym’>1999.12</context>
<context	id=’date_ym’>99/12</context>

IDS_STRING103 <context	id=’date_my’>12-99</context>
<context	id=’date_my’>12.1999</context>
<context	id=’date_my’>12/99</context>

IDS_STRING104 <context	id=’date_dm’>21.12</context>

<context	id=’date_dm’>21-12</context>
<context	id=’date_dm’>21/12</context>”

IDS_STRING105 <context	id=’date_md’>12-21</context>
<context	id=’date_md’>12.21</context>
<context	id=’date_md’>12/21</context>

IDS_STRING106 <context	ID	=	‘date_year’>	1999</context>
<context	ID	=	‘date_year’>	2001</context>

IDS_STRING107 <context	id=’time’>12:30:10</context>
<context	id=’time’>12:30</context>
<context	id=’time’>1’21”</context>

IDS_STRING108 <context
id=’number_cardinal’>3432</context>

IDS_STRING109 <context
id=’number_digit’>3432</context>

IDS_STRING110 <context
id=’number_fraction’>3/15</context>

IDS_STRING111 <context
id=’number_decimal’>423.12433</context>

IDS_STRING112 <context	id=’phone_number’>(425)706-
2693</context>

IDS_STRING113 <context
id=’currency’>$12312.90</context>

IDS_STRING116 <context	ID	=	‘address’>One	Microsoft	Way,
Redmond,	WA,	98052</context>

IDS_STRING117 <context	ID	=	‘address_postal’>	A2C
4X5</context>

IDS_STRING118 <CONTEXT	ID	=	‘MS_My_Context’>	text
</CONTEXT>

Multiple-Instance
Test
	

IDS_STRING41 Hello	<SILENCE	MSEC	=	“%d”/>	World

IDS_STRING43 <PRON	SYM	=	“aa	n	th	ow	p	ow	l	iw	jh	iy”>
hello	</PRON>

IDS_STRING44 <RATE	SPEED	=	“%d”>	hello	</RATE>

IDS_STRING45 <VOLUME	LEVEL	=	‘%d’>	hello	</VOLUME>

IDS_STRING46 <PITCH	MIDDLE	=	‘%d’>	hello	</PITCH>

IDS_STRING8 Hello	<BOOKMARK	MARK=	“12”>World

IDS_STRING27 	

IDS_STRING67 	

IDS_STRING76 	

IDS_STRING94 	

IDS_STRING119 	

Table	19:	Strings	to	be	localized	for	compliance	tests

	
It	is	important	to	note	that	for	languages	which	do	not	have	a
SAPI	standard	phoneme	set	(i.e.	languages	which	are	not
supported	in	this	SAPI	release),	the	engine	will	fail	the	following
required	compliance	tests:
	

Test Result

Lexicon 	

User	Lexicon Fail

App	Lexicon Fail

XML	Tags 	

Pron Fail

Table	21:	Required	Compliance	Tests	Failed
	
The	engine	will	also	fail	the	following	feature	tests:
	

Test Result

Phoneme
events

UNSUPPORTED

Viseme
events

UNSUPPORTED

XML UNSUPPORTED

PartOfSp

Table	22:	Feature	Compliance	Tests	Not	Supported
	
	

8.5							OS	Language	Incompatibility
The	compliance	tests	are	not	based	on	the	language	of	the	OS.
They	are	based	on	the	first	language	in	the	token	of	the	default
engine.	In	other	words,	a	Japanese	engine	on	an	English	OS	will
cause	the	compliance	tests	to	load	the	Japanese	resources	and
run	the	compliance	tests	expecting	a	Japanese	engine.	In	order
to	run	the	compliance	test	for	an	engine	that	has	a	different
language	than	the	OS,	you	will	need	to	set	the	default	engine	on
the	Speech	Recognition	tab	of	Speech	properties.

[1]	For	SR	Simplified	Chinese,	the	.wav	files,	cfg	files,	and
resources	do	not	ship	with	the	SAPI	5.0	SDK.	To	request	these
localized	files,	please	send	mail	to	sapi5@microsoft.com.
[2]	All	SR	tests	use	the	default	recognition	profile.	To	increase
the	accuracy	of	the	tests,	you	may	wish	to	change	the	.wav	files
used	(Refer	to	Section	7.4)	or	train	the	recognition	profile.
[3]	The	Simplified	Chinese	SR	resource	files,	cfg	files	and	.wav
files	are	not	included	in	the	SAPI	5	SDK.	Please	e-mail
sapi5@microsoft.com	to	obtain	these	files.
[4]	These	wav	files	MUST	have	different	names	than	the	original
wav	files.	The	new	wav	file	names	should	be	reflected	in	the
string	table.
[5]	A	basic	assumption	of	the	compliance	tests	is	that	the	CFG
files	are	included	in	the	dll	whereas	the	wav	files	are	external.	

mailto:sapi5@microsoft.com
mailto:sapi5@microsoft.com

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

XML	TTS	Tutorial

SAPI	XML	TTS	for	Application	Developers
SAPI	text-to-speech	(TTS)	extensible	markup	language	(XML)
tags	fall	into	several	categories.

Voice	state	control
Direct	item	insertion
Voice	context	control

Voice	selection
Custom	Pronunciation

Voice	state	control	tags
SAPI	TTS	XML	supports	five	tags	that	control	the	state	of	the
current	voice:	Volume,	Rate,	Pitch,	Emph,	and	Spell.

Volume
The	Volume	tag	controls	the	volume	of	a	voice.	The	tag	can	be
empty,	in	which	case	it	applies	to	all	subsequent	text,	or	it	can
have	content,	in	which	case	it	only	applies	to	that	content.
The	Volume	tag	has	one	required	attribute:	Level.	The	value	of
this	attribute	should	be	an	integer	between	zero	and	one
hundred.	Values	outside	of	this	range	will	be	truncated.
<volume	level="50">

This	text	should	be	spoken	at	volume	level	fifty.

			<volume	level="100">

						This	text	should	be	spoken	at	volume	level	one	hundred.

			</volume>

			

</volume>

<volume	level="80"/>

All	text	which	follows	should	be	spoken	at	volume	level	eighty.

One	hundred	represents	the	default	volume	of	a	voice.	Lower
values	represent	percentages	of	this	default.	That	is,	50
corresponds	to	50%	of	full	volume.
Values	specified	using	the	Volume	tag	will	be	combined	with
values	specified	programmatically	(using	ISpVoice::SetVolume).
For	example,	if	you	combine	a	SetVolume(50)	call	with	a
<volume	level="50">	tag,	the	volume	of	the	voice	should	be
25%	of	its	full	volume.

Rate
The	Rate	tag	controls	the	rate	of	a	voice.	The	tag	can	be	empty,
in	which	case	it	applies	to	all	subsequent	text,	or	it	can	have
content,	in	which	case	it	only	applies	to	that	content.
The	Rate	tag	has	two	attributes,	Speed	and	AbsSpeed,	one	of
which	must	be	present.	The	value	of	both	of	these	attributes
should	be	an	integer	between	negative	ten	and	ten.	Values
outside	of	this	range	may	be	truncated	by	the	engine	(but	are
not	truncated	by	SAPI).	The	AbsSpeed	attribute	controls	the
absolute	rate	of	the	voice,	so	a	value	of	ten	always	corresponds
to	a	value	of	ten,	a	value	of	five	always	corresponds	to	a	value
of	five.
<rate	absspeed="5">

			This	text	should	be	spoken	at	rate	five.

			<rate	absspeed="-5">

						This	text	should	be	spoken	at	rate	negative	five.

			</rate>

</rate>

<rate	absspeed="10"/>

All	text	which	follows	should	be	spoken	at	rate	ten.

Speed

The	Speed	attribute	controls	the	relative	rate	of	the	voice.	The
absolute	value	is	found	by	adding	each	Speed	to	the	current
absolute	value.
<rate	speed="5">

			This	text	should	be	spoken	at	rate	five.

						<rate	speed="-5">

									This	text	should	be	spoken	at	rate	zero.

						</rate>

</rate>

Zero	represents	the	default	rate	of	a	voice,	with	positive	values
being	faster	and	negative	values	being	slower.	Values	specified
using	the	Rate	tag	will	be	combined	with	values	specified
programmatically	(using	ISpVoice::SetRate).

Pitch
The	Pitch	tag	controls	the	pitch	of	a	voice.	The	tag	can	be
empty,	in	which	case	it	applies	to	all	subsequent	text,	or	it	can
have	content,	in	which	case	it	only	applies	to	that	content.
The	Pitch	tag	has	two	attributes,	Middle	and	AbsMiddle,	one	of
which	must	be	present.	The	value	of	both	of	these	attributes
should	be	an	integer	between	negative	ten	and	ten.	Values
outside	of	this	range	may	be	truncated	by	the	engine	(but	are
not	truncated	by	SAPI).
The	AbsMiddle	attribute	controls	the	absolute	pitch	of	the	voice,
so	a	value	of	ten	always	corresponds	to	a	value	of	ten,	a	value
of	five	always	corresponds	to	a	value	of	five.
<pitch	absmiddle="5">

This	text	should	be	spoken	at	pitch	five.

			<pitch	absmiddle="-5">

						This	text	should	be	spoken	at	pitch	negative	five.

			</pitch>

</pitch>

<pitch	absmiddle="10"/>

All	text	which	follows	should	be	spoken	at	pitch	ten.
The	Middle	attribute	controls	the	relative	pitch	of	the	voice.	The
absolute	value	is	found	by	adding	each	Middle	to	the	current
absolute	value.
<pitch	middle="5">

This	text	should	be	spoken	at	pitch	five.

			<pitch	middle="-5">

						This	text	should	be	spoken	at	pitch	zero.

			</pitch>

</pitch>

Zero	represents	the	default	middle	pitch	for	a	voice,	with
positive	values	being	higher	and	negative	values	being	lower.

Emph
The	Emph	tag	instructs	the	voice	to	emphasize	a	word	or
section	of	text.	The	Emph	tag	cannot	be	empty.	The	following
word	should	be	emphasized.
<emph>	boo	</emph>!

The	method	of	emphasis	may	vary	from	voice	to	voice.

Spell
The	Spell	tag	forces	the	voice	to	spell	out	all	text,	rather	than
using	its	default	word	and	sentence	breaking	rules,
normalization	rules,	and	so	forth.	All	characters	should	be
expanded	to	corresponding	words	(including	punctuation,
numbers,	and	so	forth).	The	Spell	tag	cannot	be	empty.
<spell>

These	words	should	be	spelled	out.

</spell>

These	words	should	not	be	spelled	out.

Direct	item	insertion	tags

Three	tags	are	supported	that	applications	the	ability	to	insert
items	directly	at	some	level:	Silence,	Pron,	and	Bookmark.

Silence
The	Silence	tag	inserts	a	specified	number	of	milliseconds	of
silence	into	the	output	audio	stream.	This	tag	must	be	empty,
and	must	have	one	attribute,	Msec.
Five	hundred	milliseconds	of	silence	<silence	msec="500"/>	just	occurred.

Pron
The	Pron	tag	inserts	a	specified	pronunciation.	The	voice	will
process	the	sequence	of	phonemes	exactly	as	they	are
specified.	This	tag	can	be	empty,	or	it	can	have	content.	If	it
does	have	content,	it	will	be	interpreted	as	providing	the
pronunciation	for	the	enclosed	text.	That	is,	the	enclosed	text
will	not	be	processed	as	it	normally	would	be.
The	Pron	tag	has	one	attribute,	Sym,	whose	value	is	a	string	of
white	space	separated	phonemes.
<pron	sym="h	eh	1	l	ow	&	w	er	1	l	d	"/>

<pron	sym="h	eh	1	l	ow	&	w	er	1	l	d">	hello	world	</pron>

Bookmark
The	Bookmark	tag	inserts	a	bookmark	event	into	the	output
audio	stream.	Use	this	event	to	signal	the	application	when	the
audio	corresponding	to	the	text	at	the	Bookmark	tag	has	been
reached.	The	Bookmark	tag	must	be	empty.
The	Bookmark	tag	has	one	attribute,	Mark,	whose	value	is	a
string.	This	value	can	then	be	used	to	differentiate	between
bookmark	events	(each	of	which	will	contain	the	string	value
from	their	corresponding	tag).
The	application	will	receive	an	event	here,
<bookmark	mark="bookmark_one"/>

and	another	one	here
<bookmark	mark="bookmark_two"/>

Voice	context	control	tags
Two	tags	provide	context	to	the	current	voice:	PartOfSp	and
Context.	Those	tags	enable	the	voice	to	determine	how	to	deal
with	the	text	it	is	processing.	With	both	of	these	tags,	the	extent
to	which	voices	use	the	context	may	vary.

PartOfSp
The	PartOfSp	tag	provides	the	voice	with	the	part	of	speech	of
the	enclosed	word(s).	Use	this	tag	to	enable	the	voice	to
pronounce	a	word	with	multiple	pronunciations	correctly
depending	on	its	part	of	speech.	The	PartOfSp	tag	cannot	be
empty.
The	PartOfSp	tag	has	one	attribute,	Part,	which	takes	a	string
corresponding	to	a	SAPI	part	of	speech	as	its	attribute.	Only
SAPI	defined	parts	of	speech	are	supported	-	"Unknown",
"Noun",	"Verb",	"Modifier",	"Function",	"Interjection".
<partofsp	part="noun">	A	</partofsp>	is	the	first	letter	of	the	alphabet.

Did	you	<partofsp	part="verb">	record	</partofsp>	that	<partofsp	part="noun">	record	</partofsp>?

Context
The	Context	tag	provides	the	voice	with	information	which	the
voice	may	then	use	to	determine	how	to	normalize	special
items,	like	dates,	numbers,	and	currency.	Use	this	tag	to	enable
the	voice	to	distinguish	between	confusable	date	formats	(see
the	example,	below).	The	Context	tag	cannot	be	empty.
The	Context	tag	has	one	attribute,	Id,	which	takes	a	string
corresponding	to	the	context	of	the	enclosed	text.	Several
contexts	are	defined	by	SAPI	and	are	more	likely	to	be

recognized	by	SAPI	compliant	voices,	but	any	string	may	be
used.	See	documentation	for	a	particular	voice	for	more	details.
<context	id="date_mdy">	03/04/01	</context>	should	be	March	fourth,	two	thousand	one.

<context	id="date_dmy">	03/04/01	</context>	should	be	April	third,	two	thousand	one.

<context	id="date_ymd">	03/04/01	</context>	should	be	April	first,	two	thousand	four.

Voice	Selection	Tags
There	are	two	tags	which	can	be	used	(potentially)	to	change
the	current	voice:	Voice	and	Lang.

Voice
The	Voice	tag	selects	a	voice	based	on	its	attributes,	Age,
Gender,	Language,	Name,	Vendor,	and	VendorPreferred.	The	tag
can	be	empty,	in	which	case	it	changes	the	voice	for	all
subsequent	text,	or	it	can	have	content,	in	which	case	it	only
changes	the	voice	for	that	content.
The	Voice	tag	has	two	attributes:	Required	and	Optional.	These
correspond	exactly	to	the	required	and	optional	attributes
parameters	to	ISpObjectTokenCategory_EnumerateTokens	and
SpFindBestToken	functions.	The	selected	voice	follows	exactly
the	same	rules	as	the	latter	of	these	two	functions.	That	is,	all
the	required	attributes	are	present,	and	more	optional	attributes
are	present	than	with	the	other	installed	voices	(if	several
voices	have	equal	numbers	of	optional	attributes	one	is	selected
at	random).	See	Object	Tokens	and	Registry	Settings	for	more
details.
In	addition,	the	attributes	of	the	current	voice	are	always	added
as	optional	attributes	when	the	Voice	tag	is	used.	This	means
that,	a	voice	which	is	more	similar	to	the	current	voice	will	be
selected	over	one	which	is	less	similar.
If	no	voice	is	found	that	matches	all	of	the	required	attributes,
no	voice	change	will	occur.
The	default	voice	should	speak	this	sentence.

<voice	required="Gender=Female;Age!=Child">

A	female	non-child	should	speak	this	sentence,	if	one	exists.
<voice	required="Age=Teen">

			A	teen	should	speak	this	sentence	-	if	a	female,	non-child	teen	is	present,	she	will	be	selected	over	a	male	teen,	for	example.

			</voice>

</voice>

Lang
The	Lang	tag	selects	a	voice	based	solely	on	its	Language
attribute.	The	tag	can	be	empty,	in	which	case	it	changes	the
voice	for	all	subsequent	text;	or	it	can	have	content,	in	which
case	it	only	changes	the	voice	for	that	content.
The	Lang	tag	has	one	attribute,	LangId.	This	attribute	should	be
a	LANGID,	such	as	409	(U.S.	English)	or	411	(Japanese).	Note
that	these	numbers	are	hexadecimal,	but	without	the	typical
"0x".
The	Lang	tag	is	a	shortened	version	of	the	Voice	tag	with	the
Required	attribute	containing	"Language=xxx".	So	the	following
examples	should	produce	exactly	the	same	results:
<voice	required="Language=409">

A	U.S.	English	voice	should	speak	this.

</voice>

<lang	langid="409">

			A	U.S.	English	voice	should	speak	this.

</lang>

Custom	Pronunciation
An	alternative	to	using	the	<P>	tag	with	the	DISP	and	PRON
attributes	is	to	use	custom	pronunciation.	Using	custom
pronunciation,	tags	in	the	form	of	the	following.
<P	DISP="disp"	PRON="pron">word</P>

can	be	written	as
<P>/disp/word/pron;</P>

More	specifically,	if	you	want	to	recognize	the	word	hello	only
when	it	is	pronounced	as	ah	and	display	greeting	when
recognized,	you	would	normally	use	something	like	the
following.
<P	DISP="greeting"	PRON="ah">hello</P>

Using	custom	pronunciation,	the	above	would	translate	to	the
following.
<P>/greeting/hello/ah;</P>

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Text	Normalization
You	can	perform	simple	text	normalization	for	voice	training
using	the	text	buffer	provided	to	the	engine.	Text	normalization
is	the	process	of	changing	the	input	buffer	that	allows	the
engine	to	use	preferred	word	units.	The	engine	word	units	affect
how	words	are	expected	to	be	pronounced	as	well	as	how	they
appear	in	the	voice	training	wizard.
The	text	provided	to	the	engine	is	called	an	article.	An	article	is
composed	of	multiple	phrases,	each	separated	by	a	new-line
character.	The	voice	training	wizard	displays	one	phrase	at	a
time.
<article>	::=	{	<phrase>	"\n"	}

A	phrase	is	a	sequence	of	word	units,	separated	by	white	space
characters.	In	this	context,	white	space	characters	are	all
characters	for	which	the	C	run	time	function	iswspace()	returns
TRUE.
<phrase>	::=	{	<word>	|	<literal_symbols>	|
<numeric_expression>	}

Word	units

Literals
The	following	symbols	are	recognized	as	units.	They	should	be
separated	from	adjacent	text	with	white	space;	they	will
"snuggle"	to	the	words	appropriately	when	presented	to	the
user.
<literal_symbols>	::=
"!\exclamation-point"	|	"\"\end-quote"	|	"\"\quote"	|	"#\pound-
sign"	|	"$\dollar"	|	"%\percent"	|	"&\ampersand"	|	"'\end-quote"	|
"'\quote"	|	"(\paren"	|	")\close-paren"	|	"*\asterisk"	|	"+\plus"	|
",\comma"	|	"--\double-dash"	|	"-\hyphen"	|	"...\ellipsis"	|	".\dot"	|
".\period"	|	"/\slash"	|	":\colon"	|	";\semicolon"	|	"<\less-than"	|
"=\equals"	|	">\greater-than"	|	"?\question-mark"	|	"@\at-sign"	|
"[\bracket"	|	"\\back-slash"	|	"]\close-bracket"	|	"^\circumflex"	|
"_\underscore"	|	"`\back-quote"	|	"{\left-brace"	|	"|	\vertical-bar"
|	"}\right-brace"	|	"~\tilde"

Numerics
Numbers	can	be	the	following	form:
<digit>	::=	"0"-"9"
<non_zero_digit>	::=	"1"-"9"
<numeric_expression>	::=	<integer_expression>	|
<integer_expression>	<cardinal_suffix>	|
<floating_expression>
<integer_expression>	::=	["-"]	<non_zero_digit>[<digit>
[<digit>]]	{	[","]	<digit><digit><digit>	}
<floating_expression>	::=	<integer_expression>	"."	<digit>	[{
<digit>	}]
<cardinal_suffix>	::=	"st"	|	"nd"	|	"rd"	|	"th"

Collections
The	remainder	of	the	buffer	will	be	treated	as	a	collection	of
words:
<alpha_char>	::=	"a"-"z"|	"A"-"Z"
<word_char>	::=	<alpha_char>	|	"-"	|	"_"	|	"0"-"9"
<word>	::=	<word_0>	|	<word_1>	|	<word_2>	|	<word_3>
<word0>	::=	<alpha_char>	[{<word_char>}]
<word1>	::=	<alpha_char>	[{<word_char>}]	"s'"|"in'"
<word2>	::=	<alpha_char>	[{<word_char>}]	"."	<word2>
<word3>	::=	<abbreviation_string>	"."
<abbreviation_string>	::=
"al"	|	"apr"	|	"assn"	|	"assoc"	|	"atty"	|	"aug"	|	"bef"	|	"bldg"	|
"ch"	|	"chg"	|	"co"	|	"com"	|	"cont"	|	"corp"	|	"dec"	|	"def"	|	"det"	|
"dev"	|	"div"	|	"doc"	|	"etc"	|	"ext"	|	"feb"	|	"gov"	|	"in"	|	"ins"	|
"int"	|	"intl"	|	"jan"	|	"jr"	|	"jul"	|	"jun"	|	"mar"	|	"messrs"	|	"mos"	|
"mph"	|	"mr"	|	"mrs"	|	"ms"	|	"mt"	|	"no"	|	"nov"	|	"oct"	|	"oz"	|
"par"	|	"pct"	|	"pfc"	|	"pp"	|	"pres"	|	"prov"	|	"pt"	|	"qtr"	|	"ref"	|
"reg"	|	"rep"	|	"rev"	|	"sdn"	|	"sec"	|	"sep"	|	"sq"	|	"sr"	|	"tech"	|
"vol"	|	"wm"

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Persisting	Recognized	Wav	Audio	from
the	Speech	Recognition	Engine

Overview
This	document	is	intended	to	help	developers	of	speech
recognition	(SR)	applications	use	the	Microsoft	speech
recognition	and	audio	APIs	to	persist	or	store	the	wav	audio
recognized	by	a	SR	engine.	The	topics	covered	include:
Typical	file	input	scenario
Typical	audio	storage	scenario

Relevant	APIs	for	C++	and	Visual	Basic/Scripting	developers

Sample	recognized	audio	storage	source	code	for	developers
(written	in	both	C++	and	Visual	Basic	6.0)

Typical	file	input	scenario
The	following	are	typical	scenarios	that	would	need	to	store	the
wav	audio	recognized	by	the	SR	engine:
Transcription	applications	(e.g.,	convert	voice	mail	to	email)
Audio	correction	user	interface	(e.g.,	replay	and/or	re-

recognize	audio	snippets)
SR	engine	testing	(e.g.,	measure	and	improve	engine

accuracy	with	reproducible	audio	input	data)

Typical	audio	storage	scenario
Follow	these	basic	steps	to	retrieve	and	store	recognized	wav
audio:

1.	 Create	an	SR	engine	(InProc	or	shared).
2.	 Enable	retained	audio	on	the	relevant	recognition

context.
3.	 Set	the	retained	audio	format	(specify	lower	quality	for
smaller	storage	size,	higher	quality	for	clearer	audio).
Default	is	the	SR	engine's	audio	format.

4.	 Set	up	and	receive	recognition	events	for	relevant
recognition	context.

5.	 Retrieve	audio	stream	from	recognition	result.

6.	 Copy	result's	audio	stream	to	file-bound	stream.

Relevant	wav	audio	file	input	APIs	for	COM/C/C++
Developers:
SpStream	object,	ISpStream	interface:	Basic	SAPI	audio

stream

ISpStream::BindToFile:	Setup	audio	stream	for	wav	file	input
SpBindToFile:	Helper	function	to	setup	stream	with	a	wav	file

ISpRecoContext::SetAudioOptions:	To	enable/disable	retained
audio
ISpRecoResult::GetAudio:	To	retrieve	recognized	audio

ISpStreamFormat::GetFormat:	To	retrieve	audio	format
CSpStreamFormat	helper	object:	Helper	for	handling	audio

formats
ISpStream::Read/Write:	Methods	for	reading	and	writing

stream	data

SPEI_RECOGNITION/SPEI_FALSE_RECOGNITION:	Events	sent	by
SAPI	when	a	recognition	or	false	recognition	has	occurred

Relevant	wav	audio	file	input	APIs	for
Automation/Visual	Basic/Scripting	Developers:

SpFileStream	object:	Basic	file-based	SAPI	audio	stream
SpMemoryStream	object:	Basic	memory-based	SAPI	audio

stream
ISpeechRecoContext::RetainedAudio	property:	To

enable/disable	retained	audio
ISpeechBaseStream::Read/Write:	Methods	for	reading	and

writing	stream	data

ISpeechBaseStream::Format	property:	To	retrieve	audio	format
SpFileStream::Open/Close:	Methods	for	opening	and	closing	a

file-based	stream

ISpeechRecoContext::Recognition/FalseRecognition:	Events
sent	by	SAPI	when	a	recognition	or	false	recognition	has
occurred

Sample	recognized	audio	storage	source	code
Note:	Error	handling	is	omitted	for	brevity

COM/C++	Developers	(C-style	is	very	similar)
{

			HRESULT	hr	=	S_OK;

			CComPtr<ISpRecoContext>	cpRecoContext;

			CComPtr<ISpRecoGrammar>	cpRecoGrammar;

			CComPtr<ISpRecoResult>	cpRecoResult;

			CComPtr<ISpStreamFormat>	cpStreamFormat;

			CSpEvent	spEvent;

			WAVEFORMATEX*	pexFormat	=	NULL;

			SPAUDIOOPTIONS	eAudioOptions	=	SPAO_NONE;

			'	format	for	storing	the	audio

			const	SPSTREAMFORMAT	spFormat	=	SPSF_22kHz8BitMono;

			CSpStreamFormat	Fmt(spFormat,	&hr;);

			//	Check	hr

			//	Create	shared	recognition	context	for	receiving	events

			hr	=	cpRecoContext.CoCreateInstance(CLSID_SpSharedRecoContext);

			//	Check	hr

			//	Create	a	grammar

			hr	=	cpRecoContext->CreateGrammar(NULL,	&cpRecoGrammar;);

			//	Check	hr

			//	Load	dictation

			hr	=	cpRecoGrammar->LoadDictation(NULL,	SPLO_STATIC);

			//	Check	hr

			//	Enabled	audio	retention	in	the	SAPI	runtime,	and	set	the	retained	audio	format

			hr	=	cpRecoContext->SetAudioOptions(SPAO_RETAIN_AUDIO,	&Fmt.FormatId;(),	Fmt.WaveFormatExPtr());	

			//	Check	hr

			//	activate	dictation

			hr	=	cpRecoGrammar->SetDictationState(SPRS_ACTIVE);

			//	Check	hr

				

			//	wait	15	seconds	for	an	event	to	occur	(specifically,	the	default	event,	recognition)

			hr	=	cpRecoContext->WaitForNotifyEvent(15000);

			if	(S_OK	==	hr)

			{

						//	retrieve	the	event	from	the	recognition	context

						hr	=	spEvent.GetFrom(cpRecoContext);

						if	(S_OK	==	hr)

						{

									//	verify	that	the	event	is	a	recognition	event

									if	(SPEI_RECOGNITION	==	spEvent.eEventId)

									{

												//	store	the	recognition	result	pointer

												cpRecoResult	=	spEvent.RecoResult();

												//	release	recognition	result	pointer	in	event	object

												spEvent.Clear();

									}

						}

			}

			//	deactivate	dictation	(only	processing	one	recognition	in	sample	code)

			hr	=	cpRecoGrammar->SetDictationState(SPRS_INACTIVE);

			//	Check	hr

			//	unload	dictation

			hr	=	cpRecoGrammar->UnloadDictation();

			//	Check	hr

			//	if	recognition	received,	and	result	stored	then	store	the	audio

			if	(cpRecoResult)

			{

						//	get	stream	pointer	to	recognized	audio

						//	Note:	specifying	NULL	for	the	start	element	and	element	length	defaults	to	the	entire	recognized	audio	stream.	Correction	UI	may	only	need	a	subset	of	the	audio	for	playback

						hr	=	cpRecoResult->GetAudio(0,	0,	&cpStreamFormat;);

						//	Check	hr

						//	basic	SAPI-stream	for	file-based	storage

						CComPtr<ISpStream>	cpStream;

						ULONG	cbWritten	=	0;

						//	create	file	on	hard-disk	for	storing	recognized	audio,	and	specify	audio	format	as	the	retained	audio	format

						hr	=	SPBindToFile(L"c:\\recognized_audio.wav",	SPFM_CREATE_ALWAYS,	&cpStream;,	&Fmt.FormatId;(),	Fmt.WaveFormatExPtr(),	SPFEI_ALL_EVENTS);

						//	Check	hr

						'	Continuously	transfer	data	between	the	two	streams	until	no	more	data	is	found	(i.e.	end	of	stream)

						'	Note	only	transfer	1000	bytes	at	a	time	to	creating	large	chunks	of	data	at	one	time

						while	(TRUE)

						{

									//	for	logging	purposes,	the	app	can	retrieve	the	recognized	audio	stream	length	in	bytes

									STATSTG	stats;

									hr	=	cpStreamFormat->Stat(&stats;,	NULL);

									//	Check	hr

									//	create	a	1000-byte	buffer	for	transferring

									BYTE	bBuffer[1000];

									ULONG	cbRead;

									//	request	1000	bytes	of	data	from	the	input	stream

									hr	=	cpStreamFormat->Read(bBuffer,	1000,	&cbRead;);

									//	if	data	was	returned…

									if	(SUCCEEDED(hr)	&&	cbRead	>	0)

									{

												'	then	transfer/write	the	audio	to	the	file-based	stream

												hr	=	cpStream->Write(bBuffer,	cbRead,	&cbWritten;);

												//	Check	hr

									}

									//	since	there	is	no	more	data	being	added	to	the	input	stream,	if	the	read	request	returned	less	than	expected,	the	end	of	stream	was	reached,	so	break	data	transfer	loop

									if	(cbRead	<	1000)

									{

												break;

									}

						}

			}

			'	explicitly	close	the	file-based	stream	to	flush	file	data	and	allow	app	to	immediately	use	the	file

			hr	=	cpStream->Close();

			}

}

Automation/Visual	Basic	6.0	Developers
Scripting	code	is	similar	to	Visual	Basic.
Option	Explicit

Dim	WithEvents	RecoContext	As	SpSharedRecoContext	'	context	for	receiving	SR	events

Dim	Grammar	As	ISpeechRecoGrammar	'	grammar

'	Setup/Initialization	code	for	application	startup

Private	Sub	Form_Load()

				'	Create	new	shared	recognition	context	(inproc	works	similarly)

				Set	RecoContext	=	New	SpSharedRecoContext

				'	Create	grammar

				Set	Grammar	=	RecoContext.CreateGrammar

				'	Activate	retained	audio

				RecoContext.RetainedAudio	=	SRAORetainAudio

				'	Optionally,	set	the	retained	audio	format	to	lower	quality	for	smaller	size

				'	RecoContext.RetainedAudioFormat	=	???

				'	load	and	activate	dictation

				Grammar.DictationLoad

				Grammar.DictationSetState	SGDSActive

End	Sub

'	Recognition	event	was	received

Private	Sub	RecoContext_Recognition(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	RecognitionType	As	SpeechLib.SpeechRecognitionType,	ByVal	Result	As	SpeechLib.ISpeechRecoResult)

				'	Create	new	file-based	stream	for	audio	storage

				Dim	FileStream	As	New	SpFileStream

				'	Variable	for	accessing	the	recognized	audio	stream

				Dim	AudioStream	As	SpMemoryStream

				

				'	Retrieve	recognized	audio	from	result	object

				'	Note:	application	can	also	retrieve	smaller	portions	of	the	audio	stream	by	specifying	a	starting	phrase	element	and	phrase	element	length

				Set	AudioStream	=	Result.Audio

				'	Setup	the	file-based	stream	format	with	the	same	format	as	the	audio	stream	format

				Set	FileStream.Format	=	AudioStream.Format

				'	Create	a	file	on	the	hard-disk	for	storing	the	recognized	audio

				FileStream.Open	"c:\recognized_audio.wav",	SSFMCreateForWrite

				

				Dim	Buffer	As	Variant	'	Buffer	for	storing	stream	data

				Dim	lRead	As	Long	'	Amount	of	data	read	from	the	stream

				Dim	lWritten	As	Long	'	Amount	of	data	written	to	the	stream

				

				'	Continuously	transfer	data	between	the	two	streams	until	no	more	data	is	found	(i.e.	end	of	stream)

				'	Note	only	transfer	1000	bytes	at	a	time	to	creating	large	chunks	of	data	at	one	time

				Do	While	True

			'	read	1000	bytes	of	stream	data	

								lRead	=	AudioStream.Read(Buffer,	1000)

								'	if	data	was	retrieved,	then	transfer/write	it	to	the	file-based	stream

								If	(lRead	>	0)	Then

												lWritten	=	FileStream.Write(Buffer)

								End	If

								'	Since	the	input	stream	will	not	increase	in	size,	the	number	of	bytes	read	will	only	be	less	than	requested	if	there	is	no	more	data	to	be	transferred

								If	lRead	<	1000

												Exit	Do	'	exit	if	no	more	data

								End	If

				Loop

				'	close	the	file-based	stream

				'	Note:	The	stream	will	be	closed	automatically	when	the	object	is	released,	but	explicit	closing	enables	app	to	immediately	use	the	file	stream's	data

				FileStream.Close

				'	Sample	code	will	deactivate	and	unload	dictation,	then	shutdown	after	one	recognition

				Grammar.DictationSetState	SGDSInactive

				Grammar.DictationUnload

				Unload	Me	'	shutdown	app

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Using	Wav	File	Input	with	Speech
Recognition	Engines

Overview
This	document	is	intended	to	help	developers	of	speech
recognition	(SR)	applications	use	the	Microsoft	Speech	API's
speech	recognition	and	audio	APIs	to	connect	a	wav	file	with	an
SR	engine.	The	topics	covered	include:
Typical	file	input	scenario
In-process	(InProc)	versus	shared	engines

Relevant	to	setting	up	and	using	wav	files	as	input	to	the
speech	recognizer

Sample	source	code	(written	in	both	C++	and	Visual	Basic
6.0)	to	help	guide	developers.

Typical	file	input	scenario
There	are	many	different	types	of	audio	input	configurations
used	by	SR	applications,	which	include:
A	microphone	shared	by	all	desktop	applications
A	telephony	card	communicating	with	one	or	more	SR	engines
Sending	audio	from	a	persisted	wav	file	to	an	SR	engine

The	shared	desktop	microphone	scenario	uses	the	default	SR
engine	and	the	default	audio	input.	The	user	selects	each	in
Speech	properties	in	Control	Panel,	and	each	is	hosted	in	the
shared	speech	server.
The	telephony	scenario	can	use	either	the	SAPI	5	standard
multimedia	audio	input	object	or	a	custom	audio	object
combined	with	an	InProc	SR	engine.

The	wav	file	input	scenario	is	special	because	it	uses	controlled,
reproducible	audio	input	and	requires	a	dedicated	SR	engine,
without	interference	from	other	applications	(e.g.,	a	shared
desktop	microphone).	The	file	input	scenario	should	use	a
generic	SAPI	audio	stream	connected	to	the	input	wav	file	and
an	InProc	SR	engine.

Typical	scenarios	that	would	use	the	wav	file
audio	input	configuration	include:
Offline	transcription	applications	(e.g.,	convert	voice	mail	to

email)

SR	engine	testing	(e.g.,	measure	and	improve	engine
accuracy	with	reproducible	audio	input	data)
SR	application	testing	(e.g.,	verify	and	improve	application

behavior	when	responding	to	reproducible	voice	commands)

Follow	these	basic	steps	to	perform	SR	on	a	wav
file:

1.	 Create	and	configure	basic	SAPI	audio	stream	object	for
wav	file	input

2.	 Create	an	InProc	SR	engine	using	the	code	samples	in
this	document

3.	 Set	the	audio	stream	object	from	step	1	as	the	SR
engine's	input

4.	 Activate	grammars	and	begin	SR
5.	 Respond	to	recognition	events	until	end	of	audio	stream
is	reached

Relevant	wav	audio	file	input	APIs	for	COM/C/C++
Developers:
SpStream	object,	ISpStream	interface:	Basic	SAPI	audio

stream
ISpStream::BindToFile:	Set	up	audio	stream	for	wav	file	input
SpBindToFile:	Helper	function	to	setup	stream	with	a	wav	file

SpInprocRecognizer,	ISpRecognizer:	InProc	SR	engine
ISpRecognizer::SetInput:	Set	stream	object	as	engine's	input
SPEI_START_SR_STREAM,	SPEI_END_SR_STREAM:	Event

signaling	engine	has	reached	the	beginning	or	the	end	of	the
wav	file,	respectively

Relevant	wav	audio	file	input	APIs	for
Automation/Visual	Basic/Scripting	Developers:
SpFileStream	object:	Basic	file-based	SAPI	audio	stream

SpInprocRecognizer,	ISpeechRecognizer:	InProc	SR	engine
SpInprocRecoContext,	ISpeechRecoContext:	InProc	SR	context

ISpeechRecognizer::AudioInputStream	property:	Set	file
stream	object	as	engine's	input
ISpeechRecoContext::EndStream/StartStream	events

Wav	audio	file	input	outcome	specific	to	SAPI

Finite-length	audio	input	stream
Unlike	microphone	input	which	has	no	predetermined	stream
length,	a	finite-length	audio	input	stream	is	a	file	which	has	a
specific	length	that	is	known	before	recognition	begins.
Similarly,	applications	that	use	microphone	input	will	toggle
between	actively	listening	and	not	listening	states	until	the

speech	application	is	closed.	However,	transcription	applications
are	typically	designed	to	listen	to	one	continuous	audio	stream,
and	then	close	when	the	stream	ends.	Consequently,	the
application	must	specifically	acknowledge	the	end	audio	stream
event	(SPEI_SR_END_STREAM	for	C/C++,
ISpeechRecoContext::EndStream	event	for	Automation).
Transcription	applications	can	potentially	record	multiple
recognitions	on	a	single	audio	stream,	if	the	speaker	pauses	or
breaks	between	sections	of	audio.	If	the	transcription
application	exits	after	the	first	recognition	event	is	received,	it
will	miss	any	further	recognizable	audio	that	remains.

Non-real-time	audio	input
Microphone	input	and	networked	audio	streams	are	typically
real-time	audio	objects.	This	means	that	the	audio	object	is
designed	to	support	audio	buffering	and	dynamic	state
manipulation	(e.g.	stop->play->pause->play->stop)	to	handle
delays	and	latency	in	the	audio	source	and/or	the	SR	engine's
processing.

Sample	wav	audio	file	input	source	code

COM/C++	Developers
C-style	is	very	similar	to	C++	and	COM
{

			CComPtr<ISpStream>	cpInputStream;

			CComPtr<ISpRecognizer>	cpRecognizer;

			CComPtr<ISpRecoContext>	cpRecoContext;

			CComPtr<ISpRecoGrammar>	cpRecoGrammar;

			//	Create	basic	SAPI	stream	object

			//	NOTE:	The	helper	SpBindToFile	can	be	used	to	perform	the	following	operations

			hr	=	cpInputStream.CoCreateInstance(CLSID_SpStream);

			//	Check	hr

			CSpStreamFormat	sInputFormat;

			//	generate	WaveFormatEx	structure,	assuming	the	wav	format	is	22kHz,	16-bit,	Stereo

			hr	=	sInputFormat.AssignFormat(SPSF_22kHz16BitStereo);

			//	Check	hr

			//	setup	stream	object	with	wav	file	MY_WAVE_AUDIO_FILENAME

			//			for	read-only	access,	since	it	will	only	be	access	by	the	SR	engine

			hr	=	cpInputStream->BindToFile(MY_WAVE_AUDIO_FILENAME,

						SPFM_OPEN_READONLY,

						sInputFormat.FormatId(),

						sInputFormat.WaveFormatExPtr(),

						SPFEI_ALL_EVENTS);

						

			//	Check	hr

			//	Create	in-process	speech	recognition	engine

			hr	=	cpRecognizer.CoCreateInstance(CLSID_SpInprocRecognizer);

			//	Check	hr

			//	connect	wav	input	to	recognizer

			//	SAPI	will	negotiate	mismatched	engine/input	audio	formats	using	system	audio	codecs,	so	second	parameter	is	not	important	-	use	default	of	TRUE

			hr	=	cpRecognizer->SetInput(cpInputStream,	TRUE);

			//	Check	hr

			//	Create	recognition	context	to	receive	events

			hr	=	cpRecognizer->CreateRecoContext(&cpRecoContext;);

			//	Check	hr

			//	Create	grammar,	and	load	dictation

			//	ignore	grammar	ID	for	simplicity's	sake

			//	NOTE:	Voice	command	apps	would	load	CFG	here

			hr	=	cpRecognizer->CreateGrammar(NULL,	&cpRecoGrammar;);

			//	Check	hr

			hr	=	cpRecoGrammar->LoadDictation(NULL,SPLO_STATIC);	

			//	Check	hr

			//	check	for	recognitions	and	end	of	stream	event

			hr	=	cpRecoContext->SetInterest(SPFEI(SPEI_RECOGNITION)	|	SPFEI(SPEI_SR_END_STREAM),	SPFEI(SPEI_RECOGNITION)	|	SPFEI(SPEI_SR_END_STREAM));

			//	use	Win32	events	for	command-line	style	application

			hr	=	cpRecoContext->SetNotifyWin32Event();

			//	Check	hr

			//	activate	dictation,	and	begin	recognition

			hr	=	cpRecoGrammar->SetDictationState(SPRS_ACTIVE);

			//	Check	hr

			//	while	events	occur,	continue	processing

			//	timeout	should	be	greater	than	the	audio	stream	length,	or	a	reasonable	amount	of	time	expected	to	pass	before	no	more	recognitions	are	expected	in	an	audio	stream

			BOOL	fEndStreamReached	=	FALSE;

			while	(!fEndStreamReached	&&	S_OK	==	cpRecoContext->WaitForNotifyEvent(MY_REASONABLE_TIMEOUT))

			{

						CSpEvent	spEvent;

						//	pull	all	queued	events	from	the	reco	context's	event	queue

						while	(!fEndStreamReached	&&	S_OK	==	spEvent.GetFrom(cpRecoContext))

						{

									//	Check	event	type

									switch	(spEvent.eEventId)

									{

												//	speech	recognition	engine	recognized	some	audio

												case	SPEI_RECOGNITION:

												//	TODO:	log/report	recognized	text

												break;

												//	end	of	the	wav	file	was	reached	by	the	speech	recognition	engine

												case	SPEI_SR_END_STREAM:

															fEndStreamReached	=	TRUE;

															break;

									}

									//	clear	any	event	data/object	references

									spEvent.Clear();

									}//	END	event	pulling	loop	-	break	on	empty	event	queue	OR	end	stream

						}//	END	event	polling	loop	-	break	on	event	timeout	OR	end	stream

			//	deactivate	dictation

			hr	=	cpRecoGrammar->SetDictationState(SPRS_INACTIVE);

			//	Check	hr

			//	unload	dictation	topic

			hr	=	cpRecoGrammar->UnloadDictation();

			//	Check	hr

			//	close	the	input	stream,	since	we're	done	with	it

			//	NOTE:	smart	pointer	will	call	SpStream's	destructor,	and	consequently	::Close,	but	code	may	want	to	check	for	errors	on	::Close	operation

			hr	=	cpInputStream->Close();

			//	Check	hr

}

Automation/Visual	Basic	6.0	Developers
Scripting	code	is	similar	to	Visual	Basic.
Option	Explicit

Dim	WithEvents	RecoContext	as	ISpeechRecoContext	'	context	for	receiving	SR	events

Dim	Grammar	as	ISpeechRecoGrammar	 '	grammar

Dim	InputFile	as	SpeechLib.SpFileStream	'	wav	audio	input	file	stream

'	Setup	InProc	reco	context	and	wav	audio	input	file

Private	Sub	MyForm_Load()

			'	Create	new	recognizer

			Dim	Recognizer	as	New	SpInprocRecognizer

			'	create	input	file	stream

			Set	InputFile	as	New	SpFileStream

			'	Defaults	to	open	for	read-only,	and	DoEvents	false

			InputFile.Open	MY_WAVE_AUDIO_FILENAME

			'	connect	wav	audio	input	to	speech	recognition	engine

			Set	Recognizer.AudioInputStream	=	InputFile

			'	create	recognition	context

			Set	RecoContext	=	Recognizer.CreateRecoContext

			'	create	grammar

			Set	Grammar	=	RecoContext.CreateGrammar

			'	...	and	load	dictation

			Grammar.DictationLoad

			'	start	dictating

			Grammar.DictationSetState	SGDSActive	

End	Sub

'	Event	fired	on	app	shutdown

Private	Sub	MyForm_Unload(Cancel	as	Boolean)

			InputFile.Close	'	close	audio	input	file

End	Sub

'	Event	fired	when	speech	recognition	engine	recognizes	audio

Private	Sub	RecoContext_Recognition(StreamNumber	as	Long,	StreamPosition	as	Variant,	RecognitionType	As	SpeechRecognitionType,	Result	As	ISpeechRecoResult)

			'	Log/Report	recognized	phrase/information

End	Sub

'	End	of	wav	Input	Stream	reached	by	speech	recognition	engine

Private	Sub	RecoContext_EndStream(StreamNumber	as	Long,	StreamPosition	as	Variant)

			'	Disable	dictation	and	unload	grammars	on	app	close

			Grammar.DictationSetState	SGDSInactive	

			Grammar.DictationUnload

			Unload	Me	'	shutdown	app	on	end	of	stream

End	Sub

Microsoft	Speech	SDK	Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Automation	Interfaces	and	Objects
The	Automation	Interfaces	present	provide	object-oriented
access	to	the	speech	recognition	and	text-to-speech	capabilities
of	SAPI.
Please	note	that	all	automation	interface	names	begin	with
"ISpeech"	and	that	all	automation	object	names	begin	with	"Sp."
Applications	can	explicitly	create	object	variables	which
instantiate	automation	objects,	using	the	"CreateObject"
statement	or	the	"New"	keyword	in	a	"Dim"	or	"Set"	statement.
Object	variables	which	instantiate	automation	interfaces,	on	the
other	hand,	are	only	created	by	the	methods,	properties	and
events	of	automation	objects.
Additionally,	some	automation	interfaces	are	implemented	by
automation	objects,	and	the	properties	and	methods	of	those
interfaces	are	inherited	by	the	objects.	For	example,	the
ISpeechBaseStream	interface	defines	a	set	of	properties	and
methods	for	storing	and	manipulating	audio	data	in	memory.
The	SpFileStream,	SpMemoryStream	and	SpCustomStream
objects	implement	the	ISpeechBaseStream	interface;	as	a
result,	the	methods	and	properties	of	the	ISpeechBaseStream
interface	are	available	in	all	three	objects.

Automation	Interface	and	Objects
SAPI	5.1	Automation	consists	of	the	following	interfaces	and
objects:

Interfaces Description
ISpeechAudio Supports	the	control	of	real-time

audio	streams,	such	as	those
connected	to	a	live	microphone	or
telephone	line.

ISpeechAudioBufferInfo Defines	the	audio	stream	buffer

information.
ISpeechAudioStatus Provides	control	over	the	operation

of	real-time	audio	streams.
ISpeechBaseStream Defines	properties	and	methods

common	to	all	audio	stream	objects.
ISpeechDataKey Provides	access	to	the	speech

configuration	database.
ISpeechGrammarRule Defines	the	properties	and	methods

of	a	speech	grammar	rule.
ISpeechGrammarRules Represents	a	collection	of

ISpeechGrammarRule	objects.
ISpeechGrammarRuleState Presents	the	properties	and

methods	of	a	speech	grammar	rule
state.

ISpeechGrammarRuleStateTransition Returns	data	about	a	transition	from
one	rule	state	to	another,	or	from	a
rule	state	to	the	end	of	a	rule.

ISpeechGrammarRuleStateTransitions Represents	a	collection	of
ISpeechGrammarRuleStateTransition
objects.

ISpeechLexiconPronunciation Provides	access	to	the
pronunciations	of	a	speech	lexicon
word.

ISpeechLexiconPronunciations Represents	a	collection	of
ISpeechLexiconPronunciation
objects.

ISpeechLexiconWord Provides	access	to	a	speech	lexicon
word.

ISpeechLexiconWords Represents	a	collection	of
ISpeechLexiconWord	objects.

ISpeechObjectTokens Represents	a	collection	of
SpObjectToken	objects.

ISpeechPhraseAlternate Enables	applications	to	retrieve
alternate	phrase	information	from
an	SR	engine,	and	to	update	the	SR

engine's	language	model	to	reflect
committed	alternate	changes.

ISpeechPhraseAlternates Represents	a	collection	of
ISpeechPhraseAlternate	objects.

ISpeechPhraseElement Provides	access	to	information
about	a	word	or	phrase.

ISpeechPhraseElements Represents	a	collection	of
ISpeechPhraseElement	objects.

ISpeechPhraseInfo Contains	properties	detailing	phrase
elements.

ISpeechPhraseProperties Represents	a	collection	of
ISpeechPhraseProperty	objects.

ISpeechPhraseProperty Stores	the	information	for	a
semantic	property.

ISpeechPhraseReplacement Specifies	a	replacement,	or	text
normalization,	of	one	or	more
spoken	words.

ISpeechPhraseReplacements Represents	a	collection	of
ISpeechPhraseElement	objects.

ISpeechPhraseRule Contains	information	about	a
speech	phrase	rule.

ISpeechPhraseRules Represents	a	collection	of
ISpeechPhraseRule	objects.

ISpeechRecognizerStatus Returns	the	status	of	the	speech
recognition	engine	represented	by
the	recognizer	object.

ISpeechRecoGrammar Enables	applications	to	manage	the
words	and	phrases	for	the	SR
engine.

ISpeechRecoResult Returns	information	about	the
recognition	engine's	hypotheses,
recognitions,	and	false	recognitions.

ISpeechRecoResultTimes Contains	the	time	information	for
speech	recognition	results.

ISpeechVoiceStatus Contains	status	information	about

an	SpVoice	object.

Objects Description
SpAudioFormat Defines	an	audio	format.
SpCustomStream Supports	supports	the	use	of

existing	IStream	objects	in	SAPI.
SpFileStream Provides	the	ability	to	open	files	as

audio	streams	and	save	audio
streams	as	files.

SpInProcRecoContext Defines	a	recognition	context,	or	a
collection	of	settings,	that	requests
a	specific	type	of	recognition	as
determined	by	the	needs	of	an
application.

SpInProcRecoContext
(Events)

Defines	the	types	of	events	that	a
recognition	context	can	receive.

SpInProcRecognizer Represents	a	speech	recognition
engine.

SpLexicon Provides	access	to	lexicons,	which
contain	information	about	words
that	can	be	recognized	or	spoken.

SpMemoryStream Supports	audio	stream	operations
in	memory.

SpMMAudioIn Represents	the	audio
implementation	for	the	standard
Windows	wave-in	multimedia	layer.

SpMMAudioOut Represents	the	audio
implementation	for	the	standard
Windows	wave-out	multimedia
layer.

SpObjectToken Supports	object	token	entries.
SpObjectTokenCategory Represents	a	class	of	object	tokens.
SpPhoneConverter Supports	conversion	from	the	SAPI

character	phoneset	to	the	Id
phoneset.

SpPhraseInfoBuilder Provides	the	ability	to	rebuild
phrase	information	from	audio	data
saved	to	memory.

SpSharedRecoContext Defines	a	recognition	context,	or	a
collection	of	settings,	that	requests
a	specific	type	of	recognition	as
determined	by	the	needs	of	an
application.

SpSharedRecoContext
(Events)

Defines	the	types	of	events	that	a
recognition	context	can	receive.

SpSharedRecognizer Represents	a	speech	recognition
engine.

SpTextSelectionInformation Provides	access	to	the	text
selection	information	pertaining	to
a	word	sequence	buffer.

SpUnCompressedLexicon Provides	access	to	lexicons,	which
contain	information	about	words
that	can	be	recognized	or	spoken.

SpVoice Enables	an	application	to	perform
text	synthesis	operations.

SpVoice	(Events) defines	the	types	of	events	that	can
be	received	by	an	SpVoice	object.

SpWaveFormatEx Defines	the	format	of	waveform-
audio	data.

Microsoft	Speech	SDK	Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Automation	Overview
Automation	is	the	ability	of	one	entity	(or	object)	to
communicate	with	another	object.	These	entities	may	be
applications	or	ActiveX®	controls,	although	ultimately	they	all
use	COM	(component	object	model)	as	the	common
denominator.	The	underling	complexity	is	removed	for	the	Visual
Basic	programmer.	The	result	is	that	your	application	can	access
features	and	information	from	other	sources.	This	interaction
can	be	as	involved	as	sharing	information	between	the	two
applications,	such	as	between	your	Visual	Basic	application
exporting	or	importing	data	form	a	database	or	spreadsheet.
Automation	also	allows	you	to	issue	basic	commands	such	as
Open	and	Print.	This	way,	developers	can	integrate	their	favorite
spreadsheet	or	word	processor	capabilities	with	methods	unique
to	a	particular	corporate	environment.	For	example,	while	you
could	write	your	own	spell	checker	for	your	Visual	Basic
application,	your	application	could	access	the	Microsoft	Word
spell	checker,	thus	saving	time	and	effort.	In	Visual	Basic,	this
scenario	using	standard	applications	is	commonly	referred	to	as
Visual	Basic	for	Applications	(VBA).	VBA	is	a	specialized	subset
of	Visual	Basic	and	is	designed	to	manage	applications	for
custom	solutions.
A	second	use	of	automation	includes	components.	A	component
can	be	considered	an	additional	functionality	provided	outside
of	the	capabilities	of	any	programming	language	itself.	For
example,	Visual	Basic	provides	a	basic	text	box	for	displaying
text	and	although	that	text	may	be	italic	or	bold,	all	the	text
must	share	the	same	characteristics.	For	example,	it	must	all	be
bold,	or	all	the	same	font	size.	On	the	other	hand,	a	rich	text
edit	box	may	be	added	to	the	Visual	Basic	Toolbox.	Using	this
rich	text	edit	box,	you	can	change	the	font,	size	and	appearance
of	the	text.	However,	this	capability	must	be	explicitly	added
using	the	appropriate	component	on	the	Components	menu.	In
reality,	that	rich	text	edit	box	is	a	COM	object.	Because	COM	is
intended	to	offer	programmers	flexibility,	there	is	a	robust	set	of

components	available.	Many	come	with	the	Visual	Basic
package,	others	are	available	through	third	party	sources,	and
some	are	designed	for	specific	purposes	such	as	in-house
corporate	environments.	This	ability	to	compartmentalize
features	and	functionality	gives	components	their	popularity.
A	third	use	of	automation	is	its	ability	to	access	dynamic	link
libraries	(or	DLLs).	This	aspect	of	automation	involves
applications	without	a	user	interface.	SAPI,	for	instance,	has	no
interface	per	se.	While	users	can	incorporate	SAPI	functions	into
their	own	applications,	they	cannot	run	SAPI	in	a	conventional
sense	and	have	a	user	interface,	as	well	as	menus	and
documents.	Developers	however,	have	access	to	all	of	SAPI's
functions	in	a	programmatic	way	using	dynamic	link	libraries
(DLLs).	If	DLLs	exist	on	the	computer,	a	developer	can	access
them	by	linking	their	development	environment	to	them.	In	the
case	of	Visual	Basic,	SAPI	may	be	added	using	the	Microsoft
Speech	Object	Library	on	the	References	menu.	If	a	particular
DLL	is	not	present,	it	can	be	installed	using	the	manufacturer's
installer.	For	example,	sapi.dll	is	loaded	when	developers	install
SAPI.
DLLs	are	used	frequently.	A	search	for	*.dll	reveals	the	true
extent	of	their	use.	Using	them,	developers	can	introduce	new
components	or	capabilities	to	an	operating	system	without
compiling	them	into	the	system.	DLLs	may	be,	and	usually	are,
loaded	after	the	operating	system.	However,	their	mere
presence	does	not	affect	any	application.	As	mentioned,
developers	need	to	make	calls	to	DLLs	before	a	DLL	can	have	an
effect	on	an	operating	system.	Since	SAPI	has	no	interface,	this
document	is	the	only	guide	to	accessing	its	features.	The
application	programming	interface	(API)	acts	as	a	guide	and
provides	a	list	of	all	the	possible	calls,	explanations	of	them,	and
guidelines	for	successfully	using	them.	Certain	calls	must	be
made	in	a	specific	order	to	keep	SAPI	automation	simple.	This
API	explains	these	issues	and	eases	development	concerns.	Also
available	with	this	documentation	is	the	software	development
kit	(SDK),	which	provides	supplementary	information	such	as

code	examples	and	additional	tools.	Developers	are	encouraged
to	review	the	sample	code	and	possibly	base	their	applications
on	it.
Even	though	three	different	uses	of	automation	are	described
above,	ultimately	all	automation	uses	an	identical	foundation.
Automation	itself	is	a	complex	technology.	It	has	evolved	over
the	years	and,	no	doubt,	will	continue	to	evolve	to
accommodate	changing	technologies	and	the	increasing
sophistication	demanded	by	the	marketplace.	Older
programmers	will	remember	OLE	(object	linking	and
embedding),	which	evolved	into	ActiveX,	COM,	and	COM+.	All	of
these	programs	are	progressions	of	what	is	commonly	called
automation.	Fortunately	automation's	complexity	is	hidden.
Support	is	usually	built	into	the	operating	system	now	and
accessing	these	technologies,	or	individual	aspects	of	them,	is
nothing	more	than	making	a	selection	from	a	list	within	the
development	environment.
The	concept	of	automation	using	COM	is	that	of	programming
language	independence.	As	long	as	the	object	complies	with
COM	standards,	any	programming	language	may	be	used.	This
documentation	suite	addresses	the	SAPI	automation
programming	using	Visual	Basic;	however,	Visual	Basic	is	not
actually	required.	In	fact,	many	of	the	same	calls	and	calling
syntax	may	be	used	in	other	computer	languages,	provided
they	support	automation.	This	includes	the	ability	to	use
JScript®,	Visual	C#®,	or	possibly	other	solutions	that	support
automation.	Visual	Basic	is	used	here	because	of	its	popular	and
widespread	support	in	marketplace.	Also,	it	has	supported
automation	virtually	since	its	inception	and	the	Visual	Basic	tool
suite	offers	a	variety	of	options.

Microsoft	Speech	SDK	Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Objects	and	Classes	Overview

Classes
For	automation	to	work,	there	must	be	technology	common	to
all	applications.	Though	still	evolving,	the	current	incarnation	of
that	technology	is	the	component	object	model	(COM).	Many
applications	are	COM-compliant	and	the	usage	is	widespread.
Using	this	technology,	COM-compliant	applications	can	issue
and	receive	commands	from	other	applications.	The	details	of
COM	and	automation	are	complex,	but	almost	all	of	the	issues
are	hidden	from	the	user	or	application	developers.
The	functionality	of	these	components	is	encapsulated	in
distinct	files	called	type	libraries.	Type	libraries	contain	all	the
methods,	properties,	and	supporting	data	for	the	applications	to
use;	the	application	just	needs	to	load	the	appropriate	type
library	to	gain	access	to	the	functionality.	In	Visual	Basic,	type
libraries	are	also	called	references.	Some	type	libraries	are
loaded	automatically	and	others	must	be	loaded	explicitly.	This
will	be	covered	later	and	in	more	detail.	Once	loaded,	Visual
Basic	has	complete	access	to	the	contents	of	the	type	library.
Libraries	themselves	contain	many	separate	items.	For	example,
The	Microsoft	Speech	Object	Library	(once	loaded,	it	is	called
SpeechLib	in	the	references)	contains	over	400	individual
methods	and	properties,	not	including	supporting	data.
Therefore,	to	better	organize	functionality,	related	calls	and	data
are	grouped	together	in	classes.	For	example,	SAPI	has	an
ISpeechRecoResult	class.	This	class	contains	functionality
needed	to	assess	the	results	of	successful	speech	recognition.
To	retrieve	the	text	of	the	spoken	recognition,	use	the	GetText
method	from	ISpeechRecoResult.
However,	classes	themselves	are	just	a	blueprint	for	the
functionality.	That	is,	classes	describe	the	functions,	but	they
cannot	execute	the	function.	To	execute	the	function,	an	object

must	be	created	(also	called	instantiated).	In	this	way,	one	class
may	be	instantiated	any	number	of	times.
Once	an	object	is	created,	Visual	Basic	uses	a	standard	notation
for	making	these	calls.	This	is	an	object.method	notation
(pronounced	"object	dot	method").	A	typical	call	will	look	like
this:	ISpeechRecoResult.PhraseInfo.GetText().	Complete
ownership	could	also	be	used	by	including	the	library	name:
SpeechLib.ISpeechRecoResult.PhraseInfo.GetText().
To	determine	what	is	available	from	a	particular	type	library
after	loading	it,	Visual	Basic	offers	an	object	browser.	The
browser	is	available	by	either	pressing	F2	or	selecting	View-
>Object	Browser	from	the	menu.	The	object	browser	displays
the	information	in	a	graphical	format.	Clicking	or	double-clicking
an	item	reveals	additional	information	about	it	including
properties,	methods,	events,	or	classes	that	it	contains.	The
bottom	pane	displays	a	quick	reference	guide	for	the	selection
and	includes	the	owning	object	memberships	up	through	the
library.	This	method	of	browsing	available	objects	can	be	useful
when	learning	a	new	library.	In	addition,	two	additional	modules
SpeechConstants	and	SpeechStringConstants,	are	available	for
viewing.	These	two	modules	contain	names	for	numeric	and
string	constants	used	by	SAPI.

Objects
As	mentioned,	classes	are	just	blueprints	for	a	certain
functionality.	To	use	the	calls	of	a	class,	an	object	must	be
created.	An	object	can	allocate	memory	and	assign	values	to
various	elements	contained	by	the	object.	Making	an	instance	of
the	object	is	similar	to	declaring	variables.	For	example,	the
variable	type	String	is	a	common	occurrence	in	Visual	Basic
programs.	The	type	allows	a	character	string	to	be	used,	saving
information	in	it,	and	later	retrieving	information	from	it.
However,	before	using	the	variable	an	instance	must	be
created.	In	the	following	example,	one	String	instance	is
created:

Dim	myString	As	String

After	this	appears	in	the	code,	the	variable	myString	is	valid	and
may	be	referenced	and	changed	as	needed.	In	this	sense,	String
can	be	considered	the	class	and	myString	is	an	instance	of	the
class.	Likewise,	it	is	possible	to	declare	several	instances	of
String.
Dim	myString,	userName,	fileName	As	String

Now	three	strings	are	available	for	use,	presumably	to	record
information	for	vastly	different	purposes.	Perhaps	userName
may	be	used	to	track	the	user's	identity,	and	fileName	for
recording	the	location	and	name	of	a	file.	This	is	an	example	of
one	data	type	having	several	instances.	The	same	will	hold	true
for	classes	and	interfaces.
Instantiating	an	object	is	similar,	but	requires	slight
modifications.	The	additional	modifications	are	in	the	second
line:

			Dim	myVoice	As	SpVoice
			Set	myVoice	=	New	SpVoice

The	additional	keywords	are	Set	and	New.	Classes	require
these	two	keywords	since	classes	are	more	complex	than
variables.	Once	declared	and	allocated,	the	object	may	be	used
and	referenced.	However,	simply	creating	an	object	may	not	be
enough	and	additional	initialization	may	be	required.	Just	as
creating	myString	allocates	the	variable	for	use,	the
programmer	must	assign	a	value	to	it.	In	fact,	it	is	possible	for
an	object	to	have	no	valid	reference.	In	this	case,	the	value	will
be	Nothing.	The	following	code	tests	for	an	object	which	is
Nothing.
If	myVoice	Is	Nothing	Then
			'Handle	the	situation	here.	You	might	want	to	allocate	it	or
			'warn	the	user	an	error	could	have	occurred.
End	If

Microsoft	Speech	SDK	Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Events	Overview
Taken	in	the	most	general	sense,	the	concept	of	automation	is
that	of	two	objects	communicating	with	each	other.	These
objects	may	be	two	applications,	or	an	application	and	a	COM
component.	Ultimately,	however,	it	comes	down	to	two	COM
components,	although	that	is	not	really	the	point.	The	point	is
two	items	are	exchanging	information	between	them.
In	the	case	of	SAPI,	it	is	easy	to	get	the	impression	that	the
Visual	Basic	application	makes	all	the	calls	to	SAPI	and	receives
nothing	in	return.	You	can	get	that	impression	because	most	of
the	emphasis	of	this	documentation	suite	features	the	several
hundred	available	calls	to	SAPI.	But	in	fact,	there	is	a	two-way
communication	going	on.	The	feedback	from	SAPI	and	the
speech	engines	plays	a	critical	role	in	a	speech	application.
SAPI	interacts	with	the	host	application	using	events.	An	event
is	a	signal	sent	to	the	application	by	an	outside	source.	The
event	indicates	that	some	condition	exists	outside	of	the
application	that	may	be	of	interest	to	the	user.	The	outside
source	in	this	case	is	SAPI	and	examples	of	events	may	indicate
that	a	recognition	is	available	or	that	the	SAPI	engine	is	ready	to
accept	input.
Events	are	not	limited	or	unique	to	SAPI.	They	are	the	standard
method	to	get	information	back	to	the	host	application.	It	is
common	for	other	applications	to	send	events.	An	example	of
an	event	sent	back	to	an	application	is	that	of	an	e-mail
application	running	in	the	background	notifying	users	whenever
a	new	e-mail	arrives.	Unlike	a	conventional	method	or	property,
which	must	be	explicitly	coded	by	the	programmer	and	called	at
a	specific	time,	events	may	be	sent	or	received	at	any	time.	It	is
even	possible	for	events	to	be	sent	faster	than	the	host
application	can	process.	Yet	this	rarely	is	disruptive	to	the	user
or	the	current	application.
Far	from	interfering	with	the	application,	events	intend	to

enhance	the	user	experience.	For	example,	moving	the	pointer
over	menu	items	alters	the	appearance	of	individual	buttons
and	indicates	that	the	menu	item	is	available.	This	type	of	event
is	handled	transparently	to	users,	and	they	do	not	need	to
respond	in	any	way.	It	is	even	transparent	to	programmers
because	the	change	in	appearance	is	automatic	and	requires	no
code	implementation.	Nevertheless,	the	application	is
responding	to	an	event.
Events	can	be	considered	to	be	of	one	of	two	types:	user-
initiated	or	background	generated.	As	the	name	implies,	a	user-
initiated	event	is	one	initiated	by	the	user.	A	common	instance
is	that	of	the	user	clicking	a	command	button.	This	actually
generates	several	events	including	a	MouseDown	event	and
Click	event.	A	graphical	user	interface	(GUI,	pronounced	gooey)
is	an	example	of	many	user-initiated	events;	that	is,	the	user
starts	various	activities	such	as	clicking	a	menu,	opening	an
application,	or	entering	text.	Conventional	GUI	programming
relies	extensively	on	an	event	loop.	This	endless	loop	waits	for
events.	After	receiving	one,	the	event	is	dispatched	and
whatever	action	it	is	intended	to	do	begins.	Visual	Basic
applications	have	an	event	loop,	although	it	is	hidden	from	the
programmer.
Background	generated	events,	on	the	other	hand,	are	events
initiated	not	by	the	user	but	by	some	other	source	such	as
another	application	(such	as	SAPI)	or	the	operating	system.	This
is	how	applications	inform	one	another	about	something	of
interest.	For	instance,	if	an	application	were	using	automation
with	Microsoft	Word,	it	is	possible	for	Word	to	send	an	event
whenever	a	file	is	deleted,	printed,	or	opened.	The	application
could	respond	or	even	ignore	the	event	if	it	were	unimportant.
SAPI	sends	back	events	in	the	same	way.	For	example,	when
SAPI	finishes	processing	a	phrase	and	has	a	recognition	ready,	it
sends	a	recognition	event	to	the	host	application.	Handling	an
event	is	similar	to	a	function	or	subroutine	except	an	event	is
invoked	automatically.

Microsoft	Speech	SDK	Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Types	of	Automation	Events

Introduction
Chances	are	you	have	already	have	used	events	and	may	not
have	known	it.	If	your	application	has	a	command	button,	(a
common	interface	tool)	events	generate	the	action	for	it.	For
example,	clicking	the	command	button	when	the	application	is
running	usually	initiates	a	certain	action.	Clicking	the	button
sends	out	a	button	Click	event.	However	the	programmer	had	to
write	the	code	for	the	action	and	chances	are	that	code	is
contained	in	a	procedure	perhaps	called	Command1_click.	The
word	click	indicates	that	it	is	an	action.	This	is	an	example	of	a
user-initiated	event;	that	is,	the	user	must	click	the	button	to
perform	its	action.
There	are	other	examples	of	user	initiated	events.	For	example,
the	first	time	a	form	is	displayed,	a	Form_Load	event	is
generated.	Perhaps	not	as	common	as	a	Command_Click	event,
the	Form_Load	event	initializes	information	on	a	particular	form.
Though	still	considered	to	be	a	user-initiated	event,	the
Form_Load	event	may	or	may	not	be	a	direct	result	of	user
interaction.	You	could	have	chosen	a	menu	item	that	displays	a
new	dialog	box	(and	hence	a	form).	Or	perhaps	the	form	could
also	be	the	result	of	an	error	handling	routine	initiated	by	an
activity	you	caused	indirectly.	Regardless	of	what	caused	the
event,	the	application	can	have	code	to	handle	the	situation.
The	particular	event	could	be	ignored	completely,	in	which	case
you	do	not	need	code	for	the	event.
Background-generated	events	work	in	a	similar	fashion	as	user-
initiated	events.	The	difference	is	the	background-generated
event	may	be	fired	at	anytime	and	is	not	the	direct	result	of
user	interaction,	at	least	not	in	the	same	way	as	clicking	a
button.	SAPI	events	fall	into	this	category.	For	either	speech
recognition	or	text-to-speech,	SAPI	returns	events	to	the
application.	The	application	then	addresses	or	ignores	the

event.	Furthermore,	the	application	can	selectively	reject	certain
types	of	events	if	there	is	no	need	to	work	with	them.	Speech
recognition	returns	a	spectrum	of	events	from	noise	interference
prohibiting	recognition	to	notifications	(successful	or	otherwise).
SAPI	returns	additional	events	for	activities	such	as	the	start
and	end	of	media	streams,	or	the	start	or	end	of	sound	input,
which	are	required	for	potential	recognition	attempts.	Text-to-
speech	has	events	related	to	it	as	well.

Speech	Recognition	Events
The	enumeration	SpeechRecoEvents	contains	the	speech
recognition	events.	Upon	review	of	these	events,	many	appear
logical	and	obvious.	The	speech	recognition	event
SRERecognition	is	returned	upon	a	successful	recognition;
SREPhraseStart	handles	the	start	of	a	new	phrase.	Other	events
are	less	obvious	and	have	specialized	functions.	For	example,
SRERecoOtherContext	indicates	that	a	successful	recognition
occurred	but	cannot	be	associated	with	the	current	recognizer
context.	For	a	detailed	explanation	of	events	and	some
situations	where	they	might	be	used,	please	see	the	appropriate
SAPI	documentation.
For	a	complete	list	of	speech	recognition	events	see
ISpeechRecoContext	(Events)

Text-To-Speech	Events
The	enumeration	SpeechVoiceEvents	contains	all	the	text-to-
speech	events.	Similar	to	recognition	events,	some	voice	events
may	seem	obvious,	and	others	less	so.	See	the	appropriate	SAPI
documentation.
For	a	complete	list	of	text-to-speech	events	see	SpVoice
(Events)

Exploring	Types	of	Events
In	general,	there	are	two	ways	to	discover	what	events	are
available.	First,	the	application	programming	interface	(API)
reference	lists	them	and	describes	their	use	in	detail.	In	order	to
gain	a	better	understanding	of	any	event	or	method,	it	is
important	to	review	those	event	topics	first.
A	second	method	is	to	view	the	Object	browser	from	within
Visual	Basic.	Click	F2	to	display	the	browser	or	select	View-
>Object	Browser	from	the	menu.	Events,	like	other	items,	have
an	associated	icon,	in	this	case	a	lightning	bolt.
In	any	case,	SAPI	has	only	two	interfaces	with	events	associated
with	them:

SpVoice
ISpeechRecoContext

Microsoft	Speech	SDK	Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Automation	Event	Handling

Event	Handlers
In	order	to	respond	to	an	event,	the	application	needs	a
corresponding	event	procedure	(also	called	an	event	handler).	If
an	event	does	not	have	an	associated	procedure,	then	that
event	is	not	considered	handled	and	the	application	does	not
act	upon	it.	By	default,	no	event	procedures	are	included	in	any
Visual	Basic	applications.	For	example,	a	programmer	may
include	a	command	button	on	a	form.	But	the	mere	presence	of
the	button	does	not	mean	that	there	is	an	associated	activity	if
the	user	clicks	the	button.	Instead,	the	programmer	must
explicitly	define	the	activity.	In	the	same	way	SAPI	returns
several	types	of	events	by	default.	However,	unless	the	host
application	has	the	code	to	process	the	event,	it	will	appear	that
the	event	is	not	handled.
In	Visual	Basic,	defining	the	procedure	is	simple	and	can	be
done	in	one	of	three	ways.
1.	Double-click	the	control	while	in	design	mode.	Visual	Basic
programmer	are	probably	most	familiar	with	this	method.	For
example,	double-click	the	command	button	while	in	design
mode.	Visual	Basic	automatically	includes	the	code	necessary	to
support	the	function.	This	code	includes	the	event	type	(again,
for	this	example,	the	event	type	is	button	Click)	and	nay
necessary	parameters.	In	fact,	programmers	do	not	need	to
know	the	number	or	kinds	of	parameters.	Visual	Basic	includes
them	automatically.
2.	Use	the	Object	or	Procedures	drop-down	list	boxes	in	the
Visual	Basic	editor.	The	Object	list	presents	all	the	available
objects	on	the	form.	From	this	list,	the	programmers	can	directly
choose	the	procedure	they	want	rather	than	scrolling	through
the	code	or	searching	for	the	item	name.

The	Object	Menu	in	Visual	Basic.	This
lists	all	the	objects	on	the	form.	In
this	example,	the	form	only	contains
a	single	item:	a	button	named
Command1.	However,	the	form	itself
is	an	object	and	can	have	events
associated	with	it.	By	default,	there
is	also	a	General	item.	This	includes
functions	not	associated	with
directly	with	any	control.

The	Procedures	list	presents	all	the	events	available	for	the
selected	object.	Keep	in	mind	that	clicking	a	specific	control	in
the	forms	window	only	brings	up	one	kind	of	event,	usually	the
click	event.	Objects	often	have	many	other	events	associated
with	it.	New	events	may	be	added	for	the	item	selected	in	the
Object	menu.	Select	the	intended	event	from	the	Procedures
menu.	Visual	Basic	automatically	opens	the	code	window,	and
includes	the	supporting	code	necessary	to	the	event.	Again,
programmers	do	not	need	to	know	parameter	information.

The	Procedures	menu	in	Visual	Basic.
With	an	object	selected	from	the	Object
menu,	the	available	events	are	listed.
Using	the	previous	example,	the	events
listed	are	for	the	Command1	button.
Choosing	an	event	(the	click	event	is
highlighted)	will	automatically	insert	the
subroutine	or	function	along	with	the
required	parameters.

3.	Consult	the	API	documentation	for	the	event.	This	presents
the	information	and	parameter	requirements	for	the	event.	The
function	can	then	be	written	or	pasted	in	manually	as	code.	This
is	the	least	automated	method	of	the	three.	However,	not	all
development	environments	support	automatic	generation	of

code	and	this	may	be	the	only	option	in	some	cases.
In	the	simple	case	of	a	command	button	Click,	any	of	the	three
methods	above	results	in	the	following	code:
Private	Sub	Command1_Click()

End	Sub

Whenever	Command1	is	clicked,	it	uses	the	code	in	this	routine.
Naturally,	it	is	up	to	programmers	to	write	the	procedure	to
handle	the	event	as	they	see	fit.

SAPI	Event	Handlers
Adding	SAPI	event	handlers	is	similar	to	other	controls.	First,	the
object	associated	with	the	events	must	be	declared.	For
example,	declare	a	new	recognizer	object	in	the	project

Public	WithEvents	RC	As	SpSharedRecoContext

Notice	also	the	declaration	has	an	additional	keyword	in	it:
WithEvents.	This	keyword	is	required	to	identify	the	object	as	an
event	source	and	thus	allowing	events	to	be	associated	with	the
recognition	object.	It	may	also	be	misleading	since	the
application	will	still	compile	and	run	if	it	is	omitted.	If	the	key
word	is	missing,	no	events	will	be	returned.	Once	declared,	the
Procedures	menu	will	then	list	the	events.
With	the	same	ease	as	selecting	an	event	for	a	conventional
control,	you	can	select	an	event	for	the	SAPI	object.	For
instance,	selecting	Recognition	from	the	Procedures	menu
inserts	the	appropriate	code	in	the	open	project	file.

An	example	of	the	Procedures	menu	with	SAPI.	The	recognition
context	is	declared	as	the	RC	object.	The	Procedures	menu	lists
all	the	available	events	for	the	recognition	context.	The	two	in
bold	indicate	those	events	are	already	defined.	The	other
events	listed	will	have	the	code	generated	for	them	if	event	is
selected.

A	Recognition	event	is	defined	as
Private	Sub	RecoContext_Recognition(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	RecognitionType	As	SpeechLib.SpeechRecognitionType,	ByVal	Result	As	SpeechLib.ISpeechRecoResult)

End	Sub

Events	in	Scripting	Languages
In	scripting	languages,	use	the	HTML	object	tag	to	instantiate	a
SAPI	object.	Event	procedures	for	such	an	object	are	identified
by	the	object-ID	and	the	event	name.	For	example,	the	following
JavaScript	code	snippet	demonstrates	the	definition	and
creation	of	an	SpVoice	object	and	the	definition	of	a	typical	Word
event	procedure.

...

<OBJECT	ID="VoiceObj"	CLASSID="clsid:96749377-3391-11D2-9EE3-00C04F797396"></OBJECT>

<SCRIPT	LANGUAGE="JScript">

function	VoiceObj::Word(Number,	Position,	CharacterPosition,Length)

{

	 idTextBox.select();	 	 	

	 var	CurrentRange	=	document.selection.createRange();

	 var	MyLen	=	CurrentRange.text.length;

	 CurrentRange.moveStart("character",	CharacterPosition);

	 CurrentRange.moveEnd("character",	CharacterPosition	+	Length	-	MyLen);

	 CurrentRange.select();

	 idTextBox.focus();

}

...

There	are	two	ways	for	applications	developers	to	create	a
recognizer	and	a	recognition	context.	The	first	is	to	create	a
recognizer	object	and	then	to	derive	a	recognition	context	from
the	recognizer.	The	other	is	to	create	a	recognition	context	and
then	to	derive	the	recognizer	from	the	context.
But	in	a	scripting	environment,	events	can	only	be	received	by
objects	created	by	the	scripting	host.	And	since	recognition
results	are	received	exclusively	through	recognition	context
events,	consequently,	in	a	scripting	environment,	the

recognition	context	must	be	created	first.	As	a	further
consequence,	the	recognizer	created	from	the	recognition
context	will	be	associated	with	the	default	SR	engine.

Event	Parameters
The	SAPI	engines	return	information	back	to	the	application
through	the	event	handler's	parameters.	SAPI	events	can	come
from	different	sources	and	there	can	even	be	multiple	instances
of	recognition	contexts	or	voices.	However	each	event	is	self-
contained	and	has	enough	information	to	relate	the	event	to	a
specific	and	unique	source.	If	the	recognition	context	or	even
the	recognizer	itself	is	important,	you	can	derive	the	source	by
tracing	back	information	through	the	parameters.
In	the	case	of	a	Recognition	event,	a	common	situation	is	that
the	application	is	interested	only	in	the	last	parameter,	the
recognition	result.	This	contains	information	about	the
recognized	phrase	including	the	associated	text.	Parameters	are
not	required	to	be	used.	In	some	instances,	it	may	be	important
to	know	only	that	a	recognition	occurred;	the	application	may
not	process	any	information	any	further.
Note	also	the	event's	parameters	represent	one-way
communications,	that	of	SAPI	to	the	application.	It	is	not
possible	to	change	the	parameter	information	and	send	the
changed	parameters	back	to	the	engine.

Microsoft	Speech	SDK	Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Using	Events	in	Code

Associated	With	Recognition	Contexts
Once	the	event	handler	is	created,	using	that	particular	event	is
simple.	No	additional	code	is	needed	to	initiate	the	event.	That
is,	if	the	application	receives	a	Recognition	event	from	SAPI,	the
Recognition	code	is	invoked	automatically	and	immediately.	For
example,	if	the	recognition	event	code	were	as	follows	for,
notice	two	issues.
Private	Sub	RC_Recognition(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	RecognitionType	As	SpeechLib.SpeechRecognitionType,	ByVal	Result	As	SpeechLib.ISpeechRecoResult)
				Form1.Label1.Caption	=	Result.PhraseInfo.GetText
End	Sub

First,	a	hypothetical	Label1	text	box	on	Form1	of	the	application
would	be	updated	with	the	text	from	the	successful	recognition.
Second,	notice	each	event	is	associated	with	a	particular
recognition	context.	In	this	case	recognition	context	is	presumed
to	be	named	RC.	A	possible	declaration	could	be

Public	WithEvents	RC	As	SpSharedRecoContext

Associating	each	event	with	a	recognition	context	simplifies
handling	the	event.	Since	each	application	can	have	more	than
one	recognition	context,	a	particular	recognition	context	can	be
active	or	inactive	at	any	moment,	and	recognition	contexts	are
generally	used	to	isolate	specific	application	areas	(such	as	one
recognition	context	for	the	menus,	another	for	general	dictation,
and	possible	others	for	dialog	boxes),	when	an	event	is
received,	the	scope	of	the	event	is	automatically	defined.	For
example,	in	the	RC_Recognition	listed	above,	the	event	simply
displays	the	results	to	a	text	box.	The	application	does	not	have
to	test	if	the	event	related	to	menus,	which	would	probably
require	a	different	set	of	actions.

Applications,	however,	can	have	additional	processing	within
the	event.	For	example,	assuming	there	is	one	recognition
context	for	all	the	menus,	the	following	recognition	event	does
have	to	test	for	which	menu	is	intended.	It	uses	a	context	free
(CFG)	grammar	and	all	the	rule	names	are	defined	inside	that
file.
Private	Sub	MenuBar_Recognition(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	RecognitionType	As	SpeechLib.SpeechRecognitionType,	ByVal	Result	As	SpeechLib.ISpeechRecoResult)
	
	 Set	RecoResult	=	Result
	 Dim	rp	As	ISpeechPhraseInfo
	 Set	rp	=	RecoResult.PhraseInfo
				
	 If	rp.Rule.Name	=	"filemenu"	Then	Form2.Command1_Click
	 If	rp.Rule.Name	=	"editmenu"	Then	Form2.EditMenu_Click
	 If	rp.Rule.Name	=	"aboutapplication"	Then	frmAbout.Show	vbModal
End	Sub

Event	Interests
Both	speech	recognition	and	text-to-speech	have	a	wide	variety
of	events.	By	default,	SAPI	using	automation	has	all	events
active	except	for	SREAudioLevel	for	speech	recognition	and
SVEAudioLevel	for	text-to-speech.	That	means	all	the	other
kinds	of	events	will	be	returned	by	SAPI	to	the	application.
Remember,	the	application	does	not	have	to	support	any
particular	events;	it	could	simply	omit	an	event	handler	for	it.
Nevertheless,	the	application	still	receives	the	event	and	it
takes	a	minimal	amount	of	time	to	process	it	through	the	queue.
For	simple	applications,	this	processing	time	is	negligible	and
has	little	or	no	effect.	For	other	applications	this	additional	time
could	represent	an	undesirable	lag.	For	instance,	if	the
application	were	animating	a	face	by	using	visemes	to	change
the	mouth	position	of	the	on	screen	character,	speed	and	timing
is	important.	For	speech	recognition,	a	game	application	could
rely	on	speed	as	well	to	process	a	voice	command.	While	some
amount	of	lag	time	is	inherent	to	all	speech	systems	(speech
processing	is	not	instantaneous),	removing	unwanted	events	is
one	way	to	minimize	the	demands	on	the	application.
Controlling	the	flow	of	events	is	done	by	setting	event	interests.
Event	interests	is	a	filtering	mechanism	by	which	specific	events
may	be	sent	back	to	the	application	or	repressed	by	the	engine
to	begin	with.	All,	none,	or	selective	events	may	be	chosen	to	be
received.	Both	groups	of	events	have	a	similar	call	for	setting
interests:	speech	recognition	has
ISpeechRecoContext.EventInterests	and	text-to-speech	uses
SpVoice.EventInterests.	Both	methods	sets	event	interest	but	for
the	appropriate	set	of	interests.
Event	interests	work	the	same	way	for	either	technology.	The
SetInterests	specifies	only	the	events	to	be	sent	by	the	engines.
Therefore	the	following	call	allows	a	single	event	to	be	sent,	that
of	the	successful	recognition.	The	sample	also	assumes	a	valid
RecoContext.

RecoContext.EventInterests	=	SRERecognition

Additional	interests	may	be	set	by	adding	the	values	together.
So	that	the	next	sample	now	allows	two	events	be	sent,	a
recognition	and	a	sound	start.
RecoContext.EventInterests	=	SRERecognition	+	SRESoundStart

If	addition	is	used,	the	new	value	completely	replaces	the
previous	set	of	interests.	For	example,	if	the	last	two	samples
were	executed	in	the	reverse	order	than	presented,	the
recognition	context	would	only	use	one	event	afterward:	the
recognition.	It	is	not	recommended	to	use	subtraction	to	modify
interests.	Instead,	use	logical	operators.
Logical	operators	may	also	be	applied	to	event	interests.	For
example,	an	application	may	need	to	add	one	specific	event	for
the	moment.	Instead	of	having	to	refine	the	entire	set	of
interests,	a	potentially	laborious	task	if	many	interests	are
currently	set,	use	the	logical	And	operator.	For	example,	the
following	code	tests	if	the	current	set	of	interests	excludes
SRERecognition	(by	using	the	logical	And)	and	it	not,	adds	it	(by
using	the	logical	Or).
If	(RC.EventInterests	And	SREAudioLevel)	<>	SREAudioLevel	Then
	 RC.EventInterests	=	RC.EventInterests	Or	SREAudioLevel
End	If

Setting	interests	is	more	simple	than	retrieving	them.	Symbolic
equivalent	may	be	to	set	interests.	That	means	to	add
recognition	events	the	Symbolic	equivalent	SRERecognition.
However,	in	retrieving	the	current	set	of	interests,	a	numeric
value	is	returned	instead.	For	example,	by	default	voice	event
interests	are	set	to	33,287.	The	value	is	the	sum	of	all	the
individual	events.	An	event	interest	of	SVEWordBoundary,
SVEVoiceChange	,	and	SVEViseme	would	have	a	value	of	296.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Using	the	Visual	Basic	Code	Examples

Prerequisites
To	run	the	code	examples	contained	in	this	documentation,	your
computer	must	have	the	following	installed:
SAPI	5.1
Visual	Basic	5.0,	Visual	Basic	6.0,	or	Visual	Basic.Net
Speakers

A	microphone	is	helpful,	but	not	necessary,	for	demonstrating
speech	recognition.

Getting	Started
The	code	examples	in	this	document	are	designed	for	use	with
Microsoft	Visual	Basic.	Each	example	is	identified	either	as	a
"code	snippet"	or	as	"form	code."	Code	snippets	are	small
sections	of	code	intended	to	be	placed	within	a	single	Visual
Basic	procedure;	form	code	examples	are	designed	to	be	placed
within	a	Visual	Basic	form.	All	forms,	modules,	controls	and
resources	use	Visual	Basic's	default	names,	such	as	form
"Form1,"	command	button	"Command1,"	and	resource	"101."
Following	are	the	normal	steps	for	running	a	code	example:

Opening	a	project	in	Visual	Basic
1.	 Open	Visual	Basic.
2.	 In	the	New	Project	dialog	box,	double-click	Standard
exe.

3.	 Visual	Basic	will	display	a	new	form	called	Form1.

Adding	a	"code	snippet"	example	to	the	project
1.	 Double-click	on	Form1	to	display	the	code.

2.	 Select	the	example	code	from	the	documentation	and
copy	(Ctl-C).

3.	 Click	inside	the	Form_Load	procedure	and	paste	(Ctl-V).

Adding	a	form	code	example	to	the	project
If	the	code	example	uses	controls,	use	the	Toolbox	to	add	them
to	Form1

1.	 Double-click	on	Form1	to	display	the	code.
2.	 Select	the	example	code	from	the	documentation	and
copy	(Ctl-C).

3.	 Select	all	code	in	Form1	and	paste	(Ctl-V).

Adding	a	reference	to	SAPI
1.	 From	the	Project	menu,	click	References.
2.	 In	the	References	list	box,	select	Microsoft	Speech
Object	Library.

3.	 Click	OK.

About	the	Examples

Recognition	of	text-to-speech	voices
Several	of	the	speech	recognition	code	examples	perform
recognition	of	audio	files	created	by	text-to-speech	(TTS)	voices.
Speech	recognition	is	designed	to	recognize	human	voices
rather	than	TTS	voices,	so	the	quality	of	recognition	from	TTS
voices	is	not	as	high	as	that	from	human	voices;	however,	TTS
voices	are	also	much	more	consistent	than	human	voices.	Some
code	examples	need	to	demonstrate	types	of	recognition	result
data	that	are	dependent	on	subtle	factors	in	the	speaking	voice.
In	the	instances	where	TTS	recognition	takes	place,	users	can
enter	their	own	text.	In	some	cases,	it	may	be	difficult	to	find	a

phrase	that	will	produce	a	particular	recognition	result	from	a
TTS	voice.	Once	such	a	phrase	is	known,	a	TTS	voice	speaking
that	phrase	will	reproduce	those	results	very	consistently.	Most
of	these	types	of	results	would	be	very	difficult	for	a	user	to
reproduce	by	speaking	into	a	microphone.

Microsoft	Speech	SDK	Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Programming	Notes	for	Visual	Basic

Hidden	members
Certain	methods	or	properties	(collectively	called	members)	are
designated	as	hidden.	This	indicates	that	member	does	not
display	in	a	browser	such	as	Visual	Basic's	IntelliSense	(or
automatic	statement	completion)	menu	or	in	the	Object	Browser
list.	Members	may	be	designated	as	hidden	for	several	reasons.
Most	commonly,	it	represents	an	advanced	feature	or	capability
that	is	not	needed	in	normal	situations.	Hidden	members	should
be	considered	carefully	before	using	them.
To	view	hidden	members

1.	 On	the	View	menu,	click	Object	Browser.

2.	 Right-click	the	Object	Browser	window,	and	then	click
Show	Hidden	Members.	Drag	the	scroll	box	to	view
hidden	members	that	appear	in	gray	text.	With	Show
Hidden	Members	selected,	these	will	appear	in	the
IntelliSense	menu	as	well.

3.	 Right-click	the	Object	Browser	window,	and	then
select	Show	Hidden	Members	again	to	hide	the
members.

Determining	SAPI's	presence
SAPI	requires	no	special	error	handling	outside	of	Visual	Basic's
standard	procedures.	That	is,	SAPI	errors	may	be	trapped	and
handled	using	the	same	techniques	presented	by	Visual	Basic.
However,	there	are	two	special	considerations	when	working
with	SAPI.	First,	the	computer	on	which	the	application	is	being
developed	must	have	the	SAPI	library	loaded.	See	Using	the
Code	Examples	for	details	on	setting	up	a	Visual	Basic
environment	for	SAPI.	Second,	the	computer	running	the
application	with	SAPI	automation	must	have	SAPI	5.1	or	later
installed.
It	is	possible	to	run	applications	that	include	SAPI	automation
without	SAPI	5.1.	If	this	is	the	case,	surround	the	SAPI	code	with
conditional	statements	to	ensure	that	no	SAPI	commands	are
actually	executed.
The	easiest	way	to	determine	if	an	appropriate	version	of	SAPI	is
present	on	a	computer	is	to	simply	make	calls	to	SAPI	and	see	if
they	fail.	Use	error	trapping	to	catch	and	work	around	failed
SAPI	calls.	If	all	the	SAPI	calls	are	caught,	it	is	possible	to	run
SAPI-enabled	applications	on	computers	without	a	compatible
version	of	SAPI.	Although,	those	applications	cannot	use	SAPI
functions	or	functionality,	but	a	separate	version	of	the
application	does	not	have	to	be	created	or	maintained.
For	instance,	if	the	following	code	snippet	is	executed	and	SAPI
5.1	is	not	installed,	a	run-time	error	results.
Private	Sub	Form_Load()
				Set	RC	=	New	SpSharedRecoContext

				Set	myGrammar	=	RC.CreateGrammar
				myGrammar.DictationSetState	SGDSActive
End	Sub

The	error	would	be	related	to	creating	an	object	from
nonexistent	source.	On	a	computer	with	no	version	of	SAPI
loaded,	this	would	commonly	display
Run-time	error	'459':
Object	or	class	does	not	support	the	set	of	events

Therefore,	the	SAPI	calls	need	an	error	handler	for	them.	For
example,	the	same	code	above	could	be	trapped	by	the
following	version.	The	code	intends	to	use	gSAPIPresent	as	a
flag	marking	SAPI's	presence.	If	all	the	SAPI-related	calls	are
conditional	based	on	gSAPIPresent,	the	application	could	run	on
computers	lacking	SAPI	support.	Although	those	applications
could	run,	voice	features	could	not	be	used.

Private	Sub	Form_Load()
				On	Error	GoTo	SAPINotFound
				
				Set	RC	=	New	SpSharedRecoContext
				
				Set	myGrammar	=	RC.CreateGrammar
				myGrammar.DictationSetState	SGDSActive
				gSAPIPresent	=	True
				Exit	Sub
				
SAPINotFound:
				If	Err.Number	=	459	Then
								MsgBox	"SAPI	not	found"
				Else
								MsgBox	"Error	encountered	:	"	&	Err.Number
				End	If
				
				gSAPIPresent	=	False
End	Sub

If	an	application	needs	to	explicitly	test	for	the	presence	of	a
compatible	version	of	SAPI,	use	the	following	code	to	load	a
small	SAPI	object.	If	the	call	fails,	SAPI	is	not	present.
Private	Sub	Form_Load()
{
			'Use	Visual	Basic's	built	in	error	checking
			On	Error	GoTo	Err_SAPILoad
	
			Dim	PIB	As	ISpeechPhraseInfoBuilder
			'Now	if	this	call	fails	Visual	Basic's	Error	handling	will	kick	in	and	send	the	program	flow	to	Err_SAPILoad
			Set	PIB	=	New	SpPhraseInfoBuilder

Err_SAPILoad:
			MsgBox	"Error	loading	SAPI	objects!	Please	make	sure	SAPI5.1	is	correctly	installed.",	vbCritical
}

Error	Codes
SAPI	error	codes	are	listed	in	Error	Codes.

COM	Reliance
SAPI	automation	is	built	on	a	COM	foundation.	As	a	result	many
of	the	SAPI	automation	calls	are	virtually	identical	to
correspondingly	named	calls	the	C/C++	section	of	the	SAPI
documentation.	It	may	be	helpful	read	the	related	sections	for
additional	insight	and	suggestions	for	automation	calls.	While
the	C/C++	references	will	specify	C-style	programming	terms
and	code	samples,	in	many	cases	the	principles	will	be	the
same.

Microsoft	Speech	SDK	Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

VB	Application	Sample:	Dictation
Recognition	(Shared)
The	following	code	sample	represents	a	simple,	but	functional,
recognition	application.	It	uses	a	dictation	grammar	and	allows
free	dictation.	The	commented	lines	refer	to	hypothetical	text
boxes	in	a	form	to	possibly	display	information.	Of	course	you
may	modify	this	application	as	needed	to	fit	your	own
requirements.
Before	running	the	application,	a	speech	reference	must	be
included.	Using	the	Project->References	menu,	find	and	select
the	Microsoft	Speech	Object	Library.
Public	WithEvents	RC	As	SpSharedRecoContext
Public	myGrammar	As	ISpeechRecoGrammar

Private	Sub	Form_Load()
				Set	RC	=	New	SpSharedRecoContext
				
				Set	myGrammar	=	RC.CreateGrammar
				myGrammar.DictationSetState	SGDSActive
End	Sub

Private	Sub	RC_Recognition(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	RecognitionType	As	SpeechLib.SpeechRecognitionType,	ByVal	Result	As	SpeechLib.ISpeechRecoResult)
				'Label1.Caption	=	Result.PhraseInfo.GetText
End	Sub

Private	Sub	RC_StartStream(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant)
				'Label2.Caption	=	Val(StreamNumber)
End	Sub

Microsoft	Speech	SDK	Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

VB	Application	Sample:	Command	and
Control	Recognition
The	following	code	sample	represents	a	simple,	but	functional,
recognition	application.	It	uses	a	command	and	control
grammar	which	limits	the	recognizable	text	to	those	listed	in	the
configuration	file.	In	this	case,	the	file	is	named	sol.xml	and	the
file	contents	are	listed	in	the	second	code	box	below.	The	text	is
restricted	to	the	single	command	"new	game."
The	commented	lines	in	the	Visual	Basic	code	refer	to
hypothetical	labels	in	a	form	to	possibly	display	information.	If	a
speech	attempt	does	not	match	the	new	game	rule	pattern,	it
could	also	display	"(no	recognition)".	Of	course	you	may	modify
this	application	as	needed	to	fit	your	own	requirements.
Before	running	the	application,	a	speech	reference	must	be
included.	Using	the	Project->References	menu,	find	and	select
the	Microsoft	Speech	Object	Library.

Public	WithEvents	RC	As	SpSharedRecoContext
Public	myGrammar,	b	As	ISpeechRecoGrammar

Private	Sub	Form_Load()
				Set	RC	=	New	SpSharedRecoContext
				
				Set	myGrammar	=	RC.CreateGrammar
				myGrammar.CmdLoadFromFile	"sol.xml",	SLODynamic
				myGrammar.CmdSetRuleIdState	0,	SGDSActive
End	Sub

Private	Sub	RC_FalseRecognition(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	Result	As	SpeechLib.ISpeechRecoResult)
				'Label1.Caption	=	"(no	recognition)"
End	Sub

Private	Sub	RC_Recognition(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	RecognitionType	As	SpeechLib.SpeechRecognitionType,	ByVal	Result	As	SpeechLib.ISpeechRecoResult)
				'Label1.Caption	=	Result.PhraseInfo.GetText
End	Sub

Private	Sub	RC_StartStream(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant)
				'Label2.Caption	=	Val(StreamNumber)
End	Sub

In	addition	to	copying	the	code	to	the	Visual	Basic	project,	copy
the	following	XML	code	into	a	new	file	named	sol.xml.
<GRAMMAR	LANGID="409">
				<DEFINE>
	 <ID	NAME="RID_NewGame"	VAL="101"/>
				</DEFINE>
	
			<RULE	NAME="newgame"	ID="RID_NewGame"	TOPLEVEL="ACTIVE">
						<P>new	+game</P>
			</RULE>
</GRAMMAR>

In	cases	when	a	second	grammar	file	is	needed,	copy	the
following	XML	code	into	a	new	file	named	sol2.xml.
<GRAMMAR	LANGID="409">
				<DEFINE>
	 <ID	NAME="RID_FileGame"	VAL="200"/>
				</DEFINE>
	
			<RULE	NAME="filegame"	ID="RID_FileGame"	TOPLEVEL="ACTIVE">
						<P>file	+game</P>
			</RULE>
</GRAMMAR>

Microsoft	Speech	SDK	Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

VB	Application	Sample:	Dictation
Recognition	(Inproc)
The	following	code	sample	represents	a	simple,	but	functional,
recognition	application,	using	the	in	process	(or	InProc)
recognizer.	It	uses	a	dictation	grammar	and	allows	free
dictation.	The	commented	lines	refer	to	hypothetical	labels	in	a
form	to	possibly	display	information.	To	see	the	recognized
phrase,	add	one	label,	named	Label1.	Of	course	you	may	modify
this	application	as	needed	to	fit	your	own	requirements.
Before	running	the	application,	a	speech	reference	must	be
included.	Using	the	Project->References	menu,	find	and	select
the	Microsoft	Speech	Object	Library.
An	InProc	recognizer	requires	additional	lines	that	shared
recognizers	do	not.	For	InProc	recognizers,	the	audio	object	for
either	input	or	output	must	be	explicitly	assigned.

Dim	WithEvents	RC	As	SpInProcRecoContext
Dim	Recognizer	As	SpInprocRecognizer
Dim	myGrammar	As	ISpeechRecoGrammar

Private	Sub	Form_Load()
				Set	RC	=	New	SpInProcRecoContext
				Set	Recognizer	=	RC.Recognizer
				
				Set	myGrammar	=	RC.CreateGrammar
				myGrammar.DictationSetState	SGDSActive
				
				Dim	Category	As	SpObjectTokenCategory
				Set	Category	=	New	SpObjectTokenCategory
				Category.SetId	SpeechCategoryAudioIn

				Dim	Token	As	SpObjectToken

				Set	Token	=	New	SpObjectToken
				Token.SetId	Category.Default()
				Set	Recognizer.AudioInput	=	Token
End	Sub

Private	Sub	RC_Recognition(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	RecognitionType	As	SpeechLib.SpeechRecognitionType,	ByVal	Result	As	SpeechLib.ISpeechRecoResult)
				Label1.Caption	=	Result.PhraseInfo.GetText
End	Sub

Microsoft	Speech	SDK	Speech	Automation	5.1

Sample	DLL	Code	Example
This	example	builds	a	Visual	Basic	ActiveX	DLL	in	order	to
demonstrate	general	object-oriented	programming	techniques,
and	more	specifically,	to	demonstrate	the	use	of	the
ISpeechRecoGrammar_CmdLoadFromResource	method.
The	DLL	contains	one	resource,	called	"101,"	which	is	a
compiled	version	of	the	Solitaire	recognition	grammar.	This
resource	is	used	in	the	ISpeechRecoGrammar
CmdLoadFromResource	sample.
The	DLL	contains	one	method,	called	"SpeakToFile,"	which	is
used	in	the	ISpeechPhraseAlternate	code	example.

To	create	the	Solitaire	grammar
Open	Notepad

Copy	the	Solitaire	Grammar	text	below,	and	paste	it	into
Notepad
Save	it	as	"C:\sol.xml"

To	compile	the	Solitaire	Grammar
Click	Start,	and	then	click	Run.	Paste	this	text	into	the	text	box:
"C:\Program	Files\Microsoft	Speech	SDK	5.1\Bin\GC"	C:\SOL.XML

If	your	Speech	SDK	is	installed	at	a	different	location,	adjust	the
path	accordingly.	Click	OK,	and	the	grammar	compiler	will
compile	SOL.XML	into	SOL.CFG

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Create	the	DLL	project
In	Visual	Basic,	create	an	ActiveX	DLL	project.

1.	 On	the	Project	menu,	select	Project1	Properties.
2.	 In	the	Project1	Properties	dialog	box,	click	the	General
tab,	and	replace	the	Project	Name	(Project1)	with
SpeechDocs,	click	OK.

3.	 On	the	Project	menu,	click	References.

4.	 Scroll	down	the	References	list,	select	Microsoft
Speech	Object	Library,	click	OK.

5.	 Paste	the	DLL	source	code	into	the	Declarations	section
of	the	module	called	Class1.

Load	the	Visual	Basic	Resource	Editor
1.	 On	the	Add-Ins	menu,	click	Add-In	Manager.

2.	 From	the	Available	Add-Ins	list	box,	select	the	VB	6
Resource	Editor	.

3.	 From	the	Load	Behavior	box,	select
Loaded/Unloaded,	click	OK.

An	icon	for	the	Resource	Editor	will	appear	on	Visual	Basic's
standard	toolbar.

Add	the	Grammar	to	the	DLL	as	a	Resource
1.	 Click	the	Resource	Editor	toolbar	icon.
2.	 In	the	Resource	Editor,	click	the	Add	Custom
Resource	toolbar	button.

3.	 In	the	Open	Custom	Resource	dialog	box,	select	the
grammar	file	SOL.CFG,	click	OK.	The	Resource	Editor

will	now	display	an	icon	captioned	101.
4.	 Right-click	the	icon	and	select	Properties.

5.	 In	the	Type	text	box,	replace	the	word	CUSTOM	with
CFGGRAMMAR,	click	OK.

6.	 Click	the	Save	toolbar	button	and	save	file
SpeechDocs.RES.

Compile	the	DLL
On	the	File	menu,	click	Make	SpeechDocs.dll.

Text	of	Solitaire	Grammar
This	is	the	text	of	the	Solitaire	grammar	SOL.XML.

<GRAMMAR	LANGID="409">

				<DEFINE>

								<ID	NAME="FROM"	VAL="1"/>

								<ID	NAME="TO"	VAL="2"/>

								<ID	NAME="SUIT"	VAL="3"/>

								<ID	NAME="COLOR"	VAL="4"/>

								<ID	NAME="RANK"	VAL="5"/>

								<ID	NAME="ColorRed"	VAL="11101"/>

								<ID	NAME="ColorBlack"	VAL="10011"/>

	 <ID	NAME="RID_NewGame"	VAL="101"/>

	 <ID	NAME="RID_MoveCard"	VAL="102"/>

	 <ID	NAME="RID_Rank"	VAL="103"/>

				</DEFINE>

			<RULE	NAME="newgame"	ID="RID_NewGame"	TOPLEVEL="ACTIVE">

						<P>new	+game</P><O>-please</O>

			</RULE>

			<RULE	NAME="playcard"	TOPLEVEL="ACTIVE"	EXPORT="1">

						<O>please</O>

						<P>play	the</P>

						<RULEREF	NAME="card"/>

						<O>please</O>

			</RULE>

			<RULE	NAME="movecard"	ID="RID_MoveCard"	TOPLEVEL="ACTIVE">

						<O>please</O>

						<P>

									<L>

												<P>move</P>

												<P>put</P>

									</L>

									<P>the</P>

						</P>	

						<RULEREF	PROPNAME="from"	PROPID="FROM"	NAME="card"/>

						<O>

									<L>

												<P>on</P>

												<P>to</P>

									</L>

									<P>the</P>

									<RULEREF	PROPNAME="to"	PROPID="TO"	NAME="card"/>

						</O>

						<O>please</O>

			</RULE>

			<RULE	NAME="card">

						<L>

									<P>

												<L	PROPNAME="color"	PROPID="COLOR">

															<P	VAL="ColorRed">red</P>

															<P	VAL="ColorBlack">black</P>

												</L>

												<RULEREF	NAME="rank"/>

									</P>

									<P>

												<RULEREF	NAME="rank"/>

												<O>

															<P>of</P>

															<L	PROPNAME="suit"	PROPID="SUIT">

																		<P	VAL="0">clubs</P>

																		<P	VAL="1">hearts</P>

																		<P	VAL="2">diamonds</P>

																		<P	VAL="3">spades</P>

															</L>

												</O>

									</P>

									<L	PROPNAME="suit"	PROPID="SUIT">

												<P	VAL="0">club</P>

												<P	VAL="1">heart</P>

												<P	VAL="2">diamond</P>

												<P	VAL="3">spade</P>

									</L>

						</L>

			</RULE>

			<RULE	NAME="rank"	ID="RID_Rank">

						<L	PROPNAME="rank"	PROPID="RANK">

									<P	VAL="1">ace</P>

									<P	VAL="2">two</P>

									<P	VAL="3">three</P>

									<P	VAL="4">four</P>

									<P	VAL="5">five</P>

									<P	VAL="6">six</P>

									<P	VAL="7">seven</P>

									<P	VAL="8">eight</P>

									<P	VAL="9">nine</P>

									<P	VAL="10">ten</P>

									<P	VAL="11">jack</P>

									<P	VAL="12">queen</P>

									<P	VAL="13">king</P>

									<P	VAL="12">lady</P>

									<P	VAL="13">emperor</P>

						</L>

			</RULE>

</GRAMMAR>

The	DLL	Source	Code
This	is	the	source	code	for	SpeechDocs	DLL.

Option	Explicit

Private	mV	As	SpeechLib.SpVoice

Private	mF	As	SpeechLib.SpFileStream

Public	Function	SpeakToFile(_

								ByVal	strText,	_

								ByVal	strFName,	_

								Optional	NameOrToken	_

)	As	SpFileStream

				Set	mV	=	New	SpVoice												'Create	voice	object	with	default	voice

				If	(Not	IsMissing(NameOrToken))	Then

								On	Error	GoTo	BadNameOrToken

								Select	Case	TypeName(NameOrToken)			'VBA.Information.TypeName

								Case	"String"															'Use	string	parameter	as	name	of	voice

												Set	mV.Voice	=	mV.GetVoices("name="	&	NameOrToken).Item(0)

								Case	"ISpeechObjectToken"			'Use	object	token	parameter	as	voice

												Set	mV.Voice	=	NameOrToken

								End	Select

				End	If

				

BadNameOrToken:					'Use	default	voice	if	Set	from	NameOrToken	parameter	fails

				On	Error	GoTo	OtherErrors

				Set	mF	=	New	SpFileStream																			'Create	stream	object

				mF.Open	strFName,	SSFMCreateForWrite,	True		'Open	as	the	filename

				Set	mV.AudioOutputStream	=	mF															'Set	voice	output	to	file

				mV.Speak	strText,	SVSFIsXML																	'Speak	synchronously

				mF.Close																																				'Close	file

				

OtherErrors:								'Exit	on	illegal	file	path	or	other	err

				Set	mV	=	Nothing

				Set	SpeakToFile	=	mF							'Return	Filestream	object

End	Function

Microsoft	Speech	SDK	Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Automation	Enumerations
The	Automation	Enumerations	specify	the	possible	values	for
many	of	the	types	of	data	used	in	speech	automation.

Automation	Enumerations
The	automation	enumerations	include	the	following:

Enumerations Description
SpeechAudioFormatType Lists	the	supported

stream	formats.
SpeechAudioState Sets	the	audio	input

or	output	state	to	one
of	four	possible	states.

SpeechBookmarkOptions Specifies	whether	or
not	the	bookmark	will
pause	a	speech
recognition(SR)
engine.

SpeechDataKeyLocation Specifies	the	top-level
speech	configuration
database	keys.

SpeechDiscardType Indicates	portions	of	a
recognition	result	to
be	removed	or
eliminated	once	they
are	no	longer	needed.

SpeechDisplayAttributes Specifies	information
about	the	display	of	a
word.

SpeechEngineConfidence Specifies	levels	of
confidence.

SpeechFormatType Used	to	request	either
the	input	format	for
the	original	audio
source,	or	the	format
actually	arriving	at	the
speech	engine.

SpeechGrammarRuleStateTransitionType Lists	the	types	of
transitions	for	the
speech	recognition
engine.

SpeechGrammarState Defines	the	possible
states	of	a	speech
grammar.

SpeechGrammarWordType Specifies	the	type	of
the	word(s)	to	be
added	to	a	grammar.

SpeechInterference Lists	possible	causes
of	interference	or	poor
recognition	with	the
input	stream.

SpeechLexiconType Specifies	the	allowed
lexicon	types.

SpeechLoadOption indicates	how	a
speech	grammar	is
loaded.

SpeechPartOfSpeech Defines	the	parts-of-
speech	categories
used	in	SAPI.

SpeechRecoContextState Provides	lists	levels	of
control	for	setting	and
restoring	recognition
states	for	each
recognition	context.

SpeechRecoEvents Lists	the	event
interests	for	the
recognition	context.

SpeechRecognitionType Specifies	the	state	of
the	SR	engine.

SpeechRecognizerState Enumerates	the	states
of	a	Recognizer
object.

SpeechRetainedAudioOptions Indicates	the	options
for	an	audio	stream.

SpeechRuleAttributes Lists	attribute's
information	about
grammar	rules.

SpeechRuleState Defines	the	states	of	a
speech	grammar	rule.

SpeechRunState Lists	the	voice	running
state.

SpeechSpecialTransitionType Lists	special
transitions	for	the
speech	recognition
engine.

SpeechStreamFileMode Specifies	the	file
opening	states.

SpeechStreamSeekPositionType Lists	the	methods	to
seek	a	location	within
a	stream.

SpeechTokenContext Lists	the	context	in
which	the	code
managing	the	newly
created	object	runs.

SpeechTokenShellFolder Lists	possible
locations	storing	token
information.

SpeechVisemeFeature Contains	constants
specifying	features	of
phonemes	and
visemes.

SpeechVisemeType Contains	constants	for
each	of	the	visemes
supported	by	the
SpVoice	object.

SpeechVoiceEvents Enumerates	the	types
of	events	which	the
SpVoice	object	can
raise.

SpeechVoicePriority Enumerates	the
possible	Priority
settings	of	an	SpVoice
object.

SpeechVoiceSpeakFlags Contains	flags	that
control	the
SpVoice.Speak
method.

SpeechWordPronounceable Defines	the	set	of
return	values	from	the
IsPronounceable
method	of	the
SpRecoGrammar
object.

SpeechWordType Specifies	the	change
state	of	a
word/pronunciation
combination	in	a
lexicon.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpeechAudioFormatType	Enum
The	SpeechAudioFormatType	enumeration	lists	the
supported	stream	formats.
These	enumeration	elements	are	all	common	audio	formats
ranging	from	the	uncompressed	PCM	formats	to	highly
compressed	formats.	They	are	available	as	standard	formats	on
the	Windows	operating	systems	and	are	supported	by	SAPI	5.

Definition
Enum	SpeechAudioFormatType

				SAFTDefault	=	-1

				SAFTNoAssignedFormat	=	0

				SAFTText	=	1

				SAFTNonStandardFormat	=	2

				SAFTExtendedAudioFormat	=	3

				//	Standard	PCM	wave	formats

				SAFT8kHz8BitMono	=	4

				SAFT8kHz8BitStereo	=	5

				SAFT8kHz16BitMono	=	6

				SAFT8kHz16BitStereo	=	7

				SAFT11kHz8BitMono	=	8

				SAFT11kHz8BitStereo	=	9

				SAFT11kHz16BitMono	=	10

				SAFT11kHz16BitStereo	=	11

				SAFT12kHz8BitMono	=	12

				SAFT12kHz8BitStereo	=	13

				SAFT12kHz16BitMono	=	14

				SAFT12kHz16BitStereo	=	15

				SAFT16kHz8BitMono	=	16

				SAFT16kHz8BitStereo	=	17

				SAFT16kHz16BitMono	=	18

				SAFT16kHz16BitStereo	=	19

				SAFT22kHz8BitMono	=	20

				SAFT22kHz8BitStereo	=	21

				SAFT22kHz16BitMono	=	22

				SAFT22kHz16BitStereo	=	23

				SAFT24kHz8BitMono	=	24

				SAFT24kHz8BitStereo	=	25

				SAFT24kHz16BitMono	=	26

				SAFT24kHz16BitStereo	=	27

				SAFT32kHz8BitMono	=	28

				SAFT32kHz8BitStereo	=	29

				SAFT32kHz16BitMono	=	30

				SAFT32kHz16BitStereo	=	31

				SAFT44kHz8BitMono	=	32

				SAFT44kHz8BitStereo	=	33

				SAFT44kHz16BitMono	=	34

				SAFT44kHz16BitStereo	=	35

				SAFT48kHz8BitMono	=	36

				SAFT48kHz8BitStereo	=	37

				SAFT48kHz16BitMono	=	38

				SAFT48kHz16BitStereo	=	39

				//	TrueSpeech	format

				SAFTTrueSpeech_8kHz1BitMono	=	40

				//	A-Law	formats

				SAFTCCITT_ALaw_8kHzMono	=	41

				SAFTCCITT_ALaw_8kHzStereo	=	42

				SAFTCCITT_ALaw_11kHzMono	=	43

				SAFTCCITT_ALaw_11kHzStereo	=	4

				SAFTCCITT_ALaw_22kHzMono	=	44

				SAFTCCITT_ALaw_22kHzStereo	=	45

				SAFTCCITT_ALaw_44kHzMono	=	46

				SAFTCCITT_ALaw_44kHzStereo	=	47

				//	u-Law	formats

				SAFTCCITT_uLaw_8kHzMono	=	48

				SAFTCCITT_uLaw_8kHzStereo	=	49

				SAFTCCITT_uLaw_11kHzMono	=	50

				SAFTCCITT_uLaw_11kHzStereo	=	51

				SAFTCCITT_uLaw_22kHzMono	=	52

				SAFTCCITT_uLaw_22kHzStereo	=	53

				SAFTCCITT_uLaw_44kHzMono	=	54

				SAFTCCITT_uLaw_44kHzStereo	=	55

				SAFTADPCM_8kHzMono	=	56

				SAFTADPCM_8kHzStereo	=	57

				SAFTADPCM_11kHzMono	=	58

				SAFTADPCM_11kHzStereo	=	59

				SAFTADPCM_22kHzMono	=	60

				SAFTADPCM_22kHzStereo	=	61

				SAFTADPCM_44kHzMono	=	62

				SAFTADPCM_44kHzStereo	=	63

				//	GSM	6.10	formats

				SAFTGSM610_8kHzMono	=	64

				SAFTGSM610_11kHzMono	=	65

				SAFTGSM610_22kHzMono	=	66

				SAFTGSM610_44kHzMono	=	67

				//	Other	formats

				SAFTNUM_FORMATS	=	68

End	Enum

Remarks

SAFTNonStandardFormat
SAFTNonStandardFormat	is	a	non-SAPI	5	standard	format
without	a	WAVEFORMATEX	description.

SAFTExtendedAudioFormat
SAFTExtendedAudioFormat	is	a	non-SAPI	5	standard	format
but	has	WAVEFORMATEX	description.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpeechAudioState	Enum
The	SpeechAudioState	enumeration	lists	the	four	possible
audio	input	and	output	states.
This	is	used	by	ISpeechAudioStatus.State	property	and
ISpeechAudio.SetState	method.

Definition
Enum	SpeechAudioState

				SASClosed	=	0

				SASStop	=	1

				SASPause	=	2

				SASRun	=	3

End	Enum

Elements

SASClosed
Audio	is	stopped	and	closed.	For	multimedia	audio	input
devices	(sound	cards	etc.),	the	device	will	be	released.	It	can
be	opened	by	other	processes	and	potentially	made
unavailable	to	SAPI.

SASStop
Audio	is	stopped.	For	multimedia	audio	input	devices	(sound
cards	etc.),	the	audio	device	will	not	be	closed.	This
guarantees	that	SAPI	can	restart	it	without	an	intervening
process	opening	it.

SASPause
Audio	is	paused.	Staying	in	this	state	for	too	long	a	period
will	cause	audio	loss.

SASRun
Audio	is	enabled.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpeechBookmarkOptions	Enum
The	SpeechBookmarkOptions	enumeration	lists	bookmark
options.

Definition
Enum	SpeechBookmarkOptions

				SBONone	=	0

				SBOPause	=	1

End	Enum

Elements

SBONone
The	recognition	context	will	not	pause	when	it	encounters
the	bookmark.

SBOPause
The	recognition	context	will	pause	when	it	encounters	the
bookmark.	This	is	the	same	as	calling
ISpeechRecoContext.Pause.	The	pause	stops	the	speech
recognition	engine	from	processing	any	more	data	until
Resume	is	called.	In	a	paused	state,	the	application	can
perform	tasks	such	as	changing	grammars	while	the	engine
is	at	a	known	position	in	the	stream.	The	application	must
explicitly	begin	processing	afterward	with
ISpeechRecoContext.Resume.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpeechDataKeyLocation	Enum
The	SpeechDataKeyLocation	enumeration	lists	the	top-level
speech	configuration	database	keys.
Used	with	ISpeechObjectTokenCategory.GetDataKey	to	read	and
write	token	categories.	

Definition
Enum	SpeechDataKeyLocation

				SDKLDefaultLocation	=	0

				SDKLCurrentUser	=	1

				SDKLLocalMachine	=	2

				SDKLCurrentConfig	=	5

End	Enum

Elements

SDKLDefaultLocation
The	default	location	is	set	by	ISpObjectTokenCategory.

SDKLCurrentUser
The	speech	configuration	database	key
HKEY_CURRENT_USER.

SDKLLocalMachine
The	speech	configuration	database	key
HKEY_LOCAL_MACHINE.

SDKLCurrentConfig
The	speech	configuration	database	key
HKEY_CURRENT_CONFIG.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpeechDiscardType	Enum
The	SpeechDiscardType	enumeration	lists	flags	indicating
portions	of	a	recognition	result	to	be	removed	or	eliminated
once	they	are	no	longer	needed.

Definition
Enum	SpeechDiscardType

				SDTProperty	=	1

				SDTReplacement	=	2

				SDTRule	=	4

				SDTDisplayText	=	8

				SDTLexicalForm	=	16

				SDTPronunciation	=	32

				SDTAudio	=	64

				SDTAlternates	=	128

				SDTAll	=	255

End	Enum

Elements

SDTProperty
Removes	the	property	tree.

SDTReplacement
Removes	the	phrase	replacement	text	for	inverse	text
normalization.

SDTRule
Removes	the	non-top	level	rule	tree	information	for	a	phrase.

SDTDisplayText

Removes	the	display	text.

SDTLexicalForm
Removes	the	lexicon	from	text.

SDTPronunciation
Removes	the	pronunciation	text.

SDTAudio
Removes	the	audio	data	that	is	attached	to	a	phrase.
However,	the	audio	has	to	have	been	both	set	and	retained.

SDTAlternates
Removes	the	alternate	data	that	is	attached	to	a	phrase.
Discarding	alternates	loses	the	words	permanently	and	they
cannot	be	retrieved.

SDTAll
Remove	all	the	features	above.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpeechDisplayAttributes	Enum
The	SpeechDisplayAttributes	enumeration	lists	the	possible
ways	of	displaying	a	word.
Used	by	ISpeechPhraseReplacement.DisplayAttributes	and
ISpeechPhraseElement.DisplayAttributes	to	retrieve
SpeechDisplayAttributes	for	the	recognition.	This	property
cannot	be	set	and	it	is	determined	by	the	particular	engine	and
is	specific	for	the	language.

Definition
Enum	SpeechDisplayAttributes

				SDA_No_Trailing_Space	=	0

				SDA_One_Trailing_Space	=	2

				SDA_Two_Trailing_Spaces	=	4

				SDA_Consume_Leading_Spaces	=	8

End	Enum

Elements

SDA_No_Trailing_Space
Does	not	insert	any	trailing	spaces	after	words.

SDA_One_Trailing_Space
Inserts	one	trailing	space,	used	for	most	words.

SDA_Two_Trailing_Spaces
Inserts	two	trailing	spaces,	often	used	after	a	sentence's	final
period.

SDA_Consume_Leading_Spaces
Consume	leading	space,	often	used	for	periods.	If	this	is
absent,	the	word	should	have	a	leading	space	by	default.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpeechEngineConfidence	Enum
The	SpeechEngineConfidence	enumeration	specifies	levels	of
confidence.
Results	returned	by	the	speech	recognition	(SR)	engine	may	be
assigned	one	of	these	values	to	indicate	the	degree	of
confidence	of	the	recognition.	Alternatively,	the	engine	may	be
assigned	one	of	these	values	as	a	minimum	requirement	before
passing	back	a	recognition.
See	Confidence	Scoring	and	Rejection	in	SAPI	Speech
Recognition	Engine	Guide	for	additional	details.

Definition
Enum	SpeechEngineConfidence

				SECLowConfidence	=	-1

				SECNormalConfidence	=	0

				SECHighConfidence	=	1

End	Enum

Elements

SECLowConfidence
Indication	of	low	confidence.

SECNormalConfidence
Indication	of	normal	confidence.

SECHighConfidence
Indication	of	high	confidence.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpeechFormatType	Enum
The	SpeechFormatType	enumeration	requests	either	the	input
format	for	the	original	audio	source,	or	the	format	that	actually
arrives	at	the	speech	engine.
SAPI	may	be	dynamically	converting	the	stream	to	a	different
format	and	as	a	result,	the	original	stream	format	may	be
different	than	the	format	received	by	the	speech	recognition
(SR)	engine.

Definition
Enum	SpeechFormatType

				SFTInput	=	0

				SFTSREngine	=	1

End	Enum

Elements

SFTInput
Request	the	format	of	the	original	audio	input.

SFTSREngine
Request	the	format	received	by	the	SR	engine.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpeechGrammarRuleStateTransitionType
Enum
The	SpeechGrammarRuleStateTransitionType	enumeration
lists	the	types	of	transitions	for	the	speech	recognition	engine.

Definition
Enum	SpeechGrammarRuleStateTransitionType

				SGRSTTEpsilon	=	0

				SGRSTTWord	=	1

				SGRSTTRule	=	2

				SGRSTTDictation	=	3

				SGRSTTWildcard	=	4

				SGRSTTTextBuffer	=	5

End	Enum

Elements

SGRSTTEpsilon
Indicates	there	should	be	an	epsilon	transition.	These	are
NULL	transitions	that	can	be	traversed	without	recognizing
anything.

SGRSTTWord
Indicates	there	should	be	a	word	transition.	These	represent
single	words	that	the	recognizer	will	recognize	before
advancing	to	the	next	state.

SGRSTTRule
Indicates	there	should	be	a	rule	transition.	These	represent
transitions	into	sub-rules.	This	transition	is	only	passed	when
a	path	through	the	sub-rule	has	been	recognized.

SGRSTTDictation
Indicates	there	should	be	a	dictation	transition.
SGRSTTDictation	is	a	special	transition	and	may	not	be
supported	by	all	engines.	This	is	used	to	embed	dictation
within	a	context-free	grammar	(CFG).	Each	transition	means
one	word	should	be	recognized.

SGRSTTWildcard
Indicates	there	should	be	a	wildcard	transition.
SGRSTTWildcard	is	a	special	transition	and	may	not	be
supported	by	all	engines.	This	indicates	a	transition	that
matches	any	word	or	words.	The	engine	does	not	try	and
recognize	the	spoken	words.	The	engine	includes	the	string
value	WildcardInCFG	as	an	attribute	in	its	object	token	to
inform	the	application	that	it	is	capable	of	supporting	this.

SGRSTTTextBuffer
Indicates	there	should	be	a	text	buffer	transition.
SGRSTTTextBuffer	is	a	special	transition	and	may	not	be
supported	by	all	engines.	This	indicates	that	the	engine	is	to
recognize	a	sub-string	of	words	from	the	text	buffer,	if	it	has
been	set.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpeechGrammarState	Enum
The	SpeechGrammarState	enumeration	lists	the	possible
states	of	a	speech	grammar.

Definition
Enum	SpeechGrammarState

				SGSDisabled	=	0

				SGSEnabled	=	1

				SGSExclusive	=	3

End	Enum

Elements

SGSEnabled
SGSEnabled	indicates	that	the	grammar	can	receive
recognitions	and	that	its	rules	are	active.	This	is	the	default
speech	grammar	state.

SGSDisabled
SGSDisabled	indicates	that	the	grammar	cannot	receive
recognitions	and	that	its	rules	are	inactive.	Rules	can	still	be
added	to	a	grammar	in	this	state.

SGSExclusive
SGSExclusive	indicates	that	this	grammar	is	the	only	active
grammar	and	disables	all	rules	that	are	not	part	of	this
grammar.	Currently	not	implemented.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpeechGrammarWordType	Enum
The	SpeechGrammarWordType	enumeration	lists	the	types	of
words	in	a	grammar.

Definition
Enum	SpeechGrammarWordType

				SGDisplay	=	0

				SGLexical	=	1

				SGPronounciation	=	2

End	Enum

Elements

SGDisplay
Each	word	to	be	added	is	in	display	form.	That	is,	it	possibly
will	have	to	be	converted	into	lexical	form(s).	For	example,
the	word	"23"	(display	form)	would	have	to	converted	into
"twenty	three"	(lexical	form).	This	is	currently	not
implemented.

SGLexical
Each	word	to	be	added	is	in	lexical	form	and	can	be	used	to
access	the	lexicon.	This	type	is	specified	in	the	speech	text
grammar	format	as	<GRAMMAR	WORDTYPE="LEXICAL">.

SGPronounciation
Each	word	is	specified	solely	by	its	pronunciation.	This	is
currently	not	implemented.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpeechInterference	Enum
The	SpeechInterference	enumeration	lists	possible	causes	of
interference	or	poor	recognition	with	the	input	audio	stream.

Definition
Enum	SpeechInterference

				SINone	=	0

				SINoise	=	1

				SINoSignal	=	2

				SITooLoud	=	3

				SITooQuiet	=	4

				SITooFast	=	5

				SITooSlow	=	6

End	Enum

Elements

SINone
Private.	Do	not	use.

SINoise
The	sound	received	is	interpreted	by	the	speech	recognition
engine	as	noise.	This	event	is	generated	when	there	is	a
SOUND_START	followed	by	a	SOUND_END	without	an
intervening	PHRASE_START.	The	event	will	be	also	generated
during	dictation	if,	after	a	series	of	hypotheses,	it	is
determined	that	the	signal	is	noise.

SINoSignal
A	sound	is	received	but	it	is	of	a	constant	intensity.	This	also
includes	the	microphone	being	unplugged	or	muted.

SITooLoud
A	sound	is	received	but	the	stream	intensity	is	too	high	for
discrete	recognition.

SITooQuiet
A	sound	is	received	but	the	stream	intensity	is	too	low	for
discrete	recognition.

SITooFast
The	words	are	spoken	too	quickly	for	discrete	recognition.

SITooSlow
The	words	are	spoken	too	slowly	and	indicates	excessive
time	between	words.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpeechLexiconType	Enum
The	SpeechLexiconType	enumeration	lists	the	allowed	lexicon
types.
Currently	there	are	only	two	types	in	use:	user	and	application
lexicons.	Additional	types	may	be	added	in	the	future	or	created
uniquely	by	the	application.

Definition
Enum	SpeechLexiconType	{

			SLTUser			=	1

			SLTApp				=	2

}	End	Enum

Elements

SLTUser
Indicates	the	user	lexicon.	Each	Windows	user	has	a	unique
user	lexicon.

SLTApp
Indicates	the	application	lexicon.	An	application	lexicon	is
shared	by	all	users.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpeechLoadOption	Enum
The	SpeechLoadOption	enumeration	lists	the	options
available	when	loading	a	speech	grammar.

Definition
Enum	SpeechLoadOption

				SLOStatic	=	0

				SLODynamic	=	1

End	Enum

Elements

SLOStatic
Specifies	that	the	grammar	is	loaded	statically.

SLODynamic
Specifies	that	the	grammar	is	loaded	dynamically,	meaning
that	rules	can	be	modified	and	committed	at	run	time.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpeechPartOfSpeech	Enum
The	SpeechPartOfSpeech	enumeration	lists	the	parts-of-
speech	categories	used	in	SAPI.
This	list	of	known	parts-of-speech	types	is	intentionally	small
and	broad	and	will	be	expanded	and	refined	in	future	releases.
SpeechPartOfSpeech	in	its	minimal	form	is	required	to	support
look	ups	from	the	standard	SAPI	lexicon.	This	information	is
useful	to	TTS	engines	in	order	to	determine	the	correct
pronunciation	of	ambiguous	words	based	on	their	context.

Definition
Enum	SpeechPartOfSpeech

				SPSNotOverriden	=	-1

				SPSUnknown	=	0

				SPSNoun	=	4096

				SPSVerb	=	8192

				SPSModifier	=	12288

				SPSFunction	=	16384

				SPSInterjection	=	20480

End	Enum

Elements

SPSNotOverriden
Indicates	that	the	part	of	speech	already	present	in	the
lexicon	should	not	be	overridden.

SPSUnknown
Indicates	that	the	part	of	speech	is	unknown	and	is	probably
from	the	user	lexicon.

SPSNoun
Indicates	that	the	part	of	speech	is	a	noun.

SPSVerb
Indicates	that	the	part	of	speech	is	a	verb.

SPSModifier
Indicates	that	the	part	of	speech	is	a	modifier.

SPSFunction
Indicates	that	the	part	of	speech	is	a	function.

SPSInterjection
Indicates	that	the	part	of	speech	is	an	interjection.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpeechRecoContextState	Enum
The	SpeechRecoContextState	enumeration	lists	the	states	of
a	recognition	context.
Used	by	ISpeechRecoContext.State

Definition
Enum	SpeechRecoContextState

				SRCS_Disabled	=	0

				SRCS_Enabled	=	1

End	Enum

Elements

SRCS_Disabled
Specifies	that	grammars	associated	with	this	recognition
context	are	disabled.

SRCS_Enabled
Specifies	that	grammars	associated	with	this	recognition
context	are	enabled.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpeechRecoEvents	Enum
The	SpeechRecoEvents	enumeration	lists	speech	recognition
(SR)	events.

Used	in	ISpeechRecoContext.VoicePurgeEvent	and
ISpeechRecoContext.EventInterests.

Definition
Enum	SpeechRecoEvents

				SREStreamEnd	=	1

				SRESoundStart	=	2

				SRESoundEnd	=	4

				SREPhraseStart	=	8

				SRERecognition	=	16

				SREHypothesis	=	32

				SREBookmark	=	64

				SREPropertyNumChange	=	128

				SREPropertyStringChange	=	256

				SREFalseRecognition	=	512

				SREInterference	=	1024

				SRERequestUI	=	2048

				SREStateChange	=	4096

				SREAdaptation	=	8192

				SREStreamStart	=	16384

				SRERecoOtherContext	=	32768

				SREAudioLevel	=	65536

				SREPrivate	=	262144

				SREAllEvents	=	393215

End	Enum

Elements

SREStreamEnd
SR	engine	has	reached	the	end	of	an	input	stream.

SRESoundStart
SR	engine	has	detected	the	start	of	non-trivial	audio	data.

SRESoundEnd
SR	engine	has	detected	the	end	of	non-trivial	audio	data.

SREPhraseStart
SR	engine	has	detected	the	start	of	a	recognizable	phrase.

SRERecognition
SR	engine's	best	hypothesis	for	the	audio	data.

SREHypothesis
SR	engine's	interim	hypothesis	for	the	result	of	the	audio
data.

SREBookmark
SR	engine	has	reached	the	specified	point	in	the	audio
stream.

SREPropertyNumChange
LPARAM	points	to	a	string	WPARAM	that	is	the	attribute	value.

SREPropertyStringChange
LPARAM	pointer	to	a	buffer.	Two	concatenated	null-
terminated	strings.

SREFalseRecognition
Apparent	speech	with	no	valid	recognition.

SREInterference

LPARAM	is	any	combination	of	SpeechInterference	flags.

SRERequestUI
LPARAM	is	string.

SREStateChange
WPARAM	contains	new	recognition	state.

SREAdaptation
The	adaptation	buffer	is	now	ready	to	be	accepted.

SREStreamStart
SR	engine	has	reached	the	start	of	an	input	stream.

SRERecoOtherContext
Phrase	finished	and	recognized	but	for	other	context.

SREAudioLevel
Input	audio	volume	level

SREPrivate
Private	engine-specific	event.

SREAllEvents
All	events	listed	above.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpeechRecognitionType	Enum
The	SpeechRecognitionType	enumeration	lists	the	types	of
speech	recognition.
The	Recognition	method	of	the	SpInProcRecognizer	and
SpSharedRecognizer	objects	returns	a	SpeechRecognitionType
member	indicating	the	type	of	recognition	which	produced	the
recognition	result.

Definition
Enum	SpeechRecognitionType

				SRTStandard	=	0

				SRTAutopause	=	1

				SRTEmulated	=	2

End	Enum

Elements

SRTStandard
Indicates	that	the	recognition	result	was	produced	by
standard	recognition.

SRTAutopause
Indicates	that	the	recognition	result	was	produced	by
standard	recognition	and	that	the	engine	is	paused.

SRTEmulated
Indicates	that	the	recognition	result	was	produced	by
recognition	emulation.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpeechRecognizerState	Enum
The	SpeechRecognizerState	enumeration	lists	the	states	of	a
Recognizer	object.

Definition
Enum	SpeechRecognizerState

				SRSInactive	=	0

				SRSActive	=	1

				SRSActiveAlways	=	2

				SRSInactiveWithPurge	=	3

End	Enum

Elements

SRSInactive
The	engine	and	audio	input	are	inactive	and	no	audio	is
being	read,	even	if	there	are	rules	active.	The	audio	device
will	be	closed	in	this	state.

SRSActive
Recognition	takes	place	if	there	are	any	active	rules.	If	a	rule
is	active,	audio	will	be	read	and	passed	to	the	SR	engine	and
recognition	will	take	place.

SRSActiveAlways
Indicates	the	audio	is	running	regardless	of	the	rule	state.
Even	if	there	are	no	active	rules,	audio	will	still	be	read	and
passed	to	the	engine.

SRSInactiveWithPurge
Indicates	the	engine	state	is	set	to	inactive	and	all	active

audio	data	is	purged.	This	state	is	used	when	an	application
wishes	to	shut	an	engine	down	as	quickly	as	possible,
without	waiting	for	it	to	finish	processing	any	audio	data	that
is	currently	buffered.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpeechRetainedAudioOptions	Enum
The	SpeechRetainedAudioOptions	enumeration	lists	the
options	for	retaining	data	from	an	audio	stream.
Used	in	ISpeechRecoContext.RetainedAudio.

Definition
Enum	SpeechRetainedAudioOptions

				SRAONone	=	0

				SRAORetainAudio	=	1

End	Enum

Elements

SRAONone
Indicates	that	the	audio	should	not	be	retained,	but
discarded	after	use.

SRAORetainAudio
Flag	indicates	that	the	audio	stream	should	be	retained	(e.g.,
serialization	of	recognition	object,	playback	of	recognized
audio,	etc.).

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpeechRuleAttributes	Enum
The	SpeechRuleAttributes	enumeration	lists	the	possible
attributes	of	a	grammar	rule.
Used	in	ISpeechGrammarRules.Add	and
ISpeechGrammarRule.Attributes.

Definition
Enum	SpeechRuleAttributes

				SRATopLevel	=	1

				SRADefaultToActive	=	2

				SRAExport	=	4

				SRAImport	=	8

				SRAInterpreter	=	16

				SRADynamic	=	32

End	Enum

Elements

SRATopLevel
Specifies	that	the	rule	is	defined	as	a	top-level	rule.	Top-level
rules	are	the	entry	points	into	the	grammar	and	can	be
activated	or	deactivated	programmatically.	Set	a	rule	as	top-
level	by	using	the	TOPLEVEL	attribute	in	the	Speech	Text
Grammar	Format.

SRADefaultToActive
Specifies	that	the	rule	is	defined	as	a	top-level	rule	that	is
activated	by	default.	This	can	be	set	using	the
TOPLEVEL="ACTIVE"	attribute-value	pair	in	the	Speech	Text
Grammar	Format.

SRAExport
Specifies	the	rule	is	exported	and	hence	can	be	referred	to
by	a	rule	in	another	grammar.	This	can	be	set	using	the
EXPORT="YES"	attribute-value	pair	in	the	Speech	Text
Grammar	Format.

SRAImport
Specifies	the	rule	is	imported	from	another	grammar	and	is
therefore	not	defined	in	this	grammar.

SRAInterpreter
Specifies	the	rule	has	an	interpreter	(custom	C/C++	code
implementing	the	ISpCFGInterpreter	interface)	associated
with	it.

SRADynamic
Specifies	the	rule	is	dynamic	(can	be	changed
programmatically	through	the	ISpGrammarBuilder	interface).
Note	that	the	CFG	must	be	loaded	with	the	SPLO_DYNAMIC
flag	to	enable	changes	at	run	time.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpeechRuleState	Enum
The	SpeechRuleState	enumeration	lists	the	states	of	a	speech
grammar	rule.

Definition
Enum	SpeechRuleState

				SGDSInactive	=	0

				SGDSActive	=	1

				SGDSActiveWithAutoPause	=	3

End	Enum

Elements

SGDSInactive
Grammar	rule	is	inactive.

SGDSActive
Grammar	rule	is	active.

SGDSActiveWithAutoPause
SR	engine	will	be	placed	in	a	paused	state	when	the
grammar	rule	is	recognized.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpeechRunState	Enum
The	SpeechRunState	enumeration	lists	the	running	states	of	a
TTS	voice.
Used	with	ISpeechVoiceStatus.RunningState.

Definition
Enum	SpeechRunState

				SRSEDone	=	1

				SRSEIsSpeaking	=	2

End	Enum

Elements

SRSEDone
The	voice	has	finished	rendering	all	queued	phrases.

SRSEIsSpeaking
The	SpVoice	currently	claims	the	audio	queue.

Remarks
A	SpeechRunState	value	of	zero	represents	a	state	in	which	the
voice	is	waiting	to	speak.	This	condition	is	returned	by
ISpeechVoiceStatus.RunningState	before	the	voice	has	begun
speaking,	and	when	the	voice	is	interrupted	by	an	alert	voice.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpeechSpecialTransitionType	Enum
The	SpeechSpecialTransitionType	enumeration	lists	special
transitions	for	the	speech	recognition	engine.
Special	transitions	may	not	be	supported	by	all	speech	engines.
Used	in	ISpeechGrammarRuleState.AddSpecialTransition.

Definition
Enum	SpeechSpecialTransitionType

				SSTTWildcard	=	1

				SSTTDictation	=	2

				SSTTTextBuffer	=	3

End	Enum

Elements

SSTTWildcard
Indicates	there	should	be	a	wildcard	transition.
SGRSTTWildcard	is	a	special	transition	and	may	not	be
supported	by	all	engines.	This	indicates	a	transition	that
matches	any	word	or	words.	The	engine	does	not	try	to
recognize	the	spoken	words.	The	engine	includes	the	string
value	WildcardInCFG	as	an	attribute	in	its	object	token	to
inform	the	application	that	it	is	capable	of	supporting	this.

SSTTDictation
Indicates	there	should	be	a	dictation	transition.
SGRSTTDictation	is	a	special	transition	and	may	not	be
supported	by	all	engines.	This	is	used	to	embed	dictation
within	a	context-free	grammar	(CFG).	Each	transition	means
one	word	should	be	recognized.

SSTTTextBuffer
Indicates	there	should	be	a	text	buffer	transition.
SGRSTTTextBuffer	is	a	special	transition	and	may	not	be
supported	by	all	engines.	This	indicates	that	the	engine	is	to
recognize	a	sub-string	of	words	from	the	text-buffer,	if	it	has
been	set.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpeechStreamFileMode	Enum
The	SpeechStreamFileMode	enumeration	lists	the	access
modes	of	a	file	stream.
Used	by	SpFileStream.Open.

Definition
Enum	SpeechStreamFileMode

				SSFMOpenForRead	=	0

				[hidden]	SSFMOpenReadWrite	=	1

				[hidden]	SSFMCreate	=	2

				SSFMCreateForWrite	=	3

End	Enum

Elements

SSFMOpenForRead
Opens	an	existing	file	as	read-only.

SSFMOpenReadWrite
[hidden]	Opens	an	existing	file	as	read-write.	Not	supported
for	wav	files.

SSFMCreate
[hidden]	Opens	an	existing	file	as	read-write.	Else,	it	creates
the	file	then	opens	it	as	read-write.	Not	supported	for	wav
files.

SSFMCreateForWrite
Creates	file	even	if	file	exists	and	so	destroys	or	overwrites
the	existing	file.

Microsoft	Speech	SDK	Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpeechStreamSeekPositionType	Enum
The	SpeechStreamSeekPositionType	enumeration	lists	the
types	of	positioning	from	which	a	Seek	method	can	be
performed.
Used	by	ISpeechBaseStream.Seek.

Definition
Enum	SpeechStreamSeekPositionType

				SSSPTRelativeToStart	=	0

				SSSPTRelativeToCurrentPosition	=	1

				SSSPTRelativeToEnd	=	2

End	Enum

Elements

SSSPTRelativeToStart
Calculates	the	stream	offset	relative	from	the	start	of	the
stream.

SSSPTRelativeToCurrentPosition
Calculates	the	stream	offset	relative	from	the	current
position.

SSSPTRelativeToEnd
Calculates	the	stream	offset	relative	from	the	end	of	the
stream.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpeechTokenContext	Enum
The	SpeechTokenContext	enumeration	lists	the	context	in
which	the	code	managing	the	newly	created	object	runs.
This	is	associated	with	COM	and	the	use	of
CoRegisterClassObject	to	make	new	objects.	Used	in
SpObjectToken.CreateInstance

Definition
Enum	SpeechTokenContext

				STCInprocServer	=	1

				STCInprocHandler	=	2

				STCLocalServer	=	4

				STCRemoteServer	=	16

				STCAll	=	23

End	Enum

Elements

STCInprocServer
Creates	and	manages	objects	in	the	same	process	as	the
caller	of	the	function.

STCInprocHandler
Creates	and	manages	objects	as	an	in	process	(InProc)
handler.	This	is	a	DLL	running	in	the	client	process	and
implements	client-side	structures	of	this	class	when
instances	are	accessed	remotely.

STCLocalServer
Creates	and	manages	objects	that	are	loaded	in	a	separate
process	space;	that	is,	it	runs	on	same	computer	but	in	a

different	process.

STCRemoteServer
Creates	and	manages	objects	on	a	remote	machine	context.

STCAll
Creates	and	manages	objects	for	all	class	contexts.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpeechTokenShellFolder	Enum
The	SpeechTokenShellFolder	enumeration	lists	possible
locations	storing	token	information.
This	is	a	standard	Win32	CSIDL	value	identifying	the	folder
whose	path	is	returned	as	a	String.	Used	in
SpObjectToken.GetStorageFileName.

Definition
Enum	SpeechTokenShellFolder

				STSF_AppData	=	26

				STSF_LocalAppData	=	28

				STSF_CommonAppData	=	35

				STSF_FlagCreate	=	32768

End	Enum

Elements

STSF_AppData
Stores	information	in	the	application	data	of	the	user's
profile.

STSF_LocalAppData
Stores	information	in	the	My	Computer	folder.	This	is	a	virtual
folder	containing	everything	on	the	local	computer

STSF_CommonAppData
Stores	information	in	the	file	system	directory	that	serves	as
a	common	repository	for	application-specific	data.

STSF_FlagCreate

Forces	the	creation	of	a	folder.	This	flag	is	used	in
combination	with	another	CSIDL	value	to	create	the	item.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpeechVisemeFeature	Enum
The	SpeechVisemeFeature	enumeration	lists	the	features	of
phonemes	and	visemes.

Definition
Enum	SpeechVisemeFeature

				SVF_None	=	0

				SVF_Stressed	=	1

				SVF_Emphasis	=	2

End	Enum

Elements

SVF_None
Indicates	that	a	viseme	or	phoneme	has	no	stress	or
emphasis.

SVF_Stressed
Indicates	that	a	viseme	or	phoneme	is	stressed	relative	to
the	other	phonemes	within	a	word.

SVF_Emphasis
Indicates	that	the	word	containing	the	viseme	or	phoneme	is
emphasized	relative	to	the	other	words	within	a	sentence.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpeechVisemeType	Enum
The	SpeechVisemeType	enumeration	lists	the	visemes
supported	by	the	SpVoice	object.	This	list	is	based	on	the
original	Disney	visemes.

Definition
Enum	SpeechVisemeType

				SVP_0	=	0							'silence

				SVP_1	=	1							'ae	ax	ah

				SVP_2	=	2							'aa

				SVP_3	=	3							'ao

				SVP_4	=	4							'ey	eh	uh

				SVP_5	=	5							'er

				SVP_6	=	6							'y	iy	ih	ix

				SVP_7	=	7							'w	uw

				SVP_8	=	8							'ow

				SVP_9	=	9							'aw

				SVP_10	=	10					'oy

				SVP_11	=	11					'ay

				SVP_12	=	12					'h

				SVP_13	=	13					'r

				SVP_14	=	14					'l

				SVP_15	=	15					's	z

				SVP_16	=	16					'sh	ch	jh	zh

				SVP_17	=	17					'th	dh

				SVP_18	=	18					'f	v

				SVP_19	=	19					'd	t	n

				SVP_20	=	20					'k	g	ng

				SVP_21	=	21					'p	b	m

End	Enum

Elements

SVP_0
The	viseme	representing	silence.

SVP_1
The	viseme	representing	ae,	ax,	and	ah.

SVP_2
The	viseme	representing	aa.

SVP_3
The	viseme	representing	ao.

SVP_4
The	viseme	representing	ey,	eh,	and	uh.

SVP_5
The	viseme	representing	er.

SVP_6
The	viseme	representing	y,	iy,	ih,	and	ix.

SVP_7
The	viseme	representing	w	and	uw.

SVP_8
The	viseme	representing	ow.

SVP_9
The	viseme	representing	aw.

SVP_10
The	viseme	representing	oy.

SVP_11
The	viseme	representing	ay.

SVP_12
The	viseme	representing	h.

SVP_13
The	viseme	representing	r.

SVP_14
The	viseme	representing	l.

SVP_15
The	viseme	representing	s	and	z.

SVP_16
The	viseme	representing	sh,	ch,	jh,	and	zh.

SVP_17
The	viseme	representing	th	and	dh.

SVP_18
The	viseme	representing	f	and	v.

SVP_19
The	viseme	representing	d,	t	and	n.

SVP_20
The	viseme	representing	k,	g	and	ng.

SVP_21
The	viseme	representing	p,	b	and	m.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpeechVoiceEvents	Enum
The	SpeechVoiceEvents	enumeration	lists	the	types	of	events
which	a	text-to-speech	(TTS)	engine	can	send	to	an	SpVoice
object.

Definition
Enum	SpeechVoiceEvents

				SVEStartInputStream	=	2

				SVEEndInputStream	=	4

				SVEVoiceChange	=	8

				SVEBookmark	=	16

				SVEWordBoundary	=	32

				SVEPhoneme	=	64

				SVESentenceBoundary	=	128

				SVEViseme	=	256

				SVEAudioLevel	=	512

				SVEPrivate	=	32768

				SVEAllEvents	=	33790

End	Enum

Elements

SVEStartInputStream
Represents	the	StartStream	event,	which	occurs	when	the
engine	begins	speaking	a	stream.

SVEEndInputStream
Represents	the	EndStream	event,	which	occurs	when	the
engine	encounters	the	end	of	a	stream	while	speaking.

SVEVoiceChange
Represents	the	VoiceChange	event,	which	occurs	when	the

engine	encounters	a	change	of	Voice	while	speaking.

SVEBookmark
Represents	the	Bookmark	event,	which	occurs	when	the
engine	encounters	a	bookmark	while	speaking.

SVEWordBoundary
Represents	the	WordBoundary	event,	which	occurs	when	the
engine	completes	a	word	while	speaking.

SVEPhoneme
Represents	the	Phoneme	event,	which	occurs	when	the
engine	completes	a	phoneme	while	speaking.

SVESentenceBoundary
Represents	the	SentenceBoundary	event,	which	occurs	when
the	engine	completes	a	sentence	while	speaking.

SVEViseme
Represents	the	Viseme	event,	which	occurs	when	the	engine
completes	a	viseme	while	speaking.

SVEAudioLevel
Represents	the	AudioLevel	event,	which	occurs	when	the
engine	has	completed	an	audio	level	change	while	speaking.

SVEPrivate
Represents	a	private	engine	event.

SVEAllEvents
Represents	all	speech	voice	events.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpeechVoicePriority	Enum
The	SpeechVoicePriority	enumeration	lists	the	possible
Priority	settings	of	an	SpVoice	object.
The	priority	level	defines	the	order	in	which	the	text-to-speech
(TTS)	engine	processes	a	voice	object's	speech	requests	relative
to	requests	from	other	voice	objects.	Higher	priority	levels	are
assigned	to	error-handling	voices	and	the	lowest	priority	level	is
assigned	to	normal	voices.
The	default	Priority	setting	of	a	voice	is	SVPNormal.

Definition
Enum	SpeechVoicePriority

				SVPNormal	=	0

				SVPAlert	=	1

				SVPOver	=	2

End	Enum

Elements

SVPNormal
The	priority	of	a	normal	voice.	Text	streams	spoken	by	a
normal	voice	are	added	to	the	end	of	the	voice	queue.	A
voice	with	SVPNormal	priority	cannot	interrupt	another	voice.

SVPAlert
The	priority	of	an	alert	voice.	Text	streams	spoken	by	an	alert
voice	are	inserted	into	the	voice	queue	ahead	of	normal
voice	streams.	An	alert	voice	will	interrupt	a	normal	voice,
which	will	resume	speaking	when	the	alert	voice	has	finished
speaking.

SVPOver
The	priority	of	an	over	voice.	Text	streams	spoken	by	an	over
voice	go	into	the	voice	queue	ahead	of	normal	and	alert
streams.	An	over	voice	will	not	interrupt,	but	speaks	over
(mixes	with)	the	voices	of	lower	priorities.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpeechVoiceSpeakFlags	Enum
The	SpeechVoiceSpeakFlags	enumeration	lists	flags	that
control	the	SpVoice.Speak	method.

Definition
Enum	SpeechVoiceSpeakFlags

				'SpVoice	flags

				SVSFDefault	=	0

				SVSFlagsAsync	=	1

				SVSFPurgeBeforeSpeak	=	2

				SVSFIsFilename	=	4	

				SVSFIsXML	=	8

				SVSFIsNotXML	=	16

				SVSFPersistXML	=	32

				'Normalizer	flags

				SVSFNLPSpeakPunc	=	64

				'Masks

				SVSFNLPMask	=	64

				SVSFVoiceMask	=	127

				SVSFUnusedFlags	=	-128			

End	Enum

Elements

SVSFDefault
Specifies	that	the	default	settings	should	be	used.	The
defaults	are:
To	speak	the	given	text	string	synchronously	(override	with

SVSFlagsAsync),
Not	to	purge	pending	speak	requests	(override	with

SVSFPurgeBeforeSpeak),

To	parse	the	text	as	XML	only	if	the	first	character	is	a	left-
angle-bracket	(override	with	SVSFIsXML	or	SVSFIsNotXML),
Not	to	persist	global	XML	state	changes	across	speak	calls

(override	with	SVSFPersistXML),	and

Not	to	expand	punctuation	characters	into	words	(override
with	SVSFNLPSpeakPunc).

SVSFlagsAsync
Specifies	that	the	Speak	call	should	be	asynchronous.	That	is,
it	will	return	immediately	after	the	speak	request	is	queued.

SVSFPurgeBeforeSpeak
Purges	all	pending	speak	requests	prior	to	this	speak	call.

SVSFIsFilename
The	string	passed	to	the	Speak	method	is	a	file	name	rather
than	text.	As	a	result,	the	string	itself	is	not	spoken	but	rather
the	file	the	path	that	points	to	is	spoken.

SVSFIsXML
The	input	text	will	be	parsed	for	XML	markup.

SVSFIsNotXML
The	input	text	will	not	be	parsed	for	XML	markup.

SVSFPersistXML
Global	state	changes	in	the	XML	markup	will	persist	across
speak	calls.

SVSFNLPSpeakPunc
Punctuation	characters	should	be	expanded	into	words	(e.g.

"This	is	it."	would	become	"This	is	it	period").

SVSFNLPMask
Flags	handled	by	SAPI	(as	opposed	to	the	text-to-speech
engine)	are	set	in	this	mask.

SVSFVoiceMask
This	mask	has	every	flag	bit	set.

SVSFUnusedFlags
This	mask	has	every	unused	bit	set.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpeechWordPronounceable	Enum
The	SpeechWordPronounceable	enumeration	lists	the
possible	return	values	from	the	IsPronounceable	method	of	the
ISpeechRecoGrammar	interface.

Definition
Enum	SpeechWordPronounceable

				SWPUnknownWordUnpronounceable	=	0

				SWPUnknownWordPronounceable	=	1

				SWPKnownWordPronounceable	=	2

End	Enum

Elements

SWPUnknownWordUnpronounceable
The	word	is	not	pronounceable	by	the	SR	engine,	and	is	not
located	in	the	lexicon	and/or	the	engine's	dictionary.

SWPUnknownWordPronounceable
The	word	is	pronounceable	by	the	SR	engine,	but	is	not
located	in	the	lexicon	and/or	the	engine's	dictionary.

SWPKnownWordPronounceable
The	word	is	pronounceable	by	the	SR	engine,	and	is	located
in	the	lexicon	and/or	the	engine's	dictionary.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpeechWordType	Enum
The	SpeechWordType	enumeration	lists	the	change	state	of	a
word/pronunciation	combination	in	a	lexicon.
The	ISpeechLexiconWord.Type	property	returns	a
SpeechWordType	value.

Definition
Enum	SpeechWordType

				SWTAdded	=	1

				SWTDeleted	=	2

End	Enum

Elements

SWTAdded
Indicates	that	the	word	has	been	added	to	the	lexicon.

SWTDeleted
Indicates	that	the	word	has	been	deleted	from	the	lexicon.

Microsoft	Speech	SDK	Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpeechAudio
The	ISpeechAudio	automation	interface	supports	the	control	of
real-time	audio	streams,	such	as	those	connected	to	a	live
microphone	or	telephone	line.
The	Format	property	and	the	Read,	Write	and	Seek	methods	are
inherited	from	the	ISpeechBaseStream	interface.

Automation	Interface	Elements
The	ISpeechAudio	automation	interface	contains	the	following
elements:

Properties Description
BufferInfo	Property Returns	the	audio	buffer	information

as	an	ISpeechAudioBufferInfo	object.
BufferNotifySize
Property

Returns	the	audio	stream	buffer	size
information.

DefaultFormat	Property Returns	the	default	audio	format	as
an	SpAudioFormat	object.

EventHandle	Property Returns	a	Win32	event	handle	that
applications	can	use	to	wait	for
status	changes	in	the	I/O	stream.

Format	Property Gets	and	sets	the	cached	wave
format	of	the	audio	stream	or	device.

Status	Property Returns	the	audio	status	as	an
ISpeechAudioStatus	object.

Volume	Property Gets	and	sets	the	volume	level.

Methods Description
Read	Method Reads	data	from	an	audio	stream.
Seek	Method Returns	the	current	read	position	of

the	audio	stream	in	bytes.
SetState	Method Sets	the	audio	state	with	a

SpeechAudioState	constant.
Write	Method Writes	data	to	the	audio	stream.

Microsoft	Speech	SDK	Speech	Automation	5.1
Interface:	ISpeechAudio

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

BufferInfo	Property

The	BufferInfo	property	returns	the	audio	buffer	information	as
an	ISpeechAudioBufferInfo	object.

Syntax

Set: (This	property	is	read-only)
Get: ISpeechAudioBufferInfo	=	ISpeechAudio.BufferInfo

Parts

ISpeechAudio
The	owning	object.

ISpeechAudioBufferInfo
Set:	(This	property	is	read-only)
Get:	An	ISpeechAudioBufferInfo	object	which	gets	the	buffer
data.

Microsoft	Speech	SDK	Speech	Automation	5.1
Interface:	ISpeechAudio

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

BufferNotifySize	Property

The	BufferNotifySize	property	gets	and	sets	the	audio	stream
buffer	size	information.
This	information	is	used	to	determine	when	the	event	returned
by	the	EventHandle	method	is	set	or	reset.

Syntax

Set: ISpeechAudio.BufferNotifySize	=	Long
Get: Long	=	ISpeechAudio.BufferNotifySize

Parts

ISpeechAudio
The	owning	object.

Long
Set:	A	Long	variable	that	sets	the	property.
Get:	A	Long	variable	that	gets	the	property.

Remarks
For	read	streams,	the	event	is	set	if	the	audio	buffered	is	greater
than	or	equal	to	the	value	set	in	pcbSize,	otherwise	the	event
information	is	reset.
For	write	streams,	the	event	is	set	if	the	audio	buffered	is	less
than	the	value	set	in	pcbSize,	otherwise	the	event	information	is
reset.

Microsoft	Speech	SDK	Speech	Automation	5.1
Interface:	ISpeechAudio

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

DefaultFormat	Property

The	DefaultFormat	property	returns	the	default	audio	format
as	an	SpAudioFormat	object.

Syntax

Set: (This	property	is	read-only)
Get: SpAudioFormat	=	ISpeechAudio.DefaultFormat

Parts

ISpeechAudio
The	owning	object.

SpAudioFormat
Set:	(This	property	is	read-only)
Get:	A	SpAudioFormat	that	gets	the	audio	format.

Microsoft	Speech	SDK	Speech	Automation	5.1
Interface:	ISpeechAudio

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

EventHandle	Property

The	EventHandle	property	returns	a	Win32	event	handle	that
applications	can	use	to	wait	for	status	changes	in	the	I/O
stream.

Syntax

Set: (This	property	is	read-only)
Get: Long	=	ISpeechAudio.EventHandle

Parts

ISpeechAudio
The	owning	object.

Long
Set:	(This	property	is	read-only)
Get:	A	Long	variable	returning	the	handle.

Remarks
The	handle	may	use	one	of	the	various	Win32	wait	functions,
such	as	WaitForSingleObject	or	WaitForMultipleObjects.
For	read	streams,	set	the	event	when	there	is	data	available	to
read	and	reset	it	whenever	there	is	no	available	data.	For	write
streams,	set	the	event	when	all	of	the	data	has	been	written	to
the	device,	and	reset	it	at	any	time	when	there	is	still	data
available	to	be	played.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechBaseStream

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Format	Property

The	Format	property	gets	and	sets	the	cached	wave	format	of
the	stream	as	an	SpAudioFormat	object.

Syntax

Set: ISpeechBaseStream.Format	=	SpAudioFormat
Get: SpAudioFormat	=	ISpeechBaseStream.Format

Parts

ISpeechBaseStream
The	owning	object.

SpAudioFormat
Set:	An	SpAudioFormat	object	that	sets	the	wave	format.
Get:	An	SpAudioFormat	object	that	gets	the	wave	format.

Example
For	an	example	of	the	use	of	the	Format	property,	see	the	code
example	in	the	SpAudioFormat	GetWaveFormatEx	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechBaseStream

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Read	Method

The	Read	method	reads	data	from	a	stream	object.
The	Read	method	reads	text	or	audio	data	from	the	stream	into
a	Variant	variable.	Data	is	read	from	the	Seek	pointer	of	the
stream	until	the	specified	number	of	bytes	has	been	copied,	or
the	end	of	the	stream	has	been	reached.	When	the	method	has
completed,	it	returns	the	actual	number	of	bytes	read	and
resets	the	Seek	pointer	one	byte	past	the	last	byte	read.

ISpeechBaseStream.Read(

					Buffer	As	Variant,

					NumberOfBytes	As	Long

)	As	Long

Parameters

Buffer
Specifies	a	Variant	variable	to	receive	the	data.

NumberOfBytes
Specifies	the	number	of	bytes	of	data	to	attempt	to	read
from	the	audio	stream.

Return	Value
A	Long	variable	containing	the	actual	number	of	bytes	read	from
the	stream	object.

Example
Use	of	the	Read	method	is	demonstrated	in	a	code	example	at
the	end	of	the	ISpeechBaseStream	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	ISpeechBaseStream

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Seek	Method

The	Seek	method	returns	the	current	read	position	of	the
stream	in	bytes.
The	Seek	method	may	also	move	the	Seek	pointer	forward	or
backward	in	the	stream.	The	parameter	Position,	specifies	a
number	of	bytes	to	move	the	Seek	pointer	forward	in	the
stream;	negative	values	specify	moving	the	Seek	pointer
backward.	The	parameter	Origin,	specifies	the	point	from	which
the	forward	or	backward	movement	will	begin.	When	the
method	has	completed,	it	returns	a	Variant	variable	containing
the	new	Seek	pointer.

ISpeechBaseStream.Seek(

					Position	As	Variant,

					[Origin	As	SpeechStreamSeekPositionType	=	SSSPTRelativeToStart]

)	As	Variant

Parameters

Position
Specifies	the	number	of	bytes	to	move	the	Seek	pointer
forward	in	the	stream.	Negative	values	move	the	pointer
backward.

Origin
[Optional]	Specifies	the	Origin.	Default	value	is
SSSPTRelativeToStart.

Return	Value

A	Variant	variable	containing	the	new	Seek	pointer.

Remarks
The	following	are	examples.	This	statement	sets	the	Seek
pointer	23,456	bytes	past	the	start	of	the	stream	and	returns	a
Variant	containing	the	new	Seek	pointer:
	 varCurPos	=	S.Seek(23456,	SSSPTRelativeToStart)

This	statement	moves	the	Seek	pointer	forward	23,456	bytes
and	returns	a	Variant	containing	the	new	Seek	pointer:
	 varCurPos	=	S.Seek(23456,	SSSPTRelativeToCurrentPosition)

This	statement	sets	the	Seek	pointer	to	the	end	of	the	stream
and	returns	a	Variant	containing	the	new	Seek	pointer,	which	in
this	case	is	equal	to	the	size	of	the	stream:
	 varCurPos	=	S.Seek(0,	SSSPTRelativeToEnd)

Example
Use	of	the	Seek	method	is	demonstrated	in	a	code	example	at
the	end	of	the	ISpeechBaseStream	section.

Microsoft	Speech	SDK	Speech	Automation	5.1
Interface:	ISpeechAudio	
Type:	Hidden

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SetState	Method

The	SetState	method	sets	the	audio	state	with	a
SpeechAudioState	constant.
ISpeechAudio.SetState(

					State	As	SpeechAudioState

)

Parameters

State
Specifies	a	member	of	the	SpeechAudioState	enumeration.

Return	Value
None.

Microsoft	Speech	SDK	Speech	Automation	5.1
Interface:	ISpeechAudio

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Status	Property

The	Status	property	returns	the	audio	status	as	an
ISpeechAudioStatus	object.

Syntax

Set: (This	property	is	read-only)
Get: ISpeechAudioStatus	=	ISpeechAudio.Status

Parts

ISpeechAudio
The	owning	object.

ISpeechAudioStatus
Set:	(This	property	is	read-only)
Get:	An	ISpeechAudioStatus	variable	that	gets	the	audio
status.

Microsoft	Speech	SDK	Speech	Automation	5.1
Interface:	ISpeechAudio

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Volume	Property

The	Volume	property	gets	and	sets	the	volume	(loudness)
level.
The	volume	level	is	on	a	linear	scale	from	zero	to	10,000.

Syntax

Set: ISpeechAudio.Volume	=	Long
Get: Long	=	ISpeechAudio.Volume

Parts

ISpeechAudio
The	owning	object.

Long
Set:	A	Long	variable	that	sets	the	property.
Get:	A	Long	variable	that	gets	the	property.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechBaseStream

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Write	Method

The	Write	method	writes	data	to	a	stream	object.
The	Write	method	writes	text	or	audio	data	from	a	Variant
variable	into	the	stream,	starting	at	the	Seek	pointer	and	writing
until	all	data	has	been	copied.	When	the	method	has	completed,
it	returns	the	number	of	bytes	written,	and	resets	the	Seek
pointer	one	byte	past	the	last	byte	written.

ISpeechBaseStream.Write(

					Buffer	As	Variant

)	As	Long

Parameters

Buffer
A	Variant	variable	containing	the	data	to	be	written.

Return	Value
A	Long	variable	indicating	the	number	of	bytes	written.

Example
Use	of	the	Write	method	is	demonstrated	in	a	code	example	at
the	end	of	the	ISpeechBaseStream	section.

Microsoft	Speech	SDK	Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpeechAudioBufferInfo
The	ISpeechAudioBufferInfo	automation	interface	defines	the
audio	stream	buffer	information.

Automation	Interface	Elements
The	ISpeechAudioBufferInfo	automation	interface	contains	the
following	elements:

Properties Description
BufferSize	Property Gets	and	sets	the	size	of	the	audio

object’s	buffer,	in	milliseconds.
EventBias	Property Gets	and	sets	the	amount	of	time,	in

milliseconds,	by	which	event
notifications	precede	the	actual
occurrence	of	the	events.

MinNotification
Property

Gets	and	sets	the	minimum
preferred	time,	in	milliseconds,
between	the	actual	time	an	event
notification	occurs	and	the	ideal
time.

Microsoft	Speech	SDK	Speech	Automation	5.1
Object:	ISpeechAudioBufferInfo

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

BufferSize	Property

The	BufferSize	property	gets	and	sets	the	size	of	the	audio
object’s	buffer,	in	milliseconds.
For	readable	audio	objects,	this	is	simply	a	preferred	size
because	readable	objects	will	automatically	expand	their	buffers
to	accommodate	data.	For	writable	audio	objects,	this	is	the
amount	of	audio	data	that	will	be	buffered	before	a	call	to	Write
will	block.
This	value	must	be	greater	than	or	equal	to	200	milliseconds.	A
reasonable	default	is	500ms.

Syntax

Set: ISpeechAudioBufferInfo.BufferSize	=	Long
Get: Long	=	ISpeechAudioBufferInfo.BufferSize

Parts

ISpeechAudioBufferInfo
The	owning	object.

Long
Set:	A	Long	variable	that	sets	the	buffer	size.
Get:	A	Long	variable	that	gets	the	buffer	size.

Microsoft	Speech	SDK	Speech	Automation	5.1
Object:	ISpeechAudioBufferInfo

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

EventBias	Property

The	EventBias	property	gets	and	sets	the	amount	of	time,	in
milliseconds,	by	which	event	notifications	precede	the	actual
occurrence	of	the	events.
For	example,	setting	a	value	of	100	for	the	event	bias	would
cause	all	events	to	be	notified	100	milliseconds	prior	to	the
audio	data	being	played.	This	can	be	useful	for	applications
needing	time	to	animate	mouths	for	TTS	voices.

Syntax

Set: ISpeechAudioBufferInfo.EventBias	=	Long
Get: Long	=	ISpeechAudioBufferInfo.EventBias

Parts

ISpeechAudioBufferInfo
The	owning	object.

Long
Set:	A	Long	variable	that	sets	the	property.
Get:	A	Long	variable	that	gets	the	property.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechAudioBufferInfo

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

MinNotification	Property

The	MinNotification	property	gets	and	sets	the	minimum
preferred	time,	in	milliseconds,	between	the	actual	time	an
event	notification	occurs	and	the	ideal	time.
More	CPU	resources	are	needed	when	the	amount	of	time	is
shorter;	however,	the	event	notifications	are	more	timely.	This
value	must	be	greater	than	zero	and	no	more	than	one	quarter
the	size	of	the	Buffersize	property.

Syntax

Set: ISpeechAudioBufferInfo.MinNotification	=	Long
Get: Long	=	ISpeechAudioBufferInfo.MinNotification

Parts

ISpeechAudioBufferInfo
The	owning	object.

Long
Set:	A	Long	variable	that	sets	the	property.
Get:	A	Long	variable	that	gets	the	property.

Microsoft	Speech	SDK	Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpeechAudioStatus
The	ISpeechAudioStatus	automation	interface	provides
control	over	the	operation	of	real-time	audio	streams.
It	is	intended	for	use	when	the	audio	input	or	output	source	is
not	a	standard	Windows	multimedia	device.	An	audio	stream
connected	to	a	microphone	or	a	telephone	line	would	be	a
typical	use.

Automation	Interface	Elements
The	ISpeechAudioStatus	automation	interface	contains	the
following	elements:

Properties Description
CurrentDevicePosition
Property

Returns	the	current	read	or	write
position	of	the	stream	or	device	in
bytes.

CurrentSeekPosition
Property

Returns	the	current	seek	position	in
the	stream	or	device	in	bytes.

FreeBufferSpace
Property

Returns	the	size	of	the	free	space	in
the	stream	or	device	in	bytes.

NonBlockingIO	Property Returns	the	amount	of	data	which
can	be	read	from	or	written	to	the
stream	or	device	without	blocking.

State	Property Returns	the	state	of	the	audio
stream	or	device.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechAudioStatus

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CurrentDevicePosition	Property

The	CurrentDevicePosition	property	returns	the	current	read
or	write	position	of	the	stream	or	device	in	bytes.
This	is	the	position	in	the	stream	where	the	device	is	currently
reading	or	writing.	For	readable	streams,	this	value	will	always
be	greater	than	or	equal	to	the	CurrentSeekPosition	property.
For	writable	streams,	this	value	will	always	be	less	than	or	equal
to	the	CurrentSeekPosition	property.

Syntax

Set: (This	property	is	read-only)
Get: Variant	=	ISpeechAudioStatus.CurrentDevicePosition

Parts

ISpeechAudioStatus
The	owning	object.

Variant
Set:	(This	property	is	read-only)
Get:	A	Variant	variable	returning	the	position.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechAudioStatus

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CurrentSeekPosition	Property

The	CurrentSeekPosition	property	returns	the	current	seek
position	in	the	audio	stream	or	device	in	bytes.
This	is	the	position	in	the	stream	where	the	next	read	or	write
will	be	performed.

Syntax

Set: (This	property	is	read-only)
Get: Variant	=	ISpeechAudioStatus.CurrentSeekPosition

Parts

ISpeechAudioStatus
The	owning	object.

Variant
Set:	(This	property	is	read-only)
Get:	A	Variant	variable	returning	the	position.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechAudioStatus

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

FreeBufferSpace	Property

The	FreeBufferSpace	property	returns	the	size	of	the	free
space	in	the	stream	or	device	in	bytes.

Syntax

Set: (This	property	is	read-only)
Get: Long	=	ISpeechAudioStatus.FreeBufferSpace

Parts

ISpeechAudioStatus
The	owning	object.

Long
Set:	(This	property	is	read-only)
Get:	A	Long	variable	returning	the	size.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechAudioStatus

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

NonBlockingIO	Property

The	NonBlockingIO	property	returns	the	amount	of	data	which
can	be	read	from	or	written	to	the	stream	or	device	without
blocking.

Syntax

Set: (This	property	is	read-only)
Get: Long	=	ISpeechAudioStatus.NonBlockingIO

Parts

ISpeechAudioStatus
The	owning	object.

Long
Set:	(This	property	is	read-only)
Get:	A	Long	variable	returning	the	count	in	bytes.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechAudioStatus

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

State	Property

The	State	property	returns	the	state	of	the	audio	stream	or
device.

Syntax

Set: (This	property	is	read-only)
Get: SpeechAudioState	=	ISpeechAudioStatus.State

Parts

ISpeechAudioStatus
The	owning	object.

SpeechAudioState
Set:	(This	property	is	read-only)
Get:	A	SpeechAudioState	object	returning	the	state	of	the
stream	or	device.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpeechBaseStream
The	ISpeechBaseStream	automation	interface	defines
properties	and	methods	for	manipulating	data	streams.
ISpeechBaseStream	objects	normally	contain	audio	data,	but
may	also	be	used	for	text	data.
The	Read,	Write	and	Seek	methods	maintain	a	pointer	referred
to	as	the	Seek	pointer.	The	Read	and	Write	methods	begin
reading	or	writing	at	the	Seek	pointer,	and	reset	the	Seek
pointer	one	byte	past	the	last	byte	read	or	written.	The	Seek
method	returns	the	current	pointer,	and	can	also	move	the	Seek
pointer	forward	or	backward	in	the	stream,	starting	from	the
Seek	pointer,	or	relative	to	the	beginning	or	the	end	of	the
stream.
Use	of	the	Read,	Write	and	Seek	methods	are	demonstrated	in	a
code	example	at	the	end	of	the	ISpeechBaseStream	section.
The	ISpeechBaseStream	is	not	an	object	in	its	own	right,	but	is
implemented	by	other	objects,	such	as	SpFileStream	and
SpMemoryStream.	SAPI	does	not	call	ISpeechBaseStream
methods,	but	uses	the	underlying	COM	interfaces.	For	this
reason,	a	custom	object	cannot	be	created	using	the
ISpeechBaseStream	interface.

Automation	Interface	Elements
The	ISpeechBaseStream	automation	interface	contains	the
following	elements:

Properties Description
Format	Property Gets	and	sets	the	cached	wave

format	of	the	stream	as	an

SpAudioFormat	object.

Methods Description
Read	Method Reads	data	from	the	audio	stream.
Seek	Method Returns	the	current	read	position	of

the	audio	stream	in	bytes.
Write	Method Writes	data	to	the	audio	stream.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechBaseStream

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	ISpeechBaseStream	methods	Read,	Write	and	Seek.	These
ISpeechBaseStream	methods	are	inherited	by	SpCustomStream,
SpFileStream	and	SpMemoryStream.	This	example	uses
SpFileStream,	but	the	methods	work	the	same	in	all	three
objects.
To	run	this	code,	create	a	form	with	the	following	controls:
Two	command	buttons	called	Command1	and	Command2

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	a	voice	object	and	two
SpFileStream	objects.	The	Command1_Click	procedure	speaks
the	words	"one,"	"point,"	"five,"	and	"SAPI"	into	the	first	file
stream,	using	the	Seek	method	to	find	the	ending	byte	position
of	each	word.	It	then	reads	the	audio	data	for	each	word
separately,	and	writes	a	new	stream	with	the	order	of	the	words
reversed.	The	Command2_Click	procedure	plays	back	the	two
files	created	by	Command1.

Option	Explicit

Const	FILENAME1	=	"c:\First.wav"

Const	FILENAME2	=	"c:\Second.wav"

Dim	V	As	SpeechLib.SpVoice

Dim	S1	As	SpeechLib.SpFileStream

Dim	S2	As	SpeechLib.SpFileStream

Private	Sub	Command1_Click()

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

				

				Dim	varT(3)	As	Variant						'text	to	be	spoken

				Dim	varP(3)	As	Variant						'positions	in	output	stream

				Dim	varD(3)	As	Variant						'audio	data	chunks

				Dim	varStart	As	Variant

				Dim	ii	As	Integer

				varT(0)	=	"one":	varT(1)	=	"point":	varT(2)	=	"five":	varT(3)	=	"SAPI"

				

				'Create	WAV	file	of	"one	point	five	SAPI"

				'Speak	the	words	into	a	single	filestream	object,

				'and	remember	the	end-of-stream	position	of	each	word.

				

				S1.Open	FILENAME1,	SSFMCreateForWrite

				Set	V.AudioOutputStream	=	S1

				For	ii	=	0	To	UBound(varT)

								V.Speak	varT(ii)

								varP(ii)	=	S1.Seek(0,	SSSPTRelativeToCurrentPosition)

				Next	ii

				S1.Close

				

				'Read	the	words	from	the	first	file	into	the	variant	array;

				'Write	them	back	into	the	second	file	in	reverse	order.

				

				S1.Open	FILENAME1,	SSFMOpenForRead

				S2.Open	FILENAME2,	SSFMCreateForWrite

				

				varStart	=	0

				For	ii	=	0	To	UBound(varT)

								S1.Read	varD(ii),	varP(ii)	-	varStart

								varStart	=	varP(ii)

				Next	ii

				

				For	ii	=	UBound(varT)	To	0	Step	-1

								S2.Write	varD(ii)

				Next	ii

				

				S2.Close

				S1.Close

				

				'After	using	AudioOutputStream,	reset	voice	AudioOutput	property

				Set	V.AudioOutput	=	V.GetAudioOutputs("").Item(0)

				

				Command1.Enabled	=	False

				Command2.Enabled	=	True

				

End	Sub

Private	Sub	Command2_Click()

				S1.Open	FILENAME1,	SSFMOpenForRead

				S2.Open	FILENAME2,	SSFMOpenForRead

				'Use	first	male	voice	to	announce	the	results

				Set	V.Voice	=	V.GetVoices("gender=male").Item(0)

				

				V.Speak	"This	is	the	first	sound	file",	SVSFlagsAsync

				V.SpeakStream	S1,	SVSFlagsAsync

				

				V.Speak	"This	is	the	second	sound	file",	SVSFlagsAsync

				V.SpeakStream	S2,	SVSFlagsAsync

				

				Do

								DoEvents

				Loop	Until	V.WaitUntilDone(1)

				

				S1.Close

				S2.Close

End	Sub

Private	Sub	Form_Load()

				Set	V	=	New	SpeechLib.SpVoice

				Set	S1	=	New	SpFileStream							'Create	stream1

				Set	S2	=	New	SpFileStream							'Create	stream2

				Command2.Enabled	=	False

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpeechDataKey
The	ISpeechDataKey	automation	interface	provides	read	and
write	access	to	the	speech	configuration	database.
The	Speech	configuration	database	contains	folders	which
represent	the	resources	on	a	computer	which	are	used	by	SAPI
5.1	SR	and	TTS.	These	folders	are	organized	into	resource
categories,	such	as	voices,	lexicons,	and	audio	input	devices.
The	SpObjectTokenCategory	object	provides	access	to	a
category	of	resources,	and	the	SpObjectToken	object	provides
access	to	a	single	resource.
An	ISpeechDataKey	object	is	typically	created	by	the	DataKey
property	of	an	SpObjectToken	or	the	GetDataKey	method	of	an
SpObjectTokenCategory	object.	Such	an	ISpeechDataKey	object
provides	read	and	write	access	to	the	database	folder
represented	by	its	parent	token	or	token	category	object.
Further	ISpeechDataKey	objects	can	be	created	by	CreateKey
and	OpenKey	calls	on	existing	ISpeechDataKey	objects.
ISpeechDataKey	methods	can	create,	delete	and	enumerate
subfolders	and	values	in	the	database	folder	represented	by	an
ISpeechDataKey	object.

Automation	Interface	Elements
The	ISpeechDataKey	automation	interface	contains	the
following	elements:

Methods Description
CreateKey	Method Creates	the	specified	subkey	within

the	data	key.
DeleteKey	Method Deletes	the	specified	subkey	from

the	data	key.

DeleteValue	Method Deletes	the	specified	value	from	the
data	key.

EnumKeys	Method Returns	the	name	of	one	subkey	of
the	data	key,	specified	by	its	index.

EnumValues	Method Returns	the	name	of	one	value	of	the
data	key,	specified	by	its	index.

GetBinaryValue	Method Gets	the	specified	binary	value	from
the	data	key.

GetLongValue	Method Gets	the	specified	Long	value	from
the	data	key.

GetStringValue	Method Gets	the	specified	String	value	from
the	data	key.

OpenKey	Method Opens	the	specified	subkey	of	the
data	key	as	another	data	key	object.

SetBinaryValue	Method Sets	the	specified	binary	value	in	the
data	key.

SetLongValue	Method Sets	the	specified	Long	value	in	the
data	key.

SetStringValue	Method Sets	the	specified	String	value	in	the
data	key.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechDataKey

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CreateKey	Method

The	CreateKey	method	creates	the	specified	subkey	within	the
data	key.

ISpeechDataKey.CreateKey(

					SubKeyName	As	String

)	As	ISpeechDataKey

Parameters

SubKeyName
The	name	of	the	subkey.

Return	Value
An	ISpeechDataKey	object	representing	the	new	subkey.

For	an	example	of	the	use	of	the	CreateKey	method,	see	the
code	example	in	the	code	example	at	the	end	of	this	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechDataKey

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

DeleteKey	Method

The	DeleteKey	method	deletes	the	specified	subkey	from	the
data	key.

ISpeechDataKey.DeleteKey(

					SubKeyName	As	String

)

Parameters

SubKeyName
The	name	of	the	subkey.

Return	Value
None.

For	an	example	of	the	use	of	the	DeleteKey	method,	see	the
code	example	in	the	code	example	at	the	end	of	this	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechDataKey

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

DeleteValue	Method

The	DeleteValue	method	deletes	the	specified	value	from	the
data	key.

ISpeechDataKey.DeleteValue(

					ValueName	As	String

)

Parameters

ValueName
The	name	of	the	value.

Return	Value
None.

Example
For	an	example	of	the	use	of	the	DeleteValue	method,	see	the
code	example	in	the	EnumKeys	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechDataKey

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

EnumKeys	Method

The	EnumKeys	method	returns	the	name	of	one	subkey	of	the
data	key,	specified	by	its	index.
The	starting	index	is	zero.	A	count	of	subkeys	or	an	enumeration
of	subkey	names	can	be	performed	by	calling	this	method
repetitively,	starting	with	an	index	of	zero,	and	increasing	the
index	until	all	items	are	enumerated.	This	is	indicated	by	an
SPERR_NO_MORE_ITEMS	error.

ISpeechDataKey.EnumKeys(

					Index	As	Long

)	As	String

Parameters

Index
The	index	of	the	subkey	to	be	returned.

Return	Value
A	String	variable	containing	the	name	of	the	subkey.

Example
The	following	Visual	Basic	form	code	demonstrates	several
ISpeechDataKey	methods,	including	OpenKey,	EnumKeys,
SetStringValue,	and	DeleteValue.	It	also	demonstrates	the
creation	and	deletion	of	custom	object	token	attributes,	and	the
selection	of	tokens	by	these	custom	attributes.	A	custom

attribute	called	"SenseOfHumor"	is	created	for	each	voice	token.
This	attribute	name	is	intentionally	unrelated	to	any	actual
characteristics	of	a	voice	or	a	voice	token;	it	is	intended	to	be
obviously	meaningless	and	easily	distinguishable	from	installed
voice	attributes.	To	run	this	code,	create	a	form	with	the
following	controls:
A	list	box	called	List1
Two	command	buttons	called	Command1	and	Command2

Copy	the	code	below	and	paste	it	into	the	Declarations	section
of	the	form.
The	Form_Load	procedure	creates	an	SpObjectTokenCategory
object	and	sets	it	to	the	category	of	voices	in	the	speech
configuration	database.
The	Command1	procedure	sets	one	data	key	object	to	the
category	of	voices,	and	another	data	key	object	to	the	Tokens
subfolder.	It	then	enumerates	the	voice	tokens	contained	in
Tokens	and	writes	a	value	called	SenseOfHumor	in	the	Attributes
subfolder	of	each	voice	token.	The	values	written	are	"0"	and
"1"	alternately,	so	that	every	second	voice	has	a	non-zero
SenseOfHumor	attribute	value.	Finally,	the	procedure	calls	a
subroutine	which	uses	the	SenseOfHumor	attribute	in	a
GetVoices	call.
The	Command2	procedure	enumerates	the	voice	token
"Attributes"	subfolders	and	removes	all	"SenseOfHumor"
attributes.	It	then	calls	the	subroutine	which	uses
"SenseOfHumor"	attributes	in	a	GetVoices	call	after	these
attributes	have	been	removed.	
Option	Explicit

Dim	C	As	SpeechLib.SpObjectTokenCategory				'one	object	token	category

Dim	T	As	SpeechLib.SpObjectToken												'one	object	token

Dim	V	As	SpeechLib.SpVoice																		'Voice	used	for	enumeration

Dim	Kc	As	SpeechLib.ISpeechDataKey										'DataKey	of	the	category

Dim	Kf	As	SpeechLib.ISpeechDataKey										'DataKey	of	its	tokens	folder

Dim	Kt	As	SpeechLib.ISpeechDataKey										'DataKey	of	one	token

Const	SPERR_NO_MORE_ITEMS	=	&H80045039;

Private	Sub	Command1_Click()

				Dim	nn	As	Long

				Dim	strKey	As	String,	strValue	As	String

				Set	Kc	=	C.GetDataKey																			'Get	DataKey	of	voice	category

				Set	Kf	=	Kc.OpenKey("Tokens")											'Get	DataKey	of	its	"Tokens"	subfolder

				nn	=	0

				

				On	Error	Resume	Next

				Do

								strKey	=	Kf.EnumKeys(nn)

								If	Err.Number	=	SPERR_NO_MORE_ITEMS	Then	Exit	Do

								

								'Write	an	attribute	for	each	voice:

								'Attribute	"SenseOfHumor"	will	be	true	for	alternating	voices

								Set	Kt	=	Kf.OpenKey(strKey)									'Kt	=	the	DataKey	of	the	voice	token

								Set	Kt	=	Kt.OpenKey("Attributes")			'Kt	=	the	DataKey	of	voice\Attributes

								

								If	nn	Mod	2	Then	strValue	=	"1"	Else	strValue	=	"0"

								Call	Kt.SetStringValue("SenseOfHumor",	strValue)

								nn	=	nn	+	1

				Loop

				Err.Clear

				On	Error	GoTo	0

				

				Call	TestAttributes					'Select	voices	using	this	attribute

End	Sub

Private	Sub	Command2_Click()

				Dim	nn	As	Long

				Dim	strKey	As	String

				

				Set	Kc	=	C.GetDataKey																			'Get	DataKey	of	voice	category

				Set	Kf	=	Kc.OpenKey("Tokens")											'Get	DataKey	of	its	"Tokens"	subfolder

				

				On	Error	Resume	Next

				Do

								strKey	=	Kf.EnumKeys(nn)

								If	Err.Number	=	SPERR_NO_MORE_ITEMS	Then	Exit	Do

								Set	Kt	=	Kf.OpenKey(strKey)									'Kt	=	the	DataKey	of	the	voice	token

								Set	Kt	=	Kt.OpenKey("Attributes")			'Kt	=	the	DataKey	of	voice\Attributes

								Call	Kt.DeleteValue("SenseOfHumor")

								nn	=	nn	+	1

								

				Loop

				Err.Clear

				On	Error	GoTo	0

				

				Call	TestAttributes					'Select	voices	using	this	attribute

				

End	Sub

Private	Sub	Form_Load()

				'Create	new	token	object,	and	set	its	ID	to	voice	tokens

				

				Set	C	=	New	SpObjectTokenCategory

				C.SetId	SpeechCategoryVoices

				

				Set	V	=	New	SpVoice

End	Sub

Private	Sub	TestAttributes()

				List1.Clear

				List1.AddItem	"Voices	with	a	sense	of	humor"

				

				For	Each	T	In	V.GetVoices("senseofhumor=1")

								List1.AddItem	"			"	&	T.GetDescription

				Next

				

				List1.AddItem	""

				List1.AddItem	"Voices	with	no	sense	of	humor"

				

				'When	the	"SenseOfHumor"	attribute	is	not	present,

				'the	selection	"SenseOfHumor!=1"	shows	all	voices,

				'bau	the	selection	"SenseOfHumor=0"	would	show	no	voices.

				

				For	Each	T	In	V.GetVoices("senseofhumor!=1")

								List1.AddItem	"			"	&	T.GetDescription

				Next

				

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechDataKey

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

EnumValues	Method

The	EnumValues	method	returns	the	name	of	one	value	of	the
data	key,	specified	by	its	index.
The	starting	index	is	zero.	A	count	of	values	or	an	enumeration
of	value	names	can	be	performed	by	calling	this	method
repetitively,	starting	with	an	index	of	zero,	and	increasing	the
index	until	all	items	are	enumerated.

ISpeechDataKey.EnumValues(

					Index	As	Long

)	As	String

Parameters

Index
The	index	of	the	value	to	be	returned.

Return	Value
A	String	variable	containing	the	name	of	the	value.

For	an	example	of	the	use	of	the	EnumValues	method,	see	the
code	example	in	the	code	example	at	the	end	of	this	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechDataKey

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

GetBinaryValue	Method

The	GetBinaryValue	method	gets	the	specified	binary	value
from	the	data	key.

ISpeechDataKey.GetBinaryValue(

					ValueName	As	String

)	As	Variant

Parameters

ValueName
The	name	of	the	Value.

Return	Value
A	Variant	variable.

For	an	example	of	the	use	of	the	GetBinaryValue	method,	see
the	code	example	in	the	code	example	at	the	end	of	this
section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechDataKey

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

GetLongValue	Method

The	GetLongValue	method	gets	the	specified	Long	value	from
the	data	key.

ISpeechDataKey.GetLongValue(

					ValueName	As	String

)	As	Long

Parameters

ValueName
The	name	of	the	Value.

Return	Value
A	Long	variable.

For	an	example	of	the	use	of	the	GetLongValue	method,	see	the
code	example	in	the	code	example	at	the	end	of	this	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechDataKey

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

GetStringValue	Method

The	GetStringValue	method	gets	the	specified	String	value
from	the	data	key.

ISpeechDataKey.GetStringValue(

					ValueName	As	String

)	As	String

Parameters

ValueName
The	name	of	the	Value.

Return	Value
A	String	variable.

For	an	example	of	the	use	of	the	GetStringValue	method,	see
the	code	example	in	the	code	example	at	the	end	of	this
section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechDataKey

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

OpenKey	Method

The	OpenKey	method	opens	the	specified	subkey	of	the	data
key	as	another	data	key	object.

ISpeechDataKey.OpenKey(

					SubKeyName	As	String

)	As	ISpeechDataKey

Parameters

SubKeyName
Name	of	the	subkey.

Return	Value
An	ISpeechDataKey	variable	representing	the	subkey.

Example
For	an	example	of	the	use	of	the	OpenKey	method,	see	the	code
example	in	the	EnumKeys	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechDataKey

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SetBinaryValue	Method

The	SetBinaryValue	method	sets	the	specified	binary	value	in
the	data	key.

ISpeechDataKey.SetBinaryValue(

					ValueName	As	String,

					Value	As	Variant

)

Parameters

ValueName
The	name	of	the	value.

Value
The	binary	data	value.

Return	Value
None.

For	an	example	of	the	use	of	the	SetBinaryValue	method,	see
the	code	example	in	the	code	example	at	the	end	of	this
section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechDataKey

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SetLongValue	Method

The	SetLongValue	method	sets	the	specified	Long	value	in	the
data	key.

ISpeechDataKey.SetLongValue(

					ValueName	As	String,

					Value	As	Long

)

Parameters

ValueName
The	name	of	the	value.

Value
The	Long	data	value.

Return	Value
None.

For	an	example	of	the	use	of	the	SetLongValue	method,	see	the
code	example	in	the	code	example	at	the	end	of	this	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechDataKey

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SetStringValue	Method

The	SetStringValue	method	sets	the	specified	String	value	in
the	data	key.

ISpeechDataKey.SetStringValue(

					ValueName	As	String,

					Value	As	String

)

Parameters

ValueName
The	name	of	the	value.

Value
The	String	data	value.

Return	Value
None.

Example
For	an	example	of	the	use	of	the	SetStringValue	method,	see
the	code	example	in	the	EnumKeys	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechDataKey

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Code	Example

The	following	Visual	Basic	form	code	demonstrates	the	methods
of	the	ISpeechDataKey	interface.	To	run	this	code,	create	a	form
containing	the	following	controls:

Three	command	buttons,	called	Command1,	Command2,
and	Command3

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	a	voice	object	and	gets	its
object	token.
The	Command1	procedure	creates	a	data	key,	called	K1,	from
the	voice's	token.	This	key	provides	data	access	to	the	token's
folder	in	the	Speech	configuration	database.	The	procedure	then
uses	that	datakey's	CreateKey	method	to	create	a	subfolder
called	"ISpeechDataKey"	within	its	folder;	the	new	datakey	K2,
which	provides	access	to	the	new	subfolder,	is	returned	by	the
CreateKey	method.	Next,	the	procedure	uses	datakey	K2	to
create	a	subfolder	called	"Test1"	within	the	"ISpeechDataKey"
folder.	The	CreateKey	method	returns	datakey	K3,	which
accesses	the	folder.	The	procedure	then	creates	a	default	value,
a	string	value,	a	long	value	and	a	binary	value	within	the	"Test1"
folder.	Finally,	the	procedure	creates	a	subfolder	called	"Test2"
within	the	"ISpeechDataKey"	folder,	and	writes	the	same	four
values	into	it.
The	Command2	procedure	opens	the	"ISpeechDataKey"
subfolder,	and	enumerates	the	subfolders	"Test1"	and	"Test2"
and	enumerates	the	values	with	each	subfolder.
The	Command3	procedure	enumerates	and	deletes	the	values
within	the	"Test1"	and	"Test2"	subfolders,	deletes	these	folders,
and	finally	deletes	the	"ISpeechDataKey"	folder.

Option	Explicit

Dim	V	As	SpeechLib.SpVoice

Dim	T	As	SpeechLib.SpObjectToken

Dim	K1	As	SpeechLib.ISpeechDataKey

Dim	K2	As	SpeechLib.ISpeechDataKey

Dim	K3	As	SpeechLib.ISpeechDataKey

Const	SPERR_NO_MORE_ITEMS	=	&H80045039;

Private	Sub	Command1_Click()

				

				'Create	subkey	voice\ISpeechDataKey

				Set	K1	=	T.DataKey

				Set	K2	=	K1.CreateKey("ISpeechDataKey")

				

				'Create	subkey	voice\ISpeechDataKey\Test1

				Set	K3	=	K2.CreateKey("Test1")

				

				Call	K3.SetStringValue("",	"The	default	value")

				Call	K3.SetStringValue("Description",	"A	test	string	value")

				Call	K3.SetLongValue("Long_10K",	10000)

				Call	K3.SetBinaryValue("Binary_100K",	100000)

				

				'Create	subkey	voice\ISpeechDataKey\Test2

				Set	K3	=	K2.CreateKey("Test2")

				Call	K3.SetStringValue("",	"The	default	value")

				Call	K3.SetStringValue("Description",	"A	test	string	value")

				Call	K3.SetLongValue("Long_10K",	10000)

				Call	K3.SetBinaryValue("Binary_100K",	100000)

				

End	Sub

Private	Sub	Command2_Click()

				Dim	nn	As	Long,	mm	As	Long

				Dim	strKey	As	String

				

				Set	K1	=	T.DataKey

				Debug.Print	"Key	"	&	T.GetDescription

				

				Set	K2	=	K1.OpenKey("ISpeechDataKey")

				Debug.Print	"			Key	ISpeechDataKey"

				

				'Enumerate	keys	within	"ISpeechDataKey"

				nn	=	0

				On	Error	Resume	Next

				Do

								strKey	=	K2.EnumKeys(nn)

								If	Err.Number	=	SPERR_NO_MORE_ITEMS	Then	Exit	Do

								Debug.Print	"						Key	"""	&	strKey	&	""""

								nn	=	nn	+	1

								

								'Enumerate	values	within	each	subkey

								Set	K3	=	K2.OpenKey(strKey)

								Call	EnumerateValues(K3)

								

				Loop

				Err.Clear

				On	Error	GoTo	0

End	Sub

Private	Sub	Command3_Click()

				Dim	strKey	As	String,	strValue	As	String

				Set	K1	=	T.DataKey

				Set	K2	=	K1.OpenKey("ISpeechDataKey")

				

				'Enumerate	and	delete	keys	loop

				On	Error	Resume	Next

				Do

								strKey	=	K2.EnumKeys(0)

								If	Err.Number	=	SPERR_NO_MORE_ITEMS	Then	Exit	Do

								

								'Enumerate	and	delete	values	loop

								Set	K3	=	K2.OpenKey(strKey)

								Do

												strValue	=	K3.EnumValues(0)

												If	Err.Number	=	0	Then

																Call	K3.DeleteValue(strValue)

												End	If

								Loop	Until	Err.Number	=	SPERR_NO_MORE_ITEMS

								Err.Clear

								

								Call	K2.DeleteKey(strKey)

				Loop

				

				Call	K1.DeleteKey("ISpeechDataKey")

				

End	Sub

Private	Sub	Form_Load()

				'T	is	object	token	for	first	available	voice

				Set	V	=	New	SpVoice

				Set	T	=	V.GetVoices().Item(0)

				

End	Sub

Private	Sub	EnumerateValues(DK	As	ISpeechDataKey)

				Dim	nn	As	Long,	strValue	As	String

				Dim	varVariant	As	Variant

				Dim	lngLong	As	Long

				Dim	strString	As	String

				

				nn	=	0

				On	Error	Resume	Next

				Do

								strValue	=	DK.EnumValues(nn)

								If	Err.Number	=	SPERR_NO_MORE_ITEMS	Then	Exit	Do

								

								If	Left(strValue,	6)	=	"Binary"	Then

												'Binary

												varVariant	=	DK.GetBinaryValue(strValue)

												strString	=	Format(varVariant)

								ElseIf	Left(strValue,	4)	=	"Long"	Then

												'Long

												lngLong	=	DK.GetLongValue(strValue)

												strString	=	Format(lngLong)

								Else

												'String

												strString	=	DK.GetStringValue(strValue)

								End	If

								

								Debug.Print	"									Val	"""	&	strValue	&	"""	=	"""	&	strString	&	""""

								nn	=	nn	+	1

								

				Loop

				Err.Clear

				

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpeechGrammarRule
The	ISpeechGrammarRule	automation	interface	defines	the
properties	and	methods	of	a	speech	grammar	rule.

Automation	Interface	Elements
The	ISpeechGrammarRule	automation	interface	contains	the
following	elements:

Properties Description
Attributes	Property Returns	information	about	the

attributes	of	a	speech	grammar	rule.
Id	Property Specifies	the	ID	of	the	speech

grammar	rule.
InitialState	Property Specifies	the	initial	state	of	the

speech	grammar	rule.
Name	Property Specifies	the	name	of	the	speech

grammar	rule.

Methods Description
AddResource	Method Adds	a	string	to	a	speech	rule.
AddState	Method Adds	a	state	to	a	speech	rule.
Clear	Method Clears	a	rule,	leaving	only	its	initial

state.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechGrammarRule

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

AddResource	Method
The	AddResource	method	adds	one	or	more	string	name/value
pair	associated	with	a	rule.
This	method	is	used	with	an	interpreter	rule,	in	which	case	the
interpreter	can	call	the	C/C++	function
ISpCFGInterpreterSite::GetResourceValue	to	get	the	value	of	a
specified	resource	name.

ISpeechGrammarRule.AddResource(

					ResourceName	As	String,

					ResourceValue	As	String

)

Parameters

ResourceName
Specifies	the	ResourceName.

ResourceValue
Specifies	the	ResourceValue.

Return	Value
None.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechGrammarRule

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

AddState	Method
The	AddState	method	adds	a	state	to	a	speech	rule.
This	method	can	be	used	with	the	ISpeechGrammarRuleState
methods	AddRuleTransition,	AddSpecialTransition,	or
AddWordTransition	to	modify	speech	rules	programmatically.

ISpeechGrammarRule.AddState()	As	ISpeechGrammarRuleState

Parameters

None.

Return	Value
An	ISpeechGrammarRuleState	object.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechGrammarRule

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Attributes	Property
The	Attributes	property	returns	information	about	the
attributes	of	each	grammar	rule.
This	property	consists	of	one	or	more	members	of	the
SpeechRuleAttributes	enumeration.

Syntax

Set: (This	property	is	read-only)
Get: SpeechRuleAttributes	=	ISpeechGrammarRule.Attributes

Parts

ISpeechGrammarRule
The	owning	object.

SpeechRuleAttributes
Set:	(This	property	is	read-only)
Get:	One	or	more	SpeechRuleAttributes	flags	representing
the	attributes	of	the	rule.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechGrammarRule

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Clear	Method
The	Clear	method	clears	a	rule,	leaving	only	its	initial	state.

ISpeechGrammarRule.Clear()

Parameters

None.

Return	Value
None.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechGrammarRule

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Id	Property
The	Id	property	specifies	the	ID	of	the	speech	grammar	rule.

Syntax

Set: (This	property	is	read-only)
Get: Long	=	ISpeechGrammarRule.Id

Parts

ISpeechGrammarRule
The	owning	object.

Long
Set:	(This	property	is	read-only)
Get:	A	Long	variable	that	gets	the	ID	of	the	rule.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechGrammarRule

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

InitialState	Property
The	InitialState	property	specifies	the	initial	state	of	the
speech	grammar	rule.

Syntax

Set: (This	property	is	read-only)
Get: ISpeechGrammarRuleState	=

ISpeechGrammarRule.InitialState

Parts

ISpeechGrammarRule
The	owning	object.

ISpeechGrammarRuleState
Set:	(This	property	is	read-only)
Get:	An	ISpeechGrammarRuleState	variable	that	gets	the
initial	rule	state.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechGrammarRule

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Name	Property
The	Name	property	specifies	the	name	of	the	speech	grammar
rule.

Syntax

Set: (This	property	is	read-only)
Get: String	=	ISpeechGrammarRule.Name

Parts

ISpeechGrammarRule
The	owning	object.

String
Set:	(This	property	is	read-only)
Get:	A	String	variable	that	gets	the	name	of	the	rule.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpeechGrammarRules
The	ISpeechGrammarRules	automation	interface	represents	a
collection	of	ISpeechGrammarRule	objects.

Automation	Interface	Elements
The	ISpeechGrammarRules	automation	interface	contains	the
following	elements:

Properties Description
Count	Property Returns	the	count	of	objects	in	the

collection.
Dynamic	Property Determines	whether	the	grammar

rules	contained	in	the	collection
were	created	as	dynamic.

Methods Description
Add	Method Creates	a	new	grammar	rule	in	an

ISpeechGrammarRules	collection.
Commit	Method Compiles	the	rules	in	the	rule

collection.
CommitAndSave
Method

Compiles	the	rules	in	the	rule
collection	and	saves	the	result.

FindRule	Method Returns	a	grammar	rule,	specified	by
Name	or	by	ID.

Item	Method Returns	a	member	of	the	collection
specified	by	its	index.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechGrammarRules

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Add	Method

The	Add	method	creates	a	new	ISpeechGrammarRule	object	in
an	ISpeechGrammarRules	collection.
RuleName,	or	RuleId,	or	both	must	be	specified	to	identify	the
rule.	If	RuleName	is	specified	(not	an	empty	string	such	as	""),	it
must	be	unique	within	the	grammar.	If	RuleId	is	specified	(a
value	other	than	zero),	it	must	be	unique	within	the	grammar.

ISpeechGrammarRules.Add(

					RuleName	As	String,

					Attributes	As	SpeechRuleAttributes,

					[RuleId	As	Long	=	0]

)	As	ISpeechGrammarRule

Parameters

RuleName
Specifies	the	RuleName	of	the	new	rule.

Attributes
Specifies	the	Attributes	of	the	new	rule.

RuleId
Specifies	the	RuleId	of	the	new	rule.	Default	value	is	zero.

Return	Value
The	Add	method	returns	the	newly-created
ISpeechGrammarRule	object.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechGrammarRules

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Commit	Method

The	Commit	method	compiles	the	rules	in	the	rule	collection.
ISpeechGrammarRules.Commit()

Parameters

None.

Return	Value
None.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechGrammarRules

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CommitAndSave	Method

The	CommitAndSave	method	compiles	the	rules	in	the	rule
collection	and	saves	the	result.
ISpeechGrammarRules.CommitAndSave(

					ErrorText	As	String

)	As	Variant

Parameters

ErrorText
The	text	of	any	errors	that	may	result	from	compiling	and
saving	the	grammar	upon	calling	the	method.

Return	Value
The	CommitAndSave	method	returns	a	Variant	variable.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechGrammarRules

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Count	Property

The	Count	property	returns	the	number	of
ISpeechGrammarRule	objects	in	the	ISpeechGrammarRules
object.

Syntax

Set: (This	property	is	read-only)
Get: Long	=	ISpeechGrammarRules.Count

Parts

ISpeechGrammarRules
The	owning	object.

Long
Set:	(This	property	is	read-only)
Get:	A	Long	variable	that	gets	the	count.

Remarks
The	ISpeechGrammarRules	object	is	a	collection	of
ISpeechGrammarRule	objects.	As	a	collection,	it	provides	access
to	any	or	all	of	its	members	through	certain	methods	and
properties	common	to	all	collection	objects.	The	Count	property
is	one	of	these	common	properties.

Example
See	the	SpObjectToken	Example	for	a	complete	example	and
additional	details.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechGrammarRules

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Dynamic	Property

The	Dynamic	property	determines	whether	the	grammar	rules
contained	in	the	collection	were	created	as	dynamic.

Syntax

Set: (This	property	is	read-only)
Get: Boolean	=	ISpeechGrammarRules.Dynamic

Parts

ISpeechGrammarRules
The	owning	object.

Boolean
Set:	(This	property	is	read-only)
Get:	A	Boolean	variable	returning	the	value	of	the	property.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechGrammarRules

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

FindRule	Method

The	FindRule	method	returns	a	grammar	rule,	specified	by
Name	or	by	ID.
ISpeechGrammarRules.FindRule(

					RuleNameOrId	As	Variant

)	As	ISpeechGrammarRule

Parameters

RuleNameOrId
Specifies	the	RuleNameOrId.

Return	Value
The	FindRule	method	returns	an	ISpeechGrammarRule	variable.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechGrammarRules

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Item	Method

The	Item	method	returns	a	member	of	the
ISpeechGrammarRules	collection	by	its	index.

ISpeechGrammarRules.Item(

					Index	As	Long

)	As	ISpeechGrammarRule

Parameters

Index
Specifies	the	Index	of	the	rule.

Return	Value
The	Item	method	returns	an	ISpeechGrammarRule	object	as
specified	by	the	Index	parameter.

Remarks
The	ISpeechGrammarRules	object	is	a	collection	of
ISpeechGrammarRule	objects.	As	a	collection,	it	provides	access
to	any	or	all	of	its	members	through	certain	methods	and
properties	common	to	all	collection	objects.	The	Item	method	is
one	of	these	common	methods.

Example
See	the	SpObjectToken	Example	for	a	complete	example	and
additional	details.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpeechGrammarRuleState
The	ISpeechGrammarRuleState	automation	interface
presents	the	properties	and	methods	of	a	speech	grammar	rule
state.

Automation	Interface	Elements
The	ISpeechGrammarRuleState	automation	interface	contains
the	following	elements:

Properties Description
Rule	Property Specifies	the	rule	to	which	the	rule

state	belongs.
Transitions	Property Specifies	the	set	of	transitions	out	of

the	rule	state.

Methods Description
AddRuleTransition
Method

Adds	a	rule	reference	transition	from
the	current	rule	state	to	another	rule
state	in	the	same	rule.

AddSpecialTransition
Method

Adds	a	special	transition	from	the
current	rule	state	to	another	rule
state	in	the	same	rule

AddWordTransition
Method

Adds	a	word	transition	from	this	rule
state	to	another	rule	state	in	the
same	rule

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechGrammarRuleState

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

AddRuleTransition	Method

The	AddRuleTransition	method	adds	a	rule	reference
transition	from	the	current	rule	state	to	another	rule	state	in	the
same	rule.
When	the	word	sequence	accepted	by	the	referenced	rule	is
spoken,	the	rule	can	go	from	the	current	state	to	the
DestinationState.	A	rule	accepts	a	word	sequence	when	the	rule
can	go	from	the	initial	state	to	the	end	state	using	the	word
sequence.

ISpeechGrammarRuleState.AddRuleTransition(

					DestinationState	As	ISpeechGrammarRuleState,

					Rule	As	ISpeechGrammarRule,

					[PropertyName	As	String	=	""],

					[PropertyId	As	Long	=	0],

					[PropertyValue	As	Variant	=	0],

					[Weight	As	Single	=	1.0]

)

Parameters

DestinationState
Specifies	the	DestinationState,	or	the	state	where	the
transition	ends.	DestinationState	of	Nothing	means	the	end
state	of	the	rule.

Rule
Specifies	the	Rule.

PropertyName
[Optional]	Specifies	the	PropertyName.

PropertyId
[Optional]	Specifies	the	PropertyId.

PropertyValue
[Optional]	Specifies	the	PropertyValue.

Weight
[Optional]	Specifies	the	Weight.

Return	Value
None.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechGrammarRuleState

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

AddSpecialTransition	Method

The	AddSpecialTransition	method	adds	a	special	transition
from	the	current	rule	state	to	another	rule	state	in	the	same
rule.
When	the	word	sequence	accepted	by	the	special	transition	is
spoken,	the	rule	can	go	from	the	current	state	to	the
DestinationState.	A	rule	accepts	a	word	sequence	when	the	rule
can	go	from	the	initial	state	to	the	end	state	using	the	word
sequence.
Special	transitions	may	not	be	supported	by	all	speech	engines.
There	are	three	types	of	special	transitions:

Wildcard:	A	Wildcard	accepts	any	one	word	and	ignores
it.
Dictation:	A	Dictation	accept	any	one	word	and	returns	it
in	the	result.

Textbuffer:	A	Textbuffer	accepts	the	word	sequence	and
can	be	set	later	using
ISpeechRecoGrammar.SetWordSequenceData	and
ISpeechRecoGrammar.SetTextSelection.

ISpeechGrammarRuleState.AddSpecialTransition(

					DestinationState	As	ISpeechGrammarRuleState,

					Type	As	SpeechSpecialTransitionType,

					[PropertyName	As	String	=	""],

					[PropertyId	As	Long	=	0],

					[PropertyValue	As	Variant	=	0],

					[Weight	As	Single	=	1.0]

)

Parameters

DestinationState
Specifies	the	DestinationState,	or	the	state	where	the
transition	ends.	DestinationState	of	Nothing	means	the	end
state	of	the	rule.

Type
Specifies	the	Type.

PropertyName
[Optional]	Specifies	the	PropertyName.

PropertyId
[Optional]	Specifies	the	PropertyId.

PropertyValue
[Optional]	Specifies	the	PropertyValue.

Weight
[Optional]	Specifies	the	Weight.

Return	Value
None.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechGrammarRuleState

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

AddWordTransition	Method

The	AddWordTransition	method	adds	a	word	transition	from
this	rule	state	to	another	rule	state	in	the	same	rule.
When	the	word	sequence	specified	by	the	word	transition	is
spoken,	the	rule	can	go	from	this	state	to	the	DestinationState.
A	rule	accepts	a	word	sequence	when	the	rule	can	go	from	the
initial	state	to	the	end	state	using	the	word	sequence.

ISpeechGrammarRuleState.AddWordTransition(

					DestinationState	As	ISpeechGrammarRuleState,

					Words	As	String,

					[Separators	As	String	=	"	"],

					[Type	As	SpeechGrammarWordType	=	SGLexical],

					[PropertyName	As	String	=	""],

					[PropertyId	As	Long	=	0],

					[PropertyValue	As	Variant	=	0],

					[Weight	As	Single	=	1.0]

)

Parameters

DestinationState
Specifies	the	DestinationState,	or	the	state	where	the
transition	ends.	DestinationState	of	Nothing	means	the	end
state	of	the	rule.

Words
Specifies	the	Words.

Separators
[Optional]	Specifies	the	Separators.

PropertyName
[Optional]	Specifies	the	PropertyName.

PropertyId
[Optional]	Specifies	the	PropertyId.

PropertyValue
[Optional]	Specifies	the	PropertyValue.

Weight
[Optional]	Specifies	the	Weight.

Return	Value
None.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechGrammarRuleState

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Rule	Property

The	Rule	property	specifies	the	rule	to	which	the	rule	state
belongs.

Syntax

Set: (This	property	is	read-only)
Get: ISpeechGrammarRule	=	ISpeechGrammarRuleState.Rule

Parts

ISpeechGrammarRuleState
The	owning	object.

ISpeechGrammarRule
Set:	(This	property	is	read-only)
Get:	An	ISpeechGrammarRule	variable	that	gets	the
property.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechGrammarRuleState

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Transitions	Property

The	Transitions	property	specifies	the	set	of	transitions	out	of
the	rule	state.

Syntax

Set: (This	property	is	read-only)
Get: ISpeechGrammarRuleStateTransitions	=

ISpeechGrammarRuleState.Transitions

Parts

ISpeechGrammarRuleState
The	owning	object.

ISpeechGrammarRuleStateTransitions
Set:	(This	property	is	read-only)
Get:	An	ISpeechGrammarRuleStateTransitions	object	that
gets	the	property.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpeechGrammarRuleStateTransition
The	ISpeechGrammarRuleStateTransition	automation
interface	returns	data	about	a	transition	from	one	rule	state	to
another,	or	from	a	rule	state	to	the	end	of	a	rule.

Automation	Interface	Elements
The	ISpeechGrammarRuleStateTransition	automation	interface
contains	the	following	elements:

Properties Description
NextState	Property Specifies	the	rule	state	to	which	the

transition	leads.
PropertyId	Property Specifies	the	Id	of	a	property

contained	in	a	semantic	tag.
PropertyName	Property Specifies	the	name	of	a	property

contained	in	a	semantic	tag.
PropertyValue	Property Returns	the	value	of	a	property

contained	in	a	semantic	tag.
Rule	Property Specifies	the	speech	rule	to	which

the	transition	leads.
Text	Property Returns	the	recognition	text

associated	with	a	transition.
Type	Property Specifies	the	type	of	the	transition.
Weight	Property Assigns	the	transition	a	weight

relative	to	its	sibling	transitions.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechGrammarRuleStateTransition

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

NextState	Property

The	NextState	property	specifies	the	rule	state	to	which	the
transition	leads.

Syntax

Set: (This	property	is	read-only)
Get: ISpeechGrammarRuleState	=

ISpeechGrammarRuleStateTransition.NextState

Parts

ISpeechGrammarRuleStateTransition
The	owning	object.

ISpeechGrammarRuleState
Set:	(This	property	is	read-only)
Get:	An	ISpeechGrammarRuleState	variable	that	gets	the
property.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechGrammarRuleStateTransition

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

PropertyId	Property

The	PropertyId	property	specifies	the	ID	of	a	property
contained	in	a	semantic	tag.

Syntax

Set: (This	property	is	read-only)
Get: Long	=	ISpeechGrammarRuleStateTransition.PropertyId

Parts

ISpeechGrammarRuleStateTransition
The	owning	object.

Long
Set:	(This	property	is	read-only)
Get:	A	Long	variable	that	gets	the	property.

Remarks
Semantic	tags	provide	a	way	for	grammar	designers	to	put
semantic	information	about	a	transition	into	the	grammar.	The
PropertyId,	PropertyName	and	PropertyValue	properties	provide
access	to	that	information	at	run	time.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechGrammarRuleStateTransition

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

PropertyName	Property

The	PropertyName	property	specifies	the	name	of	a	property
contained	in	a	semantic	tag.

Syntax

Set: (This	property	is	read-only)
Get: String	=

ISpeechGrammarRuleStateTransition.PropertyName

Parts

ISpeechGrammarRuleStateTransition
The	owning	object.

String
Set:	(This	property	is	read-only)
Get:	A	String	variable	that	gets	the	property.

Remarks
Semantic	tags	provide	a	way	for	grammar	designers	to	put
semantic	information	about	a	transition	into	the	grammar.	The
PropertyId,	PropertyName	and	PropertyValue	properties	provide
access	to	that	information	at	run	time.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechGrammarRuleStateTransition

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

PropertyValue	Property

The	PropertyValue	property	returns	the	value	of	a	property
contained	in	a	semantic	tag.

Syntax

Set: (This	property	is	read-only)
Get: Variant	=

ISpeechGrammarRuleStateTransition.PropertyValue

Parts

ISpeechGrammarRuleStateTransition
The	owning	object.

Variant
Set:	(This	property	is	read-only)
Get:	A	Variant	variable	returning	the	value	of	the	semantic
tag	property.

Remarks
Semantic	tags	provide	a	way	for	grammar	designers	to	put
semantic	information	about	a	transition	into	the	grammar.	The
PropertyId,	PropertyName	and	PropertyValue	properties	provide
access	to	that	information	at	run	time.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechGrammarRuleStateTransition

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Rule	Property

The	Rule	property	specifies	the	speech	rule	to	which	the
transition	leads.

Syntax

Set: (This	property	is	read-only)
Get: ISpeechGrammarRule	=

ISpeechGrammarRuleStateTransition.Rule

Parts

ISpeechGrammarRuleStateTransition
The	owning	object.

ISpeechGrammarRule
Set:	(This	property	is	read-only)
Get:	An	ISpeechGrammarRule	variable	that	gets	the
property.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechGrammarRuleStateTransition

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Text	Property

The	Text	property	returns	the	recognition	text	associated	with	a
transition.	This	is	text	which	is	added	to	the	recognition	results
when	the	transition	is	processed.

Syntax

Set: (This	property	is	read-only)
Get: String	=	ISpeechGrammarRuleStateTransition.Text

Parts

ISpeechGrammarRuleStateTransition
The	owning	object.

String
Set:	(This	property	is	read-only)
Get:	A	String	variable	that	gets	the	property.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechGrammarRuleStateTransition

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Type	Property

The	Type	property	specifies	the	type	of	the	transition.	The
SpeechGrammarRuleStateTransitionType	enumeration	contains
the	possible	transition	type	values.

Syntax

Set: (This	property	is	read-only)
Get: SpeechGrammarRuleStateTransitionType	=

ISpeechGrammarRuleStateTransition.Type

Parts

ISpeechGrammarRuleStateTransition
The	owning	object.

SpeechGrammarRuleStateTransitionType
Set:	(This	property	is	read-only)
Get:	A	SpeechGrammarRuleStateTransitionType	constant
returning	the	transition	type.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechGrammarRuleStateTransition

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Weight	Property

The	Weight	property	assigns	the	transition	a	weight	relative	to
its	sibling	transitions.

Syntax

Set: (This	property	is	read-only)
Get: Variant	=	ISpeechGrammarRuleStateTransition.Weight

Parts

ISpeechGrammarRuleStateTransition
The	owning	object.

Variant
Set:	(This	property	is	read-only)
Get:	A	Variant	variable	that	gets	the	property.

Remarks
Recognition	proceeds	by	means	of	transitions	from	one	rule
state	to	another.	Each	rule	state	has	a	collection	of	transitions,
which	represent	the	possible	recognition	paths	to	subsequent
rule	states.
In	the	absence	of	weighting,	each	transition	is	considered
equally	probable.	For	example,	in	a	rule	state	with	five
transitions,	each	has	a	20	percent	probability	of	being	followed.
The	Weight	property	enables	grammar	designers	to	specify	a
transition	as	more	probable,	or	less	probable,	than	its	sibling
transitions.
The	weight	property	for	a	transition	is	a	fractional	number	with

a	range	of	zero	to	one,	and	the	sum	of	the	weights	of	a	rule
state's	transition	should	be	one.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpeechGrammarRuleStateTransitions
The	ISpeechGrammarRuleStateTransitions	automation
interface	represents	a	collection	of
ISpeechGrammarRuleStateTransition	objects.

Automation	Interface	Elements
The	ISpeechGrammarRuleStateTransitions	automation	interface
contains	the	following	elements:

Properties Description
Count	Property Returns	the	number	of	objects	in	the

collection.

Methods Description
Item	Method Returns	a	member	of	the	collection

specified	by	its	index.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechGrammarRuleStateTransitions

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Count	Property

The	Count	property	returns	the	number	of
ISpeechGrammarRuleStateTransition	objects	in	the
ISpeechGrammarRuleStateTransitions	object.

Syntax

Set: (This	property	is	read-only)
Get: Long	=	ISpeechGrammarRuleStateTransitions.Count

Parts

ISpeechGrammarRuleStateTransitions
The	owning	object.

Long
Set:	(This	property	is	read-only)
Get:	A	Long	variable	that	gets	the	Count	property.

Remarks
The	ISpeechGrammarRuleStateTransitions	object	is	a	collection
of	ISpeechGrammarRuleStateTransition	objects.	As	a	collection,
it	provides	access	to	any	or	all	of	its	members	through	certain
methods	and	properties	common	to	all	objects	in	the	collection.
The	Count	property	is	one	of	these	common	properties.

Example
See	the	SpObjectToken	Example	for	a	complete	example	and
additional	details.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechGrammarRuleStateTransitions

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Item	Method

The	Item	method	returns	a	member	of	the
ISpeechGrammarRuleStateTransitions	collection	by	its	index.
ISpeechGrammarRuleStateTransitions.Item(

					Index	As	Long

)	As	ISpeechGrammarRuleStateTransition

Parameters

Index
Specifies	the	Index	of	the	member	to	be	returned.

Return	Value
The	Item	method	returns	an
ISpeechGrammarRuleStateTransition	variable.

Remarks
The	ISpeechGrammarRuleStateTransitions	object	is	a	collection
of	ISpeechGrammarRuleStateTransition	objects.	As	a	collection,
it	provides	access	to	any	or	all	of	its	members	through	certain
methods	and	properties	common	to	all	collection	objects.	The
Item	method	is	one	of	these	common	methods.

Example
See	the	SpObjectToken	Example	for	a	complete	example	and
additional	details.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpeechLexiconPronunciation
The	ISpeechLexiconPronunciation	automation	interface
provides	access	to	the	pronunciations	of	a	speech	lexicon	word.

Automation	Interface	Elements
The	ISpeechLexiconPronunciation	automation	interface	contains
the	following	elements:

Properties Description
LangId	Property Returns	the	language	id	of	the

pronunciation.
PartOfSpeech	Property Returns	a	word's	part	of	speech.
PhoneIds	Property Returns	the	pronunciation	of	a	word

as	a	Variant	array	of	numeric	phone
ids.

Symbolic	Property Returns	the	pronunciation	of	a	word
as	a	string	of	phone	symbols.

Type	Property Returns	the	type	of	the
pronunciation.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechLexiconPronunciation

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

LangId	Property

The	LangId	property	returns	the	language	ID	of	the
pronunciation.

Syntax

Set: (This	property	is	read-only)
Get: Long	=	ISpeechLexiconPronunciation.LangId

Parts

ISpeechLexiconPronunciation
The	owning	object.

Long
Set:	(This	property	is	read-only)
Get:	A	Long	variable	returning	the	LangId.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechLexiconPronunciation

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

PartOfSpeech	Property

The	PartOfSpeech	property	returns	a	word's	part	of	speech.

Syntax

Set: (This	property	is	read-only)
Get: SpeechPartOfSpeech	=

ISpeechLexiconPronunciation.PartOfSpeech

Parts

ISpeechLexiconPronunciation
The	owning	object.

SpeechPartOfSpeech
Set:	(This	property	is	read-only)
Get:	A	SpeechPartOfSpeech	object	returning	the	value	of	the
property.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechLexiconPronunciation

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

PhoneIds	Property

The	PhoneIds	property	returns	the	pronunciation	of	a	word	as	a
Variant	array	of	numeric	phone	ids.
Pronunciations	represented	in	PhoneIds	can	be	converted	to
phones	with	the	IdToPhone	method	of	theSpPhoneConverter
object.

Syntax

Set: (This	property	is	read-only)
Get: Variant	=	ISpeechLexiconPronunciation.PhoneIds

Parts

ISpeechLexiconPronunciation
The	owning	object.

Variant
Set:	(This	property	is	read-only)
Get:	A	Variant	variable	returning	the	value	of	the	property.

Example
The	following	code	snippet	creates	a	lexicon,	adds	a
pronunciation	to	it,	then	gets	the	pronunciation	object,	and
formats	the	values	of	the	PhoneIds	as	a	string.	The	resulting
string	is	"	46	12	33."
Dim	objLEX	As	SpeechLib.SpLexicon

Dim	objPRO	As	SpeechLib.ISpeechLexiconPronunciation

Dim	colPRO	As	SpeechLib.ISpeechLexiconPronunciations

	

Set	objLEX	=	New	SpeechLib.SpLexicon

Call	objLEX.AddPronunciation("one",	1033,	SPSNoun,	"w	ah	n")

'Get	item(0)	of	the	pronunciations	collection

Set	colPRO	=	objLEX.GetPronunciations("one",	1033)

Set	objPRO	=	colPRO(0)

Dim	varPhoneIds	As	Variant		'A	Variant	array	of	numeric	values

Dim	strOut	As	String								'Display	the	PhoneId	values

varPhoneIds	=	objPRO.PhoneIds

strOut	=	Str(varPhoneIds(0))	&	Str(varPhoneIds(1))	&	Str(varPhoneIds(2))

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechLexiconPronunciation

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Symbolic	Property

The	Symbolic	property	returns	the	pronunciation	of	a	word	as	a
string	of	phone	symbols.
Pronunciations	represented	in	phones	can	be	converted	to
PhoneIds	with	the	PhoneToId	method	of	the	SpPhoneConverter
object.

Syntax

Set: (This	property	is	read-only)
Get: String	=	ISpeechLexiconPronunciation.Symbolic

Parts

ISpeechLexiconPronunciation
The	owning	object.

String
Set:	(This	property	is	read-only)
Get:	A	String	variable	returning	the	value	of	the	property.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	ISpeechLexiconPronunciation

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Type	Property

The	Type	property	returns	the	type	of	the	pronunciation.

Syntax

Set: (This	property	is	read-only)
Get: SpeechLexiconType	=	ISpeechLexiconPronunciation.Type

Parts

ISpeechLexiconPronunciation
The	owning	object.

SpeechLexiconType
Set:	(This	property	is	read-only)
Get:	A	SpeechLexiconType	constant	returning	the	type.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpeechLexiconPronunciations
The	ISpeechLexiconPronunciations	automation	interface
represents	a	collection	of	ISpeechLexiconPronunciation	objects.

Automation	Interface	Elements
The	ISpeechLexiconPronunciations	automation	interface
contains	the	following	elements:

Properties Description
Count	Property Returns	the	number	of	objects	in	the

collection.

Methods Description
Item	Method Returns	a	member	of	the	collection

by	its	index.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	ISpeechLexiconPronunciations

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Count	Property

The	Count	property	returns	the	number	of	objects	in	the
collection.

Syntax

Set: (This	property	is	read-only)
Get: Long	=	ISpeechLexiconPronunciations.Count

Parts

ISpeechLexiconPronunciations
The	owning	object.

Long
Set:	(This	property	is	read-only)
Get:	A	Long	variable	that	gets	the	Count	property.

Remarks
The	ISpeechLexiconPronunciations	object	is	a	collection	of
ISpeechLexiconPronunciation	objects.	As	a	collection,	it	provides
access	to	any	or	all	of	its	members	through	certain	methods	and
properties	common	to	all	objects	in	the	collection.	The	Count
property	is	one	of	these	common	properties.

Example
See	the	SpObjectToken	Example	for	a	complete	example	and
additional	details.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	ISpeechLexiconPronunciations

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Item	Method

The	Item	method	returns	a	member	of	the
ISpeechLexiconPronunciations	collection	by	its	index.
ISpeechLexiconPronunciations.Item(

					Index	As	Long

)	As	ISpeechLexiconPronunciation

Parameters

Index
Specifies	the	Index.

Return	Value
The	Item	method	returns	an	ISpeechLexiconPronunciation
object.

Remarks
The	ISpeechLexiconPronunciations	object	is	a	collection	of
ISpeechLexiconPronunciation	objects.	As	a	collection,	it	provides
access	to	any	or	all	of	its	members	through	certain	methods	and
properties	common	to	all	collection	objects.	The	Item	method	is
one	of	these	common	methods.

Example
See	the	SpObjectToken	Example	for	a	complete	example	and
additional	details.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpeechLexiconWord
The	ISpeechLexiconWord	automation	interface	provides
access	to	a	lexicon	word.

Automation	Interface	Elements
The	ISpeechLexiconWord	automation	interface	contains	the
following	elements:

Properties Description
LangId	Property Returns	the	language	Id	of	a	lexicon

word.
Pronunciations	Property Returns	the	pronunciations	of	a

lexicon	word.
Type	Property Returns	the	type	of	a	lexicon	word.
Word	Property Returns	the	text	of	a	lexicon	word.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	ISpeechLexiconWord

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

LangId	Property

The	LangId	property	returns	the	language	ID	of	a	lexicon	word.

Syntax

Set: (This	property	is	read-only)
Get: Long	=	ISpeechLexiconWord.LangId

Parts

ISpeechLexiconWord
The	owning	object.

Long
Set:	(This	property	is	read-only)
Get:	A	Long	variable	returning	the	LangId.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	ISpeechLexiconWord

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Pronunciations	Property

The	Pronunciations	property	returns	the	pronunciations	of	a
lexicon	word.
The	pronunciations	are	returned	as	a	collection	of
ISpeechLexiconPronunciation	objects.

Syntax

Set: (This	property	is	read-only)
Get: ISpeechLexiconPronunciations	=

ISpeechLexiconWord.Pronunciations

Parts

ISpeechLexiconWord
The	owning	object.

ISpeechLexiconPronunciations
Set:	(This	property	is	read-only)
Get:	An	ISpeechLexiconPronunciations	object	returning	the
pronunciations	of	the	lexicon	word.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	ISpeechLexiconWord

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Type	Property

The	Type	property	returns	the	type	of	a	lexicon	word.

Syntax

Set: (This	property	is	read-only)
Get: SpeechWordType	=	ISpeechLexiconWord.Type

Parts

ISpeechLexiconWord
The	owning	object.

SpeechWordType
Set:	(This	property	is	read-only)
Get:	A	SpeechWordType	constant	returning	the	word	type.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	ISpeechLexiconWord

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Word	Property

The	Word	property	returns	the	text	of	a	lexicon	word.

Syntax

Set: (This	property	is	read-only)
Get: String	=	ISpeechLexiconWord.Word

Parts

ISpeechLexiconWord
The	owning	object.

String
Set:	(This	property	is	read-only)
Get:	A	String	variable	returning	the	word.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpeechLexiconWords
The	ISpeechLexiconWords	automation	interface	represents	a
collection	of	ISpeechLexiconWord	objects.

Automation	Interface	Elements
The	ISpeechLexiconWords	automation	interface	contains	the
following	elements:

Properties Description
Count	Property Returns	the	number	of	objects	in	the

collection.

Methods Description
Item	Method Returns	a	member	of	the	collection

by	its	index.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	ISpeechLexiconWords

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Count	Property

The	Count	property	returns	the	number	of	ISpeechLexiconWord
objects	in	the	ISpeechLexiconWords	collection.

Syntax

Set: (This	property	is	read-only)
Get: Long	=	ISpeechLexiconWords.Count

Parts

ISpeechLexiconWords
The	owning	object.

Long
Set:	(This	property	is	read-only)
Get:	A	Long	variable	that	gets	the	Count	property.

Remarks
The	ISpeechLexiconWords	object	is	a	collection	of
ISpeechLexiconWord	objects.	As	a	collection,	it	provides	access
to	any	or	all	of	its	members	through	certain	methods	and
properties	common	to	all	collection	objects.	The	Count	property
is	one	of	these	common	properties.

Example
See	the	SpObjectToken	Example	for	a	complete	example	and
additional	details.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	ISpeechLexiconWords

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Item	Method

The	Item	method	returns	a	member	of	the
ISpeechLexiconWords	collection	by	its	index.
ISpeechLexiconWords.Item(

					Index	As	Long

)	As	ISpeechLexiconWord

Parameters

Index
Specifies	the	Index.

Return	Value
The	Item	method	returns	an	ISpeechLexiconWord	object.

Remarks
The	ISpeechLexiconWords	object	is	a	collection	of
ISpeechLexiconWord	objects.	As	a	collection,	it	provides	access
to	any	or	all	of	its	members	through	certain	methods	and
properties	common	to	all	collection	objects.	The	Item	method	is
one	of	these	common	methods.

Example
See	the	SpObjectToken	Example	for	a	complete	example	and
additional	details.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpeechObjectTokens
The	ISpeechObjectTokens	automation	interface	represents	a
collection	of	SpObjectToken	objects.

Automation	Interface	Elements
The	ISpeechObjectTokens	automation	interface	contains	the
following	elements:

Properties Description
Count	Property Returns	the	number	of	objects	in	the

collection.

Methods Description
Item	Method Returns	a	member	of	the	collection

by	its	index.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechObjectTokens

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Count	Property
The	Count	property	returns	the	number	of	SpObjectToken
objects	in	the	ISpeechObjectTokens	object.

Syntax

Set: (This	property	is	read-only)
Get: Long	=	ISpeechObjectTokens.Count

Parts

ISpeechObjectTokens
The	owning	object.

Long
Set:	(This	property	is	read-only)
Get:	A	Long	variable	that	gets	the	Count	property.

Remarks
The	ISpeechObjectTokens	object	is	a	collection	of	SpObjectToken
objects.	As	a	collection,	it	provides	access	to	any	or	all	of	its
members	through	certain	methods	and	properties	common	to
all	collection	objects.	The	Count	property	is	one	of	these
common	properties.

Example
See	the	SpObjectToken	Example	for	a	complete	example	and
additional	details.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	ISpeechObjectTokens

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Item	Method
The	Item	method	returns	a	member	of	the	ISpeechObjectTokens
collection	by	its	index.
ISpeechObjectTokens.Item(

					Index	As	Long

)	As	SpObjectToken

Parameters

Index
Specifies	the	Index.

Return	Value
The	Item	method	returns	an	SpObjectToken	variable.

Remarks
The	ISpeechObjectTokens	object	is	a	collection	of	SpObjectToken
objects.	As	a	collection,	it	provides	access	to	any	or	all	of	its
members	through	certain	methods	and	properties	common	to
all	collection	objects.	The	Item	method	is	one	of	these	common
methods.

Example
See	the	SpObjectToken	Example	for	a	complete	example	and
additional	details.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpeechPhraseAlternate
The	ISpeechPhraseAlternate	automation	interface	enables
applications	to	retrieve	alternate	phrase	information	from	a
speech	recognition	(SR)	engine,	and	to	update	the	SR	engine's
language	model	to	reflect	committed	alternate	changes.
There	are	two	types	of	speech	recognition	in	SAPI:	Command
and	control	(C	and	C)	recognition,	which	is	guided	by	one	or
more	grammars;	and	dictation	recognition,	in	which	the	SR
engine	uses	statistical	calculations	to	determine	the	most	likely
recognitions	of	a	requested	phrase.	It	should	be	noted	that	the
two	types	are	not	mutually	exclusive,	and	that	applications	do
not	request	one	type	of	recognition	as	opposed	to	the	other.
Applications	simply	request	recognition;	they	can	determine
after	the	fact	which	type	of	recognition	produced	a	particular
recognition	result.
Dictation	recognition	is	inherently	less	accurate	than	C	and	C
recognition,	which	is	guided	by	grammars.	Because	of	this,
there	is	a	practical	need	for	returning	alternate	recognition
results,	and	for	the	user	to	select	an	alternate	as	the	correct
recognition	of	the	phrase.
By	default,	the	ISpeechRecoResult	object	contains	a	single
recognition	result.	If	the	result	was	obtained	using	dictation
recognition,	then	alternate	recognitions	are	available.	These
results	can	be	accessed	using	the	ISpeechRecoResult.Alternates
method.	This	method	returns	a	specific	number	of	recognitions
in	an	ISpeechPhraseAlternates	object.	It	should	be	noted	that
the	default	recognition	result	is	the	first	ISpeechPhraseAlternate
object	in	the	collection.
Use	of	the	ISpeechPhraseAlternate	object	is	demonstrated	in	a
code	example	at	the	end	of	this	section.

Automation	Interface	Elements

The	ISpeechPhraseAlternate	automation	interface	contains	the
following	elements:

Properties Description
NumberOfElementsInResult
Property

Returns	the	count	of	phrase
elements	in	the	alternate's
parent	ISpeechRecoResult
object.

PhraseInfo	Property Returns	the	ISpeechPhraseInfo
object	of	the	alternate's	parent
ISpeechRecoResult	object.

RecoResult	Property Returns	the	alternate's	parent
ISpeechRecoResult	object.

StartElementInResult
Property

Specifies	the	starting	phrase
element	of	the	alternate's
parent	ISpeechRecoResult
object.

Methods Description
Commit	Method Specifies	that	the	alternate

recognition	should	replace	the
recognition	selected	by	the	SR
engine.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseAlternate

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Commit	Method

The	Commit	method	specifies	that	the	alternate	recognition
should	replace	the	recognition	selected	by	the	speech
recognition	(SR)	engine.

ISpeechPhraseAlternate.Commit()

Parameters

None.

Return	Value
None.

Example
Use	of	the	Commit	method	is	demonstrated	in	a	code	example
at	the	end	of	this	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseAlternate

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

NumberOfElementsInResult	Property

The	NumberOfElementsInResult	property	returns	the	count
of	phrase	elements	in	the	alternate's	parent	ISpeechRecoResult
object.

Syntax

Set: (This	property	is	read-only)
Get: Long	=

ISpeechPhraseAlternate.NumberOfElementsInResult

Parts

ISpeechPhraseAlternate
The	owning	object.

Long
Set:	(This	property	is	read-only)
Get:	A	Long	variable	that	gets	the	value	of	the	property.

Example
Use	of	the	ISpeechPhraseAlternate	object	is	demonstrated	in	a
code	example	at	the	end	of	this	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseAlternate

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

PhraseInfo	Property

The	PhraseInfo	property	returns	the	ISpeechPhraseInfo	object
of	the	alternate's	parent	ISpeechRecoResult	object.

Syntax

Set: (This	property	is	read-only)
Get: ISpeechPhraseInfo	=	ISpeechPhraseAlternate.PhraseInfo

Parts

ISpeechPhraseAlternate
The	owning	object.

ISpeechPhraseInfo
Set:	(This	property	is	read-only)
Get:	An	ISpeechPhraseInfo	that	gets	the	value	of	the
property.

Example
Use	of	the	ISpeechPhraseAlternate	object	is	demonstrated	in	a
code	example	at	the	end	of	this	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseAlternate

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

RecoResult	Property

The	RecoResult	property	returns	the	alternate's	parent
ISpeechRecoResult	object.

Syntax

Set: (This	property	is	read-only)
Get: ISpeechRecoResult	=

ISpeechPhraseAlternate.RecoResult

Parts

ISpeechPhraseAlternate
The	owning	object.

ISpeechRecoResult
Set:	(This	property	is	read-only)
Get:	The	alternate's	parent	ISpeechRecoResult	object.

Example
Use	of	the	ISpeechPhraseAlternate	object	is	demonstrated	in	a
code	example	at	the	end	of	this	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseAlternate

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

StartElementInResult	Property

The	StartElementInResult	property	specifies	the	starting
phrase	element	of	the	alternate's	parent	ISpeechRecoResult
object.

Syntax

Set: (This	property	is	read-only)
Get: Long	=	ISpeechPhraseAlternate.StartElementInResult

Parts

ISpeechPhraseAlternate
The	owning	object.

Long
Set:	(This	property	is	read-only)
Get:	A	Long	variable	that	gets	the	starting	element.

Example
Use	of	the	ISpeechPhraseAlternate	object	is	demonstrated	in	a
code	example	at	the	end	of	this	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseAlternate

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpeechPhraseAlternate	Code	Example

The	following	Visual	Basic	form	code	displays	use	of	the
ISpeechPhraseAlternate	object.	It	demonstrates	recognition	and
the	EmulateRecognition	method.	In	addition,	it	demonstrates
the	use	of	the	SpeechDocs	DLL	created	in	the	Sample	DLL
section.	This	DLL	must	be	created	before	this	code	can	be	run.
To	run	this	code,	create	a	form	with	the	following	controls:
A	text	box	called	Text1
Two	list	boxes,	called	List1	and	List2

Two	command	buttons,	called	Command1	and	Command2
Paste	this	code	into	the	Declarations	section	of	the	form.
Because	this	code	uses	the	SpeechDocs	DLL,	it	is	necessary	to
add	a	reference	to	"SpeechDocs"	in	the	Project,	References
dialog.
The	solitaire	grammar	is	located	in	the	default	directory	for	a
standard	SAPI	SDK	installation.	If	the	file	is	not	there,	use	the
path	to	an	existing	version.	If	no	file	is	available,	use	the
example	code	from	VB	Application	Sample:	Command	and
Control	Recognition	if	needed.
The	Form_Load	procedure	creates	a	recognizer,	a	recognition
context,	and	a	grammar	object.	It	loads	the	grammar	object
with	sol.xml,	the	Solitaire	grammar	from	the	SAPI	sample	code,
then	activates	the	command	and	control	(C	and	C)	and	dictation
components	of	the	grammar,	and	places	a	Solitaire	command	in
the	text	box.	Text	matching	the	rules	of	the	Solitaire	grammar
will	produce	better	recognition	results,	but	in	order	to
demonstrate	recognition	alternates,	it	is	necessary	to	enter
phrases	that	do	not	satisfy	grammar	rules.
The	command	button,	captioned	Recognition,	speaks	text	from

the	text	box	into	an	audio	file,	and	then	performs	speech
recognition	of	that	file.	The	command	button	captioned
EmulateRecognition	simply	calls	the	EmulateRecognition
method.
When	alternates	are	available,	the	code	displays	three
alternates	in	the	top	list	box,	and	shows	the	phrase	elements	of
one	alternate	in	the	lower	list	box.	Click	any	alternate	to	display
its	phrase	elements	in	the	lower	list	box.	Double	click	any
alternate	to	perform	the	Commit	method	on	that	alternate.	In
the	illustration	below,	the	first	alternate	is	incorrect;	the	second
alternate	is	highlighted,	and	its	phrase	elements	are	displayed
in	the	lower	list	box.
The	data	displayed	in	the	lower	list	box	is	the	same	data
displayed	in	the	ISpeechPhraseElement	code	example.	Please
see	that	page	for	full	details.

	

Option	Explicit

Dim	D	As	SpeechDocs.Class1						'DLL	created	from	Speech	docs

Const	WAVEFILENAME	=	"C:\ISpeechPhraseElement.wav"

Private	blnAlternatesExist	As	Boolean

Dim	R	As	SpeechLib.SpInprocRecognizer

Dim	G	As	SpeechLib.ISpeechRecoGrammar

Dim	F	As	SpeechLib.SpFileStream

Dim	V	As	SpeechLib.SpVoice

Dim	PI	As	SpeechLib.ISpeechPhraseInfo

Dim	A	As	SpeechLib.ISpeechPhraseAlternate

Dim	AA	As	SpeechLib.ISpeechPhraseAlternates

Dim	E	As	SpeechLib.ISpeechPhraseElement

Dim	EE	As	SpeechLib.ISpeechPhraseElements

Dim	WithEvents	C	As	SpeechLib.SpInProcRecoContext

Private	Sub	Command1_Click()

				

				List1.Clear

				List2.Clear

				Screen.MousePointer	=	vbHourglass

				

				'Call	this	method	in	the	DLL	to	speak	into	a	file

				Set	F	=	D.SpeakToFile(Text1.Text,	WAVEFILENAME,	"Microsoft	Sam")

				

				'Set	the	file	as	recognizer's	input	stream

				F.Open	WAVEFILENAME

				Set	R.AudioInputStream	=	F

End	Sub

Private	Sub	Command2_Click()

				List1.Clear

				List2.Clear

				Screen.MousePointer	=	vbHourglass

				C.Recognizer.EmulateRecognition	Text1.Text

End	Sub

Private	Sub	Form_Load()

				'	Create	Recognizer,	RecoContext,	Grammar,	and	Voice

				Set	R	=	New	SpInprocRecognizer

				Set	C	=	R.CreateRecoContext

				Set	G	=	C.CreateGrammar(16)

				Set	V	=	New	SpVoice

				

				Set	D	=	New	SpeechDocs.Class1			'Create	Class1	object	from	SpeechDocs	DLL

				

				'	Load	Grammar	with	solitaire	XML,	set	active

				G.CmdLoadFromFile	"C:\Program	Files\Microsoft	Speech	SDK	5.1\Samples\CPP\Reco\sol.xml",	SLOStatic

				G.CmdSetRuleIdState	0,	SGDSActive											'Set	C	&	C	active

				G.DictationSetState	SGDSActive														'Set	Dictation	active

				Text1.Text	=	"let's	go	over	minor	details"

				Command1.Caption	=	"&Recognition;"

				Command2.Caption	=	"&EmulateRecognition;"

								

End	Sub

Private	Function	PhonesToString(ByVal	arrV	As	Variant)	As	String

				Dim	ii	As	Integer,	S	As	String

				If	IsEmpty(arrV)	Then

								PhonesToString	=	""

				Else

								For	ii	=	0	To	UBound(arrV)

												If	Len(S)	Then

																S	=	S	&	","	&	arrV(ii)

												Else

																S	=	arrV(ii)

												End	If

								Next	ii

								PhonesToString	=	S

				End	If

End	Function

Private	Sub	C_Recognition(ByVal	StreamNumber	As	Long,	_

																				ByVal	StreamPosition	As	Variant,	_

																				ByVal	RecognitionType	As	SpeechLib.SpeechRecognitionType,	_

																				ByVal	Result	As	SpeechLib.ISpeechRecoResult)

				Dim	nn	As	Integer

				

				Set	AA	=	Result.Alternates(3)							'May	or	may	not	be	available

				If	AA	Is	Nothing	Then

				

								'No	alternates	when	speech	matches	a	grammar	rule

								'No	alternates	when	using	EmulateRecognition

								blnAlternatesExist	=	False

								List1.AddItem	Result.PhraseInfo.GetText

								If	Len(Result.PhraseInfo.Rule.Name)	Then

												List1.AddItem	"			matches	rule	"""	&	Result.PhraseInfo.Rule.Name	&	""""

								End	If

								Set	PI	=	Result.PhraseInfo

				Else

				

								blnAlternatesExist	=	True

								nn	=	0

								For	Each	A	In	AA

												List1.AddItem	"alt"	&	Format(nn)	&	":	"	&	A.PhraseInfo.GetText

												nn	=	nn	+	1

								Next

								Set	PI	=	AA.Item(0).PhraseInfo

				End	If

				

				List1.ListIndex	=	0					'Highlight	the	selected	alternate

				Call	DisplayPhraseElements(0)

				Screen.MousePointer	=	vbDefault

End	Sub

Private	Sub	C_EndStream(ByVal	StreamNumber	As	Long,	_

																				ByVal	StreamPosition	As	Variant,	_

																				ByVal	StreamReleased	As	Boolean)

																				

				'Recognition	uses	the	Filestream,	EmulateReco	does	not

				If	ActiveControl.Caption	=	"&Recognition;"	Then

								F.Close

								DoEvents

								F.Open	WAVEFILENAME

								V.SpeakStream	F

								F.Close

				End	If

				Screen.MousePointer	=	vbDefault

				

End	Sub

Private	Sub	DisplayPhraseElements(Index	As	Integer)

				Dim	X	As	String

				Dim	T	As	String

				Dim	A1	As	Long,	A2	As	Long

				Dim	T1	As	Long,	T2	As	Long

				Dim	C1	As	Single,	C2	As	Integer,	C3	As	Integer

				

				List2.Clear

				

				'If	no	alternates,	then	there	is	only	one	PhraseInfo

				If	blnAlternatesExist	=	True	Then

								Set	PI	=	AA.Item(Index).PhraseInfo

				End	If

				

				For	Each	E	In	PI.Elements

								'Audio	data

								A1	=	E.AudioStreamOffset

								A2	=	E.AudioSizeBytes

								X	=	Format(A1,	"000000")	&	"	"	&	Format(A2,	"000000")	&	"		"

								

								'Time	data

								T1	=	E.AudioTimeOffset

								T2	=	E.AudioSizeTime

								X	=	X	&	Format(T1,	"000000000")	&	"	"	&	Format(T2,	"000000000")	&	"		"

								

								'Display	attributes

								X	=	X	&	Format(E.DisplayAttributes)	&	"	"

								

								'Confidences

								C1	=	E.EngineConfidence

								C2	=	E.ActualConfidence

								C3	=	E.RequiredConfidence

								T	=	"("	&	Format(C1)	&	"	"	&	Format(C2)	&	"	"	&	Format(C3)	&	")"

								X	=	X	&	Left(T	&	"									",	14)

				

								'Text	and	pronunciation

								X	=	X	&	Left(E.DisplayText	&	"														",	14)

								X	=	X	&	PhonesToString(E.Pronunciation)

								

								List2.AddItem	X

				Next

End	Sub

Private	Sub	List1_Click()

				Call	DisplayPhraseElements(List1.ListIndex)

End	Sub

Private	Sub	List1_DblClick()

				AA.Item(List1.ListIndex).Commit

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpeechPhraseAlternates
The	ISpeechPhraseAlternates	automation	interface	is	a
collection	of	ISpeechPhraseAlternate	objects.

Automation	Interface	Elements
The	ISpeechPhraseAlternates	automation	interface	contains	the
following	elements:

Properties Description
Count	Property Returns	the	number	of	objects	in	the

collection.

Methods Description
Item	Method Returns	a	member	of	the	collection

by	its	index.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseAlternates

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Count	Property

The	Count	property	returns	the	number	of
ISpeechPhraseAlternate	objects	in	the	ISpeechPhraseAlternates
object.

Syntax

Set: (This	property	is	read-only)
Get: Long	=	ISpeechPhraseAlternates.Count

Parts

ISpeechPhraseAlternates
The	owning	object.

Long
Set:	(This	property	is	read-only)
Get:	A	Long	variable	that	gets	the	Count	property.

Remarks
The	SpeechPhraseAlternates	object	is	a	collection	of
ISpeechPhraseAlternate	objects.	As	a	collection,	it	provides
access	to	any	or	all	of	its	members	through	certain	methods	and
properties	common	to	all	collection	objects.	The	Count	property
is	one	of	these	common	properties.

Example
See	the	SpObjectToken	Example	for	a	complete	example	and
additional	details.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	ISpeechPhraseAlternates

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Item	Method

The	Item	method	returns	a	member	of	the
ISpeechPhraseAlternates	collection	by	its	index.
ISpeechPhraseAlternates.Item(

					Index	As	Long

)	As	ISpeechPhraseAlternate

Parameters

Index
Specifies	the	Index.

Return	Value
The	Item	method	returns	an	ISpeechPhraseAlternate	variable.

Remarks
The	ISpeechPhraseAlternates	object	is	a	collection	of
ISpeechPhraseAlternate	objects.	As	a	collection,	it	provides
access	to	any	or	all	of	its	members	through	certain	methods	and
properties	common	to	all	collection	objects.	The	Item	method	is
one	of	these	common	methods.

Example
See	the	SpObjectToken	Example	for	a	complete	example	and
additional	details.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpeechPhraseElement
The	ISpeechPhraseElement	automation	interface	provides
access	to	information	about	a	word	or	phrase.
Use	of	the	ISpeechPhraseElement	is	demonstrated	in	a	code
example	at	the	end	of	this	section.

Automation	Interface	Elements
The	ISpeechPhraseElement	automation	interface	contains	the
following	elements:

Properties Description
ActualConfidence
Property

Returns	the	actual	confidence	for	the
phrase	element.

AudioSizeBytes
Property

Returns	the	size,	in	bytes,	of	the
audio	for	this	element.

AudioSizeTime	Property Returns	the	length	of	the	element	in
100-nanosecond	units.

AudioStreamOffset
Property

Returns	the	starting	offset	of	the
element	in	bytes	relative	to	the	start
of	the	phrase	in	the	original	input
stream.

AudioTimeOffset
Property

Returns	the	starting	offset	of	the
element	in	100-nanosecond	units
relative	to	the	start	of	the	phrase.

DisplayAttributes
Property

Returns	a	set	of
SpeechDisplayAttributes	constants
defining	information	about	the
display	of	this	word.

DisplayText	Property Returns	the	display	text	for	the
element.

EngineConfidence
Property

Returns	the	confidence	score
computed	by	the	SR	engine.

LexicalForm	Property Returns	the	lexical	form	of	the
element.

Pronunciation	Property Returns	the	pronunciation	of	the
element	as	phonemes.

RequiredConfidence
Property

Returns	the	required	confidence	for
this	element.

RetainedSizeBytes
Property

Returns	the	size,	in	bytes,	of	the
element	in	the	retained	audio
stream.

RetainedStreamOffset
Property

Returns	the	starting	offset	of	the
element	in	bytes	relative	to	the	start
of	the	phrase	in	the	retained	audio
stream.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseElement

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ActualConfidence	Property

The	ActualConfidence	property	returns	the	actual	confidence
for	the	phrase	element.
This	value	consists	of	a	SpeechEngineConfidence	constant,	and
it	is	always	at	least	as	high	as	the
ISpeechPhraseElement.RequiredConfidence	property.	The
confidence	rating	is	an	enumerated	value	of	type
SpeechEngineConfidence.	See	Confidence	Scoring	and	Rejection
in	SAPI	Speech	Recognition	Engine	Guide	for	additional	details.

Syntax

Set: (This	property	is	read-only)
Get: SpeechEngineConfidence	=

ISpeechPhraseElement.ActualConfidence

Parts

ISpeechPhraseElement
The	owning	object.

SpeechEngineConfidence
Set:	(This	property	is	read-only)
Get:	A	SpeechEngineConfidence	constant	that	gets	the	value
of	the	property.

Example
Use	of	the	ISpeechPhraseElement	is	demonstrated	in	a	code
example	at	the	end	of	this	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseElement

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

AudioSizeBytes	Property

The	AudioSizeBytes	property	returns	the	size,	in	bytes,	of	the
audio	for	this	element.

Syntax

Set: (This	property	is	read-only)
Get: Long	=	ISpeechPhraseElement.AudioSizeBytes

Parts

ISpeechPhraseElement
The	owning	object.

Long
Set:	(This	property	is	read-only)
Get:	A	Long	variable	that	gets	the	value	of	the	property.

Example
Use	of	the	ISpeechPhraseElement	is	demonstrated	in	a	code
example	at	the	end	of	this	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseElement

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

AudioSizeTime	Property

The	AudioSizeTime	property	returns	the	length	of	the	element
in	100-nanosecond	units.

Syntax

Set: (This	property	is	read-only)
Get: Long	=	ISpeechPhraseElement.AudioSizeTime

Parts

ISpeechPhraseElement
The	owning	object.

Long
Set:	(This	property	is	read-only)
Get:	A	Long	variable	that	gets	the	value	of	the	property.

Example
Use	of	the	ISpeechPhraseElement	is	demonstrated	in	a	code
example	at	the	end	of	this	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseElement

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

AudioStreamOffset	Property

The	AudioStreamOffset	property	returns	the	starting	offset	of
the	element,	in	bytes,	relative	to	the	start	of	the	phrase	in	the
original	input	stream.

Syntax

Set: (This	property	is	read-only)
Get: Long	=	ISpeechPhraseElement.AudioStreamOffset

Parts

ISpeechPhraseElement
The	owning	object.

Long
Set:	(This	property	is	read-only)
Get:	A	Long	variable	that	gets	the	value	of	the	property.

Example
Use	of	the	ISpeechPhraseElement	is	demonstrated	in	a	code
example	at	the	end	of	this	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseElement

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

AudioTimeOffset	Property

The	AudioTimeOffset	property	returns	the	starting	offset	of
the	element	in	100-nanosecond	units	relative	to	the	start	of	the
phrase.

Syntax

Set: (This	property	is	read-only)
Get: Long	=	ISpeechPhraseElement.AudioTimeOffset

Parts

ISpeechPhraseElement
The	owning	object.

Long
Set:	(This	property	is	read-only)
Get:	A	Long	variable	that	gets	the	value	of	the	property.

Example
Use	of	the	ISpeechPhraseElement	is	demonstrated	in	a	code
example	at	the	end	of	this	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseElement

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

DisplayAttributes	Property

The	DisplayAttributes	property	returns	a	set	of
SpeechDisplayAttributes	constants	defining	information	about
the	display	of	this	word.

Syntax

Set: (This	property	is	read-only)
Get: SpeechDisplayAttributes	=

ISpeechPhraseElement.DisplayAttributes

Parts

ISpeechPhraseElement
The	owning	object.

SpeechDisplayAttributes
Set:	(This	property	is	read-only)
Get:	One	or	more	SpeechDisplayAttributes	constants	that
gets	the	value	of	the	property.

Example
Use	of	the	ISpeechPhraseElement	is	demonstrated	in	a	code
example	at	the	end	of	this	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseElement

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

DisplayText	Property

The	DisplayText	property	returns	the	display	text	for	the
element	with	normalization	of	numbers,	currency	values,	and
ordinals	(for	example,	displays	"$2"	for	the	spoken	words	"two
dollars").
The	LexicalForm	property	displays	text	without	normalization	of
numbers,	currency	values,	and	ordinals.

Syntax

Set: (This	property	is	read-only)
Get: String	=	ISpeechPhraseElement.DisplayText

Parts

ISpeechPhraseElement
The	owning	object.

String
Set:	(This	property	is	read-only)
Get:	A	String	variable	that	gets	the	value	of	the	property.

Example
Use	of	the	ISpeechPhraseElement	is	demonstrated	in	a	code
example	at	the	end	of	this	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseElement

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

EngineConfidence	Property

The	EngineConfidence	property	returns	the	confidence	score
computed	by	the	speech	recognition	(SR)	engine.

Syntax

Set: (This	property	is	read-only)
Get: Single	=	ISpeechPhraseElement.EngineConfidence

Parts

ISpeechPhraseElement
The	owning	object.

Single
Set:	(This	property	is	read-only)
Get:	A	Single	variable	that	gets	the	value	of	the	property.

Remarks
The	value	range	is	engine	dependent.	It	can	be	used	to	optimize
an	application's	performance	with	a	specific	engine.	Using	this
value	will	improve	the	application	with	a	particular	speech
engine,	but	it	is	likely	to	make	it	worse	with	other	engines	and
should	be	used	with	care.	This	value	is	more	useful	with
speaker-independent	engines	because	it	allows	a	large	corpus	of
recorded	usage	to	correctly	optimize	the	overall	accuracy	of	the
application.

Example
Use	of	the	ISpeechPhraseElement	is	demonstrated	in	a	code

example	at	the	end	of	this	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseElement

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

LexicalForm	Property

The	LexicalForm	property	returns	the	lexical	form	of	the
element	without	normalization	of	numbers,	currency	values,	and
ordinals	(for	example,	displays	"two	dollars"	for	the	spoken
words	"two	dollars").
The	DisplayText	property	displays	text	with	normalization	of
numbers,	currency	values,	and	ordinals.

Syntax

Set: (This	property	is	read-only)
Get: String	=	ISpeechPhraseElement.LexicalForm

Parts

ISpeechPhraseElement
The	owning	object.

String
Set:	(This	property	is	read-only)
Get:	A	String	variable	that	gets	the	value	of	the	property.

Example
Use	of	the	ISpeechPhraseElement	is	demonstrated	in	a	code
example	at	the	end	of	this	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseElement

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Pronunciation	Property

The	Pronunciation	property	returns	the	pronunciation	of	the
element	as	phonemes.

Syntax

Set: (This	property	is	read-only)
Get: Variant	=	ISpeechPhraseElement.Pronunciation

Parts

ISpeechPhraseElement
The	owning	object.

Variant
Set:	(This	property	is	read-only)
Get:	A	Variant	variable	that	gets	the	value	of	the	property.

Example
Use	of	the	ISpeechPhraseElement	is	demonstrated	in	a	code
example	at	the	end	of	this	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseElement

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

RequiredConfidence	Property

The	RequiredConfidence	property	returns	the	required
confidence	for	this	element.
This	value	is	an	enumerated	value	of	type
SpeechEngineConfidence.	See	Confidence	Scoring	and	Rejection
in	SAPI	Speech	Recognition	Engine	Guide	for	additional	details.
Required	confidence	values	are	specified	in	grammars.
Preceding	a	word	with	'-'	sets	its	RequiredConfidence	as	low
(SECLowConfidence);	preceding	a	word	with	'+'	sets	its
RequiredConfidence	as	high	(SECHighConfidence)

Syntax

Set: (This	property	is	read-only)
Get: SpeechEngineConfidence	=

ISpeechPhraseElement.RequiredConfidence

Parts

ISpeechPhraseElement
The	owning	object.

SpeechEngineConfidence
Set:	(This	property	is	read-only)
Get:	A	SpeechEngineConfidence	variable	that	gets	the	value
of	the	property.

Example
Use	of	the	ISpeechPhraseElement	is	demonstrated	in	a	code

example	at	the	end	of	this	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseElement

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

RetainedSizeBytes	Property

The	RetainedSizeBytes	property	returns	the	size,	in	bytes,	of
the	element	in	the	retained	audio	stream.
If	the	current	RecoContext	is	retaining	audio,	the	value	of
RetainedSizeBytes	will	be	equal	to	the	value	of	AudioSizeBytes.
If	the	current	RecoContext	is	not	retaining	audio,
RetainedSizeBytes	will	be	zero.

Syntax

Set: (This	property	is	read-only)
Get: Long	=	ISpeechPhraseElement.RetainedSizeBytes

Parts

ISpeechPhraseElement
The	owning	object.

Long
Set:	(This	property	is	read-only)
Get:	A	Long	variable	that	gets	the	value	of	the	property.

Example
Use	of	the	ISpeechPhraseElement	is	demonstrated	in	a	code
example	at	the	end	of	this	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseElement

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

RetainedStreamOffset	Property

The	RetainedStreamOffset	property	returns	the	starting
offset	of	the	element,	in	bytes,	relative	to	the	start	of	the	phrase
in	the	retained	audio	stream.
If	the	current	RecoContext	is	retaining	audio,	the	value	of
RetainedStreamOffset	will	be	equal	to	the	value	of
AudioStreamOffset.	If	the	current	RecoContext	is	not	retaining
audio,	RetainedStreamOffset	will	be	zero.

Syntax

Set: (This	property	is	read-only)
Get: Long	=	ISpeechPhraseElement.RetainedStreamOffset

Parts

ISpeechPhraseElement
The	owning	object.

Long
Set:	(This	property	is	read-only)
Get:	A	Long	variable	that	gets	the	value	of	the	property.

Example
Use	of	the	ISpeechPhraseElement	is	demonstrated	in	a	code
example	at	the	end	of	this	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseElement

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpeechPhraseElement	Code	Example

The	following	Visual	Basic	form	code	displays	the	properties	of
the	ISpeechPhraseElement	object.	The	ISpeechPhraseElement
object	is	contained	in	the	ISpeechRecoResult	object	returned	by
a	RecoContext's	Recognition	event.	This	code	shows	two	ways
to	create	a	recognition	result	object:
Perform	recognition	directly
Emulate	recognition	using	the	EmulateRecognition	method

The	example	also	demonstrates	the	use	of	the	SpFileStream
object	in	conjunction	with	the	AudioOutputStream	of	the	voice
and	the	AudioInputStream	of	the	recognizer.
To	run	this	code,	create	a	form	with	the	following	controls:
Two	command	buttons	called	Command1	and	Command2
A	list	box	called	List1

A	text	box	called	Text1
Paste	this	code	into	the	Declarations	section	of	the	form.
The	code	will	set	the	command	button	captions	as	shown	in	the
illustration.
The	Form_Load	procedure	creates	a	recognizer,	a	recognition
context,	and	a	grammar	object.	It	loads	the	grammar	object
with	sol.xml,	the	Solitaire	grammar	from	the	SAPI	sample	code.
It	then	activates	the	command	and	control	(C	and	C)	and
dictation	components	of	the	grammar,	and	places	a	Solitaire
command	in	the	text	box.	Users	can	enter	whatever	text	they
like	in	the	text	box,	but	best	recognition	results	will	be	obtained
from	phrases	matching	the	rules	in	the	C	and	C	grammar;	for
example,	sentences	such	as	"Move	the	black	ten	to	the	jack	of
diamonds,"	or	"Play	the	red	queen."

The	command	button	captioned	Recognition	speaks	text	from
the	text	box	into	an	audio	file,	and	then	performs	speech
recognition	of	that	file.	The	command	button	captioned
EmulateRecognition	simply	calls	the	EmulateRecognition
method.
When	the	speech	recognition	(SR)	engine	has	completed
recognition,	it	generates	a	Recognition	Event	that	returns	an
ISpeechRecoResult	object.	The	Recognition	procedure
instantiates	each	ISpeechPhraseElement	in	the	result	object's
Elements	property	(a	collection	of	ISpeechPhraseElement
objects),	and	displays	selected	phrase	element	properties	in
columns	in	the	list	box.

AudioStreamOffset	and	AudioSizeBytes
The	first	two	columns	show	the	AudioStreamOffset	and
AudioSizeBytes	properties.	These	two	properties	indicate	the
boundaries	of	an	element	in	the	input	audio	stream.
AudioStreamOffset	points	to	the	beginning	of	the	element	and
AudioSizeBytes	is	the	element's	length.	The	sum	of	an
element's	AudioStreamOffset	and	AudioSizeBytes	is	the	same	as
the	AudioStreamOffset	of	the	next	element.
In	an	ISpeechPhraseElement	object	created	by	the
EmulateRecognition	method,	the	AudioStreamOffset	and
AudioSizeBytes	properties	are	zero.

AudioTimeOffset	and	AudioSizeTime
The	next	two	columns	are	the	AudioTimeOffset	and
AudioSizeTime	properties,	which	delimit	the	phrase	elements	in
100-nanosecond	units	of	time.	AudioTimeOffset	indicates	the
beginning	time	of	the	element,	and	AudioSizeTime	is	its	time
length.	The	sum	of	an	element's	AudioTimeOffset	and
AudioSizeTime	is	approximately	the	same	as	the
AudioTimeOffset	of	the	next	element.
In	an	ISpeechPhraseElement	object	created	by	the
EmulateRecognition	method,	the	AudioTimeOffset	and
AudioSizeTime	properties	are	zero.

DisplayAttributes
The	next	column	is	the	DisplayAttributes	property,	which	defines
how	the	text	of	the	element	is	displayed	relative	to	text	from
other	phrase	elements.	The	SpeechDisplayAttributes
enumeration	lists	the	possible	values	of	this	property.	All
elements	in	the	example	above	have	a	DisplayAttributes
property	of	two,	which	is	the	value	of	the
SDA_One_Trailing_Space	constant,	indicating	that	the	element
should	be	displayed	with	a	trailing	space.

EngineConfidence,	ActualConfidence,	and
RequiredConfidence
The	three	numbers	in	parentheses	are	the	three	property	values
involving	confidence	in	the	recognition	of	the	phrase	element.
The	first	of	these	is	the	EngineConfidence	property,	which
represents	the	SR	engine's	level	of	confidence	in	the
recognition.	The	ActualConfidence	property	reduces	the
EngineConfidence	to	one	of	three	confidence	levels:	low,	normal
or	high.	The	RequiredConfidence	property	specifies	the
confidence	level	that	the	ActualConfidence	property	must	equal
or	surpass.
In	an	ISpeechPhraseElement	object	created	by	the
EmulateRecognition	method,	the	EngineConfidence	and

RequiredConfidence	properties	are	zero.	If	the	emulated	phrase
matches	C	and	C	rules,	the	ActualConfidence	property	is	one;
otherwise	it	is	zero.

DisplayText	and	LexicalForm
The	DisplayText	property	is	the	next	column	in	the	example.	It
consists	of	the	recognized	text	of	the	phrase	element,	with
normalization	of	numbers,	ordinals,	and	currency	values.	The
LexicalForm	property,	not	shown	in	this	example,	returns	the
same	text,	but	without	normalization.

Pronunciation
To	the	right	of	the	DisplayText	is	data	from	the	Pronunciation
property.	Each	number	represents	a	phoneme,	and	the
phonemes	represent	the	pronunciation	of	the	phrase	element.
In	an	ISpeechPhraseElement	object	created	by	the
EmulateRecognition	method,	the	Pronunciation	property	is
Empty.

RetainedStreamOffset	and	RetainedSizeBytes
The	RetainedStreamOffset	and	RetainedSizeBytes	properties	are
not	shown	in	this	example.	If	the	current	recognition	context	is
retaining	audio	data,	then	RetainedStreamOffset	and
RetainedSizeBytes	are	the	same	as	AudioStreamOffset	and
AudioSizeBytes,	respectively;	otherwise,	both	properties	are
zero.
In	an	ISpeechPhraseElement	object	created	by	the
EmulateRecognition	method,	the	RetainedStreamOffset	and
RetainedSizeBytes	properties	are	zero.

Option	Explicit

Const	WAVEFILENAME	=	"C:\ISpeechPhraseElement.wav"

Dim	R	As	SpeechLib.SpInprocRecognizer

Dim	G	As	SpeechLib.ISpeechRecoGrammar

Dim	F	As	SpeechLib.SpFileStream

Dim	E	As	SpeechLib.ISpeechPhraseElement

Dim	V	As	SpeechLib.SpVoice

Dim	WithEvents	C	As	SpeechLib.SpInProcRecoContext

Private	Sub	Command1_Click()

				

				List1.Clear

				Call	SpeakToFile(Text1.Text,	WAVEFILENAME)

				F.Open	WAVEFILENAME

				Set	R.AudioInputStream	=	F

End	Sub

Private	Sub	Command2_Click()

				List1.Clear

				C.Recognizer.EmulateRecognition	Text1.Text

End	Sub

Private	Sub	Form_Load()

				'	Create	Recognizer,	RecoContext,	Grammar,	and	Voice

				Set	R	=	New	SpInprocRecognizer

				Set	C	=	R.CreateRecoContext

				Set	G	=	C.CreateGrammar(16)

				Set	V	=	New	SpVoice

				Set	V.Voice	=	V.GetVoices("gender=male").Item(0)

				

				'	Load	Grammar	with	solitaire	XML,	set	active

				G.CmdLoadFromFile	"c:\sol.xml",	SLOStatic

				G.CmdSetRuleIdState	0,	SGDSActive															'Set	C	&	C	active

				G.DictationSetState	SGDSActive																		'Set	Dictation	active

				Text1.Text	=	"play	the	eight	of	clubs"

				Command1.Caption	=	"&Recognition;"

				Command2.Caption	=	"&EmulateRecognition;"

								

End	Sub

Private	Sub	SpeakToFile(ByVal	strText	As	String,	ByVal	strFName	As	String)

				Set	F	=	New	SpFileStream																				'Create	stream

				F.Open	strFName,	SSFMCreateForWrite,	True			'Open	as	the	filename

				Set	V.AudioOutputStream	=	F																	'Set	voice	output	to	file

				V.Speak	strText,	SVSFIsXML																		'Speak	synchronously

				F.Close																																					'Close	file

End	Sub

Private	Function	PhonesToString(ByVal	arrV	As	Variant)	As	String

				Dim	ii	As	Integer,	S	As	String

				If	IsEmpty(arrV)	Then

								PhonesToString	=	""

				Else

								For	ii	=	0	To	UBound(arrV)

												If	Len(S)	Then

																S	=	S	&	","	&	arrV(ii)

												Else

																S	=	arrV(ii)

												End	If

								Next	ii

								PhonesToString	=	S

				End	If

End	Function

Private	Sub	C_Recognition(ByVal	StreamNumber	As	Long,	_

																				ByVal	StreamPosition	As	Variant,	_

																				ByVal	RecognitionType	As	SpeechLib.SpeechRecognitionType,	_

																				ByVal	Result	As	SpeechLib.ISpeechRecoResult)

				Dim	X	As	String

				Dim	T	As	String

				Dim	A1	As	Long,	A2	As	Long

				Dim	T1	As	Long,	T2	As	Long

				Dim	C1	As	Single,	C2	As	Integer,	C3	As	Integer

				

				For	Each	E	In	Result.PhraseInfo.Elements

				

								'Audio	data

								A1	=	E.AudioStreamOffset

								A2	=	E.AudioSizeBytes

								X	=	Format(A1,	"000000")	&	"	"	&	Format(A2,	"000000")	&	"		"

								

								'Time	data

								T1	=	E.AudioTimeOffset

								T2	=	E.AudioSizeTime

								X	=	X	&	Format(T1,	"000000000")	&	"	"	&	Format(T2,	"000000000")	&	"		"

								

								'Display	attributes

								X	=	X	&	Format(E.DisplayAttributes)	&	"	"

								

								'Confidences

								C1	=	E.EngineConfidence

								C2	=	E.ActualConfidence

								C3	=	E.RequiredConfidence

								T	=	"("	&	Format(C1)	&	"	"	&	Format(C2)	&	"	"	&	Format(C3)	&	")"

								X	=	X	&	Left(T	&	"									",	14)	

				

								'Text	and	pronunciation

								X	=	X	&	Left(E.DisplayText	&	"														",	14)

								X	=	X	&	PhonesToString(E.Pronunciation)

								

								List1.AddItem	X

				Next

				

End	Sub

Private	Sub	C_EndStream(ByVal	StreamNumber	As	Long,	_

																				ByVal	StreamPosition	As	Variant,	_

																				ByVal	StreamReleased	As	Boolean)

																				

				'Recognition	uses	the	Filestream,	EmulateReco	does	not

				If	ActiveControl.Caption	=	"&Recognition;"	Then	F.Close

				List1.AddItem	"<EndStream>"

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpeechPhraseElements
The	ISpeechPhraseElements	automation	interface	represents
a	collection	of	ISpeechPhraseElement	objects.

Automation	Interface	Elements
The	ISpeechPhraseElements	automation	interface	contains	the
following	elements:

Properties Description
Count	Property Returns	the	number	of	objects	in	the

collection.

Methods Description
Item	Method Returns	a	member	of	the	collection

by	its	index.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	ISpeechPhraseElements

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Count	Property

The	Count	property	returns	the	number	of
ISpeechPhraseElement	objects	in	the	ISpeechPhraseElements
object.

Syntax

Set: (This	property	is	read-only)
Get: Long	=	ISpeechPhraseElements.Count

Parts

ISpeechPhraseElements
The	owning	object.

Long
Set:	(This	property	is	read-only)
Get:	A	Long	variable	that	gets	the	count.

Remarks
The	ISpeechPhraseElements	object	is	a	collection	of
ISpeechPhraseElement	objects.	As	a	collection,	it	provides
access	to	any	or	all	of	its	members	through	certain	methods	and
properties	common	to	all	collection	objects.	The	Count	property
is	one	of	these	common	properties.

Example
See	the	SpObjectToken	Example	for	a	complete	example	and
additional	details.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	ISpeechPhraseElements

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Item	Method

The	Item	method	returns	a	member	of	the
ISpeechPhraseElements	collection	by	its	index.
ISpeechPhraseElements.Item(

					Index	As	Long

)	As	ISpeechPhraseElement

Parameters

Index
Specifies	the	Index.

Return	Value
The	Item	method	returns	an	ISpeechPhraseElement	variable.

Remarks
The	ISpeechPhraseElements	object	is	a	collection	of
ISpeechPhraseElement	objects.	As	a	collection,	it	provides
access	to	any	or	all	of	its	members	through	certain	methods	and
properties	common	to	all	collection	objects.	The	Item	method	is
one	of	these	common	methods.

Example
See	the	SpObjectToken	Example	for	a	complete	example	and
additional	details.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpeechPhraseInfo
The	ISpeechPhraseInfo	automation	interface	contains
properties	detailing	phrase	elements.	This	includes	information
about	the	audio	streams,	start	and	stop	times	for	the	audio,	and
elements	contained	in	the	phrase.

Automation	Interface	Elements
The	ISpeechPhraseInfo	automation	interface	contains	the
following	elements:

Properties Description
AudioSizeBytes
Property

Returns	the	size	of	audio	data	in
bytes	for	this	phrase.

AudioSizeTime	Property Returns	the	length	of	phrase's	audio
in	100-nanosecond	units.

AudioStreamPosition
Property

Returns	the	start	time	in	the	audio
stream	for	the	phrase.

Elements	Property Returns	information	about	the
elements	of	the	phrase.

EngineId	Property Returns	a	string	containing	the	GUID
of	the	engine	recognizing	this
phrase.

EnginePrivateData
Property

Returns	the	private	data	of	the
engine.

GrammarId	Property Returns	the	ID	of	the	grammar	that
contains	the	top-level	rule	used	to
recognize	the	phrase.

LanguageId	Property Returns	the	language	ID	for	the
phrase	elements.

Properties	Property Returns	the	root	property	for	the
result.

Replacements	Property Returns	possible	text	replacements.
RetainedSizeBytes
Property

Returns	the	size	in	bytes	of	the
retained	audio	data	for	the	audio
format	specified.

Rule	Property Retrieves	information	about	the	top-
level	rule	that	was	used	to	recognize
the	phrase.

StartTime	Property Returns	the	start	time	for	start	of
phrase	audio	in	absolute	time.

Methods Description
GetDisplayAttributes
Method

Returns	the	display	attribute	for	the
text.

GetText	Method Returns	the	text	from	a	recognition
as	a	single	string.

SaveToMemory	Method Saves	the	entire	recognition	result	to
memory.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseInfo

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

AudioSizeBytes	Property

The	AudioSizeBytes	property	returns	the	size	of	audio	data	in
bytes	for	this	phrase.
AudioSizeBytes	is	directly	tied	to	the	input	audio	format.
AudioSizeBytes	increases	as	the	quality	of	the	format	increases
(and	in	doing	so,	requires	more	bytes).	However,	it	is	possible
that	the	application	needs	the	retained	audio	in	a	format
different	from	the	input	audio	stream	(perhaps	for	lower-quality
persistence,	for	example).	If	an	application	scales	the	audio,
RetainedAudioSizeBytes	will	change,	but	not	AudioSizeBytes.

Syntax

Set: (This	property	is	read-only)
Get: Long	=	ISpeechPhraseInfo.AudioSizeBytes

Parts

ISpeechPhraseInfo
The	owning	object.

Long
Set:	(This	property	is	read-only)
Get:	A	Long	variable	containing	the	size	of	audio	data.

Example
The	following	code	snippet	assumes	a	valid	recognition,
RecoResult,	although	it	still	checks	for	validity.	AudioSizeBytes
displays	in	a	message	box.	A	short	phrase	such	as	"Now	is	the

time"	might	be	56,000	bytes.
If	Not	RecoResult	Is	Nothing	Then

	 Dim	rp	As	ISpeechPhraseInfo

	 Set	rp	=	RecoResult.PhraseInfo

	

	 MsgBox	"AudioTime:	"	&	rp.AudioSizeBytes

End	If

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseInfo

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

AudioSizeTime	Property

The	AudioSizeTime	property	returns	the	phrase	audio	length	in
100-nanosecond	units.

Syntax

Set: (This	property	is	read-only)
Get: Long	=	ISpeechPhraseInfo.AudioSizeTime

Parts

ISpeechPhraseInfo
The	owning	object.

Long
Set:	(This	property	is	read-only)
Get:	A	Long	variable	containing	the	phrase	audio	length.

Example
The	following	code	snippet	assumes	a	valid	recognition,
RecoResult,	although	it	still	checks	for	validity.	AudioSizeTime
displays	in	a	message	box.	A	short	phrase	such	as	"Now	is	the
time"	might	be	26,000,000	100-nanosecond	units,	or	about	2.6
seconds.
If	Not	RecoResult	Is	Nothing	Then

	 Dim	rp	As	ISpeechPhraseInfo

	 Set	rp	=	RecoResult.PhraseInfo

	

	 MsgBox	"AudioTime:	"	&	rp.AudioSizeTime

End	If

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseInfo

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

AudioStreamPosition	Property

The	AudioStreamPosition	property	returns	the	start	time	in
the	audio	stream	for	the	phrase.

Syntax

Set: (This	property	is	read-only)
Get: Variant	=	ISpeechPhraseInfo.AudioStreamPosition

Parts

ISpeechPhraseInfo
The	owning	object.

Variant
Set:	(This	property	is	read-only)
Get:	A	Variant	variable	that	gets	the	property.

Example
The	following	code	snippet	assumes	a	valid	recognition,
RecoResult,	although	it	still	checks	for	validity.
AudioStreamPosition	displays	in	a	message	box.	A	short	delay	in
speaking	may	yield	an	AudioStreamPosition	of	10,000,	for
example.
If	Not	RecoResult	Is	Nothing	Then

	 Dim	rp	As	ISpeechPhraseInfo

	 Set	rp	=	RecoResult.PhraseInfo

	

	 MsgBox	"AudioTime:	"	&	rp.AudioStreamPosition

End	If

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseInfo

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Elements	Property

The	Elements	property	returns	information	about	the	elements
of	the	phrase.

Syntax

Set: (This	property	is	read-only)
Get: ISpeechPhraseElements	=	ISpeechPhraseInfo.Elements

Parts

ISpeechPhraseInfo
The	owning	object.

ISpeechPhraseElements
Set:	(This	property	is	read-only)
Get:	An	ISpeechPhraseElements	variable	containing	the
phrase	elements.

Example
The	following	code	snippet	assumes	a	valid	recognition,
RecoResult,	although	it	still	checks	for	validity.	This	prepares	a
string	containing	the	number	of	elements	from	the	recognized
phrase	and	lists	each	word.	Words	are	added	in	both	the
DisplayText	and	LexicalForm.
Dim	res	As	String

Dim	i	As	Long

res	=	"Phrase	Elements:	Count="	&	RecoResult.Elements.Count	&	vbCr

For	i	=	0	To	RecoResult.Elements.Count	-	1

	 res	=	res	&	RecoResult.Elements(i).AudioStreamOffset	&	_

	 "	Text:"	&	RecoResult.Elements(i).DisplayText	&	"	Lex:"	&	RecoResult.Elements(i).LexicalForm

Next

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseInfo

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

EngineId	Property

The	EngineId	property	returns	a	string	containing	the	GUID	of
the	engine	recognizing	this	phrase.

Syntax

Set: (This	property	is	read-only)
Get: String	=	ISpeechPhraseInfo.EngineId

Parts

ISpeechPhraseInfo
The	owning	object.

String
Set:	(This	property	is	read-only)
Get:	A	String	variable	that	gets	the	property.

Example
The	following	code	snippet	assumes	a	valid	recognition
RecoResult,	although	it	still	checks	for	validity.	The	GUID	of	the
speech	recognition	engine	processing	this	recognition	is
returned	in	the	String	srEngineID.
Dim	srEngineID	As	String

srEngineID	=	RecoResult.EngineId()

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseInfo

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

EnginePrivateData	Property

The	EnginePrivateData	property	returns	the	private	data	of
the	engine.
Private	engine	data	represents	a	proprietary	engine	that	returns
non-standard	information	with	the	recognition.	The	format	of	the
data	is	defined	by	the	manufacturer.	Not	every	recognition	will
contain	private	data.	If	there	is	no	private	data,	the	return	value
will	be	empty	or	NULL.

Syntax

Set: (This	property	is	read-only)
Get: Variant	=	ISpeechPhraseInfo.EnginePrivateData

Parts

ISpeechPhraseInfo
The	owning	object.

Variant
Set:	(This	property	is	read-only)
Get:	A	Variant	variable	containing	the	private	data	returned
by	the	engine.

Example
The	following	code	snippet	assumes	a	valid	recognition
RecoResult,	although	it	still	checks	for	validity.	A	String	is	used
as	the	return	value	but	check	the	manufacturer's	documentation
for	additional	information.

Dim	privateData	As	String

privateData	=	RecoResult.EnginePrivateData()

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	ISpeechPhraseInfo

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

GetDisplayAttributes	Method

The	GetDisplayAttributes	method	returns	the	display
attribute	for	the	text.
The	display	attribute	is	the	padding	of	white	spaces	before	or
after	each	word	as	determined	by	the	engine.	The	speech
recognition	engine	determines	this	value	for	the	language	used.
Western	scripts	commonly	use	spaces	between	words,	although
eastern	languages	may	not.	Default	is	SDA_One_Trailing_Space.

ISpeechPhraseInfo.GetDisplayAttributes(

					[StartElement	As	Long	=	0],

					[Elements	As	Long	=	-1],

					[UseReplacements	As	Boolean	=	True]

)	As	SpeechDisplayAttributes

Parameters

StartElement
[Optional]	Specifies	the	word	position	from	which	to	start.	If
omitted,	the	first	word	is	used.

Elements
[Optional]	Specifies	the	number	of	words	retrieve	to
determine	spacing.	Default	value	is	-1	indicating	all	words
are	retrieved.

UseReplacements
[Optional]	Indicates	if	replacement	text	should	be	used.	An
example	of	a	text	replacement	is	speaking	the	sentence
"write	new	check	for	twenty	dollars."	The	retrieved

replacement	text	is	"write	new	check	for	$20."	Default	value
is	True.	For	more	information	on	replacements,	see	the	SR
Engine	White	Paper.

Return	Value
The	GetDisplayAttributes	method	returns	a
SpeechDisplayAttributes	variable.

Example
In	the	following	example,	a	successful	recognition	occurs.	The
variable	theAttributes	contains	the	white	space	attributes	for
the	entire	string.	The	attributes	of	a	portion	of	the	string	could
be	chosen	as	shown	in	the	subsequent	example	call.	The	code	is
inside	a	recognition	event.
Private	Sub	RC_Recognition(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	RecognitionType	As	SpeechLib.SpeechRecognitionType,	ByVal	Result	As	SpeechLib.ISpeechRecoResult)

	 Set	RecoResult	=	Result

	 Dim	theAttributes	as	SpeechDisplayAttributes

	 theAttributes	=	RecoResult.PhraseInfo.GetDisplayAttributes

	 theAttributes	=	RecoResult.PhraseInfo.GetDisplayAttributes(2,	1,	True)

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	ISpeechPhraseInfo

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

GetText	Method

The	GetText	method	returns	the	text	from	a	recognition	as	a
single	string.

ISpeechPhraseInfo.GetText(

					[StartElement	As	Long	=	0],

					[Elements	As	Long	=	-1],

					[UseReplacements	As	Boolean	=	True]

)	As	String

Parameters

StartElement
[Optional]	Specifies	the	word	position	from	which	to	start.	If
omitted,	the	first	word	is	used.

Elements
[Optional]	Specifies	the	number	of	words	to	retrieve.	Default
value	is	-1	indicating	all	words	are	retrieved.

UseReplacements
[Optional]	Indicates	if	replacement	text	should	be	used.	An
example	of	a	text	replacement	is	speaking	the	sentence
"write	new	check	for	twenty	dollars."	The	retrieved
replacement	text	is	"write	new	check	for	$20."	Default	value
is	True.	See	the	SR	Engine	White	Paper	for	more	information
on	replacements.

Return	Value
The	GetText	method	returns	a	String	containing	the	words	in	the

phrase.

Remarks
GetText	may	be	used	only	after	a	recognition	attempt,	whether
successful	(SRERecognition),	or	unsuccessful
(SREFalseRecognition).

Example
In	the	following	example,	a	successful	recognition	occurs	and
displays	in	a	text	box.	The	code	is	inside	a	recognition	event.
Private	Sub	RC_Recognition(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	RecognitionType	As	SpeechLib.SpeechRecognitionType,	ByVal	Result	As	SpeechLib.ISpeechRecoResult)

	 Set	RecoResult	=	Result

	 TextBox1.Text	=	RecoResult.PhraseInfo.GetText

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseInfo

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

GrammarId	Property

The	GrammarId	property	returns	the	ID	of	the	grammar	that
contains	the	top-level	rule	used	to	recognize	the	phrase.
The	grammar	ID	is	set	with
ISpeechRecoContext.CreateGrammar.

Syntax

Set: (This	property	is	read-only)
Get: Variant	=	ISpeechPhraseInfo.GrammarId

Parts

ISpeechPhraseInfo
The	owning	object.

Variant
Set:	(This	property	is	read-only)
Get:	A	Variant	variable	that	gets	the	property.

Example
The	following	code	snippet	assumes	a	valid	recognition
RecoResult,	although	it	still	checks	for	validity.	GrammarId	is	the
file	containing	the	current	match,	in	this	case	"10."
Public	g	As	ISpeechRecoGrammar

Set	g	=	RecoResult.CreateGrammar(10)

'Speech	processing	code	here

If	Not	RecoResult	Is	Nothing	Then

	 Dim	rp	As	ISpeechPhraseInfo

	 Set	rp	=	RecoResult.PhraseInfo

	 MsgBox	"Grammar	ID:	"	&	rp.GrammarId

End	If

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseInfo

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

LanguageId	Property

The	LanguageId	property	returns	the	language	ID	for	the
phrase	elements.

Syntax

Set: (This	property	is	read-only)
Get: Long	=	ISpeechPhraseInfo.LanguageId

Parts

ISpeechPhraseInfo
The	owning	object.

Long
Set:	(This	property	is	read-only)
Get:	A	Long	variable	that	gets	the	property.

Remarks
This	is	the	same	as	the	Win32	Language	Identifier	(LANGID).

Example
The	following	code	snippet	assumes	a	valid	recognition,
RecoResult,	although	it	still	checks	for	validity.	Standard	English
has	a	LANGID	decimal	value	of	1033.
If	Not	RecoResult	Is	Nothing	Then

	 Dim	rp	As	ISpeechPhraseInfo

	 Set	rp	=	RecoResult.PhraseInfo

	 MsgBox	"LANGID:	"	&	rp.LanguageId

End	If

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseInfo

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Properties	Property

The	Properties	property	returns	the	root	property	for	the
result.

Syntax

Set: (This	property	is	read-only)
Get: ISpeechPhraseProperties	=	ISpeechPhraseInfo.Properties

Parts

ISpeechPhraseInfo
The	owning	object.

ISpeechPhraseProperties
Set:	(This	property	is	read-only)
Get:	An	ISpeechPhraseProperties	interface	for	the	properties.

Remarks
If	the	recognition	result	does	not	have	an	associated	property,
the	Property	will	have	a	value	of	Nothing.

Example
The	following	code	snippet	assumes	a	valid	recognition
RecoResult,	although	it	still	checks	for	validity.	The	sample
displays	a	message	box	for	each	Name	and	Value	of	available
properties.
Dim	rp	As	ISpeechPhraseInfo

Set	rp	=	RecoResult.PhraseInfo

	

Dim	i	As	Long

If	Not	rp.Properties	Is	Nothing	Then

			For	i	=	0	To	rp.Properties.Count

						MsgBox	Result.PhraseInfo.Properties.Item(i).Name

						MsgBox	Result.PhraseInfo.Properties.Item(i).Value

			Next	i

End	If

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseInfo

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Replacements	Property

The	Replacements	property	returns	possible	text
replacements.

Syntax

Set: (This	property	is	read-only)
Get: ISpeechPhraseReplacements	=

ISpeechPhraseInfo.Replacements

Parts

ISpeechPhraseInfo
The	owning	object.

ISpeechPhraseReplacements
Set:	(This	property	is	read-only)
Get:	An	ISpeechPhraseReplacements	interface	for	the
replacements.

Example
The	following	code	snippet	assumes	a	valid	recognition
RecoResult,	although	it	still	checks	for	validity.	The	sample
displays	a	message	box	for	each	item	in	the	replacement	list.
Dim	pi	As	ISpeechPhraseInfo

Dim	rep	As	ISpeechPhraseReplacement

Set	pi	=	RecoResult.PhraseInfo

For	Each	rep	In	pi.Replacements.Count

				MsgBox	rep.Text

Next

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseInfo

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

RetainedSizeBytes	Property

The	RetainedSizeBytes	property	returns	the	size	in	bytes	of
the	retained	audio	data	for	the	audio	format	specified.
It	is	possible	that	the	application	needs	the	retained	audio	in	a
format	different	from	the	input	audio	stream;	therefore,
RetainedAudioSizeBytes	and	AudioSizeBytes	could	be	different
as	well.	In	this	case,	the	scaled	(or	converted)	retained	audio
will	be	RetainedAudioSizeBytes	in	length	and	AudioSizeBytes
will	be	the	size	of	the	original	stream	length.	AudioSizeBytes
changes	only	if	the	quality	of	the	original	format	of	the	stream
changes,	and	in	doing	so,	requiring	more	or	fewer	bytes.

Syntax

Set: (This	property	is	read-only)
Get: Long	=	ISpeechPhraseInfo.RetainedSizeBytes

Parts

ISpeechPhraseInfo
The	owning	object.

Long
Set:	(This	property	is	read-only)
Get:	A	Long	variable	that	gets	the	property.

Example
The	following	code	snippet	assumes	a	valid	recognition
RecoResult,	although	it	still	checks	for	validity.	In	the	sample

below,	RetainedSizeBytes	will	be	the	same	as	AudioSizeBytes
since	no	scaling	takes	place.
If	Not	RecoResult	Is	Nothing	Then

	 Dim	rp	As	ISpeechPhraseInfo

	 Set	rp	=	RecoResult.PhraseInfo

	 MsgBox	"RetainedSizeBytes:	"	&	rp.RetainedSizeBytes

End	If

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseInfo

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Rule	Property

The	Rule	property	retrieves	information	about	the	top-level	rule
that	was	used	to	recognize	the	phrase.

Syntax

Set: (This	property	is	read-only)
Get: ISpeechPhraseRule	=	ISpeechPhraseInfo.Rule

Parts

ISpeechPhraseInfo
The	owning	object.

ISpeechPhraseRule
Set:	(This	property	is	read-only)
Get:	An	ISpeechPhraseRule	variable	that	gets	the	property.

Example
The	following	code	snippet	assumes	a	valid	recognition,
RecoResult,	although	it	still	checks	for	validity.	In	the	sample
below,	a	few	of	the	rule	properties	are	retrieved.
If	Not	RecoResult	Is	Nothing	Then

	 Dim	rp	As	ISpeechPhraseInfo

	 Set	rp	=	RecoResult.PhraseInfo

	

	 Dim	ruleName	As	String

	 ruleName	=	rp.rule.Name

	

	 Dim	ruleID,	firstElement,	numberOfElements	As	Long

	 ruleID	=	rp.rule.Id

	 firstElement	=	rp.rule.FirstElement

	 numberOfElements	=	rp.rule.NumberOfElements

End	If

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	ISpeechPhraseInfo

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SaveToMemory	Method

The	SaveToMemory	method	saves	the	phrase	information	from
a	recognition	result	to	memory.
The	phrase	may	be	recalled	at	a	later	time.	To	retrieve	the
phrase	information	from	memory	use
SpPhraseInfoBuilder.RestorePhraseFromMemory.

ISpeechPhraseInfo.SaveToMemory()	As	Variant

Parameters

None

Return	Value
The	SaveToMemory	method	returns	a	Variant	containing	a
pointer	to	saved	phrase.

Example
The	following	example	demonstrates	storing	and	retrieving	the
phrase	portion	of	a	recognition	result.	An	example	of	late
binding	for	creating	the	PhraseBuilder	object	is	also
demonstrated.
The	sample	assumes	a	valid	RecoResult.

'Save	the	phrase	first

Dim	thePhrase	As	Variant

thePhrase	=	RecoResult.PhraseInfo.SaveToMemory

'Retrieve	the	phrase

Dim	PhraseBuilder	As	Object

Set	PhraseBuilder	=	CreateObject("SAPI.SpPhraseInfoBuilder")

				

Dim	PhraseInfo	As	ISpeechPhraseInfo

Set	PhraseInfo	=	PhraseBuilder.RestorePhraseFromMemory(thePhrase)

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseInfo

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

StartTime	Property

The	StartTime	property	returns	the	start	time	for	the	start	of
phrase	audio	in	absolute	time.
The	time	is	expressed	in	Universal	Coordinated	Time.

Syntax

Set: (This	property	is	read-only)
Get: Variant	=	ISpeechPhraseInfo.StartTime

Parts

ISpeechPhraseInfo
The	owning	object.

Variant
Set:	(This	property	is	read-only)
Get:	A	Variant	variable	that	gets	the	property.

Example
The	following	code	snippet	assumes	a	valid	recognition,
RecoResult,	although	it	still	checks	for	validity.
If	Not	RecoResult	Is	Nothing	Then

	 Dim	rp	As	ISpeechPhraseInfo

	 Set	rp	=	RecoResult.PhraseInfo

	 MsgBox	"StartTime:	"	&	rp.StartTime

End	If

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpeechPhraseProperties
The	ISpeechPhraseProperties	automation	interface
represents	a	collection	of	ISpeechPhraseProperty	objects.

Automation	Interface	Elements
The	ISpeechPhraseProperties	automation	interface	contains	the
following	elements:

Properties Description
Count	Property Returns	the	number	of	objects	in	the

collection.

Methods Description
Item	Method Returns	a	member	of	the	collection

by	its	index.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseProperties

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Count	Property

The	Count	property	returns	the	number	of
ISpeechPhraseProperty	objects	in	the	ISpeechPhraseProperties
object.

Syntax

Set: (This	property	is	read-only)
Get: Long	=	ISpeechPhraseProperties.Count

Parts

ISpeechPhraseProperties
The	owning	object.

Long
Set:	(This	property	is	read-only)
Get:	A	Long	variable	that	gets	the	Count	property.

Remarks
The	ISpeechPhraseProperties	object	is	a	collection	of
ISpeechPhraseProperty	objects.	As	a	collection,	it	provides
access	to	any	or	all	of	its	members	through	certain	methods	and
properties	common	to	all	collection	objects.	The	Count	property
is	one	of	these	common	properties.

Example
See	the	SpObjectToken	Example	for	a	complete	example	and
additional	details.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseProperties

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Item	Method

The	Item	method	returns	a	member	of	the
ISpeechPhraseProperties	collection	by	its	index.
ISpeechPhraseProperties.Item(

					Index	As	Long

)	As	ISpeechPhraseProperty

Parameters

Index
Specifies	the	Index.

Return	Value
The	Item	method	returns	an	ISpeechPhraseProperty	variable.

Remarks
The	ISpeechPhraseProperties	object	is	a	collection	of
ISpeechPhraseProperty	objects.	As	a	collection,	it	provides
access	to	any	or	all	of	its	members	through	certain	methods	and
properties	common	to	all	collection	objects.	The	Item	method	is
one	of	these	common	methods.

Example
See	the	SpObjectToken	Example	for	a	complete	example	and
additional	details.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpeechPhraseProperty
The	ISpeechPhraseProperty	automation	interface	stores	the
information	for	a	semantic	property.

Automation	Interface	Elements
The	ISpeechPhraseProperty	automation	interface	contains	the
following	elements:

Properties Description
Children	Property Returns	a	collection	of	the	property's

child	objects.
Confidence	Property Returns	the	confidence	value	for	this

semantic	property	computed	by	SAPI
or	the	speech	recognition	engine.

EngineConfidence
Property

Returns	the	confidence	value	for	this
semantic	property	computed	by	the
speech	recognition	(SR)	engine.

FirstElement	Property Returns	the	offset	of	the	first	spoken
element	spanned	by	this	property.

Id	Property Returns	the	ID	of	the	semantic
property.

Name	Property Returns	the	name	of	the	semantic
property.

NumberOfElements
Property

Returns	the	number	of	spoken
elements	spanned	by	this	property.

Parent	Property Specifies	the	parent	of	the	semantic
property.

Value	Property Returns	the	value	of	the	semantic
property.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseProperty

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Children	Property

The	Children	property	returns	a	collection	of	the	property's
child	objects.
A	child	is	a	rule	within	a	rule.	That	is,	within	a	command	and
control	grammar,	rules	are	explicitly	defined	with	the	Rule	tag.
To	allow	greater	flexibility,	it	is	possible	to	allow	another	rule	to
be	used	within	one	by	declaring	it	with	the	RuleRef	tag.	In	this
case,	the	second	rule	referenced	by	the	RuleRef	tag	could	be	a
child.	Child	rules	are	defined	with	the	RULE	tag,	and	referenced
with	the	RULEREF	tag.	Properties	can	be	added	to	rulerefs	and
phrases	within	the	rule	with	the	PROPNAME	attribute	If	a	child
rule	is	present,	the	original	rule	containing	the	child	is	the
parent.	In	this	way,	a	rule	can	contain	several	levels	of	children
and	child	rules	can	have	several	levels	of	parents.
An	example	of	this	is	sol.xml	for	the	card	game	solitaire.	A	user
may	play	a	card	such	as	"move	the	red	five	on	the	black	seven."
Examine	sol.xml;	the	rule	is	set	up	so	that	both	the	color	of	the
card	as	well	as	the	rank	are	referenced	within	the	MoveCard
rule.	In	this	case,	a	successful	recognition	would	have	two	top
parent	nodes:	From	and	To.	In	turn,	each	parent	node	would
have	two	children:	color	and	rank.	This	way,	an	application
could	sort	through	the	rules	and	know	exactly	which	card	moves
(the	From	node)	and	which	card	receives	it	(the	To	node).	The
rule	name	would	still	be	MoveCard.
In	contrast,	the	more	simple	command	"play	the	red	ace,"	has
only	two	nodes	(color	and	rank).	Neither	node	is	considered	to
be	either	parent	or	child	since	the	rule	PlayCard	has	no
PROPNAME	tag.	The	nodes	are	peers	of	each	other.

Syntax

Set: (This	property	is	read-only)

Get: ISpeechPhraseProperties	=
ISpeechPhraseProperty.Children

Parts

ISpeechPhraseProperty
The	owning	object.

ISpeechPhraseProperties
Set:	(This	property	is	read-only)
Get:	An	ISpeechPhraseProperties	object	returning	the	value
of	the	property.

Example
The	following	code	demonstrates	the	Children	property	from	a
command	and	control	recognition.
To	run	this	code,	create	a	form	with	the	following	controls:
Two	labels	called	Label1	and	Label2

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	and	activates	a	command	and
control	grammar.	The	grammar	file	sol.xml	is	the	solitaire
grammar	provided	with	the	SDK.	The	path	listed	is	for	a
standard	SDK	install	and	may	be	changed	as	needed.
The	display	indicates	that	the	rules	match.	If	any	are	child	rules,
then	the	child	name	is	also	displayed.	For	instance,	if	"move	the
red	five	on	the	black	six,"	has	been	recognized,	the	application
displays	the	recognized	text	in	Label1.	Label2	displays	the	rule
name	and	any	associated	children	under	it.	If	the	rule	has	no
children,	Label2	displays	"No	Children."`
Option	Explicit

Public	WithEvents	RC	As	SpSharedRecoContext

Public	myGrammar	As	ISpeechRecoGrammar

Private	Sub	Form_Load()

				Set	RC	=	New	SpSharedRecoContext

				

				Set	myGrammar	=	RC.CreateGrammar

				myGrammar.CmdLoadFromFile	"C:\Program	Files\Microsoft	Speech	SDK	5.1\Samples\Common\sol.xml",	SLODynamic

				myGrammar.CmdSetRuleIdState	0,	SGDSActive

End	Sub

Private	Sub	RC_FalseRecognition(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	Result	As	SpeechLib.ISpeechRecoResult)

				Beep

				Label1.Caption	=	"(no	recognition)"

				Label2.Caption	=	""

End	Sub

Private	Sub	RC_Recognition(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	RecognitionType	As	SpeechLib.SpeechRecognitionType,	ByVal	Result	As	SpeechLib.ISpeechRecoResult)

				Dim	i,	j,	theFirstElement,	theNumberOfElements	As	Long

				Dim	theString	As	String

				

				Label1.Caption	=	Result.PhraseInfo.GetText	&	vbCrLf

				

				Label2.Caption	=	"Rule	Properties	Found	:	"	&	Result.PhraseInfo.Properties.Count	&	vbCrLf

				For	i	=	0	To	Result.PhraseInfo.Properties.Count	-	1

								'Property	name	used

								Label2.Caption	=	Label2.Caption	&	_

												"Rule	"	&	i	&	":	"	&	Result.PhraseInfo.Properties.Item(i).Name	&	vbCrLf

								

								If	Not	Result.PhraseInfo.Properties.Item(i).Children	Is	Nothing	Then

												Label2.Caption	=	Label2.Caption	&	_

																"			Children	=	"	&	Result.PhraseInfo.Properties.Item(i).Children.Count	&	vbCrLf

												

												For	j	=	0	To	Result.PhraseInfo.Properties.Item(i).Children.Count	-	1

																Label2.Caption	=	Label2.Caption	&	_

																				"						Rule	=	"	&	Result.PhraseInfo.Properties.Item(i).Children.Item(j).Name	&	vbCrLf

												Next

								Else

												Label2.Caption	=	Label2.Caption	&	"			No	Children"	&	vbCrLf

								End	If

				Next

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseProperty

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Confidence	Property

The	Confidence	property	returns	the	confidence	value	for	this
semantic	property	computed	by	SAPI	or	the	speech	recognition
engine.
It	is	an	enumerated	value	of	type	SpeechEngineConfidence.	See
Confidence	Scoring	and	Rejection	in	SAPI	Speech	Recognition
Engine	Guide	for	additional	details.

Syntax

Set: (This	property	is	read-only)
Get: SpeechEngineConfidence	=

ISpeechPhraseProperty.Confidence

Parts

ISpeechPhraseProperty
The	owning	object.

SpeechEngineConfidence
Set:	(This	property	is	read-only)
Get:	A	SpeechEngineConfidence	variable	that	gets	the
property.

Remarks
It	is	possible	to	have	different	confidences	for	each	rule	name.
This	would	be	the	result	of	pronunciation,	background	noise,	or
accent.

Example
The	following	code	demonstrates	getting	the	Confidence
property	from	a	command	and	control	recognition.	One	label
displays	the	recognized	text	and	the	other	label	displays	the
rule	name	activated	as	well	as	the	confidence	associated	with
that	recognition.
To	run	this	code,	create	a	form	with	the	following	controls:
Two	labels	called	Label1	and	Label2

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	and	activates	a	command	and
control	grammar.	The	grammar	file	sol.xml	is	the	solitaire
grammar	with	the	SDK.	The	path	listed	is	for	a	standard	SDK
install	and	may	be	changed	as	needed.
If	"play	the	red	five"	has	been	recognized,	the	application
displays	the	recognized	text	in	Label1.	Label2	displays	the	rule
name	and	the	confidence	for	that	recognition.	In	this	case,	the
rules	would	be	"color"	and	"rank"	along	with	their	confidence
values.
Option	Explicit

Public	WithEvents	RC	As	SpSharedRecoContext

Public	myGrammar	As	ISpeechRecoGrammar

Private	Sub	Form_Load()

				Set	RC	=	New	SpSharedRecoContext

				

				Set	myGrammar	=	RC.CreateGrammar

				myGrammar.CmdLoadFromFile	"C:\Program	Files\Microsoft	Speech	SDK	5.1\Samples\Common\sol.xml",	SLODynamic

				myGrammar.CmdSetRuleIdState	0,	SGDSActive

End	Sub

Private	Sub	RC_FalseRecognition(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	Result	As	SpeechLib.ISpeechRecoResult)

				Beep

				Label1.Caption	=	"(no	recognition)"

				Label2.Caption	=	""

End	Sub

Private	Sub	RC_Recognition(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	RecognitionType	As	SpeechLib.SpeechRecognitionType,	ByVal	Result	As	SpeechLib.ISpeechRecoResult)

				Dim	i	As	Long

				

				Label1.Caption	=	Result.PhraseInfo.GetText	&	vbCrLf

				

				Label2.Caption	=	"Rule	Properties	Found	:	"	&	Result.PhraseInfo.Properties.Count	&	vbCrLf

				For	i	=	0	To	Result.PhraseInfo.Properties.Count	-	1

								Label2.Caption	=	Label2.Caption	&	Result.PhraseInfo.Properties.Item(i).Name

								Label2.Caption	=	Label2.Caption	&	"	Confidence	:	"	&	Result.PhraseInfo.Properties.Item(i).Confidence	&	vbCrLf

				Next

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseProperty

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

EngineConfidence	Property

The	EngineConfidence	property	returns	the	confidence	value
for	this	semantic	property	computed	by	the	speech	recognition
(SR)	engine.
The	value	range	is	specific	to	each	SR	engine	and	not	standard
across	multiple	SR	engines.	See	Confidence	Scoring	and
Rejection	in	SAPI	Speech	Recognition	Engine	Guide	for
additional	details.

Syntax

Set: (This	property	is	read-only)
Get: Single	=	ISpeechPhraseProperty.EngineConfidence

Parts

ISpeechPhraseProperty
The	owning	object.

Single
Set:	(This	property	is	read-only)
Get:	A	Single	variable	that	gets	the	property.

Example
The	following	code	demonstrates	retrieving	the	Engine
Confidence	property	from	a	command	and	control	recognition.
One	label	displays	the	recognized	text	and	the	other	label
displays	the	rule	name	activated	along	with	the	engine
confidence	associated	with	that	recognition.

To	run	this	code,	create	a	form	with	the	following	controls:
Two	labels	called	Label1	and	Label2

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	and	activates	a	command	and
control	grammar.	The	grammar	file	sol.xml	is	the	solitaire
grammar	provided	with	the	SDK.	The	path	listed	is	for	a
standard	SDK	install	and	may	be	changed	as	needed.
If	"play	the	red	five"	has	been	recognized,	the	application
displays	the	recognized	text	in	Label1.	Label2	displays	the	rule
name	and	the	confidence	for	that	recognition.	In	this	case,	the
rules	would	be	"color"	and	"rank"	along	with	their	Engine
confidence	values.
Option	Explicit

Public	WithEvents	RC	As	SpSharedRecoContext

Public	myGrammar	As	ISpeechRecoGrammar

Private	Sub	Form_Load()

				Set	RC	=	New	SpSharedRecoContext

				

				Set	myGrammar	=	RC.CreateGrammar

				myGrammar.CmdLoadFromFile	"C:\Program	Files\Microsoft	Speech	SDK	5.1\Samples\Common\sol.xml",	SLODynamic

				myGrammar.CmdSetRuleIdState	0,	SGDSActive

End	Sub

Private	Sub	RC_FalseRecognition(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	Result	As	SpeechLib.ISpeechRecoResult)

				Beep

				Label1.Caption	=	"(no	recognition)"

				Label2.Caption	=	""

End	Sub

Private	Sub	RC_Recognition(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	RecognitionType	As	SpeechLib.SpeechRecognitionType,	ByVal	Result	As	SpeechLib.ISpeechRecoResult)

				Dim	i	As	Long

				

				Label1.Caption	=	Result.PhraseInfo.GetText	&	vbCrLf

				

				Label2.Caption	=	"Rule	Properties	Found	:	"	&	Result.PhraseInfo.Properties.Count	&	vbCrLf

				For	i	=	0	To	Result.PhraseInfo.Properties.Count	-	1

								Label2.Caption	=	Label2.Caption	&	Result.PhraseInfo.Properties.Item(i).Name

								Label2.Caption	=	Label2.Caption	&	"	Engine	Confidence	:	"	&	Result.PhraseInfo.Properties.Item(i).EngineConfidence	&	vbCrLf

				Next

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseProperty

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

FirstElement	Property

The	FirstElement	property	returns	the	offset	of	the	first	spoken
element	spanned	by	this	property.

Syntax

Set: (This	property	is	read-only)
Get: Long	=	ISpeechPhraseProperty.FirstElement

Parts

ISpeechPhraseProperty
The	owning	object.

Long
Set:	(This	property	is	read-only)
Get:	A	Long	variable	that	gets	the	property.

Example
The	following	code	demonstrates	retrieving	the	Name	property
from	a	command	and	control	recognition.
To	run	this	code,	create	a	form	with	the	following	controls:
Two	labels	called	Label1	and	Label2

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	and	activates	a	dictation
grammar.	The	grammar	file	sol.xml	is	the	solitaire	grammar
provided	with	the	SDK.	The	path	listed	is	for	a	standard	SDK

install	and	may	be	changed	as	needed.
If	"play	the	red	five"	has	been	recognized,	the	application	will
display	the	recognized	text	in	label1.	Label2	displays	the	names
of	the	two	properties	used	from	the	grammar	along	with	the
actual	word	or	phrase	which	activated	the	rule.	In	this	case,	the
rules	would	be	"color=red"	and	"rank=five."	The	number	of
elements	in	the	phrase	matching	the	property	is	displayed	in
parenthesis.	It	is	possible	for	more	than	one	word	to	activate	a
rule	for	a	property.	In	the	case	of	sol.xml,	only	single	words	are
used.	However,	if	the	file	were	changed,	for	example,	so	that
the	ColorRed	definition	becomes	"red	card"	instead	of	just	"red",
then	the	expression	"play	the	red	card	five"	would	display	two
elements	for	the	property.
Option	Explicit

Public	WithEvents	RC	As	SpSharedRecoContext

Public	myGrammar	As	ISpeechRecoGrammar

Private	Sub	Form_Load()

				Set	RC	=	New	SpSharedRecoContext

				

				Set	myGrammar	=	RC.CreateGrammar

				myGrammar.CmdLoadFromFile	"C:\Program	Files\Microsoft	Speech	SDK	5.1\Samples\Common\sol.xml",	SLODynamic

				myGrammar.CmdSetRuleIdState	0,	SGDSActive

End	Sub

Private	Sub	RC_FalseRecognition(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	Result	As	SpeechLib.ISpeechRecoResult)

				Beep

				Label1.Caption	=	"(no	recognition)"

				Label2.Caption	=	""

End	Sub

Private	Sub	RC_Recognition(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	RecognitionType	As	SpeechLib.SpeechRecognitionType,	ByVal	Result	As	SpeechLib.ISpeechRecoResult)

				Dim	i,	j,	theFirstElement,	theNumberOfElements	As	Long

				Dim	theString	As	String

				

				Label1.Caption	=	Result.PhraseInfo.GetText	&	vbCrLf

				

				Label2.Caption	=	"Rule	Properties	Found	:	"	&	Result.PhraseInfo.Properties.Count	&	vbCrLf

				For	i	=	0	To	Result.PhraseInfo.Properties.Count	-	1

								Label2.Caption	=	Label2.Caption	&	_

												"Rules	Name:	"	&	Result.PhraseInfo.Properties.Item(i).Name

												

								theFirstElement	=	Result.PhraseInfo.Properties.Item(i).FirstElement

								theNumberOfElements	=	Result.PhraseInfo.Properties.Item(i).NumberOfElements

								

								theString	=	""

								For	j	=	0	To	theNumberOfElements	-	1

												theString	=	theString	&	Result.PhraseInfo.Elements(theFirstElement	+	j).DisplayText

												theString	=	theString	&	"	"

								Next

								

								Label2.Caption	=	Label2.Caption	&	_

												"	=	"	&	theString	&	"	("	&	theNumberOfElements	&	")"	&	vbCrLf

				Next

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseProperty

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Id	Property

The	Id	property	returns	the	ID	of	the	semantic	property.
The	ID	is	the	numeric	identifier	associated	with	the
ISpeechPhraseProperty.Name	property.	This	property	must	be
explicitly	marked	with	the	PROPID	label.

Syntax

Set: (This	property	is	read-only)
Get: Long	=	ISpeechPhraseProperty.Id

Parts

ISpeechPhraseProperty
The	owning	object.

Long
Set:	(This	property	is	read-only)
Get:	A	Long	variable	that	gets	the	property.

Remarks
Either	Name	or	Id	(if	available)	may	be	used	to	identify	the	rule
invoked.	Some	languages,	such	as	Visual	Basic,	can	use	strings
in	a	Case	Select	statement.	Therefore,	the	rule	Name	may	be
used	directly	in	the	Case	Select	statement.	Other	languages,
such	as	C/C++	can	only	use	numeric	values	in	switch
statements.	In	this	case,	the	Id	is	more	appropriate.

Example

See	the	example	for	ISpeechPhraseProperty.Name	for	more
information.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseProperty

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Name	Property

The	Name	property	returns	the	name	of	the	semantic	property.
The	Name	is	the	name	of	the	semantic	property	from	the
command	and	control	grammar.	This	property	must	be	explicitly
marked	with	the	PROPNAME	label.	This	is	often	associated	with
an	ISpeechPhraseProperty.ID	which	is	a	numeric	identifier	and	is
assigned	by	the	PROPID	label.

Syntax

Set: (This	property	is	read-only)
Get: String	=	ISpeechPhraseProperty.Name

Parts

ISpeechPhraseProperty
The	owning	object.

String
Set:	(This	property	is	read-only)
Get:	A	String	variable	that	gets	the	property.

Remarks
Either	Name	or	Id	(if	available)	may	be	used	to	identify	the	rule
invoked.	Some	languages,	such	as	Visual	Basic,	can	use	strings
in	a	Case	Select	statement.	Therefore,	the	rule	Name	may	be
used	directly	in	the	Case	Select	statement.	Other	languages,
such	as	C/C++	can	only	use	numeric	values	in	switch
statements.	In	this	case,	the	Id	is	more	appropriate.

Example
The	following	code	demonstrates	getting	the	Name	and	Id
property	from	a	command	and	control	recognition.
To	run	this	code,	create	a	form	with	the	following	controls:
Two	labels	called	Label1	and	Label2

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	and	activates	a	command	and
control	grammar.	The	grammar	file	sol.xml	is	the	solitaire
grammar	provided	with	the	SDK.	The	path	listed	is	for	a
standard	SDK	install	and	may	be	changed	as	needed.
If	"play	the	red	five"	has	been	recognized,	the	application
displays	the	recognized	text	in	Label1.	Label2	displays	the
additional	information	about	the	grammar	properties.	In	this
case,	the	rules	would	be	"color"	and	"rank"	along	with	their
numeric	values.

Option	Explicit

Public	WithEvents	RC	As	SpSharedRecoContext

Public	myGrammar	As	ISpeechRecoGrammar

Private	Sub	Form_Load()

				Set	RC	=	New	SpSharedRecoContext

				

				Set	myGrammar	=	RC.CreateGrammar

				myGrammar.CmdLoadFromFile	"C:\Program	Files\Microsoft	Speech	SDK	5.1\Samples\Common\sol.xml",	SLODynamic

				myGrammar.CmdSetRuleIdState	0,	SGDSActive

End	Sub

Private	Sub	RC_FalseRecognition(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	Result	As	SpeechLib.ISpeechRecoResult)

				Beep

				Label1.Caption	=	"(no	recognition)"

				Label2.Caption	=	""

End	Sub

Private	Sub	RC_Recognition(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	RecognitionType	As	SpeechLib.SpeechRecognitionType,	ByVal	Result	As	SpeechLib.ISpeechRecoResult)

				Dim	i,	j,	theFirstElement,	theNumberOfElements	As	Long

				Dim	theString	As	String

				

				Label1.Caption	=	Result.PhraseInfo.GetText	&	vbCrLf

				

				Label2.Caption	=	"Rule	Properties	Found	:	"	&	Result.PhraseInfo.Properties.Count	&	vbCrLf

				For	i	=	0	To	Result.PhraseInfo.Properties.Count	-	1

								

								'Property	name	used

								Label2.Caption	=	Label2.Caption	&	_

												"Property	Name:	"	&	Result.PhraseInfo.Properties.Item(i).Name

												

									'Property	Id	used

								Label2.Caption	=	Label2.Caption	&	_

												"	("	&	Result.PhraseInfo.Properties.Item(i).Id	&	")"

												

								theFirstElement	=	Result.PhraseInfo.Properties.Item(i).FirstElement

								theNumberOfElements	=	Result.PhraseInfo.Properties.Item(i).NumberOfElements

								

								theString	=	""

								For	j	=	0	To	theNumberOfElements	-	1

												theString	=	theString	&	Result.PhraseInfo.Elements(theFirstElement	+	j).DisplayText

												theString	=	theString	&	"	"

								Next

								

								Label2.Caption	=	Label2.Caption	&	_

												"	=	"	&	theString	&	"	("	&	theNumberOfElements	&	")"	&	vbCrLf

				Next

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseProperty

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

NumberOfElements	Property

The	NumberOfElements	property	returns	the	number	of
spoken	elements	spanned	by	this	property.

Syntax

Set: (This	property	is	read-only)
Get: Long	=	ISpeechPhraseProperty.NumberOfElements

Parts

ISpeechPhraseProperty
The	owning	object.

Long
Set:	(This	property	is	read-only)
Get:	A	Long	variable	that	gets	the	property.

Example
See	the	example	for	ISpeechPhraseProperty.FirstElement	for	a
complete	example.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseProperty

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Parent	Property

The	Parent	property	specifies	the	parent	of	the	semantic
property.
A	parent	is	a	rule	containing	a	child.	A	child	is	a	rule	within	a
rule.	That	is,	within	a	command	and	control	grammar,	rules	are
explicitly	defined	with	the	Rule	tag.	To	allow	greater	flexibility,	it
is	possible	to	allow	another	rule	to	be	used	within	one	by
declaring	it	with	the	RuleRef	tag.	In	this	case,	the	second	rule
being	referenced	by	the	RuleRef	tag	could	be	a	child.	Child	rules
are	defined	with	the	RULE	tag,	and	referenced	with	the	RULEREF
tag.	In	this	way,	a	rule	can	contain	several	levels	of	children	and
children	rules	can	have	several	levels	of	parents.
An	example	of	this	is	sol.xml	for	the	card	game	solitaire.	A	user
may	play	a	card	such	as	"move	the	red	five	on	the	black	seven."
Examine	sol.xml;	the	rule	is	set	up	so	that	both	the	color	of	the
card	as	well	as	the	rank	are	referenced	within	the	MoveCard
rule.	In	this	case,	a	successful	recognition	would	have	two	top
parent	nodes:	From	and	To.	In	turn,	each	parent	node	would
have	two	children:	color	and	rank.	This	way,	an	application
could	sort	through	the	rules	and	know	exactly	which	card	moves
(the	From	node)	and	which	card	receives	it	(the	To	node).	The
rule	name	would	still	be	MoveCard.
In	contrast,	the	more	simple	command	"play	the	red	ace,"	has
only	two	nodes	(color	and	rank).	Neither	node	is	considered	a
parent	nor	child	since	since	the	rule	PlayCard	does	not	have
PROPNAME	tag.	Both	nodes	are	peers	of	each	other.

Syntax

Set: (This	property	is	read-only)
Get: ISpeechPhraseProperty	=	ISpeechPhraseProperty.Parent

Parts

ISpeechPhraseProperty
The	owning	object.

ISpeechPhraseProperty
Set:	(This	property	is	read-only)
Get:	An	ISpeechPhraseProperty	variable	that	gets	the
property.

Example
See	ISpeechPhraseProperty.Children	for	a	complete	code
sample.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseProperty

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Value	Property

The	Value	property	returns	the	value	of	the	semantic	property.
The	Value	property	is	the	value	of	a	semantic	property	set	in
either	the	VAL	or	VALSTR	attributes	in	the	grammar.	Each
terminal	node	can	have	a	value	associated	with	it	assigned	by
the	VAL	(for	numeric	values)	or	VALSTR	(for	string)	attributes.
This	value	may	be	used	for	processing	the	rule.
For	instance,	in	the	sol.xml	grammar	for	the	card	game	solitaire
used	in	the	example	below,	the	actual	rank	of	the	card	(e.g.,
ace,	five,	king)	is	the	terminal	node	since	no	other	word	or
phrase	is	needed	to	complete	the	rule	for	rank.	Each	word	as	an
associated	value	to	assist	with	processing	the	rule.	In	the	case
of	card	rank,	ace	is	assigned	1,	two	is	assigned	2,	and	so	on,
through	the	king	which	is	assigned	a	value	of	13.	Additionally,	a
common	alternate	for	king	is	included	as	emperor	which	also
has	a	value	of	13.

Syntax

Set: (This	property	is	read-only)
Get: Variant	=	ISpeechPhraseProperty.Value

Parts

ISpeechPhraseProperty
The	owning	object.

Variant
Set:	(This	property	is	read-only)

Get:	A	Variant	variable	that	gets	the	property.

Example
The	following	code	demonstrates	retrieving	the	value	property
from	a	command	and	control	recognition.	The	application
displays	the	recognized	text	and	also	makes	a	subjective
statement	about	the	worth	of	the	card	played	based	on	rank.	A
low	card	(which	includes	the	ace	in	this	solitaire	game),	displays
"You	played	a	low	card,"	for	instance.
To	run	this	code,	create	a	form	with	the	following	controls:
Two	labels	called	Label1	and	Label2

Paste	this	code	into	the	Declarations	section	of	the	form.
The	grammar	file	sol.xml	is	the	solitaire	grammar	provided	with
the	SDK.	The	path	listed	is	for	a	standard	SDK	install	and	may
be	changed	as	needed.
Option	Explicit

Public	WithEvents	RC	As	SpSharedRecoContext

Public	myGrammar	As	ISpeechRecoGrammar

Private	Sub	Form_Load()

				Set	RC	=	New	SpSharedRecoContext

				

				Set	myGrammar	=	RC.CreateGrammar

				myGrammar.CmdLoadFromFile	"C:\Program	Files\Microsoft	Speech	SDK	5.1\Samples\Common\sol.xml",	SLODynamic

				myGrammar.CmdSetRuleIdState	0,	SGDSActive

End	Sub

Private	Sub	RC_FalseRecognition(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	Result	As	SpeechLib.ISpeechRecoResult)

				Beep

				Label1.Caption	=	"(no	recognition)"

				Label2.Caption	=	""

End	Sub

Private	Sub	RC_Recognition(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	RecognitionType	As	SpeechLib.SpeechRecognitionType,	ByVal	Result	As	SpeechLib.ISpeechRecoResult)

				Dim	i	As	Long

				

				Label1.Caption	=	Result.PhraseInfo.GetText	&	vbCrLf

				

				Label2.Caption	=	"Rule	Properties	Found	:	"	&	Result.PhraseInfo.Properties.Count	&	vbCrLf

				For	i	=	0	To	Result.PhraseInfo.Properties.Count	-	1

				

								If	Result.PhraseInfo.Properties.Item(i).Name	=	"rank"	Then

								

												Select	Case	Result.PhraseInfo.Properties.Item(i).Value

												Case	Is	<	5

																Label2.Caption	=	"You	played	a	low	card"

												Case	Is	<	9

																Label2.Caption	=	"You	played	a	mediocre	card"

												Case	Else

																Label2.Caption	=	"You	played	a	good	card"

												End	Select

												

								End	If

				

				Next

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpeechPhraseReplacement
The	ISpeechPhraseReplacement	automation	interface
specifies	a	replacement,	or	text	normalization,	of	one	or	more
spoken	words	in	a	recognition	result.
For	example,	the	spoken	words	"twenty	three"	might	be
replaced	by	the	replacement	text	"23."
Recognition	results	are	returned	in	an	ISpeechRecoResult,	which
contains	an	ISpeechPhraseInfo	object.	The	ISpeechPhraseInfo
has	two	properties	which	are	closely	related.	Its	Elements
property	is	a	collection	of	ISpeechPhraseElement	objects;	its
Replacements	property	is	a	collection	of
ISpeechPhraseReplacement	objects.	An
ISpeechPhraseReplacement	object	is	related	to	and	dependent
on	the	phrase	elements	in	the	recognition	result	which	contains
it.
Use	of	the	ISpeechPhraseReplacement	is	demonstrated	in	a
code	example	at	the	end	of	this	section.

Automation	Interface	Elements
The	ISpeechPhraseReplacement	automation	interface	contains
the	following	elements:

Properties Description
DisplayAttributes
Property

Returns	a	set	of
SpeechDisplayAttributes	constants
specifying	information	about	the
display	of	this	word.

FirstElement	Property Returns	the	offset	of	the	first	spoken
element	to	be	replaced.

NumberOfElements
Property

Returns	the	number	of	spoken
elements	to	replaced.

Text	Property Returns	the	text	of	the	replacement.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseReplacement

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

DisplayAttributes	Property

The	DisplayAttributes	property	returns	a	set	of
SpeechDisplayAttributes	constants	specifying	information	about
the	display	of	this	word.

Syntax

Set: (This	property	is	read-only)
Get: SpeechDisplayAttributes	=

ISpeechPhraseReplacement.DisplayAttributes

Parts

ISpeechPhraseReplacement
The	owning	object.

SpeechDisplayAttributes
Set:	(This	property	is	read-only)
Get:	One	or	more	SpeechDisplayAttributes	constants
representing	the	value	of	the	property.

Example
Use	of	the	DisplayAttributes	property	is	demonstrated	in	a	code
example	at	the	end	of	this	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseReplacement

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

FirstElement	Property

The	FirstElement	property	returns	the	index	of	the	first	phrase
element	to	be	replaced.
The	phrase	elements	replaced	are	contained	in	the	same
recognition	result	that	contains	the	phrase	replacement.

Syntax

Set: (This	property	is	read-only)
Get: Long	=	ISpeechPhraseReplacement.FirstElement

Parts

ISpeechPhraseReplacement
The	owning	object.

Long
Set:	(This	property	is	read-only)
Get:	A	Long	variable	that	gets	the	property.

Example
Use	of	the	FirstElement	property	is	demonstrated	in	a	code
example	at	the	end	of	this	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseReplacement

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

NumberOfElements	Property

The	NumberOfElements	property	returns	the	number	of
elements	to	replaced.
The	phrase	elements	replaced	are	contained	in	the	same
recognition	result	that	contains	the	phrase	replacement.

Syntax

Set: (This	property	is	read-only)
Get: Long	=	ISpeechPhraseReplacement.NumberOfElements

Parts

ISpeechPhraseReplacement
The	owning	object.

Long
Set:	(This	property	is	read-only)
Get:	A	Long	variable	that	gets	the	property.

Example
Use	of	the	NumberOfElements	property	is	demonstrated	in	a
code	example	at	the	end	of	this	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseReplacement

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Text	Property

The	Text	property	returns	the	text	of	the	replacement.
The	phrase	elements	replaced	are	contained	in	the	same
recognition	result	that	contains	the	phrase	replacement.	The
Text	property	is	the	replacement	for	the	number	of	phrase
elements	in	the	NumberOfElements	property,	beginning	with
the	element	specified	in	the	FirstElement	property.

Syntax

Set: (This	property	is	read-only)
Get: String	=	ISpeechPhraseReplacement.Text

Parts

ISpeechPhraseReplacement
The	owning	object.

String
Set:	(This	property	is	read-only)
Get:	A	String	variable	representing	the	value	of	the	property.

Example
Use	of	the	Text	property	is	demonstrated	in	a	code	example	at
the	end	of	this	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseReplacement

Example
The	following	Visual	Basic	form	code	demonstrates	the
ISpeechPhraseReplacement	interface	and	its	relation	to	the
ISpeechPhraseElement	interface.	To	run	this	code,	create	a	form
with	the	following	controls:
A	text	box	called	Text1

A	list	box	called	List1
Two	command	buttons	called	Command1	and	Command2

Paste	this	code	into	the	Declarations	section	of	the	form.
This	example	is	based	on	the	ISpeechPhraseElement	code
example.	Individual	phrase	elements	from	the	recognition	result
are	listed	in	the	list	box.	The	DisplayAttributes	and	DisplayText
properties	of	each	phrase	element	are	shown.	The
DisplayAttributes	and	Text	properties	of	the	phrase
replacements	are	displayed	next	to	the	elements	which	can	be
replaced	by	them.

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Option	Explicit

Const	WAVEFILENAME	=	"C:\ISpeechPhraseReplacement.wav"

Dim	R	As	SpeechLib.SpInprocRecognizer

Dim	G	As	SpeechLib.ISpeechRecoGrammar

Dim	F	As	SpeechLib.SpFileStream

Dim	E	As	SpeechLib.ISpeechPhraseElement

Dim	Rep	As	SpeechLib.ISpeechPhraseReplacement

Dim	Reps	As	SpeechLib.ISpeechPhraseReplacements

Dim	V	As	SpeechLib.SpVoice

Dim	V2	As	SpeechLib.SpVoice					'Plays	the	wave	file	back

Dim	WithEvents	C	As	SpeechLib.SpInProcRecoContext

Private	Sub	Command1_Click()

				

				List1.Clear

				Call	SpeakToFile(Text1.Text,	WAVEFILENAME)

				F.Open	WAVEFILENAME

				Set	R.AudioInputStream	=	F

End	Sub

Private	Sub	Command2_Click()

				List1.Clear

				C.Recognizer.EmulateRecognition	Text1.Text

End	Sub

Private	Sub	Form_Load()

				'	Create	Recognizer,	RecoContext,	Grammar,	and	Voice

				Set	R	=	New	SpInprocRecognizer

				Set	C	=	R.CreateRecoContext

				Set	G	=	C.CreateGrammar(16)

				Set	V	=	New	SpVoice

				Set	V.Voice	=	V.GetVoices("gender=male").Item(0)

				Set	V2	=	New	SpVoice

				

				'	Load	Grammar	with	solitaire	XML,	set	active

				G.CmdLoadFromFile	"c:\sol.xml",	SLOStatic

				G.CmdSetRuleIdState	0,	SGDSActive															'Set	C	&	C	active

				G.DictationSetState	SGDSActive																		'Set	Dictation	active

				Text1.Text	=	"I	spent	twenty-eight	dollars	on	route	sixty-six"

				Command1.Caption	=	"&Recognition;"

				Command2.Caption	=	"&EmulateRecognition;"

								

End	Sub

Private	Sub	SpeakToFile(ByVal	strText	As	String,	ByVal	strFName	As	String)

				Set	F	=	New	SpFileStream																				'Create	stream

				F.Open	strFName,	SSFMCreateForWrite,	True			'Open	as	the	filename

				Set	V.AudioOutputStream	=	F																	'Set	voice	output	to	file

				V.Speak	strText,	SVSFIsXML																		'Speak	synchronously

				F.Close																																					'Close	file

End	Sub

Private	Sub	C_Recognition(ByVal	StreamNumber	As	Long,	_

																				ByVal	StreamPosition	As	Variant,	_

																				ByVal	RecognitionType	As	SpeechLib.SpeechRecognitionType,	_

																				ByVal	Result	As	SpeechLib.ISpeechRecoResult)

				Dim	ECount	As	Integer			'Count	of	elements

				Dim	ii	As	Integer

				Dim	nn	As	Integer

				Dim	R1	As	Integer,	R2	As	Integer

				'Arrays	with	an	entry	for	every	PhraseElement

				Dim	arrElements()	As	String

				Dim	arrReplaces()	As	String

				ECount	=	Result.PhraseInfo.Elements.Count	-	1

				ReDim	arrElements(ECount)

				ReDim	arrReplaces(ECount)

				

				'Load	PhraseElements	into	an	array

				nn	=	0

				For	Each	E	In	Result.PhraseInfo.Elements

								arrElements(nn)	=	E.DisplayAttributes	&	"	"	&	E.DisplayText

								nn	=	nn	+	1

				Next

				

				'Load	PhraseReplacements	(if	any)	in	an	array

				Set	Reps	=	Result.PhraseInfo.Replacements

				If	Not	Reps	Is	Nothing	Then

								For	Each	Rep	In	Reps

								

												'Get	the	first	and	last	elements

												'replaced	by	this	Replacement

												R1	=	Rep.FirstElement

												R2	=	R1	+	Rep.NumberOfElements	-	1

												

												For	ii	=	0	To	ECount

																'Is	element	within	the	range	of	this	replacement?

																If	(ii	>=	R1)	And	(ii	<=	R2)	Then

																				arrReplaces(ii)	=	Rep.DisplayAttributes	&	"	"	&	Rep.Text

																End	If

												Next	ii

								Next

				End	If

				

				Dim	X	As	String

				For	ii	=	0	To	ECount

				

								'Get	PhraseElement	and	pad	with	blanks

								X	=	arrElements(ii)	&	String(15,	"	")

								X	=	Left(X,	15)

								

								'Put	element	index	in	front

								X	=	"Element"	&	Format(ii,	"00")	&	":	"	&	X

								

								'Put	Replacement	elements	at	the	end

								X	=	X	&	arrReplaces(ii)

								

								List1.AddItem	X

				Next	ii

End	Sub

Private	Sub	C_EndStream(ByVal	StreamNumber	As	Long,	_

																				ByVal	StreamPosition	As	Variant,	_

																				ByVal	StreamReleased	As	Boolean)

																				

				'Recognition	uses	the	Filestream,	EmulateReco	does	not

				If	ActiveControl.Caption	=	"&Recognition;"	Then

								F.Close

								DoEvents

								F.Open	WAVEFILENAME

								V2.SpeakStream	F

								F.Close

				End	If

				List1.AddItem	""

				

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpeechPhraseReplacements
The	ISpeechPhraseReplacements	automation	interface
represents	a	collection	of	ISpeechPhraseReplacement	objects.

Automation	Interface	Elements
The	ISpeechPhraseReplacements	automation	interface	contains
the	following	elements:

Properties Description
Count	Property Returns	the	number	of	objects	in	the

collection.

Methods Description
Item	Method Returns	a	member	of	the	collection

by	its	index.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseReplacements

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Count	Property

The	Count	property	returns	the	number	of
ISpeechPhraseReplacement	objects	in	the
ISpeechPhraseReplacements	object.

Syntax

Set: (This	property	is	read-only)
Get: Long	=	ISpeechPhraseReplacements.Count

Parts

ISpeechPhraseReplacements
The	owning	object.

Long
Set:	(This	property	is	read-only)
Get:	A	Long	variable	that	gets	the	Count	property.

Remarks
The	ISpeechPhraseReplacements	object	is	a	collection	of
ISpeechPhraseReplacement	objects.	As	a	collection,	it	provides
access	to	any	or	all	of	its	members	through	certain	methods	and
properties	common	to	all	collection	objects.	The	Count	property
is	one	of	these	common	properties.

Example
See	the	SpObjectToken	Example	for	a	complete	example	and
additional	details.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseReplacements

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Item	Method

The	Item	method	returns	a	member	of	the
ISpeechPhraseReplacement	collection	by	its	index.
ISpeechPhraseReplacements.Item(

					Index	As	Long

)	As	ISpeechPhraseReplacement

Parameters

Index
Specifies	the	Index.

Return	Value
The	Item	method	returns	an	ISpeechPhraseReplacement
variable.

Remarks
The	ISpeechPhraseReplacements	object	is	a	collection	of
ISpeechPhraseReplacement	objects.	As	a	collection,	it	provides
access	to	any	or	all	of	its	members	through	certain	methods	and
properties	common	to	all	collection	objects.	The	Item	method	is
one	of	these	common	methods.

Example
See	the	SpObjectToken	Example	for	a	complete	example	and
additional	details.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpeechPhraseRule
The	ISpeechPhraseRule	automation	interface	represents	the
part	of	a	recognition	result	that	returns	information	about	the
grammar	rule	that	produced	the	recognition.
An	ISpeechPhraseRule	object	variable	is	returned	by	the	Rule
property	of	the	ISpeechPhraseInfo	object	variable	within	a
recognition	result.
For	an	example	of	the	use	of	the	ISpeechPhraseRule	interface,
see	the	code	example	at	the	end	of	this	section.

Automation	Interface	Elements
The	ISpeechPhraseRule	automation	interface	contains	the
following	elements:

Properties Description
Children	Property Returns	an	ISpeechPhraseRules

collection	of	the	rule's	child	rules.
Confidence	Property Returns	the	confidence	for	the	rule

computed	by	SAPI.
EngineConfidence
Property

Returns	the	confidence	score	for	the
rule	computed	by	the	SR	engine.

FirstElement	Property Returns	the	audio	stream	offset	of
the	first	phrase	element	in	the
recognition	result	matched	by	the
rule.

Id	Property Returns	the	ID	of	the	phrase	rule.
Name	Property Returns	the	name	of	the	phrase	rule.
NumberOfElements
Property

Returns	the	number	of	phrase
elements	spanned	by	this	rule.

Parent	Property Returns	the	rule's	parent	rule.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseRule

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Children	Property

The	Children	property	returns	an	ISpeechPhraseRules	collection
of	the	rule's	child	rules.
If	the	rule	has	no	children,	its	Children	property	will	be	Nothing.

Syntax

Set: (This	property	is	read-only)
Get: ISpeechPhraseRules	=	ISpeechPhraseRule.Children

Parts

ISpeechPhraseRule
The	owning	object.

ISpeechPhraseRules
Set:	(This	property	is	read-only)
Get:	An	ISpeechPhraseRules	object	that	gets	the	collection	of
child	rules.

Example
For	an	example	of	the	use	of	the	Children	property,	see	the	code
example	at	the	end	of	this	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseRule

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Confidence	Property

The	Confidence	property	returns	the	confidence	for	this	rule
computed	by	SAPI.
It	is	an	enumerated	value	of	type	SpeechEngineConfidence.	See
Confidence	Scoring	and	Rejection	in	SAPI	Speech	Recognition
Engine	Guide	for	additional	details.

Syntax

Set: (This	property	is	read-only)
Get: SpeechEngineConfidence	=

ISpeechPhraseRule.Confidence

Parts

ISpeechPhraseRule
The	owning	object.

SpeechEngineConfidence
Set:	(This	property	is	read-only)
Get:	A	SpeechEngineConfidence	variable	that	gets	the
Confidence	property.

Example
For	an	example	of	the	use	of	the	Confidence	property,	see	the
code	example	at	the	end	of	this	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseRule

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

EngineConfidence	Property

The	EngineConfidence	property	returns	the	confidence	score
for	the	rule	computed	by	the	speech	recognition	(SR)	engine.
The	value	is	engine	dependent	and	not	standardized	across
multiple	SR	engines.

Syntax

Set: (This	property	is	read-only)
Get: Single	=	ISpeechPhraseRule.EngineConfidence

Parts

ISpeechPhraseRule
The	owning	object.

Single
Set:	(This	property	is	read-only)
Get:	A	Single	variable	that	gets	the	EngineConfidence.

Example
For	an	example	of	the	use	of	the	EngineConfidence	property,
see	the	code	example	at	the	end	of	this	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseRule

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

FirstElement	Property

The	FirstElement	property	returns	the	audio	stream	offset	of
the	first	phrase	element	in	the	recognition	result	matched	by
the	rule.

Syntax

Set: (This	property	is	read-only)
Get: Long	=	ISpeechPhraseRule.FirstElement

Parts

ISpeechPhraseRule
The	owning	object.

Long
Set:	(This	property	is	read-only)
Get:	A	Long	variable	that	gets	the	audio	stream	offset	of	the
first	element.

Example
For	an	example	of	the	use	of	the	FirstElement	property,	see	the
code	example	at	the	end	of	this	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseRule

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Id	Property

The	Id	property	returns	the	ID	of	the	phrase	rule.
In	the	Speech	Text	Grammar	Format,	this	data	is	specified	in	the
ID	attribute	of	the	RULE	element.

Syntax

Set: (This	property	is	read-only)
Get: Long	=	ISpeechPhraseRule.Id

Parts

ISpeechPhraseRule
The	owning	object.

Long
Set:	(This	property	is	read-only)
Get:	A	Long	variable	that	gets	the	ID	of	the	rule.

Example
For	an	example	of	the	use	of	the	Id	property,	see	the	code
example	at	the	end	of	this	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseRule

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Name	Property

The	Name	property	returns	the	name	of	the	phrase	rule.
In	the	Speech	Text	Grammar	Format,	this	data	is	specified	in	the
NAME	attribute	of	the	RULE	element.

Syntax

Set: (This	property	is	read-only)
Get: String	=	ISpeechPhraseRule.Name()

Parts

ISpeechPhraseRule
The	owning	object.

String
Set:	(This	property	is	read-only)
Get:	A	String	variable	that	gets	the	name	of	the	rule.

Example
For	an	example	of	the	use	of	the	Name	property,	see	the	code
example	at	the	end	of	this	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseRule

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

NumberOfElements	Property

The	NumberOfElements	property	returns	the	number	of
phrase	elements	spanned	by	this	rule.

Syntax

Set: (This	property	is	read-only)
Get: Long	=	ISpeechPhraseRule.NumberOfElements

Parts

ISpeechPhraseRule
The	owning	object.

Long
Set:	(This	property	is	read-only)
Get:	A	Long	variable	that	gets	the	number	of	elements.

Example
For	an	example	of	the	use	of	the	NumberOfElements	property,
see	the	code	example	at	the	end	of	this	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseRule

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Parent	Property

The	Parent	property	returns	the	rule's	parent	rule.
If	the	rule	is	a	top-level	rule,	it	has	no	parent,	and	its	Parent
property	is	Nothing.

Syntax

Set: (This	property	is	read-only)
Get: ISpeechPhraseRule	=	ISpeechPhraseRule.Parent

Parts

ISpeechPhraseRule
The	owning	object.

ISpeechPhraseRule
Set:	(This	property	is	read-only)
Get:	An	ISpeechPhraseRule	object	that	gets	the	parent	rule.

Example
For	an	example	of	the	use	of	the	Parent	property,	see	the	code
example	at	the	end	of	this	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

ISpeechPhraseRule	Code	Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	ISpeechPhraseRule	interface.	To	run	this	code,	create	a	form
with	the	following	controls:
A	text	box	called	Text1

A	list	box	called	List1

A	command	button	called	Command1
Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	a	recognizer,	a	recognition
context	and	a	grammar	object.	It	loads	the	grammar	object	with
the	Solitaire	grammar	sol.xml	and	activates	it.
The	Command1	procedure	speaks	the	text	in	the	text	box	into	a
file	for	recognition.	The	recognition	context's	Recognition	event
displays	selected	information	from	the	recognition	result.	It
displays	the	phrase	elements	first,	and	then	the	properties	of
the	ISpeechPhraseRule	object.
Note	that	both	the	Parent	and	Children	properties	may	have	a
value	of	Nothing.	Attempting	to	reference	them	in	this	state	will
cause	a	run-time	error.

Option	Explicit

Const	WAVEFILENAME	=	"C:\ISpeechPhraseElement.wav"

Dim	R	As	SpeechLib.SpInprocRecognizer

Dim	G	As	SpeechLib.ISpeechRecoGrammar

Dim	F	As	SpeechLib.SpFileStream

Dim	E	As	SpeechLib.ISpeechPhraseElement

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Dim	V	As	SpeechLib.SpVoice

Dim	V2	As	SpeechLib.SpVoice					'Plays	the	wave	file	back

Dim	WithEvents	C	As	SpeechLib.SpInProcRecoContext

Private	Sub	Command1_Click()

				

				List1.Clear

				Call	SpeakToFile(Text1.Text,	WAVEFILENAME)

				F.Open	WAVEFILENAME

				Set	R.AudioInputStream	=	F

End	Sub

Private	Sub	Form_Load()

				'	Create	Recognizer,	RecoContext,	Grammar,	and	Voice

				Set	R	=	New	SpInprocRecognizer

				Set	C	=	R.CreateRecoContext

				Set	G	=	C.CreateGrammar(16)

				Set	V	=	New	SpVoice

				Set	V.Voice	=	V.GetVoices("gender=male").Item(0)

				Set	V2	=	New	SpVoice

				

				'	Load	Grammar	with	solitaire	XML,	set	active

				G.CmdLoadFromFile	"c:\sol.xml",	SLODynamic

				G.CmdSetRuleIdState	0,	SGDSActive															'Set	C	&	C	active

				G.DictationSetState	SGDSActive																		'Set	Dictation	active

				Text1.Text	=	"play	the	eight	of	clubs"

End	Sub

Private	Sub	SpeakToFile(ByVal	strText	As	String,	ByVal	strFName	As	String)

				Set	F	=	New	SpFileStream																				'Create	stream

				F.Open	strFName,	SSFMCreateForWrite,	True			'Open	as	the	filename

				Set	V.AudioOutputStream	=	F																	'Set	voice	output	to	file

				V.Speak	strText,	SVSFIsXML																		'Speak	synchronously

				F.Close																																					'Close	file

End	Sub

Private	Sub	C_Recognition(ByVal	StreamNumber	As	Long,	_

																				ByVal	StreamPosition	As	Variant,	_

																				ByVal	RecognitionType	As	SpeechLib.SpeechRecognitionType,	_

																				ByVal	Result	As	SpeechLib.ISpeechRecoResult)

				Dim	X	As	String

				Dim	ii	As	Integer

				Dim	PR	As	ISpeechPhraseRule

				Dim	PRs	As	ISpeechPhraseRules

				ii	=	0

				For	Each	E	In	Result.PhraseInfo.Elements

								X	=	"element"	&	Str(ii)	&	":	"	&	E.DisplayText

								List1.AddItem	X

								ii	=	ii	+	1

				Next

				

				'This	is	the	rule	that	recognition	was	based	on

				Set	PR	=	Result.PhraseInfo.Rule

				

				List1.AddItem	""

				List1.AddItem	"Id:															"	&	PR.Id

				List1.AddItem	"Rule:													"	&	PR.Name

				List1.AddItem	"NumberOfElements:	"	&	PR.NumberOfElements

				List1.AddItem	"FirstElement:					"	&	PR.FirstElement

				List1.AddItem	"EngineConfidence:	"	&	PR.EngineConfidence

				List1.AddItem	"Confidence:							"	&	PR.Confidence

				List1.AddItem	""

				

				If	PR.Parent	Is	Nothing	Then

								List1.AddItem	"Parent:											none"

				Else

								List1.AddItem	"Parent:											"	&	PR.Parent.Name

				End	If

				

				If	PR.Children	Is	Nothing	Then

								List1.AddItem	"Children:									none"

				Else

								'This	routine	replaces	the	original	PR	object

								Set	PRs	=	PR.Children

								ii	=	0

								For	Each	PR	In	PRs

												List1.AddItem	"Child"	&	Str(ii)	&	":										"	&	PR.Name

												ii	=	ii	+	1

								Next

				End	If

				

End	Sub

Private	Sub	C_EndStream(ByVal	StreamNumber	As	Long,	_

																				ByVal	StreamPosition	As	Variant,	_

																				ByVal	StreamReleased	As	Boolean)

				F.Close

				DoEvents

				F.Open	WAVEFILENAME

				V2.SpeakStream	F

				F.Close

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpeechPhraseRules
The	ISpeechPhraseRules	automation	interface	represents	a
collection	of	ISpeechPhraseRule	objects.

Automation	Interface	Elements
The	ISpeechPhraseRules	automation	interface	contains	the
following	elements:

Properties Description
Count	Property Returns	the	number	of	objects	in	the

collection.

Methods Description
Item	Method Returns	a	member	of	the	collection

by	its	index.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseRules

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Count	Property

The	Count	property	returns	the	number	of	ISpeechPhraseRule
objects	in	the	ISpeechPhraseRules	object.

Syntax

Set: (This	property	is	read-only)
Get: Long	=	ISpeechPhraseRules.Count

Parts

ISpeechPhraseRules
The	owning	object.

Long
Set:	(This	property	is	read-only)
Get:	A	Long	variable	that	gets	the	Count	property.

Remarks
The	ISpeechPhraseRules	object	is	a	collection	of
ISpeechPhraseRule	objects.	As	a	collection,	it	provides	access	to
any	or	all	of	its	members	through	certain	methods	and
properties	common	to	all	collection	objects.	The	Count	property
is	one	of	these	common	properties.

Example
See	the	SpObjectToken	Example	for	a	complete	example	and
additional	details.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechPhraseRules

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Item	Method

The	Item	method	returns	a	member	of	the	ISpeechPhraseRules
collection	by	its	index.
ISpeechPhraseRules.Item(

					Index	As	Long

)	As	ISpeechPhraseRule

Parameters

Index
Specifies	the	Index.

Return	Value
The	Item	method	returns	an	ISpeechPhraseRule	variable.

Remarks
The	ISpeechPhraseRules	object	is	a	collection	of
ISpeechPhraseRule	objects.	As	a	collection,	it	provides	access	to
any	or	all	of	its	members	through	certain	methods	and
properties	common	to	all	collection	objects.	The	Item	method	is
one	of	these	common	methods.

Example
See	the	SpObjectToken	Example	for	a	complete	example	and
additional	details.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpeechRecognizerStatus
The	ISpeechRecognizerStatus	automation	interface	returns
the	status	of	the	speech	recognition	(SR)	engine	represented	by
the	recognizer	object.
This	method	provides	information	for	static	elements	about	the
SR	engine	such	as	the	languages	it	supports.	It	also	provides
information	for	dynamic	elements	such	as	the	engine's	current
stream	position,	and	whether	the	stream	is	actively	being	sent
to	the	engine.
These	dynamic	elements	are	equivalent	to	parameters	returned
by	recognition	context	events.	It	may	be	advantageous	for	some
applications	to	retrieve	these	elements	by	calling	Status
occasionally,	rather	than	by	receiving	events	constantly.

Automation	Interface	Elements
The	ISpeechRecognizerStatus	automation	interface	contains	the
following	elements:

Properties Description
AudioStatus	Property Returns	the	status	of	the

recognizer's	audio	output.
ClsidEngine	Property Returns	the	unique	identifier

associated	with	the	current	engine.
CurrentStreamNumber
Property

Returns	the	number	of	the	current
recognition	stream.

CurrentStreamPosition
Property

Returns	the	recognizer's	position	in
the	recognition	stream,	in	bytes.

NumberOfActiveRules
Property

Returns	the	current	engine's	number
of	active	rules.

SupportedLanguages
Property

Returns	an	array	containing	the
languages	the	active	engine

supports.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecognizerStatus

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

AudioStatus	Property

The	AudioStatus	property	returns	the	status	of	the	speech
recognition	(SR)	engine's	audio	output.

Syntax

Set: (This	property	is	read-only)
Get: ISpeechAudioStatus	=

ISpeechRecognizerStatus.AudioStatus

Parts

ISpeechRecognizerStatus
The	owning	object.

ISpeechAudioStatus
Set:	(This	property	is	read-only)
Get:	An	ISpeechAudioStatus	variable	which	gets	the
property.

Example
For	an	example	of	the	use	of	the	AudioStatus	property,	see	the
code	example	in	the	Recognizer	Status	property	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecognizerStatus

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ClsidEngine	Property

The	ClsidEngine	property	returns	the	unique	identifier
associated	with	the	current	engine.

Syntax

Set: (This	property	is	read-only)
Get: String	=	ISpeechRecognizerStatus.ClsidEngine

Parts

ISpeechRecognizerStatus
The	owning	object.

String
Set:	(This	property	is	read-only)
Get:	A	String	variable	which	gets	the	property.

Example
For	an	example	of	the	use	of	the	ClsidEngine	property,	see	the
code	example	in	the	Recognizer	Status	property	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecognizerStatus

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CurrentStreamNumber	Property

The	CurrentStreamNumber	property	returns	the	number	of
the	current	recognition	stream.

Syntax

Set: (This	property	is	read-only)
Get: Long	=

ISpeechRecognizerStatus.CurrentStreamNumber

Parts

ISpeechRecognizerStatus
The	owning	object.

Long
Set:	(This	property	is	read-only)
Get:	A	Long	variable	which	gets	the	property.

Example
For	an	example	of	the	use	of	the	CurrentStreamNumber
property,	see	the	code	example	in	the	Recognizer	Status
property	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecognizerStatus

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CurrentStreamPosition	Property

The	CurrentStreamPosition	property	returns	the	recognizer's
position	in	the	recognition	stream,	in	bytes.

Syntax

Set: (This	property	is	read-only)
Get: Variant	=

ISpeechRecognizerStatus.CurrentStreamPosition

Parts

ISpeechRecognizerStatus
The	owning	object.

Variant
Set:	(This	property	is	read-only)
Get:	A	Variant	variable	which	gets	the	property.

Example
For	an	example	of	the	use	of	the	CurrentStreamPosition
property,	see	the	code	example	in	the	Recognizer	Status
property	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecognizerStatus

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

NumberOfActiveRules	Property

The	NumberOfActiveRules	property	returns	the	current
engine's	number	of	active	rules.

Syntax

Set: (This	property	is	read-only)
Get: Long	=	ISpeechRecognizerStatus.NumberOfActiveRules

Parts

ISpeechRecognizerStatus
The	owning	object.

Long
Set:	(This	property	is	read-only)
Get:	A	Long	variable	which	gets	the	property.

Example
For	an	example	of	the	use	of	the	NumberOfActiveRules	property,
see	the	code	example	in	the	Recognizer	Status	property	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecognizerStatus

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SupportedLanguages	Property

The	SupportedLanguages	property	returns	an	array
containing	the	languages	that	the	active	engine	supports.
The	array	contains	the	language	ID	in	decimal	format.

Syntax

Set: (This	property	is	read-only)
Get: Variant	=

ISpeechRecognizerStatus.SupportedLanguages

Parts

ISpeechRecognizerStatus
The	owning	object.

Variant
Set:	(This	property	is	read-only)
Get:	A	Variant	data	type	as	an	array	with	each	element
containing	a	language	ID	of	a	supported	language.

Example
For	an	example	of	the	use	of	the	SupportedLanguages	property,
see	the	code	example	in	the	Recognizer	Status	property	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpeechRecoGrammar
The	ISpeechRecoGrammar	automation	interface	enables
applications	to	manage	the	words	and	phrases	for	the	SR
engine.
A	single	SpRecognizer	object	can	be	associated	with	multiple
SpRecoContext	objects.	Similarly,	a	single	SpRecoContext	object
can	be	associated	with	multiple	ISpRecoGrammar	objects.	This
allows	designers	to	create	applications	containing	several
grammars,	each	of	which	is	specialized	for	a	different	type	of
recognition.	Each	ISpRecoGrammar	object	can	contain	both	a
context-free	grammar	(CFG)	and	a	dictation	grammar
simultaneously.

Automation	Interfaces
The	ISpeechRecoGrammar	automation	interface	contains	the
following	elements:

Properties Description
Id	Property Returns	the	Id	assigned	to	the

grammar	when	it	was	created.
RecoContext	Property Returns	the	RecoContext	object	that

created	this	grammar.
Rules	Property Returns	the	collection	of	grammar

rules	in	the	RecoGrammar.
State	Property Gets	and	sets	the	operational	status

of	the	speech	grammar.

Methods Description
CmdLoadFromFile	Method Loads	a	command	and

control	grammar	from

the	specified	file.
CmdLoadFromMemory	Method Loads	a	compiled

speech	grammar	from
memory.

CmdLoadFromObject	Method Loads	a	speech
grammar	from	a	COM
object.

CmdLoadFromProprietaryGrammar
Method

Loads	a	proprietary
speech	grammar.

CmdLoadFromResource	Method Loads	a	command	and
control	grammar	from	a
Win32	resource.

CmdSetRuleIdState	Method Activates	or
deactivates	a	rule	by	its
rule	ID.

CmdSetRuleState	Method Activates	or
deactivates	a	rule	by	its
rule	name.

DictationLoad	Method Loads	a	dictation	topic
into	the	grammar.

DictationSetState	Method Sets	the	dictation	topic
state.

DictationUnload	Method Unloads	the	active
dictation	topic	from	the
grammar.

IsPronounceable	Method Determines	if	a	word
has	a	pronunciation.

Reset	Method Clears	all	grammar
rules	and	resets	the
grammar's	language	to
NewLanguage.

SetTextSelection	Method Sets	the	range	of	text
selection	information	in
a	word	sequence	data
buffer.

SetWordSequenceData	Method Defines	a	word
sequence	data	buffer
for	use	by	the	SR
engine.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoGrammar

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CmdLoadFromFile	Method

The	CmdLoadFromFile	method	loads	a	command	and	control
grammar	from	the	specified	file.
The	grammar	may	be	compiled	or	uncompiled,	and	it	can	be
loaded	for	static	or	dynamic	use,	as	specified	in	the	LoadOption
parameter.

ISpeechRecoGrammar.CmdLoadFromFile(

					FileName	As	String,

					[LoadOption	As	SpeechLoadOption	=	SLOStatic]

)

Parameters

FileName
Specifies	the	file	name.	SAPI	5	supports	loading	of	compiled
static	grammars	through	a	URL.

LoadOption
[Optional]	Specifies	whether	the	grammar	is	to	be	loaded	for
static	or	dynamic	use.	The	default	is	static.

Return	Value
None.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of

the	CmdLoadFromFile	and	the	CmdLoadFromMemory	methods.
To	run	this	code,	create	a	form	with	the	following	control:
A	command	button	called	Command1

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	two	grammar	objects	and
uses	the	CmdLoadFromFile	method	to	load	the	Solitaire	rules
into	the	first	grammar.	The	Command1_Click	procedure	calls	a
subroutine	called	GrammarToMemory,	which	creates	a
temporary	grammar	in	a	Variant	variable,	and	returns	this
grammar	to	the	caller.	The	Command1	procedure	then	reloads
the	first	grammar	with	the	temporary	grammar.

Option	Explicit

Dim	C	As	SpeechLib.SpSharedRecoContext

Dim	G1	As	SpeechLib.ISpeechRecoGrammar

Dim	G2	As	SpeechLib.ISpeechRecoGrammar

Private	Sub	Command1_Click()

				Dim	GT	As	Variant															'Temp	grammar	in	Variant	variable

				

				GT	=	GrammarToMemory(G1)									'GT	is	temp	version	of	grammar	G

				

				Call	G2.CmdLoadFromMemory(GT,	SLOStatic)

End	Sub

Private	Sub	Form_Load()

				Set	C	=	New	SpSharedRecoContext

				Set	G1	=	C.CreateGrammar

				Set	G2	=	C.CreateGrammar

				

				Call	G1.CmdLoadFromFile("c:\sol.xml",	SLODynamic)

End	Sub

Private	Function	GrammarToMemory(objGRM	As	SpeechLib.ISpeechRecoGrammar)	As	Variant

				'Make	changes	to	a	standard	grammar,	and	save	it	as	temp	grammar.

				'Add	rules	to	the	grammar,	delete	rules	from	the	grammar,	or	other	changes	here.

				'Return	the	variant	from	ISpeechGrammarRules.CommitAndSave

				GrammarToMemory	=	objGRM.Rules.CommitAndSave("")

				

End	Function

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoGrammar

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CmdLoadFromMemory	Method

The	CmdLoadFromMemory	method	loads	a	compiled	speech
grammar	from	memory.

The
ISpeechRecoGrammar.CmdLoadFromMemory(

					GrammarData	As	Variant,

					[LoadOption	As	SpeechLoadOption	=	SLOStatic]

)

Parameters

GrammarData
Specifies	the	GrammarData.

LoadOption
[Optional]	Specifies	whether	the	grammar	is	to	be	loaded	for
static	or	dynamic	use.	The	default	is	static.

Return	Value

None.

Example
The	following	Visual	Basic	form	code	demonstrates	use	of	the
CmdLoadFromMemory	method.	To	run	this	code,	create	a	form
and	paste	this	code	into	the	Declarations	section.

The	Form_Load	procedure	creates	a	recognition	context	and	a
CFG	grammar	object.	It	adds	a	simple	rule	to	the	grammar,	and
saves	the	grammar	data	to	a	Variant	variable	with	the
CommitAndSave	method.	It	then	uses	the
CmdLoadFromMemory	method	to	load	the	second	grammar
object	with	the	grammar	data	in	the	Variant	variable.	Finally,	it
activates	the	rule	in	the	second	grammar.
If	the	computer	has	a	microphone,	run	this	code	and	speak	the
phrase,	"Hello,	world"	into	the	microphone.	The	recognition
context's	Recognition	and	FalseRecognition	event	procedures
display	messages	indicating	successful	or	unsuccessful
recognition.

Option	Explicit

Dim	WithEvents	recoCtx	As	SpSharedRecoContext

Dim	grammar	As	ISpeechRecoGrammar

Dim	grammar2	As	ISpeechRecoGrammar

Dim	gRules	As	ISpeechGrammarRules

Dim	gRule	As	ISpeechGrammarRule

Dim	state	As	ISpeechGrammarRuleState

Dim	buffer	As	String				'	Any	error	information	when	committing	and	saving	the	grammar

Dim	gData	As	Variant				'	The	contents	of	the	grammar	held	in	memory

'	Typically	there	is	no	reason	to	do	something	like	this.

'	This	is	just	the	simplest	possible	example	to	demonstrate	the	use	of

'	ISpeechRecoGrammar.CmdLoadFromMemory.

Private	Sub	Form_Load()

				Set	recoCtx	=	New	SpSharedRecoContext

				Set	grammar	=	recoCtx.CreateGrammar

				Set	gRules	=	grammar.Rules

				

				'	Grammar	has	one	rule,	one	state,	and	one	transition

				Set	gRule	=	gRules.Add("greeting",	SRATopLevel,	1)

				Set	state	=	gRule.InitialState

				state.AddWordTransition	Nothing,	"hello	world",	"	"

				

				'	Save	the	grammar	to	memory	(contents	saved	in	gData)

				gData	=	grammar.Rules.CommitAndSave(buffer)

				

				Set	grammar2	=	recoCtx.CreateGrammar																'Second	grammar

				grammar2.CmdLoadFromMemory	gData,	SLOStatic									'Load	from	memory

				grammar2.CmdSetRuleState	"greeting",	SGDSActive					'Set	rule	active

				

End	Sub

Private	Sub	recoCtx_FalseRecognition(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	Result	As	SpeechLib.ISpeechRecoResult)

				'	Gets	here	only	when	the	phrase	"hello	world"	is	falsely	recognized

				MsgBox	"(not	recognized!)"

End	Sub

Private	Sub	recoCtx_Recognition(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	RecognitionType	As	SpeechLib.SpeechRecognitionType,	ByVal	Result	As	SpeechLib.ISpeechRecoResult)

				'	Gets	here	only	when	the	phrase	"hello	world"	is	recognized

				MsgBox	Result.PhraseInfo.GetText

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoGrammar

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CmdLoadFromObject	Method

The	CmdLoadFromObject	method	loads	a	speech	grammar
from	a	component	object	model	(COM)	object.
The	COM	object	must	be	created	from	a	Windows	dynamic	link
library	(DLL).

ISpeechRecoGrammar.CmdLoadFromObject(

					ClassId	As	String,

					GrammarName	As	String,

					[LoadOption	As	SpeechLoadOption	=	SLOStatic]

)

Parameters

ClassId
Specifies	The	reference	class	ID	of	the	object	containing	the
command.

GrammarName
Specifies	the	GrammarName.

LoadOption
[Optional]	Specifies	whether	the	grammar	is	to	be	loaded	for
static	or	dynamic	use.	The	default	is	static.

Return	Value
None.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoGrammar

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CmdLoadFromProprietaryGrammar
Method

The	CmdLoadFromProprietaryGrammar	method	loads	a
proprietary	speech	grammar.

ISpeechRecoGrammar.CmdLoadFromProprietaryGrammar(

					ProprietaryGuid	As	String,

					ProprietaryString	As	String,

					ProprietaryData	As	Variant,

					[LoadOption	As	SpeechLoadOption	=	SLOStatic]

)

Parameters

ProprietaryGuid
Specifies	the	GUID	of	the	grammar,	which	is	used	by	the
application	and	the	speech	recognition	engine	to	identify	it
for	verifying	support.

ProprietaryString
A	command	string	used	to	send	information	about	the
grammar.

ProprietaryData
Additional	information	for	the	process.

LoadOption
[Optional]	Specifies	whether	the	grammar	is	to	be	loaded	for
static	or	dynamic	use.	The	default	is	static.	In	the	case	of
CmdLoadFromProprietaryGrammar,	static	loading	must	be

used.

Return	Value
None.

Remarks
Using	this	method	will	unload	the	currently	loaded	context-free
grammar	or	proprietary	grammar.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoGrammar

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CmdLoadFromResource	Method

The	CmdLoadFromResource	method	loads	a	command	and
control	grammar	from	a	Win32	resource.

ISpeechRecoGrammar.CmdLoadFromResource(

					hModule	As	Long,

					ResourceName	As	Variant,

					ResourceType	As	Variant,

					LanguageId	As	Long,

					[LoadOption	As	SpeechLoadOption	=	SLOStatic]

)

Parameters

hModule
Specifies	the	hModule.

ResourceName
Specifies	the	ResourceName.

ResourceType
Specifies	the	ResourceType.

LanguageId
Specifies	the	LanguageId.

LoadOption
[Optional]	Specifies	whether	the	grammar	is	to	be	loaded	for
static	or	dynamic	use.	The	default	is	static.

Return	Value
None.

Remarks
The	grammar	resource	must	be	a	compiled	SAPI	5	binary
version	of	a	context-free	grammar	(CFG).
Using	this	method	will	unload	the	currently	loaded	CFG	or
proprietary	grammar.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	CmdLoadFromResource	method.	Before	attempting	to	run
this	code,	you	must:

Create	a	SpeechDocs.dll	file	as	detailed	in	the	Sample
DLL	Code	Example,	and
Make	sure	your	microphone	is	connected	and	functional.

The	Form_Load	procedure	creates	a	grammar	object	and	loads	it
with	the	compiled	Solitaire	grammar	contained	in	the	DLL.	There
are	no	controls	on	this	form;	simply	speak	into	your	microphone.
Phrases	like	"Move	the	red	ten"	or	"Play	the	queen	of	hearts"
will	be	recognized.

Option	Explicit

Dim	WithEvents	C	As	SpSharedRecoContext

Dim	G	As	ISpeechRecoGrammar

Dim	hndRes	As	Long

'	Change	this	constant	to	match	the	path	

'	of	the	SpeechDocs	DLL	on	your	machine!

Const	lib	As	String	=	"C:\SpeechDocs.dll"

Const	resType	As	String	=	"CFGGRAMMAR"

Const	resName		As	Long	=	101

Const	langID	As	Long	=	&H409;

Private	Declare	Function	LoadLibrary	Lib	"kernel32"	Alias	"LoadLibraryA"	_

				(ByVal	lpLibFileName	As	String)	As	Long

Private	Sub	Form_Load()

				Set	C	=	New	SpSharedRecoContext

				Set	G	=	C.CreateGrammar

				

				'	Obtain	a	handle	to	the	executable	holding	the	grammar	as	a	resource

				hndRes	=	LoadLibrary(lib)

				

				'	Load	the	grammar	from	the	resource

				G.CmdLoadFromResource	hndRes,	resName,	resType,	langID,	SLOStatic

				

				'	Set	all	DefaultToActive	rules	active

				'	NOTE:	The	solitaire	grammar	happens	to	have	DefaultToActive	rules

				'	which	is	why	we	can	activate	them	this	way.

				G.CmdSetRuleState	"",	SGDSActive

End	Sub

Private	Sub	C_FalseRecognition(_

								ByVal	StreamNumber	As	Long,	_

								ByVal	StreamPosition	As	Variant,	_

								ByVal	result	As	SpeechLib.ISpeechRecoResult	_

)

				MsgBox	"(not	recognized!)"

End	Sub

Private	Sub	C_Recognition(_

								ByVal	StreamNumber	As	Long,	_

								ByVal	StreamPosition	As	Variant,	_

								ByVal	RecognitionType	As	SpeechLib.SpeechRecognitionType,	_

								ByVal	result	As	SpeechLib.ISpeechRecoResult	_

)

				MsgBox	result.PhraseInfo.GetText

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoGrammar

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CmdSetRuleIdState	Method

The	CmdSetRuleIdState	method	activates	or	deactivates	a
rule	by	its	rule	ID.

ISpeechRecoGrammar.CmdSetRuleIdState(

					RuleId	As	Long,

					State	As	SpeechRuleState

)

Parameters

RuleId
The	Id	of	the	rule	to	be	changed.	If	Id	is	zero,	all	TopLevel	and
Active	rules	in	the	grammar	will	be	changed.

State
The	rule	state	to	which	the	rule	or	rules	will	be	changed.

Return	Value
None.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	Rules	method,	the	CmdSetRuleState	method	and	the
CmdSetRuleIdState	method.	To	run	this	code,	create	a	form	with
the	following	control:
A	command	button	called	Command1

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form1_Load	procedure	creates	a	grammar	and	loads	it	with
the	solitaire	grammar	sol.xml,	and	uses	the	Rules	method	to
create	a	collection	of	the	rules	contained	in	the	grammar.	The
Command1_Click	procedure	creates	an	ISpeechGrammarRule
object	for	the	first	rule	contained	in	the	grammar,	and
deactivates	this	rule	using	the	CmdSetRuleState	method	and
the	rule's	Name	property.	The	procedure	then	creates	an
ISpeechGrammarRule	object	for	the	second	rule,	and
deactivates	that	rule	using	the	CmdSetRuleIdState	method	and
the	rule's	ID	property.
Another	example	of	the	use	of	CmdSetRuleIdState	can	be	found
in	the	code	example	for	the	CmdLoadFromMemory	method.	
Option	Explicit

Dim	C	As	SpeechLib.SpSharedRecoContext

Dim	G	As	SpeechLib.ISpeechRecoGrammar

Dim	R	As	SpeechLib.ISpeechGrammarRules

Dim	Rule	As	SpeechLib.ISpeechGrammarRule

Private	Sub	Command1_Click()

				

				'Get	first	rule	in	rules	collection	and	set	it	inactive

				'Use	CmdSetRuleState	method	and	the	rule	NAME

				

				Set	Rule	=	R.Item(0)

				G.CmdSetRuleState	Rule.Name,	SGDSInactive

				

				'Get	next	rule	in	rules	collection	and	set	it	inactive,	too

				'Use	CmdSetRuleIdState	method	and	the	rule	ID

				Set	Rule	=	R.Item(1)

				G.CmdSetRuleIdState	Rule.Id,	SGDSInactive

End	Sub

Private	Sub	Form_Load()

				Set	C	=	New	SpSharedRecoContext

				Set	G	=	C.CreateGrammar

				

				'Load	the	Solitaire	grammar	so	it	can	be	changed

				

				Call	G.CmdLoadFromFile("c:\sol.xml",	SLODynamic)

				

				Set	R	=	G.Rules					'Get	the	collection	of	rules

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoGrammar

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CmdSetRuleState	Method

The	CmdSetRuleState	method	activates	or	deactivates	a	rule
by	its	name.

ISpeechRecoGrammar.CmdSetRuleState(

					Name	As	String,

					State	As	SpeechRuleState

)

Parameters

Name
The	name	of	the	rule	to	be	changed.	If	Name	is	an	empty
string	(""),	all	TopLevel	and	Active	rules	in	the	grammar	will
be	changed.

State
The	rule	state	to	which	the	rule	or	rules	will	be	changed.

Return	Value
None.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	Rules	method,	the	CmdSetRuleState	method	and	the
CmdSetRuleIdState	method.	To	run	this	code,	create	a	form	with
the	following	control:

A	command	button	called	Command1
Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form1_Load	procedure	creates	a	grammar	and	loads	it	with
the	solitaire	grammar	sol.xml,	and	uses	the	Rules	method	to
create	a	collection	of	the	rules	contained	in	the	grammar.	The
Command1_Click	procedure	creates	an	ISpeechGrammarRule
object	for	the	first	rule	contained	in	the	grammar,	and
inactivates	this	rule	using	the	CmdSetRuleState	method	and	the
rule's	Name	property.	The	procedure	then	creates	an
ISpeechGrammarRule	object	for	the	second	rule,	and	inactivates
that	rule	using	the	CmdSetRuleIdState	method	and	the	rule's	ID
property.	
Option	Explicit

Dim	C	As	SpeechLib.SpSharedRecoContext

Dim	G	As	SpeechLib.ISpeechRecoGrammar

Dim	R	As	SpeechLib.ISpeechGrammarRules

Dim	Rule	As	SpeechLib.ISpeechGrammarRule

Private	Sub	Command1_Click()

				

				'Get	first	rule	in	rules	collection	and	set	it	inactive

				'Use	CmdSetRuleState	method	and	the	rule	NAME

				

				Set	Rule	=	R.Item(0)

				G.CmdSetRuleState	Rule.Name,	SGDSInactive

				

				'Get	next	rule	in	rules	collection	and	set	it	inactive,	too

				'Use	CmdSetRuleIdState	method	and	the	rule	ID

				Set	Rule	=	R.Item(1)

				G.CmdSetRuleIdState	Rule.Id,	SGDSInactive

End	Sub

Private	Sub	Form_Load()

				Set	C	=	New	SpSharedRecoContext

				Set	G	=	C.CreateGrammar

				

				'Load	the	Solitaire	grammar	so	it	can	be	changed

				

				Call	G.CmdLoadFromFile("c:\sol.xml",	SLODynamic)

				

				Set	R	=	G.Rules					'Get	the	collection	of	rules

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoGrammar

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

DictationLoad	Method

The	DictationLoad	method	loads	a	dictation	topic	into	the
grammar.

ISpeechRecoGrammar.DictationLoad(

					[TopicName	As	String	=	""],

					[LoadOption	As	SpeechLoadOption	=	SLOStatic]

)

Parameters

TopicName
[Optional]	Specifies	a	dictation	topic.	The	default	value	is	the
empty	string.

LoadOption
[Optional]	Specifies	whether	the	grammar	is	to	be	loaded	for
static	or	dynamic	use.	The	default	is	static.

Return	Value
None.

Remarks
SAPI	currently	defines	one	specialized	dictation	topic:
SPTOPIC_SPELLING.	SR	engines	are	not	required	to	support
specialized	dictation	topics	(including	spelling).	When	using
another	manufacturer's	SR	engine,	consult	its	documentation

for	details.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	DictationLoad,	DictationSetState,	and	DictationUnload
methods.	It	creates	a	grammar,	configures	the	grammar	to
perform	both	dictation	and	command	and	control	(C	and	C)
recognition,	and	toggles	between	the	two	types	of	recognition.
To	run	this	code,	create	a	form	with	a	command	button	called
Command1	and	paste	this	code	into	the	Declarations	section	of
the	form.	The	Form_Load	procedure	creates	a	grammar	object,
associates	it	with	the	system	dictation	lexicon	and	the	Solitaire
C	and	C	grammar,	and	begins	recognition	in	dictation	mode.
The	Command1_Click	procedure	toggles	the	recognition	mode
between	dictation	and	C	and	C.	The	Form_Unload	procedure
unloads	the	dictation	grammar	and	inactivates	the	C	and	C
grammar.

Option	Explicit

Dim	C	As	SpeechLib.SpSharedRecoContext

Dim	G	As	SpeechLib.ISpeechRecoGrammar

Private	Sub	Command1_Click()

				If	Command1.Caption	=	"&Dictation;"	Then

								G.CmdSetRuleIdState	0,	SGDSInactive					'C&C;	off

								G.DictationSetState	SGDSActive										'Dictation	on

								Command1.Caption	=	"&C;	and	C"

				Else

								G.DictationSetState	SGDSInactive								'Dictation	off

								G.CmdSetRuleIdState	0,	SGDSInactive					'C&C;	on

								Command1.Caption	=	"&Dictation;"

				End	If

End	Sub

Private	Sub	Form_Load()

				'Create	a	RecoContext	and	its	Grammar

				Set	C	=	New	SpSharedRecoContext

				Set	G	=	C.CreateGrammar

				

				'Get	dictation	grammar	and	set	it	inactive

				G.DictationLoad	"",	SLOStatic

				G.DictationSetState	SGDSInactive

				

				'Get	Command	&	Control	grammar,	and	set	it	inactive

				G.CmdLoadFromFile	"C:\SOL.XML",	SLOStatic

				G.CmdSetRuleIdState	0,	SGDSInactive

				

				'Set	dictation	active	and	set	up	Command1.Caption

				G.DictationSetState	SGDSActive

				Command1.Caption	=	"&C;	and	C"

End	Sub

Private	Sub	Form_Unload(Cancel	As	Integer)

				G.DictationUnload

				G.CmdSetRuleIdState	0,	SGDSInactive

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoGrammar

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

DictationSetState	Method

The	DictationSetState	method	sets	the	dictation	topic	state.

ISpeechRecoGrammar.DictationSetState(

					State	As	SpeechRuleState

)

Parameters

State
A	SpeechRuleState	constant	that	specifies	the	dictation	topic
state.

Return	Value
None.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	DictationLoad,	DictationSetState,	and	DictationUnload
methods.	It	creates	a	grammar,	configures	the	grammar	to
perform	both	dictation	and	command	and	control	(C	and	C)
recognition,	and	toggles	between	the	two	types	of	recognition.
To	run	this	code,	create	a	form	with	the	following	control:
A	command	button	called	Command1

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	a	grammar	object,	associates

it	with	the	system	dictation	lexicon	and	the	Solitaire	C	and	C
grammar,	and	begins	recognition	in	dictation	mode.	The
Command1_Click	procedure	toggles	the	recognition	mode
between	dictation	and	C	and	C.	The	Form_Unload	procedure
unloads	the	dictation	grammar	and	deactivates	the	C	and	C
grammar.

Option	Explicit

Dim	C	As	SpeechLib.SpSharedRecoContext

Dim	G	As	SpeechLib.ISpeechRecoGrammar

Private	Sub	Command1_Click()

				If	Command1.Caption	=	"&Dictation;"	Then

								G.CmdSetRuleIdState	0,	SGDSInactive					'C&C;	off

								G.DictationSetState	SGDSActive										'Dictation	on

								Command1.Caption	=	"&C;	and	C"

				Else

								G.DictationSetState	SGDSInactive								'Dictation	off

								G.CmdSetRuleIdState	0,	SGDSInactive					'C&C;	on

								Command1.Caption	=	"&Dictation;"

				End	If

End	Sub

Private	Sub	Form_Load()

				'Create	a	RecoContext	and	its	Grammar

				Set	C	=	New	SpSharedRecoContext

				Set	G	=	C.CreateGrammar

				

				'Get	dictation	grammar	and	set	it	inactive

				G.DictationLoad	"",	SLOStatic

				G.DictationSetState	SGDSInactive

				

				'Get	Command	&	Control	grammar,	and	set	it	inactive

				G.CmdLoadFromFile	"C:\SOL.XML",	SLOStatic

				G.CmdSetRuleIdState	0,	SGDSInactive

				

				'Set	dictation	active	and	set	up	Command1.Caption

				G.DictationSetState	SGDSActive

				Command1.Caption	=	"&C;	and	C"

End	Sub

Private	Sub	Form_Unload(Cancel	As	Integer)

				G.DictationUnload

				G.CmdSetRuleIdState	0,	SGDSInactive

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoGrammar

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

DictationUnload	Method

The	DictationUnload	method	unloads	the	active	dictation	topic
from	the	grammar.

ISpeechRecoGrammar.DictationUnload()

Parameters

None.

Return	Value
None.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	DictationLoad,	DictationSetState,	and	DictationUnload
methods.	It	creates	a	grammar,	configures	the	grammar	to
perform	both	dictation	and	command	and	control	(C	and	C)
recognition,	and	toggles	between	the	two	types	of	recognition.
To	run	this	code,	create	a	form	with	the	following	control:
A	command	button	called	Command1

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	a	grammar	object,	associates
it	with	the	system	dictation	lexicon	and	the	Solitaire	C	and	C
grammar,	and	begins	recognition	in	dictation	mode.	The
Command1_Click	procedure	toggles	the	recognition	mode

between	dictation	and	C	and	C.	The	Form_Unload	procedure
unloads	the	dictation	grammar	and	deactivates	the	C	and	C
grammar.

Option	Explicit

Dim	C	As	SpeechLib.SpSharedRecoContext

Dim	G	As	SpeechLib.ISpeechRecoGrammar

Private	Sub	Command1_Click()

				If	Command1.Caption	=	"&Dictation;"	Then

								G.CmdSetRuleIdState	0,	SGDSInactive					'C&C;	off

								G.DictationSetState	SGDSActive										'Dictation	on

								Command1.Caption	=	"&C;	and	C"

				Else

								G.DictationSetState	SGDSInactive								'Dictation	off

								G.CmdSetRuleIdState	0,	SGDSInactive					'C&C;	on

								Command1.Caption	=	"&Dictation;"

				End	If

End	Sub

Private	Sub	Form_Load()

				'Create	a	RecoContext	and	its	Grammar

				Set	C	=	New	SpSharedRecoContext

				Set	G	=	C.CreateGrammar

				

				'Get	dictation	grammar	and	set	it	inactive

				G.DictationLoad	"",	SLOStatic

				G.DictationSetState	SGDSInactive

				

				'Get	Command	&	Control	grammar,	and	set	it	inactive

				G.CmdLoadFromFile	"C:\SOL.XML",	SLOStatic

				G.CmdSetRuleIdState	0,	SGDSInactive

				

				'Set	dictation	active	and	set	up	Command1.Caption

				G.DictationSetState	SGDSActive

				Command1.Caption	=	"&C;	and	C"

End	Sub

Private	Sub	Form_Unload(Cancel	As	Integer)

				G.DictationUnload

				G.CmdSetRuleIdState	0,	SGDSInactive

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoGrammar

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Id	Property

The	Id	property	returns	the	ID	assigned	to	the	grammar	when	it
was	created.

Syntax

Set: Not	available.
Get: Variant	=	ISpeechRecoGrammar.Id

Parts

ISpeechRecoGrammar
The	owning	object.

Variant
Set:	(This	property	is	read-only).
Get:	A	Variant	variable	that	gets	the	property	value.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	ID	and	RecoContext	properties.	To	run	this	code,	create	a
form	with	the	following	controls:
Two	command	buttons	called	Command1	and	Command2

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	a	recognition	context	with
two	ISpeechRecoGrammar	objects.	The	ISpeechRecoGrammar
objects	are	created	with	ID	properties	of	6	and	7.	The
Command1	and	Command2	procedures	each	send	one	of	the
grammar	objects	to	the	GrammarSub	procedure	as	parameters.

The	GrammarSub	procedure	displays	the	ID	of	the	grammar
object	parameter,	and	uses	the	parameter's	RecoContext
property	to	pause	and	resume	the	recognition	context	that	owns
the	grammar.
There	is	no	special	significance	to	the	Id	property	values	of	6	or
7;	these	values	are	arbitrary.	Additionally,	the	Pause	and
Resume	methods	in	the	GrammarSub	procedure	are	intended
simply	to	show	how	the	grammar's	RecoContext	property
provides	access	to	the	methods	and	properties	of	the
recognition	context	which	owns	the	grammar.

Option	Explicit

Dim	RecoContext	As	SpeechLib.SpSharedRecoContext

Dim	objGR1	As	SpeechLib.ISpeechRecoGrammar

Dim	objGR2	As	SpeechLib.ISpeechRecoGrammar

Private	Sub	Command1_Click()

				Call	GrammarSub(objGR1)

End	Sub

Private	Sub	Command2_Click()

				Call	GrammarSub(objGR2)

End	Sub

Private	Sub	Form_Load()

				Set	RecoContext	=	New	SpSharedRecoContext

				Set	objGR1	=	RecoContext.CreateGrammar(6)							'Create	grammar	with	ID	=	6

				Set	objGR2	=	RecoContext.CreateGrammar("7")					'Create	grammar	with	ID	=	7

End	Sub

Private	Sub	GrammarSub(G	As	SpeechLib.ISpeechRecoGrammar)

				

				G.RecoContext.Pause					'Pause	the	RecoContext	that	owns	grammar

				MsgBox	G.Id													'Display	the	Id

				G.RecoContext.Resume				'Resume	the	RecoContext

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoGrammar

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

IsPronounceable	Method

The	IsPronounceable	method	determines	if	a	word	has	a
pronunciation.
Additionally,	the	SpeechWordPronounceable	constant	returned
by	this	method	indicates	whether	the	word	exists	in	the
grammar	object's	lexicon.	Words	are	likely	to	be	pronounceable
even	if	they	are	not	found	in	the	lexicon.

ISpeechRecoGrammar.IsPronounceable(

					Word	As	String

)	As	SpeechWordPronounceable

Parameters

Word
Specifies	the	Word.

Return	Value
A	SpeechWordPronounceable	constant.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	IsPronounceable	method.
To	run	this	code,	create	a	form	with	the	following	controls:
A	command	button	called	Command1
A	text	box	called	Text1

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	a	grammar	and	loads	the
general	dictation	topic.	The	Command1_Click	procedure	passes
the	word	or	words	in	Text1	to	the	IsPronounceable	method	and
displays	the	resulting	SpeechWordPronounceable	constant.
Most	correctly	spelled	words	will	be	known	and	pronounceable;
most	incorrectly	spelled	words	will	be	unknown	and
pronounceable.	The	example	begins	with	a	word	which	is
pronounceable,	even	though	it	is	misspelled.

Option	Explicit

Dim	C	As	SpeechLib.SpSharedRecoContext

Dim	G	As	SpeechLib.ISpeechRecoGrammar

Private	Sub	Command1_Click()

				Dim	strTemp	As	String

				Select	Case	G.IsPronounceable(Text1.Text)

				Case	SWPKnownWordPronounceable

								strTemp	=	"KnownWordPronounceable"

				Case	SWPUnknownWordPronounceable

								strTemp	=	"UnknownWordPronounceable"

				Case	SWPUnknownWordUnpronounceable

								strTemp	=	"UnknownWordUnpronounceable"

				End	Select

				

				MsgBox	"The	word	"""	&	Text1.Text	&	"""	is	"	&	strTemp

				

End	Sub

Private	Sub	Form_Load()

				Set	C	=	New	SpSharedRecoContext

				Set	G	=	C.CreateGrammar

				

				G.DictationLoad	""

				

				Text1.Text	=	"missspeled"

				

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoGrammar

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

RecoContext	Property

The	RecoContext	property	returns	the	RecoContext	object	that
created	the	grammar.

Syntax

Set: Not	available.
Get: ISpeechRecoContext	=

ISpeechRecoGrammar.RecoContext

Parts

ISpeechRecoGrammar
The	owning	object.

ISpeechRecoContext
Set:	(This	property	is	read-only).
Get:	An	ISpeechRecoContext	object	which	instantiates	the
RecoContext	object	that	created	the	grammar.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	Id	and	RecoContext	properties.	To	run	this	code,	create	a
form	with	the	following	controls:
Two	command	buttons	called	Command1	and	Command2

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	a	recognition	context	with
two	ISpeechRecoGrammar	objects.	The	ISpeechRecoGrammar
objects	are	created	with	Id	properties	of	6	and	7.	The

Command1	and	Command2	procedures	each	send	one	of	the
grammar	objects	to	the	GrammarSub	procedure	as	parameters.
The	GrammarSub	procedure	displays	the	ID	of	the	grammar
object	parameter,	and	uses	the	parameter's	RecoContext
property	to	pause	and	resume	the	recognition	context	that	owns
the	grammar.
There	is	no	special	significance	to	the	Id	property	values	of	6	or
7;	these	values	are	arbitrary.	Additionally,	the	Pause	and
Resume	methods	in	the	GrammarSub	procedure	are	intended
simply	to	show	how	the	grammar's	RecoContext	property
provides	access	to	the	methods	and	properties	of	the
recognition	context	that	created	the	grammar.

Option	Explicit

Dim	RecoContext	As	SpeechLib.SpSharedRecoContext

Dim	objGR1	As	SpeechLib.ISpeechRecoGrammar

Dim	objGR2	As	SpeechLib.ISpeechRecoGrammar

Private	Sub	Command1_Click()

				Call	GrammarSub(objGR1)

End	Sub

Private	Sub	Command2_Click()

				Call	GrammarSub(objGR2)

End	Sub

Private	Sub	Form_Load()

				Set	RecoContext	=	New	SpSharedRecoContext

				Set	objGR1	=	RecoContext.CreateGrammar(6)							'Create	grammar	with	ID	=	6

				Set	objGR2	=	RecoContext.CreateGrammar("7")					'Create	grammar	with	ID	=	7

End	Sub

Private	Sub	GrammarSub(G	As	SpeechLib.ISpeechRecoGrammar)

				

				G.RecoContext.Pause					'Pause	the	RecoContext	that	owns	grammar

				MsgBox	G.Id													'Display	the	Id

				G.RecoContext.Resume				'Resume	the	RecoContext

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoGrammar

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Reset	Method

The	Reset	method	clears	all	grammar	rules	and	resets	the
grammar's	language	to	NewLanguage.
ISpeechRecoGrammar.ResetGrammar(

					[NewLanguage	As	Long	=	0]

)

Parameters

NewLanguage
[Optional]	Specifies	the	ID	of	the	new	language.	The	default
value	is	zero.

Return	Value
None.

Example
For	an	example	of	the	use	of	the	Reset	method,	see	the
CmdLoadFromMemory	method.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoGrammar

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Rules	Property

The	Rules	property	returns	the	collection	of	grammar	rules
contained	in	the	RecoGrammar.

Syntax

Set: Not	available.
Get: ISpeechGrammarRules	=	ISpeechRecoGrammar.Rules

Parts

ISpeechRecoGrammar
The	owning	object.

ISpeechGrammarRules
Set:	(This	property	is	read-only).
Get:	An	ISpeechGrammarRules	variable	which	contains	the
grammar's	rules.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	Rules	method,	the	CmdSetRuleState	method	and	the
CmdSetRuleIdState	method.	To	run	this	code,	create	a	form	with
the	following	control:
A	command	button	called	Command1

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form1_Load	procedure	creates	a	grammar	and	loads	it	with
the	solitaire	grammar	sol.xml,	and	uses	the	Rules	method	to
create	a	collection	of	the	rules	contained	in	the	grammar.	The

Command1_Click	procedure	creates	an	ISpeechGrammarRule
object	for	the	first	rule	contained	in	the	grammar,	and
deactivates	this	rule	using	the	CmdSetRuleState	method	and
the	rule's	Name	property.	The	procedure	then	creates	an
ISpeechGrammarRule	object	for	the	second	rule,	and
deactivates	that	rule	using	the	CmdSetRuleIdState	method	and
the	rule's	Id	property.	
Option	Explicit

Dim	C	As	SpeechLib.SpSharedRecoContext

Dim	G	As	SpeechLib.ISpeechRecoGrammar

Dim	R	As	SpeechLib.ISpeechGrammarRules

Dim	Rule	As	SpeechLib.ISpeechGrammarRule

Private	Sub	Command1_Click()

				

				'Get	first	rule	in	rules	collection	and	set	it	inactive

				'Use	CmdSetRuleState	method	and	the	rule	NAME

				

				Set	Rule	=	R.Item(0)

				G.CmdSetRuleState	Rule.Name,	SGDSInactive

				

				'Get	next	rule	in	rules	collection	and	set	it	inactive,	too

				'Use	CmdSetRuleIdState	method	and	the	rule	ID

				Set	Rule	=	R.Item(1)

				G.CmdSetRuleIdState	Rule.Id,	SGDSInactive

End	Sub

Private	Sub	Form_Load()

				Set	C	=	New	SpSharedRecoContext

				Set	G	=	C.CreateGrammar

				

				'Load	the	Solitaire	grammar	so	it	can	be	changed

				

				Call	G.CmdLoadFromFile("c:\sol.xml",	SLODynamic)

				

				Set	R	=	G.Rules					'Get	the	collection	of	rules

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoGrammar

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SetTextSelection	Method

The	SetTextSelection	method	sets	the	range	of	text	selection
information	in	a	WordSequenceData	buffer.
The	SetWordSequenceData	method	sends	application-specific
data	to	the	speech	recognition	(SR)	engine	for	recognition.	The
SetTextSelection	method	describes	the	part	of	that	text	which
has	been	selected	by	the	user	with	a	mouse	or	keyboard.

ISpeechRecoGrammar.SetTextSelection(

					Info	As	SpTextSelectionInformation

)

Parameters

Info
An	SpTextSelectionInformation	object	which	specifies	the	text
selection	range.

Return	Value
None.

Example
For	an	example	of	the	use	of	the	SetTextSelection	method,	see
the	SetWordSequenceData	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoGrammar

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SetWordSequenceData	Method

The	SetWordSequenceData	method	defines	a	word	sequence
buffer	for	use	by	the	speech	recognition	(SR)	engine.
Some	recognition	grammars	specify	every	word	and	phrase	that
they	are	capable	of	recognizing.	The	Solitaire	grammar	is	one	of
these;	it	contains	only	a	small	amount	of	data,	and	all	its	data
elements	were	known	to	the	grammar	designer.	But	it	would	be
impractical	to	create	such	a	grammar	for	a	speech-enabled
order-entry	system	handling	several	hundred	thousand
inventory	items.
In	order	to	eliminate	the	need	to	specify	every	recognizable
word	in	a	grammar,	yet	still	maintain	the	high	quality	of	rule-
based	recognition,	SAPI	provides	applications	with	a	means	to
link	the	grammar	to	application-specific	and	user-specific	data.
An	order-entry	application	could	display	the	text	for	several
inventory	items	on	a	user's	monitor,	and	send	this	text	to	the
engine	for	recognition.	When	a	user	spoke	a	part	number,	the
engine	would	more	easily	recognize	it	from	the	few	words	on	the
user's	screen	than	from	thousands	of	part	numbers	specified	in
a	grammar.
To	accomplish	this,	the	SR	engine	maintains	a	text	buffer	which
is	associated	with	the	XML	grammar	tag	<TEXTBUFFER>.	When
the	recognition	process	arrives	at	a	<TEXTBUFFER>	tag,	it
expects	that	the	application	has	placed	text	in	this	buffer,	and
that	the	user's	speech	represents	one	word	or	phrase	out	of	the
words	and	phrases	in	the	buffer.	If	recognition	is	successful,	the
words	or	phrases	selected	from	the	buffer	are	recognized	as	if
they	had	been	specified	in	the	grammar	rule	literally.
The	SetWordSequenceData	method	sends	this	text	to	the
engine's	buffer.	It	is	associated	with	the	SetTextSelection
method,	which	describes	the	range	of	text	the	user	has	selected
with	the	mouse.	The	SetWordSequenceData	method	always

sends	selection	data	with	the	text	data,	because	changing	the
text	in	the	buffer	invalidates	the	previous	selection	data.	The
SetTextSelection	method	sends	selection	data	only.

ISpeechRecoGrammar.SetWordSequenceData(

					Text	As	String,

					TextLength	As	Long,

					Info	As	SpTextSelectionInformation

)

Parameters

Text
Specifies	the	text.

TextLength
Specifies	the	length	of	the	text.

Info
An	SpTextSelectionInformation	object	which	specifies	the	text
selection	range.

Return	Value
None.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	SetWordSequenceData	and	SetTextSelection	methods.	To
run	this	code,	create	a	form	with	the	following	controls:

A	text	box	called	Text1
A	list	box	called	List1

A	command	button	called	Command1
Paste	this	code	into	the	Declarations	section	of	the	form.
Because	selecting	data	in	the	text	box	is	an	important	visual
part	of	this	example,	the	HideSelection	property	of	the	text	box
should	be	set	to	False.
The	Form_Load	procedure	creates	a	recognizer,	a	recognition
context,	and	a	grammar	object.	It	fills	the	text	box	with	the
names	of	several	types	of	animals.	It	writes	an	XML	grammar
file	which	contains	a	grammar	rule	using	a	text	tag.	The	rule
expects	a	sentence	like	"Send	me	a	*,"	where	"*"	is	a	type	of
animal	listed	in	the	text	box.
Double-click	on	an	animal	type	in	the	text	box	to	select	it,	and
then	click	Command1.	The	Command1	procedure	gets	the
selected	animal	type	and	builds	a	sentence	such	as,	"Send	me	a
hamster,"	or	"Send	me	a	chinchilla."	If	no	animal	type	is
selected	in	the	text	box,	the	sample	uses	the	first	animal	listed.
The	procedure	then	speaks	the	sentence	into	a	wave	file	and
sends	the	file	to	the	recognition	context	for	recognition.
The	Recognition	event	procedure	displays	some	of	the
recognition	data	in	the	list	box.	It	first	determines	if	the
recognition	result	satisfied	a	grammar	rule;	if	so,	it	displays	the
name	of	the	rule.	In	this	case,	PETS	is	the	only	rule	that	can	be
satisfied.	The	procedure	then	displays	the	individual	phrase
elements	of	the	sentence.

Option	Explicit

Const	WAVEFILENAME	=	"C:\SetWordSequenceData.wav"

Const	XMLFILENAME	=	"c:\texttag.xml"

Dim	R	As	SpeechLib.SpInprocRecognizer

Dim	G	As	SpeechLib.ISpeechRecoGrammar

Dim	F	As	SpeechLib.SpFileStream

Dim	E	As	SpeechLib.ISpeechPhraseElement

Dim	V	As	SpeechLib.SpVoice

Dim	V2	As	SpeechLib.SpVoice					'Plays	the	wave	file	back

Dim	WithEvents	C	As	SpeechLib.SpInProcRecoContext

Dim	TSI	As	SpeechLib.SpTextSelectionInformation

Private	Sub	WriteGrammar(strFName)

				Open	strFName	For	Output	As	#1

				Print	#1,	"<GRAMMAR>"

				Print	#1,	"	<RULE	NAME=""PETS""	TOPLEVEL=""ACTIVE"">"

				Print	#1,	"			<O>please</O>"

				Print	#1,	"			<P>send	me	a</P>"

				Print	#1,	"			<TEXTBUFFER/>"				'<--	Calls	for	WordSequenceData

				Print	#1,	"	</RULE>"

				Print	#1,	"</GRAMMAR>"

				Close	#1

End	Sub

Private	Sub	SetTextSelection(T	As	Control)

				TSI.ActiveOffset	=	0																				'Start	of	text

				TSI.ActiveLength	=	Len(T.Text)										'Length	of	text

				TSI.SelectionOffset	=	T.SelStart	+	1				'Start	of	selected	text

				TSI.SelectionOffset	=	T.SelLength							'Length	of	selected	text

				G.SetTextSelection	TSI																		'Send	text-selection	data	to	SR	engine

End	Sub

Private	Sub	SetWordSequenceData(T	As	Control)

				Call	SetTextSelection(T)																								'Set	up	text-selection	data

				G.SetWordSequenceData	T.Text,	Len(T.Text),	TSI		'Send	the	text	itself	to	engine

End	Sub

Private	Sub	SpeakToFile(ByVal	strText	As	String,	ByVal	strFName	As	String)

				Set	F	=	New	SpFileStream																				'Create	stream

				F.Open	strFName,	SSFMCreateForWrite,	True			'Open	as	the	filename

				Set	V.AudioOutputStream	=	F																	'Set	voice	output	to	file

				V.Speak	strText,	SVSFIsXML																		'Speak	synchronously

				F.Close																																					'Close	file

End	Sub

Private	Sub	Command1_Click()

				Dim	W	As	String

				

				'Get	selected	word	for	voice	to	speak

				If	Text1.SelLength	Then

								W	=	Mid(Text1.Text,	Text1.SelStart	+	1,	Text1.SelLength)

				Else

								W	=	"pony"

				End	If

				W	=	"send	me	a	"	&	W				'Voice	speaks	this	string

				

				'Send	buffer	text	and	selection	data	to	engine

				Call	SetWordSequenceData(Text1)

				

				List1.Clear

				Call	SpeakToFile(W,	WAVEFILENAME)

				F.Open	WAVEFILENAME

				Set	R.AudioInputStream	=	F

End	Sub

Private	Sub	Form_Load()

				'	Create	Recognizer,	RecoContext,	Grammar,	and	Voice

				Set	R	=	New	SpInprocRecognizer

				Set	C	=	R.CreateRecoContext

				Set	G	=	C.CreateGrammar()

				Set	V	=	New	SpVoice

				Set	V.Voice	=	V.GetVoices("gender=male").Item(0)

				Set	V2	=	New	SpVoice

				Set	TSI	=	New	SpeechLib.SpTextSelectionInformation

				

				'Write	a	grammar	with	a	<TEXTTAG>	transition,	then	use	it

				Call	WriteGrammar(XMLFILENAME)

				G.CmdLoadFromFile	XMLFILENAME,	SLODynamic

				G.CmdSetRuleIdState	0,	SGDSActive															'Set	C	&	C	active

				G.DictationSetState	SGDSActive																		'Set	Dictation	active

				Text1.Text	=	"pony	dog	cat	mouse	rabbit	hamster	chinchilla	parrot	turtle"

End	Sub

Private	Sub	C_Recognition(ByVal	StreamNumber	As	Long,	_

																				ByVal	StreamPosition	As	Variant,	_

																				ByVal	RecognitionType	As	SpeechLib.SpeechRecognitionType,	_

																				ByVal	Result	As	SpeechLib.ISpeechRecoResult)

				Dim	X	As	String

				Dim	ii	As	Integer

				

				If	Not	Result.PhraseInfo.Rule.Name	=	""	Then

								List1.AddItem	"			Result	matches	rule	"""	&	Result.PhraseInfo.Rule.Name	&	""""

				End	If

				

				ii	=	0

				For	Each	E	In	Result.PhraseInfo.Elements

								X	=	"element	"	&	Format(ii,	"00")	&	":	"	&	E.DisplayText

								List1.AddItem	X

								ii	=	ii	+	1

				Next

				

End	Sub

Private	Sub	C_EndStream(ByVal	StreamNumber	As	Long,	_

																				ByVal	StreamPosition	As	Variant,	_

																				ByVal	StreamReleased	As	Boolean)

				F.Close

				DoEvents

				F.Open	WAVEFILENAME

				V2.SpeakStream	F

				F.Close

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoGrammar

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

State	Property

The	State	property	gets	and	sets	the	operational	status	of	the
speech	grammar.
The	status	consists	of	a	SpeechGrammarState	constant;	its
three	states	can	be	summarized	as	enabled,	disabled,	and
exclusive.

Syntax

Set: ISpeechRecoGrammar.State	=	SpeechGrammarState
Get: SpeechGrammarState	=	ISpeechRecoGrammar.State

Parts

ISpeechRecoGrammar
The	owning	object.

SpeechGrammarState
Set:	A	SpeechGrammarState	constant	that	sets	the	property.
Get:	A	SpeechGrammarState	constant	that	gets	the	property.

Example
The	following	code	snippet	demonstrates	the	use	of	the	State
property.	The	grammar	is	disabled	while	the	CmdLoadFromFile
method	loads	the	grammar,	and	enabled	when	the	load	has
completed.

Dim	C	As	SpeechLib.SpSharedRecoContext

Dim	G	As	SpeechLib.ISpeechRecoGrammar

Set	C	=	New	SpSharedRecoContext

Set	G	=	C.CreateGrammar()

'

'

'

G.State	=	SGSDisabled							'Disable	grammar	while	loading

G.CmdLoadFromFile	("c:\sol.xml")

G.State	=	SGSEnabled								'Re-enable	when	done	loading

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpeechRecoResult
The	ISpeechRecoResult	automation	interface	returns
information	about	a	recognition	attempt.
A	recognition	result	is	returned	by	a	recognition	context	in	the
three	following	cases:
A	successful	recognition

An	intermediate	recognition	(also	called	a	hypothesis)
An	unsuccessful	recognition	(or	a	false	recognition)

A	successful	recognition	is	a	word	or	phrase	that	surpasses	a
predetermined	confidence	rating.	It	is	considered	to	be	accurate
enough	to	be	passed	back	to	the	user	as	the	text	that	was
actually	spoken.	A	hypothesis	is	an	intermediate	step	toward
recognition.	The	text	has	been	parsed	and	examined	and	is
available	to	the	user	for	closer	examination.	Any	number	of
hypotheses	may	be	produced	during	a	recognition	attempt.	A
hypothesis	may	not	reflect	the	final	recognition	and	should	not
be	used	to	predict	it.	A	false	recognition	is	a	recognized	word	or
phrase	that	does	not	meet	or	exceed	a	predetermined
confidence	rating.	The	false	recognition	will	still	contain	a	valid
recognition	result	including	text	representing	the	speech.
However,	the	text	was	not	able	to	meet	confidence	criteria.	Any
of	the	following	can	contribute	to	a	false	recognition:
Background	noise
Inexact	pronunciation
Uncommon	words
Unusual	sequence	of	words

Any	one	of	the	three	recognition	types	above	is	treated	the
same	for	a	recognition	result.	A	valid	recognition	result	is
returned	by	SAPI	and	its	content	may	be	examined.	Information
includes	the	phrase	itself,	the	owning	recognition	context,	the

audio	format	(if	the	audio	was	retained)	and	other	properties	in
this	class.

Automation	Interface	Elements
The	ISpeechRecoResult	automation	interface	contains	the
following	elements:

Properties Description
AudioFormat	Property Gets	or	sets	the	audio	stream

format.
PhraseInfo	Property Returns	an	ISpeechPhraseInfo

structure	containing	detailed
information	about	the	last
recognized	phrase.

RecoContext	Property Retrieves	the	current
ISpeechRecoContext	for	the
recognizer.

Times	Property Retrieves	the	time	information
associated	with	the	result.

Methods Description
Alternates	Method Returns	a	list	of	alternative	words.
Audio	Method Creates	an	audio	stream	from	the

audio	data	in	the	result	object.
DiscardResultInfo
Method

Discards	the	requested	data	from	a
phrase	object.

SaveToMemory	Method Saves	the	phrase	portion	of	the
recognition	result	to	memory.

SpeakAudio	Method Plays	the	audio	sequence	containing
the	recognized	phrase.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoResult

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Alternates	Method
The	Alternates	method	returns	a	list	of	alternate	words.
Many	recognitions,	successful	or	not,	frequently	return	several
words	or	phrases	that	closely	match	the	spoken	sequence.	The
one	most	nearly	matching	the	sequence	with	a	high	confidence
level	is	returned	as	a	successful	recognition.	The	other	words
and	phrases	are	returned	as	alternates	that	are	available	for
examination.

ISpeechRecoResult.Alternates(

					RequestCount	As	Long,

					[StartElement	As	Long	=	0],

					[Elements	As	Long	=	-1]

)	As	ISpeechPhraseAlternates

Parameters

RequestCount
Specifies	the	maximum	number	of	alternates	to	retrieve,
which	must	be	greater	than	zero.	Any	number	of	alternates
may	be	chosen	and	will	be	returned	in	descending	order	of
confidence.	That	is,	the	first	alternate	returned	has	the
highest	confidence	and	will	most	likely	be	the	word	or	phrase
chosen	by	the	successful	recognition.	The	second	alternate
returned	will	be	the	next	most	likely	choice,	and	the	last
alternate	returned	the	least	likely	match.

StartElement
[Optional]	Specifies	which	element	to	use	as	a	starting	point.
If	omitted,	zero	is	used	and	indicates	the	first	alternate	as	the
starting	point.	Because	it	is	zero	based,	the	second	element
would	be	one.

Elements
[Optional]	Specifies	the	number	of	elements	to	retrieve.
Default	is	-1,	which	specifies	all	alternate	elements	are
retrieved.

Return	Value
The	Alternates	method	returns	an	ISpeechPhraseAlternates
variable.

Remarks
ISpeechRecoResult.Alternates	applies	only	to	dictation
grammar.	Command	and	control	alternates	are	handled
separately	and	independently.	See
ISpeechRecoContext.CmdMaxAlternates	for	command	and
control	alternates.

Example
The	following	example	returns	the	30	most	likely	matches	for	a
recognition.	It	assumes	a	successful	recognition	in	RecoResult.
The	example	also	only	uses	one	parameter,	the	number	of
alternates	to	return;	the	other	parameters	are	assigned	by
default	and	return	all	the	available	words	and	phrases.
Dim	phraseAlternate	As	ISpeechPhraseAlternates

Dim	i	As	Long

Dim	theString	As	String

				

Set	phraseAlternate	=	RecoResult.Alternates(30)

For	i	=	0	To	phraseAlternate.Count	-	1

	 theString	=	phraseAlternate.Item(i).GetText

	 TextField.Text	=	TextField.Text	+	"Alternates	#"	+	str(i)	+	":	"	+	theString	+	vbCrLf

Next	i

If	the	recognition	was	"we	the	people,"	then	the	first	six
alternates	might	look	like	the	following.	Notice	that	the	first
alternate	is	the	recognized	word	or	phrase.

Alternates	#0:	we	the	people
Alternates	#1:	we	have	people
Alternates	#2:	we	people
Alternates	#3:	we	do	people
Alternates	#4:	we	had	people
Alternates	#5:	we	can	people

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoResult

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Audio	Method
The	Audio	method	creates	an	audio	stream	from	the	audio	data
in	the	result	object.
The	resulting	stream	can	be	used	as	input	for
SPVoice.SpeakStream.	However,	a	single	call	to
ISpeechRecoResults.SpeakAudio	performs	the	same	action	of
speaking	the	recognized	result.
The	audio	portion	of	the	recognition	is	not	automatically
available.	By	default,	the	recognition	context	does	not	retain
audio.	To	retain	it,	call	the	RetainedAudio	property	and	set	it	to
SRAORetainAudio.	While	RetainedAudio	can	be	toggled	at
anytime,	audio	for	a	specific	phrase	must	be	retained	before
recognition	attempts	begin.	Therefore,	RetainedAudio	must	be
called	before	the	phrase	is	spoken.

ISpeechRecoResult.Audio(

					[StartElement	As	Long	=	0],

					[Elements	As	Long	=	-1]

)	As	ISpeechBaseStream

Parameters

StartElement
[Optional]	Specifies	the	starting	element.	The	default	value	is
zero,	indicating	the	first	element	is	used.

Elements
[Optional]	Specifies	the	number	of	elements	to	speak.
Default	value	is	-1,	indicating	all	elements	are	to	be	played.

Return	Value

The	Audio	method	returns	an	ISpeechBaseStream	stream.

Remarks
Even	if	there	are	no	elements,	that	is,	StartElement	=	0	and
Elements	=	0,	the	audio	will	still	be	played.	Unrecognized
results	not	having	elements	will	still	have	audio.

Example
The	following	code	snippet	assumes	a	valid	RecoResult.	The
stream	is	returned	and	passed	to	SPVoice.SpeakStream	to	hear.
The	code	also	shows	support	for	RetainedAudio	in	the	current
recognizer.	As	a	note,	the	voice	object	is	created	using	a	late
binding	method.
Dim	WithEvents	RecoResult	As	SpSharedRecoContext

Set	RecoResult	=	New	SpSharedRecoContext

RecoResult.RetainedAudio	=	SRAORetainAudio

'Demonstrates	retrieving	the	RetainedAudio	value

Dim	audioOption	As	SpeechRetainedAudioOptions

audioOption	=	RecoResult.RetainedAudio

'Rest	of	the	code	to	process	recognition	goes	here

...

'Gets	the	stream	to	speak

Dim	stream	As	ISpeechBaseStream

Set	stream	=	RecoResult.Audio

				

'Creates	the	voice

Dim	Voice	As	SpVoice

Set	Voice	=	CreateObject("SAPI.SpVoice")

Voice.SpeakStream	stream

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	ISpeechRecoResult

AudioFormat	Property
The	AudioFormat	property	gets	or	sets	the	audio	stream
format.
The	controlling	recognition	context	must	retain	the	audio	portion
of	the	recognition.	By	default,	a	recognition	context	does	not
retain	audio;	that	is,	RecoContext.RetainedAudio	is	set	to
SRAONone.	Attempts	to	access	this	retained	audio	stream,
including	references	to	AudioFormat,	cause	an
SPERR_NO_AUDIO_DATA	error.	To	retain	the	audio,	use
ISpeechRecoContext.RetainedAudio	passing	SRAORetainAudio
as	the	parameter.

Syntax

Get: SpAudioFormat	=
ISpeechRecoResult.AudioFormat

Set: ISpeechRecoResult.AudioFormat	=
SpAudioFormat

Parts

ISpeechRecoResult
The	owning	object.

SpAudioFormat
An	object	variable	representing	an	audio	output	device.

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Get:	The	token	represents	the	current	audio	output	device	of
the	voice.
Set:	The	token	represents	the	audio	output	device	assigned
to	the	voice.
In	either	case,	the	format	for	SpAudioFormat.Type	is	of	type
SpeechAudioFormatType.

Example
The	following	code	snippet	demonstrates	retrieving	and	setting
the	audio	format.
The	following	code	snippets	assume	a	valid	RecoResult.	The
following	code	demonstrates	setting	the	recognition	context.
Set	RC	=	New	SpSharedRecoContext

RC.RetainedAudio	=	SRAORetainAudio

'Get	audio	format

Dim	GetFormat	as	SpAudioFormat

Set	Format	=	RecoResult.AudioFormat

'Set	audio	format

Dim	SetFormat	as	SpAudioFormat

Set	SetFormat	=	CreateObject("SAPI.SpAudioFormat")

				

SetFormat.Type	=	SAFT11kHz16BitMono

Set	RecoResult.AudioFormat	=	SetFormat

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoResult

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

DiscardResultInfo	Method
The	DiscardResultInfo	method	discards	the	requested	data
from	a	phrase	object.
Applications	that	have	no	use	for	certain	types	of	retained	data,
and	will	be	persisting	or	serializing	the	phrase	or	result	objects,
may	discard	unnecessary	data.
For	example,	an	application	performing	offline	transcription	may
need	to	retain	only	the	audio	and	the	final	result.	It	can	remove
the	alternates	with	object.DiscardResultInfo(SPDF_ALTERNATES)
to	eliminate	the	alternate	data	(possibly	including	a	large
amount	of	private	engine	data).	Once	the	result	information	is
discarded,	all	attempts	to	access	that	data	will	be	unsuccessful.
For	example,	once	retained	audio	has	been	discarded,	a	call	to
ISpeechRecoResult.Audio	will	fail.

ISpeechRecoResult.DiscardResultInfo(

					ValueTypes	As	SpeechDiscardType

)

Parameters

ValueTypes
Flags	indicating	elements	to	discard.	Multiple	values	may	be
combined	with	logical	operands.

Return	Value
None.

Example
The	following	snippet	demonstrates	discarding	the	audio	portion
of	the	recognition.	Retaining	audio	is	explicitly	set	in	the	second

line.	After	a	successful	recognition	and	a	valid	RecoResult,	the
snippet	speaks	back	the	recognition.	The	retained	audio	is
discarded	immediately	and	the	next	attempt	at	speaking	that
audio	fails	with	an	SPERR_NO_AUDIO_DATA.
Set	RecoResult	=	New	SpSharedRecoContext
RecoResult.RetainedAudio	=	SRAORetainAudio

'Speech	processing	code	goes	here

RecoResult.SpeakAudio
RecoResult.DiscardResultInfo	(SDTAudio)
RecoResult.SpeakAudio

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoResult

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

PhraseInfo	Property
The	PhraseInfo	property	returns	an	ISpeechPhraseInfo
structure	containing	detailed	information	about	the	last
recognized	phrase.
ISpeechPhraseInfo	elements	contains	read-only	data	about
timing	for	the	phrase	and	audio	stream,	elements	(words	and
phrases)	in	the	recognized	phrase,	grammar	and	grammar	rules
information.	The	structure	is	used	to	examine	the	recognition
information.	It	is	also	used	by	other	calls	such	as
ISpeechRecoResult.PhraseInfo.GetText	to	retrieve	the	phrase
text.

Syntax

Set: (This	property	is	read-only)
Get: ISpeechPhraseInfo	=	ISpeechRecoResult.PhraseInfo

Parts

ISpeechRecoResult
The	owning	object.

ISpeechPhraseInfo
Set:	(This	property	is	read-only)
Get:	An	ISpeechPhraseInfo	variable	that	gets	the	property.

Example
The	following	code	snippet	assumes	a	previously	defined
RecoResult.	If	a	completed	recognition	occurs,	the	code	parses
out	selected	information	about	stream	times	and	element	times.

Although	the	preferred	method	of	retrieving	the	text	uses
ISpeechRecoResult.GetText,	this	snippet	not	only	retrieves	the
text	on	an	element	by	element	basis,	but	also	retrieves	the
stream	time	associated	with	the	word.
Dim	rString	As	String

Dim	i	As	Integer

Dim	rp	As	ISpeechPhraseInfo

Set	rp	=	RecoResult.PhraseInfo

								

If	Not	RecoResult	Is	Nothing	Then

	 rString	=	rString	+	"LangID=	"	&	rp.LanguageId	&	vbCrLf

	 rString	=	rString	+	"AudioBytes=	"	&	rp.AudioSizeBytes	&	vbCrLf

	 rString	=	rString	+	"AudioTime=	"	&	rp.AudioSizeTime	&	vbCrLf

	 For	i	=	0	To	rp.Elements.Count	-	1

	 	 rString	=	rString	+	"Stream	offset:"	&	rp.Elements(i).AudioStreamOffset	&	vbCrLf

	 	 rString	=	rString	+	"Text	form:	"	&	rp.Elements(i).DisplayText	&	vbCrLf

	 	 rString	=	rString	+	"Lex	form:	"	&	rp.Elements(i).LexicalForm	&	vbCrLf

	 Next

End	If

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoResult

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

RecoContext	Property
The	RecoContext	property	retrieves	the	current
ISpeechRecoContext	for	the	recognizer.
Applications	may	have	multiple	recognition	contexts	open	at	the
same	time.	RecoContext	provides	a	means	to	determine	which
context	owns	the	recognition.	For	example,	in	situations	with
more	than	recognition	context,	a	recognition	result	may	call
RecoContext	to	get	the	context	associated	with	it.	The	returned
context	may	be	changed	afterward	and	will	not	affect	other
contexts.

Syntax

Set: (This	property	is	read-only)
Get: ISpeechRecoContext	=	ISpeechRecoResult.RecoContext

Parts

ISpeechRecoResult
The	owning	object.

SpSharedRecoContext
Set:	(This	property	is	read-only)
Get:	An	SpSharedRecoContext	variable	that	gets	the
property.

Example
The	following	snippet	assumes	a	valid	recognition	RecoResult.	If
more	than	one	recognition	context	exists,	the	one	owning
RecoResult	is	retrieved	and	the	event	interest	is	changed.	No
other	recognition	contexts	are	affected.
Dim	myContext	As	ISpeechRecoContext

Set	myContext	=	RecoResult.RecoContext()

myContext.EventInterests	=	SREFalseRecognition

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoResult

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SaveToMemory	Method
The	SaveToMemory	method	saves	the	entire	recognition	result
to	memory.
The	phrase	may	be	recalled	at	a	later	time.	To	retrieve	the
recognition	result	from	memory	use
SpSharedRecoContext.CreateResultFromMemory	or
SpInProcRecoContext.CreateResultFromMemory	depending	on
the	recognition	context	used.

ISpeechRecoResult.SaveToMemory()	As	Variant

Parameters

None

Return	Value
The	SaveToMemory	method	returns	a	Variant	containing	a
pointer	to	saved	phrase.

Example
See	ISpeechRecoContext.CreateResultFromMemory.htm	for	a
complete	code	sample.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoResult

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpeakAudio	Method
The	SpeakAudio	method	plays	the	audio	sequence	containing
the	recognized	phrase.
The	audio	portion	of	the	recognition	is	not	automatically
available.	By	default,	the	recognition	context	does	not	retain
audio.	Call	RetainedAudio	and	set	it	to	SRAORetainAudio	to
retain	the	audio.	Although	RetainedAudio	can	be	toggled	at
anytime,	audio	for	a	specific	phrase	must	be	retained	before
recognition	attempts	begin.	Therefore,	RetainedAudio	must	be
called	before	the	phrase	is	spoken.
SpeakAudio	combines	two	other	methods.	The	first,
ISpeechRecoResult.Audio,	which	retrieves	the	audio.	The	second
call	is	SpVoice.SpeakStream,	which	plays	it	back.

ISpeechRecoResult.SpeakAudio(

					[StartElement	As	Long	=	0],

					[Elements	As	Long	=	-1],

					[Flags	As	SpeechVoiceSpeakFlags	=	SVSFDefault]

)	As	Long

Parameters

StartElement
[Optional]	Specifies	the	starting	element.	The	default	value	is
zero,	indicating	that	the	first	element	is	used.

Elements
[Optional]	Specifies	the	number	of	elements	to	speak.
Default	value	is	-1,	indicating	that	all	elements	are	to	be
played.

Flags
[Optional]	Specifies	the	Flags.	Default	value	is	SVSFDefault
indicating	that	no	special	speak	restrictions	are	imposed.

Return	Value
The	SpeakAudio	method	returns	a	Long	variable	indicating	the
stream	number.

Remarks
Even	if	there	are	no	elements,	that	is,	StartElement	=	0	and
Elements	=	0,	the	audio	will	still	be	played.	Unrecognized
results	not	having	elements	will	still	have	audio.
Also	see	ISpeechRecoContext.RetainedAudio	for	an	additional
code	sample.

Example
The	following	code	snippet	assumes	a	valid	RecoResult	and	that
RetainedAudio	is	set	for	the	current	recognizer.	The	first	sample
plays	back	the	entire	recognized	phrase.
RecoResult.SpeakAudio

The	next	example	demonstrates	SpeakAudio	speaking	every
other	word	in	the	phrase	and	skipping	the	others.	The	code	also
shows	support	for	RetainedAudio	in	the	current	recognizer.
Dim	WithEvents	RecoResult	As	SpSharedRecoContext

Dim	theCount,	i	As	Long

Set	RecoResult	=	New	SpSharedRecoContext

RecoResult.RetainedAudio	=	SRAORetainAudio

'Rest	of	the	code	to	process	recognition	goes	here

'Get	the	number	of	phrase	elements	(words	in	the	phrase)	and	

'step	through	every	other	one.

theCount	=	RecoResult.PhraseInfo.Elements.Count

For	i	=	0	To	theCount	-	1	Step	2

			streamNumber	=	RecoResult.SpeakAudio(i,	1,	SVSFDefault)

Next	i

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoResult

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Times	Property
The	Times	property	retrieves	the	time	information	associated
with	the	result.

Syntax

Set: (This	property	is	read-only)
Get: ISpeechRecoResultTimes	=	ISpeechRecoResult.Times

Parts

ISpeechRecoResult
The	owning	object.

ISpeechRecoResultTimes
Set:	(This	property	is	read-only)
Get:	An	ISpeechRecoResultTimes	variable	containing	the
time	information	for	the	recognition.

Example
The	following	snippet	assumes	a	valid	recognition	RecoResult.
ISpeechRecoResultTimes	is	retrieved	for	the	current	recognition.
Since	all	the	values	are	read-only,	they	are	added	to	a	string	for
possible	display.
Dim	myTimes	As	ISpeechRecoResultTimes

Dim	rString	As	String

Set	myTimes	=	RecoResult.Times()

rString	=	"Len=	"	&	myTimes.Length	&	vbCrLf

rString	=	rString	&	"Start=	"	&	myTimes.OffsetFromStart	&	vbCrLf

rString	=	rString	&	"Time=	"	&	myTimes.StreamTime	&	vbCrLf

rString	=	rString	&	"TickCount=	"	&	myTimes.TickCount

Alternatively,	the	same	information	may	be	retrieved	directly
from	RecoResult.
Dim	rString	As	String

rString	=	"Len=	"	&	RecoResult.Times.Length	&	vbCrLf

rString	=	rString	&	"Start=	"	&	RecoResult.Times.OffsetFromStart	&	vbCrLf

rString	=	rString	&	"Time=	"	&	RecoResult.Times.StreamTime	&	vbCrLf

rString	=	rString	&	"TickCount=	"	&	RecoResult.Times.TickCount

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpeechRecoResultTimes
The	ISpeechRecoResultTimes	automation	interface	contains
the	time	information	for	speech	recognition	results.
The	ISpeechRecoResult.Times	property	returns	an
ISpeechRecoResultTimes	object.

Automation	Interface	Elements
The	ISpeechRecoResultTimes	automation	interface	contains	the
following	elements:

Properties Description
Length	Property Returns	the	time	length	of	the	last

recognition.
OffsetFromStart
Property

Returns	the	time	from	the	start	of
the	stream	to	the	start	of	the	phrase.

StreamTime	Property Returns	the	time	of	the	stream	in
Universal	Coordinated	Time.

TickCount	Property Returns	the	elapsed	time	from	the
start	of	the	system	to	the	start	of	the
current	result.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoResultTimes

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Length	Property
The	Length	property	returns	the	time	length	of	the	last
recognition.
It	is	specified	in	100	nanosecond	units.

Syntax

Set: (This	property	is	read-only)
Get: Variant	=	ISpeechRecoResultTimes.Length

Parts

ISpeechRecoResultTimes
The	owning	object.

Variant
Set:	(This	property	is	read-only)
Get:	A	Variant	type	containing	the	length	of	the	recognition.

Example
When	a	recognition	occurs	with	a	valid	RecoResult,	the	times
can	be	extracted	for	later	use	to	allocate	memory	or	to	select
data	from	the	audio	stream.	For	example,	using	the	phrase
"variety	is	the	spice	of	life,"	the	Length	could	be	32,200,000
nanoseconds	or	3.2	seconds.
The	first	example	retrieves	the	recognition	length	using	the
Length	property.
Dim	myTimes	As	ISpeechRecoResultTimes

Set	myTimes	=	RecoResult.Times

				

Dim	recoLength	As	Variant

recoLength	=	myTimes.Length

The	second	example	retrieves	the	recognition	length	by	directly
accessing	the	RecoResult	structure.
Dim	recoLength	As	Variant

recoLength	=	RecoResult.Times.Length

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoResultTimes

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

OffsetFromStart	Property
The	OffsetFromStart	property	returns	the	time	from	the	start
of	the	stream	to	the	start	of	the	phrase.
It	is	specified	in	100	nanosecond	units.

Syntax

Set: (This	property	is	read-only)
Get: Variant	=	ISpeechRecoResultTimes.OffsetFromStart

Parts

ISpeechRecoResultTimes
The	owning	object.

Variant
Set:	(This	property	is	read-only)
Get:	A	Variant	type	containing	time	offset	from	the	start	of
the	stream.

Example
When	a	recognition	occurs	with	a	valid	RecoResult,	the	times
can	be	extracted	in	order	to	select	data	at	a	later	time.	For
example,	using	the	phrase	"variety	is	the	spice	of	life,"	the
OffsetFromStart	position	could	be	21120	if	the	user	started
speaking	relatively	quickly	once	the	stream	began.
The	first	example	retrieves	the	recognition	offset	using	the
OffsetFromStart	property.
Dim	myTimes	As	ISpeechRecoResultTimes

Set	myTimes	=	RecoResult.Times

				

Dim	offsetPosition	As	Variant

offsetPosition	=	myTimes.OffsetFromStart

The	second	example	retrieves	the	recognition	offset	by	directly
accessing	the	RecoResult	structure.
Dim	offsetPosition	As	Variant

offsetPosition	=	RecoResult.Times.OffsetFromStart

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoResultTimes

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

StreamTime	Property
The	StreamTime	property	returns	the	time	of	the	stream	in
Universal	Coordinated	Time.
This	value	is	zero	if	a	wave	file	input	is	used.

Syntax

Set: (This	property	is	read-only)
Get: Variant	=	ISpeechRecoResultTimes.StreamTime

Parts

ISpeechRecoResultTimes
The	owning	object.

Variant
Set:	(This	property	is	read-only)
Get:	A	Variant	type	containing	the	Universal	Coordinated
Time	time	of	the	phrase	start	for	the	stream.

Example
When	a	recognition	occurs	with	a	valid	RecoResult,	the
StreamTime	can	be	extracted.
The	first	example	retrieves	the	recognition	stream	time	using
the	StreamTime	property.
Dim	myTimes	As	ISpeechRecoResultTimes

Set	myTimes	=	RecoResult.Times

				

Dim	streamTime	As	Variant

streamTime	=	myTimes.StreamTime

The	second	example	retrieves	the	recognition	stream	time	by
directly	accessing	the	RecoResult	structure.
Dim	streamTime	As	Variant

streamTime	=	RecoResult.Times.StreamTime

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoResultTimes

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

TickCount	Property
The	TickCount	property	returns	the	elapsed	time	from	the	start
of	the	system	to	the	start	of	the	current	result.
It	is	specified	in	millisecond	units.	The	TickCount	returns	zero	if
the	wave	file	input	is	used.

Syntax

Set: (This	property	is	read-only)
Get: Long	=	ISpeechRecoResultTimes.TickCount

Parts

ISpeechRecoResultTimes
The	owning	object.

Long
Set:	(This	property	is	read-only)
Get:	A	Variant	type	containing	the	elapsed	time

Example
When	a	recognition	occurs	with	RecoResult,	the	TickCount	can
be	extracted	to	determine	the	absolute	time	for	the	computer
system.	It	is	more	accurate	than	retrieving	the	clock	values.
The	first	example	retrieves	the	recognition	tick	count	using	the
TickCount	property.
Dim	myTimes	As	ISpeechRecoResultTimes

Set	myTimes	=	RecoResult.Times

				

Dim	tickCount	As	Variant

tickCount	=	myTimes.TickCount

The	second	example	retrieves	the	recognition	tick	count	by
directly	accessing	the	RecoResult	structure.
Dim	tickCount	As	Variant

tickCount	=	RecoResult.Times.TickCount

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpeechVoiceStatus
The	ISpeechVoiceStatus	automation	interface	defines	the
types	of	information	returned	by	the	SpVoice.Status	method.
Most	ISpeechVoiceStatus	properties	consist	of	real-time
feedback	from	the	text-to-speech	(TTS)	engine.	These	properties
are	equivalent	to	parameters	returned	by	voice	events,	and	like
voice	events,	they	are	used	only	with	asynchronous	speech.	It
may	be	advantageous	for	some	applications	to	retrieve	these
elements	by	calling	Status	occasionally,	rather	than	by	receiving
events	constantly.
It	should	be	noted	that	voice	status	and	voice	events	are	closely
associated	with	the	status	of	the	audio	output	device.	A	voice
speaking	to	a	file	stream	produces	no	audio	output	and	has	no
audio	output	status.	As	a	result,	ISpeechVoiceStatus	always
displays	the	voice	as	inactive.
Use	of	the	ISpeechVoiceStatus	is	demonstrated	in	a	code
example	at	the	end	of	this	section.

Automation	Interface	Elements
The	ISpeechVoiceStatus	automation	interface	contains	the
following	elements:

Properties Description
CurrentStreamNumber
Property

Retrieves	the	number	of	the	text
input	stream	being	spoken	by
the	TTS	engine.

InputSentenceLength
Property

Retrieves	the	length	of	the
sentence	currently	being	spoken
by	the	TTS	engine.

InputSentencePosition Retrieves	the	position	one

Property character	prior	to	the	beginning
of	the	sentence	currently	being
spoken	by	the	TTS	engine.

InputWordLength	Property Retrieves	the	length	of	the	word
currently	being	spoken	by	the
TTS	engine.

InputWordPosition	Property Retrieves	the	position	one
character	prior	to	the	beginning
of	the	word	currently	being
spoken	by	the	TTS	engine.

LastBookmark	Property Retrieves	the	string	value	of	the
last	bookmark	encountered	by
the	TTS	engine.

LastBookmarkId	Property Retrieves	the	ID	of	the	last
bookmark	encountered	by	the
TTS	engine.

LastHResult	Property Retrieves	the	HResult,	or
internal	status	code,	from	the
last	Speak	or	SpeakStream
operation	performed	by	the	TTS
engine.

LastStreamNumberQueued
Property

Retrieves	the	number	of	the	last
audio	stream	spoken	by	the	TTS
engine.

PhonemeId	Property Retrieves	the	ID	of	the	current
phoneme	being	spoken	by	the
TTS	engine.

RunningState	Property Retrieves	the	run	state	of	the
voice,	which	indicates	whether
the	voice	is	speaking	or	inactive.

VisemeId	Property Gets	the	ID	of	the	current
viseme	being	spoken	by	the	TTS
engine.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechVoiceStatus

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CurrentStreamNumber	Property

The	CurrentStreamNumber	property	retrieves	the	number	of
the	text	input	stream	being	spoken	by	the	text-to-speech	(TTS)
engine.
The	CurrentStreamNumber	property	of	an	ISpeechVoiceStatus
object	is	valid	only	when	its	RunningState	property	is
SRSEIsSpeaking.

Syntax

Set: (This	property	is	read-only)
Get: Long	=	ISpeechVoiceStatus.CurrentStreamNumber

Parts

ISpeechVoiceStatus
The	owning	object.

Long
Set:	(This	property	is	read-only)
Get:	A	Long	variable	that	returns	the	stream	number.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	CurrentStreamNumber	and	RunningState	properties.	To	run
this	code,	create	a	form	with	the	following	controls:
A	command	button	called	Command1
A	list	box	called	List1

Paste	this	code	into	the	Declarations	section	of	the	form.

The	Form_Load	procedure	creates	a	voice.	The	Command1_Click
procedure	speaks	three	text	streams	asynchronously,	putting
each	in	the	list	box,	and	then	performs	a	loop	until	the	voice
finishes	speaking.	Inside	this	loop,	the	code	uses	the
CurrentStreamNumber	property	to	highlight	each	line	of	text	in
the	list	box	while	it	is	spoken	by	the	TTS	engine.	A	RunningState
property	of	SRSEDone	indicates	that	the	voice	has	finished
speaking.

Option	Explicit

Private	V	As	SpeechLib.SpVoice

Private	Sub	Command1_Click()

				Dim	ii	As	Integer

				List1.Clear

				

				'Place	text	strings	in	the	List	box,	and	speak	them

				

				List1.AddItem	"This	is	stream	number	one."

				V.Speak	"This	is	stream	number	one.",	SVSFlagsAsync

				

				List1.AddItem	"A	second	stream,	now."

				V.Speak	"A	second	stream,	now.",	SVSFlagsAsync

				

				List1.AddItem	"The	third	stream	is	next."

				V.Speak	"The	third	stream	is	next.",	SVSFlagsAsync

				

				'Check	status	periodically

				Do

								For	ii	=	0	To	1000

												DoEvents

								Next	ii

								

								'Highlight	the	stream	being	spoken

								List1.ListIndex	=	V.Status.CurrentStreamNumber	-	1

				

				Loop	Until	V.Status.RunningState	=	SRSEDone	'Exit	when	voice	stops

				

				List1.ListIndex	=	-1				'Turn	highlight	off

				

End	Sub

Private	Sub	Form_Load()

				

				Set	V	=	New	SpVoice

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechVoiceStatus

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

InputSentenceLength	Property

The	InputSentenceLength	property	retrieves	the	length	of	the
sentence	currently	being	spoken	by	the	text-to-speech	(TTS)
engine.
The	InputSentenceLength	property	of	an	ISpeechVoiceStatus
object	is	valid	only	when	its	RunningState	property	is
SRSEIsSpeaking.

Syntax

Set: (This	property	is	read-only)
Get: Long	=	ISpeechVoiceStatus.InputSentenceLength

Parts

ISpeechVoiceStatus
The	owning	object.

Long
Set:	(This	property	is	read-only)
Get:	A	Long	variable	returning	the	sentence	length.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	InputSentenceLength	and	InputSentencePosition	properties
of	an	ISpeechVoiceStatus	object.	To	run	this	code,	create	a	form
with	the	following	controls:
A	command	button	called	Command1

A	text	box	called	Text1
Set	the	HideSelection	property	of	Text1	to	False

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	a	voice	object	and	places
sample	sentences	in	the	text	box.	The	Command1_Click
procedure	speaks	the	contents	of	the	text	box	asynchronously
and	loops	until	the	voice	finishes	speaking.	In	this	loop,	the	code
uses	InputSentencePosition	and	InputSentenceLength	properties
to	highlight	each	sentence	in	the	text	box	as	it	is	spoken	by	the
TTS	engine.	A	RunningState	property	of	SRSEDone	indicates
that	the	voice	has	finished	speaking.

Option	Explicit

Dim	V	As	SpeechLib.SpVoice

Private	Sub	Command1_Click()

				Dim	ii	As	Integer

				Dim	S	As	SpeechLib.ISpeechVoiceStatus

				V.Speak	Text1.Text,	SVSFlagsAsync			'Speak	the	user-editable	text

				

				'Check	status	periodically

				Do

								For	ii	=	0	To	5000

												DoEvents

								Next	ii

								

								Set	S	=	V.Status				'Get	status	in	an	ISpeechVoiceStatus	object

								

								'Text1.HideSelection	must	be	False	for	this	selection	to	be	seen!

								

								Text1.SelStart	=	S.InputSentencePosition

								Text1.SelLength	=	S.InputSentenceLength

				

				Loop	Until	V.Status.RunningState	=	SRSEDone	'Exit	when	voice	stops

								

				Text1.SelLength	=	0

				

End	Sub

Private	Sub	Form_Load()

				Set	V	=	New	SpVoice

				Text1.Text	=	"One	sentence.	Another	sentence.	Still	one	more	sentence."

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechVoiceStatus

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

InputSentencePosition	Property

The	InputSentencePosition	property	retrieves	the	position
one	character	prior	to	the	beginning	of	the	sentence	currently
being	spoken	by	the	text-to-speech	(TTS)	engine.
The	InputSentencePosition	property	of	an	ISpeechVoiceStatus
object	is	valid	only	when	its	RunningState	property	is
SRSEIsSpeaking.

Syntax

Set: (This	property	is	read-only)
Get: Long	=	ISpeechVoiceStatus.InputSentencePosition

Parts

ISpeechVoiceStatus
The	owning	object.

Long
Set:	(This	property	is	read-only)
Get:	A	Long	variable	returning	the	character	position.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	InputSentenceLength	and	InputSentencePosition	properties
of	an	ISpeechVoiceStatus	object.	To	run	this	code,	create	a	form
with	the	following	controls:
A	command	button	called	Command1

A	text	box	called	Text1
Set	the	HideSelection	property	of	Text1	to	False

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	a	voice	object	and	places	a
few	sentences	in	the	text	box.	The	Command1_Click	procedure
speaks	the	contents	of	the	text	box	asynchronously	and	loops
until	the	voice	finishes	speaking.	In	this	loop,	the	code	uses
InputSentencePosition	and	InputSentenceLength	properties	to
highlight	each	sentence	in	the	text	box	as	it	is	spoken	by	the
TTS	engine.	A	RunningState	property	of	SRSEDone	indicates
that	the	voice	has	finished	speaking.

Option	Explicit

Dim	V	As	SpeechLib.SpVoice

Private	Sub	Command1_Click()

				Dim	ii	As	Integer

				Dim	S	As	SpeechLib.ISpeechVoiceStatus

				V.Speak	Text1.Text,	SVSFlagsAsync			'Speak	the	user-editable	text

				

				'Check	status	periodically

				Do

								For	ii	=	0	To	5000

												DoEvents

								Next	ii

								

								Set	S	=	V.Status				'Get	status	in	an	ISpeechVoiceStatus	object

								

								'Text1.HideSelection	must	be	False	for	this	selection	to	be	seen!

								

								Text1.SelStart	=	S.InputSentencePosition

								Text1.SelLength	=	S.InputSentenceLength

				

				Loop	Until	V.Status.RunningState	=	SRSEDone	'Exit	when	voice	stops

								

				Text1.SelLength	=	0

				

End	Sub

Private	Sub	Form_Load()

				Set	V	=	New	SpVoice

				Text1.Text	=	"One	sentence.	Another	sentence.	Still	one	more	sentence."

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechVoiceStatus

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

InputWordLength	Property

The	InputWordLength	property	retrieves	the	length	of	the
word	currently	being	spoken	by	the	text-to-speech	(TTS)	engine.
The	InputWordLength	property	of	an	ISpeechVoiceStatus	object
is	valid	only	when	its	RunningState	property	is	SRSEIsSpeaking.

Syntax

Set: (This	property	is	read-only)
Get: Long	=	ISpeechVoiceStatus.InputWordLength

Parts

ISpeechVoiceStatus
The	owning	object.

Long
Set:	(This	property	is	read-only)
Get:	A	Long	variable	returning	the	word	length.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	InputWordLength	and	InputWordPosition	properties	of	an
ISpeechVoiceStatus	object.	To	run	this	code,	create	a	form	with
the	following	controls:
A	command	button	called	Command1

A	text	box	called	Text1

Set	the	HideSelection	property	of	Text1	to	False

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	a	voice	object	and	places	a
sentence	in	the	text	box.	The	Command1_Click	procedure
speaks	the	contents	of	the	text	box	asynchronously	and	loops
until	the	voice	finishes	speaking.	In	this	loop,	the	code	uses
InputSentencePosition	and	InputSentenceLength	properties	to
highlight	each	word	in	the	text	box	as	it	is	spoken	by	the	TTS
engine.	A	RunningState	property	of	SRSEDone	indicates	that	the
voice	has	finished	speaking.

Option	Explicit

Dim	V	As	SpeechLib.SpVoice

Private	Sub	Command1_Click()

				Dim	ii	As	Integer

				Dim	S	As	SpeechLib.ISpeechVoiceStatus

				V.Speak	Text1.Text,	SVSFlagsAsync			'Speak	the	user-editable	text

				

				'Check	status	periodically

				Do

								For	ii	=	0	To	5000

												DoEvents

								Next	ii

								

								Set	S	=	V.Status				'Get	status	in	an	ISpeechVoiceStatus	object

								

								'Text1.HideSelection	must	be	False	for	this	selection	to	be	seen!

								

								Text1.SelStart	=	S.InputWordPosition

								Text1.SelLength	=	S.InputWordLength

				

				Loop	Until	V.Status.RunningState	=	SRSEDone	'Exit	when	voice	stops

								

				Text1.SelLength	=	0

				

End	Sub

Private	Sub	Form_Load()

				Set	V	=	New	SpVoice

				Text1.Text	=	"This	is	a	sentence	containing	several	words."

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechVoiceStatus

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

InputWordPosition	Property

The	InputWordPosition	property	retrieves	the	position	one
character	prior	to	the	beginning	of	the	word	currently	being
spoken	by	the	text-to-speech	(TTS)	engine.
The	InputWordPosition	property	of	an	ISpeechVoiceStatus	object
is	valid	only	when	its	RunningState	property	is	SRSEIsSpeaking.

Syntax

Set: (This	property	is	read-only)
Get: Long	=	ISpeechVoiceStatus.InputWordPosition

Parts

ISpeechVoiceStatus
The	owning	object.

Long
Set:	(This	property	is	read-only)
Get:	A	Long	variable	returning	the	character	position.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	InputWordLength	and	InputWordPosition	properties	of	an
ISpeechVoiceStatus	object.	To	run	this	code,	create	a	form	with
the	following	controls:
A	command	button	called	Command1
A	text	box	called	Text1

Set	the	HideSelection	property	of	Text1	to	False

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	a	voice	object	and	places	a
sentence	in	the	text	box.	The	Command1_Click	procedure
speaks	the	contents	of	the	text	box	asynchronously	and	loops
until	the	voice	finishes	speaking.	In	this	loop,	the	code	uses
InputSentencePosition	and	InputSentenceLength	properties	to
highlight	each	word	in	the	text	box	as	it	is	being	spoken	by	the
TTS	engine.	A	RunningState	property	of	SRSEDone	indicates
that	the	voice	has	finished	speaking.

Option	Explicit

Dim	V	As	SpeechLib.SpVoice

Private	Sub	Command1_Click()

				Dim	ii	As	Integer

				Dim	S	As	SpeechLib.ISpeechVoiceStatus

				V.Speak	Text1.Text,	SVSFlagsAsync			'Speak	the	user-editable	text

				

				'Check	status	periodically

				Do

								For	ii	=	0	To	5000

												DoEvents

								Next	ii

								

								Set	S	=	V.Status				'Get	status	in	an	ISpeechVoiceStatus	object

								

								'Text1.HideSelection	must	be	False	for	this	selection	to	be	seen!

								

								Text1.SelStart	=	S.InputWordPosition

								Text1.SelLength	=	S.InputWordLength

				

				Loop	Until	V.Status.RunningState	=	SRSEDone	'Exit	when	voice	stops

								

				Text1.SelLength	=	0

				

End	Sub

Private	Sub	Form_Load()

				Set	V	=	New	SpVoice

				Text1.Text	=	"This	is	a	sentence	containing	several	words."

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechVoiceStatus

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

LastBookmark	Property

The	LastBookmark	property	retrieves	the	text	value	of	the	last
bookmark	encountered	by	the	text-to-speech	(TTS)	engine.
The	text	value	of	a	bookmark	is	enclosed	in	an	XML	attribute
called	Mark.

Syntax

Set: (This	property	is	read-only)
Get: String	=	ISpeechVoiceStatus.LastBookmark

Parts

ISpeechVoiceStatus
The	owning	object.

String
Set:	(This	property	is	read-only)
Get:	A	String	variable	returning	the	string	value	of	the	last
bookmark.

Example
The	following	code	snippet	demonstrates	the	use	of	the
LastBookmark	and	LastBookmarkId	properties.	The	code	creates
a	voice	that	speaks	a	text	stream	containing	several	bookmarks,
and	then	calls	the	Status	method	to	get	an	ISpeechVoiceStatus
object.	This	example	demonstrates	how	the	LastBookmark	and
the	LastBookmarkId	properties	return	the	bookmark	text	and
also	displays	the	format	of	a	bookmark.

Dim	objVOICE	As	SpeechLib.SpVoice

Dim	objSTATUS	As	SpeechLib.ISpeechVoiceStatus

Set	objVOICE	=	New	SpVoice

objVOICE.Speak	"<BOOKMARK	MARK='1.	Monday'/>	monday	"	_

												&	"<bookmark	mark='2.	Tuesday'/>	tuesday	",	SVSFIsXML

												

Set	objSTATUS	=	objVOICE.Status

MsgBox	"LastBookmark	is	"	&	objSTATUS.LastBookmark						'	"2.	Tuesday"

MsgBox	"LastBookmarkId	is	"	&	objSTATUS.LastBookmarkId		'	"2"

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechVoiceStatus

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

LastBookmarkId	Property

The	LastBookmarkId	property	retrieves	the	ID	of	the	last
bookmark	encountered	by	the	text-to-speech	(TTS)	engine.
The	text	value	of	a	bookmark	is	enclosed	in	an	XML	attribute
called	Mark.	The	bookmark	ID	consists	of	the	numeric	integer
value	of	the	leading	characters	of	the	bookmark	text.	For
example,	in	a	bookmark	with	text	"17.53.01	Section	53,"	the
bookmark	ID	would	be	"17."	A	bookmark	with	text	that	begins
with	a	non-numeric	character	will	always	have	a	bookmark	ID	of
zero.	

Syntax

Set: (This	property	is	read-only)
Get: Long	=	ISpeechVoiceStatus.LastBookmarkId

Parts

ISpeechVoiceStatus
The	owning	object.

Long
Set:	(This	property	is	read-only)
Get:	A	Long	variable	returning	the	ID	of	the	last	bookmark.

Example
The	following	code	snippet	demonstates	the	use	of	the
LastBookmark	and	LastBookmarkId	properties.	The	code	creates
a	voice	which	speaks	a	text	stream	containing	several
bookmarks.	The	code	then	calls	the	Status	method	to	get	an

ISpeechVoiceStatus	object.	This	example	demonstrates	how	the
LastBookmark	and	the	LastBookmarkId	properties	return	the
bookmark	text	and	also	displays	the	format	of	a	bookmark.

Dim	objVOICE	As	SpeechLib.SpVoice

Dim	objSTATUS	As	SpeechLib.ISpeechVoiceStatus

Set	objVOICE	=	New	SpVoice

objVOICE.Speak	"<BOOKMARK	MARK='1.	Monday'/>	monday	"	_

												&	"<bookmark	mark='2.	Tuesday'/>	tuesday	",	SVSFIsXML

												

Set	objSTATUS	=	objVOICE.Status

MsgBox	"LastBookmark	is	"	&	objSTATUS.LastBookmark						'	"2.	Tuesday"

MsgBox	"LastBookmarkId	is	"	&	objSTATUS.LastBookmarkId		'	"2"

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechVoiceStatus

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

LastHResult	Property

The	LastHResult	property	retrieves	the	HResult,	or	internal
status	code,	from	the	last	Speak	or	SpeakStream	operation
performed	by	the	SpVoice	object.

Syntax

Set: (This	property	is	read-only)
Get: Long	=	ISpeechVoiceStatus.LastHResult

Parts

ISpeechVoiceStatus
The	owning	object.

Long
Set:	(This	property	is	read-only)
Get:	A	Long	variable	returning	the	HResult.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	LastHResult	property	of	an	ISpeechVoiceStatus	object.	To
run	this	code,	create	a	form	with	the	following	controls:
A	command	button	called	Command1
A	text	box	called	Text1

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	a	voice	object.	The

Command1_Click	procedure	speaks	a	text	stream
asynchronously.	The	LastHResult	property	value	is	displayed	in
the	text	box.	A	value	of	0	indicates	completion	with	no	error.

Option	Explicit

Dim	V	As	SpeechLib.SpVoice

Private	Sub	Command1_Click()

				V.Speak	"This	is	a	text	stream",	SVSFlagsAsync

				'wait	for	maximum	10	seconds	to	finish	speaking

				V.WaitUntilDone	10000								

				Text1.Text	=	Format(V.Status.LastHResult)

End	Sub

Private	Sub	Form_Load()

				Set	V	=	New	SpVoice

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechVoiceStatus

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

LastStreamNumberQueued	Property

The	LastStreamNumberQueued	property	retrieves	the
number	of	the	last	audio	stream	enqueued	by	the	voice.

Syntax

Set: (This	property	is	read-only)
Get: Long	=	ISpeechVoiceStatus.LastStreamNumberQueued

Parts

ISpeechVoiceStatus
The	owning	object.

Long
Set:	(This	property	is	read-only)
Get:	A	Long	variable	returning	the	stream	number	of	the	last
audio	stream	spoken.

Example
The	following	code	snippet	demonstrates	the	use	of	the
LastStreamNumberQueued	property.	To	run	this	code,	create	a
form	with	the	following	control:
A	command	button	called	Command1

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	a	voice	object.	The
Command1_Click	procedure	speaks	three	streams
asynchronously,	creates	an	ISpeechVoiceStatus	object	and

prints	the	LastStreamNumberQueued	property	value.	The
WaitUntilDone	method	then	blocks	execution	until	the	voice
finishes	speaking	the	three	streams,	and	the
LastStreamNumberQueued	property	value	is	printed	again.	The
value	of	the	LastStreamNumberQueued	property	in	both	cases
is	3.

Option	Explicit

Private	V	As	SpeechLib.SpVoice

Private	S	As	SpeechLib.ISpeechVoiceStatus

Private	Sub	Command1_Click()

				'Enqueue	three	streams

				

				V.Speak	"this	is	stream	number	one.",	SVSFlagsAsync

				V.Speak	"a	second	stream,	now.",	SVSFlagsAsync

				V.Speak	"the	third	stream	is	next",	SVSFlagsAsync

				

				'Get	status	while	voice	is	speaking

				Set	S	=	V.Status		'Get	status	thru	ISpeechVoiceStatus	object

				

				Print	"Voice	is	speaking	and	LastStreamNumberQueued	is	"	_

												&	S.LastStreamNumberQueued

				DoEvents		'Let	Print	results	be	seen	immediately

				

				

				V.WaitUntilDone	(99999)					'Wait	until	voice	finishes

				

				'Get	status	thru	"Voice.Status.Property"	syntax

				

				Print	"Voice	is	finished	and	LastStreamNumberQueued	is	"	_

												&	V.Status.LastStreamNumberQueued

End	Sub

Private	Sub	Form_Load()

				

				Set	V	=	New	SpVoice

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechVoiceStatus

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

PhonemeId	Property

The	PhonemeId	property	retrieves	the	ID	of	the	current
phoneme	being	spoken	by	the	voice.

Syntax

Set: (This	property	is	read-only)
Get: Integer	=	ISpeechVoiceStatus.PhonemeId

Parts

ISpeechVoiceStatus
The	owning	object.

Integer
Set:	(This	property	is	read-only)
Get:	An	Integer	variable	returning	the	Phoneme	ID.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	PhonemeId	property	of	an	ISpeechVoiceStatus	object.	To	run
this	code,	create	a	form	with	the	following	controls:
A	command	button	called	Command1
Two	text	boxes	called	Text1	and	Text2

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	a	voice	object	and	places	a
sentence	in	the	text	box.	The	Command1_Click	procedure
speaks	the	contents	of	the	text	box	asynchronously,	and	loops
until	the	voice	has	finished	speaking.	Inside	the	loop,	the	code

checks	PhonemeId	property	periodically	and	displays	it	in	Text2.

Option	Explicit

Private	V	As	SpeechLib.SpVoice

Private	Sub	Command1_Click()

				Dim	ii	As	Integer

				Text2.Text	=	""

				V.Speak	Text1.Text,	SVSFlagsAsync

				

				Do

								For	ii	=	0	To	20000

												DoEvents

								Next	ii

								Text2.Text	=	Text2.Text	&	V.Status.PhonemeId	&	"	"

								

				Loop	While	V.Status.RunningState	=	SRSEIsSpeaking

End	Sub

Private	Sub	Form_Load()

				Set	V	=	New	SpVoice

				Text1.Text	=	"way,	we,	why,	woe,	woo."

				Text2.Text	=	""

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechVoiceStatus

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

RunningState	Property

The	RunningState	property	retrieves	the	run	state	of	the
voice,	which	indicates	whether	the	voice	is	speaking	or	inactive.
The	values	of	the	RunningState	property	are	contained	in	the
SpeechRunState	enumeration.

Syntax

Set: (This	property	is	read-only)
Get: SpeechRunState	=	ISpeechVoiceStatus.RunningState

Parts

ISpeechVoiceStatus
The	owning	object.

SpeechRunState
Set:	(This	property	is	read-only)
Get:	A	SpeechRunState	constant	returning	the	run	state	of
the	voice.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	RunningState	property	of	an	ISpeechVoiceStatus	object.	To
run	this	code,	create	a	form	with	the	following	controls:
A	command	button	called	Command1

A	text	box	called	Text1

A	timer	called	Timer1
Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	places	a	sentence	in	the	text	box	and
creates	two	voice	objects,	one	with	an	alert	Priority	setting.	In
the	Command1_Click	procedure,	the	timer	is	activated,	and	the
normal	Priority	voice	enqueues	the	contents	of	the	text	box,	and
waits	a	tenth	of	a	second.	Then	the	alert	Priority	voice	speaks	a
short	stream	which	interrupts	the	normal	voice.
The	timer	procedure	changes	the	color	of	the	text	box
depending	on	the	run	state	of	the	normal	voice.	When	the
normal	voice	is	speaking,	the	text	color	is	red;	when	it	is	done
speaking,	the	text	color	is	blue;	when	the	voice	is	not	speaking,
the	text	color	is	black.
The	text	color	change	in	this	example	has	no	significance	other
than	indicating	the	running	state	of	the	normal	voice.

Option	Explicit

Private	V	As	SpeechLib.SpVoice

Private	VHim	As	SpeechLib.SpVoice

Private	Sub	Command1_Click()

				Timer1.Interval	=	250

				Timer1.Enabled	=	True

				'Make	sure	normal	voice	starts	first

				V.Speak	Text1.Text,	SVSFlagsAsync

				V.WaitUntilDone	(100)

				VHim.Speak	"Alert	voice!",	SVSFlagsAsync

				

End	Sub

Private	Sub	Form_Load()

				Set	V	=	New	SpVoice

				Text1.Text	=	"turn	this	text	red	while	the	voice	is	speaking	it"

				Set	V.Voice	=	V.GetVoices("Gender=Female").Item(0)

				

				Set	VHim	=	New	SpVoice

				VHim.Priority	=	SVPAlert

				Set	VHim.Voice	=	VHim.GetVoices("Gender=Male").Item(0)

End	Sub

Private	Sub	Timer1_Timer()

				Select	Case	V.Status.RunningState

				Case	SRSEIsSpeaking

								Text1.ForeColor	=	vbRed

				Case	SRSEDone

								Text1.ForeColor	=	vbBlue

				Case	Else

								Text1.ForeColor	=	vbBlack

				End	Select

				

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechVoiceStatus

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

VisemeId	Property

The	VisemeId	property	retrieves	the	ID	of	the	current	viseme
being	spoken	by	the	voice.

Syntax

Set: (This	property	is	read-only)
Get: Integer	=	ISpeechVoiceStatus.VisemeId

Parts

ISpeechVoiceStatus
The	owning	object.

Integer
Set:	(This	property	is	read-only)
Get:	An	Integer	variable	returning	the	VisemeId.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	VisemeId	property	of	an	ISpeechVoiceStatus	object.	To	run
this	code,	create	a	form	with	the	following	controls:
A	command	button	called	Command1
Two	text	boxes	called	Text1	and	Text2

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	a	voice	object	and	places	a
sentence	in	the	text	box.	The	Command1_Click	procedure
speaks	the	contents	of	the	text	box	asynchronously,	and	loops
until	the	voice	has	finished	speaking.	Inside	the	loop,	the	code

checks	VisemeId	property	periodically	and	displays	it	in	Text2.

Option	Explicit

Private	V	As	SpeechLib.SpVoice

Private	Sub	Command1_Click()

				Dim	ii	As	Integer

				Text2.Text	=	""

				V.Speak	Text1.Text,	SVSFlagsAsync

				

				Do

								For	ii	=	0	To	20000

												DoEvents

								Next	ii

								Text2.Text	=	Text2.Text	&	V.Status.VisemeId	&	"	"

								

				Loop	While	V.Status.RunningState	=	SRSEIsSpeaking

End	Sub

Private	Sub	Form_Load()

				Set	V	=	New	SpVoice

				Text1.Text	=	"say,	see,	sigh,	so,	sue."

				Text2.Text	=	""

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechVoiceStatus

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpeechVoiceStatus

Example
The	following	code	snippet	demonstrates	the	use	of	all
ISpeechVoiceStatus	properties.	To	run	this	code,	create	a	form
with	the	following	controls:
A	command	button	called	Command1

A	list	box	called	List1

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	a	voice	object.	The
Command1_Click	procedure	speaks	two	streams
asynchronously,	and	adds	status	information	into	the	list	box
every	one-half	second	until	both	streams	have	been	spoken.

Option	Explicit

Private	V	As	SpeechLib.SpVoice

Private	Sub	Command1_Click()

				'Enqueue	two	streams	containing	bookmarks

				

				List1.Clear

				

				V.Speak	"this	is	stream	number<bookmark	mark='1one'/>	one.",	SVSFlagsAsync	+	SVSFIsXML

				List1.AddItem	"LastStreamNumberQueued	is	"	&	V.Status.LastStreamNumberQueued

				DoEvents

				

				V.Speak	"this	is	stream	number<bookmark	mark='2two'/>	two.",	SVSFlagsAsync	+	SVSFIsXML

				List1.AddItem	"LastStreamNumberQueued	is	"	&	V.Status.LastStreamNumberQueued

				DoEvents

				

				Do

								V.WaitUntilDone	(500)	'Wait	for	0.5	second	so	we	won't	get	too	many	outputs

								

								List1.AddItem	""

								List1.AddItem	"LastStreamNumberQueued	is	"	&	V.Status.LastStreamNumberQueued

								List1.AddItem	"CurrentStreamNumber	is	"	&	V.Status.CurrentStreamNumber

								List1.AddItem	"InputSentenceLength	is	"	&	V.Status.InputSentenceLength

								List1.AddItem	"InputSentencePosition	is	"	&	V.Status.InputSentencePosition

								List1.AddItem	"InputWordLength	is	"	&	V.Status.InputWordLength

								List1.AddItem	"InputWordPosition	is	"	&	V.Status.InputWordPosition

								List1.AddItem	"RunningState	is	"	&	V.Status.RunningState

								List1.AddItem	"LastBookmark	is	"	&	V.Status.LastBookmark

								List1.AddItem	"LastBookmarkId	is	"	&	V.Status.LastBookmarkId

								List1.AddItem	"VisemeId	is	"	&	V.Status.VisemeId

								List1.AddItem	"PhonemeId	is	"	&	V.Status.PhonemeId

								List1.AddItem	"LastHResult	is	"	&	V.Status.LastHResult

								DoEvents

				

				Loop	Until	V.Status.RunningState	=	SRSEDone	'Exit	when	voice	stops

		

End	Sub

Private	Sub	Form_Load()

				Set	V	=	New	SpVoice

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpAudioFormat
The	SpAudioFormat	automation	object	represents	an	audio
format.
Most	applications	using	standard	audio	formats	will	use	the	Type
property	to	set	and	retrieve	formats.	Non-standard	formats
using	wav	files	will	use	SetWavFormatEx	and	GetWaveFormatEx
to	set	and	retrieve	formats,	respectively.	Non-standard	formats
using	sources	other	than	wav	files	use	Guid.

Automation	Interface	Elements
The	SpAudioFormat	automation	object	has	the	following
elements:

Properties Description
Guid	Property Returns	the	GUID	of	the	default

format.
Type	Property Gets	and	sets	the	speech	audio

format	as	a	SpeechAudioFormatType.

Methods Description
GetWaveFormatEx
Method

Gets	the	audio	format	as	an
SpWaveFormatEx	object.

SetWaveFormatEx
Method

Sets	the	audio	format	with	an
SpWaveFormatEx	object.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpAudioFormat	
Type:	Hidden

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

GetWaveFormatEx	Method
The	GetWaveFormatEx	method	gets	the	audio	format	as	an
SpWaveFormatEx	object.
Non-standard	formats	using	wav	files	should	use
GetWaveFormatEx	to	retrieve	formats.

SpAudioFormat.GetWaveFormatEx()	As	SpWaveFormatEx

Parameters

None.

Return	Value
The	GetWaveFormatEx	method	returns	an	SpWaveFormatEx
variable.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	GetWaveFormatEx	and	SetWaveFormatEx	properties.	To	run
this	code,	create	a	form	with	the	following	controls:
Two	command	buttons	called	Command1	and	Command2

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Command1	procedure	creates	an	SpAudioFormat	object	and
sets	it	to	the	audio	format	SAFT22kHz16BitStereo.	It	then	gets
the	format	object's	SpWaveFormatEx	object	and	displays	the
properties.	The	code	then	changes	the	format	of	the
SpAudioFormat	object	to	SAFT11kHz16BitMono,	gets	a	new
SpWaveFormatEx	object	and	displays	its	properties	again.	Note

that	the	SpWaveFormatEx	properties	have	changed	to	reflect
the	new	audio	format.
The	Command2	procedure	creates	an	SpAudioFormat	object	and
sets	it	to	the	audio	format	SAFT22kHz16BitStereo.	It	then	gets
the	format	object's	SpWaveFormatEx	object	and	displays	the
properties.	The	code	then	changes	the	properties	of	the
SpWaveFormatEx	object	to	match	the	SAFT11kHz16BitMono
format	and	sets	the	format	of	the	SpAudioFormat	object	with	the
SetWaveFormatEx	method.	Note	that	the	SpAudioFormat
object's	Type	property	has	changed	to	SAFT11kHz16BitMono	to
reflect	the	new	SpWaveFormatEx	properties.

Option	Explicit

Dim	F	As	SpeechLib.SpAudioFormat

Dim	W	As	SpeechLib.SpWaveFormatEx

Private	Sub	Command1_Click()

				'Create	an	empty	SpAudioFormat	object

				'Set	it	to	the	default	format

				'Get	its	format	in	an	SpWaveFormatEx	object

				Set	F	=	New	SpAudioFormat

				F.Type	=	SAFT22kHz16BitStereo

				Set	W	=	F.GetWaveFormatEx

				

				Debug.Print

				Debug.Print	"Default	SpAudioFormat	and	SpWaveFormatEx"

				Debug.Print	"Format:								SAFT22kHz16BitStereo"

				Debug.Print	"Format	code:			"	&	F.Type

				Debug.Print	"AvgBytesPerSec	"	&	W.AvgBytesPerSec

				Debug.Print	"BitsPerSample		"	&	W.BitsPerSample

				Debug.Print	"BlockAlign					"	&	W.BlockAlign

				Debug.Print	"Channels							"	&	W.Channels

				Debug.Print	"ExtraData						"	&	W.ExtraData

				Debug.Print	"FormatTag						"	&	W.FormatTag

				Debug.Print	"SamplesPerSec		"	&	W.SamplesPerSec

				

				'Give	the	SpAudioFormat	object	an	audio	type

				'Get	its	format	in	an	SpWaveFormatEx	object

				F.Type	=	SAFT11kHz16BitMono

				Set	W	=	F.GetWaveFormatEx

				

				Debug.Print

				Debug.Print	"Changing	SpAudioFormat	changes	SpWaveFormatEx"

				Debug.Print	"Format:								SAFT11kHz16BitMono"

				Debug.Print	"Format	code:			"	&	F.Type

				Debug.Print	"AvgBytesPerSec	"	&	W.AvgBytesPerSec

				Debug.Print	"BitsPerSample		"	&	W.BitsPerSample

				Debug.Print	"BlockAlign					"	&	W.BlockAlign

				Debug.Print	"Channels							"	&	W.Channels

				Debug.Print	"ExtraData						"	&	W.ExtraData

				Debug.Print	"FormatTag						"	&	W.FormatTag

				Debug.Print	"SamplesPerSec		"	&	W.SamplesPerSec

End	Sub

Private	Sub	Command2_Click()

				'Create	an	empty	SpAudioFormat	object

				'Set	it	to	the	default	format

				'Get	its	format	in	an	SpWaveFormatEx	object

				

				Set	F	=	New	SpAudioFormat

				F.Type	=	SAFT22kHz16BitStereo

				Set	W	=	F.GetWaveFormatEx

				

				Debug.Print

				Debug.Print	"Default	SpAudioFormat	and	SpWaveFormatEx:"

				Debug.Print	"Format:								SAFT22kHz16BitStereo"

				Debug.Print	"Format	code:			"	&	F.Type

				Debug.Print	"AvgBytesPerSec	"	&	W.AvgBytesPerSec

				Debug.Print	"BitsPerSample		"	&	W.BitsPerSample

				Debug.Print	"BlockAlign					"	&	W.BlockAlign

				Debug.Print	"Channels							"	&	W.Channels

				Debug.Print	"ExtraData						"	&	W.ExtraData

				Debug.Print	"FormatTag						"	&	W.FormatTag

				Debug.Print	"SamplesPerSec		"	&	W.SamplesPerSec

				

				'Set	SpWaveFormatEx	properties	as	in	SAFT11kHz16BitMono	format;

				'this	will	reset	the	SpAudioFormat	Type.

				

				Debug.Print

				Debug.Print	"Changing	SpWaveFormatEx	properties	changes	SpAudioFormat:"

				W.AvgBytesPerSec	=	22050

				W.BitsPerSample	=	16

				W.BlockAlign	=	2

				W.Channels	=	1

				W.SamplesPerSec	=	11025

				

				Call	F.SetWaveFormatEx(W)

				Debug.Print	"Format	code:			"	&	F.Type

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpAudioFormat

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Guid	Property
The	Guid	property	returns	the	GUID	of	the	default	audio	format.
Non-standard	formats	using	sources	other	than	wav	files	should
use	Guid	to	set	and	retrieve	formats.

Syntax

Set: SpAudioFormat.Guid	=	String
Get: String	=	SpAudioFormat.Guid

Parts

SpAudioFormat
The	owning	object.

String
Set:	A	String	variable	that	sets	the	property.
Get:	A	String	variable	that	gets	the	property.

Example
For	an	example	of	the	use	of	the	Guid	property,	see	the	code
example	in	the	Type	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpAudioFormat	
Type:	Hidden

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SetWaveFormatEx	Method
The	SetWaveFormatEx	method	sets	the	audio	format	with	an
SpWaveFormatEx	object.
Non-standard	formats	using	wav	files	should	use
SetWavFormatEx	to	set	formats.

SpAudioFormat.SetWaveFormatEx(

					WaveFormatEx	As	SpWaveFormatEx

)

Parameters

WaveFormatEx
Specifies	the	WaveFormatEx.

Return	Value
None.

Example
For	an	example	of	the	use	of	the	SetWaveFormatEx	method,	see
the	GetWaveFormatEx	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpAudioFormat

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Type	Property

The	Type	property	gets	and	sets	the	speech	audio	format	as	a
SpeechAudioFormatType.
Most	applications	using	standard	audio	formats	should	use	Type
to	set	and	retrieve	formats.

Syntax

Set: SpAudioFormat.Type	=	SpeechAudioFormatType
Get: SpeechAudioFormatType	=	SpAudioFormat.Type

Parts

SpAudioFormat
The	owning	object.

SpeechAudioFormatType
Set:	A	SpeechAudioFormatType	object	that	sets	the	property.
Get:	A	SpeechAudioFormatType	object	that	gets	the	property.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	Type	and	Guid	properties.	To	run	this	code,	create	a	form
with	the	following	controls:
Two	command	buttons	called	Command1	and	Command2

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Command1	procedure	creates	a	token	category	object	and

sets	it	to	the	category	of	audio	inputs,	selects	a	token	for	the
first	MMSys	resource,	and	instantiates	an	SpMMAudioIn	object
with	the	token's	CreateInstance	method.	The	code	then	creates
an	SpAudioFormat	object	from	the	SpMMAudioIn	object,	and
changes	the	Type	property	of	the	SpAudioFormat	object.	Finally,
the	code	sets	the	Format	property	of	the	SpMMAudioIn	object
with	the	SpAudioFormat	object.
The	Command2	procedure	performs	the	same	series	of
operations	with	audio	outputs	instead	of	audio	inputs.

Option	Explicit

Dim	C	As	SpeechLib.SpObjectTokenCategory

Dim	T	As	SpeechLib.SpObjectToken

Dim	I	As	SpeechLib.SpMMAudioIn

Dim	O	As	SpeechLib.SpMMAudioOut

Dim	F	As	SpeechLib.SpAudioFormat

Private	Sub	Command1_Click()

				Debug.Print

				Debug.Print	"MMSys	AudioIn"

				Debug.Print

				'Set	category	object	to	audio	input	resources

				Set	C	=	New	SpObjectTokenCategory

				C.SetId	SpeechCategoryAudioIn

				

				'Set	token	object	to	first	MMSys	input	resource

				Set	T	=	C.EnumerateTokens("Technology=MMSys").Item(0)

				Debug.Print	"First	device:	"	&	T.GetDescription

				

				'Create	an	SpMMAudioIn	object	from	the	token,

				'and	show	some	of	its	properties

				Set	I	=	T.CreateInstance()

				Debug.Print	"DeviceId:	"	&	I.DeviceId

				Debug.Print	"original	Audio	Format:"	&	I.Format.Type

				

				'Create	an	Audio	Format	object	from	resource

				'If	Audio	Format's	Type	is	standard,	then	change	it

				Set	F	=	I.Format

				If	F.Type	=	SAFT22kHz16BitMono	Then

								F.Type	=	SAFT11kHz16BitMono

				End	If

				

				'Set	Audioinput's	format	with	changed	format	object

				Set	I.Format	=	F

				Debug.Print	"	changed	Audio	Format:"	&	I.Format.Type

				Debug.Print	"Guid:"	&	F.Guid

				

End	Sub

Private	Sub	Command2_Click()

				Debug.Print

				Debug.Print	"MMSys	AudioOut"

				Debug.Print

				Set	C	=	New	SpObjectTokenCategory

				C.SetId	SpeechCategoryAudioOut

				Set	T	=	C.EnumerateTokens("Technology=MMSys").Item(0)

				Debug.Print	"First	device:	"	&	T.GetDescription

				Set	O	=	T.CreateInstance()

				Debug.Print	"DeviceId:	"	&	O.DeviceId

				Debug.Print	"original	Audio	Format:"	&	O.Format.Type

				Set	F	=	O.Format

				If	F.Type	=	SAFT22kHz16BitMono	Then

								F.Type	=	SAFT11kHz16BitMono

				End	If

				Set	O.Format	=	F

				Debug.Print	"	changed	Audio	Format:"	&	O.Format.Type

				Debug.Print	"Guid:"	&	F.Guid

				

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpCustomStream
The	SpCustomStream	automation	object	supports	the	use	of
existing	IStream	objects	in	SAPI.
The	Format	property	and	the	Read,	Write	and	Seek	methods	are
inherited	from	the	ISpeechBaseStream	interface.

Automation	Interface	Elements
The	SpCustomStream	automation	object	has	the	following
elements:

Properties Description
BaseStream	Property Gets	and	sets	the	base	stream	object

in	a	custom	stream.
Format	Property Gets	and	sets	the	cached	wave

format	of	the	stream	as	an
SpAudioFormat	object.

Methods Description
Read	Method Reads	data	from	an	audio	stream.
Seek	Method Returns	the	current	read	position	of

the	audio	stream	in	bytes.
Write	Method Writes	data	to	the	audio	stream.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpCustomStream

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

BaseStream	Property

The	BaseStream	property	gets	and	sets	the	base	stream	object
in	a	custom	stream.

Syntax

Set: SpCustomStream.BaseStream	=	IUnknown
Get: IUnknown	=	SpCustomStream.BaseStream

Parts

SpCustomStream
The	owning	object.

IUnknown
Set:	An	Unknown	variable	that	sets	the	base	stream.
Get:	An	Unknown	variable	that	gets	the	base	stream.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	BaseStream	property.	To	run	this	code,	create	a	form	with
following	control:
A	command	button	called	Command1

Paste	this	code	into	the	Declarations	section	of	the	form.
The	From_Load	procedure	creates	two	voice	objects.	The
Command1	procedure	creates	a	new	custom	stream,	uses	the
CreateStreamOnHGlobal	API	to	create	a	new	genetic	Istream
object,	and	sets	the	Istream	as	the	custom	stream's	BaseStream
property.	Finally,	it	uses	the	first	voice	to	speak	a	phrase	into	the

custom	stream,	and	then	plays	back	the	custom	stream	audio
with	the	second	voice.

Option	Explicit

Dim	V1	As	SpeechLib.SpVoice

Dim	V2	As	SpeechLib.SpVoice

Dim	C	As	SpeechLib.SpCustomStream

Private	Declare	Function	CreateStreamOnHGlobal	Lib	"Ole32.dll"	(_

				ByVal	hGlobal	As	Any,	ByVal	fDeleteOnRelease	As	Boolean,	_

				ByRef	ppStream	As	IStream)	As	Long

Private	Sub	Command1_Click()

				Dim	GeneticIstream	As	SpeechLib.IStream

				

				'Create	a	genetic	Istream	object,

				'Use	as	custom	stream's	base	stream

				CreateStreamOnHGlobal	0&,	True,	GeneticIstream

				Set	C	=	New	SpCustomStream

				Set	C.BaseStream	=	GeneticIstream

				

				'Set	custom	stream	as	voice's	output	stream

				'Make	voice	speak	into	the	stream

				Set	V1.AudioOutputStream	=	C

				V1.Speak	"hello	world"

				

				'Seek	to	beginning	of	stream,	and	speak	stream

				C.Seek	0,	SSSPTRelativeToStart

				V2.SpeakStream	C

				

End	Sub

Private	Sub	Form_Load()

				Set	V1	=	New	SpVoice				'Creates	a	custom	stream

				Set	V2	=	New	SpVoice				'Speaks	the	custom	stream

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpFileStream
The	SpFileStream	automation	object	enables	data	streams	to
be	read	and	written	as	files.
SpFileStream	objects	normally	contain	audio	data,	but	may	also
be	used	for	text	data.
The	Format	property	and	the	Read,	Write	and	Seek	methods	are
inherited	from	the	ISpeechBaseStream	interface.

Automation	Interface	Elements
The	SpFileStream	automation	object	has	the	following	elements:

Properties Description
Format	Property Gets	and	sets	the	cached	wave

format	of	the	stream	as	an
SpAudioFormat	object.

Methods Description
Close	Method Closes	the	filestream	object.
Open	Method Opens	a	filestream	object	for	reading

or	writing.
Read	Method Reads	data	from	an	audio	stream.
Seek	Method Returns	the	current	read	position	of

the	audio	stream	in	bytes.
Write	Method Writes	data	to	the	audio	stream.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpFileStream

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Close	Method

The	Close	method	closes	the	filestream	object.
SpFileStream.Close()

Parameters

None.

Return	Value
None.

Example
For	a	simple	example	using	the	SpFileStream.Close	method,	see
the	SpFileStream.Open	method.
The	ISpeechPhraseElement	code	example	demonstrates	further
use	of	the	SPFileStream	object.	This	example	uses	a	text-to-
speech	voice	to	speak	into	an	SPFileStream	object,	and	uses	the
resulting	file	as	the	input	for	speech	recognition.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpFileStream

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Open	Method

The	Open	method	opens	a	filestream	object	for	reading	or
writing.
SpFileStream.Open(

					FileName	As	String,

					[FileMode	As	SpeechStreamFileMode	=	SSFMOpenForRead],

					[DoEvents	As	Boolean	=	False]

)

Parameters

FileName
Specifies	the	FileName.

FileMode
[Optional]	Specifies	the	FileMode.	Default	value	is
SSFMOpenForRead.

DoEvents
[Optional]	When	FileMode	is	SSFMCreateForWrite,	DoEvents
specifies	whether	playback	of	the	resulting	sound	file	will
generate	voice	events.	Default	value	is	False.

Return	Value
None.

Remarks

When	the	SpFileStream	object	is	used	with	audio	data,	the
FileMode	parameter	controls	access	strictly.	That	is,	the
FileMode	parameter	SFMOpenForRead	prevents	write	access,
and	the	FileMode	parameter	SSFMCreateForWrite	prevents	read
access.	When	the	SpFileStream	object	is	used	with	text	data,
only	the	SFMOpenForRead	FileMode	parameter	controls	access
strictly.	The	FileMode	parameter	SFMOpenForRead	prevents
write	access,	but	the	SSFMCreateForWrite	parameter	allows	text
data	to	be	read	as	well	as	written.
When	an	SpVoice	object	creates	an	SPFileStream	object,	the
engine	may	embed	event	data	in	the	stream.	In	order	to	embed
these	events	in	the	file	stream,	it	must	be	opened	for	writing
with	the	DoEvents	parameter	set	to	True.	In	order	to	receive
these	events	when	the	stream	is	played	back,	it	must	be
opened	for	reading	with	the	DoEvents	parameter	set	to	True.
Several	other	factors	are	involved.	Please	see	SpVoice	events
for	further	details.

Example
The	following	code	snippet	demonstrates	the	use	of	an
SpFileStream	object	to	capture	the	output	of	a	voice	in	a	file.
The	ISpeechPhraseElement	code	example	demonstrates	further
use	of	the	SpFileStream	object.	This	example	uses	a	text-to-
speech	voice	to	speak	into	an	SpFileStream	object,	and	uses	the
resulting	file	as	the	input	for	speech	recognition.

Dim	objVOICE	As	SpeechLib.SpVoice

Dim	objFSTRM	As	SpeechLib.SpFileStream

Set	objVOICE	=	New	SpVoice

Set	objFSTRM	=	New	SpFileStream

'Open	file	path	as	a	stream

Call	objFSTRM.Open("c:\VoiceToFile.wav",	SSFMCreateForWrite,	False)

'Set	voice	output	to	the	stream	and	speak

Set	objVOICE.AudioOutputStream	=	objFSTRM

objVOICE.Speak	"cee	:	\	voice	to	file	dot	wave",	SVSFNLPSpeakPunc	

Call	objFSTRM.Close

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpeechRecoContext
The	ISpeechRecoContext	automation	interface	defines	a
recognition	context.
For	a	list	of	available	methods	and	properties,	see
Method/Property	List.

What	is	a	Recognition	Context?
A	recognition	context	is	the	primary	means	by	which	an
application	interacts	with	SAPI	for	speech	recognition.	It	is	an
object	that	allows	an	application	to	start	and	stop	recognition,
receive	recognition	results	and	other	events.	It	also	controls
which	words	and	phrases	are	available	for	the	user	to	speak.	An
application	may	have	several	recognition	contexts	open	at	the
same	time,	each	controlling	a	different	part	of	the	application.	A
specific	recognition	context	controls	the	collection	of	available
words	and	is	associated	with	a	specific	part	of	the	application.	In
a	more	general	sense,	that	word	collection	is	the	confine	to
which	speech	recognition	attempts	are	restricted	and	will	poll
within	to	match	words.	Words	not	contained	in	the	collection	or
context,	will	not	be	used	for	that	speech	recognition	attempt.	By
setting	recognition	contexts,	applications	limit	or	expand	the
scope	of	the	words	needed	for	a	particular	aspect	of	the
application.	This	granularity	for	speech	recognition	improves	the
quality	of	recognition	by	removing	words	not	needed	at	that
moment.	Conversely,	the	granularity	also	allows	words	to	be
added	to	the	application	if	needed.
For	example,	an	application	may	have	only	one	recognition
context:	that	of	all	the	words	in	the	dictionary	and	those	words
are	available	all	the	time.	If	that	application	were	purely
dictation,	the	one-context	model	would	work	well.	The	user
could	say	any	word	at	any	time	to	the	application	and	it	would
probably	be	successfully	recognized.	However,	if	the	application
had	a	new	requirement	of	exiting	when	the	user	said	"close,"
that	one-context	model	breaks	down.	The	user	would	be
disappointed	if,	in	the	course	of	dictation,	the	word	"close"	were
spoken	and	the	application	suddenly	stopped	and	closed.
Clearly,	there	are	two	uses	(or	contexts)	for	the	word	"close."
The	first	is	a	part	of	speech	("please	close	the	door,"	"that	was
too	close	for	comfort,"	"we'll	close	in	on	the	criminal").	The
second	context	is	that	of	a	specific	command.	There	must	be	a

method	to	differentiate	the	two.	A	recognition	context	permits
applications	to	do	that.
Applications	may	have	more	than	one	recognition	context.	In
fact,	it	is	recommended	to	have	as	many	as	makes	sense.	For
example,	one	recognition	context	may	be	assigned	to	the	menu
bar,	another	to	the	dictation	screen,	yet	another	to	dialog
boxes,	even	if	only	temporarily	such	as	a	Yes/No/Cancel	dialog
box.	Programmers	need	to	decide	the	scope	of	the	recognition
context.	The	menu	system	for	an	application	may	even	have
multiple	recognition	contexts,	perhaps	one	for	each	menu	bar
item.	This	granularity	grants	applications	the	ability	to
concentrate	resources	robustly.	For	example,	a	small	menu	may
only	have	12	items	associated	with	it.	Not	only	that,	but	it	would
be	12	very	specific	words.	It	makes	little	sense,	therefore,	to
have	the	entire	dictation	collection,	some	65,000	to	100,000
words,	available	when	in	fact	only	12	words	are	needed.	The
larger-than-needed	vocabulary	would	not	only	take	up	more
processing	time,	but	could	result	in	more	mismatched	words.	By
the	same	reasoning,	in	the	"close"	example	above,	a	dictation
model	should	treat	the	word	"close"	no	differently	than	any
other	word.	Two	recognition	contexts	could	be	used	to	separate
the	differences.

Using	Recognition	Contexts
Creating	a	recognition	context	is	done	using	a	two-step	process.
The	context	must	be	declared	and	then	created.	The	following
code	sample	creates	an	instance	of	a	recognition	context
named	RC.	The	keyword	New	creates	a	reference	to	a	new
object	of	the	specified	class.
Public	WithEvents	RC	As	SpSharedRecoContext

Set	RC	=	New	SpSharedRecoContext

Recognition	context	types
Recognition	contexts	may	be	one	of	two	types:	shared	or	in
process	(InProc).	A	shared	context	allows	resources	to	be	used
by	other	recognition	contexts	or	applications.	All	applications	on
the	machine	using	shared	recognition	contexts	are	sharing	a
single	audio	input,	SR	engine,	and	grammars.	When	the	user
speaks,	the	SR	engine	will	do	recognition,	and	SAPI	decides
which	context	to	send	the	recognition	result	to,	based	on	which
grammar	the	result	best	matches.	In	general,	most	applications
should	use	shared	contexts.	The	following	code	snippet	declares
a	shared	recognition	context.
Public	WithEvents	RC	As	SpSharedRecoContext

InProc	contexts	restrict	available	resources	to	one	context	or
application.	That	is,	an	SR	engine	or	microphone	used	by	an
InProc	recognition	context	may	not	be	used	by	any	other
applications.	In	situations	requiring	the	highest	performance
standards,	response	time	or	exacting	recognition	quality,	use
the	InProc	context.	InProc	contexts	are	important	to	embedded
systems	in	other	hardware	platforms.	InProc	contexts	are	also
used	for	non-microphone	recognition	such	as	recognizing	from	a
file.	However,	InProc	should	be	used	sparingly	since	it	excludes
other	applications	from	the	speech	recognition	resources.	The
following	code	snippet	declares	an	InProc	recognition	context.

Public	WithEvents	RC	As	SpInProcRecoContext

In	either	case,	the	two	types	are	based	on	ISpeechRecoContext.
Any	declaration	should	include	the	keyword	WithEvents	so	that
recognition	context	also	supports	events.

Defaults
Recognition	context	is	created	with	intelligent	defaults	using	the
defaults	of	the	computer	system.	These	defaults	are	assigned
using	Speech	properties	in	Control	Panel.	While	applications
may	override	default	values	for	specific	reasons,	applications
should	not	manually	set	or	change	default	values	directly.	These
defaults	include:
Recognizer	to	determine	the	speech	recognition	engine
EventInterests	to	determine	which	events	the	speech

recognition	engine	generates

RetainedAudio	to	persist	the	actual	audio	for	the	speech
RetainedAudioFormat	to	determine	the	retained	audio	format

Voice	to	speak	the	text

Grammars
The	only	resource	that	must	be	explicitly	created	is	the
grammar	using	CreateGrammar.	The	grammar	defines	the	set
of	words	for	the	recognition	context.	Grammars	also	may	be	of
two	types:	dictation	and	command	and	control	(C	and	C).
Dictation	grammars	are	usually	an	unrestricted	word	list
designed	to	encompass	the	full	range	of	words	in	a	language.
Dictation	allows	any	word	or	phrase	to	be	spoken	and	it	is	used
in	the	traditional	sense	to	dictate	a	letter	or	paper,	for	example.
The	following	code	snippet	declares	a	dictation	grammar.	It
assumes	a	valid	RC	recognition	context.
Set	myGrammar	=	RC.CreateGrammar

myGrammar.DictationSetState	SGDSActive

A	command	and	control	grammar	is	a	limited	word	list
restricting	the	speaker	to	a	small	set	of	words.	In	this	way,	users
can	speak	a	command,	usually	a	single	word,	with	greater
chance	of	recognition.	The	smaller	scope	of	words	disallows
words	not	on	a	specific	list.	A	grammar	is	useful	for	speech-
enabling	menus,	for	example.	Menu	grammars	are	typically
smaller	with	exact	word	or	phrase	commands	such	as	"New,"
"Exit,"	or	"Open."	The	following	code	snippet	declares	a
command	and	control	grammar.	It	assumes	a	valid	RC
recognition	context.
Set	myGrammar	=	RC.CreateGrammar

myGrammar.CmdLoadFromFile	"sol.xml",	SLODynamic

myGrammar.CmdSetRuleIdState	101,	SGDSActive

Because	the	word	list	is	limited,	an	explicit	list	is	used.	In	this
case,	the	command	file	sol.xml	is	used.	In	addition,	the	code
sample	activates	one	rule;	the	rule	has	an	identification	value	of
101.	For	a	more	thorough	discussion	of	grammars	and	designing
grammars	see	Text	grammar	format.

States
While	individual	grammar	rules	may	be	activated	or	deactivated
as	conditions	change,	all	grammars	in	the	recognition	context
may	also	be	activated	or	deactivated	with	the	State	property.
Grammars	can	be	turned	off,	for	example,	if	the	window	is	no
longer	the	current	focus	and	likewise	turned	back	on	when	the
window	becomes	foremost	again.	In	addition	the	recognition
context	may	be	momentarily	stopped	and	then	restarted.	The
Pause	method	halts	the	speech	recognition	temporarily	for	the
engine	to	synchronize	with	the	grammars.	After	a	pause,
Resume	resumes	the	recognition	process.	While	paused,	the
engine	will	continue	to	accept	sound	input	and	speech
processing,	provided	the	pause	is	not	excessive;	by	default,	this

is	not	more	than	30	seconds.
The	ISpeechRecoContext	object	is	always	associated	with	a
single	speech	recognition	engine	(also	called	a	recognizer).
However,	a	single	recognizer	may	have	many	recognition
contexts.

Events
As	a	result	of	interactions	with	the	recognition	context,	the	SR
engine	sends	back	certain	information	to	the	application	using
the	Events	mechanism.	An	event	is	a	specific	occurrence	that
might	be	of	interest	to	the	user	or	application.	Examples	of
events	include	notifying	the	application	of	a	successful
recognition	or	indicating	that	a	designated	position	in	the
stream	has	been	reached.	Regardless,	the	application	is	free	to
process	events	or	ignore	them.
In	addition,	events	may	be	filtered,	allowing	the	engine	to	return
some	or	all	events,	or	to	prevent	an	event	from	being	generated
in	the	first	place	if	it	has	no	significance	to	the	application.
Filtering	is	controlled	by	EventInterests.
A	complete	list	of	events	is	described	in	ISpeechRecoContext
events.

Automation	Interface	Elements
The	ISpeechRecoContext	automation	interface	contains	the
following	elements:

Properties Description
AllowVoiceFormatMatchingOnNextSet
Property

Determines	if	the
recognition	context
can	change	the
voice	format	to

match	that	of	the
engine.

AudioInputInterferenceStatus
Property

Returns	information
about	interference
with	the	recognition
context's	audio
input.

CmdMaxAlternates	Property Specifies	the
maximum	number
of	alternates	that
will	be	generated	for
command	and
control	grammars.

EventInterests	Property Specifies	the	types
of	events	raised	by
the	object.

Recognizer	Property Identifies	the
recognizer
associated	with	the
recognition	context.

RequestedUIType	Property Specifies	the	UIType
of	the	last	UI
requested	from	the
engine.

RetainedAudio	Property Gets	and	sets	the
audio	retention
status	of	the
recognition	context.

RetainedAudioFormat	Property Gets	and	sets	the
format	of	audio
retained	by	the
recognition	context.

State	Property Gets	or	sets	the
active	state	of	the
recognition	context.

Voice	Property Specifies	the
SpVoice	object
associated	with	the
recognition	context.

VoicePurgeEvent	Property Gets	and	sets	the
collection	of
SpeechRecoEvents
which	will	stop	the
voice	and	purge	the
voice	queue.

Methods Description
Bookmark	Method Sets	a	bookmark	within	the

current	recognition	stream.
CreateGrammar	Method Creates	an	SpGrammar	object.
CreateResultFromMemory
Method

Creates	a	recognition	result
object	from	a	phrase	that	has
been	saved	to	memory.

Pause	Method Pauses	the	engine	object	to
synchronize	with	the	SR	engine.

Resume	Method Releases	the	SR	engine	from	the
paused	state	and	restarts	the
recognition	process.

SetAdaptationData
Method

Passes	the	SR	engine	a	string	of
adaptation	data.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoContext	
Type:	Hidden

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

AllowVoiceFormatMatchingOnNextSet
Property

The	AllowVoiceFormatMatchingOnNextSet	property
determines	if	the	recognition	context	can	change	the	audio
format	of	the	output	voice	to	match	the	audio	format	of	the
input	stream.
AllowVoiceFormatMatchingOnNextSet	can	be	used	only	if	a	voice
has	been	created	through	the	recognition	context.	If	this
property	is	set	to	True,	the	voice's	output	format	will	be	set	to
the	same	format	as	the	associated	SR	engine's	audio	input
format.	This	conversion	takes	place	only	during	the	next	setting
of	the	SpVoice.Voice.	However,	if	this	voice	object	has	already
been	bound	to	a	stream	which	has	specific	format,	the	voice's
format	will	not	be	changed	to	the	SR	engine's	audio	input
format	even	if	set	to	True.	If	False,	the	conversion	is	not	made.
Using	the	same	audio	format	for	input	and	output	source	is
useful	for	sound	cards	that	do	not	support	full-duplex	audio	(i.e.,
input	format	must	match	output	format).	If	the	input	format
quality	is	lower	than	the	output	format	quality,	the	output
format	quality	will	be	reduced	to	equal	the	input	quality.
By	default,	AllowVoiceFormatMatchingOnNextSet	is	set	to	True.

Syntax

Set: ISpeechRecoContext.AllowVoiceFormatMatchingOnNextSet
=	Boolean

Get: Boolean	=
ISpeechRecoContext.AllowVoiceFormatMatchingOnNextSet

Parts

SpeechRecoContext
The	owning	object.

Boolean
Set:	A	Boolean	variable	that	sets	the	property.
Get:	A	Boolean	variable	that	gets	the	property.

Example
The	following	snippet	demonstrates	retrieving	and	setting
AllowVoiceFormatMatchingOnNextSet.
Public	WithEvents	RecognitionContext	As	SpSharedRecoContext

Set	RecognitionContext	=	New	SpSharedRecoContext

				

Dim	voiceChange	As	Boolean

voiceChange	=	RecognitionContext.AllowVoiceFormatMatchingOnNextSet

RecognitionContext.AllowVoiceFormatMatchingOnNextSet	=	True

voiceChange	=	RecognitionContext.AllowVoiceFormatMatchingOnNextSet

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoContext

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

AudioInputInterferenceStatus	Property

The	AudioInputInterferenceStatus	property	returns
information	about	interference	with	the	audio	input	of	the
recognition	context.
This	information	is	usually	returned	by	the	ISpeechRecoContext
Interference	event.

Syntax

Set: (This	property	is	read-only)
Get: SpeechInterference	=

SpeechRecoContext.AudioInputInterferenceStatus

Parts

SpeechRecoContext
The	owning	object.

SpeechInterference
Set:	(This	property	is	read-only)
Get:	A	SpeechInterference	constant	reflecting	the
interference	type.

Example
The	following	code	snippet	demonstrates	retrieving	the
interference	status	for	the	last	recognition.	It	assumes	a	valid
RecognitionContext	and	speech	recognition	code	in	place.
Public	WithEvents	RecognitionContext	As	SpSharedRecoContext

'Speech	processing	code	here

Dim	interference	As	SpeechInterference

interference	=	RecognitionContext.AudioInputInterferenceStatus

A	more	realistic	example	returns	the	Interference	event.	In	this
example,	the	event	displays	a	message	in	the	Label1	label	item
of	the	application's	Form1.
Private	Sub	RC_Interference(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	interference	As	SpeechLib.SpeechInterference)

				Form1.Label1.Caption	=	"Interference	detected:	"	&	interference

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoContext

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Bookmark	Method

The	Bookmark	method	sets	a	bookmark	within	the	current
recognition	stream.
A	bookmark	relates	an	audio	stream	position	with	an	occurrence
significant	to	the	application.	The	speech	recognition	(SR)
engine	has	a	latency	period	between	the	speech	and	the
recognition.	This	latency	may	be	caused	by	a	long	speech
period	(the	engine	must	have	all	the	phrase	before	processing
it)	or	other	events	may	already	be	queued	and	the	engine	must
finishing	process	those	first.	However,	during	that	latent	period,
the	user	or	application	may	continue	operations	(such	as
moving	the	mouse	or	speaking).	As	a	result,	the	condition	of	the
application	may	be	different	when	the	recognition	comes	back
than	it	was	when	recognition	was	initiated.	A	bookmark	allows
the	application	to	mark	or	record	a	condition	of	the	application
to	a	particular	recognition	attempt.
Bookmark	is	a	convenient	alternative	to	polling	the	engine	for
stream	position	(see	ISpeechRecognizer.Status).	A	Bookmark
event	is	returned	when	the	bookmark	has	been	processed	by
the	engine.	See	ISpeechRecoContext.Bookmark	for	further
information.

SpeechRecoContext.Bookmark(

					Options	As	SpeechBookmarkOptions,

					StreamPos	As	Variant,

					BookmarkId	As	Variant

)

Parameters

Options
Specifies	whether	the	recognition	context	will	pause	when

encountering	bookmarks.	This	must	be	value	of	type
SpeechBookmarkOptions.

StreamPos
Specifies	the	stream	position.	This	value	may	be	anywhere	in
the	stream	and	will	send	a	Bookmark	event	when	that
position	is	reached.	Additionally	it	may	be	any	one	of	two
special	values:	Speech_StreamPos_Asap	or
Speech_StreamPos_RealTime.

BookmarkId
Specifies	the	BookmarkId.	BookmarkId	is	additional
information	provided	by	the	application	and	is	unique	to	the
application.	As	a	Variant	data	type,	it	may	be	numeric,	String,
or	any	other	format	and	is	used	to	pass	information	within
the	method	or	event.	If	BookmarkId	is	a	String,	the	value
must	be	able	to	convert	to	a	numeric	value.	This	information
is	returned	back	using	the	Bookmark	event.

Return	Value
None.

Remarks
An	application	that	wants	to	display	a	recognition	progress
meter,	for	example	could	use	ISpeechRecoContext.Bookmark
and	update	the	UI	when	each	bookmark	is	received.

Example
This	code	snippet	demonstrates	initiation	of	a	Bookmark	event
at	the	start	of	the	each	speech	recognition	stream	by	setting	the

StreamPos	to	zero.	Each	event	is	identified	with	BookmarkId	of
"10"	and	that	value	may	be	used	inside	the	event	for	additional
processing.	Additional	events	may	be	indicated	by	adding	new
Bookmarks.	After	the	grammar	is	closed,	a	Bookmark	event	with
BookmarkId	of	"99"	is	sent.
This	example	assumes	valid	speech	processing	support	and	that
FileName	points	to	a	valid	grammar	file.
Dim	SharedRecognizer	As	Object

Dim	WithEvents	SharedReco	As	SpSharedRecoContext

Dim	RecoGrammar	As	Object

Set	RecoGrammar	=	Context.CreateGrammar(123)

RecoGrammar.CmdLoadFromFile	FileName

'This	bookmark	is	initiated	before	speech	recognition

SharedReco.Bookmark	SBONone,	0,	"10"

'Speech	processing	code	here

RecoGrammar.CmdSetRuleState	"",	SGDSInactive

SharedReco.Bookmark	SBONone,	0,	"99"

The	corresponding	Bookmark	could	be	defined	as	this.	This
allows	further	refinement	of	the	processing	after	the	event
occurs.	Notice	BookmarkId	is	converted	to	a	numeric	value.
Private	Sub	InProcRecoContext_Bookmark(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	BookmarkId	As	Variant,	ByVal	Options	As	SpeechLib.SpeechBookmarkOptions)

				If	BookmarkId	=	10	Then

								'Some	processing	code	goes	here

				ElseIf	BookmarkId	=	99	Then

								'Some	processing	code	goes	here

				End	If

End	Sub

BookmarkId	can	also	be	one	of	the	two	predefined	constants:
Speech_StreamPos_Asap	and	Speech_StreamPos_RealTime,
which	are	0	and	-1.	Speech_StreamPos_Asap	means	Bookmark
event	will	occur	when	the	SR	engine	reaches	a	synchronization

point,	and	be	fired	as	soon	as	possible.
Speech_StreamPos_RealTime	means	Bookmark	event	will	occur
when	the	SR	engine	reaches	the	current	audio	device	position.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoContext

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CmdMaxAlternates	Property

The	CmdMaxAlternates	property	specifies	the	maximum
number	of	alternates	that	will	be	generated	for	command	and
control	grammars.
By	default,	the	maximum	alternates	value	is	zero,	so	an
application	must	call	this	method	before	attempting	to	retrieve
or	depend	on	alternates	for	command	and	control.	Not	all
speech	recognition	engines	support	command	and	control	or
proprietary	grammar	alternates.	If	the	particular	engine	does
not	support	alternates,	this	method	will	indicate	it	has
succeeded	but	the	number	of	alternates	returned	will	always	be
zero.
CmdMaxAlternates	has	no	effect	on	dictation	alternates.	See
ISpeechRecoResult.Alternates	for	information	regarding
dictation	alternates.

Syntax

Set: SpeechRecoContext.CmdMaxAlternates	=	Long
Get: Long	=	SpeechRecoContext.CmdMaxAlternates

Parts

SpeechRecoContext
The	owning	object.

Long
Set:	A	Long	variable	setting	the	maximum	number	of
alternates.

Get:	A	Long	variable	retrieving	the	maximum	number	of
alternates.

Remarks
The	current	version	of	the	Microsoft	speech	recognition	engine
supplied	with	SAPI	5	does	not	support	command	and	control
alternates.	However,	other	manufacturer's	engines	may.

Example
The	following	snippet	demonstrates	retrieving	the	current
number	of	alternates.	However,	because	not	all	engines	support
the	alternates	feature,	a	test	is	performed	beforehand.	If	the
attribute	does	not	exist,	the	application	receives	a	run-time
error	of	SPERR_NOT_FOUND.	The	On	Error	statement	provides	a
graceful	handling	in	that	case.	If	the	attribute	does	exist,	no
error	will	occur	and	cfgAttribute	will	be	valid,	even	if	only	as
Empty.
The	samples	assumes	a	valid	RecoResult.
Dim	objToken	As	Object

Set	objToken	=	RecoResult.RecoContext.Recognizer.Recognizer

On	Error	GoTo	ErrorHandler

Dim	cfgAttribute	As	String

cfgAttribute	=	objToken.GetAttribute("CGFAlternates")

Dim	numAlternates	As	Long

numAlternates	=	RecoResult.RecoContext.CmdMaxAlternates	

Exit	Sub

ErrorHandler:

	 'Error	handling	code	here

	 Debug.Print	Err.Number

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoContext

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CreateGrammar	Method

The	CreateGrammar	method	creates	an	object	based	on
ISpeechRecoGrammar.
Before	speech	recognition	takes	place,	a	speech	recognition
(SR)	engine	requires	two	things:	grammar	creation	and
grammar	activation.	A	recognizer	may	have	more	than	one
grammar	associated	with	it	although	they	are	usually	limited	to
one	each	of	two	types:	dictation	and	context	free	grammar
(CFG).	CFG	is	used	for	command	and	control.	The	recognizer
can	have	more	than	one	active	grammar	of	the	same	type	open
at	one	time.	In	this	case,	the	recognition	is	assigned	to	the
grammar	in	which	a	unique	match	is	made.	If	more	than	one
grammar	can	match	the	recognition,	the	earliest	opened
grammar	will	receive	the	recognition.
A	grammar	must	be	activated	prior	to	use.	Call
ISpeechRecoGrammar.DictationSetState	to	activate	or
deactivate	a	dictation	grammar.
ISpeechRecoGrammar.CmdSetRuleState	is	used	to	activate	or
deactivate	a	command	and	control	rule	which	also	controls	the
associated	grammar.	By	controlling	the	state	of	grammars,
different	grammars	may	be	used	at	different	times.

SpeechRecoContext.CreateGrammar(

					[GrammarId	As	Variant	=	0]

)	As	ISpeechRecoGrammar

Parameters

GrammarId
[Optional]	Specifies	the	GrammarId.	The	GrammarId
identifies	each	grammar.	The	values	do	not	have	to	be

unique	although	each	grammar	instance	can	only	have	one
identifier.	The	default	value	is	zero.

Return	Value
The	CreateGrammar	method	returns	an	ISpeechRecoGrammar
variable.

Example
The	following	snippet	demonstrates	creating	and	activating	a
dictation	grammar	with	a	GrammarId	of	zero.	The	zero	for	the
GrammarId	is	not	required	as	it	is	the	default.	Activate	the
grammar	by	calling	ISpeechRecoGrammar.DictationSetState.
Public	WithEvents	RC	As	SpSharedRecoContext

Public	myGrammar	As	ISpeechRecoGrammar

Set	RC	=	New	SpSharedRecoContext

Set	myGrammar	=	RC.CreateGrammar(0)

myGrammar.DictationLoad

myGrammar.DictationSetState	SGDSActive

The	next	example	demonstrates	creating	and	activating	a
command	and	control	grammar.	The	grammar	still	has	a
GrammarId	of	zero	(the	default	value),	as	the	example	above
does.	In	addition	to	creating	and	activating	the	grammar,	the
grammar	file	must	also	be	described	by	calling	one	of	the
command	load	methods.	See	the	ISpeechRecoGrammar
interface	for	more	loading	options.	In	this	case,
ISpeechRecoGrammar.CmdLoadFromFile	is	used	to	load	the
command	file	sol.xml.
Public	WithEvents	RC	As	SpSharedRecoContext

Public	myGrammar	As	ISpeechRecoGrammar

Set	RC	=	New	SpSharedRecoContext

Set	myGrammar	=	RC.CreateGrammar

myGrammar.CmdLoadFromFile	"sol.xml",	SLODynamic

myGrammar.CmdSetRuleIdState	0,	SGDSActive

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoContext

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CreateResultFromMemory	Method

The	CreateResultFromMemory	method	creates	a	recognition
result	object	from	a	saved	recognition	result.
The	result	must	have	been	created	with
ISpeechRecoResult.SaveToMemory.

SpeechRecoContext.CreateResultFromMemory(

					ResultBlock	As	Variant

)	As	ISpeechRecoResult

Parameters

ResultBlock
A	Variant	variable	containing	a	saved	recognition	result.

Return	Value
An	ISpeechRecoResult	object.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	SpeechRecoContext.CreateResultFromMemory	and
ISpeechRecoResult.SaveToMemory.	The	application	displays	the
text	of	the	current	recognition	as	well	as	the	previous	one.	This
application	also	plays	the	the	retained	audio	associated	with	the
last	recognition.
To	run	this	code,	create	a	form	with	the	following	control:

A	command	button	called	Command1
Paste	this	code	into	the	Declarations	section	of	the	form.
Public	WithEvents	RC	As	SpSharedRecoContext

Public	myGrammar	As	ISpeechRecoGrammar

Dim	gLastPhrase	As	Variant

Private	Sub	Form_Load()

				Set	RC	=	New	SpSharedRecoContext

				RC.RetainedAudio	=	SRAORetainAudio

				Set	myGrammar	=	RC.CreateGrammar

				

				myGrammar.DictationSetState	SGDSActive

				gLastPhrase	=	Empty

End	Sub

Private	Sub	RC_Recognition(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	RecognitionType	As	SpeechLib.SpeechRecognitionType,	ByVal	Result	As	SpeechLib.ISpeechRecoResult)

				If	IsEmpty(gLastPhrase)	=	False	Then

								Dim	GetRecoResult	As	ISpeechRecoResult

								Set	GetRecoResult	=	RC.CreateResultFromMemory(gLastPhrase)

								

								savedText	=	GetRecoResult.PhraseInfo.GetText()

								Label1.Caption	=	"Last	phrase:	"	&	savedText

								GetRecoResult.SpeakAudio

				End	If

				

				Label1.Caption	=	Label1.Caption	&	vbCrLf	&	"New	phrase:	"	&	Result.PhraseInfo.GetText

				

				Dim	thePhrase	As	Variant

				gLastPhrase	=	Result.SaveToMemory

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoContext

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

EventInterests	Property

The	EventInterests	property	specifies	the	types	of	events
accepted	by	the	SpeechRecoContext	object.
An	event	interest	is	a	filtering	mechanism	for	each	recognition
context.	By	setting	EventInterests,	the	recognition	context
allows	or	denies	speech	recognition	engine	events	to	reach	the
application.	All,	none	or	selected	types	of	events	my	be	filtered.
By	default,	speech	recognition	allows	all	events	except
SREAudioLevel	(a	change	in	audio	level).

Syntax

Set: SpeechRecoContext.EventInterests	=
SpeechRecoEvents

Get: SpeechRecoEvents	=
SpeechRecoContext.EventInterests

Parts

SpeechRecoContext
The	owning	object.

SpeechRecoEvents
Set:	One	or	more	SpeechRecoEvents	constants	which	set	the
property.
Get:	A	SpeechRecoEvents	variable	which	gets	the	value	of
the	property.

Remarks

The	set	of	event	constants	defined	for	EventInterests	is	located
in	the	SpeechRecoEvents	enumeration	list.	Each	type	of	event	is
represented	by	its	own	enumerated	value.	The	value	passed	in
to	EventInterests	is	the	total	of	each	of	the	events	required	for
the	application.	For	example,
SRESoundStart	+	SRERecognition

could	be	passed	as	the	value.	Alternatively	the	same	two
interests	could	be	passed	as	the	single	value	of	18;
SRESoundStart	(value	2)	plus	SRERecognition	(value	16).
Conversely,	if	the	application	retrieved	the	current	event	setting
and	the	value	was	1064,	it	indicates	that	three	events	are
active.	Only	SREPhraseStart	(value	8),	SREHypothesis	(value
32),	and	SREInterference	(value	1024)	add	up	to	that	1064
value.

See	SpVoice.EventInterests	for	additions	details.
SpVoice.EventInterests	is	a	similar	function	but	affects	text-to-
speech	events.

Example
The	first	snippet	demonstrates	retrieving	the	current	event
interest	level.	This	sample	assumes	a	valid	RecognitionContext.
If	this	value	was	not	changed,	myInterests	is	327,679	(all
SpeechRecoEvents	values	except	SREAudioLevel).	Both	samples
assume	a	valid	RecognitionContext.
Dim	myInterests	As	SpeechRecoEvents

myInterests	=	RecognitionContext.EventInterests

The	next	snippet	demonstrates	setting	the	event	interest	to
three	events.	Instead	of	naming	each	value,	a	single	value	of
578	may	be	used:	the	sum	of	the	three	event	values.	The	last
two	lines	perform	the	same	function	and	while	displayed	here
for	demonstration	purposes,	need	not	be	used	together.
Dim	myInterests	As	SpeechRecoEvents

RecognitionContext.EventInterests	=	SRESoundStart	+	SREBookmark	+	SREFalseRecognition

RecognitionContext.EventInterests	=	578

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoContext

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Pause	Method

The	Pause	method	pauses	the	engine	object	to	synchronize
with	the	speech	recognition	(SR)	engine.
Pause	stops	the	SR	engine	at	a	synchronization	point	to	change
grammars	and	rule	states.	A	synchronization	point	occurs	after
any	Recognition	event,	Bookmark	event	or	as	soon	as	possible
after	explicitly	calling	Pause.	After	synchronizing	grammars	and
rule	states,	the	engine	continues	recognizing	if	Resume	is
called.
After	the	application	has	changed	the	state	or	grammar,	it
should	call	ISpeechRecoContext.Resume.	A	call	to	Resume	must
be	made	for	every	call	made	to	Pause.	SAPI	will	automatically
feed	the	buffered	audio	data	into	the	SR	engine,	ensuring	that
no	real-time	audio	data	is	lost	and	that	the	user	experience	is
not	interrupted.	SAPI	will	restart	the	SR	engine	once	Resume
has	been	called.
During	the	pause,	SAPI	continues	to	collect	and	store	audio
input	in	an	audio	buffer.	The	SAPI	audio	buffer	has	a	static	limit
to	prevent	SAPI	applications	or	SR	engines	from	consuming
large	amounts	of	system	memory.	If	the	speech	recognition
engine	pauses	too	long,	and	the	audio	buffer	fills,	then	a	buffer
overflow	(SPERR_AUDIO_BUFFER_OVERFLOW)	occurs.	This
would	result	in	interruptions	of	other	applications	running	SAPI.
The	buffer	is	set	to	30	times	the	average	bytes	per	second	or
approximately	30	seconds.	Consequently,	the	audio	data
collected	between	the	point	when	the	buffer	overflow	occurred,
and	when	the	stream	was	reactivated,	will	be	completely	lost.
Use	Pause	only	for	very	short	periods	and	call	Resume
immediately	once	grammars	and	rules	states	have	changed.
SpeechRecoContext.Pause()

Parameters

None.

Return	Value
None.

Remarks
Grammar	and	rule	state	changes	can	be	requested	while	the	SR
engine	is	running.	However,	the	changes	will	not	take	place	until
the	engine	stops	and	synchronizes.	Since	a	Recognition	event	is
a	common	synchronization	point,	in	many	situations,	it	may	not
be	necessary	to	call	Pause.	However,	if	the	grammar	or	state
change	needs	to	be	implemented	immediately,	call	Pause,	make
the	change	and	then	call	Resume.
The	SAPI	5	SR	engine	synchronizes	close	to	every	60	seconds,
which	aids	in	timely	shutdowns	and	avoids	problems	with	loud
and	continuous	background	noises.	There	is	no	requirement	for
other	manufacturer's	engines	to	also	synchronize	like	this
although	it	is	encouraged.

Example
The	following	code	snippet	demonstrates	uses	Pause	and
Resume.	The	example	code	is	Paused	allowing	the	user	to
change	the	state	or	grammar.
Public	WithEvents	RC	As	SpSharedRecoContext

Set	RC	=	New	SpSharedRecoContext

'setup	the	recognition	context

'...

'pause	the	context	so	that	event	notifications	are	not	received

RC.Pause

'[quickly]	perform	the	processing,	as	stated	above

'...

RC.Resume

'applications	will	start	receiving	event	notifications	again

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoContext

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Recognizer	Property

The	Recognizer	property	identifies	the	recognizer	associated
with	the	recognition	context.

Syntax

Set: (This	property	is	read-only)
Get: ISpeechRecognizer	=	SpeechRecoContext.Recognizer

Parts

SpeechRecoContext
The	owning	object.

SpeechRecognizer
Set:	(This	property	is	read-only)
Get:	A	SpeechRecognizer	object	that	gets	the	value	of	the
property.

Remarks
Though	it	is	usually	acceptable	to	declare	an	object	with	the
exact	class	name,	ISpeechRecognizer	is	most	often
implemented	as	either	SpSharedRecognizer	or
SpInprocRecognizer.	Since	it	is	not	always	known	ahead	of	time
which	type	of	recognizer	will	be	used,	it	is	safer	to	declare	the
object	as	Object.

Example
The	following	code	snippets	demonstrates	retrieving	the
recognizer	associated	with	recognition	context.	The	first

example	is	a	shared	recognizer.
Public	WithEvents	RecognitionContext	As	SpSharedRecoContext

Set	RecognitionContext	=	New	SpSharedRecoContext												

Dim	theRecognizer	As	Object

Set	theRecognizer	=	RecognitionContext.Recognizer

The	second	example	is	an	InProc	recognizer.
Public	WithEvents	RecognitionContext	As	SpInprocRecoContext

Set	RecognitionContext	=	New	SpInprocRecoContext												

Dim	theRecognizer	As	Object

Set	theRecognizer	=	RecognitionContext.Recognizer

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoContext

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

RequestedUIType	Property

The	RequestedUIType	property	specifies	the	UIType	of	the	last
UI	requested	from	the	engine.
After	a	speech	recognition	(SR)	engine	sends	a	RequestUI	event,
the	UIType	persists	until	the	next	RequestUI	event.	This	way	the
application	can	check	for	the	last	requested	UI	type.	If	no	UI	has
been	requested,	the	UIType	string	will	be	Empty.

Syntax

Set: (This	property	is	read-only)
Get: String	=	SpeechRecoContext.RequestedUIType

Parts

SpeechRecoContext
The	owning	object.

String
Set:	(This	property	is	read-only)
Get:	A	String	variable	specifying	the	UIType.	The	UIType	is	a
String	corresponding	to	the	UI	requested.	For	a	list	of
available	SAPI	5	UI,	see	Engine	User	Interfaces.

Remarks
See	RequestUI	event,	ISpeechRecognizer.DisplayUI,	and	Engine
User	Interfaces	for	more	information.

Example

The	following	code	snippet	demonstrates	retrieving	the	UI	last
requested	from	the	engine.	Due	to	the	complexity	of	replicating
a	RequestUI,	this	is	not	a	complete	code	sample.
This	sample	assumes	a	valid	RC	as	the	recognition	context.
Dim	theUI	As	String

theUI	=	RC.RequestedUIType

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoContext

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Resume	Method

The	Resume	method	releases	the	speech	recognition	(SR)
engine	from	the	paused	state	and	restarts	the	recognition
process.
See	ISpeechRecoContext.Pause	for	details.

SpeechRecoContext.Resume()

Parameters

None.

Return	Value
None.

Example
See	ISpeechRecoContext.Pause	for	details.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoContext

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

RetainedAudio	Property

The	RetainedAudio	property	gets	and	sets	the	audio	retention
status	of	the	recognition	context.
By	default,	a	recognition	context	does	not	retain	audio	and	is
initially	set	to	SRAONone.	Calls	attempting	to	access	non-
existent	audio	result	in	an	SPERR_NO_AUDIO_DATA	error.	The
calls	ISpeechRecoResult.Audio	and
ISpeechRecoResult.SpeakAudio	result	in	this	error.	The	error	can
also	occur	when	setting	an	SpAudioFormat	instance.
To	retain	the	audio,	set	this	property	to	SRAORetainAudio.

Syntax

Set: SpeechRecoContext.RetainedAudio	=
SpeechRetainedAudioOptions

Get: SpeechRetainedAudioOptions	=
SpeechRecoContext.RetainedAudio

Parts

SpeechRecoContext
The	owning	object.

SpeechRetainedAudioOptions
Set:	A	SpeechRetainedAudioOptions	constant	that	sets	the
property.
Get:	A	SpeechRetainedAudioOptions	constant	that	gets	the
property.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	ISpeechRecoContext.RetainedAudio.	The	application
displays	the	text	of	the	recognition	along	with	the	actual	spoken
part.
To	run	this	code,	create	a	form	with	the	following	control:
A	command	button	called	Command1

Paste	this	code	into	the	Declarations	section	of	the	form.
Public	WithEvents	RC	As	SpSharedRecoContext

Public	myGrammar	As	ISpeechRecoGrammar

Private	Sub	Form_Load()

				Set	RC	=	New	SpSharedRecoContext

				RC.RetainedAudio	=	SRAORetainAudio

				Set	myGrammar	=	RC.CreateGrammar

				

				myGrammar.DictationSetState	SGDSActive

End	Sub

Private	Sub	RC_Recognition(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	RecognitionType	As	SpeechLib.SpeechRecognitionType,	ByVal	Result	As	SpeechLib.ISpeechRecoResult)

				Label1.Caption	=	Result.PhraseInfo.GetText

				Result.SpeakAudio

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoContext

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

RetainedAudioFormat	Property

The	RetainedAudioFormat	property	gets	and	sets	the	format
of	audio	retained	by	the	recognition	context.
By	default,	the	retained	audio	format	will	be	the	same	as	the
input	audio	format.	The	input	audio	format	is	retrieved	by
calling	Recognizer.GetFormat	with	SFTInput	as	the	parameter.
The	audio	format	may	be	set,	or	reset	if	the	format	has
previously	changed,	to	the	same	format	as	the	engine	uses	by
passing	Nothing	in	as	the	parameter.

Syntax

Set: SpeechRecoContext.RetainedAudioFormat	=
SpAudioFormat

Get: SpAudioFormat	=
SpeechRecoContext.RetainedAudioFormat

Parts

SpeechRecoContext
The	owning	object.

SpAudioFormat
Set:	An	SpAudioFormat	object	that	sets	the	audio	format.
Get:	An	SpAudioFormat	object	that	returns	the	audio	format.

Remarks
The	recognition	context's	RetainedAudio	need	not	be	set	to
SRAORetainAudio	for	RetainedAudioFormat	to	be	called

successfully.	RetainedAudioFormat	indicates	the	format	in	which
the	audio	would	be	retained,	regardless	of	whether	it	is
currently	retained.

Example
The	following	snippet	demonstrates	retrieving	the	audio	format
of	the	audio	input	stream,	through	the	RetainedAudioFormat
reference.
Set	RC	=	New	SpSharedRecoContext

Dim	audioFormat	As	SpAudioFormat

Set	audioFormat	=	RC.RetainedAudioFormat

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoContext

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SetAdaptationData	Method

The	SetAdaptationData	method	passes	the	speech
recognition	(SR)	engine	a	string	of	adaptation	data.
An	application	can	improve	recognition	accuracy	for	dictating
uncommon	words,	or	uncommon	word	groupings	by	training	the
SR	engine	for	the	new	words	or	word	groupings.	An	application
creates	or	obtains	typical	text	and	sends	the	results	to	the
engine	using	the	SetAdaptationData	method.

SpeechRecoContext.SetAdaptationData(

					AdaptationString	As	String

)

Parameters

AdaptationString
Specifies	the	AdaptationString.

Return	Value
None.

Remarks
Applications	using	adaptation	data	should	break	the	data	into
small	sections	(1KB	or	less)	and	submit	the	sections	individually.
First,	specify	interest	in	adaptation	events	using	the
ISpeechRecoContext.EventInterests	method.	The	Adaptation
event	interest	is	on	by	default.	Then,	send	a	small	data	section

to	the	SR	engine	using	the	SetAdaptationData	method,	and	wait
for	an	ISpeechRecoContext.Adaptation	event,	which	indicates
that	the	adaptation	data	has	been	processed.	Send	all
successive	data	sections	in	this	way.	Finally,	use	the
EventInterests	method	to	turn	off	Adaptation	events.	Since	this
event	is	returned	only	after	an	explicit	SetAdaptationData	call,
the	event	interest	does	not	need	to	be	removed	unless	an
excessive	number	of	words	is	added	and	the	processing	time
becomes	unacceptable.	The	Adaptation	event	indicates	that	the
engine	has	processed	the	AdaptationString	and	that	it	is	ready
to	accept	another	SetAdaptationData	call.

Example
The	following	code	snippet	demonstrates	adding	an	uncommon
word.	After	the	word	is	adapted	by	the	recognizer,	this	sample
posts	a	message	to	a	hypothetical	Label1	in	the	application.	The
sample	assumes	a	valid	RC	(as	the	recognition	context).
RC.SetAdaptationData	("Simmiting")

'Speech	processing	code	here

Private	Sub	RC_Adaptation(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant)

				Label1.Caption	=	"Word	added"

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoContext

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

State	Property

The	State	property	gets	or	sets	the	active	state	of	the
recognition	context.
The	entire	grammar	associated	with	the	recognition	context	can
be	disabled	or	enabled.	The	individual	rule	states	of	the
grammar	are	unaffected	otherwise.	These	conditions	allow	the
application	to	control	the	state	of	the	grammars	at	a	high	level.
For	example,	if	the	window	loses	the	current	focus,	the
recognition	context	(s)	associated	with	that	window	may	be
disabled	if	recognitions	are	not	needed.	Likewise,	when	the
window	regains	the	focus,	all	the	recognition	contexts	may	be
enabled.

Syntax

Set: SpeechRecoContext.State	=	SpeechRecoContextState
Get: SpeechRecoContextState	=	SpeechRecoContext.State

Parts

SpeechRecoContext
The	owning	object.

SpeechRecoContextState
Set:	A	SpeechRecoContextState	variable	that	sets	the
property.
Get:	A	SpeechRecoContextState	variable	that	gets	the
property.

Example
The	following	code	snippet	demonstrates	disabling	and	enabling
a	command	and	control	grammar.	The	sample	opens	a
configuration	file,	sol.xml,	and	sets	one	rule,	identified	as	101,
as	active.	The	application	could	continue	and	disable	the	entire
grammar	so	that	no	recognitions	are	possible	based	on	that
grammar.	Later,	when	the	application	enables	the	grammar,	the
same	single	rule	(101)	would	still	be	active.
Set	RC	=	New	SpSharedRecoContext

				

Set	myGrammar	=	RC.CreateGrammar

myGrammar.CmdLoadFromFile	"sol.xml",	SLODynamic

myGrammar.CmdSetRuleIdState	101,	SGDSActive

'Possible	program	execution	could	go	here

RC.State	=	SRCS_Disabled

'Possible	program	execution	could	go	here

RC.State	=	SRCS_Enabled

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoContext

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Voice	Property

The	Voice	property	specifies	the	SpVoice	object	associated	with
the	recognition	context.

Syntax

Set: SpeechRecoContext.Voice	=	SpVoice
Get: SpVoice	=	SpeechRecoContext.Voice

Parts

SpeechRecoContext
The	owning	object.

SpVoice
Set:	An	SpVoice	object	that	sets	the	Voice	property.
Get:	An	SpVoice	object	that	gets	the	Voice	property.

Remarks
ISpeechRecoContext.Voice	allows	the	voice	to	be	changed
temporarily	and	for	limited	contexts.	Change	the	voice	using
Speech	properties	in	Control	Panel.

Example
The	first	code	snippet	demonstrates	speaking	a	successful
recognition.	The	code	represented	is	from	the	recognition	event.
Because	SAPI	makes	extensive	use	of	defaults,	each	recognition
context	will	use	the	default	system	voice,	which	is	specified
using	Speech	properties	in	Control	Panel.

Public	WithEvents	RC	As	SpSharedRecoContext

'Speech	processing	code	goes	here

Private	Sub	RC_Recognition(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	RecognitionType	As	SpeechLib.SpeechRecognitionType,	ByVal	Result	As	SpeechLib.ISpeechRecoResult)

				Label1.Caption	=	Result.PhraseInfo.GetText

				RC.Voice.Speak	Label1.Caption

End	Sub

The	next	code	sample	changes	the	current	voice	to	"Microsoft
Sam"	if	it	is	available.	The	sample	then	speaks	the	new	name.
The	sample	assumes	a	valid	RC	at	the	time	of	the	voice	change.
Public	WithEvents	RC	As	SpSharedRecoContext

Set	RC.Voice.Voice	=	RC.Voice.GetVoices("name=Microsoft	Sam").Item(0)

RC.Voice.Speak	"I	have	changed	to	"	&	RC.Voice.Voice.GetDescription

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoContext

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

VoicePurgeEvent	Property

The	VoicePurgeEvent	property	gets	and	sets	the	RecoContext
event	which	will	stop	the	RecoContext's	voice	and	purge	the
voice	queue.
Applications	can	use	the	Voice	property	of	a	RecoContext	object
to	prompt	a	user	for	spoken	input.	Setting	the	VoicePurgeEvent
to	the	SRESoundStart	event	will	cause	the	RecoContext's	voice
to	stop	speaking	when	the	user	begins	speaking.

Syntax

Set: SpeechRecoContext.VoicePurgeEvent	=
SpeechRecoEvents

Get: SpeechRecoEvents	=
SpeechRecoContext.VoicePurgeEvent

Parts

SpeechRecoContext
The	owning	object.

SpeechRecoEvents
Set:	A	SpeechRecoEvents	constant	that	sets	the
VoicePurgeEvent.
Get:	A	SpeechRecoEvents	constant	that	gets	the
VoicePurgeEvent

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	VoicePurgeEvent	property.	To	run	this	code,	create	a	form

with	the	following	controls:
Two	command	buttons,	called	Command1	and	Command2

Paste	this	code	into	the	Declarations	section	of	the	form.
The	code	creates	a	RecoContext	with	a	grammar	and	a	voice.
The	grammar	is	loaded	with	a	set	of	rules	so	that	the
RecoContext	can	begin	recognition	as	soon	as	the	grammar	is
activated.	Both	command	button	procedures	speak	text	which
contains	a	bookmark.	The	RecoContext's	bookmark	event
activates	the	grammar,	which	initiates	recognition,	and	the
activated	RecoContext	receives	an	SRESoundStart	event.
In	the	Command1_Click	procedure,	the	voice	continues	speaking
after	recognition	has	begun,	because	the	VoicePurgeProperty
has	been	set	to	zero,	and	the	SRESoundStart	event	does	not
effect	either	the	RecoContext	or	its	Voice.	In	the
Command2_Click	procedure,	the	VoicePurgeProperty	causes	the
SRESoundStart	event	to	stop	the	voice.
Dim	WithEvents	Voice	As	SpVoice

Dim	Context	As	SpSharedRecoContext

Dim	RecoGrammar	As	ISpeechRecoGrammar

Const	SpeakStr1	=	"Recognition	is	started	by	the	next	bookmark."

Const	SpeakStr2	=	"<bookmark	mark='first'/>	but	the	voice	keeps	speaking."

																

Private	Sub	Command1_Click()

				'Speak	with	no	VoicePurgeEvent

				

				Context.VoicePurgeEvent	=	0

				Voice.Speak	SpeakStr1,	SVSFIsXML	+	SVSFlagsAsync

				Voice.Speak	SpeakStr2,	SVSFIsXML	+	SVSFlagsAsync

				Voice.WaitUntilDone	(999)

				RecoGrammar.CmdSetRuleState	"",	SGDSInactive

				

End	Sub

Private	Sub	Command2_Click()

				'Speak	with	VoicePurgeEvent	on	SRESoundStart

				

				Context.VoicePurgeEvent	=	SRESoundStart

				Voice.Speak	SpeakStr1,	SVSFIsXML	+	SVSFlagsAsync

				Voice.Speak	SpeakStr2,	SVSFIsXML	+	SVSFlagsAsync

				Voice.WaitUntilDone	(999)

				RecoGrammar.CmdSetRuleState	"",	SGDSInactive

				

End	Sub

Private	Sub	Form_Load()

				Set	Context	=	New	SpSharedRecoContext

				Set	RecoGrammar	=	Context.CreateGrammar(123)

				RecoGrammar.CmdLoadFromFile	"c:\sol.xml"

				

				'The	voice	must	be

				Set	Voice	=	Context.Voice

				Voice.EventInterests	=	SVEBookmark	+	SVEEndInputStream	+	SVEStartInputStream

				

End	Sub

Private	Sub	Voice_Bookmark(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	Bookmark	As	String,	ByVal	BookmarkId	As	Long)

				

				'after	the	first	bookmark,	we	activate	the	grammar,

				'and	the	SR	sound	start	event	should	pause	TTS	voice.

				RecoGrammar.CmdSetRuleState	"",	SGDSActive		'active	the	rule

				

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpeechRecoContext	(Events)
The	ISpeechRecoContext	(Events)	automation	interface
defines	the	types	of	events	that	a	recognition	context	can
receive.

Automation	Interfaces
The	ISpeechRecoContext	(Events)	automation	interface	contains
the	following	elements:

Events Description
Adaptation	Event Occurs	when	the	SR	engine

has	finished	processing	a
block	of	adaptation	data.

AudioLevel	Event Occurs	when	the	SAPI	audio
object	detects	a	change	in
audio	level.

Bookmark	Event Occurs	when	the	SR	engine
encounters	a	bookmark	within
the	current	recognition
stream.

EndStream	Event Occurs	when	the	SR	engine
encounters	the	end	of	an	input
audio	stream.

EnginePrivate	Event Occurs	when	a	private	SR
engine	raises	a	private	event.

FalseRecognition	Event Occurs	when	the	SR	engine
produces	a	false	recognition.

Hypothesis	Event Occurs	when	the	SR	engine
produces	a	hypothesis.

Interference	Event Occurs	when	the	SR	engine
encounters	interference	in	the
input	audio	stream.

PhraseStart	Event Occurs	when	the	SR	engine
identifies	the	start	of	a	phrase.

PropertyNumberChange
Event

Occurs	when	the	speech
recognition	engine	detects	a
change	in	a	property	number
value.

PropertyStringChange	Event Occurs	when	the	speech
recognition	engine	detects	a
change	in	a	property	String
value.

Recognition	Event Occurs	when	the	SR	engine
produces	a	recognition.

RecognitionForOtherContext
Event

Occurs	when	the	recognition
context	encounters	a
recognition	result	that	belongs
to	another	recognition	context.

RecognizerStateChange
Event

Occurs	when	the	SR	engine
changes	state.

RequestUI	Event Occurs	when	the	SR	engine
requests	additional
information	from	the	user.

SoundEnd	Event Occurs	when	the	SR	engine
encounters	an	end	of	sound	in
the	audio	input	stream.

SoundStart	Event Occurs	when	the	SR	engine
encounters	the	start	of	sound
in	the	audio	input	stream.

StartStream	Event Occurs	when	the	SR	engine
encounters	the	start	of	an
audio	input	stream.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoContext	Events

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Adaptation	Event

The	Adaptation	event	occurs	when	the	SR	engine	has	finished
processing	a	block	of	adaptation	data.
The	Adaptation	event	not	only	indicates	the	engine	has
processed	the	word	but	also	that	the	engine	is	ready	to	accept
another	SetAdaptationData	call.
See	ISpeechRecoContext.SetAdaptationData	for	additional
details.

SpeechRecoContext.Adaptation(

					StreamNumber	As	Long,

					StreamPosition	As	Variant

)

Parameters

StreamNumber
Specifies	the	stream	number.

StreamPosition
Specifies	the	position	within	the	stream.

Example
See	ISpeechRecoContext.SetAdaptationData	for	a	code
example.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoContext	Events

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

AudioLevel	Event

The	AudioLevel	event	occurs	when	the	SAPI	audio	object
detects	a	change	in	audio	level.
The	AudioLevel	event	is	the	only	speech	recognition	event	in
SAPI	automation	that	is	not	set	by	default.	If	this	event	is
needed,	it	must	be	explicitly	set	with	EventInterests.

SpeechRecoContext.AudioLevel(

					StreamNumber	As	Long,

					StreamPosition	As	Variant,

					AudioLevel	As	Long

)

Parameters

StreamNumber
Specifies	the	stream	number.

StreamPosition
Specifies	the	position	within	the	stream.

AudioLevel
Specifies	the	AudioLevel.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	AudioLevel	event.	The	application	displays	the	audio	level	of
the	speaker's	voice	as	well	as	the	text	of	a	successful

recognition.	The	value	of	the	speaker's	voice	is	shown	as	both	a
numeric	value	as	well	as	a	histogram.
To	run	this	code,	create	a	form	with	the	following	controls:
Two	labels	called	Label1	and	Label2

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	and	activates	a	dictation
grammar.	Because	the	AudioLevel	event	is	not	set	by	default,	it
must	be	explicitly	set	with	EventInterests.	In	this	case,
EventInterests	is	reset	for	only	two	events,	with	a	Recognition	as
the	second	one.
Public	WithEvents	RC	As	SpSharedRecoContext

Public	myGrammar	As	ISpeechRecoGrammar

Private	Sub	Form_Load()

				Set	RC	=	New	SpSharedRecoContext

				

				Set	myGrammar	=	RC.CreateGrammar

				myGrammar.DictationSetState	SGDSActive

				

				RC.EventInterests	=	SRERecognition	+	SREAudioLevel

End	Sub

Private	Sub	RC_AudioLevel(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	AudioLevel	As	Long)

				Label2.Caption	=	Val(AudioLevel)

				

				Label2.Caption	=	Label2.Caption	&	vbCrLf

				

				For	i	=	1	To	AudioLevel

								Label2.Caption	=	Label2.Caption	&	"*"

				Next

End	Sub

Private	Sub	RC_Recognition(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	RecognitionType	As	SpeechLib.SpeechRecognitionType,	ByVal	Result	As	SpeechLib.ISpeechRecoResult)

				Label1.Caption	=	Result.PhraseInfo.GetText

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoContext	Events

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Bookmark	Event

The	Bookmark	event	occurs	when	the	speech	recognition	(SR)
engine	encounters	a	bookmark	within	the	current	recognition
stream.
See	ISpeechRecoContext.Bookmark	for	further	information.

SpeechRecoContext.Bookmark(

					StreamNumber	As	Long,

					StreamPosition	As	Variant,

					BookmarkId	As	Variant,

					Options	As	SpeechBookmarkOptions

)

Parameters

StreamNumber
Specifies	the	stream	number.

StreamPosition
Specifies	the	stream	position	to	initiate	the	Bookmark	event.
Due	to	the	latency	period	of	the	engines,	there	may	be	a
delay	between	the	cause	of	the	event	and	the	initiation	of
the	event.

BookmarkId
Specifies	the	BookmarkId.	BookmarkId	is	additional
information	provided	by	the	application	and	is	unique	to	the
application.	As	a	Variant	data	type,	it	may	be	numeric,	String,
or	any	other	format	and	is	used	to	pass	information	within
the	method	or	event.	If	BookmarkId	is	a	String,	the	value
must	be	able	to	convert	to	a	numeric	value.	This	information

is	returned	back	using	the	Bookmark	event.

Options
Specifies	the	options,	specifically	whether	the	recognition
pauses	during	the	bookmark	processing.

Example
See	ISpeechRecoContext.Bookmark	for	further	information.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoContext	Events

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

EndStream	Event

The	EndStream	event	occurs	when	the	speech	recognition
engine	encounters	the	end	of	an	input	audio	stream.

SpeechRecoContext.EndStream(

					StreamNumber	As	Long,

					StreamPosition	As	Variant,

					StreamReleased	As	Boolean

)

Parameters

StreamNumber
Specifies	the	stream	number.

StreamPosition
Specifies	the	position	within	the	stream.

StreamReleased
Indicates	that	the	stream	was	released.	Usually,	stopping	a
stream	does	not	release	it	and	StreamReleased	should	be
False.	However,	if	the	stream	is	not	associated	with	an	audio
device	or	if	the	stream	ran	out	of	data	while	in	the	run	state,
the	stream	will	be	both	stopped	and	released;	in	this	case,
StreamReleased	will	be	True.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	StartStream	and	EndStream	events.	The	application	displays

the	status	of	the	stream	and	a	stream	number.	It	also	displays	a
successful	recognition	if	a	stream	is	active.
To	run	this	code,	create	a	form	with	the	following	controls:
A	command	button	called	Command1

Two	labels	called	Label1	and	Label2
Paste	this	code	into	the	Declarations	section	of	the	form.	The
Form_Load	procedure	creates	and	activates	a	dictation
grammar.
Public	WithEvents	RC	As	SpSharedRecoContext

Public	myGrammar	As	ISpeechRecoGrammar

Public	fRecoEnabled	As	Boolean

Private	Sub	Command1_Click()

				If	fRecoEnabled	=	True	Then

								myGrammar.DictationSetState	SGDSInactive

								fRecoEnabled	=	False

				Else

								myGrammar.DictationSetState	SGDSActive

								fRecoEnabled	=	True

				End	If

End	Sub

Private	Sub	Form_Load()

				Set	RC	=	New	SpSharedRecoContext

				Set	myGrammar	=	RC.CreateGrammar

				

				myGrammar.DictationSetState	SGDSActive

				fRecoEnabled	=	True

				

				Command1.Caption	=	"Start	Recognition"

End	Sub

Private	Sub	RC_Recognition(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	RecognitionType	As	SpeechLib.SpeechRecognitionType,	ByVal	Result	As	SpeechLib.ISpeechRecoResult)

				Label1.Caption	=	Result.PhraseInfo.GetText

End	Sub

Private	Sub	RC_EndStream(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	StreamReleased	As	Boolean)

				Label2.Caption	=	"Stream	stopped	at	position:	"	&	StreamPosition

End	Sub

Private	Sub	RC_StartStream(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant)

				Label2.Caption	=	"Stream	number	=	"	&	Val(StreamNumber)

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoContext	Events

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

EnginePrivate	Event

The	EnginePrivate	event	occurs	when	a	speech	recognition
engine	(SR)	raises	a	private	event.
A	private	event	is	a	custom	event	defined	by	the	SR	engine.
This	event	allows	engines	to	define	a	specialized	event	beyond
the	standard	suite	of	events.	Engines	are	not	required	support
this	event.	The	SAPI	5	Microsoft	engines	do	not	use	the
EnginePrivate	event.	If	using	another	manufacturer's	engine,
check	their	documentation	for	possible	implementation	of	this
event.

SpeechRecoContext.EnginePrivate(

					StreamNumber	As	Long,

					StreamPosition	As	Variant,

					EngineData	As	Variant

)

Parameters

StreamNumber
Specifies	the	stream	number.

StreamPosition
Specifies	the	position	within	the	stream.

EngineData
Specifies	the	private	EngineData.	This	is	a	Variant	data	type
and	is	specific	to	the	manufacturer's	design.	Check	the
manufacturer's	documentation	for	complete	details.

Example
No	sample	code	is	available.	The	event	is	unique	to
manufacturer's	engines	and	will	vary	among	engines.	The	SAPI
5	Microsoft	engines	do	not	use	the	EnginePrivate	event.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoContext	Events

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

FalseRecognition	Event

The	FalseRecognition	event	occurs	when	the	speech
recognition	(SR)	engine	produces	a	false	recognition.
A	false	recognition	is	the	result	of	a	recognition	attempt	in	which
either	the	word	or	phrase	does	not	exist	in	the	grammar,	or	that
the	speech	does	not	adequately	meet	the	confidence	score	for
the	application.	Although	applicable	to	dictation	grammars,	it	is
more	common	with	command	and	control	instances,	because
the	available	words	are	significantly	restricted.
The	recognition	result	returned	with	a	FalseRecognition	is	still
valid	and	contains	all	the	information	a	Recognition	event	does,
including	the	text.	Although	the	text	is	not	necessarily
representative	of	the	intended	speech,	it	represents	the	best
estimate	of	that	speech.	If	using	alternates	(automatically
chosen	alternate	phrase	selections	for	a	recognition),	the	first
alternate	returned	will	likely	be	the	same	as	the
FalseRecognition	result.

SpeechRecoContext.FalseRecognition(

					StreamNumber	As	Long,

					StreamPosition	As	Variant,

					Result	As	ISpeechRecoResult

)

Parameters

StreamNumber
Specifies	the	StreamNumber.

StreamPosition
Specifies	the	StreamPosition.

Result
An	ISpeechRecoResult	object	containing	the	recognition
results.

Remarks
There	are	three	possible	results	from	a	recognition	attempt:

1.	 The	first,	a	Recognition	event	is	the	result	of	a
successful	recognition.	This	event	indicates	that	the
word	or	phrase	was	matched	to	elements	in	an	open
grammar,	and	that	the	match	had	a	sufficiently	high
confidence	rating.

2.	 The	second	possible	result	is	a	FalseRecognition	event.
This	event	indicates	that	speech	was	detected	but	it
either	did	not	match	words	in	an	open	grammar,	or	the
match	did	not	merit	a	high	enough	confidence	rating.
The	recognition	result	returned	with	a	FalseRecognition
is	still	valid	and	contains	all	the	information	of	a
Recognition	event,	including	the	text.

3.	 The	third	possible	result	is	RecognitionForOtherContext
event.	This	event	indicates	a	successful	recognition
result,	but	a	different	recognition	context	was	used	to
match	words.	SAPI	attempts	to	match	the	word	or
phrase	in	the	current	recognition	context.	However,	if	no
match	is	possible	(perhaps	the	recognition	context	is
currently	inactive,	the	rule	is	inactive,	or	the	word	or
phrase	is	simply	not	included	in	the	grammar),	SAPI
then	attempts	to	find	a	match	in	other	recognition
contexts.	If	a	match	is	found	in	another	application
whose	grammar	is	available,	the	Recognition	event	is
sent	to	that	application	instead	and	the	current
application	receives	a	RecognitionForOtherContext
event.

Example

The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	FalseRecognition	event.	The	application	displays	the	text	of
a	successful	recognition.
To	run	this	code,	create	a	form	with	the	following	controls:
Two	labels	called	Label1	and	Label2

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	and	activates	a	dictation
grammar.	The	grammar	file	sol.xml	also	needs	to	be	created
and	use	the	XML	code	from	the	RecoCC	sample	application.
The	sol.xml	file	has	only	one	phrase	that	can	be	recognized.	To
use	this	application	speak	the	phrase	"new	game"	and	it	should
be	successfully	recognized	and	displayed	in	Labell.	Any	other
word	or	phrase	should	not	be	recognized	and	will	display	in
Label2.
Public	WithEvents	RC	As	SpSharedRecoContext

Public	myGrammar	As	ISpeechRecoGrammar

Private	Sub	Form_Load()

				Set	RC	=	New	SpSharedRecoContext

				

				Set	myGrammar	=	RC.CreateGrammar

				myGrammar.CmdLoadFromFile	"sol.xml",	SLODynamic

				myGrammar.CmdSetRuleIdState	0,	SGDSActive

End	Sub

Private	Sub	RC_Recognition(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	RecognitionType	As	SpeechLib.SpeechRecognitionType,	ByVal	Result	As	SpeechLib.ISpeechRecoResult)

				Label1.Caption	=	Result.PhraseInfo.GetText

				Label2.Caption	=	""

End	Sub

Private	Sub	RC_FalseRecognition(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	Result	As	SpeechLib.ISpeechRecoResult)

				Label2.Caption	=	Result.PhraseInfo.GetText

				Label1.Caption	=	""

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoContext	Events

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Hypothesis	Event

The	Hypothesis	event	occurs	when	the	SR	engine	produces	a
hypothesis.
A	hypothesis	is	an	interim	recognition	result.	Each	time	the
engine	attempts	a	recognition	it	generates	an	interim	results
and	Hypothesis	events	are	sent	out.	A	hypothesis	may	or	may
not	be	close	to	the	final	version	of	the	recognition.	In	fact,	a
hypothesis	may	not	bear	any	likeness	to	the	final	result	due	to
the	sound	quality,	idiomatic	phrasing,	or	uncommon	word	or
phrase	usage.
The	member	Result	is	a	valid	recognition	result	and	may	be
used	in	the	same	way	as	a	Recognition	event.	However,	the
values	are	interim	and	could	change	for	the	next	Hypothesis
event.

SpeechRecoContext.Hypothesis(

					StreamNumber	As	Long,

					StreamPosition	As	Variant,

					Result	As	ISpeechRecoResult

)

Parameters

StreamNumber
Specifies	the	stream	number.

StreamPosition
Specifies	the	position	within	the	stream.

Result

An	ISpeechRecoResult	object	containing	the	recognition
results.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	Hypothesis	event.	The	application	displays	all	the
hypotheses	for	the	current	recognition	attempt	and	then
displays	the	final	recognition.
To	run	this	code,	create	a	form	with	the	following	controls:
Two	labels	called	Label1	and	Label2

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	and	activates	a	dictation
grammar.	The	PhraseStart	event	clears	the	display	each	time	so
the	current	hypothesis	is	displayed.	For	longer	recognitions,	a
larger	Label1	may	be	used	or	changed	to	a	scrolling	text	box.
Public	WithEvents	RC	As	SpSharedRecoContext

Public	myGrammar	As	ISpeechRecoGrammar

Private	Sub	Form_Load()

				Set	RC	=	New	SpSharedRecoContext

				

				Set	myGrammar	=	RC.CreateGrammar

				myGrammar.DictationSetState	SGDSActive

End	Sub

Private	Sub	RC_Hypothesis(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	Result	As	SpeechLib.ISpeechRecoResult)

				Label1.Caption	=	Label1.Caption	&	Result.PhraseInfo.GetText	&	vbCrLf

End	Sub

Private	Sub	RC_PhraseStart(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant)

				Label1.Caption	=	""

End	Sub

Private	Sub	RC_Recognition(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	RecognitionType	As	SpeechLib.SpeechRecognitionType,	ByVal	Result	As	SpeechLib.ISpeechRecoResult)

				Label2.Caption	=	Result.PhraseInfo.GetText

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoContext	Events

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Interference	Event

The	Interference	event	occurs	when	the	speech	recognition
(SR)	engine	encounters	interference	in	the	input	audio	stream.
Interference	may	be	caused	by	several	factors	of	which	six
common	ones	are	listed	in	the	enumeration	SpeechInterference.
The	Interference	event	indicates	that	the	engine	detected	a
condition	which	could	prevent	the	optimal	recognition	process.
Interference	does	not	prevent	the	completion	of	the	recognition.
However,	applications	receiving	this	event	may	experience	a
lower	quality	recognition	(the	final	text	does	not	accurately
reflect	the	spoken	text)	as	the	sound	quality	prevented	a
successful	recognition.

SpeechRecoContext.Interference(

					StreamNumber	As	Long,

					StreamPosition	As	Variant,

					Interference	As	SpeechInterference

)

Parameters

StreamNumber
Specifies	the	stream	number.

StreamPosition
Specifies	the	position	within	the	stream.

Interference
A	SpeechInterference	constant	that	specifies	the	type	of
interference.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	Interference	event.	The	application	displays	the	text	of	a
successful	recognition	and	also	one	of	two	common
interferences	results.
To	run	this	code,	create	a	form	with	the	following	controls:
Two	labels	called	Label1	and	Label2

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	and	activates	a	dictation
grammar.	The	interference	may	be	intentional	caused	by	either
making	a	sudden	loud	noise	(such	as	a	sharp	increase	of	your
voice	or	by	clapping	your	hands	near	the	microphone)	or	talking
very	quickly.
Public	WithEvents	RC	As	SpSharedRecoContext

Public	myGrammar	As	ISpeechRecoGrammar

Private	Sub	Form_Load()

				Set	RC	=	New	SpSharedRecoContext

				

				Set	myGrammar	=	RC.CreateGrammar

				myGrammar.DictationSetState	SGDSActive

End	Sub

Private	Sub	RC_Interference(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	Interference	As	SpeechLib.SpeechInterference)

				Select	Case	Interference

								Case	SITooFast

												RC.Voice.Speak	"Too	fast.	Speak	more	slowly."

								Case	SITooLoud

												RC.Voice.Speak	"Too	loud.	Speak	softly."

												Label2.Caption	=	"SITooLoud	detected	at	stream	position:	"	&	StreamPosition

				End	Select

End	Sub

Private	Sub	RC_Recognition(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	RecognitionType	As	SpeechLib.SpeechRecognitionType,	ByVal	Result	As	SpeechLib.ISpeechRecoResult)

				Label1.Caption	=	Result.PhraseInfo.GetText

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoContext	Events

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

PhraseStart	Event

The	PhraseStart	event	occurs	when	the	speech	recognition
(SR)	engine	identifies	the	start	of	a	phrase.

SpeechRecoContext.PhraseStart(

					StreamNumber	As	Long,

					StreamPosition	As	Variant

)

Parameters

StreamNumber
Specifies	the	stream	number.

StreamPosition
Specifies	the	position	within	the	stream.

Remarks
For	speech	processing,	the	SR	engine	must	perform	the
following	sequence:	Stream	start,	sound	start	and	phrase	start.
A	stream	start	indicates	a	valid	stream	is	ready	for	audio	input.
The	stream	persists	unless	the	recognition	context	is	disabled	or
the	associated	grammar	is	deactivated.	The	sound	start
indicates	a	sound	level	has	been	detected.	However,	it	is
possible	the	SR	engine	could	stop	that	recognition	attempt	if	the
input	sound	were	questionable.	For	example,	if	the	sound	were
a	constant	level	or	if	above	or	below	pre-determined	sound
levels.	If	the	sound	level	is	acceptable	and	variable,	a	phrase
start	is	initiated	and	it	is	assumed	to	be	the	beginning	of	a

recognition	attempt.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	PhraseStart	event	but	also	StartStream,	SoundStart,
SoundEnd,	Hypothesis,	and	Recognition	since	they	can	be
related.	The	application	displays	all	the	hypotheses	for	the
current	recognition	attempt	in	one	window	and	the	other	events
in	a	second	window.
To	run	this	code,	create	a	form	with	the	following	controls:
Two	labels	called	Label1	and	Label2

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	and	activates	a	dictation
grammar.	The	SoundStart	event	clears	the	displays	each	time.
For	longer	recognitions,	a	larger	Label2	may	be	used	or	change
it	to	a	scrolling	text	box.
Public	WithEvents	RC	As	SpSharedRecoContext

Public	myGrammar	As	ISpeechRecoGrammar

Private	Sub	Form_Load()

				Set	RC	=	New	SpSharedRecoContext

				

				Set	myGrammar	=	RC.CreateGrammar

				myGrammar.DictationSetState	SGDSActive

End	Sub

Private	Sub	RC_Hypothesis(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	Result	As	SpeechLib.ISpeechRecoResult)

				Label2.Caption	=	Label2.Caption	&	Result.PhraseInfo.GetText	&	vbCrLf

End	Sub

Private	Sub	RC_PhraseStart(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant)

				Label1.Caption	=	Label1.Caption	&	"						Phrase	start	detected	at	position	:	"	&	StreamPosition	&	vbCrLf

				Label2.Caption	=	""

End	Sub

Private	Sub	RC_Recognition(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	RecognitionType	As	SpeechLib.SpeechRecognitionType,	ByVal	Result	As	SpeechLib.ISpeechRecoResult)

				Label1.Caption	=	Label1.Caption	&	Result.PhraseInfo.GetText

End	Sub

Private	Sub	RC_SoundEnd(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant)

Label1.Caption	=	Label1.Caption	&	"			Sound	end"	&	vbCrLf

End	Sub

Private	Sub	RC_SoundStart(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant)

				Label1.Caption	=	"			Sound	begin"	&	vbCrLf

End	Sub

Private	Sub	RC_StartStream(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant)

				Label1.Caption	=	"Stream	Number:	"	&	StreamNumber	&	vbCrLf

				Label2.Caption	=	""

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoContext	Events

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

PropertyNumberChange	Event

The	PropertyNumberChange	event	occurs	when	the	speech
recognition	engine	detects	a	change	in	a	property	number
value.
See	ISpeechRecognizer.GetPropertyNumber	for	complete	details
and	code	sample.

SpeechRecoContext.PropertyNumberChange(

					StreamNumber	As	Long,

					StreamPosition	As	Variant,

					PropertyName	As	String,

					NewNumberValue	As	Long

)

Parameters

StreamNumber
The	stream	number.

StreamPosition
The	stream	position.

PropertyName
Specifies	the	value	of	property	Name.

NewNumberValue
The	new	numeric	value	of	the	property.

Remarks
For	a	complete	list	of	SAPI	5	supported	properties	see	the	SAPI	5
SR	Properties	White	Paper.

Example
See	ISpeechRecognizer.GetPropertyNumber	for	a	complete	code
sample.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoContext	Events

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

PropertyStringChange	Event

The	PropertyStringChange	event	occurs	when	the	speech
recognition	(SR)	engine	detects	a	change	in	a	property	String
value.
The	SAPI	5	SR	engine	does	not	support	any	properties	with
associated	string	values.	However,	other	manufacturer's
engines	could.	See	ISpeechRecognizer.GetPropertyNumber	for	a
related	and	similar	feature.

SpeechRecoContext.PropertyStringChange(

					StreamNumber	As	Long,

					StreamPosition	As	Variant,

					PropertyName	As	String,

					NewStringValue	As	String

)

Parameters

StreamNumber
The	stream	number.

StreamPosition
The	stream	position.

PropertyName
Specifies	the	value	of	property	Name.

NewNumberValue
The	new	String	value	of	the	property.

Example
See	ISpeechRecognizer.GetPropertyNumber	for	a	related	code
sample.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoContext	Events

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Recognition	Event

The	Recognition	event	occurs	when	the	speech	recognition
(SR)	engine	produces	a	recognition.
This	could	be	considered	the	most	important	event	for	speech
recognition	because	it	returns	the	result	of	a	successful
recognition.	A	successful	recognition	is	recognized	a	word	or
phrase	that	is	matched	in	an	open	grammar	for	that	recognition
context	and	whose	quality	of	speech	meets	a	minimum
confidence	score.	If	neither	criteria	is	met,	the	engine	returns	a
FalseRecognition	event.	Spoken	content	may	not	meet	the
confidence	score	for	several	reasons	including	background
interference,	inarticulate	speech	or	an	uncommon	word	or
phrase.
The	member	Result	contains	the	recognition	result	object	and
from	that	may	derive	much	of	the	information	about	the	speech.

SpeechRecoContext.Recognition(

					StreamNumber	As	Long,

					StreamPosition	As	Variant,

					RecognitionType	As	SpeechRecognitionType,

					Result	As	ISpeechRecoResult

)

Parameters

StreamNumber
Specifies	the	stream	number	owning	the	recognition.

StreamPosition
Specifies	the	position	within	the	stream.

RecognitionType
A	SpeechRecognitionType	constant	that	specifies	the
RecognitionType	or	the	recognition	state	of	the	engine.

Result
An	ISpeechRecoResult	object	containing	the	recognition
results.

Remarks
There	are	three	possible	results	from	a	recognition	attempt:

1.	 The	first,	a	Recognition	event	is	the	result	of	a
successful	recognition.	This	event	indicates	that	the
word	or	phrase	was	matched	to	elements	in	an	open
grammar,	and	that	the	match	had	a	sufficiently	high
confidence	rating.

2.	 The	second	possible	result	is	a	FalseRecognition	event.
This	event	indicates	that	speech	was	detected	but	it
either	did	not	match	words	in	an	open	grammar,	or	the
match	did	not	merit	a	high	enough	confidence	rating.
The	recognition	result	returned	with	a	FalseRecognition
is	still	valid	and	contains	all	the	information	of	a
Recognition	event,	including	the	text.

3.	 The	third	possible	result	is	RecognitionForOtherContext
event.	This	event	indicates	a	successful	recognition
result,	but	a	different	recognition	context	was	used	to
match	words.	SAPI	attempts	to	match	the	word	or
phrase	in	the	current	recognition	context.	However,	if	no
match	is	possible	(perhaps	the	recognition	context	is
currently	inactive,	the	rule	is	inactive,	or	the	word	or
phrase	is	simply	not	included	in	the	grammar),	SAPI
then	attempts	to	find	a	match	in	other	recognition
contexts.	If	a	match	is	found	in	another	application

whose	grammar	is	available,	the	Recognition	event	is
sent	to	that	application	instead	and	the	current
application	receives	a	RecognitionForOtherContext
event.

Example

The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	Recognition	event.	The	application	displays	the	text	of	a
successful	recognition.
To	run	this	code,	create	a	form	with	the	following	control:
A	label	called	Label1

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	and	activates	a	dictation
grammar.
Public	WithEvents	RC	As	SpSharedRecoContext

Public	myGrammar	As	ISpeechRecoGrammar

Private	Sub	Form_Load()

				Set	RC	=	New	SpSharedRecoContext

				Set	myGrammar	=	RC.CreateGrammar

				

				myGrammar.DictationSetState	SGDSActive

End	Sub

Private	Sub	RC_Recognition(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	RecognitionType	As	SpeechLib.SpeechRecognitionType,	ByVal	Result	As	SpeechLib.ISpeechRecoResult)

				Label1.Caption	=	Result.PhraseInfo.GetText

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoContext	Events

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

RecognitionForOtherContext	Event

The	RecognitionForOtherContext	event	occurs	when	the
recognition	context	encounters	a	recognition	result	that	belongs
to	another	recognition	context.
A	RecognitionForOtherContext	event	indicates	a	successful
recognition	but	that	another	application	currently	running	claims
it.	This	is	a	useful	event	if	multiple	shared	instances	are	running
at	the	same	time.	If	the	owning	application	cannot	use	or	claim
the	recognition,	the	recognition	event	is	sent	to	another	context
that	can	claim	it.	In	that	case,	the	recognition	context	claiming	it
receives	the	Recognition	event	and	all	other	contexts	receive	a
RecognitionForOtherContext	event.
This	event	is	more	applicable	to	command	and	control
grammars	than	to	dictation.	For	example,	the	current
recognition	context	returns	a	recognition	result	such	as	"file."	If
that	recognition	context	does	not	have	the	word	"file"	in	its
active	grammar,	the	speech	recognition	engine	searches	all	the
other	open	and	active	grammars,	even	if	they	belong	to	other
applications.	If	another	context	has	the	word	"file"	available,	the
recognition	event	is	sent	there	instead.
If	other	recognition	contexts	should	not	receive	recognition
events,	because	the	window	or	application	is	not	the	current
one	for	example,	change	state	of	those	contexts	using
ISpeechRecoContext.State.

SpeechRecoContext.RecognitionForOtherContext(

					StreamNumber	As	Long,

					StreamPosition	As	Variant

)

Parameters

StreamNumber
Specifies	the	stream	number.

StreamPosition
Specifies	the	position	within	the	stream.

Remarks
There	are	three	possible	results	from	a	recognition	attempt:

1.	 The	first,	a	Recognition	event	is	the	result	of	a
successful	recognition.	This	event	indicates	that	the
word	or	phrase	was	matched	to	elements	in	an	open
grammar,	and	that	the	match	had	a	sufficiently	high
confidence	rating.

2.	 The	second	possible	result	is	a	FalseRecognition	event.
This	event	indicates	that	speech	was	detected	but	it
either	did	not	match	words	in	an	open	grammar,	or	the
match	did	not	merit	a	high	enough	confidence	rating.
The	recognition	result	returned	with	a	FalseRecognition
is	still	valid	and	contains	all	the	information	of	a
Recognition	event,	including	the	text.

3.	 The	third	possible	result	is	RecognitionForOtherContext
event.	This	event	indicates	a	successful	recognition
result,	but	a	different	recognition	context	was	used	to
match	words.	SAPI	attempts	to	match	the	word	or
phrase	in	the	current	recognition	context.	However,	if	no
match	is	possible	(perhaps	the	recognition	context	is
currently	inactive,	the	rule	is	inactive,	or	the	word	or
phrase	is	simply	not	included	in	the	grammar),	SAPI
then	attempts	to	find	a	match	in	other	recognition
contexts.	If	a	match	is	found	in	another	application
whose	grammar	is	available,	the	Recognition	event	is
sent	to	that	application	instead	and	the	current

application	receives	a	RecognitionForOtherContext
event.

Example

The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	RecognitionForOtherContext	event.	The	application	displays
the	text	of	a	successful	recognition	or	indicates	that	the
recognition	belongs	to	another	application.
The	setup	for	this	scenario	is	somewhat	complex.	To	duplicate
two	applications	running	command	and	control	instances,	the
following	code	must	be	compiled	into	two	different	applications.
Create	a	form	with	the	following	controls:
Two	labels	called	Label1	and	Label2

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	and	activates	a	dictation
grammar.	Create	the	grammar	file	sol.xml	and	use	the	XML
code	from	the	RecoCC	sample	application.	The	second
application	should	open	sol2.xml.	This	will	be	the	only
modification.
The	xml	files	have	only	one	phrase	each	that	can	be	recognized.
Run	both	applications.	Now	speak,	"new	game."	The	first
application	gets	the	recognition	while	the	second	application
displays	"For	another	context."	Now	speak	"file	game"	and	the
situation	reverses.	These	applications	will	assign	and	display
commands	properly	regardless	of	the	front-most	application.
Public	WithEvents	RC	As	SpSharedRecoContext

Public	myGrammar	As	ISpeechRecoGrammar

Private	Sub	Form_Load()

				Set	RC	=	New	SpSharedRecoContext

				

				Set	myGrammar	=	RC.CreateGrammar

				myGrammar.CmdLoadFromFile	"sol.xml",	SLODynamic

				myGrammar.CmdSetRuleIdState	0,	SGDSActive

End	Sub

Private	Sub	RC_Recognition(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	RecognitionType	As	SpeechLib.SpeechRecognitionType,	ByVal	Result	As	SpeechLib.ISpeechRecoResult)

				Label1.Caption	=	Result.PhraseInfo.GetText

				Label4.Caption	=	""

End	Sub

Private	Sub	RC_RecognitionForOtherContext(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant)

				Label4.Caption	=	"For	another	context"

				Label1.Caption	=	""

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoContext	Events

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

RecognizerStateChange	Event

The	RecognizerStateChange	event	occurs	when	the	SR
engine	changes	state.
SpeechRecoContext.RecognizerStateChange(

					StreamNumber	As	Long,

					StreamPosition	As	Variant,

					NewState	As	SpeechRecognizerState

)

Parameters

StreamNumber
Specifies	the	stream	number.

StreamPosition
Specifies	the	position	within	the	stream.

NewState
A	SpeechRecognizerState	constant	specifying	the	new	state
of	the	speech	recognition	(SR)	engine.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	RecognizerStateChange	event.	The	application	displays	the
recognition	text	but	also	has	a	button	to	control	the	SR	engine's
state	(also	called	the	recognizer).	Click	this	button	to	toggle	the
recognizer	state	between	Active	and	Inactive.	The	application
also	beeps	after	a	state	change.

To	run	this	code,	create	a	form	with	the	following	controls:
A	command	button	called	Command1

A	label	called	Label1

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	and	activates	a	dictation
grammar.
Public	WithEvents	RC	As	SpSharedRecoContext

Public	myGrammar	As	ISpeechRecoGrammar

Private	Sub	Command1_Click()

				If	RC.Recognizer.State	=	SRSActive	Then

								RC.Recognizer.State	=	SRSInactive

								Command1.Caption	=	"SRSInactive"

				Else

								RC.Recognizer.State	=	SRSActive

								Command1.Caption	=	"SRSActive"

				End	If

End	Sub

Private	Sub	Form_Load()

				Set	RC	=	New	SpSharedRecoContext

				

				Set	myGrammar	=	RC.CreateGrammar

				myGrammar.DictationSetState	SGDSActive

				

				Command1.Caption	=	"SRSActive"

End	Sub

Private	Sub	RC_Recognition(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	RecognitionType	As	SpeechLib.SpeechRecognitionType,	ByVal	Result	As	SpeechLib.ISpeechRecoResult)

				Label1.Caption	=	Result.PhraseInfo.GetText

End	Sub

Private	Sub	RC_RecognizerStateChange(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	NewState	As	SpeechLib.SpeechRecognizerState)

				Beep

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoContext	Events

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

RequestUI	Event

The	RequestUI	event	occurs	when	the	speech	recognition	(SR)
engine	requests	additional	information	from	the	user.
Though	not	required,	SR	engines	may	employ	a	process
improvement	procedure	and	request	additional	information	from
the	user.	For	example,	if	the	recognition	attempts	are
consistently	poor	or	if	the	engine	detects	consistent	background
interference,	the	SR	engine	could	request	that	the	application
use	the	training	or	microphone	wizard.	This	event	is	a
suggestion	by	the	SR	engine	to	run	the	particular	UI.	The
application	may	choose	to	initiate	the	UI	or	may	ignore	the
request.

SpeechRecoContext.RequestUI(

					StreamNumber	As	Long,

					StreamPosition	As	Variant,

					UIType	As	String

)

Parameters

StreamNumber
Specifies	the	stream	number.

StreamPosition
Specifies	the	position	within	the	stream.

UIType
Specifies	the	UIType.	The	UIType	is	a	String	corresponding	to
the	UI	requested.	For	a	list	of	available	SAPI	5	UI,	see	Engine
User	Interfaces.

Remarks
See	ISpeechRecognizer.DisplayUI	and
ISpeechRecognizer.IsUISupported	for	additional	information.

Example
The	following	Visual	Basic	code	shows	a	typical	RequestUI
event.	Since	the	SR	engine	initiates	the	call,	reproducing	the
event	is	difficult.	However,	if	the	application	receives	this	event,
the	code	displays	the	user	training	wizard.	It	is	the	same
training	wizard	that	is	available	through	the	Speech	properties
in	Control	Panel.
Private	Sub	RC_RequestUI(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	UIType	As	String)

				If	UIType	=	SpeechUserTraining	Then

								RC.Recognizer.DisplayUI	Form1.hWnd,	"My	User	Training",	SpeechUserTraining,	vbNullString

				End	If

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoContext	Events

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SoundEnd	Event

The	SoundEnd	event	occurs	when	the	speech	recognition	(SR)
engine	encounters	an	end	of	sound	in	the	audio	input	stream.
SoundStart	indicates	a	sound	level	significant	enough	to	be	a
voice.	When	that	sound	stops,	a	SoundEnd	event	is	generated.
A	recognition	attempt	occurs	only	after	a	SoundEnd	event;
hence,	long	continuous	speaking	periods	may	take	an	equally
long	time	to	process.
Light	background	noise	will	not	register	as	an	input	sound.
Likewise	a	loud	noise	will	be	considered	the	start	of	an	input
sound.	If	the	sound	is	constant,	a	time-out	occurs	sending	a
SoundEnd	event.

SpeechRecoContext.SoundEnd(

					StreamNumber	As	Long,

					StreamPosition	As	Variant

)

Parameters

StreamNumber
Specifies	the	StreamNumber.

StreamPosition
Specifies	the	StreamPosition.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of

the	SoundStart	and	SoundEnd	events.	The	application	displays	a
stream	number	and	notifications	that	a	sound	has	begun	or
ended.	It	also	displays	a	successful	recognition	result.
To	run	this	code,	create	a	form	with	the	following	controls:
Two	labels	called	Label1	and	Label2

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	and	activates	a	dictation
grammar.
Public	WithEvents	RC	As	SpSharedRecoContext

Public	myGrammar	As	ISpeechRecoGrammar

Private	Sub	Form_Load()

				Set	RC	=	New	SpSharedRecoContext

	

				Set	myGrammar	=	RC.CreateGrammar

				myGrammar.DictationSetState	SGDSActive

End	Sub

Private	Sub	RC_Recognition(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	RecognitionType	As	SpeechLib.SpeechRecognitionType,	ByVal	Result	As	SpeechLib.ISpeechRecoResult)

				Label1.Caption	=	Result.PhraseInfo.GetText

End	Sub

Private	Sub	RC_SoundEnd(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant)

				Label2.Caption	=	"Sound	end	at	position:	"	&	StreamPosition

End	Sub

Private	Sub	RC_SoundStart(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant)

				Label2.Caption	=	"Sound	start"

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoContext	Events

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SoundStart	Event

The	SoundStart	event	occurs	when	the	SR	engine	encounters
the	start	of	sound	in	the	audio	input	stream.
SoundStart	indicates	a	sound	level	significant	enough	to	be	a
voice.	When	that	sound	stops,	a	SoundEnd	event	is	generated.
A	recognition	attempt	occurs	only	after	a	SoundEnd	event;
hence,	long	continuous	speaking	periods	may	take	an	equally
long	time	to	process.
Light	background	noise	will	not	register	as	an	input	sound.
Likewise	a	loud	noise	will	be	considered	the	start	of	an	input
sound.	If	the	sound	is	constant,	a	time-out	occurs	sending	a
SoundEnd	event.

SpeechRecoContext.SoundStart(

					StreamNumber	As	Long,

					StreamPosition	As	Variant

)

Parameters

StreamNumber
Specifies	the	stream	number.

StreamPosition
Specifies	the	position	within	the	stream.	If	downsampling	an
audio	stream,	StreamPosition	will	be	the	byte	position	within
the	converted	stream.

Remarks

For	speech	processing,	the	SR	engine	must	perform	the
following	sequence:	Stream	start,	sound	start	and	phrase	start.
A	stream	start	indicates	a	valid	stream	is	ready	for	audio	input.
The	stream	persists	unless	the	recognition	context	is	disabled	or
the	associated	grammar	is	deactivated.	The	sound	start
indicates	a	sound	level	has	been	detected.	However,	it	is
possible	the	SR	engine	could	stop	that	recognition	attempt	if	the
input	sound	were	questionable.	For	example,	if	the	sound	were
a	constant	level	or	if	above	or	below	pre-determined	sound
levels.	If	the	sound	level	is	acceptable	and	variable,	a	phrase
start	is	initiated	and	it	is	assumed	to	be	the	beginning	of	a
recognition	attempt.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	SoundStart	and	SoundEnd	events.	The	application	displays	a
stream	number	and	notifications	that	a	sound	has	begun	or
ended.	It	also	displays	a	successful	recognition
To	run	this	code,	create	a	form	with	the	following	controls:
Two	labels	called	Label1	and	Label2

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	and	activates	a	dictation
grammar.
Public	WithEvents	RC	As	SpSharedRecoContext

Public	myGrammar	As	ISpeechRecoGrammar

Private	Sub	Form_Load()

				Set	RC	=	New	SpSharedRecoContext

	

				Set	myGrammar	=	RC.CreateGrammar

				myGrammar.DictationSetState	SGDSActive

End	Sub

Private	Sub	RC_Recognition(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	RecognitionType	As	SpeechLib.SpeechRecognitionType,	ByVal	Result	As	SpeechLib.ISpeechRecoResult)

				Label1.Caption	=	Result.PhraseInfo.GetText

End	Sub

Private	Sub	RC_SoundEnd(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant)

				Label2.Caption	=	"Sound	end	at	position:	"	&	StreamPosition

End	Sub

Private	Sub	RC_SoundStart(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant)

				Label2.Caption	=	"Sound	start"

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecoContext	Events

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

StartStream	Event

The	StartStream	event	occurs	when	the	speech	recognition
(SR)	engine	encounters	the	start	of	an	audio	input	stream.
The	stream	number	of	each	new	stream	will	be	incremented
from	the	last	stream	number,	so	that	each	value	is	unique	to	the
application's	lifespan.	Stream	numbers	may	be	used	to	track
input	sources.	In	the	case	of	recognizing	wav	files	in	a	batch
environment,	for	instance,	stream	numbers	may	be	used	to
uniquely	identify	the	source.	In	other	cases,	a	StreamStart	event
can	indicate	the	beginning	of	a	new	recognition	attempt.

SpeechRecoContext.StartStream(

					StreamNumber	As	Long,

					StreamPosition	As	Variant

)

Parameters

StreamNumber
Specifies	the	stream	number.

StreamPosition
Specifies	the	position	within	the	stream.

Remarks
For	speech	processing,	the	SR	engine	must	perform	the
following	sequence:	Stream	start,	sound	start	and	phrase	start.
A	stream	start	indicates	a	valid	stream	is	ready	for	audio	input.
The	stream	persists	unless	the	recognition	context	is	disabled	or

the	associated	grammar	is	deactivated.	The	sound	start
indicates	a	sound	level	has	been	detected.	However,	it	is
possible	the	SR	engine	could	stop	that	recognition	attempt	if	the
input	sound	were	questionable.	For	example,	if	the	sound	were
a	constant	level	or	if	above	or	below	pre-determined	sound
levels.	If	the	sound	level	is	acceptable	and	variable,	a	phrase
start	is	initiated	and	it	is	assumed	to	be	the	beginning	of	a
recognition	attempt.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	StartStream	and	EndStream	events.	The	application	displays
the	status	of	the	stream	and	a	stream	number.	It	also	displays	a
successful	recognition	if	a	stream	is	active.
To	run	this	code,	create	a	form	with	the	following	controls:
A	command	button	called	Command1
Two	labels	called	Label1	and	Label2

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	and	activates	a	dictation
grammar.
Public	WithEvents	RC	As	SpSharedRecoContext

Public	myGrammar	As	ISpeechRecoGrammar

Public	fRecoEnabled	As	Boolean

Private	Sub	Command1_Click()

				If	fRecoEnabled	=	True	Then

								myGrammar.DictationSetState	SGDSInactive

								fRecoEnabled	=	False

				Else

								myGrammar.DictationSetState	SGDSActive

								fRecoEnabled	=	True

				End	If

End	Sub

Private	Sub	Form_Load()

				Set	RC	=	New	SpSharedRecoContext

				Set	myGrammar	=	RC.CreateGrammar

				

				myGrammar.DictationSetState	SGDSActive

				fRecoEnabled	=	True

				

				Command1.Caption	=	"Start	Recognition"

End	Sub

Private	Sub	RC_Recognition(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	RecognitionType	As	SpeechLib.SpeechRecognitionType,	ByVal	Result	As	SpeechLib.ISpeechRecoResult)

				Label1.Caption	=	Result.PhraseInfo.GetText

End	Sub

Private	Sub	RC_EndStream(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	StreamReleased	As	Boolean)

				Label2.Caption	=	"Stream	stopped	at	position:	"	&	StreamPosition

End	Sub

Private	Sub	RC_StartStream(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant)

				Label2.Caption	=	"Stream	number	=	"	&	Val(StreamNumber)

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ISpeechRecognizer
The	ISpeechRecognizer	automation	interface	represents	a
speech	recognition	engine.
A	recognizer	is	a	speech	recognition	(SR)	engine.	Engines	are
generally	categorized	by	two	major	characteristics.	The	first	is
the	language	of	the	engine.	The	language	is	provided	by	the
manufacturer	and	may	not	be	changed.	A	computer	may	have
several	types	of	engines	installed	at	the	same	time.	However,
the	use	of	the	engine	is	limited	and	is	dependent	of	the
recognition	type.	The	second	major	characteristic	is	the
recognition	type,	that	is,	whether	the	instance	of	the	engine	is
created	as	in-process	(also	known	as	InProc)	or	shared.	See
Recognition	Types	for	more	information.
A	default	SR	engine	is	selected	using	Speech	properties	in
Control	Panel.	This	is	provided	as	a	convenience	to	users	and
the	default	engine	will	be	used	if	no	other	type	is	explicitly
specific.	In	many	cases,	users	requirements	can	be	met	by	a
single	engine.	However,	applications	are	not	restricted	to	the
default	engine	and	may	use	other	engines	as	needed.	In
contrast,	an	active	engine	is	one	that	is	instantiated	and	being
used	by	at	least	one	recognition	context.
More	than	one	instance	of	an	engine	may	used.	Each	application
may	have	its	own	instance	of	a	recognizer	and	in	some
situations,	each	recognition	context	may	have	its	won	engine
instance.	Application	using	InProc	recognizers	must	have	their
own	instance.	If	greater	granularity	is	needed	for	recognition,	it
is	recommended	to	use	different	recognition	contexts	rather
than	using	multiple	recognizers.
The	following	code	snippet	declares	a	shared	recognition
context	and	an	implicit	shared	recognizer.
Public	WithEvents	RC	As	SpSharedRecoContext
Set	RC	=	New	SpSharedRecoContext

However,	there	are	cases	when	a	recognizer	may	be	needed
prior	to	declaring	a	recognition	context.	To	do	so,	declare	the
recognizer	in	the	standard	fashion.
Dim	SharedRecognizer	As	SpSharedRecognizer
Set	SharedRecognizer	=	CreateObject("SAPI.SpSharedRecognizer")

Recognition	Types
A	recognition	engine	can	be	created	with	one	of	two	types:
Inproc	and	shared.	The	first,	InProc,	is	within	the	same	process
as	the	application.	An	InProc	recognizer	restricts	access	to	only
that	one	application.	For	example,	an	InProc	recognizer	would
prohibit	other	applications	from	using	the	system	microphone.
While	other	applications	could	run	their	own	instance	of	an
InProc	recognizer,	no	resource	could	be	common	among	them.
An	InProc	engine	may	be	used,	for	example	when	recognizing
from	a	wav	file.	In	fact,	a	shared	engine	may	not	use	wav	files
for	input.
The	second	type	of	recognizer	is	the	shared	recognizer.	It	is	run
is	as	a	separate	process	from	the	application.	As	a	result,	other
applications	may	use	the	engine's	resources	at	the	same	time.
For	instance,	the	same	system	microphone	will	be	used	by	all
open	applications.	In	turn,	the	resulting	recognition	from	the
engine	may	be	used	by	any	of	the	applications.	In	fact,	shared
engines	go	so	far	as	to	actually	inform	applications	when	a
recognition	result	is	not	applicable	to	them.
For	shared	engines,	a	recognizer	instance	is	created
automatically	when	a	recognition	context	is	created.	In	this
case,	the	type	of	recognizer	will	be	the	same	as	the	type	of
recognition	context.	That	is,	a	shared	recognition	context	will
create	a	shared	recognizer	of	the	same	type	as	the	active
engine.	However,	all	applications	using	a	shared	engine	must
create	instances	of	that	engine	type.	One	application	may	not
use	one	shared	engine	and	a	second	application	use	another
engine	type.
InProc	engines	are	similarly	created	in	that	an	InProc	engine
instance	is	created	when	an	InProc	recognition	context	is
created.	InProc	engine	instances	may	be	created	separately.
Each	application	may	have	only	one	InProc	engine	instance
active	at	time.	However,	while	an	application	can	only	have	one

InProc	engine	instance	at	a	time,	different	applications,	even	if
open	at	the	same	time,	may	each	have	a	different	engine
active.	For	example,	one	application	may	be	using	an	InProc
English	engine	and	another	application	may	be	recognizing	from
a	Chinese	engine.
Regardless,	recognizers	and	recognition	contexts	must	be	the
same	type.	If	a	recognizer	is	created	as	a	shared	resource,
resulting	recognition	contexts	associated	with	that	recognizer
must	also	be	shared.	The	same	is	true	for	InProc	recognizers
and	recognition	contexts.	See	Recognition	Event	for	an	example.
In	addition,	the	recognition	context	is	declared	and	created
without	having	to	declare	the	recognizer	explicitly.

Automation	Interface	Elements
The	ISpeechRecognizer	automation	interface	contains	the
following	elements:

Properties Description
AllowAudioInputFormatChangesOnNextSet
Property

Specifies
whether	the
recognizer	can
change	audio
input	formats
on	subsequent
audio	streams.

AudioInput	Property Gets	and	sets
the
recognizer's
audio	input
device.

AudioInputStream	Property Gets	and	sets
the

recognizer's
audio	input
stream.

IsShared	Property Indicates
whether	a
recognition
engine	is
shared	or
InProc.

Profile	Property Specifies	the
recognizer's
current
recognition
profile.

Recognizer	Property Specifies
characteristics
about	the
active
recognizer.

State	Property Returns	the
current	state
of	the
recognition
engine.

Status	Property Returns	an
object
representing
the	status	of
the	recognizer.

Methods Description
CreateRecoContext
Method

Creates	a	recognition	context	object
from	the	recognizer.

DisplayUI	Method Initiates	the	display	of	the	specified
UI.

EmulateRecognition Emulates	recognition	from	a	textual

Method source	rather	than	from	a	spoken
source.

GetAudioInputs	Method Returns	a	selection	of	the	available
audio	input	devices.

GetFormat	Method Returns	the	current	input	audio
format.

GetProfiles	Method Returns	a	selection	of	the	available
user	speech	profiles.

GetPropertyNumber
Method

Returns	a	numeric	value	specified	by
the	named	key.

GetPropertyString
Method

Returns	the	string	value
corresponding	to	the	specified	key
name.

GetRecognizers	Method Returns	a	selection	of
SpeechRecognizer	objects	in	the
speech	configuration	database.

IsUISupported	Method Determines	if	the	specified	UI	is
supported.

SetPropertyNumber
Method

Sets	a	numeric	property
corresponding	to	the	specified	name.

SetPropertyString
Method

Sets	a	text	property	corresponding
to	the	specified	name.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	ISpeechRecognizer	
Type:	Hidden

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

AllowAudioInputFormatChangesOnNextSet
Property

The	AllowAudioInputFormatChangesOnNextSet	property
specifies	whether	the	recognizer	can	change	audio	input
formats	on	subsequent	audio	streams.
When	this	property	is	True,	recognizer's	input	stream	format	is
reset	to	match	the	speech	recognition	engine's	preferred
format.	When	this	property	is	False,	no	changes	to	the	audio
format	takes	place.	The	default	value	of	this	property	is	True.
The	format	will	not	actually	be	changed	until	the	next	time	the
input	is	set.	Calls	to	ISpeechRecognizer.AudioInput	and
ISpeechRecognizer.AudioInputStream	set	the	input.

Syntax

Set: SpeechRecognizer.AllowAudioInputFormatChangesOnNextSet
=	Boolean

Get: Boolean	=
SpeechRecognizer.AllowAudioInputFormatChangesOnNextSet

Parts

SpeechRecognizer
The	owning	object.

Boolean
Set:	A	Boolean	variable	that	sets	the	property.
Get:	A	Boolean	variable	that	gets	the	property.

Example
The	following	snippet	assumes	a	valid	recognizer.	The	sample
retrieves	the	current	state	of
AllowAudioInputFormatChangesOnNextSet.
Dim	Recognizer	As	SpSharedRecognizer

Dim	fAllowFormatChanges	As	Boolean

fAllowFormatChanges	=	Recognizer.AllowAudioInputFormatChangesOnNextSet

This	sample	sets	the	current	state	of
AllowAudioInputFormatChangesOnNextSet	to	False.

Dim	Recognizer	As	SpSharedRecognizer

Recognizer.AllowAudioInputFormatChangesOnNextSet	=	False

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecognizer

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

AudioInput	Property

The	AudioInput	property	gets	and	sets	the	recognizer's	audio
input	device.

Syntax

Set: SpeechRecognizer.AudioInput	=	SpObjectToken
Get: SpObjectToken	=	SpeechRecognizer.AudioInput

Parts

SpeechRecognizer
The	owning	object.

SpObjectToken
Set:	An	SpObjectToken	object	that	sets	the	property.	If	this
parameter	is	Nothing,	the	default	audio	input	device	will	be
used.
Get:	An	SpObjectToken	object	that	sets	the	property.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	AudioInput	property.	The	current	audio	input	device
(commonly	a	sound	card)	is	displayed.	To	run	this	code,	create	a
form	with	the	following	control:
A	command	button	called	Command1

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Command1	procedure	creates	a	new	recognizer	object	and

displays	the	default	audio	input	device.	It	then	sets	the
recognizer's	AudioInput	property	to	Nothing	and	shows	the
results.	Finally,	the	procedure	lists	the	names	of	all	available
audio	input	devices.

Option	Explicit

Dim	R	As	SpeechLib.SpSharedRecognizer

Dim	T	As	SpeechLib.SpObjectToken

Private	Sub	Command1_Click()

				Set	R	=	New	SpSharedRecognizer

				

				Debug.Print	"New	SpSharedRecognizer"

				Debug.Print	"			AudioInput:	"	&	R.AudioInput.GetDescription

				Debug.Print

				

				Set	R.AudioInput	=	Nothing

				

				Debug.Print	"Set	to	Nothing"

				Debug.Print	"			AudioInput:	"	&	R.AudioInput.GetDescription

				Debug.Print

				

				Debug.Print	"Show	all	available	inputs"

				For	Each	T	In	R.GetAudioInputs

								Debug.Print	"			AudioInput:	"	&	T.GetDescription

				Next

				

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecognizer

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

AudioInputStream	Property

The	AudioInputStream	property	gets	and	sets	the	recognizer's
audio	input	stream.
Using	the	AudioInputStream	enables	an	application	to	use	file
streams	or	other	stream	objects	for	input	rather	than	audio
devices.
AudioInputStream	is	used	with	InProc	recognizers	only.
Attempting	to	use	it	in	a	shared	environment	will	result	in	an
SPERR_NOT_SUPPORTED_FOR_SHARED_RECOGNIZER	error.

Syntax

Set: SpeechRecognizer.AudioInputStream	=
ISpeechBaseStream

Get: ISpeechBaseStream	=
SpeechRecognizer.AudioInputStream

Parts

SpeechRecognizer
The	owning	object.

ISpeechBaseStream
Set:	An	ISpeechBaseStream	variable	that	sets	the	property.	If
no	value	is	stated,	the	default	of	Nothing	will	be	passed	in.
Get:	An	ISpeechBaseStream	variable	that	gets	the	property.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
AudioInputStream.	The	application	gets	a	wav	file	and	uses	that

as	the	input	source.
To	run	this	code,	create	a	form	without	any	controls.	The	file	is
found	in	the	SAPI	5.1	SDK	and	is	a	small,	one	word	file.	The
location	is	assumed	to	be	on	the	C:	drive,	although	the	string
may	be	changed	to	accommodate	other	locations.
Dim	WithEvents	InProcRecoContext	As	SpInProcRecoContext

Dim	InProcRecognizer	As	Object

Private	Sub	Form_Load()

				Set	InProcRecognizer	=	CreateObject("SAPI.SpInprocRecognizer")

				Set	InProcRecoContext	=	InProcRecognizer.CreateRecoContext

				Dim	FileName	As	String

				FileName	=	"C:\Program	Files\Microsoft	Speech	SDK	5.1\Samples\CPP\Engines\TTS\MkVoice\selected.wav"

				Dim	FileStream	As	ISpeechFileStream

				Set	FileStream	=	CreateObject("SAPI.SpFileStream")

				FileStream.Open	FileName

				

				Set	InProcRecognizer.AudioInputStream	=	FileStream

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecognizer

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CreateRecoContext	Method

The	CreateRecoContext	method	creates	a	recognition	context
object	from	the	recognizer.

SpeechRecognizer.CreateRecoContext()	As	ISpeechRecoContext

Parameters

None.

Return	Value
The	CreateRecoContext	method	returns	an	ISpeechRecoContext
object.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
CreateRecoContext.
To	run	this	code,	create	a	form	without	any	controls.	Copy	this
code	and	paste	it	into	the	Declarations	section	of	the	form.
Private	Sub	Form_Load()

				Dim	SharedRecognizer	As	SpSharedRecognizer

				Set	SharedRecognizer	=	CreateObject("SAPI.SpSharedRecognizer")

				

				Dim	myContext	As	Object

				Set	myContext	=	SharedRecognizer.CreateRecoContext

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecognizer

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

DisplayUI	Method

The	DisplayUI	method	initiates	the	display	of	the	specified	UI.
The	speech	recognition	(SR)	and	text-to-speech	(TTS)	engines
are	capable	of	displaying	and	running	various	user	interfaces
(UI).	These	displays	assist	with	different	aspects	of	the	speech
environment:
User	training
Microphone	training	wizards

Adding	and	removing	words
Setting	controls	for	the	engine

Many	of	these	UIs	are	available	using	Speech	properties	in
Control	Panel.	In	addition,	engines	are	capable	of	requesting
specific	UIs	be	run	to	improve	a	situation.	For	example,	the	SR
could	request	more	user	training	if	the	recognitions	are
consistently	poor.
Engines	are	not	required	to	support	UIs	and	not	all	engines	will
have	the	same	UIs.	Consult	the	manufacturer's	engine
documentation	for	specific	details.	An	application	may	call
ISpeechRecognizer.IsUISupported	before	attempting	to	invoke	a
particular	UI	to	see	if	the	engine	supports	it.	Invoking
unsupported	UIs	will	cause	a	run-time	error.	If	the	UI	is	available,
use	ISpeechRecognizer.DisplayUI	to	invoke	the	display.

SpeechRecognizer.DisplayUI(

					hWndParent	As	Long,

					Title	As	String,

					TypeOfUI	As	String,

					[ExtraData	As	Variant	=	Nothing]

)

Parameters

hWndParent
Specifies	the	window	handle	of	the	owning	window.

Title
Specifies	the	caption	used	for	the	UI	window.

TypeOfUI
A	String	specifying	the	name	of	the	UI	to	display.	For	a	list	of
available	SAPI	5	UI,	see	Engine	User	Interfaces.

ExtraData
[Optional]	Specifies	the	ExtraData.	This	information	is	unique
to	the	application	and	may	be	used	to	provide	additional	or
more	specific	information	to	the	UI.	By	default,	the	Nothing
value	is	used	and	indicates	the	UI	does	not	use	any
additional	information	provided	by	this	method.

Return	Value
None.

Remarks
See	ISpeechRecognizer.IsUISupported	and
ISpeechRecoContext.RequestUI	for	additional	information.

Example

The	following	Visual	Basic	form	code	demonstrates	the	use	of

the	DisplayUI	event.	The	application	runs	the	training	wizard,
the	same	one	available	using	Speech	properties	in	Control
Panel.
To	run	this	code,	create	a	form	with	the	following	control:
A	command	button	called	Command1

Paste	this	code	into	the	Declarations	section	of	the	form.
Public	WithEvents	RC	As	SpSharedRecoContext

Public	myGrammar	As	ISpeechRecoGrammar

Private	Sub	Command1_Click()

				Dim	theRecognitizer	As	ISpeechRecognizer

				Set	theRecognizer	=	RC.Recognizer

				

				theRecognizer.DisplayUI	Form1.hWnd,	"My	App's	Additional	Training",	SpeechUserTraining,	vbNullString

End	Sub

Private	Sub	Form_Load()

				Set	RC	=	New	SpSharedRecoContext

				

				Set	myGrammar	=	RC.CreateGrammar

				myGrammar.DictationSetState	SGDSActive

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecognizer

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

EmulateRecognition	Method

The	EmulateRecognition	method	emulates	recognition	from	a
textual	source	rather	than	from	a	spoken	source.
Using	EmulateRecognition,	applications	can	accept	input	from
either	speech	or	a	textual	source.	All	the	events	are	fired	back
to	the	application	exactly	as	if	a	normal	recognition	had	taken
place.	The	result	phrase	will	have	the	semantic	properties	set	in
the	same	way	as	a	spoken	result.	A	recognition	event	will	be
produced	only	if	the	text	actually	parses	through	the	active
rules	(if	dictation	is	active,	any	text	will	parse).
Since	the	recognition	attempt	will	not	use	an	audio	data,	certain
events	such	Interference,	Hypothesis,	and	AudioLevel	cannot
occur.

SpeechRecognizer.EmulateRecognition(

					TextElements	As	Variant,

					[ElementDisplayAttributes	As	Variant	=	SDA_No_Trailing_Space],

					[LanguageId	As	Long	=	0]

)

Parameters

TextElements
Specifies	the	elements	of	the	phrase	to	to	recognize.	It	must
be	one	of	two	cases.

If	TextElements	is	a	BSTR	string	then	it	is	assumed
that	the	elements	in	TextElements	are	assumed	to	be
space	delimited	and	DisplayAttributes	parameter	is
ignored.

If	TextElements	is	an	array	of	BSTR	words	then	this
parameter	specifically	lists	each	element	in	the

phrase.	ElementDisplayAttributes	can	be	optionally
specified	as	appropriate	to	the	phrase's	need.

In	either	case,	additional	information	may	be	specified	for
each	element	by	using	the	following	syntax	on	each
TextElement:	"/display_text/lexical_form/pronunciation;".	This
syntax	can	be	used	in	both	the	BSTR	and	the	array	of	BSTRs
case.

ElementDisplayAttributes
[Optional]	Specifies	the	SpeechDisplayAttributes	value	for
each	word	element.	This	value	is	specific	to	the	language	and
usually	determined	by	the	speech	recognition	engine.	By
default	the	value	is	SDA_No_Trailing_Space	and	is	considered
standard	for	English	languages.	This	parameter	is	only	valid
if	an	array	of	BSTRs	for	the	TextElements	parameter	is
specified.	It	must	be	one	of	three	cases.

If	ElementDisplayAttributes	is	a	NULL	pointer,
VT_NULL,	or	VT_EMPTY	then	SDA_No_Trailing_Space	is
assumed	(which	is	the	default).
If	it	is	a	BSTR	then	it	can	be	""	(empty	string),	"	"
(space),	or	"	"	(double	space)	and	SAPI	matches	the
SpeechDisplayAttribute	uses	it	for	all	text	elements.	If
an	integer	value	(VT_I1	to	VT_I4)	is	specified,	then	this
value	is	the	SpeechDisplayAttribute	value	and	will	is
used	for	each	element	in	the	words	array.
If	it	is	an	array	of	integer	values	(VT_I1	to	VT_I4)	SAPI
uses	those	values	for	the	SpeechDisplayAttribute.

LanguageId
[Optional]	Specifies	the	LanguageId.	This	is	the	same	as	the
Win32	Language	Identifier	(LANGID).	By	default	the	value	is
zero,	indicating	the	system	default	is	used.

Return	Value
None.

Remarks
Use	this	method	(simulating	speech)	to	test	applications	that
use	speech	recognition.	Also	the	restrictions	in	the	parameters
TextElements	and	ElementDisplayAttributes	accommodate
languages	not	using	spaces	to	separate	words.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
EmulateRecognition.	The	application	displays	the	successful
recognition	result	of	dictation.	It	also	emulates	speech	by
clicking	the	button.
To	run	this	code,	create	a	form	with	the	following	controls:
A	label	called	Label1
A	command	button	called	Command1

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	and	activates	a	dictation
grammar.	Click	Command1	to	start	emulated	speech	and
display	results.
Public	WithEvents	RC	As	SpSharedRecoContext

Public	myGrammar	As	ISpeechRecoGrammar

Private	Sub	Command1_Click()

				RC.Recognizer.EmulateRecognition	("We	the	people")

End	Sub

Private	Sub	Form_Load()

				Set	RC	=	New	SpSharedRecoContext

				Set	myGrammar	=	RC.CreateGrammar

				

				myGrammar.DictationSetState	SGDSActive

End	Sub

Private	Sub	RC_Recognition(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	RecognitionType	As	SpeechLib.SpeechRecognitionType,	ByVal	Result	As	SpeechLib.ISpeechRecoResult)

				Label1.Caption	=	Result.PhraseInfo.GetText

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecognizer

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

GetAudioInputs	Method

The	GetAudioInputs	method	returns	a	selection	of	the
available	audio	input	devices.
Audio	input	devices	(sound	cards,	for	example)	are	stored	in	the
speech	configuration	database	as	a	series	of	tokens,	with	each
token	representing	one	audio	input	device.	GetAudioInputs
retrieves	all	available	audio	tokens.	The	returned	list	is	an
ISpeechObjectTokens	object.	Additional	or	more	detailed
information	about	the	tokens	is	available	in	methods	associated
with	ISpeechObjectTokens.
The	token	search	may	be	further	refined	using	the
RequiredAttributes	and	OptionalAttributes	search	attributes.
Only	tokens	matching	the	specified	RequiredAttributes	search
attributes	are	returned.	Of	those	tokens	matching	the
RequiredAttributes	key,	OptionalAttributes	lists	devices	in	the
order	matching	OptionalAttributes.	If	no	search	attributes	are
offered,	all	tokens	are	returned.	If	no	audio	devices	match	the
criteria,	GetAudioInputs	returns	an	empty	selection,	that	is,	an
ISpeechObjectTokens	collection	with	an
ISpeechObjectTokens::Count	property	of	zero.
See	Object	Tokens	and	Registry	Settings	White	Paper	for	a	list	of
SAPI	5-defined	attributes.

SpeechRecognizer.GetAudioInputs(

					[RequiredAttributes	As	String	=	""],

					[OptionalAttributes	As	String	=	""]

)	As	ISpeechObjectTokens

Parameters

RequiredAttributes

[Optional]	Specifies	the	RequiredAttributes.	To	be	returned	by
GetAudioInputs,	audio	input	tokens	must	contain	all	of	the
specific	required	attributes.	If	no	profiles	match	the	selection,
the	selection	returned	will	not	contain	any	elements.	By
default,	no	attributes	are	required	and	so	returns	all	the
tokens	discovered.

OptionalAttributes
[Optional]	Specifies	the	OptionalAttributes.	Returned	tokens
containing	the	RequiredAttributes	are	sorted	by
OptionalAttributes.	If	OptionalAttributes	is	specified,	the
tokens	are	listed	with	the	OptionalAttributes	first.	By	default,
no	attribute	is	specified	and	the	list	returned	from	the	speech
configuration	database	is	in	the	order	that	attributes	were
discovered.

Return	Value
An	ISpeechObjectTokens	collection	containing	the	selected	audio
input	tokens.

Remarks
The	format	of	selection	criteria	may	either	be	Value	or	"Attribute
=	Value".	Values	may	be	excluded	by	"Attribute	!=	Value".

Example
This	code	sample	demonstrates	the	GetAudioInputs	method.
After	creating	an	instance	for	a	recognizer,	GetAudioInputs	polls
the	computer	for	available	audio	input	tokens	and	displays	the
results.
To	run	this	code,	create	a	form	with	the	following	control:

A	label	called	Label1
Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	the	recognizer.
Private	Sub	Form_Load()

				Dim	SharedRecognizer	As	SpSharedRecognizer

				Set	SharedRecognizer	=	CreateObject("SAPI.SpSharedRecognizer")

				

				Dim	theRecognizers	As	ISpeechObjectTokens

				Set	theRecognizers	=	SharedRecognizer.GetAudioInputs

				

				Dim	i	As	Long

				Dim	tokenObject	As	SpObjectToken

				Label1.Caption	=	""

				For	i	=	0	To	theRecognizers.Count	-	1

								Set	tokenObject	=	theRecognizers.Item(i)

								Label1.Caption	=	Label1.Caption	&	tokenObject.GetDescription	&	vbCrLf

				Next	i

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecognizer

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

GetFormat	Method

The	GetFormat	method	returns	the	current	input	audio	format.
The	sound	format	may	be	different	at	different	times	or	at
different	points	during	processing.	For	example,	the	audio
format	at	the	time	the	input	reaches	the	sound	device	(the
audio	card	for	instance)	may	differ	from	the	audio	format	by	the
time	it	reaches	the	speech	recognition	(SR)	engine.	GetFormat
specifies	which	location	should	be	polled	and	returns	the	audio
format	for	that	location.

SpeechRecognizer.GetFormat(

					Type	As	SpeechFormatType

)	As	SpAudioFormat

Parameters

Type
Request	for	the	audio	format	at	entering	the	sound	device	or
SR	engine.

Return	Value
The	GetFormat	method	returns	an	SpAudioFormat	variable.

Example
This	code	sample	demonstrates	the	GetFormat	method.	After	a
successful	recognition,	two	GetFormat	calls	poll	SAPI	for	the
audio	formats	of	the	sound	device	and	the	SR	engine	and

display	results	in	a	label.
To	run	this	code,	create	a	form	with	the	following	controls:
Two	labels	called	Label1	and	Label2

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	the	recognizer.
Public	WithEvents	RC	As	SpSharedRecoContext

Public	myGrammar	As	ISpeechRecoGrammar

Private	Sub	Form_Load()

				Set	RC	=	New	SpSharedRecoContext

				Set	myGrammar	=	RC.CreateGrammar

				

				myGrammar.DictationSetState	SGDSActive

				

End	Sub

Private	Sub	RC_Recognition(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	RecognitionType	As	SpeechLib.SpeechRecognitionType,	ByVal	Result	As	SpeechLib.ISpeechRecoResult)

				Dim	audioFormat	As	SpAudioFormat

				

				Label1.Caption	=	Result.PhraseInfo.GetText

				

				Set	audioFormat	=	RC.Recognizer.GetFormat(SFTInput)

				audioFormatType	=	audioFormat.Type

				Label2.Caption	=	"Audio	input	type:	"	&	audioFormat.Type	&	vbCrLf

				

				Set	audioFormat	=	RC.Recognizer.GetFormat(SFTSREngine)

				audioFormatType	=	audioFormat.Type

				Label2.Caption	=	Label2.Caption	&	"SR	engine	input	type:	"	&	audioFormat.Type

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecognizer

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

GetProfiles	Method

The	GetProfiles	method	returns	a	selection	of	the	available
user	speech	profiles.
Profiles	are	stored	in	the	speech	configuration	database	as	a
series	of	tokens,	with	each	token	representing	one	profile.
GetProfiles	retrieves	all	available	profile	tokens.	The	returned	list
is	an	ISpeechObjectTokens	object.	Additional	or	more	detailed
information	about	the	tokens	is	available	in	methods	associated
with	ISpeechObjectTokens.
The	token	search	may	be	further	refined	using	the
RequiredAttributes	and	OptionalAttributes	search	attributes.
Only	tokens	matching	the	specified	RequiredAttributes	search
attributes	are	returned.	Of	those	tokens	matching	the
RequiredAttributes	key,	OptionalAttributes	lists	devices	in	the
order	matching	OptionalAttributes.	If	no	search	attributes	are
offered,	all	tokens	are	returned.	If	no	audio	devices	match	the
criteria,	GetAudioInputs	returns	an	empty	selection,	that	is,	an
ISpeechObjectTokens	collection	with	an
ISpeechObjectTokens::Count	property	of	zero.
See	Object	Tokens	and	Registry	Settings	White	Paper	for	a	list	of
SAPI	5-defined	attributes.

SpeechRecognizer.GetProfiles(

					[RequiredAttributes	As	String	=	""],

					[OptionalAttributes	As	String	=	""]

)	As	ISpeechObjectTokens

Parameters

RequiredAttributes
[Optional]	Specifies	the	RequiredAttributes.	To	be	returned	by

GetProfiles,	profile	tokens	must	contain	all	of	the	specific
required	attributes.	If	no	profiles	match	the	selection,	the
selection	returned	will	not	contain	any	elements.	By	default,
no	attributes	are	required	and	so	returns	all	the	tokens
discovered.

OptionalAttributes
[Optional]	Specifies	the	OptionalAttributes.	Returned	tokens
containing	the	RequiredAttributes	are	sorted	by
OptionalAttributes.	If	OptionalAttributes	is	specified,	the
tokens	are	listed	with	the	OptionalAttributes	first.	By	default,
no	attribute	is	specified	and	the	list	returned	from	the	speech
configuration	database	is	in	the	order	that	attributes	were
discovered.

Return	Value
An	ISpeechObjectTokens	object.

Remarks
The	format	of	selection	criteria	may	either	be	Value	or	"Attribute
=	Value".	Values	may	be	excluded	by	"Attribute	!=	Value".
See	ISpeechRecognizer.Profile	for	related	details.

Example
This	code	sample	demonstrates	the	GetProfiles	and	Profile
method.	After	creating	an	instance	for	a	recognizer,	GetProfiles
polls	the	computer	for	available	profile	tokens.	The	results	are
displayed.	The	first	one	listed	is	the	current	profile.	Clicking	the
button	will	change	the	current	profile	to	the	first	different	profile
found.

To	run	this	code,	create	a	form	with	the	following	controls:
A	label	called	Label1

A	command	button	called	Command1
Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	the	recognizer.	The	string
functions	in	the	middle	of	the	Form_Load	loop	lets	the
application	display	only	the	ID	portion	of	the	ID	string;	the
complete	ID	string	can	be	long,	exceeding	a	reasonably	sized
label.
It	is	possible	for	your	computer	to	have	only	one	profile.	To
demonstrate	this	application,	additional	profiles	should	be
added.	Add	new	profiles	through	Speech	properties	of	Control
Panel.
Public	SharedRecognizer	As	SpSharedRecognizer

Public	theRecognizers	As	ISpeechObjectTokens

				

Private	Sub	Command1_Click()

				Label1.Caption	=	""

				

				Dim	currentProfile	As	SpObjectToken

				Set	currentProfile	=	SharedRecognizer.Profile

				

				For	i	=	0	To	theRecognizers.Count	-	1

								Set	tokenObject	=	theRecognizers.Item(i)

								If	tokenObject.Id	<>	currentProfile.Id	Then

												Set	SharedRecognizer.Profile	=	tokenObject

												Label1.Caption	=	Label1.Caption	&	"New	Profile	installed:	"	&	SharedRecognizer.Profile.GetDescription

												Exit	For

								End	If

				Next	i

End	Sub

Private	Sub	Form_Load()

				Set	SharedRecognizer	=	CreateObject("SAPI.SpSharedRecognizer")

				

				Set	theRecognizers	=	SharedRecognizer.GetProfiles

				

				Dim	i,	idPosition	As	Long

				Dim	tokenObject	As	SpObjectToken

				Label1.Caption	=	""

				For	i	=	0	To	theRecognizers.Count	-	1

								Set	tokenObject	=	theRecognizers.Item(i)

								Label1.Caption	=	Label1.Caption	&	tokenObject.GetDescription	&	vbCrLf

								

								idPosition	=	InStrRev(tokenObject.Id,	"\")

								Label1.Caption	=	Label1.Caption	&	Mid(tokenObject.Id,	idPosition	+	1)	&	vbCrLf

								

								Label1.Caption	=	Label1.Caption	&	vbCrLf

				Next	i

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecognizer	
Type:	Hidden

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

GetPropertyNumber	Method

The	GetPropertyNumber	method	returns	a	numeric	value
specified	by	the	named	key.
The	speech	recognition	(SR)	engine	maintains	several
changeable	values	for	setting	the	characteristics	of	the	SR
process.	These	controls,	or	properties,	are	listed	in	pairs	with
the	control	name	and	an	associated	value.	For	example,	the
SAPI	5	SR	engine	defines	a	property	allocating	CPU	usage	for
the	SR	engine.	This	property	is	named	ResourceUsage,	and	has
a	range	of	0	to	100	percent.	The	default	value	is	50.	This
number	is	the	percentage	of	the	CPU	time	allocated	for	SR
processing.	This	value	may	be	changed	to	increase	or	decrease
the	processing	time	for	SR	features.
To	get	the	current	value,	call
ISpeechRecognizer.GetPropertyNumber.	To	set	a	new	value,	call
ISpeechRecognizer.SetPropertyNumber.	In	addition,	a
PropertyNumberChange	event	is	sent	after	the	change	is	made.
This	event	is	broadcast	to	all	applications	set	to	receive	it.	Since
multiple	applications,	or	even	recognition	contexts	within	the
same	application	can	use	the	same	SR	engine,	the	applications
may	need	to	react	to	the	new	settings	appropriately.
Applications	should	restrict	making	changes	unless	there	is	a
compelling	reason.	Changes	to	the	engine	properties	will	take
effect	at	the	next	synchronization	point.	The	changes	persist	in
the	engine	until	properties	are	changed	again.
Persisting	the	changes	on	a	permanent	basis	is	an	engine
design	issue.	There	is	no	requirement	to	do	so	and	each	engine
manufacturer	may	implement	changing	characteristics
differently.	See	the	manufacturer's	engine	documentation	for
specific	details.	The	SAPI	5	engine	changes	are	not	permanent
beyond	the	life	span	of	the	recognizer	object.	That	is,	when	all
the	applications	using	the	same	recognizer	object	(essentially

an	SR	engine)	quit,	the	values	will	return	to	the	default	state.
If	properties	need	to	be	changed	in	a	SAPI	5	engine,	use	Speech
properties	in	Control	Panel.	For	instance,	the	AdaptationOn
property	controlling	background	and	continuous	adaptation	of
speech	recognition	is	the	same	property	as	Background
Adaptation	in	Settings	for	the	Recognition	Profile	on	the	Speech
Recognition	tab.
Properties	are	not	required	of	SR	engines	and	each
manufacturer's	engine	may	be	different.	Consult	the
manufacturer's	documentation	for	specific	information.

SpeechRecognizer.GetPropertyNumber(

					Name	As	String,

					Value	As	Long

)	As	Boolean

Parameters

Name
Specifies	the	string	name	of	the	property.

Value
Specifies	the	value	associated	with	the	property	Name.	This
value	is	passed	back	upon	successful	completion	of	the	call.
If	the	return	value	is	False,	Value	will	not	be	updated.

Return	Value
A	Boolean	variable	of	True	if	the	property	is	supported,	or	False
if	not	supported.

Remarks
For	a	complete	list	of	SAPI	5	supported	properties,	see	the	SAPI
5	SR	Properties	White	Paper.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	SetPropertyNumber,	GetPropertyNumber,	and
PropertyNumberChange	event.	The	application	displays	the
current	value	of	the	property,	in	this	case	ResourceUsage	in	a
label.	The	first	button	displays	the	current	value.	The	second
button	increments	the	value	by	one.	The	new	value	displays	as
a	result	of	the	PropertyNumberChange	event.	The	original	or
starting	value	will	be	the	same	as	the	Accuracy	vs.	Recognition
Response	Time	slider	in	the	Recognition	Profile	Settings.	This	is
set	on	the	SR	tab	of	Speech	properties	in	Control	Panel.
To	run	this	code,	create	a	form	with	the	following	controls:
Two	command	buttons	called	Command1	and	Command2

Two	labels	called	Label1	and	Label2
Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	and	activates	a	dictation
grammar.
Public	WithEvents	RC	As	SpSharedRecoContext

Public	myGrammar	As	ISpeechRecoGrammar

Const	THE_PROPERTY	=	"ResourceUsage"

Private	Sub	Command1_Click()

				Dim	lActualValue	As	Long

				Dim	fSupported	As	Boolean

				

				Label2.Caption	=	""

				fSupported	=	RC.Recognizer.GetPropertyNumber(THE_PROPERTY,	lActualValue)

				Label1.Caption	=	lActualValue

End	Sub

Private	Sub	Command2_Click()

				Dim	lActualValue	As	Long

				Dim	fSupported	As	Boolean

				

				Label1.Caption	=	""

				fSupported	=	RC.Recognizer.GetPropertyNumber(THE_PROPERTY,	lActualValue)

				fSupported	=	RC.Recognizer.SetPropertyNumber(THE_PROPERTY,	lActualValue	+	1)

End	Sub

Private	Sub	Form_Load()

				Set	RC	=	New	SpSharedRecoContext

				

				Set	myGrammar	=	RC.CreateGrammar

				myGrammar.DictationSetState	SGDSActive

End	Sub

Private	Sub	RC_PropertyNumberChange(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	PropertyName	As	String,	ByVal	NewNumberValue	As	Long)

				Label2.Caption	=	NewNumberValue

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecognizer	
Type:	Hidden

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

GetPropertyString	Method

The	GetPropertyString	method	returns	the	string	value
corresponding	to	the	specified	key	name.
The	SAPI	5	speech	recognition	(SR)	engine	does	not	support	any
properties	with	associated	string	values.	However,	other
manufacturer's	engines	could.	See
ISpeechRecognizer.GetPropertyNumber	for	a	related	and	similar
feature.

SpeechRecognizer.GetPropertyString(

					Name	As	String,

					Value	As	String

)	As	Boolean

Parameters

Name
Specifies	the	string	name	of	the	property.

Value
Specifies	the	String	value	associated	with	the	property
Name.	This	value	is	passed	back	upon	successful	completion
of	the	call.	If	the	return	value	is	False,	Value	will	not	be
updated.

Return	Value
A	Boolean	variable	of	True	if	the	property	is	supported,	or	False
if	not	supported.

Example
See	ISpeechRecognizer.GetPropertyNumber	for	a	related	code
sample.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecognizer

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

GetRecognizers	Method

The	GetRecognizers	method	returns	a	selection	of
SpeechRecognizer	objects	in	the	speech	configuration	database.
Recognizers	are	stored	in	the	speech	configuration	database	as
a	series	of	tokens,	with	each	token	representing	one	recognizer
(also	called	a	speech	recognition	engine).	GetRecognizers
retrieves	all	available	recognizer	tokens	and	returns	the	in	a	list
as	an	ISpeechObjectTokens	object.	Additional	or	more	detailed
information	about	the	tokens	is	available	in	methods	associated
with	ISpeechObjectTokens.	If	no	recognizers	match	the	criteria,
GetRecognizers	returns	an	empty	selection,	that	is,	an
ISpeechObjectTokens	collection	with	an
ISpeechObjectTokens::Count	property	of	zero.
The	recognizer	token	search	may	be	further	refined	by	using	the
RequiredAttributes	and	OptionalAttributes	search	attributes.
Only	token	matching	the	specified	search	attributes	are
returned.	If	no	search	attributes	are	offered,	all	tokens	are
returned.
See	Object	Tokens	and	Registry	Settings	White	Paper	for	a	list	of
SAPI	5-defined	attributes.

ISpeechRecognizer.GetRecognizers(

					[RequiredAttributes	As	String	=	""],

					[OptionalAttributes	As	String	=	""]

)	As	ISpeechObjectTokens

Parameters

RequiredAttributes
[Optional]	Specifies	the	RequiredAttributes.	To	be	returned	by
GetRecognizers,	recognizer	tokens	must	contain	all	of	the

specific	required	attributes.	If	no	recognizers	match	the
selection,	the	selection	returned	will	not	contain	any
elements.	By	default	no	attributes	are	required	and	the
method	returns	all	the	token	discovered.

OptionalAttributes
[Optional]	Specifies	the	OptionalAttributes.	Returned	tokens
containing	the	RequiredAttributes	are	sorted	by
OptionalAttributes.	If	OptionalAttributes	is	specified,	the
tokens	are	listed	with	the	OptionalAttributes	first.	By	default,
no	attribute	is	specified	and	the	list	returned	from	the	speech
configuration	database	is	in	the	order	that	attributes	were
discovered.

Return	Value
A	ISpeechObjectTokens	collection	containing	tokens	for	the
selected	recognizers.

Remarks
The	format	of	selection	criteria	may	either	be	Value	or	"Attribute
=	Value".	Values	may	be	excluded	by	"Attribute	!=	Value".

Example
This	code	sample	demonstrates	the	GetRecognizers	method.
After	creating	an	instance	for	a	recognizer,	GetRecognizers	polls
the	computer	for	available	recognizer	tokens,	which	represent
individual	engines.	The	results	are	displayed.
To	run	this	code,	create	a	form	with	the	following	control:
A	label	called	Label1

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	the	recognizer.
Private	Sub	Form_Load()

				Dim	SharedRecognizer	As	SpSharedRecognizer

				Set	SharedRecognizer	=	CreateObject("SAPI.SpSharedRecognizer")

				

				Dim	theRecognizers	As	ISpeechObjectTokens

				Set	theRecognizers	=	SharedRecognizer.GetRecognizers

				

				Dim	i	As	Long

				Dim	recoObject	As	SpObjectToken

				Label1.Caption	=	""

				For	i	=	0	To	theRecognizers.Count	-	1

								Set	recoObject	=	theRecognizers.Item(i)

								Label1.Caption	=	Label1.Caption	&	recoObject.GetDescription	&	vbCrLf

				Next	i

End	Sub

The	next	example	is	similar	to	the	first	except	that	the
"Telephony"	attribute	is	required.	Any	recognizer	token	returned
must	be	able	to	support	telephony.
Private	Sub	Form_Load()

				Dim	SharedRecognizer	As	SpSharedRecognizer

				Set	SharedRecognizer	=	CreateObject("SAPI.SpSharedRecognizer")

				

				Dim	theRecognizers	As	ISpeechObjectTokens

				Set	theRecognizers	=	SharedRecognizer.GetRecognizers("Telephony")

				

				Dim	i	As	Long

				Dim	recoObject	As	SpObjectToken

				Label1.Caption	=	""

				For	i	=	0	To	theRecognizers.Count	-	1

								Set	recoObject	=	theRecognizers.Item(i)

								Label1.Caption	=	Label1.Caption	&	recoObject.GetDescription	&	vbCrLf

				Next	i

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecognizer

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

IsShared	Property

The	IsShared	property	indicates	whether	a	recognition	engine
is	shared	or	in	process	(InProc).

Syntax

Set: (This	property	is	read-only)
Get: Boolean	=	SpeechRecognizer.IsShared

Parts

SpeechRecognizer
The	owning	object.

Boolean
Set:	(This	property	is	read-only)
Get:	A	Boolean	variable	ISpeechRecognizer	the	property.
True	indicates	the	recognizer	is	shared;	False	indicates	that	it
is	an	InProc	recognizer.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
isShared.	The	application	displays	whether	the	recognizer	is
shared	or	InProc.
To	run	this	code,	create	a	form	with	the	following	control:
A	label	called	Label1

Paste	this	code	into	the	Declarations	section	of	the	form.

The	Form_Load	procedure	creates	and	activates	a	dictation
grammar.
Public	WithEvents	RC	As	SpSharedRecoContext

Public	myGrammar	As	ISpeechRecoGrammar

Private	Sub	Form_Load()

				Set	RC	=	New	SpSharedRecoContext

				

				Set	myGrammar	=	RC.CreateGrammar

				myGrammar.DictationSetState	SGDSActive

				

				Dim	procShared	As	Boolean

				procShared	=	RC.Recognizer.isShared

				If	procShared	=	True	Then

								Label1.Caption	=	"Recognizer	is	shared."

				Else

								Label1.Caption	=	"Recognizer	is	inproc."

				End	If

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecognizer

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

IsUISupported	Method

The	IsUISupported	method	determines	if	the	specified	UI	is
supported.
The	speech	recognition	(SR)	and	text-to-speech	(TTS)	engines
are	capable	of	displaying	and	running	various	user	interfaces
(UI).	These	displays	assist	with	different	aspects	of	the	speech
environment	such	as	user	training,	microphone	wizards,	adding
and	removing	words,	or	setting	controls	for	the	engine.	Many	of
these	UIs	are	available	using	Speech	properties	in	Control	Panel.
In	addition,	the	engines	are	capable	of	requesting	that	specific
UIs	are	run	to	improve	a	situation.	For	example,	the	SR	could
request	more	user	training	if	the	recognitions	are	consistently
poor.
Engines	are	not	required	to	support	UI	and	not	all	engines	will
have	the	same	UI.	Consult	the	manufacturer's	engine
documentation	for	specific	details.	An	application	may	call
ISpeechRecognizer.IsUISupported	before	attempting	to	invoke	a
particular	UI	to	see	if	the	engine	supports	it.	Invoking
unsupported	UIs	will	cause	a	run-time	error.	If	the	UI	is	available,
use	ISpeechRecognizer.DisplayUI	to	invoke	the	display.

SpeechRecognizer.IsUISupported(

					TypeOfUI	As	String,

					[ExtraData	As	Variant	=	Nothing]

)	As	Boolean

Parameters

TypeOfUI
A	String	specifying	the	name	of	the	UI	to	display.	For	a	list	of
available	SAPI	5	UI,	see	Engine	User	Interfaces.

ExtraData
[Optional]	Specifies	the	ExtraData.	This	information	is	unique
to	the	application	and	may	be	used	to	provide	additional	or
more	specific	information	to	the	UI.	By	default	the	Nothing
value	is	used	and	indicates	the	UI	does	not	use	any
additional	information	provided	by	this	method.

Return	Value
The	IsUISupported	method	returns	a	Boolean	variable.

Remarks
See	ISpeechRecognizer.DisplayUI	and
ISpeechRecoContext.RequestUI	for	additional	information.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	IsUISupported	event.	The	application	attempts	to	run	two
UIs.	The	first	is	the	training	wizard	(the	same	one	available
using	Speech	properties	in	Control	Panel)	and	the	second	UI	is	a
nonexistent	one	called	MyAppUI.
To	run	this	code,	create	a	form	with	the	following	control:
A	command	button	called	Command1

Paste	this	code	into	the	Declarations	section	of	the	form.
Public	WithEvents	RC	As	SpSharedRecoContext

Public	myGrammar	As	ISpeechRecoGrammar

Private	Sub	Command1_Click()

				RunUI	SpeechUserTraining

				RunUI	"MyAppUI"

End	Sub

Private	Sub	Form_Load()

				Set	RC	=	New	SpSharedRecoContext

				

				Set	myGrammar	=	RC.CreateGrammar

				myGrammar.DictationSetState	SGDSActive

End	Sub

Private	Function	RunUI(theUI	As	String)

				If	RC.Recognizer.IsUISupported(theUI)	=	True	Then

								RC.Recognizer.DisplayUI	Form1.hWnd,	"My	App's	Additional	Training",	theUI,	vbNullString

				Else

								MsgBox	theUI	&	"	UI	not	supported"

				End	If

End	Function

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecognizer

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Profile	Property

The	Profile	property	specifies	the	speech	recognition	engine's
current	recognition	profile.
A	recognition	profile	represents	a	single	user	and	training
sessions	on	the	system.	The	user	can	manually	create,	delete,
and	set	the	current	profile	using	Speech	properties	in	Control
Panel.
A	profile	should	not	be	set	while	the	engine	is	active.	Doing	so
while	a	recognition	engine	is	active	can	cause	unexpected
results,	depending	on	how	and	when	the	speech	recognition
engine	reads	the	profile	information.
The	newly-installed	profile	is	not	a	permanent	change	but	is
valid	only	for	the	life	span	of	the	recognizer.	To	set	it	as	the
default,	use	SpObjectTokenCategory.Default.

Syntax

Set: SpeechRecognizer.Profile	=	SpObjectToken
Get: SpObjectToken	=	SpeechRecognizer.Profile

Parts

SpeechRecognizer
The	owning	object.

SpObjectToken
Set:	An	SpObjectToken	variable	that	sets	the	profile.	If	no
value	is	stated,	the	default	of	Nothing	will	be	passed	in.
Get:	An	SpObjectToken	variable	that	gets	the	current	profile.

Example
See	ISpeechRecognizer.GetProfiles	for	a	complete	example.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecognizer

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Recognizer	Property

The	Recognizer	property	specifies	characteristics	about	the
active	recognizer.
Recognizers	and	the	attributes	associated	with	them	are	stored
in	the	speech	configuration	database	as	a	series	of	tokens,	with
each	token	representing	one	attribute.	Recognizer	retrieves	an
object	(SpObjectToken)	which	is	capable	of	accessing	the
attributes	for	the	recognizer.	Additional	or	more	detailed
information	about	the	tokens	is	available	in	methods	associated
with	SpObjectToken.
See	Object	Tokens	and	Registry	Settings	White	Paper	for	a	list	of
SAPI	5-defined	engine	attributes.

Syntax

Set: SpeechRecognizer.Recognizer	=	SpObjectToken
Get: SpObjectToken	=	SpeechRecognizer.Recognizer

Parts

SpeechRecognizer
The	owning	object.

SpObjectToken
Set:	An	SpObjectToken	variable	that	sets	the	property.
Get:	An	SpObjectToken	variable	that	gets	the	property.

Example

This	code	sample	demonstrates	the	Recognizer	property.	After
creating	an	instance	for	a	recognizer,	the	Recognizer	property
can	retrieve	attribute	information	about	the	active	recognizer.
The	engine	ID	is	displayed.	Also	two	attributes	are	attempted	to
be	displayed.	The	first	is	"SpeakingStyle"	(an	attribute	for	the
SAPI	5	SR	engine.	The	other	is	"MyEngineAttribute,"	and	should
not	be	present.	Tokens	not	found	will	cause	a	run-time	error	and
as	a	result,	require	the	error	handling	code.
To	run	this	code,	create	a	form	with	the	following	control:
A	label	called	Label1

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	the	recognizer.
Public	WithEvents	RC	As	SpSharedRecoContext

Public	myGrammar	As	ISpeechRecoGrammar

Private	Sub	Form_Load()

				On	Error	GoTo	TokenNotFound

				Set	RC	=	New	SpSharedRecoContext

				

				Set	myGrammar	=	RC.CreateGrammar

				myGrammar.DictationSetState	SGDSActive

				

				Label1.Caption	=	RC.Recognizer.Recognizer.Id	&	vbCrLf

				

				Dim	objectToken	As	SpObjectToken

				Set	objectToken	=	RC.Recognizer.Recognizer

				

				Dim	tokenName	As	String

				tokenName	=	"SpeakingStyle"

				Label1.Caption	=	Label1.Caption	&	tokenName	&	"	:	"	&	objectToken.GetAttribute(tokenName)	&	vbCrLf

				

				tokenName	=	"MyEngineAttribute"

				Label1.Caption	=	Label1.Caption	&	tokenName	&	"	:	"	&	objectToken.GetAttribute(tokenName)	&	vbCrLf

				Exit	Sub

				

TokenNotFound:

				Label1.Caption	=	Label1.Caption	&	tokenName	&	"	:	"	&	"Token	not	found"

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecognizer	
Type:	Hidden

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SetPropertyNumber	Method

The	SetPropertyNumber	method	sets	a	numeric	property
corresponding	to	the	specified	name.
See	ISpeechRecognizer.GetPropertyNumber	for	complete	details
and	code	sample.

SpeechRecognizer.SetPropertyNumber(

					Name	As	String,

					Value	As	Long

)	As	Boolean

Parameters

Name
Specifies	the	string	name	of	the	property.

Value
Specifies	the	new	value	of	property	Name.	If	the	return	value
is	False,	Name	will	not	be	changed.

Return	Value
A	Boolean	variable	of	True	if	the	property	is	supported,	or	False
if	not	supported.

Remarks
For	a	complete	list	of	SAPI	5	supported	properties	see	the	SAPI	5
SR	Properties	White	Paper.

Example
See	ISpeechRecognizer.GetPropertyNumber	for	a	complete	code
sample.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecognizer	
Type:	Hidden

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SetPropertyString	Method

The	SetPropertyString	method	sets	a	text	property
corresponding	to	the	specified	name.
The	SAPI	5	speech	recognition	(SR)	engine	does	not	support	any
properties	with	associated	string	values.	However,	other
manufacturer's	engines	could.	See
ISpeechRecognizer.GetPropertyNumber	for	a	related	and	similar
feature.

SpeechRecognizer.SetPropertyString(

					Name	As	String,

					Value	As	String

)	As	Boolean

Parameters

Name
Specifies	the	string	name	of	the	property.

Value
Specifies	the	new	String	value	of	property	Name.	If	the	return
value	is	False,	Name	will	not	be	changed.

Return	Value
A	Boolean	variable	of	True	if	the	property	is	supported,	or	False
if	not	supported.

Example
See	ISpeechRecognizer.GetPropertyNumber	for	a	related	code
sample.

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecognizer

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

State	Property

The	State	property	returns	the	current	state	of	the	recognition
engine.
The	recognition	engine	may	be	in	one	of	several	states	of	audio
processing.	If	active,	the	engine	receives	audio	data	and
processes	it.	Likewise,	if	inactive,	neither	audio	data	nor
additional	processing	takes	place.	See	the	enumeration
SpeechRecognizerState	for	complete	details	of	the	states.

Syntax

Set: SpeechRecognizer.State	=	SpeechRecognizerState
Get: SpeechRecognizerState	=	SpeechRecognizer.State

Parts

SpeechRecognizer
The	owning	object.

SpeechRecognizerState
Set:	A	SpeechRecognizerState	variable	that	sets	the
property.
Get:	A	SpeechRecognizerState	variable	that	gets	the
property.

Example
This	code	sample	demonstrates	the	State	method.	After
creating	an	instance	for	a	recognizer,	State	retrieves	the
processing	state	about	the	recognizer.	The	recognizer	may	be

turned	on	and	off	with	the	button	and	the	current	state	will	be
displayed	afterward.	Speech	will	be	recognized	and	displayed
but	only	when	the	engine	is	active.
To	run	this	code,	create	a	form	with	the	following	controls:
Two	labels	called	Label1	and	Label2
A	command	button	called	Command1

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	the	recognizer.	Click	the
button	to	toggle	the	engine	on	and	off.	Speaking	while	the
engine	is	active	will	display	the	text	in	the	second	label.
Public	WithEvents	RC	As	SpSharedRecoContext

Public	myGrammar	As	ISpeechRecoGrammar

Private	Sub	Command1_Click()

				If	Label1.Caption	=	1	Then

								RC.Recognizer.State	=	SRSInactive

				Else

								RC.Recognizer.State	=	SRSActive

				End	If

				

				ShowState

				RenameButton

End	Sub

Private	Sub	Form_Load()

				Set	RC	=	New	SpSharedRecoContext

				

				Set	myGrammar	=	RC.CreateGrammar

				myGrammar.DictationSetState	SGDSActive

				

				Dim	recoState	As	SpeechRecognizerState

				recoState	=	RC.Recognizer.State

				

				ShowState

				RenameButton

End	Sub

Private	Function	RenameButton()

				If	Label1.Caption	=	1	Then

								Command1.Caption	=	"Turn	Off	Engine"

				Else

								Command1.Caption	=	"Turn	On	Engine"

				End	If

End	Function

Private	Function	ShowState()

				Dim	engineState	As	SpeechRecognizerState

				Label1.Caption	=	RC.Recognizer.State

End	Function

Private	Sub	RC_Recognition(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	RecognitionType	As	SpeechLib.SpeechRecognitionType,	ByVal	Result	As	SpeechLib.ISpeechRecoResult)

				Label2.Caption	=	Result.PhraseInfo.GetText

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Interface:	ISpeechRecognizer

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Status	Property

The	Status	property	returns	an	object	representing	the	status
of	the	recognizer.
This	method	provides	information	for	static	features	about	the
speech	recognition	(SR)	engine	such	as	the	languages	it
supports.	It	also	provides	information	for	dynamic	features	such
as	current	stream	position	the	engine	has	recognized	up	to,	and
if	the	stream	is	actively	being	sent	to	the	engine.

Syntax

Set: (This	property	is	read-only)
Get: ISpeechRecognizerStatus	=	SpeechRecognizer.Status

Parts

SpeechRecognizer
The	owning	object.

ISpeechRecognizerStatus
Set:	(This	property	is	read-only)
Get:	An	ISpeechRecognizerStatus	that	gets	the	property.

Example
This	code	sample	demonstrates	the	Status	method.	After
creating	an	instance	for	a	recognizer,	Status	retrieves
information	about	the	recognizer.	The	class	ID	that	created	the
engine,	the	supported	languages,	(in	decimal	format)	and	the
current	device	position	is	displayed.

To	run	this	code,	create	a	form	with	the	following	control:
A	label	called	Label1

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	the	recognizer.
Public	WithEvents	RC	As	SpSharedRecoContext

Public	myGrammar	As	ISpeechRecoGrammar

Private	Sub	Form_Load()

				Set	RC	=	New	SpSharedRecoContext

				

				Set	myGrammar	=	RC.CreateGrammar

				myGrammar.DictationSetState	SGDSActive

				

				Dim	recoStatus	As	ISpeechRecognizerStatus

				Set	recoStatus	=	RC.Recognizer.Status

				

				'Display	engine	CLSID

				Label1.Caption	=	recoStatus.ClsidEngine	&	vbCrLf

				

				'Display	supported	languages

				Dim	i	As	Long

				Dim	x	As	Variant

				For	i	=	0	To	UBound(recoStatus.SupportedLanguages)

								Label1.Caption	=	Label1.Caption	&	recoStatus.SupportedLanguages(i)	&	vbCrLf

				Next	i

				

				'display	audio	position

				Label1.Caption	=	Label1.Caption	&	recoStatus.AudioStatus.CurrentDevicePosition

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpLexicon
The	SpLexicon	automation	object	provides	access	to	lexicons.
Lexicons	contain	information	about	words	that	can	be
recognized	or	spoken.
SAPI	defines	two	types	of	lexicons.	The	first	is	the	application
lexicon.	Application	lexicons	are	the	words	that	all	applications
can	use.	They	are	installed	by	speech-enabled	applications	and
are	read-only.	As	a	result,	the	application	lexicons	may	vary
slightly	among	computers.	The	second	type	is	the	user	lexicon.
User	lexicons	store	words	specific	to	a	speech	user.
An	SpLexicon	object	includes	the	user	lexicon	and	all	application
lexicons	available	on	the	computer.	Calls	to	SpLexicon	methods
may	return	data	from	several	different	lexicons.
The	SpUnCompressedLexicon	object	represents	a	single
application	lexicon.

Automation	Interface	Elements
The	SpLexicon	automation	object	contains	the	following
elements:

Properties Description
GenerationId	Property Gets	the	generation	ID	of	the	current

application	lexicon.

Methods Description
AddPronunciation	Method Adds	a	pronunciation,

specified	in	phone
symbols,	to	the	current
user	lexicon.

AddPronunciationByPhoneIds Adds	a	pronunciation,

Method specified	in	phone	IDs,	to
the	current	user	lexicon.

GetGenerationChange	Method Gets	a	list	of	words	in	the
current	user	lexicon	that
have	changed	since	the
specified	generation.

GetPronunciations	Method Gets	the	pronunciations
and	parts	of	speech	for	a
word	from	the	user	and
application	lexicons.

GetWords	Method Gets	a	list	of	all	words	in
the	current	user	and
application	lexicons.

RemovePronunciation	Method Removes	a	word	and/or
its	pronunciations,
specified	in	phone
symbols,	from	the	user
lexicon.

RemovePronunciationByPhoneIds
Method

Removes	a	word	and/or
its	pronunciations,
specified	in	phone	IDs,
from	the	user	lexicon.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpLexicon

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

AddPronunciation	Method

The	AddPronunciation	method	adds	a	pronunciation,	specified
in	phone	symbols,	to	the	current	user	lexicon.

SpLexicon.AddPronunciation(

					bstrWord	As	String,

					LangId	As	Long,

					[PartOfSpeech	As	SpeechPartOfSpeech	=	SPSUnknown],

					[bstrPronunciation	As	String	=	""]

)

Parameters

bstrWord
The	word	to	add.

LangId
The	language	Id	of	the	word.

PartOfSpeech
[Optional]	The	PartOfSpeech.	Default	value	is	SPSUnknown.

bstrPronunciation
[Optional]	The	pronunciation,	in	phones.

Return	Value
None.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpLexicon	
Type:	Hidden

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

AddPronunciationByPhoneIds	Method

The	AddPronunciationByPhoneIds	method	adds	a
pronunciation,	specified	in	phone	IDs,	to	the	current	user
lexicon.

SpLexicon.AddPronunciationByPhoneIds(

					bstrWord	As	String,

					LangId	As	Long,

					[PartOfSpeech	As	SpeechPartOfSpeech	=	SPSUnknown],

					[PhoneIds	As	Variant	=	Nothing]

)

Parameters

bstrWord
The	word	to	add.

LangId
The	language	Id	of	the	word.

PartOfSpeech
[Optional]	The	PartOfSpeech.	Default	value	is	SPSUnknown.

PhoneIds
[Optional]	The	pronunciation,	in	phone	IDs.	By	default	the
Nothing	value	is	used.

Return	Value

None.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpLexicon	
Type:	Hidden

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

GenerationId	Property

The	GenerationId	property	gets	the	generation	ID	of	the
current	user	lexicon.
The	GenerationId	functions	acts	as	a	version	number,	making	it
possible	to	roll	back,	cancel	or	undo	additions	to	the	lexicon.

Syntax

Set: (This	property	is	read-only)
Get: Long	=	SpLexicon.GenerationId

Parts

SpLexicon
The	owning	object.

Long
Set:	(This	property	is	read-only)
Get:	A	Long	variable	returning	the	generation	ID.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpLexicon

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

GetGenerationChange	Method

The	GetGenerationChange	method	gets	a	list	of	words	in	the
current	user	lexicon	that	have	changed	since	the	specified
generation.

SpLexicon.GetGenerationChange(

					GenerationID	As	Long

)	As	ISpeechLexiconWords

Parameters

GenerationID
Specifies	the	GenerationID.

Return	Value
The	GetGenerationChange	method	returns	an
ISpeechLexiconWords	variable.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpLexicon

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

GetPronunciations	Method

The	GetPronunciations	method	gets	the	pronunciations	and
parts	of	speech	for	a	word	from	the	user	and	application
lexicons.
An	ISpeechLexiconPronunciation	object	contains	a	word's
pronunciations,	part	of	speech	and	phone	ids.	Because	a	word
may	have	more	than	one	pronunciation	and	more	than	one	part
of	speech,	the	GetPronunciations	method	returns	a	collection	of
these	objects.

SpLexicon.GetPronunciations(

					bstrWord	As	String,

					[LangId	As	Long	=	0],

					[TypeFlags	As	SpeechLexiconType	=	SLTUser	|	SLTApp]

)	As	ISpeechLexiconPronunciations

Parameters

bstrWord
The	target	lexicon	word.

LangId
[Optional]	The	language	Id.	By	default	the	value	is	zero	which
indicates	the	system	LangId	is	used.

TypeFlags
[Optional]	TypeFlags.

Return	Value

An	ISpeechLexiconPronunciations	object,	which	is	a	collection	of
one	or	more	ISpeechLexiconPronunciation	objects.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpLexicon

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

GetWords	Method

The	GetWords	method	gets	a	list	of	all	words	in	the	current
user	and	application	lexicons.

SpLexicon.GetWords(

					[Flags	As	SpeechLexiconType	=	SLTUser	|	SLTApp],

					[GenerationID	As	Long	=	0]

)	As	ISpeechLexiconWords

Parameters

Flags
[Optional]	If	Flags	is	SLTUser,	user	lexicon	words	are
returned;	SLTApp	returns	application	lexicon	words.	By
default	both	types	of	words	are	returned.

GenerationID
[Optional]	The	GenerationID.	By	default	the	value	is	zero.

Return	Value
An	ISpeechLexiconWords	object,	which	is	a	collection	of	one	or
more	ISpeechLexiconWord	objects.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpLexicon

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

RemovePronunciation	Method

The	RemovePronunciation	method	removes	a	word	and/or	its
pronunciations,	specified	in	phone	symbols,	from	the	current
user	lexicon.

SpLexicon.RemovePronunciation(

					bstrWord	As	String,

					LangId	As	Long,

					[PartOfSpeech	As	SpeechPartOfSpeech	=	SPSUnknown],

					[bstrPronunciation	As	String	=	""]

)

Parameters

bstrWord
The	lexicon	word	to	be	removed.

LangId
The	language	Id.

PartOfSpeech
[Optional]	The	PartOfSpeech.	Default	value	is	SPSUnknown.

bstrPronunciation
[Optional]	The	pronunciation,	in	phones,	to	be	removed.	If
this	parameter	is	not	specified,	all	pronunciations	of	the	word
will	be	removed.

Return	Value

None.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpLexicon	
Type:	Hidden

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

RemovePronunciationByPhoneIds
Method

The	RemovePronunciationByPhoneIds	method	removes	a
word	and/or	its	pronunciations,	specified	in	phone	IDs,	from	the
current	user	lexicon.

SpLexicon.RemovePronunciationByPhoneIds(

					bstrWord	As	String,

					LangId	As	Long,

					[PartOfSpeech	As	SpeechPartOfSpeech	=	SPSUnknown],

					[PhoneIds	As	Variant	=	Nothing]

)

Parameters

bstrWord
The	lexicon	word	to	be	removed.

LangId
The	language	Id.

PartOfSpeech
[Optional]	The	PartOfSpeech.	Default	value	is	SPSUnknown.

PhoneIds
[Optional]	The	pronunciation,	in	phone	ids,	to	be	removed.	If
this	parameter	is	not	specified,	all	pronunciations	of	a	lexicon
word	will	be	removed.

Return	Value
None.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpMemoryStream
The	SpMemoryStream	automation	object	supports	audio
stream	operations	in	memory.
The	Format	property	and	the	Read,	Write	and	Seek	methods	are
inherited	from	the	ISpeechBaseStream	interface.

Automation	Interface	Elements
The	SpMemoryStream	automation	object	has	the	following
elements:

Properties Description
Format	Property Gets	and	sets	the	cached	wave

format	of	the	stream	as	an
SpAudioFormat	object.

Methods Description
GetData	Method Gets	the	contents	of	the	stream.
Read	Method Reads	data	from	an	audio	stream.
Seek	Method Returns	the	current	read	position	of

the	audio	stream	in	bytes.
SetData	Method Sets	the	contents	of	the	stream.
Write	Method Writes	data	to	the	audio	stream.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpMemoryStream

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

GetData	Method

The	GetData	method	gets	the	entire	contents	of	the	stream.
The	GetData	method	does	not	change	the	stream's	Seek
pointer.

SpMemoryStream.GetData()	As	Variant

Parameters

None.

Return	Value
A	Variant	variable	containing	the	stream	data.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpMemoryStream

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SetData	Method

The	SetData	method	sets	the	contents	of	the	stream.
The	SetData	method	writes	stream	data	into	the	memory
stream,	and	sets	the	Seek	pointer	to	zero,	so	that	the	next
SetData	call	to	the	stream	will	overwrite	the	data	just	written.

SpMemoryStream.SetData(

					Data	As	Variant

)

Parameters

Data
Specifies	the	Data.

Return	Value
None.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpMMAudioIn
The	SpMMAudioIn	automation	object	supports	audio
implementation	for	the	standard	Windows	wave-in	multimedia
layer.

Automation	Interfaces
The	SpMMAudioIn	automation	object	contains	the	following
elements:

Properties Description
BufferInfo	Property Returns	the	audio	buffer	information

as	an	ISpeechAudioBufferInfo	object.
BufferNotifySize
Property

Gets	and	sets	the	audio	stream
buffer	size	information.

DefaultFormat	Property Returns	the	default	audio	format	as
an	SpAudioFormat	object.

DeviceId	Property Gets	and	sets	the	multimedia	device
ID	that	is	used	by	the	audio	object.

EventHandle	Property Returns	a	Win32	event	handle	that
applications	can	use	to	wait	for
status	changes	in	the	I/O	stream.

Format	Property Gets	and	sets	the	cached	wave
format	of	the	stream	as	an
SpAudioFormat	object.

LineId	Property Gets	and	sets	the	current	line
identifier	associated	with	the
multimedia	device.

MMHandle	Property Returns	the	handle	of	the	multimedia
audio	device	stream.

Status	Property Returns	the	audio	status	as	an
ISpeechAudioStatus	object.

Volume	Property Gets	and	sets	the	volume	level.

Methods Description
Read	Method Reads	data	from	the	audio	stream.
Seek	Method Returns	the	current	read	position	of

the	audio	stream	in	bytes.
SetState	Method Sets	the	audio	state	with	a

SpeechAudioState	constant.
Write	Method Writes	data	to	the	audio	stream.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpMMAudioIn

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

DeviceId	Property

The	DeviceId	property	gets	and	sets	the	multimedia	device	ID
that	is	used	by	the	audio	object.

Syntax

Set: SpMMAudioIn.DeviceId	=	Long
Get: Long	=	SpMMAudioIn.DeviceId

Parts

SpMMAudioIn
The	owning	object.

Long
Set:	A	Long	variable	that	sets	the	device	ID.
Get:	A	Long	variable	that	gets	the	device	ID.

Example
See	Speech	Telephony	Application	Guide	for	examples	with
SpMMAudioIn.DeviceId	property.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpMMAudioIn

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

LineId	Property

The	LineId	property	gets	and	sets	the	current	line	identifier
associated	with	the	multimedia	device.

Syntax

Set: SpMMAudioIn.LineId	=	Long
Get: Long	=	SpMMAudioIn.LineId

Parts

SpMMAudioIn
The	owning	object.

Long
Set:	A	Long	variable	that	sets	the	line	ID.
Get:	A	Long	variable	that	gets	the	line	ID.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpMMAudioIn	
Type:	Hidden

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

MMHandle	Property

The	MMHandle	property	returns	the	handle	of	the	multimedia
audio	device	stream.

Syntax

Set: Not	available.
Get: Long	=	SpMMAudioIn.MMHandle

Parts

SpMMAudioIn
The	owning	object.

Long
Set:	(This	property	is	read-only).
Get:	A	Long	variable	that	gets	the	device	handle.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpMMAudioOut
The	SpMMAudioOut	automation	object	supports	audio
implementation	for	the	standard	Windows	wave-out	multimedia
layer.

Automation	Interfaces
The	SpMMAudioOut	automation	object	has	the	following
elements:

Properties Description
BufferInfo	Property Returns	the	audio	buffer	information

as	an	ISpeechAudioBufferInfo	object.
BufferNotifySize
Property

Gets	and	sets	the	audio	stream
buffer	size	information.

DefaultFormat	Property Returns	the	default	audio	format	as
an	SpAudioFormat	object.

DeviceId	Property Gets	and	sets	the	multimedia	device
ID	being	used	by	the	audio	object.

EventHandle	Property Returns	a	Win32	event	handle	that
applications	can	use	to	wait	for
status	changes	in	the	I/O	stream.

Format	Property Gets	and	sets	the	cached	wave
format	of	the	stream	as	an
SpAudioFormat	object.

LineId	Property Gets	and	sets	the	current	line
identifier	associated	with	the
multimedia	device.

MMHandle	Property Returns	the	handle	of	the	multimedia
audio	device	stream.

Status	Property Returns	the	audio	status	as	an
ISpeechAudioStatus	object.

Volume	Property Gets	and	sets	the	volume	level.

Methods Description
Read	Method Reads	data	from	the	audio	stream.
Seek	Method Returns	the	current	read	position	of

the	audio	stream	in	bytes.
SetState	Method Sets	the	audio	state	with	a

SpeechAudioState	constant.
Write	Method Writes	data	to	the	audio	stream.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpMMAudioOut

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

DeviceId	Property

The	DeviceId	property	gets	and	sets	the	multimedia	device	ID
being	used	by	the	audio	object.

Syntax

Set: SpMMAudioOut.DeviceId	=	Long
Get: Long	=	SpMMAudioOut.DeviceId

Parts

SpMMAudioOut
The	owning	object.

Long
Set:	A	Long	variable	that	sets	the	device	ID.
Get:	A	Long	variable	that	gets	the	device	ID.

Example
See	Speech	Telephony	Application	Guide	for	examples	with
SpMMAudioOut.DeviceId	property.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpMMAudioOut

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

LineId	Property

The	LineId	property	gets	and	sets	the	current	line	identifier
associated	with	the	multimedia	device.

Syntax

Set: SpMMAudioOut.LineId	=	Long
Get: Long	=	SpMMAudioOut.LineId

Parts

SpMMAudioOut
The	owning	object.

Long
Set:	A	Long	variable	that	sets	the	line	ID.
Get:	A	Long	variable	that	gets	the	line	ID.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpMMAudioOut	
Type:	Hidden

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

MMHandle	Property

The	MMHandle	property	returns	the	handle	of	the	multimedia
audio	device	stream.

Syntax

Set: Not	available.
Get: Long	=	SpMMAudioOut.MMHandle

Parts

SpMMAudioOut
The	owning	object.

Long
Set:	(This	property	is	read-only).
Get:	A	Long	variable	that	gets	the	device	handle.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpObjectToken
The	SpObjectToken	automation	object	represents	an	available
resource	of	a	type	used	by	SAPI.	The	default	interface	for	this
object	is	ISpeechObjectTokens.
The	Speech	configuration	database	contains	folders
representing	the	resources	on	a	computer	that	are	used	by	SAPI
5.1	speech	recognition	(SR)	and	text-to-speech	(TTS).	These
folders	are	organized	into	resource	categories,	such	as	voices,
lexicons,	and	audio	input	devices.	The	SpObjectTokenCategory
object	provides	access	to	a	category	of	resources,	and	the
SpObjectToken	object	provides	access	to	a	single	resource.
Several	Speech	Automation	objects	support	methods	that	return
collections	of	resources	from	a	specific	category	of	available
resources.	Examples	are	SpVoice.GetAudioOutputs,
SpVoice.GetVoices	and	SpSharedRecognizer.GetProfiles,	as	well
as	the	SpObjectToken	object's	MatchesAttributes	method.	Each
of	these	operations	returns	an	ISpeechObjectTokens	object
variable	containing	a	collection	of	SpObjectToken	objects.
The	read-only	Id	property	of	an	SpObjectToken	object	is	the	path
to	the	folder	of	the	resource	with	which	it	is	associated.	The
read-only	DataKey	property	is	a	data	key	object	providing	read
and	write	access	to	this	folder.	An	SpObjectToken	created	with
the	New	keyword	has	an	empty	Id	property,	and	is	therefore	not
associated	with	a	resource.	Before	it	can	be	used,	a	new
SpObjectToken	must	be	associated	with	a	resource	by	means	of
its	SetId	method.
The	SpObjectToken	object	also	provides	the	ability	to	create	and
access	storage	files	associated	with	a	resource.	The	paths	of
data	storage	files	created	by	an	engine	or	by	applications	for	a
specific	resource	are	stored	in	its	object	token.
See	the	SpObjectToken	Example	for	a	complete	example	and
additional	details.

Automation	Interface	Elements
The	SpObjectToken	automation	interface	contains	the	following
elements:

Properties Description
Category	Property Returns	the	category	of	the	object

token	as	an	SpObjectTokenCategory
object.

DataKey	Property Returns	the	data	key	of	the	object
token	as	an	ISpeechDataKey	object.

Id	Property Returns	the	ID	of	the	token.

Methods Description
CreateInstance	Method Creates	an	instance	of	the	object

represented	by	the	token.
DisplayUI	Method Displays	the	specified	UI.
GetAttribute	Method Returns	the	value	of	the	specified

attribute.
GetDescription	Method Returns	the	name	of	the	resource

represented	by	the	object	token.
GetStorageFileName
Method

Creates	a	storage	file	for	data
associated	with	the	object	token.

IsUISupported	Method Determines	if	the	specified	UI	is
supported.

MatchesAttributes
Method

Indicates	whether	the	token
matches	specified	attributes.

Remove	Method Removes	the	token	from	the
speech	configuration	database.

RemoveStorageFileName
Method

Removes	a	storage	file	associated
with	the	object	token.

SetId	Method Associates	a	new	object	token

with	a	resource	by	setting	its	ID
property.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpObjectToken

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Category	Property
The	Category	property	returns	the	category	of	the	object	token
as	an	SpObjectTokenCategory	object.
If	the	object	token	has	not	been	initialized,	an	attempt	to
reference	this	property	will	generate	an	SPERR_UNINITIALIZED
error.

Syntax

Set: (This	property	is	read-only)
Get: SpObjectTokenCategory	=	SpObjectToken.Category

Parts

SpObjectToken
The	owning	object.

SpObjectTokenCategory
Set:	(This	property	is	read-only)
Get:	An	SpObjectTokenCategory	object	returning	the
category.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	SpObjectToken's	Category	and	Id	properties	and	its
GetDescription	method.	It	also	demonstrates	the	handling	of
uninitialized	object	tokens.	To	run	this	code,	create	a	form	with
the	following	controls:
A	list	box	called	List1

A	command	button	called	Command1
Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	a	voice	object	and	a
recognizer	object.	The	Command1_Click	procedure	creates
several	object	tokens	and	sends	them	to	a	subroutine	which
displays	information	about	them	in	the	list	box.	The	first	token
sent	is	a	newly-created	token	with	no	Category.	The	subroutine
code	generates	an	error	when	it	tries	to	get	the	Category
property	of	this	token.	The	other	tokens	passed	to	the
subroutine	are	properly	initialized,	and	for	each	token,	the
subroutine	displays	the	Description	of	the	token,	the	ID	of	the
token,	and	the	ID	of	the	token's	category.

Option	Explicit

Dim	T	As	SpeechLib.SpObjectToken

Dim	C	As	SpeechLib.SpObjectTokenCategory

Dim	V	As	SpeechLib.SpVoice

Dim	R	As	SpeechLib.SpSharedRecognizer

Const	SPERR_UNINITIALIZED	=	&H80045001;

Private	Sub	Command1_Click()

				List1.Clear

				'Create	new	token	--	uninitialized

				Set	T	=	New	SpObjectToken

				Call	TokenInfo("new	token",	T)

				

				'Voice	object	furnishes	Voice	tokens	and	AudioOutput	tokens

				Set	T	=	V.GetVoices().Item(0)

				Call	TokenInfo("voice	token",	T)

				

				Set	T	=	V.GetAudioOutputs().Item(0)

				Call	TokenInfo("audioout	token",	T)

				

				'Recognizer	object	furnishes	recognizer	tokens	and	AudioInput	tokens

				Set	T	=	R.GetRecognizers().Item(0)

				Call	TokenInfo("recognizer	token",	T)

				

				Set	T	=	R.GetAudioInputs().Item(0)

				Call	TokenInfo("audioin	token",	T)

End	Sub

Private	Sub	TokenInfo(text,	token	As	SpObjectToken)

				

				On	Error	GoTo	TokenInfoExit

				List1.AddItem	text

				Set	C	=	token.Category

				

TokenInfoExit:

				Select	Case	Err.Number

				

				Case	0

								List1.AddItem	"		Token.GetDescription:"

								List1.AddItem	"				"	&	token.GetDescription

								List1.AddItem	"		Token.Category.Id:"

								List1.AddItem	"				"	&	token.Category.Id

								List1.AddItem	"		Token.Id:"

								List1.AddItem	"				"	&	token.Id

								

				Case	SPERR_UNINITIALIZED

								List1.AddItem	"			SPERR_UNINITIALIZED"

								

				End	Select

				List1.AddItem	""

End	Sub

Private	Sub	Form_Load()

				'Voice	object	furnishes	Voice	tokens	and	AudioOutput	tokens

				'Recognizer	object	furnishes	recognizer	tokens	and	AudioInput	tokens

				Set	V	=	New	SpVoice

				Set	R	=	New	SpSharedRecognizer

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpObjectToken

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

CreateInstance	Method

The	CreateInstance	method	creates	an	instance	of	the	object
represented	by	the	token.

SpObjectToken.CreateInstance(

					[pUnkOuter	As	IUnknown	=	Nothing],

					[ClsContext	As	SpeechTokenContext	=	STCALL]

)	As	IUnknown

Parameters

pUnkOuter
[Optional]	Specifies	the	pUnkOuter.	By	default,	the	Nothing
value	is	used.

ClsContext
[Optional]	Specifies	the	ClsContext.	By	default	STCALL	is
used.

Return	Value
An	IUnknown	object,	representing	the	object	instantiated.

Example
For	an	example	of	the	use	of	the	CreateInstance	method,	see
the	code	example	in	the	SpAudioFormat	Type	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpObjectToken	
Type:	Hidden

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

DataKey	Property

The	DataKey	property	returns	the	data	key	of	the	object	token
as	an	ISpeechDataKey	object.
A	data	key	object	provides	read	and	write	access	to	the
contents	of	a	particular	folder	in	the	Speech	configuration
database.	The	data	key	of	an	object	token	accesses	the	folder
referenced	by	its	Id	property.

Syntax

Set: (This	property	is	read-only)
Get: ISpeechDataKey	=	SpObjectToken.DataKey

Parts

SpObjectToken
The	owning	object.

ISpeechDataKey
Set:	(This	property	is	read-only)
Get:	An	ISpeechDataKey	object	returning	the	data	key.

Example
Use	of	the	RemoveStorageFileName	method	is	demonstrated	in
the	code	example	for	the	GetStorageFileName	method.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpObjectToken	
Type:	Hidden

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

DisplayUI	Method

The	DisplayUI	method	displays	the	specified	UI.

SpObjectToken.DisplayUI(

					hWnd	As	Long,

					Title	As	String,

					TypeOfUI	As	String,

					[ExtraData	As	Variant	=	Nothing],

					[Object	As	IUnknown	=	Nothing]

)

Parameters

hWnd
Specifies	the	hWnd.

Title
Specifies	the	Title.

TypeOfUI
Specifies	the	TypeOfUI.

ExtraData
[Optional]	Specifies	the	ExtraData.	By	default,	the	Nothing
value	is	used.

Object
[Optional]	Specifies	the	Object.	By	default,	the	Nothing	value
is	used.

Return	Value
None.

Example
For	an	example	of	the	use	of	the	DisplayUI	method,	see	the
example	in	the	Recognizer	DisplayUI	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpObjectToken

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

GetAttribute	Method
The	GetAttribute	method	returns	the	value	of	the	specified
attribute.
The	String	returned	contains	the	value	for	the	Attribute.	If	the
Attribute	is	present	but	does	not	contain	additional	information,
the	String	will	be	Empty.	If	the	Attribute	is	not	present,
SPERR_NOT_FOUND	is	returned.	Not	all	engines	support	all
attributes	and	it	is	possible	to	customize	attributes	for	each
engine.

SpObjectToken.GetAttribute(

					AttributeName	As	String

)	As	String

Parameters

AttributeName
Specifies	the	AttributeName.

Return	Value
The	GetAttribute	method	returns	a	String	variable.

Remarks
In	Visual	Basic,	attempting	to	access	a	nonexistent	Attribute	will
cause	a	run-time	error.	Therefore,	it	is	recommended	to	include
an	On	Error	statement	trapping	such	cases.

Example

The	following	code	snippet	retrieves	the	information	associated
with	requested	attribute.	While	the	actual	values	will	vary
among	engines.	For	the	Microsoft	speech	engine,	Microsoft	Mary
is	returned	for	the	nameAttribute.	VendorAttribute	will	be	Empty
since	the	VendorPreferred	attribute	has	no	additional
information	associated	with	it.	Even	so,	VendorPreferred	has
significance	merely	if	it	is	present	or	not.	However,	an
SPERR_NOT_FOUND	will	occur	for	FakeAttribute	since	it	should
not	be	present.
Dim	objVoice	As	SpeechLib.SpVoice

Set	objVoice	=	New	SpeechLib.SpVoice

Dim	objToken	As	SpeechLib.SpObjectToken

Set	objToken	=	objVoice.Voice

On	Error	GoTo	ErrorHandler

Dim	nameAttribute,	vendorAttribute,	fakeAttribute	As	String

nameAttribute	=	objToken.GetAttribute("Name")

vendorAttribute	=	objToken.GetAttribute("VendorPreferred")

fakeAttribute	=	objToken.GetAttribute("FakeAttribute")

Exit	Sub

ErrorHandler:

	 'Error	handling	code	here

	 Debug.Print	Err.Number

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpObjectToken

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

GetDescription	Method
The	GetDescription	method	returns	the	name	of	the	resource
represented	by	the	object	token.

SpObjectToken.GetDescription(

					[Locale	As	Long	=	0]

)	As	String

Parameters

Locale
[Optional]	Specifies	the	Locale.	By	default,	zero	is	used.

Return	Value
The	GetDescription	method	returns	a	String	variable.

Example
Use	of	the	GetDescription	method	is	demonstrated	in	the	code
example	in	the	Category	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpObjectToken	
Type:	Hidden

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

GetStorageFileName	Method

The	GetStorageFileName	method	creates	a	storage	file	for
data	associated	with	the	object	token.

SpObjectToken.GetStorageFileName(

					ObjectStorageCLSID	As	String,

					KeyName	As	String,

					FileName	As	String,

					Folder	As	SpeechTokenShellFolder

)	As	String

Parameters

ObjectStorageCLSID
Globally	unique	identifier	(GUID)	of	the	calling	object.	The
method	searches	the	registry	for	an	entry	key	name	of
ObjectStorageCLSID,	and	then	a	corresponding	Files	subkey.
If	the	registry	entry	is	not	present,	one	is	created.

KeyName
The	name	of	the	attribute	file	for	the	registry	entry	of
clsidCaller.	This	attribute	stores	the	location	of	the	resource
file.

FileName
A	specifier	that	is	either	""	or	a	path/file	name	for	storage
file.

If	this	starts	with	"X:\"	or	"\\"	it	is	assumed	to	be	a	full
path;	otherwise	it	is	assumed	to	be	relative	to	special
folders	given	in	the	nFolder	parameter.

If	it	ends	with	a	"\",	or	is	NULL,	a	unique	file	name	will
be	created.	The	file	name	will	be	something	like:
"SP_7454901D23334AAF87707147726EC235.dat".
"SP_"	and	".dat"	are	the	default	prefix	name	and	file
extension	name.	The	numbers	in	between	are
generated	guid	number	to	make	sure	the	file	name	is
unique.
If	the	name	contains	a	%d	the	%d	is	replaced	by	a
number	to	give	a	unique	file	name.	The	default	file
extension	is	.dat,	the	user	can	specify	anything	else.
Intermediate	directories	are	created.

If	a	relative	file	is	used,	the	value	stored	in	the	registry
includes	the	nFolder	value	as	%nFolder%	before	the
rest	of	the	path.

Folder
One	or	more	SpeechTokenShellFolder	constants	specifying
the	Folder.

Return	Value
A	String	variable	containing	the	path	of	the	storage	file.

Example
The	following	Visual	Basic	form	code	demonstrates	the
GetStorageFileName	and	RemoveStorageFileName	methods.	To
run	this	code,	create	a	form	with	the	following	controls:
Four	command	buttons,	called	Command1,	Command2,

Command3,	and	Command4
Paste	this	code	into	the	Declarations	section	of	the	form.

The	operations	performed	in	this	example	can	best	be	viewed
with	REGEDIT.EXE.	For	a	discussion	of	Registry	issues,	please
see	the	ISpeechDataKey	interface.
The	Form_Load	procedure	creates	a	new	SpObjectToken	object,
and	sets	its	ID	property	to	a	new	subfolder	called	Demo	within
the	Voices\Tokens	folder.	The	True	parameter	of	the	SetId	call
forces	the	creation	of	this	folder,	if	it	does	not	already	exist.
The	Command1	procedure	creates	a	data	key	object	which
references	the	new	Demo	folder,	and	uses	the	data	key	to	write
a	value	into	the	folder.
The	Command2	procedure	calls	the	GetStorageFileName
method.	After	this	call,	the	Demo	folder	contains	a	subfolder
called	{CDD1141B-82FB-405c-99BE-69A793A92D87}.	This	is
the	CLSID	used	as	a	parameter	of	the	GetStorageFileName
method.	Within	this	is	a	folder	called	Files,	which	contains	a	the
storage	file	path	in	a	value	called	Demo.
The	Command3	procedure	calls	the	RemoveStorageFileName
method.	This	deletes	the	storage	file,	and	removes	the	Demo
value	from	the	Files	folder.
The	Command4	procedure	uses	the	ISpeechDataKey.Remove
method	to	delete	the	{CDD1141B-82FB-405c-99BE-
69A793A92D87}	folder	and	Demo	folders.

Option	Explicit

Dim	T	As	SpeechLib.SpObjectToken												'one	object	token

Dim	C	As	SpeechLib.SpObjectTokenCategory				'one	object	token	category

Dim	K	As	SpeechLib.ISpeechDataKey											'

Dim	ID	As	String

Dim	SF	As	String																												'Storage	file	name

Dim	TestCLSID	As	String

Private	Sub	Command1_Click()

				'Set	data	key	object	to	the	demo	voice's	folder,

				'Write	a	CLSID	value

				Set	K	=	T.DataKey

				K.SetStringValue	"CLSID",	TestCLSID

				

End	Sub

Private	Sub	Command2_Click()

				'Create	a	storage	file	for	the	token

				SF	=	T.GetStorageFileName(TestCLSID,	"Demo",	vbNullString,	_

																														STSF_FlagCreate	+	STSF_AppData)

				MsgBox	SF

End	Sub

Private	Sub	Command3_Click()

				'Remove	the	storage	file

				Call	T.RemoveStorageFileName(TestCLSID,	"Demo",	True)

End	Sub

Private	Sub	Command4_Click()

				'Remove	the	"{CDD1141B-82FB-405c-99BE-69A793A92D87}"	folder,

				'and	the	"Demo"	folder

				T.Remove	TestCLSID

				T.Remove	""

End	Sub

Private	Sub	Form_Load()

				TestCLSID	=	"{CDD1141B-82FB-405c-99BE-69A793A92D87}"

				'Create	new	category	object,	set	it	to	Voices	category

				Set	C	=	New	SpObjectTokenCategory

				C.SetId	SpeechCategoryVoices

				

				'Create	new	token	object,	and	set	its	ID

				'to	the	path	of	a	folder	which	does	not	exist

				'"True"	parameter	creates	the	folder

				

				Set	T	=	New	SpObjectToken

				ID	=	SpeechCategoryVoices	&	"\Tokens\Demo"

				T.SetId	ID,	,	True

				

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpObjectToken

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Id	Property
The	Id	property	returns	the	ID	of	the	token.
The	ID	of	the	object	is	the	path	to	its	folder	within	the	Speech
configuration	database.

Syntax

Set: (This	property	is	read-only)
Get: String	=	SpObjectToken.Id

Parts

SpObjectToken
The	owning	object.

String
Set:	(This	property	is	read-only)
Get:	A	String	variable	returning	the	ID.

Example
Use	of	the	Id	property	is	demonstrated	in	a	code	example	in	the
Category	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpObjectToken	
Type:	Hidden

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

IsUISupported	Method

The	IsUISupported	method	determines	if	the	specified	UI	is
supported.

SpObjectToken.IsUISupported(

					TypeOfUI	As	String,

					[ExtraData	As	Variant	=	Nothing],

					[Object	As	IUnknown	=	Nothing]

)	As	Boolean

Parameters

TypeOfUI
Specifies	the	TypeOfUI.

ExtraData
[Optional]	Specifies	the	ExtraData.	By	default,	the	Nothing
value	is	used.

Object
[Optional]	Specifies	the	Object.	By	default,	the	Nothing	value
is	used.

Return	Value
The	IsUISupported	method	returns	a	Boolean	variable.	If	True,
the	specified	UI	is	supported;	if	False,	it	is	not	supported.

Example
For	an	example	of	the	use	of	the	IsUISupported	method,	see	the
example	in	the	Recognizer	IsUISupported	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpObjectToken

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

MatchesAttributes	Method
The	MatchesAttributes	method	indicates	whether	the	token
matches	specified	attributes.

SpObjectToken.MatchesAttributes(

					Attributes	As	String

)	As	Boolean

Parameters

Attributes
Specifies	the	Attributes.

Return	Value
A	Boolean	variable.	If	True,	the	token	matches	the	specified
attributes;	if	False,	it	does	not	match.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	MatchesAttibutes	method.	To	run	this	code,	create	a	form
with	the	following	controls:
A	combo	box	control	called	Combo1

A	command	button	called	Command1
A	list	box	called	List1

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	initializes	a	new

SpObjectTokenCategory	object	to	the	voices	category,	selects	all
voices	into	an	ISpeechObjectTokens	collection,	and	loads
Combo1	with	several	attribute	declarations.	These	attributes	are
intentionally	irregular	with	regard	to	capitalization,	spacing	and
spelling.
The	Command1	procedure	contains	a	loop	that	performs	a
MatchesAttibutes	call	on	each	available	voice.	The	name	of	each
voice	and	the	Boolean	result	of	the	MatchesAttibutes	method	is
displayed	in	the	list	box.

Option	Explicit

Dim	C	As	SpeechLib.SpObjectTokenCategory				'a	category	of	object	tokens

Dim	E	As	SpeechLib.ISpeechObjectTokens						'an	enumeration	of	those	tokens

Dim	T	As	SpeechLib.SpObjectToken												'one	object	token

Private	Sub	Command1_Click()

				Dim	Vname,	Vmatch

				List1.Clear

				List1.AddItem	"Test	for	voices	matching	"""	&	Combo1.text	&	""""

				List1.AddItem	""

				

				For	Each	T	In	E

				

								Vname	=	T.GetDescription

								Vmatch	=	T.MatchesAttributes(Combo1.text)

								List1.AddItem	"			"	&	Vname	&	"		"	&	Vmatch

								

				Next

End	Sub

Private	Sub	Form_Load()

				Combo1.AddItem	"vendor=microsoft"

				Combo1.AddItem	"gender=female"

				Combo1.AddItem	"Gender	=	Male"

				Combo1.AddItem	"gender!=male"

				Combo1.AddItem	"name=Microsoft	sam"

				Combo1.AddItem	"Name	!=	microsoft	Sam"

				Combo1.AddItem	"name=MICROSOFT	SAM,gender=female"	 'no	possible	matches	

				Combo1.AddItem	"gedner	=	male"	 	 	 'no	possible	matches	

				Combo1.ListIndex	=	0

				

				Set	C	=	New	SpObjectTokenCategory			'create	new	token	category	object

				C.SetId	SpeechCategoryVoices								'init	ID	of	voices	category

				Set	E	=	C.EnumerateTokens()									'no	parameters	--	get	all	voices

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpObjectToken	
Type:	Hidden

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Remove	Method

The	Remove	method	removes	the	token	from	the	speech
configuration	database.

SpObjectToken.Remove(

					ObjectStorageCLSID	As	String

)

Parameters

ObjectStorageCLSID
Specifies	the	CLSID	associated	with	the	object	token	to
remove.	If	ObjectStorageCLSID	is	an	empty	string	("")	or
vbNullString,	the	entire	token	is	removed;	otherwise,	only	the
specified	section	is	removed.

Return	Value
None.

Example
Use	of	the	RemoveStorageFileName	method	is	demonstrated	in
the	code	example	for	the	GetStorageFileName	method.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpObjectToken	
Type:	Hidden

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

RemoveStorageFileName	Method

The	RemoveStorageFileName	method	removes	a	storage	file
associated	with	the	object	token.

SpObjectToken.RemoveStorageFileName(

					ObjectStorageCLSID	As	String,

					KeyName	As	String,

					DeleteFile	As	Boolean

)

Parameters

ObjectStorageCLSID
The	globally	unique	identifier	(GUID)	of	the	calling	object.

KeyName
The	KeyName.

DeleteFile
If	True,	the	storage	file	will	be	deleted	after	removal.

Return	Value
None.

Example
Use	of	the	RemoveStorageFileName	method	is	demonstrated	in
the	code	example	for	the	GetStorageFileName	method.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpObjectToken	
Type:	Hidden

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SetId	Method

The	SetId	method	associates	a	new	object	token	with	a
resource	by	setting	its	ID	property.
The	ID	of	an	SpObjectToken	object	is	the	path	to	its	folder	within
the	Speech	configuration	database.
The	Id	property	of	an	SpObjectToken	can	be	set	once.
Subsequent	SetId	calls	will	return	the	error	message,
SPERR_ALREADY_INITIALIZED.	Attempting	to	use	an
SpObjectToken	object	before	setting	its	Id	property	will	return
SPERR_UNINITIALIZED.

SpObjectToken.SetId(

					Id	As	String,

					[CategoryID	As	String],

					[CreateIfNotExist	As	Boolean	=	False]

)

Parameters

Id
The	ID	of	the	token.

CategoryID
[Optional]	The	category	ID	of	the	token.	By	default	the	value
is	the	empty	string	value	of	"".

CreateIfNotExist
[Optional]	Specifies	creating	the	token.	If	True,	the	folder	is
created	if	one	does	not	already	exist.	By	default	the	value	is
False,	and	no	folder	is	created.

Return	Value
None.

Example
Use	of	the	RemoveStorageFileName	method	is	demonstrated	in
the	code	example	for	the	GetStorageFileName	method.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpObjectToken	Example
The	following	code	example	demonstrates	the	use	of	the	Count
property	and	the	Item	method.	The	sample	displays	all	available
recognizers	on	the	computer.	The	available	audio	input	devices
(sound	cards)	or	profiles	may	also	be	displayed	by	remarking
out	the	other	two	lines	and	removing	the	remarks	from	the
desired	line.
The	example	works	for	all	objects	returned	as
ISpeechObjectTokens.	ISpeechObjectTokens	is	actually	a
collection	of	objects.	The	Count	property	returns	the	number	of
items	in	the	collection.	The	Item	method	returns	an	individual
member	at	the	given	index.
The	type	of	the	members	in	the	collection	will	be	different	based
on	the	creating	call.	In	this	example	code,	the	collection	is	a	list
of	recognizers.
To	run	this	code,	create	a	form	with	the	following	control:
A	label	called	Label1

Paste	this	code	into	the	Declarations	section	of	the	form.
Private	Sub	Form_Load()

				Dim	SharedRecognizer	As	SpSharedRecognizer

				Set	SharedRecognizer	=	New	SpSharedRecognizer

				

				Dim	theResources	As	ISpeechObjectTokens

				Set	theResources	=	SharedRecognizer.GetRecognizers

				'Set	theResources	=	SharedRecognizer.GetAudioInputs

				'Set	theResources	=	SharedRecognizer.GetProfiles

				Dim	i	As	Long

				Dim	recoObject	As	SpObjectToken

				Label1.Caption	=	""

				For	i	=	0	To	theResources.Count	-	1

								Set	recoObject	=	theResources.Item(i)

								Label1.Caption	=	Label1.Caption	&	recoObject.GetDescription	&	vbCrLf

				Next	i

End	Sub

Count	and	Item	may	also	be	used	for	other	object	collections.
The	following	code	snippet	demonstrates	the	use	of	the	Count
property	and	the	Item	method	for	ISpeechLexiconWords	and
ISpeechLexiconWord.	The	collection	itself	is	of	type
ISpeechLexiconWords	and	the	individual	members	of	are	type
ISpeechLexiconWord.	Other	collections	may	use	Count	and	Item
in	the	same	manner.	For	instance	ISpeechGrammarRules	and
ISpeechGrammarRule	may	be	substituted	respectively	for	the
collection	and	member	type.
For	the	sake	of	brevity,	CreateCollection	is	assumed	to	be	a
function	that	creates	the	collection,	again	for	this	example	of
ISpeechLexiconWords.	The	Count	property	returns	the	count	of
member	items	and	the	Item	method	returns	a	specific	member
of	the	collection.
Dim	C	As	ISpeechLexiconWords								'The	collection

Dim	M	As	ISpeechLexiconWord									'An	item	in	the	collection

Set	C	=	CreateCollection												'Create	the	collection

'Get	last	member	of	the	collection	in	object	"M"

lngCount	=	C.Count																		'How	many	items

If	lngCount	Then

				Set	M	=	C.Item(lngCount	-	1)				'Get	the	last	one

End	If

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpObjectTokenCategory
The	SpObjectTokenCategory	automation	object	represents	a
class	of	object	tokens.	Object	tokens	are	associated	with	specific
folders	in	the	Speech	configuration	database,	and	these	folders
are	organized	into	categories,	such	as	Recognizers,	AudioInputs
and	Voices.	An	SpObjectTokenCategory	object	represents	a
single	category	of	object	tokens,	and	provides	access	to	all	the
tokens	within	that	category.
Applications	can	derive	the	category	of	an	initialized
SpObjectToken	object	from	its	Category	property,	or	they	can
create	a	new	SpObjectTokenCategory	object	and	use	the	SetId
method	to	associate	it	with	a	particular	category.

Automation	Interface	Elements
The	SpObjectTokenCategory	automation	object	has	the	following
elements:

Properties Description
Default	Property Gets	and	sets	the	ID	of	the	default

token	in	the	category.
Id	Property Returns	the	name	of	the	object	token

category.

Methods Description
EnumerateTokens
Method

Returns	a	selection	of	SpObjectToken
objects.

GetDataKey	Method Returns	the	data	key	of	the	category
in	the	speech	configuration
database.

SetId	Method Sets	the	ID	of	the	category.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpObjectTokenCategory

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Default	Property
The	Default	property	gets	and	sets	the	ID	of	the	default	token
in	the	category.
The	ID	of	the	object	is	the	path	to	its	folder	within	the	Speech
configuration	database.
Each	category	of	object	tokens	has	a	default	token,	which
represents	the	default	resource	of	that	category.	The	Default
property	of	the	voice	category,	for	example,	is	the	ID	of	the
default	system	voice.

Syntax

Set: SpObjectTokenCategory.Default	=	String
Get: String	=	SpObjectTokenCategory.Default

Parts

SpObjectTokenCategory
The	owning	object.

const
Set:	A	String	variable	that	sets	the	property.
Get:	A	String	variable	that	gets	the	property.

Example
Please	see	the	code	example	for	the	SetId	method.	This	code
creates	a	new	SpObjectTokenCategory	object	and	associates	it
with	the	category	of	voices.	The	Default	property	then	returns
the	ID	of	the	default	system	voice.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpObjectTokenCategory

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

EnumerateTokens	Method
The	EnumerateTokens	method	returns	a	selection	of
SpObjectToken	objects.
Selection	criteria	may	be	applied	optionally.

SpObjectTokenCategory.EnumerateTokens(

					[RequiredAttributes	As	String	=	""],

					[OptionalAttributes	As	String	=	""]

)	As	ISpeechObjectTokens

Parameters

RequiredAttributes
[Optional]	Specifies	the	RequiredAttributes.	To	be	returned	by
EnumerateTokens,	the	searched	tokens	must	contain	all	of
the	specific	required	attributes.	If	no	profiles	match	the
selection,	the	selection	returned	will	not	contain	any
elements.	By	default	no	attributes	are	required	and	so
returns	all	the	tokens	discovered.

OptionalAttributes
[Optional]	Specifies	the	OptionalAttributes.	Returned	tokens
containing	the	RequiredAttributes	are	sorted	by
OptionalAttributes.	If	OptionalAttributes	is	specified,	the
tokens	are	listed	with	the	OptionalAttributes	first.	By	default
no	attribute	is	specified	so	the	list	returned	is	in	the	order
discovered	from	the	speech	configuration	database.

Return	Value
The	EnumerateTokens	method	returns	an	ISpeechObjectTokens

variable.

Example
The	following	Visual	Basic	form	code	demonstrates	a	simple	use
of	the	EnumerateTokens	method.	To	run	this	code,	create	a	form
with	the	following	controls:
A	list	box	called	List1
Two	command	buttons	called	Command1	and	Command2

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Command1	procedure	creates	an	SpVoice	object,	and	uses
the	voice's	GetVoices	method	to	get	an	ISpeechObjectTokens
collection	containing	an	object	token	for	each	voice	on	the
computer.	A	"For	Each"	loop	lists	each	voice	token's	Description
property	in	the	list	box.
The	Command2	procedure	creates	a	new
SpObjectTokenCategory	object,	uses	the	SetId	method	to
associate	it	with	the	category	of	voices,	and	the
EnumerateTokens	method	to	get	an	ISpeechObjectTokens
collection	containing	an	object	token	for	each	voice	on	the
computer.	A	"For	Each"	loop	lists	each	voice	token's	Description
property	in	the	list	box.
The	list	of	voices	displayed	by	the	two	command	buttons	will	be
identical.

Option	Explicit

Dim	V	As	SpeechLib.SpVoice																		'voice	object

Dim	T	As	SpeechLib.SpObjectToken												'object	token

Dim	E	As	SpeechLib.ISpeechObjectTokens						'an	enumeration	of	object	tokens

Dim	C	As	SpeechLib.SpObjectTokenCategory				'a	category	of	object	tokens

Private	Sub	Command1_Click()

				

				List1.Clear

				List1.AddItem	"Enumerate	voices	with	SpVoice.GetVoices"

				List1.AddItem	""

				

				Set	V	=	New	SpVoice																	'create	new	voice

				Set	E	=	V.GetVoices()															'no	parameters	--	get	all	voices

				

				For	Each	T	In	E

								List1.AddItem	"			"	&	T.GetDescription

				Next

				

End	Sub

Private	Sub	Command2_Click()

				List1.Clear

				List1.AddItem	"Enumerate	voices	with	SpObjectToken.EnumerateTokens"

				List1.AddItem	""

				

				Set	C	=	New	SpObjectTokenCategory			'create	new	token	category	object

				C.SetId	SpeechCategoryVoices								'init	ID	of	voices	category

				Set	E	=	C.EnumerateTokens()									'no	parameters	--	get	all	voices

				

				For	Each	T	In	E

								List1.AddItem	"			"	&	T.GetDescription

				Next

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpObjectTokenCategory	
Type:	Hidden

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

GetDataKey	Method

The	GetDataKey	method	returns	the	data	key	of	the
SpObjectTokenCategory	object.
A	data	key	object	provides	read	and	write	access	to	the
contents	of	a	particular	folder	in	the	Speech	configuration
database.	The	data	key	of	an	SpObjectTokenCategory	object
accesses	the	folder	referenced	by	its	Id	property.

SpObjectTokenCategory.GetDataKey(

					[Location	As	SpeechDataKeyLocation	=	SDKLDefaultLocation]

)	As	ISpeechDataKey

Parameters

Location
[Optional]	Specifies	the	location	in	the	speech	configuration
database.	Default	value	is	SDKLDefaultLocation.

Return	Value
An	ISpeechDataKey	object.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	GetDataKey	method	to	enumerate	the	list	of	voices	in	the
voices	category.	To	run	this	code,	create	a	form	with	the
following	controls:
A	list	box	called	List1

A	command	button	called	Command1
Paste	this	code	into	the	Declarations	section	of	the	form.
The	Command1	procedure	creates	a	new
SpObjectTokenCategory	object,	and	uses	the	SetId	method	to
associate	the	object	with	the	category	of	voices.	It	retrieves	the
data	key	of	the	category,	and	then	the	data	key	of	the
category's	Tokens	subfolder.	It	then	uses	the	data	key	object's
EnumKeys	method	to	enumerate	the	tokens	in	the	Tokens
subfolder.	The	result	displayed	will	be	identical	to	the	lists	of
voices	displayed	by	the	code	sample	in	the	EnumerateTokens
method.

Option	Explicit

Dim	C	As	SpeechLib.SpObjectTokenCategory				'a	category	of	object	tokens

Dim	K	As	SpeechLib.ISpeechDataKey											'data	key	object

Dim	E	As	String																													'gets	names	of	subkeys

Dim	ii	As	Integer

Private	Sub	Command1_Click()

				List1.Clear

				List1.AddItem	"Enumerate	voice	tokens	with	SpObjectTokenCategory.GetDataKey"

				List1.AddItem	""

				Set	C	=	New	SpObjectTokenCategory			'create	new	token	category	object

				C.SetId	SpeechCategoryVoices								'init	with	ID	of	voices	category

				

				Set	K	=	C.GetDataKey																'set	to	key	of	voice	category	object

				Set	K	=	K.OpenKey("Tokens")									'reset	to	key	of	its	"Tokens"	subfolder

				

				On	Error	Resume	Next

				For	ii	=	0	To	9999																		'enumerate	subkeys	within	"Tokens"	subkey

								E	=	K.EnumKeys(ii)														'next	subkey

								If	Err.Number	Then	Exit	For					'this	will	be	used!

								List1.AddItem	"			"	&	E

				Next

				Err.Clear

				

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpObjectTokenCategory

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Id	Property
The	Id	property	returns	the	ID	of	the	object	token	category.
The	ID	of	the	object	is	the	path	to	its	folder	within	the	Speech
configuration	database.

Syntax

Set: (This	property	is	read-only)
Get: String	=	SpObjectTokenCategory.Id

Parts

SpObjectTokenCategory
The	owning	object.

String
Set:	(This	property	is	read-only)
Get:	A	String	variable	that	gets	the	property.

Example
Please	see	the	code	example	for	the	SetId	method.	This	code
creates	a	new	SpObjectTokenCategory	object	and	associates	it
with	the	category	of	voices.	The	Id	property	then	returns	the	ID
of	the	voices	category.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpObjectTokenCategory

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SetId	Method
The	SetId	method	sets	the	ID	of	the	SpObjectTokenCategory
object.
The	ID	of	the	object	is	the	path	to	its	folder	within	the	Speech
configuration	database.
An	SpObjectTokenCategory	object	is	created	with	its	Id	property
in	an	uninitialized	state;	attempting	to	reference	the	Id	of	a	new
SpObjectTokenCategory	object	will	result	in	an
SPERR_UNINITIALIZED	error.	An	SpObjectTokenCategory	object
in	this	state	is	not	associated	with	any	of	the	seven	SAPI	object
token	categories.
The	SpeechStringConstants	module	contains	constants	that
specify	the	paths	of	SAPI's	object	token	categories	within	the
configuration	database.	The	SetId	method	typically	sets	one	of
those	constants	as	the	category	object's	Id	property.	This	has
the	effect	of	setting	the	object	to	one	of	the	SAPI	object	token
categories.
This	table	shows	the	SpeechStringConstants	constant	for	each
of	the	seven	object	token	categories:

Object	Token
Category

SpeechStringConstants
member

Voices SpeechCategoryVoices
Recognizers SpeechCategoryRecognizers
AppLexicons SpeechCategoryAppLexicons
AudioInput SpeechCategoryAudioIn
AudioOutput SpeechCategoryAudioOut
PhoneConverters SpeechCategoryPhoneConverters
Recoprofiles SpeechCategoryRecoProfiles

SpObjectTokenCategory.SetId(

					Id	As	String,

					[CreateIfNotExist	As	Boolean	=	False]

)

Parameters

Id
Specifies	the	Id,	usually	with	a	member	of
SpeechStringConstants.

CreateIfNotExist
[Optional]	Specifies	creating	the	token.	If	True,	an	entry	is
created	if	one	does	not	already	exist.	By	default	the	value	is
False	and	no	file	is	created.

Return	Value
None.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	SetId	method.	To	run	this	code,	create	a	form	with	the
following	controls:
A	list	box	called	List1
A	command	button	called	Command1

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Command1	procedure	creates	a	new
SpObjectTokenCategory	object,	generates	an	error	by
attempting	to	reference	the	Id	property	of	the	uninitialized
object,	and	then	performs	a	SetId	call	which	assigns	the	object

to	the	category	of	TTS	voices.	The	code	then	displays	the	token
category's	default	token,	which	is	the	default	TTS	voice,	and
finally	demonstrates	the	error	which	occurs	from	attempting	to
perform	a	second	SetId	on	the	SpObjectTokenCategory	object.

Option	Explicit

Dim	C	As	SpeechLib.SpObjectTokenCategory

Const	SPERR_UNINITIALIZED	=	&H80045001;

Const	SPERR_ALREADY_INITIALIZED	=	&H80045002;

Private	Sub	Command1_Click()

				On	Error	Resume	Next

				

				'Uninitialized	object

				List1.AddItem	"New	SpObjectTokenCategory	object:"

				Set	C	=	New	SpObjectTokenCategory

				If	Err	=	0	Then

								List1.AddItem	"			SUCCEEDED"

				End	If

				

				'Show	the	Id	of	a	new	object

				List1.AddItem	"Id	of	New	SpObjectTokenCategory	object:"

				List1.AddItem	C.Id

				If	Err.Number	=	SPERR_UNINITIALIZED	Then

								List1.AddItem	"			SPERR_UNINITIALIZED"

								Err.Clear

				End	If

				

				'Show	the	SpeechCategoryVoices	constant

				List1.AddItem	"SpeechCategoryVoices	constant:"

				List1.AddItem	"			"	&	SpeechCategoryVoices

				

				'Perform	the	SetId,	which	assigns	it	to	the	Voices	category

				List1.AddItem	"Perform	SetId	on	New	SpObjectTokenCategory	object:"

				C.SetId	SpeechCategoryVoices

				List1.AddItem	"			"	&	C.Id

				'Show	the	default	item	of	the	new	category

				List1.AddItem	"Show	SpObjectTokenCategory's	default	item:"

				List1.AddItem	"			"	&	C.Default

				

				'Show	error	on	second	SetId

				List1.AddItem	"Try	a	second	SetId	on	SpObjectTokenCategory	object:"

				C.SetId	SpeechCategoryRecognizers

				If	Err.Number	=	SPERR_ALREADY_INITIALIZED	Then

								List1.AddItem	"			SPERR_ALREADY_INITIALIZED"

								Err.Clear

				End	If

				

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpPhoneConverter
The	SpPhoneConverter	automation	object	supports
conversion	between	phoneme	symbols	and	phoneme	IDs.
Each	language	supported	by	SAPI	uses	a	set	of	phonemes	which
represent	all	the	meaningful	sounds	in	that	language.	Each
phoneme	has	a	symbolic	representation	of	its	sound,	and	a
numeric	ID;	in	most	languages,	phoneme	IDs	are	assigned
sequentially.	Please	see	the	American	English	Phoneme
Representation	page	for	further	details.
The	following	table	shows	a	few	English	words	transcribed	into
phoneme	symbols	and	phoneme	ID's.

Words Phoneme	Symbols Phoneme	IDs
one w,	ah,	n 46,	12,	33
two t,	uw 41,	44
three th,	r,	iy 42,	38,	28
four f,	ao,	r 24,	13,	38
five f,	ay,	v 24,	16,	45
six s,	ih,	k,	s 39,	27,	30,	39

Automation	Interface	Elements
The	SpPhoneConverter	automation	object	has	the	following
elements:

Properties Description
LanguageId	Property Gets	and	sets	the	language	id	of	the

converter.

Methods Description

IdToPhone	Method Converts	an	array	of	phoneme	IDs	to
a	string	of	phoneme	symbols.

PhoneToId	Method Converts	a	string	of	phoneme
symbols	to	an	array	of	phoneme	IDs.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpPhoneConverter

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

IdToPhone	Method

The	IdToPhone	method	converts	an	array	of	phoneme	IDs	to	a
string	of	phoneme	symbols.
If	the	IdToPhone	method	is	called	before	setting	the
SpPhoneConverter's	LanguageId	property,	an
SPERR_UNINITIALIZED	error	will	occur.

SpPhoneConverter.IdToPhone(

					IdArray	As	Variant

)	As	String

Parameters

IdArray
An	array	of	phoneme	IDs	or	a	single	phoneme	ID.

Return	Value
A	String	variable.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	IdToPhone.	The	application	assigns	values	to	an	array	and
then	displays	the	resulting	phoneme	string.
To	run	this	code,	create	a	form	with	the	following	control:
A	label	called	Label1

Paste	this	code	into	the	Declarations	section	of	the	form.

Dim	objPhoneConverter	As	New	SpPhoneConverter

Private	Sub	Form_Load()

'	US	English

objPhoneConverter.LanguageId	=	1033

'	Get	the	phoneme	symbols	of	the	phoneme	id	1

objPhoneConverter.IdToPhone	(1)

Dim	ids(2)	As	Integer

ids(0)	=	1

ids(1)	=	2

ids(2)	=	3

'	Get	a	string	of	phoneme	symbols	for	the	specified	phoneme	ids,	separated	by	space.

Label1.Caption	=	""""	&	objPhoneConverter.IdToPhone(ids)	&	""""

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpPhoneConverter

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

LanguageId	Property

The	LanguageId	property	gets	and	sets	the	language	ID	of	the
converter.

Syntax

Set: SpPhoneConverter.LanguageId	=	Long
Get: Long	=	SpPhoneConverter.LanguageId

Parts

SpPhoneConverter
The	owning	object.

SpeechLanguageId
Set:	A	Long	variable	that	sets	the	language	ID.
Get:	A	Long	variable	that	gets	the	language	ID.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpPhoneConverter

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

PhoneToId	Method

The	PhoneToId	method	converts	a	string	of	phoneme	symbols
to	an	array	of	phoneme	IDs.
If	the	PhoneToId	method	is	called	before	setting	the
SpPhoneConverter's	LanguageId	property,	an
SPERR_UNINITIALIZED	error	will	occur.

SpPhoneConverter.PhoneToId(

					Phonemes	As	String

)	As	Variant

Parameters

Phonemes
A	string	of	phoneme	symbols.

Return	Value
A	Variant	array.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpPhraseInfoBuilder
The	SpPhraseInfoBuilder	automation	object	provides	the
ability	to	rebuild	phrase	information	from	audio	data	saved	to
memory.

Automation	Interface	Elements
The	SpPhraseInfoBuilder	automation	object	has	the	following
element:

Methods Description
RestorePhraseFromMemory
Method

Recreates	phrase	information
from	a	phrase	that	has	been
saved	to	memory.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpPhraseInfoBuilder

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

RestorePhraseFromMemory	Method

The	RestorePhraseFromMemory	method	recreates	phrase
information	from	a	phrase	that	has	been	saved	to	memory.
The	ISpeechPhraseInfo.SaveToMemory	method	saves	phrase
information	as	a	Variant	variable.	RestorePhraseFromMemory
method	uses	this	variable	to	recreate	an	object	based	on
ISpeechPhraseInfo.

SpPhraseInfoBuilder.RestorePhraseFromMemory(

					PhraseInMemory	As	Variant

)	As	ISpeechPhraseInfo

Parameters

PhraseInMemory
A	Variant	variable	containing	a	phrase	saved	to	memory.

Return	Value
A	ISpeechPhraseInfo	object	returning	the	phrase	information.

Example
The	following	example	demonstrates	storing	and	retrieving	the
phrase	portion	of	a	recognition	result.	An	example	of	late
binding	for	creating	the	PhraseBuilder	object	is	also
demonstrated.
The	sample	assumes	a	valid	RecoResult.

'Save	the	phrase	first

Dim	thePhrase	As	Variant

thePhrase	=	RecoResult.PhraseInfo.SaveToMemory

'Retrieve	the	phrase

Dim	PhraseBuilder	As	Object

Set	PhraseBuilder	=	CreateObject("SAPI.SpPhraseInfoBuilder")

				

Dim	PhraseInfo	As	ISpeechPhraseInfo

Set	PhraseInfo	=	PhraseBuilder.RestorePhraseFromMemory(thePhrase)

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpTextSelectionInformation
The	SpTextSelectionInformation	automation	object	provides
access	to	the	text	selection	information	pertaining	to	a	word
sequence	buffer.
For	an	example	of	the	use	of	the	SpTextSelectionInformation
object,	see	the	SetWordSequenceData	section	of	the
ISpeechRecoGrammar	interface.

Automation	Interface	Elements
The	SpTextSelectionInformation	automation	object	has	the
following	elements:

Properties Description
ActiveLength	Property Gets	and	sets	the	count	of

characters	for	the	active	range	of
the	text	selection	buffer.

ActiveOffset	Property Gets	and	sets	the	offset	of	the	active
text	selection	buffer	from	the
beginning	of	the	word	sequence	data
buffer.

SelectionLength
Property

Gets	and	sets	the	count	of
characters	in	the	selected	text	within
the	word	sequence	data	buffer.

SelectionOffset
Property

Gets	and	sets	the	offset	of	the
selected	text	within	the	word
sequence	buffer.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpTextSelectionInformation

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ActiveLength	Property

The	ActiveLength	property	gets	and	sets	the	count	of
characters	for	the	active	range	of	the	text	selection	buffer.

Syntax

Set: SpTextSelectionInformation.ActiveLength	=	Long
Get: Long	=	SpTextSelectionInformation.ActiveLength

Parts

SpTextSelectionInformation
The	owning	object.

Long
Set:	A	Long	variable	that	sets	the	property.
Get:	A	Long	variable	that	gets	the	property.

Example
For	an	example	of	the	use	of	the	ActiveLength	property,	see	the
ISpeechRecoGrammar.SetWordSequenceData	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpTextSelectionInformation

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ActiveOffset	Property

The	ActiveOffset	property	gets	and	sets	the	offset	of	the
active	text	selection	buffer	from	the	beginning	of	the
WordSequenceData	buffer.

Syntax

Set: SpTextSelectionInformation.ActiveOffset	=	Long
Get: Long	=	SpTextSelectionInformation.ActiveOffset

Parts

SpTextSelectionInformation
The	owning	object.

Long
Set:	A	Long	variable	that	sets	the	property.
Get:	A	Long	variable	that	gets	the	property.

Example
For	an	example	of	the	use	of	the	ActiveOffset	property,	see	the
ISpeechRecoGrammar.SetWordSequenceData	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpTextSelectionInformation

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SelectionLength	Property

The	SelectionLength	property	gets	and	sets	the	count	of
characters	in	the	selected	text	within	the	word	sequence	data
buffer.

Syntax

Set: SpTextSelectionInformation.SelectionLength	=	Long
Get: Long	=	SpTextSelectionInformation.SelectionLength

Parts

SpTextSelectionInformation
The	owning	object.

Long
Set:	A	Long	variable	that	sets	the	property.
Get:	A	Long	variable	that	gets	the	property.

Example
For	an	example	of	the	use	of	the	SelectionLength	property,	see
the	ISpeechRecoGrammar.SetWordSequenceData	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpTextSelectionInformation

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SelectionOffset	Property

The	SelectionOffset	property	gets	and	sets	the	offset	of	the
selected	text	within	the	word	sequence	buffer.

Syntax

Set: SpTextSelectionInformation.SelectionOffset	=	Long
Get: Long	=	SpTextSelectionInformation.SelectionOffset

Parts

SpTextSelectionInformation
The	owning	object.

Long
Set:	A	Long	variable	that	sets	the	property.
Get:	A	Long	variable	that	gets	the	property.

Example
For	an	example	of	the	use	of	the	SelectionOffset	property,	see
the	ISpeechRecoGrammar.SetWordSequenceData	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpUnCompressedLexicon
The	SpUnCompressedLexicon	automation	object	provides
access	to	lexicons,	which	contain	information	about	words	that
can	be	recognized	or	spoken.
The	SpUnCompressedLexicon	object	represents	a	single
application	lexicon.

Automation	Interfaces
The	SpUnCompressedLexicon	automation	object	contains	the
following	elements:

Properties Description
GenerationId	Property Gets	the	generation	ID	of	the	current

application	lexicon.

Methods Description
AddPronunciation	Method Adds	a	pronunciation,

specified	in	phone
symbols,	to	the	current
application	lexicon.

AddPronunciationByPhoneIds
Method

Adds	a	pronunciation,
specified	in	phone	IDs,	to
the	current	application
lexicon.

GetGenerationChange	Method Gets	a	list	of	words	in	the
current	application
lexicon	that	have
changed	since	the
specified	generation.

GetPronunciations	Method Gets	the	pronunciations
and	parts	of	speech	for	a
word	from	the	user	or

application	lexicons.
GetWords	Method Gets	a	list	of	all	words	in

the	user	or	application
lexicons.

RemovePronunciation	Method Removes	a	word	and/or
its	pronunciations,
specified	in	phone
symbols,	from	the
current	application
lexicon.

RemovePronunciationByPhoneIds
Method

Removes	a	word	and/or
its	pronunciations,
specified	in	phone	IDs,
from	the	current
application	lexicon.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpUnCompressedLexicon

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

AddPronunciation	Method

The	AddPronunciation	method	adds	a	pronunciation,	specified
in	phonemes,	to	the	application	lexicon.

SpUnCompressedLexicon.AddPronunciation(

					bstrWord	As	String,

					LangId	As	Long,

					[PartOfSpeech	As	SpeechPartOfSpeech	=	SPSUnknown],

					[bstrPronunciation	As	String]

)

Parameters

bstrWord
The	word	to	add.

LangId
The	language	ID	of	the	lexicon	word.

PartOfSpeech
[Optional]	Specifies	the	PartOfSpeech.	Default	value	is
SPSUnknown.

bstrPronunciation
[Optional]	The	pronunciation,	in	phonemes.

Return	Value
None.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpUnCompressedLexicon	
Type:	Hidden

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

AddPronunciationByPhoneIds	Method

The	AddPronunciationByPhoneIds	method	adds	a
pronunciation,	specified	in	phone	ids,	to	the	application	lexicon.

SpUnCompressedLexicon.AddPronunciationByPhoneIds(

					bstrWord	As	String,

					LangId	As	Long,

					[PartOfSpeech	As	SpeechPartOfSpeech	=	SPSUnknown],

					[PhoneIds	As	Variant]

)

Parameters

bstrWord
The	word	to	add.

LangId
The	language	Id	of	the	word.

PartOfSpeech
[Optional]	The	PartOfSpeech.	Default	value	is	SPSUnknown.

PhoneIds
[Optional]	The	pronunciation,	in	phone	ids.

Return	Value
None.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpUnCompressedLexicon	
Type:	Hidden

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

GenerationId	Property

The	GenerationId	property	gets	the	generation	ID	of	the
current	application	lexicon.
The	GenerationId	function	acts	as	a	version	number,	making	it
possible	to	roll	back,	cancel	or	undo	additions	to	the	lexicon.

Syntax

Set: Not	available.
Get: Long	=	SpUnCompressedLexicon.GenerationId

Parts

SpUnCompressedLexicon
The	owning	object.

Long
Set:	(This	property	is	read-only).
Get:	A	Long	variable	returning	the	generation	ID.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpUnCompressedLexicon	
Type:	Hidden

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

GetGenerationChange	Method

The	GetGenerationChange	method	gets	a	list	of	words	in	the
current	application	lexicon	that	have	changed	since	the
specified	generation.

SpUnCompressedLexicon.GetGenerationChange(

					GenerationID	As	Long

)	As	ISpeechLexiconWords

Parameters

GenerationId
Specifies	the	GenerationId.

Return	Value
The	GetGenerationChange	method	returns	an
ISpeechLexiconWords	object.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpUnCompressedLexicon

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

GetPronunciations	Method

The	GetPronunciations	method	gets	the	pronunciations	and
parts	of	speech	for	a	word	in	the	user	or	application	lexicons.
An	ISpeechLexiconPronunciation	object	contains	a	word's
pronunciations,	part	of	speech	and	phone	IDs.	Because	a	word
may	have	more	than	one	pronunciation	and	more	than	one	part
of	speech,	the	GetPronunciations	method	returns	a	collection	of
these	objects.

SpUnCompressedLexicon.GetPronunciations(

					bstrWord	As	String,

					[LangId	As	Long],

					[TypeFlags	As	SpeechLexiconType]

)	As	ISpeechLexiconPronunciations

Parameters

bstrWord
The	target	lexicon	word.

LangId
[Optional]	The	language	ID.

TypeFlags
[Optional]	A	SpeechLexiconType	constant.	If	Flags	is	SLTUser,
only	user	lexicon	words	are	returned;	if	Flags	is	SLTApp,	only
application	lexicon	words	are	returned.

Return	Value

An	ISpeechLexiconPronunciations	object,	which	is	a	collection	of
one	or	more	ISpeechLexiconPronunciation	objects.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpUnCompressedLexicon

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

GetWords	Method

The	GetWords	method	gets	a	list	of	all	words	in	the	current	the
user	or	application	lexicon.
An	ISpeechLexiconWord	object	contains	a	word's	pronunciation
and	type.	The	GetWords	method	returns	a	collection	of	these
objects.

SpUnCompressedLexicon.GetWords(

					[Flags	As	SpeechLexiconType],

					[GenerationId	As	Long]

)	As	ISpeechLexiconWords

Parameters

Flags
[Optional]	A	SpeechLexiconType	constant.	If	Flags	is	SLTUser,
only	user	lexicon	words	are	returned;	if	Flags	is	SLTApp,	only
application	lexicon	words	are	returned.

GenerationID
[Optional]	The	GenerationId.

Return	Value
An	ISpeechLexiconWords	object,	which	is	a	collection	of	one	or
more	ISpeechLexiconWord	objects.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpUnCompressedLexicon

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

RemovePronunciation	Method

The	RemovePronunciation	method	removes	a	word	and/or	its
pronunciations,	specified	in	phone	symbols,	from	the	current
application	lexicon.

SpUnCompressedLexicon.RemovePronunciation(

					bstrWord	As	String,

					LangId	As	Long,

					[PartOfSpeech	As	SpeechPartOfSpeech	=	SPSUnknown],

					[bstrPronunciation	As	String]

)

Parameters

bstrWord
The	lexicon	word	to	be	removed.

LangId
The	language	ID.

PartOfSpeech
[Optional]	The	PartOfSpeech.	Default	value	is	SPSUnknown.

bstrPronunciation
[Optional]	The	pronunciation,	in	phones,	to	be	removed.	If
this	parameter	is	not	specified,	all	pronunciations	of	the	word
will	be	removed.

Return	Value

None.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpUnCompressedLexicon	
Type:	Hidden

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

RemovePronunciationByPhoneIds
Method

The	RemovePronunciationByPhoneIds	method	removes	a
word	and/or	its	pronunciations,	specified	in	phone	IDs,	from	the
current	application	lexicon.

SpUnCompressedLexicon.RemovePronunciationByPhoneIds(

					bstrWord	As	String,

					LangId	As	Long,

					[PartOfSpeech	As	SpeechPartOfSpeech	=	SPSUnknown],

					[PhoneIds	As	Variant]

)

Parameters

bstrWord
The	lexicon	word	to	be	removed.

LangId
The	language	ID.

PartOfSpeech
[Optional]	The	PartOfSpeech.	Default	value	is	SPSUnknown.

PhoneIds
[Optional][Optional]	The	pronunciation,	in	phone	IDs,	to	be
removed.	If	this	parameter	is	not	specified,	all	pronunciations
of	a	lexicon	word	will	be	removed.

Return	Value
None.

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpVoice
The	SpVoice	object	brings	the	text-to-speech	(TTS)	engine
capabilities	to	applications	using	SAPI	automation.	An
application	can	create	numerous	SpVoice	objects,	each
independent	of	and	capable	of	interacting	with	the	others.	An
SpVoice	object,	usually	referred	to	simply	as	a	voice,	is	created
with	default	property	settings	so	that	it	is	ready	to	speak
immediately.

Voice	Characteristics	and	UI	Support
The	fundamental	characteristics	of	the	voice	are	the	Voice
property,	which	can	be	thought	of	as	the	person	of	the	voice,
the	Rate	property,	and	the	Volume	property.	"Microsoft	Mary"
and	"Microsoft	Mike"	are	examples	of	Voices.	Use	the	GetVoices
method	to	determine	what	other	voices	are	available	to	the
voice	object.
These	properties	can	be	modified	with	a	User	Interface	(UI).	The
IsUISupported	method	determines	if	a	specific	UI	is	supported.
Use	the	DisplayUI	method	to	display	a	supported	UI.	The	TTS	tab
of	Speech	properties	in	Control	Panel,	which	enables	users	to
modify	the	characteristics	of	the	default	system	voice,	is	an
example	of	a	voice	UI.

Speaking	and	Queueing
The	Speak	method	places	a	text	stream	in	the	TTS	engine's
input	queue	and	returns	a	stream	number.	It	can	be	called
synchronously	or	asynchronously.	When	called	synchronously,
the	Speak	method	does	not	return	until	the	text	has	been
spoken;	when	called	asynchronously,	it	returns	immediately,
and	the	voice	speaks	as	a	background	process.
When	synchronous	speech	is	used	in	an	application,	the
application's	execution	is	blocked	while	the	voice	speaks,	and
the	user	is	effectively	locked	out.	This	may	be	acceptable	for

simple	applications,	or	those	with	no	graphical	user	interface
(GUI),	but	when	sophisticated	user	interaction	is	intended,
asynchronous	speaking	will	generally	be	more	appropriate.
Asynchronous	speaking	can	place	numerous	text	streams	into
the	input	queue.	These	streams	are	also	referred	to	as	speech
requests.	The	stream	number	returned	by	an	asynchronous
Speak	call	is	the	stream's	index	in	the	voice	queue.	The
WaitUntilDone	method	blocks	execution	until	the	voice	finishes
speaking,	enabling	an	application	to	speak	a	text	stream
asynchronously	and	determine	when	it	finishes.	The	hidden
SpeakCompleteEvent	method	is	similar	to	WaitUntilDone,	except
that	it	returns	an	event	handle	for	the	background	speaking
process,	and	does	not	block	application	execution.
The	SpeakStream	method	operates	like	the	Speak	method,
except	that	it	speaks	sound	files	instead	of	text.

Voice	Output
An	SpVoice	object	is	created	with	its	audio	output	set	to	the
system	default	audio	output.	Use	the	GetAudioOutputs	method
to	determine	what	other	outputs	are	available	to	the	voice,	and
use	the	AudioOutput	property	to	set	its	audio	output	to	one	of
them.
Use	the	AudioOutputStream	property	with	other	Speech
automation	objects	to	store	audio	output	in	memory	(see
SpMemoryStream)	or	in	files	(see	SpFileStream).

Voice	Events
As	a	voice	speaks	text,	it	can	generate	events	when	it	detects
certain	conditions	in	the	input	stream.	These	events	are
contained	in	the	SpeechVoiceEvents	enumeration.	Examples	of
these	events	are	completion	of	phonemes,	words,	or	sentences,
as	well	as	changes	of	voice	or	the	presence	of	bookmarks.	The
range	of	conditions	which	can	be	reported	by
SpeechVoiceEvents	is	wide	enough	that	most	applications	will

use	only	a	few	of	them.	To	prevent	the	TTS	engine	from
generating	events	that	will	be	ignored	by	the	application,	use
the	EventInterests	property	to	specify	the	events	of	interest.
Only	these	events	will	be	raised.
The	point	in	the	input	text	stream	at	which	a	potential	event	has
been	completed	is	referred	to	as	an	event	boundary.	At	each
event	boundary,	the	event	type	is	compared	with	the	current
EventInterests.	If	the	event	type	is	of	interest,	an	event	of	that
type	is	raised.	Voice	events	return	the	input	stream	number	in
order	to	associate	them	with	the	appropriate	stream.

Voice	Priorities	and	Alerts
Application	error	handling	has	traditionally	interrupted	a	UI	with
message	boxes	or	alert	boxes	describing	error	states.	Because	a
TTS	application	might	operate	with	no	graphical	UI	at	all,	it	is
able	to	implement	error	handling	with	a	TTS	voice.	This	voice	is
referred	to	as	an	alert,	because	its	purpose	is	identical	to	that	of
an	alert	box	or	message	box.	To	create	an	alert	voice,	create	a
new	SpVoice	object	and	set	its	Priority	property	appropriately.
The	alert	voice	should	also	use	a	different	Voice	property	from
the	normal	voice,	so	that	users	can	easily	distinguish	the	two.
When	a	speaking	voice	detects	a	pending	alert,	it	continues
speaking	until	it	arrives	at	a	specific	application-defined
stopping	point,	such	as	a	sentence	or	a	word.	This	stopping
point	is	called	the	alert	boundary	because	it	is	an	event
boundary	at	which	alerts	can	be	processed.	When	the	alert	has
finished	speaking,	the	interrupted	voice	resumes.	Get	and	set
the	alert	boundary	with	the	AlertBoundary	property.

Status	and	Control
The	Status	method	may	return	an	ISpeechVoiceStatus	object,
which	contains	several	types	of	information	about	the	state	of
the	voice.	Some	ISpeechVoiceStatus	properties	are	equivalent	to
parameters	returned	by	voice	events;	it	may	be	advantageous
for	some	applications	to	get	these	elements	by	calling	Status

occasionally,	rather	than	by	receiving	events	constantly.
Voice	status	and	voice	events	are	closely	associated	with	the
status	of	the	audio	output	device.	A	voice	speaking	to	a	file
stream	produces	no	audio	output,	generates	no	events,	and	has
no	audio	output	status.	As	a	result,	the	ISpeechVoiceStatus	data
returned	by	that	voice	will	always	show	it	to	be	inactive.
A	speaking	voice	can	be	paused	at	the	next	alert	boundary	with
the	Pause	method.	A	paused	voice	can	be	resumed	with	the
Resume	method.	The	Skip	method	causes	the	voice	to	skip
forward	or	backward	in	the	input	stream.

Automation	Interface	Elements
The	SpVoice	automation	object	has	the	following	elements:

Properties Description
AlertBoundary	Property Gets	and	sets	the

alert	boundary,
which	specifies
how	a	speaking
voice	pauses	itself
for	alerts.

AllowAudioOutputFormatChangesOnNextSet
Property

Gets	and	sets	the
flag	that	specifies
whether	the	voice
is	allowed	to	adjust
its	audio	output
format
automatically.

AudioOutput	Property Gets	and	sets	the
current	audio
output	object	used
by	the	voice.

AudioOutputStream	Property Gets	and	sets	the

current	audio
stream	object	used
by	the	voice.

EventInterests	Property Gets	and	sets	the
types	of	events
received	by	the
voice.

Priority	Property Gets	and	sets	the
priority	level	of	the
voice.

Rate	Property Gets	and	sets	the
speaking	rate	of
the	voice.

Status	Property Returns	the	current
speaking	and
event	status	of	the
voice	in	an
ISpeechVoiceStatus
object.

SynchronousSpeakTimeout	Property Gets	and	sets	the
interval,	in
milliseconds,	after
which	the	voice's
synchronous	Speak
and	SpeakStream
calls	will	time	out
when	its	output
device	is
unavailable.

Voice	Property Gets	and	sets	the
currently	active
member	of	the
Voices	collection.

Volume	Property Gets	and	sets	the
base	volume
(loudness)	level	of

the	voice.

Methods Description
DisplayUI	Method Initiates	the	display	of	the	specified

UI.
GetAudioOutputs
Method

Returns	a	selection	of	available
audio	output	tokens.

GetVoices	Method Returns	a	selection	of	voices
available	to	the	voice.

IsUISupported	Method Determines	if	the	specified	UI	is
supported.

Pause	Method Pauses	the	voice	at	the	nearest	alert
boundary	and	closes	the	output
device,	allowing	it	to	be	used	by
other	voices.

Resume	Method Causes	the	voice	to	resume	speaking
when	paused.

Skip	Method Causes	the	voice	to	skip	forward	or
backward	by	the	specified	number	of
items	within	the	current	input	text
stream.

Speak	Method Initiates	the	speaking	of	a	text
string,	text	file	or	wave	file	by	the
voice.

SpeakCompleteEvent
Method

Gets	an	event	handle	from	the	voice
that	will	be	signaled	when	the	voice
finishes	speaking.

SpeakStream	Method Initiates	the	speaking	of	a	text
stream	or	sound	file	by	the	voice.

WaitUntilDone	Method Blocks	the	caller	until	either	the
voice	has	finished	speaking	or	the
specified	time	interval	has	elapsed.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpVoice

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

AlertBoundary	Property

The	AlertBoundary	property	gets	and	sets	the	alert	boundary,
which	specifies	how	a	speaking	voice	pauses	for	alerts.
Because	a	TTS	application	might	operate	without	a	graphical
user	interface	(UI),	it	must	be	able	to	implement	error	handling
with	a	TTS	voice.	The	only	capability	needed	for	voice	error
messaging	is	the	ability	to	interrupt	another	voice;	this
capability	is	assigned	to	a	voice	by	setting	the	Priority	property
to	SVPAlert.	A	voice	with	a	priority	setting	of	SVPAlert	is	referred
to	as	an	alert	voice,	or	simply	as	an	alert,	because	its	purpose	is
identical	to	that	of	an	alert	box	or	message	box.
When	a	speaking	voice	detects	a	pending	alert	interruption,	it
continues	speaking	until	it	arrives	at	a	specific	application-
defined	stopping	point,	such	as	a	sentence	or	a	word.	This
stopping	point	is	called	the	alert	boundary	because	it	is	the
event	boundary	at	which	alerts	can	be	processed.
The	SpeechVoiceEvents	enumeration	contains	the	types	of
events	that	a	voice	object	can	receive.	The	AlertBoundary
property	consists	of	one	of	these	constants.	The	default	setting
is	SVEWordBoundary.

Syntax

Set: SpVoice.AlertBoundary	=	SpeechVoiceEvents
Get: SpeechVoiceEvents	=	SpVoice.AlertBoundary

Parts

SpVoice

The	owning	object.

SpeechVoiceEvents
Set:	A	SpeechVoiceEvents	constant	that	sets	the	alert
boundary.
Get:	A	SpeechVoiceEvents	constant	that	gets	the	alert
boundary.

Example
The	following	code	demonstrates	the	use	of	the	Priority,
EventInterests	and	AlertBoundary	properties.	The	code	uses	the
GetVoices	method	to	select	a	male	voice	and	a	female	voice,
and	sets	the	Priority	property	of	the	female	voice	to	SVPAlert,
making	it	an	alert	voice.	The	Priority	of	the	male	voice	remains
SVPNormal.
The	code	sets	the	EventInterests	of	the	normal	voice	to
SVEBookmark,	so	that	it	can	receive	bookmark	events,	and	then
speak	a	text	string	containing	bookmarks.	The	normal	voice's
Bookmark	event	uses	the	alert	voice	to	speak	the	bookmark
data.	Because	the	alert	voice	interrupts	the	normal	voice,	the
normal	voice	is	essentially	using	its	own	events	to	interrupt
itself.
Note	that	the	interruption	does	not	occur	immediately;	the	alert
voice	must	first	enqueue	its	text	stream,	and	then	the	normal
voice	must	detect	the	pending	alert	and	stop	speaking	at	the
next	alert	boundary.	The	normal	voice	might	speak	several
words	or	phonemes	past	the	bookmark	before	it	pauses	for	the
alert	voice	to	speak.
In	this	example,	the	normal	voice	can	be	interrupted	on	a
phoneme	boundary,	which	may	divide	a	word.	Changing	the
AlertBoundary	to	word	or	sentence	boundaries	will	noticeably
change	the	interaction	of	the	two	voices.

Option	Explicit

Dim	WithEvents	objHIM	As	SpeechLib.SpVoice		'Normal	voice	will	receive	events

Dim	objHER	As	SpeechLib.SpVoice													'Alert	voice	will	not

Private	Sub	Command1_Click()

				Dim	strSpeak	As	String

				

				'Create	an	Alert	Priority	voice	-	female

				Set	objHER	=	New	SpVoice

				objHER.Priority	=	SVPAlert

				Set	objHER.Voice	=	objHER.GetVoices("gender=female").Item(0)

				'Create	a	Normal	Priority	voice	-	male

				Set	objHIM	=	New	SpVoice

				Set	objHIM.Voice	=	objHIM.GetVoices("gender=male").Item(0)

				

				objHER.Speak	"the	priority	of	this	voice	is	S	V	P	alert"

				objHIM.Speak	"the	priority	of	this	voice	is	S	V	P	normal"

				

				objHIM.EventInterests	=	SVEBookmark					'Receive	bookmark	events	only

				objHIM.AlertBoundary	=	SVEPhoneme							'Let	alert	voices	interrupt	words

				

				'Normal	voice	speaks	text	which	generates	events.

				

				strSpeak	=	"This	is	text	<BOOKMARK	mark='first'	/>	that	contains	bookmarks	"	_

																&	"for	the	<BOOKMARK	mark='second'	/>	purpose	of	generating	events."

																

				objHIM.Speak	strSpeak,	SVSFIsXML	+	SVSFlagsAsync

				

End	Sub

Private	Sub	objHIM_Bookmark(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	_

																												ByVal	Bookmark	As	String,	ByVal	BookmarkId	As	Long)

				objHER.Speak	Bookmark,	SVSFlagsAsync

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpVoice	
Type:	Hidden

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

AllowAudioOutputFormatChangesOnNextSet
Property

The	AllowOutputFormatChangesOnNextSet	property	gets
and	sets	the	flag	that	specifies	whether	SAPI	will	adjust	the
format	of	a	voice	object's	new	audio	output	device
automatically.
By	default,	when	an	application	sets	a	voice	object's
AudioOutput	property	to	an	audio	device,	SAPI	will	change	the
format	of	that	device	to	match	the	engine's	preferred	format.	In
cases	where	a	specific	audio	format	is	required,	such	as
telephony	applications,	the
AllowOutputFormatChangesOnNextSet	property	can	be	used	to
prevent	this	format	change.
When	this	property	is	true,	SAPI	adjusts	the	format	of	the	audio
output	object	to	the	engine's	preferred	format.	When	it	is	false,
SAPI	uses	the	audio	output	object's	format.	If	the	output	is	set	to
a	stream	object,	SAPI	will	convert	the	output	to	the	format	of
the	stream.

Syntax

Set: SpVoice.AllowAudioOutputFormatChangesOnNextSet
=	Boolean

Get: Boolean	=
SpVoice.AllowAudioOutputFormatChangesOnNextSet

Parts

SpVoice
The	owning	object.

Boolean
Set:	A	Boolean	variable	that	sets	the	property	value.
Get:	A	Boolean	variable	that	gets	the	property	value.

Remarks
Using	the	same	audio	format	for	input	and	output	source	is
useful	for	sound	cards	that	do	not	support	full-duplex	audio	(i.e.,
input	format	must	match	output	format).	If	the	input	format
quality	is	lower	than	the	output	format	quality,	the	output
format	quality	will	be	reduced	to	equal	the	input	quality.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	AllowAudioOutputFormatChangesOnNextSet	property.	To	run
this	code,	create	a	form	with	the	following	controls:
Two	command	buttons	called	Command1	and	Command2.

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	a	voice	object,	an	audio
output	object,	and	a	SpeechAudioFormatType	variable.	Both
command	button	procedures	set	the	format	of	the	audio	output
object	to	SAFT22kHz8BitMono,	then	set	the	AudioOutputStream
of	the	voice	to	the	audio	output	object,	and	then	test	if	the
voice's	audio	format	has	been	changed.
In	the	Command1	procedure,	the
AllowAudioOutputFormatChangesOnNextSet	is	set	to	True,	and
the	voice's	format	is	changed.	In	the	Command2	procedure,	this
property	is	set	to	False,	and	the	voice's	format	is	not	changed.

Option	Explicit

Dim	V	As	SpeechLib.SpVoice

Dim	O	As	SpMMAudioOut

Dim	S	As	ISpeechBaseStream

Dim	f	As	SpeechLib.SpeechAudioFormatType				'This	is	an	Enum

Private	Sub	Command1_Click()

				

				V.AllowAudioOutputFormatChangesOnNextSet	=	True

				

				O.Format.Type	=	f															'AudioOut	obj	gets	SAFT22kHz8BitMono	format

				Set	V.AudioOutputStream	=	O					'The	"Next	Set"

				V.Speak	"Adjust	my	format"						'Speak

				Set	S	=	V.AudioOutputStream					'Stream	object	gets	voice's	format

				

				If	S.Format.Type	=	f	Then

								MsgBox	"format	not	adjusted"

				Else

								MsgBox	"format	adjusted"

				End	If

End	Sub

Private	Sub	Command2_Click()

				V.AllowAudioOutputFormatChangesOnNextSet	=	False

				O.Format.Type	=	f															'AudioOut	obj	gets	SAFT22kHz8BitMono	format

				Set	V.AudioOutputStream	=	O					'The	"Next	Set"

				V.Speak	"Leave	my	format	alone"	'Speak

				Set	S	=	V.AudioOutputStream					'Stream	object	gets	voice's	format

				

				If	S.Format.Type	=	f	Then

								MsgBox	"format	not	adjusted"

				Else

								MsgBox	"format	adjusted"

				End	If

End	Sub

Private	Sub	Form_Load()

				Set	V	=	New	SpVoice

				Set	O	=	New	SpMMAudioOut

				f	=	SAFT22kHz8BitMono							'The	test	audio	output	format

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpVoice

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

AudioOutput	Property

The	AudioOutput	property	gets	and	sets	the	current	audio
output	object	used	by	the	voice.
The	AudioOutput	property	can	be	set	with	the	object	token	for	a
standard	Windows	multi-media	device.	To	use	other	types	of
devices,	please	see	the	Speech	Telephony	Application	Guide.	

Syntax

Set: SpVoice.AudioOutput	=	SpObjectToken
Get: SpObjectToken	=	SpVoice.AudioOutput

Parts

SpVoice
The	owning	object.

SpObjectToken
Get:	An	SpObjectToken	object	that	gets	the	current	audio
output.
Set:	An	SpObjectToken	object	that	sets	the	audio	output.

Remarks
When	setting	the	value,	if	the	object	is	Nothing	then	the	default
audio	device	will	be	used.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of

the	GetAudioOutputs	method	and	the	AudioOutput	property.	To
run	this	code,	create	a	form	with	the	following	controls:
A	command	button	called	Command1
A	list	box	called	List1

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	an	SpVoice	object	and	calls	a
subroutine	called	ShowAudioOutputs.	This	subroutine	uses	the
GetAudioOutputs	method	to	select	all	available	output	devices,
and	adds	each	device	to	the	list	box.	The	string	(CURRENT)	is
appended	to	the	current	audio	device	name.
Select	a	device	in	the	list	box,	and	then	click	Command1.	The
Command1_Click	procedure	resets	the	voice's	AudioOutput
property	to	the	device	selected	in	the	list	box,	and	calls	the
ShowAudioOutputs	subroutine,	which	will	display	the	device
selected	as	the	current	audio	output.

Option	Explicit

Private	V	As	SpeechLib.SpVoice

Private	T	As	SpeechLib.SpObjectToken

Private	Sub	Command1_Click()

				If	List1.ListIndex	>	-1	Then

								Set	V.AudioOutput	=	V.GetAudioOutputs().Item(List1.ListIndex)

								Call	ShowAudioOutputs

				End	If

End	Sub

Private	Sub	Form_Load()

				Set	V	=	New	SpVoice

				Call	ShowAudioOutputs

End	Sub

Private	Sub	ShowAudioOutputs()

				Dim	strAudio	As	String

				Dim	strCurrentAudio	As	String

				

				List1.Clear

				Set	T	=	V.AudioOutput															'Token	for	current	audio	output

				strCurrentAudio	=	T.GetDescription		'Get	description	from	token

				'Show	all	available	outputs;	highlight	the	one	in	use

				

				For	Each	T	In	V.GetAudioOutputs

								strAudio	=	T.GetDescription					'Get	description	from	token

								If	strAudio	=	strCurrentAudio	Then

												strAudio	=	strAudio	&	"	(CURRENT)"		'Show	current	device

								End	If

								List1.AddItem	strAudio										'Add	description	to	list	box

				Next

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpVoice

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

AudioOutputStream	Property

The	AudioOutputStream	property	gets	and	sets	the	current
audio	stream	object	used	by	the	voice.
Setting	the	voice's	AudioOutputStream	property	may	cause	its
audio	output	format	to	be	automatically	changed	to	match	the
text-to-speech	(TTS)	engine's	preferred	audio	output	format.	If
the	voice's	AllowAudioOutputFormatChangesOnNextSet
property	is	True,	the	format	change	takes	place;	if	False,	the
format	remains	unchanged.	In	order	to	set	the
AudioOutputStream	property	of	a	voice	to	a	specific	format,	its
AllowOutputFormatChangesOnNextSet	should	be	False.

Syntax

Set: SpVoice.AudioOutputStream	=	ISpeechBaseStream
Get: ISpeechBaseStream	=	SpVoice.AudioOutputStream

Parts

SpVoice
The	owning	object.

ISpeechBaseStream
Get:	An	ISpeechBaseStream	object	that	gets	the	current
audio	output	stream.
Set:	An	ISpeechBaseStream	object	that	sets	the	audio
output	stream.

Remarks

Voice	status	and	voice	events	are	closely	associated	with	the
status	of	the	audio	output	device.	A	voice	speaking	to	a	file
stream	produces	no	audio	output,	generates	no	events,	and	has
no	audio	output	status.	As	a	result,	the	ISpeechVoiceStatus	data
returned	by	that	voice	will	always	indicate	that	it	is	inactive.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	AudioOutputStream	property.	To	run	this	code,	create	a	form
with	the	following	controls:
A	textbox	called	Text1

Two	command	buttons	called	Command1	and	Command2
Paste	the	this	code	into	the	Declarations	section	of	the	form.
The	Command1_Click	procedure	sets	the	AudioOutputStream
property	of	the	voice	to	a	file	called	AudioOutputStream.wav
and	speaks	the	contents	of	the	text	box	into	a	wave	file.	It	then
sets	the	voice's	AudioOutputStream	property	to	Nothing,	so	that
subsequent	voice	output	will	be	directed	to	the	audio	system
rather	than	to	a	file.
The	Command2_Click	procedure	plays	back	the	wave	file	that
created	by	the	Command1_Click	procedure.

Option	Explicit

Dim	objVOICE	As	SpeechLib.SpVoice

Dim	objFSTRM	As	SpeechLib.SpFileStream

Const	strFName	=	"C:\AudioOutputStream.wav"

Private	Sub	Command1_Click()

				'Build	a	local	file	path	and	open	it	as	a	stream

				Call	objFSTRM.Open(strFName,	SSFMCreateForWrite,	False)

				

				'Set	voice	AudioOutputStream	to	the	stream	and	speak

				Set	objVOICE.AudioOutputStream	=	objFSTRM

				objVOICE.Speak	Text1.Text

				

				'Close	the	stream	and	set	voice	back	to	speaking

				Call	objFSTRM.Close

				Set	objVOICE.AudioOutputStream	=	Nothing

				

				Command2.Enabled	=	True

End	Sub

Private	Sub	Command2_Click()

				objVOICE.Speak	Text1.Text,	SVSFIsXML

End	Sub

Private	Sub	Form_Load()

				Set	objVOICE	=	New	SpVoice

				Set	objFSTRM	=	New	SpFileStream

				Command2.Enabled	=	False				'Force	create	file	before	playback

				Text1.Text	=	"The	TTS	voice	will	speak	this	text	into	a	file."

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpVoice

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

DisplayUI	Method

The	DisplayUI	method	initiates	the	display	of	the	specified	UI.
The	speech	recognition	(SR)	and	text-to-speech	(TTS)	engines
are	capable	of	displaying	and	running	various	user	interfaces
(UI).	These	displays	assist	with	different	aspects	of	the	speech
environment	such	as	user	training,	microphone	wizards,	adding
and	removing	words,	or	setting	controls	for	the	engine.	Many	of
these	UIs	are	available	using	Speech	properties	in	Control	Panel.
In	addition,	the	engines	are	capable	of	requesting	that	the	user
run	specific	UIs	to	improve	recognition.	For	example,	the	SR
engine	could	request	more	user	training	if	recognition	is
consistently	poor.
Engines	are	not	required	to	support	UI	and	not	all	engines	will
have	the	same	UI.	Consult	the	manufacturer's	engine
documentation	for	specific	details.	An	application	may	call
IsUISupported	before	attempting	to	invoke	a	particular	UI	to	see
if	the	engine	supports	it.	Invoking	unsupported	UIs	will	cause	a
run-time	error.	If	the	UI	is	available,	use	DisplayUI	to	invoke	the
display.

SpVoice.DisplayUI(

					hWndParent	As	Long,

					Title	As	String,

					TypeOfUI	As	String,

					[ExtraData	As	Variant	=	Nothing]

)

Parameters

hWndParent
Specifies	the	window	handle	of	the	owning	window.

Title
Specifies	the	caption	used	for	the	UI	window.

TypeOfUI
A	String	specifying	the	name	of	the	UI	to	display.	For	a	list	of
available	SAPI	5	UI,	see	Engine	User	Interfaces.

ExtraData
[Optional]	Specifies	the	ExtraData.	This	information	is	unique
to	the	application	and	may	be	used	to	provide	additional	or
more	specific	information	to	the	UI.	By	default,	the	Nothing
value	is	used	and	indicates	that	the	UI	does	not	use	any
additional	information	provided	by	this	method.

Return	Value
None.

Remarks
See	SPVoice.IsUISupported	for	additional	information.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	DisplayUI	and	IsUISupported	methods.	The	application	runs
the	audio	sound	panel,	the	same	sound	panel	that	is	available
using	Speech	properties	in	Control	Panel.
To	run	this	code,	create	a	single	form	without	any	items	on	it.
Paste	this	code	into	the	Declarations	section	of	the	form.
Option	Explicit

Public	WithEvents	vox	As	SpeechLib.SpVoice

Private	Sub	Form_Load()

				Set	vox	=	New	SpVoice

				RunUI	SpeechAudioVolume

End	Sub

Private	Function	RunUI(theUI	As	String)

				Dim	x	As	Boolean

				

				If	vox.IsUISupported(theUI)	=	True	Then

								vox.DisplayUI	Form1.hWnd,	"My	App's	Sound	Levels",	theUI,	vbNullString

				Else

								MsgBox	theUI	&	"	UI	not	supported"

				End	If

End	Function

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpVoice

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

EventInterests	Property

The	EventInterests	property	gets	and	sets	the	types	of	events
received	by	the	SpVoice	object.
When	a	text-to-speech	(TTS)	engine	speaks	a	stream	of	text,	it
is	constantly	detecting	certain	conditions	in	the	stream,	such	as
the	completion	of	phonemes,	words	and	sentences.	When	it
detects	one	of	these	conditions,	the	engine	is	able	to	generate	a
component	object	model	(COM)	event	that	will	be	received	by
the	voice	object	that	enqueued	the	stream.
When	the	engine	detects	a	potential	event	condition	in	a
stream,	it	checks	the	EventInterests	property	of	the	voice	that
enqueued	the	stream.	If	that	event	type	is	included	in	the	voice
object's	event	interests,	the	engine	will	generate	an	event	of
that	type.
In	Visual	Basic,	it	is	necessary	to	use	the	WithEvents	keyword
when	dimensioning	an	SpVoice	object	intended	to	receive
events.	The	default	setting	of	the	EventInterests	property	is
33278,	or	0x081FE,	which	represents	the	sum	of	all
SpeechVoiceEvents	constants	except	SVEAudioLevel	(a	change
in	audio	level).

Syntax

Set: SpVoice.EventInterests	=	SpeechVoiceEvents
Get: SpeechVoiceEvents	=	SpVoice.EventInterests

Parts

SpVoice

The	owning	object.

SpeechVoiceEvents
Set:	One	or	more	SpeechVoiceEvents	setting	the
EventInterests.
Get:	A	number	equivalent	to	the	SpeechVoiceEvents	in	the
EventInterests.

Remarks
The	values	assigned	to	SpeechVoiceEvents	constants	are	single-
bit	values,	like	1,	2,	4,	8,	16,	etc.	Use	a	logical	Or	function	to	add
them	to	EventInterests,	and	a	logical	XOr	function	to	remove
them.	It	should	be	noted	that	a	logical	Xor	function	does	not
zero	a	bit	value,	but	toggles	the	value.	Because	of	this,	it	is
necessary	to	ensure	that	the	bit	value	is	set	before	attempting
to	zero	it	with	an	Xor.
Recognition	contexts	support	an	EventInterests	property,	which
uses	a	similar	syntax	to	specify	interest	in	speech	recognition
events.

Example
The	following	code	snippet	demonstrates	the	syntax	of	the
EventInterests	property.	Interest	in	individual	events	is	set	and
reset	using	logical	Or	and	Xor	statements.

Option	Explicit

Dim	WithEvents	objVoice	As	SpeechLib.SpVoice

Private	Sub	Form_Load()

				Set	objVoice	=	New	SpVoice

				Call	EventInterests

End	Sub

Private	Sub	EventInterests()

				'Add	the	SVEPhoneme	constant	to	Event	Interests

				'Setting	bit	with	logical	'Or'	doesn't	require	testing.

				objVoice.EventInterests	=	objVoice.EventInterests	Or	SVEPhoneme

				

				'Remove	the	SVEViseme	constant	from	Event	Interests

				'Zeroing	bit	with	logical	'Xor'	requires	testing!

				

				If	(objVoice.EventInterests	And	SVEViseme)	=	SVEViseme	Then

								objVoice.EventInterests	=	objVoice.EventInterests	Xor	SVEViseme

				End	If

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpVoice

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

GetAudioOutputs	Method

The	GetAudioOutputs	method	returns	a	selection	of	available
audio	output	tokens.
See	Object	Tokens	and	Registry	Settings	White	Paper	for	a	list	of
SAPI	5-defined	attributes.

SpVoice.GetAudioOutputs(

					[RequiredAttributes	As	String	=	""],

					[OptionalAttributes	As	String	=	""]

)	As	ISpeechObjectTokens

Parameters

RequiredAttributes
[Optional]	Specifies	the	RequiredAttributes.	To	be	returned	by
GetAudioOutputs,	audio	output	tokens	must	contain	all	of	the
specific	required	attributes.	If	no	tokens	match	the	selection,
the	selection	returned	will	not	contain	any	elements.	By
default,	no	attributes	are	required	and	so	the	method	returns
all	the	tokens	discovered.

OptionalAttributes
[Optional]	Specifies	the	OptionalAttributes.	Returned	tokens
containing	the	RequiredAttributes	are	sorted	by
OptionalAttributes.	If	OptionalAttributes	is	specified,	the
tokens	are	listed	with	the	OptionalAttributes	first.	By	default,
no	attribute	is	specified	and	the	list	returned	from	the	speech
configuration	database	is	in	the	order	that	attributes	were
discovered.

Return	Value
An	ISpeechObjectTokens	collection	containing	the	selected
outputs.

Remarks
The	format	of	selection	criteria	may	either	be	Value	or	"Attribute
=	Value".	Values	may	be	excluded	by	"Attribute	!=	Value".

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	GetAudioOutputs	method	and	the	AudioOutput	property.	To
run	this	code,	create	a	form	with	the	following	commands:
A	command	button	called	Command1
A	list	box	called	List1

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	an	SpVoice	object	and	calls	a
subroutine	called	ShowAudioOutputs.	This	subroutine	uses	the
GetAudioOutputs	method	to	select	all	available	output	devices,
and	adds	each	device	to	the	list	box.	The	string	(Current)	is
appended	to	the	current	audio	device	name.
Select	a	device	in	the	list	box,	and	then	click	Command1.	The
Command1_Click	procedure	resets	the	voice's	AudioOutput
property	to	the	device	selected	in	the	list	box,	and	calls	the
ShowAudioOutputs	subroutine,	which	will	display	the	device
selected	as	the	current	audio	output.

Option	Explicit

Private	V	As	SpeechLib.SpVoice

Private	T	As	SpeechLib.SpObjectToken

Private	Sub	Command1_Click()

				If	List1.ListIndex	>	-1	Then

								Set	V.AudioOutput	=	V.GetAudioOutputs().Item(List1.ListIndex)

								Call	ShowAudioOutputs

				End	If

End	Sub

Private	Sub	Form_Load()

				Set	V	=	New	SpVoice

				Call	ShowAudioOutputs

End	Sub

Private	Sub	ShowAudioOutputs()

				Dim	strAudio	As	String

				Dim	strCurrentAudio	As	String

				

				List1.Clear

				Set	T	=	V.AudioOutput															'Token	for	current	audio	output

				strCurrentAudio	=	T.GetDescription		'Get	description	from	token

				

				For	Each	T	In	V.GetAudioOutputs

								strAudio	=	T.GetDescription					'Get	description	from	token

								If	strAudio	=	strCurrentAudio	Then

												strAudio	=	strAudio	&	"	(Current)"		'Show	current	device

								End	If

								List1.AddItem	strAudio										'Add	description	to	list	box

				Next

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpVoice

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

GetVoices	Method

The	GetVoices	method	returns	a	selection	of	voices	available	to
the	voice.
Selection	criteria	may	be	applied	optionally.	In	the	absence	of
selection	criteria,	all	voices	are	returned	in	the	selection,
ordered	alphabetically	by	the	voice	name.	If	no	voices	match
the	criteria,	GetVoices	returns	an	empty	selection,	that	is,	an
ISpeechObjectTokens	collection	with	a	Count	of	zero.
See	Object	Tokens	and	Registry	Settings	White	Paper	for	a	list	of
SAPI	5-defined	attributes.

SpVoice.GetVoices(

					[RequiredAttributes	As	String	=	""],

					[OptionalAttributes	As	String	=	""]

)	As	ISpeechObjectTokens

Parameters

RequiredAttributes
[Optional]	Specifies	the	RequiredAttributes.	All	voices
selected	will	match	these	specifications.	If	no	voices	match
the	selection,	the	selection	returned	will	contain	no	voices.
By	default,	no	attributes	are	required	and	so	the	list	returns
all	the	tokens	discovered.

OptionalAttributes
[Optional]	Specifies	the	OptionalAttributes.	Voices	which
match	these	specifications	will	be	returned	at	the	front	of	the
selection.	By	default,	no	attribute	is	specified	and	the	list
returned	from	the	speech	configuration	database	is	in	the
order	that	attributes	were	discovered.

Return	Value
An	ISpeechObjectTokens	variable	containing	the	collection	of
voice	tokens	selected.

Remarks
The	format	of	selection	criteria	is	"Attribute	=	Value"	and
"Attribute	!=	Value."	Voice	attributes	include	"Gender,"	"Age,"
"Name,"	"Language,"	and	"Vendor."

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	GetVoices	method	and	the	Voice	property.	To	run	this	code,
create	a	form	with	the	following	controls:
A	command	button	called	Command1

A	list	box	called	List1
Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	a	voice	object,	and	displays
the	names	of	all	available	voices	in	the	list	box.	Select	a	voice
name	in	the	list	box,	and	then	click	Command1.	The	Command1
procedure	sets	the	voice	object's	Voice	property	to	the	selected
name,	and	causes	the	voice	to	speak	its	new	name.

Option	Explicit

Private	V	As	SpeechLib.SpVoice

Private	T	As	SpeechLib.ISpeechObjectToken

Private	Sub	Command1_Click()

				If	List1.ListIndex	>	-1	Then

				

								'Set	voice	object	to	voice	name	selected	in	list	box

								'The	new	voice	speaks	its	own	name

								

								Set	V.Voice	=	V.GetVoices().Item(List1.ListIndex)

								V.Speak	V.Voice.GetDescription

								

				Else

								MsgBox	"Please	select	a	voice	from	the	listbox"

				End	If

								

End	Sub

Private	Sub	Form_Load()

				Dim	strVoice	As	String

				

				Set	V	=	New	SpVoice

				

				'Get	each	token	in	the	collection	returned	by	GetVoices

				For	Each	T	In	V.GetVoices

								strVoice	=	T.GetDescription					'The	token's	name

								List1.AddItem	strVoice										'Add	to	listbox

				Next

				

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpVoice

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

IsUISupported	Method

The	IsUISupported	method	determines	whether	the	specified
UI	is	supported.
The	speech	recognition	(SR)	and	text-to-speech	(TTS)	engines
are	capable	of	displaying	and	running	various	user	interfaces
(UI).	These	displays	assist	with	different	aspects	of	the	speech
environment	such	as	user	training,	microphone	wizards,	adding
and	removing	words,	or	setting	controls	for	the	engine.	Many	of
these	UIs	are	available	using	Speech	properties	in	Control	Panel.
In	addition,	the	engines	are	capable	of	requesting	that	the	user
run	specific	UIs	to	improve	recognition.	For	example,	the	SR
could	request	more	user	training	if	recognition	is	consistently
poor.
Engines	are	not	required	to	support	UI	and	not	all	engines	will
have	the	same	UI.	Consult	the	manufacturer's	engine
documentation	for	specific	details.	An	application	may	call
IsUISupported	before	attempting	to	invoke	a	particular	UI	to	see
if	the	engine	supports	it.	Invoking	unsupported	UIs	will	cause	a
run-time	error.	If	the	UI	is	available,	use	DisplayUI	to	invoke	the
display.

SpVoice.IsUISupported(

					TypeOfUI	As	String,

					[ExtraData	As	Variant	=	Nothing]

)	As	Boolean

Parameters

TypeOfUI
A	String	specifying	the	name	of	the	UI	to	display.	For	a	list	of
available	SAPI	5	UI,	see	Engine	User	Interfaces.

ExtraData
[Optional]	Specifies	the	ExtraData.	This	information	is	unique
to	the	application	and	may	be	used	to	provide	additional	or
more	specific	information	to	the	UI.	By	default,	the	Nothing
value	is	used	and	indicates	the	UI	does	not	use	any
additional	information	provided	by	this	method.

Return	Value
A	Boolean	variable	indicating	whether	the	specified	UI	is
supported.	It	returns	True	if	supported,	or	False	if	not	supported.

Remarks
See	SPVoice.DisplayUI	for	additional	information.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	DisplayUI	and	IsUISupported	methods.	The	application	runs
the	audio	sound	panel,	the	same	sound	panel	that	is	available
using	Speech	properties	in	Control	Panel.
To	run	this	code,	create	a	single	form	without	any	items	on	it.
Paste	this	code	into	the	Declarations	section	of	the	form.
Option	Explicit

Public	WithEvents	vox	As	SpeechLib.SpVoice

Private	Sub	Form_Load()

				Set	vox	=	New	SpVoice

				RunUI	SpeechAudioVolume

End	Sub

Private	Function	RunUI(theUI	As	String)

				If	vox.IsUISupported(theUI)	=	True	Then

								vox.DisplayUI	Form1.hWnd,	"My	App's	Sound	Levels",	theUI,	vbNullString

				Else

								MsgBox	theUI	&	"	UI	not	supported"

				End	If

End	Function

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpVoice

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Pause	Method
The	Pause	method	pauses	the	voice	at	the	nearest	alert
boundary	and	closes	the	output	device,	allowing	it	to	be	used	by
other	voices.

SpVoice.Pause()

Parameters

None.

Return	Value
None.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	Pause	and	Resume	methods.	To	run	this	code,	create	a	form
with	the	following	control:
A	command	button	called	Command1

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	a	voice	object.	The	first	call	of
the	Command1_Click	procedure	causes	the	voice	to	begin
speaking	a	text	stream.	Subsequent	Command1	clicks
alternately	pause	and	resume	the	voice.	When	the	voice	has
finished	speaking	the	stream,	the	EndStream	causes	the	voice
to	speak	it	again.
The	voice's	AlertBoundary	setting	of	SVEPhoneme	means	that
the	Pause	method	can	interrupt	the	voice	within	word

boundaries.	The	text	stream	spoken	contains	a	number	of	long
words	in	order	to	show	this	interruption	of	words	more	clearly.

Option	Explicit

Private	WithEvents	V	As	SpeechLib.SpVoice

Private	Sub	Command1_Click()

				Select	Case	Command1.Caption

				

				Case	"Start"

								Call	SpeakAgain

								Command1.Caption	=	"Pause"

								

				Case	"Pause"

								V.Pause

								Command1.Caption	=	"Resume"

								

				Case	"Resume"

								V.Resume

								Command1.Caption	=	"Pause"

								

				End	Select

				

End	Sub

Private	Sub	Form_Load()

				Set	V	=	New	SpVoice

				V.AlertBoundary	=	SVEPhoneme				'Let	words	be	interrupted

				Command1.Caption	=	"Start"

				

End	Sub

Private	Sub	V_EndStream(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant)

				Call	SpeakAgain

End	Sub

Private	Sub	SpeakAgain()

				V.Speak	"this	phenomenal	asynchronous	stream	contains	multisyllabic	"	_

												&	"pronunciations	and	circumlocutions.",	SVSFlagsAsync

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpVoice

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Priority	Property

The	Priority	property	gets	and	sets	the	priority	level	of	the
voice.
The	priority	level	defines	the	order	in	which	the	text-to-speech
(TTS)	engine	processes	a	voice	object's	speech	requests	relative
to	requests	from	other	voice	objects.	Higher	priority	levels	are
assigned	to	error-handling	voices	and	the	lowest	priority	level	is
assigned	to	normal	voices.	Because	of	their	priority	level,	voice
requests	from	error-handling	voices	are	spoken	ahead	of	normal
priority	voice	requests;	as	a	result,	error-handling	voices	can
appear	to	interrupt	normal	voices.
The	voice	priority	levels	are	contained	in	the
SpeechVoicePriority	enumeration.	An	SpVoice	object	is	created
with	normal	priority.	To	create	an	alert	or	over	voice,	create	a
voice	and	set	its	Priority	property	appropriately.

Syntax

Set: SpVoice.Priority	=	SpeechVoicePriority
Get: SpeechVoicePriority	=	SpVoice.Priority

Parts

SpVoice
The	owning	object.

SpeechVoicePriority
Set:	A	SpeechVoicePriority	constant	that	sets	the	priority
level.

Get:	A	SpeechVoicePriority	constant	that	returns	the	current
priority	level.

Remarks
A	voice	with	a	Priority	setting	of	SVPAlert	is	referred	to	as	an
alert	voice.	Alert	voices	are	designed	to	be	the	primary	vehicle
for	TTS	error-handling.	Other	SpVoice	elements,	such	as	the
AlertBoundary	property,	support	error-handling	functionality	in
alert	voices	that	is	not	available	to	other	voices.

Example
The	following	Visual	Basic	code	demonstrates	the	use	of	the
Priority	property.	To	run	this	code,	create	a	form	with	the
following	controls:
Two	command	buttons	called	Command1	and	Command2

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	three	voice	objects,	and
assigns	different	Voice	and	Priority	settings	to	each.	Each	voice
is	named	after	its	Priority	setting.
In	the	Command1_Click	procedure,	the	normal	voice	begins
speaking	asynchronously.	The	alert	voice	waits	a	few	seconds,
and	then	begins	speaking.	The	normal	voice	is	interrupted	by
the	alert	voice,	and	resumes	speaking	when	the	alert	voice	has
finished.
In	the	Command2_Click	procedure,	the	normal	voice	and	the
over	voice	begin	speaking	asynchronously.	The	alert	voice	waits
a	few	seconds,	and	then	begins	speaking.	The	normal	voice	is
interrupted	by	the	alert	voice,	and	resumes	speaking	when	the
alert	voice	has	finished.	The	over	voice	speaks	over,	or	mixes
with,	the	other	two	voices.
Please	see	the	AlertBoundary	property	for	another	code

example	using	the	Priority	property.

Option	Explicit

Dim	Normal	As	SpeechLib.SpVoice

Dim	Alert	As	SpeechLib.SpVoice

Dim	Over	As	SpeechLib.SpVoice

Private	Sub	Command1_Click()

				'Enqueue	streams	from	normal	voice

				Normal.Speak	"a	normal	voice.	a	normal	priority	voice.",	SVSFlagsAsync

				Normal.Speak	"a	normal	voice.	a	normal	priority	voice.",	SVSFlagsAsync

				Call	Wait(3)				'Alert	voice	interrupts	normal

				Alert.Speak	"excuse	me,	alert	voice!",	SVSFlagsAsync

				

End	Sub

Private	Sub	Command2_Click()

				'Enqueue	streams	from	Normal	voice	and	Over	voice

				Normal.Speak	"a	normal	voice.	a	normal	priority	voice.",	SVSFlagsAsync

				Normal.Speak	"a	normal	voice.	a	normal	priority	voice.",	SVSFlagsAsync

				

				Over.Speak	"over	voice	speaking	over	the	other	voices.",	SVSFlagsAsync

				Over.Speak	"over	voice	speaking	over	the	other	voices.",	SVSFlagsAsync

				Over.Speak	"over	voice	speaking	over	the	other	voices.",	SVSFlagsAsync

				

				Call	Wait(3)				'Alert	voice	interrupts	normal

				Alert.Speak	"excuse	me,	alert	voice!",	SVSFlagsAsync

				

End	Sub

Private	Sub	Form_Load()

				Set	Normal	=	New	SpVoice

				Set	Alert	=	New	SpVoice

				Set	Over	=	New	SpVoice

				

				Alert.Priority	=	SVPAlert			'From	SVPNormal	to	SVPAlert

				Over.Priority	=	SVPOver					'From	SVPNormal	to	SVPOver

				

				'Presumes	two	male	voices	and	one	female	voice

				Set	Normal.Voice	=	Normal.GetVoices("gender	=	male").Item(0)				'1st	male	voice

				Set	Alert.Voice	=	Alert.GetVoices("gender	=	male").Item(1)						'2nd	male	voice

				Set	Over.Voice	=	Normal.GetVoices("gender	=	female").Item(0)				'1st	female	voice

End	Sub

Private	Sub	Wait(ByVal	Seconds	As	Integer)

				Dim	sglWait	As	Single

				sglWait	=	Timer()	+	Seconds

				Do

								DoEvents

				Loop	Until	Timer	>	sglWait

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpVoice

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Rate	Property

The	Rate	property	gets	and	sets	the	speaking	rate	of	the	voice.
Values	for	the	Rate	property	range	from	-10	to	10,	which
represent	the	slowest	and	the	fastest	speaking	rates,
respectively.
At	the	beginning	of	each	Speak	or	SpeakStream	method,	the
voice	sets	its	speaking	rate	according	to	the	value	of	its	Rate
property,	and	speaks	the	entire	stream	at	that	rate.	The	Rate
property	can	be	changed	at	any	time,	but	the	actual	speaking
rate	will	not	reflect	the	changed	property	value	until	it	begins	a
new	stream.

Syntax

Set: SpVoice.Rate	=	Long
Get: Long	=	SpVoice.Rate

Parts

SpVoice
The	owning	object.

Long
Set:	A	Long	variable	that	sets	the	property	value.
Get:	A	Long	variable	that	gets	the	property	value.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of

the	Rate	and	the	Volume	properties.	To	run	this	code,	create	a
form	with	the	following	controls:
A	command	button	called	Command1
A	text	box	called	Text1
A	VScrollbar	called	VScroll1

An	HScrollbar	HScroll1
Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	a	voice	object	and	associates
the	VScrollbar	with	the	voice's	Volume	property	and	the
HScrollbar	with	the	voice's	Rate	property.	Adjusting	the	scroll
bars	changes	the	settings	of	the	Volume	and	Rate	properties.
The	Command1_Click	procedure	speaks	a	phrase	in	order	to
demonstrate	the	effects	of	the	changes.

Option	Explicit

Private	V	As	SpeechLib.SpVoice

Private	Sub	Command1_Click()

				V.Speak	"The	quick	brown	fox	jumped	over	the	lazy	dog.",	SVSFlagsAsync

End	Sub

Private	Sub	Form_Load()

				Set	V	=	New	SpeechLib.SpVoice

				

				VScroll1.Min	=	0

				VScroll1.Max	=	100

				VScroll1.Value	=	V.Volume

				

				HScroll1.Min	=	-10

				HScroll1.Max	=	10

				HScroll1.Value	=	V.Rate

				

				Text1.Text	=	"Vol:	"	&	VScroll1.Value	&	";		Rate:	"	&	HScroll1.Value

				

End	Sub

Private	Sub	HScroll1_Change()

				V.Rate	=	HScroll1.Value

				Text1.Text	=	"Vol:	"	&	VScroll1.Value	&	";		Rate:	"	&	HScroll1.Value

End	Sub

Private	Sub	VScroll1_Change()

				V.Volume	=	VScroll1.Value

				Text1.Text	=	"Vol:	"	&	VScroll1.Value	&	";		Rate:	"	&	HScroll1.Value

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpVoice

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Resume	Method
The	Resume	method	causes	the	voice	to	resume	speaking
when	paused.

SpVoice.Resume()

Parameters

None.

Return	Value
None.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	Pause	and	Resume	methods.	To	run	this	code,	create	a	form
with	the	following	control:
A	command	button	called	Command1

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	a	voice	object.	The	first	call	of
the	Command1_Click	procedure	causes	the	voice	to	begin
speaking	a	text	stream.	Subsequent	Command1	clicks
alternately	pause	and	resume	the	voice.	When	the	voice	has
finished	speaking	the	stream,	the	EndStream	causes	the	voice
to	speak	it	again.
The	voice's	AlertBoundary	setting	of	SVEPhoneme	means	that
the	Pause	method	can	interrupt	the	voice	within	word
boundaries.	The	text	stream	spoken	contains	a	number	of	long

words	in	order	to	show	this	interruption	of	words	more	clearly.

Option	Explicit

Private	WithEvents	V	As	SpeechLib.SpVoice

Private	Sub	Command1_Click()

				Select	Case	Command1.Caption

				

				Case	"Start"

								Call	SpeakAgain

								Command1.Caption	=	"Pause"

								

				Case	"Pause"

								V.Pause

								Command1.Caption	=	"Resume"

								

				Case	"Resume"

								V.Resume

								Command1.Caption	=	"Pause"

								

				End	Select

				

End	Sub

Private	Sub	Form_Load()

				Set	V	=	New	SpVoice

				V.AlertBoundary	=	SVEPhoneme				'Let	words	be	interrupted

				Command1.Caption	=	"Start"

				

End	Sub

Private	Sub	V_EndStream(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant)

				Call	SpeakAgain

End	Sub

Private	Sub	SpeakAgain()

				V.Speak	"this	phenomenal	asynchronous	stream	contains	multisyllabic	"	_

												&	"pronunciations	and	circumlocutions.",	SVSFlagsAsync

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpVoice

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Skip	Method
The	Skip	method	skips	the	voice	forward	or	backward	by	the
specified	number	of	items	within	the	current	input	text	stream.

SpVoice.Skip(

					Type	As	String,

					NumItems	As	Long

)	As	Long

Parameters

Type
The	type	of	items	to	be	skipped.	Currently,	Sentence	is	the
only	type	supported.

NumItems
The	number	of	items	to	be	skipped	forward	in	the	voice	input
stream.	A	negative	value	specifies	skipping	backward.

Return	Value
A	Long	variable	containing	the	number	of	items	skipped.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	Skip	method.	To	run	this	code,	create	a	form	with	the
following	controls:
A	text	box	called	Text1

Two	command	buttons	called	Command1	and	Command2
An	HScrollbar	control	called	HScroll1

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	a	voice,	sets	up	the
HScrollbar	with	a	value	of	-2	in	a	range	from	-5	to	5,	and	puts	a
string	of	numbers	in	the	textbox.	Because	the	numbers	are
followed	by	periods	and	separated	by	spaces,	SAPI	considers
each	number	to	be	a	sentence.	The	scrollbar	specifies	the
number	of	sentences	that	the	voice	object	will	skip.
Click	Command1	to	start	the	voice	speaking	the	sentences	in
the	textbox.	Click	Command2	to	skip	the	voice	forward	or
backward,	depending	on	the	value	of	the	scrollbar	control.	Click
the	left	side	or	the	right	side	of	the	scrollbar	to	increase	or
decrease	the	number	of	sentences	to	be	skipped	by	the
Command2	button.

Option	Explicit

Private	WithEvents	V	As	SpeechLib.SpVoice

Private	Sub	Command1_Click()

				V.Speak	Text1.Text,	SVSFlagsAsync

End	Sub

Private	Sub	Command2_Click()

				V.Skip	"Sentence",	HScroll1.Value

End	Sub

Private	Sub	Form_Load()

				Set	V	=	New	SpVoice

				

				HScroll1.Min	=	-5

				HScroll1.Max	=	5

				HScroll1.Value	=	-2

							

				Text1.Text	=	"1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.	16.	17.	18.	19.	20."

				

End	Sub

Private	Sub	HScroll1_Change()

				If	HScroll1.Value	>	0	Then

								Command2.Caption	=	"	Skip	forward	"	&	HScroll1.Value	&	"	sentences"

				Else

								Command2.Caption	=	"	Skip	backward	"	&	Abs(HScroll1.Value)	&	"	sentences"

				End	If

End	Sub

Private	Sub	V_Word(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	_

																			ByVal	CharacterPosition	As	Long,	ByVal	Length	As	Long)

				Text1.SetFocus

				Text1.SelStart	=	CharacterPosition

				Text1.SelLength	=	Length

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpVoice

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Speak	Method
The	Speak	method	initiates	the	speaking	of	a	text	string,	a	text
file,	an	XML	file,	or	a	wave	file	by	the	voice.
The	Speak	method	can	be	called	synchronously	or
asynchronously.	When	called	synchronously,	the	method	does
not	return	until	the	text	has	been	spoken;	when	called
asynchronously,	it	returns	immediately,	and	the	voice	speaks	as
a	background	process.
When	synchronous	speech	is	used	in	an	application,	the
application's	execution	is	blocked	while	the	voice	speaks,	and
the	user	is	effectively	locked	out.	This	may	be	acceptable	for
simple	applications,	or	those	with	no	graphical	user	interface
(GUI),	but	when	sophisticated	user	interaction	is	intended,
asynchronous	speaking	will	generally	be	more	appropriate.
The	WaitUntilDone	and	SpeakCompleteEvent	methods	can	be
used	to	block	an	application's	forward	progress	while	allowing
user	interaction	with	the	mouse	or	keyboard.

SpVoice.Speak(

					Text	As	String,

					[Flags	As	SpeechVoiceSpeakFlags	=	SVSFDefault]

)	As	Long

Parameters

Text
The	text	to	be	spoken,	or	if	the	SVSFIsFilename	flag	is
included	in	the	Flags	parameter,	the	path	of	the	file	to	be
spoken.

Flags
[Optional]	Flags.	Default	value	is	SVSFDefault.

Return	Value
A	Long	variable	containing	the	stream	number.	When	a	voice
enqueues	more	than	one	stream	by	speaking	asynchronously,
the	stream	number	is	necessary	to	associate	events	with	the
appropriate	stream.

Remarks
The	Speak	method	inserts	a	stream	into	the	text-to-speech
(TTS)	engine's	queue,	and	returns	a	stream	number,	assigned
by	the	engine.	This	distinguishes	the	stream	from	other	streams
in	the	queue.	This	number	is	a	temporary	identifier	which
functions	like	an	index	into	the	TTS	queue.	The	first	stream
spoken	into	an	empty	queue	will	always	have	a	stream	number
of	1.
A	voice	object	can	enqueue	numerous	streams,	and	each	of
these	streams	can	generate	events.	SpVoice	events	always
return	the	stream	number	as	a	parameter.	If	an	application
saves	the	stream	numbers	of	the	streams	it	enqueues,	events
can	be	associated	with	the	proper	stream.	

Example
The	following	code	snippet	demonstrates	the	Speak	method
with	several	commonly	used	flag	settings.

Const	cstrTextName	=	"c:\Speech	Voice	Speak.txt"

Dim	V	As	SpeechLib.SpVoice

Set	V	=	New	SpVoice

'Build	a	simple	text	file	for	demonstration	purposes

Open	cstrTextName	For	Output	As	#1

Print	#1,	"The	name	of	this	file	is	"	&	cstrTextName

Close	#1

'Speak	literal	text

V.Speak	"This	is	some	text",	SVSFDefault

'Speak	the	text	of	the	test	file

V.Speak	cstrTextName,	SVSFIsFilename	+	SVSFlagsAsync

'Speak	with/without	punctuation

V.Speak	"one,	two,	three!",	SVSFlagsAsync

V.Speak	"one,	two,	three!",	SVSFNLPSpeakPunc	+	SVSFlagsAsync

'Speak	text	with/without	XML	tags

V.Speak	"text	with	XML",	SVSFIsXML	+	SVSFlagsAsync

V.Speak	"text	with	XML",	SVSFIsNotXML	+	SVSFlagsAsync

V.WaitUntilDone	10000

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpVoice	
Type:	Hidden

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpeakCompleteEvent	Method

The	SpeakCompleteEvent	method	gets	an	event	handle	from
the	voice	that	will	be	signaled	when	the	voice	finishes	speaking.
The	SpeakCompleteEvent	method	is	similar	to	the
WaitUntilDone	method,	but	supports	more	sophisticated	ways	of
waiting	for	the	voice	to	finish	speaking.
The	WaitUntilDone	method	explicitly	blocks	program	execution
until	the	voice	finishes.	The	SpeakCompleteEvent	method	does
not	block	execution,	but	returns	an	event	handle	that	can	be
used	with	API	wait	functions	such	as	WaitForSingleObject.
Because	these	functions	can	wait	for	short	periods	of	time,
applications	may	be	able	to	perform	useful	tasks	while	polling
the	event	handle.

SpVoice.SpeakCompleteEvent()	As	Long

Parameters

None.

Return	Value
A	Long	variable	containing	the	event	handle.

Example
The	following	code	snippet	demonstrates	the	use	of	the
SpeakCompleteEvent	method.	The	asynchronous	Speak	call
returns	immediately,	and	causes	the	voice	to	begin	speaking	as

a	background	process.	The	SpeakCompleteEvent	method
returns	the	event	handle	of	the	speaking	process.	This	handle	is
passed	to	WaitForSingleObject,	which	waits	for	a	completion
signal	from	the	process.	When	the	background	speaking	process
signals	its	completion,	the	call	to	WaitForSingleObject	returns,
and	the	program	continues.

Dim	objVoice	As	SpeechLib.SpVoice

Dim	lngHandle	As	Long

Dim	lngRtn	As	Long

Const	INFINITE	=	-1&

Set	objVoice	=	New	SpVoice

objVoice.Speak	"please	wait	until	this	text	has	been	spoken",	SVSFlagsAsync

lngHandle	=	objVoice.SpeakCompleteEvent													'Get	a	handle	on	this	stream

lngRtn	=	WaitForSingleObject(lngHandle,	INFINITE)			'Wait	for	completion

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpVoice

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpeakStream	Method
The	Speakstream	method	initiates	speaking	of	a	sound	file	by
the	voice.

SpVoice.SpeakStream(

					Stream	As	ISpeechBaseStream,

					[Flags	As	SpeechVoiceSpeakFlags	=	SVSFDefault]

)	As	Long

Parameters

Stream
Specifies	an	ISpeechBaseStream	object	containing	the
stream.

Flags
[Optional]	Specifies	the	Flags.	Default	value	is	SVSFDefault.

Return	Value
A	Long	variable	containing	the	stream	number.	When	a	voice
enqueues	more	than	one	stream	by	speaking	asynchronously,
the	stream	number	is	necessary	to	associate	events	with	the
appropriate	stream.

Example
The	following	code	snippet	demonstrates	the	use	of	the
SpeakStream	method.	To	run	this	code,	create	a	form	with	the
following	control:

A	command	button	called	Command1
Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	a	male	and	a	female	voice.
The	Command1_Click	procedure	causes	the	female	voice	to
speak	text	into	a	file,	and	the	male	voice	to	play	that	file	using
the	SpeakStream	method.

Option	Explicit

Private	M	As	SpeechLib.SpVoice						'M	is	a	male	voice

Private	F	As	SpeechLib.SpVoice						'F	is	a	female	voice

Private	S	As	SpeechLib.SpFileStream

Private	Sub	Command1_Click()

				'Build	a	local	file	path	and	open	it	as	a	stream

				Set	S	=	New	SpFileStream

				Call	S.Open("C:\SpeakStream.wav",	SSFMCreateForWrite,	False)

				

				'Female	voice	speaks	into	the	file	stream	and	creates	a	WAV	file

				Set	F.AudioOutputStream	=	S

				F.Speak	"cee	:	\	speak	stream	dot	wave",	SVSFNLPSpeakPunc

				S.Close

				

				'Male	voice	speaks	female	voice's	stream

				Call	S.Open("C:\SpeakStream.wav",	,	False)

				M.Speak	"i	will	now	demonstrate	the	speak	stream	method."

				M.SpeakStream	S

				M.Speak	"that	sounded	like	"	&	F.Voice.GetDescription	&	",	but	it	was	me."

				

End	Sub

Private	Sub	Form_Load()

				'Create	voices

				Set	F	=	New	SpVoice

				Set	F.Voice	=	F.GetVoices("gender=female").Item(0)

				Set	M	=	New	SpVoice

				Set	M.Voice	=	M.GetVoices("gender=male").Item(0)

				

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpVoice

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Status	Property

The	Status	property	returns	the	current	speaking	and	event
status	of	the	voice	in	an	ISpeechVoiceStatus	object.

Syntax

Set: (This	property	is	read-only)
Get: ISpeechVoiceStatus	=	SpVoice.Status

Parts

SpVoice
The	owning	object.

ISpeechVoiceStatus
Set:	(This	property	is	read-only)
Get:	An	ISpeechVoiceStatus	object	containing	Status
information.

Remarks
Properties	of	the	ISpeechVoiceStatus	object	may	also	be
accessed	through	an	implicit	status	object	by	means	of	the
syntax	"propertyvalue	=	SpVoice.Status.propertyname."	Please
see	the	example	below.
The	Status	method	is	designed	for	use	with	voices	speaking	to
audio	devices.	Because	the	Status	method	is	closely	associated
with	audio	device	status,	it	will	not	return	an	active	status	for	a
voice	speaking	to	an	audio	output	stream.

Example

The	following	code	snippet	demonstrates	two	ways	of	using	the
Status	method.	The	first	uses	an	implicit	status	object;	the
second	creates	the	status	object	explicitly.
Use	of	the	voice	Status	method	and	the	ISpeechVoiceStatus
interface	is	demonstrated	with	more	detail	in	the
ISpeechVoiceStatus	code	example.

Dim	objVOICE	As	SpeechLib.SpVoice

Dim	objSTATUS	As	SpeechLib.ISpeechVoiceStatus

'	Assume	that	objVOICE	has	been	created,	and

'	has	spoken	some	text	asynchronously.

'	ISpeechVoiceStatus	object	is	implicit	here

'

If	objVOICE.Status.CurrentStreamNumber	=	2	Then

				'Do	something

End	If

'	ISpeechVoiceStatus	object	is	explicit	here

'

Set	objSTATUS	=	objVOICE.Status

If	objSTATUS.CurrentStreamNumber	=	2	Then

				'Do	something

End	If

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpVoice

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SynchronousSpeakTimeout	Property

The	SynchronousSpeakTimeout	property	gets	and	sets	the
interval,	in	milliseconds,	after	which	the	voice's	synchronous
Speak	and	SpeakStream	calls	will	time	out	when	its	output
device	is	unavailable.
When	a	voice	enqueues	a	text	stream,	the	audio	output	device
represented	by	its	AudioOutput	property	may	be	in	use.	When
the	text	stream	is	enqueued	synchronously,	the	voice	will	wait
for	the	amount	of	time	specified	in	its
SynchronousSpeakTimeout	property.	If	the	output	device	does
not	become	available	to	the	voice	before	the	time	has	elapsed,
the	voice	will	time	out,	the	synchronous	speech	request	is
cancelled,	and	the	application	receives	an	SPERR_DEVICE_BUSY
error.	This	and	other	SAPI	errors	are	detailed	in	Error	Codes
There	is	no	equivalent	timeout	for	asynchronous	speech.
Because	synchronous	speech	prevents	applications	from
receiving	events	from	mouse	movements	and	keyboard	input,
unexpected	voice	streams	from	other	applications	could	freeze
an	application	attempting	synchronous	speech.	The
SynchronousSpeakTimeout	is	designed	so	that	applications	can
recover	from	such	situations.

Syntax

Set: SpVoice.SynchronousSpeakTimeout	=	Long
Get: Long	=	SpVoice.SynchronousSpeakTimeout

Parts

SpVoice

The	owning	object.

Long
Set:	A	Long	variable	that	sets	the	property	value.
Get:	A	Long	variable	that	gets	the	property	value.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	SynchronousSpeakTimeout	property.	To	run	this	code,	create
a	form	with	the	following	controls:
A	list	box	control	called	List1

A	command	button	called	Command1
Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	three	voices.	The
Command1_Click	procedure	starts	the	first	voice	speaking,
which	makes	the	audio	output	device	unavailable	to	the	other
voices.	The	SynchronousSpeakTimeout	property	of	the	second
voice	is	set	to	one	millisecond,	ensuring	that	it	will	time	out
before	the	first	voice	finishes	speaking.	The	third	voice	simply
waits	for	the	first	voice	to	finish,	and	then	speaks.
The	voices	use	a	subroutine	to	speak;	this	subroutine	adds	each
speech	request	to	the	list	box	and	tests	for	the	error	that	occurs
when	a	voice	times	out.

Option	Explicit

Const	SPERR_DEVICE_BUSY	=	&H80045006;

Dim	v1	As	SpeechLib.SpVoice

Dim	v2	As	SpeechLib.SpVoice

Dim	v3	As	SpeechLib.SpVoice

Private	Sub	Command1_Click()

				

				List1.Clear

				

				'Voice	1	takes	control	of	the	audio

				Call	SafeSpeak(v1,	"This	is	voice	number	1",	SVSFlagsAsync)

				Call	SafeSpeak(v1,	"Voice	2	and	voice	3	will	wait	for	me",	SVSFlagsAsync)

				v1.WaitUntilDone	100				'ensure	that	the	voice	1	starts	first

				

				'Voice	2	starts	waiting	until	voice	1	is	done,

				'but	its	timeout	is	very	short	--	1	millisecond.

				'So	it	times	out	before	voice	1	is	done.

				v2.SynchronousSpeakTimeout	=	1

				Call	SafeSpeak(v2,	"This	is	voice	2",	SVSFDefault)

				Call	SafeSpeak(v2,	"This	is	voice	2	again",	SVSFDefault)

				

				'Voice	3	simply	waits	until	voice	1	is	done.

				Call	SafeSpeak(v3,	"This	is	voice	3	now",	SVSFDefault)

				

End	Sub

Private	Sub	Form_Load()

				Set	v1	=	New	SpVoice

				Set	v2	=	New	SpVoice

				Set	v3	=	New	SpVoice

End	Sub

Private	Sub	SafeSpeak(who	As	SpVoice,	ByVal	txt,	ByVal	flags)

				On	Error	GoTo	SafeSpeakExit

				DoEvents

				who.Speak	txt,	flags

				

SafeSpeakExit:

				Select	Case	Err.Number

				Case	0:																					List1.AddItem	"queued:		"	&	txt

				Case	SPERR_DEVICE_BUSY:					List1.AddItem	"timeout:	"	&	txt

				End	Select

				Err.Clear

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpVoice

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Voice	Property

The	Voice	property	gets	and	sets	the	currently	active	member
of	the	Voices	collection.
The	Voice	property	can	be	thought	of	as	the	person	of	a	voice
object;	examples	of	Voices	are	"Microsoft	Mary"	and	"Microsoft
Mike."	Use	the	GetVoices	method	to	determine	what	voices	are
available.

Syntax

Set: SpVoice.Voice	=	SpObjectToken
Get: SpObjectToken	=	SpVoice.Voice

Parts

SpVoice
The	owning	object.

SpObjectToken
Set:	An	SpObjectToken	object	that	sets	the	voice	property.
Get:	An	SpObjectToken	object	that	gets	the	current	voice.

Remarks
If	there	is	not	a	voice	currently	in	use,	this	property	will	return
the	token	for	the	default	voice.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of

the	GetVoices	method	and	the	Voice	property.	To	run	this	code,
create	a	form	with	the	following	controls:
A	command	button	called	Command1
A	list	box	called	List1

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	a	voice	object,	and	displays
the	names	of	all	available	voices	in	the	list	box.	Select	a	voice
name	in	the	list	box	and	then	click	Command1;	the	Command1
procedure	sets	the	voice	object's	Voice	property	to	the	selected
name,	and	causes	the	voice	to	speak	its	new	name.

Option	Explicit

Private	V	As	SpeechLib.SpVoice

Private	T	As	SpeechLib.ISpeechObjectToken

Private	Sub	Command1_Click()

				If	List1.ListIndex	>	-1	Then

				

								'Set	voice	object	to	voice	name	selected	in	list	box

								'The	new	voice	speaks	its	own	name

								

								Set	V.Voice	=	V.GetVoices().Item(List1.ListIndex)

								V.Speak	V.Voice.GetDescription

								

				Else

								MsgBox	"Please	select	a	voice	from	the	listbox"

				End	If

								

End	Sub

Private	Sub	Form_Load()

				Dim	strVoice	As	String

				

				Set	V	=	New	SpVoice

				

				'Get	each	token	in	the	collection	returned	by	GetVoices

				For	Each	T	In	V.GetVoices

								strVoice	=	T.GetDescription					'The	token's	name

								List1.AddItem	strVoice										'Add	to	listbox

				Next

				

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpVoice

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Volume	Property

The	Volume	property	gets	and	sets	the	base	volume	(loudness)
level	of	the	voice.
Values	for	the	Volume	property	range	from	0	to	100,
representing	the	minimum	and	maximum	volume	levels,
respectively.
At	the	beginning	of	each	Speak	or	SpeakStream	method,	the
voice	sets	the	volume	level	according	to	the	value	of	the	Volume
property,	and	speaks	the	entire	stream	at	that	level.	The	voice's
Volume	property	can	be	changed	at	any	time,	but	the	actual
volume	level	will	not	reflect	the	changed	property	value	until	it
begins	a	new	stream.

Syntax

Set: SpVoice.Volume	=	Long
Get: Long	=	SpVoice.Volume

Parts

SpVoice
The	owning	object.

Long
Set:	A	Long	variable	that	sets	the	property	value.
Get:	A	Long	variable	that	gets	the	property	value.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	Rate	and	the	Volume	properties.	To	run	this	code,	create	a

form	with	the	following	controls:
A	command	button	called	Command1

A	text	box	called	Text1
A	VScrollbar	called	VScroll1
An	HScrollbar	called	HScroll1

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	creates	a	voice	object	and	associates
the	VScrollbar	with	the	voice's	Volume	property	and	the
HScrollbar	with	the	voice's	Rate	property.	Adjusting	the	scroll
bars	changes	the	settings	of	the	Volume	and	Rate	properties.
The	Command1_Click	procedure	speaks	a	phrase	in	order	to
demonstrate	the	effects	of	the	changes.

Option	Explicit

Private	V	As	SpeechLib.SpVoice

Private	Sub	Command1_Click()

				V.Speak	"The	quick	brown	fox	jumped	over	the	lazy	dog.",	SVSFlagsAsync

End	Sub

Private	Sub	Form_Load()

				Set	V	=	New	SpeechLib.SpVoice

				

				VScroll1.Min	=	0

				VScroll1.Max	=	100

				VScroll1.Value	=	V.Volume

				

				HScroll1.Min	=	-10

				HScroll1.Max	=	10

				HScroll1.Value	=	V.Rate

				

				Text1.Text	=	"Vol:	"	&	VScroll1.Value	&	";		Rate:	"	&	HScroll1.Value

				

End	Sub

Private	Sub	HScroll1_Change()

				V.Rate	=	HScroll1.Value

				Text1.Text	=	"Vol:	"	&	VScroll1.Value	&	";		Rate:	"	&	HScroll1.Value

End	Sub

Private	Sub	VScroll1_Change()

				V.Volume	=	VScroll1.Value

				Text1.Text	=	"Vol:	"	&	VScroll1.Value	&	";		Rate:	"	&	HScroll1.Value

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpVoice

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

WaitUntilDone	Method
The	WaitUntilDone	method	blocks	the	caller	until	either	the
voice	has	finished	speaking	or	the	specified	time	interval	has
elapsed.
The	purpose	of	this	method	is	to	block	application	execution
while	a	voice	is	speaking	asynchronously.	The	effect	of
performing	a	single	WaitUntilDone	call	following	a	Speak	or
SpeakStream	call	is	similar	to	performing	those	calls
synchronously.	But	the	WaitUntilDone	method	can	be	used	in
conjunction	with	the	DoEvents	statement	to	block	an
application's	forward	progress	while	allowing	it	to	receive
events.	This	is	demonstrated	in	the	example	below.	
SpVoice.WaitUntilDone(

					msTimeout	As	Long

)	As	Boolean

Parameters

msTimeout
Specifies	the	timeout	in	milliseconds.	If	-1,	the	time	interval
is	ignored	and	the	method	simply	waits	for	the	voice	to	finish
speaking.

Return	Value
A	Boolean	variable	indicating	which	case	terminated	the	call.	If
True,	the	voice	finished	speaking;	if	False,	the	time	interval
elapsed.

Example

The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	WaitUntilDone	method.	To	run	this	code,	create	a	form	with
the	following	controls:
Three	picture	controls	called	Picture1,	Picture2,	and	Picture3
Three	command	buttons	called	Command,	Command2,	and

Command3

Paste	this	code	into	the	Declarations	section	of	the	form.
The	three	picture	controls	have	MouseMove	event	procedures
which	change	their	background	colors	when	the	mouse	is
moved	over	them.	The	Form_MouseMove	event	procedure
resets	the	picture	controls	to	a	white	background.	Moving	the
mouse	across	the	pictures	will	cause	each	to	change	color	for	as
long	as	the	mouse	is	over	it.
The	three	command	button	procedures	are	similar.	Each
procedure	disables	all	the	command	buttons,	causes	a	text-to-
speech	(TTS)	voice	to	speak	a	short	phrase,	and	enables	all
command	buttons	when	the	voice	finishes	speaking.	There	is	no
significance	to	disabling	and	enabling	the	buttons	except	to
show	the	duration	of	the	speech.
Click	the	Command1	button	to	cause	the	voice	to	speak
synchronously.	Moving	the	mouse	over	the	three	picture
controls	will	not	cause	them	to	change	colors;	the	MouseMove
events	are	blocked	by	the	synchronous	Speak	call.
Click	the	Command2	button	to	cause	the	voice	to	speak
asynchronously.	The	WaitUntilDone	call	prevents	the	Command2
procedure	from	ending	before	the	voice	is	finished.	Moving	the
mouse	over	the	three	picture	controls	will	not	cause	them	to
change	colors;	the	MouseMove	events	are	blocked	by	the
WaitUntilDone	call.
Click	the	Command3	button	to	cause	the	voice	to	speak
asynchronously.	The	WaitUntilDone	method	is	called	inside	a
loop	which	also	contains	a	DoEvents	statement.	This	loop
prevents	the	Command3	procedure	from	ending	before	the

voice	is	finished,	and	also	allows	MouseMove	events	to	be
received	by	the	form.	As	a	result,	moving	the	mouse	over	the
three	picture	controls	causes	them	to	change	colors	while	the
voice	is	speaking.

Option	Explicit

Const	INFINITE	=	-1&																'Tells	WaitUntilDone	to	wait	forever

Dim	V	As	SpeechLib.SpVoice

Private	Sub	Command1_Click()

																																				'Speak	synchronously

				Call	EnableButtons(False)							'Disable	buttons	while	voice	speaks

				

				V.Speak	"Please	move	the	mouse	over	the	picture	controls"	_

												&	"	while	i	speak	synchronously."

												

				Call	EnableButtons(True)								'Enable	buttons	when	voice	is	done

				

End	Sub

Private	Sub	Command2_Click()

																																				'Speak	asynchronously

				Call	EnableButtons(False)							'Disable	buttons	while	voice	speaks

				

				V.Speak	"Please	move	the	mouse	over	the	picture	controls"	_

												&	"	while	i	speak	with	a	single	Wait	Until	Done",	_

												SVSFlagsAsync

												

				V.WaitUntilDone	(INFINITE)

				Call	EnableButtons(True)								'Enable	buttons	when	voice	is	done

				

End	Sub

Private	Sub	Command3_Click()

																																				'Speak	asynchronously

																																

				Call	EnableButtons(False)							'Disable	buttons	while	voice	speaks

				

				V.Speak	"Please	move	the	mouse	over	the	picture	controls"	_

												&	"	while	i	speak	with	a	smart	loop.",	_

												SVSFlagsAsync

				Do																														'Smart	loop

								DoEvents																				'DoEvents	lets	events	happen

				Loop	Until	V.WaitUntilDone(10)		'Loop	until	voice	finishes

				

				Call	EnableButtons(True)								'Enable	buttons	when	voice	is	done

				

End	Sub

Private	Sub	Form_Load()

				Set	V	=	New	SpVoice

				V.Speak	"Please	move	the	mouse	over	the	picture	controls"	_

												&	"	before	clicking	the	buttons",	_

												SVSFlagsAsync

End	Sub

Private	Sub	Form_MouseMove(Button	As	Integer,	Shift	As	Integer,	_

																																																X	As	Single,	Y	As	Single)

				Picture1.BackColor	=	vbWhite

				Picture2.BackColor	=	vbWhite

				Picture3.BackColor	=	vbWhite

End	Sub

Private	Sub	Picture1_MouseMove(Button	As	Integer,	Shift	As	Integer,	_

																																																X	As	Single,	Y	As	Single)

				Picture1.BackColor	=	vbRed

End	Sub

Private	Sub	Picture2_MouseMove(Button	As	Integer,	Shift	As	Integer,	_

																																																X	As	Single,	Y	As	Single)

				Picture2.BackColor	=	vbGreen

End	Sub

Private	Sub	Picture3_MouseMove(Button	As	Integer,	Shift	As	Integer,	_

																																																X	As	Single,	Y	As	Single)

				Picture3.BackColor	=	vbBlue

End	Sub

Private	Sub	EnableButtons(TrueFalse	As	Boolean)

				Command1.Enabled	=	TrueFalse

				Command2.Enabled	=	TrueFalse

				Command3.Enabled	=	TrueFalse

End	Sub

Microsoft	Speech	SDK	Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpVoice	(Events)
The	SpVoice	(Events)	automation	object	defines	the	types	of
events	that	can	be	received	by	an	SpVoice	object	from	a	text-to-
speech	(TTS)	engine.
In	order	to	understand	voice	events,	it	is	necessary	to
distinguish	between	the	TTS	engine,	which	synthesizes	speech
from	text,	and	the	SpVoice	object,	which	applications	employ	to
communicate	with	the	engine.	The	TTS	engine	is	somewhat	like
a	server,	and	the	SpVoice	object	like	a	client.	The	voice	object
sends	the	engine	a	request	to	speak	a	string	of	text.	The	engine
processes	the	request	as	soon	as	it	can.	The	interval	between	a
speech	request	and	the	production	of	the	speech	is
unpredictable.	SpVoice	events	overcome	this	difficulty	by
providing	applications	with	real-time	feedback	from	the	engine
as	it	speaks,	making	it	possible	to	synchronize	application
functions	with	speech.	For	example,	an	application	can	use	a
voice	object's	Viseme	event	to	drive	animations	that	display
mouth	movements	as	the	engine	speaks.
The	voice	object	initiates	requests	with	the	Speak	and
SpeakStream	methods,	which	send	text	strings	and	audio	files
to	the	TTS	engine.	These	methods	can	be	called	synchronously
or	asynchronously.	Because	a	synchronous	speech	request
suspends	execution	of	the	calling	application	while	the	engine
speaks	the	stream,	events	from	the	speaking	of	the	stream	are
received	after	the	stream	has	been	spoken.	Applications	which
need	to	receive	events	as	real-time	feedback	should	use
asynchronous	Speak	and	SpeakStream	calls.
Examples	of	voice	events	are	the	beginning	and	the	end	of	a
text	stream,	and	the	boundaries	of	visemes,	phonemes,	words,
and	sentences.	The	SpeechVoiceEvents	enumeration	defines	a
constant	for	each	type	of	voice	event.	Use	one	or	more
SpeechVoiceEvents	constants	to	set	the	EventInterests	property
of	a	voice	object.	Only	the	types	of	events	specified	by
EventInterests	property	will	be	sent	by	the	TTS	engine.	The

default	setting	of	this	property	specifies	all	voice	event	types
except	AudioLevel.
When	using	Visual	Basic,	you	must	use	the	"WithEvents"
keyword	to	define	an	SpVoice	object	which	receives	events.

Events	in	file	streams
When	a	voice	object	speaks	into	a	filestream	object,	the	TTS
engine	will	embed	event	data	in	the	file	stream	if	all	the
following	conditions	are	true:

The	voice	object	is	defined	using	the	"WithEvents"
keyword
The	voice	object's	EventInterests	property	specifies	at
least	one	event	type

The	audio	output	contains	event	conditions	of	a	type
specified	in	the	voice's	EventInterests
The	filestream	object	is	opened	for	writing	with	its
"DoEvents"	parameter	True

When	TTS	engine	speaks	a	filestream	object	which	contains
embedded	events,	it	will	send	events	to	the	voice	if	all	the
following	conditions	are	true:

The	voice	object	is	defined	using	the	"WithEvents"
keyword

The	voice	object's	EventInterests	property	specifies	at
least	one	event	type
The	file	stream	contains	an	embedded	event	of	a	type
specified	in	the	voice's	EventInterests
The	filestream	object	is	opened	for	reading	with	its
"DoEvents"	parameter	True

When	the	TTS	engine	speaks	a	filestream	object	for	a	voice,	if
the	voice's	EventInterests	specify	StartStream	and	EndStream

events,	the	engine	will	send	it	a	StartStream	and	an	EndStream
event,	even	if	these	events	are	not	embedded	in	the	stream.	If
StartStream	and	EndStream	events	are	embedded	in	that	file
stream,	the	engine	will	send	the	voice	two	StartStream	events
and	two	EndStream	events.

Automation	Interfaces
The	SpVoice	(Events)	automation	object	has	the	following
elements:

Events Description
AudioLevel	Event Occurs	when	the	TTS	engine	detects

an	audio	level	change	while
speaking	a	stream	for	the	SpVoice
object.

Bookmark	Event Occurs	when	the	TTS	engine	detects
a	bookmark	while	speaking	a	stream
for	the	SpVoice	object.

EndStream	Event Occurs	when	the	TTS	engine	reaches
the	end	of	a	stream	it	is	speaking	for
the	SpVoice	object.

EnginePrivate	Event Occurs	when	a	private	TTS	engine
detects	a	custom	event	condition
boundary	while	speaking	a	stream
for	the	SpVoice	object.

Phoneme	Event Occurs	when	the	TTS	engine	detects
a	phoneme	boundary	while	speaking
a	stream	for	the	SpVoice	object.

Sentence	Event Occurs	when	the	TTS	engine	detects
a	sentence	boundary	while	speaking
a	stream	for	the	SpVoice	object.

StartStream	Event Occurs	when	the	TTS	engine	begins

speaking	a	stream	for	the	SpVoice
object.

Viseme	Event Occurs	when	the	TTS	engine	detects
a	viseme	boundary	while	speaking	a
stream	for	the	SpVoice	object.

VoiceChange	Event Occurs	when	the	TTS	engine	detects
a	change	of	voice	while	speaking	a
stream	for	the	SpVoice	object.

Word	Event Occurs	when	the	TTS	engine	detects
a	word	boundary	while	speaking	a
stream	for	the	SpVoice	object.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpVoice	(Events)

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

AudioLevel	Event

The	AudioLevel	event	occurs	when	the	text-to-speech	(TTS)
engine	detects	an	audio	level	change	while	speaking	a	stream
for	the	SpVoice	object.

SpVoice.AudioLevel(

					StreamNumber	As	Long,

					StreamPosition	As	Variant,

					AudioLevel	As	Long

)

Parameters

StreamNumber
The	stream	number	which	generated	the	event.	When	a
voice	enqueues	more	than	one	stream	by	speaking
asynchronously,	the	stream	number	is	necessary	to	associate
an	event	with	the	appropriate	stream.

StreamPosition
The	character	position	in	the	output	stream	at	which	the
audio	level	change	occurs.

AudioLevel
The	new	audio	level.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	AudioLevel	event.	To	run	this	code,	create	a	form	with	the

following	controls:
A	command	button	called	Command1

A	text	box	called	Text1
A	list	box	called	List1

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	code	creates	an	SpVoice	object,	adds	AudioLevel
to	its	event	interests,	and	places	sample	text	in	Text1.	The
Command1_Click	procedure	speaks	the	text	in	Text1.	The	Word
event	code	displays	each	word	spoken.	The	AudioLevel	event
code	converts	each	new	audio	level	to	a	string	of	asterisks,
effectively	displaying	the	audio	levels	in	a	graph	format.

Option	Explicit

Public	WithEvents	vox	As	SpeechLib.SpVoice

Private	Sub	Command1_Click()

				List1.Clear

				vox.Speak	Text1.Text,	SVSFlagsAsync	+	SVSFIsXML

End	Sub

Private	Sub	Form_Load()

				'	SVEAudioLevel	not	in	default	EventInterests	--	must	be	added!

				Set	vox	=	New	SpVoice

				vox.EventInterests	=	vox.EventInterests	Or	SVEAudioLevel

				Text1.Text	=	"audio	levels	change	often"

End	Sub

Private	Sub	vox_AudioLevel(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	_

																											ByVal	AudioLevel	As	Long)

				List1.AddItem	String(AudioLevel,	"*")			'AudioLevel	value	sets	length	of	string

End	Sub

Private	Sub	vox_Word(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	_

																					ByVal	CharacterPosition	As	Long,	ByVal	Length	As	Long)

				List1.AddItem	Mid(Text1.Text,	CharacterPosition	+	1,	Length)

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpVoice	(Events)

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Bookmark	Event

The	Bookmark	event	occurs	when	the	text-to-speech	(TTS)
engine	detects	a	bookmark	while	speaking	a	stream	for	the
SpVoice	object.
It	should	be	noted	that	Bookmark	events	may	not	be
synchronized	with	the	actual	speaking	of	the	words	in	text
streams	containing	bookmarks.	In	some	circumstances,	TTS
buffering	considerations	may	cause	a	Bookmark	event	to	be
received	sooner	than	the	voice	speaks	the	word	preceding	the
bookmark	in	the	text	stream.

SpVoice.Bookmark(

					StreamNumber	As	Long,

					StreamPosition	As	Variant,

					Bookmark	As	String,

					BookmarkId	As	Long

)

Parameters

StreamNumber
The	stream	number	which	generated	the	event.	When	a
voice	enqueues	more	than	one	stream	by	speaking
asynchronously,	the	stream	number	is	necessary	to	associate
an	event	with	the	appropriate	stream.

StreamPosition
The	character	position	in	the	output	stream	at	which	the
bookmark	occurs.

Bookmark

The	string	value	of	the	Mark	attribute	within	the	bookmark.

BookmarkId
The	string	value	of	the	leading	(left-most)	numeric	characters
in	the	Mark	attribute	within	the	bookmark.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	Bookmark	event.	To	run	this	code,	create	a	form	with	the
following	controls:
A	command	button	called	Command1

A	text	box	called	Text1
Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	code	creates	an	SpVoice	object.	The
Command1_Click	procedure	enqueues	a	short	sentence
containing	a	bookmark.	The	Bookmark	event	code	displays	the
values	of	the	BookmarkId	and	Bookmark	parameters	in	Text1.

Option	Explicit

Public	WithEvents	vox	As	SpeechLib.SpVoice

Private	Sub	Command1_Click()

				Dim	strTemp	As	String

				strTemp	=	"this	is	text	<BOOKMARK	mark='123456.789	abcdefg'	/>	with	a	bookmark."

				vox.Speak	strTemp,	SVSFlagsAsync	+	SVSFIsXML

				

End	Sub

Private	Sub	Form_Load()

				Set	vox	=	New	SpVoice

End	Sub

Private	Sub	vox_Bookmark(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	_

																									ByVal	Bookmark	As	String,	ByVal	BookmarkId	As	Long)

				Text1.Text	=	"BookmarkId:	"""	&	BookmarkId	&	""",	Bookmark:	"""	&	Bookmark	&	""""

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpVoice	(Events)

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

EndStream	Event

The	EndStream	event	occurs	when	the	text-to-speech	(TTS)
engine	reaches	the	end	of	a	stream	while	speaking	for	the
SpVoice	object.
The	StartStream	and	EndStream	events	can	be	used	together	to
determine	the	duration	of	a	stream	being	spoken.

SpVoice.EndStream(

					StreamNumber	As	Long,

					StreamPosition	As	Variant

)

Parameters

StreamNumber
The	stream	number	which	generated	the	event.	When	a
voice	enqueues	more	than	one	stream	by	speaking
asynchronously,	the	stream	number	is	necessary	to	associate
an	event	with	the	appropriate	stream.

StreamPosition
The	ending	character	position	in	the	output	stream.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	StartStream	and	EndStream	events.	To	run	this	code,	create
a	form	with	the	following	controls:
A	command	button	called	Command1

A	text	box	called	Text1
Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	puts	a	text	string	in	Text1	and	creates
a	voice	object.	The	command1_Click	procedure	calls	the	Speak
method.	This	will	cause	the	TTS	engine	to	send	the	EStream
event	and	EndStream	events	to	the	voice.	The	StartStream
event	code	changes	the	color	of	the	text	in	the	text	box	to	red;
the	EndStream	event	changes	the	color	back	to	black.
The	text	color	change	in	this	example	has	no	significance	other
than	showing	the	duration	of	the	text	stream.

Option	Explicit

Public	WithEvents	vox	As	SpeechLib.SpVoice

Private	Sub	Command1_Click()

				vox.Speak	Text1.Text,	SVSFlagsAsync

End	Sub

Private	Sub	Form_Load()

				Set	vox	=	New	SpVoice

				Text1.Text	=	"This	text	turns	red	while	being	spoken."

End	Sub

Private	Sub	vox_EndStream(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant)

				Text1.ForeColor	=	vbBlack

End	Sub

Private	Sub	vox_StartStream(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant)

				Text1.ForeColor	=	vbRed

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpVoice	(Events)

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

EnginePrivate	Event

The	EnginePrivate	event	occurs	when	a	private	text-to-speech
(TTS)	engine	detects	a	custom	event	condition	boundary	while
speaking	a	stream	for	the	SpVoice	object.
A	private	event	is	a	custom	event	defined	by	the	TTS	engine.
This	event	allows	engines	to	define	a	specialized	event	beyond
the	standard	suite	of	events	and	send	custom	events	to	SpVoice
objects	as	though	they	were	standard	events.	There	is	no
requirement	that	engines	support	this	event.	The	SAPI	5
Microsoft	engines	do	not	use	the	EnginePrivate	event.	If	using
another	manufacturer's	engine,	check	their	documentation	for
possible	implementation	of	this	event.

SpVoice.EnginePrivate(

					StreamNumber	As	Long,

					StreamPosition	As	Long,

					EngineData	As	Variant

)

Parameters

StreamNumber
The	stream	number	which	generated	the	event.	When	a
voice	enqueues	more	than	one	stream	by	speaking
asynchronously,	the	stream	number	is	necessary	to	associate
an	event	with	the	appropriate	stream.

StreamPosition
The	character	position	in	the	output	stream	at	which	the
private	event	occurs.

EngineData
Data	returned	by	the	engine	with	the	event.	When	using
another	manufacturer's	TTS	engine,	consult	its
documentation	for	details.

Example
No	sample	code	is	available.	The	event	is	unique	to
manufacturer's	engines	and	will	vary	among	engines.	The	SAPI
5	Microsoft	engines	do	not	use	the	EnginePrivate	event.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpVoice	(Events)

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Phoneme	Event

The	Phoneme	event	occurs	when	the	text-to-speech	(TTS)
engine	detects	a	phoneme	boundary	while	speaking	a	stream
for	the	SpVoice	object.

SpVoice.Phoneme(

					StreamNumber	As	Long,

					StreamPosition	As	Variant,

					Duration	As	Long,

					NextPhoneId	As	Integer,

					Feature	As	SpeechVisemeFeature,

					CurrentPhoneId	As	Integer

)

Parameters

StreamNumber
The	stream	number	which	generated	the	event.	When	a
voice	enqueues	more	than	one	stream	by	speaking
asynchronously,	the	stream	number	is	necessary	to	associate
an	event	with	the	appropriate	stream.

StreamPosition
The	character	position	in	the	output	stream	at	which	the
phoneme	begins.

Duration
The	duration	of	the	phoneme,	in	milliseconds.

NextPhoneId
The	next	phone	ID.

Feature
The	SpeechVisemeFeature,	which	may	indicate	emphasis	or
stress	on	the	viseme.

CurrentPhoneId
The	current	phone	ID.

Remarks
When	the	engine	synthesizes	a	phoneme	comprised	of	more
than	one	phoneme	element,	it	raises	an	event	for	each	element.
For	example,	when	a	Japanese	TTS	engine	speaks	the	phoneme
"KYA,"	which	is	comprised	of	the	phoneme	elements	"KI"	and
"XYA,"	it	raises	an	SPEI_PHONEME	event	for	each	element.
Because	the	element	"KI"	in	this	case	modifies	the	sound	of	the
element	following	it,	rather	than	initiating	a	sound,	the	duration
of	its	SPEI_PHONEME	event	is	zero.

Example
The	following	Visual	Basic	form	code	demonstrates	the
Phoneme	event.	To	run	this	code,	create	a	form	with	the
following	controls:
A	command	button	called	Command1
Two	text	boxes	called	Text1	and	Text2

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	puts	a	text	string	in	Text1	and	creates
a	voice	object,	leaving	all	its	properties	with	their	default
settings.	The	command1_Click	procedure	calls	the	Speak
method.	This	will	cause	the	TTS	engine	to	send	the	Phoneme
event	to	the	voice;	the	Phoneme	event	code	will	display	the

phoneme	values	in	Text2.

Option	Explicit

Public	WithEvents	vox	As	SpeechLib.SpVoice

Private	Sub	Command1_Click()

				vox.Speak	Text1.Text,	SVSFlagsAsync

				

End	Sub

Private	Sub	Form_Load()

				Set	vox	=	New	SpVoice

				Text1.Text	=	"This	is	text	in	a	text	box."

End	Sub

Private	Sub	vox_Phoneme(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	Duration	As	Long,	ByVal	NextPhoneId	As	Integer,	ByVal	Feature	As	SpeechLib.SpeechVisemeFeature,	ByVal	CurrentPhoneId	As	Integer)

				

				Text2.Text	=	Text2.Text	&	CurrentPhoneId	&	"	"

				

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpVoice	(Events)

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Sentence	Event

The	Sentence	event	when	the	text-to-speech	(TTS)	engine
detects	a	sentence	boundary	while	speaking	a	stream	for	the
SpVoice	object.

SpVoice.Sentence(

					StreamNumber	As	Long,

					StreamPosition	As	Variant,

					CharacterPosition	As	Long,

					Length	As	Long

)

Parameters

StreamNumber
The	stream	number	which	generated	the	event.	When	a
voice	enqueues	more	than	one	stream	by	speaking
asynchronously,	the	stream	number	is	necessary	to	associate
an	event	with	the	appropriate	stream.

StreamPosition
The	character	position	in	the	output	stream	at	which	the
sentence	begins.

CharacterPosition
The	character	position	in	the	input	stream	one	character
before	the	start	of	the	sentence.	In	the	case	of	the	first
sentence	in	a	stream,	this	parameter	is	zero.

Length
The	length	of	the	sentence.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	Sentence	event.	To	run	this	code,	create	a	form	with	the
following	controls:
A	command	button	called	Command1
A	text	box	called	Text1

Set	the	HideSelection	property	of	Text1	to	False
Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	puts	a	text	string	in	Text1	and	creates
a	voice	object.	The	command1_Click	procedure	calls	the	Speak
method.	This	will	cause	the	TTS	engine	to	send	the	Sentence
event	to	the	voice.	The	Sentence	event	code	uses	the	event
parameters	to	highlight	the	sentence	associated	with	the	event.

Option	Explicit

Public	WithEvents	vox	As	SpeechLib.SpVoice

Private	Sub	Command1_Click()

				vox.Speak	Text1.Text,	SVSFlagsAsync

				

End	Sub

Private	Sub	Form_Load()

				Set	vox	=	New	SpVoice

				Text1.Text	=	"a	short	sentence.	another	sentence.	one	more."

End	Sub

Private	Sub	vox_Sentence(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	_

																									ByVal	CharacterPosition	As	Long,	ByVal	Length	As	Long)

				'	In	order	to	show	this	selection,	

				'	the	Text1.HideSelection	property	must	be	False

				Text1.SelStart	=	CharacterPosition

				Text1.SelLength	=	Length

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpVoice	(Events)

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

StartStream	Event

The	StartStream	event	occurs	when	the	text-to-speech	(TTS)
engine	begins	speaking	a	stream	for	the	SpVoice	object.
The	StartStream	and	EndStream	events	can	be	used	together	to
determine	the	duration	of	a	stream	being	spoken.

SpVoice.StartStream(

					StreamNumber	As	Long,

					StreamPosition	As	Variant

)

Parameters

StreamNumber
The	stream	number	which	generated	the	event.	When	a
voice	enqueues	more	than	one	stream	by	speaking
asynchronously,	the	stream	number	is	necessary	to	associate
an	event	with	the	appropriate	stream.

StreamPosition
The	character	position	in	the	output	stream	at	which	the
stream	begins.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	StartStream	and	EndStream	events.	To	run	this	code,	create
a	form	with	the	following	controls:
A	command	button	called	Command1

A	text	box	called	Text1
Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	puts	a	text	string	in	Text1	and	creates
a	voice	object.	The	command1_Click	procedure	calls	the	Speak
method.	This	will	cause	the	TTS	engine	to	send	the	StartStream
and	EndStream	events	to	the	voice.	The	StartStream	event	code
changes	the	color	of	the	text	in	the	text	box	to	red;	the
EndStream	event	changes	the	color	back	to	black.
The	text	color	change	in	this	example	has	no	significance	other
than	showing	the	duration	of	the	text	stream.

Option	Explicit

Public	WithEvents	vox	As	SpeechLib.SpVoice

Private	Sub	Command1_Click()

				vox.Speak	Text1.Text,	SVSFlagsAsync

End	Sub

Private	Sub	Form_Load()

				Set	vox	=	New	SpVoice

				Text1.Text	=	"This	text	turns	red	while	being	spoken."

End	Sub

Private	Sub	vox_EndStream(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant)

				Text1.ForeColor	=	vbBlack

End	Sub

Private	Sub	vox_StartStream(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant)

				Text1.ForeColor	=	vbRed

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpVoice	(Events)

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Viseme	Event

The	Viseme	event	occurs	when	the	text-to-speech	(TTS)	engine
detects	a	viseme	boundary	while	speaking	a	stream	for	the
SpVoice	object.

SpVoice.Viseme(

					StreamNumber	As	Long,

					StreamPosition	As	Variant,

					Duration	As	Long,

					NextVisemeId	As	SpeechVisemeType,

					Feature	As	SpeechVisemeFeature,

					CurrentVisemeId	As	SpeechVisemeType

)

Parameters

StreamNumber
The	stream	number	which	generated	the	event.	When	a
voice	enqueues	more	than	one	stream	by	speaking
asynchronously,	the	stream	number	is	necessary	to	associate
an	event	with	the	appropriate	stream.

StreamPosition
The	character	position	in	the	output	stream	at	which	the
viseme	begins.

Duration
The	duration	of	the	viseme	state.

NextVisemeId
The	next	viseme	ID.

Feature
The	SpeechVisemeFeature,	which	may	indicate	emphasis	or
stress	on	the	viseme.

CurrentVisemeId
The	current	viseme	ID.

Example
The	following	Visual	Basic	form	code	demonstrates	the	Viseme
event.	To	run	this	code,	create	a	form	with	the	following
controls:
A	command	button	called	Command1
Two	text	boxes	called	Text1	and	Text2

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	puts	a	text	string	in	Text1	and	creates
a	voice	object.	The	command1_Click	procedure	calls	the	Speak
method.	This	will	cause	the	TTS	engine	to	send	the	Viseme
event	to	the	voice.	The	Viseme	event	code	will	display	the
viseme	values	in	Text2.

Option	Explicit

Public	WithEvents	vox	As	SpeechLib.SpVoice

Private	Sub	Command1_Click()

				vox.Speak	Text1.Text,	SVSFlagsAsync

				

End	Sub

Private	Sub	Form_Load()

				Set	vox	=	New	SpVoice

				Text1.Text	=	"This	is	text	in	a	text	box."

End	Sub

Private	Sub	vox_Viseme(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	ByVal	Duration	As	Long,	ByVal	NextVisemeId	As	SpeechLib.SpeechVisemeType,	ByVal	Feature	As	SpeechLib.SpeechVisemeFeature,	ByVal	CurrentVisemeId	As	SpeechLib.SpeechVisemeType)

				Text2.Text	=	Text2.Text	&	CurrentVisemeId	&	"	"

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpVoice	(Events)

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

VoiceChange	Event

The	VoiceChange	event	occurs	when	the	text-to-speech	(TTS)
engine	detects	a	change	of	voice	while	speaking	a	stream	for
the	SpVoice	object.

SpVoice.VoiceChange(

					StreamNumber	As	Long,

					StreamPosition	As	Variant,

					VoiceObjectToken	As	SpObjectToken

)

Parameters

StreamNumber
The	stream	number	which	generated	the	event.	When	a
voice	enqueues	more	than	one	stream	by	speaking
asynchronously,	the	stream	number	is	necessary	to	associate
an	event	with	the	appropriate	stream.

StreamPosition
The	character	position	in	the	output	stream	at	which	the
change	of	voice	occurs.

VoiceObjectToken
The	ObjectToken	of	the	new	voice.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	VoiceChange	event.	To	run	this	code,	create	a	form	with	the

following	controls:
A	command	button	called	Command1

A	text	box	called	Text1
Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	code	creates	an	SpVoice	object.	The
Command1_Click	procedure	sets	the	object's	Voice	property	to
three	different	voices,	and	enqueues	a	short	sentence	in	each
voice.	Each	time	the	TTS	engine	speaks	with	a	new	Voice
property,	a	VoiceChange	event	is	raised.	The	VoiceChange	event
code	displays	the	name	of	the	new	voice	in	Text1.

Option	Explicit

Public	WithEvents	vox	As	SpeechLib.SpVoice

Const	cstrText	=	"my	voice	just	changed."

Private	Sub	Command1_Click()

				Set	vox.voice	=	vox.GetVoices("name	=	microsoft	mary").Item(0)

				vox.Speak	cstrText,	SVSFlagsAsync

				

				Set	vox.voice	=	vox.GetVoices("name	=	microsoft	mike").Item(0)

				vox.Speak	cstrText,	SVSFlagsAsync

				

				Set	vox.voice	=	vox.GetVoices("name	=	microsoft	sam").Item(0)

				vox.Speak	cstrText,	SVSFlagsAsync

				

End	Sub

Private	Sub	Form_Load()

				Set	vox	=	New	SpVoice

End	Sub

Private	Sub	vox_VoiceChange(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	_

																												ByVal	VoiceObjectToken	As	SpeechLib.ISpeechObjectToken)

				Text1.Text	=	VoiceObjectToken.GetDescription

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpVoice	(Events)

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Word	Event

The	Word	event	occurs	when	the	text-to-speech	(TTS)	engine
detects	a	word	boundary	while	speaking	a	stream	for	the
SpVoice	object.

SpVoice.Word(

					StreamNumber	As	Long,

					StreamPosition	As	Variant,

					CharacterPosition	As	Long,

					Length	As	Long

)

Parameters

StreamNumber
The	stream	number	which	generated	the	event.	When	a
voice	enqueues	more	than	one	stream	by	speaking
asynchronously,	the	stream	number	is	necessary	to	associate
an	event	with	the	appropriate	stream.

StreamPosition
The	character	position	in	the	output	stream	at	which	the
word	begins.

CharacterPosition
The	character	position	in	the	input	stream	one	character
before	the	start	of	the	word.	In	the	case	of	the	first	word	in	a
stream,	this	parameter	is	zero.

Length
The	length	of	the	word	in	the	input	stream.

Example
The	following	Visual	Basic	form	code	demonstrates	the	use	of
the	Word	event.	To	run	this	code,	create	a	form	with	the
following	controls:
A	command	button	called	Command1
A	text	box	called	Text1

Set	the	HideSelection	property	of	Text1	to	False

Paste	this	code	into	the	Declarations	section	of	the	form.
The	Form_Load	procedure	puts	a	text	string	in	Text1	and	creates
a	voice	object.	The	command1_Click	procedure	calls	the	Speak
method.	This	will	cause	the	TTS	engine	to	send	the	Word	event
to	the	voice;	the	Word	event	code	will	use	the	event	parameters
to	highlight	the	word	associated	with	the	event.

Option	Explicit

Public	WithEvents	vox	As	SpeechLib.SpVoice

Private	Sub	Command1_Click()

				vox.Speak	Text1.Text,	SVSFlagsAsync

				

End	Sub

Private	Sub	Form_Load()

				Set	vox	=	New	SpVoice

				Text1.Text	=	"This	is	some	text	in	a	textbox."

End	Sub

Private	Sub	vox_Word(ByVal	StreamNumber	As	Long,	ByVal	StreamPosition	As	Variant,	_

																					ByVal	CharacterPosition	As	Long,	ByVal	Length	As	Long)

				'	In	order	to	show	this	selection,	

				'	the	Text1.HideSelection	property	must	be	False!

				Text1.SelStart	=	CharacterPosition

				Text1.SelLength	=	Length

End	Sub

Microsoft	Speech	SDK
Speech	Automation	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SpWaveFormatEx
The	SpWaveFormatEx	automation	object	represents	the
format	of	waveform-audio	data.
The	SpWaveFormatEx	object	gets	and	sets	the	audio	format
property	of	the	SpAudioFormat	object.	Please	see	a	code
example	in	the	SpAudioFormat	GetWaveFormatEx	section.

Automation	Interface	Elements
The	SpWaveFormatEx	automation	object	has	the	following
elements:

Properties Description
AvgBytesPerSec
Property

Gets	and	sets	the	required	average
data-transfer	rate	for	the	format	tag
in	bytes	per	second.

BitsPerSample	Property Gets	and	sets	the	bits	per	sample	for
the	FormatTag	format	type.

BlockAlign	Property Gets	and	sets	the	block	alignment	in
bytes.

Channels	Property Gets	and	sets	the	number	of
channels	in	the	waveform-audio
data.

ExtraData	Property Gets	and	sets	extra	format
information.

FormatTag	Property Gets	and	sets	the	waveform-audio
format	type.

SamplesPerSec
Property

Gets	and	sets	the	sample	rate	at
which	each	channel	should	be
played	or	recorded.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpWaveFormatEx

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

AvgBytesPerSec	Property

The	AvgBytesPerSec	property	gets	and	sets	the	required
average	data-transfer	rate	for	the	format	tag	in	bytes	per
second.
If	the	FormatTag	property	is	WAVE_FORMAT_PCM,
AvgBytesPerSec	should	be	equal	to	the	product	of
SamplesPerSec	and	BlockAlign.	For	non-PCM	formats,	this
member	must	be	computed	according	to	the	manufacturer's
specification	of	the	format	tag.
Playback	and	record	software	can	estimate	buffer	sizes	using
the	AvgBytesPerSec	member.

Syntax

Set: SpWaveFormatEx.AvgBytesPerSec	=	Long
Get: Long	=	SpWaveFormatEx.AvgBytesPerSec

Parts

SpWaveFormatEx
The	owning	object.

Long
Set:	A	Long	variable	that	sets	the	property.
Get:	A	Long	variable	that	gets	the	property.

Example
For	an	example	of	the	use	of	the	AvgBytesPerSec	property,	see
the	code	example	in	the	SpAudioFormat	GetWaveFormatEx
section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpWaveFormatEx

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

BitsPerSample	Property

The	BitsPerSample	property	gets	and	sets	the	bits	per	sample
for	the	FormatTag	format	type.
If	FormatTag	is	WAVE_FORMAT_PCM,	BitsPerSample	should	be
equal	to	8	or	16.	For	non-PCM	formats,	this	member	must	be	set
according	to	the	manufacturer's	specification	of	the	format	tag.
Note	that	some	compression	schemes	cannot	define	a	value	for
BitsPerSample,	so	this	member	can	be	zero.

Syntax

Set: SpWaveFormatEx.BitsPerSample	=	Integer
Get: Integer	=	SpWaveFormatEx.BitsPerSample

Parts

SpWaveFormatEx
The	owning	object.

Integer
Set:	An	Integer	variable	that	sets	the	property.
Get:	An	Integer	variable	that	gets	the	property.

Example
For	an	example	of	the	use	of	the	BitsPerSample	property,	see
the	code	example	in	the	SpAudioFormat	GetWaveFormatEx
section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpWaveFormatEx

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

BlockAlign	Property

The	BlockAlign	property	gets	and	sets	the	block	alignment	in
bytes.

Syntax

Set: SpWaveFormatEx.BlockAlign	=	Integer
Get: Integer	=	SpWaveFormatEx.BlockAlign

Parts

SpWaveFormatEx
The	owning	object.

Integer
Set:	An	Integer	variable	that	sets	the	property.
Get:	An	Integer	variable	that	gets	the	property.

Remarks
The	block	alignment	is	the	minimum	atomic	unit	of	data	for	the
FormatTag	format	type.	If	the	FormatTag	is	WAVE_FORMAT_PCM,
BlockAlign	should	be	equal	to	the	product	of	Channels	and
BitsPerSample	divided	by	8	(bits	per	byte).	For	non-PCM
formats,	this	member	must	be	computed	according	to	the
manufacturer's	specification	of	the	format	tag.
Playback	and	record	software	handles	audio	data	in	blocks.	The
sizes	of	these	blocks	are	multiples	of	the	value	of	the	BlockAlign
property.	Data	written	and	read	from	a	device	must	always	start
at	the	beginning	of	a	block.	For	example,	it	is	illegal	to	start
playback	of	PCM	data	in	the	middle	of	a	sample	(that	is,	on	a

non-block-aligned	boundary).

Example
For	an	example	of	the	use	of	the	BlockAlign	property,	see	the
code	example	in	the	SpAudioFormat	GetWaveFormatEx	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpWaveFormatEx

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Channels	Property

The	Channels	property	gets	and	sets	the	number	of	channels	in
the	waveform-audio	data.
Monaural	data	uses	one	channel	and	stereo	data	uses	two
channels.

Syntax

Set: SpWaveFormatEx.Channels	=	Integer
Get: Integer	=	SpWaveFormatEx.Channels

Parts

SpWaveFormatEx
The	owning	object.

Integer
Set:	An	Integer	variable	that	sets	the	property.
Get:	An	Integer	variable	that	gets	the	property.

Example
For	an	example	of	the	use	of	the	Channels	property,	see	the
code	example	in	the	SpAudioFormat	GetWaveFormatEx	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpWaveFormatEx

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

ExtraData	Property

The	ExtraData	property	gets	and	sets	extra	format	information.
This	information	can	be	used	by	non-PCM	formats	to	store	extra
attributes	for	the	FormatTag	property.	For	WAVE_FORMAT_PCM
formats,	this	parameter	is	ignored.

Syntax

Set: SpWaveFormatEx.ExtraData	=	Variant
Get: Variant	=	SpWaveFormatEx.ExtraData

Parts

SpWaveFormatEx
The	owning	object.

Variant
Set:	A	Variant	variable	that	sets	the	property.
Get:	A	Variant	variable	that	gets	the	property.

Example
For	an	example	of	the	use	of	the	ExtraData	property,	see	the
code	example	in	the	SpAudioFormat	GetWaveFormatEx	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpWaveFormatEx

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

FormatTag	Property

The	FormatTag	property	gets	and	sets	the	waveform-audio
format	type.
Format	tags	are	registered	with	Microsoft	Corporation	for	many
compression	algorithms.	A	complete	list	of	format	tags	is
located	in	the	Mmsystem.h	header	file.

Syntax

Set: SpWaveFormatEx.FormatTag	=	Integer
Get: Integer	=	SpWaveFormatEx.FormatTag

Parts

SpWaveFormatEx
The	owning	object.

Integer
Set:	An	Integer	variable	that	sets	the	property.
Get:	An	Integer	variable	that	gets	the	property.

Example
For	an	example	of	the	use	of	the	FormatTag	property,	see	the
code	example	in	the	SpAudioFormat	GetWaveFormatEx	section.

Microsoft	Speech	SDK
Speech	Automation	5.1

Object:	SpWaveFormatEx

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

SamplesPerSec	Property

The	SamplesPerSec	property	gets	and	sets	the	sample	rate	at
which	each	channel	should	be	played	or	recorded.
If	FormatTag	is	WAVE_FORMAT_PCM,	common	values	for
SamplesPerSec	are	8.0	kHz,	11.025	kHz,	22.05	kHz,	and	44.1
kHz.	For	non-PCM	formats,	this	member	must	be	computed
according	to	the	manufacturer's	specification	of	the	format	tag.

Syntax

Set: SpWaveFormatEx.SamplesPerSec	=	Long
Get: Long	=	SpWaveFormatEx.SamplesPerSec

Parts

SpWaveFormatEx
The	owning	object.

Long
Set:	A	Long	variable	that	sets	the	property.
Get:	A	Long	variable	that	gets	the	property.

Example
For	an	example	of	the	use	of	the	SamplesPerSec	property,	see
the	code	example	in	the	SpAudioFormat	GetWaveFormatEx
section.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Microsoft	Speech	SDK	Setup	5.1

Introduction
The	Microsoft	Speech	SDK	setup	is	built	on	the	Windows
Installer	technology.	The	SAPI	5.1	core	components	are	only
available	for	distribution	through	Windows	Installer	merge
modules	and	are	called	.msm	files.	These	.msm	files	should	be
included	in	an	applications	setup	and	packaged	in	a	Microsoft
Installer	.msi	file.	The	.msi	files	consume	the	merge	modules
and	handle	the	actual	installation	process.	All	other	application-
specific	installation	files	should	be	included	in	this	module.	The
.msi	is	run	by	the	setup.exe	file.	The	setup.exe	file	determines	if
the	Windows	Installer	is	present	on	your	system	and	installs	it	if
necessary.	SAPI	5.1	is	redistributable	by	independent	software
vendors	(ISVs)	or	individuals	by	including	the	Speech	SDK	MSMs
in	their	setup	process	and	using	the	Windows	Installer	merge
module	technologies.
The	following	topics	are	covered	in	this	section:

SAPI	4.0	and	SAPI	5.0	coexistence

Speech	SDK	merge	modules	(MSM)
Speech	SDK	core	modules

Speech	recognition	(SR)	modules
Text-to-speech	(TTS)	modules
Speech	SDK	modules
Speech	SDK	file	locations

Speech	SDK	files
Quiet	Install
Registry	settings

Building	your	setup	package
Glossary	of	terms	and	abbreviations

SAPI	4.0	and	SAPI	5.1	coexistence
In	order	to	ensure	that	SAPI	4.0	and	SAPI	5.1	can	coexist	on	a
single	machine,	the	following	four	steps	have	been	taken:

1.	 SAPI	5.1	dlls	have	different	names	from	SAPI	4.0	dlls
2.	 SAPI	5.1	registry	keys	are	registered	in	different
locations

3.	 SAPI	5.1	GUIDs	are	different	from	SAPI	4.0	GUIDs

4.	 SAPI	5.1	registry	keys	are	different	from	SAPI	4.0
registry	keys

There	is	one	known	issue:	SAPI	4.0	and	SAPI	5.1	cannot	share	a
common	microphone.	If	one	version	of	SAPI	has	control	of	the
microphone,	the	other	cannot	use	it.	However,	the	functionality
of	TTS	is	not	affected.
The	engines	that	will	be	shipped	with	the	Microsoft	Speech	SDK
are	shown	below:

Engine Language
SR English
	 Japanese
	 Chinese
TTS English
	 Chinese

Back	to	top

Speech	SDK	merge	modules	(MSM)
The	Speech	SDK	setup	will	produce	merge	modules	for	use	with
MSI	to	support	the	following	configurations:

Speech	SDK	core	modules
Speech	Recognition	(SR)	modules

Text	to	Speech	(TTS)	modules
Speech	SDK	modules

Speech	SDK	core	modules

sp5.msm
SAPI	5.1	includes	the	following:	SAPI.DLL	,SAPISVR.exe,
sapi.cpl,	sapi.cpl	help	files:	This	is	made	available	as	a
redistributable	component	for	ISVs,	both	application	vendors
and	engine	vendors.	The	ISV	will	be	expected	to	install	their
engines	in	the	proper	location	and	make	the	proper	registry
settings	for	the	engines.	For	more	information,	please	see	the
Speech	SDK	file	locations	section	below.

Sp5intl.msm
These	modules	contain	localized	resource	.dlls	needed	for	the
Control	Panel,	sapi.cpl.	(Sapi.cpl	contains	English	resources
so	that	if	none	of	the	sp5intl.msm's	are	installed	it	would
default	to	English).	The	Control	Panel	is	the	GUI	used	to
select	the	various	speech	engines	and	for	setting	a	voice
enabled	application.	The	Control	Panel	has	been	localized	for
other	languages.	Currently,	there	are	three	separate
language	dependent	modules:

English

Japanese
Chinese	(simplified)

If	the	number	of	localized	languages	increases,	separate
msms	for	each	language	will	be	made	available.	It	is
recommended	to	include	all	localized	msm's	in	3rd	party
Setups	so	that	if	the	user	wants	to	install	on	Japanese	or
Chinese	systems	will	be	correctly	localized.
This	module	has	a	dependency	on	sp5.msm.

Back	to	top

Speech	Recognition	(SR)	modules

Sp5sr.msm
The	Microsoft	SAPI	5.1	SR	engine	files	are	contained	within
this	module	(spsreng.dll	and	spsrx.dll).	There	are	no	speech
data	files	located	within	this	module,	as	the	Microsoft	SR
engine	is	language	independent.	This	implies	that	one	engine
can	perform	SR	processing	for	multiple	languages	by	loading
different	speech	data	files.
This	module	has	a	dependency	on	sp5.msm	and	sp5intl.msm

Sp5itn.msm
The	language	specific	SAPI	5.1	ITN	components	are	located
within	this	file.	The	ITN	modules	enable	developers	to	include
Inverse	Text	Normalization	in	the	SR	applications.	There	are
three	separate	language	dependent	modules:

English
Japanese

Chinese	(simplified)
This	module	has	a	dependency	on	sp5sr.msm,	sp5intl.msm
and	sp5.msm.

Sp5ccint.msm
All	the	acoustic	and	language	modules	of	the	Microsoft	SAPI
5.1	SR	engine	are	contained	in	this	merge	module.	This
module	also	contains	localized	resource	.dlls	for	the	Microsoft
SR	engine	(spsrx.dll).	These	resource	.dlls	contain	User
Interfaces	for	the	Training	wizard	and	Microphone	wizard.
(Spsrx.dll	contains	English	resources.	If	no	sp5ccint.msm's
are	installed,	it	would	default	to	English).	There	are	three
separate	language	dependent	modules:

English
Japanese

Chinese	(simplified)
This	module	has	a	dependency	on	sp5sr.msm,	sp5intl.msm
and	sp5.msm.
Back	to	top

Text	to	Speech	(TTS)	modules

Sp5ttint.msm
The	Microsoft	SAPI	5.1	TTS	English	engine	is	a	language
dependent	TTS	engine.	This	implies	that	the	TTS	engine
module	will	contain	the	engine	as	well	as	the	data	files	for
the	engine.	Currently,	Microsoft	is	shipping	the	following
language	TTS	engines:

English

Chinese	(simplified)
This	module	has	a	dependency	on	sp5.msm	and
sp5intl.msm.

spcommon.msm
Contains	files	that	are	common	to	both	the	Microsoft	SAPI
5.1	TTS	and	SR	engine.	Currently,	this	is	shipped	for	the
following	languages:

English
Back	to	top

Microsoft	Speech	SDK	modules

Sp5sdk.msi
The	full	installation	of	the	Microsoft	Speech	SDK	includes
the	following	modules:

sp5.msm
sp5intl.msm
sp5sr.msm

sp5ccint.msm
Sp5ttint.msm

spcommon.msm
The	Speech	SDK	samples	and	help	documentation	for
SAPI	5.1	API/DDI	will	be	included	in	the	installation.
Back	to	top

Speech	SDK	file	locations
Setup	will	verify	the	versions	of	the	various	installed
components.	Setup	will	detect	if	the	operating	system	one	of
the	following:

Supported	Operating	Systems
Microsoft	Windows(r)	NT	Workstation	4.0,	service	pack
6a,	English,	Japanese	or	Simplified	Chinese	edition.

Microsoft	Windows	2000	Professional	Workstation,
English	edition	or	English	edition	with	Japanese	or
Simplified	Chinese	Language	support.
Microsoft	Windows	98.	However,	Windows	95	is	not
supported.

Microsoft	Windows	Millennium	edition.
When	attempting	to	install	the	Microsoft	Speech	SDK	on	a
non-supported	operating	system,	a	dialog	box	will	appear
with	the	string	"SAPI5	is	currently	not	supported	on	this
Operating	System.	You	must	upgrade	to	Windows	98	or
higher."	After	the	Speech	SDK	has	been	installed	on	your
computer,	the	footprint	will	not	be	deleted	from	the	drive.	If
you	accidentally	delete	the	sapi.dll	and	then	tries	to	run	one
of	the	applications,	then	the	footprint	file	will	be	able	to	get
the	sapi.dll	file	and	install	it.	All	engine	files	should	follow	the
8.3	naming	convention.
NOTE:	To	obtain	the	Chinese	(Simplified)	and	Japanese
Microsoft	SR	Engines	and	the	Chinese	(SImplified)	TTS
engine,	please	install	the	Microsoft	Speech	SDK	5.1	Language
Pack.

SAPI.DLL
The	sapi.dll	file	is	the	main	dll	for	SAPI	5.1.	This	file	should

be	independent	of	engine	vendor	and	language.	As	a
result,	this	file	should	be	located	in	the	system	directory.

Control	Panel
The	Control	Panel	file	is	the	file	for	the	Control	Panel.	This
file	should	be	independent	of	engine	vendor	and
language.	As	a	result,	this	file	should	be	located	in	the
system	directory.

Lexicons
The	SAPI	5.1	user	lexicons	should	be	placed	in	the	user's
profile	directory	under	the	speech	directory.	
For	example,	for	Windows	2000	installations,	this	would	be
Documents	and	Settings\<user	name>\Speech.

SR	Engine
The	SR	engines	may	be	installed	on	any	drive	on	a	user's
computer.	The	SR	engine	is	language	independent	(i.e.,
the	same	engine	is	loaded	with	different	data	to	create	a
different	language	engine).	As	a	result,	the	SR	engine
files,	by	default,	should	be	located	in	a	language
independent	path,	as	follows:
Microsoft	SR	Engine
The	SR	engines	may	be	installed	on	any	drive	on	a	user's
computer.	The	SR	engine	is	language	independent	(i.e.,
the	same	engine	is	loaded	with	different	data	to	create	a
different	language	engine).	As	a	result,	the	SR	engine	files
by	default	should	be	located	in	a	language	independent
path,	as	follows:	program	files\common
files\speechengines\Microsoft\sr
The	SR	data	files	contain	the	language	specific
information.	The	SR	data	files	(including	the	files	needed
for	command	and	control	(C	and	C)	and	ITN)	should	be
located	in	the	following	path:	program

files\common	files\speechengines\Microsoft\sr\<LCID>
where	the	<LCID>	is	1033	(English),	2052	(Chinese
(simplified))	and	1041	(Japanese)

TTS	Engine
Microsoft	TTS	Engine
The	TTS	engines	may	be	installed	on	any	drive	on	a	user's
computer.	The	Microsoft	TTS	engine	is	not	language
independent	(i.e.,	currently,	each	language	is	based	on	a
different	TTS	code	base).	As	a	result,	the	TTS	engine	by
default	should	be	placed	under	the	LCID	it	represents.	The
TTS	engine	files	should	be	located	in	the	following	path:
program	files\common	files\speechengines\Microsoft\TTS\
<LCID>	where	the	<LCID>	is	1033	(English),	2052
(Chinese	(simplified))	and	1041	(Japanese)
Back	to	top

Speech	SDK	files
The	Microsoft	Speech	SDK	contains	a	number	of	samples	and
tools.	These	samples	should	be	located	in	the	following
directories:

Executable	Files
All	compiled	executable	files	of	the	samples	and	the
grammar	compiler	are	located	in	the	following	directory:
\Microsoft	Speech	SDK	5.1\bin

Help	Documentation
The	reference	file	SAPI5SDK.chm	is	located	in:	\Microsoft
Speech	SDK	5.1\docs\help

SAPI	5.1	IDL
The	sapi.idl	contains	all	of	the	API	function	declarations	in
SAPI	5.1.	This	is	the	main	file	used	by	application
developers	when	developing	speech	enabled	applications.
\Microsoft	Speech	SDK	5.1\idl

SAPI5ddk	idl
The	sapi5ddk.idl	contains	the	DDI	function	declarations	for
SAPI.	This	is	the	main	file	used	by	engine	developers	when
developing	speech	engines.	\Microsoft	Speech	SDK	5.1\idl

Header	files
The	header	files	for	SAPI	5.1	should	be	located	in:
\Microsoft	Speech	SDK	5.1\include

Miscellaneous
The	following	folder	contains	the	sapi.lib	\Microsoft	Speech

SDK	5.1\lib\i386

Samples
The	following	table	outlines	the	location	of	the	source
code	for	the	various	samples	application	and	tools.

Name Path
Dictation	Pad \Microsoft	Speech	SDK

5.1\samples\cpp\dictpad
Simple	Dictation \Microsoft	Speech	SDK

5.1\samples\cpp\simpledict
TTSApp \Microsoft	Speech	SDK

5.1\samples\cpp\TTSApp
Tutorial	-	Coffee
S0

\Microsoft	Speech	SDK
5.1\samples\cpp\tutorials\CoffeeS0

Tutorial	-	Coffee
S1

\Microsoft	Speech	SDK
5.1\samples\cpp\tutorials\CoffeeS1

Tutorial	-	Coffee
S2

\Microsoft	Speech	SDK
5.1\samples\cpp\tutorials\CoffeeS2

Tutorial	-	Coffee
S3

\Microsoft	Speech	SDK
5.1\samples\cpp\tutorials\CoffeeS3

Tutorial	-	Coffee
S4

\Microsoft	Speech	SDK
5.1\samples\cpp\tutorials\CoffeeS4

Tutorial	-	Coffee
S5

\Microsoft	Speech	SDK
5.1\samples\cpp\tutorials\CoffeeS5

Tutorial	-	Coffee
S6

\Microsoft	Speech	SDK
5.1\samples\cpp\tutorials\CoffeeS6

Talkback \Microsoft	Speech	SDK
5.1\samples\cpp\talkback

Telephony
Application

\Microsoft	Speech	SDK
5.1\samples\cpp\telephony

SR	Engine	(Null
engine)

\Microsoft	Speech	SDK
5.1\samples\cpp\engines\SR

TTS	engine	(Null \Microsoft	Speech	SDK

engine) 5.1\samples\cpp\engines\TTS
SPComp \Microsoft	Speech	SDK	5.1\bin
SRComp \Microsoft	Speech	SDK

5.1\tools\comp\SR
TTSComp \Microsoft	Speech	SDK

5.1\tools\comp\TTS
Grammar	Editor \Microsoft	Speech	SDK	5.1\bin
SimpleAudioDll \Microsoft	Speech	SDK

5.1\Samples\CPP\SimpleAudioDll
TapiCustomStream \Microsoft	Speech	SDK

5.1\Samples\CPP\TapiCustomStream
ListBoxCSharp \Microsoft	Speech	SDK

5.1\Samples\CSharp\Listbox
SimpleTTSCSharp \Microsoft	Speech	SDK

5.1\Samples\CSharp\SimpleTTS
SimpleTTSJScript \Microsoft	Speech	SDK

5.1\Samples\Scripts\SimpleTTS
AudioApp \Microsoft	Speech	SDK

5.1\Samples\VB\AudioApp
ListboxVB \Microsoft	Speech	SDK

5.1\Samples\VB\ListboxVB
RecoVB \Microsoft	Speech	SDK

5.1\Samples\VB\RecoVB
SimpleDictVB \Microsoft	Speech	SDK

5.1\Samples\VB\SimpleDict
SimpleTTSVB \Microsoft	Speech	SDK

5.1\Samples\VB\SimpleTTS
TTSAppVB \Microsoft	Speech	SDK

5.1\Samples\VB\TTSAppVB
VBTapiSample \Microsoft	Speech	SDK

5.1\Samples\VB\VBTAPISamples
Mkvoice \Microsoft	Speech	SDK

5.1\samples\cpp\engines\TTS\mkVoice

Back	to	top

Quiet	Install
The	command	used	for	quite	install	is	"msiexec	/i	"Microsoft
Speech	SDK	5.1.msi"	/qn".	"setup.exe	/S	/v/qn"	is	also
another	usable	option.
Back	to	top

Registry	Settings"
For	engine	specific	registry	settings,	please	see	the	Object
Tokens	and	Registry	Settings	white	paper.	All	registry	keys
will	be	manually	created	and	deleted	upon	installation	and
uninstallation	respectively.	This	means	that	nothing	in	the
setup	procedure	that	will	use	self	registration.	Microsoft	will
not	handle	the	lazy	initialization	for	the	user	profiles.
Setup	is	not	able	to	know	about	the	individuals	who	will	be
using	speech	features	after	installation.	The	lazy	registration
information	will	continue	to	be	built	up	by	sapi.dll	at	run
time.
Back	to	top

Building	your	Setup	Package
The	easiest	way	to	build	a	Setup	package	that	incorporates
the	SAPI	5.1	redistributable	merge	modules	is	to	use	a	Setup
tool	that	is	designed	specifically	for	the	Windows	Installer
technology.	Currently	a	number	of	these	exist	on	the	market
including,	but	not	limited	to:	Install	Shield	for	Windows
Installer,	Visual	Studio	Installer,	Wise	for	Windows	Installer,
and	Seagate	WinINSTALL.	These	tools	can	consume	the	SAPI
5.1	merge	modules	(.msm's)	and	seamlessly	install	the
components	along	with	the	rest	your	setup.	Simply	consult
the	documentation	on	these	products	or	follow	the	built	in
Wizards	to	build	your	Setup	package	and	include	the	SAPI	5.1
.msm's.
If	these	tools	are	not	available,	consider	downloading	the
Windows	Installer	SDK	and	building	your	Setup	package
manually.	The	following	steps	provide	a	walk	through	on	how
this	is	done.

1.	 Download	the	Windows	Installer	SDK	from	Windows
Installer	1.5.

2.	 Plan	the	Sample	Installation.	When	the	installation	of
an	existing	application	is	moved	to	the	Windows
Installer	from	another	setup	technology,	the	setup
developer	may	start	authoring	a	Windows	Installer
package	using	the	source	and	target	file	images	of
the	existing	installation.	A	detailed	plan	of	how	the
files	and	other	resources	are	organized	at	the	source
and	target	is	also	a	good	starting	point	for
developing	a	package	for	a	new	application.
For	example,	if	you	have	a	TTS	application
(YourTTSApp.exe)	that	you	want	to	install	along	with
the	SAPI	5.1	merge	modules,	simply	determine	the
source	and	destination	locations	of	your	application.

http://go.microsoft.com/fwlink/?LinkId=3287

File Path	To	Source Path	To	Target
YourTTSApp.exe C:\YourApp\YourTTSApp.exe D:\Program

Files\CompanyName\YourTTSApp.exe

3.	 Obtain	the	blank	installation	database	Schema.msi
from	the	Windows	Installer	SDK	and	rename	it	to
yourProduct.msi.

4.	 Use	the	database	editor	Orca,	which	is	provided	with
the	SDK,	or	another	editor,	to	open	the	installation
database	yourProduct.msi.

5.	 Use	the	editor	to	modify	the	following	tables	in	the
.msi:
Directory	Table
Component	Table
File	Table
Media	Table
Feature	Table
Feature	Components	Table
Registry	Table
ShortCut	Table
Icon	Table
Property	Table
InstallExecuteSequence	Table
InstallUISequence	Table
AdminExecuteSequence	Table
AdminUISequence	Table
AdvtExecuteSequence	Table

For	details	on	specific	table	values	and	entries,	see
the	"Windows	Installer	Examples	/	An	installation
example"	section	of	the	Msi.chm	help	file	that	is
included	in	the	Windows	Installer	SDK.

6.	 Use	the	MsiInfo.exe	tool	provided	with	the	Windows
Installer	SDK	to	add	Summary	Information	to
yourProduct.msi.	The	following	properties	must	be
set	for	your	product	to	pass	Package	Validation.	It	is
recommended	that	authors	run	validation	on	every
new,	or	newly	modified,	installation	package	before
attempting	to	install	the	package	(see	the	Package
Validation	section	of	the	Windows	Installer	SDK
documentation	for	more	about	Package	Validation).

Summary
Information
Property Data Notes
Template
(Platform
and
Language)

;1033 Platform	and
language	used	by
the	database.
Leaving	the	platform
field	empty	indicates
the	package	is
platform
independent.	The
ProductLanguage
property	from	the
database	is	typically
used	for	this
summary	property.
The	sample's
Language	ID
indicates	that	the
package	uses	U.S.
English.

Revision {49D185A1- This	is	the	package

Number
(Package
Code)

D7FD-11D2-
9159-
00C04FD70856}

code	GUID	that
uniquely	identifies
the	sample	package.
If	you	reproduce	this
sample,	use	a	utility
such	as	GUIDGEN	to
generate	a	different
GUID	for	your
package.	The	results
of	GUIDGEN	contain
lowercase
characters,	note	that
you	must	change	all
lowercase	characters
to	uppercase	for	a
valid	package	code.
See	Package	and
Product	Codes.

Page	Count
(Minimum
Installer
Version)

100 For	Windows	Installer
version	1.0,	this
property	should	be
set	to	the	integer
100.

Word	Count
(Type	of
Source)

;1033 Platform	and
language	used	by
the	database.
Leaving	the	platform
field	empty	indicates
the	package	is
platform
independent.	The
ProductLanguage
property	from	the
database	is	typically
used	for	this
summary	property.
The	sample's

Language	ID
indicates	that	the
package	uses	U.S.
English.

The	remaining	summary	information	stream
properties	are	not	required,	but	should	be	set	for
yourProduct.msi.

Summary
Information
Property Data Notes
Title Installation

Database
Informs	users	that
this	database	is	for	an
installation	rather
than	a	transform	or	a
patch.

Subject yourProduct File	browsers	can
display	this	as	the
product	to	be
installed	with	this
database.

Keywords Installer,	MSI,
Database

File	browsers	that	are
capable	of	keyword
searching	can	search
for	these	words.

Author Your	Company
Name

Name	of	the	product's
manufacturer.

Comments This	installer
database
contains	the
logic	and	data
required	to
install

Informs	the	user
about	the	purpose	of
this	database.

YourProduct.
Creating
Application

Orca Application	used	to
create	the	installation
database.

Security 0 The	sample	database
is	unrestricted	read-
write.

To	use	MsiInfo	to	add	the	summary	information	to	the
sample,	change	to	the	directory	containing	the
database	yourProduct.msi	and	use	the	following
command	line:
MsiInfo.exe	yourProduct.msi	-T	"Installation
Database"	-J	Subject	-A	"Your	Company	Name"	-K
"Installer,	MSI,	Database"	-O	"This	installer	database
contains	the	logic	and	data	required	to	install
YourProduct."	-P	;1033	-V	{49D185A1-D7FD-11D2-
9159-00C04FD70856}	-G	100	-W	0	-N	Orca	-U	0

7.	 Add	the	following	User	Interface	information	to	the
Property	Table:

Property Value
DefaultUIFont DlgFont8
INSTALLLEVEL 3
LIMITUI 1
Manufacturer Your	Company	Name
ProductCode {19BED231-30AB-11D3-

91D3-00C04FD70856}
ProductLanguage 1033
ProductName yourProduct
ProductVersion 01.20.0000t
UpgradeCode {ACFBE060-33B8-11D3-

91D6-00C04FD70856}

8.	 Validate	your	installation.	See	the	Package	Validation
section	of	the	Windows	Installer	SDK	documentation
for	more	about	Package	Validation.

Back	to	top

Glossary	of	Terms	and	Abbreviations">

API
Application	programming	interface,	the	"top"	side	of	the
SAPI	5.1	middleware.

C	and	C
Command	and	control

CSR
Continuous	speech	recognition,	also	called	dictation

DDI
Device	Driver	Interface.	In	SAPI	5.1,	this	is	the	interface
speech	engine	providers	code	to	(the	underside	of	the
middleware)

MSI
Microsoft	Installer	file	containing	the	instructions	and	data
required	to	install	an	application.

MSM
Microsoft	Merge	Module

SAPI
Microsoft	Speech	Application	Programming	Interface.	SAPI
5.1	is	middleware	that	provides	an	API	for	applications
and	a	DDI	for	speech	providers.

SR

Speech	Recognition	(includes	both	CSR	and	C	and	C)

TTS
Text-to-Speech,	also	called	speech	synthesis

Back	to	top

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Global	Variables
The	following	variables	and	constants	are	of	special	importance
to	SAPI	developers.

Other	Global	Constants
User	Interface
See	also	ISpTokenUI	for	a	description	of	how	to	query	if
an	object	supports	this	UI	type	(see
ISpTokenUI::IsUISupported)	or	how	to	display	the	UI	(see
ISpTokenUI::DisplayUI).

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Using	Sample	Audio	Object
(SpAudioPlug)

Overview
This	paper	presents	a	overview	to	assist	writing	a	custom	audio
object.	It	is	intended	to	be	used	with	the	SAPI	5.1	SDK	sample
Visual	Basic	Audio	Application.	That	application	allows	a	user	to
enters	the	text	in	a	edit	box	and	perform	speech	recognition
dictation	on	that	text.	A	custom	audio	object	is	used	to	replace
the	traditional	speaker.	Rather	than	having	the	text	talk	over	the
speakers,	the	voice	is	redirected	through	the	custom	audio
object	to	the	speech	recognition	(SR)	engine.	At	that	point	the
voice	is	attempted	to	be	recognized.

Implementation
The	Visual	Basic	example	VB	Audio	Application	uses	the
automation	interface	provided	by	the	sample	audio	object	to	do
the	audio	data	management.	The	application	creates	two
instances	of	sample	audio	objects.	One	audio	object	is	for	text-
to-speech	(TTS)	output,	the	other	one	is	for	SR	input.	The
application	would	route	the	audio	data	from	TTS	output	to	SR
input.
Additional	custom	audio	processing	is	available	in	the	SAPI	5.1
SDK	samples	VB	SAPI	with	Internet	and	VB	Outgoing	Call.	The
white	paper	Speech	Telephony	Application	Guide.	VB	SAPI	with
Internet	provides	implementation	details.

Set	up	the	TTS	output
For	TTS,	we	create	an	instance	of	the	sample	audio	object	and
set	to	write	mode.
Set	AudioPlugOut	=	New	SpAudioPlug

AudioPlugOut.Init	True,	AUDIOFORMAT

Then	the	Voice's	output	is	set	to	point	to	this	audio	object.
Set	Voice	=	New	SpVoice

Set	Voice.AudioOutputStream	=	AudioPlugOut

Set	up	the	SR	input
For	SR,	we	create	an	instance	of	the	sample	audio	object	and
set	to	read	mode.
Set	AudioPlugIn	=	New	SpAudioPlug

AudioPlugIn.Init	False,	AUDIOFORMAT

Then	the	Recognizer's	input	is	set	to	point	to	this	audio	object.
Set	Recognizer.AudioInputStream	=	AudioPlugIn

Start	processing
The	following	code	starts	the	TTS	and	SR	processes,	and	routes
audio	data	from	TTS	output	to	SR	input
output	=	AudioPlugOut.GetData

'Output	the	audio	data	to	the	input	audio	object

			If	(Len(output)	*	2	<>	0)	Then

						AudioPlugIn.SetData	(output)

			End	If

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

VendorPreferred	Attribute
VendorPreferred	is	an	attribute	used	by	a	token.	The	token	may
be	for	either	a	speech	recognition	(SR)	engine	or	a	text-to-
speech	(TTS)	voice.	It	indicates	that	the	vendor	has	a	preference
for	a	particular	token	if	the	vendor	has	more	than	one	token
installed,	and	that	all	tokens	satisfy	other	requirements.
However,	this	preference	is	considered	only	if	the	system	does
not	already	have	a	default	selected.
For	example,	a	TTS	system	may	have	three	voices	installed	by
the	same	vendor:	Mike,	Mary,	and	Sam.	At	various	points	in	the
application	or	in	SAPI,	the	programmer	would	want	to	know
what	the	default	engine	is	for	the	current	user.	If	the	user	has
already	chosen	one,	or	the	system	administrator	has	set	one	up,
that	default	is	used	and	the	VendorPreferred	key	is	never
evaluated.	If	no	default	is	available,	SAPI	selects	one	based	on,
among	other	values,	VendorPreferred.
For	SAPI	to	select	a	default,	the	language	of	the	user	(which	can
be	retrieved	by	SpGetUserDefaultUILanguage)	is	considered
first.	If	a	specific	provider	has	multiple	tokens	installed,	which	all
support	the	specified	language,	the	one	marked
VendorPreferred	becomes	the	default.	Only	one	token	should	be
marked	as	the	VendorPreferred;	however,	if	more	than	one	is
marked,	SAPI	automatically	selects	one.	In	any	case,	the
selected	token	becomes	the	default	for	that	category.
This	process	only	applies	if	the	user	has	not	already	chosen	a
default.	Once	the	user	chooses	a	default,	VendorPreferred	is	not
looked	at	further.	However,	a	caller	can	also	use	the
VendorPreferred	attribute	to	look	for	a	match	for	a	specific
vendor.	For	example,	a	user	could	call
SpEnumTokens(SPCAT_VOICES,
L"Vendor=Microsoft;VendorPreferred",	...)	to	ensure	that	they
get	Microsoft's	pick	for	their	voice,	or	similarly	for	the	SR	engine.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Speech	Telephony	Application	Guide

Purpose
The	purpose	of	this	paper	is	to	document	the	ability	to	add
speech	capabilities	to	telephony	applications.

Overview
Application	developers	can	use	SAPI	5.x	to	speech-enable
Microsoft	TAPI	applications.	This	includes	processing	speech	with
either	telecommunication	devices	(such	as	a	modem),	or	across
a	network.	This	paper	provides	two	examples:	one	uses	devices
such	as	a	standard	voice	modem,	and	the	other	uses	a	Internet
connection.	These	samples	assume	that	you	are	familiar	with
TAPI	programming	and	possibly	already	have	a	telephony
application	that	you	wish	to	speech	enable.
This	paper	primarily	covers	the	following	topics:

Adding	SAPI	automation	to	a	telephony	application

Custom	real	time	audio	stream
Pitfalls:	Common	problems	encountered

The	section,	Adding	SAPI	Automation	to	a	Telephony	Application,
discusses	how	to	set	up	SAPI	audio	input	and	output	to
telecommunication	devices.	The	next	section	demonstrates	a
method	to	process	the	recognition	results.	This	section	is
intended	to	help	developers	of	TAPI	add	SAPI	automation	to
telephony	applications	using	a	standard	voice	modem	or	other
telephony	hardware	communication	devices.	However,	the
samples	in	the	Recognition	Results	Storage	and	Retrieval
section	can	be	used	with	the	Internet	as	well.
The	next	section,	Custom	Real	Time	Audio	Stream,	describes
how	to	build	a	custom	real	time	audio	stream	and	connect	SAPI
audio	input	and	output	to	the	streams.	The	stream	object,
enables	an	application	to	have	voice	communication	using	SAPI
on	either	a	telephony	device	or	the	network.

Adding	SAPI	automation	to	a	telephony
application
The	following	sections	demonstrate	adding	SAPI	to	a	telephony
application.	The	procedures	and	code	samples	are	suggested
methods	only,	but	other	methods	may	be	used	to	fit	your
specific	needs.
To	incorporate	the	SAPI	run	time,	the	SAPI	text-to-speech	(TTS)
and	Speech	Recognition	(SR),	the	following	methods	or
procedures	may	be	used.	SimpleTelephony,	a	simple	speech-
enabled	telephony	application	using	device	connections	in	C++
is	available	with	the	SAPI	SDK.	See	the	SAPI	SDK	for	additional
details.	Examples	in	this	section	will	demonstrate	this	with
Visual	Basic	6.0	or	later.	In	order	to	use	the	sample	code	in
Visual	Basic,	SAPI	5.1	or	later	must	also	be	installed	on	your
system.

Set	up	SAPI	audio	input/output
To	transmit	voice	data	over	telecommunications	devices	using
SAPI,	it	is	very	important	to	set	up	the	audio	input	and	output	to
the	specific	audio	device	correctly.	The	following	are	examples
of	how	to	set	the	audio	output	and	input	in	C++	and	Visual
Basic,	respectively.
To	set	the	audio	output	object	for	TTS	in	C/C++,	use	the
following	steps:

1.	 Create	an	ISpeechMMSysAudio	audio	object.

2.	 Retrieve	the	wav/out	device	identifier	and	set	it	to	the
audio	object	calling	ISpMMSysAudio::SetDeviceId().

3.	 Find	the	wav	format	that	your	audio	device	supports	and
assign	it	to	the	audio	object	using
ISpMMSysAudio::SetFormat().

4.	 Call	ISpVoice::SetOutput	()	to	inform	the	TTS	engine	of
the	audio	object.

Note	that	the	second	parameter	of	ISpVoice::SetOutput()	is	set
to	False.	This	means	that	the	ISpVoice	object	will	use	the	SAPI
format	converter	to	translate	between	the	data	being	rendered
by	TTS	engines	and	the	format	of	the	output	audio	data.	This
prevents	the	audio	format	from	being	changed	on	the	output
device.
To	set	the	audio	input	object	for	SR	in	C/C++,	use	the	following
steps:

1.	 Create	an	ISpeechMMSysAudio	audio	object.

2.	 Get	the	wav/in	device	identifier	and	set	it	to	the	audio
object	by	calling	ISpMMSysAudio::	SetDeviceId().

3.	 Find	the	wav	format	that	your	audio	device	supports	and
assign	it	to	the	audio	object	using

ISpMMSysAudio::SetFormat().
4.	 Call	ISpRecognizer::SetInput()	to	inform	the	SR	engine	of
the	audio	object.	Set	the	second	parameter	of	SetInput()
to	False	to	prevent	the	audio	format	on	the	input	device
from	changing.

For	additional	information	regarding	setting	up	audio	input	and
output	in	C++,	please	consult	Simple	Telephony	Application	in
SAPI	SDK.
Similarly,	you	can	follow	the	above	procedures	to	set	the	audio
input	and	output	in	Visual	Basic.	You	may	discover	that	it	is
difficult	to	obtain	the	device	identifier	using	TAPI
ITLegacyCallMediaControl.GetID	in	Visual	Basic.	Hence,	you	may
write	supporting	code	in	C++	to	help	the	Visual	Basic
application	to	obtain	the	device	identifier.	In	the	following
example,	a	TAPI	helper	interface,	ITAPIHelper,	is	created	in
C/C++	to	retrieve	the	device	identifier	and	the	wav	format
supported	by	the	audio	device	for	Visual	Basic	applications.

Snippet	1:	ITAPIHelper	Interface
Assume	that	the	following	APIs	are	exposed	by	the	ITAPIHelper
interface:
interface	ITAPIHelper	:	IDispatch

{

	 [id(1),	helpstring("method	GetDeviceIDWaveOut")]	

HRESULT	GetDeviceIDWaveOut	([in]IUnknown	*	pBasicCallCtl,	

[out,	retval]long	*pDeviceId);

	 [id(2),	helpstring("method	GetDeviceIDWaveIn")]	

HRESULT	GetDeviceIDWaveIn	([in]IUnknown	*	pBasicCallCtl,	

											[out,	retval]long	*pDeviceId);

	 [id(3),	helpstring("method	FindSupportedWaveOutFormat")]	

HRESULT	FindSupportedWaveOutFormat	([in]long	DeviceId,	

[out,	retval]SpeechAudioFormatType	*pFormat);

	 [id(4),	helpstring("method	FindSupportedWaveInFormat")]	

HRESULT	FindSupportedWaveInFormat	([in]long	DeviceId,

	[out,	retval]SpeechAudioFormatType	*pFormat);

};

GetDeviceIDWaveOut()	and	GetDeviceIDWaveIn()	takes
pBasicCallControl,	which	points	to	an	ITBasicCallControl	object
created	by	the	Visual	Basic	application.	From	the
ITBasicCallControl	object,	you	can	query	the
ITLegacyCallMediaControl	interface	and	then	call
ITLegacyCallMediaControl::GetID()	to	obtain	the	device
identifier.	The	following	sample	code	demonstrates	the
implementation	of	GetDeviceIDWaveOut()	method.
STDMETHODIMP	CTAPIHelper::	GetDeviceIDWaveOut	(IUnknown	*pBasicCallCtl,	

			long	*pDeviceId)

{

	 HRESULT	hr	=	S_OK;

	 CComPtr<ITBasicCallControl>	cpBasicCallCtl;

	 hr	=	pBasicCallCtl->QueryInterface(IID_ITBasicCallControl,

																																																(void**)&cpBasicCallCtl;);

	

					 //	Get	the	LegacyCallMediaControl	interface	so	that	we	can	

					 //	get	a	device	ID	to	reroute	the	audio	

					 ITLegacyCallMediaControl	*pLegacyCallMediaControl;

	 if	(SUCCEEDED(hr))

	 {

hr	=	cpBasicCallCtl->QueryInterface(IID_ITLegacyCallMediaControl,	

																																									 	 	 (void**)&pLegacyCallMediaControl;);

				 }

//	Get	the	device	ID		through	ITLegacyCallMediaControl	interface

UINT	*puDeviceID;

BSTR	bstrWavOut	=	::SysAllocString(L"wave/out");

if	(!bstrWavOut)

{

								return	E_OUTOFMEMORY;

}

				 DWORD	dwSize	=	sizeof(puDeviceID);

	 if	(SUCCEEDED(hr))

	 {

hr	=	pLegacyCallMediaControl->GetID(bstrWavOut,	&dwSize;,	

(BYTE**)	&puDeviceID;);

	 }

*pDeviceId	=	*puDeviceID;

//clean	up

::SysFreeString(bstrWavOut);

::CoTaskMemFree(puDeviceID);

pLegacyCallMediaControl->Release();

cpBasicCallCtl.Release	();

				

return	hr;

}

To	implement	of	GetDeviceIDWaveIn	(),	you	only	need	to	change
wav/out	to	wav/in	in	SysAllocString().
The	following	sample	demonstrates	implementation	of	the
FindSupportedWaveOutFormat()	method.	The	sample	loops
through	all	of	the	SAPI	audio	formats	and	queries	the	wav/out
device	as	to	whether	it	supports	the	given	format.	The	method
returns	as	soon	as	it	finds	one.	Similarly,	you	can	change
waveOutOpen	to	waveInOpen	for	the	implementation	of	the
FindSupportedWaveInFormat()	method.
STDMETHODIMP	CSThelper::FindSupportedWaveOutFormat(long	DeviceId,					SpeechAudioFormatType	*pFormat)

{

HRESULT	hr	=	S_OK;

//Initialization

GUID	guidWave	=	SPDFID_WaveFormatEx;

WAVEFORMATEX	*pWaveFormatEx	=	NULL;

SPSTREAMFORMAT	enumFmtId=	SPSF_NoAssignedFormat;

//	Find	out	what	formats	are	supported

if	(SUCCEEDED(hr))

{

//	Loop	through	all	of	the	SAPI	audio	formats	and	query	the	wav/out	device

//	about	whether	it	supports	each	one.		We	will	take	the	first	one	that	we	find

			

	MMRESULT	mmr	=	MMSYSERR_ALLOCATED;

	for	(DWORD	dw	=	0;	

(MMSYSERR_NOERROR	!=	mmr)	&&	

(dw	<	SPSF_NUM_FORMATS);	dw++)

{

		if	(pWaveFormatEx	&&	(MMSYSERR_NOERROR	!=	mmr))

		{

											//	The	audio	device	does	not	support	this	format

											//	Free	up	the	WAVEFORMATEX	pointer

												::CoTaskMemFree(pWaveFormatEx);

												pWaveFormatEx	=	NULL;

			}

									//	Get	the	next	format	from	SAPI	and	convert	it	into	a	WAVEFORMATEX

									 enumFmtId	=	(SPSTREAMFORMAT)	(SPSF_8kHz8BitMono	+	dw);

									 HRESULT	hrConvert	=	SpConvertStreamFormatEnum(

												 	 	enumFmtId,	&guidWave;,	&pWaveFormatEx;);

									if	(SUCCEEDED(hrConvert))

									 {

//	This	call	to	waveOutOpen()	does	not	actually	open	the	device;

//	it	just	queries	the	device	whether	it	supports	the	given	format

mmr	=	::waveOutOpen(NULL,	DeviceId,	pWaveFormatEx,	0,	0,																					WAVE_FORMAT_QUERY);

									}

}

//	If	we	made	it	all	the	way	through	the	loop	without	breaking,	that

//	means	we	found	no	supported	formats

	 if	(enumFmtId	==	SPSF_NUM_FORMATS)

{

								return	SPERR_DEVICE_NOT_SUPPORTED;

}

							}

if	(SUCCEEDED(hr))

{

*pFormat	=	(SpeechAudioFormatType)enumFmtId;

if	(pWaveFormatEx)

{

::CoTaskMemFree(pWaveFormatEx);

}

}

return	hr;

}

Snippet	2:	Use	of	ITAPIHelper	Object	in	Visual
Basic
The	following	code	snippet	illustrates	setting	up	audio	input	and
output	to	the	devices	in	Visual	Basic	using	the	ITAPIHelper
object.
Set	up	the	audio	output	for	TTS:
Dim	MMSysAudioOut	As	ISpeechMMSysAudio

Dim	TapiHelper	As	TAPIHelper

							'Create	SpMMAudioOut	object

Set	MMSysAudioOut	=	New	SpMMAudioOut

'Create	helper	object

Set	TapiHelper	=	New	TAPIHelper

'Get	the	device	identifier	and	set	it	to	audio	out

MMSysAudioOut.DeviceId	=	TapiHelper.GetDeviceIDWaveOut(…)

'Find	the	supported	wav	format	and	set	it	to	audio	out	object

MMSysAudioOut.Format.Type	=	TapiHelper.FindSupportedWaveOutFormat(…)

'Prevent	format	changes

VoiceObj.AllowAudioOutputFormatChangesOnNextSet	=	False

'Set	the	object	as	the	audio	output

Set	VoiceObj.AudioOutputStream	=	MMSysAudioOut

Set	up	the	audio	input	for	SR:
Dim	MMSysAudioIn	As	ISpeechMMSysAudio

'Create	an	SpMMAudioIn	object

Set	MMSysAudioIn	=	New	SpMMAudioIn

'Get	the	device	identifier	and	assign	it	to	audio	in	object

MMSysAudioIn.DeviceId	=	TapiHelper.GetDeviceIDWaveIn(…)

'Find	the	supported	wave	in	format	and	set	it	to	audio	in	object	

MMSysAudioIn.Format.Type	=	TapiHelper.FindSupportedWaveInFormat(…)

'Prevents	format	changes

RecognizerObj.AllowAudioInputFormatChangesOnNextSet	=	False

'Set	the	object	as	the	audio	input

Set	RecognizerObj.AudioInputStream	=	MMSysAudioIn

'Release	the	helper	object

Set	TapiHelper	=	Nothing

Recognition	result	storage	and	retrieval
Once	the	audio	input	and	output	are	set	up,	you	can	use	SAPI
TTS	and	SR	functions	to	play	or	transcribe	audio	through	the
audio	devices.	This	section	details	the	processing	of	recognition
results	after	a	call	has	been	connected.	The	sample	code	in	this
section	has	general	purpose	so	it	may	be	used	for	other
connections	such	as	the	Internet.
To	demonstrate	using	SAPI	playback	and	transcribing	for	a
telephony	application,	the	following	code	examples	use	the	case
of	a	simple	speech-enabled	voice	mail	system.	Using	the	sample
application,	the	caller	chooses	from	a	menu	of	two	options:
leave	a	message	and	check	messages.	In	order	to	use	these
functions,	the	application	needs	to	store	the	recognition	results
for	the	left	messages,	and	retrieve	the	results	for	checked
messages.	The	following	code	snippet	illustrates	the
initialization	of	SAPI,	the	use	of	ISpeechMemoryStream	and	the
recognition	results	storage	and	retrieval	in	Visual	Basic.

Declaration	of	variables
The	following	are	declared	as	global	variables	and	used	in	the
speech-related	APIs	in	the	example.
Dim	WithEvents	VoiceObj	As	SpVoice	 	 	 	 'TTS	Voice

Dim	RecognizerObj	As	SpInprocRecognizer		 	 'SR	recognizer

Dim	WithEvents	RecoContextObj	As	SpInProcRecoContext	 'Recognition	context

Dim	DictationGrammarObj	As	ISpeechRecoGrammar	 	 'Dictation	grammar

Dim	gMemStream	As	SpMemoryStream	 	 	 'Memory	stream

Dim	StreamLength(100)	 	 'Array	of	the	lengths	of	each	recognition	result

Dim	NumOfResults	As	Long	 	 'Number	of	stored	recognition	results

Enum	GRAMMARIDS

					 GID_DICTATION	=	1				 	 'ID	for	the	dictation	grammar

GID_CC	=	2											 	 'ID	for	the	C	and	C	grammar

End	Enum

SAPI	initialization
The	TTS	voice	object,	in	the	following	sample,	is	obtained	from
the	RecoContextObj	instead	of	from	a	separate	voice	object.
This	allows	the	application	to	play	back	the	retained	audio	later
using	ISpeechRecoResult.SpeakAudio.	Code	snippets	3	through
6	demonstrate	initializing	SAPI	objects.	For	simplicity,	dictation
is	used,	although	realistically	you	may	use	command	and
control	(C	and	C)	grammar	for	better	recognition	of	the	menu	of
choices	and	dictation	grammar	for	transcribing	messages.

Snippet	3:	Initialization
'Create	a	recognizer	object

Set	RecognizerObj	=	New	SpInprocRecognizer

'Create	a	RecoContext	object

Set	RecoContextObj	=	RecognizerObj.CreateRecoContext

'Get	the	voice	object	from	the	RecoContext	object

Set	VoiceObj	=	RecoContextObj.Voice

'Although	by	default,	all	of	SR	events,	except	the	audio	level	event,	get	set	as	events	of	interest.	The	sample	application	assumes	that	only	the	following	five	events	are	of	interest	and	other	events	are	ignored:	Recognition,	SoundStart,	SoundEnd,	StreamStart,	StreamEnd.			

RecoContextObj.EventInterests	=	SRERecognition	+	SRESoundEnd	+	SREStreamEnd	+	_

																																SREStreamStart	+	SRESoundEnd

'Retain	the	audio	data	in	recognition	result	

RecoContextObj.RetainedAudio	=	SRAORetainAudio

'Create	the	dictation	grammar

Set	DictationGrammarObj	=	RecoContextObj.CreateGrammar(GID_DICTATION)

'Load	dictation	grammar

DictationGrammarObj.DictationLoad	vbNullString,	SLOStatic

Answer	the	call
After	the	application	receives	a	call	notification,	it	will	perform
the	following	to	handle	the	call:

1.	 Set	the	audio	input	and	output	to	the	right	audio	device
(refer	to	the	first	section,	Set	up	SAPI	Audio
Input/Output	section)	or	streams.

2.	 Answer	the	call	using	ITBasicCallControl.Answer.

3.	 Prompt	using	ISpeechVoice::Speak.	For	example,
"Welcome!	Please	select	from	the	following	two	options:
Leave	a	message	or	Check	your	messages."

4.	 Activate	the	recognition.
5.	 Process	recognition	results.

6.	 Disconnect	the	call.

Implementation	for	handling	the	answer	call	is	straight	forward
now	except	for	processing	the	recognition	results.	Snippet	3	will
discuss	in	detail	about	how	to	use	ISpeechMemoryStream	to
store	the	recognition	results	and	extract	them	later	on.

Snippet	4:	Leave	a	message
After	the	caller	selects	the	Leave	a	message	option,	the
application	creates	an	ISpeechMemoryStream	object.	The
stream	will	be	used	to	save	the	recognition	results	in	recognition
event	handler.
'Reset	the	number	of	recognition	results

NumOfResults	=	0

	'Cleanup	the	stream	and	create	a	new	one

	Set	gMemStream	=	New	SpMemoryStream

'Activate	the	recognition	

RecoDictationGrammar.DictationSetState	SGDSActive

	'Wait	for	maximum	30	seconds	to	allow	the	caller	to	leave	a	message

Dim	Start	

Start	=	Timer			'	Get	start	time.

	Do	While	(Timer	<	Start	+	30)

						DoEvents					'	Yield	to	other	processes.

	Loop

'Deactivate	the	recognition

RecoDictationGrammar.DictationSetState	SGDSInactive

Snippet	5:	Handle	the	recognition	event
ISpeechRecoResult.SaveToMemory	and
ISpeechMemoryStream.Write	are	used	in	the	following	example
to	save	the	entire	current	recognition	result	to	the	memory
stream.	In	the	meantime,	the	application,	increases	the	number
of	recognition	results	which	have	been	saved	in	the	memory
stream	and	records	the	length	of	each	recognition	result	in
bytes.	These	two	variables	will	be	used	while	retrieving	the
recognition	information	from	the	memory	stream.
Private	Sub	RecoContextObj	_Recognition	(…,ByVal	Result	As		SpeechLib.ISpeechRecoResult)

				Select	Case	Result.PhraseInfo.GrammarId

				

					 							Case	GID_DICTATION

										 	 Dim	SerializeResult	as	Variant

										 	

	 	 'Save	the	entire	recognition	result	to	memory

										 	 SerializeResult	=	Result.SaveToMemory	

	 	

'Write	the	result	to	the	memory	and	store	the	length	of	the	current	recognition	result	to	the	array

									 	 StreamLength	(NumOfResults)	=	gMemStream.Write(SerializeResult)

	 	

'Record	the	number	of	recognition	results	having	been	saved	in	the	file	stream

										 	 NumOfResults	=	NumOfResults	+	1

	 	 'Additional	speech	processing	code	here

End	Select

End	Sub

Snippet	6:	Check	the	message
The	following	code	snippet	may	be	used	when	the	caller

chooses	the	Check	the	message	option.	NumOfResults	stores
the	number	of	recognition	results	in	the	file	stream.	If	this
variable	is	zero,	then	there	is	no	message.	Otherwise,	the
sample	uses	ISpeechMemoryStream.Read	and
ISpeechRecoResult.CreateResultFromMemory	to	restore	each
recognition	result	from	the	file	stream	and	call
ISpeechRecoResult.SpeakAudio	to	play	the	message	in	the
original	voice.
If	(NumOfResults	<>	0)	Then

	

Dim	resultGet	As	Variant,	length	As	Long

Dim	RecoResultGet	As	ISpeechRecoResult

'Set	the	pointer	to	the	beginning	of	the	stream

gMemStream.Seek	0,	SSSPTRelativeToStart

'Speak	using	TTS	voice

VoiceObj.Speak	"Your	message	is	paused."

Dim	i	as	Integer

For	i	=	0	To	NumOfResults	-	1

'Extract	data	in	bytes	from	the	stream

length	=	gMemStream.Read(resultGet,	StreamLength	(i))

'Restore	the	recognition	results

				Set	RecoResultGet	=	RecoContextObj.CreateResultFromMemory(resultGet)

'Speak	the	audio

RecoResultGet.SpeakAudio

'Release	the	result	object

Set	RecoResultGet	=	Nothing

Next	i

'Speak	using	TTS	voice

VoiceObj.Speak	"End	of	your	messages"

Else

'Speak	using	TTS	voice

																VoiceObj.Speak	"You	have	no	messages,	good	bye!"

																

End	If

Custom	real	time	audio	stream
Under	some	circumstances,	you	might	want	a	custom	real-time
audio	stream	to	read	the	audio	data	from	one	entity	and	write	it
to	another.	You	can	use	this	stream	object	in	two	ways:	call
using	the	phone	system	or	call	over	the	Internet	(VoIP)	from	or
to	another	computer.	In	addition,	you	can	play	the	SAPI	TTS
voice	and	transcribe	the	message	using	SAPI	SR	functionality
over	the	network.	Before	using	the	code	snippets	in	this
example,	you	need	Windows	2000	Operating	System	or	later
installed	on	your	system.	The	example	needs	TAPI	3.x	which	is
installed	with	Windows	2000	OS.
The	following	is	an	example	that	builds	a	custom	real	time	audio
stream	to	send	and	receive	audio	data	between	SAPI	and	TAPI
objects	using	media	streaming	terminals	(MST)	and	other	media
controls	provided	by	TAPI	Media	Service	Providers	(MSPs).
Assume	that	STCustomStream	is	the	name	of	the	component	of
the	custom	audio	stream	containing	two	interfaces:	ITTSStream
and	IASRStream.	ITTSStream	handles	data	exchanges	between
the	TTS	object	and	the	media	stream	while	IASRStream	deals
with	data	transition	between	the	SR	object	and	the	media
stream.	The	media	stream	interfaces	used	in	ITTSStream	and
IASRStream	are	queried	from	the	TAPI	media	streaming
terminals.	The	terminals	are	created	by	the	TAPI	application.
Using	these	two	media	streaming	terminals	with	the	aid	of	other
media	streaming	interfaces,	a	TAPI	applications	should	be	able
capture	the	audio	data	from	the	SAPI	TTS	engine	and	send	it	out
to	the	remote	caller	side	or	render	the	audio	data	arriving	from
the	remote	end	to	the	SAPI	SR	engine	over	the	network.
Code	samples	are	provided	for	the	following	topics:	"	TTS
Custom	stream	"	SR	Custom	stream

TTS	custom	stream
The	TTS	custom	stream,	(the	aforementioned	ITTSStream),	is

used	to	capture	the	audio	data	from	a	TTS	engine	and	inject	the
live	audio	data	into	a	TAPI	media	stream.	In	this	example,
ITTSStream	inherits	from	ISpStreamFormat.	This	allows	SAPI	to
eventually	call	ITTSStream::Write()	to	feed	the	live	audio	data	to
the	ITTSStream	object.	The	object	then	simply	uses	the	media
stream	terminal	to	send	out	the	audio	data	to	the	remote	ends.
The	following	are	the	sample	code	snippets	illustrate
ITTSStream	and	its	uses.

Snippet	7:	ITTSStream	idl
interface	ITTSStream	:	IDispatch

{

[id(1),	helpstring("method	InitTTSStream")]	

HRESULT	InitTTSStream(IUnknown	*pCaptureTerminal);

};

ITTSStream::InitTTSStream	()	initializes	the	IMediaStream	object
by	querying	from	a	capture	terminal,	pCaptureTerminal,	pointing
to	an	ITTerminal	object.	The	method	can	also	obtains	the	audio
wav	format	using	ITAMMediaFormat::get_MediaFormat()	and
store	the	format	for	later	use.

Snippet	8:	Use	of	the	ITTSStream	in	Visual	Basic
When	the	call	is	connected,	the	TAPI	application	creates	an	MST
for	capture.	The	word	"capture"	is	used	in	the	DirectShow	sense,
and	indicates	the	fact	that	MST	captures	an	application's	data	to
be	introduced	into	the	TAPI	data	stream.
Dim	objTTSTerminal	As	ITTerminal	

Dim	MediaStreamTerminalClsid	As	String

								

MediaStreamTerminalClsid	=	"{E2F7AEF7-4971-11D1-A671-006097C9A2E8}"

'Create	a	capture	terminal

Set	objTTSTerminal	=	objTerminalSupport.CreateTerminal(_

MediaStreamTerminalClsid,	TAPIMEDIATYPE_AUDIO,	TD_CAPTURE)

'Process	here	for	selecting	terminals,	answering	calls,	etc.

'Set	the	output	for	SAPI	TTS

Dim	CustomStream	As	New		SpCustomStream	

Dim	MyTTSStream	As	New	TTSStream

'Initialize	the	TTSStream	object

MyTTSStream.InitTTSStream	objTTSTerminal

'Set	MyTTSStream	as	a	BaseStream	for	the	SAPI	ISpeechCustomStream

Set	CustomStream.BaseStream	=	MyTTSStream

'Prevent	the	format	change

gObjVoice.AllowAudioOutputFormatChangesOnNextSet	=	False

'Set	the	CustomStream	as	an	audio	output

Set	gObjVoice.AudioOutputStream	=	CustomStream

'Release	

Set	MyTTSStream	=	Nothing

Set	CustomStream	=	Nothing

After	your	application	receives	the	media	event,	CME_STREAM_ACTIVE,	you	can	call	Speak.	For	instance:

gObjVoice.Speak	"Welcome!"

Snippet	9:	Implementation	for	ITTSStream
methods
Listed	below	are	the	methods	that	must	be	implemented	in	the
TTS	custom	stream.	Currently	in	SAPI	5.1,	other	methods,	such
as	CopyTo(),	Commit(),	etc.,	may	return	as	E_NOTIMPL	if	those
methods	are	not	defined	by	the	application.
//		IStream	interface

	 STDMETHODIMP	Write(const	void	*	pv,	ULONG	cb,	ULONG	*	pcbWritten);

	 STDMETHODIMP	Seek(LARGE_INTEGER	dlibMove,	DWORD	dwOrigin,	ULARGE_INTEGER	*plibNewPosition);

//		ISpStreamFormat	interface

	 STDMETHODIMP	GetFormat(GUID	*	pFormatId,	WAVEFORMATEX	**	ppCoMemWaveFormatEx);

SAPI	calls	the	ITTSStream::Write()	using	the	TTS	engine
whenever	the	audio	data	is	ready.	This	method	copies	the	data
from	the	input	buffer,	void	*pv	to	a	IStreamSample	buffer	and
then	submits	them	to	MST.	SAPI	calls	Seek()	to	move	the	Seek
pointer	to	a	new	location	in	the	stream.	SAPI	calls	GetFormat	to
locate	the	current	stream	format.
STDMETHODIMP	CTTSStream::Write(const	void	*	pv,	ULONG	cb,	ULONG	*	pcbWritten)

{

HRESULT	hr	=	S_OK;

m_hCritSec.Lock();

ULONG	lWritten	=	0;

ULONG	ulPos	=0;

BYTE	*pbData	=	(BYTE	*)pv;

//	Keep	reading	samples	from	void	*pv	and	sending	them	on.	

			while	(SUCCEEDED	(hr))

			{	

						//Allocate	a	sample	on	the	terminal's	media	stream.	m_cpTTSMediaStream	is	data	//member	variable,	defined	as	CComPtr<IMediaStream>	.

						IStreamSample	*pStreamSample	=	NULL;

						hr	=	m_cpTTSMediaStream->AllocateSample(0,	&pStreamSample;);

						//	Check	hr

						//	Get	IMemoryData	interface	from	the	sample	

						IMemoryData	*pSampleMemoryData	=	NULL;

						hr	=	pStreamSample->QueryInterface(IID_IMemoryData,	(void**)&pSampleMemoryData;);

						//	Check	hr

						//Get	the	sample	buffer	information	

						ULONG	nBufferSize	=	0;

						BYTE	*pBuffer	=	NULL;

						hr	=	pSampleMemoryData->GetInfo(&nBufferSize;,	&pBuffer;,	NULL);

						//	Check	hr

						//	Copy	the	audio	data	to	the	buffer	provided	by	the	sample

						nBufferSize	=	min	(nBufferSize,	cb	-	ulPos);

						memcpy	(pBuffer,	(BYTE	*)(pbData+	ulPos),	nBufferSize);

						ulPos	+=	nBufferSize;

						//	Tell	the	sample	how	many	useful	bytes	are	available	in	the	sample	buffer						

						hr	=	pSampleMemoryData->SetActual(nBufferSize);

						//	Check	hr

						pSampleMemoryData->Release();

						pSampleMemoryData	=	NULL;

						//Tell	the	MST	that	the	sample	is	ready	for	processing

						hr	=	pStreamSample->Update(NULL,	NULL,	NULL,	0);

						//Break	the	while	loop	when	the	current	data	process	completes	or	fails

						if	(FAILED(hr)	||	ulPos	==	cb)

						{

									pStreamSample->Release();

									pStreamSample	=	NULL;

									break;

						}

			}

			m_hCritSec.Unlock();

			return	hr;

};

STDMETHODIMP	CTTSStream::Seek(LARGE_INTEGER	dlibMove,	

DWORD	dwOrigin,	

ULARGE_INTEGER	*plibNewPosition)

{

			//	We	only	accept	queries	for	the	current	stream	position

	 if	(STREAM_SEEK_CUR	!=	dwOrigin	||	dlibMove.QuadPart)

	 {

	 	 return	E_INVALIDARG;

								}

	 //	Validate	the	OUT	parameter

	 if	(SPIsBadWritePtr(plibNewPosition,	sizeof(ULARGE_INTEGER)))

	 {

	 	 return	E_POINTER;

	 }

							 m_hCritSec.Lock();

				 plibNewPosition->QuadPart	=	(LONG)dlibMove.LowPart;

m_hCritSec.Unlock();

	 return	S_OK;

}

STDMETHODIMP	CTTSStream::GetFormat(GUID	*	pFmtId,	

WAVEFORMATEX	**	ppCoMemWaveFormatEx)

{

		 m_hCritSec.Lock();

					 HRESULT	hr	=	S_OK;

	 hr	=	m_StreamFormat.ParamValidateCopyTo(pFmtId,	ppCoMemWaveFormatEx);

					 m_hCritSec.Unlock();

					 return	hr;

}

Notes
SPIsBadWritePtr()	and	SPIsBadReadPtr()	used	in	the
above	example	are	parameter	checking	help	functions.
They	are	defined	in	Spddkhlp.h	in	the	SAPI	SDK.

Variable	m_StreamFormat	is	declared	as

CSpStreamFormat.	It	is	defined	in	Sphelper.h.
The	m_hCritSec	variable	is	defined	as
CComAutoCriticalSection.
IStreamSample::Update()	in	the	above	Write()	method
performs	a	synchronous	update	of	a	sample.	If	you	would
like	to	update	the	samples	asynchronously,	you	need	to
define	a	mechanism	to	keep	track	of	all	of	the	samples
that	having	been	submitted	in	order	to	ensure	that	these
submitted	samples	are	completely	processed	by	the	MST.
For	further	information,	please	refer	to	tapisend,	a	TAPI
3.0	sample	application,	in	the	Microsoft	Platform	SDK.

SR	custom	stream
The	SR	custom	stream,	(the	above-mentioned	IASRStream),	is
used	for	rendering	the	audio	data	from	a	TAPI	media	stream	to
the	SAPI	SR	object	using	MST.	In	this	example,	IASRStream
inherits	from	ISpStreamFormat.	This	allows	SAPI	to	eventually
call	IASRStream::Read()	to	retrieve	the	live	audio	data	from	the
media	stream.	The	following	are	sample	code	snippets	about
IASRStream	and	its	uses.

Snippet	10:	IASRStream	idl
interface	IASRStream	:	IDispatch

{

	 [id(1),	helpstring("method	InitSRStream	")]	

HRESULT	InitSRStream(IUnknown	*pRenderTerminal);

	 [id(2),	helpstring("method	StopRenderStream	")]	HRESULT	StopRenderStream();

	

};

IASRStream::InitSRStream	()	initializes	the	IMediaStream	object
by	querying	from	pRenderTerminal,	which	points	to	an
ITTerminal	object.	The	method	also	obtains	the	audio	wav
format	using	ITAMMediaFormat::get_MediaFormat()	and	stores
the	format	for	later	use.	IASRStream::StopRenderStream	()	is
used	by	TAPI	applications	to	notify	the	IASRStream	object	to
stop	providing	the	audio	data	to	SAPI	during	the	read	operation.

Snippet	11:	Use	of	the	IASRStream	in	Visual	Basic
Dim	objSRTerminal	As	ITTerminal	

Dim	MediaStreamTerminalClsid	As	String

MediaStreamTerminalClsid	=	"{E2F7AEF7-4971-11D1-A671-006097C9A2E8}"

'Create	a	render	terminal

Set	objSRTerminal	=	objTerminalSupport.CreateTerminal(_

												MediaStreamTerminalClsid,	TAPIMEDIATYPE_AUDIO,	TD_RENDER)

'Process	here	for	selecting	terminals,	answering	calls,	etc.

'Set	input	for	SAPI	SR

Dim	CustomStream	As	New	SpCustomStream

Dim	MySRStream	As	New	ASRStream

'Initialize	the	ASRStream	object

MySRStream.InitSRStream	objSRTerminal

'Set	MySRStream	as	the	BaseStream	for	the	SAPI	ISpeechCustomStream

	Set	CustomStream.BaseStream	=	MySRStream

'Prevent	the	format	change

gObjRecognizer.AllowAudioInputFormatChangesOnNextSet	=	False

'Set	the	CustomStream	as	an	audio	input

Set	gObjRecognizer.AudioInputStream	=	CustomStream

'Release

Set	CustomStream	=	Nothing

'Assume	the	RecoDictationGrammar,	ISpeechRecoGrammar,	is	valid

RecoDictationGrammar.DictationSetState	SGDSActive

'Wait	here	for	a	few	seconds	for	recognition	events	

'Deactivate	the	dictation

RecoDictationGrammar.DictationSetState	SGDSInactive

'Tell	the	ASRStream	object	to	stop	providing	any	audio	data	to	SAPI	in	IASRStream	::Read()

MySRStream.StopRenderStream

'Release	ASRStream	object

Set	MySRStream	=	Nothing

Snippet	12:	Implementation	for	IASRStream
methods
The	following	snippet	lists	the	methods	that	must	be
implemented	in	the	SR	custom	stream.	Currently	in	SAPI	5.,
other	methods	like	Commit(),	CopyTo(),	etc.,	may	simply	return

E_NOTIMPL.
//		IStream	interface

				

"	 STDMETHODIMP	Read(void	*	pv,	ULONG	cb,	ULONG	*	pcbRead);

"	 STDMETHODIMP	Seek(LARGE_INTEGER	dlibMove,	DWORD	dwOrigin,	ULARGE_INTEGER	*plibNewPosition);

//		ISpStreamFormat	interface

"	 STDMETHODIMP	GetFormat(GUID	*	pFormatId,	WAVEFORMATEX	**	ppCoMemWaveFormatEx);

SR	engines	call	IASRStream::Read()	using	SAPI.	This	method
retrieves	the	audio	data	from	a	TAPI	media	stream	and	copies	it
to	the	buffer,	pointed	to	by	void	*pv.
The	following	are	sample	code	snippets	for	the	Read()	method.
For	the	implementation	of	Seek()	and	GetFormat(),	please	refer
to	the	TTS	Custom	Stream	section.
STDMETHODIMP	CASRStream::Read(void	*	pv,	ULONG	cb,	ULONG	*pcbRead)

{

		 m_hCritSec.Lock();

	 HRESULT	hr	=	S_OK;

					 BYTE	*pbData	=	(BYTE	*)pv;

					

	 if	(m_bPurgeFlag)

	 {

//	Add	code	here	for	Cleanup	such	as,	release	events,	samples,	etc.	

return	hr;

	 }

	 //allocate	the	buffer

					 if	(m_pnDataBuffer	==	NULL)

					 {

m_ulBufferSize	=	cb;

m_pnDataBuffer	=	new	BYTE	[m_ulBufferSize];

					 }

else	if	(m_ulBufferSize	!=	cb)

{	 			

//cb	might	be	different	from	that	in	the	previous	Read()	

	 	

delete	[]m_pnDataBuffer;

m_ulBufferSize	=	cb;

m_pnDataBuffer	=	new	BYTE	[m_ulBufferSize];

					 }

	

	 //Retrieve	cb	bytes	audio	data	from	the	TAPI	media	stream

				 If	(SUCCEEDED	(hr))

					 {

hr	=	RenderAudioStream();								

					 }

				

					 if	(SUCCEEDED	(hr))

					 {

								*pcbRead	=	m_ulActualRead;	

										memcpy	(&	pbData,	(BYTE	*)m_pnDataBuffer,		m_ulActualRead)							

					 }

					 m_hCritSec.Unlock();

					 return	hr;

}

The	RenderAudioStream()	function	extracts	the	audio	data	from
the	media	streaming	terminal	to	the	buffer	m_pnDataBuffer.	The
function	first	reads	the	terminal's	allocator	properties	to	perform
the	following:

Obtains	the	number	of	samples.

Calls	IMediaStream::AllocateSample()	on	the	terminal's
IMediaStream	interface	to	allocate	an	array	for	each
stream	sample.
Creates	an	array	of	events	and	associates	each	sample
with	an	event.	An	event	is	signaled	when	the
corresponding	sample	is	filled	with	data	by	the	Media
Streaming	Terminal	and	is	ready	for	use.

Calls	IStreamSample::CompletionStatus	to	ensure	that
the	sample	contains	valid	data	and	then	copies	data	to
buffer	m_pnDataBuffer.

Calls	IStreamSample::Update()	to	return	the	sample	to
the	terminal	in	order	to	be	notified	again	when	the
sample	refills	with	a	new	port	of	data.

For	detailed	information,	please	refer	to	"TAPI	3.0	TAPIRecv
Media	Streaming	Terminal	Sample	Application"	in	the	Microsoft
Platform	SDK.

Notes
m_pnDataBuffer	is	a	data	member,	pointing	to	BYTE.	It
stores	the	audio	data	received	from	the	TAPI	media
stream.

m_ulActualRead	is	a	data	member,	containing	the
number	of	audio	data	in	bytes	stored	in	m_pnDataBuffer.
m_bPurgeFlag	is	a	data	member.	It	gets	set	when	the
application	calls	StopRenderStream()	of	the	IASRStream
object.

Pitfalls:	Common	problems	Encountered
The	following	are	possible	issues	that	developers	might
encounter	during	development:

Audio	input/output	devices
If	your	audio	input	or	output	source	is	not	a	standard	windows
Multimedia	device,	you	need	to	create	an	audio	object	first	and
then	call	SAPI	SetInput	and	SetOutput	to	the	device	(see	the	Set
Audio	Input	and	Output	to	an	Audio	section	of	this	paper).	Your
application	will	not	work	if	you	simply	select	your	wave	In/Out
device	as	the	default	audio	input	or	output	device	using	Speech
properties	in	Control	Panel.

Custom	stream	object
In	your	SR	custom	stream	object,	when	the	Read()	method
returns	an	error,	SAPI	will	deactivate	the	recognizer	state.	In	the
case	of	telephony,	you	must	explicitly	set	the	recognizer	state
to	active	in	every	connection	even	through	the	recognizer	state,
by	default,	is	set	to	active.	If	connections	are	not	set	to	active,
the	Read()	method	might	return	E_ABORT	or	other	error
message	after	the	caller	disconnects	the	phone	and	the
recognizer	will	be	tuned	off.	This	might	cause	troubles	during
the	next	calls.
After	your	application	sets	either	the	dictation	or	command	and
control	grammar	state	to	inactive,	you	may	purge	the	stream	by
simply	returning	zero	bytes	in	Read()	to	inform	the	SAPI	that	SR
engine	the	end	of	stream	has	been	reached.	Otherwise,	some
SR	engines	might	keep	calling	the	Read()	method,	so	this	might
cause	your	application	to	hang.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Audio	Object

Overview
This	document	is	intended	to	help	developers	write	custom
audio	objects.	Application	developers	can	use	this	tool	to	direct
speech	data	from	memory	into	SAPI	for	speech	recognition	(SR)
and	for	text-to-speech	(TTS).	The	object	does	not	generate	or
consume	any	audio	data.	Instead,	it	works	as	an	audio	buffer
manager.	For	SR,	audio	data	is	passed	to	this	object	using	a
custom	method	ISpAudioPlug::SetData.	SAPI	retrieves	the	audio
data	from	this	object	using	IStream::Read.	For	TTS,	audio	data	is
passed	from	SAPI	to	this	object	using	Istream::Write	and	the
audio	data	can	be	retrieved	calling	a	custom	method
ISpAudioPlug::GetData.
In	order	to	use	audio	object	for	TTS	output,	the	application	uses
asynchronous	speak	because	the	audio	object	does	not
consume	the	audio	data.	The	application	must	consume	the
audio	data	by	calling	ISpAudioPlug.GetData.	If	the	application
uses	synchronous	speak,	SAPI	blocks	the	client	thread.	SAPI's
write	call	on	the	audio	object	will	block	if	the	internal	queue
does	not	allocate	more	space.	If	the	application	retrieves	the
audio	data	on	a	different	thread,	the	problem	is	averted.

Interface	description
SAPI	ISpAudio

The	SAPI	audio	object	needs	to	implement	the	ISpAudio
interface.

Custom	interface	ISpAudioPlug
ISpAudioPlug	inherits	from	ISpeechAudio.	It	provides	methods	to
send	and	retrieve	audio	data.	The	interface	is	automation
compliant	and	can	be	used	easily	in	languages	that	support
automation.
ISpAudioPlug::Init(VARIANT_BOOL	fWrite,	SpeechAudioFormatType	FormatType)

This	method	is	used	to	initialize	the	audio	object's	basic	mode,
including	the	read/write	mode,	as	well	as	initialize	the	audio
data	format.	If	fWrite	is	TRUE,	then	the	object	is	in	write	mode;	if
fWrite	is	FALSE	the	object	is	in	read	mode.	FormatType	specifies
the	audio	format.	By	default,	the	object	is	in	write	mode	and	the
format	is	set	to	SPSF_22kHz16BitMono.	If	the	method	is	called
while	the	object	is	processing	audio	data,	SPERR_DEVICE_BUSY
is	returned.
ISpAudioPlug::SetData(VARIANT	vData,	long	*	pWritten)

SR	uses	this	method	when	the	object	is	set	to	read	mode.	The
caller	uses	this	method	to	send	audio	data	so	that	SAPI	can
retrieve	the	audio	data	by	Istream::Read.
ISpAudioPlug::GetData(VARIANT*	vData)

TTS	uses	this	method	when	the	object	is	set	to	be	write	mode.
The	caller	uses	this	method	to	retrieve	audio	data.

SAPI	automation	ISpeechAudio
The	sample	audio	object	provides	an	empty	implementation	of
ISpeechAudio.	In	order	to	make	the	audio	object	usable	in
languages	that	support	automation,	SAPI	requires	that	the
object	implement	ISpeechAudio,	which	inherits	from	IDispatch.
Internally,	SAPI	would	not	use	ISpeechAudio	directly.	It	uses
QueryInterface	on	ISpAudio	and	calls	the	methods	on	ISpAudio.
This	way,	the	audio	object	only	needs	to	provide	an	empty
implementation	of	ISpeechAudio.

Buffer	management
Internally,	the	audio	object	uses	a	queue	object
CBasicQueueByArray	to	manage	the	incoming	and	outgoing
audio	data.	The	queue	internally	uses	an	array	to	store	data.
When	the	data	reaches	the	end	of	the	array,	it	would	move	the
head	of	the	array	to	fill	the	data.	The	methods	on	the	queue
objects	are	thread	safe.

State	management
When	SAPI	starts	an	audio	stream,	the	audio	state	changes	to
SPAS_RUN.	When	SAPI	closes	an	audio	stream,	the	audio	state
changes	to	SPAS_CLOSE.	The	audio	object	must	perform	the
appropriate	action	according	to	the	audio	state.	For	example,
when	the	audio	state	changes	to	SPAS_CLOSE,	the	audio	object
needs	to	free	the	audio	buffer	and	signal	other	threads	waiting
for	audio	data.

Threading
Because	the	thread	calling	IStream::Read	on	the	audio	object	is
the	same	one	that	the	SR	engine	uses	to	call	SAPI,	the	client
thread	calling	SetData/GetData	is	different	from	SAPI's
IStream::Read	thread.	The	audio	object	needs	to	be	thread	safe.

Event	rerouting
The	audio	object	implements	ISpEventSink	and	ISpEventSource.
SAPI	forwards	the	SR/TTS	events	to	the	audio	object.	The	audio
object	forwards	SAPI	the	events	with	the	audio	position	later
than	the	current	device	position.

Microsoft	Speech	SDK	SAPI	5.1

http://go.microsoft.com/fwlink?linkid=288&clcid=0x409

Using	MFC	to	Automate	SAPI

Introduction
The	Microsoft	Foundation	Classes	(MFC)	provides	an	easy	and
convenient	way	to	automate	calls	to	SAPI	using	its	Class	Wizard
to	generate	wrappers	for	the	SAPI	layer	from	the	SAPI	Type
Library.
In	order	to	accomplish	this,	perform	the	following	steps:

1.	 Create	a	new	MFCAppWizard(exe)	project	in	Visual	C++.

2.	 Based	on	the	type	of	application	you	are	creating,	follow
the	wizard	prompts.	In	Step	3	of	the	wizard	prompts,	(or
Step	2	if	you	are	creating	a	Dialog	Based	application)
make	sure	that	the	Automation	check	box	is	selected
under	the	heading,	What	other	support	would	you	like	to
include?

Once	the	new	project	is	ready,	access	Class	Wizard.
1.	 Click	the	Automation	tab,	and	then	click	Add	Class	and
select	From	a	type	library	in	the	drop-down	list.

2.	 Browse	for	the	sapi.dll	file	and	open	it.

3.	 Select	the	classes	you	would	like	Class	Wizard	to
generate	a	wrapper	for.	The	resulting	default	header
and	implementation	files	are	sapi.h	and	sapi.cpp
respectively.	The	rest	of	this	document	assumes	that
you	have	chosen	to	use	these	default	file	names.	Click
OK.

4.	 You	should	now	be	back	in	the	Class	Wizard	window.
Click	OK.

After	you	are	done	with	the	above	steps,	Visual	C++	will
automatically	add	the	Class	Wizard	generated	files	sapi.cpp	and
sapi.h	to	your	project.

Upon	viewing	the	sapi.h	file,	you	should	notice	that	it	is	nothing
more	than	an	automation	wrapper	that	has	been	generated	for
all	the	classes	you	selected.	Notice	that	all	the	classes	inherit
from	COleDispatchDriver,	hence	the	dispatch	interface	needs	to
be	set	up.	This	only	requires	a	few	lines	of	simple	code,	after
which	the	wrapper	class	can	be	used	just	like	any	other	C++
class.

Example
This	example	assumes	that	you	chose	to	generate	a	wrapper	for
the	ISpeechVoice	class	from	among	any	other	classes	you	may
have	selected.	Using	the	project	created	above,	include	the
sapi.h	file	within	a	source	file	in	the	project	that	will	make
automation	calls	to	SAPI	using	the	wrapper.	In	that	source	file,
type	the	following	code.
CLSID	CLSID_SpVoice;				//	class	ID	for	the	SAPI	SpVoice	object

LPDISPATCH	pDisp;							//	dispatch	interface	for	the	class

ISpeechVoice	voice;					//	use	the	MFC	Class	Wizard	generated	wrapper

CLSIDFromProgID(L"SAPI.SpVoice",	&CLSID;_SpVoice);

voice.CreateDispatch(CLSID_SpVoice);	

pDisp	=	voice.m_lpDispatch;	

HRESULT	hr	=	pDisp->QueryInterface(CLSID_SpVoice,	(void**)&voice.m;_lpDispatch);	

if	(hr	==	S_OK)	{	

				pDisp->Release();	

}	

else	{	

				voice.AttachDispatch(pDisp,	TRUE);	

}

voice.Speak("hello	world",	1);			//	asynchronous	call	to	Speak	method	of	ISpeechVoice	interface

If	you	have	been	following	the	steps	outlined	above	properly,
you	should	hear	your	computer	say	"hello	world!"	That's	all
there	is	to	using	MFC	to	make	automation	calls	to	SAPI.
Currently	however,	not	all	the	wrapper	classes	generated	by
MFC's	Class	Wizard	work	properly.	For	instance,	the
ISpeechLexicon	interface	does	not	work.	The	work	around	for
this	is	to	implement	your	own	automation	wrapper	classes	using
C++.	The	steps	to	do	that	are	beyond	the	scope	of	this
document.	Of	course,	you	can	always	use	the	COM	interfaces	in
C++	and	Automation	in	Visual	Basic	to	ensure	that	every

interface	in	SAPI	works	easily	and	flawlessly.

Further	Reading
The	following	links	are	recommended	to	learn	more	about	the
IDispatch	interface	and	automation.

MSDN	Automation:	Overview.	This	is	a	starting	point	for
those	new	to	automation	programming	and	will	outline
fundamental	concepts	and	procedures.
MSDN's	Automation:	IDispatch	Interface.	This	is	the
interface	used	to	expose	objects	for	automation.

http://go.microsoft.com/fwlink/?LinkId=2948
http://go.microsoft.com/fwlink/?LinkId=2949

	Welcome to Microsoft Speech SDK
	Getting Started
	System Requirements
	End User License Agreement
	About This SDK
	Legal Information
	Redistributable Code
	Who should use this SDK
	How to Read Newsgroups
	Developer Support
	Platform SDK

	SAPI 5 Introduction
	SAPI 5 Overview

	Application-Level Interfaces
	Audio Interfaces
	ISpAudio
	::SetState
	::SetFormat
	::GetStatus
	::SetBufferInfo
	::GetBufferInfo
	::GetDefaultFormat
	::EventHandle
	::GetVolumeLevel
	::SetVolumeLevel
	::GetBufferNotifySize
	::SetBufferNotifySize

	ISpMMSysAudio
	::Read
	::Write
	::GetDeviceId
	::SetDeviceId
	::GetMMHandle
	::GetLineId
	::SetLineId

	ISpStream
	::SetBaseStream
	::GetBaseStream
	::BindToFile
	::Close

	ISpStreamFormat
	::GetFormat

	ISpStreamFormatConverter
	::SetBaseStream
	::GetBaseStream
	::SetFormat
	::ResetSeekPosition
	::ScaleConvertedToBaseOffset
	::ScaleBaseToConvertedOffset

	ISpTranscript
	::GetTranscript
	::AppendTranscript

	Eventing Interfaces
	ISpNotifySource
	::SetNotifySink
	::SetNotifyWindowMessage
	::SetNotifyCallbackFunction
	::SetNotifyCallbackInterface
	::SetNotifyWin32Event
	::WaitForNotifyEvent
	::GetNotifyEventHandle

	ISpNotifySink
	::Notify

	ISpNotifyTranslator
	::InitWindowMessage
	::InitCallback
	::InitSpNotifyCallback
	::InitWin32Event
	::Wait
	::GetEventHandle

	ISpEventSink
	::AddEvents
	::GetEventInterest

	ISpEventSource
	::SetInterest
	::GetEvents
	::GetInfo

	ISpNotifyCallback
	::NotifyCallback

	Grammar Compiler Interfaces
	Text Grammar Format
	Text Grammar Format Overview
	Grammar Rules and State Graphs
	Designing Grammar Rules
	Grammar Format Tags
	Grammar Format Tags: Special Characters
	SAPI Grammar Example: Solitaire

	ISpGrammarBuilder
	Example application
	::ResetGrammar
	::GetRule
	::ClearRule
	::CreateNewState
	::AddWordTransition
	::AddRuleTransition
	::AddResource
	::Commit

	Lexicon Interfaces
	Lexicon Interfaces Overview
	ISpContainerLexicon
	::AddLexicon

	ISpLexicon
	::GetPronunciations
	::AddPrononunciation
	::RemovePronunciation
	::GetGeneration
	::GetGenerationChange
	::GetWords

	ISpPhoneConverter
	::PhoneToId
	::IdToPhone

	Resource Interfaces
	Object Tokens Overview
	ISpDataKey
	::SetData
	::GetData
	::SetStringValue
	::GetStringValue
	::SetDWORD
	::GetDWORD
	::OpenKey
	::CreateKey
	::DeleteKey
	::DeleteValue
	::EnumKeys
	::EnumValues

	ISpRegDataKey
	::SetKey

	ISpObjectTokenInit
	::InitFromDataKey

	ISpObjectTokenCategory
	::SetId
	::GetId
	::GetDataKey
	::EnumTokens
	::SetDefaultTokenId
	::GetDefaultTokenId

	ISpObjectToken
	::SetId
	::GetId
	::GetCategory
	::CreateInstance
	::GetStorageFileName
	::RemoveStorageFileName
	::Remove
	::IsUISupported
	::DisplayUI
	::MatchesAttributes

	IEnumSpObjectTokens
	::Next
	::Skip
	::Reset
	::Clone
	::Item
	::GetCount

	ISpObjectWithToken
	::SetObjectToken
	::GetObjectToken

	ISpResourceManager
	::SetObject
	::GetObject

	ISpTask
	::Execute

	Speech Recognition Interfaces
	ISpRecoContext
	::GetRecognizer
	::CreateGrammar
	::GetStatus
	::GetMaxAlternates
	::SetMaxAlternates
	::SetAudioOptions
	::GetAudioOptions
	::DeserializeResult
	::Bookmark
	::SetAdaptationData
	::Pause
	::Resume
	::SetVoice
	::GetVoice
	::SetVoicePurgeEvent
	::GetVoicePurgeEvent
	::SetContextState
	::GetContextState

	ISpRecoGrammar
	::GetGrammarId
	::GetRecoContext
	::LoadCmdFromFile
	::LoadCmdFromObject
	::LoadCmdFromResource
	::LoadCmdFromMemory
	::LoadCmdFromProprietaryGrammar
	::SetRuleState
	::SetRuleIdState
	::LoadDictation
	::UnloadDictation
	::SetDictationState
	::SetWordSequenceData
	::SetTextSelection
	::IsPronounceable
	::SetGrammarState
	::SaveCmd
	::GetGrammarState

	ISpRecoResult
	::GetResultTimes
	::GetAlternates
	::GetAudio
	::SpeakAudio
	::Serialize
	::ScaleAudio
	::GetRecoContext

	ISpRecognizer
	::SetRecognizer
	::GetRecognizer
	::SetInput
	::GetInputObjectToken
	::GetInputStream
	::CreateRecoContext
	::GetRecoProfile
	::SetRecoProfile
	::IsSharedInstance
	::GetRecoState
	::SetRecoState
	::GetStatus
	::GetFormat
	::IsUISupported
	::DisplayUI
	::EmulateRecognition

	ISpPhrase
	::GetPhrase
	::GetSerializedPhrase
	::GetText
	::Discard

	ISpPhraseAlt
	::GetAltInfo
	::Commit

	ISpProperties
	::SetPropertyNum
	::GetPropertyNum
	::SetPropertyString
	::GetPropertyString

	Text-to-Speech Interfaces
	Overview
	TTS Engine Characteristics
	Text synthesis
	Synthesis markup
	English Context tag definitions
	Chinese Context tag definitions
	Japanese Context tag definitions

	ISpVoice
	::SetOutput
	::GetOutputObjectToken
	::GetOutputStream
	::Pause
	::Resume
	::SetVoice
	::GetVoice
	::Speak
	::SpeakStream
	::GetStatus
	::Skip
	::SetPriority
	::GetPriority
	::SetAlertBoundary
	::GetAlertBoundary
	::SetRate
	::GetRate
	::SetVolume
	::GetVolume
	::WaitUntilDone
	::SetSyncSpeakTimeout
	::GetSyncSpeakTimeout
	::SpeakCompleteEvent
	::IsUISupported
	::DisplayUI

	Engine-Level Interfaces
	Grammar Compiler Interfaces
	ISpErrorLog
	::AddError

	ISpGramCompBackend
	::SetSaveObjects
	::InitFromBinaryGrammar

	ISpGrammarCompiler
	::CompileStream

	ISpITNProcessor
	::LoadITNGrammar
	::ITNPhrase

	ISpCFGInterpreter
	::InitGrammar
	::Interpret

	ISpCFGInterpreterSite
	::AddTextReplacement
	::AddProperty
	::GetResourceValue

	Resource Interfaces
	ISpObjectTokenEnumBuilder
	::SetAttribs
	::AddTokens
	::AddTokensFromDataKey
	::AddTokensFromTokenEnum
	::Sort

	ISpTokenUI
	::IsUISupported
	::DisplayUI

	ISpTaskManager
	::SetThreadPoolInfo
	::GetThreadPoolInfo
	::QueueTask
	::CreateReoccurringTask
	::CreateThreadControl
	::TerminateTask
	::TerminateTaskGroup

	ISpThreadControl
	::StartThread
	::WaitForThreadDone
	::TerminateThread
	::ThreadHandle
	::ThreadID
	::NotifyEvent
	::WindowHandle
	::ThreadCompleteEvent
	::ExitThreadEvent

	ISpThreadTask
	::InitThread
	::ThreadProc
	::WindowMessage

	Speech Recognition Interfaces
	ISpPhraseBuilder
	::InitFromPhrase
	::InitFromSerializedPhrase
	::AddElements
	::AddRules
	::AddProperties
	::AddReplacements

	Speech Recognition Engine Interfaces
	ISpPrivateEngineCall
	::CallEngine
	::CallEngineEx

	ISpSREngine
	::SetSite
	::GetInputAudioFormat
	::RecognizeStream
	::SetRecoProfile
	::OnCreateGrammar
	::OnDeleteGrammar
	::LoadProprietaryGrammar
	::UnloadProprietaryGrammar
	::SetProprietaryRuleState
	::SetProprietaryRuleIdState
	::LoadSLM
	::UnloadSLM
	::SetSLMState
	::SetWordSequenceData
	::SetTextSelection
	::IsPronounceable
	::OnCreateRecoContext
	::OnDeleteRecoContext
	::PrivateCall
	::SetAdaptationData
	::SetPropertyNum
	::GetPropertyNum
	::SetPropertyString
	::GetPropertyString
	::SetGrammarState
	::WordNotify
	::RuleNotify
	::PrivateCallEx
	::SetContextState

	ISpSREngineSite
	::Read
	::DataAvailable
	::SetBufferNotifySize
	::ParseFromTransitions
	::Recognition
	::AddEvent
	::Synchronize
	::GetWordInfo
	::SetWordClientContext
	::GetRuleInfo
	::SetRuleClientContext
	::GetStateInfo
	::GetResource
	::GetTransitionProperty
	::IsAlternate
	::GetMaxAlternates
	::GetContextMaxAlternates
	::UpdateRecoPos

	ISpSRAlternates
	::GetAlternates
	::Commit

	Text-to-Speech Engine Interface
	ISpTTSEngine
	::Speak
	::GetOutputFormat

	ISpTTSEngineSite
	::GetActions
	::Write
	::GetRate
	::GetVolume
	::GetSkipInfo
	::CompleteSkip

	Structures
	SPAUDIOBUFFERINFO
	SPAUDIOSTATUS
	SPBINARYGRAMMAR
	SPEVENT
	SPEVENTSOURCEINFO
	SPPARSEINFO
	SPPATHENTRY
	SPPHRASE
	SPPHRASEALT
	SPPHRASEALTREQUEST
	SPPHRASEELEMENT
	SPPHRASEPROPERTY
	SPPHRASEREPLACEMENT
	SPPHRASERULE
	SPPROPERTYINFO
	SPRECOCONTEXTSTATUS
	SPRECOGNIZERSTATUS
	SPRECORESULTINFO
	SPRECORESULTTIMES
	SPRULEENTRY
	SPSERIALIZEDEVENT
	SPSERIALIZEDEVENT64
	SPSERIALIZEDPHRASE
	SPSERIALIZEDRESULT
	SPSTATEINFO
	SPTEXTSELECTIONINFO
	SPTMTHREADINFO
	SPTRANSITIONENTRY
	SPTRANSITIONPROPERTY
	SPVCONTEXT
	SPVOICESTATUS
	SPVPITCH
	SPVSTATE
	SPVTEXTFRAG
	SPWORD
	SPWORDENTRY
	SPWORDLIST
	SPWORDPRONUNCIATION
	SPWORDPRONUNCIATIONLIST
	WAVEFORMATEX

	Enumerations
	SPAUDIOOPTIONS
	SPAUDIOSTATE
	SPBOOKMARKOPTIONS
	SPCFGNOTIFY
	SPCFGRULEATTRIBUTES
	SPCONTEXTSTATE
	SPDATAKEYLOCATION
	SPDISPLAYATTRIBUTES
	SPEAKFLAGS
	SPENDSRSTREAMFLAGS
	SPEVENTENUM
	SPEVENTLPARAMTYPE
	SPFILEMODE
	SPGRAMMARSTATE
	SPGRAMMARWORDTYPE
	SPINTERFERENCE
	SPLEXICONTYPE
	SPLOADOPTIONS
	SPPARTOFSPEECH
	SPPHRASERNG
	SPPROPSRC
	SPRECOEVENTFLAGS
	SPRECOSTATE
	SPRESULTTYPE
	SPRULEINFOOPT
	SPRULESTATE
	SPRUNSTATE
	SPSTREAMFORMAT
	SPTRANSITIONTYPE
	SPVACTIONS
	SPVALUETYPE
	SPVESACTIONS
	SPVFEATURE
	SPVISEMES
	SPVLIMITS
	SPVPRIORITY
	SPVSKIPTYPE
	SPWAVEFORMATTYPE
	SPWORDINFOOPT
	SPWORDPRONOUNCEABLE
	SPWORDTYPE

	Helper Functions
	CSpStreamFormat Class
	Constructor
	Destructor
	AssignFormat
	Clear
	CopyTo
	Deserialize
	DetachTo
	FormatId
	IsEqual
	ParamValidateAssignFormat.htm
	ParamValidateCopyTo
	Serialize
	SerializeSize
	WaveFormatExPtr

	CSpDynamicString Class
	Constructor
	Destructor
	Append
	Attach
	Clear
	ClearAndGrowTo
	Compact
	Copy
	CopyToBSTR
	Detach
	Length
	LTrim
	RTrim
	TrimBoth
	TrimToSize

	CSpEvent
	Constructor
	Destructor
	AddrOf
	BookmarkName
	Clear
	CopyFrom
	CopyTo
	Deserialize
	Detach
	EndStreamResult
	GetFrom
	InputSentLen
	InputSentPos
	InputStreamReleased
	InputWordLen
	InputWordPos
	Interference
	IsEmulated
	IsPaused
	Object
	ObjectToken
	PersistVoiceChange
	Phoneme
	PropertyName
	PropertyNumValue
	PropertyStringValue
	RecoResult
	RecoState
	RequestTypeOfUI
	Serialize
	SerializeSize
	String
	Viseme
	VoiceToken

	UI Helper Functions
	SpAddTokenToComboBox
	SpAddTokenToListBox
	SpDeleteCurSelComboBoxToken
	SpDeleteCurSelListBoxToken
	SpDestroyTokenComboBox
	SpDestroyTokenListBox
	SpGetComboBoxToken
	SpGetCurSelComboBoxToken
	SpGetCurSelListBoxToken
	SpGetListBoxToken
	SpInitTokenComboBox
	SpInitTokenListBox
	SpUpdateCurSelComboBoxToken
	SpUpdateCurSelListBoxToken

	SpCreateBestObject
	SPCreateDefaultObjectFromCategoryID
	SpCreateNewToken (by Category ID)
	SpCreateNewToken (by Token ID)
	SpCreateNewTokenEx (by Category ID)
	SpCreateNewTokenEx (by Token ID)
	SpCreateObjectFromSubToken
	SpCreateObjectFromToken
	SpCreateObjectFromTokenId
	SpCreatePhoneConverter
	SpEnumTokens
	SpFindBestToken
	SpGetCategoryFromId
	SpGetDefaultTokenFromCategoryId
	SpGetDefaultTokenIdFromCategoryId
	SpGetDescription
	SpGetSubTokenFromToken
	SpGetTokenFromId
	SpGetUserDefaultUILanguage
	SpSetCommonTokenData.
	SpSetDefaultTokenForCategoryId
	SpSetDefaultTokenIdForCategoryId
	SPFEI
	SPBindToFile
	SpClearEvent
	SpConvertStreamFormatEnum
	SpEventSerializeSize
	SpGetDescription
	SpInitEvent
	SpSetDescription

	SAPI Object Classes
	SAPI Application Object Classes
	SpNotifyTranslator
	SpObjectTokenCategory
	SpObjectTokenEnum
	SpObjectToken
	SpDataKey
	SpResourceManager
	SpStreamFormatConverter
	SpMMAudioEnum
	SpMMAudioIn
	SpMMAudioOut
	SpRecPlayAudio
	SpStream
	SpVoice
	SpSharedRecognizer
	SpInprocRecognizer
	SpRecoContext
	SpSharedRecoContext
	SpRecoGrammar
	SpRecoResult
	SpPhraseAlt
	SpLexicon
	SpUnCompressedLexicon
	SpCompressedLexicon
	SpPhoneConverter

	SAPI DDK Object Classes
	SpDataKey
	SpObjectTokenEnum
	SpPhraseBuilder
	SpITNProcessor
	SpGrammarComplier
	SpGramCompBackend
	SpSREngineSite
	SpTTSEngineSite
	SpSREngine
	SpTTSEngine
	SpSRAlternates
	SpRecoExtension
	SpTokenUI

	Error Codes
	Error Codes

	Miscellanea
	Global Constants
	User Interfaces
	SPDUI_EngineProperties
	SPDUI_AddRemoveWord
	SPDUI_UserTraining
	SPDUI_MicTraining
	SPDUI_RecoProfileProperties
	SPDUI_AudioProperties
	SPDUI_AudioVolume

	COM Class ID List
	Token Category IDs
	COM Interface IUnknown
	American English Phoneme Representation
	International Phonemes
	Chinese Phoneme Set
	Japanese Phoneme Set

	Further Reading

	SDK Samples, Tools, and Tutorials
	SDK Samples (C/C++)
	Age of Empires Speech
	Reco
	CoffeeS0 Example
	CoffeeS1 Example
	CoffeeS2 Example
	CoffeeS3 Example
	CoffeeS4 Example
	CoffeeS5 Example
	CoffeeS6 Example
	Dictation Pad
	Simple Dictation
	TTSApp
	TalkBack
	SimpleTelephony

	SDK Samples (Automation)
	Speech List Box for Visual Basic
	Simple Dictation for Visual Basic
	Simple TTS for Visual Basic
	RecoVB for Visual Basic
	AudioApp for Visual Basic
	TTSApp for Visual Basic
	VB Outgoing Call
	VB Tapi With Internet
	Simple TTS for JScript
	Speech List Box for C#
	SimpleTTS for C#

	SDK Samples (Utilities)
	MkVoice
	Grammar Compiler
	Compliance Testing Tool
	Sample SR Engine
	Sample TTS Engine

	SDK Tutorials
	Setting Up SAPI 5
	CoffeeS0 Tutorial
	CoffeeS1 Tutorial
	CoffeeS2 Tutorial
	CoffeeS3 Tutorial
	CoffeeS4 Tutorial
	CoffeeS5 Tutorial
	CoffeeS6 Tutorial
	Text-To-Speech Tutorial
	Text-To-Speech With Events
	Text-To-Speech Events Explanation

	White Papers
	SAPI 5.0 SR Properties White Paper
	TTS Engine Vendor Porting Guide White Paper
	SR Engine Vendor Porting Guide White Paper
	Object Tokens and Registry Settings White Paper
	VendorPreferred Attribute
	Simple TTS Applications
	SAPI 5.1 64-bit Issues
	Speech Telephony Application Guide
	Using Sample Audio Object (SpAudioPlug)
	Audio Object
	Compliance Tests White Paper
	Microsoft Speech SDK Setup 5.1
	XML TTS Tutorial
	Text Normalization
	Using MFC to Automate SAPI
	Persisting Recognized Wave Audio from the Speech Recognition Engine
	Using Wave File Input with the Speech Recognition Engine

	Automation
	Automation Overview
	Objects And Classes Overview
	Events Overview
	Event Types
	Events Handling
	Using Events In Code

	Using the Code Examples
	Programming Notes For Visual Basic
	Sample Recognition Application Code (Shared)
	Sample C&C Recognition Application Code
	Sample Recognition Application Code (Inproc)
	Sample DLL Code
	Enumerations
	SpeechAudioFormatType
	SpeechAudioState
	SpeechBookmarkOptions
	SpeechDataKeyLocation
	SpeechDiscardType
	SpeechDisplayAttributes
	SpeechEngineConfidence
	SpeechFormatType
	SpeechGrammarRuleStateTransitionType
	SpeechGrammarState
	SpeechGrammarWordType
	SpeechInterference
	SpeechLexiconType
	SpeechLoadOption
	SpeechPartOfSpeech
	SpeechRecoContextState
	SpeechRecoEvents
	SpeechRecognitionType
	SpeechRecognizerState
	SpeechRetainedAudioOptions
	SpeechRuleAttributes
	SpeechRuleState
	SpeechRunState
	SpeechSpecialTransitionType
	SpeechStreamFileMode
	SpeechStreamSeekPositionType
	SpeechTokenContext
	SpeechTokenShellFolder
	SpeechVisemeFeature
	SpeechVisemeType
	SpeechVoiceEvents
	SpeechVoicePriority
	SpeechVoiceSpeakFlags
	SpeechWordPronounceable
	SpeechWordType

	ISpeechAudio
	BufferInfo
	BufferNotifySize
	DefaultFormat
	EventHandle
	Format
	Read
	Seek
	SetState
	Status
	Volume
	Write

	ISpeechAudioBufferInfo
	BufferSize
	EventBias
	MinNotification

	ISpeechAudioStatus
	CurrentDevicePosition
	CurrentSeekPosition
	FreeBufferSpace
	NonBlockingIO
	State

	ISpeechBaseStream
	Format
	Read
	Seek
	Write
	Code Example

	ISpeechDataKey
	CreateKey
	DeleteKey
	DeleteValue
	EnumKeys
	EnumValues
	GetBinaryValue
	GetLongValue
	GetStringValue
	OpenKey
	SetBinaryValue
	SetLongValue
	SetStringValue
	Code Example

	ISpeechGrammarRule
	AddResource
	AddState
	Attributes
	Clear
	Id
	InitialState
	Name

	ISpeechGrammarRules
	Add
	Commit
	CommitAndSave
	Count
	Dynamic
	FindRule
	Item

	ISpeechGrammarRuleState
	AddRuleTransition
	AddSpecialTransition
	AddWordTransition
	Rule
	Transitions

	ISpeechGrammarRuleStateTransition
	NextState
	PropertyId
	PropertyName
	PropertyValue
	Rule
	Text
	Type
	Weight

	ISpeechGrammarRuleStateTransitions
	Count
	Item

	ISpeechLexiconPronunciation
	LangId
	PartOfSpeech
	PhoneIds
	Symbolic
	Type

	ISpeechLexiconPronunciations
	Count
	Item

	ISpeechLexiconWord
	LangId
	Pronunciations
	Type
	Word

	ISpeechLexiconWords
	Count
	Item

	ISpeechObjectTokens
	Count
	Item

	ISpeechPhraseAlternate
	Commit
	NumberOfElementsInResult
	PhraseInfo
	RecoResult
	StartElementInResult
	Code Example

	ISpeechPhraseAlternates
	Count
	Item

	ISpeechPhraseElement
	ActualConfidence
	AudioSizeBytes
	AudioSizeTime
	AudioStreamOffset
	AudioTimeOffset
	DisplayAttributes
	DisplayText
	EngineConfidence
	LexicalForm
	Pronunciation
	RequiredConfidence
	RetainedSizeBytes
	RetainedStreamOffset
	Code Example

	ISpeechPhraseElements
	Count
	Item

	ISpeechPhraseInfo
	AudioSizeBytes
	AudioSizeTime
	AudioStreamPosition
	Elements
	EngineId
	EnginePrivateData
	GetDisplayAttributes
	GetText
	GrammarId
	LanguageId
	Properties
	Replacements
	RetainedSizeBytes
	Rule
	SaveToMemory
	StartTime

	ISpeechPhraseProperties
	Count
	Item

	ISpeechPhraseProperty
	Children
	Confidence
	EngineConfidence
	FirstElement
	Id
	Name
	NumberOfElements
	Parent
	Value

	ISpeechPhraseReplacement
	DisplayAttributes
	FirstElement
	NumberOfElements
	Text
	Code Example

	ISpeechPhraseReplacements
	Count
	Item

	ISpeechPhraseRule
	Children
	Confidence
	EngineConfidence
	FirstElement
	Id
	Name
	NumberOfElements
	Parent
	Code Example

	ISpeechPhraseRules
	Count
	Item

	ISpeechRecognizerStatus
	AudioStatus
	ClsidEngine
	CurrentStreamNumber
	CurrentStreamPosition
	NumberOfActiveRules
	SupportedLanguages

	ISpeechRecoGrammar
	CmdLoadFromFile
	CmdLoadFromMemory
	CmdLoadFromObject
	CmdLoadFromProprietaryGrammar
	CmdLoadFromResource
	CmdSetRuleIdState
	CmdSetRuleState
	DictationLoad
	DictationSetState
	DictationUnload
	Id
	IsPronounceable
	RecoContext
	Reset
	Rules
	SetTextSelection
	SetWordSequenceData
	State

	ISpeechRecoResult
	Alternates
	Audio
	AudioFormat
	DiscardResultInfo
	PhraseInfo
	RecoContext
	SaveToMemory
	SpeakAudio
	Times

	ISpeechRecoResultTimes
	Length
	OffsetFromStart
	StreamTime
	TickCount

	ISpeechVoiceStatus
	CurrentStreamNumber
	InputSentenceLength
	InputSentencePosition
	InputWordLength
	InputWordPosition
	LastBookmark
	LastBookmarkId
	LastHResult
	LastStreamNumberQueued
	PhonemeId
	RunningState
	VisemeId
	Code Example

	SpAudioFormat
	GetWaveFormatEx
	Guid
	SetWaveFormatEx
	Type

	SpCustomStream
	BaseStream
	Format
	Read
	Seek
	Write

	SpFileStream
	Close
	Format
	Open
	Read
	Seek
	Write

	SpInProcRecoContext
	AllowVoiceFormatMatchingOnNextSet
	AudioInputInterferenceStatus
	Bookmark
	CmdMaxAlternates
	CreateGrammar
	CreateResultFromMemory
	EventInterests
	Pause
	Recognizer
	RequestedUIType
	Resume
	RetainedAudio
	RetainedAudioFormat
	SetAdaptationData
	State
	Voice
	VoicePurgeEvent

	SpInProcRecoContext (Events)
	Adaptation Event
	AudioLevel Event
	Bookmark Event
	EndStream Event
	EnginePrivate Event
	FalseRecognition Event
	Hypothesis Event
	Interference Event
	PhraseStart Event
	PropertyNumberChange Event
	PropertyStringChange Event
	Recognition Event
	RecognitionForOtherContext Event
	RecognizerStateChange Event
	RequestUI Event
	SoundEnd Event
	SoundStart Event
	StartStream Event

	SpInProcRecognizer
	AllowAudioInputFormatChangesOnNextSet
	AudioInput
	AudioInputStream
	CreateRecoContext
	DisplayUI
	EmulateRecognition
	GetAudioInputs
	GetFormat
	GetProfiles
	GetPropertyNumber
	GetPropertyString
	GetRecognizers
	IsShared
	IsUISupported
	Profile
	Recognizer
	SetPropertyNumber
	SetPropertyString
	State
	Status

	SpLexicon
	AddPronunciation
	AddPronunciationByPhoneIds
	GenerationId
	GetGenerationChange
	GetPronunciations
	GetWords
	RemovePronunciation
	RemovePronunciationByPhoneIds

	SpMemoryStream
	Format
	GetData
	Read
	Seek
	SetData
	Write

	SpMMAudioIn
	BufferInfo
	BufferNotifySize
	DefaultFormat
	DeviceId
	EventHandle
	Format
	LineId
	MMHandle
	Read
	Seek
	SetState
	Status
	Volume
	Write

	SpMMAudioOut
	BufferInfo
	BufferNotifySize
	DefaultFormat
	DeviceId
	EventHandle
	Format
	LineId
	MMHandle
	Read
	Seek
	SetState
	Status
	Volume
	Write

	SpObjectToken
	Category
	CreateInstance
	DataKey
	DisplayUI
	GetAttribute
	GetDescription
	GetStorageFileName
	Id
	IsUISupported
	MatchesAttributes
	Remove
	RemoveStorageFileName
	SetId
	SpObjectToken Example

	SpObjectTokenCategory
	Default
	EnumerateTokens
	GetDataKey
	Id
	SetId

	SpPhoneConverter
	IdToPhone
	LanguageId
	PhoneToId

	SpPhraseInfoBuilder
	RestorePhraseFromMemory

	SpSharedRecoContext
	AllowVoiceFormatMatchingOnNextSet
	AudioInputInterferenceStatus
	Bookmark
	CmdMaxAlternates
	CreateGrammar
	CreateResultFromMemory
	EventInterests
	Pause
	Recognizer
	RequestedUIType
	Resume
	RetainedAudio
	RetainedAudioFormat
	SetAdaptationData
	State
	Voice
	VoicePurgeEvent

	SpSharedRecoContext (Events)
	Adaptation Event
	AudioLevel Event
	Bookmark Event
	EndStream Event
	EnginePrivate Event
	FalseRecognition Event
	Hypothesis Event
	Interference Event
	PhraseStart Event
	PropertyNumberChange Event
	PropertyStringChange Event
	Recognition Event
	RecognitionForOtherContext Event
	RecognizerStateChange Event
	RequestUI Event
	SoundEnd Event
	SoundStart Event
	StartStream Event

	SpSharedRecognizer
	AllowAudioInputFormatChangesOnNextSet
	AudioInput
	AudioInputStream
	CreateRecoContext
	DisplayUI
	EmulateRecognition
	GetAudioInputs
	GetFormat
	GetProfiles
	GetPropertyNumber
	GetPropertyString
	GetRecognizers
	IsShared
	IsUISupported
	Profile
	Recognizer
	SetPropertyNumber
	SetPropertyString
	State
	Status

	SpTextSelectionInformation
	ActiveLength
	ActiveOffset
	SelectionLength
	SelectionOffset

	SpUnCompressedLexicon
	AddPronunciation
	AddPronunciationByPhoneIds
	GenerationId
	GetGenerationChange
	GetPronunciations
	GetWords
	RemovePronunciation
	RemovePronunciationByPhoneIds

	SpVoice
	AlertBoundary
	AllowAudioOutputFormatChangesOnNextSet
	AudioOutput
	AudioOutputStream
	DisplayUI
	EventInterests
	GetAudioOutputs
	GetVoices
	IsUISupported
	Pause
	Priority
	Rate
	Resume
	Skip
	Speak
	SpeakCompleteEvent
	SpeakStream
	Status
	SynchronousSpeakTimeout
	Voice
	Volume
	WaitUntilDone

	SpVoice (Events)
	AudioLevel Event
	Bookmark Event
	EndStream Event
	EnginePrivate Event
	Phoneme Event
	Sentence Event
	StartStream Event
	Viseme Event
	VoiceChange Event
	Word Event

	SpWaveFormatEx
	AvgBytesPerSec
	BitsPerSample
	BlockAlign
	Channels
	ExtraData
	FormatTag
	SamplesPerSec

