
RX	Library	Help	v1.1.10	(both	on-line	and	off-line	edition)

RxLibrary	Set	of	Native	Delphi	Components	for	Borland	Delphi	versions	1,	2,	3,	4	and	5	and	Borland	C++
Builder	1.0,	2.0,	4.0	and	5.0		with	full	Source	Code.

The	library	and	help	documentation	is	separate	and	have	different	version	numbering.
Current	RxLibrary	Version:	2.75
Current	Help	Version:	1.1.10

The	off-line	edition	is	now	available.	Do	check	the	download	site	every	month	to	ensure	you	always	have
the	latest	version	of	RxLibrary	and	it's	English	Help	Documentation.

Notes:
__Installation	Notes...	
__Tips	with	using	RxLibrary	
__Common	Problems	with	Installing	RxLibrary	
__
Sort	by	Component	Library,	Filenames	or	by	Classes...

Class	-	Components Brief	Description File
TRxComboEdit Combo	Edit	field	with	a	button. ToolEdit
TRxFilenameEdit Edit	Field	with	button	to	select	a	filename ToolEdit
TRxDateEdit Edit	Field	designed	with	date	input	and	calendar ToolEdit
TRxDirectoryEdit Edit	field	with	a	pop-up	directory	selection	dialogue	box ToolEdit
TRxCurrencyEdit Edit	field	with	currency	editing	properties CurrEdit
TRxTextListBox TListBox	descendant	with	optional	horizontal	scrollbar. RxCtrls
TRxCheckListBox Scrollable	TListBox	with	check	boxes	next	to	each	item. RXCtrls
TRxFontComboBox TListBox	displaying	Fonts. RxCombos
TRxColorComboBox TListBox	displaying	a	Colour	combination. RxCombos
TRxSplitter Splitter	component. RxSplit
TRxSlider Slider	Component RxSlider
TRxLabel TLabel	with	3D	special	effects	and	other	options. RxCtrls
TRxClock Standard	digit	and	analogue	Clock RxClock
TRxDrawGrid Draw	grid RxCtrls
TRxSpeedButton Speed	button	with	an	explorer	style	alternative. RxSpeed
TRxSpinEdit Spinner	button RxSpin
TRxSwitch The	alternative	to	the	Delphi	1.0	VBX	switch RxSwitch
TRxDice Dice RxDice
Class	-	Database Brief	Description File
TRxQuery,	TSQLScript Special	version	of	Query	and	SQL	Execute RxQuery
TMemoryTable In-Line	memory	table	to	store	temporary	queries MemTable
TQBEQuery Query	by	Example	(see	your	academic	notes) DbQbe
TRxDBFilter Database	filter DbFilter

TRxDBGrid Data-aware	RxGrid. DbGrid
TDBDateEdit,	PickDate Data	Aware	RX	DateEdit DBCtrl
TDBStatusLabel Information	about	the	status	of	an	open	database	file. RxDBComb
TRxDBLookupList Similar	to	InfoPower's	Woll2Woll	components. RxDBComb
TRxDBLookupCombo Similar	to	InfoPower's	Woll2Woll	components. RxLookup
TRxDBComboBox Similar	to	InfoPower's	Woll2Woll	components. RxDBComb
TRxDBRichEdit Data-Aware	RichEdit	control DBRichEd
TDBIndexCombo Provides	a	drop-down	list	of	the	indexes. DBIndex

TDBProgress Monitor	a	"remote"	(or	process	on	another	computer)	SQL
procedure DBPrgrss

TDBSecurity Database	Security	options DBSecur
TRxBdeErrorDlg Replaces	the	standard	BDE	data-aware	Error	message DBExcpt
Class Brief	Description File

TPicClip Provides	the	functionality	of	the	PICCLIP.VBX	control	which
ships	with	Visual	Basic	Professional PicClip

TFormPlacement The	TFormPlacement	component	provides	a	quick	method	for
saving	size	and	position	of	its	parent	form. Placement

TFormStorage Stores	the	form's	internal	details Placement
TRxIniFile The	lower	level	details	of	RX	Form	Storage. RxIni

TRxWindowHook Make	an	extension	to	a	component	that	does	not	have	the	source
code,	or	is	difficult	to	modify. RxHook

TDualListDialog Allows	creating	a	dual-list	box	(e.g.,	installation	settings) DualList
TConverter Multiple	purpose	converter	VCL	wrapper DataConv
TSecretPanel Similar	to	tPanel,	except	that	it	can	be	used	as	a	scroller RxCtrls
TSpeedbar A	dockable	speedbar Speedbar
TClipboardViewer Display	the	contents	of	the	Windows	Clipboard	on	a	form ClipView
TPageManager Create	wizards PageMngr
TRxCalculator Calculator	(decimal	and	floating	point	edition) RxCalc
TRxStrHolder A	VCL	container	for	stringlist. StrHolder
TAppEvent General	Purpose	Application	handler AppEvent
TRxTimerList Timer	"list	of	list"	(to	conserve	timer	resources) TimerLst

TMRUManager Most	Recently	Used	Manager	(e.g.,	Browser	back	and	forward
buttons?) MRUList

TRxTrayIcon Tray	Icon	-	and	note	the	ShellAPI	extensions	it	contains
(This	is	used	in	combination	with	AppEvent) RxShell

TIconList Internal	details	and	workings	of	the	RX	Tray	Icon. IcoList
TAnimatedCursorImage Animated	Cursors AniFile
TAnimateImage Animation Animate
TRxMathParser Mathematical	parser Parsing
TVerInfo Version	Information	Stuff VerInfo

Description Brief	Description File
Application	Units Visual	Application	Events	(no	coding	instead) AppUtils
TDBLocate Borland	Database	Engine	Utilities BdeUtils
TLocateObject Database	Utilities DBUtils
Box	Procedures Box	Procedures BoxProcs
Date	Util Date	Utilities DateUtil
File	Utilities File	Utilities FileUtil
Min	-	Max Minimum	and	Maximum. MaxMin
THugeList Huge	Object	Oriented	List ObjStr
RX	Ole	2	Automation OLE2	Automation	stuff. Ole2Auto
RX	StrUtils String	Utilities StrUtils
RX	Splash	Windows Splash	window... SplshWnd
RX	VCL	Utilities VCL	Utilities VCLUtils
RX	Clip	Icons Code	for	the	clipboard. ClipIcon
Class Brief	Description File
TRxGIFAnimator GIF	Animation	Routine GIFCtrl
TGIFFrame GIF	routines RxGIF
TRxDBCalcEdit Data-aware	Edit	field	with	RxCalculator RxDBCtrl
TRxCalcEdit Edit	field	with	RxCalculator RxCombos
RxGraph Bitmap	to	memory	formatting RX	Graph

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Download

Please	download	the	latest	version	of	Rx	Library	Help	(off-line	edition)	at:

http://helpmaker.hypermart.net/rxlib/rxlib.zip

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

http://helpmaker.hypermart.net/rxlib/rxlib.zip

Installation	Notes	for	Installing	RxHelp	version	2.4

Run	RXINST.EXE.

Before	installing	RX	Library	components	into	Delphi,	check	out	RX.INC	file	located	in	RX\UNITS
subdirectory.	This	file	is	included	in	all	RX	Library	units	and	contains	conditional	defines	that	affects
compilation.	You	can	change	some	of	these	defines	or	specify	global	compiler	options	there.

Delphi	3.x:	

Remove	previously	compiled	RX	packages	RXCTL.DPL,	RXDB.DPL,	RXTOOLS.DPL,
DCLRXCTL.DPL,	DCLRXDB.DPL	and	DCLRXTLS.DPL	from	your	hard	disk.	

Use	"File\Open..."	menu	item	of	Delphi	IDE	to	open	consistently	RX	run-time	packages	RXCTL.DPK
(MUST	be	first),	RXDB.DPK	and	RXTOOLS.DPK.	In	"Package.."	window	click	"Compile"	button	to
compile	RX	Library	run-time	packages.	Put	compiled	DPL	files	into	directory	that	is	accessible	through	the
search	PATH	(for	example,	in	the	Windows\System	directory).	After	compiling	RX	run-time	packages	you
must	install	RX	design-time	packages	into	the	IDE.	

Use	"File\Open..."	menu	item	to	open	consistently	RX	design-time	packages	DCLRXCTL.DPK	(MUST	be
first),	DCLRXDB.DPK	and	DCLRXTLS.DPK.	In	"Package.."	window	click	"Install"	button	to	register	RX
Library	components	on	the	"RX	Controls",	"RX	DBAware"	and	"RX	Tools"	pages	accordingly.

Delphi	2.x	and	C++	Builder	1.0:	

Use	the	"Install..."	item	on	Delphi's	"Component"	menu	to	add	the	RxCtlReg.PAS,	RxDBReg.PAS	and
RxTooReg.PAS	units	to	the	component	library.	These	units	registers	all	RX	Library	components	on	the	"RX
Controls",	"RX	DBAware"	and	"RX	Tools"	pages	accordingly.

Delphi	1.x:	

Use	the	"Install	Components..."	item	on	Delphi's	Options	menu	to	add	the	RxCtlReg.PAS,	RxDBReg.PAS
and	RxTooReg.PAS	units	to	the	component	library.	These	units	registers	all	RX	Library	components	on	the
"RX	Controls",	"RX	DBAware"	and	"RX	Tools"	pages	accordingly.

Last	of	all,	ensure	that	your	RxLibrary	path	is	inside	the	Delphi	environment	path.
If	you	don't	succeed	or	there's	unusual	problem	to	add

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Tips

Loading	from	Resources.

I'm	mixed	about	using	the	resources	section	of	the	EXE	file	to	load	GIFs.	

Against:
The	reason	is	that	you	can	be	sure	that	nobody	will	be	stealing	those	images	<g>	and	do	not	have	to	worry
about	distributing	the	correct	resource	version.	Instead	of	using	resources,	you	may	want	to	use	Rx	Picture
Clip	instead.

For:
You	would	like	to	store	the	information	as	a	resource	DLL.

Using	Rx	Picture	Clip	instead	of	Delphi's	default	Image	List.
The	Rx	Picture	Clip	has	a	definite	advantage	over	Delphi's	Win32	Image	List.	

For	starters,	it	does	not	use	the	ComCtrl32.DLL	which	causes	your	images	to	disappear	when	the
ComCtrl32.DLL	is	the	wrong	build	on	your	client's	computer.	As	the	images	are	self	contained	inside	the
EXE	file,	instead	of	the	resources,	you	can	be	sure	that	nobody	will	be	stealing	those	images	<g>.

By	using	the	Rx	Picture	Clip,	you	do	not	have	to	worry	about	distributing	the	correct	version
ComCtrl32.DLL

Explorer	Button	Substitution.
The	RxSpeedbutton	has	an	interesting	property	known	as	Flat	which	allows	it	to	mimic	MSIE's	explorer
button.	Further	to	this,	you	can	add	the	speed	buttons	to	the	RxSpeedBar.

Tray	Button	and	Form	Hiding
The	TrayIcon	property	puts	the	image	on	Windows	95	(or	NT's)	"tray".	However,	nothing	is	mentioned
about	hiding	the	form.

Drop	an	AppEvents	component	to	your	form	(make	sure	this	is	your	1st	or	main	form)	and	set	the
ShowMainForm	property	to	false	to	hide	it.

Remember	to	add	a	popup	menu	or	a	hints	description	to	TrayIcon.	The	popup	menu	would	access	another
form	that	would	be	the	applications	form.

In	other	words,	
1.	Place	an	AppEvents	component	to	your	main	form.	
2.	Place	a	TrayIcon	component	to	your	form.
3.	Set	the	AppEvent	component	ShowMainForm	property	to	false.
4.	Add	a	popup	menu	to	TrayIcon.Popupmenu	property.
5.	The	popup	menu	should	show	another	form.	This	form	is	the	main	application.

Saving	the	Form's	Location...

Use	the	RX	Form	Placement	component.	Specify	what	properties	you	want	to	save	in	the	Options	property.
For	this	to	be	done	automatically,	set	Active	to	True.

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Common	Installation	Problems	and	Known	Bugs

Q:	Each	time	I	try	to	recompile	the	library	I	get	an	error	saying	that	"SHLOBJ"	is	missing	while	processing
the	FileUtil.pas	file.	I	have	tried	searching	throughout	my	system	for	ANY	reference	of	this	file.	Is	there	a
update	that	I	missed?

A:	SHLOBJ	is	a	file	that	is	part	of	Delphi	2.0	OpenApi.	Hence,	it	is	not	distributed	with	Delphi.	It	is	only
distributed	as	a	DCU	file.	You	will	have	to	add	the	path	where	SHLOBJ.DCU	is	into	your	environment	path
to	compile	Rx	Library.

Addendum:	Delphi	2.0	definitely	does	not	have	such	a	unit.	To	install	RXLibrary	2.40	into	Delphi	2.0
download	patched	version	of	FILEUTIL.PAS	unit:	FileUtil.pas	unit	for	Delphi	2.0	[futil240.zip]

Q:	I've	just	installed	the	RxLib	but	got	some	error	running	their	DEMO.	The	error	related	to	the	component
TDateEdit.		When	I	run	the	DEMO,	I	got:-

..\ToolEdit.pas	(1838):	Undeclared	Identifier:	'CreatePopupCalender'

..\ToolEdit.pas	(1995):	Undeclared	Identifier:	'SetupPopupCalender'

A:	One	of	RxLibrary's	filename	for	the	date	operation	is	called	PickDate.pas,	which	is	a	modified	version
of	a	version	found	in	\Delphi\Demo\Db\MastApp\PickDate.pas.	Check	or	examine	your	Delphi
environment	paths	for	any	duplicate	'PickDate.pas'	filenames.	If	found,	please	rename	these	duplicates	so
they	will	not	conflict	with	Rx	library	version	of	PickDate.Pas

Q:	Using	the	TRxDBComboEdit	component	from	RX	2.40	gave	some	trouble	when	hitting	the	button.	The
event	OnButtonClick	works	only	when	the	dataset	is	in	edit-mode.	
A:	You	need	to	rewrite	TRxDBComboEdit.Create	constructor	as	following:	

constructor	TRxDBComboEdit.Create(AOwner:	TComponent);	
begin	
				{...}	
				AlwaysEnable	:=	True;	{	!!	add	this	line	}	
end;

Q:	Exception	'No	SQL	statement	available'	when	opening	form	with	TRxQuery	that	contains	no	macros	and
has	Active	=	True.	
A:	Change	RxQuery.pas	as	following:	

procedure	TRxQuery.ExpandMacros;	
var	
				ExpandedSQL:	TStringList;	
begin	
				if	not	FPatternChanged	and	not	FStreamPatternChanged	and	
						(MacroCount	=	0)	then	Exit;	

...	

Q:	I'm	trying	to	install	RxLib	version	2.40	into	Delphi	3.0	IDE.	Everything	goes	right,	after	installing	I	can
use	components	and	compile	demo	projects.	The	problem	starts	when	I	close	Delphi	and	run	again.	Then	I
get	error	message	saying	that	Delphi	was	unable	to	locate	a	file	required	for	each	of	the	component
packages.	

A:	You	must	put	compiled	RX	Library	run-time	packages	(DPL	files	-	RXCTL.DPL,	RXTOOLS.DPL,
RXDB.DPL)	into	directory	that	is	accessible	through	the	search	PATH	(i.e.	DOS	"PATH"	environment
variable;	for	example,	in	the	Windows\System	directory).

Q:	Compilation	errors	installing	RX	Library	components	into	Delphi	component	library.	
A:	Perhaps,	there	are	another	units	or	resource	files	in	your	Delphi	search	path	(Library	Path)	named	the
same	as	one	of	the	RX	Library	unit	or	resource	file.	Try	to	rename	one	of	these	modules	or	not	to	install
some	of	the	concurring	third-party	components	(don't	forget	to	remove	it	from	the	search	path).

Q:	Compiler	displays	an	error	like	"Internal	Error	????".	
A:	If	there	is	no	other	component	with	a	similar	name	or	you	already	have	removed	such	a	component	and
this	error	still	occurs,	try	disabling	Optimization	in	the	compiler	settings.

Q:	Error	"RLINK32:	OUT	OF	MEMORY"	during	installation	RX	Library	under	Delphi	2.0.	
A:	There	is	minor	bug	in	Delphi	2.0	(not	2.01).	If	you	are	getting	this	error	while	rebuilding	your
component	library	with	RX	components	you	should	recompile	resource	sources	(*.RC)	using
BRCC32.EXE	from	your	Delphi	BIN	directory	to	produce	resource	files	(*.RES	and	*.DCR)	compatible
with	your	version	of	Delphi	2.

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

RX	Library	Help	-	List	by	Filename

Sort	by	Component	Library,	Filenames	or	by	Classes...

Class Brief	Description File
TAnimatedCursorImage Animated	Cursors AniFile
TAnimateImage Animation Animate
TAppEvent General	Purpose	Application	handler AppEvent
Application	Units Visual	Application	Events	(no	coding	instead) AppUtils
TDBLocate Borland	Database	Engine	Utilities BdeUtils
Box	Procedures Box	Procedures BoxProcs
RX	Clip	Icons Code	for	the	clipboard. ClipIcon
TClipboardViewer Display	the	contents	of	the	Windows	Clipboard	on	a	form ClipView
TRxCurrencyEdit An	edit	field	with	currency	editing	properties CurrEdit
TConverter Multiple	purpose	converter	VCL	wrapper DataConv
Date	Util Date	Utilities DateUtil
TDBDateEdit,	PickDate Data	Aware	version	of	RX	Date	Edit DBCtrl
TRxBdeErrorDlg Replaces	the	standard	BDE	data-aware	Error	message DBExcpt
TRxDBFilter A	database	filter DbFilter
TRxDBGrid Better	Grid	than	some	shareware	implementations! DbGrid
TDBIndexCombo Provides	a	drop-down	list	of	the	indexes. DBIndex

TDBProgress Monitor	a	"remote"	(or	process	on	another	computer)	SQL
procedure DBPrgrss

TQBEQuery Query	by	Example	(see	your	academic	notes) DbQbe
TRxDBRichEdit Data-Aware	RichEdit	control DBRichEd
TDBSecurity Database	Security	options DBSecur
TLocateObject Database	Utilities DBUtils
TdualListDialog Allows	creating	a	dual-list	box	(e.g.,	installation	settings) DualList
File	Utilities File	Utilities FileUtil
TRxGIFAnimator GIF	Animation	Routine GIFCtrl
TIconList Internal	details	and	workings	of	the	RX	Tray	Icon. IcoList
Min	-	Max Minimum	and	Maximum. MaxMin
TMemoryTable In-Line	memory	table	to	store	temporary	queries MemTable

TMRUManager Most	Recently	Used	Manager	(e.g.,	Browser	back	and	forward
buttons?) MRUList

THugeList Huge	Object	Oriented	List ObjStr
RX	Ole	2	Automation OLE2	Automation	stuff. Ole2Auto
TPageManager Create	wizards PageMngr
TRxMathParser Mathematical	parser Parsing

TPicClip Provides	the	functionality	of	the	PICCLIP.VBX	control	which
ships	with	Visual	Basic	Professional

PicClip

TFormPlacement The	TFormPlacement	component	provides	a	quick	method	for
saving	size	and	position	of	its	parent	form. Placement

TFormStorage Stores	the	form's	internal	details Placement
RxGraph Bitmap	to	memory	formatting RX	Graph
TRxCalculator Calculator RxCalc
TRxClock The	standard	digit	and	analogue	Clock RxClock
TRxFontComboBox TListBox	that	displays	Fonts. RxCombos
TRxColorComboBox TListBox	that	displays	a	Colour	combination. RxCombos
TRxCalcEdit Edit	field	with	RxCalculator RxCombos

TRxTextListBox This	is	a	TListBox	descendant	with	optional	horizontal
scrollbar. RxCtrls

TRxCheckListBox This	displays	a	scrollable	TListBox	with	check	boxes	next	to
each	item. RXCtrls

TRxLabel TLabel	with	3D	special	effects	and	other	options. RxCtrls
TRxDrawGrid An	alternative	draw	grid RxCtrls
TSecretPanel Similar	to	tPanel,	except	that	it	can	be	used	as	a	scroller RXCtrls
TDBStatusLabel Information	about	the	status	of	the	database RxDBComb
TRxDBLookupList Similar	to	InfoPower's	Woll2Woll	components. RxDBComb
TRxDBComboBox Similar	to	InfoPower's	Woll2Woll	components. RxDBComb
TRxDBCalcEdit Data-aware	Edit	field	with	RxCalculator RxDBCtrl
TRxDice The	dice RxDice
TGIFFrame GIF	routines RxGIF

TRxWindowHook Allows	creating	a	windows	hook	(register	an	event	with	the
windows	event	system) RxHook

TRxIniFile The	lower	level	details	of	RX	Form	Storage. RxIni
TRxDBLookupCombo Similar	to	InfoPower's	Woll2Woll	components. RxLookup
TRxQuery,	TSQLScript Special	version	of	Query	and	SQL	Execute RxQuery

TRxTrayIcon Tray	Icon	-	and	note	the	ShellAPI	extensions	it	contains
(This	is	used	in	combination	with	AppEvent) RxShell

TRxSlider Slider	Component RxSlider
TRxSpeedButton Speed	button	with	an	explorer	style	alternative. RxSpeed
TRxSpinEdit An	alternative	spinner	button RxSpin
TRxSplitter Splitter	component. RxSplit
TRxSwitch The	alternative	to	the	Delphi	1.0	VBX	switch RxSwitch
TSpeedbar A	dockable	speedbar Speedbar
RX	Splash	Windows Splash	window... SplshWnd
TRxStrHolder A	VCL	container	for	stringlist. StrHolder
RX	StrUtils String	Utilities StrUtils

TRxTimerList Timer	"list	of	list"	(to	conserve	timer	resources) TimerLst
TrxComboEdit A	combo	edit	field	with	a	button. ToolEdit
TRxFilenameEdit A	combo	edit	field	that	selects	a	filename ToolEdit
TRxDateEdit An	edit	field	designed	for	date	input	and	contains	a	calendar ToolEdit
TRxDirectoryEdit An	edit	field	with	a	pop-up	directory	selection	dialogue	box ToolEdit
RX	VCL	Utilities VCL	Utilities VCLUtils
TVerInfo Version	Information	Stuff VerInfo

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

RX	Library	Help	-	List	by	classes

Sort	by	Component	Library,	Filenames	or	by	Classes...

Class Brief	Description File
Application	Units Visual	Application	Events	(no	coding	instead) AppUtils
Box	Procedures Box	Procedures BoxProcs
Date	Util Date	Utilities DateUtil
File	Utilities File	Utilities FileUtil
Min	-	Max Minimum	and	Maximum. MaxMin
RX	Clip	Icons Code	for	the	clipboard. ClipIcon
RX	Ole	2	Automation OLE2	Automation	stuff. Ole2Auto
RX	Splash	Windows Splash	window... SplshWnd
RX	StrUtils String	Utilities StrUtils
RX	VCL	Utilities VCL	Utilities VCLUtils
RxGraph Bitmap	to	memory	formatting RX	Graph
TAnimatedCursorImage Animated	Cursors AniFile
TAnimateImage Animation Animate
TAppEvent General	Purpose	Application	handler AppEvent
TClipboardViewer Display	the	contents	of	the	Windows	Clipboard	on	a	form ClipView
TConverter Multiple	purpose	converter	VCL	wrapper DataConv
TDBDateEdit,	PickDate Data	Aware	version	of	RX	Date	Edit DBCtrl
TDBIndexCombo Provides	a	drop-down	list	of	the	indexes. DBIndex
TDBLocate Borland	Database	Engine	Utilities BdeUtils

TDBProgress Monitor	a	"remote"	(or	process	on	another	computer)	SQL
procedure DBPrgrss

TDBSecurity Database	Security	options DBSecur
TDBStatusLabel Information	about	the	status	of	the	database RxDBComb
TdualListDialog Allows	creating	a	dual-list	box	(e.g.,	installation	settings) DualList

TFormPlacement The	TFormPlacement	component	provides	a	quick	method	for
saving	size	and	position	of	its	parent	form. Placement

TFormStorage Stores	the	form's	internal	details Placement
TGIFFrame GIF	routines RxGIF
THugeList Huge	Object	Oriented	List ObjStr
TIconList Internal	details	and	workings	of	the	RX	Tray	Icon. IcoList
TLocateObject Database	Utilities DBUtils
TMemoryTable In-Line	memory	table	to	store	temporary	queries MemTable

TMRUManager Most	Recently	Used	Manager	(e.g.,	Browser	back	and	forward
buttons?) MRUList

TPageManager Create	wizards PageMngr

TPicClip Provides	the	functionality	of	the	PICCLIP.VBX	control	which
ships	with	Visual	Basic	Professional PicClip

TQBEQuery Query	by	Example	(see	your	academic	notes) DbQbe
TRxBdeErrorDlg Replaces	the	standard	BDE	data-aware	Error	message DBExcpt
TRxCalcEdit Edit	field	with	RxCalculator RxCombos
TRxCalculator Calculator RxCalc

TRxCheckListBox This	displays	a	scrollable	TListBox	with	check	boxes	next	to
each	item. RXCtrls

TRxClock The	standard	digit	and	analogue	Clock RxClock
TRxColorComboBox TListBox	that	displays	a	Colour	combination. RxCombos
TrxComboEdit A	combo	edit	field	with	a	button. ToolEdit
TRxCurrencyEdit An	edit	field	with	currency	editing	properties CurrEdit
TRxDateEdit An	edit	field	designed	for	date	input	and	contains	a	calendar ToolEdit
TRxDBCalcEdit Data-aware	Edit	field	with	RxCalculator RxDBCtrl
TRxDBComboBox Similar	to	InfoPower's	Woll2Woll	components. RxDBComb
TRxDBFilter A	database	filter DbFilter
TRxDBGrid Better	Grid	than	some	shareware	implementations! DbGrid
TRxDBLookupCombo Similar	to	InfoPower's	Woll2Woll	components. RxLookup
TRxDBLookupList Similar	to	InfoPower's	Woll2Woll	components. RxDBComb
TRxDBRichEdit Data-Aware	RichEdit	control DBRichEd
TRxDice The	dice RxDice
TRxDirectoryEdit An	edit	field	with	a	pop-up	directory	selection	dialogue	box ToolEdit
TRxDrawGrid An	alternative	draw	grid RxCtrls
TRxFilenameEdit A	combo	edit	field	that	selects	a	filename ToolEdit
TRxFontComboBox TListBox	that	displays	Fonts. RxCombos
TRxGIFAnimator GIF	Animation	Routine GIFCtrl
TRxIniFile The	lower	level	details	of	RX	Form	Storage. RxIni
TRxLabel TLabel	with	3D	special	effects	and	other	options. RxCtrls
TRxMathParser Mathematical	parser Parsing
TRxQuery,	TSQLScript Special	version	of	Query	and	SQL	Execute RxQuery
TRxSlider Slider	Component RxSlider
TRxSpeedButton Speed	button	with	an	explorer	style	alternative. RxSpeed
TRxSpinEdit An	alternative	spinner	button RxSpin
TRxSplitter Splitter	component. RxSplit
TRxStrHolder A	VCL	container	for	stringlist. StrHolder
TRxSwitch The	alternative	to	the	Delphi	1.0	VBX	switch RxSwitch

TRxTextListBox This	is	a	TListBox	descendant	with	optional	horizontal
scrollbar. RxCtrls

TRxTimerList Timer	"list	of	list"	(to	conserve	timer	resources) TimerLst

TRxTrayIcon Tray	Icon	-	and	note	the	ShellAPI	extensions	it	contains
(This	is	used	in	combination	with	AppEvent) RxShell

TRxWindowHook Allows	creating	a	windows	hook	(register	an	event	with	the
windows	event	system) RxHook

TSecretPanel Similar	to	tPanel,	except	that	it	can	be	used	as	a	scroller RXCtrls
TSpeedbar A	dockable	speedbar Speedbar
TVerInfo Version	Information	Stuff VerInfo

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
RX	ComboEdit ToolEdit TComboEdit

Description:
The	TComboEdit	component	combines	an	Edit	field	with	a	tButton.	The	button	is	automatically	aligned	to
the	right	side	of	the	edit	field	and	triggers	an	event	when	clicked	(OnButtonClick).	

The	TComboEdit	component	is	often	used	as	a	replacement	as	it	can	invoke	a	dialog	box	used	to	provide
lookup	values.	

To	change	the	button's	glyph	and	appearance,	use	the	GlyphKind,	Glyph,	NumGlyphs,	ButtonWidth	and
ButtonHint	properties.

Property	Button
Declaration:	Button:	TRxSpeedButton;

This	run-time	and	read-only	property	provides	to	direct	access	to	the	button	in	the	button	edit	component
(see	also:	TRxSpeedButton	control.)

Property	ButtonHint
Declaration:	ButtonHint:	string;

The	ButtonHint	property	is	the	text	string	that	specifies	the	Hint	property	for	the	button	in	a	button	edit
component	(TComboEdit	and	derived).

Property	ButtonWidth
Declaration:	ButtonWidth:	Integer;

For	button	edits,	use	this	property	to	specify	the	width	of	the	button.	Set	this	property	to	zero	value	to	hide
the	button	in	a	combo-edit	control.

Event	OnButtonClick
Declaration:	OnButtonClick:	TNotifyEvent;

OnButtonClick	event	occurs	whenever	the	button	in	a	button	edit	component	gets	pressed	or	the	user
presses	the	accelerator	key	specified	by	ClickKey	property.	When	ButtonWidth	=	0	the	OnButtonClick
events	doesn't	occure.

Method	DoClick
Declaration:	procedure	DoClick;

The	DoClick	method	simulates	a	mouse	click,	as	if	the	user	had	clicked	a	button,	executing	any	code
attached	to	the	OnButtonClick	event.

Property	EditText	:	string
EditText	variable	contains	the	text	in	the	edit	field.	Use	this	function	to	programatically	obtain	the	data	from
the	control.

Property	Text	:	string
Text	property	contains	the	text	of	the	ComboEdit	field.

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Unit	ToolEdit.Pas

RX	Date	Edit	Component	-	A	edit	field	with	a	calandar

Class	
TDateEdit

Public:
Button
Button	Hint
Button	Width
Check	Valid	Date
Date
Default	Today
Dialogue	Title
Direct	Input
Do	Click
Get	Date	Mask
OnAcceptDate
OnButtonClick
StartOfWeek
WeekEnd
WeekEnds

RX	ComboEdit	component	-	A	combo	edit	field	with	a	button.

Class:	
ComboEdit

Public:
ButtonHint
ButtonWidth
DoClick
OnButtonClick
EditText
Text

RX	Filename	Edit	Component	-	A	combo	edit	field	that	selects	a	filename

Class:	
tFileNameEdit

Public:
AcceptFiles,
DefaultExt,
Dialog,

DialogFiles,
DialogKind,
DialogOptions,
EComboEditError,
FileName,
History,
InitialDir,
OnAfterDialogue
OnBeforeDialog
scAltDown
TDirDialogKind
TExecDateDialog
TExecOpenDialogEvent
TFileDialogKind
TGlyphKind

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
RX	File	Edit ToolEdit TFilenameEdit

Description:
The	TFilenameEdit	is	a	normal	TEdit	field	specially	designed	for	inputting	filenames.	The	TFilenameEdit
control	has	button.	The	button	is	automatically	aligned	to	the	right	side	of	the	edit	field	and	triggers	an
event	when	clicked	(OnButtonClick).	

On	the	click	event	of	this	button	you	get	a	dialog	to	allow	the	user	to	select	a	file	name.	The	standard	Delphi
TOpenDialog	component	used	to	show	dialog	box.	When	the	user	chooses	OK	in	the	dialog	box,	the	user's
filename	selection	is	stored	in	the	edit	box's	FileName	property,	which	you	can	then	use	to	process	as	you
want.	The	Text	property	contains	same	string	as	the	FileName	property,	but	in	32-bit	version	the	long
filenames	with	spaces	enclosed	in	double-quotes.

Property	AcceptFiles
Declaration:	AcceptFiles:	Boolean;

AcceptFiles	property	specifies	whether	or	not	drag-and-drop	operations	are	enabled.	When	True,	user	can
drag	files	and	directories	from	the	FileManager	or	Windows	Explorer	and	drop	it	on	the	TFilenameEdit	or
TDirectoryEdit	controls.	The	OnDropFiles	event	is	called	when	files	are	dropped	on	the	edit	box.

Property	Dialog
Declaration:	Dialog:	TOpenDialog;

Read-only	property	to	the	direct	access	to	the	TOpenDialog	component,	than	called	by	the	TFilenameEdit
control.

Property	DialogFiles
Declaration:	DialogFiles:	TStrings;

Run-time	and	read	only.	The	DialogFiles	property	value	contains	a	list	of	all	the	file	names	selected	in	the
TOpenDialog	dialog	box	including	the	path	names.

Property	DialogKind
Declaration:	DialogKind:	TFileDialogKind;

Use	this	property	to	select	between	standard	dialog	types:

dkOpen	-	TOpenDialog
dkSave	-	TSaveDialog
dkOpenPicture	-	TOpenPictureDialog	(Delphi	3.0	or	higher)
dkSavePicture	-	TSavePictureDialog	(Delphi	3.0	or	higher)

Property	DialogOptions
Declaration:	DialogOptions:	TOpenOptions;

DialogOptions	is	a	set	of	flags	that	determine	the	behavior	of	the	popup	dialog.	This	property	allows	you	to
set	the	Options	property	of	the	TOpenDialog	component.

Property	FileName
Declaration:	FileName:	string;

The	FileName	property	specifies	the	file	name	that	the	TFilenameEdit	displays	and	that	appears	in	the	File
Name	edit	box	when	the	pop-up	dialog	box	opens.

Event	OnAfterDialog
Declaration:	OnAfterDialog:	TExecOpenDialogEvent;

OnAfterDialog	event	occurs	on	filename	or	directory	edit	controls	just	after	the	open-file	dialog	or	select-
directory	dialog	was	closed.	OnAfterDialog	allows	an	application	to	validate	the	selected	value.	The	value
of	the	Action	parameter	determines	if	the	editor	can	accept	new	value	or	not.

Event	OnBeforeDialog
Declaration:	OnBeforeDialog:	TExecOpenDialogEvent;

OnBeforeDialog	event	occurs	on	filename	or	directory	edit	controls	before	the	open-file	dialog	or	select-
directory	dialog	was	showed.	OnBeforeDialog	allows	an	application	to	change	the	value	passed	to	the
dialog.	The	value	of	the	Action	parameter	determines	if	the	dialog	can	show	or	not.

Event	OnDropFiles
Declaration:	OnDropFiles:	TNotifyEvent;

If	the	AcceptFiles	property	is	True	then	this	event	is	called	when	files	are	dropped	on	the	edit	box	from
FileManager	or	Windows	Explorer.

Const	scAltDown
Declaration:	scAltDown	=	scAlt	+	vk_Down;;

scAltDown	constant	specifies	the	default	key	combination	(Alt+Down)	for	ClickKey	property	of	the
TComboEdit,	TDateEdit,	TFilenameEdit	and	TDirectoryEdit	components.

Type	EComboEditError
Declaration:	EComboEditError	=	class(Exception);

EComboEditError	is	the	exception	class	for	data	that	are	invalid	for	TComboEdit	and	inherited	components.

Type	TCalendarStyle
Declaration:	TCalendarStyle	=	(csPopup,	csDialog);

The	TCalendarStyle	type	is	the	type	of	the	CalendarStyle	property	for	a	date	editors	(TDateEdit	and
TDBDateEdit	components).

Type	TDirDialogKind
Declaration:	TDirDialogKind	=	(dkVCL,	dkWin32);

The	TFileDialogKind	type	contains	the	values	the	DialogKind	property	of	directory	edit	can	assume.

Type	TExecDateDialog
Declaration:	TExecDateDialog	=	procedure(Sender:	TObject;	var	Date:	TDateTime;	var	Action:	Boolean)
of	object;

The	TExecDateDialog	type	points	to	a	method	that	handles	the	retrieving	of	the	date	value	from	pop-up
calendar	or	modal	dialog	to	the	TDateEdit	control.

Type	TExecOpenDialogEvent
Declaration:	TExecOpenDialogEvent	=	procedure(Sender:	TObject;	var	Name:	string;	var	Action:	Boolean)
of	object;

The	TExecOpenDialogEvent	type	points	to	the	method	that	handles	the	closing	of	a	pop-up	dialog.

Type	TFileDialogKind
Declaration:	TFileDialogKind	=	(dkOpen,	dkSave,	dkOpenPicture,	dkSavePicture);

The	TFileDialogKind	type	contains	the	values	the	DialogKind	property	of	filename	edit	can	assume.	Values
dkOpenPicture,	dkSavePicture	are	allowable	in	Delphi	3.0	or	higher	only.

Type	TGlyphKind
Declaration:	TGlyphKind	=	(gkCustom,	gkDefault,	gkDropDown,	gkEllipsis);

The	TGlyphKind	type	contains	the	values	the	GlyphKind	property	of	combo	edits	(TComboEdit,
TFilenameEdit,	TDirectoryEdit,	TDateEdit,	TDBDateEdit)	can	assume.

Property	Initial	Dir:	String;
InitialDir	variable	contains	the	Initial	Directory	where	to	select	the	file	from.

Property	History	:	tStringList
History	property	contains	a	list	of	previously	selected	files.

Property	DefaultExt:	string;
DefaultExt	variable	stores	the	default	extension,	example:	".doc"

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
RX	TDateEdit ToolEdit TDateEdit

Description:
The	TDateEdit	is	a	TEdit	field	designed	for	date	input.	The	TDateEdit	control	has	a	button	so	that	when	you
click	the	button	(click	event)	it	pops	up	a	calendar	dialog	form	or	calendar	(according	to	CalendarStyle
property	value)	so	that	you	can	choose	a	date.	

The	calendar	form/	popup	contains	navigation	controls	(arrows)	that	responds	to	the	keyboard	and	allows
setting	the	selected	date	on	the	calendar	to	the	next	or	previous	month	or	year.

Other	properties	include	such	as	DefaultToday,	DirectInput	(validated)	and	OnExit	(after	the	focus	leaves
the	ComboBox)	properties.

The	Date	property	contains	the	date	value	displayed	in	the	Edit	box.	If	the	property	DefaultToday	is	set	to
True	and	the	Date	property	is	zero	then	the	current	date	is	assigned	to	the	Date	property.

To	control	whether	the	year	is	two	or	four	digits	you	use	a	typed	boolean	constant	FourDigitYear	from
DateUtil	unit.

Event	OnAcceptDate
Declaration:	OnAcceptDate:	TExecDateDialog;

The	event	OnAcceptDate	triggers	just	after	the	pop-up	calendar	(or	form)	is	closed.	The	OnAcceptDate
event	allows	an	application	to	(optionally)	validate	the	date	value.	The	value	of	the	Action	parameter	(a
boolean	variable)	determines	if	the	application	should	reject	or	accept	the	date	specified	by	the	user.

Method	CheckValidDate
Declaration:	procedure	CheckValidDate;

CheckValidDate	method	checks	the	date	value	in	the	edit	control	and	raises	the	exception	EConvertError	if
the	date	in	the	edit	box	is	invalid	or	an	empty	date.

Method	GetDateMask
Declaration:	function	GetDateMask:	string;

GetEditMask	returns	the	validation	edit	mask	(or	the	validation	control	during	data	entry).	This	mask	is
created	according	to	the	current	Windows	settings	and	to	the	FourDigitYears	global	variable	(declared	in
DateUtil	unit).

Property	Button
Declaration:	Button:	TRxSpeedButton;

This	run-time	and	read-only	property	provides	to	direct	access	to	the	button	in	the	button	edit	component

(see	also:	TRxSpeedButton	control.)

Property	ButtonHint
Declaration:	ButtonHint:	string;

The	ButtonHint	property	is	the	text	string	that	specifies	the	Hint	property	for	the	button	in	a	button	edit
component	(TComboEdit	and	derived).

Property	ButtonWidth
Declaration:	ButtonWidth:	Integer;

This	is	the	width	of	the	button	on	the	right	of	the	DateEdit	field.	Use	this	property	to	specify	the	width	of
the	button.	Set	this	property	to	zero	value	to	hide	the	button	in	a	combo-edit	control.

Event	OnButtonClick
Declaration:	OnButtonClick:	TNotifyEvent;

OnButtonClick	event	occurs	whenever	the	button	in	a	button	edit	component	gets	pressed	or	the	user
presses	the	accelerator	key	specified	by	ClickKey	property.	When	ButtonWidth	=	0	the	OnButtonClick
events	doesn't	occur.

Method	DoClick
Declaration:	procedure	DoClick;

The	DoClick	method	simulates	a	mouse	click,	as	if	the	user	had	clicked	a	button,	executing	any	code
attached	to	the	OnButtonClick	event.

Property	DialogTitle	:	string
DialogTitle	specifies	the	title	of	the	popup	dialog.

Property	DefaultToday	:	boolean
DefaultToday	Property	specifies	whether	the	date	should	default	as	today's	date.

Property	StartOfWeek	:	Mon...Sun
StartOfWeek	property	specifies	the	starting	day	(e.g.,	Monday)	for	each	week.

Property	WeekendColour	:	tColourSet;
WeekendColor	specifies	the	colour	the	label	weekend	should	be	in.	(e.g.,	red	colour).

Property	Weekends	:	set
Manipulating	weekends	property	to	specify	which	date	should	be	classified	as	weekends.

Property	Direct	Input	:	boolean

DirectInput	property	specifies	whether	the	date	should	be	directly	input	by	typing	or	by	selecting	the
calendar.	If	the	value	stored	in	this	variable	is	true,	then	the	date	is	directly	validated.

Property	Date
variable	Date	:	tDateTime
Variable	Datecontains	the	date	which	is	displayed	on	the	tDateEdit.

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
RX	Directory	Edit ToolEdit TDirectoryEdit

Description:	The	TDirectoryEdit	is	a	normal	TEdit	field	for	inputting	directory	names.	The	TDirectoryEdit
control	has	a	button	attached	to	it.	When	the	Onclick	event	is	triggered	(when	you	click	on	the	button),	a
dialog	appears	to	allow	the	user	to	select	a	directory	name.	When	the	user	chooses	OK	in	the	dialog	box,	the
selected	directory	name	is	placed	into	the	edit	box's	Text	property.

Optionally,	you	can	also	permit	the	user	to	choose	multiple	directory	names	with	the	MultipleDir	property.	

This	component	use	the	SelectDirectory	(Delphi)	standard	function	from	FileCtrl	unit	to	show	the	dialog
box.

Property	DialogKind
Declaration:	DialogKind:	TDirDialogKind;

Use	this	property	to	select	between	standard	dialog	types:

•	dkVCL	-	standard	Delphi	VCL	dialog	(using	SelectDirectory	standard	function);
•	dkWin32	-	standard	Windows	"Browse	For	Folder"	dialog,	used	only	in	Windows95	or	NT	4.x	or	higher.
In	NT	3.51	standard	Delphi	VCL	dialog	will	be	used	regardless	this	property	value.

NOTE.	When	you	set	DialogKind	to	dkWin32	value,	the	DialogOptions	property	will	be	ignored.

Property	DialogOptions
Declaration:	DialogOptions:	TSelectDirOpts;

The	DialogOptions	properties	is	a	set	of	values.	If	DialogOptions	is	the	empty	set,	the	user	can	only	select	a
directory	that	already	exists.	No	edit	box	is	provided	for	the	user	to	enter	a	new	directory	name.

These	are	the	possible	values	that	can	be	added	to	the	DialogOptions	set:
-	sdAllowCreate	-	an	edit	box	appears	to	allow	the	user	to	type	in	the	name	of	a	directory	that	does	not
exist.	This	option	does	not	create	a	directory,	but	the	application	can	access	the	Text	property	to	create	the
directory	selected	if	desired.

-	sdPerformCreate	-	Used	only	when	DialogOptions	contains	sdAllowCreate.	If	the	user	enters	a	directory
name	that	does	not	exist,	the	TDirectoryEdit	creates	it	just	the	dialog	is	closed.

-	sdPrompt	-	Used	when	DialogOptions	contains	sdAllowCreate.	Displays	a	message	box	that	informs	the
user	when	the	entered	directory	does	not	exist	and	asks	if	the	directory	should	be	created.	If	the	user
chooses	OK,	the	directory	is	created	if	DialogOptions	contains	sdPerformCreate.	If	DialogOptions	does	not
contain	sdPerformCreate,	the	directory	is	not	created:	the	application	should	create	it	separately.

NOTE.	In	32-bit	version	when	DialogKind	=	dkWin32	this	property	is	ignored.

Property	MultipleDirs
Declaration:	MultipleDirs:	Boolean;

When	MultipleDir	=	True,	the	directory	name	selected	in	the	dialog	will	be	added	to	the	Text	property;
when	False,	the	selected	directory	name	will	replace	the	text	of	the	editor.

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
Currency	Edit CurrEdit tCurrencyEdit

Description:
The	TCurrencyEdit	component	is	a	modified	TEdit	component.	CurrencyEdit	allows	the	user	to	enter	only
numeric	characters,	so	the	user	cannot	enter	invalid	characters.	When	the	user	leaves	the	field,	the	number
is	reformatted	to	display	appropriately,	accordingly	with	the	DisplayFormat	property.

The	field	value	is	stored	in	a	Value	property	so	you	should	read	and	write	to	that	in	your	program.	This	field
is	of	type	is	Extended.	You	can	also	read	and	write	Value	as	integer	number	using	the	AsInteger	property.

Property	AsInteger
Declaration:	AsInteger:	Longint;

Run-time	only.	This	is	a	conversion	property.	For	a	TCurrencyEdit	and	TRxCalcEdit,	AsInteger	can	be	used
to	read	or	set	the	Value	as	a	Longint.

Property	BeepOnError
Declaration:	BeepOnError:	Boolean;

BeepOnError	determines	whether	a	beep	is	sounded	when	an	invalid	character	is	entered.	If	BeepOnError	is
True,	MessageBeep	is	called	when	an	invalid	character	is	entered	or	when	a	character	is	entered	and	the
field	is	full.

Property	DecimalPlaces
Declaration:	DecimalPlaces:	Word;

DecimalPlaces	is	the	number	of	digits	that	are	displayed	to	the	right	of	the	decimal	point.	This	property	can
be	used	to	set	a	decimal	position	that	will	display	a	fractional	portion	of	the	Value	only	if	one	exists	and	the
TCurrencyEdit	or	the	TRxCalcEdit	component	have	focus.

Property	DisplayFormat
Declaration:	DisplayFormat:	string;

The	DisplayFormat	property	is	used	to	format	the	value	of	the	field	for	display	purposes.	Formatting	is
performed	by	FloatToTextFmt	function.

Property	DisplayText
Declaration:	DisplayText:	string;

Run-time	and	read-only.	The	string	value	for	the	field	when	it	is	displayed	in	the	TCurrencyEdit	or	in	the
TRxCalcEdit	control	that	is	not	in	edit	mode	(have	not	focus).	

NOTE.	The	Text	property	always	returns	unformatted	string.

Property	MaxValue
Declaration:	MaxValue:	Extended;

Use	this	property	to	specify	the	maximum	value	that	can	be	entered.

Property	MinValue
Declaration:	MinValue:	Extended;

Use	this	property	to	specify	the	minimum	value	that	can	be	entered.

Property	Value
Declaration:	Value:	Extended;

Value	is	the	actual	data	in	a	TCurrencyEdit	or	in	a	TRxCalcEdit.	Use	Value	to	read	data	directly	from	and
write	data	directly	to	an	editor.	When	Text	property	is	empty	string,	the	Value	property	returns	0	(zero).

Property	ZeroEmpty
Declaration:	ZeroEmpty:	Boolean;

When	True	and	Value	property	has	zero	value	(0)	the	focused	editor	has	empty	Text	property	(empty	string).
When	False	editor	always	shows	'0'	string	when	Value	=	0.	The	default	value	is	True..

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Unit	CurrEdit	/	CurrencyEdit	
Public:
AsInteger
BeepOnError
DecimalPlaces
DisplayFormat
DisplayText
MaxValue
MinValue
Value
Zero	Empty

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
Text	List	Box RX	Ctrls TTextListBox

Description:
TTextListBox	is	a	TListBox	descendant	(for	text	items	only,	not	owner-drawn	types)	with	an	automatic
horizontal	scrollbar	if	necessary.

Type	TAcceptKeyEvent
Declaration:	TAcceptKeyEvent	=	function	(Sender:	TObject;	var	Key:	Char):	Boolean	of	object;

TAcceptKeyEvent	is	the	type	of	the	OnAcceptEditKey	event	of	the	TRxDrawGrid	component.

Type	TChangeStateEvent
Declaration:	TChangeStateEvent	=	procedure	(Sender:	TObject;	Index:	Integer)	of	object;

TChangeStateEvent	is	the	type	of	the	OnChangeState	event	of	the	TRxCheckListBox	component.

Type	TCheckKind
Declaration:	TCheckKind	=	(ckCheckBoxes,	ckRadioButtons);

The	TCheckKind	type	lists	the	values	the	CheckKind	property	of	the	check	list	box	(TRxCheckListBox)
can	assume.

Type	TEditAlignEvent
Declaration:	TEditAlignEvent	=	procedure	(Sender:	TObject;	ACol,	ARow:	Longint;	var	Alignment:
TAlignment)	of	object;

TEditAlignEvent	is	the	type	of	the	OnGetEditAlign	event	of	the	TRxDrawGrid	component.

Type	TEditLimitEvent
Declaration:	TEditLimitEvent	=	procedure	(Sender:	TObject;	var	MaxLength:	Integer)	of	object;

TEditLimitEvent	is	the	type	of	the	OnGetEditLimit	event	of	the	TRxDrawGrid	component.

Type	TEditShowEvent
Declaration:	TEditShowEvent	=	procedure	(Sender:	TObject;	ACol,	ARow:	Longint;	var	AllowEdit:
Boolean)	of	object;

TEditLimitEvent	is	the	type	of	the	OnShowEditor	event	of	the	TRxDrawGrid	component.

The	value	of	the	AllowEdit	parameter	determines	if	the	in-place	editor	can	show	or	not.

Type	TEditStyleEvent
Declaration:	TEditStyleEvent	=	procedure	(Sender:	TObject;	ACol,	ARow:	Longint;	var	Style:
TInplaceEditStyle)	of	object;

TEditStyleEvent	is	the	type	of	the	OnGetEditStyle	event	of	the	TRxDrawGrid	component.

The	Style	parameter	determines	how	users	can	edit	the	data	of	a	grid	cell.	These	are	the	possible	values	of
Style:	-	ieSimple	-	No	combo	box	or	ellipsis	button	is	provided.	The	user	cannot	select	the	cell's	content
from	a	list.

iePicklist	-	The	grid	displays	a	combo	box	in	the	column,	and	the	user	can	choose	a	value	from	the
drop-down	list.	You	must	specify	contents	of	a	pick-list	by	handling	OnGetPicklist	event.

ieEllipsis	-	The	column	displays	an	ellipsis	button	that	the	user	can	click	to	choose	a	value.	Clicking
the	ellipsis	button	triggers	an	OnEditButtonClick	event.

Type	TGetItemWidthEvent
Declaration:	TGetItemWidthEvent	=	procedure(Control:	TWinControl;	Index:	Integer;	var	Width:	Integer)
of	object;

TGetItemWidthEvent	is	the	type	of	the	OnGetItemWidth	event	of	the	TRxCheckListBox	component.

Type	TGlyphLayout
Declaration:	TGlyphLayout	=	(glGlyphLeft,	glGlyphRight,	glGlyphTop,	glGlyphBottom);

TGlyphLayout	defines	the	values	the	GlyphLayout	property	of	a	secret	panel	(TSecretPanel)	can	assume.

Type	TInplaceEditStyle
Declaration:	TInplaceEditStyle	=	(ieSimple,	ieEllipsis,	iePickList);

TInplaceEditStyle	defines	the	values	the	Style	parameter	of	OnGetEditStyle	event	handler	can	assume.	The
Style	parameter	determines	how	users	can	edit	the	data	of	a	grid	cell.	These	are	the	possible	values	of	Style:

ieSimple	-	No	combo	box	or	ellipsis	button	is	provided.	The	user	cannot	select	the	cell's	content	from
a	list.
iePicklist	-	The	grid	displays	a	combo	box	in	the	column,	and	the	user	can	choose	a	value	from	the
drop-down	list.	You	must	specify	contents	of	a	pick-list	by	handling	OnGetPicklist	event.
ieEllipsis	-	The	column	displays	an	ellipsis	button	that	the	user	can	click	to	choose	a	value.	Clicking
the	ellipsis	button	triggers	an	OnEditButtonClick	event.

Type	TPicklistEvent
Declaration:	TPicklistEvent	=	procedure	(Sender:	TObject;	ACol,	ARow:	Longint;	PickList:	TStrings)	of
object;

TPicklistEvent	is	the	type	of	the	OnGetPicklist	event	of	the	TRxDrawGrid	component.

Type	TRxButtonState
Declaration:	TRxButtonState	=	(rbsUp,	rbsDisabled,	rbsDown,	rbsExclusive,	rbsInactive);

TRxButtonState	defines	a	range	for	the	state	of	TRxSpeedButton.	For	internal	using.

Type	TRxDropDownMenuPos
Declaration:	TRxDropDownMenuPos	=	(dmpBottom,	dmpRight);

TRxDropDownMenuPos	defines	the	values	the	MenuPosition	property	of	a	TRxSpeedButton	can	assume.

Type	TRxNumGlyphs
Declaration:	TRxNumGlyphs	=	1..5;

The	TNumGlyphs	type	defines	the	range	of	values	(1-5)	the	NumGlyphs	property	of	a	speed	button
(TRxSpeedButton)	can	assume.

Type	TShadowPosition
Declaration:	TShadowPosition	=	(spLeftTop,	spLeftBottom,	spRightBottom,	spRightTop);

TShadowPosition	is	the	type	of	the	ShadowPos	property	of	the	TRxLabel	component.

Type	TTextLayout
Declaration:	TTextLayout	=	(tlTop,	tlCenter,	tlBottom);

TTextLayout	specifies	the	available	values	for	vertical	placement	of	the	text	in	the	label.

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Unit	RXCtrls

Class:	
CheckListBox

Public:
AllowGrayed
ApplyState
AutoScroll
Checked
CheckedIndex
CheckKind
EnabledItem
State

Triggers
OnClickCheck
OnGetItemWidth
OnStateChange

Class	RxLabel

Property:
Layout
ShadowColor
ShadowPos
ShadowSize
ShowFocus

Event:
OnMouseEnter
OnMouseLeave

Class	RX	Text	List	Box

Property
TAcceptKeyEvent
TChangeStateEvent
TCheckKind
TEditAlignEvent
TEditLimitEvent
TEditShowEvent
TGetItemWidthEvent
TGlyphLayout
TInplaceEditStyle
TPicklistEvent
TRxButtonState

TRxDropDownMenuPos
TRxNumGlyphs
TShadowPosition
TTextLayout

Class	RX	Draw	Grid

Event	OnAcceptEditKey
Event	OnCancelEdit
Event	OnColumnSized
Event	OnEditButtonClick
Event	OnGetEditAlign
Event	OnGetEditLimit
Event	OnGetEditStyle
Event	OnGetPicklist
Event	OnRowSized
Event	OnShowEditor
Method	DrawMasked
Method	DrawMultiline
Method	DrawPicture
Method	DrawStr
Method	InvalidateCell
Method	InvalidateRow

Class	RX	Secret	Panel

Property
Active	
Cycled	
GlyphLayout	
Lines	
TextStyle

Events
OnStartPlay	
OnStopPlay

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
RX	Check	List	Box RxCtrls TRxCheckListBox

Description:
The	TRxCheckListBox	displays	a	scrollable	list	with	a	check	box	next	to	each	item.	

TRxCheckListBox	is	similar	to	TListBox,	except	that	each	item	has	a	check	box	or	radio	button	(according
to	the	CheckKind	property)	next	to	it.	

The	custom	component	editor	(a	wizard)	is	used	to	modify	the	item	list	and	can	set	all	the	details	-	Add,
Delete,	List,	State,	Checked	and	EnabledItem	properties	at	design-time

Optionally,	if	the	AutoScroll	property	is	set	to	True,	a	horizontal	scroll	bar	appears	automatically	on	the
control.	(This	is	useful	for	placing	a	list	of	items	without	the	list	scrolling	off	the	screen)

Note:	The	word	(check	[x])	=	(tick	[ü])	and	the	word	(tick	[ü])	=	(check	[x]).
Hence	the	phrase	"I	checked	your	work	and	I	found	a	few	mistakes..."

Property	AllowGrayed
Declaration:	AllowGrayed:	Boolean;

This	determines	whether	the	checkbox	(on	the	left	side	of	the	listbox)	can	be	in	unknown	(or	"grayed")
state.	

If	AllowGrayed	is	set	to	True,	each	item	has	three	possible	states:	checked,	unchecked,	and	grayed.	If
AllowGrayed	is	set	to	False,	each	item	has	only	two	possible	states:	checked	and	unchecked.

Property	AutoScroll
Declaration:	AutoScroll:	Boolean;

The	AutoScroll	is	a	Boolean	property	specifying	whether	the	horizontal	scroll	bar	optionally	appears	on	the
list-box	control.

This	is	useful	for	displaying	a	large	number	of	string	items.	The	default	value	is	alway	set	to	True.

Property	Checked[Index:	Integer]
Declaration:	Checked[Index:	Integer]:	Boolean;

This	property	identifies	which	items	on	the	list	are	checked.	

For	each	member	of	the	Item	List,	the	boolean	value	Checked	is	True	if	a	check	mark	appears	on	the	item’s
check	box	(or	radio	button).	Checked	corresponds	to	the	cbChecked	state.

(In	other	words,	
-	Checked	property	True	is	equivalent	to	the	RadioButton's	state	of	cbChecked.	
-	Checked	property	False	is	equivalent	to	the	RadioButton's	state	of	cbUnchecked	or	cbGrayed.)

Property	CheckedIndex
Declaration:	CheckedIndex:	Integer;

The	value	of	the	CheckedIndex	property	is	the	ordinal	number	(starts	from	0	as	the	first	item)	of	the
checked	item	in	the	TRxCheckListBox	when	the	CheckKind	property	is	ckRadioButtons.	

If	no	item	is	checked	or	(CheckKind	=	ckCheckBoxes)	the	value	of	CheckedIndex	is	-1.

Property	CheckKind
Declaration:	CheckKind:	TCheckKind;

The	property	CheckKind	determines	the	kind	of	check-marks	found	in	the	TRxCheckListBox	component.
These	are	the	possible	values	and	their	meanings:

ckCheckBoxes	-	like	check-boxes,	allows	multiple	ticks	on	any	number	of	items;
ckRadioButtons	-	like	radio-buttons,	allows	one	tick	on	any	one	item	only.

Property	EnabledItem[Index:	Integer]
Declaration:	EnabledItem[Index:	Integer]:	Boolean;

This	indicates	whether	the	items	in	the	list	are	enabled	(i.e.	user	can	check	and	uncheck	these	items)	or
disabled	(user	cannot	do	anything	with	that	record	on	the	list)

For	each	member	of	the	Items	array,	EnabledItem	indicates	whether	this	item	is	enabled.	Any	item	that	is
disabled	appears	in	the	"disabled	font	style"	and	the	associated	check	box	cannot	be	changed.

The	Index	value	is	zero	based	(ordinal)	and	corresponds	to	the	index	used	in	the	Items	property.	Use	this
property	to	enable	or	disable	individual	list	item	in	a	TRxCheckList	component.

Note:	If	Index	is	-1,	there	are	no	items	on	the	list.

Property	State[Index:	Integer]
Declaration:	State[Index:	Integer]:	TCheckBoxState;

This	indicates	the	state	of	the	items	on	the	list	-	whether	they	are	checked	or	grayed.	

For	each	member	of	the	Items	array,	State	indicates	whether	its	check	box	is	selected	(cbChecked),
deselected	(cbUnchecked),	or	grayed	(cbGrayed).	

The	cbChecked	state	corresponds	to	the	Boolean	property	Checked
(In	other	words,	
-	Checked	property	True	is	equivalent	to	the	RadioButton's	state	of	cbChecked.	
-	Checked	property	False	is	equivalent	to	the	RadioButton's	state	of	cbUnchecked	or	cbGrayed.)

If	CheckKind	=	ckRadioButtons,	the	user	selects	a	radio	button	in	the	list	box	and	any	selected	item	is

automatically	unselected.

Event	OnClickCheck
Declaration:	OnClickCheck:	TNotifyEvent;

The	trigger	OnClickCheck	occurs	when	the	user	selects	or	de-selects	an	item’s	check	box.	

Write	an	OnClickCheck	event	handler	to	implement	any	special	processing	that	should	occur	when	the	user
checks	or	unchecks	an	item.

Event	OnGetItemWidth
Declaration:	OnGetItemWidth:	TGetItemWidthEvent;

This	obtains	the	item's	width.	
(It	should	be	bigger	than	any	item	or	record	on	the	list.)

Event	OnStateChange
Declaration:	OnStateChange:	TChangeStateEvent;

If	any	changes	are	made	to	the	control	(by	the	user	-	NOT	by	direct	manipulation	of	the	CheckedListBox	by
programming),	this	is	triggered.

Method	ApplyState
Declaration:

procedure	ApplyState(AState:	TCheckBoxState;	EnabledOnly:	Boolean);

This	updates	the	property	of	the	CheckedListBox.	

In	other	words,	
-	if	the	new	state	is	ckCheckBoxes,	nothing	occurs,	except	the	state	is	changed	to	ckCheckBoxes.	
-	if	the	new	state	is	ckRadioButtons,	the	EnabledOnly	boolean	variable	is	used	to	set	whether	the	check	list
box	is	enabled	or	disabled.

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
RX	Colour	Combo	Box RxCombos TColorComboBox
RX	Font	Combo	Box RxCombos TFontComboBox

Class	-	TColorComboBox	-	Description:
This	component	is	indented	for	color	selection.	It	is	actually	a	combo-box	which	drop-down	list	contains	16
basic	system	colors.	The	available	colors	are	the	same	as	the	ones	in	the	Object	Inspector’s	drop-down	list
of	colors	for	the	Color	property.	ColorValue	property	contains	the	value	of	selected	color.

Property	TColorComboBox.ColorNames
Declaration:	ColorNames:	TStrings;

ColorNames	provides	a	way	to	customize	the	display	color's	names	for	the	items	in	the	drop-down	list	of
color	combo	box.	Use	the	ColorNames	property	to	supply	color	names	of	your	choosing	for	the	individual
color	items.	Each	color	has	a	default	english	name.	ColorNames	allow	the	values	of	any	or	all	of	these
default	names	to	be	replaced	by	customized	names.

ColorNames	is	a	string	list.	Each	name	is	a	string.	The	first	string	in	the	string	list	becomes	the	name	for	the
first	item	on	the	list	(clBlack).	The	16-th	string	becomes	the	name	for	the	16-th	item	(clWhite).

When	specifying	names	at	runtime,	enter	an	empty	string	('')	for	any	name	that	should	keep	the	default
value.	Simply	leave	the	line	blank	when	using	the	string	list	property	editor	of	the	Object	Inspector	for	the
ColorNames	property.

Property	TColorComboBox.ColorValue
Declaration:	ColorValue:	TColor;

This	property	represents	the	color	value	that	currently	selected.	If	you	assign	a	TColor	value	to	ColorValue,
the	corresponding	entry	in	the	list	is	selected.	If	the	specified	TColor	is	not	in	the	color	combo	box	list,	the
assignment	is	ignored	and	the	current	selection	is	unchanged.

Property	TColorComboBox.DisplayNames
Declaration:	DisplayNames:	Boolean;

If	True	the	color	names	(Black,	Red	etc)	will	be	displaying	in	color	list	to	the	right	of	the	colors	in	the	color
combo	box.

Class	TFontComboBox

This	component	is	indended	for	font	selection.	Its	drop-down	list	contains	the	list	of	fonts	currently
available.	Device	and	Options	properties	controls	what	fonts	are	displayed.

Property	TFontComboBox.Device
Declaration:	Device:	TFontDevice;

This	property	controls	the	list	of	available	fonts.

fdScreen	-	the	list	will	be	populated	by	the	screen	fonts	only.
fdPrinter	-	the	list	will	be	populated	by	the	printer	fonts	only.
fdBoth	-	the	list	will	be	populated	both	screen	and	printer	fonts.

Property	TFontComboBox.FontName
Declaration:	FontName:	string;

Contains	the	name	of	the	selected	font.

Property	TFontComboBox.Options
Declaration:	Options:	TFontListOptions;

These	are	the	possible	values	that	can	be	included	in	the	Options	set	for	the	TFontComboBox:

foAnsiOnly	-	If	True,	the	user	can	select	fonts	that	use	the	Windows	character	set	only;	that	is,	the
user	can't	choose	a	font	that	contains	only	symbols	because	they	aren't	displayed	in	the	Font	combo
box.
foTrueTypeOnly	-	If	True,	only	TrueType	fonts	are	displayed	in	the	Font	combo	box.
foFixedPitchOnly	-	If	True,	only	monospaced	fonts	are	displayed	in	the	Font	combo	box.
foNoOEMFonts	-	If	True,	only	fonts	that	aren't	vector	fonts	are	displayed	in	the	Font	combo	box.
foOEMFontsOnly	-	If	True,	only	OEM	fonts	are	displayed	in	the	Font	combo	box.
foScalableOnly	-	If	True,	only	fonts	that	can	be	scaled	are	displayed	in	the	Font	combo	box.

The	default	value	is	[].

Property	TFontComboBox.TrueTypeOnly
Declaration:	TrueTypeOnly:	Boolean;

See	Options.

Type	TFontComboBox.TFontDevice
Declaration:	TFontDevice	=	(fdScreen,	fdPrinter,	fdBoth);

The	TFontDevice	type	lists	the	values	the	Device	property	of	the	Font	combo	box	(TFontComboBox)	can
assume.

Type	TFontComboBox.TFontListOption
Declaration:	TFontListOption	=	(foAnsiOnly,	foTrueTypeOnly,	foFixedPitchOnly,	foNoOEMFonts,
foOEMFontsOnly,	foScalableOnly);

The	TFontListOption	type	is	the	set	of	values	the	Options	property	of	the	Font	combo	box
(TFontComboBox)	can	have.

Type	TFontComboBox.TFontListOptions
Declaration:	TFontListOptions	=	set	of	TFontListOption;

TFontListOptions	is	the	type	of	the	Options	property	of	the	TFontComboBox	component.

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Unit	RX	Combos

Class	TColorComboBox	
Property:
ColorNames
ColorValue
DisplayNames

Class	TFontComboBox

Property
Device
FontName
Options
TFontDevice
TFontListOption
TFontListOptions
TrueTypeOnly

Class	RxCalcEdit

Property
GlyphKind
Value

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
RX	Splitter RxSplit TRxSplitter

Description:
TRxSplitter	divides	the	client	area	of	a	form	into	resizable	panes.	The	splitter	(or	divisor)	is	between	a
control	aligned	to	one	of	the	edges	of	the	form	and	the	controls	that	fill	up	the	rest	of	the	client	area.	Give
the	splitter	the	same	alignment	as	the	control	that	is	anchored	to	the	edge	of	the	form.

When	the	user	moves	the	splitter,	it	resizes	the	anchored	control.	This,	in	turn,	changes	the	client	area	of	the
form,	and	the	controls	that	fill	up	the	rest	of	the	client	area	resize	accordingly.

Use	each	control	(ControlFirst	~	ControlSecond)	on	the	form	as	a	separate	pane.	After	each	pane	is	placed,
place	a	splitter	with	the	same	alignment	to	allow	that	pane	(ControlFirst)	to	be	resized.	The	last	pane	to	be
placed	on	the	form	(ControlSecond)	should	be	client-aligned,	so	that	it	resizes	automatically	to	fill	up	the
remaining	space	after	all	other	panes	are	resized.

Using	class	TRxSplitter
Add	a	splitter	to	a	form	between	two	aligned	controls	to	allow	users	to	resize	the	controls	at	runtime.

Property	BottomRightLimit
Declaration:	BottomRightLimit:	Integer;

TopLeftLimit	and	BottomRightLimit	are	the	minimum	sizes,	in	pixels,	of	the	client	area	the	splitter	must
leave	on	the	form.	Set	TopLeftLimit	or	BottomRightLimit	to	provide	a	minimum	size	the	splitter	must	leave
when	resizing	its	neighboring	control.	For	example,	if	the	Align	property	is	alLeft	or	alRight,	TopLeftLimit
is	the	minimum	width	of	the	client	area	to	the	left	of	the	splitter	and	BottomRightLimit	is	the	minimum
width	of	the	client	area	to	the	right	of	the	splitter.	If	the	Align	property	is	alTop,	TopLeftLimit	is	the
minimum	height	of	the	client	area	above	the	splitter.

Property	ControlFirst
Declaration:	ControlFirst:	TControl;

ControlFirst	specifies	a	first	control	(left	or	top),	which	can	be	resized	by	splitter.	You	need	assign	value	to
this	property	only	when	automatically	assigned	value	are	missed.	You	can	also	leave	this	property	blank
when	ControlFirst	value	specified.

Property	ControlSecond
Declaration:	ControlSecond:	TControl;

ControlSecond	specifies	a	second	control	(right	or	bottom),	which	can	be	resized	by	splitter.

You	need	assign	value	to	this	property	only	when	automatically	assigned	value	are	missed.	You	can	also
leave	this	property	blank	when	ControlSecond	value	specified.

Property	TopLeftLimit
Declaration:	TopLeftLimit:	Integer;

TopLeftLimit	and	BottomRightLimit	are	the	minimum	sizes,	in	pixels,	of	the	client	area	the	splitter	must
leave	on	the	form.	Set	TopLeftLimit	or	BottomRightLimit	to	provide	a	minimum	size	the	splitter	must	leave
when	resizing	its	neighboring	control.	For	example,	if	the	Align	property	is	alLeft	or	alRight,	TopLeftLimit
is	the	minimum	width	of	the	client	area	to	the	left	of	the	splitter	and	BottomRightLimit	is	the	minimum
width	of	the	client	area	to	the	right	of	the	splitter.	If	the	Align	property	is	alTop,	TopLeftLimit	is	the
minimum	height	of	the	client	area	above	the	splitter.

Event	OnPosChanged
Declaration:	OnPosChanged:	TNotifyEvent;

OnPosChanged	occurs	after	the	user	has	retiled	the	form	using	the	splitter.	Write	an	OnPosChanged	event
handler	to	take	specific	action	when	the	user	finishes	dragging	the	edge	of	the	neighboring	control	using	the
splitter.

Type	TSplitterStyle
Declaration:	TSplitterStyle	=	(spUnknown,	spHorizontalFirst,	spHorizontalSecond,	spVerticalFirst,
spVerticalSecond);

TSplitterStyle	type	defines	the	values,	internally	used	by	the	TRxSplitter	component.

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Unit	RXSplitter

Properties
BottomRightLimit
ControlFirst
ControlSecond
TopLeftLimit

Events:
OnPosChanged

Types:
TSplitterStyle

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
Slider RxSlider TRxSlider

Description:
This	is	a	slider	component	that	emulates	the	Win32	slider	and	optionally-ticked	bar	control	that	contains	a
slider	which	marks	a	current	Value.	

Move	the	slider's	thumb*	to	the	desired	value	on	the	bar	by	dragging	it	with	the	mouse	or	by	clicking	the
mouse	on	the	bar.

(*	the	"v"	thing	on	the	RxSlider	-->	|----|----|-v---|---|)

To	use	the	keyboard	to	move	the	slider,	press	the	arrow	keys	or	the	PgUp	and	PgDn	keys.

The	MaxValue	property	sets	the	maximum	position	of	a	TRxSlider.	The	MinValue	property	sets	the
minimum	position	of	a	TRxSlider.	You	can	customize	the	TRxSlider	component	by	using	the	Orientation
property	and	ImageHThumb,	ImageHRuler,	ImageVThumb,	ImageVRuler	properties.

Property	EdgeSize
Declaration:	EdgeSize:	Integer;

"Edge	Size".	

It	is	the	size	of	the	outer	edge	of	the	slider	control.

Property	ImageHRuler
Declaration:	ImageHRuler:	TBitmap;

This	is	the	the	bitmap	for	the	horizontal	ruler.
In	other	words,	it's	the	"---"	thing	on	the	slider	-->	|----|----|-v---|---|)

Property	ImageHThumb
Declaration:	ImageHThumb:	TBitmap;

This	is	the	the	bitmap	for	the	horizontal	ruler.
In	other	words,	it's	the	"v"	thing	on	the	slider	-->	|----|----|-v---|---|)

Property	ImageVRuler
Declaration:	ImageVRuler:	TBitmap;

This	is	the	the	bitmap	for	the	vertical	ruler.
In	other	words,	it's	the	"---"	thing	on	the	slider	-->	|----|----|-v---|---|)

Property	ImageVThumb
Declaration:	ImageVThumb:	TBitmap;

This	is	the	the	bitmap	for	the	horizontal	ruler.
In	other	words,	it's	the	"v"	thing	on	the	slider	-->	|----|----|-v---|---|)

Property	Increment
Declaration:	Increment:	Longint;

The	property	Increment	is	the	amount	the	Value	changes	when	the	user	presses	the	arrow	keys.

(In	other	words,	if	the	increment	is	set	to	10,	the	value	changes	by	+/-	10	per	change.)

Property	MaxValue
Declaration:	MaxValue:	Longint;

MaxValue	is	the	maximum	Value	the	thumb	of	the	TRxSlider	can	move	upto.	

Use	MaxValue	to	set	an	upper	limit	to	the	Value	that	can	be	represented	using	the	slider.	The	thumb	of	the
slider	indicates	the	current	Value	in	a	range	between	MinValue	and	MaxValue.

Property	MinValue
Declaration:	MinValue:	Longint;

MinValue	specifies	the	minimum	Value	of	a	TRxSlider.
Use	MinValue	to	set	an	lower	limit	to	the	Value	that	can	be	represented	using	the	slider.	The	thumb	of	the
slider	indicates	the	current	Value	in	a	range	between	MinValue	and	MaxValue.

Property	NumThumbStates
Declaration:	NumThumbStates:	TNumThumbStates;

This	is	the	number	of	thumb	states.	This	allows	the	flexibility	of	using	a	double	image	or	a	single	image.

In	other	words:
____disabled	thumb	=	v
____enabled	thumb	=	v

__The	bitmap	is	vv.	
____NumThumbStates	=	1,	Enabled	=	True	_-->	|----|----|-vv---|---|)
____NumThumbStates	=	1,	Enabled	=	False	-->	|----|----|-vv---|---|)

__The	bitmap	is	vv.	
____NumThumbStates	=	2,	Enabled	=	True	_-->	|----|----|-v---|---|)
____NumThumbStates	=	2,	Enabled	=	False	-->	|----|----|-v---|---|)

Property	Options
Declaration:	Options:	TSliderOptions;

These	are	the	possible	values	that	can	be	included	in	the	Options	set	for	the	TRxSlider	control:

soSmooth	-	determines	whether	the	thumb	are	moved	smooth	or	step-by-step	when	the	user	move
mouse	pointer;
soShowPoints	-	determines	whether	tick	marks	are	displayed	along	the	track.
soShowFocus	-	indicates	whether	TRxSlider	should	draw	a	focus	rectangle	around	self	when	it	has
input	focus.

Property	Orientation
Declaration:	Orientation:	TSliderOrientation;

The	orientation	specifies	whether	the	slider	bar	is	horizontal	(soHorizontal)	or	vertical	(soVertical).

Property	Value
Declaration:	Value:	Longint;

The	property	Value	contains	the	current	position	of	the	slider	of	a	TRxSlider	control.	

Value	is	always	in	the	range	between	MinValue	and	MaxValue	(inclusive).	Set	Value	to	programmatically
move	the	slider	to	a	new	value.

Event	OnDrawPoints
Declaration:	OnDrawPoints:	TNotifyEvent;

This	event	is	triggered	when	the	points	are	drawn.	

(This	is	used	where	another	thing	is	drawn	(e.g.,	attaching	a	needle)	or	to	counts	the	number	of	points	on	the
slider)

Method	DefaultDrawPoints
Declaration:	
procedure	DefaultDrawPoints(PointsStep,	PointsHeight,	ExtremePointsHeight:	Integer);	virtual;

This	allows	the	user	to	draw	the	points	of	the	RxSlider	instead	of	using	the	default	settings.	
In	other	words,	the	programmer	draws	the	"|"	thing	on	the	slider	-->	|----|----|--v--|---|)

Example,	draw	a	blue	notch	for	every	5	points.

Type	TNumThumbStates

Declaration:	TNumThumbStates	=	1..2;

TNumThumbStates	is	the	type	for	the	NumThumbStates	property	of	TRxSlider	component.

Type	TSliderOption
Declaration:	TSliderOption	=	(soShowFocus,	soShowPoints,	soSmooth);

TSliderOption	is	a	set	of	values	for	the	Options	property	of	the	TRxSlider	component.

Type	TSliderOptions
Declaration:	TSliderOptions	=	set	of	TSliderOption;

TSliderOptions	is	a	set	of	values	for	the	Options	property	of	the	TRxSlider	component.

Type	TSliderOrientation
Declaration:	TSliderOrientation	=	(soHorizontal,	soVertical);

TSliderOrientation	defines	the	values	for	the	Orientation	property	of	TRxSlider.	The	possible	values	are
soHorizontal	(default,	slider	is	horizontal)	or	soVertical	(slider	is	vertical).

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Unit	RxSlider	/	RX	Slider.

Property
DefaultDrawPoints
EdgeSize
ImageHRuler
ImageHThumb
ImageVRuler
Increment
MaxValue
MinValue
NumThumbStates
Options
Orientation
Value

Types
TNumThumbStates
TSliderOption
TSliderOptions
TSliderOrientation

Events:
OnDrawPoints

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
RxLabel RXCtrl TRxLabel

Description:
TRxLabel	is	TLabel	with	some	additional	special	effects.	It	supports	vertical	alignment	and	shadows	(like
3D	style),	in	addition	to	standard	label	properties.	You	can	use	ShadowPos,	ShadowColor	and	ShadowSize
properties	to	determines	how	to	draw	the	label	shadowed.

Property	Layout
Declaration:	Layout:	TTextLayout;

The	property	Layout	specifies	the	vertical	placement	of	the	text	within	the	label	when	the	AutoSize	property
is	False.	Set	Layout	to	specify	how	the	text	of	the	label	is	placed	within	the	ClientRect	of	the	label	control.
Layout	can	be	one	of	the	following	values:

tlTop	-	The	text	appears	at	the	top	of	the	label.
tlCenter	-	The	text	is	vertically	centered	in	the	label.
tlBottom	-	The	text	appears	along	the	bottom	of	the	label.

Property	ShadowColor
Declaration:	ShadowColor:	TColor;

Use	this	property	to	specify	the	color	of	the	shadow.	This	property	is	only	applicable	when	ShadowSize	is
set	to	non-zero	value.

Property	ShadowPos
Declaration:	ShadowPos:	TShadowPosition;

Use	this	property	to	specify	the	position	of	the	shadow.	This	property	is	only	applicable	when	ShadowSize
is	set	to	non-zero	value.

Property	ShadowSize
Declaration:	ShadowSize:	Byte;

Use	this	property	to	specify	how	far	down	and	to	the	right	the	shadow	text	will	be	displayed	from	the	main
text.

Property	ShowFocus
Declaration:	ShowFocus:	Boolean;

ShowFocus	indicates	whether	TRxLabel	should	draw	a	focus	rectangle	around	the	self	ClientRect	when	the

control	specified	by	FocusControl	property	has	input	focus.

Event	OnMouseEnter
Declaration:	OnMouseEnter:	TNotifyEvent;

An	OnMouseEnter	event	occurs	when	the	user	enter	mouse	pointer	to	the	control.	You	can	use
OnMouseEnter	and	OnMouseLeave	event	handlers	to	change	color,	font,	style	of	control	etc.

Event	OnMouseLeave
Declaration:	OnMouseLeave:	TNotifyEvent;

An	OnMouseLeave	event	occurs	when	the	user	takes	away	mouse	pointer	from	the	control.	You	can	use
OnMouseEnter	and	OnMouseLeave	event	handlers	to	change	color,	font,	style	of	control	etc.

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
RX	Clock RxClock TRxClock

Description:
The	TRxClock	component	allows	a	standard	analog	or	digital	clock	(according	to	the	ShowMode	property).

The	TRxClock	can	also	be	used	as	an	alarm	clock	by	setting	the	AlarmEnabled,	AlarmHour,	AlarmMinute
and	AlarmSecond	properties	and	writing	a	handler	for	the	OnAlarm	event	to	trigger.

Property	AlarmEnabled
Declaration:	AlarmEnabled:	Boolean;

This	property	determines	whether	the	alarm	should	be	activated	(trigger)	or	not.

Property	AlarmHour
Declaration:	AlarmHour:	Byte;

This	property	defines	the	time	(with	the	AlarmMinute	and	AlarmSecond	properties)	to	be	used	as	alarm
time	checks	by	the	TRxClock	component.	When	computer's	time	is	equal	to	the	time	specified	by	these
properties,	and	AlarmEnabled	is	True,	the	OnAlarm	event	is	occured.	The	hour	value	uses	a	24	hour	clock.

Property	AlarmMinute
Declaration:	AlarmMinute:	Byte;

This	property	defines	the	time	(with	the	AlarmHour	and	AlarmSecond	properties)	to	be	used	as	alarm	time
checks	by	the	TRxClock	component.	

When	computer's	time	is	equal	to	the	time	specified	by	these	properties,	and	AlarmEnabled	is	True,	the
OnAlarm	event	is	occured.

Property	AlarmSecond
Declaration:	AlarmSecond:	Byte;

This	property	defines	the	time	(with	the	AlarmHour	and	AlarmMinute	properties)	to	be	used	as	alarm	time
checks	by	the	TRxClock	component.	When	computer's	time	is	equal	to	the	time	specified	by	these
properties,	and	AlarmEnabled	is	True,	the	OnAlarm	event	is	occured.

Property	AutoSize
Declaration:	AutoSize:	Boolean;

If	the	ShowMode	is	scDigital	and	the	AutoSize	property	is	true,	the	size	of	the	font	of	the	digital	clock
automatically	changes	according	to	size	of	clock	control.

Property	DotsColor
Declaration:	DotsColor:	TColor;

The	DotsColor	specifies	the	color	of	the	hour	dots	in	the	TRxClock	control	when	ShowMode	is	scAnalog.
(This	is	used	only	when	Ctl3D	property	is	True.)

Property	LeadingZero
Declaration:	LeadingZero:	Boolean;

Specifies	whether	or	not	single	digit	hour	values	have	a	leading	zero	if	ShowMode	property	is	scDigital.

Property	ShowMode
Declaration:	ShowMode:	TShowClock;

The	ShowMode	property	determines	type	of	clock	to	display	-	(scDigital	=	digital),	(scAnalog	=	traditional
analogue	clock).

Property	ShowSeconds
Declaration:	ShowSeconds:	Boolean;

The	ShowSeconds	property	determines	whether	or	not	seconds	(the	seconds	hand	in	the	analogue	clock	or
seconds	time	in	the	digital	font)	will	be	displayed.

Property	TwelveHour
Declaration:	TwelveHour:	Boolean;

This	specifies	whether	or	not	TRxClock	displays	time	values	using	a	twelve-hour	clock.	

In	other	words,
Property	TwelveHour	=	true	-->	8:21	p.m.	-->	"08:21	PM";	
Property	TwelveHour	=	false	-->	8:21	p.m.	-->	"20:21	PM";	

The	values	of	TimeAMString	and	TimePMString	standard	global	variables	are	used	during	the	formatting
of	the	twelve-hour	time.

Event	OnAlarm
Declaration:	OnAlarm:	TNotifyEvent;

This	event	(trigger)	is	called	when	there	is	an	alarm.

The	OnAlarm	event	is	used	to	execute	code	at	time	specified	by	AlarmHour,	AlarmMinute	and
AlarmSecond	properties.	This	event	occured	only	if	AlarmEnabled	property	is	set	to	True	value.

Method	SetAlarmTime
Declaration:	procedure	SetAlarmTime(AlarmTime:	TDateTime);

This	allows	you	to	set	the	alarm	time.	
(Note:	The	date	is	ignored.)

Type	TShowClock
Declaration:	TShowClock	=	(scDigital,	scAnalog);

The	TShowClock	type	defines	the	possible	values	for	the	ShowMode	property	of	the	TRxClock	component.

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Unit	RxClock

Property:
AlarmEnabled
AlarmHour
AlarmMinute
AlarmSecond
AutoSize
DotsColor
LeadingZero
ShowMode
ShowSeconds
TwelveHour

Method:
SetAlarmTime

Events:
OnAlarm

Property:
TShowClock

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
RX	Draw	Grid RxCtrls TRxDrawGrid

Description:
Rx	Draw	is	an	draw	grid.	It	allows	more	complex	plug-ins	to	be	activated.

Event	OnAcceptEditKey
Declaration:	OnAcceptEditKey:	TAcceptKeyEvent;

The	OnAcceptEditKey	event	occurs	when	a	user	presses	a	single	character	key	in	the	in-place	editor.
OnAcceptEditKey	provides	a	simple	screening	of	keyboard	input	while	the	user	is	editing	the	contents	of	a
cell.	Write	an	OnAcceptEditKey	event	handler	to	take	specific	action	whenever	a	user	presses	a	character
key	and	to	determine	whether	keys	typed	by	the	user	are	valid	for	the	current	grid	cell.	OnAcceptEditKey
does	not	occur	unless	the	Options	property	includes	goEditing.

Event	OnCancelEdit
Declaration:	OnCancelEdit:	TNotifyEvent;

OnCancelEdit	occurs	whenever	the	in-place	editor	requests	to	cancel	changes	to	the	current	cell.	This	event
is	called	when	user	press	"Escape"	key	in	in-place	editor.

Event	OnColumnSized
Declaration:	OnColumnSized:	TNotifyEvent;

OnColumnSized	occurs	immediately	after	the	width	of	a	column	changes.	Write	an	OnColumnSized	event
handler	to	provide	special	processing	whenever	a	column	in	the	grid	changes	width.	Columns	can	be	sized
programmatically	or	by	user	manipulation.	OnColumnSized	does	not	occur	unless	the	Options	property
includes	goColSizing.	

Event	OnEditButtonClick
Declaration:	OnEditButtonClick:	TNotifyEvent;

OnEditButtonClick	occurs	when	the	user	presses	the	ellipsis	button	in	a	grid	cell.	Write	an
OnEditButtonClick	event	handler	to	bring	up	an	appropriate	list	or	dialog	when	the	user	presses	the	ellipsis
button	in	a	grid	cell.	The	OnEditButtonClick	event	handler	can	set	the	value	assotiated	with	the	cell	based
on	the	user	response	to	the	list	or	dialog.	Use	Col	and	Row	properties	to	access	the	data	assotiated	with	the
current	grid	cell.

Event	OnEditChange
Declaration:	OnEditChange:	TNotifyEvent;

OnEditChange	occurs	whenever	the	text	for	the	in-place	editor	in	TRxDrawGrid	component	may	have
changed.	Write	an	OnEditChange	event	handler	to	take	specific	action	whenever	the	text	for	the	in-place

editor	may	have	changed.	This	event	provides	the	first	opportunity	to	respond	to	modifications	that	the	user
types	into	the	in-place	editor.

Event	OnGetEditAlign
Declaration:	OnGetEditAlign:	TEditAlignEvent;

OnGetEditAlign	occurs	when	the	in-place	editor	requests	an	edit	alignment.	Write	an	OnGetEditAlign	event
handler	to	provide	the	in-place	editor	with	an	alignment	that	describes	the	way	the	text	is	formatted	by	the
in-place	editor.	Set	the	Alignment	parameter	to	the	value	that	describes	the	edit	alignment	for	the	cell
specified	by	the	ACol	and	ARow	parameters.	OnGetEditAlign	does	not	occur	unless	the	Options	property
includes	goEditing.

Event	OnGetEditLimit
Declaration:	OnGetEditLimit:	TEditLimitEvent;

OnGetEditLimit	occurs	when	the	in-place	editor	requests	the	number	of	characters	that	can	be	typed	into
cells.	Write	an	OnGetEditLimit	event	handler	to	determine	if	a	limit	should	be	placed	on	the	number	of
characters	a	user	can	type	into	a	cell.	Set	the	MaxLength	parameter	to	the	value	that	describes	the	number
of	characters	that	can	be	typed	into	cells.	A	value	of	0	indicates	that	there	is	no	application-defined	limit	on
the	length.	OnGetEditLimit	does	not	occur	unless	the	Options	property	includes	goEditing.

Event	OnGetEditStyle
Declaration:	OnGetEditStyle:	TEditStyleEvent;

OnGetEditStyle	occurs	when	the	in-place	editor	requests	an	edit	style.	The	Style	parameter	determines	how
users	can	edit	the	data	of	a	grid	cell.	These	are	the	possible	values	of	Style:

ieSimple	-	No	combo	box	or	ellipsis	button	is	provided.	The	user	cannot	select	the	cell's	content	from
a	list.
iePicklist	-	The	grid	displays	a	combo	box	in	the	column,	and	the	user	can	choose	a	value	from	the
drop-down	list.	You	must	specify	contents	of	a	pick-list	by	handling	OnGetPicklist	event.
ieEllipsis	-	The	column	displays	an	ellipsis	button	that	the	user	can	click	to	choose	a	value.	Clicking
the	ellipsis	button	triggers	an	OnEditButtonClick	event.

OnGetEditStyle	does	not	occur	unless	the	Options	property	includes	goEditing.

Event	OnGetPicklist
Declaration:	OnGetPicklist:	TPicklistEvent;

OnGetPicklist	occurs	when	the	in-place	editor	requests	a	pick-list	for	its	drop-down	control.	You	must	fill
contents	of	string-list	specified	by	PickList	parameter	by	adding	lines	(and	possible	objects)	to	the	string-
list.	OnGetPicklist	does	not	occur	unless	the	Options	property	includes	goEditing	and	your	custom
OnGetEditStyle	event	handler	set	Style	parameter	to	iePicklist.

Event	OnRowSized
Declaration:	OnRowSized:	TNotifyEvent;

OnRowSized	occurs	immediately	after	the	height	of	a	row	changes.	Write	an	OnRowSized	event	handler	to
provide	special	processing	whenever	a	row	in	the	grid	changes	height.	Rows	can	be	sized	programmatically
or	by	user	manipulation.	OnRowSized	does	not	occur	unless	the	Options	property	includes	goRowSizing.

Event	OnShowEditor
Declaration:	OnShowEditor:	TEditShowEvent;

OnShowEditor	occurs	before	creating	the	editor	for	a	cell.	Write	an	OnShowEditor	event	handler	to	indicate
whether	the	in-place	edit	control	can	be	created	to	allow	editing.	An	OnEditShow	event	handler	contains	a
boolean	AllowEdit	variable	that	determines	whether	a	cell	is	allowed	to	editing.	Its	default	value	is	True.

Method	DrawMasked
Declaration:	procedure	DrawMasked(ARect:	TRect;	Graphic:	TBitmap);

This	draws	an	edit	mask,	or	mask	around	the	selected	region.

Method	DrawMultiline
Declaration:	procedure	DrawMultiline(ARect:	TRect;	const	S:	string;	Align:	TAlignment);

DrawMultiline	draws	a	string	inside	the	grid's	cell	specified	by	the	ACol	and	ARow	parameters.	The	string
will	be	written	using	the	current	value	of	Font	property.	Align	parameter	specifies	how	text	is	aligned
within	the	cell.	Lines	are	automatically	broken	between	words	if	a	word	would	extend	past	the	edge	of	the
cell's	rectangle.	You	can	use	this	method	in	your	custom	OnDrawCell	event	handler.

Method	DrawPicture
Declaration:

procedure	DrawPicture(ARect:	TRect;	Graphic:	TGraphic);

This	method	draws	a	picture	in	the	selected	region.

Method	DrawStr
Declaration:	
procedure	DrawStr(ARect:	TRect;	const	S:	string;	Align:	TAlignment);

DrawStr	draws	a	string	inside	the	grid's	cell	specified	by	the	ACol	and	ARow	parameters.	The	string	will	be
written	using	the	current	value	of	Font	property.	Align	parameter	specifies	how	text	is	aligned	within	the
cell.	DrawStr	displays	text	on	a	single	line	only.	To	display	multiline	text	in	a	grid's	cell	use	DrawMultiline
method.You	can	use	this	method	in	your	custom	OnDrawCell	event	handler.

Method	InvalidateCell
Declaration:	procedure	InvalidateCell(ACol,	ARow:	Longint);

The	InvalidateCell	method	causes	the	visible	portion	of	a	grid	cell	to	repaint.	Nothing	is	repainted	if	the	cell
is	not	visible	on	screen.	The	ACol	and	ARow	parameters	specify	the	column	and	row	of	the	cell.

Method	InvalidateRow
Declaration:	procedure	InvalidateRow(ARow:	Longint);

InvalidateRow	invalidates	the	region	occupied	by	a	row	so	that	it	will	be	repainted	with	the	next	Windows
paint	message.	Call	InvalidateRow	when	a	row	changes	so	that	the	area	it	occupies	will	need	to	be
repainted.	The	ARow	parameter	is	the	row	index.

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
RX	Speed	Button RxSpeed TRxSpeedButton

Description:
TRxSpeedButton	is	similar	to	the	standard	TSpeedButton	control.	This	component	has	the	all	properties,
methods,	and	events	that	apply	to	the	TSpeedButton	controls,	and	additional	properties.

The	Flat	property	determines	whether	the	button	has	a	3D	border	that	provides	a	raised	or	lowered	look
when	the	button	is	unselected.	The	Transparent	property	specifies	whether	the	background	of	the	button
obscures	objects	below	the	button	control	when	the	button	is	drawn.	The	GrayedInactive	property	specifies
whether	the	button's	glyph	will	be	"grayed"	when	the	button	is	unselected.

When	it	has	not	the	mouse	focus,	the	associated	bitmap	is	drawn	in	shades	(actually	the	bitmap	is	shaded
with	clWhite,	clBtnHighlight,	clBtnShadow	and	clBlack,	so	the	look	remains	consistent	when	you	change
the	system	colors)	-	you	can	still	give	a	specific	non-focus	bitmap	if	you	want	to.

When	the	AllowTimer	property	is	set	to	True,	instead	of	generating	a	single	OnClick	event	when	the	button
is	pressed,	TRxSpeedButton	continues	to	generate	OnClick	events	as	long	as	the	button	is	in	the	down	state,
with	RepeatInterval	interval.

Additionally,	you	can	specify	the	"drop-down"	menu	for	the	button	by	the	DropDownMenu	property.

Property	Alignment
Declaration:	Alignment:	TAlignment;

Alignment	specifies	how	caption	text	is	aligned	within	the	button	(TRxSpeedButton).

Property	AllowTimer
Declaration:	AllowTimer:	Boolean;

When	the	AllowTimer	property	is	set	to	True,	instead	of	generating	a	single	OnClick	event	when	the	button
is	pressed,	TRxSpeedButton	continues	to	generate	OnClick	events	as	long	as	the	button	is	in	the	down	state,
with	RepeatPause	interval.

Property	DropDownMenu
Declaration:	DropDownMenu:	TPopupMenu;

Specifies	a	TPopupMenu	that	can	be	linked	with	the	button.	If	MarkDropDown	set	to	true,	a	small	icon	is
displayed	at	the	right	of	the	bitmap	or	the	caption.

Property	Flat
Declaration:	Flat:	Boolean;

Flat	determines	whether	the	button	has	a	a	3D	border	that	provides	a	raised	or	lowered	look.	Set	Flat	to	True

to	remove	the	raised	border	when	the	button	is	unselected	and	the	lowered	border	when	the	button	is	clicked
or	selected.	When	Flat	is	True,	use	separate	bitmaps	for	the	different	button	states	to	provide	visual
feedback	to	the	user	about	the	button	state.	When	the	button	has	not	the	mouse	focus,	and	Flat	and
GrayedInactive	properties	both	set	to	True,	the	associated	bitmap	is	drawn	in	shades.

Property	GrayedInactive
Declaration:	GrayedInactive:	Boolean;

This	property	controls	the	type	of	shading	when	no	non-focus	bitmap	is	defined	and	Flat	property	is	set	to
True.	When	the	button	has	not	the	mouse	focus,	the	associated	bitmap	is	drawn	in	shades	(actually	the
bitmap	is	shaded	with	clWhite,	clBtnHighlight,	clBtnShadow	and	clBlack.	You	can	still	give	a	specific	non-
focus	bitmap	if	you	want	to	by	place	into	Glyph	property	the	bitmap	with	5	images	(Normal,	Disabled,
Down,	Stay	Down,	Inactive).	The	5th	image	will	be	used	to	draw	non-focus	bitmap.

When	GrayedInactive	is	True	and	Glyph	contains	less	then	5	images,	the	non-focus	bitmap	will	be	create
for	you	automatically.

Property	InitPause
Declaration:	InitPause:	Word;

Use	this	property	to	specify	the	number	of	milliseconds	before	the	first	OnClick	event	is	generated	after	a
TRxSpeedButton	is	depressed	when	the	AllowTimer	property	is	True.

Property	MarkDropDown
Declaration:	MarkDropDown:	Boolean;

If	MarkDropDown	set	to	true,	a	small	icon	is	displayed	at	the	right	of	the	bitmap	or	the	caption	when	a
drop-down	menu	is	linked	to	the	button	(DropDownMenu	is	set).

Property	MenuPosition
Declaration:	MenuPosition:	TRxDropDownMenuPos;

This	property	defines	the	menu	position,	whether	it	should	be	drop-down	or	on	the	right	of	the	button.

Property	ModalResult
Declaration:	ModalResult:	TModalResult;

This	determines	whether	and	how	the	button	closes	its	(modal)	parent	form.	Setting	the	TRxSpeedButton
component’s	ModalResult	property	is	an	easy	way	to	make	clicking	the	button	close	a	modal	form.	When	a
button	is	clicked,	the	ModalResult	property	of	its	parent	form	is	set	to	the	same	value	as	the	button’s
ModalResult	property.

Property	RepeatInterval
Declaration:	RepeatInterval:	Word;

Use	this	property	to	specify	the	interval	(in	milliseconds)	between	OnClick	events	generated	when	a
TRxSpeedButton	is	depressed	and	AllowTimer	property	is	True.

Property	Transparent
Declaration:	Transparent:	Boolean;

Transparent	specifies	whether	the	background	of	the	button	obscures	objects	below	the	TRxSpeedButton
object	when	the	button	is	drawn.	Default	value	is	False.

Method	ButtonClick
Declaration:	procedure	ButtonClick;

The	ButtonClick	method	simulates	a	mouse	click,	as	if	the	user	had	clicked	the	TRxSpeedButton.

Method	CheckBtnMenuDropDown
Declaration:	function	CheckBtnMenuDropDown:	Boolean;

CheckBtnMenuDropDown	allows	applications	to	programatically	display	a	TRxSpeedButton's	or
TSpeedItem's	drop-down	menu.

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Unit	Rx	Speed

Methods:
ButtonClick
CheckBtnMenuDropDown

Properties:
Alignment
AllowTimer
DropDownMenu
Flat
GrayedInactive
InitPause
MarkDropDown
MenuPosition
ModalResult
RepeatInterval
Transparent

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
RX	Spin	Edit RxSpin TRxSpinButton

Description:
Use	the	TRxSpinButton	to	add	an	up-down	control	to	a	form,	which	consist	of	a	pair	of	arrow	buttons,	such
as	the	arrows	that	appear	in	a	spin	box.	Spin	buttons	allow	users,	for	example,	to	change	the	size	of	a
numerical	value	by	clicking	on	arrow	buttons.

The	TRxSpinEdit	component	combines	a	edit	field	with	two	buttons	forming	a	spinner.

The	edit	portion	of	the	TRxSpinEdit	component	can	only	accept	numeric	data	and	the	buttons	allow	the	user
to	increment	and	decrement	the	value.	

This	component	can	accept	integer	values	as	well	as	floating	point	values.	To	only	allow	integers,	set	the
(ValueType	=	vtInteger).	If	you	are	using	floating	point	values,	use	the	decimal	property	to	specify	the
number	of	decimal	places	used	by	a	spin	edit	when	displaying	floating	point	values	(ValueType	=	vtFloat).

The	Increment	property	is	used	to	specify	the	amount	the	Value	is	incremented	or	decremented	when	one	of
the	buttons	is	pressed.	Increment	can	be	a	floating	point	value.
(In	other	words,	if	the	increment	property	is	10,	the	value	is	incremented	or	decremented	+/-	10).

Property	Down	:	readonly
Declaration:	Down:	TSpinButtonState;

The	Down	property	of	a	spin	button	determines	the	current	button	state.
(In	other	words,	if	the	user	has	depressed	the	spin	button,	this	property	is	set	to	true)

Property	DownGlyph
Declaration:	DownGlyph:	TBitmap;

Use	this	property	to	override	the	default	down	arrow	bitmap	used	for	a	spin	button	component.
(In	other	words,	store	your	own	glyph	in	this	property	if	you	want	to	use	another	glyph	instead)

Property	UpGlyph
Declaration:	UpGlyph:	TBitmap;

Use	this	property	to	override	the	default	up	arrow	bitmap	used	for	a	spin	button	component.
(In	other	words,	store	your	own	glyph	in	this	property	if	you	want	to	use	another	glyph	instead)

Event	OnBottomClick
Declaration:	OnBottomClick:	TNotifyEvent;

The	OnBottomClick	event	is	triggered	when	the	user	clicks	the	spin	buttons	in	the	spin	button	control.
(In	other	words,	if	the	user	clicks	the	arrow	buttons	on	the	TRxSpinEdit	to	increment	or	decrement	the	spin

button	value,	this	event	is	triggered)

Event	OnTopClick
Declaration:	OnTopClick:	TNotifyEvent;

The	OnTopClick	event	occurs	when	the	user	clicks	the	top	button	in	the	spin	button	control.

Property	Decimal
Declaration:	Decimal:	Integer;

This	value	specifies	the	number	of	decimal	places	to	be	utilised.

Property	EditorEnabled
Declaration:	EditorEnabled:	Boolean;

Set	this	property	to	True	to	allow	a	user	to	type	in	a	numeric	value	into	the	edit	portion.	When	this	property
is	False,	only	the	buttons	or	arrow	keys	can	be	used	to	modify	the	Value.

Property	Increment
Declaration:	Increment:	Double;

Use	this	property	to	specify	the	amount	the	Value	property	is	incremented	or	decremented	by	when	one	of
the	spin	buttons	is	pressed	or	when	either	the	up	or	down	arrow	key	is	pressed.

Note	that	the	Increment	property	can	be	set	to	a	floating	point	value,	thus	allowing	non-integer	increments.

Property	MaxValue
Declaration:	MaxValue:	Double;

Use	this	property	to	specify	the	maximum	Value	that	can	be	entered.

Property	MinValue
Declaration:	MinValue:	Double;

Use	this	property	to	specify	the	minimum	Value	that	can	be	entered.

Property	Value
Declaration:	Value:	Double;

This	property	contains	the	contents	of	the	edit	portion.	It	is	in	floating	point	format.

Property	ValueType
Declaration:	ValueType:	TValueType;

Set	this	property	to	vtInteger	to	restrict	values	to	Integers	and	to	vtFloat	to	allow	floating	values	input.	If
keyboard	entry	is	allowed	via	EditorEnabled,	the	user	is	not	allowed	to	enter	a	decimal	point.	Therefore,	the
Decimal	property	has	no	effect	when	ValueType	is	vtInteger.

Const	InitRepeatPause
Declaration:	InitRepeatPause	=	400;

Pause	before	repeat	timer	(MSec).

Const	RepeatPause
Declaration:	RepeatPause	=	100;;

Pause	before	hint	window	displays	(MSec).

Type	TSpinButtonState
Declaration:	TSpinButtonState	=	(sbNotDown,	sbTopDown,	sbBottomDown);

The	TSpinButtonState	type	contains	the	values	the	Down	property	of	spin	buttons	(TRxSpinButton)	can
assume.

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Unit	SpinEdit	
Public:
Decimal
Down
DownGlyph
EditorEnabled
Increment
InitRepeatPause
MaxValue
MinValue
RepeatPause
TSpinButtonState
UpGlyph
Value
ValueType

Events:
OnBottomClick
OnTopClick

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
RXControls RxSwitch TRxSwitch

Description:
RX	Switch	is	a	custom	control	representing	a	switch.	This	defines	the	switch	'ON'	and	'OFF'	as	shown
below.

TRxSwitch	is	a	simple	component	that	displays	two	bitmaps,	depending	on	whether	the	state	is	"On"	or
"Off".	The	component's	StateOn	property	determines	which	of	the	two	states	is	displayed,	and	its	GlyphOn
and	GlyphOff	properties	determine	bitmaps	are	used.

Property	Glyph	On	:	tBitMap
Set	the	state	of	the	glyph	on.	In	other	words,	this	is	the	bitmap	that	your	application	would	load	when	the
state	of	the	switch	is	on.

Property	Glyph	Off	:	tBitMap
Set	the	state	of	the	glyph	off.	In	other	words,	this	is	the	bitmap	that	your	application	would	load	when	the
state	of	the	switch	is	off.

Property	State	On	:	Boolean
Set	the	swtichSet	the	state	of	the	glyph	on.	In	other	words,	this	is	the	bitmap	that	your	application	would
load	when	the	state	of	the	switch	is	on.

Text	Position	:	tTextPos
TTextPos	=	(tpRight,	tpLeft,	tpAbove,	tpBelow,	tpNone);

This	sets	the	state	of	where	the	text	position	is.
TTextPos	is	a	set	of	values	for	the	TextPosition	property	of	the	TRxSwitch	component.

Toggle	Key	:	TShortCut;
This	is	the	toggle	key	to	[on]	or	[off]	the	button.

Event	OnOff
Declaration:	OnOff:	TNotifyEvent;

This	event	is	triggered	when	the	the	Switch	is	switched	off..

Event	OnOn
Declaration:	OnOn:	TNotifyEvent;

This	event	is	triggered	when	the	the	Switch	is	switched	on.

Method	ToggleSwitch
Declaration:	procedure	ToggleSwitch;

This	procedure	toggles	the	switch's	state.

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Unit	RXSwitch	
Public:
Glyph	Off
Glyph	On
OnOff
OnOn
State	On
Text	Position
Toggle	Key
ToggleSwitch

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
RXControls RxDice tRxDice

Description:
RX	Dice	is	a	custom	control	representing	a	dice.	This	has	six	states	(1,2,3,4,5,6).
The	purpose	of	this	component	is	to	emulate	a	dice.

Property	AutoSize	:	boolean
AutoSize	property	sizes	the	dice	to	the	default	size.

Property	Colour	:	tColour
Colour	property	sets	the	background	colour.

Property	Interval	:	integer
Interval	property	is	the	wait	state	in	milliseconds.

Property	Rotate	:	boolean
Rotate	property	rotates	the	dice.	By	setting	it	to	true,	it	will	rotate.	When	the	value	is	false,	the	dice	is	in
"stop"	mode	(or	does	not	move).

Property	ShowFocus:	Boolean;
Property	ShowFocus

ShowFocus	indicates	whether	control	should	draw	a	focus	rectangle	around	the	self	ClientRect	when	the
control	has	input	focus	and	TabStop	=	True.

Value	:	TrxDiceValue;
Declaration:	TrxDiceValue	=	1..6;
TRxDiceValue	is	the	type	for	the	Value	property	of	TRxDice	component.

The	value	(or	the	variable	that	contains	the	value)	of	the	dice.	In	other	words,	this	is	the	actual	value	of	the
dice.

procedure	RandomValue;
This	"spins"	the	dice	to	a	random	value.	
In	other	words,	a	random	value	is	assigned	to	the	value	property	of	the	TRxDice	component.

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Unit	RxDice	
Property:
AutoSize
Colour
Interval
Rotate
ShowFocus

Procedure:
RandomValue

Type:
TrxDiceValue

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
RxQuery RxQuery TRxQuery

Description:
TRxQuery	component	is	inherited	from	TQuery	component.	In	addition,	an	application	can	supply	macros
values	for	dynamic	queries	with	the	Macros	property	and	the	MacroByName	method.	Standard	Delphi's
parameters	can	replace	only	column	names	or	data	values.	Macros	allows	you	change	at	run-time
dinamically	any	part	of	SQL	text.

Property	MacroChar
Declaration:	MacroChar:	Char;

MacroChar	determines	character	which	indicates	macros	in	the	SQL	query	text	(default	value	is	'%').

Property	MacroCount
Declaration:	MacroCount:	Word;

Run-time	and	read-only.	The	MacroCount	property	specifies	how	many	entries	the	TRxQuery	has	in	its
Macros	array,	that	is,	how	many	macros	the	query	has.	Adding	a	new	item	to	Macros	will	automatically
increase	the	value;	removing	an	item	will	automatically	decrease	the	value.

Property	Macros
Declaration:	Macros:	TParams;

When	you	enter	a	query,	TRxQuery	creates	a	Macros	array	for	the	macros	of	a	dynamic	SQL	statement.
Macros	is	a	zero-based	array	of	TParam	objects	with	an	element	for	each	macro	(indicated	by	the	leading
MacroChar	character)	in	the	query;	that	is,	the	first	macro	is	Macros[0],	the	second	Macros[1],	and	so	on.
The	number	of	macros	is	specified	by	MacroCount.

Note:	Use	the	MacroByName	method	instead	of	Macros	to	avoid	dependencies	on	the	order	of	the
parameters.

Property	Macros	example

For	example,	suppose	a	TRxQuery	component	named	rxQuery2	has	the	following	statement	for	its	SQL
property:

SELECT	*	FROM	ITEMS	ORDER	BY	%ORDER	and	MacroChar	=	'%'.

An	application	could	use	Macros	property	and	MacroByName	method	to	specify	the	value	of	the	"ORDER"
macro	as	follows:

rxQuery2.Close;
rxQuery2.MacroByName('ORDER').AsString	:=	'ITEMS.ID';
rxQuery2.Open;

rxQuery2.Close;
rxQuery2.MacroByName('ORDER').AsString	:=	'ITEMS.NAME';
rxQuery2.Open;
rxQuery2.Close;
rxQuery2.MacroByName('ORDER').AsString	:=	'ITEMS.VENDOR';
rxQuery2.Open;

These	three	statements	would	sort	the	query	result	by	the	ID,	NAME	and	VENDOR	field	correspondingly.

Property	OpenStatus
Declaration:	OpenStatus:	TQueryOpenStatus;

OpenStatus	reads	the	current	status	of	the	query	component	after	calling	OpenOrExec	method.	The	possible
values	are	those	of	the	TQueryOpenStatus	type:

qsOpened	-	query	was	successfully	executed	and	result	set	was	returned	(i.e.	SELECT	statement);
qsExecuted	-	query	was	successfully	executed	but	result	set	has	not	generated	(i.e.	INSERT,
UPDATE,	DELETE,	or	any	DDL	statement);

qsFailed	-	error	has	detected	during	query	execution.

Method	ExecDirect
Declaration:	ExecDirect

This	method	is	used	to	immediately	prepare	and	execute	a	query.	Use	ExecDirect	method	to	avoid	having
the	SQL	statement	parsed	for	parameters	(i.e.	anything	preceded	by	a	colon	':').

In	this	case,	it	is	being	used	to	create	an	Oracle	trigger,	where	":new"	refers	to	the	new	version	of	the
updated	record.	Conversely,	":old"	refers	to	the	record	before	the	update.	Oracle	also	happens	to	use	":="	as
an	assignment	operator	in	triggers.

Method	ExpandMacros
Declaration:	procedure	ExpandMacros;

Replace	all	macroses	in	the	SQL	text	by	their	string	values	before	executing	of	the	query.	Called
automatically	by	the	Open,	Prepare	or	ExecSQL	methods,	by	must	be	called	manually	before	ExecDirect	or
OpenOrExec	methods	if	SQL	statements	has	macroses	(MacroCount	>	0).

Method	IsEmpty
Declaration:	function	IsEmpty:	Boolean;

Checks	for	a	dataset	without	records.

Method	MacroByName
Declaration:	function	MacroByName(const	Value:	string):	TParam;

The	MacroByName	method	returns	the	element	of	the	Macros	property	whose	Name	property	matches
Value.	Use	it	to	assign	values	to	macroses	in	a	dynamic	TRxQuery	by	their	names.

Method	MacroByName	example

rxQuery1.ParamByName('ORDER').AsString	:=	'ITEMS.NAME';

Method	OpenOrExec
Declaration:	procedure	OpenOrExec(ChangeLive:	Boolean);

If	you	do	not	know	at	design	time	whether	a	query	will	return	a	result	set	at	run	time,	use	OpenOrExec
method	to	execute	query.	After	calling	OpenOrExec	you	can	check	OpenStatus	property	value	to	determine
whether	a	result	set	has	been	returned.	If	ChangeLive	parameter	is	True	and	an	application	requests	a	live
result	set,	but	the	SELECT	statement	syntax	does	not	allow	it,	the	OpenOrExec	will	try	query	execution
again	without	request	a	live	result	set.

Method	OpenOrExec	example

begin
__{...}
__rxQuery1.SQL	:=	Memo1.Lines;
__if	Memo1.Lines.Count	=	0	then	
____Exit;
__rxQuery1.RequestLive	:=	True;
__rxQuery1.Params.Clear;
__StartWait;
__try
____rxQuery1.OpenOrExec(True);
__finally
____StopWait;
__end;
__if	rxQuery1.OpenStatus	=	qsExecuted	then
____MessageDlg('Query	successfully	executed.',	mtInformation,	[mbOk],	0);
__{...}
end;

	

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
RX	SQL	Scripts RxQuery TSQLScript

Description:
RxSql	Scripts	is	an	enhanced	version	of	the	SQL.

Property	SemicolonTerm
Declaration:	SemicolonTerm:	Boolean;

Property	SemiColon	allows	the	term	SemiColon	to	be	input	into	the	SQL	statement.

Property	SQL
Declaration:	SQL:	TStrings;

Property	SQL	example:
The	following	examples	show	SQL	statements	used	with	TSQLScript	component:

UPDATE	NEXTITEM	SET	NewItem	=	1098;
UPDATE	NEXTORDER	SET	NewItem	=	1099;

or	UPDATE	NEXTITEM	SET	NewItem	=	1098	/
UPDATE	NEXTORD	SET	NewOrder	=	1099

or	UPDATE	NEXTITEM	SET	NewItem	=	1098;	/	
UPDATE	NEXTORD	SET	NewOrder	=	1099;

UPDATE	NEXTCUST	SET	NewCustomer	=	1034;

Property	Transaction
Declaration:	Transaction:	Boolean;

Property	Transaction	defines	whether	the	action	should	be	defined	as	a	transaction.

Event	AfterExec
Declaration:	AfterExec:	TNotifyEvent;

After	execution	of	the	SQL,	event	EventAfterExec	is	triggered.

Event	BeforeExec
Declaration:	BeforeExec:	TNotifyEvent;

Before	execution	of	the	SQL,	event	EventBeforeExec	is	triggered.

Event	OnScriptError
Declaration:	OnScriptError:	TScriptErrorEvent;

The	OnScriptError	event	occurs	when	there	was	an	error	during	execution	of	a	single	SQL	statement	from
SQL	script.	The	Sender	parameter	is	the	TSQLScript	component	that	had	the	problem.	The	E	parameter	is
an	EDatabaseError	exception	object	that	contains	details	about	the	problem.

The	LineNo	parameter	is	a	number	of	line	in	the	script,	and	StatementNo	is	a	sequence	number	of	single
SQL	statement	that	caused	the	error.	Action	is	a	var	parameter	that	lets	you	control	how	the	error	is	handled
when	the	event	handler	finishes.

Method	ExecStatement
Declaration:	procedure	ExecStatement(StatementNo:	Integer);

Executes	a	single	SQL-statement	specified	by	StatementNo	parameter.

Const	DefaultMacroChar
Declaration:	DefaultMacroChar	=	'%';;

Specifies	default	value	for	the	MacroChar	property	of	the	TRxQuery	component.

Const	DefaultTermChar
Declaration:	DefaultTermChar	=	'/';;

Specifies	default	value	for	the	Term	property	of	the	TSQLScript	component.

Type	TQueryOpenStatus
Declaration:	TQueryOpenStatus	=	(qsOpened,	qsExecuted,	qsFailed);

The	TQueryOpenStatus	type	is	the	type	of	the	OpenStatus	property	for	a	TRxQuery	component.

Type	TScriptAction
Declaration:	TScriptAction	=	(saFail,	saAbort,	saRetry,	saIgnore,	saContinue);

The	TScriptAction	type	defines	the	possible	values	you	can	assign	to	the	Action	parameter	in	the
OnScriptError	event	of	the	TSQLScript	component,	as	described	below:

saFail	-	(The	default	value	of	Action.)	The	error	is	reported	as	an	exception,	as	it	normally	would	be.
saAbort	-	The	error	is	discarded	by	raising	a	"silent"	EAbort	exception.
saRetry	-	The	application	goes	into	a	loop,	repeating	the	execution	of	current	(last	executed)	SQL-

statement	until	it	succeeds	or	you	assign	Action	another	value.
saIgnore	-	The	error	is	discarded,	and	sript	execution	continue	from	next	statement.
saContinue	-	The	error	is	reported	as	a	dialog	box	(using	Application.HandleException	method),	and
sript	execution	continue	from	next	statement.

Type	TScriptErrorEvent
Declaration:	TScriptErrorEvent	=	procedure(Sender:	TObject;	E:	EDatabaseError;	LineNo,	StatementNo:
Integer;	var	Action:	TScriptAction)	of	object;

TScriptErrorEvent	defines	the	type	of	the	OnScriptError	event	handler.

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Unit	RxQuery

RX	SQL	Scripts

Property
SemicolonTerm	
SQL	
Transaction

Event
AfterExec	
BeforeExec	
OnScriptError

Method
ExecStatement

Const
DefaultMacroChar	
DefaultTermChar

Types
TQueryOpenStatus	
TScriptAction	
TScriptErrorEvent

RX	Query

Property
MacroChar	
MacroCount	
Macros	
OpenStatus

Method
ExecDirect	
ExpandMacros	
IsEmpty	
MacroByName	
OpenOrExec

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
RX	Memory	Table MemTable TMemoryTable

Description:
Memory	tables	are	tables	created	in	memory	(RAM)	and	the	contents	are	deleted	when	you	close	them.
They	are	much	faster	and	are	very	useful	when	you	need	fast	operations	on	small	tables.	Memory	tables	do
not	support	certain	features	(like	referntial	integrity,	indexes,	autoincrement	fields	and	BLOBs).	

Only	standard	(logical)	BDE	field	types	are	supported	by	the	in-memory	table.	"Physical"	field	types	are
not	supported.	The	table	is	kept	in	memory	if	possible,	but	it	could	be	swapped	to	disk	if	the	table	becomes
too	big.	

The	maximum	table	size	is	512Mb	with	a	maximum	record	size	of	16Kb	with	a	maximum	of	1024	fields.	

Please	note	that	Logical	Auto-increment	and	BLOB	fields	are	not	supported	due	to	their	nature	of
operations.

Using	class	TMemoryTable

Use	TMemoryTable	to	create	a	"temporary"	table	never	intended	to	be	written	to	disk.	These	tables	are
created	by	the	application	for	gathering	information	that	is	needed	temporarily	during	processing.	These
tables	can	be	created	only	with	logical	types.	These	tables	do	not	support	indexes.

Before	create	in-memory	table	you	must	specify	the	table	structure	by	adding	fields	in	Dataset	Designer	(at
design	time)	or	by	using	FieldDefs	property	(at	run	time).	To	create	table	you	need	call	the	CreateTable	or
Open	method	(or	assign	True	value	to	the	Active	property).	

When	the	table	is	closed	(by	the	Close	method	or	assigning	Active	:=	False),	all	data	in	the	memory	table
will	be	lost.

The	TMemoryTable	component	provides	live	access	to	temporary	in-memory	BDE	tables.

Property	EnableDelete
Declaration:	EnableDelete:	Boolean;

If	True	(the	default),	the	application	can	delete	the	current	record	by	using	Delete	method.

If	False,	TMemoryTable	won't	delete	records	(it	is	read-only	(aka	dBase)).

Property	RecNo
Declaration:	RecNo:	Longint;

The	RecNo	property	Indicates	the	current	record	in	the	TMemoryTable.	

Use	RecNo	to	determine	the	record	number	of	the	current	record	in	the	table.	Applications	might	use	this
property	with	RecordCount	to	iterate	through	all	the	records	in	a	in-memory	table,	though	typically	record

iteration	is	handled	with	calls	to	First,	Last,	MoveBy,	Next,	and	Prior.

RecNo	also	can	be	set	to	a	specific	record	number	to	position	the	cursor	on	that	record.	You	can	also
position	the	cursor	on	the	specified	record	by	using	GotoRecord	method.

Method	BatchMove
Declaration:	function	BatchMove(ASource:	TDataSet;	AMode:	TBatchMode;	ARecordCount:	Longint):
Longint;

The	BatchMove	method	copies	or	appends	records	in	the	TMemoryTable.	ASource	is	a	Table	or	Query
linked	to	a	database	table	containing	the	source	records.	AMode	is	the	copy	mode;	it	can	be	only	batAppend
or	batCopy.	

The	ARecordCount	parameter	is	used	to	control	the	maximum	number	of	records	that	will	be	moved.	If
zero,	all	records	are	moved,	beginning	with	the	first	record	in	ASource.	If	ARecordCount	is	not	zero,	a
maximum	of	ARecordCount	records	will	be	moved,	beginning	with	the	current	record.	If	ARecordCount
exceeds	the	number	of	records	remaining	in	ASource,	no	wraparound	occurs;	the	operation	is	terminated.
BatchMove	returns	the	number	of	records	operated	on.

Method	CopyStructure
Declaration:

procedure	CopyStructure(ASource:	TDataSet);

This	method	allows	you	copy	field	structure	from	another	dataset	ASource	to	the	in-memory	table.
After	copying	call	Open	or	set	Active	property	to	True	to	activate	in-memory	table	with	new	structure.

Method	GotoRecord
Declaration:	procedure	GotoRecord(RecordNo:	Longint);

Use	this	method	to	position	the	cursor	on	record,	specified	by	the	sequence	number	RecordNo.	First	record
in	the	in-memory	table	has	number	1.

Method	SetFieldValues
Declaration:	procedure	SetFieldValues(const	FieldNames:	array	of	string;	const	Values:	array	of	const);

SetFieldValues	enables	you	to	perform	updates	on	entire	in-memory	table.	This	method	sets	all	fields
passed	in	the	FieldNames	parameter	to	the	new	field	values	passed	in	the	Values	parameter.	The	assignment
of	the	elements	of	Values	to	fields	in	the	FielsNames	is	sequential;	the	first	element	is	assigned	to	the	first
field,	the	second	to	the	second,	etc.

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Unit	MemTable

Method	BatchMove	Method	CopyStructure
Method	GotoRecord
Method	SetFieldValues

Property	EnableDelete
Property	RecNo

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
RX	QBE	Queries DBQbe TQBEQuery

Description:
The	non-visual	TQBEQuery	component	allows	you	to	specify	Paradox-style	Query-By-Example	query
statements	that	are	used	to	supply	data	to	one	or	more	of	the	other	visual	interface	components	placed	on
your	form.	

Multiple	table	queries	and	special	queries	such	as	Insert,	Delete	and	ChangeTo	queries	are	also	supported.
Since	TQBEQuery	component	is	inherited	from	Delphi’s	TDBDataSet	component,	the	Delphi	Fields	editor
is	still	available	within	this	component.	If	you	want	the	normal	auxiliary	QBE	tables	written	to	your	hard
drive,	set	the	AuxiliaryTables	property	to	True.	When	defining	QBE	statements,	it’s	a	very	good	idea	to
create,	fully	test	and	then	save	your	query	via	the	Database	Desktop	or	the	native	application	(Paradox	or
dBASE	for	Windows).	Then,	click	the	Load	button	of	the	QBE	string	editor	to	load	this	saved	query	file
into	the	editor.	These	environments	make	it	much	easier	to	create,	test	and	validate	the	results	of	a	QBE
than	the	services	provided	in	Delphi.	If	you	know	more	about	SQL	than	Paradox-style	QBE,	or	if	your
tables	are	from	an	SQL	database,	you	might	want	to	consider	using	the	TQuery	or	TRxQuery	component
instead.

Using	class	TQBEQuery

If	you	receive	the	error	message	"Error	creating	cursor	handle"	when	executing	your	QBE,	it	means	that
your	query	was	unable	to	be	executed.	Likely	causes	are	incorrect	syntax	in	your	QBE	specification,
unopened	aliases,	or	missing	tables.

Property	AuxiliaryTables
Declaration:	AuxiliaryTables:	Boolean;

This	property	tells	the	QBE	processor	whether	or	not	to	create	the	standard	auxiliary	tables	(keyviol,
changed,	inserted,	etc.).	When	an	auxiliary	table	is	created,	it	remains	on	your	disk	until	it	is	deleted.	If	an
auxiliary	table	already	exists,	it	will	be	overwritten	without	warning.	The	default	value	is	True.	

CAUTION:	If	you	set	this	property	to	False,	you	may	not	be	able	to	fully	check	the	results	of	your	QBE
since	no	auxiliary	tables	will	be	created	for	manual	verification.

Property	BlankAsZero
Declaration:	BlankAsZero:	Boolean;

When	True	blanks	in	numeric	fields	in	a	table	are	treated	equivalent	to	a	zero.	The	default	value	is	False.

Property	ParamCheck
Declaration:	ParamCheck:	Boolean;

The	ParamCheck	property	determines	whether	the	query	fills	the	Params	array	when	the	SQL	or	QBE

property	is	changed	at	run	time.	Default	is	True.

Property	QBE
Declaration:	QBE:	TStrings;

This	property	holds	the	actual	QBE	query	statements.	After	creating	a	query	via	the	Database	Desktop,	or
from	within	Paradox	for	Windows,	save	the	query	as	a	.QBE	file	(File	|	Save	menu	options).	You	can	then
load	this	previously	saved	file	into	the	Delphi	String	list	editor	window	for	the	QBE	property	by	clicking	on
the	Load	button	and	selecting	the	file	you	previously	saved.	Optionally,	you	can	specify	the	QBE	statements
interactively.	The	default	value	is	blank	-	no	QBE	defined.

NOTES:	The	contents	of	the	"ANSWER:"	QBE	statement	generated	when	you	save	a	query	to	a	file	are
ignored	by	the	BDE	QBE	processor.	The	contents	of	the	Selected	Fields	list	box	of	the	Select	Fields	dialog
box	default	to	all	fields	that	are	selected	via	the	QBE	statements	contained	in	the	QBE	property.

Property	StartParam
Declaration:	StartParam:	Char;

StartParam	determines	character	which	indicates	parameter	in	the	QBE	query	text	(default	value	is	'#').

Method	ExecQBE
Declaration:	procedure	ExecQBE;

Use	the	ExecQBE	method	to	execute	an	QBE	statement	assigned	to	the	QBE	property	of	a	TQBEQuery	if
the	statement	does	not	return	a	result	set.	If	the	QBE	statement	is	an	INSERT,	UPDATE,	DELETE,	or	any
DDL	statement,	then	use	this	method.

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Unit	DbQbe

Using	class	TQBEQuery	
Method:
ExecQBE

Property
AuxiliaryTables
BlankAsZero
ParamCheck
QBE
StartParam

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
RX	Database	Filters DBFilter TRxDBFilter

Description:
This	component	implements	a	BDE-level	filter,	based	on	a	callback	into	your	form's/unit's	code.	The
TRxDBFilter	component	allows	you	to	specify	one	or	more	record	selection	criteria	to	be	used	when
displaying	data	from	a	table	or	query	(TTable,	TQuery,	TQBEQuery	or	TRxQuery	components).	Filter
criteria	can	be	specified	for	any	number	of	fields	in	a	table,	giving	you	more	flexibility	than	Delphi's	built-
in	Range	operators	and	some	advantages	over	performing	a	single-table	query.

You	can	specify	one	or	more	lines	of	filter	criteria	in	Filter	property	to	be	used	when	displaying	data	from
the	associated	table	or	query.	The	default	value	is	blank	-	no	filter	defined.	Applications	can	also	specify	a
filter	using	the	OnFiltering	event	handler.	The	Filter	property	supplements	the	OnFiltering	event	handler.	Be
sure	that	the	interactions	between	the	Filter	property	and	the	OnFiltering	event	handler	do	not	result	in	an
empty	filter	set	when	they	are	used	simultaneously	in	an	application.

Delphi	2.0	and	3.0	TTable	and	TQuery	components	has	a	similar	property	named	Filter,	which	has	similar
functionality.	However	Delphi	2.0	is	for	32	bit	applications	only.	We	recommend	you	use	Delphi’s	filtering
if	you	are	developing	32-bit	only	applications,	but	use	TRxDBFilter	if	you	need	to	simultaneously	support
both	16	and	32	bit.	You	can	also	use	same	data-aware	controls	(i.e.	TDBEdit,	TDBCheckBox	etc)	to	display
and	edit	dataset's	records	and	to	enter	filter's	selection	criteria.	Use	SetCapture,	ReleaseCapture	and
ReadCaptureControls	methods	to	enable	users	to	enter	selection	criteria	into	data-aware	controls	at	runtime.

Property	Active
Declaration:	Active:	Boolean;

Specifies	whether	filtering	is	active	for	a	dataset.	Check	Active	to	determine	whether	or	not	dataset	filtering
is	in	effect.	If	Active	is	True,	then	filtering	is	active.	Otherwise	Active	is	False.	To	apply	filter	conditions
specified	in	the	Filter	property	or	the	OnFiltering	event	handler,	set	Active	to	True	(or	call	Activate
method).	When	filtering	is	enabled,	user	edits	to	a	record	may	mean	that	the	record	no	longer	meets	a
filter’s	test	condition.	The	next	time	the	record	is	retrieved	from	the	dataset	while	the	filter	is	in	effect,	the
record	may	seem	to	disappear.	If	that	happens,	the	next	record	that	passes	the	filter	condition	becomes	the
current	record.

Property	Captured
Declaration:	Captured:	Boolean;

Captured	(runtime	and	read-only)	indicates	whether	the	filter	has	'captured'	data-aware	controls	assosiated
with	filtered	dataset	(specified	by	DataSource	property).

A	data-aware	controls	becomes	the	"captured	controls"	when	the	TRxDBFilter	calls	SetCapture	method.

To	release	captured	controls	application	must	call	the	ReleaseCapture	method.	When	data-aware	controls
are	captured	by	the	filter,	the	dataset's	Post	method	calls	the	ReadCaptureControls;	ReleaseCapture;
Activate;	methods	and	sets	the	filter	by	using	the	entered	values;	the	dataset's	Cancel	method	releases
controls	by	calling	ReleaseCapture;	method.

Property	ExprFilter
Declaration:	ExprFilter:	hDBIFilter;

Specifies	the	Borland	Database	Engine	(BDE)	filter	handle	for	the	filter,	which	use	the	Filter	property.

Property	Filter
Declaration:	Filter:	TStringList;

Specifies	the	text	of	the	current	filter	for	a	dataset.	Use	Filter	to	specify	a	dataset	filter.	When	filtering	is
applied	to	a	dataset	(by	setting	the	Active	property	to	True	or	calling	Activate	method),	only	those	records
that	meet	a	filter’s	conditions	are	available	to	an	application.	Filter	contains	the	string	that	describes	the
filter	condition.	For	example,	the	following	filter	condition	displays	only	those	records	where	the	customer
number	greather	then	1000	and	customer	name	starts	with	'A'	character:	((Cust_No	>	1000)	OR	([Customer
Name]	<	'B'))	The	following	conditions	are	also	available:	State	=	'CA'	or	Pay	=	NULL	or	[Date]	>
'12/01/1995'.	To	filter	strings	bases	on	partial	comparisons,	use	an	asterisk	as	a	wildcard.	For	example:	State
=	'M*'	The	following	unary	operations	available	in	a	filter	expressions:	=	NULL	<>	NULL

The	following	binary	operations	available	in	a	filter	expressions:
__<>	(not	equal)
__>=	(great	or	equal)
__<=	(less	or	equal)
__=	(equal)
__>	(great)
__<	(less)

Applications	can	set	Filter	at	runtime	to	change	the	filtering	condition	for	a	dataset	at	(for	example,	in
response	to	user	input).

Property	Filter	example
with	rxDBFilter1.Filter	do	
begin
__BeginUpdate;
__try
____Clear;
____Add('((Cust_No	>	1000)	OR');
____Add('([Customer	Name]	<=	''B''))	AND	(State	=	''CA'')');
__finally
____EndUpdate;
__end;
end;
rxDBFilter1.Active	:=	True;

Property	FuncFilter
Declaration:	FuncFilter:	hDBIFilter;

Specifies	the	Borland	Database	Engine	(BDE)	filter	handle	for	the	filter,	which	use	the	OnFiltering	event
handler.

Property	LogicCond
Declaration:	LogicCond:	TFilterLogicCond;

The	LogicCond	property	specifies	a	logical	operator	which	used	to	create	selection	criteria	with	the
ReadCaptureControls	method.	The	valid	values	for	LogicCond	are	flAND	or	flOR.	If	LogicCond	is	flAND,
all	simple	filter	conditions	which	has	been	read	from	data-aware	controls,	combines	with	"AND"	logical
operator.	If	LogicCond	is	flOR,	the	"OR"	logical	operator	used	to	combine	filter	conditions	into	selection
criteria	(Filter	property).

Property	Options
Declaration:	Options:	TDBFilterOptions;

Options	lets	you	fine-tune	the	filtering	provided	by	the	Filter	property.	The	TFilterOptions	type	defines	the
possible	values	for	the	Options	property,	as	described	below:

-	foCaseInsensitive	-	The	filter	is	processed	without	regard	to	case	in	the	dataset's	data.

-	foNoPartialCompare	-	String	matches	must	be	exact	over	the	length	of	the	data	in	the	dataset;	partial
matches	aren't	allowed.

Property	Priority
Declaration:	Priority:	Word;

Priority	determines	the	filter's	priority	relative	to	other	filters	on	the	same	dataset.

Event	OnActivate
Declaration:	OnActivate:	TNotifyEvent;

The	OnActivate	event	is	activated	after	a	filter	is	activated,	either	by	calling	the	Activate	method	or	by
setting	the	Active	property	to	True.	By	assigning	a	method	to	this	property,	you	can	take	any	special	actions
required	by	the	event.

Event	OnDeactivate
Declaration:	OnDeactivate:	TNotifyEvent;

The	OnDeactivate	event	is	activated	after	a	filter	is	deactivated,	either	by	calling	the	Deactivate	method	or
by	setting	the	Active	property	to	False.

By	assigning	a	method	to	this	property,	you	can	take	any	special	actions	required	by	the	event.

Event	OnFiltering
Declaration:	OnFiltering:	TFilterEvent;

OnFiltering	occurs	each	time	a	different	record	in	the	dataset	becomes	the	current	record	and	filtering	is
enabled.	Write	an	OnFiltering	event	handler	to	test	each	record	in	a	dataset	for	against	a	test	condition	that
determines	whether	or	not	the	record	is	visible	to	the	application.	To	indicate	whether	or	not	a	record	passes
the	filter	condition,	a	filter	handler	must	return	True	to	include	a	record,	or	False	to	exclude	it.

Applications	can	also	specify	a	filter	using	the	Filter	property.	The	Filter	property	supplements	the
OnFiltering	event	handler.	Be	sure	that	the	interactions	between	the	Filter	property	and	the	OnFiltering
event	handler	do	not	result	in	an	empty	filter	set	when	they	are	used	simultaneously	in	an	application.

Event	OnFiltering	example
procedure	TForm1.RxFilterOnFiltering(Sender:	TObject;	DataSet:	TDataSet):	Boolean;
begin
__if	(AnsiUpperCase(DataSet.FieldByName('Cust_Name'))	=	'Smith')	or
__	_((DataSet.FieldByName('Rate')	>	0.5)	and	(DataSet.FieldByName('Rate')	<	0.95))	__then
____Result	:=	True
__else	
____Result	:=	False;
end;

Event	OnReleaseCapture
Declaration:	OnReleaseCapture:	TNotifyEvent;

The	OnReleaseCapture	event	is	activated	when	a	data-aware	controls,	previously	captured	by	the	filter,	is
released	by	calling	the	ReleaseCapture	method.	By	assigning	a	method	to	this	property,	you	can	take	any
special	actions	required	by	the	event.

Event	OnSetCapture
Declaration:	OnSetCapture:	TNotifyEvent;

The	OnSetCapture	event	is	activated	when	a	filter	captures	the	data-aware	controls	assosiated	with	filtered
dataset,	by	calling	the	SetCapture	method.	By	assigning	a	method	to	this	property,	you	can	take	any	special
actions	required	by	the	event.

Method	Activate
Declaration:	procedure	Activate;

Activate	filter	for	a	dataset.	It	is	equivalent	to	setting	the	Active	property	to	True.

Method	Deactivate
Declaration:	procedure	Deactivate;

Deactivate	filter	for	a	dataset.	It	is	equivalent	to	setting	the	Active	property	to	False.

Method	ReadCaptureControls
Declaration:	procedure	ReadCaptureControls;

You	can	use	same	data-aware	controls	(i.e.	TDBEdit,	TDBCheckBox	etc)	to	display	and	edit	dataset's
records	and	to	enter	filter's	selection	criteria.	Use	SetCapture,	ReleaseCapture	and	ReadCaptureControls
methods	to	enable	end-users	to	enter	selection	criteria	into	data-aware	controls	at	run-time.

SetCapture	method	"captures"	data-aware	controls	linked	to	a	same	datasource	as	TRxDBFilter	component
and	allows	user	to	enter	data	into	these	controls	as	selection	criteria	(without	change	the	state	of	a	dataset).
You	can	read	entered	data	by	calling	ReadCaptureControls	method.	This	method	reads	selection	criteria
from	data-aware	controls	captured	by	the	filter	component	and	fills	the	its	Filter	property	by	values	readed.
The	single	ctiteries	combines	into	Filter	property	by	using	AND	or	OR	logic	operation	according	to
LogicCond	property	value.	After	entering	and	reading	selection	criteria	you	MUST	return	data-aware
controls	to	its	normal	state	by	calling	ReleaseCapture	method.

Method	ReleaseCapture
Declaration:	procedure	ReleaseCapture;

You	can	use	same	data-aware	controls	(i.e.	TDBEdit,	TDBCheckBox	etc)	to	display	and	edit	dataset's
records	and	to	enter	filter's	selection	criteria.	Use	SetCapture,	ReleaseCapture	and	ReadCaptureControls
methods	to	enable	end-users	to	enter	selection	criteria	into	data-aware	controls	at	run-time.

After	using	SetCapture	method	to	entering	selection	criteria	into	data-ware	controls	and	reading	this	criteria
by	ReadCaptureControls	method	you	MUST	return	data-aware	controls	into	its	normal	state	by	calling
ReleaseCapture	method.

Calling	ReleaseCapture	triggers	the	OnReleaseCapture	event	handler	if	one	is	defined	for	the	TRxDBFilter
component.

Method	SetCapture
Declaration:	procedure	SetCapture;

You	can	use	same	data-aware	controls	(i.e.	TDBEdit,	TDBCheckBox	etc)	to	display	and	edit	dataset's
records	and	to	enter	filter's	selection	criteria.	Use	SetCapture,	ReleaseCapture	and	ReadCaptureControls
methods	to	enable	end-users	to	enter	selection	criteria	into	data-aware	controls	at	run-time.	SetCapture
method	"captures"	data-aware	controls	linked	to	a	same	datasource	as	TRxDBFilter	component	and	allows
user	to	enter	data	into	these	controls	as	selection	criteria	(without	change	the	state	of	a	dataset).	You	can	use
entered	data	by	calling	ReadCaptureControls	method.	After	entering	and	reading	selection	criteria	you	must
return	data-aware	controls	to	its	normal	state	by	calling	ReleaseCapture	method.	Calling	SetCapture	triggers
the	OnSetCapture	event	handler	if	one	is	defined	for	the	TRxDBFilter	component.

Method	Update
Declaration:	procedure	Update;

The	Update	method	reset	the	filter	on	the	filtered	dataset.

Method	UpdateFuncFilter
Declaration:	procedure	UpdateFuncFilter;

Update	resets	the	callback-filter	on	the	filtered	dataset.	This	method	must	be	called	when	you	change	the
conditions	in	OnFiltering	event	handler	at	runtime.

Type	EFilterError
Declaration:	EFilterError	=	class(Exception);

The	EFilterError	type	is	the	exception	type	raised	when	an	error	is	detected	by	the	TRxDBFilter	component.

Type	TDBFilterOption
Declaration:	TDBFilterOption	=	(foCaseInsensitive,	foNoPartialCompare);

The	TFilterOptions	type	defines	the	possible	values	for	the	Options	property	of	the	TRxDBFilter
component.

Type	TDBFilterOptions
Declaration:	TDBFilterOptions	=	set	of	TDBFilterOption;

The	TFilterOptions	type	defines	the	possible	values	for	the	Options	property	of	the	TRxDBFilter
component.

Type	TFilterEvent
Declaration:	TFilterEvent	=	function	(Sender:	TObject;	DataSet:	TDataSet)	:	Boolean	of	object;

The	TFilterEvent	type	points	to	a	method	that	responds	to	an	OnFiltering	event	of	the	TRxDBFilter
component,	for	including	or	excluding	records	from	being	visible	in	a	dataset.

Type	TFilterLogicCond
Declaration:	TFilterLogicCond	=	(flAnd,	flOr);

The	TFilterLogicCond	type	defines	the	possible	values	for	the	LogicCond	property	of	the	TRxDBFilter
component.

Routine	DropAllFilters
Declaration:	procedure	DropAllFilters(DataSet:	TDataSet);

DropAllFilter	drops	the	all	filters	on	the	specified	DataSet	and	frees	all	resources	associated	with	the	filters.

DropAllFilters	example:	
begin

__...
__DropAllFilters(Query1);
end;

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Unit	DbFilter

Event
OnActivate
OnDeactivate
OnFiltering
OnReleaseCapture
OnSetCapture

Method
Activate
Deactivate
ReadCaptureControls
ReleaseCapture
SetCapture
UpdateFuncFilter

Property
Active
Captured
ExprFilter
Filter
FuncFilter
LogicCond
Options
Priority

Routine
DropAllFilters

Type
EFilterError
TDBFilterOption
TFilterEvent
TFilterLogicCond

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
RX	DB	Grids DbGrid TRxDBGrid

Description:	TRxDBGrid	component	provides	you	with	the	ability	to:

change	the	background	color	and	font	displayed	within	individual	cells	and	entire	rows	and	columns
(with	OnGetCellParams,	OnGetBtnParams	event);

save	and	restore	columns	order	and	display	width	in	ini-files	or	system	registry	(using	the
SaveLayout,	RestoreLayout,	SaveLayoutReg,	RestoreLayoutReg	methods	or	IniStorage	property);
display	icons	for	BLOB,	memo,	OLE	and	picture	fields	(if	ShowGlyphs	property	is	True);	
select	multiple	records	(if	MultiSelect	=	True);

convert	columns	headings	to	buttons	(TitleButtons	property,	OnTitleBtnClick	event);
define	fixed,	non-scrollable	columns	in	the	left-hand	side	of	the	grid	(using	FixedCols	property).

Using	class	TRxDBGrid

There	is	example	of	using	TRxDBGrid	to	display	customers	data	(CUSTOMER.DB	table	from	DBDEMOS
alias)	with	using	OnGetCellParams	event:	

procedure	TForm1.rxDBGrid1GetCellParams(Sender:	TObject;	Field:	TField;	AFont:	TFont;	var
Background:	TColor;	Highlight:	Boolean);

var	
__OldDate,	NewDate:	TDateTime;	
__DataSet:	TDataSet;
begin
__if	Field.FieldName	=	'Company'	then
____AFont.Style	:=	AFont.Style	+	[fsBold]
__else	
____if	Field.FieldName	=	'Contact'	then
______if	not	Highlight	then	Background	:=	clYellow;
__if	not	Highlight	then	begin	
____OldDate	:=	EncodeDate(1990,	1,	1);
____NewDate	:=	EncodeDate(1995,	1,	1);
____DataSet	:=	(Sender	as	TrxDBGrid).DataSource.DataSet;
__if	DataSet.FieldByName('LastInvoiceDate').AsDateTime	<	OldDate	then
____Background	:=	clLime	{	oldest	}	else	
__if	DataSet.FieldByName('LastInvoiceDate').AsDateTime	>=	NewDate	then
____AFont.Color	:=	clRed;	{	newest	}
__end;	
end;

Use	the	TRxDBGrid	component	to	display	data	from	a	dataset	component	in	a	spreadsheet-like	grid	instead
standard	TDBGrid	component.

Property	ClearSelection
Declaration:	ClearSelection:	Boolean;

Property	FixedCols
Declaration:	FixedCols:	Integer;

The	FixedCols	property	can	be	used	to	specify	a	number	of	fixed	columns	in	the	grid.	The	number	of	fixed
columns	must	always	be	less	than	the	total	number	of	columns	or	fields	in	the	grid.	Fixed	columns	are
always	read-only	when	adding	or	editing	records.	This	allows	program	or	database	generated	fields	such	as
record	keys	to	be	locked	from	user	update.	Values	can	be	added	to	these	fields	by	the	DBMS	when	posting	a
record;	in	the	AfterInsert	event,	in	the	OnNewRecord	or	in	the	BeforePost	event	of	the	linked	dataset.	The
value	can	be	set	from	0	to	one	less	than	the	total	number	of	columns	(or	fields	in	the	dataset).

Associated	with	the	FixedCols	property	is	a	FixedColor	property	which	allows	you	to	change	the	color	of
the	fixed	columns.

Property	InplaceEditor
Declaration:	InplaceEditor:	TInplaceEditor;

Runtime	only.	InplaceEditor	is	the	default	editor	used	by	the	grid	to	edit	a	cell’s	value.	You	may	wish	to
reference	this	property	if	you	need	to	access	the	currently	edited	value	or	dynamically	manipulate	the	editor.
For	instance,	if	you	wish	to	change	the	color	of	the	editor	when	it	has	an	invalid	value.

Property	MultiSelect
Declaration:	MultiSelect:	Boolean;

When	True,	the	user	can	select	multiple,	non-contiguous	rows	using	Ctrl+click	or	Shift+arrow	keys.	The
behavior	is	similar	to	a	multi-select	list	box.	The	records	you	select	are	represented	as	bookmarks	and	are
stored	in	the	SelectedRows	property.	The	SelectedRows	property	is	an	object	of	type	TBookmarkList.

Property	SelectedRows
Declaration:	SelectedRows:	TBookmarkList;

SelectedRows	is	a	set	of	bookmarks	to	all	the	records	in	the	dataset	that	correspond	to	rows	selected	in	the
grid.	Use	the	properties	and	methods	of	the	TBookmarkList	object	returned	by

SelectedRows	to

Determine	the	number	of	rows	in	the	grid	that	are	selected.
Determine	whether	the	current	record	in	the	dataset	is	selected.
Determine	whether	a	particular	record	in	the	dataset	is	selected.
Delete	all	selected	rows	from	the	dataset.

SelectedRows	is	only	meaningful	when	the	MultiSelect	property	is	True	(or	Options	property	includes
dgMultiSelect	in	32-bit	version).	You	can	navigate	through	selected	rows	in	the	dataset	by	using
GotoSelection	method	of	TRxDBGrid.

Property	ShowGlyphs
Declaration:	ShowGlyphs:	Boolean;

This	option	would	allow	bitmaps	or	glyphys	to	be	displayed.

Property	TitleButtons
Declaration:	TitleButtons:	Boolean;

When	this	property	is	True,	the	column	headings	of	each	column	will	act	as	a	button.	When	the	user	clicks
on	one,	it	will	depress	and	fire	the	OnTitleBtnClick	event.	You	can	also	handle	OnCheckButton	and
OnGetBtnParams	events	to	change	title	buttons	property.

Event	OnCheckButton
Declaration:	OnCheckButton:	TCheckTitleBtnEvent;

When	the	checkbutton	is	checked	or	unchecked,	this	event	is	triggered.

Event	OnGetBtnParams
Declaration:	OnGetBtnParams:	TGetBtnParamsEvent;

This	event	which	executes	just	prior	to	painting	each	title	cell	(when	TitleButtons	is	True),	allows	you	to
change	both	the	font	and	background	colors	of	each	title	button.

Event	OnGetCellParams
Declaration:	OnGetCellParams:	TGetCellParamsEvent;

This	event,	which	executes	just	prior	to	painting	the	field	values	within	each	grid	cell,	allows	you	to	change
both	the	font	and	background	colors	of	individual	cells.

Event	OnGetCellProps
Declaration:	OnGetCellProps:	TGetCellPropsEvent;

Obsolete	event	(for	backward	compatibility	only).	Use	OnGetCellParams	instead.

Event	OnTitleBtnClick
Declaration:	OnTitleBtnClick:	TTitleClickEvent;

The	OnTItleBtnClick	event	occurs	when	the	user	clicks	on	one	of	the	column	headings	in	the	TRxDBGrid.
The	TitleButtons	property	must	be	True	in	order	for	this	event	to	occur.

Method	GotoSelection
Declaration:	procedure	GotoSelection(Index:	Integer);

This	method	moves	the	index	to	that	particular	row	or	selection.

Method	RestoreLayout
Declaration:	procedure	RestoreLayout(IniFile:	TIniFile);

From	the	inifile,	this	method	extracts	the	layout	property	information	and	restores	the	property	information
to	the	column,	rows	of	the	string-grid.

See	also:	FormStorage.

Method	RestoreLayoutReg
Declaration:	procedure	RestoreLayoutReg(IniFile:	TRegIniFile);

From	the	inifile,	this	method	extracts	the	layout	property	information	and	restores	the	property	information
to	the	column,	rows	of	the	string-grid.

See	also:	FormStorage.

Method	SaveLayout
Declaration:	procedure	SaveLayout(IniFile:	TIniFile);

This	method	saves	the	current	layout	information	of	the	DbGrid	to	the	INI	file.

Method	SaveLayoutReg
Declaration:	procedure	SaveLayoutReg(IniFile:	TRegIniFile);

This	method	saves	the	current	layout	information	of	the	DbGrid	to	the	INI	file.

Method	SelectAll
Declaration:	procedure	SelectAll;

This	method	adds	all	records	to	the	list	of	currently	selected	records	(if	MultiSelect=True).

Method	ToggleRowSelection

Declaration:	procedure	ToggleRowSelection;

This	method	adds	or	removes	the	record	relating	to	the	current	grid	row	to	the	list	of	currently	selected
records	if	MultiSelect	property	is	True.	For	instance,	you	can	call	this	method	from	OnKeyPress	event
handler.

Method	UnselectAll
Declaration:	procedure	UnselectAll;

This	method	removes	all	records	from	the	list	of	currently	selected	records	(if	MultiSelect=True).

Type	TBookmarkList
Declaration:	TBookmarkList	=	class;

When	you	set	MultiSelect	property	of	a	TRxDBGrid	to	True,	you	give	yourself	the	ability	to	select	multiple
records	within	the	grid.	The	records	you	select	are	represented	as	bookmarks	and	are	stored	in	the
SelectedRows	property.	The	SelectedRows	property	is	an	object	of	type	TBookmarkList.	The	properties	and
methods	are	described	below.

The	Items	property	is	a	List	of	TBookmark.	The	Count	property	returns	the	number	of	currently	selected
items	in	the	DBGrid	The	Clear	method	will	free	all	the	selected	records	within	the	DBGrid

The	Delete	method	will	delete	all	the	selected	rows	from	the	dataset
The	Find	method	determines	whether	a	bookmark	is	in	the	selected	list.
Use	the	Find	method	to	locate	the	position	of	the	bookmarked	record	within	the	selected	list	in	the
DBGrid.
The	IndexOf	method	returns	the	index	of	the	bookmark	within	the	Items	property.
The	Refresh	method	returns	a	boolean	value	to	notify	whether	any	orphans	were	dropped	(deleted)
during	the	time	the	record	has	been	selected	in	the	grid.
The	Refresh	method	can	be	used	to	update	the	selected	list	to	minimize	the	possibility	of	accessing	a
deleted	record.
The	CurrentRowSelected	property	returns	a	boolean	value	and	determines	whether	the	current	row	is
selected	or	not.

NOTE:	In	32-bit	version	Delphi	this	class	is	declared	in	DBGRIDS.PAS	unit.

Type	TCheckTitleBtnEvent
Declaration:	TCheckTitleBtnEvent	=	procedure	(Sender:	TObject;	ACol:	Longint;	Field:	TField;	var
Enabled:	Boolean)	of	object;

TCheckTitleBtnEvent	is	the	type	of	the	OnCheckButton	event	of	the	TRxDBGrid	component.

Type	TDBLabelOptions
Declaration:	TDBLabelOptions	=	(doCaption,	doGlyph,	doBoth);

TDBLabelOptions	is	a	set	of	available	values	for	the	ShowOptions	property	of	the	TDBStatusLabel	control.

Type	TDBLabelStyle
Declaration:	TDBLabelStyle	=	(lsState,	lsRecordNo);

TDBLabelStyle	is	a	set	of	available	values	for	the	Style	property	of	the	TDBStatusLabel	control.

Type	TGetBtnParamsEvent
Declaration:	TGetBtnParamsEvent	=	procedure	(Sender:	TObject;	Field:	TField;	AFont:	TFont;	var
Background:	TColor;	IsDown:	Boolean)	of	object;

TGetBtnParamsEvent	is	the	type	of	the	OnGetBtnParams	event	of	the	TRxDBGrid	component.

Type	TGetCellParamsEvent
Declaration:	TGetCellParamsEvent	=	procedure	(Sender:	TObject;	Field:	TField;	AFont:	TFont;	var
Background:	TColor;	Highlight:	Boolean)	of	object;

TGetCellParamsEvent	is	the	type	of	the	OnGetCellParams	event	of	the	TRxDBGrid	component.

Type	TGetCellPropsEvent
Declaration:	TGetCellPropsEvent	=	procedure	(Sender:	TObject;	Field:	TField;	AFont:	TFont;	var
Background:	TColor)	of	object;

TGetCellPropsEvent	is	the	type	of	the	OnGetCellProps	(obsolete)	event	of	the	TRxDBGrid	component.

Type	TGetStringEvent
Declaration:	TGetStringEvent	=	function(Sender:	TObject):	string	of	object;

The	TGetStringEvent	points	to	a	method	that	handles	the	retrieving	of	the	string	displayed	as	a	dataset	name
in	a	TDBStatusLabel.

Type	TGlyphAlign
Declaration:	TGlyphAlign	=	glGlyphLeft..glGlyphRight;

TGlyphAlign	is	a	set	of	available	values	for	the	GlyphAlign	property	of	the	TDBStatusLabel	control.

Type	TTitleClickEvent

Declaration:	TTitleClickEvent	=	procedure	(Sender:	TObject;	ACol:	Longint;	Field:	TField)	of	object;

TTitleClickEvent	is	the	type	of	the	OnTitleClick	event	of	the	TRxDBGrid	component.

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Unit	DbGrid

Using	class	TRxDBGrid	
Event
OnCheckButton
OnGetBtnParams
OnGetCellParams
OnTitleBtnClick

Method
GotoSelection
RestoreLayout
SaveLayout
SaveLayoutReg
SelectAll
ToggleRowSelection
UnselectAll

Property
ClearSelection
FixedCols
InplaceEditor
MultiSelect
SelectedRows
ShowGlyphs
TitleButtons

Type
TBookmarkList
TCheckTitleBtnEvent
TDBLabelOptions
TDBLabelStyle
TGetBtnParamsEvent
TGetCellParamsEvent
TGetCellPropsEvent
TGetStringEvent
TGlyphAlign
TTitleClickEvent

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
RX	Date	DB	Edit RxDBCtrl TDBDateEdit

Description:
TDBDateEdit	is	a	direct	descendant	of	the	TDateEdit	and	inherits	all	of	its	properties	and	methods.	There
are	very	few	differences	in	the	behavior	of	the	TDBDateEdit	and	TDateEdit	except	that	TDBDateEdit
connects	to	a	DataSource	and	allows	visual	manipulation	of	a	Date	or	DateTime	field.

TDBDateEdit	provides	three	additional	properties.	The	DataField,	DataSource,	and	Field	properties	are
exactly	the	same	as	the	like-named	properties	in	Delphi's	standard	data-aware	components.

Using	a	TDBDateEdit	component	is	very	simple	-	assign	a	TDataSource	to	the	DataSource	property	and
assign	a	date	or	date-time	field	name	to	the	DataField	property.	The	TDBDateEdit	control	automatically
gets	the	date	from	the	data	field	and	updates	the	data	source	with	the	changed	data.

To	control	2-	or	4-digit	year	in	TDateEdit,	TDBDateEdit	components	you	can	use	a	typed	boolean	constant
FourDigitYear	from	DateUtil	unit.

Property	BlanksChar
Declaration:	BlanksChar:	Char;

BlanksChar	is	the	character	used	to	represent	unentered	characters	in	the	date	mask	(default	value	is	space
character	-	#32).

Property	CalendarHints
Declaration:	CalendarHints:	TStrings;

CalendarHints	provides	a	way	to	customize	the	Help	Hints	for	the	buttons	on	popup-calendar	or	calendar
dialog.

Each	button	on	calendar	(prev	year,	prev	month,	next	month,	next	year)	has	a	default	Help	Hint.

CalendarHints	allow	the	values	of	any	or	all	of	these	default	Help	Hints	to	be	replaced	by	customized	hints.

CalendarHints	is	a	string	list.	Each	hint	is	a	string.	The	first	string	in	the	string	list	becomes	the	Help	Hint
for	the	first	button	on	the	calendar	(the	"Prev	Year"	button).	The	4-th	hint	becomes	the	Help	Hint	for	the	last
4-th	button	(the	"Next	Year"	button).

When	specifying	CalendarHints	at	runtime,	enter	an	empty	string	('')	for	any	Help	Hint	that	should	keep	the
default	value.	Simply	leave	the	line	blank	when	using	the	string	list	property	editor	of	the	Object	Inspector
for	the	CalendarHints	property.

Property	CalendarStyle
Declaration:	CalendarStyle:	TCalendarStyle;

The	CalendarStyle	property	sets	the	different	types	of	popup	calendars.	If	the	style	is	set	to	csDialog,	then
the	popup	calendar	will	take	the	form	of	a	Dialog	Box	with	captions	and	borders.	The	dialog's	caption	can
be	set	by	the	DialogTitle	property.	If	the	style	is	set	to	csPopup	(by	default),	then	the	calendar	will	appear	as
if	it	were	a	combo	box.	It	will	contain	no	title	or	borders.	It	will	simply	be	the	calendar.	The
PopupCalendarSize	global	variable	from	PickDate	unit	can	be	used	to	control	the	size	of	pop-up	calendar.

Property	CheckOnExit
Declaration:	CheckOnExit:	Boolean;

When	True,	if	an	invalid	date	value	is	entered	in	the	TDateEdit	or	TDBDateEdit	by	the	user,	the	exception
will	be	raised	when	the	user	exits	the	date-editor.

Property	Date
Declaration:	Date:	TDateTime;

This	property	(run-time	only)	determines	the	date	that	the	TDateEdit	displays.	Assigning	a	value	to	Date
causes	the	TDateEdit	to	display	that	date	as	its	active	date.

Property	DefaultToday
Declaration:	DefaultToday:	Boolean;

If	the	DefaultToday	property	is	True	and	the	Date	value	is	null	(edit	text	is	empty)	or	invalid	then	the
current	date	is	returneded	by	the	Date	property.

Property	DialogTitle
Declaration:	DialogTitle:	string;

The	DialogTitle	property	determines	the	text	that	appears	in	the	pop-up	dialog	box's	title	bar.

Property	PopupColor
Declaration:	PopupColor:	TColor;

The	PopupColor	is	the	background	color	of	the	pop-up	calendar.

Property	PopupVisible
Declaration:	PopupVisible:	Boolean;

PopupVisible	(read-only	and	runtime-only	property)	specifies	whether	the	popup-calendar	is	open	or
"dropped-down"	(when	CalendarStyle	is	csPopup).	Read	PopupVisible	to	determine	whether	the	popup
calendar	is	currently	in	the	open	(dropped-down)	position.

Property	StartOfWeek
Declaration:	StartOfWeek:	TDayOfWeekName;

StartOfWeek	determines	the	day	of	the	week	that	begins	a	week.	This	property	determines	which	day	of	the
week	is	drawn	in	the	left	column	of	the	pop-up	calendar.

Property	WeekendColor
Declaration:	WeekendColor:	TColor;

WeekendColor	determines	the	colors	used	for	the	pop-up	calendar.	It	is	the	color	set	for	the	"free"	days
(weekends)	in	the	month.

Property	Weekends
Declaration:	Weekends:	TDaysOfWeek;

WeekEnds	allows	the	programmer	defines	which	days	are	weekends.

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

UNIT	
PickDate

Const
PopupCalendarSize	

Routine
PopupDate	
SelectDate	
SelectDateStr

Const	PopupCalendarSize
Declaration:	PopupCalendarSize:	TPoint	=	(X:	187;	Y:	124);;

The	PopupCalendarSize	global	variable	can	be	used	to	control	the	size	of	pop-up	calendar	in	TDateEdit	and
TDBDateEdit	controls.

Routine	PopupDate
Declaration:	function	PopupDate(var	Date:	TDateTime;	Edit:	TWinControl):	Boolean;

PopDate	function	pops-up	the	calendar	with	Date	on	the	control	Edit.

PopupDate	example:

if	PopupDate(Date1,	Edit1)	then	
begin
__{...}
end;

Routine	SelectDate
Declaration:	function	SelectDate(var	Date:	TDateTime;	const	DlgCaption:	TCaption;	AStartOfWeek:
TDayNameOfWeek;	AWeekends:	TDaysOfWeek;	AWeekendColor:	TColor;	BtnHints:	TStrings):	Boolean;

function	SelectDate	pops	up	a	dialog	box	with	Date	as	a	variable	to	accept	the	date.	The	DlgCaption	is	the
caption	of	the	dialogbox.	AStartOfWeek	defines	the	start	of	the	week,	while	AWeekEnds	defines	the	dates
which	are	the	weekends,	and	AWeekEndColour	is	the	AWeekEnds	label's	colour	and	BtnHints	are	the	hints
strings.

SelectDate	example:	
__D	:=	SysUtils.Date;	{	set	D	to	current	date	}
__if	SelectDate(D,	'Select	a	date',	Mon,	[Sun],	clRed,	nil)	then	
__begin
____{	use	selected	date	}
__end;

Routine	SelectDateStr
Declaration:	function	SelectDateStr(var	StrDate:	string;	const	DlgCaption:	TCaption;	AStartOfWeek:
TDayNameOfWeek;	AWeekends:	TDaysOfWeek;	AWeekendColor:	TColor;	BtnHints:	TStrings):	Boolean;

SelectDateStr	is	the	same	as	selectdate	with	the	variable	Date	returned	as	a	string	is.

SelectDateStr	example:	
SD	:=	DateToStr(SysUtils.Date);	{	set	SD	to	current	date	}
if	SelectDateStr(SD,	'Select	a	date',	Mon,	[Sun],	clRed,	nil)	then	
begin
__{	use	selected	date	}
end;

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Unit	DbCtrl

Class	TRxDBCalcEdit

Property
BlanksChar	
CalendarHints	
CalendarStyle	
CheckOnExit	
Date	
DefaultToday	
DialogTitle	
PopupColor	
PopupVisible	
StartOfWeek	
WeekendColor	
Weekends

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
RX	Database	Labels dbcombo TDBStatusLabel

Description:
TDBStatusLabel	is	a	data-aware	label	used	to	show	state	information	or	position	information	about
DataSources.	It	can	be	used	on	any	dataset	to	report	the	current	state,	i.e.	Inactive,	Browse,	Edit,	Insert,	Set
Key,	Calculating	Fields;	or	on	Paradox	and	dBase	databases	or	on	memory	tables	(TMemoryTable
component)	to	show	logical	or	physical	record	position	and	number	of	records.

When	the	Style	property	is	lsState	(by	default)	the	<dataset_name>:	<dataset_state>	mnemonic	is	used	to
place	the	state	label	for	the	current	state.

When	the	Style	property	is	lsRecordNo	the	<current_record_number>:<full_record_count>	mnemonic	is
used	to	place	the	record	number	and	the	total	number	of	records	within	the	string.	TDBStatusLabel	requires
the	DataSource	property	to	be	set	to	bind	it	to	a	dataset.

Property	Captions
Declaration:	Captions:	TStrings;

Property	DataSetName
Declaration:	DataSetName:	string;

Name	contains	the	name	of	the	dataset	as	referenced	by	other	components.

Property	EditColor
Declaration:	EditColor:	TColor;

When	the	database	is	in	edit	mode,	TDBStatusLabel	changes	to	the	colour	specified	by	EditColor.

Property	GlyphAlign
Declaration:	GlyphAlign:	TGlyphAlign;

This	property	determines	the	location	of	a	glyph	displayed	within	a	status	label.	The	glyph	can	be	placed
either	to	the	left	(the	default)	or	to	the	right	of	the	caption.

Property	Layout
Declaration:	Layout:	TTextLayout;

Layout	specifies	the	vertical	placement	of	the	text	within	the	label	when	the	AutoSize	property	is	False.	Set
Layout	to	specify	how	the	text	of	the	label	is	placed	within	the	ClientRect	of	the	label	control	.

Layout	can	be	one	of	the	following	values:

-	tlTop	-	The	text	appears	at	the	top	of	the	label.	
-	tlCenter	-	The	text	is	vertically	centered	in	the	label.	
-	tlBottom	-	The	text	appears	along	the	bottom	of	the	label.

Property	ShowOptions
Declaration:	ShowOptions:	TDBLabelOptions;

Use	this	property	to	hide	and	show	the	caption	and	glyph	of	a	TDBStatusLabel	component.

Property	Style
Declaration:	Style:	TDBLabelStyle;

Style	defines	the	style	defined	by:

IsState	-	TDBStatusLabel	displays	the	state	of	the	table.
IsRecNo	-	TDBStatusLabel	displays	the	current	record	number.

Event	OnGetDataName
Declaration:	OnGetDataName:	TGetStringEvent;

OnGetDateName	event	is	triggered	when	the	OnGetDataName	is	called.

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

UNIT	RxDBComb

Class	RX	Db	Combo

Property
EnableValues	
Values

Class	RX	DB	Lookup	Lists

Property
EmptyItemColor	
IndexSwitch	
ListStyle	
LookupDisplayIndex	
RowCount	
Value

Event
OnGetImage

Type
TGetImageEvent	
TLookupListStyle

Class	RX	Database	Labels

Property
Captions	
DataSetName	
EditColor	
GlyphAlign	
Layout	
ShowOptions	
SQLCount	
Style

Events
OnGetDataName

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
TRxDBLookupList RxLookup TRxDBLookupList

Description:
TRxDBLookupList	provides	a	list	of	lookup	items	for	filling	in	fields	that	require	data	from	another	dataset.
Use	TRxDBLookupList	to	provide	users	with	a	convenient	list	of	lookup	items	to	set	a	field	value	using	the
values	of	a	field	in	another	dataset.	Lookup	list	boxes	usually	display	values	that	are	a	represent	a	more
meaningful	description	of	the	actual	field	value.	The	relationship	between	field	values	and	the
corresponding	values	in	the	lookup	dataset	can	be	set	using	the	properties	LookupSource,	LookupField	and
LookupDisplay.

This	component	provides	the	following:

You	can	select	any	number	of	fields	to	be	displayed	in	the	lookup	list.
End-users	can	incrementally	search	through	the	lookup	list	by	directly	typing	into	the	control.	This	is
a	great	advantage	when	using	lookup	tables	that	contain	hundreds	of	even	thousands	of	records.	You
can	perform	a	lookup	on	a	Query	or	QBE	result.	It	even	incrementally	searches	on	the	query	result.
The	component	does	not	have	to	be	bound,	or	assigned,	to	a	table's	field	(DataField	and	DataSource
properties)	which	gives	you	greater	flexibility	in	using	this	lookup	list	for	general	tasks	where	a
source	table	is	not	involved.

If	DataSource	and	DataField	properties	is	set,	when	a	user	selects	a	list	item,	the	corresponding	field	value
is	changed	in	the	underlying	dataset.	

If	IgnoreCase	property	is	True	(default),	the	incrementally	search	through	the	lookup	list	is	processed
without	regard	to	case	in	the	dataset's	data.

If	IndexSwitch	property	is	True	(default)	and	TTable	component	is	linked	to	the	LookupSource,	the
incrementally	search	will	use	available	indices	of	lookup	table.

The	DisplayEmpty	property	allows	you	specify	the	text	value	to	display	when	no	item	is	selected	from	the
lookup	list.	If	DisplayEmpty	set	to	the	non-empty	string,	this	value	will	be	show	in	the	top	of	the	list
additionaly	to	the	lookup	items.

You	can	also	use	an	OnGetImage	event	to	specify	graphical	picture	to	display	in	each	item	of	lookup	list
accordingly	to	the	contents	of	lookup	source.

Property	EmptyItemColor
Declaration:	EmptyItemColor:	TColor;

The	EmptyItemColor	property	allows	you	specify	the	color	value	to	display	additional	non-scrolled
"empty"	item	in	the	top	of	the	list	if	DisplayEmpty	set	to	the	non-empty	string.

Property	IndexSwitch

Declaration:	IndexSwitch:	Boolean;

If	IndexSwitch	property	is	True	(default)	and	TTable	component	is	linked	to	the	LookupSource,	the
incrementally	search	will	use	available	indices	of	lookup	table.

Property	ListStyle
Declaration:	ListStyle:	TLookupListStyle;

ListStyle	determines	how	the	lookup	list	displays	its	items	when	multiple	fields	specified	by	the
LookupDisplay	property.	By	default,	style	is	lsFixed,	meaning	that	the	each	display	field	always	takes	up	a
fixed	width	accordingly	to	their	DisplayWidth	properties.	The	lsDelimited	style	meaning	that	each	field
takes	a	variable	width,	and	the	fields	are	separated	by	a	comma	(',')	character.

Property	LookupDisplayIndex
Declaration:	LookupDisplayIndex:	Integer;

When	multiple	fields	specified	by	the	LookupDisplay	property,	the	LookupDisplayIndex	specifies	index	of
a	field	in	the	LookupDisplay	list	which	will	be	use	in	the	DisplayValue	property	and	will	be	display	in	the
editor	of	the	TRxDBLookupCombo	component.

Property	RowCount
Declaration:	RowCount:	Integer;

Set	RowCount	to	the	number	of	rows	displayed	in	the	lookup	list	box.	The	list	box	is	resized	to	match	the
specified	number	of	rows.	Resizing	the	list	box	(such	as	by	changing	its	Height	property)	automatically
changes	the	value	of	RowCount	to	match	the	new	height.

Property	Value
Declaration:	Value:	string;

Run-time	only.	The	value	of	the	Value	property	is	the	contents	of	the	DataField	for	the	current	record	in	the
primary	dataset.	As	the	user	moves	through	the	primary	dataset,	the	value	of	the	Value	property	changes.

By	explicitly	changing	the	Value	property	value	at	run	time,	you	change	the	contents	of	the	field.

Event	OnGetImage
Declaration:	OnGetImage:	TGetImageEvent;

OnGetImage	event	is	triggered	when	an	image	is	requested.

Type	TGetImageEvent
Declaration:	TGetImageEvent	=	procedure	(Sender:	TObject;	IsEmpty:	Boolean;	var	Graphic:	TGraphic;

var	TextMargin:	Integer)	of	object;

TGetImageEvent	is	the	type	of	the	OnGetImage	event	of	the	TRxDBLookupList	and	the
TRxDBLookupCombo	components.

Type	TLookupListStyle
Declaration:	TLookupListStyle	=	(lsFixed,	lsDelimited);

The	TLookupListStyle	type	is	the	type	of	the	ListStyle	property	for	a	lookup	list	controls
(TRxDBLookupList	and	TRxDBLookupCombo	components).

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
TRxDBLookupCombo RxLookup TRxDBLookupCombo

Description:
The	TRxDBLookupCombo	visual	interface	component	provides	your	end-users	with	the	ability	to	select	a
value	for	a	field	from	a	drop-down	list	of	values	that	is	populated	from	a	second	lookup	table.

If	TRxDBLookupCombo	is	linked	to	a	lookup	field	component,	it	automatically	reads	the	relationship
between	the	field	value	and	the	lookup	values	in	the	lookup	dataset	from	the	field	component.	The
relationship	between	field	values	and	the	corresponding	values	in	the	lookup	dataset	can	also	be	explicitly
set	using	the	properties	of	the	lookup	combo	box	when	the	combo	box	is	not	linked	toa	lookup	field
component.

This	component	provides	the	following:

You	can	select	any	number	of	fields	to	be	displayed	in	the	drop-down	list.
End-users	can	incrementally	search	through	the	lookup	list	by	directly	typing	into	the	combo	control
while	the	lookup	list	is	displayed.	This	is	a	great	advantage	when	using	lookup	tables	that	contain
hundreds	of	even	thousands	of	records.	You	can	perform	a	lookup	on	a	Query	or	QBE	result.	It	even
incrementally	searches	on	the	query	result.
The	component	does	not	have	to	be	bound,	or	assigned,	to	a	table's	field	(DataField	and	DataSource
properties)	which	gives	you	greater	flexibility	in	using	this	LookupCombo	for	general	tasks	where	a
source	table	is	not	involved.

If	DataSource	and	DataField	properties	is	set,	when	a	user	selects	a	list	item,	the	corresponding	field
value	is	changed	in	the	underlying	dataset.

If	IgnoreCase	property	is	True	(default),	the	incrementally	search	through	the	lookup	list	is	processed
without	regard	to	case	in	the	dataset's	data.

If	IndexSwitch	property	is	True	(default)	and	TTable	component	is	linked	to	the	LookupSource,	the
incrementally	search	will	use	available	indices	of	lookup	table.

The	DisplayEmpty	property	allows	you	specify	the	text	value	to	display	when	no	item	is	selected	from	the
lookup	list.	If	DisplayEmpty	set	to	the	non-empty	string,	this	value	will	be	show	in	the	drop-down	list
additionaly	to	the	lookup	items.

Use	DropDownAlign	property	to	specify	how	the	drop-down	list	is	aligned	relative	to	its	edit	box.

Use	an	OnGetImage	event	to	specify	graphical	picture	to	display	in	each	item	of	lookup	list	accordingly	to
the	contents	of	lookup	source.

Write	an	OnChange	event	handler	to	take	specific	action	immediately	after	the	user	selects	an	item	from	the
list	and	the	Value	property	changed.

Property	DisplayEmpty
Declaration:	DisplayEmpty:	string;

The	DisplayEmpty	property	allows	you	specify	the	text	value	to	display	when	no	item	is	selected	from	the
lookup	list	and	the	Value	property	is	equal	to	the	EmptyValue	property	(empty	string	by	default).	If
DisplayEmpty	set	to	the	non-empty	string,	this	value	will	be	show	at	the	top	of	the	list	additionaly	to	the
lookup	items.	The	EmptyItemColor	value	use	to	display	background	of	this	item.

Property	EmptyValue
Declaration:	EmptyValue:	string;

If	database	is	empty,	the	variable	EmptyValue	replaces	the	table.

Property	EscapeClear
Declaration:	EscapeClear:	Boolean;

When	the	DisplayEmpty	property	is	set	to	empty	string,	the	user	is	not	able	to	clear	their	selection.	The
EscapeClear	property	when	set	to	True	(by	default),	gives	the	user	a	convenient	way	to	clear	the	combos
current	selection	simply	by	entering	the	<ESCAPE>	character.

Property	IgnoreCase
Declaration:	IgnoreCase:	Boolean;

If	IgnoreCase	property	is	True	(default),	the	incrementally	search	through	the	lookup	list	is	processed
without	regard	to	case	in	the	dataset's	data.	When	False,	incremental	searching	considers	case	sensitivity
when	performing	an	incremental	search.

This	property	has	no	effect	with	some	SQL-Links.

Property	KeyValue
Declaration:	KeyValue:	Variant;

Use	KeyField	to	determine	the	value	represented	by	the	lookup	control	(not	the	value	displayed	by	the
lookup	control).	When	KeyValue	is	set,	the	lookup	control	attempts	to	find	a	record	from	the
LookupSource's	dataset	where	the	value	of	LookupField	matches	KeyValue.	If	such	a	match	is	found,	the
lookup	control	displays	the	value	of	LookupDisplay	on	that	record.

Property	ListVisible
Declaration:	ListVisible:	Boolean;

ListVisible	specifies	whether	the	lookup	list	is	open	or	"dropped-down".	Read	ListVisible	to	determine
whether	the	list	of	lookup	values	is	currently	in	the	open	(dropped-down)	position.	If	ListVisible	is	True,	the
list	is	open;	if	ListVisible	is	False,	the	list	is	closed.

Property	Value
Declaration:	Value:	string;

Run-time	only.	The	value	of	the	Value	property	is	the	contents	of	the	DataField	for	the	current	record	in	the
primary	dataset.	As	the	user	moves	through	the	primary	dataset,	the	value	of	the	Value	property	changes.

By	explicitly	changing	the	Value	property	value	at	run	time,	you	change	the	contents	of	the	field.

Event	OnCloseUp
Declaration:	OnCloseUp:	TNotifyEvent;

OnCloseUp	occurs	immediately	after	an	opened	or	"dropped-down"	list	is	closed.	Write	an	OnCloseUp
event	handler	to	respond	when	the	combo	box	list	is	closed.	When	the	list	is	closed,	the	value	that
corresponds	to	the	selected	lookup	value	is	assigned	to	the	field.	The	list	can	be	closed	by	the	user	or	by
calling	the	CloseUp	method.

Method	CloseUp
Declaration:	procedure	CloseUp(Accept:	Boolean);

The	CloseUp	method	closes	an	opened	or	"dropped-down"	database	lookup	combo	box.	The	Accept
parameter	determines	whether	to	modify	the	DataField	with	the	selected	value	in	the	combo	box.

Method	IsDropDown
Declaration:	function	IsDropDown:	Boolean;

IsDropDown	method	returns	True	if	the	lookup	list	is	open	or	"dropped-down";	if	IsDropDown	returns
False,	the	list	is	closed.

Method	ResetField
Declaration:	procedure	ResetField;

ResetField	method	sets	the	Value	property	to	the	EmptyValue	and	the	DisplayValue	to	the	DisplayEmpty.

Property	ClickKey
Declaration:	ClickKey:	TShortCut;

The	ClickKey	property	determines	the	key	strokes	users	can	use	to	press	a	button	by	keyboard.	Default
value	is	"Alt+Down".

Property	DirectInput

Declaration:	DirectInput:	Boolean;

Set	this	property	to	True	to	allow	a	user	to	type	in	a	string	value	into	the	edit	portion.	When	this	property	is
False,	only	the	button	and	OnButtonClick	can	be	used	to	modify	the	text	in	the	editor.

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Unit	RX	lookup

Class	RX	Database	Lookup	Combo	
Property
DisplayEmpty	
EmptyValue	
EscapeClear	
IgnoreCase	
KeyValue	
ListVisible	
Value

Events
OnCloseUp

Method
CloseUp	
IsDropDown	
ResetField

Property
ClickKey	
DirectInput

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
TRxDBComboBox RxDBComb TRxDBComboBox

Description:
TRxDBComboBox	expands	the	capabilities	of	a	regular	data	aware	combo-box.	It	allows	you	to	enter
mapped	storage	and	display	values	so	that	you	can	display	understandable	text	versions	of	stored	codes	in
your	table,	instead	of	displaying	only	the	codes	themselves	where	users	have	to	remember	what	they	all
mean.	Alternatively	you	could	use	a	TRxDBLookupCombo	to	display	one	field	from	a	lookup	source,	and
store	a	different	field,	but	the	TRxDBComboBox’s	drop-down	list	comes	directly	from	a	string	list	and	not
required	the	lookup	source.

Property	EnableValues
Declaration:	EnableValues:	Boolean;

Property	EnableValues	forces	the	values	found	in	Values	to	be	displayed	instead.

Property	Values
Declaration:	Values:	TStrings;

Property	Values	stores	selections	without	connecting	the	second	table	to	a	database	(e.g.,	male,	female).

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
RX	Database	Rich	Edit DBRichEd TDBRichEdit

Description:	A	TDBRichEdit	object	is	a	multiline	edit	control	that	can	display	and	edit	a	rich	text	memo
field	in	a	dataset.	

Use	a	TDBRichEdit	object	to	enable	users	to	edit	a	database	field	in	a	rich	text	edit	control.	

TDBRichEdit	provides	the	properties	and	methods	to	enter	and	work	with	rich	text.	
TRichEdit	does	not	provide	any	user	interface	components	to	make	these	formatting	options	available	to	the
user.	

Applications	must	implement	the	user	interface	components	to	surface	the	rich	text	capabilities	of	a
TDBRichEdit	object.	

TDBRichEdit	uses	the	Text	property	to	represent	the	contents	of	the	field.	If	the	database	field	does	not
include	text	formatting	information,	consider	using	a	TDBMemo	object	or	a	TDBEdit	object	instead.	If	the
application	doesn’t	require	the	data-aware	capabilities	of	TDBRichEdit,	use	a	rich	text	edit	control
(TRichEdit)	instead,	to	conserve	system	resources.

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
RX	Database	Index	Combo DBIndex TDBIndexCombo

Description:
TDBIndexCombo	is	a	descendant	of	the	TCustomComboBox	component	and	provides	a	drop-down	list	of
the	indexes	available	in	the	attached	dataset.	The	list	of	indexes	can	be	configured	to	display	the	index	name
in	several	ways	to	include	a	user-defined	string	for	each	index.

Selecting	one	of	the	index	names	from	the	drop-down	list	changes	the	dataset's	active	index	so	that	future
operations	on	that	dataset	will	use	the	newly	selected	index.

Property	DispalyMode
Declaration:	DispalyMode:	TIdxDisplayMode;

DisplayMode	determines	the	text	that	is	displayed	in	the	drop-down	list.	The	following	table	list	possible
values	for	DisplayMode	and	their	meanings:

-	dmFieldLabels	-	displays	the	DisplayLabel	of	the	fields	in	the	index;

-	dmFieldNames	-	displays	the	list	of	field	names	that	make	up	the	index;

-	dmIndexName	-	displays	the	actual	index	name.

Property	EnableNoIndex
Declaration:	EnableNoIndex:	Boolean;

EnableNoIndex	property	determines	whether	or	not	the	popup	list	contains	additional	item	which	can	be
selected	by	end-user	to	defeat	using	any	indexes	(i.e.	assign	empty	value	to	IndexName	and
IndexFieldNames	properties	of	attached	table).	String	value	for	this	additional	item	specified	by
NoIndexItem	property.

Property	NoIndexItem
Declaration:	NoIndexItem:	string;

NoIndexItem	property	specifies	the	text	string	for	additional	item	which	can	be	selected	by	end-user	to
defeat	using	any	indexes	(i.e.	assign	empty	value	to	IndexName	and	IndexFieldNames	properties	of
attached	table).	This	additional	item	used	by	TDBIndexCombo	control	only	if	EnableNoIndex	property	is
True.

Type	TIdxDisplayMode
Declaration:	TIdxDisplayMode	=	(dmFieldLabels,	dmFieldNames,	dmIndexName);

The	TIdxDisplayMode	type	defines	the	possible	values	for	the	DisplayMode	property	of	the
TDBIndexCombo	component.

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

UNIT	DbIndex

Property
DispalyMode	
EnableNoIndex	
NoIndexItem

Type
TIdxDisplayMode

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
RX	Database	Progress DBPrgrss TDBProgress

Description:	TDBProgress	is	a	wrapper	for	a	Borland	Database	Engine	(BDE)	generic	progress	callback
and	(in	32-bit	version	only)	trace	callback	functions.	Generic	progress	callback	is	issued	by	BDE	to	inform
applications	about	the	progress	made	during	large	batch	operations,	such	as	DbiBatchMove.	The	Generic
Progress	Report	callback	allows	the	client	to	obtain	progress	reports	during	an	operation,	and	to	cancel	the
operation,	if	desired.	This	callback	is	generated	when	working	with	Paradox	driver	and	with	some	other
BDE	drivers.	The	query	execution	generates	some	text	messages	and	BatchMove	execution	generates	text
and	percent	notifications.	You	can	specify	the	MessageControl	property	and	Gauge	property	to	display	BDE
messages	and	percentage.

For	some	operations,	a	percentage	completed	is	passed	back	to	the	callback	function,	for	most	others	a
string	containing	progress	information	is	passed	back;	for	simple	database	operations	no	progress
information	is	returned	at	all.	It	has	been	our	experience	that	percentages	are	mainly	passed	back	in
operations	where	the	BDE	must	physically	sort	a	local	database	file,	such	as	in	indexing	DBase	files.	It	is	of
course	possible	to	interpret	the	messages	passed	back	and	calculate	your	own	percentage	completed.

32-bit	trace	callback	is	a	system-level	callback	that	can	be	used	to	retrieve	trace	information.	

Property	TraceFlags	specifies	the	database	operations	to	track	with	the	OnTrace	event	at	run	time	while
Trace	property	is	True.

Using	class	TDBProgress

The	TDBProgress	component	is	a	non-visual	component	that	holds	the	latest	progress	information	on	the
current	database	operation	as	returned	by	the	database	engine.	By	updating	visual	components,	such	as	a
gauge	or	a	label,	whenever	the	OnProgress,	OnMessageChange	and	OnPercentChange	events	is	generated,
the	user	is	aware	of	the	status	of	the	database	action	being	executed.	Such	feedback	is	especially	useful
when	performing	database	operations	that	consume	a	considerable	amount	of	time,	such	as:	

-	Index	Creation	
-	Query	Execution	
-	BatchMoves	
-	etc.

The	TDBProgress	component	enables	you	to	see	the	actual	statement	calls	made	through	SQL	Links	to	a
remote	server	or	through	the	ODBC	socket	to	an	ODBC	data	source,	like	SQL	Monitor.	You	can	elect	to
monitor	different	types	of	activity.	Choose	TraceFlags	property	value	to	select	different	categories	of
activities	to	monitor.	

Use	the	TDBProgress	component	to	provide	progress	feedback	on	database	operations	and	see	the	actual
statement	calls	made	through	SQL	Links	to	a	remote	server.

Property	Active
Declaration:	Active:	Boolean;

Set	the	Active	property	to	True	to	enables	the	progress	callback-events.	Depending	on	the	value	of	the
Active	the	DBProgress	will	generate	the	OnProgress,	OnMessageChange	and	OnPercentChange	events
each	time	the	database	passes	control	back	to	the	TDBProgress	component	during	the	current	database
operation.	Setting	this	property	to	False	disables	the	generic	progress	callbacks.

Property	Gauge
Declaration:	Gauge:	TControl;

Gauge	is	a	progress-control	associated	with	the	DBProgress	to	to	display	BDE	percentage.	In	16-bit	Delphi
version	you	can	use	TGauge	control	as	progress-indicator.	In	32-bit	versions	you	can	also	use	TProgressBar
control.

Property	MessageControl
Declaration:	MessageControl:	TControl;

MessageControl	is	a	control	associated	with	the	DBProgress	to	to	display	BDE	messages.	You	can	use	any
control	which	displays	it's	Caption	property,	i.e.	TLabel,	TPanel	etc.

Property	Trace
Declaration:	Trace:	Boolean;

Set	the	Trace	property	to	True	to	enables	the	trace	callback-events.	Setting	this	property	to	True	enables	the
trace	callback	and	depending	on	the	value	of	the	TraceFlags	the	DBProgress	will	generate	the	OnTrace
events.	Setting	this	property	to	False	disables	the	trace	callbacks.

Property	WaitCursor
Declaration:	WaitCursor:	TCursor;

Indicates	the	mouse	cursor	changes	to	during	long	BDE	operations.

Event	OnMessageChange
Declaration:	OnMessageChange:	TOnMessageChange;

The	OnPercentChange	event	occurs	every	time	new	text	message	is	returned	from	the	database	engine
(BDE).	This	event	is	only	generated	when	Active	is	set	to	True.

Event	OnPercentChange
Declaration:	OnPercentChange:	TOnPercentChange;

The	OnPercentChange	event	occurs	every	time	percent	notifications	is	returned	from	the	database	engine
(BDE).	This	event	is	only	generated	when	Active	is	set	to	True.

Event	OnProgress
Declaration:	OnProgress:	TOnProgressEvent;

The	OnProgress	event	occurs	every	time	progress	information	is	returned	from	the	database	engine	(BDE).

This	event	is	only	generated	when	Active	is	set	to	True.	To	abort	the	current	database	operation,	set	the
Abort	variable	to	False.	The	effect	the	abort	will	have	depends	of	the	nature	of	the	database	operation	that	is
being	aborted.

Event	OnTrace
Declaration:	OnTrace:	TOnTraceEvent;

The	OnTrace	event	occurs	every	time	trace	information	(text	string	passed	as	Msg	parameter)	is	returned
from	the	database	engine	(BDE).	This	event	is	only	generated	when	Trace	property	is	set	to	True	and
TraceFlags	property	is	not	equal	to	empty	set	[].

Method	ProgressMsgValue
Declaration:	function	ProgressMsgValue(const	Msg:	string):	Longint;

Returns	numeric	value	contained	in	BDE	callback	string	specified	by	Msg	parameter.	The	message	string
format	always	is:	<Text_string><:><Value>.	In	the	message	string,	the	value	and	colon	fields	are	optional.
When	message	Msg	contains	value	field,	then	ProgressMsgValue	returns	value	as	result,	otherwise	this
method	returns	-1.	You	can	use	ProgressMsgValue	method,	for	example,	in	OnMessageChange	event
handler.

Type	TOnMessageChange
Declaration:	TOnMessageChange	=	procedure(Sender:	TObject;	const	Msg:	string)	of	object;

The	TOnMessageChange	type	points	to	the	method	that	handles	the	OnMessageChange	event	of	the
TDBProgress	component.	The	Msg	parameter	contains	the	last	progress	message	passed	back	from	the
database	engine.

Type	TOnPercentChange
Declaration:	TOnPercentChange	=	procedure(Sender:	TObject;	PercentDone:	Integer)	of	object;

The	TOnPercentChange	type	points	to	the	method	that	handles	the	OnPercentChange	event	of	the
TDBProgress	component.	The	PercentDone	parameter	contains	the	last	progress	percentage	passed	back
from	the	database	engine.

Type	TOnProgressEvent
Declaration:	TOnProgressEvent	=	procedure(Sender:	TObject;	var	Abort:	Boolean)	of	object;

TOnProgressEvent	is	the	type	of	the	OnProgress	event	of	the	TDBProgress	component.

Type	TOnTraceEvent
Declaration:	TOnTraceEvent	=	procedure(Sender:	TObject;	Flag:	TTraceFlag;	const	Msg:	string)	of	object;

The	TOnTraceEvent	type	points	to	the	method	that	handles	the	OnTrace	event	of	the	TDBProgress
component.

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Unit	DbPrgrs

Using	class	TDBProgress

Property	Active	
Gauge	
MessageControl	
Trace	
WaitCursor

Event
OnMessageChange	
OnPercentChange	
OnProgress	
OnTrace

Method
ProgressMsgValue

Type
TOnMessageChange	
TOnPercentChange	
TOnProgressEvent	
TOnTraceEvent

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
RX	Database	Security DBSecur TDBSecurity

Description:
The	TDBSecurity	component	provides	a	quick,	standard	interface	for	users	to	gain	access	to	an	database-
oriented	application.	This	component	provides	two	standard	dialogs:	registration	(login)	dialog	and	change
user	password	dialog.	Specify	Database	property	or	call	Login	method	manually	to	show	registration
dialog,	and	call	ChangePassword	method	to	show	change	password	dialog.	

Also	TDBSecurity	allows	you	lock	application	in	minimized	state	by	calling	Lock	method.	After	lock	user
must	enter	password	to	unlock	and	restore	application.

Using	class	TDBSecurity
Set	Database,	UsersTableName	and	LoginNameField	to	approperiate	values,	write	event	handler	to	the
OnCheckUser	event	(if	needed)	and	set	Active	to	True	for	use	standard	login	dialog	when	application
started.	

When	UsersTableName	and	LoginNameField	are	not	specified,	you	can	use	this	component	to	connect	to
the	SQL-oriented	database.

TDBSecurity	provides	three	standard	dialogs	for	database-oriented	applications:
-	registration	(login)	dialog;
-	change	user	password	dialog;
-	unlock	with	password	dialog	for	unlock	locked	application.

Property	Active
Declaration:	Active:	Boolean;

If	there	any	IO	access	to	the	data,	this	is	triggered

Property	AllowEmptyPassword
Declaration:	AllowEmptyPassword:	Boolean;
AllowEmptyPassword	determines	whether	or	not	user	can	leave	password	edit	box	empty	in	the	login
dialog	and	in	the	change	password	dialog.

Property	AttemptNumber
Declaration:	AttemptNumber:	Integer;

AttemptNumber	is	a	count	of	available	attempts	to	input	valid	user	name	and	password	in	the	login	dialog.
After	user	input	invalid	user	name	or	password	more	then	AttemptNumber	times	the	application	halts.

Property	Database
Declaration:	Database:	TDatabase;

Specifies	the	Database	component	for	which	TDBSecurity	component	provides	standard	dialogs	and	login
to	by	calling	Login	method.

Property	LoggedUser
Declaration:	LoggedUser:	string;

Run-time	and	read-only	property.	Returns	the	user	name	logged	to	the	database.	You	can	use	this	property
after	successfull	connection	with	database	or	in	the	handler	of	OnCheckUser	event.

When	connection	to	the	database	is	unsuccess,	the	LoggedUser	property	is	empty.

Property	LoginNameField
Declaration:	LoginNameField:	string;

The	LoginNameField	property	is	a	string	which	represents	the	name	of	a	field	in	the	table,	specified	by
UsersTableName	property.	The	field	in	question	contains	the	login	name	of	the	user,	and	in	most	cases	must
be	the	first	field	in	the	existing	index	for	the	table.

Property	MaxPasswordLen
Declaration:	MaxPasswordLen:	Integer;

The	MaxPasswordLen	property	specifies	the	maximum	number	of	characters	the	user	can	enter	in	an
password	edit	box	in	the	login	dialog	and	in	the	change	password	dialog.	The	default	setting	for
MaxPasswordLen	is	0,	which	means	that	there	is	no	limit	on	the	number	of	characters	the	password	can
contain.

Property	UpdateCaption
Declaration:	UpdateCaption:	TUpdateCaption;

UpdateCaption	is	used	to	update	the	Application's	title,	or	form-caption	if	necessary,	to	inform	the	user	of
something	important.

Property	UseRegistry
Declaration:	UseRegistry:	Boolean;

UseRegistry	determines	whether	or	not	a	Windows	System	Registry	will	be	used	(in	32-bit	version	only)	to
store	data.	When	UseRegistry	is	False,	data	will	be	store	in	text	INI-file.

Property	UsersTableName
Declaration:	UsersTableName:	TFileName;

The	UsersTableName	property	points	to	an	existing	database	table,	which	holds	data	about	the	users	of	the

application	and	their	passwords.	At	the	least,	the	table	must	have	a	field	representing	a	login	name,
specified	by	LoginNameField	property,	and	optionaly	a	fields	representing	a	password	or	any	extraneous
information,	which	can	be	used	in	the	OnCheckUser	event	handler.

Event	AfterLogin
Declaration:	AfterLogin:	TNotifyEvent;

After	the	user	login,	AfterLogin	event	is	triggered.

Event	OnChangePassword
Declaration:	OnChangePassword:	TChangePasswordEvent;

When	the	user	changes	the	password,	OngChangePassword	is	triggered.

Event	OnChangePassword	example:

function	TMainForm.SecurityChangePassword(UsersTable:	TTable;	const	OldPassword,	NewPassword:
String):	Boolean;
begin
__Result	:=	False;
__if	SecurityCheckUser(UsersTable,	OldPassword)	then	
__begin
____with	UsersTable	do	
____begin
______Edit;
______FieldByName('PASSWORD').AsString	:=	CryptString(PswdKey,	NewPassword);
______Post;
____Result	:=	True;
____end;
__end;
end;

Event	OnCheckUser
Declaration:	OnCheckUser:	TCheckUserEvent;

Password	checking

Event	OnCheckUser	example:

function	TMainForm.SecurityCheckUser(UsersTable:	TTable;	const	Password:	String):	Boolean;
begin
__Result	:=	False;
__with	UsersTable	do	
__begin
____if	CryptString(PswdKey,	FieldByName('PASSWORD').AsString)	=	Password	then	
____begin

______Result	:=	True;
______UserId	:=	FieldByName('ID').AsInteger;
______UserLevel	:=	FieldByName('USER_LEVEL').AsInteger;
____end;
__end;
end;

Event	OnUnlock
Declaration:	OnUnlock:	TCheckUnlockEvent;

Event	OnUnLock	is	triggered	when	the	table	is	unlocked.

Method	ChangePassword
Declaration:	function	ChangePassword:	Boolean;

Uses	the	change-password	instead.

Method	Lock
Declaration:	procedure	Lock;

procedure	locks	locks	the	database.

Method	Login
Declaration:	function	Login:	Boolean;

The	Login	method	displays	the	registration	login	dialog	represented	by	the	component	on	the	screen,	try
connect	to	database	and	check	user	rights	with	event	OnCheckUser.	It's	called	automatically	when	Active
property	is	True,	and	can	be	called	manually.	It	returns	true	if	the	user	succesfully	logged	into	database.

Type	TChangePasswordEvent
Declaration:	TChangePasswordEvent	=	function(UsersTable:	TTable;	const	OldPassword,	NewPassword:
string):	Boolean	of	object;

TChangePasswordEvent	is	the	type	of	the	OnChangePassword	event	of	the	TDBSecurity	component.

Type	TCheckUnlockEvent
Declaration:	TCheckUnlockEvent	=	function(const	Password:	string):	Boolean	of	object;

TCheckUnlockEvent	is	the	type	of	the	OnUnlock	event	of	the	TDBSecurity	component.

Type	TCheckUserEvent
Declaration:	TCheckUserEvent	=	function(UsersTable:	TTable;	const	Password:	string):	Boolean	of	object;

TCheckUserEvent	is	the	type	of	the	OnCheckUser	event	of	the	TDBSecurity	component.

Type	TUpdateCaption
Declaration:	TUpdateCaption	=	(ucNoChange,	ucAppTitle,	ucFormCaption);

The	TUpdateCaption	is	the	type	for	the	UpdateCaption	property	of	TDBSecurity	component.

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

UNIT	DBSecur	
Using	class	TDBSecurity	

Property
Active	
AllowEmptyPassword	
AttemptNumber	
Database	
LoggedUser	
LoginNameField	
MaxPasswordLen	
UpdateCaption	
UseRegistry	
UsersTableName

Event
AfterLogin	
OnChangePassword	
OnCheckUser	
OnUnlock	
ChangePassword	
Lock	
Login

Type
TChangePasswordEvent	
TCheckUnlockEvent	
TCheckUserEvent	
TUpdateCaption	

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
RX	BDE	Items DBExcpt TRxBdeErrorDlg

Description:
The	class	TRxBdeErrorDlg	replaces	the	normal	message	box	for	EDBEngineError	exceptions	raised	at
runtime.	

The	standard	message	box	displayed	by	an	unhandled	exception	shows	only	the	exception's	name	and
description.	EDBEngineError	exceptions,	however,	contain	additional	information	that	can	be	useful	to
application	developers.	For	this	reason,	exceptions	of	the	EDBEngineError	class,	appear	in	a	special	dialog
box	called	TRxBdeErrorDlg.	The	dialog	shows	the	entire	stack	of	BDE	errors	as	represented	in	the
EDBEngineError	object.

You	can	use	the	DbErrorIntercept	procedure	to	display	TRxBdeErrorDlg	instead	standard	message	box.
This	can	be	useful	for	debugging	or	in	cases	where	you	want	the	end	user	to	have	access	to	BDE	error
information.

You	can	also	specify	handler	of	OnErrorMsg	event	to	change	text	of	error	message	displayed	by
TRxBdeErrorDlg,	and	help	context	for	error	dialog	by	using	DbErrorHelpCtx	variable.

Event	OnErrorMsg
Declaration:	OnErrorMsg:	TDBErrorEvent;

Use	OnErrorMsg	to	perform	special	processing	when	the	error	message	is	shown.	You	can,	for	example,
change	the	text	of	error	message	by	using	Msg	parameter.

Const	DbErrorHelpCtx
Declaration:	DbErrorHelpCtx:	THelpContext	=	0;

The	DbErrorHelpCtx	variable	is	an	integer	value	that	determines	which	Help	screen	appears	when	the	user
requests	context-sensitive	online	Help	from	the	TRxBdeErrorDlg	dialog	by	pressing	"F1"	key..

Type	TDBErrorEvent
Declaration:	TDBErrorEvent	=	procedure	(Error:	TDBError;	var	Msg:	string)	of	object;

TDBErrorEvent	is	the	type	of	the	OnErrorMsg	event	of	the	TRxBdeErrorDlg	dialog	control.

Routine	DbErrorIntercept
Declaration:	procedure	DbErrorIntercept;

DbErrorIntercept	enables	the	TRxBdeErrorDlg	instance,	replacing	the	standard	exception	message	for	BDE
errors	at	runtime.

DbErrorIntercept	example:	

You	can	call	the	DbErrorIntercept	procedure	in	the	body	of	your	project	file	(.DPR):

begin
__Application.Title	:=	'My	Application';
__DbErrorIntercept;
__Application.CreateForm(TMainForm,	MainForm);
__Application.CreateForm(...);
__...
__Application.Run;
end;

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

UNIT	DBExcpt	
Const
DbErrorHelpCtx

Events
OnErrorMsg

Routine
DbErrorIntercept

Type
TDBErrorEvent

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
RX	Picture	Clip PicClip TPicClip

Description:	The	TPicClip	component	provide	you	the	functionality	of	the	PICCLIP.VBX	control	which
ships	with	Visual	Basic	Professional.	This	control	allows	you	to	extract	portions	of	a	matrix	of	pictures	and
assign	the	"cell	picture"	to	another	picture	control.	

To	accomplish	this,	you	might	use	GraphicCell[Index:	Integer]	property	which	extracted	a	portion	of	a
picture	and	assigned	it	to	another	picture	property.	

To	determine	how	source	picture	separate	by	cells,	use	Cols	and	Rows	properties.	The	TPicClip	object
retrieving	"cell	picture"	via	their	Index	within	the	range	0	to	(Cols	*	Rows)	-	1.

To	draw	the	"cell	picture"	on	a	canvas,	call	the	Draw	method	of	a	TPicClip	object,	passing	the	Canvas	as	a
parameter.	The	Masked	property	specifies	whether	the	background	of	the	image	obscures	objects	below	the
image	object	when	"cell	picture"	is	drawn	by	the	Draw	method.	MaskColor	determines	which	color	of	the
image	is	to	be	transparent	when	the	"cell	picture"	is	drawn.

Property	Cols
Declaration:	Cols:	Integer;

Cols	is	the	number	of	columns	in	the	matrix	of	pictures.

Property	GraphicCell[Index:	Integer]
Declaration:	GraphicCell[Index:	Integer]:	TBitmap;

GraphicCell	returns	the	image	("cell	picture")	specified	by	the	Index	parameter	as	a	TBitmap	object.	You
don't	need	to	free	this	object	later.	The	TPicClip	object	retrieving	"cell	picture"	via	their	Index	within	the
range	0	to	(Cols	*	Rows)	-	1,	with	left-to-right	and	top-to-bottom	direction.

Property	MaskColor
Declaration:	MaskColor:	TColor;

MaskColor	determines	which	color	of	the	"cell	picture"	is	to	be	transparent	when	the	bitmap	is	drawn	by
calling	the	Draw	method	and	Masked	property	is	True.	Use	MaskColor	to	determine	how	to	draw	the
picture	transparently.

Property	Masked
Declaration:	Masked:	Boolean;

Masked	specifies	whether	the	background	of	the	"cell	picture"	obscures	objects	below	the	image	object
when	the	image	is	drawn	by	the	Draw	method.	Default	value	is	True.	Set	Masked	to	True	to	allow	objects
behind	the	TPicClip	object	to	show	through	the	background	of	the	bitmap.	Set	Masked	to	False	to	make	the
background	of	the	"cell	picture"	opaque.

Property	Rows
Declaration:	Rows:	Integer;

Rows	is	the	number	of	rows	in	the	matrix	of	pictures.

Method	Draw
Declaration:	procedure	Draw(Canvas:	TCanvas;	X,	Y,	Index:	Integer);

Draw	renders	the	"cell	picture"	specified	by	the	Index	parameter	on	the	Canvas	at	the	location	given	by	the
coordinates	(X,	Y).	If	Masked	property	is	True	the	MaskColor	property	determines	which	color	of	the	"cell
picture"	is	to	be	transparent	when	the	image	is	drawn	by	calling	the	Draw	method.

Method	LoadBitmapRes
Declaration:	procedure	LoadBitmapRes(Instance:	THandle;	ResID:	PChar);

LoadBitmapRes	loads	the	specified	bitmap	resource	along	with	palette	information	from	a	module's
executable	file	or	DLL	specified	by	Instance	parameter	into	then	TPicClip	object.	Specify	the	resource	to	be
loaded	as	the	value	of	ResID.

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Unit	PicClip	
Methods:
Draw
LoadBitmapRes

Property:
Cols
GraphicCell[Index:	Integer]
MaskColor
Masked
Rows

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
RX	Form	Placement Placemnt TFormPlacement

Description:	The	TFormPlacement	component	provides	a	quick	method	for	saving	size	and	position	of	its
parent	form.	

To	use	the	component,	specify	which	properties	you	want	to	save	in	the	Options	property,	and	set	the
IniFileName	and	IniSections	property	to	the	filename	of	your	applications	initialization	file.	In	32-bit
version	you	can	set	the	UseRegistry	property	to	True	to	use	Windows	system	registry	instead	of	an	ini-file.

You	can	then	set	property	Active	to	True	to	allow	automatically	save	and	restore	specified	properties,	or	call
the	RestoreFormPlacement	and	SaveFormPlacement	methods	to	retrieve	or	save	the	form.	The	MinMaxInfo
property	provides	an	easy	way	to	limit	a	form's	minimum	and	maximum	tracking	size.

Using	class	TFormPlacement

Set	Active	property	to	True	to	enable	save	and	restore	parent	form's	size	and	position.

When	IniFileName	is	set	to	the	empty	string	the	default	name	for	the	INI-file	(or	Registry	Key)	will	be
used.

In	32-bit	version,	when	UseRegistry	is	True,	TFormPlacement	uses	standard	TRegIniFile	class.	So	the
IniFileName	passed	to	a	TFormPlacement	component	becomes	a	subkey	under	the	system	registry’s	root
key	(HKEY_CURRENT_USER	by	default).

You	can	handle	the	OnSavePlacement	ans	OnRestorePlacement	events	to	save	and	restore	additional
information	to	the	initialization	file	or	Windows	Registry.

The	TFormPlacement	and	TFormStorage	components	provides	a	quick	method	for	saving	size	and	position
of	its	parent	form.

This	component	also	allows	control	of	a	parent	form	with	style	bsSizeable	to	have	the	Minumum	and
Maximum	sizes	controlled	by	the	developer.

Property	Active
Declaration:	Active:	Boolean;

This	property	will	activate	the	processing	required	to	save	and	restore	the	form's	positions.

Property	IniFile
Declaration:	IniFile:	TIniFile;

This	property	specifies	the	INI	file	to	use.	When	this	is	specified,	the	form's	metric	information	will	be
stored	inside	the	INI	file,	and	inside	the	section.

When	IniFileName	is	set	to	the	empty	string	the	default	name	for	the	INI-file	(or	Registry	Key)	will	be
used.

Property	IniFileName
Declaration:	IniFileName:	string;

The	IniFileName	property	is	used	to	tell	a	saver	component	the	name	of	the	initialization	(ini)	file	it	is	to
write	to	and	read	from.	

If	UseRegistry	property	is	set	to	True	(32-bit	version	only),	then	this	property	specifies	Windows	system
segistry	key	name.

If	you	do	not	specify	a	value	of	this	property,	then	default	name	returned	by	GetDefaultIniName	(or
GetDefaultIniRegKey	for	registry)	will	be	used.

Property	IniFileObject
Declaration:	IniFileObject:	TObject;

This	is	an	IniFileObject.	It	encapsulates	the	information	so	that	instead	of	the	information	being	stored
inside	the	INI	file,	it	is	stored	inside	the	registry	instead.

(This	is	used	internally)

Property	IniSection
Declaration:	IniSection:	string;

The	IniSection	is	the	section	of	the	IniFile	which	the	information	will	be	stored	in.	If	you	specify	blank,	the
information	about	your	form's	metrics	will	not	be	saved.

Property	MinMaxInfo
Declaration:	MinMaxInfo:	TWinMinMaxInfo;

This	property	allows	control	of	a	parent	form	with	style	bsSizeable	to	have	the	minumum	and	maximum
sizes	controlled	by	the	developer.

Property	Options
Declaration:	Options:	TPlacementOptions;

The	Options	property	tells	the	TFormPlacement	component	which	parts	of	the	parent	form	it	should	read
and	write	to	the	specified	IniFileName.	

These	are	the	possible	values	that	can	be	included	in	the	Options	set:

-	fpState	-	state	of	form	(normal,	minimize,	maximize);
-	fpPosition	-	Top,	Left,	Height	and	Width	of	form;
-	fpActiveControl	-	current	Active	Control	on	the	form	(value	of	the	ActiveControl	property).

Property	PreventResize
Declaration:	PreventResize:	Boolean;

This	property	prevents	the	form	from	being	resized.	Setting	this	to	true	prevents	the	form	from	being
resized.

Property	RegIniFile
Declaration:	RegIniFile:	TRegIniFile;

This	is	used	internally.	It	encapsulates	the	contents	of	the	Ini	file	to	the	registry	(something	like	mapping	A
to	B).

Event	OnRestorePlacement
Declaration:	OnRestorePlacement:	TNotifyEvent;

When	the	screen	is	restored,	this	event	is	triggered.	

A	good	usage	is,	"your	computer	hanged	on	the	previous	session.	The	previous	contents	of	your	document
has	been	saved	to	a	temporary	file.	Would	you	like	to	restore	the	contents	of	the	temporary	file?"

Event	OnSavePlacement
Declaration:	OnSavePlacement:	TNotifyEvent;

When	the	screen	is	being	saved,	this	event	is	triggered.	
A	good	usage	is,	"your	computer	is	now	auto-saving	the	contents	of	your	document..."

Method	RestoreFormPlacement
Declaration:	procedure	RestoreFormPlacement;	virtual;

The	RestoreFormPlacement	method	loads	all	the	properties	specified	in	the	related	Options	property	from
the	initialization	file	or	registry	key	specified	in	IniFileName	independently	of	Active	property	value.

Method	SaveFormPlacement
Declaration:	procedure	SaveFormPlacement;	virtual;

The	SaveFormPlacement	method	saves	all	the	properties	specified	in	the	related	Options	property	from	the
initialization	file	or	registry	key	specified	in	IniFileName	independently	of	Active	property	value.

Property	UseRegistry	:	boolean

This	property	is	enabled	under	Delphi	2.0	It	maps	the	INI	file	to	the	registry	instead.

Class	TWinMinMaxInfo

This	class	contains	the	metrics	of	the	form.	It	is	used	by	formplacement's	options	to	store	information	about
the	form.

It	encapsulates:
Property	MaxPosLeft
Property	MaxPosTop
Property	MaxSizeHeight
Property	MaxSizeWidth
Property	MaxTrackHeight
Property	MaxTrackWidth
Property	MinMaxInfo
Property	MinTrackHeight
Property	MinTrackHeight
Property	MinTrackWidth

Property	MaxPosLeft
Declaration:	MaxPosLeft:	Integer;

The	MinTrackHeight	and	MinTrackWidth	properties	specifies	the	minimum	tracking	width	and	the
minimum	tracking	height	of	the	form	at	run-time.

The	MaxTrackHeight	and	MaxTrackWidth	properties	specifies	the	maximum	tracking	width	and	the
maximum	tracking	height	of	the	form.

The	MaxSizeHeight	and	MaxSizeWidth	properties	specifies	the	maximized	width	and	the	maximized	height
of	the	form.

The	MaxPosLeft	è	MaxPosTop	properties	specifies	the	position	of	the	left	side	of	the	maximized	window
and	the	position	of	the	top	of	the	maximized	window.

Note:	Setting	any	of	the	above	properties	to	0	is	the	same	as	not	constraining	by	the	given	axis.

So,	setting	MinTrackHeight	to	0	lets	the	form	be	any	height	(up	to	whatever	MaxSizeHeight	is,	unless,	that
to	is	zero).

Property	MaxPosTop
Declaration:	MaxPosTop:	Integer;

The	MinTrackHeight	and	MinTrackWidth	properties	specifies	the	minimum	tracking	width	and	the

minimum	tracking	height	of	the	form	at	run-time.	

The	MaxTrackHeight	and	MaxTrackWidth	properties	specifies	the	maximum	tracking	width	and	the
maximum	tracking	height	of	the	form.

The	MaxSizeHeight	and	MaxSizeWidth	properties	specifies	the	maximized	width	and	the	maximized	height
of	the	form.

The	MaxPosLeft	è	MaxPosTop	properties	specifies	the	position	of	the	left	side	of	the	maximized	window
and	the	position	of	the	top	of	the	maximized	window.

Note:	Setting	any	of	the	above	properties	to	0	is	the	same	as	not	constraining	by	the	given	axis.

So,	setting	MinTrackHeight	to	0	lets	the	form	be	any	height	(up	to	whatever	MaxSizeHeight	is,	unless,	that
to	is	zero).

Property	MaxSizeHeight
Declaration:	MaxSizeHeight:	Integer;

The	MinTrackHeight	and	MinTrackWidth	properties	specifies	the	minimum	tracking	width	and	the
minimum	tracking	height	of	the	form	at	run-time.	

The	MaxTrackHeight	and	MaxTrackWidth	properties	specifies	the	maximum	tracking	width	and	the
maximum	tracking	height	of	the	form.

The	MaxSizeHeight	and	MaxSizeWidth	properties	specifies	the	maximized	width	and	the	maximized	height
of	the	form.

The	MaxPosLeft	è	MaxPosTop	properties	specifies	the	position	of	the	left	side	of	the	maximized	window
and	the	position	of	the	top	of	the	maximized	window.

Note:	Setting	any	of	the	above	properties	to	0	is	the	same	as	not	constraining	by	the	given	axis.

So,	setting	MinTrackHeight	to	0	lets	the	form	be	any	height	(up	to	whatever	MaxSizeHeight	is,	unless,	that
to	is	zero).

Property	MaxSizeWidth
Declaration:	MaxSizeWidth:	Integer;

The	MinTrackHeight	and	MinTrackWidth	properties	specifies	the	minimum	tracking	width	and	the
minimum	tracking	height	of	the	form	at	run-time.	

The	MaxTrackHeight	and	MaxTrackWidth	properties	specifies	the	maximum	tracking	width	and	the
maximum	tracking	height	of	the	form.	

The	MaxSizeHeight	and	MaxSizeWidth	properties	specifies	the	maximized	width	and	the	maximized	height
of	the	form.

The	MaxPosLeft	è	MaxPosTop	properties	specifies	the	position	of	the	left	side	of	the	maximized	window
and	the	position	of	the	top	of	the	maximized	window.

Note:	Setting	any	of	the	above	properties	to	0	is	the	same	as	not	constraining	by	the	given	axis.

So,	setting	MinTrackHeight	to	0	lets	the	form	be	any	height	(up	to	whatever	MaxSizeHeight	is,	unless,	that
to	is	zero).

Property	MaxTrackHeight
Declaration:	MaxTrackHeight:	Integer;

The	MinTrackHeight	and	MinTrackWidth	properties	specifies	the	minimum	tracking	width	and	the
minimum	tracking	height	of	the	form	at	run-time.	The	MaxTrackHeight	and	MaxTrackWidth	properties
specifies	the	maximum	tracking	width	and	the	maximum	tracking	height	of	the	form.

The	MaxSizeHeight	and	MaxSizeWidth	properties	specifies	the	maximized	width	and	the	maximized	height
of	the	form.

The	MaxPosLeft	è	MaxPosTop	properties	specifies	the	position	of	the	left	side	of	the	maximized	window
and	the	position	of	the	top	of	the	maximized	window.

Note:	Setting	any	of	the	above	properties	to	0	is	the	same	as	not	constraining	by	the	given	axis.

So,	setting	MinTrackHeight	to	0	lets	the	form	be	any	height	(up	to	whatever	MaxSizeHeight	is,	unless,	that
to	is	zero).

Property	MaxTrackWidth
Declaration:	MaxTrackWidth:	Integer;

The	MinTrackHeight	and	MinTrackWidth	properties	specifies	the	minimum	tracking	width	and	the
minimum	tracking	height	of	the	form	at	run-time.

The	MaxTrackHeight	and	MaxTrackWidth	properties	specifies	the	maximum	tracking	width	and	the
maximum	tracking	height	of	the	form.

The	MaxSizeHeight	and	MaxSizeWidth	properties	specifies	the	maximized	width	and	the	maximized	height
of	the	form.

The	MaxPosLeft	è	MaxPosTop	properties	specifies	the	position	of	the	left	side	of	the	maximized	window
and	the	position	of	the	top	of	the	maximized	window.

Note:	Setting	any	of	the	above	properties	to	0	is	the	same	as	not	constraining	by	the	given	axis.

So,	setting	MinTrackHeight	to	0	lets	the	form	be	any	height	(up	to	whatever	MaxSizeHeight	is,	unless,	that
to	is	zero).

Property	MinTrackHeight
Declaration:	MinTrackHeight:	Integer;

The	MinTrackHeight	and	MinTrackWidth	properties	specifies	the	minimum	tracking	width	and	the
minimum	tracking	height	of	the	form	at	run-time.

The	MaxTrackHeight	and	MaxTrackWidth	properties	specifies	the	maximum	tracking	width	and	the
maximum	tracking	height	of	the	form.

The	MaxSizeHeight	and	MaxSizeWidth	properties	specifies	the	maximized	width	and	the	maximized	height
of	the	form.

The	MaxPosLeft	è	MaxPosTop	properties	specifies	the	position	of	the	left	side	of	the	maximized	window
and	the	position	of	the	top	of	the	maximized	window.

Note:	Setting	any	of	the	above	properties	to	0	is	the	same	as	not	constraining	by	the	given	axis.

So,	setting	MinTrackHeight	to	0	lets	the	form	be	any	height	(up	to	whatever	MaxSizeHeight	is,	unless,	that
to	is	zero).

Property	MinTrackWidth
Declaration:	MinTrackWidth:	Integer;

The	MinTrackHeight	and	MinTrackWidth	properties	specifies	the	minimum	tracking	width	and	the
minimum	tracking	height	of	the	form	at	run-time.	

The	MaxTrackHeight	and	MaxTrackWidth	properties	specifies	the	maximum	tracking	width	and	the
maximum	tracking	height	of	the	form.

The	MaxSizeHeight	and	MaxSizeWidth	properties	specifies	the	maximized	width	and	the	maximized	height
of	the	form.

The	MaxPosLeft	è	MaxPosTop	properties	specifies	the	position	of	the	left	side	of	the	maximized	window
and	the	position	of	the	top	of	the	maximized	window.

Note:	Setting	any	of	the	above	properties	to	0	is	the	same	as	not	constraining	by	the	given	axis.

So,	setting	MinTrackHeight	to	0	lets	the	form	be	any	height	(up	to	whatever	MaxSizeHeight	is,	unless,	that
to	is	zero).

Method	DefaultMinMaxInfo
Declaration:	function	DefaultMinMaxInfo:	Boolean;

Returns	True	when	all	key	properties	of	TWinMinMaxInfo	object	are	set	to	0.	For	internal	using	only.

Type	TPlacementOption

Declaration:	TPlacementOption	=	(fpState,	fpPosition,	fpActiveControl);

The	TPlacementOption	type	defines	the	possible	values	for	the	Options	property	of	the	TFormPlacement	or
TFormStorage	components.

Type	TPlacementOptions
Declaration:	TPlacementOptions	=	set	of	TPlacementOption;

The	TPlacementOption	type	defines	the	possible	values	for	the	Options	property	of	the	TFormPlacement	or
TFormStorage	components.

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

UNIT	Placement

Class
Using	class	TFormStorage	

Property
Active	
Options	
StoredProps

Method
RestoreProperties	
SaveProperties

Class
Using	class	TFormPlacement

Event
OnRestorePlacement
OnSavePlacement

Method
DefaultMinMaxInfo
RestoreFormPlacement
SaveFormPlacement

Property
Active
IniFile
IniFileName
IniFileNameObject
IniSection
Options
PreventResize
RegIniFile
UseRegistry	:	boolean

Type
TPlacementOption

Class
TWinMinMaxInfo	

Property
MaxPosLeft
MaxPosTop

MaxSizeHeight
MaxSizeWidth
MaxTrackHeight
MaxTrackWidth
MinMaxInfo
MinTrackHeight
MinTrackHeight
MinTrackWidth

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
RX	Form	Storage Placement TFormStorage

Description:
The	TFormStorage	component	is	a	direct	descendent	of	TFormPlacement.	In	addition	to	the

TFormPlacement's	properties,	methods,	and	events,	this	component	also	allows	a	component	to	save	its	any
published	property	values	off	to	an	INI	file	(or	32-bit	registry)	and	restore	the	values	later.

In	32-bit	version,	when	UseRegistry	is	True,	TFormStorage	uses	standard	TRegIniFile	class.	So	the
IniFileName	passed	to	a	TFormStorage	component	becomes	a	subkey	under	the	system	registry’s	root	key
(HKEY_CURRENT_USER	by	default).

TFormStorage	will	work	with	any	component	or	control	you	might	have.	Even	3rd	party	controls	or
controls	you	have	designed	yourself.

Using	class	TFormStorage

At	design-time	use	component	editor	to	add	published	properties	of	any	other	components	to	list	of
stored	properties	of	TFormStorage	component.	
To	save	and	restore	the	position	of	TRxSplitter	component	add	to	stored	properties	the	Width	or
Height	(according	to	Align	property)	of	one	of	splitted	controls	(ControlFirst	or	ControlSecond).
To	save	and	restore	active	page	of	tabbed	controls	(TNotebook,	TTabbedNotebook	or	TPageControl)
store	ActivePage	or	PageIndex	property.
You	can	save	and	restore	text	of	edit	controls	by	adding	to	stored	properties	the	Text	property	for
TEdit	or	Lines	property	for	TMemo.	
Use	TFormStorage	to	save	and	restore	state	of	windowed	controls	such	as	TCheckBox,
TRadioGroup	etc.
Link	the	TFormStorage	(or	TFormPlacement)	component	to	IniStorage	property	of	some	another
components	to	save	and	load	information	specific	for	these	components	(TRxCheckListBox,
TRxDrawGrid,	TSpeedbar,	TMRUManager,	TRxDBGrid)	with	no	additional	code.

TFormStorage	component	allows	you	to	read	and	write	virtually	any	component	published	property	to	an
INI	file	or	the	system	Registry	with	virtually	no	code.

Property	Active
Declaration:	Active:	Boolean;

Property	active	defines	whether	FormStorage	service	is	active	or	not.

Property	Options

Declaration:	Options:	TPlacementOptions;

The	Options	property	tells	the	TFormPlacement	component	which	parts	of	the	parent	form	it	should	read
and	write	to	the	specified	IniFileName.

These	are	the	possible	values	that	can	be	included	in	the	Options	set:

fpState	-	state	of	form	(normal,	minimize,	maximize);
fpPosition	-	Top,	Left,	Height	and	Width	of	form;
fpActiveControl	-	current	Active	Control	on	the	form	(value	of	the	ActiveControl	property).

Property	StoredProps
Declaration:	StoredProps:	TStrings;

StoredProps	contains	the	forms	controls	you	have	selected	or	chosen	to	have	their	properties	stored	into	a
file.

Method	RestoreProperties
Declaration:	procedure	RestoreProperties;

procedure	RestoreProperties	restores	the	properties	of	the	selected	controls	and	form.

Method	SaveProperties
Declaration:	procedure	SaveProperties;

procedure	SaveProperties	save	the	properties	of	the	selected	controls	and	form.

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
TRxIniFile RxIni TRxIniFile

Description:
RxIniFile	is	an	enhanced	version	of	the	IniFile	specially	designed	to	store	FormStorage	and	Rx	Form
Placement.

Property	ListItemName
Declaration:	ListItemName:	string;

ListItemName	is	the	item's	list	name.

Event	OnReadObject
Declaration:	OnReadObject:	TReadObjectEvent;

OnReadObject	event	is	triggered	when	the	data	is	read.

Event	OnWriteObject
Declaration:	OnWriteObject:	TWriteObjectEvent;

OnWriteObject	event	is	triggered	when	the	data	is	written	into	the	INI	file.

Method	ReadClearList
Declaration:	function	ReadClearList(const	Section:	string;	List:	TStrings):	TStrings;

Function	ReadClearList	reads	a	string	list	from	a	section.

Method	ReadColor
Declaration:	function	ReadColor(const	Section,	Ident:	string;	Default:	TColor):	TColor;

Method	ReadColour	allows	a	colour	to	be	read	from	the	particular	section	and	identification	part	of	an	INI
file.

Method	ReadFont
Declaration:	function	ReadFont(const	Section,	Ident:	string;	Font:	TFont):	TFont;

Method	ReadFont	reads	font	details	from	the	Section	and	Ident	of	an	INI	file.

Method	ReadList

Declaration:	function	ReadList(const	Section:	string;	List:	TStrings):	TStrings;

Method	ReadList	reads	a	list	from	a	section	of	the	INI	file.

Method	ReadPoint
Declaration:	function	ReadPoint(const	Section,	Ident:	string;	const	Default:	TPoint):	TPoint;

Method	ReadPoint	reads	a	point	from	the	Inifile,	from	Section	and	Ident.

Method	ReadRect
Declaration:	function	ReadRect(const	Section,	Ident:	string;	const	Default:	TRect):	TRect;

Method	ReadRect	reads	the	value	of	TRect	to	a	section	and	Ident	of	the	specified	IniFile.

Method	WriteColor
Declaration:	procedure	WriteColor(const	Section,	Ident:	string;	Value:	TColor);

Method	WriteColor	writes	the	value	of	the	colour	to	a	section	and	ident	of	the	specified	IniFile.

Method	WriteFont
Declaration:	procedure	WriteFont(const	Section,	Ident:	string;	Font:	TFont);

Method	WriteFont	writes	the	value	of	the	font	to	a	section	and	identifier	of	the	specified	IniFile.

Method	WriteList
Declaration:	procedure	WriteList(const	Section:	string;	List:	TStrings);

Method	WriteList	writes	the	value	of	the	string	list	to	a	section	of	the	specified	IniFile.

Method	WritePoint
Declaration:	procedure	WritePoint(const	Section,	Ident:	string;	const	Value:	TPoint);

Method	WritePoint	writes	the	value	of	TPoint	to	a	section	and	Ident	of	the	specified	IniFile.

Method	WriteRect
Declaration:	procedure	WriteRect(const	Section,	Ident:	string;	const	Value:	TRect);

Method	WriteRect	writes	the	value	of	TRect	to	a	section	and	Ident	of	the	specified	IniFile.

Type	TReadObjectEvent
Declaration:	TReadObjectEvent	=	function(Sender:	TObject;	const	Section,	Item,	Value:	string):	TObject	of
object;

TReadObjectEvent	is	the	type	of	the	OnReadObject	event	of	the	TRxIniFile	class.

Type	TWriteObjectEvent
Declaration:	TWriteObjectEvent	=	procedure(Sender:	TObject;	const	Section,	Item:	string;	Obj:	TObject)	of
object;

TWriteObjectEvent	is	the	type	of	the	OnWriteObject	event	of	the	TRxIniFile	class.

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

UNIT	RxIni

Property
ListItemName

Event
OnReadObject	
OnWriteObject

Method
ReadClearList	
ReadColor	
ReadFont	
ReadList	
ReadPoint	
ReadRect	
WriteColor	
WriteFont	
WriteList	
WritePoint	
WriteRect

Type
TReadObjectEvent	
TWriteObjectEvent

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
RX	Application	Events RxHook TRxWindowHook

Description:
This	class	allows	the	creation	of	a	"windows	system	hook".	In	other	words,	register	an	event	with	the
windows	event	system	so	that	it	can	be	processed	by	your	application	instead.	As	it's	name	implies,	it	is	not
easy	to	understand	what	it	does.

In	other	words,	if	you	do	not	have	the	source	code	Make	an	extension	to	a	component	that	does	not	have	the
source	code,	or	is	difficult	to	modify.

Property	WinControl
Declaration:	WinControl:	TWinControl;

This	is	the	component	to	"hook"	to.

Event	AfterMessage	
Declaration:	AfterMessage:	THookMessageEvent;

AfterMessage	event	is	triggered	after	a	message	generated	from	that	particular	control	is	passed.

Event	BeforeMessage
Declaration:	BeforeMessage:	THookMessageEvent;

BeforeMessage	event	is	triggered	before	a	message	is	generated	from	that	particular	control	being
monitored.

Type	THookMessageEvent
Declaration:	THookMessageEvent	=	procedure	(Sender:	TObject;	var	Msg:	TMessage;	var	Handled:
Boolean)	of	object;

THookMessageEvent	is	the	type	of	the	BeforeMessage	and	AfterMessage	events	of	the	TRxWindowHook
component.	The	Handled	parameter	have	a	sence	only	in	the	BeforeMessage	event.

Routine	FindVirtualMethodIndex
Declaration:	function	FindVirtualMethodIndex(AClass:	TClass;	MethodAddr:	Pointer):	Integer;

FindVirtualMethodIndex	example:

type	THookForm	=	class(TForm)
protected
__procedure	WndProc(var	Message:	TMessage);	override;
end;

{...}

WndProcSeq	:=	FindVirtualMethodIndex(THookForm,	@THookForm.WndProc);
{...}

Routine	GetVirtualMethodAddress
Declaration:	function	GetVirtualMethodAddress(AClass:	TClass;	AIndex:	Integer):	Pointer;

GetVirtualMethodAddress	example:	
Method	:=	GetVirtualMethodAddress(TForm1,	1);

Routine	SetVirtualMethodAddress
Declaration:	function	SetVirtualMethodAddress(AClass:	TClass;	AIndex:	Integer;	NewAddress:	Pointer):
Pointer;

SetVirtualMethodAddress	hooks	the	custom	control	AClass	and	specific	type	AIndex	and	linking	it	to	new
address.

SetVirtualMethodAddress	example:	
Next	example	shows	how	you	can	replace	address	of	virtual	method	WndProc	for	descendant	of	TForm:

{	THookForm	}

type
THookForm	=	class(TForm)
protected
__procedure	WndProc(var	Message:	TMessage);	override;
end;

procedure	THookForm.WndProc(var	Message:	TMessage);
var	I:	Integer;
begin
__inherited	WndProc(Message);
__if	(Message.Msg	=	WM_NCHITTEST)	then
__try
____{	your	specific	event	handler	}	
__except
____Application.HandleException(Self);
__end;
end;

Replace	and	restore	method	address:

type	PClass	=	^TClass;
var	SaveMethod:	TWndMethod;

procedure	SetHook(AForm:	TForm);
var	MethodIndex:	Integer;

begin
__MethodIndex	:=	FindVirtualMethodIndex(THookForm,	@THookForm.WndProc);
__@SaveMethod	:=	SetVirtualMethodAddress(PClass(Form)^,	
__MethodIndex,	@THookForm.WndProc);
end;

procedure	ReleaseHook(AForm:	TForm);
var	MethodIndex:	Integer;
begin
__if	Assigned(SaveMethod)	then	
__begin
____MethodIndex	:=	FindVirtualMethodIndex(THookForm,	@THookForm.WndProc);
____SetVirtualMethodAddress(PClass(Form)^,	MethodIndex,	@SaveMethod);
____SaveMethod	:=	nil;
__end;
end;

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

UNIT	RxHook	
Property
WinControl

Event
AfterMessage	
BeforeMessage

Type
THookMessageEvent

Routine
FindVirtualMethodIndex	
GetVirtualMethodAddress	
SetVirtualMethodAddress

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
RX	Dual	List	Dialogue DualList TDualListDialog

Description:
DualListDialogue	is	a	window	with	two	listboxes,	one	is	the	source,	the	other	is	the	destination.	If	you	want
to	change	the	captions	of	the	Help,	Cancel	and	OK,	use	the	CancelBtnCaption	properties.

Property	CancelBtnCaption
Declaration:	CancelBtnCaption:	TCaption;

Property	CancelBtnCaption	sets	the	caption	of	the	Cancel	Button.

Property	HelpBtnCaption
Declaration:	HelpBtnCaption:	TCaption;

Property	HelpBtnCaption	sets	the	caption	of	the	Help	Button.

Property	Label1Caption
Declaration:	Label1Caption:	TCaption;

Property	Label1Caption	("Source")	sets	the	caption	of	the	Help	Button.

Property	Label2Caption
Declaration:	Label2Caption:	TCaption;

Property	Label2Caption	("Destination")	sets	the	caption	of	the	Help	Button.

Property	List1
Declaration:	List1:	TStrings;

Property	List1	is	the	source	container.	List1	contain	the	strings	which	would	be	transferred	to	List2.

Property	List2
Declaration:	List2:	TStrings;

Property	List2	is	the	target	container.	The	items	in	List1	are	transferred	to	List2.

Property	OkBtnCaption
Declaration:	OkBtnCaption:	TCaption;

Property	OkBtnCaption	("Ok")	sets	the	caption	of	the	Ok	Button.

Property	ShowHelp
Declaration:	ShowHelp:	Boolean;

ShowHelp	determines	whether	the	"Help"	button	is	shown	or	not.

Property	Sorted
Declaration:	Sorted:	Boolean;

Property	Sorted	sorts	the	list	of	the	dual	lists.

Property	Title
Declaration:	Title:	string;

The	Title	property	determines	the	text	that	appears	in	the	dialog	box's	title	bar.

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

UNIT	DualList

Property
CancelBtnCaption	
HelpBtnCaption	
Label1Caption	
Label2Caption	
List1	
List2	
OkBtnCaption	
ShowHelp	
Sorted	
Title

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

RX	Converter

UNIT	
DataConv

Class	
TConverter

This	component	allows	you	to	access	data	of	any	types	and	convert	data	between	types.	TConverter	class
has	properties	AsBoolean,	AsDate,	AsDateTime,	AsFloat,	AsInteger,	AsString	and	AsTime.	Use	these
properties	as	appropriate	to	access	or	modify	the	current	value	stored	in	TConverter	object.

Property	AsBoolean
Declaration:	AsBoolean:	Boolean;

Run-time	only.	This	is	a	conversion	property.	AsBoolean	can	be	used	to	read	or	set	the	value	as	a	boolean
value	(True	or	False).	The	DisplayFalse	and	DisplayTrue	properties	controls	the	manner	in	which	boolean
values	are	translated	to	and	from	string	format	by	the	TConverter	component.

Property	AsDate
Declaration:	AsDate:	TDateTime;

Run-time	only.	This	is	a	conversion	property.	AsDate	can	be	used	to	read	or	set	the	value	stored	in	the
TConverter	component	as	a	date	value.

Property	AsDateTime
Declaration:	AsDateTime:	TDateTime;

Run-time	only.	This	is	a	conversion	property.	AsDateTime	can	be	used	to	read	or	set	the	value	stored	in	the
TConverter	component	as	a	date-and-time	value.

Property	AsFloat
Declaration:	AsFloat:	Double;

Run-time	only.	This	is	a	conversion	property.	AsFloat	can	be	used	to	read	or	set	the	value	stored	in	the
TConverter	component	as	a	Double.

Property	AsInteger
Declaration:	AsInteger:	Longint;

Run-time	only.	This	is	a	conversion	property.	AsInteger	can	be	used	to	read	or	set	the	value	stored	in	the
TConverter	component	as	an	intheger	value.

Property	AsString
Declaration:	AsString:	string;

Run-time	only.	This	is	a	conversion	property.	AsString	can	be	used	to	read	or	set	the	value	stored	in	the
TConverter	component	as	a	string	value.

When	then	DataType	property	is	not	equal	to	dtString	value	and	RaiseOnError	is	True,	an	exception	is
raised	if	TConverter	component	can't	convert	a	string	to	the	appropriate	type.

Property	AsTime
Declaration:	AsTime:	TDateTime;

Run-time	only.	This	is	a	conversion	property.	AsTime	can	be	used	to	read	or	set	the	value	stored	in	the
TConverter	component	as	a	time	value.

Property	DataType
Declaration:	DataType:	TDataType;

The	DataType	identifies	the	data	type	of	the	value	stored	in	the	TConverter	component.

Property	DateTimeFormat
Declaration:	DateTimeFormat:	TDateTimeFormat;

The	value	of	this	property	controls	the	format	of	date-and-time	values	when	TConverter	component
converts	date-time	data	to	string	and	backward.

Property	Digits
Declaration:	Digits:	Integer;

Digits	is	the	number	of	digits	that	are	displayed	to	the	right	of	the	decimal	point.

Property	DisplayFalse
Declaration:	DisplayFalse:	string;

The	DisplayFalse	and	DisplayTrue	properties	controls	the	manner	in	which	boolean	values	are	translated	to
and	from	string	format	by	the	TConverter	component.

Property	DisplayTrue
Declaration:	DisplayTrue:	string;

The	DisplayFalse	and	DisplayTrue	properties	controls	the	manner	in	which	boolean	values	are	translated	to

and	from	string	format	by	the	TConverter	component.

Property	FloatFormat
Declaration:	FloatFormat:	TFloatFormat;

The	value	of	this	property	controls	the	format	of	float	values	when	TConverter	component	converts	float
data	to	string	and	backward.

Property	Precision
Declaration:	Precision:	Integer;

The	Precision	property	is	used	in	formatting	float	fields.	The	value	of	Precision	is	the	number	of	decimal
places	to	the	right	of	the	decimal	point	the	numeric	value	should	be	formatted	to	before	rounding	begins.
The	default	value	is	15	decimal	places.

Property	RaiseOnError
Declaration:	RaiseOnError:	Boolean;

This	property	determines	whether	or	not	an	exception	is	raised	when	error	of	type	conversion	is	occured.
Default	value	is	True.

Property	Text
Declaration:	Text:	string;

This	property	can	be	used	to	set	value	stored	in	the	TConverter	component	as	a	string	value.	Available	at
design-time	and	at	run-time.

Method	Clear
Declaration:

procedure	Clear;

This	method	clears	the	value	stored	in	TConverter	component.

Method	IsValidChar
Declaration:

function	IsValidChar(Ch:	Char):	Boolean;	virtual;

IsValidChar	is	used	by	TConverter	component	to	determine	if	a	particular	character	is	valid	for	the	type
specified	by	DataType	property.

Class	TDateTimeFormat

TDateTimeFormat	class	used	by	TConverter	component	for	formatting	the	date-and-time	values.

Property	AMString
Declaration:	AMString:	string;

Character	string	used	to	indicate	morning	(before	noon	and	after	midnight)	times,	when	using	a	twelve-hour
clock.	Default	value	is	standard	TimeAMString	constant	from	SYSUTILS.PAS	unit.

Property	DateMask
Declaration:	DateMask:	string;

The	DateMask	(read-only)	property	specifies	the	date	output	format.	The	value	of	this	property	corresponds
to	the	values	of	other	properties	of	TDateTimeFormat	object.

Property	DateOrder
Declaration:	DateOrder:	TDateOrder;

The	DateOrder	property	controls	the	order	of	the	month,	day,	and	year	components	of	date.	The	default	is
the	order	normally	used	in	the	country	selected	in	the	Windows	Control	Panel.

Property	DateSeparator
Declaration:	DateSeparator:	Char;

The	character	used	to	separate	the	year,	month,	and	day	parts	of	a	date	value.	The	initial	value	is	correspond
with	DateSeparator	constant	from	standard	SYSUTILS.PAS	module.

Property	FourDigitYear
Declaration:	FourDigitYear:	Boolean;

Specifies	the	number	of	digits	for	the	year	value	(four	or	two).	If	True,	years	are	expressed	in	four	digits
(i.e.,	1997).	If	False,	years	have	two	digits	(97).

Property	LeadingZero
Declaration:	LeadingZero:	Boolean;

Specifies	whether	or	not	single	digit	month	or	day	values	have	a	leading	zero.	For	example,	if	you	enter
"1/1/80"	and	this	is	set	to	TRUE,	TDateTimeFormat	interprets	the	date	as	"01/1/80."	If	FALSE,	the	value	is
"1/1/80."	Default:	TRUE.

Property	LongDate
Declaration:	LongDate:	Boolean;

When	this	property	is	True,	then	the	full	month's	names	(January-December,	using	the	strings	given	by	the
LongMonthNames	global	variable)	are	using	for	output.	When	False,	displays	the	month	as	a	number	(1-
12).

Property	Mask
Declaration:	Mask:	string;

The	Mask	(read-only)	property	specifies	the	date-and-time	output	format.	The	value	of	this	property
corresponds	to	the	values	of	other	properties	of	TDateTimeFormat	object.

Property	PMString
Declaration:	PMString:	string;

Character	string	used	to	indicate	evening	(after	noon	and	before	midnight)	times,	when	using	a	twelve-hour
clock.	Default	value	is	standard	TimePMString	constant	from	SYSUTILS.PAS	unit.

Property	TimeFormat
Declaration:	TimeFormat:	TTimeFormat;

The	TimeFormat	property	controls	the	order	and	number	of	digits	in	the	hours,	minutes,	and	seconds
components	of	time.

Property	TimeMask
Declaration:	TimeMask:	string;

The	TimeMask	(read-only)	property	specifies	the	time	output	format.	The	value	of	this	property
corresponds	to	the	values	of	other	properties	of	TDateTimeFormat	object.

Property	TimeSeparator
Declaration:	TimeSeparator:	Char;

The	character	used	to	separate	the	hour,	minute,	and	second	parts	of	a	time	value.	The	initial	value	is
fetched	from	the	TimeSeparator	variable	in	the	SYSUTILS.PAS	standard	unit.

Method	ResetDefault
Declaration:	procedure	ResetDefault;	virtual;

ResetDefault	clears	the	values	of	all	properties	of	TDateTimeFormat	object	and	sets	them	to	its	default
values.	Default	values	for	these	properties	are	depends	on	Windows	settings.

Type	TDataType
Declaration:	TDataType	=	(dtString,	dtInteger,	dtFloat,	dtDateTime,	dtDate,	dtTime,	dtBoolean);

TDataType	is	a	set	of	values	for	the	DataType	property	of	the	TConverter	component.

Type	TTimeFormat
Declaration:	TTimeFormat	=	(tfHHMMSS,	tfHMMSS,	tfHHMM,	tfHMM);

TTimeFormat	is	a	set	of	values	for	the	TimeFormat	property	of	the	TDateTimeFormat	class.

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

UNIT	DataConv

Property
AsBoolean	
AsDate	
AsDateTime	
AsFloat	
AsInteger	
AsString	
AsTime	
DataType	
DateTimeFormat	
Digits	
DisplayFalse	
DisplayTrue	
FloatFormat	
Precision	
RaiseOnError	
Text

Method
Clear	
IsValidChar

Class
TDateTimeFormat	
AMString	
DateMask	
DateOrder	
DateSeparator	
FourDigitYear	
LeadingZero	
LongDate	
Mask	
PMString	
TimeFormat	
TimeMask	
TimeSeparator

Method
ResetDefault

Type
TDataType	
TTimeFormat

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
RX	Secret	Panel RXCtrls TSecretPanel

Description:
TSecretPanel	implements	the	generic	behavior	introduced	in	TPanel	and	publishes	all	properties	inherited
from	TPanel.	TSecretPanel	also	allows	lines	of	text	(Lines	property)	to	be	scrolled	vertically	from	bottom	to
top	when	the	Active	property	is	True.	It	facilitates,	amoung	other	things,	the	text	display	features	to	be
changed,	such	as	alignment,	font	and	style	(lowered,	raised,	or	normal).	You	can	also	display	graphic
specified	by	Glyph	property	during	text	scrolling.	When	Active	is	False	the	lines	of	text	and	image	Glyph
are	invisible.

In	other	words,	this	panel	acts	as	a	credits	panel,	or	a	scrolling	text	panel,	where	the	text	is	scrolled	simiar	to
movie	credits.

A	good	usage	of	this	panel	is	an	enhanced	version	of	the	about	box.	Use	the	Glyph	property	to	set	the
bitmap	and	the	GlyphLayout	to	set	the	left	part	of	the	panel.	Set	the	Active	property	and	Cycled	property	to
true,	and	add	the	text	of	the	property	lines.

Property	Active
Declaration:	Active:	Boolean;

Active	property	defines	whether	the	scrolling	is	active	or	not.	You	must	have	something	defined	in	the
property	lines.

Property	Cycled
Declaration:	Cycled:	Boolean;

Cycles	property	defines	whether	Active	is	property	should	be	active	after	the	text	scrolled	out	of	the
SecretPanel.

In	other	words,	once	the	text	in	the	lines	property	are	scrolled	out	of	the	SecretPanel,	Active	becomes	false.
To	set	Active	to	permanently,	set	the	Cycled	property	to	true.

Property	GlyphLayout
Declaration:	GlyphLayout:	TGlyphLayout;

GlyphLayout	property	sets	the	position	of	the	Glyph.

Property	Glyph
Declaration:	Glyph:	TBitmap;

Glyph	property	sets	the	Glyph's	bitmap.

Property	Lines
Declaration:	Lines:	TStrings;

The	lines	property	contains	the	lines	that	will	be	scrolled

Property	TextStyle
Declaration:	TextStyle:	TPanelBevel;

TextStyle	sets	the	style	of	the	text	-

bvLowered	-	sub-raised	text.
bvNone	-	none
bvRaised	-	raised	text.

Event	OnStartPlay
Declaration:	OnStartPlay:	TNotifyEvent;

OnStartPlay	event	is	triggered	when	the	Active	property	is	set	to	true.

Event	OnStopPlay
Declaration:	OnStopPlay:	TNotifyEvent;

OnStartPlay	event	is	triggered	when	the	Active	property	is	set	to	false.

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
RX	Speed	Bar Speedbar TSpeedbar

Description:
TSpeedBar	manages	speed	buttons,	arranging	them	in	rows	and	automatically	adjusting	their	sizes	and
positions.	

TSpeedBar	is	a	container	for	speed	buttons	(TSpeedItem).	It	provides	an	easy	way	to	arrange	and	manage
TSpeedButton	controls.

•	All	speed	buttons	on	a	speed	bar	maintain	a	uniform	width,	height	and	style.

•	The	Options	property	allows	the	background	to	show	through	the	speed	buttons	and	gives	pop-up	borders
to	the	speed	buttons.

•	Spaces	and	dividers	(which	are	in	fact	specially	configured	speed	buttons)	can	group	buttons	on	the
TSpeedBar	both	visually	and	functionally.

Typically,	the	speed	buttons	correspond	to	items	in	an	application’s	menu	and	give	the	user	more	direct
access	to	the	application’s	commands.

Speedbar	design-time	component	editor	provides	a	method	to	create	and	edit	your	speedbar	and	buttons.
TSpeedbar	has	a	methods	to	bring	up	Customize	Dialog	at	run-time	and	user	can	customize	the	speed	bar	in
run-time	using	drag-and-drop	operation,	similar	to	Delphi	speedbar.	

TSpeedbar	has	also	methods	to	store	and	load	layout	using	ini-file	or	Win'95	system	registry.

Property	BoundLines
Declaration:	BoundLines:	TBoundLines;

Use	this	property	to	specify	which	sides	of	the	Speedbar	component	will	be	framed	with	a	recessed
(lowered)	line.

Property	BtnHeight
Declaration:	BtnHeight:	Integer;

BtnHeight	represents	the	height,	in	pixels,	of	the	buttons	in	the	TSpeedBar.	During	upgrading	your
application,	don't	remember	to	increase	value	of	Version	property	if	the	BtnHeight	or	BtnWidth	property
has	been	changed.

Property	BtnOffsetHorz
Declaration:	BtnOffsetHorz:	Integer;

Determines	the	minimum	available	horizontal	offset	(left	coordinate)	for	the	left-most	buttons	in	Speedbar.

Property	BtnOffsetVert
Declaration:	BtnOffsetVert:	Integer;

Determines	the	minimum	available	vertical	offset	(top	coordinate)	for	the	top-most	buttons	in	Speedbar.

Property	BtnWidth
Declaration:	BtnWidth:	Integer;

BtnWidth	represents	the	width,	in	pixels,	of	the	buttons	in	the	TSpeedBar.	During	upgrading	your
application,	don't	remember	to	increase	value	of	Version	property	if	the	BtnHeight	or	BtnWidth	property
has	been	changed.

Property	IniStorage
Declaration:	IniStorage:	TFormPlacement;

IniStorage	property	is	the	IniStorage	component	that	this	component	saves	and	restores	all	the	component
state	information	from.

Property	Options
Declaration:	Options:	TSpeedbarOptions;

TSpeedbarOption	=	(sbAllowDrag,	sbAllowResize,	sbFlatBtns,	sbGrayedBtns,	sbTransparentBtns,
sbStretchBitmap);

sbAllowDrag	-	allow	the	speed	bar	to	be	dragged	to	a	new	position.
sbAllowResize	-	allows	the	speed	bar	to	be	resized.
sbFlatBtns	-	subclasses	the	RxSpeedButtons	so	that	they	appear	to	be	flat.
sbGrayedBtns	-	subclasses	the	RxSpeedButtons	so	that	they	appear	grayed.
sbTransparentBtns	-	subclasses	the	RxSpeedButtons	so	that	they	appear	transparent.
sbStretchBitmap	-	stretches	the	wallpaper	if	necessary.

Property	Position
Declaration:	Position:	TBarPosition;

TBarPosition	=	(bpAuto,	bpCustom);

Positition	subclasses	the	position	so	that	it	appears	to	be	either	automatically	located	(bpAuto)	or
customised	to	some	certain	configuration	(bpCustom).

Property	Sections
Declaration:	Sections:	TList;

Sections	are	sections	of	speedbar	so	Speedbuttons	can	be	added	in	a	systematic	manner.

Property	Version
Declaration:	Version:	Integer;

Apparently	does	nothing.

Property	Wallpaper
Declaration:	Wallpaper:	TPicture;

WallPaper	property	contains	the	picture	that	is	used	to	"wallpaper"	or	cover	the	speedbar.

Event	OnApplyAlign
Declaration:	OnApplyAlign:	TApplyAlignEvent;

OnApplyAlign	sets	the	alignment	to	a	particular	part	of	the	form	[top,	bottom,	left	and	right].
OnApplyAlign	is	useful	for	setting	some	settings	that	are	form	specific,	e.g.,	the	position	of	the
speedbuttons	(from	Left-right	to	Top	bottom).

Event	OnApplyAlign	example

procedure	TMainForm.SpeedBarApplyAlign(Sender:	TObject;	Align:	TAlign;	var	Apply:	Boolean);
begin
__Apply	:=	Align	in	[alTop,	alBottom];
end;

Event	OnCustomize
Declaration:	OnCustomize:	TNotifyEvent;

OnCustomize	occurs	when	the	speedbar's	Customize	Dialog	closes.	Write	an	OnCustomize	event	handler	to
perform	special	processing	when	the	customize	dialog	closes.

Event	OnPosChanged
Declaration:	OnPosChanged:	TNotifyEvent;

OnPosChange	event	is	triggered	when	the	position	of	the	speedbar	has	changed.

Event	OnVisibleChanged
Declaration:	OnVisibleChanged:	TNotifyEvent;

OnVisibleChanged	occurs	when	the	control	is	shown	or	hide	(that	is,	when	the	control’s	Visible	property
changes).

Method	AddItem
Declaration:	procedure	AddItem(Section:	Integer;	Item:	TSpeedItem);

AddItem	procedure	adds	an	item	speedbar	item	to	a	particular	section.

Method	AddSection
Declaration:	function	AddSection(const	ACaption:	string):	Integer;

AddSection	adds	a	particular	section	to	the	toolbar.

Method	Customize
Declaration:	procedure	Customize(HelpCtx:	Longint);

Customize	sets	the	helpc	context	number.

Method	FindItem
Declaration:	function	FindItem(Item:	TSpeedItem;	var	Section,	Index:	Integer):	Boolean;

FindItem	tries	to	find	item.	If	the	function	returns	true,	the	Section	and	Index	would	be	filled	with	the
appropriate	IDs	where	exactly	the	item	is.

Method	Items
Declaration:	function	Items(Section,	Index:	Integer):	TSpeedItem;

Items	function	returns	the	speeditem	based	on	the	section	id	and	the	index	of	the	speeditem.

Method	ItemsCount
Declaration:	function	ItemsCount(Section:	Integer):	Integer;

ItemsCount	function	counts	the	number	of	items	on	a	speedbar's	section.

Method	RemoveItem
Declaration:	procedure	RemoveItem(Item:	TSpeedItem);

RemoveItem	procedure	removes	the	item	from	the	speedbar.

Method	RemoveSection
Declaration:	procedure	RemoveSection(Section:	Integer);

RemoveSection	procedure	removes	the	section	based	on	the	section	number.

Method	SearchSection
Declaration:	function	SearchSection(const	ACaption:	string):	Integer;

SearchSection	function	searches	for	a	particular	caption	on	the	speedbar.

Method	SetFontDefault
Declaration:	procedure	SetFontDefault;

SetFontDefault	sets	the	font	to	the	default	font.

Class	TSpeedItem

TSpeedItem	is	a	wrapper	component	for	the	button	control	(TRxSpeedButton)	in	a	TSpeedBar	object.	To
place	speed	buttons	on	a	speed	bar	at	design	time,	select	the	speed	bar,	double-click,	and	choose	Add.	All
buttons	in	the	speed	bar	can	be	grouped	by	the	sections.	You	can	rearange	the	buttons	in	a	speed	bar	at
design	time	and	at	runtime	by	using	drag-and-drop	operations	while	the	Speedbar	Designer	is	shown.

Property	BtnCaption
Declaration:	BtnCaption:	TCaption;

BtnCaption	specifies	a	text	string	that	will	be	shown	as	a	caption	of	button	control	(TRxSpeedButton)	in	the
speed	bar.

Property	Button
Declaration:	Button:	TRxSpeedButton;

Run-time	and	read-only	property	to	direct	access	to	the	button	in	a	speed-item	component	as	to	the
TRxSpeedButton	control.

Property	Stored
Declaration:	Stored:	Boolean;

This	property	determines	whether	or	not	button's	position	and	visibility	will	be	stored	in	an	INI-file	(or	in	a
system	registry)	when	application	calls	TSpeedbar.SaveLayout	(or	SaveLayourReg)	method.

Method	ButtonClick
Declaration:	procedure	ButtonClick;

ButtonClick	simulates	a	mouse	click,	as	if	the	user	had	clicked	the	button	of	TSpeedItem.

Type	TApplyAlignEvent
Declaration:	TApplyAlignEvent	=	procedure	(Sender:	TObject;	Align:	TAlign;	var	Apply:	Boolean)	of
object;

TApplyAlignEvent	is	the	type	of	the	OnApplyAlign	event	of	the	TSpeedBar	component.

Type	TBarOrientation
Declaration:	TBarOrientation	=	(boHorizontal,	boVertical);

TBarOrientation	is	a	set	of	values	for	the	Orientation	property	of	the	TSpeedbar	component.

Type	TBarPosition
Declaration:	TBarPosition	=	(bpAuto,	bpCustom);

TBarPosition	is	a	set	of	values	for	the	Position	property	of	the	TSpeedbar	component.

Type	TBoundLine
Declaration:	TBoundLine	=	(blTop,	blBottom,	blLeft,	blRight);

TBoundLines	is	a	set	of	values	for	the	BoundLines	property	of	the	TSpeedbar	component.

Type	TBoundLines
Declaration:	TBoundLines	=	set	of	TBoundLine;

TBoundLines	is	a	set	of	values	for	the	BoundLines	property	of	the	TSpeedbar	component.

Type	TSpeedbarOption
Declaration:	TSpeedbarOption	=	(sbAllowDrag,	sbAllowResize,	sbFlatBtns,	sbGrayedBtns,
sbTransparentBtns,	sbStretchBitmap);

TSpeedbarOptions	is	a	set	of	values	for	the	Options	property	of	the	TSpeedbar	component.

Type	TSpeedbarOptions
Declaration:	TSpeedbarOptions	=	set	of	TSpeedbarOption;

TSpeedbarOptions	is	a	set	of	values	for	the	Options	property	of	the	TSpeedbar	component.

Routine	FindSpeedBar
Declaration:	function	FindSpeedBar(const	Pos:	TPoint):	TSpeedBar;

FindSpeedBar	attempts	to	find	if	the	speedbar	is	at	position	X	and	Y.

FindSpeedBar	example:	
__Bar	:=	FindSpeedBar(Point(X,	Y));
__if	Bar	<>	nil	then	
__begin
____{...}
__end;

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

UNIT	SpeedBar

Property
BoundLines	
BtnHeight	
BtnOffsetHorz	
BtnOffsetVert	
BtnWidth	
IniStorage	
Options	
Orientation	
Position	
Sections	
Version	
Wallpaper

Event
OnApplyAlign	
OnCustomize	
OnPosChanged	
OnVisibleChanged

Method
AddItem	
AddSection	
Customize	
FindItem	
Items	
ItemsCount	
RemoveItem	
RemoveSection	
SearchSection	
SetFontDefault

Class
TSpeedItem

Property
BtnCaption	
Button	
Stored

Method
ButtonClick

Type
TApplyAlignEvent	
TBarOrientation	
TBarPosition	
TBoundLine	

TBoundLines	
TSpeedbarOption	
TSpeedbarOptions

Routine
FindSpeedBar

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
RX	Clip	Board	Viewer ClipView TClipboardViewer

Description:	TClipBoardViewer	is	a	special	panel	that	can	display	the	contents	of	the	Windows	Clipboard
on	a	form.	This	is	useful	for	examining	the	contents	of	the	Windows	clipboard	without	cutting	&	pasting.

As	the	clipboard	stores	information	in	multiple	formats,	you	can	use	this	to	feature	to	transfer	information
between	programs	that	use	different	formats.	

The	ViewFormat	property	allows	you	to	change	current	display	format	of	Clipboard	contents.	The
ClipboardFormatNames	indexed	property	(run-time	and	read-only)	is	a	list	of	the	formats	available	for	the
information	currently	on	the	Clipboard.	

TClipboardViewer	component	automatically	changes	ViewFormat	property	when	Clipboard	contents	is
changed.	You	can	set	format	you	needed	in	your	handler	of	OnChange	event.	

Use	TClipboard	class	to	determine	formats	currently	available	on	the	Clipboard.

Property	ClipboardFormatNames[Index:	Integer]
Declaration:	ClipboardFormatNames[Index:	Integer]:	string;

The	ClipboardFormatNames	indexed	property	(run-time	and	read-only)	is	a	list	of	the	formats	available	for
the	information	currently	on	the	Clipboard.	Use	FormatCount	property	of	TClipboard	class	to	determine
maximum	value	of	index	for	ClipboardFormatNames.	

You	can	use	values	of	this	property,	fo	example,	to	display	list	of	currently	available	clipboard	formats	or	to
create	menu	items	with	clipboard	format	names.

Property	ViewFormat
Declaration:	ViewFormat:	TClipboardViewFormat;

The	Clipboard	stores	information	in	multiple	formats	so	that	you	can	transfer	information	between
programs	that	use	different	formats.	The	ViewFormat	property	allows	you	to	change	current	display	format
of	Clipboard	contents.	TClipboardViewer	component	automatically	changes	ViewFormat	property	when
Clipboard	contents	is	changed.	You	can	set	format	you	needed	in	your	handler	of	OnChange	event.

To	determine	whether	or	not	TClipboardViewer	can	display	specified	data	format	use	CanDrawFormat
method.

Event	OnChange
Declaration:	OnChange:	TNotifyEvent;

OnChange	occurs	whenever	the	contents	of	the	clipboard	may	have	changed.
Write	an	OnChange	event	handler	to	take	specific	action	whenever	the	contents	of	the	clipboard	may	have
changed.	For	example,	you	can	specify	appropriate	display	format	of	TClipboardViewer	component
(ViewFormat	property)	in	this	event	handler.

Method	CanDrawFormat
Declaration:	function	CanDrawFormat(ClipboardFormat:	Word):	Boolean;

This	class	method	returns	True	if	data	format	specified	by	ClipboardFormat	parameter	is	supported	by
TClipboardViewer	class	and	can	be	displayed.	Otherwise	CanDrawFormat	returns	False.

Type	TClipboardViewFormat
Declaration:	TClipboardViewFormat	=	(cvDefault,	cvEmpty,	cvUnknown,	cvText,	cvBitmap,	cvMetafile,
cvPalette,	cvOemText,	cvPicture,	cvComponent,	cvIcon);

The	TClipboardViewFormat	type	defines	the	possible	values	for	the	ViewFormat	property	of	the
TClipboardViewer	component.

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

UNIT	ClipView	
Event
OnChange

Method
CanDrawFormat

Property
ClipboardFormatNames[Index:	Integer]
ViewFormat

Type
TClipboardViewFormat

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
RX	Page	Manger PageMngr TPageManager

Note:	
Please	see	the	demo.	It	is	really	difficult	to	explain	what	the	PageManager	does	in	English	as	most	of	the
operations	are	taken	care	of	by	Borland's	tNoteBook.

In	other	words,	PageManger	acts	as	a	middle-man	between	buttons	assigned	to	OkButton,	CancelButton,
HelpButton	and	tNoteBook.

Description:
TPageManager	gives	you	the	possibility	of	"one-click"	creating	"step-by-step"	dialogs	(known	as	"experts"
or	"wizards").	The	database	form	Wizard	dialog	is	a	typical	example	of	that.	This	component	has	no	pages,
it	uses	another	page	owner	defined	by	PageOwner	property.	Currently	only	TNotebook	is	supported	as	page
owner.TPageManager	has	OnGetNextPage	and	OnGetPriorPage	events	to	handle	sequence	of	pages.	Also
TPageManager	has	PageProxies	property	which	contains	list	of	page	proxies	(«steps»),	each	of	them	has
OnEnter,	OnShow,	OnHide	è	OnLeave	events.	These	events	occur	when	the	user	clicks	the	Back	and	Next
buttons	specified	by	NextBtn	and	PriorBtn	properties.	You	can	also	change	current	page	programatically	by
calling	NextPage	and	PriorPage	methods.

Property	NextBtn
Declaration:	NextBtn:	TControl;

NextBtn	defines	which	control	to	the	NextBtn	on	the	form	which	should	be	used	to	control	the	pages

Property	NextEnabled
Declaration:	NextEnabled:	Boolean;

The	variable	contained	enables	or	disable	the	"Next"	button	defined	on	the	form.

Property	PageCount
Declaration:	PageCount:	Integer;

PageCount	is	the	total	number	of	pages	that	the	PageManager	contains.

Property	PageIndex
Declaration:	PageIndex:	Integer;

PageIndex	is	the	total	number	of	pages	that	the	PageManager	contains.

Property	PageNames[Index:	Integer]
Declaration:	PageNames[Index:	Integer]:	string;

PageNames	is	the	current	name	of	the	selected	page..

Property	PageOwner
Declaration:	PageOwner:	TPageOwner;

This	is	the	notebook	component	that	the	MRU	manager	hooks	upon.

Property	PageProxies
Declaration:	PageProxies:	TList;

PageProxies	is	the	list	of	cached	pages	that	is	contained	in	the	notebook.

Property	PriorBtn
Declaration:	PriorBtn:	TControl;

PriorBtn	defines	which	control	to	the	PriorBtn	on	the	form	which	should	be	used	to	control	the	pages.

Property	PriorEnabled
Declaration:	PriorEnabled:	Boolean;

The	variable	contained	enables	or	disable	the	"Prior"	button	defined	on	the	form.

Property	SetStartPage
Declaration:	SetStartPage:	Boolean;

SetStartPage	property	sets	the	start	page.

In	other	words,	SetStartPage	sets	the	particular	page	to	start.

Event	OnCheckButtons
Declaration:	OnCheckButtons:	TNotifyEvent;

OnCheckButtons

Event	OnGetNextPage
Declaration:	OnGetNextPage:	TPageRequestEvent;

OnGetNextPage	is	a	tPageRequestEvent

Event	OnGetPriorPage
Declaration:	OnGetPriorPage:	TPageRequestEvent;

OnGetNextPage	is	a	tPageRequestEvent

GetPriorpage

Method	GetNextPageIndex
Declaration:	function	GetNextPageIndex(Page:	Integer):	Integer;

THIS	TOPIC	IS	NOT	COMPLETE!

Method	GetPriorPageIndex
Declaration:	function	GetPriorPageIndex(Page:	Integer):	Integer;

THIS	TOPIC	IS	NOT	COMPLETE!

Method	GetUniqueName
Declaration:	function	GetUniqueName(Component:	TComponent):	string;

THIS	TOPIC	IS	NOT	COMPLETE!

Method	NextPage
Declaration:	procedure	NextPage;

NextPage	procedure	triggers	the	subclassed	tNoteBook	to	switch	to	the	next	page.

Method	PriorPage
Declaration:	procedure	PriorPage;

PriorPage	procedure	triggers	the	subclassed	tNoteBook	to	switch	to	the	previos	page.

Method	SetPage
Declaration:	procedure	SetPage(NewPageIndex:	Integer;	Next:	Boolean);

Set	the	current	page	to	the	new	page.

Class	TPageProxy

PageProxy	defin

Property	PageManager
Declaration:	PageManager:	TPageManager;

PageManager	contains	the	tNotebook	custom	control	on	the	form.

Property	PageName
Declaration:	PageName:	string;

PageName	property	is	the	name	of	the	current	notebook	page	that	is	active	or	shown.

Event	OnEnter
Declaration:	OnEnter:	TPageNotifyEvent;

OnHide	event	is	triggered	when	focus	comes	into	the	Notebook.

Event	OnHide
Declaration:	OnHide:	TPageNotifyEvent;

OnHide	event	is	triggered	when	a	hidden	page	is	triggered	or	accessed.

Example:
You	want	to	password	protect	the	form.	Use	OnHide	to	prevent	the	user	from	hacking	the	EXE	file	to
trigger	the	active	page	instead	<g>.

Event	OnLeave
Declaration:	OnLeave:	TPageNotifyEvent;

OnLeave	event	is	triggered	when	focus	from	a	page	from	tNoteBook	is	no	longer	active.

Event	OnShow
Declaration:	OnShow:	TPageNotifyEvent;

OnShow	event	is	triggered	when	a	page	from	tNoteBook	is	switched.

Type	TPageNotifyEvent

Declaration:	TPageNotifyEvent	=	procedure(Next:	Boolean)	of	object;

TPageNotifyEvent	is	used	for	events	of	the	TPageProxy	class,	which	occurs	when	the	notebook's	page
changed.

Type	TPageOwner
Declaration:	TPageOwner	=TNotebook;

Defines	type	of	PageOwner	property	of	TPageManager	component.	Currently	only	TNotebook	is	supported
as	page	owner.

Type	TPageRequestEvent

Declaration:	TPageRequestEvent	=	procedure(CurrentPage:	Integer;	var	NewPage:	Integer)	of	object;

TPageRequestEvent	type	is	used	for	the	OnGetNextPage	and	OnGetPriorPage	events	of	the	TPageManager
component.

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

UNIT	PageMngr	
Property
NextBtn	
NextEnabled	
PageCount	
PageIndex	
PageNames[Index:	Integer]	
PageOwner	
PageProxies	
PriorBtn	
PriorEnabled	
SetStartPage

Event
OnCheckButtons	
OnGetNextPage	
OnGetPriorPage

Method
GetNextPageIndex	
GetPriorPageIndex	
GetUniqueName	
NextPage	
PriorPage	
SetPage

Class
TPageProxy

Property
PageManager	
PageName

Event
OnEnter	
OnHide	
OnLeave	
OnShow

Type
TPageNotifyEvent	
TPageOwner	
TPageRequestEvent

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
Rx	Calculator RxCalc TRxCalculator

Description:
Rx	Calculator	is	a	floating	point	calculator	designed	to	do	simple	operations.	It	is	an	invisible	component,
or	one	that	pops-up	upon	operation.

Use	the	Execute	method	to	popup	the	Calculator.	If	any	errors	occur	on	calculators,	use	the	BeepsOnError
to	control	beeping	on	errors	If	you	prefer	the	classical	white	calculator,	set	the	Clt3d	to	false.

Method	Execute	
Method	Execute	starts	the	calculator.

Property	BeepOnError
Set	property	BeepOnError	to	true	and	a	beep	will	be	generated.

BeepOnError	determines	whether	a	beep	is	sounded	when	an	invalid	character	is	entered.	If	BeepOnError	is
True,	MessageBeep	is	called	when	an	invalid	character	is	entered	or	when	a	character	is	entered	and	the
field	is	full.

Property	Ctl3d
3D	shaded	gray	or	white.

Event	OnCalcKey
OnCalcKey	event	is	activated	when	the	user	presses	any	key.

Event	OnChange
OnChange	event	is	triggered	when	any	value	of	the	calculator	is	changed.

Event	OnDisplayChange
The	TRxCalculator	component	makes	a	simple	Calculator	dialog	box	available	for	your	application,
provides	the	four	basic	math	functions	(add,	subtract,	multiply,	and	divide),	plus	a	few	extras	like	memory,
square	root,	percent,	invert,	and	sign	change.

Display	the	Calculator	dialog	box	by	calling	the	Execute	method.	The	calculation	result	is	stored	in	the
Value	property.

Property	Memory
Declaration:	Memory:	Double;

Run-time	and	read-only.	Memory	contains	the	value	of	the	calculator's	memory	register.

Property	Precision
Declaration:	Precision:	Byte;

Precision	determines	the	precision	used	in	formatting	the	value	in	the	Calculator	display.

Use	Precision	set	the	number	of	digits	beyond	the	decimal	point	the	value	should	be	formatted	to	before
rounding	begins.

The	default	value	of	Precision	is	15	decimal	places.

NOTE.	Precision	must	be	greater	than	or	equal	to	2.	Trying	to	set	Precision	to	a	value	less	than	2	changes
the	value	of	Precision	to	2.

Property	Title
Declaration:	Title:	string;

The	Title	property	determines	the	text	that	appears	in	the	calculator	dialog	box's	title	bar.

In	other	words,	the	title	of	the	Calculator

Property	Value
Declaration:	Value:	Double;

The	Value	property	is	used	to	retreive	calculation	results	from	the	Calculator	dialog	box	and	to	set	current
value	in	the	calculator's	display.

In	other	words,	the	value	stored	on	the	display.

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Unit	RxCalc	
Method
Execute

Property
BeepOnError	
Ctl3d	
Help	Content

Event
OnCalcKey	
OnChange	
OnDisplayChange

Property
Memory	
Precision	
Title	
Value	

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
RX	String	Holder StrHlder TStrHolder

Description:
TStrHolder	is	a	TStrings	wrapper	component	making	it	easier	to	work	with	the	TStrings	and	TStringList
objects	at	design	time.

Using	TStrHolder	component	you	can	set	TStrings	object	properties	and	event	handlers	in	Delphi	form
designer	and	hold	a	number	of	strings	in	your	forms.

Property	KeyString
Declaration:	KeyString:	string;

This	is	the	string	that	is	used	to	encode	the	contents	of	tStrHolder.	

When	this	is	empty,	there	is	no	encryption	done.	When	this	has	a	value,	the	string	is	used	to	encode	the
contents	of	the	tStrHolder.

Note:	The	contents	will	then	be	stored	in	the	DFM	(Delphi	Form)	file	as	an	encrypt	data	using	a	simple
XOR-alghoritm	with	KeyString	as	the	key	to	decode.

Duplicates	:	dupIgnore,	dupAccept,	dupError
dupIgnore	=	Ignore	(or	delete)	duplicates
dupAccept	=	Accept	duplicates
dupError	=	Trigger	an	exception.

Property	Sorted	:	boolean
Property	Sorted	ensures	the	string	list	is	sorted	when	any	changes	occur.

Property	String	:	tStringList
Property	String	is	the	main	container	to	store	the	strings.	See	also:	your	Borland	Help,	tStringList

Event	OnChange
Event	OnChange	is	triggered	when	there	is/are	any	changes	to	the	list.

Event	OnChanging
Event	OnChanging	is	trigged	during	(after)	changes	to	the	list.

Procedure	Clear;
Clear	procedure	cleares	the	string	list.

Procedure	Destroy;
Destory	rocedure	destroys	the	String	Holder.

StrHolderVariable	:=	tStrHolder.Create
Constructor	Create	creates	an	instance	of	the	tStrHolder

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Unit	StrHlder	/	String	Holder

Procedures:
Clear
Destroy

Properties:
Duplicates
KeyString
Sorted
String
tStrHolder.Create

Events:
OnChange
OnChanging

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
RX	Application	Events AppEvent TAppEvent

Description:
TAppEvent	is	a	Application	wrapper	component,	which	makes	it	easier	to	work	with	the	TApplication
object	properties	and	events	at	design	time.	By	using	TAppEvent	component	you	can	set	TApplication
properties	and	event	handlers	in	Delphi	form	designer.

In	other	words:	
Instead	of	writing	code	to	respond	to	application	event	handlers.	This	is	beneficial	as	instead	of	writing
code	all	over	the	place,	you	can	have	a	concise	and	disciplined	manner	to	store	the	information.

Example:	if	you	set	the	property	Chain	=	True,	Set	the	show-hint	to	true.

Property	Chained
Declaration:	Chained:	Boolean;

The	Chained	property	indicates	whether	this	component	should	replace	any	other	TAppEvents	event
handlers	of	the	same	type.	When	Chained	is	False,	the	specified	event	handler	replaces	any	previously
registered	by	TAppEvents	objects	event	handlers	of	the	same	type.	When	Chained	is	True,	the
corresponding	event	handler	is	called	in	addition	to	other	registered	events	(by	other	TAppEvents	objects).

Event	OnPaintIcon
Declaration:	OnPaintIcon:	TNotifyEvent;

OnPaintIcon	occurs	when	the	minimized	application	receives	a	Windows	paint	message.	Use	OnPaint	to
perform	special	processing	when	the	application's	icon	is	redrawn.	Any	special	painting	should	be	done	in
this	event.	You	should	use	the	Canvas	property	to	paint	application's	icon.

Event	OnSettingsChanged	
Declaration:	OnSettingsChanged:	TNotifyEvent;

OnSettingsChanged	event	occurred	when	the	user	alters	the	Windows	system	configuration	and	application
receives	a	WM_WININICHANGE	message.

Property	ShowHint	:	Boolean

Showhint	determines	whether	the	application	should	show	hints	or	not.

Property	HintHidePause	:	Boolean

HintHidePause	determines	whether	the	pause	time	before	hiding	the	hint	(or	delay	time	after	the	mouse
moves	and	the	hint	gets	hidden).

Property	HintColour	:	color

HintColour	determines	the	colour	of	the	hint.

Property	HintShortPause	:	Longint

This	variable	determines	the	amount	of	time	required	before	the	hint	shows	up.
(That	is,	you	put	the	mouse	on	the	form,	how	long	it	takes	for	the	hint	to	come	out	after	you	put	the	mouse
on	the	form).

Property	ShowMainForm	:	Boolean

Show	the	main	form	be	shown?
Setting	this	variable	to	true	means	the	form	will	be	shown.

Property	ShowHint	:	Boolean

ShowHint	shows	the	hint	directly	without	having	to	write	any	code.

Event	OnActivate
Method	DoActivate(Sender:	TObject);

OnActivate	is	triggered	when	the	form	is	activated.

Event	OnDeactivate
Method	DoDeactivate(Sender:	TObject);

OnDeactivate	is	triggered	when	the	form	is	deactivated.

Event	OnException
Method	DoException(Sender:	TObject;	E:	Exception);

OnEception	is	triggered	when	there	is	an	error	(or	exception	on	the	form).

Event	OnIdle
Method	DoIdle(Sender:	TObject;	var	Done:	Boolean);

OnIdle	is	triggered	when	the	application	is	idle.

Event	OnHelp
function	DoHelp(Command:	Word;	Data:	Longint;
var	CallHelp:	Boolean):	Boolean;

OnHelp	is	triggered	when	help	is	triggered	(useful	for	putting	all	the	code	inside	your	code	instead	of
triggering	it	all	over	the	place).

Event	OnHint
Method	DoHint(Sender:	TObject);

DoHint	is	triggered	when	hint	is	triggered.

Event	OnMessage
Method	DoMessage(var	Msg:	TMsg;	var	Handled:	Boolean);

Event	OnMessage	is	triggered	when	hint	is	triggered.

Event	OnMinimize
Method	DoMinimize(Sender:	TObject);

OnMinimize	is	triggered	when	your	application	is	minimized..

Event	OnRestore
Method	DoRestore(Sender:	TObject);

OnRestore	is	triggered	when	your	application	is	restored	(from	maximized	position,	or	from	minimized
position).

Event	OnShowHint
Method	DoShowHint(var	HintStr:	string;	var	CanShow:	Boolean;	var	HintInfo:	THintInfo);

OnShowHint	is	triggered	when	a	hint	is	shown.

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Unit	Application	Events	
Properties:
Chained
Hint	Colour
HintHidePause
HintShortPause
ShowHint
ShowMainForm

Events:
OnPaintIcon
OnSettingsChanged
OnActivate
OnDeactivate
OnHelp
OnHint
OnIdle
OnMessage
OnMinimize
OnRestore
OnPaintIcon
OnSettingsChanged

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
RX	Timer	List TimerLst TRxTimerEvent

Description:
This	component	intend	for	storage	of	the	event	of	TRxTimerList	events	queue.	TRxTimerEvent	have	the
same	properties	as	TTimer:	Enabled,	Interval,	OnTimer.	Additional	event	may	be	"single"	-	stand	inactive
after	one	execute	of	OnTimer	(it	action	depend	on	Cycled	property	value).

Class	TRxTimerList
The	TRxTimerList	component	provides	all	the	functions	of	the	standard	TTimer	component,	plus	the
additional	benefit	of	using	only	one	Windows	timer	for	up	to	32767	timing	events.	The	practical	maximum
number	of	timing	events	depends	on	how	long	it	takes	your	application	to	service	each	timer	notification.

Windows	(system)	timers	are	a	scarce	system	resource,	especially	if	16-bit	application.	Using	more	system
timers	than	necessary	can	impact	performance.	If	a	(system)	timer	is	not	available	when	a	program	needs
one,	it	can	either	terminate	gracefully	or	it	can	terminate	in	a	manner	that	leaves	Windows	in	an	unstable
state.	You	can	reduce	the	chances	of	running	out	of	timers	by	using	a	TRxTimerList	rather	than	multiple
timers.

TRxTimerList	uses	the	concept	of	a	timer	events	to	perform	the	same	function	as	the	TTimer's	OnTimer
event.	After	adding	a	TRxTimerList	component	to	your	form,	use	component	editor	to	create	events	at
design-time,	or	call	Add	method	at	run-time	to	create	timer	events	dinamically.	Events	can	repeat	until	they
are	canceled	or	they	can	be	fired	only	once	and	then	automatically	removed	(accordingly	Cycled	property
value).

Property	Active
Declaration:	Active:	Boolean;

The	Active	property	controls	whether	the	timer's	should	respond	to	timer	events.

Property	Count
Declaration:	Count:	Integer;

Count	returns	the	total	number	of	timer	events.	The	number	returned	by	Count	includes	both	enabled	and
disabled	timers.

Property	EnabledCount
Declaration:	EnabledCount:	Integer;

EnabledCount	returns	the	number	of	enabled	timer	events	(which	Enabled	property	is	True).

Property	Events
Declaration:	Events:	TList;

List	included	pointers	to	events	defined	by	class	TRxTimerEvent.	Property	intend	for	internal	use.	In
components	work	time	events	order	in	this	list	may	be	changed.	You	can	use	for	access	to	events	data
method	ItemByHandle	and	for	dynamic	add	a	new	events	method	Add.

Event	OnFinish
Declaration:	OnFinish:	TNotifyEvent;

This	is	triggered	when	an	event	has	been	completed.

Event	OnTimers
Declaration:	OnTimers:	TAllTimersEvent;

The	OnTimers	defines	an	event	handler	that	is	called	for	each	timer	events.

Method	Activate
Declaration:	procedure	Activate;

Activate	and	Deactivate	methods	controls	whether	the	timer's	responds	to	timer	events.
Call	Activate	to	set	the	Active	property	for	the	timer	list	to	True.

Method	Add
Declaration:	function	Add(AOnTimer:	TNotifyEvent;	AInterval:	Longint;	ACycled:	Boolean):	Longint;

You	can	use	this	method	to	add	new	event.

Parameters	AOnTimer,	AInterval	and	ACycled	contained	values	of	properties	OnTimer,	Interval

and	Cycled	accordingly	for	new	event.	Handle	of	this	event	returned	as	method	result.

Method	Clear
Declaration:	procedure	Clear;
This	method	removes	all	events	from	the	list.

Method	Deactivate
Declaration:	procedure	Deactivate;

Activate	and	Deactivate	methods	controls	whether	the	timer's	responds	to	timer	events.
Call	Deactivate	to	set	the	Active	property	for	the	timer	list	to	False.

Method	Delete

Declaration:

procedure	Delete(AHandle:	Longint);

Method	removes	event	specified	by	Handle	from	the	list.

Method	ItemByHandle
Declaration:	function	ItemByHandle(AHandle:	Longint):	TRxTimerEvent;

This	returns	the	handle	to	the	event	by	ordinal	number.

In	Simple	English:
This	converts	a	"handle	to	the	event"	to	the	actual	event.

Type	TAllTimersEvent
Declaration:	TAllTimersEvent	=	procedure(Sender:	TObject;	Handle:	Longint)	of	object;

TAllTimersEvent	is	the	type	of	the	OnTimers	event	of	the	TRxTimerList	component.

Property	AsSeconds
Declaration:	AsSeconds:	Word;

This	is	conversion	property.	AsSecond	can	be	used	to	read	or	set	the	value	of	Interval	property	in	seconds.

Property	Cycled
Declaration:	Cycled:	Boolean;

Set	the	Active	property	to	True	to	define	what	event	to	occur	whenever	a	specified	period	of	time	passes.
You	use	the	Interval	property	to	control	the	amount	of	time	between	timer	events	(in	milliseconds).	You	can
not	use	RepeatCount	property	anyhow.	Set	the	Active	property	to	False	to	define	what	event	to	occur	only
one	time	and	after	it	Enabled	property	has	been	False	value.

You	can	use	RepeatCount	to	define	number	of	occured	times.	You	can	use	ExecCount

property	for	definition	of	the	times	occured	events	after	execute	TRxTimerList.

Property	ExecCount
Declaration:	ExecCount:	Integer;

Run-time	and	read	only.	Property	stored	number	of	occured	times	after	execute	Activate	method	of
TRxTimerList.	When	Active	property	of	TRxTimerList	set	in	False	then	value	of	ExecCount	is	equal	to
zero.

Property	Handle
Declaration:	Handle:	Integer;

Run-time	and	read	only.	The	Handle	property	provides	access	to	the	event	by	unique	identificator.

Property	RepeatCount
Declaration:	RepeatCount:	Integer;

Property	stored	number	of	times	what	need	occur	event	whenever	a	specified	period	of	time	passes	after
execute	Activate	method	of	TRxTimerList.	After	it	property	Enabled	has	been	False	value.

Value	of	this	property	must	be	more	greater	or	equal	1.	May	be	used	only	when	Cycled	property	value	is
False.

You	can	use	ExecCount	property	for	definition	of	the	times	occured	events	after	execute	TRxTimerList.

Property	TimerList
Declaration:	TimerList:	TRxTimerList;

This	contains	a	"List	of	events"

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Unit	Timer	List	
Properties:
Active
Events

Procedures:
Count
EnabledCount
Activate
Add
Clear
Deactivate
Delete
TAllTimersEvent
AsSeconds
Cycled
ExecCount
Handle
RepeatCount
TimerList

Events
OnFinish
OnTimers

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
RX	MRU	[Most	Recently	Used]	List	
or	Manager MRUList TMRUManager

Description:
This	component	greatly	simplifies	adding	MRU	(More	Recently	Used)	object	lists	(i.e.	file	descriptions)	to
the	application	menus.

Example	Usage:
It	is	somewhat	difficult	to	explain	what	the	MRU	manager	does,	and	is	best	explained	by	an	example:

Under	the	File	menu,	I	have	a	sub-menu	called	"Recent".	So,	under	the	RecentMenu	property	of	the
MRUManager,	I	have	this	menu	item.	I	save	up	to	10	recently	used	files	in	the	registry.	The	call	I	use	to
load	these	files	from	the	registry	is:

MRUManager.LoadFromRegistry(EMIni.CSRegistry,'Recent');

where	EMIni.CSRegistry	is	the	registry	key	and	recent	is	the	section.	Check	out	the	Rx	code	in	the
MRUList.PAS	unit	for	any	more	details	on	this.	To	save	a	file	to	the	MRUManager,	I	use:

MRUManager.Add(OpenDialog.Filename,0)

Where	OpenDialog.Filename	is	the	name	of	the	file	to	be	added	to	the	list	and	0	is	a	UserData	flag	which	I
don't	use.	Again,	the	MRUList.PAS	has	the	source	for	this.

Then,	when	I	close	my	program,	I	save	the	info	which	was	added	to	the	MRUManager	by	calling:

MRUManager.SaveToRegistry(EMIni.CSRegistry,'Recent');

Property	AccelDelimiter
Declaration:	AccelDelimiter:	TAccelDelimiter;

This	defines	the	accelerated	delimited.

In	other	words:	Since	"&"	cannot	be	stored	in,	it	is	substituted	to	either	a	tab	or	space	instead.	The	property
AccelDelimiter	sets	this.

Property	AutoEnable
Declaration:	AutoEnable:	Boolean;

AutoEnable	property	automatically	enables	the	MRU	manager	on	startup	and	shutdown	of	the	form.
In	other	words,	all	the	processing	is	done	automatically	for	you.

Property	AutoUpdate

Declaration:	AutoUpdate:	Boolean;

Set	AutoUpdate	to	true,	the	MRU	is	automatically	updated.

In	other	words,	the	MRU	manager	automatically	processes	and	updates	itself	automatically	when
AutoUpdate	property	is	true.

Property	Capacity
Declaration:	Capacity:	Integer;

Capacity	is	the	maximum	number	of	strings	the	MRU	list	can	hold.	Adding	new	strings	will	delete	oldest
strings	if	necessary.

Property	Mode
Declaration:	Mode:	TRecentMode;

Property	mode	controls	how	the	entries	are	added	into	the	system.	They	are	either:

mrInsert	-	inserted	into	the	most	recently	used	list.
mrAppend	-	appended	into	the	most	recently	used	list.

Property	RecentMenu
Declaration:	RecentMenu:	TMenuItem;

RecentMenu	is	the	last	or	recent	menu	that	would	be	utilised.

Property	RemoveOnSelect
Declaration:	RemoveOnSelect:	Boolean;

RemoveOnSelect	defines	whether	the	most	recently	used	entry	is	deleted	when	the	entry	is	selected.

Property	SeparateSize
Declaration:	SeparateSize:	Word;

SeparateSize	-	separate	size	is	the	MRU	manager's	stuff.

Property	ShowAccelChar
Declaration:	ShowAccelChar:	Boolean;

ShowAccelChar	property	defines	whether	the	Accelerated

Property	StartAccel
Declaration:	StartAccel:	Cardinal;

StartAccel	defines	if	the	each	member	of	the	MRU	list	should	start	with	an	accelerated	character.

Property	Strings
Declaration:	Strings:	TStrings;

Strings	property	can	be	used	to	direst	access	to	list	of	elements	stored	in	the	TMRUManager	component.	By
using	this	property	you	can	assign	MRU-strings	to	another	controls,	for	example,	to	list-boxes	or	to	combo-
boxes:

ListBox1.Items	:=	MRUManager1.Strings;

Event	OnChange
Declaration:	OnChange:	TNotifyEvent;

OnChange	occurs	immediately	after	the	list	of	MRU-strings	changes.	Write	an	OnChange	event	handler	to
respond	to	changes	in	the	list	of	MRU-elements.	For	example,	if	you	are	using	MRU-strings	in	a	control
(list-box,	combo-box	or	another),	the	OnChange	event	handler	could	be	used	to	change	string	list	associated
with	a	control.

Event	OnClick
Declaration:	OnClick:	TClickMenuEvent;

OnClick	event	is	triggered	when	the	menu	item	in	the	MRU	list	is	clicked.

Event	OnGetItemData
Declaration:	OnGetItemData:	TGetItemEvent;

OnGetItemData	event	is	triggered	when	an	item	is	retrieved	from	the	MRU	list.

Event	OnReadItem
Declaration:	OnReadItem:	TReadItemEvent;

OnReadItem	event	is	triggered	when	an	item	or	data	is	read	into	the	MRU	list.

Event	OnWriteItem
Declaration:	OnWriteItem:	TWriteItemEvent;

OnWriteItem	event	is	triggered	when	an	item	or	data	is	written	into	the	MRU	list.

Method	Add
Declaration:	procedure	Add(const	RecentName:	string;	UserData:	Longint);

procedure	Add	adds	an	entry	RecentName	to	the	MRU	list	and	UserData.

Method	LoadFromIni
Declaration:	procedure	LoadFromIni(Ini:	TIniFile;	const	Section:	string);

LoadFromIni	loads	the	MRU	list	from	the	INI	file.

Method	LoadFromRegistry
Declaration:	procedure	LoadFromRegistry(Ini:	TRegIniFile;	const	Section:	string);

LoadsFromRegistry	loads	the	MRU	list	from	the	registry.

Method	Remove
Declaration:	procedure	Remove(const	RecentName:	string);

Remove	a	single	item	from	the	list.	No	error	occured	when	item	not	found.

Method	SaveToIni
Declaration:	procedure	SaveToIni(Ini:	TIniFile;	const	Section:	string);

SaveToIni	procedure	saves	the	MRU	list	to	an	INI	file	instead.

Method	SaveToRegistry
Declaration:	procedure	SaveToRegistry(Ini:	TRegIniFile;	const	Section:	string);

SaveToRegistry	saves	the	MRU	list	is	the	registry.

Method	UpdateRecentMenu
Declaration:	procedure	UpdateRecentMenu;

UpdateRecentMenu	updates	the	MRU	list.	Use	this	if	the	autoupdate	property	is	false	and	you	want	to
update	the	MRU	list	manually	instead.

Type	TAccelDelimiter
Declaration:	TAccelDelimiter	=	(adTab,	adSpace);

TAccelDelimiter	is	a	set	of	values	for	the	AccelDelimiter	property	of	the	TMRUManager	component.

Type	TClickMenuEvent
Declaration:	TClickMenuEvent	=	procedure	(Sender:	TObject;	const	RecentName,	Caption:	string;
UserData:	Longint)	of	object;

TClickMenuEvent	is	the	type	of	the	OnClick	event	of	the	TMRUManager	component.

Type	TGetItemEvent

Declaration:	TGetItemEvent	=	procedure	(Sender:	TObject;	var	Caption:	string;	var	ShortCut:	TShortCut;
UserData:	Longint)	of	object;

TGetItemEvent	is	the	type	of	the	OnGetItemData	event	of	the	TMRUManager	component.

Type	TReadItemEvent
Declaration:	TReadItemEvent	=	procedure	(Sender:	TObject;	IniFile:	TObject;	const	Section:	string;	Index:
Integer;	var	RecentName:	string;	var	UserData:	Longint)	of	object;

TReadItemEvent	is	the	type	of	the	OnReadItem	event	of	the	TMRUManager	component.

Type	TRecentMode
Declaration:	TRecentMode	=	(rmInsert,	rmAppend);

TRecentMode	is	a	set	of	values	for	the	Mode	property	of	the	TMRUManager	component.

Type	TWriteItemEvent
Declaration:	TWriteItemEvent	=	procedure	(Sender:	TObject;	IniFile:	TObject;	const	Section:	string;	Index:
Integer;	const	RecentName:	string;	UserData:	Longint)	of	object;

TWriteItemEvent	is	the	type	of	the	OnWriteItem	event	of	the	TMRUManager	component.

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Unit	MRUList	
Property
AccelDelimiter	
AutoEnable	
AutoUpdate	
Capacity	
Mode	
RecentMenu	
RemoveOnSelect	
SeparateSize	
ShowAccelChar	
StartAccel	
Strings

Events
OnChange	
OnClick	
OnGetItemData	
OnReadItem	
OnWriteItem

Method
Add	
LoadFromIni	
LoadFromRegistry	
Remove	
SaveToIni	
SaveToRegistry	
UpdateRecentMenu

Type
TAccelDelimiter	
TGetItemEvent	
TReadItemEvent	
TRecentMode	
TWriteItemEvent	

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
Tray	Icon RxShell TRxTrayIcon

Description:
The	TRxTrayIcon	component	enables	32-bit	Delphi	applications	to	add	icons	to	the	Windows	95	or
Windows	NT	4.x	tray.	The	icon	can	be	added	to	the	tray	by	setting	the	Active	property	to	true,	and	can	be
removed	from	the	tray	by	setting	the	Active	property	to	false.

The	Icon	property	specifies	static	icon	to	the	tray.	If	you	want	animate	icons	in	the	tray,	set	values	to	the
Icons	property	and	set	the	Animated	property	to	True.	You	can	test	tray-icon	in	design-time	by	setting	the
ShowDesign	property	to	True.	To	respond	to	mouse	events	for	the	icon,	use	the	OnClick	and	OnDblClick
events.

Note:
To	display	a	pop-up	menu	when	the	user	clicks	the	right	mouse	button	on	the	Tray	Icon,	assign	a
PopupMenu	component	to	the	PopupMenu	property	and	set	the	AutoPopup	property	of	the	menu	to	True.	

To	display	a	Help	Hint	whenever	the	mouse	pointer	pauses	over	the	icon	momentarily,	set	the	Hint	property
to	a	help	string.
You	can	use	16x16	icons	with	the	TRxTrayIcon	component	as	well	as	32x32	icons.

Property	Active
Declaration:	Active:	Boolean;

Set	the	Active	property	to	True	to	add	an	Icon	to	the	Windows	95	Tray.	
Set	the	Active	property	to	False	to	remove	the	Icon	from	the	Windows	95	Tray.	

If	the	Animated	property	is	True,	the	Icons	property	used	to	show	animation	in	the	Tray,
if	the	Animated	property	is	False,	then	icon	specified	by	the	Icon	property	used	to	show	static	icon	in	the
Windows	95	Tray.

Property	Animated
Declaration:	Animated:	Boolean;

The	Animated	property	is	used	to	show	animated	icons	in	Windows	95	Tray.	The	icons	to	be	used	in	the
animation	are	listed	in	the	Icons	property,	and	the	time	to	wait	between	animation	frames	is	specified	by	the
Interval	property.

Property	Icons
Declaration:	Icons:	TIconList;

The	Icons	property	is	used	to	define	the	animation	that	will	occur	when	a	Tray	Icon	has	Active	property	set
to	True	and	Animated	property	set	to	True	also	(if	Animated	property	is	False,	the	static	Icon	property	use
instead).	The	time	to	wait	between	animation	frames	is	specified	by	the	Interval	property.	The	property
editor	of	the	Icons	property	allows	you	to	load	Windows	animation	cursors	(ani-files)	to	this	property.

Property	ShowDesign
Declaration:	ShowDesign:	Boolean;

This	property	allows	you	to	testing	tray	icon	in	design-time.	
(This	property	is	Ignored	during	run-time.)

Event	OnClick
Declaration:	OnClick:	TMouseEvent;

To	respond	to	mouse	click	events	(left	or	right	button)	for	the	icon	in	Windows	System	Tray,	use	an
OnClick	event.

Type	TExecState
Declaration:	TExecState	=	(esNormal,	esMinimized,	esMaximized,	esHidden);

TExecState	type	defines	the	four	possible	initial	states	of	the	launched	applications	main	window	for	the
InitialState	parameter	of	FileExecute	and	FileExecuteWait	functions:	normal,	minimized,	maximized	or
hidden.

Routine	FileExecute
Declaration:	function	FileExecute(const	FileName,	Params,	StartDir:	string;	InitialState:	TExecState):
THandle;

The	FileExecute	function	opens	a	specified	file.	The	file	can	be	an	executable	file	or	a	document	file.	If
FileName	specifies	an	executable	file,	Params	is	a	string	that	specifies	parameters	to	be	passed	to	the
application.	StartDir	specifies	the	default	directory.	If	FileName	specifies	an	executable	file,	InitialState
specifies	how	the	application	is	to	be	shown

when	it	is	opened.	This	parameter	can	be	one	of	the	following	values:	esNormal,	esMinimized,
esMaximized	or	esHide.	If	the	function	succeeds,	the	return	value	is	the	instance	handle	of	the	application
that	was	run.	If	the	function	fails,	the	return	value	is	an	error	value	that	is	less	than	or	equal	to	32.

FileExecute	example:	
if	FileExecute('NOTEPAD.EXE',	'',	'C:\',	esNormal)	<=	32	then
ShowMessage('Can't	start	NOTEPAD.EXE');

Routine	FileExecuteWait
Declaration:	function	FileExecuteWait(const	FileName,	Params,	StartDir:	string;	InitialState:	TExecState):
Integer;

This	function	is	similar	to	the	FileExecute	function,	but	it	don't	return	until	after	a	launched	program
finishes	executing.

32-bit	version:	If	the	function	succeeds,	the	return	value	is	termination	status	of	the	executed	process.	If	the

function	fails,	the	return	value	is	-1.

16-bit	version:	If	the	function	succeeds,	the	return	value	is	zero.	If	the	function	fails,	the	return	value	is	-1.

>	FileExecuteWait	example:

if	not	FileExecuteWait('NOTEPAD.EXE',	'readme.txt',	'C:\',	esNormal)	then
ShowMessage('Can	not	start	NOTEPAD.EXE');

Routine	IconExtract
Declaration:	function	IconExtract(const	FileName:	string;	Id:	Integer):	TIcon;

The	IconExtract	function	creates	the	TIcon	object	from	the	given	executable	file,	dynamic-link	library
(DLL),	or	icon	file.	The	FileName	parameter	specifies	the	name	of	an	executable	file,	DLL,	or	icon	file.
The	ID	parameter	specifies	the	index	of	the	icon	to	retrieve.	If	this	value	is	0,	the	function	returns	the	handle
of	the	first	icon	in	the	specified	file.	If	the	function	succeeds,	the	return	value	is	the	pointer	to	the	Icon-
object.	After	using	the	icon	you	must	destroy	it	by	Free	method.

IconExtract	example:

var
__Ico:	TIcon;
begin
__Ico	:=	IconExtract('PROGMAN.EXE',	0);
__try
____{	use	icon	}
__finally
____Ico.Free;
__end;
end;

Routine	WinAbout
Declaration:	procedure	WinAbout(const	AppName,	Stuff:	string);

The	WinAbout	procedure	displays	a	Shell	About	dialog	box.

Please	note	that	the	WinAbout	procedure	dialog	box	uses	text	and	a	default	icon	that	are	specific	to	either
Microsoft	Windows	or	Microsoft	Windows	NT.	An	example	of	a	Shell	About	dialog	box	can	be	seen	by
selecting	the	About	Program	Manager	command	in	Program	Manager.

The	AppName	parameter	is	the	text	that	the	procedure	displays	in	the	title	bar	of	the	About	dialog	box	and
on	the	first	line	of	the	dialog	box	after	the	text	"Microsoft	Windows"	or	"Microsoft	Windows	NT".	If	the
text	contains	a	"#"	separator,	dividing	it	into	two	parts,	the	function	displays	the	first	part	in	the	title	bar,	and
the	second	part	on	the	first	line	after	the	text	"Microsoft	Windows"	or

"Microsoft	Windows	NT".

The	Stuff	parameter	is	the	text	that	the	function	displays	in	the	dialog	box	after	the	version	and	copyright
information.

>	WinAbout	example:	
WinAbout('Delphi	Demo	Application',	'Borland	Int.,	1995');

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Unit	RX	Shell	
Property
Active
Animated
IconExtract
Icons
ShowDesign

Events:
OnClick

Types:
TExecState

Methods
WinAbout
FileExecute
FileExecuteWait

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
Icon	List IcoList TIconList

Description:	The	TIconList	class	is	a	container	for	a	group	of	icons.	This	class	used	internally	by
TRxTrayIcon	component.	To	add	an	icon	to	the	icon	list,	use	the	Add,	AddResource,	Insert,	InsertResource
and	LoadResource	methods.	To	retrieve	an	icons	by	its	index	from	the	icon	list,	use	the	Icons	property	and
the	Indexof	property	to	obtain	the	icon	listing	from	it's	index.

Property	Icons[Index:	Integer]
Declaration:	Icons[Index:	Integer]:	TIcon;

The	Icons	property	returns	the	icon	specified	by	Index	as	an	TIcon	object.

Method	Add
Declaration:	function	Add(Icon:	TIcon):	Integer;	virtual;

The	Add	method	adds	an	icon	to	the	list	of	icons.	Specify	the	icon	to	insert	as	the	value	of	the	Icon
parameter.	Add	returns	the	index	of	the	added	icon.

Method	AddResource
Declaration:	function	AddResource(Instance:	THandle;	ResId:	PChar):	Integer;	virtual;

The	AddResource	method	loads	an	icon	resource	by	ResID	identifier	and	adds	its	to	the	list	of	icons.
AddResource	returns	the	index	of	the	added	icon.	

Method	IndexOf
Declaration:	function	IndexOf(Icon:	TIcon):	Integer;	virtual;

The	IndexOf	method	returns	the	position	of	an	icon	in	a	list.	The	first	position	in	a	list	is	0.	If	an	icon	is	not
in	the	list,	IndexOf	returns	-1.

Method	Insert
Declaration:	procedure	Insert(Index:	Integer;	Icon:	TIcon);	virtual;

The	Insert	method	inserts	an	icon	into	the	list	of	icons.	Specify	the	icon	to	insert	as	the	value	of	the	Icon
parameter.	Specify	the	position	in	the	list	where	you	want	the	icon	inserted	as	the	value	of	the	Index
parameter.	The	index	is	zero-based,	so	the	first	position	in	the	list	has	an	index	value	of	0.

Method	InsertResource
Declaration:	procedure	InsertResource(Index:	Integer;	Instance:	THandle;	ResId:	PChar);	virtual;

The	InsertResource	method	loads	an	icon	resource	by	ResID	identifier	and	inserts	its	into	the	list	of	icons.
Specify	the	position	in	the	list	where	you	want	the	icon	inserted	as	the	value	of	the	Index	parameter.

Method	LoadResource
Declaration:	procedure	LoadResource(Instance:	THandle;	const	ResIds:	array	of	PChar);

The	LoadResource	method	loads	the	icons	resources	by	ResIDs	identifiers	and	adds	them	to	the	list	of
icons.

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Unit	IcoList

Method
Add
AddResource
IndexOf
Insert
InsertResource
LoadResource
Property	Icons[Index:	Integer]

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
RX	ANI	File. AniFile TAnimatedCursorImage

Description:
The	TAnimatedCursorImage	object	encapsulates	the	data	loaded	from	a	Windows	animated	cursor	(.ANI)
file.

(An	ANI	file	is	a	file	that	contains	a	list	of	icons	that	animate	during	run-time)

To	load	an	ANI	cursor	image	from	a	file,	call	the	LoadFromFile	method.	To	retrieve	a	single	image	as	an
icon	by	its	index	from	the	list	after	loading,	use	the	Icons	and	IconCount	properties.

You	can	also	assign	the	images	from	the	animated	cursors	to	the	bitmap	that	consists	of	a	series	of	frames
arranged	one	after	other	by	using	the	AssignToBitmap	method.

To	extract	the	copyright	information,	utilise	the	property	Creator	and	the	title	property	to	obtain	the
description	of	what	the	ANI	file	is	about.	To	control	the	speed	of	the	rate	of	animation,	use	the	default	rate
property.	If	your	background	is	of	some	other	colour	or	you	would	like	your	ANI	file	to	be	background
transparent,	use	the	original	colours	property	to	tweak	the	background	colour.

See	also:
RX	Animate	(TAnimatedImage)	and	RX	Gif	Animator	(TRxGIFAnimator).

Property	Creator
Declaration:	Creator:	string;

After	loading	ANI	cursor	file	into	the	TAnimatedCursorImage	object,	the	Creator	property	contains	the
information	about	the	author	that	produced	the	file	or	some	another	copyright	information.

Property	DefaultRate
Declaration:	DefaultRate:	Longint;

The	DefaultRate	property	determines	the	amount	of	time	in	milliseconds	that	passes	among	frames	of	a
TAnimatedCursorImage	animation.	This	value	is	read	from	.ANI	file	and	is	equal	to	the	duration	of	first
cursor's	image.

Property	IconCount
Declaration:	IconCount:	Integer;

IconCount	is	read	only	and	contains	the	number	of	icons	in	a	list	after	loading	ANI	data	from	a	ANI	Cursor
file.

Property	Icons[Index:	Integer]
Declaration:	Icons[Index:	Integer]:	TIcon;

The	Icons	property	allows	you	to	access	a	specific	icon	inside	the	icon	list	after	loading	the	data	from	the
.ANI	file.

Property	OriginalColors
Declaration:	OriginalColors:	Word;

Read	only.	The	OriginalColors	determines	in	what	bit	format	(color	count)	the	cursor	images	are	stored	in
the	animated	cursor	file.

The	OriginalColors	will	always	be	one	of	the	specified	value:	2	(monochrome	icons),	16	(16-colors	icons),
256	(256-colors	icons)	or	0	(true-color	or	high-color	icons).

Property	Title
Declaration:	Title:	string;

The	Title	property	stores	the	description	of	the	ANI	file.

Method	AssignToBitmap
Declaration:	procedure	AssignToBitmap(Bitmap:	TBitmap;	BackColor:	TColor;	DecreaseColors,	Vertical:
Boolean);

The	procedure	AssignToBitmap	discards	any	current	image	in	Bitmap	object	and	replaces	the	icon's	images
loaded	from	ANI-file.	The	resulting	image	is	a	series	of	frames	arranged	one	after	the	other	according	to	the
Vertical	parameter	value.	To	make	resulted	image	partially	transparent	you	could	use	the	BackColor
parameter.	Also	you	could	use	DecreaseColors	property	to	decrease	bitmap	color	count	to	the	original	value
described	in	the	ANI-file.

Method	LoadFromFile
Declaration:	procedure	LoadFromFile(const	Filename:	string);	virtual;

The	LoadFromFile	method	reads	the	animated	cursor	file	specified	in	FileName	and	loads	the	icons	into	the
TAnimatedCursorImage	object.

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Unit	AniFile

Property	Creator	Property	DefaultRate
Property	Icons	Count
Property	Icons
Property	OriginalColours
Property	Title

Method	LoadFromFile
Method	AssignToBitmap

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
RX	ANI	File. Animate TAnimatedImage

Description:	The	TAnimatedImage	component	can	display	simple	animation	sequences	on	the	form	on
which	it	is	placed.	

Use	the	TAnimatedImage	component	to	display	a	sequence	of	frames	with	a	set	interval	to	create	an
animated	image.	You	specify	the	bitmap	containing	the	frames	in	the	Glyph	property.	Set	the	Active
property	to	True	and	watch	the	animation.

You	can	use	design-time	component	editor	to	load	Windows	animated	cursors	(ANI	files)	into	the	Glyph
property.

The	animation	sequence	is	stored	in	the	Glyph	property.	The	bitmap	may	consist	of	a	series	of	frames
arranged	one	after	the	other	(from	left	to	right	or	from	top	to	bottom,	according	to	Orientation	property
value),	while	the	Interval	property	controls	the	rate	at	which	the	frames	are	displayed.	The	NumGlyphs
property	specifies	count	of	the	frames	in	the	image.

It	is	possible	to	define	number	of	frames	to	be	displayed	in	the	present	moment,	during	runtime	based	on
the	value	of	the	property	GlyphNum.	You	can	also	set	this	value	during	design	time.

The	property	Opaque	determines,	whether	the	component	will	fill	in	a	background	under	image	by	colour
Color	or	it	will	be	completely	transparent.	Component	also	includes	properties	similar	to	the	properties
TImage.	You	can	also	use	a	component	TAnimatedImage	for	a	drawing	on	the	form	of	the	transparent
motionless	images,	for	example,	for	overlay	of	the	images	against	each	other.

The	TransparentColor	property	sets	the	color	for	which	the	form's	color	should	be	displayed	instead	of	the
bitmap	color.	When	you	set	the	Active	property	to	True,	the	glyph	starts	to	animate.	The	OnStart	event	is
triggered	when	the	animation	started	and	the	OnStop	event	is	generated	when	the	property	Active	sets	to
False.

To	display	the	frame	sequence	at	timed	intervals	(or	in	other	words,	animate	the	glyph):

Set	the	Glyph	property	to	the	frame	sequence.
Set	the	NumGlyphs	property	desired	frame	numbers	in	the	image.
Set	the	TransparentColor	and	Opaque	properties	to	control	image	transparency.
Set	the	Interval	property	to	the	desired	time	interval	between	successive	frames.
Set	the	Active	property	to	True.
You	can	stop	the	animation	sequence	by	setting	the	Active	property	to	False.

See	also:	
RX	ANI	file	(TAnimatedCursorImage)	and	RX	Gif	Animator	(TRxGIFAnimator)

Property	Active
Declaration:	Active:	Boolean;

Once	the	frame	sequence	is	properly	loaded	in	the	Glyph	variable	and	the	properties	NumGlyphs,
GlyphNum,	InactiveGlyph	and	Interval	properties	are	set,	setting	Active	property	to	True	will	cause	the
animation	to	start	(and	stop	when	the	Active	property	is	False).

Property	Glyph
Declaration:	Glyph:	TBitmap;

The	Glyph	property	holds	the	animation	sequence	frames	.	The	frames	should	be	in	Windows	Bitmap	file
format.	The	frames	may	be	arranged	in	either	vertical	or	horizontal	fashion	one	after	the	other.

Property	GlyphNum
Declaration:	GlyphNum:	Integer;

The	GlyphNum	property	stores	the	frame	number	of	the	frame	currently	displayed.	It	can	be	set	to	the
frame	number	which	needs	to	be	displayed	while	Active	property	is	False.

Note:	When	the	InactiveGlyph	property	is	not	equal	to	-1,	the	GlyphNum	property	value	are	ignored.

When	setting	this	property,	if	the	value	is	within	the	acceptable	range	(between	0	and	the	number	of	frames
in	the	Glyph)	the	current	frame	display	is	changed.	

Note:	Before	using	this	property,	ensure	that	the	animation	sequence	if	properly	loaded	into	the	Glyph
property.	

Property	InactiveGlyph
Declaration:	InactiveGlyph:	Integer;

The	InactiveGlyph	property	specifies	the	frame	number	of	the	frame	displayed	when	Active	is	set	to	False.
When	the	InactiveGlyph	property	value	is	equal	to	-1,	the	GlyphNum	property	can	be	set	to	the	frame
number	which	needs	to	be	displayed.	When	InactiveGlyph	is	within	the	acceptable	range	(between	0	and
the	number	of	frames	in	the	bitmap)	then	this	value	used	to	display	the	image	in	inactive	(non-animated)
state	and	this	frame	not	used	in	during	animation	(i.e.	when	Active	=	True).

Property	Interval
Declaration:	Interval:	Word;

The	Interval	property	specifies	in	milliseconds	the	amount	of	time	required	between	changing	the	frames
of	a	TRxTrayIcon	(32-bit	only),	TAnimatedImage	or	TRxDice	animation;	or	speed	of	text	scrolling	in	the
TSecretPanel	component.

Property	NumGlyphs
Declaration:	NumGlyphs:	Integer;

The	NumGlyphs	property	specifies	the	number	of	frames	in	the	image	contained	in	the	Glyph	property.

Property	Opaque
Declaration:	Opaque:	Boolean;

Opaque	specifies	whether	the	background	of	the	image	obscures	objects	below	the	animated	image	object.

Set	Opaque	to	False	to	allow	objects	behind	the	TAnimatedImage	object	to	show	through	the
background	of	the	bitmap.	
Set	Opaque	to	True	to	make	the	background	of	the	bitmap	opaque.	Opaque	has	no	effect	unless	the
TransparentColor	property	not	equal	to	clNone.

Property	Orientation
Declaration:	Orientation:	TGlyphOrientation;

Orientation	determines	whether	the	frames	are	placed	horizontal	or	vertical	fashion	in	the	image	specified
by	Glyph	property	of	the	TAnimatedImage	component.	It	can	either	be	goHorizontal	or	goVertical.	The
default	value	is	goHorizontal.

Property	TransparentColor
Declaration:	TransparentColor:	TColor;

TransparentColor	determines	which	color	of	the	bitmap	is	to	be	transparent	when	the	frame	is	drawn.	This
property	makes	the	frame	partially	transparent	by	setting	the	color	in	the	bitmap	which	should	be	replaced
by	the	parent's	background	(when	Opaque	=	False)	or	by	the	Color	property	value	(when	Opaque	=	True).

Event	OnStart
Declaration:	OnStart:	TNotifyEvent;

The	OnStart	event	is	triggered	if	the	component	has	started	displaying	the	animation	and	the	Active
(Animate)	property	is	set	to	True.

Event	OnStop
Declaration:	OnStop:	TNotifyEvent;

The	OnStop	event	is	triggered	if	the	component	has	finished	displaying	the	animation	and	the	Active
(Animate)	property	is	set	to	False	(during	run-time).

Type	TGlyphOrientation
Declaration:	TGlyphOrientation	=	(goHorizontal,	goVertical);

This	type	defines	possible	values	for	Orientation	property	of	a	TAnimatedImage	component.	The	value

goHorizontal	sets	horizontal	(from	left	to	right)	alternation	of	frames	and	the	value	goVertical	-	vertical
(from	top	to	bottom).

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Unit	Animate	
Property:
Active
Glyph
GlyphNum
InactiveGlyph
Interval
NumGlyphs
Opaque
Orientation
TGlyphOrientation

Events:
OnStart
OnStop

Type:
TransparentColor

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
RX	ANI	File. Parsing TRxMathParser

Description:
The	TRxMathParser	is	a	class	for	parsing	and	evaluating	simple	mathematical	expressions	specified	at	run-
time.	The	programming	interface	is	simple:	specify	expression	to	be	evaluated	in	AFormula	parameter	of
Exec	method,	call	Exec	and	retrieve	computed	value	as	result	of	Exec	method.

When	calculating	error	occured	the	ERxParserError	exception	is	raised.

Accepted	operators:
+	,	-	,	*	,	/

The	following	functions	are	supported;	it	doesn't	matter	if	you	use	lower	or	upper	case:	
Arctan,	Cos,	Sin,	Tan,	Abs,	Exp,	Ln,	Log,	Sqrt,	Sqr,	Int,	Fraq.

Method	Exec
Declaration:	function	Exec(AFormula:	String):	Double;

Call	Exec	to	retrieve	computed	value	of	expression	specified	by	AFormula	parameter.	When	calculating
error	occured	the	ERxParserError	exception	is	raised.

Method	Exec	example

if	rxMathParser1.Exec('2+Cos(2)')	then
Label1.Caption	:=	'Ok!	Result	=	'	+	FloatToStr(rxMathParser1.ResValue);

Routine	GetFormulaValue
Declaration:	function	GetFormulaValue(const	Formula:	string):	Double;

Call	GetFormulaValue	to	retrieve	computed	value	of	expression	specified	by	Formula	parameter.	This
function	uses	TRxMathParser	class	to	calculate	an	expression.

GetFormulaValue	example:	

Value	:=	GetFormulaValue('2	*	Sqrt(4)');
{	here	Value	is	4	}

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Unit	Mathematical	Parser	
Property
Exec
GetFormulaValue

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
Version	Information VerInfo TVersionInfo

Description:
This	manipulates	the	information	from	the	Microsoft	Version	Resource	(VERSIONINFO)	structure.
Whenever	the	FileName	property	is	changed,	the	class	properties	are	updated.	The	read-only	Valid
property	determines	whether	a	version	resource	loaded	successfully	and	information	is	valid.	For	more
information	about	version	resources,	see	your	Windows	API	reference.

Property	Comments
Declaration:	Comments:	string;

This	contains	the	string	specifying	the	comments..

Property	CompanyName
Declaration:	CompanyName:	string;

This	contains	the	string	specifying	the	company	that	produced	the	file.

Property	FileDescription
Declaration:	FileDescription:	string;

This	contains	the	string	specifying	the	file	description	of	the	file.	This	string	may	be	displayed	in	a	list	box
when	the	user	is	choosing	files	to	install.

Property	FileName
Declaration:	FileName:	string;

This	contains	the	string	specifying	the	FileName	property	where	to	search	for	Version	Resource
information.	When	the	filename	changes,	the	class	looks	for	new	version	information	and	updates	the	class
properties.

Property	FileVersion
Declaration:	FileVersion:	string;

This	contains	the	string	specifying	the	version	number	of	the	file--for	example,	"3.10"	or	"5.00.RC2".	For
more	information	about	version,	see	the	Windows	API	reference.

Property	FixedFileInfo
Declaration:	FixedFileInfo:	PVSFixedFileInfo;

This	data	structure	contains	a	VSFixedFileInfo	structure	that	specifies	arbitrary	data	associated	with	this
structure:

TVSFixedFileInfo	=	record
__dwSignature:	Longint;
__dwStrucVersion:	Longint;
__dwFileVersionMS:	Longint;
__dwFileVersionLS:	Longint;
__dwProductVersionMS:	Longint;
__dwProductVersionLS:	Longint;
__dwFileFlagsMask:	Longint;	
__dwFileFlags:	Longint;
__dwFileOS:	Longint;
__dwFileType:	Longint;
__dwFileSubtype:	Longint;
__dwFileDateMS:	Longint;
__dwFileDateLS:	Longint;
end;

Property	InternalName
Declaration:	InternalName:	string;

This	contains	the	string	specifying	the	internal	name	of	the	file,	(if	exists)

For	example,	a	module	name	if	the	file	is	a	dynamic-link	library.	If	the	file	has	no	internal	name,	this	string
should	be	the	original	filename,	without	extension.	

Property	LegalCopyright
Declaration:	LegalCopyright:	string;

This	contains	the	string	specifying	copyright	notices	that	apply	to	the	file.	This	should	(or	would)	include
the	full	text	of	all	notices,	legal	symbols,	copyright	dates,	and	so	on.

Property	LegalTrademarks
Declaration:	LegalTrademarks:	string;

This	contains	the	string	specifying	all	trademarks	and	registered	trademarks	that	apply	to	the	file.	This
should	include	the	full	text	of	all	notices,	legal	symbols,	trademark	numbers,	and	so	on.

Property	OriginalFilename
Declaration:	OriginalFilename:	string;

This	contains	the	string	specifying	the	original	name	of	the	file	(do	not	including	the	path!).	This
information	enables	an	application	to	determine	whether	a	file	has	been	renamed	by	a	user.	The	format	of
the	name	depends	on	the	file	system	for	which	the	file	was	created.

Property	PrivateBuild
Declaration:	PrivateBuild:	string;

This	contains	the	string	specifying	information	about	a	private	version	of	the	file--for	example,	"Built	by
TESTER1	on	\TESTBED".	This	string	should	be	present	only	if	the	VS_FF_PRIVATEBUILD	flag	is	set	in
the	dwFileFlags	member	of	the	FixedFileInfo	property	(VS_FIXEDFILEINFO	structure)	of	the	version
resource.

Property	ProductName
Declaration:	ProductName:	string;

This	contains	the	string	specifying	the	name	of	the	product	with	which	the	file	is	distributed.

Property	ProductVersion
Declaration:	ProductVersion:	string;

This	contains	the	string	specifying	the	version	of	the	product	with	which	the	file	is	distributed--for	example,
"3.10"	or	"5.00.RC2".	For	more	information	about	version,	see	the	Windows	API	reference.

Property	SpecialBuild
Declaration:	SpecialBuild:	string;

This	contains	the	string	specifying	how	this	version	of	the	file	differs	from	the	standard	version--for
example,	"Private	build	for	TESTER1	solving	mouse	problems	on	M250	and	M250E	computers".	This
string	should	be	present	only	if	the	VS_FF_SPECIALBUILD	flag	is	set	in	the	dwFileFlags	member	of	the
FixedFileInfo	property	(VS_FIXEDFILEINFO	structure)	of	the	version	resource.

Property	Translation
Declaration:	Translation:	Pointer;

This	contains	the	string	specifying	the	translation	table	in	the	variable	information	structure.	This	property
retrieves	a	pointer	to	an	array	of	language	and	character-set	identifiers.

Property	Valid
Declaration:	Valid:	Boolean;

The	read-only	Valid	property	determines	whether	a	version	resource	loaded	successfully	and	information	is
valid.	You	can	check	this	property	after	creation	a	resource	object	and	after	the	FileName	property	has	been
changed.

Property	VersionCharSet
Declaration:	VersionCharSet:	TVersionCharSet;

Specifies	one	of	the	character-set	identifiers.

Property	VersionLanguage
Declaration:	VersionLanguage:	TVersionLanguage;

Specifies	one	of	the	language	identifiers.

Property	VersionNum
Declaration:	VersionNum:	Longint;

Specifies	the	binary	version	number	for	the	file.

Method	Create
Declaration:	constructor	Create(const	AFileName:	string);

The	Create	method	allocates	memory	to	create	a	TVersionInfo	object,	passes	it	the	file	name	of	the
interesting	file	and	read	version	information	about	a	specified	file	from	VERSIONINFO	resource.	If	the
reading	succeeds,	the	Valid	property	is	True.	If	the	reading	fails,	the	Valid	property	is	False.

Method	GetVerValue
Declaration:	function	GetVerValue(const	VerName:	string):	string;

The	GetVerValue	function	returns	selected	version	information	from	the	specified	version-information
resource.

Type	TVersionCharSet
Declaration:	TVersionCharSet	=	(vcsASCII,	vcsJapan,	vcsKorea,	vcsTaiwan,	vcsUnicode,
vcsEasternEuropean,	vcsCyrillic,	vcsMultilingual,	vcsGreek,	vcsTurkish,	vcsHebrew,	vcsArabic,
vcsUnknown);

TVersionCharSet	is	a	set	of	values	for	the	VersionCharSet	property	of	the	TVersionInfo	class.

Type	TVersionLanguage
Declaration:	TVersionLanguage	=	(vlArabic,	...,	vlUnknown);

TVersionLanguage	is	a	set	of	values	for	the	VersionLanguage	property	of	the	TVersionInfo	class.

Routine	OkToWriteModule
Declaration:	function	OkToWriteModule(ModuleName:	string;	NewVer:	Longint):	Boolean;

Return	True	if	it's	ok	to	overwrite	ModuleName	with	NewVer.

OkToWriteModule	example:

if	OkToWriteModule('C:\WINDOWS\MYLIB.DLL',	NewVerNum)	then
{	write	file	to	disk	}

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Unit	Version	Information	
Comments
CompanyName
Create
FileDescription
FileName
FileVersion
FixedFileInfo
GetVerValue
InternalName
LegalCopyright
LegalTrademarks
OkToWriteModule
OriginalFilename
PrivateBuild
SpecialBuild
Translation
TVersionCharSet
TVersionLanguage
Valid
VersionCharSet
VerLanguage
VerNum

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

UNIT	AppUtils

Unit	Overview:
GetDefaultIniName
GetDefaultIniRegKey
GetDefaultSection
GetUniqueFileNameInDir
InstantiateForm
DefCompanyName
RegUseAppTitle
AppBroadcast
FindForm
ReadFormPlacement
ReadFormPlacementReg
RestoreFormPlacement
RestoreGridLayout
RestoreGridLayoutReg
RestoreMDIChildren
RestoreMDIChildrenReg
SaveFormPlacement
SaveGridLayout
SaveGridLayoutReg
SaveMDIChildren
SaveMDIChildrenReg
ShowDialog
WriteFormPlacement
WriteFormPlacementReg

Const	DefCompanyName
Declaration:	DefCompanyName:	string	=	'';;

This	variable	uses	by	GetDefaultIniRegKey	function	to	construct	registry	key	used	by	TFormPlacement	and
TFormStorage	components.

Const	RegUseAppTitle
Declaration:	RegUseAppTitle:	Boolean	=	False;;

This	variable	uses	by	GetDefaultIniRegKey	function	to	construct	registry	key	used	by	TFormPlacement	and
TFormStorage	components.

Routine	AppBroadcast
Declaration:	procedure	AppBroadcast(Msg,	wParam:	Longint;	lParam:	Longint);

AppBroadcast	sends	a	message	Msg	to	each	of	the	forms	of	the	application.	

AppBroadcast	example:

const	CM_MYMESSAGE	=	WM_USER	+	1;
begin
__...
__AppBroadcast(CM_MYMESSAGE,	MyWParam,	MyLParam);
__...
end;

Routine	FindForm
Declaration:	function	FindForm(FormClass:	TFormClass):	TForm;

FindForm	returns	the	windowed	Delphi's	form	whose	class	is	identified	by	the	specified	class	name
FormClass.	If	FormClass	is	not	the	name	of	the	class	of	an	existing	form,	FindForm	returns	nil.

FindForm	example:	
begin
__F	:=	FindForm(TMyForm);
__if	F	=	nil	then	
____Application.CreateForm(TMyForm,	F);
__with	F	do	
__begin
____if	WindowState	=	wsMinimized	then	WindowState	:=	wsNormal;
____Show;
__end;
end;

Routine	FindShowForm
Declaration:	function	FindShowForm(FormClass:	TFormClass;	const	Caption:	string):	TForm;

FindShowForm	returns	the	windowed	Delphi's	form	whose	class	is	identified	by	the	specified	class	name
FormClass	and	(or)	window	caption	passed	as	Caption.	If	FormClass	is	not	the	name	of	the	class	of	an
existing	form,	FindShowForm	creates	new	form	by	calling	Application.CreateForm.	For	found	or	created
form	the	Show	method	is	called.

FindShowForm	example:	

procedure	MainForm.ShowFormItemClick(Sender:	TObject);
begin
__FindShowForm(TForm1,	'');
end;

Routine	GetDefaultIniName
Declaration:	function	GetDefaultIniName:	string;

Returns	the	default	name	for	the	application	initialization	file	(INI-file).	Result	string	contains	the	name	of
the	executable	application	with	extension	replaced	by	'.INI'	and	excluding	path	information.	The	result	of
GetDefaultIniName	function	can	be	passed	as	FileName	parameter	to	the	TIniFile	constructor.

GetDefaultIniName	example:	

begin
__...
__IniFile	:=	TIniFile.Create(GetDefaultIniName);
__...
end;

Routine	GetDefaultIniRegKey
Declaration:	function	GetDefaultIniRegKey:	string;

Returns	the	default	name	for	the	application	registry	key.	Result	string	has	next	format:
"HKEY_CURRENT_USER\Software\"	+	<DefCompanyName\>	+	<application	name>	
DefCompanyName	is	global	string	variable,	equal	to	empty	string	by	default.	<application	name>	is
application	EXE-name	without	extension	when	RegUseAppTitle	is	False	(by	default)	and	is	value	of
Application.Title	property	when	RegUseAppTitle	is	True.	The	result	of	GetDefaultIniRegKey	function	can
be	passed	as	FileName	parameter	to	the	TRegIniFile	constructor.

GetDefaultIniRegKey	example:

begin
__...
__RegUseAppTitle	:=	True;
__DefCompanyName	:=	'My	Company';
__...
__RegIniFile	:=	TRegIniFile.Create(GetDefaultIniRegKey);
__...
end;

Routine	GetDefaultSection
Declaration:	function	GetDefaultSection(Component:	TComponent):	string;

The	function	returns	unique	string	for	specified	Component.	This	string	can	be	used,	for	instance,	as	section
name	in	the	TIniFile	(or	TRegIniFile)	object	to	store	specific	component's	properties.

Kind	of	return	value	can	be	understand	from	function's	text	below:

function	GetDefaultSection(Component:	TComponent):	string;
var
__F:	TCustomForm;
__Owner:	TComponent;
begin
__if	Component	<>	nil	then	
__begin
____if	Component	is	TCustomForm	then	
______Result	:=	Component.ClassName
____else	begin
______Result	:=	Component.Name;

______if	Component	is	TControl	then	
______begin
________F	:=	GetParentForm(TControl(Component));
________if	F	<>	nil	then	
__________Result	:=	F.ClassName	+	Result
________else	begin
__________if	TControl(Component).Parent	<>	nil	then
____________Result	:=	TControl(Component).Parent.Name	+	Result;
________end;
______end	else	
______begin
________Owner	:=	Component.Owner;
________if	Owner	is	TForm	then
__________Result	:=	Format('%s.%s',	[Owner.ClassName,	Result]);
______end;
____end;
__end	else	
____Result	:=	'';
end;

GetDefaultSection	example:

var
__Ini:	TIniFile;
__Sect:	string;
begin
__...
__Sect	:=	GetDefaultSection(Bevel1);
__with	Bevel1	do	
__begin
____Ini.WriteInteger(Sect,	'Shape',	Integer(Bevel1.Shape));
____Ini.WriteInteger(Sect,	'Width',	Bevel1.Width);
__end;
end;

Routine	GetUniqueFileNameInDir
Declaration:	function	GetUniqueFileNameInDir(const	Path,	FileNameMask:	string):	string;

The	GetUniqueFileNameInDir	creates	a	unique	(for	specified	directory)	name	for	a	file.	The	filename	is	the
concatenation	of	specified	path	and	strings	formed	from	a	specified	FileNameMask	The	FileNameMask
parameter	MUST	contain	"%d".

GetUniqueFileNameInDir	example:	
FileName	:=	GetUniqueFileNameInDir('C:\TEMP',	'file%d.tmp');

Routine	InstantiateForm
Declaration:	function	InstantiateForm(FormClass:	TFormClass;	var	Reference):	TForm;

When	the	Reference	parameter	is	nil	then	InstantiateForm	creates	a	new	form	of	the	type	specified	by	the
FormClass	parameter	and	assigns	it	to	the	variable	given	by	the	Reference	parameter.	The	owner	of	the	new
form	is	the	Application	object.	Return	value	is	final	value	of	Reference	parameter.	When	the	initial
Reference	value	is	not	nil	then	InstantiateForm	don't	create	new	form	and	simply	return	Reference	as
function	return	value.

InstantiateForm	example:

with	InstantiateForm(TMyForm,	MyForm)	do	
__ShowModal;

Routine	ReadFormPlacement
Declaration:	procedure	ReadFormPlacement(Form:	TForm;	IniFile:	TIniFile;	const	Section:	string;
LoadState,	LoadPosition:	Boolean);

ReadFormPlacement	retrieves	state	(normal,	minimize,	maximize)	and	placement	(size	and	position)	of
Delphi	form	Form	from	an	INI	file	specified	by	IniFile	parameter.

To	store	form's	placement	to	an	INI	file	use	WriteFormPlacement	or	SaveFormPlacement	procedures.

ReadFormPlacement	example:	
ReadFormPlacement(MyMDIChildForm,	IniFile,	MyMDIChildForm.ClassName,	True,	False);

Routine	ReadFormPlacementReg
Declaration:	procedure	ReadFormPlacementReg(Form:	TForm;	IniFile:	TRegIniFile;	const	Section:	string;
LoadState,	LoadPosition:	Boolean);

ReadFormPlacementReg	retrieves	state	(normal,	minimize,	maximize)	and	placement	(size	and	position)	of
Delphi	form	Form	from	the	Windows	95/NT	system	registry.

To	store	form's	placement	to	the	system	registry	use	WriteFormPlacementReg	procedure.

ReadFormPlacementReg	example:	
ReadFormPlacementReg(MyMDIChildForm,	RegIniFile,	MyMDIChildForm.ClassName,	True,	False);

Routine	RestoreFormPlacement
Declaration:	
procedure	RestoreFormPlacement(Form:	TForm;	const	IniFileName:	string);

NOTE!	In	32-bit	Delphi	versions	this	procedure	has	next	syntax:	
procedure	RestoreFormPlacement(Form:	TForm;	const	IniFileName:	string;	UseRegistry:	Boolean);

RestoreFormPlacement	retrieves	state	(normal,	minimize,	maximize)	and	placement	(size	and	position)	of
Delphi	form	Form	from	an	INI	file	specified	by	IniFileName	parameter	(or	from	the	Windows95/NT	system
registry	in	32-bit	Delphi	versions).

To	store	form's	placement	to	an	INI	file	or	system	registry	use	SaveFormPlacement	procedure.

RestoreFormPlacement	example:	
RestoreFormPlacement(MyForm,	GetDefaultIniName);

Routine	RestoreGridLayout
Declaration:	procedure	RestoreGridLayout(Grid:	TCustomGrid;	IniFile:	TIniFile);

Retrieves	grid's	columns	widths	and	positions	(indexes)	from	an	INI	file.	Can	be	used	for	any	TCustomGrid
descendants	such	as	TStringGrid,	TDrawGrid,	TRxDrawGrid	or	other.	To	save	grid's	layout	to	an	INI	file
use	SaveGridLayout	procedure.	You	can	call	this	procedure	in	the	OnRestorePlacement	event	handler	of	the

TFormPlacement,	TFormStorage	components.

RestoreGridLayout	example:	
RestoreGridLayout(DrawGrid1,	Placement.IniFile);

Routine	RestoreGridLayoutReg
Declaration:	procedure	RestoreGridLayoutReg(Grid:	TCustomGrid;	IniFile:	TRegIniFile);

Retrieves	grid's	columns	widths	and	positions	(indexes)	from	the	Windows95/NT	system	registry.	Can	be
used	for	any	TCustomGrid	descendants	such	as	TStringGrid,	TDrawGrid,	TRxDrawGrid	or	other.	To	save
grid's	layout	to	the	system	registry	use	SaveGridLayoutReg	procedure.	You	can	call	this	procedure	in	the
OnRestorePlacement	event	handler	of	the	TFormPlacement,	TFormStorage	components	when	its
UseRegistry	property	is	True.

RestoreGridLayoutReg	example:	
RestoreGridLayoutReg(DrawGrid1,	Placement.RegIniFile);

Routine	RestoreMDIChildren
Declaration:	procedure	RestoreMDIChildren(MainForm:	TForm;	IniFile:	TIniFile);

This	procedure	restores	from	an	INI-file	set	and	placements	of	MDI-child	forms	in	MDI	application.	Use
RestoreMDIChildren	with	SaveMDIChildren	to	store	all	child	forms	in	INI-file.	You	must	register	all	MDI-
child	form	classes	by	RegisterClass	or	RegisterClasses	procedure	to	use	these	classes	in	SaveMDIChildren
and	RestoreMDIChildren	procedures.

RestoreMDIChildren	example:	
RestoreMDIChildren(MainForm,	IniFile);
...
initialization
__RegisterClasses([TChildForm1,	TChildForm2]);
end.

Routine	RestoreMDIChildrenReg

Declaration:	procedure	RestoreMDIChildrenReg(MainForm:	TForm;	IniFile:	TRegIniFile);

This	procedure	restores	from	Windows	System	Registry	set	and	placements	of	MDI-child	forms	in	MDI
application.

Use	RestoreMDIChildrenReg	with	SaveMDIChildrenReg	to	store	all	child	forms	in	Registry.

You	must	register	all	MDI-child	form	classes	by	RegisterClass	or	RegisterClasses	procedure	to	use	these
classes	in	SaveMDIChildrenReg	and	RestoreMDIChildrenReg	procedures.

RestoreMDIChildrenReg	example:	
RestoreMDIChildrenReg(MainForm,	RegIniFile);

...
initialization
__RegisterClasses([TChildForm1,	TChildForm2]);
end.

Routine	SaveFormPlacement
Declaration:	
procedure	SaveFormPlacement(Form:	TForm;	const	IniFileName:	string);

NOTE!	In	32-bit	Delphi	versions	this	procedure	has	next	syntax:

procedure	SaveFormPlacement(Form:	TForm;	const	IniFileName:	string;	UseRegistry:	Boolean);

SaveFormPlacement	writes	state	(normal,	minimize,	maximize)	and	placement	(size	and	position)	of	Delphi
form	Form	to	an	INI	file	specified	by	IniFileName	parameter	(or	to	the	Windows95/NT	system	registry	in
32-bit	Delphi	versions).

To	retrieve	form's	placement	from	an	INI	file	or	system	registry	use	RestoreFormPlacement	procedure.

SaveFormPlacement	example:	
SaveFormPlacement(MyForm,	GetDefaultIniName);

Routine	SaveGridLayout
Declaration:	procedure	SaveGridLayout(Grid:	TCustomGrid;	IniFile:	TIniFile);

Write	grid's	columns	widths	and	positions	(indexes)	to	an	INI	file.	Can	be	used	for	any	TCustomGrid
descendants	such	as	TStringGrid,	TDrawGrid,	TRxDrawGrid	or	other.	To	retrieve	grid's	layout	from	an	INI
file	use	RestoreGridLayout	procedure.	You	can	call	this	procedure	in	the	OnSavePlacement	event	handler	of
the	TFormPlacement,	TFormStorage	components.

SaveGridLayout	example:	
SaveGridLayout(DrawGrid1,	Placement.IniFile);

Routine	SaveGridLayoutReg
Declaration:	procedure	SaveGridLayoutReg(Grid:	TCustomGrid;	IniFile:	TRegIniFile);

Writes	grid's	columns	widths	and	positions	(indexes)	to	the	Windows95/NT	system	registry.	Can	be	used	for
any	TCustomGrid	descendants	such	as	TStringGrid,	TDrawGrid,	TRxDrawGrid	or	other.	To	retrieve	grid's
layout	from	the	system	registry	use	RestoreGridLayoutReg	procedure.	You	can	call	this	procedure	in	the
OnSavePlacement	event	handler	of	the	TFormPlacement,	TFormStorage	components	when	its	UseRegistry
property	is	True.

SaveGridLayoutReg	example:	
SaveGridLayoutReg(DrawGrid1,	Placement.RegIniFile);

Routine	SaveMDIChildren
Declaration:	procedure	SaveMDIChildren(MainForm:	TForm;	IniFile:	TIniFile);

This	procedure	stores	in	INI-file	set	and	placements	of	opened	MDI-child	forms	in	MDI	application.	Use
SaveMDIChildren	with	RestoreMDIChildren	to	open	all	child	forms	stored	by	SaveMDIChildren.	You
must	register	all	MDI-child	form	classes	by	RegisterClass	or	RegisterClasses	procedure	to	use	these	classes
in	SaveMDIChildren	and	RestoreMDIChildren	procedures.

SaveMDIChildren	example:	
SaveMDIChildren(MainForm,	IniFile);

Routine	SaveMDIChildrenReg
Declaration:	procedure	SaveMDIChildrenReg(MainForm:	TForm;	IniFile:	TRegIniFile);

This	procedure	stores	in	Windows	System	Registry	set	and	placements	of	opened	MDI-child	forms	in	MDI
application.

Use	SaveMDIChildrenReg	with	RestoreMDIChildrenReg	to	open	all	child	forms	stored	by
SaveMDIChildrenReg.

You	must	register	all	MDI-child	form	classes	by	RegisterClass	or	RegisterClasses	procedure	to	use	these
classes	in	SaveMDIChildrenReg	and	RestoreMDIChildrenReg	procedures.

SaveMDIChildrenReg	example:

SaveMDIChildrenReg(MainForm,	RegIniFile);

Routine	ShowDialog
Declaration:	function	ShowDialog(FormClass:	TFormClass):	Boolean;

ShowDialog	creates	Delphi	form	of	the	type	specified	by	the	FormClass	parameter	and	shows	new	form	as
a	modal	form	by	using	ShowModal	method.	When	the	modal	form	is	closed,	ShowDialog	destroys	the	form
by	using	Free	method.

ShowDialog	returns	True	if	the	ModalResult	property	of	the	form	is	mrOk	or	mrYes,	another	ShowDialog
returns	False.

ShowDialog	example:	
var
__Ok:	Boolean;
begin
__Ok	:=	ShowDialog(TAboutDlg);
end;

Routine	WriteFormPlacement
Declaration:	procedure	WriteFormPlacement(Form:	TForm;	IniFile:	TIniFile;	const	Section:	string);

WriteFormPlacement	writes	state	(normal,	minimize,	maximize)	and	placement	(size	and	position)	of
Delphi	form	Form	to	an	INI	file	specified	by	IniFileName	parameter.	To	retrieve	form's	placement	from	an
INI	file	use	ReadFormPlacement	procedure.

WriteFormPlacement	example:	
WriteFormPlacement(MyForm,	IniFile,	MyForm.ClassName);

Routine	WriteFormPlacementReg
Declaration:	procedure	WriteFormPlacementReg(Form:	TForm;	IniFile:	TRegIniFile;	const	Section:	string);

WriteFormPlacementReg	writes	state	(normal,	minimize,	maximize)	and	placement	(size	and	position)	of
Delphi	form	Form	to	the	Windows95/NT	system	registry	key	specified	by	IniFile	parameter.	To	retrieve
form's	placement	from	the	system	registry	use	ReadFormPlacementReg	procedure.

WriteFormPlacementReg	example:	
WriteFormPlacementReg(MyForm,	RegIniFile,	MyForm.ClassName);

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
BDE	Utilities BdeUtils TDBLocate

Description:
Use	TDBLocate	to	search	a	BDE-dataset	specified	by	DataSet	property	for	a	specific	record	and	position
the	cursor	on	it.

After	setting	DataSet	property	you	can	call	Locate	method	which	has	parameter	KeyField	specified	field
name	on	which	to	search.

When	you	search	on	non-BDE	data	source,	use	TLocateObject	class	instead.

TDBLocate	uses	the	fastest	possible	method	to	locate	matching	records.	If	DataSet	specifies	the	TTable
object	and	the	search	field	is	a	key	field	and	the	IndexSwitch	property	is	True,	TDBLocate	uses	the	index.
Otherwise	TDBLocate	creates	a	filter	for	the	search	if	applicable	or	use	full	search	throw	dataset	otherwise.

NOTE.	In	Delphi	2.0	or	higher	you	can	use	standard	TDataSet.Locate	method	instead.

Property	DataSet
Declaration:	DataSet:	TDataSet;

Specifies	the	dataset	(table	or	query)	for	which	Locate	method	will	search	for	specified	value.	Set	this
property	and	IndexSwitch	property	to	appropriate	values	before	call	Locate	method.

Routine	AsyncQrySupported
Declaration:	function	AsyncQrySupported(Database:	TDatabase):	Boolean;

Returns	True	if	database	driver	specified	by	Database	parameter	supports	asynchronous	query	execution.	In
32-bit	Delphi	versions	you	can	use	OnServerYield	event	when	True	returned	by	AsyncQrySupported	(for
example,	to	break	query	execution	in	multi-threaded	application).	Currently,	only	Sybase	driver	supports
asynchronous	query	execution.

AsyncQrySupported	example:

When	you	execute	your	queries	in	separate	thread,	you	can	set	OnServerYield	event	handler,	for	example,
to	end	query	processing.

You	can	check	database	for	supporting	yields	control	during	query	processing	to	enable	or	disable
appropriate	menu	item:

CancelQueryItem.Visible	:=	AsyncQrySupported(Database);

Routine	CheckOpen
Declaration:	function	CheckOpen(Status:	DBIResult):	Boolean;

Checks	the	result	of	a	call	to	the	Borland	Database	Engine	(BDE).	Call	CheckOpen	to	determine	if	a	call	to
the	BDE	returns	an	error	when	an	attempt	is	made	to	access	a	table.	Status	is	the	return	result	of	a	previous
call	to	the	BDE.	CheckOpen	returns	True	if	there	is	access	is	successful.	If	Status	indicates	insufficient	table
rights	when	accessing	a	Paradox	table,	CheckOpen	calls	the	database	session’s	GetPassword	method	to
prompt	the	user	for	a	password.	If	the	dialog	is	successful,	CheckOpen	returns	True.	Otherwise	CheckOpen
returns	False,	indicating	that	dataset	access	failed.

>	CheckOpen	example:

function	TFieldList.CreateHandle:	HDBICur;
var
__STableName:	PChar;
begin
__STableName	:=	StrAlloc(Length(FTableName)	+	1);
__try
____while	not	CheckOpen(DbiOpenFieldList(DBHandle,	AnsiToNative(DBLocale,	
______FTableName,	STableName,	Length(FTableName)),	nil,	False,	Result))	do
____{Retry};
__finally
____StrDispose(STableName);
__end;
end;

Routine	ConvertStringToLogicType
Declaration:	procedure	ConvertStringToLogicType(Locale:	TLocale;	FldLogicType:	Integer;	FldSize:
Word;	const	FldName,	Value:	String;	Buffer:	Pointer);

ConvertStringToLogicType	translates	string	specified	by	Value	parameter	into	BDE	logical	type	specified
by	FldLogicType.	You	can	use	translated	value	when	you	call	BDE	API	functions	directly.

You	must	allocate	memory	for	Buffer	to	retrieve	translated	value.	FldSize	parameter	specifies	the	maximum
number	of	bytes	to	copy	to	the	buffer.

ConvertStringToLogicType	example:

var	DataSet:	TDataSet;	Fld:	TField;	Buffer:	Pointer;	FldName:	string;	
begin
__...
__Fld	:=	DataSet.FieldByName(FldName);
__GetMem(Buffer,	Fld.DataSize);
__try
____ConvertStringToLogicType(DataSet.Locale,	FieldLogicMap(Fld.DataType),	
______Fld.DataSize,	FldName,	Value,	Buffer);
____{	use	the	value	in	Buffer	}
__finally
____FreeMem(Buffer,	Fld.DataSize);
__end;
end;

Routine	CurrentRecordDeleted
Declaration:	function	CurrentRecordDeleted(DataSet:	TBDEDataSet):	Boolean;

Determines	if	the	current	record	of	DataSet	is	deleted.	Applicable	only	when	soft	delete	is	supported
(dBASE	and	FoxPro	only)	and	soft	deletes	is	set	to	True	by	calling	DatSetShowDeleted	procedure.

CurrentRecordDeleted	example:

if	CurrentRecordDeleted(Table1)	then
begin
__{	undelete	record	}
end;

Routine	DataSetFindValue
Declaration:	function	DataSetFindValue(DataSet:	TDataSet;	const	Value,	FieldName:	string):	Boolean;

Searches	the	dataset	for	a	specified	record	and	makes	that	record	the	current	record.

Call	DataSetFindValue	to	search	a	dataset	for	a	specific	record	and	position	the	cursor	on	it.	FieldName	is	a
string	containing	a	field	name	on	which	to	search.	Value	is	a	value	to	match	in	the	key	field.

DataSetFindValue	returns	True	if	it	finds	a	matching	record,	and	makes	that	record	the	current	one.
Otherwise	DataSetFindValue	returns	False.

DataSetFindValue	example:

var	DataSet:	TDataSet;	FieldName:	string;	Found:	Boolean;
begin
__...
__Found	:=	DataSetFindValue(DataSet,	DataSet.FieldByName(FieldName).AsString,	FieldName);
__if	not	Found	then	
____MessageDlg('Record	not	found',	mtError,	[mbOk],	0);	
end;

Routine	DataSetPositionStr
Declaration:	function	DataSetPositionStr(DataSet:	TDataSet):	string;

Retrieves	string	with	current	record	number	and	full	records	count	in	DataSet	in	following	format:
<record_no>	:	<record_count>.

This	function	is	supported	for	Paradox	and	DBase	drivers	only.

DataSetPositionStr	example:

procedure	TMDIChild.DataSource1DataChange(Sender:	TObject;	Field:	TField);
begin
__Panel1.Caption	:=	DataSetPositionStr(DataSource1.DataSet);

end;

Routine	DataSetRecNo
Declaration:	function	DataSetRecNo(DataSet:	TDataSet):	Longint;

This	function	retrieves	the	sequence	(for	Paradox	and	In-Memory	tables)	or	physical	(for	DBase	tables)
number	of	the	current	record	in	the	dataset	DataSet.	Applications	might	use	this	function	with	RecordCount
property	to	iterate	through	all	the	records	in	a	dataset,	though	typically	record	iteration	is	handled	with	calls
to	First,	Last,	MoveBy,	Next,	and	Prior.

DataSetRecNo	example:

RecNo	:=	DataSetRecNo(Table1);

Routine	DataSetShowDeleted
Declaration:	procedure	DataSetShowDeleted(DataSet:	TBDEDataSet;	Show:	Boolean);

Toggles	mode	to	show	or	hide	deleted	records	in	DataSet.	Applicable	only	when	soft	delete	is	supported
(dBASE	and	FoxPro	only).

DataSetShowDeleted	example:	
DataSetShowDeleted(Table1,	True);

Routine	DeleteRange
Declaration:	procedure	DeleteRange(Table:	TTable;	IndexFields:	array	of	const;	FieldValues:	array	of
const);

Deletes	from	Table	all	records	specified	by	the	key	values	FieldValues.	Table	must	have	an	index	on	fields
specified	by	IndexFields	parameters.

DeleteRange	example:	
DeleteRange(Table1,	['ORDER_ID',	'CUSTOMER_NO'],	[1,	255]);

Routine	ExecuteQuery
Declaration:	procedure	ExecuteQuery(const	DbName,	QueryText:	string);

Executes	the	SQL	statement	QueryText	in	the	database	specified	by	DbName	parameter.

ExecuteQuery	example:	
ExecuteQuery('DBDEMOS',	'DELETE	FROM	CUSTOMER	WHERE	CustNo	=	2135');

Routine	ExportDataSet
Declaration:	procedure	ExportDataSet(Source:	TDataSet;	DestTable:	TTable;	TableType:	TTableType;	const

AsciiCharSet:	string;	AsciiDelimited:	Boolean;	MaxRecordCount:	Longint);

This	procedure	exports	data	from	data	source	specified	by	Source	parameter	to	the	table	specified	by
DestTable	parameter.	Function	create	the	destination	table	based	on	the	structure	of	the	source	data	set.	If
the	destination	already	exists,	the	function	will	delete	it,	and	replace	it	with	the	new	copy	of	the	source.

For	export	into	ASCII-format	you	can	specify	destination	character	set	by	AsciiCharSet	parameter	and
fixed	or	delimited	(varying)	format	by	AsciiDelimited	parameter.	RecordCount	parameter	specifies	the
maximum	number	of	records	that	are	exported	to	the	destination	table	when	function	is	called.	If	zero,	all
records	are	added,	beginning	with	the	first	record	in	Source.	

ExportDataSet	example:	
var	SourceDataSet:	TDataSet;	DestName,	CharSet:	string;
begin
__{...}
__if	(SourceDataSet	<>	nil)	then	
__begin
____if	SourceDataSet.Active	then	
______SourceDataSet.CheckBrowseMode;
____if	(SourceDataSet	is	TTable)	then
______DestName	:=	ExtractFileName(TTable(SourceDataSet).TableName)
____else	begin
______if	not	SourceDataSet.Active	then	DBError(SDataSetClosed);
________DestName	:=	'Query';
____end;
____DestName	:=	ChangeFileExt(DestName,	'.TXT');
__end;
__DestTable.TableName	:=	DestName;
__ExportDataSet(SourceDataSet,	DestTable,	ttASCII,	'db866ru0',	True,	0);
__MessageDlg(Format('Table	%s	successfully	created.',	[DestTable.TableName]),	
____mtInformation,	[mbOk],	0);
end;

Routine	FetchAllRecords
Declaration:	procedure	FetchAllRecords(DataSet:	TDataSet);

The	FetchAllRecords	procedure,	when	used	with	a	query	against	a	server	database,	forces	the	server	to
release	all	intermediate	locks	and	reads	the	entire	result	set.

In	Delphi	2.x	or	higher,	use	TDataset.FetchAll	method	instead.

FetchAllRecords	example:

__Query1.Open;
__try
____FetchAllRecords(Query1);
____{	working	with	query	result	set	}
__finally
____Query1.Close;
__end;

Routine	FieldLogicMap
Declaration:	function	FieldLogicMap(FldType:	TFieldType):	Integer;

Returns	BDE	logical	type	identifier	for	the	specified	Delphi	database	field	type.

FieldLogicMap	example:	
var
__I:	Integer;
__Fld:	TField;
begin
__...
__I	:=	FieldLogicMap(Fld.DataType);
end;

Routine	GetAliasPath
Declaration:	function	GetAliasPath(const	AliasName:	string):	string;

Retrieves	physical	path	for	BDE	alias	specified	by	AliasName	parameter.	If	specified	database	is	SQL-
bases	database,	the	function	returns	server	name	as	result.

>	GetAliasPath	example:	
...
S	:=	Format('Database	path:	%s',	GetAliasPath(Database.AliasName));
...

Routine	GetBDEDirectory
Declaration:	function	GetBDEDirectory:	string;

Retrieves	the	path	of	the	Borland	Database	Engine	(BDE)	directory.	The	BDE	directory	contains	all	BDE
DLLs.

>	GetBDEDirectory	example:	
ShowMessage(Format('BDI	installed	at	%s',	[GetBDEDirectory]));

Routine	InitRSRun
Declaration:	procedure	InitRSRun(Database:	TDatabase;	const	ConName:	string;	ConType:	Integer;	const
ConServer:	string);

Initializes	Report	Smith	runtime	by	updating	RPTSMITH.CON	file.

ConName	parameter	specifies	connection	name.	You	can	use	empty	string	as	this	parameter	to	use
application	EXE-name	as	connection	name.	ConType	is	a	connection	type,	defined	in	REPORT.PAS	unit
(i.e.	ctIDAPIDBase).	ConServer	specifies	server	name,	for	example,	'PARADOX'	or	'IBLOCAL'.

InitRSRun	example:

procedure	TMainForm.FormCreate(Sender:	TObject);
begin
__InitRSRUN(Database,	'',	ctIDAPIParadox,	'PARADOX');
end;

Routine	IsBookmarkStable
Declaration:	function	IsBookmarkStable(DataSet:	TDataSet):	Boolean;

Return	True,	if	specified	DataSet	supports	stable	bookmarks.	Stable	bookmarks	are	those	that	remain
unchanged	after	another	user	has	modified	the	table.	For	example,	return	value	is	True	for	Paradox	tables
having	a	primary	key,	but	False	for	Paradox	heap	tables.

IsBookmarkStable	example:

BM	:=	Table1.GetBookmark;
try
__{...}
__if	IsBookmarkStable(Table1)	then	
____SetToBookmark(Table1,	BM);	{	no	exceptions	raised	}
__finally
____Table1.FreeBookmark(BM);
end;

Routine	PackTable
Declaration:	procedure	PackTable(Table:	TTable);

Packs	the	specified	table,	i.e	deletes	unused	records	from	a	Paradox	or	dBase	table.	This	function	does	not
work	with	SQL	databases.

PackTable	example:

PackTable(Table1);

Routine	RestoreIndex
Declaration:	procedure	RestoreIndex(Table:	TTable);

Restores	TTable.IndexFieldNames	property	after	calling	SetIndex	procedure.	It's	important	to	use	SetIndex
and	RestoreIndex	in	conjunction.	>	RestoreIndex	example:

SetIndex(Table1,	'NAME');

try
__...
finally
__RestoreIndex(Table1);
end;

Routine	SetIndex
Declaration:	procedure	SetIndex(Table:	TTable;	const	IndexFieldNames:	string);

Use	SetIndex	specify	an	alternative	index	for	a	table	by	setting	IndexFieldNames	property.	Use	this
procedure	only	with	RestoreIndex:

SetIndex(Table1,	'NAME');
try
__...
finally
__RestoreIndex(Table1);
end;

SetIndex	example:

SetIndex(Table1,	'NAME');
try
__...
finally
__RestoreIndex(Table1);
end;

Routine	SetToBookmark
Declaration:	function	SetToBookmark(ADataSet:	TDataSet;	ABookmark:	TBookmark):	Boolean;

Returns	dataset	specified	by	the	ADataSet	parameter	to	a	bookmark	previously	created	by
GetBookmark	method.	SetToBookmark	returns	True	if	the	call	was	successful,	otherwise	it	retuqrns	False.
Note:	If	the	bookmark	is	unstable,	the	cursor	may	be	in	an	unexpected	position.

SetToBookmark	example:	
BM	:=	Table1.GetBookmark;
try
__{...}
__SetToBookmark(Table1,	BM);	{	no	exceptions	raised	}
finally
__Table1.FreeBookmark(BM);
end;

Routine	TransActive
Declaration:	function	TransActive(Database:	TDatabase):	Boolean;

Indicates	whether	a	database	transaction	is	in	progress	or	not.	Use	this	function	to	determine	if	a	database
transaction	is	currently	in	progress.	Return	value	is	True	if	a	transaction	is	in	progress,	False	otherwise.

TransActive	example:	
if	TransActive(Database)	then	
__Database.Commit;

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Unit	BdeUtils	
Property
DataSet

Routine
AsyncQrySupported	
CheckOpen	
ConvertStringToLogicType	
CurrentRecordDeleted	
DataSetFindValue	
DataSetPositionStr	
DataSetRecNo	
DataSetShowDeleted	
DeleteRange	
ExecuteQuery	
ExportDataSet	
FetchAllRecords	
FieldLogicMap	
GetAliasPath	
GetBDEDirectory	
InitRSRun	
IsBookmarkStable	
PackTable	
RestoreIndex	
SetIndex	
SetToBookmark	
TransActive

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
Locate	Object DBUtils TLocateObject

Description:
Use	TLocateObject	to	search	a	dataset	specified	by	DataSet	property	for	a	specific	record	and	position	the
cursor	on	it.

After	setting	DataSet	property	you	can	call	Locate	method	which	has	parameter	KeyField	specified	field
name	on	which	to	search.

When	you	search	on	BDE	data	source,	use	TDBLocate	class	(inherits	from	TLocateObject)	instead.

NOTE.	In	Delphi	2.0	or	higher	you	can	use	standard	TDataSet.Locate	method	instead.

Property	DataSet
Declaration:	DataSet:	TDataSet;

Specifies	the	dataset	(table	or	query)	for	which	Locate	method	will	search	for	specified	value.	Set	this
property	and	IndexSwitch	property	to	appropriate	values	before	call	Locate	method.

Property	IndexSwitch
Declaration:	IndexSwitch:	Boolean;

If	the	dataset	specified	by	DataSet	property	is	TTable	object	and	search	field	is	indexed,	TDBLocate	can	use
the	index.	This	property	determines	whether	or	not	table	will	switch	to	the	index	corresponding	to	KeyField
parameter	of	Locate	method.	When	this	property	is	False,	index	is	used	only	when	it's	active	index.

This	property	used	by	TDBLocate	class	only.	Setting	this	property	in	TLocateObject	class	has	no	effect.

Method	Locate
Declaration:	function	Locate(const	KeyField,	KeyValue:	string;	Exact,	CaseSensitive:	Boolean):	Boolean;

Searches	the	dataset	specified	by	DataSet	property	for	a	specific	record	and	position	the	cursor	on	it.
KeyField	parameter	is	a	string	specified	field	name	on	which	to	search.	KeyValue	is	a	string	containing	the
value	to	match	in	the	key	field.

If	CaseSensitive	parameter	is	False,	then	Locate	ignores	case	when	matching	string	fields.	
If	Exact	parameter	is	False,	then	Locate	finds	the	first	record	that	fulfills	at	least	some	initial	part	of	the
KeyValue	criteria	for	record	matching.	

Locate	returns	True	if	it	finds	a	matching	record,	and	makes	that	record	the	current	one.	Otherwise	Locate
returns	False.

Const	ServerDateFmt

Declaration:	ServerDateFmt:	string[50]	=	'''"''mm''/''dd''/''yyyy''"''';;

ServerDateFmt	variable	specifies	date	format	used	in	SQL	queries	by	function	FormatSQLDateRange,
FormatSQLCondition	and	FormatAnsiSQLCondition.	You	can	assign	another	value	to	this	variable
according	to	date	format	used	by	your	SQL	Server.

DBUTILS.PAS	unit	also	contains	additional	constants	that	can	be	assigned	to	the	ServerDateFmt	variable:

•	sdfStandard16,	sdfStandard32	-	date	format	for	STANDARD	driver	(local	SQL);
•	sdfOracle	-	date	format	for	using	with	Oracle	SQL-server;
•	sdfInterbase	-	date	format	for	using	with	Interbase	SQL-server.

Routine	AssignRecord
Declaration:	procedure	AssignRecord(Source,	Dest:	TDataSet;	ByName:	Boolean);

AssignRecord	copies	values	of	fields	from	current	record	of	source	dataset	specified	by	Source	parameter	to
the	current	records	of	dataset	Dest.	Destination	dataset	must	be	in	edit	or	insert	mode.

When	ByName	parameter	is	True,	then	field	values	will	be	set	from	Source	to	Dest	based	on	their	names	in
the	both	datasets.	If	ByName	is	False,	field	values	will	be	set	based	on	the	order	in	which	fields	are	defined
in	the	Source	dataset.

AssignRecord	example:

MemoryTable1.Append;
AssignRecord(SourceDataSet,	MemoryTable1,	True);
MemoryTable1.Post;

Routine	CheckRequiredField
Declaration:	procedure	CheckRequiredField(Field:	TField);

Checks	if	a	field	Field	has	a	nonblank	value.	Calling	this	function	with	a	null	value	of	Field	will	cause	an
exception	to	be	raised.

CheckRequiredField	example:	
CheckRequiredField(InventoryTableACCOUNT_NO);

Routine	ConfirmDataSetCancel
Declaration:	procedure	ConfirmDataSetCancel(DataSet:	TDataSet);

The	ConfirmDatasetCancel	procedure	verifies	that	the	dataset's	state,	and	if	the	dataset's	State	property	is
dsEdit	or	dsInsert	displays	a	message	box	which	asks	user	for	confirmation	that	the	pending	changes	will	be
saved	to	the	database	or	will	be	cancelled.	If	user	selected	"Yse"	(save)	in	a	message	box,	the	dataset's	Post
method	is	called	to	post	any	pending	changes,	if	user	selected	"No",	the	dataset's	Cancel	method	is	called,
otherwise	(if	the	"Cancel"	button	was	selected	by	user)	the	standard	Abort	procedure	is	called	to	generate
EAbort	exception.

ConfirmDataSetCancel	example:

procedure	TForm1.FormCloseQuery(Sender:	TObject;	var	CanClose:	Boolean);
begin
__ConfirmDataSetCancel(Table1);
end;

Routine	ConfirmDelete
Declaration:	function	ConfirmDelete:	Boolean;

The	ConfirmDelete	procedure	displays	a	message	box	which	asks	user	for	confirmation	that	the	record	from
dataset	should	really	be	deleted.	The	function	returns	True	if	user	selected	"Yes"	button	in	a	message	box.
Otherwise	the	function	returns	False.

ConfirmDelete	example:

if	ConfirmDelete	then
__Table1.Delete;

Routine	DataSetSortedSearch
Declaration:	function	DataSetSortedSearch(DataSet:	TDataSet;	const	Value:	string;	const	FieldName:
string;	Unique,	IgnoreCase:	Boolean):	Boolean;

The	DataSeetSortedSearch	procedure	searches	a	dataset	for	value	in	the	field	FieldName.	

DataSetSortedSearch	example:	
if	not	DataSetSortedSearch(DataSet,	'Smit',	'Client_Name',	False,	True)	then
__MessageDlg('Record	not	found',	mtError,	[mbOk],	0);
__...

Routine	FormatAnsiSQLCondition
Declaration:	function	FormatAnsiSQLCondition(const	FieldName,	Operator,	Value:	string;	FieldType:
TFieldType;	Exact:	Boolean):	string;

FormatAnsiSQLCondition	formats	an	ANSI	SQL	condition	to	the	BDE	equivalent.

FormatAnsiSQLCondition	example:	
rxQuery1.MacroByName('CONTRACT_NO').AsString	:=
FormatSQLCondition('CONTRACTS."CONTRACT_NO"',	'',	'N%4596*',	ftString,	True);

Routine	FormatSQLCondition
Declaration:	function	FormatSQLCondition(const	FieldName,	Operator,	Value:	string;	FieldType:
TFieldType;	Exact:	Boolean):	string;

FormatSQLCondition	formats	an	SQL	condition	to	the	BDE	equivalent.

FormatSQLCondition	example:	
rxQuery1.MacroByName('CONTRACT_NO').AsString	:=	
FormatSQLCondition('CONTRACTS."CONTRACT_NO"',	'',	'N-4596?',	ftString,	True);

Routine	FormatSQLDateRange
Declaration:	function	FormatSQLDateRange(Date1,	Date2:	TDateTime;	const	FieldName:	string):	string;

FormatSQLDateRange	checks	a	fieldname	for	a	date	period	within	Date1	and	Date2.

FormatSQLDateRange	example:	
FormatSQLDateRange(0,	Date1,	'CONTRACTS."ACTIVE_FROM"')
Date1	=	01.01.95
Result	=	'CONTRACTS."ACTIVE_FROM"	<	"01/01/1995"'

Routine	RefreshQuery
Declaration:	procedure	RefreshQuery(Query:	TDataSet);

The	RefreshQuery	procedure	for	a	dataset	Query	flushes	local	buffers	and	refetches	data	for	an	open
dataset.	You	can	use	this	procedure	to	update	the	display	in	data-aware	controls	if	you	think	that	the
underlying	data	has	changed	because	other	applications	have	simultaneous	access	to	the	data	used	in	your
application.

RefreshQuery	example:

RefreshQuery(Query1);

Routine	RestoreFields
Declaration:	procedure	RestoreFields(DataSet:	TDataSet;	IniFile:	TIniFile;	RestoreVisible:	Boolean);

RestoreFields	procedure	restores	widths	(in	pixels)	and	indexes	of	dataset's	fields	from	the	INI-file	
specified	in	IniFile	parameter,	previously	stored	by	SaveFields	procedure.	Can	be	used	to	save	and	restore
field's	parameters	changed	by	user,	for	example,	in	a	DBGrid	component.

RestoreFields	example:	
procedure	RestoreLayout;
var
__IniFile:	TIniFile;
begin
__IniFile	:=	TIniFile.Create(FormStorage.IniFileName);
__try
____RestoreFields(DataSet,	IniFile);
__finally
____IniFile.Free;
__end;
end;

Routine	RestoreFieldsReg
Declaration:	procedure	RestoreFieldsReg(DataSet:	TDataSet;	IniFile:	TRegIniFile;	RestoreVisible:
Boolean);

RestoreFieldsReg	procedure	restores	widths	(in	pixels)	and	indexes	of	dataset's	fields	from	the	Windows

System	Registry	key	specified	in	IniFile	parameter,	previously	stored	by	SaveFieldsReg	procedure.	Can	be
used	to	save	and	restore	field's	parameters	changed	by	user,	for	example,	in	a	DBGrid	component.

RestoreFieldsReg	example:	
uses	Registry,	Placemnt,	DBUtils;
...

procedure	RestoreDSLayout;
var
__RegIniFile:	TRegIniFile;
begin
__IniFile	:=	TRegIniFile.Create(FormStorage.IniFileName);
__try
____RestoreFieldsReg(DataSet,	RegIniFile);
__finally
____RegIniFile.Free;
__end;
end;

Routine	SaveFields
Declaration:	procedure	SaveFields(DataSet:	TDataSet;	IniFile:	TIniFile);

SaveFields	procedure	saves	widths	(in	pixels)	and	indexes	of	dataset's	fields	to	the	INI-file	specified	in
IniFile	parameter.

Can	be	used	to	store	field's	parameters	changed	by	user,	for	example,	in	a	DBGrid	component.	To	restore
widths	and	indexes	of	fields	use	RestoreFields	procedure.

SaveFields	example:

procedure	TGridForm.FormStorageSavePlacement(Sender:	TObject);
var
__DataSet:	TDataSet;	I:	Integer;
begin
__for	I	:=	0	to	TabSet.Tabs.Count	-	1	do	
__begin
____DataSet	:=	DataSetByIndex(TabSet.TabIndex);
____if	(DataSet	<>	nil)	and	(DataSet.Active)	then
______SaveFields(DataSet,	FormStorage.IniFile);
__end;
end;

Routine	SaveFieldsReg
Declaration:	procedure	SaveFieldsReg(DataSet:	TDataSet;	IniFile:	TRegIniFile);

SaveFieldsReg	procedure	saves	widths	(in	pixels)	and	indexes	of	dataset's	fields	to	the	Windows

System	Registry	in	the	key	specified	in	IniFile	parameter.	Can	be	used	to	store	field's	parameters	changed
by	user,	for	example,	in	a	DBGrid	component.	To	restore	widths	and	indexes	of	fields	use	RestoreFieldsReg
procedure.	

SaveFieldsReg	example:

procedure	TGridForm.FormStorageSavePlacement(Sender:	TObject);
var
__DataSet:	TDataSet;	I:	Integer;
begin
__for	I	:=	0	to	TabSet.Tabs.Count	-	1	do	
__begin
____DataSet	:=	DataSetByIndex(TabSet.TabIndex);
______if	(DataSet	<>	nil)	and	(DataSet.Active)	then
________if	FormStorage.UseRegistry	then
______SaveFieldsReg(DataSet,	FormStorage.RegIniFile)
____else
______SaveFields(DataSet,	FormStorage.IniFile);
__end;
end;

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Unit	DBUtils

Property
DataSet	
IndexSwitch

Method
Locate

Const
ServerDateFmt

Routine
AssignRecord	
CheckRequiredField	
ConfirmDataSetCancel	
ConfirmDelete	
DataSetSortedSearch	
FormatAnsiSQLCondition	
FormatSQLCondition	
FormatSQLDateRange	
RefreshQuery	
RestoreFields	
RestoreFieldsReg	
SaveFields	
SaveFieldsReg

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

UNIT	BoxProcs

Routine	BoxDragOver
Routine	BoxMoveAllItems
Routine	BoxMoveFocusedItem
Routine	BoxMoveFocusedItem

This	is	the	low	level	code	to	manipulate	the	dual	dialog	box.

Routine	BoxDragOver
Declaration:	procedure	BoxDragOver(List:	TCustomListBox;	Source:	TObject;	X,	Y:	Integer;	State:
TDragState;	var	Accept:	Boolean;	Sorted:	Boolean);

This	is	Intended	to	be	used	in	the	OnDragOver	event	handlers.

BoxDragOver	example:	
procedure	TMyForm.MyListDragOver(Sender,	Source:	TObject;	X,	Y:	Integer;	State:	TDragState;	var
Accept:	Boolean);
begin
__BoxDragOver(MyList,	Source,	X,	Y,	State,	Accept,	MyList.Sorted);
__if	State	=	dsDragLeave	then
____(Source	as	TListBox).DragCursor	:=	crDrag;
__if	(State	=	dsDragEnter)	and	((Source	as	TListBox).SelCount	>	1)	then
____(Source	as	TListBox).DragCursor	:=	crMultiDrag;
end;

Routine	BoxMoveAllItems
Declaration:	procedure	BoxMoveAllItems(SrcList,	DstList:	TCustomListBox);

Copies	all	items	from	SrcList	to	the	DstList	and	then	clears	the	SrcList.

BoxMoveAllItems	example:	
BoxMoveAllItems(DstList,	SrcList);

Routine	BoxMoveFocusedItem
Declaration:	procedure	BoxMoveFocusedItem(List:	TCustomListBox;	DstIndex:	Integer);

Indended	to	be	used	in	the	OnDragDrop	event	handlers.

BoxMoveFocusedItem	example:	
procedure	TMyForm.SrcListDragDrop(Sender,	Source:	TObject;	X,	Y:	Integer);
begin
__if	Source	=	DstList	then	
____ExclBtnClick(SrcList)
__else

____if	Source	=	SrcList	then	
____begin
______BoxMoveFocusedItem(SrcList,	SrcList.ItemAtPos(Point(X,	Y),	True));
____end;
end;

Routine	BoxMoveSelectedItems
Declaration:	procedure	BoxMoveSelectedItems(SrcList,	DstList:	TCustomListBox);

Moves	all	selected	items	from	the	SrcList	to	the	DstList.

BoxMoveSelectedItems	example:	
procedure	TMyForm.IncBtnClick(Sender:	TObject);
begin
__BoxMoveSelectedItems(SrcList,	DstList);
end;

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

UNIT	
DateUtil

Const
FourDigitYear

Type
TDateOrder	
TDayOfWeekName	
TDaysOfWeek

Routine
CutTime	
DateDiff	
DaysBetween	
DaysInPeriod	
DaysPerMonth	
DefDateFormat	
DefDateMask	
IncDate	
IncDay	
IncHour	
IncMinute	
IncMonth	
IncMSec	
IncTime	
IncYear	
IsLeapYear	
LastDayOfPrevMonth	
MonthsBetween	
StrToDateDef	
StrToDateFmt	
StrToDateFmtDef	
ValidDate

Const	FourDigitYear
Declaration:	const	FourDigitYear:	Boolean	=	True;;

To	control	2-	or	4-digit	year	in	TDateEdit,	TDBDateEdit	components	you	can	use	a	typed	constant
FourDigitYear.	The	code	in	initialization	section	of	DateUtil.pas	is	setting	this	constant	to	True	or	False
depending	on	ShortDateFormat	variable.	You	can	set	FourDigitYear	to	True	in	your	project	code	or	in
initialization	section	of	your	unit	(before	any	of	TDateEdit	components	created)	to	ensure	that	your	users
will	be	able	to	enter	the	year	that	they	need.

When	FourDigitYear	is	False	the	date	entered	is	always	treated	as	date	in	the	current	century	so	01	entered
now	is	1901	but	01	entered	in	2000	is	2001.

Type	TDateOrder
Declaration:	TDateOrder	=	(doMDY,	doDMY,	doYMD);

An	enumerated	type	used	to	represent	a	possible	day's,	month's	and	year's	order	in	the	date	format.

Type	TDayOfWeekName
Declaration:	TDayOfWeekName	=	(Sun,	Mon,	Tue,	Wed,	Thu,	Fri,	Sat);

An	enumerated	type	used	when	representing	a	day	of	the	week.

Type	TDaysOfWeek
Declaration:	TDaysOfWeek	=	set	of	TDayNameOfWeek;

Set	of	day	of	the	week.

Routine	CutTime
Declaration:	function	CutTime(ADate:	TDateTime):	TDateTime;

Set	time	in	the	ADate	parameter	to	00:00:00:00.

CutTime	example:	
DateWithoutTime	:=	CutTime(ADate);

Routine	DateDiff
Declaration:	procedure	DateDiff(Date1,	Date2:	TDateTime;	var	Days,	Months,	Years:	Word);	

Return	the	difference	in	days,	months,	and	years	between	two	valid	dates	Date1	and	Date2.

DateDiff	example:

var
D1,	D2:	TDateTime;
D,	M,	Y:	Word;
begin
__ShortDateFormat	:=	'dd.mm.yyyy';
__D1	:=	StrToDate('24.03.1994');
__D2	:=	StrToDate('12.08.1995');
__DateDiff(D1,	D2,	D,	M,	Y);
__{	here	D=19;	M=4;	Y=1	}
end;

Routine	DaysBetween
Declaration:	function	DaysBetween(Date1,	Date2:	TDateTime):	Longint;

Count	days	between	Date1	and	Date2	+	1.	
If	Date1	=	Date2	then	result	=	1,	if	Date2	<	Date1	result	=	0.

DaysBetween	example:	
Days	:=	DaysBetween(Date1,	Date2);

Routine	DaysInPeriod
Declaration:	function	DaysInPeriod(Date1,	Date2:	TDateTime):	Longint;

Count	days	between	Date1	and	Date2	+	1,	so	if	Date1	=	Date2	result	=	1.

>	DaysInPeriod	example:	
Days	:=	DaysInPeriod(Date1,	Date2);

Routine	DaysPerMonth
Declaration:	function	DaysPerMonth(AYear,	AMonth:	Integer):	Integer;

DaysPerMonth	returns	the	number	of	days	in	the	specified	month	AMonth	(1..12)	and	year	AYear.

DaysPerMonth	example:

The	following	example	returns	28,	since	1995	is	not	a	leap	year.

var	D:	Word;
begin
__D	:=	DaysPerMonth(1995,	2);
end;

Routine	DefDateFormat
Declaration:	function	DefDateFormat:	string;

DefDateFormat	returns	the	default	date	format	string	according	to	the	current	Windows	settings
(ShortDateFormat)	and	to	the	FourDigitYear	variable's	value.	The	order	for	month,	day,	and	year	is
determined	by	the	ShortDateFormat	global	variable.

For	example,	if	the	ShortDateFormat	=	'D/mm/yy',	then	the	DefDateFormat	returns:	'DD/MM/YYYY'.

>	DefDateFormat	example:

Field1.AsDateTime	:=	StrToDateFmt(DefDateFormat,	Edit1.Text);

Routine	DefDateMask
Declaration:	function	DefDateMask(BlanksChar:	Char):	string;

DefDateMask	returns	the	default	edit	mask	for	the	date	(for	using	as	EditMask	property	value	in	the
TMaskEdit	component)	according	to	the	current	Windows	settings	(ShortDateFormat)	and	to	the
FourDigitYear	variable's	value.	The	order	for	month,	day,	and	year	is	determined	by	the	ShortDateFormat
global	variable.

For	example,	if	the	ShortDateFormat	=	'D/mm/yy',	then	the	DefDateMask	returns:	'!99/99/9999;1;	'.

>	DefDateMask	example:

MaskEdit1.EditMask	:=	DefDateMask('_');

Routine	FirstDayOfNextMonth
Declaration:	function	FirstDayOfNextMonth:	TDateTime;

Returns	the	first	day	of	the	next	month	relative	to	the	current	system	date.

>	FirstDayOfNextMonth	example:

First	:=	FirstDayOfNextMonth;

Routine	FirstDayOfPrevMonth
Declaration:	function	FirstDayOfPrevMonth:	TDateTime;

Returns	the	first	day	of	the	previous	month	relative	to	the	current	system	date.

>	FirstDayOfPrevMonth	example:

First	:=	FirstDayOfPrevMonth;

Routine	GetDateOrder
Declaration:	function	GetDateOrder(const	DateFormat:	string):	TDateOrder;

Returns	the	day's,	month's	and	year's	order	in	the	date	format,	indicated	by	the	DateFormat	parameter.

>	GetDateOrder	example:

case	GetDateOrder(ShortDateFormat)	of
doMDY:	Result	:=	'MM/DD/YYYY';
doDMY:	Result	:=	'DD/MM/YYYY';
doYMD:	Result	:=	'YYYY/MM/DD';
end;

Routine	IncDate
Declaration:	function	IncDate(ADate:	TDateTime;	Days,	Months,	Years:	Integer):	TDateTime;

IncDate	adjusts	a	date	by	the	specified	number	of	days,	months,	and	years.	IncDate	adds	(or	subtracts)	the
specified	number	of	Days,	Months,	and	Years	to	(or	from)	a	date	ADate.

>	IncDate	example:

var	D1,	D2:	TDateTime;	S:	string;
begin
ShortDateFormat	:=	'dd.mm.yy';
D1	:=	StrToDate('24.03.1994');
D2	:=	IncDate(D1,	38,	5,	2);
S	:=	DateToStr(D2);
{	here	S	=	'01.10.96'	}
end;

Routine	IncDay
Declaration:	function	IncDay(ADate:	TDateTime;	Delta:	Integer):	TDateTime;

IncDay	changes	the	date	ADate	by	Delta	number	of	days.	Delta	can	be	either	a	positive	or	negative	value.

>	IncDay	example:

var	D1,	D2:	TDateTime;
S:	string;
begin
ShortDateFormat	:=	'dd.mm.yy';
D1	:=	StrToDate('24.03.1994');
D2	:=	IncDay(D1,	145);
S	:=	DateToStr(D2);
end;

Routine	IncHour
Declaration:	function	IncHour(ATime:	TDateTime;	Delta:	Integer):	TDateTime;

IncHour	changes	the	time	of	day	ATime	by	Delta	number	of	hours.	Delta	can	be	either	a	positive	or
negative	value.

>	IncHour	example:

var	T1,	T2:	TDateTime;	S:	string;
begin	
ShortTimeFormat	:=	'HH:MM:SS';
T1	:=	StrToTime('00:00:00');
T2	:=	IncHour(T1,	-1);
S	:=	TimeToStr(T2);
end;

Routine	IncMinute
Declaration:	function	IncMinute(ATime:	TDateTime;	Delta:	Integer):	TDateTime;

IncMinute	changes	the	time	of	day	ATime	by	Delta	number	of	minutes.	Delta	can	be	either	a	positive	or
negative	value.

>	IncMinute	example:

var	T1,	T2:	TDateTime;	S:	string;
begin
ShortTimeFormat	:=	'HH:MM:SS';
T1	:=	StrToTime('00:00:00');
T2	:=	IncMinute(T1,	5);
S	:=	TimeToStr(T2);
end;

Routine	IncMonth
Declaration:	function	IncMonth(ADate:	TDateTime;	Delta:	Integer):	TDateTime;

IncMonth	changes	the	date	ADate	by	Delta	number	of	months.	Delta	can	be	either	a	positive	or	negative
value.

>	IncMonth	example:

var	D1,	D2:	TDateTime;	S:	string;
begin
ShortDateFormat	:=	'dd.mm.yy';
D1	:=	StrToDate('30.12.1991');
D2	:=	IncMonth(D1,	2);
S	:=	DateToStr(D2);
end;

Routine	IncMSec
Declaration:	function	IncMSec(ATime:	TDateTime;	Delta:	Integer):	TDateTime;

IncMSec	changes	the	time	of	day	ATime	by	Delta	number	of	milliseconds.	Delta	can	be	either	a	positive	or
negative	value.

>	IncMSec	example:

var	T:	TDateTime;	Hour,	Min,	Sec,	MSec;
begin
T	:=	IncMSec(0,	-100);
DecodeTime(T,	Hour,	Min,	Sec,	MSec);
{	here	Hour	=	23,	Min	=	59,	Sec	=	59,	MSec	=	900	}
end;

Routine	IncSecond
Declaration:	function	IncSecond(ATime:	TDateTime;	Delta:	Integer):	TDateTime;

IncSecond	changes	the	time	of	day	ATime	by	Delta	number	of	seconds.	Delta	can	be	either	a	positive	or
negative	value.

>	IncSecond	example:

var	T1,	T2:	TDateTime;
S:	string;
begin
ShortTimeFormat	:=	'HH:MM:SS';
T1	:=	StrToTime('00:00:00');
T2	:=	IncSecond(T1,	-10);
S	:=	TimeToStr(T2);
end;

Routine	IncTime
Declaration:	function	IncTime(ATime:	TDateTime;	Hours,	Minutes,	Seconds,	MSecs:	Integer):	TDateTime;

IncTime	adds	the	specified	hours,	minutes,	seconds	and	milliseconds	to	the	specified	time	of	day	ATime.
The	result	of	IncTime	is	adjusted	to	account	for	the	rollover	at	midnight.

>	IncTime	example:

var	T1,	T2:	TDateTime;	S:	string;
begin
__ShortTimeFormat	:=	'HH:MM:SS';
__T1	:=	StrToTime('00:00:00');
__T2	:=	IncTime(T1,	-1,	5,	-10,	0);
__S	:=	TimeToStr(T2);
end;

Routine	IncYear
Declaration:	function	IncYear(ADate:	TDateTime;	Delta:	Integer):	TDateTime;

IncYear	changes	the	date	ADate	by	Delta	number	of	years.	Delta	can	be	either	a	positive	or	negative	value.

>	IncYear	example:

var	D1,	D2:	TDateTime;	
S:	string;
begin
__ShortDateFormat	:=	'dd.mm.yy';
__D1	:=	StrToDate('30.12.1991');
__D2	:=	IncYear(D1,	-34);
__S	:=	DateToStr(D2);
end;

Routine	IsLeapYear
Declaration:	function	IsLeapYear(AYear:	Integer):	Boolean;

IsLeapYear	returns	True	if	the	specified	year	AYear	is	a	leap	year.

>	IsLeapYear	example:

var
__Leap:	Boolean;
begin
__Leap	:=	IsLeapYear(1995);	
__{	here	Leap	=	False	}
end;

Routine	LastDayOfPrevMonth
Declaration:	function	LastDayOfPrevMonth:	TDateTime;

Returns	the	last	day	of	the	previous	month	relative	to	the	current	system	date.

>	LastDayOfPrevMonth	example:

Last	:=	LastDayOfPrevMonth;

Routine	MonthsBetween
Declaration:	function	MonthsBetween(Date1,	Date2:	TDateTime):	Double;

Count	months	between	Date1	and	Date2.

>	MonthsBetween	example:

Res	:=	MonthsBetween(Date1,	Date2);

Routine	StrToDateDef
Declaration:	function	StrToDateDef(const	S:	string;	Default:	TDateTime):	TDateTime;

StrToDateDef	converts	a	string	to	a	date	format.	The	order	for	month,	day,	and	year	is	determined	by	the
ShortDateFormat	global	variable.	If	the	given	string	does	not	contain	a	valid	date,	StrToDateDef	returns	the
date	passed	in	Default.

>	StrToDateDef	example:

Field1.AsDateTime	:=	StrToDateDef(Edit1.Text,	SysUtils.Date);

Routine	StrToDateFmt
Declaration:	function	StrToDateFmt(const	DateFormat,	S:	string):	TDateTime;

StrToDateFmt	converts	a	string	to	a	date	format.	The	order	for	month,	day,	and	year	is	determined	by	the
DateFormat	parameter.	If	the	given	string	does	not	contain	a	valid	date,	an	EConvertError	exception	is
raised.	

>	StrToDateFmt	example:

Field1.AsDateTime	:=	StrToDateFmt(DefDateFormat,	Edit1.Text);

Routine	StrToDateFmtDef
Declaration:	function	StrToDateFmtDef(const	DateFormat,	S:	string;	Default:	TDateTime):	TDateTime;

StrToDateFmtDef	converts	a	string	to	a	date	format.	The	order	for	month,	day,	and	year	is	determined	by
the	DateFormat	parameter.

If	the	given	string	does	not	contain	a	valid	date,	StrToDateFmtDef	returns	the	date	passed	in	Default.

>	StrToDateFmtDef	example:

Field1.AsDateTime	:=	StrToDateFmtDef(DefDateFormat,	Edit1.Text,	SysUtils.Date);

Routine	ValidDate
Declaration:	function	ValidDate(ADate:	TDateTime):	Boolean;

ValidDate	verifies	that	the	specified	date	ADate	is	a	valid	date.

ValidDate	example:

if	ValidDate(ADate)	then	
begin
__{	deal	with	ADate	}
end;

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

UNIT	FileUtil	
Routine
ClearDir	
CopyFile	
DeleteFiles	
DirExists	
FileDateTime	
FileLock	
FileUnlock	
GetFileSize	
HasAttr	
LongToShortFileName	
LongToShortPath	
MoveFile	
NormalDir	
ShortToLongFileName	
ShortToLongPath	
ValidFileName

Routine	ClearDir
Declaration:	function	ClearDir(const	Path:	string;	Delete:	Boolean):	Boolean;

The	ClearDir	function	erases	all	files	from	directory	named	by	Path	from	the	disk.	When	Delete	parameter
is	True	the	directory	Path	also	will	be	erased.	If	fiels	or	path	cannot	be	deleted	or	does	not	exist,	the
function	returns	False.

ClearDir	example:

if	ClearDir('c:\temp',	True)	then
__ShowMessage('Directory	C:\TEMP	deleted')
else
__ShowMessage('Can''t	delete	directory	C:\TEMP');

Routine	CopyFile
Declaration:	procedure	CopyFile(const	FileName,	DestName:	string;	ProgressControl:	TControl);

CopyFile	copies	the	file	specified	by	FileName	parameter	to	the	new	file	specified	by	DestName	parameter.

When	ProgressControl	is	not	nil,	the	control	specified	by	ProgressControl	(TGauge	in	16-bit	version	or
TProgressBar	in	32-bit	version)	will	be	display	the	percentage	of	file	copying	progress.

CopyFile	example:	
CopyFile('c:\work\unit1.pas',	'd:\test\unit1.pas',	Gauge);

Routine	DeleteFiles

Declaration:	function	DeleteFiles(const	FileMask:	string):	Boolean;

The	DeleteFiles	function	erases	all	file	specified	by	FileMask	from	the	disk.	If	files	cannot	be	deleted	or
does	not	exist,	the	function	returns	False.

DeleteFiles	example:	
DeleteFiles('work\myproj*.pas');

Routine	DirExists
Declaration:	function	DirExists(Name:	string):	Boolean;

The	DirExists	function	determines	whether	the	directory	specified	as	the	value	of	the	Name	parameter
exists.	If	the	directory	exists,	the	function	returns	True.	If	the	directory	does	not	exist,	the	function	returns
False.	If	only	a	directory	name	is	entered	as	the	value	of	Name,	DirExists	searches	for	the	directory	within
the	current	directory.	If	a	full	path	name	is	entered,	DirExists	searches	for	the	directory	along	the	designated
path.

DirExists	example:	
This	example	uses	an	edit	box,	a	label,	and	a	button	on	a	form.	When	the	user	enters	a	directory	name	in	the
edit	box	and	clicks	the	button,	whether	or	not	the	directory	exists	is	reported	in	the	caption	of	the	label:

procedure	TForm1.Button1Click(Sender:	TObject);
begin
__if	DirExists(Edit1.Text)	then
____Label1.Caption	:=	Edit1.Text	+	'	exists'
__else
____Label1.Caption	:=	Edit1.Text	+	'	does	not	exist';
end;

Routine	FileDateTime
Declaration:	function	FileDateTime(const	FileName:	string):	TDateTime;

FileDateTime	returns	the	date-and-time	of	the	specified	file.

FileDateTime	example:	
D1	:=	FileDateTime('unit1.pas');

Routine	FileLock
Declaration:	function	FileLock(Handle:	Integer;	Offset,	LockSize:	Longint):	Integer;

The	FileLock	function	locks	a	region	in	an	open	file.	Locking	a	region	prevents	other	processes	from
accessing	the	region.	Handle	identifies	the	file	with	a	region	to	be	locked.

Offset	specifies	the	starting	byte	offset	in	the	file	where	the	lock	should	begin.

LockSize	specifies	the	length	of	the	byte	range	to	be	locked.

FileLock	example:	
var	FileHandle	:	Integer;
begin
__FileHandle	:=	FileOpen(FileName,	fmOpenWrite	or	fmShareDenyNone);
__if	FileHandle	>	0	then
__try
____{	valid	file	handle	}
____if	FileLock(FileHandle,	0,	1024)	=	0	then
____try
______{	first	1024	bytes	of	opened	file	is	locked	}
____finally
______FileUnlock(FileHandle,	0,	1024);
____end;
__finally
____FileClose(FileHandle);
__end	else	
__{Open	error:	FileHandle	=	negative	DOS	error	code};
end;

Routine	FileUnlock
Declaration:	function	FileUnlock(Handle:	Integer;	Offset,	LockSize:	Longint):	Integer;

The	FileUnlock	function	unlocks	a	region	in	an	open	file.	Unlocking	a	region	enables	other	processes	to
access	the	region.	Handle	identifies	a	file	that	contains	a	region	locked	with	FileLock.

Offset	specifies	the	starting	byte	offset	in	the	file	where	the	locked	region	begins.	LockSize	specifies	the
length	of	the	byte	range	to	be	unlocked.

FileUnlock	example:	
var
__FileHandle	:	Integer;
begin
__FileHandle	:=	FileOpen(FileName,	fmOpenWrite	or	fmShareDenyNone);
__if	FileHandle	>	0	then
__try
____{	valid	file	handle	}
____if	FileLock(FileHandle,	0,	1024)	=	0	then
____try
______{	first	1024	bytes	of	opened	file	is	locked	}
____finally
______FileUnlock(FileHandle,	0,	1024);
____end;
__finally
____FileClose(FileHandle);
__end	else	
____{Open	error:	FileHandle	=	negative	DOS	error	code};
end;

Routine	GetFileSize

Declaration:	function	GetFileSize(const	FileName:	string):	Longint;

GetFileSize	returns	the	size	of	a	file,	specified	by	FileName	parameter,	in	bytes.

GetFileSize	example:	
FSize	:=	GetFileSize('c:\utils\arj.exe');

Routine	HasAttr
Declaration:	function	HasAttr(const	FileName:	string;	Attr:	Integer):	Boolean;

HasAttr	returns	True	if	specified	file	has	attributes	Attr.

HasAttr	example:	
if	HasAttr('c:\my_file.exe',	faReadOnly)	then
__raise	Exception.Create('Can't	delete	read-only	file');

Routine	LongToShortFileName
Declaration:	function	LongToShortFileName(const	LongName:	string):	string;

Use	this	procedure	to	obtain	the	short	version	of	the	file	name	specified	by	LongName	parameter.

LongToShortFileName	example:	
FileName	:=	LongToShortFileName(FileName);

Routine	LongToShortPath
Declaration:	function	LongToShortPath(const	LongName:	string):	string;

Use	this	procedure	to	obtain	the	short	version	of	the	directory	name	specified	by	LongName	parameter.

LongToShortPath	example:	
DirectoryName	:=	LongToShortPath(DirectoryName);

Routine	MoveFile
Declaration:	procedure	MoveFile(const	FileName,	DestName:	TFileName);

Moves	or	renames	the	file	passed	in	FileName	to	the	directory	specified	as	part	of	DestName	parameter.

Tries	to	just	rename	the	file.	If	that	fails,	try	to	copy	the	file	and	delete	the	original.

Raises	an	exception	if	the	source	file	is	read-only,	and	therefore	cannot	be	deleted/moved/renamed.

MoveFile	example:	
MoveFile(FileName,	ChangeFileExt(FileName,	'.BAK'));

Routine	NormalDir
Declaration:	function	NormalDir(const	DirName:	string):	string;

Add	a	default	backslash	'/'	to	the	end	of	a	directory	name	DirName.	If	DirName	already	has	'/'	symbol	at	the
end,	this	function	does	nothing.

NormalDir	example:	
__{...}
__Result	:=	NormalDir(DirName)	+	ExtractFileName(MyFileName);
__{...}

Routine	ShortToLongFileName
Declaration:	function	ShortToLongFileName(const	ShortName:	string):	string;

Use	this	procedure	to	obtain	the	long	version	of	the	file	name	specified	by	ShortName	parameter.

ShortToLongFileName	example:	
FileName	:=	ShortToLongFileName(FileName);

Routine	ShortToLongPath
Declaration:	function	ShortToLongPath(const	ShortName:	string):	string;

Use	this	procedure	to	obtain	the	long	version	of	the	directory	name	specified	by	ShortName	parameter.

ShortToLongPath	example:	
DirectoryName	:=	ShortToLongPath(DirectoryName);

Routine	ValidFileName
Declaration:	function	ValidFileName(const	FileName:	string):	Boolean;

ValidFileName	indicates	whether	FileName	string	refers	to	a	valid	name	of	physical	file.

ValidFileName	example:	
if	not	ValidFileName(S)	then
__ShowMessage('Invalid	file	name');

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Unit	FileUtil	
Routine
ClearDir	
CopyFile	
DeleteFiles	
DirExists	
FileDateTime	
FileLock	
FileUnlock	
GetFileSize	
HasAttr	
LongToShortFileName	
LongToShortPath	
MoveFile	
NormalDir	
ShortToLongFileName	
ShortToLongPath	
ValidFileName

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

UNIT	MaxMin

Routines:
Max
MaxFloat
MaxInteger
MaxOf
Min
MinFloat
MinInteger
MinOf
SwapInt
SwapLong

Routine	Max
Declaration:	function	Max(A,	B:	Longint):	Longint;

The	Max	function	returns	the	largest	of	two	longint	values	A	and	B.

Max	example:	
I1	:=	Max(I1,	I2);

Routine	MaxFloat
Declaration:	function	MaxFloat(const	Values:	array	of	Extended):	Extended;

The	MaxFloat	function	returns	the	largest	signed	value	in	the	Values	array.

MaxFloat	example:	
MaxVal	:=	MaxFloat([MaxVal,	-1,	12.2,	3.36,	12.438]);

Routine	MaxInteger
Declaration:	function	MaxInteger(const	Values:	array	of	Longint):	Longint;

The	MaxInteger	function	returns	the	greatest	longint	value	in	the	Values	array.

MaxInteger	example:	
MaxVal	:=	MaxInteger([MaxVal,	1,	12,	36,	43]);

Routine	MaxOf
Declaration:	function	MaxOf(const	Values:	array	of	Variant):	Variant;
The	MaxOf	function	returns	the	greatest	value	in	the	Values	array.

MaxOf	example:	
MaxVal	:=	MaxOf([MaxVal,	-1,	12.2,	3.36,	12.438]);

Routine	Min
Declaration:	function	Min(A,	B:	Longint):	Longint;

The	Max	function	returns	the	smallest	of	two	longint	values	A	and	B.

Min	example:	
I1	:=	Min(I1,	I2);

Routine	MinFloat
Declaration:	function	MinFloat(const	Values:	array	of	Extended):	Extended;

The	MinFloat	function	returns	the	smallest	signed	value	in	the	Values	array.

MinFloat	example:	
MinVal	:=	MinFloat([MinVal,	-1,	12.2,	3.36,	12.438]);

Routine	MinInteger
Declaration:	function	MinInteger(const	Values:	array	of	Longint):	Longint;

The	MinInteger	function	returns	the	smallest	longint	value	in	the	Values	array.

MinInteger	example:	
MinVal	:=	MinInteger([MinVal,	1,	12,	36,	43]);

Routine	MinOf
Declaration:	function	MinOf(const	Values:	array	of	Variant):	Variant;

The	MinOf	function	returns	the	smallest	value	in	the	Values	array.

MinOf	example:	
MinVal	:=	MinOf([MinVal,	-1,	12.2,	3.36,	12.438]);

Routine	SwapInt
Declaration:	procedure	SwapInt(var	Int1,	Int2:	Integer);

Exchange	the	values	in	two	integers	Int1	and	Int2.

SwapInt	example:	
SwapInt(I1,	I2);

Routine	SwapLong

Declaration:	procedure	SwapLong(var	Int1,	Int2:	Longint);

Exchange	the	values	in	two	long	integers	Int1	and	Int2.

SwapLong	example:	
SwapLong(I1,	I2);

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
Huge	List. ObjStr THugeList

Description:
Class	THugeList	is	16-bit	class	similar	to	TList,	but	the	indexes	are	of	type	LongInt,	rather	than	Integer.
The	size	of	the	list	is	limited	only	by	the	amount	of	virtual	memory	that	can	be	allocated	from	Windows.
Each	item	is	a	Pointer.	THugeList	never	dereferences	this	pointer,	and	it	can	be	any	value	you	want	it	to	be.
When	items	are	deleted	from	the	list	and	when	the	list	is	destroyed,	these	items	are	not	freed	or
dereferenced.

If	you	know	that	your	indexes	will	be	smaller	than	16K,	then	use	TList,	not	THugeList,	to	obtain	better
performance.	Note	that	THugeList	is	not	fully	optimized	for	performance.	

NOTE.	In	32-bit	version	the	THugeList	class	is	a	stub	and	declared	as	THugeList	=	TList;

Class	TObjectStrings
Class	TObjectStrings	is	similar	to	TStringList,	but	TStringList	never	dereferences	the	pointer,	stored	in	the
list	as	Objects	property.	

Unlike	the	TStrings	and	TStringList,	when	items	are	deleted	from	the	TObjectStrings	list	and	when	the	list
is	destroyed,	these	items	are	freed	and	dereferenced.	By	default,	the	DestroyObject	virtual	method	calls	the
OnDestroyObject	event	handler,	which	calls	TObject.Free	to	free	and	dereference	the	object.	

You	can	change	this	behavior	by	specifying	what	processing	you	want	to	occur	in	the	OnDestroyObject
event	handler.

Event	OnDestroyObject
Declaration:	OnDestroyObject:	TDestroyEvent;

The	OnDestroyObject	event	occurs	when	a	object	stored	in	the	list	are	freed.	By	default,	the	DestroyObject
method	calls	the	OnDestroyObject	event	handler,	which	calls	TObject.Free	to	free	and	dereference	the
object.	You	can	change	this	behavior	by	specifying	what	processing	you	want	to	occur	in	the
OnDestroyObject	event	handler.

Method	Remove
Declaration:	procedure	Remove(Index:	Integer);

Removes	the	item	given	by	Index	from	the	list.	Remove	does	not	destroy	of	item.	If	you	need	to	delete	and
destroy	of	an	item,	call	Delete	method.

Const	MaxHugeListSize
Declaration:	MaxHugeListSize	=	MaxLongint	div	SizeOf(Pointer);;

The	MaxHugeListSize	constant	represents	the	largest	number	of	items	a	THugeList	object	can	contain.

Type	TDestroyEvent
Declaration:	TDestroyEvent	=	procedure(Sender,	AObject:	TObject)	of	object;

TDestroyEvent	is	the	type	of	the	OnDestroyObject	event	of	the	TObjectStrings	class.

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Unit	ObjStr

Class
TObjectStrings

Event
OnDestroyObject

Method
Remove

Constant
MaxHugeListSize

Type
TDestroyEvent

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

UNIT	Ole2Auto

Class
TOleController

Property
Locale	
OleObject

Method
AssignIDispatch	
CallFunction	
CallFunctionByID	
CallFunctionByIDsNamedParams	
CallFunctionNamedParams	
CallFunctionNoParams	
CallFunctionNoParamsByID	
CallProcedure	
CallProcedureByID	
CallProcedureByIDsNamedParams	
CallProcedureNamedParams	
CallProcedureNoParams	
CallProcedureNoParamsByID	
CreateObject	
GetProperty	
GetPropertyByID	
SetProperty	
SetPropertyByID

Routine
CreateLCID

Class	TOleController

This	class	allows	you	accesses	OLE	Automation	objects.	OLE	Automation	controllers	are	clients	that	use
the	OLE	IDispatch	interface	to	access	the	OLE	server	objects	that	implement	this	interface.	The	controller
must	first	create	the	object	by	calling	the	CreateObject	method,	then	call	the	object's	interface	methods	by
using	the	CallFunction,	CallFunctionNamedParams,	CallProcedure,	CallProcedureNamedParams	etc
methods.	

In	32-bit	Delphi	versions	you	can	use	internal	Delphi	OLE	Automation	controller	instead,	but	Delphi
controller	not	supports	the	object's	interface	methods	that	named	with	'$'	symbols,	i.e.	"GetText$"	(in	Word
Basic).	This	class	allows	you	call	such	methods	still.

Property	Locale
Declaration:	Locale:	TLCID;

Returns	the	Language	ID.

Property	OleObject
Declaration:	OleObject:	Variant;

Read	OleObject	property	to	access	the	OLE	object	created	by	the	OLE	controller	as	a	variant.

Method	AssignIDispatch
Declaration:	procedure	AssignIDispatch(V:	Variant);	virtual;

procedure	AssignDispatch	assigns	variant	V	to	dispatch.

Method	CallFunction
Declaration:	function	CallFunction(const	AName:	string;	const	Params:	array	of	const):	PVariant;

CallFunction	function	calls	the	function	name	AName	with	parameters	Params.

Method	CallFunctionByID
Declaration:	function	CallFunctionByID(ID:	DISPID;	const	Params:	array	of	const):	PVariant;

CallFunctionById	calls	the	function	by	it's	ID	number	and	with	parameters	Params

Method	CallFunctionByIDsNamedParams
Declaration:	function	CallFunctionByIDsNamedParams(const	IDs:	TDispIDList;	const	Params:	array	of
const;	Cnt:	Byte):	PVariant;

CallFunctionByIdsNamedParams	calls	the	function	by	it's	IDs	with	parameters	Params	with	count	of
parameters	Cnt.

Method	CallFunctionNamedParams
Declaration:	function	CallFunctionNamedParams(const	AName:	string;	const	Params:	array	of	const;	const
Names:	array	of	string):	PVariant;

CallFunctionNamedParams	calls	a	function	with	Parameters	Params	and	Names.

Method	CallFunctionNoParams
Declaration:	function	CallFunctionNoParams(const	AName:	string):	PVariant;

CallFunctionNoParams	calls	the	function	AName	without	parameters.

Method	CallFunctionNoParamsByID
Declaration:	function	CallFunctionNoParamsByID(ID:	DISPID):	PVariant;

CallFunctionNoParamsById	calls	a	function	by	it's	ID.

Method	CallProcedure
Declaration:	procedure	CallProcedure(const	AName:	string;	const	Params:	array	of	const);

CallProcedure	calls	a	procedure	AName	with	parameters	Params.

Method	CallProcedureByID
Declaration:	procedure	CallProcedureByID(ID:	DISPID;	const	Params:	array	of	const);

CallProcedureById	calls	a	procedure	by	it's	ID	and	with	parameters	Params

Method	CallProcedureByIDsNamedParams
Declaration:	procedure	CallProcedureByIDsNamedParams(const	IDs:	TDispIDList;	const	Params:	array	of
const;	Cnt:	Byte);

CallProcedureByIdsNamedParams	calls	a	procedure	by	(ID	number)	Ids	and	with	parameters	Params	and
with	parameter	count	Cnt.

Method	CallProcedureNamedParams
Declaration:	procedure	CallProcedureNamedParams(const	AName:	string;	const	Params:	array	of	const;
const	Names:	array	of	string);

CallProcedureByIdsNamedParams	calls	a	procedure	by	(ID	number)	Ids	and	with	parameters	Params	and
with	Names.

Method	CallProcedureNoParams
Declaration:	procedure	CallProcedureNoParams(const	AName:	string);

CallProcedureNoParams	calls	a	procedure	with	No	parameters,	and	function	name	AName.

Method	CallProcedureNoParamsByID
Declaration:	procedure	CallProcedureNoParamsByID(ID:	DISPID);

CallProcedureNoparamsById	calls	a	procedure	without	any	parameters	by	it's	ID	(number).

Method	CreateObject

Declaration:	procedure	CreateObject(const	ClassName:	string);

The	CreateObject	method	creates	an	OLE	automation	object	of	the	specified	class.	This	is	the	way	to	get	a
new	instance	of	an	OLE	automation	server	object	for	your	automation	controller.

Method	GetProperty
Declaration:	function	GetProperty(const	AName:	string):	PVariant;

Many	automation	objects	include	properties	in	their	interfaces.	Properties	represent	the	state	or	content	of
the	automation	server.	This	method	allows	you	to	refer	to	automation-object	property	by	its	name	AName.

Method	GetPropertyByID
Declaration:	function	GetPropertyByID(ID:	DISPID):	PVariant;

Many	automation	objects	include	properties	in	their	interfaces.	Properties	represent	the	state	or	content	of
the	automation	server.	This	method	allows	you	to	refer	to	automation-object	property	by	its	identifier	ID.

Method	SetProperty
Declaration:	procedure	SetProperty(const	AName:	string;	const	Prop:	array	of	const);	

Many	automation	objects	include	properties	in	their	interfaces.	Properties	represent	the	state	or	content	of
the	automation	server.	This	method	allows	you	to	set	a	value	of	automation-object	property	by	its	name
AName.

Method	SetPropertyByID
Declaration:	procedure	SetPropertyByID(ID:	DISPID;	const	Prop:	array	of	const);

Many	automation	objects	include	properties	in	their	interfaces.	Properties	represent	the	state	or	content	of
the	automation	server.	This	method	allows	you	to	set	a	value	of	automation-object	property	by	its	identifier
ID.

Routine	CreateLCID
Declaration:	function	CreateLCID(PrimaryLangID,	SubLangID:	Word):	TLCID;

CreateLCID	example:	
Next	code	fragment	sets	the	language	code	for	English:
OleController.Locale	:=	CreateLCID(LANG_ENGLISH,	SUBLANG_DEFAULT);

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Unit	Ole2Auto

Class
TOleController

Property
Locale	
OleObject

Method
AssignIDispatch	
CallFunction	
CallFunctionByID	
CallFunctionByIDsNamedParams	
CallFunctionNamedParams	
CallFunctionNoParams	
CallFunctionNoParamsByID	
CallProcedure	
CallProcedureByID	
CallProcedureByIDsNamedParams	
CallProcedureNamedParams	
CallProcedureNoParams	
CallProcedureNoParamsByID	
CreateObject	
GetProperty	
GetPropertyByID	
SetProperty	
SetPropertyByID

Routine
CreateLCID

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Unit
StrUtils

Constants:
Digit	Chars
WaitCursor

Type
TFillDirection	
TVertAlignment

Routine
ActivatePrevInstance	
ActivateWindow	
AllocMemo	
AnsiUpperFirstChar	
AssignBitmapCell	
CenterControl	
CenterWindow	
ChangeBitmapColor	
CompareMem	
CopyParentImage	
CreateBitmapFromIcon	
CreateTwoColorsBrushPattern	
DefineCursor	
Delay	
DialogUnitsToPixelsX	
DialogUnitsToPixelsY	
DrawBitmapRectTransparent	
DrawBitmapTransparent	
DrawCellBitmap	
DrawCellText	
DrawInvertFrame	
FreeMemo	
FreeUnusedOLE	
GetEnvVar	
GetMemoSize	
GradientFillRect	
HeightOf	
HugeDec	
HugeInc	
HugeMove	
HugeOffset	
KillMessage	
LoadAniCursor	
LoadDLL	
MakeBitmap	
MakeBitmapID	
MakeIcon	
MakeIconID	
MakeModuleBitmap	

MakeModuleIcon	
MergeForm	
MinimizeText	
MsgBox	
NotImplemented	
PaintInverseRect	
PixelsToDialogUnitsX	
PixelsToDialogUnitsY	
PointInPolyRgn	
PointInRect	
RegisterServer	
ResourceNotFound	
ShadeRect	
SplitCommandLine	
StartWait	
StopWait	
WidthOf	
Win32Check

Const	DigitChars
Declaration:	DigitChars	=	['0'..'9'];;

Digits	constant.

Type	TCharSet
Declaration:	TCharSet	=	set	of	Char;

TCharSet	is	used	to	specify	symbols	arrays	in	procedures	and	functions	of	StrUtils	unit.

Routine	AddChar
Declaration:	function	AddChar(C:	Char;	const	S:	string;	N:	Integer):	string;

AddChar	return	a	string	left-padded	to	length	N	with	characters	C.

AddChar	example:	
__S	:=	'Let	It	Be';	
__S	:=	AddChar('	',	S,	10);
__{	here	S	=	'	Let	It	Be'	}

Routine	AddCharR
Declaration:	function	AddCharR(C:	Char;	const	S:	string;	N:	Integer):	string;

AddCharR	return	a	string	right-padded	to	length	N	with	characters	C.

AddCharR	example:	

__S	:=	'Let	It	Be';	
__S	:=	AddChar('	',	S,	10);
__{	here	S	=	'Let	It	Be	'	}

Routine	AnsiProperCase
Declaration:	function	AnsiProperCase(const	S:	string;	const	WordDelims:	TCharSet):	string;

Returns	string,	with	the	first	letter	of	each	word	in	uppercase,	all	other	letters	in	lowercase.	Words	are
delimited	by	WordDelims.

AnsiProperCase	example:

__S	:=	AnsiProperCase('let	him	go');
__{	here	S	=	'Let	Him	Go'	}

Routine	CenterStr
Declaration:	function	CenterStr(const	S:	string;	Len:	Integer):string;

CenterStr	centers	the	characters	in	the	string	based	upon	the	Len	specified.

CenterStr	example:

S	:=	'Let	It	Be';	
S	:=	CenterStr(S,	13);
{	here	S	=	'	Let	It	Be	'	}

Routine	CompStr
Declaration:	function	CompStr(const	S1,	S2:	string):	Integer;

CompStr	compares	S1	to	S2,	with	case-sensitivity.	The	return	value	is	-1	if	S1	<	S2,	0	if	S1	=	S2,	or	1	if	S1
>	S2.

CompStr	example:

var	I:	Integer;
begin
__I	:=	CompStr(S1,	S2);
__if	I	=	0	then	
__begin
____{	S1	=	S2	}
__end	else	
____if	I	<	0	then	
____begin
______{	S1	<	S2	}
____end	else	begin
______{	S1	>	S2	}

__end;
end;

Routine	Copy2Space
Declaration:	function	Copy2Space(const	S:	string):	string;

Copy2Space	returns	a	substring	of	a	string	S	from	begining	to	first	white	space.

Copy2Space	example:

S	:=	'Let	it	be';
S	:=	Copy2Space(S);
{	here	S	=	'Let'	}

Routine	Copy2SpaceDel
Declaration:	function	Copy2SpaceDel(var	S:	string):	string;

Copy2SpaceDel	returns	a	substring	of	a	string	S	from	begining	to	first	white	space	and	removes	this
substring	from	S.

Copy2SpaceDel	example:

S	:=	'Let	it	be';
S1	:=	Copy2SpaceDel(S);
{	here	S1	=	'Let',	S	=	'it	be'	}

Routine	Copy2Symb
Declaration:	function	Copy2Symb(const	S:	string;	Symb:	Char):	string;

Copy2Symb	returns	a	substring	of	a	string	S	from	begining	to	first	character	Symb.

Copy2Symb	example:

S	:=	'Let-it-be';
S	:=	Copy2Symb(S,	'-');
{	here	S	=	'Let'	}

Routine	Copy2SymbDel
Declaration:	function	Copy2SymbDel(var	S:	string;	Symb:	Char):	string;

Copy2SymbDel	returns	a	substring	of	a	string	S	from	begining	to	first	character	Symb	and	removes	this
substring	from	S.

Copy2SymbDel	example:

S	:=	'Let-it-be';
S1	:=	Copy2SymbDel(S,	'-');
{	here	S1	=	'Let',	S	=	'it-be'	}

Routine	Dec2Hex
Declaration:	function	Dec2Hex(N:	Longint;	A:	Byte):	string;

Dec2Hex	converts	the	given	value	to	a	hexadecimal	string	representation	with	the	minimum	number	of
digits	(A)	specified.

Dec2Hex	example:	
S	:=	Dec2Hex(10,	2);
{	here	S	=	'0A'	}

Routine	Dec2Numb
Declaration:	function	Dec2Numb(N:	Longint;	A,	B:	Byte):	string;

Dec2Numb	converts	the	given	value	to	a	string	representation	with	the	base	equal	to	B	and	with	the
minimum	number	of	digits	(A)	specified.

Dec2Numb	example:	
S	:=	Dec2Numb(10,	8,	2);
{	here	S	=	'00001010'	}

Routine	DelBSpace
Declaration:	function	DelBSpace(const	S:	string):	string;

DelBSpace	trims	leading	spaces	from	the	given	string.

DelBSpace	example:

var	S:	string;
begin
__S	:=	'	Let	It	Be';
__S	:=	DelSpace(S);
__ShowMessage(S);	{	here	S	=	'Let	It	Be'	}
end;

Routine	DelChars
Declaration:	function	DelChars(const	S:	string;	Chr:	Char):	string;

DelChars	return	a	string	with	all	Chr	characters	removed.

DelChars	example:	
var	S:	string;

begin
__S	:=	'Let	It	Be';
__S	:=	DelChars(S,	'e');
__ShowMessage(S);	{	here	S	=	'Lt	It	B'	}
end;

Routine	DelESpace
Declaration:	function	DelESpace(const	S:	string):	string;

DelESpace	trims	trailing	spaces	from	the	given	string.

DelESpace	example:

var	S:	string;

begin
__S	:=	'Let	It	Be	';
__S	:=	DelSpace(S);
__ShowMessage(S);	{	here	S	=	'Let	It	Be'	}
end;

Routine	DelRSpace
Declaration:	function	DelRSpace(const	S:	string):	string;

DelRSpace	trims	leading	and	trailing	spaces	from	the	given	string.

DelRSpace	example:

var	S:	string;
begin
__S	:=	'	Let	It	Be	';
__S	:=	DelSpace(S);
__ShowMessage(S);	{	here	S	=	'Let	It	Be'	}
end;

Routine	DelSpace
Declaration:	function	DelSpace(const	S:	string):	string;

DelSpace	return	a	string	with	all	white	spaces	removed.

>	DelSpace	example:

var	S:	string;
begin
__S	:=	'Let	It	Be';
__S	:=	DelSpace(S);

__ShowMessage(S);	{	here	S	=	'LetItBe'	}
end;

Routine	DelSpace1
Declaration:	function	DelSpace1(const	S:	string):	string;

DelSpace1	return	a	string	with	all	non-single	white	spaces	removed.

>	DelSpace1	example:

var	S:	string;

begin
__S	:=	'Let	It	Be';
__S	:=	DelSpace1(S);
__ShowMessage(S);	{	here	S	=	'Let	It	Be'	}
end;

Routine	ExtractDelimited
Declaration:	function	ExtractDelimited(N:	Integer;	const	S:	string;	const	Delims:	TCharSet):	string;

ExtractWord,	ExtractWordPos	and	ExtractDelimited	given	a	set	of	word	delimiters,	return	the	N'th	word	in
S.

ExtractDelimited	example:

S	:=	'Let	him	go';
S1	:=	ExtractDelimited(2,	S,	['	']);
{	here	S1	=	''	}

Routine	ExtractSubstr
Declaration:	function	ExtractSubstr(const	S:	string;	var	Pos:	Integer;	const	Delims:	TCharSet):	string;

ExtractSubstr	given	a	set	of	word	delimiters,	return	the	substring	from	S,	that	started	from	position	Pos.

ExtractSubstr	example:

var
__Pos:	Integer;	List:	TStringList;	S:	string;
begin
__{	...	}
__Pos	:=	1;
__while	Pos	<=	Length(S)	do
____List.Add(ExtractFieldName(S,	Pos,	[',',';']));
__{	...	}
end;

Routine	ExtractWord
Declaration:	function	ExtractWord(N:	Integer;	const	S:	string;	const	WordDelims:	TCharSet):	string;

ExtractWord,	ExtractWordPos	and	ExtractDelimited	given	a	set	of	word	delimiters,	return	the	N'th	word	in
S.

>	ExtractWord	example:

S	:=	'Let	him	go';
S1	:=	ExtractWord(2,	S,	['	']);
{	here	S1	=	'him'	}

Routine	ExtractWordPos
Declaration:	function	ExtractWordPos(N:	Integer;	const	S:	string;	const	WordDelims:	TCharSet;	var	Pos:
Integer):	string;

ExtractWord,	ExtractWordPos	and	ExtractDelimited	given	a	set	of	word	delimiters,	return	the	N'th	word	in
S.

>	ExtractWordPos	example:	
S	:=	'Let	him	go';
S1	:=	ExtractWordPos(2,	S,	['	'],	P);
{	here	S1	=	'him',	P	=	6	}

Routine	FindPart
Declaration:	function	FindPart(const	HelpWilds,	InputStr:	string):	Integer;

FindPart	compares	a	string	with	'?'	and	another,	returns	the	position	of	HelpWilds	in	InputStr.

FindPart	example:

var	P:	Integer;	Wild:	string;
begin
__Wild	:=	'?im';
__P	:=	FindPart(Wild,	'Let	him	go');
__{	here	P	=	5	}
end;

Routine	Hex2Dec
Declaration:	function	Hex2Dec(const	S:	string):	Longint;

Hex2Dec	converts	the	given	hexadecimal	string	to	the	corresponding	integer	value.

Hex2Dec	example:	
I	:=	Hex2Dec('1A');

{	here	I	=	26	}

Routine	IntToRoman
Declaration:	function	IntToRoman(Value:	Longint):	string;

IntToRoman	converts	the	given	value	to	a	roman	numeric	string	representation.

IntToRoman	example:	
S	:=	IntToRoman(1996);

Routine	IsEmptyStr
Declaration:	function	IsEmptyStr(const	S:	string;	const	EmptyChars:	TCharSet):	Boolean;

EmptyStr	returns	True	if	the	given	string	contains	only	character	from	the	EmptyChars.

IsEmptyStr	example:

if	IsEmptyStr(S,	[#0,'	'])	then	
begin
__ShowMessage('S	contains	only	while	spaces');
end;

Routine	IsWild
Declaration:	function	IsWild(InputStr,	Wilds:	string;	IgnoreCase:	Boolean):	Boolean;

IsWild	compare	InputString	with	WildCard	string	and	return	True	if	corresponds.

IsWild	example:	
There	are	possible	masks	and	corresponding	strings:

*	:	>=	0	letters;
*A	:	words	with	>=	1	letters	and	A	at	the	end;
A*A	:	words	with	>=	2	letters	and	A	at	the	begin	and	end;
A*	:	words	with	>=	1	letters	and	A	at	the	begin;
?	:	one	letter.

Routine	IsWordPresent
Declaration:	function	IsWordPresent(const	W,	S:	string;	const	WordDelims:	TCharSet):	Boolean;

IsWordPresent	given	a	set	of	word	delimiters,	return	True	if	word	W	is	present	in	string	S.

IsWordPresent	example:

if	IsWordPresent('him',	'Let	him	go',	['	',	','])	then

__ShowMessage('String	contsins	word	"him"');

Routine	LeftStr
Declaration:	function	LeftStr(const	S:	string;	N:	Integer):	string;

LeftStr	return	a	string	right-padded	to	length	N	with	blanks.

LeftStr	example:

S	:=	'Let	It	Be';	
S	:=	LeftStr(S,	10);
{	here	S	=	'Let	It	Be	'	}

Routine	MakeStr
Declaration:	function	MakeStr(C:	Char;	N:	Integer):	string;

MakeStr	return	a	string	of	length	N	filled	with	character	C.

MakeStr	example:	
__S	:=	MakeStr('	',	10);

Routine	MS
Declaration:	function	MS(C:	Char;	N:	Integer):	string;

MS	return	a	string	of	length	N	filled	with	character	C.

MS	example:	
__S	:=	MS('	',	10);

Routine	NPos
Declaration:	function	NPos(const	C:	string;	S:	string;	N:	Integer):	Integer;

NPos	searches	for	a	N-th	position	of	substring	C	in	a	given	string	S.

>	NPos	example:

var
__S:	string;	I:	Integer;
begin
__S	:=	'Let	It	Be';
__I	:=	NPos('	',	S,	2);
__{	I	=	7	}	
end;

Routine	Numb2Dec
Declaration:	function	Numb2Dec(S:	string;	B:	Byte):	Longint;

Numb2Dec	converts	the	given	B-based	numeric	string	to	the	corresponding	integer	value.

Numb2Dec	example:	
__I	:=	Numb2Dec('1010',	2);
__{	here	I	=	10	}

Routine	Numb2USA
Declaration:	function	Numb2USA(const	S:	string):	string;

Numb2USA	converts	numeric	string	S	to	USA-format.

Numb2USA	example:	
__S	:=	Numb2USA('12365412');
__{	here	S	=	'12,365,412'	}

Routine	OemToAnsiStr
Declaration:	function	OemToAnsiStr(const	OemStr:	string):	string;

OemToAnsiStr	translates	a	string	from	the	OEM	character	set	into	the	Windows	character	set.

>	OemToAnsiStr	example:	
S	:=	OemToAnsiStr(S);

Routine	ReplaceStr
Declaration:	function	ReplaceStr(const	S,	Srch,	Replace:	string):	string;

Returns	string	with	every	occurrence	of	Srch	string	replaced	with	Replace	string.

ReplaceStr	example:	
__S	:=	ReplaceStr(ReplaceStr(Condition,	'*',	'%'),	'?',	'_');

Routine	RightStr
Declaration:	function	RightStr(const	S:	string;	N:	Integer):	string;

RightStr	return	a	string	left-padded	to	length	N	with	blanks.

RightStr	example:	
__S	:=	'Let	It	Be';	
__S	:=	RightStr(S,	10);
__{	here	S	=	'	Let	It	Be'	}

Routine	RomanToInt
Declaration:	function	RomanToInt(const	S:	string):	Longint;

RomanToInt	converts	the	given	string	to	an	integer	value.	If	the	string	doesn't	contain	a	valid	roman
numeric	value,	the	0	value	is	returned.

RomanToInt	example:	
__I	:=	RomanToInt('MCMXVI');

Routine	StrToOem
Declaration:	function	StrToOem(const	AnsiStr:	string):	string;

StrToOem	translates	a	string	from	the	Windows	character	set	into	the	OEM	character	set.

StrToOem	example:	
__S	:=	StrToOem(S);

Routine	Tab2Space
Declaration:	function	Tab2Space(const	S:	string;	Numb:	Byte):	string;

Tab2Space	converts	any	tabulation	character	in	the	given	string	to	the	Numb	spaces	characters.

Tab2Space	example:__	
__S	:=	Tab2Space(S,	8);

Routine	WordCount
Declaration:	function	WordCount(const	S:	string;	const	WordDelims:	TCharSet):	Integer;

WordCount	given	a	set	of	word	delimiters,	return	number	of	words	in	S.

WordCount	example:	
I	:=	WordCount('Let	him	go',	['	',	',']);
{	here	I	=	3	}

Routine	WordPosition
Declaration:	function	WordPosition(const	N:	Integer;	const	S:	string;	const	WordDelims:	TCharSet):
Integer;

Given	a	set	of	word	delimiters,	return	start	position	of	N'th	word	in	S.

WordPosition	example:	
I	:=	WordPosition(2,	'Let	him	go',	['	',	',']);
{	here	I	=	5	}

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Unit
StrUtils

Constants:
Digit	Chars
WaitCursor

Type
TFillDirection	
TVertAlignment

Routine
ActivatePrevInstance	
ActivateWindow	
AllocMemo	
AnsiUpperFirstChar	
AssignBitmapCell	
CenterControl	
CenterWindow	
ChangeBitmapColor	
CompareMem	
CopyParentImage	
CreateBitmapFromIcon	
CreateTwoColorsBrushPattern	
DefineCursor	
Delay	
DialogUnitsToPixelsX	
DialogUnitsToPixelsY	
DrawBitmapRectTransparent	
DrawBitmapTransparent	
DrawCellBitmap	
DrawCellText	
DrawInvertFrame	
FreeMemo	
FreeUnusedOLE	
GetEnvVar	
GetMemoSize	
GradientFillRect	
HeightOf	
HugeDec	
HugeInc	
HugeMove	
HugeOffset	
KillMessage	
LoadAniCursor	
LoadDLL	
MakeBitmap	
MakeBitmapID	
MakeIcon	
MakeIconID	
MakeModuleBitmap	

MakeModuleIcon	
MergeForm	
MinimizeText	
MsgBox	
NotImplemented	
PaintInverseRect	
PixelsToDialogUnitsX	
PixelsToDialogUnitsY	
PointInPolyRgn	
PointInRect	
RegisterServer	
ResourceNotFound	
ShadeRect	
SplitCommandLine	
StartWait	
StopWait	
WidthOf	
Win32Check

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

UNIT	
SplshWnd

Constants:
SplashStayOnTop

Types:
TSplashWindow

Routine:
ShowSplashWindow

Const	SplashStayOnTop
Declaration:	SplashStayOnTop:	Boolean	=	True;;

This	global	variable	determines	whether	or	not	the	form	created	by	ShowSplashWindow	function	will	be
have	FormStyle	property	equal	to	fsStayOnTop.	The	default	setting	is	True.	Set	SplashStayOnTop	to	False
if	you	want	to	create	splash	screen	with	form	style	equal	to	fsNormal.

Type	TSplashWindow
Declaration:	TSplashWindow	=	class(TForm);

This	calss	is	intended	for	creating	splash	screens.	Splash	screens	are	simply	forms	that	are	presented	to
users	while	the	application	is	performing	time-consuming	operations	or	displayed	as	soon	as	your
application	program	is	executed.

To	create	and	display	splash	screen	use	ShowSplashWindow	function.

Routine	ShowSplashWindow
Declaration:	function	ShowSplashWindow(Graphic:	TGraphic;	const	MsgText:	string;	Animate:	Boolean;
AlignForm:	TForm):	TSplashWindow;

ShowSplashWindow	creates	and	displays	splash	form.	Splash	forms	are	simply	forms	that	are	presented	to
users	while	the	application	is	performing	time-consuming	operations	or	displayed	as	soon	as	your
application	program	is	executed.	While	the	splash	screen	is	being	displayed,	you	can	perform	other
operations	in	your	program.

Graphic	parameter	specified	a	graphic	to	displaing	in	left	part	of	splash	screen.	It	may	be	icon,	bitmap	or
"animated"	bitmap.	When	Animate	parameter	is	True	and	Graphic	is	TBitmap	object,	then
TAnimatedImage	component	will	be	created	to	display	animation	in	splash	screen.	Of	course	you	must	call
Application.ProcessMessages	method	while	the	splash	screen	is	being	displayed	to	allow	animation.

MsgText	parameter	specified	the	text	string	that	will	be	displayed	on	the	splash	screen.	AlignForm	is	a	form
withih	the	splash	screen	will	be	centered.	Function	returns	a	TSplashForm	object.	Don't	forget	to	destroy
splash	screen	after	displaying	by	calling	its	Free	destructor.

ShowSplashWindow	example:

var
__Splash:	TForm;
begin
__Splash	:=	ShowSplashWindow(Application.Icon,	'Loading...	Please	wait.',	
______________False,	Application.MainForm);
__try
____{	time-consuming	operations	}
__finally
____Splash.Free;
__end;
end;

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

UNIT	VCLUtils

Constant
WaitCursor

Type
TFillDirection
TVertAlignment

Routines
ActivatePrevInstance
ActivateWindow
AllocMemo
AnsiUpperFirstChar
AssignBitmapCell
CenterControl
CenterWindow
ChangeBitmapColor
CompareMem
CopyParentImage
CreateBitmapFromIcon
CreateTwoColorsBrushPattern
DefineCursor
Delay
DialogUnitsToPixelsX
DialogUnitsToPixelsY
DrawBitmapRectTransparent
DrawBitmapTransparent
DrawCellBitmap
DrawCellText
DrawInvertFrame
FreeMemo
FreeUnusedOLE
GetEnvVar
GetMemoSize
GradientFillRect
HeightOf
HugeDec
HugeInc
HugeMove
HugeOffset
KillMessage
LoadAniCursor
LoadDLL	
MakeBitMap	
MakeBitMapId	
MakeIcon	
MakeIconId	
MakeModuleBitMap	
MakeModuleIcon	
MergeForm	

MinimizeText	
MsgBox	
NotImplemented	
PaintInverseRect	
PixelsToDialogUnitsX	
PixelsToDialogUnitsY	
PointInPolyRgn	
PointInRect	
RegisterServer	
ResourceNotFound	
ShadeRect	
SplitCommandLine	
StartWait	
StopWait	
WidthOf	
LoadAniCursor	
LoadDLL	
MakeBitmap	
MakeBitmapID	
MakeIcon	
MakeIconID	
MakeModuleBitmap	
MakeModuleIcon	
MergeForm	
MinimizeText	
MsgBox	
NotImplemented	
PaintInverseRect	
PixelsToDialogUnitsX	
PixelsToDialogUnitsY	
PointInPolyRgn	
PointInRect	
RegisterServer	
ResourceNotFound	
ShadeRect	
SplitCommandLine	
StartWait	
StopWait	
WidthOf	
Win32Check

Const	WaitCursor
Declaration:	WaitCursor:	TCursor	=	crHourGlass;

This	defines	the	default	wait	cursor	as	the	hour	glass.

Type	TFillDirection
Declaration:	TFillDirection	=	(fdTopToBottom,	fdBottomToTop,	fdLeftToRight,	fdRightToLeft);

TFillDirection	defines	the	possible	values	of	the	Direction	parameter	for	GradientFillRect	procedure.

Type	TVertAlignment
Declaration:	TVertAlignment	=	(vaTopJustify,	vaCenter,	vaBottomJustify);

TVertAlignment	is	a	set	of	values	for	the	VertAlign	parameter	of	the	DrawCellText	procedure.

Routine	ActivatePrevInstance
Declaration:	function	ActivatePrevInstance(const	MainFormClass,	ATitle:	string):	Boolean;

ActivatePrevInstance	function	allows	you	to	stop	your	application	from	being	running	more	than	one
instance	under	Windows.	It	causes	the	application	to	detect	another	instance	at	startup	and	when	found,
terminates	the	second	instance	and	tries	to	activate	the	original	instance	of	your	application.
ActivatePrevInstance	find	the	top-level	window	whose	class	name	and	window	name	match	the	specified
strings	and,	when	found,	activate	this	window	and	returns	True.	Typically,	you	can	use	name	of	class	of
main	application	form	as	MainFormClass	parameter.	ATitle	parameter	specifies	the	window	name	(the
window's	title).	If	this	parameter	is	empty	string,	all	window	names	match.	Also	you	can	use	'TApplication'
as	MainFormClass	parameter	and	Application.Title	as	ATitle	parameter.	It's	recomended	however	to	use	the
main	form	class	name	so	it	can	be	more	unique	for	Windows.
You	can	call	this	function	in	project	source	(in	.DPR-file)	of	your	application.

ActivatePrevInstance	example:	
You	can	call	ActivatePrevInstance	in	project	source	file	(DPR)	to	stop	your	application	from	being	running
more	than	one	instance	under	Windows:

begin
__if	ActivatePrevInstance(TRxMainProjectForm.ClassName,	'')	then	
____Exit;
__Application.CreateForm(TRxMainProjectForm,	RxMainProjectForm);
__{	create	other	forms	}
__Application.Run;
end;

Routine	ActivateWindow
Declaration:	procedure	ActivateWindow(Wnd:	HWnd);

The	ActivateWindow	function	activates	a	window	and	forces	the	thread	that	created	the	window	into	the
foreground.	An	application	should	call	ActivateWindow	if	it	wants	to	put	itself	into	the	foreground.

If	window	specified	by	Wnd	handle	is	hidden,	then	ActivateWindow	displays	the	window.	If	the	window	is
minimized	ActivateWindow	restores	it	to	its	original	size	and	position.

ActivateWindow	example:	
ActivateWindow(Wnd);

Routine	AllocMemo
Declaration:	function	AllocMemo(Size:	Longint):	Pointer;

AllocMemo	allocates	a	block	of	the	given	Size	on	the	heap.	Each	byte	in	the	allocated	buffer	is	set	to	zero.
To	dispose	the	buffer,	use	the	FreeMemo	procedure.

AllocMemo	example:	
var
__P:	Pointer;
begin
__P	:=	AllocMemo(128000);
__try
____{	use	memory	}
__finally
____FreeMemo(P);
__end;
end;

Routine	AnsiUpperFirstChar
Declaration:	function	AnsiUpperFirstChar(const	S:	string):	string;

This	returns	the	string,	processed	with	the	first	letter	in	uppercase,	all	other	letters	in	lowercase,	using	ANSI
character	set.

AnsiUpperFirstChar	example:	
ClientName	:=	AnsiUpperFirstChar(ClientName);

Routine	AssignBitmapCell
Declaration:	procedure	AssignBitmapCell(Source:	TGraphic;	Dest:	TBitmap;	Cols,	Rows,	Index:	Integer);

AssignBitmapCell	example:

Next	code	fragment	loads	standard	Windows	"box"	images,	cut	cell	from	it	and	assign	selected	bitmap	to
Glyph	property	of	TSpeedButton	component:

var
__Bmp,	Checks:	TBitmap;
begin
__Bmp	:=	TBitmap.Create;
__Checks	:=	MakeModuleBitmap(0,	PChar(32759));
__try
____{...}
____AssignBitmapCell(Checks,	Bmp,	4,	3,	1);
____SpeedButton1.Glyph	:=	Bmp;
____{...}
__finally
____Bmp.Free;
____Checks.Free;

__end;
end;

Routine	CenterControl
Declaration:	procedure	CenterControl(Control:	TControl);

This	procedure	centers	the	given	window	control	over	its	parent.	If	the	control	is	a	form,	it	is	centered	over
the	screen.	If	the	control	is	a	MDI-child	form,	it	is	centered	over	the	main	application	MDI-form.	It	ensures
that	the	window	is	entirely	within	the	visible	screen.

CenterControl	example:	
procedure	TForm1.FormResize(Sender:	TObject);
begin
__CenterControl(Memo1);
end;

Routine	CenterWindow
Declaration:	procedure	CenterWindow(Wnd:	HWnd);

This	function	centers	the	given	window	Wnd	over	the	screen.	It	ensures	that	the	window	is	entirely	within
the	visible	screen.

CenterWindow	example:	
CenterWindow(Form1.Hanle);

Routine	ChangeBitmapColor
Declaration:	function	ChangeBitmapColor(Bitmap:	TBitmap;	Color,	NewColor:	TColor):	TBitmap;

The	function	ChangeBitmapColour	changes	the	colour	inside	the	bitmap	to	the	corresponding	NewColor.

ChangeBitmapColor	example:	
var
__Bmp1,	Bmp2:	TBitmap;
begin
__{...}
__Bmp2	:=	ChangeBitmapColor(Bmp1,	clOlive,	clSilver);
__try
____Bmp1.Assign(Bmp2);
__finally
____Bmp2.Free;
__end;
end;

Routine	CompareMem
Declaration:	function	CompareMem(fpBlock1,	fpBlock2:	Pointer;	Size:	Integer):	Boolean;	assembler;

CompareMem	performs	a	binary	compare	of	Size	bytes	of	memory	referenced	by	fpBlock1	to	that	of
fpBlock2.	CompareMem	returns	True	if	the	memory	referenced	by	fpBlock1	is	identical	to	that	of
fpBlock2.

CompareMem	example:

if	CompareMem(fp1,	fp2,	1024)	then	
begin
__{	...	}
end;

Routine	CopyParentImage
Declaration:	procedure	CopyParentImage(Control:	TControl;	Dest:	TCanvas);

CopyParentImage	copies	the	image	contained	within	the	control	to	a	tCanvas.

>	CopyParentImage	example:

procedure	TMyControl.Paint;
begin
__Canvas.FillRect(Bounds(0,	0,	Width,	Height));
__{	copy	image	from	parent	and	back-level	controls	}
__CopyParentImage(Self,	Canvas);
__DrawBitmapTransparent(Canvas,	0,	0,	FImage,	FImage.TransparentColor);
end;

Routine	CreateBitmapFromIcon
Declaration:	function	CreateBitmapFromIcon(Icon:	TIcon;	BackColor:	TColor):	TBitmap;

CreateBitMapFromIcon,	as	it's	name	implies,	creates	a	bitmap	from	an	icon.	The	BackColour	is	important
because	there	is	no	bitmap	equivalent	of	the	colour	"transparent".

>	CreateBitmapFromIcon	example:	
var
__Bmp:	TBitmap;
begin
__Bmp	:=	CreateBitmapFromIcon(Form1.Icon,	clSilver);
__try
____{	use	bitmap	}
__finally
____Bmp.Free;
__end;
end;

Routine	CreateTwoColorsBrushPattern
Declaration:	function	CreateTwoColorsBrushPattern(Color1,	Color2:	TColor):	TBitmap;

CreateTwoColoursBrushPattern,	as	it's	name	implies,	creates	a	b

>	CreateTwoColorsBrushPattern	example:

var
__Bmp:	TBitmap;
begin
__Bmp	:=	CreateTwoColorsBrushPattern(clBtnFace,	clWhite);
__try
____Canvas.Brush.Bitmap	:=	Bmp;
____{	...	}
__finally
____Bmp.Free;
__end;
end;

Routine	DefineCursor
Declaration:	function	DefineCursor(Instance:	THandle;	ResID:	PChar):	TCursor;

DefineCursor	function	loads	the	specified	cursor	resource	from	the	executable	(.EXE	or	.DLL)	file
associated	with	an	specified	instance	and	assign	a	unique	index.	Returns	the	new	index.	ResID	parameter
points	to	a	null-terminated	string	that	contains	the	name	of	the	cursor	resource	to	be	loaded.	Alternatively,
this	parameter	can	consist	of	the	resource	identifier	in	the	low-order	word	and	zero	in	the	high-order	word.
The	MakeIntResource	function	can	also	be	used	to	create	this	value.	If	the	specified	resource	can	not	be
found,	DefineCursor	raises	an	EResNotFound	exception.	To	use	DefineCursor,	just	call	it	and	assign	the
return	value	to	a	component's	Cursor	property.

In	32-bit	version	DefineCursor	searches	for	the	specified	cursor	resource	in	this	sequence:

1.	Resources	of	RT_CURSOR	(standard	Windows	cursors)	type.

2.	Resources	of	RT_ANICURSOR	(animated	cursors)	type.

>	DefineCursor	example:

constructor	TDrawingComponent.Create(Owner:	TComponent);
begin
inherited	Create(Owner);
Cursor	:=	DefineCursor(HInstance,	'CUR_MYCURSOR');
end;

Routine	Delay
Declaration:	procedure	Delay(MSecs:	Longint);

Delays	a	specified	number	(MSecs)	of	milliseconds.

>	Delay	example:	

StartWait;
try
__Delay(1000);
finally
__StopWait;
end;

Routine	DialogUnitsToPixelsX
Declaration:	function	DialogUnitsToPixelsX(DlgUnits:	Word):	Word;

Convert	dialog	units	to	pixels	in	horizontal	direction.
The	dialog	box	base	units	used	by	Windows	to	create	dialog	boxes.

>	DialogUnitsToPixelsX	example:	
X	:=	DialogUnitsToPixelsX(X);

Routine	DialogUnitsToPixelsY
Declaration:	function	DialogUnitsToPixelsY(DlgUnits:	Word):	Word;

Convert	dialog	units	to	pixels	in	vertical	direction.	The	dialog	box	base	units	used	by	Windows	to	create
dialog	boxes.

>	DialogUnitsToPixelsY	example:

Y	:=	DialogUnitsToPixelsY(Y);

Routine	DrawBitmapRectTransparent
Declaration:	procedure	DrawBitmapRectTransparent(Dest:	TCanvas;	DstX,	DstY:	Integer;	SrcRect:	TRect;
Bitmap:	TBitmap;	TransparentColor:	TColor);

DrawBitmapRectTransparent	paints	the	rectangular	part	(specified	by	SrcRect	parameter)	of	bitmap
specified	by	the	Bitmap	parameter	on	the	canvas	Dest	at	the	location	given	by	the	coordinates	(DstX,
DstY).	TransparentColor	determines	which	color	of	the	bitmap	is	to	be	transparent	when	the	bitmap	is
drawn.

To	draw	whole	bitmap	image	transparency	use	DrawBitmapTransparent	procedure.

>	DrawBitmapRectTransparent	example:

var
__Bmp:	TBitmap;
begin
__Bmp	:=	Image1.Picture.Bitmap;
__DrawBitmapRectTransparent(PaintBox1.Canvas,	10,	10,
__Rect(0,	0,	Bmp.Width	div	2,	Bmp.Height	div	2),	Bmp,	clOlive);
end;

Routine	DrawBitmapTransparent
Declaration:	procedure	DrawBitmapTransparent(Dest:	TCanvas;	DstX,	DstY:	Integer;	Bitmap:	TBitmap;
TransparentColor:	TColor);

DrawBitmapTransparent	paints	the	bitmap	specified	by	the	Bitmap	parameter	on	the	canvas	Dest	at	the
location	given	by	the	coordinates	(DstX,	DstY).	TransparentColor	determines	which	color	of	the	bitmap	is
to	be	transparent	when	the	bitmap	is	drawn.	To	render	only	part	of	bitmap	use	DrawBitmapRectTransparent
procedure.

>	DrawBitmapTransparent	example:

var
__Bmp:	TBitmap;
begin
__Bmp	:=	Image1.Picture.Bitmap;
__DrawBitmapTransparent(PaintBox1.Canvas,	10,	10,	Bmp,	clOlive);
end;

Routine	DrawCellBitmap
Declaration:	procedure	DrawCellBitmap(Control:	TCustomControl;	ACol,	ARow:	Longint;	Bmp:	TBitmap;
Rect:	TRect);

DrawBitmap	draws	a	bitmap	Bmp	onto	Control	(assumed	as	DrawGrid)	with	ACol	and	ARow	as	it's
specifier.	The	bitmap	occupies	the	space	Rect.

>	DrawCellBitmap	example:

procedure	TForm1.Grid1DrawCell(Sender:	TObject;	Col,	Row:	Longint;	Rect:	TRect;	State:
TGridDrawState);
var
Bmp:	TBitmap;
begin
Bmp	:=	GetCellBitmap(Col,	Row);
if	Bmp	<>	nil	then	
DrawCellBitmap(Grid1,	Col,	Row,	Bmp,	Rect);
end;

Routine	DrawCellText
Declaration:	procedure	DrawCellText(Control:	TCustomControl;	ACol,	ARow:	Longint;	const	S:	string;
const	ARect:	TRect;	Align:	TAlignment;	VertAlign:	TVertAlignment);

DrawCellText	draws	the	text	(const	s	:	string)	inside	the	TDrawGrid,	with	parameter	ACol	(Column)	and
ARow	(row)	inside	ARect	with	specified	Horizontal	Alignment	Align	and	Vertical	Alignment	VertAlign.

DrawCellText	example:

procedure	TForm1.DrawGrid1DrawCell(Sender:	TObject;	Col,	Row:	Longint;	Rect:	TRect;	State:
TGridDrawState);
begin
__if	(Row	>=	0)	then	
__begin
____DrawCellText(Sender	as	TDrawGrid,	Col,	Row,
____GetCellText(Row),	Rect,	taLeftJustify,	vaCenter);
__end;
end;

Routine	DrawInvertFrame
Declaration:	procedure	DrawInvertFrame(ScreenRect:	TRect;	Width:	Integer);

DrawInvertFrame	draws	a	rectangular	frame	in	the	screen	by	performing	a	logical	XOR	operation	on	the
color	values	for	each	pixel	of	the	rectangle's	frame.	Because	DrawInvertFrame	uses	an	XOR	function,
calling	it	a	second	time	while	specifying	the	same	rectangle	removes	the	inverted	rectangle	from	the	screen.
ScreenRect	parameter	contains	the	logical	coordinates	of	the	rectangle	in	the	screen	coordinates	(relative	to
the	upper-left	corner	of	the	screen).	Width	parameter	specifies	the	width	of	the	frame	in	pixels.

>	DrawInvertFrame	example:

var
__P:	TPoint;
__R:	TRect;
begin
__P	:=	Panel1.ClientToScreen(Point(0,	0));
__R	:=	Bounds(P.X,	P.Y,	Panel1.Width,	Panel1.Height);
__DrawInvertFrame(R,	3);	{	Show	invert	frame	}
__{	...	}
__DrawInvertFrame(R,	3);	{	Hide	invert	frame	}
end;

Routine	FreeMemo
Declaration:	procedure	FreeMemo(var	fpBlock:	Pointer);

The	FreeMemo	procedure	disposes	of	a	dynamic	variable.	fpBlock	is	a	variable	of	any	pointer	type
previously	assigned	by	the	AllocMemo	function.

>	FreeMemo	example:

var
__P:	Pointer;
begin
__P	:=	AllocMemo(128000);
__try
____{	use	memory	}
__finally
____FreeMemo(P);

__end;
end;

Routine	FreeUnusedOLE
Declaration:	procedure	FreeUnusedOLE;

This	procedure	unloads	OLE	DLL's	in	32-bit	Delphi	versions.	You	can	unload	unused	OLE	DLL's	when
you	don't	use	OLE	libraries	in	your	application.	Be	sure	that	your	project	does	not	calling	any	OLE
functions	and	does	not	using	Variant	types	before	calling	this	procedure!

>	FreeUnusedOLE	example:

program	Project1;
uses	Forms,	VCLUtils,	Main	in	'MAIN.PAS'	{MainForm};

{$R	*.RES}

begin
__FreeUnusedOLE;
__Application.CreateForm(TMainForm,	MainForm);
__Application.Run;
end;

Routine	GetEnvVar
Declaration:	function	GetEnvVar(const	VarName:	string):	string;

Returns	a	string	value	of	a	specified	environment	variable.

>	GetEnvVar	example:

uses	SysUtils,	Dialogs,	VCLUtils;
var	EnvVar:	string;

begin
__EnvVar	:=	GetEnvVar('TEMP');
__ShowMessage(Format('Path	of	the	temporary	file	is	currently:	%s',	[EnvVar]));
end.

Routine	GetMemoSize
Declaration:	function	GetMemoSize(fpBlock:	Pointer):	Longint;

The	GetMemoSize	function	retrieves	the	current	size,	in	bytes,	of	the	specified	dynamic	variable.	fpBlock	is
a	variable	of	any	pointer	type	previously	assigned	by	the	AllocMemo	function.

>	GetMemoSize	example:

var	P:	Pointer;	S:	Longint;

begin
__P	:=	AllocMemo(128000);
__try
____{	use	memory	}
____S	:=	GetMemoSize(P);
____{	...	}
__finally
____FreeMemo(P);
end;
end;

Routine	GradientFillRect
Declaration:	procedure	GradientFillRect(Canvas:	TCanvas;	Rect:	TRect;	BeginColor,	EndColor:	TColor;
Direction:	TFillDirection;	Colors:	Byte);

GradientFillRect	procedure	displays	a	rectangle	Rect	on	a	Canvas	with	a	color	pattern	that	blends	from	one
choosen	color	BeginColor	to	another	color	EndColor.	Colors	parameter	determines	the	number	of	color
bands	that	are	painted	between	the	starting	and	ending	colors.	The	valid	range	for	Colors	is	1	to	255.
Direction	parameter	determines	whether	the	gradient	is	horizontal	or	vertical.

GradientFillRect	example:

procedure	TForm1.FormPaint(Sender:	TObject);
begin
__GradientFillRect(Canvas,	ClientRect,	clBlue,	clBlack,	fdTopToBottom,	255);
end;
{...}

procedure	TForm1.FormResize(Sender:	TObject);
begin
__Invalidate;
end;

Routine	HeightOf
Declaration:	function	HeightOf(R:	TRect):	Integer;

Retrieves	the	vertical	size	(height)	of	the	specified	rectangle	R	in	pixels.

HeightOf	example:	
H	:=	HeightOf(Rect);

Routine	HugeDec
Declaration:	procedure	HugeDec(var	HugePtr:	Pointer;	Amount:	Longint);

Decrement	a	huge	pointer.

HugeDec	example:	
var	P:	Pointer;	L:	Longint;
{...}
HugeDec(P,	L);
{...}

Routine	HugeInc
Declaration:	procedure	HugeInc(var	HugePtr:	Pointer;	Amount:	Longint);

Increment	a	huge	pointer.

HugeInc	example:	
var
__P:	Pointer;
__L:	Longint;
__{...}
__HugeInc(P,	L);
__{...}

Routine	HugeMove
Declaration:	procedure	HugeMove(Base:	Pointer;	Dst,	Src,	Size:	Longint);

Copy	memory	from	Src	to	Dst,	copying	Size	units	from	Base+Src	to	Base+Dst.	The	reason	to	separate	the
Base	pointer	from	the	Dst	and	Src	indexes	is	to	easily	compare	the	indexes	to	see	what	direction	to	copy,
without	having	to	muck	about	with	normalizing	segments.	Offsets	and	the	size	are	in	longwords,	for
convenience,	but	you	need	to	convert	them	to	short	words,	in	case	the	code	is	running	on	a	286	machine,
which	does	not	support	the	movsd	instruction,	just	movsw.

HugeMove	example:	
var
__P:	Pointer;
__L:	Longint;

begin
__{...}
__L	:=	1024	*	82;	{82	K}
__HugeMove(P,	0,	L,	L);
__{...}
end;

Routine	HugeOffset
Declaration:	function	HugeOffset(HugePtr:	Pointer;	Amount:	Longint):	Pointer;

Add	an	offset	to	a	huge	pointer	and	return	the	result.

>	HugeOffset	example:	
P	:=	HugeOffset(P,	L);

Routine	KillMessage
Declaration:	procedure	KillMessage(Wnd:	HWnd;	Msg:	Cardinal);

KillMessage	deletes	the	requested	message	Msg	from	the	window	message	queue,	but	throw	back	any
WM_QUIT	messages	that	PeekMessage	standard	Windows	function	may	also	return.

>	KillMessage	example:	
KillMessage(Form1.Handle,	Msg.Message);

Routine	LoadAniCursor
Declaration:	function	LoadAniCursor(Instance:	THandle;	ResID:	PChar):	HCursor;

The	LoadAniCursor	function	loads	the	specified	animated	cursor	resource	from	the	executable	(.EXE	or
.DLL)	file	associated	with	the	specified	application	instance.	Instance	parameter	identifies	an	instance	of
the	module	whose	executable	file	contains	the	animated	cursor	to	be	loaded.	ResID	parameter	points	to	a
null-terminated	string	that	contains	the	name	of	the	animated	cursor	resource	(RT_ANICURSOR	type)	to
be	loaded.	Alternatively,	this	parameter	can	consist	of	the	resource	identifier	in	the	low-order	word	and	zero
in	the	high-order	word.	The	MakeIntResource	function	can	also	be	used	to	create	this	value.	If	the	function
succeeds,	the	return	value	is	the	handle	of	the	newly	loaded	animated	cursor.	If	the	function	fails,	the	return
value	is	0	(zero).

>	LoadAniCursor	example:	
var	Cur:	HCursor;
begin
__{...}
__Cur	:=	LoadAniCursor(hInstance,	'CUR_COIN');
__if	Cur	=	0	then
____{	error	loading	cursor	}
__else
____Screen.Cursors[200]	:=	Cur;
__{...}
end;

Routine	LoadDLL
Declaration:	function	LoadDLL(const	LibName:	string):	THandle;

The	LoadDLL	function	loads	the	specified	library	module.	Returns	the	instance	handle	of	the	loaded	library
module	if	the	function	is	successful.	Otherwise,	an	EOutOfResources	exception	is	raised.

LoadDLL	example:

{$IFDEF	WIN32}
TUHandle	:=	LoadDLL('TUTIL32.DLL');

{$ELSE}
TUHandle	:=	LoadDLL('TUTILITY.DLL');
{$ENDIF}

Routine	MakeBitmap
Declaration:	function	MakeBitmap(ResID:	PChar):	TBitmap;

MakeBitmap	instantiates	a	bitmap	object	(TBitmap),	and	loads	the	specified	bitmap	resource	from	an
application's	executable	file.	Specify	the	resource	to	be	loaded	as	the	value	of	ResID.	When	you	no	longer
need	the	bitmap,	call	it's	Destory	destructor	to	free	it.	If	the	function	fails,	the	return	value	is	Nil.

MakeBitmap	example:

var
__Bmp:	TBitmap;
begin
__Bmp	:=	MakeBitmap('MY_BITMAP');
__try
____{	use	bitmap	}
__finally
____Bmp.Free;
__end;
end;

Routine	MakeBitmapID
Declaration:	function	MakeBitmapID(ResID:	Word):	TBitmap;

MakeBitmapID	instantiates	a	bitmap	object	(TBitmap),	and	loads	the	specified	bitmap	resource	from	an
application's	executable	file.	Specify	the	resource	to	be	loaded	as	the	value	of	ResID.	When	you	no	longer
need	the	bitmap,	call	it's	Destory	destructor	to	free	it.	If	the	function	fails,	the	return	value	is	Nil.

MakeBitmapID	example:

const	ResID	=	23012;
var	Bmp:	TBitmap;
begin
__Bmp	:=	MakeBitmapID(ResID);
__try
____{	use	bitmap	}
__finally
____Bmp.Free;
__end;
end;

Routine	MakeIcon
Declaration:	function	MakeIcon(ResID:	PChar):	TIcon;

MakeIcon	instantiates	an	icon	object	(TIcon),	and	loads	the	specified	icon	resource	from	an	application's
executable	file.	Specify	the	resource	to	be	loaded	as	the	value	of	ResID.	When	you	no	longer	need	the	icon,
call	it's	Destory	destructor	to	free	it.	If	the	function	fails,	the	return	value	is	Nil.

>	MakeIcon	example:

var
__Ico:	TIcon;
begin
__Ico	:=	MakeIcon('MY_ICON');
__try
____{	use	icon	}
__finally
____Ico.Free;
__end;
end;

Routine	MakeIconID
Declaration:	function	MakeIconID(ResID:	Word):	TIcon;

MakeIconID	instantiates	an	icon	object	(TIcon),	and	loads	the	specified	icon	resource	from	an	application's
executable	file.	Specify	the	resource	to	be	loaded	as	the	value	of	ResID.	When	you	no	longer	need	the	icon,
call	it's	Destory	destructor	to	free	it.	If	the	function	fails,	the	return	value	is	Nil.

MakeIconID	example:	
const	ResID	=	23012;
var
__Ico:	TIcon;
begin
__Ico	:=	MakeIconID(ResID);
__try
____{	use	icon	}
__finally
____Ico.Free;
en__d;
end;

Routine	MakeModuleBitmap
Declaration:	function	MakeModuleBitmap(Module:	THandle;	ResID:	PChar):	TBitmap;

MakeModuleBitmap	instantiates	a	bitmap	object	(TBitmap),	and	loads	the	specified	bitmap	resource	from	a
module's	executable	file.	Specify	the	resource	to	be	loaded	as	the	value	of	ResID	which	points	to	a	null-
terminated	string	that	contains	the	name	of	the	bitmap	resource	to	be	loaded.	Alternatively,	this	parameter
can	consist	of	the	resource	identifier	in	the	low-order	word	and	zero	in	the	high-order	word.	The
MakeIntResource	function	can	be	used	to	create	this	value.	Module	parameter	identifies	the	instance	of	the
module	whose	executable	file	contains	the	bitmap	to	be	loaded.

When	you	no	longer	need	the	bitmap,	call	it's	Destory	destructor	to	free	it.

An	application	can	use	the	MakeModuleBitmap	function	to	access	the	predefined	bitmaps	used	by	the
Windows	API.	To	do	so,	the	application	must	set	the	Module	parameter	to	zero.	If	the	function	fails,	the
return	value	is	Nil.

MakeModuleBitmap	example:	
var	Bmp:	TBitmap;

begin
__Bmp	:=	MakeModuleBitmap(0,	PChar(32759));	{	check	box	image	}
__try
____{	use	bitmap	}
__finally
____Bmp.Free;
__end;
end;

Routine	MakeModuleIcon
Declaration:	function	MakeModuleIcon(Module:	THandle;	ResID:	PChar):	TIcon;

MakeModuleIcon	instantiates	an	icon	object	(TIcon),	and	loads	the	specified	icon	resource	from	a	module's
executable	file.	Specify	the	resource	to	be	loaded	as	the	value	of	ResID	which	points	to	a	null-terminated
string	that	contains	the	name	of	the	icon	resource	to	be	loaded.	Alternatively,	this	parameter	can	consist	of
the	resource	identifier	in	the	low-order	word	and	zero	in	the	high-order	word.	The	MakeIntResource
function	can	be	used	to	create	this	value.	Module	parameter	identifies	the	instance	of	the	module	whose
executable	file	contains	the	icon	to	be	loaded.	When	you	no	longer	need	the	icon,	call	it's	Destory	destructor
to	free	it.

An	application	can	use	the	MakeModuleIcon	function	to	access	the	predefined	icons	used	by	the	Windows
API.	To	do	so,	the	application	must	set	the	Module	parameter	to	zero	and	the	ResID	parameter	to	one	of	the
following	values:

IDI_APPLICATION,	IDI_ASTERISK,	IDI_EXCLAMATION,	IDI_HAND,	IDI_QUESTION,
IDI_WINLOGO	(Win95	or	NT	4.0	or	higher).

If	the	function	fails,	the	return	value	is	Nil.

MakeModuleIcon	example:	
var
__Ico:	TIcon;
__Module:	THandle;
begin
__Module	:=	LoadLibrary('MY_RES.DLL');
__if	Module	>=	HINSTANCE_ERROR	then
__try
____Ico	:=	MakeModuleIcon(Module,	MakeIntResource(2));
____try
______{	use	icon	}
____finally
______Ico.Free;
____end;

__finally
____FreeLibrary(Module);
__end;
end;

Routine	MergeForm
Declaration:	procedure	MergeForm(AControl:	TWinControl;	AForm:	TForm;	Align:	TAlign;	Show:
Boolean);

MergeForm	merges	a	form	with	a	NoteBook	page.

MergeForm	example:	
MergeForm(TPage(Notebook.Pages.Objects[0]),	TMyForm.Create(Application),	alClient,	True);

Routine	MinimizeText
Declaration:	function	MinimizeText(const	Text:	string;	Canvas:	TCanvas;	MaxWidth:	Integer):	string;

MinimimizeText	returns	a	text	string	for	display	purposes,	adding	ellipses	if	necessary	to	maintain	a	length
limit.	Call	MinimizeText	to	ensure	that	a	text	string	fits	in	the	alloted	display	space.	If	the	text	string	passed
as	the	Text	parameter	is	longer	than	MaxWidth	pixels	when	written	to	the	canvas	specified	by	the	Canvas
parameter,	MinimizeText	will	remove	last	characters	of	the	string	and	replace	them	by	ellipses	('...')	in	order
to	shorten	the	resulting	string.

MinimizeText	example:	
{...}
Form1.Canvas.TextRect(Rect,	Rect.Left,	Rect.Top,	
MinimizeText(S,	Form1.Canvas,	WidthOf(Rect)));
{...}

Routine	MsgBox
Declaration:	function	MsgBox(const	Caption,	Text:	string;	Flags:	Integer):	Integer;

The	MsgBox	function	creates,	displays,	and	operates	a	message	box.	This	is	a	wrapper	for	standard
Windows	function	MessageBox.

MsgBox	example:	
if	MsgBox(Application.Title,	'Continue?',	MB_YESNO	+	MB_ICONSTOP)	=	mrYes	then
begin	
__{	...	}
end;

Routine	NotImplemented
Declaration:	procedure	NotImplemented;

NotImplemented,	as	it's	name	implies,	specifies	that	the	code	inside	a	particular	procedure	implemented	is

"not	implemented	yet."

In	other	words,	the	NotImplemented	procedure	shows	a	messagebox	stating	'Not	Implemented	Yet'.

NotImplemented	example:	
procedure	TForm1.SaveClick(Sender:	TObject);
begin
__NotImplemented;
end;

Routine	PaintInverseRect
Declaration:	procedure	PaintInverseRect(RectOrg,	RectEnd:	TPoint);

The	PaintInverseRect	function	inverts	a	rectangle	in	a	screen	device	context	by	performing	a	logical	NOT
operation	on	the	color	values	for	each	pixel	in	the	rectangle's	interior.	RectOrg	and	RectEnd	parameters
contain	the	logical	coordinates	of	the	rectangle	in	the	screen	coordinates	(relative	to	the	upper-left	corner	of
the	screen).

PaintInverseRect	example:	
Invert	and	restore	Widows	screen:	
__PaintInversRect(Point(0,	0),	Point(Screen.Width,	Screen.Height));
__Delay(2000);
__PaintInversRect(Point(0,	0),	Point(Screen.Width,	Screen.Height));

Routine	PixelsToDialogUnitsX
Declaration:	function	PixelsToDialogUnitsX(PixUnits:	Word):	Word;

Convert	pixels	to	dialog	units	in	horizontal	direction.	The	dialog	box	base	units	used	by	Windows	to	create
dialog	boxes.

PixelsToDialogUnitsX	example:	
__X	:=	PixelsToDialogUnitsX(X);

Routine	PixelsToDialogUnitsY
Declaration:	function	PixelsToDialogUnitsY(PixUnits:	Word):	Word;

Convert	pixels	to	dialog	units	in	vertical	direction.	The	dialog	box	base	units	used	by	Windows	to	create
dialog	boxes.

PixelsToDialogUnitsY	example:	
__Y	:=	PixelsToDialogUnitsY(Y);

Routine	PointInPolyRgn
Declaration:	function	PointInPolyRgn(const	P:	TPoint;	const	Points:	array	of	TPoint):	Boolean;

The	PointInRgn	function	determines	whether	the	specified	point	is	inside	the	specified	region.	If	the
specified	point	is	in	the	region,	the	return	value	is	True.	Points	parameter	is	an	array	of	TPoint	records	that
define	the	vertices	of	the	polygon.	The	polygon	is	presumed	closed.	Each	vertex	can	be	specified	only	once.

PointInPolyRgn	example:	
with	MyForm	do
if	PointInPolyRgn(Point(X,	Y),	[Point(Left,	Top),	Point(Left	+	Width,	Top),	Point(Left	+	Width	div	2,	Top
+	Height	div	2)])	then
begin
__{	...	}
end;

Routine	PointInRect
Declaration:	function	PointInRect(const	P:	TPoint;	const	R:	TRect):	Boolean;

The	PointInRect	function	determines	whether	the	specified	point	P	lies	within	the	specified	rectangle	R.	A
point	is	within	a	rectangle	if	it	lies	on	the	left	or	top	side	or	is	within	all	four	sides.	A	point	on	the	right	or
bottom	side	is	considered	outside	the	rectangle.	If	the	specified	point	lies	within	the	rectangle,	the	return
value	is	True.

PointInRect	example:	
if	PointInRect(Point(X,	Y),	Image1.ClientRect)	then	begin
{	...	}
end;

Routine	RegisterServer
Declaration:	function	RegisterServer(const	ModuleName:	string):	Boolean;

RegisterServer	registers	an	OLE	server.

RegisterServer	example:	
RegisterServer('cfx32.ocx');

Routine	ResourceNotFound
Declaration:	procedure	ResourceNotFound(ResID:	PChar);

ResourceNotFound	triggers	an	exception	'Resource	Not	Found'	with	ResId	identified	(or	shown)	as	the	bad
resource.

ResourceNotFound	example:	
procedure	LoadCursorRes(ResID:	PChar;	AssignTo:	TCursor);
var
__Handle:	HCursor;
begin
__Handle	:=	LoadCursor(hInstance,	ResID);
__if	Handle	=	0	then	
____ResourceNotFound(ResID)

__else	
____Screen.Cursors[AssignTo]	:=	Handle;
end;

Routine	ShadeRect
Declaration:	procedure	ShadeRect(DC:	HDC;	const	Rect:	TRect);

ShadeRect	the	specified	Rect	(rectangle)	area	with	parameter	DC	(Device	to	Context).

ShadeRect	example:	
ShadeRect(Canvas.Handle,	ARect);

Routine	SplitCommandLine
Declaration:	procedure	SplitCommandLine(const	CmdLine:	string;	var	ExeName,	Params:	string);

SplitCommandLine	splits	the	commandline	information	presented	to	the	program	into	the	head	(ExeName)
and	tail	(Params).

SplitCommandLine	example:

S	:=	'MYAPP.EXE	"Parameter	Name"	-K	-S';
SplitCommandLine(S,	ExeName,	Params);
{	here	ExeName	=	'MYAPP.EXE'	Params	=	'"Parameter	Name"	-K	-S'	}

Routine	StartWait
Declaration:	procedure	StartWait;

StartWait	starts	the	waiting	period.	See	also:	StopWait

StartWait	example:	
StartWait;	{	set	cursor	to	WaitCursor	}
try
__{	...	}
__StartWait;	{	no	effect	}
__try
____{	...	}
__finally
____StopWait;	{	no	effect	}
__end;	
__{	...	}	
finally
__StopWait;	{	restore	default	cursor	}
end;

Routine	StopWait

Declaration:	procedure	StopWait;

StopWait	stops	the	waiting	period.	See	also:	StartWait

StopWait	example:	
StartWait;	{	set	cursor	to	WaitCursor	}
try
__{	...	}
__StartWait;	{	no	effect	}
__try
____{	...	}
__finally
____StopWait;	{	no	effect	}
__end;	
__{	...	}	
finally
__StopWait;	{	restore	default	cursor	}
end;

Routine	WidthOf
Declaration:	function	WidthOf(R:	TRect):	Integer;

Retrieves	the	horizontal	size	(width)	of	the	specified	rectangle	R	in	pixels.

WidthOf	example:	
W	:=	WidthOf(Rect);

Routine	Win32Check
Declaration:	function	Win32Check(RetVal:	Bool):	Bool;

Win32Check	checks	the	return	value	of	a	Windows	32-bit	API	call	and	raises	an	appropriate	exception
when	it	indicates	failure.

Call	Win32Check	with	the	return	value	of	a	Windows	API	call	that	returns	a	Boolean	to	indicate	success	or
failure.	If	the	Windows	API	function	returns	False	(indicating	failure),	Win32Check	raise	an	exception	with
message	returned	as

SysErrorMessage(GetLastError).	

If	the	API	function	returns	True,	Win32Check	returns	True.

This	function	presents	only	in	RX	version	for	Delphi	2.0.	In	Delphi	3.0	such	function	presents	in	standard
module	SYSUTILS.PAS.

Win32Check	example:	
Win32Check(CreateDirectory('C:\myworld\private',	nil));

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

UNIT	ClipIcon

Const
WaitCursor

Routine
ActivatePrevInstance
ActivateWindow
AllocMemo
AnsiUpperFirstChar

Type
TFillDirection
TVertAlignment

Const	CF_ICON
Declaration:	CF_ICON:	Word	=	0;;

This	is	the	registered	custom	clipboard	format	for	Windows	icon	graphic.	This	constatnt	can	be	used	to	find
out	if	a	icon	format	is	available	on	the	Clipboard	with	the	HasFormat	method.

Routine	AssignClipboardIcon
Declaration:	procedure	AssignClipboardIcon(Icon:	TIcon);

AssignClipboardIcon	retrieves	icon	image	from	the	Clipboard	when	Clipboard	has	format	CF_ICON,	and
copies	it	to	a	icon	object	named	Icon.

Use	the	TClipboard.HasFormat	method	to	determine	whether	the	information	on	the	clipboard	uses	a	format
compatible	with	the	icon	object	(CF_ICON).
You	can	place	icon	in	the	Clipboard	by	calling	CopyIconToClipboard	procedure.

AssignClipboardIcon	example:

begin
__{...}
__if	Clipboard.HasFormat(CF_ICON)	then
____AssignClipboardIcon(Application.Icon);
__{...}
end;

Routine	CopyIconToClipboard
Declaration:	procedure	CopyIconToClipboard(Icon:	TIcon;	BackColor:	TColor);

CopyIconToClipboard	copies	the	icon	to	the	Clipboard.	This	function	places	the	data	in	CF_ICON	format
and	assosiated	bitmap	to	the	clipboard.	BackColor	is	color	to	fill	background	when	creating	bitmap	from	the

icon.

Use	CreateIconFromClipboard	or	AssignClipboardIcon	to	retrieve	icon	from	the	Clipboard.

CopyIconToClipboard	example:

var	Icon:	TIcon;
begin
__...
__CopyIconToClipboard(Icon,	clBtnFace);
end;

Routine	CreateIconFromClipboard
Declaration:	function	CreateIconFromClipboard:	TIcon;

CreateIconFromClipboard	retrieves	icon	image	from	the	Clipboard	when	Clipboard	has	format	CF_ICON,
and	creates	new	icon	object.	You	must	destroy	created	object	after	using	it.	When	Clipboard	has	not	icon
data,	this	function	returns	nil.

Use	the	TClipboard.HasFormat	method	to	determine	whether	the	information	on	the	clipboard	uses	a	format
compatible	with	the	icon	object	(CF_ICON).

You	can	place	icon	in	the	Clipboard	by	calling	CopyIconToClipboard	procedure.

CreateIconFromClipboard	example:

var	Icon:	TIcon;
begin
__...
__Icon	:=	CreateIconFromClipboard;
__try
____{	using	the	icon	}
__finally
____Icon.Free;
__end;
__...
end;

Routine	CreateRealSizeIcon
Declaration:	function	CreateRealSizeIcon(Icon:	TIcon):	HIcon;

Creates	new	icon	handle	from	Icon	object	that	has	the	"real"	size.	If	the	function	succeeds,	the	return	value
is	the	handle	of	an	icon.	If	the	function	fails,	the	return	value	is	0.

Before	closing,	an	application	must	call	the	Windows	API	DestroyIcon	function	to	free	system	resources
associated	with	the	icon.

CreateRealSizeIcon	example:	
var
__Ico:	HIcon;
begin
__Ico	:=	CreateRealSizeIcon(Form1.Icon);
__try
____{	...	}
__finally
____DestroyIcon(Ico);
__end;
end;

Routine	DrawRealSizeIcon
Declaration:	procedure	DrawRealSizeIcon(Canvas:	TCanvas;	Icon:	TIcon;	X,	Y:	Integer);

Renders	the	icon	specified	by	the	Icon	parameter	on	the	Canvas	at	the	location	given	by	the	coordinates	(X,
Y)	using	real	icon	size	(for	example,	you	can	draw	icon	16x16	or	48x48	pixels).

Standard	TIcon	class	always	renders	icon	using	Windows	metrics	SM_CXICON,	SM_CYICON.

NOTE.	In	16-bit	version	this	procedure	is	"stub"	and	is	equivalent	to	standard	TCanvas.Draw	method.

DrawRealSizeIcon	example:	
DrawRealSizeIcon(Canvas,	Icon,	0,	0);

Routine	GetIconSize
Declaration:	procedure	GetIconSize(Icon:	HICON;	var	W,	H:	Integer);

The	GetIconSize	procedure	retrieves	information	about	width	and	height	(as	W	and	H	parameter
correspondingly)	of	the	specified	icon.

This	procedure	work	correctly	in	32-bit	version	only.	In	Delphi	1.0	this	procedure	is	"stub"	and	always
retrieves	SM_CXICON,	SM_CYICON	values.

GetIconSize	example:	
GetIconSize(Icon.Handle,	W,	H);

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
GIF	Animation	Control GIFCtrl TRxGIFAnimator

Description:
The	TRxGIFAnimator	control	can	display	animated	GIF	images	on	the	form	on	which	it	is	placed.	The
animated	image	is	stored	in	the	Image	property.	It	is	possible	to	define	number	of	a	frame	displayed	in	the
present	moment,	in	runtime	on	value	of	property	FrameIndex.	You	can	also	set	this	value	in	the	designer.
The	property	Transparent	determines,	whether	the	component	will	be	completely	transparent	(using	the
TGIFImage.TransparentColor	property).

Control	also	includes	properties	similar	to	the	TImage's	properties.	Set	Animate	property	to	True	to	start
animation.	The	OnStart	event	is	generated	when	the	animation	started.	The	OnStop	event	is	generated	when
the	property	Active	sets	to	False.

See	also:	
RX	ANI	file	(TAnimatedCursorImage)	and	RX	Animate	(TAnimatedImage),
Standard	Gif	(TRxGif).

Property	Animate
Declaration:	Animate:	Boolean;

Animate	indicates	whether	the	animation	control	is	playing	the	GIF	clip.	Set	Animate	to	True	to	cycle
through	the	frames	specified	by	the	Image	property.	Set	Animate	to	False	to	interrupt	the	animation	control
when	it	is	playing	the	GIF	clip.	For	continuous	sequencing	of	frames,	set	the	Loop	property	to	True.

Property	FrameIndex
Declaration:	FrameIndex:	Integer;

The	FrameIndex	property	stores	the	frame	number	of	the	frame	currently	displayed.	It	can	be	set	to	the
frame	number	which	needs	to	be	displayed.	Before	using	this	property,	ensure	that	the	GIF	image	is
properly	loaded	into	the	Image	property.	While	setting	this	property,	if	the	value	is	within	the	acceptable
range	(between	0	and	the	number	of	frames	in	the	animation,	i.e.	TGIFImage.Count	-	1)	then	the	current
frame	display	is	changed	and	an	OnFrameChanged	event	is	generated.

Property	Image
Declaration:	Image:	TGIFImage;

The	Image	property	holds	the	GIF	clip	(animated	image	in	GIF89	format).

Property	Loop
Declaration:	Loop:	Boolean;

This	property	determines	whether	the	GIF	animation	sequence	should	be	repeated	or	not	when	all	the
frames	are	displayed.	When	set	to	True	(default	value)	and	the	component	runs	out	of	frames,	the

FrameIndex	property	is	reset	to	0.	When	Loop	property	if	set	to	False	and	the	component	runs	out	of
frames,	the	FrameIndex	property	holds	the	number	of	the	last	displayed	frame	and	the	OnStop	event	is
generated.

When	the	Loop	is	True	use	the	Animate	property	to	interrupt	the	animation.

Property	Transparent
Declaration:	Transparent:	Boolean;

Set	Transparent	to	True	to	replace	the	background	color	stored	in	the	GIF	file	with	the	parent's	background.
Set	Transparent	to	False	to	display	the	background	color	stored	in	the	GIF	clip.

Event	OnFrameChanged
Declaration:	OnFrameChanged:	TNotifyEvent;

The	OnFrameChanged	event	is	generated	for	every	change	in	the	display	of	frames.	The	new	frame	number
can	be	obtained	from	the	FrameIndex	property.

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Unit	GIFCtrl	
Event
OnFrameChanged

Property
Animate
FrameIndex
Image
Loop
Transparent

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
GIF RxGIF TGIFFrame

Description:
TGIFImage	supports	reading	and	writing	GIF	compressed	image	data.	The	GIFImage	object	uses	the	data
from	an	instance	of	a	TGIFData	object,	which	contains	that	actual	GIF	data	source	and	is	never	modified.
Each	GIF	image	object	may	share	this	data	source	object	with	other	instances	of	a	GIF	image	that	are	copies
of	it,	created	by	using	the	Assign	method.	The	GIF	data	source	does	referencing	counting	for	the	GIF	image
objects	that	are	linked	to	it

The	properties	of	TGIFImage	indicate	the	size	and	characteristics	of	the	GIF	image.

TGIFImage	supports	up	to	256-colors	GIF	images	versions	87a	and	89a	(you	can	determine	version	of
loaded	image	by	Version	property),	and	supports	graphic	control	extensions	(multiple	images,	transparency)
and	comment	extensions	of	GIF	format.	Plain	text	extensions	are	not	supported.

Single	image	from	GIF	animation	sequence	can	be	accessible	by	the	Frames	property.

TGIFImage	has	an	internal	bitmaps	for	each	frame	that	contains	the	GIF	image.	These	internal	images	and
the	original	data	source	of	a	GIF	image	are	read	only.

A	TGIFImage	object:

•	Has	no	canvas	(and	thus	it	cannot	draw	onto	a	canvas).	A	TGIFImage	object	does	implement	the	protected
Draw	method	introduced	in	TGraphic.	This	means	that	it	can	draw	itself.	When	TGIFImage	contains
multiple	frames	(animated	GIF)	the	Draw	method	will	be	draw	frame	specified	by	FrameIndex	property.

•	Provides	no	access	to	the	internal	bitmap	image	that	it	creates	for	the	GIF	image.

•	TGIFImage	and	TGIFFrame	can	be	assign	to	TBitmap	object	and	you	can	assign	TBitmap	object	to	the
TGIFImage	or	TGIFFrame.	So	you	can	create	TGIFImage,	assign	bitmap	to	it	and	then	store	image	as	GIF
file	by	using	SaveToFile	method.

Property	BackgroundColor
Declaration:	BackgroundColor:	TColor;

The	BackgroundColor	property	determines	which	background	color	stored	in	the	GIF	file	to	use	when
drawing	a	GIF	image.	The	background	color	is	the	color	used	for	those	pixels	on	the	screen	that	are	not
covered	by	an	image.

Property	Comment
Declaration:	Comment:	TStrings;

This	contains	the	comment	text	stored	in	comment	extension	of	a	GIF	file.

Property	Count
Declaration:	Count:	Integer;

This	is	a	read-only	property	and	for	animated	GIFs.	It	stores	the	number	of	frames	contained	within	the	GIF
file.

Property	FrameIndex
Declaration:	FrameIndex:	Integer;

This	property	contains	the	current	frame	being	displayed.	When	this	property	is	changed,	it	would	change
the	frame	being	displayed	on	the	canvas.

Property	Frames[Index:	Integer]
Declaration:	Frames[Index:	Integer]:	TGIFFrame;

Procedure	returns	the	GIF	frame	from	the	index.	This	is	used	to	obtain	(or	extract)	a	particular	frame	from
the	GIF	animated	file.

Property	Height
Declaration:	Height:	Integer;

Height	specifies	the	vertical	size	in	pixels	of	the	current	frame	(specified	by	FrameIndex	property)	of	the
GIF	image.

Property	Palette
Declaration:	Palette:	HPALETTE;

Palette	indicates	the	color	palette	of	the	graphical	GIF	image.	Use	Palette	to	get	the	color	palette	of	a	GIF
image.

Property	ScreenHeight
Declaration:	ScreenHeight:	Integer;

Logical	screen	height,	in	pixels,	of	the	Logical	Screen	where	the	images	will	be	rendered	in	the	displaying
device.	Specifies	the	height	of	the	space	in	which	the	animation	plays.	This	value	is	a	taller	space	for	frames
that	move	vertically.

Property	ScreenWidth
Declaration:	ScreenWidth:	Integer;

Logical	screen	width,	in	pixels,	of	the	Logical	Screen	where	the	images	will	be	rendered	in	the	displaying
device.	Specifies	the	width	of	the	space	in	which	the	animation	plays.	This	value	is	a	wider	space	for	frames

that	move	horizontally.

Property	TransparentColor
Declaration:	TransparentColor:	TColor;

TransparentColor	determines	which	color	of	the	GIF	image	is	to	be	transparent	when	the	GIF	image	is
drawn.

Property	Version
Declaration:	Version:	TGIFVersion;

Version	number	used	to	format	the	GIF	data	stream.	Identifies	the	minimum	set	of	capabilities	necessary	to
a	decoder	to	fully	process	the	contents	of	the	Data	Stream.	GIF	version	numbers	can	be	one	of	following
values:

gv87a	-	May	1987
gv89a	-	July	1989.

Property	Width
Declaration:	Width:	Integer;

Width	specifies	the	horizontal	size	in	pixels	of	the	current	frame	(specified	by	FrameIndex	property)	of	the
GIF	image.

Event	OnProgress
Declaration:	OnProgress:	TProgressEvent;

OnProgress	occurs	when	a	graphical	image	is	in	the	process	of	changing.	OnProgress	is	a	generic	progress
indicator	event	that	propagates	out	to	the	TGIFImage	OnProgress	events.

Type	TDisposalMethod
Declaration:	TDisposalMethod	=	(dmUndefined,	dmLeave,	dmRestoreBackground,	dmRestorePrevious,
dmReserved4,	dmReserved5,	dmReserved6,	dmReserved7);

TDisposalMethod	is	the	type	of	available	values	for	the	DisposalMethod	property	of	the	TGIFFrame	object.

Type	TGIFVersion
Declaration:	TGIFVersion	=	(gvUnknown,	gv87a,	gv89a);

TGIFVersion	defines	the	types	of	GIF	file	that	can	be	read.

Property	AnimateInterval
Declaration:	AnimateInterval:	Word;

Specifies	the	amount	of	time,	in	milliseconds,	that	the	image	displays	during	the	animation.

Property	Bitmap
Declaration:	Bitmap:	TBitmap;

An	internal	bitmap	that	contains	the	GIF	frame's	image.	Protected.

Property	DisposalMethod
Declaration:	DisposalMethod:	TDisposalMethod;

DisposalMethod	indicates	how	frames	display	in	the	animation	from	the	following	choices:

•	dmUndefined	-	Directs	the	viewer	(animator)	to	do	nothing	to	the	background	before	displaying	the	next
image.

•	dmLeave	-	Directs	the	viewer	to	leave	the	previous	graphic	image	as	the	next	is	drawn.	

This	choice	can	create	a	shadowing	effect.

•	dmRestoreBackground	-	Directs	the	viewer	to	redraw	the	original	background	as	the	current	image	is
drawn.
•	dmRestorePrevious	-	Directs	the	viewer	to	redraw	the	previous	image	as	the	current	image	is	drawn

Property	Height
Declaration:	Height:	Integer;

Height	indicates	the	vertical	size	in	pixels	of	the	GIF-frame	image.

Property	Origin
Declaration:	Origin:	TPoint;

Origin	indicates	the	position	of	the	left	and	top	edges	of	the	image,	with	respect	to	the	left	edge	of	the
Logical	Screen.	Leftmost	column	of	the	Logical	Screen	is	0.	Top	row	of	the	Logical	Screen	is	also	0.

Property	TransparentColor
Declaration:	TransparentColor:	TColor;

TransparentColor	is	a	color	that	will	treat	as	the	transparent	portion	of	the	GIF	image.

Property	Width
Declaration:	Width:	Integer;

Width	indicates	the	horizontal	size	in	pixels	of	the	GIF-frame	image.

Method	Draw
Declaration:	procedure	Draw(ACanvas:	TCanvas;	X,	Y:	Integer);

Draw	the	GIF	frame	on	the	canvas	specified	by	the	ACanvas	parameter	at	the	location	given	by	the
coordinates	(X,	Y).

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Unit	RxGIF	
Property:
AnimateInterval
BackgroundColor
Bitmap
Comment
Count
DisposalMethod
FrameIndex
Frames[Index:	Integer]
Height
Origin
Palette
ScreenHeight
ScreenWidth
TransparentColor
Version
Width

Types:
TDisposalMethod
TGIFVersion

Events:
OnProgress

Method:
Draw

	

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
RxDbCalcEdit RxDBCtrl TRxDBCalcEdit

Description:	The	TRxDBCalcEdit	component	is	the	data-aware	version	of	the	TRxCalcEdit.	This	means
that	the	TRxDBCalcEdit	can	be	connected	to	a	data	source	and	edit	the	contents	of	numeric	fields	in	the
data	source.	TRxDBCalcEdit	provides	a	drop-down	calculator	to	help	you	calculate	the	number.
TRxDBCalcEdit	is	a	direct	descendant	of	the	TRxCalcEdit	class	and	inherits	all	of	its	properties,	events	and
methods.

Property	Value
Declaration:	Value:	Extended;

Value	is	the	actual	data	in	a	TRxDBCalcEdit.	Use	Value	to	read	data	directly	from	and	write	data	directly	to
an	editor.	When	Text	property	is	empty	string,	the	Value	property	returns	0	(zero).

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

Control	Name Unit Class
RX	Calculator RxCombos TRxCalcEdit

Description:
The	TRxCalcEdit	takes	the	display	and	editing	of	numeric	data	one	step	further:	it	provides	a	popup
calculator	to	help	you	calculate	the	number.	When	you	perform	a	calculation	on	the	calculator,	the	result	is
inserted	into	the	number	edit’s	display.	

TRxCalcEdit	have	the	keyboard	restrictions,	so	the	user	cannot	enter	invalid	characters.	When	the	user
leaves	the	field,	the	number	is	reformatted	to	display	appropriately,	accordingly	with	the	DisplayFormat
property.

The	field	value	is	stored	in	a	write	Value	property	so	you	should	read	and	write	to	that	in	your	program.

This	field	is	of	type	Extended.	You	can	also	read	and	write	Value	as	integer	number	using	AsInteger
property.

Property	GlyphKind
Declaration:	GlyphKind:	TGlyphKind;

Use	this	property	to	select	between	standard	button	glyph	types,	or	specify	a	custom	type.	

The	standard	types	are:

gkCustom	-	the	button	is	displayed	with	a	custom	glyph,	specified	by	Glyph	property;
gkDefault	-	the	button	is	displayed	with	a	glyph,	dependent	on	the	editor	class	(TFilenameEdit,
TDateEdit	etc);
gkDropDown	-	the	button	is	displayed	with	the	standard	combo	box	drop	down	glyph;
gkEllipsis	-	the	button	is	displayed	with	an	ellipsis	glyph.

If	the	Glyph	is	set	to	a	new	bitmap,	the	gkCustom	type	is	automatically	set.

Property	Value
Declaration:	Value:	Extended;

Value	is	the	actual	data	in	a	TCurrencyEdit	or	in	a	TRxCalcEdit.	Use	Value	to	read	data	directly	from	and
write	data	directly	to	an	editor.	When	Text	property	is	empty	string,	the	Value	property	returns	0	(zero)

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

UNIT	RxGraph

Overview:
BitmapToMemory
TMappingMethod
GetBitmapPixelFormat
GrayscaleBitmap
SaveBitmapToFile
SetBitmapPixelFormat

Type	TMappingMethod
Declaration:	TMappingMethod	=	(mmQuantize,	mmTrunc784,	mmTrunc666,	mmTripel,	mmGrayscale);

The	TMappingMethod	describes	possible	methods	to	decrease	bitmap	color	count	by	using
SetBitmapPixelFormat	procedure.

Routine	BitmapToMemory
Declaration:	function	BitmapToMemory(Bitmap:	TBitmap;	Colors:	Integer):	TStream;

BitMap	:	pointer	to	bitmap
Colours:	Number	of	colours.	(maximum:	2^32)

This	maps	a	bitmap	to	a	stream	to	be	utilitsed	by	a	memory	mapped	function	or	for	file	streaming	purposes.

BitmapToMemory	example:	
Next	code	fragment	shows	how	you	can	decrease	the	number	of	colours	in	a	bitmap	to	16	colours:

var
__S:	TStream;
begin
__S	:=	BitmapToMemory(Picture.Bitmap,	16);
__try
____Picture.Graphic.LoadFromStream(S);
__finally
____S.Free;
__end;
end;

Routine	GetBitmapPixelFormat
Declaration:	function	GetBitmapPixelFormat(ABitmap:	TBitmap):	TPixelFormat;

The	GetBitmapPixelFormat	procedure	determines	in	what	bit	format	the	bitmap	image	is	displayed.

>	GetBitmapPixelFormat	example:	
if	GetBitmapPixelFormat(Image.Bitmap)	>	pf8bit	then
__SetBitmapPixelFormat(Image.Bitmap,	pf8bit,	mmQuantize);

Routine	GrayscaleBitmap
Declaration:	procedure	GrayscaleBitmap(Bitmap:	TBitmap);

This	procedure	transforms	a	color	bitmap	image	into	grayscale.	Each	pixel	is	transformed	into	the	gray
pixel	(Red	=	Green	=	Blue)	with	the	(approximate)	same	luminosity.

GrayscaleBitmap	example:	
__GrayscaleBitmap(Image1.Bitmap);

Routine	SaveBitmapToFile
Declaration:	procedure	SaveBitmapToFile(const	FileName:	string;	Bitmap:	TBitmap;	Colors:	Integer);

SaveBitmapToFile	example:

var
__Bmp:	TBitmap;
begin
__{...}
__Bmp.Assign(Clipboard);
__SaveBitmapToFile(SaveDialog1.FileName,	Bmp,	16);
__{...}
end;

Routine	SetBitmapPixelFormat
Declaration:	procedure	SetBitmapPixelFormat(ABitmap:	TBitmap;	PixelFormat:	TPixelFormat;	Method:
TMappingMethod);

SetBitmapPixelFormat	procedure	allows	you	to	determine	in	what	bit	format	the	bitmap	image	specified	by
ABitmap	parameter	will	be	displayed:	8-bit,	24-bit	etc.	For	example,	you	can	use	SetBitmapPixelFormat	to
set	the	pixel	format	of	the	bitmap	image	to	8-bit	for	video	driveres	that	cannot	display	the	native	format	of	a
bitmap	image.	You	can	specify	method	to	decrease	bitmap	colors	count	by	the	Method	parameter.	Possible
values	for	PixelFormat	parameter	are:	pf1bit,	pf4bit,	pf8bit,	pf24bit.

SetBitmapPixelFormat	example:	
__SetBitmapPixelFormat(Image.Bitmap,	pf8bit,	mmQuantize);

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

	

Copyright	©	1992-2000	by	Peck	Kim	Han	http://www.hypermart.net.	All	rights	reserved.	The	software
which	is	documented	in	this	help	file	is	copyrighted	by	their	respective	owners.

Index	Page	|	About	|	Download
Creation	Date:	4	Feb	1998	|	Last	Update:	16	Mar	2000

http://www.hypermart.net

VCL	Utilities

