
RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

Acknowledgement	and	About

Acknowledgments
Thanks	go	to:

Dimitri	van	Heesch,author	of	Doxygen.
Adam	Dunkels,author	of	protothreads	library	and	Contiki	OS	kernel.
NiuYuQing	for	logo	and	suggestions.
My	family	for	supporting	and	encourage.
Haroopad,a	well-done	markdown	tool.
Enya	for	great	voice	to	listen	to	while	coding.

About
What	is	this	manual	for

This	manual	is	used	as	a	reference	to	RainbowBS(RBS)	which	is	an
open-source	base	library	developed	for	embedded	systems	especially
with	limit	resources.

How	to	get	source	package
RBS	has	been	committed	to	GitHub.So	you	can	get	the	newest	source
package	from	https://github.com/jacobqwq/RainbowBS/

https://github.com/jacobqwq/RainbowBS/

Future	work
This	v0.1.0	is	the	first	distributed	RBS	version.

Although	RBS	can	be	used	independently,it	will	also	become	a	basic	part
of	RainbowSys	according	to	the	plan.

The	goal	of	RainbowSys	is	to	build	an	open-source	flexible	and
configurable	system	software	written	by	C	language	for	embedded
systems	,especially	like	low	cost	micro-controllers	which	have	limit
resources.RainbowSys	will	consist	of	CMSIS-compatible	RTOS,file
system,	GUI,comunication	stack,etc....

So	RBS	is	the	first	distributed	component	of	RainbowSys	and	will	offer
common	support	for	the	other	components	of	RainbowSys.

The	next	distributed	component	of	RainbowSys	will	be	the	GUI
component	named	RainbowGX(RGX),which	is	now	being	improved
continuously	together	with	RBS.And	you	will	see	RGX	soon.:)

RGX	Desk	Level	Demonstration

Author
Designed	by	QWQ	coming	from	Qingdao,Shandong	Prov,China.

Email:	jacobqwq@icloud.com

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

Table	of	Contents

What	is	RainbowBS
RainbowBS	Features
Requirements
Licence
Conventions

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

Chapter1	Introduction

What	is	RainbowBS
RainbowBS(RBS)	is	an	open-source	base	library	developed	for
embedded	systems	especially	with	limit	resources.

RBS	is	written	by	C	language	in	compliance	with	the	ISO/IEC	9899:1999
standard	and	it	is	set-up	to	be	highly	portable.Therefore	it	is	independent
of	hardware	architecture	and	can	be	incorporated	into	low	cost	micro-
controllers	like	8051,AVR,PIC,ARM	and	etc...,just	with	small	porting
code.

This	document	shows	you	how	to	configure	and	use	RBS.

Following	diagram	shows	the	RBS	position	in	the	entire	software
architecture:

RBS	in	Application

Following	diagram	shows	the	RBS	architecture:

RBS	Architecture

RainbowBS	Features
Hardware	Features

Any	8/16/32	bits	CPU	can	use	it.
One	timer	and	very	little	flash	and	RAM	needed.

Software	Features
Portable:RBS	is	written	by	C	language,so	it	is	portable	on	any
C	compiler	compatible	with	the	C99	standard.
Configurable:RBS	has	base	components	and	optional
advanced	components	listed	below.

Basic
Type

Basic
Macros

System/CPU
Info.

Memory
Operation

Conversion
related

base base base base base

Debug Dynamic	Memory
Management

Protothread
Process	Model

OS
support

optional optional optional optional

OS	Independence:RBS	can	run	with	or	without	OS	support.It	offers
thread-safety	feature	for	OS.
PC	Tools:RAutoConfig	for	generating	configurable	file	by	UI.

Requirements
1.	 Only	CPU,timer,RAM	and	flash	are	necessary	in	the	target	system.
2.	 The	C	compiler	compatible	with	the	ISO/IEC	9899:1999

standard(C99).

Licence
RainbowBS	is	an	open-source	base	library	for	embedded	systems.	This
is	a	free	software	and	opened	for	education,research	and	commercial
developments	under	license	policy	of	following	terms.

Copyright	©	2015-2016	QWQ(jacobqwq@icloud.com).	All	rights
reserved.

Redistribution	and	use	in	source	and	binary	forms,	with	or	without
modification,	are	permitted	provided	that	the	following	conditions
are	met:

Redistributions	of	source	code	must	retain	the	above
copyright	notice,	this	list	of	conditions	and	the	following
disclaimer.
Redistributions	in	binary	form	must	reproduce	the	above
copyright	notice,	this	list	of	conditions	and	the	following
disclaimer	in	the	documentation	and/or	other	materials
provided	with	the	distribution.
The	name	of	the	author	may	not	be	used	to	endorse	or
promote	products	derived	from	this	software	without	specific
prior	written	permission.

THIS	SOFTWARE	IS	PROVIDED	BY	THE	COPYRIGHT
HOLDERS	AND	CONTRIBUTORS	"AS	IS"	AND	ANY	EXPRESS
OR	IMPLIED	WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED
TO,	THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND
FITNESS	FOR	A	PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN
NO	EVENT	SHALL	COPYRIGHT	HOLDERS	AND
CONTRIBUTORS	BE	LIABLE	FOR	ANY	DIRECT,	INDIRECT,
INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL
DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,
PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;
LOSS	OF	USE,	DATA,	OR	PROFITS;	OR	BUSINESS
INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY	THEORY
OF	LIABILITY,	WHETHER	IN	CONTRACT,	STRICT	LIABILITY,	OR
TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING
IN	ANY	WAY	OUT	OF	THE	USE	OF	THIS	SOFTWARE,	EVEN	IF

ADVISED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

Conventions
Following	conventions	are	used	in	this	document

text	used	for	normal	text
item	used	for	item
emphasize	bold	font	used	to	emphasize
printf()	used	for	code	quotes

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

Table	of	Contents

How	to	port	basic
components

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

Chapter2	Basic	Components

Basic	components	consist	of
type,macros,system/CPU
information,memory	operation	and	digit
conversion.

Type	defination	refers	to	basic	types

Macros	refers	to	basic	macros

System	related	refers	to	system	releted

CPU	related	refers	to	CPU	information

Memory	operation	related	refers	to	memory	operation

Digit	conversion	refers	to	conversion	releted

How	to	port	basic	components
System/CPU	information	need	some	macros	defined	in	file
RainbowBSConf.h.

RBS_CFG_SYS_INFO	indicates	a	string	which	RBS_GetSysInfo()	returns.

RBS_CFG_TICK_RATE	indicates	the	timer	tick	per	second.

RBS_CFG_CPU_WORD_SIZE	indicates	size	which	RBS_GetCPUBits()	returns.

RBS_CFG_CPU_BYTE_ORDER_L	is	defined	to	0	or	1	which
RBS_IsCPULittleEndian()	uses.

RBS_CFG_CPU_STACK_DOWN	is	defined	to	0	or	1	which
RBS_IsStackGrowDown()	uses.

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

Table	of	Contents

Application	Model
Introduction
Application	Model
Supported	by	RBS
Protothread	Process
Local	variables
Scheduling
Implementation

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

Chapter3	Application	Model

Application	Model	Introduction
From	the	view	of	application	developers	for	an	embedded	system,there
are	mainly	two	ways	to	construct	program	for	an	application.

Event-Driven	application	model

This	model	is	very	suitable	for	simple	applications.Two	methods	are
used,polling	or	interrupt	driven.

For	polling	method,the	processor	can	wait	for	data	ready	to	process
it,and	wait	again.	The	polling	method	works	well	for	very	simple
applications,	but	it	has	several	disadvantages.	For	example,	when
the	application	gets	more	complex,	the	polling	loop	design	might	get
very	difficult	to	maintain.	Also,	it	is	difficult	to	define	priorities
between	different	services	using	polling	and	you	might	end	up	with
poor	responsiveness,	where	a	peripheral	requesting	service	might
need	to	wait	a	long	time	while	the	processor	is	handling	less
important	tasks.And	lots	of	energy	is	wasted	during	the	polling	when
service	is	not	required.

polling	method

For	interrupt	driven	method,almost	all	micro-controllers	have	some
sort	of	sleep	mode	support	to	reduce	power,	in	which	the	peripheral
can	wake	up	the	processor	when	it	requires	a	service.Interrupts	from
different	peripherals	can	be	assigned	with	different	interrupt	priority
levels	so	that	this	allows	much	better	responsiveness..

interrupt	driven	method

In	some	cases,	the	processing	of	data	from	peripheral	services	can
be	partitioned	into	two	parts:	the	first	part	needs	to	be	done	quickly,
and	the	second	part	can	be	carried	out	a	little	bit	later.	In	such
situations	we	can	use	a	mixture	of	interrupt-driven	and	polling
methods	to	construct	the	program.	When	a	peripheral	requires
service,	it	triggers	an	interrupt	request	as	in	an	interrupt-driven
application.	Once	the	first	part	of	the	interrupt	service	is	carried	out,	it
updates	some	software	variables	so	that	the	second	part	of	the
service	can	be	executed	in	the	polling-based	application	code.

mixed	polling	and	interrupt	driven	method

Using	this	arrangement,	we	can	reduce	the	duration	of	high-priority
interrupt	handlers	so	that	lower	priority	interrupt	services	can	get
served	quicker.	At	the	same	time,	the	processor	can	still	enter	sleep
mode	to	save	power	when	no	servicing	is	needed.

Multi-Threaded	application	model

When	the	applications	get	more	complex,	a	polling	and	interrupt-
driven	program	structure	might	not	be	able	to	handle	the	processing
requirements.	For	example,	some	tasks	that	can	take	a	long	time	to
execute	might	need	to	be	processed	concurrently.	This	can	be	done
by	dividing	the	processor’s	time	into	a	number	of	time	slots	and
allocating	the	time	slots	to	these	tasks.	While	it	is	technically
possible	to	create	such	an	arrangement	by	manually	partitioning	the

tasks	and	building	a	simple	scheduler	to	handle	this,	it	is	often
impractical	to	do	this	in	real	projects	as	it	is	time	consuming	and	can
make	the	program	much	harder	to	maintain	and	debug.

In	these	applications,	a	Real-Time	Operating	System(RTOS)	can	be
used	to	handle	the	task	scheduling	(Figure	2.11).	An	RTOS	allows
multiple	processes	to	be	executed	concurrently,	by	dividing	the
processor’s	time	into	time	slots	and	allocating	the	time	slots	to	the
processes	that	require	services.	A	timer	is	need	to	handle	the
timekeeping	for	the	RTOS,	and	at	the	end	of	each	time	slot,	the	timer
generates	a	timer	interrupt,	which	triggers	the	task	scheduler	and
decides	if	context	switching	should	be	carried	out.	If	yes,	the	current
executing	process	is	suspended	and	the	processor	executes	another
process.

multi-thresded	method

Application	Model	Supported	by
RBS
There	are	three	optional	application	model	to	write	your	application	code
based	on	RBS.

Normal	Model

This	is	an	event-driven	system	model	so	that	an	endless	loop	is
needed	in	main().

OS	Model

This	is	a	multi-threaded	system	model	so	that	an	OS	kernel	is
needed.

Prptothread	Process	Model

This	is	an	event-driven	system	with	multi-threaded	liked	blocking
property.

Protothreads	are	a	extremely	lightweight,	stackless	type	of	threads
that	provides	a	blocking	context	on	top	of	an	event-driven	system,
without	the	overhead	of	per-thread	stacks.	The	purpose	of
protothreads	is	to	implement	sequential	flow	of	control	without
complex	state	machines	or	full	multi-threading.	Protothreads
provides	conditional	blocking	inside	C	functions.

The	advantage	of	protothreads	over	a	purely	event-driven	approach
is	that	protothreads	provides	a	sequential	code	structure	that	allows
for	blocking	functions.	In	purely	event-driven	systems,	blocking	must
be	implemented	by	manually	breaking	the	function	into	two	pieces	-
one	for	the	piece	of	code	before	the	blocking	call	and	one	for	the
code	after	the	blocking	call.	This	makes	it	hard	to	use	control
structures	such	as	if()	conditionals	and	while()	loops.

The	advantage	of	protothreads	over	ordinary	threads	is	that	a
protothread	do	not	require	a	separate	stack.	In	memory	constrained

systems,	the	overhead	of	allocating	multiple	stacks	can	consume
large	amounts	of	the	available	memory.	In	contrast,	each	protothread
only	requires	between	two	and	twelve	bytes	of	state,	depending	on
the	architecture.

Protothread	Process
The	protothreads	library	was	written	by	Adam	Dunkels	adam@sics.se
with	support	from	Oliver	Schmidt	ol.sc@web.de.

Protothreads	are	a	extremely	lightweight,	stackless	threads	that	provides
a	blocking	context	on	top	of	an	event-driven	system,	without	the
overhead	of	per-thread	stacks.	The	purpose	of	protothreads	is	to
implement	sequential	flow	of	control	without	using	complex	state
machines	or	full	multi-threading.	Protothreads	provides	conditional
blocking	inside	a	C	function.

In	memory	constrained	systems,	such	as	deeply	embedded	systems,
traditional	multi-threading	may	have	a	too	large	memory	overhead.	In
traditional	multi-threading,	each	thread	requires	its	own	stack,	that
typically	is	over-provisioned.	The	stacks	may	use	large	parts	of	the
available	memory.

The	main	advantage	of	protothreads	over	ordinary	threads	is	that
protothreads	are	very	lightweight:	a	protothread	does	not	require	its	own
stack.	Rather,	all	protothreads	run	on	the	same	stack	and	context
switching	is	done	by	stack	rewinding.	This	is	advantageous	in	memory
constrained	systems,	where	a	stack	for	a	thread	might	use	a	large	part	of
the	available	memory.	A	protothread	only	requires	only	two	bytes	of
memory	per	protothread.	Moreover,	protothreads	are	implemented	in
pure	C	and	do	not	require	any	machine-specific	assembler	code.

A	protothread	runs	within	a	single	C	function	and	cannot	span	over	other
functions.	A	protothread	may	call	normal	C	functions,	but	cannot	block
inside	a	called	function.	Blocking	inside	nested	function	calls	is	instead
made	by	spawning	a	separate	protothread	for	each	potentially	blocking
function.	The	advantage	of	this	approach	is	that	blocking	is	explicit:	the
programmer	knows	exactly	which	functions	that	block	that	which
functions	the	never	blocks.

Protothreads	are	similar	to	asymmetric	co-routines.	The	main	difference
is	that	co-routines	uses	a	separate	stack	for	each	co-routine,	whereas
protothreads	are	stackless.	The	most	similar	mechanism	to	protothreads
are	Python	generators.	These	are	also	stackless	constructs,	but	have	a

different	purpose.	Protothreads	provides	blocking	contexts	inside	a	C
function,	whereas	Python	generators	provide	multiple	exit	points	from	a
generator	function.

Detail	referances	to	protothread	process	protothread	process

Local	variables
Note

Because	protothreads	do	not	save	the	stack	context	across	a
blocking	call,	local	variables	are	not	preserved	when	the	protothread
blocks.	This	means	that	local	variables	should	be	used	with	utmost
care	-	if	in	doubt,	do	not	use	local	variables	inside	a	protothread!

Scheduling
A	protothread	is	driven	by	repeated	calls	to	the	function	in	which	the
protothread	is	running.	Each	time	the	function	is	called,	the	protothread
will	run	until	it	blocks	or	exits.	Thus	the	scheduling	of	protothreads	is
done	by	the	application	that	uses	protothreads.

Implementation
Protothreads	are	implemented	using	local	continuations.	A	local
continuation	represents	the	current	state	of	execution	at	a	particular
place	in	the	program,	but	does	not	provide	any	call	history	or	local
variables.	A	local	continuation	can	be	set	in	a	specific	function	to	capture
the	state	of	the	function.	After	a	local	continuation	has	been	set	can	be
resumed	in	order	to	restore	the	state	of	the	function	at	the	point	where
the	local	continuation	was	set.

Local	continuations	can	be	implemented	in	a	variety	of	ways:

by	using	machine	specific	assembler	code.
by	using	standard	C	constructs.
by	using	compiler	extensions.

The	first	way	works	by	saving	and	restoring	the	processor	state,	except
for	stack	pointers,	and	requires	between	16	and	32	bytes	of	memory	per
protothread.	The	exact	amount	of	memory	required	depends	on	the
architecture.

The	standard	C	implementation	requires	only	two	bytes	of	state	per
protothread	and	utilizes	the	C	switch()	statement	in	a	non-obvious	way
that	is	similar	to	Duff's	device.	This	implementation	does,	however,
impose	a	slight	restriction	to	the	code	that	uses	protothreads	in	that	the
code	cannot	use	switch()	statements	itself.

Certain	compilers	has	C	extensions	that	can	be	used	to	implement
protothreads.	GCC	supports	label	pointers	that	can	be	used	for	this
purpose.	With	this	implementation,	protothreads	require	4	bytes	of	RAM
per	protothread.

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

Table	of	Contents

DMM	Features
Memory	Block
Memory	Pool
Usage
Configuration

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

Chapter4	Dynamic	Memory	Managment

Dynamic	memory	management	is	an
optional	component	for	memory	usage.	It
offers	both	memory	block	and	memory
pool	mechanism.

DMM	Features
memory	block	offers	fixed	size	memory	management.
memory	pool	offers	variable	size	memory	management.
both	mechanisms	support	register,byte-alignment,usage	check	and
thread-safety.

Memory	Block
register	memory	block

Depending	on	the	RBS_CFG_APP_MODEL	configuration	whether	or	not
using	OS,one	of	two	register	interfaces	should	be	used	before	using
memory	block.

If	RBS_CFG_APP_MODEL	is	configurated	to	RBS_APP_OS,thread-safety
version	should	be	used.

hDMM	RBS_DMM_RegisterBlock(char	*pName,void	*pDM,USIZE
Size,USIZE	BlockSize,HMUTEX	hMutex)

If	RBS_CFG_APP_MODEL	is	configurated	to	others.

hDMM	RBS_DMM_RegisterBlock(char	*pName,void	*pDM,USIZE
Size,USIZE	BlockSize)

allocate	and	free	block

hBLOCK	RBS_DMM_AllocZeroBlock(hDMM	hDmm)

hBLOCK	RBS_DMM_AllocBlock(hDMM	hDmm)

BOOL	RBS_DMM_FreeBlock(hBLOCK	hBlock)

block	usage

void*	RBS_DMM_UseHBlock(hBLOCK	hBlock)

BOOL	RBS_DMM_UnuseHBlock(hBLOCK	hBlock)

Memory	Pool
register	memory	pool

Depending	on	the	RBS_CFG_APP_MODEL	configuration	whether	or	not
using	OS,one	of	two	register	interfaces	should	be	used	befor	using
memory	pool.

If	RBS_CFG_APP_MODEL	is	configurated	to	RBS_APP_OS,thread-safety
version	should	be	used.

hDMM	RBS_DMM_RegisterPool(char	*pName,void	*pDM,USIZE
Size,BOOL	bAntiFrag,U16	HCount,HMUTEX	hMutex)

If	RBS_CFG_APP_MODEL	is	configurated	to	others.

hDMM	RBS_DMM_RegisterPool(char	*pName,void	*pDM,USIZE
Size,BOOL	bAntiFrag,U16	HCount)

allocate	and	free	pool

hMEM	RBS_DMM_AllocZeroMem(hDMM	hDmm,USIZE	size)

hMEM	RBS_DMM_AllocMem(hDMM	hDmm,USIZE	size)

hMEM	RBS_DMM_ReallocMem(hMEM	hMem,USIZE	size)

BOOL	RBS_DMM_FreeMem(hMEM	hMem)

pool	usage

void*	RBS_DMM_UseHMem(hMEM	hMem)

BOOL	RBS_DMM_UnuseHMem(hMEM	hMem)

USIZE	RBS_DMM_GetHMemSize(hMEM	hMem)

Usage
In	an	embedded	system,there	are	some	memory	types	with	different	size
such	as	internal	SRAM	integrated	in	micro-controller,external
SDRAM,SRAM,etc...	and	those	memory	can	be	byte-addressed	in	the
same	address	space.Some	of	them	are	used	for	stacks,while	some	used
for	global	data	and	some	used	for	dynamic	memory	allocation.So	the
specific	usage	of	those	memory	are	decided	by	the	application.

Unlike	traditional	memory	management	like	malloc	in	C	library,DMM	can
manage	more	than	one	continuous	byte-addressed	memory	for	dynamic
memory	allocation	and	can	be	sensitive	to	memory	usage.

As	an	example,a	micro-controller	has	8K-bytes	size	internal	RAM	in	and
external	2M-bytes	SDRAM.You	want	to	use	2K-bytes	internal	RAM	and
1M-bytes	external	SDRAM	space	for	dynamic	memory	allocation.First	of
all,you	just	define	two	byte	array,one	for	the	2K	internal	RAM	and	the
other	for	the	1M-bytes	external	SDRAM,and	the	use	the	register	interface
to	define	the	two	memory	space.After	register,you	can	allocate	memory
from	them	by	the	DMM	handle	returned	from	register.

Allocated	memory	will	return	a	memory	handle	and	then	you	can	use	the
memory	handle	to	use,not	use	or	free	the	allocated	memory.

Using	RBS_DMM_UseHBlock()	or	RBS_DMM_UseHMem()	to	refer	to	the	allocated
memory	space.

Using	RBS_DMM_UnuseHBlock()	or	BS_DMM_UnuseHMem()	to	notify	the	DMM	to
end	the	last	memory	referance.

Using	RBS_DMM_FreeBlock()	or	RBS_DMM_FreeMem()	to	notify	the	DMM	to
release	the	memory.

RBS_DMM_UseHBloc()	and	BRS_DMM_UnuseHBlock()	are	used	in	pair,while
RBS_DMM_UseHMem()	and	RBS_DMM_UnuseHMem()	are	in	pair.The
reason	is	that	each	memory	handle	has	a	referance	counter	in
internal,and	the	counter	is	increased	by	1	per	usage	and	decrease	by	1
per	no	usage.So	if	the	counter	is	not	initial	value,it	will	not	be	released

successfully	by	RBS_DMM_FreeBlock()	or	RBS_DMM_FreeMem().This	is	called
usage	check.Developers	should	keep	in	mind	that	after	each	reference
to	the	allocated	memory	by	RBS_DMM_UseHBlock()	or	RBS_DMM_UseHMem(),an
RBS_DMM_UnuseHBlock()	or	RBS_DMM_UnuseHMem()	should	be	called	and	if	he
wants	to	refer	to	the	memory	again,then	RBS_DMM_UseHBlock()	or
BS_DMM_UseHMem()	should	be	called	again.With	usage	check,developers
will	find	memory	usage	conflicts	and	bugs	earlier.For	example,there	are
two	running	tasks	A	and	B	that	both	using	an	allocated	memory.If	task	A
is	using	the	memory	without	calling	RBS_DMM_UnuseHBlock()	or
RBS_DMM_UnuseHMem()	and	task	B	call	RBS_DMM_FreeBlock()	or
RBS_DMM_FreeMem(),then	an	error	information	will	be	printed	by	debug
component,telling	that	it	can	not	release	memory	handle	because	it	is
using.

Remember	that	usage	check	is	only	effective	if	RBS	debug	component	is
enabled,otherwise	usage	check	is	disabled.
Following	is	the	example	code	for	DMM	usage.

				1 	/*define	array*/

				2 	U8	aInternalRAM[2048]	

__attribute__((at(0x20000000)));//2K-bytes	

internal	RAM	starting	from	0x20000000

				3 	U8	aExternalRAM[1024*1024]	

__attribute__((at(0x08011000)));//1M-bytes	

external	SDRAM	starting	from	0x08011000

				4 	/*register*/

				5 	hDMM	hBlockDMM	=	RBS_DMM_RegisterBlock("Block	

DMM",aInternalRAM,sizeof(aInternalRAM),60);//re

gister	a	memory	block	with	60	bytes	per	block.

				6 	hDMM	hPoolDMM	=	RBS_DMM_RegisterPool("Pool	

DMM",aExternalRAM,sizeof(aExternalRAM),FALSE,20

0);//register	a	memory	pool	with	200	handle	

available.

				7 	/*allocate*/

				8 	hBLOCK	hBlock	=	

RBS_DMM_AllocBlock(hBlockDMM);//allocate	a	

block	from	hBlockDMM

				9 	hMEM	hMem	=	

RBS_DMM_AllocMem(hPoolDMM,200);//allocate	200	

bytes	from	hPoolDMM

			10 	/*reference*/

			11 	void	*pBlock	=	

RBS_DMM_UseHBlock(hBlock);//using	hBlock

			12 	void	*pMem	=	RBS_DMM_UseHMem(hMem);//using	

hMem

			13 	...//using	memory

			14 	RBS_DMM_UnuseHBlock(hBlock);//not	use	hBlock

			15 	RBS_DMM_UnuseHMem(hMem);//unusing	hMem

			16 	/*free*/

			17 	RBS_DMM_FreeBlock(hBlock);//release	hBlock

			18 	RBS_DMM_FreeMem(hMem);//release	hMem

Configuration
RBS_CFG_DMM_ALIGN	is	defined	for	define	byte-alignment.3	means	8	bytes,2
means	4	bytes,1	means	2	bytes,0	means	1	bytes.

Allocated	memory	started	address	and	size	are	both	alignment.So	if
RBS_CFG_DMM_ALIGN	is	2	and	you	allocated	25	bytes,then	you	get	28	bytes
actually.

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

Table	of	Contents

Debug	Features
Debug	Usage
How	to	configure	debug
component
How	to	port	debug
component

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

Chapter5	Debug

Debug	is	important	for	software
development	and	RBS	contains	a	useful
debug	component.
Detail	references	to	debug

Debug	Features
four	optional	debug	levels:none,error,warning,log
output	re-targeting
thread-safety	support

Debug	Usage
Four	types	debug	macros	are	available.

debug	statement

RBS_DEBUG_STA(sta)

RBS_DEBUG_IF(exp,sta)

RBS_DEBUG_ELSIF(sta1,exp,sta2)

RBS_DEBUG_ENDIF(sta)

debug	error	output

RBS_DEBUG_ERROR(exp,s)

RBS_DEBUG_ERROR_FORMAT(exp,format,...)

debug	warning	output

RBS_DEBUG_WARN(exp,s)

RBS_DEBUG_WARN_FORMAT(exp,format,...)

debug	log	output

RBS_DEBUG_LOG(s)

RBS_DEBUG_LOG_FORMAT(format,...)

How	to	configure	debug	component
There	are	two	macro	configuration	for	debug	component.

RBS_CFG_DEBUG_LEVEL	is	the	configuration	for	debug	level.You	can
define	RBS_CFG_DEBUG_LEVEL	from	one	of	the	four	optional	debug
levels	macros.

RBS_DEBUG_LEVEL_NOCHECK	disable	all	debug	statement	and	output
RBS_DEBUG_LEVEL_ERRORS	only	enable	debug	statement	and
debug	error	output
RBS_DEBUG_LEVEL_WARNINGS	debug	warning	output	plus
BS_DEBUG_LEVEL_ERRORS

RBS_DEBUG_LEVEL_ALL	debug	log	output	plus
BS_DEBUG_LEVEL_WARNINGS

RBS_CFG_DEBUG_BUFSIZE	cofigure	the	debug	buffer	size	in
bytes.Default	size	is	300	bytes.One	output	string	length	should	not
exceed	debug	buffer	size.

How	to	port	debug	component
Depending	to	debug	level	you	configure
RBS_CFG_DEBUG_LEVEL,different	porting	functions	are	needed.
And	you	can	re-targeting	output	by	these	porting	functions.

RBS_DEBUG_LEVEL_ERRORS	needs:

void	Port_Printf_Error(const	char	*s)	for	debug	error	output

RBS_DEBUG_LEVEL_WARNINGS	needs:

void	Port_Printf_Error(const	char	*s)	for	debug	error	output
void	Port_Printf_Warn(const	char	*s)	for	debug	warning
output

BS_DEBUG_LEVEL_ALL	needs:

void	Port_Printf_Error(const	char	*s)	for	debug	error	output
void	Port_Printf_Warn(const	char	*s)	for	debug	warning
output
void	Port_Printf_Log(const	char	*s)	for	debug	log	output

If	application	model	RBS_CFG_APP_MODEL	is	configured	to
RBS_APP_OS,then	OS	lock	such	as	mutex	or	semaphore	should	used
for	thread-safe	debug.

Debug	error	output(RBS_DEBUG_LEVEL_ERRORS),debug	warning
output(RBS_DEBUG_LEVEL_WARNINGS)	and	debug
log(RBS_DEBUG_LEVEL_ALL)	output	use	the	same	lock.	And	three
following	porting	functions	should	be	present.

BOOL	Port_Init(void)	for	creating	debug	lock
BOOL	Port_GetMutex(HMUTEX	hMutex)	for	lock	debug	output
BOOL	Port_FreeMutex(HMUTEX	hMutex)	for	unlock	debug	output

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

Table	of	Contents

Configuration	class
System	and	CPU
Application	model
DMM
Debug

Using	RAutoConfig

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

Chapter6	Configration

RBS	configuration	is	defined	by	file
RainbowBSConf.h.You	can	write	or	modify
this	file	or	use	PC	tool	RAutoConfig.exe
to	generate	this	file.

Configuration	class
System	and	CPU

RBS_CFG_SYS_INFO

define	a	string	for	describing	the	application.

RBS_CFG_TICK_RATE

timer	tick	per	second.	The	valid	value	should	be	in	rang	of	1	to	1000
and	1000	should	be	divided	with	no	remainder	by	it.

RBS_CFG_CPU_WORD_SIZE

definition	of	CPU	word	size	8bits/16bits/32bits.

RBS_CFG_CPU_BYTE_ORDER_L

CPU	byte	order.1	means	little-endia	and	0	means	big-endia.

RBS_CFG_CPU_STACK_DOWN

stack	growth	direction.1	means	growing	to	low	address	and	0	means
growing	to	high	address.

Application	model
RBS_CFG_APP_MODEL

one	of	three	application	models	should	be	chosen.

RBS_APP_NONE	traditional	event-driven	model.
RBS_APP_PTP	protothread	event-driven	model.
RBS_APP_OS	multitask	model.OS	kernel	needed.

HMUTEX

type	of	mutex	defined	by	OS	used.This	has	effect	only	when
RBS_CFG_APP_MODEL	is	configured	to	RBS_APP_OS.

Head	file	name

head	file	offered	by	OS	used.This	has	effect	only	when
RBS_CFG_APP_MODEL	is	configured	to	RBS_APP_OS.

RBS_CFG_PTP_NO_PROCESS_NAME

process	name.1	means	disabled,0	means	enabled.This	has	effect
only	when	RBS_CFG_APP_MODEL	is	configured	to	RBS_APP_PTP.

RBS_CFG_PTP_PROCESS_STATS

used	to	statistics	for	events	used.1	means	enabled,0	means
disabled.This	has	effect	only	when	RBS_CFG_APP_MODEL	is	configured
to	RBS_APP_PTP.

RBS_CFG_PTP_NUMEVENTS

event	count.This	has	effect	only	when	RBS_CFG_APP_MODEL	is
configured	to	RBS_APP_PTP.

DMM
RBS_CFG_DMM_ALIGN

define	the	alignment	bytes	for	memory	address	and	size.3	means	8
bytes,2	means	4	bytes,1	means	2	bytes,0	means	1	byte.

Debug
RBS_CFG_DEBUG_LEVEL

debug	output	level.one	of	four	should	be	chosen.

RBS_DEBUG_LEVEL_NOCHECK	disable	debug	output.no	running	time
checks	are	performed.
RBS_DEBUG_LEVEL_ERRORS	errors	are	recorded.
RBS_DEBUG_LEVEL_WARNINGS	errors	and	warnings	are	recorded.
RBS_DEBUG_LEVEL_LOG	errors,warnings	and	logs	are	recorded.

RBS_CFG_DEBUG_BUFSIZE

output	buffer	length.This	has	effect	only	when	RBS_CFG_DEBUG_LEVEL
is	not	configured	to	RBS_DEBUG_LEVEL_NOCHECK.

Using	RAutoConfig
RAutoConfig	is	in	"RainbowBS\RBSTools".

Rainbow	AutoConfig

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

Table	of	Contents

Ported	on	PC
Ported	on	Cortex-M

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

Chapter7	Porting	and	Example

Currently,RBS	has	been	ported	on	PC
and	ARM	Cortex-M	MCU.Also	it	can	be
ported	on	any	other	architecture	by
reference	to	that.

Recommend	project	file	architecture	as
following:

File	Architecture

Ported	on	PC
Refer	to	the	example	in
"RainbowBS/RBSDemoProjects/X86_VS2008/RBSDemo_VS2008.sln".
There	are	three	configuration	targets	corresponding	to	the	three	RBS
application	models	respectively.

Ported	on	Cortex-M
Refer	to	the	example	in
"RainbowBS/RBSDemoProjects/STM32F4_MDK/RBSDemo_STM32F4.uvprojx".
There	are	three	configuration	targets	corresponding	to	the	three	RBS
application	models	respectively.	The	standard	output	is	defined	to	use
SWO	in	the	example.You	can	use	Keil-MDK	DebugViewer	or
JLinkSWOViewer(if	JLink	is	used	as	adaptor)	to	view.

Output	in	DebugViewer

Output	in	JLinkSWOViewer

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

Modules

Here	is	a	list	of	all	modules:
[detail	level	 1 2]

	 RBS	configration
	 basic	types
	 basic	macros
	 system	releted
	 CPU	information
	 memory	operation
	 conversion	releted
	 dynamic	memory	management
	 protothread	process
	 Event	timers
	 debug
	▼Pt
	 Local	continuations
	 Protothread	semaphores

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

Macros

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

RBS	configration

Macros
#define	 RBS_CFG_SYS_INFO			"RainbowSys"
	
#define	 RBS_CFG_TICK_RATE			100
	
#define	 RBS_CFG_CPU_WORD_SIZE			32	/*	CPU	word	size	*/
	
#define	 RBS_CFG_CPU_BYTE_ORDER_L			1	/*	CPU	byte	order	*/
	

#define	 RBS_CFG_CPU_STACK_DOWN			1	/*	stack	growth	direction
*/

	
#define	 RBS_APP_NONE			0
	
#define	 RBS_APP_PTP			1
	
#define	 RBS_APP_OS			2
	
#define	 RBS_CFG_APP_MODEL			RBS_APP_PTP
	
#define	 RBS_CFG_PTP_NO_PROCESS_NAME			0
	
#define	 RBS_CFG_PTP_PROCESS_STATS			0
	
#define	 RBS_CFG_PTP_NUMEVENTS			32
	
#define	 RBS_CFG_DMM_ALIGN			2
	

#define	 RBS_DEBUG_LEVEL_NOCHECK			0	/*	No	running	timechecks	are	performed	*/
	
#define	 RBS_DEBUG_LEVEL_ERRORS			1	/*	Errors	are	recorded	*/
	

#define	 RBS_DEBUG_LEVEL_WARNINGS			2	/*	Errors	and	Warnings
are	recorded	*/

	

#define	 RBS_DEBUG_LEVEL_LOG			3	/*	Errors,Warnings	and	logs
are	recorded	*/

	
#define	 RBS_CFG_DEBUG_BUFSIZE			300
	
#define	 RBS_CFG_DEBUG_LEVEL			RBS_DEBUG_LEVEL_LOG
	

Detailed	Description

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

Typedefs

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

basic	types

Typedefs
typedef	uint8_t	 BOOL

	
typedef	int8_t	 I8

	
typedef	uint8_t	 U8

	
typedef	int16_t	 I16

	
typedef	uint16_t	 U16
	
typedef	int32_t	 I32

	
typedef	uint32_t	 U32
	
typedef	int64_t	 I64

	
typedef	uint64_t	 U64
	

typedef	size_t	 USIZE
	
typedef	ptrdiff_t	 IPTRDIFF

	
typedef	U64	 TICK

	

Detailed	Description

basic	types	defination.

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

Macros

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

basic	macros

Macros
#define	 FALSE			0u
	
#define	 TRUE			1u
	
#define	 USE_PARA(para)			(para	=	(para))
	
#define	 MIN(v0,	v1)			(((v0)	>	(v1))	?	(v1)	:	(v0))
	
#define	 MAX(v0,	v1)			(((v0)	>	(v1))	?	(v0)	:	(v1))
	
#define	 ABS(v)			(((v)	>=	0)	?	(v)	:	(-(v)))
	
#define	 SWAP(a,	b)			(a	=	(a)	+	(b),b	=	(a)	-	(b),a	=	(a)	-	(b))
	
#define	 COUNT_OF(a)			(sizeof(a)/sizeof(a[0]))
	
#define	 _STR(a)			#a
	
#define	 STR(a)			_STR(a)
	
#define	 _CONS(a,	b)			a##b
	
#define	 CONS(a,	b)			_CONS(a,b)
	

#define	 ALIGN_F(pointer,	power2)			(((IPTRDIFF)(pointer)	+((IPTRDIFF)((power2)	-	1)))	&	(~((IPTRDIFF)((power2)	-	1))))
	

#define	 ALIGN_B(pointer,	power2)			((IPTRDIFF)(pointer)	&	(~((IPTRDIFF)((power2)	-	1))))
	

Detailed	Description

basic	macros	defination.

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

Data	Structures	|	Functions

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

system	releted

Data	Structures
struct		 tTime
	 Time	structure.	More...
	

Functions
BOOL	 RBS_Init	(void)
	 Initialize	RainbowBS.	More...
	

system	information
const	char	*	 RBS_GetVersionString	(void)
	 Get	RainbowBS	version	string.	More...
	
const	char	*	 RBS_GetSysInfo	(void)
	 Get	system	description	string.	More...
	

time	releated
TICK	 RBS_GetTickCount	(void)

	 Get	system	tick.	More...
	

U64	 RBS_GetRunTime	(void)
	 Get	system	running	time(ms).	More...
	

void	 RBS_GetLocalTime	(tTime	*ptTime)
	 Get	system	local	time.	More...
	

void	 RBS_Delay	(U32	milliseconds)
	 Delay	some	milliseconds.	More...
	
#define	 RBS_TICK_MS			(1000u/RBS_CFG_TICK_RATE)
	

Detailed	Description

Implementation	of	system	releted.

Function	Documentation

void	RBS_Delay (U32	 milliseconds)

Parameters
[in]millisecondsmillisecond	count	.

Here	is	the	call	graph	for	this	function:

void	RBS_GetLocalTime (tTime	*	 ptTime)

Parameters
[out] ptTime local	time	pointer.

See	also
RBS_GetRunTime()

Here	is	the	call	graph	for	this	function:

U64	RBS_GetRunTime (void)

Returns
system	running	time	in	millisecond.

See	also
RBS_GetLocalTime()

Here	is	the	call	graph	for	this	function:

const	char*	RBS_GetSysInfo (void)

Returns
system	description	string.

See	also
RBS_GetVersionString()

TICK	RBS_GetTickCount (void)

Returns
system	tick.

Here	is	the	call	graph	for	this	function:

Here	is	the	caller	graph	for	this	function:

const	char*	RBS_GetVersionString (void)

Returns
version	string.

See	also
RBS_GetSysInfo()

BOOL	RBS_Init (void)

Return	values
TRUE successfully.

FALSE failed.

Here	is	the	call	graph	for	this	function:

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

Data	Fields

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

tTime	Struct	Reference
system	releted

Time	structure.

#include	<RainbowBS.h>

Collaboration	diagram	for	tTime:

Data	Fields
U16	 year
	
U8	 month

	
U8	 day

	
U8	 day_of_week

	
U8	 hour

	
U8	 minute

	
U8	 second

	
U16	 milliseconds
	

Field	Documentation

U8	day

day	of	month[1,31]

U8	day_of_week

day	of	week[0,6]

U8	hour

hour[0,23]

U16	milliseconds

milliseconds[0,999]

U8	minute

minute[0,59]

U8	month

month[1,12]

U8	second

second[0,59]

U16	year

year[1601,30827]

The	documentation	for	this	struct	was	generated	from	the	following	file:

RainbowBS.h

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

Functions

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

CPU	information

Functions
U8	 RBS_GetCPUBits	(void)

	 CPU	word-width.	More...
	
BOOL	 RBS_IsCPULittleEndian	(void)
	 Check	if	CPU	is	little-endian.	More...
	
BOOL	 RBS_IsStackGrowDown	(void)
	 Check	if	stack	grows	down.	More...
	

Detailed	Description

Information	about	CPU.

Function	Documentation

U8	RBS_GetCPUBits (void)

Returns
CPU	word-width(8/16/32/64).

BOOL	RBS_IsCPULittleEndian (void)

Return	values
TRUE little-endian.
FALSE big-endian.

BOOL	RBS_IsStackGrowDown (void)

Return	values
TRUE growth	down.
FALSE growth	up.

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

Functions

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

memory	operation

Functions
void	 RBS_MemSet8	(U8	*pDes,	U8	fill,	USIZE	num)
	 Set	memory	by	byte	unit.	More...
	
void	 RBS_MemSet16	(U16	*pDes,	U16	fill,	USIZE	num)
	 Set	memory	by	two-bytes	unit.	More...
	
void	 RBS_MemSet32	(U32	*pDes,	U32	fill,	USIZE	num)
	 Set	memory	by	four-bytes	unit.	More...
	
void	 RBS_MemCpy8	(U8	*pDes,	const	U8	*pSrc,	USIZE	num)
	 Copy	memory	by	byte	unit.	More...
	
U16	 RBS_Read16L	(const	U8	**ppData)
	 Read	a	16-bits	entity	in	little-endian.	More...
	
U32	 RBS_Read32L	(const	U8	**ppData)
	 Read	a	32-bits	entity	in	little-endian.	More...
	
void	 RBS_Write16L	(U8	**ppData,	U16	data)
	 Write	a	16-bits	entity	in	little-endian.	More...
	
void	 RBS_Write32L	(U8	**ppData,	U32	data)
	 Write	a	32-bits	entity	in	little-endian.	More...
	
U16	 RBS_Read16B	(const	U8	**ppData)
	 Read	a	16-bits	entity	in	big-endian.	More...
	
U32	 RBS_Read32B	(const	U8	**ppData)
	 Read	a	32-bits	entity	in	big-endian.	More...
	
void	 RBS_Write16B	(U8	**ppData,	U16	data)
	 Write	a	16-bits	entity	in	big-endian.	More...
	

void	 RBS_Write32B	(U8	**ppData,	U32	data)
	 Write	a	32-bits	entity	in	big-endian.	More...
	

Detailed	Description

Memory	set	and	copy	operation.

Function	Documentation

void	RBS_MemCpy8 (U8	*	 pDes,
const	U8	*	 pSrc,
USIZE	 num	
)

Parameters
[out] pDes destination	pointer.
[in] pSrc source	pointer.
[in] num total	units.

Here	is	the	caller	graph	for	this	function:

void	RBS_MemSet16 (U16	*	 pDes,
U16	 fill,
USIZE	 num	
)

Parameters
[out] pDes destination	pointer(two-bytes	alignment).
[in] fill two-bytes	filled.
[in] num total	units.

void	RBS_MemSet32 (U32	*	 pDes,
U32	 fill,
USIZE	 num	
)

Parameters
[out] pDes destination	pointer(four-bytes	alignment).
[in] fill four-bytes	filled.
[in] num total	units.

void	RBS_MemSet8 (U8	*	 pDes,
U8	 fill,
USIZE	 num	
)

Parameters
[out] pDes destination	pointer.
[in] fill byte	filled.
[in] num total	units.

Here	is	the	caller	graph	for	this	function:

U16	RBS_Read16B (const	U8	**	 ppData)

Parameters
[in,out] ppData data	pointer,added	2	bytes	after	calling.

Returns
data	entity

U16	RBS_Read16L (const	U8	**	 ppData)

Parameters
[in,out] ppData data	pointer,added	2	bytes	after	calling.

Returns
data	entity

U32	RBS_Read32B (const	U8	**	 ppData)

Parameters
[in,out] ppData data	pointer,added	4	bytes	after	calling.

Returns
data	entity

U32	RBS_Read32L (const	U8	**	 ppData)

Parameters
[in,out] ppData data	pointer,added	4	bytes	after	calling.

Returns
data	entity

void	RBS_Write16B (U8	**	 ppData,
U16	 data	
)

Parameters
[in,out] ppData data	pointer,added	2	bytes	after	calling.
[in] data data	to	be	wtitten.

void	RBS_Write16L (U8	**	 ppData,
U16	 data	
)

Parameters
[in,out] ppData data	pointer,added	2	bytes	after	calling.

[in] data data	to	be	wtitten.

void	RBS_Write32B (U8	**	 ppData,
U32	 data	
)

Parameters
[in,out] ppData data	pointer,added	4	bytes	after	calling.
[in] data data	to	be	wtitten.

void	RBS_Write32L (U8	**	 ppData,
U32	 data	
)

Parameters
[in,out] ppData data	pointer,added	4	bytes	after	calling.
[in] data data	to	be	wtitten.

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

conversion	releted

convert	digit	to	string
enum		 ePOW	{	SHEX,	SBINARY,	SDECIMAL	}
	 Specific	hex,binary	or	decimal.	More...
	

U8	 RBS_Number2String	(U32	value,	ePOW	ePow,	U8	length,	char
*pText)

	 Convert	unsigned	digit	to	ASCII	string.	More...
	

trigonometric	releted
int	 RBS_sin	(int	angle)

	 Calculate	sine.	More...
	

int	 RBS_cos	(int	angle)
	 Calculate	cosine.	More...
	

int	 RBS_tan	(int	angle)
	 Calculate	tangent.	More...
	

int	 RBS_ctan	(int	angle)
	 Calculate	cotangent.	More...
	
#define	 ANG_45DEG			1024
	
#define	 ANG_90DEG			(2*ANG_45DEG)
	
#define	 ANG_135DEG			(3*ANG_45DEG)
	
#define	 ANG_180DEG			(4*ANG_45DEG)
	
#define	 ANG_225DEG			(5*ANG_45DEG)
	
#define	 ANG_270DEG			(6*ANG_45DEG)
	
#define	 ANG_315DEG			(7*ANG_45DEG)
	
#define	 ANG_360DEG			(8*ANG_45DEG)
	

Detailed	Description

Enumeration	Type	Documentation

enum	ePOW

Enumerator

SHEX	 hex
SBINARY	 binary
SDECIMAL	 decimal

Function	Documentation

int	RBS_cos (int	 angle)

This	function	calculates	cosine	without	using	float-point	numbers.It	use	a	constant
table	to	look	up	for	the	appropriate	value.

Parameters
[in] angle angle=degrees*ANG_45DEG/45,degrees=angle*45/ANG_45DEG.

Returns
cos(degrees)*1024.

int	RBS_ctan (int	 angle)

This	function	calculates	cotangent	without	using	float-point	numbers.It	use	a
constant	table	to	look	up	for	the	appropriate	value.

Parameters
[in] angle angle=degrees*ANG_45DEG/45,degrees=angle*45/ANG_45DEG.

Returns
cotan(degrees)*1024.

U8	RBS_Number2String (U32	 value,
ePOW	 ePow,
U8	 length,
char	*	 pText	
)

Parameters
[in] value unsigned	digit.

[in] ePow choose	hex,binary	or	decimal.
[in] lengthMax.bits	from	lowest	bit.If	Len	is	0,choosing

Min.characters	automatically.
[out] pText output	string	buffer.

Returns
character	number.

See	also
ePOW

int	RBS_sin (int	 angle)

This	function	calculates	sine	without	using	float-point	numbers.	It	use	a	constant
table	to	look	up	for	the	approximate	value.

Parameters
[in] angle angle=degrees*ANG_45DEG/45,degrees=angle*45/ANG_45DEG.

Returns
sin(degrees)*1024.

Example:

				1 	//calculate	sine	of	30	degrees,the	return	value	is

511	which

				2 	//is	approximately	equal	to	sin30*1024	which	is	512.

				3 	int	value	=	RBS_sin(30*ANG_45DEG/45);

int	RBS_tan (int	 angle)

This	function	calculates	tangent	without	using	float-point	numbers.It	use	a	constant
table	to	look	up	for	the	appropriate	value.

Parameters
[in] angle angle=degrees*ANG_45DEG/45,degrees=angle*45/ANG_45DEG.

Returns
tan(degrees)*1024.

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

Macros	|	Typedefs	|	Functions

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

dynamic	memory
management

Macros
#define	 HDMM_NULL			NULL
	
#define	 HBLOCK_NULL			NULL
	
#define	 HMEM_NULL			NULL
	

Typedefs
typedef	void	*	 hDMM
	
typedef	void	*	 hBLOCK
	
typedef	void	*	 hMEM
	

Functions

hDMM	 RBS_DMM_RegisterBlock	(char	*pName,	void	*pDM,	USIZEsize,	USIZE	block_size,	HMUTEX	hMutex)

	 Register	the	memory	area	as	a	dynamic	block	memory	area.
More...

	
hBLOCK	 RBS_DMM_AllocZeroBlock	(hDMM	hDmm)
	 Allocate	a	free	block	with	zero	initialization	from	the	dynamic

block	memory	area.	More...
	
hBLOCK	 RBS_DMM_AllocBlock	(hDMM	hDmm)
	 Allocate	a	free	block	from	the	dynamic	block	memory	area.

More...
	

BOOL	 RBS_DMM_FreeBlock	(hBLOCK	hBlock)
	 Free	the	allocated	block.	More...
	

void	*	 RBS_DMM_UseHBlock	(hBLOCK	hBlock)
	 Get	the	allocated	block	pointer.	More...
	

BOOL	 RBS_DMM_UnuseHBlock	(hBLOCK	hBlock)
	 Unuse	the	allocated	block	area.	More...
	

hDMM	 RBS_DMM_RegisterPool	(char	*pName,	void	*pDM,	USIZEsize,	BOOL	bAntiFrag,	U16	handle_count,	HMUTEX	hMutex)

	 Register	the	memory	area	as	a	dynamic	pool	memory	area.
More...

	
hMEM	 RBS_DMM_AllocZeroMem	(hDMM	hDmm,	USIZE	size)

	 Allocate	a	free	memory	with	zero	initialization	from	the
dynamic	memory	area.	More...

	
hMEM	 RBS_DMM_AllocMem	(hDMM	hDmm,	USIZE	size)

	
Allocate	a	free	memory	from	the	dynamic	memory	area.
More...

	
hMEM	 RBS_DMM_ReallocMem	(hMEM	hMem,	USIZE	size)

	 Reallocate	a	free	memory	from	the	same	dynamic	memory
area.	More...

	
BOOL	 RBS_DMM_FreeMem	(hMEM	hMem)

	 Free	the	allocated	memory.	More...
	

void	*	 RBS_DMM_UseHMem	(hMEM	hMem)
	 Get	the	allocated	memory	pointer.	More...
	

BOOL	 RBS_DMM_UnuseHMem	(hMEM	hMem)
	 Unuse	the	allocated	memory	area.	More...
	

USIZE	 RBS_DMM_GetHMemSize	(hMEM	hMem)
	 Get	the	allocated	memory	size.	More...
	

Detailed	Description

Dynamic	memory	management	for	both	memory	poll	and	block.

Function	Documentation

hBLOCK	RBS_DMM_AllocBlock (hDMM	 hDmm)

Parameters
[in] hDmm handle	of	dynamic	block	memory	area.

Return	values
HBLOCK_NULL failed.
others handle	of	dynamic	memory	area.

Here	is	the	call	graph	for	this	function:

Here	is	the	caller	graph	for	this	function:

hMEM	RBS_DMM_AllocMem (hDMM	 hDmm,
USIZE	 size	
)

Parameters
[in] hDmm handle	of	dynamic	memory	area.
[in] size memory	area	bytes.

Return	values
HMEM_NULL failed.
others handle	of	dynamic	memory	area.

Here	is	the	call	graph	for	this	function:

Here	is	the	caller	graph	for	this	function:

hBLOCK	RBS_DMM_AllocZeroBlock (hDMM	 hDmm)

Parameters
[in] hDmm handle	of	dynamic	block	memory	area.

Return	values
HBLOCK_NULL failed.
others handle	of	dynamic	memory	area.

Here	is	the	call	graph	for	this	function:

hMEM	RBS_DMM_AllocZeroMem (hDMM	 hDmm,
USIZE	 size	
)

Parameters
[in] hDmm handle	of	dynamic	memory	area.
[in] size memory	area	bytes.

Return	values
HMEM_NULL failed.
others handle	of	dynamic	memory	area.

Here	is	the	call	graph	for	this	function:

BOOL	RBS_DMM_FreeBlock (hBLOCK	 hBlock)

Parameters
[in] hBlock handle	of	a	allocated	block.

Return	values
TRUE successful.
FALSE failed.

Here	is	the	call	graph	for	this	function:

BOOL	RBS_DMM_FreeMem (hMEM	 hMem)

Parameters
[in] hMem handle	of	a	allocated	memory.

Return	values

TRUE successful.
FALSE failed.

Here	is	the	call	graph	for	this	function:

USIZE	RBS_DMM_GetHMemSize (hMEM	 hMem)

Parameters
[in] hMem handle	of	the	allocated	memory.

Returns
memory	area	size.

Here	is	the	call	graph	for	this	function:

hMEM	RBS_DMM_ReallocMem (hMEM	 hMem,
USIZE	 size	
)

Parameters
[in] hMem handle	of	an	allocated	memory.
[in] size memory	area	bytes.

Return	values
HMEM_NULL failed.
others handle	of	dynamic	memory	area.

Here	is	the	call	graph	for	this	function:

hDMM	RBS_DMM_RegisterBlock (char	*	 pName,
void	*	 pDM,
USIZE	 size,
USIZE	 block_size,
HMUTEX	 hMutex	
)

Parameters
[in] pName block	memory	name.
[in] pDM pointer	to	the	block	memory	area.
[in] size block	memory	area	size(bytes).
[in] block_size each	block	size.
[in] hMutex memory	block	mutex	for	thread-safe.If	NULL,no

thread-safe	support.

Return	values
HDMM_NULL failed.
other handle	of	dynamic	block	memory	area.

Here	is	the	call	graph	for	this	function:

Here	is	the	caller	graph	for	this	function:

hDMM	RBS_DMM_RegisterPool (char	*	 pName,
void	*	 pDM,
USIZE	 size,
BOOL	 bAntiFrag,
U16	 handle_count,
HMUTEX	 hMutex	
)

Parameters
[in] pName memory	pool	name.
[in] pDM pointer	to	the	memory	area.
[in] size memory	area	size(bytes).
[in] bAntiFrag enable	defragmentation.
[in] handle_count count	of	memory	handles.
[in] hMutex memory	pool	mutex	for	thread-safety.If

NULL,no	thread-safe	support.

Return	values
Not HDMM_NULL	successful.
HDMM_NULL failed.

Here	is	the	call	graph	for	this	function:

Here	is	the	caller	graph	for	this	function:

BOOL	RBS_DMM_UnuseHBlock (hBLOCK	 hBlock)

Parameters
[in] hBlock handle	of	a	allocated	block.

Returns
block	area	pointer.

See	also
RBS_DMM_UseHBlock()

Note
used	in	pair	with	RBS_DMM_UseHBlock()

Here	is	the	call	graph	for	this	function:

Here	is	the	caller	graph	for	this	function:

BOOL	RBS_DMM_UnuseHMem (hMEM	 hMem)

Parameters
[in] hMem handle	of	a	allocated	memory.

Returns
memory	area	pointer.

See	also
RBS_DMM_UseHMem()

Note
used	in	pair	with	RBS_DMM_UseHMem()

Here	is	the	call	graph	for	this	function:

Here	is	the	caller	graph	for	this	function:

void*	RBS_DMM_UseHBlock (hBLOCK	 hBlock)

Parameters
[in] hBlock handle	of	a	allocated	block.

Returns
block	area	pointer.

See	also
RBS_DMM_UnuseHBlock()

Note
used	in	pair	with	RBS_DMM_UnuseHBlock()

Here	is	the	call	graph	for	this	function:

Here	is	the	caller	graph	for	this	function:

void*	RBS_DMM_UseHMem (hMEM	 hMem)

Parameters
[in] hMem handle	of	a	allocated	memory.

Returns
memory	area	pointer.

See	also
RBS_DMM_UnuseHMem()

Note
used	in	pair	with	RBS_DMM_UnuseHMem()

Here	is	the	call	graph	for	this	function:

Here	is	the	caller	graph	for	this	function:

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

Data	Structures	|	Macros	|	Typedefs

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

protothread	process

Data	Structures
struct		 process_struct
	 Process	structure(one	process	consists	one	protothread).

More...
	

Macros
#define	 PROCESS_NONE			NULL
	
#define	 PROCESS_BROADCAST			NULL
	

Typedefs
typedef	U8	 process_event_t

	
typedef	void	*	 process_data_t

	
typedef	struct	process_struct	 tPROCESS
	 Process	structure(one	process	consists

one	protothread).	More...
	

predefined	event	type
#define	 PROCESS_EVENT_NONE			0x80
	
#define	 PROCESS_EVENT_INIT			0x81
	
#define	 PROCESS_EVENT_POLL			0x82
	
#define	 PROCESS_EVENT_EXIT			0x83
	
#define	 PROCESS_EVENT_SERVICE_REMOVED			0x84
	
#define	 PROCESS_EVENT_CONTINUE			0x85
	
#define	 PROCESS_EVENT_MSG			0x86
	
#define	 PROCESS_EVENT_EXITED			0x87
	
#define	 PROCESS_EVENT_TIMER			0x88
	
#define	 PROCESS_EVENT_COM			0x89
	
#define	 PROCESS_EVENT_MAX			0x8a
	

process	declaration	and	definition
#define	 PROCESS_THREAD(name,	ev,	data)
	 Define	the	body	of	a	process.	More...
	
#define	 PROCESS_NAME(name)			extern	tPROCESS	name
	 Declare	the	name	of	a	process.	More...
	
#define	 PROCESS(name,	strname)
	 Define	a	process.	More...
	

semaphore	declaration	and	definition
#define	 SEM_NAME(name)			extern	struct	pt_sem	sem_##name
	 Declare	the	name	of	a	semaphore.	More...
	
#define	 SEM(name,	count)
	 Define	a	semaphore.	More...
	

process	protothread	functions
#define	 PROCESS_BEGIN()
	 Define	the	beginning	of	a	process.	More...
	
#define	 PROCESS_END()
	 Define	the	end	of	a	process.	More...
	
#define	 PROCESS_WAIT_EVENT()
	 Wait	for	an	event	to	be	posted	to	the	process.	More...
	
#define	 PROCESS_WAIT_EVENT_UNTIL(c)
	 Wait	for	an	event	to	be	posted	to	the	process,	with	an	extra

condition.	More...
	
#define	 PROCESS_YIELD()
	 Yield	the	currently	running	process.	
	
#define	 PROCESS_YIELD_UNTIL(c)
	 Yield	the	currently	running	process	until	a	condition	occurs.

More...
	
#define	 PROCESS_WAIT_UNTIL(c)
	 Wait	for	a	condition	to	occur.	More...
	
#define	 PROCESS_WAIT_WHILE(c)
	 Wait	for	a	condition	not	occur.	More...
	
#define	 PROCESS_EXIT()
	 Exit	the	currently	running	process.	
	
#define	 PROCESS_PT_SPAWN(pt,	thread)
	 Spawn	a	protothread	from	the	process.	More...
	
#define	 PROCESS_PAUSE()

	 Yield	the	process	for	a	short	while.	More...
	
#define	 PROCESS_WAIT_SEM(name)
	
#define	 PROCESS_SIGNAL_SEM(name)
	

poll	and	exit	handlers

#define	 PROCESS_POLLHANDLER(handler)			if(ev	==PROCESS_EVENT_POLL)	{	handler;	}
	 Specify	an	action	when	a	process	is	polled.	More...
	

#define	 PROCESS_EXITHANDLER(handler)			if(ev	==PROCESS_EVENT_EXIT)	{	handler;	}
	 Specify	an	action	when	a	process	exits.	More...
	

process	functions	called	from	application	programs
tPROCESS	*	 process_current

	

BOOL	 process_start	(tPROCESS	*ptProcess,	process_data_targ)
	 Start	a	process.	More...
	

BOOL	 process_post	(tPROCESS	*ptProcess,	process_event_tev,	void	*data)

	 Post	an	asynchronous	event	to	one	or	all	processes.
More...

	

void	 process_send	(tPROCESS	*ptProcess,	process_event_tev,	void	*data)
	 Send	a	synchronous	event	to	a	process.	More...
	

void	 process_exit	(tPROCESS	*ptProcess)
	 Cause	a	process	to	exit.	More...
	
process_event_t	 process_alloc_event	(void)
	 Allocate	a	global	event	number.	More...
	

#define	 PROCESS_CURRENT()			process_current
	 Get	a	pointer	to	the	currently	running	process.	More...
	

#define	
PROCESS_CONTEXT_BEGIN(ptProcess)			{	tPROCESS
*tmp_current	=	PROCESS_CURRENT();process_current
=	ptProcess

	 Switch	context	to	another	process.	More...
	

#define	 PROCESS_CONTEXT_END(ptProcess)			process_current=	tmp_current;	}
	 End	a	context	switch.	More...
	

process	functions	called	from	device	drivers.
BOOL	 process_poll	(tPROCESS	*ptProcess)
	 Request	a	process	to	be	polled.	More...
	

functions	called	by	the	system	and	boot-up	code
U16	 process_run	(void)

	 Run	the	system	once	-	call	poll	handlers	and	process	one
event.	More...

	
BOOL	 process_is_running	(tPROCESS	*ptProcess)
	 Check	if	a	process	is	running.	More...
	

U16	 process_nevents	(void)
	 Number	of	events	waiting	to	be	processed.	More...
	

Detailed	Description

A	process	in	consists	of	a	single	protothread.

Macro	Definition	Documentation

#define	PROCESS (name,
	 strname	
)

This	macro	defines	a	process.	The	process	has	two	names:	the
variable	of	the	process	structure,	which	is	used	by	the	C	program,	and
a	human	readable	string	name,	which	is	used	when	debugging.	A
configuration	option	allows	removal	of	the	readable	name	to	save
RAM.

Parameters
[in] name The	variable	name	of	the	process	structure.
[in] strname The	string	representation	of	the	process'	name.

Note
definition	must	be	global.

#define	PROCESS_BEGIN ()

This	macro	defines	the	beginning	of	a	process,	and	must	always
appear	in	a	PROCESS_THREAD()	definition.	The	PROCESS_END()
macro	must	come	at	the	end	of	the	process.

#define
PROCESS_CONTEXT_BEGIN (ptProcess)

			{	tPROCESS	*tmp_current	=
PROCESS_CURRENT();process_current
=	ptProcess

This	function	switch	context	to	the	specified	process	and	executes	the	code	as	if	run	by
that	process.	Typical	use	of	this	function	is	to	switch	context	in	services,	called	by	other
processes.	Each	PROCESS_CONTEXT_BEGIN()	must	be	followed	by	the

PROCESS_CONTEXT_END()	macro	to	end	the	context	switch.

Parameters
[in] ptProcess The	process	to	use	as	context

See	also
PROCESS_CONTEXT_END()
PROCESS_CURRENT()

Example:

				1 	PROCESS_CONTEXT_BEGIN(&test_process);

				2 	etimer_set(&timer,	CLOCK_SECOND);

				3 	PROCESS_CONTEXT_END(&test_process);

#define
PROCESS_CONTEXT_END (ptProcess)

			process_current	=
tmp_current;	}

This	function	ends	a	context	switch	and	changes	back	to	the	previous
process.

Parameters
[in] ptProcess The	process	used	in	the	context	switch

See	also
PROCESS_CONTEXT_START()

#define	PROCESS_CURRENT () 			process_current

This	macro	get	a	pointer	to	the	currently	running	process.	Typically,
this	macro	is	used	to	post	an	event	to	the	current	process	with
process_post().

#define	PROCESS_END ()

This	macro	defines	the	end	of	a	process.	It	must	appear	in	a

PROCESS_THREAD()	definition	and	must	always	be	included.	The
process	exits	when	the	PROCESS_END()	macro	is	reached.

#define
PROCESS_EXITHANDLER (handler)

			if(ev	==
PROCESS_EVENT_EXIT)	{
handler;	}

Note
This	declaration	must	come	immediately	before	the
PROCESS_BEGIN()	macro.

Parameters
handler The	action	to	be	performed.

#define	PROCESS_NAME (name) 			extern	tPROCESS	name

This	macro	is	typically	used	in	header	files	to	declare	the	name	of	a
process	that	is	implemented	in	the	C	file.

#define	PROCESS_PAUSE ()

This	macro	yields	the	currently	running	process	for	a	short	while,	thus
letting	other	processes	run	before	the	process	continues.

#define
PROCESS_POLLHANDLER (handler)

			if(ev	==
PROCESS_EVENT_POLL)	{
handler;	}

Note
This	declaration	must	come	immediately	before	the
PROCESS_BEGIN()	macro.

Parameters
handler The	action	to	be	performed.

#define	PROCESS_PT_SPAWN (pt,
	 thread	
)

Parameters
pt[inout] The	protothread	state	(struct	pt)	for	the	new

protothread
thread[in] The	call	to	the	protothread	function.

See	also
PT_SPAWN()

#define	PROCESS_SIGNAL_SEM (name)

Signal	a	semaphore

This	macro	carries	out	the	"signal"	operation	on	the	semaphore.

Parameters
[in] name semaphore	name

Note
It's	the	application's	responsibility	to	notify	the	waiting	process	if
semaphore	is	avilable.

See	also
PROCESS_WAIT_SEM()

#define	PROCESS_THREAD (name,
	 ev,
	 data	
)

This	macro	is	used	to	define	the	body	(protothread)	of	a	process.	The

process	is	called	whenever	an	event	occurs	in	the	system,	A	process
always	start	with	the	PROCESS_BEGIN()	macro	and	end	with	the
PROCESS_END()	macro.

#define	PROCESS_WAIT_EVENT ()

This	macro	blocks	the	currently	running	process	until	the	process
receives	an	event.

#define	PROCESS_WAIT_EVENT_UNTIL (c)

This	macro	is	similar	to	PROCESS_WAIT_EVENT()	in	that	it	blocks
the	currently	running	process	until	the	process	receives	an	event.	But
PROCESS_WAIT_EVENT_UNTIL()	takes	an	extra	condition	which
must	be	true	for	the	process	to	continue.

Parameters
[in] c The	condition	that	must	be	true	for	the	process	to

continue.

See	also
PT_WAIT_UNTIL()

#define	PROCESS_WAIT_SEM (name)

Wait	for	a	semaphore

This	macro	carries	out	the	"wait"	operation	on	the	semaphore.

Parameters
[in] name semaphore	name

Note
It's	the	application's	responsibility	to	notify	the	waiting	process	if
semaphore	is	avilable.

See	also
PROCESS_SIGNAL_SEM()

#define	PROCESS_WAIT_UNTIL (c)

This	macro	does	not	guarantee	that	the	process	yields,	and	should
therefore	be	used	with	care.	In	most	cases,
PROCESS_WAIT_EVENT(),	PROCESS_WAIT_EVENT_UNTIL(),
PROCESS_YIELD()	or	PROCESS_YIELD_UNTIL()	should	be	used
instead.

Parameters
[in] c The	condition	that	must	be	true	for	the	process	to

continue

#define	PROCESS_WAIT_WHILE (c)

This	macro	does	not	guarantee	that	the	process	yields,	and	should
therefore	be	used	with	care.	In	most	cases,
PROCESS_WAIT_EVENT(),	PROCESS_WAIT_EVENT_UNTIL(),
PROCESS_YIELD()	or	PROCESS_YIELD_UNTIL()	should	be	used
instead.

Parameters
[in] c The	condition	that	must	be	false	for	the	process	to

continue.

#define	PROCESS_YIELD_UNTIL (c)

This	macro	is	different	from	PROCESS_WAIT_UNTIL()	in	that
PROCESS_YIELD_UNTIL()	is	guaranteed	to	always	yield	at	least
once.	This	ensures	that	the	process	does	not	end	up	in	an	infinite	loop
and	monopolizing	the	CPU.

Parameters

[in] c The	condition	to	wait	for.

#define	SEM (name,
	 count	
)

Parameters
name The	variable	name	of	the	semaphore	structure.
count The	count	value	of	the	semaphore.

Note
definition	must	be	global.

#define	SEM_NAME (name) 			extern	struct	pt_sem	sem_##name

This	macro	is	typically	used	in	header	files	to	declare	the	name	of	a
semaphore	that	is	implemented	in	the	C	file.

Typedef	Documentation

typedef	struct	process_struct	tPROCESS

Note
application	code	should	not	change	any	member	of	the	process
structure	for	they	are	maintained	by	system	inside.

Function	Documentation

process_event_t	process_alloc_event (void)

event	numbers	above	128	are	global	and	may	be	posted	from	one
process	to	another.	This	function	allocates	one	such	event	number.

Note
There	currently	is	no	way	to	deallocate	an	allocated	event	number.

Returns
The	allocated	event	number

void	process_exit (tPROCESS	*	 ptProcess)

This	function	causes	a	process	to	exit.	The	process	can	either	be	the
currently	executing	process,	or	another	process	that	is	currently
running.

Parameters
[in,out] ptProcess The	process	that	is	to	be	exited

See	also
PROCESS_CURRENT()

BOOL	process_is_running (tPROCESS	*	 ptProcess)

This	function	checks	if	a	specific	process	is	running.A	process	can	be
on	running	state	after	calling	process_start()	normally.

Parameters
[in] ptProcess The	process	pointer.

Return	values
TRUE if	the	process	is	running.
FALSE if	the	process	is	not	running.

Here	is	the	caller	graph	for	this	function:

U16	process_nevents (void)

Returns
Number	of	events	that	are	currently	waiting	to	be	processed.

BOOL	process_poll (tPROCESS	*	 ptProcess)

This	function	typically	is	called	from	an	interrupt	handler	to	cause	a
process	to	be	polled.

Parameters
[in,out] ptProcess A	pointer	to	the	process'	process	structure.

Return	values
TRUE poll	successfully.
FALSE if	the	process	is	not	running.

Here	is	the	call	graph	for	this	function:

Here	is	the	caller	graph	for	this	function:

BOOL	process_post (tPROCESS	*	 ptProcess,
process_event_t	 ev,
void	*	 data	

)

This	function	posts	an	asynchronous	event	to	one	or	all	processes.
The	handing	of	the	event	is	deferred	until	the	target	process	is
scheduled	by	the	kernel.	An	event	can	be	broadcast	to	all	processes,
in	which	case	all	processes	in	the	system	will	be	scheduled	to	handle
the	event.

Parameters
[in,out] ptProcess The	process	to	which	the	event	should	be

posted,or	PROCESS_BROADCAST	if	the
event	should	be	posted	to	all	processes.

[in] ev The	event	to	be	posted.
[in,out] data The	auxiliary	data	to	be	sent	with	the	event

Return	values
TRUE The	event	could	be	posted.
FALSE The	event	queue	was	full	and	the	event	could	not	be

posted.

See	also
process_send()

U16	process_run (void)

This	function	should	be	called	repeatedly	from	the	main()	program	to
actually	run	the	system.	It	calls	the	necessary	poll	handlers,	and
processes	one	event.	The	function	returns	the	number	of	events	that
are	waiting	in	the	event	queue	so	that	the	caller	may	choose	to	put	the
CPU	to	sleep	when	there	are	no	pending	events.

Example	about	how	to	use	protothread	process	model	for	event-driven
system:

				1 	int	main(void)	{

				2 			RBS_Init();//RBS	initialization

				3 			process_start();//start	process

				4 			...

				5 			while	(1)	{

				6 					do	{

				7 							...//do	some	optional	user	code

				8 					}	while(process_run()	>	0);

				9 					sleep();//go	to	sleep

			10 			}

			11 	}

Returns
The	number	of	events	that	are	currently	waiting	to	be	processed.

void	process_send (tPROCESS	*	 ptProcess,
process_event_t	 ev,
void	*	 data	
)

This	function	sends	a	synchronous	event	to	one	processes.	On
opposite	of	process_post(),the	handing	of	the	event	is	completed
immediately	after	calling.

Parameters
[in,out] ptProcess A	pointer	to	the	process'	process	structure.
[in] ev The	event	to	be	posted.
[in,out] data A	pointer	to	additional	data	that	is	posted

together	with	the	event.

See	also
process_post()

Here	is	the	caller	graph	for	this	function:

BOOL	process_start (tPROCESS	*	 ptProcess,
process_data_t	 arg	

)

Parameters
[in,out] ptProcess A	pointer	to	a	process	structure.
[in] arg An	argument	pointer	that	can	be	passed	to

the	new	process

Return	values
TRUE successful.
FALSE Try	to	start	a	process	that	is	already	running.

Here	is	the	call	graph	for	this	function:

Here	is	the	caller	graph	for	this	function:

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

Public	Member	Functions	|	Data	Fields

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

process_struct	Struct
Reference
protothread	process

Process	structure(one	process	consists	one	protothread).	More...

#include	<RainbowBS.h>

Collaboration	diagram	for	process_struct:

Public	Member	Functions
	 PT_THREAD	((*thread)(struct	pt	*,	process_event_t,	process_data_t))
	

Data	Fields
struct	process_struct	*	 next
	

const	char	*	 name
	

struct	pt	 pt
	

U8	 state
	

BOOL	 needspoll
	

Detailed	Description

Note
application	code	should	not	change	any	member	of	the	process
structure	for	they	are	maintained	by	system	inside.

Field	Documentation

const	char*	name

process	name	string

BOOL	needspoll

indicate	if	a	process	has	high	privilege	to	be	called,

See	also
process_poll()

struct	process_struct*	next

pointer	to	the	next	process,all	processes	are	in	a	process	list

U8	state

indicate	process	state

The	documentation	for	this	struct	was	generated	from	the	following	file:

RainbowBS.h

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

Data	Structures	|	Typedefs

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

Event	timers

Data	Structures
struct		 etime_struct
	 Event	timer	structure.	More...
	

Typedefs
typedef	struct	etime_struct	 tETIME
	 Event	timer	structure.	More...
	

etimer	functions	called	from	application	programs
void	 etimer_set	(tETIME	*ptEtime,	TICK	interval)

	 Set	an	event	timer.	More...
	

void	 etimer_reset	(tETIME	*ptEtime)
	 Reset	an	event	timer	with	the	same	interval	as	was	previously

set.	More...
	

void	 etimer_restart	(tETIME	*ptEtime)
	 Restart	an	event	timer	from	the	current	point	in	time.	More...
	

void	 etimer_adjust	(tETIME	*ptEtime,	int	timediff)
	 Adjust	the	expiration	time	for	an	event	timer.	More...
	
TICK	 etimer_expiration_time	(tETIME	*ptEtime)
	 Get	the	expiration	time	for	the	event	timer.	More...
	
TICK	 etimer_start_time	(tETIME	*ptEtime)
	 Get	the	start	time	for	the	event	timer.	More...
	
BOOL	 etimer_expired	(tETIME	*ptEtime)
	 Check	if	an	event	timer	has	expired.	More...
	

void	 etimer_stop	(tETIME	*ptEtime)
	 Stop	a	pending	event	timer.	More...
	

etimer	functions	called	from	timer	interrupts,by	the
system

void	 etimer_request_poll	(void)
	 Make	the	event	timer	aware	that	the	clock	has	changed.	More...
	
BOOL	 etimer_pending	(void)
	 Check	if	there	are	any	non-expired	event	timers.	More...
	

Detailed	Description

Event	timers	provides	a	way	to	generate	timed	events.	An	event	timer	will
post	an	event	to	the	process	that	set	the	timer	when	the	event	timer
expires.

An	event	timer	is	declared	as	a	struct	etimer	and	all	access	to	the	event
timer	is	made	by	a	pointer	to	the	declared	event	timer.

Typedef	Documentation

typedef	struct	etime_struct	tETIME

This	structure	is	used	for	declaring	a	timer.The	timer	must	be	set	with
etimer_set()	before	it	can	be	used.

Function	Documentation

void	etimer_adjust (tETIME	*	 ptEtime,
int	 timediff	
)

This	function	is	used	to	adjust	the	time	the	event	timer	will	expire.	It
can	be	used	to	synchronize	periodic	timers	without	the	need	to	restart
the	timer	or	change	the	timer	interval.

Parameters
[in,out] ptEtime A	pointer	to	the	event	timer.
[in] timediff The	time	difference	to	adjust	the	expiration

time	with.

Note
This	function	should	only	be	used	for	small	adjustments.	For	large
adjustments	use	etimer_set()	instead.
A	periodic	timer	will	drift	unless	the	etimer_reset()	function	is
used.

See	also
etimer_set()
etimer_reset()

TICK	etimer_expiration_time (tETIME	*	 ptEtime)

This	function	returns	the	expiration	time	for	an	event	timer.

Parameters
[in,out] ptEtime A	pointer	to	the	event	timer.

Returns

The	expiration	time	for	the	event	timer.

BOOL	etimer_expired (tETIME	*	 ptEtime)

This	function	tests	if	an	event	timer	has	expired	and	returns	true	or
false	depending	on	its	status.

Parameters
[in] ptEtime A	pointer	to	the	event	timer.

Return	values
TRUE if	the	timer	has	expired.
FALSE if	the	timer	has	not	expired.

BOOL	etimer_pending (void)

This	function	checks	if	there	are	any	active	event	timers	that	have	not
expired.

Return	values
TRUE if	there	are	active	event	timers.
FALSE if	there	are	no	active	timers.

void	etimer_request_poll (void)

This	function	is	used	to	inform	the	event	timer	module	that	the	system
clock	has	been	updated.Typically,this	function	would	be	called	from	the
timer	interrupt	handler	when	the	clock	has	ticked.

Here	is	the	call	graph	for	this	function:

void	etimer_reset (tETIME	*	 ptEtime)

This	function	resets	the	event	timer	with	the	same	interval	that	was
given	to	the	event	timer	with	the	etimer_set()	function.	The	start	point
of	the	interval	is	the	exact	time	that	the	event	timer	last	expired.
Therefore,	this	function	will	cause	the	timer	to	be	stable	over	time,
unlike	the	etimer_restart()	function.

Parameters
[in,out] ptEtime A	pointer	to	the	event	timer.

See	also
etimer_restart()

void	etimer_restart (tETIME	*	 ptEtime)

This	function	restarts	the	event	timer	with	the	same	interval	that	was
given	to	the	etimer_set()	function.	The	event	timer	will	start	at	the
current	time.

Parameters
[in,out] ptEtime A	pointer	to	the	event	timer.

Note
A	periodic	timer	will	drift	if	this	function	is	used	to	reset	it.	For
periodic	timers,	use	the	etimer_reset()	function	instead.

See	also
etimer_reset()

Here	is	the	call	graph	for	this	function:

void	etimer_set (tETIME	*	 ptEtime,
TICK	 interval	
)

This	function	is	used	to	set	an	event	timer	for	a	time	sometime	in	the

future.	When	the	event	timer	expires,	the	event
PROCESS_EVENT_TIMER	will	be	posted	to	the	process	that	called
the	etimer_set()	function.

Parameters
[in,out] ptEtime A	pointer	to	the	event	timer
[in] interval The	interval	before	the	timer	expires.

Here	is	the	call	graph	for	this	function:

TICK	etimer_start_time (tETIME	*	 ptEtime)

This	function	returns	the	start	time	(when	the	timer	was	last	set)	for	an
event	timer.

Parameters
[in,out] ptEtime A	pointer	to	the	event	timer

Returns
The	start	time	for	the	event	timer.

void	etimer_stop (tETIME	*	 ptEtime)

This	function	stops	an	event	timer	that	has	previously	been	set	with
etimer_set()	or	etimer_reset().	After	this	function	has	been	called,	the
event	timer	will	not	emit	any	event	when	it	expires.

Parameters
[in,out] ptEtime A	pointer	to	the	pending	event	timer.

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

Data	Fields

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

etime_struct	Struct
Reference
Event	timers

Event	timer	structure.	More...

#include	<RainbowBS.h>

Collaboration	diagram	for	etime_struct:

Data	Fields
TICK	 start

	
TICK	 interval

	
struct	etime_struct	*	 next
	

tPROCESS	*	 p
	

Detailed	Description

This	structure	is	used	for	declaring	a	timer.The	timer	must	be	set	with
etimer_set()	before	it	can	be	used.

The	documentation	for	this	struct	was	generated	from	the	following	file:

RainbowBS.h

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

debug

statement	macros

statement	macros	for	debug

#define	 RBS_DEBUG_STA(sta)			sta
	 C	statement	sta	is	compiled	if	enable	debug.	More...
	
#define	 RBS_DEBUG_IF(exp,	sta)			if	(exp)	{	sta
	 C	statement	if	is	compiled	if	enable	debug.	More...
	

#define	 RBS_DEBUG_ELSIF(sta1,	exp,	sta2)			sta1;}	else	if	(exp)	{sta2
	 C	statement	else	if	is	compiled	if	enable	debug.	More...
	
#define	 RBS_DEBUG_ENDIF(sta)			sta;}
	 C	statement	}	for	if	is	compiled	if	enable	debug.	More...
	

error	macro	function

error	macros	for	debug	output

#define	 RBS_DEBUG_ERROR(exp,	s,	sta)
	 Output	error	information.	More...
	
#define	 RBS_DEBUG_ERROR_FORMAT(exp,	format,	sta,	...)
	 Output	format	error	information	conditionally.	More...
	

warning	macro	function

warning	macros	for	debug	output

#define	 RBS_DEBUG_WARN(exp,	s)
	 Output	warning	information	conditionally.	More...
	
#define	 RBS_DEBUG_WARN_FORMAT(exp,	format,	...)
	 Output	format	warning	information	conditionally.	More...
	

log	macro	function

log	macros	for	debug	output

#define	 RBS_DEBUG_LOG(s)
	 Output	format	log	information.	More...
	
#define	 RBS_DEBUG_LOG_FORMAT(format,	...)
	 Output	format	log	information.	More...
	

Detailed	Description

used	for	system	or	application	debug.

Macro	Definition	Documentation

#define	RBS_DEBUG_ELSIF (sta1,
	 exp,
	 sta2	
) 			sta1;}	else	if	(exp)	{	sta2

This	macro	equals	to	sta1;}	else	if	(exp)	{	sta2

Parameters
sta1C	statement.
exp C	expression.
sta2C	statement.

Note
this	should	used	with	RBS_DEBUG_IF()	and	RBS_DEBUG_ENDIF().

See	also
RBS_DEBUG_IF()
RBS_DEBUG_ENDIF()

#define	RBS_DEBUG_ENDIF (sta) 			sta;}

This	macro	equals	to	sta1;}

Parameters
staC	statement.

Note
this	should	used	with	RBS_DEBUG_IF()	and	RBS_DEBUG_ELSIF().

See	also
RBS_DEBUG_IF()

RBS_DEBUG_ELSIF()

#define	RBS_DEBUG_ERROR (exp,
	 s,
	 sta	
)

Parameters
[in] exp C	language	logical	expression.
[in] s information	string.
[in] sta C	statement.

Note
length	of	information	string	should	not	exceed
RBS_CFG_DEBUG_BUFSIZE

#define	RBS_DEBUG_ERROR_FORMAT (exp,
	 format,
	 sta,
	 ...	
)

Parameters
[in] exp C	language	logical	expression.
[in] format format	information	string.
[in] sta C	statement.
[in] ... parameters.

Note
length	of	information	string	should	not	exceed
RBS_CFG_DEBUG_BUFSIZE

#define	RBS_DEBUG_IF (exp,

	 sta	
) 			if	(exp)	{	sta

This	macro	equals	to	if	(exp)	{	sta

Parameters
exp C	expression.
sta C	statement.

Note
this	should	used	with	RBS_DEBUG_ELSIF()	and	RBS_DEBUG_ENDIF().

See	also
RBS_DEBUG_ELSIF()
RBS_DEBUG_ENDIF()

#define	RBS_DEBUG_LOG (s)

Parameters
[in] s information	string.

Note
length	of	information	string	should	not	exceed
RBS_CFG_DEBUG_BUFSIZE

#define	RBS_DEBUG_LOG_FORMAT (format,
	 ...	
)

Parameters
[in] format format	information	string.
[in] ... parameters.

Note
length	of	information	string	should	not	exceed

RBS_CFG_DEBUG_BUFSIZE

#define	RBS_DEBUG_STA (sta) 			sta

Parameters
staC	statement

#define	RBS_DEBUG_WARN (exp,
	 s	
)

Parameters
[in] exp C	language	logical	expression.
[in] s information	string.

Note
length	of	information	string	should	not	exceed
RBS_CFG_DEBUG_BUFSIZE

#define	RBS_DEBUG_WARN_FORMAT (exp,
	 format,
	 ...	
)

Parameters
[in] exp C	language	logical	expression.
[in] format format	information	string.
[in] ... parameters.

Note
length	of	information	string	should	not	exceed
RBS_CFG_DEBUG_BUFSIZE

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

Modules	|	Files	|	Data	Structures	|	Macros

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

Pt

Collaboration	diagram	for	Pt:

Modules
	 Local	continuations
	
	 Protothread	semaphores
	

Files
file		 pt.h
	

Data	Structures
struct		 pt

	

Macros
#define	 PT_WAITING			0
	
#define	 PT_YIELDED			1
	
#define	 PT_EXITED			2
	
#define	 PT_ENDED			3
	

Initialization
#define	 PT_INIT(pt)
	

Declaration	and	definition
#define	 PT_THREAD(name_args)
	
#define	 PT_BEGIN(pt)
	
#define	 PT_END(pt)
	

Blocked	wait
#define	 PT_WAIT_UNTIL(pt,	condition)
	
#define	 PT_WAIT_WHILE(pt,	cond)
	

Hierarchical	protothreads
#define	 PT_WAIT_THREAD(pt,	thread)
	
#define	 PT_SPAWN(pt,	child,	thread)
	

Exiting	and	restarting
#define	 PT_RESTART(pt)
	
#define	 PT_EXIT(pt)
	

Calling	a	protothread
#define	 PT_SCHEDULE(f)
	

Yielding	from	a	protothread
#define	 PT_YIELD(pt)
	
#define	 PT_YIELD_UNTIL(pt,	cond)
	 Yield	from	the	protothread	until	a	condition	occurs.	More...
	

Detailed	Description

Macro	Definition	Documentation

#define	PT_BEGIN (pt)

Declare	the	start	of	a	protothread	inside	the	C	function	implementing
the	protothread.

This	macro	is	used	to	declare	the	starting	point	of	a	protothread.	It
should	be	placed	at	the	start	of	the	function	in	which	the	protothread
runs.	All	C	statements	above	the	PT_BEGIN()	invokation	will	be
executed	each	time	the	protothread	is	scheduled.

Parameters
pt A	pointer	to	the	protothread	control	structure.

#define	PT_END (pt)

Declare	the	end	of	a	protothread.

This	macro	is	used	for	declaring	that	a	protothread	ends.	It	must
always	be	used	together	with	a	matching	PT_BEGIN()	macro.

Parameters
pt A	pointer	to	the	protothread	control	structure.

#define	PT_EXIT (pt)

Exit	the	protothread.

This	macro	causes	the	protothread	to	exit.	If	the	protothread	was
spawned	by	another	protothread,	the	parent	protothread	will	become
unblocked	and	can	continue	to	run.

Parameters
pt A	pointer	to	the	protothread	control	structure.

#define	PT_INIT (pt)

Initialize	a	protothread.

Initializes	a	protothread.	Initialization	must	be	done	prior	to	starting	to
execute	the	protothread.

Parameters
pt A	pointer	to	the	protothread	control	structure.

See	also
PT_SPAWN()

#define	PT_RESTART (pt)

Restart	the	protothread.

This	macro	will	block	and	cause	the	running	protothread	to	restart	its
execution	at	the	place	of	the	PT_BEGIN()	call.

Parameters
pt A	pointer	to	the	protothread	control	structure.

#define	PT_SCHEDULE (f)

Schedule	a	protothread.

This	function	shedules	a	protothread.	The	return	value	of	the	function
is	non-zero	if	the	protothread	is	running	or	zero	if	the	protothread	has

exited.

Parameters
f The	call	to	the	C	function	implementing	the	protothread	to	be
scheduled

#define	PT_SPAWN (pt,
	 child,
	 thread	
)

Spawn	a	child	protothread	and	wait	until	it	exits.

This	macro	spawns	a	child	protothread	and	waits	until	it	exits.	The
macro	can	only	be	used	within	a	protothread.

Parameters
pt A	pointer	to	the	protothread	control	structure.
child A	pointer	to	the	child	protothread's	control	structure.
thread The	child	protothread	with	arguments

#define	PT_THREAD (name_args)

Declaration	of	a	protothread.

This	macro	is	used	to	declare	a	protothread.	All	protothreads	must	be
declared	with	this	macro.

Parameters
name_args The	name	and	arguments	of	the	C	function

implementing	the	protothread.

#define	PT_WAIT_THREAD (pt,
	 thread	
)

Block	and	wait	until	a	child	protothread	completes.

This	macro	schedules	a	child	protothread.	The	current	protothread	will
block	until	the	child	protothread	completes.

Note
The	child	protothread	must	be	manually	initialized	with	the
PT_INIT()	function	before	this	function	is	used.

Parameters
pt A	pointer	to	the	protothread	control	structure.
thread The	child	protothread	with	arguments

See	also
PT_SPAWN()

#define	PT_WAIT_UNTIL (pt,
	 condition	
)

Block	and	wait	until	condition	is	true.

This	macro	blocks	the	protothread	until	the	specified	condition	is	true.

Parameters
pt A	pointer	to	the	protothread	control	structure.
condition The	condition.

#define	PT_WAIT_WHILE (pt,
	 cond	
)

Block	and	wait	while	condition	is	true.

This	function	blocks	and	waits	while	condition	is	true.	See

PT_WAIT_UNTIL().

Parameters
pt A	pointer	to	the	protothread	control	structure.
cond The	condition.

#define	PT_YIELD (pt)

Yield	from	the	current	protothread.

This	function	will	yield	the	protothread,	thereby	allowing	other
processing	to	take	place	in	the	system.

Parameters
pt A	pointer	to	the	protothread	control	structure.

#define	PT_YIELD_UNTIL (pt,
	 cond	
)

Parameters
pt A	pointer	to	the	protothread	control	structure.
cond The	condition.

								This	function	will	yield	the	protothread,	until	the

								specified	condition	evaluates	to	true.

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

Files	|	Macros	|	Typedefs

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

Local	continuations
Pt

Collaboration	diagram	for	Local	continuations:

Files
file		 lc-addrlabels.h
	
file		 lc-switch.h
	
file		 lc.h
	

Macros
#define	 LC_INIT(s)			s	=	NULL
	
#define	 LC_RESUME(s)
	
#define	 LC_CONCAT2(s1,	s2)			s1##s2
	
#define	 LC_CONCAT(s1,	s2)			LC_CONCAT2(s1,	s2)
	
#define	 LC_SET(s)
	
#define	 LC_END(s)
	
#define	 LC_INIT(s)			s	=	0;
	
#define	 LC_RESUME(s)			switch(s)	{	case	0:
	
#define	 LC_SET(s)			s	=	__LINE__;	case	__LINE__:
	
#define	 LC_END(s)			}
	
#define	 __LC_H__
	

Typedefs
typedef	void	*	 lc_t

	
typedef	unsigned	short	 lc_t
	

Detailed	Description

Local	continuations	form	the	basis	for	implementing	protothreads.	A	local
continuation	can	be	set	in	a	specific	function	to	capture	the	state	of	the
function.	After	a	local	continuation	has	been	set	can	be	resumed	in	order
to	restore	the	state	of	the	function	at	the	point	where	the	local
continuation	was	set.

Macro	Definition	Documentation

#define	LC_RESUME (s)

Value:
do	{												\

				if(s	!=	NULL)	{							\

						goto	*s;										\

				}											\

		}	while(0)

#define	LC_SET (s)

Value:
do	{												\

				LC_CONCAT(LC_LABEL,	__LINE__):												\

				(s)	=	&&LC_CONCAT(LC_LABEL,	__LINE__);		\

		}	while(0)

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

RainbowBS RBSSource Base Protothreads

Macros	|	Typedefs

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

lc-addrlabels.h	File
Reference
Pt	»	Local	continuations

Macros
#define	 LC_INIT(s)			s	=	NULL
	
#define	 LC_RESUME(s)
	
#define	 LC_CONCAT2(s1,	s2)			s1##s2
	
#define	 LC_CONCAT(s1,	s2)			LC_CONCAT2(s1,	s2)
	
#define	 LC_SET(s)
	
#define	 LC_END(s)
	

Typedefs
typedef	void	*	 lc_t
	

Detailed	Description

Implementation	of	local	continuations	based	on	the	"Labels	as	values"
feature	of	gcc

Author
Adam	Dunkels	adam@sics.se

This	implementation	of	local	continuations	is	based	on	a	special	feature
of	the	GCC	C	compiler	called	"labels	as	values".	This	feature	allows
assigning	pointers	with	the	address	of	the	code	corresponding	to	a
particular	C	label.

For	more	information,	see	the	GCC	documentation:
http://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html

Generated	by			 	1.8.9.1

http://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html
http://www.doxygen.org/index.html

RainbowBS RBSSource Base Protothreads

Macros	|	Typedefs

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

lc-switch.h	File
Reference
Pt	»	Local	continuations

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Macros
#define	 LC_INIT(s)			s	=	0;
	
#define	 LC_RESUME(s)			switch(s)	{	case	0:
	
#define	 LC_SET(s)			s	=	__LINE__;	case	__LINE__:
	
#define	 LC_END(s)			}
	

Typedefs
typedef	unsigned	short	 lc_t
	

Detailed	Description

Implementation	of	local	continuations	based	on	switch()	statment

Author
Adam	Dunkels	adam@sics.se

This	implementation	of	local	continuations	uses	the	C	switch()	statement
to	resume	execution	of	a	function	somewhere	inside	the	function's	body.
The	implementation	is	based	on	the	fact	that	switch()	statements	are	able
to	jump	directly	into	the	bodies	of	control	structures	such	as	if()	or	while()
statmenets.

This	implementation	borrows	heavily	from	Simon	Tatham's	coroutines
implementation	in	C:
http://www.chiark.greenend.org.uk/~sgtatham/coroutines.html

Generated	by			 	1.8.9.1

http://www.chiark.greenend.org.uk/~sgtatham/coroutines.html
http://www.doxygen.org/index.html

RainbowBS RBSSource Base Protothreads

Macros

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

lc.h	File	Reference
Pt	»	Local	continuations

#include	"lc-switch.h"

Include	dependency	graph	for	lc.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Detailed	Description

Local	continuations

Author
Adam	Dunkels	adam@sics.se

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

Files	|	Data	Structures	|	Macros

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

Protothread
semaphores
Pt

Collaboration	diagram	for	Protothread	semaphores:

Files
file		 pt-sem.h
	

Data	Structures
struct		 pt_sem
	

Macros
#define	 PT_SEM_INIT(s,	c)
	
#define	 PT_SEM_WAIT(pt,	s)
	
#define	 PT_SEM_SIGNAL(pt,	s)
	

Detailed	Description

This	module	implements	counting	semaphores	on	top	of	protothreads.
Semaphores	are	a	synchronization	primitive	that	provide	two	operations:
"wait"	and	"signal".	The	"wait"	operation	checks	the	semaphore	counter
and	blocks	the	thread	if	the	counter	is	zero.	The	"signal"	operation
increases	the	semaphore	counter	but	does	not	block.	If	another	thread
has	blocked	waiting	for	the	semaphore	that	is	signalled,	the	blocked
thread	will	become	runnable	again.

Semaphores	can	be	used	to	implement	other,	more	structured,
synchronization	primitives	such	as	monitors	and	message
queues/bounded	buffers	(see	below).

The	following	example	shows	how	the	producer-consumer	problem,	also
known	as	the	bounded	buffer	problem,	can	be	solved	using	protothreads
and	semaphores.	Notes	on	the	program	follow	after	the	example.

#include	"pt-sem.h"

#define	NUM_ITEMS	32

#define	BUFSIZE	8

static	struct	pt_sem	mutex,	full,	empty;

PT_THREAD(producer(struct	pt	*pt))

{

	static	int	produced;

	PT_BEGIN(pt);

	for(produced	=	0;	produced	<	NUM_ITEMS;	++produced)	

{

	PT_SEM_WAIT(pt,	&full);

	PT_SEM_WAIT(pt,	&mutex);

				add_to_buffer(produce_item());

	PT_SEM_SIGNAL(pt,	&mutex);

	PT_SEM_SIGNAL(pt,	&empty);

		}

	PT_END(pt);

}

PT_THREAD(consumer(struct	pt	*pt))

{

	static	int	consumed;

	PT_BEGIN(pt);

	for(consumed	=	0;	consumed	<	NUM_ITEMS;	++consumed)	

{

	PT_SEM_WAIT(pt,	&empty);

	PT_SEM_WAIT(pt,	&mutex);

				consume_item(get_from_buffer());

	PT_SEM_SIGNAL(pt,	&mutex);

	PT_SEM_SIGNAL(pt,	&full);

		}

	PT_END(pt);

}

PT_THREAD(driver_thread(struct	pt	*pt))

{

	static	struct	pt	pt_producer,	pt_consumer;

	PT_BEGIN(pt);

	PT_SEM_INIT(&empty,	0);

	PT_SEM_INIT(&full,	BUFSIZE);

	PT_SEM_INIT(&mutex,	1);

	PT_INIT(&pt_producer);

	PT_INIT(&pt_consumer);

	PT_WAIT_THREAD(pt,	producer(&pt_producer)	&

									consumer(&pt_consumer));

	PT_END(pt);

}

The	program	uses	three	protothreads:	one	protothread	that	implements
the	consumer,	one	thread	that	implements	the	producer,	and	one
protothread	that	drives	the	two	other	protothreads.	The	program	uses
three	semaphores:	"full",	"empty"	and	"mutex".	The	"mutex"	semaphore	is
used	to	provide	mutual	exclusion	for	the	buffer,	the	"empty"	semaphore	is
used	to	block	the	consumer	is	the	buffer	is	empty,	and	the	"full"
semaphore	is	used	to	block	the	producer	is	the	buffer	is	full.

The	"driver_thread"	holds	two	protothread	state	variables,	"pt_producer"
and	"pt_consumer".	It	is	important	to	note	that	both	these	variables	are
declared	as	static.	If	the	static	keyword	is	not	used,	both	variables	are
stored	on	the	stack.	Since	protothreads	do	not	store	the	stack,	these
variables	may	be	overwritten	during	a	protothread	wait	operation.
Similarly,	both	the	"consumer"	and	"producer"	protothreads	declare	their
local	variables	as	static,	to	avoid	them	being	stored	on	the	stack.

Macro	Definition	Documentation

#define	PT_SEM_INIT (s,
	 c	
)

Initialize	a	semaphore

This	macro	initializes	a	semaphore	with	a	value	for	the	counter.
Internally,	the	semaphores	use	an	"unsigned	int"	to	represent	the
counter,	and	therefore	the	"count"	argument	should	be	within	range	of
an	unsigned	int.

Parameters
s (struct	pt_sem	*)	A	pointer	to	the	pt_sem	struct	representing
the	semaphore

c (unsigned	int)	The	initial	count	of	the	semaphore.

#define	PT_SEM_SIGNAL (pt,
	 s	
)

Signal	a	semaphore

This	macro	carries	out	the	"signal"	operation	on	the	semaphore.	The
signal	operation	increments	the	counter	inside	the	semaphore,	which
eventually	will	cause	waiting	protothreads	to	continue	executing.

Parameters
pt (struct	pt	*)	A	pointer	to	the	protothread	(struct	pt)	in	which	the
operation	is	executed.

s (struct	pt_sem	*)	A	pointer	to	the	pt_sem	struct	representing
the	semaphore

#define	PT_SEM_WAIT (pt,
	 s	
)

Wait	for	a	semaphore

This	macro	carries	out	the	"wait"	operation	on	the	semaphore.	The
wait	operation	causes	the	protothread	to	block	while	the	counter	is
zero.	When	the	counter	reaches	a	value	larger	than	zero,	the
protothread	will	continue.

Parameters
pt (struct	pt	*)	A	pointer	to	the	protothread	(struct	pt)	in	which	the
operation	is	executed.

s (struct	pt_sem	*)	A	pointer	to	the	pt_sem	struct	representing
the	semaphore

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

RainbowBS RBSSource Base Protothreads

Data	Structures	|	Macros

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

pt-sem.h	File
Reference
Pt	»	Protothread	semaphores

#include	"pt.h"

Include	dependency	graph	for	pt-sem.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Data	Structures
struct		 pt_sem
	

Macros
#define	 PT_SEM_INIT(s,	c)
	
#define	 PT_SEM_WAIT(pt,	s)
	
#define	 PT_SEM_SIGNAL(pt,	s)
	

Detailed	Description

Couting	semaphores	implemented	on	protothreads

Author
Adam	Dunkels	adam@sics.se

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

Data	Fields

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

pt_sem	Struct
Reference
Pt	»	Protothread	semaphores

Collaboration	diagram	for	pt_sem:

Data	Fields
unsigned	int	 count
	

The	documentation	for	this	struct	was	generated	from	the	following	file:

pt-sem.h

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

RainbowBS RBSSource Base Protothreads

Data	Structures	|	Macros

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

pt.h	File	Reference
Pt

#include	"lc.h"

Include	dependency	graph	for	pt.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Data	Structures
struct		 pt

	

Macros
#define	 PT_WAITING			0
	
#define	 PT_YIELDED			1
	
#define	 PT_EXITED			2
	
#define	 PT_ENDED			3
	

Initialization
#define	 PT_INIT(pt)
	

Declaration	and	definition
#define	 PT_THREAD(name_args)
	
#define	 PT_BEGIN(pt)
	
#define	 PT_END(pt)
	

Blocked	wait
#define	 PT_WAIT_UNTIL(pt,	condition)
	
#define	 PT_WAIT_WHILE(pt,	cond)
	

Hierarchical	protothreads
#define	 PT_WAIT_THREAD(pt,	thread)
	
#define	 PT_SPAWN(pt,	child,	thread)
	

Exiting	and	restarting
#define	 PT_RESTART(pt)
	

#define	 PT_EXIT(pt)
	

Calling	a	protothread
#define	 PT_SCHEDULE(f)
	

Yielding	from	a	protothread
#define	 PT_YIELD(pt)
	
#define	 PT_YIELD_UNTIL(pt,	cond)
	 Yield	from	the	protothread	until	a	condition	occurs.	More...
	

Detailed	Description

Protothreads	implementation.

Author
Adam	Dunkels	adam@sics.se

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

Data	Fields

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

pt	Struct	Reference
Pt

Collaboration	diagram	for	pt:

Data	Fields
lc_t	 lc

	

The	documentation	for	this	struct	was	generated	from	the	following	file:

pt.h

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

Data	Structures

Here	are	the	data	structures	with	brief	descriptions:

	 C etime_struct Event	timer	structure
	 C event_struct
	 C MEM_struct
	 C process_struct Process	structure(one	process	consists	one

protothread)
	 C pt
	 C pt_sem
	 C tBLOCK
	 C tDMMHEAD
	 C tTime Time	structure

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

Data	Fields

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

event_struct	Struct
Reference

Collaboration	diagram	for	event_struct:

Data	Fields
process_event_t	 ev
	
process_data_t	 data

	
tPROCESS	*	 p

	

The	documentation	for	this	struct	was	generated	from	the	following	file:

process.c

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

Data	Fields

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

MEM_struct	Struct
Reference

Collaboration	diagram	for	MEM_struct:

Data	Fields
hDMM	 hDmm

	
U8	*	 pData

	
USIZE	 size

	
struct	MEM_struct	*	 pNext
	
struct	MEM_struct	*	 pPrev
	

U8	 lock_count
	

Field	Documentation

hDMM	hDmm

DMM	handle

U8	lock_count

0:not	allocated,1:allocated,[2,255]:being	used	lock_count-1	times.

U8*	pData

pointer	of	memory	area

struct	MEM_struct*	pNext

next	handle	in	linked	list

struct	MEM_struct*	pPrev

prev	handle	in	linked	list

USIZE	size

usable	size	of	allocated	block

The	documentation	for	this	struct	was	generated	from	the	following	file:

DMM.c

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

Data	Fields

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

tBLOCK	Struct
Reference

Collaboration	diagram	for	tBLOCK:

Data	Fields
hDMM	 hDmm
	

U8	*	 pData
	

U8	 lock_count
	

Field	Documentation

hDMM	hDmm

DMM	handle

U8	lock_count

0:not	allocated,1:allocated,[2,255]:being	used	lock_count-1	times

U8*	pData

pointer	of	data	area

The	documentation	for	this	struct	was	generated	from	the	following	file:

DMM.c

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

Data	Fields

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

tDMMHEAD	Struct
Reference

Collaboration	diagram	for	tDMMHEAD:

Data	Fields
eDMTYPE	 eType
	

char	*	 pName
	

void	*	 pObjectArrayStart
	

void	*	 pObjectArrayLast
	

void	*	 pFreeObject
	

USIZE	 free_object_count
	

USIZE	 free_bytes
	

U8	*	 pDataStart
	

U8	*	 pDataEnd
	

USIZE	 block_size
	
HMUTEX	 hMutex

	

Field	Documentation

USIZE	block_size

block	size	if	eType	is	DM_BLOCK

eDMTYPE	eType

DMM	type

USIZE	free_bytes

count	of	free	bytes	if	eType	is	DM_POOL	or	DM_POOL_AUTO

USIZE	free_object_count

count	of	free	array(tBLOCK	or	tMEM)	objects

HMUTEX	hMutex

lock

U8*	pDataEnd

pointer	of	data	end

U8*	pDataStart

pointer	of	data	head

void*	pFreeObject

pointer	for	accelerating	allocation

char*	pName

DMM	name

void*	pObjectArrayLast

pointer	of	the	last	array(tBLOCK	or	tMEM)	object

void*	pObjectArrayStart

pointer	of	the	first	array(tBLOCK	or	tMEM)	object

The	documentation	for	this	struct	was	generated	from	the	following	file:

DMM.c

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

Data	Structure	Index

E	|	M	|	P	|	T

		M		 event_struct			 pt			 tDMMHEAD			

		p		 pt_sem			 tTime			
MEM_struct			 		t		
		e		 process_struct			

tBLOCK			
etime_struct			

E	|	M	|	P	|	T

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

Here	is	a	list	of	all	documented	struct	and	union	fields	with	links	to	the
struct/union	documentation	for	each	field:

-	b	-

block_size	:	tDMMHEAD

-	d	-

day	:	tTime
day_of_week	:	tTime

-	e	-

eType	:	tDMMHEAD

-	f	-

free_bytes	:	tDMMHEAD
free_object_count	:	tDMMHEAD

-	h	-

hDmm	:	MEM_struct	,	tBLOCK
hMutex	:	tDMMHEAD
hour	:	tTime

-	l	-

lock_count	:	MEM_struct	,	tBLOCK

-	m	-

milliseconds	:	tTime

minute	:	tTime
month	:	tTime

-	n	-

name	:	process_struct
needspoll	:	process_struct
next	:	process_struct

-	p	-

pData	:	MEM_struct	,	tBLOCK
pDataEnd	:	tDMMHEAD
pDataStart	:	tDMMHEAD
pFreeObject	:	tDMMHEAD
pName	:	tDMMHEAD
pNext	:	MEM_struct
pObjectArrayLast	:	tDMMHEAD
pObjectArrayStart	:	tDMMHEAD
pPrev	:	MEM_struct

-	s	-

second	:	tTime
size	:	MEM_struct
state	:	process_struct

-	y	-

year	:	tTime

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

	

-	b	-

block_size	:	tDMMHEAD

-	d	-

day	:	tTime
day_of_week	:	tTime

-	e	-

eType	:	tDMMHEAD

-	f	-

free_bytes	:	tDMMHEAD
free_object_count	:	tDMMHEAD

-	h	-

hDmm	:	MEM_struct	,	tBLOCK
hMutex	:	tDMMHEAD
hour	:	tTime

-	l	-

lock_count	:	MEM_struct	,	tBLOCK

-	m	-

milliseconds	:	tTime
minute	:	tTime

month	:	tTime

-	n	-

name	:	process_struct
needspoll	:	process_struct
next	:	process_struct

-	p	-

pData	:	MEM_struct	,	tBLOCK
pDataEnd	:	tDMMHEAD
pDataStart	:	tDMMHEAD
pFreeObject	:	tDMMHEAD
pName	:	tDMMHEAD
pNext	:	MEM_struct
pObjectArrayLast	:	tDMMHEAD
pObjectArrayStart	:	tDMMHEAD
pPrev	:	MEM_struct

-	s	-

second	:	tTime
size	:	MEM_struct
state	:	process_struct

-	y	-

year	:	tTime

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

File	List

Here	is	a	list	of	all	documented	files	with	brief	descriptions:

	 lc-addrlabels.h
	 lc-switch.h
	 lc.h
	 Port.h
	 pt-sem.h
	 pt.h
	 RainbowBS.h
	 RainbowBSConf.h

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

RainbowBS RBSSource Port

Functions

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

Port.h	File	Reference
#include	"RainbowBS.h"

Include	dependency	graph	for	Port.h:

Functions
BOOL	 Port_Init	(void)
	 Initialize	hardware.	More...
	
TICK	 Port_GetTickCount	(void)
	 Get	system	tick.	More...
	

void	 Port_GetLocalTime	(tTime	*pTime)
	 Get	system	local	time.	More...
	

void	 Port_Delay	(U32	millisec)
	 Delay	some	millisecond.	More...
	

void	 Port_Printf_Error	(const	char	*s)
	 Output	error	information.	More...
	

void	 Port_Printf_Warn	(const	char	*s)
	 Output	warning	information.	More...
	

void	 Port_Printf_Log	(const	char	*s)
	 Output	log	information.	More...
	
BOOL	 Port_GetMutex	(HMUTEX	hMutex)
	 Wait	for	a	mutex.	More...
	
BOOL	 Port_FreeMutex	(HMUTEX	hMutex)
	 Release	a	mutex.	More...
	

Detailed	Description

Implementation	of	porting.

Author
QWQ	jacobqwq@icloud.com

Function	Documentation

void	Port_Delay (U32	 millisec)

Parameters
[in]millisecmillisecond	count.

Here	is	the	caller	graph	for	this	function:

BOOL	Port_FreeMutex (HMUTEX	 hMutex)

Parameters
[in] hMutex handle	of	mutex.

Here	is	the	caller	graph	for	this	function:

void	Port_GetLocalTime (tTime	*	 pTime)

Parameters
[out] pTime time	structure.

Here	is	the	caller	graph	for	this	function:

BOOL	Port_GetMutex (HMUTEX	 hMutex)

Parameters
[in] hMutex handle	of	mutex.

Here	is	the	caller	graph	for	this	function:

TICK	Port_GetTickCount (void)

Returns
system	tick.

Here	is	the	caller	graph	for	this	function:

BOOL	Port_Init (void)

Return	values
TRUE successful.
FALSE failed.

Here	is	the	caller	graph	for	this	function:

void	Port_Printf_Error (const	char	*	 s)

Parameters
[in] s string.

void	Port_Printf_Log (const	char	*	 s)

Parameters
[in] s string.

void	Port_Printf_Warn (const	char	*	 s)

Parameters
[in] s string.

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

RainbowBS RBSSource

Data	Structures	|	Macros	|	Typedefs	|	Functions

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

RainbowBS.h	File
Reference

#include	<stddef.h>	#include	<windows.h>
#include	"RainbowBSConf.h"

#include	"pt.h"

#include	"pt-sem.h"

#include	<stdio.h>

#include	<string.h>

Include	dependency	graph	for	RainbowBS.h:

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Data	Structures
struct		 tTime
	 Time	structure.	More...
	
struct		 process_struct
	 Process	structure(one	process	consists	one	protothread).

More...
	
struct		 etime_struct
	 Event	timer	structure.	More...
	

Macros
#define	 RBS_VERSION			"0.1.0"
	
#define	 RBS_VERNUM			0x0100
	
#define	 RBS_VER_MAJOR			0
	
#define	 RBS_VER_MINOR			1
	
#define	 RBS_VER_REVISION			0
	
#define	 RBS_VER_SUBREVISION			0
	
#define	 FALSE			0u
	
#define	 TRUE			1u
	
#define	 USE_PARA(para)			(para	=	(para))
	
#define	 MIN(v0,	v1)			(((v0)	>	(v1))	?	(v1)	:	(v0))
	
#define	 MAX(v0,	v1)			(((v0)	>	(v1))	?	(v0)	:	(v1))
	
#define	 ABS(v)			(((v)	>=	0)	?	(v)	:	(-(v)))
	
#define	 SWAP(a,	b)			(a	=	(a)	+	(b),b	=	(a)	-	(b),a	=	(a)	-	(b))
	
#define	 COUNT_OF(a)			(sizeof(a)/sizeof(a[0]))
	
#define	 _STR(a)			#a
	
#define	 STR(a)			_STR(a)
	
#define	 _CONS(a,	b)			a##b
	

#define	 CONS(a,	b)			_CONS(a,b)
	

#define	 ALIGN_F(pointer,	power2)			(((IPTRDIFF)(pointer)	+((IPTRDIFF)((power2)	-	1)))	&	(~((IPTRDIFF)((power2)	-	1))))
	

#define	 ALIGN_B(pointer,	power2)			((IPTRDIFF)(pointer)	&	(~((IPTRDIFF)((power2)	-	1))))
	
#define	 HDMM_NULL			NULL
	
#define	 HBLOCK_NULL			NULL
	
#define	 HMEM_NULL			NULL
	
#define	 PROCESS_NONE			NULL
	
#define	 PROCESS_BROADCAST			NULL
	

#define	 PROCESS_NAME_STRING(process)			((NULL	==	(process))	?"No	Name"	:	(process)->name)
	

predefined	event	type
#define	 PROCESS_EVENT_NONE			0x80
	
#define	 PROCESS_EVENT_INIT			0x81
	
#define	 PROCESS_EVENT_POLL			0x82
	
#define	 PROCESS_EVENT_EXIT			0x83
	
#define	 PROCESS_EVENT_SERVICE_REMOVED			0x84
	
#define	 PROCESS_EVENT_CONTINUE			0x85
	
#define	 PROCESS_EVENT_MSG			0x86
	
#define	 PROCESS_EVENT_EXITED			0x87

	

#define	 PROCESS_EVENT_TIMER			0x88
	
#define	 PROCESS_EVENT_COM			0x89
	
#define	 PROCESS_EVENT_MAX			0x8a
	

process	declaration	and	definition
#define	 PROCESS_THREAD(name,	ev,	data)
	 Define	the	body	of	a	process.	More...
	
#define	 PROCESS_NAME(name)			extern	tPROCESS	name
	 Declare	the	name	of	a	process.	More...
	
#define	 PROCESS(name,	strname)
	 Define	a	process.	More...
	

semaphore	declaration	and	definition
#define	 SEM_NAME(name)			extern	struct	pt_sem	sem_##name
	 Declare	the	name	of	a	semaphore.	More...
	
#define	 SEM(name,	count)
	 Define	a	semaphore.	More...
	

process	protothread	functions
#define	 PROCESS_BEGIN()
	 Define	the	beginning	of	a	process.	More...
	
#define	 PROCESS_END()
	 Define	the	end	of	a	process.	More...
	
#define	 PROCESS_WAIT_EVENT()
	 Wait	for	an	event	to	be	posted	to	the	process.	More...
	

#define	 PROCESS_WAIT_EVENT_UNTIL(c)
	 Wait	for	an	event	to	be	posted	to	the	process,	with	an	extra

condition.	More...
	
#define	 PROCESS_YIELD()
	 Yield	the	currently	running	process.	
	
#define	 PROCESS_YIELD_UNTIL(c)
	 Yield	the	currently	running	process	until	a	condition	occurs.

More...
	
#define	 PROCESS_WAIT_UNTIL(c)
	 Wait	for	a	condition	to	occur.	More...
	
#define	 PROCESS_WAIT_WHILE(c)
	 Wait	for	a	condition	not	occur.	More...
	
#define	 PROCESS_EXIT()
	 Exit	the	currently	running	process.	
	
#define	 PROCESS_PT_SPAWN(pt,	thread)
	 Spawn	a	protothread	from	the	process.	More...
	
#define	 PROCESS_PAUSE()
	 Yield	the	process	for	a	short	while.	More...
	
#define	 PROCESS_WAIT_SEM(name)
	
#define	 PROCESS_SIGNAL_SEM(name)
	

poll	and	exit	handlers

#define	 PROCESS_POLLHANDLER(handler)			if(ev	==PROCESS_EVENT_POLL)	{	handler;	}
	 Specify	an	action	when	a	process	is	polled.	More...
	

#define	 PROCESS_EXITHANDLER(handler)			if(ev	==

PROCESS_EVENT_EXIT)	{	handler;	}
	 Specify	an	action	when	a	process	exits.	More...
	

statement	macros

statement	macros	for	debug

#define	 RBS_DEBUG_STA(sta)			sta
	 C	statement	sta	is	compiled	if	enable	debug.	More...
	
#define	 RBS_DEBUG_IF(exp,	sta)			if	(exp)	{	sta
	 C	statement	if	is	compiled	if	enable	debug.	More...
	

#define	 RBS_DEBUG_ELSIF(sta1,	exp,	sta2)			sta1;}	else	if	(exp)	{sta2
	 C	statement	else	if	is	compiled	if	enable	debug.	More...
	
#define	 RBS_DEBUG_ENDIF(sta)			sta;}
	 C	statement	}	for	if	is	compiled	if	enable	debug.	More...
	

error	macro	function

error	macros	for	debug	output

#define	 RBS_DEBUG_ERROR(exp,	s,	sta)
	 Output	error	information.	More...
	
#define	 RBS_DEBUG_ERROR_FORMAT(exp,	format,	sta,	...)
	 Output	format	error	information	conditionally.	More...
	

warning	macro	function

warning	macros	for	debug	output

#define	 RBS_DEBUG_WARN(exp,	s)

	 Output	warning	information	conditionally.	More...
	
#define	 RBS_DEBUG_WARN_FORMAT(exp,	format,	...)
	 Output	format	warning	information	conditionally.	More...

	

log	macro	function

log	macros	for	debug	output

#define	 RBS_DEBUG_LOG(s)
	 Output	format	log	information.	More...
	
#define	 RBS_DEBUG_LOG_FORMAT(format,	...)
	 Output	format	log	information.	More...
	

Typedefs
typedef	uint8_t	 BOOL

	
typedef	int8_t	 I8

	
typedef	uint8_t	 U8

	
typedef	int16_t	 I16

	
typedef	uint16_t	 U16

	
typedef	int32_t	 I32

	
typedef	uint32_t	 U32

	
typedef	int64_t	 I64

	
typedef	uint64_t	 U64

	
typedef	size_t	 USIZE

	
typedef	ptrdiff_t	 IPTRDIFF

	
typedef	U64	 TICK

	
typedef	void	*	 hDMM

	
typedef	void	*	 hBLOCK

	
typedef	void	*	 hMEM

	
typedef	U8	 process_event_t

	
typedef	void	*	 process_data_t

	

typedef	struct	process_struct	 tPROCESS
	 Process	structure(one	process	consists

one	protothread).	More...
	

typedef	struct	etime_struct	 tETIME
	 Event	timer	structure.	More...
	

Functions
BOOL	 RBS_Init	(void)

	 Initialize	RainbowBS.	More...
	

U8	 RBS_GetCPUBits	(void)
	 CPU	word-width.	More...
	

BOOL	 RBS_IsCPULittleEndian	(void)
	 Check	if	CPU	is	little-endian.	More...
	

BOOL	 RBS_IsStackGrowDown	(void)
	 Check	if	stack	grows	down.	More...
	

void	 RBS_MemSet8	(U8	*pDes,	U8	fill,	USIZE	num)
	 Set	memory	by	byte	unit.	More...
	

void	 RBS_MemSet16	(U16	*pDes,	U16	fill,	USIZE	num)
	 Set	memory	by	two-bytes	unit.	More...
	

void	 RBS_MemSet32	(U32	*pDes,	U32	fill,	USIZE	num)
	 Set	memory	by	four-bytes	unit.	More...
	

void	 RBS_MemCpy8	(U8	*pDes,	const	U8	*pSrc,	USIZE	num)
	 Copy	memory	by	byte	unit.	More...
	

U16	 RBS_Read16L	(const	U8	**ppData)
	 Read	a	16-bits	entity	in	little-endian.	More...
	

U32	 RBS_Read32L	(const	U8	**ppData)
	 Read	a	32-bits	entity	in	little-endian.	More...
	

void	 RBS_Write16L	(U8	**ppData,	U16	data)
	 Write	a	16-bits	entity	in	little-endian.	More...
	

void	 RBS_Write32L	(U8	**ppData,	U32	data)
	 Write	a	32-bits	entity	in	little-endian.	More...
	

U16	 RBS_Read16B	(const	U8	**ppData)
	 Read	a	16-bits	entity	in	big-endian.	More...
	

U32	 RBS_Read32B	(const	U8	**ppData)
	 Read	a	32-bits	entity	in	big-endian.	More...
	

void	 RBS_Write16B	(U8	**ppData,	U16	data)
	 Write	a	16-bits	entity	in	big-endian.	More...
	

void	 RBS_Write32B	(U8	**ppData,	U32	data)
	 Write	a	32-bits	entity	in	big-endian.	More...
	

hDMM	 RBS_DMM_RegisterBlock	(char	*pName,	void	*pDM,USIZE	size,	USIZE	block_size,	HMUTEX	hMutex)

	 Register	the	memory	area	as	a	dynamic	block	memory
area.	More...

	
hBLOCK	 RBS_DMM_AllocZeroBlock	(hDMM	hDmm)

	 Allocate	a	free	block	with	zero	initialization	from	the
dynamic	block	memory	area.	More...

	
hBLOCK	 RBS_DMM_AllocBlock	(hDMM	hDmm)

	 Allocate	a	free	block	from	the	dynamic	block	memory
area.	More...

	
BOOL	 RBS_DMM_FreeBlock	(hBLOCK	hBlock)

	 Free	the	allocated	block.	More...
	

void	*	 RBS_DMM_UseHBlock	(hBLOCK	hBlock)
	 Get	the	allocated	block	pointer.	More...
	

BOOL	 RBS_DMM_UnuseHBlock	(hBLOCK	hBlock)
	 Unuse	the	allocated	block	area.	More...

	

hDMM	
RBS_DMM_RegisterPool	(char	*pName,	void	*pDM,
USIZE	size,	BOOL	bAntiFrag,	U16	handle_count,
HMUTEX	hMutex)

	 Register	the	memory	area	as	a	dynamic	pool	memory
area.	More...

	
hMEM	 RBS_DMM_AllocZeroMem	(hDMM	hDmm,	USIZE	size)

	 Allocate	a	free	memory	with	zero	initialization	from	the
dynamic	memory	area.	More...

	
hMEM	 RBS_DMM_AllocMem	(hDMM	hDmm,	USIZE	size)

	 Allocate	a	free	memory	from	the	dynamic	memory	area.
More...

	
hMEM	 RBS_DMM_ReallocMem	(hMEM	hMem,	USIZE	size)

	 Reallocate	a	free	memory	from	the	same	dynamic
memory	area.	More...

	
BOOL	 RBS_DMM_FreeMem	(hMEM	hMem)

	 Free	the	allocated	memory.	More...
	

void	*	 RBS_DMM_UseHMem	(hMEM	hMem)
	 Get	the	allocated	memory	pointer.	More...
	

BOOL	 RBS_DMM_UnuseHMem	(hMEM	hMem)
	 Unuse	the	allocated	memory	area.	More...
	

USIZE	 RBS_DMM_GetHMemSize	(hMEM	hMem)
	 Get	the	allocated	memory	size.	More...
	

system	information
const	char	*	 RBS_GetVersionString	(void)
	 Get	RainbowBS	version	string.	More...
	
const	char	*	 RBS_GetSysInfo	(void)

	 Get	system	description	string.	More...
	

process	functions	called	from	device	drivers.
BOOL	 process_poll	(tPROCESS	*ptProcess)

	 Request	a	process	to	be	polled.	More...
	

functions	called	by	the	system	and	boot-up	code
U16	 process_run	(void)

	 Run	the	system	once	-	call	poll	handlers	and	process	one
event.	More...

	
BOOL	 process_is_running	(tPROCESS	*ptProcess)

	 Check	if	a	process	is	running.	More...
	

U16	 process_nevents	(void)
	 Number	of	events	waiting	to	be	processed.	More...
	

etimer	functions	called	from	application	programs
void	 etimer_set	(tETIME	*ptEtime,	TICK	interval)

	 Set	an	event	timer.	More...
	

void	 etimer_reset	(tETIME	*ptEtime)
	 Reset	an	event	timer	with	the	same	interval	as	was

previously	set.	More...
	

void	 etimer_restart	(tETIME	*ptEtime)
	 Restart	an	event	timer	from	the	current	point	in	time.

More...
	

void	 etimer_adjust	(tETIME	*ptEtime,	int	timediff)
	 Adjust	the	expiration	time	for	an	event	timer.	More...
	

TICK	 etimer_expiration_time	(tETIME	*ptEtime)
	 Get	the	expiration	time	for	the	event	timer.	More...
	

TICK	 etimer_start_time	(tETIME	*ptEtime)
	 Get	the	start	time	for	the	event	timer.	More...

	
BOOL	 etimer_expired	(tETIME	*ptEtime)

	 Check	if	an	event	timer	has	expired.	More...
	

void	 etimer_stop	(tETIME	*ptEtime)
	 Stop	a	pending	event	timer.	More...
	

etimer	functions	called	from	timer	interrupts,by	the	system
void	 etimer_request_poll	(void)

	 Make	the	event	timer	aware	that	the	clock	has	changed.
More...

	
BOOL	 etimer_pending	(void)

	 Check	if	there	are	any	non-expired	event	timers.	More...
	

time	releated
#define	 RBS_TICK_MS			(1000u/RBS_CFG_TICK_RATE)
	

TICK	 RBS_GetTickCount	(void)
	 Get	system	tick.	More...
	

U64	 RBS_GetRunTime	(void)
	 Get	system	running	time(ms).	More...
	

void	 RBS_GetLocalTime	(tTime	*ptTime)
	 Get	system	local	time.	More...
	

void	 RBS_Delay	(U32	milliseconds)
	 Delay	some	milliseconds.	More...
	

convert	digit	to	string
enum		 ePOW	{	SHEX,	SBINARY,	SDECIMAL	}
	 Specific	hex,binary	or	decimal.	More...
	

U8	 RBS_Number2String	(U32	value,	ePOW	ePow,	U8	length,	char
*pText)

	 Convert	unsigned	digit	to	ASCII	string.	More...
	

trigonometric	releted
#define	 ANG_45DEG			1024
	
#define	 ANG_90DEG			(2*ANG_45DEG)
	
#define	 ANG_135DEG			(3*ANG_45DEG)
	
#define	 ANG_180DEG			(4*ANG_45DEG)
	
#define	 ANG_225DEG			(5*ANG_45DEG)
	
#define	 ANG_270DEG			(6*ANG_45DEG)
	
#define	 ANG_315DEG			(7*ANG_45DEG)
	
#define	 ANG_360DEG			(8*ANG_45DEG)
	

int	 RBS_sin	(int	angle)
	 Calculate	sine.	More...
	

int	 RBS_cos	(int	angle)
	 Calculate	cosine.	More...
	

int	 RBS_tan	(int	angle)
	 Calculate	tangent.	More...
	

int	 RBS_ctan	(int	angle)
	 Calculate	cotangent.	More...
	

process	functions	called	from	application	programs
#define	 PROCESS_CURRENT()			process_current

	 Get	a	pointer	to	the	currently	running	process.	More...
	

#define	
PROCESS_CONTEXT_BEGIN(ptProcess)			{	tPROCESS
*tmp_current	=	PROCESS_CURRENT();process_current
=	ptProcess

	 Switch	context	to	another	process.	More...
	

#define	 PROCESS_CONTEXT_END(ptProcess)			process_current=	tmp_current;	}
	 End	a	context	switch.	More...
	

tPROCESS	*	 process_current
	

BOOL	 process_start	(tPROCESS	*ptProcess,	process_data_targ)
	 Start	a	process.	More...
	

BOOL	 process_post	(tPROCESS	*ptProcess,	process_event_tev,	void	*data)

	 Post	an	asynchronous	event	to	one	or	all	processes.
More...

	

void	 process_send	(tPROCESS	*ptProcess,	process_event_tev,	void	*data)
	 Send	a	synchronous	event	to	a	process.	More...
	

void	 process_exit	(tPROCESS	*ptProcess)
	 Cause	a	process	to	exit.	More...
	
process_event_t	 process_alloc_event	(void)
	 Allocate	a	global	event	number.	More...
	

Detailed	Description

RainbowBS	Interface.

Author
QWQ	jacobqwq@icloud.com

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

RainbowBS RBSSource Config

Macros

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

RainbowBSConf.h	File
Reference

This	graph	shows	which	files	directly	or	indirectly	include	this	file:

Macros
#define	 RBS_CFG_SYS_INFO			"RainbowSys"
	
#define	 RBS_CFG_TICK_RATE			100
	
#define	 RBS_CFG_CPU_WORD_SIZE			32	/*	CPU	word	size	*/
	
#define	 RBS_CFG_CPU_BYTE_ORDER_L			1	/*	CPU	byte	order	*/
	

#define	 RBS_CFG_CPU_STACK_DOWN			1	/*	stack	growth	direction
*/

	
#define	 RBS_APP_NONE			0
	
#define	 RBS_APP_PTP			1
	
#define	 RBS_APP_OS			2
	
#define	 RBS_CFG_APP_MODEL			RBS_APP_PTP
	
#define	 RBS_CFG_PTP_NO_PROCESS_NAME			0
	
#define	 RBS_CFG_PTP_PROCESS_STATS			0
	
#define	 RBS_CFG_PTP_NUMEVENTS			32
	
#define	 RBS_CFG_DMM_ALIGN			2
	

#define	 RBS_DEBUG_LEVEL_NOCHECK			0	/*	No	running	timechecks	are	performed	*/
	
#define	 RBS_DEBUG_LEVEL_ERRORS			1	/*	Errors	are	recorded	*/
	

#define	 RBS_DEBUG_LEVEL_WARNINGS			2	/*	Errors	and	Warnings
are	recorded	*/

	

#define	 RBS_DEBUG_LEVEL_LOG			3	/*	Errors,Warnings	and	logs
are	recorded	*/

	
#define	 RBS_CFG_DEBUG_BUFSIZE			300
	
#define	 RBS_CFG_DEBUG_LEVEL			RBS_DEBUG_LEVEL_LOG
	

Detailed	Description

RainbowBS	Configuration.

Author
QWQ	jacobqwq@icloud.com

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

Here	is	a	list	of	all	documented	functions,	variables,	defines,	enums,	and
typedefs	with	links	to	the	documentation:

-	e	-

ePOW	:	RainbowBS.h
etimer_adjust()	:	RainbowBS.h
etimer_expiration_time()	:	RainbowBS.h
etimer_expired()	:	RainbowBS.h
etimer_pending()	:	RainbowBS.h
etimer_request_poll()	:	RainbowBS.h
etimer_reset()	:	RainbowBS.h
etimer_restart()	:	RainbowBS.h
etimer_set()	:	RainbowBS.h
etimer_start_time()	:	RainbowBS.h
etimer_stop()	:	RainbowBS.h

-	p	-

Port_Delay()	:	Port.h
Port_FreeMutex()	:	Port.h
Port_GetLocalTime()	:	Port.h
Port_GetMutex()	:	Port.h
Port_GetTickCount()	:	Port.h
Port_Init()	:	Port.h
Port_Printf_Error()	:	Port.h
Port_Printf_Log()	:	Port.h
Port_Printf_Warn()	:	Port.h
PROCESS	:	RainbowBS.h
process_alloc_event()	:	RainbowBS.h
PROCESS_BEGIN	:	RainbowBS.h
PROCESS_CONTEXT_BEGIN	:	RainbowBS.h
PROCESS_CONTEXT_END	:	RainbowBS.h
PROCESS_CURRENT	:	RainbowBS.h
PROCESS_END	:	RainbowBS.h
process_exit()	:	RainbowBS.h

PROCESS_EXIT	:	RainbowBS.h
PROCESS_EXITHANDLER	:	RainbowBS.h
process_is_running()	:	RainbowBS.h
PROCESS_NAME	:	RainbowBS.h
process_nevents()	:	RainbowBS.h
PROCESS_PAUSE	:	RainbowBS.h
process_poll()	:	RainbowBS.h
PROCESS_POLLHANDLER	:	RainbowBS.h
process_post()	:	RainbowBS.h
PROCESS_PT_SPAWN	:	RainbowBS.h
process_run()	:	RainbowBS.h
process_send()	:	RainbowBS.h
PROCESS_SIGNAL_SEM	:	RainbowBS.h
process_start()	:	RainbowBS.h
PROCESS_THREAD	:	RainbowBS.h
PROCESS_WAIT_EVENT	:	RainbowBS.h
PROCESS_WAIT_EVENT_UNTIL	:	RainbowBS.h
PROCESS_WAIT_SEM	:	RainbowBS.h
PROCESS_WAIT_UNTIL	:	RainbowBS.h
PROCESS_WAIT_WHILE	:	RainbowBS.h
PROCESS_YIELD	:	RainbowBS.h
PROCESS_YIELD_UNTIL	:	RainbowBS.h
PT_BEGIN	:	pt.h
PT_END	:	pt.h
PT_EXIT	:	pt.h
PT_INIT	:	pt.h
PT_RESTART	:	pt.h
PT_SCHEDULE	:	pt.h
PT_SEM_INIT	:	pt-sem.h
PT_SEM_SIGNAL	:	pt-sem.h
PT_SEM_WAIT	:	pt-sem.h
PT_SPAWN	:	pt.h
PT_THREAD	:	pt.h
PT_WAIT_THREAD	:	pt.h
PT_WAIT_UNTIL	:	pt.h
PT_WAIT_WHILE	:	pt.h
PT_YIELD	:	pt.h
PT_YIELD_UNTIL	:	pt.h

-	r	-

RBS_cos()	:	RainbowBS.h
RBS_ctan()	:	RainbowBS.h
RBS_DEBUG_ELSIF	:	RainbowBS.h
RBS_DEBUG_ENDIF	:	RainbowBS.h
RBS_DEBUG_ERROR	:	RainbowBS.h
RBS_DEBUG_ERROR_FORMAT	:	RainbowBS.h
RBS_DEBUG_IF	:	RainbowBS.h
RBS_DEBUG_LOG	:	RainbowBS.h
RBS_DEBUG_LOG_FORMAT	:	RainbowBS.h
RBS_DEBUG_STA	:	RainbowBS.h
RBS_DEBUG_WARN	:	RainbowBS.h
RBS_DEBUG_WARN_FORMAT	:	RainbowBS.h
RBS_Delay()	:	RainbowBS.h
RBS_DMM_AllocBlock()	:	RainbowBS.h
RBS_DMM_AllocMem()	:	RainbowBS.h
RBS_DMM_AllocZeroBlock()	:	RainbowBS.h
RBS_DMM_AllocZeroMem()	:	RainbowBS.h
RBS_DMM_FreeBlock()	:	RainbowBS.h
RBS_DMM_FreeMem()	:	RainbowBS.h
RBS_DMM_GetHMemSize()	:	RainbowBS.h
RBS_DMM_ReallocMem()	:	RainbowBS.h
RBS_DMM_RegisterBlock()	:	RainbowBS.h
RBS_DMM_RegisterPool()	:	RainbowBS.h
RBS_DMM_UnuseHBlock()	:	RainbowBS.h
RBS_DMM_UnuseHMem()	:	RainbowBS.h
RBS_DMM_UseHBlock()	:	RainbowBS.h
RBS_DMM_UseHMem()	:	RainbowBS.h
RBS_GetCPUBits()	:	RainbowBS.h
RBS_GetLocalTime()	:	RainbowBS.h
RBS_GetRunTime()	:	RainbowBS.h
RBS_GetSysInfo()	:	RainbowBS.h
RBS_GetTickCount()	:	RainbowBS.h
RBS_GetVersionString()	:	RainbowBS.h
RBS_Init()	:	RainbowBS.h
RBS_IsCPULittleEndian()	:	RainbowBS.h
RBS_IsStackGrowDown()	:	RainbowBS.h
RBS_MemCpy8()	:	RainbowBS.h
RBS_MemSet16()	:	RainbowBS.h
RBS_MemSet32()	:	RainbowBS.h
RBS_MemSet8()	:	RainbowBS.h

RBS_Number2String()	:	RainbowBS.h
RBS_Read16B()	:	RainbowBS.h
RBS_Read16L()	:	RainbowBS.h
RBS_Read32B()	:	RainbowBS.h
RBS_Read32L()	:	RainbowBS.h
RBS_sin()	:	RainbowBS.h
RBS_tan()	:	RainbowBS.h
RBS_Write16B()	:	RainbowBS.h
RBS_Write16L()	:	RainbowBS.h
RBS_Write32B()	:	RainbowBS.h
RBS_Write32L()	:	RainbowBS.h

-	s	-

SBINARY	:	RainbowBS.h
SDECIMAL	:	RainbowBS.h
SEM	:	RainbowBS.h
SEM_NAME	:	RainbowBS.h
SHEX	:	RainbowBS.h

-	t	-

tETIME	:	RainbowBS.h
tPROCESS	:	RainbowBS.h

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

	

-	e	-

etimer_adjust()	:	RainbowBS.h
etimer_expiration_time()	:	RainbowBS.h
etimer_expired()	:	RainbowBS.h
etimer_pending()	:	RainbowBS.h
etimer_request_poll()	:	RainbowBS.h
etimer_reset()	:	RainbowBS.h
etimer_restart()	:	RainbowBS.h
etimer_set()	:	RainbowBS.h
etimer_start_time()	:	RainbowBS.h
etimer_stop()	:	RainbowBS.h

-	p	-

Port_Delay()	:	Port.h
Port_FreeMutex()	:	Port.h
Port_GetLocalTime()	:	Port.h
Port_GetMutex()	:	Port.h
Port_GetTickCount()	:	Port.h
Port_Init()	:	Port.h
Port_Printf_Error()	:	Port.h
Port_Printf_Log()	:	Port.h
Port_Printf_Warn()	:	Port.h
process_alloc_event()	:	RainbowBS.h
process_exit()	:	RainbowBS.h
process_is_running()	:	RainbowBS.h
process_nevents()	:	RainbowBS.h
process_poll()	:	RainbowBS.h
process_post()	:	RainbowBS.h
process_run()	:	RainbowBS.h
process_send()	:	RainbowBS.h
process_start()	:	RainbowBS.h

-	r	-

RBS_cos()	:	RainbowBS.h
RBS_ctan()	:	RainbowBS.h
RBS_Delay()	:	RainbowBS.h
RBS_DMM_AllocBlock()	:	RainbowBS.h
RBS_DMM_AllocMem()	:	RainbowBS.h
RBS_DMM_AllocZeroBlock()	:	RainbowBS.h
RBS_DMM_AllocZeroMem()	:	RainbowBS.h
RBS_DMM_FreeBlock()	:	RainbowBS.h
RBS_DMM_FreeMem()	:	RainbowBS.h
RBS_DMM_GetHMemSize()	:	RainbowBS.h
RBS_DMM_ReallocMem()	:	RainbowBS.h
RBS_DMM_RegisterBlock()	:	RainbowBS.h
RBS_DMM_RegisterPool()	:	RainbowBS.h
RBS_DMM_UnuseHBlock()	:	RainbowBS.h
RBS_DMM_UnuseHMem()	:	RainbowBS.h
RBS_DMM_UseHBlock()	:	RainbowBS.h
RBS_DMM_UseHMem()	:	RainbowBS.h
RBS_GetCPUBits()	:	RainbowBS.h
RBS_GetLocalTime()	:	RainbowBS.h
RBS_GetRunTime()	:	RainbowBS.h
RBS_GetSysInfo()	:	RainbowBS.h
RBS_GetTickCount()	:	RainbowBS.h
RBS_GetVersionString()	:	RainbowBS.h
RBS_Init()	:	RainbowBS.h
RBS_IsCPULittleEndian()	:	RainbowBS.h
RBS_IsStackGrowDown()	:	RainbowBS.h
RBS_MemCpy8()	:	RainbowBS.h
RBS_MemSet16()	:	RainbowBS.h
RBS_MemSet32()	:	RainbowBS.h
RBS_MemSet8()	:	RainbowBS.h
RBS_Number2String()	:	RainbowBS.h
RBS_Read16B()	:	RainbowBS.h
RBS_Read16L()	:	RainbowBS.h
RBS_Read32B()	:	RainbowBS.h
RBS_Read32L()	:	RainbowBS.h
RBS_sin()	:	RainbowBS.h
RBS_tan()	:	RainbowBS.h
RBS_Write16B()	:	RainbowBS.h

RBS_Write16L()	:	RainbowBS.h
RBS_Write32B()	:	RainbowBS.h
RBS_Write32L()	:	RainbowBS.h

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

	

tETIME	:	RainbowBS.h
tPROCESS	:	RainbowBS.h

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

	

ePOW	:	RainbowBS.h

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

	

SBINARY	:	RainbowBS.h
SDECIMAL	:	RainbowBS.h
SHEX	:	RainbowBS.h

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

	

-	p	-

PROCESS	:	RainbowBS.h
PROCESS_BEGIN	:	RainbowBS.h
PROCESS_CONTEXT_BEGIN	:	RainbowBS.h
PROCESS_CONTEXT_END	:	RainbowBS.h
PROCESS_CURRENT	:	RainbowBS.h
PROCESS_END	:	RainbowBS.h
PROCESS_EXIT	:	RainbowBS.h
PROCESS_EXITHANDLER	:	RainbowBS.h
PROCESS_NAME	:	RainbowBS.h
PROCESS_PAUSE	:	RainbowBS.h
PROCESS_POLLHANDLER	:	RainbowBS.h
PROCESS_PT_SPAWN	:	RainbowBS.h
PROCESS_SIGNAL_SEM	:	RainbowBS.h
PROCESS_THREAD	:	RainbowBS.h
PROCESS_WAIT_EVENT	:	RainbowBS.h
PROCESS_WAIT_EVENT_UNTIL	:	RainbowBS.h
PROCESS_WAIT_SEM	:	RainbowBS.h
PROCESS_WAIT_UNTIL	:	RainbowBS.h
PROCESS_WAIT_WHILE	:	RainbowBS.h
PROCESS_YIELD	:	RainbowBS.h
PROCESS_YIELD_UNTIL	:	RainbowBS.h
PT_BEGIN	:	pt.h
PT_END	:	pt.h
PT_EXIT	:	pt.h
PT_INIT	:	pt.h
PT_RESTART	:	pt.h
PT_SCHEDULE	:	pt.h
PT_SEM_INIT	:	pt-sem.h
PT_SEM_SIGNAL	:	pt-sem.h
PT_SEM_WAIT	:	pt-sem.h
PT_SPAWN	:	pt.h
PT_THREAD	:	pt.h

PT_WAIT_THREAD	:	pt.h
PT_WAIT_UNTIL	:	pt.h
PT_WAIT_WHILE	:	pt.h
PT_YIELD	:	pt.h
PT_YIELD_UNTIL	:	pt.h

-	r	-

RBS_DEBUG_ELSIF	:	RainbowBS.h
RBS_DEBUG_ENDIF	:	RainbowBS.h
RBS_DEBUG_ERROR	:	RainbowBS.h
RBS_DEBUG_ERROR_FORMAT	:	RainbowBS.h
RBS_DEBUG_IF	:	RainbowBS.h
RBS_DEBUG_LOG	:	RainbowBS.h
RBS_DEBUG_LOG_FORMAT	:	RainbowBS.h
RBS_DEBUG_STA	:	RainbowBS.h
RBS_DEBUG_WARN	:	RainbowBS.h
RBS_DEBUG_WARN_FORMAT	:	RainbowBS.h

-	s	-

SEM	:	RainbowBS.h
SEM_NAME	:	RainbowBS.h

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

RainbowBS

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

RainbowBS	Directory	Reference

Directory	dependency	graph	for	RainbowBS:

Directories
directory		 RBSSource
	

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

RainbowBS RBSSource

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

RBSSource	Directory	Reference

Directory	dependency	graph	for	RBSSource:

Directories
directory		 Base
	
directory		 Config
	
directory		 Port
	

Files
file		 RainbowBS.h
	

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

RainbowBS RBSSource Base

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

Base	Directory	Reference

Directory	dependency	graph	for	Base:

Directories
directory		 Process
	
directory		 Protothreads
	

Files
file		 Convert.c
	
file		 Debug.c
	
file		 DMM.c
	
file		 MemOP.c
	
file		 System.c
	

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

RainbowBS RBSSource Base Protothreads

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

Protothreads	Directory	Reference

Directory	dependency	graph	for	Protothreads:

Files
file		 lc-addrlabels.h
	
file		 lc-switch.h
	
file		 lc.h
	
file		 pt-sem.h
	
file		 pt.h
	

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

RainbowBS RBSSource Port

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

Port	Directory	Reference

Directory	dependency	graph	for	Port:

Files
file		 Port.c
	
file		 Port.h
	

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

RainbowBS RBSSource Config

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

Config	Directory	Reference

Directory	dependency	graph	for	Config:

Files
file		 RainbowBSConf.h
	

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

RainbowBS RBSSource Base Process

RainbowBS	Manual		v0.1.0
Written	by	QWQ(jacobqwq@icloud.com)

Process	Directory	Reference

Directory	dependency	graph	for	Process:

Files
file		 etimer.c
	
file		 process.c
	

Generated	by			 	1.8.9.1

http://www.doxygen.org/index.html

	Acknowledgement and About
	Chapter1 Introduction
	Chapter2 Basic Components
	Chapter3 Application Model
	Chapter4 Dynamic Memory Managment
	Chapter5 Debug
	Chapter6 Configration
	Chapter7 Porting and Example
	Modules
	RBS configration
	basic types
	basic macros
	system releted
	tTime

	CPU information
	memory operation
	conversion releted
	dynamic memory management
	protothread process
	process_struct

	Event timers
	etime_struct

	debug
	Pt
	Local continuations
	lc-addrlabels.h
	lc-switch.h
	lc.h

	Protothread semaphores
	pt-sem.h
	pt_sem

	pt.h
	pt

