
Ruby	2.2.4	Core	API	Reference
API	Reference
This	is	the	API	documentation	for	'Ruby	2.2.4	Core	API
Reference	API	Reference'.

Classes/Modules
IO

IO::EAGAINWaitReadable

IO::EAGAINWaitWritable

IO::EINPROGRESSWaitReadable

IO::EINPROGRESSWaitWritable

IO::EWOULDBLOCKWaitReadable

IO::EWOULDBLOCKWaitWritable

IO::WaitReadable

IO::WaitWritable

Encoding

Encoding::CompatibilityError

Encoding::Converter

Encoding::ConverterNotFoundError

Encoding::InvalidByteSequenceError

Encoding::UndefinedConversionError

Process

Process::GID

Process::Status

Process::Sys

Process::UID

Process::Waiter

Enumerator

Enumerator::Generator

Enumerator::Lazy

Enumerator::Yielder

File

File::Constants

File::Stat

RubyVM

RubyVM::Env

RubyVM::InstructionSequence

Complex

Complex::compatible

GC

GC::Profiler

Math

Math::DomainError

ObjectSpace

ObjectSpace::WeakMap

Rational

Rational::compatible

ArgumentError

Array

BasicObject

Bignum

Binding

Class

Comparable

Continuation

Data

Dir

ENV

EOFError

EncodingError

Enumerable

Errno

Exception

FalseClass

Fiber

FiberError

FileTest

Fixnum

Float

FloatDomainError

Hash

IOError

IndexError

Integer

Interrupt

Kernel

KeyError

LoadError

LocalJumpError

Marshal

MatchData

Method

Module

Mutex

NameError

NilClass

NoMemoryError

NoMethodError

NotImplementedError

Numeric

Object

Proc

Random

Range

RangeError

Regexp

RegexpError

Ripper

RuntimeError

ScriptError

SecurityError

Signal

SignalException

StandardError

StopIteration

String

Struct

Symbol

SyntaxError

SystemCallError

SystemExit

SystemStackError

Thread

ThreadError

ThreadGroup

Time

TracePoint

TrueClass

TypeError

UnboundMethod

UncaughtThrowError

ZeroDivisionError

fatal

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	ArgumentError
Raised	when	the	arguments	are	wrong	and
there	isn't	a	more	specific	Exception	class.

Ex:	passing	the	wrong	number	of	arguments

[1,	2,	3].first(4,	5)

raises	the	exception:

ArgumentError:	wrong	number	of	arguments	(2	for	1)

Ex:	passing	an	argument	that	is	not	acceptable:

[1,	2,	3].first(-4)

raises	the	exception:

ArgumentError:	negative	array	size

In	Files
error.c

Parent
StandardError

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	Array
Arrays	are	ordered,	integer-indexed	collections
of	any	object.

Array	indexing	starts	at	0,	as	in	C	or	Java.	A
negative	index	is	assumed	to	be	relative	to	the
end	of	the	array—that	is,	an	index	of	-1	indicates
the	last	element	of	the	array,	-2	is	the	next	to	last
element	in	the	array,	and	so	on.

Creating	Arrays

A	new	array	can	be	created	by	using	the	literal
constructor	[].	Arrays	can	contain	different	types
of	objects.	For	example,	the	array	below
contains	an	Integer,	a	String	and	a	Float:

ary	=	[1,	"two",	3.0]	#=>	[1,	"two",	3.0]

An	array	can	also	be	created	by	explicitly	calling
::new	with	zero,	one	(the	initial	size	of	the	Array)
or	two	arguments	(the	initial	size	and	a	default
object).

ary	=	Array.new				#=>	[]

Array.new(3)							#=>	[nil,	nil,	nil]

Array.new(3,	true)	#=>	[true,	true,	true]

Note	that	the	second	argument	populates	the
array	with	references	to	the	same	object.
Therefore,	it	is	only	recommended	in	cases
when	you	need	to	instantiate	arrays	with	natively
immutable	objects	such	as	Symbols,	numbers,
true	or	false.

To	create	an	array	with	separate	objects	a	block
can	be	passed	instead.	This	method	is	safe	to
use	with	mutable	objects	such	as	hashes,
strings	or	other	arrays:

Array.new(4)	{	Hash.new	}	#=>	[{},	{},	{},	{}]

This	is	also	a	quick	way	to	build	up	multi-
dimensional	arrays:

empty_table	=	Array.new(3)	{	Array.new(3)	}

#=>	[[nil,	nil,	nil],	[nil,	nil,	nil],	[nil,	nil,	nil]]

An	array	can	also	be	created	by	using	the
Array()	method,	provided	by	Kernel,	which	tries
to	call	to_ary,	then	to_a	on	its	argument.

Array({:a	=>	"a",	:b	=>	"b"})	#=>	[[:a,	"a"],	[:b,	"b"]]

Example	Usage

In	addition	to	the	methods	it	mixes	in	through	the
Enumerable	module,	the	Array	class	has
proprietary	methods	for	accessing,	searching
and	otherwise	manipulating	arrays.

Some	of	the	more	common	ones	are	illustrated
below.

Accessing	Elements

Elements	in	an	array	can	be	retrieved	using	the
Array#[]	method.	It	can	take	a	single	integer
argument	(a	numeric	index),	a	pair	of	arguments
(start	and	length)	or	a	range.	Negative	indices
start	counting	from	the	end,	with	-1	being	the	last
element.

arr	=	[1,	2,	3,	4,	5,	6]

arr[2]				#=>	3

arr[100]		#=>	nil

arr[-3]			#=>	4

arr[2,	3]	#=>	[3,	4,	5]

arr[1..4]	#=>	[2,	3,	4,	5]

arr[1..-3]	#=>	[2,	3,	4]

Another	way	to	access	a	particular	array
element	is	by	using	the	at	method

arr.at(0)	#=>	1

The	slice	method	works	in	an	identical	manner
to	Array#[].

To	raise	an	error	for	indices	outside	of	the	array
bounds	or	else	to	provide	a	default	value	when
that	happens,	you	can	use	fetch.

arr	=	['a',	'b',	'c',	'd',	'e',	'f']

arr.fetch(100)	#=>	IndexError:	index	100	outside	of	array	bounds:	-6...6

arr.fetch(100,	"oops")	#=>	"oops"

The	special	methods	first	and	last	will	return	the
first	and	last	elements	of	an	array,	respectively.

arr.first	#=>	1

arr.last		#=>	6

To	return	the	first	n	elements	of	an	array,	use
take

arr.take(3)	#=>	[1,	2,	3]

drop	does	the	opposite	of	take,	by	returning	the
elements	after	n	elements	have	been	dropped:

arr.drop(3)	#=>	[4,	5,	6]

Obtaining	Information	about	an	Array

Arrays	keep	track	of	their	own	length	at	all	times.
To	query	an	array	about	the	number	of	elements
it	contains,	use	length,	count	or	size.

browsers	=	['Chrome',	'Firefox',	'Safari',	'Opera'

browsers.length	#=>	5

browsers.count	#=>	5

To	check	whether	an	array	contains	any
elements	at	all

browsers.empty?	#=>	false

To	check	whether	a	particular	item	is	included	in
the	array

browsers.include?('Konqueror')	#=>	false

Adding	Items	to	Arrays

Items	can	be	added	to	the	end	of	an	array	by
using	either	push	or	#<<

arr	=	[1,	2,	3,	4]

arr.push(5)	#=>	[1,	2,	3,	4,	5]

arr	<<	6				#=>	[1,	2,	3,	4,	5,	6]

unshift	will	add	a	new	item	to	the	beginning	of	an
array.

arr.unshift(0)	#=>	[0,	1,	2,	3,	4,	5,	6]

With	insert	you	can	add	a	new	element	to	an
array	at	any	position.

arr.insert(3,	'apple')		#=>	[0,	1,	2,	'apple',	3,	4,	5,	6]

Using	the	insert	method,	you	can	also	insert
multiple	values	at	once:

arr.insert(3,	'orange',	'pear',	'grapefruit')

#=>	[0,	1,	2,	"orange",	"pear",	"grapefruit",	"apple",	3,	4,	5,	6]

Removing	Items	from	an	Array

The	method	pop	removes	the	last	element	in	an
array	and	returns	it:

arr	=		[1,	2,	3,	4,	5,	6]

arr.pop	#=>	6

arr	#=>	[1,	2,	3,	4,	5]

To	retrieve	and	at	the	same	time	remove	the	first
item,	use	shift:

arr.shift	#=>	1

arr	#=>	[2,	3,	4,	5]

To	delete	an	element	at	a	particular	index:

arr.delete_at(2)	#=>	4

arr	#=>	[2,	3,	5]

To	delete	a	particular	element	anywhere	in	an
array,	use	delete:

arr	=	[1,	2,	2,	3]

arr.delete(2)	#=>	2

arr	#=>	[1,3]

A	useful	method	if	you	need	to	remove	nil
values	from	an	array	is	compact:

arr	=	['foo',	0,	nil,	'bar',	7,	'baz',	nil]

arr.compact		#=>	['foo',	0,	'bar',	7,	'baz']

arr										#=>	['foo',	0,	nil,	'bar',	7,	'baz',	nil]

arr.compact!	#=>	['foo',	0,	'bar',	7,	'baz']

arr										#=>	['foo',	0,	'bar',	7,	'baz']

Another	common	need	is	to	remove	duplicate
elements	from	an	array.

It	has	the	non-destructive	uniq,	and	destructive
method	uniq!

arr	=	[2,	5,	6,	556,	6,	6,	8,	9,	0,	123,	556]

arr.uniq	#=>	[2,	5,	6,	556,	8,	9,	0,	123]

Iterating	over	Arrays

Like	all	classes	that	include	the	Enumerable
module,	Array	has	an	each	method,	which
defines	what	elements	should	be	iterated	over
and	how.	In	case	of	Array's	each,	all	elements	in
the	Array	instance	are	yielded	to	the	supplied
block	in	sequence.

Note	that	this	operation	leaves	the	array
unchanged.

arr	=	[1,	2,	3,	4,	5]

arr.each	{	|a|	print	a	-=	10,	"	"	}

#	prints:	-9	-8	-7	-6	-5

#=>	[1,	2,	3,	4,	5]

Another	sometimes	useful	iterator	is
reverse_each	which	will	iterate	over	the
elements	in	the	array	in	reverse	order.

words	=	%w[first	second	third	fourth	fifth	sixth]

str	=	""

words.reverse_each	{	|word|	str	+=	"#{word}	"	}

p	str	#=>	"sixth	fifth	fourth	third	second	first	"

The	map	method	can	be	used	to	create	a	new
array	based	on	the	original	array,	but	with	the
values	modified	by	the	supplied	block:

arr.map	{	|a|	2*a	}			#=>	[2,	4,	6,	8,	10]

arr																			#=>	[1,	2,	3,	4,	5]

arr.map!	{	|a|	a**2	}	#=>	[1,	4,	9,	16,	25]

arr																			#=>	[1,	4,	9,	16,	25]

Selecting	Items	from	an	Array

Elements	can	be	selected	from	an	array
according	to	criteria	defined	in	a	block.	The
selection	can	happen	in	a	destructive	or	a	non-
destructive	manner.	While	the	destructive
operations	will	modify	the	array	they	were	called
on,	the	non-destructive	methods	usually	return	a
new	array	with	the	selected	elements,	but	leave
the	original	array	unchanged.

Non-destructive	Selection
arr	=	[1,	2,	3,	4,	5,	6]

arr.select	{	|a|	a	>	3	}					#=>	[4,	5,	6]

arr.reject	{	|a|	a	<	3	}					#=>	[3,	4,	5,	6]

arr.drop_while	{	|a|	a	<	4	}	#=>	[4,	5,	6]

arr																										#=>	[1,	2,	3,	4,	5,	6]

Destructive	Selection

select!	and	reject!	are	the	corresponding
destructive	methods	to	select	and	reject

Similar	to	select	vs.	reject,	delete_if	and	keep_if
have	the	exact	opposite	result	when	supplied
with	the	same	block:

arr.delete_if	{	|a|	a	<	4	}	#=>	[4,	5,	6]

arr																									#=>	[4,	5,	6]

arr	=	[1,	2,	3,	4,	5,	6]

arr.keep_if	{	|a|	a	<	4	}	#=>	[1,	2,	3]

arr																							#=>	[1,	2,	3]

In	Files
array.c
pack.c

Parent
Object

Included	Modules
Enumerable

Public	Class	Methods

Returns	a	new	array	populated	with	the	given
objects.

Array.[](1,	'a',	/^A/)	#	=>	[1,	"a",	/^A/]

Array[1,	'a',	/^A/]				#	=>	[1,	"a",	/^A/]

[1,	'a',	/^A/]									#	=>	[1,	"a",	/^A/]

Returns	a	new	array.

In	the	first	form,	if	no	arguments	are	sent,	the	new
array	will	be	empty.	When	a	size	and	an	optional
default	are	sent,	an	array	is	created	with	size	copies

[](*args)

new(size=0,	default=nil)
new(array)
new(size)	{|index|	block	}

of	default.	Take	notice	that	all	elements	will
reference	the	same	object	default.

The	second	form	creates	a	copy	of	the	array	passed
as	a	parameter	(the	array	is	generated	by	calling
#to_ary	on	the	parameter).

first_array	=	["Matz",	"Guido"]

second_array	=	Array.new(first_array)	#=>	["Matz",	"Guido"]

first_array.equal?	second_array							#=>	false

In	the	last	form,	an	array	of	the	given	size	is	created.
Each	element	in	this	array	is	created	by	passing	the
element's	index	to	the	given	block	and	storing	the
return	value.

Array.new(3){	|index|	index	**	2	}

#	=>	[0,	1,	4]

When	sending	the	second	parameter,	the	same
object	will	be	used	as	the	value	for	all	the	array
elements:

a	=	Array.new(2,	Hash.new)

#	=>	[{},	{}]

a[0]['cat']	=	'feline'

a	#	=>	[{"cat"=>"feline"},	{"cat"=>"feline"}]

a[1]['cat']	=	'Felix'

a	#	=>	[{"cat"=>"Felix"},	{"cat"=>"Felix"}]

Since	all	the	Array	elements	store	the	same	hash,
changes	to	one	of	them	will	affect	them	all.

If	multiple	copies	are	what	you	want,	you	should	use
the	block	version	which	uses	the	result	of	that	block
each	time	an	element	of	the	array	needs	to	be
initialized:

a	=	Array.new(2)	{	Hash.new	}

a[0]['cat']	=	'feline'

a	#	=>	[{"cat"=>"feline"},	{}]

Tries	to	convert	obj	into	an	array,	using	to_ary
method.	Returns	the	converted	array	or	nil	if	obj
cannot	be	converted	for	any	reason.	This	method	can
be	used	to	check	if	an	argument	is	an	array.

Array.try_convert([1])			#=>	[1]

Array.try_convert("1")			#=>	nil

if	tmp	=	Array.try_convert(arg)

Common	gotchas

try_convert(obj)	→	array	or	nil

		#	the	argument	is	an	array

elsif	tmp	=	String.try_convert(arg)

		#	the	argument	is	a	string

end

Public	Instance	Methods

Set	Intersection	—	Returns	a	new	array	containing
elements	common	to	the	two	arrays,	excluding	any
duplicates.	The	order	is	preserved	from	the	original
array.

It	compares	elements	using	their	hash	and	eql?
methods	for	efficiency.

[1,	1,	3,	5]	&	[1,	2,	3]																	#=>	[1,	3]

['a',	'b',	'b',	'z']	&	['a',	'b',	'c']			#=>	['a',	'b']

See	also	#uniq.

Repetition	—	With	a	String	argument,	equivalent	to
ary.join(str).

Otherwise,	returns	a	new	array	built	by	concatenating
the	int	copies	of	self.

[1,	2,	3]	*	3				#=>	[1,	2,	3,	1,	2,	3,	1,	2,	3]

[1,	2,	3]	*	","		#=>	"1,2,3"

Concatenation	—	Returns	a	new	array	built	by

ary	&	other_ary	→	new_ary

ary	*	int	→	new_ary
ary	*	str	→	new_string

ary	+	other_ary	→	new_ary

concatenating	the	two	arrays	together	to	produce	a
third	array.

[1,	2,	3]	+	[4,	5]				#=>	[1,	2,	3,	4,	5]

a	=	["a",	"b",	"c"]

c	=	a	+	["d",	"e",	"f"]

c																									#=>	["a",	"b",	"c",	"d",	"e",	"f"]

a																									#=>	["a",	"b",	"c"]

Note	that

x	+=	y

is	the	same	as

x	=	x	+	y

This	means	that	it	produces	a	new	array.	As	a
consequence,	repeated	use	of	+=	on	arrays	can	be
quite	inefficient.

See	also	#concat.

Array	Difference

Returns	a	new	array	that	is	a	copy	of	the	original
array,	removing	any	items	that	also	appear	in
other_ary.	The	order	is	preserved	from	the	original
array.

It	compares	elements	using	their	hash	and	eql?
methods	for	efficiency.

[1,	1,	2,	2,	3,	3,	4,	5]	-	[1,	2,	4]		#=>		[3,	3,	5]

If	you	need	set-like	behavior,	see	the	library	class
Set.

ary	-	other_ary	→	new_ary

Append—Pushes	the	given	object	on	to	the	end	of
this	array.	This	expression	returns	the	array	itself,	so
several	appends	may	be	chained	together.

[1,	2]	<<	"c"	<<	"d"	<<	[3,	4]

								#=>		[1,	2,	"c",	"d",	[3,	4]]

Comparison	—	Returns	an	integer	(-1,	0,	or	+1)	if	this
array	is	less	than,	equal	to,	or	greater	than	other_ary.

Each	object	in	each	array	is	compared	(using	the	<=>
operator).

Arrays	are	compared	in	an	“element-wise”	manner;
the	first	element	of	ary	is	compared	with	the	first	one
of	other_ary	using	the	<=>	operator,	then	each	of	the
second	elements,	etc…	As	soon	as	the	result	of	any
such	comparison	is	non	zero	(i.e.	the	two
corresponding	elements	are	not	equal),	that	result	is
returned	for	the	whole	array	comparison.

If	all	the	elements	are	equal,	then	the	result	is	based
on	a	comparison	of	the	array	lengths.	Thus,	two
arrays	are	“equal”	according	to	Array#<=>	if,	and	only
if,	they	have	the	same	length	and	the	value	of	each
element	is	equal	to	the	value	of	the	corresponding
element	in	the	other	array.

nil	is	returned	if	the	other_ary	is	not	an	array	or	if	the
comparison	of	two	elements	returned	nil.

["a",	"a",	"c"]				<=>	["a",	"b",	"c"]			#=>	-1

[1,	2,	3,	4,	5,	6]	<=>	[1,	2]												#=>	+1

[1,	2]													<=>	[1,	:two]									#=>	nil

ary	<<	obj	→	ary

ary	<=>	other_ary	→	-1,	0,	+1	or	nil

Equality	—	Two	arrays	are	equal	if	they	contain	the
same	number	of	elements	and	if	each	element	is
equal	to	(according	to	Object#==)	the	corresponding
element	in	other_ary.

["a",	"c"]				==	["a",	"c",	7]					#=>	false

["a",	"c",	7]	==	["a",	"c",	7]					#=>	true

["a",	"c",	7]	==	["a",	"d",	"f"]			#=>	false

Element	Reference	—	Returns	the	element	at	index,
or	returns	a	subarray	starting	at	the	start	index	and
continuing	for	length	elements,	or	returns	a	subarray
specified	by	range	of	indices.

Negative	indices	count	backward	from	the	end	of	the
array	(-1	is	the	last	element).	For	start	and	range
cases	the	starting	index	is	just	before	an	element.
Additionally,	an	empty	array	is	returned	when	the
starting	index	for	an	element	range	is	at	the	end	of
the	array.

Returns	nil	if	the	index	(or	starting	index)	are	out	of
range.

a	=	["a",	"b",	"c",	"d",	"e"]

a[2]	+		a[0]	+	a[1]				#=>	"cab"

a[6]																			#=>	nil

a[1,	2]																#=>	["b",	"c"]

a[1..3]																#=>	["b",	"c",	"d"]

ary	==	other_ary	→	bool

ary[index]	→	obj	or	nil
ary[start,	length]	→	new_ary	or	nil
ary[range]	→	new_ary	or	nil
slice(index)	→	obj	or	nil
slice(start,	length)	→	new_ary	or	nil
slice(range)	→	new_ary	or	nil

a[4..7]																#=>	["e"]

a[6..10]															#=>	nil

a[-3,	3]															#=>	["c",	"d",	"e"]

#	special	cases

a[5]																			#=>	nil

a[6,	1]																#=>	nil

a[5,	1]																#=>	[]

a[5..10]															#=>	[]

Element	Assignment	—	Sets	the	element	at	index,	or
replaces	a	subarray	from	the	start	index	for	length
elements,	or	replaces	a	subarray	specified	by	the
range	of	indices.

If	indices	are	greater	than	the	current	capacity	of	the
array,	the	array	grows	automatically.	Elements	are
inserted	into	the	array	at	start	if	length	is	zero.

Negative	indices	will	count	backward	from	the	end	of
the	array.	For	start	and	range	cases	the	starting
index	is	just	before	an	element.

An	IndexError	is	raised	if	a	negative	index	points	past
the	beginning	of	the	array.

See	also	#push,	and	#unshift.

a	=	Array.new

a[4]	=	"4";																	#=>	[nil,	nil,	nil,	nil,	"4"]

a[0,	3]	=	['a',	'b',	'c']	#=>	["a",	"b",	"c",	nil,	"4"]

a[1..2]	=	[1,	2]										#=>	["a",	1,	2,	nil,	"4"]

a[0,	2]	=	"?"															#=>	["?",	2,	nil,	"4"]

a[0..2]	=	"A"															#=>	["A",	"4"]

a[-1]			=	"Z"															#=>	["A",	"Z"]

a[1..-1]	=	nil														#=>	["A",	nil]

a[1..-1]	=	[]															#=>	["A"]

ary[index]	=	obj	→	obj
ary[start,	length]	=	obj	or	other_ary	or	nil	→
obj	or	other_ary	or	nil
ary[range]	=	obj	or	other_ary	or	nil	→	obj	or
other_ary	or	nil

a[0,	0]	=	[1,	2]										#=>	[1,	2,	"A"]

a[3,	0]	=	"B"															#=>	[1,	2,	"A",	"B"]

See	also	Enumerable#any?

Searches	through	an	array	whose	elements	are	also
arrays	comparing	obj	with	the	first	element	of	each
contained	array	using	obj.==.

Returns	the	first	contained	array	that	matches	(that
is,	the	first	associated	array),	or	nil	if	no	match	is
found.

See	also	#rassoc

s1	=	["colors",	"red",	"blue",	"green"]

s2	=	["letters",	"a",	"b",	"c"]

s3	=	"foo"

a		=	[s1,	s2,	s3]

a.assoc("letters")		#=>	["letters",	"a",	"b",	"c"]

a.assoc("foo")						#=>	nil

Returns	the	element	at	index.	A	negative	index
counts	from	the	end	of	self.	Returns	nil	if	the	index
is	out	of	range.	See	also	Array#[].

a	=	["a",	"b",	"c",	"d",	"e"]

a.at(0)					#=>	"a"

a.at(-1)				#=>	"e"

By	using	binary	search,	finds	a	value	from	this	array

any?	[{	|obj|	block	}]	→	true	or	false

assoc(obj)	→	new_ary	or	nil

at(index)	→	obj	or	nil

bsearch	{|x|	block	}	→	elem

which	meets	the	given	condition	in	O(log	n)	where	n
is	the	size	of	the	array.

You	can	use	this	method	in	two	use	cases:	a	find-
minimum	mode	and	a	find-any	mode.	In	either	case,
the	elements	of	the	array	must	be	monotone	(or
sorted)	with	respect	to	the	block.

In	find-minimum	mode	(this	is	a	good	choice	for
typical	use	case),	the	block	must	return	true	or	false,
and	there	must	be	an	index	i	(0	<=	i	<=	ary.size)	so
that:

the	block	returns	false	for	any	element	whose
index	is	less	than	i,	and

the	block	returns	true	for	any	element	whose
index	is	greater	than	or	equal	to	i.

This	method	returns	the	i-th	element.	If	i	is	equal	to
ary.size,	it	returns	nil.

ary	=	[0,	4,	7,	10,	12]

ary.bsearch	{|x|	x	>=			4	}	#=>	4

ary.bsearch	{|x|	x	>=			6	}	#=>	7

ary.bsearch	{|x|	x	>=		-1	}	#=>	0

ary.bsearch	{|x|	x	>=	100	}	#=>	nil

In	find-any	mode	(this	behaves	like	libc's	bsearch(3)),
the	block	must	return	a	number,	and	there	must	be
two	indices	i	and	j	(0	<=	i	<=	j	<=	ary.size)	so	that:

the	block	returns	a	positive	number	for	ary	if	0
<=	k	<	i,

the	block	returns	zero	for	ary	if	i	<=	k	<	j,	and

the	block	returns	a	negative	number	for	ary	if	j
<=	k	<	ary.size.

Under	this	condition,	this	method	returns	any	element
whose	index	is	within	i…j.	If	i	is	equal	to	j	(i.e.,	there
is	no	element	that	satisfies	the	block),	this	method
returns	nil.

http://k
http://k
http://k

ary	=	[0,	4,	7,	10,	12]

#	try	to	find	v	such	that	4	<=	v	<	8

ary.bsearch	{|x|	1	-	x	/	4	}	#=>	4	or	7

#	try	to	find	v	such	that	8	<=	v	<	10

ary.bsearch	{|x|	4	-	x	/	2	}	#=>	nil

You	must	not	mix	the	two	modes	at	a	time;	the	block
must	always	return	either	true/false,	or	always	return
a	number.	It	is	undefined	which	value	is	actually
picked	up	at	each	iteration.

Removes	all	elements	from	self.

a	=	["a",	"b",	"c",	"d",	"e"]

a.clear				#=>	[]

Invokes	the	given	block	once	for	each	element	of
self.

Creates	a	new	array	containing	the	values	returned
by	the	block.

See	also	Enumerable#collect.

If	no	block	is	given,	an	Enumerator	is	returned
instead.

a	=	["a",	"b",	"c",	"d"]

a.collect	{	|x|	x	+	"!"	}								#=>	["a!",	"b!",	"c!",	"d!"]

a.map.with_index{	|x,	i|	x	*	i	}	#=>	["",	"b",	"cc",	"ddd"]

a																																#=>	["a",	"b",	"c",	"d"]

clear	→	ary

collect	{	|item|	block	}	→	new_ary
map	{	|item|	block	}	→	new_ary
collect	→	Enumerator
map	→	Enumerator

Invokes	the	given	block	once	for	each	element	of
self,	replacing	the	element	with	the	value	returned	by
the	block.

See	also	Enumerable#collect.

If	no	block	is	given,	an	Enumerator	is	returned
instead.

a	=	["a",	"b",	"c",	"d"]

a.map!	{|x|	x	+	"!"	}

a	#=>		["a!",	"b!",	"c!",	"d!"]

a.collect!.with_index	{|x,	i|	x[0...i]	}

a	#=>		["",	"b",	"c!",	"d!"]

When	invoked	with	a	block,	yields	all	combinations	of
length	n	of	elements	from	the	array	and	then	returns
the	array	itself.

The	implementation	makes	no	guarantees	about	the
order	in	which	the	combinations	are	yielded.

If	no	block	is	given,	an	Enumerator	is	returned
instead.

Examples:

a	=	[1,	2,	3,	4]

a.combination(1).to_a		#=>	[[1],[2],[3],[4]]

a.combination(2).to_a		#=>	[[1,2],[1,3],[1,4],[2,3],[2,4],[3,4]]

a.combination(3).to_a		#=>	[[1,2,3],[1,2,4],[1,3,4],[2,3,4]]

a.combination(4).to_a		#=>	[[1,2,3,4]]

a.combination(0).to_a		#=>	[[]]	#	one	combination	of	length	0

a.combination(5).to_a		#=>	[]			#	no	combinations	of	length	5

collect!	{|item|	block	}	→	ary
map!	{|item|	block	}	→	ary
collect!	→	Enumerator
map!	→	Enumerator

combination(n)	{	|c|	block	}	→	ary
combination(n)	→	Enumerator

Returns	a	copy	of	self	with	all	nil	elements
removed.

["a",	nil,	"b",	nil,	"c",	nil].compact

																		#=>	["a",	"b",	"c"]

Removes	nil	elements	from	the	array.

Returns	nil	if	no	changes	were	made,	otherwise
returns	the	array.

["a",	nil,	"b",	nil,	"c"].compact!	#=>	["a",	"b",	"c"]

["a",	"b",	"c"].compact!											#=>	nil

Appends	the	elements	of	other_ary	to	self.

["a",	"b"].concat(["c",	"d"])	#=>	["a",	"b",	"c",	"d"]

a	=	[1,	2,	3]

a.concat([4,	5])

a																																	#=>	[1,	2,	3,	4,	5]

See	also	Array#+.

Returns	the	number	of	elements.

If	an	argument	is	given,	counts	the	number	of
elements	which	equal	obj	using	==.

compact	→	new_ary

compact!	→	ary	or	nil

concat(other_ary)	→	ary

count	→	int
count(obj)	→	int
count	{	|item|	block	}	→	int

If	a	block	is	given,	counts	the	number	of	elements	for
which	the	block	returns	a	true	value.

ary	=	[1,	2,	4,	2]

ary.count																		#=>	4

ary.count(2)															#=>	2

ary.count	{	|x|	x%2	==	0	}	#=>	3

Calls	the	given	block	for	each	element	n	times	or
forever	if	nil	is	given.

Does	nothing	if	a	non-positive	number	is	given	or	the
array	is	empty.

Returns	nil	if	the	loop	has	finished	without	getting
interrupted.

If	no	block	is	given,	an	Enumerator	is	returned
instead.

a	=	["a",	"b",	"c"]

a.cycle	{	|x|	puts	x	}					#	print,	a,	b,	c,	a,	b,	c,..	forever.

a.cycle(2)	{	|x|	puts	x	}		#	print,	a,	b,	c,	a,	b,	c.

Deletes	all	items	from	self	that	are	equal	to	obj.

Returns	the	last	deleted	item,	or	nil	if	no	matching
item	is	found.

If	the	optional	code	block	is	given,	the	result	of	the
block	is	returned	if	the	item	is	not	found.	(To	remove
nil	elements	and	get	an	informative	return	value,	use
#compact!)

cycle(n=nil)	{	|obj|	block	}	→	nil
cycle(n=nil)	→	Enumerator

delete(obj)	→	item	or	nil
delete(obj)	{	block	}	→	item	or	result	of	block

a	=	["a",	"b",	"b",	"b",	"c"]

a.delete("b")																			#=>	"b"

a																															#=>	["a",	"c"]

a.delete("z")																			#=>	nil

a.delete("z")	{	"not	found"	}			#=>	"not	found"

Deletes	the	element	at	the	specified	index,	returning
that	element,	or	nil	if	the	index	is	out	of	range.

See	also	#slice!

a	=	["ant",	"bat",	"cat",	"dog"]

a.delete_at(2)				#=>	"cat"

a																	#=>	["ant",	"bat",	"dog"]

a.delete_at(99)			#=>	nil

Deletes	every	element	of	self	for	which	block
evaluates	to	true.

The	array	is	changed	instantly	every	time	the	block	is
called,	not	after	the	iteration	is	over.

See	also	#reject!

If	no	block	is	given,	an	Enumerator	is	returned
instead.

scores	=	[97,	42,	75]

scores.delete_if	{|score|	score	<	80	}			#=>	[97]

Drops	first	n	elements	from	ary	and	returns	the	rest	of
the	elements	in	an	array.

delete_at(index)	→	obj	or	nil

delete_if	{	|item|	block	}	→	ary
delete_if	→	Enumerator

drop(n)	→	new_ary

If	a	negative	number	is	given,	raises	an
ArgumentError.

See	also	#take

a	=	[1,	2,	3,	4,	5,	0]

a.drop(3)													#=>	[4,	5,	0]

Drops	elements	up	to,	but	not	including,	the	first
element	for	which	the	block	returns	nil	or	false	and
returns	an	array	containing	the	remaining	elements.

If	no	block	is	given,	an	Enumerator	is	returned
instead.

See	also	#take_while

a	=	[1,	2,	3,	4,	5,	0]

a.drop_while	{|i|	i	<	3	}			#=>	[3,	4,	5,	0]

Calls	the	given	block	once	for	each	element	in	self,
passing	that	element	as	a	parameter.

An	Enumerator	is	returned	if	no	block	is	given.

a	=	["a",	"b",	"c"]

a.each	{|x|	print	x,	"	--	"	}

produces:

a	--	b	--	c	--

drop_while	{	|arr|	block	}	→	new_ary
drop_while	→	Enumerator

each	{	|item|	block	}	→	ary
each	→	Enumerator

each_index	{	|index|	block	}	→	ary
each_index	→	Enumerator

Same	as	#each,	but	passes	the	index	of	the	element
instead	of	the	element	itself.

An	Enumerator	is	returned	if	no	block	is	given.

a	=	["a",	"b",	"c"]

a.each_index	{|x|	print	x,	"	--	"	}

produces:

0	--	1	--	2	--

Returns	true	if	self	contains	no	elements.

[].empty?			#=>	true

Returns	true	if	self	and	other	are	the	same	object,
or	are	both	arrays	with	the	same	content	(according
to	Object#eql?).

Tries	to	return	the	element	at	position	index,	but
throws	an	IndexError	exception	if	the	referenced
index	lies	outside	of	the	array	bounds.	This	error	can
be	prevented	by	supplying	a	second	argument,	which
will	act	as	a	default	value.

Alternatively,	if	a	block	is	given	it	will	only	be
executed	when	an	invalid	index	is	referenced.
Negative	values	of	index	count	from	the	end	of	the
array.

empty?	→	true	or	false

eql?(other)	→	true	or	false

fetch(index)	→	obj
fetch(index,	default)	→	obj
fetch(index)	{	|index|	block	}	→	obj

a	=	[11,	22,	33,	44]

a.fetch(1)															#=>	22

a.fetch(-1)														#=>	44

a.fetch(4,	'cat')								#=>	"cat"

a.fetch(100)	{	|i|	puts	"#{i}	is	out	of	bounds"	}

																									#=>	"100	is	out	of	bounds"

The	first	three	forms	set	the	selected	elements	of
self	(which	may	be	the	entire	array)	to	obj.

A	start	of	nil	is	equivalent	to	zero.

A	length	of	nil	is	equivalent	to	the	length	of	the	array.

The	last	three	forms	fill	the	array	with	the	value	of	the
given	block,	which	is	passed	the	absolute	index	of
each	element	to	be	filled.

Negative	values	of	start	count	from	the	end	of	the
array,	where	-1	is	the	last	element.

a	=	["a",	"b",	"c",	"d"]

a.fill("x")														#=>	["x",	"x",	"x",	"x"]

a.fill("z",	2,	2)								#=>	["x",	"x",	"z",	"z"]

a.fill("y",	0..1)								#=>	["y",	"y",	"z",	"z"]

a.fill	{	|i|	i*i	}							#=>	[0,	1,	4,	9]

a.fill(-2)	{	|i|	i*i*i	}	#=>	[0,	1,	8,	27]

fill(obj)	→	ary
fill(obj,	start	[,	length])	→	ary
fill(obj,	range)	→	ary
fill	{	|index|	block	}	→	ary
fill(start	[,	length])	{	|index|	block	}	→	ary
fill(range)	{	|index|	block	}	→	ary

find_index(obj)	→	int	or	nil
find_index	{	|item|	block	}	→	int	or	nil

Returns	the	index	of	the	first	object	in	ary	such	that
the	object	is	==	to	obj.

If	a	block	is	given	instead	of	an	argument,	returns	the
index	of	the	first	object	for	which	the	block	returns
true.	Returns	nil	if	no	match	is	found.

See	also	#rindex.

An	Enumerator	is	returned	if	neither	a	block	nor
argument	is	given.

a	=	["a",	"b",	"c"]

a.index("b")														#=>	1

a.index("z")														#=>	nil

a.index	{	|x|	x	==	"b"	}		#=>	1

Returns	the	first	element,	or	the	first	n	elements,	of
the	array.	If	the	array	is	empty,	the	first	form	returns
nil,	and	the	second	form	returns	an	empty	array.	See
also	#last	for	the	opposite	effect.

a	=	["q",	"r",	"s",	"t"]

a.first					#=>	"q"

a.first(2)		#=>	["q",	"r"]

Returns	a	new	array	that	is	a	one-dimensional
flattening	of	self	(recursively).

find_index	→	Enumerator
index(obj)	→	int	or	nil
index	{	|item|	block	}	→	int	or	nil
index	→	Enumerator

first	→	obj	or	nil
first(n)	→	new_ary

flatten	→	new_ary
flatten(level)	→	new_ary

That	is,	for	every	element	that	is	an	array,	extract	its
elements	into	the	new	array.

The	optional	level	argument	determines	the	level	of
recursion	to	flatten.

s	=	[1,	2,	3]											#=>	[1,	2,	3]

t	=	[4,	5,	6,	[7,	8]]			#=>	[4,	5,	6,	[7,	8]]

a	=	[s,	t,	9,	10]							#=>	[[1,	2,	3],	[4,	5,	6,	[7,	8]],	9,	10]

a.flatten																	#=>	[1,	2,	3,	4,	5,	6,	7,	8,	9,	10]

a	=	[1,	2,	[3,	[4,	5]]]

a.flatten(1)														#=>	[1,	2,	3,	[4,	5]]

Flattens	self	in	place.

Returns	nil	if	no	modifications	were	made	(i.e.,	the
array	contains	no	subarrays.)

The	optional	level	argument	determines	the	level	of
recursion	to	flatten.

a	=	[1,	2,	[3,	[4,	5]]]

a.flatten!			#=>	[1,	2,	3,	4,	5]

a.flatten!			#=>	nil

a												#=>	[1,	2,	3,	4,	5]

a	=	[1,	2,	[3,	[4,	5]]]

a.flatten!(1)	#=>	[1,	2,	3,	[4,	5]]

Return	true	if	this	array	is	frozen	(or	temporarily
frozen	while	being	sorted).	See	also	Object#frozen?

Compute	a	hash-code	for	this	array.

Two	arrays	with	the	same	content	will	have	the	same

flatten!	→	ary	or	nil
flatten!(level)	→	ary	or	nil

frozen?	→	true	or	false

hash	→	fixnum

hash	code	(and	will	compare	using	eql?).

See	also	Object#hash.

Returns	true	if	the	given	object	is	present	in	self
(that	is,	if	any	element	==	object),	otherwise	returns
false.

a	=	["a",	"b",	"c"]

a.include?("b")			#=>	true

a.include?("z")			#=>	false

Returns	the	index	of	the	first	object	in	ary	such	that
the	object	is	==	to	obj.

If	a	block	is	given	instead	of	an	argument,	returns	the
index	of	the	first	object	for	which	the	block	returns
true.	Returns	nil	if	no	match	is	found.

See	also	#rindex.

An	Enumerator	is	returned	if	neither	a	block	nor
argument	is	given.

a	=	["a",	"b",	"c"]

a.index("b")														#=>	1

a.index("z")														#=>	nil

a.index	{	|x|	x	==	"b"	}		#=>	1

include?(object)	→	true	or	false

find_index(obj)	→	int	or	nil
find_index	{	|item|	block	}	→	int	or	nil
find_index	→	Enumerator
index(obj)	→	int	or	nil
index	{	|item|	block	}	→	int	or	nil
index	→	Enumerator

Replaces	the	contents	of	self	with	the	contents	of
other_ary,	truncating	or	expanding	if	necessary.

a	=	["a",	"b",	"c",	"d",	"e"]

a.replace(["x",	"y",	"z"])			#=>	["x",	"y",	"z"]

a																														#=>	["x",	"y",	"z"]

Inserts	the	given	values	before	the	element	with	the
given	index.

Negative	indices	count	backwards	from	the	end	of
the	array,	where	-1	is	the	last	element.	If	a	negative
index	is	used,	the	given	values	will	be	inserted	after
that	element,	so	using	an	index	of	-1	will	insert	the
values	at	the	end	of	the	array.

a	=	%w{	a	b	c	d	}

a.insert(2,	99)									#=>	["a",	"b",	99,	"c",	"d"]

a.insert(-2,	1,	2,	3)			#=>	["a",	"b",	99,	"c",	1,	2,	3,	"d"]

Creates	a	string	representation	of	self.

["a",	"b",	"c"].to_s					#=>	"[\"a\",	\"b\",	\"c\"]"

Also	aliased	as:	to_s

Returns	a	string	created	by	converting	each	element

replace(other_ary)	→	ary
initialize_copy(other_ary)	→	ary

insert(index,	obj...)	→	ary

inspect	→	string
to_s	→	string

join(separator=$,)	→	str

of	the	array	to	a	string,	separated	by	the	given
separator.	If	the	separator	is	nil,	it	uses	current	$,.	If
both	the	separator	and	$,	are	nil,	it	uses	empty	string.

["a",	"b",	"c"].join								#=>	"abc"

["a",	"b",	"c"].join("-")			#=>	"a-b-c"

Deletes	every	element	of	self	for	which	the	given
block	evaluates	to	false.

See	also	#select!

If	no	block	is	given,	an	Enumerator	is	returned
instead.

a	=	%w{	a	b	c	d	e	f	}

a.keep_if	{	|v|	v	=~	/[aeiou]/	}		#=>	["a",	"e"]

Returns	the	last	element(s)	of	self.	If	the	array	is
empty,	the	first	form	returns	nil.

See	also	#first	for	the	opposite	effect.

a	=	["w",	"x",	"y",	"z"]

a.last					#=>	"z"

a.last(2)		#=>	["y",	"z"]

Returns	the	number	of	elements	in	self.	May	be
zero.

[1,	2,	3,	4,	5].length			#=>	5

keep_if	{	|item|	block	}	→	ary
keep_if	→	Enumerator

last	→	obj	or	nil
last(n)	→	new_ary

length	→	int

[].length																		#=>	0

Also	aliased	as:	size

Invokes	the	given	block	once	for	each	element	of
self.

Creates	a	new	array	containing	the	values	returned
by	the	block.

See	also	Enumerable#collect.

If	no	block	is	given,	an	Enumerator	is	returned
instead.

a	=	["a",	"b",	"c",	"d"]

a.collect	{	|x|	x	+	"!"	}								#=>	["a!",	"b!",	"c!",	"d!"]

a.map.with_index{	|x,	i|	x	*	i	}	#=>	["",	"b",	"cc",	"ddd"]

a																																#=>	["a",	"b",	"c",	"d"]

Invokes	the	given	block	once	for	each	element	of
self,	replacing	the	element	with	the	value	returned	by
the	block.

See	also	Enumerable#collect.

If	no	block	is	given,	an	Enumerator	is	returned
instead.

a	=	["a",	"b",	"c",	"d"]

collect	{	|item|	block	}	→	new_ary
map	{	|item|	block	}	→	new_ary
collect	→	Enumerator
map	→	Enumerator

collect!	{|item|	block	}	→	ary
map!	{|item|	block	}	→	ary
collect!	→	Enumerator
map!	→	Enumerator

a.map!	{|x|	x	+	"!"	}

a	#=>		["a!",	"b!",	"c!",	"d!"]

a.collect!.with_index	{|x,	i|	x[0...i]	}

a	#=>		["",	"b",	"c!",	"d!"]

Packs	the	contents	of	arr	into	a	binary	sequence
according	to	the	directives	in	aTemplateString	(see
the	table	below)	Directives	“A,''	“a,''	and	“Z''	may	be
followed	by	a	count,	which	gives	the	width	of	the
resulting	field.	The	remaining	directives	also	may
take	a	count,	indicating	the	number	of	array	elements
to	convert.	If	the	count	is	an	asterisk	(“*''),	all
remaining	array	elements	will	be	converted.	Any	of
the	directives	“sSiIlL''	may	be	followed	by	an
underscore	(“_'')	or	exclamation	mark	(“!'')	to	use	the
underlying	platform's	native	size	for	the	specified
type;	otherwise,	they	use	a	platform-independent
size.	Spaces	are	ignored	in	the	template	string.	See
also	String#unpack.

a	=	["a",	"b",	"c"]

n	=	[65,	66,	67]

a.pack("A3A3A3")			#=>	"a		b		c		"

a.pack("a3a3a3")			#=>	"a\000\000b\000\000c\000\000"

n.pack("ccc")						#=>	"ABC"

Directives	for	pack.

Integer						|	Array			|

Directive				|	Element	|	Meaning

			C									|	Integer	|	8-bit	unsigned	(unsigned	char)

			S									|	Integer	|	16-bit	unsigned,	native	endian	(uint16_t)

			L									|	Integer	|	32-bit	unsigned,	native	endian	(uint32_t)

			Q									|	Integer	|	64-bit	unsigned,	native	endian	(uint64_t)

													|									|

			c									|	Integer	|	8-bit	signed	(signed	char)

			s									|	Integer	|	16-bit	signed,	native	endian	(int16_t)

pack	(aTemplateString)	→	aBinaryString

			l									|	Integer	|	32-bit	signed,	native	endian	(int32_t)

			q									|	Integer	|	64-bit	signed,	native	endian	(int64_t)

													|									|

			S_,	S!				|	Integer	|	unsigned	short,	native	endian

			I,	I_,	I!	|	Integer	|	unsigned	int,	native	endian

			L_,	L!				|	Integer	|	unsigned	long,	native	endian

			Q_,	Q!				|	Integer	|	unsigned	long	long,	native	endian	(ArgumentError

													|									|	if	the	platform	has	no	long	long	type.)

													|									|	(Q_	and	Q!	is	available	since	Ruby	2.1.)

													|									|

			s_,	s!				|	Integer	|	signed	short,	native	endian

			i,	i_,	i!	|	Integer	|	signed	int,	native	endian

			l_,	l!				|	Integer	|	signed	long,	native	endian

			q_,	q!				|	Integer	|	signed	long	long,	native	endian	(ArgumentError

													|									|	if	the	platform	has	no	long	long	type.)

													|									|	(q_	and	q!	is	available	since	Ruby	2.1.)

													|									|

			S>	L>	Q>		|	Integer	|	same	as	the	directives	without	">"	except

			s>	l>	q>		|									|	big	endian

			S!>	I!>			|									|	(available	since	Ruby	1.9.3)

			L!>	Q!>			|									|	"S>"	is	same	as	"n"

			s!>	i!>			|									|	"L>"	is	same	as	"N"

			l!>	q!>			|									|

													|									|

			S<	L<	Q<		|	Integer	|	same	as	the	directives	without	"<"	except

			s<	l<	q<		|									|	little	endian

			S!<	I!<			|									|	(available	since	Ruby	1.9.3)

			L!<	Q!<			|									|	"S<"	is	same	as	"v"

			s!<	i!<			|									|	"L<"	is	same	as	"V"

			l!<	q!<			|									|

													|									|

			n									|	Integer	|	16-bit	unsigned,	network	(big-endian)	byte	order

			N									|	Integer	|	32-bit	unsigned,	network	(big-endian)	byte	order

			v									|	Integer	|	16-bit	unsigned,	VAX	(little-endian)	byte	order

			V									|	Integer	|	32-bit	unsigned,	VAX	(little-endian)	byte	order

													|									|

			U									|	Integer	|	UTF-8	character

			w									|	Integer	|	BER-compressed	integer

Float								|									|

Directive				|									|	Meaning

			D,	d						|	Float			|	double-precision,	native	format

			F,	f						|	Float			|	single-precision,	native	format

			E									|	Float			|	double-precision,	little-endian	byte	order

			e									|	Float			|	single-precision,	little-endian	byte	order

			G									|	Float			|	double-precision,	network	(big-endian)	byte	order

			g									|	Float			|	single-precision,	network	(big-endian)	byte	order

String							|									|

Directive				|									|	Meaning

			A									|	String		|	arbitrary	binary	string	(space	padded,	count	is	width)

			a									|	String		|	arbitrary	binary	string	(null	padded,	count	is	width)

			Z									|	String		|	same	as	``a'',	except	that	null	is	added	with	*

			B									|	String		|	bit	string	(MSB	first)

			b									|	String		|	bit	string	(LSB	first)

			H									|	String		|	hex	string	(high	nibble	first)

			h									|	String		|	hex	string	(low	nibble	first)

			u									|	String		|	UU-encoded	string

			M									|	String		|	quoted	printable,	MIME	encoding	(see	RFC2045)

			m									|	String		|	base64	encoded	string	(see	RFC	2045,	count	is	width)

													|									|	(if	count	is	0,	no	line	feed	are	added,	see	RFC	4648)

			P									|	String		|	pointer	to	a	structure	(fixed-length	string)

			p									|	String		|	pointer	to	a	null-terminated	string

Misc.								|									|

Directive				|									|	Meaning

			@									|	---					|	moves	to	absolute	position

			X									|	---					|	back	up	a	byte

			x									|	---					|	null	byte

When	invoked	with	a	block,	yield	all	permutations	of
length	n	of	the	elements	of	the	array,	then	return	the
array	itself.

If	n	is	not	specified,	yield	all	permutations	of	all
elements.

The	implementation	makes	no	guarantees	about	the
order	in	which	the	permutations	are	yielded.

If	no	block	is	given,	an	Enumerator	is	returned

permutation	{	|p|	block	}	→	ary
permutation	→	Enumerator
permutation(n)	{	|p|	block	}	→	ary
permutation(n)	→	Enumerator

instead.

Examples:

a	=	[1,	2,	3]

a.permutation.to_a				#=>	[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]

a.permutation(1).to_a	#=>	[[1],[2],[3]]

a.permutation(2).to_a	#=>	[[1,2],[1,3],[2,1],[2,3],[3,1],[3,2]]

a.permutation(3).to_a	#=>	[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]

a.permutation(0).to_a	#=>	[[]]	#	one	permutation	of	length	0

a.permutation(4).to_a	#=>	[]			#	no	permutations	of	length	4

Removes	the	last	element	from	self	and	returns	it,	or
nil	if	the	array	is	empty.

If	a	number	n	is	given,	returns	an	array	of	the	last	n
elements	(or	less)	just	like	array.slice!(-n,	n)	does.
See	also	#push	for	the	opposite	effect.

a	=	["a",	"b",	"c",	"d"]

a.pop					#=>	"d"

a.pop(2)		#=>	["b",	"c"]

a									#=>	["a"]

Returns	an	array	of	all	combinations	of	elements	from
all	arrays.

The	length	of	the	returned	array	is	the	product	of	the
length	of	self	and	the	argument	arrays.

If	given	a	block,	product	will	yield	all	combinations
and	return	self	instead.

[1,2,3].product([4,5])					#=>	[[1,4],[1,5],[2,4],[2,5],[3,4],[3,5]]

[1,2].product([1,2])							#=>	[[1,1],[1,2],[2,1],[2,2]]

pop	→	obj	or	nil
pop(n)	→	new_ary

product(other_ary,	...)	→	new_ary
product(other_ary,	...)	{	|p|	block	}	→	ary

[1,2].product([3,4],[5,6])	#=>	[[1,3,5],[1,3,6],[1,4,5],[1,4,6],

																											#					[2,3,5],[2,3,6],[2,4,5],[2,4,6]]

[1,2].product()												#=>	[[1],[2]]

[1,2].product([])										#=>	[]

Append	—	Pushes	the	given	object(s)	on	to	the	end
of	this	array.	This	expression	returns	the	array	itself,
so	several	appends	may	be	chained	together.	See
also	#pop	for	the	opposite	effect.

a	=	["a",	"b",	"c"]

a.push("d",	"e",	"f")

								#=>	["a",	"b",	"c",	"d",	"e",	"f"]

[1,	2,	3,].push(4).push(5)

								#=>	[1,	2,	3,	4,	5]

Searches	through	the	array	whose	elements	are	also
arrays.

Compares	obj	with	the	second	element	of	each
contained	array	using	obj.==.

Returns	the	first	contained	array	that	matches	obj.

See	also	#assoc.

a	=	[[1,	"one"],	[2,	"two"],	[3,	"three"],	["ii",	"two"

a.rassoc("two")				#=>	[2,	"two"]

a.rassoc("four")			#=>	nil

Returns	a	new	array	containing	the	items	in	self	for
which	the	given	block	is	not	true.

push(obj,	...)	→	ary

rassoc(obj)	→	new_ary	or	nil

reject	{|item|	block	}	→	new_ary
reject	→	Enumerator

See	also	#delete_if

If	no	block	is	given,	an	Enumerator	is	returned
instead.

Equivalent	to	#delete_if,	deleting	elements	from	self
for	which	the	block	evaluates	to	true,	but	returns	nil
if	no	changes	were	made.

The	array	is	changed	instantly	every	time	the	block	is
called,	not	after	the	iteration	is	over.

See	also	Enumerable#reject	and	#delete_if.

If	no	block	is	given,	an	Enumerator	is	returned
instead.

When	invoked	with	a	block,	yields	all	repeated
combinations	of	length	n	of	elements	from	the	array
and	then	returns	the	array	itself.

The	implementation	makes	no	guarantees	about	the
order	in	which	the	repeated	combinations	are	yielded.

If	no	block	is	given,	an	Enumerator	is	returned
instead.

Examples:

a	=	[1,	2,	3]

a.repeated_combination(1).to_a		#=>	[[1],	[2],	[3]]

a.repeated_combination(2).to_a		#=>	[[1,1],[1,2],[1,3],[2,2],[2,3],[3,3]]

a.repeated_combination(3).to_a		#=>	[[1,1,1],[1,1,2],[1,1,3],[1,2,2],[1,2,3],

																																#				[1,3,3],[2,2,2],[2,2,3],[2,3,3],[3,3,3]]

a.repeated_combination(4).to_a		#=>	[[1,1,1,1],[1,1,1,2],[1,1,1,3],[1,1,2,2],[1,1,2,3],

																																#				[1,1,3,3],[1,2,2,2],[1,2,2,3],[1,2,3,3],[1,3,3,3],

reject!	{	|item|	block	}	→	ary	or	nil
reject!	→	Enumerator

repeated_combination(n)	{	|c|	block	}	→	ary
repeated_combination(n)	→	Enumerator

																																#				[2,2,2,2],[2,2,2,3],[2,2,3,3],[2,3,3,3],[3,3,3,3]]

a.repeated_combination(0).to_a		#=>	[[]]	#	one	combination	of	length	0

When	invoked	with	a	block,	yield	all	repeated
permutations	of	length	n	of	the	elements	of	the	array,
then	return	the	array	itself.

The	implementation	makes	no	guarantees	about	the
order	in	which	the	repeated	permutations	are	yielded.

If	no	block	is	given,	an	Enumerator	is	returned
instead.

Examples:

a	=	[1,	2]

a.repeated_permutation(1).to_a		#=>	[[1],	[2]]

a.repeated_permutation(2).to_a		#=>	[[1,1],[1,2],[2,1],[2,2]]

a.repeated_permutation(3).to_a		#=>	[[1,1,1],[1,1,2],[1,2,1],[1,2,2],

																																#				[2,1,1],[2,1,2],[2,2,1],[2,2,2]]

a.repeated_permutation(0).to_a		#=>	[[]]	#	one	permutation	of	length	0

Replaces	the	contents	of	self	with	the	contents	of
other_ary,	truncating	or	expanding	if	necessary.

a	=	["a",	"b",	"c",	"d",	"e"]

a.replace(["x",	"y",	"z"])			#=>	["x",	"y",	"z"]

a																														#=>	["x",	"y",	"z"]

Returns	a	new	array	containing	self's	elements	in

repeated_permutation(n)	{	|p|	block	}	→	ary
repeated_permutation(n)	→	Enumerator

replace(other_ary)	→	ary
initialize_copy(other_ary)	→	ary

reverse	→	new_ary

reverse	order.

["a",	"b",	"c"].reverse			#=>	["c",	"b",	"a"]

[1].reverse															#=>	[1]

Reverses	self	in	place.

a	=	["a",	"b",	"c"]

a.reverse!							#=>	["c",	"b",	"a"]

a																#=>	["c",	"b",	"a"]

Same	as	#each,	but	traverses	self	in	reverse	order.

a	=	["a",	"b",	"c"]

a.reverse_each	{|x|	print	x,	"	"	}

produces:

c	b	a

Returns	the	index	of	the	last	object	in	self	==	to	obj.

If	a	block	is	given	instead	of	an	argument,	returns	the
index	of	the	first	object	for	which	the	block	returns
true,	starting	from	the	last	object.

Returns	nil	if	no	match	is	found.

See	also	#index.

If	neither	block	nor	argument	is	given,	an	Enumerator

reverse!	→	ary

reverse_each	{	|item|	block	}	→	ary
reverse_each	→	Enumerator

rindex(obj)	→	int	or	nil
rindex	{	|item|	block	}	→	int	or	nil
rindex	→	Enumerator

is	returned	instead.

a	=	["a",	"b",	"b",	"b",	"c"]

a.rindex("b")													#=>	3

a.rindex("z")													#=>	nil

a.rindex	{	|x|	x	==	"b"	}	#=>	3

Returns	a	new	array	by	rotating	self	so	that	the
element	at	count	is	the	first	element	of	the	new	array.

If	count	is	negative	then	it	rotates	in	the	opposite
direction,	starting	from	the	end	of	self	where	-1	is	the
last	element.

a	=	["a",	"b",	"c",	"d"]

a.rotate									#=>	["b",	"c",	"d",	"a"]

a																#=>	["a",	"b",	"c",	"d"]

a.rotate(2)						#=>	["c",	"d",	"a",	"b"]

a.rotate(-3)					#=>	["b",	"c",	"d",	"a"]

Rotates	self	in	place	so	that	the	element	at	count
comes	first,	and	returns	self.

If	count	is	negative	then	it	rotates	in	the	opposite
direction,	starting	from	the	end	of	the	array	where	-1
is	the	last	element.

a	=	["a",	"b",	"c",	"d"]

a.rotate!								#=>	["b",	"c",	"d",	"a"]

a																#=>	["b",	"c",	"d",	"a"]

a.rotate!(2)					#=>	["d",	"a",	"b",	"c"]

a.rotate!(-3)				#=>	["a",	"b",	"c",	"d"]

rotate(count=1)	→	new_ary

rotate!(count=1)	→	ary

sample	→	obj
sample(random:	rng)	→	obj

Choose	a	random	element	or	n	random	elements
from	the	array.

The	elements	are	chosen	by	using	random	and
unique	indices	into	the	array	in	order	to	ensure	that
an	element	doesn't	repeat	itself	unless	the	array
already	contained	duplicate	elements.

If	the	array	is	empty	the	first	form	returns	nil	and	the
second	form	returns	an	empty	array.

The	optional	rng	argument	will	be	used	as	the
random	number	generator.

a	=	[1,	2,	3,	4,	5,	6,	7,	8,	9,	10]

a.sample									#=>	7

a.sample(4)						#=>	[6,	4,	2,	5]

Returns	a	new	array	containing	all	elements	of	ary	for
which	the	given	block	returns	a	true	value.

If	no	block	is	given,	an	Enumerator	is	returned
instead.

[1,2,3,4,5].select	{	|num|		num.even?		}			#=>	[2,	4]

a	=	%w{	a	b	c	d	e	f	}

a.select	{	|v|	v	=~	/[aeiou]/	}		#=>	["a",	"e"]

See	also	Enumerable#select.

sample(n)	→	new_ary
sample(n,	random:	rng)	→	new_ary

select	{	|item|	block	}	→	new_ary
select	→	Enumerator

select!	{|item|	block	}	→	ary	or	nil
select!	→	Enumerator

Invokes	the	given	block	passing	in	successive
elements	from	self,	deleting	elements	for	which	the
block	returns	a	false	value.

If	changes	were	made,	it	will	return	self,	otherwise	it
returns	nil.

See	also	#keep_if

If	no	block	is	given,	an	Enumerator	is	returned
instead.

Removes	the	first	element	of	self	and	returns	it
(shifting	all	other	elements	down	by	one).	Returns	nil
if	the	array	is	empty.

If	a	number	n	is	given,	returns	an	array	of	the	first	n
elements	(or	less)	just	like	array.slice!(0,	n)	does.
With	ary	containing	only	the	remainder	elements,	not
including	what	was	shifted	to	new_ary.	See	also
#unshift	for	the	opposite	effect.

args	=	["-m",	"-q",	"filename"]

args.shift					#=>	"-m"

args											#=>	["-q",	"filename"]

args	=	["-m",	"-q",	"filename"]

args.shift(2)		#=>	["-m",	"-q"]

args											#=>	["filename"]

Returns	a	new	array	with	elements	of	self	shuffled.

a	=	[1,	2,	3]											#=>	[1,	2,	3]

a.shuffle																	#=>	[2,	3,	1]

shift	→	obj	or	nil
shift(n)	→	new_ary

shuffle	→	new_ary
shuffle(random:	rng)	→	new_ary

a																									#=>	[1,	2,	3]

The	optional	rng	argument	will	be	used	as	the
random	number	generator.

a.shuffle(random:	Random.new(1))		#=>	[1,	3,	2]

Shuffles	elements	in	self	in	place.

a	=	[1,	2,	3]											#=>	[1,	2,	3]

a.shuffle!																#=>	[2,	3,	1]

a																									#=>	[2,	3,	1]

The	optional	rng	argument	will	be	used	as	the
random	number	generator.

a.shuffle!(random:	Random.new(1))		#=>	[1,	3,	2]

Alias	for:	length

Element	Reference	—	Returns	the	element	at	index,
or	returns	a	subarray	starting	at	the	start	index	and
continuing	for	length	elements,	or	returns	a	subarray
specified	by	range	of	indices.

shuffle!	→	ary
shuffle!(random:	rng)	→	ary

size()

ary[index]	→	obj	or	nil
ary[start,	length]	→	new_ary	or	nil
ary[range]	→	new_ary	or	nil
slice(index)	→	obj	or	nil
slice(start,	length)	→	new_ary	or	nil
slice(range)	→	new_ary	or	nil

Negative	indices	count	backward	from	the	end	of	the
array	(-1	is	the	last	element).	For	start	and	range
cases	the	starting	index	is	just	before	an	element.
Additionally,	an	empty	array	is	returned	when	the
starting	index	for	an	element	range	is	at	the	end	of
the	array.

Returns	nil	if	the	index	(or	starting	index)	are	out	of
range.

a	=	["a",	"b",	"c",	"d",	"e"]

a[2]	+		a[0]	+	a[1]				#=>	"cab"

a[6]																			#=>	nil

a[1,	2]																#=>	["b",	"c"]

a[1..3]																#=>	["b",	"c",	"d"]

a[4..7]																#=>	["e"]

a[6..10]															#=>	nil

a[-3,	3]															#=>	["c",	"d",	"e"]

#	special	cases

a[5]																			#=>	nil

a[6,	1]																#=>	nil

a[5,	1]																#=>	[]

a[5..10]															#=>	[]

Deletes	the	element(s)	given	by	an	index	(optionally
up	to	length	elements)	or	by	a	range.

Returns	the	deleted	object	(or	objects),	or	nil	if	the
index	is	out	of	range.

a	=	["a",	"b",	"c"]

a.slice!(1)					#=>	"b"

a															#=>	["a",	"c"]

a.slice!(-1)				#=>	"c"

a															#=>	["a"]

a.slice!(100)			#=>	nil

a															#=>	["a"]

slice!(index)	→	obj	or	nil
slice!(start,	length)	→	new_ary	or	nil
slice!(range)	→	new_ary	or	nil

Returns	a	new	array	created	by	sorting	self.

Comparisons	for	the	sort	will	be	done	using	the	<=>
operator	or	using	an	optional	code	block.

The	block	must	implement	a	comparison	between	a
and	b,	and	return	-1,	when	a	follows	b,	0	when	a	and	b
are	equivalent,	or	+1	if	b	follows	a.

See	also	Enumerable#sort_by.

a	=	["d",	"a",	"e",	"c",	"b"]

a.sort																				#=>	["a",	"b",	"c",	"d",	"e"]

a.sort	{	|x,y|	y	<=>	x	}		#=>	["e",	"d",	"c",	"b",	"a"]

Sorts	self	in	place.

Comparisons	for	the	sort	will	be	done	using	the	<=>
operator	or	using	an	optional	code	block.

The	block	must	implement	a	comparison	between	a
and	b,	and	return	-1,	when	a	follows	b,	0	when	a	and	b
are	equivalent,	or	+1	if	b	follows	a.

See	also	Enumerable#sort_by.

a	=	["d",	"a",	"e",	"c",	"b"]

a.sort!																				#=>	["a",	"b",	"c",	"d",	"e"]

a.sort!	{	|x,y|	y	<=>	x	}		#=>	["e",	"d",	"c",	"b",	"a"]

sort	→	new_ary
sort	{	|a,	b|	block	}	→	new_ary

sort!	→	ary
sort!	{	|a,	b|	block	}	→	ary

sort_by!	{	|obj|	block	}	→	ary

Sorts	self	in	place	using	a	set	of	keys	generated	by
mapping	the	values	in	self	through	the	given	block.

If	no	block	is	given,	an	Enumerator	is	returned
instead.

Returns	first	n	elements	from	the	array.

If	a	negative	number	is	given,	raises	an
ArgumentError.

See	also	#drop

a	=	[1,	2,	3,	4,	5,	0]

a.take(3)													#=>	[1,	2,	3]

Passes	elements	to	the	block	until	the	block	returns
nil	or	false,	then	stops	iterating	and	returns	an	array
of	all	prior	elements.

If	no	block	is	given,	an	Enumerator	is	returned
instead.

See	also	#drop_while

a	=	[1,	2,	3,	4,	5,	0]

a.take_while	{	|i|	i	<	3	}		#=>	[1,	2]

Returns	self.

If	called	on	a	subclass	of	Array,	converts	the	receiver
to	an	Array	object.

sort_by!	→	Enumerator

take(n)	→	new_ary

take_while	{	|arr|	block	}	→	new_ary
take_while	→	Enumerator

to_a	→	ary

Returns	self.

Returns	the	result	of	interpreting	ary	as	an	array	of
[key,	value]	pairs.

[[:foo,	:bar],	[1,	2]].to_h

		#	=>	{:foo	=>	:bar,	1	=>	2}

Alias	for:	inspect

Assumes	that	self	is	an	array	of	arrays	and
transposes	the	rows	and	columns.

a	=	[[1,2],	[3,4],	[5,6]]

a.transpose			#=>	[[1,	3,	5],	[2,	4,	6]]

If	the	length	of	the	subarrays	don't	match,	an
IndexError	is	raised.

Returns	a	new	array	by	removing	duplicate	values	in
self.

If	a	block	is	given,	it	will	use	the	return	value	of	the
block	for	comparison.

It	compares	values	using	their	hash	and	eql?
methods	for	efficiency.

a	=	["a",	"a",	"b",	"b",	"c"]

to_ary	→	ary

to_h	→	hash

to_s()

transpose	→	new_ary

uniq	→	new_ary
uniq	{	|item|	...	}	→	new_ary

a.uniq			#	=>	["a",	"b",	"c"]

b	=	[["student","sam"],	["student","george"],	["teacher"

b.uniq	{	|s|	s.first	}	#	=>	[["student",	"sam"],	["teacher",	"matz"]]

Removes	duplicate	elements	from	self.

If	a	block	is	given,	it	will	use	the	return	value	of	the
block	for	comparison.

It	compares	values	using	their	hash	and	eql?
methods	for	efficiency.

Returns	nil	if	no	changes	are	made	(that	is,	no
duplicates	are	found).

a	=	["a",	"a",	"b",	"b",	"c"]

a.uniq!			#	=>	["a",	"b",	"c"]

b	=	["a",	"b",	"c"]

b.uniq!			#	=>	nil

c	=	[["student","sam"],	["student","george"],	["teacher"

c.uniq!	{	|s|	s.first	}	#	=>	[["student",	"sam"],	["teacher",	"matz"]]

Prepends	objects	to	the	front	of	self,	moving	other
elements	upwards.	See	also	#shift	for	the	opposite
effect.

a	=	["b",	"c",	"d"]

a.unshift("a")			#=>	["a",	"b",	"c",	"d"]

a.unshift(1,	2)		#=>	[1,	2,	"a",	"b",	"c",	"d"]

uniq!	→	ary	or	nil
uniq!	{	|item|	...	}	→	ary	or	nil

unshift(obj,	...)	→	ary

Returns	an	array	containing	the	elements	in	self
corresponding	to	the	given	selector(s).

The	selectors	may	be	either	integer	indices	or
ranges.

See	also	#select.

a	=	%w{	a	b	c	d	e	f	}

a.values_at(1,	3,	5)										#	=>	["b",	"d",	"f"]

a.values_at(1,	3,	5,	7)							#	=>	["b",	"d",	"f",	nil]

a.values_at(-1,	-2,	-2,	-7)			#	=>	["f",	"e",	"e",	nil]

a.values_at(4..6,	3...6)						#	=>	["e",	"f",	nil,	"d",	"e",	"f"]

Converts	any	arguments	to	arrays,	then	merges
elements	of	self	with	corresponding	elements	from
each	argument.

This	generates	a	sequence	of	ary.size	n-element
arrays,	where	n	is	one	more	than	the	count	of
arguments.

If	the	size	of	any	argument	is	less	than	the	size	of	the
initial	array,	nil	values	are	supplied.

If	a	block	is	given,	it	is	invoked	for	each	output	array,
otherwise	an	array	of	arrays	is	returned.

a	=	[4,	5,	6]

b	=	[7,	8,	9]

[1,	2,	3].zip(a,	b)			#=>	[[1,	4,	7],	[2,	5,	8],	[3,	6,	9]]

[1,	2].zip(a,	b)						#=>	[[1,	4,	7],	[2,	5,	8]]

a.zip([1,	2],	[8])				#=>	[[4,	1,	8],	[5,	2,	nil],	[6,	nil,	nil]]

values_at(selector,	...)	→	new_ary

zip(arg,	...)	→	new_ary
zip(arg,	...)	{	|arr|	block	}	→	nil

Set	Union	—	Returns	a	new	array	by	joining	ary	with
other_ary,	excluding	any	duplicates	and	preserving
the	order	from	the	original	array.

It	compares	elements	using	their	hash	and	eql?
methods	for	efficiency.

["a",	"b",	"c"]	|	["c",	"d",	"a"]				#=>	["a",	"b",	"c",	"d"]

See	also	#uniq.

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

ary	|	other_ary	→	new_ary

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	BasicObject
BasicObject	is	the	parent	class	of	all	classes	in
Ruby.	It's	an	explicit	blank	class.

BasicObject	can	be	used	for	creating	object
hierarchies	independent	of	Ruby's	object
hierarchy,	proxy	objects	like	the	Delegator	class,
or	other	uses	where	namespace	pollution	from
Ruby's	methods	and	classes	must	be	avoided.

To	avoid	polluting	BasicObject	for	other	users	an
appropriately	named	subclass	of	BasicObject
should	be	created	instead	of	directly	modifying
BasicObject:

class	MyObjectSystem	<	BasicObject

end

BasicObject	does	not	include	Kernel	(for
methods	like	puts)	and	BasicObject	is	outside	of
the	namespace	of	the	standard	library	so
common	classes	will	not	be	found	without	using
a	full	class	path.

A	variety	of	strategies	can	be	used	to	provide
useful	portions	of	the	standard	library	to
subclasses	of	BasicObject.	A	subclass	could
include	Kernel	to	obtain	puts,	exit,	etc.	A
custom	Kernel-like	module	could	be	created	and
included	or	delegation	can	be	used	via

method_missing:

class	MyObjectSystem	<	BasicObject

		DELEGATE	=	[:puts,	:p]

		def	method_missing(name,	*args,	&block)

				super	unless	DELEGATE.include?	name

				::Kernel.send(name,	*args,	&block)

		end

		def	respond_to_missing?(name,	include_private	=	

				DELEGATE.include?(name)	or	super

		end

end

Access	to	classes	and	modules	from	the	Ruby
standard	library	can	be	obtained	in	a
BasicObject	subclass	by	referencing	the	desired
constant	from	the	root	like	::File	or
::Enumerator.	Like	method_missing,
const_missing	can	be	used	to	delegate	constant
lookup	to	Object:

class	MyObjectSystem	<	BasicObject

		def	self.const_missing(name)

				::Object.const_get(name)

		end

end

In	Files
class.c
gc.c
object.c
vm_eval.c

Parent

Public	Class	Methods

Not	documented

Public	Instance	Methods

Boolean	negate.

Returns	true	if	two	objects	are	not-equal,	otherwise
false.

Equality	—	At	the	Object	level,	==	returns	true	only	if
obj	and	other	are	the	same	object.	Typically,	this
method	is	overridden	in	descendant	classes	to
provide	class-specific	meaning.

Unlike	==,	the	equal?	method	should	never	be
overridden	by	subclasses	as	it	is	used	to	determine
object	identity	(that	is,	a.equal?(b)	if	and	only	if	a	is
the	same	object	as	b):

obj	=	"a"

other	=	obj.dup

new()

!obj	→	true	or	false

obj	!=	other	→	true	or	false

obj	==	other	→	true	or	false
equal?(other)	→	true	or	false
eql?(other)	→	true	or	false

obj	==	other						#=>	true

obj.equal?	other		#=>	false

obj.equal?	obj				#=>	true

The	eql?	method	returns	true	if	obj	and	other	refer	to
the	same	hash	key.	This	is	used	by	Hash	to	test
members	for	equality.	For	objects	of	class	Object,
eql?	is	synonymous	with	==.	Subclasses	normally
continue	this	tradition	by	aliasing	eql?	to	their
overridden	==	method,	but	there	are	exceptions.
Numeric	types,	for	example,	perform	type	conversion
across	==,	but	not	across	eql?,	so:

1	==	1.0					#=>	true

1.eql?	1.0			#=>	false

Returns	an	integer	identifier	for	obj.

The	same	number	will	be	returned	on	all	calls	to
object_id	for	a	given	object,	and	no	two	active
objects	will	share	an	id.

Note:	that	some	objects	of	builtin	classes	are	reused
for	optimization.	This	is	the	case	for	immediate
values	and	frozen	string	literals.

Immediate	values	are	not	passed	by	reference	but
are	passed	by	value:	nil,	true,	false,	Fixnums,
Symbols,	and	some	Floats.

Object.new.object_id		==	Object.new.object_id		#	=>	false

(21	*	2).object_id				==	(21	*	2).object_id				#	=>	true

"hello".object_id					==	"hello".object_id					#	=>	false

"hi".freeze.object_id	==	"hi".freeze.object_id	#	=>	true

__id__	→	integer
object_id	→	integer

Invokes	the	method	identified	by	symbol,	passing	it
any	arguments	specified.	You	can	use	__send__	if	the
name	send	clashes	with	an	existing	method	in	obj.
When	the	method	is	identified	by	a	string,	the	string	is
converted	to	a	symbol.

class	Klass

		def	hello(*args)

				"Hello	"	+	args.join('	')

		end

end

k	=	Klass.new

k.send	:hello,	"gentle",	"readers"			#=>	"Hello	gentle	readers"

Equality	—	At	the	Object	level,	==	returns	true	only	if
obj	and	other	are	the	same	object.	Typically,	this
method	is	overridden	in	descendant	classes	to
provide	class-specific	meaning.

Unlike	==,	the	equal?	method	should	never	be
overridden	by	subclasses	as	it	is	used	to	determine
object	identity	(that	is,	a.equal?(b)	if	and	only	if	a	is
the	same	object	as	b):

obj	=	"a"

other	=	obj.dup

obj	==	other						#=>	true

obj.equal?	other		#=>	false

obj.equal?	obj				#=>	true

send(symbol	[,	args...])	→	obj
__send__(symbol	[,	args...])	→	obj
send(string	[,	args...])	→	obj
__send__(string	[,	args...])	→	obj

obj	==	other	→	true	or	false
equal?(other)	→	true	or	false
eql?(other)	→	true	or	false

The	eql?	method	returns	true	if	obj	and	other	refer	to
the	same	hash	key.	This	is	used	by	Hash	to	test
members	for	equality.	For	objects	of	class	Object,
eql?	is	synonymous	with	==.	Subclasses	normally
continue	this	tradition	by	aliasing	eql?	to	their
overridden	==	method,	but	there	are	exceptions.
Numeric	types,	for	example,	perform	type	conversion
across	==,	but	not	across	eql?,	so:

1	==	1.0					#=>	true

1.eql?	1.0			#=>	false

Evaluates	a	string	containing	Ruby	source	code,	or
the	given	block,	within	the	context	of	the	receiver
(obj).	In	order	to	set	the	context,	the	variable	self	is
set	to	obj	while	the	code	is	executing,	giving	the	code
access	to	obj's	instance	variables	and	private
methods.

When	instance_eval	is	given	a	block,	obj	is	also
passed	in	as	the	block's	only	argument.

When	instance_eval	is	given	a	String,	the	optional
second	and	third	parameters	supply	a	filename	and
starting	line	number	that	are	used	when	reporting
compilation	errors.

class	KlassWithSecret

		def	initialize

				@secret	=	99

		end

		private

		def	the_secret

				"Ssssh!	The	secret	is	#{@secret}."

instance_eval(string	[,	filename	[,	lineno]])
→	obj
instance_eval	{|obj|	block	}	→	obj

		end

end

k	=	KlassWithSecret.new

k.instance_eval	{	@secret	}										#=>	99

k.instance_eval	{	the_secret	}							#=>	"Ssssh!	The	secret	is	99."

k.instance_eval	{|obj|	obj	==	self	}	#=>	true

Executes	the	given	block	within	the	context	of	the
receiver	(obj).	In	order	to	set	the	context,	the	variable
self	is	set	to	obj	while	the	code	is	executing,	giving
the	code	access	to	obj's	instance	variables.
Arguments	are	passed	as	block	parameters.

class	KlassWithSecret

		def	initialize

				@secret	=	99

		end

end

k	=	KlassWithSecret.new

k.instance_exec(5)	{|x|	@secret+x	}			#=>	104

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

instance_exec(arg...)	{|var...|	block	}	→	obj

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	Bignum
Bignum	objects	hold	integers	outside	the	range
of	Fixnum.	Bignum	objects	are	created
automatically	when	integer	calculations	would
otherwise	overflow	a	Fixnum.	When	a
calculation	involving	Bignum	objects	returns	a
result	that	will	fit	in	a	Fixnum,	the	result	is
automatically	converted.

For	the	purposes	of	the	bitwise	operations	and
[],	a	Bignum	is	treated	as	if	it	were	an	infinite-
length	bitstring	with	2's	complement
representation.

While	Fixnum	values	are	immediate,	Bignum
objects	are	not—assignment	and	parameter
passing	work	with	references	to	objects,	not	the
objects	themselves.

In	Files
bignum.c

Parent
Integer

Constants

GMP_VERSION

The	version	of	loaded	GMP.

Public	Instance	Methods

Returns	big	modulo	other.	See	Numeric#divmod	for
more	information.

Performs	bitwise	and	between	big	and	numeric.

Multiplies	big	and	other,	returning	the	result.

Raises	big	to	the	exponent	power	(which	may	be	an
integer,	float,	or	anything	that	will	coerce	to	a
number).	The	result	may	be	a	Fixnum,	Bignum,	or
Float

123456789	**	2						#=>	15241578750190521

123456789	**	1.2				#=>	5126464716.09932

123456789	**	-2					#=>	6.5610001194102e-17

Adds	big	and	other,	returning	the	result.

big	%	other	→	Numeric
modulo(other)	→	Numeric

big	&	numeric	→	integer

big	*	other	→	Numeric

big	**	exponent	→	numeric

big	+	other	→	Numeric

big	-	other	→	Numeric

Subtracts	other	from	big,	returning	the	result.

Unary	minus	(returns	an	integer	whose	value	is	0-big)

Performs	division:	the	class	of	the	resulting	object
depends	on	the	class	of	numeric	and	on	the
magnitude	of	the	result.

Returns	true	if	the	value	of	big	is	less	than	that	of
real.

Shifts	big	left	numeric	positions	(right	if	numeric	is
negative).

Returns	true	if	the	value	of	big	is	less	than	or	equal
to	that	of	real.

Comparison—Returns	-1,	0,	or	+1	depending	on
whether	big	is	less	than,	equal	to,	or	greater	than
numeric.	This	is	the	basis	for	the	tests	in	Comparable.

nil	is	returned	if	the	two	values	are	incomparable.

-big	→	integer

big	/	other	→	Numeric

big	<	real	→	true	or	false

big	<<	numeric	→	integer

big	<=	real	→	true	or	false

big	<=>	numeric	→	-1,	0,	+1	or	nil

big	==	obj	→	true	or	false

Returns	true	only	if	obj	has	the	same	value	as	big.
Contrast	this	with	Bignum#eql?,	which	requires	obj	to
be	a	Bignum.

68719476736	==	68719476736.0			#=>	true

Returns	true	only	if	obj	has	the	same	value	as	big.
Contrast	this	with	Bignum#eql?,	which	requires	obj	to
be	a	Bignum.

68719476736	==	68719476736.0			#=>	true

Returns	true	if	the	value	of	big	is	greater	than	that	of
real.

Returns	true	if	the	value	of	big	is	greater	than	or
equal	to	that	of	real.

Shifts	big	right	numeric	positions	(left	if	numeric	is
negative).

Bit	Reference—Returns	the	nth	bit	in	the	(assumed)
binary	representation	of	big,	where	big	is	the	least
significant	bit.

a	=	9**15

50.downto(0)	do	|n|

big	==	obj	→	true	or	false

big	>	real	→	true	or	false

big	>=	real	→	true	or	false

big	>>	numeric	→	integer

big[n]	→	0,	1

http://0

		print	a[n]

end

produces:

000101110110100000111000011110010100111100010111001

Performs	bitwise	+exclusive	or+	between	big	and
numeric.

Returns	the	absolute	value	of	big.

-1234567890987654321.abs			#=>	1234567890987654321

Returns	the	number	of	bits	of	the	value	of	int.

“the	number	of	bits”	means	that	the	bit	position	of	the
highest	bit	which	is	different	to	the	sign	bit.	(The	bit
position	of	the	bit	2**n	is	n+1.)	If	there	is	no	such	bit
(zero	or	minus	one),	zero	is	returned.

I.e.	This	method	returns	ceil(log2(int	<	0	?	-int	:
int+1)).

(-2**10000-1).bit_length		#=>	10001

(-2**10000).bit_length				#=>	10000

(-2**10000+1).bit_length		#=>	10000

(-2**1000-1).bit_length			#=>	1001

(-2**1000).bit_length					#=>	1000

(-2**1000+1).bit_length			#=>	1000

(2**1000-1).bit_length				#=>	1000

big	^	numeric	→	integer

abs	→	aBignum
magnitude	→	aBignum

bit_length	→	integer

(2**1000).bit_length						#=>	1001

(2**1000+1).bit_length				#=>	1001

(2**10000-1).bit_length			#=>	10000

(2**10000).bit_length					#=>	10001

(2**10000+1).bit_length			#=>	10001

This	method	can	be	used	to	detect	overflow	in
Array#pack	as	follows.

if	n.bit_length	<	32

		[n].pack("l")	#	no	overflow

else

		raise	"overflow"

end

Returns	an	array	with	both	a	numeric	and	a	big
represented	as	Bignum	objects.

This	is	achieved	by	converting	numeric	to	a	Bignum.

A	TypeError	is	raised	if	the	numeric	is	not	a	Fixnum	or
Bignum	type.

(0x3FFFFFFFFFFFFFFF+1).coerce(42)			#=>	[42,	4611686018427387904]

Performs	integer	division:	returns	integer	value.

See	Numeric#divmod.

Returns	true	only	if	obj	is	a	Bignum	with	the	same
value	as	big.	Contrast	this	with	Bignum#==,	which

coerce(numeric)	→	array

div(other)	→	integer

divmod(numeric)	→	array

eql?(obj)	→	true	or	false

performs	type	conversions.

68719476736.eql?(68719476736.0)			#=>	false

Returns	true	if	big	is	an	even	number.

Returns	the	floating	point	result	of	dividing	big	by
numeric.

-1234567890987654321.fdiv(13731)						#=>	-89910996357705.5

-1234567890987654321.fdiv(13731.24)			#=>	-89909424858035.7

Compute	a	hash	based	on	the	value	of	big.

See	also	Object#hash.

Alias	for:	to_s

Returns	the	absolute	value	of	big.

-1234567890987654321.abs			#=>	1234567890987654321

Returns	big	modulo	other.	See	Numeric#divmod	for

even?	→	true	or	false

fdiv(numeric)	→	float

hash	→	fixnum

inspect(p1	=	v1)

abs	→	aBignum
magnitude	→	aBignum

big	%	other	→	Numeric
modulo(other)	→	Numeric

more	information.

Returns	true	if	big	is	an	odd	number.

Returns	the	remainder	after	dividing	big	by	numeric.

-1234567890987654321.remainder(13731)						#=>	-6966

-1234567890987654321.remainder(13731.24)			#=>	-9906.22531493148

Returns	the	number	of	bytes	in	the	machine
representation	of	big.

(256**10	-	1).size			#=>	12

(256**20	-	1).size			#=>	20

(256**40	-	1).size			#=>	40

Converts	big	to	a	Float.	If	big	doesn't	fit	in	a	Float,
the	result	is	infinity.

Returns	a	string	containing	the	representation	of	big
radix	base	(2	through	36).

12345654321.to_s									#=>	"12345654321"

12345654321.to_s(2)						#=>	"1011011111110110111011110000110001"

12345654321.to_s(8)						#=>	"133766736061"

12345654321.to_s(16)					#=>	"2dfdbbc31"

78546939656932.to_s(36)		#=>	"rubyrules"

odd?	→	true	or	false

remainder(numeric)	→	number

size	→	integer

to_f	→	float

to_s(base=10)	→	string

Also	aliased	as:	inspect

Performs	bitwise	or	between	big	and	numeric.

Inverts	the	bits	in	big.	As	Bignums	are	conceptually
infinite	length,	the	result	acts	as	if	it	had	an	infinite
number	of	one	bits	to	the	left.	In	hex	representations,
this	is	displayed	as	two	periods	to	the	left	of	the
digits.

sprintf("%X",	~0x1122334455)				#=>	"..FEEDDCCBBAA"

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

big	|	numeric	→	integer

~big	→	integer

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	Binding
Objects	of	class	Binding	encapsulate	the
execution	context	at	some	particular	place	in	the
code	and	retain	this	context	for	future	use.	The
variables,	methods,	value	of	self,	and	possibly
an	iterator	block	that	can	be	accessed	in	this
context	are	all	retained.	Binding	objects	can	be
created	using	Kernel#binding,	and	are	made
available	to	the	callback	of
Kernel#set_trace_func.

These	binding	objects	can	be	passed	as	the
second	argument	of	the	Kernel#eval	method,
establishing	an	environment	for	the	evaluation.

class	Demo

		def	initialize(n)

				@secret	=	n

		end

		def	get_binding

				return	binding()

		end

end

k1	=	Demo.new(99)

b1	=	k1.get_binding

k2	=	Demo.new(-3)

b2	=	k2.get_binding

eval("@secret",	b1)			#=>	99

eval("@secret",	b2)			#=>	-3

eval("@secret")							#=>	nil

Binding	objects	have	no	class-specific	methods.

In	Files
proc.c

Parent
Object

Public	Instance	Methods

Evaluates	the	Ruby	expression(s)	in	string,	in	the
binding's	context.	If	the	optional	filename	and	lineno
parameters	are	present,	they	will	be	used	when
reporting	syntax	errors.

def	get_binding(param)

		return	binding

end

b	=	get_binding("hello")

b.eval("param")			#=>	"hello"

Returns	a	true	if	a	local	variable	symbol	exists.

def	foo

		a	=	1

		binding.local_variable_defined?(:a)	#=>	true

		binding.local_variable_defined?(:b)	#=>	false

end

This	method	is	short	version	of	the	following	code.

binding.eval("defined?(#{symbol})	==	'local-variable'")

eval(string	[,	filename	[,lineno]])	→	obj

local_variable_defined?(symbol)	→	obj

Returns	a	value	of	local	variable	symbol.

def	foo

		a	=	1

		binding.local_variable_get(:a)	#=>	1

		binding.local_variable_get(:b)	#=>	NameError

end

This	method	is	short	version	of	the	following	code.

binding.eval("#{symbol}")

Set	local	variable	named	symbol	as	obj.

def	foo

		a	=	1

		b	=	binding

		b.local_variable_set(:a,	2)	#	set	existing	local	variable	`a'

		b.local_variable_set(:b,	3)	#	create	new	local	variable	`b'

																														#	`b'	exists	only	in	binding.

		b.local_variable_get(:a)	#=>	2

		b.local_variable_get(:b)	#=>	3

		p	a	#=>	2

		p	b	#=>	NameError

end

This	method	is	a	similar	behavior	of	the	following
code

binding.eval("#{symbol}	=	#{obj}")

if	obj	can	be	dumped	in	Ruby	code.

Returns	the	symbol	names	of	the	binding's	local

local_variable_get(symbol)	→	obj

local_variable_set(symbol,	obj)	→	obj

local_variables	→	Array

variables

def	foo

		a	=	1

		2.times	do	|n|

				binding.local_variables	#=>	[:a,	:n]

		end

end

This	method	is	short	version	of	the	following	code.

binding.eval("local_variables")

Returns	the	bound	receiver	of	the	binding	object.

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

receiver	→	object

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	Class
Classes	in	Ruby	are	first-class	objects—each	is
an	instance	of	class	Class.

Typically,	you	create	a	new	class	by	using:

class	Name

	#	some	code	describing	the	class	behavior

end

When	a	new	class	is	created,	an	object	of	type
Class	is	initialized	and	assigned	to	a	global
constant	(Name	in	this	case).

When	Name.new	is	called	to	create	a	new	object,
the	new	method	in	Class	is	run	by	default.	This
can	be	demonstrated	by	overriding	new	in	Class:

class	Class

		alias	old_new	new

		def	new(*args)

				print	"Creating	a	new	",	self.name,	"\n"

				old_new(*args)

		end

end

class	Name

end

n	=	Name.new

produces:

Creating	a	new	Name

Classes,	modules,	and	objects	are	interrelated.
In	the	diagram	that	follows,	the	vertical	arrows
represent	inheritance,	and	the	parentheses
metaclasses.	All	metaclasses	are	instances	of
the	class	`Class'.

																									+---------+													+-...

																									|									|													|

									BasicObject-----|-->(BasicObject)-------|-...

													^											|									^													|

													|											|									|													|

										Object---------|----->(Object)---------|-...

													^											|									^													|

													|											|									|													|

													+-------+			|									+--------+				|

													|							|			|									|								|				|

													|				Module-|---------|--->(Module)-|-...

													|							^			|									|								^				|

													|							|			|									|								|				|

													|					Class-|---------|---->(Class)-|-...

													|							^			|									|								^				|

													|							+---+									|								+----+

													|																					|

obj--->OtherClass---------->(OtherClass)-----------...

In	Files
class.c
object.c

Parent
Module

Public	Class	Methods

Creates	a	new	anonymous	(unnamed)	class	with	the
given	superclass	(or	Object	if	no	parameter	is	given).
You	can	give	a	class	a	name	by	assigning	the	class
object	to	a	constant.

If	a	block	is	given,	it	is	passed	the	class	object,	and
the	block	is	evaluated	in	the	context	of	this	class
using	class_eval.

fred	=	Class.new	do

		def	meth1

				"hello"

		end

		def	meth2

				"bye"

		end

end

a	=	fred.new					#=>	#<#<Class:0x100381890>:0x100376b98>

a.meth1										#=>	"hello"

a.meth2										#=>	"bye"

Assign	the	class	to	a	constant	(name	starting
uppercase)	if	you	want	to	treat	it	like	a	regular	class.

Public	Instance	Methods

Allocates	space	for	a	new	object	of	class's	class	and
does	not	call	initialize	on	the	new	instance.	The
returned	object	must	be	an	instance	of	class.

new(super_class=Object)	→	a_class
new(super_class=Object)	{	|mod|	...	}	→
a_class

allocate()	→	obj

klass	=	Class.new	do

		def	initialize(*args)

				@initialized	=	true

		end

		def	initialized?

				@initialized	||	false

		end

end

klass.allocate.initialized?	#=>	false

Calls	allocate	to	create	a	new	object	of	class's	class,
then	invokes	that	object's	initialize	method,
passing	it	args.	This	is	the	method	that	ends	up
getting	called	whenever	an	object	is	constructed
using	.new.

Returns	the	superclass	of	class,	or	nil.

File.superclass										#=>	IO

IO.superclass												#=>	Object

Object.superclass								#=>	BasicObject

class	Foo;	end

class	Bar	<	Foo;	end

Bar.superclass											#=>	Foo

Returns	nil	when	the	given	class	does	not	have	a
parent	class:

BasicObject.superclass			#=>	nil

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

new(args,	...)	→	obj

superclass	→	a_super_class	or	nil

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

module	Comparable
The	Comparable	mixin	is	used	by	classes	whose
objects	may	be	ordered.	The	class	must	define
the	<=>	operator,	which	compares	the	receiver
against	another	object,	returning	-1,	0,	or	+1
depending	on	whether	the	receiver	is	less	than,
equal	to,	or	greater	than	the	other	object.	If	the
other	object	is	not	comparable	then	the	<=>
operator	should	return	nil.	Comparable	uses	<=>	to
implement	the	conventional	comparison
operators	(<,	<=,	==,	>=,	and	>)	and	the	method
between?.

class	SizeMatters

		include	Comparable

		attr	:str

		def	<=>(anOther)

				str.size	<=>	anOther.str.size

		end

		def	initialize(str)

				@str	=	str

		end

		def	inspect

				@str

		end

end

s1	=	SizeMatters.new("Z")

s2	=	SizeMatters.new("YY")

s3	=	SizeMatters.new("XXX")

s4	=	SizeMatters.new("WWWW")

s5	=	SizeMatters.new("VVVVV")

s1	<	s2																							#=>	true

s4.between?(s1,	s3)											#=>	false

s4.between?(s3,	s5)											#=>	true

[s3,	s2,	s5,	s4,	s1].sort			#=>	[Z,	YY,	XXX,	WWWW,	VVVVV]

In	Files
compar.c

Public	Instance	Methods

Compares	two	objects	based	on	the	receiver's	<=>
method,	returning	true	if	it	returns	-1.

Compares	two	objects	based	on	the	receiver's	<=>
method,	returning	true	if	it	returns	-1	or	0.

Compares	two	objects	based	on	the	receiver's	<=>
method,	returning	true	if	it	returns	0.	Also	returns	true
if	obj	and	other	are	the	same	object.

Even	if	obj	<=>	other	raised	an	exception,	the
exception	is	ignored	and	returns	false.

Compares	two	objects	based	on	the	receiver's	<=>
method,	returning	true	if	it	returns	1.

obj	<	other	→	true	or	false

obj	<=	other	→	true	or	false

obj	==	other	→	true	or	false

obj	>	other	→	true	or	false

Compares	two	objects	based	on	the	receiver's	<=>
method,	returning	true	if	it	returns	0	or	1.

Returns	false	if	obj	<=>	min	is	less	than	zero	or	if
anObject	<=>	max	is	greater	than	zero,	true
otherwise.

3.between?(1,	5)															#=>	true

6.between?(1,	5)															#=>	false

'cat'.between?('ant',	'dog')			#=>	true

'gnu'.between?('ant',	'dog')			#=>	false

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

obj	>=	other	→	true	or	false

between?(min,	max)	→	true	or	false

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	Complex
A	complex	number	can	be	represented	as	a
paired	real	number	with	imaginary	unit;	a+bi.
Where	a	is	real	part,	b	is	imaginary	part	and	i	is
imaginary	unit.	Real	a	equals	complex	a+0i
mathematically.

In	ruby,	you	can	create	complex	object	with
Complex,	::rect,	::polar	or	#to_c	method.

Complex(1)											#=>	(1+0i)

Complex(2,	3)								#=>	(2+3i)

Complex.polar(2,	3)		#=>	(-1.9799849932008908+0.2822400161197344i)

3.to_c															#=>	(3+0i)

You	can	also	create	complex	object	from
floating-point	numbers	or	strings.

Complex(0.3)									#=>	(0.3+0i)

Complex('0.3-0.5i')		#=>	(0.3-0.5i)

Complex('2/3+3/4i')		#=>	((2/3)+(3/4)*i)

Complex('1@2')							#=>	(-0.4161468365471424+0.9092974268256817i)

0.3.to_c													#=>	(0.3+0i)

'0.3-0.5i'.to_c						#=>	(0.3-0.5i)

'2/3+3/4i'.to_c						#=>	((2/3)+(3/4)*i)

'1@2'.to_c											#=>	(-0.4161468365471424+0.9092974268256817i)

A	complex	object	is	either	an	exact	or	an	inexact
number.

Complex(1,	1)	/	2				#=>	((1/2)+(1/2)*i)

Complex(1,	1)	/	2.0		#=>	(0.5+0.5i)

In	Files
complex.c

Parent
Numeric

Constants

I

The	imaginary	unit.

Public	Class	Methods

Returns	a	complex	object	which	denotes	the	given
polar	form.

Complex.polar(3,	0)												#=>	(3.0+0.0i)

Complex.polar(3,	Math::PI/2)			#=>	(1.836909530733566e-16+3.0i)

Complex.polar(3,	Math::PI)					#=>	(-3.0+3.673819061467132e-16i)

Complex.polar(3,	-Math::PI/2)		#=>	(1.836909530733566e-16-3.0i)

Returns	a	complex	object	which	denotes	the	given

polar(abs[,	arg])	→	complex

rect(real[,	imag])	→	complex
rectangular(real[,	imag])	→	complex

rectangular	form.

Complex.rectangular(1,	2)		#=>	(1+2i)

Returns	a	complex	object	which	denotes	the	given
rectangular	form.

Complex.rectangular(1,	2)		#=>	(1+2i)

Public	Instance	Methods

Performs	multiplication.

Complex(2,	3)		*	Complex(2,	3)			#=>	(-5+12i)

Complex(900)			*	Complex(1)						#=>	(900+0i)

Complex(-2,	9)	*	Complex(-9,	2)		#=>	(0-85i)

Complex(9,	8)		*	4															#=>	(36+32i)

Complex(20,	9)	*	9.8													#=>	(196.0+88.2i)

Performs	exponentiation.

Complex('i')	**	2														#=>	(-1+0i)

Complex(-8)	**	Rational(1,	3)		#=>	(1.0000000000000002+1.7320508075688772i)

Performs	addition.

Complex(2,	3)		+	Complex(2,	3)			#=>	(4+6i)

Complex(900)			+	Complex(1)						#=>	(901+0i)

rect(real[,	imag])	→	complex
rectangular(real[,	imag])	→	complex

cmp	*	numeric	→	complex

cmp	**	numeric	→	complex

cmp	+	numeric	→	complex

Complex(-2,	9)	+	Complex(-9,	2)		#=>	(-11+11i)

Complex(9,	8)		+	4															#=>	(13+8i)

Complex(20,	9)	+	9.8													#=>	(29.8+9i)

Performs	subtraction.

Complex(2,	3)		-	Complex(2,	3)			#=>	(0+0i)

Complex(900)			-	Complex(1)						#=>	(899+0i)

Complex(-2,	9)	-	Complex(-9,	2)		#=>	(7+7i)

Complex(9,	8)		-	4															#=>	(5+8i)

Complex(20,	9)	-	9.8													#=>	(10.2+9i)

Returns	negation	of	the	value.

-Complex(1,	2)		#=>	(-1-2i)

Performs	division.

Complex(2,	3)		/	Complex(2,	3)			#=>	((1/1)+(0/1)*i)

Complex(900)			/	Complex(1)						#=>	((900/1)+(0/1)*i)

Complex(-2,	9)	/	Complex(-9,	2)		#=>	((36/85)-(77/85)*i)

Complex(9,	8)		/	4															#=>	((9/4)+(2/1)*i)

Complex(20,	9)	/	9.8													#=>	(2.0408163265306123+0.9183673469387754i)

Returns	true	if	cmp	equals	object	numerically.

Complex(2,	3)		==	Complex(2,	3)			#=>	true

Complex(5)					==	5															#=>	true

Complex(0)					==	0.0													#=>	true

Complex('1/3')	==	0.33												#=>	false

Complex('1/2')	==	'1/2'											#=>	false

cmp	-	numeric	→	complex

-cmp	→	complex

cmp	/	numeric	→	complex
quo(numeric)	→	complex

cmp	==	object	→	true	or	false

Returns	the	absolute	part	of	its	polar	form.

Complex(-1).abs									#=>	1

Complex(3.0,	-4.0).abs		#=>	5.0

Returns	square	of	the	absolute	value.

Complex(-1).abs2									#=>	1

Complex(3.0,	-4.0).abs2		#=>	25.0

Returns	the	angle	part	of	its	polar	form.

Complex.polar(3,	Math::PI/2).arg		#=>	1.5707963267948966

Returns	the	angle	part	of	its	polar	form.

Complex.polar(3,	Math::PI/2).arg		#=>	1.5707963267948966

Returns	the	complex	conjugate.

abs	→	real
magnitude	→	real

abs2	→	real

arg	→	float
angle	→	float
phase	→	float

arg	→	float
angle	→	float
phase	→	float

conj	→	complex
conjugate	→	complex

Complex(1,	2).conjugate		#=>	(1-2i)

Returns	the	complex	conjugate.

Complex(1,	2).conjugate		#=>	(1-2i)

Returns	the	denominator	(lcm	of	both	denominator	-
real	and	imag).

See	numerator.

Performs	division	as	each	part	is	a	float,	never
returns	a	float.

Complex(11,	22).fdiv(3)		#=>	(3.6666666666666665+7.333333333333333i)

Returns	the	imaginary	part.

Complex(7).imaginary						#=>	0

Complex(9,	-4).imaginary		#=>	-4

Returns	the	imaginary	part.

Complex(7).imaginary						#=>	0

Complex(9,	-4).imaginary		#=>	-4

conj	→	complex
conjugate	→	complex

denominator	→	integer

fdiv(numeric)	→	complex

imag	→	real
imaginary	→	real

imag	→	real
imaginary	→	real

Returns	the	value	as	a	string	for	inspection.

Complex(2).inspect																							#=>	"(2+0i)"

Complex('-8/6').inspect																		#=>	"((-4/3)+0i)"

Complex('1/2i').inspect																		#=>	"(0+(1/2)*i)"

Complex(0,	Float::INFINITY).inspect						#=>	"(0+Infinity*i)"

Complex(Float::NAN,	Float::NAN).inspect		#=>	"(NaN+NaN*i)"

Returns	the	absolute	part	of	its	polar	form.

Complex(-1).abs									#=>	1

Complex(3.0,	-4.0).abs		#=>	5.0

Returns	the	numerator.

				1			2							3+4i		<-		numerator

				-	+	-i		->		----

				2			3								6				<-		denominator

c	=	Complex('1/2+2/3i')		#=>	((1/2)+(2/3)*i)

n	=	c.numerator										#=>	(3+4i)

d	=	c.denominator								#=>	6

n	/	d																				#=>	((1/2)+(2/3)*i)

Complex(Rational(n.real,	d),	Rational(n.imag,	d))

																									#=>	((1/2)+(2/3)*i)

See	denominator.

inspect	→	string

abs	→	real
magnitude	→	real

numerator	→	numeric

arg	→	float
angle	→	float

Returns	the	angle	part	of	its	polar	form.

Complex.polar(3,	Math::PI/2).arg		#=>	1.5707963267948966

Returns	an	array;	[cmp.abs,	cmp.arg].

Complex(1,	2).polar		#=>	[2.23606797749979,	1.1071487177940904]

Performs	division.

Complex(2,	3)		/	Complex(2,	3)			#=>	((1/1)+(0/1)*i)

Complex(900)			/	Complex(1)						#=>	((900/1)+(0/1)*i)

Complex(-2,	9)	/	Complex(-9,	2)		#=>	((36/85)-(77/85)*i)

Complex(9,	8)		/	4															#=>	((9/4)+(2/1)*i)

Complex(20,	9)	/	9.8													#=>	(2.0408163265306123+0.9183673469387754i)

Returns	the	value	as	a	rational	if	possible	(the
imaginary	part	should	be	exactly	zero).

Complex(1.0/3,	0).rationalize		#=>	(1/3)

Complex(1,	0.0).rationalize				#	RangeError

Complex(1,	2).rationalize						#	RangeError

See	to_r.

Returns	the	real	part.

Complex(7).real						#=>	7

phase	→	float

polar	→	array

cmp	/	numeric	→	complex
quo(numeric)	→	complex

rationalize([eps])	→	rational

real	→	real

Complex(9,	-4).real		#=>	9

Returns	false.

Returns	an	array;	[cmp.real,	cmp.imag].

Complex(1,	2).rectangular		#=>	[1,	2]

Returns	an	array;	[cmp.real,	cmp.imag].

Complex(1,	2).rectangular		#=>	[1,	2]

Returns	self.

Complex(2).to_c						#=>	(2+0i)

Complex(-8,	6).to_c		#=>	(-8+6i)

Returns	the	value	as	a	float	if	possible	(the	imaginary
part	should	be	exactly	zero).

Complex(1,	0).to_f				#=>	1.0

Complex(1,	0.0).to_f		#	RangeError

Complex(1,	2).to_f				#	RangeError

real?	→	false

rect	→	array
rectangular	→	array

rect	→	array
rectangular	→	array

to_c	→	self

to_f	→	float

to_i	→	integer

Returns	the	value	as	an	integer	if	possible	(the
imaginary	part	should	be	exactly	zero).

Complex(1,	0).to_i				#=>	1

Complex(1,	0.0).to_i		#	RangeError

Complex(1,	2).to_i				#	RangeError

Returns	the	value	as	a	rational	if	possible	(the
imaginary	part	should	be	exactly	zero).

Complex(1,	0).to_r				#=>	(1/1)

Complex(1,	0.0).to_r		#	RangeError

Complex(1,	2).to_r				#	RangeError

See	rationalize.

Returns	the	value	as	a	string.

Complex(2).to_s																							#=>	"2+0i"

Complex('-8/6').to_s																		#=>	"-4/3+0i"

Complex('1/2i').to_s																		#=>	"0+1/2i"

Complex(0,	Float::INFINITY).to_s						#=>	"0+Infinity*i"

Complex(Float::NAN,	Float::NAN).to_s		#=>	"NaN+NaN*i"

Returns	the	complex	conjugate.

Complex(1,	2).conjugate		#=>	(1-2i)

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

to_r	→	rational

to_s	→	string

conj	→	complex
conjugate	→	complex

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class
Complex::compatible

In	Files
complex.c

Parent
Object

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	Continuation
Continuation	objects	are	generated	by
Kernel#callcc,	after	having	+require+d
continuation.	They	hold	a	return	address	and
execution	context,	allowing	a	nonlocal	return	to
the	end	of	the	callcc	block	from	anywhere	within
a	program.	Continuations	are	somewhat
analogous	to	a	structured	version	of	C's
setjmp/longjmp	(although	they	contain	more
state,	so	you	might	consider	them	closer	to
threads).

For	instance:

require	"continuation"

arr	=	["Freddie",	"Herbie",	"Ron",	"Max",	"Ringo"

callcc{|cc|	$cc	=	cc}

puts(message	=	arr.shift)

$cc.call	unless	message	=~	/Max/

produces:

Freddie

Herbie

Ron

Max

This	(somewhat	contrived)	example	allows	the
inner	loop	to	abandon	processing	early:

require	"continuation"

callcc	{|cont|

		for	i	in	0..4

				print	"\n#{i}:	"

				for	j	in	i*5...(i+1)*5

						cont.call()	if	j	==	17

						printf	"%3d",	j

				end

		end

}

puts

produces:

0:			0		1		2		3		4

1:			5		6		7		8		9

2:		10	11	12	13	14

3:		15	16

In	Files
cont.c

Parent
Object

Public	Instance	Methods

Invokes	the	continuation.	The	program	continues
from	the	end	of	the	callcc	block.	If	no	arguments	are
given,	the	original	callcc	returns	nil.	If	one	argument

call(args,	...)
cont[args,	...]

is	given,	callcc	returns	it.	Otherwise,	an	array
containing	args	is	returned.

callcc	{|cont|		cont.call	}											#=>	nil

callcc	{|cont|		cont.call	1	}									#=>	1

callcc	{|cont|		cont.call	1,	2,	3	}			#=>	[1,	2,	3]

Invokes	the	continuation.	The	program	continues
from	the	end	of	the	callcc	block.	If	no	arguments	are
given,	the	original	callcc	returns	nil.	If	one	argument
is	given,	callcc	returns	it.	Otherwise,	an	array
containing	args	is	returned.

callcc	{|cont|		cont.call	}											#=>	nil

callcc	{|cont|		cont.call	1	}									#=>	1

callcc	{|cont|		cont.call	1,	2,	3	}			#=>	[1,	2,	3]

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

call(args,	...)
cont[args,	...]

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	Data
This	is	a	recommended	base	class	for	C
extensions	using	Data_Make_Struct	or
Data_Wrap_Struct,	see	README.EXT	for
details.

In	Files
object.c

Parent
Object

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	Dir
Objects	of	class	Dir	are	directory	streams
representing	directories	in	the	underlying	file
system.	They	provide	a	variety	of	ways	to	list
directories	and	their	contents.	See	also	File.

The	directory	used	in	these	examples	contains
the	two	regular	files	(config.h	and	main.rb),	the
parent	directory	(..),	and	the	directory	itself	(.).

In	Files
dir.c

Parent
Object

Included	Modules
Enumerable

Public	Class	Methods

Equivalent	to	calling	Dir.glob([string,...],0).
Dir[string	[,	string	...]]	→	array

chdir([string])	→	0

Changes	the	current	working	directory	of	the	process
to	the	given	string.	When	called	without	an	argument,
changes	the	directory	to	the	value	of	the	environment
variable	HOME,	or	LOGDIR.	SystemCallError	(probably
Errno::ENOENT)	if	the	target	directory	does	not	exist.

If	a	block	is	given,	it	is	passed	the	name	of	the	new
current	directory,	and	the	block	is	executed	with	that
as	the	current	directory.	The	original	working	directory
is	restored	when	the	block	exits.	The	return	value	of
chdir	is	the	value	of	the	block.	chdir	blocks	can	be
nested,	but	in	a	multi-threaded	program	an	error	will
be	raised	if	a	thread	attempts	to	open	a	chdir	block
while	another	thread	has	one	open.

Dir.chdir("/var/spool/mail")

puts	Dir.pwd

Dir.chdir("/tmp")	do

		puts	Dir.pwd

		Dir.chdir("/usr")	do

				puts	Dir.pwd

		end

		puts	Dir.pwd

end

puts	Dir.pwd

produces:

/var/spool/mail

/tmp

/usr

/tmp

/var/spool/mail

Changes	this	process's	idea	of	the	file	system	root.
Only	a	privileged	process	may	make	this	call.	Not
available	on	all	platforms.	On	Unix	systems,	see

chdir([string])	{|	path	|	block	}	→	anObject

chroot(string)	→	0

chroot(2)	for	more	information.

Deletes	the	named	directory.	Raises	a	subclass	of
SystemCallError	if	the	directory	isn't	empty.

Returns	an	array	containing	all	of	the	filenames	in	the
given	directory.	Will	raise	a	SystemCallError	if	the
named	directory	doesn't	exist.

The	optional	enc	argument	specifies	the	encoding	of
the	directory.	If	not	specified,	the	filesystem	encoding
is	used.

Dir.entries("testdir")			#=>	[".",	"..",	"config.h",	"main.rb"]

Returns	true	if	the	named	file	is	a	directory,	false
otherwise.

Deprecated	method.	Don't	use.

delete(string)	→	0
rmdir(string)	→	0
unlink(string)	→	0

entries(dirname)	→	array
entries(dirname,	encoding:	enc)	→	array

exist?(file_name)	→	true	or	false

exists?(file_name)	→	true	or	false

foreach(dirname)	{|	filename	|	block	}	→	nil
foreach(dirname,	encoding:	enc)	{|	filename
|	block	}	→	nil
foreach(dirname)	→	an_enumerator

Calls	the	block	once	for	each	entry	in	the	named
directory,	passing	the	filename	of	each	entry	as	a
parameter	to	the	block.

If	no	block	is	given,	an	enumerator	is	returned
instead.

Dir.foreach("testdir")	{|x|	puts	"Got	#{x}"	}

produces:

Got	.

Got	..

Got	config.h

Got	main.rb

Returns	the	path	to	the	current	working	directory	of
this	process	as	a	string.

Dir.chdir("/tmp")			#=>	0

Dir.getwd											#=>	"/tmp"

Dir.pwd													#=>	"/tmp"

Expands	pattern,	which	is	an	Array	of	patterns	or	a
pattern	String,	and	returns	the	results	as	matches	or
as	arguments	given	to	the	block.

Note	that	this	pattern	is	not	a	regexp,	it's	closer	to	a
shell	glob.	See	File.fnmatch	for	the	meaning	of	the
flags	parameter.	Note	that	case	sensitivity	depends

foreach(dirname,	encoding:	enc)	→
an_enumerator

getwd	→	string
pwd	→	string

glob(pattern,	[flags])	→	matches
glob(pattern,	[flags])	{	|filename|	block	}	→
nil

on	your	system	(so	File::FNM_CASEFOLD	is
ignored),	as	does	the	order	in	which	the	results	are
returned.
*

Matches	any	file.	Can	be	restricted	by	other	values
in	the	glob.	Equivalent	to	/	.*	/x	in	regexp.
*

Matches	all	files

c*

Matches	all	files	beginning	with	c

*c

Matches	all	files	ending	with	c

c

Match	all	files	that	have	c	in	them	(including	at
the	beginning	or	end).

Note,	this	will	not	match	Unix-like	hidden	files
(dotfiles).	In	order	to	include	those	in	the	match
results,	you	must	use	the	File::FNM_DOTMATCH
flag	or	something	like	"{*,.*}".

**

Matches	directories	recursively.

?

Matches	any	one	character.	Equivalent	to	/.{1}/	in
regexp.

[set]

Matches	any	one	character	in	set.	Behaves
exactly	like	character	sets	in	Regexp,	including	set
negation	([^a-z]).

{p,q}

Matches	either	literal	p	or	literal	q.	Equivalent	to
pattern	alternation	in	regexp.

Matching	literals	may	be	more	than	one	character

in	length.	More	than	two	literals	may	be	specified.

\

Escapes	the	next	metacharacter.

Note	that	this	means	you	cannot	use	backslash	on
windows	as	part	of	a	glob,	i.e.	Dir["c:\foo*"]	will
not	work,	use	Dir["c:/foo*"]	instead.

Examples:

Dir["config.?"]																					#=>	["config.h"]

Dir.glob("config.?")																#=>	["config.h"]

Dir.glob("*.[a-z][a-z]")												#=>	["main.rb"]

Dir.glob("*.[^r]*")																	#=>	["config.h"]

Dir.glob("*.{rb,h}")																#=>	["main.rb",	"config.h"]

Dir.glob("*")																							#=>	["config.h",	"main.rb"]

Dir.glob("*",	File::FNM_DOTMATCH)			#=>	[".",	"..",	"config.h",	"main.rb"]

rbfiles	=	File.join("**",	"*.rb")

Dir.glob(rbfiles)																			#=>	["main.rb",

																																				#				"lib/song.rb",

																																				#				"lib/song/karaoke.rb"]

libdirs	=	File.join("**",	"lib")

Dir.glob(libdirs)																			#=>	["lib"]

librbfiles	=	File.join("**",	"lib",	"**",	"*.rb")

Dir.glob(librbfiles)																#=>	["lib/song.rb",

																																				#				"lib/song/karaoke.rb"]

librbfiles	=	File.join("**",	"lib",	"*.rb")

Dir.glob(librbfiles)																#=>	["lib/song.rb"]

Returns	the	home	directory	of	the	current	user	or	the
named	user	if	given.

Makes	a	new	directory	named	by	string,	with

home()	→	"/home/me"
home("root")	→	"/root"

mkdir(string	[,	integer])	→	0

permissions	specified	by	the	optional	parameter
anInteger.	The	permissions	may	be	modified	by	the
value	of	File::umask,	and	are	ignored	on	NT.	Raises
a	SystemCallError	if	the	directory	cannot	be	created.
See	also	the	discussion	of	permissions	in	the	class
documentation	for	File.

Dir.mkdir(File.join(Dir.home,	".foo"),	0700)	#=>	0

Returns	a	new	directory	object	for	the	named
directory.

The	optional	enc	argument	specifies	the	encoding	of
the	directory.	If	not	specified,	the	filesystem	encoding
is	used.

The	optional	enc	argument	specifies	the	encoding	of
the	directory.	If	not	specified,	the	filesystem	encoding
is	used.

With	no	block,	open	is	a	synonym	for	Dir::new.	If	a
block	is	present,	it	is	passed	aDir	as	a	parameter.
The	directory	is	closed	at	the	end	of	the	block,	and
Dir::open	returns	the	value	of	the	block.

new(string)	→	aDir
new(string,	encoding:	enc)	→	aDir

open(string)	→	aDir
open(string,	encoding:	enc)	→	aDir
open(string)	{|	aDir	|	block	}	→	anObject
open(string,	encoding:	enc)	{|	aDir	|	block	}
→	anObject

getwd	→	string

Returns	the	path	to	the	current	working	directory	of
this	process	as	a	string.

Dir.chdir("/tmp")			#=>	0

Dir.getwd											#=>	"/tmp"

Dir.pwd													#=>	"/tmp"

Deletes	the	named	directory.	Raises	a	subclass	of
SystemCallError	if	the	directory	isn't	empty.

Deletes	the	named	directory.	Raises	a	subclass	of
SystemCallError	if	the	directory	isn't	empty.

Public	Instance	Methods

Closes	the	directory	stream.	Any	further	attempts	to
access	dir	will	raise	an	IOError.

d	=	Dir.new("testdir")

d.close			#=>	nil

Calls	the	block	once	for	each	entry	in	this	directory,

pwd	→	string

delete(string)	→	0
rmdir(string)	→	0
unlink(string)	→	0

delete(string)	→	0
rmdir(string)	→	0
unlink(string)	→	0

close	→	nil

each	{	|filename|	block	}	→	dir
each	→	an_enumerator

passing	the	filename	of	each	entry	as	a	parameter	to
the	block.

If	no	block	is	given,	an	enumerator	is	returned
instead.

d	=	Dir.new("testdir")

d.each		{|x|	puts	"Got	#{x}"	}

produces:

Got	.

Got	..

Got	config.h

Got	main.rb

Returns	the	file	descriptor	used	in	dir.

d	=	Dir.new("..")

d.fileno			#=>	8

This	method	uses	dirfd()	function	defined	by	POSIX
2008.	NotImplementedError	is	raised	on	other
platforms,	such	as	Windows,	which	doesn't	provide
the	function.

Return	a	string	describing	this	Dir	object.

Returns	the	path	parameter	passed	to	dir's
constructor.

d	=	Dir.new("..")

d.path			#=>	".."

fileno	→	integer

inspect	→	string

path	→	string	or	nil
to_path	→	string	or	nil

Returns	the	current	position	in	dir.	See	also	Dir#seek.

d	=	Dir.new("testdir")

d.tell			#=>	0

d.read			#=>	"."

d.tell			#=>	12

Synonym	for	Dir#seek,	but	returns	the	position
parameter.

d	=	Dir.new("testdir")			#=>	#<Dir:0x401b3c40>

d.read																			#=>	"."

i	=	d.pos																#=>	12

d.read																			#=>	".."

d.pos	=	i																#=>	12

d.read																			#=>	".."

Reads	the	next	entry	from	dir	and	returns	it	as	a
string.	Returns	nil	at	the	end	of	the	stream.

d	=	Dir.new("testdir")

d.read			#=>	"."

d.read			#=>	".."

d.read			#=>	"config.h"

Repositions	dir	to	the	first	entry.

d	=	Dir.new("testdir")

d.read					#=>	"."

d.rewind			#=>	#<Dir:0x401b3fb0>

d.read					#=>	"."

pos	→	integer
tell	→	integer

pos	=	integer	→	integer

read	→	string	or	nil

rewind	→	dir

Seeks	to	a	particular	location	in	dir.	integer	must	be	a
value	returned	by	Dir#tell.

d	=	Dir.new("testdir")			#=>	#<Dir:0x401b3c40>

d.read																			#=>	"."

i	=	d.tell															#=>	12

d.read																			#=>	".."

d.seek(i)																#=>	#<Dir:0x401b3c40>

d.read																			#=>	".."

Returns	the	current	position	in	dir.	See	also	Dir#seek.

d	=	Dir.new("testdir")

d.tell			#=>	0

d.read			#=>	"."

d.tell			#=>	12

Returns	the	path	parameter	passed	to	dir's
constructor.

d	=	Dir.new("..")

d.path			#=>	".."

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

seek(integer)	→	dir

pos	→	integer
tell	→	integer

path	→	string	or	nil
to_path	→	string	or	nil

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	ENV
ENV	is	a	hash-like	accessor	for	environment
variables.

In	Files
hash.c

Parent
Object

Public	Class	Methods

Retrieves	the	value	for	environment	variable	name	as
a	String.	Returns	nil	if	the	named	variable	does	not
exist.

Sets	the	environment	variable	name	to	value.	If	the
value	given	is	nil	the	environment	variable	is
deleted.

Returns	an	Array	of	the	name	and	value	of	the

ENV[name]	→	value

ENV[name]	=	value
store(name,	value)	→	value

assoc(name)	→	Array	or	nil

environment	variable	with	name	or	nil	if	the	name
cannot	be	found.

Removes	every	environment	variable.

Deletes	the	environment	variable	with	name	and
returns	the	value	of	the	variable.	If	a	block	is	given	it
will	be	called	when	the	named	environment	does	not
exist.

Deletes	every	environment	variable	for	which	the
block	evaluates	to	true.

If	no	block	is	given	an	enumerator	is	returned
instead.

Yields	each	environment	variable	name	and	value.

If	no	block	is	given	an	Enumerator	is	returned.

Yields	each	environment	variable	name.

clear

delete(name)	→	value
delete(name)	{	|name|	}	→	value

delete_if	{	|name,	value|	}	→	Hash
delete_if	→	Enumerator

each	{	|name,	value|	}	→	Hash
each	→	Enumerator
each_pair	{	|name,	value|	}	→	Hash
each_pair	→	Enumerator

each_key	{	|name|	}	→	Hash
each_key	→	Enumerator

An	Enumerator	is	returned	if	no	block	is	given.

Yields	each	environment	variable	name	and	value.

If	no	block	is	given	an	Enumerator	is	returned.

Yields	each	environment	variable	value.

An	Enumerator	is	returned	if	no	block	was	given.

Returns	true	when	there	are	no	environment
variables

Retrieves	the	environment	variable	name.

If	the	given	name	does	not	exist	and	neither	default
nor	a	block	a	provided	an	IndexError	is	raised.	If	a
block	is	given	it	is	called	with	the	missing	name	to
provide	a	value.	If	a	default	value	is	given	it	will	be
returned	when	no	block	is	given.

each	{	|name,	value|	}	→	Hash
each	→	Enumerator
each_pair	{	|name,	value|	}	→	Hash
each_pair	→	Enumerator

each_value	{	|value|	}	→	Hash
each_value	→	Enumerator

empty?	→	true	or	false

fetch(name)	→	value
fetch(name,	default)	→	value
fetch(name)	{	|missing_name|	...	}	→	value

key?(name)	→	true	or	false

Returns	true	if	there	is	an	environment	variable	with
the	given	name.

Returns	true	if	there	is	an	environment	variable	with
the	given	value.

Returns	true	if	there	is	an	environment	variable	with
the	given	name.

Deprecated	method	that	is	equivalent	to	::key

Returns	the	contents	of	the	environment	as	a	String.

Returns	a	new	hash	created	by	using	environment
variable	names	as	values	and	values	as	names.

include?(name)	→	true	or	false
has_key?(name)	→	true	or	false
member?(name)	→	true	or	false

value?(value)	→	true	or	false
has_value?(value)	→	true	or	false

key?(name)	→	true	or	false
include?(name)	→	true	or	false
has_key?(name)	→	true	or	false
member?(name)	→	true	or	false

index(value)	→	key

inspect	→	string

invert	→	Hash

keep_if	{	|name,	value|	}	→	Hash

Deletes	every	environment	variable	where	the	block
evaluates	to	false.

Returns	an	enumerator	if	no	block	was	given.

Returns	the	name	of	the	environment	variable	with
value.	If	the	value	is	not	found	nil	is	returned.

Returns	true	if	there	is	an	environment	variable	with
the	given	name.

Returns	every	environment	variable	name	in	an	Array

Returns	the	number	of	environment	variables.

Returns	true	if	there	is	an	environment	variable	with
the	given	name.

keep_if	→	Enumerator

key(value)	→	name

key?(name)	→	true	or	false
include?(name)	→	true	or	false
has_key?(name)	→	true	or	false
member?(name)	→	true	or	false

keys	→	Array

length
size

key?(name)	→	true	or	false
include?(name)	→	true	or	false
has_key?(name)	→	true	or	false
member?(name)	→	true	or	false

Returns	an	Array	of	the	name	and	value	of	the
environment	variable	with	value	or	nil	if	the	value
cannot	be	found.

Re-hashing	the	environment	variables	does	nothing.
It	is	provided	for	compatibility	with	Hash.

Same	as	ENV#delete_if,	but	works	on	(and	returns)	a
copy	of	the	environment.

Equivalent	to	ENV#delete_if	but	returns	nil	if	no
changes	were	made.

Returns	an	Enumerator	if	no	block	was	given.

Replaces	the	contents	of	the	environment	variables
with	the	contents	of	hash.

Returns	a	copy	of	the	environment	for	entries	where
the	block	returns	true.

Returns	an	Enumerator	if	no	block	was	given.

rassoc(value)

rehash

reject	{	|name,	value|	}	→	Hash
reject	→	Enumerator

reject!	{	|name,	value|	}	→	ENV	or	nil
reject!	→	Enumerator

replace(hash)	→	env

select	{	|name,	value|	}	→	Hash
select	→	Enumerator

Equivalent	to	ENV#keep_if	but	returns	nil	if	no
changes	were	made.

Removes	an	environment	variable	name-value	pair
from	ENV	and	returns	it	as	an	Array.	Returns	nil	if
when	the	environment	is	empty.

Returns	the	number	of	environment	variables.

Sets	the	environment	variable	name	to	value.	If	the
value	given	is	nil	the	environment	variable	is
deleted.

Converts	the	environment	variables	into	an	array	of
names	and	value	arrays.

ENV.to_a	#	=>	[["TERM",	"xterm-color"],	["SHELL",	"/bin/bash"],	...]

Creates	a	hash	with	a	copy	of	the	environment
variables.

select!	{	|name,	value|	}	→	ENV	or	nil
select!	→	Enumerator

shift	→	Array	or	nil

length
size

ENV[name]	=	value
store(name,	value)	→	value

to_a	→	Array

to_hash	→	hash
to_h	→	hash

Creates	a	hash	with	a	copy	of	the	environment
variables.

Returns	“ENV”

Adds	the	contents	of	hash	to	the	environment
variables.	If	no	block	is	specified	entries	with
duplicate	keys	are	overwritten,	otherwise	the	value	of
each	duplicate	name	is	determined	by	calling	the
block	with	the	key,	its	value	from	the	environment	and
its	value	from	the	hash.

Returns	true	if	there	is	an	environment	variable	with
the	given	value.

Returns	every	environment	variable	value	as	an
Array

Returns	an	array	containing	the	environment	variable
values	associated	with	the	given	names.	See	also
::select.

to_hash	→	hash
to_h	→	hash

to_s	→	"ENV"

update(hash)	→	Hash
update(hash)	{	|name,	old_value,	new_value|
}	→	Hash

value?(value)	→	true	or	false
has_value?(value)	→	true	or	false

values	→	Array

values_at(name,	...)	→	Array

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	EOFError
Raised	by	some	IO	operations	when	reaching
the	end	of	file.	Many	IO	methods	exist	in	two
forms,

one	that	returns	nil	when	the	end	of	file	is
reached,	the	other	raises	EOFError	EOFError.

EOFError	is	a	subclass	of	IOError.

file	=	File.open("/etc/hosts")

file.read

file.gets					#=>	nil

file.readline	#=>	EOFError:	end	of	file	reached

In	Files
io.c

Parent
IOError

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	Encoding
An	Encoding	instance	represents	a	character
encoding	usable	in	Ruby.	It	is	defined	as	a
constant	under	the	Encoding	namespace.	It	has
a	name	and	optionally,	aliases:

Encoding::ISO_8859_1.name

#=>	#<Encoding:ISO-8859-1>

Encoding::ISO_8859_1.names

#=>	["ISO-8859-1",	"ISO8859-1"]

Ruby	methods	dealing	with	encodings	return	or
accept	Encoding	instances	as	arguments	(when
a	method	accepts	an	Encoding	instance	as	an
argument,	it	can	be	passed	an	Encoding	name
or	alias	instead).

"some	string".encoding

#=>	#<Encoding:UTF-8>

string	=	"some	string".encode(Encoding::ISO_8859_1

#=>	"some	string"

string.encoding

#=>	#<Encoding:ISO-8859-1>

"some	string".encode	"ISO-8859-1"

#=>	"some	string"

Encoding::ASCII_8BIT	is	a	special	encoding	that
is	usually	used	for	a	byte	string,	not	a	character

string.	But	as	the	name	insists,	its	characters	in
the	range	of	ASCII	are	considered	as	ASCII
characters.	This	is	useful	when	you	use	ASCII-
8BIT	characters	with	other	ASCII	compatible
characters.

Changing	an	encoding

The	associated	Encoding	of	a	String	can	be
changed	in	two	different	ways.

First,	it	is	possible	to	set	the	Encoding	of	a	string
to	a	new	Encoding	without	changing	the	internal
byte	representation	of	the	string,	with
String#force_encoding.	This	is	how	you	can	tell
Ruby	the	correct	encoding	of	a	string.

string

#=>	"R\xC3\xA9sum\xC3\xA9"

string.encoding

#=>	#<Encoding:ISO-8859-1>

string.force_encoding(Encoding::UTF_8)

#=>	"R\u00E9sum\u00E9"

Second,	it	is	possible	to	transcode	a	string,	i.e.
translate	its	internal	byte	representation	to
another	encoding.	Its	associated	encoding	is
also	set	to	the	other	encoding.	See
String#encode	for	the	various	forms	of
transcoding,	and	the	Encoding::Converter	class
for	additional	control	over	the	transcoding
process.

string

#=>	"R\u00E9sum\u00E9"

string.encoding

#=>	#<Encoding:UTF-8>

string	=	string.encode!(Encoding::ISO_8859_1)

#=>	"R\xE9sum\xE9"

string.encoding

#=>	#<Encoding::ISO-8859-1>

Script	encoding

All	Ruby	script	code	has	an	associated	Encoding
which	any	String	literal	created	in	the	source
code	will	be	associated	to.

The	default	script	encoding	is	Encoding::UTF-8
after	v2.0,	but	it	can	be	changed	by	a	magic
comment	on	the	first	line	of	the	source	code	file
(or	second	line,	if	there	is	a	shebang	line	on	the
first).	The	comment	must	contain	the	word
coding	or	encoding,	followed	by	a	colon,	space
and	the	Encoding	name	or	alias:

#	encoding:	UTF-8

"some	string".encoding

#=>	#<Encoding:UTF-8>

The	__ENCODING__	keyword	returns	the	script
encoding	of	the	file	which	the	keyword	is	written:

#	encoding:	ISO-8859-1

__ENCODING__

#=>	#<Encoding:ISO-8859-1>

ruby	-K	will	change	the	default	locale	encoding,
but	this	is	not	recommended.	Ruby	source	files
should	declare	its	script	encoding	by	a	magic
comment	even	when	they	only	depend	on	US-
ASCII	strings	or	regular	expressions.

Locale	encoding

The	default	encoding	of	the	environment.
Usually	derived	from	locale.

see	Encoding.locale_charmap,	::find('locale')

Filesystem	encoding

The	default	encoding	of	strings	from	the
filesystem	of	the	environment.	This	is	used	for
strings	of	file	names	or	paths.

see	::find('filesystem')

External	encoding

Each	IO	object	has	an	external	encoding	which
indicates	the	encoding	that	Ruby	will	use	to	read
its	data.	By	default	Ruby	sets	the	external
encoding	of	an	IO	object	to	the	default	external
encoding.	The	default	external	encoding	is	set
by	locale	encoding	or	the	interpreter	-E	option.
::default_external	returns	the	current	value	of	the
external	encoding.

ENV["LANG"]

#=>	"UTF-8"

Encoding.default_external

#=>	#<Encoding:UTF-8>

$	ruby	-E	ISO-8859-1	-e	"p	Encoding.default_external"

#<Encoding:ISO-8859-1>

$	LANG=C	ruby	-e	'p	Encoding.default_external'

#<Encoding:US-ASCII>

The	default	external	encoding	may	also	be	set
through	::default_external=,	but	you	should	not
do	this	as	strings	created	before	and	after	the
change	will	have	inconsistent	encodings.	Instead
use	ruby	-E	to	invoke	ruby	with	the	correct
external	encoding.

When	you	know	that	the	actual	encoding	of	the
data	of	an	IO	object	is	not	the	default	external
encoding,	you	can	reset	its	external	encoding
with	IO#set_encoding	or	set	it	at	IO	object

creation	(see	IO.new	options).

Internal	encoding

To	process	the	data	of	an	IO	object	which	has	an
encoding	different	from	its	external	encoding,
you	can	set	its	internal	encoding.	Ruby	will	use
this	internal	encoding	to	transcode	the	data
when	it	is	read	from	the	IO	object.

Conversely,	when	data	is	written	to	the	IO	object
it	is	transcoded	from	the	internal	encoding	to	the
external	encoding	of	the	IO	object.

The	internal	encoding	of	an	IO	object	can	be	set
with	IO#set_encoding	or	at	IO	object	creation
(see	IO.new	options).

The	internal	encoding	is	optional	and	when	not
set,	the	Ruby	default	internal	encoding	is	used.	If
not	explicitly	set	this	default	internal	encoding	is
nil	meaning	that	by	default,	no	transcoding
occurs.

The	default	internal	encoding	can	be	set	with	the
interpreter	option	-E.	::default_internal	returns
the	current	internal	encoding.

$	ruby	-e	'p	Encoding.default_internal'

nil

$	ruby	-E	ISO-8859-1:UTF-8	-e	"p	[Encoding.default_external,	\

		Encoding.default_internal]"

[#<Encoding:ISO-8859-1>,	#<Encoding:UTF-8>]

The	default	internal	encoding	may	also	be	set
through	::default_internal=,	but	you	should	not
do	this	as	strings	created	before	and	after	the
change	will	have	inconsistent	encodings.	Instead
use	ruby	-E	to	invoke	ruby	with	the	correct
internal	encoding.

IO	encoding	example

In	the	following	example	a	UTF-8	encoded	string
“Ru00E9sumu00E9”	is	transcoded	for	output	to
ISO-8859-1	encoding,	then	read	back	in	and
transcoded	to	UTF-8:

string	=	"R\u00E9sum\u00E9"

open("transcoded.txt",	"w:ISO-8859-1")	do	|io|

		io.write(string)

end

puts	"raw	text:"

p	File.binread("transcoded.txt")

puts

open("transcoded.txt",	"r:ISO-8859-1:UTF-8")	do	|

		puts	"transcoded	text:"

		p	io.read

end

While	writing	the	file,	the	internal	encoding	is	not
specified	as	it	is	only	necessary	for	reading.
While	reading	the	file	both	the	internal	and
external	encoding	must	be	specified	to	obtain
the	correct	result.

$	ruby	t.rb

raw	text:

"R\xE9sum\xE9"

transcoded	text:

"R\u00E9sum\u00E9"

In	Files
encoding.c
transcode.c

Parent
Object

Public	Class	Methods

Returns	the	hash	of	available	encoding	alias	and
original	encoding	name.

Encoding.aliases

#=>	{"BINARY"=>"ASCII-8BIT",	"ASCII"=>"US-ASCII",	"ANSI_X3.4-1986"=>"US-ASCII",

						"SJIS"=>"Shift_JIS",	"eucJP"=>"EUC-JP",	"CP932"=

Checks	the	compatibility	of	two	objects.

If	the	objects	are	both	strings	they	are	compatible
when	they	are	concatenatable.	The	encoding	of	the
concatenated	string	will	be	returned	if	they	are
compatible,	nil	if	they	are	not.

Encoding.compatible?("\xa1".force_encoding("iso-8859-1"

#=>	#<Encoding:ISO-8859-1>

Encoding.compatible?(

		"\xa1".force_encoding("iso-8859-1"),

		"\xa1\xa1".force_encoding("euc-jp"))

#=>	nil

aliases	->	{"alias1"	=>	"orig1",	"alias2"	→
"orig2",	...}

compatible?(obj1,	obj2)	→	enc	or	nil

If	the	objects	are	non-strings	their	encodings	are
compatible	when	they	have	an	encoding	and:

Either	encoding	is	US-ASCII	compatible

One	of	the	encodings	is	a	7-bit	encoding

Returns	default	external	encoding.

The	default	external	encoding	is	used	by	default	for
strings	created	from	the	following	locations:

CSV

File	data	read	from	disk

SDBM

StringIO

Zlib::GzipReader

Zlib::GzipWriter

String#inspect

Regexp#inspect

While	strings	created	from	these	locations	will	have
this	encoding,	the	encoding	may	not	be	valid.	Be	sure
to	check	String#valid_encoding?.

File	data	written	to	disk	will	be	transcoded	to	the
default	external	encoding	when	written.

The	default	external	encoding	is	initialized	by	the
locale	or	-E	option.

Sets	default	external	encoding.	You	should	not	set
::default_external	in	ruby	code	as	strings	created
before	changing	the	value	may	have	a	different

default_external	→	enc

default_external	=	enc

encoding	from	strings	created	after	the	value	was
changed.,	instead	you	should	use	ruby	-E	to	invoke
ruby	with	the	correct	default_external.

See	::default_external	for	information	on	how	the
default	external	encoding	is	used.

Returns	default	internal	encoding.	Strings	will	be
transcoded	to	the	default	internal	encoding	in	the
following	places	if	the	default	internal	encoding	is	not
nil:

CSV

Etc.sysconfdir	and	Etc.systmpdir

File	data	read	from	disk

File	names	from	Dir

Integer#chr

String#inspect	and	Regexp#inspect

Strings	returned	from	Readline

Strings	returned	from	SDBM

Time#zone

Values	from	ENV

Values	in	ARGV	including	$PROGRAM_NAME

Additionally	String#encode	and	String#encode!	use
the	default	internal	encoding	if	no	encoding	is	given.

The	locale	encoding	(__ENCODING__),	not
::default_internal,	is	used	as	the	encoding	of	created
strings.

::default_internal	is	initialized	by	the	source	file's
internal_encoding	or	-E	option.

default_internal	→	enc

Sets	default	internal	encoding	or	removes	default
internal	encoding	when	passed	nil.	You	should	not
set	::default_internal	in	ruby	code	as	strings	created
before	changing	the	value	may	have	a	different
encoding	from	strings	created	after	the	change.
Instead	you	should	use	ruby	-E	to	invoke	ruby	with
the	correct	default_internal.

See	::default_internal	for	information	on	how	the
default	internal	encoding	is	used.

Search	the	encoding	with	specified	name.	name
should	be	a	string.

Encoding.find("US-ASCII")		#=>	#<Encoding:US-ASCII>

Names	which	this	method	accept	are	encoding
names	and	aliases	including	following	special	aliases

“external”
default	external	encoding

“internal”
default	internal	encoding

“locale”
locale	encoding

“filesystem”
filesystem	encoding

An	ArgumentError	is	raised	when	no	encoding	with
name.	Only	Encoding.find("internal")	however
returns	nil	when	no	encoding	named	“internal”,	in
other	words,	when	Ruby	has	no	default	internal
encoding.

default_internal	=	enc	or	nil

find(string)	→	enc

Returns	the	list	of	loaded	encodings.

Encoding.list

#=>	[#<Encoding:ASCII-8BIT>,	#<Encoding:UTF-8>,

						#<Encoding:ISO-2022-JP	(dummy)>]

Encoding.find("US-ASCII")

#=>	#<Encoding:US-ASCII>

Encoding.list

#=>	[#<Encoding:ASCII-8BIT>,	#<Encoding:UTF-8>,

						#<Encoding:US-ASCII>,	#<Encoding:ISO-2022-JP	(dummy)>]

Returns	the	list	of	available	encoding	names.

Encoding.name_list

#=>	["US-ASCII",	"ASCII-8BIT",	"UTF-8",

						"ISO-8859-1",	"Shift_JIS",	"EUC-JP",

						"Windows-31J",

						"BINARY",	"CP932",	"eucJP"]

Public	Instance	Methods

Returns	whether	ASCII-compatible	or	not.

Encoding::UTF_8.ascii_compatible?					#=>	true

Encoding::UTF_16BE.ascii_compatible?		#=>	false

Returns	true	for	dummy	encodings.	A	dummy
encoding	is	an	encoding	for	which	character	handling
is	not	properly	implemented.	It	is	used	for	stateful

list	→	[enc1,	enc2,	...]

name_list	→	["enc1",	"enc2",	...]

ascii_compatible?	→	true	or	false

dummy?	→	true	or	false

encodings.

Encoding::ISO_2022_JP.dummy?							#=>	true

Encoding::UTF_8.dummy?													#=>	false

Returns	a	string	which	represents	the	encoding	for
programmers.

Encoding::UTF_8.inspect							#=>	"#<Encoding:UTF-8>"

Encoding::ISO_2022_JP.inspect	#=>	"#<Encoding:ISO-2022-JP	(dummy)>"

Returns	the	name	of	the	encoding.

Encoding::UTF_8.name						#=>	"UTF-8"

Returns	the	list	of	name	and	aliases	of	the	encoding.

Encoding::WINDOWS_31J.names		#=>	["Windows-31J",	"CP932",	"csWindows31J"]

Returns	a	replicated	encoding	of	enc	whose	name	is
name.	The	new	encoding	should	have	the	same	byte
structure	of	enc.	If	name	is	used	by	another
encoding,	raise	ArgumentError.

Returns	the	name	of	the	encoding.

inspect	→	string

name	→	string
to_s	→	string

names	→	array

replicate(name)	→	encoding

name	→	string
to_s	→	string

Encoding::UTF_8.name						#=>	"UTF-8"

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class
Encoding::CompatibilityError
Raised	by	Encoding	and	String	methods	when
the	source	encoding	is	incompatible	with	the
target	encoding.

In	Files
encoding.c

Parent
EncodingError

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	Encoding::Converter

In	Files
encoding.c

Parent
Data

Constants

AFTER_OUTPUT

AFTER_OUTPUT

Stop	converting	after	some	output	is	complete	but
before	all	of	the	input	was	consumed.	See
#primitive_convert	for	an	example.

CRLF_NEWLINE_DECORATOR

CRLF_NEWLINE_DECORATOR

Decorator	for	converting	LF	to	CRLF

CR_NEWLINE_DECORATOR

CR_NEWLINE_DECORATOR

Decorator	for	converting	LF	to	CR

INVALID_MASK

INVALID_MASK

Mask	for	invalid	byte	sequences

INVALID_REPLACE

INVALID_REPLACE

Replace	invalid	byte	sequences

PARTIAL_INPUT

PARTIAL_INPUT

Indicates	the	source	may	be	part	of	a	larger	string.	See
#primitive_convert	for	an	example.

UNDEF_HEX_CHARREF

UNDEF_HEX_CHARREF

Replace	byte	sequences	that	are	undefined	in	the
destination	encoding	with	an	XML	hexadecimal
character	reference.	This	is	valid	for	XML	conversion.

UNDEF_MASK

UNDEF_MASK

Mask	for	a	valid	character	in	the	source	encoding	but	no
related	character(s)	in	destination	encoding.

UNDEF_REPLACE

UNDEF_REPLACE

Replace	byte	sequences	that	are	undefined	in	the
destination	encoding.

UNIVERSAL_NEWLINE_DECORATOR

UNIVERSAL_NEWLINE_DECORATOR

Decorator	for	converting	CRLF	and	CR	to	LF

XML_ATTR_CONTENT_DECORATOR

XML_ATTR_CONTENT_DECORATOR

Escape	as	XML	AttValue

XML_ATTR_QUOTE_DECORATOR

XML_ATTR_QUOTE_DECORATOR

Escape	as	XML	AttValue

XML_TEXT_DECORATOR

XML_TEXT_DECORATOR

Escape	as	XML	CharData

Public	Class	Methods

Returns	the	corresponding	ASCII	compatible
encoding.

Returns	nil	if	the	argument	is	an	ASCII	compatible
encoding.

“corresponding	ASCII	compatible	encoding”	is	an
ASCII	compatible	encoding	which	can	represents
exactly	the	same	characters	as	the	given	ASCII
incompatible	encoding.	So,	no	conversion	undefined

Encoding::Converter.asciicompat_encoding(string)
→	encoding	or	nil
Encoding::Converter.asciicompat_encoding(encoding)
→	encoding	or	nil

error	occurs	when	converting	between	the	two
encodings.

Encoding::Converter.asciicompat_encoding("ISO-2022-JP"

Encoding::Converter.asciicompat_encoding("UTF-16BE")	#=>	#<Encoding:UTF-8>

Encoding::Converter.asciicompat_encoding("UTF-8")	#=>	nil

possible	options	elements:

hash	form:

		:invalid	=>	nil												#	raise	error	on	invalid	byte	sequence	(default)

		:invalid	=>	:replace							#	replace	invalid	byte	sequence

		:undef	=>	nil														#	raise	error	on	undefined	conversion	(default)

		:undef	=>	:replace									#	replace	undefined	conversion

		:replace	=>	string									#	replacement	string	("?"	or	"\uFFFD"	if	not	specified)

		:newline	=>	:universal					#	decorator	for	converting	CRLF	and	CR	to	LF

		:newline	=>	:crlf										#	decorator	for	converting	LF	to	CRLF

		:newline	=>	:cr												#	decorator	for	converting	LF	to	CR

		:universal_newline	=>	true	#	decorator	for	converting	CRLF	and	CR	to	LF

		:crlf_newline	=>	true						#	decorator	for	converting	LF	to	CRLF

		:cr_newline	=>	true								#	decorator	for	converting	LF	to	CR

		:xml	=>	:text														#	escape	as	XML	CharData.

		:xml	=>	:attr														#	escape	as	XML	AttValue

integer	form:

		Encoding::Converter::INVALID_REPLACE

		Encoding::Converter::UNDEF_REPLACE

		Encoding::Converter::UNDEF_HEX_CHARREF

		Encoding::Converter::UNIVERSAL_NEWLINE_DECORATOR

		Encoding::Converter::CRLF_NEWLINE_DECORATOR

		Encoding::Converter::CR_NEWLINE_DECORATOR

		Encoding::Converter::XML_TEXT_DECORATOR

		Encoding::Converter::XML_ATTR_CONTENT_DECORATOR

		Encoding::Converter::XML_ATTR_QUOTE_DECORATOR

::new	creates	an	instance	of	Encoding::Converter.

Encoding::Converter.new(source_encoding,
destination_encoding)
Encoding::Converter.new(source_encoding,
destination_encoding,	opt)
Encoding::Converter.new(convpath)

Source_encoding	and	#destination_encoding	should
be	a	string	or	Encoding	object.

opt	should	be	nil,	a	hash	or	an	integer.

convpath	should	be	an	array.	convpath	may	contain

two-element	arrays	which	contain	encodings	or
encoding	names,	or

strings	representing	decorator	names.

::new	optionally	takes	an	option.	The	option	should
be	a	hash	or	an	integer.	The	option	hash	can	contain
:invalid	=>	nil,	etc.	The	option	integer	should	be
logical-or	of	constants	such	as
Encoding::Converter::INVALID_REPLACE,	etc.

:invalid	=>	nil
Raise	error	on	invalid	byte	sequence.	This
is	a	default	behavior.

:invalid	=>	:replace
Replace	invalid	byte	sequence	by
replacement	string.

:undef	=>	nil
Raise	an	error	if	a	character	in
#source_encoding	is	not	defined	in
destination_encoding.	This	is	a	default
behavior.

:undef	=>	:replace
Replace	undefined	character	in
#destination_encoding	with	replacement
string.

:replace	=>	string
Specify	the	replacement	string.	If	not

specified,	“uFFFD”	is	used	for	Unicode
encodings	and	“?”	for	others.

:universal_newline	=>	true
Convert	CRLF	and	CR	to	LF.

:crlf_newline	=>	true
Convert	LF	to	CRLF.

:cr_newline	=>	true
Convert	LF	to	CR.

:xml	=>	:text
Escape	as	XML	CharData.	This	form	can
be	used	as	a	HTML	4.0	#PCDATA.

'&'	->	'&'

'<'	->	'<'

'>'	->	'>'

undefined	characters	in
#destination_encoding	->
hexadecimal	CharRef	such	as	&xHH;

:xml	=>	:attr
Escape	as	XML	AttValue.	The	converted
result	is	quoted	as	“…”.	This	form	can	be
used	as	a	HTML	4.0	attribute	value.

'&'	->	'&'

'<'	->	'<'

'>'	->	'>'

'“'	->	'"'

undefined	characters	in
#destination_encoding	->

hexadecimal	CharRef	such	as	&xHH;

Examples:

#	UTF-16BE	to	UTF-8

ec	=	Encoding::Converter.new("UTF-16BE",	"UTF-8")

#	Usually,	decorators	such	as	newline	conversion	are	inserted	last.

ec	=	Encoding::Converter.new("UTF-16BE",	"UTF-8",	:universal_newline

p	ec.convpath	#=>	[[#<Encoding:UTF-16BE>,	#<Encoding:UTF-8>],

														#				"universal_newline"]

#	But,	if	the	last	encoding	is	ASCII	incompatible,

#	decorators	are	inserted	before	the	last	conversion.

ec	=	Encoding::Converter.new("UTF-8",	"UTF-16BE",	:crlf_newline

p	ec.convpath	#=>	["crlf_newline",

														#				[#<Encoding:UTF-8>,	#<Encoding:UTF-16BE>]]

#	Conversion	path	can	be	specified	directly.

ec	=	Encoding::Converter.new(["universal_newline",	["EUC-JP"

p	ec.convpath	#=>	["universal_newline",

														#				[#<Encoding:EUC-JP>,	#<Encoding:UTF-8>],

														#				[#<Encoding:UTF-8>,	#<Encoding:UTF-16BE>]]

Returns	a	conversion	path.

p	Encoding::Converter.search_convpath("ISO-8859-1",	"EUC-JP"

#=>	[[#<Encoding:ISO-8859-1>,	#<Encoding:UTF-8>],

#				[#<Encoding:UTF-8>,	#<Encoding:EUC-JP>]]

p	Encoding::Converter.search_convpath("ISO-8859-1",	"EUC-JP"

or

p	Encoding::Converter.search_convpath("ISO-8859-1",	"EUC-JP"

#=>	[[#<Encoding:ISO-8859-1>,	#<Encoding:UTF-8>],

#				[#<Encoding:UTF-8>,	#<Encoding:EUC-JP>],

#				"universal_newline"]

p	Encoding::Converter.search_convpath("ISO-8859-1",	"UTF-32BE"

Encoding::Converter.search_convpath(source_encoding,
destination_encoding)	→	ary
Encoding::Converter.search_convpath(source_encoding,
destination_encoding,	opt)	→	ary

or

p	Encoding::Converter.search_convpath("ISO-8859-1",	"UTF-32BE"

#=>	[[#<Encoding:ISO-8859-1>,	#<Encoding:UTF-8>],

#				"universal_newline",

#				[#<Encoding:UTF-8>,	#<Encoding:UTF-32BE>]]

Public	Instance	Methods

Convert	source_string	and	return	destination_string.

source_string	is	assumed	as	a	part	of	source.	i.e.
:partial_input=>true	is	specified	internally.	finish
method	should	be	used	last.

ec	=	Encoding::Converter.new("utf-8",	"euc-jp")

puts	ec.convert("\u3042").dump					#=>	"\xA4\xA2"

puts	ec.finish.dump																#=>	""

ec	=	Encoding::Converter.new("euc-jp",	"utf-8")

puts	ec.convert("\xA4").dump							#=>	""

puts	ec.convert("\xA2").dump							#=>	"\xE3\x81\x82"

puts	ec.finish.dump																#=>	""

ec	=	Encoding::Converter.new("utf-8",	"iso-2022-jp")

puts	ec.convert("\xE3").dump							#=>	"".force_encoding("ISO-2022-JP")

puts	ec.convert("\x81").dump							#=>	"".force_encoding("ISO-2022-JP")

puts	ec.convert("\x82").dump							#=>	"\eB\"".force_encoding("ISO-2022-JP")

puts	ec.finish.dump																#=>	"\e(B".force_encoding("ISO-2022-JP")

If	a	conversion	error	occur,
Encoding::UndefinedConversionError	or
Encoding::InvalidByteSequenceError	is	raised.
#convert	doesn't	supply	methods	to	recover	or	restart
from	these	exceptions.	When	you	want	to	handle
these	conversion	errors,	use	#primitive_convert.

ec	==	other	→	true	or	false

convert(source_string)	→	destination_string

Returns	the	conversion	path	of	ec.

The	result	is	an	array	of	conversions.

ec	=	Encoding::Converter.new("ISO-8859-1",	"EUC-JP",	crlf_newline

p	ec.convpath

#=>	[[#<Encoding:ISO-8859-1>,	#<Encoding:UTF-8>],

#				[#<Encoding:UTF-8>,	#<Encoding:EUC-JP>],

#				"crlf_newline"]

Each	element	of	the	array	is	a	pair	of	encodings	or	a
string.	A	pair	means	an	encoding	conversion.	A	string
means	a	decorator.

In	the	above	example,	[#<Encoding:ISO-8859-1>,	#
<Encoding:UTF-8>]	means	a	converter	from	ISO-
8859-1	to	UTF-8.	“crlf_newline”	means	newline
converter	from	LF	to	CRLF.

Returns	the	destination	encoding	as	an	Encoding
object.

Finishes	the	converter.	It	returns	the	last	part	of	the
converted	string.

ec	=	Encoding::Converter.new("utf-8",	"iso-2022-jp")

p	ec.convert("\u3042")					#=>	"\eB\""

p	ec.finish																#=>	"\e(B"

Inserts	string	into	the	encoding	converter.	The	string
will	be	converted	to	the	destination	encoding	and

convpath	→	ary

destination_encoding	→	encoding

finish	→	string

insert_output(string)	→	nil

output	on	later	conversions.

If	the	destination	encoding	is	stateful,	string	is
converted	according	to	the	state	and	the	state	is
updated.

This	method	should	be	used	only	when	a	conversion
error	occurs.

ec	=	Encoding::Converter.new("utf-8",	"iso-8859-1")

src	=	"HIRAGANA	LETTER	A	is	\u{3042}."

dst	=	""

p	ec.primitive_convert(src,	dst)				#=>	:undefined_conversion

puts	"[#{dst.dump},	#{src.dump}]"			#=>	["HIRAGANA	LETTER	A	is	",	"."]

ec.insert_output("<err>")

p	ec.primitive_convert(src,	dst)				#=>	:finished

puts	"[#{dst.dump},	#{src.dump}]"			#=>	["HIRAGANA	LETTER	A	is	<err>.",	""]

ec	=	Encoding::Converter.new("utf-8",	"iso-2022-jp")

src	=	"\u{306F	3041	3068	2661	3002}"	#	U+2661	is	not	representable	in	iso-2022-jp

dst	=	""

p	ec.primitive_convert(src,	dst)				#=>	:undefined_conversion

puts	"[#{dst.dump},	#{src.dump}]"			#=>	["\eBO$!$H".force_encoding("ISO-2022-JP"),	"\xE3\x80\x82"]

ec.insert_output	"?"																#	state	change	required	to	output	"?".

p	ec.primitive_convert(src,	dst)				#=>	:finished

puts	"[#{dst.dump},	#{src.dump}]"			#=>	["\eBO$!$H\e(B?\e$B!#\e(B".force_encoding("ISO-2022-JP"),	""]

Returns	a	printable	version	of	ec

ec	=	Encoding::Converter.new("iso-8859-1",	"utf-8")

puts	ec.inspect				#=>	#<Encoding::Converter:	ISO-8859-1	to	UTF-8>

Returns	an	exception	object	for	the	last	conversion.
Returns	nil	if	the	last	conversion	did	not	produce	an
error.

“error”	means	that

inspect	→	string

last_error	→	exception	or	nil

Encoding::InvalidByteSequenceError	and
Encoding::UndefinedConversionError	for	#convert
and	:invalid_byte_sequence,	:incomplete_input	and
:undefined_conversion	for	#primitive_convert.

ec	=	Encoding::Converter.new("utf-8",	"iso-8859-1")

p	ec.primitive_convert(src="\xf1abcd",	dst="")							#=>	:invalid_byte_sequence

p	ec.last_error						#=>	#<Encoding::InvalidByteSequenceError:	"\xF1"	followed	by	"a"	on	UTF-8>

p	ec.primitive_convert(src,	dst,	nil,	1)													#=>	:destination_buffer_full

p	ec.last_error						#=>	nil

possible	opt	elements:

hash	form:

		:partial_input	=>	true											#	source	buffer	may	be	part	of	larger	source

		:after_output	=>	true												#	stop	conversion	after	output	before	input

integer	form:

		Encoding::Converter::PARTIAL_INPUT

		Encoding::Converter::AFTER_OUTPUT

possible	results:

:invalid_byte_sequence

:incomplete_input

:undefined_conversion

:after_output

primitive_convert(source_buffer,
destination_buffer)	→	symbol
primitive_convert(source_buffer,
destination_buffer,	destination_byteoffset)
→	symbol
primitive_convert(source_buffer,
destination_buffer,	destination_byteoffset,
destination_bytesize)	→	symbol
primitive_convert(source_buffer,
destination_buffer,	destination_byteoffset,
destination_bytesize,	opt)	→	symbol

:destination_buffer_full

:source_buffer_empty

:finished

#primitive_convert	converts	source_buffer	into
destination_buffer.

source_buffer	should	be	a	string	or	nil.	nil	means	an
empty	string.

destination_buffer	should	be	a	string.

destination_byteoffset	should	be	an	integer	or	nil.	nil
means	the	end	of	destination_buffer.	If	it	is	omitted,
nil	is	assumed.

destination_bytesize	should	be	an	integer	or	nil.	nil
means	unlimited.	If	it	is	omitted,	nil	is	assumed.

opt	should	be	nil,	a	hash	or	an	integer.	nil	means	no
flags.	If	it	is	omitted,	nil	is	assumed.

#primitive_convert	converts	the	content	of
source_buffer	from	beginning	and	store	the	result	into
destination_buffer.

destination_byteoffset	and	destination_bytesize
specify	the	region	which	the	converted	result	is
stored.	destination_byteoffset	specifies	the	start
position	in	destination_buffer	in	bytes.	If
destination_byteoffset	is	nil,
destination_buffer.bytesize	is	used	for	appending	the
result.	destination_bytesize	specifies	maximum
number	of	bytes.	If	destination_bytesize	is	nil,
destination	size	is	unlimited.	After	conversion,
destination_buffer	is	resized	to	destination_byteoffset
+	actually	produced	number	of	bytes.	Also
destination_buffer's	encoding	is	set	to
destination_encoding.

#primitive_convert	drops	the	converted	part	of
source_buffer.	the	dropped	part	is	converted	in
destination_buffer	or	buffered	in	Encoding::Converter

object.

#primitive_convert	stops	conversion	when	one	of
following	condition	met.

invalid	byte	sequence	found	in	source	buffer
(:invalid_byte_sequence)	primitive_errinfo
and	last_error	methods	returns	the	detail	of
the	error.

unexpected	end	of	source	buffer
(:incomplete_input)	this	occur	only	when
:partial_input	is	not	specified.
primitive_errinfo	and	last_error	methods
returns	the	detail	of	the	error.

character	not	representable	in	output	encoding
(:undefined_conversion)	primitive_errinfo
and	last_error	methods	returns	the	detail	of
the	error.

after	some	output	is	generated,	before	input	is
done	(:after_output)	this	occur	only	when
:after_output	is	specified.

destination	buffer	is	full
(:destination_buffer_full)	this	occur	only	when
destination_bytesize	is	non-nil.

source	buffer	is	empty	(:source_buffer_empty)
this	occur	only	when	:partial_input	is	specified.

conversion	is	finished	(:finished)

example:

ec	=	Encoding::Converter.new("UTF-8",	"UTF-16BE")

ret	=	ec.primitive_convert(src="pi",	dst="",	nil,	100)

p	[ret,	src,	dst]	#=>	[:finished,	"",	"\x00p\x00i"]

ec	=	Encoding::Converter.new("UTF-8",	"UTF-16BE")

ret	=	ec.primitive_convert(src="pi",	dst="",	nil,	1)

p	[ret,	src,	dst]	#=>	[:destination_buffer_full,	"i",	"\x00"]

ret	=	ec.primitive_convert(src,	dst="",	nil,	1)

p	[ret,	src,	dst]	#=>	[:destination_buffer_full,	"",	"p"]

ret	=	ec.primitive_convert(src,	dst="",	nil,	1)

p	[ret,	src,	dst]	#=>	[:destination_buffer_full,	"",	"\x00"]

ret	=	ec.primitive_convert(src,	dst="",	nil,	1)

p	[ret,	src,	dst]	#=>	[:finished,	"",	"i"]

#primitive_errinfo	returns	important	information
regarding	the	last	error	as	a	5-element	array:

[result,	enc1,	enc2,	error_bytes,	readagain_bytes]

result	is	the	last	result	of	primitive_convert.

Other	elements	are	only	meaningful	when	result	is
:invalid_byte_sequence,	:incomplete_input	or
:undefined_conversion.

enc1	and	enc2	indicate	a	conversion	step	as	a	pair	of
strings.	For	example,	a	converter	from	EUC-JP	to
ISO-8859-1	converts	a	string	as	follows:	EUC-JP	->
UTF-8	->	ISO-8859-1.	So	[enc1,	enc2]	is	either
[“EUC-JP”,	“UTF-8”]	or	[“UTF-8”,	“ISO-8859-1”].

error_bytes	and	readagain_bytes	indicate	the	byte
sequences	which	caused	the	error.	error_bytes	is
discarded	portion.	readagain_bytes	is	buffered
portion	which	is	read	again	on	next	conversion.

Example:

#	\xff	is	invalid	as	EUC-JP.

ec	=	Encoding::Converter.new("EUC-JP",	"Shift_JIS")

ec.primitive_convert(src="\xff",	dst="",	nil,	10)

p	ec.primitive_errinfo

#=>	[:invalid_byte_sequence,	"EUC-JP",	"UTF-8",	"\xFF",	""]

#	HIRAGANA	LETTER	A	(\xa4\xa2	in	EUC-JP)	is	not	representable	in	ISO-8859-1.

#	Since	this	error	is	occur	in	UTF-8	to	ISO-8859-1	conversion,

#	error_bytes	is	HIRAGANA	LETTER	A	in	UTF-8	(\xE3\x81\x82).

ec	=	Encoding::Converter.new("EUC-JP",	"ISO-8859-1")

primitive_errinfo	→	array

ec.primitive_convert(src="\xa4\xa2",	dst="",	nil,	10)

p	ec.primitive_errinfo

#=>	[:undefined_conversion,	"UTF-8",	"ISO-8859-1",	"\xE3\x81\x82",	""]

#	partial	character	is	invalid

ec	=	Encoding::Converter.new("EUC-JP",	"ISO-8859-1")

ec.primitive_convert(src="\xa4",	dst="",	nil,	10)

p	ec.primitive_errinfo

#=>	[:incomplete_input,	"EUC-JP",	"UTF-8",	"\xA4",	""]

#	Encoding::Converter::PARTIAL_INPUT	prevents	invalid	errors	by

#	partial	characters.

ec	=	Encoding::Converter.new("EUC-JP",	"ISO-8859-1")

ec.primitive_convert(src="\xa4",	dst="",	nil,	10,	Encoding

p	ec.primitive_errinfo

#=>	[:source_buffer_empty,	nil,	nil,	nil,	nil]

#	\xd8\x00\x00@	is	invalid	as	UTF-16BE	because

#	no	low	surrogate	after	high	surrogate	(\xd8\x00).

#	It	is	detected	by	3rd	byte	(\00)	which	is	part	of	next	character.

#	So	the	high	surrogate	(\xd8\x00)	is	discarded	and

#	the	3rd	byte	is	read	again	later.

#	Since	the	byte	is	buffered	in	ec,	it	is	dropped	from	src.

ec	=	Encoding::Converter.new("UTF-16BE",	"UTF-8")

ec.primitive_convert(src="\xd8\x00\x00@",	dst="",	nil,	

p	ec.primitive_errinfo

#=>	[:invalid_byte_sequence,	"UTF-16BE",	"UTF-8",	"\xD8\x00",	"\x00"]

p	src

#=>	"@"

#	Similar	to	UTF-16BE,	\x00\xd8@\x00	is	invalid	as	UTF-16LE.

#	The	problem	is	detected	by	4th	byte.

ec	=	Encoding::Converter.new("UTF-16LE",	"UTF-8")

ec.primitive_convert(src="\x00\xd8@\x00",	dst="",	nil,	

p	ec.primitive_errinfo

#=>	[:invalid_byte_sequence,	"UTF-16LE",	"UTF-8",	"\x00\xD8",	"@\x00"]

p	src

#=>	""

call-seq

ec.putback																				->	string

ec.putback(max_numbytes)						->	string

putback(p1	=	v1)

Put	back	the	bytes	which	will	be	converted.

The	bytes	are	caused	by	invalid_byte_sequence
error.	When	invalid_byte_sequence	error,	some	bytes
are	discarded	and	some	bytes	are	buffered	to	be
converted	later.	The	latter	bytes	can	be	put	back.	It
can	be	observed	by
Encoding::InvalidByteSequenceError#readagain_bytes
and	#primitive_errinfo.

ec	=	Encoding::Converter.new("utf-16le",	"iso-8859-1")

src	=	"\x00\xd8\x61\x00"

dst	=	""

p	ec.primitive_convert(src,	dst)			#=>	:invalid_byte_sequence

p	ec.primitive_errinfo					#=>	[:invalid_byte_sequence,	"UTF-16LE",	"UTF-8",	"\x00\xD8",	"a\x00"]

p	ec.putback															#=>	"a\x00"

p	ec.putback															#=>	""										#	no	more	bytes	to	put	back

Returns	the	replacement	string.

ec	=	Encoding::Converter.new("euc-jp",	"us-ascii")

p	ec.replacement				#=>	"?"

ec	=	Encoding::Converter.new("euc-jp",	"utf-8")

p	ec.replacement				#=>	"\uFFFD"

Sets	the	replacement	string.

ec	=	Encoding::Converter.new("utf-8",	"us-ascii",	:undef

ec.replacement	=	"<undef>"

p	ec.convert("a	\u3042	b")						#=>	"a	<undef>	b"

replacement	→	string

replacement	=	string

source_encoding	→	encoding

Returns	the	source	encoding	as	an	Encoding	object.

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class
Encoding::ConverterNotFoundError
Raised	by	transcoding	methods	when	a	named
encoding	does	not	correspond	with	a	known
converter.

In	Files
encoding.c

Parent
rb_eEncodingError

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class
Encoding::InvalidByteSequenceError
Raised	by	Encoding	and	String	methods	when
the	string	being	transcoded	contains	a	byte
invalid	for	the	either	the	source	or	target
encoding.

In	Files
encoding.c

Parent
rb_eEncodingError

Public	Instance	Methods

Returns	the	destination	encoding	as	an	encoding
object.

Returns	the	destination	encoding	name	as	a	string.

Returns	the	discarded	bytes	when
Encoding::InvalidByteSequenceError	occurs.

destination_encoding	→	string

destination_encoding_name	→	string

error_bytes	→	string

ec	=	Encoding::Converter.new("EUC-JP",	"ISO-8859-1")

begin

		ec.convert("abc\xA1\xFFdef")

rescue	Encoding::InvalidByteSequenceError

		p	$!						#=>	#<Encoding::InvalidByteSequenceError:	"\xA1"	followed	by	"\xFF"	on	EUC-JP>

		puts	$!.error_bytes.dump										#=>	"\xA1"

		puts	$!.readagain_bytes.dump						#=>	"\xFF"

end

Returns	true	if	the	invalid	byte	sequence	error	is
caused	by	premature	end	of	string.

ec	=	Encoding::Converter.new("EUC-JP",	"ISO-8859-1")

begin

		ec.convert("abc\xA1z")

rescue	Encoding::InvalidByteSequenceError

		p	$!						#=>	#<Encoding::InvalidByteSequenceError:	"\xA1"	followed	by	"z"	on	EUC-JP>

		p	$!.incomplete_input?				#=>	false

end

begin

		ec.convert("abc\xA1")

		ec.finish

rescue	Encoding::InvalidByteSequenceError

		p	$!						#=>	#<Encoding::InvalidByteSequenceError:	incomplete	"\xA1"	on	EUC-JP>

		p	$!.incomplete_input?				#=>	true

end

Returns	the	bytes	to	be	read	again	when
Encoding::InvalidByteSequenceError	occurs.

Returns	the	source	encoding	as	an	encoding	object.

Note	that	the	result	may	not	be	equal	to	the	source

incomplete_input?	→	true	or	false

readagain_bytes	→	string

source_encoding	→	encoding

encoding	of	the	encoding	converter	if	the	conversion
has	multiple	steps.

ec	=	Encoding::Converter.new("ISO-8859-1",	"EUC-JP")	#	ISO-8859-1	->	UTF-8	->	EUC-JP

begin

		ec.convert("\xa0")	#	NO-BREAK	SPACE,	which	is	available	in	UTF-8	but	not	in	EUC-JP.

rescue	Encoding::UndefinedConversionError

		p	$!.source_encoding														#=>	#<Encoding:UTF-8>

		p	$!.destination_encoding									#=>	#<Encoding:EUC-JP>

		p	$!.source_encoding_name									#=>	"UTF-8"

		p	$!.destination_encoding_name				#=>	"EUC-JP"

end

Returns	the	source	encoding	name	as	a	string.

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

source_encoding_name	→	string

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class
Encoding::UndefinedConversionError
Raised	by	Encoding	and	String	methods	when	a
transcoding	operation	fails.

In	Files
encoding.c

Parent
rb_eEncodingError

Public	Instance	Methods

Returns	the	destination	encoding	as	an	encoding
object.

Returns	the	destination	encoding	name	as	a	string.

Returns	the	one-character	string	which	cause
Encoding::UndefinedConversionError.

ec	=	Encoding::Converter.new("ISO-8859-1",	"EUC-JP")

begin

destination_encoding	→	string

destination_encoding_name	→	string

error_char	→	string

		ec.convert("\xa0")

rescue	Encoding::UndefinedConversionError

		puts	$!.error_char.dump			#=>	"\xC2\xA0"

		p	$!.error_char.encoding		#=>	#<Encoding:UTF-8>

end

Returns	the	source	encoding	as	an	encoding	object.

Note	that	the	result	may	not	be	equal	to	the	source
encoding	of	the	encoding	converter	if	the	conversion
has	multiple	steps.

ec	=	Encoding::Converter.new("ISO-8859-1",	"EUC-JP")	#	ISO-8859-1	->	UTF-8	->	EUC-JP

begin

		ec.convert("\xa0")	#	NO-BREAK	SPACE,	which	is	available	in	UTF-8	but	not	in	EUC-JP.

rescue	Encoding::UndefinedConversionError

		p	$!.source_encoding														#=>	#<Encoding:UTF-8>

		p	$!.destination_encoding									#=>	#<Encoding:EUC-JP>

		p	$!.source_encoding_name									#=>	"UTF-8"

		p	$!.destination_encoding_name				#=>	"EUC-JP"

end

Returns	the	source	encoding	name	as	a	string.

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

source_encoding	→	encoding

source_encoding_name	→	string

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	EncodingError
EncodingError	is	the	base	class	for	encoding
errors.

In	Files
error.c

Parent
StandardError

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

module	Enumerable
The	Enumerable	mixin	provides	collection	classes
with	several	traversal	and	searching	methods,
and	with	the	ability	to	sort.	The	class	must
provide	a	method	each,	which	yields	successive
members	of	the	collection.	If	Enumerable#max,
#min,	or	#sort	is	used,	the	objects	in	the
collection	must	also	implement	a	meaningful	<=>
operator,	as	these	methods	rely	on	an	ordering
between	members	of	the	collection.

In	Files
enum.c
enumerator.c

Public	Instance	Methods

Passes	each	element	of	the	collection	to	the	given
block.	The	method	returns	true	if	the	block	never
returns	false	or	nil.	If	the	block	is	not	given,	Ruby
adds	an	implicit	block	of	{	|obj|	obj	}	which	will
cause	all?	to	return	true	when	none	of	the	collection
members	are	false	or	nil.

%w[ant	bear	cat].all?	{	|word|	word.length	>=	3	}	#=>	true

%w[ant	bear	cat].all?	{	|word|	word.length	>=	4	}	#=>	false

[nil,	true,	99].all?																														#=>	false

all?	[{	|obj|	block	}]	→	true	or	false

Passes	each	element	of	the	collection	to	the	given
block.	The	method	returns	true	if	the	block	ever
returns	a	value	other	than	false	or	nil.	If	the	block	is
not	given,	Ruby	adds	an	implicit	block	of	{	|obj|	obj
}	that	will	cause	any?	to	return	true	if	at	least	one	of
the	collection	members	is	not	false	or	nil.

%w[ant	bear	cat].any?	{	|word|	word.length	>=	3	}	#=>	true

%w[ant	bear	cat].any?	{	|word|	word.length	>=	4	}	#=>	true

[nil,	true,	99].any?																														#=>	true

Enumerates	over	the	items,	chunking	them	together
based	on	the	return	value	of	the	block.

Consecutive	elements	which	return	the	same	block
value	are	chunked	together.

For	example,	consecutive	even	numbers	and	odd
numbers	can	be	chunked	as	follows.

[3,	1,	4,	1,	5,	9,	2,	6,	5,	3,	5].chunk	{	|n|

		n.even?

}.each	{	|even,	ary|

		p	[even,	ary]

}

#=>	[false,	[3,	1]]

#			[true,	[4]]

#			[false,	[1,	5,	9]]

#			[true,	[2,	6]]

#			[false,	[5,	3,	5]]

This	method	is	especially	useful	for	sorted	series	of
elements.	The	following	example	counts	words	for

any?	[{	|obj|	block	}]	→	true	or	false

chunk	{	|elt|	...	}	→	an_enumerator
chunk(initial_state)	{	|elt,	state|	...	}	→
an_enumerator	(deprecated)

each	initial	letter.

open("/usr/share/dict/words",	"r:iso-8859-1")	{	|f|

		f.chunk	{	|line|	line.ord	}.each	{	|ch,	lines|	p	[ch

}

#=>	["\n",	1]

#			["A",	1327]

#			["B",	1372]

#			["C",	1507]

#			["D",	791]

#			...

The	following	key	values	have	special	meaning:

nil	and	:_separator	specifies	that	the
elements	should	be	dropped.

:_alone	specifies	that	the	element	should	be
chunked	by	itself.

Any	other	symbols	that	begin	with	an	underscore	will
raise	an	error:

items.chunk	{	|item|	:_underscore	}

#=>	RuntimeError:	symbols	beginning	with	an	underscore	are	reserved

nil	and	:_separator	can	be	used	to	ignore	some
elements.

For	example,	the	sequence	of	hyphens	in	svn	log	can
be	eliminated	as	follows:

sep	=	"-"*72	+	"\n"

IO.popen("svn	log	README")	{	|f|

		f.chunk	{	|line|

				line	!=	sep	||	nil

		}.each	{	|_,	lines|

				pp	lines

		}

}

#=>	["r20018	|	knu	|	2008-10-29	13:20:42	+0900	(Wed,	29	Oct	2008)	|	2	lines\n",

#				"\n",

#				"*	README,	README.ja:	Update	the	portability	section.\n",

#				"\n"]

#			["r16725	|	knu	|	2008-05-31	23:34:23	+0900	(Sat,	31	May	2008)	|	2	lines\n",

#				"\n",

#				"*	README,	README.ja:	Add	a	note	about	default	C	flags.\n",

#				"\n"]

#			...

Paragraphs	separated	by	empty	lines	can	be	parsed
as	follows:

File.foreach("README").chunk	{	|line|

		/\A\s*\z/	!~	line	||	nil

}.each	{	|_,	lines|

		pp	lines

}

:_alone	can	be	used	to	force	items	into	their	own
chunk.	For	example,	you	can	put	lines	that	contain	a
URL	by	themselves,	and	chunk	the	rest	of	the	lines
together,	like	this:

pattern	=	/http/

open(filename)	{	|f|

		f.chunk	{	|line|	line	=~	pattern	?	:_alone	:	true	}.

				pp	lines

		}

}

Returns	a	new	array	with	the	results	of	running	block
once	for	every	element	in	enum.

If	no	block	is	given,	an	enumerator	is	returned
instead.

(1..4).map	{	|i|	i*i	}						#=>	[1,	4,	9,	16]

(1..4).collect	{	"cat"		}			#=>	["cat",	"cat",	"cat",	"cat"]

collect	{	|obj|	block	}	→	array
map	{	|obj|	block	}	→	array
collect	→	an_enumerator
map	→	an_enumerator

Returns	a	new	array	with	the	concatenated	results	of
running	block	once	for	every	element	in	enum.

If	no	block	is	given,	an	enumerator	is	returned
instead.

[1,	2,	3,	4].flat_map	{	|e|	[e,	-e]	}	#=>	[1,	-1,	2,	-2,	3,	-3,	4,	-4]

[[1,	2],	[3,	4]].flat_map	{	|e|	e	+	[100]	}	#=>	[1,	2,	100,	3,	4,	100]

Returns	the	number	of	items	in	enum	through
enumeration.	If	an	argument	is	given,	the	number	of
items	in	enum	that	are	equal	to	item	are	counted.	If	a
block	is	given,	it	counts	the	number	of	elements
yielding	a	true	value.

ary	=	[1,	2,	4,	2]

ary.count															#=>	4

ary.count(2)												#=>	2

ary.count{	|x|	x%2==0	}	#=>	3

Calls	block	for	each	element	of	enum	repeatedly	n
times	or	forever	if	none	or	nil	is	given.	If	a	non-
positive	number	is	given	or	the	collection	is	empty,

flat_map	{	|obj|	block	}	→	array
collect_concat	{	|obj|	block	}	→	array
flat_map	→	an_enumerator
collect_concat	→	an_enumerator

count	→	int
count(item)	→	int
count	{	|obj|	block	}	→	int

cycle(n=nil)	{	|obj|	block	}	→	nil
cycle(n=nil)	→	an_enumerator

does	nothing.	Returns	nil	if	the	loop	has	finished
without	getting	interrupted.

#cycle	saves	elements	in	an	internal	array	so
changes	to	enum	after	the	first	pass	have	no	effect.

If	no	block	is	given,	an	enumerator	is	returned
instead.

a	=	["a",	"b",	"c"]

a.cycle	{	|x|	puts	x	}		#	print,	a,	b,	c,	a,	b,	c,..	forever.

a.cycle(2)	{	|x|	puts	x	}		#	print,	a,	b,	c,	a,	b,	c.

Passes	each	entry	in	enum	to	block.	Returns	the	first
for	which	block	is	not	false.	If	no	object	matches,	calls
ifnone	and	returns	its	result	when	it	is	specified,	or
returns	nil	otherwise.

If	no	block	is	given,	an	enumerator	is	returned
instead.

(1..10).detect			{	|i|	i	%	5	==	0	and	i	%	7	==	0	}			#=>	nil

(1..100).find				{	|i|	i	%	5	==	0	and	i	%	7	==	0	}			#=>	35

Drops	first	n	elements	from	enum,	and	returns	rest
elements	in	an	array.

a	=	[1,	2,	3,	4,	5,	0]

a.drop(3)													#=>	[4,	5,	0]

detect(ifnone	=	nil)	{	|obj|	block	}	→	obj	or	nil
find(ifnone	=	nil)	{	|obj|	block	}	→	obj	or	nil
detect(ifnone	=	nil)	→	an_enumerator
find(ifnone	=	nil)	→	an_enumerator

drop(n)	→	array

Drops	elements	up	to,	but	not	including,	the	first
element	for	which	the	block	returns	nil	or	false	and
returns	an	array	containing	the	remaining	elements.

If	no	block	is	given,	an	enumerator	is	returned
instead.

a	=	[1,	2,	3,	4,	5,	0]

a.drop_while	{	|i|	i	<	3	}			#=>	[3,	4,	5,	0]

Iterates	the	given	block	for	each	array	of	consecutive
<n>	elements.	If	no	block	is	given,	returns	an
enumerator.

e.g.:

(1..10).each_cons(3)	{	|a|	p	a	}

#	outputs	below

[1,	2,	3]

[2,	3,	4]

[3,	4,	5]

[4,	5,	6]

[5,	6,	7]

[6,	7,	8]

[7,	8,	9]

[8,	9,	10]

Calls	block	once	for	each	element	in	self,	passing
that	element	as	a	parameter,	converting	multiple
values	from	yield	to	an	array.

If	no	block	is	given,	an	enumerator	is	returned

drop_while	{	|arr|	block	}	→	array
drop_while	→	an_enumerator

each_cons(n)	{	...	}	→	nil
each_cons(n)	→	an_enumerator

each_entry	{	|obj|	block	}	→	enum
each_entry	→	an_enumerator

instead.

class	Foo

		include	Enumerable

		def	each

				yield	1

				yield	1,	2

				yield

		end

end

Foo.new.each_entry{	|o|	p	o	}

produces:

1

[1,	2]

nil

Iterates	the	given	block	for	each	slice	of	<n>
elements.	If	no	block	is	given,	returns	an	enumerator.

(1..10).each_slice(3)	{	|a|	p	a	}

#	outputs	below

[1,	2,	3]

[4,	5,	6]

[7,	8,	9]

[10]

Calls	block	with	two	arguments,	the	item	and	its
index,	for	each	item	in	enum.	Given	arguments	are
passed	through	to	each().

If	no	block	is	given,	an	enumerator	is	returned
instead.

each_slice(n)	{	...	}	→	nil
each_slice(n)	→	an_enumerator

each_with_index(*args)	{	|obj,	i|	block	}	→
enum
each_with_index(*args)	→	an_enumerator

hash	=	Hash.new

%w(cat	dog	wombat).each_with_index	{	|item,	index|

		hash[item]	=	index

}

hash			#=>	{"cat"=>0,	"dog"=>1,	"wombat"=>2}

Iterates	the	given	block	for	each	element	with	an
arbitrary	object	given,	and	returns	the	initially	given
object.

If	no	block	is	given,	returns	an	enumerator.

evens	=	(1..10).each_with_object([])	{	|i,	a|	a	<<	i*2

#=>	[2,	4,	6,	8,	10,	12,	14,	16,	18,	20]

Returns	an	array	containing	the	items	in	enum.

(1..7).to_a																							#=>	[1,	2,	3,	4,	5,	6,	7]

{	'a'=>1,	'b'=>2,	'c'=>3	}.to_a			#=>	[["a",	1],	["b",	2],	["c",	3]]

require	'prime'

Prime.entries	10																		#=>	[2,	3,	5,	7]

Passes	each	entry	in	enum	to	block.	Returns	the	first

each_with_object(obj)	{	|(*args),	memo_obj|
...	}	→	obj
each_with_object(obj)	→	an_enumerator

to_a(*args)	→	array
entries(*args)	→	array

detect(ifnone	=	nil)	{	|obj|	block	}	→	obj	or	nil
find(ifnone	=	nil)	{	|obj|	block	}	→	obj	or	nil
detect(ifnone	=	nil)	→	an_enumerator
find(ifnone	=	nil)	→	an_enumerator

for	which	block	is	not	false.	If	no	object	matches,	calls
ifnone	and	returns	its	result	when	it	is	specified,	or
returns	nil	otherwise.

If	no	block	is	given,	an	enumerator	is	returned
instead.

(1..10).detect			{	|i|	i	%	5	==	0	and	i	%	7	==	0	}			#=>	nil

(1..100).find				{	|i|	i	%	5	==	0	and	i	%	7	==	0	}			#=>	35

Returns	an	array	containing	all	elements	of	enum	for
which	the	given	block	returns	a	true	value.

If	no	block	is	given,	an	Enumerator	is	returned
instead.

(1..10).find_all	{	|i|		i	%	3	==	0	}			#=>	[3,	6,	9]

[1,2,3,4,5].select	{	|num|		num.even?		}			#=>	[2,	4]

See	also	#reject.

Compares	each	entry	in	enum	with	value	or	passes
to	block.	Returns	the	index	for	the	first	for	which	the
evaluated	value	is	non-false.	If	no	object	matches,
returns	nil

If	neither	block	nor	argument	is	given,	an	enumerator
is	returned	instead.

find_all	{	|obj|	block	}	→	array
select	{	|obj|	block	}	→	array
find_all	→	an_enumerator
select	→	an_enumerator

find_index(value)	→	int	or	nil
find_index	{	|obj|	block	}	→	int	or	nil
find_index	→	an_enumerator

(1..10).find_index		{	|i|	i	%	5	==	0	and	i	%	7	==	0	}		

(1..100).find_index	{	|i|	i	%	5	==	0	and	i	%	7	==	0	}		

(1..100).find_index(50)																																

Returns	the	first	element,	or	the	first	n	elements,	of
the	enumerable.	If	the	enumerable	is	empty,	the	first
form	returns	nil,	and	the	second	form	returns	an
empty	array.

%w[foo	bar	baz].first					#=>	"foo"

%w[foo	bar	baz].first(2)		#=>	["foo",	"bar"]

%w[foo	bar	baz].first(10)	#=>	["foo",	"bar",	"baz"]

[].first																		#=>	nil

Returns	a	new	array	with	the	concatenated	results	of
running	block	once	for	every	element	in	enum.

If	no	block	is	given,	an	enumerator	is	returned
instead.

[1,	2,	3,	4].flat_map	{	|e|	[e,	-e]	}	#=>	[1,	-1,	2,	-2,	3,	-3,	4,	-4]

[[1,	2],	[3,	4]].flat_map	{	|e|	e	+	[100]	}	#=>	[1,	2,	100,	3,	4,	100]

Returns	an	array	of	every	element	in	enum	for	which
Pattern	===	element.	If	the	optional	block	is	supplied,

first	→	obj	or	nil
first(n)	→	an_array

flat_map	{	|obj|	block	}	→	array
collect_concat	{	|obj|	block	}	→	array
flat_map	→	an_enumerator
collect_concat	→	an_enumerator

grep(pattern)	→	array
grep(pattern)	{	|obj|	block	}	→	array

each	matching	element	is	passed	to	it,	and	the
block's	result	is	stored	in	the	output	array.

(1..100).grep	38..44			#=>	[38,	39,	40,	41,	42,	43,	44]

c	=	IO.constants

c.grep(/SEEK/)									#=>	[:SEEK_SET,	:SEEK_CUR,	:SEEK_END]

res	=	c.grep(/SEEK/)	{	|v|	IO.const_get(v)	}

res																				#=>	[0,	1,	2]

Groups	the	collection	by	result	of	the	block.	Returns	a
hash	where	the	keys	are	the	evaluated	result	from
the	block	and	the	values	are	arrays	of	elements	in	the
collection	that	correspond	to	the	key.

If	no	block	is	given	an	enumerator	is	returned.

(1..6).group_by	{	|i|	i%3	}			#=>	{0=>[3,	6],	1=>[1,	4],	2=>[2,	5]}

Returns	true	if	any	member	of	enum	equals	obj.
Equality	is	tested	using	==.

IO.constants.include?	:SEEK_SET										#=>	true

IO.constants.include?	:SEEK_NO_FURTHER			#=>	false

group_by	{	|obj|	block	}	→	a_hash
group_by	→	an_enumerator

include?(obj)	→	true	or	false
member?(obj)	→	true	or	false

inject(initial,	sym)	→	obj
inject(sym)	→	obj
inject(initial)	{	|memo,	obj|	block	}	→	obj
inject	{	|memo,	obj|	block	}	→	obj
reduce(initial,	sym)	→	obj

Combines	all	elements	of	enum	by	applying	a	binary
operation,	specified	by	a	block	or	a	symbol	that
names	a	method	or	operator.

If	you	specify	a	block,	then	for	each	element	in	enum
the	block	is	passed	an	accumulator	value	(memo)
and	the	element.	If	you	specify	a	symbol	instead,
then	each	element	in	the	collection	will	be	passed	to
the	named	method	of	memo.	In	either	case,	the	result
becomes	the	new	value	for	memo.	At	the	end	of	the
iteration,	the	final	value	of	memo	is	the	return	value
for	the	method.

If	you	do	not	explicitly	specify	an	initial	value	for
memo,	then	the	first	element	of	collection	is	used	as
the	initial	value	of	memo.

#	Sum	some	numbers

(5..10).reduce(:+)																													#=>	45

#	Same	using	a	block	and	inject

(5..10).inject	{	|sum,	n|	sum	+	n	}												#=>	45

#	Multiply	some	numbers

(5..10).reduce(1,	:*)																										#=>	151200

#	Same	using	a	block

(5..10).inject(1)	{	|product,	n|	product	*	n	}	#=>	151200

#	find	the	longest	word

longest	=	%w{	cat	sheep	bear	}.inject	do	|memo,	word|

			memo.length	>	word.length	?	memo	:	word

end

longest																																								#=>	"sheep"

Returns	a	lazy	enumerator,	whose	methods
map/collect,	flat_map/collect_concat,	select/find_all,
reject,	grep,	zip,	take,	#take_while,	drop,	and
#drop_while	enumerate	values	only	on	an	as-needed

reduce(sym)	→	obj
reduce(initial)	{	|memo,	obj|	block	}	→	obj
reduce	{	|memo,	obj|	block	}	→	obj

lazy	→	lazy_enumerator

basis.	However,	if	a	block	is	given	to	zip,	values	are
enumerated	immediately.

Example
The	following	program	finds	pythagorean	triples:

def	pythagorean_triples

		(1..Float::INFINITY).lazy.flat_map	{|z|

				(1..z).flat_map	{|x|

						(x..z).select	{|y|

								x**2	+	y**2	==	z**2

						}.map	{|y|

								[x,	y,	z]

						}

				}

		}

end

#	show	first	ten	pythagorean	triples

p	pythagorean_triples.take(10).force	#	take	is	lazy,	so	force	is	needed

p	pythagorean_triples.first(10)						#	first	is	eager

#	show	pythagorean	triples	less	than	100

p	pythagorean_triples.take_while	{	|*,	z|	z	<	100	}.force

Returns	a	new	array	with	the	results	of	running	block
once	for	every	element	in	enum.

If	no	block	is	given,	an	enumerator	is	returned
instead.

(1..4).map	{	|i|	i*i	}						#=>	[1,	4,	9,	16]

(1..4).collect	{	"cat"		}			#=>	["cat",	"cat",	"cat",	"cat"]

collect	{	|obj|	block	}	→	array
map	{	|obj|	block	}	→	array
collect	→	an_enumerator
map	→	an_enumerator

max	→	obj

Returns	the	object	in	enum	with	the	maximum	value.
The	first	form	assumes	all	objects	implement
Comparable;	the	second	uses	the	block	to	return	a
<=>	b.

a	=	%w(albatross	dog	horse)

a.max																																			#=>	"horse"

a.max	{	|a,	b|	a.length	<=>	b.length	}		#=>	"albatross"

If	the	n	argument	is	given,	maximum	n	elements	are
returned	as	an	array.

a	=	%w[albatross	dog	horse]

a.max(2)																																		#=>	["horse",	"dog"]

a.max(2)	{|a,	b|	a.length	<=>	b.length	}		#=>	["albatross",	"horse"]

Returns	the	object	in	enum	that	gives	the	maximum
value	from	the	given	block.

If	no	block	is	given,	an	enumerator	is	returned
instead.

a	=	%w(albatross	dog	horse)

a.max_by	{	|x|	x.length	}			#=>	"albatross"

If	the	n	argument	is	given,	minimum	n	elements	are
returned	as	an	array.

a	=	%w[albatross	dog	horse]

a.max_by(2)	{|x|	x.length	}	#=>	["albatross",	"horse"]

max	{	|a,	b|	block	}	→	obj
max(n)	→	obj
max(n)	{|a,b|	block	}	→	obj

max_by	{|obj|	block	}	→	obj
max_by	→	an_enumerator
max_by(n)	{|obj|	block	}	→	obj
max_by(n)	→	an_enumerator

enum.max_by(n)	can	be	used	to	implement	weighted
random	sampling.	Following	example	implements
and	use	Enumerable#wsample.

module	Enumerable

		#	weighted	random	sampling.

		#

		#	Pavlos	S.	Efraimidis,	Paul	G.	Spirakis

		#	Weighted	random	sampling	with	a	reservoir

		#	Information	Processing	Letters

		#	Volume	97,	Issue	5	(16	March	2006)

		def	wsample(n)

				self.max_by(n)	{|v|	rand	**	(1.0/yield(v))	}

		end

end

e	=	(-20..20).to_a*10000

a	=	e.wsample(20000)	{|x|

		Math.exp(-(x/5.0)**2)	#	normal	distribution

}

#	a	is	20000	samples	from	e.

p	a.length	#=>	20000

h	=	a.group_by	{|x|	x	}

-10.upto(10)	{|x|	puts	"*"	*	(h[x].length/30.0).to_i	if

#=>	*

#			***

#			******

#			***********

#			******************

#			*****************************

#			***

#			**

#			***

#			**

#			***

#			***

#			**

#			**

#			***************************************

#			***************************

#			******************

#			***********

#			*******

#			***

#			*

Returns	true	if	any	member	of	enum	equals	obj.
Equality	is	tested	using	==.

IO.constants.include?	:SEEK_SET										#=>	true

IO.constants.include?	:SEEK_NO_FURTHER			#=>	false

Returns	the	object	in	enum	with	the	minimum	value.
The	first	form	assumes	all	objects	implement
Comparable;	the	second	uses	the	block	to	return	a
<=>	b.

a	=	%w(albatross	dog	horse)

a.min																																			#=>	"albatross"

a.min	{	|a,	b|	a.length	<=>	b.length	}		#=>	"dog"

If	the	n	argument	is	given,	minimum	n	elements	are
returned	as	an	array.

a	=	%w[albatross	dog	horse]

a.min(2)																																		#=>	["albatross",	"dog"]

a.min(2)	{|a,	b|	a.length	<=>	b.length	}		#=>	["dog",	"horse"]

include?(obj)	→	true	or	false
member?(obj)	→	true	or	false

min	→	obj
min	{|	a,b	|	block	}	→	obj
min(n)	→	array
min(n)	{|	a,b	|	block	}	→	array

min_by	{|obj|	block	}	→	obj
min_by	→	an_enumerator
min_by(n)	{|obj|	block	}	→	array
min_by(n)	→	an_enumerator

Returns	the	object	in	enum	that	gives	the	minimum
value	from	the	given	block.

If	no	block	is	given,	an	enumerator	is	returned
instead.

a	=	%w(albatross	dog	horse)

a.min_by	{	|x|	x.length	}			#=>	"dog"

If	the	n	argument	is	given,	minimum	n	elements	are
returned	as	an	array.

a	=	%w[albatross	dog	horse]

p	a.min_by(2)	{|x|	x.length	}	#=>	["dog",	"horse"]

Returns	two	elements	array	which	contains	the
minimum	and	the	maximum	value	in	the	enumerable.
The	first	form	assumes	all	objects	implement
Comparable;	the	second	uses	the	block	to	return	a
<=>	b.

a	=	%w(albatross	dog	horse)

a.minmax																																		#=>	["albatross",	"horse"]

a.minmax	{	|a,	b|	a.length	<=>	b.length	}	#=>	["dog",	"albatross"]

Returns	a	two	element	array	containing	the	objects	in
enum	that	correspond	to	the	minimum	and	maximum
values	respectively	from	the	given	block.

If	no	block	is	given,	an	enumerator	is	returned
instead.

a	=	%w(albatross	dog	horse)

minmax	→	[min,	max]
minmax	{	|a,	b|	block	}	→	[min,	max]

minmax_by	{	|obj|	block	}	→	[min,	max]
minmax_by	→	an_enumerator

a.minmax_by	{	|x|	x.length	}			#=>	["dog",	"albatross"]

Passes	each	element	of	the	collection	to	the	given
block.	The	method	returns	true	if	the	block	never
returns	true	for	all	elements.	If	the	block	is	not	given,
none?	will	return	true	only	if	none	of	the	collection
members	is	true.

%w{ant	bear	cat}.none?	{	|word|	word.length	==	5	}	#=>	true

%w{ant	bear	cat}.none?	{	|word|	word.length	>=	4	}	#=>	false

[].none?																																											#=>	true

[nil].none?																																								#=>	true

[nil,	false].none?																																	#=>	true

Passes	each	element	of	the	collection	to	the	given
block.	The	method	returns	true	if	the	block	returns
true	exactly	once.	If	the	block	is	not	given,	one?	will
return	true	only	if	exactly	one	of	the	collection
members	is	true.

%w{ant	bear	cat}.one?	{	|word|	word.length	==	4	}		#=>	true

%w{ant	bear	cat}.one?	{	|word|	word.length	>	4	}			#=>	false

%w{ant	bear	cat}.one?	{	|word|	word.length	<	4	}			#=>	false

[nil,	true,	99].one?																													#=>	false

[nil,	true,	false].one?																										#=>	true

Returns	two	arrays,	the	first	containing	the	elements
of	enum	for	which	the	block	evaluates	to	true,	the

none?	[{	|obj|	block	}]	→	true	or	false

one?	[{	|obj|	block	}]	→	true	or	false

partition	{	|obj|	block	}	→	[true_array,
false_array]
partition	→	an_enumerator

second	containing	the	rest.

If	no	block	is	given,	an	enumerator	is	returned
instead.

(1..6).partition	{	|v|	v.even?	}		#=>	[[2,	4,	6],	[1,	3,	5]]

Combines	all	elements	of	enum	by	applying	a	binary
operation,	specified	by	a	block	or	a	symbol	that
names	a	method	or	operator.

If	you	specify	a	block,	then	for	each	element	in	enum
the	block	is	passed	an	accumulator	value	(memo)
and	the	element.	If	you	specify	a	symbol	instead,
then	each	element	in	the	collection	will	be	passed	to
the	named	method	of	memo.	In	either	case,	the	result
becomes	the	new	value	for	memo.	At	the	end	of	the
iteration,	the	final	value	of	memo	is	the	return	value
for	the	method.

If	you	do	not	explicitly	specify	an	initial	value	for
memo,	then	the	first	element	of	collection	is	used	as
the	initial	value	of	memo.

#	Sum	some	numbers

(5..10).reduce(:+)																													#=>	45

#	Same	using	a	block	and	inject

(5..10).inject	{	|sum,	n|	sum	+	n	}												#=>	45

#	Multiply	some	numbers

inject(initial,	sym)	→	obj
inject(sym)	→	obj
inject(initial)	{	|memo,	obj|	block	}	→	obj
inject	{	|memo,	obj|	block	}	→	obj
reduce(initial,	sym)	→	obj
reduce(sym)	→	obj
reduce(initial)	{	|memo,	obj|	block	}	→	obj
reduce	{	|memo,	obj|	block	}	→	obj

(5..10).reduce(1,	:*)																										#=>	151200

#	Same	using	a	block

(5..10).inject(1)	{	|product,	n|	product	*	n	}	#=>	151200

#	find	the	longest	word

longest	=	%w{	cat	sheep	bear	}.inject	do	|memo,	word|

			memo.length	>	word.length	?	memo	:	word

end

longest																																								#=>	"sheep"

Returns	an	array	for	all	elements	of	enum	for	which	the
given	block	returns	false.

If	no	block	is	given,	an	Enumerator	is	returned
instead.

(1..10).reject	{	|i|		i	%	3	==	0	}			#=>	[1,	2,	4,	5,	7,	8,	10]

[1,	2,	3,	4,	5].reject	{	|num|	num.even?	}	#=>	[1,	3,	5]

See	also	#find_all.

Builds	a	temporary	array	and	traverses	that	array	in
reverse	order.

If	no	block	is	given,	an	enumerator	is	returned
instead.

		(1..3).reverse_each	{	|v|	p	v	}

produces:

		3

		2

		1

reject	{	|obj|	block	}	→	array
reject	→	an_enumerator

reverse_each(*args)	{	|item|	block	}	→	enum
reverse_each(*args)	→	an_enumerator

Returns	an	array	containing	all	elements	of	enum	for
which	the	given	block	returns	a	true	value.

If	no	block	is	given,	an	Enumerator	is	returned
instead.

(1..10).find_all	{	|i|		i	%	3	==	0	}			#=>	[3,	6,	9]

[1,2,3,4,5].select	{	|num|		num.even?		}			#=>	[2,	4]

See	also	#reject.

Creates	an	enumerator	for	each	chunked	elements.
The	ends	of	chunks	are	defined	by	pattern	and	the
block.

If	pattern	===	elt	returns	true	or	the	block	returns
true	for	the	element,	the	element	is	end	of	a	chunk.

The	===	and	block	is	called	from	the	first	element	to
the	last	element	of	enum.

The	result	enumerator	yields	the	chunked	elements
as	an	array.	So	each	method	can	be	called	as	follows:

enum.slice_after(pattern).each	{	|ary|	...	}

enum.slice_after	{	|elt|	bool	}.each	{	|ary|	...	}

Other	methods	of	the	Enumerator	class	and
Enumerable	module,	such	as	map,	etc.,	are	also

find_all	{	|obj|	block	}	→	array
select	{	|obj|	block	}	→	array
find_all	→	an_enumerator
select	→	an_enumerator

slice_after(pattern)	→	an_enumerator
slice_after	{	|elt|	bool	}	→	an_enumerator

usable.

For	example,	continuation	lines	(lines	end	with
backslash)	can	be	concatenated	as	follows:

lines	=	["foo\n",	"bar\\\n",	"baz\n",	"\n",	"qux\n"]

e	=	lines.slice_after(/(?<!\)\n\z/)

p	e.to_a

#=>	[["foo\n"],	["bar\\\n",	"baz\n"],	["\n"],	["qux\n"]]

p	e.map	{|ll|	ll[0...-1].map	{|l|	l.sub(/\\n\z/,	"")	}.

#=>["foo\n",	"barbaz\n",	"\n",	"qux\n"]

Creates	an	enumerator	for	each	chunked	elements.
The	beginnings	of	chunks	are	defined	by	pattern	and
the	block.

If	pattern	===	elt	returns	true	or	the	block	returns
true	for	the	element,	the	element	is	beginning	of	a
chunk.

The	===	and	block	is	called	from	the	first	element	to
the	last	element	of	enum.	The	result	for	the	first
element	is	ignored.

The	result	enumerator	yields	the	chunked	elements
as	an	array.	So	each	method	can	be	called	as	follows:

enum.slice_before(pattern).each	{	|ary|	...	}

enum.slice_before	{	|elt|	bool	}.each	{	|ary|	...	}

Other	methods	of	the	Enumerator	class	and
Enumerable	module,	such	as	map,	etc.,	are	also
usable.

For	example,	iteration	over	ChangeLog	entries	can

slice_before(pattern)	→	an_enumerator
slice_before	{	|elt|	bool	}	→	an_enumerator
slice_before(initial_state)	{	|elt,	state|	bool	}
→	an_enumerator	(deprecated)

be	implemented	as	follows:

#	iterate	over	ChangeLog	entries.

open("ChangeLog")	{	|f|

		f.slice_before(/\A\S/).each	{	|e|	pp	e	}

}

#	same	as	above.		block	is	used	instead	of	pattern	argument.

open("ChangeLog")	{	|f|

		f.slice_before	{	|line|	/\A\S/	===	line	}.each	{	|e|

}

“svn	proplist	-R”	produces	multiline	output	for	each
file.	They	can	be	chunked	as	follows:

IO.popen([{"LC_ALL"=>"C"},	"svn",	"proplist",	"-R"])	{	

		f.lines.slice_before(/\AProp/).each	{	|lines|	p	lines

}

#=>	["Properties	on	'.':\n",	"		svn:ignore\n",	"		svk:merge\n"]

#			["Properties	on	'goruby.c':\n",	"		svn:eol-style\n"]

#			["Properties	on	'complex.c':\n",	"		svn:mime-type\n",	"		svn:eol-style\n"]

#			["Properties	on	'regparse.c':\n",	"		svn:eol-style\n"]

#			...

If	the	block	needs	to	maintain	state	over	multiple
elements,	local	variables	can	be	used.	For	example,
three	or	more	consecutive	increasing	numbers	can
be	squashed	as	follows:

a	=	[0,	2,	3,	4,	6,	7,	9]

prev	=	a[0]

p	a.slice_before	{	|e|

		prev,	prev2	=	e,	prev

		prev2	+	1	!=	e

}.map	{	|es|

		es.length	<=	2	?	es.join(",")	:	"#{es.first}-#{es.last}"

}.join(",")

#=>	"0,2-4,6,7,9"

However	local	variables	should	be	used	carefully	if
the	result	enumerator	is	enumerated	twice	or	more.
The	local	variables	should	be	initialized	for	each

enumeration.	Enumerator.new	can	be	used	to	do	it.

#	Word	wrapping.		This	assumes	all	characters	have	same	width.

def	wordwrap(words,	maxwidth)

		Enumerator.new	{|y|

				#	cols	is	initialized	in	Enumerator.new.

				cols	=	0

				words.slice_before	{	|w|

						cols	+=	1	if	cols	!=	0

						cols	+=	w.length

						if	maxwidth	<	cols

								cols	=	w.length

								true

						else

								false

						end

				}.each	{|ws|	y.yield	ws	}

		}

end

text	=	(1..20).to_a.join("	")

enum	=	wordwrap(text.split(/\s+/),	10)

puts	"-"*10

enum.each	{	|ws|	puts	ws.join("	")	}	#	first	enumeration.

puts	"-"*10

enum.each	{	|ws|	puts	ws.join("	")	}	#	second	enumeration	generates	same	result	as	the	first.

puts	"-"*10

#=>	----------

#			1	2	3	4	5

#			6	7	8	9	10

#			11	12	13

#			14	15	16

#			17	18	19

#			20

#			----------

#			1	2	3	4	5

#			6	7	8	9	10

#			11	12	13

#			14	15	16

#			17	18	19

#			20

#			----------

mbox	contains	series	of	mails	which	start	with	Unix
From	line.	So	each	mail	can	be	extracted	by	slice
before	Unix	From	line.

#	parse	mbox

open("mbox")	{	|f|

		f.slice_before	{	|line|

				line.start_with?	"From	"

		}.each	{	|mail|

				unix_from	=	mail.shift

				i	=	mail.index("\n")

				header	=	mail[0...i]

				body	=	mail[(i+1)..-1]

				body.pop	if	body.last	==	"\n"

				fields	=	header.slice_before	{	|line|	!"	\t".include?

				p	unix_from

				pp	fields

				pp	body

		}

}

#	split	mails	in	mbox	(slice	before	Unix	From	line	after	an	empty	line)

open("mbox")	{	|f|

		f.slice_before(emp:	true)	{	|line,	h|

				prevemp	=	h[:emp]

				h[:emp]	=	line	==	"\n"

				prevemp	&&	line.start_with?("From	")

		}.each	{	|mail|

				mail.pop	if	mail.last	==	"\n"

				pp	mail

		}

}

Creates	an	enumerator	for	each	chunked	elements.
The	beginnings	of	chunks	are	defined	by	the	block.

This	method	split	each	chunk	using	adjacent
elements,	elt_before	and	elt_after,	in	the	receiver
enumerator.	This	method	split	chunks	between
elt_before	and	elt_after	where	the	block	returns	true.

The	block	is	called	the	length	of	the	receiver
enumerator	minus	one.

slice_when	{|elt_before,	elt_after|	bool	}	→
an_enumerator

The	result	enumerator	yields	the	chunked	elements
as	an	array.	So	each	method	can	be	called	as	follows:

enum.slice_when	{	|elt_before,	elt_after|	bool	}.each	{	

Other	methods	of	the	Enumerator	class	and
Enumerable	module,	such	as	to_a,	map,	etc.,	are	also
usable.

For	example,	one-by-one	increasing	subsequence
can	be	chunked	as	follows:

a	=	[1,2,4,9,10,11,12,15,16,19,20,21]

b	=	a.slice_when	{|i,	j|	i+1	!=	j	}

p	b.to_a	#=>	[[1,	2],	[4],	[9,	10,	11,	12],	[15,	16],	[19,	20,	21]]

c	=	b.map	{|a|	a.length	<	3	?	a	:	"#{a.first}-#{a.last}"

p	c	#=>	[[1,	2],	[4],	"9-12",	[15,	16],	"19-21"]

d	=	c.join(",")

p	d	#=>	"1,2,4,9-12,15,16,19-21"

Near	elements	(threshold:	6)	in	sorted	array	can	be
chunked	as	follwos:

a	=	[3,	11,	14,	25,	28,	29,	29,	41,	55,	57]

p	a.slice_when	{|i,	j|	6	<	j	-	i	}.to_a

#=>	[[3],	[11,	14],	[25,	28,	29,	29],	[41],	[55,	57]]

Increasing	(non-decreasing)	subsequence	can	be
chunked	as	follows:

a	=	[0,	9,	2,	2,	3,	2,	7,	5,	9,	5]

p	a.slice_when	{|i,	j|	i	>	j	}.to_a

#=>	[[0,	9],	[2,	2,	3],	[2,	7],	[5,	9],	[5]]

Adjacent	evens	and	odds	can	be	chunked	as	follows:
(#chunk	is	another	way	to	do	it.)

a	=	[7,	5,	9,	2,	0,	7,	9,	4,	2,	0]

p	a.slice_when	{|i,	j|	i.even?	!=	j.even?	}.to_a

#=>	[[7,	5,	9],	[2,	0],	[7,	9],	[4,	2,	0]]

Paragraphs	(non-empty	lines	with	trailing	empty
lines)	can	be	chunked	as	follows:	(See	#chunk	to
ignore	empty	lines.)

lines	=	["foo\n",	"bar\n",	"\n",	"baz\n",	"qux\n"]

p	lines.slice_when	{|l1,	l2|	/\A\s*\z/	=~	l1	&&	/\S/	=~

#=>	[["foo\n",	"bar\n",	"\n"],	["baz\n",	"qux\n"]]

Returns	an	array	containing	the	items	in	enum
sorted,	either	according	to	their	own	<=>	method,	or
by	using	the	results	of	the	supplied	block.	The	block
should	return	-1,	0,	or	+1	depending	on	the
comparison	between	a	and	b.	As	of	Ruby	1.8,	the
method	Enumerable#sort_by	implements	a	built-in
Schwartzian	Transform,	useful	when	key	computation
or	comparison	is	expensive.

%w(rhea	kea	flea).sort										#=>	["flea",	"kea",	"rhea"]

(1..10).sort	{	|a,	b|	b	<=>	a	}		#=>	[10,	9,	8,	7,	6,	5,	4,	3,	2,	1]

Sorts	enum	using	a	set	of	keys	generated	by
mapping	the	values	in	enum	through	the	given	block.

If	no	block	is	given,	an	enumerator	is	returned
instead.

%w{apple	pear	fig}.sort_by	{	|word|	word.length}

														#=>	["fig",	"pear",	"apple"]

The	current	implementation	of	sort_by	generates	an
array	of	tuples	containing	the	original	collection

sort	→	array
sort	{	|a,	b|	block	}	→	array

sort_by	{	|obj|	block	}	→	array
sort_by	→	an_enumerator

element	and	the	mapped	value.	This	makes	sort_by
fairly	expensive	when	the	keysets	are	simple.

require	'benchmark'

a	=	(1..100000).map	{	rand(100000)	}

Benchmark.bm(10)	do	|b|

		b.report("Sort")				{	a.sort	}

		b.report("Sort	by")	{	a.sort_by	{	|a|	a	}	}

end

produces:

user					system						total								real

Sort								0.180000			0.000000			0.180000	(0.175469)

Sort	by					1.980000			0.040000			2.020000	(2.013586)

However,	consider	the	case	where	comparing	the
keys	is	a	non-trivial	operation.	The	following	code
sorts	some	files	on	modification	time	using	the	basic
sort	method.

files	=	Dir["*"]

sorted	=	files.sort	{	|a,	b|	File.new(a).mtime	<=>	File

sorted			#=>	["mon",	"tues",	"wed",	"thurs"]

This	sort	is	inefficient:	it	generates	two	new	File
objects	during	every	comparison.	A	slightly	better
technique	is	to	use	the	Kernel#test	method	to
generate	the	modification	times	directly.

files	=	Dir["*"]

sorted	=	files.sort	{	|a,	b|

		test(M,	a)	<=>	test(M,	b)

}

sorted			#=>	["mon",	"tues",	"wed",	"thurs"]

This	still	generates	many	unnecessary	Time	objects.
A	more	efficient	technique	is	to	cache	the	sort	keys
(modification	times	in	this	case)	before	the	sort.	Perl

users	often	call	this	approach	a	Schwartzian
Transform,	after	Randal	Schwartz.	We	construct	a
temporary	array,	where	each	element	is	an	array
containing	our	sort	key	along	with	the	filename.	We
sort	this	array,	and	then	extract	the	filename	from	the
result.

sorted	=	Dir["*"].collect	{	|f|

			[test(M,	f),	f]

}.sort.collect	{	|f|	f[1]	}

sorted			#=>	["mon",	"tues",	"wed",	"thurs"]

This	is	exactly	what	sort_by	does	internally.

sorted	=	Dir["*"].sort_by	{	|f|	test(M,	f)	}

sorted			#=>	["mon",	"tues",	"wed",	"thurs"]

Returns	first	n	elements	from	enum.

a	=	[1,	2,	3,	4,	5,	0]

a.take(3)													#=>	[1,	2,	3]

a.take(30)												#=>	[1,	2,	3,	4,	5,	0]

Passes	elements	to	the	block	until	the	block	returns
nil	or	false,	then	stops	iterating	and	returns	an	array
of	all	prior	elements.

If	no	block	is	given,	an	enumerator	is	returned
instead.

a	=	[1,	2,	3,	4,	5,	0]

a.take_while	{	|i|	i	<	3	}			#=>	[1,	2]

take(n)	→	array

take_while	{	|arr|	block	}	→	array
take_while	→	an_enumerator

to_a(*args)	→	array

Returns	an	array	containing	the	items	in	enum.

(1..7).to_a																							#=>	[1,	2,	3,	4,	5,	6,	7]

{	'a'=>1,	'b'=>2,	'c'=>3	}.to_a			#=>	[["a",	1],	["b",	2],	["c",	3]]

require	'prime'

Prime.entries	10																		#=>	[2,	3,	5,	7]

Returns	the	result	of	interpreting	enum	as	a	list	of
[key,	value]	pairs.

%[hello	world].each_with_index.to_h

		#	=>	{:hello	=>	0,	:world	=>	1}

Takes	one	element	from	enum	and	merges
corresponding	elements	from	each	args.	This
generates	a	sequence	of	n-element	arrays,	where	n
is	one	more	than	the	count	of	arguments.	The	length
of	the	resulting	sequence	will	be	enum#size.	If	the	size
of	any	argument	is	less	than	enum#size,	nil	values
are	supplied.	If	a	block	is	given,	it	is	invoked	for	each
output	array,	otherwise	an	array	of	arrays	is	returned.

a	=	[4,	5,	6]

b	=	[7,	8,	9]

a.zip(b)																	#=>	[[4,	7],	[5,	8],	[6,	9]]

[1,	2,	3].zip(a,	b)						#=>	[[1,	4,	7],	[2,	5,	8],	[3,	6,	9]]

[1,	2].zip(a,	b)									#=>	[[1,	4,	7],	[2,	5,	8]]

a.zip([1,	2],	[8])							#=>	[[4,	1,	8],	[5,	2,	nil],	[6,	nil,	nil]]

entries(*args)	→	array

to_h(*args)	→	hash

zip(arg,	...)	→	an_array_of_array
zip(arg,	...)	{	|arr|	block	}	→	nil

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	Enumerator
A	class	which	allows	both	internal	and	external
iteration.

An	Enumerator	can	be	created	by	the	following
methods.

Kernel#to_enum
Kernel#enum_for
::new

Most	methods	have	two	forms:	a	block	form
where	the	contents	are	evaluated	for	each	item
in	the	enumeration,	and	a	non-block	form	which
returns	a	new	Enumerator	wrapping	the
iteration.

enumerator	=	%w(one	two	three).each

puts	enumerator.class	#	=>	Enumerator

enumerator.each_with_object("foo")	do	|item,	obj|

		puts	"#{obj}:	#{item}"

end

#	foo:	one

#	foo:	two

#	foo:	three

enum_with_obj	=	enumerator.each_with_object("foo"

puts	enum_with_obj.class	#	=>	Enumerator

enum_with_obj.each	do	|item,	obj|

		puts	"#{obj}:	#{item}"

end

#	foo:	one

#	foo:	two

#	foo:	three

This	allows	you	to	chain	Enumerators	together.
For	example,	you	can	map	a	list's	elements	to
strings	containing	the	index	and	the	element	as
a	string	via:

puts	%w[foo	bar	baz].map.with_index	{	|w,	i|	"#{i}:#{w}"

#	=>	["0:foo",	"1:bar",	"2:baz"]

An	Enumerator	can	also	be	used	as	an	external
iterator.	For	example,	#next	returns	the	next
value	of	the	iterator	or	raises	StopIteration	if	the
Enumerator	is	at	the	end.

e	=	[1,2,3].each			#	returns	an	enumerator	object.

puts	e.next			#	=>	1

puts	e.next			#	=>	2

puts	e.next			#	=>	3

puts	e.next			#	raises	StopIteration

You	can	use	this	to	implement	an	internal
iterator	as	follows:

def	ext_each(e)

		while	true

				begin

						vs	=	e.next_values

				rescue	StopIteration

						return	$!.result

				end

				y	=	yield(*vs)

				e.feed	y

		end

end

o	=	Object.new

def	o.each

		puts	yield

		puts	yield(1)

		puts	yield(1,	2)

		3

end

#	use	o.each	as	an	internal	iterator	directly.

puts	o.each	{|*x|	puts	x;	[:b,	*x]	}

#	=>	[],	[:b],	[1],	[:b,	1],	[1,	2],	[:b,	1,	2],	3

#	convert	o.each	to	an	external	iterator	for

#	implementing	an	internal	iterator.

puts	ext_each(o.to_enum)	{|*x|	puts	x;	[:b,	*x]	}

#	=>	[],	[:b],	[1],	[:b,	1],	[1,	2],	[:b,	1,	2],	3

In	Files
enumerator.c

Parent
Object

Included	Modules
Enumerable

Public	Class	Methods

Creates	a	new	Enumerator	object,	which	can	be	used
as	an	Enumerable.

In	the	first	form,	iteration	is	defined	by	the	given
block,	in	which	a	“yielder”	object,	given	as	block
parameter,	can	be	used	to	yield	a	value	by	calling	the
yield	method	(aliased	as	+<<+):

fib	=	Enumerator.new	do	|y|

		a	=	b	=	1

		loop	do

				y	<<	a

				a,	b	=	b,	a	+	b

		end

end

p	fib.take(10)	#	=>	[1,	1,	2,	3,	5,	8,	13,	21,	34,	55]

The	optional	parameter	can	be	used	to	specify	how
to	calculate	the	size	in	a	lazy	fashion	(see	#size).	It
can	either	be	a	value	or	a	callable	object.

In	the	second,	deprecated,	form,	a	generated
Enumerator	iterates	over	the	given	object	using	the
given	method	with	the	given	arguments	passed.

Use	of	this	form	is	discouraged.	Use
Kernel#enum_for	or	Kernel#to_enum	instead.

e	=	Enumerator.new(ObjectSpace,	:each_object)

				#->	ObjectSpace.enum_for(:each_object)

e.select	{	|obj|	obj.is_a?(Class)	}		#=>	array	of	all	classes

new(size	=	nil)	{	|yielder|	...	}
new(obj,	method	=	:each,	*args)

Public	Instance	Methods

Iterates	over	the	block	according	to	how	this
Enumerator	was	constructed.	If	no	block	and	no
arguments	are	given,	returns	self.

Examples
"Hello,	world!".scan(/\w+/)																					#=>	["Hello",	"world"]

"Hello,	world!".to_enum(:scan,	/\w+/).to_a						#=>	["Hello",	"world"]

"Hello,	world!".to_enum(:scan).each(/\w+/).to_a	#=>	["Hello",	"world"]

obj	=	Object.new

def	obj.each_arg(a,	b=:b,	*rest)

		yield	a

		yield	b

		yield	rest

		:method_returned

end

enum	=	obj.to_enum	:each_arg,	:a,	:x

enum.each.to_a																		#=>	[:a,	:x,	[]]

enum.each.equal?(enum)										#=>	true

enum.each	{	|elm|	elm	}									#=>	:method_returned

enum.each(:y,	:z).to_a										#=>	[:a,	:x,	[:y,	:z]]

enum.each(:y,	:z).equal?(enum)		#=>	false

enum.each(:y,	:z)	{	|elm|	elm	}	#=>	:method_returned

Same	as	#with_index,	i.e.	there	is	no	starting	offset.

each	{	|elm|	block	}	→	obj
each	→	enum
each(*appending_args)	{	|elm|	block	}	→	obj
each(*appending_args)	→	an_enumerator

each_with_index	{|(*args),	idx|	...	}
each_with_index

If	no	block	is	given,	a	new	Enumerator	is	returned
that	includes	the	index.

Iterates	the	given	block	for	each	element	with	an
arbitrary	object,	obj,	and	returns	obj

If	no	block	is	given,	returns	a	new	Enumerator.

Example
to_three	=	Enumerator.new	do	|y|

		3.times	do	|x|

				y	<<	x

		end

end

to_three_with_string	=	to_three.with_object("foo")

to_three_with_string.each	do	|x,string|

		puts	"#{string}:	#{x}"

end

#	=>	foo:0

#	=>	foo:1

#	=>	foo:2

Sets	the	value	to	be	returned	by	the	next	yield	inside
e.

If	the	value	is	not	set,	the	yield	returns	nil.

This	value	is	cleared	after	being	yielded.

#	Array#map	passes	the	array's	elements	to	"yield"	and	collects	the

each_with_object(obj)	{|(*args),	obj|	...	}
each_with_object(obj)
with_object(obj)	{|(*args),	obj|	...	}
with_object(obj)

feed	obj	→	nil

#	results	of	"yield"	as	an	array.

#	Following	example	shows	that	"next"	returns	the	passed	elements	and

#	values	passed	to	"feed"	are	collected	as	an	array	which	can	be

#	obtained	by	StopIteration#result.

e	=	[1,2,3].map

p	e.next											#=>	1

e.feed	"a"

p	e.next											#=>	2

e.feed	"b"

p	e.next											#=>	3

e.feed	"c"

begin

		e.next

rescue	StopIteration

		p	$!.result						#=>	["a",	"b",	"c"]

end

o	=	Object.new

def	o.each

		x	=	yield									#	(2)	blocks

		p	x															#	(5)	=>	"foo"

		x	=	yield									#	(6)	blocks

		p	x															#	(8)	=>	nil

		x	=	yield									#	(9)	blocks

		p	x															#	not	reached	w/o	another	e.next

end

e	=	o.to_enum

e.next														#	(1)

e.feed	"foo"								#	(3)

e.next														#	(4)

e.next														#	(7)

																				#	(10)

Creates	a	printable	version	of	e.

Returns	the	next	object	in	the	enumerator,	and	move
the	internal	position	forward.	When	the	position
reached	at	the	end,	StopIteration	is	raised.

inspect	→	string

next	→	object

Example
a	=	[1,2,3]

e	=	a.to_enum

p	e.next			#=>	1

p	e.next			#=>	2

p	e.next			#=>	3

p	e.next			#raises	StopIteration

Note	that	enumeration	sequence	by	next	does	not
affect	other	non-external	enumeration	methods,
unless	the	underlying	iteration	methods	itself	has
side-effect,	e.g.	IO#each_line.

Returns	the	next	object	as	an	array	in	the
enumerator,	and	move	the	internal	position	forward.
When	the	position	reached	at	the	end,	StopIteration
is	raised.

This	method	can	be	used	to	distinguish	yield	and
yield	nil.

Example
o	=	Object.new

def	o.each

		yield

		yield	1

		yield	1,	2

		yield	nil

		yield	[1,	2]

end

e	=	o.to_enum

p	e.next_values

p	e.next_values

p	e.next_values

p	e.next_values

p	e.next_values

e	=	o.to_enum

p	e.next

next_values	→	array

p	e.next

p	e.next

p	e.next

p	e.next

##	yield	args							next_values						next

#		yield												[]															nil

#		yield	1										[1]														1

#		yield	1,	2							[1,	2]											[1,	2]

#		yield	nil								[nil]												nil

#		yield	[1,	2]					[[1,	2]]									[1,	2]

Note	that	next_values	does	not	affect	other	non-
external	enumeration	methods	unless	underlying
iteration	method	itself	has	side-effect,	e.g.
IO#each_line.

Returns	the	next	object	in	the	enumerator,	but	doesn't
move	the	internal	position	forward.	If	the	position	is
already	at	the	end,	StopIteration	is	raised.

Example
a	=	[1,2,3]

e	=	a.to_enum

p	e.next			#=>	1

p	e.peek			#=>	2

p	e.peek			#=>	2

p	e.peek			#=>	2

p	e.next			#=>	2

p	e.next			#=>	3

p	e.peek			#raises	StopIteration

Returns	the	next	object	as	an	array,	similar	to
#next_values,	but	doesn't	move	the	internal	position
forward.	If	the	position	is	already	at	the	end,
StopIteration	is	raised.

peek	→	object

peek_values	→	array

Example
o	=	Object.new

def	o.each

		yield

		yield	1

		yield	1,	2

end

e	=	o.to_enum

p	e.peek_values				#=>	[]

e.next

p	e.peek_values				#=>	[1]

p	e.peek_values				#=>	[1]

e.next

p	e.peek_values				#=>	[1,	2]

e.next

p	e.peek_values				#	raises	StopIteration

Rewinds	the	enumeration	sequence	to	the	beginning.

If	the	enclosed	object	responds	to	a	“rewind”	method,
it	is	called.

Returns	the	size	of	the	enumerator,	or	nil	if	it	can't
be	calculated	lazily.

(1..100).to_a.permutation(4).size	#	=>	94109400

loop.size	#	=>	Float::INFINITY

(1..100).drop_while.size	#	=>	nil

Iterates	the	given	block	for	each	element	with	an
index,	which	starts	from	offset.	If	no	block	is	given,
returns	a	new	Enumerator	that	includes	the	index,
starting	from	offset

rewind	→	e

size	→	int,	Float::INFINITY	or	nil

with_index(offset	=	0)	{|(*args),	idx|	...	}
with_index(offset	=	0)

offset

the	starting	index	to	use

Iterates	the	given	block	for	each	element	with	an
arbitrary	object,	obj,	and	returns	obj

If	no	block	is	given,	returns	a	new	Enumerator.

Example
to_three	=	Enumerator.new	do	|y|

		3.times	do	|x|

				y	<<	x

		end

end

to_three_with_string	=	to_three.with_object("foo")

to_three_with_string.each	do	|x,string|

		puts	"#{string}:	#{x}"

end

#	=>	foo:0

#	=>	foo:1

#	=>	foo:2

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

each_with_object(obj)	{|(*args),	obj|	...	}
each_with_object(obj)
with_object(obj)	{|(*args),	obj|	...	}
with_object(obj)

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class
Enumerator::Generator
Lazy

In	Files
enumerator.c

Parent
Object

Included	Modules
Enumerable

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	Enumerator::Lazy
Lazy

In	Files
enumerator.c

Parent
Enumerator

Public	Class	Methods

Creates	a	new	Lazy	enumerator.	When	the
enumerator	is	actually	enumerated	(e.g.	by	calling
force),	obj	will	be	enumerated	and	each	value
passed	to	the	given	block.	The	block	can	yield	values
back	using	yielder.	For	example,	to	create	a	method
filter_map	in	both	lazy	and	non-lazy	fashions:

module	Enumerable

		def	filter_map(&block)

				map(&block).compact

		end

end

class	Enumerator::Lazy

		def	filter_map

				Lazy.new(self)	do	|yielder,	*values|

						result	=	yield	*values

						yielder	<<	result	if	result

new(obj,	size=nil)	{	|yielder,	*values|	...	}

				end

		end

end

(1..Float::INFINITY).lazy.filter_map{|i|	i*i	if	i.even?

				#	=>	[4,	16,	36,	64,	100]

Public	Instance	Methods

Returns	a	new	lazy	enumerator	with	the
concatenated	results	of	running	block	once	for	every
element	in	lazy.

["foo",	"bar"].lazy.flat_map	{|i|	i.each_char.lazy}.force

#=>	["f",	"o",	"o",	"b",	"a",	"r"]

A	value	x	returned	by	block	is	decomposed	if	either	of
the	following	conditions	is	true:

a)	<i>x</i>	responds	to	both	each	and	force,	which	means	that

			<i>x</i>	is	a	lazy	enumerator.

b)	<i>x</i>	is	an	array	or	responds	to	to_ary.

Otherwise,	x	is	contained	as-is	in	the	return	value.

[{a:1},	{b:2}].lazy.flat_map	{|i|	i}.force

#=>	[{:a=>1},	{:b=>2}]

chunk(*args)

collect()

collect_concat	{	|obj|	block	}	→
a_lazy_enumerator
flat_map	{	|obj|	block	}	→	a_lazy_enumerator

Similar	to	Kernel#to_enum,	except	it	returns	a	lazy
enumerator.	This	makes	it	easy	to	define	Enumerable
methods	that	will	naturally	remain	lazy	if	called	from	a
lazy	enumerator.

For	example,	continuing	from	the	example	in
Kernel#to_enum:

#	See	Kernel#to_enum	for	the	definition	of	repeat

r	=	1..Float::INFINITY

r.repeat(2).first(5)	#	=>	[1,	1,	2,	2,	3]

r.repeat(2).class	#	=>	Enumerator

r.repeat(2).map{|n|	n	**	2}.first(5)	#	=>	endless	loop!

#	works	naturally	on	lazy	enumerator:

r.lazy.repeat(2).class	#	=>	Enumerator::Lazy

r.lazy.repeat(2).map{|n|	n	**	2}.first(5)	#	=>	[1,	1,	4,	4,	9]

drop(p1)

drop_while()

to_enum(method	=	:each,	*args)	→
lazy_enum
enum_for(method	=	:each,	*args)	→
lazy_enum
to_enum(method	=	:each,	*args)	{|*args|
block}	→	lazy_enum
enum_for(method	=	:each,	*args){|*args|
block}	→	lazy_enum

find_all()

collect_concat	{	|obj|	block	}	→
a_lazy_enumerator
flat_map	{	|obj|	block	}	→	a_lazy_enumerator

Returns	a	new	lazy	enumerator	with	the
concatenated	results	of	running	block	once	for	every
element	in	lazy.

["foo",	"bar"].lazy.flat_map	{|i|	i.each_char.lazy}.force

#=>	["f",	"o",	"o",	"b",	"a",	"r"]

A	value	x	returned	by	block	is	decomposed	if	either	of
the	following	conditions	is	true:

a)	<i>x</i>	responds	to	both	each	and	force,	which	means	that

			<i>x</i>	is	a	lazy	enumerator.

b)	<i>x</i>	is	an	array	or	responds	to	to_ary.

Otherwise,	x	is	contained	as-is	in	the	return	value.

[{a:1},	{b:2}].lazy.flat_map	{|i|	i}.force

#=>	[{:a=>1},	{:b=>2}]

grep(p1)

lazy()

map()

reject()

select()

slice_after(*args)

slice_before(*args)

slice_when(*args)

Similar	to	Kernel#to_enum,	except	it	returns	a	lazy
enumerator.	This	makes	it	easy	to	define	Enumerable
methods	that	will	naturally	remain	lazy	if	called	from	a
lazy	enumerator.

For	example,	continuing	from	the	example	in
Kernel#to_enum:

#	See	Kernel#to_enum	for	the	definition	of	repeat

r	=	1..Float::INFINITY

r.repeat(2).first(5)	#	=>	[1,	1,	2,	2,	3]

r.repeat(2).class	#	=>	Enumerator

r.repeat(2).map{|n|	n	**	2}.first(5)	#	=>	endless	loop!

#	works	naturally	on	lazy	enumerator:

r.lazy.repeat(2).class	#	=>	Enumerator::Lazy

r.lazy.repeat(2).map{|n|	n	**	2}.first(5)	#	=>	[1,	1,	4,	4,	9]

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

take(p1)

take_while()

to_enum(method	=	:each,	*args)	→
lazy_enum
enum_for(method	=	:each,	*args)	→
lazy_enum
to_enum(method	=	:each,	*args)	{|*args|
block}	→	lazy_enum
enum_for(method	=	:each,	*args){|*args|
block}	→	lazy_enum

zip(*args)

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	Enumerator::Yielder
Lazy

In	Files
enumerator.c

Parent
Object

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

module	Errno
Ruby	exception	objects	are	subclasses	of
Exception.	However,	operating	systems	typically
report	errors	using	plain	integers.	Module	Errno
is	created	dynamically	to	map	these	operating
system	errors	to	Ruby	classes,	with	each	error
number	generating	its	own	subclass	of
SystemCallError.	As	the	subclass	is	created	in
module	Errno,	its	name	will	start	Errno::.

The	names	of	the	Errno::	classes	depend	on
the	environment	in	which	Ruby	runs.	On	a
typical	Unix	or	Windows	platform,	there	are
Errno	classes	such	as	Errno::EACCES,
Errno::EAGAIN,	Errno::EINTR,	and	so	on.

The	integer	operating	system	error	number
corresponding	to	a	particular	error	is	available	as
the	class	constant	Errno::error::Errno.

Errno::EACCES::Errno			#=>	13

Errno::EAGAIN::Errno			#=>	11

Errno::EINTR::Errno				#=>	4

The	full	list	of	operating	system	errors	on	your
particular	platform	are	available	as	the	constants
of	Errno.

Errno.constants			#=>	:E2BIG,	:EACCES,	:EADDRINUSE,	:EADDRNOTAVAIL,	...

In	Files
error.c

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	Exception
Descendants	of	class	Exception	are	used	to
communicate	between	Kernel#raise	and	rescue
statements	in	begin	...	end	blocks.	Exception
objects	carry	information	about	the	exception	–
its	type	(the	exception's	class	name),	an	optional
descriptive	string,	and	optional	traceback
information.	Exception	subclasses	may	add
additional	information	like	NameError#name.

Programs	may	make	subclasses	of	Exception,
typically	of	StandardError	or	RuntimeError,	to
provide	custom	classes	and	add	additional
information.	See	the	subclass	list	below	for
defaults	for	raise	and	rescue.

When	an	exception	has	been	raised	but	not	yet
handled	(in	rescue,	ensure,	at_exit	and	END
blocks)	the	global	variable	$!	will	contain	the
current	exception	and	$@	contains	the	current
exception's	backtrace.

It	is	recommended	that	a	library	should	have	one
subclass	of	StandardError	or	RuntimeError	and
have	specific	exception	types	inherit	from	it.	This
allows	the	user	to	rescue	a	generic	exception
type	to	catch	all	exceptions	the	library	may	raise
even	if	future	versions	of	the	library	add	new
exception	subclasses.

For	example:

class	MyLibrary

		class	Error	<	RuntimeError

		end

		class	WidgetError	<	Error

		end

		class	FrobError	<	Error

		end

end

To	handle	both	WidgetError	and	FrobError	the
library	user	can	rescue	MyLibrary::Error.

The	built-in	subclasses	of	Exception	are:

NoMemoryError
ScriptError

LoadError
NotImplementedError
SyntaxError

SecurityError
SignalException

Interrupt
StandardError	–	default	for	rescue

ArgumentError
UncaughtThrowError

EncodingError
FiberError
IOError

EOFError
IndexError

KeyError
StopIteration

LocalJumpError
NameError

NoMethodError
RangeError

FloatDomainError
RegexpError
RuntimeError	–	default	for	raise
SystemCallError

Errno::*
ThreadError
TypeError
ZeroDivisionError

SystemExit
SystemStackError
fatal	–	impossible	to	rescue

In	Files
error.c

Parent
Object

Public	Class	Methods

With	no	argument,	or	if	the	argument	is	the	same	as
the	receiver,	return	the	receiver.	Otherwise,	create	a
new	exception	object	of	the	same	class	as	the
receiver,	but	with	a	message	equal	to	string.to_str.

Construct	a	new	Exception	object,	optionally	passing
in	a	message.

Public	Instance	Methods

Equality—If	obj	is	not	an	Exception,	returns	false.
Otherwise,	returns	true	if	exc	and	obj	share	same
class,	messages,	and	backtrace.

Returns	any	backtrace	associated	with	the	exception.
The	backtrace	is	an	array	of	strings,	each	containing
either	“filename:lineNo:	in	`method'''	or
“filename:lineNo.''

def	a

		raise	"boom"

end

def	b

		a()

end

begin

		b()

rescue	=>	detail

exception(string)	→	an_exception	or	exc

new(msg	=	nil)	→	exception

exc	==	obj	→	true	or	false

backtrace	→	array

		print	detail.backtrace.join("\n")

end

produces:

prog.rb:2:in	`a'

prog.rb:6:in	`b'

prog.rb:10

Returns	any	backtrace	associated	with	the	exception.
This	method	is	similar	to	#backtrace,	but	the
backtrace	is	an	array	of

Thread::Backtrace::Location.

Now,	this	method	is	not	affected	by	#set_backtrace.

Returns	the	previous	exception	($!)	at	the	time	this
exception	was	raised.	This	is	useful	for	wrapping
exceptions	and	retaining	the	original	exception
information.

With	no	argument,	or	if	the	argument	is	the	same	as
the	receiver,	return	the	receiver.	Otherwise,	create	a
new	exception	object	of	the	same	class	as	the
receiver,	but	with	a	message	equal	to	string.to_str.

Return	this	exception's	class	name	and	message

backtrace_locations	→	array

cause	→	an_exception	or	nil

exception(string)	→	an_exception	or	exc

inspect	→	string

message	→	string

Returns	the	result	of	invoking	exception.to_s.
Normally	this	returns	the	exception's	message	or
name.	By	supplying	a	to_str	method,	exceptions	are
agreeing	to	be	used	where	Strings	are	expected.

Sets	the	backtrace	information	associated	with	exc.
The	backtrace	must	be	an	array	of	String	objects	or	a
single	String	in	the	format	described	in	#backtrace.

Returns	exception's	message	(or	the	name	of	the
exception	if	no	message	is	set).

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

set_backtrace(backtrace)	→	array

to_s	→	string

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	FalseClass
The	global	value	false	is	the	only	instance	of
class	FalseClass	and	represents	a	logically	false
value	in	boolean	expressions.	The	class
provides	operators	allowing	false	to	participate
correctly	in	logical	expressions.

In	Files
object.c

Parent
Object

Public	Instance	Methods

And—Returns	false.	obj	is	always	evaluated	as	it	is
the	argument	to	a	method	call—there	is	no	short-
circuit	evaluation	in	this	case.

Exclusive	Or—If	obj	is	nil	or	false,	returns	false;
otherwise,	returns	true.

false	&	obj	→	false
nil	&	obj	→	false

false	^	obj	→	true	or	false
nil	^	obj	→	true	or	false

Alias	for:	to_s

'nuf	said…

Also	aliased	as:	inspect

Or—Returns	false	if	obj	is	nil	or	false;	true
otherwise.

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

inspect()

to_s	→	"false"

false	|	obj	→	true	or	false
nil	|	obj	→	true	or	false

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	Fiber
Fibers	are	primitives	for	implementing	light
weight	cooperative	concurrency	in	Ruby.
Basically	they	are	a	means	of	creating	code
blocks	that	can	be	paused	and	resumed,	much
like	threads.	The	main	difference	is	that	they	are
never	preempted	and	that	the	scheduling	must
be	done	by	the	programmer	and	not	the	VM.

As	opposed	to	other	stackless	light	weight
concurrency	models,	each	fiber	comes	with	a
small	4KB	stack.	This	enables	the	fiber	to	be
paused	from	deeply	nested	function	calls	within
the	fiber	block.

When	a	fiber	is	created	it	will	not	run
automatically.	Rather	it	must	be	be	explicitly
asked	to	run	using	the	Fiber#resume	method.
The	code	running	inside	the	fiber	can	give	up
control	by	calling	Fiber.yield	in	which	case	it
yields	control	back	to	caller	(the	caller	of	the
Fiber#resume).

Upon	yielding	or	termination	the	Fiber	returns
the	value	of	the	last	executed	expression

For	instance:

fiber	=	Fiber.new	do

		Fiber.yield	1

		2

end

puts	fiber.resume

puts	fiber.resume

puts	fiber.resume

produces

1

2

FiberError:	dead	fiber	called

The	Fiber#resume	method	accepts	an	arbitrary
number	of	parameters,	if	it	is	the	first	call	to
resume	then	they	will	be	passed	as	block
arguments.	Otherwise	they	will	be	the	return
value	of	the	call	to	Fiber.yield

Example:

fiber	=	Fiber.new	do	|first|

		second	=	Fiber.yield	first	+	2

end

puts	fiber.resume	10

puts	fiber.resume	14

puts	fiber.resume	18

produces

12

14

FiberError:	dead	fiber	called

In	Files
cont.c

Parent
Object

Public	Class	Methods

Returns	the	current	fiber.	You	need	to	require
'fiber'	before	using	this	method.	If	you	are	not
running	in	the	context	of	a	fiber	this	method	will	return
the	root	fiber.

Yields	control	back	to	the	context	that	resumed	the
fiber,	passing	along	any	arguments	that	were	passed
to	it.	The	fiber	will	resume	processing	at	this	point
when	resume	is	called	next.	Any	arguments	passed	to
the	next	resume	will	be	the	value	that	this	Fiber.yield
expression	evaluates	to.

Public	Instance	Methods

Returns	true	if	the	fiber	can	still	be	resumed	(or
transferred	to).	After	finishing	execution	of	the	fiber
block	this	method	will	always	return	false.	You	need
to	require	'fiber'	before	using	this	method.

current()	→	fiber

yield(args,	...)	→	obj

alive?	→	true	or	false

Resumes	the	fiber	from	the	point	at	which	the	last
Fiber.yield	was	called,	or	starts	running	it	if	it	is	the
first	call	to	resume.	Arguments	passed	to	resume	will
be	the	value	of	the	Fiber.yield	expression	or	will	be
passed	as	block	parameters	to	the	fiber's	block	if	this
is	the	first	resume.

Alternatively,	when	resume	is	called	it	evaluates	to
the	arguments	passed	to	the	next	Fiber.yield
statement	inside	the	fiber's	block	or	to	the	block	value
if	it	runs	to	completion	without	any	Fiber.yield

Transfer	control	to	another	fiber,	resuming	it	from
where	it	last	stopped	or	starting	it	if	it	was	not
resumed	before.	The	calling	fiber	will	be	suspended
much	like	in	a	call	to	Fiber.yield.	You	need	to
require	'fiber'	before	using	this	method.

The	fiber	which	receives	the	transfer	call	is	treats	it
much	like	a	resume	call.	Arguments	passed	to
transfer	are	treated	like	those	passed	to	resume.

You	cannot	resume	a	fiber	that	transferred	control	to
another	one.	This	will	cause	a	double	resume	error.
You	need	to	transfer	control	back	to	this	fiber	before	it
can	yield	and	resume.

Example:

fiber1	=	Fiber.new	do

		puts	"In	Fiber	1"

		Fiber.yield

end

fiber2	=	Fiber.new	do

		puts	"In	Fiber	2"

resume(args,	...)	→	obj

transfer(args,	...)	→	obj

		fiber1.transfer

		puts	"Never	see	this	message"

end

fiber3	=	Fiber.new	do

		puts	"In	Fiber	3"

end

fiber2.resume

fiber3.resume

produces

In	fiber	2

In	fiber	1

In	fiber	3

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	FiberError
Raised	when	an	invalid	operation	is	attempted
on	a	Fiber,	in	particular	when	attempting	to
call/resume	a	dead	fiber,	attempting	to	yield	from
the	root	fiber,	or	calling	a	fiber	across	threads.

fiber	=	Fiber.new{}

fiber.resume	#=>	nil

fiber.resume	#=>	FiberError:	dead	fiber	called

In	Files
cont.c

Parent
StandardError

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	File
A	File	is	an	abstraction	of	any	file	object
accessible	by	the	program	and	is	closely
associated	with	class	IO	File	includes	the
methods	of	module	FileTest	as	class	methods,
allowing	you	to	write	(for	example)	File.exist?
("foo").

In	the	description	of	File	methods,	permission
bits	are	a	platform-specific	set	of	bits	that
indicate	permissions	of	a	file.	On	Unix-based
systems,	permissions	are	viewed	as	a	set	of
three	octets,	for	the	owner,	the	group,	and	the
rest	of	the	world.	For	each	of	these	entities,
permissions	may	be	set	to	read,	write,	or
execute	the	file:

The	permission	bits	0644	(in	octal)	would	thus	be
interpreted	as	read/write	for	owner,	and	read-
only	for	group	and	other.	Higher-order	bits	may
also	be	used	to	indicate	the	type	of	file	(plain,
directory,	pipe,	socket,	and	so	on)	and	various
other	special	features.	If	the	permissions	are	for
a	directory,	the	meaning	of	the	execute	bit
changes;	when	set	the	directory	can	be
searched.

On	non-Posix	operating	systems,	there	may	be
only	the	ability	to	make	a	file	read-only	or	read-
write.	In	this	case,	the	remaining	permission	bits

will	be	synthesized	to	resemble	typical	values.
For	instance,	on	Windows	NT	the	default
permission	bits	are	0644,	which	means	read/write
for	owner,	read-only	for	all	others.	The	only
change	that	can	be	made	is	to	make	the	file
read-only,	which	is	reported	as	0444.

Various	constants	for	the	methods	in	File	can	be
found	in	File::Constants.

In	Files
dir.c
file.c
io.c

Parent
IO

Constants

ALT_SEPARATOR

platform	specific	alternative	separator

PATH_SEPARATOR

path	list	separator

SEPARATOR

separates	directory	parts	in	path

Separator

separates	directory	parts	in	path

Public	Class	Methods

Converts	a	pathname	to	an	absolute	pathname.
Relative	paths	are	referenced	from	the	current
working	directory	of	the	process	unless	dir_string	is
given,	in	which	case	it	will	be	used	as	the	starting
point.	If	the	given	pathname	starts	with	a	“~''	it	is	NOT
expanded,	it	is	treated	as	a	normal	directory	name.

File.absolute_path("~oracle/bin")							#=>	"<relative_path>/~oracle/bin"

Returns	the	last	access	time	for	the	named	file	as	a
Time	object).

file_name	can	be	an	IO	object.

File.atime("testfile")			#=>	Wed	Apr	09	08:51:48	CDT	2003

Returns	the	last	component	of	the	filename	given	in
file_name,	which	can	be	formed	using	both
File::SEPARATOR	and	File::ALT_SEPARATOR	as	the
separator	when	File::ALT_SEPARATOR	is	not	nil.	If
suffix	is	given	and	present	at	the	end	of	file_name,	it
is	removed.	If	suffix	is	“.*”,	any	extension	will	be

absolute_path(file_name	[,	dir_string])	→
abs_file_name

atime(file_name)	→	time

basename(file_name	[,	suffix])	→
base_name

removed.

File.basename("/home/gumby/work/ruby.rb")										#=>	"ruby.rb"

File.basename("/home/gumby/work/ruby.rb",	".rb")			#=>	"ruby"

File.basename("/home/gumby/work/ruby.rb",	".*")				#=>	"ruby"

Returns	the	birth	time	for	the	named	file.

file_name	can	be	an	IO	object.

Note	that	on	Windows	(NTFS),	returns	creation	time
(birth	time).

File.birthtime("testfile")			#=>	Wed	Apr	09	08:53:13	CDT	2003

Returns	true	if	the	named	file	is	a	block	device.

file_name	can	be	an	IO	object.

Returns	true	if	the	named	file	is	a	character	device.

file_name	can	be	an	IO	object.

Changes	permission	bits	on	the	named	file(s)	to	the
bit	pattern	represented	by	mode_int.	Actual	effects
are	operating	system	dependent	(see	the	beginning
of	this	section).	On	Unix	systems,	see	chmod(2)	for
details.	Returns	the	number	of	files	processed.

File.chmod(0644,	"testfile",	"out")			#=>	2

birthtime(file_name)	→	time

blockdev?(file_name)	→	true	or	false

chardev?(file_name)	→	true	or	false

chmod(mode_int,	file_name,	...)	→	integer

Changes	the	owner	and	group	of	the	named	file(s)	to
the	given	numeric	owner	and	group	id's.	Only	a
process	with	superuser	privileges	may	change	the
owner	of	a	file.	The	current	owner	of	a	file	may
change	the	file's	group	to	any	group	to	which	the
owner	belongs.	A	nil	or	-1	owner	or	group	id	is
ignored.	Returns	the	number	of	files	processed.

File.chown(nil,	100,	"testfile")

Returns	the	change	time	for	the	named	file	(the	time
at	which	directory	information	about	the	file	was
changed,	not	the	file	itself).

file_name	can	be	an	IO	object.

Note	that	on	Windows	(NTFS),	returns	creation	time
(birth	time).

File.ctime("testfile")			#=>	Wed	Apr	09	08:53:13	CDT	2003

Deletes	the	named	files,	returning	the	number	of
names	passed	as	arguments.	Raises	an	exception
on	any	error.	See	also	Dir::rmdir.

Returns	true	if	the	named	file	is	a	directory,	or	a
symlink	that	points	at	a	directory,	and	false
otherwise.

chown(owner_int,	group_int,	file_name,...)
→	integer

ctime(file_name)	→	time

delete(file_name,	...)	→	integer
unlink(file_name,	...)	→	integer

directory?(file_name)	→	true	or	false

file_name	can	be	an	IO	object.

File.directory?(".")

Returns	all	components	of	the	filename	given	in
file_name	except	the	last	one.	The	filename	can	be
formed	using	both	File::SEPARATOR	and
File::ALT_SEPARATOR	as	the	separator	when
File::ALT_SEPARATOR	is	not	nil.

File.dirname("/home/gumby/work/ruby.rb")			#=>	"/home/gumby/work"

Returns	true	if	the	named	file	is	executable	by	the
effective	user	id	of	this	process.

Returns	true	if	the	named	file	is	executable	by	the
real	user	id	of	this	process.

Return	true	if	the	named	file	exists.

file_name	can	be	an	IO	object.

“file	exists”	means	that	stat()	or	fstat()	system	call	is
successful.

Deprecated	method.	Don't	use.

dirname(file_name)	→	dir_name

executable?(file_name)	→	true	or	false

executable_real?(file_name)	→	true	or	false

exist?(file_name)	→	true	or	false

exists?(file_name)	→	true	or	false

Converts	a	pathname	to	an	absolute	pathname.
Relative	paths	are	referenced	from	the	current
working	directory	of	the	process	unless	dir_string	is
given,	in	which	case	it	will	be	used	as	the	starting
point.	The	given	pathname	may	start	with	a	“~'',	which
expands	to	the	process	owner's	home	directory	(the
environment	variable	HOME	must	be	set	correctly).
“~user''	expands	to	the	named	user's	home	directory.

File.expand_path("~oracle/bin")											#=>	"/home/oracle/bin"

A	simple	example	of	using	dir_string	is	as	follows.

File.expand_path("ruby",	"/usr/bin")						#=>	"/usr/bin/ruby"

A	more	complex	example	which	also	resolves	parent
directory	is	as	follows.	Suppose	we	are	in	bin/mygem
and	want	the	absolute	path	of	lib/mygem.rb.

File.expand_path("../../lib/mygem.rb",	__FILE__)

#=>	".../path/to/project/lib/mygem.rb"

So	first	it	resolves	the	parent	of	__FILE__,	that	is
bin/,	then	go	to	the	parent,	the	root	of	the	project	and
appends	lib/mygem.rb.

Returns	the	extension	(the	portion	of	file	name	in	path
starting	from	the	last	period).

If	path	is	a	dotfile,	or	starts	with	a	period,	then	the
starting	dot	is	not	dealt	with	the	start	of	the	extension.

An	empty	string	will	also	be	returned	when	the	period

expand_path(file_name	[,	dir_string])	→
abs_file_name

extname(path)	→	string

is	the	last	character	in	path.

File.extname("test.rb")									#=>	".rb"

File.extname("a/b/d/test.rb")			#=>	".rb"

File.extname("foo.")												#=>	""

File.extname("test")												#=>	""

File.extname(".profile")								#=>	""

File.extname(".profile.sh")					#=>	".sh"

Returns	true	if	the	named	file	exists	and	is	a	regular
file.

file	can	be	an	IO	object.

If	the	file	argument	is	a	symbolic	link,	it	will	resolve
the	symbolic	link	and	use	the	file	referenced	by	the
link.

Returns	true	if	path	matches	against	pattern.	The
pattern	is	not	a	regular	expression;	instead	it	follows
rules	similar	to	shell	filename	globbing.	It	may	contain
the	following	metacharacters:
*

Matches	any	file.	Can	be	restricted	by	other	values
in	the	glob.	Equivalent	to	/	.*	/x	in	regexp.
*

Matches	all	files	regular	files

c*

Matches	all	files	beginning	with	c

*c

file?(file)	→	true	or	false

fnmatch(pattern,	path,	[flags])	→	(true	or
false)
fnmatch?(pattern,	path,	[flags])	→	(true	or
false)

Matches	all	files	ending	with	c

c

Matches	all	files	that	have	c	in	them	(including
at	the	beginning	or	end).

To	match	hidden	files	(that	start	with	a	.	set	the
File::FNM_DOTMATCH	flag.

**

Matches	directories	recursively	or	files
expansively.

?

Matches	any	one	character.	Equivalent	to	/.{1}/	in
regexp.

[set]

Matches	any	one	character	in	set.	Behaves
exactly	like	character	sets	in	Regexp,	including	set
negation	([^a-z]).

\

Escapes	the	next	metacharacter.

{a,b}

Matches	pattern	a	and	pattern	b	if
File::FNM_EXTGLOB	flag	is	enabled.	Behaves	like
a	Regexp	union	((?:a|b)).

flags	is	a	bitwise	OR	of	the	FNM_XXX	constants.	The
same	glob	pattern	and	flags	are	used	by	Dir.glob.

Examples:

File.fnmatch('cat',							'cat')								#=>	true		#	match	entire	string

File.fnmatch('cat',							'category')			#=>	false	#	only	match	partial	string

File.fnmatch('c{at,ub}s',	'cats')																				#=>	false	#	{	}	isn't	supported	by	default

File.fnmatch('c{at,ub}s',	'cats',	File::FNM_EXTGLOB)	#=>	true		#	{	}	is	supported	on	FNM_EXTGLOB

File.fnmatch('c?t',					'cat')										#=>	true		#	'?'	match	only	1	character

File.fnmatch('c??t',				'cat')										#=>	false	#	ditto

File.fnmatch('c*',						'cats')									#=>	true		#	'*'	match	0	or	more	characters

File.fnmatch('c*t',					'c/a/b/t')						#=>	true		#	ditto

File.fnmatch('ca[a-z]',	'cat')										#=>	true		#	inclusive	bracket	expression

File.fnmatch('ca[^t]',		'cat')										#=>	false	#	exclusive	bracket	expression	('^'	or	'!')

File.fnmatch('cat',	'CAT')																					#=>	false	#	case	sensitive

File.fnmatch('cat',	'CAT',	File::FNM_CASEFOLD)	#=>	true		#	case	insensitive

File.fnmatch('?',			'/',	File::FNM_PATHNAME)		#=>	false	#	wildcard	doesn't	match	'/'	on	FNM_PATHNAME

File.fnmatch('*',			'/',	File::FNM_PATHNAME)		#=>	false	#	ditto

File.fnmatch('[/]',	'/',	File::FNM_PATHNAME)		#=>	false	#	ditto

File.fnmatch('\?',			'?')																							#=>	true		#	escaped	wildcard	becomes	ordinary

File.fnmatch('\a',			'a')																							#=>	true		#	escaped	ordinary	remains	ordinary

File.fnmatch('\a',			'\a',	File::FNM_NOESCAPE)		#=>	true		#	FNM_NOESCAPE	makes	'\'	ordinary

File.fnmatch('[\?]',	'?')																							#=>	true		#	can	escape	inside	bracket	expression

File.fnmatch('*',			'.profile')																						#=>	false	#	wildcard	doesn't	match	leading

File.fnmatch('*',			'.profile',	File::FNM_DOTMATCH)		#=>	true		#	period	by	default.

File.fnmatch('.*',		'.profile')																						#=>	true

rbfiles	=	'**'	'/'	'*.rb'	#	you	don't	have	to	do	like	this.	just	write	in	single	string.

File.fnmatch(rbfiles,	'main.rb')																				#=>	false

File.fnmatch(rbfiles,	'./main.rb')																		#=>	false

File.fnmatch(rbfiles,	'lib/song.rb')																#=>	true

File.fnmatch('**.rb',	'main.rb')																				#=>	true

File.fnmatch('**.rb',	'./main.rb')																		#=>	false

File.fnmatch('**.rb',	'lib/song.rb')																#=>	true

File.fnmatch('*',											'dave/.profile')																						

pattern	=	'*'	'/'	'*'

File.fnmatch(pattern,	'dave/.profile',	File::FNM_PATHNAME

File.fnmatch(pattern,	'dave/.profile',	File::FNM_PATHNAME

pattern	=	'**'	'/'	'foo'

File.fnmatch(pattern,	'a/b/c/foo',	File::FNM_PATHNAME)					

File.fnmatch(pattern,	'/a/b/c/foo',	File::FNM_PATHNAME

File.fnmatch(pattern,	'c:/a/b/c/foo',	File::FNM_PATHNAME

File.fnmatch(pattern,	'a/.b/c/foo',	File::FNM_PATHNAME

File.fnmatch(pattern,	'a/.b/c/foo',	File::FNM_PATHNAME

fnmatch(pattern,	path,	[flags])	→	(true	or
false)
fnmatch?(pattern,	path,	[flags])	→	(true	or

Returns	true	if	path	matches	against	pattern.	The
pattern	is	not	a	regular	expression;	instead	it	follows
rules	similar	to	shell	filename	globbing.	It	may	contain
the	following	metacharacters:
*

Matches	any	file.	Can	be	restricted	by	other	values
in	the	glob.	Equivalent	to	/	.*	/x	in	regexp.
*

Matches	all	files	regular	files

c*

Matches	all	files	beginning	with	c

*c

Matches	all	files	ending	with	c

c

Matches	all	files	that	have	c	in	them	(including
at	the	beginning	or	end).

To	match	hidden	files	(that	start	with	a	.	set	the
File::FNM_DOTMATCH	flag.

**

Matches	directories	recursively	or	files
expansively.

?

Matches	any	one	character.	Equivalent	to	/.{1}/	in
regexp.

[set]

Matches	any	one	character	in	set.	Behaves
exactly	like	character	sets	in	Regexp,	including	set
negation	([^a-z]).

\

Escapes	the	next	metacharacter.

{a,b}

false)

Matches	pattern	a	and	pattern	b	if
File::FNM_EXTGLOB	flag	is	enabled.	Behaves	like
a	Regexp	union	((?:a|b)).

flags	is	a	bitwise	OR	of	the	FNM_XXX	constants.	The
same	glob	pattern	and	flags	are	used	by	Dir.glob.

Examples:

File.fnmatch('cat',							'cat')								#=>	true		#	match	entire	string

File.fnmatch('cat',							'category')			#=>	false	#	only	match	partial	string

File.fnmatch('c{at,ub}s',	'cats')																				#=>	false	#	{	}	isn't	supported	by	default

File.fnmatch('c{at,ub}s',	'cats',	File::FNM_EXTGLOB)	#=>	true		#	{	}	is	supported	on	FNM_EXTGLOB

File.fnmatch('c?t',					'cat')										#=>	true		#	'?'	match	only	1	character

File.fnmatch('c??t',				'cat')										#=>	false	#	ditto

File.fnmatch('c*',						'cats')									#=>	true		#	'*'	match	0	or	more	characters

File.fnmatch('c*t',					'c/a/b/t')						#=>	true		#	ditto

File.fnmatch('ca[a-z]',	'cat')										#=>	true		#	inclusive	bracket	expression

File.fnmatch('ca[^t]',		'cat')										#=>	false	#	exclusive	bracket	expression	('^'	or	'!')

File.fnmatch('cat',	'CAT')																					#=>	false	#	case	sensitive

File.fnmatch('cat',	'CAT',	File::FNM_CASEFOLD)	#=>	true		#	case	insensitive

File.fnmatch('?',			'/',	File::FNM_PATHNAME)		#=>	false	#	wildcard	doesn't	match	'/'	on	FNM_PATHNAME

File.fnmatch('*',			'/',	File::FNM_PATHNAME)		#=>	false	#	ditto

File.fnmatch('[/]',	'/',	File::FNM_PATHNAME)		#=>	false	#	ditto

File.fnmatch('\?',			'?')																							#=>	true		#	escaped	wildcard	becomes	ordinary

File.fnmatch('\a',			'a')																							#=>	true		#	escaped	ordinary	remains	ordinary

File.fnmatch('\a',			'\a',	File::FNM_NOESCAPE)		#=>	true		#	FNM_NOESCAPE	makes	'\'	ordinary

File.fnmatch('[\?]',	'?')																							#=>	true		#	can	escape	inside	bracket	expression

File.fnmatch('*',			'.profile')																						#=>	false	#	wildcard	doesn't	match	leading

File.fnmatch('*',			'.profile',	File::FNM_DOTMATCH)		#=>	true		#	period	by	default.

File.fnmatch('.*',		'.profile')																						#=>	true

rbfiles	=	'**'	'/'	'*.rb'	#	you	don't	have	to	do	like	this.	just	write	in	single	string.

File.fnmatch(rbfiles,	'main.rb')																				#=>	false

File.fnmatch(rbfiles,	'./main.rb')																		#=>	false

File.fnmatch(rbfiles,	'lib/song.rb')																#=>	true

File.fnmatch('**.rb',	'main.rb')																				#=>	true

File.fnmatch('**.rb',	'./main.rb')																		#=>	false

File.fnmatch('**.rb',	'lib/song.rb')																#=>	true

File.fnmatch('*',											'dave/.profile')																						

pattern	=	'*'	'/'	'*'

File.fnmatch(pattern,	'dave/.profile',	File::FNM_PATHNAME

File.fnmatch(pattern,	'dave/.profile',	File::FNM_PATHNAME

pattern	=	'**'	'/'	'foo'

File.fnmatch(pattern,	'a/b/c/foo',	File::FNM_PATHNAME)					

File.fnmatch(pattern,	'/a/b/c/foo',	File::FNM_PATHNAME

File.fnmatch(pattern,	'c:/a/b/c/foo',	File::FNM_PATHNAME

File.fnmatch(pattern,	'a/.b/c/foo',	File::FNM_PATHNAME

File.fnmatch(pattern,	'a/.b/c/foo',	File::FNM_PATHNAME

Identifies	the	type	of	the	named	file;	the	return	string
is	one	of	“file'',	“directory'',	“characterSpecial'',
“blockSpecial'',	“fifo'',	“link'',	“socket'',	or	“unknown''.

File.ftype("testfile")												#=>	"file"

File.ftype("/dev/tty")												#=>	"characterSpecial"

File.ftype("/tmp/.X11-unix/X0")			#=>	"socket"

Returns	true	if	the	named	file	exists	and	the	effective
group	id	of	the	calling	process	is	the	owner	of	the	file.
Returns	false	on	Windows.

file_name	can	be	an	IO	object.

Returns	true	if	the	named	files	are	identical.

file_1	and	file_2	can	be	an	IO	object.

open("a",	"w")	{}

p	File.identical?("a",	"a")						#=>	true

p	File.identical?("a",	"./a")				#=>	true

File.link("a",	"b")

ftype(file_name)	→	string

grpowned?(file_name)	→	true	or	false

identical?(file_1,	file_2)	→	true	or	false

p	File.identical?("a",	"b")						#=>	true

File.symlink("a",	"c")

p	File.identical?("a",	"c")						#=>	true

open("d",	"w")	{}

p	File.identical?("a",	"d")						#=>	false

Returns	a	new	string	formed	by	joining	the	strings
using	File::SEPARATOR.

File.join("usr",	"mail",	"gumby")			#=>	"usr/mail/gumby"

Equivalent	to	File::chmod,	but	does	not	follow
symbolic	links	(so	it	will	change	the	permissions
associated	with	the	link,	not	the	file	referenced	by	the
link).	Often	not	available.

Equivalent	to	File::chown,	but	does	not	follow
symbolic	links	(so	it	will	change	the	owner	associated
with	the	link,	not	the	file	referenced	by	the	link).	Often
not	available.	Returns	number	of	files	in	the	argument
list.

Creates	a	new	name	for	an	existing	file	using	a	hard
link.	Will	not	overwrite	new_name	if	it	already	exists
(raising	a	subclass	of	SystemCallError).	Not	available
on	all	platforms.

File.link("testfile",	".testfile")			#=>	0

IO.readlines(".testfile")[0]									#=>	"This	is	line	one\n"

join(string,	...)	→	string

lchmod(mode_int,	file_name,	...)	→	integer

lchown(owner_int,	group_int,	file_name,..)	→
integer

link(old_name,	new_name)	→	0

Same	as	File::stat,	but	does	not	follow	the	last
symbolic	link.	Instead,	reports	on	the	link	itself.

File.symlink("testfile",	"link2test")			#=>	0

File.stat("testfile").size														#=>	66

File.lstat("link2test").size												#=>	8

File.stat("link2test").size													#=>	66

Returns	the	modification	time	for	the	named	file	as	a
Time	object.

file_name	can	be	an	IO	object.

File.mtime("testfile")			#=>	Tue	Apr	08	12:58:04	CDT	2003

Opens	the	file	named	by	filename	according	to	the
given	mode	and	returns	a	new	File	object.

See	IO.new	for	a	description	of	mode	and	opt.

If	a	file	is	being	created,	permission	bits	may	be	given
in	perm.	These	mode	and	permission	bits	are	platform
dependent;	on	Unix	systems,	see	open(2)	and
chmod(2)	man	pages	for	details.

Examples
f	=	File.new("testfile",	"r")

f	=	File.new("newfile",		"w+")

f	=	File.new("newfile",	File::CREAT|File::TRUNC|File::RDWR,	0644)

lstat(file_name)	→	stat

mtime(file_name)	→	time

new(filename,	mode="r"	[,	opt])	→	file
new(filename	[,	mode	[,	perm]]	[,	opt])	→	file

With	no	associated	block,	File.open	is	a	synonym	for
::new.	If	the	optional	code	block	is	given,	it	will	be
passed	the	opened	file	as	an	argument	and	the	File
object	will	automatically	be	closed	when	the	block
terminates.	The	value	of	the	block	will	be	returned
from	File.open.

If	a	file	is	being	created,	its	initial	permissions	may	be
set	using	the	perm	parameter.	See	::new	for	further
discussion.

See	IO.new	for	a	description	of	the	mode	and	opt
parameters.

Returns	true	if	the	named	file	exists	and	the	effective
used	id	of	the	calling	process	is	the	owner	of	the	file.

file_name	can	be	an	IO	object.

Returns	the	string	representation	of	the	path

File.path("/dev/null")										#=>	"/dev/null"

File.path(Pathname.new("/tmp"))	#=>	"/tmp"

open(filename,	mode="r"	[,	opt])	→	file
open(filename	[,	mode	[,	perm]]	[,	opt])	→	file
open(filename,	mode="r"	[,	opt])	{|file|	block
}	→	obj
open(filename	[,	mode	[,	perm]]	[,	opt])	{|file|
block	}	→	obj

owned?(file_name)	→	true	or	false

path(path)	→	string

pipe?(file_name)	→	true	or	false

Returns	true	if	the	named	file	is	a	pipe.

file_name	can	be	an	IO	object.

Returns	true	if	the	named	file	is	readable	by	the
effective	user	id	of	this	process.

Returns	true	if	the	named	file	is	readable	by	the	real
user	id	of	this	process.

Returns	the	name	of	the	file	referenced	by	the	given
link.	Not	available	on	all	platforms.

File.symlink("testfile",	"link2test")			#=>	0

File.readlink("link2test")														#=>	"testfile"

Returns	the	real	(absolute)	pathname	of	pathname	in
the	actual	filesystem.	The	real	pathname	doesn't
contain	symlinks	or	useless	dots.

If	dir_string	is	given,	it	is	used	as	a	base	directory	for
interpreting	relative	pathname	instead	of	the	current
directory.

The	last	component	of	the	real	pathname	can	be
nonexistent.

readable?(file_name)	→	true	or	false

readable_real?(file_name)	→	true	or	false

readlink(link_name)	→	file_name

realdirpath(pathname	[,	dir_string])	→
real_pathname

realpath(pathname	[,	dir_string])	→

Returns	the	real	(absolute)	pathname	of	pathname	in
the	actual	filesystem	not	containing	symlinks	or
useless	dots.

If	dir_string	is	given,	it	is	used	as	a	base	directory	for
interpreting	relative	pathname	instead	of	the	current
directory.

All	components	of	the	pathname	must	exist	when	this
method	is	called.

Renames	the	given	file	to	the	new	name.	Raises	a
SystemCallError	if	the	file	cannot	be	renamed.

File.rename("afile",	"afile.bak")			#=>	0

Returns	true	if	the	named	file	has	the	setgid	bit	set.

Returns	true	if	the	named	file	has	the	setuid	bit	set.

Returns	the	size	of	file_name.

file_name	can	be	an	IO	object.

Returns	nil	if	file_name	doesn't	exist	or	has	zero
size,	the	size	of	the	file	otherwise.

file_name	can	be	an	IO	object.

real_pathname

rename(old_name,	new_name)	→	0

setgid?(file_name)	→	true	or	false

setuid?(file_name)	→	true	or	false

size(file_name)	→	integer

size?(file_name)	→	Integer	or	nil

Returns	true	if	the	named	file	is	a	socket.

file_name	can	be	an	IO	object.

Splits	the	given	string	into	a	directory	and	a	file
component	and	returns	them	in	a	two-element	array.
See	also	File::dirname	and	File::basename.

File.split("/home/gumby/.profile")			#=>	["/home/gumby",	".profile"]

Returns	a	File::Stat	object	for	the	named	file	(see
File::Stat).

File.stat("testfile").mtime			#=>	Tue	Apr	08	12:58:04	CDT	2003

Returns	true	if	the	named	file	has	the	sticky	bit	set.

Creates	a	symbolic	link	called	new_name	for	the
existing	file	old_name.	Raises	a	NotImplemented
exception	on	platforms	that	do	not	support	symbolic
links.

File.symlink("testfile",	"link2test")			#=>	0

socket?(file_name)	→	true	or	false

split(file_name)	→	array

stat(file_name)	→	stat

sticky?(file_name)	→	true	or	false

symlink(old_name,	new_name)	→	0

symlink?(file_name)	→	true	or	false

Returns	true	if	the	named	file	is	a	symbolic	link.

Truncates	the	file	file_name	to	be	at	most	integer
bytes	long.	Not	available	on	all	platforms.

f	=	File.new("out",	"w")

f.write("1234567890")					#=>	10

f.close																			#=>	nil

File.truncate("out",	5)			#=>	0

File.size("out")										#=>	5

Returns	the	current	umask	value	for	this	process.	If
the	optional	argument	is	given,	set	the	umask	to	that
value	and	return	the	previous	value.	Umask	values
are	subtracted	from	the	default	permissions,	so	a
umask	of	0222	would	make	a	file	read-only	for
everyone.

File.umask(0006)			#=>	18

File.umask									#=>	6

Deletes	the	named	files,	returning	the	number	of
names	passed	as	arguments.	Raises	an	exception
on	any	error.	See	also	Dir::rmdir.

Sets	the	access	and	modification	times	of	each
named	file	to	the	first	two	arguments.	Returns	the
number	of	file	names	in	the	argument	list.

truncate(file_name,	integer)	→	0

umask()	→	integer
umask(integer)	→	integer

delete(file_name,	...)	→	integer
unlink(file_name,	...)	→	integer

utime(atime,	mtime,	file_name,...)	→	integer

If	file_name	is	readable	by	others,	returns	an	integer
representing	the	file	permission	bits	of	file_name.
Returns	nil	otherwise.	The	meaning	of	the	bits	is
platform	dependent;	on	Unix	systems,	see	stat(2).

file_name	can	be	an	IO	object.

File.world_readable?("/etc/passwd")											#=>	420

m	=	File.world_readable?("/etc/passwd")

sprintf("%o",	m)																														#=>	"644"

If	file_name	is	writable	by	others,	returns	an	integer
representing	the	file	permission	bits	of	file_name.
Returns	nil	otherwise.	The	meaning	of	the	bits	is
platform	dependent;	on	Unix	systems,	see	stat(2).

file_name	can	be	an	IO	object.

File.world_writable?("/tmp")																		#=>	511

m	=	File.world_writable?("/tmp")

sprintf("%o",	m)																														#=>	"777"

Returns	true	if	the	named	file	is	writable	by	the
effective	user	id	of	this	process.

Returns	true	if	the	named	file	is	writable	by	the	real
user	id	of	this	process.

world_readable?(file_name)	→	fixnum	or	nil

world_writable?(file_name)	→	fixnum	or	nil

writable?(file_name)	→	true	or	false

writable_real?(file_name)	→	true	or	false

Returns	true	if	the	named	file	exists	and	has	a	zero
size.

file_name	can	be	an	IO	object.

Public	Instance	Methods

Returns	the	last	access	time	(a	Time	object)

for	<i>file</i>,	or	epoch	if	<i>file</>	has	not	been	accessed

		File.new("testfile").atime			#=>	Wed	Dec	31	18:00:00	CST	1969

Returns	the	birth	time	for	file.

Note	that	on	Windows	(NTFS),	returns	creation	time
(birth	time).

File.new("testfile").birthtime			#=>	Wed	Apr	09	08:53:14	CDT	2003

Changes	permission	bits	on	file	to	the	bit	pattern
represented	by	mode_int.	Actual	effects	are	platform
dependent;	on	Unix	systems,	see	chmod(2)	for
details.	Follows	symbolic	links.	Also	see	File#lchmod.

f	=	File.new("out",	"w");

f.chmod(0644)			#=>	0

zero?(file_name)	→	true	or	false

atime	→	time

birthtime	→	time

chmod(mode_int)	→	0

Changes	the	owner	and	group	of	file	to	the	given
numeric	owner	and	group	id's.	Only	a	process	with
superuser	privileges	may	change	the	owner	of	a	file.
The	current	owner	of	a	file	may	change	the	file's
group	to	any	group	to	which	the	owner	belongs.	A	nil
or	-1	owner	or	group	id	is	ignored.	Follows	symbolic
links.	See	also	File#lchown.

File.new("testfile").chown(502,	1000)

Returns	the	change	time	for	file	(that	is,	the	time
directory	information	about	the	file	was	changed,	not
the	file	itself).

Note	that	on	Windows	(NTFS),	returns	creation	time
(birth	time).

File.new("testfile").ctime			#=>	Wed	Apr	09	08:53:14	CDT	2003

Locks	or	unlocks	a	file	according	to	locking_constant
(a	logical	or	of	the	values	in	the	table	below).	Returns
false	if	File::LOCK_NB	is	specified	and	the	operation
would	otherwise	have	blocked.	Not	available	on	all
platforms.

Locking	constants	(in	class	File):

LOCK_EX			|	Exclusive	lock.	Only	one	process	may	hold	an

										|	exclusive	lock	for	a	given	file	at	a	time.

----------+--

LOCK_NB			|	Don't	block	when	locking.	May	be	combined

										|	with	other	lock	options	using	logical	or.

----------+--

LOCK_SH			|	Shared	lock.	Multiple	processes	may	each	hold	a

chown(owner_int,	group_int)	→	0

ctime	→	time

flock(locking_constant)	→	0	or	false

										|	shared	lock	for	a	given	file	at	the	same	time.

----------+--

LOCK_UN			|	Unlock.

Example:

#	update	a	counter	using	write	lock

#	don't	use	"w"	because	it	truncates	the	file	before	lock.

File.open("counter",	File::RDWR|File::CREAT,	0644)	{|f

		f.flock(File::LOCK_EX)

		value	=	f.read.to_i	+	1

		f.rewind

		f.write("#{value}\n")

		f.flush

		f.truncate(f.pos)

}

#	read	the	counter	using	read	lock

File.open("counter",	"r")	{|f|

		f.flock(File::LOCK_SH)

		p	f.read

}

Same	as	IO#stat,	but	does	not	follow	the	last
symbolic	link.	Instead,	reports	on	the	link	itself.

File.symlink("testfile",	"link2test")			#=>	0

File.stat("testfile").size														#=>	66

f	=	File.new("link2test")

f.lstat.size																												#=>	8

f.stat.size																													#=>	66

Returns	the	modification	time	for	file.

File.new("testfile").mtime			#=>	Wed	Apr	09	08:53:14	CDT	2003

lstat	→	stat

mtime	→	time

Returns	the	pathname	used	to	create	file	as	a	string.
Does	not	normalize	the	name.

File.new("testfile").path															#=>	"testfile"

File.new("/tmp/../tmp/xxx",	"w").path			#=>	"/tmp/../tmp/xxx"

Returns	the	size	of	file	in	bytes.

File.new("testfile").size			#=>	66

Returns	the	pathname	used	to	create	file	as	a	string.
Does	not	normalize	the	name.

File.new("testfile").path															#=>	"testfile"

File.new("/tmp/../tmp/xxx",	"w").path			#=>	"/tmp/../tmp/xxx"

Truncates	file	to	at	most	integer	bytes.	The	file	must
be	opened	for	writing.	Not	available	on	all	platforms.

f	=	File.new("out",	"w")

f.syswrite("1234567890")			#=>	10

f.truncate(5)														#=>	0

f.close()																		#=>	nil

File.size("out")											#=>	5

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

path	→	filename
to_path	→	filename

size	→	integer

path	→	filename
to_path	→	filename

truncate(integer)	→	0

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

module	File::Constants
File::Constants	provides	file-related	constants.
All	possible	file	constants	are	listed	in	the
documentation	but	they	may	not	all	be	present
on	your	platform.

If	the	underlying	platform	doesn't	define	a
constant	the	corresponding	Ruby	constant	is	not
defined.

Your	platform	documentations	(e.g.	man
open(2))	may	describe	more	detailed
information.

In	Files
dir.c

Constants

APPEND

append	on	each	write

BINARY

disable	line	code	conversion

CREAT

create	file	if	it	does	not	exist

DIRECT

Try	to	minimize	cache	effects	of	the	I/O	to	and	from	this
file.

DSYNC

any	write	operation	perform	synchronously	except	some
meta	data

EXCL

error	if	CREAT	and	the	file	exists

LOCK_EX

exclusive	lock.	see	File#flock

LOCK_NB

non-blocking	lock.	used	with	LOCK_SH	or	LOCK_EX.
see	File#flock

LOCK_SH

shared	lock.	see	File#flock

LOCK_UN

unlock.	see	File#flock

NOATIME

do	not	change	atime

NOCTTY

not	to	make	opened	IO	the	controlling	terminal	device

NOFOLLOW

do	not	follow	symlinks

NONBLOCK

do	not	block	on	open	or	for	data	to	become	available

NULL

Name	of	the	null	device

RDONLY

open	for	reading	only

RDWR

open	for	reading	and	writing

RSYNC

any	read	operation	perform	synchronously.	used	with
SYNC	or	DSYNC.

SYNC

any	write	operation	perform	synchronously

TRUNC

truncate	size	to	0

WRONLY

open	for	writing	only

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	File::Stat
Objects	of	class	File::Stat	encapsulate
common	status	information	for	File	objects.	The
information	is	recorded	at	the	moment	the
File::Stat	object	is	created;	changes	made	to
the	file	after	that	point	will	not	be	reflected.
File::Stat	objects	are	returned	by	IO#stat,
File::stat,	File#lstat,	and	File::lstat.	Many
of	these	methods	return	platform-specific	values,
and	not	all	values	are	meaningful	on	all	systems.
See	also	Kernel#test.

In	Files
dir.c

Parent
Object

Included	Modules
Comparable

Public	Class	Methods

Create	a	File::Stat	object	for	the	given	file	name
(raising	an	exception	if	the	file	doesn't	exist).

File::Stat.new(file_name)	→	stat

Public	Instance	Methods

Compares	File::Stat	objects	by	comparing	their
respective	modification	times.

nil	is	returned	if	other_stat	is	not	a	File::Stat	object

f1	=	File.new("f1",	"w")

sleep	1

f2	=	File.new("f2",	"w")

f1.stat	<=>	f2.stat			#=>	-1

Returns	the	last	access	time	for	this	file	as	an	object
of	class	Time.

File.stat("testfile").atime			#=>	Wed	Dec	31	18:00:00	CST	1969

Returns	the	birth	time	for	stat.	If	the	platform	doesn't
have	birthtime,	returns	ctime.

File.write("testfile",	"foo")

sleep	10

File.write("testfile",	"bar")

sleep	10

File.chmod(0644,	"testfile")

sleep	10

File.read("testfile")

File.stat("testfile").birthtime			#=>	2014-02-24	11:19:17	+0900

File.stat("testfile").mtime							#=>	2014-02-24	11:19:27	+0900

File.stat("testfile").ctime							#=>	2014-02-24	11:19:37	+0900

File.stat("testfile").atime							#=>	2014-02-24	11:19:47	+0900

stat	<=>	other_stat	→	-1,	0,	1,	nil

atime	→	time

birthtime	→	aTime

Returns	the	native	file	system's	block	size.	Will	return
nil	on	platforms	that	don't	support	this	information.

File.stat("testfile").blksize			#=>	4096

Returns	true	if	the	file	is	a	block	device,	false	if	it
isn't	or	if	the	operating	system	doesn't	support	this
feature.

File.stat("testfile").blockdev?				#=>	false

File.stat("/dev/hda1").blockdev?			#=>	true

Returns	the	number	of	native	file	system	blocks
allocated	for	this	file,	or	nil	if	the	operating	system
doesn't	support	this	feature.

File.stat("testfile").blocks			#=>	2

Returns	true	if	the	file	is	a	character	device,	false	if	it
isn't	or	if	the	operating	system	doesn't	support	this
feature.

File.stat("/dev/tty").chardev?			#=>	true

Returns	the	change	time	for	stat	(that	is,	the	time
directory	information	about	the	file	was	changed,	not
the	file	itself).

blksize	→	integer	or	nil

blockdev?	→	true	or	false

blocks	→	integer	or	nil

chardev?	→	true	or	false

ctime	→	aTime

Note	that	on	Windows	(NTFS),	returns	creation	time
(birth	time).

File.stat("testfile").ctime			#=>	Wed	Apr	09	08:53:14	CDT	2003

Returns	an	integer	representing	the	device	on	which
stat	resides.

File.stat("testfile").dev			#=>	774

Returns	the	major	part	of	File_Stat#dev	or	nil.

File.stat("/dev/fd1").dev_major			#=>	2

File.stat("/dev/tty").dev_major			#=>	5

Returns	the	minor	part	of	File_Stat#dev	or	nil.

File.stat("/dev/fd1").dev_minor			#=>	1

File.stat("/dev/tty").dev_minor			#=>	0

Returns	true	if	the	named	file	is	a	directory,	or	a
symlink	that	points	at	a	directory,	and	false
otherwise.

file_name	can	be	an	IO	object.

File.directory?(".")

dev	→	fixnum

dev_major	→	fixnum

dev_minor	→	fixnum

directory?(file_name)	→	true	or	false

executable?	→	true	or	false

Returns	true	if	stat	is	executable	or	if	the	operating
system	doesn't	distinguish	executable	files	from
nonexecutable	files.	The	tests	are	made	using	the
effective	owner	of	the	process.

File.stat("testfile").executable?			#=>	false

Same	as	executable?,	but	tests	using	the	real	owner
of	the	process.

Returns	true	if	stat	is	a	regular	file	(not	a	device	file,
pipe,	socket,	etc.).

File.stat("testfile").file?			#=>	true

Identifies	the	type	of	stat.	The	return	string	is	one	of:
“file'',	“directory'',	“characterSpecial'',
“blockSpecial'',	“fifo'',	“link'',	“socket'',	or	“unknown''.

File.stat("/dev/tty").ftype			#=>	"characterSpecial"

Returns	the	numeric	group	id	of	the	owner	of	stat.

File.stat("testfile").gid			#=>	500

Returns	true	if	the	effective	group	id	of	the	process	is
the	same	as	the	group	id	of	stat.	On	Windows	NT,

executable_real?	→	true	or	false

file?	→	true	or	false

ftype	→	string

gid	→	fixnum

grpowned?	→	true	or	false

returns	false.

File.stat("testfile").grpowned?						#=>	true

File.stat("/etc/passwd").grpowned?			#=>	false

Returns	the	inode	number	for	stat.

File.stat("testfile").ino			#=>	1083669

Produce	a	nicely	formatted	description	of	stat.

File.stat("/etc/passwd").inspect

			#=>	"#<File::Stat	dev=0xe000005,	ino=1078078,	mode=0100644,

			#				nlink=1,	uid=0,	gid=0,	rdev=0x0,	size=1374,	blksize=4096,

			#				blocks=8,	atime=Wed	Dec	10	10:16:12	CST	2003,

			#				mtime=Fri	Sep	12	15:41:41	CDT	2003,

			#				ctime=Mon	Oct	27	11:20:27	CST	2003,

			#				birthtime=Mon	Aug	04	08:13:49	CDT	2003>"

Returns	an	integer	representing	the	permission	bits
of	stat.	The	meaning	of	the	bits	is	platform
dependent;	on	Unix	systems,	see	stat(2).

File.chmod(0644,	"testfile")			#=>	1

s	=	File.stat("testfile")

sprintf("%o",	s.mode)										#=>	"100644"

Returns	the	modification	time	of	stat.

File.stat("testfile").mtime			#=>	Wed	Apr	09	08:53:14	CDT	2003

ino	→	fixnum

inspect	→	string

mode	→	fixnum

mtime	→	aTime

Returns	the	number	of	hard	links	to	stat.

File.stat("testfile").nlink													#=>	1

File.link("testfile",	"testfile.bak")			#=>	0

File.stat("testfile").nlink													#=>	2

Returns	true	if	the	effective	user	id	of	the	process	is
the	same	as	the	owner	of	stat.

File.stat("testfile").owned?						#=>	true

File.stat("/etc/passwd").owned?			#=>	false

Returns	true	if	the	operating	system	supports	pipes
and	stat	is	a	pipe;	false	otherwise.

Returns	an	integer	representing	the	device	type	on
which	stat	resides.	Returns	nil	if	the	operating
system	doesn't	support	this	feature.

File.stat("/dev/fd1").rdev			#=>	513

File.stat("/dev/tty").rdev			#=>	1280

Returns	the	major	part	of	File_Stat#rdev	or	nil.

File.stat("/dev/fd1").rdev_major			#=>	2

File.stat("/dev/tty").rdev_major			#=>	5

nlink	→	fixnum

owned?	→	true	or	false

pipe?	→	true	or	false

rdev	→	fixnum	or	nil

rdev_major	→	fixnum

rdev_minor	→	fixnum

Returns	the	minor	part	of	File_Stat#rdev	or	nil.

File.stat("/dev/fd1").rdev_minor			#=>	1

File.stat("/dev/tty").rdev_minor			#=>	0

Returns	true	if	stat	is	readable	by	the	effective	user
id	of	this	process.

File.stat("testfile").readable?			#=>	true

Returns	true	if	stat	is	readable	by	the	real	user	id	of
this	process.

File.stat("testfile").readable_real?			#=>	true

Returns	true	if	stat	has	the	set-group-id	permission
bit	set,	false	if	it	doesn't	or	if	the	operating	system
doesn't	support	this	feature.

File.stat("/usr/sbin/lpc").setgid?			#=>	true

Returns	true	if	stat	has	the	set-user-id	permission	bit
set,	false	if	it	doesn't	or	if	the	operating	system
doesn't	support	this	feature.

File.stat("/bin/su").setuid?			#=>	true

Returns	the	size	of	stat	in	bytes.

readable?	→	true	or	false

readable_real?	→	true	or	false

setgid?	→	true	or	false

setuid?	→	true	or	false

size	→	fixnum

File.stat("testfile").size			#=>	66

Returns	the	size	of	stat	in	bytes.

File.stat("testfile").size			#=>	66

Returns	true	if	stat	is	a	socket,	false	if	it	isn't	or	if	the
operating	system	doesn't	support	this	feature.

File.stat("testfile").socket?			#=>	false

Returns	true	if	stat	has	its	sticky	bit	set,	false	if	it
doesn't	or	if	the	operating	system	doesn't	support	this
feature.

File.stat("testfile").sticky?			#=>	false

Returns	true	if	stat	is	a	symbolic	link,	false	if	it	isn't
or	if	the	operating	system	doesn't	support	this
feature.	As	File::stat	automatically	follows	symbolic
links,	symlink?	will	always	be	false	for	an	object
returned	by	File::stat.

File.symlink("testfile",	"alink")			#=>	0

File.stat("alink").symlink?									#=>	false

File.lstat("alink").symlink?								#=>	true

size	→	integer

socket?	→	true	or	false

sticky?	→	true	or	false

symlink?	→	true	or	false

uid	→	fixnum

Returns	the	numeric	user	id	of	the	owner	of	stat.

File.stat("testfile").uid			#=>	501

If	stat	is	readable	by	others,	returns	an	integer
representing	the	file	permission	bits	of	stat.	Returns
nil	otherwise.	The	meaning	of	the	bits	is	platform
dependent;	on	Unix	systems,	see	stat(2).

m	=	File.stat("/etc/passwd").world_readable?		#=>	420

sprintf("%o",	m)																														#=>	"644"

If	stat	is	writable	by	others,	returns	an	integer
representing	the	file	permission	bits	of	stat.	Returns
nil	otherwise.	The	meaning	of	the	bits	is	platform
dependent;	on	Unix	systems,	see	stat(2).

m	=	File.stat("/tmp").world_writable?									#=>	511

sprintf("%o",	m)																														#=>	"777"

Returns	true	if	stat	is	writable	by	the	effective	user	id
of	this	process.

File.stat("testfile").writable?			#=>	true

Returns	true	if	stat	is	writable	by	the	real	user	id	of
this	process.

File.stat("testfile").writable_real?			#=>	true

world_readable?	→	fixnum	or	nil

world_writable?	→	fixnum	or	nil

writable?	→	true	or	false

writable_real?	→	true	or	false

Returns	true	if	stat	is	a	zero-length	file;	false
otherwise.

File.stat("testfile").zero?			#=>	false

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

zero?	→	true	or	false

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

module	FileTest
FileTest	implements	file	test	operations	similar
to	those	used	in	File::Stat.	It	exists	as	a
standalone	module,	and	its	methods	are	also
insinuated	into	the	File	class.	(Note	that	this	is
not	done	by	inclusion:	the	interpreter	cheats).

In	Files
file.c

Public	Instance	Methods

Returns	true	if	the	named	file	is	a	block	device.

file_name	can	be	an	IO	object.

Returns	true	if	the	named	file	is	a	character	device.

file_name	can	be	an	IO	object.

Returns	true	if	the	named	file	is	a	directory,	or	a
symlink	that	points	at	a	directory,	and	false
otherwise.

file_name	can	be	an	IO	object.

blockdev?(file_name)	→	true	or	false

chardev?(file_name)	→	true	or	false

directory?(file_name)	→	true	or	false

File.directory?(".")

Returns	true	if	the	named	file	is	executable	by	the
effective	user	id	of	this	process.

Returns	true	if	the	named	file	is	executable	by	the
real	user	id	of	this	process.

Return	true	if	the	named	file	exists.

file_name	can	be	an	IO	object.

“file	exists”	means	that	stat()	or	fstat()	system	call	is
successful.

Deprecated	method.	Don't	use.

Returns	true	if	the	named	file	exists	and	is	a	regular
file.

file	can	be	an	IO	object.

If	the	file	argument	is	a	symbolic	link,	it	will	resolve
the	symbolic	link	and	use	the	file	referenced	by	the
link.

Returns	true	if	the	named	file	exists	and	the	effective

executable?(file_name)	→	true	or	false

executable_real?(file_name)	→	true	or	false

exist?(file_name)	→	true	or	false

exists?(file_name)	→	true	or	false

file?(file)	→	true	or	false

grpowned?(file_name)	→	true	or	false

group	id	of	the	calling	process	is	the	owner	of	the	file.
Returns	false	on	Windows.

file_name	can	be	an	IO	object.

Returns	true	if	the	named	files	are	identical.

file_1	and	file_2	can	be	an	IO	object.

open("a",	"w")	{}

p	File.identical?("a",	"a")						#=>	true

p	File.identical?("a",	"./a")				#=>	true

File.link("a",	"b")

p	File.identical?("a",	"b")						#=>	true

File.symlink("a",	"c")

p	File.identical?("a",	"c")						#=>	true

open("d",	"w")	{}

p	File.identical?("a",	"d")						#=>	false

Returns	true	if	the	named	file	exists	and	the	effective
used	id	of	the	calling	process	is	the	owner	of	the	file.

file_name	can	be	an	IO	object.

Returns	true	if	the	named	file	is	a	pipe.

file_name	can	be	an	IO	object.

Returns	true	if	the	named	file	is	readable	by	the
effective	user	id	of	this	process.

identical?(file_1,	file_2)	→	true	or	false

owned?(file_name)	→	true	or	false

pipe?(file_name)	→	true	or	false

readable?(file_name)	→	true	or	false

readable_real?(file_name)	→	true	or	false

Returns	true	if	the	named	file	is	readable	by	the	real
user	id	of	this	process.

Returns	true	if	the	named	file	has	the	setgid	bit	set.

Returns	true	if	the	named	file	has	the	setuid	bit	set.

Returns	the	size	of	file_name.

file_name	can	be	an	IO	object.

Returns	nil	if	file_name	doesn't	exist	or	has	zero
size,	the	size	of	the	file	otherwise.

file_name	can	be	an	IO	object.

Returns	true	if	the	named	file	is	a	socket.

file_name	can	be	an	IO	object.

Returns	true	if	the	named	file	has	the	sticky	bit	set.

Returns	true	if	the	named	file	is	a	symbolic	link.

setgid?(file_name)	→	true	or	false

setuid?(file_name)	→	true	or	false

size(file_name)	→	integer

size?(file_name)	→	Integer	or	nil

socket?(file_name)	→	true	or	false

sticky?(file_name)	→	true	or	false

symlink?(file_name)	→	true	or	false

If	file_name	is	readable	by	others,	returns	an	integer
representing	the	file	permission	bits	of	file_name.
Returns	nil	otherwise.	The	meaning	of	the	bits	is
platform	dependent;	on	Unix	systems,	see	stat(2).

file_name	can	be	an	IO	object.

File.world_readable?("/etc/passwd")											#=>	420

m	=	File.world_readable?("/etc/passwd")

sprintf("%o",	m)																														#=>	"644"

If	file_name	is	writable	by	others,	returns	an	integer
representing	the	file	permission	bits	of	file_name.
Returns	nil	otherwise.	The	meaning	of	the	bits	is
platform	dependent;	on	Unix	systems,	see	stat(2).

file_name	can	be	an	IO	object.

File.world_writable?("/tmp")																		#=>	511

m	=	File.world_writable?("/tmp")

sprintf("%o",	m)																														#=>	"777"

Returns	true	if	the	named	file	is	writable	by	the
effective	user	id	of	this	process.

Returns	true	if	the	named	file	is	writable	by	the	real
user	id	of	this	process.

world_readable?(file_name)	→	fixnum	or	nil

world_writable?(file_name)	→	fixnum	or	nil

writable?(file_name)	→	true	or	false

writable_real?(file_name)	→	true	or	false

zero?(file_name)	→	true	or	false

Returns	true	if	the	named	file	exists	and	has	a	zero
size.

file_name	can	be	an	IO	object.

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	Fixnum
Holds	Integer	values	that	can	be	represented	in
a	native	machine	word	(minus	1	bit).	If	any
operation	on	a	Fixnum	exceeds	this	range,	the
value	is	automatically	converted	to	a	Bignum.

Fixnum	objects	have	immediate	value.	This
means	that	when	they	are	assigned	or	passed
as	parameters,	the	actual	object	is	passed,
rather	than	a	reference	to	that	object.

Assignment	does	not	alias	Fixnum	objects.
There	is	effectively	only	one	Fixnum	object
instance	for	any	given	integer	value,	so,	for
example,	you	cannot	add	a	singleton	method	to
a	Fixnum.	Any	attempt	to	add	a	singleton
method	to	a	Fixnum	object	will	raise	a
TypeError.

In	Files
numeric.c

Parent
Integer

Public	Instance	Methods

Returns	fix	modulo	other.

See	Numeric#divmod	for	more	information.

Bitwise	AND.

Performs	multiplication:	the	class	of	the	resulting
object	depends	on	the	class	of	numeric	and	on	the
magnitude	of	the	result.	It	may	return	a	Bignum.

Raises	fix	to	the	power	of	numeric,	which	may	be
negative	or	fractional.

2	**	3						#=>	8

2	**	-1					#=>	(1/2)

2	**	0.5				#=>	1.4142135623731

Performs	addition:	the	class	of	the	resulting	object
depends	on	the	class	of	numeric	and	on	the
magnitude	of	the	result.	It	may	return	a	Bignum.

Performs	subtraction:	the	class	of	the	resulting	object
depends	on	the	class	of	numeric	and	on	the
magnitude	of	the	result.	It	may	return	a	Bignum.

fix	%	other	→	real
modulo(other)	→	real

fix	&	integer	→	integer_result

fix	*	numeric	→	numeric_result

fix	**	numeric	→	numeric_result

fix	+	numeric	→	numeric_result

fix	-	numeric	→	numeric_result

Negates	fix,	which	may	return	a	Bignum.

Performs	division:	the	class	of	the	resulting	object
depends	on	the	class	of	numeric	and	on	the
magnitude	of	the	result.	It	may	return	a	Bignum.

Returns	true	if	the	value	of	fix	is	less	than	that	of
real.

Shifts	fix	left	count	positions,	or	right	if	count	is
negative.

Returns	true	if	the	value	of	fix	is	less	than	or	equal
to	that	of	real.

Comparison—Returns	-1,	0,	+1	or	nil	depending	on
whether	fix	is	less	than,	equal	to,	or	greater	than
numeric.

This	is	the	basis	for	the	tests	in	the	Comparable
module.

nil	is	returned	if	the	two	values	are	incomparable.

-fix	→	integer

fix	/	numeric	→	numeric_result

fix	<	real	→	true	or	false

fix	<<	count	→	integer

fix	<=	real	→	true	or	false

fix	<=>	numeric	→	-1,	0,	+1	or	nil

fix	==	other	→	true	or	false

Return	true	if	fix	equals	other	numerically.

1	==	2						#=>	false

1	==	1.0				#=>	true

Return	true	if	fix	equals	other	numerically.

1	==	2						#=>	false

1	==	1.0				#=>	true

Returns	true	if	the	value	of	fix	is	greater	than	that	of
real.

Returns	true	if	the	value	of	fix	is	greater	than	or
equal	to	that	of	real.

Shifts	fix	right	count	positions,	or	left	if	count	is
negative.

Bit	Reference—Returns	the	+n+th	bit	in	the	binary
representation	of	fix,	where	fix[0]	is	the	least
significant	bit.

For	example:

a	=	0b11001100101010

30.downto(0)	do	|n|	print	a[n]	end

#=>	0000000000000000011001100101010

fix	==	other	→	true	or	false

fix	>	real	→	true	or	false

fix	>=	real	→	true	or	false

fix	>>	count	→	integer

fix[n]	→	0,	1

Bitwise	EXCLUSIVE	OR.

Returns	the	absolute	value	of	fix.

-12345.abs			#=>	12345

12345.abs				#=>	12345

Returns	the	number	of	bits	of	the	value	of	int.

“the	number	of	bits”	means	that	the	bit	position	of	the
highest	bit	which	is	different	to	the	sign	bit.	(The	bit
position	of	the	bit	2**n	is	n+1.)	If	there	is	no	such	bit
(zero	or	minus	one),	zero	is	returned.

I.e.	This	method	returns	ceil(log2(int	<	0	?	-int	:
int+1)).

(-2**12-1).bit_length					#=>	13

(-2**12).bit_length							#=>	12

(-2**12+1).bit_length					#=>	12

-0x101.bit_length									#=>	9

-0x100.bit_length									#=>	8

-0xff.bit_length										#=>	8

-2.bit_length													#=>	1

-1.bit_length													#=>	0

0.bit_length														#=>	0

1.bit_length														#=>	1

0xff.bit_length											#=>	8

0x100.bit_length										#=>	9

(2**12-1).bit_length						#=>	12

(2**12).bit_length								#=>	13

(2**12+1).bit_length						#=>	13

This	method	can	be	used	to	detect	overflow	in
Array#pack	as	follows.

fix	^	integer	→	integer_result

abs	→	integer
magnitude	→	integer

bit_length	→	integer

if	n.bit_length	<	32

		[n].pack("l")	#	no	overflow

else

		raise	"overflow"

end

Performs	integer	division:	returns	integer	result	of
dividing	fix	by	numeric.

See	Numeric#divmod.

Returns	true	if	fix	is	an	even	number.

Returns	the	floating	point	result	of	dividing	fix	by
numeric.

654321.fdiv(13731)						#=>	47.6528293642124

654321.fdiv(13731.24)			#=>	47.6519964693647

Alias	for:	to_s

Returns	the	absolute	value	of	fix.

-12345.abs			#=>	12345

12345.abs				#=>	12345

div(numeric)	→	integer

divmod(numeric)	→	array

even?	→	true	or	false

fdiv(numeric)	→	float

inspect(p1	=	v1)

abs	→	integer
magnitude	→	integer

Returns	fix	modulo	other.

See	Numeric#divmod	for	more	information.

Returns	true	if	fix	is	an	odd	number.

Returns	the	number	of	bytes	in	the	machine
representation	of	fix.

1.size												#=>	4

-1.size											#=>	4

2147483647.size			#=>	4

Returns	the	Integer	equal	to	int	+	1.

1.next						#=>	2

(-1).next			#=>	0

Converts	fix	to	a	Float.

Returns	a	string	containing	the	representation	of	fix
radix	base	(between	2	and	36).

12345.to_s							#=>	"12345"

fix	%	other	→	real
modulo(other)	→	real

odd?	→	true	or	false

size	→	fixnum

next	→	integer
succ	→	integer

to_f	→	float

to_s(base=10)	→	string

12345.to_s(2)				#=>	"11000000111001"

12345.to_s(8)				#=>	"30071"

12345.to_s(10)			#=>	"12345"

12345.to_s(16)			#=>	"3039"

12345.to_s(36)			#=>	"9ix"

Also	aliased	as:	inspect

Returns	true	if	fix	is	zero.

Bitwise	OR.

One's	complement:	returns	a	number	where	each	bit
is	flipped.

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

zero?	→	true	or	false

fix	|	integer	→	integer_result

~fix	→	integer

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	Float
Float	objects	represent	inexact	real	numbers
using	the	native	architecture's	double-precision
floating	point	representation.

Floating	point	has	a	different	arithmetic	and	is	an
inexact	number.	So	you	should	know	its	esoteric
system.	see	following:

docs.sun.com/source/806-
3568/ncg_goldberg.html
wiki.github.com/rdp/ruby_tutorials_core/ruby-
talk-faq#wiki-floats_imprecise
en.wikipedia.org/wiki/Floating_point#Accuracy_problems

In	Files
complex.c
numeric.c
rational.c

Parent
Numeric

Constants

DIG

http://docs.sun.com/source/806-3568/ncg_goldberg.html
http://wiki.github.com/rdp/ruby_tutorials_core/ruby-talk-faq#wiki-floats_imprecise
http://en.wikipedia.org/wiki/Floating_point#Accuracy_problems

The	minimum	number	of	significant	decimal	digits	in	a
double-precision	floating	point.

Usually	defaults	to	15.

EPSILON

The	difference	between	1	and	the	smallest	double-
precision	floating	point	number	greater	than	1.

Usually	defaults	to	2.2204460492503131e-16.

INFINITY

An	expression	representing	positive	infinity.

MANT_DIG

The	number	of	base	digits	for	the	double	data	type.

Usually	defaults	to	53.

MAX

The	largest	possible	integer	in	a	double-precision
floating	point	number.

Usually	defaults	to	1.7976931348623157e+308.

MAX_10_EXP

The	largest	positive	exponent	in	a	double-precision
floating	point	where	10	raised	to	this	power	minus	1.

Usually	defaults	to	308.

MAX_EXP

The	largest	possible	exponent	value	in	a	double-
precision	floating	point.

Usually	defaults	to	1024.

MIN

MIN.	0.0.next_float	returns	the	smallest	positive	floating
point	number	including	denormalized	numbers.

MIN_10_EXP

The	smallest	negative	exponent	in	a	double-precision
floating	point	where	10	raised	to	this	power	minus	1.

Usually	defaults	to	-307.

MIN_EXP

The	smallest	posable	exponent	value	in	a	double-
precision	floating	point.

Usually	defaults	to	-1021.

NAN

An	expression	representing	a	value	which	is	“not	a
number”.

RADIX

The	base	of	the	floating	point,	or	number	of	unique
digits	used	to	represent	the	number.

Usually	defaults	to	2	on	most	systems,	which	would
represent	a	base-10	decimal.

ROUNDS

Rounding	towards	negative	infinity

Public	Instance	Methods

Return	the	modulo	after	division	of	float	by	other.

6543.21.modulo(137)						#=>	104.21

6543.21.modulo(137.24)			#=>	92.9299999999996

Returns	a	new	float	which	is	the	product	of	float	and
other.

Raises	float	to	the	power	of	other.

2.0**3						#=>	8.0

Returns	a	new	float	which	is	the	sum	of	float	and
other.

Returns	a	new	float	which	is	the	difference	of	float
and	other.

Returns	float,	negated.

float	%	other	→	float
modulo(other)	→	float

float	*	other	→	float

float	**	other	→	float

float	+	other	→	float

float	-	other	→	float

-float	→	float

float	/	other	→	float

Returns	a	new	float	which	is	the	result	of	dividing
float	by	other.

Returns	true	if	float	is	less	than	real.

The	result	of	NaN	<	NaN	is	undefined,	so	the
implementation-dependent	value	is	returned.

Returns	true	if	float	is	less	than	or	equal	to	real.

The	result	of	NaN	<=	NaN	is	undefined,	so	the
implementation-dependent	value	is	returned.

Returns	-1,	0,	+1	or	nil	depending	on	whether	float	is
less	than,	equal	to,	or	greater	than	real.	This	is	the
basis	for	the	tests	in	Comparable.

The	result	of	NaN	<=>	NaN	is	undefined,	so	the
implementation-dependent	value	is	returned.

nil	is	returned	if	the	two	values	are	incomparable.

Returns	true	only	if	obj	has	the	same	value	as	float.
Contrast	this	with	#eql?,	which	requires	obj	to	be	a
Float.

The	result	of	NaN	==	NaN	is	undefined,	so	the
implementation-dependent	value	is	returned.

1.0	==	1			#=>	true

float	<	real	→	true	or	false

float	<=	real	→	true	or	false

float	<=>	real	→	-1,	0,	+1	or	nil

float	==	obj	→	true	or	false

Returns	true	only	if	obj	has	the	same	value	as	float.
Contrast	this	with	#eql?,	which	requires	obj	to	be	a
Float.

The	result	of	NaN	==	NaN	is	undefined,	so	the
implementation-dependent	value	is	returned.

1.0	==	1			#=>	true

Returns	true	if	float	is	greater	than	real.

The	result	of	NaN	>	NaN	is	undefined,	so	the
implementation-dependent	value	is	returned.

Returns	true	if	float	is	greater	than	or	equal	to	real.

The	result	of	NaN	>=	NaN	is	undefined,	so	the
implementation-dependent	value	is	returned.

Returns	the	absolute	value	of	float.

(-34.56).abs			#=>	34.56

-34.56.abs					#=>	34.56

Returns	0	if	the	value	is	positive,	pi	otherwise.

float	==	obj	→	true	or	false

float	>	real	→	true	or	false

float	>=	real	→	true	or	false

abs	→	float
magnitude	→	float

arg	→	0	or	float
angle	→	0	or	float
phase	→	0	or	float

Returns	0	if	the	value	is	positive,	pi	otherwise.

Returns	the	smallest	Integer	greater	than	or	equal	to
float.

1.2.ceil						#=>	2

2.0.ceil						#=>	2

(-1.2).ceil			#=>	-1

(-2.0).ceil			#=>	-2

Returns	an	array	with	both	a	numeric	and	a	float
represented	as	Float	objects.

This	is	achieved	by	converting	a	numeric	to	a	Float.

1.2.coerce(3)							#=>	[3.0,	1.2]

2.5.coerce(1.1)					#=>	[1.1,	2.5]

Returns	the	denominator	(always	positive).	The	result
is	machine	dependent.

See	numerator.

See	Numeric#divmod.

42.0.divmod	6	#=>	[7,	0.0]

42.0.divmod	5	#=>	[8,	2.0]

arg	→	0	or	float
angle	→	0	or	float
phase	→	0	or	float

ceil	→	integer

coerce(numeric)	→	array

denominator	→	integer

divmod(numeric)	→	array

Returns	true	only	if	obj	is	a	Float	with	the	same	value
as	float.	Contrast	this	with	Float#==,	which	performs
type	conversions.

The	result	of	NaN.eql?(NaN)	is	undefined,	so	the
implementation-dependent	value	is	returned.

1.0.eql?(1)			#=>	false

Returns	float	/	numeric,	same	as	Float#/.

Returns	true	if	float	is	a	valid	IEEE	floating	point
number	(it	is	not	infinite,	and	#nan?	is	false).

Returns	the	largest	integer	less	than	or	equal	to
float.

1.2.floor						#=>	1

2.0.floor						#=>	2

(-1.2).floor			#=>	-2

(-2.0).floor			#=>	-2

Returns	a	hash	code	for	this	float.

See	also	Object#hash.

eql?(obj)	→	true	or	false

fdiv(numeric)	→	float
quo(numeric)	→	float

finite?	→	true	or	false

floor	→	integer

hash	→	integer

infinite?	→	nil,	-1,	+1

Return	values	corresponding	to	the	value	of	float:
finite

nil

-Infinity

-1

+Infinity
1

For	example:

(0.0).infinite?								#=>	nil

(-1.0/0.0).infinite?			#=>	-1

(+1.0/0.0).infinite?			#=>	1

Alias	for:	to_s

Returns	the	absolute	value	of	float.

(-34.56).abs			#=>	34.56

-34.56.abs					#=>	34.56

Return	the	modulo	after	division	of	float	by	other.

6543.21.modulo(137)						#=>	104.21

6543.21.modulo(137.24)			#=>	92.9299999999996

Returns	true	if	float	is	an	invalid	IEEE	floating	point

inspect()

abs	→	float
magnitude	→	float

float	%	other	→	float
modulo(other)	→	float

nan?	→	true	or	false

number.

a	=	-1.0						#=>	-1.0

a.nan?								#=>	false

a	=	0.0/0.0			#=>	NaN

a.nan?								#=>	true

Returns	the	next	representable	floating-point	number.

Float::MAX.next_float	and	Float::INFINITY.next_float
is	Float::INFINITY.

Float::NAN.next_float	is	Float::NAN.

For	example:

p	0.01.next_float		#=>	0.010000000000000002

p	1.0.next_float			#=>	1.0000000000000002

p	100.0.next_float	#=>	100.00000000000001

p	0.01.next_float	-	0.01			#=>	1.734723475976807e-18

p	1.0.next_float	-	1.0					#=>	2.220446049250313e-16

p	100.0.next_float	-	100.0	#=>	1.4210854715202004e-14

f	=	0.01;	20.times	{	printf	"%-20a	%s\n",	f,	f.to_s;	f

#=>	0x1.47ae147ae147bp-7	0.01

#			0x1.47ae147ae147cp-7	0.010000000000000002

#			0x1.47ae147ae147dp-7	0.010000000000000004

#			0x1.47ae147ae147ep-7	0.010000000000000005

#			0x1.47ae147ae147fp-7	0.010000000000000007

#			0x1.47ae147ae148p-7		0.010000000000000009

#			0x1.47ae147ae1481p-7	0.01000000000000001

#			0x1.47ae147ae1482p-7	0.010000000000000012

#			0x1.47ae147ae1483p-7	0.010000000000000014

#			0x1.47ae147ae1484p-7	0.010000000000000016

#			0x1.47ae147ae1485p-7	0.010000000000000018

#			0x1.47ae147ae1486p-7	0.01000000000000002

#			0x1.47ae147ae1487p-7	0.010000000000000021

#			0x1.47ae147ae1488p-7	0.010000000000000023

#			0x1.47ae147ae1489p-7	0.010000000000000024

#			0x1.47ae147ae148ap-7	0.010000000000000026

#			0x1.47ae147ae148bp-7	0.010000000000000028

#			0x1.47ae147ae148cp-7	0.01000000000000003

#			0x1.47ae147ae148dp-7	0.010000000000000031

next_float	→	float

#			0x1.47ae147ae148ep-7	0.010000000000000033

f	=	0.0

100.times	{	f	+=	0.1	}

p	f																												#=>	9.99999999999998							#	should	be	10.0	in	the	ideal	world.

p	10-f																									#=>	1.9539925233402755e-14	#	the	floating-point	error.

p(10.0.next_float-10)										#=>	1.7763568394002505e-15	#	1	ulp	(units	in	the	last	place).

p((10-f)/(10.0.next_float-10))	#=>	11.0																			#	the	error	is	11	ulp.

p((10-f)/(10*Float::EPSILON))		#=>	8.8																				#	approximation	of	the	above.

p	"%a"	%	f																					#=>	"0x1.3fffffffffff5p+3"	#	the	last	hex	digit	is	5.		16	-	5	=	11	ulp.

Returns	the	numerator.	The	result	is	machine
dependent.

n	=	0.3.numerator				#=>	5404319552844595

d	=	0.3.denominator		#=>	18014398509481984

n.fdiv(d)												#=>	0.3

Returns	0	if	the	value	is	positive,	pi	otherwise.

Returns	the	previous	representable	floatint-point
number.

(-Float::MAX).#prev_float	and	(-
Float::INFINITY).#prev_float	is	-Float::INFINITY.

Float::NAN.prev_float	is	Float::NAN.

For	example:

p	0.01.prev_float		#=>	0.009999999999999998

p	1.0.prev_float			#=>	0.9999999999999999

p	100.0.prev_float	#=>	99.99999999999999

numerator	→	integer

arg	→	0	or	float
angle	→	0	or	float
phase	→	0	or	float

prev_float	→	float

p	0.01	-	0.01.prev_float			#=>	1.734723475976807e-18

p	1.0	-	1.0.prev_float					#=>	1.1102230246251565e-16

p	100.0	-	100.0.prev_float	#=>	1.4210854715202004e-14

f	=	0.01;	20.times	{	printf	"%-20a	%s\n",	f,	f.to_s;	f

#=>	0x1.47ae147ae147bp-7	0.01

#			0x1.47ae147ae147ap-7	0.009999999999999998

#			0x1.47ae147ae1479p-7	0.009999999999999997

#			0x1.47ae147ae1478p-7	0.009999999999999995

#			0x1.47ae147ae1477p-7	0.009999999999999993

#			0x1.47ae147ae1476p-7	0.009999999999999992

#			0x1.47ae147ae1475p-7	0.00999999999999999

#			0x1.47ae147ae1474p-7	0.009999999999999988

#			0x1.47ae147ae1473p-7	0.009999999999999986

#			0x1.47ae147ae1472p-7	0.009999999999999985

#			0x1.47ae147ae1471p-7	0.009999999999999983

#			0x1.47ae147ae147p-7		0.009999999999999981

#			0x1.47ae147ae146fp-7	0.00999999999999998

#			0x1.47ae147ae146ep-7	0.009999999999999978

#			0x1.47ae147ae146dp-7	0.009999999999999976

#			0x1.47ae147ae146cp-7	0.009999999999999974

#			0x1.47ae147ae146bp-7	0.009999999999999972

#			0x1.47ae147ae146ap-7	0.00999999999999997

#			0x1.47ae147ae1469p-7	0.009999999999999969

#			0x1.47ae147ae1468p-7	0.009999999999999967

Returns	float	/	numeric,	same	as	Float#/.

Returns	a	simpler	approximation	of	the	value	(flt-|eps|
<=	result	<=	flt+|eps|).	if	the	optional	eps	is	not	given,
it	will	be	chosen	automatically.

0.3.rationalize										#=>	(3/10)

1.333.rationalize								#=>	(1333/1000)

1.333.rationalize(0.01)		#=>	(4/3)

See	to_r.

fdiv(numeric)	→	float
quo(numeric)	→	float

rationalize([eps])	→	rational

Rounds	float	to	a	given	precision	in	decimal	digits
(default	0	digits).

Precision	may	be	negative.	Returns	a	floating	point
number	when	ndigits	is	more	than	zero.

1.4.round						#=>	1

1.5.round						#=>	2

1.6.round						#=>	2

(-1.5).round			#=>	-2

1.234567.round(2)		#=>	1.23

1.234567.round(3)		#=>	1.235

1.234567.round(4)		#=>	1.2346

1.234567.round(5)		#=>	1.23457

34567.89.round(-5)	#=>	0

34567.89.round(-4)	#=>	30000

34567.89.round(-3)	#=>	35000

34567.89.round(-2)	#=>	34600

34567.89.round(-1)	#=>	34570

34567.89.round(0)		#=>	34568

34567.89.round(1)		#=>	34567.9

34567.89.round(2)		#=>	34567.89

34567.89.round(3)		#=>	34567.89

Since	float	is	already	a	float,	returns	self.

Returns	the	float	truncated	to	an	Integer.

Synonyms	are	to_i,	to_int,	and	truncate.

round([ndigits])	→	integer	or	float

to_f	→	self

to_i	→	integer
to_int	→	integer
truncate	→	integer

Returns	the	float	truncated	to	an	Integer.

Synonyms	are	to_i,	to_int,	and	truncate.

Returns	the	value	as	a	rational.

NOTE:	0.3.to_r	isn't	the	same	as	'0.3'.to_r.	The	latter
is	equivalent	to	'3/10'.#to_r,	but	the	former	isn't	so.

2.0.to_r				#=>	(2/1)

2.5.to_r				#=>	(5/2)

-0.75.to_r		#=>	(-3/4)

0.0.to_r				#=>	(0/1)

See	rationalize.

Returns	a	string	containing	a	representation	of	self.
As	well	as	a	fixed	or	exponential	form	of	the	float,
the	call	may	return	NaN,	Infinity,	and	-Infinity.

Also	aliased	as:	inspect

Returns	the	float	truncated	to	an	Integer.

Synonyms	are	to_i,	to_int,	and	truncate.

to_i	→	integer
to_int	→	integer
truncate	→	integer

to_r	→	rational

to_s	→	string

to_i	→	integer
to_int	→	integer
truncate	→	integer

zero?	→	true	or	false

Returns	true	if	float	is	0.0.

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	FloatDomainError
Raised	when	attempting	to	convert	special	float
values	(in	particular	infinite	or	NaN)	to	numerical
classes	which	don't	support	them.

Float::INFINITY.to_r

#=>	FloatDomainError:	Infinity

In	Files
numeric.c

Parent
RangeError

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

module	GC
The	GC	module	provides	an	interface	to	Ruby's
mark	and	sweep	garbage	collection	mechanism.

Some	of	the	underlying	methods	are	also
available	via	the	ObjectSpace	module.

You	may	obtain	information	about	the	operation
of	the	GC	through	GC::Profiler.

In	Files
gc.c

Constants

INTERNAL_CONSTANTS

OPTS

Public	Class	Methods

The	number	of	times	GC	occurred.

It	returns	the	number	of	times	GC	occurred	since	the
process	started.

count	→	Integer

Disables	garbage	collection,	returning	true	if	garbage
collection	was	already	disabled.

GC.disable			#=>	false

GC.disable			#=>	true

Enables	garbage	collection,	returning	true	if	garbage
collection	was	previously	disabled.

GC.disable			#=>	false

GC.enable				#=>	true

GC.enable				#=>	false

Returns	information	about	the	most	recent	garbage
collection.

Returns	the	size	of	memory	allocated	by	malloc().

Only	available	if	ruby	was	built	with
CALC_EXACT_MALLOC_SIZE.

Returns	the	number	of	malloc()	allocations.

Only	available	if	ruby	was	built	with
CALC_EXACT_MALLOC_SIZE.

disable	→	true	or	false

enable	→	true	or	false

latest_gc_info	->	{:gc_by→:newobj}
latest_gc_info(hash)	→	hash
latest_gc_info(:major_by)	→	:malloc

malloc_allocated_size	→	Integer

malloc_allocations	→	Integer

Initiates	garbage	collection,	unless	manually
disabled.

This	method	is	defined	with	keyword	arguments	that
default	to	true:

def	GC.start(full_mark:	true,	immediate_sweep:	true);	

Use	full_mark:	false	to	perform	a	minor	GC.	Use
immediate_sweep:	false	to	defer	sweeping	(use	lazy
sweep).

Note:	These	keyword	arguments	are	implementation
and	version	dependent.	They	are	not	guaranteed	to
be	future-compatible,	and	may	be	ignored	if	the
underlying	implementation	does	not	support	them.

Returns	a	Hash	containing	information	about	the	GC.

The	hash	includes	information	about	internal
statistics	about	GC	such	as:

{

				:count=>0,

				:heap_allocated_pages=>24,

				:heap_sorted_length=>24,

				:heap_allocatable_pages=>0,

				:heap_available_slots=>9783,

				:heap_live_slots=>7713,

start	→	nil
garbage_collect	→	nil
start(full_mark:	true,	immediate_sweep:
true)	→	nil
garbage_collect(full_mark:	true,
immediate_sweep:	true)	→	nil

stat	→	Hash
stat(hash)	→	hash
stat(:key)	→	Numeric

				:heap_free_slots=>2070,

				:heap_final_slots=>0,

				:heap_marked_slots=>0,

				:heap_swept_slots=>0,

				:heap_eden_pages=>24,

				:heap_tomb_pages=>0,

				:total_allocated_pages=>24,

				:total_freed_pages=>0,

				:total_allocated_objects=>7796,

				:total_freed_objects=>83,

				:malloc_increase_bytes=>2389312,

				:malloc_increase_bytes_limit=>16777216,

				:minor_gc_count=>0,

				:major_gc_count=>0,

				:remembered_wb_unprotected_objects=>0,

				:remembered_wb_unprotected_objects_limit=>0,

				:old_objects=>0,

				:old_objects_limit=>0,

				:oldmalloc_increase_bytes=>2389760,

				:oldmalloc_increase_bytes_limit=>16777216

}

The	contents	of	the	hash	are	implementation	specific
and	may	be	changed	in	the	future.

This	method	is	only	expected	to	work	on	C	Ruby.

Returns	current	status	of	GC	stress	mode.

Updates	the	GC	stress	mode.

When	stress	mode	is	enabled,	the	GC	is	invoked	at
every	GC	opportunity:	all	memory	and	object
allocations.

Enabling	stress	mode	will	degrade	performance,	it	is
only	for	debugging.

flag	can	be	true,	false,	or	a	fixnum	bit-ORed	following
flags.

stress	→	fixnum,	true	or	false

stress	=	flag	→	flag

0x01::	no	major	GC

0x02::	no	immediate	sweep

0x04::	full	mark	after	malloc/calloc/realloc

Verify	internal	consistency.

This	method	is	implementation	specific.	Now	this
method	checks	generational	consistency	if	RGenGC
is	supported.

Public	Instance	Methods

Initiates	garbage	collection,	unless	manually
disabled.

This	method	is	defined	with	keyword	arguments	that
default	to	true:

def	GC.start(full_mark:	true,	immediate_sweep:	true);	

Use	full_mark:	false	to	perform	a	minor	GC.	Use
immediate_sweep:	false	to	defer	sweeping	(use	lazy
sweep).

Note:	These	keyword	arguments	are	implementation
and	version	dependent.	They	are	not	guaranteed	to
be	future-compatible,	and	may	be	ignored	if	the
underlying	implementation	does	not	support	them.

verify_internal_consistency	→	nil

start	→	nil
garbage_collect	→	nil
start(full_mark:	true,	immediate_sweep:
true)	→	nil
garbage_collect(full_mark:	true,
immediate_sweep:	true)	→	nil

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

module	GC::Profiler
The	GC	profiler	provides	access	to	information
on	GC	runs	including	time,	length	and	object
space	size.

Example:

GC::Profiler.enable

require	'rdoc/rdoc'

GC::Profiler.report

GC::Profiler.disable

See	also	GC.count,	GC.malloc_allocated_size
and	GC.malloc_allocations

In	Files
gc.c

Public	Class	Methods

Clears	the	GC	profiler	data.

Stops	the	GC	profiler.

GC::Profiler.clear	→	nil

GC::Profiler.disable	→	nil

Starts	the	GC	profiler.

The	current	status	of	GC	profile	mode.

Returns	an	Array	of	individual	raw	profile	data
Hashes	ordered	from	earliest	to	latest	by
:GC_INVOKE_TIME.

For	example:

[

		{

					:GC_TIME=>1.3000000000000858e-05,

					:GC_INVOKE_TIME=>0.010634999999999999,

					:HEAP_USE_SIZE=>289640,

					:HEAP_TOTAL_SIZE=>588960,

					:HEAP_TOTAL_OBJECTS=>14724,

					:GC_IS_MARKED=>false

		},

		#	...

]

The	keys	mean:
:GC_TIME

Time	elapsed	in	seconds	for	this	GC	run

:GC_INVOKE_TIME

Time	elapsed	in	seconds	from	startup	to	when	the
GC	was	invoked

:HEAP_USE_SIZE

Total	bytes	of	heap	used

:HEAP_TOTAL_SIZE

Total	size	of	heap	in	bytes

GC::Profiler.enable	→	nil

GC::Profiler.enabled?	→	true	or	false

GC::Profiler.raw_data	→	[Hash,	...]

:HEAP_TOTAL_OBJECTS

Total	number	of	objects

:GC_IS_MARKED

Returns	true	if	the	GC	is	in	mark	phase

If	ruby	was	built	with	GC_PROFILE_MORE_DETAIL,	you	will
also	have	access	to	the	following	hash	keys:
:GC_MARK_TIME

:GC_SWEEP_TIME

:ALLOCATE_INCREASE

:ALLOCATE_LIMIT

:HEAP_USE_PAGES

:HEAP_LIVE_OBJECTS

:HEAP_FREE_OBJECTS

:HAVE_FINALIZE

Writes	the	::result	to	$stdout	or	the	given	IO	object.

Returns	a	profile	data	report	such	as:

GC	1	invokes.

Index				Invoke	Time(sec)							Use	Size(byte)					Total	Size(byte)									Total	Object																				GC	time(ms)

				1															0.012															159240															212940																10647									0.00000000000001530000

The	total	time	used	for	garbage	collection	in	seconds

Generated	by	RDoc	3.12.2.

GC::Profiler.report
GC::Profiler.report(io)

GC::Profiler.result	→	String

GC::Profiler.total_time	→	float

https://github.com/rdoc/rdoc

Generated	with	the	Darkfish	Rdoc	Generator	3.

http://deveiate.org/projects/Darkfish-Rdoc/

class	Hash
A	Hash	is	a	dictionary-like	collection	of	unique
keys	and	their	values.	Also	called	associative
arrays,	they	are	similar	to	Arrays,	but	where	an
Array	uses	integers	as	its	index,	a	Hash	allows
you	to	use	any	object	type.

Hashes	enumerate	their	values	in	the	order	that
the	corresponding	keys	were	inserted.

A	Hash	can	be	easily	created	by	using	its	implicit
form:

grades	=	{	"Jane	Doe"	=>	10,	"Jim	Doe"	=>	6	}

Hashes	allow	an	alternate	syntax	form	when
your	keys	are	always	symbols.	Instead	of

options	=	{	:font_size	=>	10,	:font_family	=>	"Arial"

You	could	write	it	as:

options	=	{	font_size:	10,	font_family:	"Arial"	}

Each	named	key	is	a	symbol	you	can	access	in
hash:

options[:font_size]		#	=>	10

A	Hash	can	also	be	created	through	its	::new
method:

grades	=	Hash.new

grades["Dorothy	Doe"]	=	9

Hashes	have	a	default	value	that	is	returned
when	accessing	keys	that	do	not	exist	in	the
hash.	If	no	default	is	set	nil	is	used.	You	can	set
the	default	value	by	sending	it	as	an	argument	to
::new:

grades	=	Hash.new(0)

Or	by	using	the	default=	method:

grades	=	{"Timmy	Doe"	=>	8}

grades.default	=	0

Accessing	a	value	in	a	Hash	requires	using	its
key:

puts	grades["Jane	Doe"]	#	=>	0

Common	Uses

Hashes	are	an	easy	way	to	represent	data
structures,	such	as

books									=	{}

books[:matz]		=	"The	Ruby	Language"

books[:black]	=	"The	Well-Grounded	Rubyist"

Hashes	are	also	commonly	used	as	a	way	to
have	named	parameters	in	functions.	Note	that
no	brackets	are	used	below.	If	a	hash	is	the	last
argument	on	a	method	call,	no	braces	are
needed,	thus	creating	a	really	clean	interface:

Person.create(name:	"John	Doe",	age:	27)

def	self.create(params)

		@name	=	params[:name]

		@age		=	params[:age]

end

Hash	Keys

Two	objects	refer	to	the	same	hash	key	when
their	hash	value	is	identical	and	the	two	objects
are	eql?	to	each	other.

A	user-defined	class	may	be	used	as	a	hash	key
if	the	hash	and	eql?	methods	are	overridden	to
provide	meaningful	behavior.	By	default,
separate	instances	refer	to	separate	hash	keys.

A	typical	implementation	of	hash	is	based	on	the
object's	data	while	eql?	is	usually	aliased	to	the
overridden	==	method:

class	Book

		attr_reader	:author,	:title

		def	initialize(author,	title)

				@author	=	author

				@title	=	title

		end

		def	==(other)

				self.class	===	other	and

						other.author	==	@author	and

						other.title	==	@title

		end

		alias	eql?	==

		def	hash

				@author.hash	^	@title.hash	#	XOR

		end

end

book1	=	Book.new	'matz',	'Ruby	in	a	Nutshell'

book2	=	Book.new	'matz',	'Ruby	in	a	Nutshell'

reviews	=	{}

reviews[book1]	=	'Great	reference!'

reviews[book2]	=	'Nice	and	compact!'

reviews.length	#=>	1

See	also	Object#hash	and	Object#eql?

In	Files
hash.c

Parent
Object

Included	Modules

Enumerable

Public	Class	Methods

Creates	a	new	hash	populated	with	the	given	objects.

Similar	to	the	literal	{	key	=>	value,	...	}.	In	the
first	form,	keys	and	values	occur	in	pairs,	so	there
must	be	an	even	number	of	arguments.

The	second	and	third	form	take	a	single	argument
which	is	either	an	array	of	key-value	pairs	or	an
object	convertible	to	a	hash.

Hash["a",	100,	"b",	200]													#=>	{"a"=>100,	"b"=>200}

Hash[[["a",	100],	["b",	200]]]			#=>	{"a"=>100,	"b"=>200}

Hash["a"	=>	100,	"b"	=>	200]									#=>	{"a"=>100,	"b"=>200}

Returns	a	new,	empty	hash.	If	this	hash	is
subsequently	accessed	by	a	key	that	doesn't
correspond	to	a	hash	entry,	the	value	returned
depends	on	the	style	of	new	used	to	create	the	hash.
In	the	first	form,	the	access	returns	nil.	If	obj	is
specified,	this	single	object	will	be	used	for	all	default
values.	If	a	block	is	specified,	it	will	be	called	with	the
hash	object	and	the	key,	and	should	return	the	default
value.	It	is	the	block's	responsibility	to	store	the	value
in	the	hash	if	required.

Hash[key,	value,	...]	→	new_hash
Hash[[[key,	value],	...]]	→	new_hash
Hash[object]	→	new_hash

new	→	new_hash
new(obj)	→	new_hash
new	{|hash,	key|	block	}	→	new_hash

h	=	Hash.new("Go	Fish")

h["a"]	=	100

h["b"]	=	200

h["a"]											#=>	100

h["c"]											#=>	"Go	Fish"

#	The	following	alters	the	single	default	object

h["c"].upcase!			#=>	"GO	FISH"

h["d"]											#=>	"GO	FISH"

h.keys											#=>	["a",	"b"]

#	While	this	creates	a	new	default	object	each	time

h	=	Hash.new	{	|hash,	key|	hash[key]	=	"Go	Fish:	#{key}"

h["c"]											#=>	"Go	Fish:	c"

h["c"].upcase!			#=>	"GO	FISH:	C"

h["d"]											#=>	"Go	Fish:	d"

h.keys											#=>	["c",	"d"]

Try	to	convert	obj	into	a	hash,	using	#to_hash
method.	Returns	converted	hash	or	nil	if	obj	cannot
be	converted	for	any	reason.

Hash.try_convert({1=>2})			#	=>	{1=>2}

Hash.try_convert("1=>2")			#	=>	nil

Public	Instance	Methods

Equality—Two	hashes	are	equal	if	they	each	contain
the	same	number	of	keys	and	if	each	key-value	pair
is	equal	to	(according	to	Object#==)	the
corresponding	elements	in	the	other	hash.

h1	=	{	"a"	=>	1,	"c"	=>	2	}

h2	=	{	7	=>	35,	"c"	=>	2,	"a"	=>	1	}

h3	=	{	"a"	=>	1,	"c"	=>	2,	7	=>	35	}

h4	=	{	"a"	=>	1,	"d"	=>	2,	"f"	=>	35	}

try_convert(obj)	→	hash	or	nil

hsh	==	other_hash	→	true	or	false

h1	==	h2			#=>	false

h2	==	h3			#=>	true

h3	==	h4			#=>	false

Element	Reference—Retrieves	the	value	object
corresponding	to	the	key	object.	If	not	found,	returns
the	default	value	(see	Hash::new	for	details).

h	=	{	"a"	=>	100,	"b"	=>	200	}

h["a"]			#=>	100

h["c"]			#=>	nil

hsh[key]	→	value

hsh[key]	=	value	→	value
store(key,	value)	→	value

Associates	the	value	given	by	value	with	the	key
given	by	key.

h	=	{	"a"	=>	100,	"b"	=>	200	}

h["a"]	=	9

h["c"]	=	4

h			#=>	{"a"=>9,	"b"=>200,	"c"=>4}

h.store("d",	42)	#=>	42

h			#=>	{"a"=>9,	"b"=>200,	"c"=>4,	"d"=>42}

key	should	not	have	its	value	changed	while	it	is	in
use	as	a	key	(an	unfrozen	String	passed	as	a	key
will	be	duplicated	and	frozen).

a	=	"a"

b	=	"b".freeze

h	=	{	a	=>	100,	b	=>	200	}

h.key(100).equal?	a	#=>	false

h.key(200).equal?	b	#=>	true

See	also	Enumerable#any?

Searches	through	the	hash	comparing	obj	with	the
key	using	==.	Returns	the	key-value	pair	(two
elements	array)	or	nil	if	no	match	is	found.	See
Array#assoc.

h	=	{"colors"		=>	["red",	"blue",	"green"],

					"letters"	=>	["a",	"b",	"c"]}

h.assoc("letters")		#=>	["letters",	["a",	"b",	"c"]]

h.assoc("foo")						#=>	nil

Element	Assignment

any?	[{	|(key,	value)|	block	}]	→	true	or	false

assoc(obj)	→	an_array	or	nil

Removes	all	key-value	pairs	from	hsh.

h	=	{	"a"	=>	100,	"b"	=>	200	}			#=>	{"a"=>100,	"b"=>200}

h.clear																										#=>	{}

Makes	hsh	compare	its	keys	by	their	identity,	i.e.	it
will	consider	exact	same	objects	as	same	keys.

h1	=	{	"a"	=>	100,	"b"	=>	200,	:c	=>	"c"	}

h1["a"]								#=>	100

h1.compare_by_identity

h1.compare_by_identity?	#=>	true

h1["a".dup]				#=>	nil		#	different	objects.

h1[:c]									#=>	"c"		#	same	symbols	are	all	same.

Returns	true	if	hsh	will	compare	its	keys	by	their
identity.	Also	see	Hash#compare_by_identity.

Returns	the	default	value,	the	value	that	would	be
returned	by	hsh	if	key	did	not	exist	in	hsh.	See	also
Hash::new	and	Hash#default=.

h	=	Hash.new																												#=>	{}

h.default																															#=>	nil

h.default(2)																												#=>	nil

h	=	Hash.new("cat")																					#=>	{}

h.default																															#=>	"cat"

h.default(2)																												#=>	"cat"

clear	→	hsh

compare_by_identity	→	hsh

compare_by_identity?	→	true	or	false

default(key=nil)	→	obj

http://key

h	=	Hash.new	{|h,k|	h[k]	=	k.to_i*10}			#=>	{}

h.default																															#=>	nil

h.default(2)																												#=>	20

Sets	the	default	value,	the	value	returned	for	a	key
that	does	not	exist	in	the	hash.	It	is	not	possible	to	set
the	default	to	a	Proc	that	will	be	executed	on	each
key	lookup.

h	=	{	"a"	=>	100,	"b"	=>	200	}

h.default	=	"Go	fish"

h["a"]					#=>	100

h["z"]					#=>	"Go	fish"

#	This	doesn't	do	what	you	might	hope...

h.default	=	proc	do	|hash,	key|

		hash[key]	=	key	+	key

end

h[2]							#=>	#<Proc:0x401b3948@-:6>

h["cat"]			#=>	#<Proc:0x401b3948@-:6>

If	Hash::new	was	invoked	with	a	block,	return	that
block,	otherwise	return	nil.

h	=	Hash.new	{|h,k|	h[k]	=	k*k	}			#=>	{}

p	=	h.default_proc																	#=>	#<Proc:0x401b3d08@-:1>

a	=	[]																													#=>	[]

p.call(a,	2)

a																																		#=>	[nil,	nil,	4]

Sets	the	default	proc	to	be	executed	on	each	failed
key	lookup.

h.default_proc	=	proc	do	|hash,	key|

default	=	obj	→	obj

default_proc	→	anObject

default_proc	=	proc_obj	or	nil

		hash[key]	=	key	+	key

end

h[2]							#=>	4

h["cat"]			#=>	"catcat"

Deletes	the	key-value	pair	and	returns	the	value	from
hsh	whose	key	is	equal	to	key.	If	the	key	is	not	found,
returns	the	default	value.	If	the	optional	code	block	is
given	and	the	key	is	not	found,	pass	in	the	key	and
return	the	result	of	block.

h	=	{	"a"	=>	100,	"b"	=>	200	}

h.delete("a")																														#=>	100

h.delete("z")																														#=>	nil

h.delete("z")	{	|el|	"#{el}	not	found"	}			#=>	"z	not	found"

Deletes	every	key-value	pair	from	hsh	for	which	block
evaluates	to	true.

If	no	block	is	given,	an	enumerator	is	returned
instead.

h	=	{	"a"	=>	100,	"b"	=>	200,	"c"	=>	300	}

h.delete_if	{|key,	value|	key	>=	"b"	}			#=>	{"a"=>100}

Calls	block	once	for	each	key	in	hsh,	passing	the

delete(key)	→	value
delete(key)	{|	key	|	block	}	→	value

delete_if	{|	key,	value	|	block	}	→	hsh
delete_if	→	an_enumerator

each	{|	key,	value	|	block	}	→	hsh
each_pair	{|	key,	value	|	block	}	→	hsh
each	→	an_enumerator
each_pair	→	an_enumerator

key-value	pair	as	parameters.

If	no	block	is	given,	an	enumerator	is	returned
instead.

h	=	{	"a"	=>	100,	"b"	=>	200	}

h.each	{|key,	value|	puts	"#{key}	is	#{value}"	}

produces:

a	is	100

b	is	200

Calls	block	once	for	each	key	in	hsh,	passing	the	key
as	a	parameter.

If	no	block	is	given,	an	enumerator	is	returned
instead.

h	=	{	"a"	=>	100,	"b"	=>	200	}

h.each_key	{|key|	puts	key	}

produces:

a

b

Calls	block	once	for	each	key	in	hsh,	passing	the
key-value	pair	as	parameters.

If	no	block	is	given,	an	enumerator	is	returned
instead.

each_key	{|	key	|	block	}	→	hsh
each_key	→	an_enumerator

each	{|	key,	value	|	block	}	→	hsh
each_pair	{|	key,	value	|	block	}	→	hsh
each	→	an_enumerator
each_pair	→	an_enumerator

h	=	{	"a"	=>	100,	"b"	=>	200	}

h.each	{|key,	value|	puts	"#{key}	is	#{value}"	}

produces:

a	is	100

b	is	200

Calls	block	once	for	each	key	in	hsh,	passing	the
value	as	a	parameter.

If	no	block	is	given,	an	enumerator	is	returned
instead.

h	=	{	"a"	=>	100,	"b"	=>	200	}

h.each_value	{|value|	puts	value	}

produces:

100

200

Returns	true	if	hsh	contains	no	key-value	pairs.

{}.empty?			#=>	true

Returns	true	if	hash	and	other	are	both	hashes	with
the	same	content.

each_value	{|	value	|	block	}	→	hsh
each_value	→	an_enumerator

empty?	→	true	or	false

eql?(other)	→	true	or	false

fetch(key	[,	default])	→	obj
fetch(key)	{|	key	|	block	}	→	obj

Returns	a	value	from	the	hash	for	the	given	key.	If	the
key	can't	be	found,	there	are	several	options:	With	no
other	arguments,	it	will	raise	an	KeyError	exception;	if
default	is	given,	then	that	will	be	returned;	if	the
optional	code	block	is	specified,	then	that	will	be	run
and	its	result	returned.

h	=	{	"a"	=>	100,	"b"	=>	200	}

h.fetch("a")																												#=>	100

h.fetch("z",	"go	fish")																	#=>	"go	fish"

h.fetch("z")	{	|el|	"go	fish,	#{el}"}			#=>	"go	fish,	z"

The	following	example	shows	that	an	exception	is
raised	if	the	key	is	not	found	and	a	default	value	is
not	supplied.

h	=	{	"a"	=>	100,	"b"	=>	200	}

h.fetch("z")

produces:

prog.rb:2:in	`fetch':	key	not	found	(KeyError)

	from	prog.rb:2

Returns	a	new	array	that	is	a	one-dimensional
flattening	of	this	hash.	That	is,	for	every	key	or	value
that	is	an	array,	extract	its	elements	into	the	new
array.	Unlike	Array#flatten,	this	method	does	not
flatten	recursively	by	default.	The	optional	level
argument	determines	the	level	of	recursion	to	flatten.

a	=		{1=>	"one",	2	=>	[2,"two"],	3	=>	"three"}

a.flatten				#	=>	[1,	"one",	2,	[2,	"two"],	3,	"three"]

a.flatten(2)	#	=>	[1,	"one",	2,	2,	"two",	3,	"three"]

flatten	→	an_array
flatten(level)	→	an_array

Returns	true	if	the	given	key	is	present	in	hsh.

h	=	{	"a"	=>	100,	"b"	=>	200	}

h.has_key?("a")			#=>	true

h.has_key?("z")			#=>	false

Returns	true	if	the	given	value	is	present	for	some
key	in	hsh.

h	=	{	"a"	=>	100,	"b"	=>	200	}

h.has_value?(100)			#=>	true

h.has_value?(999)			#=>	false

Compute	a	hash-code	for	this	hash.	Two	hashes	with
the	same	content	will	have	the	same	hash	code	(and
will	compare	using	eql?).

See	also	Object#hash.

Returns	true	if	the	given	key	is	present	in	hsh.

h	=	{	"a"	=>	100,	"b"	=>	200	}

h.has_key?("a")			#=>	true

has_key?(key)	→	true	or	false
include?(key)	→	true	or	false
key?(key)	→	true	or	false
member?(key)	→	true	or	false

has_value?(value)	→	true	or	false
value?(value)	→	true	or	false

hash	→	fixnum

has_key?(key)	→	true	or	false
include?(key)	→	true	or	false
key?(key)	→	true	or	false
member?(key)	→	true	or	false

h.has_key?("z")			#=>	false

Return	the	contents	of	this	hash	as	a	string.

h	=	{	"c"	=>	300,	"a"	=>	100,	"d"	=>	400,	"c"	=>	300		}

h.to_s			#=>	"{\"c\"=>300,	\"a\"=>100,	\"d\"=>400}"

Also	aliased	as:	to_s

Returns	a	new	hash	created	by	using	hsh's	values	as
keys,	and	the	keys	as	values.

h	=	{	"n"	=>	100,	"m"	=>	100,	"y"	=>	300,	"d"	=>	200,	

h.invert			#=>	{0=>"a",	100=>"m",	200=>"d",	300=>"y"}

Deletes	every	key-value	pair	from	hsh	for	which	block
evaluates	to	false.

If	no	block	is	given,	an	enumerator	is	returned
instead.

Returns	the	key	of	an	occurrence	of	a	given	value.	If
the	value	is	not	found,	returns	nil.

h	=	{	"a"	=>	100,	"b"	=>	200,	"c"	=>	300,	"d"	=>	300	}

h.key(200)			#=>	"b"

h.key(300)			#=>	"c"

h.key(999)			#=>	nil

to_s	→	string
inspect	→	string

invert	→	new_hash

keep_if	{|	key,	value	|	block	}	→	hsh
keep_if	→	an_enumerator

key(value)	→	key

Returns	true	if	the	given	key	is	present	in	hsh.

h	=	{	"a"	=>	100,	"b"	=>	200	}

h.has_key?("a")			#=>	true

h.has_key?("z")			#=>	false

Returns	a	new	array	populated	with	the	keys	from
this	hash.	See	also	Hash#values.

h	=	{	"a"	=>	100,	"b"	=>	200,	"c"	=>	300,	"d"	=>	400	}

h.keys			#=>	["a",	"b",	"c",	"d"]

Returns	the	number	of	key-value	pairs	in	the	hash.

h	=	{	"d"	=>	100,	"a"	=>	200,	"v"	=>	300,	"e"	=>	400	}

h.length								#=>	4

h.delete("a")			#=>	200

h.length								#=>	3

Returns	true	if	the	given	key	is	present	in	hsh.

has_key?(key)	→	true	or	false
include?(key)	→	true	or	false
key?(key)	→	true	or	false
member?(key)	→	true	or	false

keys	→	array

length	→	fixnum
size	→	fixnum

has_key?(key)	→	true	or	false
include?(key)	→	true	or	false
key?(key)	→	true	or	false
member?(key)	→	true	or	false

h	=	{	"a"	=>	100,	"b"	=>	200	}

h.has_key?("a")			#=>	true

h.has_key?("z")			#=>	false

Returns	a	new	hash	containing	the	contents	of
other_hash	and	the	contents	of	hsh.	If	no	block	is
specified,	the	value	for	entries	with	duplicate	keys	will
be	that	of	other_hash.	Otherwise	the	value	for	each
duplicate	key	is	determined	by	calling	the	block	with
the	key,	its	value	in	hsh	and	its	value	in	other_hash.

h1	=	{	"a"	=>	100,	"b"	=>	200	}

h2	=	{	"b"	=>	254,	"c"	=>	300	}

h1.merge(h2)			#=>	{"a"=>100,	"b"=>254,	"c"=>300}

h1.merge(h2){|key,	oldval,	newval|	newval	-	oldval}

															#=>	{"a"=>100,	"b"=>54,		"c"=>300}

h1													#=>	{"a"=>100,	"b"=>200}

Adds	the	contents	of	other_hash	to	hsh.	If	no	block	is
specified,	entries	with	duplicate	keys	are	overwritten
with	the	values	from	other_hash,	otherwise	the	value
of	each	duplicate	key	is	determined	by	calling	the
block	with	the	key,	its	value	in	hsh	and	its	value	in
other_hash.

h1	=	{	"a"	=>	100,	"b"	=>	200	}

merge(other_hash)	→	new_hash
merge(other_hash){|key,	oldval,	newval|
block}	→	new_hash

merge!(other_hash)	→	hsh
update(other_hash)	→	hsh
merge!(other_hash){|key,	oldval,	newval|
block}	→	hsh
update(other_hash){|key,	oldval,	newval|
block}	→	hsh

h2	=	{	"b"	=>	254,	"c"	=>	300	}

h1.merge!(h2)			#=>	{"a"=>100,	"b"=>254,	"c"=>300}

h1	=	{	"a"	=>	100,	"b"	=>	200	}

h2	=	{	"b"	=>	254,	"c"	=>	300	}

h1.merge!(h2)	{	|key,	v1,	v2|	v1	}

																#=>	{"a"=>100,	"b"=>200,	"c"=>300}

Searches	through	the	hash	comparing	obj	with	the
value	using	==.	Returns	the	first	key-value	pair	(two-
element	array)	that	matches.	See	also	Array#rassoc.

a	=	{1=>	"one",	2	=>	"two",	3	=>	"three",	"ii"	=>	"two"

a.rassoc("two")				#=>	[2,	"two"]

a.rassoc("four")			#=>	nil

Rebuilds	the	hash	based	on	the	current	hash	values
for	each	key.	If	values	of	key	objects	have	changed
since	they	were	inserted,	this	method	will	reindex
hsh.	If	Hash#rehash	is	called	while	an	iterator	is
traversing	the	hash,	an	RuntimeError	will	be	raised	in
the	iterator.

a	=	["a",	"b"]

c	=	["c",	"d"]

h	=	{	a	=>	100,	c	=>	300	}

h[a]							#=>	100

a[0]	=	"z"

h[a]							#=>	nil

h.rehash			#=>	{["z",	"b"]=>100,	["c",	"d"]=>300}

h[a]							#=>	100

rassoc(obj)	→	an_array	or	nil

rehash	→	hsh

reject	{|key,	value|	block}	→	a_hash

Returns	a	new	hash	consisting	of	entries	for	which
the	block	returns	false.

If	no	block	is	given,	an	enumerator	is	returned
instead.

h	=	{	"a"	=>	100,	"b"	=>	200,	"c"	=>	300	}

h.reject	{|k,v|	k	<	"b"}		#=>	{"b"	=>	200,	"c"	=>	300}

h.reject	{|k,v|	v	>	100}		#=>	{"a"	=>	100}

Equivalent	to	Hash#delete_if,	but	returns	nil	if	no
changes	were	made.

Replaces	the	contents	of	hsh	with	the	contents	of
other_hash.

h	=	{	"a"	=>	100,	"b"	=>	200	}

h.replace({	"c"	=>	300,	"d"	=>	400	})			#=>	{"c"=>300,	"d"=>400}

Returns	a	new	hash	consisting	of	entries	for	which
the	block	returns	true.

If	no	block	is	given,	an	enumerator	is	returned
instead.

h	=	{	"a"	=>	100,	"b"	=>	200,	"c"	=>	300	}

h.select	{|k,v|	k	>	"a"}		#=>	{"b"	=>	200,	"c"	=>	300}

h.select	{|k,v|	v	<	200}		#=>	{"a"	=>	100}

reject	→	an_enumerator

reject!	{|	key,	value	|	block	}	→	hsh	or	nil
reject!	→	an_enumerator

replace(other_hash)	→	hsh

select	{|key,	value|	block}	→	a_hash
select	→	an_enumerator

Equivalent	to	Hash#keep_if,	but	returns	nil	if	no
changes	were	made.

Removes	a	key-value	pair	from	hsh	and	returns	it	as
the	two-item	array	[key,	value],	or	the	hash's	default
value	if	the	hash	is	empty.

h	=	{	1	=>	"a",	2	=>	"b",	3	=>	"c"	}

h.shift			#=>	[1,	"a"]

h									#=>	{2=>"b",	3=>"c"}

Returns	the	number	of	key-value	pairs	in	the	hash.

h	=	{	"d"	=>	100,	"a"	=>	200,	"v"	=>	300,	"e"	=>	400	}

h.length								#=>	4

h.delete("a")			#=>	200

h.length								#=>	3

select!	{|	key,	value	|	block	}	→	hsh	or	nil
select!	→	an_enumerator

shift	→	anArray	or	obj

length	→	fixnum
size	→	fixnum

hsh[key]	=	value	→	value
store(key,	value)	→	value

Associates	the	value	given	by	value	with	the	key
given	by	key.

h	=	{	"a"	=>	100,	"b"	=>	200	}

h["a"]	=	9

h["c"]	=	4

h			#=>	{"a"=>9,	"b"=>200,	"c"=>4}

h.store("d",	42)	#=>	42

h			#=>	{"a"=>9,	"b"=>200,	"c"=>4,	"d"=>42}

key	should	not	have	its	value	changed	while	it	is	in
use	as	a	key	(an	unfrozen	String	passed	as	a	key
will	be	duplicated	and	frozen).

a	=	"a"

b	=	"b".freeze

h	=	{	a	=>	100,	b	=>	200	}

h.key(100).equal?	a	#=>	false

h.key(200).equal?	b	#=>	true

Converts	hsh	to	a	nested	array	of	[key,	value]
arrays.

h	=	{	"c"	=>	300,	"a"	=>	100,	"d"	=>	400,	"c"	=>	300		}

h.to_a			#=>	[["c",	300],	["a",	100],	["d",	400]]

Returns	self.	If	called	on	a	subclass	of	Hash,
converts	the	receiver	to	a	Hash	object.

Element	Assignment

to_a	→	array

to_h	→	hsh	or	new_hash

Returns	self.

Alias	for:	inspect

Adds	the	contents	of	other_hash	to	hsh.	If	no	block	is
specified,	entries	with	duplicate	keys	are	overwritten
with	the	values	from	other_hash,	otherwise	the	value
of	each	duplicate	key	is	determined	by	calling	the
block	with	the	key,	its	value	in	hsh	and	its	value	in
other_hash.

h1	=	{	"a"	=>	100,	"b"	=>	200	}

h2	=	{	"b"	=>	254,	"c"	=>	300	}

h1.merge!(h2)			#=>	{"a"=>100,	"b"=>254,	"c"=>300}

h1	=	{	"a"	=>	100,	"b"	=>	200	}

h2	=	{	"b"	=>	254,	"c"	=>	300	}

h1.merge!(h2)	{	|key,	v1,	v2|	v1	}

																#=>	{"a"=>100,	"b"=>200,	"c"=>300}

Returns	true	if	the	given	value	is	present	for	some
key	in	hsh.

h	=	{	"a"	=>	100,	"b"	=>	200	}

to_hash	→	hsh

to_s()

merge!(other_hash)	→	hsh
update(other_hash)	→	hsh
merge!(other_hash){|key,	oldval,	newval|
block}	→	hsh
update(other_hash){|key,	oldval,	newval|
block}	→	hsh

has_value?(value)	→	true	or	false
value?(value)	→	true	or	false

h.has_value?(100)			#=>	true

h.has_value?(999)			#=>	false

Returns	a	new	array	populated	with	the	values	from
hsh.	See	also	Hash#keys.

h	=	{	"a"	=>	100,	"b"	=>	200,	"c"	=>	300	}

h.values			#=>	[100,	200,	300]

Return	an	array	containing	the	values	associated	with
the	given	keys.	Also	see	Hash.select.

h	=	{	"cat"	=>	"feline",	"dog"	=>	"canine",	"cow"	=>	"bovine"

h.values_at("cow",	"cat")		#=>	["bovine",	"feline"]

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

values	→	array

values_at(key,	...)	→	array

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	IO
The	IO	class	is	the	basis	for	all	input	and	output
in	Ruby.	An	I/O	stream	may	be	duplexed	(that	is,
bidirectional),	and	so	may	use	more	than	one
native	operating	system	stream.

Many	of	the	examples	in	this	section	use	the	File
class,	the	only	standard	subclass	of	IO.	The	two
classes	are	closely	associated.	Like	the	File
class,	the	Socket	library	subclasses	from	IO
(such	as	TCPSocket	or	UDPSocket).

The	Kernel#open	method	can	create	an	IO	(or
File)	object	for	these	types	of	arguments:

A	plain	string	represents	a	filename	suitable	for
the	underlying	operating	system.
A	string	starting	with	"|"	indicates	a
subprocess.	The	remainder	of	the	string
following	the	"|"	is	invoked	as	a	process	with
appropriate	input/output	channels	connected	to
it.
A	string	equal	to	"|-"	will	create	another	Ruby
instance	as	a	subprocess.

The	IO	may	be	opened	with	different	file	modes
(read-only,	write-only)	and	encodings	for	proper
conversion.	See	::new	for	these	options.	See
Kernel#open	for	details	of	the	various	command

formats	described	above.

::popen,	the	Open3	library,	or	Process#spawn
may	also	be	used	to	communicate	with
subprocesses	through	an	IO.

Ruby	will	convert	pathnames	between	different
operating	system	conventions	if	possible.	For
instance,	on	a	Windows	system	the	filename
"/gumby/ruby/test.rb"	will	be	opened	as
"\gumby\ruby\test.rb".	When	specifying	a
Windows-style	filename	in	a	Ruby	string,
remember	to	escape	the	backslashes:

"c:\\gumby\\ruby\\test.rb"

Our	examples	here	will	use	the	Unix-style
forward	slashes;	File::ALT_SEPARATOR	can	be
used	to	get	the	platform-specific	separator
character.

The	global	constant	ARGF	(also	accessible	as
$<)	provides	an	IO-like	stream	which	allows
access	to	all	files	mentioned	on	the	command
line	(or	STDIN	if	no	files	are	mentioned).
ARGF#path	and	its	alias	ARGF#filename	are
provided	to	access	the	name	of	the	file	currently
being	read.

io/console

The	io/console	extension	provides	methods	for
interacting	with	the	console.	The	console	can	be
accessed	from	IO.console	or	the	standard
input/output/error	IO	objects.

Requiring	io/console	adds	the	following
methods:

IO::console
IO#raw
IO#raw!
IO#cooked
IO#cooked!
IO#getch
IO#echo=
IO#echo?
IO#noecho
IO#winsize
IO#winsize=
IO#iflush
IO#ioflush
IO#oflush

Example:

require	'io/console'

rows,	columns	=	$stdin.winsize

puts	"Your	screen	is	#{columns}	wide	and	#{rows}	tall"

In	Files
file.c
io.c

Parent
Object

Included	Modules
File::Constants
Enumerable

Constants

EWOULDBLOCKWaitReadable

EAGAINWaitReadable

EWOULDBLOCKWaitWritable

EAGAINWaitWritable

SEEK_CUR

Set	I/O	position	from	the	current	position

SEEK_DATA

Set	I/O	position	to	the	next	location	containing	data

SEEK_END

Set	I/O	position	from	the	end

SEEK_HOLE

Set	I/O	position	to	the	next	hole

SEEK_SET

Set	I/O	position	from	the	beginning

Public	Class	Methods

Opens	the	file,	optionally	seeks	to	the	given	offset,
then	returns	length	bytes	(defaulting	to	the	rest	of	the
file).	binread	ensures	the	file	is	closed	before
returning.	The	open	mode	would	be	“rb:ASCII-8BIT”.

IO.binread("testfile")											#=>	"This	is	line	one\nThis	is	line	two\nThis	is	line	three\nAnd	so	on...\n"

IO.binread("testfile",	20)							#=>	"This	is	line	one\nThi"

IO.binread("testfile",	20,	10)			#=>	"ne	one\nThis	is	line	"

Same	as	IO.write	except	opening	the	file	in	binary
mode	and	ASCII-8BIT	encoding	(“wb:ASCII-8BIT”).

::copy_stream	copies	src	to	dst.	src	and	dst	is	either

binread(name,	[length	[,	offset]])	→	string

binwrite(name,	string,	[offset])	→	fixnum
binwrite(name,	string,	[offset],	open_args)
→	fixnum

copy_stream(src,	dst)
copy_stream(src,	dst,	copy_length)
copy_stream(src,	dst,	copy_length,
src_offset)

a	filename	or	an	IO.

This	method	returns	the	number	of	bytes	copied.

If	optional	arguments	are	not	given,	the	start	position
of	the	copy	is	the	beginning	of	the	filename	or	the
current	file	offset	of	the	IO.	The	end	position	of	the
copy	is	the	end	of	file.

If	copy_length	is	given,	No	more	than	copy_length
bytes	are	copied.

If	src_offset	is	given,	it	specifies	the	start	position	of
the	copy.

When	src_offset	is	specified	and	src	is	an	IO,
::copy_stream	doesn't	move	the	current	file	offset.

Synonym	for	IO.new.

Executes	the	block	for	every	line	in	the	named	I/O
port,	where	lines	are	separated	by	sep.

If	no	block	is	given,	an	enumerator	is	returned
instead.

IO.foreach("testfile")	{|x|	print	"GOT	",	x	}

produces:

GOT	This	is	line	one

for_fd(fd,	mode	[,	opt])	→	io

foreach(name,	sep=$/	[,	open_args])	{|line|
block	}	→	nil
foreach(name,	limit	[,	open_args])	{|line|
block	}	→	nil
foreach(name,	sep,	limit	[,	open_args])	{|line|
block	}	→	nil
foreach(...)	→	an_enumerator

GOT	This	is	line	two

GOT	This	is	line	three

GOT	And	so	on...

If	the	last	argument	is	a	hash,	it's	the	keyword
argument	to	open.	See	IO.read	for	detail.

Returns	a	new	IO	object	(a	stream)	for	the	given
integer	file	descriptor	fd	and	mode	string.	opt	may	be
used	to	specify	parts	of	mode	in	a	more	readable
fashion.	See	also	::sysopen	and	::for_fd.

::new	is	called	by	various	File	and	IO	opening
methods	such	as	::open,	Kernel#open,	and	File.open.

Open	Mode
When	mode	is	an	integer	it	must	be	combination	of	the
modes	defined	in	File::Constants	(+File::RDONLY+,
+File::WRONLY	|	File::CREAT+).	See	the	open(2)
man	page	for	more	information.

When	mode	is	a	string	it	must	be	in	one	of	the
following	forms:

fmode

fmode	":"	ext_enc

fmode	":"	ext_enc	":"	int_enc

fmode	":"	"BOM|UTF-*"

fmode	is	an	IO	open	mode	string,	ext_enc	is	the
external	encoding	for	the	IO	and	int_enc	is	the
internal	encoding.

IO	Open	Mode
Ruby	allows	the	following	open	modes:

"r"		Read-only,	starts	at	beginning	of	file		(default	mode).

new(fd	[,	mode]	[,	opt])	→	io

"r+"	Read-write,	starts	at	beginning	of	file.

"w"		Write-only,	truncates	existing	file

					to	zero	length	or	creates	a	new	file	for	writing.

"w+"	Read-write,	truncates	existing	file	to	zero	length

					or	creates	a	new	file	for	reading	and	writing.

"a"		Write-only,	each	write	call	appends	data	at	end	of	file.

					Creates	a	new	file	for	writing	if	file	does	not	exist.

"a+"	Read-write,	each	write	call	appends	data	at	end	of	file.

					Creates	a	new	file	for	reading	and	writing	if	file	does

					not	exist.

The	following	modes	must	be	used	separately,	and
along	with	one	or	more	of	the	modes	seen	above.

"b"		Binary	file	mode

					Suppresses	EOL	<->	CRLF	conversion	on	Windows.	And

					sets	external	encoding	to	ASCII-8BIT	unless	explicitly

					specified.

"t"		Text	file	mode

When	the	open	mode	of	original	IO	is	read	only,	the
mode	cannot	be	changed	to	be	writable.	Similarly,	the
open	mode	cannot	be	changed	from	write	only	to
readable.

When	such	a	change	is	attempted	the	error	is	raised
in	different	locations	according	to	the	platform.

IO	Encoding
When	ext_enc	is	specified,	strings	read	will	be	tagged
by	the	encoding	when	reading,	and	strings	output	will
be	converted	to	the	specified	encoding	when	writing.

When	ext_enc	and	int_enc	are	specified	read	strings
will	be	converted	from	ext_enc	to	int_enc	upon	input,
and	written	strings	will	be	converted	from	int_enc	to

ext_enc	upon	output.	See	Encoding	for	further	details
of	transcoding	on	input	and	output.

If	“BOM|UTF-8”,	“BOM|UTF-16LE”	or	“BOM|UTF16-
BE”	are	used,	ruby	checks	for	a	Unicode	BOM	in	the
input	document	to	help	determine	the	encoding.	For
UTF-16	encodings	the	file	open	mode	must	be	binary.
When	present,	the	BOM	is	stripped	and	the	external
encoding	from	the	BOM	is	used.	When	the	BOM	is
missing	the	given	Unicode	encoding	is	used	as
ext_enc.	(The	BOM-set	encoding	option	is	case
insensitive,	so	“bom|utf-8”	is	also	valid.)

Options
opt	can	be	used	instead	of	mode	for	improved
readability.	The	following	keys	are	supported:

:mode
Same	as	mode	parameter

:external_encoding
External	encoding	for	the	IO.	“-”	is	a	synonym	for
the	default	external	encoding.

:internal_encoding
Internal	encoding	for	the	IO.	“-”	is	a	synonym	for
the	default	internal	encoding.

If	the	value	is	nil	no	conversion	occurs.

:encoding
Specifies	external	and	internal	encodings	as
“extern:intern”.

:textmode
If	the	value	is	truth	value,	same	as	“t”	in	argument
mode.

:binmode
If	the	value	is	truth	value,	same	as	“b”	in	argument

mode.

:autoclose
If	the	value	is	false,	the	fd	will	be	kept	open	after
this	IO	instance	gets	finalized.

Also,	opt	can	have	same	keys	in	String#encode	for
controlling	conversion	between	the	external	encoding
and	the	internal	encoding.

Example	1
fd	=	IO.sysopen("/dev/tty",	"w")

a	=	IO.new(fd,"w")

$stderr.puts	"Hello"

a.puts	"World"

Produces:

Hello

World

Example	2
require	'fcntl'

fd	=	STDERR.fcntl(Fcntl::F_DUPFD)

io	=	IO.new(fd,	mode:	'w:UTF-16LE',	cr_newline:	true)

io.puts	"Hello,	World!"

fd	=	STDERR.fcntl(Fcntl::F_DUPFD)

io	=	IO.new(fd,	mode:	'w',	cr_newline:	true,

												external_encoding:	Encoding::UTF_16LE)

io.puts	"Hello,	World!"

Both	of	above	print	“Hello,	World!”	in	UTF-16LE	to
standard	error	output	with	converting	EOL	generated
by	puts	to	CR.

With	no	associated	block,	IO.open	is	a	synonym	for
::new.	If	the	optional	code	block	is	given,	it	will	be
passed	io	as	an	argument,	and	the	IO	object	will
automatically	be	closed	when	the	block	terminates.	In
this	instance,	::open	returns	the	value	of	the	block.

See	::new	for	a	description	of	the	fd,	mode	and	opt
parameters.

Creates	a	pair	of	pipe	endpoints	(connected	to	each
other)	and	returns	them	as	a	two-element	array	of	IO
objects:	[read_io,	write_io].

If	a	block	is	given,	the	block	is	called	and	returns	the
value	of	the	block.	read_io	and	write_io	are	sent	to
the	block	as	arguments.	If	read_io	and	write_io	are
not	closed	when	the	block	exits,	they	are	closed.	i.e.
closing	read_io	and/or	write_io	doesn't	cause	an
error.

Not	available	on	all	platforms.

If	an	encoding	(encoding	name	or	encoding	object)	is
specified	as	an	optional	argument,	read	string	from
pipe	is	tagged	with	the	encoding	specified.	If	the
argument	is	a	colon	separated	two	encoding	names
“A:B”,	the	read	string	is	converted	from	encoding	A

open(fd,	mode="r"	[,	opt])	→	io
open(fd,	mode="r"	[,	opt])	{	|io|	block	}	→	obj

pipe	→	[read_io,	write_io]
pipe(ext_enc)	→	[read_io,	write_io]
pipe("ext_enc:int_enc"	[,	opt])	→	[read_io,
write_io]
pipe(ext_enc,	int_enc	[,	opt])	→	[read_io,
write_io]
pipe(...)	{|read_io,	write_io|	...	}

(external	encoding)	to	encoding	B	(internal
encoding),	then	tagged	with	B.	If	two	optional
arguments	are	specified,	those	must	be	encoding
objects	or	encoding	names,	and	the	first	one	is	the
external	encoding,	and	the	second	one	is	the	internal
encoding.	If	the	external	encoding	and	the	internal
encoding	is	specified,	optional	hash	argument	specify
the	conversion	option.

In	the	example	below,	the	two	processes	close	the
ends	of	the	pipe	that	they	are	not	using.	This	is	not
just	a	cosmetic	nicety.	The	read	end	of	a	pipe	will	not
generate	an	end	of	file	condition	if	there	are	any
writers	with	the	pipe	still	open.	In	the	case	of	the
parent	process,	the	rd.read	will	never	return	if	it	does
not	first	issue	a	wr.close.

rd,	wr	=	IO.pipe

if	fork

		wr.close

		puts	"Parent	got:	<#{rd.read}>"

		rd.close

		Process.wait

else

		rd.close

		puts	"Sending	message	to	parent"

		wr.write	"Hi	Dad"

		wr.close

end

produces:

Sending	message	to	parent

Parent	got:	<Hi	Dad>

Runs	the	specified	command	as	a	subprocess;	the

popen([env,]	cmd,	mode="r"	[,	opt])	→	io
popen([env,]	cmd,	mode="r"	[,	opt])	{|io|
block	}	→	obj

subprocess's	standard	input	and	output	will	be
connected	to	the	returned	IO	object.

The	PID	of	the	started	process	can	be	obtained	by
#pid	method.

cmd	is	a	string	or	an	array	as	follows.

cmd:

		"-"																																						:	fork

		commandline																														:	command	line	string	which	is	passed	to	a	shell

		[env,	cmdname,	arg1,	...,	opts]										:	command	name	and	zero	or	more	arguments	(no	shell)

		[env,	[cmdname,	argv0],	arg1,	...,	opts]	:	command	name,	argv[0]	and	zero	or	more	arguments	(no	shell)

(env	and	opts	are	optional.)

If	cmd	is	a	String	“-'',	then	a	new	instance	of	Ruby	is
started	as	the	subprocess.

If	cmd	is	an	Array	of	String,	then	it	will	be	used	as
the	subprocess's	argv	bypassing	a	shell.	The	array
can	contains	a	hash	at	first	for	environments	and	a
hash	at	last	for	options	similar	to	spawn.

The	default	mode	for	the	new	file	object	is	“r'',	but
mode	may	be	set	to	any	of	the	modes	listed	in	the
description	for	class	IO.	The	last	argument	opt
qualifies	mode.

#	set	IO	encoding

IO.popen("nkf	-e	filename",	:external_encoding=>"EUC-JP"

		euc_jp_string	=	nkf_io.read

}

#	merge	standard	output	and	standard	error	using

#	spawn	option.		See	the	document	of	Kernel.spawn.

IO.popen(["ls",	"/",	:err=>[:child,	:out]])	{|ls_io|

		ls_result_with_error	=	ls_io.read

}

#	spawn	options	can	be	mixed	with	IO	options

IO.popen(["ls",	"/"],	:err=>[:child,	:out])	{|ls_io|

		ls_result_with_error	=	ls_io.read

}

Raises	exceptions	which	IO.pipe	and	Kernel.spawn
raise.

If	a	block	is	given,	Ruby	will	run	the	command	as	a
child	connected	to	Ruby	with	a	pipe.	Ruby's	end	of
the	pipe	will	be	passed	as	a	parameter	to	the	block.
At	the	end	of	block,	Ruby	closes	the	pipe	and	sets	$?.
In	this	case	IO.popen	returns	the	value	of	the	block.

If	a	block	is	given	with	a	cmd	of	“-'',	the	block	will	be
run	in	two	separate	processes:	once	in	the	parent,
and	once	in	a	child.	The	parent	process	will	be
passed	the	pipe	object	as	a	parameter	to	the	block,
the	child	version	of	the	block	will	be	passed	nil,	and
the	child's	standard	in	and	standard	out	will	be
connected	to	the	parent	through	the	pipe.	Not
available	on	all	platforms.

f	=	IO.popen("uname")

p	f.readlines

f.close

puts	"Parent	is	#{Process.pid}"

IO.popen("date")	{	|f|	puts	f.gets	}

IO.popen("-")	{|f|	$stderr.puts	"#{Process.pid}	is	here,	f	is	#{f.inspect}"

p	$?

IO.popen(%wsed	-e	s|^|<foo>|	-e	s&$&;zot;&",	"r+")	{|f

		f.puts	"bar";	f.close_write;	puts	f.gets

}

produces:

["Linux\n"]

Parent	is	21346

Thu	Jan	15	22:41:19	JST	2009

21346	is	here,	f	is	#<IO:fd	3>

21352	is	here,	f	is	nil

#<Process::Status:	pid	21352	exit	0>

<foo>bar;zot;

Opens	the	file,	optionally	seeks	to	the	given	offset,
then	returns	length	bytes	(defaulting	to	the	rest	of	the
file).	read	ensures	the	file	is	closed	before	returning.

Options
The	options	hash	accepts	the	following	keys:

encoding
string	or	encoding

Specifies	the	encoding	of	the	read	string.
encoding:	will	be	ignored	if	length	is	specified.	See
Encoding.aliases	for	possible	encodings.

mode
string

Specifies	the	mode	argument	for	open().	It	must
start	with	an	“r”	otherwise	it	will	cause	an	error.
See	::new	for	the	list	of	possible	modes.

open_args
array	of	strings

Specifies	arguments	for	open()	as	an	array.	This
key	can	not	be	used	in	combination	with	either
encoding:	or	mode:.

Examples:

IO.read("testfile")														#=>	"This	is	line	one\nThis	is	line	two\nThis	is	line	three\nAnd	so	on...\n"

IO.read("testfile",	20)										#=>	"This	is	line	one\nThi"

IO.read("testfile",	20,	10)						#=>	"ne	one\nThis	is	line	"

IO.read("binfile",	mode:	"rb")			#=>	"\xF7\x00\x00\x0E\x12"

read(name,	[length	[,	offset]]	[,	opt])	→
string

readlines(name,	sep=$/	[,	open_args])	→

Reads	the	entire	file	specified	by	name	as	individual
lines,	and	returns	those	lines	in	an	array.	Lines	are
separated	by	sep.

a	=	IO.readlines("testfile")

a[0]			#=>	"This	is	line	one\n"

If	the	last	argument	is	a	hash,	it's	the	keyword
argument	to	open.	See	IO.read	for	detail.

Calls	select(2)	system	call.	It	monitors	given	arrays	of
IO	objects,	waits	one	or	more	of	IO	objects	ready	for
reading,	are	ready	for	writing,	and	have	pending
exceptions	respectively,	and	returns	an	array	that
contains	arrays	of	those	IO	objects.	It	will	return	nil	if
optional	timeout	value	is	given	and	no	IO	object	is
ready	in	timeout	seconds.

IO.select	peeks	the	buffer	of	IO	objects	for	testing
readability.	If	the	IO	buffer	is	not	empty,	IO.select
immediately	notify	readability.	This	“peek”	is	only
happen	for	IO	objects.	It	is	not	happen	for	IO-like
objects	such	as	OpenSSL::SSL::SSLSocket.

The	best	way	to	use	IO.select	is	invoking	it	after
nonblocking	methods	such	as	read_nonblock,
write_nonblock,	etc.	The	methods	raises	an
exception	which	is	extended	by	IO::WaitReadable	or

array
readlines(name,	limit	[,	open_args])	→	array
readlines(name,	sep,	limit	[,	open_args])	→
array

select(read_array
[,	write_array
[,	error_array
[,	timeout]]])	→	array	or	nil

IO::WaitWritable.	The	modules	notify	how	the	caller
should	wait	with	IO.select.	If	IO::WaitReadable	is
raised,	the	caller	should	wait	for	reading.	If
IO::WaitWritable	is	raised,	the	caller	should	wait	for
writing.

So,	blocking	read	(readpartial)	can	be	emulated
using	read_nonblock	and	IO.select	as	follows:

begin

		result	=	io_like.read_nonblock(maxlen)

rescue	IO::WaitReadable

		IO.select([io_like])

		retry

rescue	IO::WaitWritable

		IO.select(nil,	[io_like])

		retry

end

Especially,	the	combination	of	nonblocking	methods
and	IO.select	is	preferred	for	IO	like	objects	such	as
OpenSSL::SSL::SSLSocket.	It	has	to_io	method	to
return	underlying	IO	object.	IO.select	calls	to_io	to
obtain	the	file	descriptor	to	wait.

This	means	that	readability	notified	by	IO.select
doesn't	mean	readability	from
OpenSSL::SSL::SSLSocket	object.

Most	possible	situation	is	OpenSSL::SSL::SSLSocket
buffers	some	data.	IO.select	doesn't	see	the	buffer.
So	IO.select	can	block	when
OpenSSL::SSL::SSLSocket#readpartial	doesn't	block.

However	several	more	complicated	situation	exists.

SSL	is	a	protocol	which	is	sequence	of	records.	The
record	consists	multiple	bytes.	So,	the	remote	side	of
SSL	sends	a	partial	record,	IO.select	notifies
readability	but	OpenSSL::SSL::SSLSocket	cannot

decrypt	a	byte	and
OpenSSL::SSL::SSLSocket#readpartial	will	blocks.

Also,	the	remote	side	can	request	SSL	renegotiation
which	forces	the	local	SSL	engine	writes	some	data.
This	means	OpenSSL::SSL::SSLSocket#readpartial
may	invoke	write	system	call	and	it	can	block.	In
such	situation,
OpenSSL::SSL::SSLSocket#read_nonblock	raises
IO::WaitWritable	instead	of	blocking.	So,	the	caller
should	wait	for	ready	for	writability	as	above	example.

The	combination	of	nonblocking	methods	and
IO.select	is	also	useful	for	streams	such	as	tty,	pipe
socket	socket	when	multiple	process	read	form	a
stream.

Finally,	Linux	kernel	developers	doesn't	guarantee
that	readability	of	select(2)	means	readability	of
following	read(2)	even	for	single	process.	See
select(2)	manual	on	GNU/Linux	system.

Invoking	IO.select	before	IO#readpartial	works	well
in	usual.	However	it	is	not	the	best	way	to	use
IO.select.

The	writability	notified	by	select(2)	doesn't	show	how
many	bytes	writable.	IO#write	method	blocks	until
given	whole	string	is	written.	So,	IO#write(two	or
more	bytes)	can	block	after	writability	is	notified	by
IO.select.	IO#write_nonblock	is	required	to	avoid	the
blocking.

Blocking	write	(write)	can	be	emulated	using
write_nonblock	and	IO.select	as	follows:
IO::WaitReadable	should	also	be	rescued	for	SSL
renegotiation	in	OpenSSL::SSL::SSLSocket.

while	0	<	string.bytesize

		begin

				written	=	io_like.write_nonblock(string)

		rescue	IO::WaitReadable

				IO.select([io_like])

				retry

		rescue	IO::WaitWritable

				IO.select(nil,	[io_like])

				retry

		end

		string	=	string.byteslice(written..-1)

end

Parameters
read_array
an	array	of	IO	objects	that	wait	until	ready	for	read

write_array
an	array	of	IO	objects	that	wait	until	ready	for	write

error_array
an	array	of	IO	objects	that	wait	for	exceptions

timeout
a	numeric	value	in	second

Example
rp,	wp	=	IO.pipe

mesg	=	"ping	"

100.times	{

		#	IO.select	follows	IO#read.		Not	the	best	way	to	use	IO.select.

		rs,	ws,	=	IO.select([rp],	[wp])

		if	r	=	rs[0]

				ret	=	r.read(5)

				print	ret

				case	ret

				when	/ping/

						mesg	=	"pong\n"

				when	/pong/

						mesg	=	"ping	"

				end

		end

		if	w	=	ws[0]

				w.write(mesg)

		end

}

produces:

ping	pong

ping	pong

ping	pong

(snipped)

ping

Opens	the	given	path,	returning	the	underlying	file
descriptor	as	a	Fixnum.

IO.sysopen("testfile")			#=>	3

Try	to	convert	obj	into	an	IO,	using	#to_io	method.
Returns	converted	IO	or	nil	if	obj	cannot	be	converted
for	any	reason.

IO.try_convert(STDOUT)					#=>	STDOUT

IO.try_convert("STDOUT")			#=>	nil

require	'zlib'

f	=	open("/tmp/zz.gz")							#=>	#<File:/tmp/zz.gz>

z	=	Zlib::GzipReader.open(f)	#=>	#<Zlib::GzipReader:0x81d8744>

IO.try_convert(z)												#=>	#<File:/tmp/zz.gz>

Opens	the	file,	optionally	seeks	to	the	given	offset,

sysopen(path,	[mode,	[perm]])	→	fixnum

try_convert(obj)	→	io	or	nil

write(name,	string,	[offset])	→	fixnum
write(name,	string,	[offset],	open_args)	→
fixnum

writes	string,	then	returns	the	length	written.	write
ensures	the	file	is	closed	before	returning.	If	offset	is
not	given,	the	file	is	truncated.	Otherwise,	it	is	not
truncated.

If	the	last	argument	is	a	hash,	it	specifies	option	for
internal	open().	The	key	would	be	the	following.
open_args:	is	exclusive	to	others.

encoding:	string	or	encoding

	specifies	encoding	of	the	read	string.		encoding	will

	if	length	is	specified.

mode:	string

	specifies	mode	argument	for	open().		it	should	start	

	otherwise	it	would	cause	error.

perm:	fixnum

	specifies	perm	argument	for	open().

open_args:	array

	specifies	arguments	for	open()	as	an	array.

		IO.write("testfile",	"0123456789",	20)	#	=>	10

		#	File	could	contain:		"This	is	line	one\nThi0123456789two\nThis	is	line	three\nAnd	so	on...\n"

		IO.write("testfile",	"0123456789")						#=>	10

		#	File	would	now	read:	"0123456789"

Public	Instance	Methods

String	Output—Writes	obj	to	ios.	obj	will	be	converted
to	a	string	using	to_s.

$stdout	<<	"Hello	"	<<	"world!\n"

ios	<<	obj	→	ios

produces:

Hello	world!

Announce	an	intention	to	access	data	from	the
current	file	in	a	specific	pattern.	On	platforms	that	do
not	support	the	posix_fadvise(2)	system	call,	this
method	is	a	no-op.

advice	is	one	of	the	following	symbols:

:normal
No	advice	to	give;	the	default	assumption	for	an
open	file.

:sequential
The	data	will	be	accessed	sequentially	with	lower
offsets	read	before	higher	ones.

:random
The	data	will	be	accessed	in	random	order.

:willneed
The	data	will	be	accessed	in	the	near	future.

:dontneed
The	data	will	not	be	accessed	in	the	near	future.

:noreuse
The	data	will	only	be	accessed	once.

The	semantics	of	a	piece	of	advice	are	platform-
dependent.	See	man	2	posix_fadvise	for	details.

“data”	means	the	region	of	the	current	file	that	begins
at	offset	and	extends	for	len	bytes.	If	len	is	0,	the
region	ends	at	the	last	byte	of	the	file.	By	default,
both	offset	and	len	are	0,	meaning	that	the	advice
applies	to	the	entire	file.

advise(advice,	offset=0,	len=0)	→	nil

If	an	error	occurs,	one	of	the	following	exceptions	will
be	raised:
IOError

The	IO	stream	is	closed.

Errno::EBADF

The	file	descriptor	of	the	current	file	is	invalid.

Errno::EINVAL

An	invalid	value	for	advice	was	given.

Errno::ESPIPE

The	file	descriptor	of	the	current	file	refers	to	a
FIFO	or	pipe.	(Linux	raises	Errno::EINVAL	in	this
case).

TypeError

Either	advice	was	not	a	Symbol,	or	one	of	the
other	arguments	was	not	an	Integer.

RangeError

One	of	the	arguments	given	was	too	big/small.

This	list	is	not	exhaustive;	other	Errno
exceptions	are	also	possible.

Sets	auto-close	flag.

f	=	open("/dev/null")

IO.for_fd(f.fileno)

#	...

f.gets	#	may	cause	IOError

f	=	open("/dev/null")

IO.for_fd(f.fileno).autoclose	=	true

#	...

f.gets	#	won't	cause	IOError

autoclose	=	bool	→	true	or	false

autoclose?	→	true	or	false

Returns	true	if	the	underlying	file	descriptor	of	ios	will
be	closed	automatically	at	its	finalization,	otherwise
false.

Puts	ios	into	binary	mode.	Once	a	stream	is	in	binary
mode,	it	cannot	be	reset	to	nonbinary	mode.

newline	conversion	disabled

encoding	conversion	disabled

content	is	treated	as	ASCII-8BIT

Returns	true	if	ios	is	binmode.

This	is	a	deprecated	alias	for	each_byte.

This	is	a	deprecated	alias	for	each_char.

Closes	ios	and	flushes	any	pending	writes	to	the
operating	system.	The	stream	is	unavailable	for	any
further	data	operations;	an	IOError	is	raised	if	such
an	attempt	is	made.	I/O	streams	are	automatically
closed	when	they	are	claimed	by	the	garbage
collector.

If	ios	is	opened	by	IO.popen,	close	sets	$?.

binmode	→	ios

binmode?	→	true	or	false

bytes()

chars()

close	→	nil

Sets	a	close-on-exec	flag.

f	=	open("/dev/null")

f.close_on_exec	=	true

system("cat",	"/proc/self/fd/#{f.fileno}")	#	cat:	/proc/self/fd/3:	No	such	file	or	directory

f.closed?																#=>	false

Ruby	sets	close-on-exec	flags	of	all	file	descriptors
by	default	since	Ruby	2.0.0.	So	you	don't	need	to	set
by	yourself.	Also,	unsetting	a	close-on-exec	flag	can
cause	file	descriptor	leak	if	another	thread	use	fork()
and	exec()	(via	system()	method	for	example).	If	you
really	needs	file	descriptor	inheritance	to	child
process,	use	spawn()'s	argument	such	as	fd=>fd.

Returns	true	if	ios	will	be	closed	on	exec.

f	=	open("/dev/null")

f.close_on_exec?																	#=>	false

f.close_on_exec	=	true

f.close_on_exec?																	#=>	true

f.close_on_exec	=	false

f.close_on_exec?																	#=>	false

Closes	the	read	end	of	a	duplex	I/O	stream	(i.e.,	one
that	contains	both	a	read	and	a	write	stream,	such	as
a	pipe).	Will	raise	an	IOError	if	the	stream	is	not
duplexed.

f	=	IO.popen("/bin/sh","r+")

f.close_read

f.readlines

produces:

close_on_exec	=	bool	→	true	or	false

close_on_exec?	→	true	or	false

close_read	→	nil

prog.rb:3:in	`readlines':	not	opened	for	reading	(IOError)

	from	prog.rb:3

Closes	the	write	end	of	a	duplex	I/O	stream	(i.e.,	one
that	contains	both	a	read	and	a	write	stream,	such	as
a	pipe).	Will	raise	an	IOError	if	the	stream	is	not
duplexed.

f	=	IO.popen("/bin/sh","r+")

f.close_write

f.print	"nowhere"

produces:

prog.rb:3:in	`write':	not	opened	for	writing	(IOError)

	from	prog.rb:3:in	`print'

	from	prog.rb:3

Returns	true	if	ios	is	completely	closed	(for	duplex
streams,	both	reader	and	writer),	false	otherwise.

f	=	File.new("testfile")

f.close									#=>	nil

f.closed?							#=>	true

f	=	IO.popen("/bin/sh","r+")

f.close_write			#=>	nil

f.closed?							#=>	false

f.close_read				#=>	nil

f.closed?							#=>	true

This	is	a	deprecated	alias	for	each_codepoint.

close_write	→	nil

closed?	→	true	or	false

codepoints()

Executes	the	block	for	every	line	in	ios,	where	lines
are	separated	by	sep.	ios	must	be	opened	for	reading
or	an	IOError	will	be	raised.

If	no	block	is	given,	an	enumerator	is	returned
instead.

f	=	File.new("testfile")

f.each	{|line|	puts	"#{f.lineno}:	#{line}"	}

produces:

1:	This	is	line	one

2:	This	is	line	two

3:	This	is	line	three

4:	And	so	on...

Calls	the	given	block	once	for	each	byte	(0..255)	in
ios,	passing	the	byte	as	an	argument.	The	stream
must	be	opened	for	reading	or	an	IOError	will	be
raised.

If	no	block	is	given,	an	enumerator	is	returned
instead.

f	=	File.new("testfile")

checksum	=	0

each(sep=$/)	{|line|	block	}	→	ios
each(limit)	{|line|	block	}	→	ios
each(sep,limit)	{|line|	block	}	→	ios
each(...)	→	an_enumerator
each_line(sep=$/)	{|line|	block	}	→	ios
each_line(limit)	{|line|	block	}	→	ios
each_line(sep,limit)	{|line|	block	}	→	ios
each_line(...)	→	an_enumerator

each_byte	{|byte|	block	}	→	ios
each_byte	→	an_enumerator

f.each_byte	{|x|	checksum	^=	x	}			#=>	#<File:testfile>

checksum																											#=>	12

Calls	the	given	block	once	for	each	character	in	ios,
passing	the	character	as	an	argument.	The	stream
must	be	opened	for	reading	or	an	IOError	will	be
raised.

If	no	block	is	given,	an	enumerator	is	returned
instead.

f	=	File.new("testfile")

f.each_char	{|c|	print	c,	'	'	}			#=>	#<File:testfile>

Passes	the	Integer	ordinal	of	each	character	in	ios,
passing	the	codepoint	as	an	argument.	The	stream
must	be	opened	for	reading	or	an	IOError	will	be
raised.

If	no	block	is	given,	an	enumerator	is	returned
instead.

each_char	{|c|	block	}	→	ios
each_char	→	an_enumerator

each_codepoint	{|c|	block	}	→	ios
codepoints	{|c|	block	}	→	ios
each_codepoint	→	an_enumerator
codepoints	→	an_enumerator

each(sep=$/)	{|line|	block	}	→	ios
each(limit)	{|line|	block	}	→	ios
each(sep,limit)	{|line|	block	}	→	ios
each(...)	→	an_enumerator
each_line(sep=$/)	{|line|	block	}	→	ios

Executes	the	block	for	every	line	in	ios,	where	lines
are	separated	by	sep.	ios	must	be	opened	for	reading
or	an	IOError	will	be	raised.

If	no	block	is	given,	an	enumerator	is	returned
instead.

f	=	File.new("testfile")

f.each	{|line|	puts	"#{f.lineno}:	#{line}"	}

produces:

1:	This	is	line	one

2:	This	is	line	two

3:	This	is	line	three

4:	And	so	on...

Returns	true	if	ios	is	at	end	of	file	that	means	there
are	no	more	data	to	read.	The	stream	must	be
opened	for	reading	or	an	IOError	will	be	raised.

f	=	File.new("testfile")

dummy	=	f.readlines

f.eof			#=>	true

If	ios	is	a	stream	such	as	pipe	or	socket,	IO#eof?
blocks	until	the	other	end	sends	some	data	or	closes
it.

r,	w	=	IO.pipe

Thread.new	{	sleep	1;	w.close	}

r.eof?		#=>	true	after	1	second	blocking

r,	w	=	IO.pipe

Thread.new	{	sleep	1;	w.puts	"a"	}

each_line(limit)	{|line|	block	}	→	ios
each_line(sep,limit)	{|line|	block	}	→	ios
each_line(...)	→	an_enumerator

eof	→	true	or	false
eof?	→	true	or	false

r.eof?		#=>	false	after	1	second	blocking

r,	w	=	IO.pipe

r.eof?		#	blocks	forever

Note	that	IO#eof?	reads	data	to	the	input	byte	buffer.
So	IO#sysread	may	not	behave	as	you	intend	with
IO#eof?,	unless	you	call	IO#rewind	first	(which	is	not
available	for	some	streams).

Returns	true	if	ios	is	at	end	of	file	that	means	there
are	no	more	data	to	read.	The	stream	must	be
opened	for	reading	or	an	IOError	will	be	raised.

f	=	File.new("testfile")

dummy	=	f.readlines

f.eof			#=>	true

If	ios	is	a	stream	such	as	pipe	or	socket,	IO#eof?
blocks	until	the	other	end	sends	some	data	or	closes
it.

r,	w	=	IO.pipe

Thread.new	{	sleep	1;	w.close	}

r.eof?		#=>	true	after	1	second	blocking

r,	w	=	IO.pipe

Thread.new	{	sleep	1;	w.puts	"a"	}

r.eof?		#=>	false	after	1	second	blocking

r,	w	=	IO.pipe

r.eof?		#	blocks	forever

Note	that	IO#eof?	reads	data	to	the	input	byte	buffer.
So	IO#sysread	may	not	behave	as	you	intend	with
IO#eof?,	unless	you	call	IO#rewind	first	(which	is	not
available	for	some	streams).

eof	→	true	or	false
eof?	→	true	or	false

Returns	the	Encoding	object	that	represents	the
encoding	of	the	file.	If	io	is	write	mode	and	no
encoding	is	specified,	returns	nil.

Provides	a	mechanism	for	issuing	low-level
commands	to	control	or	query	file-oriented	I/O
streams.	Arguments	and	results	are	platform
dependent.	If	arg	is	a	number,	its	value	is	passed
directly.	If	it	is	a	string,	it	is	interpreted	as	a	binary
sequence	of	bytes	(Array#pack	might	be	a	useful	way
to	build	this	string).	On	Unix	platforms,	see	fcntl(2)
for	details.	Not	implemented	on	all	platforms.

Immediately	writes	all	buffered	data	in	ios	to	disk.

If	the	underlying	operating	system	does	not	support
fdatasync(2),	IO#fsync	is	called	instead	(which	might
raise	a	NotImplementedError).

Returns	an	integer	representing	the	numeric	file
descriptor	for	ios.

$stdin.fileno				#=>	0

$stdout.fileno			#=>	1

Also	aliased	as:	to_i

Flushes	any	buffered	data	within	ios	to	the	underlying

external_encoding	→	encoding

fcntl(integer_cmd,	arg)	→	integer

fdatasync	→	0	or	nil

fileno	→	fixnum
to_i	→	fixnum

flush	→	ios

operating	system	(note	that	this	is	Ruby	internal
buffering	only;	the	OS	may	buffer	the	data	as	well).

$stdout.print	"no	newline"

$stdout.flush

produces:

no	newline

Immediately	writes	all	buffered	data	in	ios	to	disk.
Note	that	fsync	differs	from	using	IO#sync=.	The	latter
ensures	that	data	is	flushed	from	Ruby's	buffers,	but
does	not	guarantee	that	the	underlying	operating
system	actually	writes	it	to	disk.

NotImplementedError	is	raised	if	the	underlying
operating	system	does	not	support	fsync(2).

Gets	the	next	8-bit	byte	(0..255)	from	ios.	Returns	nil
if	called	at	end	of	file.

f	=	File.new("testfile")

f.getbyte			#=>	84

f.getbyte			#=>	104

Reads	a	one-character	string	from	ios.	Returns	nil	if
called	at	end	of	file.

f	=	File.new("testfile")

f.getc			#=>	"h"

f.getc			#=>	"e"

fsync	→	0	or	nil

getbyte	→	fixnum	or	nil

getc	→	string	or	nil

Reads	the	next	“line''	from	the	I/O	stream;	lines	are
separated	by	sep.	A	separator	of	nil	reads	the	entire
contents,	and	a	zero-length	separator	reads	the	input
a	paragraph	at	a	time	(two	successive	newlines	in	the
input	separate	paragraphs).	The	stream	must	be
opened	for	reading	or	an	IOError	will	be	raised.	The
line	read	in	will	be	returned	and	also	assigned	to	$_.
Returns	nil	if	called	at	end	of	file.	If	the	first
argument	is	an	integer,	or	optional	second	argument
is	given,	the	returning	string	would	not	be	longer	than
the	given	value	in	bytes.

File.new("testfile").gets			#=>	"This	is	line	one\n"

$_																										#=>	"This	is	line	one\n"

Return	a	string	describing	this	IO	object.

Returns	the	Encoding	of	the	internal	string	if
conversion	is	specified.	Otherwise	returns	nil.

Provides	a	mechanism	for	issuing	low-level
commands	to	control	or	query	I/O	devices.
Arguments	and	results	are	platform	dependent.	If	arg
is	a	number,	its	value	is	passed	directly.	If	it	is	a
string,	it	is	interpreted	as	a	binary	sequence	of	bytes.
On	Unix	platforms,	see	ioctl(2)	for	details.	Not

gets(sep=$/)	→	string	or	nil
gets(limit)	→	string	or	nil
gets(sep,	limit)	→	string	or	nil

inspect	→	string

internal_encoding	→	encoding

ioctl(integer_cmd,	arg)	→	integer

implemented	on	all	platforms.

Returns	true	if	ios	is	associated	with	a	terminal
device	(tty),	false	otherwise.

File.new("testfile").isatty			#=>	false

File.new("/dev/tty").isatty			#=>	true

Returns	the	current	line	number	in	ios.	The	stream
must	be	opened	for	reading.	lineno	counts	the
number	of	times	gets	is	called	rather	than	the	number
of	newlines	encountered.	The	two	values	will	differ	if
gets	is	called	with	a	separator	other	than	newline.

Methods	that	use	$/	like	each,	lines	and	readline	will
also	increment	lineno.

See	also	the	$.	variable.

f	=	File.new("testfile")

f.lineno			#=>	0

f.gets					#=>	"This	is	line	one\n"

f.lineno			#=>	1

f.gets					#=>	"This	is	line	two\n"

f.lineno			#=>	2

Manually	sets	the	current	line	number	to	the	given
value.	$.	is	updated	only	on	the	next	read.

f	=	File.new("testfile")

f.gets																					#=>	"This	is	line	one\n"

$.																									#=>	1

f.lineno	=	1000

isatty	→	true	or	false
tty?	→	true	or	false

lineno	→	integer

lineno	=	integer	→	integer

f.lineno																			#=>	1000

$.																									#=>	1									#	lineno	of	last	read

f.gets																					#=>	"This	is	line	two\n"

$.																									#=>	1001						#	lineno	of	last	read

This	is	a	deprecated	alias	for	each_line.

Returns	the	process	ID	of	a	child	process	associated
with	ios.	This	will	be	set	by	IO.popen.

pipe	=	IO.popen("-")

if	pipe

		$stderr.puts	"In	parent,	child	pid	is	#{pipe.pid}"

else

		$stderr.puts	"In	child,	pid	is	#{$$}"

end

produces:

In	child,	pid	is	26209

In	parent,	child	pid	is	26209

Returns	the	current	offset	(in	bytes)	of	ios.

f	=	File.new("testfile")

f.pos				#=>	0

f.gets			#=>	"This	is	line	one\n"

f.pos				#=>	17

Seeks	to	the	given	position	(in	bytes)	in	ios.	It	is	not

lines(*args)

pid	→	fixnum

pos	→	integer
tell	→	integer

pos	=	integer	→	integer

guaranteed	that	seeking	to	the	right	position	when	ios
is	textmode.

f	=	File.new("testfile")

f.pos	=	17

f.gets			#=>	"This	is	line	two\n"

Writes	the	given	object(s)	to	ios.	The	stream	must	be
opened	for	writing.	If	the	output	field	separator	($,)	is
not	nil,	it	will	be	inserted	between	each	object.	If	the
output	record	separator	($\</code>)	is	not
<code>nil,	it	will	be	appended	to	the	output.	If	no
arguments	are	given,	prints	$_.	Objects	that	aren't
strings	will	be	converted	by	calling	their	to_s	method.
With	no	argument,	prints	the	contents	of	the	variable
$_.	Returns	nil.

$stdout.print("This	is	",	100,	"	percent.\n")

produces:

This	is	100	percent.

Formats	and	writes	to	ios,	converting	parameters
under	control	of	the	format	string.	See
Kernel#sprintf	for	details.

If	obj	is	Numeric,	write	the	character	whose	code	is
the	least-significant	byte	of	obj,	otherwise	write	the
first	byte	of	the	string	representation	of	obj	to	ios.

print()	→	nil
print(obj,	...)	→	nil

printf(format_string	[,	obj,	...])	→	nil

putc(obj)	→	obj

Note:	This	method	is	not	safe	for	use	with	multi-byte
characters	as	it	will	truncate	them.

$stdout.putc	"A"

$stdout.putc	65

produces:

AA

Writes	the	given	objects	to	ios	as	with	IO#print.
Writes	a	record	separator	(typically	a	newline)	after
any	that	do	not	already	end	with	a	newline	sequence.
If	called	with	an	array	argument,	writes	each	element
on	a	new	line.	If	called	without	arguments,	outputs	a
single	record	separator.

$stdout.puts("this",	"is",	"a",	"test")

produces:

this

is

a

test

Reads	length	bytes	from	the	I/O	stream.

length	must	be	a	non-negative	integer	or	nil.

If	length	is	a	positive	integer,	it	tries	to	read	length
bytes	without	any	conversion	(binary	mode).	It
returns	nil	or	a	string	whose	length	is	1	to	length
bytes.	nil	means	it	met	EOF	at	beginning.	The	1	to
length-1	bytes	string	means	it	met	EOF	after	reading

puts(obj,	...)	→	nil

read([length	[,	outbuf]])	→	string,	outbuf,	or
nil

the	result.	The	length	bytes	string	means	it	doesn't
meet	EOF.	The	resulted	string	is	always	ASCII-8BIT
encoding.

If	length	is	omitted	or	is	nil,	it	reads	until	EOF	and
the	encoding	conversion	is	applied.	It	returns	a	string
even	if	EOF	is	met	at	beginning.

If	length	is	zero,	it	returns	"".

If	the	optional	outbuf	argument	is	present,	it	must
reference	a	String,	which	will	receive	the	data.	The
outbuf	will	contain	only	the	received	data	after	the
method	call	even	if	it	is	not	empty	at	the	beginning.

At	end	of	file,	it	returns	nil	or	""	depend	on	length.
ios.read()	and	ios.read(nil)	returns	"".
ios.read(positive-integer)	returns	nil.

f	=	File.new("testfile")

f.read(16)			#=>	"This	is	line	one"

#	reads	whole	file

open("file")	{|f|

		data	=	f.read	#	This	returns	a	string	even	if	the	file	is	empty.

		...

}

#	iterate	over	fixed	length	records.

open("fixed-record-file")	{|f|

		while	record	=	f.read(256)

				...

		end

}

#	iterate	over	variable	length	records.

#	record	is	prefixed	by	32-bit	length.

open("variable-record-file")	{|f|

		while	len	=	f.read(4)

				len	=	len.unpack("N")[0]	#	32-bit	length

				record	=	f.read(len)	#	This	returns	a	string	even	if	len	is	0.

		end

}

Note	that	this	method	behaves	like	fread()	function	in
C.	This	means	it	retry	to	invoke	read(2)	system	call	to
read	data	with	the	specified	length	(or	until	EOF).
This	behavior	is	preserved	even	if	ios	is	non-blocking
mode.	(This	method	is	non-blocking	flag	insensitive
as	other	methods.)	If	you	need	the	behavior	like
single	read(2)	system	call,	consider	readpartial,
#read_nonblock	and	sysread.

Reads	at	most	maxlen	bytes	from	ios	using	the
read(2)	system	call	after	O_NONBLOCK	is	set	for	the
underlying	file	descriptor.

If	the	optional	outbuf	argument	is	present,	it	must
reference	a	String,	which	will	receive	the	data.	The
outbuf	will	contain	only	the	received	data	after	the
method	call	even	if	it	is	not	empty	at	the	beginning.

#read_nonblock	just	calls	the	read(2)	system	call.	It
causes	all	errors	the	read(2)	system	call	causes:
Errno::EWOULDBLOCK,	Errno::EINTR,	etc.	The
caller	should	care	such	errors.

If	the	exception	is	Errno::EWOULDBLOCK	or
Errno::AGAIN,	it	is	extended	by	IO::WaitReadable.
So	IO::WaitReadable	can	be	used	to	rescue	the
exceptions	for	retrying	read_nonblock.

#read_nonblock	causes	EOFError	on	EOF.

If	the	read	byte	buffer	is	not	empty,	#read_nonblock
reads	from	the	buffer	like	readpartial.	In	this	case,	the
read(2)	system	call	is	not	called.

When	#read_nonblock	raises	an	exception	kind	of
IO::WaitReadable,	#read_nonblock	should	not	be
called	until	io	is	readable	for	avoiding	busy	loop.	This

read_nonblock(maxlen)	→	string
read_nonblock(maxlen,	outbuf)	→	outbuf

can	be	done	as	follows.

#	emulates	blocking	read	(readpartial).

begin

		result	=	io.read_nonblock(maxlen)

rescue	IO::WaitReadable

		IO.select([io])

		retry

end

Although	#read_nonblock	doesn't	raise
IO::WaitWritable.	OpenSSL::Buffering#read_nonblock
can	raise	IO::WaitWritable.	If	IO	and	SSL	should	be
used	polymorphically,	IO::WaitWritable	should	be
rescued	too.	See	the	document	of
OpenSSL::Buffering#read_nonblock	for	sample	code.

Note	that	this	method	is	identical	to	readpartial
except	the	non-blocking	flag	is	set.

Reads	a	byte	as	with	IO#getbyte,	but	raises	an
EOFError	on	end	of	file.

Reads	a	one-character	string	from	ios.	Raises	an
EOFError	on	end	of	file.

f	=	File.new("testfile")

f.readchar			#=>	"h"

f.readchar			#=>	"e"

Reads	a	line	as	with	IO#gets,	but	raises	an	EOFError
on	end	of	file.

readbyte	→	fixnum

readchar	→	string

readline(sep=$/)	→	string
readline(limit)	→	string
readline(sep,	limit)	→	string

Reads	all	of	the	lines	in	ios,	and	returns	them	in
anArray.	Lines	are	separated	by	the	optional	sep.	If
sep	is	nil,	the	rest	of	the	stream	is	returned	as	a
single	record.	If	the	first	argument	is	an	integer,	or
optional	second	argument	is	given,	the	returning
string	would	not	be	longer	than	the	given	value	in
bytes.	The	stream	must	be	opened	for	reading	or	an
IOError	will	be	raised.

f	=	File.new("testfile")

f.readlines[0]			#=>	"This	is	line	one\n"

Reads	at	most	maxlen	bytes	from	the	I/O	stream.	It
blocks	only	if	ios	has	no	data	immediately	available.	It
doesn't	block	if	some	data	available.	If	the	optional
outbuf	argument	is	present,	it	must	reference	a
String,	which	will	receive	the	data.	The	outbuf	will
contain	only	the	received	data	after	the	method	call
even	if	it	is	not	empty	at	the	beginning.	It	raises
EOFError	on	end	of	file.

readpartial	is	designed	for	streams	such	as	pipe,
socket,	tty,	etc.	It	blocks	only	when	no	data
immediately	available.	This	means	that	it	blocks	only
when	following	all	conditions	hold.

the	byte	buffer	in	the	IO	object	is	empty.

the	content	of	the	stream	is	empty.

the	stream	is	not	reached	to	EOF.

readlines(sep=$/)	→	array
readlines(limit)	→	array
readlines(sep,	limit)	→	array

readpartial(maxlen)	→	string
readpartial(maxlen,	outbuf)	→	outbuf

When	readpartial	blocks,	it	waits	data	or	EOF	on	the
stream.	If	some	data	is	reached,	readpartial	returns
with	the	data.	If	EOF	is	reached,	readpartial	raises
EOFError.

When	readpartial	doesn't	blocks,	it	returns	or	raises
immediately.	If	the	byte	buffer	is	not	empty,	it	returns
the	data	in	the	buffer.	Otherwise	if	the	stream	has
some	content,	it	returns	the	data	in	the	stream.
Otherwise	if	the	stream	is	reached	to	EOF,	it	raises
EOFError.

r,	w	=	IO.pipe											#															buffer										pipe	content

w	<<	"abc"															#															""														"abc".

r.readpartial(4096)						#=>	"abc"							""														""

r.readpartial(4096)						#	blocks	because	buffer	and	pipe	is	empty.

r,	w	=	IO.pipe											#															buffer										pipe	content

w	<<	"abc"															#															""														"abc"

w.close																		#															""														"abc"	EOF

r.readpartial(4096)						#=>	"abc"							""														EOF

r.readpartial(4096)						#	raises	EOFError

r,	w	=	IO.pipe											#															buffer										pipe	content

w	<<	"abc\ndef\n"								#															""														"abc\ndef\n"

r.gets																			#=>	"abc\n"					"def\n"									""

w	<<	"ghi\n"													#															"def\n"									"ghi\n"

r.readpartial(4096)						#=>	"def\n"					""														"ghi\n"

r.readpartial(4096)						#=>	"ghi\n"					""														""

Note	that	readpartial	behaves	similar	to	sysread.	The
differences	are:

If	the	byte	buffer	is	not	empty,	read	from	the
byte	buffer	instead	of	“sysread	for	buffered	IO
(IOError)”.

It	doesn't	cause	Errno::EWOULDBLOCK	and
Errno::EINTR.	When	readpartial	meets
EWOULDBLOCK	and	EINTR	by	read	system
call,	readpartial	retry	the	system	call.

The	later	means	that	readpartial	is	nonblocking-flag

insensitive.	It	blocks	on	the	situation	#sysread	causes
Errno::EWOULDBLOCK	as	if	the	fd	is	blocking	mode.

Reassociates	ios	with	the	I/O	stream	given	in
other_IO	or	to	a	new	stream	opened	on	path.	This
may	dynamically	change	the	actual	class	of	this
stream.

f1	=	File.new("testfile")

f2	=	File.new("testfile")

f2.readlines[0]			#=>	"This	is	line	one\n"

f2.reopen(f1)					#=>	#<File:testfile>

f2.readlines[0]			#=>	"This	is	line	one\n"

Positions	ios	to	the	beginning	of	input,	resetting
lineno	to	zero.

f	=	File.new("testfile")

f.readline			#=>	"This	is	line	one\n"

f.rewind					#=>	0

f.lineno					#=>	0

f.readline			#=>	"This	is	line	one\n"

Note	that	it	cannot	be	used	with	streams	such	as
pipes,	ttys,	and	sockets.

Seeks	to	a	given	offset	anInteger	in	the	stream
according	to	the	value	of	whence:

:CUR	or	IO::SEEK_CUR		|	Seeks	to	_amount_	plus	current	position

----------------------+--

:END	or	IO::SEEK_END		|	Seeks	to	_amount_	plus	end	of	stream	(you

																						|	probably	want	a	negative	value	for	_amount_)

----------------------+--

reopen(other_IO)	→	ios
reopen(path,	mode_str)	→	ios

rewind	→	0

seek(amount,	whence=IO::SEEK_SET)	→	0

:SET	or	IO::SEEK_SET		|	Seeks	to	the	absolute	location	given	by	_amount_

Example:

f	=	File.new("testfile")

f.seek(-13,	IO::SEEK_END)			#=>	0

f.readline																		#=>	"And	so	on...\n"

If	single	argument	is	specified,	read	string	from	io	is
tagged	with	the	encoding	specified.	If	encoding	is	a
colon	separated	two	encoding	names	“A:B”,	the	read
string	is	converted	from	encoding	A	(external
encoding)	to	encoding	B	(internal	encoding),	then
tagged	with	B.	If	two	arguments	are	specified,	those
must	be	encoding	objects	or	encoding	names,	and
the	first	one	is	the	external	encoding,	and	the	second
one	is	the	internal	encoding.	If	the	external	encoding
and	the	internal	encoding	is	specified,	optional	hash
argument	specify	the	conversion	option.

Returns	status	information	for	ios	as	an	object	of	type
File::Stat.

f	=	File.new("testfile")

s	=	f.stat

"%o"	%	s.mode			#=>	"100644"

s.blksize							#=>	4096

s.atime									#=>	Wed	Apr	09	08:53:54	CDT	2003

set_encoding(ext_enc)	→	io
set_encoding("ext_enc:int_enc")	→	io
set_encoding(ext_enc,	int_enc)	→	io
set_encoding("ext_enc:int_enc",	opt)	→	io
set_encoding(ext_enc,	int_enc,	opt)	→	io

stat	→	stat

Returns	the	current	“sync	mode''	of	ios.	When	sync
mode	is	true,	all	output	is	immediately	flushed	to	the
underlying	operating	system	and	is	not	buffered	by
Ruby	internally.	See	also	IO#fsync.

f	=	File.new("testfile")

f.sync			#=>	false

Sets	the	“sync	mode''	to	true	or	false.	When	sync
mode	is	true,	all	output	is	immediately	flushed	to	the
underlying	operating	system	and	is	not	buffered
internally.	Returns	the	new	state.	See	also	IO#fsync.

f	=	File.new("testfile")

f.sync	=	true

(produces	no	output)

Reads	maxlen	bytes	from	ios	using	a	low-level	read
and	returns	them	as	a	string.	Do	not	mix	with	other
methods	that	read	from	ios	or	you	may	get
unpredictable	results.	If	the	optional	outbuf	argument
is	present,	it	must	reference	a	String,	which	will
receive	the	data.	The	outbuf	will	contain	only	the
received	data	after	the	method	call	even	if	it	is	not
empty	at	the	beginning.	Raises	SystemCallError	on
error	and	EOFError	at	end	of	file.

f	=	File.new("testfile")

f.sysread(16)			#=>	"This	is	line	one"

sync	→	true	or	false

sync	=	boolean	→	boolean

sysread(maxlen[,	outbuf])	→	string

Seeks	to	a	given	offset	in	the	stream	according	to	the
value	of	whence	(see	IO#seek	for	values	of	whence).
Returns	the	new	offset	into	the	file.

f	=	File.new("testfile")

f.sysseek(-13,	IO::SEEK_END)			#=>	53

f.sysread(10)																		#=>	"And	so	on."

Writes	the	given	string	to	ios	using	a	low-level	write.
Returns	the	number	of	bytes	written.	Do	not	mix	with
other	methods	that	write	to	ios	or	you	may	get
unpredictable	results.	Raises	SystemCallError	on
error.

f	=	File.new("out",	"w")

f.syswrite("ABCDEF")			#=>	6

Returns	the	current	offset	(in	bytes)	of	ios.

f	=	File.new("testfile")

f.pos				#=>	0

f.gets			#=>	"This	is	line	one\n"

f.pos				#=>	17

Alias	for:	fileno

Returns	ios.

sysseek(offset,	whence=IO::SEEK_SET)	→
integer

syswrite(string)	→	integer

pos	→	integer
tell	→	integer

to_i()

to_io	→	ios

Returns	true	if	ios	is	associated	with	a	terminal
device	(tty),	false	otherwise.

File.new("testfile").isatty			#=>	false

File.new("/dev/tty").isatty			#=>	true

Pushes	back	bytes	(passed	as	a	parameter)	onto	ios,
such	that	a	subsequent	buffered	read	will	return	it.
Only	one	byte	may	be	pushed	back	before	a
subsequent	read	operation	(that	is,	you	will	be	able	to
read	only	the	last	of	several	bytes	that	have	been
pushed	back).	Has	no	effect	with	unbuffered	reads
(such	as	IO#sysread).

f	=	File.new("testfile")			#=>	#<File:testfile>

b	=	f.getbyte														#=>	0x38

f.ungetbyte(b)													#=>	nil

f.getbyte																		#=>	0x38

Pushes	back	one	character	(passed	as	a	parameter)
onto	ios,	such	that	a	subsequent	buffered	character
read	will	return	it.	Only	one	character	may	be	pushed
back	before	a	subsequent	read	operation	(that	is,	you
will	be	able	to	read	only	the	last	of	several	characters
that	have	been	pushed	back).	Has	no	effect	with
unbuffered	reads	(such	as	IO#sysread).

f	=	File.new("testfile")			#=>	#<File:testfile>

c	=	f.getc																	#=>	"8"

f.ungetc(c)																#=>	nil

isatty	→	true	or	false
tty?	→	true	or	false

ungetbyte(string)	→	nil
ungetbyte(integer)	→	nil

ungetc(string)	→	nil

f.getc																					#=>	"8"

Writes	the	given	string	to	ios.	The	stream	must	be
opened	for	writing.	If	the	argument	is	not	a	string,	it
will	be	converted	to	a	string	using	to_s.	Returns	the
number	of	bytes	written.

count	=	$stdout.write("This	is	a	test\n")

puts	"That	was	#{count}	bytes	of	data"

produces:

This	is	a	test

That	was	15	bytes	of	data

Writes	the	given	string	to	ios	using	the	write(2)
system	call	after	O_NONBLOCK	is	set	for	the
underlying	file	descriptor.

It	returns	the	number	of	bytes	written.

#write_nonblock	just	calls	the	write(2)	system	call.	It
causes	all	errors	the	write(2)	system	call	causes:
Errno::EWOULDBLOCK,	Errno::EINTR,	etc.	The
result	may	also	be	smaller	than	string.length	(partial
write).	The	caller	should	care	such	errors	and	partial
write.

If	the	exception	is	Errno::EWOULDBLOCK	or
Errno::AGAIN,	it	is	extended	by	IO::WaitWritable.	So
IO::WaitWritable	can	be	used	to	rescue	the
exceptions	for	retrying	write_nonblock.

#	Creates	a	pipe.

r,	w	=	IO.pipe

write(string)	→	integer

write_nonblock(string)	→	integer
write_nonblock(string	[,	options])	→	integer

#	write_nonblock	writes	only	65536	bytes	and	return	65536.

#	(The	pipe	size	is	65536	bytes	on	this	environment.)

s	=	"a"	*	100000

p	w.write_nonblock(s)					#=>	65536

#	write_nonblock	cannot	write	a	byte	and	raise	EWOULDBLOCK	(EAGAIN).

p	w.write_nonblock("b")			#	Resource	temporarily	unavailable	(Errno::EAGAIN)

If	the	write	buffer	is	not	empty,	it	is	flushed	at	first.

When	#write_nonblock	raises	an	exception	kind	of
IO::WaitWritable,	#write_nonblock	should	not	be
called	until	io	is	writable	for	avoiding	busy	loop.	This
can	be	done	as	follows.

begin

		result	=	io.write_nonblock(string)

rescue	IO::WaitWritable,	Errno::EINTR

		IO.select(nil,	[io])

		retry

end

Note	that	this	doesn't	guarantee	to	write	all	data	in
string.	The	length	written	is	reported	as	result	and	it
should	be	checked	later.

On	some	platforms	such	as	Windows,
#write_nonblock	is	not	supported	according	to	the
kind	of	the	IO	object.	In	such	cases,	#write_nonblock
raises	Errno::EBADF.

By	specifying	`exception:	false`,	the	options	hash
allows	you	to	indicate	that	#write_nonblock	should
not	raise	an	IO::WaitWritable	exception,	but	return
the	symbol	:wait_writable	instead.

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class
IO::EAGAINWaitReadable

In	Files
file.c

Parent
rb_eEAGAIN

Included	Modules
IO::WaitReadable

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class
IO::EAGAINWaitWritable

In	Files
file.c

Parent
rb_eEAGAIN

Included	Modules
IO::WaitWritable

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class
IO::EINPROGRESSWaitReadable

In	Files
file.c

Parent
rb_eEINPROGRESS

Included	Modules
IO::WaitReadable

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class
IO::EINPROGRESSWaitWritable

In	Files
file.c

Parent
rb_eEINPROGRESS

Included	Modules
IO::WaitWritable

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class
IO::EWOULDBLOCKWaitReadable

In	Files
file.c

Parent
rb_eEWOULDBLOCK

Included	Modules
IO::WaitReadable

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class
IO::EWOULDBLOCKWaitWritable

In	Files
file.c

Parent
rb_eEWOULDBLOCK

Included	Modules
IO::WaitWritable

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

module	IO::WaitReadable

In	Files
file.c

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

module	IO::WaitWritable

In	Files
file.c

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	IOError
Raised	when	an	IO	operation	fails.

File.open("/etc/hosts")	{|f|	f	<<	"example"}

		#=>	IOError:	not	opened	for	writing

File.open("/etc/hosts")	{|f|	f.close;	f.read	}

		#=>	IOError:	closed	stream

Note	that	some	IO	failures	raise
+SystemCallError+s	and	these	are	not
subclasses	of	IOError:

File.open("does/not/exist")

		#=>	Errno::ENOENT:	No	such	file	or	directory	-	does/not/exist

In	Files
io.c

Parent
StandardError

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	IndexError
Raised	when	the	given	index	is	invalid.

a	=	[:foo,	:bar]

a.fetch(0)			#=>	:foo

a[4]									#=>	nil

a.fetch(4)			#=>	IndexError:	index	4	outside	of	array	bounds:	-2...2

In	Files
error.c

Parent
StandardError

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	Integer
This	class	is	the	basis	for	the	two	concrete
classes	that	hold	whole	numbers,	Bignum	and
Fixnum.

In	Files
numeric.c
rational.c

Parent
Numeric

Public	Instance	Methods

As	int	is	already	an	Integer,	all	these	methods	simply
return	the	receiver.

Synonyms	are	to_int,	floor,	ceil,	truncate.

Returns	a	string	containing	the	character	represented
by	the	int's	value	according	to	encoding.

65.chr				#=>	"A"

230.chr			#=>	"\346"

255.chr(Encoding::UTF_8)			#=>	"\303\277"

to_i	→	integer

chr([encoding])	→	string

Returns	1.

Iterates	the	given	block,	passing	decreasing	values
from	int	down	to	and	including	limit.

If	no	block	is	given,	an	Enumerator	is	returned
instead.

5.downto(1)	{	|n|	print	n,	"..	"	}

print	"		Liftoff!\n"

#=>	"5..	4..	3..	2..	1..			Liftoff!"

Returns	true	if	int	is	an	even	number.

As	int	is	already	an	Integer,	all	these	methods	simply
return	the	receiver.

Synonyms	are	to_int,	floor,	ceil,	truncate.

Returns	the	greatest	common	divisor	(always
positive).	0.gcd(x)	and	x.gcd(0)	return	abs(x).

2.gcd(2)																				#=>	2

3.gcd(-7)																			#=>	1

((1<<31)-1).gcd((1<<61)-1)		#=>	1

Returns	an	array;	[int.gcd(int2),	int.lcm(int2)].

denominator	→	1

downto(limit)	{|i|	block	}	→	self
downto(limit)	→	an_enumerator

even?	→	true	or	false

to_i	→	integer

gcd(int2)	→	integer

gcdlcm(int2)	→	array

2.gcdlcm(2)																				#=>	[2,	2]

3.gcdlcm(-7)																			#=>	[1,	21]

((1<<31)-1).gcdlcm((1<<61)-1)		#=>	[1,	4951760154835678088235319297]

Since	int	is	already	an	Integer,	this	always	returns
true.

Returns	the	least	common	multiple	(always	positive).
0.lcm(x)	and	x.lcm(0)	return	zero.

2.lcm(2)																				#=>	2

3.lcm(-7)																			#=>	21

((1<<31)-1).lcm((1<<61)-1)		#=>	4951760154835678088235319297

Returns	the	Integer	equal	to	int	+	1,	same	as	#next.

1.next						#=>	2

(-1).next			#=>	0

Returns	self.

Returns	true	if	int	is	an	odd	number.

integer?	→	true

lcm(int2)	→	integer

next	→	integer
succ	→	integer

numerator	→	self

odd?	→	true	or	false

ord	→	self

Returns	the	int	itself.

a.ord				#=>	97

This	method	is	intended	for	compatibility	to	character
constant	in	Ruby	1.9.

For	example,	?a.ord	returns	97	both	in	1.8	and	1.9.

Returns	the	Integer	equal	to	int	-	1.

1.pred						#=>	0

(-1).pred			#=>	-2

Returns	the	value	as	a	rational.	The	optional
argument	eps	is	always	ignored.

Rounds	int	to	a	given	precision	in	decimal	digits
(default	0	digits).

Precision	may	be	negative.	Returns	a	floating	point
number	when	ndigits	is	positive,	self	for	zero,	and
round	down	for	negative.

1.round								#=>	1

1.round(2)					#=>	1.0

15.round(-1)			#=>	20

Returns	the	Integer	equal	to	int	+	1,	same	as	#next.

1.next						#=>	2

pred	→	integer

rationalize([eps])	→	rational

round([ndigits])	→	integer	or	float

next	→	integer
succ	→	integer

(-1).next			#=>	0

Iterates	the	given	block	int	times,	passing	in	values
from	zero	to	int	-	1.

If	no	block	is	given,	an	Enumerator	is	returned
instead.

5.times	do	|i|

		print	i,	"	"

end

#=>	0	1	2	3	4

As	int	is	already	an	Integer,	all	these	methods	simply
return	the	receiver.

Synonyms	are	to_int,	floor,	ceil,	truncate.

As	int	is	already	an	Integer,	all	these	methods	simply
return	the	receiver.

Synonyms	are	to_int,	floor,	ceil,	truncate.

Returns	the	value	as	a	rational.

1.to_r								#=>	(1/1)

(1<<64).to_r		#=>	(18446744073709551616/1)

As	int	is	already	an	Integer,	all	these	methods	simply

times	{|i|	block	}	→	self
times	→	an_enumerator

to_i	→	integer

to_i	→	integer

to_r	→	rational

to_i	→	integer

return	the	receiver.

Synonyms	are	to_int,	floor,	ceil,	truncate.

Iterates	the	given	block,	passing	in	integer	values
from	int	up	to	and	including	limit.

If	no	block	is	given,	an	Enumerator	is	returned
instead.

For	example:

5.upto(10)	{	|i|	print	i,	"	"	}

#=>	5	6	7	8	9	10

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

upto(limit)	{|i|	block	}	→	self
upto(limit)	→	an_enumerator

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	Interrupt
Raised	with	the	interrupt	signal	is	received,
typically	because	the	user	pressed	on	Control-C
(on	most	posix	platforms).	As	such,	it	is	a
subclass	of	SignalException.

begin

		puts	"Press	ctrl-C	when	you	get	bored"

		loop	{}

rescue	Interrupt	=>	e

		puts	"Note:	You	will	typically	use	Signal.trap	instead."

end

produces:

Press	ctrl-C	when	you	get	bored

then	waits	until	it	is	interrupted	with	Control-C
and	then	prints:

Note:	You	will	typically	use	Signal.trap	instead.

In	Files
error.c
signal.c

Parent
SignalException

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

module	Kernel
The	Kernel	module	is	included	by	class	Object,
so	its	methods	are	available	in	every	Ruby
object.

The	Kernel	instance	methods	are	documented	in
class	Object	while	the	module	methods	are
documented	here.	These	methods	are	called
without	a	receiver	and	thus	can	be	called	in
functional	form:

sprintf	"%.1f",	1.234	#=>	"1.2"

In	Files
complex.c
cont.c
error.c
eval.c
eval_jump.c
file.c
io.c
load.c
object.c
proc.c
process.c
random.c
rational.c
ruby.c
signal.c
vm_backtrace.c

vm_eval.c
vm_trace.c

Public	Instance	Methods

Returns	arg	as	an	Array.

First	tries	to	call	to_ary	on	arg,	then	to_a.

Array(1..5)			#=>	[1,	2,	3,	4,	5]

Returns	x+i*y;

Complex(1,	2)				#=>	(1+2i)

Complex('1+2i')		#=>	(1+2i)

Complex(nil)					#=>	TypeError

Complex(1,	nil)		#=>	TypeError

Syntax	of	string	form:

string	form	=	extra	spaces	,	complex	,	extra	spaces	;

complex	=	real	part	|	[sign]	,	imaginary	part

								|	real	part	,	sign	,	imaginary	part

								|	rational	,	"@"	,	rational	;

real	part	=	rational	;

imaginary	part	=	imaginary	unit	|	unsigned	rational	,	imaginary	unit	;

rational	=	[sign]	,	unsigned	rational	;

unsigned	rational	=	numerator	|	numerator	,	"/"	,	denominator	;

numerator	=	integer	part	|	fractional	part	|	integer	part	,	fractional	part	;

denominator	=	digits	;

integer	part	=	digits	;

fractional	part	=	"."	,	digits	,	[("e"	|	"E")	,	[sign]	,	digits]	;

imaginary	unit	=	"i"	|	"I"	|	"j"	|	"J"	;

sign	=	"-"	|	"+"	;

digits	=	digit	,	{	digit	|	"_"	,	digit	};

digit	=	"0"	|	"1"	|	"2"	|	"3"	|	"4"	|	"5"	|	"6"	|	"7"	|	"8"	|	"9"	;

extra	spaces	=	?	\s*	?	;

Array(arg)	→	array

Complex(x[,	y])	→	numeric

See	String#to_c.

Returns	arg	converted	to	a	float.	Numeric	types	are
converted	directly,	the	rest	are	converted	using
arg.to_f.	Converting	nil	generates	a	TypeError.

Float(1)											#=>	1.0

Float("123.456")			#=>	123.456

Converts	arg	to	a	Hash	by	calling	arg.to_hash.
Returns	an	empty	Hash	when	arg	is	nil	or	[].

Hash([])										#=>	{}

Hash(nil)									#=>	{}

Hash(key:	:value)	#=>	{:key	=>	:value}

Hash([1,	2,	3])			#=>	TypeError

Converts	arg	to	a	Fixnum	or	Bignum.	Numeric	types
are	converted	directly	(with	floating	point	numbers
being	truncated).	base	(0,	or	between	2	and	36)	is	a
base	for	integer	string	representation.	If	arg	is	a
String,	when	base	is	omitted	or	equals	zero,	radix
indicators	(0,	0b,	and	0x)	are	honored.	In	any	case,
strings	should	be	strictly	conformed	to	numeric
representation.	This	behavior	is	different	from	that	of
String#to_i.	Non	string	values	will	be	converted	by
first	trying	to_int,	then	to_i.	Passing	nil	raises	a
TypeError.

Integer(123.999)				#=>	123

Integer("0x1a")					#=>	26

Integer(Time.new)			#=>	1204973019

Integer("0930",	10)	#=>	930

Float(arg)	→	float

Hash(arg)	→	hash

Integer(arg,	base=0)	→	integer

Integer("111",	2)			#=>	7

Integer(nil)								#=>	TypeError

Returns	x/y;

Rational(1,	2)			#=>	(1/2)

Rational('1/2')		#=>	(1/2)

Rational(nil)				#=>	TypeError

Rational(1,	nil)	#=>	TypeError

Syntax	of	string	form:

string	form	=	extra	spaces	,	rational	,	extra	spaces	;

rational	=	[sign]	,	unsigned	rational	;

unsigned	rational	=	numerator	|	numerator	,	"/"	,	denominator	;

numerator	=	integer	part	|	fractional	part	|	integer	part	,	fractional	part	;

denominator	=	digits	;

integer	part	=	digits	;

fractional	part	=	"."	,	digits	,	[("e"	|	"E")	,	[sign]	,	digits]	;

sign	=	"-"	|	"+"	;

digits	=	digit	,	{	digit	|	"_"	,	digit	}	;

digit	=	"0"	|	"1"	|	"2"	|	"3"	|	"4"	|	"5"	|	"6"	|	"7"	|	"8"	|	"9"	;

extra	spaces	=	?	\s*	?	;

See	String#to_r.

Returns	arg	as	a	String.

First	tries	to	call	its	to_str	method,	then	its	to_s
method.

String(self)								#=>	"main"

String(self.class)		#=>	"Object"

String(123456)						#=>	"123456"

Returns	the	called	name	of	the	current	method	as	a

Rational(x[,	y])	→	numeric

String(arg)	→	string

__callee__	→	symbol

Symbol.	If	called	outside	of	a	method,	it	returns	nil.

Returns	the	canonicalized	absolute	path	of	the
directory	of	the	file	from	which	this	method	is	called.	It
means	symlinks	in	the	path	is	resolved.	If	__FILE__	is
nil,	it	returns	nil.	The	return	value	equals	to
File.dirname(File.realpath(__FILE__)).

Returns	the	name	at	the	definition	of	the	current
method	as	a	Symbol.	If	called	outside	of	a	method,	it
returns	nil.

Returns	the	standard	output	of	running	cmd	in	a
subshell.	The	built-in	syntax	%x{...}	uses	this
method.	Sets	$?	to	the	process	status.

%xdate`																			#=>	"Wed	Apr		9	08:56:30	CDT	2003\n"

%xls	testdir`.split[1]				#=>	"main.rb"

%xecho	oops	&&	exit	99`			#=>	"oops\n"

$?.exitstatus												#=>	99

Terminate	execution	immediately,	effectively	by
calling	Kernel.exit(false).	If	msg	is	given,	it	is
written	to	STDERR	prior	to	terminating.

__dir__	→	string

__method__	→	symbol

`cmd`	→	string

abort
Kernel::abort([msg])
Process::abort([msg])

Converts	block	to	a	Proc	object	(and	therefore	binds	it
at	the	point	of	call)	and	registers	it	for	execution	when
the	program	exits.	If	multiple	handlers	are	registered,
they	are	executed	in	reverse	order	of	registration.

def	do_at_exit(str1)

		at_exit	{	print	str1	}

end

at_exit	{	puts	"cruel	world"	}

do_at_exit("goodbye	")

exit

produces:

goodbye	cruel	world

Registers	filename	to	be	loaded	(using
Kernel::require)	the	first	time	that	module	(which
may	be	a	String	or	a	symbol)	is	accessed.

autoload(:MyModule,	"/usr/local/lib/modules/my_module.rb")

Returns	filename	to	be	loaded	if	name	is	registered
as	autoload.

autoload(:B,	"b")

autoload?(:B)												#=>	"b"

Returns	a	Binding	object,	describing	the	variable	and
method	bindings	at	the	point	of	call.	This	object	can
be	used	when	calling	eval	to	execute	the	evaluated

at_exit	{	block	}	→	proc

autoload(module,	filename)	→	nil

autoload?(name)	→	String	or	nil

binding	→	a_binding

command	in	this	environment.	See	also	the
description	of	class	Binding.

def	get_binding(param)

		return	binding

end

b	=	get_binding("hello")

eval("param",	b)			#=>	"hello"

Returns	true	if	yield	would	execute	a	block	in	the
current	context.	The	iterator?	form	is	mildly
deprecated.

def	try

		if	block_given?

				yield

		else

				"no	block"

		end

end

try																		#=>	"no	block"

try	{	"hello"	}						#=>	"hello"

try	do	"hello"	end			#=>	"hello"

Generates	a	Continuation	object,	which	it	passes	to
the	associated	block.	You	need	to	require
'continuation'	before	using	this	method.	Performing
a	cont.call	will	cause	the	callcc	to	return	(as	will
falling	through	the	end	of	the	block).	The	value
returned	by	the	callcc	is	the	value	of	the	block,	or	the
value	passed	to	cont.call.	See	class	Continuation
for	more	details.	Also	see	#throw	for	an	alternative
mechanism	for	unwinding	a	call	stack.

block_given?	→	true	or	false
iterator?	→	true	or	false

callcc	{|cont|	block	}	→	obj

Returns	the	current	execution	stack—an	array
containing	strings	in	the	form	file:line	or	file:line:
in	`method'.

The	optional	start	parameter	determines	the	number
of	initial	stack	entries	to	omit	from	the	top	of	the
stack.

A	second	optional	length	parameter	can	be	used	to
limit	how	many	entries	are	returned	from	the	stack.

Returns	nil	if	start	is	greater	than	the	size	of	current
execution	stack.

Optionally	you	can	pass	a	range,	which	will	return	an
array	containing	the	entries	within	the	specified
range.

def	a(skip)

		caller(skip)

end

def	b(skip)

		a(skip)

end

def	c(skip)

		b(skip)

end

c(0)			#=>	["prog:2:in	`a'",	"prog:5:in	`b'",	"prog:8:in	`c'",	"prog:10:in	`<main>'"]

c(1)			#=>	["prog:5:in	`b'",	"prog:8:in	`c'",	"prog:11:in	`<main>'"]

c(2)			#=>	["prog:8:in	`c'",	"prog:12:in	`<main>'"]

c(3)			#=>	["prog:13:in	`<main>'"]

c(4)			#=>	[]

c(5)			#=>	nil

Returns	the	current	execution	stack—an	array

caller(start=1,	length=nil)	→	array	or	nil
caller(range)	→	array	or	nil

caller_locations(start=1,	length=nil)	→	array
or	nil
caller_locations(range)	→	array	or	nil

containing	backtrace	location	objects.

See	Thread::Backtrace::Location	for	more
information.

The	optional	start	parameter	determines	the	number
of	initial	stack	entries	to	omit	from	the	top	of	the
stack.

A	second	optional	length	parameter	can	be	used	to
limit	how	many	entries	are	returned	from	the	stack.

Returns	nil	if	start	is	greater	than	the	size	of	current
execution	stack.

Optionally	you	can	pass	a	range,	which	will	return	an
array	containing	the	entries	within	the	specified
range.

catch	executes	its	block.	If	throw	is	not	called,	the
block	executes	normally,	and	catch	returns	the	value
of	the	last	expression	evaluated.

catch(1)	{	123	}												#	=>	123

If	+throw(tag2,	val)+	is	called,	Ruby	searches	up	its
stack	for	a	catch	block	whose	tag	has	the	same
object_id	as	tag2.	When	found,	the	block	stops
executing	and	returns	val	(or	nil	if	no	second
argument	was	given	to	throw).

catch(1)	{	throw(1,	456)	}		#	=>	456

catch(1)	{	throw(1)	}							#	=>	nil

When	tag	is	passed	as	the	first	argument,	catch
yields	it	as	the	parameter	of	the	block.

catch(1)	{|x|	x	+	2	}							#	=>	3

catch([tag])	{|tag|	block	}	→	obj

When	no	tag	is	given,	catch	yields	a	new	unique
object	(as	from	Object.new)	as	the	block	parameter.
This	object	can	then	be	used	as	the	argument	to
throw,	and	will	match	the	correct	catch	block.

catch	do	|obj_A|

		catch	do	|obj_B|

				throw(obj_B,	123)

				puts	"This	puts	is	not	reached"

		end

		puts	"This	puts	is	displayed"

		456

end

#	=>	456

catch	do	|obj_A|

		catch	do	|obj_B|

				throw(obj_A,	123)

				puts	"This	puts	is	still	not	reached"

		end

		puts	"Now	this	puts	is	also	not	reached"

		456

end

#	=>	123

Equivalent	to	$_	=	$_.chomp(string).	See
String#chomp.	Available	only	when	-p/-n	command
line	option	specified.

Equivalent	to	($_.dup).chop!,	except	nil	is	never
returned.	See	String#chop!.	Available	only	when	-p/-
n	command	line	option	specified.

chomp	→	$_
chomp(string)	→	$_

chop	→	$_

Evaluates	the	Ruby	expression(s)	in	string.	If	binding
is	given,	which	must	be	a	Binding	object,	the
evaluation	is	performed	in	its	context.	If	the	optional
filename	and	lineno	parameters	are	present,	they	will
be	used	when	reporting	syntax	errors.

def	get_binding(str)

		return	binding

end

str	=	"hello"

eval	"str	+	'	Fred'"																						#=>	"hello	Fred"

eval	"str	+	'	Fred'",	get_binding("bye")		#=>	"bye	Fred"

Replaces	the	current	process	by	running	the	given
external	command,	which	can	take	one	of	the
following	forms:

exec(commandline)

command	line	string	which	is	passed	to	the
standard	shell

exec(cmdname,	arg1,	...)

command	name	and	one	or	more
arguments	(no	shell)

exec([cmdname,	argv0],	arg1,	...)

command	name,	argv	and	zero	or	more
arguments	(no	shell)

In	the	first	form,	the	string	is	taken	as	a	command	line
that	is	subject	to	shell	expansion	before	being
executed.

eval(string	[,	binding	[,	filename	[,lineno]]])
→	obj

exec([env,]	command...	[,options])

http://0

The	standard	shell	always	means	"/bin/sh"	on	Unix-
like	systems,	same	as	ENV["RUBYSHELL"]	(or
ENV["COMSPEC"]	on	Windows	NT	series),	and	similar.

If	the	string	from	the	first	form	(exec("command"))
follows	these	simple	rules:

no	meta	characters

no	shell	reserved	word	and	no	special	built-in

Ruby	invokes	the	command	directly	without
shell

You	can	force	shell	invocation	by	adding	“;”	to	the
string	(because	“;”	is	a	meta	character).

Note	that	this	behavior	is	observable	by	pid	obtained
(return	value	of	spawn()	and	IO#pid	for	IO.popen)	is
the	pid	of	the	invoked	command,	not	shell.

In	the	second	form	(exec("command1",	"arg1",	...)),
the	first	is	taken	as	a	command	name	and	the	rest
are	passed	as	parameters	to	command	with	no	shell
expansion.

In	the	third	form	(exec(["command",	"argv0"],
"arg1",	...)),	starting	a	two-element	array	at	the
beginning	of	the	command,	the	first	element	is	the
command	to	be	executed,	and	the	second	argument
is	used	as	the	argv[0]	value,	which	may	show	up	in
process	listings.

In	order	to	execute	the	command,	one	of	the	exec(2)
system	calls	are	used,	so	the	running	command	may
inherit	some	of	the	environment	of	the	original
program	(including	open	file	descriptors).

This	behavior	is	modified	by	the	given	env	and
options	parameters.	See	::spawn	for	details.

If	the	command	fails	to	execute	(typically

Errno::ENOENT	when	it	was	not	found)	a
SystemCallError	exception	is	raised.

This	method	modifies	process	attributes	according	to
given	options	before	exec(2)	system	call.	See
::spawn	for	more	details	about	the	given	options.

The	modified	attributes	may	be	retained	when
exec(2)	system	call	fails.

For	example,	hard	resource	limits	are	not	restorable.

Consider	to	create	a	child	process	using	::spawn	or
#system	if	this	is	not	acceptable.

exec	"echo	*"							#	echoes	list	of	files	in	current	directory

#	never	get	here

exec	"echo",	"*"				#	echoes	an	asterisk

#	never	get	here

Initiates	the	termination	of	the	Ruby	script	by	raising
the	SystemExit	exception.	This	exception	may	be
caught.	The	optional	parameter	is	used	to	return	a
status	code	to	the	invoking	environment.	true	and
FALSE	of	status	means	success	and	failure
respectively.	The	interpretation	of	other	integer	values
are	system	dependent.

begin

		exit

		puts	"never	get	here"

rescue	SystemExit

		puts	"rescued	a	SystemExit	exception"

end

puts	"after	begin	block"

exit(status=true)
Kernel::exit(status=true)
Process::exit(status=true)

produces:

rescued	a	SystemExit	exception

after	begin	block

Just	prior	to	termination,	Ruby	executes	any	at_exit
functions	(see	Kernel::at_exit)	and	runs	any	object
finalizers	(see	ObjectSpace.define_finalizer).

at_exit	{	puts	"at_exit	function"	}

ObjectSpace.define_finalizer("string",		proc	{	puts	"in	finalizer"	})

exit

produces:

at_exit	function

in	finalizer

Exits	the	process	immediately.	No	exit	handlers	are
run.	status	is	returned	to	the	underlying	system	as
the	exit	status.

Process.exit!(true)

With	no	arguments,	raises	the	exception	in	$!	or
raises	a	RuntimeError	if	$!	is	nil.	With	a	single	String
argument,	raises	a	RuntimeError	with	the	string	as	a
message.	Otherwise,	the	first	parameter	should	be

exit!(status=false)

raise
raise(string)
raise(exception	[,	string	[,	array]])
fail
fail(string)
fail(exception	[,	string	[,	array]])

the	name	of	an	Exception	class	(or	an	object	that
returns	an	Exception	object	when	sent	an	exception
message).	The	optional	second	parameter	sets	the
message	associated	with	the	exception,	and	the	third
parameter	is	an	array	of	callback	information.
Exceptions	are	caught	by	the	rescue	clause	of
begin...end	blocks.

raise	"Failed	to	create	socket"

raise	ArgumentError,	"No	parameters",	caller

Creates	a	subprocess.	If	a	block	is	specified,	that
block	is	run	in	the	subprocess,	and	the	subprocess
terminates	with	a	status	of	zero.	Otherwise,	the	fork
call	returns	twice,	once	in	the	parent,	returning	the
process	ID	of	the	child,	and	once	in	the	child,
returning	nil.	The	child	process	can	exit	using
Kernel.exit!	to	avoid	running	any	at_exit	functions.
The	parent	process	should	use	Process.wait	to
collect	the	termination	statuses	of	its	children	or	use
Process.detach	to	register	disinterest	in	their	status;
otherwise,	the	operating	system	may	accumulate
zombie	processes.

The	thread	calling	fork	is	the	only	thread	in	the
created	child	process.	fork	doesn't	copy	other
threads.

If	fork	is	not	usable,	Process.respond_to?(:fork)
returns	false.

Note	that	fork(2)	is	not	available	on	some	platforms
like	Windows	and	NetBSD	4.	Therefore	you	should
use	spawn()	instead	of	fork().

fork	[{	block	}]	→	fixnum	or	nil
fork	[{	block	}]	→	fixnum	or	nil

Returns	the	string	resulting	from	applying
format_string	to	any	additional	arguments.	Within	the
format	string,	any	characters	other	than	format
sequences	are	copied	to	the	result.

The	syntax	of	a	format	sequence	is	follows.

%[flags][width][.precision]type

A	format	sequence	consists	of	a	percent	sign,
followed	by	optional	flags,	width,	and	precision
indicators,	then	terminated	with	a	field	type	character.
The	field	type	controls	how	the	corresponding
sprintf	argument	is	to	be	interpreted,	while	the	flags
modify	that	interpretation.

The	field	type	characters	are:

Field	|		Integer	Format

------+--

		b			|	Convert	argument	as	a	binary	number.

						|	Negative	numbers	will	be	displayed	as	a	two's	complement

						|	prefixed	with	`..1'.

		B			|	Equivalent	to	`b',	but	uses	an	uppercase	0B	for	prefix

						|	in	the	alternative	format	by	#.

		d			|	Convert	argument	as	a	decimal	number.

		i			|	Identical	to	`d'.

		o			|	Convert	argument	as	an	octal	number.

						|	Negative	numbers	will	be	displayed	as	a	two's	complement

						|	prefixed	with	`..7'.

		u			|	Identical	to	`d'.

		x			|	Convert	argument	as	a	hexadecimal	number.

						|	Negative	numbers	will	be	displayed	as	a	two's	complement

						|	prefixed	with	`..f'	(representing	an	infinite	string	of

						|	leading	'ff's).

		X			|	Equivalent	to	`x',	but	uses	uppercase	letters.

Field	|		Float	Format

------+--

format(format_string	[,	arguments...])	→
string
sprintf(format_string	[,	arguments...])	→
string

		e			|	Convert	floating	point	argument	into	exponential	notation

						|	with	one	digit	before	the	decimal	point	as	[-]d.dddddde[+-]dd.

						|	The	precision	specifies	the	number	of	digits	after	the	decimal

						|	point	(defaulting	to	six).

		E			|	Equivalent	to	`e',	but	uses	an	uppercase	E	to	indicate

						|	the	exponent.

		f			|	Convert	floating	point	argument	as	[-]ddd.dddddd,

						|	where	the	precision	specifies	the	number	of	digits	after

						|	the	decimal	point.

		g			|	Convert	a	floating	point	number	using	exponential	form

						|	if	the	exponent	is	less	than	-4	or	greater	than	or

						|	equal	to	the	precision,	or	in	dd.dddd	form	otherwise.

						|	The	precision	specifies	the	number	of	significant	digits.

		G			|	Equivalent	to	`g',	but	use	an	uppercase	`E'	in	exponent	form.

		a			|	Convert	floating	point	argument	as	[-]0xh.hhhhp[+-]dd,

						|	which	is	consisted	from	optional	sign,	"0x",	fraction	part

						|	as	hexadecimal,	"p",	and	exponential	part	as	decimal.

		A			|	Equivalent	to	`a',	but	use	uppercase	`X'	and	`P'.

Field	|		Other	Format

------+--

		c			|	Argument	is	the	numeric	code	for	a	single	character	or

						|	a	single	character	string	itself.

		p			|	The	valuing	of	argument.inspect.

		s			|	Argument	is	a	string	to	be	substituted.		If	the	format

						|	sequence	contains	a	precision,	at	most	that	many	characters

						|	will	be	copied.

		%			|	A	percent	sign	itself	will	be	displayed.		No	argument	taken.

The	flags	modifies	the	behavior	of	the	formats.	The
flag	characters	are:

Flag					|	Applies	to				|	Meaning

---------+---------------+---

space				|	bBdiouxX						|	Leave	a	space	at	the	start	of

									|	aAeEfgG							|	non-negative	numbers.

									|	(numeric	fmt)	|	For	`o',	`x',	`X',	`b'	and	`B',	use

									|															|	a	minus	sign	with	absolute	value	for

									|															|	negative	values.

---------+---------------+---

(digit)$	|	all											|	Specifies	the	absolute	argument	number

									|															|	for	this	field.		Absolute	and	relative

									|															|	argument	numbers	cannot	be	mixed	in	a

									|															|	sprintf	string.

---------+---------------+---

	#							|	bBoxX									|	Use	an	alternative	format.

									|	aAeEfgG							|	For	the	conversions	`o',	increase	the	precision

									|															|	until	the	first	digit	will	be	`0'	if

									|															|	it	is	not	formatted	as	complements.

									|															|	For	the	conversions	`x',	`X',	`b'	and	`B'

									|															|	on	non-zero,	prefix	the	result	with	``0x'',

									|															|	``0X'',	``0b''	and	``0B'',	respectively.

									|															|	For	`a',	`A',	`e',	`E',	`f',	`g',	and	'G',

									|															|	force	a	decimal	point	to	be	added,

									|															|	even	if	no	digits	follow.

									|															|	For	`g'	and	'G',	do	not	remove	trailing	zeros.

---------+---------------+---

+								|	bBdiouxX						|	Add	a	leading	plus	sign	to	non-negative

									|	aAeEfgG							|	numbers.

									|	(numeric	fmt)	|	For	`o',	`x',	`X',	`b'	and	`B',	use

									|															|	a	minus	sign	with	absolute	value	for

									|															|	negative	values.

---------+---------------+---

-								|	all											|	Left-justify	the	result	of	this	conversion.

---------+---------------+---

0	(zero)	|	bBdiouxX						|	Pad	with	zeros,	not	spaces.

									|	aAeEfgG							|	For	`o',	`x',	`X',	`b'	and	`B',	radix-1

									|	(numeric	fmt)	|	is	used	for	negative	numbers	formatted	as

									|															|	complements.

---------+---------------+---

*								|	all											|	Use	the	next	argument	as	the	field	width.

									|															|	If	negative,	left-justify	the	result.	If	the

									|															|	asterisk	is	followed	by	a	number	and	a	dollar

									|															|	sign,	use	the	indicated	argument	as	the	width.

Examples	of	flags:

#	`+'	and	space	flag	specifies	the	sign	of	non-negative	numbers.

sprintf("%d",	123)		#=>	"123"

sprintf("%+d",	123)	#=>	"+123"

sprintf("%	d",	123)	#=>	"	123"

#	`#'	flag	for	`o'	increases	number	of	digits	to	show	`0'.

#	`+'	and	space	flag	changes	format	of	negative	numbers.

sprintf("%o",	123)			#=>	"173"

sprintf("%#o",	123)		#=>	"0173"

sprintf("%+o",	-123)	#=>	"-173"

sprintf("%o",	-123)		#=>	"..7605"

sprintf("%#o",	-123)	#=>	"..7605"

#	`#'	flag	for	`x'	add	a	prefix	`0x'	for	non-zero	numbers.

#	`+'	and	space	flag	disables	complements	for	negative	numbers.

sprintf("%x",	123)			#=>	"7b"

sprintf("%#x",	123)		#=>	"0x7b"

sprintf("%+x",	-123)	#=>	"-7b"

sprintf("%x",	-123)		#=>	"..f85"

sprintf("%#x",	-123)	#=>	"0x..f85"

sprintf("%#x",	0)				#=>	"0"

#	`#'	for	`X'	uses	the	prefix	`0X'.

sprintf("%X",	123)		#=>	"7B"

sprintf("%#X",	123)	#=>	"0X7B"

#	`#'	flag	for	`b'	add	a	prefix	`0b'	for	non-zero	numbers.

#	`+'	and	space	flag	disables	complements	for	negative	numbers.

sprintf("%b",	123)			#=>	"1111011"

sprintf("%#b",	123)		#=>	"0b1111011"

sprintf("%+b",	-123)	#=>	"-1111011"

sprintf("%b",	-123)		#=>	"..10000101"

sprintf("%#b",	-123)	#=>	"0b..10000101"

sprintf("%#b",	0)				#=>	"0"

#	`#'	for	`B'	uses	the	prefix	`0B'.

sprintf("%B",	123)		#=>	"1111011"

sprintf("%#B",	123)	#=>	"0B1111011"

#	`#'	for	`e'	forces	to	show	the	decimal	point.

sprintf("%.0e",	1)		#=>	"1e+00"

sprintf("%#.0e",	1)	#=>	"1.e+00"

#	`#'	for	`f'	forces	to	show	the	decimal	point.

sprintf("%.0f",	1234)		#=>	"1234"

sprintf("%#.0f",	1234)	#=>	"1234."

#	`#'	for	`g'	forces	to	show	the	decimal	point.

#	It	also	disables	stripping	lowest	zeros.

sprintf("%g",	123.4)			#=>	"123.4"

sprintf("%#g",	123.4)		#=>	"123.400"

sprintf("%g",	123456)		#=>	"123456"

sprintf("%#g",	123456)	#=>	"123456."

The	field	width	is	an	optional	integer,	followed
optionally	by	a	period	and	a	precision.	The	width
specifies	the	minimum	number	of	characters	that	will
be	written	to	the	result	for	this	field.

Examples	of	width:

#	padding	is	done	by	spaces,							width=20

#	0	or	radix-1.													<------------------>

sprintf("%20d",	123)			#=>	"																	123"

sprintf("%+20d",	123)		#=>	"																+123"

sprintf("%020d",	123)		#=>	"00000000000000000123"

sprintf("%+020d",	123)	#=>	"+0000000000000000123"

sprintf("%	020d",	123)	#=>	"	0000000000000000123"

sprintf("%-20d",	123)		#=>	"123																	"

sprintf("%-+20d",	123)	#=>	"+123																"

sprintf("%-	20d",	123)	#=>	"	123																"

sprintf("%020x",	-123)	#=>	"..ffffffffffffffff85"

For	numeric	fields,	the	precision	controls	the	number
of	decimal	places	displayed.	For	string	fields,	the
precision	determines	the	maximum	number	of
characters	to	be	copied	from	the	string.	(Thus,	the
format	sequence	%10.10s	will	always	contribute
exactly	ten	characters	to	the	result.)

Examples	of	precisions:

#	precision	for	`d',	'o',	'x'	and	'b'	is

#	minimum	number	of	digits															<------>

sprintf("%20.8d",	123)		#=>	"												00000123"

sprintf("%20.8o",	123)		#=>	"												00000173"

sprintf("%20.8x",	123)		#=>	"												0000007b"

sprintf("%20.8b",	123)		#=>	"												01111011"

sprintf("%20.8d",	-123)	#=>	"											-00000123"

sprintf("%20.8o",	-123)	#=>	"												..777605"

sprintf("%20.8x",	-123)	#=>	"												..ffff85"

sprintf("%20.8b",	-11)		#=>	"												..110101"

#	"0x"	and	"0b"	for	`#x'	and	`#b'	is	not	counted	for

#	precision	but	"0"	for	`#o'	is	counted.		<------>

sprintf("%#20.8d",	123)		#=>	"												00000123"

sprintf("%#20.8o",	123)		#=>	"												00000173"

sprintf("%#20.8x",	123)		#=>	"										0x0000007b"

sprintf("%#20.8b",	123)		#=>	"										0b01111011"

sprintf("%#20.8d",	-123)	#=>	"											-00000123"

sprintf("%#20.8o",	-123)	#=>	"												..777605"

sprintf("%#20.8x",	-123)	#=>	"										0x..ffff85"

sprintf("%#20.8b",	-11)		#=>	"										0b..110101"

#	precision	for	`e'	is	number	of

#	digits	after	the	decimal	point											<------>

sprintf("%20.8e",	1234.56789)	#=>	"						1.23456789e+03"

#	precision	for	`f'	is	number	of

#	digits	after	the	decimal	point															<------>

sprintf("%20.8f",	1234.56789)	#=>	"							1234.56789000"

#	precision	for	`g'	is	number	of

#	significant	digits																										<------->

sprintf("%20.8g",	1234.56789)	#=>	"											1234.5679"

#																																									<------->

sprintf("%20.8g",	123456789)		#=>	"							1.2345679e+08"

#	precision	for	`s'	is

#	maximum	number	of	characters																				<------>

sprintf("%20.8s",	"string	test")	#=>	"												string	t"

Examples:

sprintf("%d	%04x",	123,	123)															#=>	"123	007b"

sprintf("%08b	'%4s'",	123,	123)												#=>	"01111011	'	123'"

sprintf("%1$*2$s	%2$d	%1$s",	"hello",	8)			#=>	"			hello	8	hello"

sprintf("%1$*2$s	%2$d",	"hello",	-8)							#=>	"hello				-8"

sprintf("%+g:%	g:%-g",	1.23,	1.23,	1.23)			#=>	"+1.23:	1.23:1.23"

sprintf("%u",	-123)																								#=>	"-123"

For	more	complex	formatting,	Ruby	supports	a
reference	by	name.	%<name>s	style	uses	format
style,	but	%{name}	style	doesn't.

Examples:

sprintf("%<foo>d	:	%<bar>f",	{	:foo	=>	1,	:bar	=>	2	})

		#=>	1	:	2.000000

sprintf("%{foo}f",	{	:foo	=>	1	})

		#	=>	"1f"

gets(sep=$/)	→	string	or	nil
gets(limit)	→	string	or	nil
gets(sep,limit)	→	string	or	nil

Returns	(and	assigns	to	$_)	the	next	line	from	the	list
of	files	in	ARGV	(or	$*),	or	from	standard	input	if	no
files	are	present	on	the	command	line.	Returns	nil	at
end	of	file.	The	optional	argument	specifies	the
record	separator.	The	separator	is	included	with	the
contents	of	each	record.	A	separator	of	nil	reads	the
entire	contents,	and	a	zero-length	separator	reads
the	input	one	paragraph	at	a	time,	where	paragraphs
are	divided	by	two	consecutive	newlines.	If	the	first
argument	is	an	integer,	or	optional	second	argument
is	given,	the	returning	string	would	not	be	longer	than
the	given	value	in	bytes.	If	multiple	filenames	are
present	in	ARGV,	+gets(nil)+	will	read	the	contents	one
file	at	a	time.

ARGV	<<	"testfile"

print	while	gets

produces:

This	is	line	one

This	is	line	two

This	is	line	three

And	so	on...

The	style	of	programming	using	$_	as	an	implicit
parameter	is	gradually	losing	favor	in	the	Ruby
community.

Returns	an	array	of	the	names	of	global	variables.

global_variables.grep	/std/			#=>	[:$stdin,	:$stdout,	:$stderr]

global_variables	→	array

gsub(pattern,	replacement)	→	$_
gsub(pattern)	{|...|	block	}	→	$_

Equivalent	to	$_.gsub...,	except	that	$_	will	be
updated	if	substitution	occurs.	Available	only	when	-
p/-n	command	line	option	specified.

Returns	true	if	yield	would	execute	a	block	in	the
current	context.	The	iterator?	form	is	mildly
deprecated.

def	try

		if	block_given?

				yield

		else

				"no	block"

		end

end

try																		#=>	"no	block"

try	{	"hello"	}						#=>	"hello"

try	do	"hello"	end			#=>	"hello"

Equivalent	to	Proc.new,	except	the	resulting	Proc
objects	check	the	number	of	parameters	passed
when	called.

Loads	and	executes	the	Ruby	program	in	the	file
filename.	If	the	filename	does	not	resolve	to	an
absolute	path,	the	file	is	searched	for	in	the	library
directories	listed	in	$:.	If	the	optional	wrap	parameter
is	true,	the	loaded	script	will	be	executed	under	an
anonymous	module,	protecting	the	calling	program's
global	namespace.	In	no	circumstance	will	any	local
variables	in	the	loaded	file	be	propagated	to	the

block_given?	→	true	or	false
iterator?	→	true	or	false

lambda	{	|...|	block	}	→	a_proc

load(filename,	wrap=false)	→	true

loading	environment.

Returns	the	names	of	the	current	local	variables.

fred	=	1

for	i	in	1..10

			#	...

end

local_variables			#=>	[:fred,	:i]

Repeatedly	executes	the	block.

If	no	block	is	given,	an	enumerator	is	returned
instead.

loop	do

		print	"Input:	"

		line	=	gets

		break	if	!line	or	line	=~	/^qQ/

		#	...

end

StopIteration	raised	in	the	block	breaks	the	loop.

Creates	an	IO	object	connected	to	the	given	stream,
file,	or	subprocess.

If	path	does	not	start	with	a	pipe	character	(|),	treat	it
as	the	name	of	a	file	to	open	using	the	specified
mode	(defaulting	to	“r”).

local_variables	→	array

loop	{	block	}
loop	→	an_enumerator

open(path	[,	mode	[,	perm]]	[,	opt])	→	io	or
nil
open(path	[,	mode	[,	perm]]	[,	opt])	{|io|	block
}	→	obj

The	mode	is	either	a	string	or	an	integer.	If	it	is	an
integer,	it	must	be	bitwise-or	of	open(2)	flags,	such	as
File::RDWR	or	File::EXCL.	If	it	is	a	string,	it	is	either
“fmode”,	“fmode:ext_enc”,	or
“fmode:ext_enc:int_enc”.

See	the	documentation	of	IO.new	for	full
documentation	of	the	mode	string	directives.

If	a	file	is	being	created,	its	initial	permissions	may	be
set	using	the	perm	parameter.	See	File.new	and	the
open(2)	and	chmod(2)	man	pages	for	a	description	of
permissions.

If	a	block	is	specified,	it	will	be	invoked	with	the	IO
object	as	a	parameter,	and	the	IO	will	be
automatically	closed	when	the	block	terminates.	The
call	returns	the	value	of	the	block.

If	path	starts	with	a	pipe	character	("|"),	a
subprocess	is	created,	connected	to	the	caller	by	a
pair	of	pipes.	The	returned	IO	object	may	be	used	to
write	to	the	standard	input	and	read	from	the
standard	output	of	this	subprocess.

If	the	command	following	the	pipe	is	a	single	minus
sign	("|-"),	Ruby	forks,	and	this	subprocess	is
connected	to	the	parent.	If	the	command	is	not	"-",
the	subprocess	runs	the	command.

When	the	subprocess	is	ruby	(opened	via	"|-"),	the
open	call	returns	nil.	If	a	block	is	associated	with	the
open	call,	that	block	will	run	twice	—	once	in	the
parent	and	once	in	the	child.

The	block	parameter	will	be	an	IO	object	in	the	parent
and	nil	in	the	child.	The	parent's	IO	object	will	be
connected	to	the	child's	$stdin	and	$stdout.	The
subprocess	will	be	terminated	at	the	end	of	the	block.

Examples
Reading	from	“testfile”:

open("testfile")	do	|f|

		print	f.gets

end

Produces:

This	is	line	one

Open	a	subprocess	and	read	its	output:

cmd	=	open("|date")

print	cmd.gets

cmd.close

Produces:

Wed	Apr		9	08:56:31	CDT	2003

Open	a	subprocess	running	the	same	Ruby	program:

f	=	open("|-",	"w+")

if	f	==	nil

		puts	"in	Child"

		exit

else

		puts	"Got:	#{f.gets}"

end

Produces:

Got:	in	Child

Open	a	subprocess	using	a	block	to	receive	the	IO
object:

open	"|-"	do	|f|

		if	f	then

				#	parent	process

				puts	"Got:	#{f.gets}"

		else

				#	child	process

				puts	"in	Child"

		end

end

Produces:

Got:	in	Child

For	each	object,	directly	writes	obj.inspect	followed
by	a	newline	to	the	program's	standard	output.

S	=	Struct.new(:name,	:state)

s	=	S['dave',	'TX']

p	s

produces:

#<S	name="dave",	state="TX">

Prints	each	object	in	turn	to	$stdout.	If	the	output	field
separator	($,)	is	not	nil,	its	contents	will	appear
between	each	field.	If	the	output	record	separator	($\
</code>)	is	not	nil,	it	will	be	appended	to	the

output.	If	no	arguments	are	given,	prints

<code>$_.	Objects	that	aren't	strings	will	be	converted
by	calling	their	to_s	method.

print	"cat",	[1,2,3],	99,	"\n"

$,	=	",	"

$\	=	"\n"

print	"cat",	[1,2,3],	99

produces:

cat12399

p(obj)	→	obj
p(obj1,	obj2,	...)	→	[obj,	...]
p()	→	nil

print(obj,	...)	→	nil

cat,	1,	2,	3,	99

Equivalent	to:

io.write(sprintf(string,	obj,	...))

or

$stdout.write(sprintf(string,	obj,	...))

Equivalent	to	Proc.new.

Equivalent	to:

		$stdout.putc(int)

Refer	to	the	documentation	for	IO#putc	for	important
information	regarding	multi-byte	characters.

Equivalent	to

$stdout.puts(obj,	...)

printf(io,	string	[,	obj	...])	→	nil
printf(string	[,	obj	...])	→	nil

proc	{	|...|	block	}	→	a_proc

putc(int)	→	int

puts(obj,	...)	→	nil

raise
raise(string)
raise(exception	[,	string	[,	array]])
fail
fail(string)

With	no	arguments,	raises	the	exception	in	$!	or
raises	a	RuntimeError	if	$!	is	nil.	With	a	single	String
argument,	raises	a	RuntimeError	with	the	string	as	a
message.	Otherwise,	the	first	parameter	should	be
the	name	of	an	Exception	class	(or	an	object	that
returns	an	Exception	object	when	sent	an	exception
message).	The	optional	second	parameter	sets	the
message	associated	with	the	exception,	and	the	third
parameter	is	an	array	of	callback	information.
Exceptions	are	caught	by	the	rescue	clause	of
begin...end	blocks.

raise	"Failed	to	create	socket"

raise	ArgumentError,	"No	parameters",	caller

If	called	without	an	argument,	or	if	max.to_i.abs	==	0,
rand	returns	a	pseudo-random	floating	point	number
between	0.0	and	1.0,	including	0.0	and	excluding	1.0.

rand								#=>	0.2725926052826416

When	max.abs	is	greater	than	or	equal	to	1,	rand
returns	a	pseudo-random	integer	greater	than	or
equal	to	0	and	less	than	max.to_i.abs.

rand(100)			#=>	12

When	max	is	a	Range,	rand	returns	a	random	number
where	range.member?(number)	==	true.

Negative	or	floating	point	values	for	max	are	allowed,
but	may	give	surprising	results.

rand(-100)	#	=>	87

rand(-0.5)	#	=>	0.8130921818028143

rand(1.9)		#	equivalent	to	rand(1),	which	is	always	0

fail(exception	[,	string	[,	array]])

rand(max=0)	→	number

#srand	may	be	used	to	ensure	that	sequences	of
random	numbers	are	reproducible	between	different
runs	of	a	program.

See	also	Random#rand.

Equivalent	to	Kernel::gets,	except	readline	raises
EOFError	at	end	of	file.

Returns	an	array	containing	the	lines	returned	by
calling	Kernel.gets(sep)	until	the	end	of	file.

Loads	the	given	name,	returning	true	if	successful	and
false	if	the	feature	is	already	loaded.

If	the	filename	does	not	resolve	to	an	absolute	path,	it
will	be	searched	for	in	the	directories	listed	in
$LOAD_PATH	($:).

If	the	filename	has	the	extension	“.rb”,	it	is	loaded	as
a	source	file;	if	the	extension	is	“.so”,	“.o”,	or	“.dll”,	or
the	default	shared	library	extension	on	the	current
platform,	Ruby	loads	the	shared	library	as	a	Ruby
extension.	Otherwise,	Ruby	tries	adding	“.rb”,	“.so”,
and	so	on	to	the	name	until	found.	If	the	file	named
cannot	be	found,	a	LoadError	will	be	raised.

readline(sep=$/)	→	string
readline(limit)	→	string
readline(sep,	limit)	→	string

readlines(sep=$/)	→	array
readlines(limit)	→	array
readlines(sep,limit)	→	array

require(name)	→	true	or	false

For	Ruby	extensions	the	filename	given	may	use	any
shared	library	extension.	For	example,	on	Linux	the
socket	extension	is	“socket.so”	and	require
'socket.dll'	will	load	the	socket	extension.

The	absolute	path	of	the	loaded	file	is	added	to
$LOADED_FEATURES	($").	A	file	will	not	be	loaded	again
if	its	path	already	appears	in	$".	For	example,	require
'a';	require	'./a'	will	not	load	a.rb	again.

require	"my-library.rb"

require	"db-driver"

Any	constants	or	globals	within	the	loaded	source	file
will	be	available	in	the	calling	program's	global
namespace.	However,	local	variables	will	not	be
propagated	to	the	loading	environment.

Ruby	tries	to	load	the	library	named	string	relative	to
the	requiring	file's	path.	If	the	file's	path	cannot	be
determined	a	LoadError	is	raised.	If	a	file	is	loaded
true	is	returned	and	false	otherwise.

Calls	select(2)	system	call.	It	monitors	given	arrays	of
IO	objects,	waits	one	or	more	of	IO	objects	ready	for
reading,	are	ready	for	writing,	and	have	pending
exceptions	respectively,	and	returns	an	array	that
contains	arrays	of	those	IO	objects.	It	will	return	nil	if
optional	timeout	value	is	given	and	no	IO	object	is
ready	in	timeout	seconds.

require_relative(string)	→	true	or	false

select(read_array
[,	write_array
[,	error_array
[,	timeout]]])	→	array	or	nil

IO.select	peeks	the	buffer	of	IO	objects	for	testing
readability.	If	the	IO	buffer	is	not	empty,	IO.select
immediately	notify	readability.	This	“peek”	is	only
happen	for	IO	objects.	It	is	not	happen	for	IO-like
objects	such	as	OpenSSL::SSL::SSLSocket.

The	best	way	to	use	IO.select	is	invoking	it	after
nonblocking	methods	such	as	read_nonblock,
write_nonblock,	etc.	The	methods	raises	an
exception	which	is	extended	by	IO::WaitReadable	or
IO::WaitWritable.	The	modules	notify	how	the	caller
should	wait	with	IO.select.	If	IO::WaitReadable	is
raised,	the	caller	should	wait	for	reading.	If
IO::WaitWritable	is	raised,	the	caller	should	wait	for
writing.

So,	blocking	read	(readpartial)	can	be	emulated
using	read_nonblock	and	IO.select	as	follows:

begin

		result	=	io_like.read_nonblock(maxlen)

rescue	IO::WaitReadable

		IO.select([io_like])

		retry

rescue	IO::WaitWritable

		IO.select(nil,	[io_like])

		retry

end

Especially,	the	combination	of	nonblocking	methods
and	IO.select	is	preferred	for	IO	like	objects	such	as
OpenSSL::SSL::SSLSocket.	It	has	to_io	method	to
return	underlying	IO	object.	IO.select	calls	to_io	to
obtain	the	file	descriptor	to	wait.

This	means	that	readability	notified	by	IO.select
doesn't	mean	readability	from
OpenSSL::SSL::SSLSocket	object.

Most	possible	situation	is	OpenSSL::SSL::SSLSocket
buffers	some	data.	IO.select	doesn't	see	the	buffer.
So	IO.select	can	block	when
OpenSSL::SSL::SSLSocket#readpartial	doesn't	block.

However	several	more	complicated	situation	exists.

SSL	is	a	protocol	which	is	sequence	of	records.	The
record	consists	multiple	bytes.	So,	the	remote	side	of
SSL	sends	a	partial	record,	IO.select	notifies
readability	but	OpenSSL::SSL::SSLSocket	cannot
decrypt	a	byte	and
OpenSSL::SSL::SSLSocket#readpartial	will	blocks.

Also,	the	remote	side	can	request	SSL	renegotiation
which	forces	the	local	SSL	engine	writes	some	data.
This	means	OpenSSL::SSL::SSLSocket#readpartial
may	invoke	write	system	call	and	it	can	block.	In
such	situation,
OpenSSL::SSL::SSLSocket#read_nonblock	raises
IO::WaitWritable	instead	of	blocking.	So,	the	caller
should	wait	for	ready	for	writability	as	above	example.

The	combination	of	nonblocking	methods	and
IO.select	is	also	useful	for	streams	such	as	tty,	pipe
socket	socket	when	multiple	process	read	form	a
stream.

Finally,	Linux	kernel	developers	doesn't	guarantee
that	readability	of	select(2)	means	readability	of
following	read(2)	even	for	single	process.	See
select(2)	manual	on	GNU/Linux	system.

Invoking	IO.select	before	IO#readpartial	works	well
in	usual.	However	it	is	not	the	best	way	to	use
IO.select.

The	writability	notified	by	select(2)	doesn't	show	how
many	bytes	writable.	IO#write	method	blocks	until

given	whole	string	is	written.	So,	IO#write(two	or
more	bytes)	can	block	after	writability	is	notified	by
IO.select.	IO#write_nonblock	is	required	to	avoid	the
blocking.

Blocking	write	(write)	can	be	emulated	using
write_nonblock	and	IO.select	as	follows:
IO::WaitReadable	should	also	be	rescued	for	SSL
renegotiation	in	OpenSSL::SSL::SSLSocket.

while	0	<	string.bytesize

		begin

				written	=	io_like.write_nonblock(string)

		rescue	IO::WaitReadable

				IO.select([io_like])

				retry

		rescue	IO::WaitWritable

				IO.select(nil,	[io_like])

				retry

		end

		string	=	string.byteslice(written..-1)

end

Parameters
read_array
an	array	of	IO	objects	that	wait	until	ready	for	read

write_array
an	array	of	IO	objects	that	wait	until	ready	for	write

error_array
an	array	of	IO	objects	that	wait	for	exceptions

timeout
a	numeric	value	in	second

Example
rp,	wp	=	IO.pipe

mesg	=	"ping	"

100.times	{

		#	IO.select	follows	IO#read.		Not	the	best	way	to	use	IO.select.

		rs,	ws,	=	IO.select([rp],	[wp])

		if	r	=	rs[0]

				ret	=	r.read(5)

				print	ret

				case	ret

				when	/ping/

						mesg	=	"pong\n"

				when	/pong/

						mesg	=	"ping	"

				end

		end

		if	w	=	ws[0]

				w.write(mesg)

		end

}

produces:

ping	pong

ping	pong

ping	pong

(snipped)

ping

Establishes	proc	as	the	handler	for	tracing,	or
disables	tracing	if	the	parameter	is	nil.

Note:	this	method	is	obsolete,	please	use	TracePoint
instead.

proc	takes	up	to	six	parameters:

an	event	name

a	filename

a	line	number

an	object	id

set_trace_func(proc)	→	proc
set_trace_func(nil)	→	nil

a	binding

the	name	of	a	class

proc	is	invoked	whenever	an	event	occurs.

Events	are:
c-call

call	a	C-language	routine

c-return

return	from	a	C-language	routine

call

call	a	Ruby	method

class

start	a	class	or	module	definition),

end

finish	a	class	or	module	definition),

line

execute	code	on	a	new	line

raise

raise	an	exception

return

return	from	a	Ruby	method

Tracing	is	disabled	within	the	context	of	proc.

		class	Test

		def	test

				a	=	1

				b	=	2

		end

		end

		set_trace_func	proc	{	|event,	file,	line,	id,	binding

					printf	"%8s	%s:%-2d	%10s	%8s\n",	event,	file,	line

		}

		t	=	Test.new

		t.test

				line	prog.rb:11															false

		c-call	prog.rb:11								new				Class

		c-call	prog.rb:11	initialize			Object

c-return	prog.rb:11	initialize			Object

c-return	prog.rb:11								new				Class

				line	prog.rb:12															false

				call	prog.rb:2								test					Test

				line	prog.rb:3								test					Test

				line	prog.rb:4								test					Test

		return	prog.rb:4								test					Test

Suspends	the	current	thread	for	duration	seconds
(which	may	be	any	number,	including	a	Float	with
fractional	seconds).	Returns	the	actual	number	of
seconds	slept	(rounded),	which	may	be	less	than	that
asked	for	if	another	thread	calls	Thread#run.	Called
without	an	argument,	sleep()	will	sleep	forever.

Time.new				#=>	2008-03-08	19:56:19	+0900

sleep	1.2			#=>	1

Time.new				#=>	2008-03-08	19:56:20	+0900

sleep	1.9			#=>	2

Time.new				#=>	2008-03-08	19:56:22	+0900

spawn	executes	specified	command	and	return	its
pid.

pid	=	spawn("tar	xf	ruby-2.0.0-p195.tar.bz2")

Process.wait	pid

pid	=	spawn(RbConfig.ruby,	"-eputs'Hello,	world!'")

Process.wait	pid

This	method	is	similar	to	#system	but	it	doesn't	wait
for	the	command	to	finish.

sleep([duration])	→	fixnum

spawn([env,]	command...	[,options])	→	pid
spawn([env,]	command...	[,options])	→	pid

The	parent	process	should	use	Process.wait	to
collect	the	termination	status	of	its	child	or	use
Process.detach	to	register	disinterest	in	their	status;
otherwise,	the	operating	system	may	accumulate
zombie	processes.

spawn	has	bunch	of	options	to	specify	process
attributes:

env:	hash

		name	=>	val	:	set	the	environment	variable

		name	=>	nil	:	unset	the	environment	variable

command...:

		commandline																	:	command	line	string	which

		cmdname,	arg1,	...										:	command	name	and	one	or

		[cmdname,	argv0],	arg1,	...	:	command	name,	argv[0]	

options:	hash

		clearing	environment	variables:

				:unsetenv_others	=>	true			:	clear	environment	variables

				:unsetenv_others	=>	false		:	don't	clear	(default)

		process	group:

				:pgroup	=>	true	or	0	:	make	a	new	process	group

				:pgroup	=>	pgid						:	join	to	specified	process	group

				:pgroup	=>	nil							:	don't	change	the	process	group

		create	new	process	group:	Windows	only

				:new_pgroup	=>	true		:	the	new	process	is	the	root

				:new_pgroup	=>	false	:	don't	create	a	new	process	group	(default)

		resource	limit:	resourcename	is	core,	cpu,	data,	etc.		See	Process.setrlimit.

				:rlimit_resourcename	=>	limit

				:rlimit_resourcename	=>	[cur_limit,	max_limit]

		umask:

				:umask	=>	int

		redirection:

				key:

						FD														:	single	file	descriptor	in	child	process

						[FD,	FD,	...]			:	multiple	file	descriptor	in	child	process

				value:

						FD																								:	redirect	to	the	file	descriptor	in	parent	process

						string																				:	redirect	to	file	with	open(string,	"r"	or	"w")

						[string]																		:	redirect	to	file	with	open(string,	File::RDONLY)

						[string,	open_mode]							:	redirect	to	file	with	open(string,	open_mode,	0644)

						[string,	open_mode,	perm]	:	redirect	to	file	with	open(string,	open_mode,	perm)

						[:child,	FD]														:	redirect	to	the	redirected	file	descriptor

						:close																				:	close	the	file	descriptor	in	child	process

				FD	is	one	of	follows

						:in					:	the	file	descriptor	0	which	is	the	standard	input

						:out				:	the	file	descriptor	1	which	is	the	standard	output

						:err				:	the	file	descriptor	2	which	is	the	standard	error

						integer	:	the	file	descriptor	of	specified	the	integer

						io						:	the	file	descriptor	specified	as	io.fileno

		file	descriptor	inheritance:	close	non-redirected	non-standard	fds	(3,	4,	5,	...)	or	not

				:close_others	=>	true		:	don't	inherit

		current	directory:

				:chdir	=>	str

		The	'cmdname,	arg1,	...'	form	does	not	use	the	shell

		on	different	OSes,	different	things	are	provided	as	

		commands.	An	example	of	this	is	'echo',	which	is	a	built

		on	Windows,	but	is	a	normal	program	on	Linux	and	Mac

		This	means	that	%xProcess.spawn	'echo',	'%Path%'`	will

		the	contents	of	the	%x%Path%`	environment	variable	on

		but	%xProcess.spawn	'echo',	'$PATH'`	prints	the	literal

If	a	hash	is	given	as	env,	the	environment	is	updated
by	env	before	exec(2)	in	the	child	process.	If	a	pair	in
env	has	nil	as	the	value,	the	variable	is	deleted.

#	set	FOO	as	BAR	and	unset	BAZ.

pid	=	spawn({"FOO"=>"BAR",	"BAZ"=>nil},	command)

If	a	hash	is	given	as	options,	it	specifies	process
group,	create	new	process	group,	resource	limit,
current	directory,	umask	and	redirects	for	the	child
process.	Also,	it	can	be	specified	to	clear
environment	variables.

The	:unsetenv_others	key	in	options	specifies	to
clear	environment	variables,	other	than	specified	by
env.

pid	=	spawn(command,	:unsetenv_others=>true)	#	no	environment	variable

pid	=	spawn({"FOO"=>"BAR"},	command,	:unsetenv_others=

The	:pgroup	key	in	options	specifies	a	process
group.	The	corresponding	value	should	be	true,	zero

or	positive	integer.	true	and	zero	means	the	process
should	be	a	process	leader	of	a	new	process	group.
Other	values	specifies	a	process	group	to	be
belongs.

pid	=	spawn(command,	:pgroup=>true)	#	process	leader

pid	=	spawn(command,	:pgroup=>10)	#	belongs	to	the	process	group	10

The	:new_pgroup	key	in	options	specifies	to	pass
CREATE_NEW_PROCESS_GROUP	flag	to	CreateProcessW()
that	is	Windows	API.	This	option	is	only	for	Windows.
true	means	the	new	process	is	the	root	process	of
the	new	process	group.	The	new	process	has
CTRL+C	disabled.	This	flag	is	necessary	for
Process.kill(:SIGINT,	pid)	on	the	subprocess.
:new_pgroup	is	false	by	default.

pid	=	spawn(command,	:new_pgroup=>true)		#	new	process	group

pid	=	spawn(command,	:new_pgroup=>false)	#	same	process	group

The	:rlimit_foo	key	specifies	a	resource	limit.	foo
should	be	one	of	resource	types	such	as	core.	The
corresponding	value	should	be	an	integer	or	an	array
which	have	one	or	two	integers:	same	as	cur_limit
and	max_limit	arguments	for	Process.setrlimit.

cur,	max	=	Process.getrlimit(:CORE)

pid	=	spawn(command,	:rlimit_core=>[0,max])	#	disable	core	temporary.

pid	=	spawn(command,	:rlimit_core=>max)	#	enable	core	dump

pid	=	spawn(command,	:rlimit_core=>0)	#	never	dump	core.

The	:umask	key	in	options	specifies	the	umask.

pid	=	spawn(command,	:umask=>077)

The	:in,	:out,	:err,	a	fixnum,	an	IO	and	an	array	key
specifies	a	redirection.	The	redirection	maps	a	file
descriptor	in	the	child	process.

For	example,	stderr	can	be	merged	into	stdout	as
follows:

pid	=	spawn(command,	:err=>:out)

pid	=	spawn(command,	2=>1)

pid	=	spawn(command,	STDERR=>:out)

pid	=	spawn(command,	STDERR=>STDOUT)

The	hash	keys	specifies	a	file	descriptor	in	the	child
process	started	by	spawn.	:err,	2	and	STDERR
specifies	the	standard	error	stream	(stderr).

The	hash	values	specifies	a	file	descriptor	in	the
parent	process	which	invokes	spawn.	:out,	1	and
STDOUT	specifies	the	standard	output	stream
(stdout).

In	the	above	example,	the	standard	output	in	the
child	process	is	not	specified.	So	it	is	inherited	from
the	parent	process.

The	standard	input	stream	(stdin)	can	be	specified	by
:in,	0	and	STDIN.

A	filename	can	be	specified	as	a	hash	value.

pid	=	spawn(command,	:in=>"/dev/null")	#	read	mode

pid	=	spawn(command,	:out=>"/dev/null")	#	write	mode

pid	=	spawn(command,	:err=>"log")	#	write	mode

pid	=	spawn(command,	[:out,	:err]=>"/dev/null")	#	write	mode

pid	=	spawn(command,	3=>"/dev/null")	#	read	mode

For	stdout	and	stderr	(and	combination	of	them),	it	is
opened	in	write	mode.	Otherwise	read	mode	is	used.

For	specifying	flags	and	permission	of	file	creation
explicitly,	an	array	is	used	instead.

pid	=	spawn(command,	:in=>["file"])	#	read	mode	is	assumed

pid	=	spawn(command,	:in=>["file",	"r"])

pid	=	spawn(command,	:out=>["log",	"w"])	#	0644	assumed

pid	=	spawn(command,	:out=>["log",	"w",	0600])

pid	=	spawn(command,	:out=>["log",	File::WRONLY|File::

The	array	specifies	a	filename,	flags	and	permission.
The	flags	can	be	a	string	or	an	integer.	If	the	flags	is
omitted	or	nil,	File::RDONLY	is	assumed.	The
permission	should	be	an	integer.	If	the	permission	is
omitted	or	nil,	0644	is	assumed.

If	an	array	of	IOs	and	integers	are	specified	as	a
hash	key,	all	the	elements	are	redirected.

#	stdout	and	stderr	is	redirected	to	log	file.

#	The	file	"log"	is	opened	just	once.

pid	=	spawn(command,	[:out,	:err]=>["log",	"w"])

Another	way	to	merge	multiple	file	descriptors	is
[:child,	fd].	[:child,	fd]	means	the	file	descriptor	in	the
child	process.	This	is	different	from	fd.	For	example,
:err=>:out	means	redirecting	child	stderr	to	parent
stdout.	But	:err=>[:child,	:out]	means	redirecting	child
stderr	to	child	stdout.	They	differ	if	stdout	is	redirected
in	the	child	process	as	follows.

#	stdout	and	stderr	is	redirected	to	log	file.

#	The	file	"log"	is	opened	just	once.

pid	=	spawn(command,	:out=>["log",	"w"],	:err=>[:child

[:child,	:out]	can	be	used	to	merge	stderr	into	stdout
in	IO.popen.	In	this	case,	IO.popen	redirects	stdout	to
a	pipe	in	the	child	process	and	[:child,	:out]	refers	the
redirected	stdout.

io	=	IO.popen(["sh",	"-c",	"echo	out;	echo	err	>&2",	:

p	io.read	#=>	"out\nerr\n"

The	:chdir	key	in	options	specifies	the	current
directory.

pid	=	spawn(command,	:chdir=>"/var/tmp")

spawn	closes	all	non-standard	unspecified

descriptors	by	default.	The	“standard”	descriptors	are
0,	1	and	2.	This	behavior	is	specified	by
:close_others	option.	:close_others	doesn't	affect	the
standard	descriptors	which	are	closed	only	if	:close	is
specified	explicitly.

pid	=	spawn(command,	:close_others=>true)		#	close	3,4,5,...	(default)

pid	=	spawn(command,	:close_others=>false)	#	don't	close	3,4,5,...

:close_others	is	true	by	default	for	spawn	and
IO.popen.

Note	that	fds	which	close-on-exec	flag	is	already	set
are	closed	regardless	of	:close_others	option.

So	IO.pipe	and	spawn	can	be	used	as	IO.popen.

#	similar	to	r	=	IO.popen(command)

r,	w	=	IO.pipe

pid	=	spawn(command,	:out=>w)			#	r,	w	is	closed	in	the	child	process.

w.close

:close	is	specified	as	a	hash	value	to	close	a	fd
individually.

f	=	open(foo)

system(command,	f=>:close)								#	don't	inherit	f.

If	a	file	descriptor	need	to	be	inherited,	io=>io	can	be
used.

#	valgrind	has	--log-fd	option	for	log	destination.

#	log_w=>log_w	indicates	log_w.fileno	inherits	to	child	process.

log_r,	log_w	=	IO.pipe

pid	=	spawn("valgrind",	"--log-fd=#{log_w.fileno}",	"echo"

log_w.close

p	log_r.read

It	is	also	possible	to	exchange	file	descriptors.

pid	=	spawn(command,	:out=>:err,	:err=>:out)

The	hash	keys	specify	file	descriptors	in	the	child
process.	The	hash	values	specifies	file	descriptors	in
the	parent	process.	So	the	above	specifies
exchanging	stdout	and	stderr.	Internally,	spawn	uses
an	extra	file	descriptor	to	resolve	such	cyclic	file
descriptor	mapping.

See	Kernel.exec	for	the	standard	shell.

Returns	the	string	resulting	from	applying
format_string	to	any	additional	arguments.	Within	the
format	string,	any	characters	other	than	format
sequences	are	copied	to	the	result.

The	syntax	of	a	format	sequence	is	follows.

%[flags][width][.precision]type

A	format	sequence	consists	of	a	percent	sign,
followed	by	optional	flags,	width,	and	precision
indicators,	then	terminated	with	a	field	type	character.
The	field	type	controls	how	the	corresponding
sprintf	argument	is	to	be	interpreted,	while	the	flags
modify	that	interpretation.

The	field	type	characters	are:

Field	|		Integer	Format

------+--

		b			|	Convert	argument	as	a	binary	number.

						|	Negative	numbers	will	be	displayed	as	a	two's	complement

						|	prefixed	with	`..1'.

		B			|	Equivalent	to	`b',	but	uses	an	uppercase	0B	for	prefix

						|	in	the	alternative	format	by	#.

		d			|	Convert	argument	as	a	decimal	number.

format(format_string	[,	arguments...])	→
string
sprintf(format_string	[,	arguments...])	→
string

		i			|	Identical	to	`d'.

		o			|	Convert	argument	as	an	octal	number.

						|	Negative	numbers	will	be	displayed	as	a	two's	complement

						|	prefixed	with	`..7'.

		u			|	Identical	to	`d'.

		x			|	Convert	argument	as	a	hexadecimal	number.

						|	Negative	numbers	will	be	displayed	as	a	two's	complement

						|	prefixed	with	`..f'	(representing	an	infinite	string	of

						|	leading	'ff's).

		X			|	Equivalent	to	`x',	but	uses	uppercase	letters.

Field	|		Float	Format

------+--

		e			|	Convert	floating	point	argument	into	exponential	notation

						|	with	one	digit	before	the	decimal	point	as	[-]d.dddddde[+-]dd.

						|	The	precision	specifies	the	number	of	digits	after	the	decimal

						|	point	(defaulting	to	six).

		E			|	Equivalent	to	`e',	but	uses	an	uppercase	E	to	indicate

						|	the	exponent.

		f			|	Convert	floating	point	argument	as	[-]ddd.dddddd,

						|	where	the	precision	specifies	the	number	of	digits	after

						|	the	decimal	point.

		g			|	Convert	a	floating	point	number	using	exponential	form

						|	if	the	exponent	is	less	than	-4	or	greater	than	or

						|	equal	to	the	precision,	or	in	dd.dddd	form	otherwise.

						|	The	precision	specifies	the	number	of	significant	digits.

		G			|	Equivalent	to	`g',	but	use	an	uppercase	`E'	in	exponent	form.

		a			|	Convert	floating	point	argument	as	[-]0xh.hhhhp[+-]dd,

						|	which	is	consisted	from	optional	sign,	"0x",	fraction	part

						|	as	hexadecimal,	"p",	and	exponential	part	as	decimal.

		A			|	Equivalent	to	`a',	but	use	uppercase	`X'	and	`P'.

Field	|		Other	Format

------+--

		c			|	Argument	is	the	numeric	code	for	a	single	character	or

						|	a	single	character	string	itself.

		p			|	The	valuing	of	argument.inspect.

		s			|	Argument	is	a	string	to	be	substituted.		If	the	format

						|	sequence	contains	a	precision,	at	most	that	many	characters

						|	will	be	copied.

		%			|	A	percent	sign	itself	will	be	displayed.		No	argument	taken.

The	flags	modifies	the	behavior	of	the	formats.	The
flag	characters	are:

Flag					|	Applies	to				|	Meaning

---------+---------------+---

space				|	bBdiouxX						|	Leave	a	space	at	the	start	of

									|	aAeEfgG							|	non-negative	numbers.

									|	(numeric	fmt)	|	For	`o',	`x',	`X',	`b'	and	`B',	use

									|															|	a	minus	sign	with	absolute	value	for

									|															|	negative	values.

---------+---------------+---

(digit)$	|	all											|	Specifies	the	absolute	argument	number

									|															|	for	this	field.		Absolute	and	relative

									|															|	argument	numbers	cannot	be	mixed	in	a

									|															|	sprintf	string.

---------+---------------+---

	#							|	bBoxX									|	Use	an	alternative	format.

									|	aAeEfgG							|	For	the	conversions	`o',	increase	the	precision

									|															|	until	the	first	digit	will	be	`0'	if

									|															|	it	is	not	formatted	as	complements.

									|															|	For	the	conversions	`x',	`X',	`b'	and	`B'

									|															|	on	non-zero,	prefix	the	result	with	``0x'',

									|															|	``0X'',	``0b''	and	``0B'',	respectively.

									|															|	For	`a',	`A',	`e',	`E',	`f',	`g',	and	'G',

									|															|	force	a	decimal	point	to	be	added,

									|															|	even	if	no	digits	follow.

									|															|	For	`g'	and	'G',	do	not	remove	trailing	zeros.

---------+---------------+---

+								|	bBdiouxX						|	Add	a	leading	plus	sign	to	non-negative

									|	aAeEfgG							|	numbers.

									|	(numeric	fmt)	|	For	`o',	`x',	`X',	`b'	and	`B',	use

									|															|	a	minus	sign	with	absolute	value	for

									|															|	negative	values.

---------+---------------+---

-								|	all											|	Left-justify	the	result	of	this	conversion.

---------+---------------+---

0	(zero)	|	bBdiouxX						|	Pad	with	zeros,	not	spaces.

									|	aAeEfgG							|	For	`o',	`x',	`X',	`b'	and	`B',	radix-1

									|	(numeric	fmt)	|	is	used	for	negative	numbers	formatted	as

									|															|	complements.

---------+---------------+---

*								|	all											|	Use	the	next	argument	as	the	field	width.

									|															|	If	negative,	left-justify	the	result.	If	the

									|															|	asterisk	is	followed	by	a	number	and	a	dollar

									|															|	sign,	use	the	indicated	argument	as	the	width.

Examples	of	flags:

#	`+'	and	space	flag	specifies	the	sign	of	non-negative	numbers.

sprintf("%d",	123)		#=>	"123"

sprintf("%+d",	123)	#=>	"+123"

sprintf("%	d",	123)	#=>	"	123"

#	`#'	flag	for	`o'	increases	number	of	digits	to	show	`0'.

#	`+'	and	space	flag	changes	format	of	negative	numbers.

sprintf("%o",	123)			#=>	"173"

sprintf("%#o",	123)		#=>	"0173"

sprintf("%+o",	-123)	#=>	"-173"

sprintf("%o",	-123)		#=>	"..7605"

sprintf("%#o",	-123)	#=>	"..7605"

#	`#'	flag	for	`x'	add	a	prefix	`0x'	for	non-zero	numbers.

#	`+'	and	space	flag	disables	complements	for	negative	numbers.

sprintf("%x",	123)			#=>	"7b"

sprintf("%#x",	123)		#=>	"0x7b"

sprintf("%+x",	-123)	#=>	"-7b"

sprintf("%x",	-123)		#=>	"..f85"

sprintf("%#x",	-123)	#=>	"0x..f85"

sprintf("%#x",	0)				#=>	"0"

#	`#'	for	`X'	uses	the	prefix	`0X'.

sprintf("%X",	123)		#=>	"7B"

sprintf("%#X",	123)	#=>	"0X7B"

#	`#'	flag	for	`b'	add	a	prefix	`0b'	for	non-zero	numbers.

#	`+'	and	space	flag	disables	complements	for	negative	numbers.

sprintf("%b",	123)			#=>	"1111011"

sprintf("%#b",	123)		#=>	"0b1111011"

sprintf("%+b",	-123)	#=>	"-1111011"

sprintf("%b",	-123)		#=>	"..10000101"

sprintf("%#b",	-123)	#=>	"0b..10000101"

sprintf("%#b",	0)				#=>	"0"

#	`#'	for	`B'	uses	the	prefix	`0B'.

sprintf("%B",	123)		#=>	"1111011"

sprintf("%#B",	123)	#=>	"0B1111011"

#	`#'	for	`e'	forces	to	show	the	decimal	point.

sprintf("%.0e",	1)		#=>	"1e+00"

sprintf("%#.0e",	1)	#=>	"1.e+00"

#	`#'	for	`f'	forces	to	show	the	decimal	point.

sprintf("%.0f",	1234)		#=>	"1234"

sprintf("%#.0f",	1234)	#=>	"1234."

#	`#'	for	`g'	forces	to	show	the	decimal	point.

#	It	also	disables	stripping	lowest	zeros.

sprintf("%g",	123.4)			#=>	"123.4"

sprintf("%#g",	123.4)		#=>	"123.400"

sprintf("%g",	123456)		#=>	"123456"

sprintf("%#g",	123456)	#=>	"123456."

The	field	width	is	an	optional	integer,	followed
optionally	by	a	period	and	a	precision.	The	width
specifies	the	minimum	number	of	characters	that	will
be	written	to	the	result	for	this	field.

Examples	of	width:

#	padding	is	done	by	spaces,							width=20

#	0	or	radix-1.													<------------------>

sprintf("%20d",	123)			#=>	"																	123"

sprintf("%+20d",	123)		#=>	"																+123"

sprintf("%020d",	123)		#=>	"00000000000000000123"

sprintf("%+020d",	123)	#=>	"+0000000000000000123"

sprintf("%	020d",	123)	#=>	"	0000000000000000123"

sprintf("%-20d",	123)		#=>	"123																	"

sprintf("%-+20d",	123)	#=>	"+123																"

sprintf("%-	20d",	123)	#=>	"	123																"

sprintf("%020x",	-123)	#=>	"..ffffffffffffffff85"

For	numeric	fields,	the	precision	controls	the	number
of	decimal	places	displayed.	For	string	fields,	the
precision	determines	the	maximum	number	of
characters	to	be	copied	from	the	string.	(Thus,	the
format	sequence	%10.10s	will	always	contribute
exactly	ten	characters	to	the	result.)

Examples	of	precisions:

#	precision	for	`d',	'o',	'x'	and	'b'	is

#	minimum	number	of	digits															<------>

sprintf("%20.8d",	123)		#=>	"												00000123"

sprintf("%20.8o",	123)		#=>	"												00000173"

sprintf("%20.8x",	123)		#=>	"												0000007b"

sprintf("%20.8b",	123)		#=>	"												01111011"

sprintf("%20.8d",	-123)	#=>	"											-00000123"

sprintf("%20.8o",	-123)	#=>	"												..777605"

sprintf("%20.8x",	-123)	#=>	"												..ffff85"

sprintf("%20.8b",	-11)		#=>	"												..110101"

#	"0x"	and	"0b"	for	`#x'	and	`#b'	is	not	counted	for

#	precision	but	"0"	for	`#o'	is	counted.		<------>

sprintf("%#20.8d",	123)		#=>	"												00000123"

sprintf("%#20.8o",	123)		#=>	"												00000173"

sprintf("%#20.8x",	123)		#=>	"										0x0000007b"

sprintf("%#20.8b",	123)		#=>	"										0b01111011"

sprintf("%#20.8d",	-123)	#=>	"											-00000123"

sprintf("%#20.8o",	-123)	#=>	"												..777605"

sprintf("%#20.8x",	-123)	#=>	"										0x..ffff85"

sprintf("%#20.8b",	-11)		#=>	"										0b..110101"

#	precision	for	`e'	is	number	of

#	digits	after	the	decimal	point											<------>

sprintf("%20.8e",	1234.56789)	#=>	"						1.23456789e+03"

#	precision	for	`f'	is	number	of

#	digits	after	the	decimal	point															<------>

sprintf("%20.8f",	1234.56789)	#=>	"							1234.56789000"

#	precision	for	`g'	is	number	of

#	significant	digits																										<------->

sprintf("%20.8g",	1234.56789)	#=>	"											1234.5679"

#																																									<------->

sprintf("%20.8g",	123456789)		#=>	"							1.2345679e+08"

#	precision	for	`s'	is

#	maximum	number	of	characters																				<------>

sprintf("%20.8s",	"string	test")	#=>	"												string	t"

Examples:

sprintf("%d	%04x",	123,	123)															#=>	"123	007b"

sprintf("%08b	'%4s'",	123,	123)												#=>	"01111011	'	123'"

sprintf("%1$*2$s	%2$d	%1$s",	"hello",	8)			#=>	"			hello	8	hello"

sprintf("%1$*2$s	%2$d",	"hello",	-8)							#=>	"hello				-8"

sprintf("%+g:%	g:%-g",	1.23,	1.23,	1.23)			#=>	"+1.23:	1.23:1.23"

sprintf("%u",	-123)																								#=>	"-123"

For	more	complex	formatting,	Ruby	supports	a
reference	by	name.	%<name>s	style	uses	format
style,	but	%{name}	style	doesn't.

Examples:

sprintf("%<foo>d	:	%<bar>f",	{	:foo	=>	1,	:bar	=>	2	})

		#=>	1	:	2.000000

sprintf("%{foo}f",	{	:foo	=>	1	})

		#	=>	"1f"

Seeds	the	system	pseudo-random	number	generator,
Random::DEFAULT,	with	number.	The	previous	seed
value	is	returned.

If	number	is	omitted,	seeds	the	generator	using	a
source	of	entropy	provided	by	the	operating	system,
if	available	(/dev/urandom	on	Unix	systems	or	the
RSA	cryptographic	provider	on	Windows),	which	is
then	combined	with	the	time,	the	process	id,	and	a
sequence	number.

srand	may	be	used	to	ensure	repeatable	sequences
of	pseudo-random	numbers	between	different	runs	of
the	program.	By	setting	the	seed	to	a	known	value,
programs	can	be	made	deterministic	during	testing.

srand	1234															#	=>	268519324636777531569100071560086917274

[rand,	rand]											#	=>	[0.1915194503788923,	0.6221087710398319]

[rand(10),	rand(1000)]	#	=>	[4,	664]

srand	1234															#	=>	1234

[rand,	rand]											#	=>	[0.1915194503788923,	0.6221087710398319]

Equivalent	to	$_.sub(args),	except	that	$_	will	be
updated	if	substitution	occurs.	Available	only	when	-
p/-n	command	line	option	specified.

srand(number	=	Random.new_seed)	→
old_seed

sub(pattern,	replacement)	→	$_
sub(pattern)	{|...|	block	}	→	$_

Calls	the	operating	system	function	identified	by	_num_	and

returns	the	result	of	the	function	or	raises	SystemCallError	if

it	failed.

Arguments	for	the	function	can	follow	_num_.	They	must	be	either

+String+	objects	or	+Integer+	objects.	A	+String+	object	is	passed

as	a	pointer	to	the	byte	sequence.	An	+Integer+	object	is	passed

as	an	integer	whose	bit	size	is	same	as	a	pointer.

Up	to	nine	parameters	may	be	passed	(14	on	the	Atari-ST).

The	function	identified	by	_num_	is	system

dependent.	On	some	Unix	systems,	the	numbers	may	be	obtained	from	a

header	file	called	<code>syscall.h</code>.

			syscall	4,	1,	"hello\n",	6			#	'4'	is	write(2)	on	our	box

produces:

			hello

Calling	+syscall+	on	a	platform	which	does	not	have	any	way	to

an	arbitrary	system	function	just	fails	with	NotImplementedError.

Note
syscall	is	essentially	unsafe	and	unportable.	Feel
free	to	shoot	your	foot.	DL	(Fiddle)	library	is
preferred	for	safer	and	a	bit	more	portable
programming.

Executes	command…	in	a	subshell.	command…	is
one	of	following	forms.

commandline																	:	command	line	string	which	is	passed	to	the	standard	shell

cmdname,	arg1,	...										:	command	name	and	one	or	more	arguments	(no	shell)

[cmdname,	argv0],	arg1,	...	:	command	name,	argv[0]	and	zero	or	more	arguments	(no	shell)

syscall(num	[,	args...])	→	integer

system([env,]	command...	[,options])	→	true,
false	or	nil

system	returns	true	if	the	command	gives	zero	exit
status,	false	for	non	zero	exit	status.	Returns	nil	if
command	execution	fails.	An	error	status	is	available
in	$?.	The	arguments	are	processed	in	the	same	way
as	for	Kernel.spawn.

The	hash	arguments,	env	and	options,	are	same	as
exec	and	spawn.	See	Kernel.spawn	for	details.

system("echo	*")

system("echo",	"*")

produces:

config.h	main.rb

*

See	Kernel.exec	for	the	standard	shell.

Uses	the	character	cmd	to	perform	various	tests	on
file1	(first	table	below)	or	on	file1	and	file2
(second	table).

File	tests	on	a	single	file:

Cmd				Returns			Meaning

"A"		|	Time				|	Last	access	time	for	file1

"b"		|	boolean	|	True	if	file1	is	a	block	device

"c"		|	boolean	|	True	if	file1	is	a	character	device

"C"		|	Time				|	Last	change	time	for	file1

"d"		|	boolean	|	True	if	file1	exists	and	is	a	directory

"e"		|	boolean	|	True	if	file1	exists

"f"		|	boolean	|	True	if	file1	exists	and	is	a	regular	file

"g"		|	boolean	|	True	if	file1	has	the	\CF{setgid}	bit

					|									|	set	(false	under	NT)

"G"		|	boolean	|	True	if	file1	exists	and	has	a	group

					|									|	ownership	equal	to	the	caller's	group

"k"		|	boolean	|	True	if	file1	exists	and	has	the	sticky	bit	set

"l"		|	boolean	|	True	if	file1	exists	and	is	a	symbolic	link

"M"		|	Time				|	Last	modification	time	for	file1

"o"		|	boolean	|	True	if	file1	exists	and	is	owned	by

test(cmd,	file1	[,	file2])	→	obj

					|									|	the	caller's	effective	uid

"O"		|	boolean	|	True	if	file1	exists	and	is	owned	by

					|									|	the	caller's	real	uid

"p"		|	boolean	|	True	if	file1	exists	and	is	a	fifo

"r"		|	boolean	|	True	if	file1	is	readable	by	the	effective

					|									|	uid/gid	of	the	caller

"R"		|	boolean	|	True	if	file	is	readable	by	the	real

					|									|	uid/gid	of	the	caller

"s"		|	int/nil	|	If	file1	has	nonzero	size,	return	the	size,

					|									|	otherwise	return	nil

"S"		|	boolean	|	True	if	file1	exists	and	is	a	socket

"u"		|	boolean	|	True	if	file1	has	the	setuid	bit	set

"w"		|	boolean	|	True	if	file1	exists	and	is	writable	by

					|									|	the	effective	uid/gid

"W"		|	boolean	|	True	if	file1	exists	and	is	writable	by

					|									|	the	real	uid/gid

"x"		|	boolean	|	True	if	file1	exists	and	is	executable	by

					|									|	the	effective	uid/gid

"X"		|	boolean	|	True	if	file1	exists	and	is	executable	by

					|									|	the	real	uid/gid

"z"		|	boolean	|	True	if	file1	exists	and	has	a	zero	length

Tests	that	take	two	files:

"-"		|	boolean	|	True	if	file1	and	file2	are	identical

"="		|	boolean	|	True	if	the	modification	times	of	file1

					|									|	and	file2	are	equal

"<"		|	boolean	|	True	if	the	modification	time	of	file1

					|									|	is	prior	to	that	of	file2

">"		|	boolean	|	True	if	the	modification	time	of	file1

					|									|	is	after	that	of	file2

Transfers	control	to	the	end	of	the	active	catch	block
waiting	for	tag.	Raises	UncaughtThrowError	if	there	is
no	catch	block	for	the	tag.	The	optional	second
parameter	supplies	a	return	value	for	the	catch	block,
which	otherwise	defaults	to	nil.	For	examples,	see
Kernel::catch.

throw(tag	[,	obj])

Controls	tracing	of	assignments	to	global	variables.
The	parameter	symbol	identifies	the	variable	(as
either	a	string	name	or	a	symbol	identifier).	cmd
(which	may	be	a	string	or	a	Proc	object)	or	block	is
executed	whenever	the	variable	is	assigned.	The
block	or	Proc	object	receives	the	variable's	new	value
as	a	parameter.	Also	see	Kernel::untrace_var.

trace_var	:$_,	proc	{|v|	puts	"$_	is	now	'#{v}'"	}

$_	=	"hello"

$_	=	'	there'

produces:

$_	is	now	'hello'

$_	is	now	'	there'

Specifies	the	handling	of	signals.	The	first	parameter
is	a	signal	name	(a	string	such	as	“SIGALRM'',
“SIGUSR1'',	and	so	on)	or	a	signal	number.	The
characters	“SIG''	may	be	omitted	from	the	signal
name.	The	command	or	block	specifies	code	to	be
run	when	the	signal	is	raised.	If	the	command	is	the
string	“IGNORE''	or	“SIG_IGN'',	the	signal	will	be
ignored.	If	the	command	is	“DEFAULT''	or
“SIG_DFL'',	the	Ruby's	default	handler	will	be
invoked.	If	the	command	is	“EXIT'',	the	script	will	be
terminated	by	the	signal.	If	the	command	is
“SYSTEM_DEFAULT'',	the	operating	system's	default
handler	will	be	invoked.	Otherwise,	the	given
command	or	block	will	be	run.	The	special	signal
name	“EXIT''	or	signal	number	zero	will	be	invoked

trace_var(symbol,	cmd)	→	nil
trace_var(symbol)	{|val|	block	}	→	nil

trap(signal,	command)	→	obj
trap(signal)	{|	|	block	}	→	obj

just	prior	to	program	termination.	trap	returns	the
previous	handler	for	the	given	signal.

Signal.trap(0,	proc	{	puts	"Terminating:	#{$$}"	})

Signal.trap("CLD")		{	puts	"Child	died"	}

fork	&&	Process.wait

produces:

Terminating:	27461

Child	died

Terminating:	27460

Removes	tracing	for	the	specified	command	on	the
given	global	variable	and	returns	nil.	If	no	command
is	specified,	removes	all	tracing	for	that	variable	and
returns	an	array	containing	the	commands	actually
removed.

Displays	each	of	the	given	messages	followed	by	a
record	separator	on	STDERR	unless	warnings	have
been	disabled	(for	example	with	the	-W0	flag).

		warn("warning	1",	"warning	2")

produces:

		warning	1

		warning	2

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

untrace_var(symbol	[,	cmd])	→	array	or	nil

warn(msg,	...)	→	nil

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	KeyError
Raised	when	the	specified	key	is	not	found.	It	is
a	subclass	of	IndexError.

h	=	{"foo"	=>	:bar}

h.fetch("foo")	#=>	:bar

h.fetch("baz")	#=>	KeyError:	key	not	found:	"baz"

In	Files
error.c

Parent
IndexError

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	LoadError
Raised	when	a	file	required	(a	Ruby	script,
extension	library,	…)	fails	to	load.

require	'this/file/does/not/exist'

raises	the	exception:

LoadError:	no	such	file	to	load	--	this/file/does/not/exist

In	Files
error.c

Parent
ScriptError

Attributes

the	path	failed	to	load

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

rb_intern_const("path") [R]

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	LocalJumpError
Raised	when	Ruby	can't	yield	as	requested.

A	typical	scenario	is	attempting	to	yield	when	no
block	is	given:

def	call_block

		yield	42

end

call_block

raises	the	exception:

LocalJumpError:	no	block	given	(yield)

A	more	subtle	example:

def	get_me_a_return

		Proc.new	{	return	42	}

end

get_me_a_return.call

raises	the	exception:

LocalJumpError:	unexpected	return

In	Files
proc.c

Parent
StandardError

Public	Instance	Methods

Returns	the	exit	value	associated	with	this
LocalJumpError.

The	reason	this	block	was	terminated:	:break,	:redo,
:retry,	:next,	:return,	or	:noreason.

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

exit_value	→	obj

reason	→	symbol

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

module	Marshal
The	marshaling	library	converts	collections	of
Ruby	objects	into	a	byte	stream,	allowing	them
to	be	stored	outside	the	currently	active	script.
This	data	may	subsequently	be	read	and	the
original	objects	reconstituted.

Marshaled	data	has	major	and	minor	version
numbers	stored	along	with	the	object
information.	In	normal	use,	marshaling	can	only
load	data	written	with	the	same	major	version
number	and	an	equal	or	lower	minor	version
number.	If	Ruby's	“verbose''	flag	is	set	(normally
using	-d,	-v,	-w,	or	–verbose)	the	major	and
minor	numbers	must	match	exactly.	Marshal
versioning	is	independent	of	Ruby's	version
numbers.	You	can	extract	the	version	by	reading
the	first	two	bytes	of	marshaled	data.

str	=	Marshal.dump("thing")

RUBY_VERSION			#=>	"1.9.0"

str[0].ord					#=>	4

str[1].ord					#=>	8

Some	objects	cannot	be	dumped:	if	the	objects
to	be	dumped	include	bindings,	procedure	or
method	objects,	instances	of	class	IO,	or
singleton	objects,	a	TypeError	will	be	raised.

If	your	class	has	special	serialization	needs	(for

example,	if	you	want	to	serialize	in	some	specific
format),	or	if	it	contains	objects	that	would
otherwise	not	be	serializable,	you	can	implement
your	own	serialization	strategy.

There	are	two	methods	of	doing	this,	your	object
can	define	either	marshal_dump	and
marshal_load	or	_dump	and	_load.
marshal_dump	will	take	precedence	over	_dump
if	both	are	defined.	marshal_dump	may	result	in
smaller	Marshal	strings.

Security	considerations

By	design,	::load	can	deserialize	almost	any
class	loaded	into	the	Ruby	process.	In	many
cases	this	can	lead	to	remote	code	execution	if
the	Marshal	data	is	loaded	from	an	untrusted
source.

As	a	result,	::load	is	not	suitable	as	a	general
purpose	serialization	format	and	you	should
never	unmarshal	user	supplied	input	or	other
untrusted	data.

If	you	need	to	deserialize	untrusted	data,	use
JSON	or	another	serialization	format	that	is	only
able	to	load	simple,	'primitive'	types	such	as
String,	Array,	Hash,	etc.	Never	allow	user	input
to	specify	arbitrary	types	to	deserialize	into.

marshal_dump	and	marshal_load

When	dumping	an	object	the	method
marshal_dump	will	be	called.	marshal_dump
must	return	a	result	containing	the	information
necessary	for	marshal_load	to	reconstitute	the
object.	The	result	can	be	any	object.

When	loading	an	object	dumped	using
marshal_dump	the	object	is	first	allocated	then
marshal_load	is	called	with	the	result	from
marshal_dump.	marshal_load	must	recreate	the
object	from	the	information	in	the	result.

Example:

class	MyObj

		def	initialize	name,	version,	data

				@name				=	name

				@version	=	version

				@data				=	data

		end

		def	marshal_dump

				[@name,	@version]

		end

		def	marshal_load	array

				@name,	@version	=	array

		end

end

_dump	and	_load

Use	_dump	and	_load	when	you	need	to
allocate	the	object	you're	restoring	yourself.

When	dumping	an	object	the	instance	method
_dump	is	called	with	an	Integer	which	indicates
the	maximum	depth	of	objects	to	dump	(a	value
of	-1	implies	that	you	should	disable	depth
checking).	_dump	must	return	a	String
containing	the	information	necessary	to
reconstitute	the	object.

The	class	method	_load	should	take	a	String
and	use	it	to	return	an	object	of	the	same	class.

Example:

class	MyObj

		def	initialize	name,	version,	data

				@name				=	name

				@version	=	version

				@data				=	data

		end

		def	_dump	level

				[@name,	@version].join	':'

		end

		def	self._load	args

				new(*args.split(':'))

		end

end

Since	::dump	outputs	a	string	you	can	have

_dump	return	a	Marshal	string	which	is
Marshal.loaded	in	_load	for	complex	objects.

In	Files
marshal.c

Constants

MAJOR_VERSION

major	version

MINOR_VERSION

minor	version

Public	Class	Methods

Serializes	obj	and	all	descendant	objects.	If	anIO	is
specified,	the	serialized	data	will	be	written	to	it,
otherwise	the	data	will	be	returned	as	a	String.	If	limit
is	specified,	the	traversal	of	subobjects	will	be	limited
to	that	depth.	If	limit	is	negative,	no	checking	of	depth
will	be	performed.

class	Klass

		def	initialize(str)

				@str	=	str

		end

		def	say_hello

				@str

		end

end

dump(obj	[,	anIO]	,	limit=-1)	→	anIO

(produces	no	output)

o	=	Klass.new("hello\n")

data	=	Marshal.dump(o)

obj	=	Marshal.load(data)

obj.say_hello		#=>	"hello\n"

Marshal	can't	dump	following	objects:

anonymous	Class/Module.

objects	which	are	related	to	system	(ex:	Dir,
File::Stat,	IO,	File,	Socket	and	so	on)

an	instance	of	MatchData,	Data,	Method,
UnboundMethod,	Proc,	Thread,	ThreadGroup,
Continuation

objects	which	define	singleton	methods

Returns	the	result	of	converting	the	serialized	data	in
source	into	a	Ruby	object	(possibly	with	associated
subordinate	objects).	source	may	be	either	an
instance	of	IO	or	an	object	that	responds	to	to_str.	If
proc	is	specified,	each	object	will	be	passed	to	the
proc,	as	the	object	is	being	deserialized.

Never	pass	untrusted	data	(including	user	supplied
input)	to	this	method.	Please	see	the	overview	for
further	details.

Returns	the	result	of	converting	the	serialized	data	in
source	into	a	Ruby	object	(possibly	with	associated
subordinate	objects).	source	may	be	either	an
instance	of	IO	or	an	object	that	responds	to	to_str.	If

load(source	[,	proc])	→	obj
restore(source	[,	proc])	→	obj

load(source	[,	proc])	→	obj
restore(source	[,	proc])	→	obj

proc	is	specified,	each	object	will	be	passed	to	the
proc,	as	the	object	is	being	deserialized.

Never	pass	untrusted	data	(including	user	supplied
input)	to	this	method.	Please	see	the	overview	for
further	details.

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	MatchData
MatchData	is	the	type	of	the	special	variable	$~,
and	is	the	type	of	the	object	returned	by
Regexp#match	and	Regexp.last_match.	It
encapsulates	all	the	results	of	a	pattern	match,
results	normally	accessed	through	the	special
variables	$&,	$',	$`,	$1,	$2,	and	so	on.

In	Files
re.c

Parent
Object

Public	Instance	Methods

Equality—Two	matchdata	are	equal	if	their	target
strings,	patterns,	and	matched	positions	are	identical.

mtch	==	mtch2	→	true	or	false
eql?(mtch2)	→	true	or	false

mtch[i]	→	str	or	nil
mtch[start,	length]	→	array
mtch[range]	→	array
mtch[name]	→	str	or	nil

Match	Reference	–	MatchData	acts	as	an	array,	and
may	be	accessed	using	the	normal	array	indexing
techniques.	mtch[0]	is	equivalent	to	the	special
variable	$&,	and	returns	the	entire	matched	string.
mtch[1],	mtch[2],	and	so	on	return	the	values	of	the
matched	backreferences	(portions	of	the	pattern
between	parentheses).

m	=	/(.)(.)(\d+)(\d)/.match("THX1138.")

m										#=>	#<MatchData	"HX1138"	1:"H"	2:"X"	3:"113"	4:"8">

m[0]							#=>	"HX1138"

m[1,	2]				#=>	["H",	"X"]

m[1..3]				#=>	["H",	"X",	"113"]

m[-3,	2]			#=>	["X",	"113"]

m	=	/(?<foo>a+)b/.match("ccaaab")

m										#=>	#<MatchData	"aaab"	foo:"aaa">

m["foo"]			#=>	"aaa"

m[:foo]				#=>	"aaa"

Returns	the	offset	of	the	start	of	the	nth	element	of
the	match	array	in	the	string.	n	can	be	a	string	or
symbol	to	reference	a	named	capture.

m	=	/(.)(.)(\d+)(\d)/.match("THX1138.")

m.begin(0)							#=>	1

m.begin(2)							#=>	2

m	=	/(?<foo>.)(.)(?<bar>.)/.match("hoge")

p	m.begin(:foo)		#=>	0

p	m.begin(:bar)		#=>	2

Returns	the	array	of	captures;	equivalent	to
mtch.to_a[1..-1].

f1,f2,f3,f4	=	/(.)(.)(\d+)(\d)/.match("THX1138.").captures

begin(n)	→	integer

captures	→	array

f1				#=>	"H"

f2				#=>	"X"

f3				#=>	"113"

f4				#=>	"8"

Returns	the	offset	of	the	character	immediately
following	the	end	of	the	nth	element	of	the	match
array	in	the	string.	n	can	be	a	string	or	symbol	to
reference	a	named	capture.

m	=	/(.)(.)(\d+)(\d)/.match("THX1138.")

m.end(0)									#=>	7

m.end(2)									#=>	3

m	=	/(?<foo>.)(.)(?<bar>.)/.match("hoge")

p	m.end(:foo)				#=>	1

p	m.end(:bar)				#=>	3

Equality—Two	matchdata	are	equal	if	their	target
strings,	patterns,	and	matched	positions	are	identical.

Produce	a	hash	based	on	the	target	string,	regexp
and	matched	positions	of	this	matchdata.

See	also	Object#hash.

Returns	a	printable	version	of	mtch.

puts	/.$/.match("foo").inspect

#=>	#<MatchData	"o">

end(n)	→	integer

mtch	==	mtch2	→	true	or	false
eql?(mtch2)	→	true	or	false

hash	→	integer

inspect	→	str

puts	/(.)(.)(.)/.match("foo").inspect

#=>	#<MatchData	"foo"	1:"f"	2:"o"	3:"o">

puts	/(.)(.)?(.)/.match("fo").inspect

#=>	#<MatchData	"fo"	1:"f"	2:nil	3:"o">

puts	/(?<foo>.)(?<bar>.)(?<baz>.)/.match("hoge").inspect

#=>	#<MatchData	"hog"	foo:"h"	bar:"o"	baz:"g">

Returns	the	number	of	elements	in	the	match	array.

m	=	/(.)(.)(\d+)(\d)/.match("THX1138.")

m.length			#=>	5

m.size					#=>	5

Returns	a	list	of	names	of	captures	as	an	array	of
strings.	It	is	same	as	mtch.regexp.names.

/(?<foo>.)(?<bar>.)(?<baz>.)/.match("hoge").names

#=>	["foo",	"bar",	"baz"]

m	=	/(?<x>.)(?<y>.)?/.match("a")	#=>	#<MatchData	"a"	x:"a"	y:nil>

m.names																										#=>	["x",	"y"]

Returns	a	two-element	array	containing	the	beginning
and	ending	offsets	of	the	nth	match.	n	can	be	a	string
or	symbol	to	reference	a	named	capture.

m	=	/(.)(.)(\d+)(\d)/.match("THX1138.")

m.offset(0)						#=>	[1,	7]

m.offset(4)						#=>	[6,	7]

m	=	/(?<foo>.)(.)(?<bar>.)/.match("hoge")

length	→	integer
size	→	integer

names	→	[name1,	name2,	...]

offset(n)	→	array

p	m.offset(:foo)	#=>	[0,	1]

p	m.offset(:bar)	#=>	[2,	3]

Returns	the	portion	of	the	original	string	after	the
current	match.	Equivalent	to	the	special	variable	$'.

m	=	/(.)(.)(\d+)(\d)/.match("THX1138:	The	Movie")

m.post_match			#=>	":	The	Movie"

Returns	the	portion	of	the	original	string	before	the
current	match.	Equivalent	to	the	special	variable	$`.

m	=	/(.)(.)(\d+)(\d)/.match("THX1138.")

m.pre_match			#=>	"T"

Returns	the	regexp.

m	=	/a.*b/.match("abc")

m.regexp	#=>	/a.*b/

Returns	the	number	of	elements	in	the	match	array.

m	=	/(.)(.)(\d+)(\d)/.match("THX1138.")

m.length			#=>	5

m.size					#=>	5

Returns	a	frozen	copy	of	the	string	passed	in	to

post_match	→	str

pre_match	→	str

regexp	→	regexp

length	→	integer
size	→	integer

string	→	str

match.

m	=	/(.)(.)(\d+)(\d)/.match("THX1138.")

m.string			#=>	"THX1138."

Returns	the	array	of	matches.

m	=	/(.)(.)(\d+)(\d)/.match("THX1138.")

m.to_a			#=>	["HX1138",	"H",	"X",	"113",	"8"]

Because	to_a	is	called	when	expanding	*variable,
there's	a	useful	assignment	shortcut	for	extracting
matched	fields.	This	is	slightly	slower	than	accessing
the	fields	directly	(as	an	intermediate	array	is
generated).

all,f1,f2,f3	=	*(/(.)(.)(\d+)(\d)/.match("THX1138."))

all			#=>	"HX1138"

f1				#=>	"H"

f2				#=>	"X"

f3				#=>	"113"

Returns	the	entire	matched	string.

m	=	/(.)(.)(\d+)(\d)/.match("THX1138.")

m.to_s			#=>	"HX1138"

Uses	each	index	to	access	the	matching	values,
returning	an	array	of	the	corresponding	matches.

m	=	/(.)(.)(\d+)(\d)/.match("THX1138:	The	Movie")

m.to_a															#=>	["HX1138",	"H",	"X",	"113",	"8"]

m.values_at(0,	2,	-2)			#=>	["HX1138",	"X",	"113"]

to_a	→	anArray

to_s	→	str

values_at([index]*)	→	array

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

module	Math
The	Math	module	contains	module	functions	for
basic	trigonometric	and	transcendental
functions.	See	class	Float	for	a	list	of	constants
that	define	Ruby's	floating	point	accuracy.

Domains	and	codomains	are	given	only	for	real
(not	complex)	numbers.

In	Files
math.c

Constants

E

Definition	of	the	mathematical	constant	E	(e)	as	a	Float
number.

PI

Definition	of	the	mathematical	constant	PI	as	a	Float
number.

Public	Class	Methods

acos(x)	→	Float

Computes	the	arc	cosine	of	x.	Returns	0..PI.

Domain:	[-1,	1]

Codomain:	[0,	PI]

Math.acos(0)	==	Math::PI/2		#=>	true

Computes	the	inverse	hyperbolic	cosine	of	x.

Domain:	[1,	INFINITY)

Codomain:	[0,	INFINITY)

Math.acosh(1)	#=>	0.0

Computes	the	arc	sine	of	x.	Returns	-PI/2..PI/2.

Domain:	[-1,	-1]

Codomain:	[-PI/2,	PI/2]

Math.asin(1)	==	Math::PI/2		#=>	true

Computes	the	inverse	hyperbolic	sine	of	x.

Domain:	(-INFINITY,	INFINITY)

Codomain:	(-INFINITY,	INFINITY)

Math.asinh(1)	#=>	0.881373587019543

Computes	the	arc	tangent	of	x.	Returns	-PI/2..PI/2.

Domain:	(-INFINITY,	INFINITY)

acosh(x)	→	Float

asin(x)	→	Float

asinh(x)	→	Float

atan(x)	→	Float

Codomain:	(-PI/2,	PI/2)

Math.atan(0)	#=>	0.0

Computes	the	arc	tangent	given	y	and	x.	Returns	a
Float	in	the	range	-PI..PI.

Domain:	(-INFINITY,	INFINITY)

Codomain:	[-PI,	PI]

Math.atan2(-0.0,	-1.0)	#=>	-3.141592653589793

Math.atan2(-1.0,	-1.0)	#=>	-2.356194490192345

Math.atan2(-1.0,	0.0)		#=>	-1.5707963267948966

Math.atan2(-1.0,	1.0)		#=>	-0.7853981633974483

Math.atan2(-0.0,	1.0)		#=>	-0.0

Math.atan2(0.0,	1.0)			#=>	0.0

Math.atan2(1.0,	1.0)			#=>	0.7853981633974483

Math.atan2(1.0,	0.0)			#=>	1.5707963267948966

Math.atan2(1.0,	-1.0)		#=>	2.356194490192345

Math.atan2(0.0,	-1.0)		#=>	3.141592653589793

Math.atan2(INFINITY,	INFINITY)			#=>	0.7853981633974483

Math.atan2(INFINITY,	-INFINITY)		#=>	2.356194490192345

Math.atan2(-INFINITY,	INFINITY)		#=>	-0.7853981633974483

Math.atan2(-INFINITY,	-INFINITY)	#=>	-2.356194490192345

Computes	the	inverse	hyperbolic	tangent	of	x.

Domain:	(-1,	1)

Codomain:	(-INFINITY,	INFINITY)

Math.atanh(1)	#=>	Infinity

Returns	the	cube	root	of	x.

atan2(y,	x)	→	Float

atanh(x)	→	Float

cbrt(x)	→	Float

Domain:	[0,	INFINITY)

Codomain:[0,	INFINITY)

-9.upto(9)	{|x|

		p	[x,	Math.cbrt(x),	Math.cbrt(x)**3]

}

#=>	[-9,	-2.0800838230519,	-9.0]

#			[-8,	-2.0,	-8.0]

#			[-7,	-1.91293118277239,	-7.0]

#			[-6,	-1.81712059283214,	-6.0]

#			[-5,	-1.7099759466767,	-5.0]

#			[-4,	-1.5874010519682,	-4.0]

#			[-3,	-1.44224957030741,	-3.0]

#			[-2,	-1.25992104989487,	-2.0]

#			[-1,	-1.0,	-1.0]

#			[0,	0.0,	0.0]

#			[1,	1.0,	1.0]

#			[2,	1.25992104989487,	2.0]

#			[3,	1.44224957030741,	3.0]

#			[4,	1.5874010519682,	4.0]

#			[5,	1.7099759466767,	5.0]

#			[6,	1.81712059283214,	6.0]

#			[7,	1.91293118277239,	7.0]

#			[8,	2.0,	8.0]

#			[9,	2.0800838230519,	9.0]

Computes	the	cosine	of	x	(expressed	in	radians).
Returns	a	Float	in	the	range	-1.0..1.0.

Domain:	(-INFINITY,	INFINITY)

Codomain:	[-1,	1]

Math.cos(Math::PI)	#=>	-1.0

Computes	the	hyperbolic	cosine	of	x	(expressed	in
radians).

Domain:	(-INFINITY,	INFINITY)

cos(x)	→	Float

cosh(x)	→	Float

Codomain:	[1,	INFINITY)

Math.cosh(0)	#=>	1.0

Calculates	the	error	function	of	x.

Domain:	(-INFINITY,	INFINITY)

Codomain:	(-1,	1)

Math.erf(0)	#=>	0.0

Calculates	the	complementary	error	function	of	x.

Domain:	(-INFINITY,	INFINITY)

Codomain:	(0,	2)

Math.erfc(0)	#=>	1.0

Returns	e**x.

Domain:	(-INFINITY,	INFINITY)

Codomain:	(0,	INFINITY)

Math.exp(0)							#=>	1.0

Math.exp(1)							#=>	2.718281828459045

Math.exp(1.5)					#=>	4.4816890703380645

Returns	a	two-element	array	containing	the
normalized	fraction	(a	Float)	and	exponent	(a
Fixnum)	of	x.

erf(x)	→	Float

erfc(x)	→	Float

exp(x)	→	Float

frexp(x)	→	[fraction,	exponent]

fraction,	exponent	=	Math.frexp(1234)			#=>	[0.6025390625,	11]

fraction	*	2**exponent																		#=>	1234.0

Calculates	the	gamma	function	of	x.

Note	that	gamma(n)	is	same	as	fact(n-1)	for	integer	n
>	0.	However	gamma(n)	returns	float	and	can	be	an
approximation.

def	fact(n)	(1..n).inject(1)	{|r,i|	r*i	}	end

1.upto(26)	{|i|	p	[i,	Math.gamma(i),	fact(i-1)]	}

#=>	[1,	1.0,	1]

#			[2,	1.0,	1]

#			[3,	2.0,	2]

#			[4,	6.0,	6]

#			[5,	24.0,	24]

#			[6,	120.0,	120]

#			[7,	720.0,	720]

#			[8,	5040.0,	5040]

#			[9,	40320.0,	40320]

#			[10,	362880.0,	362880]

#			[11,	3628800.0,	3628800]

#			[12,	39916800.0,	39916800]

#			[13,	479001600.0,	479001600]

#			[14,	6227020800.0,	6227020800]

#			[15,	87178291200.0,	87178291200]

#			[16,	1307674368000.0,	1307674368000]

#			[17,	20922789888000.0,	20922789888000]

#			[18,	355687428096000.0,	355687428096000]

#			[19,	6.402373705728e+15,	6402373705728000]

#			[20,	1.21645100408832e+17,	121645100408832000]

#			[21,	2.43290200817664e+18,	2432902008176640000]

#			[22,	5.109094217170944e+19,	51090942171709440000]

#			[23,	1.1240007277776077e+21,	1124000727777607680000]

#			[24,	2.5852016738885062e+22,	25852016738884976640000]

#			[25,	6.204484017332391e+23,	620448401733239439360000]

#			[26,	1.5511210043330954e+25,	15511210043330985984000000]

gamma(x)	→	Float

hypot(x,	y)	→	Float

Returns	sqrt(x**2	+	y**2),	the	hypotenuse	of	a	right-
angled	triangle	with	sides	x	and	y.

Math.hypot(3,	4)			#=>	5.0

Returns	the	value	of	fraction*(2**exponent).

fraction,	exponent	=	Math.frexp(1234)

Math.ldexp(fraction,	exponent)			#=>	1234.0

Calculates	the	logarithmic	gamma	of	x	and	the	sign	of
gamma	of	x.

::lgamma	is	same	as

[Math.log(Math.gamma(x).abs),	Math.gamma(x)	<	0	?	-1	:	1]

but	avoid	overflow	by	::gamma	for	large	x.

Math.lgamma(0)	#=>	[Infinity,	1]

Returns	the	logarithm	of	x.	If	additional	second
argument	is	given,	it	will	be	the	base	of	logarithm.
Otherwise	it	is	e	(for	the	natural	logarithm).

Domain:	(0,	INFINITY)

Codomain:	(-INFINITY,	INFINITY)

Math.log(0)										#=>	-Infinity

Math.log(1)										#=>	0.0

Math.log(Math::E)				#=>	1.0

Math.log(Math::E**3)	#=>	3.0

ldexp(fraction,	exponent)	→	float

lgamma(x)	→	[float,	-1	or	1]

log(x)	→	Float
log(x,	base)	→	Float

Math.log(12,	3)						#=>	2.2618595071429146

Returns	the	base	10	logarithm	of	x.

Domain:	(0,	INFINITY)

Codomain:	(-INFINITY,	INFINITY)

Math.log10(1)							#=>	0.0

Math.log10(10)						#=>	1.0

Math.log10(10**100)	#=>	100.0

Returns	the	base	2	logarithm	of	x.

Domain:	(0,	INFINITY)

Codomain:	(-INFINITY,	INFINITY)

Math.log2(1)						#=>	0.0

Math.log2(2)						#=>	1.0

Math.log2(32768)		#=>	15.0

Math.log2(65536)		#=>	16.0

Computes	the	sine	of	x	(expressed	in	radians).
Returns	a	Float	in	the	range	-1.0..1.0.

Domain:	(-INFINITY,	INFINITY)

Codomain:	[-1,	1]

Math.sin(Math::PI/2)	#=>	1.0

Computes	the	hyperbolic	sine	of	x	(expressed	in
radians).

log10(x)	→	Float

log2(x)	→	Float

sin(x)	→	Float

sinh(x)	→	Float

Domain:	(-INFINITY,	INFINITY)

Codomain:	(-INFINITY,	INFINITY)

Math.sinh(0)	#=>	0.0

Returns	the	non-negative	square	root	of	x.

Domain:	[0,	INFINITY)

Codomain:[0,	INFINITY)

0.upto(10)	{|x|

		p	[x,	Math.sqrt(x),	Math.sqrt(x)**2]

}

#=>	[0,	0.0,	0.0]

#			[1,	1.0,	1.0]

#			[2,	1.4142135623731,	2.0]

#			[3,	1.73205080756888,	3.0]

#			[4,	2.0,	4.0]

#			[5,	2.23606797749979,	5.0]

#			[6,	2.44948974278318,	6.0]

#			[7,	2.64575131106459,	7.0]

#			[8,	2.82842712474619,	8.0]

#			[9,	3.0,	9.0]

#			[10,	3.16227766016838,	10.0]

Computes	the	tangent	of	x	(expressed	in	radians).

Domain:	(-INFINITY,	INFINITY)

Codomain:	(-INFINITY,	INFINITY)

Math.tan(0)	#=>	0.0

Computes	the	hyperbolic	tangent	of	x	(expressed	in
radians).

sqrt(x)	→	Float

tan(x)	→	Float

tanh(x)	→	Float

Domain:	(-INFINITY,	INFINITY)

Codomain:	(-1,	1)

Math.tanh(0)	#=>	0.0

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	Math::DomainError
Raised	when	a	mathematical	function	is
evaluated	outside	of	its	domain	of	definition.

For	example,	since	cos	returns	values	in	the
range	-1..1,	its	inverse	function	acos	is	only
defined	on	that	interval:

Math.acos(42)

produces:

Math::DomainError:	Numerical	argument	is	out	of	domain	-	"acos"

In	Files
math.c

Parent
StandardError

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	Method
Proc

In	Files
proc.c

Parent
Object

Public	Instance	Methods

Two	method	objects	are	equal	if	they	are	bound	to
the	same	object	and	refer	to	the	same	method
definition	and	their	owners	are	the	same	class	or
module.

Invokes	the	meth	with	the	specified	arguments,
returning	the	method's	return	value.

m	=	12.method("+")

m.call(3)				#=>	15

m.call(20)			#=>	32

eql?(other_meth)	→	true	or	false
meth	==	other_meth	→	true	or	false

call(args,	...)	→	obj
meth[args,	...]	→	obj

Returns	an	indication	of	the	number	of	arguments
accepted	by	a	method.	Returns	a	nonnegative
integer	for	methods	that	take	a	fixed	number	of
arguments.	For	Ruby	methods	that	take	a	variable
number	of	arguments,	returns	-n-1,	where	n	is	the
number	of	required	arguments.	For	methods	written
in	C,	returns	-1	if	the	call	takes	a	variable	number	of
arguments.

class	C

		def	one;				end

		def	two(a);	end

		def	three(*a);		end

		def	four(a,	b);	end

		def	five(a,	b,	*c);				end

		def	six(a,	b,	*c,	&d);	end

end

c	=	C.new

c.method(:one).arity					#=>	0

c.method(:two).arity					#=>	1

c.method(:three).arity			#=>	-1

c.method(:four).arity				#=>	2

c.method(:five).arity				#=>	-3

c.method(:six).arity					#=>	-3

"cat".method(:size).arity						#=>	0

"cat".method(:replace).arity			#=>	1

"cat".method(:squeeze).arity			#=>	-1

"cat".method(:count).arity					#=>	-1

Invokes	the	meth	with	the	specified	arguments,
returning	the	method's	return	value.

m	=	12.method("+")

m.call(3)				#=>	15

m.call(20)			#=>	32

arity	→	fixnum

call(args,	...)	→	obj
meth[args,	...]	→	obj

Returns	a	clone	of	this	method.

class	A

		def	foo

				return	"bar"

		end

end

m	=	A.new.method(:foo)

m.call	#	=>	"bar"

n	=	m.clone.call	#	=>	"bar"

Returns	a	curried	proc	based	on	the	method.	When
the	proc	is	called	with	a	number	of	arguments	that	is
lower	than	the	method's	arity,	then	another	curried
proc	is	returned.	Only	when	enough	arguments	have
been	supplied	to	satisfy	the	method	signature,	will	the
method	actually	be	called.

The	optional	arity	argument	should	be	supplied	when
currying	methods	with	variable	arguments	to
determine	how	many	arguments	are	needed	before
the	method	is	called.

def	foo(a,b,c)

		[a,	b,	c]

end

proc		=	self.method(:foo).curry

proc2	=	proc.call(1,	2)										#=>	#<Proc>

proc2.call(3)																				#=>	[1,2,3]

def	vararg(*args)

		args

end

proc	=	self.method(:vararg).curry(4)

proc2	=	proc.call(:x)						#=>	#<Proc>

clone	→	new_method

curry	→	proc
curry(arity)	→	proc

proc3	=	proc2.call(:y,	:z)	#=>	#<Proc>

proc3.call(:a)													#=>	[:x,	:y,	:z,	:a]

Two	method	objects	are	equal	if	they	are	bound	to
the	same	object	and	refer	to	the	same	method
definition	and	their	owners	are	the	same	class	or
module.

Returns	a	hash	value	corresponding	to	the	method
object.

See	also	Object#hash.

Returns	the	name	of	the	underlying	method.

"cat".method(:count).inspect			#=>	"#<Method:	String#count>"

Returns	the	name	of	the	method.

Returns	the	original	name	of	the	method.

Returns	the	class	or	module	that	defines	the	method.

eql?(other_meth)	→	true	or	false
meth	==	other_meth	→	true	or	false

hash	→	integer

to_s	→	string
inspect	→	string

name	→	symbol

original_name	→	symbol

owner	→	class_or_module

Returns	the	parameter	information	of	this	method.

Returns	the	bound	receiver	of	the	method	object.

Returns	the	Ruby	source	filename	and	line	number
containing	this	method	or	nil	if	this	method	was	not
defined	in	Ruby	(i.e.	native)

Returns	a	Method	of	superclass,	which	would	be
called	when	super	is	used.

Returns	a	Proc	object	corresponding	to	this	method.

Returns	the	name	of	the	underlying	method.

"cat".method(:count).inspect			#=>	"#<Method:	String#count>"

Dissociates	meth	from	its	current	receiver.	The
resulting	UnboundMethod	can	subsequently	be	bound
to	a	new	object	of	the	same	class	(see
UnboundMethod).

parameters	→	array

receiver	→	object

source_location	→	[String,	Fixnum]

super_method()

to_proc	→	proc

to_s	→	string
inspect	→	string

unbind	→	unbound_method

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	Module
A	Module	is	a	collection	of	methods	and
constants.	The	methods	in	a	module	may	be
instance	methods	or	module	methods.	Instance
methods	appear	as	methods	in	a	class	when	the
module	is	included,	module	methods	do	not.
Conversely,	module	methods	may	be	called
without	creating	an	encapsulating	object,	while
instance	methods	may	not.	(See
Module#module_function.)

In	the	descriptions	that	follow,	the	parameter
sym	refers	to	a	symbol,	which	is	either	a	quoted
string	or	a	Symbol	(such	as	:name).

module	Mod

		include	Math

		CONST	=	1

		def	meth

				#		...

		end

end

Mod.class														#=>	Module

Mod.constants										#=>	[:CONST,	:PI,	:E]

Mod.instance_methods			#=>	[:meth]

In	Files
class.c
eval.c
load.c

object.c
proc.c
vm_eval.c
vm_method.c

Parent
Object

Public	Class	Methods

In	the	first	form,	returns	an	array	of	the	names	of	all
constants	accessible	from	the	point	of	call.	This	list
includes	the	names	of	all	modules	and	classes
defined	in	the	global	scope.

Module.constants.first(4)

			#	=>	[:ARGF,	:ARGV,	:ArgumentError,	:Array]

Module.constants.include?(:SEEK_SET)			#	=>	false

class	IO

		Module.constants.include?(:SEEK_SET)	#	=>	true

end

The	second	form	calls	the	instance	method
constants.

Returns	the	list	of	Modules	nested	at	the	point	of	call.

module	M1

		module	M2

				$a	=	Module.nesting

constants	→	array
constants(inherited)	→	array

nesting	→	array

		end

end

$a											#=>	[M1::M2,	M1]

$a[0].name			#=>	"M1::M2"

Creates	a	new	anonymous	module.	If	a	block	is
given,	it	is	passed	the	module	object,	and	the	block	is
evaluated	in	the	context	of	this	module	using
module_eval.

fred	=	Module.new	do

		def	meth1

				"hello"

		end

		def	meth2

				"bye"

		end

end

a	=	"my	string"

a.extend(fred)			#=>	"my	string"

a.meth1										#=>	"hello"

a.meth2										#=>	"bye"

Assign	the	module	to	a	constant	(name	starting
uppercase)	if	you	want	to	treat	it	like	a	regular
module.

Public	Instance	Methods

Returns	true	if	mod	is	a	subclass	of	other.	Returns
nil	if	there's	no	relationship	between	the	two.	(Think
of	the	relationship	in	terms	of	the	class	definition:
“class	A<B”	implies	“A<B”.)

new	→	mod
new	{|mod|	block	}	→	mod

mod	<	other	→	true,	false,	or	nil

Returns	true	if	mod	is	a	subclass	of	other	or	is	the
same	as	other.	Returns	nil	if	there's	no	relationship
between	the	two.	(Think	of	the	relationship	in	terms	of
the	class	definition:	“class	A<B”	implies	“A<B”.)

Comparison—Returns	-1,	0,	+1	or	nil	depending	on
whether	module	includes	other_module,	they	are	the
same,	or	if	module	is	included	by	other_module.	This	is
the	basis	for	the	tests	in	Comparable.

Returns	nil	if	module	has	no	relationship	with
other_module,	if	other_module	is	not	a	module,	or	if
the	two	values	are	incomparable.

Equality	—	At	the	Object	level,	==	returns	true	only	if
obj	and	other	are	the	same	object.	Typically,	this
method	is	overridden	in	descendant	classes	to
provide	class-specific	meaning.

Unlike	==,	the	equal?	method	should	never	be
overridden	by	subclasses	as	it	is	used	to	determine
object	identity	(that	is,	a.equal?(b)	if	and	only	if	a	is
the	same	object	as	b):

obj	=	"a"

other	=	obj.dup

obj	==	other						#=>	true

obj.equal?	other		#=>	false

obj.equal?	obj				#=>	true

mod	<=	other	→	true,	false,	or	nil

module	<=>	other_module	→	-1,	0,	+1,	or	nil

obj	==	other	→	true	or	false
equal?(other)	→	true	or	false
eql?(other)	→	true	or	false

The	eql?	method	returns	true	if	obj	and	other	refer	to
the	same	hash	key.	This	is	used	by	Hash	to	test
members	for	equality.	For	objects	of	class	Object,
eql?	is	synonymous	with	==.	Subclasses	normally
continue	this	tradition	by	aliasing	eql?	to	their
overridden	==	method,	but	there	are	exceptions.
Numeric	types,	for	example,	perform	type	conversion
across	==,	but	not	across	eql?,	so:

1	==	1.0					#=>	true

1.eql?	1.0			#=>	false

Case	Equality—Returns	true	if	obj	is	an	instance	of
mod	or	one	of	mod's	descendants.	Of	limited	use	for
modules,	but	can	be	used	in	case	statements	to
classify	objects	by	class.

Returns	true	if	mod	is	an	ancestor	of	other.	Returns
nil	if	there's	no	relationship	between	the	two.	(Think
of	the	relationship	in	terms	of	the	class	definition:
“class	A<B”	implies	“B>A”.)

Returns	true	if	mod	is	an	ancestor	of	other,	or	the	two
modules	are	the	same.	Returns	nil	if	there's	no
relationship	between	the	two.	(Think	of	the
relationship	in	terms	of	the	class	definition:	“class
A<B”	implies	“B>A”.)

mod	===	obj	→	true	or	false

mod	>	other	→	true,	false,	or	nil

mod	>=	other	→	true,	false,	or	nil

ancestors	→	array

Returns	a	list	of	modules	included/prepended	in	mod
(including	mod	itself).

module	Mod

		include	Math

		include	Comparable

		prepend	Enumerable

end

Mod.ancestors								#=>	[Enumerable,	Mod,	Comparable,	Math]

Math.ancestors							#=>	[Math]

Enumerable.ancestors	#=>	[Enumerable]

Registers	filename	to	be	loaded	(using
Kernel::require)	the	first	time	that	module	(which
may	be	a	String	or	a	symbol)	is	accessed	in	the
namespace	of	mod.

module	A

end

A.autoload(:B,	"b")

A::B.doit												#	autoloads	"b"

Returns	filename	to	be	loaded	if	name	is	registered
as	autoload	in	the	namespace	of	mod.

module	A

end

A.autoload(:B,	"b")

A.autoload?(:B)												#=>	"b"

autoload(module,	filename)	→	nil

autoload?(name)	→	String	or	nil

class_eval(string	[,	filename	[,	lineno]])	→
obj
module_eval	{||	block	}	→	obj

Evaluates	the	string	or	block	in	the	context	of	mod,
except	that	when	a	block	is	given,	constant/class
variable	lookup	is	not	affected.	This	can	be	used	to
add	methods	to	a	class.	module_eval	returns	the
result	of	evaluating	its	argument.	The	optional
filename	and	lineno	parameters	set	the	text	for	error
messages.

class	Thing

end

a	=	%q{def	hello()	"Hello	there!"	end}

Thing.module_eval(a)

puts	Thing.new.hello()

Thing.module_eval("invalid	code",	"dummy",	123)

produces:

Hello	there!

dummy:123:in	`module_eval':	undefined	local	variable

				or	method	`code'	for	Thing:Class

Evaluates	the	given	block	in	the	context	of	the
class/module.	The	method	defined	in	the	block	will
belong	to	the	receiver.	Any	arguments	passed	to	the
method	will	be	passed	to	the	block.	This	can	be	used
if	the	block	needs	to	access	instance	variables.

class	Thing

end

Thing.class_exec{

		def	hello()	"Hello	there!"	end

}

puts	Thing.new.hello()

produces:

Hello	there!

module_exec(arg...)	{|var...|	block	}	→	obj
class_exec(arg...)	{|var...|	block	}	→	obj

Returns	true	if	the	given	class	variable	is	defined	in
obj.	String	arguments	are	converted	to	symbols.

class	Fred

		@@foo	=	99

end

Fred.class_variable_defined?(:@@foo)				#=>	true

Fred.class_variable_defined?(:@@bar)				#=>	false

Returns	the	value	of	the	given	class	variable	(or
throws	a	NameError	exception).	The	@@	part	of	the
variable	name	should	be	included	for	regular	class
variables.	String	arguments	are	converted	to
symbols.

class	Fred

		@@foo	=	99

end

Fred.class_variable_get(:@@foo)					#=>	99

Sets	the	class	variable	named	by	symbol	to	the	given
object.	If	the	class	variable	name	is	passed	as	a
string,	that	string	is	converted	to	a	symbol.

class	Fred

		@@foo	=	99

		def	foo

class_variable_defined?(symbol)	→	true	or
false
class_variable_defined?(string)	→	true	or
false

class_variable_get(symbol)	→	obj
class_variable_get(string)	→	obj

class_variable_set(symbol,	obj)	→	obj
class_variable_set(string,	obj)	→	obj

				@@foo

		end

end

Fred.class_variable_set(:@@foo,	101)					#=>	101

Fred.new.foo																													#=>	101

Returns	an	array	of	the	names	of	class	variables	in
mod.	This	includes	the	names	of	class	variables	in
any	included	modules,	unless	the	inherit	parameter	is
set	to	false.

class	One

		@@var1	=	1

end

class	Two	<	One

		@@var2	=	2

end

One.class_variables										#=>	[:@@var1]

Two.class_variables										#=>	[:@@var2,	:@@var1]

Two.class_variables(false)			#=>	[:@@var2]

Says	whether	mod	or	its	ancestors	have	a	constant
with	the	given	name:

Float.const_defined?(:EPSILON)						#=>	true,	found	in	Float	itself

Float.const_defined?("String")						#=>	true,	found	in	Object	(ancestor)

BasicObject.const_defined?(:Hash)			#=>	false

If	mod	is	a	Module,	additionally	Object	and	its
ancestors	are	checked:

Math.const_defined?(:String)			#=>	true,	found	in	Object

class_variables(inherit=true)	→	array

const_defined?(sym,	inherit=true)	→	true	or
false
const_defined?(str,	inherit=true)	→	true	or
false

In	each	of	the	checked	classes	or	modules,	if	the
constant	is	not	present	but	there	is	an	autoload	for	it,
true	is	returned	directly	without	autoloading:

module	Admin

		autoload	:User,	'admin/user'

end

Admin.const_defined?(:User)			#=>	true

If	the	constant	is	not	found	the	callback
const_missing	is	not	called	and	the	method	returns
false.

If	inherit	is	false,	the	lookup	only	checks	the
constants	in	the	receiver:

IO.const_defined?(:SYNC)										#=>	true,	found	in	File::Constants	(ancestor)

IO.const_defined?(:SYNC,	false)			#=>	false,	not	found	in	IO	itself

In	this	case,	the	same	logic	for	autoloading	applies.

If	the	argument	is	not	a	valid	constant	name	a
NameError	is	raised	with	the	message	“wrong
constant	name	name”:

Hash.const_defined?	'foobar'			#=>	NameError:	wrong	constant	name	foobar

Checks	for	a	constant	with	the	given	name	in	mod.	If
inherit	is	set,	the	lookup	will	also	search	the
ancestors	(and	Object	if	mod	is	a	Module).

The	value	of	the	constant	is	returned	if	a	definition	is
found,	otherwise	a	NameError	is	raised.

Math.const_get(:PI)			#=>	3.14159265358979

const_get(sym,	inherit=true)	→	obj
const_get(str,	inherit=true)	→	obj

This	method	will	recursively	look	up	constant	names
if	a	namespaced	class	name	is	provided.	For
example:

module	Foo;	class	Bar;	end	end

Object.const_get	'Foo::Bar'

The	inherit	flag	is	respected	on	each	lookup.	For
example:

module	Foo

		class	Bar

				VAL	=	10

		end

		class	Baz	<	Bar;	end

end

Object.const_get	'Foo::Baz::VAL'									#	=>	10

Object.const_get	'Foo::Baz::VAL',	false		#	=>	NameError

If	the	argument	is	not	a	valid	constant	name	a
NameError	will	be	raised	with	a	warning	“wrong
constant	name”.

Object.const_get	'foobar'	#=>	NameError:	wrong	constant	name	foobar

Invoked	when	a	reference	is	made	to	an	undefined
constant	in	mod.	It	is	passed	a	symbol	for	the
undefined	constant,	and	returns	a	value	to	be	used
for	that	constant.	The	following	code	is	an	example	of
the	same:

def	Foo.const_missing(name)

		name	#	return	the	constant	name	as	Symbol

end

Foo::UNDEFINED_CONST				#=>	:UNDEFINED_CONST:	symbol	returned

const_missing(sym)	→	obj

In	the	next	example	when	a	reference	is	made	to	an
undefined	constant,	it	attempts	to	load	a	file	whose
name	is	the	lowercase	version	of	the	constant	(thus
class	Fred	is	assumed	to	be	in	file	fred.rb).	If	found,
it	returns	the	loaded	class.	It	therefore	implements	an
autoload	feature	similar	to	Kernel#autoload	and
#autoload.

def	Object.const_missing(name)

		@looked_for	||=	{}

		str_name	=	name.to_s

		raise	"Class	not	found:	#{name}"	if	@looked_for[str_name

		@looked_for[str_name]	=	1

		file	=	str_name.downcase

		require	file

		klass	=	const_get(name)

		return	klass	if	klass

		raise	"Class	not	found:	#{name}"

end

Sets	the	named	constant	to	the	given	object,
returning	that	object.	Creates	a	new	constant	if	no
constant	with	the	given	name	previously	existed.

Math.const_set("HIGH_SCHOOL_PI",	22.0/7.0)			#=>	3.14285714285714

Math::HIGH_SCHOOL_PI	-	Math::PI														#=>	0.00126448926734968

If	sym	or	str	is	not	a	valid	constant	name	a	NameError
will	be	raised	with	a	warning	“wrong	constant	name”.

Object.const_set('foobar',	42)	#=>	NameError:	wrong	constant	name	foobar

const_set(sym,	obj)	→	obj
const_set(str,	obj)	→	obj

constants(inherit=true)	→	array

Returns	an	array	of	the	names	of	the	constants
accessible	in	mod.	This	includes	the	names	of
constants	in	any	included	modules	(example	at	start
of	section),	unless	the	inherit	parameter	is	set	to
false.

IO.constants.include?(:SYNC)								#=>	true

IO.constants(false).include?(:SYNC)	#=>	false

Also	see	Module::const_defined?.

Prevents	further	modifications	to	mod.

This	method	returns	self.

Invokes	Module.append_features	on	each	parameter
in	reverse	order.

Returns	true	if	module	is	included	in	mod	or	one	of
mod's	ancestors.

module	A

end

class	B

		include	A

end

class	C	<	B

end

B.include?(A)			#=>	true

C.include?(A)			#=>	true

A.include?(A)			#=>	false

Returns	the	list	of	modules	included	in	mod.

freeze	→	mod

include(module,	...)	→	self

include?(module)	→	true	or	false

included_modules	→	array

module	Mixin

end

module	Outer

		include	Mixin

end

Mixin.included_modules			#=>	[]

Outer.included_modules			#=>	[Mixin]

Alias	for:	to_s

Returns	an	UnboundMethod	representing	the	given
instance	method	in	mod.

class	Interpreter

		def	do_a()	print	"there,	";	end

		def	do_d()	print	"Hello	";		end

		def	do_e()	print	"!\n";					end

		def	do_v()	print	"Dave";				end

		Dispatcher	=	{

				"a"	=>	instance_method(:do_a),

				"d"	=>	instance_method(:do_d),

				"e"	=>	instance_method(:do_e),

				"v"	=>	instance_method(:do_v)

		}

		def	interpret(string)

				string.each_char	{|b|	Dispatcher[b].bind(self).call

		end

end

interpreter	=	Interpreter.new

interpreter.interpret('dave')

produces:

Hello	there,	Dave!

inspect()

instance_method(symbol)	→
unbound_method

Returns	an	array	containing	the	names	of	the	public
and	protected	instance	methods	in	the	receiver.	For	a
module,	these	are	the	public	and	protected	methods;
for	a	class,	they	are	the	instance	(not	singleton)
methods.	If	the	optional	parameter	is	false,	the
methods	of	any	ancestors	are	not	included.

module	A

		def	method1()		end

end

class	B

		include	A

		def	method2()		end

end

class	C	<	B

		def	method3()		end

end

A.instance_methods(false)																			#=>	[:method1]

B.instance_methods(false)																			#=>	[:method2]

B.instance_methods(true).include?(:method1)	#=>	true

C.instance_methods(false)																			#=>	[:method3]

C.instance_methods.include?(:method2)							#=>	true

Returns	true	if	the	named	method	is	defined	by	mod
(or	its	included	modules	and,	if	mod	is	a	class,	its
ancestors).	Public	and	protected	methods	are
matched.	String	arguments	are	converted	to	symbols.

module	A

		def	method1()		end

end

class	B

		def	method2()		end

instance_methods(include_super=true)	→
array

method_defined?(symbol)	→	true	or	false
method_defined?(string)	→	true	or	false

end

class	C	<	B

		include	A

		def	method3()		end

end

A.method_defined?	:method1				#=>	true

C.method_defined?	"method1"			#=>	true

C.method_defined?	"method2"			#=>	true

C.method_defined?	"method3"			#=>	true

C.method_defined?	"method4"			#=>	false

Evaluates	the	string	or	block	in	the	context	of	mod,
except	that	when	a	block	is	given,	constant/class
variable	lookup	is	not	affected.	This	can	be	used	to
add	methods	to	a	class.	module_eval	returns	the
result	of	evaluating	its	argument.	The	optional
filename	and	lineno	parameters	set	the	text	for	error
messages.

class	Thing

end

a	=	%q{def	hello()	"Hello	there!"	end}

Thing.module_eval(a)

puts	Thing.new.hello()

Thing.module_eval("invalid	code",	"dummy",	123)

produces:

Hello	there!

dummy:123:in	`module_eval':	undefined	local	variable

				or	method	`code'	for	Thing:Class

class_eval(string	[,	filename	[,	lineno]])	→
obj
module_eval	{||	block	}	→	obj

module_exec(arg...)	{|var...|	block	}	→	obj
class_exec(arg...)	{|var...|	block	}	→	obj

Evaluates	the	given	block	in	the	context	of	the
class/module.	The	method	defined	in	the	block	will
belong	to	the	receiver.	Any	arguments	passed	to	the
method	will	be	passed	to	the	block.	This	can	be	used
if	the	block	needs	to	access	instance	variables.

class	Thing

end

Thing.class_exec{

		def	hello()	"Hello	there!"	end

}

puts	Thing.new.hello()

produces:

Hello	there!

Returns	the	name	of	the	module	mod.	Returns	nil	for
anonymous	modules.

Invokes	Module.prepend_features	on	each	parameter
in	reverse	order.

Makes	existing	class	methods	private.	Often	used	to
hide	the	default	constructor	new.

String	arguments	are	converted	to	symbols.

class	SimpleSingleton		#	Not	thread	safe

		private_class_method	:new

		def	SimpleSingleton.create(*args,	&block)

				@me	=	new(*args,	&block)	if	!	@me

				@me

		end

name	→	string

prepend(module,	...)	→	self

private_class_method(symbol,	...)	→	mod
private_class_method(string,	...)	→	mod

end

Makes	a	list	of	existing	constants	private.

Returns	a	list	of	the	private	instance	methods	defined
in	mod.	If	the	optional	parameter	is	false,	the
methods	of	any	ancestors	are	not	included.

module	Mod

		def	method1()		end

		private	:method1

		def	method2()		end

end

Mod.instance_methods											#=>	[:method2]

Mod.private_instance_methods			#=>	[:method1]

Returns	true	if	the	named	private	method	is	defined
by	_	mod_	(or	its	included	modules	and,	if	mod	is	a
class,	its	ancestors).	String	arguments	are	converted
to	symbols.

module	A

		def	method1()		end

end

class	B

		private

		def	method2()		end

end

class	C	<	B

		include	A

private_constant(symbol,	...)	→	mod

private_instance_methods(include_super=true)
→	array

private_method_defined?(symbol)	→	true	or
false
private_method_defined?(string)	→	true	or
false

		def	method3()		end

end

A.method_defined?	:method1												#=>	true

C.private_method_defined?	"method1"			#=>	false

C.private_method_defined?	"method2"			#=>	true

C.method_defined?	"method2"											#=>	false

Returns	a	list	of	the	protected	instance	methods
defined	in	mod.	If	the	optional	parameter	is	false,	the
methods	of	any	ancestors	are	not	included.

Returns	true	if	the	named	protected	method	is
defined	by	mod	(or	its	included	modules	and,	if	mod
is	a	class,	its	ancestors).	String	arguments	are
converted	to	symbols.

module	A

		def	method1()		end

end

class	B

		protected

		def	method2()		end

end

class	C	<	B

		include	A

		def	method3()		end

end

A.method_defined?	:method1														#=>	true

C.protected_method_defined?	"method1"			#=>	false

C.protected_method_defined?	"method2"			#=>	true

C.method_defined?	"method2"													#=>	true

protected_instance_methods(include_super=true)
→	array

protected_method_defined?(symbol)	→	true
or	false
protected_method_defined?(string)	→	true
or	false

Makes	a	list	of	existing	class	methods	public.

String	arguments	are	converted	to	symbols.

Makes	a	list	of	existing	constants	public.

Similar	to	#instance_method,	searches	public	method
only.

Returns	a	list	of	the	public	instance	methods	defined
in	mod.	If	the	optional	parameter	is	false,	the
methods	of	any	ancestors	are	not	included.

Returns	true	if	the	named	public	method	is	defined
by	mod	(or	its	included	modules	and,	if	mod	is	a
class,	its	ancestors).	String	arguments	are	converted
to	symbols.

module	A

		def	method1()		end

end

public_class_method(symbol,	...)	→	mod
public_class_method(string,	...)	→	mod

public_constant(symbol,	...)	→	mod

public_instance_method(symbol)	→
unbound_method

public_instance_methods(include_super=true)
→	array

public_method_defined?(symbol)	→	true	or
false
public_method_defined?(string)	→	true	or
false

class	B

		protected

		def	method2()		end

end

class	C	<	B

		include	A

		def	method3()		end

end

A.method_defined?	:method1											#=>	true

C.public_method_defined?	"method1"			#=>	true

C.public_method_defined?	"method2"			#=>	false

C.method_defined?	"method2"										#=>	true

Removes	the	definition	of	the	sym,	returning	that
constant's	value.

class	Dummy

		@@var	=	99

		puts	@@var

		remove_class_variable(:@@var)

		p(defined?	@@var)

end

produces:

99

nil

Returns	true	if	mod	is	a	singleton	class	or	false	if	it	is
an	ordinary	class	or	module.

class	C

end

C.singleton_class?																		#=>	false

C.singleton_class.singleton_class?		#=>	true

remove_class_variable(sym)	→	obj

singleton_class?	→	true	or	false

to_s	→	string

Returns	a	string	representing	this	module	or	class.
For	basic	classes	and	modules,	this	is	the	name.	For
singletons,	we	show	information	on	the	thing	we're
attached	to	as	well.

Also	aliased	as:	inspect

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	Mutex
Mutex	implements	a	simple	semaphore	that	can
be	used	to	coordinate	access	to	shared	data
from	multiple	concurrent	threads.

Example:

require	'thread'

semaphore	=	Mutex.new

a	=	Thread.new	{

		semaphore.synchronize	{

				#	access	shared	resource

		}

}

b	=	Thread.new	{

		semaphore.synchronize	{

				#	access	shared	resource

		}

}

In	Files
thread.c

Parent
Object

Public	Class	Methods

Creates	a	new	Mutex

Public	Instance	Methods

Attempts	to	grab	the	lock	and	waits	if	it	isn't	available.
Raises	ThreadError	if	mutex	was	locked	by	the	current
thread.

Returns	true	if	this	lock	is	currently	held	by	some
thread.

Returns	true	if	this	lock	is	currently	held	by	current
thread.	This	API	is	experimental,	and	subject	to
change.

Releases	the	lock	and	sleeps	timeout	seconds	if	it	is
given	and	non-nil	or	forever.	Raises	ThreadError	if
mutex	wasn't	locked	by	the	current	thread.

When	the	thread	is	next	woken	up,	it	will	attempt	to
reacquire	the	lock.

Note	that	this	method	can	wakeup	without	explicit
Thread#wakeup	call.	For	example,	receiving	signal
and	so	on.

new	→	mutex

lock	→	self

locked?	→	true	or	false

owned?	→	true	or	false

sleep(timeout	=	nil)	→	number

Obtains	a	lock,	runs	the	block,	and	releases	the	lock
when	the	block	completes.	See	the	example	under
Mutex.

Attempts	to	obtain	the	lock	and	returns	immediately.
Returns	true	if	the	lock	was	granted.

Releases	the	lock.	Raises	ThreadError	if	mutex	wasn't
locked	by	the	current	thread.

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

synchronize	{	...	}	→	result	of	the	block

try_lock	→	true	or	false

unlock	→	self

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	NameError
Raised	when	a	given	name	is	invalid	or
undefined.

puts	foo

raises	the	exception:

NameError:	undefined	local	variable	or	method	`foo'	for	main:Object

Since	constant	names	must	start	with	a	capital:

Fixnum.const_set	:answer,	42

raises	the	exception:

NameError:	wrong	constant	name	answer

In	Files
error.c

Parent
StandardError

Public	Class	Methods

Construct	a	new	NameError	exception.	If	given	the
name	parameter	may	subsequently	be	examined
using	the	NameError.name	method.

Public	Instance	Methods

Return	the	name	associated	with	this	NameError
exception.

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

new(msg	[,	name])	→	name_error

name	→	string	or	nil

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	NilClass
The	class	of	the	singleton	object	nil.

In	Files
complex.c
object.c
rational.c

Parent
Object

Public	Instance	Methods

And—Returns	false.	obj	is	always	evaluated	as	it	is
the	argument	to	a	method	call—there	is	no	short-
circuit	evaluation	in	this	case.

Exclusive	Or—If	obj	is	nil	or	false,	returns	false;
otherwise,	returns	true.

false	&	obj	→	false
nil	&	obj	→	false

false	^	obj	→	true	or	false
nil	^	obj	→	true	or	false

inspect	→	"nil"

Always	returns	the	string	“nil”.

Only	the	object	nil	responds	true	to	nil?.

Returns	zero	as	a	rational.	The	optional	argument
eps	is	always	ignored.

Always	returns	an	empty	array.

nil.to_a			#=>	[]

Returns	zero	as	a	complex.

Always	returns	zero.

nil.to_f			#=>	0.0

Always	returns	an	empty	hash.

nil.to_h			#=>	{}

Always	returns	zero.

nil.to_i			#=>	0

nil?	→	true

rationalize([eps])	→	(0/1)

to_a	→	[]

to_c	→	(0+0i)

to_f	→	0.0

to_h	→	{}

to_i	→	0

Returns	zero	as	a	rational.

Always	returns	the	empty	string.

Or—Returns	false	if	obj	is	nil	or	false;	true
otherwise.

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

to_r	→	(0/1)

to_s	→	""

false	|	obj	→	true	or	false
nil	|	obj	→	true	or	false

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	NoMemoryError
Raised	when	memory	allocation	fails.

In	Files
error.c

Parent
Exception

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	NoMethodError
Raised	when	a	method	is	called	on	a	receiver
which	doesn't	have	it	defined	and	also	fails	to
respond	with	method_missing.

"hello".to_ary

raises	the	exception:

NoMethodError:	undefined	method	`to_ary'	for	"hello":String

In	Files
error.c

Parent
NameError

Public	Class	Methods

Construct	a	NoMethodError	exception	for	a	method
of	the	given	name	called	with	the	given	arguments.
The	name	may	be	accessed	using	the	#name	method
on	the	resulting	object,	and	the	arguments	using	the
#args	method.

new(msg,	name	[,	args])	→	no_method_error

Public	Instance	Methods

Return	the	arguments	passed	in	as	the	third
parameter	to	the	constructor.

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

args	→	obj

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class
NotImplementedError
Raised	when	a	feature	is	not	implemented	on
the	current	platform.	For	example,	methods
depending	on	the	fsync	or	fork	system	calls	may
raise	this	exception	if	the	underlying	operating
system	or	Ruby	runtime	does	not	support	them.

Note	that	if	fork	raises	a	NotImplementedError,
then	respond_to?(:fork)	returns	false.

In	Files
error.c

Parent
ScriptError

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	Numeric
The	top-level	number	class.

In	Files
complex.c
numeric.c
rational.c

Parent
Object

Included	Modules
Comparable

Public	Instance	Methods

x.modulo(y)	means	x-y*(x/y).floor

Equivalent	to	num.divmod(numeric)[1].

See	#divmod.

Unary	Plus—Returns	the	receiver's	value.

modulo(numeric)	→	real

+num	→	num

Unary	Minus—Returns	the	receiver's	value,	negated.

Returns	zero	if	number	equals	other,	otherwise	nil	is
returned	if	the	two	values	are	incomparable.

Returns	the	absolute	value	of	num.

12.abs									#=>	12

(-34.56).abs			#=>	34.56

-34.56.abs					#=>	34.56

#magnitude	is	an	alias	of	#abs.

Returns	square	of	self.

Returns	0	if	the	value	is	positive,	pi	otherwise.

Returns	0	if	the	value	is	positive,	pi	otherwise.

-num	→	numeric

number	<=>	other	→	0	or	nil

abs	→	numeric
magnitude	→	numeric

abs2	→	real

arg	→	0	or	float
angle	→	0	or	float
phase	→	0	or	float

arg	→	0	or	float
angle	→	0	or	float
phase	→	0	or	float

ceil	→	integer

Returns	the	smallest	possible	Integer	that	is	greater
than	or	equal	to	num.

Numeric	achieves	this	by	converting	itself	to	a	Float
then	invoking	Float#ceil.

1.ceil								#=>	1

1.2.ceil						#=>	2

(-1.2).ceil			#=>	-1

(-1.0).ceil			#=>	-1

If	a	+numeric	is	the	same	type	as	num,	returns	an
array	containing	numeric	and	num.	Otherwise,	returns
an	array	with	both	a	numeric	and	num	represented	as
Float	objects.

This	coercion	mechanism	is	used	by	Ruby	to	handle
mixed-type	numeric	operations:	it	is	intended	to	find	a
compatible	common	type	between	the	two	operands
of	the	operator.

1.coerce(2.5)			#=>	[2.5,	1.0]

1.2.coerce(3)			#=>	[3.0,	1.2]

1.coerce(2)					#=>	[2,	1]

Returns	self.

Returns	self.

coerce(numeric)	→	array

conj	→	self
conjugate	→	self

conj	→	self
conjugate	→	self

denominator	→	integer

Returns	the	denominator	(always	positive).

Uses	/	to	perform	division,	then	converts	the	result	to
an	integer.	numeric	does	not	define	the	/	operator;
this	is	left	to	subclasses.

Equivalent	to	num.divmod(numeric)[0].

See	#divmod.

Returns	an	array	containing	the	quotient	and
modulus	obtained	by	dividing	num	by	numeric.

If	q,	r	=	*	x.divmod(y),	then

q	=	floor(x/y)

x	=	q*y+r

The	quotient	is	rounded	toward	-infinity,	as	shown	in
the	following	table:

	a				|		b		|		a.divmod(b)		|			a/b			|	a.modulo(b)	|	a.remainder(b)

------+-----+---------------+---------+-------------+---------------

	13			|		4		|			3,				1					|			3					|				1								|					1

------+-----+---------------+---------+-------------+---------------

	13			|	-4		|		-4,			-3					|		-4					|			-3								|					1

------+-----+---------------+---------+-------------+---------------

-13			|		4		|		-4,				3					|		-4					|				3								|				-1

------+-----+---------------+---------+-------------+---------------

-13			|	-4		|			3,			-1					|			3					|			-1								|				-1

------+-----+---------------+---------+-------------+---------------

	11.5	|		4		|			2,				3.5			|			2.875	|				3.5						|					3.5

------+-----+---------------+---------+-------------+---------------

	11.5	|	-4		|		-3,			-0.5			|		-2.875	|			-0.5						|					3.5

------+-----+---------------+---------+-------------+---------------

-11.5	|		4		|		-3,				0.5			|		-2.875	|				0.5						|				-3.5

------+-----+---------------+---------+-------------+---------------

-11.5	|	-4		|			2,			-3.5			|			2.875	|			-3.5						|				-3.5

div(numeric)	→	integer

divmod(numeric)	→	array

Examples

11.divmod(3)									#=>	[3,	2]

11.divmod(-3)								#=>	[-4,	-1]

11.divmod(3.5)							#=>	[3,	0.5]

(-11).divmod(3.5)				#=>	[-4,	3.0]

(11.5).divmod(3.5)			#=>	[3,	1.0]

Returns	true	if	num	and	numeric	are	the	same	type
and	have	equal	values.

1	==	1.0										#=>	true

1.eql?(1.0)							#=>	false

(1.0).eql?(1.0)			#=>	true

Returns	float	division.

Returns	the	largest	integer	less	than	or	equal	to	num.

Numeric	implements	this	by	converting	an	Integer	to
a	Float	and	invoking	Float#floor.

1.floor						#=>	1

(-1).floor			#=>	-1

Returns	the	corresponding	imaginary	number.	Not
available	for	complex	numbers.

Returns	zero.

eql?(numeric)	→	true	or	false

fdiv(numeric)	→	float

floor	→	integer

i	→	Complex(0,num)

imag	→	0
imaginary	→	0

Returns	zero.

Numerics	are	immutable	values,	which	should	not	be
copied.

Any	attempt	to	use	this	method	on	a	Numeric	will
raise	a	TypeError.

Returns	true	if	num	is	an	Integer	(including	Fixnum
and	Bignum).

(1.0).integer?	#=>	false

(1).integer?			#=>	true

Returns	the	absolute	value	of	num.

12.abs									#=>	12

(-34.56).abs			#=>	34.56

-34.56.abs					#=>	34.56

#magnitude	is	an	alias	of	#abs.

x.modulo(y)	means	x-y*(x/y).floor

Equivalent	to	num.divmod(numeric)[1].

imag	→	0
imaginary	→	0

initialize_copy(p1)

integer?	→	true	or	false

abs	→	numeric
magnitude	→	numeric

modulo(numeric)	→	real

See	#divmod.

Returns	self	if	num	is	not	zero,	nil	otherwise.

This	behavior	is	useful	when	chaining	comparisons:

a	=	%w(z	Bb	bB	bb	BB	a	aA	Aa	AA	A)

b	=	a.sort	{|a,b|	(a.downcase	<=>	b.downcase).nonzero?

b			#=>	["A",	"a",	"AA",	"Aa",	"aA",	"BB",	"Bb",	"bB",	"bb",	"z"]

Returns	the	numerator.

Returns	0	if	the	value	is	positive,	pi	otherwise.

Returns	an	array;	[num.abs,	num.arg].

Returns	most	exact	division	(rational	for	integers,
float	for	floats).

Returns	self.

nonzero?	→	self	or	nil

numerator	→	integer

arg	→	0	or	float
angle	→	0	or	float
phase	→	0	or	float

polar	→	array

quo(int_or_rat)	→	rat
quo(flo)	→	flo

real	→	self

real?	→	true	or	false

Returns	true	if	num	is	a	Real	number.	(i.e.	not
Complex).

Returns	an	array;	[num,	0].

Returns	an	array;	[num,	0].

x.remainder(y)	means	x-y*(x/y).truncate

See	#divmod.

Rounds	num	to	a	given	precision	in	decimal	digits
(default	0	digits).

Precision	may	be	negative.	Returns	a	floating	point
number	when	ndigits	is	more	than	zero.

Numeric	implements	this	by	converting	itself	to	a
Float	and	invoking	Float#round.

Trap	attempts	to	add	methods	to	Numeric	objects.
Always	raises	a	TypeError.

Numerics	should	be	values;	singleton_methods
should	not	be	added	to	them.

rect	→	array
rectangular	→	array

rect	→	array
rectangular	→	array

remainder(numeric)	→	real

round([ndigits])	→	integer	or	float

singleton_method_added(p1)

Invokes	the	given	block	with	the	sequence	of
numbers	starting	at	num,	incremented	by	step
(defaulted	to	1)	on	each	call.

The	loop	finishes	when	the	value	to	be	passed	to	the
block	is	greater	than	limit	(if	step	is	positive)	or	less
than	limit	(if	step	is	negative),	where	limit	is
defaulted	to	infinity.

In	the	recommended	keyword	argument	style,	either
or	both	of	step	and	limit	(default	infinity)	can	be
omitted.	In	the	fixed	position	argument	style,	zero	as
a	step	(i.e.	num.step(limit,	0))	is	not	allowed	for
historical	compatibility	reasons.

If	all	the	arguments	are	integers,	the	loop	operates
using	an	integer	counter.

If	any	of	the	arguments	are	floating	point	numbers,	all
are	converted	to	floats,	and	the	loop	is	executed	the
following	expression:

floor(n	+	n*epsilon)+	1

Where	the	n	is	the	following:

n	=	(limit	-	num)/step

Otherwise,	the	loop	starts	at	num,	uses	either	the	less-
than	(<)	or	greater-than	(>)	operator	to	compare	the
counter	against	limit,	and	increments	itself	using	the
+	operator.

If	no	block	is	given,	an	Enumerator	is	returned
instead.

step(by:	step,	to:	limit)	{|i|	block	}	→	self
step(by:	step,	to:	limit)	→	an_enumerator
step(limit=nil,	step=1)	{|i|	block	}	→	self
step(limit=nil,	step=1)	→	an_enumerator

For	example:

p	1.step.take(4)

p	10.step(by:	-1).take(4)

3.step(to:	5)	{	|i|	print	i,	"	"	}

1.step(10,	2)	{	|i|	print	i,	"	"	}

Math::E.step(to:	Math::PI,	by:	0.2)	{	|f|	print	f,	"	"

Will	produce:

[1,	2,	3,	4]

[10,	9,	8,	7]

3	4	5

1	3	5	7	9

2.71828182845905	2.91828182845905	3.11828182845905

Returns	the	value	as	a	complex.

Invokes	the	child	class's	to_i	method	to	convert	num
to	an	integer.

1.0.class	=>	Float

1.0.to_int.class	=>	Fixnum

1.0.to_i.class	=>	Fixnum

Returns	num	truncated	to	an	Integer.

Numeric	implements	this	by	converting	its	value	to	a
Float	and	invoking	Float#truncate.

Returns	true	if	num	has	a	zero	value.

to_c	→	complex

to_int	→	integer

truncate	→	integer

zero?	→	true	or	false

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	Object
Object	is	the	default	root	of	all	Ruby	objects.
Object	inherits	from	BasicObject	which	allows
creating	alternate	object	hierarchies.	Methods	on
Object	are	available	to	all	classes	unless
explicitly	overridden.

Object	mixes	in	the	Kernel	module,	making	the
built-in	kernel	functions	globally	accessible.
Although	the	instance	methods	of	Object	are
defined	by	the	Kernel	module,	we	have	chosen
to	document	them	here	for	clarity.

When	referencing	constants	in	classes	inheriting
from	Object	you	do	not	need	to	use	the	full
namespace.	For	example,	referencing	File
inside	YourClass	will	find	the	top-level	File	class.

In	the	descriptions	of	Object's	methods,	the
parameter	symbol	refers	to	a	symbol,	which	is
either	a	quoted	string	or	a	Symbol	(such	as
:name).

In	Files
class.c
enumerator.c
eval.c
gc.c
hash.c

io.c
object.c
parse.c
proc.c
ruby.c
version.c
vm.c
vm_eval.c
vm_method.c

Parent
BasicObject

Included	Modules
Kernel

Constants

ARGF

ARGF	is	a	stream	designed	for	use	in	scripts	that
process	files	given	as	command-line	arguments	or
passed	in	via	STDIN.

See	ARGF	(the	class)	for	more	details.

ARGV

ARGV	contains	the	command	line	arguments	used	to
run	ruby	with	the	first	value	containing	the	name	of	the
executable.

A	library	like	OptionParser	can	be	used	to	process
command-line	arguments.

DATA

DATA	is	a	File	that	contains	the	data	section	of	the
executed	file.	To	create	a	data	section	use	__END__:

$	cat	t.rb

puts	DATA.gets

__END__

hello	world!

$	ruby	t.rb

hello	world!

ENV

ENV	is	a	Hash-like	accessor	for	environment	variables.

See	ENV	(the	class)	for	more	details.

FALSE

An	alias	of	false

NIL

An	alias	of	nil

RUBY_COPYRIGHT

The	copyright	string	for	ruby

RUBY_DESCRIPTION

The	full	ruby	version	string,	like	ruby	-v	prints'

RUBY_ENGINE

The	engine	or	interpreter	this	ruby	uses.

RUBY_PATCHLEVEL

The	patchlevel	for	this	ruby.	If	this	is	a	development
build	of	ruby	the	patchlevel	will	be	-1

RUBY_PLATFORM

The	platform	for	this	ruby

RUBY_RELEASE_DATE

The	date	this	ruby	was	released

RUBY_REVISION

The	SVN	revision	for	this	ruby.

RUBY_VERSION

The	running	version	of	ruby

SCRIPT_LINES__

When	a	Hash	is	assigned	to	SCRIPT_LINES__	the
contents	of	files	loaded	after	the	assignment	will	be
added	as	an	Array	of	lines	with	the	file	name	as	the	key.

STDERR

Holds	the	original	stderr

STDIN

Holds	the	original	stdin

STDOUT

Holds	the	original	stdout

TOPLEVEL_BINDING

The	Binding	of	the	top	level	scope

TRUE

An	alias	of	true

Public	Instance	Methods

Returns	true	if	two	objects	do	not	match	(using	the	=~
method),	otherwise	false.

Returns	0	if	obj	and	other	are	the	same	object	or	obj
==	other,	otherwise	nil.

The	<=>	is	used	by	various	methods	to	compare
objects,	for	example	Enumerable#sort,
Enumerable#max	etc.

Your	implementation	of	<=>	should	return	one	of	the
following	values:	-1,	0,	1	or	nil.	-1	means	self	is
smaller	than	other.	0	means	self	is	equal	to	other.	1
means	self	is	bigger	than	other.	Nil	means	the	two
values	could	not	be	compared.

When	you	define	<=>,	you	can	include	Comparable	to
gain	the	methods	<=,	<,	==,	>=,	>	and	between?.

Case	Equality	–	For	class	Object,	effectively	the
same	as	calling	#==,	but	typically	overridden	by
descendants	to	provide	meaningful	semantics	in	case
statements.

obj	!~	other	→	true	or	false

obj	<=>	other	→	0	or	nil

obj	===	other	→	true	or	false

obj	=~	other	→	nil

Pattern	Match—Overridden	by	descendants	(notably
Regexp	and	String)	to	provide	meaningful	pattern-
match	semantics.

Returns	the	class	of	obj.	This	method	must	always	be
called	with	an	explicit	receiver,	as	class	is	also	a
reserved	word	in	Ruby.

1.class						#=>	Fixnum

self.class			#=>	Object

Produces	a	shallow	copy	of	obj—the	instance
variables	of	obj	are	copied,	but	not	the	objects	they
reference.	clone	copies	the	frozen	and	tainted	state
of	obj.	See	also	the	discussion	under	Object#dup.

class	Klass

			attr_accessor	:str

end

s1	=	Klass.new						#=>	#<Klass:0x401b3a38>

s1.str	=	"Hello"				#=>	"Hello"

s2	=	s1.clone							#=>	#<Klass:0x401b3998	@str="Hello">

s2.str[1,4]	=	"i"			#=>	"i"

s1.inspect										#=>	"#<Klass:0x401b3a38	@str=\"Hi\">"

s2.inspect										#=>	"#<Klass:0x401b3998	@str=\"Hi\">"

This	method	may	have	class-specific	behavior.	If	so,
that	behavior	will	be	documented	under	the
#initialize_copy	method	of	the	class.

class	→	class

clone	→	an_object

define_singleton_method(symbol,	method)
→	new_method
define_singleton_method(symbol)	{	block	}

Defines	a	singleton	method	in	the	receiver.	The
method	parameter	can	be	a	Proc,	a	Method	or	an
UnboundMethod	object.	If	a	block	is	specified,	it	is	used
as	the	method	body.

class	A

		class	<<	self

				def	class_name

						to_s

				end

		end

end

A.define_singleton_method(:who_am_i)	do

		"I	am:	#{class_name}"

end

A.who_am_i			#	==>	"I	am:	A"

guy	=	"Bob"

guy.define_singleton_method(:hello)	{	"#{self}:	Hello	there!"

guy.hello				#=>		"Bob:	Hello	there!"

Prints	obj	on	the	given	port	(default	$>).	Equivalent	to:

def	display(port=$>)

		port.write	self

end

For	example:

1.display

"cat".display

[4,	5,	6].display

puts

produces:

1cat456

→	proc

display(port=$>)	→	nil

Produces	a	shallow	copy	of	obj—the	instance
variables	of	obj	are	copied,	but	not	the	objects	they
reference.	dup	copies	the	tainted	state	of	obj.

This	method	may	have	class-specific	behavior.	If	so,
that	behavior	will	be	documented	under	the
#initialize_copy	method	of	the	class.

on	dup	vs	clone
In	general,	clone	and	dup	may	have	different
semantics	in	descendant	classes.	While	clone	is
used	to	duplicate	an	object,	including	its	internal
state,	dup	typically	uses	the	class	of	the	descendant
object	to	create	the	new	instance.

When	using	dup,	any	modules	that	the	object	has
been	extended	with	will	not	be	copied.

class	Klass

		attr_accessor	:str

end

module	Foo

		def	foo;	'foo';	end

end

s1	=	Klass.new	#=>	#<Klass:0x401b3a38>

s1.extend(Foo)	#=>	#<Klass:0x401b3a38>

s1.foo	#=>	"foo"

s2	=	s1.clone	#=>	#<Klass:0x401b3a38>

s2.foo	#=>	"foo"

s3	=	s1.dup	#=>	#<Klass:0x401b3a38>

s3.foo	#=>	NoMethodError:	undefined	method	`foo'	for	#<Klass:0x401b3a38>

dup	→	an_object

to_enum(method	=	:each,	*args)	→	enum

Creates	a	new	Enumerator	which	will	enumerate	by
calling	method	on	obj,	passing	args	if	any.

If	a	block	is	given,	it	will	be	used	to	calculate	the	size
of	the	enumerator	without	the	need	to	iterate	it	(see
Enumerator#size).

Examples
str	=	"xyz"

enum	=	str.enum_for(:each_byte)

enum.each	{	|b|	puts	b	}

#	=>	120

#	=>	121

#	=>	122

#	protect	an	array	from	being	modified	by	some_method

a	=	[1,	2,	3]

some_method(a.to_enum)

It	is	typical	to	call	#to_enum	when	defining	methods
for	a	generic	Enumerable,	in	case	no	block	is	passed.

Here	is	such	an	example,	with	parameter	passing
and	a	sizing	block:

module	Enumerable

		#	a	generic	method	to	repeat	the	values	of	any	enumerable

		def	repeat(n)

				raise	ArgumentError,	"#{n}	is	negative!"	if	n	<	0

				unless	block_given?

						return	to_enum(__method__,	n)	do	#	__method__	is	:repeat	here

								sz	=	size					#	Call	size	and	multiply	by	n...

								sz	*	n	if	sz		#	but	return	nil	if	size	itself	is	nil

						end

enum_for(method	=	:each,	*args)	→	enum
to_enum(method	=	:each,	*args)	{|*args|
block}	→	enum
enum_for(method	=	:each,	*args){|*args|
block}	→	enum

				end

				each	do	|*val|

						n.times	{	yield	*val	}

				end

		end

end

%[hello	world].repeat(2)	{	|w|	puts	w	}

		#	=>	Prints	'hello',	'hello',	'world',	'world'

enum	=	(1..14).repeat(3)

		#	=>	returns	an	Enumerator	when	called	without	a	block

enum.first(4)	#	=>	[1,	1,	1,	2]

enum.size	#	=>	42

Equality	—	At	the	Object	level,	==	returns	true	only	if
obj	and	other	are	the	same	object.	Typically,	this
method	is	overridden	in	descendant	classes	to
provide	class-specific	meaning.

Unlike	==,	the	equal?	method	should	never	be
overridden	by	subclasses	as	it	is	used	to	determine
object	identity	(that	is,	a.equal?(b)	if	and	only	if	a	is
the	same	object	as	b):

obj	=	"a"

other	=	obj.dup

obj	==	other						#=>	true

obj.equal?	other		#=>	false

obj.equal?	obj				#=>	true

The	eql?	method	returns	true	if	obj	and	other	refer	to
the	same	hash	key.	This	is	used	by	Hash	to	test
members	for	equality.	For	objects	of	class	Object,
eql?	is	synonymous	with	==.	Subclasses	normally
continue	this	tradition	by	aliasing	eql?	to	their

obj	==	other	→	true	or	false
equal?(other)	→	true	or	false
eql?(other)	→	true	or	false

overridden	==	method,	but	there	are	exceptions.
Numeric	types,	for	example,	perform	type	conversion
across	==,	but	not	across	eql?,	so:

1	==	1.0					#=>	true

1.eql?	1.0			#=>	false

Adds	to	obj	the	instance	methods	from	each	module
given	as	a	parameter.

module	Mod

		def	hello

				"Hello	from	Mod.\n"

		end

end

class	Klass

		def	hello

				"Hello	from	Klass.\n"

		end

end

k	=	Klass.new

k.hello									#=>	"Hello	from	Klass.\n"

k.extend(Mod)			#=>	#<Klass:0x401b3bc8>

k.hello									#=>	"Hello	from	Mod.\n"

Prevents	further	modifications	to	obj.	A	RuntimeError
will	be	raised	if	modification	is	attempted.	There	is	no
way	to	unfreeze	a	frozen	object.	See	also
Object#frozen?.

This	method	returns	self.

a	=	["a",	"b",	"c"]

a.freeze

a	<<	"z"

extend(module,	...)	→	obj

freeze	→	obj

produces:

prog.rb:3:in	`<<':	can't	modify	frozen	Array	(RuntimeError)

	from	prog.rb:3

Objects	of	the	following	classes	are	always	frozen:
Fixnum,	Bignum,	Float,	Symbol.

Returns	the	freeze	status	of	obj.

a	=	["a",	"b",	"c"]

a.freeze				#=>	["a",	"b",	"c"]

a.frozen?			#=>	true

Generates	a	Fixnum	hash	value	for	this	object.	This
function	must	have	the	property	that	a.eql?(b)
implies	a.hash	==	b.hash.

The	hash	value	is	used	along	with	eql?	by	the	Hash
class	to	determine	if	two	objects	reference	the	same
hash	key.	Any	hash	value	that	exceeds	the	capacity
of	a	Fixnum	will	be	truncated	before	being	used.

The	hash	value	for	an	object	may	not	be	identical
across	invocations	or	implementations	of	Ruby.	If	you
need	a	stable	identifier	across	Ruby	invocations	and
implementations	you	will	need	to	generate	one	with	a
custom	method.

Returns	a	string	containing	a	human-readable
representation	of	obj.	The	default	inspect	shows	the
object's	class	name,	an	encoding	of	the	object	id,	and
a	list	of	the	instance	variables	and	their	values	(by

frozen?	→	true	or	false

hash	→	fixnum

inspect	→	string

calling	inspect	on	each	of	them).	User	defined
classes	should	override	this	method	to	provide	a
better	representation	of	obj.	When	overriding	this
method,	it	should	return	a	string	whose	encoding	is
compatible	with	the	default	external	encoding.

[1,	2,	3..4,	'five'].inspect			#=>	"[1,	2,	3..4,	\"five\"]"

Time.new.inspect																	#=>	"2008-03-08	19:43:39	+0900"

class	Foo

end

Foo.new.inspect																		#=>	"#<Foo:0x0300c868>"

class	Bar

		def	initialize

				@bar	=	1

		end

end

Bar.new.inspect																		#=>	"#<Bar:0x0300c868	@bar=1>"

Returns	true	if	obj	is	an	instance	of	the	given	class.
See	also	Object#kind_of?.

class	A;					end

class	B	<	A;	end

class	C	<	B;	end

b	=	B.new

b.instance_of?	A			#=>	false

b.instance_of?	B			#=>	true

b.instance_of?	C			#=>	false

Returns	true	if	the	given	instance	variable	is	defined

instance_of?(class)	→	true	or	false

instance_variable_defined?(symbol)	→	true
or	false
instance_variable_defined?(string)	→	true	or
false

in	obj.	String	arguments	are	converted	to	symbols.

class	Fred

		def	initialize(p1,	p2)

				@a,	@b	=	p1,	p2

		end

end

fred	=	Fred.new('cat',	99)

fred.instance_variable_defined?(:@a)				#=>	true

fred.instance_variable_defined?("@b")			#=>	true

fred.instance_variable_defined?("@c")			#=>	false

Returns	the	value	of	the	given	instance	variable,	or
nil	if	the	instance	variable	is	not	set.	The	@	part	of	the
variable	name	should	be	included	for	regular	instance
variables.	Throws	a	NameError	exception	if	the
supplied	symbol	is	not	valid	as	an	instance	variable
name.	String	arguments	are	converted	to	symbols.

class	Fred

		def	initialize(p1,	p2)

				@a,	@b	=	p1,	p2

		end

end

fred	=	Fred.new('cat',	99)

fred.instance_variable_get(:@a)				#=>	"cat"

fred.instance_variable_get("@b")			#=>	99

Sets	the	instance	variable	named	by	symbol	to	the
given	object,	thereby	frustrating	the	efforts	of	the
class's	author	to	attempt	to	provide	proper
encapsulation.	The	variable	does	not	have	to	exist
prior	to	this	call.	If	the	instance	variable	name	is

instance_variable_get(symbol)	→	obj
instance_variable_get(string)	→	obj

instance_variable_set(symbol,	obj)	→	obj
instance_variable_set(string,	obj)	→	obj

passed	as	a	string,	that	string	is	converted	to	a
symbol.

class	Fred

		def	initialize(p1,	p2)

				@a,	@b	=	p1,	p2

		end

end

fred	=	Fred.new('cat',	99)

fred.instance_variable_set(:@a,	'dog')			#=>	"dog"

fred.instance_variable_set(:@c,	'cat')			#=>	"cat"

fred.inspect																													#=>	"#<Fred:0x401b3da8	@a=\"dog\",	@b=99,	@c=\"cat\">"

Returns	an	array	of	instance	variable	names	for	the
receiver.	Note	that	simply	defining	an	accessor	does
not	create	the	corresponding	instance	variable.

class	Fred

		attr_accessor	:a1

		def	initialize

				@iv	=	3

		end

end

Fred.new.instance_variables			#=>	[:@iv]

Returns	true	if	class	is	the	class	of	obj,	or	if	class	is
one	of	the	superclasses	of	obj	or	modules	included	in
obj.

module	M;				end

class	A

		include	M

end

class	B	<	A;	end

class	C	<	B;	end

instance_variables	→	array

is_a?(class)	→	true	or	false
kind_of?(class)	→	true	or	false

b	=	B.new

b.is_a?	A										#=>	true

b.is_a?	B										#=>	true

b.is_a?	C										#=>	false

b.is_a?	M										#=>	true

b.kind_of?	A							#=>	true

b.kind_of?	B							#=>	true

b.kind_of?	C							#=>	false

b.kind_of?	M							#=>	true

Returns	obj.

string	=	'my	string'	#=>	"my	string"

string.itself.object_id	==	string.object_id	#=>	true

Returns	true	if	class	is	the	class	of	obj,	or	if	class	is
one	of	the	superclasses	of	obj	or	modules	included	in
obj.

module	M;				end

class	A

		include	M

end

class	B	<	A;	end

class	C	<	B;	end

b	=	B.new

b.is_a?	A										#=>	true

b.is_a?	B										#=>	true

b.is_a?	C										#=>	false

b.is_a?	M										#=>	true

b.kind_of?	A							#=>	true

b.kind_of?	B							#=>	true

b.kind_of?	C							#=>	false

b.kind_of?	M							#=>	true

itself	→	an_object

is_a?(class)	→	true	or	false
kind_of?(class)	→	true	or	false

Looks	up	the	named	method	as	a	receiver	in	obj,
returning	a	Method	object	(or	raising	NameError).	The
Method	object	acts	as	a	closure	in	obj's	object
instance,	so	instance	variables	and	the	value	of	self
remain	available.

class	Demo

		def	initialize(n)

				@iv	=	n

		end

		def	hello()

				"Hello,	@iv	=	#{@iv}"

		end

end

k	=	Demo.new(99)

m	=	k.method(:hello)

m.call			#=>	"Hello,	@iv	=	99"

l	=	Demo.new('Fred')

m	=	l.method("hello")

m.call			#=>	"Hello,	@iv	=	Fred"

Returns	a	list	of	the	names	of	public	and	protected
methods	of	obj.	This	will	include	all	the	methods
accessible	in	obj's	ancestors.	If	the	optional
parameter	is	false,	it	returns	an	array	of	obj<i>'s
public	and	protected	singleton	methods,	the	array	will
not	include	methods	in	modules	included	in	<i>obj.

class	Klass

		def	klass_method()

		end

end

k	=	Klass.new

k.methods[0..9]				#=>	[:klass_method,	:nil?,	:===,

																			#				:==~,	:!,	:eql?

method(sym)	→	method

methods(regular=true)	→	array

																			#				:hash,	:<=>,	:class,	:singleton_class]

k.methods.length			#=>	56

k.methods(false)			#=>	[]

def	k.singleton_method;	end

k.methods(false)			#=>	[:singleton_method]

module	M123;	def	m123;	end	end

k.extend	M123

k.methods(false)			#=>	[:singleton_method]

Only	the	object	nil	responds	true	to	nil?.

Object.new.nil?			#=>	false

nil.nil?										#=>	true

Returns	an	integer	identifier	for	obj.

The	same	number	will	be	returned	on	all	calls	to
object_id	for	a	given	object,	and	no	two	active
objects	will	share	an	id.

Note:	that	some	objects	of	builtin	classes	are	reused
for	optimization.	This	is	the	case	for	immediate
values	and	frozen	string	literals.

Immediate	values	are	not	passed	by	reference	but
are	passed	by	value:	nil,	true,	false,	Fixnums,
Symbols,	and	some	Floats.

Object.new.object_id		==	Object.new.object_id		#	=>	false

(21	*	2).object_id				==	(21	*	2).object_id				#	=>	true

"hello".object_id					==	"hello".object_id					#	=>	false

"hi".freeze.object_id	==	"hi".freeze.object_id	#	=>	true

nil?	→	true	or	false

__id__	→	integer
object_id	→	integer

Returns	the	list	of	private	methods	accessible	to	obj.
If	the	all	parameter	is	set	to	false,	only	those
methods	in	the	receiver	will	be	listed.

Returns	the	list	of	protected	methods	accessible	to
obj.	If	the	all	parameter	is	set	to	false,	only	those
methods	in	the	receiver	will	be	listed.

Similar	to	method,	searches	public	method	only.

Returns	the	list	of	public	methods	accessible	to	obj.	If
the	all	parameter	is	set	to	false,	only	those	methods
in	the	receiver	will	be	listed.

Invokes	the	method	identified	by	symbol,	passing	it
any	arguments	specified.	Unlike	send,	#public_send
calls	public	methods	only.	When	the	method	is
identified	by	a	string,	the	string	is	converted	to	a
symbol.

1.public_send(:puts,	"hello")		#	causes	NoMethodError

Removes	the	named	instance	variable	from	obj,
returning	that	variable's	value.

private_methods(all=true)	→	array

protected_methods(all=true)	→	array

public_method(sym)	→	method

public_methods(all=true)	→	array

public_send(symbol	[,	args...])	→	obj
public_send(string	[,	args...])	→	obj

remove_instance_variable(symbol)	→	obj

class	Dummy

		attr_reader	:var

		def	initialize

				@var	=	99

		end

		def	remove

				remove_instance_variable(:@var)

		end

end

d	=	Dummy.new

d.var						#=>	99

d.remove			#=>	99

d.var						#=>	nil

Returns	true	if	obj	responds	to	the	given	method.
Private	and	protected	methods	are	included	in	the
search	only	if	the	optional	second	parameter
evaluates	to	true.

If	the	method	is	not	implemented,	as	Process.fork	on
Windows,	File.lchmod	on	GNU/Linux,	etc.,	false	is
returned.

If	the	method	is	not	defined,	respond_to_missing?
method	is	called	and	the	result	is	returned.

When	the	method	name	parameter	is	given	as	a
string,	the	string	is	converted	to	a	symbol.

DO	NOT	USE	THIS	DIRECTLY.

respond_to?(symbol,	include_all=false)	→
true	or	false
respond_to?(string,	include_all=false)	→
true	or	false

respond_to_missing?(symbol,	include_all)
→	true	or	false
respond_to_missing?(string,	include_all)	→
true	or	false

Hook	method	to	return	whether	the	obj	can	respond
to	id	method	or	not.

When	the	method	name	parameter	is	given	as	a
string,	the	string	is	converted	to	a	symbol.

See	respond_to?,	and	the	example	of	BasicObject.

Invokes	the	method	identified	by	symbol,	passing	it
any	arguments	specified.	You	can	use	__send__	if	the
name	send	clashes	with	an	existing	method	in	obj.
When	the	method	is	identified	by	a	string,	the	string	is
converted	to	a	symbol.

class	Klass

		def	hello(*args)

				"Hello	"	+	args.join('	')

		end

end

k	=	Klass.new

k.send	:hello,	"gentle",	"readers"			#=>	"Hello	gentle	readers"

Returns	the	singleton	class	of	obj.	This	method
creates	a	new	singleton	class	if	obj	does	not	have
one.

If	obj	is	nil,	true,	or	false,	it	returns	NilClass,
TrueClass,	or	FalseClass,	respectively.	If	obj	is	a
Fixnum	or	a	Symbol,	it	raises	a	TypeError.

Object.new.singleton_class		#=>	#<Class:#<Object:0xb7ce1e24>>

String.singleton_class						#=>	#<Class:String>

nil.singleton_class									#=>	NilClass

send(symbol	[,	args...])	→	obj
__send__(symbol	[,	args...])	→	obj
send(string	[,	args...])	→	obj
__send__(string	[,	args...])	→	obj

singleton_class	→	class

Similar	to	method,	searches	singleton	method	only.

class	Demo

		def	initialize(n)

				@iv	=	n

		end

		def	hello()

				"Hello,	@iv	=	#{@iv}"

		end

end

k	=	Demo.new(99)

def	k.hi

		"Hi,	@iv	=	#{@iv}"

end

m	=	k.singleton_method(:hi)

m.call			#=>	"Hi,	@iv	=	99"

m	=	k.singleton_method(:hello)	#=>	NameError

Returns	an	array	of	the	names	of	singleton	methods
for	obj.	If	the	optional	all	parameter	is	true,	the	list	will
include	methods	in	modules	included	in	obj.	Only
public	and	protected	singleton	methods	are	returned.

module	Other

		def	three()	end

end

class	Single

		def	Single.four()	end

end

a	=	Single.new

def	a.one()

end

class	<<	a

singleton_method(sym)	→	method

singleton_methods(all=true)	→	array

		include	Other

		def	two()

		end

end

Single.singleton_methods				#=>	[:four]

a.singleton_methods(false)		#=>	[:two,	:one]

a.singleton_methods									#=>	[:two,	:one,	:three]

Mark	the	object	as	tainted.

Objects	that	are	marked	as	tainted	will	be	restricted
from	various	built-in	methods.	This	is	to	prevent
insecure	data,	such	as	command-line	arguments	or
strings	read	from	Kernel#gets,	from	inadvertently
compromising	the	user's	system.

To	check	whether	an	object	is	tainted,	use	tainted?.

You	should	only	untaint	a	tainted	object	if	your	code
has	inspected	it	and	determined	that	it	is	safe.	To	do
so	use	untaint.

In	$SAFE	level	3,	all	newly	created	objects	are
tainted	and	you	can't	untaint	objects.

Returns	true	if	the	object	is	tainted.

See	taint	for	more	information.

Yields	self	to	the	block,	and	then	returns	self.	The
primary	purpose	of	this	method	is	to	“tap	into”	a
method	chain,	in	order	to	perform	operations	on
intermediate	results	within	the	chain.

taint	→	obj

tainted?	→	true	or	false

tap{|x|...}	→	obj

(1..10)																.tap	{|x|	puts	"original:	#{x.inspect}"

		.to_a																.tap	{|x|	puts	"array:	#{x.inspect}"

		.select	{|x|	x%2==0}	.tap	{|x|	puts	"evens:	#{x.inspect}"

		.map	{|x|	x*x}							.tap	{|x|	puts	"squares:	#{x.inspect}"

Creates	a	new	Enumerator	which	will	enumerate	by
calling	method	on	obj,	passing	args	if	any.

If	a	block	is	given,	it	will	be	used	to	calculate	the	size
of	the	enumerator	without	the	need	to	iterate	it	(see
Enumerator#size).

Examples
str	=	"xyz"

enum	=	str.enum_for(:each_byte)

enum.each	{	|b|	puts	b	}

#	=>	120

#	=>	121

#	=>	122

#	protect	an	array	from	being	modified	by	some_method

a	=	[1,	2,	3]

some_method(a.to_enum)

It	is	typical	to	call	#to_enum	when	defining	methods
for	a	generic	Enumerable,	in	case	no	block	is	passed.

Here	is	such	an	example,	with	parameter	passing
and	a	sizing	block:

to_enum(method	=	:each,	*args)	→	enum
enum_for(method	=	:each,	*args)	→	enum
to_enum(method	=	:each,	*args)	{|*args|
block}	→	enum
enum_for(method	=	:each,	*args){|*args|
block}	→	enum

module	Enumerable

		#	a	generic	method	to	repeat	the	values	of	any	enumerable

		def	repeat(n)

				raise	ArgumentError,	"#{n}	is	negative!"	if	n	<	0

				unless	block_given?

						return	to_enum(__method__,	n)	do	#	__method__	is	:repeat	here

								sz	=	size					#	Call	size	and	multiply	by	n...

								sz	*	n	if	sz		#	but	return	nil	if	size	itself	is	nil

						end

				end

				each	do	|*val|

						n.times	{	yield	*val	}

				end

		end

end

%[hello	world].repeat(2)	{	|w|	puts	w	}

		#	=>	Prints	'hello',	'hello',	'world',	'world'

enum	=	(1..14).repeat(3)

		#	=>	returns	an	Enumerator	when	called	without	a	block

enum.first(4)	#	=>	[1,	1,	1,	2]

enum.size	#	=>	42

Returns	a	string	representing	obj.	The	default	to_s
prints	the	object's	class	and	an	encoding	of	the	object
id.	As	a	special	case,	the	top-level	object	that	is	the
initial	execution	context	of	Ruby	programs	returns
“main''.

Deprecated	method	that	is	equivalent	to	untaint.

Removes	the	tainted	mark	from	the	object.

See	taint	for	more	information.

to_s	→	string

trust	→	obj

untaint	→	obj

Deprecated	method	that	is	equivalent	to	taint.

Deprecated	method	that	is	equivalent	to	tainted?.

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

untrust	→	obj

untrusted?	→	true	or	false

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

module	ObjectSpace
The	ObjectSpace	module	contains	a	number	of
routines	that	interact	with	the	garbage	collection
facility	and	allow	you	to	traverse	all	living	objects
with	an	iterator.

ObjectSpace	also	provides	support	for	object
finalizers,	procs	that	will	be	called	when	a
specific	object	is	about	to	be	destroyed	by
garbage	collection.

a	=	"A"

b	=	"B"

ObjectSpace.define_finalizer(a,	proc	{|id|	puts	"Finalizer	one	on	#{id}"

ObjectSpace.define_finalizer(b,	proc	{|id|	puts	"Finalizer	two	on	#{id}"

produces:

Finalizer	two	on	537763470

Finalizer	one	on	537763480

In	Files
gc.c

Public	Class	Methods

Converts	an	object	id	to	a	reference	to	the	object.
May	not	be	called	on	an	object	id	passed	as	a
parameter	to	a	finalizer.

s	=	"I	am	a	string"																				#=>	"I	am	a	string"

r	=	ObjectSpace._id2ref(s.object_id)			#=>	"I	am	a	string"

r	==	s																																	#=>	true

Counts	objects	for	each	type.

It	returns	a	hash,	such	as:

{

		:TOTAL=>10000,

		:FREE=>3011,

		:T_OBJECT=>6,

		:T_CLASS=>404,

		#	...

}

The	contents	of	the	returned	hash	are
implementation	specific.	It	may	be	changed	in	future.

If	the	optional	argument	result_hash	is	given,	it	is
overwritten	and	returned.	This	is	intended	to	avoid
probe	effect.

This	method	is	only	expected	to	work	on	C	Ruby.

Adds	aProc	as	a	finalizer,	to	be	called	after	obj	was
destroyed.

_id2ref(object_id)	→	an_object

count_objects([result_hash])	→	hash

define_finalizer(obj,	aProc=proc())

each_object([module])	{|obj|	...	}	→	fixnum
each_object([module])	→	an_enumerator

Calls	the	block	once	for	each	living,	nonimmediate
object	in	this	Ruby	process.	If	module	is	specified,
calls	the	block	for	only	those	classes	or	modules	that
match	(or	are	a	subclass	of)	module.	Returns	the
number	of	objects	found.	Immediate	objects	(Fixnums,
Symbols	true,	false,	and	nil)	are	never	returned.	In
the	example	below,	each_object	returns	both	the
numbers	we	defined	and	several	constants	defined	in
the	Math	module.

If	no	block	is	given,	an	enumerator	is	returned
instead.

a	=	102.7

b	=	95							#	Won't	be	returned

c	=	12345678987654321

count	=	ObjectSpace.each_object(Numeric)	{|x|	p	x	}

puts	"Total	count:	#{count}"

produces:

12345678987654321

102.7

2.71828182845905

3.14159265358979

2.22044604925031e-16

1.7976931348623157e+308

2.2250738585072e-308

Total	count:	7

Initiates	garbage	collection,	unless	manually
disabled.

start	→	nil
garbage_collect	→	nil
start(full_mark:	true,	immediate_sweep:
true)	→	nil
garbage_collect(full_mark:	true,
immediate_sweep:	true)	→	nil

This	method	is	defined	with	keyword	arguments	that
default	to	true:

def	GC.start(full_mark:	true,	immediate_sweep:	true);	

Use	full_mark:	false	to	perform	a	minor	GC.	Use
immediate_sweep:	false	to	defer	sweeping	(use	lazy
sweep).

Note:	These	keyword	arguments	are	implementation
and	version	dependent.	They	are	not	guaranteed	to
be	future-compatible,	and	may	be	ignored	if	the
underlying	implementation	does	not	support	them.

Removes	all	finalizers	for	obj.

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

undefine_finalizer(obj)

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class
ObjectSpace::WeakMap
An	ObjectSpace::WeakMap	object	holds
references	to	any	objects,	but	those	objects	can
get	garbage	collected.

This	class	is	mostly	used	internally	by	WeakRef,
please	use	lib/weakref.rb	for	the	public
interface.

In	Files
gc.c

Parent
Object

Included	Modules
Enumerable

Public	Instance	Methods

Retrieves	a	weakly	referenced	object	with	the	given
key

[](p1)

Creates	a	weak	reference	from	the	given	key	to	the
given	value

Iterates	over	keys	and	objects	in	a	weakly	referenced
object

Iterates	over	keys	and	objects	in	a	weakly	referenced
object

Iterates	over	keys	and	objects	in	a	weakly	referenced
object

Iterates	over	keys	and	objects	in	a	weakly	referenced
object

Returns	true	if	key	is	registered

Returns	true	if	key	is	registered

Iterates	over	keys	and	objects	in	a	weakly	referenced

[]=(p1,	p2)

each()

each_key()

each_pair()

each_value()

include?(p1)

inspect()

key?(p1)

keys()

object

Returns	true	if	key	is	registered

Iterates	over	values	and	objects	in	a	weakly
referenced	object

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

length()

member?(p1)

size()

values()

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	Proc
Proc	objects	are	blocks	of	code	that	have	been
bound	to	a	set	of	local	variables.	Once	bound,
the	code	may	be	called	in	different	contexts	and
still	access	those	variables.

def	gen_times(factor)

		return	Proc.new	{|n|	n*factor	}

end

times3	=	gen_times(3)

times5	=	gen_times(5)

times3.call(12)															#=>	36

times5.call(5)																#=>	25

times3.call(times5.call(4))			#=>	60

In	Files
proc.c

Parent
Object

Public	Class	Methods

Creates	a	new	Proc	object,	bound	to	the	current

new	{|...|	block	}	→	a_proc
new	→	a_proc

context.	Proc::new	may	be	called	without	a	block	only
within	a	method	with	an	attached	block,	in	which	case
that	block	is	converted	to	the	Proc	object.

def	proc_from

		Proc.new

end

proc	=	proc_from	{	"hello"	}

proc.call			#=>	"hello"

Public	Instance	Methods

Invokes	the	block	with	obj	as	the	proc's	parameter
like	#call.	It	is	to	allow	a	proc	object	to	be	a	target	of
when	clause	in	a	case	statement.

Invokes	the	block,	setting	the	block's	parameters	to
the	values	in	params	using	something	close	to
method	calling	semantics.	Generates	a	warning	if
multiple	values	are	passed	to	a	proc	that	expects	just
one	(previously	this	silently	converted	the	parameters
to	an	array).	Note	that	prc.()	invokes	prc.call()	with
the	parameters	given.	It's	a	syntax	sugar	to	hide
“call”.

For	procs	created	using	lambda	or	->()	an	error	is
generated	if	the	wrong	number	of	parameters	are
passed	to	a	Proc	with	multiple	parameters.	For	procs
created	using	Proc.new	or	Kernel.proc,	extra
parameters	are	silently	discarded.

proc	===	obj	→	result_of_proc

call(params,...)	→	obj
prc[params,...]	→	obj
(params,...)	→	obj

Returns	the	value	of	the	last	expression	evaluated	in
the	block.	See	also	Proc#yield.

a_proc	=	Proc.new	{|a,	*b|	b.collect	{|i|	i*a	}}

a_proc.call(9,	1,	2,	3)			#=>	[9,	18,	27]

a_proc[9,	1,	2,	3]								#=>	[9,	18,	27]

a_proc	=	lambda	{|a,b|	a}

a_proc.call(1,2,3)

produces:

prog.rb:4:in	`block	in	<main>':	wrong	number	of	arguments	(3	for	2)	(ArgumentError)

	from	prog.rb:5:in	`call'

	from	prog.rb:5:in	`<main>'

Returns	the	number	of	mandatory	arguments.	If	the
block	is	declared	to	take	no	arguments,	returns	0.	If
the	block	is	known	to	take	exactly	n	arguments,
returns	n.	If	the	block	has	optional	arguments,	returns
-n-1,	where	n	is	the	number	of	mandatory	arguments,
with	the	exception	for	blocks	that	are	not	lambdas
and	have	only	a	finite	number	of	optional	arguments;
in	this	latter	case,	returns	n.	Keywords	arguments	will
considered	as	a	single	additional	argument,	that
argument	being	mandatory	if	any	keyword	argument
is	mandatory.	A	proc	with	no	argument	declarations	is
the	same	as	a	block	declaring	||	as	its	arguments.

proc	{}.arity																		#=>		0

proc	{	||	}.arity														#=>		0

proc	{	|a|	}.arity													#=>		1

proc	{	|a,	b|	}.arity										#=>		2

proc	{	|a,	b,	c|	}.arity							#=>		3

proc	{	|*a|	}.arity												#=>	-1

proc	{	|a,	*b|	}.arity									#=>	-2

proc	{	|a,	*b,	c|	}.arity						#=>	-3

proc	{	|x:,	y:,	z:0|	}.arity			#=>		1

proc	{	|*a,	x:,	y:0|	}.arity			#=>	-2

arity	→	fixnum

proc			{	|x=0|	}.arity									#=>		0

lambda	{	|x=0|	}.arity									#=>	-1

proc			{	|x=0,	y|	}.arity						#=>		1

lambda	{	|x=0,	y|	}.arity						#=>	-2

proc			{	|x=0,	y=0|	}.arity				#=>		0

lambda	{	|x=0,	y=0|	}.arity				#=>	-1

proc			{	|x,	y=0|	}.arity						#=>		1

lambda	{	|x,	y=0|	}.arity						#=>	-2

proc			{	|(x,	y),	z=0|	}.arity	#=>		1

lambda	{	|(x,	y),	z=0|	}.arity	#=>	-2

proc			{	|a,	x:0,	y:0|	}.arity	#=>		1

lambda	{	|a,	x:0,	y:0|	}.arity	#=>	-2

Returns	the	binding	associated	with	prc.	Note	that
Kernel#eval	accepts	either	a	Proc	or	a	Binding	object
as	its	second	parameter.

def	fred(param)

		proc	{}

end

b	=	fred(99)

eval("param",	b.binding)			#=>	99

Invokes	the	block,	setting	the	block's	parameters	to
the	values	in	params	using	something	close	to
method	calling	semantics.	Generates	a	warning	if
multiple	values	are	passed	to	a	proc	that	expects	just
one	(previously	this	silently	converted	the	parameters
to	an	array).	Note	that	prc.()	invokes	prc.call()	with
the	parameters	given.	It's	a	syntax	sugar	to	hide
“call”.

For	procs	created	using	lambda	or	->()	an	error	is

binding	→	binding

call(params,...)	→	obj
prc[params,...]	→	obj
(params,...)	→	obj

generated	if	the	wrong	number	of	parameters	are
passed	to	a	Proc	with	multiple	parameters.	For	procs
created	using	Proc.new	or	Kernel.proc,	extra
parameters	are	silently	discarded.

Returns	the	value	of	the	last	expression	evaluated	in
the	block.	See	also	Proc#yield.

a_proc	=	Proc.new	{|a,	*b|	b.collect	{|i|	i*a	}}

a_proc.call(9,	1,	2,	3)			#=>	[9,	18,	27]

a_proc[9,	1,	2,	3]								#=>	[9,	18,	27]

a_proc	=	lambda	{|a,b|	a}

a_proc.call(1,2,3)

produces:

prog.rb:4:in	`block	in	<main>':	wrong	number	of	arguments	(3	for	2)	(ArgumentError)

	from	prog.rb:5:in	`call'

	from	prog.rb:5:in	`<main>'

Returns	a	curried	proc.	If	the	optional	arity	argument
is	given,	it	determines	the	number	of	arguments.	A
curried	proc	receives	some	arguments.	If	a	sufficient
number	of	arguments	are	supplied,	it	passes	the
supplied	arguments	to	the	original	proc	and	returns
the	result.	Otherwise,	returns	another	curried	proc
that	takes	the	rest	of	arguments.

b	=	proc	{|x,	y,	z|	(x||0)	+	(y||0)	+	(z||0)	}

p	b.curry[1][2][3]											#=>	6

p	b.curry[1,	2][3,	4]								#=>	6

p	b.curry(5)[1][2][3][4][5]		#=>	6

p	b.curry(5)[1,	2][3,	4][5]		#=>	6

p	b.curry(1)[1]														#=>	1

b	=	proc	{|x,	y,	z,	*w|	(x||0)	+	(y||0)	+	(z||0)	+	w.inject

p	b.curry[1][2][3]											#=>	6

curry	→	a_proc
curry(arity)	→	a_proc

p	b.curry[1,	2][3,	4]								#=>	10

p	b.curry(5)[1][2][3][4][5]		#=>	15

p	b.curry(5)[1,	2][3,	4][5]		#=>	15

p	b.curry(1)[1]														#=>	1

b	=	lambda	{|x,	y,	z|	(x||0)	+	(y||0)	+	(z||0)	}

p	b.curry[1][2][3]											#=>	6

p	b.curry[1,	2][3,	4]								#=>	wrong	number	of	arguments	(4	for	3)

p	b.curry(5)																	#=>	wrong	number	of	arguments	(5	for	3)

p	b.curry(1)																	#=>	wrong	number	of	arguments	(1	for	3)

b	=	lambda	{|x,	y,	z,	*w|	(x||0)	+	(y||0)	+	(z||0)	+	w

p	b.curry[1][2][3]											#=>	6

p	b.curry[1,	2][3,	4]								#=>	10

p	b.curry(5)[1][2][3][4][5]		#=>	15

p	b.curry(5)[1,	2][3,	4][5]		#=>	15

p	b.curry(1)																	#=>	wrong	number	of	arguments	(1	for	3)

b	=	proc	{	:foo	}

p	b.curry[]																		#=>	:foo

Returns	a	hash	value	corresponding	to	proc	body.

See	also	Object#hash.

Alias	for:	to_s

Returns	true	for	a	Proc	object	for	which	argument
handling	is	rigid.	Such	procs	are	typically	generated
by	lambda.

A	Proc	object	generated	by	proc	ignores	extra
arguments.

proc	{|a,b|	[a,b]	}.call(1,2,3)				#=>	[1,2]

hash	→	integer

inspect()

lambda?	→	true	or	false

It	provides	nil	for	missing	arguments.

proc	{|a,b|	[a,b]	}.call(1)								#=>	[1,nil]

It	expands	a	single	array	argument.

proc	{|a,b|	[a,b]	}.call([1,2])				#=>	[1,2]

A	Proc	object	generated	by	lambda	doesn't	have	such
tricks.

lambda	{|a,b|	[a,b]	}.call(1,2,3)		#=>	ArgumentError

lambda	{|a,b|	[a,b]	}.call(1)						#=>	ArgumentError

lambda	{|a,b|	[a,b]	}.call([1,2])		#=>	ArgumentError

#lambda?	is	a	predicate	for	the	tricks.	It	returns	true
if	no	tricks	apply.

lambda	{}.lambda?												#=>	true

proc	{}.lambda?														#=>	false

::new	is	the	same	as	proc.

Proc.new	{}.lambda?										#=>	false

lambda,	proc	and	::new	preserve	the	tricks	of	a	Proc
object	given	by	&	argument.

lambda(&lambda	{}).lambda?			#=>	true

proc(&lambda	{}).lambda?					#=>	true

Proc.new(&lambda	{}).lambda?	#=>	true

lambda(&proc	{}).lambda?					#=>	false

proc(&proc	{}).lambda?							#=>	false

Proc.new(&proc	{}).lambda?			#=>	false

A	Proc	object	generated	by	&	argument	has	the	tricks

def	n(&b)	b.lambda?	end

n	{}																									#=>	false

The	&	argument	preserves	the	tricks	if	a	Proc	object

is	given	by	&	argument.

n(&lambda	{})																#=>	true

n(&proc	{})																		#=>	false

n(&Proc.new	{})														#=>	false

A	Proc	object	converted	from	a	method	has	no	tricks.

def	m()	end

method(:m).to_proc.lambda?			#=>	true

n(&method(:m))															#=>	true

n(&method(:m).to_proc)							#=>	true

define_method	is	treated	the	same	as	method
definition.	The	defined	method	has	no	tricks.

class	C

		define_method(:d)	{}

end

C.new.d(1,2)							#=>	ArgumentError

C.new.method(:d).to_proc.lambda?			#=>	true

define_method	always	defines	a	method	without	the
tricks,	even	if	a	non-lambda	Proc	object	is	given.	This
is	the	only	exception	for	which	the	tricks	are	not
preserved.

class	C

		define_method(:e,	&proc	{})

end

C.new.e(1,2)							#=>	ArgumentError

C.new.method(:e).to_proc.lambda?			#=>	true

This	exception	insures	that	methods	never	have
tricks	and	makes	it	easy	to	have	wrappers	to	define
methods	that	behave	as	usual.

class	C

		def	self.def2(name,	&body)

				define_method(name,	&body)

		end

		def2(:f)	{}

end

C.new.f(1,2)							#=>	ArgumentError

The	wrapper	def2	defines	a	method	which	has	no
tricks.

Returns	the	parameter	information	of	this	proc.

prc	=	lambda{|x,	y=42,	*other|}

prc.parameters		#=>	[[:req,	:x],	[:opt,	:y],	[:rest,	:other]]

Returns	the	Ruby	source	filename	and	line	number
containing	this	proc	or	nil	if	this	proc	was	not	defined
in	Ruby	(i.e.	native)

Part	of	the	protocol	for	converting	objects	to	Proc
objects.	Instances	of	class	Proc	simply	return
themselves.

Returns	the	unique	identifier	for	this	proc,	along	with
an	indication	of	where	the	proc	was	defined.

Also	aliased	as:	inspect

Invokes	the	block,	setting	the	block's	parameters	to
the	values	in	params	using	something	close	to

parameters	→	array

source_location	→	[String,	Fixnum]

to_proc	→	proc

to_s	→	string

call(params,...)	→	obj
prc[params,...]	→	obj
(params,...)	→	obj

method	calling	semantics.	Generates	a	warning	if
multiple	values	are	passed	to	a	proc	that	expects	just
one	(previously	this	silently	converted	the	parameters
to	an	array).	Note	that	prc.()	invokes	prc.call()	with
the	parameters	given.	It's	a	syntax	sugar	to	hide
“call”.

For	procs	created	using	lambda	or	->()	an	error	is
generated	if	the	wrong	number	of	parameters	are
passed	to	a	Proc	with	multiple	parameters.	For	procs
created	using	Proc.new	or	Kernel.proc,	extra
parameters	are	silently	discarded.

Returns	the	value	of	the	last	expression	evaluated	in
the	block.	See	also	Proc#yield.

a_proc	=	Proc.new	{|a,	*b|	b.collect	{|i|	i*a	}}

a_proc.call(9,	1,	2,	3)			#=>	[9,	18,	27]

a_proc[9,	1,	2,	3]								#=>	[9,	18,	27]

a_proc	=	lambda	{|a,b|	a}

a_proc.call(1,2,3)

produces:

prog.rb:4:in	`block	in	<main>':	wrong	number	of	arguments	(3	for	2)	(ArgumentError)

	from	prog.rb:5:in	`call'

	from	prog.rb:5:in	`<main>'

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

module	Process

In	Files
process.c
ruby.c

Constants

CLOCK_BOOTTIME

CLOCK_BOOTTIME_ALARM

CLOCK_MONOTONIC

CLOCK_MONOTONIC_COARSE

CLOCK_MONOTONIC_FAST

CLOCK_MONOTONIC_PRECISE

CLOCK_MONOTONIC_RAW

CLOCK_PROCESS_CPUTIME_ID

CLOCK_PROF

CLOCK_REALTIME

CLOCK_REALTIME_ALARM

CLOCK_REALTIME_COARSE

CLOCK_REALTIME_FAST

CLOCK_REALTIME_PRECISE

CLOCK_SECOND

CLOCK_THREAD_CPUTIME_ID

CLOCK_UPTIME

CLOCK_UPTIME_FAST

CLOCK_UPTIME_PRECISE

CLOCK_VIRTUAL

PRIO_PGRP

see	::setpriority

PRIO_PROCESS

see	::setpriority

PRIO_USER

see	::setpriority

RLIMIT_AS

Maximum	size	of	the	process's	virtual	memory	(address
space)	in	bytes.

see	the	system	getrlimit(2)	manual	for	details.

RLIMIT_CORE

Maximum	size	of	the	core	file.

see	the	system	getrlimit(2)	manual	for	details.

RLIMIT_CPU

CPU	time	limit	in	seconds.

see	the	system	getrlimit(2)	manual	for	details.

RLIMIT_DATA

Maximum	size	of	the	process's	data	segment.

see	the	system	getrlimit(2)	manual	for	details.

RLIMIT_FSIZE

Maximum	size	of	files	that	the	process	may	create.

see	the	system	getrlimit(2)	manual	for	details.

RLIMIT_MEMLOCK

Maximum	number	of	bytes	of	memory	that	may	be
locked	into	RAM.

see	the	system	getrlimit(2)	manual	for	details.

RLIMIT_MSGQUEUE

Specifies	the	limit	on	the	number	of	bytes	that	can	be
allocated	for	POSIX	message	queues	for	the	real	user
ID	of	the	calling	process.

see	the	system	getrlimit(2)	manual	for	details.

RLIMIT_NICE

Specifies	a	ceiling	to	which	the	process's	nice	value	can
be	raised.

see	the	system	getrlimit(2)	manual	for	details.

RLIMIT_NOFILE

Specifies	a	value	one	greater	than	the	maximum	file
descriptor	number	that	can	be	opened	by	this	process.

see	the	system	getrlimit(2)	manual	for	details.

RLIMIT_NPROC

The	maximum	number	of	processes	that	can	be	created
for	the	real	user	ID	of	the	calling	process.

see	the	system	getrlimit(2)	manual	for	details.

RLIMIT_RSS

Specifies	the	limit	(in	pages)	of	the	process's	resident
set.

see	the	system	getrlimit(2)	manual	for	details.

RLIMIT_RTPRIO

Specifies	a	ceiling	on	the	real-time	priority	that	may	be
set	for	this	process.

see	the	system	getrlimit(2)	manual	for	details.

RLIMIT_RTTIME

Specifies	limit	on	CPU	time	this	process	scheduled
under	a	real-time	scheduling	policy	can	consume.

see	the	system	getrlimit(2)	manual	for	details.

RLIMIT_SBSIZE

Maximum	size	of	the	socket	buffer.

RLIMIT_SIGPENDING

Specifies	a	limit	on	the	number	of	signals	that	may	be
queued	for	the	real	user	ID	of	the	calling	process.

see	the	system	getrlimit(2)	manual	for	details.

RLIMIT_STACK

Maximum	size	of	the	stack,	in	bytes.

see	the	system	getrlimit(2)	manual	for	details.

RLIM_INFINITY

see	::setrlimit

RLIM_SAVED_CUR

see	::setrlimit

RLIM_SAVED_MAX

see	::setrlimit

WNOHANG

see	::wait

WUNTRACED

see	::wait

Public	Class	Methods

Terminate	execution	immediately,	effectively	by

abort
Kernel::abort([msg])
Process::abort([msg])

calling	Kernel.exit(false).	If	msg	is	given,	it	is
written	to	STDERR	prior	to	terminating.

Returns	the	name	of	the	script	being	executed.	The
value	is	not	affected	by	assigning	a	new	value	to	$0.

This	method	first	appeared	in	Ruby	2.1	to	serve	as	a
global	variable	free	means	to	get	the	script	name.

Returns	the	time	resolution	returned	by	POSIX
::clock_getres()	function.

clock_id	specifies	a	kind	of	clock.	See	the	document
of	Process.clock_gettime	for	details.

clock_id	can	be	a	symbol	as	Process.clock_gettime.
However	the	result	may	not	be	accurate.	For
example,
+::clock_getres(:GETTIMEOFDAY_BASED_CLOCK_REALTIME)+
returns	1.0e-06	which	means	1	microsecond,	but
actual	resolution	can	be	more	coarse.

If	the	given	clock_id	is	not	supported,	Errno::EINVAL
is	raised.

unit	specifies	a	type	of	the	return	value.
Process.clock_getres	accepts	unit	as
Process.clock_gettime.	The	default	value,
:float_second,	is	also	same	as
Process.clock_gettime.

Process.clock_getres	also	accepts	:hertz	as	unit.
:hertz	means	a	the	reciprocal	of	:float_second.

:hertz	can	be	used	to	obtain	the	exact	value	of	the
clock	ticks	per	second	for	times()	function	and

argv0	→	frozen_string

clock_getres(clock_id	[,	unit])	→	number

CLOCKS_PER_SEC	for	clock()	function.

+::clock_getres(:TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID,
:hertz)+	returns	the	clock	ticks	per	second.

+::clock_getres(:CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID,
:hertz)+	returns	CLOCKS_PER_SEC.

p	Process.clock_getres(Process::CLOCK_MONOTONIC)

#=>	1.0e-09

Returns	a	time	returned	by	POSIX	::clock_gettime()
function.

p	Process.clock_gettime(Process::CLOCK_MONOTONIC)

#=>	896053.968060096

clock_id	specifies	a	kind	of	clock.	It	is	specifed	as	a
constant	which	begins	with	Process::CLOCK_	such	as
Process::CLOCK_REALTIME	and
Process::CLOCK_MONOTONIC.

The	supported	constants	depends	on	OS	and
version.	Ruby	provides	following	types	of	clock_id	if
available.

CLOCK_REALTIME
SUSv2	to	4,	Linux	2.5.63,	FreeBSD	3.0,
NetBSD	2.0,	OpenBSD	2.1

CLOCK_MONOTONIC
SUSv3	to	4,	Linux	2.5.63,	FreeBSD	3.0,
NetBSD	2.0,	OpenBSD	3.4

CLOCK_PROCESS_CPUTIME_ID
SUSv3	to	4,	Linux	2.5.63,	OpenBSD	5.4

clock_gettime(clock_id	[,	unit])	→	number

CLOCK_THREAD_CPUTIME_ID
SUSv3	to	4,	Linux	2.5.63,	FreeBSD	7.1,
OpenBSD	5.4

CLOCK_VIRTUAL
FreeBSD	3.0,	OpenBSD	2.1

CLOCK_PROF
FreeBSD	3.0,	OpenBSD	2.1

CLOCK_REALTIME_FAST
FreeBSD	8.1

CLOCK_REALTIME_PRECISE
FreeBSD	8.1

CLOCK_REALTIME_COARSE
Linux	2.6.32

CLOCK_REALTIME_ALARM
Linux	3.0

CLOCK_MONOTONIC_FAST
FreeBSD	8.1

CLOCK_MONOTONIC_PRECISE
FreeBSD	8.1

CLOCK_MONOTONIC_COARSE
Linux	2.6.32

CLOCK_MONOTONIC_RAW
Linux	2.6.28

CLOCK_BOOTTIME
Linux	2.6.39

CLOCK_BOOTTIME_ALARM
Linux	3.0

CLOCK_UPTIME
FreeBSD	7.0,	OpenBSD	5.5

CLOCK_UPTIME_FAST
FreeBSD	8.1

CLOCK_UPTIME_PRECISE
FreeBSD	8.1

CLOCK_SECOND
FreeBSD	8.1

Note	that	SUS	stands	for	Single	Unix	Specification.
SUS	contains	POSIX	and	::clock_gettime	is	defined
in	the	POSIX	part.	SUS	defines	CLOCK_REALTIME
mandatory	but	CLOCK_MONOTONIC,
CLOCK_PROCESS_CPUTIME_ID	and
CLOCK_THREAD_CPUTIME_ID	are	optional.

Also,	several	symbols	are	accepted	as	clock_id.
There	are	emulations	for	::clock_gettime().

For	example,	Process::CLOCK_REALTIME	is	defined
as	:GETTIMEOFDAY_BASED_CLOCK_REALTIME	when
::clock_gettime()	is	not	available.

Emulations	for	CLOCK_REALTIME:

:GETTIMEOFDAY_BASED_CLOCK_REALTIME
Use	gettimeofday()	defined	by	SUS.
(SUSv4	obsoleted	it,	though.)	The

resolution	is	1	microsecond.

:TIME_BASED_CLOCK_REALTIME
Use	time()	defined	by	ISO	C.	The	resolution
is	1	second.

Emulations	for	CLOCK_MONOTONIC:

:MACH_ABSOLUTE_TIME_BASED_CLOCK_MONOTONIC
Use	mach_absolute_time(),	available	on
Darwin.	The	resolution	is	CPU	dependent.

:TIMES_BASED_CLOCK_MONOTONIC
Use	the	result	value	of	times()	defined	by
POSIX.	POSIX	defines	it	as	“times()	shall
return	the	elapsed	real	time,	in	clock	ticks,
since	an	arbitrary	point	in	the	past	(for
example,	system	start-up	time)”.	For
example,	GNU/Linux	returns	a	value	based
on	jiffies	and	it	is	monotonic.	However,
4.4BSD	uses	gettimeofday()	and	it	is	not
monotonic.	(FreeBSD	uses
::clock_gettime(CLOCK_MONOTONIC)
instead,	though.)	The	resolution	is	the	clock
tick.	“getconf	CLK_TCK”	command	shows
the	clock	ticks	per	second.	(The	clock	ticks
per	second	is	defined	by	HZ	macro	in	older
systems.)	If	it	is	100	and	clock_t	is	32	bits
integer	type,	the	resolution	is	10	millisecond
and	cannot	represent	over	497	days.

Emulations	for	CLOCK_PROCESS_CPUTIME_ID:

:GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID
Use	getrusage()	defined	by	SUS.
getrusage()	is	used	with	RUSAGE_SELF	to
obtain	the	time	only	for	the	calling	process

(excluding	the	time	for	child	processes).
The	result	is	addition	of	user	time
(ru_utime)	and	system	time	(ru_stime).	The
resolution	is	1	microsecond.

:TIMES_BASED_CLOCK_PROCESS_CPUTIME_ID
Use	times()	defined	by	POSIX.	The	result	is
addition	of	user	time	(tms_utime)	and
system	time	(tms_stime).	tms_cutime	and
tms_cstime	are	ignored	to	exclude	the	time
for	child	processes.	The	resolution	is	the
clock	tick.	“getconf	CLK_TCK”	command
shows	the	clock	ticks	per	second.	(The
clock	ticks	per	second	is	defined	by	HZ
macro	in	older	systems.)	If	it	is	100,	the
resolution	is	10	millisecond.

:CLOCK_BASED_CLOCK_PROCESS_CPUTIME_ID
Use	clock()	defined	by	ISO	C.	The
resolution	is	1/CLOCKS_PER_SEC.
CLOCKS_PER_SEC	is	the	C-level	macro
defined	by	time.h.	SUS	defines
CLOCKS_PER_SEC	is	1000000.	Non-Unix
systems	may	define	it	a	different	value,
though.	If	CLOCKS_PER_SEC	is	1000000
as	SUS,	the	resolution	is	1	microsecond.	If
CLOCKS_PER_SEC	is	1000000	and
clock_t	is	32	bits	integer	type,	it	cannot
represent	over	72	minutes.

If	the	given	clock_id	is	not	supported,	Errno::EINVAL
is	raised.

unit	specifies	a	type	of	the	return	value.

:float_second
number	of	seconds	as	a	float	(default)

:float_millisecond
number	of	milliseconds	as	a	float

:float_microsecond
number	of	microseconds	as	a	float

:second
number	of	seconds	as	an	integer

:millisecond
number	of	milliseconds	as	an	integer

:microsecond
number	of	microseconds	as	an	integer

:nanosecond
number	of	nanoseconds	as	an	integer

The	underlying	function,	::clock_gettime(),	returns	a
number	of	nanoseconds.	Float	object	(IEEE	754
double)	is	not	enough	to	represent	the	return	value
for	CLOCK_REALTIME.	If	the	exact	nanoseconds
value	is	required,	use	:nanoseconds	as	the	unit.

The	origin	(zero)	of	the	returned	value	varies.	For
example,	system	start	up	time,	process	start	up	time,
the	Epoch,	etc.

The	origin	in	CLOCK_REALTIME	is	defined	as	the
Epoch	(1970-01-01	00:00:00	UTC).	But	some
systems	count	leap	seconds	and	others	doesn't.	So
the	result	can	be	interpreted	differently	across
systems.	Time.now	is	recommended	over
CLOCK_REALTIME.

Detach	the	process	from	controlling	terminal	and	run
in	the	background	as	system	daemon.	Unless	the
argument	nochdir	is	true	(i.e.	non	false),	it	changes
the	current	working	directory	to	the	root	(“/”).	Unless
the	argument	noclose	is	true,	daemon()	will	redirect
standard	input,	standard	output	and	standard	error	to
/dev/null.	Return	zero	on	success,	or	raise	one	of
Errno::*.

Some	operating	systems	retain	the	status	of
terminated	child	processes	until	the	parent	collects
that	status	(normally	using	some	variant	of	wait().	If
the	parent	never	collects	this	status,	the	child	stays
around	as	a	zombie	process.	Process::detach
prevents	this	by	setting	up	a	separate	Ruby	thread
whose	sole	job	is	to	reap	the	status	of	the	process
pid	when	it	terminates.	Use	detach	only	when	you	do
not	intent	to	explicitly	wait	for	the	child	to	terminate.

The	waiting	thread	returns	the	exit	status	of	the
detached	process	when	it	terminates,	so	you	can	use
Thread#join	to	know	the	result.	If	specified	pid	is	not
a	valid	child	process	ID,	the	thread	returns	nil
immediately.

The	waiting	thread	has	pid	method	which	returns	the
pid.

In	this	first	example,	we	don't	reap	the	first	child
process,	so	it	appears	as	a	zombie	in	the	process
status	display.

p1	=	fork	{	sleep	0.1	}

p2	=	fork	{	sleep	0.2	}

daemon()	→	0
daemon(nochdir=nil,noclose=nil)	→	0

detach(pid)	→	thread

Process.waitpid(p2)

sleep	2

system("ps	-ho	pid,state	-p	#{p1}")

produces:

27389	Z

In	the	next	example,	Process::detach	is	used	to	reap
the	child	automatically.

p1	=	fork	{	sleep	0.1	}

p2	=	fork	{	sleep	0.2	}

Process.detach(p1)

Process.waitpid(p2)

sleep	2

system("ps	-ho	pid,state	-p	#{p1}")

(produces	no	output)

Returns	the	effective	group	ID	for	this	process.	Not
available	on	all	platforms.

Process.egid			#=>	500

Sets	the	effective	group	ID	for	this	process.	Not
available	on	all	platforms.

Returns	the	effective	user	ID	for	this	process.

egid	→	fixnum
Process::GID.eid	→	fixnum
Process::Sys.geteid	→	fixnum

egid	=	fixnum	→	fixnum

euid	→	fixnum
Process::UID.eid	→	fixnum
Process::Sys.geteuid	→	fixnum

Process.euid			#=>	501

Sets	the	effective	user	ID	for	this	process.	Not
available	on	all	platforms.

Replaces	the	current	process	by	running	the	given
external	command,	which	can	take	one	of	the
following	forms:

exec(commandline)

command	line	string	which	is	passed	to	the
standard	shell

exec(cmdname,	arg1,	...)

command	name	and	one	or	more
arguments	(no	shell)

exec([cmdname,	argv0],	arg1,	...)

command	name,	argv	and	zero	or	more
arguments	(no	shell)

In	the	first	form,	the	string	is	taken	as	a	command	line
that	is	subject	to	shell	expansion	before	being
executed.

The	standard	shell	always	means	"/bin/sh"	on	Unix-
like	systems,	same	as	ENV["RUBYSHELL"]	(or
ENV["COMSPEC"]	on	Windows	NT	series),	and	similar.

If	the	string	from	the	first	form	(exec("command"))
follows	these	simple	rules:

no	meta	characters

no	shell	reserved	word	and	no	special	built-in

euid=	user

exec([env,]	command...	[,options])

http://0

Ruby	invokes	the	command	directly	without
shell

You	can	force	shell	invocation	by	adding	“;”	to	the
string	(because	“;”	is	a	meta	character).

Note	that	this	behavior	is	observable	by	pid	obtained
(return	value	of	spawn()	and	IO#pid	for	IO.popen)	is
the	pid	of	the	invoked	command,	not	shell.

In	the	second	form	(exec("command1",	"arg1",	...)),
the	first	is	taken	as	a	command	name	and	the	rest
are	passed	as	parameters	to	command	with	no	shell
expansion.

In	the	third	form	(exec(["command",	"argv0"],
"arg1",	...)),	starting	a	two-element	array	at	the
beginning	of	the	command,	the	first	element	is	the
command	to	be	executed,	and	the	second	argument
is	used	as	the	argv[0]	value,	which	may	show	up	in
process	listings.

In	order	to	execute	the	command,	one	of	the	exec(2)
system	calls	are	used,	so	the	running	command	may
inherit	some	of	the	environment	of	the	original
program	(including	open	file	descriptors).

This	behavior	is	modified	by	the	given	env	and
options	parameters.	See	::spawn	for	details.

If	the	command	fails	to	execute	(typically
Errno::ENOENT	when	it	was	not	found)	a
SystemCallError	exception	is	raised.

This	method	modifies	process	attributes	according	to
given	options	before	exec(2)	system	call.	See
::spawn	for	more	details	about	the	given	options.

The	modified	attributes	may	be	retained	when
exec(2)	system	call	fails.

For	example,	hard	resource	limits	are	not	restorable.

Consider	to	create	a	child	process	using	::spawn	or
Kernel#system	if	this	is	not	acceptable.

exec	"echo	*"							#	echoes	list	of	files	in	current	directory

#	never	get	here

exec	"echo",	"*"				#	echoes	an	asterisk

#	never	get	here

Initiates	the	termination	of	the	Ruby	script	by	raising
the	SystemExit	exception.	This	exception	may	be
caught.	The	optional	parameter	is	used	to	return	a
status	code	to	the	invoking	environment.	true	and
FALSE	of	status	means	success	and	failure
respectively.	The	interpretation	of	other	integer	values
are	system	dependent.

begin

		exit

		puts	"never	get	here"

rescue	SystemExit

		puts	"rescued	a	SystemExit	exception"

end

puts	"after	begin	block"

produces:

rescued	a	SystemExit	exception

after	begin	block

Just	prior	to	termination,	Ruby	executes	any	at_exit
functions	(see	Kernel::at_exit)	and	runs	any	object
finalizers	(see	ObjectSpace.define_finalizer).

exit(status=true)
Kernel::exit(status=true)
Process::exit(status=true)

at_exit	{	puts	"at_exit	function"	}

ObjectSpace.define_finalizer("string",		proc	{	puts	"in	finalizer"	})

exit

produces:

at_exit	function

in	finalizer

Exits	the	process	immediately.	No	exit	handlers	are
run.	status	is	returned	to	the	underlying	system	as
the	exit	status.

Process.exit!(true)

Creates	a	subprocess.	If	a	block	is	specified,	that
block	is	run	in	the	subprocess,	and	the	subprocess
terminates	with	a	status	of	zero.	Otherwise,	the	fork
call	returns	twice,	once	in	the	parent,	returning	the
process	ID	of	the	child,	and	once	in	the	child,
returning	nil.	The	child	process	can	exit	using
Kernel.exit!	to	avoid	running	any	at_exit	functions.
The	parent	process	should	use	Process.wait	to
collect	the	termination	statuses	of	its	children	or	use
Process.detach	to	register	disinterest	in	their	status;
otherwise,	the	operating	system	may	accumulate
zombie	processes.

The	thread	calling	fork	is	the	only	thread	in	the
created	child	process.	fork	doesn't	copy	other
threads.

If	fork	is	not	usable,	Process.respond_to?(:fork)

exit!(status=false)

fork	[{	block	}]	→	fixnum	or	nil
fork	[{	block	}]	→	fixnum	or	nil

returns	false.

Note	that	fork(2)	is	not	available	on	some	platforms
like	Windows	and	NetBSD	4.	Therefore	you	should
use	spawn()	instead	of	fork().

Returns	the	process	group	ID	for	the	given	process
id.	Not	available	on	all	platforms.

Process.getpgid(Process.ppid())			#=>	25527

Returns	the	process	group	ID	for	this	process.	Not
available	on	all	platforms.

Process.getpgid(0)			#=>	25527

Process.getpgrp						#=>	25527

Gets	the	scheduling	priority	for	specified	process,
process	group,	or	user.	kind	indicates	the	kind	of
entity	to	find:	one	of	Process::PRIO_PGRP,
Process::PRIO_USER,	or	Process::PRIO_PROCESS.
integer	is	an	id	indicating	the	particular	process,
process	group,	or	user	(an	id	of	0	means	current).
Lower	priorities	are	more	favorable	for	scheduling.
Not	available	on	all	platforms.

Process.getpriority(Process::PRIO_USER,	0)						#=>	19

Process.getpriority(Process::PRIO_PROCESS,	0)			#=>	19

Gets	the	resource	limit	of	the	process.	cur_limit

getpgid(pid)	→	integer

getpgrp	→	integer

getpriority(kind,	integer)	→	fixnum

getrlimit(resource)	→	[cur_limit,	max_limit]

means	current	(soft)	limit	and	max_limit	means
maximum	(hard)	limit.

resource	indicates	the	kind	of	resource	to	limit.	It	is
specified	as	a	symbol	such	as	:CORE,	a	string	such	as
"CORE"	or	a	constant	such	as	Process::RLIMIT_CORE.
See	::setrlimit	for	details.

cur_limit	and	max_limit	may	be
Process::RLIM_INFINITY,	Process::RLIM_SAVED_MAX	or
Process::RLIM_SAVED_CUR.	See	::setrlimit	and	the
system	getrlimit(2)	manual	for	details.

Returns	the	session	ID	for	for	the	given	process	id.	If
not	give,	return	current	process	sid.	Not	available	on
all	platforms.

Process.getsid()																#=>	27422

Process.getsid(0)															#=>	27422

Process.getsid(Process.pid())			#=>	27422

Returns	the	(real)	group	ID	for	this	process.

Process.gid			#=>	500

Sets	the	group	ID	for	this	process.

getsid()	→	integer
getsid(pid)	→	integer

gid	→	fixnum
Process::GID.rid	→	fixnum
Process::Sys.getgid	→	fixnum

gid=	fixnum	→	fixnum

groups	→	array

Get	an	Array	of	the	gids	of	groups	in	the
supplemental	group	access	list	for	this	process.

Process.groups			#=>	[27,	6,	10,	11]

Set	the	supplemental	group	access	list	to	the	given
Array	of	group	IDs.

Process.groups			#=>	[0,	1,	2,	3,	4,	6,	10,	11,	20,	26,	27]

Process.groups	=	[27,	6,	10,	11]			#=>	[27,	6,	10,	11]

Process.groups			#=>	[27,	6,	10,	11]

Initializes	the	supplemental	group	access	list	by
reading	the	system	group	database	and	using	all
groups	of	which	the	given	user	is	a	member.	The
group	with	the	specified	gid	is	also	added	to	the	list.
Returns	the	resulting	Array	of	the	gids	of	all	the
groups	in	the	supplementary	group	access	list.	Not
available	on	all	platforms.

Process.groups			#=>	[0,	1,	2,	3,	4,	6,	10,	11,	20,	26,	27]

Process.initgroups("mgranger",	30)			#=>	[30,	6,	10,	11]

Process.groups			#=>	[30,	6,	10,	11]

Sends	the	given	signal	to	the	specified	process	id(s)
if	pid	is	positive.	If	pid	is	zero	signal	is	sent	to	all
processes	whose	group	ID	is	equal	to	the	group	ID	of
the	process.	signal	may	be	an	integer	signal	number
or	a	POSIX	signal	name	(either	with	or	without	a	SIG
prefix).	If	signal	is	negative	(or	starts	with	a	minus
sign),	kills	process	groups	instead	of	processes.	Not

groups=	array	→	array

initgroups(username,	gid)	→	array

kill(signal,	pid,	...)	→	fixnum

all	signals	are	available	on	all	platforms.	The	keys
and	values	of	Signal.list	are	known	signal	names
and	numbers,	respectively.

pid	=	fork	do

			Signal.trap("HUP")	{	puts	"Ouch!";	exit	}

			#	...	do	some	work	...

end

#	...

Process.kill("HUP",	pid)

Process.wait

produces:

Ouch!

If	signal	is	an	integer	but	wrong	for	signal,
Errno::EINVAL	or	RangeError	will	be	raised.	Otherwise
unless	signal	is	a	String	or	a	Symbol,	and	a	known
signal	name,	ArgumentError	will	be	raised.

Also,	Errno::ESRCH	or	RangeError	for	invalid	pid,
Errno::EPERM	when	failed	because	of	no	privilege,	will
be	raised.	In	these	cases,	signals	may	have	been
sent	to	preceding	processes.

Returns	the	maximum	number	of	gids	allowed	in	the
supplemental	group	access	list.

Process.maxgroups			#=>	32

Sets	the	maximum	number	of	gids	allowed	in	the
supplemental	group	access	list.

maxgroups	→	fixnum

maxgroups=	fixnum	→	fixnum

pid	→	fixnum

Returns	the	process	id	of	this	process.	Not	available
on	all	platforms.

Process.pid			#=>	27415

Returns	the	process	id	of	the	parent	of	this	process.
Returns	untrustworthy	value	on	Win32/64.	Not
available	on	all	platforms.

puts	"I	am	#{Process.pid}"

Process.fork	{	puts	"Dad	is	#{Process.ppid}"	}

produces:

I	am	27417

Dad	is	27417

Sets	the	process	group	ID	of	pid	(0	indicates	this
process)	to	integer.	Not	available	on	all	platforms.

Equivalent	to	setpgid(0,0).	Not	available	on	all
platforms.

See	Process#getpriority.

Process.setpriority(Process::PRIO_USER,	0,	19)						#=>	0

Process.setpriority(Process::PRIO_PROCESS,	0,	19)			#=>	0

Process.getpriority(Process::PRIO_USER,	0)										#=>	19

Process.getpriority(Process::PRIO_PROCESS,	0)							#=>	19

ppid	→	fixnum

setpgid(pid,	integer)	→	0

setpgrp	→	0

setpriority(kind,	integer,	priority)	→	0

Sets	the	process	title	that	appears	on	the	ps(1)
command.	Not	necessarily	effective	on	all	platforms.
No	exception	will	be	raised	regardless	of	the	result,
nor	will	NotImplementedError	be	raised	even	if	the
platform	does	not	support	the	feature.

Calling	this	method	does	not	affect	the	value	of	$0.

Process.setproctitle('myapp:	worker	#%d'	%	worker_id)

This	method	first	appeared	in	Ruby	2.1	to	serve	as	a
global	variable	free	means	to	change	the	process
title.

Sets	the	resource	limit	of	the	process.	cur_limit
means	current	(soft)	limit	and	max_limit	means
maximum	(hard)	limit.

If	max_limit	is	not	given,	cur_limit	is	used.

resource	indicates	the	kind	of	resource	to	limit.	It
should	be	a	symbol	such	as	:CORE,	a	string	such	as
"CORE"	or	a	constant	such	as	Process::RLIMIT_CORE.
The	available	resources	are	OS	dependent.	Ruby
may	support	following	resources.

AS
total	available	memory	(bytes)	(SUSv3,
NetBSD,	FreeBSD,	OpenBSD	but	4.4BSD-
Lite)

CORE
core	size	(bytes)	(SUSv3)

setproctitle(string)	→	string

setrlimit(resource,	cur_limit,	max_limit)	→
nil
setrlimit(resource,	cur_limit)	→	nil

CPU
CPU	time	(seconds)	(SUSv3)

DATA
data	segment	(bytes)	(SUSv3)

FSIZE
file	size	(bytes)	(SUSv3)

MEMLOCK
total	size	for	mlock(2)	(bytes)	(4.4BSD,
GNU/Linux)

MSGQUEUE
allocation	for	POSIX	message	queues
(bytes)	(GNU/Linux)

NICE
ceiling	on	process's	nice(2)	value	(number)
(GNU/Linux)

NOFILE
file	descriptors	(number)	(SUSv3)

NPROC
number	of	processes	for	the	user	(number)
(4.4BSD,	GNU/Linux)

RSS
resident	memory	size	(bytes)	(4.2BSD,
GNU/Linux)

RTPRIO

ceiling	on	the	process's	real-time	priority
(number)	(GNU/Linux)

RTTIME
CPU	time	for	real-time	process	(us)
(GNU/Linux)

SBSIZE
all	socket	buffers	(bytes)	(NetBSD,
FreeBSD)

SIGPENDING
number	of	queued	signals	allowed	(signals)
(GNU/Linux)

STACK
stack	size	(bytes)	(SUSv3)

cur_limit	and	max_limit	may	be	:INFINITY,	"INFINITY"
or	Process::RLIM_INFINITY,	which	means	that	the
resource	is	not	limited.	They	may	be
Process::RLIM_SAVED_MAX,	Process::RLIM_SAVED_CUR
and	corresponding	symbols	and	strings	too.	See
system	setrlimit(2)	manual	for	details.

The	following	example	raises	the	soft	limit	of	core
size	to	the	hard	limit	to	try	to	make	core	dump
possible.

Process.setrlimit(:CORE,	Process.getrlimit(:CORE)[1])

Establishes	this	process	as	a	new	session	and
process	group	leader,	with	no	controlling	tty.	Returns
the	session	id.	Not	available	on	all	platforms.

setsid	→	fixnum

Process.setsid			#=>	27422

spawn	executes	specified	command	and	return	its
pid.

pid	=	spawn("tar	xf	ruby-2.0.0-p195.tar.bz2")

Process.wait	pid

pid	=	spawn(RbConfig.ruby,	"-eputs'Hello,	world!'")

Process.wait	pid

This	method	is	similar	to	Kernel#system	but	it	doesn't
wait	for	the	command	to	finish.

The	parent	process	should	use	Process.wait	to
collect	the	termination	status	of	its	child	or	use
Process.detach	to	register	disinterest	in	their	status;
otherwise,	the	operating	system	may	accumulate
zombie	processes.

spawn	has	bunch	of	options	to	specify	process
attributes:

env:	hash

		name	=>	val	:	set	the	environment	variable

		name	=>	nil	:	unset	the	environment	variable

command...:

		commandline																	:	command	line	string	which

		cmdname,	arg1,	...										:	command	name	and	one	or

		[cmdname,	argv0],	arg1,	...	:	command	name,	argv[0]	

options:	hash

		clearing	environment	variables:

				:unsetenv_others	=>	true			:	clear	environment	variables

				:unsetenv_others	=>	false		:	don't	clear	(default)

		process	group:

				:pgroup	=>	true	or	0	:	make	a	new	process	group

				:pgroup	=>	pgid						:	join	to	specified	process	group

				:pgroup	=>	nil							:	don't	change	the	process	group

spawn([env,]	command...	[,options])	→	pid
spawn([env,]	command...	[,options])	→	pid

		create	new	process	group:	Windows	only

				:new_pgroup	=>	true		:	the	new	process	is	the	root

				:new_pgroup	=>	false	:	don't	create	a	new	process	group	(default)

		resource	limit:	resourcename	is	core,	cpu,	data,	etc.		See	Process.setrlimit.

				:rlimit_resourcename	=>	limit

				:rlimit_resourcename	=>	[cur_limit,	max_limit]

		umask:

				:umask	=>	int

		redirection:

				key:

						FD														:	single	file	descriptor	in	child	process

						[FD,	FD,	...]			:	multiple	file	descriptor	in	child	process

				value:

						FD																								:	redirect	to	the	file	descriptor	in	parent	process

						string																				:	redirect	to	file	with	open(string,	"r"	or	"w")

						[string]																		:	redirect	to	file	with	open(string,	File::RDONLY)

						[string,	open_mode]							:	redirect	to	file	with	open(string,	open_mode,	0644)

						[string,	open_mode,	perm]	:	redirect	to	file	with	open(string,	open_mode,	perm)

						[:child,	FD]														:	redirect	to	the	redirected	file	descriptor

						:close																				:	close	the	file	descriptor	in	child	process

				FD	is	one	of	follows

						:in					:	the	file	descriptor	0	which	is	the	standard	input

						:out				:	the	file	descriptor	1	which	is	the	standard	output

						:err				:	the	file	descriptor	2	which	is	the	standard	error

						integer	:	the	file	descriptor	of	specified	the	integer

						io						:	the	file	descriptor	specified	as	io.fileno

		file	descriptor	inheritance:	close	non-redirected	non-standard	fds	(3,	4,	5,	...)	or	not

				:close_others	=>	true		:	don't	inherit

		current	directory:

				:chdir	=>	str

		The	'cmdname,	arg1,	...'	form	does	not	use	the	shell

		on	different	OSes,	different	things	are	provided	as	

		commands.	An	example	of	this	is	'echo',	which	is	a	built

		on	Windows,	but	is	a	normal	program	on	Linux	and	Mac

		This	means	that	%xProcess.spawn	'echo',	'%Path%'`	will

		the	contents	of	the	%x%Path%`	environment	variable	on

		but	%xProcess.spawn	'echo',	'$PATH'`	prints	the	literal

If	a	hash	is	given	as	env,	the	environment	is	updated
by	env	before	exec(2)	in	the	child	process.	If	a	pair	in
env	has	nil	as	the	value,	the	variable	is	deleted.

#	set	FOO	as	BAR	and	unset	BAZ.

pid	=	spawn({"FOO"=>"BAR",	"BAZ"=>nil},	command)

If	a	hash	is	given	as	options,	it	specifies	process
group,	create	new	process	group,	resource	limit,
current	directory,	umask	and	redirects	for	the	child
process.	Also,	it	can	be	specified	to	clear
environment	variables.

The	:unsetenv_others	key	in	options	specifies	to
clear	environment	variables,	other	than	specified	by
env.

pid	=	spawn(command,	:unsetenv_others=>true)	#	no	environment	variable

pid	=	spawn({"FOO"=>"BAR"},	command,	:unsetenv_others=

The	:pgroup	key	in	options	specifies	a	process
group.	The	corresponding	value	should	be	true,	zero
or	positive	integer.	true	and	zero	means	the	process
should	be	a	process	leader	of	a	new	process	group.
Other	values	specifies	a	process	group	to	be
belongs.

pid	=	spawn(command,	:pgroup=>true)	#	process	leader

pid	=	spawn(command,	:pgroup=>10)	#	belongs	to	the	process	group	10

The	:new_pgroup	key	in	options	specifies	to	pass
CREATE_NEW_PROCESS_GROUP	flag	to	CreateProcessW()
that	is	Windows	API.	This	option	is	only	for	Windows.
true	means	the	new	process	is	the	root	process	of
the	new	process	group.	The	new	process	has
CTRL+C	disabled.	This	flag	is	necessary	for
Process.kill(:SIGINT,	pid)	on	the	subprocess.
:new_pgroup	is	false	by	default.

pid	=	spawn(command,	:new_pgroup=>true)		#	new	process	group

pid	=	spawn(command,	:new_pgroup=>false)	#	same	process	group

The	:rlimit_foo	key	specifies	a	resource	limit.	foo

should	be	one	of	resource	types	such	as	core.	The
corresponding	value	should	be	an	integer	or	an	array
which	have	one	or	two	integers:	same	as	cur_limit
and	max_limit	arguments	for	::setrlimit.

cur,	max	=	Process.getrlimit(:CORE)

pid	=	spawn(command,	:rlimit_core=>[0,max])	#	disable	core	temporary.

pid	=	spawn(command,	:rlimit_core=>max)	#	enable	core	dump

pid	=	spawn(command,	:rlimit_core=>0)	#	never	dump	core.

The	:umask	key	in	options	specifies	the	umask.

pid	=	spawn(command,	:umask=>077)

The	:in,	:out,	:err,	a	fixnum,	an	IO	and	an	array	key
specifies	a	redirection.	The	redirection	maps	a	file
descriptor	in	the	child	process.

For	example,	stderr	can	be	merged	into	stdout	as
follows:

pid	=	spawn(command,	:err=>:out)

pid	=	spawn(command,	2=>1)

pid	=	spawn(command,	STDERR=>:out)

pid	=	spawn(command,	STDERR=>STDOUT)

The	hash	keys	specifies	a	file	descriptor	in	the	child
process	started	by	spawn.	:err,	2	and	STDERR
specifies	the	standard	error	stream	(stderr).

The	hash	values	specifies	a	file	descriptor	in	the
parent	process	which	invokes	spawn.	:out,	1	and
STDOUT	specifies	the	standard	output	stream
(stdout).

In	the	above	example,	the	standard	output	in	the
child	process	is	not	specified.	So	it	is	inherited	from
the	parent	process.

The	standard	input	stream	(stdin)	can	be	specified	by
:in,	0	and	STDIN.

A	filename	can	be	specified	as	a	hash	value.

pid	=	spawn(command,	:in=>"/dev/null")	#	read	mode

pid	=	spawn(command,	:out=>"/dev/null")	#	write	mode

pid	=	spawn(command,	:err=>"log")	#	write	mode

pid	=	spawn(command,	[:out,	:err]=>"/dev/null")	#	write	mode

pid	=	spawn(command,	3=>"/dev/null")	#	read	mode

For	stdout	and	stderr	(and	combination	of	them),	it	is
opened	in	write	mode.	Otherwise	read	mode	is	used.

For	specifying	flags	and	permission	of	file	creation
explicitly,	an	array	is	used	instead.

pid	=	spawn(command,	:in=>["file"])	#	read	mode	is	assumed

pid	=	spawn(command,	:in=>["file",	"r"])

pid	=	spawn(command,	:out=>["log",	"w"])	#	0644	assumed

pid	=	spawn(command,	:out=>["log",	"w",	0600])

pid	=	spawn(command,	:out=>["log",	File::WRONLY|File::

The	array	specifies	a	filename,	flags	and	permission.
The	flags	can	be	a	string	or	an	integer.	If	the	flags	is
omitted	or	nil,	File::RDONLY	is	assumed.	The
permission	should	be	an	integer.	If	the	permission	is
omitted	or	nil,	0644	is	assumed.

If	an	array	of	IOs	and	integers	are	specified	as	a
hash	key,	all	the	elements	are	redirected.

#	stdout	and	stderr	is	redirected	to	log	file.

#	The	file	"log"	is	opened	just	once.

pid	=	spawn(command,	[:out,	:err]=>["log",	"w"])

Another	way	to	merge	multiple	file	descriptors	is
[:child,	fd].	[:child,	fd]	means	the	file	descriptor	in	the
child	process.	This	is	different	from	fd.	For	example,
:err=>:out	means	redirecting	child	stderr	to	parent
stdout.	But	:err=>[:child,	:out]	means	redirecting	child
stderr	to	child	stdout.	They	differ	if	stdout	is	redirected
in	the	child	process	as	follows.

#	stdout	and	stderr	is	redirected	to	log	file.

#	The	file	"log"	is	opened	just	once.

pid	=	spawn(command,	:out=>["log",	"w"],	:err=>[:child

[:child,	:out]	can	be	used	to	merge	stderr	into	stdout
in	IO.popen.	In	this	case,	IO.popen	redirects	stdout	to
a	pipe	in	the	child	process	and	[:child,	:out]	refers	the
redirected	stdout.

io	=	IO.popen(["sh",	"-c",	"echo	out;	echo	err	>&2",	:

p	io.read	#=>	"out\nerr\n"

The	:chdir	key	in	options	specifies	the	current
directory.

pid	=	spawn(command,	:chdir=>"/var/tmp")

spawn	closes	all	non-standard	unspecified
descriptors	by	default.	The	“standard”	descriptors	are
0,	1	and	2.	This	behavior	is	specified	by
:close_others	option.	:close_others	doesn't	affect	the
standard	descriptors	which	are	closed	only	if	:close	is
specified	explicitly.

pid	=	spawn(command,	:close_others=>true)		#	close	3,4,5,...	(default)

pid	=	spawn(command,	:close_others=>false)	#	don't	close	3,4,5,...

:close_others	is	true	by	default	for	spawn	and
IO.popen.

Note	that	fds	which	close-on-exec	flag	is	already	set
are	closed	regardless	of	:close_others	option.

So	IO.pipe	and	spawn	can	be	used	as	IO.popen.

#	similar	to	r	=	IO.popen(command)

r,	w	=	IO.pipe

pid	=	spawn(command,	:out=>w)			#	r,	w	is	closed	in	the	child	process.

w.close

:close	is	specified	as	a	hash	value	to	close	a	fd
individually.

f	=	open(foo)

system(command,	f=>:close)								#	don't	inherit	f.

If	a	file	descriptor	need	to	be	inherited,	io=>io	can	be
used.

#	valgrind	has	--log-fd	option	for	log	destination.

#	log_w=>log_w	indicates	log_w.fileno	inherits	to	child	process.

log_r,	log_w	=	IO.pipe

pid	=	spawn("valgrind",	"--log-fd=#{log_w.fileno}",	"echo"

log_w.close

p	log_r.read

It	is	also	possible	to	exchange	file	descriptors.

pid	=	spawn(command,	:out=>:err,	:err=>:out)

The	hash	keys	specify	file	descriptors	in	the	child
process.	The	hash	values	specifies	file	descriptors	in
the	parent	process.	So	the	above	specifies
exchanging	stdout	and	stderr.	Internally,	spawn	uses
an	extra	file	descriptor	to	resolve	such	cyclic	file
descriptor	mapping.

See	Kernel.exec	for	the	standard	shell.

Returns	a	Tms	structure	(see	Process::Tms)	that
contains	user	and	system	CPU	times	for	this	process,
and	also	for	children	processes.

t	=	Process.times

[t.utime,	t.stime,	t.cutime,	t.cstime]			#=>	[0.0,	0.02,	0.00,	0.00]

times	→	aProcessTms

Returns	the	(real)	user	ID	of	this	process.

Process.uid			#=>	501

Sets	the	(user)	user	ID	for	this	process.	Not	available
on	all	platforms.

Waits	for	a	child	process	to	exit,	returns	its	process
id,	and	sets	$?	to	a	Process::Status	object	containing
information	on	that	process.	Which	child	it	waits	on
depends	on	the	value	of	pid:

>	0
Waits	for	the	child	whose	process	ID	equals	pid.

0
Waits	for	any	child	whose	process	group	ID	equals
that	of	the	calling	process.

-1
Waits	for	any	child	process	(the	default	if	no	pid	is
given).

<	-1
Waits	for	any	child	whose	process	group	ID	equals
the	absolute	value	of	pid.

The	flags	argument	may	be	a	logical	or	of	the	flag
values	Process::WNOHANG	(do	not	block	if	no	child

uid	→	fixnum
Process::UID.rid	→	fixnum
Process::Sys.getuid	→	fixnum

uid=	user	→	numeric

wait()	→	fixnum
wait(pid=-1,	flags=0)	→	fixnum
waitpid(pid=-1,	flags=0)	→	fixnum

available)	or	Process::WUNTRACED	(return	stopped
children	that	haven't	been	reported).	Not	all	flags	are
available	on	all	platforms,	but	a	flag	value	of	zero	will
work	on	all	platforms.

Calling	this	method	raises	a	SystemCallError	if	there
are	no	child	processes.	Not	available	on	all	platforms.

include	Process

fork	{	exit	99	}																	#=>	27429

wait																													#=>	27429

$?.exitstatus																				#=>	99

pid	=	fork	{	sleep	3	}											#=>	27440

Time.now																									#=>	2008-03-08	19:56:16	+0900

waitpid(pid,	Process::WNOHANG)			#=>	nil

Time.now																									#=>	2008-03-08	19:56:16	+0900

waitpid(pid,	0)																		#=>	27440

Time.now																									#=>	2008-03-08	19:56:19	+0900

Waits	for	a	child	process	to	exit	(see	::waitpid	for
exact	semantics)	and	returns	an	array	containing	the
process	id	and	the	exit	status	(a	Process::Status
object)	of	that	child.	Raises	a	SystemCallError	if	there
are	no	child	processes.

Process.fork	{	exit	99	}			#=>	27437

pid,	status	=	Process.wait2

pid																								#=>	27437

status.exitstatus										#=>	99

Waits	for	all	children,	returning	an	array	of	pid/status
pairs	(where	status	is	a	Process::Status	object).

fork	{	sleep	0.2;	exit	2	}			#=>	27432

wait2(pid=-1,	flags=0)	→	[pid,	status]
waitpid2(pid=-1,	flags=0)	→	[pid,	status]

waitall	→	[[pid1,status1],	...]

fork	{	sleep	0.1;	exit	1	}			#=>	27433

fork	{												exit	0	}			#=>	27434

p	Process.waitall

produces:

[[30982,	#<Process::Status:	pid	30982	exit	0>],

	[30979,	#<Process::Status:	pid	30979	exit	1>],

	[30976,	#<Process::Status:	pid	30976	exit	2>]]

Waits	for	a	child	process	to	exit,	returns	its	process
id,	and	sets	$?	to	a	Process::Status	object	containing
information	on	that	process.	Which	child	it	waits	on
depends	on	the	value	of	pid:

>	0
Waits	for	the	child	whose	process	ID	equals	pid.

0
Waits	for	any	child	whose	process	group	ID	equals
that	of	the	calling	process.

-1
Waits	for	any	child	process	(the	default	if	no	pid	is
given).

<	-1
Waits	for	any	child	whose	process	group	ID	equals
the	absolute	value	of	pid.

The	flags	argument	may	be	a	logical	or	of	the	flag
values	Process::WNOHANG	(do	not	block	if	no	child
available)	or	Process::WUNTRACED	(return	stopped
children	that	haven't	been	reported).	Not	all	flags	are
available	on	all	platforms,	but	a	flag	value	of	zero	will
work	on	all	platforms.

wait()	→	fixnum
wait(pid=-1,	flags=0)	→	fixnum
waitpid(pid=-1,	flags=0)	→	fixnum

Calling	this	method	raises	a	SystemCallError	if	there
are	no	child	processes.	Not	available	on	all	platforms.

include	Process

fork	{	exit	99	}																	#=>	27429

wait																													#=>	27429

$?.exitstatus																				#=>	99

pid	=	fork	{	sleep	3	}											#=>	27440

Time.now																									#=>	2008-03-08	19:56:16	+0900

waitpid(pid,	Process::WNOHANG)			#=>	nil

Time.now																									#=>	2008-03-08	19:56:16	+0900

waitpid(pid,	0)																		#=>	27440

Time.now																									#=>	2008-03-08	19:56:19	+0900

Waits	for	a	child	process	to	exit	(see	::waitpid	for
exact	semantics)	and	returns	an	array	containing	the
process	id	and	the	exit	status	(a	Process::Status
object)	of	that	child.	Raises	a	SystemCallError	if	there
are	no	child	processes.

Process.fork	{	exit	99	}			#=>	27437

pid,	status	=	Process.wait2

pid																								#=>	27437

status.exitstatus										#=>	99

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

wait2(pid=-1,	flags=0)	→	[pid,	status]
waitpid2(pid=-1,	flags=0)	→	[pid,	status]

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

module	Process::GID
The	Process::GID	module	contains	a	collection	of
module	functions	which	can	be	used	to	portably
get,	set,	and	switch	the	current	process's	real,
effective,	and	saved	group	IDs.

In	Files
process.c

Public	Class	Methods

Change	the	current	process's	real	and	effective	group
ID	to	that	specified	by	group.	Returns	the	new	group
ID.	Not	available	on	all	platforms.

[Process.gid,	Process.egid]										#=>	[0,	0]

Process::GID.change_privilege(33)				#=>	33

[Process.gid,	Process.egid]										#=>	[33,	33]

Returns	the	effective	group	ID	for	this	process.	Not
available	on	all	platforms.

Process.egid			#=>	500

Process::GID.change_privilege(group)	→
fixnum

egid	→	fixnum
Process::GID.eid	→	fixnum
Process::Sys.geteid	→	fixnum

Get	the	group	ID	by	the	name.	If	the	group	is	not
found,	ArgumentError	will	be	raised.

Process::GID.from_name("wheel")	#=>	0

Process::GID.from_name("nosuchgroup")	#=>	can't	find	group	for	nosuchgroup	(ArgumentError)

Set	the	effective	group	ID,	and	if	possible,	the	saved
group	ID	of	the	process	to	the	given	group.	Returns
the	new	effective	group	ID.	Not	available	on	all
platforms.

[Process.gid,	Process.egid]										#=>	[0,	0]

Process::GID.grant_privilege(31)					#=>	33

[Process.gid,	Process.egid]										#=>	[0,	33]

Exchange	real	and	effective	group	IDs	and	return	the
new	effective	group	ID.	Not	available	on	all	platforms.

[Process.gid,	Process.egid]			#=>	[0,	33]

Process::GID.re_exchange						#=>	0

[Process.gid,	Process.egid]			#=>	[33,	0]

Returns	true	if	the	real	and	effective	group	IDs	of	a
process	may	be	exchanged	on	the	current	platform.

Process::GID.from_name(name)	→	gid

Process::GID.grant_privilege(group)	→
fixnum
Process::GID.eid	=	group	→	fixnum

Process::GID.re_exchange	→	fixnum

Process::GID.re_exchangeable?	→	true	or
false

Returns	the	(real)	group	ID	for	this	process.

Process.gid			#=>	500

Returns	true	if	the	current	platform	has	saved	group
ID	functionality.

Switch	the	effective	and	real	group	IDs	of	the	current
process.	If	a	block	is	given,	the	group	IDs	will	be
switched	back	after	the	block	is	executed.	Returns
the	new	effective	group	ID	if	called	without	a	block,
and	the	return	value	of	the	block	if	one	is	given.

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

gid	→	fixnum
Process::GID.rid	→	fixnum
Process::Sys.getgid	→	fixnum

Process::GID.sid_available?	→	true	or	false

Process::GID.switch	→	fixnum
Process::GID.switch	{||	block}	→	object

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	Process::Status
Process::Status	encapsulates	the	information	on
the	status	of	a	running	or	terminated	system
process.	The	built-in	variable	$?	is	either	nil	or	a
Process::Status	object.

fork	{	exit	99	}			#=>	26557

Process.wait							#=>	26557

$?.class											#=>	Process::Status

$?.to_i												#=>	25344

$?	>>	8												#=>	99

$?.stopped?								#=>	false

$?.exited?									#=>	true

$?.exitstatus						#=>	99

Posix	systems	record	information	on	processes
using	a	16-bit	integer.	The	lower	bits	record	the
process	status	(stopped,	exited,	signaled)	and
the	upper	bits	possibly	contain	additional
information	(for	example	the	program's	return
code	in	the	case	of	exited	processes).	Pre	Ruby
1.8,	these	bits	were	exposed	directly	to	the	Ruby
program.	Ruby	now	encapsulates	these	in	a
Process::Status	object.	To	maximize
compatibility,	however,	these	objects	retain	a	bit-
oriented	interface.	In	the	descriptions	that	follow,
when	we	talk	about	the	integer	value	of	stat,
we're	referring	to	this	16	bit	value.

In	Files

process.c

Parent
Object

Public	Instance	Methods

Logical	AND	of	the	bits	in	stat	with	num.

fork	{	exit	0x37	}

Process.wait

sprintf('%04x',	$?.to_i)							#=>	"3700"

sprintf('%04x',	$?	&	0x1e00)			#=>	"1600"

Returns	true	if	the	integer	value	of	stat	equals	other.

Shift	the	bits	in	stat	right	num	places.

fork	{	exit	99	}			#=>	26563

Process.wait							#=>	26563

$?.to_i												#=>	25344

$?	>>	8												#=>	99

Returns	true	if	stat	generated	a	coredump	when	it
terminated.	Not	available	on	all	platforms.

stat	&	num	→	fixnum

stat	==	other	→	true	or	false

stat	>>	num	→	fixnum

coredump?	→	true	or	false

exited?	→	true	or	false

Returns	true	if	stat	exited	normally	(for	example
using	an	exit()	call	or	finishing	the	program).

Returns	the	least	significant	eight	bits	of	the	return
code	of	stat.	Only	available	if	exited?	is	true.

fork	{	}											#=>	26572

Process.wait							#=>	26572

$?.exited?									#=>	true

$?.exitstatus						#=>	0

fork	{	exit	99	}			#=>	26573

Process.wait							#=>	26573

$?.exited?									#=>	true

$?.exitstatus						#=>	99

Override	the	inspection	method.

system("false")

p	$?.inspect	#=>	"#<Process::Status:	pid	12861	exit	1>"

Returns	the	process	ID	that	this	status	object
represents.

fork	{	exit	}			#=>	26569

Process.wait				#=>	26569

$?.pid										#=>	26569

Returns	true	if	stat	terminated	because	of	an
uncaught	signal.

exitstatus	→	fixnum	or	nil

inspect	→	string

pid	→	fixnum

signaled?	→	true	or	false

Returns	true	if	this	process	is	stopped.	This	is	only
returned	if	the	corresponding	wait	call	had	the
WUNTRACED	flag	set.

Returns	the	number	of	the	signal	that	caused	stat	to
stop	(or	nil	if	self	is	not	stopped).

Returns	true	if	stat	is	successful,	false	if	not.	Returns
nil	if	exited?	is	not	true.

Returns	the	number	of	the	signal	that	caused	stat	to
terminate	(or	nil	if	self	was	not	terminated	by	an
uncaught	signal).

Returns	the	bits	in	stat	as	a	Fixnum.	Poking	around	in
these	bits	is	platform	dependent.

fork	{	exit	0xab	}									#=>	26566

Process.wait															#=>	26566

sprintf('%04x',	$?.to_i)			#=>	"ab00"

Show	pid	and	exit	status	as	a	string.

system("false")

p	$?.to_s									#=>	"pid	12766	exit	1"

stopped?	→	true	or	false

stopsig	→	fixnum	or	nil

success?	→	true,	false	or	nil

termsig	→	fixnum	or	nil

to_i	→	fixnum
to_int	→	fixnum

to_s	→	string

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

module	Process::Sys
The	Process::Sys	module	contains	UID	and	GID
functions	which	provide	direct	bindings	to	the
system	calls	of	the	same	names	instead	of	the
more-portable	versions	of	the	same	functionality
found	in	the	Process,	Process::UID,	and
Process::GID	modules.

In	Files
process.c

Public	Class	Methods

Returns	the	effective	group	ID	for	this	process.	Not
available	on	all	platforms.

Process.egid			#=>	500

Returns	the	effective	user	ID	for	this	process.

Process.euid			#=>	501

egid	→	fixnum
Process::GID.eid	→	fixnum
Process::Sys.geteid	→	fixnum

euid	→	fixnum
Process::UID.eid	→	fixnum
Process::Sys.geteuid	→	fixnum

Returns	the	(real)	group	ID	for	this	process.

Process.gid			#=>	500

Returns	the	(real)	user	ID	of	this	process.

Process.uid			#=>	501

Returns	true	if	the	process	was	created	as	a	result	of
an	execve(2)	system	call	which	had	either	of	the
setuid	or	setgid	bits	set	(and	extra	privileges	were
given	as	a	result)	or	if	it	has	changed	any	of	its	real,
effective	or	saved	user	or	group	IDs	since	it	began
execution.

Set	the	effective	group	ID	of	the	calling	process	to
group.	Not	available	on	all	platforms.

Set	the	effective	user	ID	of	the	calling	process	to
user.	Not	available	on	all	platforms.

gid	→	fixnum
Process::GID.rid	→	fixnum
Process::Sys.getgid	→	fixnum

uid	→	fixnum
Process::UID.rid	→	fixnum
Process::Sys.getuid	→	fixnum

Process::Sys.issetugid	→	true	or	false

Process::Sys.setegid(group)	→	nil

Process::Sys.seteuid(user)	→	nil

Process::Sys.setgid(group)	→	nil

Set	the	group	ID	of	the	current	process	to	group.	Not
available	on	all	platforms.

Sets	the	(group)	real	and/or	effective	group	IDs	of	the
current	process	to	rid	and	eid,	respectively.	A	value	of
-1	for	either	means	to	leave	that	ID	unchanged.	Not
available	on	all	platforms.

Sets	the	(group)	real,	effective,	and	saved	user	IDs	of
the	current	process	to	rid,	eid,	and	sid	respectively.	A
value	of	-1	for	any	value	means	to	leave	that	ID
unchanged.	Not	available	on	all	platforms.

Sets	the	(user)	real,	effective,	and	saved	user	IDs	of
the	current	process	to	rid,	eid,	and	sid	respectively.	A
value	of	-1	for	any	value	means	to	leave	that	ID
unchanged.	Not	available	on	all	platforms.

Sets	the	(user)	real	and/or	effective	user	IDs	of	the
current	process	to	rid	and	eid,	respectively.	A	value	of
-1	for	either	means	to	leave	that	ID	unchanged.	Not
available	on	all	platforms.

Set	the	real	group	ID	of	the	calling	process	to	group.
Not	available	on	all	platforms.

Process::Sys.setregid(rid,	eid)	→	nil

Process::Sys.setresgid(rid,	eid,	sid)	→	nil

Process::Sys.setresuid(rid,	eid,	sid)	→	nil

Process::Sys.setreuid(rid,	eid)	→	nil

Process::Sys.setrgid(group)	→	nil

Set	the	real	user	ID	of	the	calling	process	to	user.	Not
available	on	all	platforms.

Set	the	user	ID	of	the	current	process	to	user.	Not
available	on	all	platforms.

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

Process::Sys.setruid(user)	→	nil

Process::Sys.setuid(user)	→	nil

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

module	Process::UID
The	Process::UID	module	contains	a	collection	of
module	functions	which	can	be	used	to	portably
get,	set,	and	switch	the	current	process's	real,
effective,	and	saved	user	IDs.

In	Files
process.c

Public	Class	Methods

Change	the	current	process's	real	and	effective	user
ID	to	that	specified	by	user.	Returns	the	new	user	ID.
Not	available	on	all	platforms.

[Process.uid,	Process.euid]										#=>	[0,	0]

Process::UID.change_privilege(31)				#=>	31

[Process.uid,	Process.euid]										#=>	[31,	31]

Returns	the	effective	user	ID	for	this	process.

Process.euid			#=>	501

Process::UID.change_privilege(user)	→
fixnum

euid	→	fixnum
Process::UID.eid	→	fixnum
Process::Sys.geteuid	→	fixnum

Get	the	user	ID	by	the	name.	If	the	user	is	not	found,
ArgumentError	will	be	raised.

Process::UID.from_name("root")	#=>	0

Process::UID.from_name("nosuchuser")	#=>	can't	find	user	for	nosuchuser	(ArgumentError)

Set	the	effective	user	ID,	and	if	possible,	the	saved
user	ID	of	the	process	to	the	given	user.	Returns	the
new	effective	user	ID.	Not	available	on	all	platforms.

[Process.uid,	Process.euid]										#=>	[0,	0]

Process::UID.grant_privilege(31)					#=>	31

[Process.uid,	Process.euid]										#=>	[0,	31]

Exchange	real	and	effective	user	IDs	and	return	the
new	effective	user	ID.	Not	available	on	all	platforms.

[Process.uid,	Process.euid]			#=>	[0,	31]

Process::UID.re_exchange						#=>	0

[Process.uid,	Process.euid]			#=>	[31,	0]

Returns	true	if	the	real	and	effective	user	IDs	of	a
process	may	be	exchanged	on	the	current	platform.

Process::UID.from_name(name)	→	uid

Process::UID.grant_privilege(user)	→	fixnum
Process::UID.eid=	user	→	fixnum

Process::UID.re_exchange	→	fixnum

Process::UID.re_exchangeable?	→	true	or
false

uid	→	fixnum
Process::UID.rid	→	fixnum

Returns	the	(real)	user	ID	of	this	process.

Process.uid			#=>	501

Returns	true	if	the	current	platform	has	saved	user	ID
functionality.

Switch	the	effective	and	real	user	IDs	of	the	current
process.	If	a	block	is	given,	the	user	IDs	will	be
switched	back	after	the	block	is	executed.	Returns
the	new	effective	user	ID	if	called	without	a	block,	and
the	return	value	of	the	block	if	one	is	given.

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

Process::Sys.getuid	→	fixnum

Process::UID.sid_available?	→	true	or	false

Process::UID.switch	→	fixnum
Process::UID.switch	{||	block}	→	object

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	Process::Waiter

In	Files
process.c

Parent
Thread

Public	Instance	Methods

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

pid()

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	Random
Random	provides	an	interface	to	Ruby's
pseudo-random	number	generator,	or	PRNG.
The	PRNG	produces	a	deterministic	sequence
of	bits	which	approximate	true	randomness.	The
sequence	may	be	represented	by	integers,
floats,	or	binary	strings.

The	generator	may	be	initialized	with	either	a
system-generated	or	user-supplied	seed	value
by	using	::srand.

The	class	method	#rand	provides	the	base
functionality	of	Kernel#rand	along	with	better
handling	of	floating	point	values.	These	are	both
interfaces	to	Random::DEFAULT,	the	Ruby
system	PRNG.

::new	will	create	a	new	PRNG	with	a	state
independent	of	Random::DEFAULT,	allowing
multiple	generators	with	different	seed	values	or
sequence	positions	to	exist	simultaneously.
Random	objects	can	be	marshaled,	allowing
sequences	to	be	saved	and	resumed.

PRNGs	are	currently	implemented	as	a	modified
Mersenne	Twister	with	a	period	of	2**19937-1.

In	Files

random.c

Parent
Object

Constants

DEFAULT

Direct	access	to	Ruby's	Pseudorandom	number
generator	(PRNG).

Public	Class	Methods

Creates	a	new	PRNG	using	seed	to	set	the	initial
state.	If	seed	is	omitted,	the	generator	is	initialized
with	::new_seed.

See	::srand	for	more	information	on	the	use	of	seed
values.

Returns	an	arbitrary	seed	value.	This	is	used	by
::new	when	no	seed	value	is	specified	as	an
argument.

Random.new_seed		#=>	115032730400174366788466674494640623225

new(seed	=	Random.new_seed)	→	prng

new_seed	→	integer

rand	→	float

Alias	of	Random::DEFAULT.rand.

Seeds	the	system	pseudo-random	number	generator,
Random::DEFAULT,	with	number.	The	previous	seed
value	is	returned.

If	number	is	omitted,	seeds	the	generator	using	a
source	of	entropy	provided	by	the	operating	system,
if	available	(/dev/urandom	on	Unix	systems	or	the
RSA	cryptographic	provider	on	Windows),	which	is
then	combined	with	the	time,	the	process	id,	and	a
sequence	number.

srand	may	be	used	to	ensure	repeatable	sequences
of	pseudo-random	numbers	between	different	runs	of
the	program.	By	setting	the	seed	to	a	known	value,
programs	can	be	made	deterministic	during	testing.

srand	1234															#	=>	268519324636777531569100071560086917274

[rand,	rand]											#	=>	[0.1915194503788923,	0.6221087710398319]

[rand(10),	rand(1000)]	#	=>	[4,	664]

srand	1234															#	=>	1234

[rand,	rand]											#	=>	[0.1915194503788923,	0.6221087710398319]

Public	Instance	Methods

Returns	true	if	the	two	generators	have	the	same
internal	state,	otherwise	false.	Equivalent	generators
will	return	the	same	sequence	of	pseudo-random
numbers.	Two	generators	will	generally	have	the
same	state	only	if	they	were	initialized	with	the	same

rand(max)	→	number

srand(number	=	Random.new_seed)	→
old_seed

prng1	==	prng2	→	true	or	false

seed

Random.new	==	Random.new													#	=>	false

Random.new(1234)	==	Random.new(1234)	#	=>	true

and	have	the	same	invocation	history.

prng1	=	Random.new(1234)

prng2	=	Random.new(1234)

prng1	==	prng2	#	=>	true

prng1.rand					#	=>	0.1915194503788923

prng1	==	prng2	#	=>	false

prng2.rand					#	=>	0.1915194503788923

prng1	==	prng2	#	=>	true

Returns	a	random	binary	string	containing	size	bytes.

random_string	=	Random.new.bytes(10)	#	=>	"\xD7:R\xAB?\x83\xCE\xFAkO"

random_string.size																			#	=>	10

When	max	is	an	Integer,	rand	returns	a	random
integer	greater	than	or	equal	to	zero	and	less	than
max.	Unlike	Kernel#rand,	when	max	is	a	negative
integer	or	zero,	rand	raises	an	ArgumentError.

prng	=	Random.new

prng.rand(100)							#	=>	42

When	max	is	a	Float,	rand	returns	a	random	floating
point	number	between	0.0	and	max,	including	0.0	and
excluding	max.

prng.rand(1.5)							#	=>	1.4600282860034115

bytes(size)	→	a_string

rand	→	float
rand(max)	→	number

When	max	is	a	Range,	rand	returns	a	random	number
where	range.member?(number)	==	true.

prng.rand(5..9)						#	=>	one	of	[5,	6,	7,	8,	9]

prng.rand(5...9)					#	=>	one	of	[5,	6,	7,	8]

prng.rand(5.0..9.0)		#	=>	between	5.0	and	9.0,	including	9.0

prng.rand(5.0...9.0)	#	=>	between	5.0	and	9.0,	excluding	9.0

Both	the	beginning	and	ending	values	of	the	range
must	respond	to	subtract	(-)	and	add	(+)methods,	or
rand	will	raise	an	ArgumentError.

Returns	the	seed	value	used	to	initialize	the
generator.	This	may	be	used	to	initialize	another
generator	with	the	same	state	at	a	later	time,	causing
it	to	produce	the	same	sequence	of	numbers.

prng1	=	Random.new(1234)

prng1.seed							#=>	1234

prng1.rand(100)		#=>	47

prng2	=	Random.new(prng1.seed)

prng2.rand(100)		#=>	47

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

seed	→	integer

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	Range
A	Range	represents	an	interval—a	set	of	values
with	a	beginning	and	an	end.	Ranges	may	be
constructed	using	the	s..e	and	s...e	literals,	or
with	::new.	Ranges	constructed	using	..	run
from	the	beginning	to	the	end	inclusively.	Those
created	using	...	exclude	the	end	value.	When
used	as	an	iterator,	ranges	return	each	value	in
the	sequence.

(-1..-5).to_a						#=>	[]

(-5..-1).to_a						#=>	[-5,	-4,	-3,	-2,	-1]

('a'..'e').to_a				#=>	["a",	"b",	"c",	"d",	"e"]

('a'...'e').to_a			#=>	["a",	"b",	"c",	"d"]

Custom	Objects	in	Ranges

Ranges	can	be	constructed	using	any	objects
that	can	be	compared	using	the	<=>	operator.
Methods	that	treat	the	range	as	a	sequence
(each	and	methods	inherited	from	Enumerable)
expect	the	begin	object	to	implement	a	succ
method	to	return	the	next	object	in	sequence.
The	step	and	include?	methods	require	the
begin	object	to	implement	succ	or	to	be	numeric.

In	the	Xs	class	below	both	<=>	and	succ	are
implemented	so	Xs	can	be	used	to	construct
ranges.	Note	that	the	Comparable	module	is
included	so	the	==	method	is	defined	in	terms	of
<=>.

class	Xs																#	represent	a	string	of	'x's

		include	Comparable

		attr	:length

		def	initialize(n)

				@length	=	n

		end

		def	succ

				Xs.new(@length	+	1)

		end

		def	<=>(other)

				@length	<=>	other.length

		end

		def	to_s

				sprintf	"%2d	#{inspect}",	@length

		end

		def	inspect

				'x'	*	@length

		end

end

An	example	of	using	Xs	to	construct	a	range:

r	=	Xs.new(3)..Xs.new(6)			#=>	xxx..xxxxxx

r.to_a																					#=>	[xxx,	xxxx,	xxxxx,	xxxxxx]

r.member?(Xs.new(5))							#=>	true

In	Files
range.c

Parent
Object

Included	Modules
Enumerable

Public	Class	Methods

Constructs	a	range	using	the	given	begin	and	end.	If
the	exclude_end	parameter	is	omitted	or	is	false,	the
rng	will	include	the	end	object;	otherwise,	it	will	be
excluded.

Public	Instance	Methods

new(begin,	end,	exclude_end=false)	→	rng

Returns	true	only	if	obj	is	a	Range,	has	equivalent
begin	and	end	items	(by	comparing	them	with	==),
and	has	the	same	exclude_end?	setting	as	the
range.

(0..2)	==	(0..2)												#=>	true

(0..2)	==	Range.new(0,2)				#=>	true

(0..2)	==	(0...2)											#=>	false

Returns	true	if	obj	is	an	element	of	the	range,	false
otherwise.	Conveniently,	===	is	the	comparison
operator	used	by	case	statements.

case	79

when	1..50			then			print	"low\n"

when	51..75		then			print	"medium\n"

when	76..100	then			print	"high\n"

end

produces:

high

Returns	the	object	that	defines	the	beginning	of	the
range.

(1..10).begin			#=>	1

By	using	binary	search,	finds	a	value	in	range	which
meets	the	given	condition	in	O(log	n)	where	n	is	the
size	of	the	range.

rng	==	obj	→	true	or	false

rng	===	obj	→	true	or	false

begin	→	obj

bsearch	{|obj|	block	}	→	value

You	can	use	this	method	in	two	use	cases:	a	find-
minimum	mode	and	a	find-any	mode.	In	either	case,
the	elements	of	the	range	must	be	monotone	(or
sorted)	with	respect	to	the	block.

In	find-minimum	mode	(this	is	a	good	choice	for
typical	use	case),	the	block	must	return	true	or	false,
and	there	must	be	a	value	x	so	that:

the	block	returns	false	for	any	value	which	is
less	than	x,	and

the	block	returns	true	for	any	value	which	is
greater	than	or	equal	to	x.

If	x	is	within	the	range,	this	method	returns	the	value
x.	Otherwise,	it	returns	nil.

ary	=	[0,	4,	7,	10,	12]

(0...ary.size).bsearch	{|i|	ary[i]	>=	4	}	#=>	1

(0...ary.size).bsearch	{|i|	ary[i]	>=	6	}	#=>	2

(0...ary.size).bsearch	{|i|	ary[i]	>=	8	}	#=>	3

(0...ary.size).bsearch	{|i|	ary[i]	>=	100	}	#=>	nil

(0.0...Float::INFINITY).bsearch	{|x|	Math.log(x)	>=	0	}	

In	find-any	mode	(this	behaves	like	libc's	bsearch(3)),
the	block	must	return	a	number,	and	there	must	be
two	values	x	and	y	(x	<=	y)	so	that:

the	block	returns	a	positive	number	for	v	if	v	<
x,

the	block	returns	zero	for	v	if	x	<=	v	<	y,	and

the	block	returns	a	negative	number	for	v	if	y
<=	v.

This	method	returns	any	value	which	is	within	the
intersection	of	the	given	range	and	x…y	(if	any).	If
there	is	no	value	that	satisfies	the	condition,	it	returns
nil.

ary	=	[0,	100,	100,	100,	200]

(0..4).bsearch	{|i|	100	-	ary[i]	}	#=>	1,	2	or	3

(0..4).bsearch	{|i|	300	-	ary[i]	}	#=>	nil

(0..4).bsearch	{|i|		50	-	ary[i]	}	#=>	nil

You	must	not	mix	the	two	modes	at	a	time;	the	block
must	always	return	either	true/false,	or	always	return
a	number.	It	is	undefined	which	value	is	actually
picked	up	at	each	iteration.

Returns	true	if	obj	is	between	the	begin	and	end	of
the	range.

This	tests	begin	<=	obj	<=	end	when	exclude_end?
is	false	and	begin	<=	obj	<	end	when	exclude_end?
is	true.

("a".."z").cover?("c")				#=>	true

("a".."z").cover?("5")				#=>	false

("a".."z").cover?("cc")			#=>	true

Iterates	over	the	elements	of	range,	passing	each	in
turn	to	the	block.

The	each	method	can	only	be	used	if	the	begin	object
of	the	range	supports	the	succ	method.	A	TypeError	is
raised	if	the	object	does	not	have	succ	method
defined	(like	Float).

If	no	block	is	given,	an	enumerator	is	returned
instead.

(10..15).each	{|n|	print	n,	'	'	}

#	prints:	10	11	12	13	14	15

cover?(obj)	→	true	or	false

each	{|	i	|	block	}	→	rng
each	→	an_enumerator

(2.5..5).each	{|n|	print	n,	'	'	}

#	raises:	TypeError:	can't	iterate	from	Float

Returns	the	object	that	defines	the	end	of	the	range.

(1..10).end				#=>	10

(1...10).end			#=>	10

Returns	true	only	if	obj	is	a	Range,	has	equivalent
begin	and	end	items	(by	comparing	them	with	eql?),
and	has	the	same	exclude_end?	setting	as	the
range.

(0..2).eql?(0..2)												#=>	true

(0..2).eql?(Range.new(0,2))		#=>	true

(0..2).eql?(0...2)											#=>	false

Returns	true	if	the	range	excludes	its	end	value.

(1..5).exclude_end?					#=>	false

(1...5).exclude_end?				#=>	true

Returns	the	first	object	in	the	range,	or	an	array	of	the
first	n	elements.

(10..20).first					#=>	10

(10..20).first(3)		#=>	[10,	11,	12]

end	→	obj

eql?(obj)	→	true	or	false

exclude_end?	→	true	or	false

first	→	obj
first(n)	→	an_array

Compute	a	hash-code	for	this	range.	Two	ranges	with
equal	begin	and	end	points	(using	eql?),	and	the
same	exclude_end?	value	will	generate	the	same
hash-code.

See	also	Object#hash.

Returns	true	if	obj	is	an	element	of	the	range,	false
otherwise.	If	begin	and	end	are	numeric,	comparison
is	done	according	to	the	magnitude	of	the	values.

("a".."z").include?("g")			#=>	true

("a".."z").include?("A")			#=>	false

("a".."z").include?("cc")		#=>	false

Convert	this	range	object	to	a	printable	form	(using
inspect	to	convert	the	begin	and	end	objects).

Returns	the	last	object	in	the	range,	or	an	array	of	the
last	n	elements.

Note	that	with	no	arguments	last	will	return	the
object	that	defines	the	end	of	the	range	even	if
exclude_end?	is	true.

(10..20).last						#=>	20

(10...20).last					#=>	20

(10..20).last(3)			#=>	[18,	19,	20]

(10...20).last(3)		#=>	[17,	18,	19]

hash	→	fixnum

member?(obj)	→	true	or	false
include?(obj)	→	true	or	false

inspect	→	string

last	→	obj
last(n)	→	an_array

Returns	the	maximum	value	in	the	range.	Returns
nil	if	the	begin	value	of	the	range	larger	than	the	end
value.

Can	be	given	an	optional	block	to	override	the	default
comparison	method	a	<=>	b.

(10..20).max				#=>	20

Returns	true	if	obj	is	an	element	of	the	range,	false
otherwise.	If	begin	and	end	are	numeric,	comparison
is	done	according	to	the	magnitude	of	the	values.

("a".."z").include?("g")			#=>	true

("a".."z").include?("A")			#=>	false

("a".."z").include?("cc")		#=>	false

Returns	the	minimum	value	in	the	range.	Returns	nil
if	the	begin	value	of	the	range	is	larger	than	the	end
value.

Can	be	given	an	optional	block	to	override	the	default
comparison	method	a	<=>	b.

max	→	obj
max	{|	a,b	|	block	}	→	obj
max(n)	→	obj
max(n)	{|	a,b	|	block	}	→	obj

member?(obj)	→	true	or	false
include?(obj)	→	true	or	false

min	→	obj
min	{|	a,b	|	block	}	→	obj
min(n)	→	array
min(n)	{|	a,b	|	block	}	→	array

(10..20).min				#=>	10

Returns	the	number	of	elements	in	the	range.	Both
the	begin	and	the	end	of	the	Range	must	be
Numeric,	otherwise	nil	is	returned.

(10..20).size				#=>	11

('a'..'z').size		#=>	nil

(-Float::INFINITY..Float::INFINITY).size	#=>	Infinity

Iterates	over	the	range,	passing	each	nth	element	to
the	block.	If	begin	and	end	are	numeric,	n	is	added
for	each	iteration.	Otherwise	step	invokes	succ	to
iterate	through	range	elements.

If	no	block	is	given,	an	enumerator	is	returned
instead.

range	=	Xs.new(1)..Xs.new(10)

range.step(2)	{|x|	puts	x}

puts

range.step(3)	{|x|	puts	x}

produces:

	1	x

	3	xxx

	5	xxxxx

	7	xxxxxxx

	9	xxxxxxxxx

	1	x

	4	xxxx

	7	xxxxxxx

10	xxxxxxxxxx

size	→	num

step(n=1)	{|	obj	|	block	}	→	rng
step(n=1)	→	an_enumerator

See	Range	for	the	definition	of	class	Xs.

Convert	this	range	object	to	a	printable	form	(using
to_s	to	convert	the	begin	and	end	objects).

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

to_s	→	string

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	RangeError
Raised	when	a	given	numerical	value	is	out	of
range.

[1,	2,	3].drop(1	<<	100)

raises	the	exception:

RangeError:	bignum	too	big	to	convert	into	`long'

In	Files
error.c

Parent
StandardError

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	Rational
A	rational	number	can	be	represented	as	a
paired	integer	number;	a/b	(b>0).	Where	a	is
numerator	and	b	is	denominator.	Integer	a
equals	rational	a/1	mathematically.

In	ruby,	you	can	create	rational	object	with
Rational,	#to_r,	rationalize	method	or	suffixing	r
to	a	literal.	The	return	values	will	be	irreducible.

Rational(1)						#=>	(1/1)

Rational(2,	3)			#=>	(2/3)

Rational(4,	-6)		#=>	(-2/3)

3.to_r											#=>	(3/1)

2/3r													#=>	(2/3)

You	can	also	create	rational	object	from	floating-
point	numbers	or	strings.

Rational(0.3)				#=>	(5404319552844595/18014398509481984)

Rational('0.3')		#=>	(3/10)

Rational('2/3')		#=>	(2/3)

0.3.to_r									#=>	(5404319552844595/18014398509481984)

'0.3'.to_r							#=>	(3/10)

'2/3'.to_r							#=>	(2/3)

0.3.rationalize		#=>	(3/10)

A	rational	object	is	an	exact	number,	which	helps
you	to	write	program	without	any	rounding
errors.

10.times.inject(0){|t,|	t	+	0.1}														#=>	0.9999999999999999

10.times.inject(0){|t,|	t	+	Rational('0.1')}		#=>	(1/1)

However,	when	an	expression	has	inexact	factor
(numerical	value	or	operation),	will	produce	an
inexact	result.

Rational(10)	/	3			#=>	(10/3)

Rational(10)	/	3.0	#=>	3.3333333333333335

Rational(-8)	**	Rational(1,	3)

																			#=>	(1.0000000000000002+1.7320508075688772i)

In	Files
rational.c

Parent
Numeric

Public	Instance	Methods

Performs	multiplication.

Rational(2,	3)		*	Rational(2,	3)			#=>	(4/9)

Rational(900)			*	Rational(1)						#=>	(900/1)

Rational(-2,	9)	*	Rational(-9,	2)		#=>	(1/1)

Rational(9,	8)		*	4																#=>	(9/2)

Rational(20,	9)	*	9.8														#=>	21.77777777777778

rat	*	numeric	→	numeric

Performs	exponentiation.

Rational(2)				**	Rational(3)				#=>	(8/1)

Rational(10)			**	-2													#=>	(1/100)

Rational(10)			**	-2.0											#=>	0.01

Rational(-4)			**	Rational(1,2)		#=>	(1.2246063538223773e-16+2.0i)

Rational(1,	2)	**	0														#=>	(1/1)

Rational(1,	2)	**	0.0												#=>	1.0

Performs	addition.

Rational(2,	3)		+	Rational(2,	3)			#=>	(4/3)

Rational(900)			+	Rational(1)						#=>	(900/1)

Rational(-2,	9)	+	Rational(-9,	2)		#=>	(-85/18)

Rational(9,	8)		+	4																#=>	(41/8)

Rational(20,	9)	+	9.8														#=>	12.022222222222222

Performs	subtraction.

Rational(2,	3)		-	Rational(2,	3)			#=>	(0/1)

Rational(900)			-	Rational(1)						#=>	(899/1)

Rational(-2,	9)	-	Rational(-9,	2)		#=>	(77/18)

Rational(9,	8)		-	4																#=>	(23/8)

Rational(20,	9)	-	9.8														#=>	-7.577777777777778

Performs	division.

Rational(2,	3)		/	Rational(2,	3)			#=>	(1/1)

Rational(900)			/	Rational(1)						#=>	(900/1)

Rational(-2,	9)	/	Rational(-9,	2)		#=>	(4/81)

Rational(9,	8)		/	4																#=>	(9/32)

rat	**	numeric	→	numeric

rat	+	numeric	→	numeric

rat	-	numeric	→	numeric

rat	/	numeric	→	numeric
quo(numeric)	→	numeric

Rational(20,	9)	/	9.8														#=>	0.22675736961451246

Performs	comparison	and	returns	-1,	0,	or	+1.

nil	is	returned	if	the	two	values	are	incomparable.

Rational(2,	3)		<=>	Rational(2,	3)		#=>	0

Rational(5)					<=>	5															#=>	0

Rational(2,3)			<=>	Rational(1,3)			#=>	1

Rational(1,3)			<=>	1															#=>	-1

Rational(1,3)			<=>	0.3													#=>	1

Returns	true	if	rat	equals	object	numerically.

Rational(2,	3)		==	Rational(2,	3)			#=>	true

Rational(5)					==	5																#=>	true

Rational(0)					==	0.0														#=>	true

Rational('1/3')	==	0.33													#=>	false

Rational('1/2')	==	'1/2'												#=>	false

Returns	the	truncated	value	(toward	positive	infinity).

Rational(3).ceil						#=>	3

Rational(2,	3).ceil			#=>	1

Rational(-3,	2).ceil		#=>	-1

							decimal						-		1		2		3	.	4		5		6

																						^		^		^		^			^		^

						precision						-3	-2	-1		0		+1	+2

'%f'	%	Rational('-123.456').ceil(+1)		#=>	"-123.400000"

'%f'	%	Rational('-123.456').ceil(-1)		#=>	"-120.000000"

rational	<=>	numeric	→	-1,	0,	+1	or	nil

rat	==	object	→	true	or	false

ceil	→	integer
ceil(precision=0)	→	rational

Returns	the	denominator	(always	positive).

Rational(7).denominator													#=>	1

Rational(7,	1).denominator										#=>	1

Rational(9,	-4).denominator									#=>	4

Rational(-2,	-10).denominator							#=>	5

rat.numerator.gcd(rat.denominator)		#=>	1

Performs	division	and	returns	the	value	as	a	float.

Rational(2,	3).fdiv(1)							#=>	0.6666666666666666

Rational(2,	3).fdiv(0.5)					#=>	1.3333333333333333

Rational(2).fdiv(3)										#=>	0.6666666666666666

Returns	the	truncated	value	(toward	negative	infinity).

Rational(3).floor						#=>	3

Rational(2,	3).floor			#=>	0

Rational(-3,	2).floor		#=>	-1

							decimal						-		1		2		3	.	4		5		6

																						^		^		^		^			^		^

						precision						-3	-2	-1		0		+1	+2

'%f'	%	Rational('-123.456').floor(+1)		#=>	"-123.500000"

'%f'	%	Rational('-123.456').floor(-1)		#=>	"-130.000000"

Returns	the	value	as	a	string	for	inspection.

Rational(2).inspect						#=>	"(2/1)"

Rational(-8,	6).inspect		#=>	"(-4/3)"

Rational('1/2').inspect		#=>	"(1/2)"

denominator	→	integer

fdiv(numeric)	→	float

floor	→	integer
floor(precision=0)	→	rational

inspect	→	string

Returns	the	numerator.

Rational(7).numerator								#=>	7

Rational(7,	1).numerator					#=>	7

Rational(9,	-4).numerator				#=>	-9

Rational(-2,	-10).numerator		#=>	1

Performs	division.

Rational(2,	3)		/	Rational(2,	3)			#=>	(1/1)

Rational(900)			/	Rational(1)						#=>	(900/1)

Rational(-2,	9)	/	Rational(-9,	2)		#=>	(4/81)

Rational(9,	8)		/	4																#=>	(9/32)

Rational(20,	9)	/	9.8														#=>	0.22675736961451246

Returns	a	simpler	approximation	of	the	value	if	the
optional	argument	eps	is	given	(rat-|eps|	<=	result	<=
rat+|eps|),	self	otherwise.

r	=	Rational(5033165,	16777216)

r.rationalize																				#=>	(5033165/16777216)

r.rationalize(Rational('0.01'))		#=>	(3/10)

r.rationalize(Rational('0.1'))			#=>	(1/3)

Returns	the	truncated	value	(toward	the	nearest
integer;	0.5	=>	1;	-0.5	=>	-1).

numerator	→	integer

rat	/	numeric	→	numeric
quo(numeric)	→	numeric

rationalize	→	self
rationalize(eps)	→	rational

round	→	integer
round(precision=0)	→	rational

Rational(3).round						#=>	3

Rational(2,	3).round			#=>	1

Rational(-3,	2).round		#=>	-2

							decimal						-		1		2		3	.	4		5		6

																						^		^		^		^			^		^

						precision						-3	-2	-1		0		+1	+2

'%f'	%	Rational('-123.456').round(+1)		#=>	"-123.500000"

'%f'	%	Rational('-123.456').round(-1)		#=>	"-120.000000"

Return	the	value	as	a	float.

Rational(2).to_f						#=>	2.0

Rational(9,	4).to_f			#=>	2.25

Rational(-3,	4).to_f		#=>	-0.75

Rational(20,	3).to_f		#=>	6.666666666666667

Returns	the	truncated	value	as	an	integer.

Equivalent	to

rat.truncate.

Rational(2,	3).to_i			#=>	0

Rational(3).to_i						#=>	3

Rational(300.6).to_i		#=>	300

Rational(98,71).to_i		#=>	1

Rational(-30,2).to_i		#=>	-15

Returns	self.

Rational(2).to_r						#=>	(2/1)

Rational(-8,	6).to_r		#=>	(-4/3)

to_f	→	float

to_i	→	integer

to_r	→	self

Returns	the	value	as	a	string.

Rational(2).to_s						#=>	"2/1"

Rational(-8,	6).to_s		#=>	"-4/3"

Rational('1/2').to_s		#=>	"1/2"

Returns	the	truncated	value	(toward	zero).

Rational(3).truncate						#=>	3

Rational(2,	3).truncate			#=>	0

Rational(-3,	2).truncate		#=>	-1

							decimal						-		1		2		3	.	4		5		6

																						^		^		^		^			^		^

						precision						-3	-2	-1		0		+1	+2

'%f'	%	Rational('-123.456').truncate(+1)		#=>		"-123.400000"

'%f'	%	Rational('-123.456').truncate(-1)		#=>		"-120.000000"

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

to_s	→	string

truncate	→	integer
truncate(precision=0)	→	rational

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	Rational::compatible

In	Files
rational.c

Parent
Object

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	Regexp
A	Regexp	holds	a	regular	expression,	used	to
match	a	pattern	against	strings.	Regexps	are
created	using	the	/.../	and	%r{...}	literals,	and
by	the	Regexp::new	constructor.

Regular	expressions	(regexps)	are	patterns
which	describe	the	contents	of	a	string.	They're
used	for	testing	whether	a	string	contains	a
given	pattern,	or	extracting	the	portions	that
match.	They	are	created	with	the	/pat/	and
%r{pat}	literals	or	the	Regexp.new	constructor.

A	regexp	is	usually	delimited	with	forward
slashes	(/).	For	example:

/hay/	=~	'haystack'			#=>	0

/y/.match('haystack')	#=>	#<MatchData	"y">

If	a	string	contains	the	pattern	it	is	said	to	match.
A	literal	string	matches	itself.

Here	'haystack'	does	not	contain	the	pattern
'needle',	so	it	doesn't	match:

/needle/.match('haystack')	#=>	nil

Here	'haystack'	contains	the	pattern	'hay',	so	it
matches:

/hay/.match('haystack')				#=>	#<MatchData	"hay">

Specifically,	/st/	requires	that	the	string	contains
the	letter	s	followed	by	the	letter	t,	so	it	matches
haystack,	also.

=~	and	#match

Pattern	matching	may	be	achieved	by	using	=~
operator	or	#match	method.

=~	operator

=~	is	Ruby's	basic	pattern-matching	operator.
When	one	operand	is	a	regular	expression	and
the	other	is	a	string	then	the	regular	expression
is	used	as	a	pattern	to	match	against	the	string.
(This	operator	is	equivalently	defined	by	Regexp
and	String	so	the	order	of	String	and	Regexp	do
not	matter.	Other	classes	may	have	different
implementations	of	=~.)	If	a	match	is	found,	the
operator	returns	index	of	first	match	in	string,
otherwise	it	returns	nil.

/hay/	=~	'haystack'			#=>	0

'haystack'	=~	/hay/			#=>	0

/a/			=~	'haystack'			#=>	1

/u/			=~	'haystack'			#=>	nil

Using	=~	operator	with	a	String	and	Regexp	the
$~	global	variable	is	set	after	a	successful	match.
$~	holds	a	MatchData	object.	::last_match	is
equivalent	to	$~.

#match	method

The	match	method	returns	a	MatchData	object:

/st/.match('haystack')			#=>	#<MatchData	"st">

Metacharacters	and	Escapes

The	following	are	metacharacters	(,),	[,],	{,	},
.,	?,	+,	*.	They	have	a	specific	meaning	when
appearing	in	a	pattern.	To	match	them	literally
they	must	be	backslash-escaped.	To	match	a
backslash	literally	backslash-escape	that:	<tt>\\
</tt>.

/1	\+	2	=	3\?/.match('Does	1	+	2	=	3?')	#=>	#<MatchData	"1	+	2	=	3?">

Patterns	behave	like	double-quoted	strings	so
can	contain	the	same	backslash	escapes.

/\s\u{6771	4eac	90fd}/.match("Go	to	東京都")
				#=>	#<MatchData	"	東京都">

Arbitrary	Ruby	expressions	can	be	embedded
into	patterns	with	the	#{...}	construct.

place	=	"東京都"
/#{place}/.match("Go	to	東京都")
				#=>	#<MatchData	"東京都">

Character	Classes

A	character	class	is	delimited	with	square
brackets	([,])	and	lists	characters	that	may
appear	at	that	point	in	the	match.	/[ab]/	means
a	or	b,	as	opposed	to	/ab/	which	means	a
followed	by	b.

/W[aeiou]rd/.match("Word")	#=>	#<MatchData	"Word">

Within	a	character	class	the	hyphen	(-)	is	a
metacharacter	denoting	an	inclusive	range	of
characters.	[abcd]	is	equivalent	to	[a-d].	A	range
can	be	followed	by	another	range,	so	[abcdwxyz]
is	equivalent	to	[a-dw-z].	The	order	in	which
ranges	or	individual	characters	appear	inside	a
character	class	is	irrelevant.

/[0-9a-f]/.match('9f')	#=>	#<MatchData	"9">

/[9f]/.match('9f')					#=>	#<MatchData	"9">

If	the	first	character	of	a	character	class	is	a
caret	(^)	the	class	is	inverted:	it	matches	any
character	except	those	named.

/[^a-eg-z]/.match('f')	#=>	#<MatchData	"f">

A	character	class	may	contain	another	character
class.	By	itself	this	isn't	useful	because	[a-z[0-
9]]	describes	the	same	set	as	[a-z0-9].

However,	character	classes	also	support	the	&&
operator	which	performs	set	intersection	on	its
arguments.	The	two	can	be	combined	as
follows:

/[a-w&&[^c-g]z]/	#	([a-w]	AND	([^c-g]	OR	z))

This	is	equivalent	to:

/[abh-w]/

The	following	metacharacters	also	behave	like
character	classes:

/./	-	Any	character	except	a	newline.
/./m	-	Any	character	(the	m	modifier	enables
multiline	mode)
/\w/	-	A	word	character	([a-zA-Z0-9_])
/\W/	-	A	non-word	character	([^a-zA-Z0-9_]).
Please	take	a	look	at	Bug	#4044	if	using	/\W/
with	the	/i	modifier.
/\d/	-	A	digit	character	([0-9])
/\D/	-	A	non-digit	character	([^0-9])
/\h/	-	A	hexdigit	character	([0-9a-fA-F])
/\H/	-	A	non-hexdigit	character	([^0-9a-fA-F])
/\s/	-	A	whitespace	character:	/[\t\r\n\f]/
/\S/	-	A	non-whitespace	character:	/[^
\t\r\n\f]/

https://bugs.ruby-lang.org/issues/4044

POSIX	bracket	expressions	are	also	similar	to
character	classes.	They	provide	a	portable
alternative	to	the	above,	with	the	added	benefit
that	they	encompass	non-ASCII	characters.	For
instance,	/\d/	matches	only	the	ASCII	decimal
digits	(0-9);	whereas	/[[:digit:]]/	matches	any
character	in	the	Unicode	Nd	category.

/[[:alnum:]]/	-	Alphabetic	and	numeric
character
/[[:alpha:]]/	-	Alphabetic	character
/[[:blank:]]/	-	Space	or	tab
/[[:cntrl:]]/	-	Control	character
/[[:digit:]]/	-	Digit
/[[:graph:]]/	-	Non-blank	character	(excludes
spaces,	control	characters,	and	similar)
/[[:lower:]]/	-	Lowercase	alphabetical
character
/[[:print:]]/	-	Like	[:graph:],	but	includes	the
space	character
/[[:punct:]]/	-	Punctuation	character
/[[:space:]]/	-	Whitespace	character
([:blank:],	newline,	carriage	return,	etc.)
/[[:upper:]]/	-	Uppercase	alphabetical
/[[:xdigit:]]/	-	Digit	allowed	in	a	hexadecimal
number	(i.e.,	0-9a-fA-F)

Ruby	also	supports	the	following	non-POSIX
character	classes:

/[[:word:]]/	-	A	character	in	one	of	the
following	Unicode	general	categories	Letter,
Mark,	Number,	Connector_Punctuation
/[[:ascii:]]/	-	A	character	in	the	ASCII
character	set

#	U+06F2	is	"EXTENDED	ARABIC-INDIC	DIGIT	TWO"

/[[:digit:]]/.match("\u06F2")				#=>	#<MatchData	"\u{06F2}">

/[[:upper:]][[:lower:]]/.match("Hello")	#=>	#<MatchData	"He">

/[[:xdigit:]][[:xdigit:]]/.match("A6")		#=>	#<MatchData	"A6">

Repetition

The	constructs	described	so	far	match	a	single
character.	They	can	be	followed	by	a	repetition
metacharacter	to	specify	how	many	times	they
need	to	occur.	Such	metacharacters	are	called
quantifiers.

*	-	Zero	or	more	times
+	-	One	or	more	times
?	-	Zero	or	one	times	(optional)
{n}	-	Exactly	n	times
{n,}	-	n	or	more	times
{,m}	-	m	or	less	times
{n,m}	-	At	least	n	and	at	most	m	times

At	least	one	uppercase	character	('H'),	at	least
one	lowercase	character	('e'),	two	'l'	characters,
then	one	'o':

"Hello".match(/[[:upper:]]+[[:lower:]]+l{2}o/)	#=>	#<MatchData	"Hello">

Repetition	is	greedy	by	default:	as	many
occurrences	as	possible	are	matched	while	still
allowing	the	overall	match	to	succeed.	By
contrast,	lazy	matching	makes	the	minimal
amount	of	matches	necessary	for	overall
success.	A	greedy	metacharacter	can	be	made
lazy	by	following	it	with	?.

Both	patterns	below	match	the	string.	The	first
uses	a	greedy	quantifier	so	'.+'	matches	'<a>
';	the	second	uses	a	lazy	quantifier	so	'.+?'
matches	'<a>':

/<.+>/.match("<a>")		#=>	#<MatchData	"<a>">

/<.+?>/.match("<a>")	#=>	#<MatchData	"<a>">

A	quantifier	followed	by	+	matches	possessively:
once	it	has	matched	it	does	not	backtrack.	They
behave	like	greedy	quantifiers,	but	having
matched	they	refuse	to	“give	up”	their	match
even	if	this	jeopardises	the	overall	match.

Capturing

Parentheses	can	be	used	for	capturing.	The	text
enclosed	by	the	nth	group	of
parentheses	can	be	subsequently	referred	to
with	n.	Within	a	pattern	use	the	backreference
\n;	outside	of	the	pattern	use	MatchData[n].

'at'	is	captured	by	the	first	group	of	parentheses,
then	referred	to	later	with	\1:

/[csh](..)	[csh]\1	in/.match("The	cat	sat	in	the	hat"

				#=>	#<MatchData	"cat	sat	in"	1:"at">

#match	returns	a	MatchData	object	which	makes
the	captured	text	available	with	its	#[]	method:

/[csh](..)	[csh]\1	in/.match("The	cat	sat	in	the	hat"

Capture	groups	can	be	referred	to	by	name
when	defined	with	the	(?<name>)	or	(?'name')
constructs.

/\$(?<dollars>\d+)\.(?<cents>\d+)/.match("$3.67")

				=>	#<MatchData	"$3.67"	dollars:"3"	cents:"67">

/\$(?<dollars>\d+)\.(?<cents>\d+)/.match("$3.67")[:

Named	groups	can	be	backreferenced	with
\k<name>,	where	name	is	the	group	name.

/(?<vowel>[aeiou]).\k<vowel>.\k<vowel>/.match('ototomy'

				#=>	#<MatchData	"ototo"	vowel:"o">

Note:	A	regexp	can't	use	named	backreferences
and	numbered	backreferences	simultaneously.

When	named	capture	groups	are	used	with	a
literal	regexp	on	the	left-hand	side	of	an
expression	and	the	=~	operator,	the	captured	text
is	also	assigned	to	local	variables	with
corresponding	names.

/\$(?<dollars>\d+)\.(?<cents>\d+)/	=~	"$3.67"	#=>	0

dollars	#=>	"3"

Grouping

Parentheses	also	group	the	terms	they	enclose,
allowing	them	to	be	quantified	as	one	atomic
whole.

The	pattern	below	matches	a	vowel	followed	by
2	word	characters:

/[aeiou]\w{2}/.match("Caenorhabditis	elegans")	#=>	#<MatchData	"aen">

Whereas	the	following	pattern	matches	a	vowel
followed	by	a	word	character,	twice,	i.e.
[aeiou]\w[aeiou]\w:	'enor'.

/([aeiou]\w){2}/.match("Caenorhabditis	elegans")

				#=>	#<MatchData	"enor"	1:"or">

The	(?:…)	construct	provides	grouping	without
capturing.	That	is,	it	combines	the	terms	it
contains	into	an	atomic	whole	without	creating	a
backreference.	This	benefits	performance	at	the
slight	expense	of	readability.

The	first	group	of	parentheses	captures	'n'	and
the	second	'ti'.	The	second	group	is	referred	to
later	with	the	backreference	\2:

/I(n)ves(ti)ga\2ons/.match("Investigations")

				#=>	#<MatchData	"Investigations"	1:"n"	2:"ti">

The	first	group	of	parentheses	is	now	made	non-
capturing	with	'?:',	so	it	still	matches	'n',	but
doesn't	create	the	backreference.	Thus,	the
backreference	\1	now	refers	to	'ti'.

/I(?:n)ves(ti)ga\1ons/.match("Investigations")

				#=>	#<MatchData	"Investigations"	1:"ti">

Atomic	Grouping

Grouping	can	be	made	atomic	with	(?>pat).	This
causes	the	subexpression	pat	to	be	matched
independently	of	the	rest	of	the	expression	such
that	what	it	matches	becomes	fixed	for	the
remainder	of	the	match,	unless	the	entire
subexpression	must	be	abandoned	and
subsequently	revisited.	In	this	way	pat	is	treated
as	a	non-divisible	whole.	Atomic	grouping	is
typically	used	to	optimise	patterns	so	as	to
prevent	the	regular	expression	engine	from
backtracking	needlessly.

The	"	in	the	pattern	below	matches	the	first
character	of	the	string,	then	.*	matches	Quote“.
This	causes	the	overall	match	to	fail,	so	the	text
matched	by	.*	is	backtracked	by	one	position,
which	leaves	the	final	character	of	the	string
available	to	match	"

/".*"/.match('"Quote"')					#=>	#<MatchData	"\"Quote\"">

If	.*	is	grouped	atomically,	it	refuses	to
backtrack	Quote“,	even	though	this	means	that
the	overall	match	fails

/"(?>.*)"/.match('"Quote"')	#=>	nil

Subexpression	Calls

The	\g<name>	syntax	matches	the	previous
subexpression	named	name,	which	can	be	a
group	name	or	number,	again.	This	differs	from
backreferences	in	that	it	re-executes	the	group
rather	than	simply	trying	to	re-match	the	same
text.

This	pattern	matches	a	(character	and	assigns	it
to	the	paren	group,	tries	to	call	that	the	paren
sub-expression	again	but	fails,	then	matches	a
literal):

/\A(?<paren>\(\g<paren>*\))*\z/	=~	'()'

/\A(?<paren>\(\g<paren>*\))*\z/	=~	'(())'	#=>	0

#	^1

#						^2

#											^3

#																	^4

#						^5

#											^6

#																						^7

#																							^8

#																							^9

#																											^10

1.	 Matches	at	the	beginning	of	the	string,	i.e.
before	the	first	character.

2.	 Enters	a	named	capture	group	called	paren
3.	 Matches	a	literal	(,	the	first	character	in	the

string

4.	 Calls	the	paren	group	again,	i.e.	recurses	back
to	the	second	step

5.	 Re-enters	the	paren	group
6.	 Matches	a	literal	(,	the	second	character	in	the

string
7.	 Try	to	call	paren	a	third	time,	but	fail	because

doing	so	would	prevent	an	overall	successful
match

8.	 Match	a	literal),	the	third	character	in	the
string.	Marks	the	end	of	the	second	recursive
call

9.	 Match	a	literal),	the	fourth	character	in	the
string

10.	 Match	the	end	of	the	string

Alternation

The	vertical	bar	metacharacter	(|)	combines	two
expressions	into	a	single	one	that	matches
either	of	the	expressions.	Each	expression	is	an
alternative.

/\w(and|or)\w/.match("Feliformia")	#=>	#<MatchData	"form"	1:"or">

/\w(and|or)\w/.match("furandi")				#=>	#<MatchData	"randi"	1:"and">

/\w(and|or)\w/.match("dissemblance")	#=>	nil

Character	Properties

The	\p{}	construct	matches	characters	with	the
named	property,	much	like	POSIX	bracket
classes.

/\p{Alnum}/	-	Alphabetic	and	numeric
character
/\p{Alpha}/	-	Alphabetic	character
/\p{Blank}/	-	Space	or	tab
/\p{Cntrl}/	-	Control	character
/\p{Digit}/	-	Digit
/\p{Graph}/	-	Non-blank	character	(excludes
spaces,	control	characters,	and	similar)
/\p{Lower}/	-	Lowercase	alphabetical
character
/\p{Print}/	-	Like	\p{Graph},	but	includes	the
space	character
/\p{Punct}/	-	Punctuation	character
/\p{Space}/	-	Whitespace	character	([:blank:],
newline,	carriage	return,	etc.)
/\p{Upper}/	-	Uppercase	alphabetical
/\p{XDigit}/	-	Digit	allowed	in	a	hexadecimal
number	(i.e.,	0-9a-fA-F)
/\p{Word}/	-	A	member	of	one	of	the	following
Unicode	general	category	Letter,	Mark,
Number,	Connector_Punctuation

/\p{ASCII}/	-	A	character	in	the	ASCII
character	set
/\p{Any}/	-	Any	Unicode	character	(including
unassigned	characters)
/\p{Assigned}/	-	An	assigned	character

A	Unicode	character's	General	Category	value
can	also	be	matched	with	\p{Ab}	where	Ab	is
the	category's	abbreviation	as	described	below:

/\p{L}/	-	'Letter'
/\p{Ll}/	-	'Letter:	Lowercase'
/\p{Lm}/	-	'Letter:	Mark'
/\p{Lo}/	-	'Letter:	Other'
/\p{Lt}/	-	'Letter:	Titlecase'
/\p{Lu}/	-	'Letter:	Uppercase
/\p{Lo}/	-	'Letter:	Other'
/\p{M}/	-	'Mark'
/\p{Mn}/	-	'Mark:	Nonspacing'
/\p{Mc}/	-	'Mark:	Spacing	Combining'
/\p{Me}/	-	'Mark:	Enclosing'
/\p{N}/	-	'Number'
/\p{Nd}/	-	'Number:	Decimal	Digit'
/\p{Nl}/	-	'Number:	Letter'
/\p{No}/	-	'Number:	Other'
/\p{P}/	-	'Punctuation'
/\p{Pc}/	-	'Punctuation:	Connector'

/\p{Pd}/	-	'Punctuation:	Dash'
/\p{Ps}/	-	'Punctuation:	Open'
/\p{Pe}/	-	'Punctuation:	Close'
/\p{Pi}/	-	'Punctuation:	Initial	Quote'
/\p{Pf}/	-	'Punctuation:	Final	Quote'
/\p{Po}/	-	'Punctuation:	Other'
/\p{S}/	-	'Symbol'
/\p{Sm}/	-	'Symbol:	Math'
/\p{Sc}/	-	'Symbol:	Currency'
/\p{Sc}/	-	'Symbol:	Currency'
/\p{Sk}/	-	'Symbol:	Modifier'
/\p{So}/	-	'Symbol:	Other'
/\p{Z}/	-	'Separator'
/\p{Zs}/	-	'Separator:	Space'
/\p{Zl}/	-	'Separator:	Line'
/\p{Zp}/	-	'Separator:	Paragraph'
/\p{C}/	-	'Other'
/\p{Cc}/	-	'Other:	Control'
/\p{Cf}/	-	'Other:	Format'
/\p{Cn}/	-	'Other:	Not	Assigned'
/\p{Co}/	-	'Other:	Private	Use'
/\p{Cs}/	-	'Other:	Surrogate'

Lastly,	\p{}	matches	a	character's	Unicode
script.	The	following	scripts	are	supported:
Arabic,	Armenian,	Balinese,	Bengali,	Bopomofo,
Braille,	Buginese,	Buhid,	Canadian_Aboriginal,

Carian,	Cham,	Cherokee,	Common,	Coptic,
Cuneiform,	Cypriot,	Cyrillic,	Deseret,
Devanagari,	Ethiopic,	Georgian,	Glagolitic,
Gothic,	Greek,	Gujarati,	Gurmukhi,	Han,	Hangul,
Hanunoo,	Hebrew,	Hiragana,	Inherited,
Kannada,	Katakana,	Kayah_Li,	Kharoshthi,
Khmer,	Lao,	Latin,	Lepcha,	Limbu,	Linear_B,
Lycian,	Lydian,	Malayalam,	Mongolian,
Myanmar,	New_Tai_Lue,	Nko,	Ogham,	Ol_Chiki,
Old_Italic,	Old_Persian,	Oriya,	Osmanya,
Phags_Pa,	Phoenician,	Rejang,	Runic,
Saurashtra,	Shavian,	Sinhala,	Sundanese,
Syloti_Nagri,	Syriac,	Tagalog,	Tagbanwa,
Tai_Le,	Tamil,	Telugu,	Thaana,	Thai,	Tibetan,
Tifinagh,	Ugaritic,	Vai,	and	Yi.

Unicode	codepoint	U+06E9	is	named	“ARABIC
PLACE	OF	SAJDAH”	and	belongs	to	the	Arabic
script:

/\p{Arabic}/.match("\u06E9")	#=>	#<MatchData	"\u06E9">

All	character	properties	can	be	inverted	by
prefixing	their	name	with	a	caret	(^).

Letter	'A'	is	not	in	the	Unicode	Ll	(Letter;
Lowercase)	category,	so	this	match	succeeds:

/\p{^Ll}/.match("A")	#=>	#<MatchData	"A">

Anchors

Anchors	are	metacharacter	that	match	the	zero-
width	positions	between	characters,	anchoring
the	match	to	a	specific	position.

^	-	Matches	beginning	of	line
$	-	Matches	end	of	line
\A	-	Matches	beginning	of	string.
\Z	-	Matches	end	of	string.	If	string	ends	with	a
newline,	it	matches	just	before	newline
\z	-	Matches	end	of	string
\G	-	Matches	point	where	last	match	finished
\b	-	Matches	word	boundaries	when	outside
brackets;	backspace	(0x08)	when	inside
brackets
\B	-	Matches	non-word	boundaries
(?=pat)	-	Positive	lookahead	assertion:
ensures	that	the	following	characters	match
pat,	but	doesn't	include	those	characters	in	the
matched	text
(?!pat)	-	Negative	lookahead	assertion:
ensures	that	the	following	characters	do	not
match	pat,	but	doesn't	include	those	characters
in	the	matched	text
(?<=pat)	-	Positive	lookbehind	assertion:
ensures	that	the	preceding	characters	match

pat,	but	doesn't	include	those	characters	in	the
matched	text
(?<!pat)	-	Negative	lookbehind	assertion:
ensures	that	the	preceding	characters	do	not
match	pat,	but	doesn't	include	those	characters
in	the	matched	text

If	a	pattern	isn't	anchored	it	can	begin	at	any
point	in	the	string:

/real/.match("surrealist")	#=>	#<MatchData	"real">

Anchoring	the	pattern	to	the	beginning	of	the
string	forces	the	match	to	start	there.	'real'
doesn't	occur	at	the	beginning	of	the	string,	so
now	the	match	fails:

/\Areal/.match("surrealist")	#=>	nil

The	match	below	fails	because	although
'Demand'	contains	'and',	the	pattern	does	not
occur	at	a	word	boundary.

/\band/.match("Demand")

Whereas	in	the	following	example	'and'	has
been	anchored	to	a	non-word	boundary	so
instead	of	matching	the	first	'and'	it	matches
from	the	fourth	letter	of	'demand'	instead:

/\Band.+/.match("Supply	and	demand	curve")	#=>	#<MatchData	"and	curve">

The	pattern	below	uses	positive	lookahead	and
positive	lookbehind	to	match	text	appearing	in
tags	without	including	the	tags	in	the	match:

/(?<=)\w+(?=<\/b>)/.match("Fortune	favours	the	bold"

				#=>	#<MatchData	"bold">

Options

The	end	delimiter	for	a	regexp	can	be	followed
by	one	or	more	single-letter	options	which
control	how	the	pattern	can	match.

/pat/i	-	Ignore	case
/pat/m	-	Treat	a	newline	as	a	character
matched	by	.
/pat/x	-	Ignore	whitespace	and	comments	in
the	pattern
/pat/o	-	Perform	#{}	interpolation	only	once

i,	m,	and	x	can	also	be	applied	on	the
subexpression	level	with	the	(?on-off)	construct,
which	enables	options	on,	and	disables	options
off	for	the	expression	enclosed	by	the
parentheses.

/a(?i:b)c/.match('aBc')	#=>	#<MatchData	"aBc">

/a(?i:b)c/.match('abc')	#=>	#<MatchData	"abc">

Options	may	also	be	used	with	Regexp.new:

Regexp.new("abc",	Regexp::IGNORECASE)																					

Regexp.new("abc",	Regexp::MULTILINE)																						

Regexp.new("abc	#	Comment",	Regexp::EXTENDED)													

Regexp.new("abc",	Regexp::IGNORECASE	|	Regexp::MULTILINE

Free-Spacing	Mode	and	Comments

As	mentioned	above,	the	x	option	enables	free-
spacing	mode.	Literal	white	space	inside	the
pattern	is	ignored,	and	the	octothorpe	(#)
character	introduces	a	comment	until	the	end	of
the	line.	This	allows	the	components	of	the
pattern	to	be	organized	in	a	potentially	more
readable	fashion.

A	contrived	pattern	to	match	a	number	with
optional	decimal	places:

float_pat	=	/\A

				[[:digit:]]+	#	1	or	more	digits	before	the	decimal	point

				(\.										#	Decimal	point

								[[:digit:]]+	#	1	or	more	digits	after	the	decimal	point

)?	#	The	decimal	point	and	following	digits	are	optional

\Z/

float_pat.match('3.14')	#=>	#<MatchData	"3.14"	1:".14">

There	are	a	number	of	strategies	for	matching
whitespace:

Use	a	pattern	such	as	\s	or	\p{Space}.
Use	escaped	whitespace	such	as	\	,	i.e.	a
space	preceded	by	a	backslash.
Use	a	character	class	such	as	[].

Comments	can	be	included	in	a	non-x	pattern
with	the	(?#comment)	construct,	where

comment	is	arbitrary	text	ignored	by	the	regexp
engine.

Encoding

Regular	expressions	are	assumed	to	use	the
source	encoding.	This	can	be	overridden	with
one	of	the	following	modifiers.

/pat/u	-	UTF-8
/pat/e	-	EUC-JP
/pat/s	-	Windows-31J
/pat/n	-	ASCII-8BIT

A	regexp	can	be	matched	against	a	string	when
they	either	share	an	encoding,	or	the	regexp's
encoding	is	US-ASCII	and	the	string's	encoding
is	ASCII-compatible.

If	a	match	between	incompatible	encodings	is
attempted	an	Encoding::CompatibilityError
exception	is	raised.

The	Regexp#fixed_encoding?	predicate	indicates
whether	the	regexp	has	a	fixed	encoding,	that	is
one	incompatible	with	ASCII.	A	regexp's
encoding	can	be	explicitly	fixed	by	supplying
Regexp::FIXEDENCODING	as	the	second	argument
of	Regexp.new:

r	=	Regexp.new("a".force_encoding("iso-8859-1"),Regexp

r	=~"a\u3042"

			#=>	Encoding::CompatibilityError:	incompatible	encoding	regexp	match

								(ISO-8859-1	regexp	with	UTF-8	string)

Special	global	variables

Pattern	matching	sets	some	global	variables	:

$~	is	equivalent	to	::last_match;
$&	contains	the	complete	matched	text;
$`	contains	string	before	match;
$'	contains	string	after	match;
$1,	$2	and	so	on	contain	text	matching	first,
second,	etc	capture	group;
$+	contains	last	capture	group.

Example:

m	=	/s(\w{2}).*(c)/.match('haystack')	#=>	#<MatchData	"stac"	1:"ta"	2:"c">

$~																																				#=>	#<MatchData	"stac"	1:"ta"	2:"c">

Regexp.last_match																					#=>	#<MatchData	"stac"	1:"ta"	2:"c">

$&						#=>	"stac"

								#	same	as	m[0]

$`						#=>	"hay"

								#	same	as	m.pre_match

$'						#=>	"k"

								#	same	as	m.post_match

$1						#=>	"ta"

								#	same	as	m[1]

$2						#=>	"c"

								#	same	as	m[2]

$3						#=>	nil

								#	no	third	group	in	pattern

$+						#=>	"c"

								#	same	as	m[-1]

These	global	variables	are	thread-local	and
method-local	variables.

Performance

Certain	pathological	combinations	of	constructs
can	lead	to	abysmally	bad	performance.

Consider	a	string	of	25	as,	a	d,	4	as,	and	a	c.

s	=	'a'	*	25	+	'd'	+	'a'	*	4	+	'c'

#=>	"aaaaaaaaaaaaaaaaaaaaaaaaadaaaac"

The	following	patterns	match	instantly	as	you
would	expect:

/(b|a)/	=~	s	#=>	0

/(b|a+)/	=~	s	#=>	0

/(b|a+)*/	=~	s	#=>	0

However,	the	following	pattern	takes	appreciably
longer:

/(b|a+)*c/	=~	s	#=>	26

This	happens	because	an	atom	in	the	regexp	is
quantified	by	both	an	immediate	+	and	an
enclosing	*	with	nothing	to	differentiate	which	is
in	control	of	any	particular	character.	The
nondeterminism	that	results	produces	super-
linear	performance.	(Consult	Mastering	Regular
Expressions	(3rd	ed.),	pp	222,	by	Jeffery	Friedl,
for	an	in-depth	analysis).	This	particular	case
can	be	fixed	by	use	of	atomic	grouping,	which

prevents	the	unnecessary	backtracking:

(start	=	Time.now)	&&	/(b|a+)*c/	=~	s	&&	(Time.now

			#=>	24.702736882

(start	=	Time.now)	&&	/(?>b|a+)*c/	=~	s	&&	(Time.

			#=>	0.000166571

A	similar	case	is	typified	by	the	following
example,	which	takes	approximately	60	seconds
to	execute	for	me:

Match	a	string	of	29	as	against	a	pattern	of	29
optional	as	followed	by	29	mandatory	as:

Regexp.new('a?'	*	29	+	'a'	*	29)	=~	'a'	*	29

The	29	optional	as	match	the	string,	but	this
prevents	the	29	mandatory	as	that	follow	from
matching.	Ruby	must	then	backtrack	repeatedly
so	as	to	satisfy	as	many	of	the	optional	matches
as	it	can	while	still	matching	the	mandatory	29.	It
is	plain	to	us	that	none	of	the	optional	matches
can	succeed,	but	this	fact	unfortunately	eludes
Ruby.

The	best	way	to	improve	performance	is	to
significantly	reduce	the	amount	of	backtracking
needed.	For	this	case,	instead	of	individually
matching	29	optional	as,	a	range	of	optional	as
can	be	matched	all	at	once	with	a{0,29}:

Regexp.new('a{0,29}'	+	'a'	*	29)	=~	'a'	*	29

In	Files
re.c

Parent
Object

Constants

EXTENDED

see	#options	and	::new

FIXEDENCODING

see	#options	and	::new

IGNORECASE

see	#options	and	::new

MULTILINE

see	#options	and	::new

NOENCODING

see	#options	and	::new

Public	Class	Methods

Synonym	for	Regexp.new
compile(*args)

Escapes	any	characters	that	would	have	special
meaning	in	a	regular	expression.	Returns	a	new
escaped	string,	or	self	if	no	characters	are	escaped.
For	any	string,	Regexp.new(Regexp.escape(str))=~str
will	be	true.

Regexp.escape('*?{}.')			#=>	*\?\{\}\.

The	first	form	returns	the	MatchData	object
generated	by	the	last	successful	pattern	match.
Equivalent	to	reading	the	special	global	variable	$~
(see	Special	global	variables	in	Regexp	for	details).

The	second	form	returns	the	nth	field	in	this
MatchData	object.	n	can	be	a	string	or	symbol	to
reference	a	named	capture.

Note	that	the	::last_match	is	local	to	the	thread	and
method	scope	of	the	method	that	did	the	pattern
match.

/c(.)t/	=~	'cat'								#=>	0

Regexp.last_match							#=>	#<MatchData	"cat"	1:"a">

Regexp.last_match(0)				#=>	"cat"

Regexp.last_match(1)				#=>	"a"

Regexp.last_match(2)				#=>	nil

/(?<lhs>\w+)\s*=\s*(?<rhs>\w+)/	=~	"var	=	val"

Regexp.last_match							#=>	#<MatchData	"var	=	val"	lhs:"var"	rhs:"val">

Regexp.last_match(:lhs)	#=>	"var"

Regexp.last_match(:rhs)	#=>	"val"

escape(str)	→	string
quote(str)	→	string

last_match	→	matchdata
last_match(n)	→	str

new(string,	[options	[,	kcode]])	→	regexp

Constructs	a	new	regular	expression	from	pattern,
which	can	be	either	a	String	or	a	Regexp	(in	which
case	that	regexp's	options	are	propagated),	and	new
options	may	not	be	specified	(a	change	as	of	Ruby
1.8).

If	options	is	a	Fixnum,	it	should	be	one	or	more	of	the
constants	Regexp::EXTENDED,
Regexp::IGNORECASE,	and	Regexp::MULTILINE,
or-ed	together.	Otherwise,	if	options	is	not	nil	or
false,	the	regexp	will	be	case	insensitive.

When	the	kcode	parameter	is	`n'	or	`N'	sets	the
regexp	no	encoding.	It	means	that	the	regexp	is	for
binary	strings.

r1	=	Regexp.new('^a-z+:\s+\w+')	#=>	/^a-z+:\s+\w+/

r2	=	Regexp.new('cat',	true)					#=>	/cat/i

r3	=	Regexp.new(r2)														#=>	/cat/i

r4	=	Regexp.new('dog',	Regexp::EXTENDED	|	Regexp::IGNORECASE

Escapes	any	characters	that	would	have	special
meaning	in	a	regular	expression.	Returns	a	new
escaped	string,	or	self	if	no	characters	are	escaped.
For	any	string,	Regexp.new(Regexp.escape(str))=~str
will	be	true.

Regexp.escape('*?{}.')			#=>	*\?\{\}\.

new(regexp)	→	regexp
compile(string,	[options	[,	kcode]])	→	regexp
compile(regexp)	→	regexp

escape(str)	→	string
quote(str)	→	string

try_convert(obj)	→	re	or	nil

Try	to	convert	obj	into	a	Regexp,	using	to_regexp
method.	Returns	converted	regexp	or	nil	if	obj	cannot
be	converted	for	any	reason.

Regexp.try_convert(/re/)									#=>	/re/

Regexp.try_convert("re")									#=>	nil

o	=	Object.new

Regexp.try_convert(o)												#=>	nil

def	o.to_regexp()	/foo/	end

Regexp.try_convert(o)												#=>	/foo/

Return	a	Regexp	object	that	is	the	union	of	the	given
patterns,	i.e.,	will	match	any	of	its	parts.	The	patterns
can	be	Regexp	objects,	in	which	case	their	options
will	be	preserved,	or	Strings.	If	no	patterns	are	given,
returns	/(?!)/.	The	behavior	is	unspecified	if	any
given	pattern	contains	capture.

Regexp.union																									#=>	/(?!)/

Regexp.union("penzance")													#=>	/penzance/

Regexp.union("a+b*c")																#=>	/a\+b*c/

Regexp.union("skiing",	"sledding")			#=>	/skiing|sledding/

Regexp.union(["skiing",	"sledding"])	#=>	/skiing|sledding/

Regexp.union(/dogs/,	/cats/)								#=>	/(?-mix:dogs)|(?i-mx:cats)/

Note:	the	arguments	for	::union	will	try	to	be
converted	into	a	regular	expression	literal	via
to_regexp.

Public	Instance	Methods

union(pat1,	pat2,	...)	→	new_regexp
union(pats_ary)	→	new_regexp

rxp	==	other_rxp	→	true	or	false
eql?(other_rxp)	→	true	or	false

Equality—Two	regexps	are	equal	if	their	patterns	are
identical,	they	have	the	same	character	set	code,	and
their	casefold?	values	are	the	same.

/abc/		==	/abc/			#=>	false

/abc/		==	/abc/			#=>	false

/abc/		==	/abc/			#=>	false

/abc/	==	/abc/			#=>	false

Case	Equality—Used	in	case	statements.

a	=	"HELLO"

case	a

when	/^[a-z]*$/;	print	"Lower	case\n"

when	/^[A-Z]*$/;	print	"Upper	case\n"

else;												print	"Mixed	case\n"

end

#=>	"Upper	case"

Following	a	regular	expression	literal	with	the	#===
operator	allows	you	to	compare	against	a	String.

/^[a-z]*$/	===	"HELLO"	#=>	false

/^[A-Z]*$/	===	"HELLO"	#=>	true

Match—Matches	rxp	against	str.

/at/	=~	"input	data"			#=>	7

/ax/	=~	"input	data"			#=>	nil

If	=~	is	used	with	a	regexp	literal	with	named
captures,	captured	strings	(or	nil)	is	assigned	to	local
variables	named	by	the	capture	names.

/(?<lhs>\w+)\s*=\s*(?<rhs>\w+)/	=~	"		x	=	y		"

p	lhs				#=>	"x"

p	rhs				#=>	"y"

rxp	===	str	→	true	or	false

rxp	=~	str	→	integer	or	nil

If	it	is	not	matched,	nil	is	assigned	for	the	variables.

/(?<lhs>\w+)\s*=\s*(?<rhs>\w+)/	=~	"		x	=	"

p	lhs				#=>	nil

p	rhs				#=>	nil

This	assignment	is	implemented	in	the	Ruby	parser.
The	parser	detects	'regexp-literal	=~	expression'	for
the	assignment.	The	regexp	must	be	a	literal	without
interpolation	and	placed	at	left	hand	side.

The	assignment	does	not	occur	if	the	regexp	is	not	a
literal.

re	=	/(?<lhs>\w+)\s*=\s*(?<rhs>\w+)/

re	=~	"		x	=	y		"

p	lhs				#	undefined	local	variable

p	rhs				#	undefined	local	variable

A	regexp	interpolation,	#{},	also	disables	the
assignment.

rhs_pat	=	/(?<rhs>\w+)/

/(?<lhs>\w+)\s*=\s*#{rhs_pat}/	=~	"x	=	y"

p	lhs				#	undefined	local	variable

The	assignment	does	not	occur	if	the	regexp	is
placed	at	the	right	hand	side.

"		x	=	y		"	=~	/(?<lhs>\w+)\s*=\s*(?<rhs>\w+)/

p	lhs,	rhs	#	undefined	local	variable

Returns	the	value	of	the	case-insensitive	flag.

/a/.casefold?											#=>	false

/a/.casefold?										#=>	true

/(?i:a)/.casefold?						#=>	false

casefold?	→	true	or	false

encoding	→	encoding

Returns	the	Encoding	object	that	represents	the
encoding	of	obj.

Equality—Two	regexps	are	equal	if	their	patterns	are
identical,	they	have	the	same	character	set	code,	and
their	casefold?	values	are	the	same.

/abc/		==	/abc/			#=>	false

/abc/		==	/abc/			#=>	false

/abc/		==	/abc/			#=>	false

/abc/	==	/abc/			#=>	false

Returns	false	if	rxp	is	applicable	to	a	string	with	any
ASCII	compatible	encoding.	Returns	true	otherwise.

r	=	/a/

r.fixed_encoding?																															#=>	false

r	=~	"\u{6666}	a"																															#=>	2

r	=~	"\xa1\xa2	a".force_encoding("euc-jp")						#=>	2

r	=~	"abc".force_encoding("euc-jp")													#=>	0

r	=	/a/

r.fixed_encoding?																															#=>	true

r.encoding																																						#=>	#<Encoding:UTF-8>

r	=~	"\u{6666}	a"																															#=>	2

r	=~	"\xa1\xa2".force_encoding("euc-jp")								#=>	ArgumentError

r	=~	"abc".force_encoding("euc-jp")													#=>	0

r	=	/\u{6666}/

r.fixed_encoding?																															#=>	true

r.encoding																																						#=>	#<Encoding:UTF-8>

r	=~	"\u{6666}	a"																															#=>	0

r	=~	"\xa1\xa2".force_encoding("euc-jp")								#=>	ArgumentError

r	=~	"abc".force_encoding("euc-jp")													#=>	nil

rxp	==	other_rxp	→	true	or	false
eql?(other_rxp)	→	true	or	false

fixed_encoding?	→	true	or	false

Produce	a	hash	based	on	the	text	and	options	of	this
regular	expression.

See	also	Object#hash.

Produce	a	nicely	formatted	string-version	of	rxp.
Perhaps	surprisingly,	#inspect	actually	produces	the
more	natural	version	of	the	string	than	#to_s.

/ab+c/x.inspect								#=>	"/ab+c/ix"

Returns	a	MatchData	object	describing	the	match,	or
nil	if	there	was	no	match.	This	is	equivalent	to
retrieving	the	value	of	the	special	variable	$~
following	a	normal	match.	If	the	second	parameter	is
present,	it	specifies	the	position	in	the	string	to	begin
the	search.

/(.)(.)(.)/.match("abc")[2]			#=>	"b"

/(.)(.)/.match("abc",	1)[2]			#=>	"c"

If	a	block	is	given,	invoke	the	block	with	MatchData	if
match	succeed,	so	that	you	can	write

pat.match(str)	{|m|	...}

instead	of

if	m	=	pat.match(str)

		...

end

The	return	value	is	a	value	from	block	execution	in

hash	→	fixnum

inspect	→	string

match(str)	→	matchdata	or	nil
match(str,pos)	→	matchdata	or	nil

this	case.

Returns	a	hash	representing	information	about
named	captures	of	rxp.

A	key	of	the	hash	is	a	name	of	the	named	captures.	A
value	of	the	hash	is	an	array	which	is	list	of	indexes
of	corresponding	named	captures.

/(?<foo>.)(?<bar>.)/.named_captures

#=>	{"foo"=>[1],	"bar"=>[2]}

/(?<foo>.)(?<foo>.)/.named_captures

#=>	{"foo"=>[1,	2]}

If	there	are	no	named	captures,	an	empty	hash	is
returned.

/(.)(.)/.named_captures

#=>	{}

Returns	a	list	of	names	of	captures	as	an	array	of
strings.

/(?<foo>.)(?<bar>.)(?<baz>.)/.names

#=>	["foo",	"bar",	"baz"]

/(?<foo>.)(?<foo>.)/.names

#=>	["foo"]

/(.)(.)/.names

#=>	[]

Returns	the	set	of	bits	corresponding	to	the	options
used	when	creating	this	Regexp	(see	Regexp::new	for

named_captures	→	hash

names	→	[name1,	name2,	...]

options	→	fixnum

details.	Note	that	additional	bits	may	be	set	in	the
returned	options:	these	are	used	internally	by	the
regular	expression	code.	These	extra	bits	are	ignored
if	the	options	are	passed	to	Regexp::new.

Regexp::IGNORECASE																		#=>	1

Regexp::EXTENDED																				#=>	2

Regexp::MULTILINE																			#=>	4

/cat/.options																							#=>	0

/cat/x.options																					#=>	3

Regexp.new('cat',	true).options					#=>	1

/\xa1\xa2/.options																	#=>	16

r	=	/cat/x

Regexp.new(r.source,	r.options)					#=>	/cat/ix

Returns	the	original	string	of	the	pattern.

/ab+c/x.source	#=>	"ab+c"

Note	that	escape	sequences	are	retained	as	is.

/\x20\+/.source		#=>	"\\x20\\+"

Returns	a	string	containing	the	regular	expression
and	its	options	(using	the	(?opts:source)	notation.
This	string	can	be	fed	back	in	to	Regexp::new	to	a
regular	expression	with	the	same	semantics	as	the
original.	(However,	Regexp#==	may	not	return	true
when	comparing	the	two,	as	the	source	of	the	regular
expression	itself	may	differ,	as	the	example	shows).
Regexp#inspect	produces	a	generally	more	readable
version	of	rxp.

r1	=	/ab+c/x											#=>	/ab+c/ix

source	→	str

to_s	→	str

s1	=	r1.to_s												#=>	"(?ix-m:ab+c)"

r2	=	Regexp.new(s1)					#=>	/(?ix-m:ab+c)/

r1	==	r2																#=>	false

r1.source															#=>	"ab+c"

r2.source															#=>	"(?ix-m:ab+c)"

Match—Matches	rxp	against	the	contents	of	$_.
Equivalent	to	rxp	=~	$_.

$_	=	"input	data"

~	/at/			#=>	7

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

~	rxp	→	integer	or	nil

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	RegexpError
Raised	when	given	an	invalid	regexp
expression.

Regexp.new("?")

raises	the	exception:

RegexpError:	target	of	repeat	operator	is	not	specified:	/?/

In	Files
re.c

Parent
StandardError

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	Ripper

In	Files
parse.c

Parent
Object

Constants

Version

version	of	Ripper

Public	Class	Methods

Create	a	new	Ripper	object.	src	must	be	a	String,	an
IO,	or	an	Object	which	has	gets	method.

This	method	does	not	starts	parsing.	See	also	#parse
and	#parse.

Public	Instance	Methods

new(src,	filename="(ripper)",	lineno=1)	→
ripper

Return	column	number	of	current	parsing	line.	This
number	starts	from	0.

Return	encoding	of	the	source.

Return	true	if	parsed	source	ended	by	+__END__+.

Return	true	if	parsed	source	has	errors.

Return	current	parsing	filename.

Return	line	number	of	current	parsing	line.	This
number	starts	from	1.

Start	parsing	and	returns	the	value	of	the	root	action.

Get	yydebug.

Set	yydebug.

ripper#column	→	Integer

ripper#encoding	→	encoding

ripper#end_seen?	→	Boolean

ripper#error?	→	Boolean

ripper#filename	→	String

ripper#lineno	→	Integer

ripper#parse

yydebug	→	true	or	false

yydebug	=	flag

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	RubyVM
::RubyVM

In	Files
iseq.c
vm.c

Parent
Object

Constants

DEFAULT_PARAMS

DEFAULT_PARAMS	This	constant	variable	shows	VM's
default	parameters.	Note	that	changing	these	values
does	not	affect	VM	execution.	Specification	is	not	stable
and	you	should	not	depend	on	this	value.	Of	course,	this
constant	is	MRI	specific.

INSTRUCTION_NAMES

INSTRUCTION_NAMES

OPTS

OPTS,	which	shows	vm	build	options

Public	Class	Methods

Returns	a	Hash	containing	implementation-
dependent	counters	inside	the	VM.

This	hash	includes	information	about
method/constant	cache	serials:

{

		:global_method_state=>251,

		:global_constant_state=>481,

		:class_serial=>9029

}

The	contents	of	the	hash	are	implementation	specific
and	may	be	changed	in	the	future.

This	method	is	only	expected	to	work	on	C	Ruby.

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

stat	→	Hash
stat(hsh)	→	hsh
stat(Symbol)	→	Numeric

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	RubyVM::Env
::RubyVM::Env

In	Files
iseq.c

Parent
Object

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class
RubyVM::InstructionSequence
The	InstructionSequence	class	represents	a
compiled	sequence	of	instructions	for	the	Ruby
Virtual	Machine.

With	it,	you	can	get	a	handle	to	the	instructions
that	make	up	a	method	or	a	proc,	compile
strings	of	Ruby	code	down	to	VM	instructions,
and	disassemble	instruction	sequences	to
strings	for	easy	inspection.	It	is	mostly	useful	if
you	want	to	learn	how	the	Ruby	VM	works,	but	it
also	lets	you	control	various	settings	for	the
Ruby	iseq	compiler.

You	can	find	the	source	for	the	VM	instructions
in	insns.def	in	the	Ruby	source.

The	instruction	sequence	results	will	almost
certainly	change	as	Ruby	changes,	so	example
output	in	this	documentation	may	be	different
from	what	you	see.

In	Files
iseq.c

Parent

Object

Public	Class	Methods

Takes	source,	a	String	of	Ruby	code	and	compiles	it
to	an	InstructionSequence.

Optionally	takes	file,	path,	and	line	which	describe
the	filename,	absolute	path	and	first	line	number	of
the	ruby	code	in	source	which	are	metadata	attached
to	the	returned	iseq.

options,	which	can	be	true,	false	or	a	Hash,	is	used
to	modify	the	default	behavior	of	the	Ruby	iseq
compiler.

For	details	regarding	valid	compile	options	see
::compile_option=.

RubyVM::InstructionSequence.compile("a	=	1	+	2")

#=>	<RubyVM::InstructionSequence:<compiled>@<compiled>>

Takes	file,	a	String	with	the	location	of	a	Ruby
source	file,	reads,	parses	and	compiles	the	file,	and
returns	iseq,	the	compiled	InstructionSequence	with
source	location	metadata	set.

Optionally	takes	options,	which	can	be	true,	false	or
a	Hash,	to	modify	the	default	behavior	of	the	Ruby
iseq	compiler.

compile(source[,	file[,	path[,	line[,
options]]]])	→	iseq
new(source[,	file[,	path[,	line[,	options]]]])	→
iseq

compile_file(file[,	options])	→	iseq

For	details	regarding	valid	compile	options	see
::compile_option=.

#	/tmp/hello.rb

puts	"Hello,	world!"

#	elsewhere

RubyVM::InstructionSequence.compile_file("/tmp/hello.rb"

#=>	<RubyVM::InstructionSequence:<main>@/tmp/hello.rb>

Returns	a	hash	of	default	options	used	by	the	Ruby
iseq	compiler.

For	details,	see	::compile_option=.

Sets	the	default	values	for	various	optimizations	in
the	Ruby	iseq	compiler.

Possible	values	for	options	include	true,	which
enables	all	options,	false	which	disables	all	options,
and	nil	which	leaves	all	options	unchanged.

You	can	also	pass	a	Hash	of	options	that	you	want	to
change,	any	options	not	present	in	the	hash	will	be
left	unchanged.

Possible	option	names	(which	are	keys	in	options)
which	can	be	set	to	true	or	false	include:

:inline_const_cache

:instructions_unification

:operands_unification

:peephole_optimization

:specialized_instruction

compile_option	→	options

compile_option	=	options

:stack_caching

:tailcall_optimization

:trace_instruction

Additionally,	:debug_level	can	be	set	to	an	integer.

These	default	options	can	be	overwritten	for	a	single
run	of	the	iseq	compiler	by	passing	any	of	the	above
values	as	the	options	parameter	to	::new,	::compile
and	::compile_file.

Takes	body,	a	Method	or	Proc	object,	and	returns	a
String	with	the	human	readable	instructions	for	body.

For	a	Method	object:

#	/tmp/method.rb

def	hello

		puts	"hello,	world"

end

puts	RubyVM::InstructionSequence.disasm(method(:hello))

Produces:

==	disasm:	<RubyVM::InstructionSequence:hello@/tmp/method.rb>============

0000	trace												8																																															(1)

0002	trace												1																																															(2)

0004	putself

0005	putstring								"hello,	world"

0007	send													:puts,	1,	nil,	8,	<ic:0>

0013	trace												16																																														(3)

0015	leave																																																												(2)

For	a	Proc:

#	/tmp/proc.rb

p	=	proc	{	num	=	1	+	2	}

disasm(body)	→	str
disassemble(body)	→	str

puts	RubyVM::InstructionSequence.disasm(p)

Produces:

==	disasm:	<RubyVM::InstructionSequence:block	in	<main>@/tmp/proc.rb>===

==	catch	table

|	catch	type:	redo			st:	0000	ed:	0012	sp:	0000	cont:	0000

|	catch	type:	next			st:	0000	ed:	0012	sp:	0000	cont:	0012

|--

local	table	(size:	2,	argc:	0	[opts:	0,	rest:	-1,	post:	0,	block:	-1]	s1)

[2]	num

0000	trace												1																																															(1)

0002	putobject								1

0004	putobject								2

0006	opt_plus									<ic:1>

0008	dup

0009	setlocal									num,	0

0012	leave

Takes	body,	a	Method	or	Proc	object,	and	returns	a
String	with	the	human	readable	instructions	for	body.

For	a	Method	object:

#	/tmp/method.rb

def	hello

		puts	"hello,	world"

end

puts	RubyVM::InstructionSequence.disasm(method(:hello))

Produces:

==	disasm:	<RubyVM::InstructionSequence:hello@/tmp/method.rb>============

0000	trace												8																																															(1)

0002	trace												1																																															(2)

0004	putself

0005	putstring								"hello,	world"

0007	send													:puts,	1,	nil,	8,	<ic:0>

0013	trace												16																																														(3)

disasm(body)	→	str
disassemble(body)	→	str

0015	leave																																																												(2)

For	a	Proc:

#	/tmp/proc.rb

p	=	proc	{	num	=	1	+	2	}

puts	RubyVM::InstructionSequence.disasm(p)

Produces:

==	disasm:	<RubyVM::InstructionSequence:block	in	<main>@/tmp/proc.rb>===

==	catch	table

|	catch	type:	redo			st:	0000	ed:	0012	sp:	0000	cont:	0000

|	catch	type:	next			st:	0000	ed:	0012	sp:	0000	cont:	0012

|--

local	table	(size:	2,	argc:	0	[opts:	0,	rest:	-1,	post:	0,	block:	-1]	s1)

[2]	num

0000	trace												1																																															(1)

0002	putobject								1

0004	putobject								2

0006	opt_plus									<ic:1>

0008	dup

0009	setlocal									num,	0

0012	leave

Takes	source,	a	String	of	Ruby	code	and	compiles	it
to	an	InstructionSequence.

Optionally	takes	file,	path,	and	line	which	describe
the	filename,	absolute	path	and	first	line	number	of
the	ruby	code	in	source	which	are	metadata	attached
to	the	returned	iseq.

options,	which	can	be	true,	false	or	a	Hash,	is	used
to	modify	the	default	behavior	of	the	Ruby	iseq

compile(source[,	file[,	path[,	line[,
options]]]])	→	iseq
new(source[,	file[,	path[,	line[,	options]]]])	→
iseq

compiler.

For	details	regarding	valid	compile	options	see
::compile_option=.

RubyVM::InstructionSequence.compile("a	=	1	+	2")

#=>	<RubyVM::InstructionSequence:<compiled>@<compiled>>

Returns	the	instruction	sequence	containing	the
given	proc	or	method.

For	example,	using	irb:

#	a	proc

>	p	=	proc	{	num	=	1	+	2	}

>	RubyVM::InstructionSequence.of(p)

>	#=>	<RubyVM::InstructionSequence:block	in	irb_binding@(irb)>

#	for	a	method

>	def	foo(bar);	puts	bar;	end

>	RubyVM::InstructionSequence.of(method(:foo))

>	#=>	<RubyVM::InstructionSequence:foo@(irb)>

Using	::compile_file:

#	/tmp/iseq_of.rb

def	hello

		puts	"hello,	world"

end

$a_global_proc	=	proc	{	str	=	'a'	+	'b'	}

#	in	irb

>	require	'/tmp/iseq_of.rb'

#	first	the	method	hello

>	RubyVM::InstructionSequence.of(method(:hello))

>	#=>	#<RubyVM::InstructionSequence:0x007fb73d7cb1d0>

#	then	the	global	proc

>	RubyVM::InstructionSequence.of($a_global_proc)

of(p1)

>	#=>	#<RubyVM::InstructionSequence:0x007fb73d7caf78>

Public	Instance	Methods

Returns	the	absolute	path	of	this	instruction
sequence.

nil	if	the	iseq	was	evaluated	from	a	string.

For	example,	using	::compile_file:

#	/tmp/method.rb

def	hello

		puts	"hello,	world"

end

#	in	irb

>	iseq	=	RubyVM::InstructionSequence.compile_file('/tmp/method.rb'

>	iseq.absolute_path	#=>	/tmp/method.rb

Returns	the	base	label	of	this	instruction	sequence.

For	example,	using	irb:

iseq	=	RubyVM::InstructionSequence.compile('num	=	1	+	2'

#=>	<RubyVM::InstructionSequence:<compiled>@<compiled>>

iseq.base_label

#=>	"<compiled>"

Using	::compile_file:

#	/tmp/method.rb

def	hello

		puts	"hello,	world"

end

absolute_path()

base_label()

#	in	irb

>	iseq	=	RubyVM::InstructionSequence.compile_file('/tmp/method.rb'

>	iseq.base_label	#=>	<main>

Returns	the	instruction	sequence	as	a	String	in
human	readable	form.

puts	RubyVM::InstructionSequence.compile('1	+	2').disasm

Produces:

==	disasm:	<RubyVM::InstructionSequence:<compiled>@<compiled>>==========

0000	trace												1																																															(1)

0002	putobject								1

0004	putobject								2

0006	opt_plus									<ic:1>

0008	leave

Returns	the	instruction	sequence	as	a	String	in
human	readable	form.

puts	RubyVM::InstructionSequence.compile('1	+	2').disasm

Produces:

==	disasm:	<RubyVM::InstructionSequence:<compiled>@<compiled>>==========

0000	trace												1																																															(1)

0002	putobject								1

0004	putobject								2

0006	opt_plus									<ic:1>

0008	leave

disasm	→	str
disassemble	→	str

disasm	→	str
disassemble	→	str

Evaluates	the	instruction	sequence	and	returns	the
result.

RubyVM::InstructionSequence.compile("1	+	2").eval	#=>	3

Returns	the	number	of	the	first	source	line	where	the
instruction	sequence	was	loaded	from.

For	example,	using	irb:

iseq	=	RubyVM::InstructionSequence.compile('num	=	1	+	2'

#=>	<RubyVM::InstructionSequence:<compiled>@<compiled>>

iseq.first_lineno

#=>	1

Returns	a	human-readable	string	representation	of
this	instruction	sequence,	including	the	label	and
path.

Returns	the	label	of	this	instruction	sequence.

<main>	if	it's	at	the	top	level,	<compiled>	if	it	was
evaluated	from	a	string.

For	example,	using	irb:

iseq	=	RubyVM::InstructionSequence.compile('num	=	1	+	2'

#=>	<RubyVM::InstructionSequence:<compiled>@<compiled>>

iseq.label

#=>	"<compiled>"

eval	→	obj

first_lineno()

inspect()

label()

Using	::compile_file:

#	/tmp/method.rb

def	hello

		puts	"hello,	world"

end

#	in	irb

>	iseq	=	RubyVM::InstructionSequence.compile_file('/tmp/method.rb'

>	iseq.label	#=>	<main>

Experimental	MRI	specific	feature,	only	available
as	C	level	api.
Returns	all	specified_line	events.

Experimental	MRI	specific	feature,	only	available
as	C	level	api.
Set	a	specified_line	event	at	the	given	line	position,
if	the	set	parameter	is	true.

This	method	is	useful	for	building	a	debugger
breakpoint	at	a	specific	line.

A	TypeError	is	raised	if	set	is	not	boolean.

If	pos	is	a	negative	integer	a	TypeError	exception	is
raised.

Returns	the	path	of	this	instruction	sequence.

<compiled>	if	the	iseq	was	evaluated	from	a	string.

For	example,	using	irb:

line_trace_all()

line_trace_specify(p1,	p2)

path()

iseq	=	RubyVM::InstructionSequence.compile('num	=	1	+	2'

#=>	<RubyVM::InstructionSequence:<compiled>@<compiled>>

iseq.path

#=>	"<compiled>"

Using	::compile_file:

#	/tmp/method.rb

def	hello

		puts	"hello,	world"

end

#	in	irb

>	iseq	=	RubyVM::InstructionSequence.compile_file('/tmp/method.rb'

>	iseq.path	#=>	/tmp/method.rb

Returns	an	Array	with	14	elements	representing	the
instruction	sequence	with	the	following	data:

magic
A	string	identifying	the	data	format.	Always
YARVInstructionSequence/SimpleDataFormat.

major_version
The	major	version	of	the	instruction
sequence.

minor_version
The	minor	version	of	the	instruction
sequence.

format_type
A	number	identifying	the	data	format.
Always	1.

to_a	→	ary

misc
A	hash	containing:

:arg_size

the	total	number	of	arguments
taken	by	the	method	or	the	block
(0	if	iseq	doesn't	represent	a
method	or	block)

:local_size

the	number	of	local	variables	+	1

:stack_max

used	in	calculating	the	stack
depth	at	which	a
SystemStackError	is	thrown.

label
The	name	of	the	context	(block,	method,
class,	module,	etc.)	that	this	instruction
sequence	belongs	to.

<main>	if	it's	at	the	top	level,	<compiled>	if	it
was	evaluated	from	a	string.

path
The	relative	path	to	the	Ruby	file	where	the
instruction	sequence	was	loaded	from.

<compiled>	if	the	iseq	was	evaluated	from	a
string.

absolute_path
The	absolute	path	to	the	Ruby	file	where
the	instruction	sequence	was	loaded	from.

nil	if	the	iseq	was	evaluated	from	a	string.

first_lineno
The	number	of	the	first	source	line	where
the	instruction	sequence	was	loaded	from.

type
The	type	of	the	instruction	sequence.

Valid	values	are	:top,	:method,	:block,
:class,	:rescue,	:ensure,	:eval,	:main,	and
:defined_guard.

locals
An	array	containing	the	names	of	all
arguments	and	local	variables	as	symbols.

params
An	Hash	object	containing	parameter
information.

More	info	about	these	values	can	be	found
in	vm_core.h.

catch_table
A	list	of	exceptions	and	control	flow
operators	(rescue,	next,	redo,	break,	etc.).

bytecode
An	array	of	arrays	containing	the	instruction
names	and	operands	that	make	up	the
body	of	the	instruction	sequence.

Note	that	this	format	is	MRI	specific	and	version
dependent.

Generated	by	RDoc	3.12.2.

https://github.com/rdoc/rdoc

Generated	with	the	Darkfish	Rdoc	Generator	3.

http://deveiate.org/projects/Darkfish-Rdoc/

class	RuntimeError
A	generic	error	class	raised	when	an	invalid
operation	is	attempted.

[1,	2,	3].freeze	<<	4

raises	the	exception:

RuntimeError:	can't	modify	frozen	Array

Kernel#raise	will	raise	a	RuntimeError	if	no
Exception	class	is	specified.

raise	"ouch"

raises	the	exception:

RuntimeError:	ouch

In	Files
error.c

Parent
StandardError

Generated	by	RDoc	3.12.2.

https://github.com/rdoc/rdoc

Generated	with	the	Darkfish	Rdoc	Generator	3.

http://deveiate.org/projects/Darkfish-Rdoc/

class	ScriptError
ScriptError	is	the	superclass	for	errors	raised
when	a	script	can	not	be	executed	because	of	a
LoadError,	NotImplementedError	or	a	SyntaxError.
Note	these	type	of	ScriptErrors	are	not
StandardError	and	will	not	be	rescued	unless	it	is
specified	explicitly	(or	its	ancestor	Exception).

In	Files
error.c

Parent
Exception

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	SecurityError
Raised	when	attempting	a	potential	unsafe
operation,	typically	when	the	$SAFE	level	is
raised	above	0.

foo	=	"bar"

proc	=	Proc.new	do

		$SAFE	=	3

		foo.untaint

end

proc.call

raises	the	exception:

SecurityError:	Insecure:	Insecure	operation	`untaint'	at	level	3

In	Files
error.c

Parent
Exception

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

module	Signal
Many	operating	systems	allow	signals	to	be	sent
to	running	processes.	Some	signals	have	a
defined	effect	on	the	process,	while	others	may
be	trapped	at	the	code	level	and	acted	upon.	For
example,	your	process	may	trap	the	USR1
signal	and	use	it	to	toggle	debugging,	and	may
use	TERM	to	initiate	a	controlled	shutdown.

pid	=	fork	do

		Signal.trap("USR1")	do

				$debug	=	!$debug

				puts	"Debug	now:	#$debug"

		end

		Signal.trap("TERM")	do

				puts	"Terminating..."

				shutdown()

		end

		#	.	.	.	do	some	work	.	.	.

end

Process.detach(pid)

#	Controlling	program:

Process.kill("USR1",	pid)

#	...

Process.kill("USR1",	pid)

#	...

Process.kill("TERM",	pid)

produces:

	Debug	now:	true

	Debug	now:	false

Terminating...

The	list	of	available	signal	names	and	their
interpretation	is	system	dependent.	Signal
delivery	semantics	may	also	vary	between
systems;	in	particular	signal	delivery	may	not
always	be	reliable.

In	Files
signal.c

Public	Class	Methods

Returns	a	list	of	signal	names	mapped	to	the
corresponding	underlying	signal	numbers.

Signal.list			#=>	{"EXIT"=>0,	"HUP"=>1,	"INT"=>2,	"QUIT"=>3,	"ILL"=>4,	"TRAP"=>5,	"IOT"=>6,	"ABRT"=>6,	"FPE"=>8,	"KILL"=>9,	"BUS"=>7,	"SEGV"=>11,	"SYS"=>31,	"PIPE"=>13,	"ALRM"=>14,	"TERM"=>15,	"URG"=>23,	"STOP"=>19,	"TSTP"=>20,	"CONT"=>18,	"CHLD"=>17,	"CLD"=>17,	"TTIN"=>21,	"TTOU"=>22,	"IO"=>29,	"XCPU"=>24,	"XFSZ"=>25,	"VTALRM"=>26,	"PROF"=>27,	"WINCH"=>28,	"USR1"=>10,	"USR2"=>12,	"PWR"=>30,	"POLL"=>29}

convert	signal	number	to	signal	name

Signal.trap("INT")	{	|signo|	puts	Signal.signame(signo

Process.kill("INT",	0)

produces:

INT

list	→	a_hash

signame(signo)	→	string

trap(signal,	command)	→	obj

Specifies	the	handling	of	signals.	The	first	parameter
is	a	signal	name	(a	string	such	as	“SIGALRM'',
“SIGUSR1'',	and	so	on)	or	a	signal	number.	The
characters	“SIG''	may	be	omitted	from	the	signal
name.	The	command	or	block	specifies	code	to	be
run	when	the	signal	is	raised.	If	the	command	is	the
string	“IGNORE''	or	“SIG_IGN'',	the	signal	will	be
ignored.	If	the	command	is	“DEFAULT''	or
“SIG_DFL'',	the	Ruby's	default	handler	will	be
invoked.	If	the	command	is	“EXIT'',	the	script	will	be
terminated	by	the	signal.	If	the	command	is
“SYSTEM_DEFAULT'',	the	operating	system's	default
handler	will	be	invoked.	Otherwise,	the	given
command	or	block	will	be	run.	The	special	signal
name	“EXIT''	or	signal	number	zero	will	be	invoked
just	prior	to	program	termination.	trap	returns	the
previous	handler	for	the	given	signal.

Signal.trap(0,	proc	{	puts	"Terminating:	#{$$}"	})

Signal.trap("CLD")		{	puts	"Child	died"	}

fork	&&	Process.wait

produces:

Terminating:	27461

Child	died

Terminating:	27460

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

trap(signal)	{|	|	block	}	→	obj

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	SignalException
Raised	when	a	signal	is	received.

begin

		Process.kill('HUP',Process.pid)

		sleep	#	wait	for	receiver	to	handle	signal	sent	by	Process.kill

rescue	SignalException	=>	e

		puts	"received	Exception	#{e}"

end

produces:

received	Exception	SIGHUP

In	Files
error.c
signal.c

Parent
Exception

Public	Class	Methods

new(sig_name)	→	signal_exception
new(sig_number	[,	name])	→
signal_exception

Construct	a	new	SignalException	object.	sig_name
should	be	a	known	signal	name.

Public	Instance	Methods

Returns	a	signal	number.

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

signo	→	num

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	StandardError
The	most	standard	error	types	are	subclasses	of
StandardError.	A	rescue	clause	without	an
explicit	Exception	class	will	rescue	all
StandardErrors	(and	only	those).

def	foo

		raise	"Oups"

end

foo	rescue	"Hello"			#=>	"Hello"

On	the	other	hand:

require	'does/not/exist'	rescue	"Hi"

raises	the	exception:

LoadError:	no	such	file	to	load	--	does/not/exist

In	Files
error.c

Parent
Exception

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	StopIteration
Raised	to	stop	the	iteration,	in	particular	by
Enumerator#next.	It	is	rescued	by	Kernel#loop.

loop	do

		puts	"Hello"

		raise	StopIteration

		puts	"World"

end

puts	"Done!"

produces:

Hello

Done!

In	Files
enumerator.c

Parent
IndexError

Public	Instance	Methods

Returns	the	return	value	of	the	iterator.

o	=	Object.new

result	→	value

def	o.each

		yield	1

		yield	2

		yield	3

		100

end

e	=	o.to_enum

puts	e.next																			#=>	1

puts	e.next																			#=>	2

puts	e.next																			#=>	3

begin

		e.next

rescue	StopIteration	=>	ex

		puts	ex.result														#=>	100

end

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	String
A	String	object	holds	and	manipulates	an
arbitrary	sequence	of	bytes,	typically
representing	characters.	String	objects	may	be
created	using	String::new	or	as	literals.

Because	of	aliasing	issues,	users	of	strings
should	be	aware	of	the	methods	that	modify	the
contents	of	a	String	object.	Typically,	methods
with	names	ending	in	“!''	modify	their	receiver,
while	those	without	a	“!''	return	a	new	String.
However,	there	are	exceptions,	such	as	String#
[]=.

In	Files
complex.c
pack.c
rational.c
string.c
transcode.c

Parent
Object

Included	Modules
Comparable

Public	Class	Methods

Returns	a	new	string	object	containing	a	copy	of	str.

Try	to	convert	obj	into	a	String,	using	#to_str	method.
Returns	converted	string	or	nil	if	obj	cannot	be
converted	for	any	reason.

String.try_convert("str")					#=>	"str"

String.try_convert(/re/)						#=>	nil

Public	Instance	Methods

Format—Uses	str	as	a	format	specification,	and
returns	the	result	of	applying	it	to	arg.	If	the	format
specification	contains	more	than	one	substitution,
then	arg	must	be	an	Array	or	Hash	containing	the
values	to	be	substituted.	See	Kernel::sprintf	for
details	of	the	format	string.

"%05d"	%	123																														#=>	"00123"

"%-5s:	%08x"	%	["ID",	self.object_id]			#=>	"ID			:	200e14d6"

"foo	=	%{foo}"	%	{	:foo	=>	'bar'	}								#=>	"foo	=	bar"

Copy	—	Returns	a	new	String	containing	integer
copies	of	the	receiver.	integer	must	be	greater	than
or	equal	to	0.

new(str="")	→	new_str

try_convert(obj)	→	string	or	nil

str	%	arg	→	new_str

str	*	integer	→	new_str

"Ho!	"	*	3			#=>	"Ho!	Ho!	Ho!	"

"Ho!	"	*	0			#=>	""

Concatenation—Returns	a	new	String	containing
other_str	concatenated	to	str.

"Hello	from	"	+	self.to_s			#=>	"Hello	from	main"

Append—Concatenates	the	given	object	to	str.	If	the
object	is	a	Integer,	it	is	considered	as	a	codepoint,
and	is	converted	to	a	character	before	concatenation.

a	=	"hello	"

a	<<	"world"			#=>	"hello	world"

a.concat(33)			#=>	"hello	world!"

Comparison—Returns	-1,	0,	+1	or	nil	depending	on
whether	string	is	less	than,	equal	to,	or	greater	than
other_string.

nil	is	returned	if	the	two	values	are	incomparable.

If	the	strings	are	of	different	lengths,	and	the	strings
are	equal	when	compared	up	to	the	shortest	length,
then	the	longer	string	is	considered	greater	than	the
shorter	one.

<=>	is	the	basis	for	the	methods	<,	<=,	>,	>=,	and

str	+	other_str	→	new_str

str	<<	integer	→	str
concat(integer)	→	str
str	<<	obj	→	str
concat(obj)	→	str

string	<=>	other_string	→	-1,	0,	+1	or	nil

between?,	included	from	module	Comparable.	The
method	String#==	does	not	use	Comparable#==.

"abcdef"	<=>	"abcde"					#=>	1

"abcdef"	<=>	"abcdef"				#=>	0

"abcdef"	<=>	"abcdefg"			#=>	-1

"abcdef"	<=>	"ABCDEF"				#=>	1

Equality
Returns	whether	str	==	obj,	similar	to	Object#==.

If	obj	is	not	an	instance	of	String	but	responds	to
to_str,	then	the	two	strings	are	compared	using	case
equality	Object#===.

Otherwise,	returns	similarly	to	#eql?,	comparing
length	and	content.

Equality
Returns	whether	str	==	obj,	similar	to	Object#==.

If	obj	is	not	an	instance	of	String	but	responds	to
to_str,	then	the	two	strings	are	compared	using	case
equality	Object#===.

Otherwise,	returns	similarly	to	#eql?,	comparing
length	and	content.

str	==	obj	→	true	or	false
str	===	obj	→	true	or	false

str	==	obj	→	true	or	false
str	===	obj	→	true	or	false

str	=~	obj	→	fixnum	or	nil

Match—If	obj	is	a	Regexp,	use	it	as	a	pattern	to	match
against	str,and	returns	the	position	the	match	starts,
or	nil	if	there	is	no	match.	Otherwise,	invokes	obj.=~,
passing	str	as	an	argument.	The	default	=~	in	Object
returns	nil.

Note:	str	=~	regexp	is	not	the	same	as	regexp	=~
str.	Strings	captured	from	named	capture	groups	are
assigned	to	local	variables	only	in	the	second	case.

"cat	o'	9	tails"	=~	/\d/			#=>	7

"cat	o'	9	tails"	=~	9						#=>	nil

Element	Reference	—	If	passed	a	single	index,
returns	a	substring	of	one	character	at	that	index.	If
passed	a	start	index	and	a	length,	returns	a
substring	containing	length	characters	starting	at	the
index.	If	passed	a	range,	its	beginning	and	end	are
interpreted	as	offsets	delimiting	the	substring	to	be
returned.

In	these	three	cases,	if	an	index	is	negative,	it	is

str[index]	→	new_str	or	nil
str[start,	length]	→	new_str	or	nil
str[range]	→	new_str	or	nil
str[regexp]	→	new_str	or	nil
str[regexp,	capture]	→	new_str	or	nil
str[match_str]	→	new_str	or	nil
slice(index)	→	new_str	or	nil
slice(start,	length)	→	new_str	or	nil
slice(range)	→	new_str	or	nil
slice(regexp)	→	new_str	or	nil
slice(regexp,	capture)	→	new_str	or	nil
slice(match_str)	→	new_str	or	nil

counted	from	the	end	of	the	string.	For	the	start	and
range	cases	the	starting	index	is	just	before	a
character	and	an	index	matching	the	string's	size.
Additionally,	an	empty	string	is	returned	when	the
starting	index	for	a	character	range	is	at	the	end	of
the	string.

Returns	nil	if	the	initial	index	falls	outside	the	string
or	the	length	is	negative.

If	a	Regexp	is	supplied,	the	matching	portion	of	the
string	is	returned.	If	a	capture	follows	the	regular
expression,	which	may	be	a	capture	group	index	or
name,	follows	the	regular	expression	that	component
of	the	MatchData	is	returned	instead.

If	a	match_str	is	given,	that	string	is	returned	if	it
occurs	in	the	string.

Returns	nil	if	the	regular	expression	does	not	match
or	the	match	string	cannot	be	found.

a	=	"hello	there"

a[1]																			#=>	"e"

a[2,	3]																#=>	"llo"

a[2..3]																#=>	"ll"

a[-3,	2]															#=>	"er"

a[7..-2]															#=>	"her"

a[-4..-2]														#=>	"her"

a[-2..-4]														#=>	""

a[11,	0]															#=>	""

a[11]																		#=>	nil

a[12,	0]															#=>	nil

a[12..-1]														#=>	nil

a[/[aeiou](.)\1/]						#=>	"ell"

a[/[aeiou](.)\1/,	0]			#=>	"ell"

a[/[aeiou](.)\1/,	1]			#=>	"l"

a[/[aeiou](.)\1/,	2]			#=>	nil

a[/(?<vowel>[aeiou])(?<non_vowel>[^aeiou])/,	"non_vowel"

a[/(?<vowel>[aeiou])(?<non_vowel>[^aeiou])/,	"vowel"]					

a["lo"]																#=>	"lo"

a["bye"]															#=>	nil

Element	Assignment—Replaces	some	or	all	of	the
content	of	str.	The	portion	of	the	string	affected	is
determined	using	the	same	criteria	as	String#[].	If
the	replacement	string	is	not	the	same	length	as	the
text	it	is	replacing,	the	string	will	be	adjusted
accordingly.	If	the	regular	expression	or	string	is	used
as	the	index	doesn't	match	a	position	in	the	string,
IndexError	is	raised.	If	the	regular	expression	form	is
used,	the	optional	second	Fixnum	allows	you	to
specify	which	portion	of	the	match	to	replace
(effectively	using	the	MatchData	indexing	rules.	The
forms	that	take	a	Fixnum	will	raise	an	IndexError	if	the
value	is	out	of	range;	the	Range	form	will	raise	a
RangeError,	and	the	Regexp	and	String	will	raise	an
IndexError	on	negative	match.

Returns	true	for	a	string	which	has	only	ASCII
characters.

"abc".force_encoding("UTF-8").ascii_only?										#=>	true

str[fixnum]	=	new_str
str[fixnum,	fixnum]	=	new_str
str[range]	=	aString
str[regexp]	=	new_str
str[regexp,	fixnum]	=	new_str
str[regexp,	name]	=	new_str
str[other_str]	=	new_str

ascii_only?	→	true	or	false

"abc\u{6666}".force_encoding("UTF-8").ascii_only?		#=>	false

Returns	a	copied	string	whose	encoding	is	ASCII-
8BIT.

Returns	an	array	of	bytes	in	str.	This	is	a	shorthand
for	str.each_byte.to_a.

If	a	block	is	given,	which	is	a	deprecated	form,	works
the	same	as	each_byte.

Returns	the	length	of	str	in	bytes.

"\x80\u3042".bytesize		#=>	4

"hello".bytesize							#=>	5

Byte	Reference—If	passed	a	single	Fixnum,	returns	a
substring	of	one	byte	at	that	position.	If	passed	two
Fixnum	objects,	returns	a	substring	starting	at	the
offset	given	by	the	first,	and	a	length	given	by	the
second.	If	given	a	Range,	a	substring	containing	bytes
at	offsets	given	by	the	range	is	returned.	In	all	three
cases,	if	an	offset	is	negative,	it	is	counted	from	the
end	of	str.	Returns	nil	if	the	initial	offset	falls	outside
the	string,	the	length	is	negative,	or	the	beginning	of
the	range	is	greater	than	the	end.	The	encoding	of

b	→	str

bytes	→	an_array

bytesize	→	integer

byteslice(fixnum)	→	new_str	or	nil
byteslice(fixnum,	fixnum)	→	new_str	or	nil
byteslice(range)	→	new_str	or	nil

the	resulted	string	keeps	original	encoding.

"hello".byteslice(1)					#=>	"e"

"hello".byteslice(-1)				#=>	"o"

"hello".byteslice(1,	2)		#=>	"el"

"\x80\u3042".byteslice(1,	3)	#=>	"\u3042"

"\x03\u3042\xff".byteslice(1..3)	#=>	"\u3042"

Returns	a	copy	of	str	with	the	first	character
converted	to	uppercase	and	the	remainder	to
lowercase.	Note:	case	conversion	is	effective	only	in
ASCII	region.

"hello".capitalize				#=>	"Hello"

"HELLO".capitalize				#=>	"Hello"

"123ABC".capitalize			#=>	"123abc"

Modifies	str	by	converting	the	first	character	to
uppercase	and	the	remainder	to	lowercase.	Returns
nil	if	no	changes	are	made.	Note:	case	conversion	is
effective	only	in	ASCII	region.

a	=	"hello"

a.capitalize!			#=>	"Hello"

a															#=>	"Hello"

a.capitalize!			#=>	nil

Case-insensitive	version	of	String#<=>.

"abcdef".casecmp("abcde")					#=>	1

"aBcDeF".casecmp("abcdef")				#=>	0

"abcdef".casecmp("abcdefg")			#=>	-1

"abcdef".casecmp("ABCDEF")				#=>	0

capitalize	→	new_str

capitalize!	→	str	or	nil

casecmp(other_str)	→	-1,	0,	+1	or	nil

Centers	str	in	width.	If	width	is	greater	than	the
length	of	str,	returns	a	new	String	of	length	width
with	str	centered	and	padded	with	padstr;	otherwise,
returns	str.

"hello".center(4)									#=>	"hello"

"hello".center(20)								#=>	"							hello								"

"hello".center(20,	'123')	#=>	"1231231hello12312312"

Returns	an	array	of	characters	in	str.	This	is	a
shorthand	for	str.each_char.to_a.

If	a	block	is	given,	which	is	a	deprecated	form,	works
the	same	as	each_char.

Returns	a	new	String	with	the	given	record	separator
removed	from	the	end	of	str	(if	present).	If	$/	has	not
been	changed	from	the	default	Ruby	record
separator,	then	chomp	also	removes	carriage	return
characters	(that	is	it	will	remove	\n,	\r,	and	\r\n).	If
$/	is	an	empty	string,	it	will	remove	all	trailing
newlines	from	the	string.

"hello".chomp																#=>	"hello"

"hello\n".chomp														#=>	"hello"

"hello\r\n".chomp												#=>	"hello"

"hello\n\r".chomp												#=>	"hello\n"

"hello\r".chomp														#=>	"hello"

"hello	\n	there".chomp							#=>	"hello	\n	there"

"hello".chomp("llo")									#=>	"he"

"hello\r\n\r\n".chomp('')				#=>	"hello"

"hello\r\n\r\r\n".chomp('')		#=>	"hello\r\n\r"

center(width,	padstr='	')	→	new_str

chars	→	an_array

chomp(separator=$/)	→	new_str

Modifies	str	in	place	as	described	for	String#chomp,
returning	str,	or	nil	if	no	modifications	were	made.

Returns	a	new	String	with	the	last	character
removed.	If	the	string	ends	with	\r\n,	both	characters
are	removed.	Applying	chop	to	an	empty	string
returns	an	empty	string.	String#chomp	is	often	a	safer
alternative,	as	it	leaves	the	string	unchanged	if	it
doesn't	end	in	a	record	separator.

"string\r\n".chop			#=>	"string"

"string\n\r".chop			#=>	"string\n"

"string\n".chop					#=>	"string"

"string".chop							#=>	"strin"

"x".chop.chop							#=>	""

Processes	str	as	for	String#chop,	returning	str,	or	nil
if	str	is	the	empty	string.	See	also	String#chomp!.

Returns	a	one-character	string	at	the	beginning	of	the
string.

a	=	"abcde"

a.chr				#=>	"a"

Makes	string	empty.

a	=	"abcde"

chomp!(separator=$/)	→	str	or	nil

chop	→	new_str

chop!	→	str	or	nil

chr	→	string

clear	→	string

a.clear				#=>	""

Returns	an	array	of	the	Integer	ordinals	of	the
characters	in	str.	This	is	a	shorthand	for
str.each_codepoint.to_a.

If	a	block	is	given,	which	is	a	deprecated	form,	works
the	same	as	each_codepoint.

Append—Concatenates	the	given	object	to	str.	If	the
object	is	a	Integer,	it	is	considered	as	a	codepoint,
and	is	converted	to	a	character	before	concatenation.

a	=	"hello	"

a	<<	"world"			#=>	"hello	world"

a.concat(33)			#=>	"hello	world!"

Each	other_str	parameter	defines	a	set	of	characters
to	count.	The	intersection	of	these	sets	defines	the
characters	to	count	in	str.	Any	other_str	that	starts
with	a	caret	^	is	negated.	The	sequence	c1-c2	means
all	characters	between	c1	and	c2.	The	backslash
character	\</code>	can	be	used	to	escape	<code>^
or	-	and	is	otherwise	ignored	unless	it	appears	at	the
end	of	a	sequence	or	the	end	of	a	other_str.

a	=	"hello	world"

a.count	"lo"																			#=>	5

codepoints	→	an_array

str	<<	integer	→	str
concat(integer)	→	str
str	<<	obj	→	str
concat(obj)	→	str

count([other_str]+)	→	fixnum

a.count	"lo",	"o"														#=>	2

a.count	"hello",	"^l"										#=>	4

a.count	"ej-m"																	#=>	4

"hello^world".count	"\\^aeiou"	#=>	4

"hello-world".count	"a\\-eo"			#=>	4

c	=	"hello	world\\r\\n"

c.count	"\\"																			#=>	2

c.count	"\\A"																		#=>	0

c.count	"X-\\w"																#=>	3

Applies	a	one-way	cryptographic	hash	to	str	by
invoking	the	standard	library	function	crypt(3)	with
the	given	salt	string.	While	the	format	and	the	result
are	system	and	implementation	dependent,	using	a
salt	matching	the	regular	expression	\A[a-zA-Z0-9./]
{2}	should	be	valid	and	safe	on	any	platform,	in
which	only	the	first	two	characters	are	significant.

This	method	is	for	use	in	system	specific	scripts,	so	if
you	want	a	cross-platform	hash	function	consider
using	Digest	or	OpenSSL	instead.

Returns	a	copy	of	str	with	all	characters	in	the
intersection	of	its	arguments	deleted.	Uses	the	same
rules	for	building	the	set	of	characters	as
String#count.

"hello".delete	"l","lo"								#=>	"heo"

"hello".delete	"lo"												#=>	"he"

"hello".delete	"aeiou",	"^e"			#=>	"hell"

"hello".delete	"ej-m"										#=>	"ho"

crypt(salt_str)	→	new_str

delete([other_str]+)	→	new_str

delete!([other_str]+)	→	str	or	nil

Performs	a	delete	operation	in	place,	returning	str,	or
nil	if	str	was	not	modified.

Returns	a	copy	of	str	with	all	uppercase	letters
replaced	with	their	lowercase	counterparts.	The
operation	is	locale	insensitive—only	characters	“A''	to
“Z''	are	affected.	Note:	case	replacement	is	effective
only	in	ASCII	region.

"hEllO".downcase			#=>	"hello"

Downcases	the	contents	of	str,	returning	nil	if	no
changes	were	made.	Note:	case	replacement	is
effective	only	in	ASCII	region.

Produces	a	version	of	str	with	all	non-printing
characters	replaced	by	\nnn	notation	and	all	special
characters	escaped.

"hello	\n	''".dump		#=>	"\"hello	\\n	''\"

Passes	each	byte	in	str	to	the	given	block,	or	returns
an	enumerator	if	no	block	is	given.

"hello".each_byte	{|c|	print	c,	'	'	}

produces:

104	101	108	108	111

downcase	→	new_str

downcase!	→	str	or	nil

dump	→	new_str

each_byte	{|fixnum|	block	}	→	str
each_byte	→	an_enumerator

Passes	each	character	in	str	to	the	given	block,	or
returns	an	enumerator	if	no	block	is	given.

"hello".each_char	{|c|	print	c,	'	'	}

produces:

h	e	l	l	o

Passes	the	Integer	ordinal	of	each	character	in	str,
also	known	as	a	codepoint	when	applied	to	Unicode
strings	to	the	given	block.

If	no	block	is	given,	an	enumerator	is	returned
instead.

"hello\u0639".each_codepoint	{|c|	print	c,	'	'	}

produces:

104	101	108	108	111	1593

Splits	str	using	the	supplied	parameter	as	the	record
separator	($/	by	default),	passing	each	substring	in
turn	to	the	supplied	block.	If	a	zero-length	record
separator	is	supplied,	the	string	is	split	into
paragraphs	delimited	by	multiple	successive

each_char	{|cstr|	block	}	→	str
each_char	→	an_enumerator

each_codepoint	{|integer|	block	}	→	str
each_codepoint	→	an_enumerator

each_line(separator=$/)	{|substr|	block	}	→
str
each_line(separator=$/)	→	an_enumerator

newlines.

If	no	block	is	given,	an	enumerator	is	returned
instead.

print	"Example	one\n"

"hello\nworld".each_line	{|s|	p	s}

print	"Example	two\n"

"hello\nworld".each_line('l')	{|s|	p	s}

print	"Example	three\n"

"hello\n\n\nworld".each_line('')	{|s|	p	s}

produces:

Example	one

"hello\n"

"world"

Example	two

"hel"

"l"

"o\nworl"

"d"

Example	three

"hello\n\n\n"

"world"

Returns	true	if	str	has	a	length	of	zero.

"hello".empty?			#=>	false

"	".empty?							#=>	false

"".empty?								#=>	true

The	first	form	returns	a	copy	of	str	transcoded	to
encoding	encoding.	The	second	form	returns	a	copy

empty?	→	true	or	false

encode(encoding	[,	options])	→	str
encode(dst_encoding,	src_encoding	[,
options])	→	str
encode([options])	→	str

of	str	transcoded	from	src_encoding	to
dst_encoding.	The	last	form	returns	a	copy	of	str
transcoded	to	Encoding.default_internal.

By	default,	the	first	and	second	form	raise
Encoding::UndefinedConversionError	for	characters
that	are	undefined	in	the	destination	encoding,	and
Encoding::InvalidByteSequenceError	for	invalid	byte
sequences	in	the	source	encoding.	The	last	form	by
default	does	not	raise	exceptions	but	uses
replacement	strings.

The	options	Hash	gives	details	for	conversion	and
can	have	the	following	keys:

:invalid
If	the	value	is	:replace,	encode	replaces	invalid
byte	sequences	in	str	with	the	replacement
character.	The	default	is	to	raise	the
Encoding::InvalidByteSequenceError	exception

:undef
If	the	value	is	:replace,	encode	replaces
characters	which	are	undefined	in	the	destination
encoding	with	the	replacement	character.	The
default	is	to	raise	the
Encoding::UndefinedConversionError.

:replace
Sets	the	replacement	string	to	the	given	value.	The
default	replacement	string	is	“uFFFD”	for	Unicode
encoding	forms,	and	“?”	otherwise.

:fallback
Sets	the	replacement	string	by	the	given	object	for
undefined	character.	The	object	should	be	a	Hash,
a	Proc,	a	Method,	or	an	object	which	has	[]
method.	Its	key	is	an	undefined	character	encoded
in	the	source	encoding	of	current	transcoder.	Its

value	can	be	any	encoding	until	it	can	be
converted	into	the	destination	encoding	of	the
transcoder.

:xml
The	value	must	be	:text	or	:attr.	If	the	value	is
:text	encode	replaces	undefined	characters	with
their	(upper-case	hexadecimal)	numeric	character
references.	'&',	'<',	and	'>'	are	converted	to
“&”,	“<”,	and	“>”,	respectively.	If	the	value
is	:attr,	encode	also	quotes	the	replacement
result	(using	'“'),	and	replaces	'”'	with	“"”.

:cr_newline
Replaces	LF	(“n”)	with	CR	(“r”)	if	value	is	true.

:crlf_newline
Replaces	LF	(“n”)	with	CRLF	(“rn”)	if	value	is	true.

:universal_newline
Replaces	CRLF	(“rn”)	and	CR	(“r”)	with	LF	(“n”)	if
value	is	true.

The	first	form	transcodes	the	contents	of	str	from
str.encoding	to	encoding.	The	second	form
transcodes	the	contents	of	str	from	src_encoding	to
dst_encoding.	The	options	Hash	gives	details	for
conversion.	See	#encode	for	details.	Returns	the
string	even	if	no	changes	were	made.

Returns	the	Encoding	object	that	represents	the
encoding	of	obj.

encode!(encoding	[,	options])	→	str
encode!(dst_encoding,	src_encoding	[,
options])	→	str

encoding	→	encoding

Returns	true	if	str	ends	with	one	of	the	suffixes
given.

Two	strings	are	equal	if	they	have	the	same	length
and	content.

Changes	the	encoding	to	encoding	and	returns	self.

returns	the	indexth	byte	as	an	integer.

Returns	a	copy	of	str	with	the	all	occurrences	of
pattern	substituted	for	the	second	argument.	The
pattern	is	typically	a	Regexp;	if	given	as	a	String,	any
regular	expression	metacharacters	it	contains	will	be
interpreted	literally,	e.g.	'\\d'	will	match	a	backlash
followed	by	'd',	instead	of	a	digit.

If	replacement	is	a	String	it	will	be	substituted	for	the
matched	text.	It	may	contain	back-references	to	the
pattern's	capture	groups	of	the	form	\\d,	where	d	is	a
group	number,	or	\\k<n>,	where	n	is	a	group	name.	If
it	is	a	double-quoted	string,	both	back-references
must	be	preceded	by	an	additional	backslash.

end_with?([suffixes]+)	→	true	or	false

eql?(other)	→	true	or	false

force_encoding(encoding)	→	str

getbyte(index)	→	0	..	255

gsub(pattern,	replacement)	→	new_str
gsub(pattern,	hash)	→	new_str
gsub(pattern)	{|match|	block	}	→	new_str
gsub(pattern)	→	enumerator

However,	within	replacement	the	special	match
variables,	such	as	$&,	will	not	refer	to	the	current
match.

If	the	second	argument	is	a	Hash,	and	the	matched
text	is	one	of	its	keys,	the	corresponding	value	is	the
replacement	string.

In	the	block	form,	the	current	match	string	is	passed
in	as	a	parameter,	and	variables	such	as	$1,	$2,	$`,
$&,	and	$'	will	be	set	appropriately.	The	value
returned	by	the	block	will	be	substituted	for	the	match
on	each	call.

The	result	inherits	any	tainting	in	the	original	string	or
any	supplied	replacement	string.

When	neither	a	block	nor	a	second	argument	is
supplied,	an	Enumerator	is	returned.

"hello".gsub(/[aeiou]/,	'*')																		#=>	"h*ll*"

"hello".gsub(/([aeiou])/,	'<\1>')													#=>	"h<e>ll<o>"

"hello".gsub(/./)	{|s|	s.ord.to_s	+	'	'}						#=>	"104	101	108	108	111	"

"hello".gsub(/(?<foo>[aeiou])/,	'{\k<foo>}')		#=>	"h{e}ll{o}"

'hello'.gsub(/[eo]/,	'e'	=>	3,	'o'	=>	'*')				#=>	"h3ll*"

Performs	the	substitutions	of	String#gsub	in	place,
returning	str,	or	nil	if	no	substitutions	were
performed.	If	no	block	and	no	replacement	is	given,
an	enumerator	is	returned	instead.

Return	a	hash	based	on	the	string's	length,	content
and	encoding.

gsub!(pattern,	replacement)	→	str	or	nil
gsub!(pattern)	{|match|	block	}	→	str	or	nil
gsub!(pattern)	→	an_enumerator

hash	→	fixnum

See	also	Object#hash.

Treats	leading	characters	from	str	as	a	string	of
hexadecimal	digits	(with	an	optional	sign	and	an
optional	0x)	and	returns	the	corresponding	number.
Zero	is	returned	on	error.

"0x0a".hex					#=>	10

"-1234".hex				#=>	-4660

"0".hex								#=>	0

"wombat".hex			#=>	0

Returns	true	if	str	contains	the	given	string	or
character.

"hello".include?	"lo"			#=>	true

"hello".include?	"ol"			#=>	false

"hello".include?	h					#=>	true

Returns	the	index	of	the	first	occurrence	of	the	given
substring	or	pattern	(regexp)	in	str.	Returns	nil	if	not
found.	If	the	second	parameter	is	present,	it	specifies
the	position	in	the	string	to	begin	the	search.

"hello".index('e')													#=>	1

"hello".index('lo')												#=>	3

"hello".index('a')													#=>	nil

"hello".index(e)														#=>	1

"hello".index(/[aeiou]/,	-3)			#=>	4

hex	→	integer

include?	other_str	→	true	or	false

index(substring	[,	offset])	→	fixnum	or	nil
index(regexp	[,	offset])	→	fixnum	or	nil

replace(other_str)	→	str

Replaces	the	contents	and	taintedness	of	str	with	the
corresponding	values	in	other_str.

s	=	"hello"									#=>	"hello"

s.replace	"world"			#=>	"world"

Inserts	other_str	before	the	character	at	the	given
index,	modifying	str.	Negative	indices	count	from	the
end	of	the	string,	and	insert	after	the	given	character.
The	intent	is	insert	aString	so	that	it	starts	at	the
given	index.

"abcd".insert(0,	'X')				#=>	"Xabcd"

"abcd".insert(3,	'X')				#=>	"abcXd"

"abcd".insert(4,	'X')				#=>	"abcdX"

"abcd".insert(-3,	'X')			#=>	"abXcd"

"abcd".insert(-1,	'X')			#=>	"abcdX"

Returns	a	printable	version	of	str,	surrounded	by
quote	marks,	with	special	characters	escaped.

str	=	"hello"

str[3]	=	"\b"

str.inspect							#=>	"\"hel\\bo\""

Returns	the	Symbol	corresponding	to	str,	creating	the
symbol	if	it	did	not	previously	exist.	See
Symbol#id2name.

"Koala".intern									#=>	:Koala

s	=	'cat'.to_sym							#=>	:cat

s	==	:cat														#=>	true

s	=	'@cat'.to_sym						#=>	:@cat

insert(index,	other_str)	→	str

inspect	→	string

intern	→	symbol
to_sym	→	symbol

s	==	:@cat													#=>	true

This	can	also	be	used	to	create	symbols	that	cannot
be	represented	using	the	:xxx	notation.

'cat	and	dog'.to_sym			#=>	:"cat	and	dog"

Returns	the	character	length	of	str.

Returns	an	array	of	lines	in	str	split	using	the	supplied
record	separator	($/	by	default).	This	is	a	shorthand
for	str.each_line(separator).to_a.

If	a	block	is	given,	which	is	a	deprecated	form,	works
the	same	as	each_line.

If	integer	is	greater	than	the	length	of	str,	returns	a
new	String	of	length	integer	with	str	left	justified	and
padded	with	padstr;	otherwise,	returns	str.

"hello".ljust(4)												#=>	"hello"

"hello".ljust(20)											#=>	"hello															"

"hello".ljust(20,	'1234')			#=>	"hello123412341234123"

Returns	a	copy	of	str	with	leading	whitespace
removed.	See	also	String#rstrip	and	String#strip.

"		hello		".lstrip			#=>	"hello		"

"hello".lstrip							#=>	"hello"

length	→	integer
size	→	integer

lines(separator=$/)	→	an_array

ljust(integer,	padstr='	')	→	new_str

lstrip	→	new_str

Removes	leading	whitespace	from	str,	returning	nil	if
no	change	was	made.	See	also	String#rstrip!	and
String#strip!.

"		hello		".lstrip			#=>	"hello		"

"hello".lstrip!						#=>	nil

Converts	pattern	to	a	Regexp	(if	it	isn't	already	one),
then	invokes	its	match	method	on	str.	If	the	second
parameter	is	present,	it	specifies	the	position	in	the
string	to	begin	the	search.

'hello'.match('(.)\1')						#=>	#<MatchData	"ll"	1:"l">

'hello'.match('(.)\1')[0]			#=>	"ll"

'hello'.match(/(.)\1/)[0]			#=>	"ll"

'hello'.match('xx')									#=>	nil

If	a	block	is	given,	invoke	the	block	with	MatchData	if
match	succeed,	so	that	you	can	write

str.match(pat)	{|m|	...}

instead	of

if	m	=	str.match(pat)

		...

end

The	return	value	is	a	value	from	block	execution	in
this	case.

lstrip!	→	self	or	nil

match(pattern)	→	matchdata	or	nil
match(pattern,	pos)	→	matchdata	or	nil

succ	→	new_str
next	→	new_str

Returns	the	successor	to	str.	The	successor	is
calculated	by	incrementing	characters	starting	from
the	rightmost	alphanumeric	(or	the	rightmost
character	if	there	are	no	alphanumerics)	in	the	string.
Incrementing	a	digit	always	results	in	another	digit,
and	incrementing	a	letter	results	in	another	letter	of
the	same	case.	Incrementing	nonalphanumerics	uses
the	underlying	character	set's	collating	sequence.

If	the	increment	generates	a	“carry,''	the	character	to
the	left	of	it	is	incremented.	This	process	repeats	until
there	is	no	carry,	adding	an	additional	character	if
necessary.

"abcd".succ								#=>	"abce"

"THX1138".succ					#=>	"THX1139"

"<<koala>>".succ			#=>	"<<koalb>>"

"1999zzz".succ					#=>	"2000aaa"

"ZZZ9999".succ					#=>	"AAAA0000"

"***".succ									#=>	"**+"

Equivalent	to	String#succ,	but	modifies	the	receiver
in	place.

Treats	leading	characters	of	str	as	a	string	of	octal
digits	(with	an	optional	sign)	and	returns	the
corresponding	number.	Returns	0	if	the	conversion
fails.

"123".oct							#=>	83

"-377".oct						#=>	-255

"bad".oct							#=>	0

"0377bad".oct			#=>	255

succ!	→	str
next!	→	str

oct	→	integer

Return	the	Integer	ordinal	of	a	one-character	string.

"a".ord									#=>	97

Searches	sep	or	pattern	(regexp)	in	the	string	and
returns	the	part	before	it,	the	match,	and	the	part
after	it.	If	it	is	not	found,	returns	two	empty	strings
and	str.

"hello".partition("l")									#=>	["he",	"l",	"lo"]

"hello".partition("x")									#=>	["hello",	"",	""]

"hello".partition(/.l/)								#=>	["h",	"el",	"lo"]

Prepend—Prepend	the	given	string	to	str.

a	=	"world"

a.prepend("hello	")	#=>	"hello	world"

a																			#=>	"hello	world"

Replaces	the	contents	and	taintedness	of	str	with	the
corresponding	values	in	other_str.

s	=	"hello"									#=>	"hello"

s.replace	"world"			#=>	"world"

Returns	a	new	string	with	the	characters	from	str	in
reverse	order.

ord	→	integer

partition(sep)	→	[head,	sep,	tail]
partition(regexp)	→	[head,	match,	tail]

prepend(other_str)	→	str

replace(other_str)	→	str

reverse	→	new_str

"stressed".reverse			#=>	"desserts"

Reverses	str	in	place.

Returns	the	index	of	the	last	occurrence	of	the	given
substring	or	pattern	(regexp)	in	str.	Returns	nil	if	not
found.	If	the	second	parameter	is	present,	it	specifies
the	position	in	the	string	to	end	the	search—
characters	beyond	this	point	will	not	be	considered.

"hello".rindex('e')													#=>	1

"hello".rindex('l')													#=>	3

"hello".rindex('a')													#=>	nil

"hello".rindex(e)														#=>	1

"hello".rindex(/[aeiou]/,	-2)			#=>	1

If	integer	is	greater	than	the	length	of	str,	returns	a
new	String	of	length	integer	with	str	right	justified	and
padded	with	padstr;	otherwise,	returns	str.

"hello".rjust(4)												#=>	"hello"

"hello".rjust(20)											#=>	"															hello"

"hello".rjust(20,	'1234')			#=>	"123412341234123hello"

Searches	sep	or	pattern	(regexp)	in	the	string	from
the	end	of	the	string,	and	returns	the	part	before	it,
the	match,	and	the	part	after	it.	If	it	is	not	found,

reverse!	→	str

rindex(substring	[,	fixnum])	→	fixnum	or	nil
rindex(regexp	[,	fixnum])	→	fixnum	or	nil

rjust(integer,	padstr='	')	→	new_str

rpartition(sep)	→	[head,	sep,	tail]
rpartition(regexp)	→	[head,	match,	tail]

returns	two	empty	strings	and	str.

"hello".rpartition("l")									#=>	["hel",	"l",	"o"]

"hello".rpartition("x")									#=>	["",	"",	"hello"]

"hello".rpartition(/.l/)								#=>	["he",	"ll",	"o"]

Returns	a	copy	of	str	with	trailing	whitespace
removed.	See	also	String#lstrip	and	String#strip.

"		hello		".rstrip			#=>	"		hello"

"hello".rstrip							#=>	"hello"

Removes	trailing	whitespace	from	str,	returning	nil	if
no	change	was	made.	See	also	String#lstrip!	and
String#strip!.

"		hello		".rstrip			#=>	"		hello"

"hello".rstrip!						#=>	nil

Both	forms	iterate	through	str,	matching	the	pattern
(which	may	be	a	Regexp	or	a	String).	For	each	match,
a	result	is	generated	and	either	added	to	the	result
array	or	passed	to	the	block.	If	the	pattern	contains
no	groups,	each	individual	result	consists	of	the
matched	string,	$&.	If	the	pattern	contains	groups,
each	individual	result	is	itself	an	array	containing	one
entry	per	group.

a	=	"cruel	world"

a.scan(/\w+/)								#=>	["cruel",	"world"]

a.scan(/.../)								#=>	["cru",	"el	",	"wor"]

rstrip	→	new_str

rstrip!	→	self	or	nil

scan(pattern)	→	array
scan(pattern)	{|match,	...|	block	}	→	str

a.scan(/(...)/)						#=>	[["cru"],	["el	"],	["wor"]]

a.scan(/(..)(..)/)			#=>	[["cr",	"ue"],	["l	",	"wo"]]

And	the	block	form:

a.scan(/\w+/)	{|w|	print	"<<#{w}>>	"	}

print	"\n"

a.scan(/(.)(.)/)	{|x,y|	print	y,	x	}

print	"\n"

produces:

<<cruel>>	<<world>>

rceu	lowlr

If	the	string	is	invalid	byte	sequence	then	replace
invalid	bytes	with	given	replacement	character,	else
returns	self.	If	block	is	given,	replace	invalid	bytes
with	returned	value	of	the	block.

"abc\u3042\x81".scrub	#=>	"abc\u3042\uFFFD"

"abc\u3042\x81".scrub("*")	#=>	"abc\u3042*"

"abc\u3042\xE3\x80".scrub{|bytes|	'<'+bytes.unpack('H*'

If	the	string	is	invalid	byte	sequence	then	replace
invalid	bytes	with	given	replacement	character,	else
returns	self.	If	block	is	given,	replace	invalid	bytes
with	returned	value	of	the	block.

"abc\u3042\x81".scrub!	#=>	"abc\u3042\uFFFD"

"abc\u3042\x81".scrub!("*")	#=>	"abc\u3042*"

scrub	→	new_str
scrub(repl)	→	new_str
scrub{|bytes|}	→	new_str

scrub!	→	str
scrub!(repl)	→	str
scrub!{|bytes|}	→	str

"abc\u3042\xE3\x80".scrub!{|bytes|	'<'+bytes.unpack('H*'

modifies	the	indexth	byte	as	integer.

Returns	the	character	length	of	str.

Element	Reference	—	If	passed	a	single	index,
returns	a	substring	of	one	character	at	that	index.	If
passed	a	start	index	and	a	length,	returns	a
substring	containing	length	characters	starting	at	the
index.	If	passed	a	range,	its	beginning	and	end	are
interpreted	as	offsets	delimiting	the	substring	to	be
returned.

In	these	three	cases,	if	an	index	is	negative,	it	is
counted	from	the	end	of	the	string.	For	the	start	and

setbyte(index,	integer)	→	integer

length	→	integer
size	→	integer

str[index]	→	new_str	or	nil
str[start,	length]	→	new_str	or	nil
str[range]	→	new_str	or	nil
str[regexp]	→	new_str	or	nil
str[regexp,	capture]	→	new_str	or	nil
str[match_str]	→	new_str	or	nil
slice(index)	→	new_str	or	nil
slice(start,	length)	→	new_str	or	nil
slice(range)	→	new_str	or	nil
slice(regexp)	→	new_str	or	nil
slice(regexp,	capture)	→	new_str	or	nil
slice(match_str)	→	new_str	or	nil

range	cases	the	starting	index	is	just	before	a
character	and	an	index	matching	the	string's	size.
Additionally,	an	empty	string	is	returned	when	the
starting	index	for	a	character	range	is	at	the	end	of
the	string.

Returns	nil	if	the	initial	index	falls	outside	the	string
or	the	length	is	negative.

If	a	Regexp	is	supplied,	the	matching	portion	of	the
string	is	returned.	If	a	capture	follows	the	regular
expression,	which	may	be	a	capture	group	index	or
name,	follows	the	regular	expression	that	component
of	the	MatchData	is	returned	instead.

If	a	match_str	is	given,	that	string	is	returned	if	it
occurs	in	the	string.

Returns	nil	if	the	regular	expression	does	not	match
or	the	match	string	cannot	be	found.

a	=	"hello	there"

a[1]																			#=>	"e"

a[2,	3]																#=>	"llo"

a[2..3]																#=>	"ll"

a[-3,	2]															#=>	"er"

a[7..-2]															#=>	"her"

a[-4..-2]														#=>	"her"

a[-2..-4]														#=>	""

a[11,	0]															#=>	""

a[11]																		#=>	nil

a[12,	0]															#=>	nil

a[12..-1]														#=>	nil

a[/[aeiou](.)\1/]						#=>	"ell"

a[/[aeiou](.)\1/,	0]			#=>	"ell"

a[/[aeiou](.)\1/,	1]			#=>	"l"

a[/[aeiou](.)\1/,	2]			#=>	nil

a[/(?<vowel>[aeiou])(?<non_vowel>[^aeiou])/,	"non_vowel"

a[/(?<vowel>[aeiou])(?<non_vowel>[^aeiou])/,	"vowel"]					

a["lo"]																#=>	"lo"

a["bye"]															#=>	nil

Deletes	the	specified	portion	from	str,	and	returns	the
portion	deleted.

string	=	"this	is	a	string"

string.slice!(2)								#=>	"i"

string.slice!(3..6)					#=>	"	is	"

string.slice!(/s.*t/)			#=>	"sa	st"

string.slice!("r")						#=>	"r"

string																		#=>	"thing"

Divides	str	into	substrings	based	on	a	delimiter,
returning	an	array	of	these	substrings.

If	pattern	is	a	String,	then	its	contents	are	used	as
the	delimiter	when	splitting	str.	If	pattern	is	a	single
space,	str	is	split	on	whitespace,	with	leading
whitespace	and	runs	of	contiguous	whitespace
characters	ignored.

If	pattern	is	a	Regexp,	str	is	divided	where	the	pattern
matches.	Whenever	the	pattern	matches	a	zero-
length	string,	str	is	split	into	individual	characters.	If
pattern	contains	groups,	the	respective	matches	will
be	returned	in	the	array	as	well.

If	pattern	is	omitted,	the	value	of	$;	is	used.	If	$;	is
nil	(which	is	the	default),	str	is	split	on	whitespace	as

slice!(fixnum)	→	new_str	or	nil
slice!(fixnum,	fixnum)	→	new_str	or	nil
slice!(range)	→	new_str	or	nil
slice!(regexp)	→	new_str	or	nil
slice!(other_str)	→	new_str	or	nil

split(pattern=$;,	[limit])	→	anArray

if	`	'	were	specified.

If	the	limit	parameter	is	omitted,	trailing	null	fields	are
suppressed.	If	limit	is	a	positive	number,	at	most	that
number	of	fields	will	be	returned	(if	limit	is	1,	the
entire	string	is	returned	as	the	only	entry	in	an	array).
If	negative,	there	is	no	limit	to	the	number	of	fields
returned,	and	trailing	null	fields	are	not	suppressed.

When	the	input	str	is	empty	an	empty	Array	is
returned	as	the	string	is	considered	to	have	no	fields
to	split.

"	now's		the	time".split								#=>	["now's",	"the",	"time"]

"	now's		the	time".split('	')			#=>	["now's",	"the",	"time"]

"	now's		the	time".split(/	/)			#=>	["",	"now's",	"",	"the",	"time"]

"1,	2.34,56,	7".split(%r{,\s*})	#=>	["1",	"2.34",	"56",	"7"]

"hello".split(//)															#=>	["h",	"e",	"l",	"l",	"o"]

"hello".split(//,	3)												#=>	["h",	"e",	"llo"]

"hi	mom".split(%r{\s*})									#=>	["h",	"i",	"m",	"o",	"m"]

"mellow	yellow".split("ello")			#=>	["m",	"w	y",	"w"]

"1,2,,3,4,,".split(',')									#=>	["1",	"2",	"",	"3",	"4"]

"1,2,,3,4,,".split(',',	4)						#=>	["1",	"2",	"",	"3,4,,"]

"1,2,,3,4,,".split(',',	-4)					#=>	["1",	"2",	"",	"3",	"4",	"",	""]

"".split(',',	-1)															#=>	[]

Builds	a	set	of	characters	from	the	other_str
parameter(s)	using	the	procedure	described	for
String#count.	Returns	a	new	string	where	runs	of	the
same	character	that	occur	in	this	set	are	replaced	by
a	single	character.	If	no	arguments	are	given,	all	runs
of	identical	characters	are	replaced	by	a	single
character.

"yellow	moon".squeeze																		#=>	"yelow	mon"

"		now			is		the".squeeze("	")									#=>	"	now	is	the"

"putters	shoot	balls".squeeze("m-z")			#=>	"puters	shot	balls"

squeeze([other_str]*)	→	new_str

Squeezes	str	in	place,	returning	either	str,	or	nil	if	no
changes	were	made.

Returns	true	if	str	starts	with	one	of	the	prefixes
given.

"hello".start_with?("hell")															#=>	true

#	returns	true	if	one	of	the	prefixes	matches.

"hello".start_with?("heaven",	"hell")					#=>	true

"hello".start_with?("heaven",	"paradise")	#=>	false

Returns	a	copy	of	str	with	leading	and	trailing
whitespace	removed.

"				hello				".strip			#=>	"hello"

"\tgoodbye\r\n".strip			#=>	"goodbye"

Removes	leading	and	trailing	whitespace	from	str.
Returns	nil	if	str	was	not	altered.

Returns	a	copy	of	str	with	the	first	occurrence	of
pattern	replaced	by	the	second	argument.	The
pattern	is	typically	a	Regexp;	if	given	as	a	String,	any

squeeze!([other_str]*)	→	str	or	nil

start_with?([prefixes]+)	→	true	or	false

strip	→	new_str

strip!	→	str	or	nil

sub(pattern,	replacement)	→	new_str
sub(pattern,	hash)	→	new_str
sub(pattern)	{|match|	block	}	→	new_str

regular	expression	metacharacters	it	contains	will	be
interpreted	literally,	e.g.	'\\d'	will	match	a	backlash
followed	by	'd',	instead	of	a	digit.

If	replacement	is	a	String	it	will	be	substituted	for	the
matched	text.	It	may	contain	back-references	to	the
pattern's	capture	groups	of	the	form	"\d",	where	d	is
a	group	number,	or	"\k<n>",	where	n	is	a	group
name.	If	it	is	a	double-quoted	string,	both	back-
references	must	be	preceded	by	an	additional
backslash.	However,	within	replacement	the	special
match	variables,	such	as	&$,	will	not	refer	to	the
current	match.	If	replacement	is	a	String	that	looks
like	a	pattern's	capture	group	but	is	actaully	not	a
pattern	capture	group	e.g.	"\'",	then	it	will	have	to	be
preceded	by	two	backslashes	like	so	"\\'".

If	the	second	argument	is	a	Hash,	and	the	matched
text	is	one	of	its	keys,	the	corresponding	value	is	the
replacement	string.

In	the	block	form,	the	current	match	string	is	passed
in	as	a	parameter,	and	variables	such	as	$1,	$2,	$`,
$&,	and	$'	will	be	set	appropriately.	The	value
returned	by	the	block	will	be	substituted	for	the	match
on	each	call.

The	result	inherits	any	tainting	in	the	original	string	or
any	supplied	replacement	string.

"hello".sub(/[aeiou]/,	'*')																		#=>	"h*llo"

"hello".sub(/([aeiou])/,	'<\1>')													#=>	"h<e>llo"

"hello".sub(/./)	{|s|	s.ord.to_s	+	'	'	}					#=>	"104	ello"

"hello".sub(/(?<foo>[aeiou])/,	'*\k<foo>*')		#=>	"h*e*llo"

'Is	SHELL	your	preferred	shell?'.sub(/[[:upper:]]{2,}/

	#=>	"Is	/bin/bash	your	preferred	shell?"

sub!(pattern,	replacement)	→	str	or	nil

Performs	the	same	substitution	as	#sub	in-place.

Returns	str	if	a	substitution	was	performed	or	nil	if
no	substitution	was	performed.

Returns	the	successor	to	str.	The	successor	is
calculated	by	incrementing	characters	starting	from
the	rightmost	alphanumeric	(or	the	rightmost
character	if	there	are	no	alphanumerics)	in	the	string.
Incrementing	a	digit	always	results	in	another	digit,
and	incrementing	a	letter	results	in	another	letter	of
the	same	case.	Incrementing	nonalphanumerics	uses
the	underlying	character	set's	collating	sequence.

If	the	increment	generates	a	“carry,''	the	character	to
the	left	of	it	is	incremented.	This	process	repeats	until
there	is	no	carry,	adding	an	additional	character	if
necessary.

"abcd".succ								#=>	"abce"

"THX1138".succ					#=>	"THX1139"

"<<koala>>".succ			#=>	"<<koalb>>"

"1999zzz".succ					#=>	"2000aaa"

"ZZZ9999".succ					#=>	"AAAA0000"

"***".succ									#=>	"**+"

Equivalent	to	String#succ,	but	modifies	the	receiver
in	place.

Returns	a	basic	n-bit	checksum	of	the	characters	in

sub!(pattern)	{|match|	block	}	→	str	or	nil

succ	→	new_str
next	→	new_str

succ!	→	str
next!	→	str

sum(n=16)	→	integer

str,	where	n	is	the	optional	Fixnum	parameter,
defaulting	to	16.	The	result	is	simply	the	sum	of	the
binary	value	of	each	byte	in	str	modulo	2**n	-	1.	This
is	not	a	particularly	good	checksum.

Returns	a	copy	of	str	with	uppercase	alphabetic
characters	converted	to	lowercase	and	lowercase
characters	converted	to	uppercase.	Note:	case
conversion	is	effective	only	in	ASCII	region.

"Hello".swapcase										#=>	"hELLO"

"cYbEr_PuNk11".swapcase			#=>	"CyBeR_pUnK11"

Equivalent	to	String#swapcase,	but	modifies	the
receiver	in	place,	returning	str,	or	nil	if	no	changes
were	made.	Note:	case	conversion	is	effective	only	in
ASCII	region.

Returns	a	complex	which	denotes	the	string	form.
The	parser	ignores	leading	whitespaces	and	trailing
garbage.	Any	digit	sequences	can	be	separated	by
an	underscore.	Returns	zero	for	null	or	garbage
string.

'9'.to_c											#=>	(9+0i)

'2.5'.to_c									#=>	(2.5+0i)

'2.5/1'.to_c							#=>	((5/2)+0i)

'-3/2'.to_c								#=>	((-3/2)+0i)

'-i'.to_c										#=>	(0-1i)

'45i'.to_c									#=>	(0+45i)

'3-4i'.to_c								#=>	(3-4i)

'-4e2-4e-2i'.to_c		#=>	(-400.0-0.04i)

'-0.0-0.0i'.to_c			#=>	(-0.0-0.0i)

'1/2+3/4i'.to_c				#=>	((1/2)+(3/4)*i)

swapcase	→	new_str

swapcase!	→	str	or	nil

to_c	→	complex

'ruby'.to_c								#=>	(0+0i)

See	Kernel.Complex.

Returns	the	result	of	interpreting	leading	characters
in	str	as	a	floating	point	number.	Extraneous
characters	past	the	end	of	a	valid	number	are
ignored.	If	there	is	not	a	valid	number	at	the	start	of
str,	0.0	is	returned.	This	method	never	raises	an
exception.

"123.45e1".to_f								#=>	1234.5

"45.67	degrees".to_f			#=>	45.67

"thx1138".to_f									#=>	0.0

Returns	the	result	of	interpreting	leading	characters
in	str	as	an	integer	base	base	(between	2	and	36).
Extraneous	characters	past	the	end	of	a	valid	number
are	ignored.	If	there	is	not	a	valid	number	at	the	start
of	str,	0	is	returned.	This	method	never	raises	an
exception	when	base	is	valid.

"12345".to_i													#=>	12345

"99	red	balloons".to_i			#=>	99

"0a".to_i																#=>	0

"0a".to_i(16)												#=>	10

"hello".to_i													#=>	0

"1100101".to_i(2)								#=>	101

"1100101".to_i(8)								#=>	294977

"1100101".to_i(10)							#=>	1100101

"1100101".to_i(16)							#=>	17826049

Returns	a	rational	which	denotes	the	string	form.	The
parser	ignores	leading	whitespaces	and	trailing

to_f	→	float

to_i(base=10)	→	integer

to_r	→	rational

garbage.	Any	digit	sequences	can	be	separated	by
an	underscore.	Returns	zero	for	null	or	garbage
string.

NOTE:	'0.3'.#to_r	isn't	the	same	as	0.3.to_r.	The
former	is	equivalent	to	'3/10'.#to_r,	but	the	latter	isn't
so.

'		2		'.to_r							#=>	(2/1)

'300/2'.to_r							#=>	(150/1)

'-9.2'.to_r								#=>	(-46/5)

'-9.2e2'.to_r						#=>	(-920/1)

'1_234_567'.to_r			#=>	(1234567/1)

'21	june	09'.to_r		#=>	(21/1)

'21/06/09'.to_r				#=>	(7/2)

'bwv	1079'.to_r				#=>	(0/1)

See	Kernel.Rational.

Returns	the	receiver.

Returns	the	receiver.

Returns	the	Symbol	corresponding	to	str,	creating	the
symbol	if	it	did	not	previously	exist.	See
Symbol#id2name.

"Koala".intern									#=>	:Koala

s	=	'cat'.to_sym							#=>	:cat

s	==	:cat														#=>	true

s	=	'@cat'.to_sym						#=>	:@cat

s	==	:@cat													#=>	true

to_s	→	str
to_str	→	str

to_s	→	str
to_str	→	str

intern	→	symbol
to_sym	→	symbol

This	can	also	be	used	to	create	symbols	that	cannot
be	represented	using	the	:xxx	notation.

'cat	and	dog'.to_sym			#=>	:"cat	and	dog"

Returns	a	copy	of	str	with	the	characters	in	from_str
replaced	by	the	corresponding	characters	in	to_str.	If
to_str	is	shorter	than	from_str,	it	is	padded	with	its
last	character	in	order	to	maintain	the
correspondence.

"hello".tr('el',	'ip')						#=>	"hippo"

"hello".tr('aeiou',	'*')				#=>	"h*ll*"

"hello".tr('aeiou',	'AA*')		#=>	"hAll*"

Both	strings	may	use	the	c1-c2	notation	to	denote
ranges	of	characters,	and	from_str	may	start	with	a	^,
which	denotes	all	characters	except	those	listed.

"hello".tr('a-y',	'b-z')				#=>	"ifmmp"

"hello".tr('^aeiou',	'*')			#=>	"*e**o"

The	backslash	character	</code>	can	be	used	to
escape	<code>^	or	-	and	is	otherwise	ignored	unless	it
appears	at	the	end	of	a	range	or	the	end	of	the
from_str	or	to_str:

"hello^world".tr("\\^aeiou",	"*")	#=>	"h*ll**w*rld"

"hello-world".tr("a\\-eo",	"*")			#=>	"h*ll**w*rld"

"hello\r\nworld".tr("\r",	"")			#=>	"hello\nworld"

"hello\r\nworld".tr("\\r",	"")		#=>	"hello\r\nwold"

"hello\r\nworld".tr("\\\r",	"")	#=>	"hello\nworld"

"X['\\b']".tr("X\\",	"")			#=>	"['b']"

"X['\\b']".tr("X-\\]",	"")	#=>	"'b'"

tr(from_str,	to_str)	→	new_str

Translates	str	in	place,	using	the	same	rules	as
String#tr.	Returns	str,	or	nil	if	no	changes	were
made.

Processes	a	copy	of	str	as	described	under
String#tr,	then	removes	duplicate	characters	in
regions	that	were	affected	by	the	translation.

"hello".tr_s('l',	'r')					#=>	"hero"

"hello".tr_s('el',	'*')				#=>	"h*o"

"hello".tr_s('el',	'hx')			#=>	"hhxo"

Performs	String#tr_s	processing	on	str	in	place,
returning	str,	or	nil	if	no	changes	were	made.

Decodes	str	(which	may	contain	binary	data)
according	to	the	format	string,	returning	an	array	of
each	value	extracted.	The	format	string	consists	of	a
sequence	of	single-character	directives,	summarized
in	the	table	at	the	end	of	this	entry.	Each	directive
may	be	followed	by	a	number,	indicating	the	number
of	times	to	repeat	with	this	directive.	An	asterisk	(“*'')
will	use	up	all	remaining	elements.	The	directives
sSiIlL	may	each	be	followed	by	an	underscore	(“_'')
or	exclamation	mark	(“!'')	to	use	the	underlying
platform's	native	size	for	the	specified	type;
otherwise,	it	uses	a	platform-independent	consistent
size.	Spaces	are	ignored	in	the	format	string.	See
also	Array#pack.

tr!(from_str,	to_str)	→	str	or	nil

tr_s(from_str,	to_str)	→	new_str

tr_s!(from_str,	to_str)	→	str	or	nil

unpack(format)	→	anArray

"abc	\00\\00aabc	\00\\00"".unpack('A6Z6')			#=>	["abc",	"abc	"]

"abc	\00\\00"".unpack('a3a3')											#=>	["abc",	"	\000\000"]

"abc	\00aabc	\00"".unpack('Z*Z*')							#=>	["abc	",	"abc	"]

"aa".unpack('b8B8')																	#=>	["10000110",	"01100001"]

"aaa".unpack('h2H2c')															#=>	["16",	"61",	97]

"\xfe\xff\xfe\xff".unpack('sS')					#=>	[-2,	65534]

"now=20is".unpack('M*')													#=>	["now	is"]

"whole".unpack('xax2aX2aX1aX2a')				#=>	["h",	"e",	"l",	"l",	"o"]

This	table	summarizes	the	various	formats	and	the
Ruby	classes	returned	by	each.

Integer						|									|

Directive				|	Returns	|	Meaning

			C									|	Integer	|	8-bit	unsigned	(unsigned	char)

			S									|	Integer	|	16-bit	unsigned,	native	endian	(uint16_t)

			L									|	Integer	|	32-bit	unsigned,	native	endian	(uint32_t)

			Q									|	Integer	|	64-bit	unsigned,	native	endian	(uint64_t)

													|									|

			c									|	Integer	|	8-bit	signed	(signed	char)

			s									|	Integer	|	16-bit	signed,	native	endian	(int16_t)

			l									|	Integer	|	32-bit	signed,	native	endian	(int32_t)

			q									|	Integer	|	64-bit	signed,	native	endian	(int64_t)

													|									|

			S_,	S!				|	Integer	|	unsigned	short,	native	endian

			I,	I_,	I!	|	Integer	|	unsigned	int,	native	endian

			L_,	L!				|	Integer	|	unsigned	long,	native	endian

			Q_,	Q!				|	Integer	|	unsigned	long	long,	native	endian	(ArgumentError

													|									|	if	the	platform	has	no	long	long	type.)

													|									|	(Q_	and	Q!	is	available	since	Ruby	2.1.)

													|									|

			s_,	s!				|	Integer	|	signed	short,	native	endian

			i,	i_,	i!	|	Integer	|	signed	int,	native	endian

			l_,	l!				|	Integer	|	signed	long,	native	endian

			q_,	q!				|	Integer	|	signed	long	long,	native	endian	(ArgumentError

													|									|	if	the	platform	has	no	long	long	type.)

													|									|	(q_	and	q!	is	available	since	Ruby	2.1.)

													|									|

			S>	L>	Q>		|	Integer	|	same	as	the	directives	without	">"	except

			s>	l>	q>		|									|	big	endian

			S!>	I!>			|									|	(available	since	Ruby	1.9.3)

			L!>	Q!>			|									|	"S>"	is	same	as	"n"

			s!>	i!>			|									|	"L>"	is	same	as	"N"

			l!>	q!>			|									|

													|									|

			S<	L<	Q<		|	Integer	|	same	as	the	directives	without	"<"	except

			s<	l<	q<		|									|	little	endian

			S!<	I!<			|									|	(available	since	Ruby	1.9.3)

			L!<	Q!<			|									|	"S<"	is	same	as	"v"

			s!<	i!<			|									|	"L<"	is	same	as	"V"

			l!<	q!<			|									|

													|									|

			n									|	Integer	|	16-bit	unsigned,	network	(big-endian)	byte	order

			N									|	Integer	|	32-bit	unsigned,	network	(big-endian)	byte	order

			v									|	Integer	|	16-bit	unsigned,	VAX	(little-endian)	byte	order

			V									|	Integer	|	32-bit	unsigned,	VAX	(little-endian)	byte	order

													|									|

			U									|	Integer	|	UTF-8	character

			w									|	Integer	|	BER-compressed	integer	(see	Array.pack)

Float								|									|

Directive				|	Returns	|	Meaning

			D,	d						|	Float			|	double-precision,	native	format

			F,	f						|	Float			|	single-precision,	native	format

			E									|	Float			|	double-precision,	little-endian	byte	order

			e									|	Float			|	single-precision,	little-endian	byte	order

			G									|	Float			|	double-precision,	network	(big-endian)	byte	order

			g									|	Float			|	single-precision,	network	(big-endian)	byte	order

String							|									|

Directive				|	Returns	|	Meaning

			A									|	String		|	arbitrary	binary	string	(remove	trailing	nulls	and	ASCII	spaces)

			a									|	String		|	arbitrary	binary	string

			Z									|	String		|	null-terminated	string

			B									|	String		|	bit	string	(MSB	first)

			b									|	String		|	bit	string	(LSB	first)

			H									|	String		|	hex	string	(high	nibble	first)

			h									|	String		|	hex	string	(low	nibble	first)

			u									|	String		|	UU-encoded	string

			M									|	String		|	quoted-printable,	MIME	encoding	(see	RFC2045)

			m									|	String		|	base64	encoded	string	(RFC	2045)	(default)

													|									|	base64	encoded	string	(RFC	4648)	if	followed	by	0

			P									|	String		|	pointer	to	a	structure	(fixed-length	string)

			p									|	String		|	pointer	to	a	null-terminated	string

Misc.								|									|

Directive				|	Returns	|	Meaning

			@									|	---					|	skip	to	the	offset	given	by	the	length	argument

			X									|	---					|	skip	backward	one	byte

			x									|	---					|	skip	forward	one	byte

Returns	a	copy	of	str	with	all	lowercase	letters
replaced	with	their	uppercase	counterparts.	The
operation	is	locale	insensitive—only	characters	“a''	to
“z''	are	affected.	Note:	case	replacement	is	effective
only	in	ASCII	region.

"hEllO".upcase			#=>	"HELLO"

Upcases	the	contents	of	str,	returning	nil	if	no
changes	were	made.	Note:	case	replacement	is
effective	only	in	ASCII	region.

Iterates	through	successive	values,	starting	at	str	and
ending	at	other_str	inclusive,	passing	each	value	in
turn	to	the	block.	The	String#succ	method	is	used	to
generate	each	value.	If	optional	second	argument
exclusive	is	omitted	or	is	false,	the	last	value	will	be
included;	otherwise	it	will	be	excluded.

If	no	block	is	given,	an	enumerator	is	returned
instead.

"a8".upto("b6")	{|s|	print	s,	'	'	}

for	s	in	"a8".."b6"

		print	s,	'	'

end

upcase	→	new_str

upcase!	→	str	or	nil

upto(other_str,	exclusive=false)	{|s|	block	}
→	str
upto(other_str,	exclusive=false)	→
an_enumerator

produces:

a8	a9	b0	b1	b2	b3	b4	b5	b6

a8	a9	b0	b1	b2	b3	b4	b5	b6

If	str	and	other_str	contains	only	ascii	numeric
characters,	both	are	recognized	as	decimal	numbers.
In	addition,	the	width	of	string	(e.g.	leading	zeros)	is
handled	appropriately.

"9".upto("11").to_a			#=>	["9",	"10",	"11"]

"25".upto("5").to_a			#=>	[]

"07".upto("11").to_a		#=>	["07",	"08",	"09",	"10",	"11"]

Returns	true	for	a	string	which	encoded	correctly.

"\xc2\xa1".force_encoding("UTF-8").valid_encoding?		#=>	true

"\xc2".force_encoding("UTF-8").valid_encoding?						#=>	false

"\x80".force_encoding("UTF-8").valid_encoding?						#=>	false

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

valid_encoding?	→	true	or	false

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	Struct

In	Files
process.c
struct.c

Parent
Object

Included	Modules
Enumerable

Constants

Tms

Public	Class	Methods

The	first	two	forms	are	used	to	create	a	new	Struct

new([class_name]	[,	member_name]+>)	→
StructClass
new([class_name]	[,	member_name]+>)
{|StructClass|	block	}	→	StructClass
new(value,	...)	→	obj
StructClass[value,	...]	→	obj

subclass	class_name	that	can	contain	a	value	for	each
member_name.	This	subclass	can	be	used	to	create
instances	of	the	structure	like	any	other	Class.

If	the	class_name	is	omitted	an	anonymous	structure
class	will	be	created.	Otherwise,	the	name	of	this
struct	will	appear	as	a	constant	in	class	Struct,	so	it
must	be	unique	for	all	Structs	in	the	system	and	must
start	with	a	capital	letter.	Assigning	a	structure	class
to	a	constant	also	gives	the	class	the	name	of	the
constant.

#	Create	a	structure	with	a	name	under	Struct

Struct.new("Customer",	:name,	:address)

#=>	Struct::Customer

Struct::Customer.new("Dave",	"123	Main")

#=>	#<struct	Struct::Customer	name="Dave",	address="123	Main">

If	a	block	is	given	it	will	be	evaluated	in	the	context	of
StructClass,	passing	the	created	class	as	a
parameter:

Customer	=	Struct.new(:name,	:address)	do

		def	greeting

				"Hello	#{name}!"

		end

end

Customer.new("Dave",	"123	Main").greeting		#	=>	"Hello	Dave!"

This	is	the	recommended	way	to	customize	a	struct.
Subclassing	an	anonymous	struct	creates	an	extra
anonymous	class	that	will	never	be	used.

The	last	two	forms	create	a	new	instance	of	a	struct
subclass.	The	number	of	value	parameters	must	be
less	than	or	equal	to	the	number	of	attributes	defined
for	the	structure.	Unset	parameters	default	to	nil.
Passing	more	parameters	than	number	of	attributes
will	raise	an	ArgumentError.

#	Create	a	structure	named	by	its	constant

Customer	=	Struct.new(:name,	:address)

#=>	Customer

Customer.new("Dave",	"123	Main")

#=>	#<struct	Customer	name="Dave",	address="123	Main">

Public	Instance	Methods

Equality—Returns	true	if	other	has	the	same	struct
subclass	and	has	equal	member	values	(according	to
Object#==).

Customer	=	Struct.new(:name,	:address,	:zip)

joe			=	Customer.new("Joe	Smith",	"123	Maple,	Anytown	NC"

joejr	=	Customer.new("Joe	Smith",	"123	Maple,	Anytown	NC"

jane		=	Customer.new("Jane	Doe",	"456	Elm,	Anytown	NC"

joe	==	joejr			#=>	true

joe	==	jane				#=>	false

Attribute	Reference—Returns	the	value	of	the	given
struct	member	or	the	member	at	the	given	index.
Raises	NameError	if	the	member	does	not	exist	and
IndexError	if	the	index	is	out	of	range.

Customer	=	Struct.new(:name,	:address,	:zip)

joe	=	Customer.new("Joe	Smith",	"123	Maple,	Anytown	NC"

joe["name"]			#=>	"Joe	Smith"

joe[:name]				#=>	"Joe	Smith"

joe[0]								#=>	"Joe	Smith"

struct	==	other	→	true	or	false

struct[member]	→	anObject
struct[index]	→	anObject

Attribute	Assignment—Sets	the	value	of	the	given
struct	member	or	the	member	at	the	given	index.
Raises	NameError	if	the	name	does	not	exist	and
IndexError	if	the	index	is	out	of	range.

Customer	=	Struct.new(:name,	:address,	:zip)

joe	=	Customer.new("Joe	Smith",	"123	Maple,	Anytown	NC"

joe["name"]	=	"Luke"

joe[:zip]			=	"90210"

joe.name			#=>	"Luke"

joe.zip				#=>	"90210"

Yields	the	value	of	each	struct	member	in	order.	If	no
block	is	given	an	enumerator	is	returned.

Customer	=	Struct.new(:name,	:address,	:zip)

joe	=	Customer.new("Joe	Smith",	"123	Maple,	Anytown	NC"

joe.each	{|x|	puts(x)	}

Produces:

Joe	Smith

123	Maple,	Anytown	NC

12345

Yields	the	name	and	value	of	each	struct	member	in
order.	If	no	block	is	given	an	enumerator	is	returned.

struct[name]	=	obj	→	obj
struct[index]	=	obj	→	obj

each	{|obj|	block	}	→	struct
each	→	an_enumerator

each_pair	{|sym,	obj|	block	}	→	struct
each_pair	→	an_enumerator

Customer	=	Struct.new(:name,	:address,	:zip)

joe	=	Customer.new("Joe	Smith",	"123	Maple,	Anytown	NC"

joe.each_pair	{|name,	value|	puts("#{name}	=>	#{value}"

Produces:

name	=>	Joe	Smith

address	=>	123	Maple,	Anytown	NC

zip	=>	12345

Hash	equality—other	and	struct	refer	to	the	same
hash	key	if	they	have	the	same	struct	subclass	and
have	equal	member	values	(according	to
Object#eql?).

Returns	a	hash	value	based	on	this	struct's	contents
(see	Object#hash).

See	also	Object#hash.

Describe	the	contents	of	this	struct	in	a	string.

Also	aliased	as:	to_s

Returns	the	number	of	struct	members.

Customer	=	Struct.new(:name,	:address,	:zip)

joe	=	Customer.new("Joe	Smith",	"123	Maple,	Anytown	NC"

joe.length			#=>	3

eql?(other)	→	true	or	false

hash	→	fixnum

to_s	→	string
inspect	→	string

length	→	fixnum
size	→	fixnum

Returns	the	struct	members	as	an	array	of	symbols:

Customer	=	Struct.new(:name,	:address,	:zip)

joe	=	Customer.new("Joe	Smith",	"123	Maple,	Anytown	NC"

joe.members			#=>	[:name,	:address,	:zip]

Yields	each	member	value	from	the	struct	to	the
block	and	returns	an	Array	containing	the	member
values	from	the	struct	for	which	the	given	block
returns	a	true	value	(equivalent	to
Enumerable#select).

Lots	=	Struct.new(:a,	:b,	:c,	:d,	:e,	:f)

l	=	Lots.new(11,	22,	33,	44,	55,	66)

l.select	{|v|	(v	%	2).zero?	}			#=>	[22,	44,	66]

Returns	the	number	of	struct	members.

Customer	=	Struct.new(:name,	:address,	:zip)

joe	=	Customer.new("Joe	Smith",	"123	Maple,	Anytown	NC"

joe.length			#=>	3

Returns	the	values	for	this	struct	as	an	Array.

Customer	=	Struct.new(:name,	:address,	:zip)

members	→	array

select	{|i|	block	}	→	array
select	→	an_enumerator

length	→	fixnum
size	→	fixnum

to_a	→	array
values	→	array

joe	=	Customer.new("Joe	Smith",	"123	Maple,	Anytown	NC"

joe.to_a[1]			#=>	"123	Maple,	Anytown	NC"

Returns	a	Hash	containing	the	names	and	values	for
the	struct's	members.

Customer	=	Struct.new(:name,	:address,	:zip)

joe	=	Customer.new("Joe	Smith",	"123	Maple,	Anytown	NC"

joe.to_h[:address]			#=>	"123	Maple,	Anytown	NC"

Alias	for:	inspect

Returns	the	values	for	this	struct	as	an	Array.

Customer	=	Struct.new(:name,	:address,	:zip)

joe	=	Customer.new("Joe	Smith",	"123	Maple,	Anytown	NC"

joe.to_a[1]			#=>	"123	Maple,	Anytown	NC"

Returns	the	struct	member	values	for	each	selector
as	an	Array.	A	selector	may	be	either	an	Integer
offset	or	a	Range	of	offsets	(as	in	Array#values_at).

Customer	=	Struct.new(:name,	:address,	:zip)

joe	=	Customer.new("Joe	Smith",	"123	Maple,	Anytown	NC"

joe.values_at	0,	2	#=>	["Joe	Smith",	12345]

Generated	by	RDoc	3.12.2.

to_h	→	hash

to_s()

to_a	→	array
values	→	array

values_at(selector,	...)	→	an_array

https://github.com/rdoc/rdoc

Generated	with	the	Darkfish	Rdoc	Generator	3.

http://deveiate.org/projects/Darkfish-Rdoc/

class	Symbol
Symbol	objects	represent	names	and	some
strings	inside	the	Ruby	interpreter.	They	are
generated	using	the	:name	and	:"string"	literals
syntax,	and	by	the	various	to_sym	methods.	The
same	Symbol	object	will	be	created	for	a	given
name	or	string	for	the	duration	of	a	program's
execution,	regardless	of	the	context	or	meaning
of	that	name.	Thus	if	Fred	is	a	constant	in	one
context,	a	method	in	another,	and	a	class	in	a
third,	the	Symbol	:Fred	will	be	the	same	object	in
all	three	contexts.

module	One

		class	Fred

		end

		$f1	=	:Fred

end

module	Two

		Fred	=	1

		$f2	=	:Fred

end

def	Fred()

end

$f3	=	:Fred

$f1.object_id			#=>	2514190

$f2.object_id			#=>	2514190

$f3.object_id			#=>	2514190

In	Files
string.c

Parent
Object

Included	Modules
Comparable

Public	Class	Methods

Returns	an	array	of	all	the	symbols	currently	in
Ruby's	symbol	table.

Symbol.all_symbols.size				#=>	903

Symbol.all_symbols[1,20]			#=>	[:floor,	:ARGV,	:Binding,	:symlink,

																																:chown,	:EOFError,	:$;

																																:LOCK_SH,	:"setuid?",	:

																																:default_proc,	:compact

																																:Tms,	:getwd,	:$=,	:ThreadGroup

																																:wait2,	:$>]

Public	Instance	Methods

Compares	symbol	with	other_symbol	after	calling	to_s
on	each	of	the	symbols.	Returns	-1,	0,	+1	or	nil
depending	on	whether	symbol	is	less	than,	equal	to,
or	greater	than	other_symbol.

+nil+	is	returned	if	the	two	values	are	incomparable.

See	String#<=>	for	more	information.

all_symbols	→	array

symbol	<=>	other_symbol	→	-1,	0,	+1	or	nil

Equality—If	sym	and	obj	are	exactly	the	same
symbol,	returns	true.

Equality—If	sym	and	obj	are	exactly	the	same
symbol,	returns	true.

Returns	sym.to_s	=~	obj.

Returns	sym.to_s[].

Same	as	sym.to_s.capitalize.intern.

Case-insensitive	version	of	Symbol#<=>.

Same	as	sym.to_s.downcase.intern.

Returns	that	sym	is	:“”	or	not.

sym	==	obj	→	true	or	false

sym	==	obj	→	true	or	false

sym	=~	obj	→	fixnum	or	nil
match(obj)	→	fixnum	or	nil

sym[idx]	→	char
sym[b,	n]	→	string
slice(idx)	→	char
slice(b,	n)	→	string

capitalize	→	symbol

casecmp(other)	→	-1,	0,	+1	or	nil

downcase	→	symbol

empty?	→	true	or	false

Returns	the	Encoding	object	that	represents	the
encoding	of	sym.

Returns	the	name	or	string	corresponding	to	sym.

:fred.id2name			#=>	"fred"

Returns	the	representation	of	sym	as	a	symbol	literal.

:fred.inspect			#=>	":fred"

In	general,	to_sym	returns	the	Symbol	corresponding
to	an	object.	As	sym	is	already	a	symbol,	self	is
returned	in	this	case.

Same	as	sym.to_s.length.

Returns	sym.to_s	=~	obj.

encoding	→	encoding

id2name	→	string
to_s	→	string

inspect	→	string

to_sym	→	sym
intern	→	sym

length	→	integer
size	→	integer

sym	=~	obj	→	fixnum	or	nil
match(obj)	→	fixnum	or	nil

Same	as	sym.to_s.succ.intern.

Same	as	sym.to_s.length.

Returns	sym.to_s[].

Same	as	sym.to_s.succ.intern.

Same	as	sym.to_s.swapcase.intern.

Returns	a	Proc	object	which	respond	to	the	given
method	by	sym.

(1..3).collect(&:to_s)		#=>	["1",	"2",	"3"]

Returns	the	name	or	string	corresponding	to	sym.

:fred.id2name			#=>	"fred"

succ

length	→	integer
size	→	integer

sym[idx]	→	char
sym[b,	n]	→	string
slice(idx)	→	char
slice(b,	n)	→	string

succ

swapcase	→	symbol

to_proc

id2name	→	string
to_s	→	string

In	general,	to_sym	returns	the	Symbol	corresponding
to	an	object.	As	sym	is	already	a	symbol,	self	is
returned	in	this	case.

Same	as	sym.to_s.upcase.intern.

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

to_sym	→	sym
intern	→	sym

upcase	→	symbol

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	SyntaxError
Raised	when	encountering	Ruby	code	with	an
invalid	syntax.

eval("1+1=2")

raises	the	exception:

SyntaxError:	(eval):1:	syntax	error,	unexpected	'=',	expecting	$end

In	Files
error.c

Parent
ScriptError

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	SystemCallError
SystemCallError	is	the	base	class	for	all	low-
level	platform-dependent	errors.

The	errors	available	on	the	current	platform	are
subclasses	of	SystemCallError	and	are	defined
in	the	Errno	module.

File.open("does/not/exist")

raises	the	exception:

Errno::ENOENT:	No	such	file	or	directory	-	does/not/exist

In	Files
error.c

Parent
StandardError

Public	Class	Methods

Return	true	if	the	receiver	is	a	generic
SystemCallError,	or	if	the	error	numbers	self	and

system_call_error	===	other	→	true	or	false

other	are	the	same.

If	errno	corresponds	to	a	known	system	error	code,
constructs	the	appropriate	Errno	class	for	that	error,
otherwise	constructs	a	generic	SystemCallError
object.	The	error	number	is	subsequently	available
via	the	errno	method.

Public	Instance	Methods

Return	this	SystemCallError's	error	number.

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

new(msg,	errno)	→
system_call_error_subclass

errno	→	fixnum

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	SystemExit
Raised	by	exit	to	initiate	the	termination	of	the
script.

In	Files
error.c

Parent
Exception

Public	Class	Methods

Create	a	new	SystemExit	exception	with	the	given
status	and	message.	Status	is	true,	false,	or	an
integer.	If	status	is	not	given,	true	is	used.

Public	Instance	Methods

Return	the	status	value	associated	with	this	system
exit.

new	→	system_exit
new(status)	→	system_exit
new(status,	msg)	→	system_exit
new(msg)	→	system_exit

status	→	fixnum

Returns	true	if	exiting	successful,	false	if	not.

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

success?	→	true	or	false

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	SystemStackError
Raised	in	case	of	a	stack	overflow.

def	me_myself_and_i

		me_myself_and_i

end

me_myself_and_i

raises	the	exception:

SystemStackError:	stack	level	too	deep

In	Files
proc.c

Parent
Exception

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	Thread
Threads	are	the	Ruby	implementation	for	a
concurrent	programming	model.

Programs	that	require	multiple	threads	of
execution	are	a	perfect	candidate	for	Ruby's
Thread	class.

For	example,	we	can	create	a	new	thread
separate	from	the	main	thread's	execution	using
::new.

thr	=	Thread.new	{	puts	"Whats	the	big	deal"	}

Then	we	are	able	to	pause	the	execution	of	the
main	thread	and	allow	our	new	thread	to	finish,
using	join:

thr.join	#=>	"Whats	the	big	deal"

If	we	don't	call	thr.join	before	the	main	thread
terminates,	then	all	other	threads	including	thr
will	be	killed.

Alternatively,	you	can	use	an	array	for	handling
multiple	threads	at	once,	like	in	the	following
example:

threads	=	[]

threads	<<	Thread.new	{	puts	"Whats	the	big	deal"	}

threads	<<	Thread.new	{	3.times	{	puts	"Threads	are	fun!"	}	}

After	creating	a	few	threads	we	wait	for	them	all
to	finish	consecutively.

threads.each	{	|thr|	thr.join	}

Thread	initialization

In	order	to	create	new	threads,	Ruby	provides
::new,	::start,	and	::fork.	A	block	must	be
provided	with	each	of	these	methods,	otherwise
a	ThreadError	will	be	raised.

When	subclassing	the	Thread	class,	the
initialize	method	of	your	subclass	will	be
ignored	by	::start	and	::fork.	Otherwise,	be	sure
to	call	super	in	your	initialize	method.

Thread	termination

For	terminating	threads,	Ruby	provides	a	variety
of	ways	to	do	this.

The	class	method	::kill,	is	meant	to	exit	a	given
thread:

thr	=	Thread.new	{	...	}

Thread.kill(thr)	#	sends	exit()	to	thr

Alternatively,	you	can	use	the	instance	method

exit,	or	any	of	its	aliases	kill	or	terminate.

thr.exit

Thread	status

Ruby	provides	a	few	instance	methods	for
querying	the	state	of	a	given	thread.	To	get	a
string	with	the	current	thread's	state	use	status

thr	=	Thread.new	{	sleep	}

thr.status	#	=>	"sleep"

thr.exit

thr.status	#	=>	false

You	can	also	use	alive?	to	tell	if	the	thread	is
running	or	sleeping,	and	stop?	if	the	thread	is
dead	or	sleeping.

Thread	variables	and	scope

Since	threads	are	created	with	blocks,	the	same
rules	apply	to	other	Ruby	blocks	for	variable
scope.	Any	local	variables	created	within	this
block	are	accessible	to	only	this	thread.

Fiber-local	vs.	Thread-local

Each	fiber	has	its	own	bucket	for	Thread#[]
storage.	When	you	set	a	new	fiber-local	it	is	only
accessible	within	this	Fiber.	To	illustrate:

Thread.new	{

		Thread.current[:foo]	=	"bar"

		Fiber.new	{

				p	Thread.current[:foo]	#	=>	nil

		}.resume

}.join

This	example	uses	#[]	for	getting	and	#[]=	for
setting	fiber-locals,	you	can	also	use	keys	to	list
the	fiber-locals	for	a	given	thread	and	key?	to
check	if	a	fiber-local	exists.

When	it	comes	to	thread-locals,	they	are
accessible	within	the	entire	scope	of	the	thread.
Given	the	following	example:

Thread.new{

		Thread.current.thread_variable_set(:foo,	1)

		p	Thread.current.thread_variable_get(:foo)	#	=>	1

		Fiber.new{

				Thread.current.thread_variable_set(:foo,	2)

				p	Thread.current.thread_variable_get(:foo)	#	=>	2

		}.resume

		p	Thread.current.thread_variable_get(:foo)			#	=>	2

}.join

You	can	see	that	the	thread-local	:foo	carried
over	into	the	fiber	and	was	changed	to	2	by	the
end	of	the	thread.

This	example	makes	use	of	thread_variable_set
to	create	new	thread-locals,	and
thread_variable_get	to	reference	them.

There	is	also	thread_variables	to	list	all	thread-
locals,	and	thread_variable?	to	check	if	a	given

thread-local	exists.

Exception	handling

Any	thread	can	raise	an	exception	using	the
raise	instance	method,	which	operates	similarly
to	Kernel#raise.

However,	it's	important	to	note	that	an	exception
that	occurs	in	any	thread	except	the	main	thread
depends	on	abort_on_exception.	This	option	is
false	by	default,	meaning	that	any	unhandled
exception	will	cause	the	thread	to	terminate
silently	when	waited	on	by	either	join	or	value.
You	can	change	this	default	by	either
abort_on_exception=	true	or	setting	$::DEBUG
to	true.

With	the	addition	of	the	class	method
::handle_interrupt,	you	can	now	handle
exceptions	asynchronously	with	threads.

Scheduling

Ruby	provides	a	few	ways	to	support	scheduling
threads	in	your	program.

The	first	way	is	by	using	the	class	method	::stop,
to	put	the	current	running	thread	to	sleep	and
schedule	the	execution	of	another	thread.

Once	a	thread	is	asleep,	you	can	use	the
instance	method	wakeup	to	mark	your	thread	as

eligible	for	scheduling.

You	can	also	try	::pass,	which	attempts	to	pass
execution	to	another	thread	but	is	dependent	on
the	OS	whether	a	running	thread	will	switch	or
not.	The	same	goes	for	priority,	which	lets	you
hint	to	the	thread	scheduler	which	threads	you
want	to	take	precedence	when	passing
execution.	This	method	is	also	dependent	on	the
OS	and	may	be	ignored	on	some	platforms.

In	Files
thread.c
vm.c
vm_trace.c

Parent
Object

Public	Class	Methods

Returns	the	thread	debug	level.	Available	only	if
compiled	with	THREAD_DEBUG=-1.

Sets	the	thread	debug	level.	Available	only	if
compiled	with	THREAD_DEBUG=-1.

DEBUG	→	num

DEBUG	=	num

Returns	the	status	of	the	global	“abort	on	exception''
condition.

The	default	is	false.

When	set	to	true,	all	threads	will	abort	(the	process
will	exit(0))	if	an	exception	is	raised	in	any	thread.

Can	also	be	specified	by	the	global	$::DEBUG	flag	or
command	line	option	-d.

See	also	::abort_on_exception=.

There	is	also	an	instance	level	method	to	set	this	for
a	specific	thread,	see	abort_on_exception.

When	set	to	true,	all	threads	will	abort	if	an	exception
is	raised.	Returns	the	new	state.

Thread.abort_on_exception	=	true

t1	=	Thread.new	do

		puts		"In	new	thread"

		raise	"Exception	from	thread"

end

sleep(1)

puts	"not	reached"

This	will	produce:

In	new	thread

prog.rb:4:	Exception	from	thread	(RuntimeError)

	from	prog.rb:2:in	`initialize'

	from	prog.rb:2:in	`new'

	from	prog.rb:2

See	also	::abort_on_exception.

There	is	also	an	instance	level	method	to	set	this	for
a	specific	thread,	see	abort_on_exception=.

abort_on_exception	→	true	or	false

abort_on_exception=	boolean	→	true	or
false

Returns	the	currently	executing	thread.

Thread.current			#=>	#<Thread:0x401bdf4c	run>

Terminates	the	currently	running	thread	and
schedules	another	thread	to	be	run.

If	this	thread	is	already	marked	to	be	killed,	::exit
returns	the	Thread.

If	this	is	the	main	thread,	or	the	last	thread,	exit	the
process.

Basically	the	same	as	::new.	However,	if	class
Thread	is	subclassed,	then	calling	start	in	that
subclass	will	not	invoke	the	subclass's	initialize
method.

Changes	asynchronous	interrupt	timing.

interrupt	means	asynchronous	event	and
corresponding	procedure	by	#raise,	#kill,	signal	trap
(not	supported	yet)	and	main	thread	termination	(if
main	thread	terminates,	then	all	other	thread	will	be
killed).

The	given	hash	has	pairs	like	ExceptionClass	=>
:TimingSymbol.	Where	the	ExceptionClass	is	the

current	→	thread

exit	→	thread

start([args]*)	{|args|	block	}	→	thread
fork([args]*)	{|args|	block	}	→	thread

handle_interrupt(hash)	{	...	}	→	result	of	the
block

interrupt	handled	by	the	given	block.	The
TimingSymbol	can	be	one	of	the	following	symbols:

:immediate

Invoke	interrupts	immediately.

:on_blocking

Invoke	interrupts	while	BlockingOperation.

:never

Never	invoke	all	interrupts.

BlockingOperation	means	that	the	operation	will
block	the	calling	thread,	such	as	read	and	write.	On
CRuby	implementation,	BlockingOperation	is	any
operation	executed	without	GVL.

Masked	asynchronous	interrupts	are	delayed	until
they	are	enabled.	This	method	is	similar	to
sigprocmask(3).

NOTE
Asynchronous	interrupts	are	difficult	to	use.

If	you	need	to	communicate	between	threads,	please
consider	to	use	another	way	such	as	Queue.

Or	use	them	with	deep	understanding	about	this
method.

Usage
In	this	example,	we	can	guard	from	#raise
exceptions.

Using	the	:never	TimingSymbol	the	RuntimeError
exception	will	always	be	ignored	in	the	first	block	of
the	main	thread.	In	the	second	::handle_interrupt
block	we	can	purposefully	handle	RuntimeError
exceptions.

th	=	Thread.new	do

		Thread.handle_interrupt(RuntimeError	=>	:never)	{

				begin

						#	You	can	write	resource	allocation	code	safely.

						Thread.handle_interrupt(RuntimeError	=>	:immediate

								#	...

						}

				ensure

						#	You	can	write	resource	deallocation	code	safely.

				end

		}

end

Thread.pass

#	...

th.raise	"stop"

While	we	are	ignoring	the	RuntimeError	exception,
it's	safe	to	write	our	resource	allocation	code.	Then,
the	ensure	block	is	where	we	can	safely	deallocate
your	resources.

Guarding	from	Timeout::Error
In	the	next	example,	we	will	guard	from	the
Timeout::Error	exception.	This	will	help	prevent	from
leaking	resources	when	Timeout::Error	exceptions
occur	during	normal	ensure	clause.	For	this	example
we	use	the	help	of	the	standard	library	Timeout,	from
lib/timeout.rb

require	'timeout'

Thread.handle_interrupt(Timeout::Error	=>	:never)	{

		timeout(10){

				#	Timeout::Error	doesn't	occur	here

				Thread.handle_interrupt(Timeout::Error	=>	:on_blocking

						#	possible	to	be	killed	by	Timeout::Error

						#	while	blocking	operation

				}

				#	Timeout::Error	doesn't	occur	here

		}

}

In	the	first	part	of	the	timeout	block,	we	can	rely	on
Timeout::Error	being	ignored.	Then	in	the
Timeout::Error	=>	:on_blocking	block,	any	operation
that	will	block	the	calling	thread	is	susceptible	to	a
Timeout::Error	exception	being	raised.

Stack	control	settings
It's	possible	to	stack	multiple	levels	of
::handle_interrupt	blocks	in	order	to	control	more	than
one	ExceptionClass	and	TimingSymbol	at	a	time.

Thread.handle_interrupt(FooError	=>	:never)	{

		Thread.handle_interrupt(BarError	=>	:never)	{

					#	FooError	and	BarError	are	prohibited.

		}

}

Inheritance	with	ExceptionClass
All	exceptions	inherited	from	the	ExceptionClass
parameter	will	be	considered.

Thread.handle_interrupt(Exception	=>	:never)	{

		#	all	exceptions	inherited	from	Exception	are	prohibited.

}

Causes	the	given	thread	to	exit,	see	also	::exit.

count	=	0

a	=	Thread.new	{	loop	{	count	+=	1	}	}

sleep(0.1)							#=>	0

Thread.kill(a)			#=>	#<Thread:0x401b3d30	dead>

count												#=>	93947

a.alive?									#=>	false

kill(thread)	→	thread

list	→	array

Returns	an	array	of	Thread	objects	for	all	threads	that
are	either	runnable	or	stopped.

Thread.new	{	sleep(200)	}

Thread.new	{	1000000.times	{|i|	i*i	}	}

Thread.new	{	Thread.stop	}

Thread.list.each	{|t|	p	t}

This	will	produce:

#<Thread:0x401b3e84	sleep>

#<Thread:0x401b3f38	run>

#<Thread:0x401b3fb0	sleep>

#<Thread:0x401bdf4c	run>

Returns	the	main	thread.

Creates	a	new	thread	executing	the	given	block.

Any	args	given	to	::new	will	be	passed	to	the	block:

arr	=	[]

a,	b,	c	=	1,	2,	3

Thread.new(a,b,c)	{	|d,e,f|	arr	<<	d	<<	e	<<	f	}.join

arr	#=>	[1,	2,	3]

A	ThreadError	exception	is	raised	if	::new	is	called
without	a	block.

If	you're	going	to	subclass	Thread,	be	sure	to	call
super	in	your	initialize	method,	otherwise	a
ThreadError	will	be	raised.

main	→	thread

new	{	...	}	→	thread
new(*args,	&proc)	→	thread
new(*args)	{	|args|	...	}	→	thread

pass	→	nil

Give	the	thread	scheduler	a	hint	to	pass	execution	to
another	thread.	A	running	thread	may	or	may	not
switch,	it	depends	on	OS	and	processor.

Returns	whether	or	not	the	asynchronous	queue	is
empty.

Since	::handle_interrupt	can	be	used	to	defer
asynchronous	events,	this	method	can	be	used	to
determine	if	there	are	any	deferred	events.

If	you	find	this	method	returns	true,	then	you	may
finish	:never	blocks.

For	example,	the	following	method	processes
deferred	asynchronous	events	immediately.

def	Thread.kick_interrupt_immediately

		Thread.handle_interrupt(Object	=>	:immediate)	{

				Thread.pass

		}

end

If	error	is	given,	then	check	only	for	error	type
deferred	events.

Usage
th	=	Thread.new{

		Thread.handle_interrupt(RuntimeError	=>	:on_blocking

				while	true

						...

						#	reach	safe	point	to	invoke	interrupt

						if	Thread.pending_interrupt?

								Thread.handle_interrupt(Object	=>	:immediate){}

						end

						...

				end

		}

}

pending_interrupt?(error	=	nil)	→	true/false

...

th.raise	#	stop	thread

This	example	can	also	be	written	as	the	following,
which	you	should	use	to	avoid	asynchronous
interrupts.

flag	=	true

th	=	Thread.new{

		Thread.handle_interrupt(RuntimeError	=>	:on_blocking

				while	true

						...

						#	reach	safe	point	to	invoke	interrupt

						break	if	flag	==	false

						...

				end

		}

}

...

flag	=	false	#	stop	thread

Basically	the	same	as	::new.	However,	if	class
Thread	is	subclassed,	then	calling	start	in	that
subclass	will	not	invoke	the	subclass's	initialize
method.

Stops	execution	of	the	current	thread,	putting	it	into	a
“sleep''	state,	and	schedules	execution	of	another
thread.

a	=	Thread.new	{	print	"a";	Thread.stop;	print	"c"	}

sleep	0.1	while	a.status!='sleep'

print	"b"

a.run

a.join

start([args]*)	{|args|	block	}	→	thread
fork([args]*)	{|args|	block	}	→	thread

stop	→	nil

#=>	"abc"

Public	Instance	Methods

Attribute	Reference—Returns	the	value	of	a	fiber-
local	variable	(current	thread's	root	fiber	if	not
explicitly	inside	a	Fiber),	using	either	a	symbol	or	a
string	name.	If	the	specified	variable	does	not	exist,
returns	nil.

[

		Thread.new	{	Thread.current["name"]	=	"A"	},

		Thread.new	{	Thread.current[:name]		=	"B"	},

		Thread.new	{	Thread.current["name"]	=	"C"	}

].each	do	|th|

		th.join

		puts	"#{th.inspect}:	#{th[:name]}"

end

This	will	produce:

#<Thread:0x00000002a54220	dead>:	A

#<Thread:0x00000002a541a8	dead>:	B

#<Thread:0x00000002a54130	dead>:	C

Thread#[]	and	Thread#[]=	are	not	thread-local	but
fiber-local.	This	confusion	did	not	exist	in	Ruby	1.8
because	fibers	are	only	available	since	Ruby	1.9.
Ruby	1.9	chooses	that	the	methods	behaves	fiber-
local	to	save	following	idiom	for	dynamic	scope.

def	meth(newvalue)

		begin

				oldvalue	=	Thread.current[:name]

				Thread.current[:name]	=	newvalue

				yield

		ensure

				Thread.current[:name]	=	oldvalue

thr[sym]	→	obj	or	nil

		end

end

The	idiom	may	not	work	as	dynamic	scope	if	the
methods	are	thread-local	and	a	given	block	switches
fiber.

f	=	Fiber.new	{

		meth(1)	{

				Fiber.yield

		}

}

meth(2)	{

		f.resume

}

f.resume

p	Thread.current[:name]

#=>	nil	if	fiber-local

#=>	2	if	thread-local	(The	value	2	is	leaked	to	outside	of	meth	method.)

For	thread-local	variables,	please	see
thread_variable_get	and	thread_variable_set.

Attribute	Assignment—Sets	or	creates	the	value	of	a
fiber-local	variable,	using	either	a	symbol	or	a	string.

See	also	Thread#[].

For	thread-local	variables,	please	see
thread_variable_set	and	thread_variable_get.

Returns	the	status	of	the	thread-local	“abort	on
exception''	condition	for	this	thr.

The	default	is	false.

See	also	abort_on_exception=.

There	is	also	a	class	level	method	to	set	this	for	all

thr[sym]	=	obj	→	obj

abort_on_exception	→	true	or	false

threads,	see	::abort_on_exception.

When	set	to	true,	all	threads	(including	the	main
program)	will	abort	if	an	exception	is	raised	in	this
thr.

The	process	will	effectively	exit(0).

See	also	abort_on_exception.

There	is	also	a	class	level	method	to	set	this	for	all
threads,	see	::abort_on_exception=.

Adds	proc	as	a	handler	for	tracing.

See	#set_trace_func	and	Kernel#set_trace_func.

Returns	true	if	thr	is	running	or	sleeping.

thr	=	Thread.new	{	}

thr.join																#=>	#<Thread:0x401b3fb0	dead>

Thread.current.alive?			#=>	true

thr.alive?														#=>	false

See	also	stop?	and	status.

Returns	the	current	backtrace	of	the	target	thread.

Returns	the	execution	stack	for	the	target	thread—an

abort_on_exception=	boolean	→	true	or
false

add_trace_func(proc)	→	proc

alive?	→	true	or	false

backtrace	→	array

backtrace_locations(*args)	→	array	or	nil

array	containing	backtrace	location	objects.

See	Thread::Backtrace::Location	for	more
information.

This	method	behaves	similarly	to
Kernel#caller_locations	except	it	applies	to	a	specific
thread.

Terminates	thr	and	schedules	another	thread	to	be
run.

If	this	thread	is	already	marked	to	be	killed,	exit
returns	the	Thread.

If	this	is	the	main	thread,	or	the	last	thread,	exits	the
process.

Returns	the	ThreadGroup	which	contains	the	given
thread,	or	returns	nil	if	thr	is	not	a	member	of	any
group.

Thread.main.group			#=>	#<ThreadGroup:0x4029d914>

Dump	the	name,	id,	and	status	of	thr	to	a	string.

The	calling	thread	will	suspend	execution	and	run	this

exit	→	thr	or	nil
kill	→	thr	or	nil
terminate	→	thr	or	nil

group	→	thgrp	or	nil

inspect	→	string

join	→	thr
join(limit)	→	thr

thr.

Does	not	return	until	thr	exits	or	until	the	given	limit
seconds	have	passed.

If	the	time	limit	expires,	nil	will	be	returned,
otherwise	thr	is	returned.

Any	threads	not	joined	will	be	killed	when	the	main
program	exits.

If	thr	had	previously	raised	an	exception	and	the
::abort_on_exception	or	$::DEBUG	flags	are	not	set,
(so	the	exception	has	not	yet	been	processed),	it	will
be	processed	at	this	time.

a	=	Thread.new	{	print	"a";	sleep(10);	print	"b";	print

x	=	Thread.new	{	print	"x";	Thread.pass;	print	"y";	print

x.join	#	Let	thread	x	finish,	thread	a	will	be	killed	on	exit.

#=>	"axyz"

The	following	example	illustrates	the	limit
parameter.

y	=	Thread.new	{	4.times	{	sleep	0.1;	puts	'tick...	'	}}

puts	"Waiting"	until	y.join(0.15)

This	will	produce:

tick...

Waiting

tick...

Waiting

tick...

tick...

Returns	true	if	the	given	string	(or	symbol)	exists	as
a	fiber-local	variable.

key?(sym)	→	true	or	false

me	=	Thread.current

me[:oliver]	=	"a"

me.key?(:oliver)				#=>	true

me.key?(:stanley)			#=>	false

Returns	an	array	of	the	names	of	the	fiber-local
variables	(as	Symbols).

thr	=	Thread.new	do

		Thread.current[:cat]	=	'meow'

		Thread.current["dog"]	=	'woof'

end

thr.join			#=>	#<Thread:0x401b3f10	dead>

thr.keys			#=>	[:dog,	:cat]

Terminates	thr	and	schedules	another	thread	to	be
run.

If	this	thread	is	already	marked	to	be	killed,	exit
returns	the	Thread.

If	this	is	the	main	thread,	or	the	last	thread,	exits	the
process.

Returns	whether	or	not	the	asynchronous	queue	is
empty	for	the	target	thread.

If	error	is	given,	then	check	only	for	error	type
deferred	events.

See	::pending_interrupt?	for	more	information.

keys	→	array

exit	→	thr	or	nil
kill	→	thr	or	nil
terminate	→	thr	or	nil

pending_interrupt?(error	=	nil)	→	true/false

Returns	the	priority	of	thr.	Default	is	inherited	from
the	current	thread	which	creating	the	new	thread,	or
zero	for	the	initial	main	thread;	higher-priority	thread
will	run	more	frequently	than	lower-priority	threads
(but	lower-priority	threads	can	also	run).

This	is	just	hint	for	Ruby	thread	scheduler.	It	may	be
ignored	on	some	platform.

Thread.current.priority			#=>	0

Sets	the	priority	of	thr	to	integer.	Higher-priority
threads	will	run	more	frequently	than	lower-priority
threads	(but	lower-priority	threads	can	also	run).

This	is	just	hint	for	Ruby	thread	scheduler.	It	may	be
ignored	on	some	platform.

count1	=	count2	=	0

a	=	Thread.new	do

						loop	{	count1	+=	1	}

				end

a.priority	=	-1

b	=	Thread.new	do

						loop	{	count2	+=	1	}

				end

b.priority	=	-2

sleep	1			#=>	1

count1				#=>	622504

count2				#=>	5832

Raises	an	exception	from	the	given	thread.	The	caller

priority	→	integer

priority=	integer	→	thr

raise
raise(string)
raise(exception	[,	string	[,	array]])

does	not	have	to	be	thr.	See	Kernel#raise	for	more
information.

Thread.abort_on_exception	=	true

a	=	Thread.new	{	sleep(200)	}

a.raise("Gotcha")

This	will	produce:

prog.rb:3:	Gotcha	(RuntimeError)

	from	prog.rb:2:in	`initialize'

	from	prog.rb:2:in	`new'

	from	prog.rb:2

Wakes	up	thr,	making	it	eligible	for	scheduling.

a	=	Thread.new	{	puts	"a";	Thread.stop;	puts	"c"	}

sleep	0.1	while	a.status!='sleep'

puts	"Got	here"

a.run

a.join

This	will	produce:

a

Got	here

c

See	also	the	instance	method	wakeup.

Returns	the	safe	level	in	effect	for	thr.	Setting	thread-
local	safe	levels	can	help	when	implementing
sandboxes	which	run	insecure	code.

thr	=	Thread.new	{	$SAFE	=	3;	sleep	}

Thread.current.safe_level			#=>	0

thr.safe_level														#=>	3

run	→	thr

safe_level	→	integer

Establishes	proc	on	thr	as	the	handler	for	tracing,	or
disables	tracing	if	the	parameter	is	nil.

See	Kernel#set_trace_func.

Returns	the	status	of	thr.

"sleep"

Returned	if	this	thread	is	sleeping	or	waiting
on	I/O

"run"

When	this	thread	is	executing

"aborting"

If	this	thread	is	aborting

false

When	this	thread	is	terminated	normally

nil

If	terminated	with	an	exception.

a	=	Thread.new	{	raise("die	now")	}

b	=	Thread.new	{	Thread.stop	}

c	=	Thread.new	{	Thread.exit	}

d	=	Thread.new	{	sleep	}

d.kill																		#=>	#<Thread:0x401b3678	aborting>

a.status																#=>	nil

b.status																#=>	"sleep"

c.status																#=>	false

d.status																#=>	"aborting"

Thread.current.status			#=>	"run"

set_trace_func(proc)	→	proc
set_trace_func(nil)	→	nil

status	→	string,	false	or	nil

See	also	the	instance	methods	alive?	and	stop?

Returns	true	if	thr	is	dead	or	sleeping.

a	=	Thread.new	{	Thread.stop	}

b	=	Thread.current

a.stop?			#=>	true

b.stop?			#=>	false

See	also	alive?	and	status.

Terminates	thr	and	schedules	another	thread	to	be
run.

If	this	thread	is	already	marked	to	be	killed,	exit
returns	the	Thread.

If	this	is	the	main	thread,	or	the	last	thread,	exits	the
process.

Returns	true	if	the	given	string	(or	symbol)	exists	as
a	thread-local	variable.

me	=	Thread.current

me.thread_variable_set(:oliver,	"a")

me.thread_variable?(:oliver)				#=>	true

me.thread_variable?(:stanley)			#=>	false

Note	that	these	are	not	fiber	local	variables.	Please
see	Thread#[]	and	#thread_variable_get	for	more
details.

stop?	→	true	or	false

exit	→	thr	or	nil
kill	→	thr	or	nil
terminate	→	thr	or	nil

thread_variable?(key)	→	true	or	false

Returns	the	value	of	a	thread	local	variable	that	has
been	set.	Note	that	these	are	different	than	fiber	local
values.	For	fiber	local	values,	please	see	Thread#[]
and	Thread#[]=.

Thread	local	values	are	carried	along	with	threads,
and	do	not	respect	fibers.	For	example:

Thread.new	{

		Thread.current.thread_variable_set("foo",	"bar")	#	set	a	thread	local

		Thread.current["foo"]	=	"bar"																				#	set	a	fiber	local

		Fiber.new	{

				Fiber.yield	[

						Thread.current.thread_variable_get("foo"),	#	get	the	thread	local

						Thread.current["foo"],																					#	get	the	fiber	local

]

		}.resume

}.join.value	#	=>	['bar',	nil]

The	value	“bar”	is	returned	for	the	thread	local,	where
nil	is	returned	for	the	fiber	local.	The	fiber	is	executed
in	the	same	thread,	so	the	thread	local	values	are
available.

Sets	a	thread	local	with	key	to	value.	Note	that	these
are	local	to	threads,	and	not	to	fibers.	Please	see
#thread_variable_get	and	Thread#[]	for	more
information.

Returns	an	array	of	the	names	of	the	thread-local
variables	(as	Symbols).

thr	=	Thread.new	do

		Thread.current.thread_variable_set(:cat,	'meow')

thread_variable_get(key)	→	obj	or	nil

thread_variable_set(key,	value)

thread_variables	→	array

		Thread.current.thread_variable_set("dog",	'woof')

end

thr.join															#=>	#<Thread:0x401b3f10	dead>

thr.thread_variables			#=>	[:dog,	:cat]

Note	that	these	are	not	fiber	local	variables.	Please
see	Thread#[]	and	#thread_variable_get	for	more
details.

Waits	for	thr	to	complete,	using	join,	and	returns	its
value	or	raises	the	exception	which	terminated	the
thread.

a	=	Thread.new	{	2	+	2	}

a.value			#=>	4

b	=	Thread.new	{	raise	'something	went	wrong'	}

b.value			#=>	RuntimeError:	something	went	wrong

Marks	a	given	thread	as	eligible	for	scheduling,
however	it	may	still	remain	blocked	on	I/O.

Note:	This	does	not	invoke	the	scheduler,	see	run	for
more	information.

c	=	Thread.new	{	Thread.stop;	puts	"hey!"	}

sleep	0.1	while	c.status!='sleep'

c.wakeup

c.join

#=>	"hey!"

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

value	→	obj

wakeup	→	thr

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	ThreadError
Raised	when	an	invalid	operation	is	attempted
on	a	thread.

For	example,	when	no	other	thread	has	been
started:

Thread.stop

This	will	raises	the	following	exception:

ThreadError:	stopping	only	thread

note:	use	sleep	to	stop	forever

In	Files
thread.c

Parent
StandardError

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	ThreadGroup
ThreadGroup	provides	a	means	of	keeping	track
of	a	number	of	threads	as	a	group.

A	given	Thread	object	can	only	belong	to	one
ThreadGroup	at	a	time;	adding	a	thread	to	a	new
group	will	remove	it	from	any	previous	group.

Newly	created	threads	belong	to	the	same	group
as	the	thread	from	which	they	were	created.

In	Files
thread.c

Parent
Object

Constants

Default

The	default	ThreadGroup	created	when	Ruby	starts;	all
Threads	belong	to	it	by	default.

Public	Instance	Methods

Adds	the	given	thread	to	this	group,	removing	it	from
any	other	group	to	which	it	may	have	previously	been
a	member.

puts	"Initial	group	is	#{ThreadGroup::Default.list}"

tg	=	ThreadGroup.new

t1	=	Thread.new	{	sleep	}

t2	=	Thread.new	{	sleep	}

puts	"t1	is	#{t1}"

puts	"t2	is	#{t2}"

tg.add(t1)

puts	"Initial	group	now	#{ThreadGroup::Default.list}"

puts	"tg	group	now	#{tg.list}"

This	will	produce:

Initial	group	is	#<Thread:0x401bdf4c>

t1	is	#<Thread:0x401b3c90>

t2	is	#<Thread:0x401b3c18>

Initial	group	now	#<Thread:0x401b3c18>#<Thread:0x401bdf4c>

tg	group	now	#<Thread:0x401b3c90>

Prevents	threads	from	being	added	to	or	removed
from	the	receiving	ThreadGroup.

New	threads	can	still	be	started	in	an	enclosed
ThreadGroup.

ThreadGroup::Default.enclose								#=>	#<ThreadGroup:0x4029d914>

thr	=	Thread::new	{	Thread.stop	}			#=>	#<Thread:0x402a7210	sleep>

tg	=	ThreadGroup::new															#=>	#<ThreadGroup:0x402752d4>

tg.add	thr

#=>	ThreadError:	can't	move	from	the	enclosed	thread	group

add(thread)	→	thgrp

enclose	→	thgrp

enclosed?	→	true	or	false

Returns	true	if	the	thgrp	is	enclosed.	See	also
#enclose.

Returns	an	array	of	all	existing	Thread	objects	that
belong	to	this	group.

ThreadGroup::Default.list			#=>	[#<Thread:0x401bdf4c	run>]

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

list	→	array

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	Time
Time	is	an	abstraction	of	dates	and	times.	Time
is	stored	internally	as	the	number	of	seconds
with	fraction	since	the	Epoch,	January	1,	1970
00:00	UTC.	Also	see	the	library	module	Date.
The	Time	class	treats	GMT	(Greenwich	Mean
Time)	and	UTC	(Coordinated	Universal	Time)	as
equivalent.	GMT	is	the	older	way	of	referring	to
these	baseline	times	but	persists	in	the	names	of
calls	on	POSIX	systems.

All	times	may	have	fraction.	Be	aware	of	this	fact
when	comparing	times	with	each	other	–	times
that	are	apparently	equal	when	displayed	may
be	different	when	compared.

Since	Ruby	1.9.2,	Time	implementation	uses	a
signed	63	bit	integer,	Bignum	or	Rational.	The
integer	is	a	number	of	nanoseconds	since	the
Epoch	which	can	represent	1823-11-12	to	2116-
02-20.	When	Bignum	or	Rational	is	used	(before
1823,	after	2116,	under	nanosecond),	Time
works	slower	as	when	integer	is	used.

Examples
All	of	these	examples	were	done	using	the	EST
timezone	which	is	GMT-5.

Creating	a	new	Time	instance

You	can	create	a	new	instance	of	Time	with
::new.	This	will	use	the	current	system	time.
::now	is	an	alias	for	this.	You	can	also	pass	parts
of	the	time	to	::new	such	as	year,	month,	minute,
etc.	When	you	want	to	construct	a	time	this	way
you	must	pass	at	least	a	year.	If	you	pass	the
year	with	nothing	else	time	will	default	to
January	1	of	that	year	at	00:00:00	with	the
current	system	timezone.	Here	are	some
examples:

Time.new(2002)									#=>	2002-01-01	00:00:00	-0500

Time.new(2002,	10)					#=>	2002-10-01	00:00:00	-0500

Time.new(2002,	10,	31)	#=>	2002-10-31	00:00:00	-0500

Time.new(2002,	10,	31,	2,	2,	2,	"+02:00")	#=>	2002-10-31	02:02:02	+0200

You	can	also	use	gm,	local	and	utc	to	infer	GMT,
local	and	UTC	timezones	instead	of	using	the
current	system	setting.

You	can	also	create	a	new	time	using	::at	which
takes	the	number	of	seconds	(or	fraction	of
seconds)	since	the	Unix	Epoch.

Time.at(628232400)	#=>	1989-11-28	00:00:00	-0500

http://en.wikipedia.org/wiki/Unix_time

Working	with	an	instance	of	Time

Once	you	have	an	instance	of	Time	there	is	a
multitude	of	things	you	can	do	with	it.	Below	are
some	examples.	For	all	of	the	following
examples,	we	will	work	on	the	assumption	that
you	have	done	the	following:

t	=	Time.new(1993,	02,	24,	12,	0,	0,	"+09:00")

Was	that	a	monday?

t.monday?	#=>	false

What	year	was	that	again?

t.year	#=>	1993

Was	is	daylight	savings	at	the	time?

t.dst?	#=>	false

What's	the	day	a	year	later?

t	+	(60*60*24*365)	#=>	1994-02-24	12:00:00	+0900

How	many	seconds	was	that	since	the	Unix
Epoch?

t.to_i	#=>	730522800

You	can	also	do	standard	functions	like	compare
two	times.

t1	=	Time.new(2010)

t2	=	Time.new(2011)

t1	==	t2	#=>	false

t1	==	t1	#=>	true

t1	<		t2	#=>	true

t1	>		t2	#=>	false

Time.new(2010,10,31).between?(t1,	t2)	#=>	true

In	Files
time.c

Parent
Object

Included	Modules
Comparable

Public	Class	Methods

at(time)	→	time
at(seconds_with_frac)	→	time
at(seconds,	microseconds_with_frac)	→

Creates	a	new	Time	object	with	the	value	given	by
time,	the	given	number	of	seconds_with_frac,	or
seconds	and	microseconds_with_frac	since	the
Epoch.	seconds_with_frac	and
microseconds_with_frac	can	be	an	Integer,	Float,
Rational,	or	other	Numeric.	non-portable	feature
allows	the	offset	to	be	negative	on	some	systems.

If	a	numeric	argument	is	given,	the	result	is	in	local
time.

Time.at(0)																											#=>	1969-12-31	18:00:00	-0600

Time.at(Time.at(0))																		#=>	1969-12-31	18:00:00	-0600

Time.at(946702800)																			#=>	1999-12-31	23:00:00	-0600

Time.at(-284061600)																		#=>	1960-12-31	00:00:00	-0600

Time.at(946684800.2).usec												#=>	200000

Time.at(946684800,	123456.789).nsec		#=>	123456789

time

utc(year)	→	time
utc(year,	month)	→	time
utc(year,	month,	day)	→	time
utc(year,	month,	day,	hour)	→	time
utc(year,	month,	day,	hour,	min)	→	time
utc(year,	month,	day,	hour,	min,
sec_with_frac)	→	time
utc(year,	month,	day,	hour,	min,	sec,
usec_with_frac)	→	time
utc(sec,	min,	hour,	day,	month,	year,	dummy,
dummy,	dummy,	dummy)	→	time
gm(year)	→	time
gm(year,	month)	→	time
gm(year,	month,	day)	→	time
gm(year,	month,	day,	hour)	→	time

Creates	a	Time	object	based	on	given	values,
interpreted	as	UTC	(GMT).	The	year	must	be
specified.	Other	values	default	to	the	minimum	value
for	that	field	(and	may	be	nil	or	omitted).	Months
may	be	specified	by	numbers	from	1	to	12,	or	by	the
three-letter	English	month	names.	Hours	are
specified	on	a	24-hour	clock	(0..23).	Raises	an
ArgumentError	if	any	values	are	out	of	range.	Will
also	accept	ten	arguments	in	the	order	output	by
#to_a.

sec_with_frac	and	usec_with_frac	can	have	a
fractional	part.

Time.utc(2000,"jan",1,20,15,1)		#=>	2000-01-01	20:15:01	UTC

Time.gm(2000,"jan",1,20,15,1)			#=>	2000-01-01	20:15:01	UTC

gm(year,	month,	day,	hour,	min)	→	time
gm(year,	month,	day,	hour,	min,
sec_with_frac)	→	time
gm(year,	month,	day,	hour,	min,	sec,
usec_with_frac)	→	time
gm(sec,	min,	hour,	day,	month,	year,	dummy,
dummy,	dummy,	dummy)	→	time

local(year)	→	time
local(year,	month)	→	time
local(year,	month,	day)	→	time
local(year,	month,	day,	hour)	→	time
local(year,	month,	day,	hour,	min)	→	time
local(year,	month,	day,	hour,	min,
sec_with_frac)	→	time
local(year,	month,	day,	hour,	min,	sec,
usec_with_frac)	→	time

Same	as	::gm,	but	interprets	the	values	in	the	local
time	zone.

Time.local(2000,"jan",1,20,15,1)			#=>	2000-01-01	20:15:01	-0600

local(sec,	min,	hour,	day,	month,	year,
dummy,	dummy,	isdst,	dummy)	→	time
mktime(year)	→	time
mktime(year,	month)	→	time
mktime(year,	month,	day)	→	time
mktime(year,	month,	day,	hour)	→	time
mktime(year,	month,	day,	hour,	min)	→	time
mktime(year,	month,	day,	hour,	min,
sec_with_frac)	→	time
mktime(year,	month,	day,	hour,	min,	sec,
usec_with_frac)	→	time
mktime(sec,	min,	hour,	day,	month,	year,
dummy,	dummy,	isdst,	dummy)	→	time

local(year)	→	time
local(year,	month)	→	time
local(year,	month,	day)	→	time
local(year,	month,	day,	hour)	→	time
local(year,	month,	day,	hour,	min)	→	time
local(year,	month,	day,	hour,	min,
sec_with_frac)	→	time
local(year,	month,	day,	hour,	min,	sec,
usec_with_frac)	→	time
local(sec,	min,	hour,	day,	month,	year,
dummy,	dummy,	isdst,	dummy)	→	time
mktime(year)	→	time
mktime(year,	month)	→	time

Same	as	::gm,	but	interprets	the	values	in	the	local
time	zone.

Time.local(2000,"jan",1,20,15,1)			#=>	2000-01-01	20:15:01	-0600

Returns	a	Time	object.

It	is	initialized	to	the	current	system	time	if	no
argument	is	given.

Note:	The	new	object	will	use	the	resolution	available
on	your	system	clock,	and	may	include	fractional
seconds.

If	one	or	more	arguments	specified,	the	time	is
initialized	to	the	specified	time.

sec	may	have	fraction	if	it	is	a	rational.

utc_offset	is	the	offset	from	UTC.	It	can	be	a	string
such	as	“+09:00”	or	a	number	of	seconds	such	as
32400.

a	=	Time.new						#=>	2007-11-19	07:50:02	-0600

b	=	Time.new						#=>	2007-11-19	07:50:02	-0600

mktime(year,	month,	day)	→	time
mktime(year,	month,	day,	hour)	→	time
mktime(year,	month,	day,	hour,	min)	→	time
mktime(year,	month,	day,	hour,	min,
sec_with_frac)	→	time
mktime(year,	month,	day,	hour,	min,	sec,
usec_with_frac)	→	time
mktime(sec,	min,	hour,	day,	month,	year,
dummy,	dummy,	isdst,	dummy)	→	time

new	→	time
new(year,	month=nil,	day=nil,	hour=nil,
min=nil,	sec=nil,	utc_offset=nil)	→	time

a	==	b												#=>	false

"%.6f"	%	a.to_f			#=>	"1195480202.282373"

"%.6f"	%	b.to_f			#=>	"1195480202.283415"

Time.new(2008,6,21,	13,30,0,	"+09:00")	#=>	2008-06-21	13:30:00	+0900

#	A	trip	for	RubyConf	2007

t1	=	Time.new(2007,11,1,15,25,0,	"+09:00")	#	JST	(Narita)

t2	=	Time.new(2007,11,1,12,	5,0,	"-05:00")	#	CDT	(Minneapolis)

t3	=	Time.new(2007,11,1,13,25,0,	"-05:00")	#	CDT	(Minneapolis)

t4	=	Time.new(2007,11,1,16,53,0,	"-04:00")	#	EDT	(Charlotte)

t5	=	Time.new(2007,11,5,	9,24,0,	"-05:00")	#	EST	(Charlotte)

t6	=	Time.new(2007,11,5,11,21,0,	"-05:00")	#	EST	(Detroit)

t7	=	Time.new(2007,11,5,13,45,0,	"-05:00")	#	EST	(Detroit)

t8	=	Time.new(2007,11,6,17,10,0,	"+09:00")	#	JST	(Narita)

p((t2-t1)/3600.0)																										#=>	10.666666666666666

p((t4-t3)/3600.0)																										#=>	2.466666666666667

p((t6-t5)/3600.0)																										#=>	1.95

p((t8-t7)/3600.0)																										#=>	13.416666666666666

Creates	a	new	Time	object	for	the	current	time.	This
is	same	as	::new	without	arguments.

Time.now												#=>	2009-06-24	12:39:54	+0900

now	→	time

utc(year)	→	time
utc(year,	month)	→	time
utc(year,	month,	day)	→	time
utc(year,	month,	day,	hour)	→	time
utc(year,	month,	day,	hour,	min)	→	time
utc(year,	month,	day,	hour,	min,
sec_with_frac)	→	time
utc(year,	month,	day,	hour,	min,	sec,
usec_with_frac)	→	time
utc(sec,	min,	hour,	day,	month,	year,	dummy,

Creates	a	Time	object	based	on	given	values,
interpreted	as	UTC	(GMT).	The	year	must	be
specified.	Other	values	default	to	the	minimum	value
for	that	field	(and	may	be	nil	or	omitted).	Months
may	be	specified	by	numbers	from	1	to	12,	or	by	the
three-letter	English	month	names.	Hours	are
specified	on	a	24-hour	clock	(0..23).	Raises	an
ArgumentError	if	any	values	are	out	of	range.	Will
also	accept	ten	arguments	in	the	order	output	by
#to_a.

sec_with_frac	and	usec_with_frac	can	have	a
fractional	part.

Time.utc(2000,"jan",1,20,15,1)		#=>	2000-01-01	20:15:01	UTC

Time.gm(2000,"jan",1,20,15,1)			#=>	2000-01-01	20:15:01	UTC

Public	Instance	Methods

Addition	—	Adds	some	number	of	seconds	(possibly

dummy,	dummy,	dummy)	→	time
gm(year)	→	time
gm(year,	month)	→	time
gm(year,	month,	day)	→	time
gm(year,	month,	day,	hour)	→	time
gm(year,	month,	day,	hour,	min)	→	time
gm(year,	month,	day,	hour,	min,
sec_with_frac)	→	time
gm(year,	month,	day,	hour,	min,	sec,
usec_with_frac)	→	time
gm(sec,	min,	hour,	day,	month,	year,	dummy,
dummy,	dummy,	dummy)	→	time

time	+	numeric	→	time

fractional)	to	time	and	returns	that	value	as	a	new
Time	object.

t	=	Time.now									#=>	2007-11-19	08:22:21	-0600

t	+	(60	*	60	*	24)			#=>	2007-11-20	08:22:21	-0600

Difference	—	Returns	a	new	Time	object	that
represents	the	difference	between	time	and
other_time,	or	subtracts	the	given	number	of	seconds
in	numeric	from	time.

t	=	Time.now							#=>	2007-11-19	08:23:10	-0600

t2	=	t	+	2592000			#=>	2007-12-19	08:23:10	-0600

t2	-	t													#=>	2592000.0

t2	-	2592000							#=>	2007-11-19	08:23:10	-0600

Comparison—Compares	time	with	other_time.

-1,	0,	+1	or	nil	depending	on	whether	time	is	less
than,	equal	to,	or	greater	than	other_time.

nil	is	returned	if	the	two	values	are	incomparable.

t	=	Time.now							#=>	2007-11-19	08:12:12	-0600

t2	=	t	+	2592000			#=>	2007-12-19	08:12:12	-0600

t	<=>	t2											#=>	-1

t2	<=>	t											#=>	1

t	=	Time.now							#=>	2007-11-19	08:13:38	-0600

t2	=	t	+	0.1							#=>	2007-11-19	08:13:38	-0600

t.nsec													#=>	98222999

t2.nsec												#=>	198222999

t	<=>	t2											#=>	-1

t2	<=>	t											#=>	1

t	<=>	t												#=>	0

time	-	other_time	→	float
time	-	numeric	→	time

time	<=>	other_time	→	-1,	0,	+1	or	nil

Returns	a	canonical	string	representation	of	time.

Time.now.asctime			#=>	"Wed	Apr		9	08:56:03	2003"

Returns	a	canonical	string	representation	of	time.

Time.now.asctime			#=>	"Wed	Apr		9	08:56:03	2003"

Returns	the	day	of	the	month	(1..n)	for	time.

t	=	Time.now			#=>	2007-11-19	08:27:03	-0600

t.day										#=>	19

t.mday									#=>	19

Returns	true	if	time	occurs	during	Daylight	Saving
Time	in	its	time	zone.

#	CST6CDT:

		Time.local(2000,	1,	1).zone				#=>	"CST"

		Time.local(2000,	1,	1).isdst			#=>	false

		Time.local(2000,	1,	1).dst?				#=>	false

		Time.local(2000,	7,	1).zone				#=>	"CDT"

		Time.local(2000,	7,	1).isdst			#=>	true

		Time.local(2000,	7,	1).dst?				#=>	true

asctime	→	string
ctime	→	string

asctime	→	string
ctime	→	string

day	→	fixnum
mday	→	fixnum

isdst	→	true	or	false
dst?	→	true	or	false

#	Asia/Tokyo:

		Time.local(2000,	1,	1).zone				#=>	"JST"

		Time.local(2000,	1,	1).isdst			#=>	false

		Time.local(2000,	1,	1).dst?				#=>	false

		Time.local(2000,	7,	1).zone				#=>	"JST"

		Time.local(2000,	7,	1).isdst			#=>	false

		Time.local(2000,	7,	1).dst?				#=>	false

Returns	true	if	time	and	other_time	are	both	Time
objects	with	the	same	seconds	and	fractional
seconds.

Returns	true	if	time	represents	Friday.

t	=	Time.local(1987,	12,	18)					#=>	1987-12-18	00:00:00	-0600

t.friday?																								#=>	true

Returns	a	new	Time	object	representing	time	in	UTC.

t	=	Time.local(2000,1,1,20,15,1)			#=>	2000-01-01	20:15:01	-0600

t.gmt?																													#=>	false

y	=	t.getgm																								#=>	2000-01-02	02:15:01	UTC

y.gmt?																													#=>	true

t	==	y																													#=>	true

Returns	a	new	Time	object	representing	time	in	local
time	(using	the	local	time	zone	in	effect	for	this

eql?(other_time)

friday?	→	true	or	false

getgm	→	new_time
getutc	→	new_time

getlocal	→	new_time
getlocal(utc_offset)	→	new_time

process).

If	utc_offset	is	given,	it	is	used	instead	of	the	local
time.

t	=	Time.utc(2000,1,1,20,15,1)		#=>	2000-01-01	20:15:01	UTC

t.utc?																										#=>	true

l	=	t.getlocal																		#=>	2000-01-01	14:15:01	-0600

l.utc?																										#=>	false

t	==	l																										#=>	true

j	=	t.getlocal("+09:00")								#=>	2000-01-02	05:15:01	+0900

j.utc?																										#=>	false

t	==	j																										#=>	true

Returns	a	new	Time	object	representing	time	in	UTC.

t	=	Time.local(2000,1,1,20,15,1)			#=>	2000-01-01	20:15:01	-0600

t.gmt?																													#=>	false

y	=	t.getgm																								#=>	2000-01-02	02:15:01	UTC

y.gmt?																													#=>	true

t	==	y																													#=>	true

Returns	true	if	time	represents	a	time	in	UTC	(GMT).

t	=	Time.now																								#=>	2007-11-19	08:15:23	-0600

t.utc?																														#=>	false

t	=	Time.gm(2000,"jan",1,20,15,1)			#=>	2000-01-01	20:15:01	UTC

t.utc?																														#=>	true

t	=	Time.now																								#=>	2007-11-19	08:16:03	-0600

t.gmt?																														#=>	false

t	=	Time.gm(2000,1,1,20,15,1)							#=>	2000-01-01	20:15:01	UTC

t.gmt?																														#=>	true

getgm	→	new_time
getutc	→	new_time

utc?	→	true	or	false
gmt?	→	true	or	false

Returns	the	offset	in	seconds	between	the	timezone
of	time	and	UTC.

t	=	Time.gm(2000,1,1,20,15,1)			#=>	2000-01-01	20:15:01	UTC

t.gmt_offset																				#=>	0

l	=	t.getlocal																		#=>	2000-01-01	14:15:01	-0600

l.gmt_offset																				#=>	-21600

Converts	time	to	UTC	(GMT),	modifying	the	receiver.

t	=	Time.now			#=>	2007-11-19	08:18:31	-0600

t.gmt?									#=>	false

t.gmtime							#=>	2007-11-19	14:18:31	UTC

t.gmt?									#=>	true

t	=	Time.now			#=>	2007-11-19	08:18:51	-0600

t.utc?									#=>	false

t.utc										#=>	2007-11-19	14:18:51	UTC

t.utc?									#=>	true

Returns	the	offset	in	seconds	between	the	timezone
of	time	and	UTC.

t	=	Time.gm(2000,1,1,20,15,1)			#=>	2000-01-01	20:15:01	UTC

t.gmt_offset																				#=>	0

l	=	t.getlocal																		#=>	2000-01-01	14:15:01	-0600

l.gmt_offset																				#=>	-21600

gmt_offset	→	fixnum
gmtoff	→	fixnum
utc_offset	→	fixnum

gmtime	→	time
utc	→	time

gmt_offset	→	fixnum
gmtoff	→	fixnum
utc_offset	→	fixnum

Returns	a	hash	code	for	this	Time	object.

See	also	Object#hash.

Returns	the	hour	of	the	day	(0..23)	for	time.

t	=	Time.now			#=>	2007-11-19	08:26:20	-0600

t.hour									#=>	8

Returns	a	string	representing	time.	Equivalent	to
calling	strftime	with	the	appropriate	format	string.

t	=	Time.now

t.to_s																														=>	"2012-11-10	18:16:12	+0100"

t.strftime	"%Y-%m-%d	%H:%M:%S	%z"			=>	"2012-11-10	18:16:12	+0100"

t.utc.to_s																										=>	"2012-11-10	17:16:12	UTC"

t.strftime	"%Y-%m-%d	%H:%M:%S	UTC"		=>	"2012-11-10	17:16:12	UTC"

Returns	true	if	time	occurs	during	Daylight	Saving
Time	in	its	time	zone.

#	CST6CDT:

		Time.local(2000,	1,	1).zone				#=>	"CST"

		Time.local(2000,	1,	1).isdst			#=>	false

		Time.local(2000,	1,	1).dst?				#=>	false

		Time.local(2000,	7,	1).zone				#=>	"CDT"

		Time.local(2000,	7,	1).isdst			#=>	true

hash	→	fixnum

hour	→	fixnum

inspect	→	string
to_s	→	string

isdst	→	true	or	false
dst?	→	true	or	false

		Time.local(2000,	7,	1).dst?				#=>	true

#	Asia/Tokyo:

		Time.local(2000,	1,	1).zone				#=>	"JST"

		Time.local(2000,	1,	1).isdst			#=>	false

		Time.local(2000,	1,	1).dst?				#=>	false

		Time.local(2000,	7,	1).zone				#=>	"JST"

		Time.local(2000,	7,	1).isdst			#=>	false

		Time.local(2000,	7,	1).dst?				#=>	false

Converts	time	to	local	time	(using	the	local	time	zone
in	effect	for	this	process)	modifying	the	receiver.

If	utc_offset	is	given,	it	is	used	instead	of	the	local
time.

t	=	Time.utc(2000,	"jan",	1,	20,	15,	1)	#=>	2000-01-01	20:15:01	UTC

t.utc?																																		#=>	true

t.localtime																													#=>	2000-01-01	14:15:01	-0600

t.utc?																																		#=>	false

t.localtime("+09:00")																			#=>	2000-01-02	05:15:01	+0900

t.utc?																																		#=>	false

Returns	the	day	of	the	month	(1..n)	for	time.

t	=	Time.now			#=>	2007-11-19	08:27:03	-0600

t.day										#=>	19

t.mday									#=>	19

Returns	the	minute	of	the	hour	(0..59)	for	time.

localtime	→	time
localtime(utc_offset)	→	time

day	→	fixnum
mday	→	fixnum

min	→	fixnum

t	=	Time.now			#=>	2007-11-19	08:25:51	-0600

t.min										#=>	25

Returns	the	month	of	the	year	(1..12)	for	time.

t	=	Time.now			#=>	2007-11-19	08:27:30	-0600

t.mon										#=>	11

t.month								#=>	11

Returns	true	if	time	represents	Monday.

t	=	Time.local(2003,	8,	4)							#=>	2003-08-04	00:00:00	-0500

p	t.monday?																						#=>	true

Returns	the	month	of	the	year	(1..12)	for	time.

t	=	Time.now			#=>	2007-11-19	08:27:30	-0600

t.mon										#=>	11

t.month								#=>	11

Returns	the	number	of	nanoseconds	for	time.

t	=	Time.now								#=>	2007-11-17	15:18:03	+0900

"%10.9f"	%	t.to_f			#=>	"1195280283.536151409"

t.nsec														#=>	536151406

The	lowest	digits	of	to_f	and	nsec	are	different

mon	→	fixnum
month	→	fixnum

monday?	→	true	or	false

mon	→	fixnum
month	→	fixnum

nsec	→	int
tv_nsec	→	int

because	IEEE	754	double	is	not	accurate	enough	to
represent	the	exact	number	of	nanoseconds	since
the	Epoch.

The	more	accurate	value	is	returned	by	nsec.

Rounds	sub	seconds	to	a	given	precision	in	decimal
digits	(0	digits	by	default).	It	returns	a	new	Time
object.	ndigits	should	be	zero	or	positive	integer.

require	'time'

t	=	Time.utc(2010,3,30,	5,43,"25.123456789".to_r)

p	t.iso8601(10)											#=>	"2010-03-30T05:43:25.1234567890Z"

p	t.round.iso8601(10)					#=>	"2010-03-30T05:43:25.0000000000Z"

p	t.round(0).iso8601(10)		#=>	"2010-03-30T05:43:25.0000000000Z"

p	t.round(1).iso8601(10)		#=>	"2010-03-30T05:43:25.1000000000Z"

p	t.round(2).iso8601(10)		#=>	"2010-03-30T05:43:25.1200000000Z"

p	t.round(3).iso8601(10)		#=>	"2010-03-30T05:43:25.1230000000Z"

p	t.round(4).iso8601(10)		#=>	"2010-03-30T05:43:25.1235000000Z"

p	t.round(5).iso8601(10)		#=>	"2010-03-30T05:43:25.1234600000Z"

p	t.round(6).iso8601(10)		#=>	"2010-03-30T05:43:25.1234570000Z"

p	t.round(7).iso8601(10)		#=>	"2010-03-30T05:43:25.1234568000Z"

p	t.round(8).iso8601(10)		#=>	"2010-03-30T05:43:25.1234567900Z"

p	t.round(9).iso8601(10)		#=>	"2010-03-30T05:43:25.1234567890Z"

p	t.round(10).iso8601(10)	#=>	"2010-03-30T05:43:25.1234567890Z"

t	=	Time.utc(1999,12,31,	23,59,59)

p((t	+	0.4).round.iso8601(3))				#=>	"1999-12-31T23:59:59.000Z"

p((t	+	0.49).round.iso8601(3))			#=>	"1999-12-31T23:59:59.000Z"

p((t	+	0.5).round.iso8601(3))				#=>	"2000-01-01T00:00:00.000Z"

p((t	+	1.4).round.iso8601(3))				#=>	"2000-01-01T00:00:00.000Z"

p((t	+	1.49).round.iso8601(3))			#=>	"2000-01-01T00:00:00.000Z"

p((t	+	1.5).round.iso8601(3))				#=>	"2000-01-01T00:00:01.000Z"

t	=	Time.utc(1999,12,31,	23,59,59)

p	(t	+	0.123456789).round(4).iso8601(6)		#=>	"1999-12-31T23:59:59.123500Z"

round([ndigits])	→	new_time

saturday?	→	true	or	false

Returns	true	if	time	represents	Saturday.

t	=	Time.local(2006,	6,	10)						#=>	2006-06-10	00:00:00	-0500

t.saturday?																						#=>	true

Returns	the	second	of	the	minute	(0..60)	for	time.

Note:	Seconds	range	from	zero	to	60	to	allow	the
system	to	inject	leap	seconds.	See
en.wikipedia.org/wiki/Leap_second	for	further	details.

t	=	Time.now			#=>	2007-11-19	08:25:02	-0600

t.sec										#=>	2

Formats	time	according	to	the	directives	in	the	given
format	string.

The	directives	begin	with	a	percent	(%)	character.
Any	text	not	listed	as	a	directive	will	be	passed
through	to	the	output	string.

The	directive	consists	of	a	percent	(%)	character,
zero	or	more	flags,	optional	minimum	field	width,
optional	modifier	and	a	conversion	specifier	as
follows:

%<flags><width><modifier><conversion>

Flags:

-		don't	pad	a	numerical	output

_		use	spaces	for	padding

0		use	zeros	for	padding

^		upcase	the	result	string

#		change	case

:		use	colons	for	%z

sec	→	fixnum

strftime(string)	→	string

http://en.wikipedia.org/wiki/Leap_second

The	minimum	field	width	specifies	the	minimum
width.

The	modifiers	are	“E”	and	“O”.	They	are	ignored.

Format	directives:

Date	(Year,	Month,	Day):

		%Y	-	Year	with	century	if	provided,	will	pad	result	at	least	4	digits.

										-0001,	0000,	1995,	2009,	14292,	etc.

		%C	-	year	/	100	(rounded	down	such	as	20	in	2009)

		%y	-	year	%	100	(00..99)

		%m	-	Month	of	the	year,	zero-padded	(01..12)

										%_m		blank-padded	(1..12)

										%-m		no-padded	(1..12)

		%B	-	The	full	month	name	(``January'')

										%^B		uppercased	(``JANUARY'')

		%b	-	The	abbreviated	month	name	(``Jan'')

										%^b		uppercased	(``JAN'')

		%h	-	Equivalent	to	%b

		%d	-	Day	of	the	month,	zero-padded	(01..31)

										%-d		no-padded	(1..31)

		%e	-	Day	of	the	month,	blank-padded	(1..31)

		%j	-	Day	of	the	year	(001..366)

Time	(Hour,	Minute,	Second,	Subsecond):

		%H	-	Hour	of	the	day,	24-hour	clock,	zero-padded	(00..23)

		%k	-	Hour	of	the	day,	24-hour	clock,	blank-padded	(0..23)

		%I	-	Hour	of	the	day,	12-hour	clock,	zero-padded	(01..12)

		%l	-	Hour	of	the	day,	12-hour	clock,	blank-padded	(1..12)

		%P	-	Meridian	indicator,	lowercase	(``am''	or	``pm'')

		%p	-	Meridian	indicator,	uppercase	(``AM''	or	``PM'')

		%M	-	Minute	of	the	hour	(00..59)

		%S	-	Second	of	the	minute	(00..60)

		%L	-	Millisecond	of	the	second	(000..999)

							The	digits	under	millisecond	are	truncated	to	not	produce	1000.

		%N	-	Fractional	seconds	digits,	default	is	9	digits	(nanosecond)

										%3N		millisecond	(3	digits)

										%6N		microsecond	(6	digits)

										%9N		nanosecond	(9	digits)

										%12N	picosecond	(12	digits)

										%15N	femtosecond	(15	digits)

										%18N	attosecond	(18	digits)

										%21N	zeptosecond	(21	digits)

										%24N	yoctosecond	(24	digits)

							The	digits	under	the	specified	length	are	truncated	to	avoid

							carry	up.

Time	zone:

		%z	-	Time	zone	as	hour	and	minute	offset	from	UTC	(e.g.	+0900)

										%:z	-	hour	and	minute	offset	from	UTC	with	a	colon	(e.g.	+09:00)

										%::z	-	hour,	minute	and	second	offset	from	UTC	(e.g.	+09:00:00)

		%Z	-	Abbreviated	time	zone	name	or	similar	information.		(OS	dependent)

Weekday:

		%A	-	The	full	weekday	name	(``Sunday'')

										%^A		uppercased	(``SUNDAY'')

		%a	-	The	abbreviated	name	(``Sun'')

										%^a		uppercased	(``SUN'')

		%u	-	Day	of	the	week	(Monday	is	1,	1..7)

		%w	-	Day	of	the	week	(Sunday	is	0,	0..6)

ISO	8601	week-based	year	and	week	number:

The	first	week	of	YYYY	starts	with	a	Monday	and	includes	YYYY-01-04.

The	days	in	the	year	before	the	first	week	are	in	the	last	week	of

the	previous	year.

		%G	-	The	week-based	year

		%g	-	The	last	2	digits	of	the	week-based	year	(00..99)

		%V	-	Week	number	of	the	week-based	year	(01..53)

Week	number:

The	first	week	of	YYYY	that	starts	with	a	Sunday	or	Monday	(according	to	%U

or	%W).	The	days	in	the	year	before	the	first	week	are	in	week	0.

		%U	-	Week	number	of	the	year.	The	week	starts	with	Sunday.	(00..53)

		%W	-	Week	number	of	the	year.	The	week	starts	with	Monday.	(00..53)

Seconds	since	the	Epoch:

		%s	-	Number	of	seconds	since	1970-01-01	00:00:00	UTC.

Literal	string:

		%n	-	Newline	character	(\n)

		%t	-	Tab	character	(\t)

		%%	-	Literal	``%''	character

Combination:

		%c	-	date	and	time	(%a	%b	%e	%T	%Y)

		%D	-	Date	(%m/%d/%y)

		%F	-	The	ISO	8601	date	format	(%Y-%m-%d)

		%v	-	VMS	date	(%e-%^b-%4Y)

		%x	-	Same	as	%D

		%X	-	Same	as	%T

		%r	-	12-hour	time	(%I:%M:%S	%p)

		%R	-	24-hour	time	(%H:%M)

		%T	-	24-hour	time	(%H:%M:%S)

This	method	is	similar	to	strftime()	function	defined	in
ISO	C	and	POSIX.

While	all	directives	are	locale	independent	since
Ruby	1.9,	%Z	is	platform	dependent.	So,	the	result
may	differ	even	if	the	same	format	string	is	used	in
other	systems	such	as	C.

%z	is	recommended	over	%Z.	%Z	doesn't	identify	the
timezone.	For	example,	“CST”	is	used	at
America/Chicago	(-06:00),	America/Havana	(-05:00),
Asia/Harbin	(+08:00),	Australia/Darwin	(+09:30)	and
Australia/Adelaide	(+10:30).	Also,	%Z	is	highly
dependent	on	the	operating	system.	For	example,	it
may	generate	a	non	ASCII	string	on	Japanese
Windows.	i.e.	the	result	can	be	different	to	“JST”.	So
the	numeric	time	zone	offset,	%z,	is	recommended.

Examples:

t	=	Time.new(2007,11,19,8,37,48,"-06:00")	#=>	2007-11-19	08:37:48	-0600

t.strftime("Printed	on	%m/%d/%Y")			#=>	"Printed	on	11/19/2007"

t.strftime("at	%I:%M%p")												#=>	"at	08:37AM"

Various	ISO	8601	formats:

%Y%m%d											=>	20071119																		Calendar	date	(basic)

%F															=>	2007-11-19																Calendar	date	(extended)

%Y-%m												=>	2007-11																			Calendar	date,	reduced	accuracy,	specific	month

%Y															=>	2007																						Calendar	date,	reduced	accuracy,	specific	year

%C															=>	20																								Calendar	date,	reduced	accuracy,	specific	century

%Y%j													=>	2007323																			Ordinal	date	(basic)

%Y-%j												=>	2007-323																		Ordinal	date	(extended)

%GW%V%u										=>	2007W471																		Week	date	(basic)

%G-W%V-%u								=>	2007-W47-1																Week	date	(extended)

%GW%V												=>	2007W47																			Week	date,	reduced	accuracy,	specific	week	(basic)

%G-W%V											=>	2007-W47																		Week	date,	reduced	accuracy,	specific	week	(extended)

%H%M%S											=>	083748																				Local	time	(basic)

%T															=>	08:37:48																		Local	time	(extended)

%H%M													=>	0837																						Local	time,	reduced	accuracy,	specific	minute	(basic)

%H:%M												=>	08:37																					Local	time,	reduced	accuracy,	specific	minute	(extended)

%H															=>	08																								Local	time,	reduced	accuracy,	specific	hour

%H%M%S,%L								=>	083748,000																Local	time	with	decimal	fraction,	comma	as	decimal	sign	(basic)

%T,%L												=>	08:37:48,000														Local	time	with	decimal	fraction,	comma	as	decimal	sign	(extended)

%H%M%S.%L								=>	083748.000																Local	time	with	decimal	fraction,	full	stop	as	decimal	sign	(basic)

%T.%L												=>	08:37:48.000														Local	time	with	decimal	fraction,	full	stop	as	decimal	sign	(extended)

%H%M%S%z									=>	083748-0600															Local	time	and	the	difference	from	UTC	(basic)

%T%:z												=>	08:37:48-06:00												Local	time	and	the	difference	from	UTC	(extended)

%Y%m%dT%H%M%S%z		=>	20071119T083748-0600						Date	and	time	of	day	for	calendar	date	(basic)

%FT%T%:z									=>	2007-11-19T08:37:48-06:00	Date	and	time	of	day	for	calendar	date	(extended)

%Y%jT%H%M%S%z				=>	2007323T083748-0600							Date	and	time	of	day	for	ordinal	date	(basic)

%Y-%jT%T%:z						=>	2007-323T08:37:48-06:00			Date	and	time	of	day	for	ordinal	date	(extended)

%GW%V%uT%H%M%S%z	=>	2007W471T083748-0600						Date	and	time	of	day	for	week	date	(basic)

%G-W%V-%uT%T%:z		=>	2007-W47-1T08:37:48-06:00	Date	and	time	of	day	for	week	date	(extended)

%Y%m%dT%H%M						=>	20071119T0837													Calendar	date	and	local	time	(basic)

%FT%R												=>	2007-11-19T08:37										Calendar	date	and	local	time	(extended)

%Y%jT%H%MZ							=>	2007323T0837Z													Ordinal	date	and	UTC	of	day	(basic)

%Y-%jT%RZ								=>	2007-323T08:37Z											Ordinal	date	and	UTC	of	day	(extended)

%GW%V%uT%H%M%z			=>	2007W471T0837-0600								Week	date	and	local	time	and	difference	from	UTC	(basic)

%G-W%V-%uT%R%:z		=>	2007-W47-1T08:37-06:00				Week	date	and	local	time	and	difference	from	UTC	(extended)

Returns	the	fraction	for	time.

The	return	value	can	be	a	rational	number.

t	=	Time.now								#=>	2009-03-26	22:33:12	+0900

"%10.9f"	%	t.to_f			#=>	"1238074392.940563917"

t.subsec												#=>	(94056401/100000000)

The	lowest	digits	of	to_f	and	subsec	are	different
because	IEEE	754	double	is	not	accurate	enough	to
represent	the	rational	number.

The	more	accurate	value	is	returned	by	subsec.

subsec	→	number

Returns	a	new	Time	object,	one	second	later	than
time.	#succ	is	obsolete	since	1.9.2	for	time	is	not	a
discrete	value.

t	=	Time.now							#=>	2007-11-19	08:23:57	-0600

t.succ													#=>	2007-11-19	08:23:58	-0600

Use	instead	time	+	1

t	+	1														#=>	2007-11-19	08:23:58	-0600

Returns	true	if	time	represents	Sunday.

t	=	Time.local(1990,	4,	1)							#=>	1990-04-01	00:00:00	-0600

t.sunday?																								#=>	true

Returns	true	if	time	represents	Thursday.

t	=	Time.local(1995,	12,	21)					#=>	1995-12-21	00:00:00	-0600

p	t.thursday?																				#=>	true

Returns	a	ten-element	array	of	values	for	time:

[sec,	min,	hour,	day,	month,	year,	wday,	yday,	isdst,	zone]

See	the	individual	methods	for	an	explanation	of	the
valid	ranges	of	each	value.	The	ten	elements	can	be
passed	directly	to	::utc	or	::local	to	create	a	new	Time

succ	→	new_time

sunday?	→	true	or	false

thursday?	→	true	or	false

to_a	→	array

object.

t	=	Time.now					#=>	2007-11-19	08:36:01	-0600

now	=	t.to_a					#=>	[1,	36,	8,	19,	11,	2007,	1,	323,	false,	"CST"]

Returns	the	value	of	time	as	a	floating	point	number
of	seconds	since	the	Epoch.

t	=	Time.now

"%10.5f"	%	t.to_f			#=>	"1270968744.77658"

t.to_i														#=>	1270968744

Note	that	IEEE	754	double	is	not	accurate	enough	to
represent	the	number	of	nanoseconds	since	the
Epoch.

Returns	the	value	of	time	as	an	integer	number	of
seconds	since	the	Epoch.

t	=	Time.now

"%10.5f"	%	t.to_f			#=>	"1270968656.89607"

t.to_i														#=>	1270968656

Returns	the	value	of	time	as	a	rational	number	of
seconds	since	the	Epoch.

t	=	Time.now

p	t.to_r												#=>	(1270968792716287611/1000000000)

This	methods	is	intended	to	be	used	to	get	an
accurate	value	representing	the	nanoseconds	since
the	Epoch.	You	can	use	this	method	to	convert	time

to_f	→	float

to_i	→	int
tv_sec	→	int

to_r	→	a_rational

to	another	Epoch.

Returns	a	string	representing	time.	Equivalent	to
calling	strftime	with	the	appropriate	format	string.

t	=	Time.now

t.to_s																														=>	"2012-11-10	18:16:12	+0100"

t.strftime	"%Y-%m-%d	%H:%M:%S	%z"			=>	"2012-11-10	18:16:12	+0100"

t.utc.to_s																										=>	"2012-11-10	17:16:12	UTC"

t.strftime	"%Y-%m-%d	%H:%M:%S	UTC"		=>	"2012-11-10	17:16:12	UTC"

Returns	true	if	time	represents	Tuesday.

t	=	Time.local(1991,	2,	19)						#=>	1991-02-19	00:00:00	-0600

p	t.tuesday?																					#=>	true

Returns	the	number	of	nanoseconds	for	time.

t	=	Time.now								#=>	2007-11-17	15:18:03	+0900

"%10.9f"	%	t.to_f			#=>	"1195280283.536151409"

t.nsec														#=>	536151406

The	lowest	digits	of	to_f	and	nsec	are	different
because	IEEE	754	double	is	not	accurate	enough	to
represent	the	exact	number	of	nanoseconds	since
the	Epoch.

The	more	accurate	value	is	returned	by	nsec.

inspect	→	string
to_s	→	string

tuesday?	→	true	or	false

nsec	→	int
tv_nsec	→	int

Returns	the	value	of	time	as	an	integer	number	of
seconds	since	the	Epoch.

t	=	Time.now

"%10.5f"	%	t.to_f			#=>	"1270968656.89607"

t.to_i														#=>	1270968656

Returns	the	number	of	microseconds	for	time.

t	=	Time.now								#=>	2007-11-19	08:03:26	-0600

"%10.6f"	%	t.to_f			#=>	"1195481006.775195"

t.usec														#=>	775195

Returns	the	number	of	microseconds	for	time.

t	=	Time.now								#=>	2007-11-19	08:03:26	-0600

"%10.6f"	%	t.to_f			#=>	"1195481006.775195"

t.usec														#=>	775195

Converts	time	to	UTC	(GMT),	modifying	the	receiver.

t	=	Time.now			#=>	2007-11-19	08:18:31	-0600

t.gmt?									#=>	false

t.gmtime							#=>	2007-11-19	14:18:31	UTC

t.gmt?									#=>	true

t	=	Time.now			#=>	2007-11-19	08:18:51	-0600

to_i	→	int
tv_sec	→	int

usec	→	int
tv_usec	→	int

usec	→	int
tv_usec	→	int

gmtime	→	time
utc	→	time

t.utc?									#=>	false

t.utc										#=>	2007-11-19	14:18:51	UTC

t.utc?									#=>	true

Returns	true	if	time	represents	a	time	in	UTC	(GMT).

t	=	Time.now																								#=>	2007-11-19	08:15:23	-0600

t.utc?																														#=>	false

t	=	Time.gm(2000,"jan",1,20,15,1)			#=>	2000-01-01	20:15:01	UTC

t.utc?																														#=>	true

t	=	Time.now																								#=>	2007-11-19	08:16:03	-0600

t.gmt?																														#=>	false

t	=	Time.gm(2000,1,1,20,15,1)							#=>	2000-01-01	20:15:01	UTC

t.gmt?																														#=>	true

Returns	the	offset	in	seconds	between	the	timezone
of	time	and	UTC.

t	=	Time.gm(2000,1,1,20,15,1)			#=>	2000-01-01	20:15:01	UTC

t.gmt_offset																				#=>	0

l	=	t.getlocal																		#=>	2000-01-01	14:15:01	-0600

l.gmt_offset																				#=>	-21600

Returns	an	integer	representing	the	day	of	the	week,
0..6,	with	Sunday	==	0.

t	=	Time.now			#=>	2007-11-20	02:35:35	-0600

t.wday									#=>	2

t.sunday?						#=>	false

utc?	→	true	or	false
gmt?	→	true	or	false

gmt_offset	→	fixnum
gmtoff	→	fixnum
utc_offset	→	fixnum

wday	→	fixnum

t.monday?						#=>	false

t.tuesday?					#=>	true

t.wednesday?			#=>	false

t.thursday?				#=>	false

t.friday?						#=>	false

t.saturday?				#=>	false

Returns	true	if	time	represents	Wednesday.

t	=	Time.local(1993,	2,	24)						#=>	1993-02-24	00:00:00	-0600

p	t.wednesday?																			#=>	true

Returns	an	integer	representing	the	day	of	the	year,
1..366.

t	=	Time.now			#=>	2007-11-19	08:32:31	-0600

t.yday									#=>	323

Returns	the	year	for	time	(including	the	century).

t	=	Time.now			#=>	2007-11-19	08:27:51	-0600

t.year									#=>	2007

Returns	the	name	of	the	time	zone	used	for	time.	As
of	Ruby	1.8,	returns	“UTC''	rather	than	“GMT''	for
UTC	times.

t	=	Time.gm(2000,	"jan",	1,	20,	15,	1)

t.zone			#=>	"UTC"

t	=	Time.local(2000,	"jan",	1,	20,	15,	1)

t.zone			#=>	"CST"

wednesday?	→	true	or	false

yday	→	fixnum

year	→	fixnum

zone	→	string

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	TracePoint
A	class	that	provides	the	functionality	of
Kernel#set_trace_func	in	a	nice	Object-Oriented
API.

Example

We	can	use	TracePoint	to	gather	information
specifically	for	exceptions:

trace	=	TracePoint.new(:raise)	do	|tp|

				p	[tp.lineno,	tp.event,	tp.raised_exception]

end

#=>	#<TracePoint:disabled>

trace.enable

#=>	false

0	/	0

#=>	[5,	:raise,	#<ZeroDivisionError:	divided	by	0>]

Events

If	you	don't	specify	the	type	of	events	you	want
to	listen	for,	TracePoint	will	include	all	available
events.

Note	do	not	depend	on	current	event	set,	as	this
list	is	subject	to	change.	Instead,	it	is
recommended	you	specify	the	type	of	events
you	want	to	use.

To	filter	what	is	traced,	you	can	pass	any	of	the
following	as	events:

:line

execute	code	on	a	new	line

:class

start	a	class	or	module	definition

:end

finish	a	class	or	module	definition

:call

call	a	Ruby	method

:return

return	from	a	Ruby	method

:c_call

call	a	C-language	routine

:c_return

return	from	a	C-language	routine

:raise

raise	an	exception

:b_call

event	hook	at	block	entry

:b_return

event	hook	at	block	ending

:thread_begin

event	hook	at	thread	beginning

:thread_end

event	hook	at	thread	ending

In	Files
vm_trace.c

Parent
Object

Public	Class	Methods

Returns	a	new	TracePoint	object,	not	enabled	by
default.

Next,	in	order	to	activate	the	trace,	you	must	use
#enable

trace	=	TracePoint.new(:call)	do	|tp|

				p	[tp.lineno,	tp.defined_class,	tp.method_id,	tp.event

end

#=>	#<TracePoint:disabled>

trace.enable

#=>	false

puts	"Hello,	TracePoint!"

#	...

#	[48,	IRB::Notifier::AbstractNotifier,	:printf,	:call]

#	...

When	you	want	to	deactivate	the	trace,	you	must	use
#disable

trace.disable

See	Events	at	TracePoint	for	possible	events	and
more	information.

A	block	must	be	given,	otherwise	a	ThreadError	is
raised.

If	the	trace	method	isn't	included	in	the	given	events
filter,	a	RuntimeError	is	raised.

TracePoint.trace(:line)	do	|tp|

				p	tp.raised_exception

end

#=>	RuntimeError:	'raised_exception'	not	supported	by	this	event

If	the	trace	method	is	called	outside	block,	a
RuntimeError	is	raised.

new(*events)	{	|obj|	block	}	→	obj

TracePoint.trace(:line)	do	|tp|

		$tp	=	tp

end

$tp.line	#=>	access	from	outside	(RuntimeError)

Access	from	other	threads	is	also	forbidden.

Returns	internal	information	of	TracePoint.

The	contents	of	the	returned	value	are
implementation	specific.	It	may	be	changed	in	future.

This	method	is	only	for	debugging	TracePoint	itself.

A	convenience	method	for	::new,	that	activates	the
trace	automatically.

trace	=	TracePoint.trace(:call)	{	|tp|	[tp.lineno,	tp.

#=>	#<TracePoint:enabled>

trace.enabled?	#=>	true

Public	Instance	Methods

Return	the	generated	binding	object	from	event

Return	class	or	module	of	the	method	being	called.

class	C;	def	foo;	end;	end

trace	=	TracePoint.new(:call)	do	|tp|

		p	tp.defined_class	#=>	C

stat	→	obj

trace(*events)	{	|obj|	block	}	→	obj

binding()

defined_class()

end.enable	do

		C.new.foo

end

If	method	is	defined	by	a	module,	then	that	module	is
returned.

module	M;	def	foo;	end;	end

class	C;	include	M;	end;

trace	=	TracePoint.new(:call)	do	|tp|

		p	tp.defined_class	#=>	M

end.enable	do

		C.new.foo

end

Note:	defined_class	returns	singleton	class.
6th	block	parameter	of	Kernel#set_trace_func	passes
original	class	of	attached	by	singleton	class.

This	is	a	difference	between
Kernel#set_trace_func	and	TracePoint.

class	C;	def	self.foo;	end;	end

trace	=	TracePoint.new(:call)	do	|tp|

		p	tp.defined_class	#=>	#<Class:C>

end.enable	do

		C.foo

end

Deactivates	the	trace

Return	true	if	trace	was	enabled.	Return	false	if	trace
was	disabled.

trace.enabled?							#=>	true

trace.disable								#=>	false	(previous	status)

trace.enabled?							#=>	false

trace.disable								#=>	false

disable	→	true	or	false
disable	{	block	}	→	obj

If	a	block	is	given,	the	trace	will	only	be	disable	within
the	scope	of	the	block.

trace.enabled?

#=>	true

trace.disable	do

				trace.enabled?

				#	only	disabled	for	this	block

end

trace.enabled?

#=>	true

Note:	You	cannot	access	event	hooks	within	the
block.

trace.disable	{	p	tp.lineno	}

#=>	RuntimeError:	access	from	outside

Activates	the	trace

Return	true	if	trace	was	enabled.	Return	false	if	trace
was	disabled.

trace.enabled?		#=>	false

trace.enable				#=>	false	(previous	state)

																#			trace	is	enabled

trace.enabled?		#=>	true

trace.enable				#=>	true	(previous	state)

																#			trace	is	still	enabled

If	a	block	is	given,	the	trace	will	only	be	enabled
within	the	scope	of	the	block.

trace.enabled?

#=>	false

trace.enable	do

				trace.enabled?

				#	only	enabled	for	this	block

enable	→	true	or	false
enable	{	block	}	→	obj

end

trace.enabled?

#=>	false

Note:	You	cannot	access	event	hooks	within	the
block.

trace.enable	{	p	tp.lineno	}

#=>	RuntimeError:	access	from	outside

The	current	status	of	the	trace

Type	of	event

See	Events	at	TracePoint	for	more	information.

Return	a	string	containing	a	human-readable
TracePoint	status.

Line	number	of	the	event

Return	the	name	of	the	method	being	called

Path	of	the	file	being	run

enabled?	→	true	or	false

event()

inspect	→	string

lineno()

method_id()

path()

raised_exception()

Value	from	exception	raised	on	the	:raise	event

Return	value	from	:return,	c_return,	and	b_return
event

Return	the	trace	object	during	event

Same	as	#binding:

trace.binding.eval('self')

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

return_value()

self()

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	TrueClass
The	global	value	true	is	the	only	instance	of
class	TrueClass	and	represents	a	logically	true
value	in	boolean	expressions.	The	class
provides	operators	allowing	true	to	be	used	in
logical	expressions.

In	Files
object.c

Parent
Object

Public	Instance	Methods

And—Returns	false	if	obj	is	nil	or	false,	true
otherwise.

Exclusive	Or—Returns	true	if	obj	is	nil	or	false,
false	otherwise.

Alias	for:	to_s

true	&	obj	→	true	or	false

true	^	obj	→	!obj

inspect()

The	string	representation	of	true	is	“true”.

Also	aliased	as:	inspect

Or—Returns	true.	As	obj	is	an	argument	to	a	method
call,	it	is	always	evaluated;	there	is	no	short-circuit
evaluation	in	this	case.

true	|		puts("or")

true	||	puts("logical	or")

produces:

or

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

to_s	→	"true"

true	|	obj	→	true

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	TypeError
Raised	when	encountering	an	object	that	is	not
of	the	expected	type.

[1,	2,	3].first("two")

raises	the	exception:

TypeError:	no	implicit	conversion	of	String	into	Integer

In	Files
error.c

Parent
StandardError

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	UnboundMethod
Ruby	supports	two	forms	of	objectified	methods.
Class	Method	is	used	to	represent	methods	that
are	associated	with	a	particular	object:	these
method	objects	are	bound	to	that	object.	Bound
method	objects	for	an	object	can	be	created
using	Object#method.

Ruby	also	supports	unbound	methods;	methods
objects	that	are	not	associated	with	a	particular
object.	These	can	be	created	either	by	calling
Module#instance_method	or	by	calling	unbind	on	a
bound	method	object.	The	result	of	both	of	these
is	an	UnboundMethod	object.

Unbound	methods	can	only	be	called	after	they
are	bound	to	an	object.	That	object	must	be	be	a
kind_of?	the	method's	original	class.

class	Square

		def	area

				@side	*	@side

		end

		def	initialize(side)

				@side	=	side

		end

end

area_un	=	Square.instance_method(:area)

s	=	Square.new(12)

area	=	area_un.bind(s)

area.call			#=>	144

Unbound	methods	are	a	reference	to	the	method
at	the	time	it	was	objectified:	subsequent
changes	to	the	underlying	class	will	not	affect
the	unbound	method.

class	Test

		def	test

				:original

		end

end

um	=	Test.instance_method(:test)

class	Test

		def	test

				:modified

		end

end

t	=	Test.new

t.test												#=>	:modified

um.bind(t).call			#=>	:original

In	Files
proc.c

Parent
Object

Public	Instance	Methods

Two	method	objects	are	equal	if	they	are	bound	to

eql?(other_meth)	→	true	or	false
meth	==	other_meth	→	true	or	false

the	same	object	and	refer	to	the	same	method
definition	and	their	owners	are	the	same	class	or
module.

Returns	an	indication	of	the	number	of	arguments
accepted	by	a	method.	Returns	a	nonnegative
integer	for	methods	that	take	a	fixed	number	of
arguments.	For	Ruby	methods	that	take	a	variable
number	of	arguments,	returns	-n-1,	where	n	is	the
number	of	required	arguments.	For	methods	written
in	C,	returns	-1	if	the	call	takes	a	variable	number	of
arguments.

class	C

		def	one;				end

		def	two(a);	end

		def	three(*a);		end

		def	four(a,	b);	end

		def	five(a,	b,	*c);				end

		def	six(a,	b,	*c,	&d);	end

end

c	=	C.new

c.method(:one).arity					#=>	0

c.method(:two).arity					#=>	1

c.method(:three).arity			#=>	-1

c.method(:four).arity				#=>	2

c.method(:five).arity				#=>	-3

c.method(:six).arity					#=>	-3

"cat".method(:size).arity						#=>	0

"cat".method(:replace).arity			#=>	1

"cat".method(:squeeze).arity			#=>	-1

"cat".method(:count).arity					#=>	-1

Bind	umeth	to	obj.	If	Klass	was	the	class	from	which
umeth	was	obtained,	obj.kind_of?(Klass)	must	be
true.

arity	→	fixnum

bind(obj)	→	method

class	A

		def	test

				puts	"In	test,	class	=	#{self.class}"

		end

end

class	B	<	A

end

class	C	<	B

end

um	=	B.instance_method(:test)

bm	=	um.bind(C.new)

bm.call

bm	=	um.bind(B.new)

bm.call

bm	=	um.bind(A.new)

bm.call

produces:

In	test,	class	=	C

In	test,	class	=	B

prog.rb:16:in	%xbind':	bind	argument	must	be	an	instance	of	B	(TypeError)

	from	prog.rb:16

Returns	a	clone	of	this	method.

class	A

		def	foo

				return	"bar"

		end

end

m	=	A.new.method(:foo)

m.call	#	=>	"bar"

n	=	m.clone.call	#	=>	"bar"

Two	method	objects	are	equal	if	they	are	bound	to

clone	→	new_method

eql?(other_meth)	→	true	or	false
meth	==	other_meth	→	true	or	false

the	same	object	and	refer	to	the	same	method
definition	and	their	owners	are	the	same	class	or
module.

Returns	a	hash	value	corresponding	to	the	method
object.

See	also	Object#hash.

Returns	the	name	of	the	underlying	method.

"cat".method(:count).inspect			#=>	"#<Method:	String#count>"

Returns	the	name	of	the	method.

Returns	the	original	name	of	the	method.

Returns	the	class	or	module	that	defines	the	method.

Returns	the	parameter	information	of	this	method.

Returns	the	Ruby	source	filename	and	line	number
containing	this	method	or	nil	if	this	method	was	not

hash	→	integer

to_s	→	string
inspect	→	string

name	→	symbol

original_name	→	symbol

owner	→	class_or_module

parameters	→	array

source_location	→	[String,	Fixnum]

defined	in	Ruby	(i.e.	native)

Returns	a	Method	of	superclass,	which	would	be
called	when	super	is	used.

Returns	the	name	of	the	underlying	method.

"cat".method(:count).inspect			#=>	"#<Method:	String#count>"

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

super_method()

to_s	→	string
inspect	→	string

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	UncaughtThrowError
Raised	when	throw	is	called	with	a	tag	which
does	not	have	corresponding	catch	block.

throw	"foo",	"bar"

raises	the	exception:

UncaughtThrowError:	uncaught	throw	"foo"

In	Files
vm_eval.c

Parent
ArgError

Public	Class	Methods

Document-class:	UncaughtThrowError

Raised	when	throw	is	called	with	a	tag	which	does
not	have	corresponding	catch	block.

throw	"foo",	"bar"

raises	the	exception:

new(*args)

UncaughtThrowError:	uncaught	throw	"foo"

Public	Instance	Methods

Return	the	tag	object	which	was	called	for.

Returns	formatted	message	with	the	inspected	tag.

Return	the	return	value	which	was	called	for.

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

tag	→	obj

to_s	→	string

value	→	obj

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	ZeroDivisionError
Raised	when	attempting	to	divide	an	integer	by
0.

42	/	0

#=>	ZeroDivisionError:	divided	by	0

Note	that	only	division	by	an	exact	0	will	raise
the	exception:

42	/		0.0	#=>	Float::INFINITY

42	/	-0.0	#=>	-Float::INFINITY

0		/		0.0	#=>	NaN

In	Files
numeric.c

Parent
StandardError

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

class	fatal
fatal	is	an	Exception	that	is	raised	when	ruby
has	encountered	a	fatal	error	and	must	exit.	You
are	not	able	to	rescue	fatal.

In	Files
error.c

Parent
Exception

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

Ruby	2.2.4	Core	API	Reference
API	Reference
This	is	the	API	documentation	for	'Ruby	2.2.4	Core	API
Reference	API	Reference'.

Generated	by	RDoc	3.12.2.
Generated	with	the	Darkfish	Rdoc	Generator	3.

https://github.com/rdoc/rdoc
http://deveiate.org/projects/Darkfish-Rdoc/

	Classes/Modules
	ArgumentError
	Array
	BasicObject
	Bignum
	Binding
	Class
	Comparable
	Complex
	Complex::compatible
	Continuation
	Data
	Dir
	ENV
	EOFError
	Encoding
	Encoding::CompatibilityError
	Encoding::Converter
	Encoding::ConverterNotFoundError
	Encoding::InvalidByteSequenceError
	Encoding::UndefinedConversionError
	EncodingError
	Enumerable
	Enumerator
	Enumerator::Generator
	Enumerator::Lazy
	Enumerator::Yielder
	Errno
	Exception
	FalseClass
	Fiber
	FiberError
	File
	File::Constants
	File::Stat
	FileTest
	Fixnum
	Float
	FloatDomainError
	GC
	GC::Profiler
	Hash
	IO
	IO::EAGAINWaitReadable
	IO::EAGAINWaitWritable
	IO::EINPROGRESSWaitReadable
	IO::EINPROGRESSWaitWritable
	IO::EWOULDBLOCKWaitReadable
	IO::EWOULDBLOCKWaitWritable
	IO::WaitReadable
	IO::WaitWritable
	IOError
	IndexError
	Integer
	Interrupt
	Kernel
	KeyError
	LoadError
	LocalJumpError
	Marshal
	MatchData
	Math
	Math::DomainError
	Method
	Module
	Mutex
	NameError
	NilClass
	NoMemoryError
	NoMethodError
	NotImplementedError
	Numeric
	Object
	ObjectSpace
	ObjectSpace::WeakMap
	Proc
	Process
	Process::GID
	Process::Status
	Process::Sys
	Process::UID
	Process::Waiter
	Random
	Range
	RangeError
	Rational
	Rational::compatible
	Regexp
	RegexpError
	Ripper
	RubyVM
	RubyVM::Env
	RubyVM::InstructionSequence
	RuntimeError
	ScriptError
	SecurityError
	Signal
	SignalException
	StandardError
	StopIteration
	String
	Struct
	Symbol
	SyntaxError
	SystemCallError
	SystemExit
	SystemStackError
	Thread
	ThreadError
	ThreadGroup
	Time
	TracePoint
	TrueClass
	TypeError
	UnboundMethod
	UncaughtThrowError
	ZeroDivisionError
	fatal

	Files

